{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "95bd761a-fe51-4a8e-bc70-1365260ba5f8",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b0859483-5e19-4280-9f53-0d00a6f22d34",
"metadata": {},
"outputs": [],
"source": [
"df_pdbbind = pd.read_parquet('data/pdbbind.parquet')\n",
"df_pdbbind = df_pdbbind[['seq','smiles','affinity_uM']]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f30732b7-7444-47ad-84e7-566e7a6f2f8e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... | \n",
" CCCCCCCCCCCCCCCCCCCC(=O)O | \n",
" 0.026 | \n",
"
\n",
" \n",
" 1 | \n",
" APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... | \n",
" OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... | \n",
" 500.000 | \n",
"
\n",
" \n",
" 2 | \n",
" VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... | \n",
" COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... | \n",
" 0.023 | \n",
"
\n",
" \n",
" 3 | \n",
" AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... | \n",
" OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... | \n",
" 6.430 | \n",
"
\n",
" \n",
" 4 | \n",
" YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... | \n",
" CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... | \n",
" 0.185 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
"4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
"\n",
" smiles affinity_uM \n",
"0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.026 \n",
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.000 \n",
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.023 \n",
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.430 \n",
"4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.185 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_pdbbind.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2787b9fd-3d6f-4ae3-a3ad-d3539b72782b",
"metadata": {},
"outputs": [],
"source": [
"from rdkit import Chem\n",
"from rdkit.Chem import MACCSkeys\n",
"import numpy as np\n",
"\n",
"def get_maccs(smi):\n",
" try:\n",
" mol = Chem.MolFromSmiles(smi)\n",
" arr = np.packbits([0 if c=='0' else 1 for c in MACCSkeys.GenMACCSKeys(mol).ToBitString()])\n",
" return np.pad(arr,(0,3)).view(np.uint32)\n",
" except Exception:\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d1abe1c8-ac66-4289-8964-367a5b18528d",
"metadata": {},
"outputs": [],
"source": [
"df_bindingdb = pd.read_parquet('data/bindingdb.parquet')\n",
"df_bindingdb = df_bindingdb[['seq','Ligand SMILES','affinity_uM']].rename(columns={'Ligand SMILES': 'smiles'})"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "988bab9c-5147-44e2-92ef-902eaf3c5a90",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 | \n",
" 0.00024 | \n",
"
\n",
" \n",
" 1 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... | \n",
" 0.00025 | \n",
"
\n",
" \n",
" 2 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... | \n",
" 0.00041 | \n",
"
\n",
" \n",
" 3 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... | \n",
" 0.00080 | \n",
"
\n",
" \n",
" 4 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... | \n",
" OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... | \n",
" 0.00099 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"1 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"2 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"3 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"4 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKM... \n",
"\n",
" smiles affinity_uM \n",
"0 COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 0.00024 \n",
"1 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(C\\C=C\\c2cn... 0.00025 \n",
"2 O[C@@H]1[C@@H](O)[C@@H](Cc2ccccc2)N(CC2CC2)C(=... 0.00041 \n",
"3 OCCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@... 0.00080 \n",
"4 OCCCCCN1[C@H](Cc2ccccc2)[C@H](O)[C@@H](O)[C@@H... 0.00099 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_bindingdb.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d7bfee2a-c4e6-48c9-b0c6-52f6a69c7453",
"metadata": {},
"outputs": [],
"source": [
"df_moad = pd.read_parquet('data/moad.parquet')\n",
"df_moad = df_moad[['seq','smiles','affinity_uM']]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "25553199-1715-40fb-9260-427bdd6c3706",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... | \n",
" NP(=O)(N)O | \n",
" 0.000620 | \n",
"
\n",
" \n",
" 1 | \n",
" NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... | \n",
" CC(=O)NO | \n",
" 2.600000 | \n",
"
\n",
" \n",
" 2 | \n",
" MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... | \n",
" C#CCCOP(=O)(O)OP(=O)(O)O | \n",
" 0.580000 | \n",
"
\n",
" \n",
" 3 | \n",
" MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... | \n",
" C#CCOP(=O)(O)OP(=O)(O)O | \n",
" 0.770000 | \n",
"
\n",
" \n",
" 4 | \n",
" MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... | \n",
" c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... | \n",
" 15.000000 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 25420 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 127.226463 | \n",
"
\n",
" \n",
" 25421 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 127.226463 | \n",
"
\n",
" \n",
" 25422 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 169.204738 | \n",
"
\n",
" \n",
" 25423 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 169.204738 | \n",
"
\n",
" \n",
" 25424 | \n",
" MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... | \n",
" None | \n",
" 169.204738 | \n",
"
\n",
" \n",
"
\n",
"
25425 rows × 3 columns
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
"1 NYIVPGEYRVAEGEIEINAGREKTTIRVSNTGDRPIQVGSHIHFVE... \n",
"2 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
"3 MEGMRRPTPTVYVGRVPIGGAHPIAVQSMTNTPTRDVEATTAQVLE... \n",
"4 MTDMSIKFELIDVPIPQGTNVIIGQAHFIKTVEDLYEALVTSVPGV... \n",
"... ... \n",
"25420 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"25421 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"25422 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"25423 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"25424 MGSSHHHHHHSSGLVPRGSHMASNPSLIRSESWQVYEGNEANLLDG... \n",
"\n",
" smiles affinity_uM \n",
"0 NP(=O)(N)O 0.000620 \n",
"1 CC(=O)NO 2.600000 \n",
"2 C#CCCOP(=O)(O)OP(=O)(O)O 0.580000 \n",
"3 C#CCOP(=O)(O)OP(=O)(O)O 0.770000 \n",
"4 c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3... 15.000000 \n",
"... ... ... \n",
"25420 None 127.226463 \n",
"25421 None 127.226463 \n",
"25422 None 169.204738 \n",
"25423 None 169.204738 \n",
"25424 None 169.204738 \n",
"\n",
"[25425 rows x 3 columns]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_moad"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "b2c936bc-cdc8-4bc1-b92d-f8755fd65f0a",
"metadata": {},
"outputs": [],
"source": [
"df_biolip = pd.read_parquet('data/biolip.parquet')\n",
"df_biolip = df_biolip[['seq','smiles','affinity_uM']]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "cee93018-601d-458b-af44-bd978da7a2bc",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
"
\n",
" \n",
" \n",
" \n",
" 38 | \n",
" PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... | \n",
" CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C | \n",
" 1.5000 | \n",
"
\n",
" \n",
" 43 | \n",
" MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... | \n",
" OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... | \n",
" 24.0000 | \n",
"
\n",
" \n",
" 53 | \n",
" EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... | \n",
" O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... | \n",
" 6.0000 | \n",
"
\n",
" \n",
" 54 | \n",
" MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... | \n",
" CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... | \n",
" 10.0000 | \n",
"
\n",
" \n",
" 55 | \n",
" MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... | \n",
" c1ccccc1 | \n",
" 175.0000 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 105118 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
"
\n",
" \n",
" 105119 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
"
\n",
" \n",
" 105124 | \n",
" SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... | \n",
" O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... | \n",
" 125.0000 | \n",
"
\n",
" \n",
" 105133 | \n",
" ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... | \n",
" CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... | \n",
" 2.0000 | \n",
"
\n",
" \n",
" 105138 | \n",
" KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... | \n",
" CC[Se]C(=N)N | \n",
" 0.0390 | \n",
"
\n",
" \n",
"
\n",
"
13645 rows × 3 columns
\n",
"
"
],
"text/plain": [
" seq \\\n",
"38 PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
"43 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
"53 EKKSINECDLKGKKVLIRVDFNVPVKNGKITNDYRIRSALPTLKKV... \n",
"54 MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKA... \n",
"55 MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
"... ... \n",
"105118 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"105119 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"105124 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
