jackkuo commited on
Commit
da2aaf8
·
verified ·
1 Parent(s): 844f619

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9FJT4oBgHgl3EQfqCwO/content/tmp_files/2301.11602v1.pdf.txt +2070 -0
  2. -9FJT4oBgHgl3EQfqCwO/content/tmp_files/load_file.txt +0 -0
  3. -dAzT4oBgHgl3EQfFfqG/content/tmp_files/2301.01012v1.pdf.txt +2638 -0
  4. -dAzT4oBgHgl3EQfFfqG/content/tmp_files/load_file.txt +0 -0
  5. .gitattributes +5 -0
  6. 69AyT4oBgHgl3EQfcvd4/content/tmp_files/2301.00289v1.pdf.txt +604 -0
  7. 69AyT4oBgHgl3EQfcvd4/content/tmp_files/load_file.txt +261 -0
  8. 6NFAT4oBgHgl3EQfnR2x/content/tmp_files/2301.08628v1.pdf.txt +0 -0
  9. 6NFAT4oBgHgl3EQfnR2x/content/tmp_files/load_file.txt +0 -0
  10. 6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf +3 -0
  11. 6tAzT4oBgHgl3EQfEvoZ/content/tmp_files/load_file.txt +393 -0
  12. CNE0T4oBgHgl3EQfgAHQ/content/tmp_files/2301.02413v1.pdf.txt +3062 -0
  13. CNE0T4oBgHgl3EQfgAHQ/content/tmp_files/load_file.txt +0 -0
  14. NdAyT4oBgHgl3EQfs_n5/content/tmp_files/2301.00589v1.pdf.txt +702 -0
  15. NdAyT4oBgHgl3EQfs_n5/content/tmp_files/load_file.txt +465 -0
  16. QdE0T4oBgHgl3EQfkQFh/content/tmp_files/2301.02470v1.pdf.txt +0 -0
  17. QdE0T4oBgHgl3EQfkQFh/content/tmp_files/load_file.txt +0 -0
  18. SdAyT4oBgHgl3EQfuPmB/content/2301.00609v1.pdf +3 -0
  19. SdFLT4oBgHgl3EQfPS8r/content/tmp_files/2301.12027v1.pdf.txt +1777 -0
  20. SdFLT4oBgHgl3EQfPS8r/content/tmp_files/load_file.txt +0 -0
  21. StE3T4oBgHgl3EQfzQsi/content/tmp_files/2301.04726v1.pdf.txt +2041 -0
  22. StE3T4oBgHgl3EQfzQsi/content/tmp_files/load_file.txt +0 -0
  23. UdE4T4oBgHgl3EQfMAzo/content/tmp_files/2301.04944v1.pdf.txt +1290 -0
  24. UdE4T4oBgHgl3EQfMAzo/content/tmp_files/load_file.txt +0 -0
  25. UdFKT4oBgHgl3EQfli6N/content/tmp_files/2301.11854v1.pdf.txt +1840 -0
  26. UdFKT4oBgHgl3EQfli6N/content/tmp_files/load_file.txt +0 -0
  27. V9E2T4oBgHgl3EQfYAcW/content/tmp_files/2301.03849v1.pdf.txt +3000 -0
  28. V9E2T4oBgHgl3EQfYAcW/content/tmp_files/load_file.txt +0 -0
  29. V9E5T4oBgHgl3EQfBw5N/content/tmp_files/2301.05389v1.pdf.txt +1057 -0
  30. V9E5T4oBgHgl3EQfBw5N/content/tmp_files/load_file.txt +0 -0
  31. WdE4T4oBgHgl3EQfNAwx/content/tmp_files/2301.04952v1.pdf.txt +1428 -0
  32. WdE4T4oBgHgl3EQfNAwx/content/tmp_files/load_file.txt +0 -0
  33. YNFQT4oBgHgl3EQfdzaO/vector_store/index.faiss +3 -0
  34. ZNAyT4oBgHgl3EQfWveE/content/tmp_files/2301.00169v1.pdf.txt +2171 -0
  35. ZNAyT4oBgHgl3EQfWveE/content/tmp_files/load_file.txt +0 -0
  36. ZNFIT4oBgHgl3EQfkSuq/content/tmp_files/2301.11300v1.pdf.txt +0 -0
  37. ZNFIT4oBgHgl3EQfkSuq/content/tmp_files/load_file.txt +0 -0
  38. _NFKT4oBgHgl3EQfUi2J/content/tmp_files/2301.11784v1.pdf.txt +1418 -0
  39. _NFKT4oBgHgl3EQfUi2J/content/tmp_files/load_file.txt +0 -0
  40. btFAT4oBgHgl3EQf5R5J/content/tmp_files/2301.08732v1.pdf.txt +2691 -0
  41. btFAT4oBgHgl3EQf5R5J/content/tmp_files/load_file.txt +0 -0
  42. cNE5T4oBgHgl3EQffQ_r/content/tmp_files/2301.05626v1.pdf.txt +1078 -0
  43. cNE5T4oBgHgl3EQffQ_r/content/tmp_files/load_file.txt +418 -0
  44. d9AyT4oBgHgl3EQfjfgx/content/tmp_files/2301.00414v1.pdf.txt +0 -0
  45. d9AyT4oBgHgl3EQfjfgx/content/tmp_files/load_file.txt +0 -0
  46. dtE3T4oBgHgl3EQfGwnT/content/tmp_files/2301.04318v1.pdf.txt +1832 -0
  47. dtE3T4oBgHgl3EQfGwnT/content/tmp_files/load_file.txt +0 -0
  48. gNFKT4oBgHgl3EQftS6b/content/tmp_files/2301.11886v1.pdf.txt +1600 -0
  49. gNFKT4oBgHgl3EQftS6b/content/tmp_files/load_file.txt +0 -0
  50. htE3T4oBgHgl3EQfgQqz/content/tmp_files/2301.04560v1.pdf.txt +2135 -0
-9FJT4oBgHgl3EQfqCwO/content/tmp_files/2301.11602v1.pdf.txt ADDED
@@ -0,0 +1,2070 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
2
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
3
+ ABSTRACT. Given a (finite) simplicial complex, we define its i-th Laplacian polytope as the
4
+ convex hull of the columns of its i-th Laplacian matrix. This extends Laplacian simplices of
5
+ finite simple graphs, as introduced by Braun and Meyer. After studying basic properties of
6
+ these polytopes, we focus on the d-th Laplacian polytope of the boundary of a pd ` 1q-simplex
7
+ Bpσd`1q. If d is odd, then as for graphs, the d-th Laplacian polytope turns out to be a pd ` 1q-
8
+ simplex in this case. If d is even, we show that the d-th Laplacian polytope of Bpσd`1q is
9
+ combinatorially equivalent to a d-dimensional cyclic polytope on d ` 2 vertices. Moreover, we
10
+ provide an explicit regular unimodular triangulation for the d-th Laplacian polytope of Bpσd`1q.
11
+ This enables us to to compute the normalized volume and to show that the h˚-polynomial is
12
+ real-rooted and unimodal, if d is odd and even, respectively.
13
+ 1. INTRODUCTION
14
+ Over decades, several lattice polytopes arising from graphs have been studied, extensively.
15
+ Prominent examples include matching polytopes, cut polytopes, edge polytopes, adjacency
16
+ polytopes of several types, among which are symmetric edge polytopes (see e.g., [23, 4, 19,
17
+ 21, 28, 10]). Following this line of research, in 2017, Braun and Meyer [6] initiated the study
18
+ of Laplacian simplices that are defined as the convex hull of the columns of the classical
19
+ Laplacian matrix of a simple graph (see also [24, 3]). Since each simple graph can be seen
20
+ as a 1-dimensional simplicial complex and since to each simplicial complex, we can associate
21
+ Laplacian matrices, defined via their boundary maps in simplicial homology, it is natural to
22
+ extend the definition of Laplacian simplices to arbitrary simplicial complexes and their Lapla-
23
+ cians. More precisely, given a simplicial complex ∆ (with a fixed ordering of the vertex set) and
24
+ its i-th Laplacian matrix Lip∆q :“ Bi`1B⊺
25
+ i`1 ` B⊺
26
+ i Bi, we define the i-th Laplacian polytope Ppiq
27
+
28
+ of ∆ as the convex hull of the columns of Lip∆q. Here, Bi and Bi`1 denote boundary maps in
29
+ simplicial homology.
30
+ We initiate the study of Laplacian polytopes by establishing first some general combinatorial
31
+ and geometric properties and then by focusing on a particular case. More precisely, we consider
32
+ the situation that the underlying simplicial complex ∆ is the boundary of the pd ` 1q-simplex,
33
+ denoted by Bpσd`1q, and that we take its highest Laplacian LdpBpσd`1qq. For simplicity, we
34
+ set PBpσd`1q :“ Ppdq
35
+ Bpσd`1q. If d is even, it is easily seen, that, as for graphs, PBpσd`1q is a pd ` 1q-
36
+ simplex. If d is odd, the situation is more complicated. By deriving a complete facet description
37
+ of PBpσd`1q in this case, we are able to show that PBpσd`1q is combinatorially equivalent to a d-
38
+ dimensional cyclic polytope on d `2 vertices.
39
+ It was shown in [6] that Laplacian simplices have unimodal h˚-vectors for certain classes of
40
+ graphs, including trees, odd cycles and complete graphs. Inspired by these results, we study
41
+ properties of the h˚-vectors of general Laplacian polytopes. This is further motivated by the
42
+ general question under which conditions a lattice polytope has a unimodal h˚-vector. It was
43
+ conjectured by Hibi and Ohsugi that this is true for reflexive lattice polytopes that have the
44
+ integer decomposition property (IDP) [27], and, recently, Adiprasito, Papadakis, Petrotou and
45
+ Steinmeyer could confirm this conjecture in the positive [1]. However, it is still mysterious what
46
+ happens if the polytope is not reflexive. We consider this question for the Laplacian polytope
47
+ 1
48
+ arXiv:2301.11602v1 [math.CO] 27 Jan 2023
49
+
50
+ 2
51
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
52
+ PBpσd`1q of the boundary of the pd `1q-simplex. Even in this seemingly most simple situation,
53
+ Ppdq
54
+
55
+ turns out to be not reflexive and hence the mentioned results towards unimodality do not
56
+ apply. However, the following result shows that Ppdq
57
+
58
+ has at least the integer decomposition
59
+ property.
60
+ Theorem A. PBpσd`1q has a regular unimodular triangulation for every integer d ě 0.
61
+ We note that, combined with [2, Theorem 1.3], this result implies that the h˚-vector of
62
+ PBpσd`1q is decreasing in its second half which is obviously implied by but weaker than uni-
63
+ modality. The main ingredient for Theorem A is the so-called interior polytope of PBpσd`1q,
64
+ that is defined as the convex hull of the interior lattice points of PBpσd`1q. Indeed, this polytope
65
+ turns out to be reflexive (after translation to the origin) and miraculously, PBpσd`1q happens to
66
+ be the second dilation of it (after translating both polytopes to the origin). Using edgewise
67
+ subdivisions, we provide an explicit construction of a regular unimodular triangulation for the
68
+ interior polytope which then extends to such a triangulation of PBpσd`1q by [18, Theorem 4.8].
69
+ As a byproduct, we can also compute the normalized volume of PBpσd`1q (see Corollary 6.7).
70
+ Theorem A combined with the results on the interior polytope enables us to show the following
71
+ statement:
72
+ Theorem B.
73
+ (a) h˚ ´
74
+ PBpσd`1q;t
75
+ ¯
76
+ has only real roots if d P N is odd.
77
+ (b) h˚ ´
78
+ PBpσd`1q
79
+ ¯
80
+ is unimodal with peak in the middle for every d P N.
81
+ We note that if d is odd, then the statement in pbq is just an easy consequence of the one in
82
+ paq. We conjecture paq to be true also if d is even.
83
+ The paper is organized as follows. Section 2 provides necessary background on simplicial
84
+ complexes, their Laplacian matrices and lattice polytopes. Section 3 collects basic properties of
85
+ the Laplacian matrix LdpBpσd`1qq of the boundary of a simplex. In Section 4, we introduce the
86
+ i-th Laplacian polytope Ppiq
87
+ ∆ of a simplicial complex ∆. Among others, we compute its number
88
+ of vertices (Proposition 4.4), the dimension of PBpσd`1q (Lemma 4.6) and show that PBpσd`1q is
89
+ always simplicial (Theorem 4.8). The goal of Section 5 is to derive a complete facet description
90
+ of PBpσd`1q and to show that it is combinatorially equivalent to a d-dimensional cyclic polytope
91
+ on d `2 vertices if d is even (Theorem 5.3 and Theorem 5.4). Section 6 is devoted to the proofs
92
+ of Theorems A and B, including the construction and study of the interior polytope of PBpσd`1q.
93
+ Finally, in Section 7 we state some open problems and possible future directions.
94
+ 2. PRELIMINARIES
95
+ In this section, we provide the necessary background on simplicial complexes, Laplacian
96
+ matrices and polytopes. For more information on these topics we refer to [30, 17, 26, 11, 18, 15].
97
+ Moreover, we assume the reader to have basic knowledge about graphs (see e.g., [12]).
98
+ 2.1. Simplicial complexes and Laplacian matrices. Given a finite set V, a simplicial com-
99
+ plex ∆ on vertex set V is a collection of subsets of V that is closed under inclusion. Elements
100
+ of ∆ are called faces and inclusion-wise maximal faces are called facets. The dimension of a
101
+ face F is dimpFq :“ |F| ´ 1 and we use Fip∆q to denote the set of i-dimensional faces of ∆.
102
+ The dimension of ∆ is defined as dimp∆q :“ maxpi : Fip∆q ‰ Hq. If all facets have the same
103
+ dimension, ∆ is called pure. 0-dimensional and 1-dimensional faces of ∆ are called vertices and
104
+ edges, respectively. The sets of vertices and edges of ∆ induce a graph in a natural way, which
105
+ we call the 1-skeleton or graph of ∆. Given a pd ´ 1q-dimensional simplicial complex ∆, its
106
+
107
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
108
+ 3
109
+ f-vector fp∆q “ pf´1p∆q, f0p∆q,..., fd´1p∆qq is defined by fip∆q :“ |t f P ∆ : dimpFq “ iu| for
110
+ ´1 ď i ď d ´1 and its h-vector hp∆q “ ph0p∆q,h1p∆q,...,hdp∆qq by the polynomial identity
111
+ (2.1)
112
+ dÿ
113
+ k“0
114
+ hkp∆qtd´k “
115
+ dÿ
116
+ k“0
117
+ fk´1p∆qpt ´1qd´k.
118
+ The polynomials fp∆;tq :“ řd´1
119
+ i“´1 fip∆qti and hp∆;tq :“ řd
120
+ i“0 hip∆qti are called the f- and h-
121
+ polynomial of ∆, respectively.
122
+ In order to introduce general Laplacian matrices of a simplicial complex ∆, we need to recall
123
+ basic notions from simplicial homology. For this purpose, let ∆ be a pd ´ 1q-dimensional
124
+ simplicial complex on vertex set V and assume that the vertices are ordered. Without loss
125
+ of generality, assume V “ rns “ t1,...,nu endowed with the natural ordering induced by N. We
126
+ denote by Cip∆q the Q-vector space with basis teσ : σ P Fip∆qu and set Cip∆q “ t0u for i ď ´1
127
+ and i ą d ´1. The i-th boundary map is the linear map Bi : Cip∆q Ñ Ci´1p∆q defined by
128
+ (2.2)
129
+ Bipeσq :“
130
+ i`1
131
+ ÿ
132
+ k“1
133
+ p´1qk´1eσztjku,
134
+ where σ “ t j1 ă ¨¨¨ ă ji`1u P Fip∆q. By abuse of notation, we will use Bi to denote both, the map
135
+ and its corresponding matrix. The i-th Laplacian matrix of ∆ is defined as Lip∆q :“ Bi`1B⊺
136
+ i`1 `
137
+ B⊺
138
+ i Bi.
139
+ Note that Lip∆q provides an endomorphism of Cip∆q which depends on the chosen
140
+ ordering of the vertices. We recall that Hip∆;Qq :“ kerpBiq{ImpBi`1q is the i-th (simplicial)
141
+ homology group of ∆.
142
+ To provide an explicit description of Lip∆q, we need some further notation. Faces F,G P Fip∆q
143
+ are called lower adjacent if F XG P Fi´1p∆q. If, additionally, eFXG appears with the same sign
144
+ in BipeFq and BipeGq, we call F XG the similar common lower simplex of F and G. Otherwise,
145
+ F XG is referred to as the dissimilar common lower simplex of F and G. The upper degree of
146
+ F P Fip∆q, denoted degUpFq, is the number of pi`1q-faces of ∆ containing F. We will use the
147
+ following description of Lip∆q from [15, Theorem 3.3.4]:
148
+ Theorem 2.1. Let ∆ be a simplicial complex on vertex set rns, ordered 1 ă ¨¨¨ ă n, and let i P N
149
+ with 0 ď i ď dimp∆q. For F,G P Fip∆q, let ℓF,G denote the entry of Lip∆q in row and column
150
+ corresponding to F and G, respectively. Then, Lip∆q is symmetric. Moreover:
151
+ (i) If i “ 0, then ℓF,G “ degUpFq if F “ G, ℓF,G “ ´1 if F Y G P Fi`1p∆q, and ℓF,G “ 0,
152
+ otherwise.
153
+ (ii) If i ą 0, then
154
+ ℓF,G “
155
+ $
156
+
157
+
158
+
159
+ &
160
+
161
+
162
+
163
+ %
164
+ degUpFq`i`1,
165
+ if F “ G,
166
+ 1,
167
+ if F ‰ G, F YG R Fi`1p∆q, F XG P Fi´1p∆q similar
168
+ ´1,
169
+ if F ‰ G, F YG R Fi`1p∆q, F XG P Fi´1p∆q dissimilar
170
+ 0,
171
+ otherwise.
172
+ Note that if i “ 0 in the previous theorem, then L0p∆q coincides with the classical Laplacian
173
+ matrix of the graph of ∆ (from graph theory).
174
+ 2.2. (Lattice) polytopes. A polytope P is the convex hull of finitely many points in Rd. If
175
+ dimP “ k, we call P a k-polytope. A linear inequality a⊺x ď b for a P Rd and b P R is called a
176
+ valid inequality for P if a⊺y ď b for all y P P. A (proper) face of P is a (non-empty) set of the
177
+ form PXtx P Rd : a⊺x “ bu for some valid inequality a⊺x ď b with a ‰ 0. Faces of dimension
178
+ 0, dimP´2 and dimP´1 are called vertices, ridges and facets, respectively. We use V pPq and
179
+ FpPq to denote the set of vertices and facets of P, respectively. A valid inequality a⊺x ď b is
180
+
181
+ 4
182
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
183
+ facet-defining if F “ PXtx P Rd : a⊺x “ bu for some F P FpPq. The facet-ridge graph GpPq
184
+ of P is the graph on vertex set FpPq where tF,Gu is an edge if and only if F and G intersect
185
+ in a ridge. If V pPq Ď Zd, P is called a lattice polytope. Two lattice polytopes P, Q Ď Rd
186
+ are unimodular equivalent, denoted as P – Q, if there exist a unimodular matrix U P Rdˆd
187
+ and a vector b P Zd such that U ¨ P ` b “ Q. We use ∆d to denote the standard d-simplex,
188
+ i.e., ∆d “ convtt0u Y tei P Rd : i P rdsuu, where e1,...,ed denote the standard unit vectors.
189
+ A polytope P is simplicial if all of its facets are simplices. The normalized volume of a d-
190
+ dimensional lattice polytope P Ď Rd is given by nvolpPq “ d!¨volpPq, where volpPq denotes the
191
+ usual Euclidean volume. A lattice d-simplex ∆ with normalized volume 1 is called unimodular.
192
+ In this case, ∆ – ∆d. A polytope P is reflexive if P “ tx P Rd : Ax ď 1u for an integral matrix
193
+ A, where 1 denotes the all ones vector. In this case, 0 is the unique interior lattice point of P.
194
+ A triangulation T of a lattice d-polytope P is a subdivision into lattice simplices of dimension
195
+ at most d. We denote the set of vertices in T by V pT q. A triangulation is unimodular if all its
196
+ simplices are. T is called regular if there exists a height function ωP : V pT q Ñ R such that T
197
+ is the projection of the lower envelope of the convex hull of tpv,ωPpvqq : v P V pT qu Ď Rd`1
198
+ to the first d coordinates. We note that every triangulation is in particular a simplicial complex.
199
+ Let P Ď Rd be a lattice d-polytope. Ehrhart [14] proved that the number of lattice points in the
200
+ n-th dilation of P, i.e., |nPXZd| is given by a polynomial EPpnq of degree d in n for all integers
201
+ n ě 0. The Ehrhart series of P is
202
+ ÿ
203
+ ně0
204
+ EPpnqtn “
205
+ h˚pP;tq
206
+ p1´tqd`1 “ h˚
207
+ 0pPq`h˚
208
+ 1pPqt `¨¨¨`h˚
209
+ s pPqts
210
+ p1´tqd`1
211
+ ,
212
+ where h˚pP;tq P Zrts is a polynomial of degree at most d, called h˚-polynomial of P. The vector
213
+ h˚pPq “ ph˚
214
+ 0pPq,...,h˚
215
+ s pPqq is called h˚-vector of P. We will often omit P from the notation and
216
+ just write h˚ “ ph˚
217
+ 0,...,h˚
218
+ s q if P is clear from the context. By [29, Theorem 2.1], it is well-
219
+ known that h˚
220
+ i pPq is non-negative for all i. If P admits a unimodular triangulation T , then
221
+ h˚pPq “ hpT q [29, Corollary 2.5]. Moreover, if T is a regular unimodular triangulation of P,
222
+ then
223
+
224
+ tpd`1q{2upPq ě ¨¨¨ ě h˚
225
+ d´1pPq ě h˚
226
+ dpPq
227
+ [2, Theorem 1.3]. It was shown by Hibi in [20] that a lattice d-polytope P Ď Rd is reflexive (up
228
+ to unimodular equivalence) if and only if P contains a unique interior lattice point, and h˚pPq is
229
+ palindromic, i.e., h˚
230
+ i pPq “ h˚
231
+ d´ipPq for all 0 ď i ď td{2u.
232
+ 3. LAPLACIAN MATRICES OF BOUNDARIES OF SIMPLICES
233
+ In this section we investigate basic properties of the Laplacian matrix of the boundary of a
234
+ simplex that will be useful for deriving properties of the corresponding Laplacian polytopes in
235
+ Section 4.
236
+ We start with an easy general statement.
237
+ Lemma 3.1. Let ∆ be a d-dimensional simplicial complex. Then
238
+ rankLdp∆q “ fdp∆q´dimQ Hdp∆;Qq.
239
+ Proof. We have the following chain of equalities:
240
+ rankLdp∆q “ rankpB⊺
241
+ dBdq “ fdp∆q´dimQ kerpB⊺
242
+ dBdq “ fdp∆q´dimQ kerpBdq,
243
+ where the last equality follows from the fact that kerpBdq “ kerpB⊺
244
+ dBdq. Since dim∆ “ d, we also
245
+ have Hdp∆;Qq “ kerpBdq, which shows the claim.
246
+
247
+
248
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
249
+ 5
250
+ In the following, we let σd`1 “ 2rd`2s be the pd `1q-simplex and we use Bpσd`1q to denote
251
+ its boundary, i.e., Bpσd`1q “ σd`1ztrd ` 2su. Let Fi “ rd ` 2sztd ` 3 ´ iu for 1 ď i ď d ` 2
252
+ and order the columns and rows of LdpBpσd`1qq according to F1,...,Fd`2. We first provide an
253
+ explicit description of the d-th Laplacian matrix in this case.
254
+ Theorem 3.2. Let ∆ “ Bpσd`1q. Then, Ldp∆q P Zpd`2qˆpd`2q, L0p∆q “
255
+ ˆ
256
+ 0
257
+ 0
258
+ 0
259
+ 0
260
+ ˙
261
+ and, for
262
+ d ě 1, 1 ď i, j ď d `2, we have
263
+ Ldp∆qi j “
264
+ #
265
+ d `1,
266
+ if i “ j,
267
+ p´1qi` j´1,
268
+ otherwise.
269
+ Proof. Since fdpBpσd`1qq “ d `2, we have Ldp∆q P Zpd`2qˆpd`2q.
270
+ Assume d “ 0. As B0 is the zero map, the statement is immediate.
271
+ Now let d ě 1. Since dim∆ “ d, it follows that degUpFq “ 0 for any d-face F of ∆. Using
272
+ Theorem 2.1 this implies that Ldp∆qii “ d `1 for all 1 ď i ď d `2.
273
+ Now, let i ‰ j.
274
+ Since Ldp∆q is symmetric, we can assume that i ă j.
275
+ Fi and Fj have
276
+ the common lower simplex Fi X Fj “ rd ` 2sztd ` 3 ´ i,d ` 3 ´ ju ‰ H. By Equation (2.2),
277
+ eFiXFj appears with sign p´1qd`3´ j in Bdperd`2sztd`3´iuq and it appears with sign p´1qd`2´i
278
+ in Bdperd`2sztd`3´ juq. These signs coincide, meaning that Fi X Fj is a similar common lower
279
+ simplex of Fi and Fj, if and only if i` j is odd. The claim follows from Theorem 2.1.
280
+
281
+ The next lemma will be crucial for determining the dimension of the Laplacian polytope of
282
+ Bpσd`1q in Lemma 4.6.
283
+ Lemma 3.3. Let ∆ “ Bpσd`1q. Then, Ldp∆q has rank d ` 1 and every pd ` 1q-element subset
284
+ of the columns (resp. rows) of Ldp∆q is linearly independent.
285
+ Proof. The first statement follows from Lemma 3.1 and the fact that Hdp∆;Qq “ Q. Let 1 ď i ď
286
+ d `2. Let Ai be the pd `1qˆpd `1q-matrix obtained from Ldp∆q by removing the i-th row and
287
+ column. By definition, Ai “ Ldp∆ztFiuq. Since Hdp∆ztFiuq,Qq “ 0, this matrix has full rank.
288
+ As adding any extra row or column to Ai does not change the rank, the claim follows.
289
+
290
+ Lemma 3.4. Let ∆ “ Bpσd`1q. Then
291
+ rank
292
+ ˆ
293
+ Ldp∆q
294
+ 1¨¨¨1
295
+ ˙
296
+
297
+ #
298
+ d `1,
299
+ if d is even,
300
+ d `2,
301
+ if d is odd.
302
+ Proof. First assume that d is even. We define λ “ pλ1,...,λd`2q⊺ P Rd`2 by
303
+ λj “
304
+ #
305
+ 0,
306
+ if j is odd,
307
+ 2
308
+ d`2,
309
+ if j is even.
310
+ Using Theorem 3.2 it is straight-forward to verify that Ldp∆q ¨ λ “ 1 which, combined with
311
+ Lemma 3.3 shows the claim.
312
+ Now let d be odd and assume by contradiction that rank
313
+ ˆ
314
+ Ldp∆q
315
+ 1¨¨¨1
316
+ ˙
317
+ ă d `2. Lemma 3.1 and
318
+ Lemma 3.3 imply that rank
319
+ ˆ
320
+ Ldp∆q
321
+ 1¨¨¨1
322
+ ˙
323
+ “ rankLdp∆q. Hence, there exists λ “ pλ1,...,λd`2q⊺ P
324
+ Rd`2, such that Ldp∆q¨λ “ 1. Let Ldp∆qrd`1s be the matrix obtained from Ldp∆q by deleting
325
+ the last row. Then, we also have Ldp∆qrd`1s ¨ λ “ 1 and it follows from Lemma 3.3 that, up
326
+
327
+ 6
328
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
329
+ to the choice of the last coordinate λd`2, the vector λ is unique. Indeed, a direct computation
330
+ shows that, if λd`2 “ µ for some µ P R, then we must have
331
+ (3.1)
332
+ λ j “
333
+ $
334
+
335
+ &
336
+
337
+ %
338
+ pd`2q¨µ`1
339
+ d`2
340
+ ,
341
+ if j is odd,
342
+ ´pd`2q¨µ´1
343
+ d`2
344
+ ,
345
+ if j is even.
346
+ However, denoting by rd`2 the last row of Ldp∆q, it holds that rd`2 ¨λ “ 0 ‰ 1, which yields a
347
+ contradiction.
348
+
349
+ 4. GENERAL PROPERTIES OF LAPLACIAN POLYTOPES
350
+ The goal of this section is to generalize Laplacian simplices – as introduced and studied in
351
+ [6, 24] – that are associated to a graph to arbitrary simplicial complexes and their Laplacian
352
+ matrices. After stating some basic general properties of what we call Laplacian polytopes, we
353
+ focus on boundaries of simplices and their highest Laplacians.
354
+ In the following, given a matrix M, we use convpMq to denote the polytope given by the
355
+ convex hull of the columns of M.
356
+ Definition 4.1. Let ∆ be a d-dimensional simplicial complex on rns, ordered 1 ă ¨¨¨ ă n, and
357
+ let 0 ď k ď d. The k-th Laplacian polytope of ∆ is defined as the convex hull of the columns of
358
+ Lkp∆q, i.e.,
359
+ Ppkq
360
+
361
+ – convpLkp∆qq Ď R fkp∆q.
362
+ We want to remark that the 0-th Laplacian polytope of a simplicial complex coincides with
363
+ the Laplacian simplex of its 1-skeleton, as defined in [6]. The next example shows that different
364
+ orderings of the vertex set of ∆ may result in polytopes of different dimensions.
365
+ Example 4.2. Let G be the 4-cycle on r4s with EpGq “ t12,23,34,14u. If the vertices of G are
366
+ ordered 1 ă 2 ă 3 ă 4, then Pp1q
367
+ G
368
+ is a 3-simplex. If the vertices of G are ordered 1 ă 2 ă 4 ă 3,
369
+ then Pp1q
370
+ G
371
+ is a 2-dimensional rectangle.
372
+ Example 4.3. Pp2q
373
+ Bpσ3q is given by the convex hull of the columns of the following matrix:
374
+ L2pBpσ3qq
375
+
376
+ ¨
377
+ ˚
378
+ ˚
379
+ ˝
380
+ 3
381
+ 1
382
+ ´1
383
+ 1
384
+ 1
385
+ 3
386
+ 1
387
+ ´1
388
+ ´1
389
+ 1
390
+ 3
391
+ 1
392
+ 1
393
+ ´1
394
+ 1
395
+ 3
396
+ ˛
397
+ ‹‹‚.
398
+ It will follow from Lemma 4.10 that Pp2q
399
+ Bpσ3q is unimodular equivalent to the square in R2 with
400
+ vertices p1,´1q,p´1,1q,p3,1q and p1,3q.
401
+ We start by showing that every column of Lkp∆q yields a vertex of Ppkq
402
+ ∆ .
403
+ Proposition 4.4. Let ∆ be a d-dimensional simplical complex and 0 ď k ď d an integer. Then,
404
+ Ppkq
405
+
406
+ has fkp∆q many vertices.
407
+ Proof. Set m :“ fkp∆q and let vpiq denote the i-th column of Lkp∆q. We assume by contradiction
408
+ that there exists 1 ď i ď m, a set S Ď rmsztiu and λj P R with λj ą 0 and ř
409
+ jPS λ j “ 1 such that
410
+ vpiq “ ř
411
+ jPS λ jvpjq. Setting λ j “ 0 if j R S Y tiu and λi “ ´1, we see that λ :“ pλ1,...,λmq⊺ P
412
+ kerpLkp∆qq and hence λ P kerpBkq by [25, Corollary 1.3.1]. Let wpℓq denote the ℓ-th column of
413
+ Bk. If wpiq
414
+ ℓ “ 1, then, since wpjq
415
+
416
+ P t´1,0,1u, λ j ą 0 and ř
417
+ jPS λj “ 1, we must have wpjq
418
+
419
+ “ 1
420
+
421
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
422
+ 7
423
+ for all j P S. By the same reasoning, it follows that wpjq
424
+
425
+ “ ´1 for all j P S if wpiq
426
+ ℓ “ ´1. As all
427
+ columns of Bk have the same number of non-zero entries, we conclude wpiq “ wpℓq for all ℓ P S,
428
+ which is a contradiction.
429
+
430
+ The next proposition gives a sufficient criterion for Ppdim∆q
431
+
432
+ being a simplex.
433
+ Proposition 4.5. Let ∆ be a d-dimensional simplicial complex. If Hdp∆;Qq “ 0, then Ppdim∆q
434
+
435
+ is
436
+ an pfdp∆q´1q-simplex.
437
+ Proof. Lemma 3.1 implies that rankLdp∆q “ fdp∆q. Consequently, the columns of Ldp∆q are
438
+ linearly independent which shows the claim.
439
+
440
+ In the following, we focus on the d-th Laplacian polytope of Bpσd`1q. To simplify notation,
441
+ we set PBpσd`1q “ Ppdq
442
+ Bpσd`1q. We use spiq to denote the i-th column of LdpBpσd`1qq. Moreover,
443
+ given a subset S Ď rd ` 2s, we denote by LdpSq the matrix obtained from LdpBpσd`1qq by
444
+ deleting the rows with indices in S.
445
+ Combining Lemma 3.4 and [17, p. 4] the following formula for the dimension of PBpσd`1q is
446
+ immediate.
447
+ Lemma 4.6. Let ∆ “ Bpσd`1q. Then,
448
+ dimP∆ “
449
+ #
450
+ d,
451
+ if d is even,
452
+ d `1,
453
+ if d is odd.
454
+ The previous statement together with Proposition 4.4 allows us to conclude:
455
+ Corollary 4.7. Let d P N with d ě 1 and ∆ “ Bpσd`1q. Then, P∆ has d`2 vertices. In particular,
456
+ P∆ is a pd `1q-simplex, if d is odd.
457
+ Corollary 4.7 trivially implies that PBpσd`1q is a simplicial polytope if d is odd. The same
458
+ statement turns out to be true for d even.
459
+ Theorem 4.8. PBpσd`1q is simplicial for every d P N.
460
+ Proof. Let ∆ “ Bpσd`1q. If d is odd, then the claim is trivially true by Corollary 4.7.
461
+ Now, let d be even. If d “ 0, then P∆ is just the origin and as such simplicial. Let d ě 2 and
462
+ let F be the vertices of a facet of P∆. Combining Lemma 4.6 and Corollary 4.7 it follows that
463
+ d ď |F| ď d `1. If, by contradiction, |F| “ d `1, then Lemma 3.3 implies that the convex hull
464
+ of F is d-dimensional, i.e., F cannot be a facet. Consequently, F is a simplex, which finishes
465
+ the proof.
466
+
467
+ As, by Lemma 4.6, the Laplacian polytope of Bpσd`1q is never full-dimensional, our next
468
+ goal is to construct a polytope that is unimodular equivalent to PBpσd`1q and full-dimensional
469
+ with respect to its ambient space. We first need to introduce some further notation.
470
+ We let 1even and 1odd denote the 0´1-vectors in Rd`2 whose even and odd entries are equal
471
+ to 1, respectively. Given these definitions, we can easily compute the affine hull of PBpσd`1q.
472
+ Lemma 4.9. Let d P N with d ě 1 and ∆ “ Bpσd`1q.
473
+ affpP∆q “
474
+ #␣
475
+ x P Rd`2 : p1odd ´1evenq⊺ ¨x “ 0
476
+ (
477
+ ,
478
+ if d is odd,
479
+
480
+ x P Rd`2 : 1⊺
481
+ odd ¨x “ 1⊺
482
+ even ¨x “ d`2
483
+ 2
484
+ (
485
+ ,
486
+ if d is even.
487
+ Proof. By Lemma 4.6, it is enough to show that all vertices of P∆ lie in the specified subspaces
488
+ of dimension d `1 and d, respectively. This can be seen by a direct computation.
489
+
490
+
491
+ 8
492
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
493
+ The next lemma gives the desired unimodular equivalent polytopes.
494
+ Lemma 4.10. Let d P N. The polytope PBpσd`1q is unimodular equivalent to convpLdpt1uqq and
495
+ convpLdpt1,2uqq if d is odd and even, respectively.
496
+ Proof. Define matrices A,B P Zpd`2qˆpd`2q as follows
497
+ A “
498
+ ¨
499
+ ˚
500
+ ˚
501
+ ˝
502
+ 1⊺
503
+ odd ´1⊺
504
+ even
505
+ 0
506
+ ...
507
+ Ed`1
508
+ 0
509
+ ˛
510
+ ‹‹‚
511
+ and
512
+ B “
513
+ ¨
514
+ ˚
515
+ ˚
516
+ ˚
517
+ ˚
518
+ ˝
519
+ 1⊺
520
+ odd
521
+ 1⊺
522
+ even
523
+ 0
524
+ 0
525
+ ...
526
+ ...
527
+ Ed
528
+ 0
529
+ 0
530
+ ˛
531
+ ‹‹‹‹‚
532
+ ,
533
+ where Ed and Ed`1 denote identity matrices. Note that A and B are unimodular. By Lemma 4.9,
534
+ we conclude that
535
+ A¨PBpσd`1q “ t0uˆconvpLdpt1uqq,
536
+ if d is odd and
537
+ B¨PBpσd`1q “ tppd `2q{2,pd `2q{2quˆconvpLdpt1,2uqq,
538
+ if d is even. This finishes the proof.
539
+
540
+ In the following, we use rPBpσd`1q to denote the unimodular equivalent polytope to PBpσd`1q
541
+ as constructed in Lemma 4.10. By abuse of notation, we will also refer to rPBpσd`1q as d-th
542
+ Laplacian polytope of Bpσd`1q. We also want to remark that, if d is odd, we have the following,
543
+ easy-to-show containment relation: rPBpσd`1q Ď rPBpσd`2q.
544
+ 5. THE FACET DESCRIPTION AND THE COMBINATORIAL TYPE OF PBpσd`1q
545
+ While, for odd d, we have already seen that rPBpσd`1q is a simplex, the goal of this section is
546
+ to determine the combinatorial type of PBpσd`1q if d is even. To reach this goal, we will first
547
+ provide a complete irredundant facet description of PBpσd`1q.
548
+ We fix some notation. Let bpℓq denote the vertex of rPBpσd`1q, that is given by the ℓ-th column of
549
+ Ldpt1,2uq. By Theorem 3.2, we have bpℓq
550
+ k
551
+ “ d `1 if k “ ℓ´2 and bpℓq
552
+ k
553
+ “ p´1qk`ℓ´1, otherwise.
554
+ Proposition 5.1. Let d ě 2 be even. Then the following inequalities are facet-defining and
555
+ irredundant for rPBpσd`1q
556
+ (i) 1⊺ ¨x ď d `2,
557
+ (ii) 1⊺
558
+ odd ¨x´xi ď d`2
559
+ 2 , where i P rds is even,
560
+ (iii) 1⊺
561
+ even ¨x´xj ď d`2
562
+ 2 , where j P rds is odd,
563
+ (iv) xi `xj ě 0, where 1 ď i ă j ď d such that i` j is odd.
564
+ Moreover, the vertices, that attain equality in (i)–(iv), are given by the sets tbpℓq : 3 ď ℓ ď d`2u,
565
+ tbpℓq : ℓ P rd`2szt1,i`2uu, tbpℓq : ℓ P rd`2szt2, j`2uu and tbpℓq : ℓ P rd`2szti`2, j`2uu,
566
+ respectively.
567
+ Proof. We first consider the inequality in (i). If �� P t1,2u, then bpℓq P t´1,1ud with alternating
568
+ entries and hence 1⊺ ¨ bpℓq ă d ` 2. Let 3 ď ℓ ď d ` 2. As d is even, it follows from above
569
+ that bpℓq has one entry equal to d ` 1, d
570
+ 2 entries equal to 1 and d
571
+ 2 ´ 1 entries equal to ´1. This
572
+ implies 1⊺ ¨bpℓq “ d `2. Hence, the inequality in (i) defines a facet, whose vertices are given by
573
+ tbpℓq : 3 ď ℓ ď d `2u, where we use that the affine hull of the latter set is pd ´1q-dimensional
574
+ by Lemma 3.3.
575
+
576
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
577
+ 9
578
+ Similarly, it is straightforward to verify that the inequalities in (ii)–(iv) are valid for rPBpσd`1q
579
+ and that the given sets of vertices are the ones attaining equality. As those all differ and their
580
+ affine hulls all have dimension d ´1, it follows that the inequalities are irredundant.
581
+
582
+ For the sake of completeness we add the description of the facets of rPBpσd`1q for d odd.
583
+ Remark 5.2. If d ě 3 is odd, using Theorem 3.2 it is not hard to see, that the following
584
+ inequalities are facet-defining for rPBpσd`1q
585
+ (i) 1⊺ ¨x ď d `2,
586
+ (ii) 2¨1⊺
587
+ odd ¨x´xi ď d`2
588
+ 2 , where i P rd `1s is even,
589
+ (iii) 2¨1⊺
590
+ odd ¨x`xj ď d `2, where j P rds is odd.
591
+ It is easy to verify that these inequalities are irredundant and as, by Lemma 4.6, rPBpσd`1q is a
592
+ simplex, they provide the complete facet description of rPBpσd`1q. We omit an explicit proof since
593
+ this description will not be needed.
594
+ We state the first main result of this section.
595
+ Theorem 5.3. For d even, rPBpσd`1q is completely described by the inequalities in Proposition 5.1.
596
+ Moreover, this description is irredundant. In particular, rPBpσd`1q has pd`2q2
597
+ 4
598
+ many facets.
599
+ Proof. We let Ă
600
+ F denote the set of facets of rPBpσd`1q, provided by Proposition 5.1 and we write
601
+ G Ă
602
+ F for the subgraph of the facet-ridge graph of rPBpσd`1q that is induced on vertex set Ă
603
+ F. It
604
+ follows from Theorem 4.8, that the facet-ridge graph of rPBpσd`1q is d-regular and connected.
605
+ Since any d-regular subgraph does not have a proper d-regular subgraph, for the first statement,
606
+ it suffices to show that G Ă
607
+ F is d-regular.
608
+ Since G Ă
609
+ F is a subgraph of GprPBpσd`1qq, its maximal degree is at most d. Hence, to show the
610
+ claim, it suffices to show that |EpG Ă
611
+ Fq| “
612
+ d¨|VpG Ă
613
+ F q|
614
+ 2
615
+ .
616
+ We first count the vertices of G. Using Proposition 5.1, we get that
617
+ (5.1)
618
+ |VpG Ă
619
+ Fq| “ 1` d
620
+ 2 ` d
621
+ 2 `
622
+ ˆd
623
+ 2
624
+ ˙2
625
+ “ pd `2q2
626
+ 4
627
+ ,
628
+ Here, the last term in the middle comes from the fact that the inequalities in (iv) are indexed by
629
+ sets ti, ju where i P t2ℓ : ℓ P rd
630
+ 2su and j P t2ℓ´1 : ℓ P rd
631
+ 2su.
632
+ It remains to count the number of edges of G Ă
633
+ F. In the following, we identify a facet in Ă
634
+ F
635
+ with its set of vertices. Given this, we use the following short hand notation for the different
636
+ types of facets in Ă
637
+ F.
638
+ (i) F “ tbpℓq : 3 ď ℓ ď d `2u;
639
+ (ii) Ei “ tbpℓq : ℓ P rd `2szt1,i`2uu, where i P rds is even;
640
+ (iii) Oj “ tbpℓq : ℓ P rd `2szt2, j `2uu, where j P rds is odd;
641
+ (iv) Fk,m “ tbpℓq : ℓ P rd `2sztk `2,m`2uu for 1 ď k ă m ď d such that k `m is odd.
642
+ We immediately get that
643
+ (a) |F XEi| “ |F XOj| “ d ´1 for all even i P rds and all odd j P rds;
644
+ (b) |F XFk,m| “ d ´2 for all 1 ď k ă m ď d;
645
+ (c) |Ei XE j| “ d ´1 for all odd i, j P rds with i ‰ j;
646
+ (d) |Ei XO j| “ d ´2 for all even i P rds and all odd j P rds;
647
+ (e) |Ei XFk,m| “ d ´1 iff i P tk,mu, i even, k `m odd, and |Ei XFk,m| “ d ´2, otherwise;
648
+ (f) |Oi XO j| “ d ´1 for all even i, j P rds with i ‰ j;
649
+
650
+ 10
651
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
652
+ (g) |O j XFk,m| “ d ´1 iff j P tk,mu, j odd, k `m odd, and |Oj XFk,m| “ d ´2, otherwise.
653
+ (h) |Fi, j XFk,m| “ d ´1 iff |ti, j,k,mu| “ 3 and |Fi,j XFk,m| “ d ´2, otherwise.
654
+ Since edges of G Ă
655
+ F are given by tuples of facets intersecting in d ´1 vertices, we get d edges in
656
+ (a), 0 edges in (b) and (d),
657
+ `d{2
658
+ 2
659
+ ˘
660
+ edges in each of (c) and (f),
661
+ `d
662
+ 2
663
+ ˘2 edges in each of (e) and (g)
664
+ and 2¨ d
665
+ 2 ¨
666
+ `d{2
667
+ 2
668
+ ˘
669
+ edges in (h). This yields
670
+ |EpG Ă
671
+ Fq| “ d `2¨
672
+ ˆd{2
673
+ 2
674
+ ˙
675
+ `2¨
676
+ ˆd
677
+ 2
678
+ ˙2
679
+ `d ¨
680
+ ˆd{2
681
+ 2
682
+ ˙
683
+ “ dpd `2q2
684
+ 8
685
+
686
+ d ¨|VpG Ă
687
+ Fq|
688
+ 2
689
+ .
690
+ It follows that G Ă
691
+ F is d-regular. The In particular-statement follows from (5.1).
692
+
693
+ The previous theorem allows us to determine the combinatorial type of rPBpσd`1q if d is even. It
694
+ is well-known (see e.g., [17, Section 6.1]) that there are only finitely many combinatorial types
695
+ of simplicial d-polytopes with d ` 2 vertices. More precisely, any simplicial d-polytope with
696
+ d ` 2 vertices is obtained as the convex hull of a d-simplex T d and a vertex v that is beyond
697
+ k facets of T d, where 1 ď k ď d ´ 1. It is easily seen that the combinatorial type of such a
698
+ polytope only depends on k. Following Gr¨unbaum, we use T d
699
+ k to denote the corresponding
700
+ combinatorial type. Given that we know the number of facets of rPBpσd`1q (see Theorem 5.3), we
701
+ can immediately determine its combinatorial type.
702
+ Theorem 5.4. Let d be even. Then rPBpσd`1q is of combinatorial type T d
703
+ d
704
+ 2 . In particular, rPBpσd`1q
705
+ is combinatorially equivalent to a d-dimensional cyclic polytope on d `2 vertices.
706
+ Proof. By Theorem 5.3, rPBpσd`1q has pd`2q2
707
+ 4
708
+ facets. Using [17, Section 6.1, Theorem 2], it
709
+ follows that this number has to be equal to
710
+ ˆd `2
711
+ 2
712
+ ˙
713
+ ´
714
+ ˆk `1
715
+ 2
716
+ ˙
717
+ ´
718
+ ˆd `1´k
719
+ 2
720
+ ˙
721
+ ,
722
+ where rPBpσd`1q is of combinatorial type T d
723
+ k . Solving for k yields k “ d
724
+ 2. The second statement
725
+ follows from [17, Section 6.1, Theorem 1].
726
+
727
+ We remark that from the previous theorem, we also get a precise formula for the f- and
728
+ h-vector of rPBpσd`1q (see, e.g., [17]).
729
+ Remark 5.5. Given the precise description of the facets from the proof of Theorem 5.3, it is not
730
+ hard to write down a shelling order for rPBpσd`1q (d even). Namely, one particular shelling is
731
+ given by
732
+ F,E2,E4,...,Ed,O1,O3,...,Od´1,F1,2,F1,4,...,F1,d,F2,3,F2,5,...,F2,d´1,...,Fd´1,d.
733
+ 6. REGULAR UNIMODULAR TRIANGULATIONS AND h˚-VECTORS
734
+ This section is divided into two parts. The goal of the first is to prove Theorem A, namely,
735
+ that rPBpσd`1q admits a regular unimodular triangulation .
736
+ As a byproduct we will also be
737
+ able to compute the normalized volume rPBpσd`1q. In the second part, we provide the proof
738
+ of Theorem B.
739
+
740
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
741
+ 11
742
+ FIGURE 1. rPBpσ3q and its interior polytope QBpσ3q translated to the origin.
743
+ 6.1. Triangulations through interior polytopes. If d is even, one of our main tools towards
744
+ the formulated goal is the so-called interior polytope QBpσd`1q of rPBpσd`1q, defined as follows:
745
+ QBpσd`1q “ conv
746
+ ´
747
+ rPBpσd`1qzB
748
+ ´
749
+ rPBpσd`1q
750
+ ¯
751
+ XZd¯
752
+ .
753
+ Figure 1 depicts rPBpσ3q and its interior polytope QBpσ3q, both translated to the origin.
754
+ Surprisingly, it turns out that PBpσd`1q and its interior polytope are combinatorially equivalent.
755
+ More precisely, the following stronger statement is true:
756
+ Theorem 6.1. Let d P N be even. Then the following statements hold:
757
+ (a) The complete and irredundant facet description of QBpσd`1q is given by:
758
+ (i) 1⊺ ¨x ď d `1,
759
+ (ii) 1⊺
760
+ odd ¨x´xi ď d
761
+ 2 for even i P rds,
762
+ (iii) 1⊺
763
+ even ¨x´xj ď d
764
+ 2 for odd j P rds,
765
+ (iv) xi `xj ě 1 for 1 ď i ă j ď d such that i` j is odd.
766
+ (b) QBpσd`1q ´1 is reflexive. In particular, 1 is the unique interior lattice point of QBpσd`1q.
767
+ (c) 2¨
768
+ ´
769
+ QBpσd`1q ´1
770
+ ¯
771
+ “ rPBpσd`1q ´1.
772
+ Proof. We let Q “ rPBpσd`1q ´1. The vertices of Q are given by upℓq :“ bpℓq `1 for 1 ď ℓ ď d `2.
773
+ It is immediate that all coordinates of upℓq are divisible by 2. Hence, 1
774
+ 2Q is a lattice polytope.
775
+ Using Theorem 5.3, it follows that the facets of 1
776
+ 2Q are given by
777
+ ‚ 1⊺ ¨x ď 1,
778
+ ‚ 1⊺
779
+ odd ¨x´xi ď 1 for even i P rds,
780
+ ‚ 1⊺
781
+ even ¨x´xj ď 1 for odd j P rds,
782
+ ‚ xi `xj ě ´1 for 1 ď i ă j ď d such that i` j is odd,
783
+ which shows that 1
784
+ 2Q is reflexive. It remains to show that 1
785
+ 2Q`1 “ QBpσd`1q. Since 1
786
+ 2Q`1 is
787
+ a lattice polytope, it follows that 1
788
+ 2Q ` 1 Ď QBpσd`1q. For the other inclusion it suffices to note
789
+ that the facets of 1
790
+ 2Q and rPBpσd`1q are parallel and that they have distance
791
+ 1
792
+ ?
793
+ d,
794
+ ?
795
+ 2
796
+ ?
797
+ d`2,
798
+ ?
799
+ 2
800
+ ?
801
+ d`2 and
802
+ 1
803
+ ?
804
+ 2 to each other for facets of the form in (i), (ii), (iii) and (iv), respectively. This implies that
805
+ there is no lattice point in rPBpσd`1qzpp1
806
+ 2Q`1qYB rPBpσd`1qq and hence QBpσd`1q Ď 1
807
+ 2Q`1.
808
+
809
+
810
+ m
811
+ 312
812
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
813
+ We define vectors cp1q,...,cpd`2q P Rd
814
+ by cpℓq
815
+ k
816
+ “ d`2
817
+ 2
818
+ if k “ ℓ ´ 2 and cpℓq
819
+ k
820
+
821
+ maxp0,p´1qk`ℓ´1q, otherwise. Combining Proposition 5.1 and Theorem 6.1 (c), we get the
822
+ following description of the vertices of QBpσd`1q and its facets.
823
+ Corollary 6.2. The vertices of QBpσd`1q are the vectors cp1q,...,cpd`2q. Moreover, the vertices,
824
+ that attain equality in Theorem 6.1 (i)–(iv), are given by the sets tcpℓq : 3 ď ℓ ď d ` 2u,
825
+ tcpℓq : ℓ P rd `2szt1,i`2uu, tcpℓq : ℓ P rd `2szt2, j`2uu and tcpℓq : ℓ P rd `2szti`2, j`2uu,
826
+ respectively.
827
+ We now recall several definitions and facts concerning regular unimodular triangulations (see
828
+ [18, Subsection 2.3.2.] for more on these topics).
829
+ Given full-dimensional polytopes P Ď Rd and P1 Ď Rd1 of positive dimension, their join P˚P1
830
+ is the pd `d1 `1q-dimensional polytope defined by
831
+ Pˆt0d1uˆt0u Y t0duˆP1 ˆt1u.
832
+ The next statement, which is well-known, will be crucial for the construction of a regular
833
+ unimodular triangulation of rPBpσd`1q.
834
+ Theorem 6.3. Let P Ď Rd and P1 Ď Rd1 be polytopes of dimension d and d1, respectively. Let
835
+ S “ tSi : i P rnsu and S1 “ tS1
836
+ j : j P rmsu be triangulations of P and P1, respectively, where Si
837
+ and S1
838
+ j denote the full-dimensional cells. If both S and S1 are regular and unimodular, then
839
+ T “
840
+
841
+ Si ˚S1
842
+ j : i P rns, j P rms
843
+ (
844
+ is a regular unimodular triangulation of P˚P1.
845
+ We will also make use of the following statement, see [18, Theorem 4.8].
846
+ Theorem 6.4. If P has a (regular) unimodular triangulation T , then so has any dilation cP,
847
+ where c is a positive integer.
848
+ A well-studied subdivision, which is related to the Veronese construction in algebra but also
849
+ appears in topology [7, 13, 16, 8], is the so-called rth edgewise subdivision of a simplicial
850
+ complex. In the following, we review this definition for the special case that ∆ is the pn ´
851
+ 1q-dimensional simplex on vertex set V “ te1,e2,...,enu Ď Rn. For a positive integer r, let
852
+ Ωr “ tpi1,...,inq P Nn : i1 ` i2 ` ¨¨¨ ` in “ ru denote the set of lattice points r∆ X Zn. For
853
+ x “ px1,...,xnq P Zn, we define
854
+ ϕpxq :“ px1,x1 `x2,...,x1 `¨¨¨`xnq P Rn.
855
+ The rth edgewise subdivision of ∆ is the simplicial complex esdrp∆q on vertex set Ωr, for which
856
+ F Ď Ωr is a face if for all x,y P F
857
+ ϕpxq´ϕpyq P t0,1un
858
+ or
859
+ ϕpyq´ϕpxq P t0,1un.
860
+ By definition, the geometric realization of the rth edgewise subdivision of ∆ gives a lattice
861
+ triangulation of r∆. It is known that this triangulation is regular [8, Proposition 6.4.], which
862
+ is also unimodular since all maximal simplices have normalized volume 1. In the following,
863
+ we will use esdrp∆q to denote both, the triangulation as a simplicial complex and its geometric
864
+ realization. Given any pn ´ 1q-dimensional unimodular simplex Γ Ď Rn, esdrp∆q, naturally
865
+ induces a regular unimodular triangulation of rΓ (by applying the corresponding unimodular
866
+ transformation).
867
+ Slightly abusing notation, we will refer to this triangulation as edgewise
868
+ subdivision of Γ or even of rΓ, denoted esdrpΓq. Moreover, the restriction of esdrpΓq to any
869
+ face F P Γ equals esdrpFq as a simplicial complex and as geometric realization.
870
+
871
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
872
+ 13
873
+ Example 6.5. Figure 2 depicts the 3rd edgewise subdivision of the 2-dimensional simplex ∆2 :“
874
+ convpp0,0q,p1,0q,p0,1qq as triangulation of 3∆2. The vertex labels correspond to the vertex
875
+ labels from the original definition and not the lattice points.
876
+ FIGURE 2. The triangulation of 3¨∆2 given by esd3p∆2q.
877
+ We now outline our strategy to show that rPBpσd`1q has a regular unimodular triangulation.
878
+ We first prove that rPBpσd`1q and the facets of QBpσd`1q, if d is odd and even, respectively, are
879
+ unimodular equivalent to joins of dilated standard simplices. If d is odd and even, we can hence
880
+ triangulate rPBpσd`1q and facets of QBpσd`1q as join of edgewise subdivisions. If d is odd, the claim
881
+ follows by Theorem 6.3. If d is even, we next show that these triangulations are consistent on
882
+ intersections of facets. By coning with 1, we get a unimodular triangulation of QBpσd`1q (see
883
+ Theorem 6.1 (d)) and hence of rPBpσd`1q by Theorem 6.4. The regularity follows by using that
884
+ the triangulation is regular on single facets and that each facet is triangulated in the same way.
885
+ The next statement yields the first step in the outlined strategy.
886
+ Proposition 6.6.
887
+ (a) Let d ě 2 be even and F P F
888
+ ´
889
+ QBpσd`1q
890
+ ¯
891
+ . Then
892
+ F –
893
+ ˆd `2
894
+ 2
895
+ ∆ d´2
896
+ 2 ´1 d´2
897
+ 2
898
+ ˙
899
+ ˚
900
+ ˆd `2
901
+ 2
902
+ ∆ d´2
903
+ 2 ´1 d´2
904
+ 2
905
+ ˙
906
+ .
907
+ (b) Let d ě 1 be an odd integer. Then
908
+ rPBpσd`1q –
909
+ `
910
+ pd `2q∆ d`1
911
+ 2 ´2¨1
912
+ ˘
913
+ ˚
914
+ `
915
+ pd `2q∆ d´1
916
+ 2 ´2¨1
917
+ ˘
918
+ .
919
+ Proof. The proof of (a) is divided into four cases, according to the four classes of facets from
920
+ Theorem 6.1 (a).
921
+ Let F “ tx P Rd : 1⊺ ¨ x ď d ` 1u. By Corollary 6.2, the vertices of F are cp3q,...,cpd`2q.
922
+ We now consider the matrix A, whose ℓ-th column equals cp2ℓ`1q if 1 ď ℓ ď d
923
+ 2 and cp2ℓ`2´dq if
924
+ d
925
+ 2 `1 ď ℓ ď d. If we reorder the rows of A, by taking first the rows with odd index and then the
926
+ ones with even index, increasingly, we obtain a matrix S, which looks as follows:
927
+ S “
928
+ ˜ d`2
929
+ 2 ¨E d
930
+ 2
931
+ 1 d
932
+ 2 ˆ d
933
+ 2
934
+ 1 d
935
+ 2 ˆ d
936
+ 2
937
+ d`2
938
+ 2 ¨E d
939
+ 2
940
+ ¸
941
+ ,
942
+
943
+ 4
944
+ (0, 0, 3)
945
+ (1, 0,2)
946
+ (0,1,2)
947
+ (2, 0, 1)
948
+ (1,1,1
949
+ (0, 2, 1)
950
+ (3, 0, 0)
951
+ (2,1,0)
952
+ (1, 2, 0)
953
+ (0,3, 0)
954
+ -114
955
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
956
+ where 1kˆk denotes the pk ˆ kq-matrix with all entries equal to 1. Clearly, F – convpSq. Let
957
+ E1
958
+ k P Zpk´1qˆk be the pk ˆkq-identity matrix with its first row removed and let
959
+ U “
960
+ ¨
961
+ ˚
962
+ ˚
963
+ ˚
964
+ ˝
965
+ E1
966
+ d
967
+ 2
968
+ 0 d´2
969
+ 2 ˆ d
970
+ 2
971
+ 0 d´2
972
+ 2 ˆ d
973
+ 2
974
+ E1
975
+ d
976
+ 2
977
+ 0
978
+ ¨¨¨
979
+ 0
980
+ 1
981
+ ¨¨¨
982
+ 1
983
+ 1
984
+ ¨¨¨
985
+ 1
986
+ 1
987
+ ¨¨¨
988
+ 1
989
+ ˛
990
+ ‹‹‹‚P Zdˆd.
991
+ It is easily seen that U is unimodular and a direct computation shows that
992
+ U ¨pS´1dˆdq “
993
+ ¨
994
+ ˚
995
+ ˚
996
+ ˚
997
+ ˚
998
+ ˝
999
+ M
1000
+ ´
1001
+ d`2
1002
+ 2 ∆ d´2
1003
+ 2 ´1 d´2
1004
+ 2 ˆ d
1005
+ 2
1006
+ ¯
1007
+ 0 d´2
1008
+ 2 ˆ d
1009
+ 2
1010
+ 0 d´2
1011
+ 2 ˆ d
1012
+ 2
1013
+ M
1014
+ ´
1015
+ d`2
1016
+ 2 ∆ d´2
1017
+ 2 ´1 d´2
1018
+ 2 ˆ d
1019
+ 2
1020
+ ¯
1021
+ 0
1022
+ ¨¨¨
1023
+ 0
1024
+ 1
1025
+ ¨¨¨
1026
+ 1
1027
+ 1
1028
+ ¨¨¨
1029
+ 1
1030
+ 1
1031
+ ¨¨¨
1032
+ 1
1033
+ ˛
1034
+ ‹‹‹‹‚
1035
+ ,
1036
+ where 0kˆk denotes the pk ˆkq-matrix with all entries equal to 0 and M
1037
+ ´
1038
+ d`2
1039
+ 2 ∆ d´2
1040
+ 2 ´1 d´2
1041
+ 2 ˆ d
1042
+ 2
1043
+ ¯
1044
+ denotes the matrix whose columns are the vertices of d`2
1045
+ 2 ∆ d´2
1046
+ 2 ´1 d´2
1047
+ 2 ˆ d
1048
+ 2 in the obvious order.
1049
+ Since F – convpU ¨pS´1dˆdqq, the claim follows after projection on the first d ´1 coordinates
1050
+ and by the definition of the join. We also note that the vertices of F corresponding to the vertices
1051
+ of the dilated simplices are tcp2ℓ`1q : 1 ď ℓ ď d
1052
+ 2u and tcp2ℓq : 2 ď ℓ ď d
1053
+ 2 `1u.
1054
+ Similarly, one can show that for the facets defined by
1055
+ ‚ 1⊺
1056
+ odd ¨x´xi ď d
1057
+ 2, where i P rds is even,
1058
+ ‚ 1⊺
1059
+ even ¨x´xj ď d
1060
+ 2, where j P rds is odd,
1061
+ ‚ xi `xj ě 1 for 1 ď i ă j ď d such that i` j is odd,
1062
+ respectively, the vertices
1063
+ ‚ tcp2ℓ`1q : 1 ď ℓ ď d
1064
+ 2u and tcp2ℓq : 1 ď ℓ ď d
1065
+ 2 `1,ℓ ‰ i`2
1066
+ 2 u,
1067
+ ‚ tcp2ℓ`1q : 0 ď ℓ ď d
1068
+ 2,ℓ ‰ j`1
1069
+ 2 u and tcp2ℓq : 2 ď ℓ ď d
1070
+ 2 `1,ℓ ‰ i`2
1071
+ 2 u,
1072
+ ‚ tcp2ℓ`1q : 0 ď ℓ ď d
1073
+ 2,ℓ ‰ j`1
1074
+ 2 u and tcp2ℓq : 1 ď ℓ ď d
1075
+ 2 `1,ℓ ‰ i`2
1076
+ 2 u,
1077
+ respectively, correspond to the vertices of the dilated simplices. The rather technical proofs can
1078
+ be found in the appendix. Similarly, (b) will be shown in the appendix.
1079
+
1080
+ We recall and prove Theorem A.
1081
+ Theorem A. PBpσd`1q has a regular unimodular triangulation for every integer d ě 0.
1082
+ Proof. Since rPBpσd`1q and PBpσd`1q are unimodular equivalent, it suffices to show the statement
1083
+ for rPBpσd`1q. First assume that d is odd. By Proposition 6.6 (b), we know that
1084
+ rPBpσd`1q –
1085
+ `
1086
+ pd `2q∆ d`1
1087
+ 2 ´2¨1
1088
+ ˘
1089
+ ˚
1090
+ `
1091
+ pd `2q∆ d´1
1092
+ 2 ´2¨1
1093
+ ˘
1094
+ .
1095
+ Since the pd ` 2qnd edgewise subdivision is a regular unimodular triangulation of the pd `
1096
+ 2qnd dilation of any unimodular simplex (as well as of any translation), we conclude with
1097
+ Theorem 6.3 that rPBpσd`1q has a regular unimodular triangulation.
1098
+ Next assume that d is even. If d “ 0, rPBpσd`1q is just a point and there is nothing to show.
1099
+ Let d ě 2. We construct a regular unimodular triangulation of the interior polytope QBpσd`1q.
1100
+ By Proposition 6.6 every facet F of QBpσd`1q is unimodular equivalent to
1101
+ (6.1)
1102
+ ˆd `2
1103
+ 2
1104
+ ∆ d´2
1105
+ 2 ´1 d´2
1106
+ 2
1107
+ ˙
1108
+ ˚
1109
+ ˆd `2
1110
+ 2
1111
+ ∆ d´2
1112
+ 2 ´1 d´2
1113
+ 2
1114
+ ˙
1115
+ .
1116
+
1117
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
1118
+ 15
1119
+ By the same reasoning as for d odd, we can triangulate F as join of edgewise subdivisions of
1120
+ unimodular simplices. In this way, we obtain regular unimodular triangulations of each facet
1121
+ of QBpσd`1q. We now show that the union of these triangulations, yields a triangulation of the
1122
+ boundary of QBpσd`1q. For this aim, let F and G be facets of QBpσd`1q and let T pFq and T pGq
1123
+ be the considered triangulations. Let us further denote by Fi and Gi, where i P r2s, the vertex
1124
+ sets corresponding to the vertex sets of the dilated (and translated) simplices in (6.1). It follows
1125
+ from the end of the proof of Proposition 6.6 that (after possible renumbering)
1126
+ pF1 YF2qXpG1 YG2q “ pF1 XF2qYpG1 XG2q.
1127
+ This directly yields that the restrictions of T pFq and T pGq to F X G coincide: Indeed, they
1128
+ are given as the join of the edgewise subdivisions of the dilated (and translated) simplices on
1129
+ vertex sets F1 XF2 and G1 XG2. This shows that the union of the triangulations of the facets is
1130
+ indeed a triangulation of the boundary of QBpσd`1q, which is, in particular, unimodular. Since,
1131
+ by Theorem 6.1 (b), QBpσd`1q ´1 is reflexive, we can extend this triangulation to a unimodular
1132
+ triangulation of QBpσd`1q by coning over the unique interior lattice point 1. In the following, we
1133
+ call this triangulation T .
1134
+ It remains to show that T is a regular triangulation. The previous paragraph implies that
1135
+ the induced triangulations on facets QBpσd`1q are all regular and unimodular equivalent to each
1136
+ other. In particular, there exists a simultaneous lifting function h yielding the triangulation of
1137
+ an arbitrary facet. Fix a facet F and let T pFq be the induced triangulation on F. Since F is a
1138
+ simplex, we can assume that hpvq “ 1 for any vertex v P F. Moreover, for any lattice point u in F,
1139
+ that is not a vertex, we have hpuq ă 1, since otherwise u would not be a vertex of T pFq. Hence,
1140
+ there exists a non-negative function g, whose values are bounded by 1, that vanishes on the
1141
+ vertices of F such that h “ 1´g. Moreover, for any ε ą 0, hε “ 1´εg is also a lifting function
1142
+ for F yielding T pFq. Finally, ignoring 1 and lifting all other lattice points in QBpσd`1q according
1143
+ to the simultaneous lifting function hε, gives a lifting function such that the projection of the
1144
+ lower envelope yields T on the boundary of QBpσd`1q and potentially additional faces in the
1145
+ interior. Lifting 1 at height 0, gives a lifting of all lattice points of QBpσd`1q. If ε is sufficiently
1146
+ small, one can guarantee that the triangulation obtained as the lower envelope is the cone with
1147
+ 1 over the boundary of the previous triangulation (ignoring 1) since potential interior faces that
1148
+ we had seen before, do no longer lie in the lower envelope.
1149
+ The claim follows by Theorem 6.1 (c) and Theorem 6.4.
1150
+
1151
+ Analyzing the proof of Theorem A, we can compute the normalized volume of PBpσd`1q:
1152
+ Corollary 6.7. The normalized volume of PBpσd`1q is pd `2qd.
1153
+ Proof. We compute the normalized volume of rPBpσd`1q, which equals the one of PBpσd`1q, by
1154
+ counting the number of maximal simplices in the unimodular triangulation T constructed in
1155
+ the proof of Theorem A.
1156
+ First assume that d is odd. We have seen that T is unimodular equivalent to
1157
+ esdd`2
1158
+ ´
1159
+ ∆ d`1
1160
+ 2
1161
+ ¯
1162
+ ˚esdd`2
1163
+ ´
1164
+ ∆ d´1
1165
+ 2
1166
+ ¯
1167
+ .
1168
+ Since the rth edgewise subdivision of an m-simplex, has rm maximal simplices, it follows that
1169
+ the number of maximal simplices in the constructed unimodular triangulation of rPBpσd`1q equals
1170
+ pd `2q
1171
+ d´1
1172
+ 2 ¨pd `2q
1173
+ d`1
1174
+ 2 “ pd `2qd.
1175
+ Let d be even. We first compute the normalized volume of QBpσd`1q. Combining Theorem 5.3
1176
+ and Theorem 6.1, it follows that QBpσd`1q has exactly pd`2q2
1177
+ 4
1178
+ facets. By the proof of Theorem A
1179
+
1180
+ 16
1181
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
1182
+ each of these has a unimodular triangulation that is unimodular equivalent to
1183
+ esd d`2
1184
+ 2
1185
+ ´
1186
+ ∆ d´2
1187
+ 2
1188
+ ¯
1189
+ ˚esd d`2
1190
+ 2
1191
+ ´
1192
+ ∆ d´2
1193
+ 2
1194
+ ¯
1195
+ .
1196
+ As in the case that d is odd, we conclude that each facet is triangulated into
1197
+ `d`2
1198
+ 2
1199
+ ˘ d´2
1200
+ 2 ¨
1201
+ `d`2
1202
+ 2
1203
+ ˘ d´2
1204
+ 2
1205
+
1206
+ `d`2
1207
+ 2
1208
+ ˘d´2 many maximal simplices and hence QBpσd`1q has normalized volume pd`2qd
1209
+ 2d
1210
+ . Since,
1211
+ by Theorem 6.1 (c), rPBpσd`1q `1 “ 2¨QBpσd`1q, the claim follows.
1212
+
1213
+ 6.2. Unimodality and real-rootedness. The goal of this subsection is to prove Theorem B.
1214
+ If d is even, then by the proof of Theorem A, QBpσd`1q has a regular unimodular triangulation.
1215
+ Since it is also reflexive (after translation) by Theorem 6.1 (b), the next statement is immediate
1216
+ from [9, Theorem 1] (see also [2, Theorem 1.3]):
1217
+ Lemma 6.8. Let d be an even positive integer. Then h˚pQBpσd`1qq is symmetric and unimodal.
1218
+ To show unimodality of h˚prPBpσd`1qq, if d is even, we need to analyze the change of the h˚-
1219
+ vector under the second dilation of a polytope (cf., Theorem 6.1 (c)). Given a d-dimensional
1220
+ lattice polytope P, it follows, e.g., from [7, Theorem 1.1] (see also [5, 22]) that
1221
+ (6.2)
1222
+
1223
+ i p2Pq “
1224
+ dÿ
1225
+ j“0
1226
+ ˆd `1
1227
+ 2i´ j
1228
+ ˙
1229
+
1230
+ jpPq.
1231
+ We need the following technical but crucial lemma.
1232
+ Lemma 6.9. Let i P N and rj :“
1233
+ ` d`1
1234
+ 2i`2´ j
1235
+ ˘
1236
+ ´
1237
+ `d`1
1238
+ 2i´ j
1239
+ ˘
1240
+ . Then for k P N, we have
1241
+ ´rr2i`2´ d`3
1242
+ 2 s´k “ rt2i`2´ d`3
1243
+ 2 u`k.
1244
+ Proof. We set aj “
1245
+ ` d`1
1246
+ 2i`2´ j
1247
+ ˘
1248
+ and bj “
1249
+ `d`1
1250
+ 2i´ j
1251
+ ˘
1252
+ . The claim follows if both
1253
+ ar2i`2´ d`3
1254
+ 2 s´k “ bt2i`2´ d`3
1255
+ 2 u`k
1256
+ and
1257
+ br2i`2´ d`3
1258
+ 2 s´k “ at2i`2´ d`3
1259
+ 2 u`k
1260
+ hold. Due to the symmetry of the binomial coefficient it suffices to show that
1261
+ (i) p2i`2´r2i`2´ d`3
1262
+ 2 s`kq`p2i´t2i`2´ d`3
1263
+ 2 u´kq “ d `1
1264
+ (ii) p2i´r2i`2´ d`3
1265
+ 2 s`kq`p2i`2´t2i`2´ d`3
1266
+ 2 u´kq “ d `1.
1267
+ It is obvious that (i) and (ii) are equivalent. The claim follows from direct computations.
1268
+
1269
+ The next statement will be the key ingredient to show that h˚prPBpσd`1qq is unimodal.
1270
+ Proposition 6.10. Let b “ pb0,...,bdq be a symmetric and unimodal sequence of non-negative
1271
+ reals. Let c “ pc0,...,cdq be defined by
1272
+ ci “
1273
+ dÿ
1274
+ j“0
1275
+ ˆd `1
1276
+ 2i´ j
1277
+ ˙
1278
+ b j.
1279
+ Then,
1280
+ c0 ď c1 ď ¨¨¨ ď ct d`1
1281
+ 2 u.
1282
+
1283
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
1284
+ 17
1285
+ Proof. We define r j as in Lemma 6.9. Note that rj ě 0 if and only if j ě 2i ` 2 ´ d`3
1286
+ 2 . For
1287
+ 0 ď i ă d`1
1288
+ 2 , we have
1289
+ ci`1 ´ci “
1290
+ dÿ
1291
+ j“0
1292
+ „ˆ
1293
+ d `1
1294
+ 2i`2´ j
1295
+ ˙
1296
+ ´
1297
+ ˆd `1
1298
+ 2i´ j
1299
+ ˙ȷ
1300
+ b j “
1301
+ dÿ
1302
+ j“0
1303
+ r jbj
1304
+
1305
+ 2p2i`2´ d`3
1306
+ 2 q
1307
+ ÿ
1308
+ j“0
1309
+ r jbj `
1310
+ dÿ
1311
+ j“2p2i`2´ d`3
1312
+ 2 q`1
1313
+ r jbj
1314
+
1315
+ r2i`2´ d`3
1316
+ 2 s
1317
+ ÿ
1318
+ j“1
1319
+ rt2i`2´ d`3
1320
+ 2 u` j
1321
+ ´
1322
+ bt2i`2´ d`3
1323
+ 2 u` j ´br2i`2´ d`3
1324
+ 2 s´ j
1325
+ ¯
1326
+ `r2i`2´ d`3
1327
+ 2 b2i`2´ d`3
1328
+ 2 `
1329
+ dÿ
1330
+ j“2p2i`2´ d`3
1331
+ 2 q`1
1332
+ r jbj,
1333
+ where for the last equality, we use Lemma 6.9 and we set `r2i`2´ d`3
1334
+ 2 b2i`2´ d`3
1335
+ 2
1336
+ “ 0 if d is
1337
+ even. Since b j ě 0 and rj ě 0 for j ě 2i` 2´ d`3
1338
+ 2 , it follows that the single summand and the
1339
+ sum in the last line of the above computation are both non-negative. Concerning the first sum,
1340
+ the coefficients r2i`2´ d`3
1341
+ 2 ` j are non-negative and therefore, in order to show non-negativity of
1342
+ ci`1 ´ci, it suffices to show that for 1 ď j ď r2i`2´ d`3
1343
+ 2 s, we have
1344
+ bt2i`2´ d`3
1345
+ 2 u` j ě br2i`2´ d`3
1346
+ 2 s´ j.
1347
+ This directly follows from the unimodality and symmetry of the sequence b if 2i`2´ d`3
1348
+ 2 ` j ď
1349
+ d`1
1350
+ 2 . Assume 2i`2´ d`3
1351
+ 2 ` j ą d`1
1352
+ 2 . Since i ď d
1353
+ 2, we have
1354
+ d `1
1355
+ 2
1356
+ ă 2i`2´ d `3
1357
+ 2
1358
+ ` j ď d `2´ d `3
1359
+ 2
1360
+ ` j “ d `1
1361
+ 2
1362
+ ` j ď
1363
+ Zd `1
1364
+ 2
1365
+ ^
1366
+ ` j.
1367
+ Using that b is symmetric and unimodal it follows that
1368
+ bt2i`2´ d`3
1369
+ 2 u` j ě bt d`1
1370
+ 2 u` j “ bd´t d
1371
+ 2u´ j ě br2i`2´ d`3
1372
+ 2 s´ j.
1373
+ This shows the claim.
1374
+
1375
+ We now recall and prove Theorem B:
1376
+ Theorem B.
1377
+ (a) h˚ ´
1378
+ PBpσd`1q;t
1379
+ ¯
1380
+ has only real roots if d P N is odd.
1381
+ (b) h˚ ´
1382
+ PBpσd`1q
1383
+ ¯
1384
+ is unimodal with peak in the middle for every d P N.
1385
+ Proof. Since PBpσd`1q has a regular unimodular triangulation T by Theorem A, we have
1386
+ h˚pPBpσd`1qq “ hpT q. If d is odd, such a triangulation is given by
1387
+ esdd`2
1388
+ ´
1389
+ ∆ d`1
1390
+ 2
1391
+ ¯
1392
+ ˚esdd`2
1393
+ ´
1394
+ ∆ d´1
1395
+ 2
1396
+ ¯
1397
+ and its h-polynomial equals h
1398
+ ´
1399
+ esdd`2
1400
+ ´
1401
+ ∆ d`1
1402
+ 2
1403
+ ¯
1404
+ ;t
1405
+ ¯
1406
+ ¨ h
1407
+ ´
1408
+ esdd`2
1409
+ ´
1410
+ ∆ d´1
1411
+ 2
1412
+ ¯
1413
+ ;t
1414
+ ¯
1415
+ . Since both factors
1416
+ are real-rooted by [22, Corollary 4.4], so is h˚ ´
1417
+ PBpσd`1q;t
1418
+ ¯
1419
+ .
1420
+
1421
+ 18
1422
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
1423
+ Suppose that d is even. Combining Lemma 6.8, (6.2) and Proposition 6.10, we get that
1424
+ h˚pPBpσd`1qq is increasing up to the middle, i.e.,
1425
+
1426
+ 0pPBpσd`1qq ď h˚
1427
+ 1pPBpσd`1qq ď ¨¨¨ ď h˚
1428
+ d
1429
+ 2 pPBpσd`1qq.
1430
+ Since, by Theorem A, PBpσd`1q has a regular unimodular triangulation it follows by [2, Theorem
1431
+ 1.3] that h˚pPBpσd`1qq is decreasing beyond the middle, i.e.,
1432
+
1433
+ d
1434
+ 2 pPBpσd`1qq ě ¨¨¨ ě h˚
1435
+ dpPBpσd`1qq.
1436
+ The claim follows.
1437
+
1438
+ We would like to remark that even though the interior polytope QBpσd`1q has a symmteric
1439
+ h˚-vector, this is not true for PBpσd`1q.
1440
+ 7. OPEN PROBLEMS
1441
+ We end this article with some obvious directions for future research.
1442
+ We have initiated the study of Laplacian polytopes Ppiq
1443
+ ∆ by studying the special case that ∆ is
1444
+ the boundary of a pd ` 1)-simplex and i “ d. It is therefore natural to consider the following
1445
+ very general problem.
1446
+ Problem 7.1. Study geometric and combinatorial properties of Ppiq
1447
+
1448
+ for (classes of) simplicial
1449
+ complexes and general 0 ď i ď dim∆. In particular: What is the normalized volume? When
1450
+ do these polytopes have a regular unimodular triangulation? What properties do the h˚-vector
1451
+ and the h˚-polynomial have?
1452
+ In view of Proposition 4.5, a good starting point might be to study Ppdq
1453
+
1454
+ for simplicial d-balls,
1455
+ since in this case we already know that Ppdq
1456
+
1457
+ is a simplex. As part of this problem, it might be
1458
+ useful to consider how Laplacian polytopes change under certain operations on the simplicial
1459
+ complex, e.g., deletion/contraction of vertices, taking links, connected sums, joins. We want to
1460
+ remark that for i “ 1 we get Laplacian simplices as studied in [6] and [24].
1461
+ We have shown that PBpσd`1q has a regular unimodular triangulation by explicitly constructing
1462
+ one. However, for more general classes of simplicial complexes, a better approach might be to
1463
+ compute a Gr¨obner basis of the toric ideal. This gives rise to the following problem whose
1464
+ solution would also contribute to Problem 7.1:
1465
+ Problem 7.2. Describe a Gr¨obner basis of the toric ideal of Ppiq
1466
+ ∆ in terms of the combinatorics
1467
+ of ∆. When does there exist a squarefree Gr¨obner basis (giving rise to a regular unimodular
1468
+ triangulation)?
1469
+ We want to emphasize that the Laplacian polytope depends on the ordering of the vertices of
1470
+ ∆ (see Example 4.2). It is therefore natural to ask the following question:
1471
+ Question 7.3. Which orderings yield (up to unimodular or combinatorial equivalence) the same
1472
+ Laplacian polytope? How many equivalence classes are there?
1473
+ Apart from these more general problems, there are several open questions that are directly
1474
+ related to our results. In Corollary 6.7, we have computed the normalized volume of PBpσd`1q
1475
+ explicitly and thereby have obtained a precise formula for the sum of the h˚-vector entries.
1476
+ Using the explicit regular unimodular triangulation from Theorem A and inclusion-exclusion
1477
+ we can also express the h˚-polynomial as alternating sum, where all summands are products
1478
+ of h˚-polynomials of edgewise subdivisions of dilated simplices of varying dimension. Note
1479
+ that for d odd, we only have one summand. However, this does not yield a direct combinatorial
1480
+ interpretation of the entries of the h˚-vector. We therefore propose the following problem:
1481
+
1482
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
1483
+ 19
1484
+ Problem 7.4. Find a combinatorial interpretation of the entries of the h˚-vector of PBpσd`1q (see
1485
+ Table 1 for the h˚-vectors if 1 ď d ď 8).
1486
+ d
1487
+ h˚ `
1488
+ PBσd`1
1489
+ ˘
1490
+ 1
1491
+ p1,2,0q
1492
+ 2
1493
+ p1,10,5q
1494
+ 3
1495
+ p1,22,78,24,0q
1496
+ 4
1497
+ p1,131,726,419,19q
1498
+ 5
1499
+ p1,149,4049,8558,3750,300,0q
1500
+ 6
1501
+ p1,1478,38179,126372,85623,10422,69q
1502
+ 7
1503
+ p1,926,157566,1135846,2188310,1150800,145600,3920,0q
1504
+ 8
1505
+ p1,17617,1581403,6864069,43252570,31729319,6314903,239867,251q
1506
+ TABLE 1. The h˚-vectors of PBσd`1 for d “ 1,...,8.
1507
+ Finally, in view of Theorem B (a), we have the following conjecture:
1508
+ Conjecture 7.5. Let d be even. Then, h˚ ´
1509
+ PBpσd`1q;x
1510
+ ¯
1511
+ is real-rooted.
1512
+ We have verified this conjecture computationally up to d “ 10. For this problem, we suspect
1513
+ that an approach via interlacing sequences might be helpful, but we have not been able to carry
1514
+ it out so far.
1515
+ 8. APPENDIX
1516
+ We provide the missing parts of the proof of Proposition 6.6. We recall some notation. We
1517
+ denote by E1
1518
+ k P Zpk´1qˆk the pk ˆkq-identity matrix with its first row removed and by 1mˆn and
1519
+ 0mˆn the pm ˆ nq-matrices whose entries are all equal to 1 and 0, respectively. Moreover, we
1520
+ denote by M
1521
+ ´
1522
+ d`2
1523
+ 2 ∆ d´2
1524
+ 2 ´1 d´2
1525
+ 2 ˆ d
1526
+ 2
1527
+ ¯
1528
+ the matrix whose columns are the vertices of d`2
1529
+ 2 ∆ d´2
1530
+ 2 ´
1531
+ 1 d´2
1532
+ 2 ˆ d
1533
+ 2 in the obvious order.
1534
+ Proof of Proposition 6.6 (a). Let d ě 2 and for a fixed even integer i P rds, consider the facet
1535
+ F “ tx P Rd : 1⊺
1536
+ odd ¨x´xi ď d
1537
+ 2u of QBpσd`1q. By Corollary 6.2, the vertices of F are tcpℓq : ℓ P
1538
+ rd ` 2szt1,i ` 2uu. We now consider the matrix B P Zdˆd whose ℓ-th column equals cp2ℓ`1q if
1539
+ 1 ď ℓ ď d
1540
+ 2 and cp2ℓ´dq if d
1541
+ 2 ` 1 ď ℓ ď i`d
1542
+ 2
1543
+ and cp2ℓ`2´dq if i`d
1544
+ 2 ` 1 ď ℓ ď d. If we reorder the
1545
+ rows of B, by taking first the rows with odd index, increasingly, followed by the row with index
1546
+ i and then the remaining rows with even index, increasingly, we obtain a matrix S, which looks
1547
+ as follows:
1548
+ S “
1549
+ ¨
1550
+ ˚
1551
+ ˝
1552
+ E d
1553
+ 2 ¨ d`2
1554
+ 2
1555
+ 1 d
1556
+ 2 ˆ d
1557
+ 2
1558
+ 1
1559
+ ¨¨¨
1560
+ 1
1561
+ 0
1562
+ ¨¨¨
1563
+ 0
1564
+ 1 d´2
1565
+ 2 ˆ d
1566
+ 2
1567
+ E1
1568
+ d
1569
+ 2 ¨ d`2
1570
+ 2
1571
+ ˛
1572
+ ‹‚.
1573
+ Clearly, F – convpTq. Let
1574
+ U “
1575
+ ¨
1576
+ ˚
1577
+ ˚
1578
+ ˚
1579
+ ˝
1580
+ E1
1581
+ d
1582
+ 2
1583
+ 0 d´2
1584
+ 2 ˆ d
1585
+ 2
1586
+ 0 d´2
1587
+ 2 ˆ d
1588
+ 2
1589
+ E1
1590
+ d
1591
+ 2
1592
+ 0
1593
+ ¨¨¨
1594
+ 0
1595
+ ´1 0
1596
+ ¨¨¨
1597
+ 0
1598
+ 1
1599
+ ¨¨¨
1600
+ 1
1601
+ ´1 0
1602
+ ¨¨¨
1603
+ 0
1604
+ ˛
1605
+ ‹‹‹‚P Zdˆd.
1606
+
1607
+ 20
1608
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
1609
+ It is easy to see that U is unimodular and a direct computation shows that
1610
+ U ¨pS´1dˆdq “
1611
+ ¨
1612
+ ˚
1613
+ ˚
1614
+ ˚
1615
+ ˚
1616
+ ˝
1617
+ M
1618
+ ´
1619
+ d`2
1620
+ 2 ∆ d´2
1621
+ 2 ´1 d´2
1622
+ 2 ˆ d
1623
+ 2
1624
+ ¯
1625
+ 0 d´2
1626
+ 2 ˆ d
1627
+ 2
1628
+ 0 d´2
1629
+ 2 ˆ d
1630
+ 2
1631
+ M
1632
+ ´
1633
+ d`2
1634
+ 2 ∆ d´2
1635
+ 2 ´1 d´2
1636
+ 2 ˆ d
1637
+ 2
1638
+ ¯
1639
+ 0
1640
+ ¨¨¨
1641
+ 0
1642
+ 1
1643
+ ¨¨¨
1644
+ 1
1645
+ 1
1646
+ ¨¨¨
1647
+ 1
1648
+ 1
1649
+ ¨¨¨
1650
+ 1
1651
+ ˛
1652
+ ‹‹‹‹‚
1653
+ .
1654
+ Since F – convpU ¨pS´1dˆdqq, the claim follows after projection on the first d ´1 coordinates
1655
+ and by the definition of the join. We also note that the vertices of F corresponding to the vertices
1656
+ of the dilated simplices are tcp2ℓ`1q : 1 ď ℓ ď d
1657
+ 2u and tcp2ℓq : 2 ď ℓ ď d
1658
+ 2 `1, ℓ ‰ i`2
1659
+ 2 u.
1660
+ For a fixed odd integer j P rds, consider the facet G “ tx P Rd : 1⊺
1661
+ even ¨ x ´ xj ď d
1662
+ 2u of
1663
+ QBpσd`1q. By Corollary 6.2, the vertices of F are tcpℓq : ℓ P rd ` 2szt2, j ` 2uu. We now
1664
+ consider the matrix C P Zdˆd whose ℓ-th column equals cp2ℓ´1q if 1 ď ℓ ď j`1
1665
+ 2
1666
+ and cp2ℓ`1q if
1667
+ j`3
1668
+ 2 ď ℓ ď d
1669
+ 2 and cp2ℓ`2´dq if d
1670
+ 2 `1 ď ℓ ď d. If we reorder the rows of C by taking first the rows
1671
+ with odd index k P rdszt ju, increasingly, followed by row j and then the rows with even index,
1672
+ increasingly, we obtain a matrix S, which looks as follows:
1673
+ S “
1674
+ ¨
1675
+ ˚
1676
+ ˝
1677
+ E1
1678
+ d
1679
+ 2 ¨ d`2
1680
+ 2
1681
+ 1 d´2
1682
+ 2 ˆ d
1683
+ 2
1684
+ 0
1685
+ ¨¨¨
1686
+ 0
1687
+ 1
1688
+ ¨¨¨
1689
+ 1
1690
+ 1 d
1691
+ 2 ˆ d
1692
+ 2
1693
+ E d
1694
+ 2 ¨ d`2
1695
+ 2
1696
+ ˛
1697
+ ‹‚.
1698
+ Clearly, G – convpSq. Let
1699
+ U “
1700
+ ¨
1701
+ ˚
1702
+ ˚
1703
+ ˚
1704
+ ˚
1705
+ ˚
1706
+ ˚
1707
+ ˚
1708
+ ˚
1709
+ ˚
1710
+ ˝
1711
+ E d
1712
+ 2 ´1
1713
+ ˇˇˇˇˇ
1714
+ 0 d´2
1715
+ 2 ˆ d`2
1716
+ 2
1717
+ 0 d´2
1718
+ 2 ˆ d
1719
+ 2
1720
+ ˇˇˇˇˇ
1721
+ E1
1722
+ d
1723
+ 2
1724
+ 0
1725
+ ¨¨¨
1726
+ 0
1727
+ ˇˇ
1728
+ 1
1729
+ ¨¨¨
1730
+ 1
1731
+ 0¨¨¨
1732
+ 0
1733
+ ´1
1734
+ ˇˇˇ
1735
+ 1
1736
+ ¨¨¨
1737
+ 1
1738
+ ˛
1739
+ ‹‹‹‹‹‹‹‹‹‚
1740
+ P Zdˆd.
1741
+ It is easy to see that U is unimodular and a direct computation shows that
1742
+ U ¨pS´1dˆdq “
1743
+ ¨
1744
+ ˚
1745
+ ˚
1746
+ ˚
1747
+ ˚
1748
+ ˝
1749
+ M
1750
+ ´
1751
+ d`2
1752
+ 2 ∆ d´2
1753
+ 2 ´1 d´2
1754
+ 2 ˆ d
1755
+ 2
1756
+ ¯
1757
+ 0 d´2
1758
+ 2 ˆ d
1759
+ 2
1760
+ 0 d´2
1761
+ 2 ˆ d
1762
+ 2
1763
+ M
1764
+ ´
1765
+ d`2
1766
+ 2 ∆ d´2
1767
+ 2 ´1 d´2
1768
+ 2 ˆ d
1769
+ 2
1770
+ ¯
1771
+ 0
1772
+ ¨¨¨
1773
+ 0
1774
+ 1
1775
+ ¨¨¨
1776
+ 1
1777
+ 1
1778
+ ¨¨¨
1779
+ 1
1780
+ 1
1781
+ ¨¨¨
1782
+ 1
1783
+ ˛
1784
+ ‹‹‹‹‚
1785
+ .
1786
+ Since G – convpU ¨pS´1dˆdqq, the claim follows after projection on the first d ´1 coordinates
1787
+ and by the definition of the join. We also note that the vertices of G corresponding to the vertices
1788
+ of the dilated simplices are tcp2ℓ`1q : 0 ď ℓ ď d
1789
+ 2,ℓ ‰ j`1
1790
+ 2 u and tcp2ℓq : 2 ď ℓ ď d
1791
+ 2 `1,ℓ ‰ i`2
1792
+ 2 u.
1793
+ For fixed integers 1 ď i ă j ď d of different parity consider the facet H “ tx P Rd : xi`xj ě 1u
1794
+ of QBpσd`1q. Without loss of generality assume that i is odd j is even. By Corollary 6.2, the
1795
+ vertices of F are tcpℓq : ℓ P rd `2szti`2, j`2uu. We now consider the matrix D P Zdˆd whose
1796
+ ℓ-th column equals cp2ℓ´1q if 1 ď ℓ ď i`1
1797
+ 2 , cp2ℓ`1q if i`3
1798
+ 2 ď ℓ ď d
1799
+ 2, cp2ℓ´dq if d
1800
+ 2 `1 ď ℓ ď j`d
1801
+ 2
1802
+ and
1803
+ cp2ℓ`2´dq if j`d
1804
+ 2 `1 ď ℓ ď d. If we reorder the rows of D by taking first the rows with odd index
1805
+
1806
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
1807
+ 21
1808
+ k P rdsztiu, increasingly, followed by row i, followed by the rows with even index ℓ P rdszt ju,
1809
+ increasingly, followed by row j as the last row, we obtain a matrix S, which looks as follows:
1810
+ S “
1811
+ ¨
1812
+ ˚
1813
+ ˚
1814
+ ˚
1815
+ ˝
1816
+ d`2
1817
+ 2 ¨E1
1818
+ d
1819
+ 2
1820
+ 11
1821
+ d
1822
+ 2
1823
+ 0
1824
+ ¨¨¨
1825
+ 0
1826
+ 1
1827
+ ¨¨¨
1828
+ 1
1829
+ 11
1830
+ d
1831
+ 2
1832
+ d`2
1833
+ 2 ¨E1
1834
+ d
1835
+ 2
1836
+ 1
1837
+ ¨¨¨
1838
+ 1
1839
+ 0
1840
+ ¨¨¨
1841
+ 0
1842
+ ˛
1843
+ ‹‹‹‚.
1844
+ Clearly, H – convpSq. Let
1845
+ U “
1846
+ ¨
1847
+ ˚
1848
+ ˚
1849
+ ˚
1850
+ ˚
1851
+ ˚
1852
+ ˚
1853
+ ˚
1854
+ ˚
1855
+ ˝
1856
+ E d
1857
+ 2 ´1
1858
+ ˇˇˇˇˇ
1859
+ 0p d
1860
+ 2 ´1qˆp d
1861
+ 2 `1q
1862
+ 01
1863
+ d
1864
+ 2
1865
+ ˇˇˇˇˇE d
1866
+ 2 ´1
1867
+ ˇˇˇˇˇ0p d
1868
+ 2 ´1qˆ1
1869
+ ´e⊺
1870
+ d
1871
+ ´pe d
1872
+ 2 `edq⊺
1873
+ ˛
1874
+ ‹‹‹‹‹‹‹‹‚
1875
+ P Zdˆd.
1876
+ It is easy to see that U is unimodular and a direct computation shows that
1877
+ U ¨pS´1dˆdq “
1878
+ ¨
1879
+ ˚
1880
+ ˚
1881
+ ˚
1882
+ ˚
1883
+ ˝
1884
+ M
1885
+ ´
1886
+ d`2
1887
+ 2 ∆ d´2
1888
+ 2 ´1 d´2
1889
+ 2 ˆ d
1890
+ 2
1891
+ ¯
1892
+ 0 d´2
1893
+ 2 ˆ d
1894
+ 2
1895
+ 0 d´2
1896
+ 2 ˆ d
1897
+ 2
1898
+ M
1899
+ ´
1900
+ d`2
1901
+ 2 ∆ d´2
1902
+ 2 ´1 d´2
1903
+ 2 ˆ d
1904
+ 2
1905
+ ¯
1906
+ 0
1907
+ ¨¨¨
1908
+ 0
1909
+ 1
1910
+ ¨¨¨
1911
+ 1
1912
+ 1
1913
+ ¨¨¨
1914
+ 1
1915
+ 1
1916
+ ¨¨¨
1917
+ 1
1918
+ ˛
1919
+ ‹‹‹‹‚
1920
+ .
1921
+ Since H – convpU ¨pS´1dˆdqq, the claim follows after projection on the first d ´1 coordinates
1922
+ and by the definition of the join. We also note that the vertices of H corresponding to the vertices
1923
+ of the dilated simplices are tcp2ℓ`1q : 0 ď ℓ ď d
1924
+ 2,ℓ ‰ i`1
1925
+ 2 u and tcp2ℓq : 1 ď ℓ ď d
1926
+ 2 ` 1,ℓ ‰
1927
+ j`2
1928
+ 2 u.
1929
+
1930
+ Proof of Proposition 6.6 (ii). Let d ě 1 be an odd integer.
1931
+ We define vectors up1q,...,
1932
+ ud`2 P Rd`1 by upℓq
1933
+ k
1934
+ “ d ` 1 if k “ ℓ ´ 1 and upℓq
1935
+ k
1936
+ “ p´1qk`ℓ´1q, otherwise. By Lemma 4.10,
1937
+ up1q,...,upd`2q are the vertices of rPBpσd`1q. We now consider the matrix E P Zpd`1qˆpd`2q whose
1938
+ ℓ-th column equals bp2ℓ´1q if 1 ď ℓ ď d`3
1939
+ 2
1940
+ and up2ℓ´pd`3qq if d`3
1941
+ 2 `1 ď ℓ ď d `2. If we reorder
1942
+ the rows of E, by taking first the rows with even index and then the ones with odd index,
1943
+ increasingly, we obtain a matrix Q “ pqk,ℓq P Zpd`1qˆpd`2q with
1944
+ ‚ qk,k`1 “ d `1 for k P rd `1s,
1945
+ ‚ qk,ℓ “ 1 if k ď d`1
1946
+ 2
1947
+ and ℓ ą d`3
1948
+ 2 , or k ą d`1
1949
+ 2
1950
+ and ℓ ď d`3
1951
+ 2
1952
+ ‚ qk,ℓ “ ´1, otherwise.
1953
+ Clearly, rPBpσd`1q – convpQq. Let
1954
+ U “
1955
+ ¨
1956
+ ˚
1957
+ ˚
1958
+ ˚
1959
+ ˚
1960
+ ˚
1961
+ ˝
1962
+ E d`1
1963
+ 2
1964
+ 0 d`1
1965
+ 2 ˆ d`1
1966
+ 2
1967
+ 0
1968
+ 0 d´1
1969
+ 2 ˆ d`1
1970
+ 2
1971
+ ...
1972
+ E d´1
1973
+ 2
1974
+ 0
1975
+ 0
1976
+ ¨¨¨
1977
+ 0
1978
+ 1
1979
+ ¨¨¨
1980
+ 1
1981
+ ˛
1982
+ ‹‹‹‹‹‚
1983
+ P Zpd`1qˆpd`1q.
1984
+
1985
+ 22
1986
+ MARTINA JUHNKE-KUBITZKE AND DANIEL K ¨OHNE
1987
+ It is easy to see that U is unimodular and a direct computation shows that
1988
+ U ¨pQ´1pd`1qˆpd`2qq “
1989
+ ¨
1990
+ ˚
1991
+ ˚
1992
+ ˝
1993
+ M
1994
+ ´
1995
+ pd `2q∆ d`1
1996
+ 2 ´2¨1
1997
+ ¯
1998
+ 0
1999
+ 0
2000
+ M
2001
+ ´
2002
+ pd `2q∆ d´1
2003
+ 2 ´2¨1
2004
+ ¯
2005
+ 0
2006
+ ¨¨¨
2007
+ 0
2008
+ 1
2009
+ ¨¨¨
2010
+ 1
2011
+ ˛
2012
+ ‹‹‚.
2013
+ Since rPBpσd`1q – convpU ¨pQ´1pd`1qˆpd`2qqq, the claim follows by definition of the join.
2014
+
2015
+ REFERENCES
2016
+ [1] K. Adiprasito, Stavros A. Papadakis, V. Petrotou, and J. Steinmeyer. Beyond positivity in ehrhart theory,
2017
+ 2022.
2018
+ [2] C.A. Athanasiadis. h˚-vectors, eulerian polynomials and stable polytopes of graphs. Electron. J. Combin.,
2019
+ 11(2):Research Paper 6, 13 pp. (electronic), 2004/06.
2020
+ [3] G. Balletti, T. Hibi, M. Meyer, and A. Tsuchiya. Laplacian simplices associated to digraphs. Arkiv f¨or
2021
+ matematik, 56, 12 2018.
2022
+ [4] F. Barahona and A. Mahjoub. On the cut polytope. Mathematical Programming, 36:157–173, 06 1986.
2023
+ [5] M. Beck and A. Stapledon. On the log-concavity of Hilbert series of Veronese subrings and Ehrhart series.
2024
+ Math. Z., 264(1):195–207, 2010.
2025
+ [6] B. Braun and M. Meyer. Laplacian simplices. Advances in Applied Mathematics, 114, 2017.
2026
+ [7] F. Brenti and V. Welker. The veronese construction for formal power series and graded algebras. Advances in
2027
+ Applied Mathematics, 42(4):545–556, 2009.
2028
+ [8] M. Brun and T. R¨omer. Subdivisions of toric complexes. Journal of Algebraic Combinatorics, 21, 2004.
2029
+ [9] W. Bruns and T. R¨omer. h-vectors of gorenstein polytopes. Journal of Combinatorial Theory, Series A,
2030
+ 114:65–76, 01 2007.
2031
+ [10] Alessio D’Al`ı, Martina Juhnke-Kubitzke, Daniel K¨ohne, and Lorenzo Venturello. On the gamma-vector of
2032
+ symmetric edge polytopes. Preprint arXiv: https://arxiv.org/abs/2201.09835, 2022.
2033
+ [11] J.A. De Loera, J. Rambau, and F. Santos. Triangulations. Structures for algorithms and applications,
2034
+ volume 25. 2010.
2035
+ [12] R. Diestel. Graph Theory, volume 173. 2017.
2036
+ [13] H. Edelsbrunner and D. R. Grayson. Edgewise subdivision of a simplex. In Proceedings of the Fifteenth
2037
+ Annual Symposium on Computational Geometry (Miami Beach, FL, 1999), pages 24–30. ACM, New York,
2038
+ 1999.
2039
+ [14] E. Ehrhart. Sur les poly`edres rationnels homoth´etiques `a n dimensions. C. R. Acad. Sci. Paris, 254:616–618,
2040
+ 1962.
2041
+ [15] T.E. Goldberg. Combinatorial laplacians of simplicial complexes. A Senior Project submitted to The Division
2042
+ of Natural Science and Mathematics of Bard College, 5 2002.
2043
+ [16] D. R. Grayson. Exterior power operations on higher K-theory. K-Theory, 3(3):247–260, 1989.
2044
+ [17] B. Gr¨unbaum. Convex Polytopes. Graduate Texts in Mathematics, 2003.
2045
+ [18] C. Haase, A. Paffenholz, L. Piechnik, and F. Santos. Existence of unimodular triangulations - positive results.
2046
+ Memoirs of the American Mathematical Society, 270, 05 2014.
2047
+ [19] J. Herzog, T. Hibi, and H. Ohsugi. Edge Polytopes and Edge Rings, pages 117–140. 09 2018.
2048
+ [20] T. Hibi. Dual polytopes of rational convex polytopes. Combinatorica, 2(2):237–240, 1992.
2049
+ [21] A. Higashitani, K. Jochemko, and M. Michałek. Arithmetic aspects of symmetric edge polytopes.
2050
+ Mathematika, 65:763–784, 05 2019.
2051
+ [22] K. Jochemko. On the real-rootedness of the veronese construction for rational formal power series.
2052
+ International Mathematics Research Notices, 2018:4780–4798, 2018.
2053
+ [23] L. Lov´asz and M. D. Plummer. Matching theory. Annals of Discrete Mathematics, 29, 1986.
2054
+ [24] M. Meyer and Pllaha T. Laplacian simplices ii: A coding theoretic approach, 2018.
2055
+ [25] R. Mulas, D. Horak, and J. Jost. Graphs, Simplicial Complexes and Hypergraphs: Spectral Theory and
2056
+ Topology, pages 1–58. Springer International Publishing, Cham, 2022.
2057
+ [26] J.R. Munkres. Elements of Algebraic Topology. Addison Wesley Publishing Company, 1984.
2058
+ [27] H. Ohsugi and T. Hibi. Special simplices and Gorenstein toric rings. J. Combin. Theory Ser. A, 113(4):718–
2059
+ 725, 2006.
2060
+ [28] H. Ohsugi and A. Tsuchiya. Pq-type adjacency polytopes of join graphs. 03 2021.
2061
+ [29] R.P. Stanley. Decompositions of rational convex polytopes. Annals of Discrete Math., 6:333–342, 1980.
2062
+
2063
+ LAPLACIAN POLYTOPES OF SIMPLICAL COMPLEXES
2064
+ 23
2065
+ [30] G. Ziegler. Elements of Algebraic Topology. Graduate Texts in Mathematics, 1995.
2066
+ UNIVERSIT ¨AT OSNABR ¨UCK, INSTITUT F ¨UR MATHEMATIK, 49069 OSNABR ¨UCK, GERMANY
2067
+ Email address: [email protected]
2068
+ UNIVERSIT ¨AT OSNABR ¨UCK, INSTITUT F ¨UR MATHEMATIK, 49069 OSNABR ¨UCK, GERMANY
2069
+ Email address: [email protected]
2070
+
-9FJT4oBgHgl3EQfqCwO/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-dAzT4oBgHgl3EQfFfqG/content/tmp_files/2301.01012v1.pdf.txt ADDED
@@ -0,0 +1,2638 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01012v1 [math.AP] 3 Jan 2023
2
+ NOVEL SPATIAL PROFILES OF POPULATION DISTRIBUTION OF
3
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION
4
+ INFECTION MECHANISM AND SMALL MOVEMENT RATE FOR
5
+ THE INFECTED INDIVIDUALS
6
+ RUI PENG, ZHI-AN WANG, GUANGHUI ZHANG AND MAOLIN ZHOU
7
+ Abstract. In this paper, we are concerned with two SIS epidemic reaction-diffusion
8
+ models with mass action infection mechanism of the form SI, and study the spatial profile
9
+ of population distribution as the movement rate of the infected individuals is restricted to
10
+ be small. For the model with a constant total population number, our results show that
11
+ the susceptible population always converges to a positive constant which is indeed the
12
+ minimum of the associated risk function, and the infected population either concentrates
13
+ at the isolated highest-risk points or aggregates only on the highest-risk intervals once the
14
+ highest-risk locations contain at least one interval. In sharp contrast, for the model with
15
+ a varying total population number which is caused by the recruitment of the susceptible
16
+ individuals and death of the infected individuals, our results reveal that the susceptible
17
+ population converges to a positive function which is non-constant unless the associated risk
18
+ function is constant, and the infected population may concentrate only at some isolated
19
+ highest-risk points, or aggregate at least in a neighborhood of the highest-risk locations or
20
+ occupy the whole habitat, depending on the behavior of the associated risk function and
21
+ even its smoothness at the highest-risk locations. Numerical simulations are performed to
22
+ support and complement our theoretical findings.
23
+ 1. Introduction and existing results
24
+ The outbreak of the novel coronavirus disease 2019 (COVID-19) continues to spread
25
+ rapidly around the world, and it has caused tremendous impacts on public health and
26
+ the global economy. As it is commonly recognized, population movement is a significant
27
+ factor in the spread of many reported infectious diseases including COVID-19 [5, 9, 25],
28
+ Date: January 4, 2023.
29
+ 2010 Mathematics Subject Classification. 35J57, 35B40, 35Q92, 92D30.
30
+ Key words and phrases. Reaction-diffusion SIS epidemic model; mass action infection mechanism; spa-
31
+ tial profile; small movement rate; heterogeneous environment.
32
+ R. Peng: Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
33
+ Email: pengrui [email protected].
34
+ Z.-A. Wang: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung
35
+ Hom, Kowloon, Hong Kong. Email: [email protected].
36
+ G. Zhang: School of Mathematics and Statistics, Huazhong University of Science and Technology,
37
+ Wuhan, 430074, China. Email: [email protected].
38
+ M. Zhou: Chern Institute of Mathematics and LPMC, Nankai University, Tianjin, 300071, China.
39
+ Email: [email protected].
40
+ R. Peng was partially supported by NSF of China (Nos. 12271486, 12171176), Z.-A. Wang was partially
41
+ supported by the Hong Kong Scholars Program (Project ID P0031250) and an internal grant from the
42
+ Hong Kong Polytechnic University (Project ID P0031013), G. Zhang was partially supported by NSF of
43
+ China (No. 12171176, 11971187) and the Fundamental Research Funds for the Central Universities (No.
44
+ 5003011008), and M. Zhou was partially supported by the Nankai Zhide Foundation and NSF of China
45
+ (No. 11971498).
46
+ 1
47
+
48
+ 2
49
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
50
+ and the lockdown and quarantine has turned out to be one of the most effective measures
51
+ to reduce or even eliminate the infection [30, 60]. On the other hand, the importance of the
52
+ population heterogeneity has also been observed in the complicated dynamical behaviour
53
+ of the transmission of COVID-19 [7, 8, 17].
54
+ To gain a deeper understanding of the impact of population movement and heterogeneity
55
+ on the transmission of epidemic diseases from a mathematically theoretical viewpoint, in
56
+ the present work we are concerned with two SIS reaction-diffusion systems with mass action
57
+ infection mechanism in a heterogeneous environment. We aim to study the spatial profile of
58
+ population distribution as the movement rate of the infected individuals is controlled to be
59
+ sufficiently small. Such kind of information may be useful for decision-makers to predict the
60
+ pattern of disease occurrence and henceforth to conduct more effective strategies of disease
61
+ eradication. The mass action infection mechanism was first proposed in the seminal work
62
+ of Kermack and McKendrick [26], in which the disease transmission was assumed to be
63
+ governed by a bilinear incidence function SI (one may also refer to [27–29] or [54]). The
64
+ systems under consideration in this paper are possibly the simplest yet basic SIS epidemic
65
+ models.
66
+ The first model we will deal with in this work is the following coupled reaction-diffusion
67
+ equations in one-dimensional space:
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+
78
+
79
+ St − dSSxx = −β(x)SI + γ(x)I,
80
+ 0 < x < L,
81
+ t > 0,
82
+ It − dIIxx = β(x)SI − γ(x)I,
83
+ 0 < x < L,
84
+ t > 0,
85
+ Sx = Ix = 0,
86
+ x = 0, L,
87
+ t > 0,
88
+ S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥, ̸≡ 0,
89
+ 0 < x < L.
90
+ (1.1)
91
+ Here, S(x, t) and I(x, t) are respectively the population density of the susceptible and in-
92
+ fected individuals at position x ∈ [0, L] and time t; the homogeneous Neumann boundary
93
+ condition means that no population flux crosses the boundary x = 0, L; dS and dI are pos-
94
+ itive constants measuring the motility of susceptible and infected individuals, respectively;
95
+ and the functions β and γ are H¨older continuous positive functions in [0, L] representing
96
+ the disease transmission rate and the disease recovery rate, respectively.
97
+ Integrating the sum of the equations of (1.1), combined with the homogeneous Neumann
98
+ boundary value conditions, we observe that
99
+ � L
100
+ 0
101
+ (S(x, t) + I(x, t)) dx =
102
+ � L
103
+ 0
104
+ (S0(x) + I0(x)) dx =: N,
105
+ ∀t ≥ 0.
106
+ Thus, the total population number in (1.1) is conserved all the time.
107
+ The system (1.1) was investigated in the recent works [16, 65, 68]; in particular, when
108
+ the movement of either the susceptible or infected population is restricted to be slow, the
109
+ authors explored the profile of the spatial distribution of the disease modelled by (1.1). The
110
+ understanding of such a profile amounts to determine the behavior of the so-called endemic
111
+ equilibrium with respect to the small diffusion rate dS or dI. The endemic equilibrium of
112
+
113
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
114
+ 3
115
+ (1.1) is a positive steady state solution, which satisfies the following elliptic system:
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+ −dSSxx = −β(x)SI + γ(x)I,
132
+ 0 < x < L,
133
+ −dIIxx = β(x)SI − γ(x)I,
134
+ 0 < x < L,
135
+ Sx = Ix = 0,
136
+ x = 0, L,
137
+ � L
138
+ 0
139
+ (S(x) + I(x)) dx = N.
140
+ (1.2)
141
+ According to [16, 65, 68], if minx∈[0,L]
142
+ γ(x)
143
+ β(x) < N
144
+ L , for any small dI > 0, (1.2) admits at least
145
+ one positive solution (S, I), which is called an endemic equilibrium (EE for abbreviation)
146
+ in terms of epidemiology; moreover, (S, I) satisfies S, I ∈ C2([0, L]) and S, I > 0 on [0, L].
147
+ As remarked in [68], it is a challenging problem to study the spatial profile of EE of
148
+ (1.2) with respect to the small movement rate dI of the infected population; in [65], the
149
+ authors provided a first result in this research direction. Indeed, they proved the following
150
+ conclusion.
151
+ Theorem 1.1. [65, Theorem B] Assume that minx∈[0,L]
152
+ γ(x)
153
+ β(x) < N
154
+ L . Then as dI → 0, the
155
+ EE (S, I) of (1.2) satisfies (up to a sequence of dI) that S → ˆS uniformly on [0, L], where
156
+ ˆS ∈ C([0, L]) with min[0,L]
157
+ γ(x)
158
+ β(x) ≤ ˆS(x) ≤ max[0,L]
159
+ γ(x)
160
+ β(x), and I → µ weakly for some Radon
161
+ measure µ with nonempty support in the sense of
162
+ � L
163
+ 0
164
+ I(x)ζ(x)dx −→
165
+
166
+ [0,L]
167
+ ζ(x)µ(dx),
168
+ ∀ζ ∈ C([0, L]).
