# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Monster-Monash custom downloader""" import numpy as np import os import datasets _DATASET = "FordChallenge" _SHAPE = (30, 40) #_DESCRIPTION = "" #_CITATION = "" #_HOMEPAGE = "" #_LICENSE = "" _URLS = { 'data': f"{_DATASET}_X.npy", 'labels': f"{_DATASET}_y.npy", 'fold_0': "test_indices_fold_0.txt", 'fold_1': "test_indices_fold_1.txt", 'fold_2': "test_indices_fold_2.txt", 'fold_3': "test_indices_fold_3.txt", 'fold_4': "test_indices_fold_4.txt", } class Monster(datasets.GeneratorBasedBuilder): """Generic Monster class for all downloader.""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="full", version=VERSION, description="All data"), datasets.BuilderConfig(name="fold_0", version=VERSION, description="Cross-validation fold 0"), datasets.BuilderConfig(name="fold_1", version=VERSION, description="Cross-validation fold 1"), datasets.BuilderConfig(name="fold_2", version=VERSION, description="Cross-validation fold 2"), datasets.BuilderConfig(name="fold_3", version=VERSION, description="Cross-validation fold 3"), datasets.BuilderConfig(name="fold_4", version=VERSION, description="Cross-validation fold 4"), ] DEFAULT_CONFIG_NAME = "full" # By default all data is returned in a single split. def _info(self): features = datasets.Features( { "X": datasets.Array2D(_SHAPE, "float32"), "y": datasets.Value("int64") } ) return datasets.DatasetInfo( # description=_DESCRIPTION, features=features, supervised_keys=("X", "y"), # homepage=_HOMEPAGE, # license=_LICENSE, # citation=_CITATION, ) def _split_generators(self, dl_manager): data = dl_manager.download_and_extract(_URLS['data']) labels = dl_manager.download_and_extract(_URLS['labels']) if self.config.name == "full": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data": data, "labels": labels, "fold": None, "split": "all", }, ), ] else: fold = dl_manager.download_and_extract(_URLS[self.config.name]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data": data, "labels": labels, "fold": fold, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data": data, "labels": labels, "fold": fold, "split": "test" }, ), ] def _generate_examples(self, data, labels, fold, split): X = np.load(data) y = np.load(labels) if self.config.name == "full": for row in range(y.shape[0]): yield(row, {"X": X[row], "y": y[row]}) else: test_indices = np.loadtxt(fold, dtype='int') if split == "test": for row in test_indices: yield(int(row), {"X": X[row], "y": y[row]}) elif split == "train": train_indices = np.delete(np.arange(y.shape[0]), test_indices) for row in train_indices: yield(int(row), {"X": X[row], "y": y[row]})