jackkuo commited on
Commit
fe116f5
·
verified ·
1 Parent(s): 3b3baca

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -NE4T4oBgHgl3EQfDgur/vector_store/index.pkl +3 -0
  2. -tA0T4oBgHgl3EQfPP-n/content/2301.02173v1.pdf +3 -0
  3. -tA0T4oBgHgl3EQfPP-n/vector_store/index.faiss +3 -0
  4. -tA0T4oBgHgl3EQfPP-n/vector_store/index.pkl +3 -0
  5. -tFST4oBgHgl3EQfcjgx/vector_store/index.pkl +3 -0
  6. .gitattributes +63 -0
  7. 0NE0T4oBgHgl3EQfuAEL/vector_store/index.faiss +3 -0
  8. 0tE0T4oBgHgl3EQfuAGv/vector_store/index.pkl +3 -0
  9. 0tE2T4oBgHgl3EQf4wij/content/2301.04184v1.pdf +3 -0
  10. 0tE2T4oBgHgl3EQf4wij/vector_store/index.pkl +3 -0
  11. 0tFIT4oBgHgl3EQf3Cv8/vector_store/index.faiss +3 -0
  12. 1NAzT4oBgHgl3EQft_01/vector_store/index.pkl +3 -0
  13. 1tAyT4oBgHgl3EQfbvdS/content/tmp_files/2301.00268v1.pdf.txt +1572 -0
  14. 1tAyT4oBgHgl3EQfbvdS/content/tmp_files/load_file.txt +0 -0
  15. 2NE1T4oBgHgl3EQflgRB/content/tmp_files/2301.03285v1.pdf.txt +782 -0
  16. 2NE1T4oBgHgl3EQflgRB/content/tmp_files/load_file.txt +0 -0
  17. 2tAzT4oBgHgl3EQfuP3I/vector_store/index.pkl +3 -0
  18. 2tE3T4oBgHgl3EQfoAol/content/tmp_files/2301.04629v1.pdf.txt +565 -0
  19. 2tE3T4oBgHgl3EQfoAol/content/tmp_files/load_file.txt +179 -0
  20. 39E3T4oBgHgl3EQfogqI/content/tmp_files/2301.04634v1.pdf.txt +1004 -0
  21. 39E3T4oBgHgl3EQfogqI/content/tmp_files/load_file.txt +0 -0
  22. 3tFAT4oBgHgl3EQfERy2/vector_store/index.faiss +3 -0
  23. 5NE0T4oBgHgl3EQfegCm/vector_store/index.faiss +3 -0
  24. 7dAzT4oBgHgl3EQfEvrf/vector_store/index.pkl +3 -0
  25. 8NE3T4oBgHgl3EQfqQrl/vector_store/index.faiss +3 -0
  26. 9tE1T4oBgHgl3EQfUQPn/content/tmp_files/2301.03089v1.pdf.txt +1461 -0
  27. 9tE1T4oBgHgl3EQfUQPn/content/tmp_files/load_file.txt +0 -0
  28. A9FQT4oBgHgl3EQfMzZX/content/tmp_files/2301.13269v1.pdf.txt +0 -0
  29. A9FQT4oBgHgl3EQfMzZX/content/tmp_files/load_file.txt +0 -0
  30. C9E0T4oBgHgl3EQfgQG4/content/tmp_files/2301.02416v1.pdf.txt +945 -0
  31. C9E0T4oBgHgl3EQfgQG4/content/tmp_files/load_file.txt +0 -0
  32. D9AyT4oBgHgl3EQfevgJ/content/2301.00325v1.pdf +3 -0
  33. D9AyT4oBgHgl3EQfevgJ/vector_store/index.pkl +3 -0
  34. ENAzT4oBgHgl3EQfif3h/content/tmp_files/2301.01502v1.pdf.txt +1471 -0
  35. ENAzT4oBgHgl3EQfif3h/content/tmp_files/load_file.txt +0 -0
  36. EdFQT4oBgHgl3EQfQjaM/content/tmp_files/2301.13283v1.pdf.txt +1014 -0
  37. EdFQT4oBgHgl3EQfQjaM/content/tmp_files/load_file.txt +0 -0
  38. GtFJT4oBgHgl3EQfti2n/content/tmp_files/2301.11618v1.pdf.txt +3096 -0
  39. GtFJT4oBgHgl3EQfti2n/content/tmp_files/load_file.txt +0 -0
  40. HdAyT4oBgHgl3EQfrvlK/content/tmp_files/2301.00565v1.pdf.txt +406 -0
  41. HdAyT4oBgHgl3EQfrvlK/content/tmp_files/load_file.txt +344 -0
  42. HdFLT4oBgHgl3EQfIC9G/content/2301.11998v1.pdf +3 -0
  43. HdFLT4oBgHgl3EQfIC9G/vector_store/index.faiss +3 -0
  44. I9AyT4oBgHgl3EQf5_o0/content/2301.00813v1.pdf +3 -0
  45. ItAzT4oBgHgl3EQfjv0x/content/2301.01520v1.pdf +3 -0
  46. ItAzT4oBgHgl3EQfjv0x/vector_store/index.faiss +3 -0
  47. KNE1T4oBgHgl3EQfYgRo/content/2301.03139v1.pdf +3 -0
  48. KNE1T4oBgHgl3EQfYgRo/vector_store/index.pkl +3 -0
  49. L9E2T4oBgHgl3EQfBAae/content/tmp_files/2301.03598v1.pdf.txt +1848 -0
  50. L9E2T4oBgHgl3EQfBAae/content/tmp_files/load_file.txt +0 -0
-NE4T4oBgHgl3EQfDgur/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8e7a4be19f5e1b11a51dc84b827b981133ddd3dc59b9565445c29e34e1f019e
3
+ size 137503
-tA0T4oBgHgl3EQfPP-n/content/2301.02173v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:628da2ce84db6e415691cbe032806131b8572444e08a2e27d29198ee7b6624be
3
+ size 620979
-tA0T4oBgHgl3EQfPP-n/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a367d47ef95a5989f605f00153dedb427b003a18a2096a2838ad5f505a204d4e
3
+ size 2752557
-tA0T4oBgHgl3EQfPP-n/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8de0b6fb1604362d11d467139a26d93b2398a10ff5a5c9d4de697e173bf53f56
3
+ size 103400
-tFST4oBgHgl3EQfcjgx/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04580e8ea87bb1f2c9f5dbdc991e58e17e610135ca32c31c867b4cfd97f37cc5
3
+ size 166878
.gitattributes CHANGED
@@ -9267,3 +9267,66 @@ gdE0T4oBgHgl3EQf6QJf/content/2301.02761v1.pdf filter=lfs diff=lfs merge=lfs -tex
9267
  VtE3T4oBgHgl3EQf0gtr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9268
  etE0T4oBgHgl3EQf5wIr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9269
  ktAyT4oBgHgl3EQf_fpg/content/2301.00909v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9267
  VtE3T4oBgHgl3EQf0gtr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9268
  etE0T4oBgHgl3EQf5wIr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9269
  ktAyT4oBgHgl3EQf_fpg/content/2301.00909v1.pdf filter=lfs diff=lfs merge=lfs -text
9270
+ 0tFIT4oBgHgl3EQf3Cv8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9271
+ _NFJT4oBgHgl3EQfqSwP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9272
+ xNAzT4oBgHgl3EQf7v4z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9273
+ _NFQT4oBgHgl3EQf7jbZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9274
+ YtAyT4oBgHgl3EQf9fqe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9275
+ t9AyT4oBgHgl3EQfaPc2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9276
+ U9FLT4oBgHgl3EQfRi9C/content/2301.12037v1.pdf filter=lfs diff=lfs merge=lfs -text
9277
+ ktAyT4oBgHgl3EQf_fpg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9278
+ gtE2T4oBgHgl3EQfyQif/content/2301.04119v1.pdf filter=lfs diff=lfs merge=lfs -text
9279
+ etFJT4oBgHgl3EQfTSwk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9280
+ ONAyT4oBgHgl3EQfUfdD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9281
+ ONAyT4oBgHgl3EQfUfdD/content/2301.00125v1.pdf filter=lfs diff=lfs merge=lfs -text
9282
+ WdFKT4oBgHgl3EQfni5N/content/2301.11862v1.pdf filter=lfs diff=lfs merge=lfs -text
9283
+ etFJT4oBgHgl3EQfTSwk/content/2301.11503v1.pdf filter=lfs diff=lfs merge=lfs -text
9284
+ ItAzT4oBgHgl3EQfjv0x/content/2301.01520v1.pdf filter=lfs diff=lfs merge=lfs -text
9285
+ ItAzT4oBgHgl3EQfjv0x/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9286
+ _NFJT4oBgHgl3EQfqSwP/content/2301.11603v1.pdf filter=lfs diff=lfs merge=lfs -text
9287
+ 3tFAT4oBgHgl3EQfERy2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9288
+ PNE3T4oBgHgl3EQfCQnQ/content/2301.04275v1.pdf filter=lfs diff=lfs merge=lfs -text
9289
+ W9AyT4oBgHgl3EQfvPl0/content/2301.00627v1.pdf filter=lfs diff=lfs merge=lfs -text
9290
+ r9E0T4oBgHgl3EQfawB_/content/2301.02339v1.pdf filter=lfs diff=lfs merge=lfs -text
9291
+ O9FIT4oBgHgl3EQfeSvC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9292
+ -tA0T4oBgHgl3EQfPP-n/content/2301.02173v1.pdf filter=lfs diff=lfs merge=lfs -text
9293
+ I9AyT4oBgHgl3EQf5_o0/content/2301.00813v1.pdf filter=lfs diff=lfs merge=lfs -text
9294
+ 0tE2T4oBgHgl3EQf4wij/content/2301.04184v1.pdf filter=lfs diff=lfs merge=lfs -text
9295
+ P9A0T4oBgHgl3EQfDP-k/content/2301.02001v1.pdf filter=lfs diff=lfs merge=lfs -text
9296
+ ktE2T4oBgHgl3EQfIga_/content/2301.03682v1.pdf filter=lfs diff=lfs merge=lfs -text
9297
+ gtE2T4oBgHgl3EQfyQif/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9298
+ HdFLT4oBgHgl3EQfIC9G/content/2301.11998v1.pdf filter=lfs diff=lfs merge=lfs -text
9299
+ WdFKT4oBgHgl3EQfni5N/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9300
+ oNE3T4oBgHgl3EQfLAnj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9301
+ ktE2T4oBgHgl3EQfIga_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9302
+ xNAzT4oBgHgl3EQf7v4z/content/2301.01893v1.pdf filter=lfs diff=lfs merge=lfs -text
9303
+ r9E0T4oBgHgl3EQfawB_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9304
+ WdFLT4oBgHgl3EQfTC8I/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9305
+ PtE4T4oBgHgl3EQf-Q74/content/2301.05363v1.pdf filter=lfs diff=lfs merge=lfs -text
9306
+ PNAzT4oBgHgl3EQflP3v/content/2301.01546v1.pdf filter=lfs diff=lfs merge=lfs -text
9307
+ xtFKT4oBgHgl3EQf6i4E/content/2301.11941v1.pdf filter=lfs diff=lfs merge=lfs -text
9308
+ -tA0T4oBgHgl3EQfPP-n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9309
+ U9E2T4oBgHgl3EQfDAYv/content/2301.03619v1.pdf filter=lfs diff=lfs merge=lfs -text
9310
+ _NAyT4oBgHgl3EQf3vlI/content/2301.00773v1.pdf filter=lfs diff=lfs merge=lfs -text
9311
+ rNE4T4oBgHgl3EQfVAw3/content/2301.05020v1.pdf filter=lfs diff=lfs merge=lfs -text
9312
+ k9AyT4oBgHgl3EQfk_gh/content/2301.00442v1.pdf filter=lfs diff=lfs merge=lfs -text
9313
+ QdAzT4oBgHgl3EQfIvvq/content/2301.01069v1.pdf filter=lfs diff=lfs merge=lfs -text
9314
+ LtFRT4oBgHgl3EQfFDdF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9315
+ 8NE3T4oBgHgl3EQfqQrl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9316
+ TNE5T4oBgHgl3EQfAQ5w/content/2301.05377v1.pdf filter=lfs diff=lfs merge=lfs -text
9317
+ iNAzT4oBgHgl3EQfM_sr/content/2301.01140v1.pdf filter=lfs diff=lfs merge=lfs -text
9318
+ f9E0T4oBgHgl3EQfXQDJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9319
+ w9A0T4oBgHgl3EQfMf9w/content/2301.02133v1.pdf filter=lfs diff=lfs merge=lfs -text
9320
+ 0NE0T4oBgHgl3EQfuAEL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9321
+ 5NE0T4oBgHgl3EQfegCm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9322
+ w9A0T4oBgHgl3EQfMf9w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9323
+ HdFLT4oBgHgl3EQfIC9G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9324
+ uNAzT4oBgHgl3EQfc_zP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9325
+ odAzT4oBgHgl3EQfOfsX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9326
+ D9AyT4oBgHgl3EQfevgJ/content/2301.00325v1.pdf filter=lfs diff=lfs merge=lfs -text
9327
+ KNE1T4oBgHgl3EQfYgRo/content/2301.03139v1.pdf filter=lfs diff=lfs merge=lfs -text
9328
+ rNE4T4oBgHgl3EQfVAw3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9329
+ k9AyT4oBgHgl3EQfk_gh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
9330
+ O9FIT4oBgHgl3EQfeSvC/content/2301.11274v1.pdf filter=lfs diff=lfs merge=lfs -text
9331
+ QdAyT4oBgHgl3EQftvmX/content/2301.00601v1.pdf filter=lfs diff=lfs merge=lfs -text
9332
+ QdAzT4oBgHgl3EQfIvvq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0NE0T4oBgHgl3EQfuAEL/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:009f97ff67732775b5aeb68eeedde2637b7c6b7dfe75117ef084e2a37f58a93a
3
+ size 5570605
0tE0T4oBgHgl3EQfuAGv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d09e241eb60661491dcc561b45a011f016bd3bedc90edad0dee5bbd2ebf7460d
3
+ size 100168
0tE2T4oBgHgl3EQf4wij/content/2301.04184v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a165dfdecbcc98ce41688f6e3998ede034ce567709f9bf683387a96be45f7245
3
+ size 1559969
0tE2T4oBgHgl3EQf4wij/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a8cd2086ec044026dff8286d8a78d56588d871e355722137df67fa712b2d2fe
3
+ size 201997
0tFIT4oBgHgl3EQf3Cv8/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7923868aad12d456d1e214c568a3efc91e8a2d4ab029f766506b861a24970ddd
3
+ size 4849709
1NAzT4oBgHgl3EQft_01/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51cf52018f1a5681231c2365d9f786a4adcb6c68f35521e53d361153e8ebeede
3
+ size 238669
1tAyT4oBgHgl3EQfbvdS/content/tmp_files/2301.00268v1.pdf.txt ADDED
@@ -0,0 +1,1572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00268v1 [math-ph] 31 Dec 2022
2
+ AUTOCORRELATIONS OF CHARACTERISTIC POLYNOMIALS
3
+ FOR THE ALTERNATIVE CIRCULAR UNITARY ENSEMBLE
4
+ BRAD RODGERS, HARSHITH SAI VALLABHANENI
5
+ Abstract. We find closed formulas for arbitrarily high mixed moments of
6
+ characteristic polynomials of the Alternative Circular Unitary Ensemble (ACUE),
7
+ as well as closed formulas for the averages of ratios of characteristic polynomials
8
+ in this ensemble. A comparison is made to analogous results for the Circular
9
+ Unitary Ensemble (CUE). Both moments and ratios are studied via symmetric
10
+ function theory and a general formula of Borodin-Olshanski-Strahov.
11
+ 1. Introduction
12
+ In this short note we examine mixed moments and averages of ratios of char-
13
+ acteristic polynomials associated with the Alternative Circular Unitary Ensemble
14
+ (ACUE). Our main results are a closed formula for arbitrarily high mixed moments
15
+ in Theorem 2 and a closed formula for averages of ratios in Theorem 6. The ACUE
16
+ refers to a certain random collection of points on the unit circle of the complex plane
17
+ whose distribution is meant to mimic the points of the Circular Unitary Ensemble
18
+ (CUE) of random matrix theory. Let us use the notation
19
+ ∆(x1, ..., xN) :=
20
+
21
+ 1≤j<k≤N
22
+ (xj − xk),
23
+ for a Vandermonde determinant, an anti-symmetric function in the variables
24
+ x1, ..., xN. For an integer N ≥ 1, we use the label ACUE(N) to denote the ran-
25
+ dom collection of N points {e(ϑ1), ..., e(ϑN)} on the unit circle S1 which have the
26
+ following joint density: for an arbitrary function f : (S1)N → C,
27
+ EACUE(N)
28
+
29
+ f(e(ϑ1), ..., e(ϑN))
30
+
31
+ = 1
32
+ N!
33
+ 1
34
+ (2N)N
35
+
36
+ t1,...,tN
37
+ f(e(t1), ..., e(tN)) · |∆(e(t1), ..., e(tN))|2,
38
+ (1)
39
+ where each index ti is summed over the set {0,
40
+ 1
41
+ 2N ,
42
+ 2
43
+ 2N , ..., 2N−1
44
+ 2N } (so that the sum
45
+ consists of (2N)N terms in total). Likewise we use the label CUE(N) to denote
46
+ the random collection of N points {e(θ1), ..., e(θN)} on the unit circle with joint
47
+ density given by:
48
+ ECUE(N)
49
+
50
+ f(e(θ1), ..., e(θN))
51
+
52
+ = 1
53
+ N!
54
+
55
+ [0,1]N f(e(t1), ..., e(tN)) · |∆(e(t1), ..., e(tN))|2 dNt.
56
+ (2)
57
+ It is known that EACUE(N)[1] = ECUE(N)[1] = 1, so both these expressions indeed
58
+ implicitly define joint probability densities. These joint densities are each sym-
59
+ metric in all variables, so the ACUE(N) and the CUE(N) may be seen as point
60
+
61
+ 2
62
+ BRAD RODGERS, HARSHITH SAI VALLABHANENI
63
+ processes supported on the 2N-th roots of unity or the unit circle of the complex
64
+ plane respectively. We use the notation EACUE(N) or ECUE(N) for the purpose of
65
+ reminding the reader over which ensemble an expectation is being taken. (These
66
+ could be replaced by the more traditional notation E with no change in meaning.)
67
+ The ACUE was put forward in a blog post of T. Tao [28] in order to investigate
68
+ the limitations of certain methods in analytic number theory. Of particular interest
69
+ was a comparison of the k-level correlation functions of the ACUE and the CUE.
70
+ The CUE can be seen as a finite model of how zeros of the Riemann zeta function
71
+ and other L-functions are conjectured to be spaced, while the ACUE can be seen
72
+ as a finite model of how zeros are very unlikely to be spaced but which cannot
73
+ be ruled out by current methods. A similar construction (replacing the CUE and
74
+ ACUE with limiting point processes) was independently studied by J. Lagarias and
75
+ the first author of this paper [21] around the same time. Related point processes
76
+ have also been studied for reasons unrelated to number theory in the past; see e.g.
77
+ [3, 4].
78
+ It is therefore of interest to investigate similarities and differences between the
79
+ CUE and ACUE. In this paper we examine the statistics induced by characteristic
80
+ polynomials associated to the CUE and ACUE. The CUE is naturally associated
81
+ to the eigenvalues of a random Haar distributed unitary matrix, but there is not
82
+ an especially natural matrix interpretation for the ACUE (though see Remark 6 of
83
+ [28]). In order to easily speak of the characteristic polynomial associated to these
84
+ ensembles, define the diagonal matrices
85
+ g := diag(e(ϑ1), ..., e(ϑN))
86
+ (associated to ACUE(N))
87
+ G := diag(e(θ1), ..., e(θN))
88
+ (associated to CUE(N)).
89
+ We refer to the random functions det(1 − zg) and det(1 − zG) in the complex
90
+ variable z as the characteristic polynomials associated with the ACUE and CUE
91
+ respectively. Note that det(1 − zG) will have the same distribution as if G were a
92
+ random unitary matrix chosen according to Haar measure.
93
+ A purpose in this paper is to examine mixed moments of characteristic polyno-
94
+ mials from the ACUE. In his blog post (see Remark 7), Tao made the remarkable
95
+ observation that for quite large powers, moments of characteristic polynomials as-
96
+ sociated to ACUE(N) and CUE(N) agree:
97
+ Theorem 1 (Tao). For positive integers K, L ≤ N,
98
+ EACUE(N)
99
+ � K
100
+
101
+ k=1
102
+ det(1 − ukg)
103
+ L
104
+
105
+ ℓ=1
106
+ det(1 − vkg)
107
+
108
+ = ECUE(N)
109
+ � K
110
+
111
+ k=1
112
+ det(1 − ukG)
113
+ L
114
+
115
+ ℓ=1
116
+ det(1 − vkG)
117
+
118
+ .
119
+ This allows one to compute a large range of moments for the ACUE using known
120
+ results for the CUE. Nonetheless it is interesting to ask if a closed formula can be
121
+ found that allows for the computation of all moments, and this is a main result of
122
+ this paper.
123
+ In order to state it, for an integer ℓ and positive integer m, we introduce the
124
+ notation [ℓ]m ∈ {0, 1, ..., m − 1} to be the reduction of ℓ modulo m, and define the
125
+
126
+ AUTOCORRELATIONS FOR THE ACUE
127
+ 3
128
+ function
129
+ HN,ℓ(v) :=
130
+
131
+ 0
132
+ if 0 ≤ [ℓ]2N ≤ N − 1
133
+ v[ℓ]2N−N
134
+ if N ≤ [ℓ]2N ≤ 2N − 1.
135
+ (3)
136
+ Theorem 2. For N, K, L ≥ 1, and v1, ..., vK+L ∈ C,
137
+ EACUE(N)
138
+
139
+ det(g)−K
140
+ K+L
141
+
142
+ k=1
143
+ det(1 + vkg)
144
+
145
+ =
146
+ det
147
+
148
+ φi(vj)
149
+ �K+L
150
+ i,j=1
151
+ ∆K+L(v1, ..., vK+L),
152
+ where
153
+ φi(v) = φ(K,L;N)
154
+ i
155
+ (v) :=
156
+
157
+ vN+L+K−i − vL HN, K−i(v)
158
+ for 1 ≤ i ≤ K
159
+ vK+L−i − vL+N−1 HN, i−K−1(1/v)
160
+ for K + 1 ≤ i ≤ K + L.
161
+ Note that for g associated to ACUE(N) we have
162
+ det(g)−1 det(1 + vg) = vN det(1 + v−1g),
163
+ (4)
164
+ so that this formula indeed allows for the computation of mixed moments of char-
165
+ acteristic polynomials and their conjugates.
166
+ This should be compared to the analogous result for the CUE; we state this
167
+ result in the formalism of Bump-Gamburd [8].
168
+ Theorem 3 (Prop. 4 of [8]). For N, K, L ≥ 1,
169
+ ECUE(N)
170
+
171
+ det(G)−K
172
+ K+L
173
+
174
+ k=1
175
+ det(1 + vkG)
176
+
177
+ = s⟨N k⟩(v1, ..., vK+L)
178
+ =
179
+ det
180
+
181
+ ψi(vj)
182
+ �K+L
183
+ i,j=1
184
+ ∆K+L(v1, ..., vK+L),
185
+ where
186
+ ψi(v) = ψ(K,L;N)
187
+ i
188
+ (v) :=
189
+
190
+ vN+L+K−i
191
+ for 1 ≤ i ≤ K
192
+ vK+L−i
193
+ for K + 1 ≤ i ≤ K + L .
194
+ The determinantal ratio here is just a definition of the Schur polynomial
195
+ s⟨N K⟩(v1, ..., vK+L) associated to the partition ⟨N K⟩ = (N, ..., N), with K parts.
196
+ An example makes the pattern of the matrices in the numerators of the right
197
+ hand sides of Theorems 2 and 3 easier to see. If K = 5, L = 4, N = 2, columns in
198
+ the variable v will be:
199
+ For ACUE:
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+ φ1(v)
217
+ φ2(v)
218
+ φ3(v)
219
+ φ4(v)
220
+ φ5(v)
221
+ −−
222
+ φ6(v)
223
+ φ7(v)
224
+ φ8(v)
225
+ φ9(v)
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+ =
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+ v10
260
+ v9 − v5
261
+ v8 − v4
262
+ v7
263
+ v6
264
+ −−
265
+ v3
266
+ v2
267
+ v − v5
268
+ 1 − v4
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+ ,
286
+ For CUE:
287
+
288
+
289
+
290
+
291
+
292
+
293
+
294
+
295
+
296
+
297
+
298
+
299
+
300
+
301
+
302
+
303
+ ψ1(v)
304
+ ψ2(v)
305
+ ψ3(v)
306
+ ψ4(v)
307
+ ψ5(v)
308
+ −−
309
+ ψ6(v)
310
+ ψ7(v)
311
+ ψ8(v)
312
+ ψ9(v)
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+ =
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+ v10
347
+ v9
348
+ v8
349
+ v7
350
+ v6
351
+ −−
352
+ v3
353
+ v2
354
+ v
355
+ 1
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+ ,
373
+ where the line serves only to visually separate the block with indices i ≤ K from
374
+ the block with indices i ≥ K + 1.
375
+
376
+ 4
377
+ BRAD RODGERS, HARSHITH SAI VALLABHANENI
378
+ Note that if K, L ≤ N then we have
379
+ K − i ≤ N − 1
380
+ for 1 ≤ i ≤ K
381
+ i − K − 1 ≤ N − 1
382
+ for K + 1 ≤ i ≤ K + L,
383
+ so it follows by examining the definition of HN,ℓ that φ(K,L;N) = ψ(K,L;N) in the
384
+ above determinantal formulas. Thus these formulas recover the observation of Tao
385
+ in Theorem 1. By contrast if K > N or L > N these formulas show the moments
386
+ for these models differ, despite having a closely related structure.
387
+ In fact it is by specializing the following formula for averages of ratios of char-
388
+ acteristic polynomials that we derive Theorem 2.
389
+ Theorem 4. For N and J positive integers, and v1, ..., vJ complex numbers and
390
+ u1, ..., uJ complex numbers which are not 2N-th roots of unity,
391
+ EACUE(N)
392
+ � �J
393
+ j=1 det(1 + vjg)
394
+ �J
395
+ j=1 det(1 + ujg)
396
+
397
+ =
398
+ 1
399
+ det
400
+
401
+ 1
402
+ ui−vj
403
+ � det
404
+
405
+ 1
406
+ ui − vj
407
+ eN(ui, vj)
408
+
409
+ ,
410
+ (5)
411
+ where the determinants on the right hand side are of J×J matrices, over the indices
412
+ 1 ≤ i, j ≤ J, and
413
+ eN(u, v) := 1 − uNvN
414
+ 1 − u2N .
415
+ This formula in turn is a consequence of a general formula introduced by Borodin-
416
+ Olshanski-Strahov in [5] for computing the average of ratios of characteristic poly-
417
+ nomials associated to what they call Giambelli-compatible point processes. We will
418
+ show the ACUE falls into this class of point processes and then specialize their
419
+ result; see Theorem 6 below.
420
+ Theorem 4 may be compared to an analogous formula for the CUE (see e.g. [24,
421
+ Thm. 4.2], [13, Thm. 5.4], or [19, (4.35)]):
422
+ Theorem 5. For N and J positive integers, and v1, ..., vJ complex numbers and
423
+ u1, ..., uJ complex numbers which do not lie on the unit circle,
424
+ ECUE(N)
425
+ � �J
426
+ j=1 det(1 + vjG)
427
+ �J
428
+ j=1 det(1 + ujG)
429
+
430
+ =
431
+ 1
432
+ det
433
+
434
+ 1
435
+ ui−vj
436
+ � det
437
+
438
+ 1
439
+ ui − vj
440
+ eN(ui, vj)
441
+
442
+ ,
443
+ where the determinants on the right hand side are of J×J matrices, over the indices
444
+ 1 ≤ i, j ≤ J, and
445
+ eN(u, v) :=
446
+
447
+ 1
448
+ if |u| < 1,
449
+ vN/uN
450
+ if |u| > 1.
451
+ From Theorem 4, a possible strategy for proving Theorem 2 is evident: we take
452
+ appropriately scaled limits, with each ui tending either to 0 or ∞ in order to
453
+ recover the average appearing in Theorem 2. Doing so nonetheless involves several
454
+ nontrivial determinantal manipulations.
455
+ There is at least one alternative strategy for proving Theorems 2 and 4, and
456
+ this is to rely on the theory of orthogonal polynomials. This method has been
457
+ used to derive similar formulas for moments and averages of ratios of characteristic
458
+ polynomials in several random matrix ensembles; see for instance [7, 1, 17] for
459
+ moments and [27, 6] for ratios. One difficulty in the orthogonal polynomial method
460
+ is that the finitely supported weights which define the ACUE allow for at most a
461
+
462
+ AUTOCORRELATIONS FOR THE ACUE
463
+ 5
464
+ finite collection of monic orthogonal polynomials. It would be interesting to see if
465
+ this difficulty can be overcome to give alterative proofs of Theorems 2 or 4.
466
+ It is perhaps a little surprising that moments of characteristic polynomials from
467
+ the ACUE have a structure related to those from the CUE even for very large
468
+ powers. This may ultimately be seen as a consequence of the similarity between
469
+ Theorems 4 and 5 for ratios; another purpose of this paper is to provide an expla-
470
+ nation of how ratio formulas like Theorem 4 can be used to derive moment formulas
471
+ like Theorem 2. It will be evident that the same method could be used to deduce
472
+ Theorem 3 from Theorem 5 as well.
473
+ We note that formulas for the averages of ratios of characteristic polynomials in
474
+ the CUE usually are written in a form involving a sum over ‘swaps’, involving a
475
+ slightly different formalism than Theorem 5, – see for instance [10, Prop 2.1], [9,
476
+ Cor. 1.2], or [8, Thm. 3]. By use of the functional equation, these formulas can be
477
+ deduced from Theorem 5. For instance, the J = 2 case of Theorem 5 entails the
478
+ following: for complex numbers α, β, γ, δ with |γ|, |δ| < 1,
479
+ ECUE(N)
480
+
481
+ det(1 − α G) det(1 − β G)
482
+ det(1 − γ G) det(1 − δ G)
483
+
484
+ = βN
485
+ δN ECUE(N)
486
+
487
+ det(1 − α G) det(1 − β−1 G)
488
+ det(1 − γ G) det(1 − δ−1 G)
489
+
490
+ = (1 − βγ)(1 − αδ)
491
+ (1 − δγ)(1 − αβ) + (αβ)N (1 − γα−1)(1 − δβ−1)
492
+ (1 − α−1β−1)(1 − γδ).
493
+ Note that this formula is valid only for |γ|, |δ| < 1. If instead for instance |γ| < 1
494
+ and |δ| > 1, the left hand side would just work out to 1.
495
+ By using the functional equation (4) for det(1 + vg) one can derive expressions
496
+ of this sort for the ACUE as well. For instance, for complex numbers α, β, γ, δ with
497
+ neither γ nor δ equal to 2N-th roots of unity, Theorem 4 reveals,
498
+ EACUE(N)
499
+
500
+ det(1 − α g) det(1 − β g)
501
+ det(1 − γ g) det(1 − δ g)
502
+
503
+ = βN
504
+ δN EACUE(N)
505
+
506
+ det(1 − α g) det(1 − β−1 g)
507
+ det(1 − γ g) det(1 − δ−1 g)
508
+
509
+ = (1 − βγ)(1 − αδ)
510
+ (1 − δγ)(1 − αβ)
511
+ �1 − αNγN
512
+ 1 − γ2N
513
+ ��1 − βNδN
514
+ 1 − δ2N
515
+
516
+ + (αβ)N (1 − γα−1)(1 − δβ−1)
517
+ (1 − α−1β−1)(1 − γδ)
518
+ �1 − β−NγN
519
+ 1 − γ2N
520
+ ��1 − α−NδN
521
+ 1 − δ2N
522
+
523
+ .
524
+ Note that in this case there is no need to assume that |γ|, |δ| < 1. Indeed, the right
525
+ and left hand sides are meromorphic in the variables γ and δ, with singularities
526
+ only at 2N-th roots of unity.
527
+ This procedure can be used to obtain formulas for J > 2 as well. But for mixed
528
+ ratios of more than two characteristic polynomials, expansions like this for the
529
+ ACUE seem to become increasingly more complicated than those for the CUE; by
530
+ contrast the determinantal formula of Theorem 4 remains relatively simple for all
531
+ J.
532
+ It is natural to ask whether Theorems 2 or 6 shed light on any number theoretic
533
+ phenomena. A typical question in number theory involves moments of the Riemann
534
+ zeta-function in which powers K and L are fixed or grow slowly. Theorem 1 of Tao
535
+ is certainly of interest in this regard, but because K and L must be of size at least
536
+ N before Theorem 2 sees a difference between the CUE and ACUE prediction, it
537
+ does not seem that the new information in this theorem will shed light on these
538
+
539
+ 6
540
+ BRAD RODGERS, HARSHITH SAI VALLABHANENI
541
+ sorts of questions. On the other hand, uniform estimates for moments can be of
542
+ some interest in determining extreme values of L-functions (see e.g. [25, Sec. 7]),
543
+ and Theorem 2 may be of some use in examining alternative possibilities here.
544
+ Furthermore Theorem 4 suggests a hypothetical ‘alternative ratio formula’ for the
545
+ Riemann zeta-function – a formula which one would like to rule out but cannot at
546
+ present. This is discussed further in Section 4.
547
+ Acknowledgements: We thank David Farmer and Ofir Gorodetsky for very use-
548
+ ful references, comments, and corrections. B.R. received partial support from an
549
+ NSERC grant and US NSF FRG grant 1854398.
550
+ 2. The ratio formula: Theorem 4
551
+ In this section we prove Theorem 4. Our starting point is an application of a
552
+ general formula of Borodin-Olshanski-Strahov to the ACUE.
553
+ Theorem 6 (A Borodin-Olshanski-Strahov Formula for ACUE). For N and J
554
+ positive integers, v1, ..., vJ complex numbers, and u1, ..., uJ complex numbers which
555
+ are not 2N-th roots of unity,
556
+ EACUE(N)
557
+ � �J
558
+ j=1 det(1 + vjg)
559
+ �J
560
+ j=1 det(1 + ujg)
561
+
562
+ =
563
+ 1
564
+ det
565
+
566
+ 1
567
+ ui−vj
568
+ � det
569
+
570
+ 1
571
+ ui − vj
572
+ EACUE(N)
573
+ �det(1 + vjg)
574
+ det(1 + uig)
575
+ ��
576
+ ,
577
+ (6)
578
+ where the determinants on the right hand side are of J×J matrices, over the indices
579
+ 1 ≤ i, j ≤ J.
580
+ Proof. This requires only minor modifications of formulas in [5]. Claims I and II
581
+ of that paper show that if α is a measure on C with finite moments and if a point
582
+ process consisting of N points {z1, ..., zN} in C has a joint density given by
583
+ (const.)
584
+
585
+ 1≤i<j≤N
586
+ |zi − zj|2
587
+ N
588
+
589
+ i=1
590
+ α(dzi),
591
+ then as a formal powers series
592
+ E
593
+
594
+ H(α1) · · · H(αJ)E(β1) · · · E(βJ)
595
+
596
+ =
597
+ 1
598
+ det
599
+
600
+ 1
601
+ αi+βj
602
+ � det
603
+
604
+ 1
605
+ αi + βj
606
+ E
607
+
608
+ H(αi)E(βj)
609
+ ��
610
+ ,
611
+ where
612
+ H(α) :=
613
+ 1
614
+ �N
615
+ j=1(1 − zjα−1)
616
+ ,
617
+ E(β) :=
618
+ N
619
+
620
+ j=1
621
+ (1 + zjβ−1).
622
+ This is only claimed for a measure α supported on R, but the proof applies with
623
+ no change to measures supported on C, except that in the proof of Theorem 3.1 the
624
+ moments An =
625
+
626
+ R xnα(dx) must be replaced by An,m =
627
+
628
+ C znzm α(dz) and later
629
+ in the proof Aλi+N−i+N−j must be replaced by Aλi+N−i , N−j.
630
+ The point process ACUE is induced by such a joint density where α is a proba-
631
+ bility measure uniform on the 2N-th roots of unity in C. This identity may be seen
632
+
633
+ AUTOCORRELATIONS FOR THE ACUE
634
+ 7
635
+ to be true not just for formal powers series but for functions H(α), E(β) by con-
636
+ sidering the case |α1|, ..., |αJ| > 1 (where all power series will converge absolutely)
637
+ and then meromorphically continuing to all α1, ..., αJ.
638
+ Finally, we arrive at (6) simply by setting αj = −u−1
639
+ j , βj = v−1
640
+ j
641
+ and simplifying
642
+ the resulting determinants.
643
+
644
+ The remainder of this section is therefore devoted to understanding the expec-
645
+ tation which occurs on the right hand side of (6), accomplished in Proposition 8
646
+ below.
647
+ Lemma 7. Consider a hook partition (a, 1b) with a ≥ 1 and b ≥ 0 of length
648
+ b + 1 ≤ N.
649
+ For the Schur polynomial s(a,1b) associated to this partition in the
650
+ variables e(ϑ1), ..., e(ϑN) of the ACUE(N), we have
651
+ EACUE(N)s(a,1b) =
652
+
653
+ (−1)b
654
+ if
655
+ a + b ≡ 0 (mod 2N)
656
+ 0
657
+ otherwise.
658
+ Proof. Label ωj = e(ϑj) so that for a partition λ of length ℓ(λ) ≤ N,
659
+ sλ = det(ωλj+N−j
660
+ i
661
+ )
662
+ det(ωN−j
663
+ i
664
+ )
665
+ ,
666
+ where if ℓ(λ) < N we adopt the convention λℓ(λ)+1 = · · · = λN = 0, and the
667
+ determinants above are N × N.
668
+ Note that det(ωN−j
669
+ i
670
+ ) = ∆(ω1, ..., ωN).
671
+ Hence from the definition (1) of the
672
+ ACUE,
673
+ EACUE(N)s(a,1b)
674
+ =
675
+ 1
676
+ N! (2N)N
677
+
678
+ t1,...,tN
679
+ det
680
+
681
+ e
682
+
683
+ (λj + N − j)ti
684
+ ��
685
+ det
686
+
687
+ e
688
+
689
+ (N − j)ti
690
+ ��
691
+ ,
692
+ (7)
693
+ where each index ti is summed over the set {0,
694
+ 1
695
+ 2N , ..., 2N−1
696
+ 2N }.
697
+ Expanding each
698
+ determinant into a sum over permutations mapping {1, ..., N} to {1, ..., N} one
699
+ sees
700
+ det
701
+
702
+ e
703
+
704
+ λj + N − j)ti
705
+ ��
706
+ det
707
+
708
+ e
709
+
710
+ N − j)ti
711
+ ��
712
+ =
713
+
714
+ σ,π∈SN
715
+ (−1)σ(−1)π
716
+ N
717
+
718
+ i=1
719
+ e
720
+
721
+ (λσ(i) + N − σ(i))ti − (N − π(i))ti
722
+
723
+ .
724
+ Thus (7) is
725
+ = 1
726
+ N!
727
+
728
+ σ,π∈SN
729
+ (−1)σ(−1)π1
730
+
731
+ (λσ(i) − σ(i)) + π(i) ≡ 0 (mod 2N)
732
+ for all i
733
+
734
+ =
735
+
736
+ π∈SN
737
+ (−1)π1
738
+
739
+ λi − i + π(i) ≡ 0 (mod 2N)
740
+ for all i
741
+
742
+ ,
743
+ (8)
744
+ where 1[ · ] denotes an indicator function, taking the value 1 or 0 depending on
745
+ whether the proposition inside is true or false.
746
+
747
+ 8
748
+ BRAD RODGERS, HARSHITH SAI VALLABHANENI
749
+ In the special case that λ = (a, 1b) this sum has a simple evaluation. In that
750
+ case any nonvanishing summand will have π satisfying
751
+ a − 1 + π(1) ≡ 0 (mod 2N)
752
+ and
753
+ 1 − 2 + π(2) ≡ 0 (mod 2N)
754
+ ...
755
+ 1 − (b + 1) + π(b + 1) ≡ 0 (mod 2N)
756
+ and
757
+ 0 − (b + 2) + π(b + 2) ≡ 0 (mod 2N)
758
+ ...
759
+ 0 − N + π(N) ≡ 0 (mod 2N).
760
+ Since 1 ≤ π(i) ≤ N, the last N − 1 of these equations force
761
+ π(b + 2) = b + 2, ...., π(N) = N,
762
+ π(2) = 1, ...., π(b + 1) = b.
763
+ This forces
764
+ π(1) = b + 1,
765
+ and so at most one permutation π makes a nonzero contribution to (8), and that
766
+ contribution is nonzero if and only if a+b ≡ 0 (mod 2N), since a+b = a−1+π(1).
767
+ Since in cycle notation this permutation is π = (b + 1, b, ..., 2, 1) we have (−1)π =
768
+ (−1)b and this verifies the lemma.
769
+
770
+ Proposition 8. For v any complex number and u any complex number which is
771
+ not a 2N-th root of unity,
772
+ EACUE(N)
773
+ det(1 + vg)
774
+ det(1 + ug) = 1 − uNvN
775
+ 1 − u2N .
776
+ Proof. We first consider |u| < 1. From a series expansion we have
777
+ det(1 + vg)
778
+ det(1 + ug) =
779
+ N
780
+
781
+ j=0
782
+
783
+
784
+ k=0
785
+ (−1)kejhkvjuk,
786
+ (9)
787
+ where ej and hk are respectively elementary symmetric polynomials of degree j and
788
+ homogeneous symmetric polynomials of degree k in the variables e(ϑ1), ..., e(ϑN)
789
+ associated to ACUE(N). Note that
790
+ e0 = h0 = 1,
791
+ while other terms can be expression in terms of Schur polynomials in the variables
792
+ e(ϑ1), ..., e(ϑN):
793
+ ejh0 = s(1j)
794
+ for 1 ≤ j ≤ N,
795
+ e0hk = s(k)
796
+ for k ≥ 1,
797
+ ejhk = s(k+1,1j−1) + s(k,1j)
798
+ for 1 ≤ j ≤ N − 1, k ≥ 1,
799
+ eNhk = s(k+1,1N−1)
800
+ for k ≥ 1,
801
+
802
+ AUTOCORRELATIONS FOR THE ACUE
803
+ 9
804
+ with the first two identities following from the combinatorial definition of Schur
805
+ functions [26, Sec. 7.10], and the last two from the Pieri rule [26, Thm. 7.15.7].
806
+ From Lemma 7 it thus follows
807
+ EACUE(N)ejhk =
808
+
809
+
810
+
811
+
812
+
813
+ 1
814
+ if j = 0, k ≡ 0 (mod 2N),
815
+ (−1)N−1
816
+ if j = N, k ≡ N (mod 2N),
817
+ 0
818
+ otherwise.
819
+ Hence from (9),
820
+ EACUE(N)
821
+ det(1 + vg)
822
+ det(1 + ug) = (1 + u2N + u4N + · · · ) − (vNuN + vNu3N + vNu5N + · · · )
823
+ = 1 − uNvN
824
+ 1 − u2N ,
825
+ for |u| < 1 and all v. The result then follows by analytic continuation.
826
+
827
+ Thus we have:
828
+ Proof of Theorem 4. Apply Proposition 8 to Theorem 6.
829
+
830
+ 3. The moment formula: Theorem 2
831
+ Our technique in proving Theorem 2 will be to condense the determinants in
832
+ (5) by letting all ui → 0. We begin with several lemmas that are useful for that
833
+ purpose.
834
+ The following is a slight generalization of Lemma 1 of [22].
835
+ Lemma 9 (Determinantal Condensation Identity). Take q ≤ J. For f1, f2, ..., fJ
836
+ functions (mapping R to C) that are at least q times continuously differentiable at
837
+ the point a,
838
+ lim
839
+ u1,...,uq→a
840
+ 1
841
+ ∆(uq, ..., u1) det
842
+
843
+ fj(ui)
844
+ �J
845
+ i,j=1 = det
846
+
847
+
848
+
849
+ 1
850
+ (i−1)!f (i−1)
851
+ j
852
+ (a)
853
+
854
+ i≤q, j≤J
855
+
856
+ fj(ui)
857
+
858
+ q+1≤i≤J, j≤J
859
+
860
+  ,
861
+ (10)
862
+ where on the left hand side the limit is taken in the order that first u1 → u2, then
863
+ u2 → u3, ... , uq−1 → uq, and finally uq → a.
864
+ Proof. We prove this identity by induction, viewing ∆(u1) = 1 for the q = 1 case,
865
+ which then becomes trivial. Suppose then that (10) has been proved for a limit in
866
+ q − 1 variables. This implies for a limit in q variables,
867
+ lim
868
+ u1,...,uq→a
869
+ 1
870
+ ∆(uq, ..., u1) det
871
+
872
+ fj(ui)
873
+ �J
874
+ i,j=1
875
+ = lim
876
+ uq→a
877
+ lim
878
+ uq−1→uq
879
+ 1
880
+ (uq − qq−1)q−1 det
881
+
882
+
883
+
884
+ 1
885
+ (i−1)!f (i−1)
886
+ j
887
+ (uq−1)
888
+
889
+ i≤q−1,j≤J
890
+
891
+ fj(ui)
892
+
893
+ i≥q,j≤J
894
+
895
+  .
896
+ But Taylor expanding the entries of row q as
897
+ fj(uq) =
898
+ q
899
+
900
+ i=1
901
+ f (i−1)
902
+ j
903
+ (uq−1)
904
+ (i − 1)!
905
+ (uq − uq−1)i−1 + O((uq − uq−1)q),
906
+ and using multilinearity of the determinant to cancel out the first q − 1 terms of
907
+ the above sum in row q, the claimed result quickly follows.
908
+
909
+
910
+ 10
911
+ BRAD RODGERS, HARSHITH SAI VALLABHANENI
912
+ Remark 10. It is likely that a result of this sort remains true no matter the
913
+ path along which a limit is taken (perhaps with further analytic conditions on the
914
+ functions fj), but we won’t require that in what follows.
915
+ Remark 11. It is easy to see by permuting rows of the determinant that this result
916
+ also implies
917
+ lim
918
+ u1,...,uq→a
919
+ 1
920
+ ∆(u1, ..., uq) det
921
+
922
+ fj(ui)
923
+ �J
924
+ i,j=1 = det
925
+
926
+
927
+
928
+ 1
929
+ (q−i)!f (q−i)
930
+ j
931
+ (a)
932
+
933
+ i≤q,j≤J
934
+
935
+ fj(ui)
936
+
937
+ i≥q+1,j≤J
938
+
939
+
940
+ (11)
941
+ and
942
+ lim
943
+ uq+1,...,uK→a
944
+ 1
945
+ ∆(uK, ..., uq+1) det
946
+
947
+ fj(ui)
948
+ �J
949
+ i,j=1 = det
950
+
951
+
952
+
953
+ fj(ui)
954
+
955
+ i≤q,j≤J
956
+
957
+ 1
958
+ (i−q−1)!f (i−q−1)
959
+ j
960
+ (a)
961
+
962
+ i≥q+1,j≤J
963
+
964
+  ,
965
+ (12)
966
+ where in this last equation the limit is taken in the order uq+1 → uq+2,..., uK−1 →
967
+ uK, uK → a.
968
+ In applying this lemma we need the following computation.
969
+ Lemma 12. For integers ℓ ≥ 0 and N ≥ 1,
970
+ lim
971
+ u→0
972
+ 1
973
+ ℓ!
974
+ dℓ
975
+ duℓ
976
+
977
+ 1
978
+ u − v
979
+ 1 − uNvN
980
+ 1 − u2N
981
+
982
+ = −pN,ℓ(v),
983
+ for pN,ℓ defined by
984
+ pN,ℓ(v) :=
985
+ 1
986
+ vℓ+1 −vN−1 HN,ℓ(1/v) =
987
+ 1
988
+ vℓ+1 −
989
+
990
+ 0
991
+ if 0 ≤ [ℓ]2N ≤ N − 1
992
+ v2N−1−[ℓ]2N
993
+ if N ≤ [ℓ]2N ≤ 2N − 1.
994
+ (13)
995
+ Proof. Note that we have
996
+ 1
997
+ u − v
998
+ 1 − uNvN
999
+ 1 − u2N
1000
+ = −1
1001
+ v
1002
+ 1
1003
+ 1 − u/v + uN − vN
1004
+ u − v
1005
+ uN
1006
+ 1 − u2N
1007
+ = −
1008
+ �1
1009
+ v + u
1010
+ v2 + u2
1011
+ v3 + · · ·
1012
+
1013
+ + (vN−1 + vN−2u + · · · + uN−1)(uN + u3N + · · · ),
1014
+ taking a series expansion around u = 0. Since the quantity on the left hand side of
1015
+ the Lemma is exactly the coefficient of uℓ in this expansion, the claim follows by
1016
+ inspection.
1017
+
1018
+ Lemma 13. (Cauchy Determinant Formula) For u1, ..., uJ and v1, ..., vJ collections
1019
+ of complex numbers with no elements in common,
1020
+ det
1021
+
1022
+ 1
1023
+ ui − vj
1024
+ �J
1025
+ i,j=1 = ∆(uJ, ..., u1)∆(v1, ..., vJ)
1026
+ □(u; v)
1027
+ where
1028
+ □(u; v) :=
1029
+ J
1030
+
1031
+ i=1
1032
+ J
1033
+
1034
+ j=1
1035
+ (ui − vj).
1036
+ Proof. See for instance [23, Part 7, §1, Ex. 3].
1037
+
1038
+ We can now give a proof of the moment formula for ACUE.
1039
+
1040
+ AUTOCORRELATIONS FOR THE ACUE
1041
+ 11
1042
+ Proof of Theorem 2. We set u = (u1, ..., uK) and u′ = (u′
1043
+ 1, ..., u′
1044
+ L) as abbreviations
1045
+ for ordered lists, and let u ∪ u′ := (u1, ..., uK, u′
1046
+ 1, ..., u′
1047
+ L) be an (ordered) concatena-
1048
+ tion of these lists. We abbreviate ∆(u) = ∆(u1, ..., uK) and also use the notation
1049
+ �∆(u) = ∆(uK, ..., u1) = (−1)K(K−1)/2∆(u).
1050
+ Our starting point is the identity
1051
+ EACUE(N)
1052
+
1053
+ det(g)−K
1054
+ K+L
1055
+
1056
+ k=1
1057
+ det(1 + vkg)
1058
+
1059
+ = lim
1060
+ u→∞ uN
1061
+ 1 · · · uN
1062
+ K lim
1063
+ u′→0 EN(u ∪ u′ ; v),
1064
+ (14)
1065
+ where we define
1066
+ EN(u ∪ u′ ; v) := EACUE(N)
1067
+
1068
+ �K+L
1069
+ k=1 det(1 + vkg)
1070
+ �K
1071
+ k=1 det(1 + ukg) �L
1072
+ ℓ=1 det(1 + u′
1073
+ ℓg)
1074
+
1075
+ .
1076
+ The limits u → ∞ and u′ → 0 mean u1, ..., uK → ∞ and u′
1077
+ 1, ..., u′
1078
+ L → 0. In what
1079
+ follows we will take these in the order u′
1080
+ 1 → u′
1081
+ 2, ..., u′
1082
+ L−1 → u′
1083
+ L, u′
1084
+ L → 0 and
1085
+ u1 → u2, ..., uK−1 → uK, uK → ∞ so that Lemma 9 can easily be applied.
1086
+ For notational reasons we write
1087
+ FN(u, v) :=
1088
+ 1
1089
+ u − v
1090
+ 1 − uNvN
1091
+ 1 − u2N .
1092
+ We use Theorem 4 and Lemma 13 to see,
1093
+ EN(u ∪ u′ ; v) =
1094
+ □(u ∪ u′ ; v)
1095
+ �∆(u ∪ u′)∆(v)
1096
+ det
1097
+
1098
+
1099
+
1100
+ fN(ui, vj)
1101
+
1102
+ i≤K,j≤K+L
1103
+
1104
+ fN(u′
1105
+ i−K, vj)
1106
+
1107
+ i≥K+1,j≤K+L
1108
+
1109
+
1110
+ =
1111
+ □(u ; v)□(u′ ; v)
1112
+ �∆(u)�∆(u′)□(u′; u)∆(v)
1113
+ det
1114
+
1115
+
1116
+
1117
+ fN(ui, vj)
1118
+
1119
+ i≤K,j≤K+L
1120
+
1121
+ fN(u′
1122
+ i−K, vj)
1123
+
1124
+ i≥K+1,j≤K+L
1125
+
1126
+  .
1127
+ Taking a limit u′ → 0 and using Lemma 9 – in particular its consequence (12) –
1128
+ and Lemma 12,
1129
+ lim
1130
+ u′→0 EN(u∪u′ ; v) =
1131
+ □(u; v) �K+L
1132
+ k=1 (−vk)L
1133
+ �∆(u) �K
1134
+ k=1(−uk)L∆(v)
1135
+ det
1136
+
1137
+
1138
+
1139
+ fN(ui, vj)
1140
+
1141
+ i≤K,j≤K+L
1142
+
1143
+ − pN,i−K−1(vj)
1144
+
1145
+ i≥K+1,j≤K+L
1146
+
1147
+  .
1148
+ But note the easily verified functional equation
1149
+ fN(u, v) = −fN(u−1, v−1)vN−1u−(N+1).
1150
+ Thus
1151
+ uN
1152
+ 1 · · · uN
1153
+ K lim
1154
+ u′→0 EN(u ∪ u′ ; v)
1155
+ = (−1)L □(u; v) �K+L
1156
+ k=1 vL
1157
+ k
1158
+ �∆(u)∆(v)
1159
+ K
1160
+
1161
+ k=1
1162
+ u−L−1
1163
+ k
1164
+ ·det
1165
+
1166
+
1167
+
1168
+ − vN−1
1169
+ j
1170
+ fN(u−1
1171
+ i , v−1
1172
+ j )
1173
+
1174
+ i≤K,j≤K+L
1175
+
1176
+ − pN,i−K−1(vj)
1177
+
1178
+ i≥K+1,j≤K+L
1179
+
1180
+  .
1181
+ (15)
1182
+
1183
+ 12
1184
+ BRAD RODGERS, HARSHITH SAI VALLABHANENI
1185
+ For fixed v, we have as u → ∞,
1186
+ □(u; v)
1187
+ �∆(u)
1188
+ K
1189
+
1190
+ k=1
1191
+ u−L−1
1192
+ k
1193
+ =
1194
+ □(u; v) �K
1195
+ k=1 u−L−1
1196
+ k
1197
+ �K
1198
+ k=1 uK−1
1199
+ k
1200
+
1201
+ � 1
1202
+ u1 , ...,
1203
+ 1
1204
+ uK
1205
+ � ∼
1206
+ 1
1207
+
1208
+ � 1
1209
+ u1 , ...,
1210
+ 1
1211
+ uK
1212
+ �.
1213
+ Applying Lemma (9) – with its consequence (11) this time – and Lemma 12, the
1214
+ limit of (15) as u → ∞ is
1215
+ = (−1)L
1216
+ �K+L
1217
+ k=1 vL
1218
+ k
1219
+ ∆(v)
1220
+ det
1221
+
1222
+
1223
+
1224
+ vN−1
1225
+ j
1226
+ pN,K−i(v−1
1227
+ j )
1228
+
1229
+ i≤K,j≤K+L
1230
+
1231
+ − pN,i−K−1(vj)
1232
+
1233
+ i≥K+1,j≤K+L
1234
+
1235
+
1236
+ =
1237
+ 1
1238
+ ∆(v) det
1239
+
1240
+
1241
+
1242
+ vN+L−1
1243
+ j
1244
+ pN,K−i(v−1
1245
+ j )
1246
+
1247
+ i≤K,j≤K+L
1248
+
1249
+ vL
1250
+ j pN,i−K−1(vj)
1251
+
1252
+ i≥K+1,j≤K+L
1253
+
1254
+  .
1255
+ By inspection of matrix entries, the above is
1256
+ =
1257
+ det
1258
+
1259
+ φi(vj)
1260
+ �K+L
1261
+ i,j=1
1262
+ ∆(v)
1263
+ .
1264
+ Recalling (14), this is exactly what we sought to prove.
1265
+
1266
+ 4. Hypothetical implications for ratios of ζ(s)
1267
+ Let us briefly and somewhat informally discuss these results in the context of the
1268
+ distribution of the Riemann zeta-function. For the sake of this discussion, suppose
1269
+ the Riemann Hypothesis is true, and label the nontrivial zeros of the zeta-function
1270
+ by {1/2 + iγj}j∈Z, so that γj ∈ R for all j. What is widely believed about the local
1271
+ distribution of zeros concerns two point processes, the first point process (associated
1272
+ to a large parameter T ) given by
1273
+ �log T
1274
+ 2π (γj − t)
1275
+
1276
+ j∈Z
1277
+ (16)
1278
+ where t ∈ [T, 2T ] is chosen randomly and uniformly, and the second point process
1279
+ (associated to a large parameter N) given by
1280
+ {Nθi}i=1,...,N
1281
+ (17)
1282
+ where θ1, ..., θN ∈ [−1/2, 1/2) are identified with the points e(θ1), ..., e(θN) of
1283
+ CUE(N). The widely believed GUE (Gaussian Unitary Ensemble) Hypothesis states
1284
+ that as T → ∞ and N → ∞ both point processes (16) and (17) tend to the same
1285
+ limiting point process.
1286
+ (This means that randomly generated configurations of
1287
+ points from these two processes will look similar near the origin of the real line.)
1288
+ The ACUE was first investigated as one alternative model of how zeros of the
1289
+ Riemann zeta-function might be spaced.
1290
+ In particular, one considers the point
1291
+ process (associated to a large parameter N) given by
1292
+ {Nϑi + r
1293
+ 2}i=1,...,N
1294
+ (18)
1295
+ where ϑ1, ..., ϑN
1296
+ ∈ {− 1
1297
+ 2, −N+1
1298
+ 2N
1299
+ , −N+2
1300
+ 2N
1301
+ , ..., N−1
1302
+ 2N } are identified with the points
1303
+ e(ϑ1), ..., e(ϑN) of ACUE(N), and r ∈ [0, 1) is chosen independently, and uniformly
1304
+ at random. As N → ∞ the point process (18) tends to a limiting process, called the
1305
+ AH point process in [21]. The AH point process has correlation functions which
1306
+ mimic the limiting process for CUE (see [20] for further discussion), but it also
1307
+
1308
+ AUTOCORRELATIONS FOR THE ACUE
1309
+ 13
1310
+ has gaps between points which are always half-integers. In this way it is one pos-
1311
+ sible – though likely not a unique – candidate for a limiting distribution of the
1312
+ zeta-function point process 16 which is compatible with what is currently known
1313
+ about the local distribution of zeros of the zeta-function and also with the so-called
1314
+ Alternative Hypothesis, a (widely disbelieved) conjecture that gaps between zeros
1315
+ always occur close to half-integer multiples of the mean spacing.
1316
+ For this reason [28] gave the name AGUE (Alternative Gaussian Unitary En-
1317
+ semble) Hypothesis to the hypothetical claim that as T → ∞ the zeta zero point
1318
+ process (16) tends to the AH point process. As one would like to rule out the
1319
+ Alternative Hypothesis, one would like to rule out the stronger AGUE Hypothesis.
1320
+ More details on the AH point process can be found in the references [21, 28],
1321
+ while further information on the Alternative Hypothesis in general can be found in
1322
+ [2].
1323
+ A major impetus for studying mixed moments of characteristic polynomials
1324
+ det(1 + uG) for the CUE came from the work of Keating-Snaith, who used in-
1325
+ formation about CUE moments to make a conjecture regarding moments of the
1326
+ Riemann zeta-function [18, Eq. (19)]. As first observed by Tao and as discussed in
1327
+ the introduction, the consequence of Theorem 1 that for sufficiently large N mixed
1328
+ moments in the CUE and ACUE agree suggests that even should the zeros of the
1329
+ Riemann zeta-function be spaced according to the pattern of the ACUE, this could
1330
+ still be consistent with the Keating-Snaith moment conjecture.
1331
+ The local spacing of zeros of the Riemann zeta-function is also closely related to
1332
+ the averages of ratios of shifts of the Riemann zeta function near the critical line.
1333
+ This perspective was first pursued by Farmer [14, 15] and has subsequently been
1334
+ investigated by others [9, 11, 12]. In particular note that from Theorem 5,
1335
+ lim
1336
+ N→∞ ECUE(N)
1337
+
1338
+ J
1339
+
1340
+ j=1
1341
+ det(1 − e−νj/NG)
1342
+ det(1 − e−µj/NG)
1343
+
1344
+ =
1345
+ 1
1346
+ det
1347
+
1348
+ 1
1349
+ νj−µi
1350
+ � det
1351
+
1352
+ 1
1353
+ νj − µi
1354
+ e(µi, νj)
1355
+
1356
+ ,
1357
+ for Re µj ̸= 0 for all j, where
1358
+ e(µ, ν) :=
1359
+
1360
+ 1
1361
+ if Re µ > 0
1362
+ eµ−ν
1363
+ if Re µ < 0.
1364
+ From the results proved in [12, 24] it can be seen that the claim
1365
+ lim
1366
+ T →∞
1367
+ 1
1368
+ T
1369
+ � 2T
1370
+ T
1371
+ J
1372
+
1373
+ j=1
1374
+ ζ(1/2 + νj/ log T + it)
1375
+ ζ(1/2 + µj/ log T + it) dt =
1376
+ 1
1377
+ det
1378
+
1379
+ 1
1380
+ νj−µi
1381
+ � det
1382
+
1383
+ 1
1384
+ νj − µi
1385
+ e(µi, νj)
1386
+
1387
+ (19)
1388
+ for Re µj ̸= 0 for all j, is equivalent to the GUE Hypothesis. (In fact [24] treats
1389
+ only real µj, νj, but the method can be adapted to complex values. There is a
1390
+ notational difference in [24]; the function E used there satisfies E(ν, µ) = e(µ, ν)
1391
+ for the function e used here.)
1392
+ A belief in the AGUE Hypothesis would suggest that we replace characteristic
1393
+ polynomials det(1 − uG) as they appear above by det(1 − uei2πr/2Ng), where r ∈
1394
+ [0, 1) is independent of g and uniformly chosen. For the ACUE, from Theorem 4
1395
+
1396
+ 14
1397
+ BRAD RODGERS, HARSHITH SAI VALLABHANENI
1398
+ we have
1399
+ lim
1400
+ N→∞ EACUE(N)
1401
+
1402
+ J
1403
+
1404
+ j=1
1405
+ det(1 − e−νj/Ng)
1406
+ det(1 − e−µj/Ng)
1407
+
1408
+ =
1409
+ 1
1410
+ det
1411
+
1412
+ 1
1413
+ νj−µi
1414
+ � det
1415
+
1416
+ 1
1417
+ νj − µi
1418
+ e(µi, νj)
1419
+
1420
+ ,
1421
+ for µj /∈ i
1422
+ 2Z for all j, where
1423
+ e(µ, ν) := 1 − e−µ−ν
1424
+ 1 − e−2µ .
1425
+ Hence on the assumption of the AGUE Hypothesis, one should instead expect for
1426
+ Re µj ̸= 0 for all j,
1427
+ lim
1428
+ T →∞
1429
+ 1
1430
+ T
1431
+ � 2T
1432
+ T
1433
+ J
1434
+
1435
+ j=1
1436
+ ζ(1/2 + νj/ log T + it)
1437
+ ζ(1/2 + µj/ log T + it) dt
1438
+ = lim
1439
+ N→∞
1440
+ � 1
1441
+ 0
1442
+ EACUE(N)
1443
+
1444
+ J
1445
+
1446
+ j=1
1447
+ det(1 − e−νj/Neiπr/Ng)
1448
+ det(1 − e−µj/Neiπr/Ng)
1449
+
1450
+ dr
1451
+ =
1452
+ � 1
1453
+ 0
1454
+ 1
1455
+ det
1456
+
1457
+ 1
1458
+ νj−µi
1459
+ � det
1460
+
1461
+ 1
1462
+ νj − µi
1463
+ e(µi − iπr, νj − iπr)
1464
+
1465
+ dr
1466
+ =
1467
+ 1
1468
+ det
1469
+
1470
+ 1
1471
+ νj−µi
1472
+
1473
+
1474
+ |z|=1
1475
+ det
1476
+
1477
+ 1
1478
+ νj − µi
1479
+ 1 − ze−µ−ν
1480
+ 1 − ze−2µ
1481
+ � dz
1482
+ z .
1483
+ (20)
1484
+ (20) is of course a different expression than (19). Thus for averages of ratios of
1485
+ the Riemann zeta-function, an ACUE spacing would be distinguished from CUE
1486
+ spacing. In fact using the methods of [12, 24] it should be possible to demonstrate
1487
+ rigorously that (20) is equivalent to the AGUE Hypothesis, but we do not pursue
1488
+ this here.
1489
+ References
1490
+ [1] J. Baik, P. Deift, E. Strahov. Products and ratios of characteristic polynomials of random
1491
+ Hermitian matrices. Integrability, topological solitons and beyond. J. Math. Phys. 44 (2003),
1492
+ no. 8, 3657–3670.
1493
+ [2] S.A.C. Baluyot. On the pair correlation conjecture and the alternative hypothesis. J. Number
1494
+ Theory 169 (2016), 183–226.
1495
+ [3] A. Borodin. Periodic Schur process and cylindric partitions. Duke Math. J. 140 (2007), no.
1496
+ 3, 391–468.
1497
+ [4] A. Borodin, A. Okounkov, G. Olshanski. Asymptotics of Plancherel measures for symmetric
1498
+ groups. J. Amer. Math. Soc. 13 (2000), no. 3, 481–515.
1499
+ [5] A. Borodin, G. Olshanski, and E. Strahov. Giambelli compatible point processes. Adv. in
1500
+ Appl. Math. 37 (2006), no. 2, 209–248.
1501
+ [6] A. Borodin, E. Strahov. Averages of characteristic polynomials in random matrix theory.
1502
+ Comm. Pure Appl. Math. 59 (2006), no. 2, 161–253.
1503
+ [7] E. Br´ezin, S. Hikami. Characteristic polynomials of random matrices. Comm. Math. Phys.
1504
+ 214 (2000), no. 1, 111–135.
1505
+ [8] D. Bump, and A. Gamburd. On the averages of characteristic polynomials from classical
1506
+ groups. Comm. Math. Phys. 265 (2006), no. 1, 227–274.
1507
+ [9] J. B. Conrey, D.W. Farmer, and M.R. Zirnbauer. Howe pairs, supersymmetry, and ratios of
1508
+ random characteristic polynomials for the unitary groups U(N). Preprint.
1509
+ [10] J.B. Conrey, P.J. Forrester, and N.C. Snaith. Averages of ratios of characteristic polynomials
1510
+ for the compact classical groups. Int. Math. Res. Not. IMRN (2005): 397-431.
1511
+
1512
+ AUTOCORRELATIONS FOR THE ACUE
1513
+ 15
1514
+ [11] J.B. Conrey, N.C. Snaith. Applications of the L-functions ratios conjectures. Proc. Lond.
1515
+ Math. Soc. (3) 94 (2007), no. 3, 594–646.
1516
+ [12] J.B. Conrey, N.C. Snaith. Correlations of eigenvalues and Riemann zeros. Commun. Number
1517
+ Theory Phys. 2 (2008), no. 3, 477–536.
1518
+ [13] R. Chhaibi, J. Najnudel, and A. Nikeghbali. The circular unitary ensemble and the Riemann
1519
+ zeta function: the microscopic landscape and a new approach to ratios. Invent. math. 207,
1520
+ 23–113 (2017).
1521
+ [14] D.W. Farmer. Long mollifiers of the Riemann zeta-function. Mathematika 40.01 (1993):
1522
+ 71–87.
1523
+ [15] D.W. Farmer. Mean values of ζ′/ζ and the GUE hypothesis. Int. Math. Res. Not. (1995):
1524
+ 71 – 82.
1525
+ [16] K. Johansson. Non-intersecting paths, random tilings and random matrices. Probab. Theory
1526
+ Related Fields 123 (2002), no. 2, 225–280.
1527
+ [17] B. Jonnadula, J.P. Keating, and F. Mezzadri. On the moments of characteristic polynomials.
1528
+ Glasg. Math. J. (2022) 1-21.
1529
+ [18] J.P. Keating, N.C. Snaith. Random matrix theory and ζ(1/2 + it). Comm. Math. Phys. 214
1530
+ (2000), no. 1, 57–89.
1531
+ [19] M. Kieburg, and T. Guhr. Derivation of determinantal structures for random matrix ensem-
1532
+ bles in a new way. J. Phys. A: Math. Theor. 43 (2010): 31pp.
1533
+ [20] J. C. Lagarias, and B. Rodgers. Band-limited mimicry of point processes by point processes
1534
+ supported on a lattice. Ann. Appl. Probab. 31 (2021), no. 1, 351–376.
1535
+ [21] J. C. Lagarias, and B. Rodgers. Higher correlations and the alternative hypothesis. Q. J.
1536
+ Math. 71 (2020), no. 1, 257–280.
1537
+ [22] A. Medjedovic. Exact Formulas for Averages of Secular Coefficients. MSc Thesis. University
1538
+ of Waterloo. Available at http://hdl.handle.net/10012/17591.
1539
+ [23] G. P´olya, and G. Szeg˝o. Problems and theorems in analysis. II. Theory of functions, zeros,
1540
+ polynomials, determinants, number theory, geometry. Translated from the German by C.
1541
+ E. Billigheimer. Reprint of the 1976 English translation. Classics in Mathematics. Springer-
1542
+ Verlag, Berlin, 1998. xii+392 pp.
1543
+ [24] B. Rodgers. Tail bounds for counts of zeros and eigenvalues, and an application to ratios.
1544
+ Comment. Math. Helv. 92 (2017), no. 2, 311–347.
1545
+ [25] K. Soundararajan. The distribution of values of zeta and L-functions. arXiv preprint
1546
+ arXiv:2112.03389.
1547
+ [26] R.P. Stanley. Enumerative combinatorics. Vol. 2. Cambridge Studies in Advanced Mathe-
1548
+ matics, 62. Cambridge University Press, Cambridge, 1999.
1549
+ [27] E. Strahov, Y.V. Fyodorov. Universal results for correlations of characteristic polynomials:
1550
+ Riemann-Hilbert approach. Comm. Math. Phys. 241 (2003), no. 2-3, 343–382.
1551
+ [28] T.
1552
+ Tao,
1553
+ The
1554
+ alternative
1555
+ hypothesis
1556
+ for
1557
+ unitary
1558
+ matrices,
1559
+ weblog
1560
+ post.
1561
+ Avail-
1562
+ able at https://terrytao.wordpress.com/2019/05/08/the-alternative-hypothesis-for-unitary-
1563
+ matrices/
1564
+ [29] H. Widom. Random Hermitian matrices and (nonrandom) Toeplitz matrices. Toeplitz op-
1565
+ erators and related topics (Santa Cruz, CA, 1992), 9–15, Oper. Theory Adv. Appl., 71,
1566
+ Birkh¨auser, Basel, 1994.
1567
+ Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario,
1568
+ K7L 3N6, Canada
1569
+ E-mail address: [email protected]
1570
+ Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
1571
+ E-mail address: [email protected]
1572
+
1tAyT4oBgHgl3EQfbvdS/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NE1T4oBgHgl3EQflgRB/content/tmp_files/2301.03285v1.pdf.txt ADDED
@@ -0,0 +1,782 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03285v1 [math.LO] 9 Jan 2023
2
+ REGAININGLY APPROXIMABLE NUMBERS
3
+ AND SETS
4
+ PETER HERTLING, RUPERT H¨OLZL AND PHILIP JANICKI
5
+ Fakult¨at f¨ur Informatik, Universit¨at der Bundeswehr M¨unchen,
6
+ 85577 Neubiberg, Germany
7
+ Abstract. We call a real number α regainingly approximable if
8
+ there exists a computable nondecreasing sequence (an)n of rational
9
+ numbers converging to α such that α−an < 2−n for infinitely many
10
+ n ∈ N. We also call a c.e. set A ⊆ N regainingly approximable if the
11
+ strongly left-computable number 2−A is regainingly approximable.
12
+ We characterize this property directly in terms of enumerations of
13
+ A and show that there exists a c.e. set A ⊆ N that is not regainingly
14
+ approximable. Our main result is a splitting theorem: any c.e. set
15
+ C ⊆ N can be split effectively into two disjoint c.e. sets A and B
16
+ that are regainingly approximable. These results imply that the
17
+ set of regainingly approximable numbers lies properly between the
18
+ set of computable numbers and the set of left-computable numbers
19
+ and that it is not closed under addition.
20
+ Keywords:
21
+ left-computable numbers; effective approximation;
22
+ computably enumerable sets; splitting; Solovay reducibility.
23
+ AMS classification: 03D78, 03D25, 03D30
24
+ 1. Introduction
25
+ We call a sequence (an)n of real numbers increasing if, for all n ∈ N,
26
+ an < an+1, and nondecreasing if, for all n ∈ N, an ≤ an+1. A real
27
+ number is called left-computable if there exists a computable nonde-
28
+ creasing sequence of rational numbers converging to it; in [1, 4] these
29
+ real numbers are called left-c.e.. A real number α is called computable if
30
+ there exists a computable sequence (an)n of rational numbers satisfying
31
+ |α−an| < 2−n, for all n ∈ N. It is easy to see that any computable real
32
+ number is left-computable. Computable and left-computable numbers
33
34
35
+ Date: November 18, 2022.
36
+ 1
37
+
38
+ 2
39
+ are important both in computable analysis [6] and in the theory of al-
40
+ gorithmic randomness [1, 4]. In this article, we study real numbers that
41
+ are limits of computable, nondecreasing, converging sequences (an)n of
42
+ rational numbers satisfying the condition |α−an| < 2−n not necessarily
43
+ for all n ∈ N but for infinitely many n ∈ N.
44
+ Definition 1. We call a real number α regainingly approximable if
45
+ there exists a computable nondecreasing sequence of rational num-
46
+ bers (an)n converging to α such that we have α − an < 2−n for infinitely
47
+ many n ∈ N.
48
+ Fact 2.
49
+ (1) Every computable number is regainingly approximable.
50
+ (2) Every regainingly approximable number is left-computable.
51
+ Proof.
52
+ (1) Let α be a computable number, and let (an)n be a computable
53
+ sequence of rational numbers satisfying |α − an| < 2−n, for all
54
+ n ∈ N. Then the sequence (bn)n of rational numbers defined by
55
+ bn := an+3 − 2−(n+1) is computable and increasing, converges to
56
+ α as well, and satisfies, for all n ∈ N, α − bn < 2−n. Hence, α
57
+ is regainingly approximable.
58
+ (2) This is clear from the definitions.
59
+
60
+ In Section 2 we begin by showing that Definition 1 is robust under
61
+ several slight modifications, where the equivalences are effectively uni-
62
+ form.
63
+ In Section 3 we apply the idea of regaining approximability to c.e. sets
64
+ of natural numbers. In fact, most of our results concerning regainingly
65
+ approximable numbers involve strongly left-computable real numbers
66
+ and can be expressed more naturally directly in terms of sets A ⊆ N
67
+ of natural numbers. A real number x ∈ [0, 1] is called strongly left-
68
+ computable if there exists a computably enumerable set A ⊆ N with
69
+ x = 2−A :=
70
+
71
+ a∈A
72
+ 2−(a+1).
73
+ We define different variations of regaining approximability for c.e. sets,
74
+ and will again see that they coincide. However, in contrast to the sit-
75
+ uation for regainingly approximable numbers, not all arguments are
76
+ fully effectively uniform in this setting. Next we prove that there is
77
+ a c.e. set that is not regainingly approximable and we prove a split-
78
+ ting result, namely that there is an effectively uniform procedure that
79
+ splits every c.e. set C ⊆ N into two disjoint regainingly approximable
80
+ sets A, B ⊆ N. Note that this implies that there exists a regainingly
81
+
82
+ 3
83
+ approximable set A ⊆ N that is not decidable, and that the union and
84
+ intersection of two regainingly approximable sets need not be regain-
85
+ ingly approximable.
86
+ In Section 4 we again turn to regainingly approximable numbers. We
87
+ observe that a set A ⊆ N is regainingly approximable if and only if
88
+ the strongly left-computable number 2−A is regainingly approximable.
89
+ Then we show that the set of regainingly approximable numbers is
90
+ closed downwards under Solovay reduction and that regainingly appro-
91
+ ximable numbers are not Martin-L¨of random.
92
+ Finally, we observe
93
+ that the results from the previous section imply that there exists a
94
+ strongly left-computable number that is not regainingly approximable;
95
+ that there exists a strongly left-computable and regainingly approxi-
96
+ mable number that is not computable; and that every strongly left-
97
+ computable number can be written as the sum of two strongly left-
98
+ computable numbers that are regainingly approximable. We conclude
99
+ that the set of regainingly approximable numbers is not closed under
100
+ addition.
101
+ 2. Robustness
102
+ In this section, we first show that slight changes to the definition of re-
103
+ gainingly approximable numbers do not lead to a different notion. The
104
+ following lemma will be useful; note that no computability assumptions
105
+ are made.
106
+ Lemma 3. Let (an)n be a nondecreasing sequence of real numbers con-
107
+ verging to some real number α such that, for infinitely many n ∈ N,
108
+ α − an < 2−n . Then, for every unbounded function f : N → N there
109
+ exist infinitely many m with α − af(m+1) < 2−f(m).
110
+ Proof. By assumption, the set
111
+ A := {n ∈ N | α − an < 2−n and f(0) ≤ n}
112
+ is infinite. We define a function g : A → N by
113
+ g(n) := min{m ∈ N | n < f(m + 1)},
114
+ for n ∈ A. The function g is well-defined because the function f is
115
+ unbounded. For every n ∈ A we have f(g(n)) ≤ n < f(g(n) + 1).
116
+ The set g(A) := {g(n) | n ∈ A} is infinite. Let us consider a number
117
+ m ∈ g(A), and let n ∈ A be a number with m = g(n). Then
118
+ α − af(m+1) = α − af(g(n)+1) ≤ α − an < 2−n ≤ 2−f(g(n)) = 2−f(m). □
119
+ There are some obvious ways to modify Definition 1 that one could
120
+ consider. First, instead of computable nondecreasing sequences (an)n
121
+
122
+ 4
123
+ of rational numbers converging to the real number α one might consider
124
+ only computable increasing sequences.
125
+ Secondly, one might replace
126
+ the condition α − an < 2−n by the condition α − an < 2−f(n) where
127
+ f : N → N is an arbitrary computable, unbounded function of one’s
128
+ choice; or, one might ask for this to hold only for some computable,
129
+ nondecreasing, unbounded function f : N → N, a seemingly weaker
130
+ requirement. However, it will turn out that none of these modifications
131
+ make any difference.
132
+ Proposition 4. For a real number α ∈ R the following statements are
133
+ equivalent:
134
+ (1) α is a regainingly approximable number.
135
+ (2) There exists a computable, increasing sequence of rational num-
136
+ bers (an)n converging to α such that, for infinitely many n ∈ N,
137
+ α − an < 2−n.
138
+ (3) For every computable, unbounded function f : N → N there ex-
139
+ ists a computable increasing sequence of rational numbers (an)n
140
+ converging to α such that, for infinitely many n ∈ N,
141
+ α − an < 2−f(n).
142
+ (4) There exist a computable, nondecreasing, and unbounded func-
143
+ tion f : N → N and a computable nondecreasing sequence of ra-
144
+ tional numbers (an)n converging to α such that, for infinitely
145
+ many n ∈ N, α − an < 2−f(n).
146
+ Note that this implies that it makes no difference whether we use “<” or
147
+ “≤” in the definition of regaining approximability. We would also like
148
+ to point out that all implications in the following proof are uniformly
149
+ effective.
150
+ Proof.
151
+ (2) ⇒ (1): Trivial.
152
+ (3) ⇒ (2): Trivial.
153
+ (1) ⇒ (3): Let α be a regainingly approximable real number. Let (bn)n
154
+ be a computable nondecreasing sequence of rational numbers converg-
155
+ ing to α with α − bn < 2−n for infinitely many n ∈ N. Let f : N → N
156
+ be a computable, unbounded function. Then the function g : N → N
157
+ defined by
158
+ g(n) := 1 + n + max{f(m) | m ≤ n}
159
+ is computable, increasing, and satisfies g(n) ≥ f(n) + 1, for all n ∈ N.
160
+ In particular, g is unbounded. The sequence (an)n of rational numbers
161
+ defined by
162
+ an := bg(n+1) − 2−g(n)
163
+
164
+ 5
165
+ is computable and increasing and converges to α. By Lemma 3 there
166
+ exist infinitely many n with α − bg(n+1) < 2−g(n).
167
+ For all of these
168
+ numbers n we obtain
169
+ α − an = α − bg(n+1) + 2−g(n) < 2−g(n)+1 ≤ 2−f(n).
170
+ (1) ⇒ (4): Trivial.
171
+ (4) ⇒ (1): Let us assume that f : N → N is a computable, nondecreas-
172
+ ing, and unbounded function and (bn)n is a computable nondecreasing
173
+ sequence of rational numbers converging to α such that, for infinitely
174
+ many n ∈ N, α − bn < 2−f(n). The function g : N → N defined by
175
+ g(0) := max{m ∈ N | f(m) = f(0)}
176
+ and
177
+ g(n + 1) := max{m ∈ N | f(m) = f(g(n) + 1)},
178
+ for n ∈ N, is computable and increasing and satisfies, for all n ∈ N,
179
+ f(g(n)) ≥ n. Furthermore, for every k ∈ N there exists exactly one
180
+ n ∈ N with f(k) = f(g(n)), and it satisfies k ≤ g(n). The sequence
181
+ (an)n of rational numbers defined by
182
+ an := bg(n),
183
+ for all n ∈ N, is computable and nondecreasing and converges to α. By
184
+ assumption, the set
185
+ B := {k ∈ N | α − bk < 2−f(k)}
186
+ is infinite. Hence, the set
187
+ A := {n ∈ N | (∃k ∈ B) f(k) = f(g(n))}
188
+ is infinite as well. Let us consider a number n ∈ A, and let k ∈ B be a
189
+ number with f(k) = f(g(n)). Then k ≤ g(n) and
190
+ α − an = α − bg(n) ≤ α − bk < 2−f(k) = 2−f(g(n)) ≤ 2−n.
191
+
192
+ As the final result in this section, we show that if a left-computable
193
+ number α is regainingly approximable then this will be apparent no
194
+ matter which of its effective approximations we look at.
195
+ Proposition 5. Let α be a left-computable real number, and let (an)n be
196
+ a computable, nondecreasing sequence of rational numbers converging
197
+ to α. Then the following conditions are equivalent.
198
+ (1) α is a regainingly approximable number.
199
+ (2) There exists a computable, increasing function r: N → N such
200
+ that, for infinitely many n, α − ar(n) < 2−n.
201
+ Note that the proof is effectively uniform in both directions.
202
+
203
+ 6
204
+ Proof. (2) ⇒ (1): Let us assume that there exists a computable, in-
205
+ creasing function r: N → N such that we have α − ar(n) < 2−n for
206
+ infinitely many n. Then the sequence (bn)n of rational numbers de-
207
+ fined by bn := ar(n) is computable, nondecreasing, converges to α, and
208
+ satisfies, for infinitely many n, α − bn < 2−n. Hence, α is regainingly
209
+ approximable.
210
+ (1) ⇒ (2): Let us assume that α is regainingly approximable.
211
+ By
212
+ Proposition 4 there exists a computable, increasing sequence (bn)n
213
+ of rational numbers converging to α such that there exist infinitely
214
+ many n with α − bn < 2−n. We define a computable, increasing func-
215
+ tion r: N → N by r(0) := min{m ∈ N | am ≥ b0}, and
216
+ r(n + 1) := min{m ∈ N | m > r(n) and am ≥ bn+1},
217
+ for n ∈ N. For all n ∈ N we have ar(n) ≥ bn. For the infinitely many
218
+ n ∈ N with α − bn < 2−n we obtain
219
+ α − ar(n) ≤ α − bn < 2−n.
220
+
221
+ 3. Regainingly Approximable Sets of Natural Numbers
222
+ Let us call a total function f : N → N an enumeration of a set A ⊆ N
223
+ if the following two conditions are satisfied:
224
+ (1) A = {n ∈ N | (∃k ∈ N) f(k) = n + 1},
225
+ (2) for every n ∈ A there exists exactly one k ∈ N with f(k) = n+1.
226
+ If f(k) = n+1 then we say that at stage k the function f enumerates the
227
+ number n into A. Note that here f(k) = 0 encodes that the function f
228
+ does not enumerate anything into A at stage k.
