import sys import subprocess from safetensors.torch import load_file from diffusers import AutoPipelineForText2Image from datasets import load_dataset from huggingface_hub.repocard import RepoCard import torch import re import argparse def parse_arguments(): parser = argparse.ArgumentParser(description="Process script arguments.") parser.add_argument('--dataset_name', required=True, help='Name of the dataset.') parser.add_argument('--output_dir', required=True, help='Output directory.') parser.add_argument('--num_new_tokens_per_abstraction', type=int, default=0, help='Number of new tokens per abstraction.') parser.add_argument('--train_text_encoder_ti', action='store_true', help='Flag to train text encoder TI.') return parser.parse_args() def do_train(script_args): # Pass all arguments to trainer.py print("Starting training...") subprocess.run(['python', 'trainer.py'] + script_args) def do_inference(dataset_name, output_dir, num_tokens): try: print("Starting inference to generate example images...") dataset = load_dataset(dataset_name) pipe = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe = pipe.to("cuda") pipe.load_lora_weights(f'{output_dir}/pytorch_lora_weights.safetensors') prompts = dataset["train"]["prompt"] widget_content = [] if(num_tokens > 0): tokens_sequence = ''.join(f'' for i in range(num_tokens)) tokens_list = [f'' for i in range(num_tokens)] state_dict = load_file(f"{output_dir}/embeddings.safetensors") pipe.load_textual_inversion(state_dict["clip_l"], token=tokens_list, text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipe.load_textual_inversion(state_dict["clip_g"], token=tokens_list, text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) prompts = [prompt.replace("TOK", tokens_sequence) for prompt in prompts] for i, prompt in enumerate(prompts): image = pipe(prompt, num_inference_steps=25, guidance_scale=7.5).images[0] filename = f"image-{i}.png" image.save(f"{output_dir}/{filename}") card_dict = { "text": prompt, "output": { "url": filename } } widget_content.append(card_dict) repo_id = api.create_repo(f"{username}/{output_dir}", exist_ok=True).repo_id with open(f'{output_dir}/README.md', 'r') as file: readme_content = file.read() readme_content = readme_content.replace(f'{output_dir}', f'{username}/{output_dir}') card = RepoCard(readme_content) card.data["widget"] = widget_content card.save(f'{output_dir}/README.md') except Exception as e: print("Something went wrong with generating images, specifically: ", e) from huggingface_hub import HfApi api = HfApi() username = api.whoami()["name"] print("Starting upload...") api.upload_folder( folder_path=output_dir, repo_id=f"{username}/{output_dir}", repo_type="model", ) print("Upload finished!") import sys import argparse def main(): # Capture all arguments except the script name script_args = sys.argv[1:] # Create the argument parser parser = argparse.ArgumentParser() parser.add_argument('--dataset_name', required=True) parser.add_argument('--output_dir', required=True) parser.add_argument('--num_new_tokens_per_abstraction', type=int, default=0) parser.add_argument('--train_text_encoder_ti', action='store_true') # Parse known arguments args, _ = parser.parse_known_args(script_args) # Set num_tokens to 0 if '--train_text_encoder_ti' is not present if not args.train_text_encoder_ti: args.num_new_tokens_per_abstraction = 0 # Proceed with training and inference do_train(script_args) print("Training finished!") do_inference(args.dataset_name, args.output_dir, args.num_new_tokens_per_abstraction) print("All finished!") if __name__ == "__main__": main()