"""Congress""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "party", "pro_handicapped_infants", "pro_water_project_cost_sharing", "pro_adoption_of_the_budget_resolution", "pro_physician_fee_freeze", "pro_el_salvador_aid", "pro_religious_groups_in_schools", "pro_anti_satellite_test_ban", "pro_aid_to_nicaraguan_contras", "pro_mx_missile", "pro_immigration", "pro_synfuels_corporation_cutback", "pro_education_spending", "pro_superfund_right_to_sue", "pro_crime", "pro_duty_free_exports", "pro_export_administration_act_south_africa", ] DESCRIPTION = "Congress dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Congress" _URLS = ("https://archive-beta.ics.uci.edu/dataset/105/congressional+voting+records") _CITATION = """ @misc{misc_congressional_voting_records_105, title = {{Congressional Voting Records}}, year = {1987}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5C01P}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/congress/raw/main/house-votes-84.data" } features_types_per_config = { "voting": { "pro_handicapped_infants": datasets.Value("bool"), "pro_water_project_cost_sharing": datasets.Value("bool"), "pro_adoption_of_the_budget_resolution": datasets.Value("bool"), "pro_physician_fee_freeze": datasets.Value("bool"), "pro_el_salvador_aid": datasets.Value("bool"), "pro_religious_groups_in_schools": datasets.Value("bool"), "pro_anti_satellite_test_ban": datasets.Value("bool"), "pro_aid_to_nicaraguan_contras": datasets.Value("bool"), "pro_mx_missile": datasets.Value("bool"), "pro_immigration": datasets.Value("bool"), "pro_synfuels_corporation_cutback": datasets.Value("bool"), "pro_education_spending": datasets.Value("bool"), "pro_superfund_right_to_sue": datasets.Value("bool"), "pro_crime": datasets.Value("bool"), "pro_duty_free_exports": datasets.Value("bool"), "pro_export_administration_act_south_africa": datasets.Value("bool"), "party": datasets.ClassLabel(num_classes=2, names=("democrat", "republican")), } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class CongressConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(CongressConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Congress(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "voting" BUILDER_CONFIGS = [ CongressConfig(name="voting", description="Binary classification of politician, either democrat or republican.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES vote_dictionary = { "y": "pro", "n": "against", "?": "did_not_vote", } for feature in _BASE_FEATURE_NAMES[1:]: data.loc[:, feature] = data[feature].apply(lambda x: vote_dictionary[x]) data.loc[:, "party"] = data["party"].apply(lambda x: 0 if x == "democrat" else 1) data = data.astype({"party": "int8"}) data = data[list(features_types_per_config[config].keys())] return data