"105133 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
"105138 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
"\n",
" smiles affinity_uM \n",
"38 CC[C@H](C(=O)c1ccc(c(c1Cl)Cl)OCC(=O)O)C 1.5000 \n",
"43 OC(=O)c1cc(/N=N/c2ccc(cc2)S(=O)(=O)Nc2ccccn2)c... 24.0000 \n",
"53 O[C@@H]1[C@@H](CO[P@](=O)(O[P@@](=O)(C(CCCC(P(... 6.0000 \n",
"54 CCCCCCSC[C@@H](C(=O)NCC(=O)O)NC(=O)CC[C@@H](C(... 10.0000 \n",
"55 c1ccccc1 175.0000 \n",
"... ... ... \n",
"105118 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"105119 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"105124 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
"105133 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
"105138 CC[Se]C(=N)N 0.0390 \n",
"\n",
"[13645 rows x 3 columns]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_biolip"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "195f92db-fe06-4d03-8500-8d6c310a3347",
"metadata": {},
"outputs": [],
"source": [
"df_all = pd.concat([df_pdbbind,df_bindingdb,df_moad,df_biolip]).reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d25c1e24-6566-4944-a0b4-944b3c8dbc6f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2283641"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df_all)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "c8287da2-cfdf-4d89-b175-f4c6b38ff8ac",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO: Pandarallel will run on 32 workers.\n",
"INFO: Pandarallel will use Memory file system to transfer data between the main process and workers.\n"
]
}
],
"source": [
"from pandarallel import pandarallel\n",
"pandarallel.initialize()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de5ffc4a-afb7-4a26-8d57-509c2278d750",
"metadata": {},
"outputs": [],
"source": [
"df_all['maccs'] = df_all['smiles'].parallel_apply(get_maccs)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "59a6706d-dab9-4ee0-8ef6-33537a3622a4",
"metadata": {},
"outputs": [],
"source": [
"df_all.to_parquet('data/all_maccs.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "4ccf2ee5-d369-4c0e-bb91-792765d661bf",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "399f4ace-6dc3-441f-972a-f7b3a103e239",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2283641"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df_all)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "8a4bbb18-e62f-4774-ac6b-8a1be68204c1",
"metadata": {},
"outputs": [],
"source": [
"df_all = pd.read_parquet('data/all_maccs.parquet')\n",
"df_all = df_all.dropna().reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "d210fe56-a7eb-4adc-a77a-14c0c6d0034e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2277323"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df_all)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "d12b365d-98bd-4b61-b836-1a08d2e55418",
"metadata": {},
"outputs": [],
"source": [
"maccs = df_all['maccs'].to_numpy()\n",
"#df_reindex[df_reindex.duplicated(keep='first')].reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "80c15210-1af3-436e-970b-f81fc596fb41",
"metadata": {},
"outputs": [],
"source": [
"df_maccs = pd.DataFrame(np.vstack(maccs))"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "30c314b8-8fe7-48ae-a2b8-149de1471b0c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 int64\n",
"1 int64\n",
"2 int64\n",
"3 int64\n",
"4 int64\n",
"5 int64\n",
"dtype: object"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_maccs.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "70a0a820-4d0c-4472-af96-9c301c0ab204",
"metadata": {},
"outputs": [],
"source": [
"df_expand = pd.concat([df_all[['seq','smiles','affinity_uM']],df_maccs],axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "13d092fa-5625-40d0-b7ec-e3405ea20279",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... | \n",
" CCCCCCCCCCCCCCCCCCCC(=O)O | \n",
" 0.0260 | \n",
" 0 | \n",
" 0 | \n",
" 805306368 | \n",
" 272271360 | \n",
" 890245320 | \n",
" 136 | \n",
"
\n",
" \n",
" 1 | \n",
" APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... | \n",
" OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... | \n",
" 500.0000 | \n",
" 2147483648 | \n",
" 3242590208 | \n",
" 1914732547 | \n",
" 994116706 | \n",
" 3748288829 | \n",
" 124 | \n",
"
\n",
" \n",
" 2 | \n",
" VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... | \n",
" COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... | \n",
" 0.0230 | \n",
" 131072 | \n",
" 1109655552 | \n",
