File size: 4,458 Bytes
cb8774b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a87813
cb8774b
10a171d
 
cb8774b
6f26617
cb8774b
 
 
 
 
 
6f26617
cb8774b
 
 
d6791d7
cb8774b
 
 
 
 
 
d6791d7
cb8774b
 
 
 
 
a7ab105
cb8774b
 
 
 
 
 
 
6f26617
a04f566
 
9289956
 
cb8774b
 
 
 
 
 
 
 
 
 
10a171d
 
cb8774b
 
10a171d
 
 
 
cb8774b
 
 
10a171d
 
 
 
 
cb8774b
 
 
 
 
 
 
 
6f26617
cb8774b
 
 
6f26617
a04f566
d451424
9289956
 
cb8774b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
# ok
import os
import json
import datasets

_DESCRIPTION = """MQA is a multilingual corpus of questions and answers parsed from the Common Crawl. Questions are divided between Frequently Asked Questions (FAQ) pages and Community Question Answering (CQA) pages."""
_HOMEPAGE_URL = "https://huggingface.co/datasets/clips/mqa"
_CITATION = """
@misc{debruyn2021mfaq,
      title={MFAQ: a Multilingual FAQ Dataset}, 
      author={Maxime {De Bruyn} and Ehsan Lotfi and Jeska Buhmann and Walter Daelemans},
      year={2021},
      booktitle={MRQA@EMNLP2021},
}
"""
_VERSION = "0.4"
_BASE_NAME = ""
_TRAIN_BASE_URL = "data/train/data.{}.json"
_VALID_BASE_URL = "data/valid/data.{}.json"
_LANGUAGES = [
    "en", "de", "es", "fr",
    "ru", "ja", "it", "zh", "pt",
    "nl", "tr", "pl", "vi", "ar",
    "id", "uk", "ro", "no", "th",
    "sv", "el", "fi", "he", "da",
    "cs", "ko", "fa", "hi", "hu",
    "sk", "lt", "et", "hr", "is",
    "lv", "ms", "bg", "sr", "ca"
]

class MFAQLightConfig(datasets.BuilderConfig):
    def __init__(self, *args, language="en", negatives=True, **kwargs):
        super().__init__(
            *args,
            name=f"{language}",
            **kwargs,
        )
        self.language = language
        self.negatives = negatives
    
class MFAQLight(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = []
    for language in _LANGUAGES:
        BUILDER_CONFIGS.append(MFAQLightConfig(language=language))
    BUILDER_CONFIGS.append(MFAQLightConfig(language="all"))
    BUILDER_CONFIG_CLASS = MFAQLightConfig
    
    def _info(self):
        features = {
            "question": datasets.Value("string"),
            "answer": datasets.Value("string"),
            "domain": datasets.Value("string"),
            "domain_index": datasets.Value("int32"),
            "id": datasets.Value("string"),
            "negative": datasets.Value("string"),
            "candidates": [datasets.Value("string")],
            "margin_score": datasets.Value("float32")
        }
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            supervised_keys=None,
            homepage=_HOMEPAGE_URL,
            citation=_CITATION,
        )
    
    def _split_generators(self, dl_manager):
        train_filenames = []
        valid_filenames = []
        languages = _LANGUAGES if self.config.language == "all" else [self.config.language]
        for language in languages:
            path = dl_manager.download_and_extract(_TRAIN_BASE_URL.format(language))
            train_filenames.append(path)
            path = dl_manager.download_and_extract(_VALID_BASE_URL.format(language))
            valid_filenames.append(path)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filenames": train_filenames},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filenames": valid_filenames},
            )
        ]

    def _generate_examples(self, filenames):
        for filename in filenames:
            with open(filename, "r") as f:
                for i, line in enumerate(f):
                    question = json.loads(line)
                    yield question["id"], {
                        "question": question["question"],
                        "answer": question["answer"],
                        "domain": question["domain"],
                        "domain_index": question["domain_index"],
                        "id": question["id"],
                        "negative": question.get("negative", ""),
                        "candidates": question.get("candidates", []),
                        "margin_score": question.get("margin_score", 0)
                    }