229
+ It is clear that a
230
+ set A ⊆ N is computably enumerable if and only if there exists a
231
+ computable enumeration of A. If f : N → N is an enumeration of a
232
+ subset of N then, for t ∈ N, we write
233
+ Enum(f)[t] := {n ∈ N | (∃k ∈ N)(k < t and f(k) = n + 1)}.
234
+ Definition 6. Let r: N → N be a nondecreasing, unbounded function.
235
+ (1) We call an enumeration f : N → N of a set A ⊆ N r-good if
236
+ there exist infinitely many n such that
237
+ {0, . . . , n − 1} ∩ A ⊆ Enum(f)[r(n)].
238
+ (2) We call a set A ⊆ N regainingly r-approximable if there exists
239
+ a computable enumeration f : N → N of A that is r-good.
240
+ Example 7. Let A ⊆ N be a decidable set.
241
+ Then the function
242
+ f : N → N defined by f(n) := n + 1 if n ∈ A, f(n) := 0 if n ̸∈ A,
243
+ is a computable and idN-good enumeration of A. Hence, A is regain-
244
+ ingly idN-approximable.
245
+
246
+ 7
247
+ Definition 8. We call a set A ⊆ N regainingly approximable if there
248
+ exists a computable, nondecreasing, unbounded function r: N → N
249
+ such that A is regainingly r-approximable.
250
+ The following theorem says that in this definition one can replace the
251
+ function r by the identity idN.
252
+ Theorem 9. For a set A ⊆ N the following two conditions are equiv-
253
+ alent.
254
+ (1) There exists a computable, nondecreasing, unbounded function
255
+ r: N → N such that A is regainingly r-approximable.
256
+ (2) A is regainingly idN-approximable.
257
+ The proof of this theorem is not fully effectively uniform, as it contains
258
+ a noneffective case distinction. Therefore, we first formulate a partial
259
+ result that does have a uniformly effective proof. It implies, for exam-
260
+ ple, that from an r-good enumeration of a set A, where r: N → N is
261
+ an arbitrary computable, nondecreasing, unbounded function, one can
262
+ effectively switch to a 2n-good enumeration of the same set A.
263
+ Lemma 10. Given two nondecreasing, unbounded functions r, s: N →
264
+ N and an r-good enumeration f : N → N of a set A, one can compute an
265
+ (idN +s)-good enumeration g : N → N of the same set A. In particular,
266
+ if r, s: N → N are computable, nondecreasing, unbounded functions
267
+ and a set A ⊆ N is regainingly r-approximable then it is regainingly
268
+ (idN + s)-approximable as well.
269
+ Proof. Let r, s: N → N be two nondecreasing, unbounded functions,
270
+ and let f : N → N be an r-good enumeration of a set A ⊆ N. The
271
+ function p: N → N defined by
272
+ p(n) := min{m ∈ N | s(m) > n},
273
+ for all n ∈ N, is nondecreasing and can be computed from s. It satisfies,
274
+ for all n ∈ N,
275
+ p(s(n)) = min{m ∈ N | s(m) > s(n)} > n.
276
+ We define a function g : N → N recursively as follows. For t ∈ N let
277
+ M[t] := Enum(f)[r(p(t))] \ Enum(g)[t]
278
+ and
279
+ g(t) :=
280
+
281
+ 1 + min(M[t])
282
+ if M[t] ̸= ∅,
283
+ 0
284
+ if M[t] = ∅,
285
+
286
+ 8
287
+ The function g is an enumeration of A.
288
+ It is clear that it can be
289
+ computed from r, s, and f. By assumption, there are infinitely many n
290
+ such that
291
+ {0, . . . , n − 1} ∩ A ⊆ Enum(f)[r(n)].
292
+ Let us consider such a number n. We claim that
293
+ {0, . . . , n − 1} ∩ A ⊆ Enum(g)[n + s(n)].
294
+ To see this, first note that p(s(n)) > n implies
295
+ {0, . . . , n − 1} ∩ A ⊆ Enum(f)[r(n)] ⊆ Enum(f)[r(p(s(n)))].
296
+ These are at most n numbers, and those among them which have not
297
+ yet been enumerated by g in stages strictly before stage s(n) are the
298
+ smallest elements of M[s(n)]. Thus, because no further number smaller
299
+ than n can enter M[t] for any t > s(n), they will be enumerated by g
300
+ in one of the n stages s(n), . . . , s(n) + n − 1. Consequently, they are
301
+ elements of Enum(g)[n + s(n)], as was to be shown.
302
+
303
+ Proof of Theorem 9. We prove the nontrivial direction “1 ⇒ 2”. Let
304
+ us assume that r: N → N is a computable, nondecreasing, unbounded
305
+ function such that A is regainingly r-approximable. Let f : N → N be
306
+ a computable r-good enumeration of A. The function s: N → N de-
307
+ fined by s(n) := ⌊n/2⌋, for n ∈ N, is computable, nondecreasing, and
308
+ unbounded. By applying Lemma 10 we obtain a computable (idN + s)-
309
+ good enumeration g : N → N of A. So, g is ⌊3n/2⌋-good. We distin-
310
+ guish two cases for A.
311
+ First case: For almost all n ∈ N, |{0, . . . , n − 1} ∩ A| ≤ ⌊n/2⌋. In this
312
+ case, we proceed similarly as in the proof of Lemma 10. We define a
313
+ function h: N → N recursively as follows. For t ∈ N let
314
+ M[t] := Enum(g)[3t] \ Enum(h)[t]
315
+ and
316
+ h(t) :=
317
+
318
+ 1 + min(M[t])
319
+ if M[t] ̸= ∅,
320
+ 0
321
+ if M[t] = ∅,
322
+ The function h is a computable enumeration of A. Let N ∈ N be a
323
+ number such that, for all n ≥ N, |{0, . . . , n − 1} ∩ A| ≤ ⌊n/2⌋. There
324
+ are infinitely many n ≥ N with
325
+ {0, . . . , n − 1} ∩ A ⊆ Enum(g)[⌊3n/2⌋].
326
+ Let us consider such a number n. We claim that
327
+ {0, . . . , n − 1} ∩ A ⊆ Enum(h)[n].
328
+
329
+ 9
330
+ Indeed, there are at most ⌊n/2⌋ numbers in {0, . . . , n − 1} ∩ A, and all
331
+ these numbers are elements of the set
332
+ Enum(g)[⌊3n/2⌋] ⊆ Enum(g)[3 · ⌈n/2⌉].
333
+ Furthermore, all those among these at most ⌊n/2⌋ numbers, that have
334
+ not yet been enumerated by h in stages strictly before stage ⌈n/2⌉, are
335
+ the smallest elements of M[⌈n/2⌉] and will be enumerated by h in one
336
+ of the ⌊n/2⌋ stages ⌈n/2⌉, . . . , n−1 (because no further number smaller
337
+ than n can enter M[t] for any t > ⌈n/2⌉). Thus, they are elements of
338
+ Enum(h)[n]. That was to be shown.
339
+ Second case: There exist infinitely many n ∈ N with
340
+ |{0, . . . , n − 1} ∩ A| > ⌊n/2⌋.
341
+ In this case we define two increasing and computable sequences (ni)i
342
+ and (ti)i of natural numbers as follows. First we compute the smallest
343
+ natural number t0 such that there exists a natural number n > 0 with
344
+ ⌊3n/2⌋ ≤ t0 and |{0, . . . , n − 1} ∩ Enum(g)[t0]| > ⌊n/2⌋.
345
+ Then we let n0 be the smallest number n > 0 with this property. Let us
346
+ consider i > 0. Once ni−1 and ti−1 have been determined, we compute
347
+ the smallest natural number ti > ti−1 such that there exists a natural
348
+ number n with
349
+ 2ni−1 ≤ n and ⌊3n/2⌋ ≤ ti and |{0, . . . , n − 1} ∩ Enum(g)[ti]| > ⌊n/2⌋.
350
+ Then we let ni be the smallest number n with this property.
351
+ Next we recursively define a function h: N → N which will be an
352
+ enumeration of the infinite set A with h(t) ̸= 0 for all t ∈ N. For
353
+ any i ∈ N, let mi be the number of elements of the following set
354
+ Mi := {0, . . . , ni − 1} ∩ Enum(g)[ti] \ Enum(h)
355
+ ��
356
+ j<i
357
+ mj
358
+
359
+ .
360
+ Then let k0, . . . , kmi−1 be the elements of this set in increasing order
361
+ and, for t with 0 ≤ t ≤ mi − 1, define
362
+ h
363
+
364
+ t +
365
+
366
+ j<i
367
+ mj
368
+
369
+ := 1 + kt.
370
+ This function h is a computable enumeration of A. It is clear that
371
+ ⌊n0/2⌋ < m0 ≤ n0 and, for i > 0,
372
+ 0 ≤ ni−1 −
373
+
374
+ j<i
375
+ mj ≤ ⌊ni/2⌋ −
376
+
377
+ j<i
378
+ mj < mi ≤ ni −
379
+
380
+ j<i
381
+ mj.
382
+
383
+ 10
384
+ There are infinitely many n > n0 with
385
+ {0, . . . , n − 1} ∩ A ⊆ Enum(g)[⌊3n/2⌋].
386
+ Let us consider such a number n. We claim that
387
+ {0, . . . , n − 1} ∩ A ⊆ Enum(h)[n].
388
+ Let i := min{j ∈ N | n ≤ nj}. Then i > 0 and ni−1 < n ≤ ni. In the
389
+ first �
390
+ j<i mj stages exactly �
391
+ j<i mj numbers smaller than ni−1 have
392
+ been enumerated by h. During the next mi stages all numbers in the
393
+ set Mi will be enumerated by h in increasing order. Note that
394
+ {0, . . . , n − 1} ∩ A
395
+
396
+ {0, . . . , n − 1} ∩ Enum(g)[⌊3n/2⌋]
397
+
398
+ {0, . . . , ni − 1} ∩ Enum(g)[ti].
399
+ Hence, the numbers in {0, . . . , n−1}∩A that have not been enumerated
400
+ by h before stage �
401
+ j<i mj are elements of Mi. In fact, they are the
402
+ smallest elements of Mi. So, they will be enumerated by h in the next
403
+ stages, starting with stage �
404
+ j<i mj. As there are at most n−�
405
+ j<i mj
406
+ such numbers, the function h enumerates all of them before stage n.
407
+ That was to be shown.
408
+
409
+ We also observe in analogy to Proposition 5 that if a set A is regainingly
410
+ approximable then this will be apparent no matter which of its effective
411
+ enumerations we look at.
412
+ Lemma 11. Given two enumerations f : N → N and g : N → N of a
413
+ set A ⊆ N and a nondecreasing, unbounded function r: N → N such
414
+ that f is r-good, one can compute an increasing function s: N → N
415
+ such that g is s-good.
416
+ Proof. The function s: N → N defined by
417
+ s(0) := 0
418
+ s(n + 1) := min
419
+
420
+ m ∈ N
421
+ ����
422
+ Enum(f)[r(n+1)] ⊆ Enum(g)[m]
423
+ and m > s(n)
424
+
425
+ ,
426
+ for all n ∈ N, can be computed from f, g, r and has the desired prop-
427
+ erties.
428
+
429
+ Corollary 12. Let A ⊆ N be a c.e. set, and let g : N → N be any com-
430
+ putable enumeration of A. Then the following conditions are equivalent.
431
+ (1) A is regainingly approximable.
432
+ (2) There exists a computable, increasing function s: N → N such
433
+ that g is s-good.
434
+ Theorem 13. There exists a c.e. set A ⊆ N that is not regainingly
435
+ approximable.
436
+
437
+ 11
438
+ Proof. We use the Cantor pairing function ⟨·, ·⟩: N2 → N defined by
439
+ ⟨m, n⟩ := 1
440
+ 2 (m + n) (m + n + 1) + n,
441
+ for all m, n ∈ N, and let π1: N → N and π2 : N → N denote the
442
+ two components of its inverse function, that is, ⟨π1(n), π2(n)⟩ = n for
443
+ all n ∈ N. Let ϕ0, ϕ1, ϕ2, . . . be a standard enumeration of all possibly
444
+ partial computable functions with domain and range in N. As usual,
445
+ we write ϕe(n)[t] ↓ to express that the e-th Turing machine (which
446
+ computes ϕe) stops after at most t steps on input n.
447
+ We shall construct a computable enumeration g : N → N of a set A ⊆ N
448
+ such that the following requirements (Re) will be satisfied for all e ∈ N:
449
+ (Re): if ϕe is total and increasing then
450
+ (∃ne ∈ N)(∀n > ne)({0, . . . , n − 1} ∩ A ̸⊆ Enum(g)[ϕe(n)]).
451
+ According to Corollary 12 this is sufficient.
452
+ We construct g in stages; in stage t we proceed as follows: Define
453
+ e := π1(π1(t)) and k := π2(π1(t)), hence, ⟨e, k⟩ = π1(t). Check whether
454
+ the following conditions are satisfied:
455
+ (∀n ≤ ⟨e, k + 1⟩) ϕe(n)[t] ↓
456
+ and
457
+ (∀n < ⟨e, k + 1⟩) ϕe(n) < ϕe(n + 1)
458
+ and
459
+ t ≥ ϕe(⟨e, k + 1⟩)
460
+ and
461
+ ⟨e, k⟩ ̸∈ Enum(g)[t].
462
+ If they are, set g(t) := 1 + ⟨e, k⟩, otherwise g(t) := 0.
463
+ We come to the verification. It is clear that the function g is com-
464
+ putable and an enumeration of some c.e. set A ⊆ N.
465
+ We wish to
466
+ show that the requirements Re are satisfied for all e ∈ N.
467
+ Let us
468
+ consider a number e such that ϕe is a total and increasing function
469
+ as well as a number n > ⟨e, 0⟩.
470
+ There exists a unique k ∈ N with
471
+ ⟨e, k⟩ < n ≤ ⟨e, k + 1⟩. The function g enumerates the number ⟨e, k⟩
472
+ into A in some uniquely determined stage t, i.e., there exists exactly
473
+ one number t with g(t) = 1 + ⟨e, k⟩. Then
474
+ ⟨e, k⟩ ∈ Enum(g)[t + 1] \ Enum(g)[t].
475
+ Since n ≤ ⟨e, k + 1⟩, we have ϕe(n) ≤ ϕe(⟨e, k + 1⟩) ≤ t, and therefore
476
+ ⟨e, k⟩ ̸∈ Enum(g)[t] ⊇ Enum(g)[ϕe(n)].
477
+ Thus ⟨e, k⟩ ∈ {0, . . . , n − 1} ∩ A witnesses that Re is satisfied with
478
+ ne = ⟨e, 0⟩.
479
+
480
+
481
+ 12
482
+ The following theorem states that any c.e. set C ⊆ N can be split ef-
483
+ fectively into two disjoint c.e. sets A and B that are regainingly appro-
484
+ ximable.
485
+ Theorem 14. Given an enumeration fC : N → N of a set C ⊆ N one
486
+ can compute enumerations fA : N → N of a set A ⊆ N and fB : N → N
487
+ of a set B ⊆ N such that
488
+ (1) C is the disjoint union of A and B, and
489
+ (2) there exist infinitely many t with
490
+ A ∩ {0, . . . , t − 1} ⊆ Enum(fA)[t]
491
+ and infinitely many t with
492
+ B ∩ {0, . . . , t − 1} ⊆ Enum(fB)[t].
493
+ In particular, for any c.e. set C ⊆ N there exist two disjoint, regainingly
494
+ approximable sets A, B ⊆ N with C = A ∪ B.
495
+ Proof. Let an enumeration fC of a set C ⊆ N be given. The algo-
496
+ rithm that defines the desired enumerations fA and fB will work in
497
+ stages −1, 0, 1, 2, . . . At the same time, we will also define a function
498
+ s: N × (N ∪ {−1}) → N and write si[t] for s(i, t).
499
+ At stage −1 we define si[−1] for all i ∈ N by si[−1] := i.
500
+ At stage t with t ∈ N we proceed as follows:
501
+ If fC(t) = 0 (recall that this means that fC does not enumerate any-
502
+ thing into C at stage t) then we set fA(t) := 0 and fB(t) := 0. Fur-
503
+ thermore, we set si[t] := si[t − 1] for all i ∈ N.
504
+ If fC(t) > 0 then the number n := fC(t) − 1 enumerated by fC into C
505
+ at stage t will be enumerated either into the set A or into the set B,
506
+ as follows. If the number
507
+ kt := min{j ∈ N | sj[t − 1] > n}
508
+ is even then we set fA(t) := 0 and fB(t) := n + 1 (which means that
509
+ n is enumerated into B); if kt is odd then we set fA(t) := n + 1 and
510
+ fB(t) := 0 (which means that n is enumerated into A). Furthermore,
511
+ we define si[t] for all i ∈ N by
512
+ si[t] :=
513
+
514
+ si[t − 1]
515
+ if i ≤ kt,
516
+ si[t − 1] + t
517
+ if kt < i.
518
+ This ends the description of stage t and of the algorithm; we proceed
519
+ with the verification.
520
+ Claim 1:
521
+ For every t ∈ N ∪ {−1}, the sequence (si[t])i is strictly
522
+ increasing.
523
+
524
+ 13
525
+ Proof: By induction over t. It is clear for t = −1. Let us consider some
526
+ t ∈ N and assume that the sequence (si[t − 1])i is strictly increasing.
527
+ If fC(t) = 0 then the sequence (si[t])i is identical to the sequence
528
+ (si[t − 1])i, hence, it is strictly increasing well. Let us assume that
529
+ fC(t) > 0; then kt is defined by induction hypothesis and we observe
530
+ that the sequence (si[t])i is strictly increasing:
531
+ • For any i < j ≤ kt we have
532
+ si[t] = si[t − 1] < sj[t − 1] = sj[t].
533
+ • For any i ≤ kt < j we have
534
+ si[t] = si[t − 1] < sj[t − 1] ≤ sj[t − 1] + t = sj[t].
535
+ • For any kt < i < j we have
536
+ si[t] = si[t − 1] + t < sj[t − 1] + t = sj[t].
537
+ This proves Claim 1.
538
+ By Claim 1, for every t ∈ N with fC(t) > 0, the number kt is well
539
+ defined. Now, it is clear that the functions fA and fB defined by the
540
+ algorithm are enumerations of two disjoint sets A, B ⊆ N whose union
541
+ is the set C. We still need to prove the second condition stated in
542
+ Theorem 14.
543
+ Claim 2: For every i, the sequence (si[t])t≥−1 is nondecreasing and
544
+ eventually constant.
545
+ Proof: It is clear that, for every i, the sequence (si[t])t is nondecreasing.
546
+ We show by induction over i that the sequence (si[t])t is eventually
547
+ constant. For all t ∈ N we have 0 ≤ kt, hence, s0[t] = s0[t − 1] =
548
+ s0[−1] = 0. We consider any number i > 0. By induction hypothesis
549
+ there exists a number t1 such that, for all j < i and for all t ≥ t1,
550
+ sj[t] = sj[t1]. Let t2 be large enough so that t2 > t1 and
551
+ C ∩ {0, . . . , si−1[t1] − 1} ⊆ Enum(fC)[t2]
552
+ (meaning that fC does not enumerate any number smaller than si−1[t1]
553
+ into the set C in any stage t ≥ t2).
554
+ Then, for every t ≥ t2 with
555
+ fC(t) > 0, we must have i ≤ kt and consequently si[t] = si[t − 1]. By
556
+ induction we obtain si[t] = si[t2 − 1], for all t ≥ t2 − 1. Thus, (si[t])t is
557
+ eventually constant, and Claim 2 is proven.
558
+ Let the sequence (Si)i be defined by Si := limt→∞ si[t]. Due to Claim 1,
559
+ (Si)i is strictly increasing.
560
+ Claim 3: For every i ∈ N and every t ≥ Si, si[t] = Si.
561
+
562
+ 14
563
+ Proof: If this were not true then there would be some t > Si with
564
+ si[t] ̸= si[t − 1], hence, with Si ≥ si[t] = si[t − 1] + t ≥ t > Si, a
565
+ contradiction.
566
+ Claim 4: For every even i, A ∩ {0, . . . , Si − 1} ⊆ Enum(fA)[Si].
567
+ Proof: Consider an even number i as well as some n ∈ A \ Enum(fA)[Si].
568
+ It is sufficient to show that n ≥ Si. Let t be the unique number with n ∈
569
+ Enum(fA)[t]\Enum(fA)[t−1]. Then t > Si and n+1 = fA(t) = fC(t).
570
+ By construction, the number kt must be odd. Hence kt ̸= i. If kt were
571
+ smaller than i then we would obtain si[t] = si[t−1]+t > si[t−1] = Si in
572
+ contradiction to Claim 3. We conclude i < kt. This implies si[t−1] ≤ n
573
+ by the definition of kt.
574
+ As t > Si, using Claim 3 again we obtain
575
+ Si = si[t − 1] ≤ n, which proves Claim 4.
576
+ Claim 5: For every odd i, B ∩ {0, . . . , Si − 1} ⊆ Enum(fB)[Si].
577
+ Proof: The proof is symmetric to that of Claim 4; it is enough to
578
+ interchange the words “even” and “odd” and to replace “A” by “B”.
579
+
580
+ Corollary 15. There exists a regainingly approximable set A ⊆ N that
581
+ is not decidable.
582
+ Proof. Let C ⊆ N be a c.e. set that is not decidable.
583
+ By Theo-
584
+ rem 14 there exist two disjoint regainingly approximable sets A, B with
585
+ C = A ∪ B. Not both of them can be decidable.
586
+
587
+ The set of all regainingly approximable sets is not closed under union,
588
+ according to Theorems 13 and 14. The following limited closure prop-
589
+ erties do hold, however, and will be useful in the proof of the next
590
+ theorem.
591
+ Lemma 16.
592
+ (1) The union of a regainingly approximable set and a decidable set
593
+ is regainingly approximable.
594
+ (2) If A is a regainingly approximable set and f : N → N is a com-
595
+ putable, nondecreasing function, then the set f(A) := {n ∈ N |
596
+ (∃k ∈ A) n = f(k)} is regainingly approximable.
597
+ Proof. Let A ⊆ N be a regainingly approximable set. By Lemma 10
598
+ there exists a computable 2n-good enumeration g : N → N of A.
599
+ For the first assertion, let B ⊆ N be a decidable set. Then the function
600
+ h: N → N defined by h(2n) := g(n) and h(2n + 1) := n + 1 if n ∈ B,
601
+ h(2n+1) := 0 if n ̸∈ B, is a computable and (4n−1)-good enumeration
602
+ of A ∪ B.
603
+
604
+ 15
605
+ For the second assertion, let f : N → N be a computable, nondecreasing
606
+ function. Then the function h: N → N defined by
607
+ h(n) :=
608
+
609
+ 0
610
+ if g(n) = 0,
611
+ 1 + f(g(n) − 1)
612
+ if g(n) > 0,
613
+ for n ∈ N, is a computable enumeration of f(A).
614
+ If f is bounded
615
+ then the set f(A) is finite, and the function h is trivially an idN-good
616
+ enumeration of f(A). Let us assume that f is unbounded. Then the
617
+ function r: N → N defined by
618
+ r(n) := max{m ∈ N | f(m) ≤ n},
619
+ for n ∈ N, is computable, nondecreasing, and unbounded. We claim
620
+ that h is a (2r(n))-good enumeration of f(A). By assumption, the set
621
+ B := {n ∈ N | {0, . . . , n − 1} ∩ A ⊆ Enum(g)[2n]}
622
+ is infinite. So is the set C := f(B). Let us consider a number n ∈ C
623
+ and a number m ∈ B with f(m) = n. Then m ≤ r(n). We obtain
624
+ {0, . . . , n − 1} ∩ f(A)
625
+ =
626
+ {0, . . . , f(m) − 1} ∩ f(A)
627
+
628
+ {0, . . . , f(m − 1)} ∩ f(A)
629
+ =
630
+ f({0, . . . , m − 1} ∩ A)
631
+
632
+ f(Enum(g)[2m])
633
+ =
634
+ Enum(h)[2m]
635
+
636
+ Enum(h)[2r(n)].
637
+
638
+ Theorem 17. There exist two regainingly approximable sets A, B ⊆ N
639
+ whose intersection A ∩ B is not regainingly approximable.
640
+ Proof. For natural numbers a, b and a set D ⊆ N we write (a · D + b)
641
+ for the set
642
+ (a · D + b) := {n ∈ N | (∃d ∈ D) n = a · d + b}
643
+ and (a · D) for the set (a · D + 0).
644
+ By Theorem 13 there exists a
645
+ c.e. set �C ⊆ N that is not regainingly approximable. By Theorem 14
646
+ there exist two disjoint, regainingly approximable sets �A, �B ⊆ N with
647
+ �A ∪ �B = �C. By Lemma 16 the sets
648
+ A := (2 · �A) ∪ (2 · N + 1) and B := (2 · �B + 1) ∪ (2 · N)
649
+ are regainingly approximable. We claim that their intersection A∩B =
650
+ (2 · �A) ∪ (2 · �B + 1) is not regainingly approximable. Let the function
651
+ g : N → N be defined by g(n) = ⌊n/2⌋ for all n ∈ N. We observe
652
+ �C = g(A ∩ B). Thus, if A ∩ B were a regainingly approximable set,
653
+ then so would be �C according to Lemma 16(2), a contradiction.
654
+
655
+
656
+ 16
657
+ To summarize our results, every decidable set is regainingly approxi-
658
+ mable but the converse does not hold (by Example 7 and Corollary 15);
659
+ every regainingly approximable set is computably enumerable but the
660
+ converse does not hold (by Theorem 13); and the set of regainingly
661
+ approximable sets is neither closed under union nor closed under inter-
662
+ section (by Theorems 13, 14 and 17).
663
+ 4. Strongly Left-computable Numbers and Regainingly
664
+ Approximable Numbers
665
+ Lemma 18. For a c.e. set A ⊆ N the following two statements are
666
+ equivalent.
667
+ (1) The set A is regainingly approximable.
668
+ (2) The real number 2−A is regainingly approximable,
669
+ Proof.
670
+ (2) ⇒ (1): Let A ⊆ N be a c.e. set such that the number 2−A is regain-
671
+ ingly approximable. Let f : N → N be an arbitrary computable enu-
672
+ meration of A. Then the sequence (an)n defined by an := 2−Enum(f)[n],
673
+ for n ∈ N, is a computable nondecreasing sequence of rational numbers
674
+ converging to 2−A. By Proposition 5 there exists a computable, increas-
675
+ ing function r: N → N such that, for infinitely many n, 2−A − ar(n) <
676
+ 2−n. We obtain {0, . . . , n−1}∩A ⊆ Enum(f)[r(n)] for infinitely many
677
+ n. Hence, A is regainingly r-approximable.
678
+ (1) ⇒ (2): Let r: N → N be a computable, nondecreasing, unbounded
679
+ function such that A is regainingly r-approximable. Let f : N → N be
680
+ a computable r-good enumeration of A. Then by
681
+ an := 2−Enum(f)[r(n+1)]
682
+ a computable, nondecreasing sequence (an)n of rational numbers con-
683
+ verging to 2−A is defined. For infinitely many n we have
684
+ {0, . . . , n} ∩ A ⊆ Enum(f)[r(n + 1)],
685
+ hence, 2−A − an ≤ 2−(n+1) < 2−n. This shows that 2−A is regainingly
686
+ approximable.
687
+
688
+ Corollary 19.
689
+ (1) There exists a strongly left-computable number that is not re-
690
+ gainingly approximable.
691
+ (2) There exists a strongly left-computable number that is regain-
692
+ ingly approximable but not computable.
693
+ Proof. The first assertion follows from Theorem 13 and Lemma 18.
694
+ The second assertion follows from Corollary 15 and Lemma 18 and
695
+
696
+ 17
697
+ from the well-known fact that, for any subset A ⊆ N, the number 2−A
698
+ is computable if and only if the set A is decidable.
699
+
700
+ The regainingly approximable numbers are closed downwards with re-
701
+ spect to Solovay reducibility. Let ≤S denote Solovay reducibility [5]
702
+ between left-computable real numbers.
703
+ Proposition 20. Let β be a regainingly approximable number, and let
704
+ α be a left-computable number with α ≤S β. Then α is regainingly
705
+ approximable as well.
706
+ Proof. Let f : {q ∈ Q | q < β} → Q be a computable function and
707
+ c ∈ N be a number such that, for all q ∈ {q ∈ Q | q < β}, f(q) < α and
708
+ α − f(q) < 2c · (β − q).
709
+ By Proposition 4 there exists a computable
710
+ and increasing sequence (bn)n of rational numbers converging to β such
711
+ that β − bn < 2−n−c for infinitely many n ∈ N. The sequence (an)n
712
+ defined by
713
+ an := max{f(bi) | 0 ≤ i ≤ n}
714
+ is a nondecreasing, computable sequence of rational numbers converg-
715
+ ing to α. For the infinitely many n with β − bn < 2−n−c we obtain
716
+ α − an ≤ α − f(bn) < 2c · (β − bn) < 2−n.
717
+
718
+ Corollary 21. Regainingly approximable numbers are not Martin-L¨of
719
+ random.
720
+ Proof. We give two proofs. First, Kuˇcera and Slaman [3] showed that
721
+ every left-computable number is below any Martin-L¨of random left-
722
+ computable number with regards to Solovay reducibility. Thus, if a
723
+ regainingly approximable number were Martin-L¨of random, then all
724
+ left-computable numbers would be regainingly approximable according
725
+ to Proposition 20. This contradicts Corollary 19(1).
726
+ We also give an alternative direct proof: Let α be regainingly appro-
727
+ ximable and let (an)n be a computable, nondecreasing sequence of ra-
728
+ tional numbers converging to α such that α − an < 2−n for infinitely
729
+ many n ∈ N. For every n ∈ N let Un be the interval (an, an + 2−n).
730
+ Then (Un)n is a computable sequence of open intervals with rational
731
+ endpoints such that �
732
+ n∈N λ(Un) = 2 < ∞ where λ is the Lebesgue
733
+ measure on R. Since α ∈ Un for infinitely many n, (Un)n is a Solovay
734
+ test witnessing that α is not Martin-L¨of random.
735
+
736
+ Corollary 22.
737
+ (1) If the sum of two left-computable real numbers is regainingly
738
+ approximable, then both of them are regainingly approximable.
739
+
740
+ 18
741
+ (2) The sum of a regainingly approximable number and a com-
742
+ putable number is again a regainingly approximable number.
743
+ Proof. The first assertion follows from Proposition 20 and from the fact
744
+ that for any two left-computable numbers α, β one has α ≤S α+β and
745
+ β ≤S α + β. Since adding a computable number to a left-computable
746
+ number does not change its Solovay degree, the second assertion follows
747
+ from Proposition 20 as well.
748
+
749
+ Corollary 23. Every strongly left-computable number can be written
750
+ as the sum of two strongly left-computable numbers that are regainingly
751
+ approximable.
752
+ Proof. By Theorem 14 and Lemma 18.
753
+
754
+ Corollary 24. There exist two strongly left-computable and regainingly
755
+ approximable numbers whose sum is not regainingly approximable.
756
+ Proof. According to Corollary 19(1), there exists a strongly left-computable
757
+ number γ that is not regainingly approximable. According to Corol-
758
+ lary 23, there exist two strongly left-computable and regainingly appro-
759
+ ximable numbers α, β with α + β = γ. They witness the truth of the
760
+ assertion.
761
+
762
+ Corollary 23 raises the question whether every left-computable number
763
+ can be written as the sum of two regainingly approximable numbers.
764
+ The answer is no. This follows from Proposition 21, from the fact that
765
+ there exist Martin-L¨of random left-computable numbers, and from the
766
+ result of Downey, Hirschfeldt, Nies [2, Corollary 3.6] that the sum of
767
+ two left-computable numbers that are not Martin-L¨of random is again
768
+ not Martin-L¨of random.
769
+ References
770
+ [1] R. G. Downey and D. R. Hirschfeldt. Algorithmic randomness and complexity.
771
+ Theory and Applications of Computability. Springer, New York, 2010.
772
+ [2] R. G. Downey, D. R. Hirschfeldt, and A. Nies. Randomness, computability, and
773
+ density. SIAM J. Comput., 31(4):1169–1183, 2002.
774
+ [3] A. Kuˇcera and T. A. Slaman. Randomness and recursive enumerability. SIAM
775
+ J. Comput., 31(1):199–211, 2001.
776
+ [4] A. Nies. Computability and randomness, volume 51 of Oxford Logic Guides.
777
+ Oxford University Press, Oxford, 2009.
778
+ [5] R. M. Solovay. Draft of a paper (or series of papers) on Chaitin’s work. Unpub-
779
+ lished notes, 1975.
780
+ [6] K. Weihrauch. Computable analysis. Texts in Theoretical Computer Science.
781
+ An EATCS Series. Springer-Verlag, Berlin, 2000. An introduction.
782
+
2NE1T4oBgHgl3EQflgRB/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2tAzT4oBgHgl3EQfuP3I/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d937f574984f17f5a3a09b5f63e63a8ef4a3b60717eee0a88241ed1200e95559
3
+ size 198473
2tE3T4oBgHgl3EQfoAol/content/tmp_files/2301.04629v1.pdf.txt ADDED
@@ -0,0 +1,565 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04629v1 [math.CA] 11 Jan 2023
2
+ Prepared for submission to JHEP
3
+ OU-HET-1167
4
+ On some identities for confluent hypergeometric
5
+ functions and Bessel functions
6
+ Yoshitaka Okuyamaa,b
7
+ aDepartment of Physics, Osaka University,
8
+ Machikaneyama-Cho 1-1, Toyonaka 560-0043, Japan
9
+ bDepartment of Physics, Faculty of Science, The University of Tokyo,
10
+ Bunkyo-Ku, Tokyo 113-0033, Japan
11
+ Abstract: We find a new integral representation of the Whittaker function of the first kind.
12
+ We also show relevant summation formulas for Kummer’s confluent hypergeometric functions
13
+ and Bessel functions.
14
+
15
+ Contents
16
+ 1
17
+ Introduction and summary
18
+ 1
19
+ 2
20
+ Integral representation of the Whittaker function of the first kind
21
+ 2
22
+ 3
23
+ Summation formula for confluent hypergeomertric functions
24
+ 3
25
+ 4
26
+ Summation formula for Bessel functions
27
+ 5
28
+ 1
29
+ Introduction and summary
30
+ This paper concerns several identities related to confluent hypergeometric functions. We first
31
+ show an integral representation of the Whittaker function:
32
+ Mκ,µ(z) =
33
+ √π Γ(2µ + 1)
34
+ 2µ Γ
35
+
36
+ µ+κ+1/2
37
+ 2
38
+
39
+ Γ
40
+
41
+ µ−κ+1/2
42
+ 2
43
+
44
+ × √z
45
+ � 1
46
+ 0
47
+ dξ ξ
48
+ −κ+1/2
49
+ 2
50
+ −1(1 − ξ)
51
+ κ+1/2
52
+ 2
53
+ −1 e(ξ−1/2)z Jµ
54
+ ��
55
+ ξ(1 − ξ)z
56
+
57
+ ,
58
+ (1.1)
59
+ for Re (µ ± κ + 1/2) > 0. Here, the Bessel function Jν(z) and the Whittaker function of the
60
+ first kind Mκ,µ(z) are defined by [1]:
61
+ Jν(z) =
62
+
63
+
64
+ n=0
65
+ (−1)n
66
+ Γ(ν + n + 1) n!
67
+ �z
68
+ 2
69
+ �ν+2n
70
+ ,
71
+ (1.2)
72
+ and
73
+ Mκ,µ(z) = e−z/2 zµ+1/2
74
+
75
+
76
+ n=0
77
+ (µ − κ + 1/2)n
78
+ (2µ + 1)n n!
79
+ zn .
80
+ (1.3)
81
+ It turns out that the identity (1.1) implies the following summation formula:
82
+ M(2a; 2b; z) =
83
+
84
+
85
+ n=0
86
+ (a)n(b)n(b − a)n
87
+ (b)2n(2b)2n n!
88
+ (−z2)n M(a + n; b + 2n; z) ,
89
+ (1.4)
90
+ where we use the standard definition of Kummer’s confluent hypergeometric function M(a; b; z):
91
+ M(a; b; z) =
92
+
93
+
94
+ n=0
95
+ (a)n
96
+ (b)n n! zn .
97
+ (1.5)
98
+ – 1 –
99
+
100
+ By specifying indices of (1.4) in a particular manner, one finds the following summation
101
+ formula for Bessel-J:
102
+ J2ν+1/2(z) =
103
+ Γ(ν + 1)
104
+ Γ(2ν + 3/2)
105
+
106
+
107
+ n=0
108
+ (ν + 1/2)n
109
+ (2ν + 3/2)n n!
110
+ �z
111
+ 2
112
+ �ν+1/2+n
113
+ Jν+n(z) .
114
+ (1.6)
115
+ To the best of our effort, we could not find either of these three identities (1.4), (1.1) and
116
+ (1.6) anywhere in literature.
117
+ 2
118
+ Integral representation of the Whittaker function of the first kind
119
+ We here show an integral representation of the Whittaker function of the first kind (1.1).
120
+ Recall that the Whittaker function of the first kind is a solution to the Whittaker differential
121
+ equation
122
+ d2y
123
+ dz2 +
124
+
125
+ −1
126
+ 4 + κ
127
+ z + 1/4 − µ2
128
+ z2
129
+
130
+ y = 0 ,
131
+ (2.1)
132
+ subject to the boundary condition;
133
+ Mκ,µ(z) −−−→
134
+ z→0 zµ+1/2 .
135
+ (2.2)
136
+ All we need to do is to check that the RHS of (1.1) satisfies the differential equation (2.1)
137
+ and the boundary condition (2.2).
138
+ Boundary condition.
139
+ In taking z → 0 limit, the RHS of (1.1) becomes:
140
+ (RHS of (1.1))
141
+ −−−→
142
+ z→0
143
+ √π zµ+1/2 Γ(2µ + 1)
144
+ 22µ Γ
145
+
146
+ µ+κ+1/2
147
+ 2
148
+
149
+ Γ
150
+
151
+ µ−κ+1/2
152
+ 2
153
+
154
+ Γ(ν + 1)
155
+ ×
156
+ � 1
157
+ 0
158
+ dξ ξ
159
+ −κ+µ+1/2
160
+ 2
161
+ −1(1 − ξ)
162
+ κ+µ+1/2
163
+ 2
164
+ −1
165
+ = zµ+1/2 .
166
+ (2.3)
167
+ We have used the series expansion of the Bessel function (1.2) in the second line. In going to
168
+ the last line, we used the following two Gamma function identities;
169
+ � 1
170
+ 0
171
+ dt tx−1(1 − t)y−1 = Γ(x) Γ(y)
172
+ Γ(x + y) ,
173
+ (2.4)
174
+ Γ(2z) = 22z−1 Γ(z) Γ(z + 1/2)
175
+ √π
176
+ .
177
+ (2.5)
178
+ – 2 –
179
+
180
+ Differential equation.
181
+ Let us check that the left of the RHS of (1.1) satisfies the Whittaker
182
+ differential equation (2.1). After some manipulations, we see
183
+ � d2
184
+ dz2 +
185
+
186
+ −1
187
+ 4 + κ
188
+ z + 1/4 − µ2
189
+ z2
190
+ ��
191
+ (RHS of (1.1))
192
+
193
+ � 1
194
+ 0
195
+ dξ ξ
196
+ −κ+1/2
197
+ 2
198
+ −1(1 − ξ)
199
+ κ+1/2
200
+ 2
201
+ −1 e(ξ−1/2)z
202
+ ×
203
+ � d2
204
+ dz2 + 1
205
+ z
206
+ d
207
+ dz + ξ(1 − ξ) − µ2
208
+ z2 + (2ξ − 1) d
209
+ dz − 2ξ(1 − ξ) + κ + ξ − 1/2
210
+ z
211
+
212
+
213
+ ��
214
+ ξ(1 − ξ)z
215
+
216
+ .
217
+ (2.6)
218
+ Notice that the first four terms in the last line add up to zero thanks to the Bessel differential
219
+ equation:
220
+ � d2
221
+ dz2 + 1
222
+ z
223
+ d
224
+ dz + 1 − ν2
225
+ z2
226
+
227
+ Jν(z) = 0 .
228
+ (2.7)
229
+ We now focus on the fifth term in (2.6). Using the identity that follows from (1.2)
230
+ (2ξ − 1) d
231
+ dz Jµ
232
+ ��
233
+ ξ(1 − ξ)z
234
+
235
+ = −2ξ(1 − ξ)
236
+ z
237
+ d
238
+ dξ Jµ
239
+ ��
240
+ ξ(1 − ξ)z
241
+
242
+ ,
243
+ (2.8)
244
+ we perform integration by parts with respect to ξ:
245
+ (The fifth term in (2.6))
246
+ = −2
247
+ z
248
+ � 1
249
+ 0
250
+ dξ ξ
251
+ −κ+1/2
252
+ 2
253
+ −1+1(1 − ξ)
254
+ κ+1/2
255
+ 2
256
+ −1+1 e(ξ−1/2)z
257
+ � d
258
+ dξ Jµ
259
+ ��
260
+ ξ(1 − ξ)z
261
+ ��
262
+ = 2
263
+ z
264
+ � 1
265
+ 0
266
+ dξ Jµ
267
+ ��
268
+ ξ(1 − ξ)z
269
+ � d
270
+
271
+
272
+ ξ
273
+ −κ+1/2
274
+ 2
275
+ (1 − ξ)
276
+ κ+1/2
277
+ 2
278
+ e(ξ−1/2)z�
279
+ =
280
+ � 1
281
+ 0
282
+ dξ ξ
283
+ −κ+1/2
284
+ 2
285
+ −1(1 − ξ)
286
+ κ+1/2
287
+ 2
288
+ −1 e(ξ−1/2)z
289
+
290
+ 2ξ(1 − ξ) − κ + ξ − 1/2
291
+ z
292
+
293
+
294
+ ��
295
+ ξ(1 − ξ)z
296
+
297
+ .
298
+ (2.9)
299
+ Here, we assumed Re (µ±κ+1/2) > 0 to drop off the surface terms. Plugging this into (2.6),
300
+ one can readily see that all terms cancel out and conclude that the RHS of (1.1) satisfies the
301
+ Whittaker differential equation (2.1).
302
+ 3
303
+ Summation formula for confluent hypergeomertric functions
304
+ We then derive the summation formula for confluent hypergeometric functions (1.3).
305
+ Assuming Re (µ ± κ + 1/2), Re (µ) > 0, we start by applying the Mellin-Barnes-type
306
+ representation of Bessel-J (3.1) to (1.1) [2],
307
+ Jν(z) =
308
+ � i ∞
309
+ −i ∞
310
+ dt
311
+ 2πi
312
+ Γ(−t)
313
+ Γ(ν + t + 1)
314
+ �z
315
+ 2
316
+ �ν+2t
317
+ Re (ν) > 0 .
318
+ (3.1)
319
+ – 3 –
320
+
321
+ After the change of the order of integration, we find:
322
+ (Second line of (1.1))
323
+ = √z e−z/2
324
+ � i ∞
325
+ −i ∞
326
+ dt
327
+ 2πi
328
+ Γ(−t)
329
+ Γ(µ + t + 1)
330
+ �z
331
+ 2
332
+ �µ+2t � 1
333
+ 0
334
+ dξ ξ
335
+ µ−κ+1/2
336
+ 2
337
+ +t−1(1 − ξ)
338
+ µ+κ+1/2
339
+ 2
340
+ +t−1 ezξ .
341
+ (3.2)
342
+ Notice that the ξ-integral is nothing but the integral representation of the confluent hyper-
343
+ geometric equation:
344
+ M(a; b; z) =
345
+ Γ(b)
346
+ Γ(a)Γ(b − a)
347
+ � 1
348
+ 0
349
+ dt ezt ta−1(1 − t)b−a−1 .
350
+ (3.3)
351
+ Using (2.5), we have:
352
+ (Second line of (1.1))
353
+ = 2µ zµ+1/2
354
+ √π
355
+ e−z/2
356
+ � i ∞
357
+ −i ∞
358
+ dt
359
+ 2πi
360
+ Γ
361
+
362
+ µ−κ+1/2
363
+ 2
364
+ + t
365
+
366
+ Γ
367
+
368
+ µ+κ+1/2
369
+ 2
370
+ + t
371
+
372
+ Γ(µ + 1/2 + t) Γ(−t)
373
+ Γ(2µ + 1 + 2t)Γ(µ + 1/2 + 2t)
374
+ × z2t M
375
+ �µ − κ + 1/2
376
+ 2
377
+ + t, µ + 1
378
+ 2 + 2t, z
379
+
380
+ .
381
+ (3.4)
382
+ Deforming the integration contour to the right and picking up the residues coming from
383
+ Γ(−t), we see:
384
+ (Second line of (1.1)) =
385
+ 2µ Γ
386
+
387
+ µ−κ+1/2
388
+ 2
389
+
390
+ Γ
391
+
392
+ µ+κ+1/2
393
+ 2
394
+
395
+ √π Γ(2µ + 1)
396
+ zµ+1/2 e−z/2
397
+ ×
398
+
399
+
400
+ n=0
401
+
402
+ µ−κ+1/2
403
+ 2
404
+
405
+ n
406
+
407
+ µ+κ+1/2
408
+ 2
409
+
410
+ n (µ + 1/2)n
411
+ (µ + 1/2)2n(2µ + 1)2n n!
412
+ (−z2)n M
413
+ �µ − κ + 1/2
414
+ 2
415
+ + n, µ + 1
416
+ 2 + 2n, z
417
+
418
+ .
419
+ (3.5)
420
+ Substituting this for (1.1), we arrive at (1.4) for Re (a), Re (b − a), Re (b + 1/2) > 0.
421
+ We can verify that the identity (1.4) holds for any a, b ∈ C, by expanding in powers of z
422
+ comparing both sides order by order using the following formula:
423
+ (2a)k
424
+ (2b)k
425
+ =
426
+ k!
427
+ (b)k
428
+ ⌊k/2⌋
429
+
430
+ n=0
431
+ (a)k−n (b)n (b − a)n
432
+ (2b)2n n! (k − 2n)! (−1)n
433
+ k ∈ Z≥0 .
434
+ (3.6)
435
+ where ⌊x⌋ is the floor function that returns the largest integer less than or equal to x. This
436
+ formula (3.6) can be proven as follows. Firstly, short calculation leads:1
437
+ (RHS of (3.6)) = (a)k
438
+ (b)k
439
+ 3F2
440
+
441
+ b − a, − k−1
442
+ 2 , − k
443
+ 2
444
+ b + 1
445
+ 2, 1 − a − k ; 1
446
+
447
+ ,
448
+ (3.7)
449
+ 1Use Euler reflection formula Γ(z)Γ(1 − z) = π/ sin πz and Legendre duplication formula (2.5).
450
+ – 4 –
451
+
452
+ with 3F2 being a generalized hypergeometric function defined by:
453
+ 3F2
454
+ �a, b, c
455
+ d, e ; z
456
+
457
+ =
458
+
459
+
460
+ n=0
461
+ (a)n(b)n(c)n
462
+ (d)n(e)n n! zn .
463
+ (3.8)
464
+ With the help of Saalsch¨utz’s theorem that asserts [3, equation (1), chapter II]:
465
+ 3F2
466
+
467
+ a, b, −n
468
+ c, 1 + a + b − c − n; 1
469
+
470
+ = (c − a)n(c − b)n
471
+ (c)n(c − a − b)n
472
+ n ∈ Z≥0 ,
473
+ (3.9)
474
+ we can verify that (3.6) is an identity.
475
+ 4
476
+ Summation formula for Bessel functions
477
+ Lastly, we show the summation formula for Bessel functions (1.6). It follows from the relation
478
+ between Kummer’s confluent hypergeometric functions and Bessel functions:
479
+ Jν(z) =
480
+ e∓iz
481
+ Γ(ν + 1)
482
+ �z
483
+ 2
484
+ �ν
485
+ M(ν + 1/2; 2ν + 1, ±2iz) ,
486
+ (4.1)
487
+ we have:
488
+ (LHS of (1.6)) =
489
+ e∓iz
490
+ Γ(2ν + 3/2)
491
+ �z
492
+ 2
493
+ �2ν+1/2
494
+ M(2ν + 1; 4ν + 2; ±2iz) .
495
+ (4.2)
496
+ Plugging the summation formula (1.4) into this and using (4.1) again, one finds:
497
+ (LHS of (1.6))
498
+ =
499
+ e∓iz
500
+ Γ(2ν + 3/2)
501
+ �z
502
+ 2
503
+ �2ν+1/2
504
+
505
+
506
+ n=0
507
+ [(ν + 1/2)n]2(2ν + 1)n
508
+ (2ν + 1)2n(4ν + 2)2n n!
509
+ × (2z)2n M(ν + 1/2 + n; 2ν + 1 + 2n; ±2iz)
510
+ =
511
+ Γ(ν + 1)
512
+ Γ(2ν + 3/2)
513
+
514
+
515
+ n=0
516
+ 24n [(ν + 1/2)n]2(ν + 1)n(2ν + 1)n
517
+ (2ν + 1)2n(4ν + 2)2n n!
518
+ �z
519
+ 2
520
+ �ν+1/2+n
521
+ Jν+n(z)
522
+ = (RHS of (1.6)) .
523
+ (4.3)
524
+ We need to use (2.5) several times to reach the last line.
525
+ When ν = 0, the LHS of (1.6) reduces to a triogeometric function divided by √z:
526
+ J1/2(z) =
527
+
528
+ 2
529
+ πz sin z ,
530
+ (4.4)
531
+ whereas the RHS remains the summation of Bessel-J’s. This reproduces the known expansion
532
+ of sin in terms of Bessel functions found in [4, equation (9.4.2.19)]:
533
+ sin z
534
+ z
535
+ =
536
+
537
+
538
+ n=0
539
+ 1
540
+ (2n + 1) n!
541
+ �z
542
+ 2
543
+ �n
544
+ Jn(z) .
545
+ (4.5)
546
+ – 5 –
547
+
548
+ Acknowledgments
549
+ We are grateful to T. Nishioka for the valuable discussions. The work of Y. O. was supported
550
+ by Forefront Physics and Mathematics Program to Drive Transformation (FoPM), a World-
551
+ leading Innovative Graduate Study (WINGS) Program, the University of Tokyo. The work
552
+ of Y. O. was also supported by JSPS fellowship for young students No. 21J20750, MEXT, and
553
+ by JSR fellowship, the University of Tokyo.
554
+ References
555
+ [1] E. Whittaker and G. Watson, A Course of Modern Analysis, A Course of Modern Analysis: An
556
+ Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an
557
+ Account of the Principal Transcendental Functions. Cambridge University Press, 1996.
558
+ [2] G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library.
559
+ Cambridge University Press, 1995.
560
+ [3] W. Bailey, Generalized Hypergeometric Series, Cambridge tracts in mathematics and
561
+ mathematical physics. The University Press, 1935.
562
+ [4] Y. L. Luke, The Special Functions and their Approximations. Vol. 2. Academic Press, New York,
563
+ 1969.
564
+ – 6 –
565
+
2tE3T4oBgHgl3EQfoAol/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf,len=178
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
3
+ page_content='04629v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
4
+ page_content='CA] 11 Jan 2023 Prepared for submission to JHEP OU-HET-1167 On some identities for confluent hypergeometric functions and Bessel functions Yoshitaka Okuyamaa,b aDepartment of Physics, Osaka University, Machikaneyama-Cho 1-1, Toyonaka 560-0043, Japan bDepartment of Physics, Faculty of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan Abstract: We find a new integral representation of the Whittaker function of the first kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
5
+ page_content=' We also show relevant summation formulas for Kummer’s confluent hypergeometric functions and Bessel functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
6
+ page_content=' Contents 1 Introduction and summary 1 2 Integral representation of the Whittaker function of the first kind 2 3 Summation formula for confluent hypergeomertric functions 3 4 Summation formula for Bessel functions 5 1 Introduction and summary This paper concerns several identities related to confluent hypergeometric functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
7
+ page_content=' We first show an integral representation of the Whittaker function: Mκ,µ(z) = √π Γ(2µ + 1) 2µ Γ � µ+κ+1/2 2 � Γ � µ−κ+1/2 2 � × √z � 1 0 dξ ξ −κ+1/2 2 −1(1 − ξ) κ+1/2 2 −1 e(ξ−1/2)z Jµ �� ξ(1 − ξ)z � , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
8
+ page_content='1) for Re (µ ± κ + 1/2) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
9
+ page_content=' Here, the Bessel function Jν(z) and the Whittaker function of the first kind Mκ,µ(z) are defined by [1]: Jν(z) = ∞ � n=0 (−1)n Γ(ν + n + 1) n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
10
+ page_content=' �z 2 �ν+2n , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
11
+ page_content='2) and Mκ,µ(z) = e−z/2 zµ+1/2 ∞ � n=0 (µ − κ + 1/2)n (2µ + 1)n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
12
+ page_content=' zn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
13
+ page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
14
+ page_content='3) It turns out that the identity (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
15
+ page_content='1) implies the following summation formula: M(2a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
16
+ page_content=' 2b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
17
+ page_content=' z) = ∞ � n=0 (a)n(b)n(b − a)n (b)2n(2b)2n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
18
+ page_content=' (−z2)n M(a + n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
19
+ page_content=' b + 2n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
20
+ page_content=' z) , (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
21
+ page_content='4) where we use the standard definition of Kummer’s confluent hypergeometric function M(a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
22
+ page_content=' b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
23
+ page_content=' z): M(a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
24
+ page_content=' b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
25
+ page_content=' z) = ∞ � n=0 (a)n (b)n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
26
+ page_content=' zn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
27
+ page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
28
+ page_content='5) – 1 – By specifying indices of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
29
+ page_content='4) in a particular manner, one finds the following summation formula for Bessel-J: J2ν+1/2(z) = Γ(ν + 1) Γ(2ν + 3/2) ∞ � n=0 (ν + 1/2)n (2ν + 3/2)n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
30
+ page_content=' �z 2 �ν+1/2+n Jν+n(z) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
31
+ page_content=' (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
32
+ page_content='6) To the best of our effort, we could not find either of these three identities (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
33
+ page_content='4), (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
34
+ page_content='1) and (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
35
+ page_content='6) anywhere in literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
36
+ page_content=' 2 Integral representation of the Whittaker function of the first kind We here show an integral representation of the Whittaker function of the first kind (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
37
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
38
+ page_content=' Recall that the Whittaker function of the first kind is a solution to the Whittaker differential equation d2y dz2 + � −1 4 + κ z + 1/4 − µ2 z2 � y = 0 , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
39
+ page_content='1) subject to the boundary condition;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
40
+ page_content=' Mκ,µ(z) −−−→ z→0 zµ+1/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
41
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
42
+ page_content='2) All we need to do is to check that the RHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
43
+ page_content='1) satisfies the differential equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
44
+ page_content='1) and the boundary condition (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
45
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
46
+ page_content=' Boundary condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
47
+ page_content=' In taking z → 0 limit, the RHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
48
+ page_content='1) becomes: (RHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
49
+ page_content='1)) −−−→ z→0 √π zµ+1/2 Γ(2µ + 1) 22µ Γ � µ+κ+1/2 2 � Γ � µ−κ+1/2 2 � Γ(ν + 1) × � 1 0 dξ ξ −κ+µ+1/2 2 −1(1 − ξ) κ+µ+1/2 2 −1 = zµ+1/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
50
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
51
+ page_content='3) We have used the series expansion of the Bessel function (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
52
+ page_content='2) in the second line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
53
+ page_content=' In going to the last line, we used the following two Gamma function identities;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
54
+ page_content=' � 1 0 dt tx−1(1 − t)y−1 = Γ(x) Γ(y) Γ(x + y) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
55
+ page_content='4) Γ(2z) = 22z−1 Γ(z) Γ(z + 1/2) √π .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
56
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
57
+ page_content='5) – 2 – Differential equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
58
+ page_content=' Let us check that the left of the RHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
59
+ page_content='1) satisfies the Whittaker differential equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
60
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
61
+ page_content=' After some manipulations, we see � d2 dz2 + � −1 4 + κ z + 1/4 − µ2 z2 �� (RHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
62
+ page_content='1)) ∝ � 1 0 dξ ξ −κ+1/2 2 −1(1 − ξ) κ+1/2 2 −1 e(ξ−1/2)z × � d2 dz2 + 1 z d dz + ξ(1 − ξ) − µ2 z2 + (2ξ − 1) d dz − 2ξ(1 − ξ) + κ + ξ − 1/2 z � Jµ �� ξ(1 − ξ)z � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
63
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
64
+ page_content='6) Notice that the first four terms in the last line add up to zero thanks to the Bessel differential equation: � d2 dz2 + 1 z d dz + 1 − ν2 z2 � Jν(z) = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
65
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
66
+ page_content='7) We now focus on the fifth term in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
67
+ page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
68
+ page_content=' Using the identity that follows from (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
69
+ page_content='2) (2ξ − 1) d dz Jµ �� ξ(1 − ξ)z � = −2ξ(1 − ξ) z d dξ Jµ �� ξ(1 − ξ)z � , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
70
+ page_content='8) we perform integration by parts with respect to ξ: (The fifth term in (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
71
+ page_content='6)) = −2 z � 1 0 dξ ξ −κ+1/2 2 −1+1(1 − ξ) κ+1/2 2 −1+1 e(ξ−1/2)z � d dξ Jµ �� ξ(1 − ξ)z �� = 2 z � 1 0 dξ Jµ �� ξ(1 − ξ)z � d dξ � ξ −κ+1/2 2 (1 − ξ) κ+1/2 2 e(ξ−1/2)z� = � 1 0 dξ ξ −κ+1/2 2 −1(1 − ξ) κ+1/2 2 −1 e(ξ−1/2)z � 2ξ(1 − ξ) − κ + ξ − 1/2 z � Jµ �� ξ(1 − ξ)z � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
72
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
73
+ page_content='9) Here, we assumed Re (µ±κ+1/2) > 0 to drop off the surface terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
74
+ page_content=' Plugging this into (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
75
+ page_content='6), one can readily see that all terms cancel out and conclude that the RHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
76
+ page_content='1) satisfies the Whittaker differential equation (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
77
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
78
+ page_content=' 3 Summation formula for confluent hypergeomertric functions We then derive the summation formula for confluent hypergeometric functions (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
79
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
80
+ page_content=' Assuming Re (µ ± κ + 1/2), Re (µ) > 0, we start by applying the Mellin-Barnes-type representation of Bessel-J (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
81
+ page_content='1) to (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
82
+ page_content='1) [2], Jν(z) = � i ∞ −i ∞ dt 2πi Γ(−t) Γ(ν + t + 1) �z 2 �ν+2t Re (ν) > 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
83
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
84
+ page_content='1) – 3 – After the change of the order of integration, we find: (Second line of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
85
+ page_content='1)) = √z e−z/2 � i ∞ −i ∞ dt 2πi Γ(−t) Γ(µ + t + 1) �z 2 �µ+2t � 1 0 dξ ξ µ−κ+1/2 2 +t−1(1 − ξ) µ+κ+1/2 2 +t−1 ezξ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
86
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
87
+ page_content='2) Notice that the ξ-integral is nothing but the integral representation of the confluent hyper- geometric equation: M(a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
88
+ page_content=' b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
89
+ page_content=' z) = Γ(b) Γ(a)Γ(b − a) � 1 0 dt ezt ta−1(1 − t)b−a−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
90
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
91
+ page_content='3) Using (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
92
+ page_content='5), we have: (Second line of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
93
+ page_content='1)) = 2µ zµ+1/2 √π e−z/2 � i ∞ −i ∞ dt 2πi Γ � µ−κ+1/2 2 + t � Γ � µ+κ+1/2 2 + t � Γ(µ + 1/2 + t) Γ(−t) Γ(2µ + 1 + 2t)Γ(µ + 1/2 + 2t) × z2t M �µ − κ + 1/2 2 + t, µ + 1 2 + 2t, z � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
94
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
95
+ page_content='4) Deforming the integration contour to the right and picking up the residues coming from Γ(−t), we see: (Second line of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
96
+ page_content='1)) = 2µ Γ � µ−κ+1/2 2 � Γ � µ+κ+1/2 2 � √π Γ(2µ + 1) zµ+1/2 e−z/2 × ∞ � n=0 � µ−κ+1/2 2 � n � µ+κ+1/2 2 � n (µ + 1/2)n (µ + 1/2)2n(2µ + 1)2n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
97
+ page_content=' (−z2)n M �µ − κ + 1/2 2 + n, µ + 1 2 + 2n, z � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
98
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
99
+ page_content='5) Substituting this for (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
100
+ page_content='1), we arrive at (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
101
+ page_content='4) for Re (a), Re (b − a), Re (b + 1/2) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
102
+ page_content=' We can verify that the identity (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
103
+ page_content='4) holds for any a, b ∈ C, by expanding in powers of z comparing both sides order by order using the following formula: (2a)k (2b)k = k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
104
+ page_content=' (b)k ⌊k/2⌋ � n=0 (a)k−n (b)n (b − a)n (2b)2n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
105
+ page_content=' (k − 2n)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
106
+ page_content=' (−1)n k ∈ Z≥0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
107
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
108
+ page_content='6) where ⌊x⌋ is the floor function that returns the largest integer less than or equal to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
109
+ page_content=' This formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
110
+ page_content='6) can be proven as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
111
+ page_content=' Firstly, short calculation leads:1 (RHS of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
112
+ page_content='6)) = (a)k (b)k 3F2 � b − a, − k−1 2 , − k 2 b + 1 2, 1 − a − k ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
113
+ page_content=' 1 � , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
114
+ page_content='7) 1Use Euler reflection formula Γ(z)Γ(1 − z) = π/ sin πz and Legendre duplication formula (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
115
+ page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
116
+ page_content=' – 4 – with 3F2 being a generalized hypergeometric function defined by: 3F2 �a, b, c d, e ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
117
+ page_content=' z � = ∞ � n=0 (a)n(b)n(c)n (d)n(e)n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
118
+ page_content=' zn .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
119
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
120
+ page_content='8) With the help of Saalsch¨utz’s theorem that asserts [3, equation (1), chapter II]: 3F2 � a, b, −n c, 1 + a + b − c − n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
121
+ page_content=' 1 � = (c − a)n(c − b)n (c)n(c − a − b)n n ∈ Z≥0 , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
122
+ page_content='9) we can verify that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
123
+ page_content='6) is an identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
124
+ page_content=' 4 Summation formula for Bessel functions Lastly, we show the summation formula for Bessel functions (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
125
+ page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
126
+ page_content=' It follows from the relation between Kummer’s confluent hypergeometric functions and Bessel functions: Jν(z) = e∓iz Γ(ν + 1) �z 2 �ν M(ν + 1/2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
127
+ page_content=' 2ν + 1, ±2iz) , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
128
+ page_content='1) we have: (LHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
129
+ page_content='6)) = e∓iz Γ(2ν + 3/2) �z 2 �2ν+1/2 M(2ν + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
130
+ page_content=' 4ν + 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
131
+ page_content=' ±2iz) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
132
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
133
+ page_content='2) Plugging the summation formula (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
134
+ page_content='4) into this and using (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
135
+ page_content='1) again, one finds: (LHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
136
+ page_content='6)) = e∓iz Γ(2ν + 3/2) �z 2 �2ν+1/2 ∞ � n=0 [(ν + 1/2)n]2(2ν + 1)n (2ν + 1)2n(4ν + 2)2n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
137
+ page_content=' × (2z)2n M(ν + 1/2 + n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
138
+ page_content=' 2ν + 1 + 2n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
139
+ page_content=' ±2iz) = Γ(ν + 1) Γ(2ν + 3/2) ∞ � n=0 24n [(ν + 1/2)n]2(ν + 1)n(2ν + 1)n (2ν + 1)2n(4ν + 2)2n n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
140
+ page_content=' �z 2 �ν+1/2+n Jν+n(z) = (RHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
141
+ page_content='6)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
142
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
143
+ page_content='3) We need to use (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
144
+ page_content='5) several times to reach the last line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
145
+ page_content=' When ν = 0, the LHS of (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
146
+ page_content='6) reduces to a triogeometric function divided by √z: J1/2(z) = � 2 πz sin z , (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
147
+ page_content='4) whereas the RHS remains the summation of Bessel-J’s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
148
+ page_content=' This reproduces the known expansion of sin in terms of Bessel functions found in [4, equation (9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
149
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
150
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
151
+ page_content='19)]: sin z z = ∞ � n=0 1 (2n + 1) n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
152
+ page_content=' �z 2 �n Jn(z) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
153
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
154
+ page_content='5) – 5 – Acknowledgments We are grateful to T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
155
+ page_content=' Nishioka for the valuable discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
156
+ page_content=' The work of Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
157
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
158
+ page_content=' was supported by Forefront Physics and Mathematics Program to Drive Transformation (FoPM), a World- leading Innovative Graduate Study (WINGS) Program, the University of Tokyo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
159
+ page_content=' The work of Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
160
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
161
+ page_content=' was also supported by JSPS fellowship for young students No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
162
+ page_content=' 21J20750, MEXT, and by JSR fellowship, the University of Tokyo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
163
+ page_content=' References [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
164
+ page_content=' Whittaker and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
165
+ page_content=' Watson, A Course of Modern Analysis, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions, with an Account of the Principal Transcendental Functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
166
+ page_content=' Cambridge University Press, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
167
+ page_content=' [2] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
168
+ page_content=' Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
169
+ page_content=' Cambridge University Press, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
170
+ page_content=' [3] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
171
+ page_content=' Bailey, Generalized Hypergeometric Series, Cambridge tracts in mathematics and mathematical physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
172
+ page_content=' The University Press, 1935.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
173
+ page_content=' [4] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
174
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
175
+ page_content=' Luke, The Special Functions and their Approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
176
+ page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
177
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
178
+ page_content=' Academic Press, New York, 1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
179
+ page_content=' – 6 –' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tE3T4oBgHgl3EQfoAol/content/2301.04629v1.pdf'}
39E3T4oBgHgl3EQfogqI/content/tmp_files/2301.04634v1.pdf.txt ADDED
@@ -0,0 +1,1004 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Street-View Image Generation from a Bird’s-Eye View Layout
2
+ Alexander Swerdlow
3
+ Runsheng Xu
4
+ Bolei Zhou
5
+ University of California, Los Angeles
6
+ {aswerdlow, rxx3386}@ucla.edu, [email protected]
7
+ Abstract
8
+ Bird’s-Eye View (BEV) Perception has received increas-
9
+ ing attention in recent years as it provides a concise and
10
+ unified spatial representation across views and benefits a
11
+ diverse set of downstream driving applications. While the
12
+ focus has been placed on discriminative tasks such as BEV
13
+ segmentation, the dual generative task of creating street-
14
+ view images from a BEV layout has rarely been explored.
15
+ The ability to generate realistic street-view images that
16
+ align with a given HD map and traffic layout is critical for
17
+ visualizing complex traffic scenarios and developing robust
18
+ perception models for autonomous driving. In this paper,
19
+ we propose BEVGen, a conditional generative model that
20
+ synthesizes a set of realistic and spatially consistent sur-
21
+ rounding images that match the BEV layout of a traffic sce-
22
+ nario. BEVGen incorporates a novel cross-view transfor-
23
+ mation and spatial attention design which learn the rela-
24
+ tionship between cameras and map views to ensure their
25
+ consistency. Our model can accurately render road and
26
+ lane lines, as well as generate traffic scenes under differ-
27
+ ent weather conditions and times of day. The code will be
28
+ made publicly available.
29
+ 1. Introduction
30
+ BEV perception for autonomous driving is a fast-
31
+ growing field, with the goal of learning a cross-view repre-
32
+ sentation that transforms information between the perspec-
33
+ tive and bird’s-eye view. Such representation can be used
34
+ in downstream tasks such as path planning and trajectory
35
+ forecasting [1, 55]. The recent successes in BEV percep-
36
+ tion, whether for monocular images [9,13,14] or multi-view
37
+ images [17,50,56], mostly focus on the discriminative side
38
+ of BEV perception where the inputs are street-view images
39
+ and the output is a semantic BEV layout. However, the gen-
40
+ erative side of BEV perception, which aims at synthesizing
41
+ realistic street-view images from a given BEV semantic lay-
42
+ out, is rarely explored. A BEV layout concisely describes
43
+ a traffic scenario at the semantic level, therefore generating
44
+ its corresponding street-view images can help visualize the
45
+ BEV Layout
46
+ Generated Street-View Images
47
+ Figure 1.
48
+ The proposed BEVGen generates realistic and spa-
49
+ tially consistent street-view images from BEV layout. There are
50
+ six camera views surrounding the ego vehicle as indicated by the
51
+ green rectangle in the BEV layout.
52
+ scene in a more real-world setting.
53
+ There are many potential applications for the BEV gen-
54
+ eration task. For example, we can create synthetic train-
55
+ ing data for BEV segmentation models. Whereas most cur-
56
+ rent approaches to synthetic training data involve a complex
57
+ simulator or 3D reconstructed meshes, it is simpler to adopt
58
+ a controllable generative model for diverse image genera-
59
+ tion. Another benefit provided by the BEV generation is
60
+ the ease of visualizing and editing traffic scenes. In the case
61
+ of self-driving vehicles, we often care about a small set of
62
+ rare scenarios where an accident is most likely to happen.
63
+ Human users can intuitively edit a BEV layout and then use
64
+ a generative model to output the corresponding street-view
65
+ images for training or testing a driving system.
66
+ The fundamental question for BEV generation is: what
67
+ could be a plausible set of street-view images that corre-
68
+ spond to this BEV layout? One could think of numerous
69
+ scenes with varying vehicle types, backgrounds, and more.
70
+ For a set of views to be realistic, we need to consider several
71
+ properties of the images. Similar to the problem of novel
72
+ view synthesis, images must appear consistent, as if they
73
+ were taken in the same physical location. For instance, cam-
74
+ eras with an overlapping field-of-view (FoV) should have
75
+ 1
76
+ arXiv:2301.04634v1 [cs.CV] 11 Jan 2023
77
+
78
+ overlapping content, and objects partially visible in one
79
+ frame should appear in a rotated frame. The visual styling
80
+ of the scene also needs to be consistent such that all virtual
81
+ views appear to be created in the same geographical area
82
+ (e.g., urban vs. rural), time of day, with the same weather
83
+ conditions, and so on. In addition to image consistency,
84
+ the images must correspond to the HD map, faithfully re-
85
+ producing the specified road layout, lane lines, and vehicle
86
+ locations. Unlike image-to-image translation with a seman-
87
+ tic mask, the BEV generation model must infer the image
88
+ layout to account for occlusions between objects and the
89
+ relative heights of objects in a scene. These two main chal-
90
+ lenges, image consistency and correspondence, are critical
91
+ to the task but can be difficult to reconcile. If we only desire
92
+ image consistency, similar to the case of image outpainting,
93
+ the model is free to generate any consistent image. How-
94
+ ever, if we also wish to maintain correspondence between
95
+ the virtual views and the HD map, portions of the virtual
96
+ views are constrained to represent certain elements (e.g.,
97
+ vehicles). On the other hand, if we only care about image
98
+ correspondence, the model only needs the context of part
99
+ of the HD map in its FoV and does not need to account for
100
+ previously generated images or issues such as wraparound.
101
+ In this work, we tackle the new task of generating street-
102
+ view images from a BEV layout and propose a generative
103
+ model called BEVGen to address the underlying challenges.
104
+ We develop an autoregressive model called BEVGen that
105
+ generates a set of n realistic and spatially consistent images.
106
+ Fig. 1 shows generation examples. BEVGen has two tech-
107
+ nical novelties: (i) it incorporates spatial embeddings using
108
+ camera instrinsics and extrinsics to allow the model to at-
109
+ tend to relevant portions of the images and HD map, and
110
+ (ii) it contains a novel attention bias and decoding scheme
111
+ that maintains both image consistency and correspondence.
112
+ Thus the model can generate high-quality scenes with spa-
113
+ tial awareness and scene consistency across camera views.
114
+ Compared to baselines, the proposed model obtains sub-
115
+ stantial improvement in terms of image synthesis quality
116
+ and semantic consistency. The model can also render real-
117
+ istic scene images from out-of-domain BEV maps, such as
118
+ those provided by a driving simulator or edited by a user.
119
+ We summarize our contributions as follows:
120
+ • We tackle the new task of multi-view image generation
121
+ from BEV layout. It is the first attempt to explore the
122
+ generative side of BEV perception for driving scenes.
123
+ • We develop a novel generative model BEVGen that
124
+ can synthesize spatially consistent street-view images
125
+ by incorporating spatial embeddings and a pairwise
126
+ camera bias.
127
+ • The model achieves high-quality synthesis results and
128
+ shows promise for applications such as data augmen-
129
+ tation and 3D simulation rendering.
130
+ 2. Related Work
131
+ Cross-modal Image Generation.
132
+ Cross-modal image
133
+ generation has seen a lot of attention in recent years with
134
+ work on text-to-image models [12, 32–34, 40], speech-to-
135
+ image models [5, 20], and image-to-video models [42].
136
+ Others have focused on using more direct representations
137
+ to control generation, including generation from semantic
138
+ masks [18,26,52], or worked to convert higher-level repre-
139
+ sentations such as text [15,30], scene graphs [7,19,44,51],
140
+ and bounding boxes [22] into such a semantic mask. There
141
+ have also been several attempts at learning spatially disen-
142
+ tangled scene representations by composing latent features
143
+ that correspond to specific parts of a scene [10, 27]. Our
144
+ task is conceptually similar to image generation from a se-
145
+ mantic mask but distinct in that our semantic representation
146
+ only provides minimal layout constraints, lacking height in-
147
+ formation, direct occlusion representation, and background
148
+ information.
149
+ Image-to-image Generation.
150
+ Direct image-to-image
151
+ translation has also taken off in recent years with models
152
+ such as pix2pix [18] and cycleGAN [57]. Several works
153
+ have focused directly on the task of street-view synthe-
154
+ sis from satellite views as a subset of the image-to-image
155
+ translation problem [35, 41, 43, 54]. These works attempt
156
+ to tackle viewpoint transformation, from a top-down to an
157
+ ego-centric view, that is implicitly required for our task, but
158
+ our task does not benefit from the rich RGB representation
159
+ provided by a satellite view. Furthermore, large portions of
160
+ our virtual camera views correspond to areas entirely un-
161
+ labeled on our BEV map, requiring largely unconditional
162
+ generation for these areas.
163
+ Image Outpainting.
164
+ Spatial consistency is important for
165
+ tasks such as image outpainting, where the goal is to gener-
166
+ ate or extend an image of the same scene. Early approaches
167
+ for image outpainting used auto-regressive approaches on a
168
+ pixel-wise level [6,25,45,46]. However, this approach can
169
+ be computationally expensive and thus is limited to gen-
170
+ erating low-resolution images. Subsequently, GANs were
171
+ introduced to the task [16, 23, 39, 49] which do not suffer
172
+ from the same computational limitations as pixel-wise au-
173
+ toregressive approaches. More recent works have utilized a
174
+ Vector Quantised-Variational Autoencoder (VQ-VAE) [47]
175
+ to great success [2,4]. Similar to image outpainting, our task
176
+ requires generated images to appear coherent in weather
177
+ and location; however, we also seek to generate distinct,
178
+ partially overlapping camera views and require that portions
179
+ of these views are conditionally generated from a BEV lay-
180
+ out.
181
+ Novel View Synthesis.
182
+ The same underlying VQ-VAE
183
+ architecture has been used for the single-view novel view
184
+ synthesis (NVS) task where the goal is to generate new vir-
185
+ tual camera view given a source image. By conditioning
186
+ 2
187
+
188
+ an autoregressive transformer with camera translation and
189
+ rotation, [38] showed that a transformer-based model can
190
+ learn the 3D relationship between images without explicit
191
+ depth maps or warping as used in prior attempts for single-
192
+ view NVS such as in [37, 48]. To improve the consistency
193
+ between frames, [36] suggests a camera-aware bias for self-
194
+ attention that encodes the similarity between consecutive
195
+ image frames. Our task requires a similar 3D understand-
196
+ ing between different viewpoints as in NVS, but lacks the
197
+ conditioning information provided by a source view(s) and
198
+ requires consistency not only between frames but also with
199
+ an HD map. If we broaden our task to allow for a source
200
+ view, as we demonstrate in Fig. 6, our task can be thought
201
+ of as a conditional NVS task.
202
+ 3. Method
203
+ In this section, we introduce the framework of the pro-
204
+ posed BEVGen. We have a semantic layout in Birds-Eye
205
+ View (BEV), B ∈ RHb×Hb×cb with the ego at the cen-
206
+ ter and cb channels describing the locations of vehicles,
207
+ roads, lane lines, and more (see Sec. 4.1). Given a set of
208
+ n virtual camera views to generate, (Kk, Rk, tk)n
209
+ k=1, where
210
+ Kk, Rk, tk are the intrinsics, extrinsic rotation, and trans-
211
+ lation of the kth camera, we generate n images, Ik ∈
212
+ RHc×Wc×3.
213
+ Fig. 2 illustrates the framework of the proposed BEV-
214
+ Gen. BEVGen consists of two autoencoders modeled by
215
+ VQ-VAE, one for images and one for the BEV representa-
216
+ tion, that allow the causal transformer to model scenes at
217
+ a high level. The key novelty lies in how the transformer
218
+ can relate information between modalities and across differ-
219
+ ent views. The cross-view transformation encodes a cross-
220
+ modal inductive 3D bias, allowing the model to attend to
221
+ relevant portions of the HD map and nearby image tokens.
222
+ We explain each part in more detail below.
223
+ 3.1. Model Structure
224
+ Image Encoder.
225
+ To generate a globally coherent image,
226
+ we model our distribution in a discrete latent space instead
227
+ of pixel-space. We use the VQ-VAE model introduced by
228
+ Oord et al. [47] as an alternative generative architecture to
229
+ GANs1. Additionally, we incorporate a perceptual and a
230
+ patch-wise adversarial loss as in [11]. The VQ-VAE archi-
231
+ tecture consists of an encoder Ecam, a decoder Dcam, and a
232
+ codebook Zc = {zm}Mc
233
+ m=1 ⊂ Rnc where Mc is the number
234
+ of code vectors and nc is the embedding dimension of each
235
+ code. Given a source image, xk ∈ RHc×Wc×3 we encode
236
+ ˆzk = E(xk) ∈ Rhc×wc×nc. To obtain a discrete, tokenized
237
+ representation, we find the nearest codebook vector for each
238
+ 1Note that switching to the recently developed class of diffusion mod-
239
+ els can potentially improve the image synthesis quality, but such models
240
+ require an order of magnitude of additional data and computational re-
241
+ sources for training and thus we leave it for future works.
242
+ feature vector ˆzk,ij ∈ Rnc where i, j are the row, column in-
243
+ dices in the discrete latent representation with size hc × wc:
244
+ zk,ij = arg min
245
+ m
246
+ ∥ˆzk,ij − zm∥ ∈ Rhc×wc×nc.
247
+ (1)
248
+ This creates a set of tokens zk ∈ Nhc×wc that we refer to
249
+ as our image tokens. To generate an image from a set of
250
+ tokens, we decode ˜zk ∈ Rhc×wc×nc with a convolutional
251
+ decoder, Dcam(˜zk) ∈ RHc×Wc×3 using the same architec-
252
+ ture as [11].
253
+ BEV Encoder.
254
+ To condition our model on a BEV lay-
255
+ out, we use the same discrete representation as for cam-
256
+ era images, except we replace the perceptual and adver-
257
+ sarial losses with a binary cross entropy loss for binary
258
+ channels and an L2 loss for continuous channels. We en-
259
+ code our BEV map b as before with Ebev(b) ∈ Rhb×wb×nb
260
+ and Zb = {zm}Mb
261
+ m=1 ⊂ Rnb to obtain a set of tokens,
262
+ zbev ∈ Nhb×wb. We discard the decoder stage, Dbev, after
263
+ training the 1st stage as it is not needed for our transformer
264
+ model or inference.
265
+ Autoregressive Modeling.
266
+ Given a BEV layout and k
267
+ sets of camera parameters, we seek to generate k images by
268
+ learning the prior distribution of a set of discrete tokens, z
269
+ conditioned on zbev, K, R, t.
270
+ p(z|zbev, K, R, t) =
271
+ h×w×k
272
+
273
+ i=0
274
+ p(zi|z<i, zbev, K, R, t).
275
+ (2)
276
+ We model p(.) by training a transformer τ that predicts the
277
+ subsequent token based on the discretized BEV features,
278
+ prior image tokens, and their respective camera parameters.
279
+ This approach requires us to order all k × hc × wc cam-
280
+ era tokens. Instead of using a camera-first, row-major order
281
+ where the first wcam tokens are the first row of the 1st camera
282
+ and the first hcamwcam tokens encompass the entire 1st cam-
283
+ era, we choose to decode in a center-out order. We choose
284
+ this order as we seek to maximize the influence of impor-
285
+ tant scene semantics, which primarily lie directly ahead and
286
+ behind of a vehicle while driving. We alternate between the
287
+ front and back, as well as left to right, decoding starting
288
+ at the top row and moving outward until we expand such
289
+ that the front row meets the back row, and repeat this for all
290
+ rows.
291
+ 3.2. Spatial Embeddings
292
+ To help the model attend to relevant tokens both in the
293
+ camera and BEV feature space, we introduce positional em-
294
+ beddings. We take inspiration from work on BEV segmen-
295
+ tation [56] on alignment between the BEV and first-person
296
+ view (FPV) perspectives.
297
+ Camera Embedding. In order to align image tokens with
298
+ BEV tokens, we use the known intrinsics and extrinsics
299
+ to reproject from image coordinates to world coordinates.
300
+ 3
301
+
302
+ Learned Pos Emb
303
+ Source Multi-view images
304
+ Token Direction Vectors
305
+ Encoder
306
+ 4
307
+ 3
308
+ 6
309
+ 1
310
+ Flatten (Row-
311
+ Major)
312
+ World Coords
313
+ Encoder
314
+ Flatten (Center-
315
+ Outward)
316
+ Autoregressive Transformer
317
+ Learned Pos Emb
318
+ Weighted
319
+ CE loss
320
+ Decoder
321
+ BEV Layout
322
+ Generated Multi-view images
323
+ 3
324
+ 1
325
+ 4
326
+ 3
327
+ 6
328
+ 1
329
+ 4
330
+ 6
331
+ 3
332
+ Pairwise Similarity
333
+ Camera Bias
334
+ Figure 2. BEVGen framework. A BEV layout and source multi-view images are encoded to a discrete representation and are flattened
335
+ before passed to the autoregressive transformer. Spatial embeddings are added to both camera and BEV tokens inside each transformed
336
+ bloc, the learned pairwise camera bias are added to the attention weights. Weighted CE loss is applied during training, and we pass the
337
+ tokens to the decoder to obtain generated images during inference.
338
+ Given a token in image space, zk,ij, we convert to homoge-
339
+ neous coordinates and obtain a direction vector in the ego
340
+ frame as follows:
341
+ dk,ij = R−1
342
+ k K−1
343
+ k zi,jk + tk.
344
+ (3)
345
+ We use a 1D convolution, θc(d) ∈ Rn×hc×wc×nemb, to en-
346
+ code our direction vector in the latent space of the trans-
347
+ former. We encode our image tokens using a shared learn-
348
+ able embedding λc(zk,ij) ∈ Rnemb, and add a per-token
349
+ learnable parameter, Λc
350
+ k,ij ∈ Rnemb, across image tokens:
351
+ lk,ij = λ(zk,ij) + θ(dk,ij) + Λk,ij.
352
+ (4)
353
+ BEV Embedding.
354
+ To align our BEV tokens with our
355
+ image tokens, we perform a similar operation as in Eq. (4)
356
+ and use the known BEV layout dimensions to obtain co-
357
+ ordinates in the ego frame, txy, for each token and en-
358
+ code these into our transformer latent space, with θb(t) ∈
359
+ Rhb×wb×nemb. We similarly use a shared learnable embed-
360
+ ding for our discrete tokens, λ(zxy) ∈ Rnemd, and a per-
361
+ token learnable parameter, Λxy:
362
+ lxy = λ(zxy) + θb(txy) + Λxy.
363
+ (5)
364
+ 3.3. Camera Bias
365
+ In addition to providing the model with aligned embed-
366
+ dings, we add a bias to our self-attention layers that provides
367
+ both an intramodal (image to image) and intermodel (im-
368
+ age to BEV) similarity constraint. This draws inspiration
369
+ Learned Pos Emb
370
+ Self Attn
371
+ Output
372
+ Pairwise
373
+ Camera
374
+ Bias
375
+ Figure 3. Camera Bias Overview. We construct a pairwise matrix
376
+ that encodes relationship between a given image token and another
377
+ BEV/image token.
