"""Seeds Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ENCODING_DICS = {} DESCRIPTION = "Seeds dataset." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification" _URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification") _CITATION = """ @misc{misc_seeds_236, author = {Charytanowicz,Magorzata, Niewczas,Jerzy, Kulczycki,Piotr, Kowalski,Piotr & Lukasik,Szymon}, title = {{seeds}}, year = {2012}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5H30K}} } """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/seeds/raw/main/seeds.csv" } features_types_per_config = { "seeds": { "area": datasets.Value("float64"), "perimeter": datasets.Value("float64"), "compactness": datasets.Value("float64"), "length": datasets.Value("float64"), "width": datasets.Value("float64"), "asymmetry": datasets.Value("float64"), "length_grove": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=3), }, "seeds_0": { "area": datasets.Value("float64"), "perimeter": datasets.Value("float64"), "compactness": datasets.Value("float64"), "length": datasets.Value("float64"), "width": datasets.Value("float64"), "asymmetry": datasets.Value("float64"), "length_grove": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2), }, "seeds_1": { "area": datasets.Value("float64"), "perimeter": datasets.Value("float64"), "compactness": datasets.Value("float64"), "length": datasets.Value("float64"), "width": datasets.Value("float64"), "asymmetry": datasets.Value("float64"), "length_grove": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2), }, "seeds_2": { "area": datasets.Value("float64"), "perimeter": datasets.Value("float64"), "compactness": datasets.Value("float64"), "length": datasets.Value("float64"), "width": datasets.Value("float64"), "asymmetry": datasets.Value("float64"), "length_grove": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2), }, } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class SeedsConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SeedsConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Seeds(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "seeds" BUILDER_CONFIGS = [ SeedsConfig(name="seeds", description="Seeds for multiclass classification."), SeedsConfig(name="seeds_0", description="Seeds for binary classification."), SeedsConfig(name="seeds_1", description="Seeds for binary classification."), SeedsConfig(name="seeds_2", description="Seeds for binary classification."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: data["class"] = data["class"].apply(lambda x: x - 1) if self.config.name == "seeds_0": data["decision"] = data["decision"].apply(lambda x: 1 if x == 0 else 0) elif self.config.name == "seeds_1": data["decision"] = data["decision"].apply(lambda x: 1 if x == 1 else 0) elif self.config.name == "seeds_2": data["decision"] = data["decision"].apply(lambda x: 1 if x == 2 else 0) for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) return data[list(features_types_per_config[self.config.name].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")