" 2123376961 | \n",
" 3477340882 | \n",
" 2951175957 | \n",
" 252 | \n",
"
\n",
" \n",
" 3 | \n",
" AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... | \n",
" OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... | \n",
" 6.4300 | \n",
" 0 | \n",
" 6685696 | \n",
" 2033191680 | \n",
" 1345701844 | \n",
" 2133187096 | \n",
" 220 | \n",
"
\n",
" \n",
" 4 | \n",
" YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... | \n",
" CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... | \n",
" 0.1850 | \n",
" 1048576 | \n",
" 1107427332 | \n",
" 2109513024 | \n",
" 4081492984 | \n",
" 4026260436 | \n",
" 252 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 2277318 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
" 65536 | \n",
" 393216 | \n",
" 964698368 | \n",
" 369403648 | \n",
" 4284858000 | \n",
" 252 | \n",
"
\n",
" \n",
" 2277319 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
" 65536 | \n",
" 393216 | \n",
" 964698368 | \n",
" 369403648 | \n",
" 4284858000 | \n",
" 252 | \n",
"
\n",
" \n",
" 2277320 | \n",
" SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... | \n",
" O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... | \n",
" 125.0000 | \n",
" 67108864 | \n",
" 1115688962 | \n",
" 1771869508 | \n",
" 4018431718 | \n",
" 3744193341 | \n",
" 124 | \n",
"
\n",
" \n",
" 2277321 | \n",
" ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... | \n",
" CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... | \n",
" 2.0000 | \n",
" 2097152 | \n",
" 137216 | \n",
" 958148868 | \n",
" 1746307978 | \n",
" 2067783280 | \n",
" 204 | \n",
"
\n",
" \n",
" 2277322 | \n",
" KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... | \n",
" CC[Se]C(=N)N | \n",
" 0.0390 | \n",
" 16 | \n",
" 6144 | \n",
" 537396736 | \n",
" 2170880 | \n",
" 1510015504 | \n",
" 192 | \n",
"
\n",
" \n",
"
\n",
"
2277323 rows × 9 columns
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
"4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
"... ... \n",
"2277318 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"2277319 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"2277320 SKVVVPAQGKKITLQNGKLNVPENPIIPYIEGDGIGVDVTPAMLKV... \n",
"2277321 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
"2277322 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
"\n",
" smiles affinity_uM \\\n",
"0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.0260 \n",
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.0000 \n",
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.0230 \n",
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.4300 \n",
"4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.1850 \n",
"... ... ... \n",
"2277318 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"2277319 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"2277320 O[C@@H]1[C@@H](COP(=O)(O)O)O[C@H]([C@@H]1OP(=O... 125.0000 \n",
"2277321 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
"2277322 CC[Se]C(=N)N 0.0390 \n",
"\n",
" 0 1 2 3 4 5 \n",
"0 0 0 805306368 272271360 890245320 136 \n",
"1 2147483648 3242590208 1914732547 994116706 3748288829 124 \n",
"2 131072 1109655552 2123376961 3477340882 2951175957 252 \n",
"3 0 6685696 2033191680 1345701844 2133187096 220 \n",
"4 1048576 1107427332 2109513024 4081492984 4026260436 252 \n",
"... ... ... ... ... ... ... \n",
"2277318 65536 393216 964698368 369403648 4284858000 252 \n",
"2277319 65536 393216 964698368 369403648 4284858000 252 \n",
"2277320 67108864 1115688962 1771869508 4018431718 3744193341 124 \n",
"2277321 2097152 137216 958148868 1746307978 2067783280 204 \n",
"2277322 16 6144 537396736 2170880 1510015504 192 \n",
"\n",
"[2277323 rows x 9 columns]"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_expand"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "30f7fff7-3cfe-41c8-97c9-666f3e256222",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['seq', 'smiles', 'affinity_uM', 0, 1, 2, 3, 4, 5], dtype='object')"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_expand.columns"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "16d2b26e-984f-4c71-af19-a3e711ed9ca2",
"metadata": {},
"outputs": [],
"source": [
"df_reindex = df_expand.set_index([0,1,2,3,4,5,'seq'])"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "27fa2150-8152-444b-ba5b-24bea39fc098",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['smiles', 'affinity_uM'], dtype='object')"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_reindex.columns"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "89edacbc-52f3-4a76-90b0-95273f5e53b3",