378
+ from [36], but instead of providing a blockwise similarity
379
+ matrix that is composed of encoded poses between frames,
380
+ we provide a per-token similarity based on their relative di-
381
+ rection vectors. Our approach also encodes the relationship
382
+ between image and BEV tokens. For self-attention in any
383
+ layer between some query qr and key/value kc/vc we have:
384
+ Attention(qr, kc, vc) = vc softmax
385
+ �arc
386
+
387
+ d
388
+
389
+ ,
390
+ (6)
391
+ arc = qrkc + βrc.
392
+ (7)
393
+ 4
394
+
395
+ 940940940940米The transformer sequence is composed of hbwb condi-
396
+ tional BEV tokens followed by hcwc camera tokens.
397
+ If
398
+ r, c > hbwb, both positions correspond to image tokens and
399
+ thus we have two direction vectors, dr, dc, computed as in
400
+ Eq. (3). As discussed in Sec. 3.1, we have a mapping be-
401
+ tween the sequence index and image token (i, j) in camera
402
+ k. If r > hbwb > c, we have a query for some image token
403
+ and a key/value pair corresponding to BEV token. Thus, we
404
+ again construct two direction vectors. In this case our BEV
405
+ direction vector consists of the 2D World coordinates (in
406
+ the ego-center frame) and our image direction vector is the
407
+ same as in Eq. (3) except with the row value as the center
408
+ of the image. Given these two direction vectors, dr, dc, we
409
+ add the cosine similarity and a learnable parameter, θrc, as
410
+ shown in Fig. 3:
411
+ βrc =
412
+ dr · dc
413
+ ∥dr∥∥dc∥ + θrc.
414
+ (8)
415
+ 3.4. Random Masking
416
+ A key problem that arises when generating multiple im-
417
+ ages in parallel is the quadratic complexity of the self-
418
+ attention mechanism. One solution to this issue would be to
419
+ limit the sequence length of our transformer by using per-
420
+ forming image extrapolation as in [2]. However, this lim-
421
+ its the scene context and can cause later images to appear
422
+ far different from the first image, despite having local im-
423
+ age consistency. Instead, we implement a version of sparse
424
+ attention as in [8, 53]. As opposed to a uniform random
425
+ attention mask, we instead unmask regions of the image
426
+ near the token we attend. Using the same formulation as
427
+ in Eq. (8), we create a pairwise similarity matrix for image
428
+ tokens only. As sparse attention groups the input sequence
429
+ into discrete blocks, we perform an average pooling on this
430
+ matrix down to the resolution of the sparse attention opera-
431
+ tion and use these values as weights for sampling. Addition-
432
+ ally, we have a sliding window in which we always attend
433
+ to the last r tokens, and we attend to all BEV tokens.
434
+ 4. Experiments
435
+ 4.1. Dataset
436
+ We evaluate the proposed method using the NuScenes
437
+ dataset [3], one of the popular driving datasets used for BEV
438
+ segmentation and detection. We chose NuScenes as it is
439
+ among the only large driving dataset to provide full 360 deg
440
+ camera coverage with a consistent camera resolution, but
441
+ our method can be easily adapted to other datasets with
442
+ different camera arrangements as demonstrated in Sec. 4.4.
443
+ NuScenes consists of 1000, 20-second scenes, captured in
444
+ Boston and Singapore. There are a total of 40k annotated in-
445
+ stances that are labeled every 2Hz, split into 34k, 6k, and 6k
446
+ instances for the train, validation, and test sets respectively.
447
+ Each instance contains ground-truth 3D bounding boxes,
448
+ 6 camera images covering a 360 deg FoV, calibrated cam-
449
+ era intrinsics and extrinsics, as well as LiDAR and Radar
450
+ scans. We project these 3D bounding boxes onto a BEV
451
+ layout following standard practice used in BEV segmenta-
452
+ tion [17,29,56].
453
+ Preprocessing.
454
+ The BEV layout representation used
455
+ in training and testing is a 256 × 256 mask representing
456
+ 80m × 80m around the ego center and containing 21 chan-
457
+ nels. 14 channels are binary masks representing map in-
458
+ formation (lane lines, dividers, etc.) and actor annotations
459
+ (cars, trucks, pedestrians, etc.). The remaining 7 channels
460
+ provide instance information including the visibility of an
461
+ annotation within the camera view, the height, width, and
462
+ orientation of the annotation, and the pixel offset from the
463
+ center point of the annotation. We resize our cropped cam-
464
+ era images to 224 × 400 and appropriately modify the in-
465
+ trinsics passed to our model. To enable our weighted cross-
466
+ entropy loss, we project the provided 3D annotations onto
467
+ the camera frame and weight the corresponding tokens in
468
+ our discrete camera frame representation, zk ∈ Nhc×wc.
469
+ 4.2. Training Details
470
+ VQ-VAE. We train the 1st stage camera VQ-VAE with ag-
471
+ gressive augmentation consisting of flips, rotations, color
472
+ shifts, and crops. Similarly, we train our 1st stage BEV
473
+ VQ-VAE with flips and rotations. For the 2nd stage, we
474
+ add minimal rotations and scaling but perform cropping and
475
+ modify the corresponding intrinsics that are passed to the
476
+ model.
477
+ Transformer. We crop all images to H × W = 224 × 400
478
+ and our 4 encoder/decoder stages create a discrete latent
479
+ representation of hc × wc = 14 × 25. Our BEV layout has
480
+ a discrete latent representation of hb × hb = 16, 16. Both
481
+ the BEV and image codebooks have |Zc| = |Zb| = 1024
482
+ codes with an embedding dimension, nc = nb = 256. Our
483
+ transformer is GPT-like [31] with 16-heads and 24-layers.
484
+ We use DeepSpeed to facilitate sparse self-attention and
485
+ 16-bit training. We clip gradients at 50 to prevent insta-
486
+ bility during training and use the AdamW optimizer [24]
487
+ with β1, β2 = 0.9, 0.95 and a learning rate of λ = 5e-7.
488
+ For our sparse models, we have an attention mask density
489
+ of 35% with a sliding window length of r = 96. Except
490
+ as described in Sec. 4.4, our sparse model is derived from
491
+ fine-tuning our full-attention model for 10 epochs.
492
+ 4.3. Results
493
+ We show generation results for all six camera views
494
+ trained from the NuScenes dataset. For all visualizations,
495
+ we flip the back left and right cameras along the vertical
496
+ axis to highlight the image consistency of our model. Thus,
497
+ the side, front, and back cameras meet at their outer edges in
498
+ all figures. Since our work is, to our knowledge, the first at-
499
+ 5
500
+
501
+ Method
502
+ FID↓
503
+ Road mIoU↑
504
+ Vehicle mIoU↑
505
+ Baseline
506
+ 43.18
507
+ 45.80
508
+ 4.44
509
+ BEVGen
510
+ 25.54
511
+ 50.20
512
+ 5.89
513
+ Sparse BEVGen
514
+ 28.67
515
+ 50.92
516
+ 6.69
517
+ Table 1. Baseline Comparison over all 6 views on NuScenes Vali-
518
+ dation.
519
+ tempt at conditional street-view synthesis from a BEV lay-
520
+ out, we find no existing method to directly compare with.
521
+ Instead, we compare with a baseline model consisting of
522
+ the same underlying GPT architecture and using the same
523
+ 1st stage encoders/decoders as our BEVGen model. We use
524
+ a row-major decoding order and employ only a learnable
525
+ position embedding, but do not add the spatial embeddings
526
+ (Sec. 3.2) or camera bias (Sec. 3.3) and use full-attention.
527
+ Qualitative result. Fig. 5 exhibits the generation examples
528
+ from BEVGen. Our model is able to generate a diverse set
529
+ of scenes including intersections, parking lots, and boule-
530
+ vards. We observe that each camera view not only correctly
531
+ displays the surrounding of the same location, but also pre-
532
+ serves the spatial perspective. BEVGen synthesizes images
533
+ under various weather conditions, with the same weather
534
+ apparent in all images, including physical artifacts such as
535
+ rain. We also demonstrate that our model is capable of gen-
536
+ erating diverse scenes corresponding to the same BEV lay-
537
+ out. We see at the bottom of Fig. 5 the same location ren-
538
+ dered in the day and at night by the model.
539
+ We compare generation quality of BEVGen to our base-
540
+ line using the same BEV layout in Fig. 5. We see that BEV-
541
+ Gen can not only render a more accurate scene with nearby
542
+ vehicles present in the correct camera views, but our spatial
543
+ consistency is significantly improved. Our model is able to
544
+ correctly synthesize a vehicle partially present in multiple
545
+ camera views. We also see that the background of the scene
546
+ is consistent between cameras, unlike the baseline model.
547
+ Additionally, we apply a BEV segmentation model on
548
+ the synthesized images and analyze the semantic content.
549
+ As seen in Fig. 5, our images allow the model to correctly
550
+ infer the road layout whereas our baseline images do not.
551
+ Quantitative result.
552
+ We use the Fr´echet Inception Dis-
553
+ tance (FID) to evaluate our synthesized quality compared to
554
+ the source images. Unless otherwise noted, all metrics are
555
+ calculated on a subset of the NuScenes validation set. We
556
+ sample 4 images from each scene, with 600 instances over-
557
+ all, and synthesize a set of images with no post-generation
558
+ filtering. For calculating FID scores, we use clean-fid [28].
559
+ To differentiate between the performance of our 1st and
560
+ 2nd stage, we compare our results to the results obtained by
561
+ feeding the encoded tokens of the source images directly to
562
+ the decoder, as is done when training the 1st stage. This
563
+ represents the theoretical upper bound of our model’s per-
564
+ formance and it allows us to largely remove the effect of the
565
+ first stage which is not the focus of this paper. However, it
566
+ should be noted that the design of the 1st stage and the prop-
567
+ erties of the learned codebook can have a significant impact
568
+ on the 2nd stage [11,12].
569
+ As seen in Tab. 1, our BEVGen model achieved an FID
570
+ score of 25.54 compared to the baseline score of 43.18. This
571
+ is in comparison to our reference upper-bound FID score of
572
+ 9.37. Our model utilizing our sparse masking design from
573
+ Sec. 3.4 achieved an FID score of 28.67. This sparse vari-
574
+ ant is approximately 48% faster during inference and 40%
575
+ faster for training.
576
+ While FID is a common metric to measure image syn-
577
+ thesis quality, it fails to entirely capture the design goals of
578
+ our task and cannot reflect the synthesis quality of different
579
+ semantic categories. Since we seek to generate multi-view
580
+ images consistent with a BEV layout, we wish to measure
581
+ our performance on this consistency. To do this, we lever-
582
+ age a BEV segmentation network CVT from [56], trained
583
+ entirely on source data for a fair comparison. We use the
584
+ same set of generated images conditioned on a ground-truth
585
+ BEV layout as before and for each set we apply the CVT to
586
+ the generated images and then compare the predicted lay-
587
+ out with the ground-truth BEV layout. We report both the
588
+ road and vehicle class mean intersection-over-union (mIoU)
589
+ scores. As shown in Tab. 1, we beat our baseline by 4.4 and
590
+ 1.45 for road and vehicle classes respectively. Note that the
591
+ performance of the BEV segmentation model on the val-
592
+ idation set is 66.31 and 27.51 for road and vehicle mIoU
593
+ respectively. This reveals that though the model can gen-
594
+ erate road regions in the image in a reasonable manner, it
595
+ still has a limited capability of generating high-quality indi-
596
+ vidual vehicles that can be recognized correctly by the seg-
597
+ mentation network. This is a common problem for scene
598
+ generation where it remains challenging to synthesize the
599
+ small objects entirely. Our work is a starting point and we
600
+ plan to improve small object synthesis in the future work.
601
+ View-conditioned generation.
602
+ We test the ability of our
603
+ model to synthesize other views when provided a view from
604
+ a single camera as seen in Fig. 6. Due to the chosen center-
605
+ out decoding order, not all image tokens are able to attend to
606
+ the source image and, instead, we simply skip inference for
607
+ provided camera views. Despite this, we observe that our
608
+ model is able to generate consistent imagery both in scene
609
+ content and time of day.
610
+ 4.4. Ablation Study
611
+ To verify the effectiveness of our design choices, we run
612
+ an ablation study on key features of our model. We run
613
+ these experiments on the same subset of the NuScenes vali-
614
+ dation set as in Sec. 4.3, but only consider the 3 front-facing
615
+ views to reduce training time. The 3 front-facing views have
616
+ a larger FoV overlap than the rear view and capture more
617
+ 6
618
+
619
+ Figure 4. Synthesized multi-view images from BEVGen. Image contents are diverse and realistic. The two instances in the bottom row
620
+ use the same BEV layout for synthesizing the same location in day and night.
621
+ Figure 5. Qualitative comparison to baseline. Left is the instance from the baseline and right is from BEVGen. We also show the predicted
622
+ layout (only for the road class) from the generated multi-view images.
623
+ relevant scene features such as cars and lane-lines when
624
+ compared to the side-facing rear views that capture a sig-
625
+ nificant amount of background. This is more relevant to our
626
+ task as it allows us to better verify the design objectives of
627
+ our model.
628
+ We test four variants of our model, one with only center-
629
+ out decoding, one with our camera bias, one with the cam-
630
+ era bias and spatial embeddings, and a final model that we
631
+ train from scratch using our sparse masking, instead of fine-
632
+ tuning. Tab. 2 shows a steady improvement in FID scores
633
+ as we add the camera bias, and spatial embeddings.
634
+ 5. Applications
635
+ Generating realistic images from BEV layout has many
636
+ applications. In this section we explore the applications of
637
+ data augmentation for BEV segmentation and image gener-
638
+ ation from simulated BEV.
639
+ Method
640
+ FID↓
641
+ Center-out decoding
642
+ 42.32
643
+ + Camera Bias
644
+ 41.20
645
+ + Camera Bias, Spatial Embedding
646
+ 40.48
647
+ + Camera Bias, Spatial Embedding, Sparse Mask
648
+ 48.31
649
+ Table 2. Ablation of the key model components.
650
+ Data augmentation for BEV segmentation.
651
+ An impor-
652
+ tant application of our BEV conditional generative model
653
+ is generating synthetic data to improve prediction models.
654
+ Thus, we seek to verify the effectiveness of our model by
655
+ incorporating our generated images as augmented samples
656
+ during training of a BEV segmentation model.
657
+ We use
658
+ CVT [56] as our model, which is also used in Sec. 4.3, and
659
+ compare our results to training without any synthetic sam-
660
+ 7
661
+
662
+ Figure 6. View-conditioned generation. Green box indicates the provided source tokens.
663
+ Figure 7. Generating images based on the BEV layouts provided by the MetaDrive driving simulator
664
+ Road mIoU
665
+ Vehicle mIoU
666
+ CVT (w/o augmentation)
667
+ 71.3
668
+ 36.0
669
+ CVT (w/ augmentation)
670
+ 71.9
671
+ 36.6
672
+ Table 3. Application of data augmentation. We report the segmen-
673
+ tation results on the validation set of NuScenes trained from the
674
+ original training set and the one augmented with synthetic data.
675
+ ples. We generate 6,000 unique instances using the BEV
676
+ layout from the train set on NuScenes. These synthetic in-
677
+ stances are associated with the ground truth BEV layout for
678
+ training, with no relation to results from Sec. 4.3. To reduce
679
+ the effect of randomness during training, we set the random
680
+ seed and disable non-deterministic operations for all train-
681
+ ing. As seen in Tab. 3, our data improves validation mIoU
682
+ by 0.6 for both the road category and the vehicle category.
683
+ Image generation from simulated BEV. Since one mo-
684
+ tivation for our task definition lies in the simplicity of the
685
+ BEV layout, we wish to determine whether this enables our
686
+ model to generate new scenes from out-of-domain (OOD)
687
+ HD maps. We use MetaDrive simulator [21] to generate
688
+ random traffic scenarios and their associated BEV layouts
689
+ in simulation, and then input the BEV layouts in our BEV-
690
+ Gen. Generated images are shown in Fig. 7. We can see that
691
+ our model can turn the simulated scenes into realistic street
692
+ images using the BEV layout as a bridge. It has potential to
693
+ address the sim2real gap.
694
+ 6. Discussion and Conclusion
695
+ Limitations and Future work.
696
+ Despite the performance
697
+ achieved with sparse attention, future work may benefit
698
+ from use of a bidirectional transformer to allow for paral-
699
+ lel decoding as demonstrated in [4]. We will also explore
700
+ replacing the encoder with a diffusion model to improve the
701
+ image synthesis quality. The proposed model still struggles
702
+ on generating small objects like pedestrians and some vehi-
703
+ cles. We plan to decouple the generation of foreground and
704
+ background to address this issue in the future work.
705
+ In this work we tackle the BEV generation task by de-
706
+ veloping a generative model called BEVGen. After training
707
+ on real-world driving dataset, the proposed model can gen-
708
+ erate spatially consistent multi-view images from a given
709
+ BEV layout. We further show its application on data aug-
710
+ mentation and simulated BEV generation.
711
+ 8
712
+
713
+ References
714
+ [1] Adil Kaan Akan and Fatma G¨uney. StretchBEV: Stretch-
715
+ ing Future Instance Prediction Spatially and Temporally. In
716
+ Shai Avidan, Gabriel J. Brostow, Moustapha Ciss´e, Gio-
717
+ vanni Maria Farinella, and Tal Hassner, editors, Computer
718
+ Vision - ECCV 2022 - 17th European Conference, Tel Aviv,
719
+ Israel, October 23-27, 2022, Proceedings, Part XXXVIII,
720
+ volume 13698 of Lecture Notes in Computer Science, pages
721
+ 444–460. 1
722
+ [2] Naofumi Akimoto, Yuhi Matsuo, and Yoshimitsu Aoki. Di-
723
+ verse Plausible 360-Degree Image Outpainting for Efficient
724
+ 3DCG Background Creation. pages 11441–11450. 2, 5
725
+ [3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
726
+ Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
727
+ ancarlo Baldan, and Oscar Beijbom. nuScenes: A Multi-
728
+ modal Dataset for Autonomous Driving. In 2020 IEEE/CVF
729
+ Conference on Computer Vision and Pattern Recognition
730
+ (CVPR), pages 11618–11628. 5
731
+ [4] Huiwen Chang,
732
+ Han Zhang,
733
+ Lu Jiang,
734
+ Ce Liu,
735
+ and
736
+ William T. Freeman.
737
+ MaskGIT: Masked Generative Im-
738
+ age Transformer. In 2022 IEEE/CVF Conference on Com-
739
+ puter Vision and Pattern Recognition (CVPR), pages 11305–
740
+ 11315. 2, 8
741
+ [5] Lele Chen, Sudhanshu Srivastava, Zhiyao Duan, and Chen-
742
+ liang Xu. Deep Cross-Modal Audio-Visual Generation. In
743
+ Proceedings of the on Thematic Workshops of ACM Multi-
744
+ media 2017, Thematic Workshops ’17, pages 349–357. 2
745
+ [6] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
746
+ woo Jun, David Luan, and Ilya Sutskever. Generative Pre-
747
+ training From Pixels. In Proceedings of the 37th Interna-
748
+ tional Conference on Machine Learning, pages 1691–1703.
749
+ 2
750
+ [7] Helisa Dhamo, Azade Farshad, Iro Laina, Nassir Navab,
751
+ Gregory D. Hager, Federico Tombari, and Christian Rup-
752
+ precht. Semantic Image Manipulation Using Scene Graphs.
753
+ pages 5213–5222. 2
754
+ [8] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
755
+ Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
756
+ Hongxia Yang, and Jie Tang. CogView: Mastering Text-to-
757
+ Image Generation via Transformers. In Advances in Neural
758
+ Information Processing Systems, volume 34, pages 19822–
759
+ 19835. 5
760
+ [9] Pramit Dutta, Ganesh Sistu, Senthil Kumar Yogamani, Edgar
761
+ Galv´an, and John B. McDonald. ViT-BEVSeg: A Hierar-
762
+ chical Transformer Network for Monocular Birds-Eye-View
763
+ Segmentation. abs/2205.15667. 1
764
+ [10] Dave Epstein, Taesung Park, Richard Zhang, Eli Shecht-
765
+ man, and Alexei A. Efros. BlobGAN: Spatially Disentangled
766
+ Scene Representations. abs/2205.02837. 2
767
+ [11] Patrick Esser, Robin Rombach, and Bj¨orn Ommer.
768
+ Tam-
769
+ ing Transformers for High-Resolution Image Synthesis. In
770
+ 2021 IEEE/CVF Conference on Computer Vision and Pat-
771
+ tern Recognition (CVPR), pages 12868–12878. 3, 6
772
+ [12] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin,
773
+ Devi Parikh, and Yaniv Taigman. Make-A-Scene: Scene-
774
+ Based Text-to-Image Generation with Human Priors.
775
+ In
776
+ Shai Avidan, Gabriel J. Brostow, Moustapha Ciss´e, Gio-
777
+ vanni Maria Farinella, and Tal Hassner, editors, Computer
778
+ Vision - ECCV 2022 - 17th European Conference, Tel Aviv,
779
+ Israel, October 23-27, 2022, Proceedings, Part XV, volume
780
+ 13675 of Lecture Notes in Computer Science, pages 89–106.
781
+ 2, 6
782
+ [13] Shi Gong, Xiaoqing Ye, Xiao Tan, Jingdong Wang, Errui
783
+ Ding, Yu Zhou, and Xiang Bai. GitNet: Geometric Prior-
784
+ Based Transformation for Birds-Eye-View Segmentation. In
785
+ Shai Avidan, Gabriel J. Brostow, Moustapha Ciss´e, Gio-
786
+ vanni Maria Farinella, and Tal Hassner, editors, Computer
787
+ Vision - ECCV 2022 - 17th European Conference, Tel Aviv,
788
+ Israel, October 23-27, 2022, Proceedings, Part I, volume
789
+ 13661 of Lecture Notes in Computer Science, pages 396–
790
+ 411. 1
791
+ [14] Nikhil Gosala and Abhinav Valada. Bird’s-Eye-View Panop-
792
+ tic Segmentation Using Monocular Frontal View Images.
793
+ 7(2):1968–1975. 1
794
+ [15] Seunghoon Hong, Dingdong Yang, Jongwook Choi, and
795
+ Honglak Lee. Inferring Semantic Layout for Hierarchical
796
+ Text-to-Image Synthesis.
797
+ In 2018 IEEE/CVF Conference
798
+ on Computer Vision and Pattern Recognition, pages 7986–
799
+ 7994. 2
800
+ [16] Basile Van Hoorick. Image Outpainting and Harmonization
801
+ using Generative Adversarial Networks. abs/1912.10960. 2
802
+ [17] Anthony Hu, Zak Murez, Nikhil Mohan, Sof´ıa Dudas, Jef-
803
+ frey Hawke, Vijay Badrinarayanan, Roberto Cipolla, and
804
+ Alex Kendall. FIERY: Future Instance Prediction in Bird’s-
805
+ Eye View From Surround Monocular Cameras.
806
+ pages
807
+ 15273–15282. 1, 5
808
+ [18] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
809
+ Efros. Image-To-Image Translation With Conditional Ad-
810
+ versarial Networks. pages 1125–1134. 2
811
+ [19] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image Gen-
812
+ eration From Scene Graphs. In 2018 IEEE Conference on
813
+ Computer Vision and Pattern Recognition, CVPR 2018, Salt
814
+ Lake City, UT, USA, June 18-22, 2018, pages 1219–1228. 2
815
+ [20] Jiguo Li, Xinfeng Zhang, Chuanmin Jia, Jizheng Xu, Li
816
+ Zhang, Yue Wang, Siwei Ma, and Wen Gao. Direct Speech-
817
+ to-image Translation. 14(3):517–529. Comment: Accepted
818
+ by JSTSP. 2
819
+ [21] Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang,
820
+ Zhenghai Xue, and Bolei Zhou.
821
+ Metadrive: Composing
822
+ diverse driving scenarios for generalizable reinforcement
823
+ learning. 8
824
+ [22] Zejian Li, Jingyu Wu, Immanuel Koh, Yongchuan Tang,
825
+ and Lingyun Sun.
826
+ Image Synthesis from Layout with
827
+ Locality-Aware Mask Adaption.
828
+ In 2021 IEEE/CVF In-
829
+ ternational Conference on Computer Vision (ICCV), pages
830
+ 13799–13808. 2
831
+ [23] Han Lin, Maurice Pagnucco, and Yang Song.
832
+ Edge
833
+ Guided Progressively Generative Image Outpainting.
834
+ In
835
+ 2021 IEEE/CVF Conference on Computer Vision and Pat-
836
+ tern Recognition Workshops (CVPRW), pages 806–815. 2
837
+ [24] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
838
+ Regularization. Comment: Published as a conference paper
839
+ at ICLR 2019. 5
840
+ 9
841
+
842
+ [25] Jacob Menick and Nal Kalchbrenner. Generating High Fi-
843
+ delity Images with Subscale Pixel Networks and Multidi-
844
+ mensional Upscaling. In International Conference on Learn-
845
+ ing Representations. 2
846
+ [26] Sangwoo Mo,
847
+ Minsu Cho,
848
+ and Jinwoo Shin.
849
+ In-
850
+ staGAN:
851
+ Instance-aware
852
+ Image-to-Image
853
+ Translation.
854
+ abs/1812.10889. 2
855
+ [27] Thu H Nguyen-Phuoc, Christian Richardt, Long Mai,
856
+ Yongliang Yang, and Niloy Mitra. BlockGAN: Learning 3D
857
+ Object-aware Scene Representations from Unlabelled Im-
858
+ ages. In Advances in Neural Information Processing Sys-
859
+ tems, volume 33, pages 6767–6778. 2
860
+ [28] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu.
861
+ On
862
+ aliased resizing and surprising subtleties in GAN evaluation.
863
+ In CVPR. 6
864
+ [29] Jonah Philion and Sanja Fidler. Lift, Splat, Shoot: Encoding
865
+ Images from Arbitrary Camera Rigs by Implicitly Unproject-
866
+ ing to 3D. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
867
+ and Jan-Michael Frahm, editors, Computer Vision – ECCV
868
+ 2020, Lecture Notes in Computer Science, pages 194–210.
869
+ 5
870
+ [30] Tingting Qiao, Jing Zhang, Duanqing Xu, and Dacheng Tao.
871
+ Learn, Imagine and Create: Text-to-Image Generation from
872
+ Prior Knowledge. In Advances in Neural Information Pro-
873
+ cessing Systems, volume 32. 2
874
+ [31] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
875
+ Amodei, and Ilya Sutskever. Language models are unsuper-
876
+ vised multitask learners. 5
877
+ [32] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
878
+ and Mark Chen. Hierarchical Text-Conditional Image Gen-
879
+ eration with CLIP Latents. abs/2204.06125. 2
880
+ [33] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
881
+ Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
882
+ Zero-Shot Text-to-Image Generation. In Proceedings of the
883
+ 38th International Conference on Machine Learning, pages
884
+ 8821–8831. 2
885
+ [34] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
886
+ geswaran, Bernt Schiele, and Honglak Lee. Generative Ad-
887
+ versarial Text to Image Synthesis.
888
+ In Proceedings of The
889
+ 33rd International Conference on Machine Learning, pages
890
+ 1060–1069. 2
891
+ [35] Krishna Regmi and Ali Borji. Cross-View Image Synthesis
892
+ Using Conditional GANs. In 2018 IEEE/CVF Conference
893
+ on Computer Vision and Pattern Recognition, pages 3501–
894
+ 3510. 2
895
+ [36] Xuanchi Ren and Xiaolong Wang. Look Outside the Room:
896
+ Synthesizing a Consistent Long-Term 3D Scene Video From
897
+ a Single Image. pages 3563–3573. 3, 4
898
+ [37] Chris Rockwell, David F. Fouhey, and Justin Johnson. Pixel-
899
+ Synth: Generating a 3D-Consistent Experience From a Sin-
900
+ gle Image. pages 14104–14113. 3
901
+ [38] Robin
902
+ Rombach,
903
+ Patrick
904
+ Esser,
905
+ and
906
+ Bjorn
907
+ Ommer.
908
+ Geometry-Free View Synthesis: Transformers and no 3D
909
+ Priors.
910
+ In 2021 IEEE/CVF International Conference on
911
+ Computer Vision (ICCV), pages 14336–14346. 3
912
+ [39] Mark Sabini and Gili Rusak. Painting Outside the Box: Im-
913
+ age Outpainting with GANs. abs/1808.08483. 2
914
+ [40] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
915
+ Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
916
+ Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
917
+ Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J.
918
+ Fleet, and Mohammad Norouzi.
919
+ Photorealistic Text-to-
920
+ Image Diffusion Models with Deep Language Understand-
921
+ ing. abs/2205.11487. 2
922
+ [41] Yujiao Shi, Dylan Campbell, Xin Yu, and Hongdong Li.
923
+ Geometry-Guided Street-View Panorama Synthesis From
924
+ Satellite Imagery. 44(12):10009–10022. 2
925
+ [42] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
926
+ Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
927
+ Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taig-
928
+ man.
929
+ Make-A-Video: Text-to-Video Generation without
930
+ Text-Video Data. abs/2209.14792. 2
931
+ [43] Aysim Toker, Qunjie Zhou, Maxim Maximov, and Laura
932
+ Leal-Taixe. Coming Down to Earth: Satellite-to-Street View
933
+ Synthesis for Geo-Localization. In 2021 IEEE/CVF Confer-
934
+ ence on Computer Vision and Pattern Recognition (CVPR),
935
+ pages 6484–6493. 2
936
+ [44] Subarna Tripathi, Anahita Bhiwandiwalla, Alexei Bastidas,
937
+ and Hanlin Tang. Using Scene Graph Context to Improve
938
+ Image Generation. abs/1901.03762. 2
939
+ [45] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, ko-
940
+ ray kavukcuoglu, Oriol Vinyals, and Alex Graves.
941
+ Con-
942
+ ditional Image Generation with PixelCNN Decoders.
943
+ In
944
+ Advances in Neural Information Processing Systems, vol-
945
+ ume 29. 2
946
+ [46] A¨aron van den Oord,
947
+ Nal Kalchbrenner,
948
+ and Koray
949
+ Kavukcuoglu. Pixel Recurrent Neural Networks. In Pro-
950
+ ceedings of The 33rd International Conference on Machine
951
+ Learning, pages 1747–1756. 2
952
+ [47] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu.
953
+ Neural Discrete Representation Learning.
954
+ In Advances in
955
+ Neural Information Processing Systems, volume 30. 2, 3
956
+ [48] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
957
+ Johnson. SynSin: End-to-End View Synthesis From a Single
958
+ Image. In 2020 IEEE/CVF Conference on Computer Vision
959
+ and Pattern Recognition (CVPR), pages 7465–7475. 3
960
+ [49] Qingguo Xiao, Guangyao Li, and Qiaochuan Chen. Image
961
+ Outpainting: Hallucinating Beyond the Image. 8:173576–
962
+ 173583. 2
963
+ [50] Runsheng Xu, Zhengzhong Tu, Hao Xiang, Wei Shao, Bolei
964
+ Zhou, and Jiaqi Ma. CoBEVT: Cooperative Bird’s Eye View
965
+ Semantic Segmentation with Sparse Transformers. In 2022
966
+ Conference on Robot Learning (CoRL). 1
967
+ [51] Chiao-An Yang, Cheng-Yo Tan, Wan-Cyuan Fan, Cheng-Fu
968
+ Yang, Meng-Lin Wu, and Yu-Chiang Frank Wang. Scene
969
+ Graph Expansion for Semantics-Guided Image Outpainting.
970
+ In 2022 IEEE/CVF Conference on Computer Vision and Pat-
971
+ tern Recognition (CVPR), pages 15596–15605. 2
972
+ [52] Yurong You, Xinlei Pan, Ziyan Wang, and Cewu Lu. Virtual
973
+ to Real Reinforcement Learning for Autonomous Driving.
974
+ abs/1704.03952. 2
975
+ [53] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey,
976
+ Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip
977
+ Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr
978
+ 10
979
+
980
+ Ahmed. Big Bird: Transformers for Longer Sequences. In
981
+ Advances in Neural Information Processing Systems, vol-
982
+ ume 33, pages 17283–17297. 5
983
+ [54] Menghua Zhai, Zachary Bessinger, Scott Workman, and
984
+ Nathan Jacobs. Predicting Ground-Level Scene Layout from
985
+ Aerial Imagery. In 2017 IEEE Conference on Computer Vi-
986
+ sion and Pattern Recognition (CVPR), pages 4132–4140. 2
987
+ [55] Yunpeng Zhang, Zheng Zhu, Wenzhao Zheng, Junjie Huang,
988
+ Guan Huang, Jie Zhou, and Jiwen Lu. BEVerse: Unified Per-
989
+ ception and Prediction in Birds-Eye-View for Vision-Centric
990
+ Autonomous Driving. abs/2205.09743. 1
991
+ [56] Brady Zhou and Philipp Kr¨ahenb¨uhl.
992
+ Cross-view Trans-
993
+ formers for real-time Map-view Semantic Segmentation. In
994
+ 2022 IEEE/CVF Conference on Computer Vision and Pat-
995
+ tern Recognition (CVPR), pages 13750–13759. 1, 3, 5, 6,
996
+ 7
997
+ [57] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
998
+ Efros. Unpaired Image-to-Image Translation Using Cycle-
999
+ Consistent Adversarial Networks.
1000
+ In 2017 IEEE Interna-
1001
+ tional Conference on Computer Vision (ICCV), pages 2242–
1002
+ 2251. 2
1003
+ 11
1004
+
39E3T4oBgHgl3EQfogqI/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tFAT4oBgHgl3EQfERy2/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eab38ceec152eeac13b4ab098fbee09916ed3036b4d52c9a2ea2469c1edd31a
3
+ size 5701677
5NE0T4oBgHgl3EQfegCm/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0623c7406bf8fed9d8f05adf65b8069584af23174adacfc6b79d5650fde8d3c
3
+ size 2949165
7dAzT4oBgHgl3EQfEvrf/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f626452b839032ed2f579fa06376a48b0c23dad1298910a5741d72a87b77ba47
3
+ size 229937
8NE3T4oBgHgl3EQfqQrl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38d1674fe458de3ac9c75840cae235655be494a2f0aa7e3e81deee29f39dc6e2
3
+ size 1572909
9tE1T4oBgHgl3EQfUQPn/content/tmp_files/2301.03089v1.pdf.txt ADDED
@@ -0,0 +1,1461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LINKS IN ORTHOPLICIAL APOLLONIAN PACKINGS
2
+ JORGE L. RAM´IREZ ALFONS´IN† AND IV´AN RASSKIN‡
3
+ Abstract. In this paper, we introduce a connection between Apollonian packings and links. We present
4
+ new representations of links embedded in the tangency graph of orthoplicial Apollonian packings and
5
+ show that any algebraic link can be projected onto the tangency graph of a cubic Apollonian packing.
6
+ We use these representations to improve the upper bound on the ball number of an infinite family of
7
+ alternating algebraic links, to reinterpret the correspondence of rational tangles and rational numbers,
8
+ and to find primitive solutions of the Diophantine equation x4 + y4 + z4 = 2t2.
9
+ 1. Introduction
10
+ Apollonian packings and their generalizations appear in many different fields of science: in the mod-
11
+ elling of granular systems [AM95], fluid emulsions [Kwo+20], in number theory [Gra+03], etc. In this
12
+ paper, we push further the applications of Apollonian packings into the novel direction of knot theory
13
+ by introducing new representations of links based on a generalization of the classic Apollonian packing.
14
+ 1.1. Main results. We begin by proving that any link can be realized in the tangency graph of any
15
+ orthoplicial Apollonian packing (Theorem 3.1). We then focus our attention to algebraic links and show
16
+ that any algebraic link can be regularly projected onto the tangency graph of a cubic Apollonian packing
17
+ (Theorem 4.1). The diagrams arising from the latter construction, called orthocubic representations,
18
+ have the following interesting applications.
19
+ 1.1.1. Ball number. A necklace representation of a link L is a sphere packing containing a collection
20
+ of disjoint cycles in its tangency graph realizing L. Necklace representations have been used for the
21
+ study of the volume of hyperbolic 3-manifolds [Gab+21]. The ball number of L, denoted by ball(L),
22
+ is defined as the minimum number of spheres needed to construct a necklace representation of L. It
23
+ is known that ball(22
24
+ 1) = 8 and 9 ≤ ball(31) ≤ 12 [Mae07], where 22
25
+ 1 denotes the Hopf link and 31 the
26
+ trefoil knot. Nowadays, the Hopf link remains the only link such that its ball number is known. In
27
+ [RR21b], the authors gave a constructive proof showing that for every non-trivial and non-splittable link
28
+ L, ball(L) ≤ 5cr(L) and put forward the following.
29
+ Conjecture 1. For any nontrivial and nonsplittable link L, ball(L) ≤ 4cr(L). Moreover, the equality
30
+ holds if L is alternating.
31
+ Orthocubic representations allow us to show the validity of the inequality in the Conjecture 1 for
32
+ an infinite family of alternating algebraic links (Theorem 4.2), containing the family of rational links,
33
+ alternating Pretzel links or, more generally, alternating Montesinos links (see Figure 1).
34
+ 2010 Mathematics Subject Classification. 52C26, 57K10, 11D72.
35
+ Key words and phrases. Apollonian sphere packings, Ball number, Knots, Links, Diophantine equations.
36
+ † Partially supported by grant IEA-CNRS
37
+ ‡ Supported by the Austrian Science Fund (FWF), projects F-5503 and P-34763.
38
+ 1
39
+ arXiv:2301.03089v1 [math.GT] 8 Jan 2023
40
+
41
+ Figure 1. (Left) A necklace representation of the “Figure-Eight” knot 41 obtained by the
42
+ method of [RR21b] with 20 spheres, (right) an orthocubic representation of the same knot
43
+ with 16 spheres.
44
+ 1.1.2. A new visualization of the slope of rational tangles. It is well-known that rational tangles are in
45
+ correspondence to Q ∪ {∞}. Orthocubic representations allow us to reinterpret this correspondence.
46
+ Indeed, we show that the slope of rational tangle, i.e.
47
+ the corresponding rational number, can be
48
+ obtained from the coordinates of the intersection of an orthocubic representation of the rational tangle
49
+ with a certain circle in a cubic circle packing (Theorem 5.1).
50
+ 1.1.3. Primitive solutions of a Diophantine equation. By combining the coordinates of the intersection
51
+ point described above with the Lorentz model of the space of spheres, we shall find infinitely many
52
+ primitive solutions of the Diophantine equation x4 + y4 + z4 = 2t2 (Corollary 5.1).
53
+ 1.2. Organization. The paper is organized as follows.
54
+ In section 2, we present the background on
55
+ polytopal Apollonian packings and rational tangles needed throughout the paper. In section 3, we show
56
+ that every link can be embedded in the 1-skeleton of several polytopal Apollonian packings, and discuss
57
+ about the optimality of the orthoplicial case regarding the number of spheres used for the constructions.
58
+ In section 4, we introduce and study the orthocubic representations of rational links and show the
59
+ existence of orthocubic representations of algebraic links. Finally, in Section 5, we discuss a geometric
60
+ visualization of rational tangles as well as its connection with the solutions of Diophantine equations.
61
+ 1.3. Acknowledgements. We would like to thank Alex Kontorovich for enlightening conversations on
62
+ several aspects of Apollonian packings.
63
+ 2. General background
64
+ In this section, we shall review notions and definitions needed in the rest of the paper. We refer the
65
+ reader to [RR21b; RR21a] for more details.
66
+ 2.1. Lorentz model of the space of spheres. An oriented hypersphere (in short, sphere) of �
67
+ Rd is
68
+ the image of spherical cap of Sd under the stereographic projection. Let Ld+1,1 be the Lorentz space of
69
+ dimension d+2, i.e. the real vector space endowed with an inner product of signature (d+1, 1). It is well-
70
+ known that there is a bijection between spheres and points of �
71
+ Rd and vectors of Ld+1,1 with Lorentzian
72
+ norm 1 and 0, respectively. M¨obius transformations of �
73
+ Rd corresponds to linear maps of Ld+1,1 preserving
74
+ the Lorentz product and the time-direction. The inversive coordinates of a sphere (resp. point) are the
75
+ Cartesian coordinates of the corresponding vector in Ld+1,1. There are several equivalent ways (up to
76
+ basis exchange) to compute the inversive coordinates. We use the Wilker’s convention ([Wil81]). For a
77
+ sphere (resp. half-space) b with curvature κ ̸= 0 and center c (resp. κ = 0, normal vector �n and signed
78
+ 2
79
+
80
+ distance to the origin δ) its inversive coordinates are
81
+ i(b) =
82
+
83
+
84
+
85
+ κ
86
+ 2 (2c, ∥c∥2 − 1 − κ−2, ∥c∥2 + 1 − κ−2)T
87
+ if κ ̸= 0,
88
+ (�n, δ, δ)T
89
+ if κ = 0.
90
+ (1)
91
+ For points η ∈ �
92
+ Rd, the inversive coordinates are
93
+ i(η)
94
+ =
95
+
96
+
97
+
98
+ (2η, ∥η∥2 − 1, ∥η∥2 + 1)T
99
+ if η ̸= ∞
100
+ (0d, 1, 1)T
101
+ if η = ∞.
102
+ (2)
103
+ Reciprocally, if i(η) = (x1, . . . , xd+2), then η =
104
+ 1
105
+ xd+2−xd+1 (x1, . . . , xd).
106
+ We recall that the inversive
107
+ coordinates of points are homogeneous, in the sense that for every λ ̸= 0, λi(η) are valid inversive
108
+ coordinates of the same point of �
109
+ Rd [Wil81]. Under the Wilker’s convention, the matrix of the Lorentz
110
+ product is the diagonal matrix Qd+2 with diagonal entries (1, . . . , 1, −1), and M¨obius transformations
111
+ are represented by the group of matrices
112
+ O↑
113
+ d+1,1(R) = {M ∈ GLd+2(R) | MT Qd+2M = Qd+2
114
+ and
115
+ Md+2,d+2 > 0}.
116
+ (3)
117
+ The matrix of O↑
118
+ d+1,1(R) representing the inversion sb through the boundary of a sphere b is given by
119
+ Sb := Id+2 − 2i(b)T i(b)Qd+2
120
+ (4)
121
+ where Id+2 is the identity matrix of size d + 2.
122
+ 2.2. Polytopal Apollonian packings. A polytopal sphere packing BP in dimension d ≥ 1, is the image,
123
+ up to M¨obius transformations, of the ball-arrangement projection β of an edge-scribed (d + 1)-polytope
124
+ P on �
125
+ Rd. The mapping β sends vertices of P to spheres of BP and the tangency relations are encoded
126
+ by the edges of P. For every 1 ≤ n ≤ d, there is a natural realization of the n-skeleton of P as a CW-
127
+ complex contained in BP, which we call the n-skeleton of BP, and is made by realizing the vertices of P
128
+ as the centers of BP, and then, for every face f of P, taking the convex hull of the centers corresponding
129
+ to the vertices of f. The 1-skeleton of BP corresponds to the natural realization of the tangency graph
130
+ of BP usually called the carrier of the packing [Ste05]. Every polytopal sphere packing admits a dual
131
+ arrangement B∗
132
+ P induced by the ball arrangement projection of the polar of P. The Apollonian group
133
+ A(BP) is the Klenian group generated by the inversions through the dual spheres of BP, i.e. the spheres of
134
+ B∗
135
+ P. If we add the symmetries of BP to the set of generators, then we obtain the symmetrized Apollonian
136
+ group of BP, denoted by SA(BP). When the interiors of every pair of spheres in P(BP) := A(BP) · BP
137
+ are disjoint, then we obtain an infinite sphere packing that we call polytopal Apollonian packing. This
138
+ class of infinite sphere packings can be seen as a particular case of the crystallographic sphere packings
139
+ introduced in [KN19], where they are called polyhedral packings.
140
+ Remark 1. For d ≥ 2, every polytopal sphere packing and its endowed structures are unique up to M¨obius
141
+ transformations. This can be seen as a consequence of the Mostow Rigidity Theorem [KN19]. In other
142
+ words, any two edge-scribed realizations of a d-polytope are connected by a M¨obius transformation.
143
+ 2.3. The hyperoctahedral group. We denoted by T d, Od and Cd, the analogue of the regular tetra-
144
+ hedron, octahedron and cube in dimension d ≥ 2, respectively (we refer to [RR21a; Ras21] for results
145
+ on polytopal sphere packings arising from these polytopes). We recall that, for every d ≥ 2, Od and Cd
146
+ are dual from each other, while T d is self-dual. Among these families of polytopes, two of them are of
147
+ special relevance for this paper: the cube C3 and the hyperoctahedron O4, also called orthoplex. The cor-
148
+ responding polytopal packings induced from these two polytopes are called cubic packings BC3 [Sta15] and
149
+ orthoplicial packings BO4 [Nak14]. We shall index the elements by an antipodal labelling, where sphere
150
+ bi and bi correspond to antipodal vertices in the polytope, and we shall use the bar notation ¯i := −i.
151
+ The vertices of Od will be labelled by {1, . . . , d, 1, . . . , d}, where the facets are the (d − 1)-simplices with
152
+ vertices {±1, . . . , ±d}. Since facets of Od corresponds to vertices of Cd, we shall label each vertex of
153
+ Cd by the concatenation of the labelling of the vertices in Od incident to the corresponding facet. The
154
+ symmetry group of Od (or equivalently Cd) is called the hyperoctahedral group, which corresponds to the
155
+ Coxeter group Bd. Under the antipodal labelling, the hyperoctahedral group is generated by the signed
156
+ permutations rij := (ij)(ij).
157
+ 3
158
+
159
+ 2.4. Apollonian sections. An Apollonian section of P(BP) is a subset S (BP) = Γ · X ⊂ P(BP)
160
+ where Γ < SA(BP) and X ⊂ BP. Two Apollonian sections S (BP) = Γ · X and S (BQ) = Γ′ · X′ of two
161
+ different Apollonian packings are said to be algebraically equivalent if Γ and Γ′ are isomorphic and there
162
+ is an equivariant bijection φ : S (BP) → S (BQ) with respect to the actions. With this notion in the
163
+ hand, the second author proved in [Ras21] that any orthoplicial Apollonian packing P(BO4) contains
164
+ a tetrahedral ST 3(BO4), octahedral SO3(BO4) and cubic section SC3(BO4), i.e. an Apollonian section
165
+ which is algebraically equivalent to a tetrahedral P(BT 3), octahedral P(BO3) and cubic Apollonian
166
+ packing P(BC3), respectively. We shall use a cubic section SC3(BO4) as a geometric framework for the
167
+ constructions introduced in section 4.
168
+ 2.5. Algebraic links. A 2-tangle (in short tangle) is a pair (U, t) where U is a compact set of R3
169
+ homeomorphic to a 3-ball and t is a collection {γ1, γ2, . . . , γm} of m ≥ 2 disjoint arcs contained in U
170
+ satisfying that γ1 and γ2 are open arcs whose endpoints lie on the boundary of U, and the rest of the
171
+ arcs are closed. Two tangles (U, t) and (U′, t′) are said to be equivalent if there is an isotopy of R3
172
+ carrying U to U′, t to t′ and the endpoints of (U, t) to the endpoints of (U′, t′). We shall denote this
173
+ equivalence relation t ≃ t′. Up to equivalence, we may consider that the endpoints of t lie on a same
174
+ plane H. A tangle diagram of (U, t) is a regular projection of t on H, together with U ∩ H and the
175
+ crossing information. If it is not required, we shall refer to a tangle (U, t) by t. We shall name the
176
+ endpoints in a tangle diagram by the cardinal points NE, NW, SE and SW. The elementary tangles t0,
177
+ t1 and t∞ are the tangles illustrated in Figure 2.
178
+ NE
179
+ NW
180
+ SW
181
+ SE
182
+ t0
183
+ NE
184
+ NW
185
+ SW
186
+ SE
187
+ t1
188
+ NE
189
+ NW
190
+ SW
191
+ SE
192
+ t∞
193
+ Figure 2. The elementary tangles.
194
+ For any two tangles t and t′, we have the following operations:
195
+ (i) the sum t + t′, obtained by connecting the East endpoints of t to the West endpoints of t′,
196
+ t′
197
+ t
198
+ t + t′
199
+ Figure 3. Sum of tangles.
200
+ (ii) the mirror −t: the image of t under the reflection on the plane containing the equator,
201
+ (iii) the flip F(t): the image of t under the reflection on the plane perpendicular to the equator and
202
+ passing through the endpoints SW and NE,
203
+ (iv) the positive half-twist H+ : t �→ t1 + t,
204
+ (v) the negative half-twist H− : t �→ −t1 + t.
205
+ t
206
+ −t
207
+ F(t)
208
+ H+(t)
209
+ H−(t)
210
+ Figure 4. Mirror, flip and half-twist operations of tangles.
211
+ 4
212
+
213
+ Rational tangles were introduced by Conway in his work on enumerating and classifying knots and
214
+ links [Con70]. For a given sequence of integers a1, . . . , an all non-zero except maybe a1, we denote by
215
+ t(a1, · · · , an) the rational tangle given by the following Conway’s algorithm [Cro04] (see Figure 5).
216
+ t(a1, · · · , an) := Ha1F · · · HanF(t∞).
217
+ (5)
218
+ H−3F
219
+ t∞
220
+ H−2F
221
+ t(−3)
222
+ H2F
223
+ t(−2, −3)
224
+ t(2, −2, −3)
225
+ Figure 5. The rational tangle t(2, −2, −3) obtained by the Conway’s algorithm.
226
+ The slope of a rational tangle t(a1, . . . , an) is the rational number p/q obtained by the continued
227
+ fraction expansion
228
+ [a1, . . . , an] := a1 +
229
+ 1
230
+ ... +
231
+ 1
232
+ an
233
+ = p
234
+ q .
235
+ (6)
236
+ The origin of the name of rational tangle came from the connection established by the Conway’s theorem
237
+ [Con70], between the family of tangles produced by the Conways’s algorithm and rational numbers,
238
+ which states that two rational tangles are equivalent if and only if they have the same slope. We shall
239
+ denote by tp/q the class of rational tangles with slope p/q up to isotopy. The closure of a tangle (U, t) is
240
+ the link formed by joining the endpoints by two disjoint and unlinked paths at the exterior of U. Up to
241
+ equivalence, there are two possible closures, the numerator N(t), obtained by joining the northern and
242
+ the southern endpoints separately, and the denominator D(t), obtained by joining the western and the
243
+ eastern endpoints (see Figure 6).
244
+ D
245
+ N
246
+ t
247
+ t
248
+ t
249
+ Figure 6. The tangle closures.
250
+ A rational link is the closure of a rational tangle. Algebraic tangles are those obtained by sums and
251
+ flips of rational tangles [Ada94]. Equivalently, links which are obtained by the closure of algebraic tangles
252
+ are said to be algebraic or arborescent [GT86]. Pretzel links P(q1, . . . , qn) := N(t1/q1 + · · · + t1/qn) are
253
+ a particular case of algebraic links, see Figure 7.
254
+ Figure 7. The Pretzel knot P(3, −2, 3) which corresponds to the knot 819 in the Alexander-
255
+ Briggs notation.
256
+ 5
257
+
258
+ 3. Necklace representations in polytopal Apollonian packings
259
+ In this section, we investigate the following question: given a link L and a polytopal Apollonian sphere
260
+ packing P(BP4), can we find a necklace representation of L contained in P(BP4)? We answer positively
261
+ this question for some 4-polytopes. We first have the following
262
+ Theorem 3.1. Let L be a link and let P(BO4) be an orthoplicial Apollonian sphere packing. There is
263
+ a necklace representation of L contained in P(BO4).
264
+ Let us first introduce a previous notion. Let P(BP) be a polytopal Apollonian sphere packing, where
265
+ P is an edge-scribed (d + 1)-polytope. For every edge {i, j} ∈ P, we define the edge-figure section of
266
+ P(BP) as the Apollonian section Sij(BP) := Γij · BP where Γij is the stabilizer subgroup of the Apollo-
267
+ nian group of P for {bi, bj}. The subgroup Γij corresponds to a Euclidean reflection group. Indeed, we
268
+ may apply an inversion to BP through a sphere centered at the tangency point of bi and bj mapping these
269
+ two spheres into two parallel half-spaces tangent at the infinity. We then observe that every generator
270
+ in Γij must be a reflection on a hyperplane orthogonal to bi and bj (see Figure 9, left).
271
+ Proof of Theorem 3.1. Let B12
272
+ O4 the orthoplicial packing depicted in Figure 8. The edge-figure section
273
+ S12(B12
274
+ O4) := Γ12 ·B12
275
+ O4 is generated by the action of the parabolic subgroup of the orthoplicial Apollonian
276
+ group Γ12 := ⟨s1234, s1234, s1234, s1234⟩.
277
+ B12
278
+ O4
279
+ κ (δ if κ = 0)
280
+ c (�n if κ = 0)
281
+ i(b)T
282
+ b1
283
+ 0 (1)
284
+ 0
285
+ 0
286
+ 1
287
+ 0
288
+ 0
289
+ 1
290
+ 1
291
+ 1
292
+ b2
293
+ 0 (1)
294
+ 0
295
+ 0
296
+ −1
297
+ 0
298
+ 0
299
+ −1
300
+ 1
301
+ 1
302
+ b3
303
+ 1
304
+ 1
305
+ 1
306
+ 0
307
+ 1
308
+ 1
309
+ 0
310
+ 0
311
+ 1
312
+ b4
313
+ 1
314
+ −1
315
+ 1
316
+ 0
317
+ −1
318
+ 1
319
+ 0
320
+ 0
321
+ 1
322
+ b1
323
+ 2
324
+ 0
325
+ 0
326
+ −1/2
327
+ 0
328
+ 0
329
+ −1
330
+ −1
331
+ 1
332
+ b2
333
+ 2
334
+ 0
335
+ 0
336
+ 1/2
337
+ 0
338
+ 0
339
+ 1
340
+ −1
341
+ 1
342
+ b3
343
+ 1
344
+ −1
345
+ −1
346
+ 0
347
+ −1
348
+ −1
349
+ 0
350
+ 0
351
+ 1
352
+ b4
353
+ 1
354
+ 1
355
+ −1
356
+ 0
357
+ 1
358
+ −1
359
+ 0
360
+ 0
361
+ 1
362
+ 3
363
+ 4
364
+ 1
365
+ 2
366
+ 2
367
+ 1
368
+ 4
369
+ 3
370
+ Figure 8. The orthoplicial packing B12
371
+ O4.
372
+ We notice that the 1-skeleton of S12(B12
373
+ O4) contains an infinite square-grid, with two vertices lying in
374
+ the orthogonal line to each square and connected to every corner (see Figure 9).
375
+ 3
376
+ 4
377
+ 4
378
+ 3
379
+ 2
380
+ s1234
381
+ s1234
382
+ s1234
383
+ s1234
384
+ 1
385
+ 2
386
+ Figure 9. (Left) B12
387
+ O4 with the mirrors of the generators of Γ12, view from above; (right)
388
+ S12(B12
389
+ O4) with its 1-skeleton.
390
+ 6
391
+
392
+ The well-known Alexander’s Theorem [Ale23] implies that there is a braid γ such that its closure is
393
+ isotopically equivalent to L. We can always draw a diagram of γ in a regular square-grid, where the
394
+ crossings are drawn at the intersections of the diagonals of the squares, and the rest of arcs use the edges
395
+ of the grid, as in Figure 10 (center). This square-grid diagram induces a polygonal closed path in the
396
+ 1-skeleton of S12(B12
397
+ O4), as in Figure 10 (right), which gives us a necklace representation NL ⊂ P(B12
398
+ O4).
399
+ Since M¨obius transformations preserving the orientation are ambient isotopies of �
400
+ R3 then, by Remark
401
+ 1, we have that there is a M¨obius transformation µ carrying P(B12
402
+ O4) to P(BO4) and NL to a necklace
403
+ representation of L contained in P(BO4).
404
+
405
+ Figure 10. (Left) A diagram of the trefoil obtained as a closed braid; (center) a square-
406
+ grid diagram of the same closed braid; (right) a necklace representation of the trefoil in
407
+ S12(B12
408
+ O4).
409
+ We wonder if Theorem 3.1 can be proved without invoking Alexander’s Theorem. The construction
410
+ used in the proof of above can be used to show the inequality in the Conjecture 1 for 2-braid links.
411
+ Corollary 3.1. For any 2-braid link L, we have that ball(L) ≤ 4cr(L).
412
+ Proof. The necklace representation induced by the square-grid diagram of an alternating 2-braid with n
413
+ crossings has 4n + 2 spheres (see Figure 11 (left)). For the closure, we can exchange the last 4 spheres
414
+ with the two half-spaces of S12(B12
415
+ O4) (Figure 11 (right)).
416
+
417
+ Figure 11. (Left) A necklace representation of the 2-braid of 4 crossings in the square-grid
418
+ section, with 18 spheres; (right) a necklace representation of the closure of the 2-braid of 4
419
+ crossings, in the square-grid section, with 16 spheres.
420
+ The upper bound of Corollary 3.1 cannot be extended to n-braid links when n ≥ 3. The main reason
421
+ is that the half-spaces of the square-grid section cannot be used to close all the strands of the braid.
422
+ The latter might increase the number of spheres to more than 4 times the number of crossings.
423
+ A
424
+ similar strategy as used in the proof of Theorem 3.1 can be employed to prove that every link admits
425
+ a necklace representation in other polytopal Apollonian sphere packings P(BP4). For instance, if P4
426
+ has a regular triangle as edge-figure, then the 1-skeleton of the edge-figure section contains a subgraph
427
+ topologically equivalent to a triangular grid. In this case, two tangent triangles in the triangular grid
428
+ made up a rhombus which can play the same role as the square in the square-grid. Indeed, if there is a
429
+ 7
430
+
431
+ chain of spheres connecting the opposite vertices in the great diagonal of the rhombus, then we can use
432
+ them to construct a crossing. It turns out that this is the case for the 4-simplex, hypercube, 24-cell or
433
+ the 120-cell (see Figure 12). Although these triangular constructions produce necklace representations
434
+ with more spheres that the orthoplicial one, these could be interesting for other issues like constructing
435
+ 4-polytopes containing a given link in its graph [Epp14].
436
+ Figure 12. A necklace representation of the trefoil knot in P(BT 4) (left) and P(BC4)
437
+ (right).
438
+ 4. Orthocubic representations of algebraic links
439
+ Let BC3 and BO4 be the cubic and the orthoplicial packing given in Figures 13 and 14, respectively.
440
+ We point out that the labelling of BO4 has been given in such a way that for every bi ∈ BO4, the label i
441
+ is positive if and only if the third coordinate of the center of bi is positive.
442
+ BC3
443
+ κ
444
+ c
445
+ i(b)T
446
+ b123
447
+ 1 +
448
+
449
+ 2 (−1 +
450
+
451
+ 2) (
452
+ 1 −1) ( 1 −1 −1
453
+
454
+ 2)
455
+ b123
456
+ 1 +
457
+
458
+ 2 (−1 +
459
+
460
+ 2) (−1
461
+ 1) (−1
462
+ 1 −1
463
+
464
+ 2)
465
+ b123 −1 +
466
+
467
+ 2 (
468
+ 1 +
469
+
470
+ 2) (−1 −1) (−1 −1
471
+ 1
472
+
473
+ 2)
474
+ b123 −1 +
475
+
476
+ 2 (
477
+ 1 +
478
+
479
+ 2) (
480
+ 1
481
+ 1) ( 1
482
+ 1
483
+ 1
484
+
485
+ 2)
486
+ b123 −1 +
487
+
488
+ 2 (
489
+ 1 +
490
+
491
+ 2) (−1
492
+ 1) (−1
493
+ 1
494
+ 1
495
+
496
+ 2)
497
+ b123 −1 +
498
+
499
+ 2 (
500
+ 1 +
501
+
502
+ 2) (
503
+ 1 −1) ( 1 −1
504
+ 1
505
+
506
+ 2)
507
+ b123
508
+ 1 +
509
+
510
+ 2 (−1 +
511
+
512
+ 2) (
513
+ 1
514
+ 1) ( 1
515
+ 1 −1
516
+
517
+ 2)
518
+ b123
519
+ 1 +
520
+
521
+ 2 (−1 +
522
+
523
+ 2) (−1 −1) (−1 −1 −1
524
+
525
+ 2)
526
+ 123
527
+ 123
528
+ 123
529
+ 123
530
+ 123
531
+ 123
532
+ 123
533
+ 123
534
+ Figure 13. The cubic packing BC3.
535
+ BO4
536
+ κ
537
+ c
538
+ i(b)T
539
+ b1
540
+ 1 + 1/
541
+
542
+ 2 (−1 +
543
+
544
+ 2) (
545
+ 1 −1
546
+ 1) 1/
547
+
548
+ 2 (
549
+ 1 −1
550
+ 1 −1
551
+
552
+ 2)
553
+ b2
554
+ 1 + 1/
555
+
556
+ 2 (−1 +
557
+
558
+ 2) (−1
559
+ 1
560
+ 1) 1/
561
+
562
+ 2 (−1
563
+ 1
564
+ 1 −1
565
+
566
+ 2)
567
+ b3
568
+ 1 − 1/
569
+
570
+ 2 (
571
+ 1 +
572
+
573
+ 2) (−1 −1
574
+ 1) 1/
575
+
576
+ 2 (−1 −1
577
+ 1
578
+ 1
579
+
580
+ 2)
581
+ b4
582
+ 1 − 1/
583
+
584
+ 2 (
585
+ 1 +
586
+
587
+ 2) (
588
+ 1
589
+ 1
590
+ 1) 1/
591
+
592
+ 2 (
593
+ 1
594
+ 1
595
+ 1
596
+ 1
597
+
598
+ 2)
599
+ b1
600
+ 1 − 1/
601
+
602
+ 2 (
603
+ 1 +
604
+
605
+ 2) (−1
606
+ 1 −1) 1/
607
+
608
+ 2 (−1
609
+ 1 −1
610
+ 1
611
+
612
+ 2)
613
+ b2
614
+ 1 − 1/
615
+
616
+ 2 (
617
+ 1 +
618
+
619
+ 2) (
620
+ 1 −1 −1) 1/
621
+
622
+ 2 (
623
+ 1 −1 −1
624
+ 1
625
+
626
+ 2)
627
+ b3
628
+ 1 + 1/
629
+
630
+ 2 (−1 +
631
+
632
+ 2) (
633
+ 1
634
+ 1 −1) 1/
635
+
636
+ 2 (
637
+ 1
638
+ 1 −1 −1
639
+
640
+ 2)
641
+ b4
642
+ 1 + 1/
643
+
644
+ 2 (−1 +
645
+
646
+ 2) (−1 −1 −1) 1/
647
+
648
+ 2 (−1 −1 −1 −1
649
+
650
+ 2)
651
+ 4
652
+ 1
653
+ 3
654
+ 2
655
+ 4 1
656
+ 3
657
+ 2
658
+ Figure 14. The orthoplicial packing BO4.
659
+ Let SC3(BO4) := ΓC3 · BO4 be a cubic Apollonian section of P(BO4), where
660
+ ΓC3 := ⟨s1234, s1234, s1234, s1234, s1234, s1234⟩.
661
+ 8
662
+
663
+ The equivariant bijection φ : P(BC3) → SC3(BO4) is induced by the following isomorphisms (see Figure
664
+ 15).
665
+ A(BC3)
666
+ −→
667
+ ΓC3
668
+ BC3
669
+ −→
670
+ BO4
671
+ s±1
672
+ �→
673
+ s±(1234)
674
+ b±(123)
675
+ �→
676
+ b±1
677
+ s±2
678
+ �→
679
+ s±(1234)
680
+ b±(123)
681
+ �→
682
+ b±2
683
+ s±3
684
+ �→
685
+ s±(1234)
686
+ b±(123)
687
+ �→
688
+ b±3
689
+ b±(123)
690
+ �→
691
+ b±4
692
+ 4
693
+ 1
694
+ 3
695
+ 2
696
+ 4
697
+ 1
698
+ 3
699
+ 2
700
+ 1234
701
+ 1234
702
+ 1234
703
+ 1234
704
+ 1234
705
+ 1234
706
+ 123
707
+ 123
708
+ 1
709
+ 2
710
+ 3
711
+ 2
712
+ 1
713
+ 123
714
+ 123
715
+ 123
716
+ 123
717
+ 123
718
+ 123
719
+ 3
720
+ Figure 15. (Right) the cubic packing BC3 with its dual, (left) BO4 with the mirrors of the
721
+ generators of the cubic section.
722
+ An alternative geometric way to obtain the bijection between the cubic section and cubic Apollonian
723
+ packing results by taking the intersection of BO4 and its dual with the XY -plane. The relative position
724
+ of the centers of the spheres in the cubic section, with respect to the XY -plane, induces a 2-coloring
725
+ of the cubic Apollonian packing where two disks of same color never intersect (see Figure 16). We call
726
+ this coloring the z-coloring. By extending the z-coloring to the vertices of the 1-skeleton of P(BC3), we
727
+ obtain a proper 2-coloring of the tangency graph.
728
+ Figure 16. (Left) P(BC3) with the z-coloring, (right) SC3(BO4) with the XY -plane.
729
+ 9
730
+
731
+ On the same direction as Theorem 3.1, we present the following result allowing us to prove the
732
+ inequality of the Conjecture 1 for an infinite family of alternating algebraic links (containing, in particular,
733
+ 2-braid links).
734
+ Theorem 4.1. For any algebraic link L, there is a necklace representation of L contained in SC3(BO4).
735
+ 4.1. Orthocubic shifts. Let BO3 be the octahedral packing which is the dual arrangement of the cubic
736
+ packing BC3. The former can be also obtained by intersecting the dual arrangement of BO4 with the
737
+ XY -plane. Let us consider the symmetries r12, r13, r23, r13, r23, r33, of BO3. By duality, these are also
738
+ symmetries of BC3. We recall that rij denotes the signed permutation (ij)(ij). In the octahedral packing
739
+ BO3, we have that r12 corresponds to the reflection on the line {x = y}, r±13 is the inversion through
740
+ the circle centered at (±1, 0) and radius
741
+
742
+ 2, and r33 is the inversion through the unit circle centered at
743
+ the origin (see Figure 17).
744
+ 123
745
+ 123
746
+ r13
747
+ r23
748
+ r23
749
+ r13
750
+ r33
751
+ r12
752
+ 123
753
+ 123
754
+ 123
755
+ 123
756
+ 123
757
+ 123
758
+ 3
759
+ 1
760
+ 2
761
+ 3
762
+ 2
763
+ 1
764
+ Figure 17. BC3 with the mirrors of the generators of the cubic shifts.
765
+ We define the cubic shifts as the following six elements belonging to the symmetrized Apollonian
766
+ group of BC3
767
+ µi := siri3
768
+ for every i ∈ {±1, ±2, −3}
769
+ and
770
+ µ3 := s3r33.
771
+ (7)
772
+ In Figure 18, we show the action of the cubical shifts on the 1-skeleton of BC3 with the z-coloring. We
773
+ notice that µ±1 and µ±2 (resp. µ±3) preserves (resp. reverses) the z-coloring. The bijection φ : BC3 →
774
+ BO4 induces the following morphisms:
775
+ φ :
776
+ Sym(BC3)
777
+ −→
778
+ Sym(BO4)
779
+ φ:
780
+ SA(BC3)
781
+ −→
782
+ SA(BO4)
783
+ r12
784
+ �−→
785
+ r12
786
+ µ1
787
+ �−→
788
+ s1234 r13
789
+ r13
790
+ �−→
791
+ r13
792
+ µ−1
793
+ �−→
794
+ s1234 r24
795
+ r23
796
+ �−→
797
+ r23
798
+ µ2
799
+ �−→
800
+ s1234 r23
801
+ r13
802
+ �−→
803
+ r24
804
+ µ−2
805
+ �−→
806
+ s1234 r14
807
+ r23
808
+ �−→
809
+ r14
810
+ µ3
811
+ �−→
812
+ s1234 r12r34
813
+ r33
814
+ �−→
815
+ r12r34
816
+ µ−3
817
+ �−→
818
+ s1234 r12r34
819
+ For every i = ±1, ±2, ±3, we call the elements φ(µi) ∈ SA(BO4) the orthocubic shifts.
820
+ 10
821
+
822
+ µ1
823
+ µ2
824
+ µ−1
825
+ µ−2
826
+ µ3
827
+ µ−3
828
+ Figure 18. The action of the cubic shifts on the 1-skeleton of BC3 with the z-coloring.
829
+ 4.2. Orthocubic coordinates. The cubic Apollonian packing P(BC3) can be seen as a Coxeter system
830
+ (W, S) where W = A(BC3) and system of generators S = {s±1, s±2, s±3}. Its Coxeter graph is the graph
831
+ of the cube with ∞ label at each edge. Therefore, the reduced words of (W, S) are the words without
832
+ consecutive repeated letters. We have that for each b ∈ SC3(BO4), there is a reduce word of w = sj1 · · · sjn
833
+ and an element bi ∈ BC3 such that b = w · bi. The depth of b is the minimal length of w in terms of the
834
+ generators. By combining the reduced words of (W, S) with the bijection φ : P(BC3) → SC3(BO4) we
835
+ can give a coordinate system to the spheres is the cubic section. We define the orthocubic coordinates of
836
+ every b ∈ SC3(BO4) as the label
837
+ ij1···jn := φ(sj1) · · · φ(sjn) · bi = b
838
+ (8)
839
+ where i ∈ {±1, ±2, ±3, ±4} and jl ∈ {±1, ±2, ±3}. In Figure 19, we show the orthocubic coordinates of
840
+ the elements of SC3(BO4) with depth ≤ 1.
841
+ 11
842
+
843
+ 33
844
+ 23
845
+ 43
846
+ 13
847
+ 4
848
+ 1
849
+ 3
850
+ 2
851
+ 3
852
+ 2
853
+ 4
854
+ 1
855
+ 21
856
+ 11
857
+ 31
858
+ 41
859
+ 12
860
+ 22
861
+ 32
862
+ 42
863
+ 31
864
+ 41
865
+ 21
866
+ 11
867
+ 32
868
+ 42
869
+ 12
870
+ 22
871
+ 43
872
+ 13
873
+ 33
874
+ 23
875
+ Figure 19. The orthocubic coordinates of the elements of SC3(BO4) of depth≤ 1.
876
+ 4.3. Orthocubic representations. We define an orthocubic path γ as a polygonal curve in the 1-
877
+ skeleton of SC3(BO4). A cubic diagram of γ will be its orthogonal projection on the XY -plane. The
878
+ orthogonal projection of the 1-skeleton of SC3(BO4) on the XY -plane is the 1-skeleton of P(BC3) plus
879
+ the diagonal edges of each square-face, which join two vertices of same color under the z-coloring. The
880
+ crossings of any cubic diagram are obtained by the intersection of the two diagonal edges of a same square-
881
+ face. With the information given by the z-coloring, the over/under crossing information can be deduced
882
+ from the color of the vertices of the diagonal edges (black=over/white=under). We define an orthocubic
883
+ representation of a link L as a collection of disjoint closed orthocubic paths isotopically equivalent to L.
884
+ Every orthocubic representation induces a necklace representation in SC3(BO4). In Figure 20, we show
885
+ an orthocubic representation of the trefoil knot, and its corresponding cubic diagram.
886
+ Figure 20. (Left) An orthocubic representation of the trefoil knot and its corresponding
887
+ cubic diagram (right).
888
+ 12
889
+
890
+ An orthocubic path will be encoded by a sequence of the orthocubic coordinates �iw1, · · · , iwn� of
891
+ the elements given in the linear order induced by γ. Since we shall consider unoriented paths, and the
892
+ concatenation of two paths gives another path, vectors encoding orthocubic paths must be quotient by
893
+ the following relations:
894
+ (i) (Symmetry) �iw1, · · · , iwn� = �iwn, . . . , iw1�.
895
+ (ii) (Concatenation) {�iw1, · · · , iwn�, �iwn, · · · , iwm�} = {�iw1, · · · , iwn, · · · , iwm�}.
896
+ 4.4. Orthocubic tangles. Let T be the tetrahedron in the 3-skeleton of BO4 with vertices {1, 2, 3, 4}.
897
+ We define an orthocubic tangle as a tangle (T , t ) where t is a collection {γ1, γ2, . . . , γm} of m ≥ 2
898
+ disjoint orthocubic paths contained in T satisfying that the endpoints of γ1 and γ2 lie in the corners of
899
+ T , and the rest of the orthocubic paths are closed. In what follows, we construct the respective analog
900
+ of the elementary tangles, sum, mirror, flip and half-twists for orthocubic tangles by using elements of
901
+ the symmetrized Apollonian group of BO4.
902
+ (i) The orthocubic elementary tangles:
903
+ t0
904
+ := {�1, 4�, �3, 2�},
905
+ t1
906
+ := {�1, 2�, �3, 4�} and t∞
907
+ :=
908
+ {�1, 3�, �2, 4�}.
909
+ 4
910
+ 1
911
+ 3
912
+ 2
913
+ t0
914
+ 4
915
+ 1
916
+ 3
917
+ 2
918
+ t1
919
+ 4
920
+ 1
921
+ 3
922
+ 2
923
+ t∞
924
+ Figure 21. The elementary orthocubic tangles.
925
+ (ii) The orthocubic flip FO t := r12 t , where r12 ∈ Sym(BO4) acting as the reflection on the plane
926
+ {y = x} in R3.
927
+ (iii) The orthocubic mirror − t := φ(µ−3) t ∪ {�1, 2�, �1, 2�, �3, 4�, �3, 4�}.
928
+ 4
929
+ 1
930
+ 2
931
+ 3
932
+ t
933
+ t
934
+ 4
935
+ 1
936
+ 2
937
+ 3
938
+ t
939
+ FO t
940
+ 4
941
+ 1
942
+ 2
943
+ 3
944
+ 3
945
+ 2
946
+ 1
947
+ 4
948
+ t
949
+ − t
950
+ Figure 22. The orthocubic flip and mirror.
951
+ (iv) The orthocubic sum t′ + t := φ(µ−1) t′ ∪ {�1, 4�, �2, 3�} ∪ φ(µ1) t .
952
+ (v) The orthocubic half-twists H+
953
+ O t := t1 + t and H− t := − t1 + t .
954
+ 13
955
+
956
+ t′
957
+ t
958
+ 4
959
+ 1
960
+ 2
961
+ 3
962
+ 3
963
+ 2
964
+ 1
965
+ 4
966
+ t′ + t
967
+ 4
968
+ 1
969
+ 2
970
+ 3
971
+ 3
972
+ 2
973
+ 1
974
+ 4
975
+ t
976
+ H+
977
+ O t
978
+ 4
979
+ 1
980
+ 2
981
+ 3
982
+ 3
983
+ 2
984
+ 1
985
+ 4
986
+ t
987
+ H−
988
+ O t
989
+ Figure 23. The orthocubic sum and half-twists.
990
+ We define the orthocubic tangle closures by:
991
+ (vi) The orthocubic numerator NO t := t ∪ {�1, 23, 33, 4�, �2, 13, 43, 3�}
992
+ (vi) The orthocubic denominator DO t := t ∪ {�1, 23, 43, 3�, �2, 13, 33, 4�}
993
+ DO
994
+ NO
995
+ t
996
+ 4
997
+ 1
998
+ 2
999
+ 3
1000
+ t
1001
+ 33
1002
+ 23
1003
+ 13
1004
+ 43
1005
+ 4
1006
+ 1
1007
+ 2
1008
+ 3
1009
+ t
1010
+ 33
1011
+ 23
1012
+ 13
1013
+ 43
1014
+ 4
1015
+ 1
1016
+ 2
1017
+ 3
1018
+ Figure 24. The orthocubic tangle closures.
1019
+ Since the orthocubic elementary tangles, operations and closures are isotopically equivalent to their
1020
+ homonym in the classic framework of tangles, we can mimic the Conway’s method to define an orthocubic
1021
+ rational tangle tO[a1, · · · , an] ≃ t[a1, · · · , an], by
1022
+ tO[a1, · · · , an] := Ha1
1023
+ O FO · · · Han
1024
+ O FO t∞
1025
+ (9)
1026
+ We have now all the elements to prove the Theorem 4.1.
1027
+ Proof of Theorem 4.1. Every rational tangle admits a necklace representation in S (BO4), via the or-
1028
+ thocubic version of Conway’s construction. By combining the latter with the orthocubic tangle operations
1029
+ we obtain that any algebraic link admits an orthocubic representation.
1030
+
1031
+ 4.5. Improvement of the upper bound of the ball number. The orthocubic Conway’s algorithm
1032
+ can be slightly adapted in order to improve the get the upper bound of Theorem 4.2. For every a1 ≥ 0,
1033
+ a2, . . . , an > 0, we define the reduced orthocubic Conway’s algorithm �tO[a1, · · · , an] by
1034
+ �tO[a1, · · · , an] := Ha1
1035
+ O FO · · · Han−1
1036
+ O
1037
+ t1
1038
+ (10)
1039
+ Clearly, for every a1 ≥ 0, a2, . . . , an > 0, we have tO[a1, · · · , an] ≃ �tO[a1, · · · , an].
1040
+ Theorem 4.2. Let L be an algebraic link obtained by the closure of the algebraic tangle
1041
+ tp1/q1 + · · · + tpm/qm
1042
+ where all the pi/qi have same sign. Then, ball(L) ≤ 4cr(L).
1043
+ Proof. Let L be an algebraic link made by the closure N(t) where t is the algebraic tangle
1044
+ tp1/q1 + · · · + tpm/qm.
1045
+ The condition that all pi/qi have the same sign implies that we have alternating diagram of L induced
1046
+ by the closure of t, and thus, by the Tait conjecture on the crossing number of alternating diagrams
1047
+ [Kau87; Thi87; Mur87], the crossing number of L is equal to the sum of the crossing numbers of each
1048
+ 14
1049
+
1050
+ tpi/qi. Without loss of generality, we can consider that all pi/qi are positive. For every pi/qi with positive
1051
+ continued fraction [a1, · · · , an], let tpi/qi := �tO[a1, · · · , an]. Since the FO does not change the necklace
1052
+ length, and H+
1053
+ O increases the necklace length by 4, we have that
1054
+ | tpi/qi | = 4(a1 + . . . + an − 1) + | t1 |
1055
+ = 4(a1 + . . . + an) = 4cr(tpi/qi)
1056
+ Let t be the orthocubic tangle made by the orthocubic sums tp1/q1 +· · ·+ tpm/qm . By the equivalence
1057
+ between the orthocubic and tangle operations we have that t ≃ t. Since the necklace length is additive
1058
+ for the sum,
1059
+ | t | = | tp1/q1 | + · · · + | tpm/qm |
1060
+ = 4cr(tp1/q1) + · · · + 4cr(tpm/qm)
1061
+ = 4cr(L).
1062
+ Finally, we notice that the exterior orthocubic paths �1, 4� and �2, 3� are not included in any orthocubic
1063
+ tangle obtained after applying an orthocubic sum. Therefore, we can use the exterior paths to close t ,
1064
+ and in this way obtain a necklace representation of L with 4cr(L) spheres.
1065
+
1066
+ 4.6. No tightness for non-alternating links. The family of algebraic links considered in Theorem
1067
+ 4.2 contains all the rational links and other well-known families as the Montesinos links with positive
1068
+ coefficients. These are the links obtained by the closure of
1069
+ tp1/q1 + · · · + tpn/qn + tr
1070
+ with pi/qi > 0 and r ≥ 0. If r = 0 and every pi = 1, then we obtain the Pretzel link P(q1, . . . , qn).
1071
+ In the non-alternating case, it is possible to construct orthocubic algebraic tangles with necklace length
1072
+ strictly less than 4 times the crossing number. The first non-trivial example that we have found satisfying
1073
+ this property, is the Pretzel knot P(3, −2, 3), which corresponds to the knot 819 in the Alexander-Briggs-
1074
+ Rolfsen notation. This knot is not alternating [Cro04] and it admits an orthocubic necklace representation
1075
+ with 28 spheres (= 3
1076
+ 2cr(819), see Figure 25). However, it becomes more tricky to establish a relation
1077
+ with the crossing number in the non-alternating case since, in general, the crossing number does not
1078
+ correspond to the sum of the crossings of its rational factors.
1079
+ Figure 25. An orthocubic representation of the knot 819 with 28 spheres (left) and its
1080
+ cubic diagram (right).
1081
+ 15
1082
+
1083
+ 5. A new visualization of the slope of rational tangles
1084
+ The slope p/q of a rational tangle tp/q can be identified with the slope of the meridian of a solid torus
1085
+ that is the branched double covering of a rational tangle [Cro04]. We shall present a new geometric in-
1086
+ terpretation of the correspondance between rational tangles and rational numbers. We do so by relating
1087
+ the slope of a tangle with the slope of the line passing through the origin and the last tangency point
1088
+ in the orthocubic Conway’s construction. Astonishingly, this approach turns out to be helpful to find
1089
+ infinitely many primitive solutions of the Diophantine equation x4 + y4 + z4 = 2t2.
1090
+ Let p/q be a positive fraction with positive continued fraction expansion [a1, · · · , an]. We define the
1091
+ orthocubic point ηp/q of the rational tangle tp/q as the tangency point of the two disks in the cubic
1092
+ diagram of tO(a1, · · · , an) corresponding to the last edge of the orthocubic tangle. By last edge, we mean
1093
+ the edge connecting the disk in the upper-right corner (see Figure 26). We point out that the disk in
1094
+ the upper-right corner corresponds to the sphere b123 ∈ BC3 which remains fixed under the orthocubic
1095
+ Conway’s algorithm. We can naturally extend the notion of orthocubic point to tangles with negative
1096
+ fractions, by applying a reflection through the plane {x = 0} to the whole setting.
1097
+ Theorem 5.1. For every p/q ∈ Q± ∪ {∞}, ηp/q is the first intersection of the line passing through the
1098
+ origin and having slope ±(p/q)−2, with the boundary of the disk b±123 ∈ BC3.
1099
+ Proof. It is enough to prove the positive case. Let p ≥ 0 and q ≥ 1 be two coprime integers. We claim
1100
+ that
1101
+ i(ηp/q) =
1102
+
1103
+
1104
+
1105
+
1106
+ p2
1107
+ q2
1108
+ (p − q)2
1109
+
1110
+ 2(p2 − pq + q2)
1111
+
1112
+
1113
+
1114
+ � .
1115
+ (11)
1116
+ This would imply that the Cartesian coordinates of ηp/q are
1117
+ 1
1118
+
1119
+ 2pq − (1 −
1120
+
1121
+ 2)(p − q)2 (p2, q2),
1122
+ which is exactly the first point of intersection of the line {p2y = q2x} and the circle centred at
1123
+ (1 +
1124
+
1125
+ 2, 1 +
1126
+
1127
+ 2) and radius (1 +
1128
+
1129
+ 2), which is the boundary of b123 ∈ BC3.
1130
+ Let us prove the equality (11).
1131
+ The positiveness of p and q implies that we can find a positive
1132
+ continued fraction expansion [a1, · · · , an] = p/q with a1 ≥ 0 and ai ≥ 1 for every 1 < i ≤ n. Let
1133
+ tp/q
1134
+ the orthocubic tangle tO[a1, . . . , an]. Let ηp/q and η∞ be the orthocubic points of tp/q and t∞,
1135
+ respectively. Now, by the definitions of the orthocubic operations HO and FO, the isomorphism φ :
1136
+ SA(BC3) −→ SA(BO4) and the definition of orthocubic rational tangles given in (9), we have that
1137
+ tp/q = Ha1
1138
+ O FO · · · Han
1139
+ O FO t∞ ⇒ ηp/q = µa1
1140
+ 1 r12 · · · µan
1141
+ x r12(η∞)
1142
+ = (s1r13)a1r12 · · · (s1r13)anr12(η∞)
1143
+ where s1, r13 and r12 are the elements of SA(BC3) described in subsection 4.1. The inversive coordinates
1144
+ of η∞ and the matrices representing s1, r13 and r12 can be computed by using the equations (2) (with
1145
+ λ = 1+
1146
+
1147
+ 2
1148
+ 2
1149
+ ) and (4), giving
1150
+ i(η∞) =
1151
+
1152
+
1153
+
1154
+ 1
1155
+ 0
1156
+ 1
1157
+
1158
+ 2
1159
+
1160
+
1161
+ �,
1162
+ s1 �→ S1 =
1163
+
1164
+
1165
+
1166
+ −3
1167
+ 0
1168
+ 0
1169
+ 2
1170
+
1171
+ 2
1172
+ 0
1173
+ 1
1174
+ 0
1175
+ 0
1176
+ 0
1177
+ 0
1178
+ 1
1179
+ 0
1180
+ −2
1181
+
1182
+ 2
1183
+ 0
1184
+ 0
1185
+ 3
1186
+
1187
+
1188
+ �,
1189
+ r13 �→ R13 =
1190
+
1191
+
1192
+
1193
+ 0
1194
+ 0
1195
+ 1
1196
+ 0
1197
+ 0
1198
+ 1
1199
+ 0
1200
+ 0
1201
+ 1
1202
+ 0
1203
+ 0
1204
+ 0
1205
+ 0
1206
+ 0
1207
+ 0
1208
+ 1
1209
+
1210
+
1211
+ �,
1212
+ r12 �→ R12 =
1213
+
1214
+
1215
+
1216
+ 0
1217
+ 1
1218
+ 0
1219
+ 0
1220
+ 1
1221
+ 0
1222
+ 0
1223
+ 0
1224
+ 0
1225
+ 0
1226
+ 1
1227
+ 0
1228
+ 0
1229
+ 0
1230
+ 0
1231
+ 1
1232
+
1233
+
1234
+ �.
