# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """EpiClassify4GARD dataset.""" import csv import datasets _DESCRIPTION = """\ INSERT DESCRIPTION """ _CITATION = """\ John JN, Sid E, Zhu Q. Recurrent Neural Networks to Automatically Identify Rare Disease Epidemiologic Studies from PubMed. AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:325-334. PMID: 34457147; PMCID: PMC8378621. """ _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/ncats/epi4GARD/master/epi_classify_dataset/train.tsv" _VAL_DOWNLOAD_URL = "https://raw.githubusercontent.com/ncats/epi4GARD/master/epi_classify_dataset/val.tsv" _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/ncats/epi4GARD/master/epi_classify_dataset/test.tsv" class EpiClassify4GARD(datasets.GeneratorBasedBuilder): """EpiClassify4GARD text classification dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "abstract": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["1 = IsEpi", "0 = IsNotEpi"]), } ), homepage="https://github.com/ncats/epi4GARD/tree/master/Epi4GARD#epi4gard", citation=_CITATION, ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) val_path = dl_manager.download_and_extract(_VAL_DOWNLOAD_URL) test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path }), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), ] def _generate_examples(self, filepath): """Generate examples.""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter="\t", quoting=csv.QUOTE_ALL, skipinitialspace=True ) next(csv_reader) for id_, row in enumerate(csv_reader): abstract = row[0] label = row[1] yield id_, {"abstract": abstract, "label": int(label)}