--- task_categories: - image-classification tags: - roboflow - roboflow2huggingface - Retail - Pest Control - Benchmark ---
keremberke/indoor-scene-classification
### Dataset Labels ``` ['meeting_room', 'cloister', 'stairscase', 'restaurant', 'hairsalon', 'children_room', 'dining_room', 'lobby', 'museum', 'laundromat', 'computerroom', 'grocerystore', 'hospitalroom', 'buffet', 'office', 'warehouse', 'garage', 'bookstore', 'florist', 'locker_room', 'inside_bus', 'subway', 'fastfood_restaurant', 'auditorium', 'studiomusic', 'airport_inside', 'pantry', 'restaurant_kitchen', 'casino', 'movietheater', 'kitchen', 'waitingroom', 'artstudio', 'toystore', 'kindergarden', 'trainstation', 'bedroom', 'mall', 'corridor', 'bar', 'classroom', 'shoeshop', 'dentaloffice', 'videostore', 'laboratorywet', 'tv_studio', 'church_inside', 'operating_room', 'jewelleryshop', 'bathroom', 'clothingstore', 'closet', 'winecellar', 'livingroom', 'nursery', 'gameroom', 'inside_subway', 'deli', 'bakery', 'library', 'prisoncell', 'gym', 'concert_hall', 'greenhouse', 'elevator', 'poolinside', 'bowling'] ``` ### Number of Images ```json {'train': 10885, 'test': 1558, 'valid': 3128} ``` ### How to Use - Install [datasets](https://pypi.org/project/datasets/): ```bash pip install datasets ``` - Load the dataset: ```python from datasets import load_dataset ds = load_dataset("keremberke/indoor-scene-classification", name="full") example = ds['train'][0] ``` ### Roboflow Dataset Page [https://universe.roboflow.com/popular-benchmarks/mit-indoor-scene-recognition/dataset/5](https://universe.roboflow.com/popular-benchmarks/mit-indoor-scene-recognition/dataset/5?ref=roboflow2huggingface) ### Citation ``` ``` ### License MIT ### Dataset Summary This dataset was exported via roboflow.com on October 24, 2022 at 4:09 AM GMT Roboflow is an end-to-end computer vision platform that helps you * collaborate with your team on computer vision projects * collect & organize images * understand unstructured image data * annotate, and create datasets * export, train, and deploy computer vision models * use active learning to improve your dataset over time It includes 15571 images. Indoor-scenes are annotated in folder format. The following pre-processing was applied to each image: * Auto-orientation of pixel data (with EXIF-orientation stripping) * Resize to 416x416 (Stretch) No image augmentation techniques were applied.