1235
+ 16
1236
+
1237
+ Let M(k) := (S1R13)kR12. By induction on k, it can be found that
1238
+ M(k) =
1239
+
1240
+
1241
+
1242
+
1243
+ 0
1244
+ 1 − k2
1245
+ −k(k + 2)
1246
+
1247
+ 2k(k + 1)
1248
+ 1
1249
+ 0
1250
+ 0
1251
+ 0
1252
+ 0
1253
+ −k(k − 2)
1254
+ 1 − k2
1255
+
1256
+ 2k(k − 1)
1257
+ 0
1258
+
1259
+
1260
+ 2k(k − 1)
1261
+
1262
+
1263
+ 2k(k + 1)
1264
+ 2k2 + 1
1265
+
1266
+
1267
+
1268
+
1269
+ We will finally prove the equality (11) by induction on the number of coefficients n in the fraction
1270
+ expansion of p/q. For n = 1 (that is p = a1 and q = 1) we have
1271
+ i(ηa1) = M(a1)
1272
+
1273
+
1274
+
1275
+ 1
1276
+ 0
1277
+ 1
1278
+
1279
+ 2
1280
+
1281
+
1282
+ � =
1283
+
1284
+
1285
+
1286
+ a2
1287
+ 1
1288
+ 1
1289
+ (a1 − 1)2
1290
+
1291
+ 2(a2
1292
+ 1 − a1 + 1)
1293
+
1294
+
1295
+ �.
1296
+ We suppose equality (11) to be true for n − 1 ≥ 1. Let r/s = a2 +
1297
+ 1
1298
+ ···+ 1
1299
+ an . Then,
1300
+ i(ηp/q) = M(a1)M(a2) · · · M(an)
1301
+
1302
+
1303
+
1304
+
1305
+ 1
1306
+ 0
1307
+ 1
1308
+
1309
+ 2
1310
+
1311
+
1312
+
1313
+ � = M(a1)
1314
+
1315
+
1316
+
1317
+
1318
+ r2
1319
+ s2
1320
+ (r − s)2
1321
+
1322
+ 2(r2 − rs + s)
1323
+
1324
+
1325
+
1326
+
1327
+ =
1328
+
1329
+
1330
+
1331
+
1332
+ (ra1 + s)2
1333
+ r2
1334
+ (ra1 + s − r)2
1335
+
1336
+ 2((ra1 + s)2 − r(ra1 + s) + r2)
1337
+
1338
+
1339
+
1340
+
1341
+ We finally notice that
1342
+ ra1 + s
1343
+ r
1344
+ = a1 + s
1345
+ r = a1 +
1346
+ 1
1347
+ r/s = a1 +
1348
+ 1
1349
+ a2 +
1350
+ 1
1351
+ ···+ 1
1352
+ an
1353
+ = p
1354
+ q
1355
+ and therefore, equality (11) holds.
1356
+
1357
+ Corollary 5.1. The Diophantine equation
1358
+ x4 + y4 + z4 = 2t2
1359
+ (12)
1360
+ has an infinite number of primitive solutions.
1361
+ Proof. Since points of �
1362
+ R2 correspond to light-like vectors of L3,1, we can use the inversive coordinates
1363
+ of the orthocubic point of every rational tangle given in equation (11) to produce primitive solutions of
1364
+ the Diophantine equation by taking
1365
+ x = p,
1366
+ y = q,
1367
+ z = p − q,
1368
+ t = p2 − pq + q2.
1369
+ (13)
1370
+
1371
+ We hope and expect the above approach to be helpful to investigate solutions of other type of Dio-
1372
+ phantine equations.
1373
+ 17
1374
+
1375
+ 32y = 22x
1376
+ η3/2
1377
+ Figure 26. The orthocubic point (red) of the rational tangle t3/2 corresponding to the
1378
+ primitive solution 34 + 24 + 14 = 2 × 72.
1379
+ References
1380
+ [Ada94]
1381
+ C. C. Adams. The knot book. American Mathematical Soc., 1994.
1382
+ [Ale23]
1383
+ J. W. Alexander. “A lemma on systems of knotted curves”. In: Proceedings of the National
1384
+ Academy of Sciences of the United States of America 9.3 (1923), p. 93.
1385
+ [AM95]
1386
+ S. V. Anishchik and N. N. Medvedev. “Three-Dimensional Apollonian Packing as a Model
1387
+ for Dense Granular Systems”. In: Phys. Rev. Lett. 75 (23 1995), pp. 4314–4317. doi: 10.
1388
+ 1103/PhysRevLett.75.4314. url: https://link.aps.org/doi/10.1103/PhysRevLett.
1389
+ 75.4314.
1390
+ [Con70]
1391
+ J. H. Conway. “An enumeration of knots and links, and some of their algebraic properties”.
1392
+ In: Computational problems in abstract algebra. Elsevier. 1970, pp. 329–358.
1393
+ [Cro04]
1394
+ P. R. Cromwell. Knots and Links. Cambridge University Press, 2004. doi: 10.1017/CBO9780511809767.
1395
+ [Epp14]
1396
+ D. Eppstein. “Links and knots in the graphs of four-dimensional polytopes”. In: (2014). url:
1397
+ https://11011110.github.io/blog/2014/12/13/links-and-knots.html.
1398
+ [Gab+21]
1399
+ D. Gabai, R. Haraway, R. Meyerhoff, N. Thurston, and A. Yarmola. Hyperbolic 3-manifolds
1400
+ of low cusp volume. 2021. arXiv: 2109.14570 [math.GT].
1401
+ [GT86]
1402
+ D. Gabai and W. P. Thurston. Genera of Arborescent Links: 1986. Vol. 339. American
1403
+ Mathematical Soc., 1986.
1404
+ [Gra+03]
1405
+ R. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks, and C. H. Yan. “Apollonian circle
1406
+ packings: number theory”. In: Journal of Number Theory 100.1 (2003), pp. 1–45. issn: 0022-
1407
+ 314X. doi: https://doi.org/10.1016/S0022-314X(03)00015-5. url: https://www.
1408
+ sciencedirect.com/science/article/pii/S0022314X03000155.
1409
+ 18
1410
+
1411
+ [Kau87]
1412
+ L. H. Kauffman. “State models and the Jones polynomial”. In: Topology 26.3 (1987), pp. 395–
1413
+ 407.
1414
+ [KN19]
1415
+ A. Kontorovich and K. Nakamura. “Geometry and arithmetic of crystallographic sphere
1416
+ packings”. In: Proceedings of the National Academy of Sciences 116.2 (2019), pp. 436–
1417
+ 441. issn: 0027-8424. doi: 10.1073/pnas.1721104116. eprint: https://www.pnas.org/
1418
+ content/116/2/436.full.pdf. url: https://www.pnas.org/content/116/2/436.
1419
+ [Kwo+20]
1420
+ S. Kwok, R. Botet, L. Sharpnack, and B. Cabane. “Apollonian packing in polydisperse
1421
+ emulsions”. In: Soft Matter 16 (10 2020), pp. 2426–2430. doi: 10.1039/C9SM01772K. url:
1422
+ http://dx.doi.org/10.1039/C9SM01772K.
1423
+ [Mae07]
1424
+ H. Maehara. “On Configurations of Solid Balls in 3-Space: Chromatic Numbers and Knotted
1425
+ Cycles”. In: Graphs and Combinatorics 23.1 (2007), pp. 307–320. issn: 1435-5914. doi: 10.
1426
+ 1007/s00373-007-0702-7. url: https://doi.org/10.1007/s00373-007-0702-7.
1427
+ [Mur87]
1428
+ K. Murasugi. “Jones polynomials and classical conjectures in knot theory”. In: Topology 26.2
1429
+ (1987), pp. 187–194.
1430
+ [Nak14]
1431
+ K. Nakamura. The local-global principle for integral bends in orthoplicial Apollonian sphere
1432
+ packings. 2014. arXiv: 1401.2980 [math.NT].
1433
+ [RR21a]
1434
+ J. L. Ram´ırez Alfons´ın and I. Rasskin. “A polytopal generalization of Apollonian packings
1435
+ and Descartes’ theorem”. In: (2021). arXiv: 2107.09432 [math.CO].
1436
+ [RR21b]
1437
+ J. L. Ram´ırez Alfons´ın and I. Rasskin. “Ball packings for links”. In: European Journal of
1438
+ Combinatorics 96 (2021), p. 103351. issn: 0195-6698. doi: https://doi.org/10.1016/
1439
+ j.ejc.2021.103351. url: https://www.sciencedirect.com/science/article/pii/
1440
+ S0195669821000433.
1441
+ [Ras21]
1442
+ I. Rasskin. “Regular polytopes, sphere packings and Apollonian sections”. In: arXiv preprint
1443
+ arXiv:2109.00655 (2021).
1444
+ [Sta15]
1445
+ K. E. Stange. “The Apollonian structure of Bianchi groups”. In: Transactions of the Amer-
1446
+ ican Mathematical Society 370 (May 2015). doi: 10.1090/tran/7111.
1447
+ [Ste05]
1448
+ K. Stephenson. Introduction to circle packing: The theory of discrete analytic functions.
1449
+ Cambridge University Press, 2005.
1450
+ [Thi87]
1451
+ M. B. Thistlethwaite. “A spanning tree expansion of the Jones polynomial”. In: Topology
1452
+ 26.3 (1987), pp. 297–309.
1453
+ [Wil81]
1454
+ J. B. Wilker. “Inversive Geometry”. In: (1981). Ed. by Chandler Davis, Branko Gr¨unbaum,
1455
+ and F. A. Sherk, pp. 379–442.
1456
+ IMAG, Univ. Montpellier, CNRS, Montpellier, France
1457
+ Email address: [email protected]
1458
+ Institute of Analysis and Number Theory, TU Graz, Austria
1459
+ Email address: [email protected]
1460
+ 19
1461
+
9tE1T4oBgHgl3EQfUQPn/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9FQT4oBgHgl3EQfMzZX/content/tmp_files/2301.13269v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9FQT4oBgHgl3EQfMzZX/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
C9E0T4oBgHgl3EQfgQG4/content/tmp_files/2301.02416v1.pdf.txt ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 9, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ Simulations of high-redshift [OIII] emitters: Chemical evolution and multi-line diagnostics
4
+ Yurina Nakazato,1 Naoki Yoshida,1, 2, 3 and Daniel Ceverino4, 5
5
+ 1Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
6
+ 2Kavli Institute for the Physics and Mathematics of the Universe (WPI), UT Institute for Advanced Study, The University of Tokyo,
7
+ Kashiwa, Chiba 277-8583, Japan
8
+ 3Research Center for the Early Universe, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
9
+ 4Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain
10
+ 5CIAFF, Facultad de Ciencias, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
11
+ ABSTRACT
12
+ Recent observations by James Webb Space Telescope discovered a number of high-redshift galaxies
13
+ with strong emission lines from doubly ionized oxygen. Combined with ALMA observations of far-
14
+ infrared lines, multi-line diagnostics can be applied to the high-redshift galaxies in order to probe the
15
+ physical conditions of the inter-stellar medium. We study the formation and evolution of galaxies
16
+ using the FirstLight simulation suite, which provides outputs of 62 high-resolution, zoom-in galaxy
17
+ simulations.
18
+ We devise a physical model of Hii regions and calculate spatially resolved [Oiii] line
19
+ emission. We show that massive galaxies with stellar masses of M∗ > 109M⊙ chemically evolve rapidly
20
+ to z = 9. Young stellar populations in the star-forming galaxies boost the [Oiii] line emission, rendering
21
+ the ratio of line luminosity to star formation rate larger than that for low-redshift galaxies, which is
22
+ consistent with recent observations. Measuring the flux ratios of rest-frame optical and far-infrared
23
+ lines allows us to estimate the physical conditions such as density and metallicity of the star-forming
24
+ gas in high-redshift [Oiii] emitters.
25
+ 1. INTRODUCTION
26
+ Understanding the formation and evolution of the first
27
+ galaxies is one of the key scientific goals of new genera-
28
+ tion telescopes including James Webb Space Telescope
29
+ (JWST) and Atacama Large Millimetre/Submillimetre
30
+ Array (ALMA). High-redshift galaxies can be detected
31
+ and identified using strong emission lines, among which
32
+ [Oiii] 88µm line is thought to be promising (Inoue et al.
33
+ 2014). A number of galaxies have been found at z > 7 by
34
+ ALMA observations targeting the [Oiii] 88µm line (e.g.
35
+ Inoue et al. 2016; Hashimoto et al. 2018), including the
36
+ most distant galaxy candidate at z = 13.27 with a 4σ
37
+ [Oiii] 88µm detection (Harikane et al. 2022). Since the
38
+ [Oiii] line emission originates from Hii regions around
39
+ young massive stars, it can be used to trace the star for-
40
+ mation activities and also the physical properties of the
41
+ inter-stellar medium (ISM) in the early galaxies.
42
+ JWST is opening a new window into the early universe
43
+ through its superb observational capability in near-
44
+ infrared.
45
+ For example, JWST Early Research Obser-
46
+ Corresponding author: Yurina Nakazato
47
48
+ vation (ERO) in the lensing field SMACS 0723 already
49
+ reported three galaxies confirmed spectroscopically by
50
+ NIRSpec (Schaerer et al. 2022; Curti et al. 2022; Heintz
51
+ et al. 2022). NIRSpec instrument is capable of detect-
52
+ ing and identifying various rest-frame optical lines such
53
+ as [Oii] 3727˚A, [Oiii] 4959˚A and [Oiii] 5007˚A. The rela-
54
+ tively weak [Oiii] 4363˚A line has been detected for all the
55
+ three galaxies, enabling us to estimate the ISM metal-
56
+ licity in a direct manner.
57
+ Detailed numerical simulations are indispensable to
58
+ study the physical conditions of the ISM. There have
59
+ been several studies focusing on [Oiii] emission lines
60
+ from high-z galaxies (Hirschmann et al. 2017; Olsen
61
+ et al. 2017; Moriwaki et al. 2018; Katz et al. 2019;
62
+ Arata et al. 2020; Ceverino et al. 2021; Pallottini et al.
63
+ 2022). Moriwaki et al. (2018) use a cosmological sim-
64
+ ulation with a large boxsize of 50 Mpc (Shimizu et al.
65
+ 2016) to calculate the [Oiii] 88µm line intensities for a
66
+ few hundred galaxies with stellar masses of ∼ 108 M⊙.
67
+ High-resolution, zoom-in simulations have also been per-
68
+ formed to study the internal structure of early galaxies
69
+ (Katz et al. 2019; Arata et al. 2020). For the upcoming
70
+ observations conducted by JWST, it is urgently needed
71
+ to study the population of high-redshift galaxies with
72
+ arXiv:2301.02416v1 [astro-ph.GA] 6 Jan 2023
73
+
74
+ 2
75
+ Nakazato et al.
76
+ high resolution in a fully cosmological context. In this
77
+ Letter, we use the outputs of FirstLight simulation (Cev-
78
+ erino et al. 2017).
79
+ The simulation suite is motivated
80
+ to produce a statistically significant number of galaxies
81
+ with very high resolution at the epoch of reionization.
82
+ Thanks to the mass and volume complete sample of
83
+ more than 60 massive galaxies and to the high-resolution
84
+ of ∼ 20 pc, we can investigate the internal structure as
85
+ well as statistics of the high-redshift galaxies.
86
+ Throughout this Letter, we assume Z⊙ = 0.02 as the
87
+ solar metallicity (Anders & Grevesse 1989).
88
+ 2. METHOD
89
+ 2.1. Cosmological Simulation
90
+ We use mass-limited galaxy samples selected from the
91
+ FirstLight simulation suite (Ceverino et al. 2017). The
92
+ simulations are performed with ART code (Kravtsov
93
+ et al. 1997; Kravtsov 2003; Ceverino & Klypin 2009;
94
+ Ceverino et al. 2014), which follows gravitational N-
95
+ body dynamics and Eulerian hydrodynamics using an
96
+ adaptive mesh refinement method.
97
+ Besides the two
98
+ processes, the code incorporates astrophysical processes
99
+ relevant for galaxy formation.
100
+ The so-called subgrid
101
+ physics includes atomic and molecular cooling of hydro-
102
+ gen and helium, photoionization heating by a cosmolog-
103
+ ical UV background with partial self-shielding, and star
104
+ formation and the associated stellar feedback. Details
105
+ are described in Ceverino et al. (2017). The simulations
106
+ track metals released from SNe-Ia and from SNe-II, us-
107
+ ing supernovae yields from Woosley & Weaver (1995).
108
+ Our simulated galaxies are hosted by dark matter
109
+ haloes with maximum circular velocity (Vmax) higher
110
+ than 178 km/s at z = 5 in a cosmological volume of 40
111
+ h−1Mpc on a side. The host haloes are selected in a low-
112
+ resolution N-body only simulation, for which refined ini-
113
+ tial conditions are generated using a standard zoom-in
114
+ technique (Klypin et al. 2011). The refinement achieves
115
+ the dark matter particle mass of mDM = 8 × 104 M⊙,
116
+ the minimum star particle mass of 103 M⊙, and the
117
+ maximum spatial resolution is a few tens proper parsec
118
+ depending on the refinement level.
119
+ We calculate the stellar mass distribution for the se-
120
+ lected 62 massive galaxies at z = 9, 8, 7, 6. The max-
121
+ imum stellar mass is 9.5, 9.7, 10.1, 10.7×109 M⊙, re-
122
+ spectively.
123
+ The sample allows us to study the evolu-
124
+ tion of more massive galaxies than in previous simula-
125
+ tions, e.g., Moriwaki et al. (2018), SERRA simulation
126
+ (Pallottini et al. 2022) and S´IGAME simulation (Olsen
127
+ et al. 2017), and thus is well-suited to compare with
128
+ observed massive galaxies by HST, ALMA, and JWST
129
+ (e.g. Tacchella et al. 2022; Graziani et al. 2020; Topping
130
+ et al. 2022; Trussler et al. 2022; Barrufet et al. 2022;
131
+ Leethochawalit et al. 2022).
132
+ 2.2. Line emissivity calculation
133
+ We generate emission-line maps for our galaxy sam-
134
+ ples by choosing a region enclosed by 0.3 times the virial
135
+ radius of the host halo as same as Mandelker et al.
136
+ (2014, 2017). We configure a uniform 3D grid with a
137
+ side length of 100 pc. We locate the star particles and
138
+ gas elements within each grid, and store the mass of
139
+ stars younger than 10 Myr, the average density of the
140
+ gas with nH > 0.1 cm−3, and the average metallicity of
141
+ the cold/warm gas with T < 5 × 104 K. These physi-
142
+ cal quantities assigned to the individual grids are then
143
+ used to compute the line emissivities in a similar man-
144
+ ner to those in Hirschmann et al. (2017); Moriwaki et al.
145
+ (2018); Ceverino et al. (2021). We generate a library of
146
+ emission lines using CLOUDY (Ferland et al. 2013).The
147
+ library covers a wide range of gas metallicity Z and ion-
148
+ ization parameter U as given in Table 1.
149
+ The library lists the individual line luminosity, Lline,
150
+ normalized by the Hβ line luminosity calculated with
151
+ the case-B approximation (Dopita & Sutherland 2003),
152
+ LcaseB
153
+
154
+ , as
155
+ Lline = (1 − fesc) Cline(Zgas, U, nHii) LcaseB
156
+
157
+ ,
158
+ (1)
159
+ LcaseB
160
+
161
+ = 4πjHβV = hνHβ
162
+
163
+ αeff
164
+
165
+ αB
166
+
167
+ Q,
168
+ (2)
169
+ where fesc is the Lyman continuum escape fraction and
170
+ Cline is the line luminosity ratio. The Hβ emission rate
171
+ per unit volume per unit time per unit solid angle is
172
+ denoted as jHβ, and αeff
173
+ Hβ is an effective recombination
174
+ coefficient, Q is the production rate of ionizing photons
175
+ from each star particle, and αB is the case-B hydrogen
176
+ recombination coefficient given by
177
+ αB = 2.6 × 10−13
178
+
179
+ Te
180
+ 104 K
181
+ �−0.85
182
+ cm3s−1
183
+ (3)
184
+ with a constant electron temperature Te = 104 K.
185
+ We set fesc = 0.1, which is consistent with previous
186
+ radiative transfer simulations for massive galaxies with
187
+ Mhalo > 1010−11M⊙ (Yajima et al. 2011; Kimm & Cen
188
+ 2014; Wise et al. 2014; Paardekooper et al. 2015; Xu
189
+ et al. 2016). It is also consistent with recent observa-
190
+ tional estimates at z ∼ 6 − 8 (Castellano et al. 2017;
191
+ Robertson et al. 2013).
192
+ We note that some galaxies
193
+ have been reported to have an even higher escape frac-
194
+ tion of over 20 percent (e.g. Marques-Chaves et al. 2022;
195
+ Vanzella et al. 2016; Fletcher et al. 2019; Bian & Fan
196
+ 2020; Flury et al. 2022) at z < 4.
197
+
198
+ [Oiii] Luminosity calculation in First Light
199
+ 3
200
+ Since individual Hii regions are not resolved in our
201
+ simulations, we resort to a physical model of the ISM
202
+ structure to calculate the line emissivities of Hii regions.
203
+ We characterize the ISM by the local gas density n and
204
+ metallicity Z, and also by a volume-averaged ionization
205
+ parameter
206
+ ⟨U⟩ = 3α2/3
207
+ B
208
+ 4c
209
+ �3Qϵ2nHii
210
+
211
+ �1/3
212
+ .
213
+ (4)
214
+ Our fiducial model assumes a constant gas density nHii
215
+ in a spherical Hii region surrounding a star particle (see,
216
+ e.g. Panuzzo et al. 2003; Gutkin et al. 2016). We set the
217
+ Hii region density nHii = 100 cm−3 (e.g. Osterbrock &
218
+ Ferland 2006; Hirschmann et al. 2017, 2022). We define
219
+ the volume-filling factor of the gas as
220
+ ϵ = ngas,grid
221
+ nHii
222
+ ,
223
+ (5)
224
+ where ngas,grid is the gas number density in each grid.
225
+ In rare cases where the volume-averaged gas density ex-
226
+ ceeds nHii (ϵ > 1), we set the filling factor to unity. Note
227
+ that a larger ngas,grid for a fixed nHii yields a larger fill-
228
+ ing factor ϵ. Hence the resulting line emissivity depends
229
+ only weakly on the assumed nHii in our model. We have
230
+ tested with a few variations with nHii = 50, 300 cm−3,
231
+ and explicitly checked that our main findings in the fol-
232
+ lowing sections are not sensitively affected by this choice.
233
+ log10 (Zgas/Z⊙)
234
+ -1.30, -0.70, -0.40, 0., 0.30
235
+ log10 U
236
+ -4.0, -3.9, ..., -1.1, -1.0
237
+ log10 (nHii/cm−3)
238
+ 2.0 (fixed)
239
+ Table 1. The parameters used to calculate the line lumi-
240
+ nosities with CLOUDY.
241
+ We compute the production rate of ionizing photons
242
+ Q of the simulated galaxies using publicly available ta-
243
+ bles from the Binary Population and Spectral Synthesis
244
+ (BPASS) model (Byrne et al. 2022). Our simulations
245
+ adopt a stellar initial mass function represented by bro-
246
+ ken power laws as
247
+ N(M < Mmax) ∝
248
+ � M1
249
+ 0.1
250
+ � M
251
+ M⊙
252
+ �α1
253
+ dM + M α1
254
+ 1
255
+ � Mmax
256
+ M1
257
+ � M
258
+ M⊙
259
+ �α2
260
+ dM
261
+ (6)
262
+ with α1 = −1.3, α2 = −2.35, M1 = 0.5, Mmax =
263
+ 300 M⊙ as in Ceverino et al. (2019). We use a grid of
264
+ 13 values of metallicity, from Z = 10−5 to 0.04, and
265
+ 50 logarithmic bins in stellar population ages between 1
266
+ Myr and 100 Gyr.
267
+ We re-assign ”fine” ages to star particles in order to
268
+ mitigate the discreteness effect caused by our simula-
269
+ tion set up. Our simulations produce new star particles
270
+ with a fixed time step of ∆tSF = 5 Myr, and the simula-
271
+ tion output timings are not synchronized with ∆tSF. In
272
+ a snapshot, young stars typically have discretized ages
273
+ such like tage = 2 Myr, 7 Myr, etc. The apparently mi-
274
+ nor gap in stellar ages causes a large impact when we
275
+ compute the line emissivities because the ionization pho-
276
+ ton production rate quickly decreases with age. For in-
277
+ stance, in the BPASS SED of a single stellar population
278
+ that we use, the number of ionizing photons decreases
279
+ over a factor of 100 from age 1 Myr to 10 Myr (Xiao
280
+ et al. 2018). We thus re-assign the stellar age as follows.
281
+ We consider star particles younger than 15 Myr, with
282
+ stamped ages at T1, T2, T3 (T1 < T2 < T3) Myr. We do
283
+ random sampling within each age interval. For instance,
284
+ to a star with T1, we randomly draw a new age within
285
+ [1, T1] Myr and re-assign to it. Finally, we select star
286
+ particles younger than 10 Myr for our emission line cal-
287
+ culation. We calculate the ionizing photon production
288
+ rate Q for each stellar particle using the BPASS table.
289
+ We consider stellar atmosphere models with different
290
+ elemental compositions, i.e., different values of [α/Fe].
291
+ In the BPASS v2.3 (Byrne et al. 2022), there are five
292
+ models with the mass fractions in α-elements relative to
293
+ iron of ∆(log(α/Fe)) = −0.2, +0.0, +0.2, +0.4 and +0.6.
294
+ For the calculation of [α/Fe], the α-element abundance
295
+ is approximated by the oxygen abundance (log NO) as-
296
+ suming that a half of the mass in metals produced by
297
+ SNII are in the form of oxygen atoms;
298
+ log NO = log(fOzSNII/AO),
299
+ (7)
300
+ where fO, zSNII are the fraction of oxygen released by
301
+ Type-II SNe, and the mass fraction of metals released
302
+ from Type-II SNe, respectively. Here, the atomic weight
303
+ of oxygen is AO = 16 and we assume fO = 0.5 (Woosley
304
+ & Weaver 1995). We calculate the iron abundance ratio
305
+ considering both contributions from Type-Ia and II SNe
306
+ as
307
+ NFe = (fFe,Ia zSNIa + fFe,II zSNIa)
308
+ AFe
309
+ ,
310
+ (8)
311
+ where zSNIa is the mass fraction of metals released from
312
+ Type-Ia SNe and AFe = 56. We set the fractions fFe,Ia =
313
+ 0.5 (Thielemann et al. 1986) and fFe,II = (0.026, 0.033)
314
+ for metal mass ratio between zero and solar metallicity
315
+ (Nomoto et al. 2006; Ceverino et al. 2019), respectively.
316
+ Finally, [α/Fe] is obtained from
317
+ [α/Fe] = log NO − log NFe − log(NO/NFe)⊙,
318
+ (9)
319
+ where (NO/NFe)⊙ = 1.17 is the solar value of O/Fe
320
+ abundance ratio.
321
+
322
+ 4
323
+ Nakazato et al.
324
+ Figure 1. The [Oiii] 88 µm luminosity versus SFR for our 62 simulated galaxies at z = 9 (top left), z = 8 (top right), z = 7
325
+ (bottom left), and z = 6 (bottom right). The solid circles are colored with the gas metallicity (see the colorbar on the right).
326
+ For comparison, we show the [Oiii] -SFR relation derived from observations of local galaxies by De Looze et al. (2014). Gray
327
+ points are the observational results of high-z (z > 6) galaxies from Hashimoto et al. (2018); Laporte et al. (2017); Tamura et al.
328
+ (2019), Inoue et al. (2016)(I16), Hashimoto et al. (2019)(H19), Carniani et al. (2017)(C17), Wong et al. (2022)(WG22), Witstok
329
+ et al. (2022)(WT22) and Harikane et al. (2020).
330
+ 3. RESULTS
331
+ We focus on rest-frame sub-millimeter and optical
332
+ [Oiii] lines from high-redshift galaxies, which are de-
333
+ tected by ALMA and JWST.
334
+ 3.1. L[Oiii] vs SFR
335
+ Figure 1 shows the [Oiii] 88µm luminosity against star
336
+ formation rate (SFR) for our galaxy samples. The color-
337
+ bar indicates the nebular metallicity Zneb, which is the
338
+ line luminosity-weighted gas metallicity.
339
+ We compare
340
+ with the observed local galaxies (De Looze et al. 2014)
341
+ and with the observed [Oiii] 88µm luminosities of high-
342
+ redshift galaxies (see the caption). At z = 9 to z = 7,
343
+ most of our simulated galaxies are located above the
344
+ local galaxy relation (solid line), similar to the results
345
+ of Moriwaki et al. (2018); Arata et al. (2020); Pallottini
346
+ et al. (2022).
347
+ At z = 7 − 9, our galaxy samples are distributed
348
+ around the observed galaxies. It is interesting that lu-
349
+ minous galaxies are already chemically enriched with
350
+ log(Z/Z⊙) ∼ −0.5 at the early epochs.
351
+ Our simula-
352
+ tions predict a slightly steeper relation at z = 7−9 than
353
+ the local relation:
354
+ L[Oiii] ,88 ∝
355
+
356
+ SFR
357
+ M⊙ yr−1
358
+ �0.9−1.2
359
+ .
360
+ (10)
361
+ We find three galaxies with L[Oiii] > 109 L⊙ at z = 7,
362
+ which are as bright as several observed galaxies.
363
+ We
364
+ study the structure of one of them (sample FL964) in de-
365
+ tail. It has Mgas = 6.41×109 M⊙, M⋆ = 9.96×109 M⊙,
366
+ and a specific SFR of 11 Gyr at z = 7. Figure 2 shows
367
+ the projected maps of number density of gas, ionization
368
+ parameter, and [Oiii] 88µm. Clearly, regions with high
369
+ ionization parameters of log U ∼ −2 cause high emissiv-
370
+
371
+ 6=2
372
+ 1010
373
+ 0
374
+ 109
375
+ L(88μm)[Lo ]
376
+ -0.5
377
+ log10(ZIZo)
378
+ 108
379
+ -1.0
380
+ 107
381
+ -1.5
382
+ 106
383
+ MACS1149-JD1
384
+ -2
385
+ 10-1
386
+ 100
387
+ 101
388
+ 102
389
+ 103
390
+ SFR [M。 yr-1]z=8
391
+ 1010
392
+ 0
393
+ A2744-YD4
394
+ MACS0416-Y1
395
+ 109
396
+ L(88μm)[L ]
397
+ -0.5
398
+ log10(ZIZo)
399
+ 108
400
+ -1.0
401
+ 107
402
+ -1.5
403
+ 106
404
+ -2
405
+ 10-1
406
+ 100
407
+ 101
408
+ 102
409
+ 103
410
+ SFR [M。 yr-1]Z=7
411
+ 1010
412
+ 0
413
+ 109
414
+ L(88μm)[Lo]
415
+ -0.5
416
+ log10(ZIZo)
417
+ 108
418
+ -1.0
419
+ 107
420
+ }
421
+ 116
422
+ WG22
423
+ -1.5
424
+ H19
425
+ WT22
426
+ 106
427
+ C17
428
+ -2
429
+ 10-1
430
+ 100
431
+ 101
432
+ 102
433
+ 103
434
+ SFR [Mo yr-1]9=2
435
+ 1010
436
+ 0
437
+ J0235-0532
438
+ X
439
+ 109
440
+ L(88μm)[Lo ]
441
+ -0.5
442
+ 108
443
+ -1.0
444
+ 107
445
+ -1.5
446
+ 106
447
+ -2
448
+ 10-1
449
+ 100
450
+ 101
451
+ 102
452
+ 103
453
+ SFR [Mo yr-1][Oiii] Luminosity calculation in First Light
454
+ 5
455
+ Figure 2. Projected gas density (left), averaged ionization parameter (middle), and [Oiii] 88µm distribution (right) for a galaxy
456
+ sample FL964 at z = 7. Each panel shows a region with a side length and depth of 0.3Rvir(= 7.4 kpc).
457
+ ities, consistent with the observation by Harikane et al.
458
+ (2020) and also with recent simulations by Kohandel
459
+ et al. (2022). The total luminosity of [Oiii] 5007˚A of
460
+ FL964 is 7.60 × 109L⊙, which is about 5 times larger
461
+ than L[Oiii] ,88.
462
+ 3.2. The mass-metallicity relation
463
+ It is important to examine the metallicity evolution
464
+ of our simulated galaxies. We study the so-called mass-
465
+ metallicity relation (MZR) by calculating the gas-phase
466
+ metallicity for individual galaxies. Figure 3 shows the
467
+ stellar mass-gas phase oxygen abundance relation. We
468
+ calculate the gas phase oxygen abundance by adopting
469
+ the conversion equation of Mandelker et al. (2014);
470
+ O
471
+ H =
472
+ fO
473
+ zSNII
474
+ XAO.
475
+ (11)
476
+ We set the hydrogen mass fraction X = 0.755 and
477
+ the other values of fO and AO are the same as those
478
+ of eq.(7), which adopts the solar oxygen abundance
479
+ 12 + log(O/H) = 8.9. We then calculate the averaged
480
+ zSNII, weighted by the [Oiii] luminosity of each grid.
481
+ This weighting is compatible with observational meth-
482
+ ods such as direct method or strong line method, which
483
+ use oxygen emission lines (e.g. Bian et al. 2018; Izotov
484
+ et al. 2019).
485
+ We calculate the mass of stars within the region of 0.3
486
+ Rvir. In Figure 3, we also plot the MZR for local galaxies
487
+ from Curti et al. (2020) (dashed line) and recent JWST
488
+ observation results of high-redshift galaxies (Sun et al.
489
+ 2022; Curti et al. 2022; Langeroodi et al. 2022; Williams
490
+ et al. 2022). Curti et al. (2022) estimated metallicities
491
+ of SMACS field galaxies by direct method, Sun et al.
492
+ (2022) adopt strong line calibration by Bian et al. (2018)
493
+ using O32, and Langeroodi et al. (2022) and Williams
494
+ et al. (2022) adopt strong line method by Izotov et al.
495
+ (2019).
496
+ Our simulated galaxies have similar metallicities (oxy-
497
+ gen abundance) and stellar masses to the observed ones.
498
+ Note that Figure 3 shows the evolution for a fixed sam-
499
+ ple of simulated galaxies, rather than for all the galaxies
500
+ at respective epochs. Namely, we select the galaxies at
501
+ z = 5 by mass and plot their progenitors at z = 6 − 9.
502
+ Hence we likely miss low-mass, low-metallicity galax-
503
+ ies at z = 9 (see Langan et al. (2020) for the mass-
504
+ metallicity of low-mass galaxies in FirstLight).
505
+ Some
506
+ galaxies with M⋆ > 109 M⊙ have gas-phase metallici-
507
+ ties of 12 + log (O/H) ∼ 8.5 even at z = 9, suggesting
508
+ that metal-enrichment can proceed rapidly in the early
509
+ galaxies.
510
+ 3.3. Far-IR/optical line ratios
511
+ It is interesting and timely to explore line-ratio di-
512
+ agnostics using three [Oiii] lines; 88 µm, 52 µm and
513
+ 5007˚A. The former two fine-structure lines are observed
514
+ by ALMA whereas the latter is to be observed by JWST.
515
+ Hereafter we denote the line luminosity ratios using the
516
+ wavelength such as R5007/88 = L5007˚
517
+ A/L88µm. Figure 4
518
+ shows R5007/88 against R52/88 for our simulated galax-
519
+ ies. We also show the model line ratios obtained by our
520
+ set of CLOUDY calculations (Table 1).
521
+ The ratio R5007/88 is commonly thought to be a sensi-
522
+ tive temperature indicator (e.g. Fujimoto et al. 2022).
523
+ Interestingly, Figure 4 shows that R5007/88 may also
524
+ trace the mean gas metallicity of a galaxy. We argue
525
+ that it is a model-dependent, indirect indicator because
526
+
527
+ 1 kpc
528
+ 0
529
+ 2
530
+ 3
531
+ -5
532
+ -4
533
+ 6
534
+ 8
535
+ 9
536
+ 10
537
+ log <U)
538
+ log [ Density / cm-3
539
+ log [ Z[o]/L/kpc? 6
540
+ Nakazato et al.
541
+ Figure 3. Gas-phase metallicity versus stellar mass for our galaxy samples from z = 9 to z = 6. The solid lines show the
542
+ median and the colored bands indicate the sample dispersion in the range of 5-95%. The dashed line is the local mass-metallicity
543
+ relation from Curti et al. (2020). Red, blue, and purple symbols show the mass and metallicity of the z > 7 galaxies observed
544
+ in SMACS J0723 field (Curti et al. 2022), z ∼ 6 galaxies observed by JWST/ NIRCam WFSS mode (Sun et al. 2022), and
545
+ z = 8.1 − 9.5 galaxies observed in the cluster RX J2129.4+0009 field (two galaxies at z ∼ 8.15 from Langeroodi et al. (2022)
546
+ and one at z = 9.51 from Williams et al. (2022)), respectively.
547
+ of the complex dependence of the line emissivities on the
548
+ relevant physical quantities. Typically, the oxygen line
549
+ emissivity increases with increasing oxygen abundance
550
+ (metallicity), but there is a critical abundance beyond
551
+ which the emissivity decreases because of the tempera-
552
+ ture decrease of Hii regions owing to metal line cooling.
553
+ The critical ”peak” abundance is different for different
554
+ lines and thus line ratios vary non-trivially as metallicity
555
+ increases.
556
+ In Figure 4, we plot local metal-rich galaxies ob-
557
+ served with both FIR (Brauher et al. 2008) and op-
558
+ tical emission lines (Moustakas et al. 2006).
559
+ Most of
560
+ the plotted local galaxies have high metallicities with
561
+ Z > 1Z⊙ and are located in the lower portion (low
562
+ R52/88) in the figure.
563
+ Only NGC 1569, the left most
564
+ symbol with R5007/88 = 4.9, has a sub-solar metallic-
565
+ ity of log(Z/Z⊙) = −0.6 (Israel 1988), which is located
566
+ near the same metallicity line as our high-redshift galaxy
567
+ samples. The local planetary nebulae data from Din-
568
+ erstein et al. (1985) are also plotted as red stars.
569
+ It
570
+ can be easily estimated that the planetary nebulae have
571
+ electron densities of ne([Oiii] ) ≳ 103cm−3, which are
572
+ consistent with those derived from [Oii] line ratios.
573
+ The line emissivities and hence the ratios have im-
574
+ plicit dependence on ionization parameter through other
575
+ quantities such as electron temperature, but the de-
576
+ pendence is weak at log U ∼ (−3, −2). Our simulated
577
+ galaxies have generally high ionization parameter with
578
+ log U ≃ −2 (Figure 2), and thus we may use R5007/88 as
579
+ a metallicity indicator as well.
580
+ In our emission line model (Section 2.2), the Hii re-
581
+ gions have a fixed density of nHii = 100 cm−3. Hence
582
+ our galaxy samples are populated in the left-upper por-
583
+ tion with R52/88 ≲ 1. Since R52/88 varies weakly with
584
+ Z and U (Yang & Lidz 2020), galaxies with high Z and
585
+ high U are distributed toward bottom/right in Figure 4.
586
+ 4. DISCUSSION
587
+ In this Letter, we have studied the chemical evolu-
588
+ tion of early star-forming galaxies from z = 9 to z = 6
589
+ by using zoom-in hydrodynamics simulations. We find
590
+ that oxygen line emission galaxies with stellar masses
591
+ of M⋆ = 109−9.5 M⊙ have large ionization parameter of
592
+ log U = −2 and metallicity of log(Z/Z⊙) ∼ (−1, −0.5).
593
+ In these galaxies, metal-enrichment occurs early and
594
+ quickly over a few hundred million years.
595
+ We have examined line diagnostics using [Oiii] 5007˚A,
596
+ 88 µm, and 52 µm for future observation synergies of
597
+ JWST and ALMA. There have already been a few inter-
598
+ esting observations of high-redshift galaxies. Killi et al.
599
+ (2022) use ALMA and detect [Oiii] 52 µm line from a
600
+ galaxy at z = 7 for the first time. The derived value
601
+ of R52/88 ∼ 0.7 is close to our galaxy samples (Fig-
602
+ ure 4), and indicates a relatively low electron density
603
+
604
+ 9.0
605
+ Curti+20 (z = 0)
606
+ z=9
607
+ z=8
608
+ z= 8.50, S04590
609
+ z=7
610
+ z = 7.67, S06355
611
+ 8.5
612
+ z=6
613
+ z= 7.66, S10612
614
+ - log(O/H)
615
+ P330E-z6.15
616
+ P330E-z6.28
617
+ 8.0
618
+ P330E-z6.35
619
+ +
620
+ z= 8.16, ID11002
621
+ 2
622
+ 7.5
623
+ z= 8.15, ID11022
624
+ z=9.51, ID11027
625
+ 7.0
626
+ 7
627
+ 8
628
+ 9
629
+ 10
630
+ stellar mass 「 M*/Mo[Oiii] Luminosity calculation in First Light
631
+ 7
632
+ Figure 4. Line luminosity ratio R5007/52 against R52/88. Our simulated galaxies at z = 7 are represented by solid circles
633
+ colored with gas metallicity. Gray star symbols show the local galaxies from Brauher et al. (2008); Moustakas et al. (2006) and
634
+ red ones show the local planetary nebulae from Dinerstein et al. (1985). The results of CLOUDY calculations are represented
635
+ by lines colored with metallicity (log(Z/Z⊙) = −1.30, −0.70, −0.40, 0.0). Solid, dashed, and dotted lines are the case of log U =
636
+ −1.5, − 2, − 3 respectively. The number densities of Hii region log nHII[cm−3] = 1, 2, 3 are also marked by ticks from left to
637
+ right on each CLOUDY line.
638
+ of ne ∼ 50 − 260 cm−3. Observations of SMACS0723-
639
+ 4590 at z = 8.5 by Fujimoto et al. (2022) show a
640
+ large line ratio R5007/88 = 15.8, which is slightly larger
641
+ than our galaxy samples, suggesting a low-metallicity
642
+ of Z ∼ 0.04 Z⊙. Combining R52/88 from future obser-
643
+ vation will constrain the values of metallicity and ion-
644
+ ization parameter at the same time according to Fig-
645
+ ure 4. Planned observations using JWST NIRSpec are
646
+ targetted to several [Oiii] 88 µm emitters (e.g., GO-
647
+ 1740, PI: Harikane, and GO-1840, PI:´Alvarez-M´arquez
648
+ & Hashimoto). Multi-line diagnostics such as those pre-
649
+ sented in this Letter holds promise to reveal the physical
650
+ conditions of the ISM in the high-redshift galaxies.
651
+ Our simulations show rapid chemical evolution at
652
+ high redshift. The resulting MZR relation is consistent
653
+ with up-to-date JWST observations (Figure 3).
654
+ Lan-
655
+ gan et al. (2020) use 300 less massive galaxy samples
656
+ with M⋆ ≤ 108.5 M⊙ at z = 8 and derive MZR from
657
+ z = 8 to z = 5 (see also a similar study by Noel et al.
658
+ (2022)). Our galaxy samples with larger stellar masses
659
+ with M⋆ = 108.5−10.0 M⊙ show a steeper MZR, which
660
+ indicates rapid chemical evolution at the early epoch. It
661
+ would be highly interesting to study relatively massive
662
+ galaxies with JWST observations such as B14–65666
663
+ (Roberts-Borsani et al. 2020), A2744–YD4 (Morishita
664
+ et al. 2022), and MACS1149–JD1 (Hashimoto et al.
665
+ 2018).
666
+ There are a few caveats in our emission line model.
667
+ Most notably we do not account for dust extinction. Re-
668
+ cent ALMA surveys report the existence of a substantial
669
+ amount of dust in star-forming galaxies at z ∼ 6−8 (Fu-
670
+ damoto et al. 2020; Burgarella et al. 2022; Bakx et al.
671
+ 2021; Schouws et al. 2022; Tamura et al. 2019; Inami
672
+ et al. 2022). Given the importance of emission line ra-
673
+ tios including [Oiii] 5007˚A, accurate modeling of dust
674
+ extinction may be needed for future studies.
675
+ We have studied the statistics of early emission-line
676
+ galaxies and compared with recent observations. It will
677
+ be possible and important to study the internal struc-
678
+ ture of galaxies using both JWST observations and nu-
679
+ merical simulations. We have shown in Figure 2 that
680
+ there are large variations/fluctuations of line emissiv-
681
+ ities, metal and density distributions within a galaxy.
682
+ Cameron et al. (2022) argue that unresolved variations
683
+ of the electron temperature within a galaxy results in a
684
+ biased estimate when the so-called Te-method is applied.
685
+
686
+ 0
687
+ 102
688
+ planetary
689
+ nebulae
690
+ -0.5
691
+ 101
692
+ L5007/L88
693
+ -1.0
694
+ 100
695
+
696
+
697
+ +
698
+ 10-1
699
+ -1.5
700
+ logU= -1.5
701
+ -- logU= - 2.0
702
+ local galaxies
703
+ logU= - 3.0
704
+ 10-2
705
+ -2
706
+ 0.5
707
+ 1
708
+ 2
709
+ 3
710
+
711
+ 5
712
+ L52/L888
713
+ Nakazato et al.
714
+ JWST’s NIRSpec IFU can resolve with a pixel scale of
715
+ 0.1 [arcsec/pixel]1. For our configuration shown in Fig-
716
+ ure 2, the 7.4 kpc region at z = 7 can be resolved with
717
+ 13 × 13 pixels. Gravitational lensing magnification will
718
+ greatly help resolving further the structure of individ-
719
+ ual galaxies. In our future work, we will generate mock
720
+ two-dimensional maps for our simulated galaxies with
721
+ the same resolution of NIRSpec IFU, and will address
722
+ how well the physical quantities such as gas density and
723
+ temperature distribution can be reconstructed.
724
+ 5. ACKNOWLEDGEMENTS
725
+ We thank Kana Moriwaki and Yuichi Harikane for
726
+ fruitful discussions.
727
+ This work made use of v2.3 of
728
+ the Binary Population and Spectral Synthesis (BPASS)
729
+ models as described in Byrne et al. (2022) and Stanway
730
+ & Eldridge (2018).
731
+ The authors thankfully acknowl-
732
+ edges the computer resources at MareNostrum and the
733
+ technical support provided by the Barcelona Supercom-
734
+ puting Center (RES-AECT-2020-3-0019).
735
+ Numerical
736
+ analyses were carried out on the analysis servers at
737
+ Center for Computational Astrophysics, National As-
738
+ tronomical Observatory of Japan.
739
+ YN has been sup-
740
+ ported by International Graduate Program for Excel-
741
+ lence in Earth-Space Science (IGPEES) of the Univer-
742
+ sity of Tokyo.
743
+ DC is a Ramon-Cajal Researcher and
744
+ is supported by the Ministerio de Ciencia, Innovaci´on
745
+ y Universidades (MICIU/FEDER) under research grant
746
+ PGC2018-094975-C21.
747
+ REFERENCES
748
+ Anders, E., & Grevesse, N. 1989, GeoCoA, 53, 197,
749
+ doi: 10.1016/0016-7037(89)90286-X
750
+ Arata, S., Yajima, H., Nagamine, K., Abe, M., & Khochfar,
751
+ S. 2020, MNRAS, 498, 5541,
752
+ doi: 10.1093/mnras/staa2809
753
+ Bakx, T. J. L. C., Sommovigo, L., Carniani, S., et al. 2021,
754
+ MNRAS, 508, L58, doi: 10.1093/mnrasl/slab104
755
+ Barrufet, L., Oesch, P. A., Weibel, A., et al. 2022, arXiv
756
+ e-prints, arXiv:2207.14733.
757
+ https://arxiv.org/abs/2207.14733
758
+ Bian, F., & Fan, X. 2020, MNRAS, 493, L65,
759
+ doi: 10.1093/mnrasl/slaa007
760
+ Bian, F., Kewley, L. J., & Dopita, M. A. 2018, ApJ, 859,
761
+ 175, doi: 10.3847/1538-4357/aabd74
762
+ Brauher, J. R., Dale, D. A., & Helou, G. 2008, ApJS, 178,
763
+ 280, doi: 10.1086/590249
764
+ Burgarella, D., Bogdanoska, J., Nanni, A., et al. 2022,
765
+ A&A, 664, A73, doi: 10.1051/0004-6361/202142554
766
+ Byrne, C. M., Stanway, E. R., Eldridge, J. J., McSwiney,
767
+ L., & Townsend, O. T. 2022, MNRAS, 512, 5329,
768
+ doi: 10.1093/mnras/stac807
769
+ Cameron, A. J., Katz, H., & Rey, M. P. 2022, arXiv
770
+ e-prints, arXiv:2210.14234.
771
+ https://arxiv.org/abs/2210.14234
772
+ Carniani, S., Maiolino, R., Pallottini, A., et al. 2017, A&A,
773
+ 605, A42, doi: 10.1051/0004-6361/201630366
774
+ Castellano, M., Pentericci, L., Fontana, A., et al. 2017,
775
+ ApJ, 839, 73, doi: 10.3847/1538-4357/aa696e
776
+ Ceverino, D., Glover, S. C. O., & Klessen, R. S. 2017,
777
+ MNRAS, 470, 2791, doi: 10.1093/mnras/stx1386
778
+ 1 https://jwst-docs.stsci.edu/jwst-near-infrared-spectrograph
779
+ Ceverino, D., Hirschmann, M., Klessen, R. S., et al. 2021,
780
+ MNRAS, 504, 4472, doi: 10.1093/mnras/stab1206
781
+ Ceverino, D., Klessen, R. S., & Glover, S. C. O. 2019,
782
+ MNRAS, 484, 1366, doi: 10.1093/mnras/stz079
783
+ Ceverino, D., & Klypin, A. 2009, ApJ, 695, 292,
784
+ doi: 10.1088/0004-637X/695/1/292
785
+ Ceverino, D., Klypin, A., Klimek, E. S., et al. 2014,
786
+ MNRAS, 442, 1545, doi: 10.1093/mnras/stu956
787
+ Curti, M., Mannucci, F., Cresci, G., & Maiolino, R. 2020,
788
+ MNRAS, 491, 944, doi: 10.1093/mnras/stz2910
789
+ Curti, M., D’Eugenio, F., Carniani, S., et al. 2022, arXiv
790
+ e-prints, arXiv:2207.12375.
791
+ https://arxiv.org/abs/2207.12375
792
+ De Looze, I., Cormier, D., Lebouteiller, V., et al. 2014,
793
+ A&A, 568, A62, doi: 10.1051/0004-6361/201322489
794
+ Dinerstein, H. L., Lester, D. F., & Werner, M. W. 1985,
795
+ ApJ, 291, 561, doi: 10.1086/163096
796
+ Dopita, M. A., & Sutherland, R. S. 2003, Astrophysics of
797
+ the diffuse universe
798
+ Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al.
799
+ 2013, RMxAA, 49, 137. https://arxiv.org/abs/1302.4485
800
+ Fletcher, T. J., Tang, M., Robertson, B. E., et al. 2019,
801
+ ApJ, 878, 87, doi: 10.3847/1538-4357/ab2045
802
+ Flury, S. R., Jaskot, A. E., Ferguson, H. C., et al. 2022,
803
+ ApJS, 260, 1, doi: 10.3847/1538-4365/ac5331
804
+ Fudamoto, Y., Oesch, P. A., Faisst, A., et al. 2020, A&A,
805
+ 643, A4, doi: 10.1051/0004-6361/202038163
806
+ Fujimoto, S., Ouchi, M., Nakajima, K., et al. 2022, arXiv
807
+ e-prints, arXiv:2212.06863.
808
+ https://arxiv.org/abs/2212.06863
809
+ Graziani, L., Schneider, R., Ginolfi, M., et al. 2020,
810
+ MNRAS, 494, 1071, doi: 10.1093/mnras/staa796
811
+
812
+ [Oiii] Luminosity calculation in First Light
813
+ 9
814
+ Gutkin, J., Charlot, S., & Bruzual, G. 2016, MNRAS, 462,
815
+ 1757, doi: 10.1093/mnras/stw1716
816
+ Harikane, Y., Ouchi, M., Inoue, A. K., et al. 2020, ApJ,
817
+ 896, 93, doi: 10.3847/1538-4357/ab94bd
818
+ Harikane, Y., Inoue, A. K., Mawatari, K., et al. 2022, ApJ,
819
+ 929, 1, doi: 10.3847/1538-4357/ac53a9
820
+ Hashimoto, T., Laporte, N., Mawatari, K., et al. 2018,
821
+ Nature, 557, 392, doi: 10.1038/s41586-018-0117-z
822
+ Hashimoto, T., Inoue, A. K., Mawatari, K., et al. 2019,
823
+ PASJ, 71, 71, doi: 10.1093/pasj/psz049
824
+ Heintz, K. E., Gim´enez-Arteaga, C., Fujimoto, S., et al.
825
+ 2022, arXiv e-prints, arXiv:2212.06877.
826
+ https://arxiv.org/abs/2212.06877
827
+ Hirschmann, M., Charlot, S., Feltre, A., et al. 2017,
828
+ MNRAS, 472, 2468, doi: 10.1093/mnras/stx2180
829
+ —. 2022, arXiv e-prints, arXiv:2212.02522.
830
+ https://arxiv.org/abs/2212.02522
831
+ Inami, H., Algera, H. S. B., Schouws, S., et al. 2022,
832
+ MNRAS, 515, 3126, doi: 10.1093/mnras/stac1779
833
+ Inoue, A. K., Shimizu, I., Tamura, Y., et al. 2014, ApJL,
834
+ 780, L18, doi: 10.1088/2041-8205/780/2/L18
835
+ Inoue, A. K., Tamura, Y., Matsuo, H., et al. 2016, Science,
836
+ 352, 1559, doi: 10.1126/science.aaf0714
837
+ Israel, F. P. 1988, A&A, 194, 24
838
+ Izotov, Y. I., Guseva, N. G., Fricke, K. J., & Henkel, C.
839
+ 2019, A&A, 623, A40, doi: 10.1051/0004-6361/201834768
840
+ Katz, H., Galligan, T. P., Kimm, T., et al. 2019, MNRAS,
841
+ 487, 5902, doi: 10.1093/mnras/stz1672
842
+ Killi, M., Watson, D., Fujimoto, S., et al. 2022, arXiv
843
+ e-prints, arXiv:2211.01424.
844
+ https://arxiv.org/abs/2211.01424
845
+ Kimm, T., & Cen, R. 2014, ApJ, 788, 121,
846
+ doi: 10.1088/0004-637X/788/2/121
847
+ Klypin, A. A., Trujillo-Gomez, S., & Primack, J. 2011,
848
+ ApJ, 740, 102, doi: 10.1088/0004-637X/740/2/102
849
+ Kohandel, M., Ferrara, A., Pallottini, A., et al. 2022, arXiv
850
+ e-prints, arXiv:2212.02519.
851
+ https://arxiv.org/abs/2212.02519
852
+ Kravtsov, A. V. 2003, ApJL, 590, L1, doi: 10.1086/376674
853
+ Kravtsov, A. V., Klypin, A. A., & Khokhlov, A. M. 1997,
854
+ ApJS, 111, 73, doi: 10.1086/313015
855
+ Langan, I., Ceverino, D., & Finlator, K. 2020, MNRAS,
856
+ 494, 1988, doi: 10.1093/mnras/staa880
857
+ Langeroodi, D., Hjorth, J., Chen, W., et al. 2022, arXiv
858
+ e-prints, arXiv:2212.02491.
859
+ https://arxiv.org/abs/2212.02491
860
+ Laporte, N., Ellis, R. S., Boone, F., et al. 2017, ApJL, 837,
861
+ L21, doi: 10.3847/2041-8213/aa62aa
862
+ Leethochawalit, N., Trenti, M., Santini, P., et al. 2022,
863
+ arXiv e-prints, arXiv:2207.11135.
864
+ https://arxiv.org/abs/2207.11135
865
+ Mandelker, N., Dekel, A., Ceverino, D., et al. 2017,
866
+ MNRAS, 464, 635, doi: 10.1093/mnras/stw2358
867
+ —. 2014, MNRAS, 443, 3675, doi: 10.1093/mnras/stu1340
868
+ Marques-Chaves, R., Schaerer, D., ´Alvarez-M´arquez, J.,
869
+ et al. 2022, MNRAS, 517, 2972,
870
+ doi: 10.1093/mnras/stac2893
871
+ Morishita, T., Roberts-Borsani, G., Treu, T., et al. 2022,
872
+ arXiv e-prints, arXiv:2211.09097.
873
+ https://arxiv.org/abs/2211.09097
874
+ Moriwaki, K., Yoshida, N., Shimizu, I., et al. 2018,
875
+ MNRAS, 481, L84, doi: 10.1093/mnrasl/sly167
876
+ Moustakas, J., Kennicutt, Robert C., J., & Tremonti, C. A.
877
+ 2006, ApJ, 642, 775, doi: 10.1086/500964
878
+ Noel, I., Zhu, H., & Gnedin, N. 2022, arXiv e-prints,
879
+ arXiv:2210.16750. https://arxiv.org/abs/2210.16750
880
+ Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., &
881
+ Maeda, K. 2006, NuPhA, 777, 424,
882
+ doi: 10.1016/j.nuclphysa.2006.05.008
883
+ Olsen, K., Greve, T. R., Narayanan, D., et al. 2017, ApJ,
884
+ 846, 105, doi: 10.3847/1538-4357/aa86b4
885
+ Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of
886
+ gaseous nebulae and active galactic nuclei
887
+ Paardekooper, J.-P., Khochfar, S., & Dalla Vecchia, C.
888
+ 2015, MNRAS, 451, 2544, doi: 10.1093/mnras/stv1114
889
+ Pallottini, A., Ferrara, A., Gallerani, S., et al. 2022,
890
+ MNRAS, 513, 5621, doi: 10.1093/mnras/stac1281
891
+ Panuzzo, P., Bressan, A., Granato, G. L., Silva, L., &
892
+ Danese, L. 2003, A&A, 409, 99,
893
+ doi: 10.1051/0004-6361:20031094
894
+ Roberts-Borsani, G. W., Ellis, R. S., & Laporte, N. 2020,
895
+ MNRAS, 497, 3440, doi: 10.1093/mnras/staa2085
896
+ Robertson, B. E., Furlanetto, S. R., Schneider, E., et al.
897
+ 2013, ApJ, 768, 71, doi: 10.1088/0004-637X/768/1/71
898
+ Schaerer, D., Marques-Chaves, R., Oesch, P., et al. 2022,
899
+ arXiv e-prints, arXiv:2207.10034.
900
+ https://arxiv.org/abs/2207.10034
901
+ Schouws, S., Stefanon, M., Bouwens, R., et al. 2022, ApJ,
902
+ 928, 31, doi: 10.3847/1538-4357/ac4605
903
+ Shimizu, I., Inoue, A. K., Okamoto, T., & Yoshida, N.
904
+ 2016, MNRAS, 461, 3563, doi: 10.1093/mnras/stw1423
905
+ Stanway, E. R., & Eldridge, J. J. 2018, MNRAS, 479, 75,
906
+ doi: 10.1093/mnras/sty1353
907
+ Sun, F., Egami, E., Pirzkal, N., et al. 2022, arXiv e-prints,
908
+ arXiv:2209.03374. https://arxiv.org/abs/2209.03374
909
+ Tacchella, S., Finkelstein, S. L., Bagley, M., et al. 2022,
910
+ ApJ, 927, 170, doi: 10.3847/1538-4357/ac4cad
911
+
912
+ 10
913
+ Nakazato et al.
914
+ Tamura, Y., Mawatari, K., Hashimoto, T., et al. 2019, ApJ,
915
+ 874, 27, doi: 10.3847/1538-4357/ab0374
916
+ Thielemann, F. K., Nomoto, K., & Yokoi, K. 1986, A&A,
917
+ 158, 17
918
+ Topping, M. W., Stark, D. P., Endsley, R., et al. 2022,
919
+ MNRAS, 516, 975, doi: 10.1093/mnras/stac2291
920
+ Trussler, J. A. A., Adams, N. J., Conselice, C. J., et al.
921
+ 2022, arXiv e-prints, arXiv:2207.14265.
922
+ https://arxiv.org/abs/2207.14265
923
+ Vanzella, E., de Barros, S., Vasei, K., et al. 2016, ApJ, 825,
924
+ 41, doi: 10.3847/0004-637X/825/1/41
925
+ Williams, H., Kelly, P. L., Chen, W., et al. 2022, arXiv
926
+ e-prints, arXiv:2210.15699.
927
+ https://arxiv.org/abs/2210.15699
928
+ Wise, J. H., Demchenko, V. G., Halicek, M. T., et al. 2014,
929
+ MNRAS, 442, 2560, doi: 10.1093/mnras/stu979
930
+ Witstok, J., Smit, R., Maiolino, R., et al. 2022, MNRAS,
931
+ doi: 10.1093/mnras/stac1905
932
+ Wong, Y. H. V., Wang, P., Hashimoto, T., et al. 2022, ApJ,
933
+ 929, 161, doi: 10.3847/1538-4357/ac5cc7
934
+ Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181,
935
+ doi: 10.1086/192237
936
+ Xiao, L., Stanway, E. R., & Eldridge, J. J. 2018, MNRAS,
937
+ 477, 904, doi: 10.1093/mnras/sty646
938
+ Xu, H., Wise, J. H., Norman, M. L., Ahn, K., & O’Shea,
939
+ B. W. 2016, ApJ, 833, 84,
940
+ doi: 10.3847/1538-4357/833/1/84
941
+ Yajima, H., Choi, J.-H., & Nagamine, K. 2011, MNRAS,
942
+ 412, 411, doi: 10.1111/j.1365-2966.2010.17920.x
943
+ Yang, S., & Lidz, A. 2020, MNRAS, 499, 3417,
944
+ doi: 10.1093/mnras/staa3000
945
+
C9E0T4oBgHgl3EQfgQG4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9AyT4oBgHgl3EQfevgJ/content/2301.00325v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:732b1ff3259bcddd6cb52ce729e899b022d0148471979bdb954dbff92a926531
3
+ size 987921
D9AyT4oBgHgl3EQfevgJ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6198cb13018837d737d9441054521f11c4dde5e67b52601fa56513c8268a0616
3
+ size 488163
ENAzT4oBgHgl3EQfif3h/content/tmp_files/2301.01502v1.pdf.txt ADDED
@@ -0,0 +1,1471 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Enriching the scholarly metadata commons with citation metadata and
2
+ spatio-temporal metadata to support responsible research assessment
3
+ and research discovery
4
+ Daniel Nüst1*, Gazi Yücel2, Anette Cordts2, Christian Hauschke2
5
+ 1Institute for Geoinformatics, University of Münster, Germany
6
+ 2TIB – Leibniz Information Centre for Science and Technology, Hannover, Germany
7
+ * Correspondence: Daniel Nüst, [email protected]
8
+ Keywords: open research information, citation metadata, spatio-temporal metadata, scholarly
9
+ publishing, research assessment, discovery
10
+ Abstract
11
+ In this article, we focus on the importance of open research information as the foundation for
12
+ transparent and responsible research assessment and discovery of research outputs. We introduce
13
+ work in which we support the open research information commons by enabling, in particular,
14
+ independent and small Open Access journals to provide metadata to several open data hubs (Open
15
+ Citations, Wikidata, Open Research Knowledge Graph). In this context, we present The OPTIMETA
16
+ Way, a means to integrate metadata collection, enrichment, and distribution in an effective and
17
+ quality-ensured way that enables uptake even amongst small scholar-led publication venues. We have
18
+ designed an implementation strategy for this approach in the form of two plugins for the most widely
19
+ used journal publishing software, Open Journal Systems (OJS). These plugins collect, enrich, and
20
+ automatically deliver citation metadata and spatio-temporal metadata for articles. Our contribution to
21
+ research assessment and discovery with linked open bibliographic data is threefold. First, we enlarge
22
+ the open research information data pool by advocating for the collection of enriched, user-validated
23
+ metadata at the time of publication through open APIs. Second, we integrate data platforms and
24
+ journals currently not included in the standard scientometric practices because of their language or
25
+ lack of support from big publishing houses. Third, we allow new use cases based on location and
26
+ temporal metadata that go beyond commonly used discovery features, specifically, the assessment of
27
+ research activities using spatial coverage and new transdisciplinary connections between research
28
+ outputs.
29
+ This document is published under
30
+ CC BY (4.0): Creative Commons Attribution
31
+
32
+ BYEnriching the scholarly metadata commons
33
+ 1
34
+ Introduction
35
+ Open research information (ORI) provides a foundation for transparent and responsible research
36
+ assessment and effective discovery of research outputs. Therefore, the quality, openness, extent, and
37
+ scope of ORI should be as high as possible. However, especially for small and independent Open
38
+ Access journals, it is difficult to collect publication metadata and deposit it in open research
39
+ information data hubs. This is especially the case for more complex metadata that goes beyond the
40
+ simple properties of individual records, such as title or publication date, by making connections
41
+ between scientific publications. In this work, we introduce a concept for eliciting the rapid
42
+ publication of verified open publication metadata, at the most effective and efficient moment in the
43
+ publication process. We call this concept The OPTIMETA Way and implement it with two plugins
44
+ for the publishing software Open Journal Systems (OJS) developed by the Public Knowledge Project
45
+ (PKP; https://pkp.sfu.ca/). These plugins cover two distinct types of metadata that have very high
46
+ potential to support more responsible research assessment and more powerful research discovery, but
47
+ that are not yet widely available: verified and complete open citation metadata and spatio-temporal
48
+ metadata.
49
+ The main contribution of this work is a concept for effective publication metadata collection and
50
+ publication that (a) balances data quality with the need for manual user interaction, (b) targets
51
+ specific points in the publication process when the motivation and expertise of the stakeholders are
52
+ provided, and (c) enables independent journals to create innovative metadata that goes beyond the
53
+ common standard of even large commercial publishers. This concept is here demonstrated through
54
+ prototypical implementations, the OPTIMETA services. The OPTIMETA services target two areas of
55
+ publication metadata that unleash the integrative power of spatial and temporal relations between
56
+ research outputs and facilitate the much-needed availability of open citation information to tackle the
57
+ overwhelming amount of scientific literature.
58
+ This paper is structured as follows. First, we briefly introduce the foundational background work
59
+ considering, in particular, the potential diversity of the audience. Then, we present a concept and
60
+ implementation strategy for innovative publication metadata. To conclude, we relate our ideas and
61
+ products to the scholarly metadata commons, research assessment, and research discovery concepts
62
+ before discussing the benefits, limitations, and future directions of the work.
63
+ 2
64
+ Related Work
65
+ 2.1
66
+ Open bibliographic metadata as a basis for responsible research assessment
67
+ Research is resource-intensive, and the actors organising and funding it have an interest in screening
68
+ and evaluating the research results generated from these efforts. Thus, research assessment is being
69
+ conducted for various reasons, among them, because of a "lack of trust" in academia and a desire to
70
+ facilitate improved resource allocation. Such assessments are often presented as a metadata-driven
71
+ quantification of the research process based on elaborate frameworks and assessment rules. They are
72
+ usually based on output and reception-based indicators, which in turn can only be produced if
73
+ suitable metadata is available for this purpose.
74
+ 2
75
+
76
+ Enriching the scholarly metadata commons
77
+ In recent years, the traditional methods of assessing research have been fundamentally challenged
78
+ from various sides. The role of bibliographic metadata is one important issue that has been raised, for
79
+ example, by two widely discussed initiatives, as such material has to be made available through open
80
+ licences in order to enable fair and responsible research evaluation. Both initiatives comment on the
81
+ data basis required for responsible assessments. In 2012, several influential players in scholarly
82
+ publishing met at the Annual Meeting of The American Society for Cell Biology in San Francisco,
83
+ CA, USA (The American Society for Cell Biology 2012) to discuss emerging issues related to
84
+ research evaluation. The result of this meeting was the San Francisco Declaration of Research
85
+ Assessment (DORA, see Cagan 2013). By July 2022, almost 22,000 individuals and organisations in
86
+ 158 countries had signed the declaration. DORA gives clear instructions for publishers and suppliers
87
+ of metrics to be "open and transparent". One key action recommended by DORA is that publishers
88
+ should "remove all reuse limitations on reference lists in research articles and make them available
89
+ under the Creative Commons Public Domain Dedication licence" (recommendation 9), while metrics
90
+ suppliers should make the data and methods underlying their metrics available under an open licence
91
+ (recommendation 11 and 12). In the second initiative, launched in 2015, the Leiden Manifesto (Hicks
92
+ et al. 2015) took this further with more detailed instructions on how and, in particular, why the
93
+ metadata used for assessment should be shared. Two of the resulting principles, 4 ("Keep data
94
+ collection and analytical processes open, transparent and simple") and 5 ("Allow those evaluated to
95
+ verify data and analysis"), are particularly relevant in the context of the present article.
96
+ In order to comply with the principles and recommendations for responsible research assessment,
97
+ data sources must meet various criteria. The research information - that is, metadata about actors,
98
+ events, processes, and output related to research activities - must be findable and accessible if the
99
+ publications are to be evaluated, and the records must contain the metadata in a form that allows legal
100
+ and technically easy reuse. These criteria (findability, accessibility, interoperability, and reusability)
101
+ are described by Wilkinson et al. (2016) as the so-called "FAIR Guiding Principles for scientific data
102
+ management and stewardship". Taken to its logical conclusion, this means that any research
103
+ assessment should be based exclusively on metadata that is derived from publicly available data
104
+ sources, is openly licenced, and is published using open standards.
105
+ 2.2
106
+ Open bibliographic metadata and spatio-temporal metadata as part of open research
107
+ information
108
+ Open Research Information (ORI) is an emerging term used to describe metadata that complies with
109
+ the above criteria for data sources intended for use in responsible research assessment. Recently,
110
+ various actions have been taken and initiatives launched with the aim of more precisely defining and
111
+ promoting ORI. For example, in 2018, the 14th International Conference on Current Research
112
+ Information Systems (euroCRIS 2018) focused on the “FAIRness of Research Information”. In 2020,
113
+ a German-Ukrainian project discussing the topic of "FAIR Research Information in Open
114
+ Infrastructures" with international experts (Kaliuzhna and Altemeier 2021) led to the development of
115
+ high-level criteria that applied the FAIR principles to research information (Hauschke et al. 2021a).
116
+ Bijsterbosch et al. (2022) described the "Seven Guiding Principles for Open Research Information"
117
+ and provided a more detailed analysis of "Trusted and transparent provenance", "Openness of
118
+ 3
119
+
120
+ Enriching the scholarly metadata commons
121
+ Metadata", "Openness of Algorithms", "Enduring access and availability", "Open Standards &
122
+ Interoperability", "Open collaboration with Third parties", and "Academic sovereignty through
123
+ governance".
124
+ Open bibliographic metadata is an important part of ORI, especially in relation to output-oriented
125
+ research assessment. From a broader perspective, this relates to any metadata that describes published
126
+ works, e.g., journal articles, conference proceedings, monographs, or edited books. Being the
127
+ foundation and fuel of the publishing and library worlds, bibliographic metadata is produced by
128
+ authors, editors, librarians, and many others involved in the dissemination of scholarly output. The
129
+ conventional bibliographic metadata types are, e.g., reference lists, abstracts, author affiliations,
130
+ author identifiers, and licences. Besides research assessment, bibliographic metadata is used in
131
+ several other ways such as the creation of scholarly knowledge graphs (e.g., Jaradeh et al. 2019;
132
+ Manghi et al. 2021; Priem et al. 2022; Turki et al. 2021) and in library catalogues and bibliographic
133
+ discovery services (Gonzales 2014).
134
+ Recently, further types of bibliographic metadata, spatial and temporal metadata, have gained
135
+ attention (Niers and Nüst 2020). Spatial and temporal metadata can deliver precise information about
136
+ the location and time period that is covered in a publication. These metadata enable connections to be
137
+ drawn between different research outputs, however, the availability and use of spatio-temporal
138
+ metadata in ORI are currently sparse. The integrative potential of time and space is underutilised for
139
+ publications (Niers and Nüst 2020) as well as for data (Garzón and Nüst 2021a) and current research
140
+ information systems (CRIS) platforms.
141
+ Several initiatives and projects are working on enriching the scholarly metadata commons. While an
142
+ exhaustive review of all activities can not be given here, some key examples include Rasberry et al.
143
+ (2019), who show how Wikidata can be used as a source for scholarly metadata through its frontend
144
+ Scholia. They even discuss location data, though primarily in relation to the author and their
145
+ institutional address as coordinates. Nielsen et al. (2018) expand on the use cases for discovery based
146
+ on location information and also describe the opportunities for querying using locations mentioned as
147
+ topics in articles in Scholia using point and polygon features from Wikidata. Lauscher et al. (2018)
148
+ argue that libraries should play an important role in the production and curation of scholarly metadata
149
+ and prove the feasibility and effectiveness of the strategy for the case of citation metadata from
150
+ printed books in the social sciences. The Ukrainian Open Citation Index is an example of the
151
+ nationwide collection of citation metadata from academic publishers (Nazarovets 2019). On an
152
+ international level two initiatives have gained a lot of traction: The Initiative for Open Citations
153
+ (https://i4oc.org/) and the Initiative for Open Abstracts (https://i4oa.org/). Nevertheless, for all the
154
+ merits of these projects and initiatives, there is still much to be done, especially for small,
155
+ independent and scholar-led journals. For these journals, the citation metadata and spatio-temporal
156
+ metadata have great potential because given these metadata are available in a structured and
157
+ machine-readable format and are accessible in open bibliographic databases, they enable connections
158
+ to be drawn between different publications and, thus, improve the visibility of the contributions made
159
+ by the large number of scholar-led Open Access journals.
160
+ 4
161
+
162
+ Enriching the scholarly metadata commons
163
+ 2.3
164
+ Citation metadata
165
+ Citation metadata is metadata that expresses how one document refers to another. The idea of
166
+ recording cross-references between documents was raised as early as 1952 by Eugene Garfield in a
167
+ talk to the Maryland Section of the American Chemical Society. He stated “If authors would provide
168
+ the CA abstract number with each bibliographical citation, I can assure you that CA abstracts in the
169
+ future would be much more informative by providing cross-references to related abstracts'' (Garfield
170
+ 1952). Later, he went on to create the Science Citation Index, which evolved into the citation
171
+ database Web of Science and inspired many similar products in the decades that followed.
172
+ The description of citation metadata is a simple relation between two objects and several standards
173
+ and definitions for different applications have been developed over time. To illustrate the diversity of
174
+ the various efforts, we discuss three examples involving different types of citation metadata. Starr
175
+ and Gastl (2011) present the initial way in which DataCite depicts relations between publications and
176
+ research datasets. The basic assumption is that every entity, every research output in the DataCite
177
+ metadata schema is described using a minimum number of mandatory fields: Creator, Title,
178
+ Publisher, Identifier and Publication Year. Relationships between individual entities can then be
179
+ constructed in various ways. IsCitedBy (and its inverse property Cites) tracks relationships between
180
+ works that cite each other. This approach is content-agnostic. Peroni and Shotton (2012) developed
181
+ the Citation Typing Ontology (CiTO), in which the citation still connects two works, but the citation
182
+ itself is considered an entity that can be described by various properties independently. This allows
183
+ for a much more detailed description of various types of relations and the representation of
184
+ characteristics such as in-text citation frequency.
185
+ Over time, the standards for describing citation relationships for specific types of works have also
186
+ emerged. A recent example is the citation of research software, for which Smith et al. (2016) have
187
+ developed principles that seek to capture the specifics of this type of work. For example, it must be
188
+ possible to address the versioning common in software development, to describe specifically whether
189
+ a particular version of a software is cited, any of its versions, or its latest version.
190
+ 2.4
191
+ Spatio-temporal metadata
192
+ Geospatial metadata is metadata for geographic data and information (Wikipedia 2022). There is a
193
+ wide variety of standards, formats, and tools, ranging from public and industry standards for
194
+ encoding geospatial metadata, such as the complex ISO 191** suite of standards, to catalogues
195
+ collecting and serving geospatial metadata online
196
+ (Federal Geographic Data Committee). While
197
+ these types of data are often relevant, research output and publishing datasets are becoming more
198
+ common and more widely acknowledged. Our study focuses on the geospatial properties of more
199
+ classical research outputs: research papers. Therefore, we use the term spatio-temporal metadata
200
+ when referring to the metadata of a spatial or temporal nature that describes textual and graphical
201
+ research outputs. This type of metadata can refer, for example, to the spatial extent or the so-called
202
+ area of interest that a scientific article investigates, or to the time period for which data were
203
+ analysed. This approach has been demonstrated previously by JournalMap (Karl et al. 2013), albeit
204
+ 5
205
+
206
+ Enriching the scholarly metadata commons
207
+ with considerable limitations (Hauschke et al. 2021b). Furthermore, the most commonly used
208
+ research data repositories (e.g., Zenodo, OSF, and Figshare) do not explicitly support spatial
209
+ metadata. Only a few research data repositories are tailored to handle georeferenced data, such as
210
+ Pangaea
211
+ (https://www.pangaea.de/about/)
212
+ and
213
+ CKAN
214
+ with
215
+ its
216
+ spatial
217
+ extension
218
+ (https://ckan.org/features/geospatial/). Dataverse only supports vector data in the outdated format
219
+ Shapefile
220
+ (https://guides.dataverse.org/en/latest/developers/geospatial.html?highlight=geospatial).
221
+ This lack of support is possibly due to the fact that the handling of geospatial data was not a common
222
+ feature of database software (except with the additional software extensions) or the focus of expert
223
+ specialisation.
224
+ Metadata of such a kind is relevant for a broad variety of scientific fields. In the natural and life
225
+ sciences, observation data, model data, habitats or the sites of finds represent the most obvious points
226
+ of connection (concerns, e.g., Earth science, geology, oceanography, meteorology, ecology, zoology,
227
+ and botany). For the social and applied sciences, the connections to humans and their physical areas
228
+ of activity are relevant in, for example, the medical and health sciences, agricultural science,
229
+ economics, engineering, sociology, political science, and more. The theoretical work in the formal
230
+ sciences (e.g., mathematics, logic, computer science) or the small-scale and theoretical physical
231
+ sciences (physics, chemistry) are, as expected, less interested in geospatial metadata, although
232
+ interdisciplinary work or research that features some element of application often has a real-world
233
+ connection, i.e., a location in space and time.
234
+ Turning our attention back to platforms for handling research publications, neither big commercial
235
+ solutions for CRIS, such as Pure (Elsevier) or Converis (Clarivate Analytics), nor widely used open
236
+ projects, such as DSpace (Smith et al. 2003), support spatio-temporal metadata for any record type.
237
+ VIVO (Conlon et al. 2019) has a property for (vivo:geographicFocus) describing the spatial
238
+ component of a given research activity or output, but it is not widely used. Developer documentation
239
+ and code repositories show interest in the topic, for example, DSpace lists several occurrences where
240
+ a spatial search was suggested or prototyped (cf. https://github.com/DSpace/DSpace/pull/511). The
241
+ same lack of support occurs in relation to discovery platforms (e.g., ScienceDirect, Google Scholar)
242
+ and publishers' websites. The only explicit modelling of spatio-temporal information in the
243
+ publishing domain is the spatio-temporal fields in the Dublin Core specification DCMI Metadata
244
+ Terms, coverage being the most important among them (https://www.dublincore.org/specifications/
245
+ dublin-core/dcmi-terms/terms/coverage/).
246
+ However,
247
+ this
248
+ field
249
+ is
250
+ not
251
+ particularly
252
+ useful
253
+ for
254
+ machine-readable information exchange, as it may hold any type of spatial or temporal metadata, be
255
+ it prose, coordinate pairs, or textual encoding of complex geometries or time periods. DCMI
256
+ Metadata Terms use some alternative terms, e.g., jurisdiction or location, but these do not seem to be
257
+ implemented in the platforms mentioned here. Thus, all these platforms include inexplicit or not
258
+ directly usable spatial information, e.g., in the form of addresses for researchers, location names in
259
+ paper abstracts, excavation site coordinates in the full text, or remote sensing imagery as figures in
260
+ the supplementary material. Temporal metadata is more common, not least because it is simpler in
261
+ nature and readily supported by any database management system. However, the temporal fields are
262
+ often focused on publication metadata (when was the resource created or published?) rather than on
263
+ the content. Similarly, this kind of temporal information is hidden in titles, abstracts, or full texts.
264
+ 6
265
+
266
+ Enriching the scholarly metadata commons
267
+ This completely neglects the potential for spatial and temporal information to act as an integrator,
268
+ e.g., as Kuhn (2012) argued in relation to transdisciplinary research. The potential has been pointed
269
+ out in the past, both in relation to creating new connections between publications (Niers and Nüst
270
+ 2020) and in relation to data (Garzón and Nüst 2021a; Garzón and Nüst 2021b). In general,
271
+ spatio-temporal metadata currently does not play an important role in ORI.
272
+ 3
273
+ The OPTIMETA Way
274
+ 3.1
275
+ Approach
276
+ The introduction presented the challenges and benefits involved in enriching the scholarly metadata
277
+ commons and how this connects with the responsible assessment and effective discovery of research.
278
+ In order to tackle some of the challenges of capturing and disseminating high-quality and useful
279
+ metadata for research outputs, we developed an approach to strengthen the Open Access publishing
280
+ system through open citations and spatio-temporal metadata - The OPTIMETA Way. This concept
281
+ recognises the conflict involved in metadata creation and usage during the publication phases of the
282
+ research cycle.
283
+ Firstly, the benefits of creating high-quality metadata are intangible for authors, although they are the
284
+ most knowledgeable source for most of the relevant information. However, this may change if the
285
+ reasons for providing the metadata are communicated clearly, such as enabling a more responsible
286
+ assessment of their work and better connection with other disciplines for evaluation and discovery
287
+ purposes. Nevertheless, the way the metadata are captured should be intuitive and engaging, keeping
288
+ in mind James Frew's laws: "Frew’s first law: scientists don’t write metadata. Frew’s second law: any
289
+ scientist can be forced to write bad metadata." (Hey 2015). Secondly, the large metadata owners are
290
+ currently the big scholarly publishers. They have a strong interest in building their business and
291
+ making a profit based on such data (Pooley 2022; Brembs 2021; Franceschi-Bicchierai 2022) and
292
+ little interest in contributing everything they can to the creation of knowledge or addressing the need
293
+ for technical innovation. Instead, innovation must be pursued by those who have an interest in having
294
+ an open and free scholarly metadata commons, such as university publishers or independent journals,
295
+ even though they have limited resources.
296
+ In acknowledgement of these conflicts and challenges, The OPTIMETA Way is output-oriented and
297
+ focuses on enabling the essential, if currently relatively powerless, stakeholders in academic
298
+ publishing to capture and distribute scholarly publication metadata themselves. The approach is
299
+ "OPTImal" in the sense that it begins with small improvements with the potential to generate the
300
+ biggest benefits: the potential impact of high-quality citation metadata on research assessment and
301
+ quality-ensured metascience is huge. Furthermore, the novelty of spatio-temporal metadata and its
302
+ integrative potential make it attractive even at a rudimentary level, for example, when simple
303
+ geometries representing articles are shown on the same map for visual inspection and discovery.
304
+ 7
305
+
306
+ Enriching the scholarly metadata commons
307
+ Fig. 1. Stages of the publication process, the generic research process, and The OPTIMETA Way
308
+ with their connections.
309
+ This approach is output-oriented as it will assist metadata creators through automation and intuitive
310
+ user interfaces and, thereby, avoid requiring additional strenuous, time-consuming, or unwelcome
311
+ tasks. By tapping into open data sources, the software enriches the user input which is then provided
312
+ for inspection. The approach further targets the quickest gains compared to the required effort and
313
+ thus does not have to be comprehensive. The metadata will be created at a point in the publication
314
+ process when authors are most willing to fulfil all administrative requirements, that is, while
315
+ submitting an article for review and then, eventually, publication. This is also the last point in time at
316
+ which engaged professionals (reviewers, editors, publishing staff) examine the metadata critically
317
+ and at which the publication of output, including metadata, is already a core part of the process.
