from typing import Optional, Literal from io import BytesIO import numpy as np import nibabel as nib import torch import torchvision import monai import monai.transforms from indexed_gzip import IndexedGzipFile from monai.data.image_reader import NibabelReader from monai.transforms.io.array import switch_endianness from monai.transforms.transform import MapTransform, Transform from monai.data import MetaTensor from monai.data.utils import correct_nifti_header_if_necessary from monai.config import KeysCollection, DtypeLike from monai.utils import ( ImageMetaKey, convert_to_dst_type, ensure_tuple_rep, ensure_tuple, ) from monai.utils.enums import PostFix from huggingface_hub import HfFileSystem class LoadNIfTIFromLocalCache(Transform): def __init__( self, dtype: DtypeLike | None = np.float32, ensure_channel_first: bool = False, simple_keys: bool = False, prune_meta_pattern: str | None = None, prune_meta_sep: str = ".", ): self.dtype = dtype self.ensure_channel_first = ensure_channel_first self.simple_keys = simple_keys self.pattern = prune_meta_pattern self.sep = prune_meta_sep self.reader = NibabelReader() def __call__(self, path: str): with open(path, mode="rb") as f: img = nib.Nifti1Image.from_stream( IndexedGzipFile(fileobj=BytesIO(f.read())) ) img = correct_nifti_header_if_necessary(img) img_array, meta_data = self.reader.get_data(img) img_array = convert_to_dst_type(img_array, dst=img_array, dtype=self.dtype)[0] if not isinstance(meta_data, dict): raise ValueError(f"`meta_data` must be a dict, got type {type(meta_data)}.") # make sure all elements in metadata are little endian meta_data = switch_endianness(meta_data, "<") meta_data[ImageMetaKey.FILENAME_OR_OBJ] = path img = MetaTensor.ensure_torch_and_prune_meta( img_array, meta_data, simple_keys=self.simple_keys, pattern=self.pattern, sep=self.sep, ) if self.ensure_channel_first: img = monai.transforms.EnsureChannelFirst()(img) return img class LoadNIfTIFromLocalCached(MapTransform): def __init__( self, keys: KeysCollection, allow_missing_keys: bool = False, dtype: DtypeLike | None = np.float32, meta_keys: KeysCollection | None = None, meta_key_postfix: str = PostFix.meta(), overwriting: bool = False, ensure_channel_first: bool = False, simple_keys: bool = False, prune_meta_pattern: str | None = None, prune_meta_sep: str = ".", ): super().__init__(keys, allow_missing_keys) self._loader = LoadNIfTIFromLocalCache( dtype=dtype, ensure_channel_first=ensure_channel_first, simple_keys=simple_keys, prune_meta_pattern=prune_meta_pattern, prune_meta_sep=prune_meta_sep, ) if not isinstance(meta_key_postfix, str): raise TypeError( f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." ) self.meta_keys = ( ensure_tuple_rep(None, len(self.keys)) if meta_keys is None else ensure_tuple(meta_keys) ) if len(self.keys) != len(self.meta_keys): raise ValueError( f"meta_keys should have the same length as keys, got {len(self.keys)} and {len(self.meta_keys)}." ) self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) self.overwriting = overwriting def __call__(self, data): d = dict(data) for key, meta_key, meta_key_postfix in self.key_iterator( d, self.meta_keys, self.meta_key_postfix ): data = self._loader(d[key]) d[key] = data return d class LoadNIfTIFromHFHub(Transform): def __init__( self, dtype: DtypeLike | None = np.float32, ensure_channel_first: bool = False, simple_keys: bool = False, prune_meta_pattern: str | None = None, prune_meta_sep: str = ".", ): self.dtype = dtype self.ensure_channel_first = ensure_channel_first self.simple_keys = simple_keys self.pattern = prune_meta_pattern self.sep = prune_meta_sep self.fs = HfFileSystem() self.reader = NibabelReader() def __call__(self, url: str): url = LoadNIfTIFromHFHub._convert_to_hffs_path(url) with self.fs.open(url, mode="rb") as f: img = nib.Nifti1Image.from_stream( IndexedGzipFile(fileobj=BytesIO(f.read())) ) img = correct_nifti_header_if_necessary(img) img_array, meta_data = self.reader.get_data(img) img_array = convert_to_dst_type(img_array, dst=img_array, dtype=self.dtype)[0] if not isinstance(meta_data, dict): raise ValueError(f"`meta_data` must be a dict, got type {type(meta_data)}.") # make sure all elements in metadata are little endian meta_data = switch_endianness(meta_data, "<") meta_data[ImageMetaKey.FILENAME_OR_OBJ] = url img = MetaTensor.ensure_torch_and_prune_meta( img_array, meta_data, simple_keys=self.simple_keys, pattern=self.pattern, sep=self.sep, ) if self.ensure_channel_first: img = monai.transforms.EnsureChannelFirst()(img) return img @staticmethod def _convert_to_hffs_path(url: str): if url.startswith("https://huggingface.co/datasets/"): parts = url.split("/") return f"hf://{'/'.join(parts[3:6])}/{'/'.join(parts[8:])}" return url class LoadNIfTIFromHFHubd(MapTransform): def __init__( self, keys: KeysCollection, allow_missing_keys: bool = False, dtype: DtypeLike | None = np.float32, meta_keys: KeysCollection | None = None, meta_key_postfix: str = PostFix.meta(), overwriting: bool = False, ensure_channel_first: bool = False, simple_keys: bool = False, prune_meta_pattern: str | None = None, prune_meta_sep: str = ".", ): super().__init__(keys, allow_missing_keys) self._loader = LoadNIfTIFromHFHub( dtype=dtype, ensure_channel_first=ensure_channel_first, simple_keys=simple_keys, prune_meta_pattern=prune_meta_pattern, prune_meta_sep=prune_meta_sep, ) if not isinstance(meta_key_postfix, str): raise TypeError( f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}." ) self.meta_keys = ( ensure_tuple_rep(None, len(self.keys)) if meta_keys is None else ensure_tuple(meta_keys) ) if len(self.keys) != len(self.meta_keys): raise ValueError( f"meta_keys should have the same length as keys, got {len(self.keys)} and {len(self.meta_keys)}." ) self.meta_key_postfix = ensure_tuple_rep(meta_key_postfix, len(self.keys)) self.overwriting = overwriting def __call__(self, data): d = dict(data) for key, meta_key, meta_key_postfix in self.key_iterator( d, self.meta_keys, self.meta_key_postfix ): data = self._loader(d[key]) d[key] = data return d class UnifyUnusualDICOM(Transform): """ Correct DICOM pixel_array if PixelRepresentation == 1 and BitsAllocated != BitsStored Steps: 1. Convert data back to the original signed int16. 2. Compute the number of bits to shift over (BitsShift = BitsAllocated - BitsStored) 3. Left shift by BitsShift then right shift by BitsShift 4. Convert data back to the default dtype for metatensor (float32) By default all dicom files in this dataset `rsna-2023-abdominal-trauma-detection` is in - uint16 if Pixel Representation = 0 - int16 if Pixel Representation = 1 Refer: https://dicom.innolitics.com/ciods/rt-dose/image-pixel/00280103 Warning: - Use this transform on the test set as we expect to take DICOM series as input instead of NIfTI. - The passed in metatensor must have the following DICOM metadata: - Pixel Representation - Bits Allocated - Bits Stored - To have a metatensor that has those metadata: - Set reader to be PydicomReader with prune_metadata=False, i.e., monai.transforms.LoadImaged(..., reader=PydicomReader(prune_metadata=False)) """ def __init__(self): self.DCM_ATTR2TAG = { "Bits Allocated": "00280100", # http://dicomlookup.com/lookup.asp?sw=Tnumber&q=(0028,0100) "Bits Stored": "00280101", # http://dicomlookup.com/lookup.asp?sw=Tnumber&q=(0028,0101) "Pixel Representation": "00280103", # http://dicomlookup.com/lookup.asp?sw=Tnumber&q=(0028,0103) } def __call__(self, data): if not all([dcm_tag in data.meta for dcm_tag in self.DCM_ATTR2TAG.values()]): raise Exception( f"Attribute tags of {self.DCM_ATTR2TAG} must exist in the dicom metadata to use this transform `{self.__class__.