"""Fertility""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "season_of_sampling", "age_at_time_of_sampling", "has_had_childhood_diseases", "has_had_serious_trauma", "has_had_surgical_interventions", "has_had_high_fevers_in_the_past_year", "frequency_of_alcohol_consumption", "smoking_frequency", "number_of_sitting_hours_per_day", "has_fertility_issues" ] _ENCODING_DICS = { "season_of_sampling" : { -1: "winter", -0.33: "spring", +0.33: "summer", +1: "fall", }, "has_had_childhood_diseases" : { 1: True, 0: False }, "has_had_serious_trauma" : { 1: True, 0: False }, "has_had_surgical_interventions" : { 1: True, 0: False }, "has_had_high_fevers_in_the_past_year" : { 1: "no", 0: "more than three months ago", -1: "less than three months ago" }, "smoking_frequency" : { 1: "daily", 0: "occasionally", -1: "never" }, "has_fertility_issues": { "N": 0, "O": 1 } } DESCRIPTION = "Fertility dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Fertility" _URLS = ("https://archive.ics.uci.edu/ml/datasets/Fertility") _CITATION = """ @misc{misc_fertility_244, author = {Gil,David & Girela,Jose}, title = {{Fertility}}, year = {2013}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5Z01Z}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/fertility/raw/main/fertility_Diagnosis.txt" } features_types_per_config = { "encoding": { "feature": datasets.Value("string"), "original_value": datasets.Value("string"), "encoded_value": datasets.Value("int64"), }, "fertility": { "season_of_sampling": datasets.Value("string"), "age_at_time_of_sampling": datasets.Value("int8"), "has_had_childhood_diseases": datasets.Value("bool"), "has_had_serious_trauma": datasets.Value("bool"), "has_had_surgical_interventions": datasets.Value("bool"), "has_had_high_fevers_in_the_past_year": datasets.Value("string"), "frequency_of_alcohol_consumption": datasets.Value("float64"), "smoking_frequency": datasets.Value("string"), "number_of_sitting_hours_per_day": datasets.Value("float64"), "has_fertility_issues": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class FertilityConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(FertilityConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Fertility(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "fertility" BUILDER_CONFIGS = [ FertilityConfig(name="encoding", description="Encoding dictionaries for discrete features."), FertilityConfig(name="fertility", description="Fertility for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): if self.config.name == "encoding": data = self.encodings() for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row else: data = pandas.read_csv(filepath) data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def encodings(self): data = [pandas.DataFrame([(feature, original_value, encoded_value) for original_value, encoded_value in d.items()], columns=["feature", "original_value", "encoded_value"]) for feature, d in _ENCODING_DICS.items()] return data def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) data.loc[:, "age_at_time_of_sampling"] = data["age_at_time_of_sampling"].apply(lambda x: 18 + x * 18) data = data[list(features_types_per_config[config].keys())] return data def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")