AwA2 / AwA2.py
mikewang's picture
fix typo
3d4e03d
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Animals with Attributes v2 (AwA2)"""
import csv
import json
import os
import datasets
_CITATION = """\
@article{xian2018zero,
title={Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly},
author={Xian, Yongqin and Lampert, Christoph H and Schiele, Bernt and Akata, Zeynep},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={41},
number={9},
pages={2251--2265},
year={2018},
publisher={IEEE}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
**Homepage:** https://cvml.ista.ac.at/AwA2/
**IMPORTANT NOTES**
- This HF dataset loads the instances with class-level annotations.
- Images and License can be downloaded from: https://cvml.ista.ac.at/AwA2/AwA2-data.zip
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://cvml.ista.ac.at/AwA2/"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URLS = {
# # "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
# # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
# }
_URLS = {
"data": "https://cvml.ista.ac.at/AwA2/AwA2-data.zip", # including images
# "annotation": "https://cvml.ista.ac.at/AwA2/AwA2-base.zip",
# "features": "http://cvml.ist.ac.at/AwA2/AwA2-features.zip",
}
def _load_AwA2_dataset(datadir):
image_dir = os.path.join(datadir, "JPEGImages")
classes_path = os.path.join(datadir, "classes.txt")
predicates_path = os.path.join(datadir, "predicates.txt")
annotation_binary = os.path.join(datadir, "predicate-matrix-binary.txt")
annotation_continuous = os.path.join(datadir, "predicate-matrix-continuous.txt")
# load classes
classes = []
with open(classes_path, "r") as f:
for line in f:
classes.append(line.split("\t")[1].strip())
# load predicates
predicates = []
with open(predicates_path, "r") as f:
for line in f:
predicates.append(line.split("\t")[1].strip())
# class to annotation binary
annotation_binary_list = []
with open(annotation_binary, "r") as f:
for line in f:
ann = [int(x) for x in line.strip().split(" ")]
assert len(ann) == len(predicates)
annotation_binary_list.append(ann)
class_to_annotation_binary = dict(zip(classes, annotation_binary_list))
# class to annotation continuous
annotation_continuous_list = []
with open(annotation_continuous, "r") as f:
for line in f:
ann = [float(x) for x in line.strip().split(" ") if x != ""]
assert len(ann) == len(predicates)
annotation_continuous_list.append(ann)
class_to_annotation_continuous = dict(zip(classes, annotation_continuous_list))
print("classes:", len(classes), classes)
print("attribute types:", len(predicates), predicates)
data = []
# list all images in image dir
for class_type in os.listdir(image_dir):
image_class_dir = os.path.join(image_dir, class_type)
for img_name in os.listdir(image_class_dir):
data.append(
{
"image_id": img_name,
"image_path": os.path.join(image_class_dir, img_name),
"class": class_type,
"attributes_binary": class_to_annotation_binary[class_type],
"attributes_continuous": class_to_annotation_continuous[class_type],
"attribute_types": predicates
}
)
return data
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class AwA2(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
# ]
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
# if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
# features = datasets.Features(
# {
# "sentence": datasets.Value("string"),
# "option1": datasets.Value("string"),
# "answer": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
# else: # This is an example to show how to have different features for "first_domain" and "second_domain"
# features = datasets.Features(
# {
# "sentence": datasets.Value("string"),
# "option2": datasets.Value("string"),
# "second_domain_answer": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
features = datasets.Features(
{
"image_id": datasets.Value("string"),
"image_path": datasets.Value("string"),
"class": datasets.Value("string"),
"attributes_binary": datasets.features.Sequence(datasets.Value("int32")),
"attributes_continuous": datasets.features.Sequence(datasets.Value("float32")),
"attribute_types": datasets.features.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
downloaded_files = dl_manager.download_and_extract(_URLS)
# downloaded_files = {
# "data": "/shared/nas/data/m1/shared-resource/vision-language/data/raw/AwA2/Animals_with_Attributes2",
# }
print("downloaded_files: ", downloaded_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["data"],
"split": "train",
},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
data = _load_AwA2_dataset(filepath)
for key, row in enumerate(data):
yield key, {
"image_id": row["image_id"],
"image_path": row["image_path"],
"class": row["class"],
"attributes_binary": row["attributes_binary"],
"attributes_continuous": row["attributes_continuous"],
"attribute_types": row["attribute_types"],
}