"""TicTacToe""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "top_left_square", "top_middle_square", "top_right_square", "middle_left_square", "middle_middle_square", "middle_right_square", "bottom_left_square", "bottom_middle_square", "bottom_right_square", "x_wins" ] DESCRIPTION = "TicTacToe dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/TicTacToe" _URLS = ("https://archive.ics.uci.edu/ml/datasets/TicTacToe") _CITATION = """ @misc{misc_tic-tac-toe_endgame_101, author = {Aha,David}, title = {{Tic-Tac-Toe Endgame}}, year = {1991}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5688J}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/tic_tac_toe/raw/main/tic-tac-toe.data" } features_types_per_config = { "tic_tac_toe": { "top_left_square": datasets.Value("string"), "top_middle_square": datasets.Value("string"), "top_right_square": datasets.Value("string"), "middle_left_square": datasets.Value("string"), "middle_middle_square": datasets.Value("string"), "middle_right_square": datasets.Value("string"), "bottom_left_square": datasets.Value("string"), "bottom_middle_square": datasets.Value("string"), "bottom_right_square": datasets.Value("string"), "x_wins": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class TicTacToeConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(TicTacToeConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class TicTacToe(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "tic_tac_toe" BUILDER_CONFIGS = [ TicTacToeConfig(name="tic_tac_toe", description="TicTacToe for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data.columns = _BASE_FEATURE_NAMES data.x_wins.applymap(lambda x: 1 if x == "positive" else 0) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row