169
+ (1.3)
170
+ Obviously, Theorem 1.1 does not give a precise description for ˆS and µ and hence the
171
+ spatial profile of the susceptible and infected populations remains obscure. From the aspect
172
+ of disease control, it becomes imperative to know an informative behavior of µ. In this
173
+ paper, we manage to give a satisfactory result on the profile of ˆS and µ.
174
+ In (1.1), some important factors such as the death and recruitment rates of population
175
+ are ignored so that the total population number is a constant. In order to take into account
176
+ the death and recruitment rates of population, the following reaction-diffusion epidemic
177
+ system was proposed in [40]:
178
+
179
+
180
+
181
+
182
+
183
+
184
+
185
+ St − dSSxx = Λ(x) − S − β(x)SI + γ(x)I,
186
+ 0 < x < L, t > 0,
187
+ It − dIIxx = β(x)SI − [γ(x) + η(x)] I,
188
+ 0 < x < L, t > 0,
189
+ Sx = Ix = 0,
190
+ x = 0, L, t > 0,
191
+ S(x, 0) = S0(x) ≥ 0, I(x, 0) = I0(x) ≥, ̸≡ 0,
192
+ 0 < x < L.
193
+ (1.4)
194
+ The recruitment term of the susceptible population is represented by the function Λ(x)−S
195
+ so that the susceptible is subject to the linear growth/death ([4, 24]); η(x) accounts for
196
+ the death rate of the infected. Here, Λ, η are assumed to be positive H¨older continuous
197
+ functions on [0, L]. All other parameters have the same interpretation as in (1.1).
198
+ It is easily seen that the following elliptic problem
199
+ −dSSxx = Λ(x) − S,
200
+ 0 < x < L;
201
+ Sx(0) = Sx(L) = 0
202
+ (1.5)
203
+
204
+ 4
205
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
206
+ admits a unique positive solution ˜S. Then ( ˜S, 0) is a unique disease-free equilibrium of
207
+ (1.4). An EE of (1.4) satisfies the following ODE system:
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+ −dSSxx = Λ(x) − S − β(x)SI + γ(x)I,
216
+ 0 < x < L,
217
+ −dIIxx = β(x)SI − [γ(x) + η(x)] I,
218
+ 0 < x < L,
219
+ Sx = Ix = 0,
220
+ x = 0, L.
221
+ (1.6)
222
+ As one of the main results of [40], the following conclusion on the profile of EE of (1.6)
223
+ with respect to small dI was established.
224
+ Theorem 1.2. [40, Theorem 3.2] Assume that the set {x ∈ [0, L] : β(x) ˜S(x) > γ(x) +
225
+ η(x)} is non-empty. As dI → 0, then any EE (S, I) of (1.6) satisfies (up to a subsequence
226
+ of dI) that S → ˆS
227
+ uniformly on [0, L], where ˆS ∈ C([0, L]) and ˆS > 0 on [0, L], and
228
+ � L
229
+ 0 Idx → ˆI for some positive constant ˆI.
230
+ As in Theorem 1.1, Theorem 1.2 does not characterize the precise distribution of the
231
+ susceptible and infected populations. In this paper, we will also provide a clear picture of
232
+ the population distributions for (1.6) as the movement rate dI tends to zero. It turns out
233
+ that the spatial profiles of the disease distribution modelled by (1.2) and (1.6) are rather
234
+ different.
235
+ The rest of paper is organized as follows. In section 2, we state the main theoretical
236
+ results, and section 3 is devoted to their proofs. In section 4, we carry out the numerical
237
+ simulations and discuss the implications of our results in terms of disease control. In the
238
+ appendix, we recall some known facts which will be used in the paper.
239
+ 2. Statement of main results
240
+ In this section, we state the main findings of this paper on models (1.2) and (1.6).
241
+ To proceed, we underline some terminologies frequently used throughout the paper. For
242
+ model (1.2), we call γ(x)
243
+ β(x) the risk function, and call each element of the set
244
+
245
+ x ∈ [0, L] :
246
+ γ(x)
247
+ β(x) = minx∈[0,L]
248
+ γ(x)
249
+ β(x)
250
+
251
+ the highest-risk point (or location). Similarly, for model (1.6), we
252
+ call γ(x)+η(x)
253
+ β(x)
254
+ the risk function, and call each element of the set
255
+
256
+ x ∈ [0, L] :
257
+ γ(x)+η(x)
258
+ β(x)
259
+ =
260
+ minx∈[0,L]
261
+ γ(x)+η(x)
262
+ β(x)
263
+
264
+ the highest-risk point (or location).
265
+ 2.1. Results for model (1.2). For the sake of convenience, we set
266
+ k(x) = γ(x)
267
+ β(x),
268
+ kmin = min
269
+ x∈[0,L] k(x),
270
+ and
271
+ Θk =
272
+
273
+ x ∈ [0, L] : k(x) = kmin
274
+
275
+ .
276
+ We note that when the risk function k(x) = k is a positive constant, it follows from [65]
277
+ that S(x) ≡ k is a constant, and in turn by the equation of I, we immediately see that
278
+ I = N
279
+ L − k is also a positive constant provided that k < N
280
+ L . In what follows, we do not
281
+ consider such a trivial case and assume that k(x) is non-constant on [0, L].
282
+ We now state our main result on the asymptotic behavior of any EE (S, I) of (1.2) as
283
+ dI → 0 as follows.
284
+
285
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
286
+ 5
287
+ Theorem 2.1. Assume that k(x) is non-constant and kmin < N
288
+ L . Then as dI → 0, the EE
289
+ (S, I) of (1.2) satisfies
290
+ S(x) → kmin
291
+ uniformly for x ∈ [0, L].
292
+ (2.7)
293
+ The following assertions hold for the asymptotic behavior of I.
294
+ (i) If Θk = {x0}, then we have
295
+ I(x) → (N − Lkmin)δ(x0) weakly in the sense of (1.3),
296
+ where δ(x0) is the Dirac measure centered at x0. Moreover, I(x) → 0 locally uni-
297
+ formly in [0, L] \ {x0}.
298
+ (ii) If Θk = [̺1, ̺2] for some 0 < ̺1 < ̺2 < L, then we have
299
+ I(x) → 0
300
+ uniformly on [0, ̺1] ∪ [̺2, L],
301
+ and
302
+ I(x) → ˆI(x)
303
+ uniformly for x ∈ [̺1, ̺2],
304
+ where ˆI ∈ C2([̺1, ̺2]), ˆI > 0 in (̺1, ̺2), and ˆI is the unique positive solution of
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+ −ˆIxx = β(x)
315
+ dS (ˆa − ˆI)ˆI,
316
+ ̺1 < x < ̺2,
317
+ ˆI = 0,
318
+ x = ̺1, ̺2,
319
+ � ̺2
320
+ ̺1
321
+ ˆI dx = N − Lkmin,
322
+ (2.8)
323
+ where the positive constant ˆa is uniquely determined by the integral constraint in
324
+ (2.8).
325
+ Regarding Theorem 2.1, we would like to make some comments in order as follows.
326
+ Remark 2.1. In addition to the two cases treated in Theorem 2.1, we can handle some
327
+ more general cases. In particular, we would like to make the following comments.
328
+ (i) If the set Θk contains only finitely many isolated points, say {xi}j
329
+ i=1 for some j ≥ 2,
330
+ then one can slightly modify the proof of Theorem 2.1(i) to show that S → kmin
331
+ uniformly on [0, L], and I → 0 locally uniformly in [0, L] \ ({xi}j
332
+ i=1), and
333
+ I(x) →
334
+ j
335
+
336
+ i=1
337
+ ciδ(xi) weakly in the sense of (1.3),
338
+ where δ(xi) is the Dirac measure centered at xi and the nonnegative constants ci
339
+ fulfill �j
340
+ i=1 ci = N − Lkmin. Nevertheless, we can not determine the exact values
341
+ of ci; in other words, as dI → 0, it is unclear to us whether I concentrates at all
342
+ xi (1 ≤ i ≤ j) or only some of them. The numerical results suggest that the former
343
+ alternative holds; see Figure 1 in section 4.
344
+ (ii) If the set Θk contains at least one proper interval of [0, L], by adapting the argument
345
+ of Theorem 2.1(ii), we can show that S → kmin uniformly on [0, L], and I → ˆI
346
+ uniformly on [0, L] with
347
+ ˆI = 0
348
+ on [0, L] \ Θk,
349
+
350
+ Θk
351
+ ˆI dx = N − Lkmin.
352
+
353
+ 6
354
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
355
+ In particular, if Θk =
356
+ � �j∗
357
+ i=1[̺i, ̺i]
358
+ � � � �{xi}j∗
359
+ i=0
360
+
361
+ for some j∗ ≥ 1, j∗ ≥ 0, then
362
+ we can prove that
363
+ ˆI = 0
364
+ on [0, L] \ (
365
+ j∗
366
+
367
+ i=1
368
+ (̺i, ̺i)),
369
+ and in (̺i, ̺i) (1 ≤ i ≤ j∗), either ˆI = 0 or ˆI > 0. Without loss of generality,
370
+ assuming that ˆI(x) > 0 for x ∈ � ˆj∗
371
+ i=1(̺i, ̺i) for some 1 ≤ ˆj∗ ≤ j∗, then in each
372
+ such (̺i, ̺i), we can conclude that ˆI solves
373
+
374
+ −ˆIxx = β(x)
375
+ dS (ˆa − ˆI)ˆI,
376
+ ̺i < x < ̺i,
377
+ ˆI = 0,
378
+ x = ̺i, ̺i,
379
+ where the positive constant ˆa is uniquely determined by
380
+ ˆj∗
381
+
382
+ i=1
383
+ � ̺i
384
+ ̺i
385
+ ˆI dx = N − Lkmin.
386
+ However, it seems rather challenging to prove whether ˆI is positive on all intervals
387
+ (̺i, ̺i) (1 ≤ i ≤ j∗) or only on some of them. Our numerical results suggest that
388
+ the former alternative holds; see Figure 2 in section 4.
389
+ (iii) The assertion in (ii) above suggests that if the highest-risk locations contain at
390
+ least one interval, then the disease can not stay on any possible isolated highest-risk
391
+ points once the infected individuals move slowly.
392
+ Remark 2.2. In the case (ii) of Theorem 2.1, if ̺1 = 0 (or ̺2 = L), the results of Theorem
393
+ 2.1 still hold true if we replace the Dirichlet boundary condition of ˆI in (2.8) at ̺1 = 0 (or
394
+ ̺2 = L) by the Neumann boundary condition ˆIx(0) = 0 (or ˆIx(L) = 0). A similar remark
395
+ applies to the case discussed in Remark 2.1(ii) above.
396
+ Remark 2.3. After this paper was finished, we noticed the work [10] in which the authors
397
+ derived (2.7) and the convergence of the I-component in the case (i) of Theorem 2.1 in
398
+ any spatial dimension in a more general setting; see Theorem 2.5(i) there. However, their
399
+ result does not establish the convergence of the I-component within Θk in the case (ii) of
400
+ Theorem 2.1 nor in the more general case mentioned by Remark 2.1; on the other hand,
401
+ our proof of (2.7) and the convergence of the I-component outside of Θk is rather different
402
+ from that of [10].
403
+ 2.2. Results for model (1.6). We now turn to system (1.6). For the sake of simplicity,
404
+ we assume that Λ in (1.6) is a positive constant, and also denote
405
+ h(x) = γ(x) + η(x)
406
+ β(x)
407
+ ,
408
+ hmin = min
409
+ x∈[0,L] h(x),
410
+ and
411
+ Θh =
412
+
413
+ x ∈ [0, L] : h(x) = hmin
414
+
415
+ .
416
+ Clearly, ˜S(x) = Λ. We also enhance the existence condition of EE of (1.6) in Theorem 1.2
417
+ by imposing the following condition:
418
+ Λ > h(x)
419
+ for all x ∈ [0, L].
420
+ (2.9)
421
+
422
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
423
+ 7
424
+ Now we can state our main findings on the asymptotic behavior of any EE (S, I) of (1.6)
425
+ as dI → 0. The first result reads as follows.
426
+ Theorem 2.2. Assume that (2.9) holds. As dI → 0, then any EE (S, I) of (1.6) satisfies
427
+ (up to a subsequence of dI) that S → ˆS
428
+ uniformly on [0, L], and I → µ weakly in the
429
+ sense of (1.3), where µ is some Radon measure and ˆS solves weakly in W 1,2(0, L) the free
430
+ boundary problem:
431
+ −dS ˆSxx = Λ − ˆS − η(x)µ({x})
432
+ ��
433
+ {x∈[0, L]: ˆS(x)=h(x)},
434
+ x ∈ (0, L).
435
+ (2.10)
436
+ Here, µ({x})
437
+ ��
438
+ {x∈[0, L]: ˆS(x)=h(x)} is the restriction of µ on the set {x ∈ [0, L] : ˆS(x) = h(x)};
439
+ otherwise, µ({x}) = 0. Moreover we have the following properties for µ and ˆS.
440
+ (i) The Radon measure µ satisfies
441
+ µ({x ∈ [0, L] : ˆS(x) ̸= h(x)}) = 0,
442
+ µ({x ∈ [0, L] : ˆS(x) = h(x)}) > 0.
443
+ (2.11)
444
+ (ii) The function ˆS ∈ C([0, L]) satisfies
445
+ hmin ≤ ˆS(x) ≤ h(x),
446
+ ∀x ∈ [0, L],
447
+ (2.12)
448
+ Θh ⊂
449
+
450
+ x ∈ [0, L] :
451
+ ˆS(x) = h(x)
452
+
453
+ ;
454
+ (2.13)
455
+ If x1, x2 ∈ Θh with x1 < x2 and (x1, x2) ∩ Θh = ∅, then
456
+ hmin < ˆS(x),
457
+ ∀x ∈ (x1, x2).
458
+ (2.14)
459
+ Theorem 2.2 asserts that ˆS touches h at all highest-risk points. In what follows, our goal
460
+ is to examine the properties ˆS for some specific risk function h, which in turn provides us
461
+ with a more precise description of the profile of µ. Indeed, we can obtain the following
462
+ result for (1.6).
463
+ Theorem 2.3. Let ˆS and µ be given as in Theorem 2.2. Assume that h ∈ C2([0, L]) and
464
+ (2.9) holds. The following assertions hold.
465
+ (i) If −dShxx ≤ Λ − h in (0, L), hx(0) ≥ 0 and hx(L) ≤ 0, then we have
466
+ ˆS(x) = h(x),
467
+ ∀x ∈ [0, L],
468
+ (2.15)
469
+ µ({x}) = Λ − h(x) + dShxx(x)
470
+ η(x)
471
+ ,
472
+ a.e. for x ∈ (0, L).
473
+ (2.16)
474
+ (ii) If hx is non-decreasing on [0, L] and Θh = {τ0} for some 0 ≤ τ0 ≤ L, then the
475
+ following assertions hold.
476
+ (a) When 0 < τ0 < L, we have
477
+ ˆS(x) = h(x),
478
+ ∀x ∈ [τ1, τ2],
479
+ (2.17)
480
+ and in [0, τ1) ∪ (τ2, L], ˆS < h satisfies
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+ −dS ˆSxx(x) = Λ − ˆS,
489
+ x ∈ (0, τ1) ∪ (τ2, L),
490
+ ˆSx(0) = 0,
491
+ ˆSx(L) = 0,
492
+ ˆS(τ1) = h(τ1),
493
+ ˆS(τ2) = h(τ2),
494
+ (2.18)
495
+ and µ satisfies
496
+ µ({x}) = Λ − h(x) + dShxx(x)
497
+ η(x)
498
+ ,
499
+ a.e. for x ∈ (τ1, τ2),
500
+ (2.19)
501
+
502
+ 8
503
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
504
+ µ({x}) = 0,
505
+ ∀x ∈ [0, τ1) ∪ (τ2, L],
506
+ (2.20)
507
+ where the numbers τ1, τ2 with 0 < τ1 < τ0 < τ2 < L are uniquely determined
508
+ by
509
+ e2d−1/2
510
+ S
511
+ τ1 − 1
512
+ e2d−1/2
513
+ S
514
+ τ1 + 1
515
+ = −d1/2
516
+ S hx(τ1)
517
+ Λ − h(τ1) ,
518
+ e2d−1/2
519
+ S
520
+ (τ2−L) − 1
521
+ e2d−1/2
522
+ S
523
+ (τ2−L) + 1
524
+ = −d1/2
525
+ S hx(τ2)
526
+ Λ − h(τ2) .
527
+ (2.21)
528
+ (b) When τ0 = L, then we have the following assertions.
529
+ (b-1) If
530
+ e2Ld−1/2
531
+ S
532
+ −1
533
+ e2Ld−1/2
534
+ S
535
+ +1
536
+ > −
537
+ d1/2
538
+ S
539
+ hx(L)
540
+ Λ−h(L) , then (2.17) and (2.19) hold with [τ1, τ2] re-
541
+ placed by [τ1, L], µ([0, τ1)) = 0, and on [0, τ1], ˆS satisfies
542
+
543
+ −dS ˆSxx(x) = Λ − ˆS,
544
+ x ∈ (0, τ1),
545
+ ˆSx(0) = 0,
546
+ ˆS(τ1) = h(τ1),
547
+ (2.22)
548
+ where 0 < τ1 < L is uniquely determined by the first equation in (2.21).
549
+ (b-2) If e2Ld−1/2
550
+ S
551
+ −1
552
+ e2Ld−1/2
553
+ S
554
+ +1
555
+ ≤ −
556
+ d1/2
557
+ S
558
+ hx(L)
559
+ Λ−h(L) , then ˆS is the unique positive solution of
560
+
561
+ −dS ˆSxx(x) = Λ − ˆS,
562
+ x ∈ (0, L),
563
+ ˆSx(0) = 0,
564
+ ˆS(L) = h(L),
565
+ (2.23)
566
+ and µ satisfies
567
+ µ([0, L)) = 0,
568
+ µ({L}) = ΛL −
569
+ � L
570
+ 0 ˆS(x)dx
571
+ η(L)
572
+ .
573
+ (2.24)
574
+ (c) When τ0 = 0, then we have the following assertions.
575
+ (c-1) If e2Ld−1/2
576
+ S
577
+ −1
578
+ e2Ld−1/2
579
+ S
580
+ +1
581
+ >
582
+ d1/2
583
+ S
584
+ hx(0)
585
+ Λ−h(0) , then (2.17) and (2.19) hold with [τ1, τ2] replaced
586
+ by [0, τ2], µ((τ2, L]) = 0, and on [τ2, L], ˆS satisfies
587
+
588
+ −dS ˆSxx(x) = Λ − ˆS,
589
+ x ∈ (τ2, L),
590
+ ˆSx(L) = 0,
591
+ ˆS(τ2) = h(τ2),
592
+ (2.25)
593
+ where 0 < τ2 < L is uniquely determined by the second equation in (2.21).
594
+ (c-2) If e2Ld−1/2
595
+ S
596
+ −1
597
+ e2Ld−1/2
598
+ S
599
+ +1
600
+
601
+ d1/2
602
+ S
603
+ hx(0)
604
+ Λ−h(0) , then ˆS is the unique positive solution of
605
+
606
+ −dS ˆSxx(x) = Λ − ˆS,
607
+ x ∈ (0, L),
608
+ ˆSx(L) = 0,
609
+ ˆS(0) = h(0),
610
+ (2.26)
611
+ and µ satisfies
612
+ µ((0, L]) = 0,
613
+ µ({0}) = ΛL −
614
+ � L
615
+ 0 ˆS(x)dx
616
+ η(0)
617
+ .
618
+ (2.27)
619
+ (iii) If hx is non-decreasing on [0, ̺1]∪[̺2, L] and Θh = [̺1, ̺2] for some 0 < ̺1 < ̺2 < L,
620
+ then all the assertions in (ii)-(a) above hold, where the numbers τ1, τ2 satisfying
621
+ 0 < τ1 < ̺1 < ̺2 < τ2 < L are uniquely determined by (2.21).
622
+
623
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
624
+ 9
625
+ For model (1.2), our result shows that the infected population concentrates or aggregates
626
+ only at the highest-risk locations. In sharp contrast, for model (1.6), our result suggests
627
+ that the disease will occupy a neighborhood of the interior highest-risk locations or even
628
+ occupy the whole habitat [0, L], or concentrates only at the boundary highest-risk location,
629
+ depending on the risk function h. More detailed discussions on the implications of our
630
+ theoretical results, along with numerical simulations, will be given in section 4.
631
+ We would like to make some remarks on Theorem 2.3 as follows.
632
+ Remark 2.4. It is worth mentioning that all the statements in Theorem 2.3 except the
633
+ expression (2.19) for the Radon measure µ remain true provided that the risk function
634
+ h ∈ C1([0, L]). Such a comment also applies to Lemmas 3.1-3.4 in the forthcoming section.
635
+ Remark 2.5.
636
+ (i) It is clear that Theorem 2.3(i) holds if h < Λ is a constant or more
637
+ generally h is a unique solution to the following problem:
638
+
639
+ −dShxx = Λ − h,
640
+ x ∈ (0, L),
641
+ h(0) = σ1,
642
+ h(L) = σ2,
643
+ where 0 < σ1, σ2 < Λ.
644
+ When hx(0) > 0, the change of the derivatives from Sx(0) = 0 to ˆSx(0) = hx(0) >
645
+ 0 would suggest that I should experience the concentration phenomenon at x = 0
646
+ (that is, I(0) → ∞) as dI → 0. The same remark applies to the case of hx(L) < 0.
647
+ (ii) In contrast to Theorem 2.3(i), it is easily seen that ˆS ̸≡ h on [0, L] provided that
648
+ −dShxx(x∗) > Λ − h(x∗) for some x∗ ∈ (0, L).
649
+ (iii) Clearly, the assertions of Theorem 2.3(ii)-(b1) hold if hx(L) = 0 and the assertions
650
+ of Theorem 2.3(ii)-(c1) hold if hx(0) = 0.
651
+ (iv) In a general case that Θh contains an interior isolated point and hx is non-decreasing
652
+ in a neighbourhood of such a point, we can conclude that (2.15) and (2.16) hold in
653
+ some neighbourhood of this point; if Θh contains an interval, a similar conclusion
654
+ also holds. See Lemma 3.1 and Lemma 3.3 below.
655
+ 3. Proof of main results: Theorems 2.1, 2.2 and 2.3
656
+ This section is devoted to the proof of Theorems 2.1, 2.2 and 2.3.
657
+ 3.1. Proof of Theorem 2.1. In this subsection, we present the proof of Theorem 2.1.
658
+ Proof of Theorem 2.1. First of all, we recall that for any EE (S, I) of (1.2), from [65] (see
659
+ (3.3) there), the following holds:
660
+ kmin ≤ S(x) ≤ max
661
+ [0,L] k(x),
662
+ ∀x ∈ [0, L].
663
+ (3.1)
664
+ By the positivity of I and the uniqueness of the principal eigenvalue, it is clear from the
665
+ equation of I that
666
+ λ1(dI, γ − βS) = 0,
667
+ ∀dI > 0,
668
+ where λ1(dI, γ − βS) is defined as in the appendix. Using Theorem 1.1, as dI → 0 (up to a
669
+ subsequence), we see that S → ˆS uniformly on [0, L] for some positive function ˆS. Hence,
670
+ by Lemma 5.1 in the appendix and the continuous dependence of the principal eigenvalue
671
+ on the weight function γ − βS, we have
672
+ 0 = lim
673
+ dI→0 λ1(dI, γ − βS) = min
674
+ x∈[0,L][γ(x) − β(x) ˆS(x)].
675
+
676
+ 10
677
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
678
+ This obviously implies that
679
+ ˆS(x) ≤ k(x),
680
+ ∀x ∈ [0, L] and
681
+ ˆS(y0) = k(y0)
682
+ (3.2)
683
+ for some y0 ∈ [0, L].
684
+ From Theorem 1.1, we recall that I → µ weakly for some Radon measure µ with
685
+ µ([0, L]) > 0 in the following sense
686
+ � L
687
+ 0
688
+ I(x)ζ(x)dx →
689
+ � L
690
+ 0
691
+ ζ(x)µ(dx),
692
+ ∀ζ ∈ C([0, L]),
693
+ as dI → 0.
694
+ (3.3)
695
+ We now integrate the first equation in (1.2) by parts over [0, L] and use the boundary
696
+ conditions to deduce that
697
+ � L
698
+ 0
699
+ [β(x)S(x) − γ(x)]I(x)dx = 0,
700
+ ∀dI > 0.
701
+ (3.4)
702
+ Letting dI → 0 in (3.4), combined with (3.3) and the fact that S → ˆS uniformly on [0, L]
703
+ as dI → 0, we infer that
704
+
705
+ [0,L]
706
+ [β(x) ˆS(x) − γ(x)]µ(dx) = 0,
707
+ (3.5)
708
+ which, together with (3.2), gives
709
+
710
+ {x∈[0,L]: ˆS(x)<k(x)}
711
+ β(x)[ ˆS(x) − k(x)]µ(dx) =
712
+
713
+ [0,L]
714
+ β(x)[ ˆS(x) − k(x)]µ(dx) = 0.
715
+ As a result, we find that
716
+ µ({x ∈ [0, L] : ˆS(x) < k(x)}) = 0
717
+ (3.6)
718
+ and
719
+ µ({x ∈ [0, L] : ˆS(x) = k(x)}) = µ([0, L]) > 0.
720
+ (3.7)
721
+ In view of (3.4) and
722
+ � L
723
+ 0 (S(x) + I(x)) dx = N, for any dI > 0 we have
724
+ � L
725
+ 0
726
+ S(x)I(x)dx ≤
727
+ 1
728
+ min[0,L] β(x)
729
+ � L
730
+ 0
731
+ γ(x)I(x)dx ≤ max[0,L] γ(x)
732
+ min[0,L] β(x) N,
733
+ ∀dI > 0.
734
+ (3.8)
735
+ Then, applying the L1-theory for elliptic equation (see Lemma 5.2 in the appendix) to the
736
+ S-equation, one sees that for any 1 ≤ r < ∞,
737
+ ∥S∥W 1,r(0,L) ≤ C,
738
+ ∀dI > 0.
739
+ (3.9)
740
+ Hereafter, C or C(ǫ) is a positive constant independent of dI > 0 but may be different
741
+ from place to place. Taking r = 2 in (3.9), we note that W 1,2(0, L) is a Hilbert space and
742
+ W 1,2(0, L) is compactly embedded to C([0, L]). Thus, we may assume that S → ˆS weakly
743
+ in W 1,2(0, L) and S → ˆS uniformly on [0, L] as dI → 0. Now, for any ζ ∈ W 1,2(0, L) (and
744
+ so ζ ∈ C([0, L])), we get from the S-equation that
745
+ dS
746
+ � L
747
+ 0
748
+ Sx(x)ζx(x)dx =
749
+ � L
750
+ 0
751
+ [−β(x)S(x) + γ(x)]I(x)ζ(x)dx,
752
+ ∀dI > 0.
753
+ (3.10)
754
+ By virtue of (3.3), (3.6) and (3.7), we can send dI → 0 in (3.10) to obtain
755
+ dS
756
+ � L
757
+ 0
758
+ ˆSx(x)ζx(x)dx = 0,
759
+ ∀ζ ∈ W 1,2(0, L).
760
+
761
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
762
+ 11
763
+ This means that ˆS is a weak (and then a classical) solution of
764
+ −uxx(x) = 0,
765
+ x ∈ (0, L);
766
+ ux(0) = ux(L).
767
+ Consequently, ˆS must be a positive constant. It then follows from (3.2) that ˆS = kmin,
768
+ and so S(x) → kmin uniformly on [0, L].
769
+ In the sequel, we are going to determine the limit of I.
770
+ We first consider case (i):
771
+ Θk = {x0} is a singleton. By what was proved above, it is easily seen that
772
+ I(x) → (N − Lkmin)δ(x0)
773
+ weakly in the sense of (1.3),
774
+ where δ(x0) is the Dirac measure centered at x0.
775
+ It remains to show I(x) → 0 locally uniformly in [0, L] \ {x0}. We only consider the
776
+ case of x0 ∈ (0, L), and the case x0 = 0 or L can be handled similarly. Since S(x) → kmin
777
+ uniformly on [0, L], by the definition of kmin, we know from the I-equation that, given small
778
+ ǫ > 0, Ixx > 0 on [0, x0 −ǫ]∪[x0 +ǫ, L] as long as dI is small enough. As Ix(0) = Ix(L) = 0,
779
+ I is increasing in [0, x0 − ǫ] while is decreasing in [x0 + ǫ, L]. Thus, due to the arbitrariness
780
+ of ǫ, it readily follows from (3.6) that I(x) → 0 locally uniformly in [0, x0) ∪ (x0, L], as
781
+ claimed.
782
+ We next consider case (ii): Θk = [̺1, ̺2] ⊂ (0, L).
783
+ First of all, we can assert that
784
+ I(x) → 0 locally uniformly in [0, L] \ [̺1, ̺2] by a similar argument as in case (i). In what
785
+ follows, we will analyze the limiting behavior of I in the interval [̺1, ̺2]. To this end, let
786
+ us introduce the following function
787
+ w(x) = S(x) − kmin
788
+ dI
789
+ ,
790
+ x ∈ [0, L].
791
+ Due to (3.1), w ≥ 0 on [0, L]. In addition, by our assumption, one notices that w solves
792
+ −dSwxx(x) = −β(x)Iw,
793
+ x ∈ [̺1, ̺2],
794
+ (3.11)
795
+ and I satisfies
796
+ −Ixx(x) = β(x)wI,
797
+ x ∈ [̺1, ̺2].
798
+ (3.12)
799
+ Since
800
+ � L
801
+ 0 I(x)dx ≤ N, for any small ǫ > 0, Lemma 5.3(b) in the appendix can be applied
802
+ to (3.11) to assert that
803
+ max
804
+ x∈[̺1+ǫ,̺2−ǫ] w(x) ≤ C(ǫ)
805
+ min
806
+ x∈[̺1+ǫ,̺2−ǫ] w(x).
807
+ (3.13)
808
+ We now claim that w is uniformly bounded on [̺1 +ǫ, ̺2 −ǫ] for all small dI > 0. Other-
809
+ wise, there is a sequence of dI, labelled by itself for simplicity, such that the corresponding
810
+ solution sequence {(w, I)} satisfies
811
+ max
812
+ x∈[̺1+ǫ,̺2−ǫ] w(x) → ∞,
813
+ as dI → 0.
814
+ (3.14)
815
+ By (3.13), w → ∞ uniformly on [̺1 + ǫ, ̺2 − ǫ] as dI → 0. To produce a contradiction,
816
+ let us denote λD
817
+ 1 to be the principal eigenvalue of the following eigenvalue problem with
818
+ Dirichlet boundary conditions:
819
+
820
+ −ϕxx = λϕ,
821
+ x ∈ (̺1 + ǫ, ̺2 − ǫ)
822
+ ϕ(̺1 + ǫ) = ϕ(̺2 − ǫ) = 0.
823
+ (3.15)
824
+ Apparently, λD
825
+ 1 > 0. For all small dI > 0, by (3.14) we may assume that
826
+ β(x)w(x) > 2λD
827
+ 1
828
+ on [̺1 + ǫ, ̺2 − ǫ].
829
+
830
+ 12
831
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
832
+ Thus, it follows from (3.12) that I ∈ C2([0, L]) is a positive and strict supersolution of the
833
+ following operator in the sense of [57, Definition 2.1]:
834
+
835
+ Lu := −uxx − 2λD
836
+ 1 u,
837
+ x ∈ (̺1 + ǫ, ̺2 − ǫ),
838
+ ∀u ∈ C2([0, L]),
839
+ u(̺1 + ǫ) = u(̺2 − ǫ) = 0.
840
+ By means of [57, Proposition 2.1], the principal eigenvalue, denoted by ˜λD
841
+ 1 , of the eigenvalue
842
+ problem
843
+
844
+ Lϕxx = λϕ,
845
+ x ∈ (̺1 + ǫ, ̺2 − ǫ),
846
+ ϕ(̺1 + ǫ) = ϕ(̺2 − ǫ) = 0
847
+ satisfies ˜λD
848
+ 1 > 0.
849
+ On the other hand, the uniqueness of the principal eigenvalue of problem (3.15) implies
850
+ ˜λD
851
+ 1 + 2λD
852
+ 1 = λD
853
+ 1 , and so ˜λD
854
+ 1 = −λD
855
+ 1 < 0, leading to a contradiction. The previous claim
856
+ is thus verified. Due to the arbitrariness of ǫ, we have shown that w is locally uniformly
857
+ bounded in (̺1, ̺2) with respect to all small dI > 0.
858
+ Furthermore, by Lemma 5.2 in the appendix, it is easy to see from (3.12) that I is locally
859
+ uniformly bounded in (̺1, ̺2) independent of all small dI > 0. The standard regularity
860
+ theory for elliptic equations can be applied to (3.11) and (3.12), respectively to deduce that
861
+ w and I are locally bounded (independent of small dI) in (̺1, ̺2) in the usual C2+α-norm
862
+ for some α ∈ (0, 1). Then, by a diagonal argument, we may assume that
863
+ (w, I) → ( ˆw, ˆI)
864
+ in C2
865
+ loc(̺1, ̺2),
866
+ as dI → 0.
867
+ Clearly, by (3.12), ( ˆw, ˆI) satisfies
868
+ −ˆIxx(x) = β(x) ˆw ˆI,
869
+ x ∈ (̺1, ̺2).
870
+ (3.16)
871
+ Furthermore, by adding (3.11) and (3.12), one easily sees that ( ˆw, ˆI) solves
872
+ −(dS ˆw + ˆI)xx = 0
873
+ in (̺1, ̺2).
874
+ This indicates that
875
+ dS ˆw(x) + ˆI(x) = ˆa + ˆbx,
876
+ x ∈ (̺1, ̺2)
877
+ (3.17)
878
+ for some constants ˆa, ˆb.
879
+ In what follows, we aim to determine ˆa and ˆb. By a simple observation, (w, I) satisfies
880
+
881
+ −(dSw + I)xx = 0,
882
+ x ∈ (0, L),
883
+ (dSw + I)x = 0,
884
+ x = 0, L.
885
+ Thus, dSw + I = cdI is a positive constant on [0, L] for any dI > 0. Recall that w, I are
886
+ locally uniformly bounded in (̺1, ̺2). Hence, as dI → 0, we may assume that
887
+ dSw + I = cdI → ˆc ∈ [0, ∞)
888
+ uniformly on [0, L].
889
+ From (3.17) it follows that ˆc = ˆa and ˆb = 0. In addition, our analysis indicates that w and
890
+ I are uniformly bounded on [0, L]. Precisely, it holds that
891
+ w(x),
892
+ I(x) ≤ C,
893
+ ∀x ∈ [0, L].
894
+ (3.18)
895
+
896
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
897
+ 13
898
+ We now use the equation of I, together with the fact of w, I ≥ 0 and the definition of
899
+ k, to find that
900
+ −Ixx = β(x) [S − k(x)] I
901
+ dI
902
+ = β(x)
903
+ �S − kmin
904
+ dI
905
+ + kmin − k(x)
906
+ dI
907
+
908
+ I
909
+ (3.19)
910
+ ≤ β(x)wI,
911
+ x ∈ (0, L).
912
+ Multiplying both sides in (3.19) by I and integrating over (0, L), we obtain
913
+ � L
914
+ 0
915
+ (Ix)2dx ≤
916
+ � L
917
+ 0
918
+ βwI2dx ≤ C
919
+ due to (3.18). This and (3.18) imply that ∥I∥W 1,2(0,L) ≤ C. Since W 1,2(0, L) is compactly
920
+ embedded to C([0, L]), we can assume that I → ˆI uniformly on [0, L]. By what was proved
921
+ before, ˆI = 0 on [0, ̺1] ∪ [̺2, L], and by (3.16) and (3.17), on [̺1, ̺2], ˆI solves
922
+
923
+ −ˆIxx = β(x)
924
+ dS (ˆa − ˆI)ˆI,
925
+ ̺1 < x < ̺2,
926
+ ˆI = 0,
927
+ x = ̺1, ̺2.
928
+ (3.20)
929
+ Because of
930
+ � L
931
+ 0 (S(x) + I(x)) dx = N and S → kmin uniformly on [0, L] as dI → 0, it is
932
+ easily seen that
933
+ � ̺2
934
+ ̺1
935
+ ˆI dx = N − Lkmin > 0.
936
+ (3.21)
937
+ Thanks to the Harnack inequality (see Lemma 5.3(b)) and (3.21), we have from (3.20) that
938
+ ˆI > 0 in (̺1, ̺2). By (3.17) and the fact of ˆb = 0, clearly ˆa > 0.
939
+ It is well known that given ˆa > 0, the positive solution of problem (3.20), if it exists,
940
+ must be unique, denoted by ˆIˆa; moreover, if 0 < ˆa1 < ˆa2, then ˆIˆa1(x) < ˆIˆa2(x) for all
941
+ x ∈ (̺1, ̺2). With these facts, one can check that the positive constant ˆa is uniquely
942
+ determined by (3.21) in an implicit manner. Therefore, all the assertions in case (ii) have
943
+ been verified. The proof is thus complete.
944
+
945
+ 3.2. Proof of Theorem 2.2. We are now in a position to give the proof of Theorem 2.2.
946
+ Proof of Theorem 2.2. First of all, one can follow the analysis of Theorem 2.1, combined
947
+ with the result of Theorem 1.2 and its proof (see [40, Theorem 3.2]), to show that as
948
+ dI → 0, any EE (S, I) of (1.6) satisfies (up to a subsequence of dI) that S → ˆS weakly in
949
+ W 1,2(0, L) and uniformly on [0, L], and I → µ weakly in the sense of (1.3) for some Radon
950
+ measure µ and positive function ˆS ∈ W 1,2(0, L), and
951
+ 0 < ˆS(x) ≤ h(x),
952
+ ∀x ∈ [0, L],
953
+ (3.22)
954
+ and (2.11) hold.
955
+ For any ζ ∈ W 1,2(0, L) (and so ζ ∈ C([0, L])), we use the S-equation to obtain
956
+ dS
957
+ � L
958
+ 0
959
+ Sxζxdx =
960
+ � L
961
+ 0
962
+ [Λ − S − β(x)SI + γ(x)I]ζdx
963
+ =
964
+ � L
965
+ 0
966
+ [Λ − S − η(x)I]ζdx −
967
+ � L
968
+ 0
969
+ [β(x)S − (γ(x) + η(x))]Iζdx
970
+ (3.23)
971
+
972
+ 14
973
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
974
+ for all dI > 0. In view of (3.22) and (2.11), we send dI → 0 to infer that
975
+ � L
976
+ 0
977
+ [β(x)S − (γ(x) + η(x)]Iζdx →
978
+
979
+ [0,L]
980
+ β(x)[ ˆS − h(x)]ζµ(dx) = 0.
981
+ Thus, by letting dI → 0, it follows from (3.23) that
982
+ dS
983
+ � L
984
+ 0
985
+ ˆSxζxdx =
986
+ � L
987
+ 0
988
+ (Λ − ˆS)ζdx −
989
+ � L
990
+ 0
991
+ η(x)ζµ(dx),
992
+ ∀ζ ∈ W 1,2(0, L).
993
+ (3.24)
994
+ Together with (2.11), this means that ˆS ∈ W 1,2(0, L) is a weak solution of (2.10).
995
+ In what follows, for a general positive H¨older continuous function h, we will prove three
996
+ claims:
997
+ Claim 1. If the minimum of h is attained at x = 0 (resp. at x = L), then ˆS must touch
998
+ h at this point; that is, ˆS(0) = h(0) = hmin (resp. ˆS(L) = h(L) = hmin).
999
+ We only handle the case that hmin is attained at x = 0, and the other case can be treated
1000
+ similarly. Since ˆS ≤ h on [0, L], we suppose that ˆS(0) < h(0) and so ˆS(x) < h(x) on [0, ǫ0]
1001
+ for some small ǫ0 > 0. Thus, from (2.10), we have −dS ˆSxx = Λ − ˆS, ∀x ∈ (0, ǫ0]. A simple
1002
+ analysis shows that
1003
+ ˆS(x) = c1ed−1/2
1004
+ S
1005
+ x + c2e−d−1/2
1006
+ S
1007
+ x + Λ, x ∈ (0, ǫ0]
1008
+ (3.25)
1009
+ for some constants c1, c2. On the other hand, using the S-equation, we integrate on [0, x]
1010
+ to deduce
1011
+ −Sx(x) = 1
1012
+ dS
1013
+ � x
1014
+ 0
1015
+ [Λ − S(y) − β(y)S(y)I(y) + γ(y)I(y)]dy, x ∈ [0, ǫ0].
1016
+ (3.26)
1017
+ From the proof of [40, Theorem 3.2], we know that
1018
+ � L
1019
+ 0
1020
+ S(x)I(x)dx ≤ C,
1021
+ � L
1022
+ 0
1023
+ I(x)dx ≤ C, and S(x) ≤ C,
1024
+ ∀x ∈ [0, L],
1025
+ (3.27)
1026
+ for some positive constant C, independent of dI > 0.
1027
+ In the sequel, the constant C allows to vary from line to line but does not depend
1028
+ on dI > 0. It immediately follows from (3.26) that Sx is uniformly bounded on [0, ǫ0],
1029
+ independent of dI > 0. Note that µ([0, ǫ0]) = 0 due to (2.11), and I → µ weakly in the
1030
+ sense of (1.3). Given any small ǫ > 0, we can find a small ρ > 0 so that for all 0 < dI ≤ ρ,
1031
+ � ǫ0
1032
+ 0
1033
+ I(x)dx ≤ ǫ +
1034
+
1035
+ [0,ǫ0]
1036
+ µ(dx) = ǫ.
1037
+ Now, for any x1, x2 ∈ [0, ǫ0] satisfying |x1 − x2| < ǫ, we have
1038
+ ��Sx(x1) − Sx(x2)
1039
+ �� = 1
1040
+ dS
1041
+ ���
1042
+ � x2
1043
+ x1
1044
+ [Λ − S(y) − β(y)S(y)I(y) + γ(y)I(y)]dy
1045
+ ���
1046
+ ≤ C|x1 − x2| + C
1047
+ � x2
1048
+ x1
1049
+ I(y)dy
1050
+ ≤ C|x1 − x2| + C
1051
+ � ǫ0
1052
+ 0
1053
+ I(y)dy ≤ Cǫ
1054
+ provided that 0 < dI ≤ ρ. This shows that Sx is equi-continuous on [0, ǫ0] once 0 < dI ≤ ρ.
1055
+
1056
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
1057
+ 15
1058
+ Hence, we can apply the well-known Ascoli-Arzel`a theorem, up to a further subsequence
1059
+ of dI, to conclude that Sx is uniformly convergent on [0, ǫ0] as dI → 0. As
1060
+ S(x) − S(0) =
1061
+ � x
1062
+ 0
1063
+ Sx(y)dy,
1064
+ S → ˆS uniformly on [0, ǫ0],
1065
+ it is easily seen that S → ˆS in C1([0, ǫ0]). Thus, ˆSx(0) = 0, and in turn we get from (3.25)
1066
+ that c1 = c2. Because of ˆS ≤ h on [0, L] and the condition (2.9), we have c1 = c2 < 0, and
1067
+ so
1068
+ ˆSx(x) = c1[ed−1/2
1069
+ S
1070
+ x − e−d−1/2
1071
+ S
1072
+ x] < 0,
1073
+ ∀x ∈ (0, ǫ0].
1074
+ This means that ˆS is decreasing on [0, ǫ0].
1075
+ By virtue of h(0) ≤ h(x) for all x ∈ [0, L] and (2.11), one can extend the above analysis to
1076
+ assert that ˆS is decreasing on [0, L] and so ˆS < h on [0, L]. This clearly gives µ([0, L]) = 0,
1077
+ a contradiction with µ([0, L]) > 0 due to (2.11) again. Hence, we must have ˆS(0) = h(0) =
1078
+ hmin.
1079
+ Claim 2. If ˆS attains its local minimum at some x0 ∈ (0, L), then ˆS must touch h at
1080
+ this point; that is, ˆS(x0) = h(x0).
1081
+ Suppose that ˆS(x0) < h(x0) due to ˆS ≤ h. Thus, there is a small ǫ0 > 0 such that
1082
+ ˆS(x) < h(x) for all x ∈ [x0 −ǫ0, x0 + ǫ0] ⊂ (0, L). By (2.11), µ([x0 −ǫ0, x0 + ǫ0]) = 0 and so
1083
+ −dS ˆSxx = Λ − ˆS
1084
+ on [x0 − ǫ0, x0 + ǫ0].
1085
+ As before, ˆS takes the form of (3.25) on [x0−ǫ0, x0+ǫ0] for some constants c1, c2. Obviously,
1086
+ ˆSx(x0) = 0, which leads to c2 = c1e2d−1/2
1087
+ S
1088
+ x0, and so c1 < 0. Thus, it holds that
1089
+ ˆS(x) = c1[ed−1/2
1090
+ S
1091
+ x + ed−1/2
1092
+ S
1093
+ (2x0−x)] + Λ,
1094
+ x ∈ [x0 − ǫ0, x0 + ǫ0]
1095
+ (3.28)
1096
+ for some constant c1 < 0. In view of (3.28), basic computation gives that ˆS is increasing
1097
+ on [x0 −ǫ0, x0] while is decreasing on [x0, x0 + ǫ0]. This implies that x0 is a local maximum
1098
+ of ˆS, a contradiction with our assumption. As a result, ˆS must touch h at x = x0.
1099
+ Claim 3. If the minimum of h is attained at some point y0 ∈ (0, L), then ˆS must touch
1100
+ h at this point; that is, ˆS(y0) = h(y0) = hmin.
1101
+ Suppose that ˆS(y0) < h(y0) = hmin. There are two possible cases to happen in the
1102
+ interval [0, y0): Case 1. ˆS never touches h in [0, y0), that is, ˆS < h in [0, y0); Case 2. ˆS
1103
+ touches h somewhere in [0, y0).
1104
+ When Case 1 occurs, by (2.11), we know that ˆS must touch h in (y0, L]. Let y1 be the
1105
+ first point (from the left side) at which ˆS touches h. That is, y1 ∈ (y0, L], and
1106
+ ˆS(x) < h(x),
1107
+ ∀x ∈ (y0, y1),
1108
+ ˆS(y1) = h(y1) ≥ hmin.
1109
+ On the other hand, since ˆS < h in [0, y0), we can follow the analysis used in Claim 1 to
1110
+ show that ˆS is decreasing on [0, y1]. This is an obvious contradiction with ˆS(y0) < hmin ≤
1111
+ ˆS(y1).
1112
+ When Case 2 occurs, we denote by y2 ∈ [0, y0) the first point from the right side such
1113
+ that ˆS touches h in [0, y0). That is,
1114
+ ˆS(x) < h(x),
1115
+ ∀x ∈ (y2, y0),
1116
+ ˆS(y2) = h(y2) ≥ hmin.
1117
+ If ˆS does not touch h in (y0, L]. By a similar argument to the proof of Claim 1 and
1118
+ appealing to the fact of Sx(L) = 0, one sees that ˆS is increasing in (y2, L], leading to
1119
+
1120
+ 16
1121
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
1122
+ ˆS(y2) < ˆS(y0), which contradicts with ˆS(y2) ≥ hmin > ˆS(y0).
1123
+ Hence, it is necessary
1124
+ that ˆS touches h in (y0, L]. Let y3 be the first point where ˆS touches h in (y0, L]. Thus,
1125
+ ˆS(x) < h(x) for all x ∈ (y0, y3) and ˆS(y3) = h(y3) ≥ hmin. Therefore, ˆS(x) < h(x) in
1126
+ the interval (y2, y3), ˆS(y0) < h(y0) = hmin and ˆS(y2), ˆS(y3) ≥ hmin. This implies that on
1127
+ [y2, y3], ˆS must attain its minimum at some y4 ∈ (y2, y3). By Claim 2, we can conclude
1128
+ that ˆS(y4) = h(y4), a contradiction again. So far, we have verified Claim 3.
1129
+ A similar reasoning as that of proving Claim 3 yields ˆS ≥ hmin on [0, L]. Thus (2.12)
1130
+ holds. Thanks to Claim 1 and Claim 3, (2.13) is true. It is also apparent that Claim 2
1131
+ implies (2.14). The proof is now complete.
1132
+
1133
+ 3.3. Proof of Theorem 2.3. This subsection is devoted to the proof of Theorem 2.3. We
1134
+ begin with some lemmas as follows.
1135
+ Lemma 3.1. Assume that h ∈ C2([0, L]) and hx is non-decreasing in some neighborhood
1136
+ of ̺0 ∈ Θh. Let ˆS and µ be given as in Theorem 2.2. Then there exists a small ǫ0 > 0 such
1137
+ that
1138
+ ˆS(x) = h(x),
1139
+ ∀x ∈ (̺0 − ǫ0, ̺0 + ǫ0) ∩ (0, L)
1140
+ and
1141
+ µ({x}) = Λ − h + dShxx
1142
+ η(x)
1143
+ ,
1144
+ a.e. for x ∈ (̺0 − ǫ0, ̺0 + ǫ0) ∩ (0, L).
1145
+ Proof. By Theorem 2.2, we know that ̺0 ∈ {x ∈ [0, L] :
1146
+ ˆS(x) = h(x)}. In the sequel, we
1147
+ only consider the case of ̺0 ∈ (0, L), and the case of ̺0 = 0 or L can be treated similarly.
1148
+ There are three possibilities we have to distinguish:
1149
+ (1) ̺0 is an isolated point in the set {x ∈ [0, L] : ˆS(x) = h(x)};
1150
+ (2) ̺0 is an accumulation point in {x ∈ [0, L] : ˆS(x) = h(x)};
1151
+ (3) there is a small ǫ0 > 0 such that (̺0 − ǫ0, ̺0 + ǫ0) ⊂ {x ∈ [0, L] : ˆS(x) = h(x)}.
1152
+ In what follows, we will exclude (1) and (2). If (1) happens, then
1153
+ ˆS(̺0) = h(̺0) = hmin and
1154
+ ˆS < h
1155
+ in (̺0 − ǫ1, ̺0 + ǫ1) \ {̺0}
1156
+ for some small ǫ1 > 0.
1157
+ Note that µ([0, L]) < ∞. In view of this fact, one can apply the interior regularity theory
1158
+ for elliptic equations to (2.10) and assert that ˆS ∈ C1(0, L). Clearly, hx(̺0) = 0. Since
1159
+ ˆS(̺0) = h(̺0) = hmin and ˆS ≥ hmin due to (2.12), we infer that ˆSx(̺0) = 0.
1160
+ On the other hand, by (2.10), ˆS satisfies
1161
+ −dS ˆSxx = Λ − ˆS
1162
+ in (̺0 − ǫ1, ̺0 + ǫ1) \ {̺0}.
1163
+ (3.29)
1164
+ By using ˆSx(̺0) = 0 and (3.29), one can easily see that ˆS is increasing in (̺0 −ǫ1, ̺0) while
1165
+ ˆS is decreasing in (̺0, ̺0 + ǫ1). This implies that ˆS < hmin in (̺0 − ǫ1, ̺0 + ǫ1) \ {̺0},
1166
+ contradicting against (2.12). Thus, (1) is impossible.
1167
+ If (2) happens, without loss of generality, we can find two points, say z1, z2 with ̺0 <
1168
+ z1 < z2 < ̺0 + ǫ2 for some small ǫ2 > 0 such that
1169
+ ˆS(z1) = h(z1),
1170
+ ˆS(z2) = h(z2) and
1171
+ ˆS < h in (z1, z2).
1172
+ (3.30)
1173
+ By taking ǫ2 to be smaller if necessary, we may assume that hx(z1) ≤ hx(z2) due to the
1174
+ monotonicity of hx. Then, ˆS solves (3.29) in (z1, z2). By means of (3.30), we have
1175
+ ˆSx(z1) ≤ hx(z1),
1176
+ ˆSx(z2) ≥ hx(z2),
1177
+
1178
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
1179
+ 17
1180
+ leading to ˆSx(z1) ≤ ˆSx(z2). However, it follows from (3.29) that ˆSxx < 0 in (z1, z2), which
1181
+ gives ˆSx(z1) > ˆSx(z2), a contradiction. Hence, the possibility (2) has been ruled out.
1182
+ The above argument shows that (3) must hold. Now, since ˆS = h on [̺0 − ǫ0, ̺0 + ǫ0],
1183
+ we can multiply both sides of (2.11) by any function ζ ∈ C2([0, L]) with compact support
1184
+ on [̺0 − ǫ0, ̺0 + ǫ0] and integrate to conclude that
1185
+ dShxx + Λ − h − η(x)µ({x}) = 0,
1186
+ a.e. for x ∈ (̺0 − ǫ0, ̺0 + ǫ0),
1187
+ which yields the expression of µ({x}).
1188
+
1189
+ Lemma 3.2. Assume that h ∈ C2([0, L]), hx is non-decreasing on [0, L], and Θh = {τ0}
1190
+ for some τ0 ∈ (0, L). Then there exist two numbers τ1, τ2 with 0 < τ1 < τ0 < τ2 < L such
1191
+ that
1192
+ ˆS(x) = h(x),
1193
+ ∀x ∈ [τ1, τ2],
1194
+ (3.31)
1195
+ and on [0, τ1) ∪ (τ2, L], ˆS satisfies
1196
+
1197
+
1198
+
1199
+
1200
+
1201
+
1202
+
1203
+ −dS ˆSxx(x) = Λ − ˆS,
1204
+ x ∈ (0, τ1) ∪ (τ2, L),
1205
+ ˆSx(0) = ˆSx(L) = 0,
1206
+ ˆS(τ1) = h(τ1),
1207
+ ˆS(τ2) = h(τ2),
1208
+ (3.32)
1209
+ and µ satisfies
1210
+ µ({x}) = Λ − h + dShxx
1211
+ η(x)
1212
+ ,
1213
+ a.e. for x ∈ (τ1, τ2),
1214
+ (3.33)
1215
+ µ({x}) = 0,
1216
+ ∀x ∈ [0, τ1) ∪ (τ2, L].
1217
+ (3.34)
1218
+ Proof. Let us denote
1219
+ τ1 = inf{τ ∈ [0, τ0) :
1220
+ ˆS(x) = h(x), ∀x ∈ [τ, τ0]},
1221
+ τ2 = sup{τ ∈ (τ0, L] :
1222
+ ˆS(x) = h(x), ∀x ∈ [τ0, τ]}.
1223
+ Lemma 3.1 implies that τ1 and τ2 are well defined, and 0 ≤ τ1 < τ0 and τ0 < τ2 ≤ L. In
1224
+ addition, (3.31) and (3.33) hold.
1225
+ In light of the monotonicity of hx on [0, L], it is easily seen from the proof of Lemma
1226
+ 3.1 that if τ1 > 0, then ˆS can not touch h in (0, τ1) and in turn µ([0, τ1)) = 0; similarly, if
1227
+ τ2 < L, ˆS can not touch h in (τ2, L) and so µ((τ2, L]) = 0.
1228
+ If τ1 > 0 and τ2 < L, we can use the analysis as in the proof of Claim 1 of Theorem 2.2 to
1229
+ conclude that ˆSx(0) = ˆSx(L) = 0. As µ([0, τ1) ∪ (τ2, L]) = 0, by (2.10) and the continuity
1230
+ of ˆS, a standard compactness argument of elliptic equations yields that ˆS solves (3.32) in
1231
+ the classical sense. Clearly, the solution of (3.32) is unique.
1232
+ It remains to prove τ1 > 0 and τ2 < L. Note that the monotonicity of hx, Θh = {τ0}
1233
+ and hx(τ0) = 0 ensure hx(0) < 0 and hx(L) > 0. Suppose that τ1 = 0, and so (3.31) holds
1234
+ on [0, τ2]. Now, given τ ∈ (0, τ0], integrating the S-equation over [0, τ] and using (3.31),
1235
+
1236
+ 18
1237
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
1238
+ we infer that
1239
+ −dSSx(τ −) =
1240
+ � τ
1241
+ 0
1242
+ [Λ − S(y) − β(y)S(y)I(y) + γ(y)I(y)]dy
1243
+ =
1244
+ � τ
1245
+ 0
1246
+ [Λ − S(y) − η(y)I(y)]dy +
1247
+ � τ
1248
+ 0
1249
+ [γ(y) + η(y) − β(y)S(y)]I(y)dy
1250
+
1251
+
1252
+ [0,τ]
1253
+ [Λ − h(y) − η(y)µ](dy) =
1254
+ � τ
1255
+ 0
1256
+ [−dShxx(y)]dy
1257
+ = −dShx(τ) + dShx(0),
1258
+ as dI → 0.
1259
+ That is, for any τ ∈ (0, τ0], it holds that
1260
+ Sx(τ −) → hx(τ) − hx(0),
1261
+ as dI → 0.
1262
+ Since hx is non-decreasing on [0, τ0] and hx(0) < 0, there exists a small ǫ0 > 0 such that
1263
+ for all x ∈ [τ0 − ǫ0, τ0],
1264
+ Sx(x−) ≥ 1
1265
+ 2[hx(τ0) − hx(0)] = −1
1266
+ 2hx(0) > 0
1267
+ for all small dI > 0. This implies that S is increasing on [τ0 − ǫ0, τ0] for all such small
1268
+ dI > 0. In view of S → h uniformly on [τ0 − ǫ0, τ0] as dI → 0, h must be non-decreasing
1269
+ on [τ0 − ǫ0, τ0], which is a contradiction against our assumption. Hence, τ1 > 0. Similarly,
1270
+ we have τ2 < L by using hx(L) > 0. As a consequence, we deduce (3.34). The proof is
1271
+ complete.
1272
+
1273
+ Similar to the argument of Lemma 3.1, we can conclude the following result.
1274
+ Lemma 3.3. Assume that h ∈ C2([0, L]), [̺1, ̺2] ⊂ Θh and hx is non-decreasing in some
1275
+ neighborhood of ̺1, ̺2. Let ˆS and µ be given as in Theorem 2.2. Then there exists a small
1276
+ ǫ0 > 0 such that
1277
+ ˆS(x) = h(x),
1278
+ ∀x ∈ (̺1 − ǫ0, ̺2 + ǫ0) ∩ (0, L)
1279
+ and
1280
+ µ({x}) = Λ − h + dShxx
1281
+ η(x)
1282
+ ,
1283
+ a.e. for x ∈ (̺1 − ǫ0, ̺2 + ǫ0) ∩ (0, L).
1284
+ Based upon Lemma 3.3, we can deduce the following result.
1285
+ Lemma 3.4. Assume that h ∈ C2([0, L]), Θh = [̺1, ̺2] and hx is non-decreasing on
1286
+ [0, ̺1] ∪ [̺2, L]. Let ˆS and µ be given as in Theorem 2.2. Then there exist two numbers
1287
+ τ1, τ2 with 0 < τ1 < ̺1 < ̺2 < τ2 < L such that all the assertions in Lemma 3.2 hold.
1288
+ With the aid of Lemmas 3.1-3.4, we are now in a position to prove Theorem 2.3.
1289
+ Proof of Theorem 2.3. We first prove (i). We proceed indirectly and suppose that ˆS ̸≡ h
1290
+ on [0, L]. Since ˆS touches h at least at the highest-risk point due to Theorem 2.2, we can
1291
+ find an interval, denoted by [ℓ1, ℓ2] ⊂ [0, L], such that ˆS < h in (ℓ1, ℓ2) and at the boundary
1292
+ point x = ℓi for i = 1, 2, either ˆS touches h (and so ˆS(ℓi) = h(ℓi)) or ˆS(ℓi) < h(ℓi). In
1293
+ the latter case, it is necessary that ℓi = 0 or L, and the analysis to deduce Claim 1 in the
1294
+ proof of Theorem 2.2 shows that ˆSx(ℓi) = 0. In any case, clearly ˆS satisfies
1295
+
1296
+ −dS ˆSxx = Λ − ˆS,
1297
+ x ∈ (ℓ1, ℓ2),
1298
+ ˆS(ℓi) = h(ℓi) or
1299
+ ˆSx(ℓi) = 0,
1300
+ i = 1, 2.
1301
+ (3.35)
1302
+
1303
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
1304
+ 19
1305
+ Thus, by our assumption, h is a sub-solution to problem (3.35), and max{Λ, maxx∈[0,L] h(x)}
1306
+ is a super-solution to (3.35). The well-known technique of sub-supersolution iteration, com-
1307
+ bined with the uniqueness of solutions to problem (3.35), allows us to conclude that ˆS ≥ h
1308
+ on [ℓ1, ℓ2], which leads to a contradiction. Hence, (2.15) holds, and (2.16) follows from
1309
+ (2.10) by using a test-function argument similarly as before. Therefore, (i) is proved.
1310
+ We next prove (ii). First of all, let us consider the case of τ0 ∈ (0, L). In this case,
1311
+ the assertions (2.17)-(2.20) follow from Lemma 3.2, and it remains to show that τ1, τ2 are
1312
+ uniquely determined by (2.21). As ˆS < h in [0, τ1), we have
1313
+ ˆS(x) = c1[ed−1/2
1314
+ S
1315
+ x + e−d−1/2
1316
+ S
1317
+ x] + Λ,
1318
+ ∀x ∈ [0, τ1]
1319
+ for some c1 < 0. It then follows from ˆS(τ1) = h(τ1) that
1320
+ ˆS(x) = −
1321
+ Λ − h(τ1)
1322
+ ed−1/2
1323
+ S
1324
+ τ1 + e−d−1/2
1325
+ S
1326
+ τ1 (ed−1/2
1327
+ S
1328
+ x + e−d−1/2
1329
+ S
1330
+ x) + Λ,
1331
+ ∀x ∈ [0, τ1].
1332
+ Note that ˆS is convex while h is concave in the interval [0, τ1), and moreover, ˆS ∈ C1([0, L])
1333
+ as shown before. Hence, ˆS must be tangent to h at x = τ1, which in turn implies that τ1 is
1334
+ the unique solution to ˆSx(τ1) = hx(τ1). Thus, τ1 is uniquely determined by the following
1335
+ equation:
1336
+ ed−1/2
1337
+ S
1338
+ τ1 − e−d−1/2
1339
+ S
1340
+ τ1
1341
+ ed−1/2
1342
+ S
1343
+ τ1 + e−d−1/2
1344
+ S
1345
+ τ1 = −d1/2
1346
+ S hx(τ1)
1347
+ Λ − h(τ1) .
1348
+ Similarly, τ2 is uniquely determined by the second equation of (2.21). The assertions in
1349
+ (ii)-(a) have been verified.
1350
+ We now consider the case of τ0 = L. In view of our assumption, clearly hx(0) < 0,
1351
+ hx(L) ≤ 0, and ˆS(L) = h(L).
1352
+ Assume that e2Ld−1/2
1353
+ S
1354
+ −1
1355
+ e2Ld−1/2
1356
+ S
1357
+ +1
1358
+ > −
1359
+ d1/2
1360
+ S
1361
+ hx(L)
1362
+ Λ−h(L) . In order to deduce the desired conclusion in (ii)-
1363
+ (b1), one can follow the analysis of Lemmas 3.1 and 3.2. By checking the analysis there,
1364
+ one just needs to show that τ1 defined in the assertion (ii)-(a) satisfies τ1 > 0. It turns
1365
+ out that this amounts to rule out the situation that ˆS < h in [0, L). Suppose that ˆS < h
1366
+ in [0, L). Then, arguing as before, we see that ˆS satisfies −dS ˆSxx = Λ − ˆS in (0, L) and
1367
+ ˆSx(0) = 0. Solving this problem, we get ˆS(x) = c1[ed−1/2
1368
+ S
1369
+ x + e−d−1/2
1370
+ S
1371
+ x] + Λ for some c1 < 0.
1372
+ It then follows from ˆS(L) = h(L) that
1373
+ c1 = −
1374
+ Λ − h(L)
1375
+ ed−1/2
1376
+ S
1377
+ L + e−d−1/2
1378
+ S
1379
+ L.
1380
+ Thus, we get
1381
+ ˆSx(L) = −d−1/2
1382
+ S
1383
+ (Λ − h(L))e2Ld−1/2
1384
+ S
1385
+ − 1
1386
+ e2Ld−1/2
1387
+ S
1388
+ + 1
1389
+ .
1390
+ By means of ˆS < h in [0, L) and ˆS(L) = h(L), it is necessary that ˆSx(L) ≥ hx(L), which
1391
+ leads to
1392
+ e2Ld−1/2
1393
+ S
1394
+ − 1
1395
+ e2Ld−1/2
1396
+ S
1397
+ + 1
1398
+ ≤ −d1/2
1399
+ S hx(L)
1400
+ Λ − h(L) ,
1401
+ contradicting with our assumption. Therefore, τ1 > 0 must hold, and (ii)-(b1) is proved.
1402
+
1403
+ 20
1404
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
1405
+ Assume that e2Ld−1/2
1406
+ S
1407
+ −1
1408
+ e2Ld−1/2
1409
+ S
1410
+ +1
1411
+ ≤ −
1412
+ d1/2
1413
+ S
1414
+ hx(L)
1415
+ Λ−h(L) . We first show that τ1 > 0 is impossible. On the
1416
+ contrary, we suppose that τ1 > 0, and by the above analysis, τ1 must solve the first equation
1417
+ of (2.21). Let us consider the following auxiliary problem:
1418
+ f(τ) = e2τd−1/2
1419
+ S
1420
+ − 1
1421
+ e2τd−1/2
1422
+ S
1423
+ + 1
1424
+ + d1/2
1425
+ S hx(τ)
1426
+ Λ − h(τ) ,
1427
+ τ ∈ [0, L].
1428
+ Since hx(τ) is non-decreasing, hx(τ) ≤ 0 on [0, L], h(τ) is non-increasing and h(τ) > Λ
1429
+ on [0, L], it is easy to check that
1430
+ d1/2
1431
+ S
1432
+ hx(τ)
1433
+ Λ−h(τ) is non-decreasing on [0, L]. Clearly, e2τd−1/2
1434
+ S
1435
+ −1
1436
+ e2τd−1/2
1437
+ S
1438
+ +1
1439
+ is
1440
+ increasing on [0, L]. Therefore, f(τ) is increasing on [0, L]. Observe that f(L) = e2Ld−1/2
1441
+ S
1442
+ −1
1443
+ e2Ld−1/2
1444
+ S
1445
+ +1
1446
+ +
1447
+ d1/2
1448
+ S
1449
+ hx(L)
1450
+ Λ−h(L) ≤ 0 due to our assumption. This implies that the first equation of (2.21) has no
1451
+ solution with respect to τ1 in [0, L), arriving at a contradiction. Hence, ˆS < h in [0, L) and
1452
+ µ([0, L)) = 0, and so ˆS solves (2.23). It remains to prove (2.24). Indeed, by integrating
1453
+ the sum of (1.6), we obtain
1454
+ ΛL −
1455
+ � L
1456
+ 0
1457
+ S(x)dx =
1458
+ � L
1459
+ 0
1460
+ η(x)I(x)dx,
1461
+ ∀dI > 0.
1462
+ Letting dI → 0 yields
1463
+ ΛL −
1464
+ � L
1465
+ 0
1466
+ ˆS(x)dx =
1467
+
1468
+ [0,L]
1469
+ η(x)µ(dx) = η(L)µ({L}).
1470
+ Here we used the fact of µ([0, L)) = 0. This gives (2.24), and thus the assertions in (ii)-(b2)
1471
+ hold true.
1472
+ The case of τ0 = 0 can be treated similarly as above. In view of Lemma 3.4 and the
1473
+ analysis above, the assertions in (iii) follow immediately. The proof is completed.
1474
+
1475
+ 4. Discussions and numerical simulations
1476
+ In recent years, many reaction-diffusion models have been proposed to investigate the
1477
+ transmission dynamics of infectious diseases in a heterogeneous environment. For example,
1478
+ models associated with (1.1) have been studied in [2, 16, 18, 19, 35, 36, 39, 40, 49–52, 55,
1479
+ 56, 59, 61, 68]. When the random diffusion is not present, such kind of models have been
1480
+ explored in [1, 3, 20, 21, 38, 42, 62, 66, 67] and the references therein. One may also refer
1481
+ to [14, 22, 23, 32, 33, 37, 41, 58, 63, 64, 70, 71] for relevant studies on the effect of random
1482
+ diffusion on the dynamics of infectious diseases.
1483
+ In this paper, we have investigated the steady state solution (namely, EE) of the SIS
1484
+ epidemic reaction-diffusion models (1.2) and (1.6), in which the disease transmission is
1485
+ governed by the well-known mass action infection mechanism, due to Kermack and McK-
1486
+ endrick [26]. In model (1.2), the total population number of the susceptible and infected
1487
+ populations is a constant, while in model (1.6), the total population number is varying,
1488
+ which results from the inclusion of the recruitment for the susceptible population and the
1489
+ death of the infected population. Our purpose is to determine the spatial profile of EE
1490
+ as the movement rate dI of the infected individuals tends to zero. Such kind of informa-
1491
+ tion may be useful for decision-makers to predict the pattern of disease occurrence and
1492
+ henceforth to develop effective disease control strategies.
1493
+
1494
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
1495
+ 21
1496
+ The previous works [39, 65] derived partial results regarding the spatial profile of EE
1497
+ for (1.2) and (1.6) as dI → 0; however, a precise characterization for the distribution of
1498
+ susceptible and infected populations is lacking. In the present work, we have provided a
1499
+ comprehensive understanding on this issue. Below we shall summarize the main theoretical
1500
+ findings of this paper, which will also be supported or complemented by our numerical
1501
+ simulation results.
1502
+ 4.1. Profile of EE of model (1.2) as dI → 0. As pointed out before, when the risk
1503
+ function k(x) = γ(x)
1504
+ β(x) is a constant on the entire habitat [0, L], then (k, N
1505
+ L −k) is the unique
1506
+ EE of (1.2) provided that k < N
1507
+ L , while ( N
1508
+ L , 0) is the unique disease-free equilibrium of
1509
+ (1.2) provided that k ≥ N
1510
+ L . Indeed, in such a trivial case, one can follow the same analysis
1511
+ as in [16, Theorem 4.1] to conclude that (k, N
1512
+ L − k) is a global attractor of (1.1) if k < N
1513
+ L
1514
+ and ( N
1515
+ L , 0) is a global attractor of (1.4) if k ≥ N
1516
+ L . Thus, unless otherwise specified, we
1517
+ always assume below that the risk function k(x) = γ(x)
1518
+ β(x) is non-constant on [0, L].
1519
+ According to Theorem 2.1, for model (1.2), one finds that the susceptible population S
1520
+ converges to the positive constant kmin as dI → 0, which means that the susceptible will
1521
+ always distribute homogeneously on the entire habitat once the movement of the infected
1522
+ individuals is restricted to be sufficiently small. Nevertheless, the profile of the infected
1523
+ population I as dI → 0 crucially depends on the distribution behavior of the highest-risk
1524
+ set Θk of the risk function k(x). More precisely, concerning the profile of I for model (1.2),
1525
+ we have the following findings.
1526
+ (i) If Θk consists of a single point, then I must concentrate only at such a highest-risk
1527
+ point.
1528
+ (ii) If Θk contains only multiple isolated points, it follows from Remark 2.1 that I will
1529
+ also concentrate at least at one of those highest-risk points, and the disease will vanish
1530
+ elsewhere. As shown in Figure 1(a)-(b)-(c) for three typical cases, our simulation results
1531
+ suggest that I should concentrate at all such highest-risk points, though the population
1532
+ number of I at each such highest-risk point may vary, depending on the functions β, γ.
1533
+ (iii) If Θk contains at least one proper interval, then no concentration phenomenon
1534
+ occurs for the disease distribution, and the infected population will aggregate only on such
1535
+ intervals consisting of highest-risk points, regardless of whether there are isolated highest-
1536
+ risk points or not (see Figure 2(a)-(b)). Indeed, our numerical results indicate that the
1537
+ infected population will aggregate on all such intervals consisting of highest-risk points (see
1538
+ Figure 2(c)); however the population number of I at each such interval may be different,
1539
+ depending on the functions β, γ.
1540
+ 4.2. Profile of EE of model (1.6) as dI → 0. For model (1.6), for the general H¨older
1541
+ continuous risk function h, under the condition (2.9), as dI → 0, we know from Theorem
1542
+ 2.2 that the susceptible population S converges to a positive function ˆS, which is non-
1543
+ constant unless h is constant. The infected population I converges to a positive Radon
1544
+ measure µ, whose support is contained in the region in which ˆS touches h; in other words,
1545
+ the disease stays only within the place where the susceptible population distributes along
1546
+ the risk function. If the risk function h is of C2, we see from Lemma 3.1 and Lemma
1547
+ 3.3 that the infected population aggregates at least in a neighborhood of the highest-risk
1548
+ locations.
1549
+ Furthermore, when h ∈ C2([0, L]), in light of Theorem 2.3, one can draw the following
1550
+ conclusions concerning the asymptotic profile of I.
1551
+
1552
+ 22
1553
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
1554
+ 0
1555
+ 0.2
1556
+ 0.4
1557
+ 0.6
1558
+ 0.8
1559
+ 1
1560
+ −5
1561
+ 0
1562
+ 5
1563
+ 10
1564
+ 15
1565
+ 20
1566
+ 25
1567
+ 30
1568
+ 35
1569
+ 40
1570
+ x
1571
+
1572
+
1573
+ k(x)
1574
+ S(x)
1575
+ I(x)
1576
+ 0
1577
+ 0.2
1578
+ 0.4
1579
+ 0.6
1580
+ 0.8
1581
+ 1
1582
+ −10
1583
+ 0
1584
+ 10
1585
+ 20
1586
+ 30
1587
+ 40
1588
+ 50
1589
+ 60
1590
+ 70
1591
+ 80
1592
+ x
1593
+
1594
+
1595
+ S(x)
1596
+ I(x)
1597
+ 0
1598
+ 0.5
1599
+ 1
1600
+ 0.4
1601
+ 0.6
1602
+ 0.8
1603
+ 1
1604
+ x
1605
+
1606
+
1607
+ k(x)
1608
+ 0
1609
+ 0.2
1610
+ 0.4
1611
+ 0.6
1612
+ 0.8
1613
+ 1
1614
+ −10
1615
+ 0
1616
+ 10
1617
+ 20
1618
+ 30
1619
+ 40
1620
+ 50
1621
+ 60
1622
+ 70
1623
+ 80
1624
+ 90
1625
+ x
1626
+
1627
+
1628
+ S(x)
1629
+ I(x)
1630
+ 0
1631
+ 0.5
1632
+ 1
1633
+ 0.4
1634
+ 0.6
1635
+ 0.8
1636
+ 1
1637
+ x
1638
+
1639
+
1640
+ k(x)
1641
+ (a) Θk = {1
1642
+ 2}
1643
+ (b) Θk = {1
1644
+ 8, 1
1645
+ 2}
1646
+ (c) Θk = {1
1647
+ 8, 3
1648
+ 8, 1}
1649
+ Figure 1. Numerical simulations of the solution profile of model (1.2),
1650
+ where L = 1, N = 2, dS = 1, dI = 10−7, β(x) = 1 + 1
1651
+ 2 sin(2πx), γ(x) =
1652
+ k(x)β(x), kmin
1653
+ =
1654
+ 1
1655
+ 2 and k(x) is chosen as follows.
1656
+ In (a), k(x) =
1657
+ 1 + 1
1658
+ 2 cos(2πx).
1659
+ In (b), k(x) = 1 − 4x, 0 ≤ x <
1660
+ 1
1661
+ 8; k(x) = 4x,
1662
+ 1
1663
+ 8 ≤
1664
+ x <
1665
+ 1
1666
+ 4; k(x) =
1667
+ 3
1668
+ 2 − 2x,
1669
+ 1
1670
+ 4 ≤ x <
1671
+ 1
1672
+ 2; k(x) = x,
1673
+ 1
1674
+ 2 ≤ x ≤ 1.
1675
+ In (c),
1676
+ k(x) = 1 − 4x, 0 ≤ x < 1
1677
+ 8; k(x) = 4x,
1678
+ 1
1679
+ 8 ≤ x < 1
1680
+ 4; k(x) = 2 − 4x,
1681
+ 1
1682
+ 4 ≤ x <
1683
+ 3
1684
+ 8; k(x) = 4x − 1,
1685
+ 3
1686
+ 8 ≤ x < 1
1687
+ 2; k(x) = 3
1688
+ 2 − x,
1689
+ 1
1690
+ 2 ≤ x ≤ 1.
1691
+ 0
1692
+ 0.2
1693
+ 0.4
1694
+ 0.6
1695
+ 0.8
1696
+ 1
1697
+ 0
1698
+ 0.5
1699
+ 1
1700
+ 1.5
1701
+ 2
1702
+ 2.5
1703
+ 3
1704
+ 3.5
1705
+ 4
1706
+ 4.5
1707
+ 5
1708
+ x
1709
+
1710
+
1711
+ k(x)
1712
+ S(x)
1713
+ I(x)
1714
+ 0
1715
+ 0.2
1716
+ 0.4
1717
+ 0.6
1718
+ 0.8
1719
+ 1
1720
+ 0
1721
+ 0.5
1722
+ 1
1723
+ 1.5
1724
+ 2
1725
+ 2.5
1726
+ 3
1727
+ 3.5
1728
+ 4
1729
+ 4.5
1730
+ 5
1731
+ x
1732
+
1733
+
1734
+ k(x)
1735
+ S(x)
1736
+ I(x)
1737
+ 0
1738
+ 0.2
1739
+ 0.4
1740
+ 0.6
1741
+ 0.8
1742
+ 1
1743
+ 0
1744
+ 5
1745
+ 10
1746
+ 15
1747
+ x
1748
+
1749
+
1750
+ k(x)
1751
+ S(x)
1752
+ I(x)
1753
+ (a) Θk = [ 1
1754
+ 4, 3
1755
+ 4]
1756
+ (b) Θk = [ 1
1757
+ 4, 1
1758
+ 2] ∪ { 7
1759
+ 8}
1760
+ (c) Θk = [0, 1
1761
+ 16] ∪ { 3
1762
+ 8} ∪ [ 5
1763
+ 8, 3
1764
+ 4]
1765
+ Figure 2. Numerical simulations of the solution profile of model (1.2),
1766
+ where L = 1, N = 2, dS = 1, dI = 10−5, β(x) = 1, γ(x) = k(x)β(x), kmin = 1
1767
+ 2
1768
+ and k(x) is chosen as follows. In (a), Θk = [ 1
1769
+ 4, 3
1770
+ 4], k(x) = 1
1771
+ 2 + 5(x − 1
1772
+ 4)2, 0 ≤
1773
+ x < 1
1774
+ 4; k(x) = 1
1775
+ 2,
1776
+ 1
1777
+ 4 ≤ x < 3
1778
+ 4; k(x) = 1
1779
+ 2 + 5(x − 3
1780
+ 4)2,
1781
+ 3
1782
+ 4 ≤ x ≤ 1.
1783
+ In (b),
1784
+ Θk = [ 1
1785
+ 4, 1
1786
+ 2] ∪ { 7
1787
+ 8}, k(x) = 1
1788
+ 2 + 4(x − 1
1789
+ 4)2, 0 ≤ x < 1
1790
+ 4; k(x) = 1
1791
+ 2,
1792
+ 1
1793
+ 4 ≤ x <
1794
+ 1
1795
+ 2; k(x) = 1
1796
+ 2 + 4(x − 1
1797
+ 2)2,
1798
+ 1
1799
+ 2 ≤ x < 3
1800
+ 4; k(x) = 1
1801
+ 2 + 16(x − 7
1802
+ 8)2,
1803
+ 3
1804
+ 4 ≤ x ≤ 1. In
1805
+ (c), Θk = [0, 1
1806
+ 16] ∪ { 3
1807
+ 8} ∪ [ 5
1808
+ 8, 3
1809
+ 4], k(x) = 1
1810
+ 2, 0 ≤ x <
1811
+ 1
1812
+ 16; k(x) = 8x,
1813
+ 1
1814
+ 16 ≤ x <
1815
+ 1
1816
+ 8; k(x) = 1,
1817
+ 1
1818
+ 8 ≤ x < 1
1819
+ 4; k(x) = 2 − 4x,
1820
+ 1
1821
+ 4 ≤ x < 3
1822
+ 8; k(x) = 8x − 5
1823
+ 2,
1824
+ 3
1825
+ 8 ≤ x <
1826
+ 1
1827
+ 2; k(x) = 11
1828
+ 2 − 8x,
1829
+ 1
1830
+ 2 ≤ x < 5
1831
+ 8; k(x) = 1
1832
+ 2,
1833
+ 5
1834
+ 8 ≤ x < 3
1835
+ 4; k(x) = 2
1836
+ 3x,
1837
+ 3
1838
+ 4 ≤ x ≤ 1.
1839
+ (i) For any risk function h satisfying −dShxx ≤ Λ − h in (0, L), hx(0) ≥ 0, hx(L) ≤ 0,
1840
+ and condition (2.9) (for instance, h < Λ is a positive constant), the infected population
1841
+ must occupy the entire habitat, and it also forms the concentration phenomenon at the
1842
+ boundary point x = 0 (or x = 1) if hx(0) > 0 (or hx(1) < 0), which is also the highest-risk
1843
+ location; see Theorem 2.3(i) and the numerical illustrations in Figure 3(a)-(b)-(c).
1844
+ (ii) For any convex risk function h (i.e., hxx ≥, ̸≡ 0 on [0, L]) fulfilling (2.9), the infected
1845
+ population usually stays only in part of the habitat. In particular, by Theorem 2.3(ii)(iii),
1846
+ we can observe the following behaviors.
1847
+
1848
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
1849
+ 23
1850
+ 0
1851
+ 0.5
1852
+ 1
1853
+ 0.95
1854
+ 1
1855
+ 1.05
1856
+ 1.1
1857
+ 1.15
1858
+ 1.2
1859
+ 1.25
1860
+ 1.3
1861
+ 1.35
1862
+ 1.4
1863
+ x
1864
+
1865
+
1866
+ h(x)
1867
+ 0
1868
+ 0.5
1869
+ 1
1870
+ 0.95
1871
+ 1
1872
+ 1.05
1873
+ 1.1
1874
+ 1.15
1875
+ 1.2
1876
+ 1.25
1877
+ 1.3
1878
+ 1.35
1879
+ 1.4
1880
+ x
1881
+
1882
+
1883
+ S(x)
1884
+ 0
1885
+ 0.5
1886
+ 1
1887
+ 2
1888
+ 4
1889
+ 6
1890
+ 8
1891
+ 10
1892
+ 12
1893
+ 14
1894
+ 16
1895
+ 18
1896
+ 20
1897
+ x
1898
+
1899
+
1900
+ I(x)
1901
+ 0
1902
+ 0.5
1903
+ 1
1904
+ 0.95
1905
+ 1
1906
+ 1.05
1907
+ 1.1
1908
+ 1.15
1909
+ x
1910
+
1911
+
1912
+ h(x)
1913
+ 0
1914
+ 0.5
1915
+ 1
1916
+ 0.95
1917
+ 1
1918
+ 1.05
1919
+ 1.1
1920
+ 1.15
1921
+ x
1922
+
1923
+
1924
+ S(x)
1925
+ 0
1926
+ 0.5
1927
+ 1
1928
+ 0
1929
+ 20
1930
+ 40
1931
+ 60
1932
+ 80
1933
+ 100
1934
+ 120
1935
+ 140
1936
+ 160
1937
+ 180
1938
+ 200
1939
+ x
1940
+
1941
+
1942
+ I(x)
1943
+ 0
1944
+ 0.5
1945
+ 1
1946
+ 0.95
1947
+ 1
1948
+ 1.05
1949
+ 1.1
1950
+ 1.15
1951
+ 1.2
1952
+ 1.25
1953
+ 1.3
1954
+ x
1955
+
1956
+
1957
+ h(x)
1958
+ 0
1959
+ 0.5
1960
+ 1
1961
+ 0.95
1962
+ 1
1963
+ 1.05
1964
+ 1.1
1965
+ 1.15
1966
+ 1.2
1967
+ 1.25
1968
+ 1.3
1969
+ x
1970
+
1971
+
1972
+ S(x)
1973
+ 0
1974
+ 0.5
1975
+ 1
1976
+ 0
1977
+ 20
1978
+ 40
1979
+ 60
1980
+ 80
1981
+ 100
1982
+ 120
1983
+ 140
1984
+ 160
1985
+ 180
1986
+ 200
1987
+ x
1988
+ I(x)
1989
+
1990
+
1991
+ I(x)
1992
+ (a) h(x) = 1 + 5x2(1 − x)2
1993
+ (b) h(x) = 1 + x2(1 − x)
1994
+ (c) h(x) = 1 + x(1 − x)
1995
+ Figure 3. Numerical simulations of the solution profile of model (1.6),
1996
+ where β(x) = 1 + 1
1997
+ 2 sin(2πx), η(x) = 1, γ(x) = h(x)β(x) − η(x), dS = 1, dI =
1998
+ 10−8, Λ = 10. In (a), h(x) = 1 + 5x2(1 − x)2, in (b), h(x) = 1 + x2(1 − x),
1999
+ and in (c), h(x) = 1 + x(1 − x).
2000
+ (ii-a) If the highest-risk set Θh contains only one point, denoted by τ0, then the distri-
2001
+ bution behavior of the infected population is affected by whether τ0 is a boundary point or
2002
+ an interior point. More precisely, when τ0 is an interior point, then the infected population
2003
+ resides in a certain left neighborhood of τ0, staying away from the boundary points x = 0
2004
+ and x = 1. In fact, such a neighborhood can be calculated through the formula (2.21).
2005
+ One may further refer to Figure 4(a).
2006
+ However, if τ0 is a boundary point, say τ0 = L, then the infected population stays in a
2007
+ certain neighborhood of L provided e2Ld−1/2
2008
+ S
2009
+ −1
2010
+ e2Ld−1/2
2011
+ S
2012
+ +1
2013
+ > −
2014
+ d1/2
2015
+ S
2016
+ hx(L)
2017
+ Λ−h(L) , while the infected population
2018
+ concentrates only at L provided e2Ld−1/2
2019
+ S
2020
+ −1
2021
+ e2Ld−1/2
2022
+ S
2023
+ +1
2024
+ ≤ −
2025
+ d1/2
2026
+ S
2027
+ hx(L)
2028
+ Λ−h(L) . Since hx(L) ≤ 0 in this situation,
2029
+ the infected population stays in a certain neighborhood of L provided for all dS > 0 if
2030
+ hx(L) = 0. If hx(L) < 0, it should be noted that the function q(dS) = d−1/2
2031
+ S
2032
+ e2Ld−1/2
2033
+ S
2034
+ −1
2035
+ e2Ld−1/2
2036
+ S
2037
+ +1
2038
+ +
2039
+ hx(L)
2040
+ Λ−h(L) deceases in dS ∈ (0, ∞), limdS→0 q(dS) = ∞ and limdS→∞ q(dS) =
2041
+ hx(L)
2042
+ Λ−h(L) < 0. As a
2043
+ result, there is a unique d∗
2044
+ S > 0 such that q(d∗
2045
+ S) = 0, and in turn the infected population
2046
+ stays in a left neighborhood of L for 0 < dS < d∗
2047
+ S , and the infected population concentrates
2048
+ only at L for all dS ≥ d∗
2049
+ S.
2050
+ (ii-b) If the highest-risk set Θh contains only an interval, then the infected population
2051
+ resides in a certain neighborhood of such an interval. Again, such a neighborhood can be
2052
+ calculated through the formula (2.21). See the numerical simulation in Figure 4(b).
2053
+ (ii-c) For a general H¨older continuous risk function h, we can conclude that the disease
2054
+ must exist in all isolated highest-risk point(s) and a neighborhood of each highest-risk
2055
+ interval if exists; nevertheless, it is challenging to give a precise characterization for the
2056
+ distribution behavior of the susceptible and infected populations, due to the mathematical
2057
+ difficulties on the analysis of the free boundary problem (2.10). We have performed the
2058
+ numerical simulations in Figure 5(a)-(b) as an illustration.
2059
+ In what follows, we would like to make some more discussions on (ii-a) above in the case
2060
+ that τ0 is a boundary point. For example, we take τ0 = L, and also assume that hx(L) < 0.
2061
+ On the one hand, by fixing hx(L), we have known from (ii-b) that large diffusion rate dS
2062
+ can result in the disease concentration only at the location L and small diffusion rate dS
2063
+
2064
+ 24
2065
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
2066
+ 0
2067
+ 0.2
2068
+ 0.4
2069
+ 0.6
2070
+ 0.8
2071
+ 1
2072
+ 0
2073
+ 2
2074
+ 4
2075
+ 6
2076
+ 8
2077
+ 10
2078
+ 12
2079
+ x
2080
+
2081
+
2082
+ I(x)
2083
+ 0
2084
+ 0.2
2085
+ 0.4
2086
+ 0.6
2087
+ 0.8
2088
+ 1
2089
+ 1
2090
+ 1.1
2091
+ 1.2
2092
+ 1.3
2093
+ x
2094
+
2095
+
2096
+ τ1
2097
+ τ2
2098
+ h(x)
2099
+ S(x)
2100
+ 0
2101
+ 0.2
2102
+ 0.4
2103
+ 0.6
2104
+ 0.8
2105
+ 1
2106
+ 0
2107
+ 5
2108
+ 10
2109
+ 15
2110
+ 20
2111
+ 25
2112
+ 30
2113
+ x
2114
+
2115
+
2116
+ I(x)
2117
+ 0
2118
+ 0.2
2119
+ 0.4
2120
+ 0.6
2121
+ 0.8
2122
+ 1
2123
+ 0.5
2124
+ 0.6
2125
+ 0.7
2126
+ 0.8
2127
+ x
2128
+
2129
+
2130
+ τ1
2131
+ τ2
2132
+ h(x)
2133
+ S(x)
2134
+ (a) Θh = {1
2135
+ 2}
2136
+ (b) Θh = [1
2137
+ 4, 3
2138
+ 4]
2139
+ Figure 4. Numerical simulations of the solution profile of model (1.6),
2140
+ where β(x) = 1 + 1
2141
+ 2 sin(2πx), η(x) = 1, γ(x) = h(x)β(x) − η(x), dS =
2142
+ 1, dI = 10−10, Λ = 10, and h(x) = 1 + (x − 1
2143
+ 2)2 in (a), while in (b), h(x) =
2144
+ 1
2145
+ 2 + 5(x − 1
2146
+ 4)2, 0 ≤ x < 1
2147
+ 4; h(x) = 1
2148
+ 2,
2149
+ 1
2150
+ 4 ≤ x < 3
2151
+ 4; h(x) = 1
2152
+ 2 + 5(x − 3
2153
+ 4)2,
2154
+ 3
2155
+ 4
2156
+ ≤ x < 1.
2157
+ 0
2158
+ 0.2
2159
+ 0.4
2160
+ 0.6
2161
+ 0.8
2162
+ 1
2163
+ 0
2164
+ 5
2165
+ 10
2166
+ 15
2167
+ 20
2168
+ 25
2169
+ 30
2170
+ 35
2171
+ x
2172
+
2173
+
2174
+ I(x)
2175
+ 0
2176
+ 0.2
2177
+ 0.4
2178
+ 0.6
2179
+ 0.8
2180
+ 1
2181
+ 0.5
2182
+ 0.6
2183
+ 0.7
2184
+ 0.8
2185
+ x
2186
+
2187
+
2188
+ h(x)
2189
+ S(x)
2190
+ 0
2191
+ 0.2
2192
+ 0.4
2193
+ 0.6
2194
+ 0.8
2195
+ 1
2196
+ 0
2197
+ 5
2198
+ 10
2199
+ 15
2200
+ 20
2201
+ 25
2202
+ 30
2203
+ 35
2204
+ 40
2205
+ 45
2206
+ 50
2207
+ x
2208
+
2209
+
2210
+ I(x)
2211
+ 0
2212
+ 0.2
2213
+ 0.4
2214
+ 0.6
2215
+ 0.8
2216
+ 1
2217
+ 0
2218
+ 0.5
2219
+ 1
2220
+ 1.5
2221
+ x
2222
+
2223
+
2224
+ h(x)
2225
+ S(x)
2226
+ (a) Θh = [1
2227
+ 4, 1
2228
+ 2] ∪ {7
2229
+ 8}
2230
+ (b) Θh = [0, 1
2231
+ 16] ∪ {3
2232
+ 8} ∪ [5
2233
+ 8, 3
2234
+ 4]
2235
+ Figure 5. Numerical simulations of the solution profile of model (1.6),
2236
+ where dS = 1, dI = 10−5, β(x) = 1 + 1
2237
+ 2 sin(2πx), η(x) = 1, γ(x) = h(x)β(x) −
2238
+ η(x), Λ = 10. In (a) and (b), h(x) is chosen to be the same as k(x) in Figure
2239
+ 2(b) and Figure 2(c), respectively.
2240
+ will cause the disease to distribute in a left neighborhood of L. On the other hand, once
2241
+ dS is fixed, the concentration phenomenon happens only if −hx(L) is properly large. This
2242
+ motivates us to see whether a similar concentration phenomenon could occur at an interior
2243
+ isolated highest-risk point if the risk function h is merely H¨older continuous. To illustrate
2244
+ this phenomenon, let us consider the following risk function whose curve is the connection
2245
+ of two segments:
2246
+ h(x) =
2247
+
2248
+ a1
2249
+
2250
+ x − L
2251
+ 2
2252
+
2253
+ + Λ
2254
+ 4 ,
2255
+ x ∈
2256
+
2257
+ 0, L
2258
+ 2
2259
+
2260
+ ,
2261
+ a2
2262
+
2263
+ x − L
2264
+ 2
2265
+
2266
+ + Λ
2267
+ 4 ,
2268
+ x ∈
2269
+ � L
2270
+ 2 , L
2271
+
2272
+ ,
2273
+ (4.1)
2274
+ with a1 < 0, a2 > 0. Obviously, h is merely Lipschitz continuous at x = L
2275
+ 2 . Our numer-
2276
+ ical simulation results demonstrate that if the slopes |a1|, a2 are properly large, then the
2277
+ infected population will concentrate at x = L
2278
+ 2 (Figure 6(a)); if |a1|, a2 are small, then the
2279
+
2280
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
2281
+ 25
2282
+ infected population will aggregate in a neighborhood of x = L
2283
+ 2 (Figure 6(b)); and if |a1| is
2284
+ small while a2 is large, then the infected population will aggregate in a left-neighborhood
2285
+ of x =
2286
+ L
2287
+ 2 (Figure 6(b)). These profiles behave rather differently from that in Theorem
2288
+ 2.3(ii) for h ∈ C2([0, L]), as shown by Figure 4(a). Therefore, the numerical results reveal
2289
+ that the smoothness of h may have a substantial effect on the spatial distribution of the
2290
+ disease.
2291
+ 0
2292
+ 0.2
2293
+ 0.4
2294
+ 0.6
2295
+ 0.8
2296
+ 1
2297
+ 0
2298
+ 50
2299
+ 100
2300
+ 150
2301
+ 200
2302
+ 250
2303
+ x
2304
+
2305
+
2306
+ I(x)
2307
+ 0
2308
+ 0.5
2309
+ 1
2310
+ 2
2311
+ 3
2312
+ 4
2313
+ 5
2314
+ 6
2315
+ 7
2316
+ 8
2317
+ x
2318
+
2319
+
2320
+ h(x)
2321
+ S(x)
2322
+ 0
2323
+ 0.2
2324
+ 0.4
2325
+ 0.6
2326
+ 0.8
2327
+ 1
2328
+ 0
2329
+ 5
2330
+ 10
2331
+ 15
2332
+ 20
2333
+ 25
2334
+ 30
2335
+ 35
2336
+ 40
2337
+ x
2338
+
2339
+
2340
+ I(x)
2341
+
2342
+
2343
+ 0
2344
+ 0.5
2345
+ 1
2346
+ 2
2347
+ 3
2348
+ 4
2349
+ 5
2350
+ 6
2351
+ 7
2352
+ 8
2353
+ x
2354
+
2355
+
2356
+ h(x)
2357
+ S(x)
2358
+ 0
2359
+ 0.2
2360
+ 0.4
2361
+ 0.6
2362
+ 0.8
2363
+ 1
2364
+ 0
2365
+ 20
2366
+ 40
2367
+ 60
2368
+ 80
2369
+ 100
2370
+ 120
2371
+ x
2372
+
2373
+
2374
+ I(x)
2375
+ 0
2376
+ 0.5
2377
+ 1
2378
+ 2
2379
+ 3
2380
+ 4
2381
+ 5
2382
+ 6
2383
+ 7
2384
+ 8
2385
+ x
2386
+
2387
+
2388
+ h(x)
2389
+ S(x)
2390
+ (a) a1 = −10, a2 = 10
2391
+ (b) a1 = −1, a2 = 1
2392
+ (c) a1 = −1, a2 = 10
2393
+ Figure 6. Numerical simulations of the solution profile of model (1.6),
2394
+ where β(x) = 1 + 1
2395
+ 2 sin(2πx), η(x) = 1, γ(x) = h(x)β(x) − η(x), L = 1, dS =
2396
+ 1, dI = 10−5, Λ = 10 and h(x) is given by (4.1).
2397
+ 4.3. Conclusion. The discussions in the above two subsections, together with the numer-
2398
+ ical simulations, show that the spatial profile of the susceptible and infected populations
2399
+ of (1.2) and (1.6) with respect to small movement rate of the infected individuals are
2400
+ rather different. This is caused by the presence of the recruitment term for the suscep-
2401
+ tible population and the death rate for the infected population. On the other hand, we
2402
+ would like to mention that the recent works [11–14, 31, 34, 69] studied various kinds of
2403
+ reaction-diffusion-advection SIS epidemic models, in which the advection term represents
2404
+ some passive movement in a certain direction, e.g., due to external environmental forces
2405
+ such as water flow [46–48, 57], wind [15] and so on. In particular, if an advection is present
2406
+ in (1.2) and stands for, for instance, the water flow, it was proved in [13, Theorem 1.4]
2407
+ that, as dI → 0, the susceptible population converges to a positive function while the in-
2408
+ fected population concentrates only at the downstream of the water flow; a similar result
2409
+ can be shown to hold for the corresponding system (1.6). Such a distribution behavior is
2410
+ essentially different from that of (1.2) and (1.6) with small dI.
2411
+ In summary, our results here, combined with those of [13, 31, 40], suggest that the re-
2412
+ cruitment term for the susceptible population, the death rate for the infected population
2413
+ (even the smoothness of the associated risk function) as well as the advection can lead
2414
+ to significant impacts on the disease transmission and thus decision-makers should attach
2415
+ great importance to these factors when taking measures such as the lockdown and quaran-
2416
+ tine to control the movement or immigration of the infected individuals so as to eliminate
2417
+ the disease infection.
2418
+
2419
+ 26
2420
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
2421
+ 5. Appendix
2422
+ In this appendix, we always let Ω be a smooth and bounded domain in Rn (n ≥ 1). Given
2423
+ f ∈ C(Ω), consider the following eigenvalue problem with Neumann boundary condition:
2424
+
2425
+ −D∆φ + f(x)φ = λφ
2426
+ in Ω,
2427
+ ∂φ
2428
+ ∂ν = 0
2429
+ on ∂Ω,
2430
+ (5.2)
2431
+ where ν(x) is the unit exterior normal vector of ∂Ω at x, and the coefficient D is a positive
2432
+ constant.
2433
+ We start with a well-known fact concerning the asymptotic behavior of the principal
2434
+ eigenvalue of (5.2) with respect to small diffusion; one may refer to, for example, [45,
2435
+ Lemma 3.1].
2436
+ Lemma 5.1. Let λ1(D, f) be the principal eigenvalue of (5.2). Then it holds that
2437
+ lim
2438
+ D→0 λ1(D, f) = min
2439
+ x∈Ω f(x).
2440
+ We next recall the L1-estimate for the weak solution (due to [6]) of the following linear
2441
+ elliptic problem:
2442
+ −∆w + c(x)w = g
2443
+ in Ω,
2444
+ ∂w
2445
+ ∂ν = 0 on ∂Ω.
2446
+ (5.3)
2447
+ Lemma 5.2. (a) (Global estimates)
2448
+ Assume that c ∈ L∞(Ω), g ∈ L1(Ω) and let w ∈
2449
+ W 1,1(Ω) be a weak solution of (5.3). Then, for any r ∈ [1, n/(n − 1)), we have w ∈ W 1,r(Ω)
2450
+ and the following estimate
2451
+ ∥w∥W 1,r(Ω) ≤ C∥g∥L1(Ω),
2452
+ where the positive constant C is independent of w.
2453
+ (b) (Interior estimates) Assume that Ω′ ⊂⊂ Ω is a smooth domain, c ∈ L∞(Ω), g ∈
2454
+ L1(Ω), and let w ∈ W 1,1(Ω) be a weak solution to the equation −∆w + c(x)w = g. Then,
2455
+ for any r ∈ [1, n/(n − 1)), we have w ∈ W 1,r(Ω′) and the following estimate
2456
+ ∥w∥W 1,r(Ω′) ≤ C∥g∥L1(Ω),
2457
+ where the positive constant C is independent of w.
2458
+ At last, we state a Harnack-type inequality for weak solutions (see, e.g., [43] or [53]),
2459
+ whose strong form was obtained in [44].
2460
+ Lemma 5.3. (a) (Global Harnack inequality)
2461
+ Let c ∈ Lr(Ω) for some r > n/2.
2462
+ If
2463
+ w ∈ W 1,2(Ω) is a non-negative weak solution of the boundary value problem
2464
+ −∆w + c(x)w = 0 in Ω,
2465
+ ∂w
2466
+ ∂ν = 0 on ∂Ω,
2467
+ then there is a constant C, determined only by ∥c∥r, r and Ω such that
2468
+ sup
2469
+
2470
+ w ≤ C inf
2471
+ Ω w.
2472
+ (b) (Local Harnack inequality) Let Ω′ ⊂⊂ Ω be a smooth domain and c ∈ Lr(Ω) for some
2473
+ r > n/2. If w ∈ W 1,2(Ω) is a non-negative weak solution of the equation −∆w+c(x)w = 0,
2474
+ then there is a constant C, determined only by ∥c∥r, r, Ω and Ω′, such that
2475
+ sup
2476
+ Ω′ w ≤ C inf
2477
+ Ω′ w.
2478
+
2479
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
2480
+ 27
2481
+ References
2482
+ [1] L.J.S. Allen, B.M. Bolker, Y. Lou, A.L. Nevai, Asymptotic profiles of the steady states for an SIS
2483
+ epidemic patch model, SIAM J. Appl. Math., 67(2007), 1283-1309.
2484
+ [2] L.J.S. Allen, B.M. Bolker, Y.Lou, A.L. Nevai, Asymptotic profiles of the steady states for an SIS
2485
+ epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21(2008), 1-20.
2486
+ [3] L.J.S. Allen, B.M. Bolker, Y. Lou, A.L. Nevai, Spatial patterns in a discrete-time SIS patch model,
2487
+ J. Math. Biol., 58(2009), 339-375.
2488
+ [4] R.M. Anderson, R.M. May, Population biology of infectious diseases, Nature, 280(1979), 361-367.
2489
+ [5] D. Balcan, et al., Multiscale mobility networks and the spatial spreading of infectious diseases, Proc.
2490
+ Natl Acad. Sci. USA, 106(2009), 21484-21489.
2491
+ [6] H. Brezis, W. A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Jpn.,
2492
+ 25(1973), 565-590.
2493
+ [7] T. Britton, F. Ball, P. Trapman, A mathematical model reveals the influence of population hetero-
2494
+ geneity on herd immunity to SARS-CoV-2, Science, 369(2020), 846-849.
2495
+ [8] T. Britton, F. Ball, P. Trapman, The disease-induced herd immunity level for Covid-19 is substantially
2496
+ lower than the classical herd immunity level, preprint, arXiv:2005.03085.
2497
+ [9] D. Brockmann, D. Helbing, The hidden geometry of complex, network-driven contagion phenomena,
2498
+ Science, 342(2013), 1337-1342.
2499
+ [10] K. Castellano, R.B. Salako, On the effect of lowering population’s movement to control the spread of
2500
+ an infectious disease, J. Differential Equations, 316(2022), 1-27.
2501
+ [11] R. Cui, Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic
2502
+ model with saturated incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 26(2021), 2997-3022.
2503
+ [12] R. Cui, K.-Y. Lam, Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model
2504
+ in advective environments, J. Differential Equations, 263(2017), 2343-2373.
2505
+ [13] R. Cui, H. Li, R. Peng, M. Zhou, Concentration behavior of endemic equilibrium for a reaction-
2506
+ diffusion-advection SIS epidemic model with mass action infection mechanism, Calc. Var. Partial
2507
+ Differential Equations, 60(2021), paper no. 184, 38 pp.
2508
+ [14] R. Cui, Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equa-
2509
+ tions, 261(2016), 3305-3343.
2510
+ [15] K.A. Dahmen, D.R. Nelson, N.M. Shnerb, Life and death near a windy oasis, J. Math. Biol., 41(2000),
2511
+ 1-23.
2512
+ [16] K. Deng, Y. Wu, Dynamics of an SIS epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh
2513
+ Sect. A, 146(2016), 929-946.
2514
+ [17] F. Di Lauro, et al., The impact of network properties and mixing on control measures and
2515
+ disease-induced herd immunity in epidemic models:
2516
+ a mean-field model perspective, preprint,
2517
+ arXiv:2007.06975.
2518
+ [18] Z. Du, R. Peng, A priori L∞-estimate for solutions of a class of reaction-diffusion systems, J. Math.
2519
+ Biol., 72(2016), 429-1439.
2520
+ [19] D. Gao, Travel frequency and infectious diseases, SIAM J. Appl. Math., 79(2019), 1581-1606.
2521
+ [20] D. Gao, C-P. Dong, Fast diffusion inhibits disease outbreaks, Proc. Amer. Math. Soc., 148(2020),
2522
+ 1709-1722.
2523
+ [21] D. Gao, S. Ruan, An SIS patch model with variable transmission coefficients, Math. Biosci.,
2524
+ 232(2011), 110-115.
2525
+ [22] J. Ge, K. Kim, Z. Lin, H. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk
2526
+ domain, J. Differential Equations, 259(2015), 5486-5509.
2527
+ [23] S. Han, C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear
2528
+ incidence, Appl. Math. Lett., 98(2019), 114-120.
2529
+ [24] H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42(2000), 599-653.
2530
+ [25] J.S. Jia, et al., Population flow drives spatio-temporal distribution of COVID-19 in China, Nature,
2531
+ 582(2020), 389-394.
2532
+ [26] W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of epidemics–I, Proc.
2533
+ Roy. Soc. London Ser. A, 115(1927), 700-721.
2534
+ [27] W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of epidemics–I, Bull.
2535
+ Math. Biol., 53(1991), 33-55.
2536
+
2537
+ 28
2538
+ R. PENG, Z.-A. WANG, G. ZHANG AND M. ZHOU
2539
+ [28] W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of epidemics–II. The
2540
+ problem of endemicity, Bull. Math. Biol., 53(1991), 57-87.
2541
+ [29] W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of epidemics–III. Fur-
2542
+ ther studies of the problem of endemicity, Bull. Math. Biol., 53(1991), 89-118.
2543
+ [30] M.U.G. Kraemer, et al., The effect of human mobility and control measures on the COVID-19 epi-
2544
+ demic in China, Science, 368(2020), 493-497.
2545
+ [31] K. Kuto, H. Matsuzawa, R. Peng, Concentration profile of the endemic equilibria of a reaction-
2546
+ diffusion-advection SIS epidemic model, Calc. Var. Partial Differential Equations, 56(2017), paper
2547
+ no. 112, 28 pp.
2548
+ [32] C. Lei, F. Li, J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence
2549
+ in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 23(2018), 4499-4517.
2550
+ [33] C. Lei, J. Xiong, X. Zhou, Qualitative analysis on an SIS epidemic reaction-diffusion model with
2551
+ mass action infection mechanism and spontaneous infection in a heterogeneous environment, Discrete
2552
+ Contin. Dyn. Syst. Ser. B, 25(2020), 81-98.
2553
+ [34] C. Lei, X. Zhou, Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-
2554
+ advection SIS epidemic model with spontaneous infection, Discrete Contin. Dyn. Syst. Ser. B, to
2555
+ appear.
2556
+ [35] B. Li, Q. Bie, Long-time dynamics of an SIRS reaction-diffusion epidemic model, J. Math. Anal.
2557
+ Appl., 475(2019), 1910-1926.
2558
+ [36] B. Li, H. Li, Y. Tong, Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew.
2559
+ Math. Phys., 68(2017), no. 4, Art. 96, 25 pp.
2560
+ [37] B. Li, J. Zhou, X. Zhou, Asymptotic profiles of endemic equilibrium of a diffusive SIS epidemic
2561
+ system with nonlinear incidence function in a heterogeneous environment, Proc. Amer. Math. Soc.,
2562
+ 148(2020), 4445-4453.
2563
+ [38] H. Li, R. Peng, Dynamics and asymptotic profiles of endemic equilibrium for SIS epidemic patch
2564
+ models, J. Math. Biol., 79(2019), 1279-1317.
2565
+ [39] H. Li, R. Peng, F.-B. Wang, Vary total population enhances disease persistence: qualitative analysis
2566
+ on a diffusive SIS epidemic model, J. Differential Equations, 262(2017), 885-913.
2567
+ [40] H. Li, R. Peng, Z.-A. Wang, On a diffusive susceptible-infected-susceptible epidemic model with
2568
+ mass action mechanism and birth-death effect: analysis, simulations, and comparison with other
2569
+ mechanisms, SIAM J. Appl. Math., 78(2018), 2129-2153.
2570
+ [41] H. Li, R. Peng, T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-
2571
+ dependent SIS epidemic models with cross-diffusion, European J. Appl. Math., 31(2018), 26-56.
2572
+ [42] M.Y. Li, Z. Shuai, Global stability of an epidemic model in a patchy environment, Can. Appl. Math.
2573
+ Q., 17(2009), 175-187.
2574
+ [43] G.M. Lieberman, Bounds for the steady-state Sel’kov model for arbitrary p in any number of dimen-
2575
+ sions, SIAM J. Math. Anal., 36(2005), 1400-1406.
2576
+ [44] C.S. Lin, W.M. Ni, I. Takagi,
2577
+ Large amplitude stationary solutions to a chemotaxis system, J.
2578
+ Differential Equations, 72(1988), 1-27.
2579
+ [45] Y. Lou, T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection without
2580
+ dominance, J. Differential Equations, 225(2006), 624-665.
2581
+ [46] F. Lutscher, M.A. Lewis, E. McCauley, Effects of heterogeneity on spread and persistence in rivers,
2582
+ Bull. Math. Biol., 68(2006), 2129-2160.
2583
+ [47] F. Lutscher, E. McCauley, M.A. Lewis, Spatial patterns and coexistence mechanisms in systems with
2584
+ unidirectional flow, Theor. Popul. Biol., 71(2007), 267-277.
2585
+ [48] F. Lutscher, E. Pachepsky, M.A. Lewis, The effect of dispersal patterns on stream populations, SIAM
2586
+ Rev., 47(2005), 749-772.
2587
+ [49] P. Magal, G. Webb, Y. Wu, On a vector-host epidemic model with spatial structure, Nonlinearity,
2588
+ 31(2018), 5589-5614.
2589
+ [50] P. Magal, G. Webb, Y. Wu, On the basic reproduction number of reaction-diffusion epidemic models,
2590
+ SIAM J. Appl. Math., 79(2019), 284-304.
2591
+ [51] R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model.
2592
+ Part I, J. Differential Equations, 247(2009), 1096-1119.
2593
+ [52] R. Peng, S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model,
2594
+ Nonlinear Anal., 71(2009), 239-247.
2595
+
2596
+ TWO DIFFUSIVE SIS EPIDEMIC MODELS WITH MASS ACTION INFECTION MECHANISM
2597
+ 29
2598
+ [53] R. Peng, J. Shi, M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis
2599
+ and saturation law, Nonlinearity, 21(2008), 1471-1488.
2600
+ [54] R. Peng, Y. Wu, Global L∞-bounds and long-time behavior of a diffusive epidemic system in a
2601
+ heterogeneous environment, SIAM J. Math. Anal., 53(2021), 2776-2810.
2602
+ [55] R. Peng, F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion
2603
+ model: Effects of epidemic risk and population movement, Phys. D. 259(2013), 8-25.
2604
+ [56] R. Peng, X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Non-
2605
+ linearity, 25(2012), 1451-1471.
2606
+ [57] R. Peng, X.-Q. Zhao, Effects of diffusion and advection on the principal eigenvalue of a periodic-
2607
+ parabolic problem with applications, Calc. Var. Partial Differential Equations, 54(2015), 1611-1642.
2608
+ [58] P. Song, Y. Lou, Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment,
2609
+ J. Differential Equations, 267(2019), 5084-5114.
2610
+ [59] J. Suo, B. Li, Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent
2611
+ incidence function in a heterogeneous environment, Math. Biosci. Eng., 17(2019), 418-441.
2612
+ [60] H. Tian, et al., An investigation of transmission control measures during the first 50 days of the
2613
+ COVID-19 epidemic in China, Science, 368(2020), 638-642.
2614
+ [61] Y. Tong, C. Lei, An SIS epidemic reaction-diffusion model with spontaneous infection in a spatially
2615
+ heterogeneous environment, Nonlinear Anal. Real World Appl., 41(2018), 443-460.
2616
+ [62] C. Vargas-De-Leon, A. Korobeinikov, Global stability of a population dynamics model with inhibition
2617
+ and negative feedback, J. Math. Medicine and Biol., 30(2013), 65-72.
2618
+ [63] J. Wang, X. Wu, Dynamics and profiles of a diffusive Cholera model with bacterial hyperinfectivity
2619
+ and distinct dispersal rates, J. Dyn. Diff. Equat., 2021, https://doi.org/10.1007/s10884-021-09975-3
2620
+ [64] J. Wang, J. Wang, Analysis of a reaction-diffusion Cholera model with distinct dispersal rates in the
2621
+ human population, J. Dyn. Diff. Equat., 33(2021), 549-575.
