|
"""Fertility""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_BASE_FEATURE_NAMES = [ |
|
"season_of_sampling", |
|
"age_at_time_of_sampling", |
|
"has_had_childhood_diseases", |
|
"has_had_serious_trauma", |
|
"has_had_surgical_interventions", |
|
"has_had_high_fevers_in_the_past_year", |
|
"frequency_of_alcohol_consumption", |
|
"smoking_frequency", |
|
"number_of_sitting_hours_per_day", |
|
"has_fertility_issues" |
|
] |
|
|
|
_ENCODING_DICS = { |
|
"season_of_sampling" : { |
|
-1: "winter", |
|
-0.33: "spring", |
|
+0.33: "summer", |
|
+1: "fall", |
|
}, |
|
"has_had_childhood_diseases" : { |
|
1: True, |
|
0: False |
|
}, |
|
"has_had_serious_trauma" : { |
|
1: True, |
|
0: False |
|
}, |
|
"has_had_surgical_interventions" : { |
|
1: True, |
|
0: False |
|
}, |
|
"has_had_high_fevers_in_the_past_year" : { |
|
1: "no", |
|
0: "more than three months ago", |
|
-1: "less than three months ago" |
|
}, |
|
"smoking_frequency" : { |
|
1: "daily", |
|
0: "occasionally", |
|
-1: "never" |
|
}, |
|
"has_fertility_issues": { |
|
"N": 0, |
|
"O": 1 |
|
} |
|
} |
|
|
|
DESCRIPTION = "Fertility dataset from the UCI ML repository." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Fertility" |
|
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Fertility") |
|
_CITATION = """ |
|
@misc{misc_fertility_244, |
|
author = {Gil,David & Girela,Jose}, |
|
title = {{Fertility}}, |
|
year = {2013}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C5Z01Z}} |
|
}""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/fertility/raw/main/fertility_Diagnosis.txt" |
|
} |
|
features_types_per_config = { |
|
"encoding": { |
|
"feature": datasets.Value("string"), |
|
"original_value": datasets.Value("string"), |
|
"encoded_value": datasets.Value("int64"), |
|
}, |
|
"fertility": { |
|
"season_of_sampling": datasets.Value("string"), |
|
"age_at_time_of_sampling": datasets.Value("int8"), |
|
"has_had_childhood_diseases": datasets.Value("bool"), |
|
"has_had_serious_trauma": datasets.Value("bool"), |
|
"has_had_surgical_interventions": datasets.Value("bool"), |
|
"has_had_high_fevers_in_the_past_year": datasets.Value("string"), |
|
"frequency_of_alcohol_consumption": datasets.Value("float64"), |
|
"smoking_frequency": datasets.Value("string"), |
|
"number_of_sitting_hours_per_day": datasets.Value("float64"), |
|
"has_fertility_issues": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class FertilityConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(FertilityConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Fertility(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "fertility" |
|
BUILDER_CONFIGS = [ |
|
FertilityConfig(name="encoding", |
|
description="Encoding dictionaries for discrete features."), |
|
FertilityConfig(name="fertility", |
|
description="Fertility for binary classification.") |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
if self.config.name == "encoding": |
|
data = self.encodings() |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
else: |
|
data = pandas.read_csv(filepath) |
|
data = self.preprocess(data, config=self.config.name) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def encodings(self): |
|
data = [pandas.DataFrame([(feature, original_value, encoded_value) |
|
for original_value, encoded_value in d.items()], |
|
columns=["feature", "original_value", "encoded_value"]) |
|
for feature, d in _ENCODING_DICS.items()] |
|
|
|
return data |
|
|
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: |
|
data.columns = _BASE_FEATURE_NAMES |
|
|
|
for feature in _ENCODING_DICS: |
|
encoding_function = partial(self.encode, feature) |
|
data.loc[:, feature] = data[feature].apply(encoding_function) |
|
data.loc[:, "age_at_time_of_sampling"] = data["age_at_time_of_sampling"].apply(lambda x: 18 + x * 18) |
|
|
|
data = data[list(features_types_per_config[config].keys())] |
|
|
|
return data |
|
|
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|