__name__}. Hint: Set reader to be PydicomReader with prune_metadata=False, i.e., monai.transforms.LoadImaged(..., reader=PydicomReader(prune_metadata=False))`" ) pixel_representation = data.meta[self.DCM_ATTR2TAG["Pixel Representation"]][ "Value" ][0] bits_allocated = data.meta[self.DCM_ATTR2TAG["Bits Allocated"]]["Value"][0] bits_stored = data.meta[self.DCM_ATTR2TAG["Bits Stored"]]["Value"][0] data = UnifyUnusualDICOM._standardize_dicom_pixels( data, pixel_representation, bits_allocated, bits_stored ) return data @staticmethod def _standardize_dicom_pixels( data: torch.Tensor, pixel_representation: int, bits_allocated: int, bits_stored: int, ): bits_shift = bits_allocated - bits_stored if pixel_representation == 1 and bits_shift != 0: dtype_before = data.dtype dtype_shift = torch.int16 data = data.to(dtype_shift) data = (data << bits_shift).to(dtype_shift) >> bits_shift data = data.to(dtype_before) return data class UnifyUnusualDICOMd(MapTransform): def __init__(self, keys: KeysCollection, allow_missing_keys: bool = False): super().__init__(keys, allow_missing_keys) self._unify_unusual_dicom = UnifyUnusualDICOM() def __call__(self, data): d = dict(data) for key in self.key_iterator(d): data = self._unify_unusual_dicom(d[key]) d[key] = data return d class UnifyUnusualNIfTI(Transform): """ Correct NIfTI pixel values if PixelRepresentation == 1 and BitsAllocated != BitsStored. Steps: 1. Convert data back to the original signed int16. 2. Compute the number of bits to shift over (BitsShift = BitsAllocated - BitsStored) 3. Left shift by BitsShift then right shift by BitsShift 4. Convert data back to the default dtype for metatensor (float32) By default all dicom files in this dataset `rsna-2023-abdominal-trauma-detection` is in - uint16 if Pixel Representation = 0 - int16 if Pixel Representation = 1 Refer: https://dicom.innolitics.com/ciods/rt-dose/image-pixel/00280103 Warning: - This transform only works for DICOM series that has been converted to NIfTI format and has a precomputed csv file that tracks the series that has unusual DICOM pixel representation format (`potential_unusual_dicom_series_meta.csv`). - This transform is not applicable for data that we have not preprocess yet (e.g. test set) - Use a different custom transform for test set (e.g. `UnifyUnusualDICOM`) as we expect to take DICOM series as input instead of NIfTI Why do we this? - NIfTI file doesn't store the Pixel Representation, Bits Allocated, and Bits Stored metadata. - The reason behind using a NIfTI file is to allow for easier data loading during training phase. """ def __init__( self, x_key: str = "img", metadata_key: str = "metadata", meta_pixel_representation_key: str = "pixel_representation", meta_bits_allocated_key: str = "bits_allocated", meta_bits_stored_key: str = "bits_stored", ): self.x_key = x_key self.metadata_key = metadata_key self.pixel_representation_key = meta_pixel_representation_key self.bits_allocated_key = meta_bits_allocated_key self.bits_stored_key = meta_bits_stored_key def __call__(self, data): if not self.metadata_key in data or not self.x_key in data: raise KeyError( f"Key `{self.metadata_key}` of transform `{self.__class__.__name__}` was missing in the data." ) if ( not self.pixel_representation_key in data[self.metadata_key] or not self.bits_allocated_key in data[self.metadata_key] or not self.bits_stored_key in data[self.metadata_key] ): raise KeyError( f"Key `{self.pixel_representation_key}` or `{self.bits_allocated_key}` or `{self.bits_stored_key}` of transform `{self.__class__.