parquet-converter commited on
Commit
bea193e
·
1 Parent(s): c7dc54c

Update parquet files

Browse files
Files changed (4) hide show
  1. README.md +0 -18
  2. heloc.csv +0 -0
  3. heloc.py +0 -156
  4. risk/heloc-train.parquet +3 -0
README.md DELETED
@@ -1,18 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- tags:
5
- - heloc
6
- - fico
7
- - tabular_classification
8
- - binary_classification
9
- pretty_name: Compas
10
- size_categories:
11
- - 10K<n<100K
12
- task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
- - tabular-classification
14
- configs:
15
- - risk
16
- ---
17
- # HELOC
18
- The [HELOC dataset](https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=d157e) is cool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
heloc.csv DELETED
The diff for this file is too large to render. See raw diff
 
heloc.py DELETED
@@ -1,156 +0,0 @@
1
- """Heloc Dataset"""
2
-
3
- from typing import List
4
-
5
- import datasets
6
-
7
- import pandas
8
-
9
-
10
- VERSION = datasets.Version("1.0.0")
11
- _ORIGINAL_FEATURE_NAMES = [
12
- "RiskPerformance",
13
- "ExternalRiskEstimate",
14
- "MSinceOldestTradeOpen",
15
- "MSinceMostRecentTradeOpen",
16
- "AverageMInFile",
17
- "NumSatisfactoryTrades",
18
- "NumTrades60Ever2DerogPubRec",
19
- "NumTrades90Ever2DerogPubRec",
20
- "PercentTradesNeverDelq",
21
- "MSinceMostRecentDelq",
22
- "MaxDelq2PublicRecLast12M",
23
- "MaxDelqEver",
24
- "NumTotalTrades",
25
- "NumTradesOpeninLast12M",
26
- "PercentInstallTrades",
27
- "MSinceMostRecentInqexcl7days",
28
- "NumInqLast6M",
29
- "NumInqLast6Mexcl7days",
30
- "NetFractionRevolvingBurden",
31
- "NetFractionInstallBurden",
32
- "NumRevolvingTradesWBalance",
33
- "NumInstallTradesWBalance",
34
- "NumBank2NatlTradesWHighUtilization",
35
- "PercentTradesWBalance",
36
- ]
37
- _BASE_FEATURE_NAMES = [
38
- "is_at_risk",
39
- "estimate_of_risk",
40
- "months_since_first_trade",
41
- "months_since_last_trade",
42
- "average_duration_of_resolution",
43
- "number_of_satisfactory_trades",
44
- "nr_trades_insolvent_for_over_60_days",
45
- "nr_trades_insolvent_for_over_90_days",
46
- "percentage_of_legal_trades",
47
- "months_since_last_illegal_trade",
48
- "maximum_illegal_trades_over_last_year",
49
- "maximum_illegal_trades",
50
- "nr_total_trades",
51
- "nr_trades_initiated_in_last_year",
52
- "percentage_of_installment_trades",
53
- "months_since_last_inquiry_not_recent",
54
- "nr_inquiries_in_last_6_months",
55
- "nr_inquiries_in_last_6_months_not_recent",
56
- "net_fraction_of_revolving_burden",
57
- "net_fraction_of_installment_burden",
58
- "nr_revolving_trades_with_balance",
59
- "nr_installment_trades_with_balance",
60
- "nr_banks_with_high_ratio",
61
- "percentage_trades_with_balance"
62
- ]
63
-
64
- DESCRIPTION = "Heloc dataset for cancer prediction."
65
- _HOMEPAGE = "https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a"
66
- _URLS = ("https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=ca01a")
67
- _CITATION = """
68
-
69
- """
70
-
71
- # Dataset info
72
- urls_per_split = {
73
- "train": "https://huggingface.co/datasets/mstz/heloc/raw/main/heloc.csv",
74
- }
75
- features_types_per_config = {
76
- "risk": {
77
- "estimate_of_risk": datasets.Value("int8"),
78
- "months_since_first_trade": datasets.Value("int32"),
79
- "months_since_last_trade": datasets.Value("int32"),
80
- "average_duration_of_resolution": datasets.Value("int32"),
81
- "number_of_satisfactory_trades": datasets.Value("int16"),
82
- "nr_trades_insolvent_for_over_60_days": datasets.Value("int16"),
83
- "nr_trades_insolvent_for_over_90_days": datasets.Value("int16"),
84
- "percentage_of_legal_trades": datasets.Value("int16"),
85
- "months_since_last_illegal_trade": datasets.Value("int32"),
86
- "maximum_illegal_trades_over_last_year": datasets.Value("int8"),
87
- "maximum_illegal_trades": datasets.Value("int16"),
88
- "nr_total_trades": datasets.Value("int16"),
89
- "nr_trades_initiated_in_last_year": datasets.Value("int16"),
90
- "percentage_of_installment_trades": datasets.Value("int16"),
91
- "months_since_last_inquiry_not_recent": datasets.Value("int16"),
92
- "nr_inquiries_in_last_6_months": datasets.Value("int16"),
93
- "nr_inquiries_in_last_6_months_not_recent": datasets.Value("int16"),
94
- "net_fraction_of_revolving_burden": datasets.Value("int32"),
95
- "net_fraction_of_installment_burden": datasets.Value("int32"),
96
- "nr_revolving_trades_with_balance": datasets.Value("int16"),
97
- "nr_installment_trades_with_balance": datasets.Value("int16"),
98
- "nr_banks_with_high_ratio": datasets.Value("int16"),
99
- "percentage_trades_with_balance": datasets.Value("int16"),
100
- "is_at_risk": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
101
- }
102
-
103
- }
104
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
105
-
106
-
107
- class HelocConfig(datasets.BuilderConfig):
108
- def __init__(self, **kwargs):
109
- super(HelocConfig, self).__init__(version=VERSION, **kwargs)
110
- self.features = features_per_config[kwargs["name"]]
111
-
112
-
113
- class Heloc(datasets.GeneratorBasedBuilder):
114
- # dataset versions
115
- DEFAULT_CONFIG = "risk"
116
- BUILDER_CONFIGS = [
117
- HelocConfig(name="risk",
118
- description="Binary classification of trade risk."),
119
- ]
120
-
121
-
122
- def _info(self):
123
- if self.config.name not in features_per_config:
124
- raise ValueError(f"Unknown configuration: {self.config.name}")
125
-
126
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
127
- features=features_per_config[self.config.name])
128
-
129
- return info
130
-
131
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
132
- downloads = dl_manager.download_and_extract(urls_per_split)
133
-
134
- return [
135
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
136
- ]
137
-
138
- def _generate_examples(self, filepath: str):
139
- data = pandas.read_csv(filepath)
140
- data.columns = _BASE_FEATURE_NAMES
141
- data = self.preprocess(data, config=self.config.name)
142
-
143
- for row_id, row in data.iterrows():
144
- data_row = dict(row)
145
-
146
- yield row_id, data_row
147
-
148
- def preprocess(self, data: pandas.DataFrame, config: str = "cancer") -> pandas.DataFrame:
149
- data = data[list(features_types_per_config["risk"].keys())]
150
-
151
- data.loc[:, "is_at_risk"] = data.is_at_risk.apply(lambda x: 1 if x == "Bad" else 0)
152
-
153
- if config == "risk":
154
- return data
155
- else:
156
- raise ValueError(f"Unknown config: {config}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
risk/heloc-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4efe6ba0517cc5efaf9e50d4966237344807ef23fcbc0757d18249cfc90972fb
3
+ size 306949