2622
+ [65] X. Wen, J. Ji, B. Li, Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model
2623
+ with mass action infection mechanism, J. Math. Anal. Appl., 458(2018), 715-729.
2624
+ [66] D. Wodarz, J.P. Christensen, A.R. Thomsen, The importance of lytic and nonlytic immune responses
2625
+ in viral infections, Trends Immunol., 23(2002), 194-200.
2626
+ [67] D. Wodarz, M.A. Nowak, Immune response and viral phenotype:
2627
+ do replication rate and cy-
2628
+ topathogenicity influence virus load? J. Theor. Med., 2(2000), 113-127.
2629
+ [68] Y. Wu, X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass
2630
+ action infection mechanism, J. Differential Equations, 261(2016), 4424-4447.
2631
+ [69] J. Zhang, R. Cui, Asymptotic behavior of an SIS reaction-diffusion-advection model with saturation
2632
+ and spontaneous infection mechanism, Z. Angew. Math. Phys., 71(2020), paper no. 150, 21 pp.
2633
+ [70] S. Zhu, J. Wang, Analysis of a diffusive SIS epidemic model with spontaneous infection and a linear
2634
+ source in spatially heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 25(2020), 1999-
2635
+ 2019.
2636
+ [71] S. Zhu, J. Wang, Asymptotic profiles of steady states for a diffusive SIS epidemic model with spon-
2637
+ taneous infection and a logistic source, Commun. Pure Appl. Anal., 19(2020), 3323-3340.
2638
+
-dAzT4oBgHgl3EQfFfqG/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -191,3 +191,8 @@ dNE2T4oBgHgl3EQfGAZK/content/2301.03652v1.pdf filter=lfs diff=lfs merge=lfs -tex
191
  MtFJT4oBgHgl3EQfzS0r/content/2301.11642v1.pdf filter=lfs diff=lfs merge=lfs -text
192
  BtFKT4oBgHgl3EQfXS78/content/2301.11794v1.pdf filter=lfs diff=lfs merge=lfs -text
193
  2tFKT4oBgHgl3EQf7y43/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
191
  MtFJT4oBgHgl3EQfzS0r/content/2301.11642v1.pdf filter=lfs diff=lfs merge=lfs -text
192
  BtFKT4oBgHgl3EQfXS78/content/2301.11794v1.pdf filter=lfs diff=lfs merge=lfs -text
193
  2tFKT4oBgHgl3EQf7y43/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
194
+ SdAyT4oBgHgl3EQfuPmB/content/2301.00609v1.pdf filter=lfs diff=lfs merge=lfs -text
195
+ 6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf filter=lfs diff=lfs merge=lfs -text
196
+ wdE3T4oBgHgl3EQfOgk_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
197
+ YNFQT4oBgHgl3EQfdzaO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
198
+ ytE1T4oBgHgl3EQfQwPe/content/2301.03045v1.pdf filter=lfs diff=lfs merge=lfs -text
69AyT4oBgHgl3EQfcvd4/content/tmp_files/2301.00289v1.pdf.txt ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Stability Analysis of Picard Iteration for Coupled Neutronics/Thermal-Hydraulics Simulations
2
+ Dean Wang
3
+ Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210
4
5
+ David P. Griesheimer
6
+ Bettis Atomic Power Laboratory, Bechtel Marine Propulsion Corporation, West Mifflin, PA 15122
7
8
+ INTRODUCTION
9
+ Reactor core analysis often needs to solve a multiphysics
10
+ nonlinear coupled system, including neutron transport,
11
+ thermal-hydraulics, and other important physics phenomena.
12
+ One straightforward method for solving such a coupled
13
+ system is Picard fixed-point iteration [1], which alternates
14
+ between solving individual physics problems separately.
15
+ However, many numerical studies show that Picard iteration
16
+ can be unstable, and a user-defined relaxation is usually
17
+ required to achieve convergence [2-4].
18
+ In this paper, we present a formal Fourier analysis (FA)
19
+ of Picard iteration for the coupled neutronics/thermal
20
+ hydraulics (N/TH) problem and derive theoretical predictions
21
+ for the spectral radius of Picard iteration for such coupled
22
+ calculations as a function of the temperature difference
23
+ between the fuel and coolant, temperature coefficients of
24
+ cross sections (i.e., Doppler feedback), scattering ratio, and
25
+ core height. An optimal underrelaxation factor is also derived
26
+ based on the Fourier analysis.
27
+
28
+ FORMULATION AND ALGORITHM
29
+ We consider the following simple one-group, planar-
30
+ geometry k-eigenvalue problem on the domain 0 ≤ 𝑥 ≤ 𝐿
31
+ with reflective boundary conditions:
32
+ 𝜇
33
+ !"($,&)
34
+ !$
35
+ + Σ((𝑇)𝜓(𝑥, 𝜇)
36
+ =
37
+ )
38
+ * Σ+(𝑇)𝜙(𝑥) +
39
+ )
40
+ *,!"" 𝜈Σ-(𝑇)𝜙(𝑥) , (1)
41
+ and the simplified heat transfer equation for a single typical
42
+ pressurized water reactor (PWR) fuel pin:
43
+ 𝑇 = 𝑇. + 𝐴Σ-(𝑇)𝜙(𝑥) ,
44
+ (2)
45
+ with
46
+ 𝐴 = 𝜋𝑟-/
47
+ * 𝜅𝑅( , (3a)
48
+ and
49
+ 𝑅( = 6
50
+ )
51
+ 01," +
52
+ )
53
+ *12#3# +
54
+ )
55
+ *1,$ ln 9
56
+ 2$%
57
+ 2$&: +
58
+ )
59
+ *12$%3; , (3b)
60
+ where
61
+ 𝜓 = neutron angular flux
62
+ 𝜙 = ∫
63
+ 𝜓(𝑥, 𝜇)𝑑𝜇
64
+ )
65
+ 4)
66
+ , neutron scalar flux
67
+ Σ( = macroscopic total cross section
68
+ Σ+ = macroscopic scattering cross section
69
+ Σ- = macroscopic fission cross section
70
+ ν = average neutron yields per fission
71
+ 𝑘5-- = effective multiplication factor
72
+ 𝜅 = average energy released per fission
73
+ 𝑇 = volume averaged fuel temperature
74
+ 𝑇. = bulk coolant temperature
75
+ 𝑟-/ = fuel radius
76
+ 𝑟67 = cladding inner radius
77
+ 𝑟6/ = cladding outer radius
78
+ 𝑟8 =
79
+ 2$&92$%
80
+ *
81
+ , mean radius in the gap
82
+ 𝑘- = fuel thermal conductivity
83
+ 𝑘6 = cladding thermal conductivity
84
+ ℎ8 = effective gap conductance
85
+ ℎ = coolant convection heat transfer coefficient
86
+ Note that the linear heat generation rate (or linear power)
87
+ of the fuel rod, 𝑞′, can be calculated by
88
+ 𝑞:(𝑥) = 𝜋𝑟-/
89
+ * 𝜅Σ-(𝑇)𝜙(𝑥) .
90
+ (4)
91
+ Picard iteration is used to solve the above coupled N/TH
92
+ system as follows. The transport equation is solved first, then
93
+ the fuel temperature is calculated using the newly obtained
94
+ thermal power (neutron flux). An underrelaxation factor is
95
+ introduced in the temperature update. Note that the transport
96
+ iteration is fully converged during each TH update.
97
+ 𝜇
98
+ !"(()*)($,&)
99
+ !$
100
+ + Σ(C𝑇(,)D𝜓(,9))
101
+ =
102
+ )
103
+ * Σ+C𝑇(,)D𝜙(,9))(𝑥) +
104
+ )
105
+ *,!"" 𝜈Σ-C𝑇(,)D𝜙(,9)) , (5)
106
+ 𝑇∗ = 𝑇. + 𝐴Σ-C𝑇(,)D𝜙(,9))(𝑥) , (6a)
107
+ 𝑇(,9)) = 𝜔𝑇∗ + (1 − 𝜔)𝑇(,) , (6b)
108
+ where 𝜔 is the underrelaxation factor and the superscript 𝑘
109
+ denotes the iteration number.
110
+
111
+ LINEARIZATION
112
+ To perform Fourier analysis of the coupled N/TH
113
+ problem, we need to first linearize the system of equations.
114
+ We define the following linearized variables:
115
+ 𝜓(𝑥, 𝜇) = 𝜓<(𝑥, 𝜇) + 𝜀𝜓)(𝑥, 𝜇) , (7a)
116
+
117
+ 𝜙(𝑥) = 𝜙<(𝑥) + 𝜀𝜙)(𝑥) , (7b)
118
+ 𝑘5-- = 𝑘5--,/ ,
119
+
120
+ (7c)
121
+ 𝑇(𝑥) = 𝑇< + 𝜀𝑇)(𝑥) ,
122
+
123
+ (7d)
124
+ Σ7(𝑇) = Σ7< + Σ7)(𝑇 − 𝑇<)
125
+ = Σ7< + 𝜀Σ7)𝑇)(𝑥) , 𝑖 = 𝑡, 𝑠, 𝑓, 𝑎 (7e)
126
+ Note that 𝑘5-- = 𝑘5--,/ due to the flux normalization.
127
+ The cross sections are assumed to be linearly dependent on
128
+ the fuel temperature. However, other feedback mechanisms
129
+ such as thermal expansion [5] and moderator temperature
130
+ feedbacks can be treated as well.
131
+ Substituting Eqs. (7a) - (7e) into (5), after some algebra
132
+ we obtain by neglecting the 𝑂(𝜀*) terms
133
+ 𝜇
134
+ !"*
135
+ (()*)($,&)
136
+ !$
137
+ + Σ(<𝜓)
138
+ (,9))(𝑥, 𝜇) + Σ()𝑇)
139
+ (,)(𝑥)𝜓<(𝑥, 𝜇)
140
+ =
141
+ )
142
+ * Σ+<𝜙)
143
+ (,9))(𝑥) +
144
+ )
145
+ * Σ+)𝑇)
146
+ (,)(𝑥)𝜙<
147
+ +
148
+ )
149
+ *,!"",- 𝜈Σ-<𝜙)
150
+ (,9))(𝑥) +
151
+ )
152
+ *,!"",- 𝜈Σ-)𝑇)
153
+ (,)(𝑥)𝜙< . (8)
154
+ For reflective BC, 𝜓< =
155
+ =-
156
+ * , and Σ>< =
157
+ )
158
+ ,!"",- 𝜈Σ-<, then
159
+ we rewrite Eq. (8) as
160
+ 𝜇
161
+ !"*
162
+ (()*)($,&)
163
+ !$
164
+ + Σ(<𝜓)
165
+ (,9))(𝑥, 𝜇)
166
+ =
167
+ )
168
+ * Σ(<𝜙)
169
+ (,9))(𝑥) −
170
+ )
171
+ * Σ(<𝛾𝑇)
172
+ (,)(𝑥) , (9)
173
+ where
174
+ 𝛾 = (1 − 𝑐<) Q
175
+ ?.*
176
+ ?.- −
177
+ ?"*
178
+ ?"-R 𝜙< , (10a)
179
+ with
180
+ Σ>) = Σ() − Σ+) , (10b)
181
+
182
+ 𝑐< =
183
+ ?/-
184
+ ?0- . (10c)
185
+ Substituting Eqs. (7b), (7d), and (7e) into (6a) and (6b)
186
+ respectively, we obtain
187
+ 𝑇)
188
+ ∗(𝑥) = 𝐴Σ-<𝜙)
189
+ (,9))(𝑥) + 𝐴Σ-)𝜙<𝑇)
190
+ (,)(𝑥) , (11)
191
+ 𝑇)
192
+ (,9))(𝑥) = 𝜔𝑇)
193
+ ∗(𝑥) + (1 − 𝜔)𝑇)
194
+ (,)(𝑥) . (12)
195
+ Then we substitute Eq. (11) into (12) to give
196
+ 𝑇)
197
+ (,9))(𝑥)
198
+ = 𝜔𝐴Σ-<𝜙)
199
+ (,9))(𝑥) + C1 − 𝜔 + 𝜔𝐴Σ-)𝜙<D𝑇)
200
+ (,)(𝑥) . (13)
201
+ For brevity we drop the subscript “1” in the flux and
202
+ temperature variables without confusion
203
+ 𝜇
204
+ !"(()*)($,&)
205
+ !$
206
+ + Σ(<𝜓(,9))(𝑥, 𝜇)
207
+ =
208
+ )
209
+ * Σ(<𝜙(,9))(𝑥) −
210
+ )
211
+ * Σ(<𝛾𝑇(,)(𝑥) , (14)
212
+ 𝑇(,9))(𝑥)
213
+ = 𝜔𝐴Σ-<𝜙(,9))(𝑥) + C1 − 𝜔 + 𝜔𝐴Σ-)𝜙<D𝑇(,)(𝑥). (15)
214
+
215
+ FOURIER ANALYSIS
216
+ We introduce the inverse Fourier transforms:
217
+ 𝜙(,)(𝑥) = ∫
218
+ 𝑎(,)(𝜉)𝑒7?0-@$𝑑𝜉
219
+ 9A
220
+ 4A
221
+ , (16a)
222
+ 𝜓(,)(𝑥, 𝜇) = ∫
223
+ 𝑏(,)(𝜉, 𝜇)𝑒7?0-@$𝑑𝜉
224
+ 9A
225
+ 4A
226
+ , (16b)
227
+ 𝑇(,)(𝑥) = ∫
228
+ 𝑐(,)(𝜉)𝑒7?0-@$𝑑𝜉
229
+ 9A
230
+ 4A
231
+ . (16c)
232
+ The same Fourier ansatz is used for the temperature as
233
+ for the neutron flux because the fuel temperature is roughly
234
+ proportional to the neutron flux as shown in Eq. (6a). The
235
+ solutions are required to satisfy the boundary conditions. The
236
+ discrete Fourier error mode 𝜉 for the reflective boundary
237
+ conditions are given below in Eq. (17). If the periodic
238
+ boundary conditions are used, then they are simply multiplied
239
+ by a factor of 2.
240
+ 𝜉 =
241
+ 1
242
+ ?0-B 𝑗 , 𝑗 = ±1, ±2, … (17)
243
+ where 𝐿 is the reactor core height (or the fuel rod length), i.e.,
244
+ the slab thickness in our model problem.
245
+ By substituting Eqs. (16a) - (16c) into (14) and noting
246
+ that each of the Fourier modes is independent, we obtain
247
+ Σ(<(𝑖𝜉𝜇 + 1)𝑏(,9))(𝜉, 𝜇)
248
+ =
249
+ )
250
+ * Σ(<𝑎(,9))(𝜉) −
251
+ )
252
+ * Σ(<𝛾𝑐(,)(𝜉) . (18)
253
+ We rewrite Eq. (18) as
254
+ 𝑏(,9))(𝜉, 𝜇) =
255
+ )
256
+ *
257
+ )
258
+ (7@&9)) 𝑎(,9))(𝜉) −
259
+ )
260
+ *
261
+ C
262
+ (7@&9)) 𝑐(,)(𝜉). (19)
263
+ By noting that ∫
264
+ )
265
+ *
266
+ )
267
+ (7@&9)) 𝑑𝜇
268
+ )
269
+ 4)
270
+ = tan4)(𝜉)/𝜉 and
271
+ 𝑎(,9))(𝜉) = ∫
272
+ 𝑏(,9))(𝜉, 𝜇)𝑑𝜇
273
+ )
274
+ 4)
275
+ , we integrate the above
276
+ equation with respect to 𝜇 to obtain
277
+ 𝑎(,9))(𝜉) = −
278
+ CD12(@)
279
+ )4D12(@) 𝑐(,)(𝜉) ,
280
+ (20)
281
+ where
282
+ 𝜌EF(𝜉) =
283
+ GHI3*(@)
284
+ @
285
+ .
286
+
287
+ (21)
288
+ Note that 𝜌EF is the spectral radius function for the
289
+ standard power iteration (PI) algorithm.
290
+ Substituting Eqs. (16a) and (16c) into (15), we obtain
291
+ 𝑐(,9))(𝜉) = 𝜔𝐴Σ-<𝑎(,9))(𝜉)
292
+ +C1 − 𝜔 + 𝜔𝐴Σ-)𝜙<D𝑐(,)(𝜉) . (22)
293
+ Substituting Eq. (20) into (22), we have
294
+ 𝑐(,9))(𝜉)
295
+ = ^1 − 𝜔 + 𝜔𝐴Σ-)𝜙< − 𝜔𝐴Σ-<
296
+ CD12(@)
297
+ )4D12(@)_ 𝑐(,)(𝜉) . (23)
298
+
299
+ Thus, we obtain the spectral radius function of Picard
300
+ iteration for the coupled N/TH problem as
301
+ 𝜚(𝜉) = 1 − 𝜔 + 𝜔𝐴Σ-)𝜙< − 𝜔𝐴Σ-<
302
+ CD12(@)
303
+ )4D12(@) . (24)
304
+ Substituting Eqs. (4) and (10a) into (24), we obtain
305
+ 𝜚(𝜉) = 1 − 𝜔 a
306
+ 1 − 𝜋𝑟-/
307
+ * 𝜅𝑅(Σ-)𝜙< +
308
+ 𝜋𝑟-/
309
+ * 𝜅𝑅(Σ-<𝜙<
310
+ ()46-)J4.*
311
+ 4.-4
312
+ 4"*
313
+ 4"-
314
+ K
315
+ )4D12(@)
316
+ 𝜌EF(𝜉)
317
+ b. (25)
318
+ Substituting Eq. (4) into (25), we have
319
+ 𝜚(𝜉) = 1 − 𝜔 )1 − 𝑞!𝑅" ,
320
+ #!"
321
+ #!# − -
322
+ #$"
323
+ #$# −
324
+ #!"
325
+ #!#.
326
+ $%&#
327
+ $%'%&()) 𝜌+,(𝜉)01. (26)
328
+ By noting that 𝑞:𝑅( = 𝑇 − 𝑇., Eq. (26) can be rewritten
329
+ as
330
+ 𝜚(𝜉) = 1 − 𝜔 21 − (𝑇 − 𝑇-) 4
331
+ #!"
332
+ #!# − -
333
+ #$"
334
+ #$# −
335
+ #!"
336
+ #!#.
337
+ $%&#
338
+ $%'%&()) 𝜌+,(𝜉)56 .
339
+ (27)
340
+ Finally, the spectral radius of Picard iteration for the
341
+ coupled N/TH nonlinear system is given as
342
+ 𝜌 = max
343
+ @ |𝜚(𝜉)| . (28)
344
+
345
+ RESULTS
346
+ The spectral radius of the Picard iteration method for the
347
+ coupled N/TH system is a function of the temperature
348
+ difference between the fuel and coolant, temperature
349
+ coefficients of fission and absorption cross sections,
350
+ scattering ratio, and spectral radius of the standard PI
351
+ algorithm (or essentially the error mode).
352
+ The spectral radius function of the PI algorithm,
353
+ 𝜌EF(𝜉) = tan4)(𝜉)/𝜉, attains the largest value at the error
354
+ mode 𝜉 = 𝜋/(Σ(<𝐿), which is the most slowly converging
355
+ mode. It is well known that the PI becomes increasingly slow
356
+ (𝜌 → 1) as the problem domain becomes large, though the
357
+ method is unconditionally stable because its spectral radius
358
+ always remains below 1. On the other hand, 𝜌EF(𝜉) tends to
359
+ zero as 𝜉 limits to infinity. In addition, it is interesting to point
360
+ out that the term 𝜌EF(𝜉)/(1 − 𝜌EF(𝜉)) in Eq. (26) or (27) can
361
+ be approximated by 3/𝜉* for 𝜉 small (e.g., the relative
362
+ difference is less than 1% when 𝜉 < 0.2). With such
363
+ approximation, we have actually obtained the spectral radius
364
+ for the diffusion solution coupled with TH.
365
+ For light water reactors, the cross-section temperature
366
+ coefficients are typically very small. Table I summarizes the
367
+ one-group cross section data for a typical PWR.
368
+ TABLE I. Typical PWR Data
369
+ Σ(<
370
+ (cm4))
371
+ 𝜈Σ-/
372
+ (cm4))
373
+ 𝑐/
374
+ Σ-)/Σ-<
375
+ (K4))
376
+ Σ>)/Σ><
377
+ (K4))
378
+ 0.718
379
+ 0.0297 0.96 −1.99 × 104L 8.67 × 104M
380
+ Note that the temperature coefficient of the absorption
381
+ cross section is negative, whereas that of the fission cross
382
+ section is positive. For such problems, the convergence of the
383
+ unrelaxed Picard iteration is determined by the smallest error
384
+ mode 𝜉 = 𝜋/(Σ(<𝐿), and the spectral radius is given as
385
+ 𝜌 = (𝑇 − 𝑇.) 6Q
386
+ ?.*
387
+ ?.- −
388
+ ?"*
389
+ ?"-R
390
+ )46-
391
+ )4D12(@) 𝜌EF(𝜉) −
392
+ ?"*
393
+ ?"-; . (29)
394
+ Fig. 1 shows that the spectral radius increases with the
395
+ increasing reactor core height and eventually Picard iteration
396
+ fails to converge when the reactor core height is larger than a
397
+ critical value (for the given total cross section). If the
398
+ temperature difference between the fuel and coolant increases
399
+ (e.g., the increasing thermal resistance or linear heat
400
+ generation rate 𝑞:), then the coupling becomes less stable as
401
+ the spectral radius becomes larger.
402
+
403
+ Fig. 1. Spectral radius vs. core height.
404
+ To verify the FA results, we compute numerical
405
+ convergence rates based on a 1-D model problem, which is
406
+ the homogeneous slab with the reflective boundary on both
407
+ sides. The Gauss-Legendre S12 quadrature set is used for
408
+ angular discretization and the Diamond Difference (DD)
409
+ method is employed for spatial discretization. Note that the
410
+ angular quadrature and the mesh size used are sufficiently
411
+ fine to minimize the numerical errors. A simple heat balance
412
+ model is used to calculate the fuel and coolant temperatures
413
+ at each axial cell. Fig. 1 shows that the numerical results for
414
+ the problem are in excellent agreement with the FA results.
415
+ For the relaxed case, i.e., 0 < 𝜔 < 1, underrelaxation
416
+ can not only help to stabilize Picard iteration but improve the
417
+ convergence rate as shown in Fig. 2.
418
+
419
+ Fig. 2. Spectral radius vs. underrelaxation.
420
+ For this case, the core height 𝐿 = 150 cm, and the
421
+ typical PWR data in Table I is used. Again, the FA
422
+ predictions are consistent with the numerical results.
423
+ 0
424
+ 0.2
425
+ 0.4
426
+ 0.6
427
+ 0.8
428
+ 1
429
+ 1.2
430
+ 1
431
+ 10
432
+ 100
433
+ Spectral Radius
434
+ L (cm)
435
+ FA (T-Tm = 275K)
436
+ FA (T-Tm = 500K)
437
+ Numerical
438
+ 0
439
+ 0.2
440
+ 0.4
441
+ 0.6
442
+ 0.8
443
+ 1
444
+ 1.2
445
+ 0
446
+ 0.2
447
+ 0.4
448
+ 0.6
449
+ 0.8
450
+ 1
451
+ Spectral Radius
452
+ Underrelaxation, 𝜔
453
+ FA
454
+ Numerical
455
+
456
+ To derive the optimal underrelaxation factor 𝜔/N(, it is
457
+ noted that when 𝜔 < 𝜔/N(, max
458
+ @ |𝜚(𝜉)| is found at 𝜉 = ∞,
459
+ where 𝜌EF(𝜉) = 0, and
460
+ 𝜌 = 1 − 𝜔 61 − (𝑇 − 𝑇.)
461
+ ?"*
462
+ ?"-; ,
463
+ (30)
464
+ while for 𝜔 > 𝜔/N(, max
465
+ @ |𝜚(𝜉)| is found at 𝜉 = 𝜋/(Σ(<𝐿),
466
+ and
467
+ 𝜌 = −1 + 𝜔 '1 − (𝑇 − 𝑇!) +
468
+ "!"
469
+ "!# − ,
470
+ "$"
471
+ "$# −
472
+ "!"
473
+ "!#-
474
+ #$%#
475
+ #$&%&'
476
+ '
477
+ ()#*( 𝜌)* .
478
+ +
479
+ ")#,/01. (31)
480
+ Then the optimal 𝜔/N( can be obtained by equating Eqs.
481
+ (30) and (31):
482
+ 𝜔/N( =
483
+ *
484
+ *4(O4O5)P*
485
+ 4"*
486
+ 4"-4J4.*
487
+ 4.-4
488
+ 4"*
489
+ 4"-
490
+ K
491
+ *3$-
492
+ *36127
493
+ 8
494
+ 40-9:
495
+ D12Q
496
+ 8
497
+ 40-9RS
498
+ . (32)
499
+ For the case shown in Fig 2, the FA predicted optimal
500
+ underrelaxation factor is the same as the numerical result,
501
+ 𝜔/N( = 0.66. Note that this case is unstable (𝜌 = 1.042)
502
+ unless underrelaxation is applied. It indicates that the
503
+ theoretical estimate of the optimal underrelaxation factor is
504
+ quite accurate. The optimal underrelaxation depends on
505
+ various parameters as indicated by Eq. (32). For example, it
506
+ varies with the core height (for this case, Σ(< = 0.718 cm4))
507
+ as depicted in Fig. 3. The more underrelaxation is needed for
508
+ higher cores (or longer fuel rods). It also indicates that the
509
+ higher fuel/coolant temperature difference (i.e., larger linear
510
+ power or thermal resistance), the more underrelaxation is
511
+ necessitated for stabilizing Picard iteration.
512
+
513
+ Fig. 3. Optimal underrelaxation vs. core height.
514
+
515
+ CONCLUSIONS
516
+ We have presented a formal Fourier analysis to
517
+ theoretically predict the convergence properties of Picard
518
+ fixed-point
519
+ iteration
520
+ for
521
+ coupled
522
+ neutronics/thermal-
523
+ hydraulics calculations. The work provides a more rigorous
524
+ theoretical basis for applications of Picard iteration for such
525
+ calculations. The derived closed form estimate for the
526
+ spectral radius of the Picard coupling method is a function of
527
+ various reactor parameters such as the fuel and coolant
528
+ temperature difference (which instead depends on the rod
529
+ linear power and thermal resistance), fuel temperature
530
+ feedback (Doppler effect), scattering ratio, and reactor core
531
+ height. It implies that Picard iteration is more stable for
532
+ smaller reactors and lower rod linear power (or thermal
533
+ resistance). In addition, it is worth noting that for LWRs the
534
+ Doppler feedback plays a more dominant role in Picard
535
+ iteration than the moderator temperature (density) feedback.
536
+ This finding is consistent with numerical experiments
537
+ reported in Ref. 4. We will report the analysis in the future.
538
+ A long-standing issue with Picard iteration is that it
539
+ oftentimes relies on underrelaxation to stabilize the coupled
540
+ calculation. However, a priori optimal underrelaxation was
541
+ previously not available for a specific problem. We hope that
542
+ our new theoretical result can provide a valuable estimate of
543
+ underrelaxation for stabilizing coupled neutronics/thermal-
544
+ hydraulics calculations. It is now possible to determine local
545
+ optimal underrelaxation factors and apply them to different
546
+ fuel rods or assemblies in the reactor.
547
+ The relaxed Picard iteration is similar to the undamped
548
+ Anderson acceleration with depth 𝑚 = 1 (AA-1), in which
549
+ only one previous iterate is used [6,2,3]. However, it is
550
+ expected that the Picard with optimal underrelaxation will
551
+ outperform the AA-1 algorithm since the linear coefficients
552
+ of AA-1 are determined by minimizing the norm of an affine
553
+ combination of residual vectors and they are generally
554
+ different from the optimal underrelaxation factor.
555
+ Although we have only focused on the Fourier analysis
556
+ for the simple PWR model problem, the methodology
557
+ presented should be applicable for other types of reactors and
558
+ more realistic problems such as multigroup problems. In
559
+ addition, it can be also applied to other coupling methods.
560
+
561
+ REFERENCES
562
+ 1. C. T. KELLY, Iterative Methods for Linear and
563
+ Nonlinear Equations, SIAM, Philadelphia (1995).
564
+ 2. A. TOTH et al., “Analysis of Anderson Acceleration on
565
+ a Simplified Neutronics/Thermal Hydraulics System,”
566
+ Proceedings of Joint International Conference on
567
+ Mathematics and Computation (M&C), Supercomputing
568
+ in Nuclear Applications (SNA) and the Monte Carlo
569
+ (MC) Method 2015, Nashville, TN, April 19-23, 2015.
570
+ 3. S. HAMILTON, et al., “An assessment of coupling
571
+ algorithms for nuclear reactor core physics simulations,”
572
+ J. Comput. Phys., 311, 194 (2017).
573
+ 4. D. F. GILL, et al., “Numerical Methods in Coupled
574
+ Monte Carlo and Thermal-Hydraulic Calculations,”
575
+ Nucl. Sci. Eng., 185, 722 (2019).
576
+ 5. D. WANG and F. ABDULLATIF, “Neutron Transport
577
+ Problems with Nonlinear Temperature Feedback,”
578
+ Proceedings
579
+ of
580
+ International
581
+ Conference
582
+ on
583
+ Mathematics and Computational Methods Applied to
584
+ Nuclear Science and Engineering 2021 (M&C 2021),
585
+ Virtual Meeting, October 3-7, 2021, pp. 1326-1335
586
+ (2021).
587
+ 6. D. G. ANDERSON, “Iterative Procedures for Nonlinear
588
+ Integral Equations,” J. Assoc. Comput. Mach., 12, 547
589
+ (1965).
590
+ 0
591
+ 0.2
592
+ 0.4
593
+ 0.6
594
+ 0.8
595
+ 1
596
+ 1.2
597
+ 1
598
+ 10
599
+ 100
600
+ 𝜔opt
601
+ L (cm)
602
+ T-Tm = 275K
603
+ T-Tm = 500K
604
+
69AyT4oBgHgl3EQfcvd4/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf,len=260
2
+ page_content='Stability Analysis of Picard Iteration for Coupled Neutronics/Thermal-Hydraulics Simulations Dean Wang Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
3
+ page_content='12239@osu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
4
+ page_content='edu David P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
5
+ page_content=' Griesheimer Bettis Atomic Power Laboratory, Bechtel Marine Propulsion Corporation, West Mifflin, PA 15122 david.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
6
+ page_content='griesheimer@unnpp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
7
+ page_content='gov INTRODUCTION Reactor core analysis often needs to solve a multiphysics nonlinear coupled system, including neutron transport, thermal-hydraulics, and other important physics phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
8
+ page_content=' One straightforward method for solving such a coupled system is Picard fixed-point iteration [1], which alternates between solving individual physics problems separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
9
+ page_content=' However, many numerical studies show that Picard iteration can be unstable, and a user-defined relaxation is usually required to achieve convergence [2-4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
10
+ page_content=' In this paper, we present a formal Fourier analysis (FA) of Picard iteration for the coupled neutronics/thermal hydraulics (N/TH) problem and derive theoretical predictions for the spectral radius of Picard iteration for such coupled calculations as a function of the temperature difference between the fuel and coolant, temperature coefficients of cross sections (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
11
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
12
+ page_content=', Doppler feedback), scattering ratio, and core height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
13
+ page_content=' An optimal underrelaxation factor is also derived based on the Fourier analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
14
+ page_content=' FORMULATION AND ALGORITHM We consider the following simple one-group, planar- geometry k-eigenvalue problem on the domain 0 ≤ 𝑥 ≤ 𝐿 with reflective boundary conditions: 𝜇 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
15
+ page_content=' "($,&) !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
16
+ page_content='$ + Σ((𝑇)𝜓(𝑥, 𝜇) = ) Σ+(𝑇)𝜙(𝑥) + ) ,!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
17
+ page_content='"" 𝜈Σ-(𝑇)𝜙(𝑥) , (1) and the simplified heat transfer equation for a single typical pressurized water reactor (PWR) fuel pin: 𝑇 = 𝑇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
18
+ page_content=' + 𝐴Σ-(𝑇)𝜙(𝑥) , (2) with 𝐴 = 𝜋𝑟-/ 𝜅𝑅( , (3a) and 𝑅( = 6 ) 01," + ) 12#3# + ) 1,$ ln 9 2$% 2$&: + ) 12$%3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
19
+ page_content=' , (3b) where 𝜓 = neutron angular flux 𝜙 = ∫ 𝜓(𝑥, 𝜇)𝑑𝜇 ) 4) , neutron scalar flux Σ( = macroscopic total cross section Σ+ = macroscopic scattering cross section Σ- = macroscopic fission cross section ν = average neutron yields per fission 𝑘5-- = effective multiplication factor 𝜅 = average energy released per fission 𝑇 = volume averaged fuel temperature 𝑇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
20
+ page_content=' = bulk coolant temperature 𝑟-/ = fuel radius 𝑟67 = cladding inner radius 𝑟6/ = cladding outer radius 𝑟8 = 2$&92$% , mean radius in the gap 𝑘- = fuel thermal conductivity 𝑘6 = cladding thermal conductivity ℎ8 = effective gap conductance ℎ = coolant convection heat transfer coefficient Note that the linear heat generation rate (or linear power) of the fuel rod, 𝑞′, can be calculated by 𝑞:(𝑥) = 𝜋𝑟-/ 𝜅Σ-(𝑇)𝜙(𝑥) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
21
+ page_content=' (4) Picard iteration is used to solve the above coupled N/TH system as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
22
+ page_content=' The transport equation is solved first, then the fuel temperature is calculated using the newly obtained thermal power (neutron flux).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
23
+ page_content=' An underrelaxation factor is introduced in the temperature update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
24
+ page_content=' Note that the transport iteration is fully converged during each TH update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
25
+ page_content=' 𝜇 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
26
+ page_content=' "(()*)($,&) !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
27
+ page_content='$ + Σ(C𝑇(,)D𝜓(,9)) = ) Σ+C𝑇(,)D𝜙(,9))(𝑥) + ) ,!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
28
+ page_content='"" 𝜈Σ-C𝑇(,)D𝜙(,9)) , (5) 𝑇∗ = 𝑇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
29
+ page_content=' + 𝐴Σ-C𝑇(,)D𝜙(,9))(𝑥) , (6a) 𝑇(,9)) = 𝜔𝑇∗ + (1 − 𝜔)𝑇(,) , (6b) where 𝜔 is the underrelaxation factor and the superscript 𝑘 denotes the iteration number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
30
+ page_content=' LINEARIZATION To perform Fourier analysis of the coupled N/TH problem, we need to first linearize the system of equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
31
+ page_content=' We define the following linearized variables: 𝜓(𝑥, 𝜇) = 𝜓<(𝑥, 𝜇) + 𝜀𝜓)(𝑥, 𝜇) , (7a) 𝜙(𝑥) = 𝜙<(𝑥) + 𝜀𝜙)(𝑥) , (7b) 𝑘5-- = 𝑘5--,/ , (7c) 𝑇(𝑥) = 𝑇< + 𝜀𝑇)(𝑥) , (7d) Σ7(𝑇) = Σ7< + Σ7)(𝑇 − 𝑇<) = Σ7< + 𝜀Σ7)𝑇)(𝑥) , 𝑖 = 𝑡, 𝑠, 𝑓, 𝑎 (7e) Note that 𝑘5-- = 𝑘5--,/ due to the flux normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
32
+ page_content=' The cross sections are assumed to be linearly dependent on the fuel temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
33
+ page_content=' However, other feedback mechanisms such as thermal expansion [5] and moderator temperature feedbacks can be treated as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
34
+ page_content=' Substituting Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
35
+ page_content=' (7a) - (7e) into (5), after some algebra we obtain by neglecting the 𝑂(𝜀*) terms 𝜇 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
36
+ page_content=' "* (()*)($,&) !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
37
+ page_content='$ + Σ(<𝜓) (,9))(𝑥, 𝜇) + Σ()𝑇) (,)(𝑥)𝜓<(𝑥, 𝜇) = ) Σ+<𝜙) (,9))(𝑥) + ) Σ+)𝑇) (,)(𝑥)𝜙< + ) ,!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
38
+ page_content=' "",- 𝜈Σ-<𝜙) (,9))(𝑥) + ) ,!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
39
+ page_content=' "",- 𝜈Σ-)𝑇) (,)(𝑥)𝜙< .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
40
+ page_content=' (8) For reflective BC, 𝜓< = =- , and Σ>< = ) ,!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
41
+ page_content=' "",- 𝜈Σ-<, then we rewrite Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
42
+ page_content=' (8) as 𝜇 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
43
+ page_content=' "* (()*)($,&) !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
44
+ page_content='$ + Σ(<𝜓) (,9))(𝑥, 𝜇) = ) Σ(<𝜙) (,9))(𝑥) − ) Σ(<𝛾𝑇) (,)(𝑥) , (9) where 𝛾 = (1 − 𝑐<) Q ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
45
+ page_content='. * ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
46
+ page_content='.- − ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
47
+ page_content=' "* ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
48
+ page_content=' "-R 𝜙< , (10a) with Σ>) = Σ() − Σ+) , (10b) 𝑐< = ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
49
+ page_content='/- ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
50
+ page_content='0- .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
51
+ page_content=' (10c) Substituting Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
52
+ page_content=' (7b), (7d), and (7e) into (6a) and (6b) respectively, we obtain 𝑇) ∗(𝑥) = 𝐴Σ-<𝜙) (,9))(𝑥) + 𝐴Σ-)𝜙<𝑇) (,)(𝑥) , (11) 𝑇) (,9))(𝑥) = 𝜔𝑇) ∗(𝑥) + (1 − 𝜔)𝑇) (,)(𝑥) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
53
+ page_content=' (12) Then we substitute Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
54
+ page_content=' (11) into (12) to give 𝑇) (,9))(𝑥) = 𝜔𝐴Σ-<𝜙) (,9))(𝑥) + C1 − 𝜔 + 𝜔𝐴Σ-)𝜙<D𝑇) (,)(𝑥) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
55
+ page_content=' (13) For brevity we drop the subscript “1” in the flux and temperature variables without confusion 𝜇 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
56
+ page_content=' "(()*)($,&) !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
57
+ page_content='$ + Σ(<𝜓(,9))(𝑥, 𝜇) = ) Σ(<𝜙(,9))(𝑥) − ) Σ(<𝛾𝑇(,)(𝑥) , (14) 𝑇(,9))(𝑥) = 𝜔𝐴Σ-<𝜙(,9))(𝑥) + C1 − 𝜔 + 𝜔𝐴Σ-)𝜙<D𝑇(,)(𝑥).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
58
+ page_content=' (15) FOURIER ANALYSIS We introduce the inverse Fourier transforms: 𝜙(,)(𝑥) = ∫ 𝑎(,)(𝜉)𝑒7?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
59
+ page_content='0-@$𝑑𝜉 9A 4A , (16a) 𝜓(,)(𝑥, 𝜇) = ∫ 𝑏(,)(𝜉, 𝜇)𝑒7?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
60
+ page_content='0-@$𝑑𝜉 9A 4A , (16b) 𝑇(,)(𝑥) = ∫ 𝑐(,)(𝜉)𝑒7?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
61
+ page_content='0-@$𝑑𝜉 9A 4A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
62
+ page_content=' (16c) The same Fourier ansatz is used for the temperature as for the neutron flux because the fuel temperature is roughly proportional to the neutron flux as shown in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
63
+ page_content=' (6a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
64
+ page_content=' The solutions are required to satisfy the boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
65
+ page_content=' The discrete Fourier error mode 𝜉 for the reflective boundary conditions are given below in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
66
+ page_content=' (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
67
+ page_content=' If the periodic boundary conditions are used, then they are simply multiplied by a factor of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
68
+ page_content=' 𝜉 = 1 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
69
+ page_content='0-B 𝑗 , 𝑗 = ±1, ±2, … (17) where 𝐿 is the reactor core height (or the fuel rod length), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
70
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
71
+ page_content=', the slab thickness in our model problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
72
+ page_content=' By substituting Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
73
+ page_content=' (16a) - (16c) into (14) and noting that each of the Fourier modes is independent, we obtain Σ(<(𝑖𝜉𝜇 + 1)𝑏(,9))(𝜉, 𝜇) = ) Σ(<𝑎(,9))(𝜉) − ) Σ(<𝛾𝑐(,)(𝜉) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
74
+ page_content=' (18) We rewrite Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
75
+ page_content=' (18) as 𝑏(,9))(𝜉, 𝜇) = ) ) (7@&9)) 𝑎(,9))(𝜉) − ) C (7@&9)) 𝑐(,)(𝜉).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
76
+ page_content=' (19) By noting that ∫ ) ) (7@&9)) 𝑑𝜇 ) 4) = tan4)(𝜉)/𝜉 and 𝑎(,9))(𝜉) = ∫ 𝑏(,9))(𝜉, 𝜇)𝑑𝜇 ) 4) , we integrate the above equation with respect to 𝜇 to obtain 𝑎(,9))(𝜉) = − CD12(@) )4D12(@) 𝑐(,)(𝜉) , (20) where 𝜌EF(𝜉) = GHI3*(@) @ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
77
+ page_content=' (21) Note that 𝜌EF is the spectral radius function for the standard power iteration (PI) algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
78
+ page_content=' Substituting Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
79
+ page_content=' (16a) and (16c) into (15), we obtain 𝑐(,9))(𝜉) = 𝜔𝐴Σ-<𝑎(,9))(𝜉) +C1 − 𝜔 + 𝜔𝐴Σ-)𝜙<D𝑐(,)(𝜉) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
80
+ page_content=' (22) Substituting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
81
+ page_content=' (20) into (22), we have 𝑐(,9))(𝜉) = ^1 − 𝜔 + 𝜔𝐴Σ-)𝜙< − 𝜔𝐴Σ-< CD12(@) )4D12(@)_ 𝑐(,)(𝜉) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
82
+ page_content=' (23) Thus, we obtain the spectral radius function of Picard iteration for the coupled N/TH problem as 𝜚(𝜉) = 1 − 𝜔 + 𝜔𝐴Σ-)𝜙< − 𝜔𝐴Σ-< CD12(@) )4D12(@) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
83
+ page_content=' (24) Substituting Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
84
+ page_content=' (4) and (10a) into (24), we obtain 𝜚(𝜉) = 1 − 𝜔 a 1 − 𝜋𝑟-/ 𝜅𝑅(Σ-)𝜙< + 𝜋𝑟-/ 𝜅𝑅(Σ-<𝜙< ()46-)J4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
85
+ page_content=' * 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
86
+ page_content='-4 4"* 4"- K )4D12(@) 𝜌EF(𝜉) b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
87
+ page_content=' (25) Substituting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
88
+ page_content=' (4) into (25), we have 𝜚(𝜉) = 1 − 𝜔 )1 − 𝑞!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
89
+ page_content='𝑅" , #!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
90
+ page_content='" #!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
91
+ page_content='# − - #$" #$# − #!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
92
+ page_content='" #!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
93
+ page_content='#.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
94
+ page_content=" $%&# $%'%&()) 𝜌+,(𝜉)01." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
95
+ page_content=' (26) By noting that 𝑞:𝑅( = 𝑇 − 𝑇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
96
+ page_content=', Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
97
+ page_content=' (26) can be rewritten as 𝜚(𝜉) = 1 − 𝜔 21 − (𝑇 − 𝑇-) 4 #!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
98
+ page_content='" #!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
99
+ page_content='# − - #$" #$# − #!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
100
+ page_content='" #!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
101
+ page_content='#.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
102
+ page_content=" $%&# $%'%&()) 𝜌+,(𝜉)56 ." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
103
+ page_content=' (27) Finally, the spectral radius of Picard iteration for the coupled N/TH nonlinear system is given as 𝜌 = max @ |𝜚(𝜉)| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
104
+ page_content=' (28) RESULTS The spectral radius of the Picard iteration method for the coupled N/TH system is a function of the temperature difference between the fuel and coolant, temperature coefficients of fission and absorption cross sections, scattering ratio, and spectral radius of the standard PI algorithm (or essentially the error mode).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
105
+ page_content=' The spectral radius function of the PI algorithm, 𝜌EF(𝜉) = tan4)(𝜉)/𝜉, attains the largest value at the error mode 𝜉 = 𝜋/(Σ(<𝐿), which is the most slowly converging mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
106
+ page_content=' It is well known that the PI becomes increasingly slow (𝜌 → 1) as the problem domain becomes large, though the method is unconditionally stable because its spectral radius always remains below 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
107
+ page_content=' On the other hand, 𝜌EF(𝜉) tends to zero as 𝜉 limits to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
108
+ page_content=' In addition, it is interesting to point out that the term 𝜌EF(𝜉)/(1 − 𝜌EF(𝜉)) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
109
+ page_content=' (26) or (27) can be approximated by 3/𝜉* for 𝜉 small (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
110
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
111
+ page_content=', the relative difference is less than 1% when 𝜉 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
112
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
113
+ page_content=' With such approximation, we have actually obtained the spectral radius for the diffusion solution coupled with TH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
114
+ page_content=' For light water reactors, the cross-section temperature coefficients are typically very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
115
+ page_content=' Table I summarizes the one-group cross section data for a typical PWR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
116
+ page_content=' TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
117
+ page_content=' Typical PWR Data Σ(< (cm4)) 𝜈Σ-/ (cm4)) 𝑐/ Σ-)/Σ-< (K4)) Σ>)/Σ>< (K4)) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
118
+ page_content='718 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
119
+ page_content='0297 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
120
+ page_content='96 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
121
+ page_content='99 × 104L 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
122
+ page_content='67 × 104M Note that the temperature coefficient of the absorption cross section is negative, whereas that of the fission cross section is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
123
+ page_content=' For such problems, the convergence of the unrelaxed Picard iteration is determined by the smallest error mode 𝜉 = 𝜋/(Σ(<𝐿), and the spectral radius is given as 𝜌 = (𝑇 − 𝑇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
124
+ page_content=') 6Q ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
125
+ page_content='. * ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
126
+ page_content='.- − ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
127
+ page_content=' "* ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
128
+ page_content=' "-R )46- )4D12(@) 𝜌EF(𝜉) − ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
129
+ page_content=' "* ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
130
+ page_content=' "-;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
131
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
132
+ page_content=' (29) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
133
+ page_content=' 1 shows that the spectral radius increases with the increasing reactor core height and eventually Picard iteration fails to converge when the reactor core height is larger than a critical value (for the given total cross section).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
134
+ page_content=' If the temperature difference between the fuel and coolant increases (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
135
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
136
+ page_content=', the increasing thermal resistance or linear heat generation rate 𝑞:), then the coupling becomes less stable as the spectral radius becomes larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
137
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
138
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
139
+ page_content=' Spectral radius vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
140
+ page_content=' core height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
141
+ page_content=' To verify the FA results, we compute numerical convergence rates based on a 1-D model problem, which is the homogeneous slab with the reflective boundary on both sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
142
+ page_content=' The Gauss-Legendre S12 quadrature set is used for angular discretization and the Diamond Difference (DD) method is employed for spatial discretization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
143
+ page_content=' Note that the angular quadrature and the mesh size used are sufficiently fine to minimize the numerical errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
144
+ page_content=' A simple heat balance model is used to calculate the fuel and coolant temperatures at each axial cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
145
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
146
+ page_content=' 1 shows that the numerical results for the problem are in excellent agreement with the FA results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
147
+ page_content=' For the relaxed case, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
148
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
149
+ page_content=', 0 < 𝜔 < 1, underrelaxation can not only help to stabilize Picard iteration but improve the convergence rate as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
150
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
151
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
152
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
153
+ page_content=' Spectral radius vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
154
+ page_content=' underrelaxation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
155
+ page_content=' For this case, the core height 𝐿 = 150 cm, and the typical PWR data in Table I is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
156
+ page_content=' Again, the FA predictions are consistent with the numerical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
157
+ page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
158
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
159
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
160
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
161
+ page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
162
+ page_content='2 1 10 100 Spectral Radius L (cm) FA (T-Tm = 275K) FA (T-Tm = 500K) Numerical 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
163
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
164
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
165
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
166
+ page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
167
+ page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
168
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
169
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
170
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
171
+ page_content='8 1 Spectral Radius Underrelaxation, 𝜔 FA Numerical To derive the optimal underrelaxation factor 𝜔/N(, it is noted that when 𝜔 < 𝜔/N(, max @ |𝜚(𝜉)| is found at 𝜉 = ∞, where 𝜌EF(𝜉) = 0, and 𝜌 = 1 − 𝜔 61 − (𝑇 − 𝑇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
172
+ page_content=') ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
173
+ page_content=' "* ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
174
+ page_content=' "-;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
175
+ page_content=" , (30) while for 𝜔 > 𝜔/N(, max @ |𝜚(𝜉)| is found at 𝜉 = 𝜋/(Σ(<𝐿), and 𝜌 = −1 + 𝜔 '1 − (𝑇 − 𝑇!" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
176
+ page_content=') + "!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
177
+ page_content='" "!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
178
+ page_content='# − , "$" "$# − "!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
179
+ page_content='" "!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
180
+ page_content="#- #$%# #$&%&' ' ()#*( 𝜌)* ." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
181
+ page_content=' + ")#,/01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
182
+ page_content=' (31) Then the optimal 𝜔/N( can be obtained by equating Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
183
+ page_content=' (30) and (31): 𝜔/N( = 4(O4O5)P* 4"* 4"-4J4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
184
+ page_content=' * 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
185
+ page_content='-4 4"* 4"- K 3$- 36127 8 40-9: D12Q 8 40-9RS .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
186
+ page_content=' (32) For the case shown in Fig 2, the FA predicted optimal underrelaxation factor is the same as the numerical result, 𝜔/N( = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
187
+ page_content='66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
188
+ page_content=' Note that this case is unstable (𝜌 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
189
+ page_content='042) unless underrelaxation is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
190
+ page_content=' It indicates that the theoretical estimate of the optimal underrelaxation factor is quite accurate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
191
+ page_content=' The optimal underrelaxation depends on various parameters as indicated by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
192
+ page_content=' (32).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
193
+ page_content=' For example, it varies with the core height (for this case, Σ(< = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
194
+ page_content='718 cm4)) as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
195
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
196
+ page_content=' The more underrelaxation is needed for higher cores (or longer fuel rods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
197
+ page_content=' It also indicates that the higher fuel/coolant temperature difference (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
198
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
199
+ page_content=', larger linear power or thermal resistance), the more underrelaxation is necessitated for stabilizing Picard iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
200
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
201
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
202
+ page_content=' Optimal underrelaxation vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
203
+ page_content=' core height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
204
+ page_content=' CONCLUSIONS We have presented a formal Fourier analysis to theoretically predict the convergence properties of Picard fixed-point iteration for coupled neutronics/thermal- hydraulics calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
205
+ page_content=' The work provides a more rigorous theoretical basis for applications of Picard iteration for such calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
206
+ page_content=' The derived closed form estimate for the spectral radius of the Picard coupling method is a function of various reactor parameters such as the fuel and coolant temperature difference (which instead depends on the rod linear power and thermal resistance), fuel temperature feedback (Doppler effect), scattering ratio, and reactor core height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
207
+ page_content=' It implies that Picard iteration is more stable for smaller reactors and lower rod linear power (or thermal resistance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
208
+ page_content=' In addition, it is worth noting that for LWRs the Doppler feedback plays a more dominant role in Picard iteration than the moderator temperature (density) feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
209
+ page_content=' This finding is consistent with numerical experiments reported in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
210
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
211
+ page_content=' We will report the analysis in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
212
+ page_content=' A long-standing issue with Picard iteration is that it oftentimes relies on underrelaxation to stabilize the coupled calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
213
+ page_content=' However, a priori optimal underrelaxation was previously not available for a specific problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
214
+ page_content=' We hope that our new theoretical result can provide a valuable estimate of underrelaxation for stabilizing coupled neutronics/thermal- hydraulics calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
215
+ page_content=' It is now possible to determine local optimal underrelaxation factors and apply them to different fuel rods or assemblies in the reactor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
216
+ page_content=' The relaxed Picard iteration is similar to the undamped Anderson acceleration with depth 𝑚 = 1 (AA-1), in which only one previous iterate is used [6,2,3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
217
+ page_content=' However, it is expected that the Picard with optimal underrelaxation will outperform the AA-1 algorithm since the linear coefficients of AA-1 are determined by minimizing the norm of an affine combination of residual vectors and they are generally different from the optimal underrelaxation factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
218
+ page_content=' Although we have only focused on the Fourier analysis for the simple PWR model problem, the methodology presented should be applicable for other types of reactors and more realistic problems such as multigroup problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
219
+ page_content=' In addition, it can be also applied to other coupling methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
220
+ page_content=' REFERENCES 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
221
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
222
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
223
+ page_content=' KELLY, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia (1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
224
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
225
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
226
+ page_content=' TOTH et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
227
+ page_content=', “Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System,” Proceedings of Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method 2015, Nashville, TN, April 19-23, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
228
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
229
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
230
+ page_content=' HAMILTON, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
231
+ page_content=', “An assessment of coupling algorithms for nuclear reactor core physics simulations,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
232
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
233
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
234
+ page_content=', 311, 194 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
235
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
236
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
237
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
238
+ page_content=' GILL, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
239
+ page_content=', “Numerical Methods in Coupled Monte Carlo and Thermal-Hydraulic Calculations,” Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
240
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
241
+ page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
242
+ page_content=', 185, 722 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
243
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
244
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
245
+ page_content=' WANG and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
246
+ page_content=' ABDULLATIF, “Neutron Transport Problems with Nonlinear Temperature Feedback,” Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering 2021 (M&C 2021), Virtual Meeting, October 3-7, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
247
+ page_content=' 1326-1335 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
248
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
249
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
250
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
251
+ page_content=' ANDERSON, “Iterative Procedures for Nonlinear Integral Equations,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
252
+ page_content=' Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
253
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
254
+ page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
255
+ page_content=', 12, 547 (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
256
+ page_content=' 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
257
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
258
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
259
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
260
+ page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
261
+ page_content='2 1 10 100 𝜔opt L (cm) T-Tm = 275K T-Tm = 500K' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfcvd4/content/2301.00289v1.pdf'}
6NFAT4oBgHgl3EQfnR2x/content/tmp_files/2301.08628v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
6NFAT4oBgHgl3EQfnR2x/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6dAyT4oBgHgl3EQfcvcQ/content/2301.00287v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d26dd90780495a7b4eea87a3e37d73b9849276a0f8b4254310b51daa9689aa57
3
+ size 2487273
6tAzT4oBgHgl3EQfEvoZ/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf,len=392
2
+ page_content='Detector and physics simulation using heavy ion collisions at NICA-SPD I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
3
+ page_content=' Denisenko1,a) and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
4
+ page_content=' Pandey2,b) 1Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna-141980, Moscow Region, Russia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
5
+ page_content=' 2Graduate Engineer Trainee, Larsen & Toubro Limited, Faridabad, Haryana, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
6
+ page_content=' a)iden@jinr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
7
+ page_content='ru b)rishav160999@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
8
+ page_content='com Abstract The space-time picture of hadron formation in high-energy collisions with nuclear targets is still poorly known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
9
+ page_content=' The tests of hadron formation was suggested for the first stage of SPD running.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
10
+ page_content=' They will require measuring charged pion and proton spectra with the precision better than 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
11
+ page_content=' A research has been carried out to check feasibility of such studies at SPD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
12
+ page_content=' In this work, 12C − 12C and 40Ca − 40Ca heavy ion collisions at center of mass energy of 11 GeV/nucleon were simulated using the SMASH event generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
13
+ page_content=' Firstly, the generator-level events were studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
14
+ page_content=' The distribution of track multiplicities and momentum distributions of different types of charged particles were obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
15
+ page_content=' Secondly, the generated events passed through the full reconstruction using the SpdRoot framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
16
+ page_content=' At this stage particles were identified using dE/dx measurement and time-of-flight information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
17
+ page_content=' It allowed us to estimate charge track multiplicities in the tracking system and purities of charge particles spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
18
+ page_content=' The results on multiplicity are important to estimate occupancies in the tracking system, while the results on the pion and proton momentum spectra show that particle identification should be acceptable for validation of hadron formation models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
19
+ page_content=' This is the first study of moderate ion collisions for the SPD Collaboration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
20
+ page_content=' Keywords: Hadron formation effects, Heavy ion collision, SMASH, NICA-SPD, Rapidity, Charged track multiplicity, Particle physics event generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
21
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
22
+ page_content='00997v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
23
+ page_content='ins-det] 3 Jan 2023 1 INTRODUCTION The SPD detector is primarily optimized to study spin dependent gluon structure of proton and deuteron using open charm production, charmonia production and prompt photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
24
+ page_content=' At the same time, its physics program includes studies of various aspects of QCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
25
+ page_content=' The work is devoted to studies of hadron formation in nuclear collisions proposed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
26
+ page_content=' [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
27
+ page_content=' Hadrons produced in hadron collisions emerge in the form of prehadrons, which interact with nucleons with reduced strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
28
+ page_content=' This suppression is poorly known and is described in model de- pendent way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
29
+ page_content=' This suppression results in different spectra of final particles as is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
30
+ page_content='1 for rapidity distributions (in a similar way it affects the pT spectrum).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
31
+ page_content=' Naturally, these spectra can be used to study hadron formation effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
32
+ page_content=' The required precision of such measurements is 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
33
+ page_content=' The aim of this work is to evaluate feasibility of such measurements with MC simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
34
+ page_content=' Here, ion collisions of 12C − 12C and 40Ca − 40Ca at √s = 11AGeV were generated using the SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) event generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
35
+ page_content=' Afterwards, the the full simulation and reconstruction was performed using the SpdRoot framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
36
+ page_content=' Figure 1: Rapidity spectra of protons and charged pions in 12C − 12C and 40Ca − 40Ca collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
37
+ page_content=' 2 12C + 12C,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
38
+ page_content=' s= 11 GeV 40Ca + 40Ca,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
39
+ page_content=' sN = 11 GeV 105 106 Protons Protons w/oformation w/oformation default default QDM QDM do/dy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
40
+ page_content=' mb 104 peut = 2 GeV/c - Peut = 2 GeV/c - Peut = 1 GeV/c Peut = 1 GeV/c 103 104 102 103 4 -3 -2 -1 0 1 2 3 4 4 3 -2 -1 0 1 2 3 4 y y 12C + 12C,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
41
+ page_content=' sN= 11 GeV 40Ca + 40Ca,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
42
+ page_content=' sNR = 11 GeV 104 105 do/dy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
43
+ page_content=' mb do/dy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
44
+ page_content=' mb 103 104 w/oformation w/oformation default default QDM QDM Peut = 2 GeV/c Peut = 2 GeV/c Pcut = 1 GeV/c pcut = 1 GeV/c 102 103 4 -3 -2 1 0 1 2 3 4 4 -3 -2 -1 0 1 2 3 4 y y2 NICA FACILITY The NICA (Nuclotron based Ion Collider fAcility) collider at Joint Institute for Nuclear Research in Dubna is is being built to provide beams for two experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
45
+ page_content=' The first experiment, MPD (Multi Purpose Detector), will study properties of dense baryonic matter (matter present at extreme high density in QCD phase diagram) like Quark Gluon Plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
46
+ page_content=' The second experiment, SPD (Spin Physics Detector), is devoted to study of spin related phonomena and QCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
47
+ page_content=' Once the NICA collider will be operational, scientists will be able to create a special state of matter in laboratory which existed for very short interval of time (˜20µ sec) just after the big bang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
48
+ page_content=' This special state is called as QGP (Quark Gluon Plasma) and it filled the entire universe shortly after the big bang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
49
+ page_content=' The main parts of NICA facility consists of two independent injector complex (injector for light ions, and injector for heavy ions-KRION 6T), Light Ion Linear Accelerator (LU20) for accelerating light ions like protons (H+), deutrons, and α-particles upto 5 MeV of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
50
+ page_content='E, then Heavy Ion Linear Accelerator (HILAC) to accelerate heavy ions upto Au to a maximum K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
51
+ page_content='E of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
52
+ page_content='2 MeV/n, then a Super Conducting (SC) Booster Synchrotron to create ultra high vacuum and to provide complete stripping of heavy ions, then a SC Heavy Ion Synchrotron Nuclotron to accelerate both light and heavy ions to required beam energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
53
+ page_content=' The accelerated beams will collide at two different locations where MPD detector and SPD detector are being built.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
54
+ page_content=' The schematic view of NICA complex is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
55
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
56
+ page_content=' Figure 2: Schematic view of NICA complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
57
+ page_content=' 3 SPD DETECTOR The Spin Physics Detector [2,3] is a 4π universal detector optimized to study spin-related phenomena via open charm, charmonia and promopt photons in the collisions of polarized p-p or d-d beams with √sNN up to 27 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
58
+ page_content=' However, at first stage of NICA-SPD, the expected collision energy will be from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
59
+ page_content='4 up to 10 GeV, and later on after first upgrade, it is expected to reach upto 27 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
60
+ page_content=' The general layout depicting isometric projection of SPD setup is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
61
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
62
+ page_content=' The main parts involved in advanced tracking and particle identification capabilities have been shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
63
+ page_content=' (i) The beam pipe passes through the center of the detector, carries the accelerated beams of ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
64
+ page_content=' (ii) The MicroMegas detector is to improves the momentum resolution and tracking efficiency of the tracking system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
65
+ page_content=' (iii) The Straw Tracker (ST) detector is for the reconstruction of the primary and 3 BM@N Detector SPD Transport Channel HILAC Collider LU20 Booster MPD Nuclotronsecondary particle tracks and for determination of their momenta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
66
+ page_content=' (iv) The Time Of Flight (TOF) detector, is a part of Particle Identification (PID) system, and is used for identification of particles like π, k, and p with long trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
67
+ page_content=' (v) The magnet system shown by red color provides 1T of magnetic field along the beam axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
68
+ page_content=' This setup is limited to first stage of SPD operation, and will be considered only for the identification of stable charged particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
69
+ page_content=' Neutral particles, like n0, photons will be detected at later stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
70
+ page_content=' The main parts of SPD first stage have been explained in detail below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
71
+ page_content=' There is a possibility to have TOF system for the first stage studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
72
+ page_content=' Figure 3: Layout of the SPD setup proposed for first stage at NICA-SPD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
73
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
74
+ page_content='1 CENTRAL TRACKER The innermost detector of SPD consists of a MicroMegas-based Central Tracker (MCT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
75
+ page_content=' Its purpose is to identify the primary vertex coordinate and to improve momentum resolution and tracking efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
76
+ page_content=' It is based on MicroMegas (Micro Mesh Gaseous Structure) technology and detects charged particle by amplifying the charges produced due to ionization of the gas molecules present in detector volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
77
+ page_content=' When an ionizing particle track passes through detector volume, it ionizes the gas molecules and creates few hundreds of e−-ion pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
78
+ page_content=' Electrons are accelerated opposite to the direction of applied electric field of 600 V/cm in ionization gap, while ions are attracted towards cathode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
79
+ page_content=' When the e− crosses micromesh, it faces intense electric field (> 30 KV/cm) and gains enough energy to ionize other gas molecules in its path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
80
+ page_content=' During this process an avalanche of e−-ion pair is produced (1e− produces 104 e−-ion pairs) which is significant to create an electronic signal which is read out by readout electrodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
81
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
82
+ page_content='2 STRAW TRACKER ST is mainly for the reconstruction of primary and secondary particle tracks and measuring their momenta, but also participates in identification of π, K, and p on via energy deposit (dE/dx) measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
83
+ page_content=' It consists of two major parts - barrel (covers radius from 270 to 850 mm) and two end-caps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
84
+ page_content=' The barrel is divided into 8 modules enclosed in a carbon fiber capsule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
85
+ page_content=' Each module has 30 double layers of straw tubes (dia 1cm) which runs parallel (long straw tubes) and perpendicular 4 Straw tracker Magnet Range system MicroMegas Endcap RangesystemEndcap MicroMegas Beam-beamcounter Beam pipe Strawtracker Endcap zoomx4 Zero degree calorimeter(short straw tubes) to the beam axis and contains 1500 and 6000 parallel and perpendicular straw tubes respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
86
+ page_content=' Straw tubes are made of polyethylene terephthalate and outer surface is coated with very thin layer of Cu and Au.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
87
+ page_content=' Carbon capsule is meant to protect the outer surface of these tubes from humidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
88
+ page_content=' One side and two opposite ends of capsule are provided with small holes where end plugs are fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
89
+ page_content=' FEE are connected to these end plugs to read the detector signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
90
+ page_content=' Any particle which passes through the long straws will send detector signal to both opposite ends while a particle passing through short straw will send detector signal to any one side of capsule where FEE is attached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
91
+ page_content=' Thus, long straws will be read from two opposite ends while short straws will be read from one side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
92
+ page_content=' The end-caps of ST are divided into 3 modules and each module has 4 hexadecimal cameras (U, V, X, Y) to record the four coordinates of any physical quantity like four-momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
93
+ page_content=' The FEE to be used can be similar to the one used at NA64 experiment (for the search of dark matter), or DUNE experiment (to detect and study properties of neutrino).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
94
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
95
+ page_content='3 TIME OF FLIGHT DETECTOR TOF detector is the part of PID system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
96
+ page_content=' Similar to ST, the TOF provides identification of π, k, and p by measuring their flight time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
97
+ page_content=' The energy loss data registered by ST can be used together with the data from TOF for correct identification of particle tracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
98
+ page_content=' The TOF distinguishes charged particles (mainly π and k) in the momentum range up to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
99
+ page_content='5 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
100
+ page_content=' The major parts of TOF comprises of a barrel and two end-caps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
101
+ page_content=' For the first stage of NICA-SPD, two different designs of TOF has been suggested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
102
+ page_content=' First one is TOF based on multigap timing Resistive Plate Chambers (mRPC), which will consist 220 rectangular plate chambers (160 for the barrel and 30 each for end-caps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
103
+ page_content=' Second one is based on Plastic Scintillator Tiles and will comprise 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
104
+ page_content='1K small scintillator tiles (7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
105
+ page_content='4K for barrel and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
106
+ page_content='4K for each end-caps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
107
+ page_content=' Scintillator has a property of emitting light in visible region when an ionizing radiation passes through it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
108
+ page_content=' So, in this design when a particle passes through TOF, scintillated photons are produced which are detected by four Si Photo Multipliers (SiPMs) present at each sensor board attached at two extreme ends of scintillator tile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
109
+ page_content=' 4 EVENT GENERATION 12C −12C and 40Ca−40Ca heavy ion collisions at √s = 11 AGeV with maximum impact parameter set to 8 fm for C-C and 11 fm for Ca-Ca were simulated using SMASH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
110
+ page_content=' The fermi motion was assumed to be “frozen” and 100K events were generated for each heavy ion collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
111
+ page_content=' The SMASH input file for C-C collision is shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
112
+ page_content=' *********** SMASH INPUT ************ config.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
113
+ page_content='yaml file for C-C collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
114
+ page_content=' Logging: default: INFO General: Modus: Collider Time_Step_Mode: Fixed Delta_Time: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
115
+ page_content='1 End_Time: 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
116
+ page_content='0 Randomseed: 1 Nevents: 100000 5 Output: Output_Interval: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
117
+ page_content='0 Particles: Format: ["Oscar2013"] Modi: Collider: Projectile: Particles: {2212: 6, 2112: 6} #C-12 Target: Particles: {2212: 6, 2112: 6} #C-12 Sqrtsnn: 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
118
+ page_content='0 Impact: Sample: "quadratic" Range: [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
119
+ page_content='0, 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
120
+ page_content='0] Fermi_Motion: "frozen" ************************************ Multiplicity of generated charged particles for C − C and Ca − Ca collisions are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
121
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
122
+ page_content=' The peaks at 12 for 12C+12C collisions and at 40 for 40Ca+40Ca collisions correspond to events where no interaction occurred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
123
+ page_content=' The rapidity distributions are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
124
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
125
+ page_content=' The spectra obtained from SMASH output show qualitative agreement with the ones in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
126
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
127
+ page_content=' Peaks for protons correspond to particles moving close to the initial beam direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
128
+ page_content=' Moreover, fractions of different particle types can be estimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
129
+ page_content=' It can be seen that for |y| < 2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
130
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
131
+ page_content=' within the acceptance of the detector) charge particles are dominated by pions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
132
+ page_content=' Apart from p±, π±, & K±, marginal numbers of sigmas, cascades, and omegas were also generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
133
+ page_content=' The PID efficiency depends on the particle momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
134
+ page_content=' The momentum spectra for protons, pions and kaons are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
135
+ page_content=' 6 in the midrapidity region (|y| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
136
+ page_content='5 for which theoretical predictions has been given) Most of the pions have momentum below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
137
+ page_content='8 GeV and protons - below 1 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
138
+ page_content=' It means that types of these particles should be well resolved by dE/dx measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
139
+ page_content=' When studying pion or proton spectra, there is high probability of kaon/pion misidentification, but fraction of such events is strongly suppressed by small initial kaon numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
140
+ page_content=' 6 (a) (b) Figure 4: Generator-level multiplicity of charged particles for 12C − 12C collision (a) and 40Ca − 40Ca collisions (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
141
+ page_content=' (a) (b) Figure 5: Rapidity distribution of charged particles in 12C − 12C (a) and 40Ca − 40Ca (b) collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
142
+ page_content=' 7 Total Multiplicity of Charged Particles, C-12 + C-12 104 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
143
+ page_content=' of events 103 102 10 0 10 20 30 40 50 60 70 80 90 100 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
144
+ page_content=' of charged particlesTotal Multiplicity of Charged Particles, Ca-40 + Ca-40 104 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
145
+ page_content=' of events 103 0 10 20 30 40 50 60 70 80 90 100 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
146
+ page_content=' of charged particlesRapidity distribution of charged particles, C-12 + C-12 protons 105 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
147
+ page_content='. pions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
148
+ page_content=' kaons 104 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
149
+ page_content=' of charged particles 103 102 10 3 2 3 5 Rapidity of charaed particles (yRapidity distribution of charged particles, Ca-40 + Ca-40 106 protons pions 105 kaons No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
150
+ page_content=' of charged particles 104 103 102 10 5 3 2 Y Rapidity of charged particles (y)(a) p distribution of p± in 12C − 12C collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
151
+ page_content=' (b) p distribution of p± in 40Ca − 40Ca collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
152
+ page_content=' (c) p distribution of π± in 12C − 12C collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
153
+ page_content=' (d) p distribution of π± in 40Ca − 40Ca collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
154
+ page_content=' (e) p distribution of k± in 12C − 12C collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
155
+ page_content=' (f) p distribution of k± in 40Ca − 40Ca collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
156
+ page_content=' Figure 6: Total momentum distribution of protons, pions, and kaons at generator level in 12C − 12C and 40Ca− 40Ca collision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
157
+ page_content=' 8 Total momentum distribution of pions, C-12 + C-12 16000 14000 12000 pions 10000 8000 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
158
+ page_content=' 6000 4000 2000 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
159
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
160
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
161
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
162
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
163
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
164
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
165
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
166
+ page_content='8 2 Total momentum of pions (p)Total momentum distribution of pions, Ca-40 + Ca-40 60000 50000 40000 ON 30000 20000 10000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
167
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
168
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
169
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
170
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
171
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
172
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
173
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
174
+ page_content='8 2 Total momentum of pions (p)Total momentum distribution of kaons, C-12 + C-12 1000 800 of kaons 600 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
175
+ page_content=' 400 200 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
176
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
177
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
178
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
179
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
180
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
181
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
182
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
183
+ page_content='8 2 Total momentum of kaons (p)Total momentum distribution of kaons, Ca-40 + Ca-40 4000 3500 3000 kaons 2500 2000 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
184
+ page_content=' 1500 1000 500 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
185
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
186
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
187
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
188
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
189
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
190
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
191
+ page_content='8 2 Total momentum of kaons (p)Total momentum distribution of protons, C-12 + C-12 1600 1400 1200 protons 1000 800 ON 600 400 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
192
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
193
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
194
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
195
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
196
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
197
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
198
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
199
+ page_content='8 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
200
+ page_content='2 Total momentum of protons (p)Total momentum distribution of protons, Ca-40 + Ca-40 6000 5000 of protons 4000 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
201
+ page_content=' 3000 2000 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
202
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
203
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
204
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
205
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
206
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
207
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
208
+ page_content='8 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
209
+ page_content='2 Total momentum of protons (p)5 DETECTOR SIMULATION AND EVENT RECONSTRUCTION The detector simulation and reconstruction was performed with the SpdRoot framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
210
+ page_content=' To read SMASH generated events the SpdRoot code was modified and additional C++ class was added.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
211
+ page_content=' During the simulation stage the particles were transported through the detector geometrical model using Geant4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
212
+ page_content=' At the reconstruction stage, Geant4 tracks and vertices were reconstructed and particle identification with dE/dx and time of flight measurements was performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
213
+ page_content=' For the PID three hypotheses were considered: pion, kaon and proton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
214
+ page_content=' The reconstructed ionization energy losses and “measured” time of flight were used to construct conditional probabilities (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
215
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
216
+ page_content=' p(t|pid), where t is the measured time and pid is a particle type hypothesis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
217
+ page_content=' Out of 100K events generated by SMASH, first 1K events were considered for detector simulation due to slow data processing in SpdRoot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
218
+ page_content=' 6 ANALYSIS A physical analysis was performed using C++ codes and ROOT library based on SpdRoot output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
219
+ page_content=' All tracks reconstructed in the detector with measured momentum were accepted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
220
+ page_content=' For the particle type the one that gives the largest conditional probability is adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
221
+ page_content=' Multiplicity, as well as kinematic distributions for pions, kaons and protons are studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
222
+ page_content=' For particle momentum spectra there are no notable differences between C − C and for Ca − Ca collisions, so only the first ones will be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
223
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
224
+ page_content='1 CHARGED TRACK MULTIPLICITY The SPD detector set-up is optimized for p − p and d − d collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
225
+ page_content=' Thus knowing charged track multiplicities for ion collisions is important to estimate CT and ST occupancies and feasibility of such studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
226
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
227
+ page_content=' 7 shows the total multiplicity of charged particles reconstructed by the tracking system in 12C − 12C and 40Ca − 40Ca collisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
228
+ page_content=' The numbers of reconstructed tracks are much lower compared to generator-level studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
229
+ page_content=' It is because the geometry of the tracking system is such that, tracks with polar angle, θ < 10◦ or > 170◦ do not hit the tracker and passes along the beam pipe itself, so such tracks are ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
230
+ page_content=' Also, there were events without nuclei interactions which resulted in no track reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
231
+ page_content=' So, to avoid a large peak at zero due to mentioned reasons, the X-axis count starts from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
232
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
233
+ page_content='2 PION MOMENTUM SPECTRUM (12C − 12C) The spectra of particles identified as pions separately by ionization losses and by TOF are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
234
+ page_content=' 8 separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
235
+ page_content=' The spectra show resemblance with the generator plot of pion momentum distri- bution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
236
+ page_content=' Based pn MC-truth information backround from misidentification other charged particles (K±, p±, e±, & µ±) is studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
237
+ page_content=' The obtained distribution for “pions identified as pions” only slightly deviates from distribution of all selected pion candidates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
238
+ page_content=' The estimated relative contamination of the pion spectra is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
239
+ page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
240
+ page_content=' It can seen that purity above 90% can be obtained up to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
241
+ page_content='2 GeV using either dE/dx or TOF measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
242
+ page_content=' 9 Figure 7: Charged track multiplicity reconstructed by in 12C − 12C (left), 40Ca − 40Ca (right) collisions (shown by red) and number of particles for which TOF information is available (shown by blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
243
+ page_content=' (a) Total momentum distribution of reconstructed charged particles identified as π± by ionization losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
244
+ page_content=' (b) Total momentum distribution of reconstructed charged particles identified as π± by TOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
245
+ page_content=' Figure 8: Total momentum distribution of reconstructed π± candidates in 12C − 12C collision (Detector level).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
246
+ page_content=' Figure 9: Purity of the selected pion candidates as a function of their momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
247
+ page_content=' 10 Total multiplicity of charged particles passing through tracking system, C12-C12 60 TOF 50 ST 40 events 30 NO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
248
+ page_content=' 20 10 一 10 20 30 40 50 60 70 80 90 10090 TOF 80 ST 70 events 60 50 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
249
+ page_content=' 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100Charged Particles ldentified as Pions by ST, C12-C12 350 Pions identified as pions Kaons identified as pions Protons identified as pions 300 Electrons identified as pions Muons identified as pions 250 Chargedparticlesidentifiedaspions 200 150 100 50 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
250
+ page_content='° 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
251
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
252
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
253
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
254
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
255
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
256
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
257
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
258
+ page_content='8 2 p(GeV/c)Charged Particles ldentified as Pions by TOF, C12-C12 Pions identified as pions 300 Kaons identified as pions Protons identified as pions 250 Electrons identified as pions Muons identified as pions Charged particles identified as pions 200 Counts 150 100 50 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
259
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
260
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
261
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
262
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
263
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
264
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
265
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
266
+ page_content='8 2 p(GeV/c)Pion spectra precision, C12-C12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
267
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
268
+ page_content='6 Counts 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
269
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
270
+ page_content='2 Precision recordedbyTOF Precision recorded by ST 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
271
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
272
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
273
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
274
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
275
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
276
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
277
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
278
+ page_content='8 p(GeV/c)6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
279
+ page_content='3 KAON MOMENTUM SPECTRUM (12C − 12C) The kaon momentum spectrum was explicitly mentioned among observables to study hadron for- mation effects in nuclei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
280
+ page_content=' Nevertheless, kaon production may be interesting for the reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
281
+ page_content=' The obtained spectra of kaon candidates is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
282
+ page_content=' 10 separately for ionization losses and TOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
283
+ page_content=' First of all, the shown data lack statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
284
+ page_content=' Secondly, it can bee seen that there is a huge contamina- tion from misidentified pions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
285
+ page_content=' This is explained by very small fraction of generated kaons and the fact that probability to select misidentified particle is proportional to their number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
286
+ page_content=' The relative fraction of correctly identified kaons in shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
287
+ page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
288
+ page_content=' (a) Total momentum distribution of reconstructed charged particles identified as K± by ionization losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
289
+ page_content=' (b) Total momentum distribution of reconstructed charged particles identified as K± by TOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
290
+ page_content=' Figure 10: Total momentum distribution of reconstructed K± candidates in 12C − 12C collision (Detector level).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
291
+ page_content=' Figure 11: Purity of the selected kaon candidates as a function of their momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
292
+ page_content=' 11 Charged Particles ldentified as Kaons by ST, C12-C12 Kaons identified as kaons 60 Pions identified as kaons Protons identified as kaons Electrons identified as kaons 50 Muons identified as kaons Charged particles identified askaons 40 Counts 30 20 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
293
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
294
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
295
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
296
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
297
+ page_content='2 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
298
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
299
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
300
+ page_content='8 2 p(GeV/c)Charged Particles ldentified as Kaons by TOF, C12-C12 25 Kaons identified as kaons Pions identified as kaons Protons identifiedaskaons 20 Electrons identified as kaons Muons identified as kaons Charged particles identified as kaons 15 Counts 10 5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
301
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
302
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
303
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
304
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
305
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
306
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
307
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
308
+ page_content='8 0 2 p(GeV/c)Kaon spectra precision, C12-C12 Precision recorded by TOF 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
309
+ page_content='9 Precision recorded by ST 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
310
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
311
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
312
+ page_content='6 unts 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
313
+ page_content='5 Col 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
314
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
315
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
316
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
317
+ page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
318
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
319
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
320
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
321
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
322
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
323
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
324
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
325
+ page_content='8 2 p(GeV/c)6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
326
+ page_content='4 PROTON MOMENTUM SPECTRUM (12C − 12C) Finally, proton momentum spectra have been considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
327
+ page_content=' In this study protons and antiprotons were considered together, but the fraction of produced antiprotons is negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
328
+ page_content=' The proton candidate distributions and the contributions from misidentification are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
329
+ page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
330
+ page_content=' The purity of the selected samples is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
331
+ page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
332
+ page_content=' It can be seen dE/dx measurements alone will not allow precise determination of proton spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
333
+ page_content=' The reasonably good results can be expected only in case of combined identification by ionization losses and TOF system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
334
+ page_content=' (a) Total momentum distribution of reconstructed charged particles identified as p± by ionization losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
335
+ page_content=' (b) Total momentum distribution of reconstructed charged particles identified as p± by TOF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
336
+ page_content=' Figure 12: Total momentum distribution of reconstructed p± candidates in 12C − 12C collision (Detector level).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
337
+ page_content=' Figure 13: Purity of the selected proton candidates as a function of their momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
338
+ page_content=' 12 Charged Particles ldentified as Protons by ST, C12-C12 90 Protons identified as protons Kaons identified as protons 80 Pions identified as protons Electrons identified as protons Muons identified as protons 70 Charged particles identified as protons 60 Counts 50 40 30 20 10 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
339
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
340
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
341
+ page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
342
+ page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
343
+ page_content='5 0 5 p(GeV/c)Charged Particles ldentified as Protons by TOF, C12-C12 90 Protons identified as protons Kaons identified as protons 80 Pions identified as protons Electrons identified asprotons 70 Muons identified as protons Charged particles identified as protons 60 Counts 50 40 30 20 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
344
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
345
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
346
+ page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
347
+ page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
348
+ page_content='5 0 5 p(GeV/c)Proton spectra precision, C12-C12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
349
+ page_content='8 Counts 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
350
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
351
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
352
+ page_content='2 Precision recorded by TOF Precision recorded by ST 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
353
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
354
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
355
+ page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
356
+ page_content='5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
357
+ page_content='5 5 p(GeV/c)7 SUMMARY The goal of this work was to check the feasibility of hadron formation effects studies at the first stage of SPD operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
358
+ page_content=' For this purpose an analysis of 12C − 12C and 40Ca − 40Ca collisions were performed at the generator level and then the full event reconstruction was done at detector level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
359
+ page_content=' The multiplicity distributions indicate that occupancies of tracking detectors should be checks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
360
+ page_content=' Part of the events with high number of charged tracks may not be fully reconstructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
361
+ page_content=' Particle identification with ionization losses and TOF was considered separately (for future dE/dx only or their combination can be expected).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
362
+ page_content=' The purity of the measured charged pion distribution for both types of ion collisions using dE/dx only is rather good and meets mentioned before requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
363
+ page_content=' In case of combination of information from ionization losses and time of flight system purity of proton distribution may be improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
364
+ page_content=' References [1] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
365
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
366
+ page_content=' Abramov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
367
+ page_content=' Aleshko, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
368
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
369
+ page_content=' Baskov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
370
+ page_content=' Boos, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
371
+ page_content=' Bunichev, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
372
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
373
+ page_content=' Dalkarov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
374
+ page_content=' El-Kholy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
375
+ page_content=' Galoyan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
376
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
377
+ page_content=' Guskov and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
378
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
379
+ page_content=' Kim, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
380
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
381
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
382
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
383
+ page_content=' 52 (2021) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
384
+ page_content='6, 1044-1119 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
385
+ page_content='1134/S1063779621060022 [arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
386
+ page_content='08477 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
387
+ page_content=' [2] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
388
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
389
+ page_content=' Abazov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
390
+ page_content=' [SPD proto], [arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
391
+ page_content='00442 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
392
+ page_content=' [3] SPD TDR [unpublished].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
393
+ page_content=' 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAzT4oBgHgl3EQfEvoZ/content/2301.00997v1.pdf'}
CNE0T4oBgHgl3EQfgAHQ/content/tmp_files/2301.02413v1.pdf.txt ADDED
@@ -0,0 +1,3062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Benchmarking Gaussian Basis Sets in
2
+ Quantum-Chemical Calculations of
3
+ Photoabsorption Spectra of Light Atomic
4
+ Clusters
5
+ Vikram Mahamiya,∗,† Pritam Bhattacharyya,∗,†,‡ and Alok Shukla∗,†
6
+ †Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076,
7
+ India
8
+ ‡Present Address: Institute for Theoretical Solid State Physics, Leibniz IFW Dresden,
9
+ Helmholtzstr. 20, 01069 Dresden, Germany
10
11
+ Abstract
12
+ The choice of Gaussian basis functions for computing the ground-state properties of
13
+ molecules, and clusters, employing wave-function-based electron-correlated approaches,
14
+ is a well-studied subject.
15
+ However, the same cannot be said when it comes to the
16
+ excited-state properties of such systems, in general, and optical properties, in particular.
17
+ The aim of the present study is to understand how the choice of basis functions affects
18
+ the calculations of linear optical absorption in clusters, qualitatively, and quantitatively.
19
+ For this purpose, we have calculated linear optical absorption spectra of several small
20
+ charged and neutral clusters, namely, Li2, Li3, Li4, B+
21
+ 2 , B+
22
+ 3 , Be+
23
+ 2 , and Be+
24
+ 3 , using a
25
+ variety of Gaussian basis sets. The calculations were performed within the frozen-core
26
+ approximation, and a rigorous account of electron correlation effects in the valence
27
+ 1
28
+ arXiv:2301.02413v1 [physics.chem-ph] 6 Jan 2023
29
+
30
+ sector was taken by employing various levels of configuration interaction (CI) approach
31
+ both for the ground and excited states.
32
+ Our results on the peak locations in the
33
+ absorption spectra of Li3 and Li4 are in very good agreement with the experiments.
34
+ Our general recommendation is that for excited-state calculations, it is very important
35
+ to utilize those basis sets which contain augmented functions. Relatively smaller aug-
36
+ cc-pVDZ basis sets also yield high-quality results for photoabsorption spectra, and are
37
+ recommended for such calculations if the computational resources are limited.
38
+ Introduction
39
+ Gaussian basis functions (GBFs) were initially proposed by Boys for use in computational
40
+ atomic and molecular quantum mechanics,1 and over the years have become the preferred
41
+ basis functions in quantum chemistry.1 The reason behind the popularity of GBFs is the
42
+ so-called Gaussian product theorem1,2 which allows for analytical results for the expressions
43
+ of multi-center integrals involving various physical quantities. Nevertheless, one has to be
44
+ always careful about various convergence related issues when using GBFs, because, unlike
45
+ Slater basis functions, they do not exhibit correct asymptotic behavior far away from the
46
+ nuclei.
47
+ This generally leads to the requirement that a large number of GBFs should be
48
+ used to achieve convergence, leading to huge memory and CPU-time requirements because
49
+ the required number of integrals scale as ≈ N 4, where N is the total number of basis
50
+ functions. Keeping this in mind, several groups have studied the convergence properties
51
+ of GBFs over the years, and have come up with schemes to balance accuracy with the
52
+ computational effort (see, e.g., Refs.3,4 for comprehensive reviews). Huzinaga was one of
53
+ the earliest researchers to optimize GBFs for Hartree-Fock (HF) calculations on atoms.5
54
+ Ruedenberg and coworkers devised the so-called even-tempered basis set,6,7 while Huzinaga
55
+ and coworkers developed well-tempered basis functions.8 Huzinaga and coworkers further
56
+ developed several contracted basis sets,9,10 discussed in detail in Ref.4 Pople and coworkers
57
+ developed a large number of basis sets3,4 which enjoy continued popularity even in present
58
+ 2
59
+
60
+ times. One of the most popular minimal basis sets introduced by Pople and coworkers is STO-
61
+ 3G contracted basis set,11 whose purpose was to emulate Slater-type orbitals, using GTFs.
62
+ Split-valence basis sets are among the most popular extended basis sets introduced by Pople
63
+ et al.,12–15 in which for inner shells contracted minimal basis functions are used, but for the
64
+ valence shells a split set of basis functions is employed, which consist of both contracted and
65
+ primitive GTFs. Depending upon the contraction schemes, these basis sets were given names
66
+ such as 3-21G,13 4-31G,12 6-21G,14 and 6-311G15, etc. Pople and coworkers also proposed
67
+ further enlarged basis sets containing polarization and diffuse functions of higher angular
68
+ momenta, which have since become popular choices in quantum chemistry.15–20 Dunning
69
+ and coworkers introduced a series of extended basis sets, called “correlation-consistent” (CC)
70
+ basis sets, which are of varying sizes, containing both polarization and diffuse functions.21–23
71
+ The basic idea behind these CC basis sets is that they recover a significant amount of electron
72
+ correlation energy in post-Hartree-Fock treatments of corresponding atoms. In addition to
73
+ the basis sets mentioned here, numerous other sets of basis functions have been developed
74
+ over the years, for which we refer the reader to review articles by Davidson and Feller,3 and
75
+ Huzinaga.4
76
+ Even though so many basis sets have been developed by numerous groups, in most of the
77
+ reports the criteria for their selection appears to be driven by a good description of the ground
78
+ state energies of the atoms involved either at the Hartree-Fock level, or in electron-correlated
79
+ calculations.3,4 Previously, Balakina et al.24 have explored the basis set dependence of the
80
+ linear and non-linear optical properties of conjugated organic molecule p-nitroaniline. They
81
+ reported that the [4s3p2d/3s] basis set also provides similar results as aug-cc-pVDZ basis
82
+ set for the calculations of (hyper)polarizability. Parsons et al.25 have explored the basis
83
+ set dependence of optical rotation calculations of various types of gauges. They found that
84
+ the origin-invariant length gauge (LG-OI) gauge with aug-cc-pVTZ basis set provides a
85
+ balance of cost and accuracy for DFT method.
86
+ Reis and Papadopoulos26 reported that
87
+ the inclusion of f-functions in the Dunning’s basis sets does not have a large effect on the
88
+ 3
89
+
90
+ electric properties of B4 cluster. Lauderdale and Coolidge27 have explored the effect of basis
91
+ sets on the non-linear optical properties (hyperpolarizabilities) of linear diacetylenes using
92
+ time-dependent Hartree-Fock theory. They found that the inclusion of a diffuse ‘d’ function
93
+ to a standard double-zeta plus polarization basis can significantly improve the frequency-
94
+ dependent hyperpolarizability. Jabłonski and Palusiak28 have explored the influence of basis
95
+ sets in Hartree-Fock (HF) and DFT/B3LYP calculations for the values atoms in molecules
96
+ (AIM) parameters. They found that smaller Dunning’s basis sets, including cc-pVDZ and
97
+ aug-cc-pVDZ provide poor results as compared to medium-sized Pople-type basis sets. We
98
+ are not aware of a systematic study in which the basis sets have been examined from the
99
+ perspective of their performance in excited state calculations. Furthermore, we have also
100
+ not come across a study which examines the basis sets from the point of view their ability to
101
+ compute optical properties of atoms and molecules, which involves calculations of transition
102
+ dipole moments, in addition to excited state energies, and wave functions.
103
+ In order to
104
+ fill this void, we decided to undertake a systematic investigation of the influence of basis
105
+ sets on the qualitative and quantitative description of optical absorption spectra of atomic
106
+ clusters. In this paper, we have performed calculations of linear optical absorption spectra
107
+ of several small neutral and cationic clusters, e.g., Li2, Li3, Li4, B+
108
+ 2 , B+
109
+ 3 , Be+
110
+ 2 , and Be+
111
+ 3 ,
112
+ using the configuration-interaction (CI) approach. For this purpose, a number of basis sets,
113
+ namely, 6-311++G(2d,2p), 6-311++G(3df,3pd), cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, and aug-
114
+ cc-pVTZ, were employed, and their influence on the convergence of excited state energies,
115
+ wave functions, and transition dipole moments has been systematically examined. In this
116
+ study, the reason behind our choice of smaller sized atomic clusters and their ions, as against
117
+ larger ones, is that it is possible to perform highly accurate CI calculations on smaller systems
118
+ so that the difference between results obtained with different basis sets will be due the nature
119
+ of basis sets, and not due to the CI approach employed. Based upon our calculations, the
120
+ main conclusion is that it is very important to include diffuse basis functions in the basis set
121
+ in order to obtain a good description of the photoabsorption spectra.
122
+ 4
123
+
124
+ Theoretical Approach and Computational Details
125
+ General Methodology
126
+ All the calculations were performed using the first-principles wave-function-based electron-
127
+ correlated approaches, using the standard Hamiltonian within the Born-Oppenheimer ap-
128
+ proximation. The molecular orbitals are expressed in terms of the linear combination of
129
+ Cartesian-Gaussian type basis functions, also called atomic orbitals (AOs). Although, for
130
+ such calculations, a number of program packages are available, we employed GAUSSIAN1629
131
+ and MELD30 for our calculations. The geometries of all the clusters considered in this work
132
+ were optimized using GAUSSIAN16 package29 at the coupled-clusters singles-double (CCSD)
133
+ level of theory, employing a large augmented correlation-consistent polarized valence triple-
134
+ zeta (aug-cc-pVTZ) basis set.
135
+ We perform excited-states calculations for various clusters employing their ground-state
136
+ optimized geometries, using the configuration-interaction (CI) methodology at various levels
137
+ of approximation, as implemented in the program package MELD30. The CI calculations
138
+ yield the vertical excitation energies, the ground and excited state wave functions, and the
139
+ transition dipole matrix elements connecting the ground and the excited states, which, in
140
+ turn, are used to compute the optical absorption spectra of various clusters.
141
+ The level
142
+ of CI employed in the calculations depends on the size of cluster, the number of valence
143
+ electrons in cluster, and the number of active orbitals. The linear optical absorption spectra
144
+ of Li2, Li3, Li4, Be+
145
+ 2 , B+
146
+ 2 clusters were computed at the full CI (FCI) level, while for Be+
147
+ 3
148
+ and B+
149
+ 3 calculations were performed at the quadruple CI (QCI), and the multi-reference
150
+ singles-doubles CI (MRSDCI) levels, respectively.
151
+ We start the calculations on a given cluster by first performing restricted Hartree-Fock
152
+ (RHF) calculations on it, and obtain the molecular orbitals (MOs), expressed as linear com-
153
+ binations of the chosen AOs. In order to perform CI calculations, the one- and two-electron
154
+ Hamiltonian matrix elements are transformed from the AO representation to the MO rep-
155
+ 5
156
+
157
+ resentation. For the FCI calculations, all possible configurations obtained by placing all the
158
+ valence electrons of the cluster in the given set of MOs, in all possible ways, consistent with
159
+ the Pauli exclusion principle. In the QCI approach, we first choose a reference configuration,
160
+ and then generate configurations which are singly-, doubly-, triply-, and quadruply-excited
161
+ with respect to it. For the ground-state calculations, the reference configuration is normally
162
+ taken to be the RHF configuration, while for the excited-state calculations one chooses an ex-
163
+ cited configuration which is closest to the excited state one is trying to calculate. However,
164
+ both the FCI and the QCI approaches can lead to a very large number of configurations
165
+ if the number of electrons and the MO basis is large, thus, making the calculations in-
166
+ tractable. Therefore, for the larger clusters, we employed the multi-reference singles-doubles
167
+ configuration-interaction (MRSDCI) approach, as implemented in the MELD package. In
168
+ this approach, the singly- and doubly-excited configurations are generated from a list of
169
+ configurations called the reference configurations, chosen by the user. We performed the
170
+ MRSDCI calculations in an incremental manner, by starting out with a small set of refer-
171
+ ence configurations that are close to the states (ground or excited) we are targeting. Then
172
+ we analyze the optical absorption spectra of the cluster calculated from that MRSDCI cal-
173
+ culation, and identify a new set of configurations which need to be included in the list of
174
+ reference configurations based upon their contributions in the wave functions of the targeted
175
+ states. The procedure is iterated until the calculated optical absorption spectrum converges
176
+ to within a user-defined threshold. In all the CI calculations, the configurations are actu-
177
+ ally configuration-state functions (CSFs) which are eigenstates of the point-group symmetry
178
+ operators, and the total spin operators S2 and Sz.31–42
179
+ The linear optical absorption spectrum of a given cluster is calculated under the electric-
180
+ dipole approximation, using the formula
181
+ σ(ω) = 4πα
182
+
183
+ i
184
+ ωio|⟨i|ˆe.r|0⟩|2γ2
185
+ (ωi0 − ω)2 + γ2
186
+ (1)
187
+ 6
188
+
189
+ Above: (i) σ(ω) represents the optical absorption cross section, (ii) ω is the frequency of
190
+ incident light, (iii)ˆe denotes the polarization direction of the incident light, (iv) r is the posi-
191
+ tion operator, (v) α is the fine structure constant, (vi) ℏωi0 is the energy difference between
192
+ ground state (0) and the ith excited state (i), and (vii) γ is the uniform line width associated
193
+ with each excited state. The line width γ is taken to be 0.1 eV in all our calculations. The
194
+ sum over index i denotes the sum over all possible excited states. We have restricted this
195
+ sum in our calculations up to the states corresponding to excitation energies of 10 eV, or
196
+ less. Additionally, the oscillator strength fn corresponding to an optical transition from the
197
+ ground state to the n-th excited state is computed using the standard formula
198
+ fn = 2me
199
+ 3ℏ2 ∆En
200
+
201
+ j=x,y,z
202
+
203
+ α
204
+ |⟨nα|Oj|0⟩|2
205
+ (2)
206
+ above me is the electron mass, |0⟩ and |nα⟩ are, respectively the CI wave functions of the
207
+ ground state and the excited state in question, with α being a degeneracy label, Oj denotes
208
+ j-th Cartesian component of the electric-dipole operator, while ∆En = En − E0 is the
209
+ excitation energy of the excited state.
210
+ Computational Parameters
211
+ In this section, we will discuss the convergence of the results with respect two parameters,
212
+ related to the basis-set-size: (a) number of active orbitals in the CI calculations, and (b)
213
+ number of CSFs included in the calculations.
214
+ Active molecular orbitals
215
+ It is well-known that the computational cost at configuration interaction (CI) level of theory
216
+ increases as N 6
217
+ act, where Nact is the total number of active molecular orbitals used in the
218
+ CI calculations.
219
+ Therefore, the time needed to perform a CI calculation will proliferate
220
+ rapidly with the increasing values of Nact. We have adopted two approaches to reduce the
221
+ 7
222
+
223
+ size of the active MO set: (a) we adopt the frozen-core approximation to eliminate the core
224
+ orbitals of each atom of the cluster, and (b) for certain cases involving large CI matrices,
225
+ we delete all those virtual (unoccupied) orbitals from our calculations whose single-particle
226
+ energies are larger than 1 Hartree. The frozen-core approximation is a standard approach
227
+ which also has the added advantage of considerably reducing the number of active electrons
228
+ (nelec) in the calculation. The “1 Hartree cutoff” also doesn’t reduce the accuracy of the
229
+ calculations because we are interested in low-lying optical excitations below 10 eV, while
230
+ our cutoff eliminates only those orbitals from the calculations whose energy is larger than
231
+ 27.21 eV. Both these approximations have been investigated rigorously in our group in earlier
232
+ calculations.36,41–43.
233
+ To be specific, in the present set of calculations, we have considered all the virtual orbitals
234
+ for Li2 and Be+
235
+ 2 clusters, while for Li3, Li4, Be+
236
+ 3 , B+
237
+ 2 and B+
238
+ 3 clusters we have imposed the 1
239
+ Hartree cutoff.
240
+ Size of CI expansion
241
+ Another important parameter that controls the quality of calculations is the total number
242
+ of CSFs, Ntotal, included in the CI expansion of the many-particle wave functions of the
243
+ clusters concerned, both for their ground and the excited states. As mentioned earlier, for
244
+ a given set of active electrons and MOs, the best possible CI expansion corresponds to the
245
+ FCI expansion, which becomes intractable for systems with large values of nelec and Nact.
246
+ However, whenever FCI is not possible, we employ one of the restricted CI approaches such
247
+ as the QCI or the MRSDCI methods. Of the two, it is crucial to examine the convergence of
248
+ the MRSDCI approach which is based upon singles and doubles excitations from a number
249
+ of reference configurations (Nref) leading to the final CI expansion with Ntotal CSFs. We
250
+ examined the convergence of the optical absorption spectrum for the B+
251
+ 3 cluster calculated
252
+ using the MRSDCI method, with respect to Nref, and Ntotal, as presented in Fig. 1.
253
+ 8
254
+
255
+ Figure 1: Convergence of the optical absorption spectrum of the B+
256
+ 3 computed using the
257
+ MRSDCI method, with the increasing numbers of reference configurations (Nref). For cal-
258
+ culations labeled MRSDCI1, MRSDCI2, and MRSDCI3, values of Nref were 58, 101, and
259
+ 144, respectively.
260
+ In the figure, we plot the absorption spectra of B+
261
+ 3 obtained from three MRSDCI calcula-
262
+ tions of increasing sizes labeled as MRSDCI1, MRSDCI2, and MRSDCI3. In these calcula-
263
+ tions, the values of parameters Nref and Ntotal were Nref= 58, Ntotal= 4007873, Nref= 101,
264
+ Ntotal= 5781436, and Nref= 144, Ntotal= 8422193, respectively. From Fig. 1., it is obvious
265
+ that the spectra obtained using MRSDCI2 and MRSDCI3 calculations are very close to each
266
+ other, signaling convergence with respect to the size of the MRSDCI expansion.
267
+ Results and Discussion
268
+ Before discussing the results of our calculations of the optical absorption spectra of various
269
+ clusters, we first summarize their ground state geometries in Table 1, optimized at the CCSD
270
+ 9
271
+
272
+ 300
273
+ MRSDCI1
274
+ 250
275
+ MRSDCI2
276
+ MRSDCI3
277
+ Intensity(arb. units)
278
+ 200
279
+ 150
280
+ 100
281
+ 50
282
+ 0
283
+ 0
284
+ 8
285
+ 10
286
+ Energy(eV)level of theory, employing GAUSSIAN16 suite of programs29, and large aug-cc-pVTZ basis
287
+ sets.
288
+ Table 1: The nature of the structure, along with the point group symmetry utilized, during
289
+ the coupled-cluster singles-doubles (CCSD) geometry optimization calculations are presented
290
+ below. Additionally, for each cluster, the symmetry of the ground-state wave function, total
291
+ Hartree-Fock (HF) energy in Hartree (Ha), total CCSD energy (Ha), and the correlation
292
+ energy (eV) are also presented. During the calculations, aug-cc-pVTZ basis set was employed
293
+ for each cluster.
294
+ Cluster
295
+ Structure
296
+ Point group
297
+ Symmetry of the
298
+ HF energy
299
+ CCSD energy
300
+ Correlation energy
301
+ GS wave function
302
+ (Ha)
303
+ (Ha)
304
+ (eV)
305
+ Li2
306
+ Linear
307
+ D2h
308
+ 1Ag
309
+ -14.8715509
310
+ -14.9033549
311
+ 0.87
312
+ Li3
313
+ Linear
314
+ D2h
315
+ 2Ag
316
+ -22.3088776
317
+ -22.3454346
318
+ 0.99
319
+ Li3
320
+ Isosceles triangle
321
+ C2v
322
+ 2A1
323
+ -22.3170594
324
+ -22.3557287
325
+ 1.05
326
+ Li4
327
+ Rhombus
328
+ D2h
329
+ 1Ag
330
+ -29.7619144
331
+ -29.8354840
332
+ 2.00
333
+ Be+
334
+ 2
335
+ Linear
336
+ D2h
337
+ 2Ag
338
+ -28.9205835
339
+ -28.9672583
340
+ 1.27
341
+ Be+
342
+ 3
343
+ Linear
344
+ D2h
345
+ 2Ag
346
+ -43.5410215
347
+ -43.6332325
348
+ 2.51
349
+ B+
350
+ 2
351
+ Linear
352
+ D2h
353
+ 2Ag
354
+ -48.8344277
355
+ -48.9626672
356
+ 3.49
357
+ B+
358
+ 3
359
+ Equilateral triangle
360
+ D3h
361
+ 1A
362
+
363
+ 1
364
+ -73.4445744
365
+ -73.7127527
366
+ 7.27
367
+ For each cluster, the table lists the nature of its ground-state structure, point group
368
+ employed in the calculations, symmetry of the ground state wave function, total energy of the
369
+ ground state, and the correlation energy. In Table 2, the details related to our CI calculations
370
+ performed for computing the optical absorption spectra of various clusters are provided. For
371
+ various clusters, the table lists: (a) the type of CI calculation, (b) the point-group symmetry
372
+ employed in the calculations, (c) irreducible representations considered for each point group,
373
+ and (d) for each irreducible representation, the size of the CI expansion (Ntotal) for each
374
+ cluster are depicted. From Table 2 it is obvious that most of the CI calculations were of the
375
+ FCI type, which are exact for the chosen set of active MOs. Furthermore, in the calculations
376
+ in which approaches such as QCI or MRSDCI were used, the size of the CI expansion is
377
+ quite large. This means that the CI calculations performed in this work are fairly large
378
+ scale, indicating that the computed optical absorption spectra are numerically accurate.
379
+ Next, for these clusters, we discuss in detail the calculated ground state geometries, followed
380
+ by their optical absorption spectra.
381
+ 10
382
+
383
+ Table 2: For each cluster, the type of CI approach used for the calculations of the optical
384
+ properties, point group symmetry employed during the CI calculations, and the total number
385
+ of configurations (Ntotal) in the calculation are listed below. The value of Ntotal corresponds
386
+ to aug-cc-pVTZ basis set based CI calculations.
387
+ Cluster
388
+ Structure
389
+ Method
390
+ Point group
391
+ Symmetry
392
+ Ntotal
393
+ used
394
+ Li2
395
+ Linear
396
+ FCI
397
+ C1
398
+ 1A
399
+ 5886
400
+ Li3
401
+ Linear
402
+ FCI
403
+ C1
404
+ 2A
405
+ 575960
406
+ Li3
407
+ Isosceles triangle
408
+ FCI
409
+ C2v
410
+ 2A1
411
+ 137956
412
+ 2B1
413
+ 129520
414
+ 2B2
415
+ 137396
416
+ Li4
417
+ Rhombus
418
+ FCI
419
+ D2h
420
+ 1Ag
421
+ 1853578
422
+ 1B1u
423
+ 1846246
424
+ 1B2u
425
+ 1844485
426
+ 1B3u
427
+ 1802190
428
+ Be+
429
+ 2
430
+ Linear
431
+ FCI
432
+ C1
433
+ 2A
434
+ 419868
435
+ Be+
436
+ 3
437
+ Linear
438
+ QCI
439
+ D2h
440
+ 2Ag
441
+ 7393226
442
+ 2B1u
443
+ 7393210
444
+ 2B2u
445
+ 7286869
446
+ 2B3u
447
+ 7286869
448
+ B+
449
+ 2
450
+ Linear
451
+ FCI
452
+ D2h
453
+ 2Ag
454
+ 6365216
455
+ 2B1u
456
+ 6365216
457
+ 2B2u
458
+ 6323328
459
+ 2B3u
460
+ 6323328
461
+ B+
462
+ 3
463
+ Equilateral triangle
464
+ MRSDCI
465
+ C1
466
+ 1A
467
+ 8422193
468
+ 11
469
+
470
+ Geometry
471
+ The simplest cluster of lithium is lithium dimer with the D∞h point group symmetry. We
472
+ obtained the optimized bond length of Li2 cluster to be 2.70 Å, as shown in Fig. 2(a). This
473
+ result is in excellent agreement with the bond length 2.68 Å reported by Wheeler et al.44,
474
+ who performed the calculations at the CCSD/CCSD(T) level of theory using the Dunning
475
+ correlation-consistent polarized core-valence triple/quadruple-zeta cc-pwCVXZ basis sets.
476
+ Florez et al.45 performed density functional theory (DFT) calculations using the B3LYP
477
+ and BLYP functionals, and reported the bond lengths to be 2.70 Å, and 2.71 Å, respectively,
478
+ again in excellent agreement with our result. Furthermore, our calculated bond length is
479
+ also in a very good agreement with the experimentally measured value 2.67 Å, reported by
480
+ Huber46.
481
+ As far as Li3 cluster is concerned, two isomers namely linear and isosceles triangle were
482
+ found to be stable. The equilateral triangular structure of Li3 cluster is not stable, and
483
+ undergoes Jahn-Teller distortion to acquire the isosceles triangular structure. The linear
484
+ structure has the D∞h point-group symmetry, with the optimized equal bond lengths of 2.90
485
+ Å (see Fig. 2(b)), in excellent agreement with the value 2.89 Å, reported by Jones et al.47.
486
+ The lowest-energy geometry of the Li3 cluster is an isosceles triangle with the C2v point-
487
+ group symmetry. The CCSD-level optimized bond lengths for this structure are found to be
488
+ 2.68 and 3.07 Å, with the bond angles 51.73◦ and 64.13◦(see Fig. 2(c)). We note that by
489
+ performing DFT calculations, Jones et al.47 obtained the bond lengths of 2.82 and 3.37 Å,
490
+ that are significantly different as compared to our results.
491
+ 12
492
+
493
+ Figure 2: Optimized geometry of (a) Li2, (b) Li3 linear, (c) Li3 isosceles triangular, (d) Li4,
494
+ (e) Be+
495
+ 2 , (f) Be+
496
+ 3 linear, (g) B+
497
+ 2 , and (h) B+
498
+ 3 equilateral triangular clusters considered in
499
+ this work. The geometry optimization has been performed using the CCSD method, and
500
+ aug-cc-pVTZ basis sets. All the listed bond lengths are in Å units.
501
+ The lowest-energy structure for the Li4 cluster has a rhombus shape, with D2h point
502
+ group44,47, as shown in Fig.
503
+ 2(d).
504
+ Our optimized bond lengths of the side and minor
505
+ diagonal of the rhombus structure are 3.02 and 2.65 Å, respectively, which are in excellent
506
+ agreement with the values 3.04 and 2.62 Å reported by Jones et al.47.
507
+ The optimized bond length of the Be+
508
+ 2 cluster with the D∞h point group is found to be
509
+ 2.25 Å (see Fig. 2(e)), in good agreement with the reported bond length 2.21 Å, obtained
510
+ from DFT calculations by Srinivas et al.48. Our lowest-energy optimized structure of Be+
511
+ 3
512
+ cluster also has a linear geometry, with two equal bond lengths 2.22 Å, as shown in Fig. 2(f).
513
+ This value of the bond length is in very good agreement with the value 2.19 Å, computed
514
+ by Srinivas et al.48 using DFT.
515
+ As far as B+
516
+ 2 cluster is concerned, we computed its minimum-energy bond length to be
517
+ 2.18 Å (see Fig. 2(g)), which is 0.18 Å larger than the value 2 Å reported by Hanley et al.49.
518
+ 13
519
+
520
+ (a)
521
+ (b)
522
+ 2.70
523
+ 2.90
524
+ Liz
525
+ Lis chain
526
+ (c)
527
+ (d)
528
+ 3.07
529
+ 2.65
530
+ 2.68
531
+ 3.02
532
+ Li3
533
+ (f)
534
+ Li4
535
+ (e)
536
+ 2.25
537
+ 2.22
538
+ Be2*
539
+ Be3+
540
+ (g)
541
+ (μ)
542
+ 2.18
543
+ 1.58
544
+ B,
545
+ B3We attribute this difference to two factors, namely, smaller basis set (6-31G∗), coupled with a
546
+ lower-level CI methodology used by the authors.49. Our optimized structure of B+
547
+ 3 cluster is
548
+ an equilateral triangle of sides 1.58 Å, with the D3h point-group symmetry, as shown in Fig.
549
+ 2(h). Hanley et al.49 using a CI approach, along with the 6-31G∗ basis set, also obtained the
550
+ optimized structure to be an equilateral triangle for the B+
551
+ 3 , but with a bond length of 1.53
552
+ Å, which is 0.05 Å smaller than our result. We again attribute the differences to the choice
553
+ of a smaller basis set, coupled with a lower-level correlation methodology as compared to
554
+ the CCSD approach used by us.
555
+ Peak locations
556
+ Li2 dimer, with just two active electrons within the frozen-core approximation, is the small-
557
+ est many-electron cluster considered in this work. Therefore, very high-quality correlated-
558
+ electron calculations using large basis sets are possible for this system, not just for its ground
559
+ states, but also for the excited states. As a result, this case can provide us deep insights into
560
+ the influence of the choice of basis functions on the calculated excited state properties and the
561
+ photoabsorption spectra. For the calculations, we employed the frozen-core FCI method us-
562
+ ing six basis sets of varying sizes, namely, 6-311++G(2d,2p), 6-311++G(3df,3pd), cc-pVDZ,
563
+ cc-pVTZ, aug-cc-pVDZ and aug-cc-pVTZ, and the computed spectra are presented in Fig.
564
+ 3(a). All the virtual molecular orbitals generated during the RHF calculations were used in
565
+ the CI calculations, i.e., no unoccupied orbitals were discarded. As a result, the frozen-core
566
+ FCI results presented here are the best ones possible for the chosen basis sets.
567
+ For the Li2 dimer, the peak locations in the computed spectra are presented in Table S1
568
+ of the Supporting information (SI), from which it is obvious that for the first two peaks the
569
+ excitation energies calculated using different basis sets are in very good agreement with each
570
+ other. This is encouraging because from Fig. 3(a) it is obvious that most of the oscillator
571
+ strength of the absorption spectrum is confined to these two peaks. However, starting from
572
+ the third peak onward, we start seeing differences in the excitation energies predicted by
573
+ 14
574
+
575
+ different basis sets. For the third peak, the predicted peak locations can be classified in two
576
+ groups: (a) those predicted by correlation-consistent basis sets cc-pVDZ and cc-pVTZ, and
577
+ (b) the ones predicted by 6-311G++ and augmented correlation consistent (aug-cc-) class of
578
+ basis sets. We note that the peak locations predicted by the former class of basis functions
579
+ have values significantly larger than those predicted by the latter class. Another noteworthy
580
+ point is that there is very good agreement among the peak locations predicted by the second
581
+ class of basis sets. As far as the location of the fourth peak is concerned, there is good
582
+ agreement among the predictions by 6-311++G(3df,3pd) and aug-cc class of basis functions,
583
+ while the remaining three basis functions predict very different values. The case of the fifth
584
+ peak is somewhat anomalous in that the agreement among the predictions by any of the
585
+ basis sets is not good. However, for higher peaks we note that the results from the aug-cc
586
+ class of basis functions are in good agreement with each other, while other basis functions
587
+ predict widely differing results. Hong et al.50 also performed first-principles calculations of
588
+ the photoabsorption spectra of several Lin clusters employing the time-dependent density-
589
+ functional theory (TDDFT) methodology, and for Li2 their predicted locations of the first
590
+ two peaks are 1.92 eV and 2.53 eV50. On comparing these with our best values of 1.83 eV
591
+ and 2.57 eV, respectively, we note: (a) our excitation energy for peak I is about 0.09 eV
592
+ smaller than theirs, while (b) our location for peak II is about 0.04 eV larger than theirs.