__name__}` was missing in the metadata." ) data[self.x_key] = UnifyUnusualNIfTI._standardize_dicom_pixels( data[self.x_key], data[self.metadata_key][self.pixel_representation_key], data[self.metadata_key][self.bits_allocated_key], data[self.metadata_key][self.bits_stored_key], ) return data @staticmethod def _standardize_dicom_pixels( data: torch.Tensor, pixel_representation: int, bits_allocated: int, bits_stored: int, ): bits_shift = bits_allocated - bits_stored if pixel_representation == 1 and bits_shift != 0: dtype_before = data.dtype dtype_shift = torch.int16 data = data.to(dtype_shift) data = (data << bits_shift).to(dtype_shift) >> bits_shift data = data.to(dtype_before) return data def volume_transforms( crop_strategy: Optional[ Literal["oversample", "center", "random", "none"] ] = "oversample", voxel_spacing: tuple[float, float, float] = (3.0, 3.0, 3.0), volume_size: tuple[int, int, int] = (96, 96, 96), axcodes: str = "RAS", streaming: bool = False, ) -> monai.transforms.Compose: if crop_strategy == "oversample": return monai.transforms.Compose( [ LoadNIfTIFromHFHubd(keys=["img"]) if streaming else LoadNIfTIFromLocalCached(keys=["img"]), monai.transforms.EnsureTyped( keys=["img"], data_type="tensor", dtype=torch.float32 ), UnifyUnusualNIfTI( x_key="img", metadata_key="metadata", meta_pixel_representation_key="pixel_representation", meta_bits_allocated_key="bits_allocated", meta_bits_stored_key="bits_stored", ), monai.transforms.EnsureChannelFirstd(keys=["img"]), monai.transforms.Orientationd(keys=["img"], axcodes=axcodes), monai.transforms.Spacingd( keys=["img"], pixdim=voxel_spacing, mode=["bilinear"] ), monai.transforms.NormalizeIntensityd(keys=["img"], nonzero=False), monai.transforms.ScaleIntensityd(keys=["img"], minv=-1.0, maxv=1.0), monai.transforms.SpatialPadd(keys=["img"], spatial_size=volume_size), monai.transforms.RandSpatialCropSamplesd( keys=["img"], roi_size=volume_size, num_samples=3, random_center=True, random_size=False, ), ] ) elif crop_strategy == "center": return monai.transforms.Compose( [ LoadNIfTIFromHFHubd(keys=["img"]) if streaming else LoadNIfTIFromLocalCached(keys=["img"]), monai.transforms.EnsureTyped( keys=["img"], data_type="tensor", dtype=torch.float32 ), UnifyUnusualNIfTI( x_key="img", metadata_key="metadata", meta_pixel_representation_key="pixel_representation", meta_bits_allocated_key="bits_allocated", meta_bits_stored_key="bits_stored", ), monai.transforms.EnsureChannelFirstd(keys=["img"]), monai.transforms.Orientationd(keys=["img"], axcodes=axcodes), monai.transforms.Spacingd( keys=["img"], pixdim=voxel_spacing, mode=["bilinear"] ), monai.transforms.NormalizeIntensityd(keys=["img"], nonzero=False), monai.transforms.ScaleIntensityd(keys=["img"], minv=-1.0, maxv=1.0), monai.transforms.SpatialPadd(keys=["img"], spatial_size=volume_size), monai.transforms.CenterSpatialCropd(keys=["img"], roi_size=volume_size), ] ) elif crop_strategy == "random": return monai.transforms.Compose( [ LoadNIfTIFromHFHubd(keys=["img"]) if streaming else LoadNIfTIFromLocalCached(keys=["img"]), monai.transforms.EnsureTyped( keys=["img"], data_type="tensor", dtype=torch.float32 ), UnifyUnusualNIfTI( x_key="img", metadata_key="metadata", meta_pixel_representation_key="pixel_representation", meta_bits_allocated_key="bits_allocated", meta_bits_stored_key="bits_stored", ), monai.transforms.EnsureChannelFirstd(keys=["img"]), monai.transforms.Orientationd(keys=["img"], axcodes=axcodes), monai.transforms.Spacingd( keys=["img"], pixdim=voxel_spacing, mode=["bilinear"] ), monai.transforms.NormalizeIntensityd(keys=["img"], nonzero=False), monai.transforms.ScaleIntensityd(keys=["img"], minv=-1.0, maxv=1.0), monai.transforms.SpatialPadd(keys=["img"], spatial_size=volume_size), monai.transforms.RandSpatialCropd( keys=["img"], roi_size=volume_size, random_center=True, random_size=False, ), ] ) elif crop_strategy == "none" or crop_strategy is None: return monai.transforms.Compose( [ LoadNIfTIFromHFHubd(keys=["img"]) if streaming else LoadNIfTIFromLocalCached(keys=["img"]), monai.transforms.EnsureTyped( keys=["img"], data_type="tensor", dtype=torch.float32 ), UnifyUnusualNIfTI( x_key="img", metadata_key="metadata", meta_pixel_representation_key="pixel_representation", meta_bits_allocated_key="bits_allocated", meta_bits_stored_key="bits_stored", ), monai.transforms.EnsureChannelFirstd(keys=["img"]), monai.transforms.Orientationd(keys=["img"], axcodes=axcodes), monai.transforms.Spacingd( keys=["img"], pixdim=voxel_spacing, mode=["bilinear"] ), monai.transforms.NormalizeIntensityd(keys=["img"], nonzero=False), monai.transforms.ScaleIntensityd(keys=["img"], minv=-1.0, maxv=1.0), ] ) else: raise ValueError( f"crop_strategy must be one of ['oversample', 'center', 'random', 'none'], got {crop_strategy}." ) def mask_transforms( crop_strategy: Optional[Literal["oversample", "center", "none"]] = "oversample", voxel_spacing: tuple[float, float, float] = (3.0, 3.0, 3.0), volume_size: tuple[int, int, int] = (96, 96, 96), axcodes: str = "RAS", streaming: bool = False, ) -> monai.transforms.Compose: if crop_strategy == "oversample": return monai.transforms.Compose( [ LoadNIfTIFromHFHubd(keys=["seg"]) if streaming else LoadNIfTIFromLocalCached(keys=["seg"]), monai.transforms.EnsureTyped( keys=["seg"], data_type="tensor", dtype=torch.float32 ), monai.transforms.EnsureChannelFirstd(keys=["seg"]), monai.transforms.Orientationd(keys=["seg"], axcodes=axcodes), monai.transforms.Spacingd( keys=["seg"], pixdim=voxel_spacing, mode=["nearest"] ), monai.transforms.SpatialPadd(keys=["seg"], spatial_size=volume_size), monai.transforms.RandSpatialCropSamplesd( keys=["seg"], roi_size=volume_size, num_samples=3, random_center=True, random_size=False, ), ] ) elif crop_strategy == "center": return monai.transforms.Compose( [ LoadNIfTIFromHFHubd(keys=["seg"]) if streaming else LoadNIfTIFromLocalCached(keys=["seg"]), monai.transforms.EnsureTyped( keys=["seg"], data_type="tensor", dtype=torch.float32 ), monai.transforms.EnsureChannelFirstd(keys=["seg"]), monai.transforms.Orientationd(keys=["seg"], axcodes=axcodes), monai.transforms.Spacingd( keys=["seg"], pixdim=voxel_spacing, mode=["nearest"] ), monai.transforms.SpatialPadd(keys=["seg"], spatial_size=volume_size), monai.transforms.CenterSpatialCropd(keys=["seg"], roi_size=volume_size), ] ) elif crop_strategy == "none" or crop_strategy is None: return monai.transforms.Compose( [ LoadNIfTIFromHFHubd(keys=["seg"]) if streaming else LoadNIfTIFromLocalCached(keys=["seg"]), monai.transforms.EnsureTyped( keys=["seg"], data_type="tensor", dtype=torch.float32 ), monai.transforms.EnsureChannelFirstd(keys=["seg"]), monai.transforms.Orientationd(keys=["seg"], axcodes=axcodes), monai.transforms.Spacingd( keys=["seg"], pixdim=voxel_spacing, mode=["nearest"] ), ] ) else: raise ValueError( f"crop_strategy must be one of ['oversample', 'center', 'none'], got {crop_strategy}." ) def slice_transforms( crop_strategy: Literal["ten", "five", "center", "random"] = "ten", shorter_edge_length: int = 256, slice_size: tuple[int, int] = (224, 224), ) -> torchvision.transforms.Compose: if crop_strategy == "ten": return torchvision.transforms.Compose( [ torchvision.transforms.Resize(size=shorter_edge_length, antialias=True), torchvision.transforms.TenCrop(size=slice_size), ] ) elif crop_strategy == "five": return torchvision.transforms.Compose( [ torchvision.transforms.Resize(size=shorter_edge_length, antialias=True), torchvision.transforms.FiveCrop(size=slice_size), ] ) elif crop_strategy == "center": return torchvision.transforms.Compose( [ torchvision.transforms.Resize(size=shorter_edge_length, antialias=True), torchvision.transforms.CenterCrop(size=slice_size), ] ) elif crop_strategy == "random": return torchvision.transforms.Compose( [ torchvision.transforms.Resize(size=shorter_edge_length, antialias=True), torchvision.transforms.RandomCrop(size=slice_size), ] ) else: raise ValueError( f"crop_strategy must be one of ['ten', 'five', 'center', 'random'], got {crop_strategy}." )