"""Wine Dataset""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "free_sulfur_dioxide", "total_sulfur_dioxide", "density", "pH", "sulphates", "alcohol", "quality", "color" ] DESCRIPTION = "Wine quality dataset." _HOMEPAGE = "https://www.kaggle.com/datasets/ghassenkhaled/wine-quality-data" _URLS = ("https://www.kaggle.com/datasets/ghassenkhaled/wine-quality-data") _CITATION = """""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/wine/raw/main/Wine_Quality_Data.csv", } features_types_per_config = { "wine": { "fixed_acidity": datasets.Value("float64"), "volatile_acidity": datasets.Value("float64"), "citric_acid": datasets.Value("float64"), "residual_sugar": datasets.Value("float64"), "chlorides": datasets.Value("float64"), "free_sulfur_dioxide": datasets.Value("float64"), "total_sulfur_dioxide": datasets.Value("float64"), "density": datasets.Value("float64"), "pH": datasets.Value("float64"), "sulphates": datasets.Value("float64"), "alcohol": datasets.Value("float64"), "quality": datasets.Value("int8"), "color": datasets.ClassLabel(num_classes=2, names=("red", "white")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class WineConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(WineConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Wine(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "wine" BUILDER_CONFIGS = [ WineConfig(name="wine", description="Binary classification."), ] def _info(self): if self.config.name not in features_per_config: raise ValueError(f"Unknown configuration: {self.config.name}") info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = "wine") -> pandas.DataFrame: data.loc[data.color == "red", "color"] = 0 data.loc[data.color == "white", "color"] = 1 data.columns = _BASE_FEATURE_NAMES if config == "wine": return data else: raise ValueError(f"Unknown config: {config}")