593
+ We attribute these differences to different computational methodologies adopted in the two
594
+ sets of calculations, and it will be interesting to compare the computational results with the
595
+ experimental ones, whenever they are available.
596
+ The peak locations of the photoabsorption spectra of Li3 chain are presented in Table S2
597
+ of SI, from which it is clear that the locations of the first two peaks converge completely for
598
+ all the basis sets, similar to the case of dimer. The third peak is the most intense peak of
599
+ the computed spectra as shown in Fig. 3(b), whose location is in good agreement for all the
600
+ basis sets except for cc-pVDZ, which predicts higher excitation energy as compared to the
601
+ rest. From the fourth peak onward, the peak locations can be classified in two similar group
602
+ 15
603
+
604
+ as discussed previously for the case of dimer: the peak locations predicted from correlation-
605
+ consistent basis sets cc-pVDZ and cc-pVTZ are towards the higher energy side as compared
606
+ to all other basis sets. It can also be seen that the peak positions corresponding to the two
607
+ classes of basis sets are in good agreement within the class.
608
+ Next, we examine the peak locations in the photoabsorption spectra of Li3 triangular
609
+ cluster computed using various basis sets. We note that the peak locations corresponding
610
+ to the first five peaks are in very good agreement with each other for different basis sets
611
+ as is obvious from Table S3 of SI. This result is very encouraging because peak IV is the
612
+ most intense (MI) peak of the computed spectra as presented in Fig. 3(c), and it is crucial
613
+ for a basis set to be able to accurately describe the MI peaks. The location of this peak is
614
+ 2.43 eV computed using the aug-cc-pVTZ basis set, which is in a decent agreement with the
615
+ experimentally detected peak at 2.58 eV by Blanc et al.51. From the sixth peak onward it
616
+ was observed that the peak locations calculated using correlation consistent basis sets (cc-
617
+ pVDZ and cc-pVTZ) do not match with the other classes of basis sets. However, the peak
618
+ locations computed using the 6-31G class and the aug-cc-pVTZ continue to be in very good
619
+ agreement with each other till peak VIII, located near 3.8 eV. The locations of higher-energy
620
+ peaks beyond peak VIII computed using these basis sets are presented in Table S4 for the
621
+ SI.
622
+ 16
623
+
624
+ Figure 3: Optical absorption spectra of (a) Li2, (b) Li3 linear, (c) Li3 triangular, and (d) Li4
625
+ clusters computed using various basis sets and the frozen core FCI method. The uniform
626
+ line-width 0.1 eV is used to plot the spectrum.
627
+ The peak positions of the photoabsorption spectra of Li4 cluster computed using various
628
+ basis sets are presented in Table S5 of SI, while the spectra are plotted in Fig. 3(d). We note
629
+ that for this cluster, the excitation energies of the first five peaks computed using different
630
+ basis sets are in very good agreement with each other. The first three peaks are much more
631
+ intense as compared to the higher energy peaks, and in peak III there are slight differences
632
+ (≈0.1 eV) in the peak locations predicted by different basis sets. The two largest basis sets
633
+ (6-311++G(3df,3pd), and aug-cc-pVTZ) predict the location of peak III at 2.93 eV, while
634
+ the predictions by the rest of the basis sets are in the range 3.03–3.08 eV. From peak VI
635
+ 17
636
+
637
+ SO
638
+ (a)
639
+ 60K
640
+ 6-311++G(2d,2p)
641
+ 6-311++G(3df,3pd)
642
+ (b)
643
+ III
644
+ 6-311++G(2d,2p)
645
+ 400
646
+ cc-pVDZ
647
+ 500
648
+ 6-311++G(3df,3pd)
649
+ ZLAd-0
650
+ cc-pVDZ
651
+ aug-cc-pVDZ
652
+ cC-pVTZ
653
+ awg-cc-pVTZ
654
+ aug-cc-pVDZ
655
+ (s))
656
+ 400
657
+ aug-cc-pVTZ.
658
+ 300
659
+ 200
660
+ 100
661
+ 100
662
+ I
663
+ VVI
664
+ VII
665
+ 6
666
+ Energy (eV)
667
+ 300
668
+ 400
669
+ (c)
670
+ 6-311++G(2d,2p)
671
+ (d)
672
+ 6-311++G(2d,2p)
673
+ 250
674
+ 6-311++G(3df,3pd)
675
+ cc-pVDZ
676
+ 6-311++G(3df,3pd)
677
+ ZLAd-33
678
+ II
679
+ cc-pVDZ
680
+ aug-cc-pVDZ
681
+ 300
682
+ cc-pVTZ
683
+ 200
684
+ ZLAd-30-8ne
685
+ aug-cc-pVDZ
686
+ aug-cc-pVTZ
687
+ Intensity
688
+ 150
689
+ Intensity
690
+ 100
691
+ 100
692
+ 50
693
+ VIII
694
+ X
695
+ 2
696
+ 6
697
+ Energy (eV)
698
+ Energy (eV)onward we begin to observe differences among the locations predicted by different basis sets,
699
+ with a tendency towards clustering into different classes. However, the noteworthy point
700
+ is that the intensity corresponding to these higher energy peaks is very low. As far as the
701
+ comparison with the experiments is concerned, the first three photoabsorption peaks of the
702
+ Li4 cluster located at 1.87 eV, 2.65 eV, and 2.93 eV for aug-cc-pVTZ basis set are in excellent
703
+ agreement with the experimental measurements of Blanc et al.51 who detected these peaks
704
+ at 1.83 eV, 2.65 eV, and 2.93 eV, respectively.
705
+ For Be+
706
+ 2 cluster, we present the spectra computed by different basis sets in Fig. 4(a),
707
+ while the corresponding peak locations are presented in Table S6 of SI. We note excellent
708
+ convergence of the excitation energies up to the sixth peak, beyond which results obtained
709
+ by different basis sets do not agree much with each other. We further note that Peak V
710
+ located near 6.30 eV is the most intense peak, and, for that, the predictions of the different
711
+ basis sets are in a fairly narrow energy range 6.30-6.37 eV.
712
+ Figure 4: Optical absorption spectra of (a) Be+
713
+ 2 and (b) Be+
714
+ 3 clusters computed using various
715
+ basis sets and frozen core FCI and QCI methods, respectively. The uniform line-width of
716
+ 0.1 eV is used to plot the spectrum.
717
+ The excited-states peak locations of Be+
718
+ 3 cluster for different basis sets are presented in
719
+ Table S7 of SI. We notice excellent agreement of the excited-states peak locations up to the
720
+ 18
721
+
722
+ 600
723
+ (a)
724
+ 6-311++G(2d,2p)
725
+ VII
726
+ 6-311++G(2d,2p)
727
+ 300
728
+ 6-311++G(3df.3pd)
729
+ 500
730
+ 6-311++G(3df.3pd)
731
+ cc-pVDZ
732
+ cc-pVDZ
733
+ cc-pVTZ
734
+ cc-pVTZ
735
+ aug-cc-pVDZ
736
+ aug-cc-pVDZ
737
+ aug-cc-pVTZ
738
+ 400
739
+ aug-cc-pVTZ
740
+ (sirun
741
+ 200
742
+ Intensity (arb.
743
+ 300
744
+ Intensity
745
+ 200
746
+ 100
747
+ 100
748
+ 2
749
+ 3
750
+ 4
751
+ 5
752
+ 6
753
+ 9
754
+ [0
755
+ 3
756
+ 5
757
+ Energy (eV)
758
+ Energy (eV)seventh peak which is also the most intense peak of the spectra located near 6.5 eV, as shown
759
+ in Fig. 4(b). Although the peak location of the sixth peak computed using cc-pVDZ basis
760
+ set is slightly towards the higher energy region as compared to all other basis sets, but the
761
+ difference is small. Noteworthy point is that these basis sets are able to achieve convergence
762
+ in the peak positions in Be+
763
+ 2 and Be+
764
+ 3 photoabsorption spectra up to much higher excitation
765
+ energies, as compared to the Li clusters.
766
+ The excited-states peak positions corresponding to the photoabsorption spectra of B+
767
+ 2
768
+ cluster are presented in Table S8 of SI. We notice excellent agreement of the peak energies
769
+ corresponding to first three peaks for all the basis sets. The fourth peak is the most intense
770
+ peak of the spectra, as shown in Fig.
771
+ 5(a) for whose location excellent agreement has
772
+ been achieved for 6-311++G (2d, 2p), cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVTZ basis sets,
773
+ indicating complete convergence. However, the excitation energies for peak IV computed
774
+ using the 6-311++G (3df, 3pd) and cc-pVDZ basis sets are about 0.1 eV higher, as compared
775
+ to other basis sets. As far as peak V is concerned, which is a very weak shoulder of peak IV,
776
+ we again observe excellent convergence for all the basis sets, except cc-pVDZ which fails to
777
+ predict the peak. From the sixth peak onward, as discussed previously, the predicted peak
778
+ locations can be classified into two groups: (a) larger basis sets of 6-311++G and aug-cc-
779
+ type, and (b) smaller basis sets cc-pVDZ and cc-pVTZ, with the peak locations predicted
780
+ by individual classes being in very good agreement with each other.
781
+ 19
782
+
783
+ Figure 5: Optical absorption spectra of (a) B+
784
+ 2 and (b) B+
785
+ 3 cluster computed using various
786
+ basis sets and frozen core FCI and MRSDCI methods, respectively. The uniform line-width
787
+ 0.1 eV is used to plot the spectrum.
788
+ The peak locations corresponding to the excited-states of the photoabsorption spectra
789
+ of B+
790
+ 3 cluster are presented in Table S9 of SI, while the calculated spectra are plotted in
791
+ Fig. 5(b) . For this cluster, we get eight well-separated peaks in the explored energy range,
792
+ with peak VIII located near 8.9 eV being the most intense. We note that the peak energies
793
+ corresponding to all the basis sets converge excellently up to the peak VIII, except those
794
+ predicted by the cc-pVDZ basis set, which are consistently higher.
795
+ We have noticed in
796
+ Fig.4 and Fig.5, only the deep valence excitation energies are dependent on the choice of
797
+ basis sets. This behavior can be a consequence of the frozen-core approximation, which we
798
+ have employed in the calculations. To verify this, we have computed the optical absorption
799
+ spectra of Li2 and Be+
800
+ 2 clusters by also including the core excitations within the large-scale
801
+ QCI method. We found that the optical spectra of these clusters computed by including core
802
+ excitations agrees completely with the absorption spectra computed after employing frozen-
803
+ core approximation, as shown in Fig.S1 and Fig.S2 of the SI. Therefore, the frozen-core
804
+ approximation does not alter the absorption spectra of small clusters.
805
+ Based on the peak positions of the individual clusters discussed above, we observe the
806
+ 20
807
+
808
+ 500
809
+ 250
810
+ (a)
811
+ (b)
812
+ 6-311++G(2d,2p)
813
+ 6-311++G(2d,2p)
814
+ 6-311++G(3df,3pd)
815
+ VII
816
+ 6-311++G(3df,3pd)
817
+ 400
818
+ cc-pVDZ
819
+ IV
820
+ 200
821
+ cc-pVDZ
822
+ cc-pVTZ
823
+ VII
824
+ cc-pVTZ
825
+ aug-cc-pVDZ
826
+ aug-cc-pVDZ
827
+ aug-cc-pVTZ
828
+ ZLAd-03-8ne
829
+ 150
830
+ Intensity (arb.
831
+ 200
832
+ VI
833
+ 100
834
+ 100
835
+ 50
836
+ III
837
+ II
838
+ 1
839
+ 2
840
+ 3
841
+ 4
842
+ 6
843
+ 8
844
+ 9
845
+ 10
846
+ 2
847
+ 3
848
+ 1
849
+ 6
850
+ 7
851
+ 8
852
+ 10
853
+ Energy (eV)
854
+ Energy (eV)following general trends: (a) peak locations for all the clusters used in this study are in very
855
+ good agreement for all the basis sets up to the most intense peak of the spectra, except
856
+ for cc-pVDZ basis set. (b) the excited-states peak locations beyond the most intense peak
857
+ can be classified in two groups, in which the peak locations calculated using correlation-
858
+ consistent basis sets do not match with the peak locations computed using all other basis
859
+ sets, and (c) for the cc-pVDZ basis sets peaks are located at higher energies as compared
860
+ to the rest of the basis functions. As the basis-set dependence of the optical properties is
861
+ different for the density functional theory compared to the wave function-based large-scale
862
+ configuration-interaction method, it will be interesting to explore the optical properties of
863
+ clusters using time-dependent density functional theory (TD-DFT) and compare it with our
864
+ results. We found that the first peak of the optical absorption spectra of B+
865
+ 3 cluster is located
866
+ at 0.84 eV when computed using large-scale MRSDCI calculations along with a large aug-
867
+ cc-pVTZ basis set. However, when the calculations are performed using TD-DFT method
868
+ with B3LYP functional and the same basis set, it is obtained at 0.95 eV. The most intense
869
+ peak of the optical absorption spectra is located at 8.85 eV using the MRSDCI approach,
870
+ which is found to be at 9.35 eV by employing the TD-DFT method. The calulated optical
871
+ absorption spectra and excited-states peak locations of B+
872
+ 3 cluster corresponding to TD-
873
+ DFT calculations are provided in the Fig.S3 and Table S10 of the SI. We also report that
874
+ the variations in the peak locations of the photoabsorption spectra of B+
875
+ 3 computed using
876
+ various basis sets and TD-DFT method are lesser than the wave function-based CI method.
877
+ Oscillator strength
878
+ In addition to the excitation energy, the next important quantity determining the profile of
879
+ the absorption spectrum is the oscillator strength (f) corresponding to various optical tran-
880
+ sitions, connecting the ground state to the excited state in question. The oscillator strength
881
+ calculated using Eq. 2 is determined by the excitation energy of the state involved, and the
882
+ corresponding transition dipole moment (TDM). The TDM being a matrix element, is, in
883
+ 21
884
+
885
+ turn, determined by the many-particle wave functions of the ground and the excited state
886
+ that it connects. Another important quantity is the polarization of the photon involved in a
887
+ given optical transition (peak), which can be measured in oriented samples. The polarization
888
+ is a consequence of the point-group symmetry of the concerned molecule, and hence should
889
+ be independent of the basis set employed. In this section, we discuss the convergence of the
890
+ oscillator strengths and photon polarizations associated with various peaks of the calculated
891
+ spectra. In Table 3, we present the oscillator strengths corresponding to the first peak, and
892
+ the most intense peak (peak II) of the spectra of Li2 computed using different basis func-
893
+ tions. Additionally, the table also contains the dominant configurations contributing to the
894
+ many-particle wave functions of the excited states involved.
895
+ Table 3: Comparison of oscillator strengths and the dominant configurations contributing to
896
+ the many-particle wave functions for peaks I and II of Li2 cluster calculated using different
897
+ basis sets. In the “Polarization” column, ∥ indicates photon polarization along the direction
898
+ of the molecule (longitudinal polarization), while ⊥ indicates polarization perpendicular to
899
+ the molecular axis (transverse polarization). Note that the transversely polarized states are
900
+ doubly degenerate, therefore, the oscillator strength corresponding to those is the sum of
901
+ both the contributions. ’H’ and ’L’ stand for HOMO and LUMO orbitals.
902
+ Basis Set
903
+ Peak I
904
+ Peak II
905
+ Polarization
906
+ f
907
+ Configurations
908
+ Polarization
909
+ f
910
+ Configurations
911
+ 6-311++G(2d,2p)
912
+
913
+ 0.460
914
+ |H → L⟩
915
+
916
+ 0.971
917
+ |H → L + 2⟩
918
+ |H → L + 3⟩
919
+ |H → L + 7⟩
920
+ 6-311++G(3df,3pd)
921
+
922
+ 0.456
923
+ |H → L⟩
924
+
925
+ 0.966
926
+ |H → L + 2⟩
927
+ |H → L + 3⟩
928
+ |H → L + 7⟩
929
+ cc-PVDZ
930
+
931
+ 0.463
932
+ |H → L⟩
933
+
934
+ 0.970
935
+ |H → L + 1⟩
936
+ |H → L; H → L + 2⟩
937
+ |H → L + 1; H → L + 5⟩
938
+ cc-pVTZ
939
+
940
+ 0.455
941
+ |H → L⟩
942
+
943
+ 0.969
944
+ |H → L + 1⟩
945
+ |H → L + 4⟩
946
+ |H → L + 6⟩
947
+ aug-cc-pVDZ
948
+
949
+ 0.462
950
+ |H → L⟩
951
+
952
+ 0.972
953
+ |H → L + 1⟩
954
+ |H → L + 3⟩
955
+ |H → L + 6⟩
956
+ aug-cc-pVTZ
957
+
958
+ 0.454
959
+ |H → L⟩
960
+
961
+ 0.966
962
+ |H → L + 2⟩
963
+ |H → L + 3⟩
964
+ |H → L + 7⟩
965
+ From Table 3 it is obvious that the oscillator strengths computed using various basis
966
+ functions for both the peaks are in very good agreement with each other. We also note that
967
+ the direction of the polarization of the photons involved in a given optical transitions are of
968
+ 22
969
+
970
+ the excited-states corresponding to the first and second peak of the spectra of Li2 cluster are
971
+ parallel and perpendicular to molecular axis, respectively, irrespective of the basis set.
972
+ The oscillator strengths corresponding to the first and most intense peaks of the spectra
973
+ of Li3 chain and triangular clusters are presented in Table S11 and Table S12, respectively.
974
+ We note that the oscillator strengths of the first peaks both of Li3 chain, and the triangular
975
+ cluster, computed using the different basis sets are in excellent agreement with each other.
976
+ The oscillator strengths corresponding to the most intense peaks of Li3, i.e. peak III of
977
+ the chain and peak IV for the triangular cluster, calculated using various basis sets can
978
+ be classified into two groups: (a) those calculated using correlation-consistent (cc-pVTZ
979
+ and cc-pVDZ) class of basis sets, and (b) those computed using 6-33++G- and augmented
980
+ correlation-consistent (aug-cc-) class of basis sets. The oscillator strength calculated by the
981
+ first class of basis sets is comparatively higher than the second class of basis sets. But, the
982
+ relative maximum difference between oscillator strengths of different classes is close to 6%,
983
+ which is fairly acceptable.
984
+ The oscillator strengths corresponding to the first and the most intense peak (peak II)
985
+ in the photoabsorption spectra of Li4 cluster are presented in Table S13.
986
+ We note that
987
+ the oscillator strengths of peak I are in good agreement with each other for all the basis
988
+ sets except for cc-pVDZ and aug-cc-pVTZ. For these basis sets the oscillator strength is
989
+ comparatively larger.
990
+ For peak II, we note that the difference in the oscillator strength
991
+ computed by cc-pVDZ and 6-311++G (3df, 3pd) basis sets is about 5%, which is again
992
+ quite small.
993
+ We present the oscillator strengths corresponding to the first and the most intense peaks
994
+ of the cationic beryllium clusters Be+
995
+ 2 and Be+
996
+ 3 in tables S14, and S15, respectively. We
997
+ note very good agreement on the oscillator strengths of both the peaks of the Be+
998
+ 2 and
999
+ Be+
1000
+ 3 clusters for all the basis sets. The maximum relative disagreement we find among the
1001
+ oscillator strengths for a given peak is around 6%.
1002
+ Finally, we discuss the oscillator strengths of the first and the most intense peaks of the
1003
+ 23
1004
+
1005
+ B+
1006
+ 2 and B+
1007
+ 3 clusters presented in tables S16, and S17, respectively. We note that both for
1008
+ B+
1009
+ 2 and B+
1010
+ 3 clusters, the oscillator strengths of the first peaks are two orders of magnitude
1011
+ smaller than those of their most intense peaks, indicating that the first peaks for both the
1012
+ clusters are relatively feeble. Nevertheless, the oscillator strengths of the first peaks of the
1013
+ photoabsorption spectra of the two clusters calculated using various basis sets are in very
1014
+ good agreement with each other. As far as the most intense peaks are concerned, both for B+
1015
+ 2
1016
+ and B+
1017
+ 3 we see the following pattern: oscillator strengths computed using 6-311++G- and
1018
+ aug-cc-pVTZ basis sets are in very good agreement with each other, while those computed
1019
+ using other basis sets differ from them somewhat.
1020
+ Wave function analysis
1021
+ Next, we examine the dominant configurations contributing to the CI wave functions of the
1022
+ excited states contributing to various peaks. The dominant configurations corresponding
1023
+ to the excited-states CI wave functions of peak I and peak II of Li2 are presented in Table
1024
+ 3. We note that for peak I, the main contribution to the corresponding excited state wave
1025
+ function is from the singly excited configuration |H → L⟩ for all the basis sets. However,
1026
+ the next important configuration to the same wave function depends on the class of basis set
1027
+ employed: (a) it is |H → L+3⟩ single excitation when calculations are performed using larger
1028
+ basis sets of the type 6-311++ and aug-cc, but (b) for smaller basis sets, this configuration is
1029
+ found to be |H → L + 4⟩ for cc-PVTZ basis, and |H → L; H → L + 2⟩ for the cc-PVDZ set.
1030
+ Peak II is due to two degenerate excited states to which the dominant contributions are from
1031
+ configurations |H → L+2⟩ and |H → L+7⟩, for the calculations performed using 6-31G++
1032
+ and aug-cc-PVTZ type basis sets. But, for the calculations performed with smaller basis
1033
+ sets, the dominant configurations is |H → L + 1⟩, while the next important configuration
1034
+ can be |H → L + 6⟩ or |H → L + 1; H → L + 5⟩, depending on the basis set. Thus, we
1035
+ can draw the following general conclusion regarding this: (a) for large basis set calculations,
1036
+ for a given peak, the configurations are in perfect agreement with each other, and (b) the
1037
+ 24
1038
+
1039
+ configurations predicted by calculations performed using smaller basis sets such as cc-PVDZ
1040
+ are found to be different as compared to those obtained in larger basis set calculations.
1041
+ The dominant configurations for the wave functions corresponding to peak I and the
1042
+ most intense peak (peak III) of Li3 chain, computed using various basis sets are presented
1043
+ in Table S11. We find that for the first peak the dominant configuration is |H − 1 → H⟩ for
1044
+ all the basis sets except for aug-cc-pVTZ. For the aug-cc-pVTZ the dominant configurations
1045
+ contributing to the excited state wave function are different compared to other basis sets,
1046
+ because of the reversal of ground and excited states. However, because the peak energies and
1047
+ oscillator strength for the state are in excellent agreement with all other basis sets implies
1048
+ that we have obtained correct quantitative description of the excited states even with this
1049
+ basis set. For peak III the main contribution to the excited state wave function is from
1050
+ |H − 1 → L + 2⟩ for the larger 6-311++ and aug-cc class of basis sets, while it is from
1051
+ |H − 1 → L + 1⟩ for the smaller cc-pVTZ and cc-pVDZ basis sets.
1052
+ The main configurations contributing to the excited states wave functions of peak I and
1053
+ the most intense peak (peak IV) of Li3 triangular cluster, computed using various basis sets
1054
+ are presented in Table S12. We note that for the first peak, the main contribution to the
1055
+ wave function is from configurations |H → L+14⟩ or |H → L+13⟩ for the larger 6-311++G
1056
+ and aug-cc class of basis sets. For the correlation-consistent basis sets (cc-pVDZ and cc-
1057
+ pVTZ) the main contribution is due to the configuration |H → L + 2⟩. For the fourth peak,
1058
+ the dominant configuration is |H − 1 → L⟩, irrespective of the type of basis set used for the
1059
+ calculation.
1060
+ The dominant configurations corresponding to the excited states wave functions of peak
1061
+ I and the most intense peak of the spectra (peak II) of the Li4 cluster are presented in Table
1062
+ S13. For the first peak, the main contribution is from the configuration |H → L + 1⟩ for all
1063
+ the basis sets, while for peak II it is |H−1 → L⟩ for all the basis sets. Thus, we have excellent
1064
+ agreement among all the basis sets when it comes to the most important configuration for
1065
+ both the peaks of the Li4 cluster.
1066
+ 25
1067
+
1068
+ The important configurations corresponding to the excited states wave function of peak
1069
+ I and the most intense peak (peak V) of the photoabsorption spectra of Be+
1070
+ 2 cluster are
1071
+ presented in Table S14. The dominant configuration contributing to peak I is |H → L⟩ for
1072
+ the 6-311++G class of basis sets, and |H → L + 2⟩ for the rest. For peak V, the main
1073
+ configuration contributing to the CI wave function is |H − 1 → L + 1⟩ for 6-311++G class
1074
+ of basis sets, and |H − 1 → L⟩ for the rest of the sets.
1075
+ The configurations dominating the excited state CI wave functions of peak I and the
1076
+ most intense peak (peak VII) of Be+
1077
+ 3 cluster are listed in Table S15.
1078
+ We note that the
1079
+ most important configurations contributing to peak I can be classified in two groups: (a)
1080
+ for larger 6-311++G(3df,3pd) and aug-cc class of basis sets the dominant configuration is
1081
+ |H → L + 1⟩, (b) while for smaller basis sets dominant configuration is highly basis set
1082
+ dependent.
1083
+ For peak VII, the doubly-excited configurations |H − 2 → L; H → L + 2⟩
1084
+ and |H − 1 → L; H → L + 4⟩ dominate the excited-state wave functions for the larger
1085
+ 6-311++G(3df,3pd) and aug-cc class of basis sets, but vary significantly for the rest.
1086
+ Most important configurations contributing to the wave functions for peak I and the
1087
+ most intense peak (peak IV) of B+
1088
+ 2 cluster are presented in Table S16. It is obvious that the
1089
+ double-excitation |H − 1 → L; H → L⟩ contributes the most to peak I for all the basis sets.
1090
+ The dominant configurations contributing to the wave functions of peak IV are |H → L+5⟩
1091
+ and |H → L + 11⟩ for all the basis sets except the cc-pVDZ/cc-pVTZ, for which instead of
1092
+ |H → L + 11⟩, the double excitation |H − 1 → L; H → L⟩ contributes.
1093
+ Finally, we present the dominant configurations in the CI wave functions corresponding
1094
+ to peak I, and the most intense peak (peak VIII), of B+
1095
+ 3 cluster in Table S17. The configura-
1096
+ tion with maximum contribution to the excited state wave functions for peak I is |H → L⟩,
1097
+ irrespective of the basis set. The next dominant configuration is basis-set dependent, how-
1098
+ ever, it is a double excitation in all the cases. The dominant configuration corresponding to
1099
+ the CI wave function of peak VIII is the double excitation |H − 1 → L; H → L + 3⟩ for all
1100
+ the basis sets.
1101
+ 26
1102
+
1103
+ The detailed wave function analysis for all the peaks of the optical absorption spectra of
1104
+ clusters considered in this work using the largest aug-cc-pVTZ basis set is provided in Table
1105
+ S18-S25 of the SI.
1106
+ Conclusion
1107
+ In this work, we presented electron-correlated calculations of the optical absorption spectra
1108
+ of small neutral and ionic clusters using various basis sets. First, the stable geometries of
1109
+ various clusters were determined at the CCSD level of theory, using the aug-cc-PVTZ basis
1110
+ set. For the ground and the excited state wave functions calculations needed to compute
1111
+ the absorption spectra, we used the FCI, QCI, and MRSDCI approaches depending upon
1112
+ the size of the clusters. The CI calculations were performed using six different basis sets,
1113
+ namely, 6-311++G(2d,2p), 6-311++G(3df,3pd), cc-pVDZ , cc-pVTZ, aug-cc-pVDZ, and
1114
+ aug-cc-pVTZ.
1115
+ We observed that the optical absorption spectra of all these clusters exhibit excellent
1116
+ convergence for all the basis sets in the lower energy range. However, usually after the first
1117
+ two peaks, the shift in peak locations for cc-pVDZ and cc-pVTZ basis set are noted in all
1118
+ likelihood because of the lack of diffuse basis functions in these sets. If we use augmented
1119
+ basis sets, the absorption spectra show good agreement with the results computed using
1120
+ other similar basis sets. Although aug-cc-pVDZ basis set has a relatively smaller number of
1121
+ basis functions as compared to aug-cc-pVTZ basis set, the agreement between the spectra
1122
+ computed using the two basis sets is very good. Because the number of two-electron integrals
1123
+ increases as N 4 where N is the number of basis functions in basis set, we can reduce the
1124
+ computational cost significantly by using aug-cc-pVDZ basis set instead of larger Pople’s
1125
+ basis sets, and aug-cc-pVTZ basis set. Thus, our general recommendation is that for optical
1126
+ absorption calculations one should use a basis set containing diffuse functions, i.e., of the
1127
+ aug-cc- type. However, whether one should use aug-cc-pVDZ, or a larger set, should be
1128
+ 27
1129
+
1130
+ decided by the available computational resources.
1131
+ We believe that the CI calculations presented in this work are quite accurate, as is obvious
1132
+ from the fact that our obtained results are in very good agreement with the experiments for
1133
+ Li3 and Li4 clusters. Therefore, it will be of interest to compare our results on other clusters
1134
+ also with the experiments, as and when they are performed.
1135
+ Associated Content
1136
+ Supporting Information
1137
+ In the supporting information file, we have provided the peak locations, oscillator strengths,
1138
+ and dominant excited state configurations corresponding to the optical absorption spectra
1139
+ of all the clusters for all the basis sets considered in this work. The SI file also contains the
1140
+ details of the many-particle wave functions of excited states contributing to the peaks in the
1141
+ optical absorption spectrum of clusters for aug-cc-pVTZ basis set.
1142
+ Author Information
1143
+ Corresponding Author
1144
+ Alok Shukla: Department of Physics, Indian Institute of Technology Bombay, Powai, Mum-
1145
+ bai 400076, India; *E-mail: [email protected]
1146
+ Acknowledgment
1147
+ This work was supported by senior research fellowship (DST-Inspire) provided by department
1148
+ of science and technology, India.
1149
+ 28
1150
+
1151
+ Authors
1152
+ Vikram Mahamiya: Department of Physics, Indian Institute of Technology Bombay, Powai,
1153
+ Mumbai 400076, India; E-mail: [email protected]
1154
+ Pritam Bhattacharyya: Institute for Theoretical Solid State Physics, Leibniz IFW Dres-
1155
+ den, Helmholtzstr. 20, 01069 Dresden, Germany; E-mail: [email protected]
1156
+ Notes
1157
+ The authors declare no competing financial interests.
1158
+ 29
1159
+
1160
+ References
1161
+ (1) Boys, S. F. Electronic Wave Functions. I. A General Method of Calculation for the
1162
+ Stationary States of Any Molecular System. Proceedings of the Royal Society of London
1163
+ Series A 1950, 200, 542–554.
1164
+ (2) McMurchie, L. E.; Davidson, E. R. One- and two-electron integrals over cartesian gaus-
1165
+ sian functions. Journal of Computational Physics 1978, 26, 218 – 231.
1166
+ (3) Davidson, E. R.; Feller, D. Basis set selection for molecular calculations. Chemical
1167
+ Reviews 1986, 86, 681–696.
1168
+ (4) Huzinaga, S. Basis sets for molecular calculations. Computer Physics Reports 1985, 2,
1169
+ 281 – 339.
1170
+ (5) Huzinaga, S. Gaussian-Type Functions for Polyatomic Systems. I. The Journal of
1171
+ Chemical Physics 1965, 42, 1293–1302.
1172
+ (6) Ruedenberg, K.; Raffenetti, R. C.; Bardo, R. D. Structure and Reactivity, Proceedings
1173
+ of the 1972 Boulder Conference; Wiley: New York, 1973.
1174
+ (7) Bardo, R. D.; Ruedenberg, K. Even-tempered atomic orbitals. VI. Optimal orbital
1175
+ exponents and optimal contractions of Gaussian primitives for hydrogen, carbon, and
1176
+ oxygen in molecules. The Journal of Chemical Physics 1974, 60, 918–931.
1177
+ (8) Huzinaga, S.; Klobukowski, M.; Tatewaki, H. The well-tempered GTF basis sets and
1178
+ their applications in the SCF calculations on N2, CO, Na2, and P2. Canadian Journal
1179
+ of Chemistry 1985, 63, 1812–1828.
1180
+ (9) Tatewaki, H.; Huzinaga, S. A systematic preparation of new contracted Gaussian type
1181
+ orbital set. I. Transition metal atoms from Sc to Zn. The Journal of Chemical Physics
1182
+ 1979, 71, 4339–4348.
1183
+ 30
1184
+
1185
+ (10) Tatewaki, H.; Huzinaga, S. A systematic preparation of new contracted Gaussian-type
1186
+ orbital sets. III. Second-row atoms from Li through ne. Journal of Computational Chem-
1187
+ istry 1980, 1, 205–228.
1188
+ (11) Hehre, W. J.; Stewart, R. F.; Pople, J. A. Self-Consistent Molecular-Orbital Methods. I.
1189
+ Use of Gaussian Expansions of Slater-Type Atomic Orbitals. The Journal of Chemical
1190
+ Physics 1969, 51, 2657–2664.
1191
+ (12) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent Molecular-Orbital Meth-
1192
+ ods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic
1193
+ Molecules. The Journal of Chemical Physics 1971, 54, 724–728.
1194
+ (13) Binkley, J. S.; Pople, J. A.; Hehre, W. J. Self-consistent molecular orbital methods. 21.
1195
+ Small split-valence basis sets for first-row elements. Journal of the American Chemical
1196
+ Society 1980, 102, 939–947.
1197
+ (14) Binkley, J. S.; Pople, J. A. Self-consistent molecular orbital methods. XIX. Split-valence
1198
+ Gaussian-type basis sets for beryllium. The Journal of Chemical Physics 1977, 66, 879–
1199
+ 880.
1200
+ (15) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular or-
1201
+ bital methods. XX. A basis set for correlated wave functions. The Journal of Chemical
1202
+ Physics 1980, 72, 650–654.
1203
+ (16) Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular
1204
+ orbital hydrogenation energies. Theoretica chimica acta 1973, 28, 213–222.
1205
+ (17) Collins, J. B.; von R. Schleyer, P.; Binkley, J. S.; Pople, J. A. Self-consistent molecular
1206
+ orbital methods. XVII. Geometries and binding energies of second-row molecules. A
1207
+ comparison of three basis sets. The Journal of Chemical Physics 1976, 64, 5142–5151.
1208
+ 31
1209
+
1210
+ (18) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.;
1211
+ Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis
1212
+ set for second-row elements. The Journal of Chemical Physics 1982, 77, 3654–3665.
1213
+ (19) Pietro, W. J.; Francl, M. M.; Hehre, W. J.; DeFrees, D. J.; Pople, J. A.; Binkley, J. S.
1214
+ Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis
1215
+ sets for second-row elements. Journal of the American Chemical Society 1982, 104,
1216
+ 5039–5048.
1217
+ (20) Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular orbital methods
1218
+ 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics
1219
+ 1984, 80, 3265–3269.
1220
+ (21) Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations.I The
1221
+ atoms boron through neon and hydrogen. The Journal of Chemical Physics 1989, 90,
1222
+ 1007–1023.
1223
+ (22) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron affinities of the first-row atoms
1224
+ revisited.Systematic basis sets and wave functions. The Journal of Chemical Physics
1225
+ 1992, 96, 6796–6806.
1226
+ (23) Woon, D. E.; Dunning, T. H. J. The Pronounced Effect of Microsolvation on Diatomic
1227
+ Alkali Halides: Ab Initio Modeling of MX(H2O)n (M = Li, Na; X=F, Cl; n = 1-3).
1228
+ Journal of the American Chemical Society 1995, 117, 1090–1097.
1229
+ (24) Balakina, M.; Nefediev, S. The choice of basis set for calculations of linear and nonlinear
1230
+ optical properties of conjugated organic molecules in gas and in dielectric medium by the
1231
+ example of p-nitroaniline. Computational Materials Science 2007, 38, 467–472, Selected
1232
+ papers from the International Conference on Computational Methods in Sciences and
1233
+ Engineering 2004.
1234
+ 32
1235
+
1236
+ (25) Parsons, T.; Balduf, T.; Cheeseman, J. R.; Caricato, M. Basis Set Dependence of
1237
+ Optical Rotation Calculations with Different Choices of Gauge. The Journal of Physical
1238
+ Chemistry A 2022, 126, 1861–1870, PMID: 35271772.
1239
+ (26) Reis, H.; Papadopoulos, M. G. Nonlinear optical properties of the rhombic B4-cluster.
1240
+ Journal of Computational Chemistry 1999, 20, 679–687.
1241
+ (27) Lauderdale, W. J.; Coolidge, M. B. Basis set effects on the nonlinear optical properties
1242
+ of selected linear diacetylenes. The Journal of Physical Chemistry 1995, 99, 9368–9373.
1243
+ (28) Jabłoński, M.; Palusiak, M. Basis Set and Method Dependence in Quantum Theory of
1244
+ Atoms in Molecules Calculations for Covalent Bonds. The Journal of Physical Chem-
1245
+ istry A 2010, 114, 12498–12505, PMID: 21049895.
1246
+ (29) Frisch, M. J. et al. Gaussian 16 Revision C.01. 2016.
1247
+ (30) McMurchie, L. E.; Elbert, S. T.; Langhoff, S. R.; Davidson, E. R. MELD package from
1248
+ Indiana University. It has been modified by us to handle bigger systems.
1249
+ (31) Shinde, R.; Shukla, A. Large-scale first principles configuration interaction calculations
1250
+ of optical absorption in aluminum clusters. Phys. Chem. Chem. Phys. 2014, 16, 20714–
1251
+ 20723.
1252
+ (32) Rai, D. K.; Chakraborty, H.; Shukla, A. Tunable Optoelectronic Properties of Triply
1253
+ Bonded Carbon Molecules with Linear and Graphyne Substructures. The Journal of
1254
+ Physical Chemistry C 2018, 122, 1309–1317.
1255
+ (33) Chakraborty, H.; Shukla, A. Pariser - Parr - Pople Model Based Investigation of Ground
1256
+ and Low - Lying Excited States of Long Acenes. The Journal of Physical Chemistry A
1257
+ 2013, 117, 14220–14229.
1258
+ (34) Aryanpour, K.; Shukla, A.; Mazumdar, S. Electron correlations and two-photon states
1259
+ 33
1260
+
1261
+ in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry. The Journal
1262
+ of Chemical Physics 2014, 140, 104301.
1263
+ (35) Chakraborty, H.; Shukla, A. Theory of triplet optical absorption in oligoacenes: From
1264
+ naphthalene to heptacene. The Journal of Chemical Physics 2014, 141, 164301.
1265
+ (36) SHINDE, R.; SHUKLA, A. LARGE-SCALE FIRST PRINCIPLES CONFIGURA-
1266
+ TION INTERACTION CALCULATIONS OF OPTICAL ABSORPTION IN BORON
1267
+ CLUSTERS. Nano LIFE 2012, 02, 1240004.
1268
+ (37) Shukla, A. Correlated theory of triplet photoinduced absorption in phenylene-vinylene
1269
+ chains. Phys. Rev. B 2002, 65, 125204.
1270
+ (38) Shukla, A. Theory of nonlinear optical properties of phenyl-substituted polyacetylenes.
1271
+ Phys. Rev. B 2004, 69, 165218.
1272
+ (39) Sony, P.; Shukla, A. Large-scale correlated calculations of linear optical absorption and
1273
+ low-lying excited states of polyacenes: Pariser-Parr-Pople Hamiltonian. Phys. Rev. B
1274
+ 2007, 75, 155208.
1275
+ (40) Basak, T.; Chakraborty, H.; Shukla, A. Theory of linear optical absorption in diamond-
1276
+ shaped graphene quantum dots. Phys. Rev. B 2015, 92, 205404.
1277
+ (41) Priya, P. K.; Rai, D. K.; Shukla, A. Photoabsorption in sodium clusters: first principles
1278
+ configuration interaction calculations. The European Physical Journal D 2017, 71, 116.
1279
+ (42) Shinde, R.; Shukla, A. First principles electron-correlated calculations of optical ab-
1280
+ sorption in magnesium clusters. The European Physical Journal D 2017, 71, 301.
1281
+ (43) Bhattacharyya, P.; Rai, D. K.; Shukla, A. Systematic First-Principles Configuration-
1282
+ Interaction Calculations of Linear Optical Absorption Spectra in Silicon Hydrides:
1283
+ Si2H2n (n = 1-3). The Journal of Physical Chemistry A 2019, 123, 8619–8631.
1284
+ 34
1285
+
1286
+ (44) Wheeler, S. E.; Sattelmeyer, K. W.; Schleyer, P. v. R.; Schaefer, H. F. Binding energies
1287
+ of small lithium clusters (Lin) and hydrogenated lithium clusters (LinH). The Journal
1288
+ of Chemical Physics 2004, 120, 4683–4689.
1289
+ (45) Florez, E.; Fuentealba, P. A theoretical study of alkali metal atomic clusters: From Lin
1290
+ to Csn (n = 2-8). International Journal of Quantum Chemistry 2009, 109, 1080–1093.
1291
+ (46) HUBER, K. P. Molecular Structure Constants of Diatomic molecules. Molecular Spectra
1292
+ and molecular Structure Constants of Diatomic molecules 1979,
1293
+ (47) Jones, R. O.; Lichtenstein, A. I.; Hutter, J. Density functional study of structure and
1294
+ bonding in lithium clusters Lin and their oxides LinO. The Journal of Chemical Physics
1295
+ 1997, 106, 4566–4574.
1296
+ (48) Srinivas, S.; Jellinek, J. Structural and electronic properties of small beryllium clusters:
1297
+ A theoretical study. The Journal of Chemical Physics 2004, 121, 7243–7252.
1298
+ (49) Hanley, L.; Whitten, J. L.; Anderson, S. L. Collision-induced dissociation and ab initio
1299
+ studies of boron cluster ions: determination of structures and stabilities. The Journal
1300
+ of Physical Chemistry 1988, 92, 5803–5812.
1301
+ (50) Hong, X.; Wang, F. TDDFT calculation for photoabsorption spectra of Lin (n=2-11,20)
1302
+ clusters. Physics Letters A 2011, 375, 1883 – 1888.
1303
+ (51) Blanc, J.; Broyer, M.; Chevaleyre, J.; Dugourd, P.; Kühling, H.; Labastie, P.; Ul-
1304
+ bricht, M.; Wolf, J. P.; Wöste, L. High resolution spectroscopy of small metal clusters.
1305
+ Zeitschrift für Physik D Atoms, Molecules and Clusters 1991, 19, 7–12.
1306
+ 35
1307
+
1308
+ For Table of Contents Only
1309
+ 36
1310
+
1311
+ 400
1312
+ Optical absorption spectra of Li4
1313
+ cluster using various basis sets
1314
+ 6-311++G(2d,2p)
1315
+ 6-311++G(3df,3pd)
1316
+ III
1317
+ cC-pVDZ
1318
+ 300
1319
+ cc-pVTZ
1320
+ aug-cc-pVDZ
1321
+ (arb. units)
1322
+ aug-cc-pVTZ
1323
+ 200
1324
+ Intensity
1325
+ 100
1326
+ VI
1327
+ VII
1328
+ 0
1329
+ 0
1330
+ 2
1331
+ 4
1332
+ Energy (eV)Supporting Information For: Benchmarking
1333
+ Gaussian Basis Sets in Quantum-Chemical
1334
+ Calculations of Photoabsorption Spectra of
1335
+ Light Atomic Clusters
1336
+ Vikram Mahamiya,∗,† Pritam Bhattacharyya,∗,†,‡ and Alok Shukla∗,†
1337
+ †Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076,
1338
+ India
1339
+ ‡Present Address: Institute for Theoretical Solid State Physics, Leibniz IFW Dresden,
1340
+ Helmholtzstr. 20, 01069 Dresden, Germany
1341
1342
+ Table S1: Comparison of the peak locations of the optical absorption spectra of Li2 cluster
1343
+ computed using various basis sets.
1344
+ Basis Set
1345
+ Peak I
1346
+ Peak II
1347
+ Peak III
1348
+ Peak IV
1349
+ Peak V
1350
+ Peak VI
1351
+ Peak VII
1352
+ Peak VIII
1353
+ Peak IX
1354
+ (eV)
1355
+ (eV)
1356
+ (eV)
1357
+ (eV)
1358
+ (eV)
1359
+ (eV)
1360
+ (eV)
1361
+ (eV)
1362
+ (eV)
1363
+ 6-311++G(2d,2p)
1364
+ 1.82
1365
+ 2.61
1366
+ 3.85
1367
+ 4.87
1368
+ 5.88
1369
+ 6.50
1370
+ 7.06
1371
+ -
1372
+ -
1373
+ 6-311++G(3df,3pd)
1374
+ 1.83
1375
+ 2.57
1376
+ 3.85
1377
+ 4.61
1378
+ 4.84
1379
+ 5.64
1380
+ 5.88
1381
+ 6.08
1382
+ 7.00
1383
+ cc-pVDZ
1384
+ 1.82
1385
+ 2.65
1386
+ 4.43
1387
+ 5.95
1388
+ 7.12
1389
+ -
1390
+ -
1391
+ -
1392
+ -
1393
+ cc-pVTZ
1394
+ 1.83
1395
+ 2.58
1396
+ 4.26
1397
+ 5.43
1398
+ 5.98
1399
+ 6.64
1400
+ 7.03
1401
+ -
1402
+ -
1403
+ aug-cc-pVDZ
1404
+ 1.82
1405
+ 2.60
1406
+ 3.84
1407
+ 4.58
1408
+ 5.06
1409
+ 5.94
1410
+ 6.67
1411
+ 6.96
1412
+ -
1413
+ aug-cc-pVTZ
1414
+ 1.83
1415
+ 2.57
1416
+ 3.87
1417
+ 4.59
1418
+ 5.43
1419
+ 5.93
1420
+ 6.66
1421
+ 7.03
1422
+ -
1423
+ S1
1424
+ arXiv:2301.02413v1 [physics.chem-ph] 6 Jan 2023
1425
+
1426
+ Table S2: Comparison of the peak locations of the optical absorption spectra of Li3 chain
1427
+ computed using various basis sets.
1428
+ Basis Set
1429
+ Peak I
1430
+ Peak II
1431
+ Peak III
1432
+ Peak IV
1433
+ Peak V
1434
+ Peak VI
1435
+ (eV)
1436
+ (eV)
1437
+ (eV)
1438
+ (eV)
1439
+ (eV)
1440
+ (eV)
1441
+ 6-311++G(2d,2p)
1442
+ 0.72
1443
+ 1.27
1444
+ 2.58
1445
+ 3.39
1446
+ 3.91
1447
+ 4.28
1448
+ 6-311++G(3df,3pd)
1449
+ 0.72
1450
+ 1.27
1451
+ 2.54
1452
+ 3.38
1453
+ 3.90
1454
+ 4.14
1455
+ cc-pVDZ
1456
+ 0.72
1457
+ 1.26
1458
+ 2.65
1459
+ 3.47
1460
+ 4.37
1461
+ 4.92
1462
+ cc-pVTZ
1463
+ 0.72
1464
+ 1.28
1465
+ 2.57
1466
+ 3.45
1467
+ 4.39
1468
+ 4.58
1469
+ aug-cc-pVDZ
1470
+ 0.72
1471
+ 1.26
1472
+ 2.56
1473
+ 3.38
1474
+ 3.88
1475
+ -
1476
+ aug-cc-pVTZ
1477
+ 0.72
1478
+ 1.27
1479
+ 2.53
1480
+ 3.37
1481
+ 3.89
1482
+ -
1483
+ Table S3: The peak locations of the optical absorption spectra of Li3 isosceles triangular
1484
+ cluster computed using various basis sets are compared.
1485
+ Basis Set
1486
+ Peak I
1487
+ Peak II
1488
+ Peak III
1489
+ Peak IV
1490
+ Peak V
1491
+ Peak VI
1492
+ Peak VII
1493
+ (eV)
1494
+ (eV)
1495
+ (eV)
1496
+ (eV)
1497
+ (eV)
1498
+ (eV)
1499
+ (eV)
1500
+ 6-311++G(2d,2p)
1501
+ 1.09
1502
+ 1.41
1503
+ 2.14
1504
+ 2.41
1505
+ 2.66
1506
+ 2.97
1507
+ 3.21
1508
+ 6-311++G(3df,3pd)
1509
+ 1.07
1510
+ 1.42
1511
+ 2.12
1512
+ 2.39
1513
+ 2.65
1514
+ 2.96
1515
+ 3.19
1516
+ cc-pVDZ
1517
+ 1.11
1518
+ 1.40
1519
+ 2.18
1520
+ 2.43
1521
+ 2.61
1522
+ 2.81
1523
+ 3.13
1524
+ cc-pVTZ
1525
+ 1.08
1526
+ 1.42
1527
+ 2.15
1528
+ 2.40
1529
+ 2.70
1530
+ 3.02
1531
+ 4.27
1532
+ aug-cc-pVDZ
1533
+ 1.09
1534
+ 1.41
1535
+ 2.13
1536
+ 2.40
1537
+ 2.65
1538
+ 2.96
1539
+ 3.20
1540
+ aug-cc-pVTZ
1541
+ 1.07
1542
+ 1.42
1543
+ 2.11
1544
+ 2.43
1545
+ 2.65
1546
+ 2.95
1547
+ 3.20
1548
+ Table S4: High energy peak locations of the optical absorption spectra of Li3 Isosceles
1549
+ triangular cluster computed using various basis sets are compared.
1550
+ Li3 Cluster
1551
+ Peak VIII
1552
+ Peak IX
1553
+ Peak X
1554
+ Peak XI
1555
+ Peak XII
1556
+ Basis Set
1557
+ (eV)
1558
+ (eV)
1559
+ (eV)
1560
+ (eV)
1561
+ (eV)
1562
+ 6-311++G(2d,2p)
1563
+ 3.77
1564
+ 4.25
1565
+ 5.29
1566
+ 5.99
1567
+ -
1568
+ 6-311++G(3df,3pd)
1569
+ 3.75
1570
+ 4.17
1571
+ 4.91
1572
+ 5.25
1573
+ 5.79
1574
+ cc-pVDZ
1575
+ 3.57
1576
+ 4.24
1577
+ 4.94
1578
+ 5.33
1579
+ 6.05
1580
+ cc-pVTZ
1581
+ 4.69
1582
+ 5.64
1583
+ -
1584
+ -
1585
+ -
1586
+ aug-cc-pVDZ
1587
+ 4.16
1588
+ 4.44
1589
+ 5.35
1590
+ 5.59
1591
+ 5.94
1592
+ aug-cc-pVTZ
1593
+ 3.77
1594
+ 4.11
1595
+ 5.39
1596
+ 5.60
1597
+ -
1598
+ S2
1599
+
1600
+ Table S5: The peak locations of the optical absorption spectra of Li4 rhombus cluster com-
1601
+ puted using various basis sets. The higher energy peak locations are presented in the Table
1602
+ I of the Supporting Information.
1603
+ Basis Set
1604
+ Peak I
1605
+ Peak II
1606
+ Peak III
1607
+ Peak IV
1608
+ Peak V
1609
+ Peak VI
1610
+ Peak VII
1611
+ (eV)
1612
+ (eV)
1613
+ (eV)
1614
+ (eV)
1615
+ (eV)
1616
+ (eV)
1617
+ (eV)
1618
+ 6-311++G(2d,2p)
1619
+ 1.84
1620
+ 2.65
1621
+ 3.05
1622
+ 3.64
1623
+ 4.24
1624
+ 4.52
1625
+ 5.15
1626
+ 6-311++G(3df,3pd)
1627
+ 1.83
1628
+ 2.64
1629
+ 2.93
1630
+ 3.63
1631
+ 4.21
1632
+ 4.51
1633
+ 5.11
1634
+ cc-pVDZ
1635
+ 1.87
1636
+ 2.67
1637
+ 3.08
1638
+ 3.65
1639
+ 4.27
1640
+ 4.86
1641
+ 5.42
1642
+ cc-pVTZ
1643
+ 1.84
1644
+ 2.65
1645
+ 3.03
1646
+ 3.64
1647
+ 4.22
1648
+ 4.54
1649
+ 5.30
1650
+ aug-cc-pVDZ
1651
+ 1.85
1652
+ 2.65
1653
+ 3.05
1654
+ 3.61
1655
+ 4.23
1656
+ 4.62
1657
+ -
1658
+ aug-cc-pVTZ
1659
+ 1.87
1660
+ 2.65
1661
+ 2.93
1662
+ 3.66
1663
+ 4.22
1664
+ 4.61
1665
+ 5.30
1666
+ Table S6: The peak locations of the optical absorption spectra of Be+
1667
+ 2 cluster computed
1668
+ using various basis sets are compared.
1669
+ Basis Set
1670
+ Peak I
1671
+ Peak II
1672
+ Peak III
1673
+ Peak IV
1674
+ Peak V
1675
+ Peak VI
1676
+ Peak VII
1677
+ Peak VIII
1678
+ Peak IX
1679
+ (eV)
1680
+ (eV)
1681
+ (eV)
1682
+ (eV)
1683
+ (eV)
1684
+ (eV)
1685
+ (eV)
1686
+ (eV)
1687
+ (eV)
1688
+ 6-311++G(2d,2p)
1689
+ 1.75
1690
+ 3.66
1691
+ 4.18
1692
+ 6.04
1693
+ 6.32
1694
+ 8.32
1695
+ 8.90
1696
+ 9.33
1697
+ 9.65
1698
+ 6-311++G(3df,3pd)
1699
+ 1.74
1700
+ 3.68
1701
+ 4.18
1702
+ 6.04
1703
+ 6.30
1704
+ 8.33
1705
+ 8.84
1706
+ 9.31
1707
+ 9.63
1708
+ cc-pVDZ
1709
+ 1.76
1710
+ 3.69
1711
+ 4.20
1712
+ 6.12
1713
+ 6.37
1714
+ 8.28
1715
+ 9.61
1716
+ -
1717
+ -
1718
+ cc-pVTZ
1719
+ 1.74
1720
+ 3.68
1721
+ 4.19
1722
+ 6.05
1723
+ 6.31
1724
+ 8.44
1725
+ 9.50
1726
+ -
1727
+ -
1728
+ aug-cc-pVDZ
1729
+ 1.77
1730
+ 3.69
1731
+ 4.18
1732
+ 6.08
1733
+ 6.36
1734
+ 8.38
1735
+ 9.09
1736
+ 9.47
1737
+ -
1738
+ aug-cc-pVTZ
1739
+ 1.74
1740
+ 3.68
1741
+ 4.18
1742
+ 6.03
1743
+ 6.30
1744
+ 8.34
1745
+ 8.92
1746
+ 9.38
1747
+ -
1748
+ Table S7: The peak locations of the optical absorption spectra of Be+
1749
+ 3 cluster computed
1750
+ using various basis sets are compared.
1751
+ Basis Set
1752
+ Peak I
1753
+ Peak II
1754
+ Peak III
1755
+ Peak IV
1756
+ Peak V
1757
+ Peak VI
1758
+ Peak VII
1759
+ (eV)
1760
+ (eV)
1761
+ (eV)
1762
+ (eV)
1763
+ (eV)
1764
+ (eV)
1765
+ (eV)
1766
+ 6-311++G(2d,2p)
1767
+ 1.05
1768
+ 3.16
1769
+ 3.66
1770
+ 4.90
1771
+ 5.39
1772
+ 5.86
1773
+ 6.53
1774
+ 6-311++G(3df,3pd)
1775
+ 1.02
1776
+ 3.17
1777
+ 3.63
1778
+ 4.84
1779
+ 5.40
1780
+ 5.83
1781
+ 6.47
1782
+ cc-pVDZ
1783
+ 1.04
1784
+ 3.16
1785
+ 3.67
1786
+ 4.91
1787
+ 5.39
1788
+ 5.89
1789
+ 6.52
1790
+ cc-pVTZ
1791
+ 1.01
1792
+ 3.14
1793
+ 3.60
1794
+ 4.87
1795
+ 5.37
1796
+ 5.83
1797
+ 6.50
1798
+ aug-cc-pVDZ
1799
+ 1.02
1800
+ 3.16
1801
+ 3.66
1802
+ 4.87
1803
+ 5.41
1804
+ 5.87
1805
+ 6.51
1806
+ aug-cc-pVTZ
1807
+ 1.02
1808
+ 3.16
1809
+ 3.66
1810
+ 4.87
1811
+ 5.40
1812
+ 5.85
1813
+ 6.52
1814
+ S3
1815
+
1816
+ Table S8: The peak locations of the optical absorption spectra of B+
1817
+ 2 cluster computed using
1818
+ various basis sets are compared.
1819
+ Basis Set
1820
+ Peak I
1821
+ Peak II
1822
+ Peak III
1823
+ Peak IV
1824
+ Peak V
1825
+ Peak VI
1826
+ Peak VII
1827
+ Peak VIII
1828
+ Peak IX
1829
+ (eV)
1830
+ (eV)
1831
+ (eV)
1832
+ (eV)
1833
+ (eV)
1834
+ (eV)
1835
+ (eV)
1836
+ (eV)
1837
+ (eV)
1838
+ 6-311++G(2d,2p)
1839
+ 3.65
1840
+ 4.86
1841
+ 6.01
1842
+ 7.00
1843
+ 7.63
1844
+ 9.68
1845
+ 10.26
1846
+ 11.42
1847
+ 12.71
1848
+ 6-311++G(3df,3pd)
1849
+ 3.65
1850
+ 4.77
1851
+ 5.98
1852
+ 7.14
1853
+ 7.62
1854
+ 9.65
1855
+ 10.22
1856
+ 11.40
1857
+ 12.61
1858
+ cc-pVDZ
1859
+ 3.64
1860
+ 4.79
1861
+ 6.03
1862
+ 7.16
1863
+ -
1864
+ 9.88
1865
+ 11.29
1866
+ 12.74
1867
+ cc-pVTZ
1868
+ 3.66
1869
+ 4.80
1870
+ 5.99
1871
+ 7.05
1872
+ 7.63
1873
+ 9.87
1874
+ 11.12
1875
+ 12.77
1876
+ -
1877
+ aug-cc-pVDZ
1878
+ 3.63
1879
+ 4.78
1880
+ 5.98
1881
+ 7.03
1882
+ 7.60
1883
+ 9.66
1884
+ 10.27
1885
+ 11.31
1886
+ 12.52
1887
+ aug-cc-pVTZ
1888
+ 3.66
1889
+ 4.80
1890
+ 5.99
1891
+ 7.04
1892
+ 7.65
1893
+ 9.65
1894
+ 10.21
1895
+ 11.41
1896
+ 12.20
1897
+ Table S9: The peak locations of the optical absorption spectra of B+
1898
+ 3 cluster computed using
1899
+ various basis sets are compared.
1900
+ B+
1901
+ 3 Cluster
1902
+ Peak I
1903
+ Peak II
1904
+ Peak III
1905
+ Peak IV
1906
+ Peak V
1907
+ Peak VI
1908
+ Peak VII
1909
+ Peak VIII
1910
+ Basis Set
1911
+ (eV)
1912
+ (eV)
1913
+ (eV)
1914
+ (eV)
1915
+ (eV)
1916
+ (eV)
1917
+ (eV)
1918
+ (eV)
1919
+ 6-311++G(2d,2p)
1920
+ 0.82
1921
+ 3.24
1922
+ 5.00
1923
+ 5.38
1924
+ 6.02
1925
+ 7.12
1926
+ 8.09
1927
+ 8.85
1928
+ 6-311++G(3df,3pd)
1929
+ 0.83
1930
+ 3.21
1931
+ 4.99
1932
+ 5.44
1933
+ 6.06
1934
+ 7.17
1935
+ 8.07
1936
+ 8.87
1937
+ cc-pVDZ
1938
+ 0.96
1939
+ 3.28
1940
+ 5.17
1941
+ 5.59
1942
+ 6.11
1943
+ 7.39
1944
+ 8.21
1945
+ 8.95
1946
+ cc-pVTZ
1947
+ 0.82
1948
+ 3.23
1949
+ 4.98
1950
+ 5.35
1951
+ 6.03
1952
+ 7.01
1953
+ 8.06
1954
+ 8.79
1955
+ aug-cc-pVDZ
1956
+ 0.84
1957
+ 3.22
1958
+ 5.00
1959
+ 5.41
1960
+ 6.02
1961
+ 7.10
1962
+ 8.03
1963
+ 8.80
1964
+ aug-cc-pVTZ
1965
+ 0.84
1966
+ 3.22
1967
+ 5.01
1968
+ 5.45
1969
+ 6.03
1970
+ 7.16
1971
+ 8.08
1972
+ 8.85
1973
+ Table S10: The peak locations of the optical absorption spectra of B+
1974
+ 3 cluster employing TD-
1975
+ DFT method with B3LYP functional and computed using various basis sets are compared.
1976
+ B+
1977
+ 3 Cluster
1978
+ Peak I
1979
+ Peak II
1980
+ Peak III
1981
+ Peak IV
1982
+ Basis Set
1983
+ (eV)
1984
+ (eV)
1985
+ (eV)
1986
+ (eV)
1987
+ 6-311++G(2d,2p)
1988
+ 0.94
1989
+ 2.95
1990
+ 5.70
1991
+ 9.35
1992
+ 6-311++G(3df,3pd)
1993
+ 0.95
1994
+ 2.94
1995
+ 5.70
1996
+ 9.35
1997
+ cc-pVDZ
1998
+ 0.96
1999
+ 3.00
2000
+ 5.73
2001
+ 9.52
2002
+ cc-pVTZ
2003
+ 0.96
2004
+ 2.95
2005
+ 5.70
2006
+ 9.40
2007
+ aug-cc-pVDZ
2008
+ 0.96
2009
+ 2.99
2010
+ 5.73
2011
+ 9.40
2012
+ aug-cc-pVTZ
2013
+ 0.95
2014
+ 2.94
2015
+ 5.70
2016
+ 9.36
2017
+ S4
2018
+
2019
+ Table S11: Comparison of oscillator strengths and the dominant configurations contributing
2020
+ to the many-particle wave functions for peaks I and the maximum intensity peak (peak III)
2021
+ of Li3 chain calculated using different basis sets. In the “Polarization” column, ∥ indicates
2022
+ photon polarization along the direction of the molecule (longitudinal polarization), while ⊥
2023
+ indicates polarization perpendicular to the molecular axis (transverse polarization). ’H’ and
2024
+ ’L’ stand for HOMO and LUMO orbitals.
2025
+ Basis Set
2026
+ Peak I
2027
+ Peak III
2028
+ Polarization
2029
+ f
2030
+ Wave-function
2031
+ Polarization
2032
+ f
2033
+ Wave-function
2034
+ 6-311++G(2d,2p)
2035
+
2036
+ 0.106
2037
+ |H − 1 → H⟩
2038
+
2039
+ 0.591
2040
+ |H − 1 → L + 2⟩
2041
+ |H → L + 6⟩
2042
+ 6-311++G(3df,3pd)
2043
+
2044
+ 0.106
2045
+ |H − 1 → H⟩
2046
+
2047
+ 0.595
2048
+ |H − 1 → L + 2⟩
2049
+ |H → L + 5⟩
2050
+ |H → L + 11⟩
2051
+ cc-PVDZ
2052
+
2053
+ 0.097
2054
+ |H − 1 → H⟩
2055
+
2056
+ 0.631
2057
+ |H − 1 → L + 1⟩
2058
+ |H → L⟩
2059
+ |H → L + 3⟩
2060
+ cc-pVTZ
2061
+
2062
+ 0.105
2063
+ |H − 1 → H⟩
2064
+
2065
+ 0.618
2066
+ |H − 1 → L + 1⟩
2067
+ |H → L⟩
2068
+ |H → L + 3⟩
2069
+ aug-cc-pVDZ
2070
+
2071
+ 0.101
2072
+ |H − 1 → H⟩
2073
+
2074
+ 0.603
2075
+ |H − 1 → L + 2⟩
2076
+ |H → L + 7⟩
2077
+ |H → L + 10⟩
2078
+ aug-cc-pVTZ
2079
+
2080
+ 0.106
2081
+ |HF⟩
2082
+
2083
+ 0.594
2084
+ |H − 1 → L + 2⟩
2085
+ |H − 1 → H;
2086
+ |H − 1 → H;
2087
+ H − 1 → L + 5⟩
2088
+ H − 1 → L + 11⟩
2089
+ Table S12: Comparison of oscillator strengths and the dominant configurations contributing
2090
+ to the many-particle wave functions for peaks I and the maximum intensity peak (peak IV)
2091
+ of Li3 triangular calculated using different basis sets. The rest of the information is same as
2092
+ in the caption of Table S11.
2093
+ Basis Set
2094
+ Peak I
2095
+ Peak IV
2096
+ Polarization
2097
+ f
2098
+ Wave-function
2099
+ Polarization
2100
+ f
2101
+ Wave-function
2102
+ 6-311++G(2d,2p)
2103
+
2104
+ 0.127
2105
+ |H → L + 14⟩
2106
+
2107
+ 0.465
2108
+ |H − 1 → L⟩
2109
+ |H → L + 1⟩
2110
+ |H → L + 9⟩
2111
+ 6-311++G(3df,3pd)
2112
+
2113
+ 0.131
2114
+ |H → L + 14⟩
2115
+
2116
+ 0.459
2117
+ |H − 1 → L⟩
2118
+ |H → L + 1⟩
2119
+ |H → L + 5⟩
2120
+ cc-PVDZ
2121
+
2122
+ 0.121
2123
+ |H → L + 2⟩
2124
+
2125
+ 0.488
2126
+ |H − 1 → L⟩
2127
+ |H − 1 → L + 2⟩
2128
+ |H → L + 4⟩
2129
+ cc-pVTZ
2130
+
2131
+ 0.129
2132
+ |H → L + 2⟩
2133
+
2134
+ 0.478
2135
+ |H − 1 → L⟩
2136
+ |H − 1 → L + 2⟩
2137
+ |H → L + 4⟩
2138
+ aug-cc-pVDZ
2139
+
2140
+ 0.126
2141
+ |H → L + 14⟩
2142
+
2143
+ 0.469
2144
+ |H − 1 → L⟩
2145
+ |H → L + 10⟩
2146
+ |H → L + 16⟩
2147
+ aug-cc-pVTZ
2148
+
2149
+ 0.129
2150
+ |H → L + 13⟩
2151
+
2152
+ 0.462
2153
+ |H − 1 → L⟩
2154
+ |H → L + 1⟩
2155
+ |H → L + 5⟩
2156
+ S5
2157
+
2158
+ Table S13: Comparison of oscillator strengths and the dominant configurations contributing
2159
+ to the many-particle wave functions for peaks I and the maximum intensity peak (peak II)
2160
+ of Li4 cluster calculated using different basis sets. The rest of the information is same as in
2161
+ the caption of Table S11.
2162
+ Basis Set
2163
+ Peak I
2164
+ Peak II
2165
+ Polarization
2166
+ f
2167
+ Wave-function
2168
+ Polarization
2169
+ f
2170
+ Wave-function
2171
+ 6-311++G(2d,2p)
2172
+
2173
+ 0.628
2174
+ |H → L + 1⟩
2175
+
2176
+ 0.648
2177
+ |H − 1 → L⟩
2178
+ |H → L + 8⟩
2179
+ |H − 1 → L + 5⟩
2180
+ 6-311++G(3df,3pd)
2181
+
2182
+ 0.615
2183
+ |H → L + 1⟩
2184
+
2185
+ 0.683
2186
+ |H − 1 → L⟩
2187
+ |H → L + 9⟩
2188
+ |H − 1 → L + 6⟩
2189
+ cc-PVDZ
2190
+
2191
+ 0.659
2192
+ |H → L + 1⟩
2193
+
2194
+ 0.649
2195
+ |H − 1 → L⟩
2196
+ |H → L + 4⟩
2197
+ |H → L + 3⟩
2198
+ cc-pVTZ
2199
+
2200
+ 0.624
2201
+ |H → L + 1⟩
2202
+
2203
+ 0.678
2204
+ |H − 1 → L⟩
2205
+ |H → L + 5⟩
2206
+ |H → L + 4⟩
2207
+ aug-cc-pVDZ
2208
+
2209
+ 0.634
2210
+ |H → L + 1⟩
2211
+
2212
+ 0.654
2213
+ |H − 1 → L⟩
2214
+ |H → L + 9⟩
2215
+ |H − 1 → L + 5⟩
2216
+ aug-cc-pVTZ
2217
+
2218
+ 0.656
2219
+ |H → L + 1⟩
2220
+
2221
+ 0.660
2222
+ |H − 1 → L⟩
2223
+ |H → L + 9⟩
2224
+ |H − 1 → L + 5⟩
2225
+ Table S14: Comparison of oscillator strengths and the dominant configurations contributing
2226
+ to the many-particle wave functions for peaks I and the maximum intensity peak (peak V)
2227
+ of Be+
2228
+ 2 cluster calculated using different basis sets. The rest of the information is same as in
2229
+ the caption of Table S11
2230
+ Basis Set
2231
+ Peak I
2232
+ Peak V
2233
+ Polarization
2234
+ f
2235
+ Wave-function
2236
+ Polarization
2237
+ f
2238
+ Wave-function
2239
+ 6-311++G(2d,2p)
2240
+
2241
+ 0.113
2242
+ |H → L⟩
2243
+
2244
+ 0.745
2245
+ |H − 1 → L + 1⟩
2246
+ |H − 1 → H⟩
2247
+ |H − 1 → L; H → L + 2⟩
2248
+ 6-311++G(3df,3pd)
2249
+
2250
+ 0.119
2251
+ |H → L⟩
2252
+
2253
+ 0.749
2254
+ |H − 1 → L + 1⟩
2255
+ |H − 1 → H⟩
2256
+ |H − 1 → L; H → L + 2⟩
2257
+ cc-PVDZ
2258
+
2259
+ 0.114
2260
+ |H → L + 2⟩
2261
+
2262
+ 0.736
2263
+ |H − 1 → L⟩
2264
+ |H → L; H − 1 → L⟩
2265
+ |H − 1 → L + 2; H → L + 3⟩
2266
+ cc-pVTZ
2267
+
2268
+ 0.120
2269
+ |H → L + 2⟩
2270
+
2271
+ 0.749
2272
+ |H − 1 → L⟩
2273
+ |H → L; H − 1 → L⟩
2274
+ |H − 1 → L + 2; H → L + 3⟩
2275
+ aug-cc-pVDZ
2276
+
2277
+ 0.114
2278
+ |H → L + 2⟩
2279
+
2280
+ 0.768
2281
+ |H − 1 → L⟩
2282
+ |H → L; H − 1 → L⟩
2283
+ |H − 1 → L + 2; H → L + 3⟩
2284
+ aug-cc-pVTZ
2285
+
2286
+ 0.120
2287
+ |H → L + 2⟩
2288
+
2289
+ 0.757
2290
+ |H − 1 → L⟩
2291
+ |H → L; H − 1 → L⟩
2292
+ |H − 1 → L + 2; H → L + 3⟩
2293
+ S6
2294
+
2295
+ Table S15: Comparison of oscillator strengths and the dominant configurations contributing
2296
+ to the many-particle wave functions for peaks I and the maximum intensity peak (peak VII)
2297
+ of Be+
2298
+ 3 cluster calculated using different basis sets. The rest of the information is same as in
2299
+ the caption of Table S11
2300
+ Basis Set
2301
+ Peak I
2302
+ Peak VII
2303
+ Polarization
2304
+ f
2305
+ Wave-function
2306
+ Polarization
2307
+ f
2308
+ Wave-function
2309
+ 6-311++G(2d,2p)
2310
+
2311
+ 0.172
2312
+ |HF⟩
2313
+
2314
+ 0.655
2315
+ |H − 2 → L + 1⟩
2316
+ |H → L⟩
2317
+ |H − 1 → L + 2⟩
2318
+ 6-311++G(3df,3pd)
2319
+
2320
+ 0.184
2321
+ |H → L + 1⟩
2322
+
2323
+ 0.647
2324
+ |H − 2 → L; H → L + 2⟩
2325
+ |H − 1 → L; H → L⟩
2326
+ |H − 1 → L; H → L + 4⟩
2327
+ cc-PVDZ
2328
+
2329
+ 0.178
2330
+ |H → L⟩
2331
+
2332
+ 0.640
2333
+ |H − 2 → L + 1⟩
2334
+ |H − 1 → H⟩
2335
+ |H − 1 → L + 2⟩
2336
+ cc-pVTZ
2337
+
2338
+ 0.169
2339
+ |HF⟩
2340
+
2341
+ 0.635
2342
+ |H − 2 → L; H → L + 1⟩
2343
+ |H − 1 → L; H → L⟩
2344
+ |H − 1 → L; H → L + 2⟩
2345
+ aug-cc-pVDZ
2346
+
2347
+ 0.180
2348
+ |H → L + 1⟩
2349
+
2350
+ 0.646
2351
+ |H − 2 → L; H → L + 2⟩
2352
+ |H − 1 → L; H → L⟩
2353
+ |H − 1 → L; H → L + 4⟩
2354
+ aug-cc-pVTZ
2355
+
2356
+ 0.179
2357
+ |H → L + 1⟩
2358
+
2359
+ 0.657
2360
+ |H − 2 → L; H → L + 2⟩
2361
+ |H − 1 → L; H → L⟩
2362
+ |H − 1 → L; H → L + 4⟩
2363
+ Table S16: Comparison of oscillator strengths and the dominant configurations contributing
2364
+ to the many-particle wave functions for peaks I and the maximum intensity peak (peak IV)
2365
+ of B+
2366
+ 2 cluster calculated using different basis sets. The rest of the information is same as in
2367
+ the caption of Table S11
2368
+ Basis Set
2369
+ Peak I
2370
+ Peak IV
2371
+ Polarization
2372
+ f
2373
+ Wave-function
2374
+ Polarization
2375
+ f
2376
+ Wave-function
2377
+ 6-311++G(2d,2p)
2378
+
2379
+ 0.026
2380
+ |H − 1 → L; H → L⟩
2381
+
2382
+ 0.910
2383
+ |H → L + 5⟩
2384
+ |H → L + 11⟩
2385
+ |H → L + 11⟩
2386
+ 6-311++G(3df,3pd)
2387
+
2388
+ 0.025
2389
+ |H − 1 → L; H → L⟩
2390
+
2391
+ 0.915
2392
+ |H → L + 5⟩
2393
+ |H → L + 11⟩
2394
+ |H → L + 11⟩
2395
+ cc-PVDZ
2396
+
2397
+ 0.025
2398
+ |H − 1 → L; H → L⟩
2399
+
2400
+ 0.965
2401
+ |H → L + 5⟩
2402
+ |H → L + 5⟩
2403
+ |H − 1 → L; H → L⟩
2404
+ cc-pVTZ
2405
+
2406
+ 0.024
2407
+ |H − 1 → L; H → L⟩
2408
+
2409
+ 0.942
2410
+ |H → L + 5⟩
2411
+ |H → L + 5⟩
2412
+ |H − 1 → L; H → L⟩
2413
+ aug-cc-pVDZ
2414
+
2415
+ 0.028
2416
+ |H − 1 → L; H → L⟩
2417
+
2418
+ 0.895
2419
+ |H → L + 11⟩
2420
+ |H → L + 11⟩
2421
+ |H → L + 5⟩
2422
+ aug-cc-pVTZ
2423
+
2424
+ 0.026
2425
+ |H − 1 → L; H → L⟩
2426
+
2427
+ 0.918
2428
+ |H → L + 11⟩
2429
+ |H → L + 11⟩
2430
+ |H → L + 5⟩
2431
+ S7
2432
+
2433
+ Table S17: Comparison of oscillator strengths and the dominant configurations contributing
2434
+ to the many-particle wave functions for peaks I and the maximum intensity peak (peak VIII)
2435
+ of B+
2436
+ 3 cluster calculated using different basis sets. The rest of the information is same as in
2437
+ the caption of Table S11
2438
+ Basis Set
2439
+ Peak I
2440
+ Peak VIII
2441
+ Polarization
2442
+ f
2443
+ Wave-function
2444
+ Polarization
2445
+ f
2446
+ Wave-function
2447
+ 6-311++G(2d,2p)
2448
+
2449
+ 0.005
2450
+ |H → L⟩
2451
+
2452
+ 0.508
2453
+ |H − 1 → L; H → L + 3⟩
2454
+ |H − 2 → L; H → L + 1⟩
2455
+ |H − 1 → L; H → L + 2⟩
2456
+ 6-311++G(3df,3pd)
2457
+
2458
+ 0.005
2459
+ |H → L⟩
2460
+
2461
+ 0.514
2462
+ |H − 1 → L; H → L + 3⟩
2463
+ |H − 1 → L; H → L + 1⟩
2464
+ |H − 1 → L; H → L + 2⟩
2465
+ cc-PVDZ
2466
+
2467
+ 0.007
2468
+ |H → L⟩
2469
+
2470
+ 0.480
2471
+ |H − 1 → L; H → L + 3⟩
2472
+ |H − 1 → L; H → L + 1⟩
2473
+ |H − 1 → L; H → L + 3⟩
2474
+ cc-pVTZ
2475
+
2476
+ 0.005
2477
+ |H → L⟩
2478
+
2479
+ 0.491
2480
+ |H − 1 → L; H → L + 3⟩
2481
+ |H − 1 → L; H → L + 1⟩
2482
+ |H − 1 → L; H → L + 2⟩
2483
+ aug-cc-pVDZ
2484
+
2485
+ 0.005
2486
+ |H → L⟩
2487
+
2488
+ 0.467
2489
+ |H − 1 → L; H → L + 3⟩
2490
+ |H − 1 → L; H → L + 2⟩
2491
+ |H − 1 → L; H → L + 3⟩
2492
+ aug-cc-pVTZ
2493
+
2494
+ 0.006
2495
+ |H → L⟩
2496
+
2497
+ 0.519
2498
+ |H − 1 → L; H → L + 3⟩
2499
+ |H − 1 → L; H → L + 2⟩
2500
+ |H − 1 → L; H → L + 3⟩
2501
+ S8
2502
+
2503
+ Table S18: Many-particle wave functions of excited states contributing to the peaks in
2504
+ the optical absorption spectrum of Li2 cluster for aug-cc-pVTZ basis set. ’E’ corresponds
2505
+ to excitation energy (in eV) of an excited state, f denotes the oscillator strength for a
2506
+ particular electric dipole transition. In the “|TDM|” column,we present the magnitudes of the
2507
+ transition dipole moments (TDMs) to understand the extent of coupling between the relevant
2508
+ excited state and the ground state. ∥ indicates photon polarization along the direction of
2509
+ the molecule (longitudinal polarization), while ⊥ indicates polarization perpendicular to the
2510
+ molecular axis (transverse polarization). ’H’ and ’L’ stand for HOMO and LUMO orbitals.
2511
+ In the “Wave function” column, each number inside the parentheses denotes the coefficient
2512
+ of the corresponding configuration in the CI wave function. GS indicates the ground states
2513
+ wave function of the cluster.
2514
+ Peak
2515
+ E (eV)
2516
+ f
2517
+ |TDM|
2518
+ Polarization
2519
+ Wave function
2520
+ GS
2521
+ |HF⟩(0.9520)
2522
+ |H → L + 7; H → L + 15⟩(0.0879)
2523
+ I
2524
+ 1.83
2525
+ 0.454
2526
+ 3.184
2527
+
2528
+ |H → L⟩(0.7523)
2529
+ |H → L + 3⟩(0.3959)
2530
+ II
2531
+ 2.57
2532
+ 0.966
2533
+ 2.770
2534
+
2535
+ |H → L + 2⟩(0.7046)
2536
+ |H → L + 7⟩(0.5914)
2537
+ III
2538
+ 3.87
2539
+ 0.049
2540
+ 0.509
2541
+
2542
+ |H → L + 7⟩(0.6291)
2543
+ |H → L + 2⟩(0.5439)
2544
+ V
2545
+ 5.42
2546
+ 0.024
2547
+ 0.303
2548
+
2549
+ |H → L + 16⟩(0.8509)
2550
+ |H → L + 8; H → L + 16⟩(0.1702)
2551
+ VI
2552
+ 5.93
2553
+ 0.026
2554
+ 0.421
2555
+
2556
+ |H → L + 12⟩(0.2911)
2557
+ |H → L; H → L + 8⟩(0.2523)
2558
+ S9
2559
+
2560
+ Table S19: Many-particle wave functions of excited states contributing to the peaks in the
2561
+ optical absorption spectrum of Li3 linear cluster for aug-cc-pVTZ basis set. The rest of the
2562
+ information is same as in the caption of Table S18
2563
+ Peak
2564
+ E (eV)
2565
+ f
2566
+ |TDM|
2567
+ Polarization
2568
+ Wave function
2569
+ GS
2570
+ |H − 1 → H⟩(0.9246)
2571
+ |H − 1 → L + 13⟩(0.0919)
2572
+ I
2573
+ 0.72
2574
+ 0.106
2575
+ 2.453
2576
+
2577
+ |HF⟩(0.8814)
2578
+ |H − 1 → H; H − 1 → L + 5⟩(0.1436)
2579
+ II
2580
+ 1.27
2581
+ 0.503
2582
+ 4.023
2583
+
2584
+ |H − 1 → H; H − 1 → L⟩(0.5569)
2585
+ |H − 1 → H; H − 1 → L + 5⟩(0.5102)
2586
+ III
2587
+ 2.53
2588
+ 0.594
2589
+ 3.096
2590
+
2591
+ |H − 1 → L + 2⟩(0.6262)
2592
+ |H − 1 → H; H − 1 → L + 11⟩(0.3628)
2593
+ IV
2594
+ 3.37
2595
+ 0.215
2596
+ 1.141
2597
+
2598
+ |H − 1 → L + 7⟩(0.4255)
2599
+ |H − 1 → L + 14⟩(0.4237)
2600
+ V
2601
+ 3.89
2602
+ 0.011
2603
+ 0.343
2604
+
2605
+ |H − 1 → L + 8⟩(0.4214)
2606
+ |H − 1 → H; H − 1 → L + 13⟩(0.3520)
2607
+ S10
2608
+
2609
+ Table S20: Many-particle wave functions of excited states contributing to the peaks in the
2610
+ optical absorption spectrum of Li3 isosceles triangular cluster for aug-cc-pVTZ basis set.
2611
+ The rest of the information is same as in the caption of TableS18
2612
+ Peak
2613
+ E (eV)
2614
+ f
2615
+ |TDM|
2616
+ Polarization
2617
+ Wave function
2618
+ GS
2619
+ |HF⟩(0.9102)
2620
+ |H − 1 → H⟩(0.0933)
2621
+ I
2622
+ 1.07
2623
+ 0.129
2624
+ 2.222
2625
+
2626
+ |H → L + 13⟩(0.4241)
2627
+ |H → L + 1⟩(0.4114)
2628
+ II
2629
+ 1.42
2630
+ 0.020
2631
+ 0.767
2632
+
2633
+ |H → L + 16⟩(0.5005)
2634
+ |H − 1 → L⟩(0.4115)
2635
+ III
2636
+ 2.11
2637
+ 0.352
2638
+ 2.611
2639
+
2640
+ |H − 1 → H⟩(0.5806)
2641
+ |H − 1 → L + 15⟩(0.2483)
2642
+ IV
2643
+ 2.43
2644
+ 0.462
2645
+ 2.885
2646
+
2647
+ |H − 1 → L⟩(0.5537)
2648
+ |H → L + 5⟩(0.3869)
2649
+ V
2650
+ 2.65
2651
+ 0.088
2652
+ 1.163
2653
+
2654
+ |H → L + 2⟩(0.5541)
2655
+ |H → L + 12⟩(0.3375)
2656
+ VI
2657
+ 2.95
2658
+ 0.267
2659
+ 1.922
2660
+
2661
+ |H − 1 → L + 2⟩(0.4766)
2662
+ |H − 1 → L + 12⟩(0.4269)
2663
+ VII
2664
+ 3.20
2665
+ 0.117
2666
+ 1.223
2667
+
2668
+ |H − 1 → L + 2⟩(0.3983)
2669
+ |H → L + 12⟩(0.3579)
2670
+ VIII
2671
+ 3.77
2672
+ 0.016
2673
+ 0.417
2674
+
2675
+ |H → L + 10⟩(0.3841)
2676
+ |H → L + 19⟩(0.3349)
2677
+ IX
2678
+ 4.11
2679
+ 0.029
2680
+ 0.533
2681
+
2682
+ |H − 1 → L + 14⟩(0.4375)
2683
+ |H − 1 → L⟩(0.3910)
2684
+ X
2685
+ 5.39
2686
+ 0.004
2687
+ 0.171
2688
+
2689
+ |H → L + 35⟩(0.2813)
2690
+ |H → L + 37⟩(0.2744)
2691
+ S11
2692
+
2693
+ Table S21: Many-particle wave functions of excited states contributing to the peaks in
2694
+ the optical absorption spectrum of Li4 cluster for aug-cc-pVTZ basis set. The rest of the
2695
+ information is same as in the caption of Table S18
2696
+ Peak
2697
+ E (eV)
2698
+ f
2699
+ |TDM|
2700
+ Polarization
2701
+ Wave function
2702
+ GS
2703
+ |HF⟩(0.8913)
2704
+ |(H − 1) → L; H → L + 18⟩(0.0791)
2705
+ I
2706
+ 1.87
2707
+ 0.656
2708
+ 3.785
2709
+
2710
+ |H → L + 1⟩(0.5922)
2711
+ |H → L + 9⟩(0.4041)
2712
+ II
2713
+ 2.65
2714
+ 0.660
2715
+ 3.188
2716
+
2717
+ |H − 1 → L⟩(0.6193)
2718
+ |H − 1 → L + 5⟩(0.2910)
2719
+ III
2720
+ 2.93
2721
+ 0.316
2722
+ 2.098
2723
+
2724
+ |H → L + 7⟩(0.4577)
2725
+ |H → L + 20⟩(0.4174)
2726
+ IV
2727
+ 3.43
2728
+ 0.045
2729
+ 0.736
2730
+
2731
+ |H − 1 → L + 3⟩(0.3080)
2732
+ |H → L + 7⟩(0.2299)
2733
+ V
2734
+ 3.66
2735
+ 0.103
2736
+ 1.070
2737
+
2738
+ |H → L + 6⟩(0.5653)
2739
+ |H → L + 18⟩(0.3856)
2740
+ VI
2741
+ 4.22
2742
+ 0.077
2743
+ 0.862
2744
+
2745
+ |H − 1 → L + 3⟩(0.2380)
2746
+ |H → L + 20; H → L + 21⟩(0.2227)
2747
+ VII
2748
+ 4.61
2749
+ 0.063
2750
+ 0.746
2751
+
2752
+ |H − 1 → L + 3⟩(0.4044)
2753
+ |H − 1 → L + 12⟩(0.4026)
2754
+ VIII
2755
+ 5.30
2756
+ 0.012
2757
+ 0.300
2758
+
2759
+ |H → L + 33⟩(0.3681)
2760
+ |H → L; H → L + 6⟩(0.2294)
2761
+ Table S22: Many-particle wave functions of excited states contributing to the peaks in the
2762
+ optical absorption spectrum of Be+
2763
+ 2 cluster for aug-cc-pVTZ basis set.
2764
+ The rest of the
2765
+ information is same as in the caption of Table S18
2766
+ Peak
2767
+ E (eV)
2768
+ f
2769
+ |TDM|
2770
+ Polarization
2771
+ Wave function
2772
+ GS
2773
+ |H → L⟩(0.9351)
2774
+ |H − 1 → L; H → L + 2⟩(0.1684)
2775
+ I
2776
+ 1.74
2777
+ 0.120
2778
+ 1.680
2779
+
2780
+ |H → L + 2⟩(0.8403)
2781
+ |H − 1 → L; H → L⟩(0.3820)
2782
+ II
2783
+ 3.67
2784
+ 0.121
2785
+ 0.821
2786
+
2787
+ |H → L + 3⟩(0.6705)
2788
+ |H → L + 4⟩(0.6375)
2789
+ III
2790
+ 4.19
2791
+ 0.386
2792
+ 1.940
2793
+
2794
+ |H − 1 → L; H → L⟩(0.7268)
2795
+ |H → L + 2⟩(0.3897)
2796
+ IV
2797
+ 6.01
2798
+ 0.201
2799
+ 0.827
2800
+
2801
+ |H − 1 → L⟩(0.6418)
2802
+ |H − 1 → L; H → L + 1⟩(0.6116)
2803
+ V
2804
+ 6.30
2805
+ 0.757
2806
+ 1.566
2807
+
2808
+ |H − 1 → L⟩(0.8762)
2809
+ |H − 1 → L + 2; H → L + 3⟩(0.8573)
2810
+ S12
2811
+
2812
+ Table S23: Many-particle wave functions of excited states contributing to the peaks in the
2813
+ optical absorption spectrum of Be+
2814
+ 3 cluster for aug-cc-pVTZ basis set.
2815
+ The rest of the
2816
+ information is same as in the caption of Table S18
2817
+ Peak
2818
+ E (eV)
2819
+ f
2820
+ |TDM|
2821
+ Polarization
2822
+ Wave function
2823
+ GS
2824
+ |H → L⟩(.8776)
2825
+ |H − 1 → L + 1; H → L⟩(.1913)
2826
+ I
2827
+ 1.02
2828
+ 0.179
2829
+ 2.678702
2830
+
2831
+ |H → L + 1⟩(0.8200)
2832
+ |H − 1 → L; H → L⟩(0.3257)
2833
+ II
2834
+ 3.16
2835
+ 0.433
2836
+ 2.365586
2837
+
2838
+ |H − 1 → L; H → L⟩(0.6152)
2839
+ |H − 1 → L + 1; H → L + 1⟩(0.4714)
2840
+ III
2841
+ 3.66
2842
+ 0.028
2843
+ 0.563211
2844
+
2845
+ |H − 2 → L; H → L + 2⟩(0.5209)
2846
+ |H → L + 17⟩(0.4125)
2847
+ IV
2848
+ 4.87
2849
+ 0.020
2850
+ 0.407823
2851
+
2852
+ |H − 1 → L + 1; H → L + 2⟩(0.5211)
2853
+ |H → L + 17⟩(0.3217)
2854
+ V
2855
+ 5.40
2856
+ 0.204
2857
+ 1.242734
2858
+
2859
+ |H − 2 → L; H → L + 1⟩(0.6337)
2860
+ |H − 1 → L; H → L⟩(0.3104)
2861
+ VI
2862
+ 5.85
2863
+ 0.054
2864
+ 0.612656
2865
+
2866
+ |H − 1 → L; H → L + 4⟩(0.4315)
2867
+ |H − 1 → L; H − 1 → L + 2; H → L⟩(0.2864)
2868
+ VII
2869
+ 6.52
2870
+ 0.657
2871
+ 2.028291
2872
+
2873
+ |H − 2 → L; H → L + 2⟩(0.4960)
2874
+ |H − 1 → L; H → L + 4⟩(0.4653)
2875
+ Table S24: Many-particle wave functions of excited states contributing to the peaks in
2876
+ the optical absorption spectrum of B+
2877
+ 2 cluster for aug-cc-pVTZ basis set. The rest of the
2878
+ information is same as in the caption of Table S18
2879
+ Peak
2880
+ E (eV)
2881
+ f
2882
+ |TDM|
2883
+ Polarization
2884
+ Wave function
2885
+ GS
2886
+ |H → L⟩(.9033)
2887
+ |H − 2 → L; H − 1 → L + 2⟩(.1271)
2888
+ I
2889
+ 3.66
2890
+ 0.026
2891
+ 0.537
2892
+
2893
+ |H − 1 → L; H → L⟩(0.7250)
2894
+ |H → L + 11⟩(0.2622)
2895
+ II
2896
+ 4.80
2897
+ 0.029
2898
+ 0.496
2899
+
2900
+ |H − 1 → L + 1; H → L + 1⟩(0.5092)
2901
+ |H − 1 → H⟩(0.4944)
2902
+ III
2903
+ 5.99
2904
+ 0.019
2905
+ 0.364
2906
+
2907
+ |H − 1 → L; H → L + 2⟩(0.6138)
2908
+ |H − 2 → L⟩(0.4445)
2909
+ IV
2910
+ 7.04
2911
+ 0.918
2912
+ 2.307
2913
+
2914
+ |H → L + 11⟩(0.4808)
2915
+ |H → L + 5⟩(0.4713)
2916
+ V
2917
+ 7.65
2918
+ 0.009
2919
+ 0.216
2920
+
2921
+ |H − 2 → L⟩(0.5322)
2922
+ |H − 1 → L; H → L + 2⟩(0.4844)
2923
+ S13
2924
+
2925
+ Table S25: Many-particle wave functions of excited states contributing to the peaks in
2926
+ the optical absorption spectrum of B+
2927
+ 3 cluster for aug-cc-pVTZ basis set. The rest of the
2928
+ information is same as in the caption of Table S18
2929
+ Peak
2930
+ E (eV)
2931
+ f
2932
+ |TDM|
2933
+ Polarization
2934
+ Wave function
2935
+ GS
2936
+ |HF⟩(0.8535)
2937
+ |H − 1 → L + 1⟩(0.1393)
2938
+ I
2939
+ 0.84
2940
+ 0.006
2941
+ 0.524
2942
+
2943
+ |H → L⟩(0.8572)
2944
+ |H − 1 → L; H → L + 2⟩(0.1319)
2945
+ II
2946
+ 3.22
2947
+ 0.083
2948
+ 0.726
2949
+
2950
+ |H − 1 → L⟩(0.8246)
2951
+ |H − 1 → L; H − 1 → L + 1⟩(0.1642)
2952
+ III
2953
+ 5.01
2954
+ 0.053
2955
+ 0.463
2956
+
2957
+ |H − 1 → L; H − 1 → L⟩(0.5482)
2958
+ |H → L; H → L + 1⟩(0.3184)
2959
+ IV
2960
+ 5.45
2961
+ 0.013
2962
+ 0.217
2963
+
2964
+ |H → L; H → L + 1⟩(0.5721)
2965
+ |H → L; H → L + 2⟩(0.5675)
2966
+ V
2967
+ 6.03
2968
+ 0.026
2969
+ 0.295
2970
+
2971
+ |H → L + 3⟩(0.3937)
2972
+ |H − 1 → L + 2⟩(0.3723)
2973
+ VI
2974
+ 7.16
2975
+ 0.026
2976
+ 0.382
2977
+
2978
+ |H → L + 1; H → L + 2⟩(0.5866)
2979
+ |H → L; H → L + 1⟩(0.4308)
2980
+ VII
2981
+ 8.08
2982
+ 0.059
2983
+ 0.380
2984
+
2985
+ |H − 1 → L; H − 1 → L + 1⟩(0.4529)
2986
+ |H − 1 → L; H − 1 → L + 2⟩(0.3162)
2987
+ VIII
2988
+ 8.85
2989
+ 0.519
2990
+ 1.091
2991
+
2992
+ |H → L + 3; H − 1 → L⟩(0.3762)
2993
+ |H → L + 3; H − 1 → L⟩(0.3748)
2994
+ Figure S1: Validation of frozen core approximation for the optical absorption spectra of Li2
2995
+ cluster employing QCI method.
2996
+ S14
2997
+
2998
+ 400
2999
+ With core-electrons
3000
+ Frozen core approximated
3001
+ 300
3002
+ (arb. units)
3003
+ 200
3004
+ Intensity
3005
+ 100
3006
+ 0
3007
+ 0
3008
+ 2
3009
+ 6
3010
+ 8
3011
+ 10
3012
+ Energy (eV)Figure S2: Validation of frozen core approximation for the optical absorption spectra of Be+
3013
+ 2
3014
+ cluster employing QCI method.
3015
+ Figure S3: Optical absorption spectra of B+
3016
+ 3 cluster computed using various basis sets em-
3017
+ ploying B3LYP functional and TD-DFT method.
3018
+ S15
3019
+
3020
+ 400
3021
+ With core-electrons
3022
+ Frozen core approximated
3023
+ 300
3024
+ (arb. units)
3025
+ 200
3026
+ Intensity
3027
+ 100
3028
+ 0
3029
+ 0
3030
+ 2
3031
+ 4
3032
+ 6
3033
+ 8
3034
+ 10
3035
+ Energy (eV)250
3036
+ IV
3037
+ 6-311++G(2d,2p)
3038
+ 6-311++G(3df,3pd)
3039
+ 200
3040
+ cc-pVDZ
3041
+ cc-pVTZ
3042
+ alug-cc-pVDZ
3043
+ Intensity (arb. units)
3044
+ aug-cc-pVTZ
3045
+ 150
3046
+ 100
3047
+ 50
3048
+ II
3049
+ III
3050
+ II
3051
+ 0
3052
+ 0
3053
+ 1
3054
+ 2
3055
+ 3
3056
+ 4
3057
+ 5
3058
+ 6
3059
+ 8
3060
+ 9
3061
+ 10
3062
+ Energy (eV)
CNE0T4oBgHgl3EQfgAHQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NdAyT4oBgHgl3EQfs_n5/content/tmp_files/2301.00589v1.pdf.txt ADDED
@@ -0,0 +1,702 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tailoring the escape rate of a Brownian particle by combining a vortex
2
+ flow with a magnetic field
3
+ I. Abdoli,1, a) H. Löwen,2 J.-U. Sommer,1, a) and A. Sharma1, a)
4
+ 1)Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden,
5
+ Germany
6
+ 2)Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40225,
7
+ Germany
8
+ (*Electronic mail: [email protected].)
9
+ The probability per unit time for a thermally activated Brownian particle to escape over a potential well is in general
10
+ well-described by Kramers theory. Kramers showed that the escape time decreases exponentially with increasing
11
+ barrier height. The dynamics slow down when the particle is charged and subjected to a Lorentz force due to an
12
+ external magnetic field. This is evident via a rescaling of the diffusion coefficient entering as a prefactor in the Kramers
13
+ escape rate without any impact on the barrier-height-dependent exponent. Here we show that the barrier height can
14
+ be effectively changed when the charged particle is subjected to an external vortex flow. While the external vortex
15
+ alone does not affect the mean escape time of the particle, when combined with a magnetic field it effectively pushes
16
+ the fluctuating particle either radially outside or inside depending on its sign relative to that of the magnetic field. In
17
+ particular, the effective potential over which the particle escapes can be changed to a flat, a stable, and an unstable
18
+ potential by tuning the signs and magnitudes of the external vortex and the applied magnetic field. Notably, the last
19
+ case corresponds to enhanced escape dynamics.
20
+ I.
21
+ INTRODUCTION
22
+ A Brownian particle undergoes erratic motion as a result
23
+ of its collisions with the solvent molecules. If the particle is
24
+ being initially put at the bottom of a potential well, the ther-
25
+ mal activation of the particle may cause an escape from the
26
+ potential well over an energetic barrier. Using the flux-over-
27
+ population method1, Kramers first derived the escape rate of a
28
+ Brownian particle over an energy barrier moving in a bistable
29
+ potential, regardless of what happens after this escape2. He
30
+ showed that the probability per unit time for the particle to es-
31
+ cape the potential well exponentially decays with the height
32
+ of the energy barrier. Kramers derived limiting expressions
33
+ for weak friction and strong damping and realized a global
34
+ maximum at some intermediate value of the damping, which
35
+ is known as Kramers turnover3–5. The problem has been gen-
36
+ eralized to include memory friction6–8 and athermal fluctua-
37
+ tions9–13 and was extended to quantum field theory14,15.
38
+ While Kramers’ framework and its extensions have been
39
+ thoroughly studied with the relevant deterministic potential
40
+ force fields16–21, much less is known when the deterministic
41
+ force is nonconservative, namely when it is not of potential
42
+ type22–24. Recently, by taking into account a nonconservative
43
+ force in the form of Lorentz force, we have studied the escape
44
+ dynamics of a two-dimensional Brownian system with broken
45
+ spatial symmetry via two noises with different strengths25. We
46
+ have shown that while the escape process becomes anisotropic
47
+ (i.e. particles tend to escape the potential well more along the
48
+ axis with larger noise strength) due to two different noises,
49
+ when subjected to an external magnetic field, the spatial sym-
50
+ metry can be restored25. However, to our knowledge, it is
51
+ a)Also at Technische Universität Dresden, Institut für Theoretische Physik,
52
+ 01069 Dresden, Germany
53
+ expected that the escape process is reduced (or unaffected in
54
+ the direction of the applied magnetic field) by external con-
55
+ stant magnetic fields24,25 which is evident via a rescaling of
56
+ the diffusion coefficient. It has been shown that the combined
57
+ influence of a nonconservative force and a magnetic field may
58
+ cause an instability in the system26. Here, taking advantage
59
+ of such an instability, we show that the Lorentz force due to a
60
+ constant magnetic field can result in enhanced escape dynam-
61
+ ics.
62
+ In this work, we study the escape dynamics of a Brown-
63
+ ian particle from a harmonic trap which is cut-off at a certain
64
+ distance in the presence of an external vortex and the Lorentz
65
+ force due to an external constant magnetic field. Taking ad-
66
+ vantage of the spatial isotropy in the system we derive an ex-
67
+ act expression for the mean first passage time. While the ex-
68
+ ternal vortex alone does not affect the escape dynamics, we
69
+ observe a nontrivial result when an external magnetic field is
70
+ present: the mean first passage time can be reduced or en-
71
+ hanced. This is attributed to the shape change of the effec-
72
+ tive potential well. By tuning the external magnetic field or
73
+ alternatively the strength of the external vortex the effective
74
+ potential can change shape to a flat, a stable, or an unstable
75
+ potential. This means that by tuning either parameters the
76
+ barrier energy over which the particle may escape can be ef-
77
+ fectively altered to a smaller or larger one whose origin can
78
+ be understood as follows: the combination of the vortex flow
79
+ and the magnetic field effectively pushes the fluctuating parti-
80
+ cle either radially outside or inside depending on their signs.
81
+ In other words, the combination of the two fields, which indi-
82
+ vidually induces no radial force, gives rise to a radial force.In
83
+ what follows, we first introduce the model. Next we calculate
84
+ the mean first passage time, which can be written in terms of
85
+ an effective potential. We then study the trends of the escape
86
+ time with respect to the magnetic field strength and the vortex
87
+ flow and finally we discuss several experimental realizations
88
+ of the set-up considered here.
89
+ arXiv:2301.00589v1 [cond-mat.stat-mech] 2 Jan 2023
90
+
91
+ 2
92
+ FIG. 1. A single charged particle diffusing in a two-dimensional har-
93
+ monic potential U(x,y) = k(x2 + y2)/2, shown by concentric con-
94
+ tours, with k being its stiffness. The particle is subjected to an ex-
95
+ ternal magnetic field B in the −ˆz direction and a nonconservative
96
+ force Fnc = ε(−y,x) with ε being its strength. The nonconserva-
97
+ tive force is shown for ε > 0. The particle can escape the trap when
98
+ reaches the boundary, truncated at r = a, shown by dashed circle,
99
+ where r =
100
+
101
+ x2 +y2 is the distance from the origin.
102
+ II.
103
+ MODEL
104
+ We consider an overdamped charged Brownian particle
105
+ with the charge q subjected to an external magnetic field B
106
+ in the −ˆz direction. Since the Lorentz force due to the field
107
+ does not affect the motion of the particle in the z direction, we
108
+ effectively reduce the system to a two-dimensional one and
109
+ study the motion of the particle in the xy plane. The parti-
110
+ cle is trapped in an isotropic potential U(x,y) = k(x2 +y2)/2
111
+ and undergoes a vortex flow due to the nonconservative force
112
+ Fnc = ε(−y,x)⊤. Here k and ε are the stiffness of the poten-
113
+ tial and the strength of the nonconservative force, respectively.
114
+ A schematic of the system is shown in Fig. 1. It is experi-
115
+ mentally and theoretically known that even statically optically
116
+ trapped Brownian particles in the overdamped limit represent
117
+ nonequilibrium behavior characterized by Brownian vortices.
118
+ This is due to the nonconservative forces generated by opti-
119
+ cal scattering forces27–30. Moreover, by applying a prescribed
120
+ external vortex flow field such as a rotating bucket to an un-
121
+ derdamped Brownian particle one can induce similar terms to
122
+ the nonconservative force, i.e. −εy and εx31.
123
+ It has been shown that the overdamped dynamics of the par-
124
+ ticle derived by simply setting the inertia term to zero can
125
+ yield an incorrect description in the presence of a magnetic
126
+ field32. In this case, the overdamped Langevin equation de-
127
+ scribing dynamics of the system can be derived using the low-
128
+ mass approach25,33,34, which can be written as
129
+ ˙x =
130
+ 1
131
+ γ(1+κ2) [−kx−εy+kκy−εκx]+ξx(t),
132
+ (1)
133
+ ˙y =
134
+ 1
135
+ γ(1+κ2) [−ky+εx−kκx−εκy]+ξy(t),
136
+ (2)
137
+ FIG. 2. The effective potential from Eq. (4) for different values of
138
+ the stiffness ke f f = k + εκ. By varying the parameter κ (or ε) the
139
+ effective potential can change shape to a stable one if ke f f > 0, a flat
140
+ one if ke f f = 0, or to an unstable one if ke f f < 0.
141
+ where γ is the friction coefficient and κ = qB/γ is the diffu-
142
+ sive Hall parameter quantifying the strength of the Lorentz
143
+ force relative to the frictional force.
144
+ We note that κ can
145
+ be positive or negative depending on the sign of the applied
146
+ magnetic field. Here ξ(t) = (ξx,ξy)⊤ is Gaussian nonwhite
147
+ noise with zero mean and time correlation ⟨ξ(t)ξ⊤(t′)⟩ =
148
+ TG−1δ+(t − t′) + T(G−1)⊤δ−(t − t′) where T is the tem-
149
+ perature, G = γ
150
+ � 1
151
+ κ
152
+ −κ 1
153
+
154
+ , and the notations δ±(s = t − t′)
155
+ are the modified Dirac delta functions which are zero for
156
+ s ̸= 0 while
157
+ � ∞
158
+ 0 dsδ+(s) =
159
+ � 0
160
+ −∞ dsδ−(s) = 1 and
161
+ � ∞
162
+ 0 dsδ−(s) =
163
+ � 0
164
+ −∞ dsδ+(s) = 0. Throughout this work we set the Boltzmann
165
+ constant kB to unity. Length and time are measured in units of
166
+
167
+ T/k and γ/k, respectively.
168
+ We use Itô calculus to reduce the Langevin equations in
169
+ Eq. (1) and Eq. (2) to a one-dimensional problem for the vari-
170
+ able r =
171
+
172
+ x2 +y2, which is given as35
173
+ dr =
174
+ 1
175
+ 1+κ2
176
+
177
+ −k +εκ
178
+ γ
179
+ r + D
180
+ r
181
+
182
+ dt +
183
+
184
+ 2D
185
+ 1+κ2 η(t)dt,
186
+ (3)
187
+ where D = T/γ is the coefficient of a freely diffusing particle
188
+ and η(t) is Gaussian white noise with zero mean and the Dirac
189
+ delta time correlation ⟨η(t)η(t′)⟩ = δ(t −t′). The terms in the
190
+ square brackets on the right hand side of Eq.(3) describe the
191
+ force on the the particle due to an effective potential, given as
192
+ Uef f (r) =
193
+ kef f
194
+ 2γ(1+κ2)r2 −
195
+ D
196
+ 1+κ2 log(r),
197
+ (4)
198
+ where kef f = k +εκ is the stiffness of the effective potential.
199
+ As it is evident from the effective stiffness, in the absence of
200
+ the vortex flow the potential simply gets rescaled by the factor
201
+ 1/(1 + κ2), as we have shown in the supplemental informa-
202
+ tion of Ref.25. Moreover, in the absence of the magnetic field
203
+ there is no effect of the vortex flow on the effective potential
204
+ and Eq. (4) reduces to the well known results in Ref.35 for a
205
+ rotationally symmetric Ornstein-Uhlenbeck process in two di-
206
+ mensions. The second term on the right and side comes from
207
+
208
+ 1.0
209
+ a.
210
+ y 0.0
211
+ -1.0
212
+ -1.0
213
+ 0.0
214
+ 1.0keff= - 0.6
215
+ keff = 0.6
216
+ 30
217
+ keff= 0.0
218
+ keff= k
219
+ keff= 2.0
220
+ 20
221
+ 10
222
+ +
223
+ 0
224
+ -10
225
+ 0
226
+ 2
227
+ 3
228
+ 4
229
+ 5
230
+ 1
231
+ 63
232
+ FIG. 3. The mean escape time as a function of the diffusive Hall pa-
233
+ rameter κ from Eq. (5) and Eq. (7) for different values of the scaled
234
+ barrier height β∆E with β = 1.0, γ = 1.0 and ε = 0.2. Obviously
235
+ the mean escape time increases with increasing the barrier height. It
236
+ can increase or decrease by tuning the parameter κ: the presence of
237
+ an external vortex field can work together with the applied magnetic
238
+ field to effectively push the fluctuating particle either radially out-
239
+ side, if κ < −k/ε, or inside, if κ > −k/ε. The former corresponds
240
+ to the case in which the combination helps the particle to escape.
241
+ The point κ = 0 corresponds to unaffected escape time by the exter-
242
+ nal vortex (i.e. ke f f = k). In the inset, we show the mean escape time
243
+ which is scaled by the mean escape time in the absence of the exter-
244
+ nal vortex ⟨t0⟩ where the subscript 0 indicates zero strength length
245
+ of the vortex flow. It implies that the mean escape time can decrease
246
+ with increasing κ as compared to the mean escape time without the
247
+ vortex flow.
248
+ the transformation to r and corresponds to an extremely re-
249
+ pulsive potential at the origin due to reduced number of states
250
+ on the circle of radius r. This term influences the motion of
251
+ the particle only near the origin and is negligible for larger
252
+ distances as compared to the first term.
253
+ Figure. 2 represents the scaled effective potential from
254
+ Eq. (4) for different values of the parameter ke f f without the
255
+ logarithmic term. By tuning the diffusive Hall parameter or al-
256
+ ternatively the strength of the nonconservative force, the effec-
257
+ tive potential changes shape: the potential is stable if kef f > 0,
258
+ flat if kef f = 0, and unstable if ke f f < 0. It becomes simple
259
+ quadratic potential in the absence of ε or/and κ.
260
+ III.
261
+ MEAN ESCAPE TIME
262
+ We consider a particle which is trapped in an isotropic po-
263
+ tential U(x,y) which taking advantage of the spatial symmetry
264
+ whose distance from the origin, r = |r|, can be described by
265
+ Eq. (3). We are interested in the mean time at which the par-
266
+ ticle reaches the boundary, truncated at r = a, as shown in
267
+ Fig. 1. As we show in the Appendix A, the mean escape time
268
+ can be exactly calculated from Eq. (3) which reads
269
+ ⟨t⟩ = γ(1+κ2)
270
+ 2kef f
271
+
272
+ Ei
273
+
274
+ β∆Ee f f
275
+
276
+ −log
277
+
278
+ β∆Ee f f
279
+
280
+ −γEM
281
+
282
+ , (5)
283
+ FIG. 4.
284
+ The mean escape time with respect to the strength of the
285
+ conservative force ε from Eq. (5) and Eq. (7) for different values of
286
+ the scaled barrier heights with β = 1.0 and γ = 1.0. The lines with
287
+ circles and squares correspond to the results with κ = 2.0 and κ =
288
+ −2.0, respectively. The mean escape time can increase or decrease
289
+ with increasing the strength of the vortex flow, which depends on
290
+ its sign relative to that of κ and their magnitude compared to the
291
+ stiffness of the potential k.
292
+ if kef f > 0 corresponding to the effective stable potential and
293
+ ⟨t⟩ = γ(1+κ2)
294
+ 2kef f
295
+
296
+ −Ei
297
+
298
+ −β|∆Eef f |
299
+
300
+ +log
301
+
302
+ β|∆Eef f |
303
+
304
+ +γEM
305
+
306
+ ,
307
+ (6)
308
+ if kef f < 0 corresponding to the unstable effective potential
309
+ where β is the inverse of the temperature, γEM is the Euler-
310
+ Mascheroni constant, and Ei(x) is the exponential integral.
311
+ Here ∆Eef f = ∆E + εκa2/2 is the effective barrier energy
312
+ which is the real barrier height ∆E = ka2/2 augmented by the
313
+ coupling between the magnitude of the applied magnetic field
314
+ and the strength of the external vortex. Using the series ex-
315
+ pansion of the exponential integral at kef f = 0 for Eq. (5) and
316
+ Eq. (6), the mean escape time for the effective flat potential
317
+ reads
318
+ ⟨t⟩ ∼ (1+κ2)
319
+ 4D
320
+ a2,
321
+ (7)
322
+ which is the mean escape time for a freely diffusing parti-
323
+ cle scaled by 1 + κ2.
324
+ In the limit of large barrier heights
325
+ the exponential integral in Eq. (5) can be expanded and as
326
+ a consequence the mean escape time reduces to ⟨t⟩ ∼ γ(1 +
327
+ κ2)exp(β∆Eef f )/(2kef f β∆Eef f ). In the absence of the exter-
328
+ nal vortex, which corresponds to ε = 0, the result reduces to
329
+ the Kramers result rescaled by 1 + κ2 arising from the trivial
330
+ rescaling of the diffusion coefficient. The expression becomes
331
+ the same as the Kramers one when the magnetic field is absent
332
+ κ = 0. This confirms that the external vortex field alone does
333
+ not affect the mean escape time. The intuitive reason for that
334
+ is that, for κ = 0, the presence of a vortex field only changes
335
+ the azimuthal motion but not the radial one which leaves the
336
+ redial particle escape unaffected.