318
+ Furthermore, the output is always checked by humans during this process and, as the data are not
319
+ being produced by an algorithm, higher-quality metadata can be returned to the data sources used for
320
+ enrichment.
321
+ Finally, the facilitation happens through The OPTIMETA Way. This approach enables independent
322
+ journals and small publishers, who often work with open-source software platforms, to actively
323
+ engage in structured metadata collection and distribution without expert knowledge. A crucial step in
324
+ enabling this is the deposition of metadata in open data hubs, which will allow journals with the
325
+ shared mission of disseminating knowledge to contribute to the bigger goal of an open scholarly
326
+ publication metadata commons. Thus, the impact of The OPTIMETA Way will be bigger than the
327
+ sum of its parts.
328
+ Fig. 1 is a schematic representation of The OPTIMETA Way. One side shows the simplified research
329
+ cycle including the research activities and their translation into written output. The other side shows a
330
+ journal’s publication process from submission to editing to publication and the associated or
331
+ subsequent dissemination of metadata. The OPTIMETA Way means that we support the generation,
332
+ 8
333
+
334
+ Research process
335
+ Publishing process
336
+ Submission
337
+ Idea
338
+ Editorial process
339
+ Read
340
+ Publish
341
+ Publishing
342
+ Analyse,
343
+ Develop,
344
+ Metadata dissemination
345
+ Write
346
+ OPTIMETA
347
+ Metadata
348
+ Metadata
349
+ Services
350
+ enrichment
351
+ collection
352
+ ScholarlyMetadataCommons
353
+ TheOPTIMETAprocessEnriching the scholarly metadata commons
354
+ enrichment, and dissemination of metadata during the stages of the journal publication process in
355
+ which the metadata is already a focus. In this way, this approach avoids any retrospective editing and
356
+ post-publication tasks for researchers.
357
+ 3.2
358
+ Implementation examples
359
+ 3.2.1 Overview
360
+ Open Journal Systems (OJS) is the most widely used journal publishing software in the world. It was
361
+ developed to make scientific publishing easier and more effective (Willinsky 2005). It organises the
362
+ complete publishing workflow from submission to review, from proofreading to production. The
363
+ software is open source and is continuously being improved by a global community. It is currently
364
+ available in version 3.3. OJS provides the core functionalities discussed above, including metadata
365
+ creation, editing and export. Additional functionality can be added to OJS through plugins that may
366
+ be
367
+ installed
368
+ manually
369
+ or
370
+ using
371
+ the
372
+ so-called
373
+ Plugin
374
+ Gallery
375
+ (https://docs.pkp.sfu.ca/plugin-inventory/en/). These plugins can extend or alter any step in the OJS
376
+ submission and publication workflows and add new features to the editorial backend or the system's
377
+ front end.
378
+ We have realised The OPTIMETA Way through two plugins: the OPTIMETA citation plugin and the
379
+ OPTIMETA geoplugin (“citation plugin” or “geoplugin” for short). Together, these two plugins
380
+ implement the OPTIMETA Services described in Fig. 1. Both plugins collect metadata during the
381
+ submission workflow and enhance it with data from open scholarly data sources. They then present
382
+ the person submitting the data with the enhanced information before, ultimately, exposing the
383
+ information on both the OJS website and the external data sinks. The connection to external data
384
+ sinks can be made in near real-time, in the sense that information is deposited actively in connection
385
+ with events in the publishing workflow. Alternatively, other platforms can be used as a harvesting
386
+ mechanism to regularly retrieve the published metadata from OJS. Fig. 2 shows the data sources and
387
+ sinks that are currently supported by the plugins, as well as those that may be supported in the future.
388
+ The data sources on the left are marked in red. Both plugins rely on user-contributed metadata that is
389
+ enriched with external references and additional data. The targeted metadata platforms and
390
+ aggregators, or data sinks, are shown on the right and marked in green. The journals and university
391
+ publishers collaborating with the project are listed at the bottom (see the full list of names and links
392
+ at https://projects.tib.eu/optimeta/en/).
393
+ The plugins are available as public beta releases and can be freely downloaded and installed from our
394
+ public
395
+ GitHub
396
+ repositories
397
+ at
398
+ https://github.com/TIBHannover/optimetaCitations/
399
+ and
400
+ https://github.com/TIBHannover/optimetaGeo. The plugins will be improved based on feedback
401
+ from our OPTIMETA project partners and the OJS community (users and developers) that is focused,
402
+ in particular, on the user experience.
403
+ 9
404
+
405
+ Enriching the scholarly metadata commons
406
+ Fig. 2. Implementation example of The OPTIMETA Way: OPTIMETA citation plugin and geoplugin
407
+ for OJS and the connected external data sources, data sinks, and collaboration partners.
408
+ 3.2.2 Citation plugin
409
+ The citation plugin aims to gather machine-readable citation metadata during the publication process
410
+ with the goal of publishing the metadata in open bibliographic data sources. The process is integrated
411
+ into the existing OJS workflow for submitting publications. When the author begins a submission to
412
+ the journal, OJS provides a special metadata field for references. We assume that this field is then
413
+ filled by either the author or the journal editors. The citations are entered into OJS in a raw format,
414
+ i.e., in a freely modifiable text field (Fig. 3).
415
+ Fig. 3. Example of a raw citation.
416
+ The citation plugin parses the raw references and extracts the Digital Object Identifiers (DOI) if
417
+ present. After extracting the DOIs, a look-up algorithm enriches the metadata based on external and
418
+ open bibliographic data sources in a semantically structured format. Currently, the citation plugin
419
+ queries the open APIs of Crossref and OpenAlex, which both provide good coverage and promising
420
+ metadata quality. We have chosen to collect metadata from external sources rather than parsing the
421
+ citations with parsing tools as we found the results we queried based on the DOI from Crossref and
422
+ OpenAlex were, in general, more complete and accurate. Developing a custom parsing service or
423
+ integrating an already existing tool would add unnecessary complexity to the plugin. All of these
424
+ steps are triggered manually with a single click of a button. Therefore, the additional time needed for
425
+ 10
426
+
427
+ data source
428
+ data sink
429
+ OPTIMETA
430
+ PKP
431
+ OpenAlex
432
+ OJS
433
+ Project
434
+ 3.2.1.x
435
+ Crossref
436
+ citation
437
+ 3.3.x
438
+ plugin
439
+ DataCite
440
+ references
441
+ WIKIDATA
442
+ |OpenAlex
443
+ user
444
+ geoplugin
445
+ time period and
446
+ ORKG
447
+ location
448
+ search portal
449
+ partner
450
+ ulb.Q
451
+ jKi
452
+ zhb:
453
+ GeoNames
454
+ journals
455
+ PUEISHING
456
+ heiJOURNALS
457
+ OPTiMETA lmplementation: Software, data sources, and data sinksopen citations and spatiotemporal metadata. Research Ideas and Outcomes 7: e66264. https://doi.org/10.3897
458
+ / rio.7.e 66264Enriching the scholarly metadata commons
459
+ the enrichment of citation metadata comprehends only a few minutes or less, which is neglectable
460
+ compared to the amount of time consumed for the overall research and publishing process as shown
461
+ in Fig. 1.
462
+ The reliance on DOIs for finding the full reference information is a current limitation of the plugin.
463
+ The alternative would be to query Crossref with the full reference was not implemented because of
464
+ the limitations of non-membership access to the API and because the reliable SimpleTextQuery form
465
+ (https://apps.crossref.org/SimpleTextQuery) is provided for manual use only. We are not aware of a
466
+ comparable full reference query feature for OpenAlex. In these circumstances, we decided that given
467
+ the resulting metadata is of higher quality and less manual interaction is required, having a higher
468
+ degree of automation outweighed the drawback of missing references that do not have a DOI. For
469
+ new submissions, the plugin will encourage authors to add missing DOIs during the submission
470
+ process, thus ensuring a reasonably high level of metadata quality and completeness. As OpenAlex
471
+ harvests from Crossref, having both services as data sources for the plugin may seem superfluous.
472
+ However, this redundancy avoids being reliant on one specific service into the future and, as
473
+ OpenAlex harvests other data sources as well, using both sources is likely to provide additional and
474
+ potentially more complete information.
475
+ After these steps have been completed, the enriched results extracted from the external open APIs are
476
+ presented to the author for review. The review can be done by simply checking whether the results
477
+ are correct. The various parts of the citations can also be edited manually (Fig. 4). The now
478
+ semantically structured metadata including title, authors with their corresponding author identifier
479
+ (ORCID iD), etc. are then stored in the OJS database.
480
+ Fig. 4. Example of a semantically structured citation which can be edited manually.
481
+ After the enrichment process, the citations can be deposited with external services either manually,
482
+ by clicking the deposit button, or through an automated process managed by the OJS scheduler. The
483
+ first workflow is currently implemented for OpenCitations. The combined metadata are structured
484
+ according to Massari and Heibi (2022) and submitted as an issue to a specified GitHub repository of
485
+ OpenCitations (https://github.com/GaziYucel/open_citations_croci_depot). The issue containing the
486
+ metadata can then be processed and harvested by OpenCitations.
487
+ 11
488
+
489
+ https://doi.org/10.3897/ric
490
+ URN
491
+ URL
492
+ Christian Hauschke
493
+ https://orcid.org/0000-000
494
+ iD
495
+ Daniel Nust
496
+ https://orcid.org/0000-000
497
+ iD
498
+ Anette Cordts
499
+ https://orcid.org/0000-000
500
+ iD
501
+
502
+ Svantje Lilienthal
503
+ https://orcid.org/0000-000
504
+ iD
505
+
506
+ Autor hinzufugen
507
+ OPTIMETA - Strengtheninc
508
+ Research Ideas and Outcor
509
+ 2021
510
+ Volume
511
+ Issue
512
+ First page
513
+ Last pageEnriching the scholarly metadata commons
514
+ The initial plugin versions focus on using DOIs as the supported publication identifier. In future
515
+ releases, we are planning to support non-DOI identifiers. Furthermore, being able to import
516
+ bibliographic metadata via common bibliographic standards like RIS and BibLaTeX would improve
517
+ the user experience. The current focus of plugin development is to provide support during the
518
+ publication process for one article. However, journal operators will, naturally, not only want to
519
+ publish citation information for new articles, but also those from their back catalogue. To address this
520
+ need, we plan to design a special overview page that will enable articles to be processed in batches.
521
+ Ultimately, we are also aiming to link into more data sinks as this will enable the widest possible
522
+ dissemination of citation metadata. For example, we are currently working toward implementation
523
+ with Wikidata.
524
+ 3.2.3 Spatio-temporal metadata plugin
525
+ The OPTIMETA geoplugin enables the collection and display of spatio-temporal metadata for
526
+ individual research articles in OJS instances. The term "geo" was used in the name as it is more
527
+ broadly understood and shorter than the more technical "spatio-temporal". Geospatial and geographic
528
+ data usually include temporal aspects, in that answers to "where in space" questions are always
529
+ connected to a "when in time" as well. The "geospatial" metadata are more dominant than the
530
+ temporal metadata in the plugin for different reasons. First, the display of geographical features on a
531
+ map is more visual and, thus, more interesting than one or several time periods shown as numbers.
532
+ Second, the novelty and power of geospatial metadata are higher than those of temporal metadata
533
+ because textual descriptions or classifications of time, such as "in the year 2022" or "during the
534
+ cretaceous period" are more readily picked up through text searches, whereas spatial relations are
535
+ harder capture through text descriptions and very difficult to pick up using text searches.
536
+ The geoplugin, in particular, extends the submission workflow. Due to the simple and intuitive way of
537
+ entering geo-spatial metadata, the provision of temporal and spatial metadata can be carried out
538
+ quickly within a few minutes. Authors are asked to provide temporal metadata in the form of a
539
+ simple time period with a start and end date. The date can be entered manually, e.g., by putting in the
540
+ dates separated by a hyphen into the form field, "2021-01-01 - 2022-02-02", or with an interactive
541
+ calendar pop-up as shown in Fig. 5. The time period is a simple string and can be used to model
542
+ temporal uncertainty and allows for imprecision where needed or not known. For example, a history
543
+ paper may document a hegemony's duration as "753 - 1234", while the observation of a new species
544
+ may require a precise date such as "2022-08-08 - 2022-08-09".
545
+ 12
546
+
547
+ Enriching the scholarly metadata commons
548
+ Fig. 5. Screenshot of the submission form showing the form field and popup for input of a time
549
+ period in the lower third of the image.
550
+ Next, authors are asked to provide spatial metadata using an interactive map as shown in Fig. 6.
551
+ Authors can add multiple geometries of various types, i.e., points, polylines, rectangles, and
552
+ polygons. These can be used to adequately represent spatial features related to articles, e.g., places of
553
+ residence of a historic person, animal tracks, remotely observed areas, or a herd's territory,
554
+ respectively. An author may choose to quickly add a coarse rectangle providing rather imprecise data
555
+ or to zoom into the map and enter detailed individual data points, either as time permits or the
556
+ submission demands. The author is assisted in the creation of this data by two background layers: an
557
+ open data street map by OpenStreetMap and free-to-use aerial imagery tiles provided by Esri. In this
558
+ way, both natural features and human-built structures can provide orientation. While creating the
559
+ geometries forming the detailed spatial metadata, the geoplugin constantly queries the Geonames
560
+ gazetteer
561
+ service
562
+ (https://www.geonames.org/)
563
+ using
564
+ coordinates
565
+ from
566
+ the
567
+ geometries
568
+ to
569
+ automatically derive the bounding rectangle or bounding box of the smallest encompassing
570
+ 13
571
+
572
+ Abstract *
573
+
574
+ B
575
+ u
576
+
577
+
578
+ x
579
+ X2
580
+ &
581
+ <>
582
+ List of Contributors
583
+ Add Contributor
584
+ Name
585
+ E-mail
586
+ Role
587
+ Primary Contact
588
+ In Browse Lists
589
+ admin admin
590
591
+ Journal manager
592
+ Additional Refinements
593
+ Keywords
594
+ Add additional information for your submission. Press 'enter' after each term.
595
+ Time and location
596
+ Temporal Properties
597
+ Define the temporal properties of the articles content by specifying the begin and end dates. The input is possible via the text field as well as via the calendar view. Click the input field below
598
+ this text to open the calendar. Press "Apply" to save the calender setting. Press "clear" to remove the current data. Textual input must match the following format and be confirmed by
599
+ clicking "Apply" (not Enter!): begin and end are seperated by a hyphen surrounded by spaces; dates are given as "YYYY-MM-DD", whereby "YYYY" stands for years, "MM" for months (with a
600
+ leading zero), and "DD" for days (with a leading zero)
601
+ <
602
+ Aug 2022
603
+ Sep 2022
604
+ >
605
+ Su
606
+ Mo
607
+ Tu
608
+ We
609
+ Th
610
+ Fr
611
+ Sa
612
+ Su
613
+ Mo
614
+ Tu
615
+ We
616
+ Th
617
+ Fr
618
+ Sa
619
+ n the control on the left side between polyline, polygon, rectangle and point. By the icons
620
+ 31
621
+ 1
622
+ 2
623
+ 3
624
+ 4
625
+ 5
626
+ 6
627
+ 28
628
+ 29
629
+ 30
630
+ 31
631
+ 1
632
+ 2
633
+ 3
634
+ eft corner it is possible to zoom in and out. In the upper right corner you can change the
635
+ gery ("Esri World Imagery" layer). You can also set whether the geometric shape(s) and the
636
+ 7
637
+ 8
638
+ 9
639
+ 10
640
+ 11
641
+ 12
642
+ 13
643
+ 4
644
+ 5
645
+ 9
646
+ 7
647
+ 8
648
+ 9
649
+ 10
650
+ tailed description in the next paragraph of this form. Below the layer control you will find a
651
+ 14
652
+ 15
653
+ 16
654
+ 17
655
+ 18
656
+ 19
657
+ 20
658
+ 11
659
+ 12
660
+ 13
661
+ 14
662
+ 15
663
+ 16
664
+ 17
665
+ ent locations that match your input. By clicking on a suggestion it will be accepted and a
666
+ ectangle can also be deleted/ edited by clicking on the trash-/ edit icon on the left side. You
667
+ 21
668
+ 22
669
+ 23
670
+ 24
671
+ 25
672
+ 26
673
+ 27
674
+ 18
675
+ 19
676
+ 20
677
+ 21
678
+ 22
679
+ 23
680
+ 24
681
+ 28
682
+ 29
683
+ 30
684
+ 31
685
+ 1
686
+ 3
687
+ 25
688
+ 26
689
+ 27
690
+ 28
691
+ 29
692
+ 30
693
+ 4
694
+ 5
695
+ 6
696
+ 7
697
+ 8
698
+ 9
699
+ 10
700
+ 2
701
+ 3
702
+ 4
703
+ 5
704
+ 6
705
+ 7
706
+ 8
707
+ 2022-08-01 - 2022-08-10
708
+ Clear
709
+ ApplyEnriching the scholarly metadata commons
710
+ administrative area. The administrative unit is given in a form field below the map. The data for
711
+ administrative units varies widely for different countries around the world and is, arguably, most
712
+ useful for countries in the global north.
713
+ Fig. 6. Screenshot of the submission form showing the interactive map for collecting spatial
714
+ metadata, in this case a point geometry in City of Münster and a polygon around the city of Hanover
715
+ in blue; these geometries are enclosed in the administrative unit "Earth, World, Germany" whose
716
+ bounding rectangle is shown on the map in black.
717
+ The information collected during the submission can then be reviewed during the editorial process.
718
+ Ultimately, the data is stored as plain text in the OJS database in GeoJSON (https://geojson.org/)
719
+ format. A single FeatureCollection includes the geometries and a short provenance statement
720
+ indicating who created the data or where it was derived from. We chose GeoJSON for this purpose
721
+ despite the limitations resulting from its inability to handle different coordinate reference systems
722
+ because of its wide usage and simplicity. For the purpose of discovering research articles on a global
723
+ scale, the accuracy of several metres of the coordinate reference system "World Geodetic System
724
+ 1984" (WGS 84) is entirely sufficient, especially considering that most geometries are manually
725
+ created on an interactive map.
726
+ 14
727
+
728
+ This article covers location(s) or area(s) shown on the map below.
729
+ Define the location of the articles content by one or more geometric shape(s). You can choose in the control on the left side between polyline, polygon, rectangle and point. By the icons
730
+ below you can edit or delete the created geometric shape(s). With the "_" and "+" in the upper left corner it is possible to zoom in and out. In the upper right corner you can change the
731
+ background maps. You can choose between a street map ("openStreetMap" layer) and aerial imagery ("Esri World Imagery" layer). You can also set whether the geometric shape(s) and the
732
+ administrative unit should be displayed or not. For the administrative unit you will find a more detailed description in the next paragraph of this form. Below the layer control you will find a
733
+ search for the map. You can search for locations and by hitting "Enter" you will be offered different locations that match your input. By clicking on a suggestion it will be accepted and a
734
+ matching rectangle, describing the boundaries of the location, will be displayed on the map. This rectangle can also be deleted/ edited by clicking on the trash-/ edit icon on the left side. You
735
+ can choose a coarser level of detail to protect sensitive locations.
736
+ Vorpommern
737
+ woje
738
+ +
739
+ Hamburg
740
+ ar
741
+ jewodztwo
742
+ Grudziadz
743
+ na
744
+ Bremerhaven
745
+ zach
746
+ dniopomorskie
747
+ Groningen
748
+ Coldenburg
749
+ wojewodztwo
750
+ przow
751
+ kujawsko-
752
+ Bremen
753
+ Assen
754
+ G
755
+ Wiel
756
+ kopolski
757
+ pomorskie
758
+ Niedersachsen
759
+ Berlin
760
+ olle
761
+ vich
762
+ Haarlem
763
+ Wolfsburg
764
+ wojewodztwo
765
+ Plack
766
+ abruck
767
+ Nederl
768
+ Hannover
769
+ Potsdam
770
+ wodztwo
771
+ nd
772
+ wielkopolskie
773
+ buskie
774
+ Polska
775
+ Sachsen
776
+ War
777
+ DenHaag
778
+ Munster
779
+ Bielefeld
780
+ Anhalt
781
+ Arn
782
+ hem
783
+ Zielona
784
+ Kalisz
785
+ Middelburg
786
+ Cottbus
787
+ Gora
788
+ wojewodztwo
789
+ 0
790
+ Eindhove
791
+ Nordrhein
792
+ Leipzig
793
+ Chosebuz
794
+ fodzkie
795
+ sh-sea
796
+ Brugge
797
+ Westfalen
798
+ Kassel:Deutschland
799
+ Voanderen
800
+ Dusseldorf
801
+ unkerque
802
+ Siegen
803
+ Thuringen
804
+ wojewodztwo
805
+
806
+ achen
807
+ Sachsen
808
+ Librec
809
+ dolnos/gskie
810
+ Czestochowa
811
+ Lille
812
+ A
813
+ Bonn
814
+ Belgie/
815
+ wojewo
816
+ Chemnitz
817
+ wojewodztwo
818
+ swietokr
819
+ Belgique
820
+ Koblenz
821
+ Hessen
822
+ rSeverozapad
823
+ opolskie
824
+ Belgien
825
+ Praha
826
+ Severovychod
827
+ aKatowice
828
+ Hauts-de
829
+ France
830
+ Frankfurtram
831
+ Ostrava
832
+ wojewodztwo
833
+ Letzebuerg
834
+ Main
835
+ Wurzburg
836
+ Cesko
837
+ molopolskie
838
+ Plzen
839
+ StredniMoravd
840
+ Rouen
841
+ Mannheim
842
+ Nurnberg
843
+ jihozdpad
844
+ Zilina
845
+ Reims
846
+ Jihowychod
847
+ 100 km
848
+ Saarbrcken
849
+ Paris
850
+ Bayern
851
+ 50 mi
852
+ Karisruhe
853
+ Grar
854
+ Ingolstadt
855
+ Ceske
856
+ Baden-wurttemberg
857
+ Budejovic
858
+ Leaflet I Map data: @ OpenStreetMap contributors
859
+ Note that the temporal and spatial metadata will be published under the following license: CC-o
860
+ Administrative Unit
861
+ On basis of your input in the map, administrative units are proposed according to your input on the map. Each time you update the inputs, the coverage information gets new calculated and
862
+ updated correspondingly. You are able to delete administrative unit(s) by the red "x". If you hover over the administrative unit(s) the superior hierarchy of administrative unit(s) is displayed if
863
+ available. Besides you can add further administrative units. You are only able to insert a further administrative unit if it fits to the already given hierarchy of administrative unit(s), and the given
864
+ geometric shape(s) in the map. If you begin to insert, there are some suggestions you can accept by clicking, but nevertheless you can input your own administrative unit by hitting "Enter".
865
+ The administrative unit (in black) which is the lowest common denominator for all geometric shape(s) is shown in the map. The administrative unit is not editable or deletable in the map, but
866
+ here via the input field.
867
+ Earth x
868
+ Europe ×
869
+ Federal Republic of Germany ×
870
+ Save and continue
871
+ CancelEnriching the scholarly metadata commons
872
+ Fig. 7. Screenshot of the article landing page with spatio-temporal metadata; this article has multiple
873
+ polygons covering parts of Brazil with a matching textual description below the map, but there is no
874
+ time period; the column on the right contains the download button for metadata in GeoJSON format.
875
+ 15
876
+
877
+ OPTIMETA
878
+ Current
879
+ Archives
880
+ About -
881
+ Map
882
+ Q Search
883
+ Home / Archives / Vol. 5 No. 1 (2022): Ausgabe 1- Mai 2022 / Articles
884
+ Linguistic Analysis of the Newspaper Discourse in Brazil: The Older
885
+ People and cOVID-19
886
+ Author Author
887
+ Published
888
+ https: / Lorcid.org/0000-0002-1825-0097
889
+ 2022-05-19
890
+ Keywords: coVID-19, older people, newspaper discourse
891
+ Issue
892
+ Vol. 5 No. 1 (2022): Ausgabe 1 - Mai
893
+ 2022
894
+ Abstract
895
+ Section
896
+ Articles
897
+ Brazil has been one of the countries most affected the coVID-19 pandemic.
898
+ The measures taken by the Brazilian government to contain the spread of
899
+ the virus have been the subject of national and international criticism.
900
+ Download geospatial metadata
901
+ Among these measures is the topic of
902
+ protection and isolation ofolder adults, which has been subject of
903
+ 目GeoJSON
904
+ About GeojsoN
905
+ discussion in Germany. Based on a discourse led by analytical and linguistic
906
+ Geodata license: CC-0
907
+ approach this paper analyses the media and public perception of the older
908
+ generation concerning the coronavirus.
909
+ Using both quantitative and qualitative methods of corpus analysis, we
910
+ investigate the question of whether the older people are
911
+ associated with the COVID-19 virus in a particular form and whether they
912
+ are exposed to specific discrimination as a population
913
+ group. The results of the data gathered from March to July 2020 show that
914
+ older adults are often described as being vulnerable
915
+ and belonging to the risk group in Brazilian media.
916
+ Time and location
917
+ This article covers location(s) or area(s) shown on the map below.
918
+ Manaus
919
+ Q
920
+ Goiani
921
+ Cru
922
+ BeloHo
923
+ 500 km
924
+ laSierr
925
+ 500mi
926
+ ParaguayLeafet Map data: @ OpensStreetMap contibutors
927
+ The administrative units enclosing the article's places are: Earth, South
928
+ America, Brazil ?
929
+ Temporal and spatial metadata are published under the following license: CC-0Enriching the scholarly metadata commons
930
+ Fig. 8. Screenshot of an article landing page with publication information and spatio-temporal
931
+ metadata; above the map the time period of interest is given, the geometries describing this article's
932
+ content are several polylines representing travel routes.
933
+ The spatio-temporal metadata is then published together with the article on various pages: the article
934
+ landing page (see Fig. 7 and 8), the landing page for the issue (see Fig. 9), and on a separate page for
935
+ the journal itself. The article landing page also contains a download button providing easy access to
936
+ the spatio-temporal metadata in GeoJSON format. The journal landing page features synchronised
937
+ highlighting as shown in Fig. 9 if the user holds the cursor over a geometric feature on the map. Both
938
+ the feature on the map and the corresponding article in the list above is highlighted in red. Clicking
939
+ on the issue or journal map opens a small popup window (not shown) containing the publication
940
+ metadata (author, title, etc.) and a link to the article landing page. Below each map, there is a clear
941
+ 16
942
+
943
+ OPTIMETA
944
+ Current
945
+ Archives
946
+ About -
947
+ Map
948
+ Q Search
949
+ Home / Archives / Vol. 5 No. 1 (2022): Ausgabe 1 - Mai 2022 / Articles
950
+ Herrschaft vom Pferderucken - Reisekonigtum zur Zeit Heinrichs
951
+ IV.
952
+ Author Author
953
+ Published
954
+ https. .Lorcid.org/0000-0002-1825-0097
955
+ 2022-05-19
956
+ Issue
957
+ Vol. 5 No. 1 (2022): Ausgabe 1 - Mai
958
+ Abstract
959
+ 2022
960
+ Die Hauptstadt und das Land gehoren fur moderne Menschen untrennbar
961
+ Section
962
+ zusammen.
963
+ Articles
964
+ Eines geht ohne das andere nicht. Bereits in der Grundschule lernen wir die
965
+ entsprechenden Begriffspaare auswendig. In Hauptstadten wird Politik
966
+ gemacht, sie sind die Schaltzentrale ihres Landes und der Ort, an dem das
967
+ Download geospatial metadata
968
+ Parlament, viele wichtige Ministerien sowie auslandische Konsulate und
969
+ Botschaften zu finden sind; meistens in einem eigenen Regierungsviertel.
970
+ 目GeoJSON
971
+ About GeoJSON
972
+ Fur uns ist die Hauptstadt heute selbstverstandlich ein Synonym fur das
973
+ Zentrum der Macht und fur diejenigen, die politische Entscheidungen
974
+ Geodata license: CC-0
975
+ treffen. Demnach ,entscheidet Berlin", man fragt, .was Washington
976
+ eigentlich denkt", .,welche Zusicherungen Moskau gemacht hat" und was
977
+ , Peking dazu sagt".
978
+ Time and location
979
+ This article covers a time period from 1053 to 1105. ?
980
+ This article covers location(s) or area(s) shown on the map below. ?
981
+ ield
982
+ Groningen
983
+ Hamburg
984
+ Szczecir
985
+ Berlin
986
+ gham
987
+ Nederland
988
+ London
989
+ tschland
990
+ Belgie/
991
+ Wroctaw
992
+ Dresden
993
+ Belgique/
994
+ Belgien
995
+ Kra
996
+ nnes
997
+ Munchen
998
+ Osterreich
999
+ antes
1000
+ de Loire
1001
+ Schweiz
1002
+ France
1003
+ Suisse/Svizzeral
1004
+ svizra
1005
+ 100 mi
1006
+ The administrative units enclosing the article's places are: ?
1007
+ Temporal and spatial metadata are published under the following license: CC-0Enriching the scholarly metadata commons
1008
+ statement about the licence of the spatio-temporal data, to which authors will need to agree to while
1009
+ creating the metadata. The licence is fixed to a public domain licence, CC-0, to ensure the broadest
1010
+ possible usage.
1011
+ Fig. 9. Screenshot of the issue view in the public demo journal, see
1012
+ https://service.tib.eu/optimeta/index.php/optimeta/issue/view/1. The standard OJS theme is extended
1013
+ with a "Times & locations" section below the list of articles of the issue. The mouse cursor over the
1014
+ spatial feature on the map at the bottom triggers a highlighting of the geometry and corresponding
1015
+ article in the list above in red.
1016
+ The pages shown above, all target human users, but the spatio-temporal metadata are also included in
1017
+ the HTML website of the article landing page in machine-readable form. These metadata fields
1018
+ 17
1019
+
1020
+ OPTIMETA
1021
+ Current
1022
+ Archives
1023
+ About
1024
+ Map
1025
+ Q Search
1026
+ Home / Archives / Vol. 5 No. 1 (2022): Ausgabe 1 - Mai 2022
1027
+ Vol. 5 No. 1 (2022): Ausgabe 1 - Mai 2022
1028
+ Published: 2022-05-18
1029
+ Articles
1030
+ Linguistic Analysis of the Newspaper Discourse in Brazil:TheolderPeople and covID-19
1031
+ Author Author
1032
+ Using textual volunteered geographic information to model nature-based activities: A case study from Aotearoa
1033
+ New Zealand
1034
+ Optimeta Admin
1035
+ Herrschaft vom Pferderucken - Reisekonigtum zur Zeit Heinrichs IV.
1036
+ Author Author
1037
+ The Pottery of Mount Zion: An Overview from Islamic to Iron Age Periods
1038
+ Author Author
1039
+ Erstnachweis des Eiparasitoiden Trissolcus basalis (Wollaston, 1858) in Osterreich (Hymenoptera: Scelionidae)
1040
+ Optimeta Admin
1041
+ Revisiting Conditional Typology for Bangla
1042
+ Author Author
1043
+ Times & locations
1044
+ 2000 m
1045
+ Leaflet I Map data: @ OpenStre
1046
+ eetMap contributors
1047
+ Temporal and spatial metadata are published under the following license: CC-0Enriching the scholarly metadata commons
1048
+ enable scraping and harvesting through other services. Fig. 10 shows selected values as displayed in
1049
+ the HTML header of a test article, each defined by a name and, if available, a well-defined scheme.
1050
+ Alongside other publication metadata, the spatial metadata is included in several forms and schemas
1051
+ including the Dublin Core fields DC.SpatialCoverage and DC.Coverage. The former is included as a
1052
+ textual encoding of the full GeoJSON record (line 10 in Fig. 10), the latter (line 20) as a textual
1053
+ representation of the administrative units starting with the largest units and working down to the
1054
+ more generic field, geo.placename, which contains the smallest available administrative unit. In the
1055
+ example provided, this is a country name, but it can also be more specific, for example, the name of a
1056
+ town. Finally, the bounding rectangle of the smallest administrative unit is given in the fields ISO
1057
+ 19139 in an XML-encoding of the geographic bounding box according to the ISO 19139 standard
1058
+ and DC.box using a simple list of the coordinates of the four cardinal directions limiting the rectangle
1059
+ separated by semicolons. The temporal metadata is stored in the field
1060
+ DC.temporal and
1061
+ DC.PeriodOfTime, both using textual representations of a time period as defined by ISO8601.
1062
+ The initial development phase focused on the collection of metadata during submission and the
1063
+ display of spatial metadata. Later phases will focus on the development of a more sophisticated and
1064
+ interactive display of the temporal metadata, specifically, putting the time period(s) of papers on a
1065
+ common timeline for specific issues and whole journals, adding support for multiple time periods,
1066
+ increasing the range of historic date formats supported (BC, time frames of millions of years, etc.),
1067
+ building in a function for entering coordinates directly, support for personalised reference datasets
1068
+ (related to a journal’s themes/topics, e.g., biospheres, habitats) for use in spatial metadata creation,
1069
+ and deriving spatio-temporal metadata semi-automatically, e.g., by retrieving information from data
1070
+ deposits or examining data files in supplementary materials.
1071
+ Fig. 10. Screenshot of the source code of the article landing page showing selected HTML meta
1072
+ attributes given in the HTML header, including different representations of spatial and temporal
1073
+ metadata.
1074
+ 18
1075
+
1076
+ 1 <!DOCTYPE html>
1077
+ <html xml:lang="en-Us" lang="en-Us"><head>
1078
+ 3 <meta http-equiv="content-type" content="text/html; charset=UTF-8">
1079
+ 4 <meta charset="utf-8">
1080
+ 5 <meta name="viewport" content="width=device-width, initial-scale=l.o">
1081
+ <title>Test 3: Three l Journal of Optimal Geolocations</title>
1082
+ 9 <meta name="DC.temp0ral" scheme="Is08601" content="2022-06-27/2022-06-30">
1083
+ ll <meta name="geo.placename" content="Italian Republic">
1084
+ 12 <meta name="DC.box" content="name=Italian Republic; northlimit=47.091783741544; southlimit=35.49285259236; westlimit=6.6266
1085
+ <meta name="Is0 1913g" content="&lt;gmd:EX_GeographicBoundingBox&gt;&lt;gmd:westBoundLongitude&gt;&lt;gco:Decimal&gt;6.6266
1086
+ l4 <meta name="DC.Period0fTime" scheme="IS08601" content="2022-06-27/2022-06-30">
1087
+ <meta name="citation journal title" content="Journal of Optimal Geolocations">
1088
+ <meta name="citation author" content="c Contributor">
1089
+ <meta name="citation title" content="Test 3: Three">
1090
+ <link rel="schema.Dc" href="http://purl.org/dc/elements/l.l/">
1091
+ <meta name="DC.Coverage" xml:lang="en" content="Earth, Europe, Italian Republic">
1092
+ <meta name="DC.Creator.PersonalName" content="C Contributor">
1093
+ <meta name="DC.Title" content="Test 3: Three">
1094
+ <meta name="DC.Type" content="Text.Serial.Journal">
1095
+ <meta name="DC.Type.articleType" content="Articles">Enriching the scholarly metadata commons
1096
+ 3.3
1097
+ Enriching the scholarly metadata commons
1098
+ We conceptualise the scholarly metadata commons as a special subset of the knowledge commons
1099
+ (Hess and Ostrom 2006; Mansell 2013), in which an openly licenced and, thus, collectively owned
1100
+ aggregation of scholarly metadata is governed and shared among the community of interested
1101
+ scholarly and related stakeholders. This commons has various manifestations that present data in a
1102
+ user-friendly interface, in the form of websites or APIs, and enable both the contribution and
1103
+ extraction of data. Wikidata is a widely known example of such an interface.
1104
+ We make use of and contribute to the Scholarly Metadata Commons through both plugins:
1105
+ 1. Citations plugin: With this plugin, we expand the open data pool for research information by
1106
+ providing enriched and user-verified metadata, collected and distributed at the time of
1107
+ publication, through open APIs. We also incorporate sources not currently included in the
1108
+ standard scientometric data sources because of their language or because they are not
1109
+ supported by big publishing houses.
1110
+ 2. Spatio-temporal metadata plugin: Through this plugin, we enable new use cases such as
1111
+ location-based assessments of research activities and location-based research discovery, based
1112
+ on, for example, (1) questions about the geographical area being studied and (2) new
1113
+ transdisciplinary connections between research outputs based on time periods and areas of
1114
+ interest beyond commonly used keywords and full-text search.
1115
+ 4
1116
+ Discussion
1117
+ The OPTIMETA Way described above provides three important contributions, which we implement
1118
+ here as exemplary with the presented plugins. The first contribution is the enlargement of the
1119
+ Scholarly Metadata Commons with metadata generated during the publication process. The built-in
1120
+ mechanisms for looking up existing metadata and the following import of persistent identifiers, such
1121
+ as ORCID iDs, enable the creation of strongly linked research information and its subsequent
1122
+ exportation into existing data sinks. While non-English publications play an important role in the
1123
+ academic world (Kulczycki et al. 2020; Liu 2017; Nazarovets and Mryglod 2021), their metadata are
1124
+ not currently equally represented in the major citation databases (Tennant 2020; Vera-Baceta et al.
1125
+ 2019).
1126
+ The second contribution is, to allow for many more Open Access journals in citation databases and
1127
+ other services built upon the scholarly metadata commons. Currently, OJS is being used by more than
1128
+ 25,000 journals from 155 countries (the majority being from the Global South) publishing in 56
1129
+ languages (Khanna and Willinsky 2022). Using our plugin will lower the barrier for independent
1130
+ journals to contribute to open bibliographic metadata considerably, albeit currently only if the
1131
+ journals use OJS. While this is a large step towards a solution, we cannot yet eliminate the problem
1132
+ entirely. Therefore, we hope that The OPTIMETA Way will be implemented in other publication
1133
+ platforms in the future.
1134
+ 19
1135
+
1136
+ Enriching the scholarly metadata commons
1137
+ The third contribution is the expansion of the scholarly metadata commons through the inclusion
1138
+ of spatio-temporal metadata, which facilitates the use of open metadata for new use cases. As Niers
1139
+ and Nüst (2020) explain, spatio-temporal metadata can be used to detect biases in the geographic
1140
+ coverage of research, for example, when research in a given field focuses heavily on one region
1141
+ overlooking other areas that may be no less interesting in the process. Spatio-temporal metadata can
1142
+ also help recognise connections between research works and improve the understanding of
1143
+ geographical and time-based relations within an area of study. Furthermore, visualisations, especially
1144
+ in the form of maps, can support the transfer of research content and the need for research as a whole.
1145
+ To date, the availability of spatio-temporal metadata has remained low and with the release of
1146
+ geoplugin, we will contribute a new component to the ecosystem of open scholarly publishing.
1147
+ Furthermore, the geoplugin will enable new use cases in location-data-based assessment of research
1148
+ activities: (1) answering questions about the area that has been investigated, e.g., to demonstrate a
1149
+ specific coverage or distribution of research locations and (2) detecting potentially valuable
1150
+ transdisciplinary connections between research outputs based on time periods and areas of interest
1151
+ that go beyond commonly used keywords and full-text search, e.g., connecting historical works on
1152
+ social questions in central Europe with current research on health. In the future this metadata can be
1153
+ used to build platforms for timely notifications about publications based on user-defined
1154
+ spatio-temporal interests, i.e., so that users or systems can be notified of new publications that cover
1155
+ an area of particular interest to an assessment scheme. Intentionally imprecise coordinates can be
1156
+ used to preserve the privacy of human subjects or hide protected entities.
1157
+ The integrative power of spatial relationships between research articles has already been
1158
+ acknowledged by others. However, none of the existing solutions follow The OPTIMETA Way and
1159
+ are, therefore, too complex, not integrated into the publishing workflow, or do not contribute to the
1160
+ open scholarly metadata commons. For example, the JournalMap (https://www.journalmap.org/; Karl
1161
+ et al. 2013) shows research paper locations and publication metadata (title, abstract, etc.) for
1162
+ map-based discovery. However, JournalMap is limited to point geometries and while there is an API
1163
+ and
1164
+ some
1165
+ collaboration
1166
+ with
1167
+ publishers
1168
+ (https://www.journalmap.org/publishers;
1169
+ https://web.archive.org/web/20161016000907/https://newsroom.taylorandfrancisgroup.com/news/pre
1170
+ ss-release/taylor-francis-journal-map-partnership#.WALFJmF_o88), the data is not fully open. The
1171
+ announcement that a data download option is "coming soon" has been on the website since its
1172
+ inception (see https://web.archive.org/web/20130615020154/https://www.journalmap.org/downloads)
1173
+ and
1174
+ the
1175
+ licence
1176
+ is
1177
+ defined
1178
+ as
1179
+ Creative
1180
+ Commons
1181
+ Attribution
1182
+ Share-Alike
1183
+ (CC-BY-SA,
1184
+ https://www.journalmap.org/developer/documentation/1-0), but the terms of use then limit the licence
1185
+ terms
1186
+ considerably
1187
+ and
1188
+ prohibit
1189
+ commercial
1190
+ use
1191
+ of
1192
+ the
1193
+ data
1194
+ (https://www.journalmap.org/terms-of-use). The website does offer some advanced filtering options,
1195
+ including additional thematic filtering options. However, the commercial options advertised on the
1196
+ website work against our understanding of knowledge advancement. Second, Kmoch et al. (2018)
1197
+ analysed articles from geoscientific journals to automatically derive spatial metadata from the
1198
+ unstructured information in articles' bibliographic metadata. The extracted data was then published in
1199
+ a public geospatial catalogue service. However, this approach required considerable technological
1200
+ knowledge and lacked human quality checks, as not all data was checked by the most suitable
1201
+ experts. Therefore, despite being a valid approach for dealing with the fact that spatio-temporal
1202
+ 20
1203
+
1204
+ Enriching the scholarly metadata commons
1205
+ metadata was not collected in the past, it is neither a complete solution nor in line with The
1206
+ OPTIMETA Way. Garzón and Nüst (2021b) took a similar approach with the tool geoextent, which
1207
+ they used to create a discovery index based on geospatial metadata for generic research data
1208
+ repositories. They used a brute-force approach to retrieve spatial extents from as many geospatial file
1209
+ formats as possible. This could be an intermediary approach to enrich article metadata if the articles
1210
+ properly cite the data used, though human verification would likely be needed as datasets may be
1211
+ cited for many different reasons. An implementation of the search portal (cf. Fig. 2) that collects
1212
+ spatio-temporal metadata from multiple journals, the OPTIMAP, is currently under development (see
1213
+ https://optimap.science/ and https://github.com/ifgi/optimetaPortal).
1214
+ The advantages offered by the availability of open citation information are undeniable. Peroni
1215
+ and Shotton (2020) provide an extensive list of beneficiary stakeholders: researchers who do not
1216
+ belong to "the elite club of research universities that can afford subscription access to the commercial
1217
+ citation indexes WoS and Scopus", bibliometricians, who want to provide research data on their
1218
+ research, librarians, funders, research managers, and much more. A key value of the citation plugin is
1219
+ that it allows a large set of Open Access journals to share their authors' publications in the open
1220
+ research commons, regardless of language or subject area and whether it is a publisher-led or
1221
+ independent scholar-led journal. The often shamefully overlooked long-tail of academic research will
1222
+ thus become visible and be given the opportunity to be properly integrated, especially the often
1223
+ overlooked non-English literature (Lazarev and Nazarovets 2018).
1224
+ With respect to science communication and assessment, Krüger (2020) describes how the social
1225
+ distrust of science is to be countered by a performativity-measuring quantification of research output
1226
+ and associated metadata and indicators. She argues, convincingly, that bibliometric infrastructures
1227
+ and applications have their own ideas about how research can be understood through their use. By
1228
+ expanding the scope and range of what we have in terms of metadata, The OPTIMETA Way cannot
1229
+ fully prevent this, but it can address the extent of the problem by limiting the distorted perception of
1230
+ what can be observed, measured, assessed, and considered knowledge through its digital
1231
+ representation in metadata. In this way, the improved availability of spatio-temporal and citation
1232
+ metadata means that research assessment can be carried out more quickly, easily, transparently, and
1233
+ responsibly. Desiderata in terms of metadata could be machine-actionable descriptions of research
1234
+ problems, methods, connections to external entities like funding IDs or funders, identifiers for
1235
+ physical samples, or identifiers for instruments.
1236
+ We estimate the risk of unethical use of the plugins is low and do not see particular potential for the
1237
+ misuse of spatio-temporal data. Even in the worst-case scenario, while intentionally defective
1238
+ metadata reduces discoverability, it does not impact other means of identifying publications. It is true
1239
+ that, in relation to citation metadata, the plugins do lower the barrier to depositing falsified citation
1240
+ information when irresponsible research assessment methods such as citation counts are of interest to
1241
+ a malevolent party. However, citation metadata can only be misused if both author and the handling
1242
+ editor, who is encouraged to check the citation information before publication, have malicious intent.
1243
+ Furthermore, the deposition in public databases does not happen anonymously and, once identified,
1244
+ any misuse can be rolled back and accounts can be blocked from uploading further data.
1245
+ 21
1246
+
1247
+ Enriching the scholarly metadata commons
1248
+ In the future, the implementations of The OPTIMETA Way presented here could be extended with
1249
+ new features and improved usability based on the experiences reported by journals from different
1250
+ disciplines. Regarding technology, we imagine more sophisticated methods, such as machine learning
1251
+ approaches or the extraction of information from PDFs and data files, could be integrated into the
1252
+ OPTIMETA
1253
+ plugins
1254
+ to
1255
+ increase
1256
+ the usability and extent of the metadata. For example,
1257
+ acknowledgements such as funding bodies and grant IDs, author contributions (e.g., based on an
1258
+ acknowledgement section using CRediT statements), or subject classifications, could be collected in
1259
+ a similar, semi-automatic way and publicly deposited according to The OPTIMETA Way. However,
1260
+ to protect the quality of the data, validation by a human expert should not be omitted. The scope of
1261
+ the enhancement with metadata can be widened to include preprints, monographs, and edited
1262
+ collections, although semantically meaningful attributes to metadata fields will be required to
1263
+ distinguish non-reviewed research outputs from reviewed ones. To support preprints and books, the
1264
+ citation plugin and geoplugin can be ported to PKP's preprint platform in addition to other book
1265
+ publishing platforms.
1266
+ The shift in granularity and speed that can be expected due to more open and also more pressing
1267
+ research as societal challenges are tackled in the future will require even more timely, validated
1268
+ research metadata for effective communication. Research is increasingly being published in stages
1269
+ (e.g.,
1270
+ Octopus,
1271
+ https://www.octopus.ac/about)
1272
+ and
1273
+ as
1274
+ individual
1275
+ building
1276
+ blocks
1277
+ (e.g.,
1278
+ idea/text/interpretation, code/software, data), rather than as a polished textual artefact years after the
1279
+ issue might already be resolved. Researchers will more regularly share their results accessibly on free
1280
+ infrastructures and peer review practices will adapt, e.g., with overlay journals (Brown 2010; Rousi
1281
+ and Laakso 2022). However, these technical challenges are small when compared to the
1282
+ organisational challenges of ensuring the long-term maintenance of the plugins we have developed.
1283
+ While the current funding facilitated the development of stable plugins and provided for them to be
1284
+ sent to select collaboration partners for evaluation, and while more and more programs funding core
1285
+ research software are being founded (e.g., https://chanzuckerberg.com/eoss/), we are still facing a
1286
+ chicken-and-egg problem. For broad uptake, journals require a commitment to long-term software
1287
+ maintenance, while funding to maintain the plugins and improve them is acquired more easily when
1288
+ broad usage can be demonstrated.
1289
+ The cultural shift towards Open Access and FAIR research information housed in open
1290
+ infrastructures (Hauschke et al. 2021a; Hendricks et al. 2021) will happen at different speeds in
1291
+ different countries and disciplines and result in the coexistence of a variety of platforms. This is an
1292
+ advantage over today’s centralised system and the power large publishers have over it, but it is also a
1293
+ challenge as these services will have to be able to connect and exchange metadata. Therefore, it is our
1294
+ hope that The OPTIMETA Way will be transferred to other elements within the academic open
1295
+ infrastructure, so that targeted, novel, and even small scale metadata attributes can be collected from
1296
+ the most knowledgeable party, with minimal impact on existing workflows, and shared broadly,
1297
+ openly, and quickly for the advancement of knowledge.
1298
+ 22
1299
+
1300
+ Enriching the scholarly metadata commons
1301
+ 5
1302
+ Conflict of Interest
1303
+ The authors declare that the research was conducted in the absence of any commercial or financial
1304
+ relationships that could be construed as a potential conflict of interest.
1305
+ 6
1306
+ Author Contributions
1307
+ The authors contributed equally to this work. Development of the described plugins was conducted
1308
+ by Daniel Nüst (spatio-temporal metadata plugin) and Gazi Yücel (citation plugin).
1309
+ 7
1310
+ Funding
1311
+ The authors acknowledge the financial support by the Federal Ministry of Education and Research of
1312
+ Germany (BMBF) in the framework of OPTIMETA (grant numbers 16TOA028A and 16TOA028B).
1313
+ 8
1314
+ Acknowledgements
1315
+ The authors would like to thank our project partners for the continuous discussions on how to
1316
+ improve the OPTIMETA Way. In particular, special thanks go to Open Citations and PKP for their
1317
+ supportive engagement in technical discussions. We thank Tom Niers for developing the first
1318
+ prototype of the spatio-temporal metadata plugin, and Svantje Lilienthal for contributions to the early
1319
+ conceptual discussions on the citations plugin. We thank Julie Davies from the academic editing
1320
+ service of the University of Münster for her support in revising the manuscript.
1321
+ 9
1322
+ References
1323
+ Bijsterbosch, Magchiel/Dunning, Alastair/Jansen, Darco/Haring, Max/Rijcke, Sarah de/Vanderfeesten, Maurice (2022).
1324
+ Seven Guiding Principles for Open Research Information. https://doi.org/10.5281/zenodo.6074943.
1325
+ Brembs, Björn (2021). Tweet on Elsevier's publishing costs. Available online at
1326
+ https://twitter.com/brembs/status/1440942528023470081.
1327
+ Brown, Josh (2010). An Introduction to Overlay Journals. Available online at https://discovery.ucl.ac.uk/id/eprint/19081/.
1328
+ Cagan, Ross (2013). The San Francisco Declaration on Research Assessment. Disease models & mechanisms 6 (4),
1329
+ 869–870. https://doi.org/10.1242/dmm.012955.
1330
+ Conlon, Michael/Woods, Andrew/Triggs, Graham/O'Flinn, Ralph/Javed, Muhammad/Blake, Jim/Gross,
1331
+ Benjamin/Ahmad, Qazi/Ali, Sabih/Barber, Martin/Elsborg, Don/Fofack, Kitio/Hauschke, Christian/Ilik,
1332
+ Violeta/Khan, Huda/Lawless, Ted/Levernier, Jacob/Lowe, Brian/Martin, Jose/McKay, Steve/Porter,
1333
+ Simon/Walther, Tatiana/White, Marijane/Wolff, Stefan/Younes, Rebecca (2019). VIVO: a system for research
1334
+ discovery. Journal of Open Source Software 4 (39), 1182. https://doi.org/10.21105/joss.01182.
1335
+ euroCRIS (2018). 14th International Conference on Current Research Information Systems.
1336
+ https://doi.org/10.25798/2y3h-k877.
1337
+ Federal Geographic Data Committee. ISO 191** Suite of Geospatial Metadata Standards. Available online at
1338
+ https://www.fgdc.gov/metadata/iso-suite-of-geospatial-metadata-standards.
1339
+ Franceschi-Bicchierai, Lorenzo (2022). Academic Journal Claims it Fingerprints PDFs for ‘Ransomware,’ Not
1340
+ Surveillance. Available online at
1341
+ https://www.vice.com/en/article/4aw48g/academic-journal-claims-it-fingerprints-pdfs-for-ransomware-not-surveill
1342
+ ance.
1343
+ 23
1344
+
1345
+ Enriching the scholarly metadata commons
1346
+ Garfield, Eugene (1952). The Crisis in Chemical Literature. Address to the Maryland Section of the American Chemical
1347
+ Society, 22.09.1952. Available online at http://www.garfield.library.upenn.edu/papers/crisisinchemlit1952.html.
1348
+ Garzón, Sebastian/Nüst, Daniel (2021a). Exploring Research Data Repositories with geoextent. Available online at
1349
+ https://earthcube2021.github.io/ec21_book/notebooks/ec21_garzon_etal/showcase/SG_01_Exploring_Research_D
1350
+ ata_Repositories_with_geoextent.html.
1351
+ Garzón, Sebastian/Nüst, Daniel (2021b). Exploring Research Data Repositories with geoextent. Zenodo.
1352
+ https://doi.org/10.5281/zenodo.5496311.
1353
+ Gonzales, Brighid M. (2014). Linking Libraries to the Web: Linked Data and the Future of the Bibliographic Record.
1354
+ Information Technology and Libraries (Online) 33 (4), 10–22. https://doi.org/10.6017/ital.v33i4.5631.
1355
+ Hauschke, Christian/Nazarovets, Serhii/Altemeier, Franziska/Kaliuzhna, Nataliia (2021a). Roadmap to FAIR Research
1356
+ Information in Open Infrastructures. Journal of Library Metadata 21 (1-2), 45–61.
1357
+ https://doi.org/10.1080/19386389.2021.1999156.
1358
+ Hauschke, Christian/Nüst, Daniel/Cordts, Anette/Lilienthal, Svantje (2021b). OPTIMETA – Strengthening the Open
1359
+ Access publishing system through open citations and spatiotemporal metadata. Research Ideas and Outcomes 7.
1360
+ https://doi.org/10.3897/rio.7.e66264.
1361
+ Hendricks, Ginny/Kramer, Bianca/Maccallum, Catriona J./Manghi, Paolo/Neylon, Cameron (2021). Now is the time to
1362
+ work together toward open infrastructures for scholarly metadata. Available online at
1363
+ http://eprints.lse.ac.uk/id/eprint/112845.
1364
+ Hess, Charlotte/Ostrom, Elinor (2006). Understanding Knowledge as a Commons. The MIT Press.
1365
+ ISBN 9780262516037.
1366
+ Hey, Tony (2015). Data curation - past, present and future London, 10th International Digital Curation Conference,
1367
+ 09.02.2015. Available online at
1368
+ https://www.dcc.ac.uk/sites/default/files/documents/IDCC15/Presentations%20Day%201/(Feb15)%20TonyHey%2
1369
+ 0-%20Data%20Curation%20talk%20(final).pdf.
1370
+ Hicks, Diana/Wouters, Paul/Waltman, Ludo/Rijcke, Sarah de/Rafols, Ismael (2015). Bibliometrics: The Leiden Manifesto
1371
+ for research metrics. Nature 520 (7548), 429–431. https://doi.org/10.1038/520429a.
1372
+ Jaradeh, Mohamad Yaser/Oelen, Allard/Farfar, Kheir Eddine/Prinz, Manuel/D'Souza, Jennifer/Kismihók, Gábor/Stocker,
1373
+ Markus/Auer, Sören (2019). Open Research Knowledge Graph: Next Generation Infrastructure for Semantic
1374
+ Scholarly Knowledge. In: Mayank Kejriwal/Pedro Szekely/Raphaël Troncy (Eds.). Proceedings of the 10th
1375
+ International Conference on Knowledge Capture, K-CAP '19: Knowledge Capture Conference, Marina Del Rey
1376
+ CA USA, 19 11 2019 21 11 2019. New York, NY, USA, ACM, 243–246.
1377
+ https://doi.org/10.1145/3360901.3364435.
1378
+ Kaliuzhna, Nataliia/Altemeier, Franziska (2021). Towards FAIR principles for research information. report on a series of
1379
+ workshops. Ukrainian Journal on Library and Information Science (7), 128–132. Available online at
1380
+ http://librinfosciences.knukim.edu.ua/article/view/233322.
1381
+ Karl, Jason W./Herrick, Jeffrey E./Unnasch, Robert S./Gillan, Jeffrey K./Ellis, Erle C./Lutters, Wayne G./Martin, Laura J.
1382
+ (2013). Discovering Ecologically Relevant Knowledge from Published Studies through Geosemantic Searching.
1383
+ BioScience 63 (8), 674–682. https://doi.org/10.1525/bio.2013.63.8.10.
1384
+ Khanna, Saurabh/Willinsky, John (2022). What Those Responsible for Open Infrastructure in Scholarly Communication
1385
+ Can Do about Possibly Predatory Practices. https://doi.org/10.1590/SciELOPreprints.3474.
1386
+ Kmoch, Alexander/Uuemaa, Evelyn/Klug, Hermann/Cameron, Stewart (2018). Enhancing Location-Related
1387
+ Hydrogeological Knowledge. ISPRS International Journal of Geo-Information 7 (4), 132.
1388
+ https://doi.org/10.3390/ijgi7040132.
1389
+ Krüger, Anne K. (2020). Quantification 2.0? Bibliometric Infrastructures in Academic Evaluation. Politics and
1390
+ Governance 8 (2), 58–67. https://doi.org/10.17645/pag.v8i2.2575.
1391
+ Kuhn, Werner (2012). Core concepts of spatial information for transdisciplinary research. International Journal of
1392
+ Geographical Information Science 26 (12), 2267–2276. https://doi.org/10.1080/13658816.2012.722637.
1393
+ Kulczycki, Emanuel/Guns, Raf/Pölönen, Janne/Engels, Tim C. E./Rozkosz, Ewa A./Zuccala, Alesia A./Bruun,
1394
+ Kasper/Eskola, Olli/Starčič, Andreja Istenič/Petr, Michal/Sivertsen, Gunnar (2020). Multilingual publishing in the
1395
+ 24
1396
+
1397
+ Enriching the scholarly metadata commons
1398
+ social sciences and humanities: A seven-country European study. Journal of the Association for Information
1399
+ Science and Technology 71 (11), 1371–1385. https://doi.org/10.1002/asi.24336.
1400
+ Lauscher, Anne, Kai Eckert, Lukas Galke, Ansgar Scherp, Syed Tahseen Raza Rizvi, Sheraz Ahmed, Andreas Dengel,
1401
+ Philipp Zumstein, and Annette Klein (2018). Linked Open Citation Database: Enabling Libraries to Contribute to
1402
+ an Open and Interconnected Citation Graph. In Proceedings of the 18th ACM/IEEE on Joint Conference on
1403
+ Digital Libraries (JCDL '18). Association for Computing Machinery, New York, NY, USA, 109–118.
1404
+ https://doi.org/10.1145/3197026.3197050.
1405
+ Lazarev, Vladimir S./Nazarovets, Serhii A. (2018). Don't dismiss citations to journals not published in English. Nature
1406
+ 556 (7700), 174. https://doi.org/10.1038/d41586-018-04169-2.
1407
+ Liu, Weishu (2017). The changing role of non-English papers in scholarly communication: Evidence from Web of
1408
+ Science's three journal citation indexes. Learned Publishing 30 (2), 115–123. https://doi.org/10.1002/leap.1089.
1409
+ Manghi, Paolo/Mannocci, Andrea/Osborne, Francesco/Sacharidis, Dimitris/Salatino, Angelo/Vergoulis, Thanasis (2021).
1410
+ New trends in scientific knowledge graphs and research impact assessment. Quantitative Science Studies 2 (4),
1411
+ 1296–1300. https://doi.org/10.1162/qss_e_00160.
1412
+ Mansell, Robin (2013). Employing digital crowdsourced information resources: Managing the emerging information
1413
+ commons. International Journal of the Commons 7 (2), 255. https://doi.org/10.18352/ijc.395.
1414
+ Massari, Arcangelo/Heibi, Ivan (2022). How to structure citations data and bibliographic metadata in the OpenCitations
1415
+ accepted format. https://doi.org/10.48550/arXiv.2206.03971.
1416
+ Nazarovets, Serhii (2019). Open Ukrainian Citation Index (OUCI): ідея, принцип роботи та перспективи розвитку.
1417
+ Інтелектуальна власність в Україні, 3, 10-13.
1418
+ Nazarovets, Serhii/Mryglod, Olesya (2021). Multilingualism of Ukrainian Humanities: how it is seen globally. In: 18th
1419
+ International Conference on Scientometrics and Informetrics, KU Leuven, 2021, 1521–1522.
1420
+ http://eprints.rclis.org/42221/.
1421
+ Nielsen, Finn Årup, Mietchen, Daniel, and Willighagen, Egon (2018). Geospatial data and Scholia. Joint Proceedings of
1422
+ GeoLD2018 and QuWeDa2018: 3rd International Workshop on Geospatial Linked Data / 2nd Workshop on
1423
+ Querying the Web of Data (GeoLD-QuWeDa-2018). CEUR Workshop Proceedings. ISSN 1613-0073.
1424
+ http://ceur-ws.org/Vol-2110/paper3.pdf
1425
+ Niers, Tom/Nüst, Daniel (2020). Geospatial Metadata for Discovery in Scholarly Publishing. Septentrio Conference
1426
+ Series (4). https://doi.org/10.7557/5.5590.
1427
+ Peroni, Silvio/Shotton, David (2012). FaBiO and CiTO: Ontologies for describing bibliographic resources and citations.
1428
+ Journal of Web Semantics 17, 33–43. https://doi.org/10.1016/j.websem.2012.08.001.
1429
+ Peroni, Silvio/Shotton, David (2020). OpenCitations, an infrastructure organization for open scholarship. Quantitative
1430
+ Science Studies 1 (1), 428–444. https://doi.org/10.1162/qss_a_00023.
1431
+ Pooley, Jeff (2022). Surveillance Publishing. The Journal of Electronic Publishing 25 (1).
1432
+ https://doi.org/10.3998/jep.1874.
1433
+ Priem, Jason/Piwowar, Heather/Orr, Richard (2022). OpenAlex: A fully-open index of scholarly works, authors, venues,
1434
+ institutions, and concepts. https://doi.org/10.48550/arXiv.2205.01833.
1435
+ Rasberry, L., Willighagen, E., Nielsen, F., Mietchen, D. (2019). Robustifying Scholia: paving the way for knowledge
1436
+ discovery and research assessment through Wikidata. Research Ideas and Outcomes 5: e35820.
1437
+ https://doi.org/10.3897/rio.5.e35820.
1438
+ Rousi, Antti Mikael/Laakso, Mikael (2022). Overlay journals: a study of the current landscape.
1439
+ https://doi.org/10.48550/arXiv.2204.03383.
1440
+ Smith, Arfon M./Katz, Daniel S./Niemeyer, Kyle E. (2016). Software citation principles. PeerJ Computer Science 2, e86.
1441
+ https://doi.org/10.7717/peerj-cs.86.
1442
+ Smith, MacKenzie/Barton, Mary/Branschofsky, Margret/McClellan, Greg/Walker, Julie Harford/Bass, Mick/Stuve,
1443
+ Dave/Tansley, Robert (2003). DSpace. D-Lib Magazine 9 (1). https://doi.org/10.1045/january2003-smith.
1444
+ Starr, Joan/Gastl, Angela (2011). isCitedBy: A Metadata Scheme for DataCite. https://doi.org/10.3929/ethz-a-006687003.
1445
+ 25
1446
+
1447
+ Enriching the scholarly metadata commons
1448
+ Tennant, Jonathan (2020). Web of Science and Scopus are not global databases of knowledge 2020.
1449
+ The American Society for Cell Biology (2012). 2012 ASCB Annual Meeting. ASCB. https://doi.org/10.25798/najp-rd56.
1450
+ Turki, Houcemeddine/Hadj Taieb, Mohamed Ali/Ben Aouicha, Mohamed/Fraumann, Grischa/Hauschke, Christian/Heller,
1451
+ Lambert (2021). Enhancing Knowledge Graph Extraction and Validation From Scholarly Publications Using
1452
+ Bibliographic Metadata. Frontiers in research metrics and analytics 6, 694307.
1453
+ https://doi.org/10.3389/frma.2021.694307.
1454
+ Vera-Baceta, Miguel-Angel/Thelwall, Michael/Kousha, Kayvan (2019). Web of Science and Scopus language coverage.
1455
+ Scientometrics 121 (3), 1803–1813. https://doi.org/10.1007/s11192-019-03264-z.
1456
+ Wikipedia (2022). Geospatial metadata. Available online at
1457
+ https://en.wikipedia.org/w/index.php?title=Geospatial_metadata&oldid=1063813268.
1458
+ Wilkinson, Mark D./Dumontier, Michel/Aalbersberg, I. Jsbrand Jan/Appleton, Gabrielle/Axton, Myles/Baak,
1459
+ Arie/Blomberg, Niklas/Boiten, Jan-Willem/Da Silva Santos, Luiz Bonino/Bourne, Philip E./Bouwman,
1460
+ Jildau/Brookes, Anthony J./Clark, Tim/Crosas, Mercè/Dillo, Ingrid/Dumon, Olivier/Edmunds, Scott/Evelo, Chris
1461
+ T./Finkers, Richard/Gonzalez-Beltran, Alejandra/Gray, Alasdair J. G./Groth, Paul/Goble, Carole/Grethe, Jeffrey
1462
+ S./Heringa, Jaap/Hoen, Peter A. C. 't/Hooft, Rob/Kuhn, Tobias/Kok, Ruben/Kok, Joost/Lusher, Scott J./Martone,
1463
+ Maryann E./Mons, Albert/Packer, Abel L./Persson, Bengt/Rocca-Serra, Philippe/Roos, Marco/van Schaik,
1464
+ Rene/Sansone, Susanna-Assunta/Schultes, Erik/Sengstag, Thierry/Slater, Ted/Strawn, George/Swertz, Morris
1465
+ A./Thompson, Mark/van der Lei, Johan/van Mulligen, Erik/Velterop, Jan/Waagmeester, Andra/Wittenburg,
1466
+ Peter/Wolstencroft, Katherine/Zhao, Jun/Mons, Barend (2016). The FAIR Guiding Principles for scientific data
1467
+ management and stewardship. Scientific data 3, 160018. https://doi.org/10.1038/sdata.2016.18.
1468
+ Willinsky, John (2005). Open Journal Systems. Library Hi Tech 23 (4), 504–519.
1469
+ https://doi.org/10.1108/07378830510636300.
1470
+ 26
1471
+
ENAzT4oBgHgl3EQfif3h/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EdFQT4oBgHgl3EQfQjaM/content/tmp_files/2301.13283v1.pdf.txt ADDED
@@ -0,0 +1,1014 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Online Learning Based Mobile Robot
2
+ Controller Adaptation for Slip Reduction
3
+ Huidong Gao ∗ Rui Zhou ∗ Masayoshi Tomizuka ∗ Zhuo Xu ∗
4
+ ∗ Department of Mechanical Engineering, University of California,
5
+ Berkeley, CA 94720 USA (e-mail: {hgao9, ruizhouzr, tomizuka,
6
+ zhuoxu}@berkeley.edu)
7
+ Abstract:
8
+ Slip is a very common phenomena present in wheeled mobile robotic systems. It has undesirable
9
+ consequences such as wasting energy and impeding system stability. To tackle the challenge
10
+ of mobile robot trajectory tracking under slippery conditions, we propose a hierarchical
11
+ framework that learns and adapts gains of the tracking controllers simultaneously online.
12
+ Concretely, a reinforcement learning (RL) module is used to auto-tune parameters in a lateral
13
+ predictive controller and a longitudinal speed PID controller. Experiments show the necessity of
14
+ simultaneous gain tuning, and have demonstrated that our online framework outperforms the
15
+ best baseline controller using fixed gains. By utilizing online gain adaptation, our framework
16
+ achieves robust tracking performance by rejecting slip and reducing tracking errors when the
17
+ mobile robot travels through various terrains.
18
+ Keywords: Trajectory Tracking, Slip Rejection, Reinforcement Learning, Hierarchical Control
19
+ 1. INTRODUCTION
20
+ 1.1 Background and Motivation
21
+ Mobile robots are used in various industrial applications
22
+ such as manufacturing, process and aerospace. They often
23
+ run on slippery terrains, or routes with rapid cornering,
24
+ which induces skidding and slipping. Excessive slip may
25
+ cause motion instability, undermine maneuverability and
26
+ lead to possible collisions, thus should be prevented.
27
+ To mitigate slip, many works try to identify slip parame-
28
+ ters or terrain states, and design simple control laws with
29
+ robot kinematic models, e.g. Pico et al. [2022] and Kim
30
+ and Lee [2016]. Sebastian and Ben-Tzvi [2019] and Wang
31
+ and Zhai [2020] further choose to model slip as distur-
32
+ bance in the kinematics model and estimate by observers.
33
+ However, state vectors are of high order and matrix inverse
34
+ calculations could be massive. Another line of work focuses
35
+ on wheel dynamics with traction forces. Tian et al. [2009]
36
+ choose to use the Magic formula to derive the relationship
37
+ between traction force and slip ratio, while Nandy et al.
38
+ [2011] formulates a detailed slip dynamics with certain
39
+ switching conditions. Although dynamic models consider
40
+ forces in addition to kinematics models, they usually re-
41
+ quire system identification for different scenarios and have
42
+ poor generalization abilities.
43
+ There are also other works utilizing reinforcement learning
44
+ to directly learn a policy; such as in Xu et al. [2018], Tang
45
+ et al. [2019], Chang et al. [2020], Cai et al. [2020], Xu et al.
46
+ [2021]. However, end-to-end RL approaches require consid-
47
+ erable training time and pose challenges in explainability.
48
+ Instead of end-to-end RL, Carlucho et al. [2019], Gao et al.
49
+ [2022] uses RL only to optimize controllers, but the results
50
+ are highly dependent on action space discretization.
51
+ 1.2 Contributions
52
+ Our work focuses on trajectory tracking control of mo-
53
+ bile robots under slippery conditions. We follow a similar
54
+ approach as in Carlucho et al. [2019], and propose to
55
+ use a hierarchical framework that optimizes gains for the
56
+ tracking controllers online. An RL module is used to tune
57
+ gains in a lateral predictive Stanley controller and a longi-
58
+ tudinal speed PID controller simultaneously for regulation.
59
+ By dividing the control part into longitudinal and lateral
60
+ control modules and tuning gains directly, we are able to
61
+ improve lateral and speed tracking errors in a straight-
62
+ forward way. By using a higher level RL module, we are
63
+ able to tune multiple low-level controllers simultaneously
64
+ in real-time. Furthermore, the RL module is only able to
65
+ determine the conservativeness in the controllers, and thus
66
+ the entire framework is more explainable than an end-to-
67
+ end RL controller.
68
+ The contributions of our work can be summarized as
69
+ follows: 1) We propose an hierarchical framework that
70
+ actively optimizes controllers to slip conditions through
71
+ RL gain-tuning. 2) We reason the necessity of simultaneous
72
+ online gain tuning through experiments. 3) We demon-
73
+ strate that our adaptive framework outperforms the best
74
+ fixed-gain baselines by 6.6% and 12.7% for average lateral
75
+ error and max lateral error by simulation.
76
+ 2. METHODOLOGY
77
+ 2.1 Problem Overview
78
+ Fig. 1 illustrates our tracking problem layout. The robot’s
79
+ goal is to travel from xstart, following a predefined trajec-
80
+ tory to reach xend. Here we define certain terms to describe
81
+ the robot’s motion and the tracking state. We use lateral
82
+ arXiv:2301.13283v1 [cs.RO] 30 Jan 2023
83
+
84
+ displacement error e to represent the closest tracking error
85
+ relative to the reference trajectory (in unit m). ∆θ is the
86
+ yaw error, which is the difference between reference yaw
87
+ θref and actual yaw θ (in unit rad). ∆v is the speed error,
88
+ which is the difference between absolute values of reference
89
+ velocity vref and actual velocity v (in unit m/s).
90
+ The tracking task can then be formulated as a Markov
91
+ Decision Process defined by M = (S, A, T , R, γ). S repre-
92
+ sents the state space; A is the action space; T (s
93
+ ′|s, a) is the
94
+ state transition model; R(s, a) is the reward function; and
95
+ γ ∈ [0, 1) is the discount factor. The RL formulation aims
96
+ to learn a policy π(a|S). The agent then follows the policy
97
+ π, obtains an observation st at time t and performs an ac-
98
+ tion at. It then receives from the environment a reward Rt
99
+ and a new observation st+1, and π is updated accordingly.
100
+ The final trained model gives an action selection policy
101
+ π that maximizes the expectation of a discounted sum of
102
+ rewards E[�T
103
+ t=1 γt−1Rt].
104
+ Fig. 1. Schematic diagram of the problem setup.
105
+ The state S has 5 variables: e, ∆θ, ∆v, ∆vc vs actual,
106
+ and ∆ωc vs actual. e, ∆θ, and ∆v are as discussed in the
107
+ beginning of the section. ∆vc vs actual (in unit m/s)and
108
+ ∆ωc vs actual (in unit rad/s) represent the difference be-
109
+ tween actual body velocities and body velocities calculated
110
+ from wheel velocity commands(shown in Eqn. 1 and 2).
111
+ Intuitively, a large value of ∆vc vs actual or ∆ωc vs actual
112
+ indicates the robot is slipping more severely as the wheel
113
+ velocity commands are not fully transferred to actual body
114
+ velocities.
115
+ v = (ωR + ωL) · R
116
+ 2
117
+ (1)
118
+ ω = (ωR − ωL) · R
119
+ b
120
+ (2)
121
+ Eqn. 1-2: transformation from wheel commands to
122
+ calculated body linear and angular velocities. ωR and ωL
123
+ are right and left wheel angular velocity commands, R is
124
+ wheel radius, and b is distance between wheels.
125
+ The action A is [v, ω], which are linear and angular
126
+ velocity commands. Notice the final input wheel velocity
127
+ commands are calculated from reversing equations 1-2.
128
+ The low level controller executes the commands and gets a
129
+ reward at this step. The reward for each step is defined in
130
+ Eqn. 3. Here we penalize e, ∆θ and ∆v, with coefficients
131
+ Rdist, Rang and Rspeed. The cumulative reward is defined
132
+ as �T
133
+ t=1 γt−1Rt, where Rt is the step reward.
134
+ Rt(st, at) = Rdist · e2 + Rang · ∆θ2 + Rspeed · ∆v2
135
+ (3)
136
+ 2.2 Proposed Framework
137
+ We propose to utilize reinforcement learning to actively
138
+ tune parameters in lateral and longitudinal control mod-
139
+ ules on a differential drive TurtleBot. The proposed frame-
140
+ work consists of a RL-based high-level module, a lateral
141
+ control module, a longitudinal control module, a low-
142
+ level tracking controller, and the robot. The framework
143
+ is visualized in Fig. 2. The RL module takes observed
144
+ robot states obs; reference trajectory xref, and outputs
145
+ gains Kstanley and Kspeed. The two control modules use
146
+ the gains accordingly and output acceleration command α
147
+ and steering angle command δ, and then transfer them into
148
+ linear and angular velocity commands [v, ω]. The low level
149
+ controller then executes the command on the robot and
150
+ feeds the directly observed states back into the RL module
151
+ to calculate for step rewards, and the policy is updated
152
+ accordingly. The loop stops when the positional error of
153
+ the robot and final goal position is within a threshold.
154
+ The entire framework realizes our MDP formulation, and
155
+ is trained end-to-end using an RL algorithm.
156
+ Fig. 2. Proposed framework.
157
+ 2.3 Lateral Control: Predictive Stanley
158
+ We tackle our trajectory tracking problem by breaking
159
+ it up into longitudinal and lateral control problems. The
160
+ longitudinal controller is responsible for regulating the
161
+ robot’s speed while the lateral controller aims to reduce
162
+ the lateral error during path tracking.
163
+ The proposed lateral control approach utilizes a version of
164
+ Predictive Stanley controller, which is built on the basic
165
+ Stanley controller. The basic Stanley controller is divided
166
+ into three regions: saturated low region, saturated high
167
+ region, and nominal region. ψ is the heading of the vehicle
168
+ with respect to the heading of the trajectory at the point of
169
+ the projected shortest distance to the vehicle position, e(t)
170
+ is the lateral error, v is current speed, and K = Kstanley is
171
+ the controller gain. See Fig. 3 for reference. The steering
172
+ angle command is given by:
173
+ δ(t) =
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+ ψ(t) + arctan( Ke(t)
184
+ v(t) ),
185
+ |ψ(t) + arctan( Ke(t)
186
+ v(t) )| < δ(max)
187
+ δ(max),
188
+ ψ(t) + arctan( Ke(t)
189
+ v(t) ) >= δ(max)
190
+ −δ(max),
191
+ ψ(t) + arctan( Ke(t)
192
+ v(t) ) <= −δ(max)
193
+ (4)
194
+ As discussed in AbdElmoniem et al. [2020], the proposed
195
+ predictive Stanley control approach introduces a third
196
+ input, which is a developed array of future vehicle states,
197
+ propagated along the vehicle track, denoted as P1, P2... PN
198
+
199
+ 0
200
+ 0
201
+ Xend
202
+ e
203
+ re
204
+ Vref
205
+ x
206
+ XstartLateral control
207
+ nley
208
+ Predictive
209
+ re
210
+ Stanley
211
+ Low Level
212
+ RL
213
+ Robot
214
+ Controller
215
+ Longitudinal contro
216
+ PID
217
+ speed
218
+ Vref
219
+ obsFig. 3. Predictive Stanley Representation.
220
+ as shown in Fig. 3. At each future state, the corresponding
221
+ δ is calculated based on current epi. The final steering
222
+ angle command is calculated by augmenting the output
223
+ of each basic Stanley controller at each state to eliminate
224
+ the error along the path not only at the reference point,
225
+ as shown in Eqn. 5 and 6. Consequently, the predictive
226
+ Stanley controller is able to deal with the sudden changes
227
+ in the heading angle of the trajectory by having this
228
+ preview capability.
229
+ δ(t) =
230
+ N
231
+
232
+ i=0
233
+ pi[ψi(t) + arctan(Kepi(t)
234
+ v(t)
235
+ )]
236
+ (5)
237
+ pi = p2
238
+ i−1 for i = 2...N
239
+ (6)
240
+ Eqn. 5-6. The final steering command. pi is the
241
+ weight, which represents how each controller contributes
242
+ in determining the final value of the steering angle. Here
243
+ we set N = 2 and p1 = 0.2.
244
+ We show the advantage of our predictive Stanley controller
245
+ over the basic Stanley controller by running them on a
246
+ TurtleBot with the same trajectory. The visualization in
247
+ Fig. 4 clearly shows that the predictive Stanley controller
248
+ is able to adjust for abrupt turns. See detailed comparison
249
+ in AbdElmoniem et al. [2020].
250
+ 2.4 Longitudinal Control: PID
251
+ We use a simple proportional control for speed regulation.
252
+ The acceleration command becomes:
253
+ α(t) = Kspeed(vref − v(t))
254
+ (7)
255
+ With the steering and acceleration commands, we can
256
+ deduce the robot’s linear and angular velocity commands
257
+ [v, ω] using Eqn. 8 and 9, which are then executed by the
258
+ low level controller.
259
+ vcommand = v(t) + α(t) · ∆T
260
+ (8)
261
+ ωcommand = δ(t)
262
+ ∆T
263
+ (9)
264
+ 2.5 Reinforcement Learning module
265
+ The RL module in Fig. 2 consists of actor and critic neural
266
+ network layers. The entire framework in Fig. 2 utilizes soft
267
+ actor-critic (SAC) during training.
268
+ Fig. 4. Predictive Stanley vs. Basic Stanley Con-
269
+ troller. The average lateral error for trajectory
270
+ A for predictive and basic Stanley controllers are
271
+ 0.0147m and 0.0374m, respectively; for trajectory B
272
+ are 0.0077m and 0.0347m, respectively.
273
+ 3. EXPERIMENTS
274
+ Our experiments were designed and conducted in order to
275
+ answer the following questions:
276
+ (1) Is simultaneous gain tuning necessary?
277
+ (2) Is online gain tuning better than fixing the gains
278
+ throughout the trajectory?
279
+ (3) How to interpret our framework’s output?
280
+ To answer these questions, we carry out simulated ex-
281
+ periments using PyBullet by Coumans and Bai [2016–
282
+ 2021], with a TurtleBot waffle-pi model. To evaluate our
283
+ framework, we propose to use a set of long-term and short-
284
+ term metrics. Long-term metrics focus on measuring the
285
+ performance throughout the entire trajectory, while short-
286
+ term metrics focus on the short-time performance while
287
+ the robot is slipping. Here we define slipping condition as
288
+ those robot body states satisfying ∆vc vs actual > |0.7|m/s
289
+ or ∆ωc vs actual > |3|rad/s.
290
+ For long-term criteria, we define average episodic reward
291
+ r, average lateral error e, average speed error ∆v, and
292
+ average RMS of change in low level control command
293
+ ∆u(which measures command stability). u = [ωL, ωR],
294
+ which denotes left and right wheel velocity control action
295
+ commands, and is calculated based on [v, ω], using Eqn. 1
296
+ and 2. The long-term metrics are calculated with respect
297
+ to the entire trajectory.
298
+ r =
299
+ 1
300
+ Ttraj
301
+ Ttraj
302
+
303
+ i=0
304
+ ri
305
+ (10)
306
+ e =
307
+ 1
308
+ Ttraj
309
+ Ttraj
310
+
311
+ i=0
312
+ ei
313
+ (11)
314
+
315
+ e.
316
+ p2
317
+ Xend
318
+ p1
319
+ 0
320
+ V
321
+ y
322
+ Xstart
323
+ >x8
324
+ 8
325
+ trajectory
326
+ trajectory
327
+ 7
328
+ target
329
+ 7
330
+ target
331
+ 6
332
+ 6
333
+ 5
334
+ 5
335
+ 4
336
+ 4
337
+ 3
338
+ 3
339
+ 2
340
+ 2
341
+ 1
342
+ 1
343
+ 0
344
+ 0
345
+ -1
346
+ 2
347
+ 4
348
+ 16
349
+ -1
350
+ 0
351
+ 8
352
+ 2
353
+ 4
354
+ 6
355
+ 8
356
+ Trajectory A
357
+ 8
358
+ 8
359
+ trajectory
360
+ trajectory
361
+ 7
362
+ target
363
+ 7
364
+ target
365
+ 6
366
+ 6
367
+ 5
368
+ 5
369
+ 4
370
+ 4
371
+ 3
372
+ 3
373
+ 2
374
+ 2
375
+ 1
376
+ 1
377
+ 0
378
+ 0
379
+ -1
380
+ 2
381
+ -1
382
+ 4
383
+ 6
384
+ 8
385
+ 0
386
+ 2
387
+ 4
388
+ 6
389
+ 8
390
+ Trajectory B∆v =
391
+ 1
392
+ Ttraj
393
+ Ttraj
394
+
395
+ i=0
396
+ |vi − vref|,
397
+ (12)
398
+ ∆u =
399
+ 1
400
+ Ttraj
401
+ Ttraj
402
+
403
+ i=1
404
+ ∥ui+1 − ui∥,
405
+ (13)
406
+ For short-term criteria, we define max lateral error
407
+ throughout the trajectory emax, average lateral error dur-
408
+ ing slipping(Tslip) eslip, average speed error during slipping
409
+ ∆vslip, and average RMS of change in low level control
410
+ action during slipping ∆uslip.
411
+ emax = max{ei}Ttraj
412
+ 0
413
+ (14)
414
+ eslip =
415
+ 1
416
+ Tslip
417
+ Tslip
418
+
419
+ i=0
420
+ ei
421
+ (15)
422
+ ∆vslip =
423
+ 1
424
+ Tslip
425
+ Tslip
426
+
427
+ i=0
428
+ |vi − vref|,
429
+ (16)
430
+ ∆uslip =
431
+ 1
432
+ Tslip
433
+ Tslip
434
+
435
+ i=1
436
+ ∥ui+1 − ui∥,
437
+ (17)
438
+ 3.1 Simulation environment setup and training
439
+ Fig. 5 shows bird-eye view simulation renderings of three
440
+ example setups. Blue color represents high frictional areas
441
+ with frictional coefficient µ=0.9, and red represents low
442
+ frictional areas with µ=0.01. The red patches are of size
443
+ 1 m by 1 m. The green trajectory is generated using a
444
+ spline generator by Sakai et al. [2018]. The planner takes
445
+ n number of 2D points and generates a smooth trajectory
446
+ connecting all the given points.
447
+ To randomize the trajectory, we choose to use 5 random
448
+ points for curve generation. Each point is Uniform[1, 2] m
449
+ away from the previous point, with Uniform[−0.5π, 0.5π]
450
+ rad angle from the previous point. The initial point [x, y]
451
+ position follows distribution: x = Uniform[1, 2] m, y =
452
+ Uniform[3.5, 4.5] m.
453
+ To randomize the ground configuration, the red patches
454
+ are randomly generated for each new trajectory, and we
455
+ set 30% of the total area to be red.
456
+ We use SAC algorithm to train the entire framework. The
457
+ policy network and the value network in the SAC are fully-
458
+ connected two-layer neural networks of size 64. Learning
459
+ rate is 0.0006, γ is set to be 0.99. The coefficients Rdist,
460
+ Rang and Rspeed are set to be -20, -1, -1, respectively. The
461
+ entire framework is trained until convergence.