"metadata": {},
"outputs": [],
"source": [
"df_nr = df_reindex[~df_reindex.duplicated(keep='first')].reset_index()\n",
"df_nr = df_nr.drop(columns=[0,1,2,3,4,5])"
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "6a704c5e-68a6-418f-bcad-8688a13ca1d6",
"metadata": {},
"outputs": [],
"source": [
"# final sanity checks"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "0cad3882-975d-4693-aad1-63ec26646bd0",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/ccs/proj/stf006/glaser/conda-envs/dask/lib/python3.9/site-packages/pandas/core/arraylike.py:358: RuntimeWarning: divide by zero encountered in log\n",
" result = getattr(ufunc, method)(*inputs, **kwargs)\n"
]
}
],
"source": [
"df_nr['neg_log10_affinity_M'] = 6-np.log(df_nr['affinity_uM'])/np.log(10)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "c200e29a-3f14-41f4-b620-ccce0eb0d5ce",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" seq | \n",
" smiles | \n",
" affinity_uM | \n",
" neg_log10_affinity_M | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... | \n",
" CCCCCCCCCCCCCCCCCCCC(=O)O | \n",
" 0.0260 | \n",
" 7.585027 | \n",
"
\n",
" \n",
" 1 | \n",
" APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... | \n",
" OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... | \n",
" 500.0000 | \n",
" 3.301030 | \n",
"
\n",
" \n",
" 2 | \n",
" VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... | \n",
" COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... | \n",
" 0.0230 | \n",
" 7.638272 | \n",
"
\n",
" \n",
" 3 | \n",
" AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... | \n",
" OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... | \n",
" 6.4300 | \n",
" 5.191789 | \n",
"
\n",
" \n",
" 4 | \n",
" YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... | \n",
" CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... | \n",
" 0.1850 | \n",
" 6.732828 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1838495 | \n",
" IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... | \n",
" O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... | \n",
" 8.0000 | \n",
" 5.096910 | \n",
"
\n",
" \n",
" 1838496 | \n",
" IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... | \n",
" CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... | \n",
" 8.0000 | \n",
" 5.096910 | \n",
"
\n",
" \n",
" 1838497 | \n",
" PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... | \n",
" O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... | \n",
" 0.0045 | \n",
" 8.346787 | \n",
"
\n",
" \n",
" 1838498 | \n",
" ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... | \n",
" CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... | \n",
" 2.0000 | \n",
" 5.698970 | \n",
"
\n",
" \n",
" 1838499 | \n",
" KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... | \n",
" CC[Se]C(=N)N | \n",
" 0.0390 | \n",
" 7.408935 | \n",
"
\n",
" \n",
"
\n",
"
1838500 rows × 4 columns
\n",
"
"
],
"text/plain": [
" seq \\\n",
"0 MTVPDRSEIAGKWYVVALASNTEFFLREKDKMKMAMARISFLGEDE... \n",
"1 APQTITELCSEYRNTQIYTINDKILSYTESMAGKREMVIITFKSGE... \n",
"2 VETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE... \n",
"3 AAPFDKSKNVAQSIDQLIGQTPALYLNKLNNTKAKVVLKMECENPM... \n",
"4 YITFRSFTAVLIAFFLTLVLSPSFINRLRKIQRKKYTPTMGGIVIL... \n",
"... ... \n",
"1838495 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
"1838496 IVEGSDAEIGMSPWQVMLFRKSPQELLCGASLISDRWVLTAAHCLL... \n",
"1838497 PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKM... \n",
"1838498 ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI... \n",
"1838499 KFPRVKNWELGSITYDTLCAQSQQDGPCTPRRCLGSLVLPRKLQTR... \n",
"\n",
" smiles affinity_uM \\\n",
"0 CCCCCCCCCCCCCCCCCCCC(=O)O 0.0260 \n",
"1 OC[C@H]1O[C@H](Oc2cccc(c2)N(=O)=O)[C@@H]([C@H]... 500.0000 \n",
"2 COc1ccc(cc1)c1c(onc1c1cc(C(C)C)c(cc1O)O)NC(=O)... 0.0230 \n",
"3 OC[C@@H](C(=O)N[C@@H]([C@H](CC)C)C(=O)O)NC(=O)... 6.4300 \n",
"4 CO[C@@H]1[C@H](O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1... 0.1850 \n",
"... ... ... \n",
"1838495 O=C[C@@H](NC(=O)[C@H](Cc1ccc(cc1)OS(O)(O)O)NC(... 8.0000 \n",
"1838496 CC(C[C@@H](C(=O)N1C=CC[C@H]1C(=O)N)NC(=O)[C@@H... 8.0000 \n",
"1838497 O[C@@H]([C@H](Cc1ccccc1)NC(=O)[C@H](C(C)C)NC(=... 0.0045 \n",
"1838498 CC(C[C@@H](B(O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H]... 2.0000 \n",
"1838499 CC[Se]C(=N)N 0.0390 \n",
"\n",
" neg_log10_affinity_M \n",
"0 7.585027 \n",
"1 3.301030 \n",
"2 7.638272 \n",
"3 5.191789 \n",
"4 6.732828 \n",
"... ... \n",
