from typing import Optional import Levenshtein import pandas as pd from .data import read_aste_file, read_sem_eval_file from .types import CharacterIndices, WordSpan def get_original_text( aste_file: str, sem_eval_file: str, debug: bool = False, ) -> pd.DataFrame: approximate_matches = 0 def best_match(text: str) -> str: comparison = text.replace(" ", "") if comparison in comparison_to_text: return comparison_to_text[comparison] nonlocal approximate_matches approximate_matches += 1 distances = sem_eval_comparison.apply( lambda se_comparison: Levenshtein.distance(comparison, se_comparison) ) best = sem_eval_df.iloc[distances.argmin()].text return best sem_eval_df = read_sem_eval_file(sem_eval_file) sem_eval_comparison = sem_eval_df.text.str.replace(" ", "") comparison_to_text = dict(zip(sem_eval_comparison, sem_eval_df.text)) aste_df = read_aste_file(aste_file) aste_df = aste_df.rename(columns={"text": "preprocessed_text"}) aste_df["text"] = aste_df.preprocessed_text.apply(best_match) if debug: print(f"Read {len(aste_df):,} rows") print(f"Had to use {approximate_matches:,} approximate matches") return aste_df[["text", "preprocessed_text", "triples"]] def edit(original: str, preprocessed: str) -> list[Optional[int]]: indices: list[Optional[int]] = list(range(len(preprocessed))) for operation, _source_position, destination_position in Levenshtein.editops( preprocessed, original ): if operation == "replace": indices[destination_position] = None elif operation == "insert": indices.insert(destination_position, None) elif operation == "delete": del indices[destination_position] return indices def has_unmapped(indicies: list[Optional[int]]) -> bool: return any(index is None for index in indicies) def has_unmapped_non_space(row: pd.Series) -> bool: letter_and_index: list[tuple[str, Optional[int]]] = list( zip(row.text, row.text_indices) ) return any(index is None for letter, index in letter_and_index if letter != " ") def row_to_character_indices(row: pd.Series) -> pd.Series: try: return pd.Series( to_character_indices( triplet=row.triples, preprocessed=row.preprocessed_text, text=row.text, text_indices=row.text_indices, ) ) except: print(f"failed to process row {row.name}") print(row) raise def to_character_indices( *, triplet: tuple[tuple[int], tuple[int], str], preprocessed: str, text: str, text_indices: list[Optional[int]], ) -> CharacterIndices: def find_start_index(span: WordSpan) -> int: # the starting letter in the lookup can be missing or None # this would cause a lookup failure # to recover from this we can find the following letter index and backtrack for index in range(span.start_index, span.end_index): try: text_index = text_indices.index(index) for _ in range(index - span.start_index): if text_index - 1 <= 0: break if text_indices[text_index - 1] is not None: break text_index -= 1 return text_index except ValueError: pass # not present in list raise ValueError(f"cannot find any part of {span}") def find_end_index(span: WordSpan) -> int: # the ending letter in the lookup can be missing or None # this would cause a lookup failure # to recover from this we can find the preceding letter index and backtrack for index in range(span.end_index - 1, span.start_index - 1, -1): try: text_index = text_indices.index(index) for _ in range(span.end_index - index): if text_index + 1 >= len(text_indices): break if text_indices[text_index + 1] is not None: break text_index += 1 return text_index except ValueError: pass # not present in list raise ValueError(f"cannot find any part of {span}") def to_indices(span: tuple[int]) -> tuple[int, int]: word_start = span[0] word_start_span = word_indices[word_start] word_end = span[-1] word_end_span = word_indices[word_end] start_index = find_start_index(word_start_span) end_index = find_end_index(word_end_span) return start_index, end_index aspect_span, opinion_span, sentiment = triplet assert is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}" assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}" assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}" word_indices = WordSpan.to_spans(preprocessed) aspect_start_index, aspect_end_index = to_indices(aspect_span) aspect_term = text[aspect_start_index : aspect_end_index + 1] opinion_start_index, opinion_end_index = to_indices(opinion_span) opinion_term = text[opinion_start_index : opinion_end_index + 1] nice_sentiment = { "POS": "positive", "NEG": "negative", "NEU": "neutral", }[sentiment] return CharacterIndices( aspect_start_index=aspect_start_index, aspect_end_index=aspect_end_index, aspect_term=aspect_term, opinion_start_index=opinion_start_index, opinion_end_index=opinion_end_index, opinion_term=opinion_term, sentiment=nice_sentiment, ) def convert_sem_eval_text( aste_file: str, sem_eval_file: str, debug: bool = False, ) -> pd.DataFrame: df = get_original_text( aste_file=aste_file, sem_eval_file=sem_eval_file, debug=debug, ) df = df.explode("triples") df = df.reset_index(drop=False) df["text_indices"] = df.apply( lambda row: edit(original=row.text, preprocessed=row.preprocessed_text), axis="columns", ) df = df.merge( df.apply(row_to_character_indices, axis="columns"), left_index=True, right_index=True, ) df = df.drop(columns=["preprocessed_text", "triples", "text_indices"]) return df def convert_aste_text(aste_file: str) -> pd.DataFrame: df = read_aste_file(aste_file) df = df.explode("triples") df = df.reset_index(drop=False) df = df.merge( df.apply(aste_row_to_character_indices, axis="columns"), left_index=True, right_index=True, ) df = df.drop(columns=["triples"]) return df def aste_row_to_character_indices(row: pd.Series) -> pd.Series: try: return pd.Series( aste_to_character_indices( triplet=row.triples, text=row.text, ) ) except: print(f"failed to process row {row.name}") print(row) raise def is_sequential(span: tuple[int]) -> bool: return all(span[index + 1] - span[index] == 1 for index in range(len(span) - 1)) def aste_to_character_indices( *, triplet: tuple[tuple[int], tuple[int], str], text: str, ) -> CharacterIndices: def to_indices(span: tuple[int]) -> tuple[int, int]: word_start = span[0] word_start_span = word_indices[word_start] word_end = span[-1] word_end_span = word_indices[word_end] return word_start_span.start_index, word_end_span.end_index - 1 aspect_span, opinion_span, sentiment = triplet assert is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}" assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}" assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}" word_indices = WordSpan.to_spans(text) aspect_start_index, aspect_end_index = to_indices(aspect_span) aspect_term = text[aspect_start_index : aspect_end_index + 1] opinion_start_index, opinion_end_index = to_indices(opinion_span) opinion_term = text[opinion_start_index : opinion_end_index + 1] nice_sentiment = { "POS": "positive", "NEG": "negative", "NEU": "neutral", }[sentiment] return CharacterIndices( aspect_start_index=aspect_start_index, aspect_end_index=aspect_end_index, aspect_term=aspect_term, opinion_start_index=opinion_start_index, opinion_end_index=opinion_end_index, opinion_term=opinion_term, sentiment=nice_sentiment, ) label_to_sentiment = { "POS": "positive", "NEG": "negative", "NEU": "neutral", } def to_nice_sentiment(label: str) -> str: return label_to_sentiment[sentiment]