"""Heloc Dataset""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _ORIGINAL_FEATURE_NAMES = [ "RiskPerformance", "ExternalRiskEstimate", "MSinceOldestTradeOpen", "MSinceMostRecentTradeOpen", "AverageMInFile", "NumSatisfactoryTrades", "NumTrades60Ever2DerogPubRec", "NumTrades90Ever2DerogPubRec", "PercentTradesNeverDelq", "MSinceMostRecentDelq", "MaxDelq2PublicRecLast12M", "MaxDelqEver", "NumTotalTrades", "NumTradesOpeninLast12M", "PercentInstallTrades", "MSinceMostRecentInqexcl7days", "NumInqLast6M", "NumInqLast6Mexcl7days", "NetFractionRevolvingBurden", "NetFractionInstallBurden", "NumRevolvingTradesWBalance", "NumInstallTradesWBalance", "NumBank2NatlTradesWHighUtilization", "PercentTradesWBalance", ] _BASE_FEATURE_NAMES = [ "is_at_risk", "estimate_of_risk", "months_since_first_trade", "months_since_last_trade", "average_duration_of_resolution", "number_of_satisfactory_trades", "nr_trades_insolvent_for_over_60_days", "nr_trades_insolvent_for_over_90_days", "percentage_of_legal_trades", "months_since_last_illegal_trade", "maximum_illegal_trades_over_last_year", "maximum_illegal_trades", "nr_total_trades", "nr_trades_initiated_in_last_year", "percentage_of_installment_trades", "months_since_last_inquiry_not_recent", "nr_inquiries_in_last_6_months", "nr_inquiries_in_last_6_months_not_recent", "net_fraction_of_revolving_burden", "net_fraction_of_installment_burden", "nr_revolving_trades_with_balance", "nr_installment_trades_with_balance", "nr_banks_with_high_ratio", "percentage_trades_with_balance" ] DESCRIPTION = "Heloc dataset for cancer prediction." _HOMEPAGE = "https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a" _URLS = ("https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a") _CITATION = """ """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/heloc/raw/main/heloc.csv", } features_types_per_config = { "risk": { "estimate_of_risk": datasets.Value("int8"), "months_since_first_trade": datasets.Value("int32"), "months_since_last_trade": datasets.Value("int32"), "average_duration_of_resolution": datasets.Value("int32"), "number_of_satisfactory_trades": datasets.Value("int16"), "nr_trades_insolvent_for_over_60_days": datasets.Value("int16"), "nr_trades_insolvent_for_over_90_days": datasets.Value("int16"), "percentage_of_legal_trades": datasets.Value("int16"), "months_since_last_illegal_trade": datasets.Value("int32"), "maximum_illegal_trades_over_last_year": datasets.Value("int8"), "maximum_illegal_trades": datasets.Value("int16"), "nr_total_trades": datasets.Value("int16"), "nr_trades_initiated_in_last_year": datasets.Value("int16"), "percentage_of_installment_trades": datasets.Value("int16"), "months_since_last_inquiry_not_recent": datasets.Value("int16"), "nr_inquiries_in_last_6_months": datasets.Value("int16"), "nr_inquiries_in_last_6_months_not_recent": datasets.Value("int16"), "net_fraction_of_revolving_burden": datasets.Value("int32"), "net_fraction_of_installment_burden": datasets.Value("int32"), "nr_revolving_trades_with_balance": datasets.Value("int16"), "nr_installment_trades_with_balance": datasets.Value("int16"), "nr_banks_with_high_ratio": datasets.Value("int16"), "percentage_trades_with_balance": datasets.Value("int16"), "is_at_risk": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class HelocConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(HelocConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Heloc(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "risk" BUILDER_CONFIGS = [ HelocConfig(name="risk", description="Binary classification of trade risk."), ] def _info(self): if self.config.name not in features_per_config: raise ValueError(f"Unknown configuration: {self.config.name}") info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) data.columns = _BASE_FEATURE_NAMES data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = "cancer") -> pandas.DataFrame: print(list(features_types_per_config["risk"].keys())) print(data.columns) data = data[list(features_types_per_config["risk"].keys())] if config == "risk": return data else: raise ValueError(f"Unknown config: {config}")