337
+ Figure 3 shows the mean escape time with respect to the
338
+ diffusive Hall parameter κ. Obviously it takes the particle
339
+ longer time to escape over larger barrier heights as is evident
340
+ in the figure. The magnetic field together with the vortex flow
341
+
342
+ 103
343
+ 102
344
+ 106
345
+ 101
346
+ 105
347
+ 100
348
+ 10-1
349
+ 104
350
+ 10-2
351
+ (t)
352
+ 103
353
+ -8
354
+ 9-
355
+ -4
356
+ -2
357
+ 0
358
+ 2
359
+ 4
360
+ 102
361
+ 101
362
+ β△E = 0.5
363
+ β△E = 2.0
364
+ 100
365
+ β△E = 4.5
366
+ β△E = 8.0
367
+ -8
368
+ -6
369
+ 0
370
+ f2
371
+ 4
372
+ K106
373
+ β△E = 0.5
374
+ β△E = 2.0
375
+ 0
376
+ K=2.0
377
+
378
+ K= - 2.0
379
+ βE = 4.5
380
+ 105
381
+ β△E = 8.0
382
+ 104
383
+ 0
384
+ 103
385
+ (t)
386
+ 102
387
+ Q
388
+ Q
389
+ N
390
+ 2
391
+ 101
392
+ 100
393
+ -1.5
394
+ -1.0
395
+ -0.5
396
+ 0.0
397
+ 0.5
398
+ 1.0
399
+ 1.54
400
+ creates additional fluctuations in radial direction which can
401
+ be directed either outwards or inwards depending on its sign.
402
+ The former corresponds to the case in which the combination
403
+ of the vortex flow and the magnetic field helps the particle to
404
+ escape. The inset shows the mean escape time scaled by the
405
+ mean escape time in the absence of the external vortex, which
406
+ is indicated by the subscript 0. The mean escape time can
407
+ decrease with increasing magnetic field as compared to the
408
+ mean escape time without the vortex flow and remains almost
409
+ constant for small barrier height.
410
+ In Fig.4, we show that tuning the strength of the vortex flow
411
+ is an alternative way to vary the mean escape time which is
412
+ evident in Eq.(5) and Eq.(6) via the production of the two pa-
413
+ rameters, i.e. εκ. Therefore the similar trends are expected.
414
+ The figure represents the mean escape time with respect to the
415
+ parameter ε for a system with κ = 2.0, denoted by lines with
416
+ circles, and a system with κ = −2.0, denoted by lines with
417
+ squares. Our results imply that the mean escape time can be
418
+ decreased or increased by tuning the vortex flow strength de-
419
+ pending on its sign relative to that of the magnetic field and
420
+ their magnitude compared to the stiffness of the potential k.
421
+ IV.
422
+ DISCUSSION
423
+ In this work, we studied the effect of a vortex flow on the es-
424
+ cape dynamics of a Brownian magneto-system made of single
425
+ charged Brownian particle subjected to an external magnetic
426
+ field. We expressed the potential in an effective form which
427
+ can change shape to a stable, a flat, or an unstable potential
428
+ depending on the stiffness of the effective potential. Taking
429
+ advantage of the spatial isotropy in the system we obtained an
430
+ exact expression for the mean escape time. In the absence of
431
+ the external vortex, exerted by the nonconservative force, the
432
+ Lorentz force due to the external magnetic field slows down
433
+ the dynamics of the system without any qualitative change,
434
+ which is evident via the trivial rescaling of the diffusion coef-
435
+ ficient. We showed that while the external vortex alone does
436
+ not affect the mean escape time, when coupled to the mag-
437
+ netic field it can enhance or reduce the escape time: this is
438
+ intuitive as the magnetic field together with the vortex flow
439
+ creates additional fluctuations in radial direction which can be
440
+ directed either outwards or inwards depending on its sign. In
441
+ other words, the combination of the two fields, which individ-
442
+ ually induces no radial force, gives rise to a radial force. We
443
+ showed that the barrier over which the particle escapes can be
444
+ effectively changed to a larger or smaller one depending on
445
+ the relative signs of the strength of the vortex flow and the ap-
446
+ plied magnetic field as well as their magnitude compared to
447
+ the stiffness of the potential in which the particle is trapped.
448
+ Moreover, the trap can be effectively switched-off by an ap-
449
+ propriate sign and value of the magnetic field.
450
+ A possible experimental realisation is to trap the particle us-
451
+ ing optical tweezers either in a radio-frequency plasma sheath
452
+ with a vertical magnetic field37,38 or in a rotating frame of
453
+ reference. By rotating the reference frame a Coriolis force
454
+ can be induced which acts the same as the Lorentz force due
455
+ to an external magnetic field39–41.
456
+ As it has been shown
457
+ that even statically optically trapped Brownian particles un-
458
+ dergoe a nonconservative force induced by optical scattering
459
+ forces27–30,36, we expect that the study of the enhanced es-
460
+ cape dynamics does not require an additional external vortex.
461
+ Another possibility is to apply a rotating bucket to an under-
462
+ damped Brownian particle which induces similar terms to the
463
+ nonconservative force in the overdamped limit31.
464
+ From a future perspective, it could be interesting to study
465
+ the escape dynamics of an opposite charged dimer42. In the
466
+ limit of low persistence length, an active chiral particle fol-
467
+ lows curved trajectories, similar to the Brownian motion of a
468
+ charged particle43,44 under a magnetic field. Therefore, an-
469
+ other study of interest would be the escape dynamics of a
470
+ chiral active Brownian particle in the presence of an external
471
+ vortex. Finally, it could be interesting to study how an exter-
472
+ nal magnetic field can affect an active turnover for an active
473
+ particle in a bistable potential45–an optimal correlation time
474
+ where the transition rate is maximized– and how an external
475
+ vortex influences new turnovers observed in the presence of a
476
+ fluctuating magnetic field22,23.
477
+ ACKNOWLEDGMENTS
478
+ A. Sharma and H. Löwen acknowledge the support by the
479
+ Deutsche Forschungsgemeinschaft (DFG) within the projects
480
+ SH 1275/3-1 (A.S.) and LO 418/25-1 (H.L.).
481
+ DATA AVAILABILITY STATEMENT
482
+ The data that support the findings of this study are available
483
+ from the corresponding author upon reasonable request.
484
+ AUTHOR DECLARATIONS
485
+ The authors have no conflicts to disclose.
486
+ Appendix A: Derivation of the mean escape time
487
+ The main purpose of this section is to derive the mean
488
+ escape time in Eq. (5) to Eq. (7).
489
+ We start with the un-
490
+ derdamped Langevin equation describing the dynamics of a
491
+ charged Brownian particle with mass m and charge q sub-
492
+ jected to a magnetic field B in the −ˆz direction. The veloc-
493
+ ity Langevin equation for the position r = (x,y)⊤ and the
494
+ velocity v = (vx,vy)⊤ of the particle under the effect of the
495
+ linear nonconservative force Fnc = ε(−y,x)⊤ and the con-
496
+ servative force Fc = −k(x,y)⊤ due to the isotropic potential
497
+ U(x,y) = k(x2 +y2)/2, can be written as
498
+ m ˙v = −Kr −Gv(t)+
499
+
500
+ 2γTη(t),
501
+ (A1)
502
+ where η(t) = (ηx(t),ηy(t))⊤ is the Gaussian white noise with
503
+ zero mean and Dirac delta correlation ⟨η(t)η⊤(t′)⟩ = δ(t −t′)
504
+
505
+ 5
506
+ with γ being the friction coefficient and T the temperature.
507
+ The matrices G and K are defined as
508
+ G = γ
509
+
510
+ 1
511
+ κ
512
+ −κ 1
513
+
514
+ , K =
515
+
516
+ k
517
+ ε
518
+ −ε k
519
+
520
+ ,
521
+ (A2)
522
+ with κ = qB/γ being the diffusive Hall parameter which quan-
523
+ tifies the strength of the Lorentz force relative to the frictional
524
+ force. Using the low-mass approach, the corresponding over-
525
+ damped Langevin equation can be written as25,33,34
526
+ ˙r = Ar +ξ(t),
527
+ (A3)
528
+ where A = G−1K and ξ(t) = (ξx,ξy)⊤ is Gaussian nonwhite
529
+ noise with
530
+ ⟨ξ(t)⟩ = 0,
531
+ (A4)
532
+ ⟨ξ(t)ξ⊤(t′)⟩ = TG−1δ+(t −t′)+T(G−1)⊤δ−(t −t′), (A5)
533
+ where δ±(s = t − t′) are the modified Dirac delta functions
534
+ which are zero for s ̸= 0 while
535
+ � ∞
536
+ 0 dsδ+(s) =
537
+ � 0
538
+ −∞ dsδ−(s) = 1
539
+ and
540
+ � ∞
541
+ 0 dsδ−(s) =
542
+ � 0
543
+ −∞ dsδ+(s) = 0.
544
+ Equation (A3) can be rewritten as Eq. (1) and Eq. (2) in
545
+ the Cartesian coordinates and thereafter using Itô calculus can
546
+ be reduced to a one-dimensional equation for the variable r,
547
+ which is the distance from the origin and is given by Eq. (3).
548
+ The mean time for the particle to escape the trap, truncated at
549
+ r = a, can be obtained by the following equation
550
+ ⟨t⟩ = 1+κ2
551
+ D
552
+ � a
553
+ 0 y−1 exp
554
+ �ke f f
555
+ 2γDy2
556
+
557
+ dy
558
+ � y
559
+ 0 zexp
560
+
561
+ −kef f
562
+ 2γDz2
563
+
564
+ dz,
565
+ (A6)
566
+ where D = T/γ is the diffusion coefficient for a freely moving
567
+ particle. This equation can be exactly solved: using a change
568
+ of variables the second integral on the right hand side gives
569
+ (γD/kef f )
570
+
571
+ 1−exp
572
+
573
+ −ke f f y2/2γD
574
+ ��
575
+ . By substitution of this
576
+ solution into Eq. (A6), the resulting integral can be exactly
577
+ solved which gives Eq. (5) and Eq. (6).
578
+ REFERENCES
579
+ 1L. Farkas, “Keimbildungsgeschwindigkeit in übersättigten Dämpfen,”
580
+ Zeitschrift für physikalische Chemie 125, 236–242 (1927).
581
+ 2H. A. Kramers, “Brownian motion in a field of force and the diffusion
582
+ model of chemical reactions,” Physica 7, 284–304 (1940).
583
+ 3H. Grabert and S. Linkwitz, “Effect of time-delayed friction on the escape
584
+ from a metastable well,” Physical Review A 37, 963 (1988).
585
+ 4L. I. McCann, M. Dykman, and B. Golding, “Thermally activated tran-
586
+ sitions in a bistable three-dimensional optical trap,” Nature 402, 785–787
587
+ (1999).
588
+ 5L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny,
589
+ “Direct measurement of Kramers turnover with a levitated nanoparticle,”
590
+ Nature Nanotechnology 12, 1130–1133 (2017).
591
+ 6R. F. Grote and J. T. Hynes, “The stable states picture of chemical reactions.
592
+ ii. rate constants for condensed and gas phase reaction models,” The Journal
593
+ of Chemical Physics 73, 2715–2732 (1980).
594
+ 7B. Carmeli and A. Nitzan, “Non-Markoffian theory of activated rate pro-
595
+ cesses,” Physical Review Letters 49, 423 (1982).
596
+ 8R. Ianconescu and E. Pollak, “A study of Kramers’ turnover theory in the
597
+ presence of exponential memory friction,” The Journal of Chemical Physics
598
+ 143, 104104 (2015).
599
+ 9P. Hänggi, F. Marchesoni,
600
+ and P. Grigolini, “Bistable flow driven by
601
+ coloured Gaussian noise: a critical study,” Zeitschrift für Physik B Con-
602
+ densed Matter 56, 333–339 (1984).
603
+ 10P. Jung and P. Hänggi, “Bistability and colored noise in nonequilibrium
604
+ systems: theory versus precise numerics,” Physical Review Letters 61, 11
605
+ (1988).
606
+ 11A. Sharma, R. Wittmann, and J. M. Brader, “Escape rate of active parti-
607
+ cles in the effective equilibrium approach,” Physical Review E 95, 012115
608
+ (2017).
609
+ 12A. Scacchi, J. M. Brader, and A. Sharma, “Escape rate of transiently ac-
610
+ tive Brownian particle in one dimension,” Physical Review E 100, 012601
611
+ (2019).
612
+ 13L. Caprini, U. Marini Bettolo Marconi, A. Puglisi, and A. Vulpiani, “Ac-
613
+ tive escape dynamics: The effect of persistence on barrier crossing,” The
614
+ Journal of Chemical Physics 150, 024902 (2019).
615
+ 14A. Berera, J. Mabillard, B. W. Mintz, and R. O. Ramos, “Formulating the
616
+ Kramers problem in field theory,” Physical Review D 100, 076005 (2019).
617
+ 15L. Darmé, J. Jaeckel, and M. Lewicki, “Generalized escape paths for dy-
618
+ namical tunneling in qft,” Physical Review D 100, 096012 (2019).
619
+ 16G. R. Fleming and P. Hänggi, Activated Barrier Crossing: applications in
620
+ physics, chemistry and biology, Vol. 4 (World Scientific, 1993).
621
+ 17P. Talkner and P. Hänggi, New trends in Kramers’ reaction rate theory,
622
+ Vol. 11 (Springer Science & Business Media, 1995).
623
+ 18P. Hänggi and F. Mojtabai, “Thermally activated escape rate in presence of
624
+ long-time memory,” Physical Review A 26, 1168 (1982).
625
+ 19E. Pollak, “Theory of activated rate processes:
626
+ A new derivation of
627
+ Kramers’ expression,” The Journal of Chemical Physics 85, 865–867
628
+ (1986).
629
+ 20E. Pollak, H. Grabert, and P. Hänggi, “Theory of activated rate processes
630
+ for arbitrary frequency dependent friction: Solution of the turnover prob-
631
+ lem,” The Journal of Chemical Physics 91, 4073–4087 (1989).
632
+ 21E. Pollak and J. Ankerhold, “Improvements to Kramers turnover theory,”
633
+ The Journal of Chemical Physics 138, 164116 (2013).
634
+ 22A. Baura, S. Ray, and B. C. Bag, “Tuning of barrier crossing time of a par-
635
+ ticle by time dependent magnetic field,” The Journal of Chemical Physics
636
+ 138, 244110 (2013).
637
+ 23S. Mondal, A. Baura, S. Das, and B. C. Bag, “A generic signature of a fluc-
638
+ tuating magnetic field: An additional turnover prior to the Kramers’ one,”
639
+ Physica A: Statistical Mechanics and its Applications 502, 58–76 (2018).
640
+ 24R. Filliger and P. Reimann, “Kramers escape rate for a charged particle in a
641
+ magnetic field,” EPL (Europhysics Letters) 77, 30008 (2007).
642
+ 25I. Abdoli, J.-U. Sommer, H. Löwen, and A. Sharma, “Escape dynamics
643
+ in an anisotropically driven Brownian magneto-system,” EPL (Europhysics
644
+ Letters) 139, 21003 (2022).
645
+ 26S. Lee and C. Kwon, “Nonequilibrium driven by an external torque in the
646
+ presence of a magnetic field,” Physical Review E 99, 052142 (2019).
647
+ 27B. Sun, D. G. Grier, and A. Y. Grosberg, “Minimal model for Brownian
648
+ vortexes,” Physical Review E 82, 021123 (2010).
649
+ 28B. Sun, J. Lin, E. Darby, A. Y. Grosberg,
650
+ and D. G. Grier, “Brownian
651
+ vortexes,” Physical Review E 80, 010401 (2009).
652
+ 29Y. Roichman, B. Sun, A. Stolarski, and D. G. Grier, “Influence of non-
653
+ conservative optical forces on the dynamics of optically trapped colloidal
654
+ spheres: the fountain of probability,” Physical Review Letters 101, 128301
655
+ (2008).
656
+ 30H. W. Moyses, R. O. Bauer, A. Y. Grosberg, and D. G. Grier, “Perturbative
657
+ theory for Brownian vortexes,” Physical Review E 91, 062144 (2015).
658
+ 31B. Liebchen and H. Löwen, “Optimal navigation strategies for active parti-
659
+ cles,” EPL (Europhysics Letters) 127, 34003 (2019).
660
+ 32H. D. Vuijk, J. M. Brader, and A. Sharma, “Anomalous fluxes in over-
661
+ damped Brownian dynamics with Lorentz force,” Journal of Statistical Me-
662
+ chanics: Theory and Experiment 2019, 063203 (2019).
663
+ 33H.-M. Chun, X. Durang, and J. D. Noh, “Emergence of nonwhite noise in
664
+ Langevin dynamics with magnetic Lorentz force,” Physical Review E 97,
665
+ 032117 (2018).
666
+ 34I. Abdoli, R. Wittmann, J. M. Brader, J.-U. Sommer, H. Löwen,
667
+ and
668
+ A. Sharma, “Tunable Brownian magneto heat pump,” Scientific Reports
669
+ 12, 1–10 (2022).
670
+
671
+ 6
672
+ 35C. Gardiner, Stochastic methods, Vol. 4 (Springer Berlin, 2009).
673
+ 36M. Mangeat, Y. Amarouchene, Y. Louyer, T. Guérin, and D. S. Dean, “Role
674
+ of nonconservative scattering forces and damping on Brownian particles in
675
+ optical traps,” Physical Review E 99, 052107 (2019).
676
+ 37J. Carstensen, F. Greiner, L.-J. Hou, H. Maurer, and A. Piel, “Effect of
677
+ neutral gas motion on the rotation of dust clusters in an axial magnetic
678
+ field,” Physics of Plasmas 16, 013702 (2009).
679
+ 38A. Piel, Plasma physics: an introduction to laboratory, space, and fusion
680
+ plasmas (Springer, 2017).
681
+ 39H. Kählert, J. Carstensen, M. Bonitz, H. Löwen, F. Greiner, and A. Piel,
682
+ “Magnetizing a complex plasma without a magnetic field,” Physical Review
683
+ Letters 109, 155003 (2012).
684
+ 40P. Hartmann, Z. Donkó, T. Ott, H. Kählert,
685
+ and M. Bonitz, “Magneto-
686
+ plasmons in rotating dusty plasmas,” Physical Review Letters 111, 155002
687
+ (2013).
688
+ 41P. Hartmann, J. C. Reyes, E. G. Kostadinova, L. S. Matthews, T. W. Hyde,
689
+ R. U. Masheyeva, K. N. Dzhumagulova, T. S. Ramazanov, T. Ott, H. Käh-
690
+ lert, et al., “Self-diffusion in two-dimensional quasimagnetized rotating
691
+ dusty plasmas,” Physical Review E 99, 013203 (2019).
692
+ 42R. Shinde, J. U. Sommer, H. Löwen, and A. Sharma, “Strongly enhanced
693
+ dynamics of a charged rouse dimer by an external magnetic field,” PNAS
694
+ Nexus 1, pgac119 (2022).
695
+ 43S. Van Teeffelen and H. Löwen, “Dynamics of a Brownian circle swimmer,”
696
+ Physical Review E 78, 020101 (2008).
697
+ 44C. Scholz, A. Ldov, T. Pöschel, M. Engel, and H. Löwen, “Surfactants and
698
+ rotelles in active chiral fluids,” Science Advances 7, eabf8998 (2021).
699
+ 45A. Militaru, M. Innerbichler, M. Frimmer, F. Tebbenjohanns, L. Novotny,
700
+ and C. Dellago, “Escape dynamics of active particles in multistable poten-
701
+ tials,” Nature Communications 12, 1–6 (2021).
702
+
NdAyT4oBgHgl3EQfs_n5/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf,len=464
2
+ page_content='Tailoring the escape rate of a Brownian particle by combining a vortex flow with a magnetic field I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
3
+ page_content=' Abdoli,1, a) H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
4
+ page_content=' Löwen,2 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
5
+ page_content='-U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
6
+ page_content=' Sommer,1, a) and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
7
+ page_content=' Sharma1, a) 1)Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany 2)Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40225, Germany (*Electronic mail: abdoli@ipfdd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
8
+ page_content='de.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
9
+ page_content=') The probability per unit time for a thermally activated Brownian particle to escape over a potential well is in general well-described by Kramers theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
10
+ page_content=' Kramers showed that the escape time decreases exponentially with increasing barrier height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
11
+ page_content=' The dynamics slow down when the particle is charged and subjected to a Lorentz force due to an external magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
12
+ page_content=' This is evident via a rescaling of the diffusion coefficient entering as a prefactor in the Kramers escape rate without any impact on the barrier-height-dependent exponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
13
+ page_content=' Here we show that the barrier height can be effectively changed when the charged particle is subjected to an external vortex flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
14
+ page_content=' While the external vortex alone does not affect the mean escape time of the particle, when combined with a magnetic field it effectively pushes the fluctuating particle either radially outside or inside depending on its sign relative to that of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
15
+ page_content=' In particular, the effective potential over which the particle escapes can be changed to a flat, a stable, and an unstable potential by tuning the signs and magnitudes of the external vortex and the applied magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
16
+ page_content=' Notably, the last case corresponds to enhanced escape dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
17
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
18
+ page_content=' INTRODUCTION A Brownian particle undergoes erratic motion as a result of its collisions with the solvent molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
19
+ page_content=' If the particle is being initially put at the bottom of a potential well, the ther- mal activation of the particle may cause an escape from the potential well over an energetic barrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
20
+ page_content=' Using the flux-over- population method1, Kramers first derived the escape rate of a Brownian particle over an energy barrier moving in a bistable potential, regardless of what happens after this escape2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
21
+ page_content=' He showed that the probability per unit time for the particle to es- cape the potential well exponentially decays with the height of the energy barrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
22
+ page_content=' Kramers derived limiting expressions for weak friction and strong damping and realized a global maximum at some intermediate value of the damping, which is known as Kramers turnover3–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
23
+ page_content=' The problem has been gen- eralized to include memory friction6–8 and athermal fluctua- tions9–13 and was extended to quantum field theory14,15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
24
+ page_content=' While Kramers’ framework and its extensions have been thoroughly studied with the relevant deterministic potential force fields16–21, much less is known when the deterministic force is nonconservative, namely when it is not of potential type22–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
25
+ page_content=' Recently, by taking into account a nonconservative force in the form of Lorentz force, we have studied the escape dynamics of a two-dimensional Brownian system with broken spatial symmetry via two noises with different strengths25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
26
+ page_content=' We have shown that while the escape process becomes anisotropic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
27
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
28
+ page_content=' particles tend to escape the potential well more along the axis with larger noise strength) due to two different noises, when subjected to an external magnetic field, the spatial sym- metry can be restored25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
29
+ page_content=' However, to our knowledge, it is a)Also at Technische Universität Dresden, Institut für Theoretische Physik, 01069 Dresden, Germany expected that the escape process is reduced (or unaffected in the direction of the applied magnetic field) by external con- stant magnetic fields24,25 which is evident via a rescaling of the diffusion coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
30
+ page_content=' It has been shown that the combined influence of a nonconservative force and a magnetic field may cause an instability in the system26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
31
+ page_content=' Here, taking advantage of such an instability, we show that the Lorentz force due to a constant magnetic field can result in enhanced escape dynam- ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
32
+ page_content=' In this work, we study the escape dynamics of a Brown- ian particle from a harmonic trap which is cut-off at a certain distance in the presence of an external vortex and the Lorentz force due to an external constant magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
33
+ page_content=' Taking ad- vantage of the spatial isotropy in the system we derive an ex- act expression for the mean first passage time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
34
+ page_content=' While the ex- ternal vortex alone does not affect the escape dynamics, we observe a nontrivial result when an external magnetic field is present: the mean first passage time can be reduced or en- hanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
35
+ page_content=' This is attributed to the shape change of the effec- tive potential well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
36
+ page_content=' By tuning the external magnetic field or alternatively the strength of the external vortex the effective potential can change shape to a flat, a stable, or an unstable potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
37
+ page_content=' This means that by tuning either parameters the barrier energy over which the particle may escape can be ef- fectively altered to a smaller or larger one whose origin can be understood as follows: the combination of the vortex flow and the magnetic field effectively pushes the fluctuating parti- cle either radially outside or inside depending on their signs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
38
+ page_content=' In other words, the combination of the two fields, which indi- vidually induces no radial force, gives rise to a radial force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
39
+ page_content='In what follows, we first introduce the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
40
+ page_content=' Next we calculate the mean first passage time, which can be written in terms of an effective potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
41
+ page_content=' We then study the trends of the escape time with respect to the magnetic field strength and the vortex flow and finally we discuss several experimental realizations of the set-up considered here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
42
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
43
+ page_content='00589v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
44
+ page_content='stat-mech] 2 Jan 2023 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
45
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
46
+ page_content=' A single charged particle diffusing in a two-dimensional har- monic potential U(x,y) = k(x2 + y2)/2, shown by concentric con- tours, with k being its stiffness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
47
+ page_content=' The particle is subjected to an ex- ternal magnetic field B in the −ˆz direction and a nonconservative force Fnc = ε(−y,x) with ε being its strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
48
+ page_content=' The nonconserva- tive force is shown for ε > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
49
+ page_content=' The particle can escape the trap when reaches the boundary, truncated at r = a, shown by dashed circle, where r = � x2 +y2 is the distance from the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
50
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
51
+ page_content=' MODEL We consider an overdamped charged Brownian particle with the charge q subjected to an external magnetic field B in the −ˆz direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
52
+ page_content=' Since the Lorentz force due to the field does not affect the motion of the particle in the z direction, we effectively reduce the system to a two-dimensional one and study the motion of the particle in the xy plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
53
+ page_content=' The parti- cle is trapped in an isotropic potential U(x,y) = k(x2 +y2)/2 and undergoes a vortex flow due to the nonconservative force Fnc = ε(−y,x)⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
54
+ page_content=' Here k and ε are the stiffness of the poten- tial and the strength of the nonconservative force, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
55
+ page_content=' A schematic of the system is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
56
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
57
+ page_content=' It is experi- mentally and theoretically known that even statically optically trapped Brownian particles in the overdamped limit represent nonequilibrium behavior characterized by Brownian vortices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
58
+ page_content=' This is due to the nonconservative forces generated by opti- cal scattering forces27–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
59
+ page_content=' Moreover, by applying a prescribed external vortex flow field such as a rotating bucket to an un- derdamped Brownian particle one can induce similar terms to the nonconservative force, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
60
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
61
+ page_content=' −εy and εx31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
62
+ page_content=' It has been shown that the overdamped dynamics of the par- ticle derived by simply setting the inertia term to zero can yield an incorrect description in the presence of a magnetic field32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
63
+ page_content=' In this case, the overdamped Langevin equation de- scribing dynamics of the system can be derived using the low- mass approach25,33,34, which can be written as ˙x = 1 γ(1+κ2) [−kx−εy+kκy−εκx]+ξx(t), (1) ˙y = 1 γ(1+κ2) [−ky+εx−kκx−εκy]+ξy(t), (2) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
64
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
65
+ page_content=' The effective potential from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
66
+ page_content=' (4) for different values of the stiffness ke f f = k + εκ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
67
+ page_content=' By varying the parameter κ (or ε) the effective potential can change shape to a stable one if ke f f > 0, a flat one if ke f f = 0, or to an unstable one if ke f f < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
68
+ page_content=' where γ is the friction coefficient and κ = qB/γ is the diffu- sive Hall parameter quantifying the strength of the Lorentz force relative to the frictional force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
69
+ page_content=' We note that κ can be positive or negative depending on the sign of the applied magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
70
+ page_content=' Here ξ(t) = (ξx,ξy)⊤ is Gaussian nonwhite noise with zero mean and time correlation ⟨ξ(t)ξ⊤(t′)⟩ = TG−1δ+(t − t′) + T(G−1)⊤δ−(t − t′) where T is the tem- perature, G = γ � 1 κ −κ 1 � , and the notations δ±(s = t − t′) are the modified Dirac delta functions which are zero for s ̸= 0 while � ∞ 0 dsδ+(s) = � 0 −∞ dsδ−(s) = 1 and � ∞ 0 dsδ−(s) = � 0 −∞ dsδ+(s) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
71
+ page_content=' Throughout this work we set the Boltzmann constant kB to unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
72
+ page_content=' Length and time are measured in units of � T/k and γ/k, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
73
+ page_content=' We use Itô calculus to reduce the Langevin equations in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
74
+ page_content=' (1) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
75
+ page_content=' (2) to a one-dimensional problem for the vari- able r = � x2 +y2, which is given as35 dr = 1 1+κ2 � −k +εκ γ r + D r � dt + � 2D 1+κ2 η(t)dt, (3) where D = T/γ is the coefficient of a freely diffusing particle and η(t) is Gaussian white noise with zero mean and the Dirac delta time correlation ⟨η(t)η(t′)⟩ = δ(t −t′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
76
+ page_content=' The terms in the square brackets on the right hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
77
+ page_content=' (3) describe the force on the the particle due to an effective potential, given as Uef f (r) = kef f 2γ(1+κ2)r2 − D 1+κ2 log(r), (4) where kef f = k +εκ is the stiffness of the effective potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
78
+ page_content=' As it is evident from the effective stiffness, in the absence of the vortex flow the potential simply gets rescaled by the factor 1/(1 + κ2), as we have shown in the supplemental informa- tion of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
79
+ page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
80
+ page_content=' Moreover, in the absence of the magnetic field there is no effect of the vortex flow on the effective potential and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
81
+ page_content=' (4) reduces to the well known results in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
82
+ page_content='35 for a rotationally symmetric Ornstein-Uhlenbeck process in two di- mensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
83
+ page_content=' The second term on the right and side comes from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
84
+ page_content='0 a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
85
+ page_content=' y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
86
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
87
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
88
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
89
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
90
+ page_content='0keff= - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
91
+ page_content='6 keff = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
92
+ page_content='6 30 keff= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
93
+ page_content='0 keff= k keff= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
94
+ page_content='0 20 10 + 0 10 0 2 3 4 5 1 63 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
95
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
96
+ page_content=' The mean escape time as a function of the diffusive Hall pa- rameter κ from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
97
+ page_content=' (5) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
98
+ page_content=' (7) for different values of the scaled barrier height β∆E with β = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
99
+ page_content='0, γ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
100
+ page_content='0 and ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
101
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
102
+ page_content=' Obviously the mean escape time increases with increasing the barrier height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
103
+ page_content=' It can increase or decrease by tuning the parameter κ: the presence of an external vortex field can work together with the applied magnetic field to effectively push the fluctuating particle either radially out- side, if κ < −k/ε, or inside, if κ > −k/ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
104
+ page_content=' The former corresponds to the case in which the combination helps the particle to escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
105
+ page_content=' The point κ = 0 corresponds to unaffected escape time by the exter- nal vortex (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
106
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
107
+ page_content=' ke f f = k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
108
+ page_content=' In the inset, we show the mean escape time which is scaled by the mean escape time in the absence of the exter- nal vortex ⟨t0⟩ where the subscript 0 indicates zero strength length of the vortex flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
109
+ page_content=' It implies that the mean escape time can decrease with increasing κ as compared to the mean escape time without the vortex flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
110
+ page_content=' the transformation to r and corresponds to an extremely re- pulsive potential at the origin due to reduced number of states on the circle of radius r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
111
+ page_content=' This term influences the motion of the particle only near the origin and is negligible for larger distances as compared to the first term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
112
+ page_content=' Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
113
+ page_content=' 2 represents the scaled effective potential from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
114
+ page_content=' (4) for different values of the parameter ke f f without the logarithmic term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
115
+ page_content=' By tuning the diffusive Hall parameter or al- ternatively the strength of the nonconservative force, the effec- tive potential changes shape: the potential is stable if kef f > 0, flat if kef f = 0, and unstable if ke f f < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
116
+ page_content=' It becomes simple quadratic potential in the absence of ε or/and κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
117
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
118
+ page_content=' MEAN ESCAPE TIME We consider a particle which is trapped in an isotropic po- tential U(x,y) which taking advantage of the spatial symmetry whose distance from the origin, r = |r|, can be described by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
119
+ page_content=' (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
120
+ page_content=' We are interested in the mean time at which the par- ticle reaches the boundary, truncated at r = a, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
121
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
122
+ page_content=' As we show in the Appendix A, the mean escape time can be exactly calculated from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
123
+ page_content=' (3) which reads ⟨t⟩ = γ(1+κ2) 2kef f � Ei � β∆Ee f f � −log � β∆Ee f f � −γEM � , (5) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
124
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
125
+ page_content=' The mean escape time with respect to the strength of the conservative force ε from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
126
+ page_content=' (5) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
127
+ page_content=' (7) for different values of the scaled barrier heights with β = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
128
+ page_content='0 and γ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
129
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
130
+ page_content=' The lines with circles and squares correspond to the results with κ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
131
+ page_content='0 and κ = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
132
+ page_content='0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
133
+ page_content=' The mean escape time can increase or decrease with increasing the strength of the vortex flow, which depends on its sign relative to that of κ and their magnitude compared to the stiffness of the potential k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
134
+ page_content=' if kef f > 0 corresponding to the effective stable potential and ⟨t⟩ = γ(1+κ2) 2kef f � −Ei � −β|∆Eef f | � +log � β|∆Eef f | � +γEM � , (6) if kef f < 0 corresponding to the unstable effective potential where β is the inverse of the temperature, γEM is the Euler- Mascheroni constant, and Ei(x) is the exponential integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
135
+ page_content=' Here ∆Eef f = ∆E + εκa2/2 is the effective barrier energy which is the real barrier height ∆E = ka2/2 augmented by the coupling between the magnitude of the applied magnetic field and the strength of the external vortex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
136
+ page_content=' Using the series ex- pansion of the exponential integral at kef f = 0 for Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
137
+ page_content=' (5) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
138
+ page_content=' (6), the mean escape time for the effective flat potential reads ⟨t⟩ ∼ (1+κ2) 4D a2, (7) which is the mean escape time for a freely diffusing parti- cle scaled by 1 + κ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
139
+ page_content=' In the limit of large barrier heights the exponential integral in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
140
+ page_content=' (5) can be expanded and as a consequence the mean escape time reduces to ⟨t⟩ ∼ γ(1 + κ2)exp(β∆Eef f )/(2kef f β∆Eef f ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
141
+ page_content=' In the absence of the exter- nal vortex, which corresponds to ε = 0, the result reduces to the Kramers result rescaled by 1 + κ2 arising from the trivial rescaling of the diffusion coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
142
+ page_content=' The expression becomes the same as the Kramers one when the magnetic field is absent κ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
143
+ page_content=' This confirms that the external vortex field alone does not affect the mean escape time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
144
+ page_content=' The intuitive reason for that is that, for κ = 0, the presence of a vortex field only changes the azimuthal motion but not the radial one which leaves the redial particle escape unaffected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
145
+ page_content=' Figure 3 shows the mean escape time with respect to the diffusive Hall parameter κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
146
+ page_content=' Obviously it takes the particle longer time to escape over larger barrier heights as is evident in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
147
+ page_content=' The magnetic field together with the vortex flow 103 102 106 101 105 100 10-1 104 10-2 (t) 103 8 9- 4 2 0 2 4 102 101 β△E = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
148
+ page_content='5 β△E = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
149
+ page_content='0 100 β△E = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
150
+ page_content='5 β△E = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
151
+ page_content='0 8 6 0 f2 4 K106 β△E = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
152
+ page_content='5 β△E = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
153
+ page_content='0 0 K=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
154
+ page_content='0 口 K= - 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
155
+ page_content='0 βE = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
156
+ page_content='5 105 β△E = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
157
+ page_content='0 104 0 103 (t) 102 Q Q N 2 101 100 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
158
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
159
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
160
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
161
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
162
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
163
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
164
+ page_content='54 creates additional fluctuations in radial direction which can be directed either outwards or inwards depending on its sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
165
+ page_content=' The former corresponds to the case in which the combination of the vortex flow and the magnetic field helps the particle to escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
166
+ page_content=' The inset shows the mean escape time scaled by the mean escape time in the absence of the external vortex, which is indicated by the subscript 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
167
+ page_content=' The mean escape time can decrease with increasing magnetic field as compared to the mean escape time without the vortex flow and remains almost constant for small barrier height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
168
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
169
+ page_content='4, we show that tuning the strength of the vortex flow is an alternative way to vary the mean escape time which is evident in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
170
+ page_content=' (5) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
171
+ page_content=' (6) via the production of the two pa- rameters, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
172
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
173
+ page_content=' εκ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
174
+ page_content=' Therefore the similar trends are expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
175
+ page_content=' The figure represents the mean escape time with respect to the parameter ε for a system with κ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
176
+ page_content='0, denoted by lines with circles, and a system with κ = −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
177
+ page_content='0, denoted by lines with squares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
178
+ page_content=' Our results imply that the mean escape time can be decreased or increased by tuning the vortex flow strength de- pending on its sign relative to that of the magnetic field and their magnitude compared to the stiffness of the potential k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
179
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
180
+ page_content=' DISCUSSION In this work, we studied the effect of a vortex flow on the es- cape dynamics of a Brownian magneto-system made of single charged Brownian particle subjected to an external magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
181
+ page_content=' We expressed the potential in an effective form which can change shape to a stable, a flat, or an unstable potential depending on the stiffness of the effective potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
182
+ page_content=' Taking advantage of the spatial isotropy in the system we obtained an exact expression for the mean escape time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
183
+ page_content=' In the absence of the external vortex, exerted by the nonconservative force, the Lorentz force due to the external magnetic field slows down the dynamics of the system without any qualitative change, which is evident via the trivial rescaling of the diffusion coef- ficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
184
+ page_content=' We showed that while the external vortex alone does not affect the mean escape time, when coupled to the mag- netic field it can enhance or reduce the escape time: this is intuitive as the magnetic field together with the vortex flow creates additional fluctuations in radial direction which can be directed either outwards or inwards depending on its sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
185
+ page_content=' In other words, the combination of the two fields, which individ- ually induces no radial force, gives rise to a radial force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
186
+ page_content=' We showed that the barrier over which the particle escapes can be effectively changed to a larger or smaller one depending on the relative signs of the strength of the vortex flow and the ap- plied magnetic field as well as their magnitude compared to the stiffness of the potential in which the particle is trapped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
187
+ page_content=' Moreover, the trap can be effectively switched-off by an ap- propriate sign and value of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
188
+ page_content=' A possible experimental realisation is to trap the particle us- ing optical tweezers either in a radio-frequency plasma sheath with a vertical magnetic field37,38 or in a rotating frame of reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
189
+ page_content=' By rotating the reference frame a Coriolis force can be induced which acts the same as the Lorentz force due to an external magnetic field39–41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
190
+ page_content=' As it has been shown that even statically optically trapped Brownian particles un- dergoe a nonconservative force induced by optical scattering forces27–30,36, we expect that the study of the enhanced es- cape dynamics does not require an additional external vortex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
191
+ page_content=' Another possibility is to apply a rotating bucket to an under- damped Brownian particle which induces similar terms to the nonconservative force in the overdamped limit31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
192
+ page_content=' From a future perspective, it could be interesting to study the escape dynamics of an opposite charged dimer42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
193
+ page_content=' In the limit of low persistence length, an active chiral particle fol- lows curved trajectories, similar to the Brownian motion of a charged particle43,44 under a magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
194
+ page_content=' Therefore, an- other study of interest would be the escape dynamics of a chiral active Brownian particle in the presence of an external vortex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
195
+ page_content=' Finally, it could be interesting to study how an exter- nal magnetic field can affect an active turnover for an active particle in a bistable potential45–an optimal correlation time where the transition rate is maximized– and how an external vortex influences new turnovers observed in the presence of a fluctuating magnetic field22,23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
196
+ page_content=' ACKNOWLEDGMENTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
197
+ page_content=' Sharma and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
198
+ page_content=' Löwen acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) within the projects SH 1275/3-1 (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
199
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
200
+ page_content=') and LO 418/25-1 (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
201
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
202
+ page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
203
+ page_content=' DATA AVAILABILITY STATEMENT The data that support the findings of this study are available from the corresponding author upon reasonable request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
204
+ page_content=' AUTHOR DECLARATIONS The authors have no conflicts to disclose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
205
+ page_content=' Appendix A: Derivation of the mean escape time The main purpose of this section is to derive the mean escape time in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
206
+ page_content=' (5) to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
207
+ page_content=' (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
208
+ page_content=' We start with the un- derdamped Langevin equation describing the dynamics of a charged Brownian particle with mass m and charge q sub- jected to a magnetic field B in the −ˆz direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
209
+ page_content=' The veloc- ity Langevin equation for the position r = (x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
210
+ page_content='y)⊤ and the velocity v = (vx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
211
+ page_content='vy)⊤ of the particle under the effect of the linear nonconservative force Fnc = ε(−y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
212
+ page_content='x)⊤ and the con- servative force Fc = −k(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
213
+ page_content='y)⊤ due to the isotropic potential U(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
214
+ page_content='y) = k(x2 +y2)/2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
215
+ page_content=' can be written as m ˙v = −Kr −Gv(t)+ � 2γTη(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
216
+ page_content=' (A1) where η(t) = (ηx(t),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
217
+ page_content='ηy(t))⊤ is the Gaussian white noise with zero mean and Dirac delta correlation ⟨η(t)η⊤(t′)⟩ = δ(t −t′) 5 with γ being the friction coefficient and T the temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
218
+ page_content=' The matrices G and K are defined as G = γ � 1 κ −κ 1 � , K = � k ε −ε k � , (A2) with κ = qB/γ being the diffusive Hall parameter which quan- tifies the strength of the Lorentz force relative to the frictional force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
219
+ page_content=' Using the low-mass approach, the corresponding over- damped Langevin equation can be written as25,33,34 ˙r = Ar +ξ(t), (A3) where A = G−1K and ξ(t) = (ξx,ξy)⊤ is Gaussian nonwhite noise with ⟨ξ(t)⟩ = 0, (A4) ⟨ξ(t)ξ⊤(t′)⟩ = TG−1δ+(t −t′)+T(G−1)⊤δ−(t −t′), (A5) where δ±(s = t − t′) are the modified Dirac delta functions which are zero for s ̸= 0 while � ∞ 0 dsδ+(s) = � 0 −∞ dsδ−(s) = 1 and � ∞ 0 dsδ−(s) = � 0 −∞ dsδ+(s) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
220
+ page_content=' Equation (A3) can be rewritten as Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
221
+ page_content=' (1) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
222
+ page_content=' (2) in the Cartesian coordinates and thereafter using Itô calculus can be reduced to a one-dimensional equation for the variable r, which is the distance from the origin and is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
223
+ page_content=' (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
224
+ page_content=' The mean time for the particle to escape the trap, truncated at r = a, can be obtained by the following equation ⟨t⟩ = 1+κ2 D � a 0 y−1 exp �ke f f 2γDy2 � dy � y 0 zexp � −kef f 2γDz2 � dz, (A6) where D = T/γ is the diffusion coefficient for a freely moving particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
225
+ page_content=' This equation can be exactly solved: using a change of variables the second integral on the right hand side gives (γD/kef f ) � 1−exp � −ke f f y2/2γD �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
226
+ page_content=' By substitution of this solution into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
227
+ page_content=' (A6), the resulting integral can be exactly solved which gives Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
228
+ page_content=' (5) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
229
+ page_content=' (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
230
+ page_content=' REFERENCES 1L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
231
+ page_content=' Farkas, “Keimbildungsgeschwindigkeit in übersättigten Dämpfen,” Zeitschrift für physikalische Chemie 125, 236–242 (1927).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
232
+ page_content=' 2H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
233
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
234
+ page_content=' Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica 7, 284–304 (1940).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
235
+ page_content=' 3H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
236
+ page_content=' Grabert and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
237
+ page_content=' Linkwitz, “Effect of time-delayed friction on the escape from a metastable well,” Physical Review A 37, 963 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
238
+ page_content=' 4L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
239
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
240
+ page_content=' McCann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
241
+ page_content=' Dykman, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
242
+ page_content=' Golding, “Thermally activated tran- sitions in a bistable three-dimensional optical trap,” Nature 402, 785–787 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
243
+ page_content=' 5L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
244
+ page_content=' Rondin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
245
+ page_content=' Gieseler, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
246
+ page_content=' Ricci, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
247
+ page_content=' Quidant, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
248
+ page_content=' Dellago, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
249
+ page_content=' Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nature Nanotechnology 12, 1130–1133 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
250
+ page_content=' 6R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
251
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
252
+ page_content=' Grote and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
253
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
254
+ page_content=' Hynes, “The stable states picture of chemical reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
255
+ page_content=' ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
256
+ page_content=' rate constants for condensed and gas phase reaction models,” The Journal of Chemical Physics 73, 2715–2732 (1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
257
+ page_content=' 7B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
258
+ page_content=' Carmeli and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
259
+ page_content=' Nitzan, “Non-Markoffian theory of activated rate pro- cesses,” Physical Review Letters 49, 423 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
260
+ page_content=' 8R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
261
+ page_content=' Ianconescu and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
262
+ page_content=' Pollak, “A study of Kramers’ turnover theory in the presence of exponential memory friction,” The Journal of Chemical Physics 143, 104104 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
263
+ page_content=' 9P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
264
+ page_content=' Hänggi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
265
+ page_content=' Marchesoni, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
266
+ page_content=' Grigolini, “Bistable flow driven by coloured Gaussian noise: a critical study,” Zeitschrift für Physik B Con- densed Matter 56, 333–339 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
267
+ page_content=' 10P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
268
+ page_content=' Jung and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
269
+ page_content=' Hänggi, “Bistability and colored noise in nonequilibrium systems: theory versus precise numerics,” Physical Review Letters 61, 11 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
270
+ page_content=' 11A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
271
+ page_content=' Sharma, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
272
+ page_content=' Wittmann, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
273
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
274
+ page_content=' Brader, “Escape rate of active parti- cles in the effective equilibrium approach,” Physical Review E 95, 012115 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
275
+ page_content=' 12A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
276
+ page_content=' Scacchi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
277
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
278
+ page_content=' Brader, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
279
+ page_content=' Sharma, “Escape rate of transiently ac- tive Brownian particle in one dimension,” Physical Review E 100, 012601 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
280
+ page_content=' 13L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
281
+ page_content=' Caprini, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
282
+ page_content=' Marini Bettolo Marconi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
283
+ page_content=' Puglisi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
284
+ page_content=' Vulpiani, “Ac- tive escape dynamics: The effect of persistence on barrier crossing,” The Journal of Chemical Physics 150, 024902 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
285
+ page_content=' 14A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
286
+ page_content=' Berera, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
287
+ page_content=' Mabillard, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
288
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
289
+ page_content=' Mintz, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
290
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
291
+ page_content=' Ramos, “Formulating the Kramers problem in field theory,” Physical Review D 100, 076005 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
292
+ page_content=' 15L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
293
+ page_content=' Darmé, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
294
+ page_content=' Jaeckel, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
295
+ page_content=' Lewicki, “Generalized escape paths for dy- namical tunneling in qft,” Physical Review D 100, 096012 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
296
+ page_content=' 16G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
297
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
298
+ page_content=' Fleming and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
299
+ page_content=' Hänggi, Activated Barrier Crossing: applications in physics, chemistry and biology, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
300
+ page_content=' 4 (World Scientific, 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
301
+ page_content=' 17P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
302
+ page_content=' Talkner and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
303
+ page_content=' Hänggi, New trends in Kramers’ reaction rate theory, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
304
+ page_content=' 11 (Springer Science & Business Media, 1995).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
305
+ page_content=' 18P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
306
+ page_content=' Hänggi and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
307
+ page_content=' Mojtabai, “Thermally activated escape rate in presence of long-time memory,” Physical Review A 26, 1168 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
308
+ page_content=' 19E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
309
+ page_content=' Pollak, “Theory of activated rate processes: A new derivation of Kramers’ expression,” The Journal of Chemical Physics 85, 865–867 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
310
+ page_content=' 20E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
311
+ page_content=' Pollak, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
312
+ page_content=' Grabert, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
313
+ page_content=' Hänggi, “Theory of activated rate processes for arbitrary frequency dependent friction: Solution of the turnover prob- lem,” The Journal of Chemical Physics 91, 4073–4087 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
314
+ page_content=' 21E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
315
+ page_content=' Pollak and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
316
+ page_content=' Ankerhold, “Improvements to Kramers turnover theory,” The Journal of Chemical Physics 138, 164116 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
317
+ page_content=' 22A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
318
+ page_content=' Baura, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
319
+ page_content=' Ray, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
320
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
321
+ page_content=' Bag, “Tuning of barrier crossing time of a par- ticle by time dependent magnetic field,” The Journal of Chemical Physics 138, 244110 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
322
+ page_content=' 23S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
323
+ page_content=' Mondal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
324
+ page_content=' Baura, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
325
+ page_content=' Das, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
326
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
327
+ page_content=' Bag, “A generic signature of a fluc- tuating magnetic field: An additional turnover prior to the Kramers’ one,” Physica A: Statistical Mechanics and its Applications 502, 58–76 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
328
+ page_content=' 24R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
329
+ page_content=' Filliger and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
330
+ page_content=' Reimann, “Kramers escape rate for a charged particle in a magnetic field,” EPL (Europhysics Letters) 77, 30008 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
331
+ page_content=' 25I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
332
+ page_content=' Abdoli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
333
+ page_content='-U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
334
+ page_content=' Sommer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
335
+ page_content=' Löwen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
336
+ page_content=' Sharma, “Escape dynamics in an anisotropically driven Brownian magneto-system,” EPL (Europhysics Letters) 139, 21003 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
337
+ page_content=' 26S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
338
+ page_content=' Lee and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
339
+ page_content=' Kwon, “Nonequilibrium driven by an external torque in the presence of a magnetic field,” Physical Review E 99, 052142 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
340
+ page_content=' 27B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
341
+ page_content=' Sun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
342
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
343
+ page_content=' Grier, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
344
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
345
+ page_content=' Grosberg, “Minimal model for Brownian vortexes,” Physical Review E 82, 021123 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
346
+ page_content=' 28B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
347
+ page_content=' Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
348
+ page_content=' Lin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
349
+ page_content=' Darby, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
350
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
351
+ page_content=' Grosberg, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
352
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
353
+ page_content=' Grier, “Brownian vortexes,” Physical Review E 80, 010401 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
354
+ page_content=' 29Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
355
+ page_content=' Roichman, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
356
+ page_content=' Sun, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
357
+ page_content=' Stolarski, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
358
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
359
+ page_content=' Grier, “Influence of non- conservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability,” Physical Review Letters 101, 128301 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
360
+ page_content=' 30H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
361
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
362
+ page_content=' Moyses, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
363
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
364
+ page_content=' Bauer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
365
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
366
+ page_content=' Grosberg, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
367
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
368
+ page_content=' Grier, “Perturbative theory for Brownian vortexes,” Physical Review E 91, 062144 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
369
+ page_content=' 31B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
370
+ page_content=' Liebchen and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
371
+ page_content=' Löwen, “Optimal navigation strategies for active parti- cles,” EPL (Europhysics Letters) 127, 34003 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
372
+ page_content=' 32H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
373
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
374
+ page_content=' Vuijk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
375
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
376
+ page_content=' Brader, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
377
+ page_content=' Sharma, “Anomalous fluxes in over- damped Brownian dynamics with Lorentz force,” Journal of Statistical Me- chanics: Theory and Experiment 2019, 063203 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
378
+ page_content=' 33H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
379
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
380
+ page_content=' Chun, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
381
+ page_content=' Durang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
382
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
383
+ page_content=' Noh, “Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force,” Physical Review E 97, 032117 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
384
+ page_content=' 34I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
385
+ page_content=' Abdoli, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
386
+ page_content=' Wittmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
387
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
388
+ page_content=' Brader, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
389
+ page_content='-U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
390
+ page_content=' Sommer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
391
+ page_content=' Löwen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
392
+ page_content=' Sharma, “Tunable Brownian magneto heat pump,” Scientific Reports 12, 1–10 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
393
+ page_content=' 6 35C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
394
+ page_content=' Gardiner, Stochastic methods, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
395
+ page_content=' 4 (Springer Berlin, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
396
+ page_content=' 36M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
397
+ page_content=' Mangeat, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
398
+ page_content=' Amarouchene, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
399
+ page_content=' Louyer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
400
+ page_content=' Guérin, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
401
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
402
+ page_content=' Dean, “Role of nonconservative scattering forces and damping on Brownian particles in optical traps,” Physical Review E 99, 052107 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
403
+ page_content=' 37J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
404
+ page_content=' Carstensen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
405
+ page_content=' Greiner, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
406
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
407
+ page_content=' Hou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
408
+ page_content=' Maurer, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
409
+ page_content=' Piel, “Effect of neutral gas motion on the rotation of dust clusters in an axial magnetic field,” Physics of Plasmas 16, 013702 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
410
+ page_content=' 38A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
411
+ page_content=' Piel, Plasma physics: an introduction to laboratory, space, and fusion plasmas (Springer, 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
412
+ page_content=' 39H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
413
+ page_content=' Kählert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
414
+ page_content=' Carstensen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
415
+ page_content=' Bonitz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
416
+ page_content=' Löwen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
417
+ page_content=' Greiner, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
418
+ page_content=' Piel, “Magnetizing a complex plasma without a magnetic field,” Physical Review Letters 109, 155003 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
419
+ page_content=' 40P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
420
+ page_content=' Hartmann, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
421
+ page_content=' Donkó, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
422
+ page_content=' Ott, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
423
+ page_content=' Kählert, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
424
+ page_content=' Bonitz, “Magneto- plasmons in rotating dusty plasmas,” Physical Review Letters 111, 155002 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
425
+ page_content=' 41P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
426
+ page_content=' Hartmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
427
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
428
+ page_content=' Reyes, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
429
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
430
+ page_content=' Kostadinova, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
431
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
432
+ page_content=' Matthews, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
433
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
434
+ page_content=' Hyde, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
435
+ page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
436
+ page_content=' Masheyeva, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
437
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
438
+ page_content=' Dzhumagulova, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
439
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
440
+ page_content=' Ramazanov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
441
+ page_content=' Ott, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
442
+ page_content=' Käh- lert, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
443
+ page_content=', “Self-diffusion in two-dimensional quasimagnetized rotating dusty plasmas,” Physical Review E 99, 013203 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
444
+ page_content=' 42R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
445
+ page_content=' Shinde, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
446
+ page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
447
+ page_content=' Sommer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
448
+ page_content=' Löwen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
449
+ page_content=' Sharma, “Strongly enhanced dynamics of a charged rouse dimer by an external magnetic field,” PNAS Nexus 1, pgac119 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
450
+ page_content=' 43S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
451
+ page_content=' Van Teeffelen and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
452
+ page_content=' Löwen, “Dynamics of a Brownian circle swimmer,” Physical Review E 78, 020101 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
453
+ page_content=' 44C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
454
+ page_content=' Scholz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
455
+ page_content=' Ldov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
456
+ page_content=' Pöschel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
457
+ page_content=' Engel, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
458
+ page_content=' Löwen, “Surfactants and rotelles in active chiral fluids,” Science Advances 7, eabf8998 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
459
+ page_content=' 45A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
460
+ page_content=' Militaru, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
461
+ page_content=' Innerbichler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
462
+ page_content=' Frimmer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
463
+ page_content=' Tebbenjohanns, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
464
+ page_content=' Novotny, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
465
+ page_content=' Dellago, “Escape dynamics of active particles in multistable poten- tials,” Nature Communications 12, 1–6 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdAyT4oBgHgl3EQfs_n5/content/2301.00589v1.pdf'}
QdE0T4oBgHgl3EQfkQFh/content/tmp_files/2301.02470v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
QdE0T4oBgHgl3EQfkQFh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
SdAyT4oBgHgl3EQfuPmB/content/2301.00609v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d9beba5969b94a7c81b23bd93fffb62ca4ddf5b85903b87717c908605ba0c06
3
+ size 910742
SdFLT4oBgHgl3EQfPS8r/content/tmp_files/2301.12027v1.pdf.txt ADDED
@@ -0,0 +1,1777 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.12027v1 [eess.SP] 27 Jan 2023
2
+ 1
3
+ Lp Quasi-norm Minimization: Algorithm and
4
+ Applications
5
+ Omar M.Sleem⋆
6
+ M.E. Ashour‡
7
+ N.S. Aybat†§
8
+ Constantino M. Lagoa⋆
9
+ ⋆Dep. of Electrical Engineering, Pennsylvania State University, State College, PA 16801, USA.
10
+ ‡Wireless R&D Department, Qualcomm Technologies, Inc, San Diego, CA 92121, USA.
11
+ †Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, PA
12
+ 16801, USA.
13
14
+ Abstract
15
+ Sparsity finds applications in areas as diverse as statistics, machine learning, and signal processing.
16
+ Computations over sparse structures are less complex compared to their dense counterparts, and their
17
+ storage consumes less space. This paper proposes a heuristic method for retrieving sparse approximate
18
+ solutions of optimization problems via minimizing the ℓp quasi-norm, where 0 < p < 1. An iterative
19
+ two-block ADMM algorithm for minimizing the ℓp quasi-norm subject to convex constraints is proposed.
20
+ For p = s/q < 1, s, q ∈ Z+, the proposed algorithm requires solving for the roots of a scalar
21
+ degree 2q polynomial as opposed to applying a soft thresholding operator in the case of ℓ1. The
22
+ merit of that algorithm relies on its ability to solve the ℓp quasi-norm minimization subject to any
23
+ convex set of constraints. However, it suffers from low speed, due to a convex projection step in
24
+ each iteration, and the lack of mathematical convergence guarantee. We then aim to vanquish these
25
+ shortcomings by relaxing the assumption on the constraints set to be the set formed due to convex
26
+ and differentiable, with Lipschitz continuous gradient, functions, i.e. specifically, polytope sets. Using a
27
+ proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm speed
28
+ while proving its convergence. We then present various applications where the proposed algorithm excels,
29
+ namely, matrix rank minimization, sparse signal reconstruction from noisy measurements, sparse binary
30
+ classification, and system identification. The results demonstrate the significant gains obtained by the
31
+ proposed algorithm compared to those via ℓ1 minimization.
32
+ Keywords— Sparsity, compressed sensing, rank minimization, ADMM, Proximal gradient method.
33
+
34
+ 2
35
+ I. INTRODUCTION
36
+ A. Motivation
37
+ In numerical analysis and scientific computing, a sparse matrix/array is the one with many of its elements being
38
+ zeros. The number of zeros divided by the total number of elements is called sparsity. Sparse data is often easier to
39
+ store and process. Hence, techniques for deriving sparse solutions and exploiting them have attracted the attention
40
+ of many researchers in various engineering fields like machine learning, signal processing, and control theory.
41
+ The taxonomy of sparsity can be studied through the rank minimization problem (RMP). It has been lately
42
+ considered in many engineering applications including control design and system identification. This is because the
43
+ notions of complexity and system order can be closely related to the matrix rank. The RMP can be formulated as
44
+ follows:
45
+ min
46
+ X
47
+ Rank(X),
48
+ s.t.
49
+ X ∈ M,
50
+ (1)
51
+ where X ∈ Rm×n and M ⊂ Rm×n is a convex set. The problem (1) in its generality is NP-hard [1]. Therefore,
52
+ polynomial time algorithms for solving large-scale problems of the form in (1) are not currently known. Hence,
53
+ currently adopted methods for solving such problems are approximate and structured heuristics.
54
+ A special case of RMP is the sparse vector recovery (SVR) problem involving ℓ0 pseudo-norm minimization
55
+ given by:
56
+ min
57
+ x
58
+ ∥x∥0 ,
59
+ s.t.
60
+ x ∈ V,
61
+ (2)
62
+ where x ∈ Rn, V ⊂ Rn is a closed convex set and ∥·∥0 counts the number of the non-zero elements of its argument.
63
+ From the definition of the rank being the number of non-zero singular values of a matrix, it can be easily realized
64
+ that (1) is a generalized form of (2).
65
+ Various works – which will be discussed in the next section in more detail – have explored efficient solution
66
+ techniques for the problems in (1) and (2) independently using Schatten-p and ℓp quasi-norm relaxations respectively.
67
+ However, all of these methods either assume a specific structure for the convex set M in (1) or only work for the
68
+ special case in (2); hence, they lack generality. Using the fact that the Schatten-p quasi-norm is the ℓp quasi-norm
69
+ of the matrix singular values, we aim to design an efficient heuristic method based on Schatten-p relaxation for
70
+ solving both problems in a unified manner. To achieve this, we first propose an algorithm for solving ℓp quasi-norm
71
+ relaxation of the SVR problem in (2), and next, exploiting the fact that (2) is a special case of (1), we then employ
72
+ the derived ℓp quasi-norm minimization algorithm as a building block for the desired generalized algorithm for the
73
+ rank minimization problem.
74
+ B. Related work
75
+ 1) Sparse Vector Recovery: As discussed, a sparse solution is defined as the one having the minimum
76
+ number of non-zero components while satisfying certain constraints such as a system of linear equations
77
+ [2].
78
+ Since many signals are either sparse or compressible, SVR problem has found applications in object recognition,
79
+ classification and compressed sensing problems, see, e.g., [3]–[5]. In [6], the authors discussed the concept of the
80
+ sparse representation of signals and systems, where they reviewed the theoretical and empirical results on sparse
81
+
82
+ 3
83
+ optimization, and discussed sufficient conditions needed for uniqueness, stability and computational practicability.
84
+ Different applications for the SVR problem are explored in [6] and it is argued that in certain denoising and
85
+ compression tasks, the methods for sparse optimization provide state of the art solutions.
86
+ The problem of constructing a sparse solution to undetermined linear systems has received great attention. In
87
+ [7], the authors surveyed the existing algorithms for sparse approximation, namely; greedy methods [8], [9], the
88
+ methods based on convex relaxation [4], [5], [10], [11], those involving non-convex optimization [12], [13], Bayesian
89
+ framework [14], [15], and requiring brute force [16]. They also discussed the computational requirements of each
90
+ algorithm and their relation to each other.
91
+ Sparse optimization problems of the form min{f(x) + µg(x)} have been extensively studied in the literature,
92
+ where g(x) is a sparsity inducing function, e.g., ℓ1-norm, f is a loss function on measurement errors, e.g., f(x) =
93
+ ∥Ax − b∥2, and µ > 0 is a trade-off parameter between data-fidelity and sparsity. In [2], the authors considered
94
+ sparse recovery problem from a set of corrupted measurements. For g(·) = ∥·∥1, they established a sufficient
95
+ condition for the exact sparse signal recovery, i.e., restricted isometry property (RIP). Motivated by the fact that
96
+ ∥x∥p
97
+ p → ∥x∥0 as p → 0, it is natural to consider the above problem with g set to ℓp quasi-norm for p ∈ (0, 1).
98
+ Hence, the authors in [17] presented theoretical results demonstrating the ability of the ℓp quasi-norm to recover
99
+ sparse signals from noisy measurements. Under more relaxed RIP conditions, they showed that the ℓp quasi-norm
100
+ provides better theoretical guarantees in terms of stability and robustness than the ℓ1 minimization. In [12], the
101
+ problem of SVR via the ℓp quasi-norm minimization from small number of linear measurements of the target
102
+ signal was considered. This setting is important in applications where data acquisition is difficult or expensive.
103
+ However, the proposed approach in [12] has limited applicability due to its long reconstruction time compared
104
+ to the ℓ1 norm. In [18], the authors exploited Fourier-based algorithms for convex optimization to solve sparse
105
+ signals reconstruction problem via the ℓp quasi-norm minimization. They showed that their approach combines the
106
+ construction abilities of the non-convex methods with the speed of the convex ones. In [19] the authors proposed
107
+ an approach, for sparse reconstruction, replacing the non-convex function with a quadratic convex one. In [20],
108
+ an alternating direction method of multipliers (ADMM) based algorithm that enforces both sparsity and group
109
+ sparsity using non-convex regularization is presented. An iterative half thresholding algorithm for fast solution of
110
+ the ℓ0.5 regularization is proposed in [21]. The authors proved the existence of the resolvent of gradient of ||x||0.5
111
+ 0.5
112
+ , calculated its analytic expression, and derived a thresholding representation of solutions for ℓ0.5 regularization. In
113
+ [22], the convergence of the iterative half thresholding algorithm is studied, where it was shown that, under certain
114
+ conditions, the half thresholding algorithm converges, to a local minimizer of the regularized problem, with a linear
115
+ convergence rate. Conditions for the convergence of an ADMM algorithm that solves the problem of minimizing
116
+ the sum of a smooth function with a bounded Hessian and a non-smooth function are derived in [23]. In [24], the
117
+ convergence of ADMM for minimizing a non-convex and possibly non-smooth objective function subject to equality
118
+ constraints is analyzed. The developed convergence guarantee covers a variety of non-convex objectives including
119
+ piece-wise linear functions, ℓp quasi-norm and Schatten-p quasi-norm (0 < p < 1), while allowing non-convex
120
+ constraints as well.
121
+
122
+ 4
123
+ 2) Rank minimization: In [25], the authors aimed at determining the least order dynamic output feedback,
124
+ using same formulation as in (1), which stabilizes a given linear time invariant system. They found that minimizing
125
+ the trace instead of the rank results in a Semi-Definite Program (SDP) that can be solved efficiently. However, their
126
+ solution was only applicable for symmetric and square matrices. In [26], a generalization of the latter approach
127
+ was introduced which is based on replacing the rank in the objective function with the summation of the singular
128
+ values of the matrix, i.e., the nuclear norm. They showed that this leads to the convex envelope of the non-
129
+ convex rank objective and boils down to the original trace heuristic when the decision matrix is a symmetric
130
+ positive semi-definite (PSD) matrix. Finally, effectiveness of the approach was shown using a frequency domain
131
+ system identification problem. In [27], another heuristic based on the logarithm of the determinant was presented
132
+ as a surrogate for the rank minimization over the subspace of PSD matrices, and the authors showed that this
133
+ formulation can be solved using a sequence of trace minimization problems. The authors also extended their
134
+ heuristic to handle matrices that are not necessarily PSD. In [28], the authors also studied the existing trace and log
135
+ determinant heuristics for approximating (1). They discussed the applications of these heuristics for computing a
136
+ low-rank approximation of 1) covariance matrices for a given dataset so that one can obtain a simple data model,
137
+ easy to interpret, which is especially important in statistics and signal processing; 2) Hankel matrices arising in
138
+ system identification of a time invariant, low-order system for given output realizations; and 3) matrices appearing
139
+ in various other problems including H∞ and reduced-order µ-synthesis with constant scaling and problems with
140
+ inertia constraints.
141
+ Although the nuclear norm is the tightest convex substitute for the non-convex rank function, one of its major
142
+ shortcomings is that it treats all the singular values equally in order to be able to preserve the convexity. Therefore,
143
+ this restricts its performance in applications where the singular values need to be treated differently, e.g., particularly
144
+ in image denoising. In [29], the authors proposed an iterative re-weighted nuclear norm heuristic to avoid this
145
+ problem and analyzed its convergence. They also proposed a gradient-based algorithm and applied it to a low-order
146
+ system identification problem. Experimental results showed that the re-weighted nuclear norm leads to a lower order
147
+ model than the nuclear norm itself. In [30], the solution of weighted nuclear norm (WNN) problem was analyzed
148
+ under different circumstances where the weights could be in a non-ascending, arbitrary or a non-descending order.
149
+ The authors applied their proposed WNN algorithm to an image denoising problem by exploiting the image non-
150
+ local self-similarity. Numerical results showed that the proposed WNN algorithm outperforms many of the state of
151
+ the art denoising methods in terms of both quantitative measures and visual quality.
152
+ Another method, inspired by the success of the ℓp quasi-norm (0 < p < 1) for sparse signal reconstruction,
153
+ is to enforce low-rank structure by using the Schatten-p quasi-norm, which is defined as the ℓp quasi-norm of
154
+ the singular values. In [31], the authors considered the matrix completion problem, which deals with constructing
155
+ a low-rank matrix, given a subset of its entries. Instead of minimizing the nuclear norm, the authors proposed
156
+ a Schatten-p quasi-norm formulation, for which they came up with an algorithm and studied its convergence
157
+ properties. In each iteration, the sub-problem that needs to be solved has a closed-form solution, which makes
158
+ it fast and suitable for large-scale problems. To improve the robustness of the solutions to matrix completion
159
+ problem, in [32] Schatten-p quasi-norm for low-rank recovery was combined with ℓp quasi-norm (0 < p ≤ 1)
160
+
161
+ 5
162
+ of the prediction errors on the observed entries. The authors proposed an algorithm based on the ADMM, which
163
+ performed better in their numerical experiments than other completion methods like fixed-point continuation and
164
+ accelerated proximal gradient singular-value thresholding. In [33], the authors extended the theoretical recovery
165
+ results previously developped for the nuclear norm to Schatten-p quasi-norm using a weaker version of the RIP
166
+ assumption; they showed that the minimum rank solution can be recovered by solving the Schatten-p quasi-norm
167
+ minimization problem. In [34], the authors developed an iterative re-weighted least squares algorithm to solve an
168
+ unconstrained ℓp minimization problem. The algorithm, and analysis, are extended to include the low rank recovery
169
+ problem. Another non-convex approaches for matrix optimization problems involving sparsity are developed, by
170
+ means of a generalized shrinkage operation, in [35]. These approaches are applied to the decomposition of video
171
+ into low rank and sparse components, which is able to separate moving objects from the stationary background
172
+ better than in the convex case.
173
+ C. Contributions
174
+ Despite the good performance of the various algorithms discussed in I-B1 and I-B2 for solving different
175
+ relaxations of (2) and (1), they are all based on a specific structure of the considered convex constraint set;
176
+ therefore, they are problem specific and lack generality. In this work, we present a general-purpose method based
177
+ on projections onto the constraint set, for which we assume only closed convexity as the specific structure. [36]
178
+ and [37] examine the characteristics of the projection on the constraint set. In the latter, the projection technique
179
+ of every given point on ℓp balls is assumed to be known a priori, whereas in the former, the issue is solved while
180
+ omitting an important coupling condition for the polynomial equations.
181
+ First, based on our previous work in [38], we propose an ADMM algorithm (pQN-ADMM) to solve the ℓp
182
+ quasi-norm relaxation of (2). At each iteration, the bottleneck operation is to compute Euclidean projections on
183
+ to some particular convex and non-convex sets. The proposed algorithm possesses two important properties: 1)
184
+ Its computational complexity is similar to ℓ1 minimization algorithms except for the additional effort of solving
185
+ for the roots of a polynomial; 2) No specific structure for the convex set is required. Numerical results, using
186
+ a SVR and binary classification examples, are presented to show the competitive performance of our algorithm
187
+ against the ℓ1 minimization approach. We then extend the proposed algorithm to solve the relaxation of (1) based
188
+ on the Schatten-p quasi-norm – here, we exploit the fact that minimizing the ℓp-norm of the vector of singular
189
+ values is equivalent to minimizing the Schatten-p quasi-norm. We consider two different numerical examples: 1)
190
+ We formulate time domain system identification problem for minimum order system detection and solve it using the
191
+ pQN-ADMM approach and compare our recovery results against the nuclear norm minimization approach of [26];
192
+ 2) We consider a matrix completion problem, where the goal is to recover an unknown low-rank matrix based on a
193
+ small fraction of observed entries. Numerical results in both examples show that our method is competitive against
194
+ some of the state-of-the-art algorithms in terms of both the detected system order (for the system identification
195
+ problem) and the rank of the matrix recovered (for the matrix completion problem).
196
+ Finally, since the derived algorithm depends on a computationally expensive convex projection step in every
197
+ iteration, we aim to develop a faster algorithm with a mathematical convergence guarantee. Considering only a
198
+
199
+ 6
200
+ subset of problems where the constraint set is a polytope, we utilize concepts from the proximal gradient (PG)
201
+ method to derive a fast algorithm and prove that it converges with a rate O( 1
202
+ K ), where K is the iteration budget
203
+ given to the algorithm.
204
+ II. NOTATIONS AND BASIC DEFINITIONS
205
+ Unless otherwise specified, we denote vectors with lowercase boldface letters, i.e., x, with i-th entry as xi, while
206
+ matrices are in uppercase, i.e. X, with (i, j)-th entry as xi,j. For an integer n ∈ Z+, [n]
207
+ ∆= {1, . . ., n}. 1 represents
208
+ a vector of all entries equal to 1, while
209
+ 1G(.) is an indicator function to the set G, i.e., it evaluates to zero if its
210
+ argument belongs to the set G and is +∞ otherwise.
211
+ For a vector x ∈ Rn, the general ℓp norm is defined as
212
+ ∥x∥p
213
+ ∆= (
214
+
215
+ i∈[n]
216
+ |xi|p)
217
+ 1
218
+ p .
219
+ (3)
220
+ For convenience, we let ∥x∥ be the well known euclidean norm, i.e., p = 2. When 0 < p < 1, the expression in
221
+ (3) is termed as the quasi-norm satisfying the same axioms of the norm except the triangular inequality making it
222
+ a non-convex function.
223
+ Definition 1. Let X : V −→ W be a linear operator between two normed spaces equipped with ℓp norm,
224
+ p ∈ [1, ∞). The induced p-norm is defined as,
225
+ ∥X∥p
226
+ ∆= sup
227
+ v̸=0
228
+ �∥Xv∥p
229
+ ∥v∥p
230
+
231
+ .
232
+ (4)
233
+ A special case of (4) is when p = 2, known as the spectral radius, which can be shown to be the square root of
234
+ the maximum eigen value of XHX, where XH is the complex conjugate of the transpose of X, i.e., X⊤. In the
235
+ rest of the analysis, we will drop the subscript 2 in the spectral norm notation and only refer to it with ∥.∥.
236
+ For a matrix X ∈ Rm×n, the Lp,q entry-wise norm is defined as,
237
+ ∥X∥p,q
238
+ ∆= (
239
+
240
+ j∈[n]
241
+ (
242
+
243
+ i∈[m]
244
+ |xij|p)
245
+ q
246
+ p )
247
+ 1
248
+ q .
249
+ (5)
250
+ A special case of (5) is when p = q = 2, known as the Frobenius norm, which were refer to by ∥.∥f.
251
+ Definition 2. Let H1 ⊂ Rn and H2 ⊂ Rm be two separable Hilbert spaces and X ∈ Rm×n be a linear compact
252
+ operator from H1 to H2, the Schatten-p norm of X is then defined as,
253
+ ∥X∥p
254
+ ∆= (
255
+
256
+ i∈[min{m,n}]
257
+ σi(X)p)
258
+ 1
259
+ p ,
260
+ (6)
261
+ where σi(X) is the i-th singular value of the matrix X.
262
+ When p = 1, equation (6) yields to the nuclear norm which is the convex envelope of the rank function.
263
+ Throughout the paper, we consider a non-convex relaxation for the rank function, specifically p = 1/2, and compare
264
+ its performance with the nuclear norm case in the results section.
265
+
266
+ 7
267
+ We define ⌈·⌉ as the ceiling operator, vec(X) ∈ Rmn as a vector formed by stacking the columns of the
268
+ matrix X ∈ Rm×n and Hankel(.) as an operator that outputs a Hankel matrix constructed from the applied vector
269
+ arguments.
270
+ III.
271
+ SPARSE VECTOR RECOVERY ALGORITHM
272
+ A. Problem Formulation
273
+ This section develops a method for approximating the solution of (2) using the following relaxation,
274
+ min
275
+ x
276
+ ∥x∥p
277
+ p ,
278
+ s.t.
279
+ x ∈ V,
280
+ (7)
281
+ where p ∈ (0, 1] and V is a closed convex set. Problem (7) is convex for p = 1; hence, can be solved to optimality
282
+ efficiently. However, the problem becomes non-convex when p < 1. An epigraph equivalent formulation of (7) is
283
+ obtained by introducing the variable t = [ti]i∈[n]:
284
+ min
285
+ x,t
286
+ 1⊤t,
287
+ s.t.
288
+ ti ≥ |xi|p,
289
+ i ∈ [n],
290
+ x ∈ V.
291
+ (8)
292
+ Let X ⊂ R2 denote the epigraph of the scalar function |x|p, i.e., X = {(x, t) ∈ R2 : t ≥ |x|p}, which is a
293
+ non-convex set for p < 1. Then, (8) can be cast as
294
+ min
295
+ x,t
296
+
297
+ i∈[n]
298
+ 1X (xi, ti) + 1⊤t,
299
+ s.t.
300
+ x ∈ V.
301
+ (9)
302
+ ADMM exploits the structure of the problem to split the optimization over the variables via iteratively solving fairly
303
+ simple subproblems. In particular, we introduce auxiliary variables y = [yi]i∈[n] and z = [zi]i∈[n] and obtain an
304
+ ADMM equivalent formulation of (9) given by:
305
+ min
306
+ x,t,y,z
307
+
308
+ i∈[n]
309
+ 1X (xi, ti) +
310
+ 1Y(y) + 1⊤z,
311
+ s.t.
312
+ x = y : λ,
313
+ t = z : θ,
314
+ (10)
315
+ where Y is the 0-sublevel set of f, i.e., Y = {y ∈ Rn : y ∈ V}. The dual variables associated with the constraints
316
+ x = y and t = z are λ and θ, respectively. Hence, the Lagrangian function corresponding to (10) augmented with
317
+ a quadratic penalty on the violation of the equality constraints with penalty parameter ρ > 0, is given by:
318
+ Lρ(x, t, y, z, λ, θ) =
319
+
320
+ i∈[n]
321
+ 1X (xi, ti) +
322
+ 1Y(y) + 1⊤z
323
+ + λ⊤(x − y) + θ⊤(t − z) + ρ
324
+ 2
325
+
326
+ ∥x − y∥2 + ∥t − z∥2�
327
+ .
328
+ (11)
329
+ Considering the two block variables (x, t) and (y, z), ADMM [39] consists of the following iterations:
330
+ (x, t)k+1
331
+ =
332
+ argmin
333
+ x,t
334
+ Lρ(x, t, yk, zk, λk, θk)
335
+ (12)
336
+ (y, z)k+1
337
+ =
338
+ argmin
339
+ y,z
340
+ Lρ(xk+1, tk+1, y, z, λk, θk)
341
+ (13)
342
+ λk+1
343
+ =
344
+ λk + ρ(xk+1 − yk+1)
345
+ (14)
346
+ θk+1
347
+ =
348
+ θk + ρ(tk+1 − zk+1).
349
+ (15)
350
+
351
+ 8
352
+ Algorithm 1 ADMM (ρ > 0)
353
+ 1: Initialize: y0, z0, λ0, θ0
354
+ 2: for k ≥ 0 do
355
+ 3:
356
+ (xi, ti)k+1 ← ΠX
357
+
358
+ yk
359
+ i − λk
360
+ i
361
+ ρ , zk
362
+ i − θk
363
+ i
364
+ ρ
365
+
366
+ , ∀i ∈ [n]
367
+ 4:
368
+ yk+1 ← ΠY
369
+
370
+ xk+1 + λk
371
+ ρ
372
+
373
+ 5:
374
+ zk+1 ← tk+1 + θk−1
375
+ ρ
376
+ 6:
377
+ λk+1 ← λk + ρ(xk+1 − yk+1)
378
+ 7:
379
+ θk+1 ← θk + ρ(tk+1 − zk+1).
380
+ According to the expression of the augmented Lagrangian function in (11), it follows from (12) that the variables
381
+ x and t are updated via solving the following non-convex problem
382
+ min
383
+ x,t
384
+ ∥x − yk + λk
385
+ ρ ∥2 + ∥t − zk + θk
386
+ ρ ∥2
387
+ s.t.
388
+ (xi, ti) ∈ X,
389
+ i ∈ [n].
390
+ (16)
391
+ Exploiting the separable structure of (16), one immediately concludes that (16) can be split into n independent
392
+ 2-dimensional problems that can be solved in parallel, i.e., for each i ∈ [n],
393
+ (xi, ti)k+1 = ΠX
394
+
395
+ yk
396
+ i − λk
397
+ i
398
+ ρ , zk
399
+ i − θk
400
+ i
401
+ ρ
402
+
403
+ ,
404
+ (17)
405
+ where ΠX (.) denotes the Euclidean projection operator onto the set X. Furthermore, (11) and (13) imply that y
406
+ and z are independently updated as follows:
407
+ yk+1
408
+ =
409
+ ΠY
410
+
411
+ xk+1 + λk
412
+ ρ
413
+
414
+ (18)
415
+ zk+1
416
+ =
417
+ tk+1 + θk − 1
418
+ ρ
419
+ .
420
+ (19)
421
+ Algorithm 1 summarizes the proposed ADMM algorithm. It is clear that z, λ, and θ merit closed-form updates.
422
+ However, updating (x, t) requires solving n non-convex problems. Our strategy for dealing with this issue is
423
+ presented in the section that follows.
424
+ B. Non-convex Projection
425
+ In this part, we present the method used to tackle the non-convex projection problem required to update x and
426
+ t.
427
+ Among the advantages of the proposed algorithm is that it is amenable to decentralization. As it is clear from
428
+ (17), x and t can be updated element-wise via performing a projection operation onto the non-convex set X, one
429
+ for each i ∈ [n]. The n projection problems can be run independently in parallel. We now outline the proposed
430
+ idea for solving one such projection, i.e., we suppress the dependence on the index of the entry of x and t. For
431
+ (¯x, ¯t) ∈ R2, ΠX (¯x, ¯t) entails solving
432
+ min
433
+ x,t
434
+ g(x, t) ≜ (t − ¯t)2 + (x − ¯x)2,
435
+ s.t.
436
+ t ≥ |x|p.
437
+ (20)
438
+
439
+ 9
440
+ If ¯t ≥ |¯x|p, then trivially ΠX (¯x, ¯t) = (¯x, ¯t). Thus, we focus on the case in which ¯t < |¯x|p. The following proposition
441
+ states the necessary optimality conditions for (20).
442
+ Proposition 1. Let ¯t < |¯x|p, and (x∗, t∗) be an optimal solution of (20). Then, the following properties are satisfied
443
+ (a) sign(x∗) = sign(¯x),
444
+ (b) t∗ ≥ ¯t,
445
+ (c) |x∗|p ≥ ¯t,
446
+ (d) t∗ = |x∗|p.
447
+ Proof. We prove the statements by contradiction as follows:
448
+ (a) Suppose that sign(x∗) ̸= sign(¯x), then
449
+ |x∗ − ¯x|=|x∗ − 0|+|¯x − 0| > |¯x − 0|,
450
+ (21)
451
+ i.e., (x∗−¯x)2 >(0−¯x)2. Hence, g(x∗, t∗)−g(0, t∗)>0. Moreover, the feasibility of (x∗, t∗) implies that t∗ > 0.
452
+ Thus, (0, t∗) is feasible and attains a lower objective value than that attained by (x∗, t∗). This contradicts the
453
+ optimality of (x∗, t∗).
454
+ (b) Assume that t∗ < ¯t. Then,
455
+ g(x∗, t∗) − g(x∗, ¯t) = (t∗ − ¯t)2 > 0.
456
+ (22)
457
+ Furthermore, by the feasibility of (x∗, t∗), we have |x∗|p ≤ t∗ < ¯t. Thus, (x∗, ¯t) is feasible and attains a lower
458
+ objective value than that attained by (x∗, t∗). This contradicts the optimality of (x∗, t∗).
459
+ (c) Suppose that |x∗|p < ��t, i.e.,
460
+ − ¯t
461
+ 1
462
+ p < x∗ < ¯t
463
+ 1
464
+ p .
465
+ (23)
466
+ We now consider two cases, ¯x > 0 and ¯x < 0. First, let ¯x > 0. Then, we have by (a) and (23) that 0 < x∗ < ¯t
467
+ 1
468
+ p .
469
+ Since ¯t < |¯x|p, i.e., (¯x, ¯t) /∈ X, therefore ¯t
470
+ 1
471
+ p < ¯x and hence, 0 < x∗ < ¯t
472
+ 1
473
+ p < ¯x. Pick x0 > 0 such that |x0|p = ¯t,
474
+ i.e., x0 = ¯t
475
+ 1
476
+ p . Then clearly, x∗ < x0 < ¯x. Thus, we have
477
+ g(x∗, t∗) − g(x0, t∗) = (x∗ − ¯x)2 − (x0 − ¯x)2 > 0,
478
+ (24)
479
+ where the last inequality follows the just proven identity that x∗ < x0 < ¯x. Moreover, we have |x0|p = ¯t ≤ t∗ by
480
+ (b). Thus, (x0, t∗) is feasible and attains a lower objective value than that attained by (x∗, t∗). This contradicts
481
+ the optimality of (x∗, t∗). On the other hand, let ¯x < 0. Then, we have by (a) and (23) that −¯t
482
+ 1
483
+ p < x∗ < 0.
484
+ Since ¯t < |¯x|p, i.e., (¯x, ¯t) /∈ X, then ¯t
485
+ 1
486
+ p < |¯x|, i.e., ¯x < −¯t
487
+ 1
488
+ p . Therefore, ¯x < −¯t
489
+ 1
490
+ p < x∗. Pick x0 < 0 such that
491
+ |x0|p = ¯t, i.e., x0 = −¯t
492
+ 1
493
+ p . Then, (24) also holds when ¯x < 0. Note that |x0|p = ¯t ≤ t∗ by (b). Thus, (x0, t∗)
494
+ is feasible and attains a lower objective value than that attained by (x∗, t∗). This contradicts the optimality of
495
+ (x∗, t∗).
496
+ (d) The feasibility of (x∗, t∗) eliminates the possibility that t∗ < |x∗|p. Now let t∗ > |x∗|p and pick t0 = |x∗|p.
497
+ Then, ¯t ≤ |x∗|p = t0 < t∗, where the first inequality follows from (c). Then, 0 ≤ t0 − ¯t < t∗ − ¯t. Thus, we
498
+ have
499
+ g(x∗, t∗) − g(x∗, t0) = (t∗ − ¯t)2 − (t0 − ¯t)2 > 0,
500
+ (25)
501
+
502
+ 10
503
+ Algorithm 2 Non-convex projection (p = s
504
+ q < 1)
505
+ 1: R ← roots{a2q + s
506
+ q(a2s − ¯tas) − |¯x|aq}
507
+ 2: ¯R ← R \ {complex numbers and negative reals in R}
508
+ 3: T ← {(rq, rs) : r ∈ ¯R}
509
+ 4: (ˆx, t∗) ← argmin {g(x, t) : (x, t) ∈ T }
510
+ 5: x∗ ← sign(¯x)ˆx
511
+ Furthermore, the feasibility of (x∗, t0) follows trivially from the choice of t0. Thus, (x∗, t0) is feasible and
512
+ attains a lower objective value than that attained by (x∗, t∗). This contradicts the optimality of (x∗, t∗).
513
+ This concludes the proof.
514
+ We now make use of the fact that for (20), an optimal solution (x∗, t∗) satisfies t∗ = |x∗|p and hence, (20)
515
+ reduces to solving
516
+ min
517
+ x
518
+ (|x|p − ¯t)2 + (x − ¯x)2.
519
+ (26)
520
+ The first order necessary optimality condition for (26) implies the following:
521
+ p|x∗|p−1sign(x∗)(|x∗|p − ¯t) + x∗ − ¯x = 0.
522
+ (27)
523
+ By the symmetry of the function |x|p, without loss of generality, assume that x∗ > 0 and let 0 < p = s
524
+ q < 1 for
525
+ some s, q ∈ Z+. A change of variables aq = x∗ plugged in (27) shows that finding an optimal solution for (20)
526
+ reduces to finding a root of the following scalar degree 2q polynomial:
527
+ a2q + s
528
+ q
529
+
530
+ a2s − ¯tas�
531
+ − ¯xaq.
532
+ (28)
533
+ Thus, to find ΠX (¯x, ¯t), solve for a root a∗ of the polynomial in (28) such that (a∗q, a∗s) minimizes g(x, t). Algorithm
534
+ 2 summarizes the method we use to solve problem (20). In case ¯x = 0, we set x∗ = t∗ = 0. If the set ¯R is empty,
535
+ we set x∗ = 0 and t∗ = (¯t)+.
536
+ C. Convex Projection
537
+ The convex projection for y-update in (18) can be formulated as the following convex optimization problem
538
+ yk+1 = argmin
539
+ y
540
+ �����y − (xk+1 + λk
541
+ ρ )
542
+ �����
543
+ 2
544
+ ,
545
+ s.t.
546
+ y ∈ V,
547
+ (29)
548
+ where ∥.∥ is the euclidean norm. Convex problems can be solved by a variety of contemporary methods including
549
+ bundle methods [40], sub-gradient projection [41], interior point methods [42], and ellipsoid methods [43]. The
550
+ efficiency of optimization techniques rely mainly on exploiting the structure of the constraint set. As mentioned
551
+ in I-C, to be general, we aim to solve the problem in (7) with no assumptions on the set V, other than it being
552
+ closed and convex. That said, if possible, through exploiting the structure of V, one should be able to reduce the
553
+ computational complexity of solving (29).
554
+
555
+ 11
556
+ Remark 1. As per our knowledge, none of the existing literature considered the convergence of an ADMM algorithm
557
+ for solving the general problem in (7). As discussed in I-B1, on one hand, the work in [23] studied the convergence
558
+ of ADMM under mild assumptions. However, assuming V has a particular form, these assumptions hold only if the
559
+ function f defining the the constraint set V = {x : f(x) ≤ 0} in (7) is Lipschitz differentiable. On the other hand,
560
+ [44] studied the convergence of a non ADMM algorithm to solve (7) while assuming that the global optimal for
561
+ each update step can be found efficiently.
562
+ IV. RANK MINIMIZATION ALGORITHM
563
+ We consider the same problem as in (1) and propose a method for approximating its solution efficiently. The
564
+ Schatten-p heuristic of (1) can be written as
565
+ min
566
+ X
567
+ ∥X∥p
568
+ p
569
+ ∆=
570
+ L
571
+
572
+ i=1
573
+ |σi(X)|p,
574
+ s.t.
575
+ X ∈ M,
576
+ (30)
577
+ where L = min(m, n) and σi(X) is the ith singular value of X. When p = 1, problem (30) is a convex one
578
+ which is eventually the nuclear norm heuristic. We consider a non-convex case where 0 < p < 1, which has the
579
+ corresponding epi-graph form,
580
+ min
581
+ X,t
582
+ 1⊤t,
583
+ s.t.
584
+ |σi(X)|p ≤ ti,
585
+ i ∈ {1, . . .L},
586
+ X ∈ M,
587
+ (31)
588
+ such that t = [ti]i∈[L]. Defining the epi-graph set ˚
589
+ X for the function σ(X), where ˚
590
+ X
591
+ ∆= {(σ(X), t)∈R2 :|σ(X)|p ≤
592
+ t} ⊆ R2, the problem in (31) can be written as,
593
+ min
594
+ X,t
595
+ 1⊤t +
596
+ 1M(X) +
597
+ L
598
+
599
+ i=1
600
+ 1 ˚
601
+ X (σi(X), ti).
602
+ (32)
603
+ In order to structure the problem in a from that ADMM can exploit, we introduce the auxiliary variables
604
+ Y ∈ Rm×n and z = [zi]i∈[L] which makes the problem in (32) be,
605
+ min
606
+ X,t,Y,z
607
+ 1⊤z +
608
+ 1V(Y) +
609
+ L
610
+
611
+ i=1
612
+ 1 ˚
613
+ X (σi(X), ti),
614
+ s.t.
615
+ X = Y : Λ,
616
+ t = z : θ,
617
+ (33)
618
+ such that Λ, θ are the dual variables associated with X and t respectively. Similar to (11), the Lagrangian function
619
+ associated with (33) augmented with a quadratic penalty for the equality constraint violation with a parameter
620
+ ρ > 0, is
621
+ Lρ(X, Y, t, z, Λ, θ)=1⊤z+
622
+ 1M(Y)+
623
+ L
624
+
625
+ i=1
626
+ 1 ˚
627
+ X (σi(X), ti)
628
+ +T r{Λ⊤(X−Y)}+θ⊤(t−z)+ ρ
629
+ 2(∥X−Y∥2
630
+ f +∥t−z∥2),
631
+ (34)
632
+
633
+ 12
634
+ where T r{.} is the trace operator. Considering the 2-tuples (X, t) and (Y, z), the ADMM iterations is,
635
+ (X, t)k+1 = argmin
636
+ X,t
637
+ Lρ(X, Yk, t, zk, Λk, θk),
638
+ (35)
639
+ Yk+1 = argmin
640
+ Y
641
+ Lρ(Xk+1, Y, tk+1, zk, Λk, θk),
642
+ (36)
643
+ zk+1 = argmin
644
+ z
645
+ Lρ(Xk+1, Yk+1, tk+1, z, Λk, θk),
646
+ (37)
647
+ Λk+1 = Λk + ρ(Xk+1 − Yk+1),
648
+ (38)
649
+ θk+1 = θk + ρ(tk+1 − zk+1).
650
+ (39)
651
+ A. (X, t) update
652
+ By completing the square and with some simple algebra, it can be shown that the problem in (35) is equivalent
653
+ to
654
+ min
655
+ X,t
656
+ ��X − ¯Xk��2
657
+ f +
658
+ ��t − ¯tk��2 ,
659
+ s.t.
660
+ |σi(X)|p ≤ ti,
661
+ i ∈ {1, . . . L},
662
+ (40)
663
+ where ¯Xk ∆= Yk − Λk
664
+ ρ
665
+ and ¯tk ∆= zk − θk
666
+ ρ . For an ease of notations, we will drop the iteration index k. Assume
667
+ that X = PΣQ⊤ and ¯X = U∆V⊤ is the singular value decomposition (SVD) of X and ¯X respectively. Where
668
+ Σ, ∆ ∈ RL×L are diagonal matrices with the singular values associated X and ¯X while P, U ∈ Rm×L and
669
+ Q, V ∈ Rn×L are the unitary matrices. By applying the same steps as in Theorem 3 of [45], we can write the first
670
+ term of (40) after dropping k as,
671
+ ��X − ¯X
672
+ ��2
673
+ f =
674
+ ��PΣQ⊤ − U∆V⊤��2
675
+ f
676
+ =
677
+ ��PΣQ⊤��2
678
+ f +
679
+ ��U∆V⊤��2
680
+ f − 2T {X⊤ ¯X}
681
+ (a)
682
+ = T r{Σ⊤Σ}+T r{∆⊤∆}−2T r{QΣ⊤P⊤U∆V⊤}
683
+ (b)
684
+ ≥ T r{Σ⊤Σ}+T r{∆⊤∆}−2T r{Σ⊤∆}=∥Σ−∆∥2
685
+ f ,
686
+ (41)
687
+ where (a) is because P⊤P = Q⊤Q = U⊤U = V⊤V = IL×L with IL×L being an identity matrix of size L,
688
+ and exploiting the circular property of the trace while (b) holds is from the main result of [46]. In order to make
689
+ ��X − ¯Xk��2
690
+ f achieve its derived lower bound, we set P = U and Q = V.
691
+ Henceforth, the problem in (40) will be equivalent to,
692
+ min
693
+ X,t
694
+ ∥x − ¯x∥2 + ∥t − ¯t∥2 ,
695
+ s.t.
696
+ |xi|p ≤ ti,
697
+ i ∈ {1, . . . L},
698
+ (42)
699
+ where x = [xi]i∈[L] and ¯x = [¯xi]i∈[L] are the vectors of singular values of the matrices X and ¯X respectively.
700
+ The optimal solution X∗ for (40) can be calculated by finding the optimal x∗ of (42) and then X∗ = UΣ∗VT ,
701
+ where Σ∗ =diag(x∗) and diag(.) is an operator that converts a vector to its corresponding diagonal matrix. Since
702
+ the problem in (42) is separable, we drop the index i and only consider solving
703
+ min
704
+ x,t
705
+ (x − ¯x)2 + (t − ¯t)2,
706
+ s.t.
707
+ |x|p ≤ t.
708
+ (43)
709
+
710
+ 13
711
+ It can be realized that (43) is the same as (20), hence, its optimal solution can be found by applying algorithm
712
+ 2.
713
+ B. (Y, z) update
714
+ After updating (X, t) while fixing Λ and θ, the problem in (36) can be written as,
715
+ Yk+1 =argmin
716
+ Y
717
+ �����Y−(Xk+1+ Λk
718
+ ρ )
719
+ �����
720
+ 2
721
+ f
722
+ , s.t.
723
+ Y ∈ M,
724
+ (44)
725
+ which is clearly a convex optimization problem representing the projection of the point Xk+1 + Λk
726
+ ρ on the set M
727
+ and can be solved by various known class of algorithms as discussed in section III-C.
728
+ Upon updating Y, the z update in (37) is
729
+ zk+1 = argmin
730
+ z
731
+ 1⊤z + ρ
732
+ 2
733
+ �����z − (tk+1 + θk
734
+ ρ )
735
+ �����
736
+ 2
737
+ ,
738
+ (45)
739
+ which has the closed-form solution z = tk+1 + θk−1
740
+ ρ
741
+ .
742
+ V. PROXIMAL GRADIENT ALGORITHM
743
+ The SVR algorithm deals with the ℓp relaxation of (2) without assuming any specific structure for V, other than
744
+ being closed and convex. Indeed, the algorithm only requires the Euclidean projections onto V as in (29). However,
745
+ this approach suffers from two pitfalls: 1) high computational complexity per iteration as a result of solving (29)
746
+ in every iteration, and 2) the lack of convergence guarantees.
747
+ In this section, we consider a sub-class of problems with a specific structure for the convex set of the form
748
+ V = {x : f(x) ≤ 0}, where f(x) = ∥Ax − b∥2 − ǫ for some given ǫ ≥ 0, A ∈ Rm×n and b ∈ Rm. Note that f(x)
749
+ is a convex function with Lipschitz continuous gradient. i.e., f is L-smooth: ∥∇f(x) − ∇f(y)∥ ≤ L ∥x − y∥ for
750
+ all x, y ∈ Rn and L ≜ ∥A∥2. Specifically, in order to solve
751
+ min
752
+ x
753
+ ∥x∥p
754
+ p ,
755
+ s.t.
756
+ f(x) ≤ 0,
757
+ (46)
758
+ we aim to develop an efficient algorithm with some convergence guarantees for the following Lagrangian relaxation:
759
+ min
760
+ x
761
+ F(x)
762
+ ∆= ∥x∥p
763
+ p + µ
764
+ 2 f(x),
765
+ (47)
766
+ where µ ≥ 0 is the dual multiplier that captures the trade-off between solution sparsity and fidelity.
767
+ A canonical problem for the regularized risk minimization has the following form:
768
+ min
769
+ x
770
+ g(x) + h(x)
771
+ (48)
772
+ where h is an L-smooth loss function and g is a a regularizer term. When both g and h are convex, the proximal
773
+ gradient (PG) algorithm [47] can compute a solution to (48) through iteratively taking PG steps, i.e., xk+1 =
774
+ proxg/λ(xk − ∇h(xk)/L) where proxg/λ(.)
775
+ ∆= argminx g(x) + λ
776
+ 2 ∥x − ·∥2, for some constant λ. When g is
777
+ convex, prox operation is well-defined; thus, the PG step can be computed.
778
+
779
+ 14
780
+ Comparing both (47) and (48), the convexity assumption of g(x) in (48) is not satisfied for ∥x∥p
781
+ p in (47). When
782
+ the regularizer is a continuous nonconvex function, the proximal map proxg/λ may not exist, let alone it can be
783
+ computed in closed form. On the other hand, for ∥x∥p
784
+ p, using similar arguments for the non-convex projection step
785
+ introduced in subsection III-B, we aim to derive an analytical solution that can be computed efficiently. Indeed,
786
+ assuming p ∈ (0, 1) is a positive rational number, the proposed method for computing the proximal map of ∥x∥p
787
+ p
788
+ involves finding the roots of a polynomial of order 2q, where q ∈ Z+ such that p = s/q for some s ∈ Z+.
789
+ Since f is L-smooth, for all x, y ∈ Rn, we have
790
+ f(x) ≤ f(y) + ∇f(y)⊤(x − y) + L
791
+ 2 ∥x − y∥2 .
792
+ (49)
793
+ Given xk, replacing f(x) with the upper bound in (49) for y = xk, the prox-gradient operation naturally arises as
794
+ follows:
795
+ xk+1 = argmin
796
+ X
797
+ ∥x∥p
798
+ p + µ
799
+ 2 [f(xk) + ∇f(xk)⊤(x − xk)
800
+ + L
801
+ 2
802
+ ��x − xk��2].
803
+ (50)
804
+ By completing the square, (50) yields to
805
+ xk+1 = argmin
806
+ X
807
+ ∥x∥p
808
+ p + µL
809
+ 4
810
+ ����x −
811
+
812
+ xk − 1
813
+ L∇f(xk)
814
+ �����
815
+ 2
816
+ .
817
+ (51)
818
+ Defining ¯xk ∆= xk − 1
819
+ L∇f(xk), (51) can be rewritten as
820
+ xk+1 = argmin
821
+ X
822
+ ∥x∥p
823
+ p + µL
824
+ 4
825
+ ��x − ¯xk��2
826
+ = argmin
827
+ X
828
+ n
829
+
830
+ i=1
831
+ |xi|p + µL
832
+ 4 (xi − ¯xk
833
+ i )2,
834
+ (52)
835
+ which is clearly a separable structure in the entries of x. Therefore, for each i ∈ [n], we have
836
+ xk+1
837
+ i
838
+ =argmin
839
+ xi
840
+ |xi|p+ µL
841
+ 4 (xi−¯xk
842
+ i )2 = prox¯g/ µL
843
+ 2 (¯xk
844
+ i ),
845
+ (53)
846
+ where ¯g : R → R+ such that ¯g(t) = |t|p for some positive rational p ∈ (0, 1).
847
+ Next, we consider a generic form of (53), i.e., given some ¯t ∈ R, we would like to compute
848
+ t∗ = argmin
849
+ t
850
+ {|t|p + µL
851
+ 4 (t − ¯t)2}.
852
+ (54)
853
+ The first-order optimality condition for (54) can be written as
854
+ p|t∗|p−1sign(t∗) + µL
855
+ 2 (t∗ − ¯t) = 0.
856
+ (55)
857
+ Using similar arguments with those in section III-B for Proposition 1, we can conclude that the optimal solution t∗
858
+ attains the property that sign(t∗) = sign(¯t). Without loss of generality, exploiting the symmetry of the function ¯g,
859
+ we only consider the case when ¯t > 0; hence, the optimal solution t∗ is the smallest positive root of the following
860
+ polynomial:
861
+ p|t∗|p−1 + µL
862
+ 2 (t∗ − ¯t) = 0.
863
+ (56)
864
+
865
+ 15
866
+ Algorithm 3 Accelerated PG algorithm
867
+ 1: Initialize: µ, s = 1, q = 2, l, x0, x1, k = 1.
868
+ 2: repeat
869
+ 3:
870
+ yk = xk + k−1
871
+ k+2(xk − xk−1)
872
+ 4:
873
+ ∆k = maxt=max{1,k−l},...,k F(xt)
874
+ 5:
875
+ if F(yk) ≤ ∆k then:
876
+ 6:
877
+ vk = yk
878
+ 7:
879
+ else:
880
+ 8:
881
+ vk = xk
882
+ 9:
883
+ ¯xk = vk − 1
884
+ L∇f(vk)
885
+ 10:
886
+ for i ∈ [n] do:
887
+ 11:
888
+ solve a2q − ¯xiaq +
889
+ 2s
890
+ qµLas = 0
891
+ 12:
892
+ xk+1
893
+ i
894
+ = a∗q
895
+ 13:
896
+ k = k + 1
897
+ 14: until convergence
898
+ As in (28), suppose 0 < p = s
899
+ q < 1 for some s, q ∈ Z+. Using the change of variables a ≜ (t∗)
900
+ 1
901
+ q , (56) reduces to
902
+ finding the roots of a polynomial of degree 2q:
903
+ a2q − ¯taq + 2s
904
+ qµLas = 0.
905
+ (57)
906
+ To efficiently solve (46), we will use Algorithm 3, which is an implementation of nonconvex inexact accelerated
907
+ proximal gradient (APG) descent method proposed in [48, Algorithm 2]. To summarize, [48, Algorithm 2] is
908
+ designed to solve composite problems of the form in (48) assuming that h is L-smooth and g is proper lower-
909
+ semicontinuous such that F ≜ h + g is bounded from below and coercive, i.e., lim∥∥→∞ F() = +∞ – note that
910
+ there is no assumption regarding neither h nor g to be convex. The key points enhancing both practical behavior
911
+ of and theoretical guarantees for [48, Algorithm 2] can be summarized as given below:
912
+ • An extrapolation yk is generated as introduced in [49] for the APG algorithm (step 3).
913
+ • Steps 4 through 9 allow non monotone update of the objective. F(yk) is checked with respect to the maximum
914
+ of the latest l objective values. The gradient step is adjusted according to this (step 9). This permits yk to
915
+ occasionally increase the objective and makes F(yk) be less than the maximum of the objective value of the
916
+ latest l iterations.
917
+ • Steps 11 and 12 are the solution of the PG step using the non-convex projection method.
918
+ In the next part, we show that algorithm 3 converges to a critical point and it exhibits a convergence rate of O( 1
919
+ k),
920
+ where k is the iteration budget that is given to the algorithm.
921
+
922
+ 16
923
+ Definition 3. ( [50]) The Frechet sub-differential of F at x is
924
+ ˆ∂F(x)
925
+ ∆=
926
+
927
+ u : lim
928
+ y̸=x lim
929
+ y→x
930
+ F(y) − F(x) − u⊤(y − x)
931
+ ∥y − x∥
932
+ ≥ 0
933
+
934
+ .
935
+ (58)
936
+ The sub-differential of F at x is
937
+ ∂F(x)
938
+ ∆= {u : ∃xk → x, F(xk) → F(x) and uk ∈ ˆ∂F(xk)
939
+ → u as k → ∞}.
940
+ (59)
941
+ Definition 4. ( [50]) x is a critical point of F if 0 ∈ ∂g(x) + ∇h(x).
942
+ By comparing (48) and (47), it can be realized that the functions g(x) and h(x) in definition 4 are equal to
943
+ ∥x∥p
944
+ p and µ
945
+ 2 f(x) respectively.
946
+ Theorem 1. The sequence xk generated from algorithm 3 has at least one limit point and all the generated limit
947
+ points are critical points of (47). Moreover, the algorithm converges with rate O( 1
948
+ K ), where K is the iteration
949
+ budget given to the algorithm.
950
+ Proof. It can easily be verified that our problem in (47) satisfies all required assumptions for Algorithm 3. Indeed,
951
+ 1) The function g(x) = ∥x∥p
952
+ p is a proper and lower semi-continuous function.
953
+ 2) The gradient of h(x) = µ
954
+ 2 f(x) is ¯L-Lipschitz smooth, i.e., ∥∇h(x) − ∇h(y)∥ ≤ ¯L ∥x − y∥ for all x, y ∈ Rn,
955
+ with ¯L = µ
956
+ 2 L.
957
+ 3) F(x)=g(x)+h(x) is bounded from below, i.e., F(x)≥0.
958
+ 4) lim∥x∥→∞ F(x) = ∞.
959
+ 5) The introduced non-convex projection method is an exact solution for the proximal gradient step. This is
960
+ because it is based on finding the roots of a polynomial of order 2q in equation (57).
961
+ Therefore, the assumptions required for theorem 4.1 for critical point convergence and proposition 4.3 for the rate
962
+ of convergence in [48] are satisfied which then completes the proof.
963
+ Remark 2. The global convergence of several exact iterative methods that solve (48) has been explored, under the
964
+ framework of Kurdyka–Lojasiewicz (KL) theory, in various additional literature including [50]–[54]. Other work
965
+ (see [55] and references therein) considered the linear convergence of non-exact algorithms with relaxations on
966
+ the assumptions of KL theory, however, it is difficult to verify that the sequence generated by algorithm 3 satisfies
967
+ the relaxed assumptions stated in [55].
968
+ VI. NUMERICAL RESULTS FOR SVR PROBLEM
969
+ In this section, we present two numerical examples for the p-quasi-norm ADMM (pQN-ADMM) from algorithm 1
970
+ and the non-convex projection from algorithm 2. For both examples, the pQN-ADMM algorithm result is compared
971
+ with the ℓ1 objective function solution from MOSEK solver [56]. The two examples include; i) Sparse signal
972
+ reconstruction from noisy measurements, where the pQN-ADMM algorithm is also compared with another ℓ0.5
973
+ quasi-norm minimization based algorithm, named ℓ0.5-FL, described in [57]. ii) Binary classification using support
974
+ vector machines (SVM).
975
+
976
+ 17
977
+ 10-4
978
+ 10-3
979
+ 10-2
980
+ 10-1
981
+ 100
982
+ 0.14
983
+ 0.16
984
+ 0.18
985
+ 0.2
986
+ 0.22
987
+ 0.24
988
+ 0.26
989
+ Fig. 1: Effect of noise variance on the sparsity of solutions obtained by pQN-ADMM algorithm,
990
+ ℓ0.5-FL algorithm and ℓ1 norm minimization.
991
+ A. Sparse Signal Reconstruction
992
+ Let n = 210 and m = n/4, randomly construct the sparse binary matrix, M ∈ Rm× n
993
+ 2 , with a few number of
994
+ ones in each column. The number of ones in each column of M is generated independently and randomly in the
995
+ range of integers between 10 and 20, and their locations are randomly chosen independently for each column. Let
996
+ U = [M, −M], which is the vertical concatenation of the matrix M and its negative. Following the same setup in
997
+ [58], the column orthogonality in U is not satisfied. Let xopt ∈ Rn be a reference signal with ∥xopt∥0 = ⌈0.2n⌉,
998
+ where the non-zero locations are chosen uniformly at random with the values following a zero mean, unit variance
999
+ Gaussian distribution. Let v = Uxopt+n be the allowable measurement, where n ∈ Rm is a Gaussian random vector
1000
+ with zero mean and co-variance matrix σ2Im×m, where I is the identity matrix. The sparse vector is reconstructed
1001
+ from v by solving (7) with V = {x : ∥Ux − v∥/∥v∥ − ǫ ≤ 0}. Figure 1 plots the relation between the sparsity
1002
+ level and the noise variance for ℓ1 norm minimization, ℓ0.5-FL quasi-norm and pQN-ADMM solutions. A threshold
1003
+ value of 10−6 was used where the threshold is a value below which the entry of the solution vector is considered to
1004
+ be zero. Depending on the noise variance σ2, the value of ǫ was chosen to make the problem feasible. The reported
1005
+ result is the average of 100 independent random runs. It can be realized that pQN-ADMM algorithm produces a
1006
+ sparser solution than its counter baselines for different values of σ2. On increasing σ2, the sparsity level for all
1007
+ methods decreases. This is due to the increased scarcity of information on the original signal in the realization
1008
+ vector which makes the reconstruction process less accurate.
1009
+
1010
+ 18
1011
+ B. Binary Classification
1012
+ In this part, we build an email spam classifier based on support vector machines. We use a subset of the
1013
+ training set used in the SpamAssassin Public Corpus [59]. Let {(uj, vj)}j∈[m] be the training set of feature vectors
1014
+ uj ∈ {0, 1}n with corresponding labels vj ∈ {−1, 1} identifying whether the email is spam or not. We highlight
1015
+ the effectiveness of our method in designing an email spam detector using the least number of words. Following
1016
+ [60], we maintain a dictionary of n = 1899 words. For a given email j ∈ [m], the ith entry of uj is 1 if word
1017
+ wi, i ∈ [n] of the dictionary is in email j, and is 0 otherwise. We aim to build a linear classifier with the decision
1018
+ rule ˆv = sign(u⊤x), where u is the feature vector of the email in question and x is a vector of the classifier
1019
+ coefficients with the first entry being the bias term. The main aim is to build a classifier that detects whether an
1020
+ email is a spam or not, using the least number of words from the dictionary and achieving a high training data
1021
+ accuracy. To achieve this objective, we solve (7) with M = {x : 1
1022
+ m
1023
+
1024
+ j∈[m]
1025
+
1026
+ 1 − vju⊤
1027
+ j x
1028
+ �+ − ǫ ≤ 0}.
1029
+ It can be clearly realized that the training set accuracy is controlled by ǫ. Algorithm 1 was run for p = 0.5, 2000
1030
+ training emails and various values for ǫ. For each value of ǫ, the algorithm was terminated after 100 iterations and
1031
+ performance tested on 1000 emails. For comparison purpose, the problem was also solved with the ℓ1 norm convex
1032
+ relaxation under the same setup. In figure 2a, we plot the number of non-zero entries in the optimal classifier from
1033
+ both the pQN-ADMM and ℓ1 solutions vs different values of ǫ.
1034
+ We used a threshold of 10−4, where the threshold is defined as in section VI-A. It can be realized from figure 2a
1035
+ that the pQN-ADMM solution outperforms the ℓ1 in terms of the number of words used for legitimacy detection.
1036
+ When the value of ǫ increases, the number of required words decreases for both ℓ0.5 and ℓ1 problems. This outlines
1037
+ the trade-off between the sparsity level of the classifier and its accuracy, i.e., small values of ǫ enforces a low
1038
+ classification error in expense of a less sparse solution. The corresponding training and test set accuracies for the
1039
+ obtained classifiers are plotted in Fig. 2b. Both figures 2a and 2b depict the performance of the pQN-ADMM
1040
+ solution from algorithm 1 in terms of the sparsity level while maintaining nearly the same level of accuracy as the
1041
+ ℓ1 solution for both the training and test sets.
1042
+ VII. NUMERICAL RESULTS FOR RMP PROBLEM
1043
+ A. Time domain system identification
1044
+ In this part, we apply the derived pQN-ADMM approach on a time domain system identification example. In
1045
+ that example, input is applied to randomly generated systems with a known order. Using the outputs corresponding
1046
+ to these systems, the minimum rank/order system is derived and results are compared to nuclear norm heuristic in
1047
+ [26].
1048
+ We consider a discrete time stable Single Input Single Output (SISO) system with an input u ∈ RT, where T
1049
+ represents the number of input samples, i.e., input time span. We assume an impulse response of a fixed number
1050
+ of samples n. The corresponding system output is y ∈ Rm. However, we assume that only noisy realizations, ˆy, of
1051
+ the output can be considered, such that; ˆy
1052
+ ∆= y + z = h ⊛ u + z , where h ∈ Rn is the system’s original impulse
1053
+ response, z ∈ Rm is a random vector with entries drawn independently from samples of a uniform distribution
1054
+ on the range [−0.25, 0.25], i.e., zi ∼ U[−0.25, 0.25], while ⊛ denotes the convolution operator. From the window
1055
+
1056
+ 19
1057
+ 0
1058
+ 0.1
1059
+ 0.2
1060
+ 0.3
1061
+ 0.4
1062
+ 0.5
1063
+ 0
1064
+ 50
1065
+ 100
1066
+ 150
1067
+ 200
1068
+ 250
1069
+ Number of selected words
1070
+ (a) Number of words selected for classification
1071
+ versus ǫ for pQN-ADMM and ℓ1 norm.
