--- license: openrail++ library_name: diffusers dataset_info: features: - name: caption dtype: string - name: jpg_0 dtype: binary - name: jpg_1 dtype: binary - name: label_0 dtype: int64 - name: label_1 dtype: int64 splits: - name: train num_bytes: 2929653589 num_examples: 1000 download_size: 2929757570 dataset_size: 2929653589 configs: - config_name: default data_files: - split: train path: data/train-* --- # Margin-aware Preference Optimization for Aligning Diffusion Models without Reference

We propose **MaPO**, a reference-free, sample-efficient, memory-friendly alignment technique for text-to-image diffusion models. For more details on the technique, please refer to our paper [here](https://arxiv.org/abs/2406.06424). ## Developed by * Jiwoo Hong* (KAIST AI) * Sayak Paul* (Hugging Face) * Noah Lee (KAIST AI) * Kashif Rasul (Hugging Face) * James Thorne (KAIST AI) * Jongheon Jeong (Korea University) ## Dataset This dataset is *cartoon* split of **Pick-Style**, self-curated with [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). Using the context prompts (i.e., without stylistic specifications), we generate (1) cartoon style generation with stylistic prefix prompt and (2) normal generation with context prompt. Then, (1) is used as the chosen image, and (2) as the rejected image. ## Citation ```bibtex @misc{todo, title={Margin-aware Preference Optimization for Aligning Diffusion Models without Reference}, author={Jiwoo Hong and Sayak Paul and Noah Lee and Kashif Rasuland James Thorne and Jongheon Jeong}, year={2024}, eprint={todo}, archivePrefix={arXiv}, primaryClass={cs.CV,cs.LG} } ```