|
import json |
|
import os |
|
from PIL import Image |
|
import datasets |
|
|
|
def load_image(image_path): |
|
image = Image.open(image_path).convert("RGB") |
|
w, h = image.size |
|
return image, (w, h) |
|
|
|
def normalize_bbox(bbox, size): |
|
width = size.get("width", 1) |
|
height = size.get("height", 1) |
|
|
|
return [ |
|
int(1000 * bbox[0] / width), |
|
int(1000 * bbox[1] / height), |
|
int(1000 * bbox[2] / width), |
|
int(1000 * bbox[3] / height) |
|
] |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
class XFUNDConfig(datasets.BuilderConfig): |
|
def __init__(self, language, **kwargs): |
|
super().__init__(**kwargs) |
|
self.language = language |
|
|
|
class XFUND(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
XFUNDConfig(name="de", version=datasets.Version("1.0.0"), description="XFUND dataset (German)", language="de"), |
|
XFUNDConfig(name="en", version=datasets.Version("1.0.0"), description="XFUND dataset (English)", language="en"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="XFUND: Multi-language form understanding dataset.", |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=["O", "B-HEADER", "I-HEADER", "B-QUESTION", "I-QUESTION", "B-ANSWER", "I-ANSWER"] |
|
) |
|
), |
|
"image": datasets.features.Image(), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/doc-analysis/XFUND", |
|
citation="Citation details here...", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
language = self.config.language |
|
base_url = "https://github.com/doc-analysis/XFUND/releases/download/v1.0" |
|
data_files = { |
|
"train_zip": f"{base_url}/{language}.train.zip", |
|
"val_zip": f"{base_url}/{language}.val.zip", |
|
"train_json": f"{base_url}/{language}.train.json", |
|
"val_json": f"{base_url}/{language}.val.json", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(data_files) |
|
print(downloaded_files) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"zip_filepath": downloaded_files["train_zip"], |
|
"json_filepath": downloaded_files["train_json"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"zip_filepath": downloaded_files["val_zip"], |
|
"json_filepath": downloaded_files["val_json"], |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, zip_filepath, json_filepath): |
|
print("Available files:", os.listdir(zip_filepath)) |
|
|
|
|
|
|
|
with open(json_filepath, "r", encoding="utf-8") as f: |
|
annotations = json.load(f) |
|
|
|
for guid, item in enumerate(annotations["documents"]): |
|
tokens = [] |
|
bboxes = [] |
|
ner_tags = [] |
|
|
|
|
|
img_info = item.get("img", {}) |
|
document_size = { |
|
"width": img_info.get("width", 1), |
|
"height": img_info.get("height", 1), |
|
} |
|
|
|
for entry in item["document"]: |
|
cur_line_bboxes = [] |
|
words = entry["words"] |
|
label = entry.get("label", "other") |
|
|
|
words = [w for w in words if w["text"].strip()] |
|
if not words: |
|
continue |
|
|
|
if label == "other": |
|
for w in words: |
|
tokens.append(w["text"]) |
|
ner_tags.append("O") |
|
cur_line_bboxes.append(normalize_bbox(w["box"], document_size)) |
|
else: |
|
tokens.append(words[0]["text"]) |
|
ner_tags.append("B-" + label.upper()) |
|
cur_line_bboxes.append(normalize_bbox(words[0]["box"], document_size)) |
|
for w in words[1:]: |
|
tokens.append(w["text"]) |
|
ner_tags.append("I-" + label.upper()) |
|
cur_line_bboxes.append(normalize_bbox(w["box"], document_size)) |
|
|
|
cur_line_bboxes = self.get_line_bbox(cur_line_bboxes) |
|
bboxes.extend(cur_line_bboxes) |
|
|
|
image_path = os.path.join(zip_filepath, item["id"] + ".jpg") |
|
image, size = load_image(image_path) |
|
|
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"bboxes": bboxes, |
|
"ner_tags": ner_tags, |
|
"image": image, |
|
} |
|
|
|
|
|
|
|
def get_line_bbox(self, bboxs): |
|
x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)] |
|
y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)] |
|
|
|
x0, y0, x1, y1 = min(x), min(y), max(x), max(y) |
|
|
|
assert x1 >= x0 and y1 >= y0 |
|
bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))] |
|
return bbox |
|
|