1072
+ 0
1073
+ 0.1
1074
+ 0.2
1075
+ 0.3
1076
+ 0.4
1077
+ 0.5
1078
+ 65
1079
+ 70
1080
+ 75
1081
+ 80
1082
+ 85
1083
+ 90
1084
+ 95
1085
+ 100
1086
+ Correct percentage
1087
+ (b) Training and test set accuracies versus ǫ
1088
+ for pQN-ADMM and ℓ1 norm.
1089
+ Fig. 2: Binary classification numerical results.
1090
+ property of the convolution, m = n + T − 1. Assume that ui, hi and yi are the ith components of the vectors u, h
1091
+ and y respectively. The three components are related to each other by convolution through yi = �∞
1092
+ j=−∞ hjui−j
1093
+ which is a linear relation. Hence, let T ∈ Rm×n be the Toeplitz matrix formed by the input u , it can be easily
1094
+ seen that h ⊛ u = hT ⊤. Assume that x ∈ Rn is an impulse response variable and let X ∈ Rn×n be a Hankel
1095
+ matrix formed by the entries of x. From [29], [61]–[63], the minimum order time domain system identification
1096
+ problem can be formulated as,
1097
+ min
1098
+ x,X
1099
+ RankX,
1100
+ (60a)
1101
+ s.t.
1102
+ X = Hankel(x),
1103
+ (60b)
1104
+ ��ˆy − xT ⊤��2 ≤ ǫ,
1105
+ (60c)
1106
+ (60b) ensures that X is a Hankel matrix and (60c) holds to make the result by applying the input, u, to the optimal
1107
+ impulse response, x, fit the available noisy data, ˆy, in a non-trivial sense. Defining the convex set C
1108
+ ∆={X∈Rn×n :
1109
+ ��ˆy−hT ⊤��2−ǫ ≤ 0, X=Hankel(x)}, (60) can be cast as,
1110
+ min
1111
+ x,X
1112
+ Rank(X),
1113
+ s.t.
1114
+ X ∈ C,
1115
+ (61)
1116
+ which is clearly identical to the problem in (1). The problem was solved using the same pQN-ADMM approach
1117
+ discussed in section IV.
1118
+ We let T = m = 50 and n = 40. Note that m < T + n − 1, which is a reasonable assumption as in some
1119
+ practical applications, one is allowed only a specific window to realize the output. We consider the simulation for
1120
+ 10 different original system orders, i.e., η = 2 : 2 : 10. An input vector, u, is generated, where the elements of u
1121
+ are independent and follow a uniform distribution on the interval [−5, 5]. For each η; 1) 50 random stable systems
1122
+ are generated using the command ’drss’ in MATLAB. 2) The generated input is applied to each system to get the
1123
+ corresponding noisy output ˆy. 3) Given the output ˆy, the problem in (60) is solved and the corresponding system’s
1124
+
1125
+ 20
1126
+ 2
1127
+ 4
1128
+ 6
1129
+ 8
1130
+ 10
1131
+ Original system order
1132
+ 0
1133
+ 5
1134
+ 10
1135
+ 15
1136
+ 20
1137
+ Average rank
1138
+ Threshold=10-4
1139
+ 2
1140
+ 4
1141
+ 6
1142
+ 8
1143
+ 10
1144
+ Original system order
1145
+ 0
1146
+ 5
1147
+ 10
1148
+ 15
1149
+ 20
1150
+ Average rank
1151
+ Threshold=10-5
1152
+ Fig. 3: Average rank vs original system order. Red and cyan colors are for the nuclear norm and
1153
+ pQN-ADMM algorithm respectively.
1154
+ η=2
1155
+ η=6
1156
+ η=10
1157
+ Nuclear norm
1158
+ 2.3907
1159
+ 6.6668
1160
+ 7.2572
1161
+ pQN-ADMM
1162
+ 0.5292
1163
+ 0.9042
1164
+ 1.0861
1165
+ TABLE I: Standard deviation for threshold=10−4
1166
+ rank is calculated using singular value decomposition. 4) The results are averaged out to get the corresponding
1167
+ average rank to each original η.
1168
+ Figure 3 shows the average rank for the the nuclear norm and pQN-ADMM heuristics. The results are for
1169
+ two different values of thresholds, where the threshold is defined as the value below which the singular value is
1170
+ considered to be zero. It can be realized that the introduced pQN-ADMM approach outperforms the nuclear norm
1171
+ one for both values of thresholds. Moreover, when the threshold value decreases from 10−4 to 10−5, the behavior
1172
+ of the pQN-ADMM remains the same. However, the average rank for the nuclear norm increases. This proves the
1173
+ robustness of the derived pQN-ADMM in comparison to the nuclear norm one. Tables I and II show the standard
1174
+ deviation of the algorithms. It can be seen that the standard deviation is the same for the pQN-ADMM when
1175
+ η=2
1176
+ η=6
1177
+ η=10
1178
+ Nuclear norm
1179
+ 6.9877
1180
+ 11.2638
1181
+ 11.7854
1182
+ pQN-ADMM
1183
+ 0.5325
1184
+ 0.9113
1185
+ 1.0861
1186
+ TABLE II: Standard deviation for threshold=10−5
1187
+
1188
+ 21
1189
+ changing the threshold, however, it increases for the nuclear norm as the threshold value decreases.
1190
+ B. Matrix Completion Example
1191
+ In this section, we apply our algorithm (pQN-ADMM) to a matrix completion example and compare the
1192
+ result to the matrix iterative re-weighted least squares (MatrixIRLS) [64], [65], truncated iterative re-weighted
1193
+ unconstrained Lq (tIRucLq) [34] and iterative re-weighted least squares (sIRLS-p & IRLS-p) [66] algorithms. The
1194
+ matrix completion problem is a special case of the low rank minimization where a linear transform takes a few
1195
+ random entries of an ambiguous matrix X ∈ Rm×n. Given only these entries, the goal is to approximate X and
1196
+ find the missing ones. The matrix completion problem with low rank recovery can be approximated by,
1197
+ min
1198
+ X
1199
+ ∥X∥p
1200
+ p ,
1201
+ s.t.
1202
+ ∥A(X) − b∥ ≤ ǫ,
1203
+ (62)
1204
+ where A : Rm×n → Rq is a linear map with q ≪ mn and b ∈ Rq. In order to apply the mentioned algorithms, the
1205
+ linear transform A(X) will be rewritten as Avec(X), where A ∈ Rq×mn and vec(X) ∈ Rmn is a vector formed
1206
+ by stacking the columns of the matrix X.
1207
+ A random matrix M ∈ Rm×n with rank r is created using the following method: 1) M = MLM⊤
1208
+ R, where
1209
+ ML ∈ Rm×r and MR ∈ Rn×r. 2) The entries of both ML and MR are i.i.d Gaussian random variables with zero
1210
+ mean and unit variance. Let ˆ
1211
+ M = M + Z, where Z ∈ Rm×n is a Gaussian noise with each entry being an i.i.d
1212
+ Gaussian random variable with zero mean and variance σ2. The vector b is then created by selecting random q
1213
+ elements from vec( ˆ
1214
+ M). Since b = Avec( ˆ
1215
+ M), one can easily construct the matrix A which is a sparse matrix where
1216
+ each row is composed of a value 1 at the index of the corresponding selected entry in the vector b while the rest
1217
+ are zeros. We set m = n = 100, r = 5 and p = 0.5. Let dr = r(m+n−r) denotes the dimension of the set of rank
1218
+ r matrices and define s =
1219
+ q
1220
+ mn as the sampling ratio. We assume that s = 0.195 which yields to q = 1950. It can
1221
+ be realized that dr
1222
+ q < 1. We set σ = 0.1 and let the algorithms terminate if a budget of 1000 iterations is reached.
1223
+ In order to compare the results from different algorithms, we consider the average of 50 runs for two measures: a)
1224
+ the relative Frobenius distance (RFD) to the matrix M, b) the relative error to singular (REtS) values of M.
1225
+ In figures 4a and 4b, we report the average RFD and REtS values for all the algorithms. Despite that all the
1226
+ baselines are designed to exploit the specific structure of the matrix completion problem, described in (62), while
1227
+ the proposed pQN-ADMM doesn’t, it is competitive against them all. This in turns shows the effectiveness of the
1228
+ pQN-ADMM algorithm in solving the rank minimization problems without requiring any prior information about
1229
+ the structure of the associated convex set.
1230
+ VIII. NUMERICAL RESULTS FOR THE NONCONVEX ACCELERATED PROXIMAL
1231
+ GRADIENT (APG) ALGORITHM
1232
+ In this subsection, we present numerical results for the APG method, displayed in Algorithm 3. Following the
1233
+ same procedure in [67], we first generate the target signal x∗ through
1234
+ x∗
1235
+ i =
1236
+
1237
+
1238
+
1239
+ Θ(1)
1240
+ i 103Θ(2)
1241
+ i ,
1242
+ ∀ i ∈ Λ,
1243
+ 0,
1244
+ ∀ i ∈ [n] \ Λ;
1245
+ (63)
1246
+
1247
+ 22
1248
+ 0
1249
+ 200
1250
+ 400
1251
+ 600
1252
+ 800
1253
+ 1000
1254
+ Number of iterations
1255
+ 10-2
1256
+ 10-1
1257
+ 100
1258
+ IRLS-p
1259
+ sIRLS-p
1260
+ MatrixIRLS
1261
+ tIRucLq
1262
+ pQN-ADMM
1263
+ (a) RFD to M.
1264
+ 1
1265
+ 2
1266
+ 3
1267
+ 4
1268
+ 5
1269
+ Index of singular value
1270
+ 0
1271
+ 0.02
1272
+ 0.04
1273
+ 0.06
1274
+ 0.08
1275
+ 0.1
1276
+ IRLS-p
1277
+ sIRLS-p
1278
+ MatrixIRLS
1279
+ tIRucLq
1280
+ pQN-ADMM
1281
+ (b) REtS values of M.
1282
+ Fig. 4: The RFD and REtS average values.
1283
+ where the design parameters Λ ⊂ [n], and Θ(1)
1284
+ i , Θ(2)
1285
+ i
1286
+ for i ∈ Λ are chosen as follows:
1287
+ 1) the index set Λ ⊂ [n] is constructed by selecting a subset of [n] with cardinality s uniformly at random;
1288
+ 2) {Θ(1)
1289
+ i }i∈Λ are independent, identically distributed (IID) Bernoulli random variables taking values ±1 with
1290
+ equal probability;
1291
+ 3) {Θ(2)
1292
+ i }i∈Λ are IID uniform [0, 1] random variables.
1293
+ The measurement matrix A ∈ Rm×n is a partial Discrete Cosine Transform (DCT) matrix with rows correspond-
1294
+ ing to m < n frequency, where these m indices are chosen uniformly at random from [n]. The noisy measurement
1295
+ vector b ∈ Rm is then set to be b = A(x∗ + ǫ1) + ǫ2, where ǫ1 ∼ N(0, σ2
1296
+ 1) and ǫ2 ∼ N(0, σ2
1297
+ 2) are the input and
1298
+ realization noises.
1299
+ In our experiments, n = 4096, s = ⌈0.5m⌉ and the PG algorithm memory to 5, i.e., l = 5. Following the
1300
+ medium noise setup in [68], we set σ1 = 0.005, σ2 = 0.001.
1301
+ For f(x) = ∥Ax − b∥2, we have L = 2∥A∥2. We perform our experiment for various values of m, i.e., number
1302
+ of noisy measurements, and µ, i.e., trade-off parameter, see (47). For each (m, µ) selection, in order to capture
1303
+ the inherent statistical variation of the problem, we generate 20 random instances of the triplet (x∗, A, b) and each
1304
+ random instance is solved by Algorithm 3. We reported the average performance. We terminated Algorithm 3 when
1305
+ the relative error between consecutive iterates satisfies
1306
+ ��xk − xk−1�� /
1307
+ ��xk−1�� ≤ 10−5 for the first time.
1308
+ In our experiments, we compared solving (47) for p = 0.5 against p = 1, i.e., against ℓ1-optimization for sparse
1309
+ recovery. On one hand, when p = 0.5, i.e., for ℓ0.5 minimization, we solve (47) using Algorithm 3, called ℓ0.5 exact,
1310
+ and using the algorithm 2 of [69], which we call ℓ0.5 approx. On the other hand, when p = 1, ℓ1-minimization
1311
+ problem is a convex one and we adopt the FISTA algorithm of [70]. The solution is denoted by ¯x while the target
1312
+ signal, from (63), by x∗. In Algorithm 3, x0 is set to a zero vector while x1 is the ℓ1 norm solution.
1313
+ Figures 5 and 6 highlight the relation between the average error and sparsity vs µ for different values of n/m. It
1314
+ can be realized that the average error (sparsity) decreases (increases) on increasing µ. For small values of µ, more
1315
+ weight is given to the loss function, which emphasizes the ℓ0 quasi-norm minimization, and hence the sparsity level,
1316
+
1317
+ 23
1318
+ Fig. 5: Average error vs µ for different values of n/m. Yellow and cyan shades are the standard
1319
+ deviations for the exact and approximate ℓ0.5 quasi-norms respectively.
1320
+ as in figure 6, is low. However, for high values of µ, more weight is assigned to the minimization of the regularization
1321
+ term, which solves ∥Ax − b∥2, and hence the error decreases, as shown in figure 3, with a corresponding increase
1322
+ in the sparsity. It can be realized that the ℓ0.5 solutions always outperforms the ℓ1 one with very slight difference
1323
+ between the exact and the approximate ones.
1324
+ Figure 7 highlights the statistics of the number of iterations used until convergence for both the ℓ0.5 exact and
1325
+ approximate algorithms. It can be realized that with a sufficient number of available realizations, n/m = 8 and
1326
+ n/m = 16, both algorithms approximately consume the same number of iterations. However, when the number
1327
+ of available realizations decreases, n/m = 32 and higher, our exact proximal solution requires significantly less
1328
+ number of iterations to converge. This conclusion, along with figures 5 and 6 findings, indicates that our algorithm
1329
+ not only finds a similar solution to the approximate method, but also converges with a fewer number of iterations.
1330
+
1331
+ n/m=8
1332
+ n/m=16
1333
+ n/m=32
1334
+ 0
1335
+ 0
1336
+ 0
1337
+ l1
1338
+ l1
1339
+ -1
1340
+ - l0.5 exact
1341
+ -1
1342
+ lo0.5 exact
1343
+ -1
1344
+ - l0.5 exact
1345
+ l0.5 approx
1346
+ l0.5approx
1347
+ l0.5 approx
1348
+ 2
1349
+ -2
1350
+ -2
1351
+ all
1352
+ -3
1353
+ -3
1354
+ -3
1355
+ -4
1356
+ -4
1357
+ 5
1358
+ -5
1359
+ -5
1360
+ -6
1361
+ -6
1362
+ -6
1363
+ -7
1364
+ -7
1365
+ -7
1366
+ 0
1367
+ 10
1368
+ 20
1369
+ 30
1370
+ 0
1371
+ 10
1372
+ 20
1373
+ 30
1374
+ 0
1375
+ 10
1376
+ 20
1377
+ 30
1378
+ u
1379
+ n/m=64
1380
+ n/m=128
1381
+ n/m=256
1382
+ 0
1383
+ 0
1384
+ l1
1385
+ l1
1386
+ -1
1387
+ lo.5exact
1388
+ -1
1389
+ l0.5 exact
1390
+ -1
1391
+ l0.5 exact
1392
+ l0.5approx
1393
+ 0.5 approx
1394
+ 0.5approx
1395
+ -2
1396
+ -2
1397
+ -2
1398
+ -3
1399
+ gl
1400
+ -3
1401
+ 3
1402
+ -4
1403
+ -4
1404
+ 4
1405
+ -5
1406
+ -5
1407
+ .5
1408
+ -6
1409
+ -6
1410
+ -6
1411
+ -7
1412
+ -7
1413
+ -7
1414
+ 0
1415
+ 10
1416
+ 20
1417
+ 30
1418
+ 0
1419
+ 10
1420
+ 20
1421
+ 30
1422
+ 0
1423
+ 10
1424
+ 20
1425
+ 30
1426
+ u24
1427
+ Fig. 6: Sparsity vs µ for different values of n/m. Yellow and cyan shades are the standard
1428
+ deviations for the exact and approximate ℓ0.5 quasi-norms respectively.
1429
+ IX. CONCLUSION
1430
+ In this study, we presented a non-convex ADMM algorithm (pQN-ADMM) to solve the ℓp norm minimization
1431
+ problem. The algorithm has a similar complexity to that of the ℓ1 minimization in addition to solving the roots of a
1432
+ polynomial for the non-convex projection. Our algorithm can also be considered as a general procedure for solving
1433
+ ℓp problems as no specific structure for the convex constraint set was assumed and a convex projection on that set
1434
+ was done for variables update. Applying sparse signal recover and binary classification examples, our method was
1435
+ found to outperform the ℓ1 minimization in terms of the sparsity of the generated solution. In addition, we studied
1436
+ the problem of solving a non-convex relaxation of RMPs using Schatten-p quasi-norm. This relaxation was shown
1437
+ to be the ℓp minimization of the singular values of the variable matrix and hence the primary developed algorithm
1438
+ could be used. Showing the numerical results, the pQN-ADMM was found to be less sensitive to the threshold
1439
+ decrease in time domain system identification problems. Additionally, the pQN-ADMM method was shown to be
1440
+
1441
+ n/m=8
1442
+ n/m=16
1443
+ n/m=32
1444
+ 5
1445
+ 5
1446
+ 5
1447
+ l1
1448
+ lo.5 exact
1449
+ l0.5exact
1450
+ 4.
1451
+ l0.5 exact
1452
+ C0.5approx
1453
+ 0.5 approx
1454
+ -0.5 approx
1455
+ 3
1456
+ 3
1457
+ 3
1458
+ x*lo
1459
+ 2
1460
+
1461
+ 2
1462
+ [x*
1463
+ 2
1464
+
1465
+ 1
1466
+ 0
1467
+ 0
1468
+ 0
1469
+ -1
1470
+ -1
1471
+ -1
1472
+ 0
1473
+ 10
1474
+ 20
1475
+ 30
1476
+ 0
1477
+ 10
1478
+ 20
1479
+ 30
1480
+ 0
1481
+ 10
1482
+ 20
1483
+ 30
1484
+ μ
1485
+ n/m=64
1486
+ n/m=128
1487
+ n/m=256
1488
+ 6
1489
+ 6
1490
+ 10
1491
+ 5
1492
+ l0.5 exact
1493
+ 5
1494
+ lo.5exact
1495
+ 8
1496
+ lo0.5 exact
1497
+ L0.5approx
1498
+ 0.5approx
1499
+ 0.5 approx
1500
+ 4
1501
+ 4
1502
+ 6
1503
+ [x o
1504
+ 3
1505
+ 3
1506
+ [x*10
1507
+
1508
+ [x*|
1509
+ 4
1510
+ 2
1511
+
1512
+ 2
1513
+ 2
1514
+ 0
1515
+ 0
1516
+ 0
1517
+ -1
1518
+ -2
1519
+ 7
1520
+ 0
1521
+ 10
1522
+ 20
1523
+ 30
1524
+ 0
1525
+ 10
1526
+ 20
1527
+ 30
1528
+ 0
1529
+ 10
1530
+ 20
1531
+ 30
1532
+ u25
1533
+ Fig. 7: Iterations count vs µ for different values of n/m.
1534
+ competitive against various other baselines when solving the matrix completion problem.
1535
+ REFERENCES
1536
+ [1] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38, no. 1, pp. 49–95, 1996.
1537
+ [2] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Transactions on Information Theory, vol. 51, no. 12,
1538
+ pp. 4203–4215, 2005.
1539
+ [3] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE
1540
+ Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.
1541
+ [4] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete
1542
+ frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.
1543
+ [5] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
1544
+ [6] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations to sparse modeling of
1545
+ signals and images,” SIAM review, vol. 51, no. 1, pp. 34–81, 2009.
1546
+
1547
+ n/m=8
1548
+ n/m=16
1549
+ n/m=32
1550
+ 6000
1551
+ 6000
1552
+ 6000
1553
+ l0.5 exact
1554
+ l0.5 exact
1555
+ l0.5 exact
1556
+ 5000
1557
+ 0.5 approx
1558
+ 5000
1559
+ l0.5approx
1560
+ 5000
1561
+ 0.5approx
1562
+ count
1563
+ 4000
1564
+ count
1565
+ 4000
1566
+ count
1567
+ 4000
1568
+ Iterations
1569
+ erations
1570
+ Iterations
1571
+ 3000
1572
+ 3000
1573
+ 3000
1574
+ 2000
1575
+ 2000
1576
+ 2000
1577
+ 1000
1578
+ 1000
1579
+ 1000
1580
+ 0
1581
+ 0
1582
+ 0
1583
+ 0
1584
+ 10
1585
+ 20
1586
+ 30
1587
+ 0
1588
+ 10
1589
+ 20
1590
+ 30
1591
+ 0
1592
+ 10
1593
+ 20
1594
+ 30
1595
+ u
1596
+ n/m=64
1597
+ n/m=128
1598
+ n/m=256
1599
+ 6000
1600
+ 6000
1601
+ 6000
1602
+ l0.5 exact
1603
+ l0.5 exact
1604
+ l0.5 exact
1605
+ 5000
1606
+ l0.5approx
1607
+ 5000
1608
+ l0.5 approx
1609
+ 5000
1610
+ lo.5 approx
1611
+ A
1612
+ Iterations count
1613
+ 4000
1614
+ 4000
1615
+ count
1616
+ 4000
1617
+ rations
1618
+ 3000
1619
+ 3000
1620
+ rations
1621
+ 3000
1622
+ 2000
1623
+ 2000
1624
+ 2000
1625
+ 1000
1626
+ 1000
1627
+ 1000
1628
+ 0
1629
+ 0
1630
+ 0
1631
+ 0
1632
+ 10
1633
+ 20
1634
+ 30
1635
+ 0
1636
+ 10
1637
+ 20
1638
+ 30
1639
+ 0
1640
+ 10
1641
+ 20
1642
+ 30
1643
+ u
1644
+ u26
1645
+ [7] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution of linear inverse problems,” Proceedings of the
1646
+ IEEE, vol. 98, no. 6, pp. 948–958, 2010.
1647
+ [8] S. G. Mallat and Zhifeng Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Transactions on Signal
1648
+ Processing, vol. 41, no. 12, pp. 3397–3415, 1993.
1649
+ [9] J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Transactions on Information Theory,
1650
+ vol. 50, no. 10, pp. 2231–2242, 2004.
1651
+ [10] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM review, vol. 43, no. 1,
1652
+ pp. 129–159, 2001.
1653
+ [11] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society: Series B
1654
+ (Methodological), vol. 58, no. 1, pp. 267–288, 1996.
1655
+ [12] R. Chartrand, “Exact reconstruction of sparse signals via nonconvex minimization,” IEEE Signal Processing Letters, vol. 14,
1656
+ no. 10, pp. 707–710, 2007.
1657
+ [13] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” in 2008 IEEE International
1658
+ Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872, IEEE, 2008.
1659
+ [14] D. P. Wipf and B. D. Rao, “Sparse bayesian learning for basis selection,” IEEE Transactions on Signal Processing, vol. 52,
1660
+ no. 8, pp. 2153–2164, 2004.
1661
+ [15] P. Schniter, L. C. Potter, and J. Ziniel, “Fast bayesian matching pursuit,” in 2008 Information Theory and Applications
1662
+ Workshop, pp. 326–333, 2008.
1663
+ [16] A. Miller, Subset selection in regression. CRC Press, 2002.
1664
+ [17] R. Saab, R. Chartrand, and O. Yilmaz, “Stable sparse approximations via nonconvex optimization,” in 2008 IEEE
1665
+ International Conference on Acoustics, Speech and Signal Processing, pp. 3885–3888, 2008.
1666
+ [18] R. Chartrand, “Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data,” in 2009 IEEE
1667
+ International Symposium on Biomedical Imaging: From Nano to Macro, pp. 262–265, 2009.
1668
+ [19] N. Mourad and J. P. Reilly, “Minimizing nonconvex functions for sparse vector reconstruction,” IEEE Transactions on
1669
+ Signal Processing, vol. 58, no. 7, pp. 3485–3496, 2010.
1670
+ [20] R. Chartrand and B. Wohlberg, “A nonconvex ADMM algorithm for group sparsity with sparse groups,” in 2013 IEEE
1671
+ International Conference on Acoustics, Speech and Signal Processing, pp. 6009–6013, 2013.
1672
+ [21] Z. Xu, X. Chang, F. Xu, and H. Zhang, “l1/2 regularization: A thresholding representation theory and a fast solver,” IEEE
1673
+ Transactions on Neural Networks and Learning Systems, vol. 23, no. 7, pp. 1013–1027, 2012.
1674
+ [22] J. Zeng, S. Lin, Y. Wang, and Z. Xu, “l1/2 regularization: Convergence of iterative half thresholding algorithm,” IEEE
1675
+ Transactions on Signal Processing, vol. 62, no. 9, pp. 2317–2329, 2014.
1676
+ [23] G. Li and T. K. Pong, “Global convergence of splitting methods for nonconvex composite optimization,” SIAM Journal
1677
+ on Optimization, vol. 25, no. 4, pp. 2434–2460, 2015.
1678
+ [24] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in nonconvex nonsmooth optimization,” Journal of Scientific
1679
+ Computing, vol. 78, no. 1, pp. 29–63, 2019.
1680
+ [25] M. Mesbahi, “On the semi-definite programming solution on the least order dynamic output feedback synthesis,” 1999.
1681
+ [26] M. Fazel, H. Hindi, and S. P. Boyd, “A rank minimization heuristic with application to minimum order system
1682
+ approximation,” in Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), vol. 6, pp. 4734–4739
1683
+ vol.6, 2001.
1684
+ [27] M. Fazel, H. Hindi, and S. P. Boyd, “Log-det heuristic for matrix rank minimization with applications to hankel and
1685
+ euclidean distance matrices,” in Proceedings of the 2003 American Control Conference, 2003., vol. 3, pp. 2156–2162
1686
+ vol.3, 2003.
1687
+
1688
+ 27
1689
+ [28] M. Fazel, H. Hindi, and S. Boyd, “Rank minimization and applications in system theory,” in Proceedings of the 2004
1690
+ American Control Conference, vol. 4, pp. 3273–3278 vol.4, 2004.
1691
+ [29] K. Mohan and M. Fazel, “Reweighted nuclear norm minimization with application to system identification,” in Proceedings
1692
+ of the 2010 American Control Conference, pp. 2953–2959, 2010.
1693
+ [30] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization with application to image denoising,” in
1694
+ 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869, 2014.
1695
+ [31] F. Nie, H. Huang, and C. Ding, “Low-rank matrix recovery via efficient Schatten p-norm minimization,” in Twenty-sixth
1696
+ AAAI conference on artificial intelligence, 2012.
1697
+ [32] F. Nie, H. Wang, H. Huang, and C. Ding, “Joint schatten p-norm and lp norm robust matrix completion for missing value
1698
+ recovery,” Knowledge and Information Systems, vol. 42, no. 3, pp. 525–544, 2015.
1699
+ [33] L. Liu, W. Huang, and D.-R. Chen, “Exact minimum rank approximation via Schatten p-norm minimization,” Journal of
1700
+ Computational and Applied Mathematics, vol. 267, pp. 218–227, 2014.
1701
+ [34] M.-J. Lai, Y. Xu, and W. Yin, “Improved iteratively reweighted least squares for unconstrained smoothed ℓq minimization,”
1702
+ SIAM Journal on Numerical Analysis, vol. 51, no. 2, pp. 927–957, 2013.
1703
+ [35] R. Chartrand, “Nonconvex splitting for regularized low-rank + sparse decomposition,” IEEE Transactions on Signal
1704
+ Processing, vol. 60, no. 11, pp. 5810–5819, 2012.
1705
+ [36] M. D. Gupta and S. Kumar, “Non-convex p-norm projection for robust sparsity,” in 2013 IEEE International Conference
1706
+ on Computer Vision, pp. 1593–1600, 2013.
1707
+ [37] S. Bahmani and B. Raj, “A unifying analysis of projected gradient descent for ℓp-constrained least squares,” Applied and
1708
+ Computational Harmonic Analysis, vol. 34, no. 3, pp. 366–378, 2013.
1709
+ [38] M. E. Ashour, C. M. Lagoa, and N. S. Aybat, “Lp quasi-norm minimization,” in 2019 53rd Asilomar Conference on
1710
+ Signals, Systems, and Computers, pp. 726–730, 2019.
1711
+ [39] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the alternating direction method of
1712
+ multipliers. Now Publishers Inc, 2011.
1713
+ [40] C. Helmberg and F. Rendl, “A spectral bundle method for semidefinite programming,” SIAM Journal on Optimization,
1714
+ vol. 10, no. 3, pp. 673–696, 2000.
1715
+ [41] A. Beck and M. Teboulle, “Mirror descent and nonlinear projected subgradient methods for convex optimization,”
1716
+ Operations Research Letters, vol. 31, no. 3, pp. 167–175, 2003.
1717
+ [42] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming. SIAM, 1994.
1718
+ [43] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algorithms, and engineering applications.
1719
+ SIAM, 2001.
1720
+ [44] Y. Xu and W. Yin, “A globally convergent algorithm for nonconvex optimization based on block coordinate update,”
1721
+ Journal of Scientific Computing, vol. 72, no. 2, pp. 700–734, 2017.
1722
+ [45] Z. Zha, X. Zhang, Y. Wu, Q. Wang, X. Liu, L. Tang, and X. Yuan, “Non-convex weighted lp nuclear norm based ADMM
1723
+ framework for image restoration,” Neurocomputing, vol. 311, pp. 209–224, 2018.
1724
+ [46] L. Mirsky, “A trace inequality of John von Neumann,” Monatshefte f¨ur mathematik, vol. 79, no. 4, pp. 303–306, 1975.
1725
+ [47] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in optimization, vol. 1, no. 3, pp. 127–239, 2014.
1726
+ [48] Q. Yao, J. T. Kwok, F. Gao, W. Chen, and T.-Y. Liu, “Efficient inexact proximal gradient algorithm for nonconvex
1727
+ problems,” arXiv preprint arXiv:1612.09069, 2016.
1728
+ [49] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM journal
1729
+ on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009.
1730
+
1731
+ 28
1732
+ [50] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods for semi-algebraic and tame problems: proximal
1733
+ algorithms, forward–backward splitting, and regularized Gauss–Seidel methods,” Mathematical Programming, vol. 137,
1734
+ no. 1, pp. 91–129, 2013.
1735
+ [51] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternating minimization and projection methods for
1736
+ nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality,” Mathematics of operations research,
1737
+ vol. 35, no. 2, pp. 438–457, 2010.
1738
+ [52] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized minimization for nonconvex and nonsmooth
1739
+ problems,” Mathematical Programming, vol. 146, no. 1, pp. 459–494, 2014.
1740
+ [53] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block successive minimization methods for
1741
+ nonsmooth optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126–1153, 2013.
1742
+ [54] P. Tseng and S. Yun, “A coordinate gradient descent method for nonsmooth separable minimization,” Mathematical
1743
+ Programming, vol. 117, no. 1, pp. 387–423, 2009.
1744
+ [55] Y. Hu, C. Li, K. Meng, and X. Yang, “Linear convergence of inexact descent method and inexact proximal gradient
1745
+ algorithms for lower-order regularization problems,” Journal of Global Optimization, vol. 79, no. 4, pp. 853–883, 2021.
1746
+ [56] M. ApS, The MOSEK optimization toolbox for MATLAB manual. Version 9.0., 2019.
1747
+ [57] S. Foucart and M.-J. Lai, “Sparsest solutions of under-determined linear systems via ℓq-minimization for 0 < q ≤ 1,”
1748
+ Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 395–407, 2009.
1749
+ [58] D. Ge, X. Jiang, and Y. Ye, “A note on the complexity of ℓp minimization,” Mathematical programming, vol. 129, no. 2,
1750
+ pp. 285–299, 2011.
1751
+ [59] SpamAssassin Public Corpus, http://spamassassin.apache.org.
1752
+ [60] Andrew Ng, Machine learning MOOC, https://www.coursera.org/learn/machine-learning.
1753
+ [61] M. Sznaier, M. Ayazoglu, and T. Inanc, “Fast structured nuclear norm minimization with applications to set membership
1754
+ systems identification,” IEEE Transactions on Automatic Control, vol. 59, no. 10, pp. 2837–2842, 2014.
1755
+ [62] Z. Liu and L. Vandenberghe, “Semidefinite programming methods for system realization and identification,” in Proceedings
1756
+ of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference,
1757
+ pp. 4676–4681, 2009.
1758
+ [63] M. Fazel, T. K. Pong, D. Sun, and P. Tseng, “Hankel matrix rank minimization with applications to system identification
1759
+ and realization,” SIAM Journal on Matrix Analysis and Applications, vol. 34, no. 3, pp. 946–977, 2013.
1760
+ [64] C. K¨ummerle and C. Mayrink Verdun, “Escaping saddle points in ill-conditioned matrix completion with a scalable
1761
+ second order method,” in Workshop on Beyond First Order Methods in ML Systems at the 37th International Conference
1762
+ on Machine Learning, 2020.
1763
+ [65] C. K¨ummerle and C. Mayrink Verdun, “A scalable second order method for ill-conditioned matrix completion from few
1764
+ samples,” in International Conference on Machine Learning (ICML), 2021.
1765
+ [66] K. Mohan and M. Fazel, “Iterative reweighted algorithms for matrix rank minimization,” Journal of Machine Learning
1766
+ Research, vol. 13, no. 110, pp. 3441–3473, 2012.
1767
+ [67] N. S. Aybat and G. Iyengar, “A first-order augmented Lagrangian method for compressed sensing,” SIAM Journal on
1768
+ Optimization, vol. 22, no. 2, pp. 429–459, 2012.
1769
+ [68] E. T. Hale, W. Yin, and Y. Zhang, “A fixed-point continuation method for l1-regularized minimization with applications
1770
+ to compressed sensing,” CAAM TR07-07, Rice University, vol. 43, p. 44, 2007.
1771
+ [69] C. O’Brien and M. D. Plumbley, “Inexact proximal operators for ℓp-Quasi-norm minimization,” in 2018 IEEE International
1772
+ Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4724–4728, 2018.
1773
+
1774
+ 29
1775
+ [70] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM journal
1776
+ on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009.
1777
+
SdFLT4oBgHgl3EQfPS8r/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
StE3T4oBgHgl3EQfzQsi/content/tmp_files/2301.04726v1.pdf.txt ADDED
@@ -0,0 +1,2041 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR
2
+ COGNATE SEQUENCES
3
+ G.-S. CHEON1, T. FORGÁCS2, AND K. TRAN2
4
+ Abstract. Given a Sheffer sequence of polynomials, we introduce the notion of an associated
5
+ sequence called the cognate sequence. We study the relationship between the zeros of this pair
6
+ of associated sequences and show that in case of an Appell sequence, as well as a more general
7
+ family of Sheffer sequences, the zeros of the members of each sequence (for large n) are either
8
+ real, or lie on a line Re z = c. In addition to finding the zero locus, we also find the limiting
9
+ probability distribution function of such sequences.
10
+ MSC: 05A15, 05A40, 30C15, 30E15
11
+ Key words: Sheffer sequence, cognate sequence, zero locus, limiting distribution
12
+ 1. Introduction
13
+ Sequences of polynomials play a fundamental role in several fields of mathematics, including
14
+ enumerative combinatorics, functional analysis, applied mathematics, and differential equations.
15
+ Polynomial sequences have been studied extensively from many different points of view [3, 8]. Some
16
+ of the aspects recent research has focused on include their explicit formulas, generating functions,
17
+ recurrence relations, and zero distributions.
18
+ By a Sheffer sequence [12, 13] we shall mean a polynomial sequence indexed by the nonnegative
19
+ integers 0, 1, 2, . . ., in which the index of each polynomial equals its degree, satisfying conditions
20
+ related to the umbral calculus [11] in combinatorics. In this paper, given a Sheffer sequence we
21
+ introduce the notion of its cognate sequence, and study zeros of the cognate sequence of certain
22
+ Sheffer sequences. This direction of research is largely motivated by polynomial pairs defined using
23
+ recurrence relations, such as the Lucas polynomial sequences [4, 7] for example.
24
+ A Sheffer sequence {Gn(s)}∞
25
+ n=0 is characterized by its exponential generating function
26
+
27
+
28
+ n=0
29
+ Gn(s)zn
30
+ n! = g(z)esf(z)
31
+ for some (formal) power series g and f in the variable z satisfying the conditions g(0) ̸= 0, f(0) =
32
+ 0 and f ′(0) ̸= 0.
33
+ By convention, we call {Gn(s)}∞
34
+ n=0 the Sheffer sequence for the pair (g, f).
35
+ In particular, the Sheffer sequence for a pair (g, az) with a constant a ̸= 0 is called an Appell
36
+ sequence. There are a number of classical polynomial sequences that are Appell sequences, including
37
+ the Bernoulli polynomials Bn(s) for the pair (
38
+ z
39
+ ez−1, z), the Euler polynomials En(s) for the pair
40
+ G.-S. Cheon was partially supported by the National Research Foundation of Korea (NRF) grant funded by the
41
+ Korean government (MSIP) (2016R1A5A1008055 and 2019R1A2C1007518).
42
+ The third author thanks the organizers and participants of the workshop on Optimal Point Configurations on
43
+ Manifolds hosted by the Erwin Schrödinger International Institute for Mathematics and Physics.
44
+ 1
45
+ arXiv:2301.04726v1 [math.CV] 11 Jan 2023
46
+
47
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
48
+ 2
49
+ (
50
+ 2
51
+ ez+1, z), and the Hermite polynomials Hn(s) for the pair (e−z2, 2z).
52
+ Sheffer sequences form a group called the Sheffer group with the operation of umbral composition,
53
+ defined as follows (see [6]). Suppose {Gn(s)}∞
54
+ n=0 and {Hn(s)}∞
55
+ n=0 are Sheffer sequences for the pairs
56
+ (g, f) and (h, ℓ) respectively, given by
57
+ Gn(s) =
58
+ n
59
+
60
+ k=0
61
+ an,ksk
62
+ and
63
+ Hn(s) =
64
+ n
65
+
66
+ k=0
67
+ bn,ksk.
68
+ (1.1)
69
+ Then the umbral composition of Gn(s) with Hn(s), denoted by Gn ◦ Hn(s), is the sequence of
70
+ polynomials defined by
71
+ Gn ◦ Hn(s) =
72
+ n
73
+
74
+ k=0
75
+ an,kHk(s) =
76
+
77
+ 0≤ℓ≤k≤n
78
+ an,kbk,ℓsℓ.
79
+ It is shown in[6] that the Sheffer group is isomorphic to the Riordan group of exponential Riordan
80
+ matrices defined in terms of exponential generating functions as follows. Let D = [di,j]i,j≥0 be an
81
+ infinite lower triangular matrix with complex entries. If there exists a pair of exponential generating
82
+ functions
83
+ g =
84
+
85
+ k≥0
86
+ gk
87
+ zk
88
+ k! and f =
89
+
90
+ k≥1
91
+ fk
92
+ zk
93
+ k!
94
+ with g0 ̸= 0 and f1 ̸= 0, such that the k-th column of D has exponential generating function gf k/k!
95
+ for k = 0, 1, 2, . . ., then D is called an exponential Riordan matrix, and is denoted by [g, f]. Let R
96
+ be the set of all exponential Riordan matrices. R is a group called the (exponential) Riordan group
97
+ under usual matrix multiplication. In terms of generating functions the product is expressed by
98
+ [g, f][h, ℓ] = [gh(f), ℓ(f)]
99
+ (1.2)
100
+ where h(f) denotes composition of power series with f(0) = 0.
101
+ By definition, we see that the coefficient matrices [an,k] of {Gn(s)}∞
102
+ n=0 and [bn,k] of {Hn(s)}∞
103
+ n=0
104
+ in (1.1) are exponential Riordan matrices [g, f] and [h, ℓ] respectively. Moreover, {Gn ◦ Hn(s)}∞
105
+ n=0
106
+ is the Sheffer sequence for the pair (gh(f), ℓ(f)).
107
+ We claim that the Riordan group R is isomorphic to the group R′ of exponential Riordan matrices
108
+ of the form [f ′/g, f]. To see this, consider the map φ : R → R′ given by φ([g, f]) = [f ′/g, f]. Then
109
+ for any A = [g, f] and B = [h, ℓ] in R, we have
110
+ φ(AB) = φ([gh(f), ℓ(f)]) =
111
+ �f ′ℓ′(f)
112
+ gh(f) , ℓ(f)
113
+
114
+ =
115
+ �f ′
116
+ g , f
117
+ � �ℓ′
118
+ h , ℓ
119
+
120
+ = φ(A)φ(B).
121
+ Hence φ is a group homomorphism. In addition, ker(φ) = {(1, z)} and clearly, φ is onto. Thus, φ
122
+ is a group isomorphism. We may thus associate to the Sheffer sequence {Gn(s)}∞
123
+ n=0 for the pair
124
+ (g, f), its cognate sequence {Gc
125
+ n(s)}∞
126
+ n=0 generated by the relation
127
+ f ′(z)
128
+ g(z) esf(z) =
129
+
130
+ n≥0
131
+ Gc
132
+ n(s)zn
133
+ n! .
134
+ For each n, we call Gc
135
+ n(s) the cognate polynomial of Gn(s). It is natural to ask how the zeros of
136
+ Gn(s) relate to the zeros of the cognate polynomial Gc
137
+ n(s). After all, the map
138
+ {Gn(s)}∞
139
+ n=0
140
+ Φ
141
+ −→ {Gc
142
+ n(s)}∞
143
+ n=0
144
+ is a transformation on R[x], and the properties of such transformations, as they relate to the
145
+ preservation of zero locus, have been a central problem of study in the context of the Pólya-Schur
146
+
147
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
148
+ 3
149
+ program (see [1]) and beyond. In this paper we study a subset of such maps – or equivalently pairs
150
+ of Sheffer sequences and their cognate sequence – which preserve the symmetry type of the zero
151
+ locus of a Sheffer sequence.
152
+ The paper is organized as follows. In Section 2 we discuss Appell sequences and their cognate
153
+ sequences, building on the example of the Bernoulli polynomials. We also provide a characterization
154
+ of all Appell sequneces whose zeros exhibit the same type of symmetry as those of the Bernoulli
155
+ polynomials. In Section 3 we show that the Sheffer sequences considered in [3] along with their
156
+ cognate sequence are generated by a pair of functions of the same general form. We show that
157
+ any Sheffer sequence generated by functions of this kind consist of polynomials Hn whose zeros are
158
+ either real or lie on a line of the form Re z = c for n ≫ 1. We accomplish this in two subsections:
159
+ the first (subsection 3.1) develops the necessary asymptotic formulas for the integral representation
160
+ of the polynomials under investigation, while the second (subsection 3.2) finds the precise location
161
+ of the zeros of this sequence. The paper concludes with Section 4, in which we discuss the limiting
162
+ distribution of the zeros of the family of sequences defined in Theorem 8.
163
+ 2. The zeros of Appell sequences and their cognate sequences
164
+ We begin our investigations with the zeros of the cognate sequence of the Bernoulli polynomials.
165
+ By definition, the cognate sequence {Bc
166
+ n(s)}∞
167
+ n=0 of the Bernoulli polynomials {Bn(s)}∞
168
+ n=0 is the
169
+ Appell sequence for the pair ( ez−1
170
+ z
171
+ , z). It is known that all the zeros of Bernoulli polynomials Bn(s)
172
+ (n ≥ 1) are symmetrical with respect to the line Re s = 1
173
+ 2.
174
+ Our first theorem (c.f. Theorem 2) demonstrates that the location of the zeros of Bc
175
+ n(s) is closely
176
+ related to that of the zeros of Bn(s). In the proof of this result we need to make use of the following
177
+ lemma.
178
+ Lemma 1. [2, 14] Let G(s) ∈ C[s] be a polynomial all of whose zeros have positive imaginary part,
179
+ and let ¯G(s) be the polynomial whose coefficients are the complex conjugates of those of G(s). Then
180
+ all zeros of G(s) + ¯G(s) ∈ R[s] are real.
181
+ Theorem 2. For n ≥ 1 let Bc
182
+ n(s) be the cognate polynomial of the Bernoulli polynomial Bn(s).
183
+ Then all zeros of Bc
184
+ n(s) lie on the line Re s = − 1
185
+ 2.
186
+ Proof. Define Gn(s) = Bc
187
+ n
188
+
189
+ − 1
190
+ 2 + is
191
+
192
+ . Then all zeros of Gn(s) are real if and only if the real part
193
+ of every zero of Bc
194
+ n(s) is − 1
195
+ 2, or equivalently, all zeros of Bc
196
+ n(s) lie on the line Re s = − 1
197
+ 2. Thus it
198
+ suffices to show that all zeros of Gn(s) are real. By the definition of Gn(s) we have
199
+
200
+ n≥0
201
+ Gn(s)zn
202
+ n! = ez − 1
203
+ z
204
+ e(− 1
205
+ 2 +is)z = e
206
+ 1
207
+ 2 z − e− 1
208
+ 2 z
209
+ z
210
+ eisz = 1
211
+ z
212
+
213
+ e( 1
214
+ 2 +is)z +
215
+
216
+ −e(− 1
217
+ 2 +is)z��
218
+ .
219
+ Let
220
+ e( 1
221
+ 2 +is)z =
222
+
223
+ n≥0
224
+ fn(s)zn
225
+ n!
226
+ and
227
+ − e(− 1
228
+ 2 +is)z =
229
+
230
+ n≥0
231
+ gn(s)zn
232
+ n! .
233
+ Since fn(s) =
234
+ � 1
235
+ 2 + is
236
+ �n, all zeros of fn(s) (and also −fn(s)) have positive imaginary part, namely
237
+ 1
238
+ 2. It is easy to see that gn(s) = (−1)n+1 ¯fn(s). Hence by Lemma 1, we obtain that all zeros of
239
+ Gn(s) = fn(s) + (−1)n+1 ¯fn(s) are real, which completes the proof.
240
+
241
+ The above connection between the zeros of Bernoulli polynomials and their cognate sequence
242
+ does not extended to arbitrary Appell sequences and their cognate sequences. Thus, one is naturally
243
+
244
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
245
+ 4
246
+ led to the problem of finding and characterizing all Sheffer sequences and their cognate sequence
247
+ whose zeros exhibit symmetries akin to that displayed by the zeros of {Bn(s)}∞
248
+ n=0 and {Bc
249
+ n(s)}∞
250
+ n=0.
251
+ Generally, it would be of interest to understand the relationship between the zeros of a Sheffer
252
+ sequence and its cognate sequence.
253
+ To obtain some information about the zeros of the cognate sequences of Appell sequences, we
254
+ begin with the following lemma.
255
+ Lemma 3. Let G(s) ∈ R[s] with degree n ≥ 1. Then all zeros of G(s) are symmetrical with respect
256
+ to the line Re s = − m
257
+ 2 (m ∈ R) if and only if G(−s) = (−1)nG(s − m).
258
+ Proof. Suppose that all zeros of G(s) are symmetrical with respect to the line Re s = − m
259
+ 2 for some
260
+ m ∈ R. First let n be even. Then we may assume that n zeros of G(s) are of the form − m
261
+ 2 ± qk
262
+ (qk ∈ C, k = 1, 2, . . . , n
263
+ 2 ) so that G(s) can be written as
264
+ G(s) =
265
+ n/2
266
+
267
+ k=1
268
+
269
+ s + m
270
+ 2 + qk
271
+ � �
272
+ s + m
273
+ 2 − qk
274
+
275
+ .
276
+ Hence
277
+ G(−s)
278
+ =
279
+ n/2
280
+
281
+ j=1
282
+
283
+
284
+
285
+ s − m
286
+ 2 − qk
287
+ �� �
288
+
289
+
290
+ s − m
291
+ 2 + qk
292
+ ��
293
+ =
294
+ (−1)n
295
+ n/2
296
+
297
+ k=1
298
+
299
+ (s − m) + m
300
+ 2 − qk
301
+ � �
302
+ (s − m) + m
303
+ 2 + qk
304
+
305
+ = (−1)nG(s − m).
306
+ Now let n be odd. Then G(s) is of the form
307
+ G(s) =
308
+
309
+ s + m
310
+ 2
311
+ �j (n−j)/2
312
+
313
+ k=1
314
+
315
+ s + m
316
+ 2 + qk
317
+ � �
318
+ s + m
319
+ 2 − qk
320
+
321
+ where j ≥ 1 and j is odd. A simple computation shows that G(−s) = (−1)nG(s − m) also holds
322
+ for this case.
323
+ Conversely, suppose that G(−s) = (−1)nG(s − m) holds for some m ∈ R. Let a + bi (a, b ∈ R)
324
+ be a zero of G(s). Then a − bi = − m
325
+ 2 + ((a + m
326
+ 2 ) − bi) is also a zero of G(s). It follows from
327
+ 0 = G(a − bi) = G
328
+
329
+ −m
330
+ 2 +
331
+ ��
332
+ a + m
333
+ 2
334
+
335
+ − bi
336
+ ��
337
+ = (−1)nG
338
+
339
+ −m
340
+ 2 −
341
+ ��
342
+ a + m
343
+ 2
344
+
345
+ − bi
346
+ ��
347
+ that −(a + m) + bi = − m
348
+ 2 −
349
+ ��
350
+ a + m
351
+ 2
352
+
353
+ − bi
354
+
355
+ is a zero of G(s), which implies that all zeros of G(s)
356
+ are symmetrical with respect to the line Re s = − m
357
+ 2 . This completes the proof.
358
+
359
+ Theorem 4. Let {Gn(s)}n≥0 be the Appell sequence for the pair (g, az). Then the following are
360
+ equivalent:
361
+ (i) For n ≥ 1, the zeros of Gn(s) are symmetric with respect to the line Re s = − g′(0)
362
+ 2a
363
+ ;
364
+ (ii) For n ≥ 1, Gn(−s) = (−1)nGn(s − g′(0)
365
+ a ) ;
366
+ (iii) g(z) = g(−z)eg′(0)z.
367
+
368
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
369
+ 5
370
+ Proof. It follows from Lemma 3 that (i) and (ii) are equivalent. Moreover, (ii) holds if and only if
371
+ g(z)e−asz
372
+ =
373
+
374
+ n≥0
375
+ Gn(−s)zn
376
+ n! =
377
+
378
+ n≥0
379
+ (−1)nGn
380
+
381
+ s − g′(0)
382
+ a
383
+ � zn
384
+ n! = g(−z)e−a(s− g′(0)
385
+ a
386
+ )z
387
+ =
388
+ g(−z)eg′(0)ze−asz,
389
+ which is equivalent to (iii).
390
+
391
+ Theorem 5. Let {Gn(s)}n≥0 be the Appell sequence for the pair (g, az). If all zeros of Gn(s) for
392
+ n ≥ 1 are symmetrical with respect to the line Re s = − g′(0)
393
+ 2a , then all zeros of Gc
394
+ n(s) are symmetrical
395
+ with respect to the line Re s = g′(0)
396
+ 2a .
397
+ Proof. It suffices to show that Gc
398
+ n(−s) = (−1)nGc
399
+ n(s + g′(0)
400
+ a ) holds for all n ≥ 1. By Theorem 4 we
401
+ have
402
+
403
+ n≥0
404
+ Gc
405
+ n(−s)zn
406
+ n!
407
+ =
408
+ a
409
+ g(z)e−asz =
410
+ a
411
+ g(−z)e(−as−g′(0))z =
412
+ a
413
+ g(−z)e−a(s+ g′(0)
414
+ a
415
+ )z
416
+ =
417
+
418
+ n≥0
419
+ (−1)nGc
420
+ n
421
+
422
+ s + g′(0)
423
+ a
424
+ � zn
425
+ n! ,
426
+ which implies that for all n ≥ 1, Gc
427
+ n(−s) = (−1)nGc
428
+ n(s + g′(0)
429
+ a ). The proof is complete.
430
+
431
+ The following theorem shows that there are infinitely many Appell sequences satisfying the
432
+ assumptions of Theorem 5.
433
+ Theorem 6. Let {Gn(s)}n≥0 be the Appell sequence for the pair (g, az). If
434
+ g(z) = 2ρ(z)(1 + tanh(kz)),
435
+ (2.1)
436
+ where ρ(z) is any even function with ρ(0) = 1 and k ∈ R, then all the zeros of Gn(s) are symmetrical
437
+ with respect to the line Re s = − k
438
+ a for n ≥ 1. Conversely, if all the zeros of Gn(s) (n ≥ 1) are
439
+ symmetrical with respect to a vertical line in C then there exist an even function ρ(z) with ρ(0) = 1
440
+ and k ∈ R satisfying (2.1).
441
+ Proof. Suppose g(z) = 2ρ(z)(1 + tanh(kz)) for some even function ρ(z) such that ρ(0) = 1 and
442
+ k ∈ R. Then
443
+ g(−z)e2kz
444
+ =
445
+ 2ρ(z)(1 + tanh(−kz))e2kz = 2ρ(z)
446
+
447
+ 1 + e−kz − ekz
448
+ e−kz + ekz
449
+
450
+ e2kz
451
+ =
452
+ 2ρ(z)
453
+
454
+ 1 + ekz − e−kz
455
+ ekz + e−kz
456
+
457
+ = 2ρ(z)(1 + tanh(kz)) = g(z),
458
+ and g′(0) = 2k.
459
+ Thus, Theorem 4 (iii) holds, and hence so does (i), i.e.
460
+ the zeros of Gn(s)
461
+ (n ≥ 1) are symmetric with respect to the line Re s = − k
462
+ a. Conversely, suppose that all the zeros
463
+ of Gn(s) are symmetric with respect to a vertical line in C. Let g(z) = 2
464
+
465
+ 1 + �
466
+ n≥1 gnzn�
467
+ . Since
468
+ G1(s) = 2(g1 +as), this vertical line is Re s = − g1
469
+ a . By Theorem 4, g(z) satisfies g(z) = g(−z)e2g1z.
470
+ A simple computation shows that
471
+ g(z) = g(z) + g(−z)
472
+ 2
473
+ (1 + tanh(g1z)).
474
+ Setting ρ(z) = g(z)+g(−z)
475
+ 2
476
+ yields an even function, and k = g1 ∈ R, as desired.
477
+
478
+
479
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
480
+ 6
481
+ Remark 7. We note that if {Gn(s)}n≥0 is the Appell sequence for the pair (g(z), z) then the Appell
482
+ sequence for the pair (g(z), az) is {Gn(as)}n≥0. Thus it suffices to explore the Appell sequence for
483
+ the pair (g(z), z) when studying the zeros of the Appell sequence for the pair (g(z), az).
484
+ 3. The zeros of a certain family of Sheffer sequences and their cognate sequences
485
+ We now turn our attention to the cognate sequences of Sheffer sequences previously treated in [3].
486
+ Note – as a preview – that the symmetry of the zeros of the cognate sequence about a line remains,
487
+ and that our main result (c.f. Theorem 8) also exploits the fact that (a suitable modification of)
488
+ the non-exponential factor of the generating function is even.
489
+ In order to set up the statement of the main result, suppose z2 > z1 > 0, and let Log(·) denote the
490
+ principle logarithm. Set
491
+ f(z) = Log(z1 − z) + Log(z2 − z) − Log(z1 + z) − Log(z2 + z)
492
+ g(z) = (z1 + z)(z2 + z).
493
+ The sequence of Sheffer polynomials {Gn(s)}∞
494
+ n=0 for the pair (g(z), f(z)) is generated by
495
+
496
+
497
+ n=0
498
+ Gn(s)zn
499
+ n! = g(z)esf(z) = (z1 − z)s(z2 − z)s(z1 + z)1−s(z2 + z)1−s.
500
+ The corresponding cognate sequence {Gc
501
+ n(s)}∞
502
+ n=0 is the Sheffer sequence for the pair (f ′(z)/g(z), f(z)),
503
+ generated by
504
+
505
+
506
+ n=0
507
+ Gc
508
+ n(s)zn
509
+ n! = f ′(z)
510
+ g(z) esf(z),
511
+ where
512
+ f ′(z)
513
+ g(z) = −
514
+ 1
515
+ (z1 + z)(z2 + z)
516
+
517
+ 1
518
+ z1 − z +
519
+ 1
520
+ z2 − z +
521
+ 1
522
+ z1 + z +
523
+ 1
524
+ z2 + z
525
+
526
+ = −
527
+ 2(z1 + z2)
528
+ (z1 + z)2(z2 + z)2(z1 − z)(z2 − z)(z1z2 − z2).
529
+ The reader will note that both g and f ′
530
+ g are of the form
531
+ (z1 − z)p(z1 + z)p∗(z2 − z)q(z2 + z)q∗ m
532
+
533
+ i=1
534
+ (αi − z2)pi
535
+ for appropriate values of the constants. As Theorem 8 shows, both the Sheffer sequence for the
536
+ pair (g, f), and its cognate sequence have zeros that are symmetric about a line Re z = k. This fact
537
+ about the Sheffer sequence was already addressed in [3, Theorem 5]. Theorem 8 is a generalization
538
+ of that result.
539
+ Theorem 8. Suppose m ∈ N and p, p∗, q, q∗,αi, pi, 1 ≤ i ≤ m, are real numbers such that αi > z2
540
+ 1.
541
+ Let
542
+ (3.1)
543
+ h(z) = (z1 − z)p(z1 + z)p∗(z2 − z)q(z2 + z)q∗ m
544
+
545
+ i=1
546
+ (αi − z2)pi,
547
+ let
548
+ f(z) = Log(z1 − z) + Log(z2 − z) − Log(z1 + z) − Log(z2 + z),
549
+
550
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
551
+ 7
552
+ and {Hn(s)}∞
553
+ n=0 be the Sheffer sequence for the pair (h(z), f(z)). Assume that p∗−p = q∗−q := 2c.
554
+ If c + p < 0, then all the zeros of Hn(s), n ≫ 1, lie on the line s = c + it. If c + p ≥ 0, then the
555
+ same conclusion holds except for 2 ⌈c + p⌉ real zeros, each of which approaches c ± (c + p + 1 − k),
556
+ 0 < k ≤ ⌈c + p⌉as n → ∞.
557
+ -4
558
+ -3
559
+ -2
560
+ -1
561
+ 1
562
+ -0.4
563
+ -0.2
564
+ 0.2
565
+ 0.4
566
+ 0.5
567
+ 1.0
568
+ 1.5
569
+ 2.0
570
+ 2.5
571
+ 3.0
572
+ -0.5
573
+ 0.5
574
+ Figure 3.1. Zeros of Hn(s)
575
+ Example 1. Let z1 = 1, z2 = 7. The left side graph in Figure 3.1 shows the zeros of H20(s) when
576
+ p = 4, p∗ = 1, q = 2, q∗ = −1, p − p∗ = 3 = q − q∗, c + p = 11
577
+ 2 and
578
+ h(z) = (1 − z)4(1 + z)(7 − z)2(7 + z)−1(2 − z2)−1.
579
+ The right side graph shows the zeros of H20(s) when p = −4, p∗ = −1, q = −2, q∗ = 1, p − p∗ =
580
+ −3 = q − q∗, c + p = − 11
581
+ 2 and
582
+ h(z) = (1 − z)−4(1 + z)−1(7 − z)−2(7 + z)1(2 − z2)−1.
583
+ The proof of Theorem 8 is presented in the next two sections, the first of which develops the
584
+ asymptotics for an integral representation of the Hn(s)s, followed by a section on the counting of
585
+ the zeros of these polynomials on the designated locus.
586
+ 3.1. The asymptotic formulas. In this section we find an integral representation for the Sheffer
587
+ polynomials Hn(c + int) described in Theorem 8, and we develop of an asymptotic formula for said
588
+ integral representation, which is uniform on the parameter range e− ln4 n/n ≪ t ≪ ln4 n/n. To
589
+ begin, let {Hn}∞
590
+ n=0 be the Sheffer sequence for the pair (h, f) as in the statement of Theorem 8.
591
+ The substitution s = c + int and the Cauchy integral formula gives
592
+ Hn (c + int) = n!
593
+ 2πi
594
+
595
+ |z|=ϵ
596
+ h(z)e(c+int)f(z)
597
+ zn+1
598
+ dz
599
+ = n!
600
+ 2πi
601
+
602
+ |z|=ϵ
603
+ ψ(z)e−nφ(z,t)dz,
604
+ where
605
+ φ(z, t) = Log z − it (Log(z1 − z) + Log(z2 − z) − Log(z1 + z) − Log(z2 + z)) ,
606
+ and
607
+ ψ(z) = h(z)
608
+ z
609
+ (z1 − z)c(z2 − z)c
610
+ (z1 + z)c(z2 + z)c .
611
+
612
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
613
+ 8
614
+ It follows from the definition of h(z) that, as a function of z, ψ(z)e−nφ(z,t) is analytic on the
615
+ complement of
616
+ {0} ∪ [z1, ∞) ∪ (−∞, −z1].
617
+ The defintions of h(z) and f(z) also imply that on any circle arc CR with large radius R,
618
+ lim
619
+ R→∞
620
+ ˆ
621
+ CR
622
+ h(z)e(c+int)f(z)
623
+ zn+1
624
+ dz = 0,
625
+ for
626
+ n ≫ 1.
627
+ Thus,
628
+ (3.2)
629
+ Hn (c + int) = n!
630
+ 2πi
631
+ ˆ
632
+ Γ1∪Γ2
633
+ ψ(z)e−nφ(z,t)dz,
634
+ where Γ1 and Γ2 are two halves of a loop around infinity and the cuts (−∞, −z1] and [z1, ∞) with
635
+ the counter clockwise orientation.
636
+ The assumption p∗ − p = q∗ − q implies that
637
+ Figure 3.2. The loop around the cuts and infinity
638
+ h(z)(z1 − z)c(z2 − z)c
639
+ (z1 + z)c(z2 + z)c
640
+ is even. Using the substitution z �→ −z we see that the part of the integral in (3.2) over Γ1 is equal
641
+ to
642
+ (−1)n
643
+ ˆ
644
+ Γ2
645
+ ψ(z)e−nφ(z,−t)dz.
646
+ Making the subsequent substitution z �→ z, this integral becomes the conjugate of
647
+ (−1)n+1
648
+ ˆ
649
+ Γ2
650
+ ψ(z)e−nφ(z,t)dz.
651
+ We deduce that πHn(c + int) is imaginary part, or −i times the real part of the integral
652
+ (3.3)
653
+ ˆ
654
+ Γ2
655
+ ψ(z)e−nφ(z,t)dz,
656
+ depending on whether n is even or odd.
657
+ For the sake of completeness we now present the setup and definitions developed in [3] in order to
658
+ help establish the asymptotic formula we see. To this end, let
659
+ T1 := z2 − z1
660
+ z1 + z2
661
+ ,
662
+ T2 := z1 + z2
663
+ 4√z1z2
664
+ ,
665
+
666
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
667
+ 9
668
+ and
669
+ T =
670
+
671
+ T1
672
+ if z2
673
+ 1 − 6z1z2 + z2
674
+ 2 ≥ 0
675
+ T2
676
+ if z2
677
+ 1 − 6z1z2 + z2
678
+ 2 < 0.
679
+ (3.4)
680
+ For t ∈ (0, T), the function
681
+ ζ = ζ(t) : = z1 + z2
682
+ 2
683
+
684
+ it −
685
+
686
+ T 2
687
+ 1 − t2 +
688
+
689
+ 1 − 2t2 − 2it
690
+
691
+ T 2
692
+ 1 − t2
693
+
694
+ for
695
+ 0 ≤ t < T1,
696
+ (3.5)
697
+ ζ = ζ(t) : = z1 + z2
698
+ 2
699
+
700
+ it + i
701
+
702
+ t2 − T 2
703
+ 1 +
704
+
705
+ 1 − 2t2 − 2t
706
+
707
+ t2 − T 2
708
+ 1
709
+
710
+ for
711
+ T1 ≤ t ≤ T2,
712
+ (3.6)
713
+ is a solution of φz(z, t) = 0.
714
+ Set
715
+ g(ζ)
716
+ :=
717
+ 2πψ2(ζ)e−2nφ(ζ,t)
718
+ nφz2(ζ, t)
719
+ ,
720
+ (3.7)
721
+ p(ζ)
722
+ :=
723
+ ˆ
724
+ Γ2
725
+ ψ(z)e−nφ(z,t)dz,
726
+ and consider the following intervals
727
+ I1 =
728
+
729
+ t| ln4 n/n ≪ t < T − ln2 n/n2/3�
730
+ ,
731
+ I2 =
732
+
733
+ t| ln4 n/n ≪ t < T1 − ln2 n/n2/3�
734
+ ,
735
+ I3 = [T1 + ln2 n/n2/3, T2 − ln2 n/n2/3],
736
+ I =
737
+
738
+ t|1/n2/3 ≪ T − t < ln2 n/n2/3�
739
+ .
740
+ With these definitions, the results in [3] show that as n → ∞,
741
+ p2(ζ) ∼ g(ζ)
742
+ uniformly on t ∈ I2 ∪ I3 if T = T2, and on t ∈ I1 if T = T1. Furthermore, if t ∈ I, then
743
+ p(ζ) ∼
744
+ 4cψ(ζ(T))e−nφ(ζ,t)
745
+
746
+ 6
747
+
748
+ C3φz3(ζ(T), T)
749
+ αn(t)
750
+ uniformly in t, where
751
+ C =
752
+
753
+
754
+
755
+
756
+
757
+ z1+z2
758
+ 2
759
+
760
+ −√2T1 +
761
+ T1
762
+ √2T1
763
+
764
+ 2T 2
765
+ 1 −1
766
+
767
+ if T = T1
768
+
769
+ 32(z1z2)3/4
770
+
771
+ (z1+z2)(−z2
772
+ 1+6z1z2−z2
773
+ 2)
774
+ if T = T2
775
+ and Re αn(t) ≥ 0. If T = T2, then
776
+ p(ζ) ∼
777
+ 4dψ(ζ(T1))e−nφ(ζ,t)
778
+
779
+ 6
780
+
781
+ D3φz3(ζ(T1), T1)
782
+ βn(t)
783
+ uniformly on 1
784
+ n ≪ |T1 − t| ≤ ln2 n/n2/3, where
785
+ D = −(z1 + z2)√T1
786
+
787
+ 2
788
+
789
+ 1 +
790
+ iT1
791
+
792
+ 1 − 2T 2
793
+ 1
794
+
795
+
796
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
797
+ 10
798
+ and Re βn(t) ≥ 0. Before we state and prove our main estimate, we note that (3.1) implies that as
799
+ z → z1,
800
+ h(z) = (z1 − z)p (hp + O (z1 − z))
801
+ for some hp ∈ R. In the remainder of this section, we prove the following asymptotic equivalence.
802
+ Proposition 9. Let hp and p(ζ) be as defined in the beginning of the section, and let Γ denote the
803
+ Gamma function. As n → ∞ the following asymptotic formula holds uniformly on e− ln4 n/n ≪
804
+ t ≪ ln4 n/n:
805
+ p(ζ) ∼
806
+ 2iπhp(z2 − z1)c+int
807
+ zn−p
808
+ 1
809
+ 2c+int(z2 + z1)c+intnc+p+1+intΓ(−c − p − int)
810
+ .
811
+ Proof. We rewrite p(ζ) as
812
+ p(ζ) =
813
+ ˆ (z−
814
+ 1 )
815
+ +∞
816
+ ψ(z)e−nφ(z,t)dz,
817
+ where path of integration is the Hankel contour which loops around the ray [z1, ∞). The notation
818
+ z−
819
+ 1 means the path goes around z1 in the negative direction. We make the substitution w = z/z1
820
+ followed by the subsitution ez = w to arrive at the expression
821
+ p(ζ(t)) = z1
822
+ ˆ (1−)
823
+ +∞
824
+ ψ(wz1)e−nφ(wz1,t)dw = z1
825
+ ˆ (0−)
826
+ +∞
827
+ ψ(z1ez)e−nφ(z1ez,t)ezdz.
828
+ Suppose ϵ > 0 is small such that nϵ = o(1). We break the last integral into three pieces:
829
+ z1
830
+ ˆ (ln5n/n)±iϵ
831
+ (0−)
832
+ ψ(z1ez)e−nφ(z1ez,t)ezdz
833
+ +z1
834
+ ˆ +∞+iϵ
835
+ (ln5 n/n)+iϵ
836
+ ψ(z1ez)e−nφ(z1ez,t)ezdz
837
+ +z1
838
+ ˆ (ln5 n/n)−iϵ
839
+ +∞−iϵ
840
+ ψ(z1ez)
841
+ 2iπhp(z2 − z1)c+int
842
+ zn−p
843
+ 1
844
+ 2c+int(z2 + z1)c+intnc+p+1+intΓ(−c − p − int)
845
+ e−nφ(z1ez,t)ezdz.
846
+ (3.8)
847
+ Recall that
848
+ (3.9)
849
+ ψ(z)e−nφ(z,t) = h(z)
850
+ zn+1
851
+ (z1 − z)c(z2 − z)c
852
+ (z1 + z)c(z2 + z)c
853
+ �(z1 − z)(z2 − z)
854
+ (z1 + z)(z2 + z)
855
+ �nit
856
+ ,
857
+ and
858
+ h(z) = (z1 − z)p (hp + O (z1 − z))
859
+ for z1 − z = o(1). Thus, the first integral in (3.8) is asymptotic to
860
+ zc+p+int
861
+ 1
862
+ hp(z2 − z1)c+int
863
+ zn
864
+ 1 2c+intzc+int
865
+ 1
866
+ (z2 + z1)c+int
867
+ ˆ (ln5 n/n)±iϵ
868
+ (0−)
869
+ (1 − ez)c+p+int
870
+ enz
871
+ dz
872
+
873
+ zc+p+int
874
+ 1
875
+ hp(z2 − z1)c+int
876
+ zn
877
+ 1 2c+intzc+int
878
+ 1
879
+ (z2 + z1)c+int
880
+ ˆ (ln5 n/n)±iϵ
881
+ (0−)
882
+ (−z)c+p+inte−nzdz
883
+ =
884
+ zc+p+int
885
+ 1
886
+ hp(z2 − z1)c+int
887
+ zn
888
+ 1 2c+intzc+int
889
+ 1
890
+ (z2 + z1)c+intnc+p+1+int
891
+ ˆ (ln5 n)±inϵ
892
+ (0−)
893
+ (−z)c+p+inte−zdz.
894
+ (3.10)
895
+ The following auxiliary lemma helps us further refine this estimate.
896
+
897
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
898
+ 11
899
+ Lemma 10. Suppose, as in the statement of Proposition 9, that e− ln4 n/n ≪ t ≪ ln4 n/n. If
900
+ nϵ = o(1), then the following asymptotic equivalence holds:
901
+ ˆ ln5 n±inϵ
902
+ (0−)
903
+ (−z)c+p+inte−zdz ∼ 2i sin π(c + p + 1 + int)Γ(c + p + 1 + int).
904
+ Proof. We apply the Hankel contour representation (see for example [9]) for the Gamma function
905
+ Γ(s) =
906
+ 1
907
+ 2i sin πs
908
+ ˆ (0−)
909
+ +∞
910
+ e−z(−z)s−1dz
911
+ (s ̸= 0, −1, −2, . . .)
912
+ to rewrite
913
+ ˆ ln5 n±inϵ
914
+ (0−)
915
+ (−z)c+p+inte−zdz
916
+ as
917
+ (3.11)
918
+ 2i sin π(c+p+1+int)Γ(c+p+1+int)−
919
+ ˆ +∞+inϵ
920
+ ln5 n+inϵ
921
+ (−z)c+p+inte−zdz +
922
+ ˆ +∞−inϵ
923
+ ln5 n−inϵ
924
+ (−z)c+p+inte−zdz.
925
+ In the case e− ln4 n ≪ nt = O(1), we have
926
+ (3.12)
927
+ 2i sin π(c + p + 1 + int)Γ(c + p + 1 + int) ≫ e− ln4 n.
928
+ Moreover, in this case, the second and the third terms in (3.11) are bounded by
929
+ (3.13)
930
+ ˆ +∞±inϵ
931
+ ln5 n±inϵ
932
+ |z|c+pe−nt Arg(−z)e− Re zd|z|.
933
+ Since nϵ = o(1), we have |z| = Re z + o(1), whence by the asymptotic behavior of the upper
934
+ incomplete Gamma function (see [5, 10]), the integral in (3.13) is O(e− ln5 n ln5(c+p) n). The result
935
+ in this case now follows.
936
+ If, on the other hand, nt ≫ 1, then the Stirling formula
937
+ Γ(s) = exp
938
+
939
+ (s − 1/2) Log s − s + 1
940
+ 2 ln 2π + O(s−1)
941
+
942
+ (|s| ≫ 1)
943
+ and the fact nt ≪ ln4 n imply that
944
+ |Γ(c + p + 1 + int)|
945
+ = exp
946
+ ��
947
+ c + p + 1
948
+ 2
949
+
950
+ ln |c + p + 1 + int| − nt Arg(c + p + 1 + int) − (c + p + 1) + 1
951
+ 2 ln 2π + O
952
+ � 1
953
+ nt
954
+ ��
955
+ ≫ exp(−π ln4 n),
956
+ from which we deduce
957
+ |2i sin π(c + p + 1 + int)Γ(c + p + 1 + int)| ≫ exp
958
+
959
+ nπt − π ln4 n
960
+
961
+ .
962
+ The claim follows from the fact that
963
+ ˆ +∞±inϵ
964
+ ln5 n±inϵ
965
+ |z|c+pe−nt Arg(−z)e− Re zd|z| = O
966
+
967
+ entπ−ln5 n ln5(c+p) n
968
+
969
+ .
970
+ The proof of Lemma 10 is complete.
971
+
972
+
973
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
974
+ 12
975
+ We continue with the proof of Proposition 9 by finding a bound for the second integral in (3.8):
976
+ z1
977
+ ˆ ∞+iϵ
978
+ ln5n/n+iϵ
979
+ ψ(z1ez)e−nφ(z1ez,t)ezdz.
980
+ Recall from equation (3.9) that
981
+ ψ(z1ez)e−nφ(z1ez,t) =
982
+ h(z1ez)
983
+ zn+1
984
+ 1
985
+ e(n+1)z
986
+ (z1 − z1ez)c(z2 − z1ez)c
987
+ (z1 + z1ez)c(z2 + z1ez)c
988
+ �(z1 − z1ez)(z2 − z1ez)
989
+ (z1 + z1ez)(z2 + z1ez)
990
+ �nit
991
+ .
992
+ With z = u + iϵ, ln5 n/n ≤ u < ∞, we have
993
+ |z2 − z1ez| ≥ | Im(z2 − z1ez)|
994
+ = z1eu sin ϵ
995
+ ≫ ϵ,
996
+ and consequently,
997
+ (z2 − z1ez)c = O
998
+ � 1
999
+ ϵ|c| + eu|c|
1000
+
1001
+ .
1002
+ We conclude that
1003
+ h(z1ez)(z2 − z1ez)c(z1 − z1ez)c
1004
+ (z1 + z1ez)c(z2 + z1ez)c
1005
+ =
1006
+
1007
+ O
1008
+
1009
+ 1
1010
+ ϵB +
1011
+ n|c+p|
1012
+ ln5(c+p) n
1013
+
1014
+ if z = O(1)
1015
+ O(eAu)
1016
+ if z ≫ 1
1017
+ for some constants A(depending on the degree of h) and B(depending on c and the number of poles
1018
+ of h on [z1, ∞)).
1019
+ We also note that
1020
+ �����
1021
+ �(z1 − z1ez)(z2 − z1ez)
1022
+ (z1 + z1ez)(z2 + z1ez)
1023
+ �nit����� = expnt (Arg(z1 − z1ez) + Arg(z2 − z1ez) − Arg(z1 + z1ez) − Arg(z2 + z1ez)) ,
1024
+ and that for z = u + iϵ and |z| ≪ 1,
1025
+ Arg(z1 − z1ez) + Arg(z2 − z1ez) − Arg(z1 + z1ez) − Arg(z2 + z1ez) = Arg(−z) + O(z).
1026
+ Thus, there exists a small δ (independent of n) such that if u < δ then
1027
+ �����
1028
+ �(z1 − z1ez)(z2 − z1ez)
1029
+ (z1 + z1ez)(z2 + z1ez)
1030
+ �nit����� < enπt.
1031
+ For other values of u, we note that geometrically
1032
+ |Arg(z1 − z1ez) − Arg(z1 + z1ez)|
1033
+ is the sum of two angles of the triangle with vertices 0, z1, and (z1 + z1ez)/2, which is less than π.
1034
+ The same inequality holds for
1035
+ |Arg(z2 − z1ez) − Arg(z2 + z1ez)| .
1036
+ We conclude that for u ≥ δ,
1037
+ �����
1038
+ �(z1 − z1ez)(z2 − z1ez)
1039
+ (z1 + z1ez)(z2 + z1ez)
1040
+ �nit����� < e2nπt.
1041
+
1042
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1043
+ 13
1044
+ In order to utilize these estimates, we break the range of integration of
1045
+ ˆ +∞+iϵ
1046
+ ln5 n/n+iϵ
1047
+ z1ψ(z1ez)e−nφ(z1ez,t)ezdz
1048
+ into three pieces: (i) ln5 n/n < Re z < δ, (ii) δ ≤ Re z and Re z = O(1) and (iii) Re z ≫ 1. The
1049
+ integral over the first range is
1050
+ enπt
1051
+ zn
1052
+ 1
1053
+ O
1054
+ �� 1
1055
+ ϵB +
1056
+ n|c|
1057
+ ln5c n
1058
+ � ˆ δ
1059
+ ln5 n/n
1060
+ e−nudu
1061
+
1062
+ = enπt
1063
+ nzn
1064
+ 1
1065
+ O
1066
+
1067
+ e− ln5 n
1068
+ ϵB
1069
+ +
1070
+ n|c|
1071
+ ln5c ne− ln5 n
1072
+
1073
+ ,
1074
+ the integral over the second range is
1075
+ e2πnt
1076
+ zn
1077
+ 1
1078
+ O
1079
+ �� 1
1080
+ ϵB +
1081
+ n|c|
1082
+ ln5c n
1083
+ � e−nδ
1084
+ n
1085
+
1086
+ ,
1087
+ while the integral over the third range is
1088
+ e2πnt
1089
+ zn
1090
+ 1
1091
+ O
1092
+ �ˆ ∞
1093
+ C
1094
+ e−(n+1)u+Audu
1095
+
1096
+ = e2πnt
1097
+ zn
1098
+ 1
1099
+ O
1100
+ � 1
1101
+ ne−nC
1102
+
1103
+ for some large constant C. We recall that nt ≪ ln4 n. If we choose ϵ so that in addition to satisfying
1104
+ the condition nϵ = o(1) we also have
1105
+ 1
1106
+ ϵB = O
1107
+
1108
+ exp
1109
+ �ln5 n
1110
+ 2
1111
+ ��
1112
+ ,
1113
+ then
1114
+ z1
1115
+ ˆ +∞+iϵ
1116
+ ln5 n/n+iϵ
1117
+ ψ(z1ez)e−nφ(z1ez,t)ezdz = eπnt
1118
+ zn
1119
+ 1
1120
+ O
1121
+
1122
+ exp
1123
+
1124
+ −ln5 n
1125
+ 2
1126
+ ��
1127
+ .
1128
+ With a similar argument we obtain
1129
+ z1
1130
+ ˆ ln5 n/n−iϵ
1131
+ +∞−iϵ
1132
+ ψ(z1ez)e−nφ(z1ez,t)ezdz = eπnt
1133
+ zn
1134
+ 1
1135
+ O
1136
+
1137
+ exp
1138
+
1139
+ −ln5 n
1140
+ 2
1141
+ ��
1142
+ .
1143
+ From equations (3.8), (3.10), Lemma 10, and the fact that
1144
+ 2i sin π(c + p + 1 + int)Γ(c + p + 1 + int)
1145
+
1146
+ ≫ e− ln4 n
1147
+ if e− ln4 n ≪ nt = O(1)
1148
+ ≫ exp
1149
+
1150
+ nπt − π ln4 n
1151
+ 4
1152
+
1153
+ if 1 ≪ nt ≪ ln4 n
1154
+ ,
1155
+ we conclude that
1156
+ ˆ (z−
1157
+ 1 )
1158
+ +∞
1159
+ ψ(z)e−nφ(z,t)dz ∼ 2i sin π(c + p + 1 + int)Γ(c + p + 1 + int)zc+p+int
1160
+ 1
1161
+ hp(z2 − z1)c+int
1162
+ zn
1163
+ 1 2c+intzc+int
1164
+ 1
1165
+ (z2 + z1)c+intnc+p+1+int
1166
+ uniformly on e− ln4 n ≪ nt ≪ ln4 n. The proof of Proposition 9 is complete.
1167
+
1168
+ Remark 11. If c+p /∈ Z+, we do not require the condition e− ln4 n ≪ nt for the estimate in equation
1169
+ (3.12). Thus the asymptotics in Proposition 9 hold for nt ≪ ln4 n if c + p /∈ Z+.
1170
+
1171
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1172
+ 14
1173
+ 3.2. The location of the zeros of {Hn}∞
1174
+ n=0. With the asymptotic analysis complete, in this
1175
+ section we establish that for all n ≫ 1, the zeros fo Hn lie on the line Re s = c (c.f. Theorem 8)
1176
+ except perhaps a finite number of real zeros, whose asymptotic locations we also identify. We begin
1177
+ with a technical, but crucial result.
1178
+ Lemma 12. Suppose τ1 and τ2 are constant multiples of e− ln4 n/n and ln4 n/n and α is the unique
1179
+ angle such that −π < α ≤ π and (c + p + 1/2)π = 2kπ + α for k ∈ Z. Let g and p be defined as in
1180
+ equation (3.7). Then
1181
+ (i) p(ζ(t)) ̸= 0 for τ1 ≤ t ≤ τ2, and
1182
+ (ii) ∆ argτ1≤t≤τ2 p(ζ(t)) = 1
1183
+ 2 lim
1184
+ ξ→0 ∆ argξ≤t≤τ2 g(ζ(t)) + |c + p|π
1185
+ 2
1186
+ + η,
1187
+ where
1188
+ (3.14)
1189
+ η =
1190
+
1191
+
1192
+
1193
+
1194
+
1195
+
1196
+
1197
+
1198
+
1199
+
1200
+
1201
+
1202
+
1203
+
1204
+
1205
+ −π/2
1206
+ if c + p < 0
1207
+ 0
1208
+ if c + p ≥ 0 and α = ± π
1209
+ 2
1210
+ −α
1211
+ if c + p ≥ 0 and − π/2 < α < π/2
1212
+ −α − π
1213
+ if c + p ≥ 0 and − π < α < −π/2
1214
+ −α + π
1215
+ if c + p ≥ 0 and π/2 < α ≤ π.
1216
+ .
1217
+ Proof. The fact that p(ζ(t)) ̸= 0 for τ1 ≤ t ≤ τ2 follows immediately from Proposition 10. To
1218
+ establish the claim regarding the change of arguments, we start by recalling that
1219
+ g(ζ) = 2πψ2(ζ)e−2nφ(ζ)
1220
+ nφz2(ζ, t)
1221
+ =
1222
+
1223
+ nφz2(ζ, t) · h2(ζ)
1224
+ z2n+2
1225
+ (z1 − z)2c(z2 − z)2c
1226
+ (z1 + z)2c(z2 + z)2c
1227
+ �(z1 − z)(z2 − z)
1228
+ (z1 + z)(z2 + z)
1229
+ �2nit
1230
+ .
1231
+ Since z1 − z = −iz1t + O(t2), on ξ ≤ t ≤ τ2 the change in the argument of
1232
+ h2(ζ)(z1 − z)2c(z2 − z)2c
1233
+ (z1 + z)2c(z2 + z)2c = (z1 − z)2p∗H(t) ∼ (−z2
1234
+ 1t2)p∗ + O(t3)
1235
+ is o(1). Thus, using the same computations in the proof of Lemma 39 in [3], we conclude that
1236
+ (3.15)
1237
+ lim
1238
+ ξ→0 ∆ argξ≤t≤τ2 g(ζ(t)) = 2nτ2 ln τ2(z2 − z1)
1239
+ 2(z1 + z2) − 2nτ2 + π
1240
+ 2 + o(1).
1241
+ For τ1 ≤ t ≤ τ2, the change of the arguments of the factors 2c+int, (z2 − z1)c+int, (z2 + z1)c+int,
1242
+ and e(c+p+1+int) ln n in the expression
1243
+ 2iπhp(z2 − z1)c+int
1244
+ zn−p
1245
+ 1
1246
+ 2c+int(z2 + z1)c+intnc+p+1+intΓ(−c − p − int)
1247
+ are n(τ2 − τ1) ln 2, n(τ2 − τ1) ln(z2 − z1), n(τ2 − τ1) ln(z2 + z1), and n(τ2 − τ1) ln n respectively.
1248
+ We next compute the change in argument of the factor Γ(−c − p − int) , τ1 ≤ t ≤ τ2, which is
1249
+ given by the expression
1250
+ Im Log Γ(−c − p − int)|τ2
1251
+ τ1 ,
1252
+ where the function Log Γ(s) is defined as
1253
+ Log Γ(s) = −γs − Log s +
1254
+
1255
+
1256
+ k=1
1257
+ � s
1258
+ k − Log(1 + s/k)
1259
+
1260
+ .
1261
+ Using the Stirling formula,
1262
+ Log Γ(s) ∼ (s − 1/2) Log s − s + 1/2 Log(2π) + O(1/s),
1263
+ for |s| → ∞ and | Arg s| ≤ π − δ,
1264
+
1265
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1266
+ 15
1267
+ we conclude that
1268
+ Im Log Γ(−c − p − inτ2)
1269
+ = Im ((−c − p − 1/2 − inτ2) Log(−c − p − inτ2) + nτ2 + O(1/ ln4 n)
1270
+ = − nτ2 ln |c + p + inτ2| + (c + p + 1/2)π
1271
+ 2 + nτ2 + O(1/ ln4 n).
1272
+ Employing the estimate
1273
+ ln |c + p + inτ2| = ln
1274
+ ����inτ2
1275
+
1276
+ 1 + c + p
1277
+ inτ2
1278
+ ����� = ln(nτ2) + O
1279
+
1280
+ 1
1281
+ n2τ 2
1282
+ 2
1283
+
1284
+ ,
1285
+ the last expression becomes
1286
+ −nτ2 ln(nτ2) + (c + p + 1/2)π
1287
+ 2 + nτ2 + O
1288
+
1289
+ 1
1290
+ ln4 n
1291
+
1292
+ .
1293
+ If −c − p > 0, then the fact that nτ1 ≍ e− ln4 n implies that
1294
+ Im Log Γ(−c − p − inτ1) = O
1295
+
1296
+ e− ln4 n�
1297
+ ,
1298
+ and consequently
1299
+ ∆ argτ1≤t≤τ2 Γ(−c − p − int) = −nτ2 ln(nτ2) + (c + p + 1/2)π
1300
+ 2 + nτ2 + O
1301
+
1302
+ 1
1303
+ ln4 n
1304
+
1305
+ .
1306
+ If, on the other hand, if c + p ≥ 0, then the identity
1307
+ Γ(−c − p − int) =
1308
+ π
1309
+ sin π(c + p + 1 + int)Γ(c + p + 1 + int)
1310
+ implies that
1311
+ ∆ argτ1≤t≤τ2 Γ(−c−p−int) = −∆ argτ1≤t≤τ2 sin π(c+p+1+int)−∆ argτ1≤t≤t2 Γ(c+p+1+int).
1312
+ Using the conjugate of the gamma function, we write
1313
+ −∆ argτ1≤t≤t2 Γ(c+p+1+int) = ∆ argτ1≤t≤τ2 Γ(c+p+1−int) = −nτ2 ln(nτ2)−(c+p+1/2)π
1314
+ 2 +nτ2+O
1315
+
1316
+ 1
1317
+ ln4 n
1318
+
1319
+ .
1320
+ Analyzing the change in the argument of sin π(c + p + int) requires further considerations. To this
1321
+ end, recall that
1322
+ sin π(c + p + 1 + int) = e−πnt+iπ(c+p+1) − eπnt−iπ(c+p+1)
1323
+ 2i
1324
+ = −eπnt−iπ(c+p+1)
1325
+ 2i
1326
+
1327
+ e−2πnt + 1
1328
+
1329
+ ,
1330
+ and whence
1331
+ Im sin π(c + p + 1 + int) = 1
1332
+ 2
1333
+
1334
+ e−πnt − eπnt�
1335
+ cos π(c + p + 1).
1336
+ It is immediate that if c + p + 1/2 ∈ Z, then
1337
+ ∆ argτ1≤t≤τ2 sin π(c + p + 1 + int) = 0.
1338
+ On the other hand, if c + p + 1/2 /∈ Z, then sin π(c + p + 1 + int) /∈ R, and
1339
+ ∆ argτ1≤t≤τ2 sin π(c + p + 1 + int) = Arg sin π(c + p + 1 + inτ2) − Arg sin π(c + p + 1 + inτ1).
1340
+
1341
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1342
+ 16
1343
+ We write
1344
+ Arg sin π(c + p + 1 + inτ2) = Arg
1345
+ �−eπnτ2−iπ(c+p+1)
1346
+ 2i
1347
+
1348
+ + O
1349
+
1350
+ e−2πnτ2�
1351
+ = −α + O(e−2π ln4 n),
1352
+ where α is the unique angle such that −π < α ≤ π and (c + p + 1/2)π = 2kπ + α for k ∈ Z. Note
1353
+ that α is given explicitly by the formula
1354
+ α = ((c + p + 3/2)π
1355
+ mod 2π) − π.
1356
+ If c + p ∈ Z, then the Taylor expansion of the sine function yields
1357
+ Arg sin π(c + p + 1 + inτ1) = (−1)c+p+1 π
1358
+ 2 + O
1359
+
1360
+ e− ln4 n�
1361
+ .
1362
+ If c + p /∈ Z, then
1363
+ Arg sin π(c + p + 1 + inτ1) =
1364
+
1365
+
1366
+
1367
+
1368
+
1369
+
1370
+
1371
+ O
1372
+
1373
+ e− ln4 n�
1374
+ if sin π(c + p + 1) > 0
1375
+ π
1376
+ if sin π(c + p + 1) < 0 and cos π(c + p + 1) > 0
1377
+ −π
1378
+ if sin π(c + p + 1) < 0 and cos π(c + p + 1) < 0.
1379
+ Combining these cases we conclude for any c, p ∈ R,
1380
+ ∆ argτ1≤t≤τ2 Γ(−c − p − int) = −nτ2 ln(nτ2) + nτ2 − |c + p|π
1381
+ 2
1382
+ − π
1383
+ 4 − η + O
1384
+
1385
+ 1
1386
+ ln4 n
1387
+
1388
+ ,
1389
+ and finally,
1390
+ ∆ argτ1<t≤τ2 p(ζ(t)) = nτ2 ln (z2 − z1)τ2
1391
+ 2(z2 + z1) − nτ2 + |c + p|π
1392
+ 2
1393
+ + π
1394
+ 4 + η + O
1395
+
1396
+ 1
1397
+ ln4 n
1398
+
1399
+ .
1400
+ Given equation (3.15), the result now follows.
1401
+
1402
+ We next identify a suitable curve on which we will compute the change of argument of g. Let γ be
1403
+ the simple closed curve with counter clockwise orientation formed by the traces of ζ(t), ζ(t), −ζ(t),
1404
+ and −ζ(t) for 0 ≤ t ≤ T and small deformations around
1405
+ (3.16)
1406
+
1407
+ ±i√z1z2, ±ζ(T1), ±ζ(T1)
1408
+ if z2
1409
+ 1 �� 6z1z2 + z2
1410
+ 2 < 0
1411
+ ±iζ(T)
1412
+ if z2
1413
+ 1 − 6z1z2 + z2
1414
+ 2 ≥ 0
1415
+ such that the region enclosed by γ contains the points defined in (3.16). We also deform γ around
1416
+ ±z1 so that the cuts (−∞, −z1] and [z1, ∞) lie outside this region (see Figure 3.3). Using the
1417
+ residue theorem (for detailed computations, see [3] equation (2.86)), we find that
1418
+ 1
1419
+ 2πi
1420
+ ˆ
1421
+ γ
1422
+ g′(ζ)
1423
+ g(ζ) dζ =
1424
+
1425
+ −2n − 6
1426
+ if z2
1427
+ 1 − 6z1z2 + z2
1428
+ 2 < 0
1429
+ −2n − 2
1430
+ if z2
1431
+ 1 − 6z1z2 + z2
1432
+ 2 ≥ 0 ,
1433
+ since the values of c and p do not affect the integral.
1434
+ Let γ1 be the portion of γ in the first quadrant. Exploiting the symmetry g(ζ) = g(ζ) and
1435
+ g(−ζ) = g(ζ), we conclude that
1436
+ ∆γ1 arg g(ζ) = ∆γ arg g(ζ)
1437
+ 4
1438
+ =
1439
+
1440
+ −(n + 3)π
1441
+ if z2
1442
+ 1 − 6z1z2 + z2
1443
+ 2 < 0
1444
+ −(n + 1)π
1445
+ if z2
1446
+ 1 − 6z1z2 + z2
1447
+ 2 ≥ 0 .
1448
+
1449
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1450
+ 17
1451
+ -1.5
1452
+ -1.0
1453
+ -0.5
1454
+ 0.5
1455
+ 1.0
1456
+ 1.5
1457
+ -1.5
1458
+ -1.0
1459
+ -0.5
1460
+ 0.5
1461
+ 1.0
1462
+ 1.5
1463
+ -1.0
1464
+ -0.5
1465
+ 0.5
1466
+ 1.0
1467
+ -1.5
1468
+ -1.0
1469
+ -0.5
1470
+ 0.5
1471
+ 1.0
1472
+ 1.5
1473
+ Figure 3.3. The curve γ for (z1, z2) = (1, 3) (left) and (1, 7) (right)
1474
+ Remark 13. In the case t → T and t → T1 (when T ̸= T1) , the values c and p only affect the
1475
+ change in argument of g(ζ(t)) by o(1). Thus the following results follow directly from [3].
1476
+ (1) If τ < T such that T − τ ≪ 1/n2/3, then by Lemma 40 in [3],
1477
+ lim
1478
+ ξ→0 ∆ argτ≤t≤T −ξ g(ζ(t)) ≪ 1.
1479
+ (2) If T = T2 and |T1 − τ| ≪ 1/n, then by Lemmas 41 and 42 in [3],
1480
+ lim
1481
+ ξ→0 ∆T1+ξ<t<τ arg g(ζ(t)) ≪ 1,
1482
+ and
1483
+ lim
1484
+ ξ→0 ∆τ≤t<T1−ξ arg g(ζ(t)) ≪ 1.
1485
+ (3) Lemma 37 in [3] shows that there exists some |C| < π/2 + o(1), such that
1486
+ ∆ln2 n/n2/3<T −t≪1/n2/3 arg p(ζ(t) = 1
1487
+ 2∆ln2 n/n2/3<T −t≪1/n2/3 arg g(ζ(t)) + C.
1488
+ (4) If T = T2 and p(ζ(T1)) ̸= 0, then p(ζ(t)) ̸= 0 on (T1 − ln2 n/n2/3, T1 + ln2 n/n2/3) and by
1489
+ Lemma 38 in [3], there exists some |C| < π + o(1) such that
1490
+ ∆T1−ln2 n/n2/3<t<T1+ln2 n/n2/3 arg p(ζ(t))
1491
+ =1
1492
+ 2∆ln2 n/n2/3<T1−t≪1/n arg g(ζ) + 1
1493
+ 2∆1/n≪t−T1<ln2 n/n2/3 arg g(ζ) + C.
1494
+ (5) An argument completely analogous to that on p.55 in [3] shows that the change in the
1495
+ argument of g(ζ(t)) on the small arcs of γ1 around ζ(T) and ζ(T1) (when T ̸= T1) are −π/2
1496
+ and −3π/2 respectively .
1497
+ Finally, as ζ → z1,
1498
+ g(ζ) = 2πψ2(ζ)e−2nφ(ζ)
1499
+ nφz2(ζ)
1500
+ ∼ c1(z1 − ζ)2c+2p+1,
1501
+ (c1 ∈ C \ {0}),
1502
+ and
1503
+ exp (2n(ζ − z1)(z1 − z2) Log(z1 − ζ)/z1) → 1.
1504
+
1505
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1506
+ 18
1507
+ Thus the change in argument of g(ζ) on the small arc of γ1 around z1 is −(c + p + 1/2)π + o(1).
1508
+ In contrast to the polynomials discussed in [3] – which have at most two real zeros – the family of
1509
+ polynomials we are treating in the current paper can have several real zeros, whose location changes
1510
+ with n. The next result gives a lower bound on the number of real zeros of Hn if c + p > 0, and
1511
+ also describes the asymptotic behavior of these zeros as n → ∞.
1512
+ Lemma 14. Let {Hn}∞
1513
+ n=0 be as in the statement of Theorem 8. If c + p > 0, then Hn(s) has at
1514
+ least 2 ⌈c + p⌉ many real zeros which approach c ± (c + p + 1 − k), 0 < k ≤ ⌈c + p⌉ as n → ∞.
1515
+ Proof. For x ∈ R, the Cauchy integral formula yields
1516
+ Hn(c + x) = n!
1517
+ 2πi
1518
+
1519
+ |z|=ϵ
1520
+ h(z)
1521
+ zn+1
1522
+ (z1 − z)c(z2 − z)c
1523
+ (z1 + z)c(z2 + z)c
1524
+ �(z1 − z)(z2 − z)
1525
+ (z1 + z)(z2 + z)
1526
+ �x
1527
+ dz
1528
+ (3.17)
1529
+ = n!
1530
+ 2πi
1531
+ ˆ
1532
+ Γ1∪Γ2
1533
+ h(z)
1534
+ zn+1
1535
+ (z1 − z)c(z2 − z)c
1536
+ (z1 + z)c(z2 + z)c
1537
+ �(z1 − z)(z2 − z)
1538
+ (z1 + z)(z2 + z)
1539
+ �x
1540
+ dz,
1541
+ where Γ1 and Γ2 are two loops around two cuts (−∞, −z1] and [z1, ∞) oriented counter clockwise.
1542
+ Using the substitution z �→ −z and the fact that
1543
+ h(z)(z1 − z)c(z2 − z)c
1544
+ (z1 + z)c(z2 + z)c
1545
+ is an even function, we see that the integral over Γ1 is equal to
1546
+ (−1)n
1547
+ ˆ
1548
+ Γ2
1549
+ h(z)
1550
+ zn+1
1551
+ (z1 − z)c−x(z2 − z)c−x
1552
+ (z1 + z)c−x(z2 + z)c−x dz.
1553
+ We apply Remark 11 to t = 0 and c replaced by c + x to conclude that if c + p + x /∈ Z+, then the
1554
+ integral over Γ2 is asymptotic to
1555
+ 2ihp(z2 − z1)c+x sin π(c + p + x + 1)Γ(c + p + x + 1)
1556
+ zn−p
1557
+ 1
1558
+ 2c+x(z2 + z1)c+xnc+p+x+1
1559
+ .
1560
+ With the same application to the case when c replaced by c − x, we conclude that
1561
+ Hn(c + x) ∼ n!hp(z2 − z1)c+x sin π(c + p + x + 1)Γ(c + p + x + 1)
1562
+ πzn−p
1563
+ 1
1564
+ 2c+x(z2 + z1)c+xnc+p+x+1
1565
+ + (−1)n n!hp(z2 − z1)c−x sin π(c + p − x + 1)Γ(c + p − x + 1)
1566
+ πzn−p
1567
+ 1
1568
+ 2c−x(z2 + z1)c−xnc+p−x+1
1569
+ (3.18)
1570
+ if c + p ± x /∈ Z+ and x ̸= 0. For any small fixed δ > 0 (independent of n), we consider the intervals
1571
+ (3.19)
1572
+ Jk = [c + p + 1 − k − δ, c + p + 1 − k + δ],
1573
+ 0 < k < c + p + 1 − δ.
1574
+ For each k, the values of sin(c + p − x + 1) when x is at the endpoints of Jk are (−1)k−1 sin δ and
1575
+ (−1)k sin δ. Also at these endpoints c + p ± x /∈ Z+ (for small δ), Γ(c + p − x + 1) > 0, and the
1576
+ second term of (3.18) dominates the first term when n is large. Thus, by the Intermediate Value
1577
+ Theorem, each interval Jk contain at least one zero of Hn(c + x). We deduce that Hn(c + x) has at
1578
+ least ⌈c + p⌉positive real zeros. The substitutions z by −z and x by −x in equation (3.17) yield
1579
+ Hn(c − x) = (−1)nHn(c + x).
1580
+ The result now follows from the fact that if x is a real zero of Hn(c + x), then so is −x.
1581
+
1582
+
1583
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1584
+ 19
1585
+ We now turn our attention to the proof of Theorem 8. In addition to the number of real zeros
1586
+ of Hn(s) given in Lemma 14, we will count the number of zeros of Hn(c + nit) on t ∈ (0, T) and
1587
+ compare this number with the degree of Hn(s). We start with a lemma concerning the degree of
1588
+ Hn(s).
1589
+ Lemma 15. Let {Hn}∞
1590
+ n=0 be defined as in Theorem 8. Then for each n ≥ 0, polynomial Hn(c + x)
1591
+ has degree n and the sign of its leading coefficient is (−1)n.
1592
+ Proof. Since
1593
+ Hn(c − x) = (−1)nHn(c + x),
1594
+ it suffices to prove that Hn(c − x) has degree n, and that its leading coefficient is positive. The
1595
+ generating function for Hn(c − x) is given by is
1596
+ h(z)(z1 − z)c(z2 − z)c
1597
+ (z1 + z)c(z2 + z)c (1 − z/z1)−x(1 − z/z2)−x(1 + z/z1)x(1 + z/z2)x.
1598
+ For each k ∈ N, the coefficient of zk in the binomial expansion of each factor (1 − z/z1)−x, (1 −
1599
+ z/z2)−x, (1 + z/z1)x, and (1 + z/z2)x is a polynomial of degree k in x with a positive leading
1600
+ coefficient. Thus, given an n ∈ N, the coefficient of zn in the product
1601
+ (1 − z/z1)−x(1 − z/z2)−x(1 + z/z1)x(1 + z/z2)x
1602
+ is of the form
1603
+
1604
+ i+j+k+ℓ=n
1605
+ pi(x)pj(x)pk(x)pℓ(x),
1606
+ where each factor of each summand – and hence the entire expression – has a positive leading
1607
+ coefficient, and degree equal to its index. We expand
1608
+ h(z)(z1 − z)c(z2 − z)c
1609
+ (z1 + z)c(z2 + z)c
1610
+ as a power series in z (with constant coefficients) and deduce that Hn(c − x) has degree n, and the
1611
+ sign of its leading coefficient is the same as the sign of the constant coefficient of this series which
1612
+ is h(0) > 0.
1613
+
1614
+ The final piece in accounting for all of the zeros of Hn(s) is provided by the fact (to be proven
1615
+ in short order) that the total number of real zeros of Hn(s) and those on c + it (except the possible
1616
+ zero at c) is at least
1617
+ (3.20)
1618
+
1619
+ n − 2
1620
+ if 2 | n
1621
+ n − 3
1622
+ if 2 ∤ n .
1623
+ Assuming this fact, we now provide an argument to complete the proof of Theorem 8. If n is odd,
1624
+ then we let x = 0 in Hn(c − x) = (−1)nHn(c + x) to conclude that c is a zero of Hn(s). It thus
1625
+ remains to account for the two possible missing zeros of Hn(s) regardless of the parity of n. Since
1626
+ the degree of Hn(s) is n, and the zeros of Hn(s) are symmetric about the real line and the line
1627
+ c + it, it suffices to show that the possible two remaining zeros of Hn(s) are not real. Note that
1628
+ Hn(c + x) has opposite signs at the endpoints of each Jk (as defined in (3.19)). Hence, Hn(c + x)
1629
+ must have exactly one zero on each Jk and consequently the two remaining zeros cannot lie on any
1630
+ Jk. Since on the set
1631
+ (0, c + p + δ)\
1632
+
1633
+ 0<k<c+p+1−δ
1634
+ Jk
1635
+
1636
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1637
+ 20
1638
+ the second term of expression (3.18) dominates the first, Hn(c + x) does not have zero there.
1639
+ Moreover, it follows from hp > 0 and the asymptotic expression in (3.18) that the sign Hn(c + x)
1640
+ at x = c + p + δ is (−1)n. By Lemma 15, this is the same as the sign of limx→∞ Hn(c + x), and we
1641
+ conclude that Hn(c + x) has no zero on [c + p + δ, ∞). It follows that the remaining two possible
1642
+ zeros must lie on the line Re z = c, completing the proof of Theorem 8.
1643
+ Remark 16. In the case c + p ∈ Z+, (3.18) implies that Hn(c + x) is nonzero on (0, 1 − δ) and its
1644
+ sign is (−1)n+c+p there.
1645
+ We now present the proof of the zero count of Hn(s) claimed in expression (3.20) above. Since
1646
+ a lower bound for the number of real zeros of Hn(s) is provided by Lemma 14, it remains to count
1647
+ the number of zeros of Hn(c + int) on |t| ∈ (0, T). We recall that for t ∈ (0, T), πHn(c + int) is
1648
+ the imaginary part of −i times the real part of p(ζ(t)). It therefore suffices to compute the change
1649
+ in the argument of p(ζ(t)) in order to get a lower bound on the zero count of Hn(s) on the line
1650
+ Re z = c. We proceed by case analysis, depending on whether T = T2 or T = T1 (c.f. equation
1651
+ (3.4)).
1652
+ Case T = T2. If T = T2 and p(ζ(T1)) ̸= 0, then for some |C| < 3π/2 + o(1) and c2 ∈ R+
1653
+ ∆e−ln4n/n≪t<T −c2/n2/3 arg p(ζ(t)) = 1
1654
+ 2∆ arge−ln4n/n≪t<T −c2/n2/3 g(ζ(t)) + |c + p|π
1655
+ 2
1656
+ + η + C
1657
+ = 1
1658
+ 2 (∆γ1 arg g(ζ) + (c + p + 5/2)π) + |c + p|π
1659
+ 2
1660
+ + η + C
1661
+ = −nπ
1662
+ 2 + c + p + |c + p|
1663
+ 2
1664
+ π − π
1665
+ 4 + η + C,
1666
+ (3.21)
1667
+ where η is defined as in equation (3.14) in Lemma 12. In the case c + p < 0, the equation above
1668
+ implies that the number of zeros of Hn(c + int) on (0, T) is at least
1669
+ �n
1670
+ 2 + 3
1671
+ 4 − C
1672
+ π
1673
+
1674
+ .
1675
+ It follows from |C| < 3π/2 + o(1) that Hn(s) has at least
1676
+
1677
+ n − 3
1678
+ if 2 ∤ n
1679
+ n − 2
1680
+ if 2 | n
1681
+ nonreal zeros on the line Re s = c + it.
1682
+ On the other hand, if c + p ≥ 0, then the number of zeros of Hn(c + int) on (0, T) is at least
1683
+ �n
1684
+ 2 − (c + p) + π
1685
+ 4 − η + C
1686
+ π
1687
+
1688
+ .
1689
+ We conclude from Lemma 18 that the total number of real zeros and those on c + it (except the
1690
+ possible zero at c) is at least
1691
+ (3.22)
1692
+ 2
1693
+ �n
1694
+ 2 − (c + p) + 1
1695
+ 4 − η + C
1696
+ π
1697
+
1698
+ + 2 ⌈c + p⌉ ,
1699
+ where c + p = 2k + α/π − 1/2.
1700
+ If −π < α < −π/2, then η = −α − π. Consequently,
1701
+ −(c + p) − η + C
1702
+ π
1703
+ + 1
1704
+ 4 = −2k + 7
1705
+ 4 − C
1706
+ π ,
1707
+
1708
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1709
+ 21
1710
+ and the expression (3.22) is at least
1711
+
1712
+ 2
1713
+ �� n
1714
+ 2
1715
+
1716
+ − 2k
1717
+
1718
+ + 2(2k − 1) = n − 2
1719
+ if 2 | n
1720
+ 2
1721
+ �� n
1722
+ 2
1723
+
1724
+ − 2k
1725
+
1726
+ + 2(2k − 1) = n − 3
1727
+ if 2 ∤ n .
1728
+ If π/2 < α ≤ π, then η = −α + π and
1729
+ −(c + p) − η + C
1730
+ π
1731
+ + 1
1732
+ 4 = −2k − 1
1733
+ 4 − C
1734
+ π ,
1735
+ from which we see that the expression in (3.22) is at least
1736
+
1737
+ 2
1738
+ �� n
1739
+ 2
1740
+
1741
+ − 2k − 2
1742
+
1743
+ + 2(2k + 1) = n − 2
1744
+ if 2 | n
1745
+ 2
1746
+ �� n
1747
+ 2
1748
+
1749
+ − 2k − 2
1750
+
1751
+ + 2(2k + 1) = n − 3
1752
+ if 2 ∤ n .
1753
+ If −π/2 < α < π/2, then η = −α and
1754
+ −(c + p) − η + C
1755
+ π
1756
+ + 1
1757
+ 4 = −2k + 3
1758
+ 4 − C
1759
+ π .
1760
+ Computing the expression in (3.22) again we find that it is at least
1761
+
1762
+ 2
1763
+ �� n
1764
+ 2
1765
+
1766
+ − 2k − 1
1767
+
1768
+ + 4k = n − 2
1769
+ if 2 | n
1770
+ 2
1771
+ �� n
1772
+ 2
1773
+
1774
+ − 2k − 1
1775
+
1776
+ + 4k = n − 3
1777
+ if 2 ∤ n .
1778
+ If α = π/2, then η = 0 and
1779
+ ∆e−ln4n/n≪t<T −c2/n2/3 arg p(ζ(t)) = −nπ
1780
+ 2 + (c + p)π − π
1781
+ 4 + C,
1782
+ and the expression in (3.22) computes to be at least
1783
+
1784
+ 2
1785
+ �� n
1786
+ 2
1787
+
1788
+ − 2k − 2
1789
+
1790
+ + 4k = n − 4
1791
+ if 2 | n
1792
+ 2
1793
+ �� n
1794
+ 2
1795
+
1796
+ − 2k − 1
1797
+
1798
+ + 4k = n − 3
1799
+ if 2 ∤ n.
1800
+ If α = −π/2, then η = 0 and
1801
+ ∆e−ln4n/n≪t<T −c2/n2/3 arg p(ζ(t)) = −nπ
1802
+ 2 + (2k − 1)π − π
1803
+ 4 + C.
1804
+ In this case we find that the expression in (3.22) is at least
1805
+
1806
+ 2
1807
+ �� n
1808
+ 2
1809
+
1810
+ − 2k − 1
1811
+
1812
+ + 2(2k − 1) = n − 4
1813
+ if 2 | n
1814
+ 2
1815
+ �� n
1816
+ 2
1817
+
1818
+ − 2k
1819
+
1820
+ + 2(2k − 1) = n − 3
1821
+ if 2 ∤ n.
1822
+ The reader will note that if α = ±π/2 and 2 | n, we need to find two more zeros in order to increase
1823
+ the the lower bound we have thus far, i.e. n − 4, to the claimed lower bound of n − 2. Suppose thus
1824
+ that 2 | n. The identity
1825
+ Hn(c − x) = (−1)nHn(c + x)
1826
+ implies that if c is a zero of Hn(z), then it is a double zero. On the other hand, if c is not a
1827
+ zero of this polynomial, then from Remark 16 we conclude that the sign of Hn(c) is (−1)c+p and
1828
+ consequently
1829
+ lim
1830
+ t→0 Arg p(ζ(t)) = (−1)c+p π
1831
+ 2 .
1832
+
1833
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1834
+ 22
1835
+ Moreover, Proposition 9 yields that for t ≍ e− ln4 n/n,
1836
+ Arg p(ζ(t)) = Arg(i sin(c + p + 1 + int)) + o(1) =
1837
+
1838
+ o(1)
1839
+ if 2 | c + p
1840
+ ±π + o(1)
1841
+ if 2 ∤ c + p .
1842
+ This implies that
1843
+ (3.23)
1844
+ ∆0<t≪e−ln4n/n arg p(ζ(t)) = −π
1845
+ 2 or 3π
1846
+ 2 .
1847
+ If the change of argument in (3.23) is 3π/2, then we have at least two zeros of Hn(c ± int) on
1848
+ the range 0 < t ≪ e−ln4n/n, since πHn(c + int) is the imaginary part of p(ζ(t)). If the change of
1849
+ argument in (3.23) is −π/2, we deduce from equation (3.21) that
1850
+ ∆0<t<T −c2/n2/3 arg p(ζ(t)) = −nπ
1851
+ 2 + (c + p)π − 3π
1852
+ 4 + C.
1853
+ Thus, the number of real zeros of Hn(s) and those on c + it (except the possible zero at c) is at
1854
+ least
1855
+ 2
1856
+ �n
1857
+ 2 − 2k − 1
1858
+
1859
+ + 4k = n − 2
1860
+ when α = π/2, and at least
1861
+ 2
1862
+ �n
1863
+ 2 − 2k
1864
+
1865
+ + 2(2k − 1) = n − 2
1866
+ when α = −π/2. This complete the case α = ±π/2 when n is even.
1867
+ If T = T2 and p(ζ(T1)) = 0, then for some c2 ∈ R+ and small ξ > 0, the number of real zeros of
1868
+ Hn(c + int) on (0, T)\{T1} is at least
1869
+
1870
+ ∆e−ln4n/n≪t<T1−ξ/n arg p(ζ(t))
1871
+ π
1872
+
1873
+ +
1874
+ �∆T1+ξ/n<t<T −c2/n2/3 arg p(ζ(t))
1875
+ π
1876
+
1877
+
1878
+
1879
+ ∆e−ln4n/n≪t<T1−ξ/n arg p(ζ(t))
1880
+ π
1881
+ + ∆T1+ξ/n<t<T −c2/n2/3 arg p(ζ(t))
1882
+ π
1883
+
1884
+ − 1.
1885
+ Counting T1 as an additional zero of Hn(1/2 + int) on (0, T), we obtain the same number of zeros
1886
+ of this polynomial as in the case p(ζ(T1)) ̸= 0.
