--- license: cc-by-nc-nd-4.0 task_categories: - visual-question-answering language: - en - zh tags: - food - culture - multilingual size_categories: - n<1K pretty_name: Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture --- # FoodieQA: A Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture ![](foodie-img.jpeg) ## Github Repo ๐Ÿ˜‹ We release all tools and code used to create the dataset at https://github.com/lyan62/FoodieQA. ## Paper For more details about the dataset, please refer to ๐Ÿ“„ [FoodieQA: A Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture](https://arxiv.org/abs/2406.11030) ## Dataset Download **!!Note!!** **The Json files are in the FoodieQA.zip (click on the Files and Versions tab to download), or download the dataset directly with git clone.** ## Terms and Conditions for Data Usage By downloading and using the data, you acknowledge that you have read, understood, and agreed to the following terms and conditions. 1. **Research Purpose**: The data is provided solely for research purposes and must not be used for any commercial activities. 2. **Evaluation Only**: The data may only be used for evaluation purposes and not for training models or systems. 3. **Compliance**: Users must comply with all applicable laws and regulations when using the data. 4. **Attribution**: Proper attribution must be given in any publications or presentations resulting from the use of this data. 5. **License**: The data is released under the CC BY-NC-ND 4.0 license. Users must adhere to the terms of this license. ## Data Structure - `/images`: contains all images needed for multi-image VQA and single-image VQA task. - `mivqa_tidy.json` questions for Multi-image VQA task. - data format ``` { "question": "ๅ“ชไธ€้“่œ้€‚ๅˆๅ–œๆฌขๅƒ่‚ ็š„ไบบ๏ผŸ", "choices": "", "answer": "0", "question_type": "ingredients", "question_id": qid, "ann_group": "้—ฝ", "images": [ img1_path, img2_path, img3_path, img4_path ], "question_en": "Which dish is for people who like intestine?" } ``` - `sivqa_tidy.json` question for Single-image VQA task. - data format ``` { "question": "ๅ›พ็‰‡ไธญ็š„้ฃŸ็‰ฉๆ˜ฏๅ“ชไธชๅœฐๅŒบ็š„็‰น่‰ฒ็พŽ้ฃŸ?", "choices": [ ... ], "answer": "3", "question_type": "region-2", "food_name": "ๆข…่œๆ‰ฃ่‚‰", "question_id": "vqa-34", "food_meta": { "main_ingredient": [ "่‚‰" ], "id": 253, "food_name": "ๆข…่œๆ‰ฃ่‚‰", "food_type": "ๅฎขๅฎถ่œ", "food_location": "้ค้ฆ†", "food_file": img_path }, "question_en": translated_question, "choices_en": [ translated_choices1, ... ] } ``` - `textqa_tidy.json` - data format ``` { "question": "้…’้…ฟๅœ†ๅญๅฑžไบŽๅ“ชไธช่œ็ณป?", "choices": [ ... ], "answer": "1", "question_type": "cuisine_type", "food_name": "้…’้…ฟๅœ†ๅญ", "cuisine_type": "่‹่œ", "question_id": "textqa-101" }, ``` ### Models and results for the VQA tasks | Evaluation | Multi-image VQA (ZH) | Multi-image VQA (EN) | Single-image VQA (ZH) | Single-image VQA (EN) | |---------------------|:--------------------:|:--------------------:|:---------------------:|:---------------------:| | **Human** | 91.69 | 77.22โ€  | 74.41 | 46.53โ€  | | **Phi-3-vision-4.2B** | 29.03 | 33.75 | 42.58 | 44.53 | | **Idefics2-8B** | **50.87** | 41.69 | 46.87 | **52.73** | | **Mantis-8B** | 46.65 | **43.67** | 41.80 | 47.66 | | **Qwen-VL-12B** | 32.26 | 27.54 | 48.83 | 42.97 | | **Yi-VL-6B** | - | - | **49.61** | 41.41 | | **Yi-VL-34B** | - | - | 52.73 | 48.05 | | **GPT-4V** | 78.92 | 69.23 | 63.67 | 60.16 | | **GPT-4o** | **86.35** | **80.64** | **72.66** | **67.97** | ### Models and results for the TextQA task | Model | Best Accuracy | Prompt | |---------------------|:-------------:|:------:| | Phi-3-medium | 41.28 | 1 | | Mistral-7B-instruct | 35.18 | 1 | | Llama3-8B-Chinese | 47.38 | 1 | | YI-6B | 25.53 | 3 | | YI-34B | 46.38 | 3 | | Qwen2-7B-instruct | 68.23 | 3 | | GPT-4 | 60.99 | 1 | ## BibTeX Citation ``` @article{li2024foodieqa, title={FoodieQA: A Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture}, author={Li, Wenyan and Zhang, Xinyu and Li, Jiaang and Peng, Qiwei and Tang, Raphael and Zhou, Li and Zhang, Weijia and Hu, Guimin and Yuan, Yifei and S{\o}gaard, Anders and others}, journal={arXiv preprint arXiv:2406.11030}, year={2024} } ```