462
+ 3.2 Is simultaneous gain tuning necessary?
463
+ We propose to utilize RL to tune the two gains simulta-
464
+ neously, rather than having two separate frameworks to
465
+ determine each. To verify the necessity of simultaneous
466
+ gain tuning, we vary Kstanley and Kspeed from 0.5 to 5.0
467
+ with 0.5 increments, and plot heatmaps for each of the
468
+ Fig. 5. Simulation Rendering. Bird-eye view image with
469
+ annotations. White dot is the robot, green line is the
470
+ reference trajectory, and red dot is the goal position.
471
+ criteria discussed previously (Fig. 6 and 7). Each point
472
+ on the heatmap represents the result of using a specific
473
+ combination of Kstanley and Kspeed. Each point result is
474
+ calculated by averaging the results of running 100 pre-
475
+ generated random trajectories with random ground setups.
476
+ It can be shown that for each criteria, the best result
477
+ happens when considering Kstanley and Kspeed together.
478
+ For example, for e, fixing Kstanley to be 2.5 will result in a
479
+ best Kspeed of 3.5, but fixing Kstanley to be 5.0 will result
480
+ in a best Kspeed of 2.0. Therefore the gains have to be
481
+ tuned simultaneously in order to achieve the best results.
482
+ For different criteria, the optimum happens at different
483
+ combinations of Kstanley and Kspeed, because the criteria
484
+ are focused on different aspects. For instance, to stabilize
485
+ command and reduce ∆u, e may be compromised because
486
+ commands need to be tuned less abruptly.
487
+ Fig. 6. Parameter sweeping results for long-term
488
+ metrics
489
+ 3.3 Is online gain tuning better than fixed parameters?
490
+ We propose to tune the gains online throughout the
491
+ entire trajectory rather than using fixed gains. To verify
492
+ this, we use a baseline model. The baseline model uses
493
+ the same framework as in Fig. 2, but without the RL
494
+ module. Instead of varying the two gains online, the
495
+ baseline model utilizes fixed best gains found by offline
496
+ parameter sweeping in Kstanley and Kspeed. The best gain
497
+ combinations of baseline model for each metric is shown
498
+ in the second column in Parameter Sweeping in Tables
499
+ 1 and 2. We run the same 100 pre-generated random
500
+
501
+ Ir
502
+ e, sign flipped
503
+ 0.5
504
+ 0.5
505
+ 1.0
506
+ 1.0
507
+ 0.02
508
+ 0.15
509
+ 1.5 -
510
+ 1.5
511
+ 0.03
512
+ 2.0
513
+ 0.20
514
+ 2.0
515
+ 2.5
516
+ 2.5
517
+ 0.04
518
+ 0.25
519
+ 3.0
520
+ 3.0
521
+ 0.05
522
+ 3.5
523
+ 3.5
524
+ 0.30
525
+ 4.0
526
+ 4.0
527
+ 0.06
528
+ 4.5
529
+ 0.35
530
+ 4.5
531
+ 5.0
532
+ 5.0
533
+ 0.07
534
+ 0.40
535
+ 0.51.01.52.02.53.03.54.04.55.0
536
+ 0.51.01.52.02.53.03.54.04.55.0
537
+ Kspeed
538
+ Av, sign flipped
539
+ Au, sign flipped
540
+ 0.5
541
+ 0.10
542
+ 0.5
543
+ 1.0
544
+ 1.0 -
545
+ 10.0
546
+ 0.15
547
+ 1.5
548
+ 1.5
549
+ 12.5
550
+ 2.0
551
+ 0.20
552
+ 2.0
553
+ 15.0
554
+ 2.5
555
+ 2.5
556
+ 0.25
557
+ 3.0
558
+ 3.0
559
+ 17.5
560
+ 3.5
561
+ 0.30
562
+ 3.5
563
+ 20.0
564
+ 4.0
565
+ 4.0
566
+ 0.35
567
+ 22.5
568
+ 4.5
569
+ 4.5
570
+ 5.0
571
+ 25.0
572
+ 0.40
573
+ 5.0
574
+ 0.51.01.52.02.53.03.54.04.55.0
575
+ 0.51.01.52.02.53.03.54.04.55.0
576
+ Kspeed
577
+ KspeedFig. 7. Parameter sweeping results for short-term
578
+ metrics
579
+ trajectories for the baseline model and our trained model,
580
+ and log the results in the two tables. It can be shown that
581
+ our framework is able to improve e, emax, eslip by 6.6%,
582
+ 12.7%, and 4.7%, respectively.
583
+ One thing to notice is that the best results for each metric
584
+ happens at different gain combinations with the baseline
585
+ parameter-sweeping model. For example e has best results
586
+ when setting Kstanley = 2.0 and Kspeed = 0.5, but for
587
+ ∆u it’s Kstanley = 0.5 and Kspeed = 3.5, which means
588
+ the baseline model will perform worse if using the same
589
+ combination of gains for all metrics. However our model
590
+ is still able to beat the best of each baseline model metric
591
+ with a universal trained policy, in lateral error metrics and
592
+ ∆u metric.
593
+ Table 1. Long-term metrics comparison.
594
+ The second column in Parameter Sweeping
595
+ indicates at what value of gains the best metric
596
+ result was obtained.
597
+ Metrics
598
+ Parameter Sweeping
599
+ Proposed Framework Improvement
600
+ (−)r
601
+ 0.110 ± 0.118 Kstanley = 1.5
602
+ Kspeed = 3.5
603
+ 0.084 ± 0.125
604
+ 23.6%
605
+ e
606
+ 0.015 ± 0.010 Kstanley = 2.0
607
+ Kspeed = 0.5
608
+ 0.014 ± 0.017
609
+ 6.6%
610
+ ∆v
611
+ 0.096 ± 0.042 Kstanley = 0.5
612
+ Kspeed = 3.5
613
+ 0.097 ± 0.058
614
+ -1.0%
615
+ ∆u
616
+ 8.320 ± 2.040 Kstanley = 0.5
617
+ Kspeed = 3.5
618
+ 5.917 ± 2.165
619
+ 28.9%
620
+ Table 2. Short-term metrics comparison.
621
+ Metrics
622
+ Parameter Sweeping
623
+ Proposed Framework Improvement
624
+ emax
625
+ 0.079 ± 0.055 Kstanley = 2.0
626
+ Kspeed = 0.5
627
+ 0.069 ± 0.066
628
+ 12.7%
629
+ eslip
630
+ 0.021 ± 0.013 Kstanley = 2.0
631
+ Kspeed = 0.5
632
+ 0.020 ± 0.032
633
+ 4.7%
634
+ ∆vslip 0.295 ± 0.082 Kstanley = 4.5
635
+ Kspeed = 5.0
636
+ 0.42 ± 0.087
637
+ -42.3%
638
+ ∆uslip
639
+ 18.9 ± 5.93
640
+ Kstanley = 1.0
641
+ Kspeed = 3.5
642
+ 21.27 ± 4.76
643
+ -12.5%
644
+ 3.4 Explainability of our framework output
645
+ We visualize two setup results in Fig. 8 and 9. The
646
+ upper figures show the baseline model with best gain
647
+ combinations, and the lower figures show our model.
648
+ In the first setup, the robot using the baseline model failed
649
+ to reach the end and got stuck when first enters the patch
650
+ area, while our model is able to succeed. A closer look in
651
+ the right figure reveals that our model reduces Kstanley
652
+ when the robot enters the low frictional area and detects
653
+ slip. It makes sense as when slip happens, heavy steering
654
+ will not help much and could worsen the slip. A good
655
+ tuning on Kstanley and Kspeed helps the robot to control
656
+ the slip and succeed in the tracking task in this case. And
657
+ it is up to the RL module to decide when and how much
658
+ to tune the two gains. Also, the RL module does not have
659
+ prior knowledge of the location of low-frictional area, and
660
+ it is able to tune the gains based on current tracking status
661
+ and reduce lateral error successfully.
662
+ Similar observation can be made in the second setup.
663
+ Both models succeeded in the task, but the baseline model
664
+ induced more lateral error when the robot entered low-
665
+ frictional area, because it did not lower Kstanley accord-
666
+ ingly.
667
+ Fig. 8. Trajectory Comparison 1. The left figures show
668
+ the bird-view map. The red patches correspond to
669
+ the low frictional area. The right figures show how
670
+ the gains evolve versus time. The blue dotted line
671
+ indicates when the robot is on the low frictional patch.
672
+ A value of 1 indicates the robot is on patch.
673
+ 4. DISCUSSION
674
+ The experiments conducted show that simultaneous and
675
+ online tuning of gains are necessary for mobile robot
676
+ trajectory tracking under slippery conditions. Our model is
677
+ able to tune the gains in lateral and longitudinal controls,
678
+ and beat the baseline model in terms of lateral error
679
+ metrics.
680
+ To reason the need of simultaneous gain tuning, con-
681
+ sider when the robot is slipping or trajectory contains
682
+ a large curvature. Both acceleration and steering com-
683
+ mands should be considered to achieve an optimal tracking
684
+ performance. For instance, with a large curvature, speed
685
+ regulation can be relaxed while the steering command
686
+
687
+ emax, sign flipped
688
+ eslip, sign flipped
689
+ 0.5
690
+ 0.08
691
+ 0.5
692
+ 0.02
693
+ 1.0
694
+ 1.0
695
+ 0.10
696
+ 0.03
697
+ 1.5
698
+ 1.5
699
+ 0.12
700
+ 2.0
701
+ 2.0
702
+ 0.04
703
+ 2.5
704
+ 0.14
705
+ 2.5
706
+ 0.05
707
+ 3.0
708
+ 3.0
709
+ 0.16
710
+ 3.5
711
+ 3.5
712
+ 0.06
713
+ 0.18
714
+ 4.0
715
+ 4.0
716
+ 0.07
717
+ 4.5
718
+ 0.20
719
+ 4.5
720
+ 5.0
721
+ 0.22
722
+ 5.0
723
+ 0.08
724
+ 0.51.01.52.02.53.03.54.04.55.0
725
+ 0.51.01.52.02.53.03.54.04.55.0
726
+ Kspeed
727
+ Kspeed
728
+ AVslip, sign flipped
729
+ Auslip, sign flipped
730
+ 0.5
731
+ 0.30
732
+ 0.5
733
+ -18
734
+ 1.0
735
+ 1.0
736
+ -20
737
+ 0.35
738
+ 1.5
739
+ 1.5
740
+ -22
741
+ 2.0 -
742
+ -0.40
743
+ 2.0
744
+ 24
745
+ 2.5
746
+ 2.5
747
+ 0.45
748
+ 3.0
749
+ 3.0
750
+ 26
751
+ 3.5
752
+ 0.50
753
+ 3.5
754
+ 28
755
+ 4.0
756
+ 4.0
757
+ 30
758
+ 0.55
759
+ 4.5 -
760
+ 4.5
761
+ 32
762
+ 5.0
763
+ 0.60
764
+ 5.0
765
+ 34
766
+ 0.51.01.52.02.53.03.54.04.55.0
767
+ 0.51.01.52.02.53.03.54.04.55.010.0
768
+ target
769
+ Kstanley
770
+ trajectory
771
+ 7.5
772
+ Kspeed
773
+ on patch
774
+ 5.0
775
+ 6
776
+ 2.5
777
+ 0.0
778
+ 2.5
779
+ 3
780
+ 5.0
781
+ 2
782
+ 7.5
783
+ 10.0
784
+ 2
785
+ 3
786
+ 4
787
+ 5
788
+ 6
789
+ 200
790
+ 400
791
+ 600
792
+ 800
793
+ 1000
794
+ 1200
795
+ =
796
+ 10.0
797
+ target
798
+ Kstaniey
799
+ trajectory
800
+ 7.5
801
+ Kspeed
802
+ on patch
803
+ 6
804
+ 5.0
805
+ 2.5
806
+ 0.0
807
+ 2.5
808
+ 3
809
+ 5.0
810
+ 2
811
+ 7.5
812
+ 10.0
813
+ 2
814
+ 3
815
+ 4
816
+ 5
817
+ 6
818
+ 0
819
+ 25
820
+ 50
821
+ 75
822
+ 100
823
+ 125
824
+ 150
825
+ 175
826
+ Proposed FrameworkFig. 9. Trajectory Comparison 2. Using online tuning
827
+ instead of fixing gains alleviates deviation when the
828
+ robot enters the slippery area. e for baseline and pro-
829
+ posed framework are 0.0247 and 0.0112, respectively.
830
+ emax are 0.0624 and 0.0336, respectively.
831
+ needs to have a bigger gain. Or when robot is slipping,
832
+ both gains might need to be adjusted, as seen in Fig. 8 and
833
+ 9. The magnitude of commands needs to be determined
834
+ simultaneously, and the RL module in our framework
835
+ decides the magnitudes of both gains at each timestep.
836
+ Also notice for some metrics such as ∆u and ∆uslip,
837
+ Kspeed tuning dominates the performance. One reason is
838
+ that speed regulation impacts the wheel velocity change
839
+ more than angular regulation, because sometimes the
840
+ curvature is not very abrupt for steering to change much,
841
+ but speed has to be regulated all the time.
842
+ We showed our framework is able to improve e, emax,
843
+ eslip by 6.6%, 12.7%, and 4.7%, respectively. However
844
+ the command and speed stability during slipping were
845
+ compromised a bit. It makes sense as the robot tries to
846
+ relax other constraints in order to reduce the lateral error.
847
+ In many mobile robot slipping scenarios such as in a
848
+ factory setting, the most important aspect is to reduce
849
+ the lateral error because deviations could lead to robot
850
+ hitting unwanted objects and causing harms. Therefore a
851
+ lower stability in speed and command are acceptable.
852
+ 5. CONCLUSION AND FUTURE WORK
853
+ To reduce slip for mobile robots, we propose a hierarchical
854
+ framework that utilizes an RL module to adapt gains
855
+ for the tracking controllers simultaneously online. We
856
+ demonstrated the necessity of simultaneous gain tuning,
857
+ and showed that our online framework outperforms the
858
+ best baseline model using fixed gains, especially in terms
859
+ of long and short term lateral errors.
860
+ REFERENCES
861
+ AbdElmoniem, A., Osama, A., Abdelaziz, M., and Maged,
862
+ S.A. (2020). A path-tracking algorithm using predictive
863
+ stanley lateral controller. International Journal of Ad-
864
+ vanced Robotic Systems, 17(6), 1729881420974852.
865
+ Cai, P., Mei, X., Tai, L., Sun, Y., and Liu, M. (2020).
866
+ High-speed autonomous drifting with deep reinforce-
867
+ ment learning. IEEE Robotics and Automation Letters,
868
+ 5(2), 1247–1254.
869
+ Carlucho, I., De Paula, M., and Acosta, G.G. (2019).
870
+ Double q-pid algorithm for mobile robot control. Expert
871
+ Systems with Applications, 137, 292–307.
872
+ Chang, H., Xu, Z., and Tomizuka, M. (2020).
873
+ Cascade
874
+ attribute network: Decomposing reinforcement learn-
875
+ ing control policies using hierarchical neural networks.
876
+ IFAC-PapersOnLine, 53(2), 8181–8186.
877
+ Coumans, E. and Bai, Y. (2016–2021). Pybullet, a python
878
+ module for physics simulation for games, robotics and
879
+ machine learning. http://pybullet.org.
880
+ Gao, H., Zhou, R., Tomizuka, M., and Xu, Z. (2022). Re-
881
+ inforcement learning based online parameter adaptation
882
+ for model predictive tracking control under slippery con-
883
+ dition. In 2022 American Control Conference (ACC),
884
+ 2675–2682. IEEE.
885
+ Kim, J. and Lee, J. (2016).
886
+ A kinematic-based rough
887
+ terrain control for traction and energy saving of an
888
+ exploration rover.
889
+ In 2016 IEEE/RSJ International
890
+ Conference on Intelligent Robots and Systems (IROS),
891
+ 3595–3600. IEEE.
892
+ Nandy,
893
+ S.,
894
+ Shome,
895
+ S.,
896
+ Somani,
897
+ R.,
898
+ Tanmay,
899
+ T.,
900
+ Chakraborty, G., and Kumar, C. (2011). Detailed slip
901
+ dynamics for nonholonomic mobile robotic system. In
902
+ 2011 IEEE International conference on mechatronics
903
+ and automation, 519–524. IEEE.
904
+ Pico, N., Jung, H.r., Medrano, J., Abayebas, M., Kim,
905
+ D.Y., Hwang, J.H., and Moon, H. (2022).
906
+ Climbing
907
+ control of autonomous mobile robot with estimation of
908
+ wheel slip and wheel-ground contact angle. Journal of
909
+ Mechanical Science and Technology, 36(2), 959–968.
910
+ Sakai, A., Ingram, D., Dinius, J., Chawla, K., Raffin,
911
+ A., and Paques, A. (2018). Pythonrobotics: a python
912
+ code collection of robotics algorithms. arXiv preprint
913
+ arXiv:1808.10703.
914
+ Sebastian, B. and Ben-Tzvi, P. (2019). Active disturbance
915
+ rejection control for handling slip in tracked vehicle
916
+ locomotion. Journal of Mechanisms and Robotics, 11(2),
917
+ 021003.
918
+ Tang, C., Xu, Z., and Tomizuka, M. (2019). Disturbance-
919
+ observer-based tracking controller for neural network
920
+ driving policy transfer.
921
+ IEEE Transactions on Intel-
922
+ ligent Transportation Systems, 21(9), 3961–3972.
923
+ Tian, Y., Sidek, N., and Sarkar, N. (2009).
924
+ Modeling
925
+ and control of a nonholonomic wheeled mobile robot
926
+ with wheel slip dynamics. In 2009 IEEE Symposium on
927
+ Computational Intelligence in Control and Automation,
928
+ 7–14. IEEE.
929
+ Wang, S. and Zhai, J. (2020).
930
+ A trajectory tracking
931
+ method for wheeled mobile robots based on disturbance
932
+ observer. International Journal of Control, Automation
933
+ and Systems, 18(8), 2165–2169.
934
+ Xu, Z., Tang, C., and Tomizuka, M. (2018).
935
+ Zero-shot
936
+ deep reinforcement learning driving policy transfer for
937
+ autonomous vehicles based on robust control. In 2018
938
+ 21st International Conference on Intelligent Transporta-
939
+ tion Systems (ITSC), 2865–2871. IEEE.
940
+ Xu, Z., Yu, W., Herzog, A., Lu, W., Fu, C., Tomizuka,
941
+ M., Bai, Y., Liu, C.K., and Ho, D. (2021).
942
+ Cocoi:
943
+ contact-aware online context inference for generalizable
944
+ non-planar pushing. In 2021 IEEE/RSJ International
945
+ Conference on Intelligent Robots and Systems (IROS),
946
+ 176–182. IEEE.
947
+
948
+ 10.0
949
+ target
950
+ Kstanley
951
+ 7
952
+ trajectory
953
+ 7.5
954
+ Kspeed
955
+ onpatch
956
+ 5.0
957
+ 6
958
+ 2.5
959
+ 5.
960
+ 0.0
961
+ 2.5
962
+ 4 -
963
+ 5.0
964
+ 3
965
+ 7.5
966
+ -10.0
967
+ 2
968
+ 3
969
+ 5
970
+ 6
971
+ 0
972
+ 100
973
+ 200
974
+ 300
975
+ 400
976
+ 500
977
+ 600
978
+ 700
979
+ K
980
+ stanley
981
+ = 2.0,K
982
+ = 0.5
983
+ speed
984
+ 10.0
985
+ target
986
+ Kstanley
987
+ 7
988
+ trajectory
989
+ 7.5
990
+ Kspeed
991
+ on patch
992
+ 5.0
993
+ 6
994
+ 2.5
995
+ 5
996
+ 0.0 -
997
+ 2.5
998
+ 4-
999
+ 5.0 -
1000
+ 7.5
1001
+ 10.0
1002
+ 4
1003
+ 5
1004
+ 6
1005
+ 0
1006
+ 25
1007
+ 50
1008
+ 75
1009
+ 100
1010
+ 125
1011
+ 150
1012
+ 175
1013
+ 200
1014
+ Proposed Framework
EdFQT4oBgHgl3EQfQjaM/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GtFJT4oBgHgl3EQfti2n/content/tmp_files/2301.11618v1.pdf.txt ADDED
@@ -0,0 +1,3096 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FOUR WAYS TO RECOVER THE SYMBOL OF A
2
+ NON-BINARY LOCALIZATION OPERATOR
3
+ SIMON HALVDANSSON
4
+ Abstract. We present a set of results on how the symbol of a localization operator can
5
+ be recovered from spectral information, the image of white noise or the image of an or-
6
+ thonormal basis. This extends earlier results which have been limited to the case where
7
+ the symbol is a binary mask. Moreover, we present some numerical aspects of the different
8
+ methods and discuss their performance.
9
+ 1. Introduction and main results
10
+ Arguably the main tool of time-frequency analysis is the short-time Fourier transform,
11
+ defined for a signal ψ ∈ L2(Rd) and window g ∈ L2(Rd) as
12
+ Vgψ(x, ω) =
13
+
14
+ Rd ψ(t)g(t − x)e−2πiωt dt
15
+ where the variables x, ω ∈ Rd are referred to as the time and frequency, respectively. A
16
+ standard result [26] states that this mapping can be inverted so that the signal ψ can be
17
+ recovered from Vgψ weakly as
18
+ ψ =
19
+
20
+ R2d Vgψ(x, ω)g(t − x)e2πiωt dx dω.
21
+ Using a function f : R2d → R, usually referred to as the symbol or mask, we can weigh
22
+ this reconstruction so that certain frequencies and time intervals have more or less priority.
23
+ Formally, this happens via the localization operator
24
+ Ag
25
+ f : ψ �→
26
+
27
+ R2d f(x, ω)Vgψ(x, ω)g(t − x)e2πiωt dx dω.
28
+ (1)
29
+ Such operators have applications in signal analysis [34, 39, 41, 46], acoustics [8, 31, 47],
30
+ pseudo-differential operators [28, 32], physics [7, 25] and operator theory [23, 28, 38] among
31
+ others and their properties have been deeply studied [10, 13, 22, 49]. Abreu and D¨orfler
32
+ [2] first considered the inverse problem of recovering the symbol f from the localization
33
+ operator Ag
34
+ f through various measurements related to Ag
35
+ f and this work has been continued
36
+ in [2, 3, 37, 42]. All these investigations have been focused on the case where f is a binary
37
+ mask, i.e., f : R2d → {0, 1}. The main contribution of this article is showing corresponding
38
+ results for more general classes of f as well as developing novel approaches to recovering f
39
+ which have not been considered before.
40
+ There are several reasons to consider the case of non-binary symbols. If we view the
41
+ inverse problem as a calibration, it is reasonable that imperfections in the system may cause
42
+ the corresponding symbol to deviate from the intended binary design. Symbol discontinuities
43
+ can also cause audible artifacts known as musical noise in the audio setting [8] and it is
44
+ Date: January 2023.
45
+ Keywords: Localization operator, Inverse problem, Operator identification, Symbol recovery.
46
+ 1
47
+ arXiv:2301.11618v1 [math.FA] 27 Jan 2023
48
+
49
+ 2
50
+ SIMON HALVDANSSON
51
+ therefore beneficial to design those systems with non-binary symbols in the first place.
52
+ In some audio filtering contexts where binary masks are currently used such as in [31], a
53
+ non-binary value is associated to each time-frequency pair and a mask is then constructed
54
+ by thresholding. This approach, while straight-forward, is unlikely to be optimal which has
55
+ motivated the use of non-binary masks [8]. Moreover, localization operators can be identified
56
+ with function-operator convolutions and Gabor-Toeplitz operators [38] and inverting the
57
+ symbol to operator mappings is of independent theoretical interest in these settings.
58
+ Below we state all of our main results before having established all the relevant notation.
59
+ In particular we formulate some results with function-operator convolutions f ⋆ S, Wigner
60
+ transforms W(ϕ), the modulation spaces M1 and Cohen’s class distributions QS(ψ). These
61
+ are all detailed in Section 2 but hopefully the general idea of the theorems should be clear.
62
+ If not the reader can return to the formulations after finishing the preliminaries section.
63
+ Our first set of results shows how a smooth positive symbol can be approximated and
64
+ how the error shrinks as we increase the smoothness of f. In particular, our estimator for
65
+ f2, the average observed spectrogram, is given by
66
+ ρ(z) = 1
67
+ K
68
+ K
69
+
70
+ k=1
71
+ |Vϕ(Ag
72
+ fNk)(z)|2
73
+ (2)
74
+ where (Nk)K
75
+ k=1 are K realizations of (complex) white noise and ϕ is our reconstruction
76
+ window which does not necessarily have to coincide with g. This construction is from [42]
77
+ in the binary case. The notion and interpretation of the white noise will be made precise in
78
+ Section 2.3. We will show how, as K → ∞, this estimator converges with high probability
79
+ to
80
+ ϑ(z) =
81
+
82
+ m
83
+ λ2
84
+ m|Vϕhm(z)|2
85
+ (3)
86
+ where (λm)m and (hm)m are the eigenvalues and eigenfunctions of Ag
87
+ f. Using the framework
88
+ of quantum harmonic analysis and asymptotics of products of localization operators, we will
89
+ show how ϑ in turn is a good approximation of f2.
90
+ Theorem 1.1. Let f be a real-valued, bounded, integrable function with bounded derivative
91
+ and bounded variation, ρ the average observed spectrogram (2) with white noise variance σ2
92
+ and g, ϕ ∈ S(Rd) with ∥g∥L2 = ∥ϕ∥L2 = 1. Then there exists a constant C > 1 such that
93
+ P
94
+ �����
95
+ ρ(z)
96
+ σ2 − ϑ(z)
97
+ ���� > t
98
+
99
+ ≤ 3 exp
100
+
101
+ −CK min
102
+
103
+ t2
104
+ ϑ(z)2 ,
105
+ t
106
+ ϑ(z)
107
+ ��
108
+ ,
109
+ (4)
110
+ ��ϑ − f2 ∗ |Vϕg|2��
111
+ L∞ ≤ ∥f∥L∞
112
+
113
+ � �
114
+ |α|=1
115
+ ∥∂αf∥L∞
116
+
117
+ � ∥g∥4
118
+ M1,
119
+ (5)
120
+ ��f2 ∗ |Vϕg|2 − f2��
121
+ L1 ≤
122
+ ��
123
+ R2d
124
+ ��(∇f2)(z)
125
+ �� dz
126
+ � ��
127
+ R2d |z||Vϕg(z)|2 dz
128
+
129
+ .
130
+ (6)
131
+ Through some deeper analysis, we can replace the three rather disparate estimates above
132
+ by one L1 estimate.
133
+
134
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
135
+ 3
136
+ Theorem 1.2. Let f ∈ Cd+2
137
+ c
138
+ (R2d) be real-valued, ρ be given by (2) with white noise variance
139
+ σ2, g, ϕ ∈ S(Rd) with ∥g∥L2 = ∥ϕ∥L2 = 1 and define
140
+ B1 = A
141
+
142
+ ��∥K∥L2 +
143
+
144
+
145
+ 2d
146
+
147
+ j=1
148
+ ��∂d+1
149
+ j
150
+ K
151
+ ��2
152
+ L2
153
+
154
+
155
+ 1/2�
156
+ �� ,
157
+ B2 =
158
+ ��
159
+ R2d
160
+ ��(∇f2)(z)
161
+ �� dz
162
+ � ��
163
+ R2d |z||Vϕg(z)|2 dz
164
+
165
+ where
166
+ K(y, z) = f(y)
167
+
168
+ � �
169
+ |α|=1
170
+ � 1
171
+ 0
172
+ ∂αf(y + t(z − y)) dt(z − y)
173
+
174
+ � Vgg(y − z)
175
+ and A is a constant independent of f and g. Then there exists a C > 0 such that
176
+ P
177
+ ��
178
+ R2d
179
+ ����
180
+ ρ(z)
181
+ σ2 − f(z)2
182
+ ���� dz > B1 + B2 + t
183
+
184
+ ≤ ∥f∥2
185
+ L2
186
+ t
187
+
188
+ K
189
+ � 3√π
190
+ 2
191
+
192
+ C
193
+ erf
194
+ �√
195
+ CK
196
+
197
+ +
198
+ 3
199
+ C
200
+
201
+ K
202
+ e−CK
203
+
204
+ .
205
+ The above theorem should be read as “the L1 estimation error is bounded by B1 + B2
206
+ with high probability provided K is large enough”. Note also that the quantity B1 is finite
207
+ which is proved in Lemma 3.4 below.
208
+ Next we discuss two approaches which rely on spectral data about the operator. These
209
+ are also stated for mixed-state localization operators, introduced and defined in Section 2.2.1
210
+ below, as this stronger result follows directly from our methods. For the readers convenience,
211
+ we also state the corresponding statement for the “pure” localization operators discussed
212
+ above.
213
+ Theorem 1.3. Let f ∈ L1(R2d) be real-valued and with bounded variation and S, T ∈ S1
214
+ be positive with tr(S) = tr(T) = 1. Then if f ⋆ S = �
215
+ m λm(hm ⊗ hm),
216
+ �����
217
+ N
218
+
219
+ m=1
220
+ λmQT (hm) − f
221
+ �����
222
+ L1
223
+
224
+
225
+
226
+ m=N+1
227
+ |λm| + Var(f)
228
+
229
+ R2d |z|(S ⋆ ˇT)(z) dz.
230
+ In particular, if ϕ ∈ L2(Rd) with ∥ϕ∥ = 1 and Ag
231
+ f = �
232
+ m λm(hm ⊗ hm), then
233
+ �����
234
+ N
235
+
236
+ m=1
237
+ λm|Vϕ(hm)|2 − f
238
+ �����
239
+ L1
240
+
241
+
242
+
243
+ m=N+1
244
+ |λm| + Var(f)
245
+
246
+ R2d |z||Vϕg(z)|2 dz.
247
+ Moreover, in the N = ∞ case, if T = S,
248
+
249
+
250
+ m=1
251
+ λmQS(hm)(z) = f ∗ (S ⋆ ˇS)(z)
252
+ which can be deconvolved if the Fourier transform F(S ⋆ ˇS) is zero free as
253
+ f = F−1
254
+ �F(f ∗ (S ⋆ ˇS))
255
+ F(S ⋆ ˇS)
256
+
257
+ .
258
+ While the above result depends on an approximation T of S, we are able to sidestep this
259
+ in the following theorem.
260
+
261
+ 4
262
+ SIMON HALVDANSSON
263
+ Theorem 1.4. Let f ∈ L1(R2d) be real-valued with bounded variation and S ∈ S1 be
264
+ positive, then if f ⋆ S = �
265
+ m λm(hm ⊗ hm) and S = �
266
+ n sn(ϕn ⊗ ϕn),
267
+
268
+ m
269
+ λmW(hm)(z) = f ∗
270
+
271
+ n
272
+ snW(ϕn)(z)
273
+ where W(ϕ) is the Wigner transform of ϕ. In particular, if S = g ⊗ g so that f ⋆ S = Ag
274
+ f,
275
+
276
+ m
277
+ λmW(hm)(z) = f ∗ W(g)(z).
278
+ Moreover, if the window functions (ϕn)n are in the Schwartz space, the convergence is in
279
+ L1 with the error bounds
280
+ �����
281
+
282
+ m
283
+ λmW(hm) − f
284
+ �����
285
+ L1
286
+ ≤ Var(f)
287
+
288
+ R2d |z|
289
+ �����
290
+
291
+ n
292
+ snW(ϕn)(z)
293
+ ����� dz
294
+ and the corresponding statement holds for the rank-one case S = g ⊗ g.
295
+ Lastly, we discuss an approach based on noting that adding up all the spectrograms of
296
+ an orthonormal basis yields the function which is identically one in a manner which can be
297
+ likened to a tiling of phase space via a partition of unity. If we then apply our localization
298
+ operator with symbol f to each basis element, this tiling should only make a contribution
299
+ proportional to the size of f2. This intuition turns out to be correct and is quantified in the
300
+ following theorem.
301
+ Theorem 1.5. Let f ∈ Cd+2
302
+ c
303
+ (R2d) be real-valued and g, ϕ ∈ S(R2d) with ∥g∥L2 = ∥ϕ∥L2 = 1.
304
+ Define
305
+ B1 = A
306
+
307
+ ��∥K∥L2 +
308
+
309
+
310
+ 2d
311
+
312
+ j=1
313
+ ��∂d+1
314
+ j
315
+ K
316
+ ��2
317
+ L2
318
+
319
+
320
+ 1/2�
321
+ �� ,
322
+ B2 =
323
+ ��
324
+ R2d
325
+ ��(∇f2)(z)
326
+ �� dz
327
+ � ��
328
+ R2d |z||Vϕg(z)|2 dz
329
+
330
+ where
331
+ K(y, z) = f(y)
332
+
333
+ � �
334
+ |α|=1
335
+ � 1
336
+ 0
337
+ ∂αf(y + t(z − y)) dt(z − y)
338
+
339
+ � Vgg(y − z)
340
+ and A is a constant independent of f and g. Then for any orthonormal basis {en}n of
341
+ L2(Rd),
342
+ �����
343
+
344
+ n
345
+ |Vϕ(Ag
346
+ fen)|2 − f2
347
+ �����
348
+ L1
349
+ ≤ B1 + B2.
350
+ Notational conventions. The Schatten p-class of operators with singular values in ℓp will
351
+ be denoted by Sp while the larger class of bounded operators on L2(Rd) will be denoted
352
+ by L(L2). The adjoint of such an operator A will be denoted by A∗ and we will write
353
+ ˇA = PAP where P is the parity operator P : f(t) �→ f(−t). For the open ball centered at
354
+ z with radius r we will write Br(z). For a function f of several variables, we will write ∂n
355
+ j f
356
+ for the n:th derivative in the j:th variable. We will also use a multiindex α = (α1, . . . , αd)
357
+ for the derivative ∂αf = ∂α1 · · · ∂αdf and denote by Cn the set of functions f for which
358
+ ∂αf is continuous for all α ∈ Nd with |α| ≤ n. The associated subspace Cn
359
+ c will specify
360
+
361
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
362
+ 5
363
+ those functions which have compact support. For the Schwartz functions on Rd we will
364
+ write S(Rd). Indicator functions of sets Ω will be denoted by χΩ. Inner products with no
365
+ subscript will always refer to L2(Rd) inner products so that ⟨·, ·⟩ = ⟨·, ·⟩L2(Rd). For matrices
366
+ of size N × M with entries in C, we will write CN×M.
367
+ 2. Preliminaries
368
+ 2.1. Time-frequency analysis. We highlight some important facts from time-frequency
369
+ analysis, which we will have use for, in a compact form. For a more complete introduction
370
+ the reader is referred to [26, 49].
371
+ 2.1.1. Short-time Fourier transform. One of the main ideas underlying time-frequency anal-
372
+ ysis is that real world signals are correlated in time and frequency. To make this dependence
373
+ clear, the short-time Fourier transform (STFT) allows us to analyse the frequency content
374
+ of some signal ψ around a specific time by weighing ψ by some window function which is
375
+ well-localized in time. It is defined as
376
+ Vgψ(z) = ⟨ψ, π(z)g⟩ =
377
+
378
+ Rd ψ(t)g(t − x)e−2πiωt dt.
379
+ where the time-frequency shift π(z) is a unitary, square integrable representation acting as
380
+ π(z)ψ(t) = π(x, ω)ψ(t) = e2πiωtψ(t − x) and the point z = (x, ω) ∈ R2d is said to belong
381
+ to phase space. A non-trivial result known as Moyal’s formula states that we can compute
382
+ inner products of two signals using their associated short-time Fourier transforms as
383
+ ⟨Vg1ψ1, Vg2ψ2⟩L2(R2d) = ⟨ψ1, ψ2⟩⟨g1, g2⟩.
384
+ In particular, the mapping Vg : L2(Rd) → L2(R2d) is an isometry provided ∥g∥L2 = 1. As a
385
+ consequence of the above relation, we have the reconstruction formula from the introduction
386
+ which tells us how we can get a signal back from its STFT
387
+ ψ =
388
+
389
+ R2d Vϕψ(z)π(z)g dz.
390
+ (7)
391
+ Often in application, the square modulus |Vgψ|2 of the STFT, the spectrogram, is used as
392
+ it is real-valued, non-negative and represents the energy distribution of the signal. From
393
+ the experimental side, it is often the spectrogram, not the STFT, that is measured in
394
+ applications such as in ptychography [29] and X-ray crystallography.
395
+ 2.1.2. Localization operators. Provided we want to localize the support of a signal ψ in phase
396
+ space, an obvious idea is to limit the reconstruction in (7) to some set Ω ⊂ R2d. By the
397
+ uncertainty principle, this is impossible but works up to a small error depending on the size
398
+ of Ω. Generalizing this idea, we can add a weighing factor, or symbol, f ∈ L1(R2d) to the
399
+ reconstruction which tells us how much we want to reconstruct different parts of the phase
400
+ space representation of ψ. Formally we write the application of the localization operator
401
+ Ag
402
+ f to ψ as
403
+ Ag
404
+ fψ(t) =
405
+
406
+ R2d f(z)Vgψ(z)π(z)g(t) dz.
407
+ (8)
408
+ One can use different window functions g1, g2 for the STFT and the reconstruction above,
409
+ resulting in a non self-adjoint localization operator. We will however not attempt to treat
410
+ this case in this paper as we use the self-adjointness extensively. Localization operators were
411
+ originally investigated by I. Daubechies [14, 15].
412
+
413
+ 6
414
+ SIMON HALVDANSSON
415
+ 2.1.3. Modulation spaces. Feichtinger’s algebra M1(Rd), originally introduced in [20], is
416
+ defined as the set of tempered distributions f such that Vgf ∈ L1(R2d) where g is a Schwartz
417
+ window function. It is a special case of the modulation spaces [19, 20] which are defined by
418
+ integrability properties of short-time Fourier transforms and have the convenient property
419
+ that they are independent of the window function g used.
420
+ 2.1.4. Cohen’s class of time-frequency distributions. There are several quadratic time-frequency
421
+ distributions with similar properties to the spectrogram. Those which fulfill some basic de-
422
+ sirable properties are commonly referred to as Cohen’s class distributions [9] and include
423
+ the spectrogram as a special case. They can all be written as
424
+ QΦ(ψ) = Φ ∗ W(ψ)
425
+ where Ψ is a tempered distribution and W(ψ) = W(ψ, ψ) is the Wigner transform of ψ,
426
+ defined as
427
+ W(ψ, φ)(x, ω) =
428
+
429
+ Rd ψ(t + x/2)φ(t − x/2)e−2πiω·t dt.
430
+ 2.2. Quantum harmonic analysis. The theory of quantum harmonic analysis, first de-
431
+ veloped by Werner in [48], will play a central role in our proofs. Its main components are
432
+ definitions of convolutions between functions and operators and pairs of operators, taking
433
+ the form
434
+ f ⋆ S =
435
+
436
+ R2d f(z)π(z)Sπ(z)∗ dz,
437
+ T ⋆ S(z) = tr
438
+
439
+ Tπ(z) ˇSπ(z)∗�
440
+ .
441
+ (9)
442
+ where the first integral should be interpreted as a Bochner integral and ˇS = PSP. As we
443
+ will see below, both of these definitions satisfy versions of Young’s inequality which we will
444
+ make use of. However, we first compute the prototypical function-operator and operator-
445
+ operator convolutions since these serve as our main motivation for using the framework of
446
+ quantum harmonic analysis.
447
+ Example 2.1. The function-operator convolutions f ⋆ (ϕ ⊗ ϕ) for f ∈ L1(R2d) and ϕ ∈
448
+ L2(Rd) is precisely the localization operator Aϕ
449
+ f . Indeed,
450
+ f ⋆ (ϕ ⊗ ϕ)ψ =
451
+
452
+ R2d f(z)π(z)(ϕ ⊗ ϕ)π(z)∗ψ dz
453
+ =
454
+
455
+ R2d f(z)⟨π(z)∗ψ, ϕ⟩π(z)ϕ dz
456
+ =
457
+
458
+ R2d f(z)Vϕψ(z)π(z)ϕ dz = Aϕ
459
+ f ψ.
460
+ Example 2.2. The simplest case of operator-operator convolutions reduces down to the
461
+ spectrogram. Indeed, for ψ, φ ∈ L2(Rd) we have that
462
+ (ψ ⊗ ψ) ⋆ (φ ⊗ φ)ˇ(z) = tr
463
+
464
+ (ψ ⊗ ψ)π(z)(φ ⊗ φ)π(z)∗�
465
+ =
466
+
467
+ n
468
+
469
+ (ψ ⊗ ψ)π(z)(φ ⊗ φ)π(z)∗en, en
470
+
471
+ =
472
+
473
+ n
474
+ ⟨en, π(z)φ⟩⟨π(z)φ, ψ⟩⟨ψ, en⟩
475
+ = |⟨ψ, π(z)φ⟩|2 = |Vφψ(z)|2
476
+ where (en)n was an arbitrary orthonormal basis used to compute the trace.
477
+
478
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
479
+ 7
480
+ Many properties of function-operator and operator-operator convolutions are analogous
481
+ to the corresponding statements for classical function-function convolutions as we will see
482
+ below.
483
+ Just as the integral is replaced by the trace in the definition of operator-operator convo-
484
+ lutions (9), when measuring the size of operators, we will use the Schatten p-norms which
485
+ are defined as
486
+ ∥A∥Sp = tr(|A|p)1/p
487
+ where |A| =
488
+
489
+ A∗A is the absolute value of A. These norms induce the Schatten p-classes
490
+ of operators, the most notable of which are the trace-class operators S1 and the Hilbert-
491
+ Schmidt operators S2. As these operators are compact, they have a spectral decomposition
492
+ of the form
493
+ A =
494
+
495
+ n
496
+ an(ψn ⊗ φn)
497
+ where (ψn)n and (φn)n are orthonormal bases, ψ ⊗ φ is the rank-one operator acting as
498
+ f �→ ⟨f, φ⟩ψ and (an)n is in ℓp if A ∈ Sp.
499
+ Next we collect some basic properties of these convolutions, the proofs of which can be
500
+ found in [35].
501
+ Proposition 2.3. Let f, g ∈ L1(R2d), S ∈ Sp, T ∈ Sq for 1 ≤ p, q ≤ ∞ with 1
502
+ p + 1
503
+ q = 1 and
504
+ R ∈ S1. Then
505
+ (i) (f ⋆ S)∗ = ¯f ⋆ S∗,
506
+ (ii) (f ⋆ R) ⋆ T = f ∗ (R ⋆ T),
507
+ (iii) (f ∗ g) ⋆ S = f ⋆ (g ⋆ S),
508
+ (iv) ∥f ⋆ S∥Sp ≤ ∥f∥L1∥S∥Sp,
509
+ (v) ∥h ⋆ R∥Sp ≤ ∥h∥Lp∥R∥S1,
510
+ (vi) ∥S ⋆ R∥Lp ≤ ∥S∥Sp∥R∥S1.
511
+ In the next subsections, we dive deeper into some topics in quantum harmonic analysis
512
+ which will be of use. For a more thorough introduction with more motivation and results,
513
+ the reader is referred to [35].
514
+ 2.2.1. Mixed-state localization operators. Localization operators reconstruct a function with
515
+ respect to a single window or pair of windows in the non self-adjoint case. This construction
516
+ has been generalized to multiple windows by considering the function-operator convolution
517
+ f ⋆ S which can be seen as a weighted sum of localization operators [36]. Indeed, if S =
518
+
519
+ n sn(ϕn ⊗ ϕn), then
520
+ f ⋆ S = f ⋆
521
+
522
+ n
523
+ sn(ϕn ⊗ ϕn) =
524
+
525
+ n
526
+ snAϕn
527
+ f .
528
+ Later on in our results, we will need for our (mixed-state) localization operators to be self-
529
+ adjoint. In view of Proposition 2.3 (i), this requires the symbol f to be real-valued and the
530
+ window operator S to be self-adjoint.
531
+ 2.2.2. Fourier-Wigner transform. Another central tool of quantum harmonic analysis is the
532
+ Fourier-Wigner transform, mapping operators to functions, defined for S ∈ S1 as
533
+ FW (S)(z) = e−πixω tr(π(−z)S).
534
+ Our interest in the Fourier-Wigner transform is primarily based on its convolution properties
535
+ which mirror those of the classical Fourier transform.
536
+ To state the relevant result, we
537
+
538
+ 8
539
+ SIMON HALVDANSSON
540
+ first need to define the symplectic Fourier transform which essentially is a rotated two
541
+ dimensional Fourier transform
542
+ Fσ(f)(z) =
543
+
544
+ R2d f(z′)e−2πiσ(z,z′) dz′
545
+ where z = (x, ω), z′ = (x′, ω′) and σ(z, z′) = ωx′ − ω′x is the standard symplectic form. We
546
+ can now state the result which is analogous to the classical convolution theorem.
547
+ Proposition 2.4. Let f ∈ L1(R2d) and S, T ∈ S1. Then
548
+ FW (f ⋆ S) = Fσ(f)FW (S),
549
+ Fσ(T ⋆ S) = FW (T)FW (S).
550
+ 2.2.3. Weyl quantization. A quantization procedure provides a mapping between functions
551
+ and operators. One such example is the mapping f �→ f ⋆ S which is the mapping we hope
552
+ to invert in this paper. In time-frequency analysis and quantum harmonic analysis, we often
553
+ make use of Weyl quantization which can be defined weakly as
554
+ ⟨Lfψ, φ⟩ = ⟨f, W(φ, ψ)⟩
555
+ where we refer to the mapping f �→ Lf as the Weyl transform. For the inverse mapping,
556
+ meaning the function associated to the operator S, we write aS and call it the Weyl symbol
557
+ of S.
558
+ Weyl quantization has a particular nice formulation in quantum harmonic analysis where
559
+ it can be written as
560
+ aS = Fσ(FW (S)).
561
+ In particular, it can be shown that aψ⊗φ = W(ψ, φ). It also holds that Weyl quantization
562
+ is compatible with the convolutions of quantum harmonic analysis in the sense that
563
+ T ⋆ S = aT ∗ aS,
564
+ af⋆S = f ∗ aS
565
+ (10)
566
+ for T, S ∈ S1 and f ∈ L1(R2d).
567
+ 2.2.4. Cohen’s class as operator-operator convolutions. The class of quadratic time-frequency
568
+ distributions discussed in Section 2.1.4 has a convenient formulation in quantum harmonic
569
+ analysis using the Weyl quantization relations (10) above. By letting ˇS be the Weyl quan-
570
+ tization of the tempered distribution Φ defining QΦ and using that aψ⊗ψ = W(ψ), we get
571
+ that
572
+ QΦ(ψ) = QS(ψ) = (ψ ⊗ ψ) ⋆ ˇS.
573
+ (11)
574
+ This point of view makes it particularly easy to deduce properties of of Cohen’s class dis-
575
+ tributions such as bounding Lp norms or characterizing positivity.
576
+ 2.3. Functional analytic and probabilistic aspects of white noise. The core of our
577
+ approach to symbol recovery using white noise is computing spectrograms of random noise.
578
+ This is inspired by recent theoretical work in [5, 24, 30] and others. For further details we
579
+ refer the reader to the discussion in [42] as we follow their proof strategy. The two main
580
+ result which we need are stated in [42] and we also state them for the sake of completeness.
581
+ The first is a version of the Hanson-Wright inequality [4, 43].
582
+
583
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
584
+ 9
585
+ Theorem 2.5 ([42, Theorem 3.1]). Let X be an m-dimensional complex Gaussian random
586
+ variable with X ∼ CN(0, Σ) and A ∈ Cm×m Hermitian. Then there exists an universal
587
+ constant Chw > 0 such that for every t > 0,
588
+ P
589
+
590
+ |⟨AX, X⟩ − E{⟨AX, X⟩}| > t
591
+
592
+ ≤ 2 exp
593
+
594
+ −Chw min
595
+
596
+ t2
597
+ ∥Σ∥2s∥A∥2
598
+ F
599
+ ,
600
+ t
601
+ ∥Σ∥s∥A∥s
602
+ ��
603
+ where ∥ · ∥s and ∥ · ∥F are the spectral and Frobenius norms, respectively.
604
+ Secondly, the next lemma gives a constructive way to deal with the application of an
605
+ operator to white noise.
606
+ Lemma 2.6 ([42, Lemma 4.2]). Let g be a Schwartz function with ∥g∥L2 = 1 and N a
607
+ realization of complex white noise with variance σ2. Then there exists a sequence (αm)m
608
+ where αm ∼ CN(0, σ2) of independent complex normal variables such that almost surely,
609
+ Ag
610
+ f(N) =
611
+
612
+ m
613
+ λmαmhm
614
+ where Ag
615
+ f =
616
+
617
+ m
618
+ λm(hm ⊗ hm)
619
+ with almost sure absolute convergence in L2(R2d).
620
+ We also remark that if our white noise is not complex but rather real valued, all results
621
+ will still hold but with possibly larger constants. See [42, Section 2.2] for a discussion on
622
+ this.
623
+ 2.4. Approximate identities. The variation of a function f ∈ L1(R2d) is defined as
624
+ Var(f) = sup
625
+ ��
626
+ R2d f(z) div φ(z) dz : φ ∈ C1
627
+ c (R2d, R2d), ∥φ∥∞ ≤ 1
628
+
629
+ and in the special case where f ∈ C1(R2d), it can be written as
630
+ Var(f) =
631
+
632
+ R2d |∇f(z)| dz.
633
+ We say that functions f with Var(f) < ∞ have bounded variation. In the case where f is the
634
+ indicator function of some compact subset Ω ⊂ R2d with smooth boundary, the variation of
635
+ f is equal to the Haussdorff measure of the boundary [16].
636
+ In what follows, we will want to measure how much a function is changed when it is
637
+ convolved by some kernel. The next lemma quantifies this using the concept of variation
638
+ introduced above.
639
+ Lemma 2.7 ([3, Lemma 3.2]). Let ψ ∈ L1(R2d) have bounded variation and φ ∈ L1(R2d)
640
+ with
641
+
642
+ R2d φ(z) dz = 1, then
643
+ ∥ψ ∗ φ − ψ∥L1 ≤ Var(ψ)
644
+
645
+ R2d |z||φ(z)| dz.
646
+ In the following, we will sometimes refer to φ as the blurring kernel.
647
+ 3. Recovery via white noise
648
+ White noise approaches in time frequency analysis has recently received attention in [1,
649
+ 42]. The idea underlying our approach is that a spectrogram of white noise is approximately
650
+ constant and that we therefore should be able to get approximations of the symbol f by
651
+ looking at how a localization operator with symbol f changes the spectrogram. Our tech-
652
+ niques are based on measuring how close the white noise is to being constant and how close
653
+ multiplying by f is to applying the localization operator.
654
+
655
+ 10
656
+ SIMON HALVDANSSON
657
+ 3.1. Generalities. For the first part of Theorem 1.1, we will need a version of [42, Lemma
658
+ 5.1] with unknown variance and non-binary masks. Both modifications are minor but we
659
+ give a detailed proof for the sake of completeness.
660
+ Lemma 3.1. Let all variables be as in Theorem 1.1. Then there exists C > 0 such that for
661
+ every z ∈ R2d,
662
+ P
663
+ �����
664
+ ρ(z)
665
+ σ2 − ϑ(z)
666
+ ���� > t
667
+
668
+ ≤ 3 exp
669
+
670
+ −CK min
671
+
672
+ t2
673
+ ϑ(z)2 ,
674
+ t
675
+ ϑ(z)
676
+ ��
677
+ .
678
+ Proof. We will first prove that
679
+ P
680
+ ���ρ(z) − σ2ϑ(z)
681
+ �� > t
682
+
683
+ ≤ 3 exp
684
+
685
+ −CK min
686
+
687
+ t2
688
+ σ4ϑ(z)2 ,
689
+ t
690
+ σ2ϑ(z)
691
+ ��
692
+ from which the result follows upon multiplying t by σ2 on both sides. The entire proof is
693
+ focused on setting up so that Theorem 2.5 can be applied.
694
+ Fix L ∈ N and define the complex Gaussian random vector
695
+ Xm = α⌈m/L⌉
696
+ mod (m−1,L)+1
697
+ for m = 1, . . . , KL where each α is CN(0, σ2) distributed. We can write this more implicitly
698
+ as
699
+ X = (α1
700
+ 1, . . . , α1
701
+ L, α2
702
+ 1, . . . , α2
703
+ L, . . . , αK
704
+ 1 , . . . , αK
705
+ L ) ∼ CN(0, σ2IKL).
706
+ We also define the matrix-valued function M : R2d → CL×L as
707
+ M(z)ℓ,m := λℓλmVϕhℓ(z)Vϕhm(z)
708
+ where (λm)m and (hm)m are the eigenvalues and eigenfunctions of Ag
709
+ f. Note that for each
710
+ z ∈ R2d, the resulting matrix is Hermitian as the eigenvalues are real valued.
711
+ Using M as a building block, we define the following block-diagonal Hermitian matrix
712
+ M : R2d → CKL×KL,
713
+ M(z) = 1
714
+ K
715
+
716
+
717
+
718
+ M(z)
719
+ 0
720
+ ...
721
+ 0
722
+ M(z)
723
+
724
+
725
+ � ∈ CKL×KL.
726
+ Now let PL denote the projection onto the space spanned by the first L eigenfunctions of
727
+ Ag
728
+ f. It then follows that
729
+ ρL(z) := 1
730
+ K
731
+ K
732
+
733
+ k=1
734
+ |Vϕ(PLAg
735
+ fNk)(z)|2 = ⟨M(z)X, X⟩.
736
+
737
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
738
+ 11
739
+ We now compute the remaining quantities in the statement of Theorem 2.5, starting with
740
+ E
741
+
742
+ ⟨M(z)X, X⟩
743
+
744
+ . By the independence of the αk
745
+ m’s and Lemma 2.6,
746
+ E(ρL(z)) = E
747
+
748
+ 1
749
+ K
750
+ K
751
+
752
+ k=1
753
+ ��Vϕ
754
+
755
+ PLAg
756
+ fNk
757
+
758
+ (z)
759
+ ��2
760
+
761
+ = 1
762
+ K
763
+ K
764
+
765
+ k=1
766
+ L
767
+
768
+ ℓ=1
769
+ L
770
+
771
+ m=1
772
+ λℓλmE
773
+
774
+ αk
775
+ ℓ αkm
776
+
777
+ Vϕhℓ(z)Vϕhm(z)
778
+ =
779
+ L
780
+
781
+ m=1
782
+ λ2
783
+ mσ2|Vϕhm(z)|2 =: σ2ϑL(z).
784
+ Next we estimate the Frobenius and spectral norms of M(z) from above as
785
+ ∥M(z)∥2
786
+ F = 1
787
+ K ∥M(z)∥2
788
+ F = 1
789
+ K
790
+ L
791
+
792
+ ℓ=1
793
+ L
794
+
795
+ m=1
796
+ ��λℓλmVϕhℓ(z)Vϕhm(z)
797
+ ��2
798
+ = 1
799
+ K
800
+ � L
801
+
802
+ m=1
803
+ |λmVϕhm(z)|2
804
+ �2
805
+ ≤ 1
806
+ K
807
+ � ∞
808
+
809
+ m=1
810
+ |λmVϕhm(z)|2
811
+ �2
812
+ = 1
813
+ K ϑ(z)2
814
+ and
815
+ ∥M(z)∥s = 1
816
+ K ∥M(z)∥s = 1
817
+ K
818
+ sup
819
+ ∥X∥2=1
820
+
821
+
822
+ L
823
+
824
+ m=1
825
+ �����
826
+ L
827
+
828
+ ℓ=1
829
+ (M(z))m,ℓXℓ
830
+ �����
831
+ 2�
832
+
833
+ 1/2
834
+
835
+ � L
836
+
837
+ m=1
838
+ L
839
+
840
+ ℓ=1
841
+ ��λℓλmVϕhℓ(z)Vϕhm(z)
842
+ ��2
843
+ �1/2
844
+ = ϑL(z) ≤ ϑ(z).
845
+ We now apply Theorem 2.5 with ∥Σ∥s = ∥σ2IKL∥s = σ2 and the above estimates to obtain
846
+ P(|ρL(z) − σ2ϑL(z)| ≥ t) ≤ 2 exp
847
+
848
+ −Chw
849
+ 64 K min
850
+
851
+ t2
852
+ σ4ϑ(z)2 ,
853
+ t
854
+ σ2ϑ(z)
855
+ ��
856
+ .
857
+ (12)
858
+ To lift this result to the full L = ∞ setting, we define the following three error terms
859
+ R1(z) = 1
860
+ K
861
+ K
862
+
863
+ k=1
864
+
865
+
866
+ ℓ=L+1
867
+ L
868
+
869
+ m=1
870
+ λℓλmαk
871
+ ℓ αkmVϕhℓ(z)Vϕhm(z),
872
+ R2(z) = 1
873
+ K
874
+ K
875
+
876
+ k=1
877
+ L
878
+
879
+ ℓ=1
880
+
881
+
882
+ m=L+1
883
+ λℓλmαk
884
+ ℓ αkmVϕhℓ(z)Vϕhm(z),
885
+ R3(z) = 1
886
+ K
887
+ K
888
+
889
+ k=1
890
+
891
+
892
+ ℓ=L+1
893
+
894
+
895
+ m=L+1
896
+ λℓλmαk
897
+ ℓ αkmVϕhℓ(z)Vϕhm(z)
898
+
899
+ 12
900
+ SIMON HALVDANSSON
901
+ and make the following crude estimate
902
+ P(|ρ(z) − σ2ϑ(z)| ≥ t) ≤ P
903
+
904
+ |ρL(z) + R1(z) + R2(z) + R3(z) − σ2ϑ(z)| ≥ t
905
+
906
+ ≤ P
907
+
908
+ |ρL(z) − σ2ϑ(z)| + |R1(z)| + |R2(z)| + |R3(z)| ≥ t
909
+
910
+ ≤ P
911
+
912
+ |ρL(z) − σ2ϑ(z)| ≥ t
913
+ 4
914
+
915
+ +
916
+ 3
917
+
918
+ s=1
919
+ P
920
+
921
+ |Rs(z)| ≥ t
922
+ 4
923
+
924
+ .
925
+ To bound this, we first choose L so large that |σ2ϑ(z)−σ2ϑL(z)| ≤ t
926
+ 8 which is possible since
927
+ the sum defining ϑ(z) is uniformly convergent. We then have the estimate
928
+ P
929
+
930
+ |ρL(z) − σ2ϑ(z)| ≥ t
931
+ 4
932
+
933
+ ≤ P
934
+
935
+ |ρL(z) − σ2ϑL(z)| ≥ t
936
+ 8
937
+
938
+ ≤ 2 · exp
939
+
940
+ −Chw
941
+ 64 K min
942
+
943
+ t2
944
+ σ4ϑ(z)2 ,
945
+ t
946
+ σ2ϑ(z)
947
+ ��
948
+ .
949
+ by (12) above. If we can fold estimates of R1, R2 and R3 into this form we will have finished
950
+ the proof. We deal with R1 in detail and remark that R2 and R3 can be treated with similar
951
+ methods. First note that
952
+ |R1(z)| ≤ 1
953
+ K
954
+ K
955
+
956
+ k=1
957
+
958
+
959
+ ℓ=1
960
+
961
+
962
+ m=L+1
963
+ |λℓλmαk
964
+ ℓ αk
965
+ m|
966
+ ≤ 1
967
+ K
968
+ K
969
+
970
+ k=1
971
+
972
+
973
+
974
+ m=L+1
975
+ |λm|
976
+ �1/2 �
977
+
978
+
979
+ m=L+1
980
+ |λm||αk
981
+ m|2
982
+ �1/2 � ∞
983
+
984
+ ℓ=1
985
+ |αℓ|
986
+ �1/2 � ∞
987
+
988
+ ℓ=1
989
+ |λℓ||αk
990
+ ℓ |2
991
+ �1/2
992
+ ≤ 1
993
+ K
994
+
995
+ ∥f∥L1
996
+
997
+
998
+ m=L+1
999
+ |λm|
1000
+ �1/2 K
1001
+
1002
+ k=1
1003
+
1004
+
1005
+ ℓ=1
1006
+ |λℓ||αk
1007
+ ℓ |2.
1008
+ Hence,
1009
+ P
1010
+
1011
+ |R1(z)| ≥ t
1012
+ 4
1013
+
1014
+ ≤ P
1015
+
1016
+
1017
+ K
1018
+
1019
+ k=1
1020
+
1021
+
1022
+ ℓ=1
1023
+ |λℓ||αk
1024
+ ℓ |2 ≥ Kt
1025
+ 4
1026
+
1027
+ ∥f∥L1
1028
+
1029
+
1030
+ m=L+1
1031
+ |λm|
1032
+ �−1/2�
1033
+
1034
+
1035
+ K
1036
+
1037
+ k=1
1038
+ P
1039
+
1040
+
1041
+
1042
+
1043
+ ℓ=1
1044
+ |λℓ||αk
1045
+ ℓ |2 ≥ t
1046
+ 4
1047
+
1048
+ ∥f∥L1
1049
+
1050
+
1051
+ m=L+1
1052
+ |λm|
1053
+ �−1/2�
1054
+
1055
+ ≤ KP
1056
+
1057
+
1058
+
1059
+
1060
+ ℓ=1
1061
+ |λℓ||α1
1062
+ ℓ|2 ≥ t
1063
+ 4
1064
+
1065
+ ∥f∥L1
1066
+
1067
+
1068
+ m=L+1
1069
+ |λm|
1070
+ �−1/2�
1071
+ � .
1072
+ It is clear that the quantity on the right hand side goes to zero as L → ∞ and hence in
1073
+ particular, we can choose L large enough so that
1074
+ P
1075
+
1076
+ |R1(z)| ≥ t
1077
+ 4
1078
+
1079
+ ≤ 1
1080
+ 3 exp
1081
+
1082
+ −Chw
1083
+ 64 K min
1084
+
1085
+ t2
1086
+ σ4ϑ(z)2 ,
1087
+ t
1088
+ σ2ϑ(z)
1089
+ ��
1090
+ .
1091
+ Upon giving R2 and R3 the same treatment, the result follows.
1092
+
1093
+
1094
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
1095
+ 13
1096
+ 3.2. Proof of Theorem 1.1. With the generalities out of the way, we are ready to start
1097
+ treating the three error estimates in Theorem 1.1.
1098
+ For (5) we will need results on the
1099
+ asymptotics of products of localization operators, first discussed in [12].
1100
+ The following
1101
+ combines the main results of [12] with a special case of [10, Theorem 4 (i)] and [10, Lemma
1102
+ 5].
1103
+ Lemma 3.2. Fix N ∈ N and let a ∈ L∞(R2d), ∂αb ∈ L∞(R2d) for α ∈ N2d with |α| = N
1104
+ and ϕ1, ϕ2, ϕ3, ϕ4 ∈ M1(Rd). Then
1105
+ Aϕ1,ϕ2
1106
+ a
1107
+ Aϕ3,ϕ4
1108
+ b
1109
+ =
1110
+ N−1
1111
+
1112
+ |α|=0
1113
+ (−1)|α|
1114
+ α!
1115
+ AΦα,ϕ2
1116
+ a∂αb + EN
1117
+ (13)
1118
+ where Φα is a window which depends on ϕ1, ϕ2, ϕ3, ϕ4 and EN is an error term which can
1119
+ be written as
1120
+ EN = V ∗
1121
+ ϕ2TVϕ1
1122
+ where Vϕ is the STFT and T is an integral operator with kernel K : R2d × R2d → C given
1123
+ by
1124
+ K(y, z) = a(y)N
1125
+
1126
+ |α|=N
1127
+ � 1
1128
+ 0
1129
+ (1 − t)N∂αb(y + t(z − y)) dt(z − y)α
1130
+ α!
1131
+ ⟨π(z)ϕ4, π(y)ϕ1⟩.
1132
+ Moreover, the norm of EN can be bounded as
1133
+ ∥EN∥L(L2) ≤ ∥a∥L∞
1134
+
1135
+ � �
1136
+ |α|=N
1137
+ 1
1138
+ α!∥∂αb∥L∞
1139
+
1140
+ � ∥ϕ1∥M1∥ϕ2∥M1∥ϕ3∥M1∥ϕ4∥M1.
1141
+ We are now ready to string together the estimates established above to finish the proof
1142
+ of Theorem 1.1.
1143
+ Proof of Theorem 1.1. The three estimates in the theorem follow by different arguments,
1144
+ the first one being an immediate corollary of Lemma 3.1 as stated above.
1145
+ For (5), we first claim that
1146
+ ϑ(z) =
1147
+
1148
+ Ag
1149
+ f
1150
+ �2 ⋆ (ϕ ⊗ ϕ)ˇ(z).
1151
+ (14)
1152
+ Indeed, as Ag
1153
+ f = �
1154
+ m λm(hm ⊗ hm), it follows that
1155
+
1156
+ Ag
1157
+ f
1158
+ �2 = �
1159
+ m λ2
1160
+ m(hm ⊗ hm). Hence
1161
+ (15)
1162
+
1163
+ Ag
1164
+ f
1165
+ �2 ⋆ (ϕ ⊗ ϕ)ˇ(z) =
1166
+
1167
+ m
1168
+ λ2
1169
+ m(hm ⊗ hm) ⋆ (ϕ ⊗ ϕ)ˇ(z)
1170
+ =
1171
+
1172
+ m
1173
+ λ2
1174
+ m|Vϕhm(z)|2 = ϑ(z)
1175
+ by Example 2.2. Now using Lemma 3.2 with a = b = f, ϕ1 = ϕ2 = ϕ3 = ϕ4 = g and N = 1,
1176
+ we get
1177
+
1178
+ Ag
1179
+ f
1180
+ �2 = Ag
1181
+ f2 + E1 = f2 ⋆ (g ⊗ g) + E1.
1182
+
1183
+ 14
1184
+ SIMON HALVDANSSON
1185
+ Plugging this into (15) and applying Example 2.2 and then Lemma 3.2 yields
1186
+ ϑ(z) =
1187
+
1188
+ f2 ⋆ (g ⊗ g) + E1
1189
+
1190
+ ⋆ (ϕ ⊗ ϕ)ˇ(z)
1191
+ = f2 ∗ |Vϕg|2(z) + E1 ⋆ (ϕ ⊗ ϕ)ˇ(z)
1192
+ =⇒
1193
+ ��ϑ − f2 ∗ |Vϕg|2��
1194
+ L∞ = ∥E1 ⋆ (ϕ ⊗ ϕ)ˇ∥L∞ ≤ ∥E1∥L(L2)∥ϕ∥2
1195
+ L2
1196
+ ≤ ∥f∥L∞
1197
+
1198
+ � �
1199
+ |α|=1
1200
+ ∥∂αf∥L∞
1201
+
1202
+ � ∥g∥4
1203
+ M1.
1204
+ Lastly for (6), applying Lemma 2.7 with ψ = f2 and φ = |Vϕg|2 yields the desired conclusion.
1205
+
1206
+ 3.3. Proof of Theorem 1.2. For Theorem 1.2, much of the machinery from the proof
1207
+ of Theorem 1.1 can be reused but we will need an additional estimate on the localization
1208
+ operator product asymptotics and a lemma turning the estimate in Lemma 3.1 into an L1
1209
+ error which is similar to [42, Lemma 5.4].
1210
+ As a first step, we state a simplified version of [45, Theorem 2] adapted to a context in
1211
+ which we will soon need it.
1212
+ Lemma 3.3. Let T : L2(R2d) → L2(R2d) be an integral operator with kernel K : R2d×R2d →
1213
+ C that has compact support in the first variable. Then
1214
+ ∥T∥S1 ≤ A
1215
+
1216
+ ��∥K∥L2 +
1217
+
1218
+
1219
+ 2d
1220
+
1221
+ j=1
1222
+ ��∂d+1
1223
+ j
1224
+ K
1225
+ ��2
1226
+ L2
1227
+
1228
+
1229
+ 1/2�
1230
+ ��
1231
+ where the constant A is independent of K.
1232
+ Armed with this lemma, we can bound the trace norm of the E1 error operator from
1233
+ Lemma 3.2 above.
1234
+ Lemma 3.4. Let f ∈ Cd+2
1235
+ c
1236
+ (R2d) and g ∈ S(Rd) with ∥g∥L2 = 1, then there exists a constant
1237
+ A independent of f, g such that
1238
+ ∥E1∥S1 ≤ A
1239
+
1240
+ ��∥K∥L2 +
1241
+
1242
+
1243
+ 2d
1244
+
1245
+ j=1
1246
+ ��∂d+1
1247
+ j
1248
+ K
1249
+ ��2
1250
+ L2
1251
+
1252
+
1253
+ 1/2�
1254
+ �� < ∞
1255
+ where
1256
+ K(y, z) = f(y)
1257
+
1258
+ � �
1259
+ |α|=1
1260
+ � 1
1261
+ 0
1262
+ ∂αf(y + t(z − y)) dt(z − y)
1263
+
1264
+ � Vgg(y − z).
1265
+ Proof. From Lemma 3.2 we know that the error E1 can be written as
1266
+ E1 = V ∗
1267
+ g TVg
1268
+ where T is an integral operator with kernel K from the formulation of the lemma.
1269
+ Since Vg is an isometry and ∥AB∥S1 ≤ ∥A∥S1∥B∥L(L2), we conclude that it suffices to
1270
+ bound the trace norm of T. The bound in the formulation follows directly upon applying
1271
+ Lemma 3.3.
1272
+ The finiteness of the error bound follows from the compact support and g ∈ S(Rd) via
1273
+ [26, Theorem 11.2.5].
1274
+
1275
+
1276
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
1277
+ 15
1278
+ Lastly we formulate the promised L1-estimate, based on Lemma 3.1. Its formulation and
1279
+ proof is similar to that of [42, Lemma 5.4].
1280
+ Lemma 3.5. Let f ∈ L1(R2d) ∩ L∞(R2d). Then
1281
+ P
1282
+ ��
1283
+ R2d
1284
+ ����
1285
+ ρ(z)
1286
+ σ2 − ϑ(z)
1287
+ ���� dz ≥ γ
1288
+
1289
+ ≤ ∥f∥2
1290
+ L2
1291
+ γ
1292
+
1293
+ K
1294
+ � 3√π
1295
+ 2
1296
+
1297
+ C
1298
+ erf(
1299
+
1300
+ CK) +
1301
+ 3
1302
+
1303
+ C
1304
+ e−
1305
+
1306
+ CK
1307
+
1308
+ .
1309
+ Proof. By Markov’s inequality applied to the random variable
1310
+
1311
+ R2d
1312
+ ��� ρ(z)
1313
+ σ2 − ϑ(z)
1314
+ ��� dz, we have
1315
+ P
1316
+ ��
1317
+ R2d
1318
+ ����
1319
+ ρ(z)
1320
+ σ2 − ϑ(z)
1321
+ ���� dz ≥ γ
1322
+
1323
+ ≤ 1
1324
+ γ E
1325
+ ��
1326
+ R2d
1327
+ ����
1328
+ ρ(z)
1329
+ σ2 − ϑ(z)
1330
+ ���� dz
1331
+
1332
+ = 1
1333
+ γ
1334
+
1335
+ R2d E
1336
+ �����
1337
+ ρ(z)
1338
+ σ2 − ϑ(z)
1339
+ ����
1340
+
1341
+ dz
1342
+ = 1
1343
+ γ
1344
+
1345
+ R2d
1346
+ � ∞
1347
+ 0
1348
+ P
1349
+ �����
1350
+ ρ(z)
1351
+ σ2 − ϑ(z)
1352
+ ���� ≥ t
1353
+
1354
+ dt dz.
1355
+ (16)
1356
+ Next we estimate the inner integral for each z ∈ R2d using Lemma 3.1 as
1357
+ � ∞
1358
+ 0
1359
+ P
1360
+ �����
1361
+ ρ(z)
1362
+ σ2 − ϑ(z)
1363
+ ���� ≥ t
1364
+
1365
+ dt ≤ 3
1366
+ � ∞
1367
+ 0
1368
+ exp
1369
+
1370
+ −CK min
1371
+
1372
+ t2
1373
+ ϑ(z)2 ,
1374
+ t
1375
+ ϑ(z)
1376
+ ��
1377
+ dt
1378
+ = 3
1379
+ � ϑ(z)
1380
+ 0
1381
+ exp
1382
+
1383
+ −CKt2
1384
+ ϑ(z)2
1385
+
1386
+ dt + 3
1387
+ � ∞
1388
+ ϑ(z)
1389
+ exp
1390
+
1391
+ −CKt
1392
+ ϑ(z)
1393
+
1394
+ dt
1395
+ = ϑ(z)
1396
+ � 3√π
1397
+ 2
1398
+
1399
+ CK
1400
+ erf
1401
+ �√
1402
+ CK
1403
+
1404
+ +
1405
+ 3
1406
+ CK e−CK
1407
+
1408
+ .
1409
+ When computing the integral of this over R2d we will need to compute the L1-norm of ϑ.
1410
+ By (14) and Proposition 2.3 (vi) with p = 1, it can be bounded as
1411
+ ∥ϑ∥L1 =
1412
+ ��(Ag
1413
+ f)2 ⋆ (ϕ ⊗ ϕ)
1414
+ ��
1415
+ L1
1416
+
1417
+ ��(Ag
1418
+ f)2��
1419
+ S1∥ϕ ⊗ ϕ
1420
+ ��
1421
+ S1 = ∥Ag
1422
+ f∥2
1423
+ S2 ≤ ∥f∥2
1424
+ L2∥ϕ ⊗ ϕ∥2
1425
+ S1 = ∥f∥2
1426
+ L2
1427
+ where we used Proposition 2.3 (v) with p = 2 for the second to last step. Plugging this back
1428
+ into (16) yields
1429
+ P
1430
+ ��
1431
+ R2d
1432
+ ����
1433
+ ρ(z)
1434
+ σ2 − ϑ(z)
1435
+ ���� dz ≥ γ
1436
+
1437
+ ≤ 1
1438
+ γ ∥ϑ∥L1
1439
+ � 3√π
1440
+ 2
1441
+
1442
+ CK
1443
+ erf
1444
+ �√
1445
+ CK
1446
+
1447
+ +
1448
+ 3
1449
+
1450
+ CK
1451
+ e−
1452
+
1453
+ CK
1454
+
1455
+ ≤ ∥f∥2
1456
+ L2
1457
+ γ
1458
+
1459
+ K
1460
+ � 3√π
1461
+ 2
1462
+
1463
+ C
1464
+ erf
1465
+ �√
1466
+ CK
1467
+
1468
+ +
1469
+ 3
1470
+ C
1471
+
1472
+ K
1473
+ e−CK
1474
+
1475
+ as desired.
1476
+
1477
+ We are now ready to complete the proof of Theorem 1.2.
1478
+ Proof of Theorem 1.2. We first claim that
1479
+ ��ϑ − f2 ∗ |Vϕg|2��
1480
+ L1 ≤ A
1481
+
1482
+ ��∥K∥L2 +
1483
+
1484
+
1485
+ 2d
1486
+
1487
+ j=1
1488
+ ∥∂d+1
1489
+ j
1490
+ K∥2
1491
+ L2
1492
+
1493
+
1494
+ 1/2�
1495
+ �� .
1496
+
1497
+ 16
1498
+ SIMON HALVDANSSON
1499
+ Indeed, this follows from Lemma 3.4 as
1500
+ ��ϑ − f2 ∗ |Vϕg|2��
1501
+ L1 =
1502
+ ���
1503
+ Ag
1504
+ f
1505
+ �2 ⋆ (ϕ ⊗ ϕ)ˇ− Ag
1506
+ f2 ⋆ (ϕ ⊗ ϕ)ˇ
1507
+ ��
1508
+ L1
1509
+ = ∥E1 ⋆ (ϕ ⊗ ϕ)ˇ∥L1
1510
+ ≤ ∥E1∥S1∥ϕ ⊗ ϕ∥S1
1511
+ ≤ A
1512
+
1513
+ ��∥K∥L2 +
1514
+
1515
+
1516
+ 2d
1517
+
1518
+ j=1
1519
+ ��∂d+1
1520
+ j
1521
+ K
1522
+ ��2
1523
+ L2
1524
+
1525
+
1526
+ 1/2�
1527
+ ��
1528
+ where we used Proposition 2.3 (vi) for the second to last step.
1529
+ We now expand the left hand side in the
1530
+ �� ρ
1531
+ σ2 − f2��
1532
+ L1 > B1 + B2 + t inequality using the
1533
+ above and Lemma 2.7 with ψ = f2 and φ = |Vϕg|2 to find
1534
+ P
1535
+ ���� ρ
1536
+ σ2 − f2���
1537
+ L1 > B1 + B2 + t
1538
+
1539
+ ≤ P
1540
+ ���� ρ
1541
+ σ2 − ϑ
1542
+ ���
1543
+ L1 +
1544
+ ��ϑ − f2 ∗ |Vϕg|2��
1545
+ L1 +
1546
+ ��f2 ∗ |Vϕg|2 − f2��
1547
+ L1 > B1 + B2 + t
1548
+
1549
+ ≤ P
1550
+ ���� ρ
1551
+ σ2 − ϑ
1552
+ ���
1553
+ L1 + B1 + B2 > B1 + B2 + t
1554
+
1555
+ = P
1556
+ ���� ρ
1557
+ σ2 − ϑ
1558
+ ���
1559
+ L1 > t
1560
+
1561
+ ≤ ∥f∥2
1562
+ L2
1563
+ t
1564
+
1565
+ K
1566
+ � 3√π
1567
+ 2
1568
+
1569
+ C
1570
+ erf(
1571
+
1572
+ CK) +
1573
+ 3
1574
+ C
1575
+
1576
+ K
1577
+ e−CK
1578
+
1579
+ where we in the last step used Lemma 3.5.
1580
+
1581
+ Remark. Both Theorem 1.1 and Theorem 1.2 have clear analogues in the Cohen’s class case
1582
+ which we believe to hold true. Indeed, it is straight-forward to show that
1583
+ E
1584
+
1585
+ 1
1586
+ K
1587
+ K
1588
+
1589
+ k=1
1590
+ QS(f ⋆ S(Nk))
1591
+
1592
+ −−−−→
1593
+ K→∞
1594
+
1595
+
1596
+ m=1
1597
+ λ2
1598
+ mQS(hm)(z),
1599
+ but controlling the error estimates requires generalizing Lemma 3.1 to the non rank-one
1600
+ case.
1601
+ Remark. The quantity
1602
+
1603
+ R2d |z||Vϕg(z)|2 dz which appears in Theorem 1.1 and Theorem 1.2
1604
+ should be seen as punishing the case ϕ ̸= g i.e. the reconstruction window differing from
1605
+ the window function g.
1606
+ 4. Recovery via spectral data
1607
+ In this section we discuss and prove the two recovery results (Theorem 1.3 and Theorem
1608
+ 1.4) which are dependent on the eigenvalues and eigenfunctions of the localization operator.
1609
+ We will see that these methods can perform better than the others proposed in this paper
1610
+ for three separate reasons.
1611
+ • The initial estimates afforded by the methods have smaller errors than the white
1612
+ noise methods.
1613
+ • Perfect recovery is possible if we can divide on the Fourier side.
1614
+ • Optimization schemes can approximate perfect recovery.
1615
+ The main drawbacks of these techniques are the following.
1616
+ • Instability of eigenfunctions and eigenvectors of matrices.
1617
+
1618
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
1619
+ 17
1620
+ • Computing spectral data can be computationally expensive in high dimensional
1621
+ cases.
1622
+ • When perfect recovery is possible, we need to divide by functions which are almost
1623
+ zero.
1624
+ For the reasons listed above, the methods in this section serve as an excellent alternatives
1625
+ to the other proposed methods when we have more exact knowledge about the localization
1626
+ operator.
1627
+ 4.1. Weighted accumulated Cohen’s class. The accumulated Cohen’s class, introduced
1628
+ in [37], is a generalization of accumulated spectrograms from [3] where it was used for symbol
1629
+ recovery for binary localization operators Ag
1630
+ χΩ. There a central idea was that the eigenvalues
1631
+ can be separated into two groups with the first ≈ |Ω| being close to 1, followed by a sharp
1632
+ “plunge region” after which the remaining eigenvalues are all close to 0.
1633
+ This fact was
1634
+ originally proved in [18]. Based on this fact, the quantity
1635
+ ⌈|Ω|⌉
1636
+
1637
+ m=1
1638
+ |Vg(hm)(z)|2 ≈ χΩ(z)
1639
+ was defined as the accumulated spectrogram. Later on, [37] extended the concept to mixed-
1640
+ state localization operators f⋆S by replacing the spectrograms by Cohen’s class distributions
1641
+ by approaching the proof from a quantum harmonic analysis perspective.
1642
+ Much of the work in these papers are focused on showing that the accumulated Cohen’s
1643
+ class is close to the quantity
1644
+
1645
+ m
1646
+ λmQS(hm)(z)
1647
+ (17)
1648
+ by going into specifics on the decay of the eigenvalues.
1649
+ However, since computing the
1650
+ accumulated spectrogram already requires knowing the eigenfunctions, we (almost always)
1651
+ have exact knowledge of the eigenvalues and can bypass this approximation step and include
1652
+ the eigenvalues from the beginning. In this way, the error of the approximation can be
1653
+ decreased with no loss in performance or computation time. Moreover, we don’t require a
1654
+ priori knowledge of |Ω| to decide the number of eigenpairs to include. A consequence of this
1655
+ approach is that the resulting estimator also works well for non-binary localization operators
1656
+ whose eigenvalues do not follow the same 0 − 1 dichotomy. We refer to the quantity (17) as
1657
+ the weighted accumulated Cohen’s class to highlight the addition of the eigenvalues weights.
1658
+ Both [3] and [37] restricted their attention to the case where the window g or the operator
1659
+ window S was known a priori. We lift this restriction by introducing a reconstruction window
1660
+ ϕ or reconstruction operator window T which does not have to agree with the original
1661
+ window g or S in the same way as we did for the average observed spectrogram. As we will
1662
+ see in the proof below, the proper estimator then instead becomes �
1663
+ m λmQT (hm)(z).
1664
+ Proof of Theorem 1.3. The key observation for the proof is that �
1665
+ m λmQT (hm) = f∗(S⋆ ˇT).
1666
+ To see this, expand f ⋆ S in its singular value decomposition f ⋆ S = �
1667
+ m λm(hm ⊗ hm) and
1668
+ note that
1669
+ f ∗ (S ⋆ ˇT) = (f ⋆ S) ⋆ ˇT =
1670
+ ��
1671
+ m
1672
+ λm(hm ⊗ hm)
1673
+
1674
+ ⋆ ˇT
1675
+ =
1676
+
1677
+ m
1678
+ λm(hm ⊗ hm) ⋆ ˇT =
1679
+
1680
+ m
1681
+ λmQT (hm)
1682
+
1683
+ 18
1684
+ SIMON HALVDANSSON
1685
+ where we used (11) for the last step. We can now compute
1686
+ �����
1687
+ N
1688
+
1689
+ m=1
1690
+ λmQT (hm) − f
1691
+ �����
1692
+ L1
1693
+
1694
+ �����
1695
+ N
1696
+
1697
+ m=1
1698
+ λmQT (hm) −
1699
+
1700
+
1701
+ m=1
1702
+ λmQT (hm)
1703
+ �����
1704
+ L1
1705
+ +
1706
+ ��f ∗ (S ⋆ ˜S) − f
1707
+ ��
1708
+ L1
1709
+
1710
+
1711
+
1712
+ m=N+1
1713
+ |λm|∥QT (hm)∥L1 +
1714
+ ��f ∗ (S ⋆ ˇT) − f
1715
+ ��
1716
+ L1
1717
+
1718
+
1719
+
1720
+ m=N+1
1721
+ |λm| + Var(f)
1722
+
1723
+ R2d |z|(S ⋆ ˇT)(z) dz
1724
+ where we used that ∥QT (hm)∥L1 ≤ 1 by Proposition 2.3 (vi) with p = 1 and the estimate
1725
+ in Lemma 2.7.
1726
+ The deconvolution strategy for the perfect N = ∞ reconstruction detailed in the theorem
1727
+ follows directly from the standard Fourier convolution theorem.
1728
+
1729
+ Remark. Ideally, we would want S ⋆ ˇT to be a Dirac delta to make the above reconstruction
1730
+ exact in the sense that �
1731
+ m λmQT (hm) = f without needing to employ classical deconvo-
1732
+ lution. The closest we can get to this is in the lattice setting where such a construction is
1733
+ possible which is discussed in [44, Section 6.1].
