import os import pandas as pd import pyarrow as pa import pyarrow.parquet as pq import argparse import re import base64 def encode_file(file_path): """Encode text files or base64 encode image files.""" if file_path.endswith('.jpg'): with open(file_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') else: try: with open(file_path, 'r', encoding='utf-8') as file: return file.read() except UnicodeDecodeError as e: print(f"Error decoding file {file_path}: {e}") return None def extract_images(markdown_content): """Extract PHOTO_IDs from markdown files and return as a list.""" return re.findall(r'\{\{PHOTO_ID:(\d+)\|WIDTH:\d+\}\}', markdown_content) def collect_data(directory): data = {} image_files = {re.search(r'(\d+)', filename).group(1): filename for filename in os.listdir(directory) if filename.endswith('.jpg')} markdown_files = [f for f in os.listdir(directory) if f.endswith('.md') or f.endswith('.sol.md')] for mfile in markdown_files: # Adjust the pattern if problem IDs include characters before "sol" problem_id = re.sub(r'sol$', '', mfile.split('.')[0]) # Strip "sol" from end if problem_id not in data: data[problem_id] = { 'Problem ID': problem_id, 'Problem': None, 'in': None, 'Solution': None, 'cpp': None, 'out': None, 'Images': [] } # Now associate other files with these problem IDs for filename in os.listdir(directory): problem_id = re.sub(r'sol$', '', filename.split('.')[0]) if problem_id in data: file_type = filename.split('.')[-1] file_path = os.path.join(directory, filename) content = encode_file(file_path) if not filename.endswith('.jpg') else None if file_type in ['in', 'out', 'cpp']: data[problem_id][file_type] = content if file_type == "md": if "sol" in filename: data[problem_id]['Solution'] = content else: data[problem_id]['Problem'] = content image_ids = extract_images(content) data[problem_id]['Images'] += [image_files[id] for id in image_ids if id in image_files] data[problem_id]['Images'] = list(set(data[problem_id]['Images'])) # Remove duplicates return list(data.values()) def create_parquet_file(data, output_file): df = pd.DataFrame(data) table = pa.Table.from_pandas(df) pq.write_table(table, output_file) def main(): parser = argparse.ArgumentParser(description='Convert dataset to Parquet format.') parser.add_argument('directory', type=str, help='Directory containing the dataset files.') parser.add_argument('-o', '--output', type=str, default='output_dataset.parquet', help='Output Parquet file name.') args = parser.parse_args() data = collect_data(args.directory) create_parquet_file(data, args.output) if __name__ == "__main__": main()