"1838495 5.096910 \n",
"1838496 5.096910 \n",
"1838497 8.346787 \n",
"1838498 5.698970 \n",
"1838499 7.408935 \n",
"\n",
"[1838500 rows x 4 columns]"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_nr"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "7f4027a2-0a5f-47bf-8a34-0c6a73b9b112",
"metadata": {},
"outputs": [],
"source": [
"df = df_nr[np.isfinite(df_nr['neg_log10_affinity_M'])].copy()"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "eb99774f-9bcc-454d-b5e5-a8470223d6ca",
"metadata": {},
"outputs": [],
"source": [
"from rdkit import Chem\n",
"def make_canonical(smi):\n",
" try:\n",
" return Chem.MolToSmiles(Chem.MolFromSmiles(smi))\n",
" except:\n",
" return smi"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "4d44bd8e-f2e1-44b4-aea7-40b4437baf44",
"metadata": {},
"outputs": [],
"source": [
"df['smiles_can'] = df['smiles'].parallel_apply(make_canonical)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "07ffdeb1-f4fa-4776-9fea-a18439e03d2e",
"metadata": {},
"outputs": [],
"source": [
"df = df[(df['neg_log10_affinity_M']>0) & (df['neg_log10_affinity_M']<15)].reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "8f949038-d07d-4d3a-a47e-b825cc9018ca",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "0c027988-0b44-4010-ad61-7d70eead1654",
"metadata": {},
"outputs": [],
"source": [
"scaler = StandardScaler()"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "6aeba020-b6ff-4633-902e-4df74463eb2f",
"metadata": {},
"outputs": [],
"source": [
"df['affinity'] = scaler.fit_transform(df['neg_log10_affinity_M'].values.reshape(-1,1))"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "91196eee-5fd0-4aa4-927a-5c1a3f436ac8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([6.50604534]), array([2.43319576]))"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scaler.mean_, scaler.var_"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "56269dcb-e691-4759-949d-7bfdd02f5fd4",
"metadata": {},
"outputs": [],
"source": [
"df = df.drop(columns='index')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c6c64066-4032-4247-a8b9-00388176cc7b",
"metadata": {},
"outputs": [],
"source": [
"df = df.astype({'affinity_uM': 'float32', 'neg_log10_affinity_M': 'float32', 'affinity': 'float32'})\n",
"df.to_parquet('data/all.parquet')\n",
"\n",
"#df = pd.read_parquet('data/all.parquet')"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "469cf0dd-7b87-4245-973c-2a445e1fcca9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['seq', 'smiles', 'affinity_uM', 'neg_log10_affinity_M', 'smiles_can',\n",
" 'affinity'],\n",
" dtype='object')"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "d91c0d91-474c-4ab2-9a5e-3b7861f7a832",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfwElEQVR4nO3dfZwcVZ3v8c+XRC4xURCRQRIgqGFd1oiaEVC4MqPiDeg1uOIKRiBgjFEj4gXXKC6Cyl18Ka5PYMwiRhQcd0Uw10SQBUf0ArshPjCAgDGJOgkQeTAyIYKR3/5RNaHodM9U9fRU10y+79erX91V55zq3zz++pyqOkcRgZmZWR67tDsAMzMbO5w0zMwsNycNMzPLzUnDzMxyc9IwM7PcJrY7gNG21157xfTp05tqu2XLFiZPntzagFqo6vGBY2yFqscH1Y+x6vFBtWJcvXr1AxHxnLqFETGuH7NmzYpm/ehHP2q6bRmqHl+EY2yFqscXUf0Yqx5fRLViBG6NBv9TPTxlZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuY37aURs/Ji+eMX21+sveH0bIzHbebmnYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5VZ60pA0W9LdktZIWlynfI6k2yT9QtKtko7M29bMzEZXqUlD0gTgIuAY4GDgREkH11S7HjgkIl4CnAZcUqCtmZmNorJ7GocCayJibUQ8DvQAc7IVImIgIiLdnAxE3rZmZja6yk4aU4HfZ7b7031PIelNku4CVpD0NnK3NTOz0aMnP9SX8GbSW4D/FRHz0+2TgEMj4n0N6r8KOCciXlukraQFwAKAjo6OWT09PU3FOzAwwJQpU5pqW4aqxwetjbFvw+btr2dO3b0lx4Tqfx+rHh9UP8aqxwfVirG7u3t1RHTWKyt75b5+YL/M9jRgY6PKEXGjpOdL2qtI24hYCiwF6OzsjK6urqaC7e3tpdm2Zah6fNDaGOdlV+6b25pjQvW/j1WPD6ofY9Xjg7ERI5Q/PLUKmCHpQEm7AicAy7MVJL1AktLXLwN2BR7M09bMzEZXqT2NiNgmaRFwLTABuDQi7pC0MC1fArwZOFnSX4CtwFvTE+N125YZv41PfRs2b+/FeO1xs6GVPTxFRKwEVtbsW5J5/SngU3nbmplZeXxHuJmZ5eakYWZmuTlpmJlZbk4aZmaWW+knws3Gq+nZ+0h8FZaNU+5pmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpZb6UlD0mxJd0taI2lxnfK5km5LHzdJOiRTtl5Sn6RfSLq13MjNzKzUNcIlTQAuAo4G+oFVkpZHxJ2ZauuAoyLiYUnHAEuBwzLl3RHxQGlBm5nZdmX3NA4F1kTE2oh4HOgB5mQrRMRNEfFwunkLMK3kGM3MrAFFRHlvJh0PzI6I+en2ScBhEbGoQf2zgBdm6q8DHgYC+EpELG3QbgGwAKCjo2NWT09PU/EODAwwZcqUptqWoerxQWtj7NuwefvrmVN3b8kxATY9tJn7t478uI3iG2ncO9vPeTRUPT6oVozd3d2rI6KzXlmpw1OA6uyrm7UkdQPvAI7M7D4iIjZK2hu4TtJdEXHjDgdMkslSgM7Ozujq6moq2N7eXpptW4aqxwetjXHe4hXbX6+f25pjAnzx8u9xYd/EER+3UXwjjXtn+zmPhqrHB2MjRih/eKof2C+zPQ3YWFtJ0ouBS4A5EfHg4P6I2Jg+bwKuIhnuMjOzkpSdNFYBMyQdKGlX4ARgebaCpP2B7wInRcQ9mf2TJT1j8DXwOuD20iI3M7Nyh6ciYpukRcC1wATg0oi4Q9LCtHwJcA7wbOBiSQDb0rG1DuCqdN9E4IqIuKbM+M3MdnZln9MgIlYCK2v2Lcm8ng/Mr9NuLXBI7X4zMyuP7wg3M7PcnDTMzCw3Jw0zM8vNScPMzHJz0jAzs9wKJQ1JR49WIGZmVn1FL7m9VtJa4CvAsoj4wyjEZFYJ07PTf1zw+jZGYlYdRYenXk1yV/cngN9LukLSUa0Py8zMqqhQTyMieoFeSc8GTgPeCZwg6W5gCXBZZlpzszEn27swsx01dSI8Ih6MiE9HxEEkCyo9AHwW2CBpmaSZrQzSzMyqYURXT0k6FjgdOBzYBFwGHAX8TNK7Rx6emZlVSeGkIWkfSWenCyJ9H9gDeDuwX0QsBF5AcqL8nFYGarYzmr54BX0bNnvYzCqj0DkNSVcCbwD+DHwTuDgi7sjWiYi/SroCeE/LojQzs0ooesntDOAM4BsRMTBEvT6gu9mgzMysmoomjTcA90bEX2oLJE0E9o2I30XEI8CPWxGgmZlVR9GksQ54BfBfdcoOSfdPGGlQZlXmm/5sZ1Y0aWiIsqcBT4wgFrOm+J+4WXmGTRqS9gD2zOyaKul5NdUmAacA97UuNDMzq5o8PY33Ax8DIn18p0E9pfXMzGycypM0rgbWkySFS4FPAr+pqfMYcGdE3NbK4MzMrFqGTRoR8UvglwCSAlgREQ+MdmBmZlY9RScs/PpoBWJmZtWX50T4DcB7IuKu9PVQIiJe05rQzKrD03iYJfLMPZW9zHaXdLvRY9jjSZot6W5JayQtrlM+V9Jt6eMmSYfkbWtmZqMrzzmN7szrrpG8maQJwEUk06n3A6skLY+IOzPV1gFHRcTDko4BlgKH5WxrVglFeya+18TGiqI3943UocCaiFgLIKkHmANs/8cfETdl6t8CTMvb1mws8ZCXjUWKiKErSK8qcsCIuHGIYx0PzI6I+en2ScBhEbGoQf2zgBdGxPwibSUtABYAdHR0zOrp6SnyJWw3MDDAlClTmmpbhqrHB62NsW/D5u2vZ07dfdj9eW16aDP3b20upkZxjKR+bZ2OSXD/1ua+trJU/Xex6vFBtWLs7u5eHRGd9cry9DR6SW7qG47SekPNPVVvGpK6x5bUDbwDOLJo24hYSjKsRWdnZ3R1dQ0RUmO9vb0027YMVY8PWhvjvOwQztyuYffn9cXLv8eFfc11uhvF0VDflsxG/fesPeaZM7dxYd/Epr62slT9d7Hq8cHYiBHyJY1WTnHeD+yX2Z4GbKytJOnFwCXAMRHxYJG2ZmY2evKcCG/lFOergBmSDgQ2ACcAb8tWkLQ/8F3gpIi4p0hbs7L5vITtbEo9ER4R2yQtAq4lGca6NCLukLQwLV9Cskzss4GLJQFsi4jORm3LjN/MbGdX+s19EbESWFmzb0nm9Xxgft62Zo34Mlaz1svT06i9uW+ok+JDrbdhZmZjXKk395mZ2diWZxoRMzMzoIkT4elKfh8gWSt8KsmVTDcBn4uIP7YyODMzq5ZCPY108sBfAx8GdiOZwmM34CPAPZJmtjxCMzOrjKI9jS8ADwKdEfHbwZ2SpgPXAF8EuloVnJmZVUvRpPFy4JRswgCIiPWSPgZ8rWWRmTXBN9uZja6iJ8IfJFkPvJ4/p+VmZjZOFU0aXwY+KGm37E5Jk4CzSNa7MDOzcSrPHeEfz24CBwC/k7QSuB/oAI4FtgJPH40gzeypfLe7tUuecxofbbD/5Dr7ziaZO8rMzMahPHeE+wZAMzMDfEe4mZkV4KRhZma5FU4akhZI+rmkRyX9tfYxGkGamVk1FJ1G5GSSu75XkUwf8jXgm8CfgN8AH2/c2szMxrqiPY0zgH8G3p1uXxwRpwDPI7nk1jf3mZmNY0WnEZkB3Ag8kT52BYiIhyWdD5wPfKmlEZq1wFDTi5zpaTbNciuaNLYCu0RESLqPpIdxS1o2AOzbyuDMGvEcU2btUTRp9AEvAP4D+AnwEUnrgG3AucBdLY3OzMwqpWjSWErSuwD4J5Lk8dN0+xHguNaEZWZmVVQoaUTEtzOv10j6O+CVwCTgpoh4oMXxme10PPRmVVZ4udesiNgCXNeiWMzMrOKaublvgqRTJS2VtCJ9nidpQs72syXdLWmNpMV1yl8o6WZJj0k6q6ZsvaQ+Sb+QdGvR2M3MbGQK9TQkHQBcCxwE9JNMjT4TmA98SNLs2lX9atpPIFlz4+i0/SpJyyPizky1h4DTaXx+pNvDYLYz8rCVVUHRnsaXgGcCR0bE/hHx8ojYH/ifwO4kd4sP5VBgTUSsjYjHgR5gTrZCRGyKiFXAXwrGZmZmo0wRkb+ytAV4T0R8vU7ZPOBLETFliPbHA7MjYn66fRJwWEQsqlP3XGAgIj6T2bcOeBgI4CsRsbTB+ywAFgB0dHTM6unpyf01Zg0MDDBlSsMvp+2qHh+0Nsa+DZtbcpxaHZPg/q2jcuiWGC6+mVN3Ly+YBqr+u1j1+KBaMXZ3d6+OiM56ZUVPhA8AmxqUbQIeHaa96uzLn7XgiIjYKGlv4DpJd0XEjTscMEkmSwE6Ozujq6urwFs8qbe3l2bblqHq8UFrY5w3SsMzZ87cxoV9I7omZFQNF9/6uV3lBdNA1X8Xqx4fjI0Yofjw1DeBhQ3K3gVcNkz7fmC/zPY0YGPeN4+IjenzJuAqkuEuq6Dpi1cwffGKUesdmFl75Fkj/LTM5q+Bt0jqA67kyTXCjweeAfxgmMOtAmZIOhDYAJwAvC1PoJImk0xh8kj6+nV4Vl0zs1Ll6ZNfUmffNODv6uy/CFjS6EARsU3SIpIrsCYAl0bEHZIWpuVLJO0D3Epywv0JSWcABwN7AVdJGoz7ioi4Jkf8ViHZK4DWX/D6NkZiZs3IkzQObOUbRsRKYGXNviWZ1/eRJKVafwIOaWUsZmZWzLBJY6j7LsxaxT0Qs7GhqUtGJL0IOArYk2ThpRsj4vZWBmY7LycQs+oqekf4RGAZcCJPvXw2JF0BzIsIrxNuZjZOFb3k9mPAPwDnkJzrmJQ+nwO8NX02M7Nxqujw1NuBT0TE+Zl9vwXOT+eVOpUksZiZ2ThUtKexL3Bzg7Kb8HKvZmbjWtGksRE4okHZKylwd7eZmY09RYenLgfOlvRE+vpeYB+SO7vPBj7V2vDMzKxKiiaNc0nWCD8vfT1IwLfS/WZmNk4VXSN8G/A2SecDryK5T+Mh4Mc1CymZWRv4HhcbbbmThqRdgftI7sVYDtwxalGZmVkl5U4aEfG4pG3An0cxHjMryMvAWpmKXj11Nck06GZmthMqeiL8B8AXJH2HJIHcS83KexFxQ2tCMzOzqimaNK5Mn/8+fQwKkiuogmSdDDMzG4eKJo3uUYnCrAGP15tVS9FLbn8MIOmZwIuAqSTLtt4eEX9qfXhmZlYlhdfTkHQOcCYwhSeHpAYkfToiPtni+MzMrEKKrqdxHvBPJOuG9wD3Ax0k62ucJ2liRJzb6iDNzKwaivY03glcGBEfzOy7A7hB0mZgAU+dXsTMzMaRovdp7A5c26DsmrTczMzGqaJJ4z+Blzcoe3labmZm41TRpHE6cJqkD0qaLmlS+vyPwGnAIkm7DD7qHUDSbEl3S1ojaXGd8hdKulnSY5LOKtLWzMxGV9FzGrelzxekjywBfZntqD1+uiTsRcDRQD+wStLymhlyHyJJTsc10dbMzEZR0aTxcWqmDSnoUGBNRKwFkNQDzAG2/+OPiE3AJkm18zoP29bMhufp020kFDGSHFDwzaTjgdkRMT/dPgk4LCIW1al7LjAQEZ9pou0Ckiu56OjomNXT09NUvAMDA0yZMqWptmWocnx9GzYD0DEJ9t5z9x32A8ycWn9/2Tomwf1b2/b2w2o2vuz3N6vRz2Akqvy7CNWPD6oVY3d39+qI6KxXVvjmvhFSnX15s1buthGxFFgK0NnZGV1dXTnf4ql6e3tptm0ZqhzfvPTT7Jkzt/EPmRjnZacF6duSaVH2r+KTzpy5jQv72vf+w2k2vvVzu+ruz/4MGtUpqsq/i1D9+GBsxAjFT4SPVD+wX2Z7GrCxhLZmZtYCZSeNVcAMSQemKwGeACwvoa2ZmbVAqX3yiNgmaRHJDYITgEsj4g5JC9PyJZL2AW4Fngk8IekM4OCI+FO9tmXGb2a2syt9IDciVgIra/Ytyby+j2ToKVdbMzMrT9nDU2ZmNoY5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWW3Un3LFxIzurqpmNbe5pmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluvnrKbJzyWuA2GtzTMDOz3NzTMNsJ+F4ZaxX3NMzMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxyK/0+DUmzgc8DE4BLIuKCmnKl5ccCjwLzIuJnadl64BHgr8C2iOgsMXSzccd3jVtRpSYNSROAi4CjgX5glaTlEXFnptoxwIz0cRjw5fR5UHdEPFBSyGZmllH28NShwJqIWBsRjwM9wJyaOnOAyyJxC7CHpOeWHKeZmdWhiCjvzaTjgdkRMT/dPgk4LCIWZep8H7ggIn6abl8PfCgibpW0DngYCOArEbG0wfssABYAdHR0zOrp6Wkq3oGBAaZMmdJU2zJUOb6+DZsB6JgE929tczDDqHqM7Ypv5tTdc9et8u8iVD8+qFaM3d3dqxsN/5d9TkN19tVmraHqHBERGyXtDVwn6a6IuHGHykkyWQrQ2dkZXV1dTQXb29tLs23LUOX45qVj5WfO3MaFfdWe4qzqMbYrvvVzu3LXrfLvIlQ/PhgbMUL5w1P9wH6Z7WnAxrx1ImLweRNwFclwl5mZlaTspLEKmCHpQEm7AicAy2vqLAdOVuJwYHNE3CtpsqRnAEiaDLwOuL3M4M3Mdnal9nkjYpukRcC1JJfcXhoRd0hamJYvAVaSXG67huSS21PT5h3AVckVuUwEroiIa8qM38xsZ1f6QGlErCRJDNl9SzKvA3hvnXZrgUNGPUArxNf5m+1cfEe4mZnlVt1LRqyyvAqc2c7LScNaxsnEbPxz0jCzuny+yurxOQ0zM8vNPQ0zG5Z7HTbIPQ0zM8vNScPMzHJz0jAzs9ycNMzMLDefCLenaHTC0/dgmBm4p2FmZgU4aZiZWW4enjKzpk3PrNDY1d5QrCTuaZiZWW7uaZhZIb4oYufmnoaZmeXmpGFmZrk5aZiZWW4+p2ENeezaivBMuDsHJw0zazknkPHLw1NmZpabexpj1PTFKzhz5jbmLV6R+5Oc55Wydmj0++UeyNhUetKQNBv4PDABuCQiLqgpV1p+LPAoMC8ifpanreUfFnCisHbL8yHGiaV6Sk0akiYAFwFHA/3AKknLI+LOTLVjgBnp4zDgy8BhOdvulBolACcGM2u1snsahwJrImItgKQeYA6Q/cc/B7gsIgK4RdIekp4LTM/RtqX6NmxmXvqPdySfePzP22xorfrg0+jvtFV/y1Z+0pgK/D6z3U/SmxiuztScbQGQtABYkG4OSLq7yXj3Ah4A0KeaPMIoOj0TX1U5xpGrenxQnRiH+Dut9N9yqhLfw9QBjQrKThqqsy9y1snTNtkZsRRYWiy0HUm6NSI6R3qc0VL1+MAxtkLV44Pqx1j1+GBsxAjlJ41+YL/M9jRgY846u+Zoa2Zmo6js+zRWATMkHShpV+AEYHlNneXAyUocDmyOiHtztjUzs1FUak8jIrZJWgRcS3LZ7KURcYekhWn5EmAlyeW2a0guuT11qLajHPKIh7hGWdXjA8fYClWPD6ofY9Xjg7ERI0ouUjIzMxuepxExM7PcnDTMzCw3J406JM2WdLekNZIWtzueWpL2k/QjSb+SdIek97c7pnokTZD0c0nfb3cs9aQ3jn5H0l3p9/IV7Y6plqQPpD/j2yV9S9JubY7nUkmbJN2e2benpOsk/Tp9flYFY/x0+nO+TdJVkvZoY4h1Y8yUnSUpJO3VjtiG46RRIzNdyTHAwcCJkg5ub1Q72AacGRF/CxwOvLeCMQK8H/hVu4MYwueBayLihcAhVCxWSVOB04HOiHgRyQUgJ7Q3KpYBs2v2LQauj4gZwPXpdjstY8cYrwNeFBEvBu4BPlx2UDWWsWOMSNqPZKqk35UdUF5OGjvaPtVJRDwODE5XUhkRce/gJI4R8QjJP7up7Y3qqSRNA14PXNLuWOqR9EzgVcBXASLi8Yj4Y1uDqm8iMEnSRODptPnepIi4EXioZvcc4Ovp668Dx5UZU616MUbEDyNiW7p5C8l9Xm3T4PsI8C/AP9LgxuUqcNLYUaNpTCpJ0nTgpcB/tjmUWp8j+eV/os1xNPI84A/A19IhtEskTW53UFkRsQH4DMmnzntJ7ln6YXujqqsjvZeK9HnvNscznNOAH7Q7iFqS3ghsiIhftjuWoThp7Cj3dCXtJmkKcCVwRkT8qd3xDJL0BmBTRKxudyxDmAi8DPhyRLwU2EL7h1WeIj03MAc4ENgXmCzp7e2NamyTdDbJ8O7l7Y4lS9LTgbOBc9ody3CcNHaUZ6qTtpP0NJKEcXlEfLfd8dQ4AnijpPUkw3uvlvTN9oa0g36gPyIGe2jfIUkiVfJaYF1E/CEi/gJ8F3hlm2Oq5/50JmrS501tjqcuSacAbwDmRvVuUHs+yYeDX6Z/N9OAn0nap61R1eGksaPKT1eSLlT1VeBXEfHZdsdTKyI+HBHTImI6yffvhoio1CfkiLgP+L2kv0l3vYZRnGa/Sb8DDpf09PRn/hoqdrI+tRw4JX19CvC9NsZSV7qA24eAN0bEo+2Op1ZE9EXE3hExPf276Qdelv6eVoqTRo30ZNngdCW/Av6thOlKijoCOInkE/wv0sex7Q5qDHofcLmk24CXAP+3veE8VdoL+g7wM6CP5O+1rVNNSPoWcDPwN5L6Jb0DuAA4WtKvSa78aeuKmg1i/BLwDOC69O9lSQVjHBM8jYiZmeXmnoaZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aVimSzpU0Lm8eknRauubE45L+ONT+Zr8P9dpJOk7S/2ky5mXp2g4hqbembF6m7KA6bbsy5a9N9300s6+/mZisvZw0zEogaV+Su7lvAl5NMq9Uw/0kU8o3syhUvXbHAU0ljdR96THf06D8EZIZCmqdnJZlfS091soRxGNtNLHdAZjtJGaQLKL09Yj46XD7I6KfZP6hQpptN4zHIuKWIcq/C7xd0jmDEwFKmgS8mWRSzXmZ+DYAGyT9ocUxWknc07AxQckSvDdL2ipps6SrM5MNZuudmC7r+WdJfZLeKKm3dmilxbG9QNI3JK1L41sr6cuDy55KWgYMvv/16dDMskb70zZPGWYa3JY0Q9IKSQOSfivpHEm71NbLbC8jmURwamZYaL2k49PXh9T5enol3VzgW/AN4ADgyMy+N5EkwysLHMfGAPc0rPLSGUpXADcAbwWmAB8HfirpJemnVyQdTbJOwnLgTGAvksWgdiNZ4nO07Evy6f4M4GGSBZ4+QjIE8wrgE8Bq4AvAe0kmIBz8pN1ofyNXkQzx/Avwv4HzSBYN+1qD+p8AngO8HHhjuu8xkgkQNwLvIjPslCbio4BTh4kj67fAjSRDVD9J952cxjpQ4Dg2Bjhp2FjwSWAtcMzgkp3pJ+F7SJLD4Hj9eSTTm78pM0zSR/KPedSSRrp0542D25JuAtYAP5H00oj4uaTBKc3vzA71NNo/hAsjYjBB/IekVwMn0iBpRMRv0qGgx2uPL+lfgQ9I+mBEbEl3vwv4I/DtHLFkXQZcKOl04Fkk52aOKXgMGwM8PGVtocTE7KNBvckkiyN9O7PGMxGxDvj/JJ+KkTQB6ASuzC6wk66lvq7mmB+RdLekJyQdV1P2fEk/lXSPkmVgO3N8Lbumx7xL0lbgLzz5iXuHIbQRWlGzfTuwf5PHWkqy7viJAJJ2IxnKuiwithY81r8D/4Ok9zOX5OT59U3GZRXmpGHtchTJP9fso55nkSzBe2+dsvuAPdPXewFPo/6qcffXbF8PHEumd5CxBFgWEQeRrHF+uaR6SwBn/TNwLvBN4PXAocDfp2W7DdO2qIdqth9r9j0iYiPJgkkL011vIfl+fqWJYz0CXE0yRHUyyYqSVV0f3kbAw1PWLqtJxtmH8zDJGu31lr3cB3gwff0ASeLZu069DpJV8IDtixtRmwskPQc4nCShEBHXpXVmAbcOEeMJJJ/OP5k51pQh6lfJxSQn4WeRDE39JCKaXcHwMpKe0C6kvRcbf9zTsLaIiEci4tbso0G9LSQJ5i3pEBQAkg4gWS/7x2m9v5L8Y39ztmeQ/jM8MGdY+wMb0/W4B/2W4Yd/ns6OPaUiJ5JH22PApHoFEXEDyQqVnyVZEXIkK9pdB/wbsKSCq11ai7inYWPBP5F8gv2+pItJrp46D9gMXJip9zHgh8BVkpaSDFmdSzKM1exQyXBDUwDXAKekJ93XkAxNvbLJ9xsNdwJ7Sno3SWL9c0T0ZcqXAJ8n6a01fYlsmrjdwxjn3NOwyouIa0jOFexB+kmW5NPxkem4/GC960hOwv4tyeWeHyK5uuo+kgQznN8B+0p6WmbfAWSGthp4H8llvueTXHX0DKr1z/MSoIdkDfT/Av5fTfm/p8/LIuKxMgOzscdrhNu4Jmkayaf/8yPiEzVlvcDnIuLqzL7rgZ6I+Nf0vo+LgYNiHP+hSHonycnvgyJiTU3ZMqALeAEQaW9iJO8lkpv+vgq8JiKmjeR4Vj73NGzckDQpvRP7zZKOknQqyTj7oySftgfrfTSdLO8VwCWS+iUNnmhfCJwq6R7g08Dc8ZowJB0safAGwatrE0bGASTnbFpxCe3Z6bFObsGxrA3c07BxQ9KuJMNDhwPPBraQ3C/xkYi4vZ2xVVHa03olyWSJb8sO9WXqTCc5NwTwSETcPcL3fC4wNd18PCJuG8nxrHxOGmZmlpuHp8zMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxy+29GVQvyP63mDAAAAABJRU5ErkJggg==\n",
"text/plain": [
"