1734
+ The error incurred from S ⋆ ˇT ̸= δ0 is partially captured in the
1735
+
1736
+ R2d |z|(S ⋆ ˇT)(z) dz
1737
+ factor which simplifies to
1738
+
1739
+ R2d |z||Vϕg(z)|2 dz in the rank-one setting which we recognize
1740
+ from Section 3. In Section 6.1 we numerically investigate the consequences of this.
1741
+ The reader familiar with [37] will note that we essentially followed the exact same path
1742
+ for the proof as in that paper without restricting ourselves to indicator functions f = χΩ
1743
+ and allowing T ̸= S.
1744
+ The recovery procedure detailed above is clearly linear and hence it is easy to see that
1745
+ the recovery procedure is continuous.
1746
+ We mean this in the sense that if I is the map
1747
+ f ⋆ S �→ f ∗ (S ⋆ ˇT) and A ∈ S1 is a perturbation, then
1748
+ ��I(f ⋆ S + εA) − I(f ⋆ S)
1749
+ ��
1750
+ L1 = ε∥A ⋆ ˇT∥L1 ≤ ε∥A∥S1
1751
+ (18)
1752
+ by Proposition 2.3 (vi).
1753
+ Examples of functions with non-zero STFT was discussed in [27] and notably includes the
1754
+ standard Gaussian. We present an example of Theorem 1.3 complete with a deconvolution
1755
+ to recover the symbol exactly in Section 6.3.1 below.
1756
+ 4.2. Weighted accumulated Wigner distribution. The approach in Theorem 1.4 is
1757
+ perhaps the simplest of those detailed in this paper once framed as just computing the
1758
+ Weyl symbol of the localization operator and comparing with f. Note also that there is
1759
+ no requirement for a reconstruction window in this situation as we only make constructions
1760
+ based on the spectral data of the localization operator.
1761
+ Proof of Theorem 1.4. We prove the full case where S is a positive trace-class operator and
1762
+ note that the special rank-one case follows.
1763
+ As discussed in Section 2.2.3, the Weyl symbol of the function operator convolution
1764
+ f ⋆ S is given by f ∗ aS where aS is the Weyl symbol of S. By the linearity of the Weyl
1765
+ symbol mapping S �→ aS, we can compute this as using the spectral decomposition of
1766
+
1767
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
1768
+ 19
1769
+ S = �
1770
+ n sn(ϕn ⊗ ϕn) and the fact that aϕ⊗ϕ = W(ϕ).
1771
+
1772
+ m
1773
+ λmW(hm) = af⋆S = f ∗ aS = f ∗
1774
+
1775
+ n
1776
+ snW(ϕn).
1777
+ In order for the sum in the left-hand side to converge in L1, we need for the Wigner distri-
1778
+ bution of each eigenfunction hm to be integrable. This is equivalent to hm ∈ M1(Rd) which
1779
+ follows from ϕn ∈ S(Rd) by [6, Theorem 4.1].
1780
+ The L1-error estimate now follows by applying Lemma 2.7 with ψ = f and blurring kernel
1781
+ φ = �
1782
+ n snW(ϕn).
1783
+
1784
+ Just as in Theorem 1.3, we can deconvolve �
1785
+ m λmW(hm) = f ∗ �
1786
+ n snW(ϕn) to recover
1787
+ f exactly provided the Fourier transform F (�
1788
+ n snW(ϕn)) is zero-free.
1789
+ Note that the �
1790
+ m λmW(hm) sum is easily seen to converge pointwise by the bound
1791
+ |W(hm)(z)| ≤ 2d∥hm∥2
1792
+ L2 while we need the extra condition on the window for L1-convergence.
1793
+ This is why we could not formulate Theorem 1.4 with partial sums as we did for Theorem
1794
+ 1.3.
1795
+ The above argument can be taken another step to show that the reconstruction procedure
1796
+ is not stable as was the case for accumulated spectrograms as showed in (18). To see that
1797
+ the inverse mapping I : S1 → L1(R2d), f ⋆ S �→ �
1798
+ m λmW(hm) is not continuous, fix
1799
+ ψ ∈ L2(Rd) \ M1(Rd) and consider the perturbation operator A = ψ ⊗ ψ for which we have
1800
+ ∥I(f ⋆ S + εA) − I(f ⋆ S)∥L1 = ε∥I(ψ ⊗ ψ)∥L1 = ε∥W(ψ)∥L1 = ∞.
1801
+ In Section 6.3.2 we provide an example showing the performance of the estimator �
1802
+ m λmW(hm).
1803
+ 5. Recovery via plane tiling
1804
+ Using quantum harmonic analysis, it is easy to show that the spectrograms of an or-
1805
+ thonormal basis add up to the function which is identically 1. Indeed, using the relation
1806
+ 1 ⋆ (ϕ ⊗ ϕ) = ∥ϕ∥2
1807
+ L2IL2 from [48, Proposition 3.2 (3)], we get for a normalized ϕ ∈ L2(Rd)
1808
+ that
1809
+
1810
+ n
1811
+ |Vϕ(en)|2 =
1812
+
1813
+ n
1814
+ (en ⊗ en) ⋆ (ϕ ⊗ ϕ)ˇ
1815
+ =
1816
+ ��
1817
+ n
1818
+ (en ⊗ en)
1819
+
1820
+ ⋆ (ϕ ⊗ ϕ)ˇ
1821
+ = I ⋆ (ϕ ⊗ ϕ)
1822
+ = 1 ∗ (ϕ ⊗ ϕ) ⋆ (ϕ ⊗ ϕ)ˇ= 1 ∗ |Vϕϕ|2 = 1.
1823
+ Intuitively, we should expect that those basis elements whose spectrograms are primarily
1824
+ supported outside f should lose most of their mass when we apply Ag
1825
+ f to them and the rest
1826
+ should remain intact or be scaled by something proportional to f. This is the motivation
1827
+ for the plane tiling approach which we prove below. The proof is rather straight-forward
1828
+ and we are able to inherit the main error estimate from Theorem 1.2 as the sum approaches
1829
+ the same quantity ϑ as the K → ∞ situation in that theorem.
1830
+
1831
+ 20
1832
+ SIMON HALVDANSSON
1833
+ Proof of Theorem 1.5. We first rework the estimator �
1834
+ n |Vϕ(Ag
1835
+ fen)(z)|2 into a more man-
1836
+ ageable form using the self-adjointness of Ag
1837
+ f and Example 2.2 as
1838
+
1839
+ n
1840
+ |Vϕ(Ag
1841
+ fen)(z)|2 =
1842
+
1843
+ n
1844
+
1845
+ Ag
1846
+ fen ⊗ Ag
1847
+ fen
1848
+
1849
+ ⋆ (ϕ ⊗ ϕ)ˇ(z)
1850
+ = Ag
1851
+ f
1852
+ ��
1853
+ n
1854
+ en ⊗ en
1855
+
1856
+ Ag
1857
+ f ⋆ (ϕ ⊗ ϕ)ˇ(z)
1858
+ =
1859
+
1860
+ Ag
1861
+ fIAg
1862
+ f
1863
+
1864
+ ⋆ (ϕ ⊗ ϕ)ˇ(z)
1865
+ =
1866
+
1867
+ Ag
1868
+ f
1869
+ �2 ⋆ (ϕ ⊗ ϕ)ˇ(z) = ϑ(z)
1870
+ where ϑ is the same as in Section 3. The same analysis on the size of ∥ϑ − f2∥L1 from the
1871
+ proof of Theorem 1.2 again applies and yields the desired conclusion.
1872
+
1873
+ Remark. The above result can be extended to mixed-state localization operators as was
1874
+ done in Section 4 through some technical considerations. More specifically, it is possible to
1875
+ control the error ∥ �
1876
+ n QT ((f ⋆ S)en) − f2∥L1 if S and T are positive rank-one operators
1877
+ whose spectral decomposition consists of Schwartz functions. This is done by bounding the
1878
+ trace norm of the error operator in the expansion (f ⋆ S)2 = f2 ⋆ S + E1 in a similar way to
1879
+ how it was done in the proof of Theorem 1.2.
1880
+ In most cases, we should expect this deterministic method to perform worse than the white
1881
+ noise approach discussed earlier due to slow convergence, we require many eigenfunctions to
1882
+ tile a significant portion of the time-frequency plane. However, since we are free to choose
1883
+ the orthonormal basis, we are able to tailor it according to any information we have about
1884
+ f. For example, if we know that f is centered around a particular point z0 in phase space
1885
+ we can choose en = π(z0)hn as our basis elements where hn is the n:th Hermite function.
1886
+ As the Hermite functions are eigenfunctions of the unit disk [14], the collection {en}n will
1887
+ then spread out radially from z0. This is illustrated in Section 6.4 below.
1888
+ 6. Numerical implementation
1889
+ In computer applications there is no continuum and the integral in the the localization
1890
+ operator definition (1) is replaced by a sum, most often over some lattice, yielding what is
1891
+ referred to as a Gabor multiplier [21]. While showing that results of this paper carry over to
1892
+ this setting is a non-trivial undertaking which we do not attempt, we settle for investigating
1893
+ the numerical behavior and draw only empirical conclusions. Do note however that many
1894
+ results on localization operators carry over to the Gabor multiplier setting [11, 17, 21].
1895
+ With the above considerations out of the way, we first present a visual overview of the
1896
+ approximation process detailed in the Theorem 1.1 and Theorem 1.2.
1897
+
1898
+ FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
1899
+ 21
1900
+ ρ20
1901
+ ρ200
1902
+ ϑ
1903
+ f2 ∗ |Vgg|2
1904
+ f2
1905
+ Figure 1. All the intermediate steps in the white noise approximation detailed in
1906
+ Section 3 for ϕ = g. The subscript on ρ indicates the number of samples K used.
1907
+ Note in particular that the difference between ϑ and f2 ∗ |V g
1908
+ g | which corresponds to the
1909
+ error estimate in Lemma 3.4 is negligible in the above example.
1910
+ All of the figures presented in this section were generated using the Large Time/Frequency
1911
+ Analysis Toolbox (LTFAT) [40].
1912
+ 6.1. Reconstruction window disparity. The reconstruction window ϕ and the window
1913
+ g do not have to coincide although them doing so decreases the size of the error estimates
1914
+ which involves the quantity
1915
+
1916
+ R2d |z||Vϕg(z)|2 dz
1917
+ which in [42] is referred to as a mutual correlation measure. These can be found in three of
1918
+ our five main theorems. To give an indication of the real world impact of the ϕ ̸= g case, we
1919
+ present following three examples for the white noise estimator. This example is analogous
1920
+ to [3, Figure 3] for the accumulated spectrogram.
1921
+
1922
+ 0.8
1923
+ 3.5
1924
+ 0.6
1925
+ 3
1926
+ 0.4
1927
+ Frequency (normalized)
1928
+ 2.5
1929
+ 0.2
1930
+ 0
1931
+ 2
1932
+ 0.2
1933
+ 1.5
1934
+ -0.4
1935
+ 1
1936
+ -0.6
1937
+ 0.5
1938
+ -0.8
1939
+ 0
1940
+ 100
1941
+ 200
1942
+ 300
1943
+ 400
1944
+ 500
1945
+ 600
1946
+ 700
1947
+ Time(samples)0.8
1948
+ 3.5
1949
+ 0.6
1950
+ 3
1951
+ 0.4
1952
+ Frequency (normalized)
1953
+ 2.5
1954
+ 0.2
1955
+ 0
1956
+ 2
1957
+ 0.2
1958
+ 1.5
1959
+ -0.4
1960
+ 1
1961
+ -0.6
1962
+ 0.5
1963
+ -0.8
1964
+ 0
1965
+ 100
1966
+ 200
1967
+ 300
1968
+ 400
1969
+ 500
1970
+ 600
1971
+ 700
1972
+ Time (samples)0.8
1973
+ 3.5
1974
+ 0.6
1975
+ 3
1976
+ 0.4
1977
+ Frequency (normalized)
1978
+ 2.5
1979
+ 0.2
1980
+ 0
1981
+ 2
1982
+ 0.2
1983
+ 1.5
1984
+ -0.4
1985
+ 1
1986
+ -0.6
1987
+ 0.5
1988
+ -0.8
1989
+ 0
1990
+ 100
1991
+ 200
1992
+ 300
1993
+ 400
1994
+ 500
1995
+ 600
1996
+ 700
1997
+ Time(samples)0.8
1998
+ 3.5
1999
+ 0.6
2000
+ 3
2001
+ 0.4
2002
+ Frequency (normalized)
2003
+ 2.5
2004
+ 0.2
2005
+ 0
2006
+ 2
2007
+ 0.2
2008
+ 1.5
2009
+ -0.4
2010
+ 1
2011
+ -0.6
2012
+ 0.5
2013
+ -0.8
2014
+ 0
2015
+ 100
2016
+ 200
2017
+ 300
2018
+ 400
2019
+ 500
2020
+ 600
2021
+ 700
2022
+ Time (samples)0.8
2023
+ 3.5
2024
+ 0.6
2025
+ 3
2026
+ 0.4
2027
+ Frequency (normalized)
2028
+ 2.5
2029
+ 0.2
2030
+ 0
2031
+ 2
2032
+ 0.2
2033
+ 1.5
2034
+ -0.4
2035
+ 1
2036
+ -0.6
2037
+ 0.5
2038
+ -0.8
2039
+ 0
2040
+ 100
2041
+ 200
2042
+ 300
2043
+ 400
2044
+ 500
2045
+ 600
2046
+ 700
2047
+ Time(samples)22
2048
+ SIMON HALVDANSSON
2049
+ ϕ1
2050
+ ϕ2
2051
+ g
2052
+ f2
2053
+ ρϕ1
2054
+ ρϕ2
2055
+ ρg
2056
+ f2
2057
+ ρϕ1
2058
+ ρϕ2
2059
+ ρg
2060
+ f2
2061
+ ρϕ1
2062
+ ρϕ2
2063
+ ρg
2064
+ Figure 2. Two reconstruction window ϕ1 and ϕ2, the window g associated to the
2065
+ localization operator Ag
2066
+ f and three different examples of white noise estimations by
2067
+ ρ with the reconstruction windows, all with K = 2000 samples of white noise.
2068
+ 6.2. Noise estimation. Since our estimator for f in Theorem 1.1 and Theorem 1.2 is
2069
+
2070
+ ρ
2071
+ σ2 ,
2072
+ we need some knowledge of σ2 in order to be able to scale our estimate of f correctly. In
2073
+ the continuous setting, estimating σ2 is not meaningful as we have an infinite number of
2074
+ samples and the estimation is hence trivial. However in the discrete setting, this can be
2075
+ achieved using standard tools provided the input (Nk)K
2076
+ k=1 is known. Alternatively, if only
2077
+
2078
+ 0.8
2079
+ 3.5
2080
+ 0.6
2081
+ 3
2082
+ 0.4
2083
+ Frequency (normalized)
2084
+ 2.5
2085
+ 0.2
2086
+ 0
2087
+ 2
2088
+ 0.2
2089
+ 1.5
2090
+ -0.4
2091
+ 1
2092
+ -0.6
2093
+ 0.5
2094
+ -0.8
2095
+ 0
2096
+ 100
2097
+ 200
2098
+ 300
2099
+ 400
2100
+ 500
2101
+ 600
2102
+ 700
2103
+ Time (samples)0.8
2104
+ 3.5
2105
+ 0.6
2106
+ 3
2107
+ 0.4
2108
+ Frequency (normalized)
2109
+ 2.5
2110
+ 0.2
2111
+ 0
2112
+ 2
2113
+ -0.2
2114
+ 1.5
2115
+ -0.4
2116
+ 1
2117
+ -0.6
2118
+ 0.5
2119
+ -0.8
2120
+ 0
2121
+ 0
2122
+ 100
2123
+ 200
2124
+ 300
2125
+ 400
2126
+ 500
2127
+ 600
2128
+ 700
2129
+ Time (samples)0.8
2130
+ 3.5
2131
+ 0.6
2132
+ 3
2133
+ 0.4
2134
+ Frequency (normalized)
2135
+ 2.5
2136
+ 0.2
2137
+ 0
2138
+ 2
2139
+ 0.2
2140
+ 1.5
2141
+ -0.4
2142
+ 1
2143
+ -0.6
2144
+ 0.5
2145
+ -0.8
2146
+ 0
2147
+ 100
2148
+ 200
2149
+ 300
2150
+ 400
2151
+ 500
2152
+ 600
2153
+ 700
2154
+ Time(samples)1
2155
+ 0.8
2156
+ 0.9
2157
+ 0.6
2158
+ 0.8
2159
+ 0.4
2160
+ 0.7
2161
+ 0.2
2162
+ 0.6
2163
+ 0
2164
+ 0.5
2165
+ -0.2
2166
+ 0.4
2167
+ -0.4
2168
+ 0.3
2169
+ -0.6
2170
+ 0.2
2171
+ -0.8
2172
+ 0.1
2173
+ 0
2174
+ 100
2175
+ 200
2176
+ 300
2177
+ 400
2178
+ 500
2179
+ 600
2180
+ 700
2181
+ Time (samples)1
2182
+ 0.9
2183
+ 0.8
2184
+ 0.8
2185
+ 0.6
2186
+ 0.7
2187
+ 0.4
2188
+ 0.6
2189
+ 0.2
2190
+ 0.5
2191
+ 0
2192
+ 0.4
2193
+ -0.2
2194
+ 0.3
2195
+ -0.4
2196
+ 0.2
2197
+ -0.6
2198
+ -0.8
2199
+ 0.1
2200
+ 0
2201
+ 100
2202
+ 200
2203
+ 300
2204
+ 400
2205
+ 500
2206
+ 600
2207
+ 700
2208
+ Time (samples)1
2209
+ 0.8
2210
+ 0.9
2211
+ 0.6
2212
+ 0.8
2213
+ 0.4
2214
+ 0.7
2215
+ 0.2
2216
+ 0.6
2217
+ 0
2218
+ 0.5
2219
+ -0.2
2220
+ 0.4
2221
+ -0.4
2222
+ 0.3
2223
+ -0.6
2224
+ 0.2
2225
+ -0.8
2226
+ 0.1
2227
+ 0
2228
+ 100
2229
+ 200
2230
+ 300
2231
+ 400
2232
+ 500
2233
+ 600
2234
+ 700
2235
+ Time (samples)1
2236
+ 1
2237
+ 0.8
2238
+ 0.9
2239
+ 0.6
2240
+ 0.8
2241
+ 0.4
2242
+ 0.7
2243
+ 0.2
2244
+ 0.6
2245
+ 0
2246
+ 0.5
2247
+ -0.2
2248
+ 0.4
2249
+ -0.4
2250
+ 0.3
2251
+ -0.6
2252
+ 0.2
2253
+ -0.8
2254
+ 0.1
2255
+ 0
2256
+ 100
2257
+ 200
2258
+ 300
2259
+ 400
2260
+ 500
2261
+ 600
2262
+ 700
2263
+ Time (samples)7
2264
+ 0.8
2265
+ 0.9
2266
+ 0.6
2267
+ 0.8
2268
+ 0.4
2269
+ 0.7
2270
+ 0.2
2271
+ 0.6
2272
+ 0
2273
+ 0.5
2274
+ 0.2
2275
+ 0.4
2276
+ -0.4
2277
+ 0.3
2278
+ -0.6
2279
+ 0.2
2280
+ -0.8
2281
+ 0.1
2282
+ 0
2283
+ 0
2284
+ 100
2285
+ 200
2286
+ 300
2287
+ 400
2288
+ 500
2289
+ 600
2290
+ 700
2291
+ Time (samples)1
2292
+ 1
2293
+ 0.8
2294
+ 0.9
2295
+ 0.6
2296
+ 0.8
2297
+ 0.4
2298
+ Frequency (normalized)
2299
+ 0.7
2300
+ 0.2
2301
+ 0.6
2302
+ 0
2303
+ 0.5
2304
+ -0.2
2305
+ 0.4
2306
+ -0.4
2307
+ 0.3
2308
+ -0.6
2309
+ 0.2
2310
+ -0.8
2311
+ 0.1
2312
+ 0
2313
+ 100
2314
+ 200
2315
+ 300
2316
+ 400
2317
+ 500
2318
+ 600
2319
+ 700
2320
+ Time (samples)7
2321
+ 1
2322
+ 0.8
2323
+ 0.9
2324
+ 0.6
2325
+ 0.8
2326
+ 0.4
2327
+ 0.7
2328
+ 0.2
2329
+ 0.6
2330
+ 0
2331
+ 0.5
2332
+ -0.2
2333
+ 0.4
2334
+ -0.4
2335
+ 0.3
2336
+ -0.6
2337
+ 0.2
2338
+ -0.8
2339
+ 0.1
2340
+ 0
2341
+ 100
2342
+ 200
2343
+ 300
2344
+ 400
2345
+ 500
2346
+ 600
2347
+ 700
2348
+ Time (samples)1
2349
+ 0.8
2350
+ 0.9
2351
+ 0.6
2352
+ 0.8
2353
+ 0.4
2354
+ Frequency (normalized)
2355
+ 0.7
2356
+ 0.2
2357
+ 0.6
2358
+ 0
2359
+ 0.5
2360
+ 0.2
2361
+ 0.4
2362
+ -0.4
2363
+ 0.3
2364
+ -0.6
2365
+ 0.2
2366
+ -0.8
2367
+ 0.1
2368
+ 0
2369
+ 100
2370
+ 200
2371
+ 300
2372
+ 400
2373
+ 500
2374
+ 600
2375
+ 700
2376
+ Time (samples)0.12
2377
+ 0.1
2378
+ 0.08
2379
+ 0.06
2380
+ 0.04
2381
+ 0.02
2382
+ 0
2383
+ 0
2384
+ 100
2385
+ 200
2386
+ 300
2387
+ 400
2388
+ 500
2389
+ 600
2390
+ 700
2391
+ 8000.3
2392
+ 0.25
2393
+ 0.2
2394
+ 0.15
2395
+ 0.1
2396
+ 0.05
2397
+ 0
2398
+ 0
2399
+ 100
2400
+ 200
2401
+ 300
2402
+ 400
2403
+ 500
2404
+ 600
2405
+ 700
2406
+ 8000.25
2407
+ 0.2
2408
+ 0.15
2409
+ 0.1
2410
+ 0.05
2411
+ 0
2412
+ 0
2413
+ 100
2414
+ 200
2415
+ 300
2416
+ 400
2417
+ 500
2418
+ 600
2419
+ 700
2420
+ 8000.8
2421
+ 3.5
2422
+ 0.6
2423
+ 3
2424
+ 0.4
2425
+ Frequency (normalized)
2426
+ 2.5
2427
+ 0.2
2428
+ 0
2429
+ 2
2430
+ 0.2
2431
+ 1.5
2432
+ -0.4
2433
+ 1
2434
+ -0.6
2435
+ 0.5
2436
+ -0.8
2437
+ 0
2438
+ 100
2439
+ 200
2440
+ 300
2441
+ 400
2442
+ 500
2443
+ 600
2444
+ 700
2445
+ Time(samples)FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
2446
+ 23
2447
+ observations of the spectrograms of random noise are known, σ2 can be estimated as the
2448
+ average value of |Vϕ(N)|2 as can be seen from the calculations in the proof of Lemma 3.1.
2449
+ 6.3. Spectral reconstruction examples. In this section we test the performance of the
2450
+ estimators from Theorem 1.3 and Theorem 1.4.
2451
+ 6.3.1. Weighted accumulated spectrograms. In the following example, we set both the recon-
2452
+ struction and original window to be the standard Gaussian for convenience. Consequently,
2453
+ the blurring kernel or equivalently the impulse response of the system f �→ ρf is given by
2454
+ a two dimensional Gaussian and it is easy to get a rough idea of the original symbol. Due
2455
+ to simple blurring kernel and exact spectral information, we are also able to deconvolve the
2456
+ estimator to recover the original symbol exactly.
2457
+ Figure 3. A symbol, the associated accumulated spectrogram and the deconvolved
2458
+ estimate of the symbol.
2459
+ Note that by viewing the blurring kernel as an impulse response, it becomes clear that
2460
+ we can find it for deconvolution purposes by letting the symbol be a Dirac delta which is
2461
+ feasible in the finite setting.
2462
+ 6.3.2. Weighted accumulated Wigner distributions. The Wigner-based approach in Theorem
2463
+ 1.4 is notably more direct than the spectrogram approach in Theorem 1.3 in that there is no
2464
+ reconstruction window. Hence it is reasonable to expect a smaller error with this method.
2465
+ Indeed, this is what we see in the example below.
2466
+ Note that due to how the Wigner transform is implemented in LTFAT, we only recover
2467
+ the portion of the symbol with positive frequencies. As a consequence, we only use the
2468
+ upper half of the symbol from the weighted accumulated spectrogram example although
2469
+ still at the same resolution. Note also that the Wigner transform is inherently redundant in
2470
+ an oversampling sense and in our case has 200 times the resolution of the original symbol.
2471
+
2472
+ Symbol
2473
+ 2.5
2474
+ 0.8
2475
+ 0.6
2476
+ 2
2477
+ 0.4
2478
+ Frequency (normalized)
2479
+ 0.2
2480
+ 1.5
2481
+ 0
2482
+ 0.2
2483
+ -0.4
2484
+ -0.6
2485
+ 0.5
2486
+ -0.8
2487
+ 0
2488
+ 50
2489
+ 100
2490
+ 150
2491
+ 200
2492
+ 250
2493
+ 300
2494
+ 350
2495
+ Time (samples)Weightedaccumultadspectrogram
2496
+ 1
2497
+ 2
2498
+ 0.8
2499
+ 1.8
2500
+ 0.6
2501
+ 1.6
2502
+ 0.4
2503
+ 1.4
2504
+ 0.2
2505
+ 1.2
2506
+ 0
2507
+ 1
2508
+ -0.2
2509
+ 0.8
2510
+ -0.4
2511
+ 0.6
2512
+ -0.6
2513
+ 0.4
2514
+ -0.8
2515
+ 0.2
2516
+ 0
2517
+ 50
2518
+ 100
2519
+ 150
2520
+ 200
2521
+ 250
2522
+ 300
2523
+ 350
2524
+ Time (samples)Recovered symbol
2525
+ 2.5
2526
+ 0.8
2527
+ 0.6
2528
+ 2
2529
+ 0.4
2530
+ Frequency (normalized)
2531
+ 0.2
2532
+ 1.5
2533
+ 0
2534
+ 0.2
2535
+ 1
2536
+ -0.4
2537
+ -0.6
2538
+ 0.5
2539
+ -0.8
2540
+ 0
2541
+ 50
2542
+ 100
2543
+ 150
2544
+ 200
2545
+ 250
2546
+ 300
2547
+ 350
2548
+ Time (samples)24
2549
+ SIMON HALVDANSSON
2550
+ Figure 4. A symbol and the corresponding weighted accumulated Wigner estima-
2551
+ tor.
2552
+ Due to the aforementioned redundancy and positive frequency restriction, finding the
2553
+ system impulse response to perform a deconvolution is not as straight-forward as in the
2554
+ weighted accumulated spectrogram case. However, there is no direct reason to believe that
2555
+ this should be impossible in this setting but we leave the an implementation to future work.
2556
+ 6.4. Plane tiling example. In this section we consider an example inspired by the dis-
2557
+ cussion at the end of Section 5. Specifically, we let the symbol f be a circle centered at
2558
+ z0 = (400, 0) and choose our orthonormal basis to be Hermite functions translated by π(z0).
2559
+
2560
+ Positive frequency symbol
2561
+ 2.5
2562
+ 2
2563
+ 4
2564
+ 2
2565
+ 6
2566
+ 8
2567
+ 1.5
2568
+ 10
2569
+ 12
2570
+ 14
2571
+ 16
2572
+ 0.5
2573
+ 18
2574
+ 20
2575
+ 5
2576
+ 10
2577
+ 15
2578
+ 20
2579
+ 25
2580
+ 30
2581
+ 35
2582
+ 40Accumulated Wigner
2583
+ 2.5
2584
+ 50
2585
+ 2
2586
+ 100
2587
+ 150
2588
+ 1.5
2589
+ 200
2590
+ 250
2591
+ 0.5
2592
+ 300
2593
+ 350
2594
+ 0
2595
+ 400
2596
+ 50
2597
+ 100
2598
+ 150
2599
+ 200
2600
+ 250
2601
+ 300
2602
+ 350
2603
+ 400FOUR WAYS TO RECOVER THE SYMBOL OF A NON-BINARY LOCALIZATION OPERATOR
2604
+ 25
2605
+ N = 50
2606
+ N = 150
2607
+ N = 200
2608
+ Figure 5. Parallel views of the plane tiling estimator and the sum of spectrograms
2609
+ of the same orthornmal basis for different number of terms N. Note how the first
2610
+ pair of images agree as the support of the spectrograms of the first few basis elements
2611
+ are all approximately contained in the symbol.
2612
+ The number of basis elements needed to cover the symbol is dependent on the size of
2613
+ the symbol as each basis element spectrogram only can have total L1-energy 1 by Moyal’s
2614
+ identity.
2615
+ Since the support of a spectrogram is never compact [33], there will inevitably be some
2616
+ “spillage” from eigenfunctions whose core spectrogram support are far away from the sup-
2617
+ port of f. This is illustrated in the following figure depicting the sum of spectrograms of
2618
+ Hermite functions localized outside of where the majority of their spectrogram support is.
2619
+ The localization operator symbol in this example is the indicator functions of a square.
2620
+
2621
+ Localized n = 50
2622
+ 0.8
2623
+ 0.9
2624
+ 0.6
2625
+ 0.8
2626
+ 0.4
2627
+ 0.7
2628
+ Frequency (normalized)
2629
+ 0.2
2630
+ 0.6
2631
+ 0
2632
+ 0.5
2633
+ 0.2
2634
+ 0.4
2635
+ -0.4
2636
+ 0.3
2637
+ -0.6
2638
+ 0.2
2639
+ -0.8
2640
+ 0.1
2641
+ 0
2642
+ 100
2643
+ 200
2644
+ 300
2645
+ 400
2646
+ 500
2647
+ 600
2648
+ 700
2649
+ Time (samples)Non localizedn =50
2650
+ 0.8
2651
+ 0.9
2652
+ 0.6
2653
+ 0.8
2654
+ 0.4
2655
+ 0.7
2656
+ Frequency (normalized)
2657
+ 0.2
2658
+ 0.6
2659
+ 0
2660
+ 0.5
2661
+ 0.2
2662
+ 0.4
2663
+ -0.4
2664
+ 0.3
2665
+ -0.6
2666
+ 0.2
2667
+ -0.8
2668
+ 0.1
2669
+ 0
2670
+ 100
2671
+ 200
2672
+ 300
2673
+ 400
2674
+ 500
2675
+ 600
2676
+ 700
2677
+ Time (samples)Localizedn=150
2678
+ 0.8
2679
+ 0.9
2680
+ 0.6
2681
+ 0.8
2682
+ 0.4
2683
+ 0.7
2684
+ Frequency (normalized)
2685
+ 0.2
2686
+ 0.6
2687
+ 0
2688
+ 0.5
2689
+ 0.2
2690
+ 0.4
2691
+ -0.4
2692
+ 0.3
2693
+ -0.6
2694
+ 0.2
2695
+ -0.8
2696
+ 0.1
2697
+ 0
2698
+ 100
2699
+ 200
2700
+ 300
2701
+ 400
2702
+ 500
2703
+ 600
2704
+ 700
2705
+ Time (samples)Non localized n =150
2706
+ 0.8
2707
+ 0.9
2708
+ 0.6
2709
+ 0.8
2710
+ 0.4
2711
+ 0.7
2712
+ Frequency (normalized)
2713
+ 0.2
2714
+ 0.6
2715
+ 0
2716
+ 0.5
2717
+ 0.2
2718
+ 0.4
2719
+ -0.4
2720
+ 0.3
2721
+ -0.6
2722
+ 0.2
2723
+ -0.8
2724
+ 0.1
2725
+ 0
2726
+ 100
2727
+ 200
2728
+ 300
2729
+ 400
2730
+ 500
2731
+ 600
2732
+ 700
2733
+ Time (samples)Localized n = 200
2734
+ 0.8
2735
+ 0.9
2736
+ 0.6
2737
+ 0.8
2738
+ 0.4
2739
+ 0.7
2740
+ Frequency (normalized)
2741
+ 0.2
2742
+ 0.6
2743
+ 0
2744
+ 0.5
2745
+ 0.2
2746
+ 0.4
2747
+ -0.4
2748
+ 0.3
2749
+ -0.6
2750
+ 0.2
2751
+ -0.8
2752
+ 0.1
2753
+ 0
2754
+ 100
2755
+ 200
2756
+ 300
2757
+ 400
2758
+ 500
2759
+ 600
2760
+ 700
2761
+ Time (samples)Non localized n = 200
2762
+ 0.8
2763
+ 0.9
2764
+ 0.6
2765
+ 0.8
2766
+ 0.4
2767
+ 0.7
2768
+ Frequency (normalized)
2769
+ 0.2
2770
+ 0.6
2771
+ 0
2772
+ 0.5
2773
+ 0.2
2774
+ 0.4
2775
+ -0.4
2776
+ 0.3
2777
+ -0.6
2778
+ 0.2
2779
+ -0.8
2780
+ 0.1
2781
+ 0
2782
+ 100
2783
+ 200
2784
+ 300
2785
+ 400
2786
+ 500
2787
+ 600
2788
+ 700
2789
+ Time (samples)26
2790
+ SIMON HALVDANSSON
2791
+ Figure 6. Sum of spectrograms of the first N Hermite functions localized outside
2792
+ the majority of their support in phase space for N = 30, 60, 90, 120. Note that the
2793
+ scale of the plot is on the order of 10−33.
2794
+ References
2795
+ [1]
2796
+ L. D. Abreu, “Local maxima of white noise spectrograms and Gaussian entire func-
2797
+ tions,” Journal of Fourier Analysis and Applications, vol. 28, no. 6, 2022. doi: 10.10
2798
+ 07/s00041-022-09979-7.
2799
+ [2]
2800
+ L. D. Abreu and M. D¨orfler, “An inverse problem for localization operators,” Inverse
2801
+ Problems, vol. 28, no. 11, p. 115 001, Sep. 2012. doi: 10.1088/0266-5611/28/11/11
2802
+ 5001.
2803
+ [3]
2804
+ L. D. Abreu, K. Gr¨ochenig, and J. L. Romero, “On accumulated spectrograms,” Trans-
2805
+ actions of the American Mathematical Society, vol. 368, no. 5, pp. 3629–3649, 2015.
2806
+ doi: 10.1090/tran/6517.
2807
+ [4]
2808
+ R. Adamczak, “A note on the Hanson-Wright inequality for random vectors with
2809
+ dependencies,” Electronic Communications in Probability, vol. 20, no. none, Jan. 2015.
2810
+ doi: 10.1214/ecp.v20-3829.
2811
+ [5]
2812
+ R. Bardenet and A. Hardy, “Time-frequency transforms of white noises and Gaussian
2813
+ analytic functions,” Applied and Computational Harmonic Analysis, vol. 50, pp. 73–
2814
+ 104, Jan. 2021. doi: 10.1016/j.acha.2019.07.003.
2815
+ [6]
2816
+ F. Bastianoni, E. Cordero, and F. Nicola, “Decay and smoothness for eigenfunctions of
2817
+ localization operators,” Journal of Mathematical Analysis and Applications, vol. 492,
2818
+ no. 2, p. 124 480, 2020. doi: 10.1016/j.jmaa.2020.124480.
2819
+
2820
+ Localized n = 30
2821
+ ×10~34
2822
+ 11
2823
+ 10
2824
+ 10
2825
+ 9
2826
+ 20
2827
+ 8
2828
+ 30
2829
+ 7
2830
+ 6
2831
+ 40
2832
+ 50
2833
+ 4
2834
+ 60
2835
+ 3
2836
+ 2
2837
+ 70
2838
+ 80
2839
+ 10
2840
+ 20
2841
+ 30
2842
+ 40
2843
+ 50
2844
+ 60
2845
+ 70
2846
+ 80Localized n = 60
2847
+ ×10~34
2848
+ 10
2849
+ 14
2850
+ 20
2851
+ 12
2852
+ 30
2853
+ 10
2854
+ 40
2855
+ 8
2856
+ 50
2857
+ 6
2858
+ 60
2859
+ 4
2860
+ 70
2861
+ 2
2862
+ 80
2863
+ 10
2864
+ 20
2865
+ 30
2866
+ 40
2867
+ 50
2868
+ 60
2869
+ 70
2870
+ 80Localized n = 90
2871
+ ×10~34
2872
+ 18
2873
+ 10
2874
+ 16
2875
+ 20
2876
+ 14
2877
+ 30
2878
+ 12
2879
+ 10
2880
+ 40
2881
+ 8
2882
+ 50
2883
+ 6
2884
+ 60
2885
+ 70
2886
+ 2
2887
+ 80
2888
+ 10
2889
+ 20
2890
+ 30
2891
+ 40
2892
+ 50
2893
+ 60
2894
+ 70
2895
+ 80Localized n = 120
2896
+ ×10~33
2897
+ 2.2
2898
+ 10
2899
+ 2
2900
+ 20
2901
+ 1.8
2902
+ 1.6
2903
+ 30
2904
+ 1.4
2905
+ 40
2906
+ 1.2
2907
+ 50
2908
+ 0.8
2909
+ 60
2910
+ 0.6
2911
+ 0.4
2912
+ 70
2913
+ 0.2
2914
+ 80
2915
+ 10
2916
+ 20
2917
+ 30
2918
+ 40
2919
+ 50
2920
+ 60
2921
+ 70
2922
+ 80REFERENCES
2923
+ 27
2924
+ [7]
2925
+ F. A. Berezin, “Wick and anti-Wick operator symbols,” Mathematics of the USSR-
2926
+ Sbornik, vol. 15, no. 4, pp. 577–606, 1971. doi: 10.1070/sm1971v015n04abeh001564.
2927
+ [8]
2928
+ T.-S. Chi, C.-W. Huang, and W.-S. Chou, “A frequency bin-wise nonlinear masking al-
2929
+ gorithm in convolutive mixtures for speech segregation,” The Journal of the Acoustical
2930
+ Society of America, vol. 131, no. 5, EL361–EL367, 2012. doi: 10.1121/1.3697530.
2931
+ [9]
2932
+ L. Cohen, “Time-frequency distributions-a review,” Proceedings of the IEEE, vol. 77,
2933
+ no. 7, pp. 941–981, 1989. doi: 10.1109/5.30749.
2934
+ [10]
2935
+ E. Cordero and K. Gr¨ochenig, “Symbolic Calculus and Fredholm Property for Lo-
2936
+ calization Operators,” Journal of Fourier Analysis and Applications, vol. 12, no. 4,
2937
+ pp. 371–392, Aug. 2006. doi: 10.1007/s00041-005-5077-7.
2938
+ [11]
2939
+ E. Cordero and K. Gr¨ochenig, “On the product of localization operators,” in Modern
2940
+ Trends in Pseudo-Differential Operators, Birkh¨auser Basel, pp. 279–295. doi: 10.100
2941
+ 7/978-3-7643-8116-5_16.
2942
+ [12]
2943
+ E. Cordero and L. Rodino, “Wick calculus: A time-frequency approach,” Osaka Jour-
2944
+ nal of Mathematics, vol. 42, no. 1, pp. 43–63, 2005. doi: ojm/1153494314.
2945
+ [13]
2946
+ E. Cordero, L. Rodino, and K. Gr¨ochenig, “Localization operators and time-frequency
2947
+ analysis,” in Harmonic, Wavelet and P-Adic Analysis, World Scientific, May 2007,
2948
+ pp. 83–110. doi: 10.1142/9789812770707_0005.
2949
+ [14]
2950
+ I. Daubechies, “Time-frequency localization operators: A geometric phase space ap-
2951
+ proach,” IEEE Transactions on Information Theory, vol. 34, no. 4, pp. 605–612, 1988.
2952
+ doi: 10.1109/18.9761.
2953
+ [15]
2954
+ I. Daubechies, “The wavelet transform, time-frequency localization and signal analy-
2955
+ sis,” IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961–1005, 1990.
2956
+ doi: 10.1109/18.57199.
2957
+ [16]
2958
+ L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions,
2959
+ ser. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press, 1991.
2960
+ [17]
2961
+ H. G. Feichtinger, F. Luef, and S. Halvdansson, “Measure-operator convolutions and
2962
+ applications to lattices,” 2022, In preparation.
2963
+ [18]
2964
+ H. G. Feichtinger and K. Nowak, “A Szeg˝o-type theorem for Gabor-Toeplitz localiza-
2965
+ tion operators,” Michigan Mathematical Journal, vol. 49, no. 1, 2001. doi: 10.1307/m
2966
+ mj/1008719032.
2967
+ [19]
2968
+ H. G. Feichtinger and K. Gr¨ochenig, “Banach spaces related to integrable group repre-
2969
+ sentations and their atomic decompositions, I,” Journal of Functional Analysis, vol. 86,
2970
+ no. 2, pp. 307–340, 1989, issn: 0022-1236. doi: 10.1016/0022-1236(89)90055-4.
2971
+ [20]
2972
+ H. G. Feichtinger, “On a new Segal algebra,” Monatshefte f¨ur Mathematik, vol. 92,
2973
+ no. 4, pp. 269–289, Dec. 1981. doi: 10.1007/bf01320058.
2974
+ [21]
2975
+ H. G. Feichtinger and K. Nowak, “A first survey of Gabor multipliers,” in Advances
2976
+ in Gabor Analysis, H. G. Feichtinger and T. Strohmer, Eds. Boston, MA: Birkh¨auser
2977
+ Boston, 2003, pp. 99–128, isbn: 978-1-4612-0133-5. doi: 10.1007/978-1-4612-0133
2978
+ -5_5.
2979
+ [22]
2980
+ C. Fern´andez and A. Galbis, “Compactness of time-frequency localization operators
2981
+ on L2(Rd),” Journal of Functional Analysis, vol. 233, no. 2, pp. 335–350, 2006. doi:
2982
+ 10.1016/j.jfa.2005.08.008.
2983
+ [23]
2984
+ R. Fulsche, “Correspondence theory on p-Fock spaces with applications to Toeplitz
2985
+ algebras,” Journal of Functional Analysis, vol. 279, no. 7, p. 108 661, 2020. doi: 10.1
2986
+ 016/j.jfa.2020.108661.
2987
+
2988
+ 28
2989
+ REFERENCES
2990
+ [24]
2991
+ S. Ghosh, M. Lin, and D. Sun, “Signal analysis via the stochastic geometry of spec-
2992
+ trogram level sets,” IEEE Transactions on Signal Processing, vol. 70, pp. 1104–1117,
2993
+ 2022. doi: 10.1109/tsp.2022.3153596.
2994
+ [25]
2995
+ M. A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical
2996
+ Physics, ser. Pseudo-Differential Operators. Springer Basel, 2011. doi: 10.1007/978-
2997
+ 3-7643-9992-4.
2998
+ [26]
2999
+ K. Gr¨ochenig, Foundations of Time-Frequency Analysis. Birkh¨auser Boston, 2001. doi:
3000
+ 10.1007/978-1-4612-0003-1.
3001
+ [27]
3002
+ K. Gr¨ochenig, P. Jaming, and E. Malinnikova, “Zeros of the Wigner distribution and
3003
+ the short-time Fourier transform,” Revista Matem´atica Complutense, vol. 33, no. 3,
3004
+ pp. 723–744, Dec. 2019. doi: 10.1007/s13163-019-00335-w.
3005
+ [28]
3006
+ K. Gr¨ochenig and J. Toft, “Isomorphism properties of Toeplitz operators and pseudo-
3007
+ differential operators between modulation spaces,” Journal d’Analyse Math´ematique,
3008
+ vol. 114, no. 1, pp. 255–283, 2011. doi: 10.1007/s11854-011-0017-8.
3009
+ [29]
3010
+ M. Guizar-Sicairos and P. Thibault, “Ptychography: A solution to the phase problem,”
3011
+ Physics Today, vol. 74, no. 9, pp. 42–48, 2021. doi: 10.1063/pt.3.4835.
3012
+ [30]
3013
+ A. Haimi, G. Koliander, and J. L. Romero, “Zeros of Gaussian Weyl–Heisenberg func-
3014
+ tions and hyperuniformity of charge,” Journal of Statistical Physics, vol. 187, no. 3,
3015
+ Apr. 2022. doi: 10.1007/s10955-022-02917-3.
3016
+ [31]
3017
+ O. Hazrati, J. Lee, and P. C. Loizou, “Blind binary masking for reverberation suppres-
3018
+ sion in cochlear implants,” The Journal of the Acoustical Society of America, vol. 133,
3019
+ no. 3, pp. 1607–1614, 2013. doi: 10.1121/1.4789891.
3020
+ [32]
3021
+ L. H¨ormander, “The Weyl calculus of pseudo-differential operators,” Communications
3022
+ on Pure and Applied Mathematics, vol. 32, no. 3, pp. 359–443, 1979. doi: 10.1002/c
3023
+ pa.3160320304.
3024
+ [33]
3025
+ A. J. E. M. Janssen, “Proof of a conjecture on the supports of Wigner distributions,”
3026
+ The Journal of Fourier Analysis and Applications, vol. 4, no. 6, pp. 723–726, 1998.
3027
+ doi: 10.1007/bf02479675.
3028
+ [34]
3029
+ A. M. Kr´em´e, V. Emiya, C. Chaux, and B. Torr´esani, “Time-Frequency Fading Al-
3030
+ gorithms Based on Gabor Multipliers,” IEEE Journal of Selected Topics in Signal
3031
+ Processing, vol. 15, no. 1, pp. 65–77, 2021. doi: 10.1109/JSTSP.2020.3045938.
3032
+ [35]
3033
+ F. Luef and E. Skrettingland, “Convolutions for localization operators,” Journal de
3034
+ Math´ematiques Pures et Appliqu´ees, vol. 118, pp. 288–316, 2018. doi: 10.1016/j.ma
3035
+ tpur.2017.12.004.
3036
+ [36]
3037
+ F. Luef and E. Skrettingland, “Mixed-state localization operators: Cohen’s class and
3038
+ trace class operators,” Journal of Fourier Analysis and Applications, vol. 25, no. 4,
3039
+ pp. 2064–2108, 2019. doi: 10.1007/s00041-019-09663-3.
3040
+ [37]
3041
+ F. Luef and E. Skrettingland, “On accumulated Cohen’s class distributions and mixed-
3042
+ state localization operators,” vol. 52, no. 1, pp. 31–64, 2019. doi: 10.1007/s00365-0
3043
+ 19-09465-2.
3044
+ [38]
3045
+ F. Luef and E. Skrettingland, “A Wiener Tauberian theorem for operators and func-
3046
+ tions,” Journal of Functional Analysis, vol. 280, no. 6, p. 108 883, 2021. doi: 10.1016
3047
+ /j.jfa.2020.108883.
3048
+ [39]
3049
+ A. Olivero, B. Torr´esani, and R. Kronland-Martinet, “A new method for Gabor mul-
3050
+ tipliers estimation: Application to sound morphing,” in 2010 18th European Signal
3051
+ Processing Conference, 2010, pp. 507–511.
3052
+
3053
+ REFERENCES
3054
+ 29
3055
+ [40]
3056
+ Z. Pr˚uˇsa, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs, “The Large
3057
+ Time-Frequency Analysis Toolbox 2.0,” in Sound, Music, and Motion, ser. LNCS,
3058
+ Springer International Publishing, 2014, pp. 419–442, isbn: 978-3-319-12975-4. doi:
3059
+ 10.1007/978-3-319-12976-1\_25.
3060
+ [41]
3061
+ S. Rajbamshi, G. Taub¨ock, P. Balazs, and L. D. Abreu, “Random Gabor Multipliers for
3062
+ Compressive Sensing: A Simulation Study,” in 2019 27th European Signal Processing
3063
+ Conference (EUSIPCO), 2019, pp. 1–5. doi: 10.23919/EUSIPCO.2019.8903092.
3064
+ [42]
3065
+ J. L. Romero and M. Speckbacher, Estimation of binary time-frequency masks from
3066
+ ambient noise, 2022. doi: 10.48550/arXiv.2205.10205.
3067
+ [43]
3068
+ M. Rudelson and R. Vershynin, “Hanson-Wright inequality and sub-gaussian concen-
3069
+ tration,” Electronic Communications in Probability, vol. 18, no. none, Jan. 2013. doi:
3070
+ 10.1214/ecp.v18-2865.
3071
+ [44]
3072
+ E. Skrettingland, “Quantum harmonic analysis on lattices and Gabor multipliers,”
3073
+ Journal of Fourier Analysis and Applications, vol. 26, no. 3, 2020. doi: 10.1007/s00
3074
+ 041-020-09759-1.
3075
+ [45]
3076
+ W. F. Stinespring, “A sufficient condition for an integral operator to have a trace,”
3077
+ Journal f¨ur die reine und angewandte Mathematik, vol. 1958, no. 200, pp. 200–207,
3078
+ 1958. doi: 10.1515/crll.1958.200.200.
3079
+ [46]
3080
+ T. Strohmer, “Pseudodifferential operators and Banach algebras in mobile communi-
3081
+ cations,” Applied and Computational Harmonic Analysis, vol. 20, no. 2, pp. 237–249,
3082
+ 2006. doi: 10.1016/j.acha.2005.06.003.
3083
+ [47]
3084
+ D. Wang, “On ideal binary mask as the computational goal of auditory scene analysis,”
3085
+ in Speech Separation by Humans and Machines, Kluwer Academic Publishers, pp. 181–
3086
+ 197. doi: 10.1007/0-387-22794-6_12.
3087
+ [48]
3088
+ R. Werner, “Quantum harmonic analysis on phase space,” Journal of Mathematical
3089
+ Physics, vol. 25, no. 5, pp. 1404–1411, 1984. doi: 10.1063/1.526310.
3090
+ [49]
3091
+ M. W. Wong, Wavelet Transforms and Localization Operators. Birkh¨auser Basel, 2002.
3092
+ doi: 10.1007/978-3-0348-8217-0.
3093
+ Department of Mathematical Sciences, Norwegian University of Science and Technology,
3094
+ 7491 Trondheim, Norway.
3095
+ Email address: [email protected]
3096
+
GtFJT4oBgHgl3EQfti2n/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HdAyT4oBgHgl3EQfrvlK/content/tmp_files/2301.00565v1.pdf.txt ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Using meaning instead of words to track topics
2
+ Judicael POUMAY1 and Ashwin ITTOO1
3
+ ULiege/HEC Liege, Rue Louvrex 14, 4000 Liege, Belgium {judicael.poumay,
4
+ ashwin.ittoo}@uliege.be
5
+ Abstract. The ability to monitor the evolution of topics over time is
6
+ extremely valuable for businesses. Currently, all existing topic tracking
7
+ methods use lexical information by matching word usage. However, no
8
+ studies has ever experimented with the use of semantic information for
9
+ tracking topics. Hence, we explore a novel semantic-based method using
10
+ word embeddings. Our results show that a semantic-based approach to
11
+ topic tracking is on par with the lexical approach but makes different
12
+ mistakes. This suggest that both methods may complement each other.
13
+ Keywords: Topic tracking · lexical · semantic · topic models
14
+ 1
15
+ Introduction
16
+ Buried within the voluminous amounts of texts available online are meaning-
17
+ ful insights, which could help in supporting business decision-making activities.
18
+ Topic modelling methods extracts latent topic in a corpus [4,10] and can be used
19
+ to discover these insights. Examples of applications include fraud detection [11],
20
+ understanding employee and customer satisfaction [8,7]. Extracted topics can be
21
+ tracked over time to understand their evolution or discover emerging one. Hence,
22
+ we focus on this task of topic tracking in which the goal is to link instances of
23
+ the same topic that have been extracted at different time periods.
24
+ Several methods for tracking topics have been proposed in the past [3,6,13,12,9].
25
+ These methods use measures such as the JS divergence [13,12,9] or online topic
26
+ models [3,6] which rely on lexical information to track topic across time.
27
+ However, no studies has ever experimented with using semantic informa-
28
+ tion to track topics over time. Intuitively, semantic based approaches could be
29
+ promising as they do not rely on simple surface form and can capture concepts
30
+ such as synonymy. For example, given a topic about ”AI”, across time we could
31
+ observe that the term ”Machine Learning” has become more popular than ”AI”.
32
+ However, a lexical approach to topic tracking would not be able to handle such
33
+ lexical drift and to relate those words over time. Conversely, such lexical vari-
34
+ ation would have been captured by a semantic approach. Moreover, topic-word
35
+ distributions are unstable across multiple runs [1], i.e. the resulting top words
36
+ of a topic tend to change significantly. This entails that the lexical information
37
+ we rely upon to track topics is also unstable even if the overall semantic of the
38
+ topic remains the same. Thus, a semantic-based approach may be more robust.
39
+ arXiv:2301.00565v1 [cs.CL] 2 Jan 2023
40
+
41
+ 2
42
+ J. POUMAY A. ITTOO
43
+ Hence, our work aims at investigating on the use of semantic information for
44
+ topic tracking and its comparison against lexical information. Therefore, as our
45
+ main contribution, we propose a novel semantic topic tracking method known
46
+ as Semantic Divergence (SD) based on word embeddings. As an ancillary con-
47
+ tribution, we study the challenges of topic tracking in the context of hierarchical
48
+ topic modelling.
49
+ 2
50
+ Background and Related work
51
+ 2.1
52
+ Topic Modelling
53
+ LDA [4] is the first traditional topic model. At the core of LDA is a Bayesian
54
+ generative model with two Dirichlet distributions, respectively for the document-
55
+ topic distributions and for the topic-word distributions. These distributions are
56
+ learnt and optimized via an inference procedure which enables topics to be ex-
57
+ tracted. The main weakness of LDA is that it requires the user to specify a
58
+ predefined number of topics to be extracted.
59
+ More complex topic models have been proposed since LDA. In particular,
60
+ HTMOT [10] was proposed to simultaneously model topic hierarchy and tem-
61
+ porality. Specifically, HTMOT produces a topic tree in which the depth and the
62
+ number of sub-topic for each branch is defined dynamically during training. Ad-
63
+ ditionally, HTMOT models the temporality of topics enabling the extraction of
64
+ topics that are lexically close but temporally distinct.
65
+ 2.2
66
+ Topic Tracking
67
+ Topic tracking is the task of monitoring the evolution of topics through time.
68
+ It was initially defined in a pilot study [2] in 1998 as the continuous automatic
69
+ classification of a stream of news stories into known or new topics.
70
+ Currently, two general framework compete for topic tracking. The first stream
71
+ is that of online topic models. which incorporate new data incrementally [3,6]. In
72
+ [3], the authors propose Online-LDA, a version of LDA able to update itself with
73
+ new documents without having to access to previously processed documents. In
74
+ practice, Online-LDA assumes that time is divided in slices and at each slice
75
+ an LDA model is trained using the previous slice as prior. They were able to
76
+ show that their system can find emerging topics by artificially injecting new
77
+ topic into the news stream. They performed their experiments on the NIPS
78
+ and Reuters-21578 datasets. Similarly in [6], the authors propose a model that
79
+ can dynamically decide the right number of topics in an online fashion. They
80
+ performed their experiments on the the 20 Newsgroup and the TDT-2 datasets.
81
+ The second stream is concerned with linking topics extracted independently
82
+ at different time periods [13,12,9]. In [13], the authors use about 30,000 abstracts
83
+ of papers in various journals from 2000 to 2015. They then applied LDA to each
84
+ year independently and linked topics using the Jensen-Shannon Divergence (JS)
85
+ to measure their similarity [5]. In [12] the authors applied a similar method on
86
+
87
+ Using meaning instead of words to track topics
88
+ 3
89
+ news articles. However, they differ in that while [13] simply links topics together,
90
+ [12] clusters them. This means that once two topic have been linked they form
91
+ a cluster and subsequent topics will be compared to the whole cluster and not
92
+ just the preceding topic. Finally in [9], the authors also proposed a tracking
93
+ method using the JS divergence applied to scientific papers. However, they do
94
+ not constraint linkage to a one-to-one mapping which allows for the fusion and
95
+ splitting of topics. All of the aforementioned paper evaluated their topic tracking
96
+ method using a qualitative analysis that demonstrated the performance of their
97
+ technique.
98
+ We based our work on that second stream because it allows for better paral-
99
+ lelization as time slices are processed independently.
100
+ 3
101
+ Methodology
102
+ In this section, we will present our methodology for topic tracking. We will start
103
+ by describing our corpus and topic extraction method. Next, we will define our
104
+ SD measure. Finally, we will present the topic tracking algorithm.
105
+ 3.1
106
+ Topic extraction
107
+ To perform our experiments, we crawled 10k articles from the Digital Trends 1
108
+ archives from 2019 to 2020. This news website is mainly focused on technological
109
+ news with topics such as hardware, space exploration and COVID-19. For all
110
+ articles, we extracted the text, title, category and timestamp. We pre-possessed
111
+ the corpus according to HTMOT [10].
112
+ To extract topics hierarchies (see figure 1), we used the HTMOT topic model
113
+ [10] . The extracted topics are represented by a list of words and a list of entities.
114
+ Fig. 1. Example of a topic hierarchy
115
+ We follow HTMOT [10] and only focus on the first and second level of topic
116
+ extracted. Specifically, the authors observe that deeper topics becomes more
117
+ esoteric making them harder to understand by annotators representing a general
118
+ audience. Consequently, this makes it difficult to assess the correctness of tracked
119
+ topics at deeper levels of the topic tree.
120
+ 1 https://www.digitaltrends.com/
121
+
122
+ ROOT
123
+ Space
124
+ COVID-19
125
+ Astronauts
126
+ Astronomy
127
+ Vaccines
128
+ Tests4
129
+ J. POUMAY A. ITTOO
130
+ 3.2
131
+ Proposed Semantic Divergence measure
132
+ We will now describe our novel topic tracking method, which departs from the
133
+ JS divergence traditionally applied in previous studies. We name our method
134
+ ”Semantic divergence” or SD. It uses word embeddings to measure the distance
135
+ between topics. Each topic will be assigned an embedding as the sum of the
136
+ embeddings of the top words in that topic weighted by their probability. Then,
137
+ the distance between two topics is computed as the cosine distance of their
138
+ respective embedding. We will use FastText as the word embedding. FastText
139
+ helps with rare and out of vocabulary words. This is essential considering our pre-
140
+ processing step includes lemmatization which may produce incorrectly spelled
141
+ words. Hence the embedding of a topic is defined as follows :
142
+ emb(t) =
143
+
144
+ (w,p)∈t
145
+ p ∗ FastText(w)
146
+ (1)
147
+ And the Semantic Divergence between two topics is defined as :
148
+ SD(t1, t2) = cosine(emb(t1), emb(t2))
149
+ (2)
150
+ Where w is a word in a topic t and p is the probability of that word.
151
+ 3.3
152
+ Topic Tracking Algorithm
153
+ Finally, to track topics across time we applied HTMOT on our corpus. For
154
+ each year (2019 and 2020), we obtained a corresponding topic tree. Then, we
155
+ computed the distance between every topics across both years using either JS
156
+ or SD. To do this we used the top 100 words and top 15 entities to represent
157
+ each topic. Subsequently, we ranked order all computed pairs of topics and then
158
+ iteratively selected the most similar pairs (lowest SD or JS score) such that each
159
+ topic is paired only once. Finally, we used a pre-defined threshold to remove
160
+ pairs with a poor score.
161
+ Note that our approach does not take into account structural information.
162
+ Indeed, tracking topics in the context of hierarchical topic modelling presents
163
+ another interesting challenge : there exist many possible resulting trees that are
164
+ equally correct. In one run, we may extract the topic of space whose sub-topics
165
+ can be grouped into space exploration and astronomy. Conversely, in another
166
+ run, we may extract space exploration and astronomy as separate topics with
167
+ their own sub-topics. Hence, it is difficult to leverage the structural information
168
+ contained in the topic trees to track topics as it cannot be expected to respect
169
+ a specific conceptual taxonomy.
170
+ 4
171
+ Results : JS vs SD
172
+ In this section, we will discuss how our semantic based method compares with
173
+ respect to the traditional lexical based method.
174
+
175
+ Using meaning instead of words to track topics
176
+ 5
177
+ First, we studied the overlap between the two methods, i.e. the number of
178
+ pairs extracted by both. We discovered that, 111 pairs were extracted with JS
179
+ with a threshold of <0.4, while 121 pairs were extracted with SD with a threshold
180
+ of <0.1. These threshold were set through empirical observation but may depend
181
+ on the dataset used. These 111-121 pairs can be grouped into three categories
182
+ (see figure 2). 72 pairs were the same between the two methods (60-65% of the
183
+ total pairs). For example, topics such as space and video games were easily paired
184
+ across both years by both methods. This already indicates that our SD method
185
+ is able to pair topic across time with performance similar to JS. This leaves
186
+ 39-49 pairs that are different across the two methods (35-40% of the total pairs)
187
+ which we can evaluate. Out of those different pairs, we notice that in most cases
188
+ one method (e.g. SD) would track/link a topic pair across both years, while the
189
+ other method (e.g. JS) did not as the best possible pair was above the threshold.
190
+ We are then left with 10 different pairs that can themselves be paired according
191
+ to which 2019 or 2020 topic they share (see figure 2).
192
+ Fig. 2. The pairs extracted by both methods can be grouped into three categories. The
193
+ circle represent topics and their color represent years (2019 blue; 2020 yellow). The link
194
+ color represent the method used (JS red; SD green). The three categories are : 1) The
195
+ pairs extracted by both methods (72). 2) The pairs that differ but share a topic (10)
196
+ E.g. JS extracted the pair 4-D while SD extracted 4-E. 3) The pairs of topics that were
197
+ only linked with one method (29-39).
198
+ To compare the performance of the two tracking methods, we decided to
199
+ use a survey comparing these 10 pairs of topics extracted by both JS and SD.
200
+ Precisely, for each question, given an initial topic, annotators were shown the JS
201
+ and SD pairing and asked which is better. Additionally, we also asked annotators
202
+ to provide a confidence score on a scale from 1 to 5. In total, we received 38
203
+ answers coming from a small online community focused on answering surveys2.
204
+ The survey can be found on github 3.
205
+ Looking at the survey results (table 1), it can be seen that SD slightly outper-
206
+ forms JS with 54% of annotators preferring the former to the latter. Moreover,
207
+ we also note that the annotators were confident in their evaluation, with an
208
+ average confidence score of 3.3. Interestingly, there is a lot of variability in the
209
+ 2 https://www.reddit.com/r/SampleSize/
210
+ 3 https://github.com/JudicaelPoumay/TopicTrackingPaper
211
+
212
+ 72 Common pairs
213
+ 10 Pairs sharing a topic
214
+ 29-39 Pairs only linked with one method
215
+ 39-49 Pairs that differ between the two methods6
216
+ J. POUMAY A. ITTOO
217
+ answers. Some topics were clearly better paired with one method or the other
218
+ (Q3 and Q5) while for others, it wasn’t as clear (Q1, Q2 and Q4).
219
+ Table 1. The ”chose SD” column corresponds to the % of annotators that chose the
220
+ SD pair as the best pair.
221
+ Questions Chose SD Confidence level
222
+ Q1
223
+ 42.1% (22) 3.2
224
+ Q2
225
+ 63.2% (14) 2.6
226
+ Q3
227
+ 21.1% (30) 3.7
228
+ Q4
229
+ 65.8% (13) 3.5
230
+ Q5
231
+ 78.9% (8)
232
+ 3.5
233
+ Average
234
+ 54%
235
+ 3.3
236
+ For example, figure 3 corresponds to Q1. It shows how a 2019 topic has been
237
+ paired with 2020 topics using JS and SD. First, we can notice that the distance
238
+ recorded between the pairs is close to the threshold for both methods. Specifi-
239
+ cally, 0.29 for the JS pair and 0.09 for the SD pair (threshold = 0.4 for JS and
240
+ 0.1 for SD). This makes sense as good pairs (pairs with low JS/SD values) are
241
+ extracted by both methods. Second, the 2019 topic is about social media data
242
+ security. Whereas the chosen 2020 topic is about :
243
+ – Social media when paired with JS.
244
+ – Data security when paired with SD.
245
+ Hence, both pairing seems suitable, which could explain the indecisiveness of
246
+ annotators. Specifically, 16 of them decided the SD pairing was better whereas
247
+ 22 of them decided the JS pairing was better. Their confidence level for this
248
+ question was 3.2 out of 5.
249
+ Fig. 3. A first example of different pairing between SD and JS on the same 2019 topic.
250
+ Similarly, figure 4 corresponds to Q5 and shows how another 2019 topic has
251
+ been paired based on the two methods. Here, the 2019 topic is about web security.
252
+ Whereas the chosen 2020 topic is about :
253
+
254
+ 2020 topics
255
+ 2019 topic
256
+ 2020 topics
257
+ issue
258
+ company
259
+ company
260
+ datum
261
+ issue
262
+ social
263
+ service
264
+ datum
265
+ platform
266
+ account
267
+ account
268
+ app
269
+ app
270
+ SD
271
+ user
272
+ JS-
273
+ ban
274
+ @Apple
275
+ @Facebook
276
+ @Facebook
277
+ @iPhone
278
+ @U.S.
279
+ @TikTok
280
+ @Google
281
+ @Twitter
282
+ @U.S.
283
+ @Epic
284
+ @instagram
285
+ @Twitter
286
+ @AppStore
287
+ @FTC
288
+ @TrumpUsing meaning instead of words to track topics
289
+ 7
290
+ – Data security when paired with JS.
291
+ – Web security topic when paired with SD.
292
+ Moreover, the topic chosen by SD is a sub-topic of the topic chosen by JS which
293
+ demonstrates the difficulty in topic tracking in a hierarchical setting. Indeed,
294
+ it can be difficult to differentiate a topic from its sub-topic, especially if that
295
+ sub-topic dominates the others as parent topics are the sum of their sub-topics.
296
+ In this case, annotators agreed more and 30 out of 38 decided the SD pair was
297
+ better. Their confidence level for this question was 3.5 out of 5.
298
+ Fig. 4. A second example of different pairing between SD and JS on the same 2019
299
+ topic.
300
+ Hence, we argue that JS and SD are two fundamentally different approaches
301
+ and that both have their advantages. JS is lexically driven and may work best
302
+ for linking topics which tend to have a stable and precise vocabulary such as
303
+ in legal documents. On the other hand, SD is driven by semantics and may be
304
+ more appropriate for linking topics that have a greater lexical variability. Greater
305
+ lexical variability may be the result of lexical drift over time as terms change
306
+ in popularity or informal texts which do not use a standard vocabulary such as
307
+ tweets. Hence, we believe that SD not only competes but complements JS for
308
+ topic tracking.
309
+ 5
310
+ Conclusion
311
+ In this paper, we presented a novel semantic-based topic tracking method (SD).
312
+ We showed that its performance was comparable to that of the state of the
313
+ art method (JS), which is lexically-based. This validates our hypothesis that
314
+ semantic information is valuable for tracking topics.
315
+ Moreover, we have discussed the challenges associated with tracking topics
316
+ in a topic hierarchy. First, topics and their sub-topic can be difficult to differ-
317
+ entiate, which makes topic tracking more challenging. Second, deeper topics are
318
+ more esoteric and consequently it is harder to assess the quality of their track-
319
+ ing. Finally, topic hierarchy may have many equally correct arrangements which
320
+ makes it difficult to leverage structural information for topic tracking.
321
+
322
+ 2020 topics
323
+ 2019 topic
324
+ 2020 topics
325
+ security
326
+ security
327
+ issue
328
+ hacker
329
+ account
330
+ datum
331
+ attack
332
+ password
333
+ service
334
+ system
335
+ email
336
+ account
337
+ vulnerability
338
+ SD
339
+ attack
340
+ JS-
341
+ app
342
+ @Garmin
343
+ @Equifax
344
+ @Apple
345
+ @Security
346
+ @Marriott
347
+ @iPhone
348
+ @Signal
349
+ @Yahoo
350
+ @Google
351
+ @Forbe
352
+ @NSA
353
+ @Epic
354
+ @ZDNet
355
+ @AWS
356
+ @AppStore8
357
+ J. POUMAY A. ITTOO
358
+ We believe that our work would benefit future studies investigating hybrid
359
+ methods for topic tracking, such as by integrating lexical and semantic informa-
360
+ tion.
361
+ References
362
+ 1. Agrawal, A., Fu, W., Menzies, T.: What is wrong with topic modeling? and how
363
+ to fix it using search-based software engineering. Information and Software Tech-
364
+ nology 98, 74–88 (2018)
365
+ 2. Allan, J., Carbonell, J.G., Doddington, G., Yamron, J., Yang, Y.: Topic detection
366
+ and tracking pilot study final report (1998)
367
+ 3. AlSumait, L., Barbar´a, D., Domeniconi, C.: On-line lda: Adaptive topic models
368
+ for mining text streams with applications to topic detection and tracking. In: 2008
369
+ eighth IEEE international conference on data mining. pp. 3–12. IEEE (2008)
370
+ 4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
371
+ Res. 3(null), 993–1022 (Mar 2003)
372
+ 5. Dagan, I., Lee, L., Pereira, F.: Similarity-based methods for word sense disam-
373
+ biguation. In: 35th Annual Meeting of the Association for Computational Lin-
374
+ guistics and 8th Conference of the European Chapter of the Association for
375
+ Computational Linguistics. pp. 56–63. Association for Computational Linguis-
376
+ tics, Madrid, Spain (Jul 1997). https://doi.org/10.3115/976909.979625, https:
377
+ //aclanthology.org/P97-1008
378
+ 6. Fan, W., Guo, Z., Bouguila, N., Hou, W.: Clustering-based online news topic
379
+ detection and tracking through hierarchical bayesian nonparametric models. In:
380
+ Proceedings of the 44th International ACM SIGIR Conference on Research and
381
+ Development in Information Retrieval. pp. 2126–2130 (2021)
382
+ 7. Ibrahim, N.F., Wang, X.: A text analytics approach for online retailing ser-
383
+ vice improvement: Evidence from twitter. Decision Support Systems 121,
384
+ 37–50 (2019). https://doi.org/https://doi.org/10.1016/j.dss.2019.03.002,
385
+ https://www.sciencedirect.com/science/article/pii/S0167923619300405
386
+ 8. Jung, Y., Suh, Y.: Mining the voice of employees: A text mining approach to identi-
387
+ fying and analyzing job satisfaction factors from online employee reviews. Decision
388
+ Support Systems 123, 113074 (2019). https://doi.org/https://doi.org/10.
389
+ 1016/j.dss.2019.113074, https://www.sciencedirect.com/science/article/
390
+ pii/S0167923619301034
391
+ 9. Liu, H., Chen, Z., Tang, J., Zhou, Y., Liu, S.: Mapping the technology evolu-
392
+ tion path: a novel model for dynamic topic detection and tracking. Scientometrics
393
+ 125(3), 2043–2090 (2020)
394
+ 10. Poumay, J., Ittoo, A.: HTMOT : Hierarchical Topic Modelling Over Time (2021).
395
+ https://doi.org/10.48550/arXiv.2112.03104
396
+ 11. Wang, Y., Xu, W.: Leveraging deep learning with lda-based text analyt-
397
+ ics to detect automobile insurance fraud. Decision Support Systems 105,
398
+ 87–95 (2018). https://doi.org/https://doi.org/10.1016/j.dss.2017.11.001,
399
+ https://www.sciencedirect.com/science/article/pii/S0167923617302130
400
+ 12. Xu, G., Meng, Y., Chen, Z., Qiu, X., Wang, C., Yao, H.: Research on topic detection
401
+ and tracking for online news texts. IEEE access 7, 58407–58418 (2019)
402
+ 13. Zhu, M., Zhang, X., Wang, H.: A lda based model for topic evolution: Evidence
403
+ from information science journals. In: Proceedings of the 2016 International Con-
404
+ ference on Modeling, Simulation and Optimization Technologies and Applications
405
+ (MSOTA 2016). pp. 49–54 (2016)
406
+
HdAyT4oBgHgl3EQfrvlK/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf,len=343
2
+ page_content='Using meaning instead of words to track topics Judicael POUMAY1 and Ashwin ITTOO1 ULiege/HEC Liege, Rue Louvrex 14, 4000 Liege, Belgium {judicael.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
3
+ page_content='poumay, ashwin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
4
+ page_content='ittoo}@uliege.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
5
+ page_content='be Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
6
+ page_content=' The ability to monitor the evolution of topics over time is extremely valuable for businesses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
7
+ page_content=' Currently, all existing topic tracking methods use lexical information by matching word usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
8
+ page_content=' However, no studies has ever experimented with the use of semantic information for tracking topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
9
+ page_content=' Hence, we explore a novel semantic-based method using word embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
10
+ page_content=' Our results show that a semantic-based approach to topic tracking is on par with the lexical approach but makes different mistakes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
11
+ page_content=' This suggest that both methods may complement each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
12
+ page_content=' Keywords: Topic tracking · lexical · semantic · topic models 1 Introduction Buried within the voluminous amounts of texts available online are meaning- ful insights, which could help in supporting business decision-making activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
13
+ page_content=' Topic modelling methods extracts latent topic in a corpus [4,10] and can be used to discover these insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
14
+ page_content=' Examples of applications include fraud detection [11], understanding employee and customer satisfaction [8,7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
15
+ page_content=' Extracted topics can be tracked over time to understand their evolution or discover emerging one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
16
+ page_content=' Hence, we focus on this task of topic tracking in which the goal is to link instances of the same topic that have been extracted at different time periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
17
+ page_content=' Several methods for tracking topics have been proposed in the past [3,6,13,12,9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
18
+ page_content=' These methods use measures such as the JS divergence [13,12,9] or online topic models [3,6] which rely on lexical information to track topic across time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
19
+ page_content=' However, no studies has ever experimented with using semantic informa- tion to track topics over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
20
+ page_content=' Intuitively, semantic based approaches could be promising as they do not rely on simple surface form and can capture concepts such as synonymy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
21
+ page_content=' For example, given a topic about ”AI”, across time we could observe that the term ”Machine Learning” has become more popular than ”AI”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
22
+ page_content=' However, a lexical approach to topic tracking would not be able to handle such lexical drift and to relate those words over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
23
+ page_content=' Conversely, such lexical vari- ation would have been captured by a semantic approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
24
+ page_content=' Moreover, topic-word distributions are unstable across multiple runs [1], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
25
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
26
+ page_content=' the resulting top words of a topic tend to change significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
27
+ page_content=' This entails that the lexical information we rely upon to track topics is also unstable even if the overall semantic of the topic remains the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
28
+ page_content=' Thus, a semantic-based approach may be more robust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
29
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
30
+ page_content='00565v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
31
+ page_content='CL] 2 Jan 2023 2 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
32
+ page_content=' POUMAY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
33
+ page_content=' ITTOO Hence, our work aims at investigating on the use of semantic information for topic tracking and its comparison against lexical information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
34
+ page_content=' Therefore, as our main contribution, we propose a novel semantic topic tracking method known as Semantic Divergence (SD) based on word embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
35
+ page_content=' As an ancillary con- tribution, we study the challenges of topic tracking in the context of hierarchical topic modelling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
36
+ page_content=' 2 Background and Related work 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
37
+ page_content='1 Topic Modelling LDA [4] is the first traditional topic model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
38
+ page_content=' At the core of LDA is a Bayesian generative model with two Dirichlet distributions, respectively for the document- topic distributions and for the topic-word distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
39
+ page_content=' These distributions are learnt and optimized via an inference procedure which enables topics to be ex- tracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
40
+ page_content=' The main weakness of LDA is that it requires the user to specify a predefined number of topics to be extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
41
+ page_content=' More complex topic models have been proposed since LDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
42
+ page_content=' In particular, HTMOT [10] was proposed to simultaneously model topic hierarchy and tem- porality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
43
+ page_content=' Specifically, HTMOT produces a topic tree in which the depth and the number of sub-topic for each branch is defined dynamically during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
44
+ page_content=' Ad- ditionally, HTMOT models the temporality of topics enabling the extraction of topics that are lexically close but temporally distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
45
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
46
+ page_content='2 Topic Tracking Topic tracking is the task of monitoring the evolution of topics through time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
47
+ page_content=' It was initially defined in a pilot study [2] in 1998 as the continuous automatic classification of a stream of news stories into known or new topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
48
+ page_content=' Currently, two general framework compete for topic tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
49
+ page_content=' The first stream is that of online topic models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
50
+ page_content=' which incorporate new data incrementally [3,6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
51
+ page_content=' In [3], the authors propose Online-LDA, a version of LDA able to update itself with new documents without having to access to previously processed documents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
52
+ page_content=' In practice, Online-LDA assumes that time is divided in slices and at each slice an LDA model is trained using the previous slice as prior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
53
+ page_content=' They were able to show that their system can find emerging topics by artificially injecting new topic into the news stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
54
+ page_content=' They performed their experiments on the NIPS and Reuters-21578 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
55
+ page_content=' Similarly in [6], the authors propose a model that can dynamically decide the right number of topics in an online fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
56
+ page_content=' They performed their experiments on the the 20 Newsgroup and the TDT-2 datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
57
+ page_content=' The second stream is concerned with linking topics extracted independently at different time periods [13,12,9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
58
+ page_content=' In [13], the authors use about 30,000 abstracts of papers in various journals from 2000 to 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
59
+ page_content=' They then applied LDA to each year independently and linked topics using the Jensen-Shannon Divergence (JS) to measure their similarity [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
60
+ page_content=' In [12] the authors applied a similar method on Using meaning instead of words to track topics 3 news articles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
61
+ page_content=' However, they differ in that while [13] simply links topics together, [12] clusters them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
62
+ page_content=' This means that once two topic have been linked they form a cluster and subsequent topics will be compared to the whole cluster and not just the preceding topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
63
+ page_content=' Finally in [9], the authors also proposed a tracking method using the JS divergence applied to scientific papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
64
+ page_content=' However, they do not constraint linkage to a one-to-one mapping which allows for the fusion and splitting of topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
65
+ page_content=' All of the aforementioned paper evaluated their topic tracking method using a qualitative analysis that demonstrated the performance of their technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
66
+ page_content=' We based our work on that second stream because it allows for better paral- lelization as time slices are processed independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
67
+ page_content=' 3 Methodology In this section, we will present our methodology for topic tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
68
+ page_content=' We will start by describing our corpus and topic extraction method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
69
+ page_content=' Next, we will define our SD measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
70
+ page_content=' Finally, we will present the topic tracking algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
71
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
72
+ page_content='1 Topic extraction To perform our experiments, we crawled 10k articles from the Digital Trends 1 archives from 2019 to 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
73
+ page_content=' This news website is mainly focused on technological news with topics such as hardware, space exploration and COVID-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
74
+ page_content=' For all articles, we extracted the text, title, category and timestamp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
75
+ page_content=' We pre-possessed the corpus according to HTMOT [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
76
+ page_content=' To extract topics hierarchies (see figure 1), we used the HTMOT topic model [10] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
77
+ page_content=' The extracted topics are represented by a list of words and a list of entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
78
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
79
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
80
+ page_content=' Example of a topic hierarchy We follow HTMOT [10] and only focus on the first and second level of topic extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
81
+ page_content=' Specifically, the authors observe that deeper topics becomes more esoteric making them harder to understand by annotators representing a general audience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
82
+ page_content=' Consequently, this makes it difficult to assess the correctness of tracked topics at deeper levels of the topic tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
83
+ page_content=' 1 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
84
+ page_content='digitaltrends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
85
+ page_content='com/ ROOT Space COVID-19 Astronauts Astronomy Vaccines Tests4 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
86
+ page_content=' POUMAY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
87
+ page_content=' ITTOO 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
88
+ page_content='2 Proposed Semantic Divergence measure We will now describe our novel topic tracking method, which departs from the JS divergence traditionally applied in previous studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
89
+ page_content=' We name our method ”Semantic divergence” or SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
90
+ page_content=' It uses word embeddings to measure the distance between topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
91
+ page_content=' Each topic will be assigned an embedding as the sum of the embeddings of the top words in that topic weighted by their probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
92
+ page_content=' Then, the distance between two topics is computed as the cosine distance of their respective embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
93
+ page_content=' We will use FastText as the word embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
94
+ page_content=' FastText helps with rare and out of vocabulary words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
95
+ page_content=' This is essential considering our pre- processing step includes lemmatization which may produce incorrectly spelled words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
96
+ page_content=' Hence the embedding of a topic is defined as follows : emb(t) = � (w,p)∈t p ∗ FastText(w) (1) And the Semantic Divergence between two topics is defined as : SD(t1, t2) = cosine(emb(t1), emb(t2)) (2) Where w is a word in a topic t and p is the probability of that word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
97
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
98
+ page_content='3 Topic Tracking Algorithm Finally, to track topics across time we applied HTMOT on our corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
99
+ page_content=' For each year (2019 and 2020), we obtained a corresponding topic tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
100
+ page_content=' Then, we computed the distance between every topics across both years using either JS or SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
101
+ page_content=' To do this we used the top 100 words and top 15 entities to represent each topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
102
+ page_content=' Subsequently, we ranked order all computed pairs of topics and then iteratively selected the most similar pairs (lowest SD or JS score) such that each topic is paired only once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
103
+ page_content=' Finally, we used a pre-defined threshold to remove pairs with a poor score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
104
+ page_content=' Note that our approach does not take into account structural information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
105
+ page_content=' Indeed, tracking topics in the context of hierarchical topic modelling presents another interesting challenge : there exist many possible resulting trees that are equally correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
106
+ page_content=' In one run, we may extract the topic of space whose sub-topics can be grouped into space exploration and astronomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
107
+ page_content=' Conversely, in another run, we may extract space exploration and astronomy as separate topics with their own sub-topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
108
+ page_content=' Hence, it is difficult to leverage the structural information contained in the topic trees to track topics as it cannot be expected to respect a specific conceptual taxonomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
109
+ page_content=' 4 Results : JS vs SD In this section, we will discuss how our semantic based method compares with respect to the traditional lexical based method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
110
+ page_content=' Using meaning instead of words to track topics 5 First, we studied the overlap between the two methods, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
111
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
112
+ page_content=' the number of pairs extracted by both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
113
+ page_content=' We discovered that, 111 pairs were extracted with JS with a threshold of <0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
114
+ page_content='4, while 121 pairs were extracted with SD with a threshold of <0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
115
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
116
+ page_content=' These threshold were set through empirical observation but may depend on the dataset used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
117
+ page_content=' These 111-121 pairs can be grouped into three categories (see figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
118
+ page_content=' 72 pairs were the same between the two methods (60-65% of the total pairs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
119
+ page_content=' For example, topics such as space and video games were easily paired across both years by both methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
120
+ page_content=' This already indicates that our SD method is able to pair topic across time with performance similar to JS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
121
+ page_content=' This leaves 39-49 pairs that are different across the two methods (35-40% of the total pairs) which we can evaluate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
122
+ page_content=' Out of those different pairs, we notice that in most cases one method (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
123
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
124
+ page_content=' SD) would track/link a topic pair across both years, while the other method (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
125
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
126
+ page_content=' JS) did not as the best possible pair was above the threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
127
+ page_content=' We are then left with 10 different pairs that can themselves be paired according to which 2019 or 2020 topic they share (see figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
128
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
129
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
130
+ page_content=' The pairs extracted by both methods can be grouped into three categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
131
+ page_content=' The circle represent topics and their color represent years (2019 blue;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
132
+ page_content=' 2020 yellow).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
133
+ page_content=' The link color represent the method used (JS red;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
134
+ page_content=' SD green).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
135
+ page_content=' The three categories are : 1) The pairs extracted by both methods (72).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
136
+ page_content=' 2) The pairs that differ but share a topic (10) E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
137
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
138
+ page_content=' JS extracted the pair 4-D while SD extracted 4-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
139
+ page_content=' 3) The pairs of topics that were only linked with one method (29-39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
140
+ page_content=' To compare the performance of the two tracking methods, we decided to use a survey comparing these 10 pairs of topics extracted by both JS and SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
141
+ page_content=' Precisely, for each question, given an initial topic, annotators were shown the JS and SD pairing and asked which is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
142
+ page_content=' Additionally, we also asked annotators to provide a confidence score on a scale from 1 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
143
+ page_content=' In total, we received 38 answers coming from a small online community focused on answering surveys2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
144
+ page_content=' The survey can be found on github 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
145
+ page_content=' Looking at the survey results (table 1), it can be seen that SD slightly outper- forms JS with 54% of annotators preferring the former to the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
146
+ page_content=' Moreover, we also note that the annotators were confident in their evaluation, with an average confidence score of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
147
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
148
+ page_content=' Interestingly, there is a lot of variability in the 2 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
149
+ page_content='reddit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
150
+ page_content='com/r/SampleSize/ 3 https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
151
+ page_content='com/JudicaelPoumay/TopicTrackingPaper 72 Common pairs 10 Pairs sharing a topic 29-39 Pairs only linked with one method 39-49 Pairs that differ between the two methods6 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
152
+ page_content=' POUMAY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
153
+ page_content=' ITTOO answers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
154
+ page_content=' Some topics were clearly better paired with one method or the other (Q3 and Q5) while for others, it wasn’t as clear (Q1, Q2 and Q4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
155
+ page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
156
+ page_content=' The ”chose SD” column corresponds to the % of annotators that chose the SD pair as the best pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
157
+ page_content=' Questions Chose SD Confidence level Q1 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
158
+ page_content='1% (22) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
159
+ page_content='2 Q2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
160
+ page_content='2% (14) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
161
+ page_content='6 Q3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
162
+ page_content='1% (30) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
163
+ page_content='7 Q4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
164
+ page_content='8% (13) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
165
+ page_content='5 Q5 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
166
+ page_content='9% (8) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
167
+ page_content='5 Average 54% 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
168
+ page_content='3 For example, figure 3 corresponds to Q1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
169
+ page_content=' It shows how a 2019 topic has been paired with 2020 topics using JS and SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
170
+ page_content=' First, we can notice that the distance recorded between the pairs is close to the threshold for both methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
171
+ page_content=' Specifi- cally, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
172
+ page_content='29 for the JS pair and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
173
+ page_content='09 for the SD pair (threshold = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
174
+ page_content='4 for JS and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
175
+ page_content='1 for SD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
176
+ page_content=' This makes sense as good pairs (pairs with low JS/SD values) are extracted by both methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
177
+ page_content=' Second, the 2019 topic is about social media data security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
178
+ page_content=' Whereas the chosen 2020 topic is about : – Social media when paired with JS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
179
+ page_content=' – Data security when paired with SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
180
+ page_content=' Hence, both pairing seems suitable, which could explain the indecisiveness of annotators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
181
+ page_content=' Specifically, 16 of them decided the SD pairing was better whereas 22 of them decided the JS pairing was better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
182
+ page_content=' Their confidence level for this question was 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
183
+ page_content='2 out of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
184
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
185
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
186
+ page_content=' A first example of different pairing between SD and JS on the same 2019 topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
187
+ page_content=' Similarly, figure 4 corresponds to Q5 and shows how another 2019 topic has been paired based on the two methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
188
+ page_content=' Here, the 2019 topic is about web security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
189
+ page_content=' Whereas the chosen 2020 topic is about : 2020 topics 2019 topic 2020 topics issue company company datum issue social service datum platform account account app app SD user JS- ban @Apple @Facebook @Facebook @iPhone @U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
190
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
191
+ page_content=' @TikTok @Google @Twitter @U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
192
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
193
+ page_content=' @Epic @instagram @Twitter @AppStore @FTC @TrumpUsing meaning instead of words to track topics 7 – Data security when paired with JS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
194
+ page_content=' – Web security topic when paired with SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
195
+ page_content=' Moreover, the topic chosen by SD is a sub-topic of the topic chosen by JS which demonstrates the difficulty in topic tracking in a hierarchical setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
196
+ page_content=' Indeed, it can be difficult to differentiate a topic from its sub-topic, especially if that sub-topic dominates the others as parent topics are the sum of their sub-topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
197
+ page_content=' In this case, annotators agreed more and 30 out of 38 decided the SD pair was better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
198
+ page_content=' Their confidence level for this question was 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
199
+ page_content='5 out of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
200
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
201
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
202
+ page_content=' A second example of different pairing between SD and JS on the same 2019 topic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
203
+ page_content=' Hence, we argue that JS and SD are two fundamentally different approaches and that both have their advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
204
+ page_content=' JS is lexically driven and may work best for linking topics which tend to have a stable and precise vocabulary such as in legal documents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
205
+ page_content=' On the other hand, SD is driven by semantics and may be more appropriate for linking topics that have a greater lexical variability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
206
+ page_content=' Greater lexical variability may be the result of lexical drift over time as terms change in popularity or informal texts which do not use a standard vocabulary such as tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
207
+ page_content=' Hence, we believe that SD not only competes but complements JS for topic tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
208
+ page_content=' 5 Conclusion In this paper, we presented a novel semantic-based topic tracking method (SD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
209
+ page_content=' We showed that its performance was comparable to that of the state of the art method (JS), which is lexically-based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
210
+ page_content=' This validates our hypothesis that semantic information is valuable for tracking topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
211
+ page_content=' Moreover, we have discussed the challenges associated with tracking topics in a topic hierarchy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
212
+ page_content=' First, topics and their sub-topic can be difficult to differ- entiate, which makes topic tracking more challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
213
+ page_content=' Second, deeper topics are more esoteric and consequently it is harder to assess the quality of their track- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
214
+ page_content=' Finally, topic hierarchy may have many equally correct arrangements which makes it difficult to leverage structural information for topic tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
215
+ page_content=' 2020 topics 2019 topic 2020 topics security security issue hacker account datum attack password service system email account vulnerability SD attack JS- app @Garmin @Equifax @Apple @Security @Marriott @iPhone @Signal @Yahoo @Google @Forbe @NSA @Epic @ZDNet @AWS @AppStore8 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
216
+ page_content=' POUMAY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
217
+ page_content=' ITTOO We believe that our work would benefit future studies investigating hybrid methods for topic tracking, such as by integrating lexical and semantic informa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
218
+ page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
219
+ page_content=' Agrawal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
220
+ page_content=', Fu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
221
+ page_content=', Menzies, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
222
+ page_content=': What is wrong with topic modeling?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
223
+ page_content=' and how to fix it using search-based software engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
224
+ page_content=' Information and Software Tech- nology 98, 74–88 (2018) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
225
+ page_content=' Allan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
226
+ page_content=', Carbonell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
227
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
228
+ page_content=', Doddington, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
229
+ page_content=', Yamron, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
230
+ page_content=', Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
231
+ page_content=': Topic detection and tracking pilot study final report (1998) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
232
+ page_content=' AlSumait, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
233
+ page_content=', Barbar´a, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
234
+ page_content=', Domeniconi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
235
+ page_content=': On-line lda: Adaptive topic models for mining text streams with applications to topic detection and tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
236
+ page_content=' In: 2008 eighth IEEE international conference on data mining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
237
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
238
+ page_content=' 3–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
239
+ page_content=' IEEE (2008) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
240
+ page_content=' Blei, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
241
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
242
+ page_content=', Ng, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
243
+ page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
244
+ page_content=', Jordan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
245
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
246
+ page_content=' : Latent dirichlet allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
247
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
248
+ page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
249
+ page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
250
+ page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
251
+ page_content=' 3(null), 993–1022 (Mar 2003) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
252
+ page_content=' Dagan, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
253
+ page_content=', Lee, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
254
+ page_content=', Pereira, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
255
+ page_content=': Similarity-based methods for word sense disam- biguation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
256
+ page_content=' In: 35th Annual Meeting of the Association for Computational Lin- guistics and 8th Conference of the European Chapter of the Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
257
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
258
+ page_content=' 56–63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
259
+ page_content=' Association for Computational Linguis- tics, Madrid, Spain (Jul 1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
260
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
261
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
262
+ page_content='3115/976909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
263
+ page_content='979625, https: //aclanthology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
264
+ page_content='org/P97-1008 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
265
+ page_content=' Fan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
266
+ page_content=', Guo, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
267
+ page_content=', Bouguila, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
268
+ page_content=', Hou, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
269
+ page_content=': Clustering-based online news topic detection and tracking through hierarchical bayesian nonparametric models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
270
+ page_content=' In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
271
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
272
+ page_content=' 2126–2130 (2021) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
273
+ page_content=' Ibrahim, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
274
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
275
+ page_content=', Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
276
+ page_content=': A text analytics approach for online retailing ser- vice improvement: Evidence from twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
277
+ page_content=' Decision Support Systems 121, 37–50 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
278
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
279
+ page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
280
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
281
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
282
+ page_content='dss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
283
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
284
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
285
+ page_content='002, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
286
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
287
+ page_content='com/science/article/pii/S0167923619300405 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
288
+ page_content=' Jung, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
289
+ page_content=', Suh, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
290
+ page_content=': Mining the voice of employees: A text mining approach to identi- fying and analyzing job satisfaction factors from online employee reviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
291
+ page_content=' Decision Support Systems 123, 113074 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
292
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
293
+ page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
294
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
295
+ page_content=' 1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
296
+ page_content='dss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
297
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
298
+ page_content='113074, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
299
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
300
+ page_content='com/science/article/ pii/S0167923619301034 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
301
+ page_content=' Liu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
302
+ page_content=', Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
303
+ page_content=', Tang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
304
+ page_content=', Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
305
+ page_content=', Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
306
+ page_content=': Mapping the technology evolu- tion path: a novel model for dynamic topic detection and tracking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
307
+ page_content=' Scientometrics 125(3), 2043–2090 (2020) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
308
+ page_content=' Poumay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
309
+ page_content=', Ittoo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
310
+ page_content=': HTMOT : Hierarchical Topic Modelling Over Time (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
311
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
312
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
313
+ page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
314
+ page_content='2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
315
+ page_content='03104 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
316
+ page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
317
+ page_content=', Xu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
318
+ page_content=': Leveraging deep learning with lda-based text analyt- ics to detect automobile insurance fraud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
319
+ page_content=' Decision Support Systems 105, 87–95 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
320
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
321
+ page_content='org/https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
322
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
323
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
324
+ page_content='dss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
325
+ page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
326
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
327
+ page_content='001, https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
328
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
329
+ page_content='com/science/article/pii/S0167923617302130 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
330
+ page_content=' Xu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
331
+ page_content=', Meng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
332
+ page_content=', Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
333
+ page_content=', Qiu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
334
+ page_content=', Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
335
+ page_content=', Yao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
336
+ page_content=': Research on topic detection and tracking for online news texts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
337
+ page_content=' IEEE access 7, 58407–58418 (2019) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
338
+ page_content=' Zhu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
339
+ page_content=', Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
340
+ page_content=', Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
341
+ page_content=': A lda based model for topic evolution: Evidence from information science journals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
342
+ page_content=' In: Proceedings of the 2016 International Con- ference on Modeling, Simulation and Optimization Technologies and Applications (MSOTA 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
343
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
344
+ page_content=' 49–54 (2016)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAyT4oBgHgl3EQfrvlK/content/2301.00565v1.pdf'}
HdFLT4oBgHgl3EQfIC9G/content/2301.11998v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:133f1d5b3e5364bf7c7e034c01c0b67e3715928dcc7292ee1ba88333fc2399dd
3
+ size 4799318
HdFLT4oBgHgl3EQfIC9G/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f240089201a5edaa2c6ef230bd1abc335ad89dfe4bdedc2f7fea4d5c0a27610a
3
+ size 3735597
I9AyT4oBgHgl3EQf5_o0/content/2301.00813v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85ae3a0ead4e66b2e3f4a2e2d376bf75f0cf22b027fdd52d7e4aa5ba99c5ff2c
3
+ size 1142929
ItAzT4oBgHgl3EQfjv0x/content/2301.01520v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d750d6af3ffb36df8671afc3565992deccc760fa594a351e080157f29ff6f7c
3
+ size 1479374
ItAzT4oBgHgl3EQfjv0x/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:229e3928fd691a889df513214445f6d3f3a321c61634e2ca163cc82c56d2956a
3
+ size 1769517
KNE1T4oBgHgl3EQfYgRo/content/2301.03139v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4e359c84aa60f6e75ecc9c364e65e4bf2fcd02fe9936e5657771db7f79345b5
3
+ size 602917
KNE1T4oBgHgl3EQfYgRo/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca9c1bbb3f18085d7c11a5c579d1e4aab6740ee5da8171b4a9af984cd0724c90
3
+ size 250280
L9E2T4oBgHgl3EQfBAae/content/tmp_files/2301.03598v1.pdf.txt ADDED
@@ -0,0 +1,1848 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Stream-K: Work-centric Parallel Decomposition for
2
+ Dense Matrix-Matrix Multiplication on the GPU
3
+ Muhammad Osama
4
5
+ University of California, Davis
6
+ Davis, California, USA
7
+ Duane Merrill
8
9
+ NVIDIA Corporation
10
+ Santa Clara, California, USA
11
+ Cris Cecka
12
13
+ NVIDIA Corporation
14
+ Santa Clara, California, USA
15
+ Michael Garland
16
17
+ NVIDIA Corporation
18
+ Santa Clara, California, USA
19
+ John D. Owens
20
21
+ University of California, Davis
22
+ Davis, California, USA
23
+ Abstract
24
+ We introduce Stream-K, a work-centric parallelization of
25
+ matrix multiplication (GEMM) and related computations in
26
+ dense linear algebra. Whereas contemporary decompositions
27
+ are primarily tile-based, our method operates by partitioning
28
+ an even share of the aggregate inner loop iterations among
29
+ physical processing elements. This provides a near-perfect
30
+ utilization of computing resources, regardless of how effi-
31
+ ciently the output tiling for any given problem quantizes
32
+ across the underlying processing elements.
