Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
Samoed commited on
Commit
8a8947c
·
verified ·
1 Parent(s): 5e80893

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +199 -27
README.md CHANGED
@@ -1,29 +1,201 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: text
5
- dtype: string
6
- - name: label
7
- dtype: int64
8
- splits:
9
- - name: train
10
- num_bytes: 1650691690
11
- num_examples: 28388
12
- - name: validation
13
- num_bytes: 144469423
14
- num_examples: 2500
15
- - name: test
16
- num_bytes: 141183324
17
- num_examples: 2500
18
- download_size: 1010665824
19
- dataset_size: 1936344437
20
- configs:
21
- - config_name: default
22
- data_files:
23
- - split: train
24
- path: data/train-*
25
- - split: validation
26
- path: data/validation-*
27
- - split: test
28
- path: data/test-*
29
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - eng
6
+ license: unknown
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-classification
10
+ task_ids:
11
+ - Topic classification
12
+ tags:
13
+ - mteb
14
+ - text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
17
+
18
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
19
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">ArxivClassification</h1>
20
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
21
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
22
+ </div>
23
+
24
+ Classification Dataset of Arxiv Papers
25
+
26
+ | | |
27
+ |---------------|---------------------------------------------|
28
+ | Task category | t2c |
29
+ | Domains | Academic, Written |
30
+ | Reference | https://ieeexplore.ieee.org/document/8675939 |
31
+
32
+
33
+ ## How to evaluate on this task
34
+
35
+ You can evaluate an embedding model on this dataset using the following code:
36
+
37
+ ```python
38
+ import mteb
39
+
40
+ task = mteb.get_tasks(["ArxivClassification"])
41
+ evaluator = mteb.MTEB(task)
42
+
43
+ model = mteb.get_model(YOUR_MODEL)
44
+ evaluator.run(model)
45
+ ```
46
+
47
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
48
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
49
+
50
+ ## Citation
51
+
52
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
53
+
54
+ ```bibtex
55
+
56
+ @article{8675939,
57
+ author = {He, Jun and Wang, Liqun and Liu, Liu and Feng, Jiao and Wu, Hao},
58
+ doi = {10.1109/ACCESS.2019.2907992},
59
+ journal = {IEEE Access},
60
+ number = {},
61
+ pages = {40707-40718},
62
+ title = {Long Document Classification From Local Word Glimpses via Recurrent Attention Learning},
63
+ volume = {7},
64
+ year = {2019},
65
+ }
66
+
67
+
68
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
69
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
70
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
71
+ publisher = {arXiv},
72
+ journal={arXiv preprint arXiv:2502.13595},
73
+ year={2025},
74
+ url={https://arxiv.org/abs/2502.13595},
75
+ doi = {10.48550/arXiv.2502.13595},
76
+ }
77
+
78
+ @article{muennighoff2022mteb,
79
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
80
+ title = {MTEB: Massive Text Embedding Benchmark},
81
+ publisher = {arXiv},
82
+ journal={arXiv preprint arXiv:2210.07316},
83
+ year = {2022}
84
+ url = {https://arxiv.org/abs/2210.07316},
85
+ doi = {10.48550/ARXIV.2210.07316},
86
+ }
87
+ ```
88
+
89
+ # Dataset Statistics
90
+ <details>
91
+ <summary> Dataset Statistics</summary>
92
+
93
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
94
+
95
+ ```python
96
+ import mteb
97
+
98
+ task = mteb.get_task("ArxivClassification")
99
+
100
+ desc_stats = task.metadata.descriptive_stats
101
+ ```
102
+
103
+ ```json
104
+ {
105
+ "test": {
106
+ "num_samples": 2500,
107
+ "number_of_characters": 137209409,
108
+ "number_texts_intersect_with_train": 159,
109
+ "min_text_length": 3895,
110
+ "average_text_length": 54883.7636,
111
+ "max_text_length": 559979,
112
+ "unique_text": 2495,
113
+ "unique_labels": 11,
114
+ "labels": {
115
+ "4": {
116
+ "count": 234
117
+ },
118
+ "1": {
119
+ "count": 194
120
+ },
121
+ "7": {
122
+ "count": 236
123
+ },
124
+ "3": {
125
+ "count": 233
126
+ },
127
+ "9": {
128
+ "count": 219
129
+ },
130
+ "5": {
131
+ "count": 196
132
+ },
133
+ "2": {
134
+ "count": 205
135
+ },
136
+ "10": {
137
+ "count": 212
138
+ },
139
+ "8": {
140
+ "count": 318
141
+ },
142
+ "0": {
143
+ "count": 212
144
+ },
145
+ "6": {
146
+ "count": 241
147
+ }
148
+ }
149
+ },
150
+ "train": {
151
+ "num_samples": 28388,
152
+ "number_of_characters": 1602729054,
153
+ "number_texts_intersect_with_train": null,
154
+ "min_text_length": 2852,
155
+ "average_text_length": 56457.97710300127,
156
+ "max_text_length": 2553775,
157
+ "unique_text": 27321,
158
+ "unique_labels": 11,
159
+ "labels": {
160
+ "8": {
161
+ "count": 3527
162
+ },
163
+ "9": {
164
+ "count": 2560
165
+ },
166
+ "3": {
167
+ "count": 2631
168
+ },
169
+ "5": {
170
+ "count": 2117
171
+ },
172
+ "1": {
173
+ "count": 2137
174
+ },
175
+ "6": {
176
+ "count": 2443
177
+ },
178
+ "0": {
179
+ "count": 2456
180
+ },
181
+ "10": {
182
+ "count": 2581
183
+ },
184
+ "7": {
185
+ "count": 2768
186
+ },
187
+ "2": {
188
+ "count": 2569
189
+ },
190
+ "4": {
191
+ "count": 2599
192
+ }
193
+ }
194
+ }
195
+ }
196
+ ```
197
+
198
+ </details>
199
+
200
+ ---
201
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*