"""Abalone.""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ORIGINAL_FEATURE_NAMES = [ "Sex", "Length", "Diameter", "Height", "Whole_weight", "Shucked_weight", "Viscera_weight", "Shell_weight", "Ring", ] _BASE_FEATURE_NAMES = [ "sex", "length", "diameter", "height", "whole_weight", "shucked_weight", "viscera_weight", "shell_weight", "number_of_rings", ] DESCRIPTION = "Abalone dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Abalone" _URLS = ("https://huggingface.co/datasets/mstz/abalone/raw/abalone.data") _CITATION = """ @misc{misc_abalone_1, title = {{Abalone}}, year = {1995}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C55C7W}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/abalone/raw/main/abalone.data", } features_types_per_config = { "abalone": { "sex": datasets.Value("string"), "length": datasets.Value("float64"), "diameter": datasets.Value("float64"), "height": datasets.Value("float64"), "whole_weight": datasets.Value("float64"), "shucked_weight": datasets.Value("float64"), "viscera_weight": datasets.Value("float64"), "shell_weight": datasets.Value("float64"), "number_of_rings": datasets.Value("int8") } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class AbaloneConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(AbaloneConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Abalone(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "abalone" BUILDER_CONFIGS = [ AbaloneConfig(name="abalone", description="Abalone for regression."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data.columns = _BASE_FEATURE_NAMES for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row