|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""HumSet: Dataset of Multilingual Information Extraction and Classification for Humanitarian Crisis Response""" |
|
|
|
import json |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{https://doi.org/10.48550/arxiv.2210.04573, |
|
doi = {10.48550/ARXIV.2210.04573}, |
|
url = {https://arxiv.org/abs/2210.04573}, |
|
author = {Fekih, Selim and Tamagnone, Nicolò and Minixhofer, Benjamin and Shrestha, Ranjan and Contla, Ximena and Oglethorpe, Ewan and Rekabsaz, Navid}, |
|
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {HumSet: Dataset of Multilingual Information Extraction and Classification for Humanitarian Crisis Response}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {arXiv.org perpetual, non-exclusive license} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
HumSet is a novel and rich multilingual dataset of humanitarian response documents annotated by experts in the humanitarian response community. HumSet is curated by humanitarian analysts and covers various disasters around the globe that occurred from 2018 to 2021 in 46 humanitarian response projects. The dataset consists of approximately 17K annotated documents in three languages of English, French, and Spanish, originally taken from publicly-available resources. For each document, analysts have identified informative snippets (entries) in respect to common humanitarian frameworks, and assigned one or many classes to each entry. See the our paper for details. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/nlp-thedeep/humset" |
|
|
|
_LICENSE = "The GitHub repository which houses this dataset has an Apache License 2.0." |
|
|
|
|
|
_URLs = { |
|
"1.0.0": { |
|
"train": "data/train.jsonl", |
|
"dev": "data/validation.jsonl", |
|
"test": "data/test.jsonl", |
|
}, |
|
"2.0.0": { |
|
"train": "data/train_1_1.jsonl", |
|
"dev": "data/validation_1_1.jsonl", |
|
"test": "data/test_1_1.jsonl" |
|
} |
|
} |
|
|
|
|
|
_SUPPORTED_VERSIONS = [ |
|
|
|
datasets.Version("1.0.0", "Only primary tags"), |
|
|
|
datasets.Version("2.0.0", "Extented data points including secondary tags and geolocations"), |
|
] |
|
|
|
|
|
""" |
|
from: https://huggingface.co/docs/datasets/v2.9.0/en/package_reference/main_classes#datasets.Sequence |
|
a python list or a Sequence specifies that the field contains a list of objects. |
|
The python list or Sequence should be provided with a single sub-feature as an example of the feature type hosted in this list. |
|
""" |
|
|
|
|
|
FIRST_FEATURES = datasets.Features( |
|
{ |
|
"entry_id": datasets.Value("string"), |
|
"lead_id": datasets.Value("string"), |
|
"project_id": datasets.Value("string"), |
|
"lang": datasets.Value("string"), |
|
"n_tokens": datasets.Value("int64"), |
|
"project_title": datasets.Value("string"), |
|
"created_at": datasets.Value("string"), |
|
"document": datasets.Value("string"), |
|
"excerpt": datasets.Value("string"), |
|
"sectors": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"pillars_1d": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"pillars_2d": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"subpillars_1d": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"subpillars_2d": datasets.Sequence(datasets.Value("string"), length=-1), |
|
} |
|
) |
|
|
|
SECOND_FEATURES = datasets.Features( |
|
{ |
|
"entry_id": datasets.Value("string"), |
|
"lead_id": datasets.Value("string"), |
|
"lang": datasets.Value("string"), |
|
"n_tokens": datasets.Value("int64"), |
|
"project_title": datasets.Value("string"), |
|
"created_at": datasets.Value("string"), |
|
"document": datasets.Value("string"), |
|
"source_title": datasets.Value("string"), |
|
"author_title": datasets.Value("string"), |
|
"excerpt": datasets.Value("string"), |
|
"geo_location": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"sectors": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"pillars_1d": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"pillars_2d": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"subpillars_1d": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"subpillars_2d": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"displaced": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"non_displaced": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"affected": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"severity": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"age": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"gender": datasets.Sequence(datasets.Value("string"), length=-1), |
|
"specific_needs_groups": datasets.Sequence(datasets.Value("string"), length=-1) |
|
} |
|
) |
|
|
|
class HumsetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for DuoRC SelfRC.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for DuoRC SelfRC. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(HumsetConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Humset(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
HumsetConfig( |
|
name=str(version), |
|
description=f"version {str(version)}", |
|
version=version |
|
) |
|
for version in _SUPPORTED_VERSIONS |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "2.0.0" |
|
|
|
def _info(self): |
|
|
|
if self.config.name == "1.0.0": |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=FIRST_FEATURES, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
elif self.config.name == "2.0.0": |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=SECOND_FEATURES, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
"""Returns SplitGenerators.""" |
|
|
|
my_urls = _URLs[self.config.name] |
|
downloaded_files = dl_manager.download_and_extract(my_urls) |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["dev"], |
|
}, |
|
)] |
|
|
|
if self.config.name in ["1.0.0", "2.0.0"]: |
|
splits = splits + [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"], |
|
}, |
|
) |
|
] |
|
|
|
return splits |
|
|
|
def _generate_examples(self, filepath): |
|
|
|
"""This function returns the examples in the raw (text) form.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
data = list(f) |
|
idx = 0 |
|
for line in data: |
|
row = json.loads(line) |
|
|
|
yield idx, row |
|
idx+=1 |
|
|