--- dataset_info: features: - name: image dtype: image - name: outlines sequence: sequence: uint8 - name: segments sequence: sequence: sequence: bool - name: id dtype: int64 - name: is_bad dtype: bool splits: - name: train num_bytes: 18811729165.83 num_examples: 16455 - name: val num_bytes: 3671501400.7200003 num_examples: 3209 - name: test num_bytes: 3602703436.986 num_examples: 3138 download_size: 4189102455 dataset_size: 26085934003.536003 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* --- Processed data from the Soccernet 2023 dataset. Processing notebook is included in this repo. To see an example: ```python def show_item(item): fig, axs = plt.subplots(nrows = 1, ncols = 4, figsize = (20, 4)) axs[0].imshow(item['image']) axs[0].set_title("Image") axs[0].axis('off') axs[1].imshow(overlay_mask(item['image'], item['outlines'])) axs[1].set_title("Outlines") axs[1].axis('off') axs[2].imshow(show_segments(item['segments'])) axs[2].set_title("Segments") axs[2].axis('off') # PART 3: GET MASK OUTLINES kernel = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) segments = np.array(item['segments']).astype(np.uint8) class_edges = np.zeros(segments.shape[1:], dtype=int) for i in range(segments.shape[0]): edge = convolve(segments[i], kernel, mode='constant', cval=0) edge_detected = edge != 0 class_edges[edge_detected] = i axs[3].imshow(overlay_mask(item['image'], class_edges)) axs[3].set_title("Segments Outlines") axs[3].axis('off') if item['is_bad']: s = f"Bad ID: {item['id']}" else: s = f"ID: {item['id']}" fig.suptitle(s, fontsize = 8) plt.subplots_adjust(hspace = -0.2, wspace = -0.05) plt.show() show_item(dataset['train'][99]) ```