# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import datasets _CITATION = ''' @inproceedings{Ammanabrolu2020AAAI, title={Story Realization: Expanding Plot Events into Sentences}, author={Prithviraj Ammanabrolu and Ethan Tien and Wesley Cheung and Zhaochen Luo and William Ma and Lara J. Martin and Mark O. Riedl}, journal={Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)}, year={2020}, volume={34}, number={05}, url={https://ojs.aaai.org//index.php/AAAI/article/view/6232} } ''' _DESCRIPTION = 'Loading script for the science fiction TV show plot dataset.' URL = 'https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/' _URLS = { 'test':'Test-Train-Val/all-sci-fi-data-test.txt', 'train':'Test-Train-Val/all-sci-fi-data-train.txt', 'val':'Test-Train-Val/all-sci-fi-data-val.txt', 'all':'all-sci-fi-data.txt', } _INPUT_OUTPUT = ["all-sci-fi-data-test_input.txt", "all-sci-fi-data-test_output.txt", "all-sci-fi-data-train_input.txt", "all-sci-fi-data-train_output.txt", "all-sci-fi-data-val_input.txt", "all-sci-fi-data-val_output.txt"] class ScifiTV(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( version=datasets.Version('1.1.0'), name=k, description=f'Science fiction TV show plot summaries.' ) for k in _URLS.keys() ] def _info(self): features = datasets.Features({ 'event': datasets.Value('list'), 'gen_event': datasets.Value('list'), 'sent': datasets.Value('string'), 'gen_sent': datasets.Value('string'), 'story_num': datasets.Value('int'), 'entities': datasets.Value('dict') }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage='https://github.com/rajammanabrolu/StoryRealization', # License for the dataset if available license='The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/', # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download(_URLS) splits = [] for datatype in _URLS.keys(): splits.append( datasets.SplitGenerator( name=datatype, gen_kwargs={ 'filepath': downloaded_files[datatype], "files": dl_manager.iter_archive(archive), }, ) ) return splits def _generate_examples(self, filepath): story_count = 0 with open(filepath, encoding="utf-8") as f: story = [] for id_, line in enumerate(f.readlines()): line = line.strip() if "%%%%%%" in line: for l in story: event, gen_event, sent, gen_sent = l.split("|||") line = line.replace("%%%%%%%%%%%%%%%%%", "") line = line.replace("defaultdict(, ", "")[:-1] entities = eval(line) yield id_, { 'event': eval(event), 'gen_event': eval(gen_event), 'sent': sent, 'gen_sent': gen_sent, 'story_num': story_count, 'entities': entities, } story = [] story_count+=1 elif "" in line: continue else: story.append(line)