from datasets import Value, ClassLabel,Sequence import datasets _AMZ20_CITATION = """\ """ _AMZ20_DESCRIPTION = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ class AMZ20Config(datasets.BuilderConfig): def __init__( self, text_features, label_column, data_url, data_dir, citation, url, label_classes=None, process_label=lambda x: x, **kwargs, ): super(AMZ20Config, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) self.text_features = text_features self.label_column = label_column self.label_classes = label_classes self.data_url = data_url self.data_dir = data_dir self.citation = citation self.url = url self.process_label = process_label class AMZ20(datasets.GeneratorBasedBuilder): domain_list = ['Sandal', 'Magazine_Subscriptions', 'RiceCooker', 'Flashlight', 'Jewelry', 'CableModem', 'GraphicsCard', 'GPS', 'Projector', 'Keyboard', 'Video_Games', 'AlarmClock', 'HomeTheaterSystem', 'Vacuum', 'Gloves', 'Baby', 'Bag', 'Movies_TV', 'Dumbbell', 'Headphone'] BUILDER_CONFIGS = [ AMZ20Config(name=domain_name, description= f'comments of JD {domain_name}.', text_features={'sentence':'sentence', 'domain':'domain'}, label_classes=['POS','NEG', 'NEU'], label_column='label', citation="", data_dir= "", data_url = "https://huggingface.co/datasets/kuroneko3578/amz20/resolve/main/", url='https://github.com/ws719547997/LNB-DA') for domain_name in domain_list ] def _info(self): features = {'id':Value(dtype='int32', id=None), 'domain':Value(dtype='string', id=None), 'label':ClassLabel(num_classes=3, names=['POS', 'NEG', 'NEU'], names_file=None, id=None), 'rank':Value(dtype='int32', id=None), 'sentence':Value(dtype='string', id=None)} return datasets.DatasetInfo( description=_AMZ20_DESCRIPTION, features=datasets.Features(features), homepage=self.config.url, citation=self.config.citation + "\n" + _AMZ20_CITATION, ) def _split_generators(self, dl_manager): test_file = rf'{self.config.data_url}test/{self.config.name}.txt' dev_file = rf'{self.config.data_url}dev/{self.config.name}.txt' train_file = rf'{self.config.data_url}train/{self.config.name}.txt' return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={ "data_file": dl_manager.download(test_file), "split": "test", },), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": dl_manager.download(dev_file), "split": "dev", },), datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "data_file": dl_manager.download(train_file), "split": "train", },)] def _generate_examples(self, data_file, split): with open(data_file, 'r', encoding='utf-8') as f: for line in f: lin = line.strip() if not lin: continue lin_sp = lin.split('\t') if len(lin_sp) < 5: continue # 列表头也被随机打散到数据集里面了 if lin_sp[0] == 'index': continue # id, {example} yield lin_sp[0], {'sentence':lin_sp[4],'domain':lin_sp[1], 'label':lin_sp[2], 'id':lin_sp[0], 'rank':lin_sp[3]}