1887
+ Case T = T1. We conclude from Lemma 14 that for some |C| < π/2 + o(1) and c2 ∈ R+
1888
+ ∆e−ln4n/n≪t<T −c2/n2/3 arg p(ζ(t)) = 1
1889
+ 2∆ arge−ln4n/n≪t<T −c2/n2/3 g(ζ(t)) + |c + p|π
1890
+ 2
1891
+ + η + C
1892
+ = 1
1893
+ 2 (∆γ1 arg g(ζ) + (c + p + 1)π) + |c + p|π
1894
+ 2
1895
+ + η + C
1896
+ = −nπ
1897
+ 2 + c + p + |c + p|
1898
+ 2
1899
+ π + η + C.
1900
+ We compare the last expression with the one in equation (3.21) and conclude this case, as well as
1901
+ the proof of Theorem 8.
1902
+
1903
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1904
+ 23
1905
+ 4. The limiting zero distribution density function
1906
+ While we have found the zero locus of the cognate sequences under investigation, we can extract
1907
+ further information about the limiting behavior of the zeros in terms of their distribution. We do
1908
+ so by compute the limiting probability density function of the zeros of Hn(c + int) on t ∈ (0, T).
1909
+ To this end, for each x ∈ (0, T) and ϵ > 0, we let Nn,ϵ(x) denote the number of zeros of Hn(c + int)
1910
+ on the interval t ∈ (x, x + ϵ). It follows that the limiting probability density function at x ∈ (0, T)
1911
+ is given by
1912
+ lim
1913
+ ϵ→0
1914
+ 1
1915
+ ϵ lim
1916
+ n→∞
1917
+ Nn,ϵ(x)
1918
+ n
1919
+ .
1920
+ We note that for any x ∈ (0, T) and x ̸= T1 (if T = T2),
1921
+ p2(ζ(t)) ∼ g(ζ(t)) = 2πψ2(ζ)e−2nφ(ζ,t)
1922
+ nφz2(ζ, t)
1923
+ uniformly on t ∈ (x, x + ϵ), and consequently
1924
+ ∆ argx<t<x+ϵ p(ζ(t)) = 1
1925
+ 2∆ argx<t<x+ϵ g(ζ(t))
1926
+ = −n∆ Imx<t<x+ϵ φ(ζ, t) + O(ϵ).
1927
+ It is immediate from the Taylor expansion of φ(ζ, ·) about x that
1928
+ φ(ζ, t)|t=x+ϵ
1929
+ t=x
1930
+ = dφ(ζ, t)
1931
+ dt
1932
+ ����
1933
+ t=x
1934
+ ϵ + O(ϵ2),
1935
+ where
1936
+
1937
+ dt
1938
+ ����
1939
+ t=x
1940
+ = ∂φ
1941
+ ∂ζ
1942
+ ����
1943
+ t=x
1944
+
1945
+ dt
1946
+ ����
1947
+ t=x
1948
+ + ∂φ
1949
+ ∂t
1950
+ ����
1951
+ t=x
1952
+ = ∂φ
1953
+ ∂t
1954
+ ����
1955
+ t=x
1956
+ = −i (Log(z1 − z) + Log(z2 − z) − Log(z1 + z) − Log(z2 + z)) .
1957
+ Thus, using the fact that
1958
+ πHn(c + int) = Im(−i Re(p(ζ(t)))),
1959
+ we conclude that
1960
+ lim
1961
+ ϵ→0
1962
+ 1
1963
+ ϵ lim
1964
+ n→∞
1965
+ Nn,ϵ(x)
1966
+ n
1967
+ = lim
1968
+ ϵ→0
1969
+ 1
1970
+ ϵ lim
1971
+ n→∞
1972
+ ��∆ argx<t<x+ϵ p(ζ(t))
1973
+ ��
1974
+ πn
1975
+ .
1976
+ = 1
1977
+ π ln
1978
+ ����
1979
+ (z1 + ζ(x))(z2 + ζ(x))
1980
+ (z1 − ζ(x))(z2 − ζ(x))
1981
+ ���� .
1982
+ (4.1)
1983
+ In the case x = T1 when T = T2, we note from the previous section that the number of zeros of
1984
+ Hn(c + int) on t ∈ (T1, T1 + ξ/n), for small ξ > 0, is O(1). Since
1985
+ ∆ argT1+ξ/n<t<T1+ϵ p(ζ(t)) = 1
1986
+ 2∆ argT1+ξ/n<t<T1+ϵ g(ζ(t)) + C
1987
+ for |C| < π/2 + o(1), the same argument above also shows that (4.1) holds for x = T1 as well.
1988
+
1989
+ ON THE ZEROS OF CERTAIN SHEFFER SEQUENCES AND THEIR COGNATE SEQUENCES
1990
+ 24
1991
+ -0.6
1992
+ -0.4
1993
+ -0.2
1994
+ 0.2
1995
+ 0.4
1996
+ 0.6
1997
+ 0.5
1998
+ 1.0
1999
+ 1.5
2000
+ 2.0
2001
+ -0.6
2002
+ -0.4
2003
+ -0.2
2004
+ 0.2
2005
+ 0.4
2006
+ 0.6
2007
+ 0.5
2008
+ 1.0
2009
+ 1.5
2010
+ Figure 4.1. Limiting probability density function for (z1, z2) = (1, 3) (left) and
2011
+ (1, 7) (right)
2012
+ References
2013
+ [1] J. Borcea and P. Brändén, Pólya-Schur master theorems for circular domains and their boundaries, Annals of
2014
+ Math., 170 (2009), 465-492.
2015
+ [2] D. Bump, Eugene K.-S. Ng, On Riemann’s zeta funcion, Math. Z. 192 (1986), 195-204.
2016
+ [3] G. Cheon, T. Forgács, H. Kim, K. Tran, On combinatorial properties and the zero distribution of certain Sheffer
2017
+ sequences, J. of Mathematical Analysis and Applications, 514 (2022), 126273.
2018
+ [4] G.-S. Cheon, H. Kim, L. W. Shapiro, A generalization of Lucas polynomial sequence, Discrete Applied Mathe-
2019
+ matics, 157 (2009), 920-927.
2020
+ [5] Dingle, R. B., Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, London and New
2021
+ York, 1973.
2022
+ [6] Tian-Xiao He, Leetsch C. Hsu, Peter J.-S. Shiue, The Sheffer group and the Riordan group, Discrete Applied
2023
+ Mathematics, 155 (2007), 1895-1909.
2024
+ [7] A. F. Horadam, Extension of a Synthesis for a Class of Polynomial Sequences, Fibonacci Quart., 34(1) (1996),
2025
+ 68-74.
2026
+ [8] A. Leibman, Polynomial Sequences in Groups, J. of Algebra, 201 (1998), 189-206.
2027
+ [9] G. Moretti, Functions of a Complex Variable. Englewood Cliffs, N.J.: Prentice-Hall, Inc. pp. 179-184. 1964.
2028
+ [10] Olver, F. W. J., Asymptotics and Special Functions, Academic Press, London and New York, 1974.
2029
+ [11] S. Roman, The umbral calculus, Academic Press, New York, 1984.
2030
+ [12] Gian-Carlo Rota, D. Kahaner, A. Odlyzko, On the foundations of combinatorial theory. VIII. Finite operator
2031
+ calculus, J. of Mathematical Analysis and Applications, 42 (1973), 684-760.
2032
+ [13] L. Shapiro, R. Sprugnoli, P. Barry, G.-S. Cheon, T.-X. He, D. Merlini, W. Wang, The Riordan Group and
2033
+ Applications, Springer Monographs in Mathematics, 2022.
2034
+ [14] E. C. Titchmarsh, The theory of the Riemann-zeta function, Oxford Univ. Press, New York, 1951.
2035
+ 1Department of Mathematics/ Applied Algebra and Optimization Research Center, Sungkyunkwan
2036
+ University, Suwon 16419, Rep. of Korea
2037
+ Email address: [email protected]
2038
+ 2Department of Mathematics, California State University, Fresno, Fresno, CA 93740-8001, USA
2039
+ Email address: [email protected]
2040
+ Email address: [email protected]
2041
+
StE3T4oBgHgl3EQfzQsi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UdE4T4oBgHgl3EQfMAzo/content/tmp_files/2301.04944v1.pdf.txt ADDED
@@ -0,0 +1,1290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ViTs for SITS: Vision Transformers for Satellite Image Time Series
2
+ Michail Tarasiou
3
+ Imperial College London
4
5
+ Erik Chavez
6
+ Imperial College London
7
8
+ Stefanos Zafeiriou
9
+ Imperial College London
10
11
+ Abstract
12
+ In this paper we introduce the Temporo-Spatial Vision
13
+ Transformer (TSViT), a fully-attentional model for general
14
+ Satellite Image Time Series (SITS) processing based on the
15
+ Vision Transformer (ViT). TSViT splits a SITS record into
16
+ non-overlapping patches in space and time which are tok-
17
+ enized and subsequently processed by a factorized temporo-
18
+ spatial encoder. We argue, that in contrast to natural im-
19
+ ages, a temporal-then-spatial factorization is more intu-
20
+ itive for SITS processing and present experimental evidence
21
+ for this claim. Additionally, we enhance the model’s dis-
22
+ criminative power by introducing two novel mechanisms
23
+ for acquisition-time-specific temporal positional encodings
24
+ and multiple learnable class tokens. The effect of all novel
25
+ design choices is evaluated through an extensive ablation
26
+ study. Our proposed architecture achieves state-of-the-art
27
+ performance, surpassing previous approaches by a signifi-
28
+ cant margin in three publicly available SITS semantic seg-
29
+ mentation and classification datasets. All model, training
30
+ and evaluation codes are made publicly available to facili-
31
+ tate further research.
32
+ 1. Introduction
33
+ The monitoring of the Earth surface man-made impacts
34
+ or activities is essential to enable the design of effective in-
35
+ terventions to increase welfare and resilience of societies.
36
+ One example is the sector of agriculture in which monitor-
37
+ ing of crop development can help design optimum strategies
38
+ aimed at improving the welfare of farmers and resilience of
39
+ the food production system. The second of United Nations
40
+ Sustainable Development Goals (SDG) of Ending Hunger
41
+ relies on increasing the crop productivity and revenues of
42
+ farmers in poor and developing countries [35] - approxi-
43
+ mately 2.5 billion people’s livelihoods depend mainly on
44
+ producing crops [10]. Achieving SDG 2 goals requires to be
45
+ Figure 1. Model and performance overview. (top) TSViT archi-
46
+ tecture. A more detailed schematic is presented in Fig.4. (bottom)
47
+ TSViT performance compared with previous arts (Table 2).
48
+ able to accurately monitor yields and the evolution of culti-
49
+ vated areas in order to measure the progress towards achiev-
50
+ ing several goals, as well as to evaluate the effectiveness of
51
+ different policies or interventions. In the European Union
52
+ (EU) the Sentinel for Common Agricultural Policy program
53
+ (Sen4CAP) [2] focuses on developing tools and analytics to
54
+ support the verification of direct payments to farmers with
55
+ underlying environmental conditionalities such as the adop-
56
+ tion of environmentally-friendly [50] and crop diversifica-
57
+ tion [51] practices based on real-time monitoring by the
58
+ European Space Agency’s (ESA) Sentinel high-resolution
59
+ arXiv:2301.04944v1 [cs.CV] 12 Jan 2023
60
+
61
+ ClassiticationHead
62
+ Segmentation Head
63
+ Spatial Encoder
64
+ Temporal Encoder
65
+ Token embeddingGermany
66
+ PASTIS
67
+ T31TFM1618
68
+ 86
69
+ +7.7%
70
+ 66
71
+ +2.7%
72
+ 64
73
+ +4.3%
74
+ segmentation
75
+ 428864
76
+ 63
77
+ 64
78
+ (%)nojw
79
+ 62
80
+ 62
81
+ 61
82
+ 60
83
+ 60
84
+ 58
85
+ 59
86
+ 58
87
+ 72
88
+ 56
89
+ 90
90
+ +3.8%
91
+ +3.7%
92
+ 76
93
+ 88
94
+ +2.5%
95
+ 74
96
+ classification
97
+ mAcc(%)
98
+ 86
99
+ 72
100
+ 84
101
+ 70
102
+ 82
103
+ 68
104
+ 66
105
+ 80
106
+ 69
107
+ 64
108
+ 78
109
+ 68
110
+ 62
111
+ sota architectures
112
+ TSViT (ours)satellite constellation [1] to complement on site verifica-
113
+ tion.
114
+ Recently, the volume and diversity of space-borne
115
+ Earth Observation (EO) data [63] and post-processing tools
116
+ [18, 61, 70] has increased exponentially.
117
+ This wealth of
118
+ resources, in combination with important developments in
119
+ machine learning for computer vision [20,28,53], provides
120
+ an important opportunity for the development of tools for
121
+ the automated monitoring of crop development.
122
+ Towards more accurate automatic crop type recognition,
123
+ we introduce TSViT, the first fully-attentional1 architecture
124
+ for general SITS processing. An overview of the proposed
125
+ architecture can be seen in Fig.1 (top). Our novel design
126
+ introduces some inductive biases that make TSViT particu-
127
+ larly suitable for the target domain:
128
+ • Satellite imagery for monitoring land surface variabil-
129
+ ity boast a high revisit time leading to long temporal
130
+ sequences, for example Sentinel-2 (S2) satellites have
131
+ an average revisit time of 5 days resulting in 60-70
132
+ acquisitions per year. To reduce the amount of com-
133
+ putation we factorize input dimensions into their tem-
134
+ poral and spatial components, providing intuition (sec-
135
+ tion 3.4) and experimental evidence (section 4.2) about
136
+ why the order of factorization matters.
137
+ • TSViT uses a Transformer backbone [64] following
138
+ the recently proposed ViT framework [13]. As a result,
139
+ every TSViT layer has a global receptive field in time
140
+ or space, in contrast to previously proposed convolu-
141
+ tional and recurrent architectures [14,24,40,45,49].
142
+ • To make our approach more suitable for SITS mod-
143
+ elling we propose a tokenization scheme for the in-
144
+ put image timeseries and propose acquisition-time-
145
+ specific temporal position encodings in order to extract
146
+ date-aware features and to account for irregularities in
147
+ SITS acquisition times (section 3.6).
148
+ • We make modifications to the ViT framework (sec-
149
+ tion 3.2) to enhance its capacity to gather class-specific
150
+ evidence which we argue suits the problem at hand
151
+ and design two custom decoder heads to accommodate
152
+ both global and dense predictions (section 3.5).
153
+ Our provided intuitions are tested through extensive abla-
154
+ tion studies on design parameters presented in section 4.2.
155
+ Overall, our architecture achieves state-of-the-art perfor-
156
+ mance in three publicly available datasets for classification
157
+ and semantic segmentation presented in Table 2 and Fig.1.
158
+ 2. Related work
159
+ 2.1. Crop type recognition
160
+ Crop type recognition is a subcategory of land use recog-
161
+ nition which involves assigning one of K crop categories
162
+ 1without any convolution operations
163
+ (classes) at a set of desired locations on a geospatial grid.
164
+ For successfully doing so modelling the temporal patterns
165
+ of growth during a time period of interest has been shown
166
+ to be critical [15, 44]. As a result, model inputs are time-
167
+ series of T satellite images of spatial dimensions H × W
168
+ with C channels, X ∈ RT ×H×W ×C rather than single ac-
169
+ quisitions. There has been a significant body of work on
170
+ crop type identification found in the remote sensing liter-
171
+ ature [8, 9, 19, 39, 41, 55]. These works typically involve
172
+ multiple processing steps and domain expertise to guide
173
+ the extraction of features, e.g.
174
+ NDVI [25], that can be
175
+ separated into crop types by learnt classifiers.
176
+ More re-
177
+ cently, Deep Neural Networks (DNN) trained on raw op-
178
+ tical data [22,26,29,46,47,62] have been shown to outper-
179
+ form these approaches. At the object level, (SITS classi-
180
+ fication) [24, 40, 48] use 1D data of single-pixel or parcel-
181
+ level aggregated feature timeseries, rather than the full SITS
182
+ record, learning a mapping f : RT ×C → RK. Among
183
+ these works, TempCNN [40] employs a simple 1D convo-
184
+ lutional architecture, while [48] use the Transformer archi-
185
+ tecture [64]. DuPLo [24] consists of an ensemble of CNN
186
+ and RNN streams in an effort to exploit the complementar-
187
+ ity of extracted features. Finally, [16] view satellite images
188
+ as un-ordered sets of pixels and calculate feature statistics
189
+ at the parcel level, but, in contrast to previously mentioned
190
+ approaches, their implementation requires knowledge of the
191
+ object geometry. At the pixel level (SITS semantic seg-
192
+ mentation), models learn a mapping f(X) ∈ RH×W ×K.
193
+ For this task, [47] show that convolutional RNN variants
194
+ (CLSTM, CGRU) [54] can automatically extract useful fea-
195
+ tures from raw optical data, including cloudy images, that
196
+ can be linearly separated into classes.
197
+ The use of CNN
198
+ architectures is explored in [45] who employ two models:
199
+ a UNET2D feature extractor, followed by a CLSTM tem-
200
+ poral model (UNET2D-CLSTM); and a UNET3D fully-
201
+ convolutional model. Both are found to achieve equivalent
202
+ performances. In a similar spirit, [7] use a FPN [31] feature
203
+ extractor, coupled with a CLSTM temporal model (FPN-
204
+ CLSTM). The UNET3Df architecture [60] follows from
205
+ UNET3D but uses a different decoder head more suited to
206
+ contrastive learning. The U-TAE architecture [14] follows
207
+ a different approach, in that it employs the encoder part of
208
+ a UNET2D, applied on parallel on all images, and a sub-
209
+ sequent temporal attention mechanism which collapses the
210
+ temporal feature dimension. These spatial-only features are
211
+ further processed by the decoder part of a UNET2D to ob-
212
+ tain dense predictions.
213
+ 2.2. Self-attention in vision
214
+ Convolutional [20, 28, 57] and fully-convolutional net-
215
+ works (FCN) [52, 53] have been the de-facto model of
216
+ choice for vision tasks over the past decade. The convo-
217
+ lution operation extracts translation-equivariant features via
218
+
219
+ application of a small square kernel over the spatial extent
220
+ of the learnt representation and grows the feature recep-
221
+ tive field linearly over the depth of the network. In con-
222
+ trast, the self-attention operation, introduced as the main
223
+ building block of the Transformer architecture [64], uses
224
+ self-similarity as a means for feature aggregation and can
225
+ have a global receptive field at every layer. Following the
226
+ adoption of Transformers as the dominant architecture in
227
+ natural language processing tasks [6,12,64], several works
228
+ have attempted to exploit self-attention in vision architec-
229
+ tures. Because the time complexity of self-attention scales
230
+ quadratically with the size of the input, its naive implemen-
231
+ tation on image data, which typically contain more pixels
232
+ than text segments contain words, would be prohibitive. To
233
+ bypass this issue, early works focused on improving effi-
234
+ ciency by injecting self-attention layers only at specific lo-
235
+ cations within a CNN [5, 67] or by constraining their re-
236
+ ceptive field to a local region [38,42,65], however, in prac-
237
+ tice, these designs do not scale well with available hard-
238
+ ware leading to slow throughput rates, large memory re-
239
+ quirements and long training times. Following a different
240
+ approach, the Vision Transformer (ViT) [13], presented in
241
+ further detail in section 3.1, constitutes an effort to apply
242
+ a pure Transformer architecture on image data, by propos-
243
+ ing a simple, yet efficient image tokenization strategy. Sev-
244
+ eral works have drawn inspiration from ViT to develop
245
+ novel attention-based architectures for vision. For image
246
+ recognition, [32, 69] re-introduce some of the inductive bi-
247
+ ases that made CNNs successful in vision, leading to im-
248
+ proved performances without the need for long pre-training
249
+ schedules, [43, 59] employ Transformers for dense predic-
250
+ tion, [11,58,71] for object detection and [3,36,68] for video
251
+ processing. Among these works, our framework is more
252
+ closely related to [3] who also use a spatio-temporal fac-
253
+ torization of input dimensions, and [59] who use multiple
254
+ learnable tokens for semantic segmentation. However, we
255
+ deviate significantly from [3] by introducing acquisition-
256
+ time-specific temporal encodings to accommodate an un-
257
+ even distribution of images in time, reverse the order of fac-
258
+ torization and are interested in both global and dense pre-
259
+ dictions (section 3.4). Additionally, we differ from [59] in
260
+ that we introduce the cls tokens as an input to the encoder
261
+ in order to collapse the time dimension and obtain class-
262
+ specific features, while they use them as class queries inputs
263
+ to the decoder similar to their use in [11]. We also differ sig-
264
+ nificantly from [59] in terms of the decoder design as they
265
+ resize the output of the penultimate layer to match the in-
266
+ put size and further process that to obtain pixel-level logits,
267
+ while we decode each token directly into a region matching
268
+ input patch dimensions and reassemble these into a dense
269
+ probability map (section 3.5).
270
+ Figure 2. Backbone architectures. (a) Transformer backbone,
271
+ (b) ViT architecture, (c) TSViT backbone employs additional cls
272
+ tokens (red), each responsible for predicting a single class.
273
+ 3. Method
274
+ In this section we present the TSViT architecture in de-
275
+ tail. First, we give a brief overview of the ViT (section 3.1)
276
+ which provided inspiration for this work. In section 3.2 we
277
+ present our modified TSViT backbone, followed by our to-
278
+ kenization scheme (section 3.3), encoder (section 3.4) and
279
+ decoder (section 3.5) modules. Finally, in section 3.6, we
280
+ discuss several considerations behind the design of our po-
281
+ sition encoding scheme.
282
+ 3.1. Primer on ViT
283
+ Inspired by the success of Transformers in natural lan-
284
+ guage processing tasks [64] the ViT [13] is an application
285
+ of the Transformer architecture to images with the fewest
286
+ possible modifications. Their framework involves the to-
287
+ kenization of a 2D image X ∈ RH×W ×C to a set of
288
+ patch tokens Z ∈ RN×d by splitting it into a sequence of
289
+ N = ⌊ H
290
+ h ⌋⌊ W
291
+ w ⌋ same-size and non-overlapping patches of
292
+ spatial extent (h × w) which are flattened into 1D tokens
293
+ xi ∈ RhwC and linearly projected into d dimensions. Over-
294
+ all, the process of token extraction is equivalent to the appli-
295
+ cation of 2D convolution with kernel size (h × w) at strides
296
+ (h, w) across respective dimensions. The extracted patches
297
+ are used to construct model inputs as follows:
298
+ Z0 = concat(zcls, Z + P) ∈ RN+1×d
299
+ (1)
300
+ A set of learned positional encoding vectors P ∈ RN×d,
301
+ added to Z, are employed to encode the absolute posi-
302
+ tion information of each token and break the permutation
303
+ invariance property of the subsequent Transformer layers.
304
+ A separate learned class (cls) token zcls ∈ Rd [12] is
305
+ prepended to the linearly transformed and positionally aug-
306
+
307
+ Layer
308
+ Layer
309
+ MSA
310
+ MLP:
311
+ Norm
312
+ Norm
313
+ pp
314
+ eq.(2)
315
+ eq.(3)
316
+ xL
317
+ (a) Transformer backbone
318
+ MLP:
319
+ =
320
+ d-→K
321
+ concat(zcls, Z+P)
322
+ Transformer
323
+ eq.(1)
324
+ :
325
+ (b) ViT
326
+ MLP:
327
+ ..+
328
+ d-→1
329
+ concat(Zcls,Z+P)
330
+ Transformer
331
+ eq.(4)
332
+ (c) TsViT backboneFigure 3. SITS Tokenization. We embed each satellite image
333
+ independently following ViT [13]
334
+ mented patch tokens leading to a length N + 1 sequence
335
+ of tokens Z0 which are used as model inputs. The Trans-
336
+ former backbone consists of L blocks of alternating lay-
337
+ ers of Multiheaded Self-Attention (MSA) [64] and residual
338
+ Multi-Layer Perceptron (MLP) (Fig.2(a)).
339
+ Yl = MSA(LN(Zl)) + Zl
340
+ (2)
341
+ Zl+1 = MLP(LN(Yl)) + Yl
342
+ (3)
343
+ Prior to each layer, inputs are normalized following Lay-
344
+ ernorm (LN) [4]. MLP blocks consist of two layers of linear
345
+ projection followed by GELU non-linear activations [21].
346
+ In contrast to CNN architectures, in which spatial dimen-
347
+ sions are reduced while feature dimensions increase with
348
+ layer depth, Transformers are isotropic in that all feature
349
+ maps Zl ∈ R1+N×d have the same shape throughout the
350
+ network. After processing by the final layer L, all tokens
351
+ apart from the first one (the state of the cls token) are dis-
352
+ carded and unormalized class probabilities are calculated by
353
+ processing this token via a MLP. A schematic representation
354
+ of the ViT architecture can be seen in Fig.2(b).
355
+ 3.2. Backbone architecture
356
+ In the ViT architecture, the cls token progressively re-
357
+ fines information gathered from all patch tokens to reach
358
+ a final global representation used to derive class probabil-
359
+ ities. Our TSViT backbone, shown in Fig.2(c), essentially
360
+ follows from ViT, with few modifications in the tokeniza-
361
+ tion and decoder layers. More specifically, we introduce K
362
+ (equal to the number of object classes) additional learnable
363
+ cls tokens Zcls ∈ RK×d, compared to ViT which uses a
364
+ single token.
365
+ Z0 = concat(Zcls, Z + P) ∈ RN+K×d
366
+ (4)
367
+ Without deviating from ViT, all cls and positionally aug-
368
+ mented patch tokens are concatenated and processed by the
369
+ L layers of a Transformer encoder. After the final layer,
370
+ we discard all patch tokens and project each cls token into
371
+ a scalar value. By concatenating these values we obtain a
372
+ length K vector of unormalised class probabilities. This de-
373
+ sign choice brings the following two benefits: 1) it increases
374
+ the capacity of the cls token relative to the patch tokens, al-
375
+ lowing them to store more patterns to be used by the MSA
376
+ operation; 2) it allows for more controlled handling of the
377
+ interactions between evidence gathered for each class. Re-
378
+ garding the first point, introducing multiple cls tokens can
379
+ be seen as equivalent to increasing the dimension of a sin-
380
+ gle cls token to an integer multiple of the patch token di-
381
+ mension dcls = kdpatch and split the cls token into k sepa-
382
+ rate subspaces prior to the MSA operation. In this way we
383
+ can increase the capacity of the cls tokens while avoiding
384
+ issues such as the need for asymmetric MSA weight matri-
385
+ ces for cls and patch tokens, which would effectively more
386
+ than double our model’s parameter count. Furthermore, by
387
+ choosing k = K and enforcing a bijective mapping from
388
+ cls tokens to class predictions, the state of each cls token be-
389
+ comes more focused to a specific class with network depth.
390
+ In TSViT we go a step further and explicitly separate cls
391
+ tokens by class after processing with the temporal encoder
392
+ to allow only same-cls-token interactions in the spatial en-
393
+ coder. In section 3.4 we argue why this is a very useful in-
394
+ ductive bias for modelling spatial relationships in crop type
395
+ recognition.
396
+ 3.3. Tokenization of SITS inputs
397
+ A SITS record X ∈ RT ×H×W ×C consists of a series
398
+ of T satellite images of spatial dimensions H × W with
399
+ C channels. For the tokenization of our 3D inputs, we can
400
+ extend the tokenization-as-convolution approach to 3D data
401
+ and apply a 3D kernel with size (t×h×w) at stride (t, h, w)
402
+ across temporal and spatial dimensions.
403
+ In this manner
404
+ N = ⌊ T
405
+ t ⌋⌊ H
406
+ h ⌋⌊ W
407
+ w ⌋ non-overlapping tokens xi ∈ RthwC
408
+ are extracted, and subsequently projected to d dimensions.
409
+ Using t > 1, all extracted tokens contain spatio-temporal
410
+ information.
411
+ For the special case of t = 1 each token
412
+ contains spatial-only information for each acquisition time
413
+ and temporal information is accounted for only through the
414
+ encoder layers. Since the computation cost of global self-
415
+ attention layers is quadratic w.r.t. the length of the token se-
416
+ quence O(N 2), choosing larger values for t, h, w can lead
417
+ to significantly reduced number of FLOPS. In our experi-
418
+ ments, however, we have found small values for t, h, w to
419
+ work much better in practice. For all presented experiments
420
+ we use a value of t = 1 motivated in part because this choice
421
+ simplifies the implementation of acquisition-time-specific
422
+ temporal position encodings, described in section 3.6. With
423
+ regards to the spatial dimensions of extracted patches we
424
+
425
+ H/h
426
+ Conv2d(in channels=C, out channels=d
427
+ kernel size=(h, w), stride=(h, w))
428
+ H
429
+ h
430
+ -M→
431
+ W
432
+ t1
433
+ tT
434
+ timehave found small values to work best for semantic segmen-
435
+ tation, which is reasonable given that small patches retain
436
+ additional spatial granularity. In the end, our tokenization
437
+ scheme is similar to ViT’s applied in parallel for each acqui-
438
+ sition as shown in Fig.3, however, at this stage, instead of
439
+ unrolling feature dimensions, we retain the spatial structure
440
+ of the original input as reshape operations will be handled
441
+ by the TSViT encoder submodules.
442
+ 3.4. Encoder architecture
443
+ In the previous section we presented a motivation for us-
444
+ ing small values t, h, w for the extracted patches. Unless
445
+ other measures are taken to reduce the model’s computa-
446
+ tional cost this choice would be prohibitive for process-
447
+ ing SITS with multiple acquisition times. To avoid such
448
+ problems, we choose to factorize our inputs across their
449
+ temporal and spatial dimensions, a practice commonly em-
450
+ ployed for video processing [17,27,37,56,66,72]. We note
451
+ that all these works use a spatial-temporal factorization or-
452
+ der, which is reasonable when dealing with natural images,
453
+ given that it allows the extraction of higher level, semanti-
454
+ cally aware spatial features, whose relationship in time is
455
+ useful for scene understanding. However, we argue that in
456
+ the context of SITS, reversing the order of factorization is
457
+ a meaningful design choice for the following reasons: 1) in
458
+ contrast to natural images in which context can be useful for
459
+ recognising an object, in crop type recognition context can
460
+ provide little information, or can be misleading. This arises
461
+ from the fact that the shape of agricultural parcels, does not
462
+ need to follow its intended use, i.e. most crops can gener-
463
+ ally be cultivated independent of a field’s size or shape. Of
464
+ course there exist variations in the shapes and sizes of agri-
465
+ cultural fields [34], but these depend mostly on local agri-
466
+ cultural practices and are not expected to generalize over
467
+ unseen regions. Furthermore, agricultural parcels do not in-
468
+ herently contain sub-components or structure. Thus, know-
469
+ ing what is cultivated in a piece of land is not expected to
470
+ provide information about what grows nearby. This is in
471
+ contrast to other objects which clearly contain structure, e.g.
472
+ in human face parsing there are clear expectations about the
473
+ relative positions of various face parts. To test this hypoth-
474
+ esis we enumerate over all agricultural parcels belonging to
475
+ the most popular crop types in the T31TFM S2 tile in France
476
+ for year 2018 and take crop-type-conditional pixel counts
477
+ over a 1km square region from their centers. Then, we cal-
478
+ culate the cosine similarity of these values with uncondi-
479
+ tional pixel counts over the extent of the T31TFM tile and
480
+ find a high degree of similarity, suggesting that there are no
481
+ significant variations between these distributions; 2) a small
482
+ region in SITS is far more informative than its equivalent in
483
+ natural images, as it contains more channels than regular
484
+ RGB images (S2 imagery contains 13 bands in total) whose
485
+ intensities are averaged over a relatively large area (high-
486
+ est resolution of S2 images is 10 × 10 m2); 3) SITS for
487
+ land cover recognition do not typically contain moving ob-
488
+ jects. As a result, a timeseries of single pixel values can be
489
+ used for extracting features that are informative of a spe-
490
+ cific object part found at that particular location. Therefore,
491
+ several objects can be recognised using only information
492
+ found in a single location; plants, for example, can be recog-
493
+ nised by variations of their spectral signatures during their
494
+ growth cycle. Many works performing crop classification
495
+ do so using only temporal information in the form of time-
496
+ series of small patches [47], pixel statistics over the extent
497
+ of parcels [46] or even values from single pixels [40, 48].
498
+ On the other hand, the spatial patterns in a single image
499
+ are uninformative of the crop type, as evidenced by the low
500
+ performance of systems relying on single images [14]. Our
501
+ encoder architecture can be seen in Fig.4(a,b). We now de-
502
+ scribe the temporal and spatial encoder submodules.
503
+ Temporal encoder Thus, we tokenize a SITS record
504
+ X ∈ RT ×H×W ×C into a set of tokens of size (NT × NH ×
505
+ NW × d), as described in section 3.3 and subsequently re-
506
+ shape to ZT ∈ RNHNW ×NT ×d, to get a list of token time-
507
+ series for all patch locations. The input to the temporal en-
508
+ coder is:
509
+ Z0
510
+ T = concat(ZTcls, ZT + PT[t, :]) ∈ RNHNW ×K+NT ×d
511
+ (5)
512
+ where PT[t, :] ∈ RNT ×d and ZTcls ∈ RK×d are re-
513
+ spectively added and prepended to all NHNW timeseries
514
+ and t ∈ RT is a vector containing all T acquisition times.
515
+ All samples are then processed in parallel by a Transformer
516
+ module. Consequently, the final feature map of the tempo-
517
+ ral encoder becomes ZL
518
+ T ∈ RNHNW ×K+NT ×d in which the
519
+ first K tokens in the temporal dimension correspond to the
520
+ prepended cls tokens. We only keep these tokens, discard-
521
+ ing the remaining NT vectors.
522
+ Spatial encoder We now transpose the first and second
523
+ dimensions in the temporal encoder output, to obtain a list
524
+ of patch features ZS ∈ RK×NHNW ×d for all output classes.
525
+ In a similar spirit, the input to the spatial encoder becomes:
526
+ Z0
527
+ S = concat(ZScls, ZS + PS) ∈ RK×1+NHNW ×d
528
+ (6)
529
+ Where PS ∈ RNHNW ×d are respectively added to all
530
+ K spatial representations and each element of ZScls ∈
531
+ RK×1×d is prepended to each class-specific feature map.
532
+ We note, that while in the temporal encoder cls tokens were
533
+ prepended to all patch locations, now there is a single cls
534
+ token per spatial feature map such that ZScls are used to
535
+ gather global SITS-level information. Processing with the
536
+ spatial encoder leads to a similar size output feature map
537
+ ZL
538
+ S ∈ RK×1+NHNW ×d.
539
+ 3.5. Decoder architecture
540
+ The TSViT encoder architecture described in the pre-
541
+ vious section is designed as a general backbone for SITS
542
+
543
+ Figure 4. TSViT submodules. (a) Temporal encoder. We reshape tokenized inputs, retaining the spatio-temporal structure of SITS, into
544
+ a set of timeseries for each spatial location, add temporal position encodings PT[t, :] for acquisition times t, concatenate local cls tokens
545
+ ZTcls (eq.5) and process in parallel with a Transformer. Only the first K output tokens are retained. (b) Spatial encoder. We reshape
546
+ the outputs of the temporal encoder into a set of spatial feature maps for each cls token, add spatial position encodings PS, concatenate
547
+ global cls tokens ZScls (eq.6) and process in parallel with a Transformer. (c) Segmentation head. Each local cls token is projected into hw
548
+ values denoting class-specific evidence for every pixel in a patch. All patches are then reassembled into the original image dimensions. (d)
549
+ Classification head. Global cls tokens are projected into scalar values, each denoting evidence for the presence of a specific class.
550
+ processing. To accommodate both global and dense pre-
551
+ diction tasks we design two decoder heads which feed on
552
+ different components of the encoder output. We view the
553
+ output of the encoder as ZL
554
+ S = [ZL
555
+ Sglobal|ZL
556
+ Slocal] respec-
557
+ tively corresponding to the states of the global and local
558
+ cls tokens. For image classification, we only make use of
559
+ ZL
560
+ Sglobal ∈ RK×d. We proceed, as described in sec.3.2, by
561
+ projecting each feature into a scalar value and concatenate
562
+ these values to obtain global unormalised class probabilities
563
+ as shown in Fig.4(d). Complementarily, for semantic seg-
564
+ mentation we only use ZL
565
+ Slocal ∈ RK×NHNW ×d. These
566
+ features encode information for the presence of each class
567
+ over the spatial extent of each image patch. By project-
568
+ ing each feature into hw dimensions and further reshaping
569
+ the feature dimension to (h × w) we obtain a set of class-
570
+ specific probabilities for each pixel in a patch. It is pos-
571
+ sible now to merge these patches together into an output
572
+ map (H × W × K) which represents class probabilities for
573
+ each pixel in the original image. This process is presented
574
+ schematically in Fig.4(c).
575
+ 3.6. Position encodings
576
+ As described in section 3.4, positional encodings are
577
+ injected in two different locations in our proposed net-
578
+ work. First, temporal position encodings are added to all
579
+ patch tokens before processing by the temporal encoder
580
+ as shown in eq.(5). This operation aims at breaking the
581
+ permutation invariance property of MSA by introducing
582
+ time-specific position biases to all extracted patch tokens.
583
+ For crop recognition encoding the absolute temporal po-
584
+ sition of features is important as it helps identifying a
585
+ plant’s growth stage within the crop cycle. Furthermore,
586
+ the time interval between successive images in SITS varies
587
+ depending on acquisition times and other factors, such as
588
+ the degree of cloudiness or corrupted data. To introduce
589
+ acquisition-time-specific biases into the model, our tempo-
590
+ ral position encodings PT[t, :] depend directly on acquisi-
591
+ tion times t. More specifically, we make note of all the
592
+ dates t′ = [t1, t2, ..., tT ′] corresponding to the acquisition
593
+ times found in the training data and construct a lookup ta-
594
+ ble PT ∈ RT ′×d containing all learnt temporal position
595
+ encodings indexed by date. Finding the date-specific en-
596
+ codings that need to be added to patch tokens (eq.5) re-
597
+ duces to looking up appropriate indices from PT. In this
598
+ way temporal position encodings introduce a dynamic prior
599
+ of where to look at in the models’ global temporal receptive
600
+ field, rather than simply encoding the order of SITS acquisi-
601
+ tions which would discard valuable information. Following
602
+ token processing by the temporal encoder, spatial position
603
+ embeddings PS are added to the extracted cls tokens. These
604
+ are not dynamic in nature and are similar to the position en-
605
+ codings used in the original ViT architecture, with the dif-
606
+ ference that these biases are now added to K feature maps
607
+ instead of a single one.
608
+
609
+ 00·0000...
610
+ 00·0
611
+ location in time
612
+ Transformer
613
+ Transformer
614
+ location in space
615
+ patch (local) cls tokens
616
+ 0-000-00
617
+ 000-0
618
+ 000-[
619
+ 0.000
620
+ global cls tokens
621
+ Reassemble
622
+ concat(Zcls, Z + PT(t)
623
+ concat(Zcls, Z + Ps)
624
+ Zrels
625
+ Zscls
626
+ Z + PT(t)
627
+ Z+ Ps
628
+ eq.(5)
629
+ Pr[t,:
630
+ .00
631
+ 00:0
632
+ Ps
633
+ Reshape: (K x NHNw x hw)
634
+ →(NHNw x h x w x K)
635
+ concat(*)
636
+ Reshape: (T × NH × Nw × d) -→ (NHNw × T × d)
637
+ Reshape: (NHNw × K × d) → (K × NHNw × d)
638
+ MLP: d → hw
639
+ MLP: d→1
640
+ ...
641
+ 0:00
642
+ 0·0
643
+ 00-0
644
+ (a) Temporal Encoder
645
+ (b) Spatial Encoder
646
+ (c) Segmentation Head
647
+ (d) Classification Head4. Experiments
648
+ We apply TSViT to two tasks using SITS records X ∈
649
+ RT ×H×W ×C as inputs: classification and semantic seg-
650
+ mentation. At the object level, classification models learn
651
+ a mapping f(X) ∈ RK for the object occupying the center
652
+ of the H × W region. Semantic segmentation models learn
653
+ a mapping f(X) ∈ RH×W ×K, predicting class probabili-
654
+ ties for each pixel over the spatial extent of the SITS record.
655
+ We use an ablation study on semantic segmentation to guide
656
+ model design and hyperparameter tuning and proceed with
657
+ presenting our main results on three publicly available SITS
658
+ semantic segmentation and classification datasets.
659
+ 4.1. Training and evaluation
660
+ Datasets To evaluate the performance of our proposed
661
+ semantic segmentation model we are using three publicly
662
+ available S2 land cover recognition datasets. The dataset
663
+ presented in [47] covers a densely cultivated area of interest
664
+ of 102×42 km2 north of Munich, Germany and contains 17
665
+ distinct classes. Individual image samples cover a 240×240
666
+ m2 area (24×24 pixels) and contain 13 bands. The PASTIS
667
+ dataset [14] contains images from four different regions in
668
+ France with diverse climate and crop distributions, span-
669
+ ning over 4000 km2 and including 18 crop types. In total,
670
+ it includes 2.4k SITS samples of size 128 × 128, each con-
671
+ taining 33-61 acquisitions and 10 image bands. Because
672
+ the PASTIS sample size is too large for efficiently train-
673
+ ing TSViT with available hardware, we split each sample
674
+ into 24 × 24 patches and retain all acquisition times for a
675
+ total of 57k samples. To accommodate a large set of ex-
676
+ periments we only use fold 1 among the five folds provided
677
+ in PASTIS. Finally, we use the T31TFM-1618 dataset [60]
678
+ which covers a densely cultivated S2 tile in France for years
679
+ 2016-18 and includes 20 distinct classes. In total, it includes
680
+ 140k samples of size 48 × 48, each containing 14-33 ac-
681
+ quisitions and 13 image bands. For the SITS classification
682
+ experiments, we construct the datasets from the respective
683
+ segmentation datasets. More specifically, for PASTIS we
684
+ use the provided object instance ids to extract 24 × 24 pixel
685
+ regions whose center pixel falls inside each object and use
686
+ the class of this object as the sample class. The remain-
687
+ ing two datasets contain samples of smaller spatial extent,
688
+ making the above strategy not feasible in practice. Here, we
689
+ choose to retain the samples as they are and assign the class
690
+ of the center pixel as the global class. We note that this
691
+ strategy forces us to discard samples in which the center
692
+ pixels belongs to the background class. Additional details
693
+ are provided in the supplementary material.
694
+ Implementation details For all experiments presented
695
+ we train for the same number of epochs using the provided
696
+ data splits from the respective publications for a fair com-
697
+ parison. More specifically, we train on all datasets using
698
+ the provided training sets and report results on the valida-
699
+ Ablation
700
+ Settings
701
+ mIoU
702
+ Factorization order
703
+ Spatial & Temporal
704
+ 48.8
705
+ Temporal & Spatial
706
+ 78.5
707
+ #cls tokens
708
+ 1
709
+ 78.5
710
+ K
711
+ 83.6
712
+ Position encodings
713
+ Static
714
+ 80.8
715
+ Date lookup
716
+ 83.6
717
+ Interactions between
718
+ cls tokens
719
+ Temporal
720
+ Spatial
721
+
722
+
723
+
724
+ XXX
725
+ 81.5
726
+
727
+
728
+ 83.6
729
+ Patch size
730
+ 2 × 2
731
+ 84.8
732
+ 3 × 3
733
+ 83.6
734
+ 4 × 4
735
+ 81.5
736
+ 6 × 6
737
+ 79.6
738
+ Table 1. Ablation on design choices for TSViT. All proposed
739
+ design choices are found to have a positive effect on performance.
740
+ tion sets for Germany and T31TFM-1618, and on the test
741
+ set for PASTIS. For training TSViT we use the AdamW op-
742
+ timizer [23] with a learning rate schedule which includes a
743
+ warmup period starting from zero to a maximum value 10−3
744
+ at epoch 10, followed by cosine learning rate decay [33]
745
+ down to 5 ∗ 10−6 at the end of training. For Germany and
746
+ T31TFM-1618 we train with the above settings and report
747
+ the best performances between what we achieve and the
748
+ original studies. Since we split PASTIS, we are training
749
+ with both settings and report the best results. Overall, we
750
+ find that our settings improve model performance. We train
751
+ with a batch size of 16 or 32 and no regularization on ×2
752
+ Nvidia Titan Xp gpus in a data parallel fashion. All mod-
753
+ els are trained with a Masked Cross-Entropy loss, masking
754
+ the effect of the background class in both training loss and
755
+ evaluation metrics. We report overall accuracy (OA), aver-
756
+ aged over pixels, and mean intersection over union (mIoU)
757
+ averaged over classes. For SITS classification, in addition
758
+ to the 1D models presented in section 2 we modify the best
759
+ performing semantic segmentation models by aggregating
760
+ extracted features across space prior to the application of a
761
+ classifier, thus, outputing a single prediction. Classification
762
+ models are trained with Focal loss [30]. We report OA and
763
+ mean accuracy (mAcc) averaged over classes.
764
+ 4.2. Ablation studies
765
+ We perform an ablation study on design parameters of
766
+ our framework using the Germany dataset [47]. Starting
767
+ with a baseline TSViT with L = 4 for both encoder net-
768
+ works, a single cls token, h = w = 3, t = 1, d =
769
+ 128 we successively update our design after each ablation.
770
+ Here, we present the effect of the most important design
771
+ choices; additional ablations are presented in the supple-
772
+ mentary material. Overall, we find that the order of factor-
773
+
774
+ Dataset
775
+ Germany [47]
776
+ PASTIS [14]
777
+ T31TFM-1618 [60]
778
+ Model
779
+ Semantic segmentation (OA / mIoU)
780
+ BiCGRU [47]
781
+ 91.3 / 72.3
782
+ 80.5 / 56.2
783
+ 88.6 / 57.7
784
+ FPN-CLSTM [7]
785
+ 91.8 / 73.7
786
+ 81.9 / 59.5
787
+ 88.4 / 57.8
788
+ UNET3D [45]
789
+ 92.4 / 75.2
790
+ 82.3 / 60.4
791
+ 88.4 / 57.6
792
+ UNET3Df [60]
793
+ 92.4 / 75.4
794
+ 82.1 / 60.2
795
+ 88.6 / 57.7
796
+ UNET2D-CLSTM [45]
797
+ 92.9/ 76.2
798
+ 82.7 / 60.7
799
+ 89.0 / 58.8
800
+ U-TAE [14]
801
+ 93.1 / 77.1
802
+ 82.9 / 62.4
803
+ 88.9 / 58.5
804
+ TSViT (ours)
805
+ 95.0 / 84.8
806
+ 83.4 / 65.1 (83.4/ 65.4)
807
+ 90.3 / 63.1
808
+ Model
809
+ Object classification (OA / mAcc)
810
+ TempCNN∗ [40]
811
+ 89.8 / 78.4
812
+ 84.8 / 69.1
813
+ 84.7 / 62.6
814
+ DuPLo∗ [24]
815
+ 93.1 / 82.2
816
+ 84.8 / 69.4
817
+ 83.9 / 69.5
818
+ Transformer∗ [48]
819
+ 92.4/ 84.3
820
+ 84.4 / 68.1
821
+ 84.3 / 71.4
822
+ UNET3D [45]
823
+ 92.7 / 83.9
824
+ 84.8 / 70.2
825
+ 84.8 / 71.4
826
+ UNET2D-CLSTM [45]
827
+ 93.0 / 84.0
828
+ 84.7 / 70.3
829
+ 84.7 / 71.6
830
+ U-TAE [14]
831
+ 92.6 / 83.7
832
+ 84.9 / 71.8
833
+ 84.8 / 71.7
834
+ TSViT (ours)
835
+ 94.7 / 88.1
836
+ 87.1 / 75.5
837
+ 87.8 / 74.2
838
+ Table 2. Comparison with state-of-the-art models from literature. (top) Semantic segmentation. (bottom) Object classification. ∗1D
839
+ temporal only models. We report overall accuracy (OA), mean intersection over union (mIoU) and mean accuracy (mAcc). For PASTIS
840
+ we report results for fold-1 only; average test set performance across all five folds is shown in parenthesis for direct comparison with [14].
841
+ ization is the most important design choice in our proposed
842
+ framework.
843
+ Using a spatio-temporal factorization from
844
+ the video recognition literature performs poorly at 48.8%
845
+ mIoU. Changing the factorization order to temporo-spatial
846
+ raises performance by an absolute +29.7% to 78.5% mIoU.
847
+ Including additional cls tokens increases performance to
848
+ 83.6%mIoU (+5.1%), so we proceed with using K cls to-
849
+ kens in our design. We test the effect of our date-specific
850
+ position encodings compared to a fixed set of values and
851
+ find a significant −2.8% performance drop from using fixed
852
+ size PT compared to our proposed lookup encodings. As
853
+ discussed in section 3.4 our spatial encoder blocks cross cls-
854
+ token interactions. Allowing interactions among all tokens
855
+ comes at a significant increase in compute cost, O(K2) to
856
+ O(K), and is found to decrease performance by −2.1%
857
+ mIoU. Finally, we find that smaller patch sizes generally
858
+ work better, which is reasonable given that tokens retain a
859
+ higher degree of spatial granularity and are used to predict
860
+ smaller regions. Using 2 × 2 patches raises performance by
861
+ +1.2%mIoU to 84.8% compared to 3 × 3 patches. Our fi-
862
+ nal design which is used in the main experiments presented
863
+ in Table 2 employs a temporo-spatial design with K cls to-
864
+ kens, acquisition-time-specific position encodings, 2×2 in-
865
+ put patches and four layers for both encoders.
866
+ 4.3. Comparison with SOTA
867
+ In Table 2 and Fig.1, we present performance results of
868
+ our final TSViT design compared to state-of-the-art mod-
869
+ els presented in section 2. For semantic segmentation, we
870
+ find that all models from literature perform similarly, with
871
+ the BiCGRU being overall the worst performer, match-
872
+ ing CNN-based architectures only in T31TFM-1618. For
873
+ Figure 5. Visualization of predictions in Germany. The back-
874
+ ground class is shown in white, ”x” indicates a false prediction.
875
+ all datasets, TSViT outperforms previously suggested ap-
876
+ proaches by a very large margin. A visualization of predic-
877
+ tions in Germany for the top-3 performers is shown in Fig.5.
878
+ In object classification, we observe that 1D temporal mod-
879
+ els are generally outperformed by spatio-temporal models,
880
+ with the exception of the Transformer [48]. All 1D models
881
+ perform poorly in PASTIS. Again, TSViT trained for clas-
882
+ sification consistently outperforms all other approaches by
883
+ a large margin across all datasets. In both tasks, we find
884
+ smaller improvements for the pixel-averaged compared to
885
+ class-averaged metrics, which is reasonable given the large
886
+ class imbalance that characterizes the datasets.
887
+
888
+ Ground truth
889
+ UNET3Df
890
+ UNET2D-CLSTM
891
+ TSViT
892
+ ×x
893
+ ×x
894
+ X
895
+ XXXXXXXX
896
+ XXX
897
+ X×>
898
+ XXXXX
899
+ ××××
900
+ ××5. Conclusion
901
+ In this paper we proposed TSViT, the first fully-
902
+ attentional architecture for general SITS processing.
903
+ By
904
+ taking advantage of the Transformer’s global receptive field,
905
+ capacity to learn a rich feature space and by incorporating
906
+ inductive biases that suit SITS data, we surpass the state-of-
907
+ the-art performance by a large margin in object classifica-
908
+ tion and semantic segmentation using three publicly avail-
909
+ able land cover recognition datasets.
910
+ References
911
+ [1] European Space Agency. The sentinel missions. https://
912
+ www.esa.int/Applications/Observing_the_
913
+ Earth/Copernicus/The_Sentinel_missions.
914
+ Accessed: 2022-11-11. 2
915
+ [2] European Space Agency. Sentinels for common agriculture
916
+ policy. http://esa-sen4cap.org/. Accessed: 2022-
917
+ 11-11. 1
918
+ [3] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
919
+ Sun, Mario Luˇci´c, and Cordelia Schmid. Vivit: A video vi-
920
+ sion transformer. In 2021 IEEE/CVF International Confer-
921
+ ence on Computer Vision (ICCV), pages 6816–6826, 2021.
922
+ 3
923
+ [4] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
924
+ normalization. ArXiv, abs/1607.06450, 2016. 4
925
+ [5] I. Bello, B. Zoph, Q. Le, A. Vaswani, and J. Shlens. Atten-
926
+ tion augmented convolutional networks. In 2019 IEEE/CVF
927
+ International Conference on Computer Vision (ICCV), pages
928
+ 3285–3294, 2019. 3
929
+ [6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
930
+ biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
931
+ tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
932
+ hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
933
+ Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
934
+ Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
935
+ Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
936
+ Clark, Christopher Berner, Sam McCandlish, Alec Radford,
937
+ Ilya Sutskever, and Dario Amodei.
938
+ Language models are
939
+ few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
940
+ M.F. Balcan, and H. Lin, editors, Advances in Neural Infor-
941
+ mation Processing Systems, volume 33, pages 1877–1901.
942
+ Curran Associates, Inc., 2020. 3
943
+ [7] Jorge Andres Chamorro Martinez, Laura Elena Cu´e La
944
+ Rosa, Raul Queiroz Feitosa, Ieda Del’Arco Sanches, and
945
+ Patrick Nigri Happ. Fully convolutional recurrent networks
946
+ for multidate crop recognition from multitemporal image se-
947
+ quences.
948
+ ISPRS Journal of Photogrammetry and Remote
949
+ Sensing, 171:188–201, 2021. 2, 8
950
+ [8] Christopher Conrad, Stefan Dech, Olena Dubovyk, Sebas-
951
+ tian Fritsch, Doris Klein, Fabian L¨ow, Gunther Schorcht, and
952
+ Julian Zeidler. Derivation of temporal windows for accurate
953
+ crop discrimination in heterogeneous croplands of Uzbek-
954
+ istan using multitemporal rapideye images. Computers and
955
+ Electronics in Agriculture, 103:63–74, 2014. 2
956
+ [9] Christopher Conrad, Sebastian Fritsch, Julian Zeidler, Gerd
957
+ R¨ucker, and Stefan Dech. Per-field irrigated crop classifica-
958
+ tion in arid central asia using spot and aster data. Remote
959
+ Sensing, 2(4):1035–1056, 2010. 2
960
+ [10] Gordon Conway.
961
+ One Billion Hungry: Can we Feed the
962
+ World? Cornell University Press, 2012. 1
963
+ [11] Xiyang Dai, Yinpeng Chen, Jianwei Yang, Pengchuan
964
+ Zhang, Lu Yuan, and Lei Zhang. Dynamic detr: End-to-end
965
+ object detection with dynamic attention. In 2021 IEEE/CVF
966
+ International Conference on Computer Vision (ICCV), pages
967
+ 2968–2977, 2021. 3
968
+ [12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
969
+ Toutanova. BERT: Pre-training of deep bidirectional trans-
970
+ formers for language understanding. In Proceedings of the
971
+ 2019 Conference of the North American Chapter of the As-
972
+ sociation for Computational Linguistics: Human Language
973
+ Technologies, Volume 1 (Long and Short Papers), pages
974
+ 4171–4186, Minneapolis, Minnesota, June 2019. Associa-
975
+ tion for Computational Linguistics. 3
976
+ [13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
977
+ Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
978
+ Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
979
+ vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
980
+ worth 16x16 words: Transformers for image recognition at
981
+ scale. In International Conference on Learning Representa-
982
+ tions, 2021. 2, 3, 4
983
+ [14] Vivien Sainte Fare Garnot and Loic Landrieu.
984
+ Panoptic
985
+ segmentation of satellite image time series with convolu-
986
+ tional temporal attention networks. In Proceedings of the
987
+ IEEE/CVF International Conference on Computer Vision
988
+ (ICCV), pages 4872–4881, October 2021. 2, 5, 7, 8
989
+ [15] V. S. F. Garnot, L. Landrieu, S. Giordano, and N. Chehata.
990
+ Time-space tradeoff in deep learning models for crop clas-
991
+ sification on satellite multi-spectral image time series.
992
+ In
993
+ IGARSS 2019 - 2019 IEEE International Geoscience and Re-
994
+ mote Sensing Symposium, pages 6247–6250, 2019. 2
995
+ [16] Vivien Sainte Fare Garnot, Loic Landrieu, Sebastien Gior-
996
+ dano, and Nesrine Chehata. Satellite image time series clas-
997
+ sification with pixel-set encoders and temporal self-attention.
998
+ In Proceedings of the IEEE/CVF Conference on Computer
999
+ Vision and Pattern Recognition (CVPR), June 2020. 2
1000
+ [17] Rohit Girdhar and Deva Ramanan. Attentional pooling for
1001
+ action recognition. In I. Guyon, U. Von Luxburg, S. Bengio,
1002
+ H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
1003
+ itors, Advances in Neural Information Processing Systems,
1004
+ volume 30. Curran Associates, Inc., 2017. 5
1005
+ [18] Noel
1006
+ Gorelick,
1007
+ Matt
1008
+ Hancher,
1009
+ Mike
1010
+ Dixon,
1011
+ Simon
1012
+ Ilyushchenko, David Thau, and Rebecca Moore.
1013
+ Google
1014
+ earth engine: Planetary-scale geospatial analysis for every-
1015
+ one. Remote Sensing of Environment, 202:18–27, 2017. Big
1016
+ Remotely Sensed Data: tools, applications and experiences.
1017
+ 2
1018
+ [19] Pengyu Hao, Yulin Zhan, Li Wang, Zheng Niu, and Muham-
1019
+ mad Shakir. Feature selection of time series modis data for
1020
+ early crop classification using random forest: A case study
1021
+ in Kansas, USA. Remote Sensing, 7(5):5347–5369, 2015. 2
1022
+ [20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
1023
+ Deep residual learning for image recognition. In 2016 IEEE
1024
+ Conference on Computer Vision and Pattern Recognition
1025
+ (CVPR), pages 770–778, 2016. 2
1026
+
1027
+ [21] Dan Hendrycks and Kevin Gimpel.
1028
+ Gaussian error linear
1029
+ units (gelus). arXiv: Learning, 2016. 4
1030
+ [22] Dino Ienco, Raffaele Gaetano, Claire Dupaquier, and Pierre
1031
+ Maurel. Land cover classification via multitemporal spatial
1032
+ data by deep recurrent neural networks. IEEE Geoscience
1033
+ and Remote Sensing Letters, 14(10):1685–1689, 2017. 2
1034
+ [23] Loshchilov Ilya, Hutter Frank, et al. Decoupled weight decay
1035
+ regularization. Proceedings of ICLR, 2019. 7
1036
+ [24] Roberto Interdonato, Dino Ienco, Raffaele Gaetano, and
1037
+ Kenji Ose.
1038
+ DuPLO: A dual view point deep learning ar-
1039
+ chitecture for time series classification. ISPRS Journal of
1040
+ Photogrammetry and Remote Sensing, 149:91 – 104, 2019.
1041
+ 2, 8
1042
+ [25] Xue Jinru and Baofeng Su. Significant remote sensing veg-
1043
+ etation indices: A review of developments and applications.
1044
+ Journal of Sensors, 2017:1–17, 01 2017. 2
1045
+ [26] Andreas Kamilaris and Francesc X. Prenafeta-Bold´u. Deep
1046
+ learning in agriculture: A survey. Computers and Electronics
1047
+ in Agriculture, 147:70–90, 2018. 2
1048
+ [27] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
1049
+ Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video
1050
+ classification with convolutional neural networks. In 2014
1051
+ IEEE Conference on Computer Vision and Pattern Recogni-
1052
+ tion, pages 1725–1732, 2014. 5
1053
+ [28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
1054
+ Imagenet classification with deep convolutional neural net-
1055
+ works. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
1056
+ berger, editors, Advances in Neural Information Processing
1057
+ Systems, volume 25. Curran Associates, Inc., 2012. 2
1058
+ [29] Nataliia Kussul, Mykola Lavreniuk, Sergii Skakun, and An-
1059
+ drii Shelestov. Deep learning classification of land cover and
1060
+ crop types using remote sensing data. IEEE Geoscience and
1061
+ Remote Sensing Letters, 14(5):778–782, 2017. 2
1062
+ [30] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,
1063
+ and Piotr Doll´ar.
1064
+ Focal loss for dense object detection.
1065
+ CoRR, abs/1708.02002, 2017. 7
1066
+ [31] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,
1067
+ Bharath Hariharan, and Serge Belongie.
1068
+ Feature pyramid
1069
+ networks for object detection. In Proceedings of the IEEE
1070
+ Conference on Computer Vision and Pattern Recognition
1071
+ (CVPR), July 2017. 2
1072
+ [32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
1073
+ Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
1074
+ former: Hierarchical vision transformer using shifted win-
1075
+ dows. In Proceedings of the IEEE/CVF International Con-
1076
+ ference on Computer Vision (ICCV), pages 10012–10022,
1077
+ October 2021. 3
1078
+ [33] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
1079
+ ent descent with warm restarts. In International Conference
1080
+ on Learning Representations, 2017. 7
1081
+ [34] NASA.
1082
+ Agricultural
1083
+ patterns.
1084
+ https : / /
1085
+ earthobservatory.nasa.gov/images/6605/
1086
+ agricultural-patterns. last accessed on 2022-9-22.
1087
+ 5
1088
+ [35] United Nations. Goal 2: Zero hunger. https://www.un.
1089
+ org/sustainabledevelopment/hunger/.
1090
+ Ac-
1091
+ cessed: 2022-11-11. 1
1092
+ [36] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Assel-
1093
+ mann. Video transformer network. In 2021 IEEE/CVF In-
1094
+ ternational Conference on Computer Vision Workshops (IC-
1095
+ CVW), pages 3156–3165, 2021. 3
1096
+ [37] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan As-
1097
+ selmann.
1098
+ Video transformer network.
1099
+ In Proceedings of
1100
+ the IEEE/CVF International Conference on Computer Vision
1101
+ (ICCV) Workshops, pages 3163–3172, October 2021. 5
1102
+ [38] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
1103
+ Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-
1104
+ age transformer. In Jennifer Dy and Andreas Krause, ed-
1105
+ itors, Proceedings of the 35th International Conference on
1106
+ Machine Learning, volume 80 of Proceedings of Machine
1107
+ Learning Research, pages 4055–4064. PMLR, 10–15 Jul
1108
+ 2018. 3
1109
+ [39] Charlotte Pelletier, Silvia Valero, Jordi Inglada, Nicolas
1110
+ Champion, and G´erard Dedieu. Assessing the robustness of
1111
+ random forests to map land cover with high resolution satel-
1112
+ lite image time series over large areas. Remote Sensing of
1113
+ Environment, 187:156–168, 2016. 2
1114
+ [40] Charlotte Pelletier, Geoffrey I. Webb, and Franc¸ois Petitjean.
1115
+ Temporal convolutional neural network for the classification
1116
+ of satellite image time series. Remote Sensing, 11(5), 2019.
1117
+ 2, 5, 8
1118
+ [41] Jos´e M. Pe˜na-Barrag´an, Moffatt K. Ngugi, Richard E. Plant,
1119
+ and Johan Six. Object-based crop identification using multi-
1120
+ ple vegetation indices, textural features and crop phenology.
1121
+ Remote Sensing of Environment, 115(6):1301–1316, 2011. 2
1122
+ [42] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
1123
+ Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-
1124
+ attention in vision models. In H. Wallach, H. Larochelle,
1125
+ A. Beygelzimer, F. d'Alch´e-Buc, E. Fox, and R. Garnett, ed-
1126
+ itors, Advances in Neural Information Processing Systems,
1127
+ volume 32, pages 68–80. Curran Associates, Inc., 2019. 3
1128
+ [43] Ren´e Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
1129
+ sion transformers for dense prediction. In 2021 IEEE/CVF
1130
+ International Conference on Computer Vision (ICCV), pages
1131
+ 12159–12168, 2021. 3
1132
+ [44] Bradley C. Reed, Jesslyn F. Brown, Darrel VanderZee,
1133
+ Thomas R. Loveland, James W. Merchant, and Donald O.
1134
+ Ohlen. Measuring phenological variability from satellite im-
1135
+ agery. Journal of Vegetation Science, 5(5):703–714, 1994.
1136
+ 2
1137
+ [45] Rose Rustowicz, Robin Cheong, Lijing Wang, Stefano Er-
1138
+ mon, Marshall Burke, and David B. Lobell. Semantic seg-
1139
+ mentation of crop type in Africa: A novel dataset and analy-
1140
+ sis of deep learning methods. In CVPR Workshops, 2019. 2,
1141
+ 8
1142
+ [46] M. Rußwurm and M. K¨orner.
1143
+ Temporal vegetation mod-
1144
+ elling using long short-term memory networks for crop iden-
1145
+ tification from medium-resolution multi-spectral satellite im-
1146
+ ages. In 2017 IEEE Conference on Computer Vision and Pat-
1147
+ tern Recognition Workshops (CVPRW), pages 1496–1504,
1148
+ 2017. 2, 5
1149
+ [47] Marc Rußwurm and Marco K¨orner.
1150
+ Multi-temporal land
1151
+ cover classification with sequential recurrent encoders. IS-
1152
+ PRS International Journal of Geo-Information, 7(4):129,
1153
+ Mar 2018. 2, 5, 7, 8
1154
+
1155
+ [48] Marc Rußwurm and Marco K¨orner. Self-attention for raw
1156
+ optical satellite time series classification. ISPRS Journal of
1157
+ Photogrammetry and Remote Sensing, 169:421 – 435, 2020.
1158
+ 2, 5, 8
1159
+ [49] Marc Rußwurm, Charlotte Pelletier, M. Zollner, S´ebastien
1160
+ Lef`evre, and Marco K¨orner.
1161
+ Breizhcrops:
1162
+ A time se-
1163
+ ries dataset for crop type mapping. ISPRS - International
1164
+ Archives of the Photogrammetry, Remote Sensing and Spa-
1165
+ tial Information Sciences, XLIII-B2-2020:1545–1551, 08
1166
+ 2020. 2
1167
+ [50] Sen4CAP.
1168
+ Agricultural practices.
1169
+ http : / / esa -
1170
+ sen4cap . org / content / agricultural -
1171
+ practices. Accessed: 2022-11-11. 1
1172
+ [51] Sen4CAP. Crop diversification. http://esa-sen4cap.
1173
+ org/content/crop-diversification. Accessed:
1174
+ 2022-11-11. 1
1175
+ [52] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Math-
1176
+ ieu, Rob Fergus, and Yann LeCun.
1177
+ Overfeat: Integrated
1178
+ recognition, localization and detection using convolutional
1179
+ networks.
1180
+ 2014.
1181
+ Publisher Copyright: © 2014 Interna-
1182
+ tional Conference on Learning Representations, ICLR. All
1183
+ rights reserved.; 2nd International Conference on Learning
1184
+ Representations, ICLR 2014 ; Conference date: 14-04-2014
1185
+ Through 16-04-2014. 2
1186
+ [53] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully
1187
+ convolutional networks for semantic segmentation.
1188
+ IEEE
1189
+ Transactions on Pattern Analysis and Machine Intelligence,
1190
+ 39(4):640–651, 2017. 2
1191
+ [54] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Ye-
1192
+ ung, Wai-kin Wong, and Wang-chun WOO. Convolutional
1193
+ LSTM network: A machine learning approach for precipi-
1194
+ tation nowcasting. In C. Cortes, N. Lawrence, D. Lee, M.
1195
+ Sugiyama, and R. Garnett, editors, Advances in Neural In-
1196
+ formation Processing Systems, volume 28, pages 802–810.
1197
+ Curran Associates, Inc., 2015. 2
1198
+ [55] Sofia Siachalou, Giorgos Mallinis, and Maria Tsakiri-Strati.
1199
+ A hidden Markov models approach for crop classification:
1200
+ Linking crop phenology to time series of multi-sensor re-
1201
+ mote sensing data. Remote Sensing, 7(4):3633–3650, 2015.
1202
+ 2
1203
+ [56] Karen Simonyan and Andrew Zisserman. Two-stream con-
1204
+ volutional networks for action recognition in videos.
1205
+ In
1206
+ NIPS, 2014. 5
1207
+ [57] Karen Simonyan and Andrew Zisserman. Very deep convo-
1208
+ lutional networks for large-scale image recognition. In In-
1209
+ ternational Conference on Learning Representations, 2015.
1210
+ 2
1211
+ [58] Hwanjun Song, Deqing Sun, Sanghyuk Chun, Varun Jam-
1212
+ pani, Dongyoon Han, Byeongho Heo, Wonjae Kim, and
1213
+ Ming-Hsuan Yang. ViDT: An efficient and effective fully
1214
+ transformer-based object detector. In International Confer-
1215
+ ence on Learning Representations, 2022. 3
1216
+ [59] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
1217
+ Schmid. Segmenter: Transformer for semantic segmenta-
1218
+ tion. In 2021 IEEE/CVF International Conference on Com-
1219
+ puter Vision (ICCV), pages 7242–7252, 2021. 3
1220
+ [60] Michail Tarasiou, Riza Alp G¨uler, and Stefanos Zafeiriou.
1221
+ Context-self contrastive pre-training for crop type semantic
1222
+ segmentation.
1223
+ IEEE Transactions on Geoscience and Re-
1224
+ mote Sensing, pages 1–1, 2022. 2, 7, 8
1225
+ [61] Michail Tarasiou and Stefanos Zafeiriou.
1226
+ Deepsatdata:
1227
+ Building large scale datasets of satellite images for training
1228
+ machine learning models.
1229
+ In IGARSS 2022 - 2022 IEEE
1230
+ International Geoscience and Remote Sensing Symposium,
1231
+ pages 4070–4073, 2022. 2
1232
+ [62] Michail Tarasiou and Stefanos Zafeiriou. Embedding earth:
1233
+ Self-supervised contrastive pre-training for dense land cover
1234
+ classification. 2022. 2
1235
+ [63] Andrew Tatem, Scott Goetz, and Simon Hay. Fifty years of
1236
+ earth observation satellites. American Scientist, 96:390–398,
1237
+ 09 2008. 2
1238
+ [64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
1239
+ reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
1240
+ lia Polosukhin.
1241
+ Attention is all you need.
1242
+ In I. Guyon,
1243
+ U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
1244
+ wanathan, and R. Garnett, editors, Advances in Neural In-
1245
+ formation Processing Systems 30, pages 5998–6008. Curran
1246
+ Associates, Inc., 2017. 2, 3, 4
1247
+ [65] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,
1248
+ Alan Yuille, and Liang-Chieh Chen. Axial-DeepLab: Stand-
1249
+ alone axial-attention for panoptic segmentation. In ECCV,
1250
+ 2020. 3
1251
+ [66] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
1252
+ Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-
1253
+ works: Towards good practices for deep action recognition.
1254
+ In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling,
1255
+ editors, Computer Vision – ECCV 2016, pages 20–36, Cham,
1256
+ 2016. Springer International Publishing. 5
1257
+ [67] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neu-
1258
+ ral networks. In 2018 IEEE/CVF Conference on Computer
1259
+ Vision and Pattern Recognition, pages 7794–7803, 2018. 3
1260
+ [68] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen,
1261
+ Baoshan Cheng, Hao Shen, and Huaxia Xia.
1262
+ End-to-end
1263
+ video instance segmentation with transformers.
1264
+ In 2021
1265
+ IEEE/CVF Conference on Computer Vision and Pattern
1266
+ Recognition (CVPR), pages 8737–8746, 2021. 3
1267
+ [69] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
1268
+ Zi-Hang Jiang, Francis E.H. Tay, Jiashi Feng, and Shuicheng
1269
+ Yan. Tokens-to-token vit: Training vision transformers from
1270
+ scratch on imagenet. In Proceedings of the IEEE/CVF In-
1271
+ ternational Conference on Computer Vision (ICCV), pages
1272
+ 558–567, October 2021. 3
1273
+ [70] Peng Yue, Boyi Shangguan, Lei Hu, Liangcun Jiang, Chenx-
1274
+ iao Zhang, Zhipeng Cao, and Yinyin Pan. Towards a train-
1275
+ ing data model for artificial intelligence in earth observation.
1276
+ International Journal of Geographical Information Science,
1277
+ 36(11):2113–2137, 2022. 2
1278
+ [71] Zixiao Zhang, Xiaoqiang Lu, Guojin Cao, Yuting Yang,
1279
+ Licheng Jiao, and Fang Liu.
1280
+ Vit-yolo:transformer-based
1281
+ yolo for object detection. In 2021 IEEE/CVF International
1282
+ Conference on Computer Vision Workshops (ICCVW), pages
1283
+ 2799–2808, 2021. 3
1284
+ [72] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-
1285
+ ralba.
1286
+ Temporal relational reasoning in videos.
1287
+ In Pro-
1288
+ ceedings of the European Conference on Computer Vision
1289
+ (ECCV), September 2018. 5
1290
+
UdE4T4oBgHgl3EQfMAzo/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UdFKT4oBgHgl3EQfli6N/content/tmp_files/2301.11854v1.pdf.txt ADDED
@@ -0,0 +1,1840 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–14 (2022)
2
+ Preprint 30 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ GrGadget: an N-body TreePM relativistic code for cosmological
5
+ simulations
6
+ Eduardo Quintana-Miranda,1,2,3★ Pierluigi Monaco1,2,3,4 and Luca Tornatore1,2,3
7
+ 1 Dipartimento di Fisica, Sezione di Astronomia, via G.B. Tiepolo 11, I-34143 Trieste, Italy
8
+ 2 INAF – Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34143 Trieste, Italy
9
+ 3 IFPU – Institute for the Fundamental Physics of the Universe, via Beirut 2, I-34100 Trieste, Italy
10
+ 4 INFN – Istituto Nazionale di Fisica Nucleare, Via Valerio 2, I-34127 Trieste, Italy
11
+ Accepted XXX. Received YYY; in original form ZZZ
12
+ ABSTRACT
13
+ We present the merging of the Particle-Mesh (PM) relativistic Gevolution code with the TreePM Gadget-4 code, with the
14
+ aim of studying general relativity effects in cosmology. Our code, called GrGadget, is able to track the evolution of metric
15
+ perturbations in the weak field limit by using Gevolution’s implementation of a relativistic PM in the Poisson gauge. To
16
+ achieve this, starting from Gevolution we have written a C++ library called Libgevolution, that allows a code to access and
17
+ use the same abstractions and resources that Gevolution uses for its PM-only N-body simulations. The code works under the
18
+ assumption that particle interactions at short distances can be approximated as Newtonian, so that we can combine the forces
19
+ computed with a Newtonian Tree with those computed with a relativistic PM. The result is a TreePM simulation code that
20
+ represents metric perturbations at the scales where they are relevant, while resolving non-linear structures. We validate our code
21
+ by closely matching Gadget-4 forces, computed with the Tree switched off, with those computed with Libgevolution in the
22
+ Newtonian limit. With GrGadget we obtain a matter power spectrum that is compatible with Newtonian Gadget-4 at small
23
+ scales and contains GR features at large scales that are consistent with results obtained with Gevolution. We demonstrate that,
24
+ due to the better resolution of the highly non-linear regime, the representation of the relativistic fields sampled on the mesh
25
+ improves with respect to the PM-only simulations.
26
+ Key words: cosmology: theory – large-scale structure of the Universe
27
+ 1 INTRODUCTION
28
+ The state of the art of precision cosmology provides a standard cos-
29
+ mological model, ΛCDM, that is consistent with most observational
30
+ evidence on large scales, but relies on the existence of a dark sector
31
+ populated by Dark Matter (DM) and Dark Energy (DE). The first
32
+ is responsible for the formation of cosmological structures such as
33
+ galaxies and their large-scale density field, while the second causes
34
+ the observed accelerated expansion of the universe in the present
35
+ epoch. Their physical nature is an open problem, since the only ev-
36
+ idence of their existence comes from their gravitational interaction
37
+ with visible matter. A possible explanation is that the dark sector is
38
+ due to a misrepresentation of gravity, that on large scales does not
39
+ follow Einstein’s General Relativity (GR), at the basis of the ΛCDM
40
+ model.
41
+ This fact has triggered a wave of interest in modifications of GR,
42
+ that can lead to extra terms that explain dark energy or dark matter
43
+ (see, e.g., Silvestri & Trodden 2009; Capozziello & De Laurentis
44
+ 2012, and references therein). Such modifications must be significant
45
+ only on large scales or low density, because GR is very accurate in
46
+ predicting planetary orbits, light deflection and Doppler effects in
47
+ solar system tests and has more recently been successfully tested
48
+ ★ E-mail: [email protected]
49
+ with the detection of gravitational waves (Abbott et al. 2016) and the
50
+ direct imaging of black hole event horizons (Event Horizon Telescope
51
+ Collaboration et al. 2019).
52
+ In order to characterize dark energy in the age of its dominance,
53
+ many projects have been planned to survey large parts of the sky and
54
+ probe the large-scale distribution of matter using galaxy clustering
55
+ and galaxy lensing, both from the ground (DES1, Krause et al. 2017;
56
+ DESI2, DESI Collaboration et al. 2016; Rubin’s LSST3, Ivezić et al.
57
+ 2019; SKAO4 surveys) and from space (Euclid5, Laureijs et al. 2011;
58
+ Roman6, Spergel et al. 2015; SphereX7, Doré et al. 2014). Some of
59
+ these surveys have already started to produce a flood of data that will
60
+ soon lead to a precise characterization of the galaxy and matter den-
61
+ sity fields. A comparison of these observations to model predictions,
62
+ either using summary statistics or field-level inference, will lead to
63
+ unprecedented tests not only of the cosmological model but also
64
+ of the gravity theory behind it. With precision being guaranteed by
65
+ 1 www.darkenergysurvey.org
66
+ 2 www.desi.lbl.gov
67
+ 3 www.lsst.org
68
+ 4 www.skao.int
69
+ 5 sci.esa.int/web/euclid
70
+ 6 roman.gsfc.nasa.gov
71
+ 7 spherex.caltech.edu
72
+ © 2022 The Authors
73
+ arXiv:2301.11854v1 [astro-ph.CO] 27 Jan 2023
74
+
75
+ 2
76
+ E. Quintana-Miranda et al.
77
+ the amount of available high-quality data, accuracy will be achieved
78
+ only by rigorous control of systematics, both in the data and in theory
79
+ predictions.
80
+ The highly non-linear nature of the observed density field and the
81
+ non-locality of gravity make cosmological simulations necessary to
82
+ compare the predictions of current theories with the observations
83
+ at an increasing level of accuracy. Yet, most of the widely adopted
84
+ simulation codes, like e.g. Gadget-4 (Springel et al. 2021), use New-
85
+ tonian dynamics for the evolution of matter perturbations. This is not
86
+ the ideal configuration to pass from the unobservable distribution
87
+ of matter in a periodic comoving box to the observable distribution
88
+ of light in the past light cone. Relativistic corrections can be added
89
+ a posteriori by post-processing Newtonian simulation outputs; one
90
+ specific example of this approach is the modeling of lensing due
91
+ to the distortion of null geodesics (Bartelmann & Schneider 2001),
92
+ while a more comprehensive approach to adding relativistic effects is
93
+ presented by Borzyszkowski et al. (2017). However, even though the
94
+ biases introduced by this approach are expected to be small, a fully
95
+ self-consistent approach is necessary to convincingly demonstrate
96
+ our ability of controlling theory systematics. For instance, galaxy
97
+ clustering is affected by magnification bias due to lensing, and ne-
98
+ glecting this effect induces a non-negligible bias in parameter esti-
99
+ mation (Lepori et al. 2020; Alam et al. 2021). This is even more true
100
+ when modified gravity theories are used: extensions of gravity are
101
+ typically derived in a full relativistic context, and while they influence
102
+ the Newtonian limit of gravity, the small but measurable relativistic
103
+ effects may provide smoking-gun signals of a specific class of gravity
104
+ theories. In this sense, restricting to the treatment of the Newtonian
105
+ limit of modified gravity theories (as, e.g., in Puchwein et al. 2013)
106
+ may leave out crucial observable signatures.
107
+ Two examples of fully relativistic N-body codes for the evolution of
108
+ cosmic perturbations, that integrate Einstein’s equations to follow the
109
+ motion of massive particles along their geodesics, are the Adaptive
110
+ Mesh Refinement (AMR) code Gramses (Barrera-Hinojosa & Li
111
+ 2020) and the Particle-Mesh (PM) code Gevolution (Adamek et al.
112
+ 2016). These have proven to be precious tools to produce accurate
113
+ cosmological predictions, like a self-consistent treatment of massive
114
+ neutrinos (Adamek et al. 2022), and to explore phenomena that were
115
+ previously overlooked, like the strength of the frame dragging field
116
+ acting on dark matter haloes (Barrera-Hinojosa et al. 2020). These
117
+ codes sample the fields in a mesh that fills the simulated volume,
118
+ but while Gramses uses an AMR scheme to increase resolution only
119
+ where it is needed, PM schemes working on a single non-adaptive
120
+ mesh are well known to be limited by memory, so they are unable to
121
+ achieve the large dynamic range required, e.g., to resolve DM halos in
122
+ large cosmological volumes. The integration of Newtonian particle
123
+ trajectories has historically been addressed with the introduction of an
124
+ oct-tree data structure (Barnes & Hut 1986), that provides a 𝑁 log 𝑁
125
+ scaling for the computation of gravity without compromising its
126
+ accuracy. Because the integration of large-scale perturbations is very
127
+ slow in this scheme, such an oct-tree is used to compute short-range
128
+ forces, and is complemented by a Particle-Mesh (PM) code on large
129
+ scales. The resulting algorithm is commonly called TreePM, and it
130
+ is the standard gravity solver for Gadget-4.
131
+ As we will show in next Section, deviations from a pure Newtonian
132
+ approach become significant on scales that are comparable with the
133
+ Hubble horizon, so a Newtonian treatment of small-scale clustering,
134
+ performed by the Tree algorithm, would introduce a negligible error
135
+ if large scales are treated by a fully relativistic gravity solver. This
136
+ can be achieved, in a TreePM scheme, by using a relativistic PM code
137
+ for large-scale gravity, where relativistic potentials are sampled on a
138
+ small enough mesh so as to be effectively Newtonian on the scales
139
+ where the Tree code gets in.
140
+ In this paper we present an implementation of Gadget-4 that
141
+ uses a PM library, based on Gevolution relativistic code, as the
142
+ PM part of the TreePM solver. This is a step toward the construc-
143
+ tion of an ecosystem of codes and post-processing tools to perform
144
+ end-to-end simulations of future surveys, with the aim of achieving
145
+ optimal control of all systematics, including theoretical ones. The
146
+ paper is organized as follows: Section 2 gives an overview of the the-
147
+ ory of relativistic perturbations, with a focus on the approach used
148
+ in Gevolution. Section 3 gives a description of the Gadget-4 and
149
+ Gevolution codes, and describes the implementation of Libgevo-
150
+ lution and GrGadget. Section 4 presents the tests performed to
151
+ validate GrGadget, while Section 5 gives our conclusions.
152
+ 2 THEORY OF RELATIVISTIC PERTURBATIONS
153
+ The success of Newtonian simulations in describing the large-scale
154
+ structure of the universe follows from the fact that, for an observer at
155
+ rest with respect to the CMB, the metric of spacetime is very close to
156
+ Friedmann-Lemaitre-Robertson-Walker’s (FLRW). Deviations from
157
+ the Newtonian approach are expected to be significant, albeit small,
158
+ on scales near the Hubble horizon, or when the energy-momentum
159
+ tensor has relativistic components like radiation or fast massive neu-
160
+ trinos. Deviations from FLRW metric are expected to be strong in
161
+ the proximity of compact objects, but this happens on scales that are
162
+ far smaller than the resolution that can be afforded in simulations of
163
+ large comoving volumes. It is thus fair to assume that the perturba-
164
+ tions to the metric are small and can be described in a weak-field
165
+ regime. This does not imply that deviations of the components of
166
+ the energy-momentum tensor from homogeneity are assumed to be
167
+ small, density perturbations can be highly non-linear: what we re-
168
+ quire is that the size of self-gravitating objects is much larger than
169
+ their gravitational radius.
170
+ The Gevolution code (see Adamek et al. 2016) models the space-
171
+ time metric with a perturbed FLRW metric in the weak field regime.
172
+ In the Poisson gauge the metric can be written as:
173
+ 𝑑𝑠2 =𝑎2�
174
+ − 𝑐2 𝑑𝜏2(1 + 2Ψ) − 2𝑐 𝑑𝜏𝑑𝑥𝑖𝐵𝑖+
175
+ + 𝑑𝑥𝑖𝑑𝑥 𝑗 �𝛾𝑖 𝑗 (1 − 2Φ) + ℎ𝑖 𝑗
176
+ ��
177
+ ,
178
+ (1)
179
+ where 𝑎(𝜏) is the scale factor of the FLRW background, 𝜏 is the
180
+ conformal time and 𝑥𝑖 are the space coordinates. It is possible to
181
+ exploit the residual degrees of freedom of the metric to impose
182
+ the conditions 𝐵𝑖|𝑖 = 0, ℎ𝑖𝑖 = 0 and ℎ𝑖 𝑗 | 𝑗 = 0. In our notation,
183
+ repeated latin indexes denote Einstein’s summation over the spatial
184
+ coordinates 1, 2, 3 and the vertical bar subscript, e.g. 𝐵𝑖| 𝑗, denotes a
185
+ covariant derivative with respect to the affine connection that emerges
186
+ from the background spatial metric 𝛾𝑖 𝑗.
187
+ The choice of the Poisson gauge is convenient because the two
188
+ potentials Ψ and Φ are the gauge-invariant Bardeen potentials, and
189
+ in the Newtonian limit the the field Ψ can be interpreted as the
190
+ gravitational potential. In other words, this is the gauge in which the
191
+ standard N-body solver is integrating the right equations of motion
192
+ in the Newtonian limit (Chisari & Zaldarriaga 2011).
193
+ 2.1 Field equations
194
+ The background, characterized by 𝑎(𝜏), is by construction a solution
195
+ of the Einstein’s equations in the presence of a homogeneous and
196
+ MNRAS 000, 1–14 (2022)
197
+
198
+ GrGadget
199
+ 3
200
+ isotropic energy-momentum tensor ¯𝑇 𝜇𝜈:
201
+ ¯𝐺𝜇𝜈 = −8𝜋𝐺
202
+ 𝑐4
203
+ ¯𝑇 𝜇𝜈 ,
204
+ (2)
205
+ where ¯𝐺𝜇𝜈 is Einstein’s tensor constructed from the metric (1) with
206
+ the perturbations Ψ, Φ, 𝐵𝑖, ℎ𝑖 𝑗 set to zero. Applying equation (2) to
207
+ the FLRW metric one obtains Friedmann’s equations.
208
+ To solve for the perturbations of the metric, the usual procedure
209
+ consist in subtracting (2) from the full Einstein’s equations:
210
+ 𝐺𝜇𝜈 − ¯𝐺𝜇𝜈 = −8𝜋𝐺
211
+ 𝑐4 (𝑇 𝜇𝜈 − ¯𝑇 𝜇𝜈) .
212
+ (3)
213
+ The right hand side now contains the perturbation of the energy-
214
+ momentum tensor due to inhomogeneities in mass and energy dis-
215
+ tributions, while the left hand side is a very complicated non-linear
216
+ expression containing the potentials Ψ, Φ, 𝐵𝑖, ℎ𝑖 𝑗 and their space-
217
+ time derivatives up to second order.
218
+ To reach a tractable set of equations that we can interpret and solve
219
+ numerically, we apply the weak field assumption. The perturbations
220
+ Ψ, Φ, 𝐵𝑖, ℎ𝑖 𝑗 are assumed to be of order 𝜖 ≪ 1. Spatial derivatives
221
+ are known to increase their amplitude by a factor of 𝜖−1/2, accounting
222
+ for the presence of shortwave fluctuations induced by the non-linear
223
+ structure in the energy-momentum tensor, while time derivatives are
224
+ assumed to preserve the perturbation order. Then one can expand
225
+ 𝐺𝜇𝜈 − ¯𝐺𝜇𝜈 in terms of the metric perturbations, neglecting contri-
226
+ butions with order higher than 𝜖. For example: Φ is a term of order
227
+ O(𝜖), Φ,𝑖 has order O(𝜖1/2), Φ|𝑛𝑛 is a leading term (order 1, because
228
+ of the second derivative), quadratic terms like Φ,𝑛Φ,𝑛 are O(𝜖), and
229
+ a term like Φ,00 is considered as O(𝜖). This type of expansion is
230
+ known as the shortwave correction (Adamek et al. 2014).
231
+ Furthermore, experience has shown that the scalar perturbations Φ
232
+ and Ψ are generally larger than the vector and tensor perturbations 𝐵𝑖
233
+ and ℎ𝑖 𝑗. Indeed, the scalar potentials, that are sourced by the density
234
+ perturbation Δ𝑇00, become the Newtonian potential in the Newtonian
235
+ limit, while the vector perturbation 𝐵𝑖 is sourced by Δ𝑇0𝑖, that is
236
+ small by a factor of 𝑣/𝑐 for non-relativistic matter perturbations,
237
+ and ℎ𝑖 𝑗 by Δ𝑇𝑖 𝑗, that is suppressed by a (𝑣/𝑐)2 factor. Hence, it is
238
+ fair to drop quadratic terms of 𝐵𝑖 and ℎ𝑖 𝑗 in this weak field limit
239
+ approximation.
240
+ In this approximation, from Eq. (3) it descends that its time-time
241
+ component yields a Poisson-like equation for the scalar Φ:
242
+ Φ|𝑛𝑛(1 + 4Φ) − 3H
243
+ 𝑐2 Φ,0 + 3H2
244
+ 𝑐2 (𝜒 − Φ) + 3
245
+ 2Φ|𝑛Φ|𝑛
246
+ = 4𝜋𝐺𝑎2
247
+ 𝑐4
248
+ Δ𝑇00 ,
249
+ (4)
250
+ where H = 𝑎−1 𝑑𝑎
251
+ 𝑑𝜏 and 𝜒 = Φ − Ψ. From the time-space section of
252
+ eq. (3) we obtain:
253
+
254
+ 𝐵𝑖|𝑛𝑛
255
+ 4𝑐
256
+ − Φ,𝑖0
257
+ 𝑐2
258
+ − H
259
+ 𝑐2 (Φ,𝑖 − 𝜒,𝑖) = −4𝜋𝐺𝑎2
260
+ 𝑐4
261
+ Δ𝑇0𝑖 ,
262
+ (5)
263
+ that, taking advantage of the condition 𝐵𝑛|𝑛 = 0, can be reduced to:
264
+
265
+ 𝐵𝑖|𝑛𝑛
266
+ 4𝑐
267
+ = −4𝜋𝐺𝑎2
268
+ 𝑐4
269
+ 𝑃⊥Δ𝑇0𝑖 ,
270
+ (6)
271
+ where 𝑃⊥ is a linear operator that selects from a vector field its
272
+ divergenceless component.
273
+ The traceless part of the spatial section of eq. 3 leads to:
274
+
275
+ 𝛿 𝑗 𝑏𝛿𝑎𝑖 − 1
276
+ 3𝛿𝑎𝑏𝛿 𝑗𝑖
277
+ � �
278
+ 𝜒| 𝑗𝑖 − 2Φ| 𝑗𝑖 𝜒 + 4ΦΦ| 𝑗𝑖 + 2Φ| 𝑗Φ|𝑖
279
+ +
280
+ 1
281
+ 2𝑐2 ℎ𝑖 𝑗,00 + H
282
+ 𝑐2 ℎ𝑖 𝑗,0 − 1
283
+ 2 ℎ𝑖 𝑗 |𝑛𝑛
284
+ + 1
285
+ 2𝑐
286
+ � 𝜕
287
+ 𝜕𝜏 + 2H
288
+ � �
289
+ 𝐵𝑖 | 𝑗 + 𝐵 𝑗 |𝑖� �
290
+ =
291
+
292
+ 𝛿 𝑗 𝑏𝛿𝑎𝑖 − 1
293
+ 3𝛿𝑎𝑏𝛿 𝑗𝑖
294
+ � �
295
+ −8𝜋𝐺
296
+ 𝑐4 Δ𝑇𝑖 𝑗
297
+
298
+ ,
299
+ (7)
300
+ from which we can determine the rest of the metric degrees of free-
301
+ dom 𝜒 and ℎ𝑖 𝑗. Since the source of 𝜒 and ℎ𝑖 𝑗 are the perturbation
302
+ of the of the energy-momentum tensor Δ𝑇𝑖 𝑗, their amplitude in a
303
+ matter dominated universe is suppressed by a factor (𝑣/𝑐)2. That
304
+ is equivalent to say: since dark matter is non-relativistic, 𝜒 and ℎ𝑖 𝑗
305
+ must be very small with respect to Φ or even 𝐵𝑖.
306
+ As a matter of fact, V1.2 of Gevolution implements an improved
307
+ expansion of the metric perturbations, that has been presented in
308
+ Adamek et al. (2017). For our tests we used the implementation
309
+ of the original expansion, the one presented above. However, the
310
+ improved expansion has been ported to Libgevolution and will be
311
+ used when analysing result on the past light cone. We do not expect
312
+ the results presented in this paper to depend on the specific expansion
313
+ used.
314
+ 2.2 Motion of particles along geodesics
315
+ Massive particles move along geodesics, whose equation can be
316
+ expressed as:
317
+ 𝑑𝑥𝑖
318
+ 𝑑𝜏 =
319
+ 𝑐𝑝𝑖
320
+ √︁
321
+ (𝑚𝑐𝑎)2 + 𝑝2 + 𝑐𝐵𝑖
322
+ +
323
+ 𝑐𝑝𝑖
324
+ √︁
325
+ (𝑚𝑐𝑎)2 + 𝑝2
326
+
327
+ Ψ + Φ2(𝑚𝑎𝑐)2 + 𝑝2
328
+ (𝑚𝑎𝑐)2 + 𝑝2
329
+
330
+ ,
331
+ (8)
332
+ 𝑑𝑝𝑖
333
+ 𝑑𝜏 = − 𝑐
334
+
335
+ 𝑝𝑛𝐵𝑛|𝑖 + Ψ,𝑖
336
+ √︃
337
+ (𝑚𝑐𝑎)2 + 𝑝2 +
338
+ 𝑝2Φ,𝑖
339
+ √︁
340
+ (𝑚𝑐𝑎)2 + 𝑝2
341
+
342
+ ,
343
+ (9)
344
+ where 𝑝𝑖 is the space part of the particle momentum and 𝑝 its
345
+ norm. The right hand side in the last equation is the generalized
346
+ force acting on the particles. The term proportional to Ψ,𝑖 becomes
347
+ the Newtonian force in the limit of small velocities, while 𝑝𝑛𝐵𝑛|𝑖
348
+ represent the corrections due to frame dragging and the third term in
349
+ parenthesis is a further relativistic correction.
350
+ The energy-momentum tensor is constructed from the knowledge
351
+ of particle positions and momenta, but its computation depends on the
352
+ perturbed metric. This means that, in Eqs. (4), (6), and (7), the source
353
+ terms on the right hand sides depend on the potentials themselves.
354
+ These implicit equations may be solved starting from the potentials
355
+ at the previous time step and solving the equations iteratively until
356
+ convergence. The integration scheme that Gevolution implements
357
+ is simpler: at each time step the energy momentum tensor is computed
358
+ using the potentials from the previous step, then the Poisson equations
359
+ are solved to find the updated potentials, that will be used in the next
360
+ time step to compute the energy-momentum tensor.
361
+ The Newtonian limit is recovered when we consider Fourier modes
362
+ larger than H/𝑐 and we further neglect 𝐵𝑖 and consider Φ ≪ 1; then
363
+ equation (4) becomes:
364
+ Φ|𝑛𝑛 = 4𝜋𝐺𝑎2
365
+ 𝑐4
366
+ Δ𝑇00
367
+ (10)
368
+ MNRAS 000, 1–14 (2022)
369
+
370
+ 4
371
+ E. Quintana-Miranda et al.
372
+ while (8) and (9) become:
373
+ 𝑑𝑥𝑖
374
+ 𝑑𝜏 = 𝑝𝑖
375
+ 𝑚𝑎 ,
376
+ (11)
377
+ 𝑑𝑝𝑖
378
+ 𝑑𝜏 = −Φ,𝑖𝑚𝑐2𝑎 .
379
+ (12)
380
+ 3 ALGORITHMS AND CODE INFRASTRUCTURE
381
+ 3.1 Gevolution
382
+ Gevolution8 (Adamek et al. 2016) is an N-body relativistic cosmo-
383
+ logical code, written in C++ and parallelized with the MPI paradigm.
384
+ The physical theory behind this code has been described at length in
385
+ Section 2. Numerically, this code implements a PM scheme to follow
386
+ the evolution of energy-momentum tensor perturbations. As in PM
387
+ codes, the advantage of working with a single grid and using Fast
388
+ Fourier Transforms (FFTs) to solve the Poisson-like equations for the
389
+ fields is paid with a high cost in memory, of O(𝑁3) where 𝑁 is the
390
+ number of grid points per dimension.
391
+ Gevolution, can run in either Newton or General Relativity
392
+ modes. The Newtonian gravity solver inverts the Laplace operator
393
+ in the Poisson equation for the Newtonian potential, Eq. 10. When
394
+ running the General Relativity mode, the code solves Eqs. 4, 6 and
395
+ 7, that require the computation of the perturbed energy-momentum
396
+ tensor. This is performed using a Cloud-In-Cell (CIC) scheme both
397
+ for the density and for particle velocities; details are given in the
398
+ presentation paper. Then the Hamiltonian forces to which particles
399
+ are subjected are computed from Eqs. 8 and 9.
400
+ Gevolution solves the field equations in Fourier space, using a
401
+ C++ library called LATfield2 to operate FFTs on classical fields in
402
+ massively parallel applications with distributed memory. LATfield2
403
+ provides a programming interface to perform operations on the fields,
404
+ either in their real or Fourier space representations. This library im-
405
+ plements FFTs of 3-dimensional fields whose memory is distributed
406
+ among parallel processes following a 2-dimensional uniform decom-
407
+ position of space, in which each process owns in memory a portion
408
+ of the grid with a rod shape (Daverio et al. 2015). In this way LAT-
409
+ field2 overcomes the scaling limitations of a simpler 1-dimensional
410
+ domain (slab) decomposition provided by the mainstream FFTW3
411
+ library9. FFTW3 is used, however, to compute 1D FFTs.
412
+ 3.2 Gadget-4
413
+ Gadget-410 is a state-of-the-art TreePM N-body hydrodynamical
414
+ cosmological code written in C++ (see Springel et al. 2021); it is
415
+ massively parallelized in a distributed-memory paradigm using MPI.
416
+ As in most N-body codes, gravity in Gadget-4 is represented
417
+ in the Newtonian limit, but the equations of motion are modified to
418
+ take into account the Universe expansion, obtained by integrating the
419
+ Friedmann equations separately. As mentioned above, this approach
420
+ is consistent with General Relativity in the Poisson gauge, and gives
421
+ the leading-order term of weak field expansion. This amounts to
422
+ neglecting the metric degrees of freedom 𝐵𝑖, 𝜒 and ℎ𝑖 𝑗, and is
423
+ valid on scales much smaller than the Hubble horizon. In a typical
424
+ configuration that is convenient for large cosmological volumes, the
425
+ 8 https://github.com/gevolution-code
426
+ 9 http://fftw.org/
427
+ 10 https://wwwmpa.mpa-garching.mpg.de/gadget4
428
+ code solves for the forces acting on each particle, representing them
429
+ as the sum of two contributions, one due to the interactions with
430
+ nearby particles, computed with a Tree algorithm, and one due to
431
+ long-range interactions, computed with a PM algorithm.11
432
+ The Tree algorithm works by partitioning the space into cubic
433
+ cells, called nodes; in turn, each node is recursively partitioned into
434
+ 8 children nodes down to a pre-determined maximum refinement
435
+ level. A tree structure tracks the list of particles that are located
436
+ within each node. This structure is used to speed up the computation
437
+ of gravitational force on a particle: in a particle-particle integration
438
+ scheme, this force is computed by adding up a series of �𝑟 𝑚/𝑟3 terms,
439
+ one for each particle pair, but we know that the accuracy of force
440
+ evaluation does not depend strongly on the small-scale distribution
441
+ of distant particles, so in the Tree scheme the evaluation of gravity
442
+ is performed by grouping particles that belong to the same node,
443
+ under the condition that the node subtends a given aperture angle
444
+ 𝜃. Particle-particle computation is then used only for the nearest
445
+ neighbours. This is equivalent to considering the leading order in a
446
+ multipole expansion of the gravity force from particles belonging to a
447
+ distant cell. While the construction of the Tree is expensive in terms
448
+ of computing time, it allows to achieve O(𝑁𝑝 log 𝑁𝑝) scaling for
449
+ the force computation, where 𝑁𝑝 is the total number of particles in
450
+ the simulation. Thus the Tree is able to compute with high accuracy
451
+ the short wavelength modes of the gravitational interaction, while
452
+ keeping the computational time low for large simulations. However,
453
+ the Tree code is slow in integrating particle motions near the initial
454
+ conditions, when the departures from homogeneity are small. This
455
+ is why it is often coupled with a PM code to speed up the first time
456
+ steps of a cosmological box.
457
+ The PM algorithm represents gravity through the gravitational po-
458
+ tential field Φ, evaluated on a Cartesian cubic mesh of fixed size. The
459
+ potential is found from the density field by solving the Poisson equa-
460
+ tion in Fourier space, while the force is computed from the gradient
461
+ of the potential, obtained with a finite differences scheme. Accord-
462
+ ing to the Nyquist-Shannon theory, this implies that the information
463
+ handled by the PM is limited to the long modes, up to the Nyquist
464
+ frequency.
465
+ To combine the forces provided by the PM and Tree codes, the
466
+ gravitational potential is split into the sum of two fields:
467
+ Φ = Φ(𝐿) + Φ(𝑆) ,
468
+ (13)
469
+ where Φ(𝐿) represents long-range modes from the PM, and Φ(𝑆)
470
+ represents short-range modes from the Tree. Written in Fourier space
471
+ (tilde on top of symbols denotes a Fourier transform), the Poisson
472
+ equation reads:
473
+ ˜Φ𝑘 = −4𝜋
474
+ 𝑘2 ˜𝜌𝑘 ,
475
+ (14)
476
+ where �� denotes the mass density. We can split the density as a sum
477
+ of short-range and long-range terms, using Gaussian filters:
478
+ ˜Φ𝑘 = −4𝜋
479
+ 𝑘2 ˜𝜌𝑘
480
+
481
+ 1 − exp(−𝑘2𝑟2
482
+ 𝑎)
483
+
484
+ − 4𝜋
485
+ 𝑘2 ˜𝜌𝑘 exp(−𝑘2𝑟2
486
+ 𝑎) .
487
+ (15)
488
+ The scale 𝑟𝑎 is the one at which we split long- and short-range modes.
489
+ We can obtain Φ(𝑆) by solving the modified Poisson equation for
490
+ short modes:
491
+ ˜Φ(𝑆)
492
+ 𝑘
493
+ = −4𝜋
494
+ 𝑘2 ˜𝜌𝑘
495
+
496
+ 1 − exp(−𝑘2𝑟2
497
+ 𝑎)
498
+
499
+ ,
500
+ (16)
501
+ 11 The code can work in other configurations (a non-cosmological volume,
502
+ switching off the PM, enhancing the Tree part using multipole expansion)
503
+ that are however not relevant for this paper.
504
+ MNRAS 000, 1–14 (2022)
505
+
506
+ GrGadget
507
+ 5
508
+ and Φ(𝐿) by solving the modified Poisson equation for long modes
509
+ ˜Φ(𝐿)
510
+ 𝑘
511
+ = −4𝜋
512
+ 𝑘2 ˜𝜌𝑘 exp(−𝑘2𝑟2
513
+ 𝑎) .
514
+ (17)
515
+ The long-mode Poisson equation (17) is solved by the PM in
516
+ Fourier space, so the convolution with the kernel is a simple mul-
517
+ tiplication. The Tree on the other hand works in real space, hence
518
+ equation (16) has to be transformed; this can be done analytically,
519
+ yielding:
520
+ Φ(𝑆) (�𝑥) = −𝐺
521
+ ∑︁
522
+ 𝑖
523
+ 𝑚𝑖
524
+ |�𝑥 − �𝑟𝑖| erfc
525
+ � |�𝑥 − �𝑟𝑖|
526
+ 2𝑟2𝑎
527
+
528
+ .
529
+ (18)
530
+ 3.3 GrGadget
531
+ 3.3.1 Libgevolution library
532
+ In order to have a relativistic PM code working in Gadget-4, we
533
+ developed a library that implements both the Newtonian and the rel-
534
+ ativistic PM algorithms of the monolithic Gevolution code. This
535
+ was done by forking the Gevolution github repository into Libgevo-
536
+ lution, a library that is publicly available on github12 under MIT
537
+ license.
538
+ The rationale behind the development of Libgevolution is to
539
+ encapsulate Gevolution’s resources and methods into abstract ob-
540
+ jects. This yields several benefits. Firstly, Gevolution maintenance
541
+ is eased by the logical modularization of the code, i.e. instead of a
542
+ monolitic code with a unique workflow we can divide Gevolution
543
+ into components (C++ classes and/or namespaces) with well defined
544
+ purposes. Secondly, we are allowed to re-use Gevolution compo-
545
+ nents within other applications, such as we do within Gadget-4 in
546
+ the present paper.
547
+ We give here an overview of the library; the precise signature of
548
+ all the defined functions, methods and data structures is described
549
+ in the technical documentation of the code. Libgevolution is based
550
+ on three cornerstones: (i) a particle container implemented through
551
+ the class Particles_gevolution; (ii) a PM data structure named
552
+ particle_mesh, templated on the particle container type, that can
553
+ be used either as a relativistic_pm or a newtonian_pm; (iii) an
554
+ executable application that uses the previous components to produce
555
+ N-body simulations as the original code does. particle_mesh has
556
+ to be understood as a container that is aware of the parallelization of
557
+ the tasks and distribution of memory; it holds the gravitational fields
558
+ and it allows the user to compute the forces acting on the simulation
559
+ particles. The user interface declared in particle_mesh consists of
560
+ the following functions:
561
+ • sample(...), that builds the sources (density field or energy-
562
+ momentum tensor) by sampling particle properties in the mesh;
563
+ • compute_potential(...), that solves Poisson equations to
564
+ compute the potential fields;
565
+ • compute_forces(...), that computes the forces acting on
566
+ particles.
567
+ particle_mesh is specialized to solve the Newtonian problem
568
+ or the General Relativistic problem using class inheritance; Figure 1
569
+ illustrates the class hierarchy of Libgevolution’s particle_mesh.
570
+ The expert user will be able to specialize particle_mesh to his/her
571
+ own needs, for example by deriving a PM that solves a modified
572
+ gravity problem.
573
+ newtonian_pm is the specialization of particle_mesh that
574
+ 12 https://github.com/GrGadget/gevolution-1.2
575
+ particle_mesh
576
+ relativistic_pm
577
+ newtonian_pm
578
+ Figure 1. PM class hierarchy in Libgevolution.
579
+ contains a real LATfield2::Field scalar field ΦNewton and its
580
+ complex LATField2::Field Fourier transform
581
+ ˜ΦNewton, plus
582
+ a LATField2::PlanFFT that connects ΦNewton with
583
+ ˜ΦNewton
584
+ through discrete Fourier transform. relativistic_pm is the spe-
585
+ cialization of particle_mesh that contains the above quoted de-
586
+ grees of freedom of the perturbed FLRW metric, Φ, 𝐵𝑖 and 𝜒.
587
+ These are represented as real LATfield2::Field, with complex
588
+ LATField2::Field counterparts to represent their Fourier trans-
589
+ forms and a LATField2::PlanFFT for each field.
590
+ As a first testing phase, we run Libgevolution, called with a sim-
591
+ ple wrapper, and the native Gevolution code, applying them to the
592
+ same set of initial conditions, checking that the results were identical
593
+ both in the Newtonian and relativistic cases. Then we stripped down
594
+ Gadget-4 by switching off the Tree code, and compared its results
595
+ to the Newtonian results of Libgevolution. It is necessary that this
596
+ comparison gives nearly identical results if we want Libgevolution
597
+ to substitute the native PM code of Gadget-4 without loss of accu-
598
+ racy. To achieve a satisfactory match of the two PM codes we had to
599
+ change the Gevolution scheme in a few points.
600
+ We started from V1.2 of Gevolution, that implemented a first-
601
+ order version of finite differences instead of the fourth-order scheme
602
+ of Gadget-4. This resulted in a difference with Gadget-4 run on
603
+ the same initial conditions, and in a percent-level offset of the matter
604
+ power spectrum on large scales at low redshift. We upgraded the
605
+ computation of spatial derivatives to fourth order, in parallel with
606
+ the Gevolution developers that had noticed the same problem; our
607
+ implementation is equivalent the most recent issue of Gevolution
608
+ (used, e.g., in Adamek et al. 2022). The upgrade is the following: let’s
609
+ consider the gravitational potential along one direction of the mesh,
610
+ and let’s call its values Φ𝑖, where the index𝑖 denotes its position along
611
+ that direction. Its first derivative is computed with finite differences
612
+ at the first order as:
613
+ 𝜕Φ𝑖
614
+ 𝜕𝑥 = Φ𝑖+1 − Φ𝑖
615
+
616
+ + O(ℎ),
617
+ (19)
618
+ where ℎ is the size of the mesh cell. Fourth-order Taylor expansion
619
+ gives:
620
+ 𝜕Φ𝑖
621
+ 𝜕𝑥 = 8Φ𝑖+1 − Φ𝑖−1
622
+ 12ℎ
623
+ − Φ𝑖+2 − Φ𝑖−2
624
+ 12ℎ
625
+ + O(ℎ4) .
626
+ (20)
627
+ This has a smaller error of order O(ℎ4), so it achieves higher pre-
628
+ cision than (19) with the little cost of knowing the potential value
629
+ at the second-nearest cell, that implies a negligible communication
630
+ overhead.
631
+ Another improvement with respect to V1.2 of Gevolution, that
632
+ follows an implementation of Gadget-4, was the application of cor-
633
+ recting filters to the density in Fourier space to compensate for cloud-
634
+ in-cell (CIC) interpolation. Indeed, as discussed e.g. in Springel
635
+ (2005) or Sefusatti et al. (2016), CIC interpolation at some finite or-
636
+ der leads to some loss of power that can be compensated for in Fourier
637
+ space using suitable kernels. This was applied both to the compu-
638
+ tation of the density and to the computation of energy-momentum
639
+ tensor components in the relativistic case.
640
+ Lastly, to make the Newtonian PM scheme equivalent to that of
641
+ MNRAS 000, 1–14 (2022)
642
+
643
+ 6
644
+ E. Quintana-Miranda et al.
645
+ Gadget-4 we changed the form of the discrete Laplacian operator in
646
+ the Poisson equation solver from its original form
647
+ ∇2 → −4𝑁2
648
+ 𝐿2
649
+
650
+ sin2 𝜋𝑘𝑥
651
+ 𝑁
652
+ + sin2 𝜋𝑘𝑦
653
+ 𝑁
654
+ + sin2 𝜋𝑘𝑧
655
+ 𝑁
656
+
657
+ ,
658
+ (21)
659
+ described in Adamek et al. (2016), equation (C.5), to the form used
660
+ in Gadget-4:
661
+ ∇2 → −4𝜋2
662
+ 𝐿2
663
+
664
+ 𝑘2
665
+ 𝑥 + 𝑘2
666
+ 𝑦 + 𝑘2
667
+ 𝑧
668
+
669
+ .
670
+ (22)
671
+ 3.3.2 Calling Libgevolution from Gadget-4
672
+ The implementation of Libgevolution in Gadget-4 was performed
673
+ as follows. We created a new PM class with a similar interface as
674
+ the original one in Gadget-4, so that it is initialized and executed
675
+ with the same functions as Gadget-4, i.e. init_periodic() and
676
+ pmforce_periodic(). A new class relativistic_pm was imple-
677
+ mented within an gadget::gevolution_api namespace, avoiding
678
+ to use the wider gadget namespace to make a clear distinction of
679
+ purpose between the original Gadget-4 code and our additional fea-
680
+ tures. This relativistic_pm class acts much like a mediator taking
681
+ information in and out of gadget simulation particles, processing
682
+ the correct units conversion and calling the methods on gevolution
683
+ namespace. Figure 2 shows a diagram that summarizes the contents
684
+ of this PM class, its relation with Gadget-4’s resources and the entry
685
+ points for gevolution’s api.
686
+ relativistic_pm consists of:
687
+ • A variable of type simparticle_handler that acts as
688
+ a wrapper for providing particle information from Gadget-4’s
689
+ simparticles global variable and writing back the data produced
690
+ by gevolution’s PM.
691
+ • A variable of type latfield_handler that takes care of cor-
692
+ rectly initializing LATfield global state. Indeed, while Gadget-4 can
693
+ run with any number of MPI processes, LATfield has limitations that
694
+ depend on the number of grid points in the PM. latfield_handler
695
+ also takes care of creating a sub-communicator from Gadget-4’s MPI
696
+ global communicator that satisfies the constraints set by LATfield.
697
+ • A variable of type gevolution::cosmology that contains the
698
+ parameters for the background evolution.
699
+ • A container of type gevolution::Particles_gevolution
700
+ that holds particle information, stored according to their location on
701
+ the PM grid.
702
+ • Variables of type gevolution::relativistic_pm and
703
+ gevolution::newtonian_pm that perform the actual PM compu-
704
+ tations, i.e. construct the sources, either density or the components
705
+ of the energy-momentum tensor, compute the gravitational potential
706
+ or the metric perturbation fields and the forces that act upon the
707
+ particles.
708
+ • The methods pm_init_periodic and pmforce_periodic,
709
+ for initialization and execution of the PM, respectively.
