Datasets:
mteb
/

Modalities:
Text
License:
multi-hatecheck / scripts /make_dataset.py
rbroc
add polish
8197968
from __future__ import annotations
from pathlib import Path
import numpy as np
import datasets
_HF_AFFIX = {
"ara": "arabic",
"cmn": "mandarin",
"eng": "",
"deu": "german",
"fra": "french",
"hin": "hindi",
"ita": "italian",
"nld": "dutch",
"pol": "polish",
"por": "portuguese",
"spa": "spanish",
}
_HF_AFFIX_REV = {v:k for k,v in _HF_AFFIX.items()}
_REVISION_DICT = {
"ara": "65eb7455a05cb77b3ae0c69d444569a8eee54628",
"cmn": "617d3e9fccd186277297cc305f6588af7384b008",
"eng": "9d2ac89df04254e5c427bcc8d61b6d6c83a1f59b",
"deu": "5229a5cc475f36c08d03ca52f0ccb005705e60d2",
"fra": "5d3085f2129139abc10d2b58becd4d4f2978e5d5",
"hin": "e9e68e1a4db04726b9278192377049d0f9693012",
"ita": "21e3d5c827cb60619a89988b24979850a7af85a5",
"nld": "d622427417d37a8d74e110e6289bc29af4ba4056",
"pol": "28d7098e2e5a211c4810d0a4d8deccc5889e55b6",
"por": "323bdf67e0fbd3d7f8086fad0971b5bd5a62524b",
"spa": "a7ea759535bb9fad6361cca151cf94a46e88edf3",
}
def _transform(dataset):
target_cols = ["test_case", "label_gold"]
new_cols = ['text', 'is_hateful']
rename_dict = dict(zip(target_cols, ["text", "is_hateful"]))
dataset = dataset.rename_columns(rename_dict)
keep_cols = new_cols + ["functionality"]
remove_cols = [col for col in dataset["test"].column_names if col not in keep_cols]
dataset = dataset.remove_columns(remove_cols)
return dataset
def make_dataset():
"""
Load dataset from HuggingFace hub
"""
ds = {}
for lang in _HF_AFFIX.values():
lcode = _HF_AFFIX_REV[lang]
path = f'Paul/hatecheck-{lang}'.rstrip('-')
dataset = datasets.load_dataset(
path=path, revision=_REVISION_DICT[lcode]
)
dataset = _transform(dataset)
out_path = Path('..') / lcode / 'test.jsonl'
dataset['test'].to_json(out_path)
ds[lcode] = dataset
return ds
if __name__ == '__main__':
dataset = make_dataset()
AVG_CHAR = 0
for lang in _HF_AFFIX:
AVG_CHAR += np.mean([len(x['text']) for x in dataset[lang]['test']])
print(f'avg char: {AVG_CHAR / len(_HF_AFFIX)}')