33
+ On GPU processors, our Stream-K parallelization of GEMM
34
+ produces a peak speedup of up to 14× and 6.7×, and an av-
35
+ erage performance response that is both higher and more
36
+ consistent across 32,824 GEMM problem geometries than
37
+ state-of-the-art math libraries such as CUTLASS and cuBLAS.
38
+ Furthermore, we achieve this performance from a single tile
39
+ size configuration per floating-point precision, whereas to-
40
+ day’s math libraries employ complex kernel-selection heuris-
41
+ tics to select from a large ensemble of kernel variants.
42
+ Keywords: Matrix-Multiplication, GPU, Load-Balancing
43
+ 1
44
+ Introduction
45
+ General matrix-matrix product (GEMM), convolution, and
46
+ other similar computations constitute the dominant work-
47
+ loads in many deep learning and scientific computing ap-
48
+ plications. High-performance processors such as GPUs, for
49
+ example, are designed to achieve nearly 100% of their theoret-
50
+ ical peak math throughput when computing GEMM. Doing
51
+ so, however, requires a work decomposition that perfectly
52
+ occupies the underlying physical cores. As we show, attain-
53
+ ing such high levels of processor utilization across a broad
54
+ landscape of problems shapes and sizes can be challenging.
55
+ Classically, GEMM implementations block their compu-
56
+ tation using a data-parallel tiling of the output matrix, as-
57
+ signing the independent production of output tiles among
58
+ concurrent threads (or thread groups) [1, 8, 14]. The work per
59
+ Distribution Statement “A” (Approved for Public Release, Distribution Un-
60
+ limited).
61
+ output tile is regular, and tile production tends to dispatch
62
+ across idle physical cores in “waves”. The overall workload
63
+ is well-balanced and processor utilization is highest when
64
+ there are many waves, i.e., the number of output tiles greatly
65
+ oversubscribes the number of cores.
66
+ However, such oversubscription has shrunk considerably
67
+ as processors have grown in size. An increased core count
68
+ will require fewer waves to produce a given tile count. Big-
69
+ ger cores will compel larger matrix blocking factors, leading
70
+ to fewer waves of larger tiles. In general, execution sched-
71
+ ules with fewer waves are much more likely to suffer from
72
+ quantization inefficiency, i.e., the processor underutilization
73
+ that occurs when the number of output tiles is not an even
74
+ multiple of the number of processor cores. When the last
75
+ wave is partially full, the unused cores must wait for the
76
+ remaining threads to execute millions (if not billions) of
77
+ multiply-accumulate (MAC) instructions before they are able
78
+ to execute any dependent work.
79
+ Figure 1a illustrates such a scenario on a hypothetical GPU
80
+ with four streaming multiprocessor cores (SMs). If we block a
81
+ 384×384×128 GEMM computation into nine 128×128 output
82
+ tiles, a data-parallel decomposition cannot achieve more than
83
+ 75% of the processor’s rated throughput. This theoretical
84
+ utilization ceiling can be improved to 90% by halving the
85
+ tile size as shown in Figure 1b. However, the finer-grained
86
+ blocking factor will be less cache and scratchpad efficient,
87
+ and may preclude any practical performance improvement.
88
+ Quantization inefficiency is a concern for increasingly
89
+ wide processors such as GPUs, where ALUs-per-core and
90
+ cores-per-processor both currently number in the hundreds.
91
+ Consequently, many common GEMM-like workloads now
92
+ exhibit a final, partially full wave that comprises a significant
93
+ fraction of the total computation time.
94
+ The current remedy employed by GPU-based math and
95
+ deep learning libraries is to deploy an ensemble of tiling con-
96
+ figurations. When the ideal blocking factor does not quan-
97
+ tize well, the library chooses among tiling alternatives with
98
+ smaller concurrent work volumes, such as those illustrated
99
+ in Figure 1b and Figure 2a.
100
+ arXiv:2301.03598v1 [cs.DS] 9 Jan 2023
101
+
102
+ (a) Data parallel decomposition with grid size g=9 CTAs,
103
+ large 128 × 128 × 128 CTA work volumes,
104
+ and 75% processor utilization ceiling
105
+ (b) Data parallel decomposition with grid size g=18 CTAs,
106
+ smaller 128 × 64 × 128 CTA work volumes,
107
+ and 90% processor utilization ceiling
108
+ Figure 1. Data-parallel execution schedules for 384 × 384 × 128 GEMM across a hypothetical four-SM GPU.
109
+ (a) Fixed-split decomposition with splitting factor s=2,
110
+ grid size g=18 CTAs, smaller 128 × 128 × 64 CTA work volumes,
111
+ and 90% quantization efficiency
112
+ (b) Basic Stream-K decomposition with grid size g=4 CTAs,
113
+ larger 128 × 128 × 288 CTA work volumes,
114
+ and nearly 100% quantization efficiency
115
+ Figure 2. Tile-splitting execution schedules for 384 × 384 × 128 GEMM across a hypothetical four-SM GPU.
116
+ Tile-based ensembles, however, present performance and
117
+ logistical challenges for math libraries seeking to deliver the
118
+ best-achievable performance across diverse problem sizes
119
+ and shapes. Distributable code size can be problematic for
120
+ large ensembles. For example, NVIDIA’s cuBLAS library [15]
121
+ is hundreds of megabytes, often providing more than twenty
122
+ pre-compiled kernel specializations per architecture for a
123
+ given API entry point. Large ensembles also require sophis-
124
+ ticated selection heuristics. In our evaluation, we show these
125
+ heuristics can struggle to consistently identify the optimal
126
+ configuration for arbitrary problems.
127
+ Unlike these tile-based methods, our Stream-K decompo-
128
+ sition always distributes an even share (within one) of the
129
+ aggregate multiply-accumulate loop iterations required by
130
+ the GEMM computation across SMs. Because the instruction
131
+ workload of a single MAC-loop iteration is far smaller than
132
+ that of an entire output tile, any variance in core workload is
133
+ practically negligible. Stream-K uses the ideal blocking factor
134
+ regardless of problem shape, has communication overheads
135
+ that scale with processor width (rather than output tiles),
136
+ and compiles to a single kernel.
137
+ We use an enormous corpus of 32,824 GEMM shapes and
138
+ sizes to evaluate Stream-K, which we implemented within
139
+ NVIDIA’s CUTLASS library [8]. In comparison with CUT-
140
+ LASS’s data-parallel implementation of the same blocking
141
+ factor, Stream-K provides a substantially higher performance
142
+ 2
143
+
144
+ waveo
145
+ wavei
146
+ wave2
147
+ SMo
148
+ 0
149
+ 8
150
+ 4
151
+ B
152
+ CTA-0
153
+ CTA-4
154
+ CTA-8
155
+ SM1
156
+ 5
157
+ unused resources
158
+ CTA-1
159
+ CTA-5
160
+ 0
161
+ 2
162
+ ZWS
163
+ 2
164
+ 6
165
+ A
166
+ 3
167
+ 5
168
+ 4
169
+ CTA-2
170
+ CTA-6
171
+ 6
172
+ 7
173
+ 8
174
+ SM3
175
+ 3
176
+ CTA-3
177
+ CTA-7
178
+ to
179
+ (time)
180
+ twaveo
181
+ wave1
182
+ wave2
183
+ wave3
184
+ wave4
185
+ SMo
186
+ 0
187
+ 4
188
+ 8
189
+ 12
190
+ 16
191
+ B
192
+ CTA-0
193
+ CTA-4
194
+ CTA-8
195
+ CTA-12
196
+ CTA-16
197
+ SM1
198
+ 1
199
+ 5
200
+ 9
201
+ 13
202
+ 17
203
+ CTA- 1
204
+ CTA-5
205
+ CTA-8
206
+ CTA-13
207
+ CTA-17
208
+ 0
209
+ 2
210
+ 3
211
+ 5
212
+ 1
213
+ 4
214
+ unusedresources
215
+ ZWS
216
+ 2
217
+ 6
218
+ 10
219
+ 14
220
+ A
221
+ 6
222
+ 7
223
+ 8
224
+ 9
225
+ 10
226
+ 11
227
+ CTA-2
228
+ CTA6
229
+ CTA2
230
+ CTA-14
231
+ 12
232
+ 13
233
+ 14
234
+ 15
235
+ 16
236
+ 17
237
+ SM3
238
+ 3
239
+ 7
240
+ 11
241
+ 15
242
+ CTA-3
243
+ CTA-7
244
+ CTA-2
245
+ CTA-15
246
+ tf
247
+ to
248
+ (time)waveo
249
+ wavei
250
+ wave2
251
+ waves
252
+ wave4
253
+ SMo
254
+ 0
255
+ 2
256
+ 4
257
+ 6
258
+ 8
259
+ fixup
260
+ fixup
261
+ fixup
262
+ fixup
263
+ CTA-O
264
+ CTA-
265
+ CTA-8
266
+ CTA-12
267
+ CTA-16
268
+ B
269
+
270
+
271
+
272
+
273
+
274
+
275
+ 1
276
+ -
277
+ SM1
278
+ fixup
279
+ fixup
280
+ fixup
281
+ fixup
282
+ -
283
+ 0
284
+ 2
285
+ 4
286
+ 6
287
+ fixu
288
+ 8
289
+ -
290
+ -
291
+ CTA- 1
292
+ CTA-
293
+ CTA-
294
+ CTA- 1
295
+ CTA-
296
+ 0
297
+ 2
298
+ 1
299
+ resources
300
+ ZWS
301
+ 1
302
+ 3
303
+ 5
304
+ 7
305
+ fixup
306
+ fixup
307
+ fixup
308
+ A
309
+ 3
310
+ 4
311
+ 5
312
+ CTA-2
313
+ CTA-6
314
+ CTA-10
315
+ CTA-
316
+ 14
317
+
318
+
319
+ I pasnun
320
+ -
321
+ SM3
322
+ fixup
323
+ fixup
324
+ fixup
325
+ 3
326
+ 5
327
+ 7
328
+ fixup
329
+ 6
330
+ 7
331
+ 8
332
+ 1
333
+ 1
334
+ CTA-3
335
+ CTA-
336
+ CTA- 1
337
+ CTA- 1
338
+ to
339
+ (time)
340
+ tfwaveo
341
+ SMo
342
+ 0
343
+ B
344
+ CTA-0
345
+
346
+
347
+ SM1
348
+ 2
349
+ 3
350
+ 4
351
+ CTA-1
352
+ 2
353
+
354
+
355
+ ZWS
356
+ 4
357
+ 5
358
+ 6
359
+ A
360
+ 3
361
+ 5
362
+ CTA-2
363
+
364
+ 6
365
+ 8
366
+ SM3
367
+ 7
368
+ 8
369
+ 6
370
+ CTA3
371
+ to
372
+ (time)response across our landscape of GEMM problems, demon-
373
+ strating up to 14× speedup on NVIDIA A100 GPUs.
374
+ To highlight the practical challenges of ensemble-based so-
375
+ lutions, we also evaluate NVIDIA’s cuBLAS library as well as
376
+ an oracle-driven ensemble of data-parallel CUTLASS tilings.
377
+ Relative to both ensembles, we show that our single-kernel
378
+ Stream-K achieves both (1) higher average performance,
379
+ and (2) higher performance consistency. Versus cuBLAS,
380
+ Stream-K demonstrates up to 6.7× speedup and virtually no
381
+ instances of slowdown for compute-bound problems.
382
+ 2
383
+ Background
384
+ General Matrix Multiplication (GEMM) is defined as the
385
+ product C = 𝛼AB + 𝛽C where 𝛼 and 𝛽 are scalar values
386
+ and A, B, and C are matrices. (For simplicity, we assume
387
+ 𝛼 = 1, 𝛽 = 0 throughout this paper.) We refer to the shape
388
+ of a given GEMM problem by the volumetric extents of its
389
+ computation. For example, a m×n×k GEMM consumes m×k
390
+ and k × n input matrices A and B, respectively, performs
391
+ m × n × k multiply-accumulate operations, and produces an
392
+ m × n output matrix C.
393
+ GEMM is a performance-critical subroutine in many large-
394
+ scale engineering and scientific applications. It plays an im-
395
+ portant role in matrix factorization methods such as LU, QR,
396
+ and Cholesky decomposition. High-performance modeling
397
+ and simulation applications in engineering, climate simu-
398
+ lation, cosmology, quantum chemistry, and other scientific
399
+ domains rely on these factorization methods.
400
+ Matrix multiplication is also the fundamental building
401
+ block of modern deep learning (DL) methods. The training
402
+ of deep neural networks (DNNs) is often performed on mas-
403
+ sive datasets across large distributed systems [13]. Many DL
404
+ training and inference operations are cast as matrix multi-
405
+ plications. For example, image recognition and computer vi-
406
+ sion models rely on convolution, which can be implemented
407
+ directly as the product of filter and image datasets [4]. Trans-
408
+ former architectures, which have come to dominate natural
409
+ language processing and other applications, are almost en-
410
+ tirely limited by the performance of large matrix products.
411
+ Early work on GPU matrix-matrix multiplication from
412
+ Larsen and McAllister framed the computation as a multi-
413
+ texture multiplication and blending operation [11]. The user-
414
+ programmable shared memory provided by subsequent GPU
415
+ architectures enabled higher-performing data parallel schemes
416
+ with two levels of blocking (shared memory and registers)
417
+ with tile sizes informed via extensive micro-benchmarking
418
+ analysis [2, 14, 17, 19] and auto-tuning [5, 7, 12].
419
+ The MAGMA GPU math library was perhaps the first to
420
+ optimize for diverse GEMM problem shapes [9]. Their solu-
421
+ tion applied a constrained set of tiling parameters to a tem-
422
+ plated CUDA C++ code stencil, generating several hundred
423
+ data-parallel variants per API primitive (e.g., hgemm_tt() for
424
+ half-precision transpose-transpose GEMM). They evaluated
425
+ these variants to distill a small ensemble of typically three
426
+ to five kernels that collectively perform well across a diver-
427
+ sity of problem shapes. Kernel selection and dispatch for a
428
+ given problem was governed by size thresholds expressed
429
+ via simple handwritten rules.
430
+ Subsequent GPU math libraries have employed more so-
431
+ phisticated code-generation and kernel-selection compo-
432
+ nents. For example, the ISAAC project uses machine learning
433
+ techniques to predict an optimal tiling and/or splitting pa-
434
+ rameterization for a given GEMM shape, which can then
435
+ be instantiated either online or offline via a PTX-level code
436
+ generator [18].
437
+ NVIDIA’s cuBLAS [15] library has provided an extended
438
+ cublasGemmEx interface that allows the caller to select from
439
+ among 24 different GEMM “algorithms”. Carefully trained
440
+ heuristics choose between this large space of alternatives
441
+ when using the default interface. These algorithms imple-
442
+ ment a variety of different data-parallel and fixed-split vari-
443
+ ants, and it is common for cuBLAS to have assembled each
444
+ variant into its own architecture-specific kernel program for
445
+ code optimization purposes. The cross product of GEMM
446
+ API functionality, strategic variants, and microarchitecture
447
+ has resulted in distributions that are increasingly enormous,
448
+ exceeding hundreds of megabytes of executable code.
449
+ Given the fast-paced and rapidly changing nature of con-
450
+ temporary deep learning, recent work has focused on pro-
451
+ gramming models for simplifying the expression and con-
452
+ struction high performance kernels that alter or supplement
453
+ the GEMM computation. The CUTLASS C++ library pro-
454
+ vides data-movement and multiply-accumulation classes for
455
+ composing custom GEMM-like computations at all levels
456
+ of the GPU thread hierarchy [8]. Triton [19] is a domain-
457
+ specific language for tensor programming centered on the
458
+ expression, transformation, and optimization of block/tile
459
+ concepts. Other domain-specific programming languages
460
+ such as Halide [16] and TVM [3] separate the expression of
461
+ pointwise operators from that of loop scheduling. Fireiron [6]
462
+ further adds data movement constructs into the scheduling
463
+ grammar.
464
+ 3
465
+ Existing Work Decomposition Strategies
466
+ Modern processors typically store A, B, and C in a large, slow,
467
+ distant memory and have access to a small, fast, scratchpad
468
+ or cache memory. A primary goal for any GEMM implemen-
469
+ tation is to leverage these local storage resources so that the
470
+ resulting implementation is computation-bound.
471
+ 3.1
472
+ Sequential Cache-Blocked
473
+ The classic cache-blocked formulation of GEMM divides its
474
+ computational volume into blocks and chooses a traversal
475
+ order that exposes memory locality. Algorithm 1 presents a
476
+ simplified implementation comprising six loops. The inner-
477
+ most three loops iterate within the blocking factors BLK_M,
478
+ 3
479
+
480
+ BLK_N, and BLK_K, while the outermost three iterate across
481
+ them. If the cache can capture one block from each of the
482
+ three matrices, the resulting data reuse among those ele-
483
+ ments will significantly reduce the number of last-level mem-
484
+ ory accesses [10].
485
+ Algorithm 1 Sequential cache-blocked GEMM.
486
+ 1: ▷ tile-processing outer loops
487
+ 2: for mm ← 0 to m step BLK_M do
488
+ 3:
489
+ for nn ← 0 to n step BLK_N do
490
+ 4:
491
+ ▷ zero-initialize output tile
492
+ 5:
493
+ for mmm ← mm to (mm + BLK_M) do
494
+ 6:
495
+ for nnn ← nn to (nn + BLK_N) do
496
+ 7:
497
+ C[mmm,nnn] ← 0
498
+ 8:
499
+ end for
500
+ 9:
501
+ end for
502
+ 10:
503
+ ▷ perform the MAC iterations for this tile
504
+ 11:
505
+ for kk ← 0 to k step BLK_K do
506
+ 12:
507
+ ▷ MAC iteration (fully unrolled)
508
+ 13:
509
+ for mmm ← mm to (mm + BLK_M) do
510
+ 14:
511
+ for nnn ← nn to (nn + BLK_N) do
512
+ 15:
513
+ for kkk ← kk to (kk + BLK_K) do
514
+ 16:
515
+ C[mmm,nnn] ← C[mmm, nnn] +
516
+ 17:
517
+ (A[mmm,kkk] × B[kkk,nnn])
518
+ 18:
519
+ end for
520
+ 19:
521
+ end for
522
+ 20:
523
+ end for
524
+ 21:
525
+ end for
526
+ 22:
527
+ end for
528
+ 23: end for
529
+ 3.2
530
+ Data-parallel
531
+ As shown in Algorithm 2, the data-parallel GPU formulation
532
+ of GEMM is decomposed across a grid of parallel thread
533
+ blocks, or cooperative thread arrays (CTAs)1. The grid is sized
534
+ such that each CTA produces its own (BLK_M × BLK_N)
535
+ output tile.
536
+ For exposition, the MacLoop() subroutine of Algorithm 3
537
+ encapsulates the multiply-accumulate workloads that com-
538
+ pute the values of the CTA’s output tile. It performs a se-
539
+ quence of MAC-loop iterations in the accumulation domain,
540
+ e.g., the k-axis for GEMM. Each MAC-loop iteration com-
541
+ prises a per-thread volume of (BLK_M × BLK_N × BLK_K) /
542
+ CTA_THREADS MAC operations. As the computation pro-
543
+ ceeds, fragments of the input matrices are staged through
544
+ the SM’s shared memory for local reuse among individual
545
+ threads.
546
+ Although this particular presentation of MacLoop() de-
547
+ ploys one thread per output tile element, the sophisticated
548
+ implementations in CUTLASS [8] and cuBLAS [8] will: (1)
549
+ fully unroll the per-thread MAC-loop iteration; (2) imple-
550
+ ment additional blocking at the warp and/or thread levels;
551
+ and (3) orchestrate a software pipeline of shared memory
552
+ data movement across MAC-loop iterations.
553
+ 1Blocks of GPU threads are coscheduled in CTAs, which virtualize the
554
+ hardware’s streaming multiprocessor cores (SMs).
555
+ Unfortunately, this classic data-parallel decomposition is
556
+ liable to suffer from quantization inefficiency on modern
557
+ GPUs, as illustrated in Figure 1. Although an ensemble of di-
558
+ verse blocking factors may uncover opportunities for greater
559
+ processor utilization, it is unlikely to facilitate perfect quan-
560
+ tizations for arbitrary problem sizes. Furthermore, smaller
561
+ blocking factors have two drawbacks: (1) fewer instructions
562
+ per MAC-loop iteration for covering the latencies of global
563
+ and shared memory transfers in pipelined implementations;
564
+ and (2) a higher proportion of memory operations relative
565
+ to MAC instructions, which may prevent them from being
566
+ computation-bound.
567
+ Algorithm 2 Data-parallel GPU GEMM.
568
+ 1: _shared_ accum[BLK_M,BLK_N]
569
+ 2: iters_per_tile ← ⌈k/BLK_K⌉
570
+ 3: ▷ instantiate one CTA per output tile
571
+ 4: fork CTA[x] in [ ⌈m/BLK_M⌉ × ⌈n/BLK_N⌉ ] do
572
+ 5:
573
+ ▷ perform the MAC iterations for this tile
574
+ 6:
575
+ accum ← MacLoop(x, 0, iters_per_tile)
576
+ 7:
577
+ ▷ store accumulators to output tile
578
+ 8:
579
+ StoreTile(C, x, accum)
580
+ 9: join
581
+ Algorithm 3 CTA-wide MacLoop() subroutine for perform-
582
+ ing a sequence of MAC-loop iterations.
583
+ 1: procedure MacLoop(tile_idx, iter_begin, iter_end)
584
+ 2:
585
+ _shared_ accum[BLK_M,BLK_N]
586
+ 3:
587
+ _shared_ frag_a[BLK_M,BLK_K]
588
+ 4:
589
+ _shared_ frag_b[BLK_K,BLK_N]
590
+ 5:
591
+ ▷ determine output tile coordinates
592
+ 6:
593
+ mm ← BLK_M × (tile_idx / ⌈m/BLK_M⌉)
594
+ 7:
595
+ nn ← BLK_N × (tile_idx % ⌈m/BLK_M⌉)
596
+ 8:
597
+ ▷ zero-initialize local accumulator storage
598
+ 9:
599
+ accum ← 0
600
+ 10:
601
+ ▷ perform the specified range of MAC iters for this tile
602
+ 11:
603
+ for iter ← iter_begin to iter_end do
604
+ 12:
605
+ kk ← iter × BLK_K
606
+ 13:
607
+ ▷ copy global matrix fragments to local storage
608
+ 14:
609
+ frag_a ← LoadFragment(A, mm, kk)
610
+ 15:
611
+ frag_b ← LoadFragment(B, kk, nn)
612
+ 16:
613
+ fork THREAD[mmm,nnn] in [BLK_M, BLK_N] do
614
+ 17:
615
+ ▷ MAC iteration per thread (fully unrolled)
616
+ 18:
617
+ for kkk ← 0 to BLK_K do
618
+ 19:
619
+ accum[mmm, nnn] ← accum[mmm,nnn] +
620
+ 20:
621
+ (frag_a[mmm,kkk] × frag_b[kkk,nnn])
622
+ 21:
623
+ end for
624
+ 22:
625
+ join
626
+ 23:
627
+ end for
628
+ 24:
629
+ return accum
630
+ 25: end procedure
631
+ 3.3
632
+ Fixed-split
633
+ Alternatively, the granularity of work assigned to each CTA
634
+ can be reduced via parallelization across the accumulation
635
+ dimension. For a given output tile, the associativity of addi-
636
+ tion allows the iteration domain to be split among multiple
637
+ 4
638
+
639
+ concurrent CTAs, followed by a dependent “fixup” step to
640
+ reduce the partial sums computed by each CTA. We high-
641
+ light this fixed-split approach in Algorithm 4, where each
642
+ output tile is cooperatively produced by s CTAs. Notably,
643
+ it functions identically to the data-parallel decomposition
644
+ when the splitting factor s = 1.
645
+ The fixed-split decomposition is also featured in CUTLASS
646
+ and cuBLAS. The splitting factor is implemented as a runtime
647
+ parameter, allowing a single kernel executable to support
648
+ multiple work volumes while retaining the ideal blocking
649
+ factors for optimal data sharing and latency hiding. How-
650
+ ever, as illustrated in Figure 2a, the prospect of achieving a
651
+ perfect quantization from a uniform tile-splitting is unlikely.
652
+ Furthermore, the extra overheads of communication and
653
+ synchronization scale with both the overall problem size as
654
+ well as the splitting factor.
655
+ Algorithm 4 Fixed-split GPU GEMM with splitting factor s.
656
+ 1: _shared_ accum[BLK_M,BLK_N]
657
+ 2: iters_per_tile ← ⌈k/BLK_K⌉
658
+ 3: iters_per_split ← ⌈iters_per_tile/s⌉
659
+ 4: ▷ instantiate s CTAs per output tile
660
+ 5: fork CTA[x,y] in [ ⌈m/BLK_M⌉ × ⌈n/BLK_N⌉, s] do
661
+ 6:
662
+ ▷ perform the range of MAC iterations for this split
663
+ 7:
664
+ iter ← y × iters_per_split
665
+ 8:
666
+ iter_end ← min(iters_per_tile, iter + iters_per_split)
667
+ 9:
668
+ accum ← MacLoop(x, iter, iter_end)
669
+ 10:
670
+ ▷ consolidate partial-sums across CTAs
671
+ 11:
672
+ if y ≠ 0 then
673
+ 12:
674
+ ▷ store accumulators to temporary global storage
675
+ 13:
676
+ StorePartials(partials[x,y], accum)
677
+ 14:
678
+ Signal(flags[x,y])
679
+ 15:
680
+ else
681
+ 16:
682
+ �� accumulate partial sums from other CTAs contributing to this
683
+ tile
684
+ 17:
685
+ for cta ← 1 to s do
686
+ 18:
687
+ Wait(flags[x,cta])
688
+ 19:
689
+ accum ← accum + LoadPartials(partials[x,cta])
690
+ 20:
691
+ end for
692
+ 21:
693
+ ▷ store accumulators to output tile
694
+ 22:
695
+ StoreTile(C, tile_id, accum)
696
+ 23:
697
+ end if
698
+ 24: join
699
+ 4
700
+ Our Stream-K Decomposition
701
+ Our Stream-K decomposition is a tile-splitting parallelization
702
+ in which the splitting seams are completely dissociated from
703
+ the tiling structure itself. Although we employ familiar block-
704
+ ing and tiling strategies for data reuse, we instead quantize
705
+ the GEMM computation into MAC-loop iterations, i.e., small
706
+ volumes of CTA-wide BLK_M × BLK_N × BLK_K work. As
707
+ presented in Algorithm 5, Stream-K evenly partitions the
708
+ GEMM’s aggregate workload of MAC-loop iterations across
709
+ a constant-sized grid of g CTAs. Each CTA’s range of MAC-
710
+ loop iterations is mapped contiguously into the m → n → k
711
+ linearization of the GEMM shape, crossing output-tile bound-
712
+ aries as it may.
713
+ Algorithm 5 Basic Stream-K GPU GEMM with grid size g.
714
+ 1: _shared_ accum[BLK_M,BLK_N]
715
+ 2: iters_per_tile ← ⌈k/BLK_K⌉
716
+ 3: total_iters ← ⌈m/BLK_M⌉ × ⌈n/ BLK_N⌉ × iters_per_tile
717
+ 4: iters_per_cta ← ⌈total_iters / g⌉
718
+ 5: ▷ instantiate g CTAs
719
+ 6: fork CTA[x] in [g] do
720
+ 7:
721
+ iter ← x × iters_per_cta
722
+ 8:
723
+ iter_end ← iter + iters_per_cta
724
+ 9:
725
+ ▷ iteration-processing outer loop
726
+ 10:
727
+ while iter < iter_end do
728
+ 11:
729
+ tile_idx ← iter / iters_per_tile
730
+ 12:
731
+ tile_iter ← tile_idx × iters_per_tile
732
+ 13:
733
+ tile_iter_end ← tile_iter + iters_per_tile
734
+ 14:
735
+ ▷ perform the range of MAC iterations for this tile
736
+ 15:
737
+ local_iter ← iter - tile_iter
738
+ 16:
739
+ local_iter_end ←
740
+ 17:
741
+ min(iter_end, tile_iter_end) - tile_iter
742
+ 18:
743
+ accum ←
744
+ 19:
745
+ MacLoop(tile_id, local_iter, local_iter_end)
746
+ 20:
747
+ ▷ consolidate partial-sums across CTAs
748
+ 21:
749
+ tile_started ← iter = tile_iter
750
+ 22:
751
+ tile_ended ← (iter_end ≥ tile_iter_end)
752
+ 23:
753
+ if ¬tile_started then
754
+ 24:
755
+ ▷ store accum to temporary global storage
756
+ 25:
757
+ StorePartials(partials[x], accum)
758
+ 26:
759
+ Signal(flags[x])
760
+ 27:
761
+ else
762
+ 28:
763
+ ▷ store accumulators to output tile
764
+ 29:
765
+ if ¬tile_ended then
766
+ 30:
767
+ ▷ accumulate partial sums from other CTA contributing
768
+ to this tile
769
+ 31:
770
+ cta_end ← tile_iter_end / iters_per_tile
771
+ 32:
772
+ for cta ← (x+1) in cta_end do
773
+ 33:
774
+ Wait(flags[cta])
775
+ 34:
776
+ accum ← accum
777
+ 35:
778
+ + LoadPartials(partials[cta])
779
+ 36:
780
+ end for
781
+ 37:
782
+ end if
783
+ 38:
784
+ StoreTile(C, tile_id, accum)
785
+ 39:
786
+ end if
787
+ 40:
788
+ iter ← tile_iter_end
789
+ 41:
790
+ end while
791
+ 42: join
792
+ Should a given CTA’s starting and/or ending iterations
793
+ not coincide with tile boundaries (as is expected to be the
794
+ common case), it must consolidate its partial results with
795
+ those of the other CTA(s) also covering that tile. In this
796
+ basic implementation, each output tile in C is written by the
797
+ CTA that performed that tile’s k = 0 MAC-loop iteration.
798
+ Before it can do so, however, it must accumulate any partial
799
+ sums shared from other CTAs in temporary global storage.
800
+ Notably, Stream-K’s communication, synchronization, and
801
+ global storage overheads are independent of problem size,
802
+ scaling instead with the number of CTAs g.
803
+ A secondary benefit of Stream-K is that synchronization-
804
+ waiting is likely negligible when the number of output tiles is
805
+ greater than the number of CTAs. In this regime, each output
806
+ tile is covered by at most two CTAs, and the tile-processing
807
+ 5
808
+
809
+ skew ensures that the accumulating CTA will not need its
810
+ peer contributions until well after those collaborators have
811
+ finished producing them.
812
+ Continuing our earlier example, Figure 2b illustrates the
813
+ basic Stream-K execution schedule of the 384 × 384 × 128
814
+ GEMM problem on a hypothetical four-SM GPU. To fully
815
+ occupy the GPU, we launch g = 4 CTAs. Assuming BLK_M =
816
+ 128, BLK_N = 128, and BLK_K = 4, each CTA is tasked with
817
+ a 128 × 128 × 288 work volume comprising 72 MAC-loop
818
+ iterations. This results in a 100% quantization efficiency, as all
819
+ four SMs will execute the same number of MAC instructions.
820
+ Additionally, the work volume of a single MAC-loop iter-
821
+ ation is 32× smaller than that of an entire output tile. Con-
822
+ sequently, a 32-way fixed-split decomposition would also
823
+ provide a 100% quantization efficiency, but at the expense
824
+ of an 8× larger “fixup” overhead. Furthermore, Stream-K is
825
+ better able to hide the latency of inter-CTA synchronization
826
+ due to the temporal skew between writers and readers when
827
+ sharing partial sums.
828
+ Stream-K also generalizes to both fixed-split and data-
829
+ parallel decompositions. When the grid size g is an even
830
+ multiple of the number of output tiles, Stream-K functions
831
+ exactly as the fixed-split decomposition. Similarly, when g
832
+ equals the number of output tiles, Stream-K behaves identi-
833
+ cally to the data-parallel decomposition. We take advantage
834
+ of this generalization to create an optimized hybridization
835
+ of the Stream-K decomposition in following section (5.2).
836
+ 5
837
+ Implementation Details
838
+ The work decomposition we introduced in the last section
839
+ can be instantiated in a number of different ways to suit
840
+ the needs of different hardware architectures and software
841
+ library designs. Our implementation targets NVIDIA GPUs
842
+ and is designed to be integrated into existing libraries like
843
+ cuBLAS and CUTLASS. In this section, we describe how
844
+ we configure the kernels we launch and introduce a hy-
845
+ bridization scheme that helps ensure users achieve maxi-
846
+ mum GEMM performance across the widest possible range
847
+ of problem shapes.
848
+ We also emphasize that these are truly internal implemen-
849
+ tation details. They are completely transparent to the user
850
+ of a BLAS-like library and do not alter the library’s interface.
851
+ The only observable impact is the improved performance
852
+ characteristics that we analyze in Section 6.
853
+ 5.1
854
+ Kernel Configuration
855
+ The tile size chosen for blocking the GEMM computation is,
856
+ of course, a critical parameter controlling the performance of
857
+ the GEMM kernel. For modern NVIDIA GPUs, appropriate
858
+ tile sizes are determined by the shape of matrices supported
859
+ by the GPU’s Tensor Cores. Based on extensive empirical
860
+ experience, we selected the smallest CTA-wide tile size ca-
861
+ pable of achieving 99% of the GPU’s peak TFLOP/s for very
862
+ large GEMM volumes for each supported precision. For the
863
+ NVIDIA A100 GPU used in our experiments, these sizes are
864
+ 64×64×16 for FP64 problems and 128×128×32 for FP16→32
865
+ problems.
866
+ Achieving maximal GEMM performance from Stream-K
867
+ parallelization also requires some degree of dynamic problem-
868
+ specific configuration. Before launching a kernel we choose
869
+ a grid size likely to yield the best performance on the specific
870
+ problem shape at hand. This is in contrast to ensemble-based
871
+ approaches which accommodate diverse problem shapes
872
+ through the static generation of many kernel variants based
873
+ on workload decomposition and blocking factor.
874
+ Our grid size selection heuristic is based on a simple an-
875
+ alytical model that minimizes the cost of reading, writing,
876
+ and accumulating partial sums while equally distributing
877
+ the MAC-loop iterations per CTA. Details of this analytical
878
+ model are provided in the supplementary material (Appen-
879
+ dix A.1). Parameters to the model are trivially chosen with
880
+ empirical measurements and need only be done once per
881
+ target architecture. The resulting parameters can then be
882
+ compiled statically into the library. Again, this is in con-
883
+ trast to ensemble-based approaches that rely on potentially
884
+ complex heuristics and machine learning models for kernel
885
+ selection at run time.
886
+ 5.2
887
+ Data-parallel Hybridization
888
+ The basic Stream-K decomposition can, in certain cases, ex-
889
+ hibit tile-processing skew that leads to potentially adverse
890
+ effects on cache performance. When the number of output
891
+ tiles t is not an even multiple of the grid size g, the starting
892
+ k-offset for the first MAC-loop iteration in each CTA will
893
+ be different. Depending on the sizes and shapes of the in-
894
+ put matrices and blocking factors, this skew may preclude
895
+ these fragments from seeing reuse across CTAs in the GPU’s
896
+ cache structure. In Figure 3a, for example, the initial k-axis
897
+ fragment offsets for each of the four CTAs will be k = 0,
898
+ k = 32, k = 64, and k = 96, respectively. Furthermore, this
899
+ 32-element skew between CTAs will persist for the duration
900
+ of the GEMM computation.
901
+ Tile-processing skew is a direct consequence of Stream-K’s
902
+ workload balancing strategy. However, we can take measures
903
+ to limit its duration by applying Stream-K’s iteration bal-
904
+ ancing to a smaller, tile-aligned region of the total iteration
905
+ domain such that the remaining tiles can be produced in full,
906
+ temporally aligned waves.
907
+ The simplest hybrid scheme is the “data-parallel + one-tile
908
+ Stream-K” schedule illustrated in Figure 3b. It applies itera-
909
+ tion balancing only among the tiles otherwise remaining for
910
+ a final, partially full data-parallel wave. The total number of
911
+ full waves is w = ⌊t/p⌋, where t is the number of output tiles
912
+ and p is the number of SM cores in the GPU. Consequently,
913
+ each Stream-K CTA receives an even share of iterations that
914
+ is less than one tile’s worth. Unfortunately, this strategy has
915
+ 6
916
+
917
+ (a) Basic Stream-K
918
+ (b) DP + one-tile SK
919
+ (c) Two-tile SK + DP
920
+ Figure 3. Basic Stream-K vs. hybrid execution schedules for 896 × 384 × 128 GEMM across a hypothetical four-SM GPU.
921
+ little ability to hide the synchronization latency for the ex-
922
+ change of partial sums when three or more CTAs cover the
923
+ same tile. In these scenarios, the accumulating CTA may be
924
+ forced to wait for the contributions of other CTAs to become
925
+ visible, as all but the last will be completing their final it-
926
+ erations at roughly the same time. Furthermore, the basic
927
+ version of our scheme for aggregating partials is serialized
928
+ within a single CTA, and thus will likely cause SM workload
929
+ imbalance when the number of contributing CTAs per tile is
930
+ large.
931
+ We address these problems with our “two-tile Stream-K
932
+ + data-parallel” hybrid schedule, illustrated in Figure 3c. It
933
+ performs one fewer full data-parallel wave in exchange for
934
+ each Stream-K CTA receiving more than one tile’s worth of
935
+ iterations (but fewer than two). This provides much better
936
+ latency hiding when w ≥ 2, and each accumulating CTA will
937
+ only need to receive partials from one other contributing
938
+ CTA. Otherwise, it behaves identically to the “DP + one tile
939
+ SK” schedule. This hybrid approach results in both improved
940
+ memory access patterns and latency hiding. It also shows
941
+ the versatility of the generic Stream-K looping structure
942
+ to implement different scheduling policies within the same
943
+ kernel instance.
944
+ 6
945
+ Performance Evaluation
946
+ We have implemented our Stream-K decomposition using
947
+ NVIDIA’s CUTLASS library of CUDA C++ template abstrac-
948
+ tions for authoring GEMM-like computations. CUTLASS pro-
949
+ vides the optimized equivalent of the CTA-wide MacLoop()
950
+ subroutine in Algorithm 3, which performs blocking, tiling,
951
+ and software-pipelined data movement that is analogous
952
+ to the closed-source cuBLAS and cuDNN implementations.
953
+ Our evaluation encompasses both (1) double-precision FP64
954
+ GEMM, and (2) mixed-precision FP16→32 GEMM. For the
955
+ latter, the input matrices A and B comprise half-precision
956
+ FP16 values, yet the internal accumulation and output matrix
957
+ C values are single-precision FP32.
958
+ Figure 4. The test domain of 32,824 GEMM problem shapes
959
+ and sizes used for performance evaluation.
960
+ {m} = {128 . . . 8192}, {n} = {128 . . . 8192}, {k} = {128 . . . 8192}
961
+ Hardware environment. Our test GPU is the NVIDIA
962
+ A100, which contains 108 SM cores. For measurement sta-
963
+ bility, we lock the power envelope at 400 W and SM clocks
964
+ at 1005 MHz (∼71% of their dynamic peak). This establishes
965
+ FP64 tensor-core peak throughput of 13.9 TFLOP/s, and
966
+ mixed FP16→32 tensor-core peak throughput of 222.3 TFLOP/s.
967
+ Dataset. Our test corpus intends to approximate the enor-
968
+ mous breadth and scope of device-wide GEMM problems
969
+ that GPU math kernel libraries are designed to accommodate.
970
+ As shown in Figure 4, we evaluate 32,824 different problem
971
+ sizes and shapes, log-sampled at random within a domain
972
+ of m, n, and k matrix dimensions whose volume spans six
973
+ orders of magnitude.
974
+ 7
975
+
976
+ B
977
+ 2
978
+ 3
979
+ 5
980
+ 7
981
+ 8
982
+ 6
983
+ A
984
+ 9
985
+ 10
986
+ 11
987
+ 12
988
+ 13
989
+ 14
990
+ 15
991
+ 16
992
+ 17
993
+ 18
994
+ 19
995
+ 20waveo
996
+ SMo
997
+ fixup
998
+ 1
999
+ 2
1000
+ 3
1001
+ 4
1002
+ 5
1003
+ CTA-0
1004
+
1005
+
1006
+ SM1
1007
+ fixup
1008
+ f ixup
1009
+ 5
1010
+ 6
1011
+ 7
1012
+ 8
1013
+ 9
1014
+ 10
1015
+ CTA1
1016
+
1017
+
1018
+ SM2
1019
+ fixup
1020
+ f ixup
1021
+ 10
1022
+ 11
1023
+ 12
1024
+ 13
1025
+ 14
1026
+ 15
1027
+ CTA-2
1028
+
1029
+
1030
+ SM3
1031
+ fixup
1032
+ 15
1033
+ 16
1034
+ 17
1035
+ 18
1036
+ 19
1037
+ 20
1038
+ CTA-3
1039
+ to
1040
+ (time)waveo
1041
+ waver
1042
+ wave3
1043
+ wave.
1044
+ wave.
1045
+ 5
1046
+ wave
1047
+ SMo
1048
+ 12
1049
+ 16
1050
+ fixup
1051
+ 0
1052
+ 4
1053
+ 8
1054
+ 21
1055
+ fixup
1056
+ fixup
1057
+ CTA-O
1058
+ CTA-4
1059
+ CTA-8
1060
+ CTA-12
1061
+ CTA-16
1062
+ 个个个
1063
+
1064
+ SM1
1065
+ 5
1066
+ 9
1067
+ 13
1068
+ 17
1069
+ fixup
1070
+ 1
1071
+ 21
1072
+ CTA-1
1073
+ CTA-5
1074
+ CTA-9
1075
+ CTA-13
1076
+ CTA-17
1077
+ sa
1078
+
1079
+ unused resouro
1080
+ SM2
1081
+ 2
1082
+ 6
1083
+ 10
1084
+ 14
1085
+ 18
1086
+ fixup
1087
+ 21
1088
+ CTA-2
1089
+ CTA-6
1090
+ CTA-10
1091
+ CTA-14
1092
+ CTA-18
1093
+
1094
+ SM3
1095
+ fixup
1096
+ 3
1097
+ 7
1098
+ 11
1099
+ 15
1100
+ 19
1101
+ 21
1102
+ CTA-3
1103
+ CTA-7
1104
+ CTA-11
1105
+ CTA-15
1106
+ CTA-19
1107
+ to
1108
+ (time)
1109
+ tfwaveo
1110
+ wave2
1111
+ wave.
1112
+ wave:
1113
+ wave
1114
+ SMo
1115
+ fixup
1116
+ 5
1117
+ 9
1118
+ 13
1119
+ 17
1120
+ CTA-0
1121
+ CTA-4
1122
+ CTA-8
1123
+ CTA- 12
1124
+ CTA- 16
1125
+
1126
+
1127
+ SM1
1128
+ fixup
1129
+ fixup
1130
+ 2
1131
+ 6
1132
+ 10
1133
+ 14
1134
+ 18
1135
+ TAt
1136
+ CTA-5
1137
+ CTA-9
1138
+ CTA- 13
1139
+ CTA- 17
1140
+
1141
+
1142
+ SM2
1143
+ fixup
1144
+ f ixup
1145
+ 2
1146
+ 3
1147
+ 7
1148
+ 11
1149
+ 15
1150
+ 19
1151
+ CTA-2
1152
+ CTA-6
1153
+ CTA- 10
1154
+ CTA-14
1155
+ CTA- 18
1156
+
1157
+
1158
+ SM3
1159
+ fixup
1160
+ 3
1161
+ 8
1162
+ 12
1163
+ 16
1164
+ 20
1165
+ CTA-3
1166
+ CTA-7
1167
+ CTA-11
1168
+ CTA- 15
1169
+ CTA-19
1170
+ to
1171
+ (time)log(m)
1172
+ 10
1173
+ 10
1174
+ 12
1175
+ 12
1176
+ 14
1177
+ 14
1178
+ 14
1179
+ 14
1180
+ 13
1181
+ 13
1182
+ 12
1183
+ 12
1184
+ 11
1185
+ 11
1186
+ 10
1187
+ 10
1188
+ log(n)
1189
+ 6
1190
+ 9
1191
+ 8
1192
+ 8
1193
+ 7
1194
+ 8
1195
+ 10
1196
+ log(k)
1197
+ 10
1198
+ 12
1199
+ 12
1200
+ 14
1201
+ 14vs.
1202
+ CUTLASS
1203
+ 64 × 64 × 16
1204
+ vs.
1205
+ cuBLAS
1206
+ vs.
1207
+ cuBLAS
1208
+ > 150 ops/B
1209
+ vs.
1210
+ CUTLASS
1211
+ oracle
1212
+ Average
1213
+ 1.23×
1214
+ 1.06×
1215
+ 1.03×
1216
+ 1.05×
1217
+ StdDev
1218
+ 0.45
1219
+ 0.10
1220
+ 0.03
1221
+ 0.09
1222
+ Min
1223
+ 0.77×
1224
+ 0.68×
1225
+ 0.99×
1226
+ 0.70×
1227
+ Max
1228
+ 5.63×
1229
+ 2.55×
1230
+ 1.24×
1231
+ 1.64×
1232
+ Table 1. Stream-K FP64 Relative Performance
1233
+ vs.
1234
+ CUTLASS
1235
+ 128 × 128 × 32
1236
+ vs.
1237
+ cuBLAS
1238
+ vs.
1239
+ cuBLAS
1240
+ > 150 ops/B
1241
+ vs.
1242
+ CUTLASS
1243
+ oracle
1244
+ Average
1245
+ 1.63×
1246
+ 1.13×
1247
+ 1.15×
1248
+ 1.12×
1249
+ StdDev
1250
+ 1.46
1251
+ 0.45
1252
+ 0.12
1253
+ 0.37
1254
+ Min
1255
+ 0.80×
1256
+ 0.64×
1257
+ 0.98×
1258
+ 0.61×
1259
+ Max
1260
+ 14.7×
1261
+ 6.74×
1262
+ 1.85×
1263
+ 4.63×
1264
+ Table 2. Stream-K FP16→32 Relative Performance
1265
+ Methodology. For both GEMM precisions, we build a sin-
1266
+ gle Stream-K kernel that has been specialized per the guide-
1267
+ lines in the Section 5. Furthermore, these kernels implement
1268
+ our “two-tile Stream-K + data-parallel” hybrid decomposi-
1269
+ tion. Our evaluation compares each Stream-K kernel with:
1270
+ 1. the default data-parallel CUTLASS kernel of the same
1271
+ blocking factor;
1272
+ 2. the cuBLAS ensemble for that precision (CUDA 11.6);
1273
+ and
1274
+ 3. an idealized oracle that will always select the highest
1275
+ performing data-parallel CUTLASS blocking factor to
1276
+ execute for a given GEMM instance.
1277
+ For FP64 problems, this oracle selects among the ensem-
1278
+ ble of {(32×32×16), (32×64×16), (64×64×16), (64×128×16),
1279
+ (128×128×16)} blocking factor specializations. For FP16→32,
1280
+ it selects among the ensemble of {(64×64×64), (64×128×32),
1281
+ (128×128×32), (128×256×32)} blocking factor specializations.
1282
+ These specific specializations are an open-sourced strict sub-
1283
+ sets alternative of the corresponding cuBLAS GEMM kernel
1284
+ ensembles.
1285
+ The “roofline” plots of Figure 6a and Figure 5a highlight
1286
+ the spread of performance produced by the singleton data-
1287
+ parallel CUTLASS kernels. They plot the percentage of FP64
1288
+ and FP16→32 processor utilization as a function of compu-
1289
+ tational intensity. Ideally, a GEMM implementation’s per-
1290
+ formance response would manifest as a narrow band that
1291
+ adheres tightly to the machine’s bandwidth- and compute-
1292
+ bound performance ceilings. Here, the data-parallel kernels
1293
+ exhibit a fairly large dynamic range for any given regime of
1294
+ arithmetic intensity. In contrast, the performance responses
1295
+ from the equivalent Stream-K kernels in Figure 6d and Fig-
1296
+ ure 5d are much tighter. These observations are corroborated
1297
+ by Table 1 and Table 2, which show the Stream-K kernels
1298
+ outperforming their data-parallel FP64 and FP16→32 equiv-
1299
+ alents by an average of 1.23× and 1.63×, respectively. For
1300
+ extreme strong-scaling scenarios where m × n is small and k
1301
+ is large, our Stream-K kernels demonstrate up to 5.63× and
1302
+ 14.7 × speedup, respectively.
1303
+ The second columns of Table 1 and Table 2 compare our
1304
+ Stream-K performance with that of cuBLAS. On average,
1305
+ our FP64 and FP16→32 Stream-K GEMM kernels respec-
1306
+ tively deliver 6% and 13% greater throughput than their cor-
1307
+ responding cuBLAS ensembles, with peak improvement of
1308
+ 2.55× and 6.74×. This is a significant improvement over the
1309
+ breadth of 32K GEMM problem shapes and sizes with 20×
1310
+ less executable code (a single kernel for each precision) than
1311
+ NVIDIA’s vendor GEMM library, cuBLAS.
1312
+ Furthermore, the contrast between the FP64 and FP16→32
1313
+ cuBLAS performance responses (Figure 6b and Figure 5b)
1314
+ versus those of our hypothetical CUTLASS oracle ensembles
1315
+ (Figure 6c and Figure 5c) reveal the difficulties of design-
1316
+ ing kernel selection heuristics that deliver consistently good
1317
+ performance. Despite having access to the same blocking
1318
+ factor specializations, cuBLAS exhibits substantially wider
1319
+ dynamic ranges than the idealized data-parallel CUTLASS
1320
+ oracle. The performance spreads of our Stream-K kernels
1321
+ are narrower still, achieving up to 4.6× the idealized oracle
1322
+ performance and underscoring their ability to achieve uti-
1323
+ lization levels that are simply not possible from tile-centric
1324
+ work decompositions.
1325
+ Finally, we observe regimes of small, bandwidth-bound
1326
+ problem shapes where our largish blocking factors do not
1327
+ compete well against cuBLAS. However, if we restrict our
1328
+ scope to the domain of compute-bound problems (i.e., FP64
1329
+ problems having compute intensity > 150 ops/byte and FP16
1330
+ → 32 problems > 400 ops/byte), Figure 7a and Figure 7b
1331
+ demonstrate that our singleton Stream-K kernels achieve
1332
+ unilaterally higher performance than the cuBLAS ensembles.
1333
+ The “noisy” relative performance in the regimes below these
1334
+ thresholds is not surprising, as Stream-K is attempting to
1335
+ make memory-bound computations run faster by adding
1336
+ more memory workload. This suggests a few avenues for
1337
+ future work, namely separate cost-modeling for the memory-
1338
+ bound regime and/or the bundling of a second Stream-K
1339
+ kernel having smaller tile size into a two-kernel ensemble.
1340
+ 7
1341
+ Conclusion
1342
+ We presented Stream-K, a novel parallel workload decomposi-
1343
+ tion technique for scheduling general matrix multiplication
1344
+ (GEMM) and similar computations on wide architectures
1345
+ such as GPUs. Unlike other tile-splitting techniques, the
1346
+ MAC-loop iteration is our unit of workload quantization
1347
+ across processor cores. This affords excellent strong scaling
1348
+ and workload balancing because its cost is (1) a constant with
1349
+ respect to the problem shape, and (2) substantially smaller
1350
+ than that of an entire output tile.
1351
+ 8
1352
+
1353
+ 0%
1354
+ 10%
1355
+ 20%
1356
+ 30%
1357
+ 40%
1358
+ 50%
1359
+ 60%
1360
+ 70%
1361
+ 80%
1362
+ 90%
1363
+ 100%
1364
+ 0
1365
+ 500
1366
+ 1000
1367
+ 1500
1368
+ 2000
1369
+ 2500
1370
+ 3000
1371
+ 3500
1372
+ 4000
1373
+ 4500
1374
+ 5000
1375
+ Tensor core utilization %
1376
+ Arithmetic intensity (operations / byte)
1377
+ (a) CUTLASS FP16→32 data-parallel “roofline”
1378
+ performance (blocking factors = 128×128×32).
1379
+ 0%
1380
+ 10%
1381
+ 20%
1382
+ 30%
1383
+ 40%
1384
+ 50%
1385
+ 60%
1386
+ 70%
1387
+ 80%
1388
+ 90%
1389
+ 100%
1390
+ 0
1391
+ 500
1392
+ 1000
1393
+ 1500
1394
+ 2000
1395
+ 2500
1396
+ 3000
1397
+ 3500
1398
+ 4000
1399
+ 4500
1400
+ 5000
1401
+ Tensor core utilization %
1402
+ Arithmetic intensity (operations / byte)
1403
+ (b) cuBLAS (ensemble)
1404
+ 0%
1405
+ 10%
1406
+ 20%
1407
+ 30%
1408
+ 40%
1409
+ 50%
1410
+ 60%
1411
+ 70%
1412
+ 80%
1413
+ 90%
1414
+ 100%
1415
+ 0
1416
+ 500
1417
+ 1000
1418
+ 1500
1419
+ 2000
1420
+ 2500
1421
+ 3000
1422
+ 3500
1423
+ 4000
1424
+ 4500
1425
+ 5000
1426
+ Tensor core utilization %
1427
+ Arithmetic intensity (operations / byte)
1428
+ (c) Idealized CUTLASS oracle (ensemble)
1429
+ 0%
1430
+ 10%
1431
+ 20%
1432
+ 30%
1433
+ 40%
1434
+ 50%
1435
+ 60%
1436
+ 70%
1437
+ 80%
1438
+ 90%
1439
+ 100%
1440
+ 0
1441
+ 500
1442
+ 1000
1443
+ 1500
1444
+ 2000
1445
+ 2500
1446
+ 3000
1447
+ 3500
1448
+ 4000
1449
+ 4500
1450
+ 5000
1451
+ Tensor core utilization %
1452
+ Arithmetic intensity (operations / byte)
1453
+ (d) Stream-K (blocking factors = 128×128×32)
1454
+ Figure 5. FP16→FP32 GEMM “roofline” performance utilization landscapes on NVIDIA A100 across 32K GEMM problem
1455
+ shapes and sizes.
1456
+ Furthermore, Stream-K produces an O(p) number of split-
1457
+ ting seams that are bound by the number of processor cores.
1458
+ Consequently, the overheads of strong scaling and workload
1459
+ balancing scale with processor width rather than problem
1460
+ size. This is a welcome feature for many applications that
1461
+ cannot afford to allocate large amounts of temporary storage
1462
+ equivalent to the problem output.
1463
+ Finally, we evaluated our Stream-K approach across a
1464
+ broad spectrum of GEMM shapes and sizes. We showed that
1465
+ a single blocking configuration of Stream-K can (1) achieve
1466
+ levels of absolute performance that match and/or exceed that
1467
+ of NVIDIA’s cuBLAS library, even when the latter is oper-
1468
+ ating at near-peak processor utilization, and (2) do so with
1469
+ much higher levels of performance consistency. Addition-
1470
+ ally, Stream-K is an attractive option for library construction
1471
+ and maintenance, as it presents an opportunity to reduce
1472
+ distribution sizes by an order of magnitude and removes the
1473
+ need for complex handcoded heuristics or machine learn-
1474
+ ing models for kernel selection without compromising per-
1475
+ formance. Stream-K is open-sourced within CUTLASS 2.11
1476
+ (https://github.com/NVIDIA/cutlass) and the performance
1477
+ shown within this paper can be reproduced when compiled
1478
+ using CUDA 11.8.
1479
+ For future works, we identify cache-aware, tile-access
1480
+ patterns such as Morton Order, an avenue for optimization.
1481
+ We also believe that Stream-K decomposition could provide
1482
+ a similar improved performance response for other GEMM-
1483
+ like workloads that struggle with the same quantization
1484
+ inefficiencies.
1485
+ 9
1486
+
1487
+ 10%
1488
+ 20%
1489
+ 30%
1490
+ 40%
1491
+ 50%
1492
+ 60%
1493
+ 70%
1494
+ 80%
1495
+ 90%
1496
+ 100%
1497
+ 0
1498
+ 100
1499
+ 200
1500
+ 300
1501
+ 400
1502
+ 500
1503
+ 600
1504
+ 700
1505
+ 800
1506
+ Tensor core utilization %
1507
+ Arithmetic intensity (operations / byte)
1508
+ (a) CUTLASS data-parallel
1509
+ (blocking factors = 64×64×16)
1510
+ 10%
1511
+ 20%
1512
+ 30%
1513
+ 40%
1514
+ 50%
1515
+ 60%
1516
+ 70%
1517
+ 80%
1518
+ 90%
1519
+ 100%
1520
+ 0
1521
+ 100
1522
+ 200
1523
+ 300
1524
+ 400
1525
+ 500
1526
+ 600
1527
+ 700
1528
+ 800
1529
+ Tensor core utilization %
1530
+ Arithmetic intensity (operations / byte)
1531
+ (b) cuBLAS (ensemble)
1532
+ 10%
1533
+ 20%
1534
+ 30%
1535
+ 40%
1536
+ 50%
1537
+ 60%
1538
+ 70%
1539
+ 80%
1540
+ 90%
1541
+ 100%
1542
+ 0
1543
+ 100
1544
+ 200
1545
+ 300
1546
+ 400
1547
+ 500
1548
+ 600
1549
+ 700
1550
+ 800
1551
+ Tensor core utilization %
1552
+ Arithmetic intensity (operations / byte)
1553
+ (c) Idealized CUTLASS oracle (ensemble)
1554
+ 10%
1555
+ 20%
1556
+ 30%
1557
+ 40%
1558
+ 50%
1559
+ 60%
1560
+ 70%
1561
+ 80%
1562
+ 90%
1563
+ 100%
1564
+ 0
1565
+ 100
1566
+ 200
1567
+ 300
1568
+ 400
1569
+ 500
1570
+ 600
1571
+ 700
1572
+ 800
1573
+ Tensor core utilization %
1574
+ Arithmetic intensity (operations / byte)
1575
+ (d) Stream-K (blocking factors = 64×64×16)
1576
+ Figure 6. FP64 GEMM “roofline” performance utilization landscapes on NVIDIA A100 across 32K problem shapes and sizes.
1577
+ Acknowledgments
1578
+ This material is based upon work supported by Defense Ad-
1579
+ vanced Research Projects Agency (DARPA) under Contract
1580
+ No. HR0011-18-3-0007. Any opinions, findings and conclu-
1581
+ sions or recommendations expressed in this material are
1582
+ those of the author(s) and do not necessarily reflect the views
1583
+ of the U.S. Government. Distribution Statement “A” (Ap-
1584
+ proved for Public Release, Distribution Unlimited). We would
1585
+ like to acknowledge Louis Feng, Valentin Andrei, Zhongyi
1586
+ Lin and Serban D. Porumbescu for their feedback on early
1587
+ drafts of the paper.
1588
+ References
1589
+ [1] Ahmad Abdelfattah, David Keyes, and Hatem Ltaief. 2016. KBLAS:
1590
+ An Optimized Library for Dense Matrix-Vector Multiplication on GPU
1591
+ Accelerators. ACM Trans. Math. Software 42, 3 (June 2016), 1–31.
1592
+ https://doi.org/10.1145/2818311
1593
+ [2] Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo,
1594
+ and Enrique S. Quintana-Orti. 2008. Evaluation and tuning of the
1595
+ Level 3 CUBLAS for graphics processors. In 2008 IEEE International
1596
+ Symposium on Parallel and Distributed Processing. IEEE. https://doi.
1597
+ org/10.1109/ipdps.2008.4536485
1598
+ [3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.
1599
+ Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
1600
+ Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep
1601
+ Learning. CoRR 1802.04799 (Feb. 2018). arXiv:1802.04799
1602
+ [4] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
1603
+ hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:
1604
+ Efficient Primitives for Deep Learning. CoRR 1410.0759 (Oct. 2014).
1605
+ arXiv:cs.NE/1410.0759v1
1606
+ [5] Xiang Cui, Yifeng Chen, Changyou Zhang, and Hong Mei. 2010. Auto-
1607
+ tuning Dense Matrix Multiplication for GPGPU with Cache. In Proceed-
1608
+ ings of the 16th International Conference on Parallel and Distributed Sys-
1609
+ tems (ICPADS 2010). 237–242. https://doi.org/10.1109/icpads.2010.64
1610
+ [6] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav
1611
+ Bodik, and Vinod Grover. 2020. Fireiron: A Data-Movement-Aware
1612
+ Scheduling Language for GPUs. In Proceedings of the ACM International
1613
+ 10
1614
+
1615
+ 0.0x
1616
+ 0.5x
1617
+ 1.0x
1618
+ 1.5x
1619
+ 2.0x
1620
+ 2.5x
1621
+ 3.0x
1622
+ 0
1623
+ 100
1624
+ 200
1625
+ 300
1626
+ 400
1627
+ 500
1628
+ 600
1629
+ 700
1630
+ 800
1631
+ Speedup
1632
+ Arithmetic intensity (operations / byte)
1633
+ (a) FP64 Stream-K speedup vs. cuBLAS.
1634
+ 0.0x
1635
+ 1.0x
1636
+ 2.0x
1637
+ 3.0x
1638
+ 4.0x
1639
+ 5.0x
1640
+ 6.0x
1641
+ 7.0x
1642
+ 8.0x
1643
+ 0
1644
+ 500
1645
+ 1000
1646
+ 1500
1647
+ 2000
1648
+ 2500
1649
+ 3000
1650
+ 3500
1651
+ 4000
1652
+ 4500
1653
+ 5000
1654
+ Speedup
1655
+ Arithmetic intensity (operations / byte)
1656
+ (b) FP16→32 Stream-K speedup vs. cuBLAS.
1657
+ Figure 7. Stream-K speedup vs. cuBLAS.
1658
+ Conference on Parallel Architectures and Compilation Techniques (PACT
1659
+ ’20). https://doi.org/10.1145/3410463.3414632
1660
+ [7] Changhao Jiang and Marc Snir. 2005. Automatic Tuning Matrix Mul-
1661
+ tiplication Performance on Graphics Hardware. In Proceedings of the
1662
+ 14th International Conference on Parallel Architectures and Compilation
1663
+ Techniques (PACT ’05). 185–194. https://doi.org/10.1109/pact.2005.10
1664
+ [8] Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. 2017.
1665
+ CUTLASS: Fast Linear Algebra in CUDA C++. (2017). https://devblogs.
1666
+ nvidia.com/cutlass-linear-algebra-cuda/
1667
+ [9] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. 2012. Autotuning
1668
+ GEMM Kernels for the Fermi GPU. IEEE Transactions on Parallel and
1669
+ Distributed Systems 23, 11 (Nov. 2012), 2045–2057. https://doi.org/10.
1670
+ 1109/tpds.2011.311
1671
+ [10] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. 1991. The
1672
+ Cache Performance and Optimizations of Blocked Algorithms. In Pro-
1673
+ ceedings of the Fourth International Conference on Architectural Support
1674
+ for Programming Languages and Operating Systems (ASPLOS IV). 63–74.
1675
+ https://doi.org/10.1145/106972.106981
1676
+ [11] E. Scott Larsen and David McAllister. 2001. Fast Matrix Multiplies using
1677
+ Graphics Hardware. In Proceedings of the 2001 ACM/IEEE Conference
1678
+ on Supercomputing (SC ’01). 55:1–55:6. https://doi.org/10.1145/582034.
1679
+ 582089
1680
+ [12] Yinan Li, Jack Dongarra, and Stanimire Tomov. 2009. A Note on Auto-
1681
+ tuning GEMM for GPUs. In International Conference on Computational
1682
+ Science (ICCS 2009). 884–892. https://doi.org/10.1007/978-3-642-01970-
1683
+ 8_89
1684
+ [13] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman,
1685
+ Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Pe-
1686
+ ter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debo Dutta, Udit
1687
+ Gupta, Kim Hazelwood, Andy Hock, Xinyuan Huang, Daniel Kang,
1688
+ David Kanter, Naveen Kumar, Jeffery Liao, Deepak Narayanan, Tayo
1689
+ Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi,
1690
+ Taylor Robie, Tom St John, Carole-Jean Wu, Lingjie Xu, Cliff Young,
1691
+ and Matei Zaharia. 2020. MLPerf Training Benchmark. In Proceedings
1692
+ of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and
1693
+ V. Sze (Eds.), Vol. 2. 336–349.
1694
+ [14] Rajib Nath, Stanimire Tomov, and Jack Dongarra. 2010. An Improved
1695
+ Magma Gemm For Fermi Graphics Processing Units. The International
1696
+ Journal of High Performance Computing Applications 24, 4 (Nov. 2010),
1697
+ 511–515. https://doi.org/10.1177/1094342010385729
1698
+ [15] NVIDIA Corporation. 2020. CUDA cuBLAS Library (v9.2). (2020).
1699
+ http://developer.nvidia.com/cublas.
1700
+ [16] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
1701
+ Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
1702
+ guage and Compiler for Optimizing Parallelism, Locality, and Recom-
1703
+ putation in Image Processing Pipelines. In Proceedings of the 34th ACM
1704
+ SIGPLAN Conference on Programming Language Design and Implemen-
1705
+ tation (PLDI ’13). 519–530. https://doi.org/10.1145/2491956.2462176
1706
+ [17] Guangming Tan, Linchuan Li, Sean Treichle, Everett Phillips, Yungang
1707
+ Bao, and Ninghui Sun. 2011. Fast Implementation of DGEMM on Fermi
1708
+ GPU. In Proceedings of the International Conference for High Perfor-
1709
+ mance Computing, Networking, Storage and Analysis (SC11). Seattle,
1710
+ Washington, 35:1–35:11. https://doi.org/10.1145/2063384.2063431
1711
+ [18] Philippe Tillet and David Cox. 2017. Input-Aware Auto-Tuning of
1712
+ Compute-Bound HPC Kernels. In Proceedings of the International Con-
1713
+ ference for High Performance Computing, Networking, Storage and Anal-
1714
+ ysis (SC17). Article 43, 12 pages.
1715
+ https://doi.org/10.1145/3126908.
1716
+ 3126939
1717
+ [19] Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An Intermedi-
1718
+ ate Language and Compiler for Tiled Neural Network Computations.
1719
+ In Proceedings of the 3rd ACM SIGPLAN International Workshop on
1720
+ Machine Learning and Programming Languages (MAPL 2019). 10–19.
1721
+ https://doi.org/10.1145/3315508.3329973
1722
+ 11
1723
+
1724
+ A
1725
+ Supplementary Material
1726
+ A.1
1727
+ Analytical Modeling for Stream-K
1728
+ Configuration
1729
+ In practice, it is not always advantageous to invoke the
1730
+ Stream-K decomposition with as many CTAs as can be ac-
1731
+ tively resident on the GPU. Because it is a tile-splitting ap-
1732
+ proach, it incurs fixup costs above and beyond the simple
1733
+ data-parallel decomposition. Consequently, the fundamental
1734
+ proposition is one of strong scaling: how much additional
1735
+ parallelism can be expressed before the extra overhead causes
1736
+ a negative return on investment. Depending on the problem
1737
+ shape, the optimal splitting could be enough to fill the entire
1738
+ processor (i.e., g ← p), no splitting at all (i.e., g ← t), or
1739
+ somewhere in between.
1740
+ To predict this inflection point, we present a simple ap-
1741
+ proach to model the runtime of Stream-K as a function of
1742
+ grid size g. In the absence of other work on the GPU, the
1743
+ runtime of the entire Stream-K schedule will be the same as
1744
+ that of one of its tile-outputting CTAs, which we formulate
1745
+ as follows:
1746
+ timeCTA(g) ←a + b(FixupPeers(g) > 1)
1747
+ + c(ItersPerCta(g)) + d (FixupPeers(g) – 1)
1748
+ where:
1749
+ ItersPerCta(g) ←
1750
+ � ⌈
1751
+ m
1752
+ BLK_M⌉ × ⌈
1753
+ n
1754
+ BLK_N⌉ × ⌈
1755
+ k
1756
+ BLK_K⌉
1757
+ g
1758
+
1759
+ FixupPeers(g) ←
1760
+ 
1761
+
1762
+ k
1763
+ BLK_K
1764
+
1765
+ IterationsPerCta(g)
1766
+ 
1767
+ This CTA runtime model comprises four components. The
1768
+ a workload encompasses the one-time, fixed-size costs in-
1769
+ curred by each CTA, e.g., the grid launch latency, the initial
1770
+ compulsory cache misses, the cost of writing the final out-
1771
+ put tile to C, etc. The second component b incorporates
1772
+ the conditional costs of outputting temporary partial sums
1773
+ for scenarios where the number of output tiles does not
1774
+ quantize perfectly across the processor. The third—the per-
1775
+ iteration workload c—represents the instruction and stall
1776
+ workload of each MAC-iteration. The final, per-collaborator
1777
+ workload d is the cost of reading and accumulating the par-
1778
+ tial sums from another CTA covering the same tile. The set
1779
+ of workload constants {a, b, c, d } will be unique to each
1780
+ combination of blocking factors, matrix data type, and GPU
1781
+ microarchitecture, and can be determined empirically via
1782
+ microbenchmarks.
1783
+ Figure 8 illustrates the behavior of our grid size selec-
1784
+ tion model as parameterized for fp16-precision GEMM on
1785
+ NVIDIA’s A100 GPU using blocking factors BLK_M = 128,
1786
+ BLK_N = 128, and BLK_K = 32. Specifically, we highlight
1787
+ (a) GEMM 256 × 3584 × 8192
1788
+ 56 output tiles, 256 iterations per tile
1789
+ gbest ← 108 CTAs, 132/133 iterations per CTA
1790
+ (b) GEMM 1024 × 1024 × 1024
1791
+ 64 output tiles, 32 iterations per tile
1792
+ gbest ← 64 CTAs, 32 iterations per CTA
1793
+ (c) GEMM 128 × 128 × 16384
1794
+ 1 output tile, 512 iterations per tile
1795
+ gbest ← 8 CTAs, 64 iterations per CTA
1796
+ Figure 8. Modeled Stream-K performance on NVIDIA A100
1797
+ (108 SMs) for BLK_M=128, BLK_N=128, BLK_K=32
1798
+ 12
1799
+
1800
+ Figure 9. Strong-scaling comparison of data-parallel and
1801
+ Stream-K execution schedules for 128 × 128 × 384 GEMM
1802
+ across a hypothetical four-SM GPU. Data-parallel causes the
1803
+ enormous k-dimension to be sequentially processed within
1804
+ single CTA, whereas Stream-K is able to take advantage of
1805
+ the parallelism available across the k-dimension.
1806
+ three strong-scaling GEMM scenarios where the number
1807
+ of output tiles is insufficient to produce a single full wave
1808
+ across the processor’s 108 SM cores.
1809
+ The first GEMM shape accumulates through a large-sized
1810
+ k-dimension to produce a short, wide output matrix. In this
1811
+ scenario, the reduction in MAC-loop time relative to the
1812
+ increasing costs of seam fixup is monotonically improving.
1813
+ Consequently, the optimal grid size coincides with maximal
1814
+ parallelism at g = 108 CTAs.
1815
+ The second shape accumulates through a medium-sized k-
1816
+ dimension to produce a square matrix with 64 output tiles. In
1817
+ this case, the fixup costs of b and d outweigh any reduction
1818
+ in MAC-loop iteration count, as seen by the global minima
1819
+ “dip” at g = 64 CTAs.
1820
+ The third shape produces a single output tile after accumu-
1821
+ lating through an enormous k-dimension, analogous to the
1822
+ execution schedule in Figure 9. Although the opportunity
1823
+ for strong scaling is quite large, the per-peer cost of serial
1824
+ reduction is entirely incurred by a single CTA. These accu-
1825
+ mulation costs begin to outweigh any further reductions in
1826
+ iteration count for grid sizes g > 8.
1827
+ 13
1828
+
1829
+ SMO
1830
+ 0
1831
+ 0
1832
+ DP CTA-0
1833
+ SK CTA-0
1834
+ B
1835
+ SM1
1836
+ 0
1837
+ SK CTA-1
1838
+ SM2
1839
+ 0
1840
+ SK CTA-2
1841
+ A
1842
+ SM3
1843
+ 0
1844
+ SK CTA-3
1845
+ -
1846
+ tsk
1847
+ to
1848
+ (time)
L9E2T4oBgHgl3EQfBAae/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff