import os import datasets _CITATION = """\ @article{cruz2020investigating, title={Investigating the True Performance of Transformers in Low-Resource Languages: A Case Study in Automatic Corpus Creation}, author={Jan Christian Blaise Cruz and Jose Kristian Resabal and James Lin and Dan John Velasco and Charibeth Cheng}, journal={arXiv preprint arXiv:2010.11574}, year={2020} } """ _DESCRIPTION = """\ Large-scale dataset of Filipino news articles. Sourced for the NewsPH-NLI Project (Cruz et al., 2020). """ _URL = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks" _LICENSE = "GPL-3.0" _DATA_URL = "https://huggingface.co/datasets/jcblaise/newsph/resolve/main" class NewsphConfig(datasets.BuilderConfig): def __init__(self, data_url, **kwargs): super(NewsphConfig, self).__init__( version=datasets.Version( "1.0.0", ), **kwargs, ) self.data_url = data_url class Newsph(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ NewsphConfig( name="newsph", data_url=_DATA_URL + "/" + "newsph.zip", description=_DESCRIPTION, ), ] BUILDER_CONFIG_CLASS = NewsphConfig def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, features=datasets.Features({"text": datasets.Value("string")}), supervised_keys=None, # Homepage of the dataset for documentation homepage=_URL, citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_file = dl_manager.download_and_extract(self.config.data_url) data_dir = os.path.join(data_file, "newsph") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_file": os.path.join(data_dir, "train.txt"), "split": "train"}, ), ] def _generate_examples(self, data_file, split): """Yields examples.""" with open(data_file, encoding="utf-8") as f: for idx, row in enumerate(f): if row.strip(): yield idx, {"text": row} else: yield idx, {"text": ""}