710
+ 3.3.3 Kick and drift operators
711
+ In order to keep the Hamiltonian character of the equations of motion
712
+ in Gadget-4, we have to describe the state of each particle through its
713
+ position and momentum, not velocity. Following a leap-frog scheme,
714
+ the momentum should be updated with a kick operation using the full
715
+ relativistic Eqs. (8) and (9). However, velocities in Gadget-4 are to be
716
+ interpreted as momenta (per unit mass) of non-relativistic particles in
717
+ the Newtonian limit. Then we redefine the Gadget-4 kick and drift
718
+ operators assuming non-relativistic matter, 𝑝 ≪ 𝑚𝑐𝑎, and further
719
+ neglecting the very small contribution coming from 𝜒:
720
+ 𝑑𝑥𝑖
721
+ 𝑑𝜏 = 𝑝𝑖
722
+ 𝑚𝑎 (1 + 3Φ) + 𝑐𝐵𝑖 ,
723
+ (23)
724
+ 𝑑𝑝𝑖
725
+ 𝑑𝜏 = − 𝑐𝑝𝑛𝐵𝑛|𝑖 − Φ,𝑖𝑚𝑐2𝑎 .
726
+ (24)
727
+ The right hand side of (24) is what we call force.
728
+ 3.3.4 Adding long-range and short-range forces
729
+ To combine the forces computed with the relativistic PM and
730
+ Gadget-4’s Newtonian Tree we have extended the idea of the TreePM
731
+ coupling. From equation (13) one obtains that the force acting on a
732
+ particle in a TreePM scheme consists of two terms:
733
+ �𝐹 = 𝑆𝑟𝑎 [ �𝐹Tree
734
+ Newton] + 𝐿𝑟𝑎 [ �𝐹PM
735
+ Newton].
736
+ (25)
737
+ The first term is the force computed using the Tree on which an
738
+ exponential high-pass filter 𝑆𝑟𝑎 is applied, leaving short-wavelength
739
+ modes. The second term corresponds to the PM force on which
740
+ the complementary low-pass filter 𝐿𝑟𝑎 is applied to leave long-
741
+ wavelength modes. The symbols 𝑆𝑎 and 𝐿𝑎 formally denote these
742
+ linear operators:
743
+ 𝑆𝑟𝑎 [ 𝑓 ](�𝑟) = 1
744
+ 𝑁
745
+ ∑︁
746
+ �𝑘
747
+ ˜𝑓�𝑘 (1 − exp(−𝑘2𝑟𝑎2)) exp(−𝑖�𝑘 · �𝑟) ,
748
+ (26)
749
+ and
750
+ 𝐿𝑟𝑎 [ 𝑓 ](�𝑟) = 1
751
+ 𝑁
752
+ ∑︁
753
+ �𝑘
754
+ ˜𝑓�𝑘 exp(−𝑘2𝑟𝑎2) exp(−𝑖�𝑘 · �𝑟) .
755
+ (27)
756
+ The grid smoothing scale 𝑟𝑎 scales with the PM mesh size, and
757
+ its value is optimized in Gadget-4, in a way that will be tested
758
+ below, to minimize the impact of the two different treatments of the
759
+ gravitational force.
760
+ In order to account for the relativistic dynamics while preserving
761
+ the match between tree and PM contributions that is valid in the New-
762
+ tonian case, we choose the following strategy: Gadget-4 calls both
763
+ newtonian_pm and relativistic_pm, the Newtonian value of the
764
+ force is added to the Tree force as in a standard Newtonian simula-
765
+ tion, while the difference between the Newtonian and the relativistic
766
+ forces is added on top as a correction, but filtered on a different scale
767
+ 𝑟𝑏, that we call gr-smoothing scale. Eq. (25) then becomes:
768
+ �𝐹 = 𝑆𝑟𝑎 [ �𝐹Tree
769
+ Newton] + 𝐿𝑟𝑎 [ �𝐹PM
770
+ Newton] + 𝐿𝑟𝑏 [ �𝐹PM
771
+ GR − �𝐹PM
772
+ Newton] .
773
+ (28)
774
+ The case 𝑟𝑎 = 𝑟𝑏 would correspond to simply adding the relativistic
775
+ force to the Tree:
776
+ �𝐹 = 𝑆𝑟𝑎 [ �𝐹Tree
777
+ Newton] + 𝐿𝑟𝑏 [ �𝐹PM
778
+ GR ] .
779
+ (29)
780
+ However, while the size of 𝑟𝑎, that regulates the match between
781
+ Newtonian Tree and PM forces, is very well tested within Gadget-4,
782
+ the optimal value of 𝑟𝑏 is to be found; we will show in the next
783
+ Section that using 𝑟𝑏 larger than 𝑟𝑎 allows us to achieve percent
784
+ accuracy at small scales.
785
+ 4 VALIDATION
786
+ The GrGadget code has been validated by running it on a few real-
787
+ izations of initial conditions, listed in table 1. These were generated
788
+ MNRAS 000, 1–14 (2022)
789
+
790
+ GrGadget
791
+ 7
792
+ gadget::
793
+ simparticles
794
+ LATfield2::
795
+ parallel
796
+ particle_handler
797
+ read/write
798
+ latfield_handler
799
+ read/write
800
+ sim::begrun1()
801
+ sim::gravity_long_range_force()
802
+ init_periodic()
803
+ pmforce_periodic()
804
+ execute
805
+ execute
806
+ gevolution::cosmology
807
+ gevolution::Particles_gevolution
808
+ gevolution::relativistic_pm
809
+ gevolution::newtonian_pm
810
+ gadget::gevolution_api::relativistic_pm::
811
+ Figure 2. Diagram of resource ownership and relations for Libgevolution integrated into Gadget-4’s workflow. Each solid box represent a memory resource
812
+ (an instantiation of a variable type) while the dashed boxes indicate ownership. The newly developed code, represented in the right part of the diagram denoted
813
+ with the namespace gadget::gevolution_api, consists in a class named relativistic_pm that owns a particle_handler object that reads and writes
814
+ directly into gadget::simparticles, a latfield_handler that takes care of setting up and inspect the state of LATfield2::parallel, and some types
815
+ defined in Libgevolution, that are defined in gevolution namespace, like cosmology, Particles_gevolution and relativistic_pm. The methods
816
+ sim::begrun1() and sim::gravity_long_range_force() in gadget:: interact with the relativistic_pm through their interface init_periodic()
817
+ and pmforce_periodic().
818
+ name
819
+ 𝑁𝑝 (particles)
820
+ 𝑁 (PM grid points)
821
+ 𝐿 (box size)
822
+ N64
823
+ 643
824
+ 64
825
+ 1 Gpc/ℎ
826
+ N256
827
+ 2563
828
+ 256
829
+ 1 Gpc/ℎ
830
+ high_res
831
+ 5123
832
+ 512
833
+ 500 Mpc/ℎ
834
+ Table 1. Cosmological simulation configurations used to validate GrGadget.
835
+ with Gadget-4’s ngenic code at 𝑧 = 19, starting from a linear power
836
+ spectrum generated with CAMB13 and with cosmological parame-
837
+ ters consistent with Planck 2018 result (Planck Collaboration et al.
838
+ 2020): Ω𝑏ℎ2 = 0.0223, Ω𝑐ℎ2 = 0.120, 𝐻0 = 67.3 km s−1 Mpc−1,
839
+ 𝐴𝑠 = 2.097 × 10−9 and 𝑛𝑠 = 0.965.
840
+ 4.1 Gevolution and Gadget-4 original codes
841
+ As already discussed in Section 3.3.1, the newtonian_pm imple-
842
+ mentation in V1.2 of Gevolution computes the Newtonian forces
843
+ differently from those obtained with Gadget-4’s PM. Before imple-
844
+ menting Libgevolution as the PM engine of Gadget-4, we need to
845
+ make the two algorithms work in the same way.
846
+ To this aim, we have run a set of simulations with the configuration
847
+ N64 (described in table 1) with a small number of particles 𝑁𝑝 = 643
848
+ to be able to compute forces using a straightforward particle-particle
849
+ (PP) scheme, that can be taken as the true force that we are trying to
850
+ approximate. The same initial conditions at 𝑧 = 19 have been fed to
851
+ both Gadget-4 (with Tree either on or switched off to have a pure PM
852
+ run) and Gevolution (in Newtonian mode) codes. At later times,
853
+ 𝑧 = 8 and 𝑧 = 0, we have written snapshots of the forces that the
854
+ simulation particles experience, separating the PM and the TreePM
855
+ components; we have then compared those to the true Newtonian
856
+ force computed with the PP scheme. The data we have obtained
857
+ are summarized in the plots shown in figure 3. We have binned
858
+ particles according to the value of the true force, then for each bin
859
+ we have computed the mean (colored lines) and standard deviation
860
+ 13 https://camb.info/
861
+ (shaded regions) of the difference between the force computed with
862
+ approximate methods (PM or TreePM) and the true value. Forces
863
+ are given in Gadget-4’s default units, which is actually acceleration,
864
+ measured in units of 10𝐻0 km/s = ℎ km2 s−2 kpc−1. The green
865
+ line shows the PM result using the original Gevolution code (the
866
+ true force is anyway computed with Gadget-4 and matched particle
867
+ by particle) while the red line is obtained from a pure PM using
868
+ Gadget-4’s original code. The black line gives the TreePM method
869
+ precision, obtained using Gadget-4.
870
+ Looking at the red and green lines (and their shaded areas) we find
871
+ two known results. Firstly, the TreePM method produces far less bias
872
+ and dispersion when estimating forces; for instance, in the left panel
873
+ of Fig. 3 the error is of the order14 of 0.1 ℎ km2 s−2 kpc−1, while in
874
+ the right panel it is larger but barely visible when compared with the
875
+ other curves. Secondly, while the PM force has low bias but a much
876
+ larger variance than the TreePM one at high redshift, at low redshift,
877
+ i.e. at higher level of non-linearity, it underestimates the value of the
878
+ Newtonian force as its magnitude increases. This underestimation is
879
+ due to the failure of PM in resolving interaction at scales smaller
880
+ than the grid resolution.
881
+ When comparing Gevolution PM and true forces, we notice an
882
+ S-shaped feature in the plot, much more visible at high redshift.
883
+ As anticipated in Section 3.3.1, this is mostly due to the first-order
884
+ interpolation used to find the gradient of the potential in the code
885
+ version that we tested.
886
+ In Fig. 4 we show the matter power spectra15 obtained at 𝑧 = 0
887
+ from a set of larger simulations with the configuration N256 (see
888
+ table 1). The red solid line shows the result obtained with the orig-
889
+ inal Gadget-4 code with its TreePM method, while the red dotted
890
+ line shows the results obtained by switching off the Tree so that the
891
+ 14 This quantification is in code units, we can take this value as a reference
892
+ for a high accuracy gravity solver.
893
+ 15 In this paper all particle power spectra were computed using PowerI4
894
+ code presented in Sefusatti et al. (2016). Unless otherwise stated, all power
895
+ spectra are computed up to the the Nyquist frequency of the PM mesh.
896
+ MNRAS 000, 1–14 (2022)
897
+
898
+ 8
899
+ E. Quintana-Miranda et al.
900
+ 10.0
901
+ 7.5
902
+ 5.0
903
+ 2.5
904
+ 0.0
905
+ 2.5
906
+ 5.0
907
+ 7.5
908
+ 10.0
909
+ Force (direct summation)
910
+ 2
911
+ 1
912
+ 0
913
+ 1
914
+ 2
915
+ Force (estimated) - Force (direct summation)
916
+ Force Test (z=8)
917
+ TreePM (Gadget)
918
+ Gevolution PM
919
+ Gadget PM
920
+ 100
921
+ 75
922
+ 50
923
+ 25
924
+ 0
925
+ 25
926
+ 50
927
+ 75
928
+ 100
929
+ Force (direct summation)
930
+ 100
931
+ 50
932
+ 0
933
+ 50
934
+ 100
935
+ Force (estimated) - Force (direct summation)
936
+ Force Test (z=0)
937
+ TreePM (Gadget)
938
+ Gevolution PM
939
+ Gadget PM
940
+ Figure 3. Difference of gravity force with respect to the true PP value, binned according to the true force, for N64 initial conditions, at 𝑧 = 8 (left panel) and
941
+ 𝑧 = 0 (right panel). Lines represent the mean value of force difference in the bins, with colours explained in the legend; the shaded regions give the standard
942
+ deviation of the corresponding force difference.
943
+ forces are computed using the PM alone. The green lines show re-
944
+ sults obtained with the latest develop version of Gevolution that
945
+ implements higher order schemes for finite differences; the dotted
946
+ line gives results obtained with GRADIENT_ORDER=1 and is identi-
947
+ cal to the result obtained with V1.2 of Gevolution, the green solid
948
+ line uses GRADIENT_ORDER=2, that corresponds to a second-order
949
+ scheme. These power spectra show that the matter distribution in
950
+ Gevolution using first-order gradients loses power in what seems
951
+ to be a uniform trend for large-scale modes. This is a behaviour
952
+ which is not inherent to the PM nature of the code, since that type of
953
+ numerical approximation should predict very well the linear evolu-
954
+ tion at large scales; indeed, the higher-order scheme recovers power
955
+ on large scales to sub-percent accuracy. Conversely, Gadget-4’s PM
956
+ and TreePM agree very well at wavenumbers below 𝑘 ∼ 0.1ℎ/Mpc
957
+ scale,
958
+ The higher-order differentiation worsens the loss of power of
959
+ Gevolution for high values of 𝑘, that is not present in Gadget-4.
960
+ This can be explained as a consequence of the particle-to-mesh sam-
961
+ pling and mesh-to-particle interpolation described in section 3.3.1.
962
+ As discussed there, Gadget-4’s PM corrects for these effects, result-
963
+ ing in a power spectrum that degrades only at very high values of 𝑘 as
964
+ we approach the Nyquist frequency, while producing a ∼ 2 percent
965
+ overcorrection at 𝑘 ∼ 0.4 ℎ/Mpc.
966
+ After implementing the higher-order differentiation scheme, the
967
+ correction for the loss of power discussed above and the change in
968
+ the discrete Laplacian operator (Section 3.3.1), the results of native
969
+ Gadget-4 and Libgevolution PMs become indistinguishable.
970
+ 4.2 Newtonian forces
971
+ We have tested our implementation of the GrGadget code by run-
972
+ ning a standard test in Gadget-4: we create an N-body configuration
973
+ in which there is a single massive particle in the entire simulation
974
+ box, while other massless test particles are placed at different dis-
975
+ tances from the first. In this setting the exact value of the force on
976
+ each particle is known, hence one can compare the numerical results
977
+ coming from the TreePM algorithm to the analytical solution.
978
+ The results are shown in figure 5, where each dot represents a
979
+ test particle. The x-axis gives the distance to the massive particle
980
+ that sources the gravitational field, in units of the PM resolution
981
+ (𝐿/𝑁), while the y-axis gives the corresponding absolute value of
982
+ the relative difference of the true and estimated forces acting on the
983
+ test particle. The red and blue lines correspond to the mean value of
984
+ force residuals, for particles binned into distance bins; the red line
985
+ denotes the statistics obtained from a simulation using Gadget-4’s
986
+ original TreePM implementation and the blue line was produced
987
+ using GrGadget, in this case with the Newtonian gravity engine.
988
+ This figure shows that the accuracy with which the TreePM code
989
+ reproduces the gravitational force is at worst at percent level on scales
990
+ of a few mesh cells, corresponding to the scale where the PM and Tree
991
+ contributions are matched, and gets very accurate in the limits where
992
+ either the Tree (small scales) or the PM (large scales) dominates.
993
+ Gadget-4’s and GrGadget’s Newtonian PMs show basically the
994
+ same accuracy, even though their PM implementations are very dif-
995
+ ferent.
996
+ In Fig. 6 we show the matter power spectra of a set of N256
997
+ simulations (see table 1). In this case we are comparing the matter
998
+ clustering of GrGadget, in blue (with Newtonian forces for testing
999
+ purposes), against Gadget-4, in red. In agreement with the previous
1000
+ test of force differences, we find that both codes produce the same
1001
+ matter power spectrum up to floating point errors. This is verified
1002
+ both in the case of simulations computing forces using a pure PM
1003
+ and in the case of TreePM.
1004
+ 4.3 Relativistic simulations with GrGadget.
1005
+ We present here results obtained by running GrGadget with
1006
+ relativistic_pm, comparing them with the corresponding rela-
1007
+ MNRAS 000, 1–14 (2022)
1008
+
1009
+ GrGadget
1010
+ 9
1011
+ 102
1012
+ 103
1013
+ 104
1014
+ P(k)/(Mpc3h−3)
1015
+ camb
1016
+ Gevolution Newton PM
1017
+ Gevolution Newton PM (2nd order)
1018
+ Gadget4 PM
1019
+ Gadget4 TreePM
1020
+ 10−2
1021
+ 10−1
1022
+ 100
1023
+ k/(hMpc−1)
1024
+ −0.10
1025
+ −0.05
1026
+ 0.00
1027
+ 0.05
1028
+ 0.10
1029
+ (P(k) − P(k)Gadget4)/P(k)Gadget4
1030
+ Matter power spectrum z = 0.00
1031
+ Figure 4. Matter power spectrum of N256 cosmological simulations. The
1032
+ lower panel shows residuals with respect to Gadget-4’s original code (in red),
1033
+ used as baseline. The black line shows the linear power spectrum obtained with
1034
+ CAMB. Red lines show results obtained with Gadget-4, with the Tree part
1035
+ on (solid line) or switched off (dotted line). Green lines show results obtained
1036
+ with Gevolution in Newtonian configuration, with finite differences at first
1037
+ order (dotted line) or second order (solid line).
1038
+ Figure 5. Forces due to a point source: the points are test particles located at
1039
+ different distances (in units of the mesh resolution 𝐿/𝑁 ) from the source and
1040
+ the lines represent the RMS of the difference between real and TreePM forces
1041
+ in different distance bins. The red line corresponds to Gadget-4 original
1042
+ TreePM while the blue line was obtained with GrGadget in Newtonian
1043
+ mode. As for the the grid smoothing scale, the default value was used: 𝑟𝑎 =
1044
+ 1.25𝐿/𝑁 . For this test we have used 𝑁 = 256 and 𝐿 = 1 Gpc/ℎ.
1045
+ 102
1046
+ 103
1047
+ 104
1048
+ P(k)/(Mpc3h−3)
1049
+ camb
1050
+ GrGadget (Newton) PM
1051
+ GrGadget (Newton) TreePM
1052
+ Gadget4 PM
1053
+ Gadget4 TreePM
1054
+ 10−2
1055
+ 10−1
1056
+ 100
1057
+ k/(hMpc−1)
1058
+ −0.10
1059
+ −0.05
1060
+ 0.00
1061
+ 0.05
1062
+ 0.10
1063
+ (P(k) − P(k)Gadget4)/P(k)Gadget4
1064
+ Matter power spectrum z = 0.00
1065
+ Figure 6. Matter power spectrum of four simulations starting from the same
1066
+ initial conditions high_res: blue lines give results for Gadget-4 original
1067
+ code, red lines give results for GrGadget. In both cases dotted lines refer to
1068
+ runs with PM-only, solid lines refer to runs with full TreePM.
1069
+ tivistic version of Gevolution. We expect that the power spectrum
1070
+ of the matter density displays some relativistic features at large scales
1071
+ due to terms preceded by H in the field equation (4), while at small
1072
+ scales results should be compatible with Gadget-4’s Newtonian sim-
1073
+ ulations. However, the matter power spectrum shown here is not an
1074
+ observable quantity, so this comparison is just meant to give a first
1075
+ validation of the results. A more thorough comparison of observ-
1076
+ ables reconstructed on the past light cone will be presented in a
1077
+ future paper.
1078
+ Figure 7 shows the matter power spectra for a series of N256 sim-
1079
+ ulations (see table 1). In this case Gevolution and GrGadget are
1080
+ run in GR mode. The parameter that regulates the scale of the rela-
1081
+ tivistic correction (Eqs. 28 and 29) is set to 𝑟𝑏 = 6 𝐿/𝑁 ≈ 23Mpc/ℎ,
1082
+ i.e. the relativistic corrections of the PM method are smoothed at a
1083
+ distances below 6 grid cells. The plot shows that relativistic PM-only
1084
+ simulations, GrGadget (blue dotted line) and Gevolution (green
1085
+ lines) are compatible on large scales (𝑘 < 0.03ℎ/Mpc) up to a small
1086
+ percent-level difference that it is likely caused by the use of differ-
1087
+ ent orders for finite difference gradient; indeed, going from first- to
1088
+ second-order differences (from dotted to solid green line) the power
1089
+ spectrum gets nearer to GrGadget’s fourth-order one. The plot also
1090
+ confirms that our combination of Tree and PM forces in the relativis-
1091
+ tic weak field limit with GrGadget (blue solid line) reproduces the
1092
+ Newtonian non-linear features to sub-percent level at small scales,
1093
+ that is for 𝑘 > 0.1ℎ/Mpc; here Gadget-4 (red solid line) is again our
1094
+ reference for the non-linear clustering.
1095
+ Being designed for the use of Fourier methods from the beginning,
1096
+ Libgevolution offers an interface for the computation of the power
1097
+ spectrum of the fields defined through the library’s interface. Thus
1098
+ we can also extract and analyse the power spectra of the individual
1099
+ components of the metric perturbations from the relativistic sim-
1100
+ ulations. Figures 8 and 9 show the power spectra of the relativistic
1101
+ potentials, Φ, 𝐵𝑖 and 𝜒, for a high resolution configuration high_res
1102
+ (see table 1). These plots show a comparison of PM (blue lines) and
1103
+ TreePM (red lines) simulations. The power spectrum of the gravita-
1104
+ MNRAS 000, 1–14 (2022)
1105
+
1106
+ Force Test
1107
+ 0.0200
1108
+ Gadget TreePM
1109
+ GrGadget (Newton) TreePM
1110
+ 0.0175
1111
+ 0.0150
1112
+ 0.0125
1113
+ 0.0100
1114
+ 0.0075
1115
+ 0.0050
1116
+ 0.0025
1117
+ 0.0000
1118
+ 100
1119
+ 101
1120
+ distance*N/L10
1121
+ E. Quintana-Miranda et al.
1122
+ 102
1123
+ 103
1124
+ 104
1125
+ P(k)/(Mpc3h−3)
1126
+ camb
1127
+ GrGadget TreePM
1128
+ GrGadget PM
1129
+ Gevolution Gr PM
1130
+ Gevolution Gr PM (2nd order)
1131
+ Gadget4 PM
1132
+ Gadget4 TreePM
1133
+ 10−2
1134
+ 10−1
1135
+ 100
1136
+ k/(hMpc−1)
1137
+ −0.10
1138
+ −0.05
1139
+ 0.00
1140
+ 0.05
1141
+ 0.10
1142
+ (P(k) − P(k)Gadget4)/P(k)Gadget4
1143
+ Matter power spectrum z = 0.00
1144
+ Figure 7. Matter power spectrum of Gadget-4, Gevolution and GrGadget
1145
+ runs, the last code being run in relativistic mode. The upper panel shows
1146
+ the absolute value and the lower panel the relative difference with respect to
1147
+ Gadget-4’s TreePM. The black line gives the linear matter power spectrum;
1148
+ red and blue lines give Gadget-4 and GrGadget results, with full TreePM
1149
+ forces (solid lines) or with the Tree switched off (dotted lines). Green lines
1150
+ give Gevolution results, dotted line referring to first-order finite differences
1151
+ (GRADIENT_ORDER=1) and solid line referring to second-order calculation
1152
+ (GRADIENT_ORDER=2).
1153
+ tional potentials converge for both methods on large scales. However,
1154
+ below 1 Mpc/ℎ the PM-only simulation loses power with respect to
1155
+ the TreePM one; the differences can reach up to 40% as we approach
1156
+ the Nyquist frequency. This pattern is equally found for the scalar
1157
+ fields Φ and 𝜒, as well as for the individual components of 𝐵𝑖.
1158
+ The right plot in Fig. 8 helps to understand the reason behind
1159
+ this result. Generally speaking, energy density, momentum density
1160
+ and their respective density current (the components of the Energy-
1161
+ Momentum tensor) are sources of the metric perturbations. Even
1162
+ though those quantities, as fields, are found at discrete positions of
1163
+ space defined by the mesh, their values are computed by sampling
1164
+ the energy and momentum carried by the particle distribution, which
1165
+ contain information on the clustering due to the short range inter-
1166
+ actions (through the Tree) that goes well below the mesh resolution
1167
+ 𝐿/𝑁. Therefore, TreePM simulations, having power on scales well
1168
+ smaller than the PM mesh, give a better representation of the source
1169
+ of metric perturbation, and thus allow to recover power at frequency
1170
+ modes right below Nyquist. Fig. 8 highlights the particular case of
1171
+ 𝑇00 (the matter density) as a source for Φ; by comparing 𝑇0
1172
+ 0 with
1173
+ 𝑘2Φ, we are verifying the Poisson equation 𝑘2 ˜Φ ≈ ˜𝑇00 that is valid
1174
+ for wavelengths below the Hubble horizon. This confirms that the
1175
+ presence of small-scale clustering in the particle distribution prop-
1176
+ agates to the gravitational fields up to the maximum resolution that
1177
+ the PM allows. The same thing is visible in the vector modes 𝐵𝑖 and
1178
+ in 𝜒 (Figure 9), where we also notice a small, few-percent mismatch
1179
+ on large scales. These fields are known to give sub-percent effects on
1180
+ observables, so this difference, that is likely due to some degree of
1181
+ numerical mode coupling, is non considered as a problem.
1182
+ In figure 10 we show how the matter power spectrum obtained
1183
+ using GrGadget is affected by the choice of the gr-smoothing scale
1184
+ parameter 𝑟𝑏. We have used an N256 box configuration to perform
1185
+ this test, and tested values of 𝑟𝑏 = 1.5, 3, 6 in units of 𝐿/𝑁 ≈
1186
+ 4 Mpc/ℎ. We find that large-scales power is independent of the value
1187
+ of 𝑟𝑏 parameter; structures one scales below the PM resolution are
1188
+ resolved by the Tree algorithm, hence for 𝑘 > 𝑘Nyquist there is
1189
+ a convergence of all simulations to a common non-linear power
1190
+ spectrum tail. It is in the medium to small scales 𝑘Nyquist > 𝑘 >
1191
+ 0.2 Mpc−1ℎ that we notice differences in the power spectrum above
1192
+ the ∼ 1% (dashed grey line). For small values of 𝑟𝑏 (∼ 1.5 𝐿/𝑁), we
1193
+ obtain discrepancies in the power spectrum at 𝑘 ∼ 0.5 Mpc−1ℎ that
1194
+ can be as large as 5 percent and indicate the limitations of our force
1195
+ summation scheme, Eq. (28). A value of 𝑟𝑏 = 3 𝐿/𝑁 or possibly
1196
+ higher is needed to obtain a good compatibility of GrGadget and
1197
+ Gadget-4 for all modes greater than 0.1 Mpc−1ℎ, where relativistic
1198
+ features in the matter clustering is negligible.
1199
+ The last test we present here regards the convergence of the nu-
1200
+ merical results for increasing resolution. Figure 11 shows the matter
1201
+ power spectrum obtained from running Gadget-4’s TreePM (red
1202
+ lines), GrGadget with PM-only (blue dotted lines) and GrGadget
1203
+ with TreePM (blue continuous line). These various code configu-
1204
+ rations were run with different combinations of the number of grid
1205
+ points per dimension 𝑁 = 256, 𝑁 = 512 and box length 𝐿 = 250, 500,
1206
+ 1000, 2000 Mpc/ℎ; the number of particles was fixed as 𝑁𝑝 = 𝑁3. In
1207
+ all cases we have set the PM smoothing scale to 𝑟𝑎 = 1.5 𝐿/𝑁 and the
1208
+ gr-smoothing scale to 𝑟𝑏 = 3 𝐿/𝑁. It can be observed with the finest
1209
+ resolution, in the top plots, that there is a matching between General
1210
+ Relativity and Newtonian dynamics in the small scales. Then as the
1211
+ mesh size becomes coarser, in the middle plots, some discrepancies
1212
+ in the power spectrum start to appear which become more evident
1213
+ for even coarser meshes, in the bottom plots. This mismatch may
1214
+ be caused by 𝑟𝑏 = 3 𝐿/𝑁 moving towards larger scales, so that the
1215
+ assumption that PM forces are Newtonian on the small scales breaks.
1216
+ Indeed, while with 𝐿/𝑁 = 1 ℎ−1 Mpc (𝑟𝑏 = 3 ℎ−1 Mpc) the scales
1217
+ where relativistic effects become evident in the matter power spec-
1218
+ trum and the scales where the pure PM prediction starts to deviate
1219
+ from TreePM are well separated, for larger 𝐿/𝑁 values the two scales
1220
+ get nearer, indicating that the assumption of pure Newtonian forces
1221
+ on the mesh scale may not be very good. This conclusion is appar-
1222
+ ently at variance with the discussion of Figure 10, where a larger
1223
+ value of 𝑟𝑏 was preferred; however, that figure refers to 𝐿/𝑁 = 1
1224
+ and is shown at 𝑧 = 0.5, where clustering is a bit weaker. swe thus
1225
+ recommend to work with mesh sizes of 𝐿/𝑁 ∼ 1 Mpc/ℎ.
1226
+ 5 CONCLUSIONS
1227
+ We have constructed a relativistic TreePM code, that we call Gr-
1228
+ Gadget, where the large-scale contribution to the gravitational force
1229
+ is computed using the relativistic C++ PM library Libgevolution,
1230
+ based on Gevolution code, while gravity coming from small scales
1231
+ is computed by the Tree code of Gadget-4. The code works under
1232
+ the assumption that, in the context of cosmological simulations, dark
1233
+ matter can be treated non-relativistically and then the equations of
1234
+ motion of tracer particles tend to the Newtonian limit at scales well
1235
+ below the Hubble horizon. Following the Gevolution approach, we
1236
+ use a weak field approximation of GR, where the perturbations of the
1237
+ space-time metric with respect to FLRW background are encoded as
1238
+ fields and simulated by the PM. Comparing the matter power spec-
1239
+ trum from GrGadget simulations with that of original Gadget-4
1240
+ and Gevolution codes, we conclude that the code produces consis-
1241
+ tent results as long as the PM cell size 𝐿/𝑁 is smaller than 2 Mpc/ℎ
1242
+ and the gr-smoothing parameter is 𝑟𝑏 ≈ 3 𝐿/𝑁.
1243
+ MNRAS 000, 1–14 (2022)
1244
+
1245
+ GrGadget
1246
+ 11
1247
+ 10
1248
+ 30
1249
+ 10
1250
+ 28
1251
+ 10
1252
+ 26
1253
+ 10
1254
+ 24
1255
+ 10
1256
+ 22
1257
+ 10
1258
+ 20
1259
+ 10
1260
+ 18
1261
+ Pk
1262
+ TreePM
1263
+ PM
1264
+ 10
1265
+ 2
1266
+ 10
1267
+ 1
1268
+ 100
1269
+ k/(h Mpc
1270
+ 1)
1271
+ 0.4
1272
+ 0.3
1273
+ 0.2
1274
+ 0.1
1275
+ 0.0
1276
+ 0.1
1277
+ 0.2
1278
+ 0.3
1279
+ 0.4
1280
+ (Pk
1281
+ Pref)/Pref
1282
+ 101
1283
+ 102
1284
+ 103
1285
+ 104
1286
+ Pk
1287
+ k2
1288
+ TreePM
1289
+ k2
1290
+ PM
1291
+ T00 TreePM
1292
+ 10
1293
+ 2
1294
+ 10
1295
+ 1
1296
+ 100
1297
+ k/(h Mpc
1298
+ 1)
1299
+ 0.4
1300
+ 0.3
1301
+ 0.2
1302
+ 0.1
1303
+ 0.0
1304
+ 0.1
1305
+ 0.2
1306
+ 0.3
1307
+ 0.4
1308
+ (Pk
1309
+ Pref)/Pref
1310
+ Figure 8. In the left plot: power spectrum of the metric perturbation Φ in a high_res simulation obtained with GrGadget. In the right plot: power spectrum
1311
+ of 𝑘2Φ and 𝑇 00. For modes well below the Hubble horizon and small perturbations it should be verified that 𝑘2 ˜Φ ≈ ˜𝑇 00.
1312
+ 10
1313
+ 2
1314
+ 10
1315
+ 1
1316
+ 100
1317
+ 10
1318
+ 29
1319
+ 10
1320
+ 27
1321
+ 10
1322
+ 25
1323
+ 10
1324
+ 23
1325
+ 10
1326
+ 21
1327
+ 10
1328
+ 19
1329
+ Pk
1330
+ B0 TreePM
1331
+ B0 PM
1332
+ 10
1333
+ 2
1334
+ 10
1335
+ 1
1336
+ 100
1337
+ k/(h Mpc
1338
+ 1)
1339
+ 0.4
1340
+ 0.3
1341
+ 0.2
1342
+ 0.1
1343
+ 0.0
1344
+ 0.1
1345
+ 0.2
1346
+ 0.3
1347
+ 0.4
1348
+ (Pk
1349
+ Pref)/Pref
1350
+ 10
1351
+ 39
1352
+ 10
1353
+ 37
1354
+ 10
1355
+ 35
1356
+ 10
1357
+ 33
1358
+ 10
1359
+ 31
1360
+ 10
1361
+ 29
1362
+ 10
1363
+ 27
1364
+ Pk
1365
+ TreePM
1366
+ PM
1367
+ 10
1368
+ 2
1369
+ 10
1370
+ 1
1371
+ 100
1372
+ k/(h Mpc
1373
+ 1)
1374
+ 0.4
1375
+ 0.3
1376
+ 0.2
1377
+ 0.1
1378
+ 0.0
1379
+ 0.1
1380
+ 0.2
1381
+ 0.3
1382
+ 0.4
1383
+ (Pk
1384
+ Pref)/Pref
1385
+ Figure 9. In the left plot: power spectrum of the metric perturbation 𝐵𝑖 (the 𝑥 component) in a high_res simulation obtained with GrGadget. In the right
1386
+ plot: power spectrum of 𝜒.
1387
+ With respect to the pure PM implementation of Gevolution,
1388
+ the predictive power of GrGadget gives an improvement even on
1389
+ the scales sampled by the mesh. This is due to the fact that the
1390
+ energy-momentum tensor, that sources the equations of the fields
1391
+ that represent the perturbations of the metric, is computed from a
1392
+ fully non-linear distribution of particles, with gravity being resolved
1393
+ down to a much smaller softening length and not down to the mesh
1394
+ size. This may be very useful, e.g., when assessing the possibility of
1395
+ detecting the frame-dragging effect of a rotating dark-matter halo, if
1396
+ not of a spiral galaxy (Bruni et al. 2014). Furthermore, this code is a
1397
+ development of the widely used Gadget-4 code, and because the PM
1398
+ sector of the code is called only by the computation of the gravity
1399
+ force, our code can be easily extended to simulations of galaxies or
1400
+ galaxy clusters by switching on the hydrodynamics, star formation
1401
+ and feedback sectors. All the physics described by these sectors can
1402
+ safely be treated in the Newtownian limit; one should in principle
1403
+ MNRAS 000, 1–14 (2022)
1404
+
1405
+ 12
1406
+ E. Quintana-Miranda et al.
1407
+ 102
1408
+ 103
1409
+ 104
1410
+ P(k)/(Mpc3h−3)
1411
+ camb
1412
+ GrGadget TreePM (rb=6.0)
1413
+ GrGadget TreePM (rb=3.0)
1414
+ GrGadget TreePM (rb=1.5)
1415
+ Gadget4 TreePM
1416
+ 10−2
1417
+ 10−1
1418
+ 100
1419
+ k/(hMpc−1)
1420
+ −0.10
1421
+ −0.05
1422
+ 0.00
1423
+ 0.05
1424
+ 0.10
1425
+ (P(k) − P(k)Gadget4)/P(k)Gadget4
1426
+ Nyquist freq.
1427
+ Matter power spectrum z = 0.50
1428
+ Figure 10. Power spectrum of matter density for Gadget-4 and GrGadget,
1429
+ on a N256 simulation configuration. The upper panel shows the absolute value
1430
+ and the lower panel the relative difference with respect to Gadget-4’s TreePM.
1431
+ Different shades of blue indicate different values of the gr-smoothing scale
1432
+ parameter 𝑟𝑏 = 1.5, 3, 6 in units of 𝐿/𝑁 . The PM smoothing scale is 𝑟𝑎 =
1433
+ 1.5 𝐿/𝑁 . The power spectra in this plot are computed beyond the Nyquist
1434
+ frequency to show the convergence of the matter distribution correlations for
1435
+ distances below the grid resolution, the Tree regime.
1436
+ add thermal energy of gas particles to the energy-momentum tensor,
1437
+ but while this extension is straightforward, it is likely to provide a
1438
+ negligible contribution.
1439
+ This is, for our group, a further step in the construction of an
1440
+ ecosystem of simulation codes and post-processing tools for model-
1441
+ ing the evolution of structure in the Universe, with the aim of making
1442
+ predictions for precision cosmology. Sub-percent accuracy in cos-
1443
+ mological predictions, that matches the smallness of the statistical
1444
+ error that will be obtained with forthcoming galaxy surveys men-
1445
+ tioned in the Introduction, can only be obtained taking into account
1446
+ relativistic effect (e.g. Lepori et al. 2020), and we can foresee that
1447
+ a self-consistent treatment of these effects (to within the required
1448
+ accuracy) will soon become the standard in cosmological simula-
1449
+ tions. These effects can also be added by post-processing Newtonian
1450
+ simulations, but a validation of these procedures requires validation
1451
+ against a more self-consistent approach. Conversely, a large com-
1452
+ munity is developing Gevolution in the direction of adding modi-
1453
+ fications of gravity, whose formulation is typically worked out in a
1454
+ general relativistic context. This line of development, coupled with
1455
+ a Newtonian treatment of modified gravity in the Tree code, would
1456
+ be precious in the formulation of tests of gravity, because relativistic
1457
+ effects may hide smoking-gun features of specific classes of modified
1458
+ gravity theories.
1459
+ APPENDIX A: CODE SCALING
1460
+ The code we presented in this work is the merging of two codes
1461
+ whose behaviour in terms of run-time scaling is well-known and
1462
+ characterized; since we did not modify the underlying algorithms, it
1463
+ is expected that the run-time scaling of our code follows that of the
1464
+ parent codes.
1465
+ However, the Libgevolution’s PM is obviously different from
1466
+ Gadget-4’s, and we added the translation of particles data from the
1467
+ host code to the target relativistic PM. Both this facts require that
1468
+ we establish the overall scaling of GrGadget in its fully-relativistic
1469
+ configuration and the overhead associated to both the relativistic PM
1470
+ and the interface between the two codes.
1471
+ In figure A1 we show the fraction of time spent in the PM in
1472
+ both the original and relativistic configurations as a function of the
1473
+ grid cell size (see the caption for details). The relativistic PM is an
1474
+ order of magnitude more expensive than the original Gadget-4’s
1475
+ Newtonian PM, although in absolute sense it is still either negligible
1476
+ or secondary in the simulation sets that have been tested (it reaches a
1477
+ maximum value of 16% at highest resolution, i.e. in the 𝑁 = 512,𝐿 =
1478
+ 250 Mpc/ℎ). However, it scales with both the resolution and the grid
1479
+ number as the original Newtonian PM does.
1480
+ Figures A2 and A3 report the scaling of run time in strong and
1481
+ weak scaling tests respectively for the total run time, the tree time
1482
+ and the PM time (left. middle and right panels in both figures; see the
1483
+ captions for details). As inferred from A1, the run-time and hence its
1484
+ scaling, are dominated by the Gadget-4’s Tree section.
1485
+ ACKNOWLEDGEMENTS
1486
+ We thank Julian Adamek for many fruitful discussions on gevolu-
1487
+ tion, Volker Springel for his comments on an early draft, Francesca
1488
+ Lepori, Marco Bruni, Marco Baldi and Emilio Bellini for discus-
1489
+ sions. Simulations were performed with the HOTCAT system of
1490
+ INAF (Taffoni et al. 2020; Bertocco et al. 2020). PM acknowledges
1491
+ partial support by a Fondo di Ricerca di Ateneo grant of University
1492
+ of Trieste.
1493
+ DATA AVAILABILITY
1494
+ The simulation codes presented in this paper are publicly available
1495
+ on github in the following path: https://github.com/GrGadget.
1496
+ REFERENCES
1497
+ Abbott B. P., et al., 2016, Phys. Rev. Lett., 116, 061102
1498
+ Adamek J., Durrer R., Kunz M., 2014, Classical and Quantum Gravity, 31,
1499
+ 234006
1500
+ Adamek J., Daverio D., Durrer R., Kunz M., 2016, Journal of Cosmology
1501
+ and Astroparticle Physics, 2016, 053
1502
+ Adamek J., Durrer R., Kunz M., 2017, J. Cosmology Astropart. Phys., 2017,
1503
+ 004
1504
+ Adamek J., et al., 2022, arXiv e-prints, p. arXiv:2211.12457
1505
+ Alam S., et al., 2021, J. Cosmology Astropart. Phys., 2021, 050
1506
+ Barnes J., Hut P., 1986, Nature, 324, 446
1507
+ Barrera-Hinojosa C., Li B., 2020, Journal of Cosmology and Astroparticle
1508
+ Physics, 2020, 007
1509
+ Barrera-Hinojosa C., Li B., Bruni M., hua He J., 2020, Vector modes in
1510
+ ΛCDM: the gravitomagnetic potential in dark matter haloes from rela-
1511
+ tivistic 𝑁 -body simulations (arXiv:2010.08257)
1512
+ Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291
1513
+ Bertocco S., et al., 2020, in Pizzo R., Deul E. R., Mol J. D., de Plaa J.,
1514
+ Verkouter H., eds, Astronomical Society of the Pacific Conference Series
1515
+ Vol. 527, Astronomical Data Analysis Software and Systems XXIX.
1516
+ p. 303 (arXiv:1912.05340)
1517
+ Borzyszkowski M., Bertacca D., Porciani C., 2017, MNRAS, 471, 3899
1518
+ Bruni M., Thomas D. B., Wands D., 2014, Phys. Rev. D, 89, 044010
1519
+ Capozziello S., De Laurentis M., 2012, Annalen der Physik, 524, 545
1520
+ Chisari N. E., Zaldarriaga M., 2011, Physical Review D, 83
1521
+ MNRAS 000, 1–14 (2022)
1522
+
1523
+ GrGadget
1524
+ 13
1525
+ 0.100
1526
+ 0.075
1527
+ 0.050
1528
+ 0.025
1529
+ 0.000
1530
+ 0.025
1531
+ 0.050
1532
+ 0.075
1533
+ 0.100
1534
+ (P(k)
1535
+ P(k)ref)/P(k)ref
1536
+ N=256
1537
+ L/N = 1 Mpc/h
1538
+ L/N = 1 Mpc/h
1539
+ L/N = 1 Mpc/h
1540
+ L/N = 1 Mpc/h
1541
+ L/N = 1 Mpc/h
1542
+ L/N = 1 Mpc/h
1543
+ N=512
1544
+ 0.100
1545
+ 0.075
1546
+ 0.050
1547
+ 0.025
1548
+ 0.000
1549
+ 0.025
1550
+ 0.050
1551
+ 0.075
1552
+ 0.100
1553
+ (P(k)
1554
+ P(k)ref)/P(k)ref
1555
+ L/N = 2 Mpc/h
1556
+ L/N = 2 Mpc/h
1557
+ L/N = 2 Mpc/h
1558
+ L/N = 2 Mpc/h
1559
+ L/N = 2 Mpc/h
1560
+ L/N = 2 Mpc/h
1561
+ Gadget4 TreePM
1562
+ GrGadget PM
1563
+ GrGadget TreePM
1564
+ 10
1565
+ 2
1566
+ 10
1567
+ 1
1568
+ 100
1569
+ k/(Mpc
1570
+ 1h)
1571
+ 0.100
1572
+ 0.075
1573
+ 0.050
1574
+ 0.025
1575
+ 0.000
1576
+ 0.025
1577
+ 0.050
1578
+ 0.075
1579
+ 0.100
1580
+ (P(k)
1581
+ P(k)ref)/P(k)ref
1582
+ 10
1583
+ 2
1584
+ 10
1585
+ 1
1586
+ 100
1587
+ k/(Mpc
1588
+ 1h)
1589
+ L/N = 4 Mpc/h
1590
+ L/N = 4 Mpc/h
1591
+ L/N = 4 Mpc/h
1592
+ L/N = 4 Mpc/h
1593
+ L/N = 4 Mpc/h
1594
+ L/N = 4 Mpc/h
1595
+ Figure 11. Matter power spectrum from cosmological simulations at 𝑧 = 0 using GrGadget (the blue lines) and compared to Gadget-4 (the red line) at 𝑧 = 0.
1596
+ The dotted line is obtained with a simulation in which only the PM is used to compute forces. The plots show the relative difference with respect to the power
1597
+ spectrum obtained with Gadget-4. The left column corresponds to simulations with 𝑁 = 256 grid points per dimension while for the right column 𝑁 = 512.
1598
+ The boxsize changes along the ranks so that for the top plots the resolution is the highest 𝐿/𝑁 ≈ 1 Mpc/ℎ, in the middle 𝐿/𝑁 ≈ 2 Mpc/ℎ and the bottom plots
1599
+ correspond to 𝐿/𝑁 ≈ 4 Mpc/ℎ. In all cases 𝑟𝑎 = 1.5 𝐿/𝑁 and 𝑟𝑏 = 3 𝐿/𝑁 . The grey dashed line indicate a 1% error.
1600
+ DESI Collaboration et al., 2016, arXiv e-prints, p. arXiv:1611.00036
1601
+ Daverio D., Hindmarsh M., Bevis N., 2015, Latfield2: A c++ library for
1602
+ classical lattice field theory (arXiv:1508.05610)
1603
+ Doré O., et al., 2014, arXiv e-prints, p. arXiv:1412.4872
1604
+ Event Horizon Telescope Collaboration et al., 2019, ApJ, 875, L1
1605
+ Ivezić Ž., et al., 2019, ApJ, 873, 111
1606
+ Krause E., et al., 2017, arXiv e-prints, p. arXiv:1706.09359
1607
+ Laureijs R., et al., 2011, arXiv e-prints, p. arXiv:1110.3193
1608
+ Lepori F., Adamek J., Durrer R., Clarkson C., Coates L., 2020, Monthly
1609
+ Notices of the Royal Astronomical Society, 497, 2078–2095
1610
+ MNRAS 000, 1–14 (2022)
1611
+
1612
+ 14
1613
+ E. Quintana-Miranda et al.
1614
+ 1
1615
+ 2
1616
+ 3
1617
+ 4
1618
+ 5
1619
+ 6
1620
+ 7
1621
+ 8
1622
+ L/N (Mpc/h)
1623
+ 10
1624
+ 2
1625
+ 10
1626
+ 1
1627
+ time_pm / time_total
1628
+ GR (N=256)
1629
+ Newton (N=256)
1630
+ GR (N=512)
1631
+ Newton (N=512)
1632
+ Figure A1. The fraction of PM time to the total running time. Relativistic runs
1633
+ are shown in blue while Newtonian runs are shown in red, whereas symbols
1634
+ distinguish the value of grid points per dimension 𝑁 (squares and circles for
1635
+ 𝑁 = 256 and 512 respectively). We plot the time fraction on the 𝑦–axis (log
1636
+ scale) vs the mesh resolution 𝐿/𝑁 on the 𝑥–axis.
1637
+ Planck Collaboration et al., 2020, A&A, 641, A6
1638
+ Puchwein E., Baldi M., Springel V., 2013, MNRAS, 436, 348
1639
+ Sefusatti E., Crocce M., Scoccimarro R., Couchman H. M. P., 2016, mnras,
1640
+ 460, 3624
1641
+ Silvestri A., Trodden M., 2009, Reports on Progress in Physics, 72, 096901
1642
+ Spergel D., et al., 2015, arXiv e-prints, p. arXiv:1503.03757
1643
+ Springel V., 2005, Monthly Notices of the Royal Astronomical Society, 364,
1644
+ 1105
1645
+ Springel V., Pakmor R., Zier O., Reinecke M., 2021, MNRAS, 506, 2871
1646
+ Taffoni G., Becciani U., Garilli B., Maggio G., Pasian F., Umana G., Smareglia
1647
+ R., Vitello F., 2020, in Pizzo R., Deul E. R., Mol J. D., de Plaa J.,
1648
+ Verkouter H., eds, Astronomical Society of the Pacific Conference Series
1649
+ Vol. 527, Astronomical Data Analysis Software and Systems XXIX.
1650
+ p. 307 (arXiv:2002.01283)
1651
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
1652
+ MNRAS 000, 1–14 (2022)
1653
+
1654
+ GrGadget
1655
+ 15
1656
+ 25
1657
+ 50
1658
+ 75
1659
+ 100
1660
+ 125
1661
+ 150
1662
+ 175
1663
+ 200
1664
+ # process
1665
+ 25
1666
+ 50
1667
+ 75
1668
+ 100
1669
+ 125
1670
+ 150
1671
+ 175
1672
+ 200
1673
+ speedup x processes_pivot
1674
+ Strong Scalability (Total time)
1675
+ N = 128, L=250
1676
+ N = 128, L=500
1677
+ N = 128, L=1000
1678
+ N = 128, L=2000
1679
+ N = 256, L=250
1680
+ N = 256, L=500
1681
+ N = 256, L=1000
1682
+ N = 256, L=2000
1683
+ N = 512, L=250
1684
+ N = 512, L=500
1685
+ N = 512, L=1000
1686
+ N = 512, L=2000
1687
+ ideal
1688
+ 25
1689
+ 50
1690
+ 75
1691
+ 100
1692
+ 125
1693
+ 150
1694
+ 175
1695
+ 200
1696
+ # process
1697
+ 25
1698
+ 50
1699
+ 75
1700
+ 100
1701
+ 125
1702
+ 150
1703
+ 175
1704
+ 200
1705
+ speedup x processes_pivot
1706
+ Strong Scalability (PM time)
1707
+ N = 128, L=250
1708
+ N = 128, L=500
1709
+ N = 128, L=1000
1710
+ N = 128, L=2000
1711
+ N = 256, L=250
1712
+ N = 256, L=500
1713
+ N = 256, L=1000
1714
+ N = 256, L=2000
1715
+ N = 512, L=250
1716
+ N = 512, L=500
1717
+ N = 512, L=1000
1718
+ N = 512, L=2000
1719
+ ideal
1720
+ 25
1721
+ 50
1722
+ 75
1723
+ 100
1724
+ 125
1725
+ 150
1726
+ 175
1727
+ 200
1728
+ # process
1729
+ 25
1730
+ 50
1731
+ 75
1732
+ 100
1733
+ 125
1734
+ 150
1735
+ 175
1736
+ 200
1737
+ speedup x processes_pivot
1738
+ Strong Scalability (Tree time)
1739
+ N = 128, L=250
1740
+ N = 128, L=500
1741
+ N = 128, L=1000
1742
+ N = 128, L=2000
1743
+ N = 256, L=250
1744
+ N = 256, L=500
1745
+ N = 256, L=1000
1746
+ N = 256, L=2000
1747
+ N = 512, L=250
1748
+ N = 512, L=500
1749
+ N = 512, L=1000
1750
+ N = 512, L=2000
1751
+ ideal
1752
+ Figure A2. Strong-scaling test. We present the code scaling as the number 𝑃 of MPI tasks is increased while running the same simulation set-up. All the results
1753
+ refer to GrGadget, i.e. to the configuration with fully-relativistic PM. On the 𝑥–axis 𝑃 increases from 24 to 192, by ×2 steps. On the 𝑦–axis we report the
1754
+ speed-up (normalized so that the ideal speed-up for 𝑃 = 1 is 1) for the total running time, the time spent in the PM and the time spent in the Tree on the Left,
1755
+ Middle and Right panels respectively. Note that the ideal behaviour (black dotted line) would result in a linear speed-up. The PM data includes the translation of
1756
+ particles data from Gadget-4 to Libgevolution. We show the results for 𝑁 = 128, 256 and 512 (solid, dashed and dot–dashed lines respectively) for 4 different
1757
+ box sizes (i.e. mass resolutions), 𝐿 = 250, 500, 1000 and 2000 Mpc/ℎ (circles, squares and stars respectively). See the discussion in Appendix A for details.
1758
+ 25
1759
+ 50
1760
+ 75
1761
+ 100
1762
+ 125
1763
+ 150
1764
+ 175
1765
+ 200
1766
+ # process
1767
+ 1.0
1768
+ 1.1
1769
+ 1.2
1770
+ 1.3
1771
+ 1.4
1772
+ time / time_pivot
1773
+ Weak scalability (Total time)
1774
+ N = 128->256, L = 250->500
1775
+ N = 128->256, L = 500->1000
1776
+ N = 128->256, L = 1000->2000
1777
+ N = 256->512, L = 250->500
1778
+ N = 256->512, L = 500->1000
1779
+ N = 256->512, L = 1000->2000
1780
+ ideal
1781
+ 25
1782
+ 50
1783
+ 75
1784
+ 100
1785
+ 125
1786
+ 150
1787
+ 175
1788
+ 200
1789
+ # process
1790
+ 1.0
1791
+ 1.2
1792
+ 1.4
1793
+ 1.6
1794
+ 1.8
1795
+ 2.0
1796
+ time / time_pivot
1797
+ Weak scalability (PM time)
1798
+ N = 128->256, L = 250->500
1799
+ N = 128->256, L = 500->1000
1800
+ N = 128->256, L = 1000->2000
1801
+ N = 256->512, L = 250->500
1802
+ N = 256->512, L = 500->1000
1803
+ N = 256->512, L = 1000->2000
1804
+ ideal
1805
+ 25
1806
+ 50
1807
+ 75
1808
+ 100
1809
+ 125
1810
+ 150
1811
+ 175
1812
+ 200
1813
+ # process
1814
+ 1.00
1815
+ 1.05
1816
+ 1.10
1817
+ 1.15
1818
+ 1.20
1819
+ 1.25
1820
+ 1.30
1821
+ 1.35
1822
+ time / time_pivot
1823
+ Weak scalability (Tree time)
1824
+ N = 128->256, L = 250->500
1825
+ N = 128->256, L = 500->1000
1826
+ N = 128->256, L = 1000->2000
1827
+ N = 256->512, L = 250->500
1828
+ N = 256->512, L = 500->1000
1829
+ N = 256->512, L = 1000->2000
1830
+ ideal
1831
+ Figure A3. Weak-scaling test. We present the code scaling as the number 𝑃 of MPI tasks is increased for a proportionally increasing problem, then keeping
1832
+ constant the particles–per–task occupancy. All the results refer to GrGadget, i.e. to the configuration with fully-relativistic PM. On the 𝑥–axis 𝑃 increases from
1833
+ 24 to 192 with only 2 test cases. On the 𝑦–axis we report the speed-up for the total running time, the time spent in the PM and the time spent in the Tree on the
1834
+ Left, Middle and Right panels respectively. Note that the ideal behaviour would result in a constant running time (horizontal dotted black line). The PM data
1835
+ includes the translation of particles data from Gadget-4 to Libgevolution. We show the results for two cases: from 𝑁 = 128, to 𝑁 = 256 (solid lines with
1836
+ circles), and from 𝑁 = 256, to 𝑁 = 512 (dashed lines with squares). Each of the two cases has been run for three different box sizes (i.e. mass resolutions):
1837
+ 𝐿 = 250 → 𝐿 = 500 Mpc/ℎ, 𝐿 = 500 → 𝐿 = 1000 Mpc/ℎ and 𝐿 = 1000 → 𝐿 = 2000 Mpc/ℎ (red, green and blue colors respectively). See the discussion in
1838
+ Appendix A for details.
1839
+ MNRAS 000, 1–14 (2022)
1840
+
UdFKT4oBgHgl3EQfli6N/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
V9E2T4oBgHgl3EQfYAcW/content/tmp_files/2301.03849v1.pdf.txt ADDED
@@ -0,0 +1,3000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A UNIVERSAL FRAMEWORK FOR ENTANGLEMENT
2
+ DETECTION UNDER GROUP SYMMETRY
3
+ SANG-JUN PARK, YEONG-GWANG JUNG, JEONGEUN PARK,
4
+ AND SANG-GYUN YOUN
5
+ ABSTRACT. One of the most fundamental questions in quantum infor-
6
+ mation theory is PPT-entanglement of quantum states, which is an NP-
7
+ hard problem in general. In this paper, however, we prove that all PPT
8
+ (πA ⊗ πB)-invariant quantum states are separable if and only if all ex-
9
+ tremal unital positive (πA, πB)-covariant maps are decomposable where
10
+ πA, πB are unitary representations of a compact group and πA is irre-
11
+ ducible. Moreover, an extremal unital positive (πB, πA)-covariant map
12
+ L is decomposable if and only if L is completely positive or completely
13
+ copositive. We apply the results to prove that all PPT quantum channels
14
+ of the form
15
+ Φ(ρ) = aρ + bρT + cTr(ρ)
16
+ d
17
+ Idd + (1 − a − b − c)diag(ρ)
18
+ are entanglement-breaking, and that all A-BC PPT (U⊗U⊗U)-invariant
19
+ tripartite quantum states are A-BC separable. The former resolves some
20
+ open questions raised in [DFV08, KMS20], and the latter is a strong
21
+ contrast to the fact that there exist PPT-entangled (U ⊗U ⊗U)-invariant
22
+ tripartite Werner states [EW01].
23
+ 1. INTRODUCTION
24
+ Quantum entanglement is one of the most non-classical manifestations of
25
+ quantum formalism and is considered a key resource for quantum communi-
26
+ cation. Indeed, quantum entanglement plays crucial roles in the existence of
27
+ Bell correlations [Bel64, Wer89], quantum cryptography [Eke91, JSW+00,
28
+ TBZG00, NPW+00], superdense coding [BW92, MWKZ96], quantum tele-
29
+ portation [BBC+93, BPM+97], entanglement-assisted classical communi-
30
+ cation [BSST99], and computational supremacy for communication com-
31
+ plexity problems [Bra03, BvDHT99, C¯D13].
32
+ The question of whether a given quantum state is entangled or separa-
33
+ ble is of fundamental importance in quantum information theory(QIT). It
34
+ turned out that this question is NP-hard in general [Gur03, Gha10], so it is
35
+ unnatural to expect an efficient general scheme to characterize quantum en-
36
+ tanglement. Nevertheless, there have been numerous efforts to characterize
37
+ separability in some subclasses of quantum states. For example, a quantum
38
+ 1
39
+ arXiv:2301.03849v1 [math-ph] 10 Jan 2023
40
+
41
+ 2
42
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
43
+ state ρ ∈ D(HA ⊗ HB) of positive partial transpose (PPT) is separable if
44
+ dim(HA) × dim(HB) ≤ 6 [HHH96, Wor76b] and, moreover, PPT implies
45
+ separability in some bipartite or multipartite systems of low-rank [KCKL00,
46
+ HLVC00, EW01, C¯D13]. Classification of entanglement of GHZ states has
47
+ also been studied in various contexts [Kay11, G¨11, HK16a, HK16b]. Note
48
+ that any PPT entangled state is bound entangled, which is applicable to
49
+ perform nonclassical tasks [HHH99, VW02, Mas06] and to produce secure
50
+ cryptographic key [HHHO05, HHHO09, HPHH08].
51
+ In this paper, we restrict our interests to the so-called invariant quantum
52
+ states in a general context of compact group symmetries. More precisely,
53
+ for unitary representations πA : G → B(HA) and πB : G → B(HB) of
54
+ a compact group G, a bipartite quantum state ρ ∈ D(HA ⊗ HB) is called
55
+ (πA ⊗ πB)-invariant if
56
+ (πA(x) ⊗ πB(x))ρ = ρ(πA(x) ⊗ πB(x))
57
+ (1.1)
58
+ for all x ∈ G. Werner states and isotropic states are standard examples of in-
59
+ variant quantum states for fundamental unitary group symmetries, and their
60
+ separability was characterized in [Wer89] and [HH99], respectively. Sep-
61
+ arability of invariant quantum states has been studied extensively for vari-
62
+ ous group symmetries [EW01, UDUPR07, DPR07, KCL05, TG09, AN14,
63
+ SN21, CKK+21].
64
+ The dual objects of invariant quantum states are the so-called (πA, πB)-
65
+ covariant quantum channels, which are completely positive trace-preserving
66
+ (CPTP) maps L : B(HA) → B(HB) satisfying
67
+ L(πA(x)XπA(x)T) = πB(x)L(X)πB(x)∗
68
+ (1.2)
69
+ for all X ∈ B(HB) and x ∈ G. Indeed, for a linear map L : B(HA) →
70
+ B(HB) and its normalized Choi matrix CL =
71
+ 1
72
+ dA
73
+
74
+ i,j=1 eij ⊗ L(eij), the
75
+ given map L is (πA, πB)-covariant if and only if CL is (πA ⊗ πB)-invariant
76
+ (Corollary 2.4).
77
+ One of the key observations of this paper is that all PPT (πA ⊗ πB)-
78
+ invariant quantum states are separable if and only if all (πB, πA)-covariant
79
+ positive maps are decomposable. If πA is irreducible, then the following
80
+ three statements are equivalent (Corollary 3.8):
81
+ • All PPT (πA⊗πB)-invariant quantum states are separable (PPT=SEP).
82
+ • All positive (πB, πA)-covariant maps are decomposable (POS=DEC).
83
+ • All PPT (πA, πB)-covariant quantum channels are entanglement-
84
+ breaking (PPT=EB).
85
+ Moreover, it is enough to consider only extremal elements (Theorem 3.9)
86
+ and, in particular, an extremal positive unital (πB, πA)-covariant linear map
87
+ L is decomposable if and only if L is completely positive (CP) or com-
88
+ pletely copositive (CCP) (Theorem 3.11).
89
+
90
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
91
+ 3
92
+ Our framework focusing on decomposability of extremal positive unital
93
+ (πB, πA)-covariant maps is applicable to study PPT entanglement for con-
94
+ crete examples. In Section 4, we prove that EB property coincides with PPT
95
+ property, i.e. PPT=EB holds for any quantum channels of the form
96
+ Φ(ρ) = aρ + bρT + cTr(ρ)
97
+ d
98
+ Idd + (1 − a − b − c)diag(ρ).
99
+ (1.3)
100
+ where diag(X) =
101
+ d
102
+
103
+ i=1
104
+ Xiieii for X = (Xij)1≤i,j≤d. An important observa-
105
+ tion is that the quantum channels of the form (1.3) are irreducibly covariant
106
+ channels with respect to the standard representation of the signed symmetric
107
+ group (or the hyperoctahedral group) Hd (Lemma 4.3). Furthermore, we
108
+ characterize all positive unital covariant maps of the form (1.3) (Theorem
109
+ 4.5) and our main theorem (Theorem 3.9) allows us to focus only on eight
110
+ extremal positive unital covariant maps to detect EB property for quantum
111
+ channels of the form (1.3). Our results strengthen Section 5 and Section 6
112
+ of [KMS20] to a larger class, and resolve some of open questions posed in
113
+ [KMS20] and [DFV08].
114
+ In Section 5, we focus on the question of whether all PPT quantum states
115
+ are separable, i.e. PPT=SEP problem for some tripartite quantum states
116
+ with unitary group symmetries. In Section 5.1, we present explicit positive
117
+ non-decomposable covariant linear maps L : Md(C) → Md2(C) satisfying
118
+ L(UXU T) = (U ⊗ U)L(X)(U ⊗ U)∗
119
+ (1.4)
120
+ for all d×d unitary matrices U ∈ Ud and X ∈ Md(C). This result gives an-
121
+ other explanation of the fact PPT̸=SEP for tripartite Werner states [EW01],
122
+ which implies the existence of PPT entangled quantum states ρ ∈ Md3(C)
123
+ satisfying
124
+ (U ⊗ U ⊗ U)ρ = ρ(U ⊗ U ⊗ U)
125
+ (1.5)
126
+ for all U ∈ U(d). On the other hand, in Section 5.2, we show that a
127
+ strong contrast PPT=SEP holds for quantum orthogonally invariant quan-
128
+ tum states. More generally, we prove that any PPT tripartite quantum state
129
+ ρ ∈ Md3(C) satisfying
130
+ (U ⊗ U ⊗ U)ρ = ρ(U ⊗ U ⊗ U)
131
+ (1.6)
132
+ for all unitary matrices U ∈ U(d) is separable (Theorem 5.6).
133
+ 2. PRELIMINARIES
134
+ 2.1. Separability and PPT property. In this paper, we focus only on finite-
135
+ dimensional complex Hilbert spaces H = Cd, HA = CdA, HB = CdB, and
136
+ their direct sums and tensor products. Recall that a quantum state ρ ∈ B(H)
137
+ is a positive matrix with Tr(ρ) = 1 and the set of all quantum states in B(H)
138
+
139
+ 4
140
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
141
+ is denoted by D(H). A bipartite positive operator X ∈ B(HA⊗HB) is said
142
+ to be of positive partial transpose (PPT) if
143
+ (idA ⊗ TB)(X) ≥ 0
144
+ (2.1)
145
+ where TB is the transpose map on B(HB), and X is called separable if
146
+ there exist families of positive operators (XA
147
+ i )n
148
+ i=1 and (XB
149
+ i )n
150
+ i=1 such that
151
+ X =
152
+ n
153
+
154
+ i=1
155
+ XA
156
+ i ⊗ XB
157
+ i .
158
+ (2.2)
159
+ In particular, if ρ ∈ D(HA ⊗ HB) is a separable quantum state, then there
160
+ exists a probability distribution (pi)n
161
+ i=1 and a family of product quantum
162
+ states (ρA
163
+ i ⊗ ρB
164
+ i )n
165
+ i=1 such that
166
+ ρ =
167
+ n
168
+
169
+ i=1
170
+ piρA
171
+ i ⊗ ρB
172
+ i .
173
+ (2.3)
174
+ It is clear that separability implies PPT property, but the converse is not
175
+ true in general. More precisely, all PPT quantum states in B(HA ⊗ HB)
176
+ are separable if and only if dA · dB ≤ 6 [Per96, HHH96, Wor76a, Cho82].
177
+ Moreover, it is known that the separability question is NP-hard [Gur03,
178
+ Gha10].
179
+ For v ∈ H, we define linear maps |v⟩ : C → H given by λ �→ λv and
180
+ ⟨v| : H → C given by w �→ ⟨v|w⟩ where ⟨v|w⟩ is the inner product of
181
+ v, w ∈ H whose first variable is the anti-linear part. In particular, |Ω⟩ =
182
+ �d
183
+ i=1
184
+ 1
185
+
186
+ d|i⟩⊗|i⟩ ∈ H⊗H is called the maximally entangled Bell state where
187
+ {|1⟩, |2⟩, · · · , |d⟩} is the standard orthonormal basis of H. The matrix unit
188
+ |i⟩⟨j| and the product vector |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |ik⟩ are also denoted by eij
189
+ and |i1i2 · · · ik⟩ respectively.
190
+ The (normalized) Choi matrix of a linear map L : B(HA) → B(HB) is
191
+ defined by
192
+ CL = (idA ⊗ L)(|ΩA⟩⟨ΩA|) = (idA ⊗ L)
193
+
194
+ 1
195
+ dA
196
+ dA
197
+
198
+ i,j=1
199
+ eij ⊗ eij
200
+
201
+ (2.4)
202
+ = 1
203
+ dA
204
+ dA
205
+
206
+ i,j=1
207
+ eij ⊗ L(eij) ∈ B(HA ⊗ HB).
208
+ (2.5)
209
+ Recall that L is completely positive (CP) if and only if the Choi matrix CL
210
+ is positive, and L is trace-preserving (TP) if and only if (idA ⊗TrB)(CL) =
211
+ 1
212
+ dA
213
+ IdA. In particular, if Φ : B(HA) → B(HB) is a CPTP linear map, i.e. a
214
+ quantum channel in the Schr¨odinger’s picture, then the Choi matrix CΦ is a
215
+ quantum state in D(HA ⊗ HB). We call this channel-state duality.
216
+
217
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
218
+ 5
219
+ Let L : B(HA) → B(HB) be a linear map. Then L is called completely
220
+ copositive (CCP) if TB ◦L is completely positive, L is called decomposable
221
+ if there exist a CP map L1 and a CCP map L2 such that L = L1 + L2, and
222
+ L is called PPT if L is both CP and CCP. Thus, L is PPT if and only if CL
223
+ is PPT.
224
+ Another important property of quantum channels is the entanglement-
225
+ breaking (EB) property. A quantum channel Φ : B(HA) → B(HB) is
226
+ called EB if the Choi matrix CΦ is a separable quantum state. Note that any
227
+ EB quantum channel is PPT, but the converse is not true in general.
228
+ 2.2. Invariance and covariance. In this section, we introduce two impor-
229
+ tant objects to discuss conservation of symmetry, namely invariant opera-
230
+ tors and covariant linear maps. Let us suppose that G is a compact group
231
+ throughout this paper. A continuous function π : G → U(Hπ) is called a
232
+ (finite-dimensional) unitary representation of G if it is a group homomor-
233
+ phism, i.e.,
234
+ π(xy) = π(x)π(y)
235
+ (2.6)
236
+ for all x, y ∈ G. In this case, an operator X ∈ B(Hπ) is called π-invariant
237
+ if
238
+ π(x)Xπ(x)∗ = X
239
+ (2.7)
240
+ for all x ∈ G. The set of all π-invariant operators, the set of all π-invariant
241
+ quantum states, and the set of π-invariant PPT quantum states in B(Hπ) are
242
+ denoted by Inv(π), InvQS(π), and InvPPTQS(π), respectively. A unitary
243
+ representation π : G → B(Hπ) is called irreducible if Inv(π) = C · IdHπ.
244
+ If π is irreducible, so is the contragredient representation π : G → U(Hπ)
245
+ of π which is defined by π(x) = π(x) for all x ∈ G.
246
+ For unitary representations πA : G → U(HA) and πB : G → U(HB), the
247
+ tensor representation πA ⊗ πB : G → U(HA ⊗ HB) is given by
248
+ (πA ⊗ πB)(x) = πA(x) ⊗ πB(x)
249
+ (2.8)
250
+ for all x ∈ G. The tensor representation πA ⊗ πB is not irreducible in
251
+ general, but admits the so-called irreducible decomposition, i.e. irreducible
252
+ representations σ1, σ2, · · · , σk of G such that
253
+ πA ⊗ πB ∼= σ1 ⊕ σ2 ⊕ · · · ⊕ σk.
254
+ (2.9)
255
+ Here, (σ1 ⊕ σ2 ⊕ · · · ⊕ σk)(x) is the block diagonal matrix of σ1(x), σ2(x),
256
+ · · · , σk(x) for all x ∈ G, and π ∼= π′ means that there exists a unitary V
257
+ such that π(x) = V π′(x)V ∗ for all x ∈ G. We say that the irreducible
258
+ decomposition (2.9) is multiplicity-free if σi ≇ σj for all i ̸= j. This prop-
259
+ erty was highlighted in [GBW21] in view of programmability of covariant
260
+
261
+ 6
262
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
263
+ quantum channels. More generally, we may rewrite (2.9) as
264
+ πA ⊗ πB ∼=
265
+ l
266
+
267
+ i=1
268
+ σi ⊗ Idmi
269
+ (2.10)
270
+ meaning that σi ̸∼= σj for all i ̸= j and each irreducible representation σi
271
+ appears mi times in the irreducible decomposition (2.9). In this case, we
272
+ have the following identification of Inv(πA ⊗ πB) as ∗-algebras [GBW21,
273
+ Lemma 6]:
274
+ Inv(πA ⊗ πB) ∼=
275
+ l
276
+
277
+ i=1
278
+ Idni ⊗ Mmi(C),
279
+ (2.11)
280
+ where ni = dim Hσi.
281
+ For unitary representations πA : G → B(HA) and πB : G → B(HB), a
282
+ linear map L : B(HA) → B(HB) is called (πA, πB)-covariant if
283
+ L(πA(x)Y πA(x)∗) = πB(x)L(Y )πB(x)∗
284
+ (2.12)
285
+ for all x ∈ G and Y ∈ B(HA), and let us denote by Cov(πA, πB) the space
286
+ of all (πA, πB)-covariant linear maps. Some subclasses of Cov(πA, πB) in
287
+ our interest are as follows:
288
+ • CovPos(πA, πB) is the set of all (πA, πB)-covariant positive maps,
289
+ • CovPos1(πA, πB) is the set of all (πA, πB)-covariant positive unital
290
+ maps,
291
+ • CovPosTP(πA, πB) is the set of all (πA, πB)-covariant positive TP
292
+ maps,
293
+ • CovQC(πA, πB) is the set of all (πA, πB)-covariant CPTP maps,
294
+ • CovPPTQC(πA, πB) is the set of all (πA, πB)-covariant PPT quan-
295
+ tum channels.
296
+ 2.3. Twirling operation. An averaging technique called the twirling op-
297
+ eration is a standard method to analyze invariant operators and covariant
298
+ linear maps. For a unitary representation π : G → U(H), we define a
299
+ twirling map Tπ : B(H) → Inv(π) by
300
+ Tπ(X) =
301
+
302
+ G
303
+ π(x)Xπ(x)∗dx
304
+ (2.13)
305
+ for all X ∈ B(H), where dx denotes the normalized Haar measure on G.
306
+ Then Tπ is unital CPTP, and its well-definedness, i.e. Tπ(X) ∈ Inv(π),
307
+ is thanks to the translation-invariance property of the Haar measure. Fur-
308
+ thermore, we have X ∈ Inv(π) if and only if Tπ(X) = X, which means
309
+ that Tπ is a projection (more precisely, a conditional expectation) onto the
310
+ ∗-subalgebra Inv(π) of B(H). Note that for any finite dimensional von
311
+ Neumann algebra M ⊂ Md(C), there is a unique TP conditional expec-
312
+ tation of Md(C) onto M [BO08, Lemma 1.5.11]. For example, the map
313
+
314
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
315
+ 7
316
+ X ∈ Mn ⊗ Mn �→
317
+ 1
318
+ nIdn ⊗ (Trn ⊗ idm)(X) is the unique TP conditional
319
+ expectation onto M = Idn ⊗ Mm. This observation allow us to get the
320
+ following explicit formula of the twirling map Tπ for the case M = Inv(π).
321
+ Proposition 2.1. Suppose that a unitary representation π : G → U(H)
322
+ has an irreducible decomposition of the form (2.10) with the identification
323
+ Inv(π) ∼= �l
324
+ i=1 Idni ⊗ Mmi(C) ⊆ B
325
+ ��l
326
+ i=1 Hi
327
+
328
+ . Let Πi be the orthogonal
329
+ projection from H onto Hi = Cni ⊗ Cmi. Then the twirling Tπ(X) of
330
+ X ∈ B(H) is given by
331
+ Tπ(X) =
332
+ l
333
+
334
+ i=1
335
+ 1
336
+ ni
337
+ Idni ⊗
338
+
339
+ (Trni ⊗ idmi)(ΠiXΠi)
340
+
341
+ .
342
+ (2.14)
343
+ In particular, if the irreducible decomposition of π is multiplicity-free, i.e.,
344
+ if mi ≡ 1 for all i = 1, 2, · · · , l, then
345
+ Tπ(X) =
346
+ l
347
+
348
+ i=1
349
+ Tr(ΠiX)
350
+ ni
351
+ Πi.
352
+ (2.15)
353
+ For unitary representations πA : G → U(HA) and πB : G → U(HB), the
354
+ twirling TπA,πBL of L : B(HA) → B(HB) is defined by
355
+ (TπA,πBL)(X) =
356
+
357
+ G
358
+ πB(x)∗L(πA(x)XπA(x)∗)πB(x) dx
359
+ (2.16)
360
+ for all X ∈ B(HA). Then similarly, the twirling operation TπA,πB is a well-
361
+ defined projection from B(B(HA), B(HB)) onto Cov(πA, πB).
362
+ Let us collect some useful properties of the twirling operations for the
363
+ next section.
364
+ Proposition 2.2. For any unitary representations πA and πB of G, the
365
+ twirling map TπA⊗πB preserves separability and PPT property of bipartite
366
+ operators. Furthermore, the twirling operation TπA,πB preserves positivity,
367
+ CP, TP, CCP, PPT, decomposability, and EB property of linear maps.
368
+ Proof. It is straightforward from the definitions and closedness of the spaces
369
+ associated with each of the properties mentioned above. For example, the
370
+ set of all decomposable linear maps L : B(HA) → B(HB) is closed in
371
+ B(B(HA), B(HB)) with respect to the natural (Euclidean) topology.
372
+
373
+ For a linear map L : B(HA) → B(HB), the adjoint map L∗ : B(HB) →
374
+ B(HA) of L is a linear map satisfying
375
+ Tr(L(X) Y ) = Tr(X L∗(Y ))
376
+ (2.17)
377
+ for all X ∈ B(HA) and Y ∈ B(HB). Recall that the adjoint operation
378
+ L �→ L∗ preserves positivity, CP, CCP, PPT, and decomposability.
379
+
380
+ 8
381
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
382
+ Proposition 2.3. Let π : G → U(H), πA : G → U(HA) and πB : G →
383
+ U(HB) be unitary representations of G. Then we have the following.
384
+ (1) Tr((TπX) Y ) = Tr(X(TπY )) for any X, Y ∈ B(H).
385
+ (2) TπA⊗πB◦(TA⊗idB) = (TA⊗idB)◦TπA⊗πB where TA is the transpose
386
+ on B(HA).
387
+ (3) (TπA,πBL)∗ = TπB,πA(L∗) for any linear map L : B(HA) → B(HB).
388
+ (4) The Choi matrix of TπA,πBL is given by TπA⊗πB (CL) for any linear
389
+ map L : B(HA) → B(HB).
390
+ Proof. (1) Since the Haar measure on the compact group G is invariant
391
+ under the inverse x �→ x−1, we have
392
+ Tr((TπX) Y ) =
393
+
394
+ G
395
+ Tr(π(x)Xπ(x−1)Y )dx
396
+ (2.18)
397
+ = Tr
398
+
399
+ X
400
+
401
+ G
402
+ π(x−1)Y π(x)dx
403
+
404
+ (2.19)
405
+ = Tr
406
+
407
+ X
408
+
409
+ G
410
+ π(x)Y π(x−1)dx
411
+
412
+ = Tr(X(TπY ))
413
+ (2.20)
414
+ for any X, Y ∈ B(H).
415
+ (2) It suffices to show the equality for product operators X = P ⊗Q, and
416
+ the conclusion follows immediately from the observation
417
+ πA(x)P TπA(x)∗ =
418
+
419
+ πA(x)PπA(x)T�T
420
+ .
421
+ (2.21)
422
+ (3) For any X ∈ B(HA) and Y ∈ B(HB), we have
423
+ Tr(X (TπB,πAL∗) (Y ))
424
+ (2.22)
425
+ =
426
+
427
+ G
428
+ Tr(XπA(x)∗L∗(πB(x)Y πB(x)∗)πA(x))dx
429
+ (2.23)
430
+ =
431
+
432
+ G
433
+ Tr(πB(x)∗L(πA(x)XπA(x)∗)πB(x) Y )dx
434
+ (2.24)
435
+ = Tr((TπA,πBL) (X) Y ),
436
+ (2.25)
437
+ which gives us the desired conclusion.
438
+ (4) First of all, note that
439
+ dA
440
+
441
+ i,j=1
442
+ (πA(x)eijπA(x)t) ⊗ (πB(x)L(eij)πB(x)∗)
443
+ (2.26)
444
+ =
445
+ dA
446
+
447
+ i,j=1
448
+ eij ⊗ (πB(x)L(πA(x)∗eijπA(x))πB(x)∗).
449
+ (2.27)
450
+
451
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
452
+ 9
453
+ for each x ∈ G. Indeed, the LHS (2.26) can be understood as
454
+ dA(idA ⊗ (AdπB(x) ◦ L))
455
+
456
+ (πA(x) ⊗ IdA)|ΩA⟩⟨ΩA|(πA(x)t ⊗ IdA)
457
+
458
+ ,
459
+ (2.28)
460
+ and the RHS (2.27) can be understood as
461
+ dA(idA ⊗ (AdπB(x) ◦ L)) ((IdA ⊗ πA(x)∗)|ΩA⟩⟨ΩA|(IdA ⊗ πA(x)))
462
+ (2.29)
463
+ where AdV (Y ) = V Y V ∗. Moreover, the so-called ricochet property
464
+ (X ⊗ IdA)|ΩA⟩ = (IdA ⊗ Xt)|ΩA⟩, X ∈ B(HA),
465
+ (2.30)
466
+ implies (2.28) = (2.29). Finally, taking the Haar integral on both sides com-
467
+ pletes the proof.
468
+
469
+ Combining Proposition 2.3 (2), (3), and (4) with the fact that both Inv(πA⊗
470
+ πB) and Cov(πA, πB) are the images of the twirling projections, we obtain
471
+ the following useful properties.
472
+ Corollary 2.4. Let X ∈ B(HA ⊗ HB) be a bipartite operator and L :
473
+ B(HA) → B(HB) be a linear map. Then
474
+ (1) X ∈ Inv(πA ⊗ πB) if and only if (TA ⊗ id)(X) ∈ Inv(πA ⊗ πB).
475
+ (2) L ∈ Cov(πA, πB) if and only if L∗ ∈ Cov(πB, πA).
476
+ (3) L ∈ Cov(πA, πB) if and only if CL ∈ Inv(πA ⊗ πB).
477
+ Remark 2.5. The results in Corollary 2.4 have been noted in various con-
478
+ texts, [EW01, Lemma 6], [GBW21, Lemma 11], and [LY22, Proposition
479
+ 5.1, Theorem 3.5] for examples. Moreover, extendibility to more general
480
+ contexts of compact quantum group symmetry was proved in [LY22].
481
+ 3. A FRAMEWORK TO CHARACTERIZE ENTANGLEMENT UNDER GROUP
482
+ SYMMETRY
483
+ Let us recall a result of Horodecki on the characterization of entangle-
484
+ ment [HHH96]: a bipartite quantum state ρ ∈ D(HA ⊗ HB) is separable if
485
+ and only if (idA ⊗ L)(ρ) ≥ 0 for all positive linear maps L : B(HB) →
486
+ B(HA). Indeed, by duality arguments, the authors showed that they are
487
+ also equivalent to seemingly a weaker condition ‘⟨ρ, L⟩ ≥ 0’. Here, the
488
+ dual pairing ⟨·, ·⟩ is defined by
489
+ ⟨X, N⟩ = Tr((idA ⊗ N)(X) |ΩA⟩⟨ΩA|) = Tr(XCN ∗)
490
+ (3.1)
491
+ for any operator X ∈ B(HA ⊗HB) and linear map N : B(HB) → B(HA).
492
+ In other words, positive linear maps play a crucial role as detectors for the
493
+ bipartite entanglement, in the sense that there should exist a positive linear
494
+ map L such that (id ⊗ L)(ρ) is non-positive whenever ρ is entangled.
495
+
496
+ 10
497
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
498
+ One technical issue in this characterization is that verifying whether a
499
+ linear map is positive or not is computationally intractable [Las10, NZ16].
500
+ However, one of the main purposes of this paper is to develop a universal
501
+ framework to characterize separability of invariant quantum states. The
502
+ key ideas is that, for ρ ∈ InvQS(πA ⊗ πB), it is enough to consider only
503
+ L ∈ CovPos(πB, πA) to investigate separability of ρ. Let us begin with a
504
+ simple and useful lemma.
505
+ Lemma 3.1. For any bipartite operator X ∈ B(HA ⊗ HB) and linear map
506
+ L : B(HB) → B(HA), we have
507
+ ⟨TπA⊗πBX, L⟩ = ⟨X, TπB,πAL⟩.
508
+ (3.2)
509
+ Proof. Thanks to Proposition 2.3, we have
510
+ ⟨TπA⊗πBX, L⟩ = Tr((TπA⊗πBX)CL∗)
511
+ (3.3)
512
+ = Tr(X(TπA⊗πBCL∗)) = Tr(XCL∗) = ⟨X, L⟩,
513
+ where L = (TπA,πBL∗)∗ = TπB,πAL.
514
+
515
+ Then Lemma 3.1 allows us to conclude that covariant positive linear
516
+ maps are enough to characterize separability of bipartite invariant quantum
517
+ states. We remark that the ideas of the following proof appeared already for
518
+ some specified symmetries [Kay11, G¨11, SN21].
519
+ Theorem 3.2. Let πA : G → B(HA) and πB : G → B(HB) be unitary
520
+ representations, and let ρ ∈ InvQS(πA⊗πB). The following are equivalent.
521
+ (1) ρ is a separable quantum state.
522
+ (2) (idA ⊗ L)(ρ) ≥ 0 in B(HA ⊗ HA) for any (πB, πA)-covariant pos-
523
+ itive linear map L : B(HB) → B(HA).
524
+ (3) ⟨ρ, L⟩ ≥ 0 for any (πB, πA)-covariant positive linear map L :
525
+ B(HB) → B(HA).
526
+ Proof. Two directions (1) ⇒ (2) and (2) ⇒ (3) are clear. For the last
527
+ direction (3) ⇒ (1), let us show that ⟨ρ, L⟩ ≥ 0 for all positive linear
528
+ maps L : B(HB) → B(HA). Indeed, since ρ is πA ⊗ πB-invariant and
529
+ TπB,πAL ∈ CovPos(πB, πA), we can apply Lemma 3.1 to obtain
530
+ ⟨ρ, L⟩ = ⟨TπA⊗πBρ, L⟩ = ⟨ρ, TπB,πAL⟩ ≥ 0.
531
+ (3.4)
532
+
533
+ From now on, let us focus on the question of whether PPT property coin-
534
+ cides with separability, i.e. PPT=SEP problem for invariant quantum states.
535
+ Recall that the dual notions of PPT property and separability correspond
536
+ to decomposability and positivity respectively. Indeed, many duality argu-
537
+ ments [Kye23] carry over into our framework, and the PPT=SEP problem
538
+
539
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
540
+ 11
541
+ in InvQS(πA ⊗ πB) is equivalent to the question whether all positive maps
542
+ are decomposable, i.e. POS=DEC problem in Cov(πB, πA).
543
+ Proposition 3.3. Let L : B(HB) → B(HA) be (πB, πA)-covariant. Then
544
+ (1) L is positive if and only if (idA ⊗ L)(ρ) ≥ 0 for any separable
545
+ ρ ∈ InvQS(πA ⊗ πB).
546
+ (2) L is decomposable if and only if (idA ⊗ L)(ρ) ≥ 0 for any PPT
547
+ ρ ∈ InvQS(πA ⊗ πB).
548
+ Proof. (1) Suppose (idA⊗L)(ρ) ≥ 0 for any separable ρ ∈ InvQS(πA⊗πB).
549
+ Then for every separable state ρ ∈ D(HA ⊗ HB), we have
550
+ ⟨ρ, L⟩ = ⟨ρ, TπB,πAL⟩ = ⟨TπA⊗πBρ, L⟩ ≥ 0
551
+ (3.5)
552
+ by Lemma 3.1 and by the separability of TπA⊗πBρ. Now positivity of L
553
+ follows from [EK00, Theorem 3.1]. The converse direction is clear.
554
+ (2) It is enough to repeat the arguments from (1) based on the following
555
+ duality result [Sr82]: L is decomposable if and only if ⟨ρ, L⟩ ≥ 0 for every
556
+ PPT state ρ.
557
+
558
+ Corollary 3.4. The following are equivalent:
559
+ (1) PPT=SEP in InvQS(πA ⊗ πB).
560
+ (2) POS=DEC in Cov(πB, πA).
561
+ Proof. ((1) ⇒ (2)) If L ∈ CovPos(πB, πA), then (idA ⊗ L)(ρ) ≥ 0 for
562
+ every separable (hence every PPT) state ρ ∈ InvQS(πA ⊗ πB). Thus, L is
563
+ decomposable by Proposition 3.3.
564
+ ((2) ⇒ (1)) If ρ ∈ InvQS(πA ⊗πB) is a PPT state, then (idA ⊗L)(ρ) ≥ 0
565
+ for every decomposable (hence every positive) linear map L ∈ Cov(πB, πA).
566
+ Thus, ρ is separable by Theorem 3.2.
567
+
568
+ Note that PPT=SEP in InvQS(πA ⊗ πB), or equivalently POS=DEC in
569
+ Cov(πB, πA), implies that PPT property coincides with the entanglement-
570
+ breaking property, i.e. PPT=EB in CovQC(πA, πB). Moreover, we have
571
+ the following characterization of EB property for Φ ∈ CovQC(πA, πB) by
572
+ Corollary 2.4 (3).
573
+ Corollary 3.5. Let Φ ∈ CovQC(πA, πB). Then the following are equiva-
574
+ lent.
575
+ (1) Φ is entanglement-breaking.
576
+ (2) CL◦Φ = (id ⊗ L)(CΦ) ≥ 0 for any L ∈ CovPos(πB, πA).
577
+ (3) L ◦ Φ is completely positive for any L ∈ CovPos(πB, πA).
578
+ To summarize, we have
579
+ PPT=SEP in InvQS(πA ⊗ πB) ⇔ DEC=POS in Cov(πB, πA),
580
+
581
+ 12
582
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
583
+ and these conditions imply PPT=EB in CovQC(πA, πB). One might ask
584
+ whether all these three problems are equivalent, but one technical issue is
585
+ that CovQC(πA, πB) is not identified with InvQS(πA ⊗πB) in general. This
586
+ leads us to question whether the (reduced) channel-state duality
587
+ �C : CovQC(πA, πB) → InvQS(πA ⊗ πB)
588
+ (3.6)
589
+ is bijective. The channel-state duality �C is not surjective in general, but it
590
+ is known to be the case if πA is irreducible, as already noted in [GBW21,
591
+ Lemma 15]. Moreover, we prove that the converse is also true, i.e. the
592
+ channel-state duality �C is bijective if and only if πA is irreducible. Let us
593
+ start with the following lemma.
594
+ Lemma 3.6. Let πA : G → U(HA) and πB : G → U(HB) be unitary
595
+ representations of G and let L ∈ Cov(πA, πB).
596
+ (1) If πB is irreducible, then L(IdA) = c IdB for some constant c.
597
+ (2) If πA is irreducible, then there is a constant c such that Tr(L(X)) =
598
+ c Tr(X) for X ∈ B(HA).
599
+ Proof.
600
+ (1) From the irreducibility of πB and the identity
601
+ πB(x)L(IdA)πB(x)∗ = L(πA(x)πA(x)∗) = L(IdA),
602
+ (3.7)
603
+ we have L(IdA) ∈ Inv(πB) = C · IdB.
604
+ (2) The adjoint map L∗ is (πB, πA)-covariant by Corollary 2.4 (2), so
605
+ L∗(IdB) = c IdA for some c by (1). In this case, we have
606
+ Tr(L(X)) = Tr(L(X) IdB) = Tr(X L∗(IdB)) = c Tr(X)
607
+ (3.8)
608
+ for any X ∈ B(HA).
609
+
610
+ Now, let us apply Lemma 3.6 (2) to prove that the channel-state duality
611
+ �C : CovQC(πA, πB) → InvQS(πA ⊗ πB) should be bijective if and only if
612
+ πA is irreducible.
613
+ Proposition 3.7. Let πA : G → U(HA) and πB : G → U(HB) be unitary
614
+ representations of G and let L ∈ Cov(πB, πA). Then the channel-state
615
+ duality
616
+ �C : CovQC(πA, πB) → InvQS(πA ⊗ πB)
617
+ (3.9)
618
+ is bijective if and only if πA is irreducible.
619
+ Proof. Let us prove the if part first. For any ρ ∈ InvQS(πA ⊗ πB) there
620
+ exists completely positive L ∈ Cov(πA, πB) such that CL = ρ by Corollary
621
+ 2.4 (3). Moreover, L should be trace-preserving. Indeed, irreducibility of
622
+
623
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
624
+ 13
625
+ πA implies that there exists a constant c such that Tr(L(X)) = cTr(X) for
626
+ all X ∈ B(HA) by Lemma 3.6 (2), and we have
627
+ c = c
628
+ dA
629
+ dA
630
+
631
+ i=1
632
+ Tr(eii) = 1
633
+ dA
634
+ dA
635
+
636
+ i=1
637
+ Tr(eii ⊗ L(eii)) = Tr(CL) = 1.
638
+ (3.10)
639
+ Conversely, if we assume that πA = π(1)
640
+ A ⊕ π(2)
641
+ A with HA = H(1)
642
+ A ⊕ H(2)
643
+ A
644
+ and if Π1 is the orthogonal projection from HA onto H(1)
645
+ A , then we can take
646
+ a CP non-TP map L : B(HA) → B(HB) given by
647
+ L(X) =
648
+ dA
649
+ dB · dim H(1)
650
+ A
651
+ Tr(Π1X)IdB
652
+ (3.11)
653
+ whose Choi matrix is
654
+ CL =
655
+
656
+ 1
657
+ dim H(1)
658
+ A
659
+ Π1
660
+
661
+
662
+ � 1
663
+ dB
664
+ IdB
665
+
666
+ ∈ InvQS(πA ⊗ πB).
667
+ (3.12)
668
+
669
+ Corollary 3.8. Let πA : G → U(HA) and πB : G → U(HB) be unitary
670
+ representations of G and suppose that πA is irreducible. Then the following
671
+ are equivalent.
672
+ (1) PPT=SEP in InvQS(πA ⊗ πB).
673
+ (2) PPT=EB in CovQC(πA, πB).
674
+ (3) POS=DEC in CovPos1(πB, πA).
675
+ Proof. It is enough to note that Lemma 3.6 allows us to focus on a smaller
676
+ convex set CovQC(πA, πB) and CovPos1(πB, πA) rather than Cov(πA, πB)
677
+ and CovPos(πB, πA), respectively, in Corollary 3.4.
678
+
679
+ Moreover, we prove that the extreme points of CovPos1(πB, πA) are enough
680
+ for the entanglement detection, which we propose as a universal machinery
681
+ to characterize entangled invariant quantum states with general compact
682
+ group symmetries. Let us denote by Ext(S) the set of all extreme points of
683
+ a convex set S.
684
+ Theorem 3.9. Let πA : G → B(HA) and πB : G → B(HB) be unitary
685
+ representations, and suppose that πA is irreducible. Let ρ ∈ InvQS(πA ⊗
686
+ πB) and Φ ∈ CovQC(πA, πB) such that CΦ = ρ from Proposition 3.7. The
687
+ following are equivalent.
688
+ (1) ρ is separable.
689
+ (2) (id ⊗ L)(ρ) ≥ 0 for any L ∈ CovPos1(πB, πA).
690
+ (3) (id ⊗ L)(ρ) ≥ 0 for any L ∈ Ext (CovPos1(πB, πA)).
691
+ (4) Φ is entanglement-breaking.
692
+ (5) L ◦ Φ is completely positive for any L ∈ CovPos1(πB, πA).
693
+
694
+ 14
695
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
696
+ (6) L ◦ Φ is completely positive for any L ∈ Ext (CovPos1(πB, πA)).
697
+ Proof. The equivalences (1) ⇔ (4), (2) ⇔ (5), (3) ⇔ (6) and one-side impli-
698
+ cations (1) ⇒ (2) ⇒ (3) are clear. Moreover, the direction (2) ⇒ (1) follows
699
+ from Lemma 3.6 (1). For the proof of (3) ⇒ (2), note that CovPos1(πB, πA)
700
+ is a compact subset of
701
+ {L ∈ B(B(HB), B(HA)) : ∥L∥op ≤ 1} ,
702
+ (3.13)
703
+ where ∥ · ∥op denotes the operator norm with respect to Hilbert-Schmidt
704
+ norms on B(HB) and B(HA), since the positivity of L implies ∥L∥op =
705
+ ∥L(IdB)∥ = 1 [Pau02, Corollary 2.9]. Therefore, CosPos1(πB, πA) can be
706
+ written as a convex hull of its extreme points, which completes the proof.
707
+
708
+ Remark 3.10. If πB is irreducible instead of irreducibility of πA, then Φ
709
+ is chosen to be a unital CP map up to constant, and CovPosTP(πB, πA)
710
+ replaces the role of CovPos1(πB, πA) in (2), (3), (5), (6). Note that compact-
711
+ ness of CovPosTP(πB, πA) comes from the identification with CovPos1(πA, πB)
712
+ (up to constant) via taking the adjoint operation.
713
+ Finally, we claim that the decomposability of the extremal elements in
714
+ CovPos1(πB, πA) is much easier to check thanks to the following theorem.
715
+ Theorem 3.11. Suppose that πA (resp. πB) is irreducible, and let L ∈
716
+ Ext(CovPos1(πB, πA)) (resp. L ∈ Ext(CovPosTP(πB, πA)). Then L is de-
717
+ composable if and only if L is CP or CCP.
718
+ Proof. Let us focus only on the case where πA is irreducible since the other
719
+ case is analogous. If L is decomposable, then there exist a CP map L1 and
720
+ a CCP map L2 such that L = L1 + L2. By taking the twirling operation
721
+ TπB,πA, we have L = L′
722
+ 1 + L′
723
+ 2 where L′
724
+ i = TπB,πA(Li) ∈ Cov(πB, πA).
725
+ Note that L′
726
+ 1 is CP, L′
727
+ 2 is CCP, and we can write L′
728
+ i = λiL′′
729
+ i for some
730
+ λi ≥ 0, λ1 + λ2 = 1, and L′′
731
+ i ∈ CovPos1(πB, πA) by Lemma 3.6 (1). Then
732
+ extremality of L allows us to conclude that L = L′′
733
+ 1 or L = L′′
734
+ 2, which
735
+ proves the assertion. The other direction is immediate.
736
+
737
+ To summarize, our strategy to study PPT=SEP and PPT=EB problems
738
+ consists of the following three independent steps, assuming πA is irreducible.
739
+ [Step 1] The first step is to characterize all elements in CovPos1(πB, πA) for
740
+ given specific unitary representations πA and πB.
741
+ [Step 2] The next step is to solve POS=DEC problem in CovPos1(πB, πA).
742
+ In particular, for extremal elements L ∈ Ext(CovPos1(πB, πA)), the
743
+ given L is decomposable if and only if L is CP or CCP. If POS=DEC
744
+ holds, then PPT=SEP problem in InvQS(πA ⊗ πB) and PPT=EB
745
+ problem in CovQC(πA, πB) has the affirmative answer.
746
+
747
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
748
+ 15
749
+ [Step 3] If there exists a non-decomposable element in CovPos1(πB, πA),
750
+ then the last step is to find the following objects:
751
+ – Φ ∈ CovPPTQC(πA, πB) for which L ◦ Φ is non-CP,
752
+ – ρ ∈ InvPPTQS(πA ⊗ πB) for which (id ⊗ L)(ρ) ≱ 0.
753
+ 4. PPT=EB HOLDS FOR (H, H)-COVARIANT QUANTUM CHANNELS
754
+ One of the main applications of the results in Section 3 is a complete char-
755
+ acterization of EB property for quantum channels Φ : Md(C) → Md(C) of
756
+ the form
757
+ Φ(X) = aTr(X)
758
+ d
759
+ Idd + bX + cXT + (1 − a − b − c) diag(X).
760
+ (4.1)
761
+ The main result of this section is as follows.
762
+ Theorem 4.1. Let Φ be a quantum channel of the form (4.1). Then Φ is
763
+ entanglement-breaking if and only if Φ is PPT.
764
+ Remark 4.2.
765
+ (1) The quantum channels of the form (4.1) include two
766
+ important one-parameter families of quantum channels, namely de-
767
+ polarizing channels
768
+ ∆b(X) = (1 − b)Tr(X)
769
+ d
770
+ Idd + bX
771
+ (4.2)
772
+ with −
773
+ 1
774
+ d2−1 ≤ b ≤ 1, and transpose depolarizing channels
775
+ Λc(X) = (1 − c)Tr(X)
776
+ d
777
+ Idd + cXT
778
+ (4.3)
779
+ with −
780
+ 1
781
+ d−1 ≤ c ≤
782
+ 1
783
+ d+1. It was already known that PPT=EB for these
784
+ channels from various perspectives [Wer89, HH99, Wat18, SN21],
785
+ and our Theorem 4.1 covers these classes.
786
+ (2) Moreover, Theorem 4.1 gives an affirmative answer to PPT=EB
787
+ problem for the so-called generalized Werner-Holevo quantum chan-
788
+ nels, which was once conjectured to be false [DFV08]. See Appen-
789
+ dix A for more details on the generalized Werner-Holevo channels.
790
+ A starting point for a proof of Theorem 4.1 is to observe that any quantum
791
+ channel of the form (4.1) is covariant with respect to the signed symmetric
792
+ group Hd. One of the equivalent ways to realize the signed symmetric group
793
+ is to define Hd as a subgroup of the orthogonal group Od generated by
794
+ permutation matrices and diagonal orthogonal matrices. In other words,
795
+ every element in Hd is written as an orthogonal matrix
796
+ d
797
+
798
+ i=1
799
+ si|σ(i)⟩⟨i| for
800
+ s1, s2, . . . , sn ∈ {±1} and σ ∈ Sd. We define Inv(H ⊗ H) and Cov(H, H)
801
+
802
+ 16
803
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
804
+ with respect to the fundamental representation H ∈ Hd �→ H ∈ Od, which
805
+ is irreducible as proved below.
806
+ Lemma 4.3. The fundamental representation H ∈ Hd �→ H ∈ Od is
807
+ irreducible.
808
+ Proof. The identity
809
+ HXHT =
810
+ d
811
+
812
+ i,j=1
813
+ sisjXij|σ(i)⟩⟨σ(j)| =
814
+ d
815
+
816
+ i,j=1
817
+ sσ−1(i)sσ−1(j)Xσ−1(i)σ−1(j)|i⟩⟨j|
818
+ (4.4)
819
+ and the invariance property HXHT = X for all H ∈ Hd tell us that
820
+ sσ(i)sσ(j)Xσ(i)σ(j) = Xij
821
+ (4.5)
822
+ for all s1, . . . , sd ∈ {±1} and σ ∈ Sd. This implies that Xii ≡ X11 for all
823
+ 1 ≤ i ≤ d and Xij = 0 for all i ̸= j, i.e., X = X11 Idd ∈ C · Idd.
824
+
825
+ Let us denote by W the space of linear maps spanned by the following
826
+ four unital TP maps ψ0, ψ1, ψ2, ψ3 : Md(C) → Md(C), where
827
+
828
+
829
+
830
+
831
+
832
+
833
+
834
+ ψ0(X) = Tr(X)
835
+ d
836
+ Idd,
837
+ ψ1(X) = X,
838
+ ψ2(X) = XT,
839
+ ψ3(X) = diag(X) = �d
840
+ i=1 Xii|i⟩⟨i|.
841
+ (4.6)
842
+ It is straightforward to check ψi ∈ Cov(H, H) for i = 0, . . . , 3, so we have
843
+ W ⊆ Cov(H, H). To prove Cov(H, H) = W, let us note the fact that
844
+ any L ∈ Cov(H, H) satisfies the so-called diagonal orthogonal covariance
845
+ (DOC) property, i.e.
846
+ L(ZXZT) = ZL(X)ZT
847
+ (4.7)
848
+ for all X ∈ Md(C) and diagonal orthogonal matrices Z. This class of
849
+ channels has been analyzed recently in [SN21, SN22, SDN22]. In partic-
850
+ ular, it is shown that any DOC map L can be parameterized by a triple
851
+ (A, B, C) ∈ Md(C)3 satisfying diag(A) = diag(B) = diag(C) such that
852
+ L(X) = diag(A|diag X⟩) + �B ⊙ X + �C ⊙ XT,
853
+ (4.8)
854
+ where |diag Y ⟩ = �d
855
+ i=1 Yii|i⟩, �Y = Y − diag(Y ), and ⊙ denotes the Schur
856
+ product (or Hadamard product) between matrices. In this case, let us denote
857
+ by L = LA,B,C.
858
+ Proposition 4.4. The space Cov(H, H) is spanned by the four unital TP
859
+ positive maps ψ0, ψ1, ψ2, and ψ3 from (4.6).
860
+
861
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
862
+ 17
863
+ Proof. We already know W ⊆ Cov(H, H), and let us pick an arbitrary
864
+ L ∈ Cov(H, H). Since L is DOC, there exists (A, B, C) ∈ Md(C)3 such
865
+ that L = LA,B,C of the form (4.8). Note that L further satisfies
866
+ L(PσXP T
867
+ σ ) = PσL(X)P T
868
+ σ
869
+ (4.9)
870
+ for all X ∈ Md(C) and σ ∈ Sd. Here, Pσ = �d
871
+ i=1 |σ(i)⟩⟨i| is the permuta-
872
+ tion matrix associated with σ.
873
+ Let us take X = eij. If i = j, then (4.9) implies
874
+ d
875
+
876
+ k=1
877
+ Akσ(i)|k⟩⟨k| =
878
+ d
879
+
880
+ k=1
881
+ Aki|σ(k)⟩⟨σ(k)|,
882
+ (4.10)
883
+ which means that Aik = Aσ(i)σ(k) for all 1 ≤ i, k ≤ d and σ ∈ Sd. There-
884
+ fore, Aii ≡ A11 for all i and Aik ≡ A12 for all i ̸= k. On the other hand, if
885
+ i ̸= j, then (4.9) becomes
886
+ Bσ(i)σ(j)|σ(i)⟩⟨σ(j)| + Cσ(j)σ(i)|σ(j)⟩⟨σ(i)|
887
+ (4.11)
888
+ = Bij|σ(i)⟩⟨σ(j)| + Cji|σ(j)⟩⟨σ(i)|,
889
+ (4.12)
890
+ which gives Bij ≡ B12 and Cij ≡ C12 for all i ̸= j. Consequently, the
891
+ formula (4.8) now gives
892
+ L = dA12ψ0 +B12ψ1 +C12ψ2 +(A11 −A12 −B12 −C12)ψ3 ∈ W, (4.13)
893
+ which in turn shows Cov(H, H) ⊆ W.
894
+
895
+ From now, let us denote (H, H)-covariant unital (and TP) maps by
896
+ ψa,b,c = aψ0 + bψ1 + cψ2 + (1 − a − b − c)ψ3
897
+ (4.14)
898
+ for simplicity, where ψ0, . . . , ψ3 are from (4.6). Note that ψa,b,c can be
899
+ understood as a DOC map LA,B,C under the correspondence
900
+
901
+
902
+
903
+
904
+
905
+ A = a
906
+ dJd + (1 − a)Idd,
907
+ B = b(Jd − Idd) + ( a
908
+ d + (1 − a))Idd,
909
+ C = c(Jd − Idd) + ( a
910
+ d + (1 − a))Idd,
911
+ (4.15)
912
+ where Jd = �d
913
+ i,j=1 eij. According to [SN21, Section 6], LA,B,C is CPTP if
914
+ and only if
915
+
916
+
917
+
918
+
919
+
920
+ Aij ≥ 0, �d
921
+ k=1 Akj = 1 for all i, j
922
+ B ≥ 0,
923
+ Cij = Cji, |Cij|2 ≤ AijAji for all i, j.
924
+ (4.16)
925
+
926
+ 18
927
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
928
+ In terms of the parameters a, b, c, the map ψa,b,c is CPTP if and only if
929
+
930
+
931
+
932
+ 0 ≤ a ≤
933
+ d
934
+ d−1,
935
+ a
936
+ d −
937
+ 1
938
+ d−1 ≤ b ≤ 1 − d−1
939
+ d a,
940
+ − a
941
+ d ≤ c ≤ a
942
+ d.
943
+ (4.17)
944
+ Note that the set of (a, b, c) ∈ R3 satisfying (4.17) is a tetrahedral depicted
945
+ in Figure 1.
946
+ FIGURE 1. The region of CovQC(H, H)
947
+ In particular, there are exactly four extremal (H, H)-covariant quantum
948
+ channels corresponding to the four vertices given by
949
+
950
+
951
+
952
+
953
+
954
+
955
+
956
+
957
+
958
+ Ψ1 = ψ1,
959
+ Ψ2 =
960
+ d
961
+ d−1ψ0 +
962
+ 1
963
+ d−1ψ2 −
964
+ 2
965
+ d−1ψ3,
966
+ Ψ3 = −
967
+ 1
968
+ d−1ψ1 +
969
+ d
970
+ d−1ψ3,
971
+ Ψ4 =
972
+ d
973
+ d−1ψ0 −
974
+ 1
975
+ d−1ψ1.
976
+ (4.18)
977
+ whose Choi matrices are (up to normalization) four mutually orthogonal
978
+ projections. On the other hand, it is easy to see that
979
+ Td ◦ ψa,b,c = ψa,b,c ◦ Td = ψa,c,b, a, b, c ∈ C.
980
+ (4.19)
981
+ Therefore, ψa,b,c is a PPT quantum channel if and only if both ψa,b,c and
982
+ ψa,c,b are CPTP. Let us denote by CovPPTQC(H, H) the set of all PPT
983
+ quantum channels ψa,b,c. Then CovPPTQC(H, H) can be realized as a con-
984
+ vex set in R3 as in the following Figure 2.
985
+ If d ≥ 3, the eight vertices of the polytope CovPPTQC(H, H) are explic-
986
+ itly given by ψvi (i = 1, . . . , 8), where
987
+ • v0 = (0, 0, 0),
988
+
989
+ 亚4
990
+ 亚2
991
+ 1
992
+ 1
993
+ -
994
+ -
995
+ -
996
+ 1
997
+ -
998
+ -
999
+ -
1000
+ -
1001
+ 1
1002
+ 1
1003
+ 亚ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
1004
+ 19
1005
+ FIGURE 2. The region of CovPPTQC(H, H)
1006
+ • v1 =
1007
+
1008
+ d
1009
+ 2(d−1),
1010
+ 1
1011
+ 2(d−1), −
1012
+ 1
1013
+ 2(d−1)
1014
+
1015
+ , v2 =
1016
+
1017
+ d
1018
+ 2(d−1), −
1019
+ 1
1020
+ 2(d−1),
1021
+ 1
1022
+ 2(d−1)
1023
+
1024
+ ,
1025
+ v3 =
1026
+
1027
+ d
1028
+ 2(d−1), −
1029
+ 1
1030
+ 2(d−1), −
1031
+ 1
1032
+ 2(d−1)
1033
+
1034
+ ,
1035
+ • v4 =
1036
+
1037
+ 1, 1
1038
+ d, 1
1039
+ d
1040
+
1041
+ , v5 =
1042
+
1043
+ 1, 1
1044
+ d, −
1045
+ 1
1046
+ d(d−1)
1047
+
1048
+ , v6 =
1049
+
1050
+ 1, −
1051
+ 1
1052
+ d(d−1), 1
1053
+ d
1054
+
1055
+ ,
1056
+ • v7 =
1057
+
1058
+ d
1059
+ d−1, 0, 0
1060
+
1061
+ .
1062
+ [Step 1+Step 2] One of the main steps in this section is to characterize
1063
+ all elements in CovPos1(H, H). Indeed, CovPos1(H, H) is given as follows
1064
+ with eight extreme points (see Figure 3).
1065
+ FIGURE 3. The region of CovPos1(H, H)
1066
+
1067
+ -
1068
+ 1
1069
+ 1
1070
+ V5
1071
+ V6
1072
+ .
1073
+ 1
1074
+ -
1075
+ -
1076
+ 1
1077
+ V3
1078
+ 1
1079
+ V2
1080
+ 1
1081
+ -
1082
+ 1
1083
+ -
1084
+ 1
1085
+ 4
1086
+ 1
1087
+ 1
1088
+ 1
1089
+ -
1090
+ -
1091
+ 1
1092
+ -
1093
+ o
1094
+ W亚
1095
+ 亚2
1096
+ 亚3
1097
+ I3 0 Td
1098
+ ioTd
1099
+ 2
1100
+ 亚20
1101
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
1102
+ Theorem 4.5. Let d ≥ 3. Then the convex set CovPos1(H, H) has exactly
1103
+ 8 extreme points
1104
+ Ψ1, Ψ2, Ψ3, Ψ4,
1105
+ Ψ1 ◦ Td, Ψ2 ◦ Td, Ψ3 ◦ Td, Ψ4 ◦ Td,
1106
+ (4.20)
1107
+ where Ψ1, . . . , Ψ4 are given by (4.18). In particular, all positive (H, H)-
1108
+ covariant maps are decomposable.
1109
+ Proof. Since Ψ1, . . . , Ψ4 are CP and Ψ1◦Td, . . . , Ψ4◦Td are CCP, the convex
1110
+ hull Vd of these 8 maps is obviously contained in CovPos1(H, H). To show
1111
+ the reverse inclusion CovPos1(H, H) ⊆ Vd, we observe that the set
1112
+ Vd :=
1113
+
1114
+ (a, b, c) ∈ R3 : ψa,b,c ∈ Vd
1115
+
1116
+ ⊂ R3
1117
+ (4.21)
1118
+ is the convex hull of 8 points
1119
+ � (0, 1, 0) ,
1120
+
1121
+ d
1122
+ d−1, 0,
1123
+ 1
1124
+ d−1
1125
+
1126
+ ,
1127
+
1128
+ 0, −
1129
+ 1
1130
+ d−1, 0
1131
+
1132
+ ,
1133
+
1134
+ d
1135
+ d−1, 0, −
1136
+ 1
1137
+ d−1
1138
+
1139
+ ,
1140
+ (0, 0, 1) ,
1141
+
1142
+ d
1143
+ d−1,
1144
+ 1
1145
+ d−1, 0
1146
+
1147
+ ,
1148
+
1149
+ 0, 0, −
1150
+ 1
1151
+ d−1
1152
+
1153
+ ,
1154
+
1155
+ d
1156
+ d−1, −
1157
+ 1
1158
+ d−1, 0
1159
+
1160
+ ,
1161
+ (4.22)
1162
+ which are got from (4.18) and (4.19). Therefore, Vd can be understood as
1163
+ the region of (a, b, c) ∈ R3 satisfying the following inequalities:
1164
+
1165
+
1166
+
1167
+
1168
+
1169
+
1170
+
1171
+
1172
+
1173
+
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+ (1)
1180
+ 0 ≤ a ≤
1181
+ d
1182
+ d−1,
1183
+ (2)
1184
+ d−2
1185
+ d a + b + c ≤ 1,
1186
+ (3)
1187
+ d−2
1188
+ d a + |b − c| ≤ 1,
1189
+ (4)
1190
+ b + c ≥ −
1191
+ 1
1192
+ d−1,
1193
+ (5)
1194
+ b − (d − 1) c ≤ 1,
1195
+ (6)
1196
+ c − (d − 1) b ≤ 1.
1197
+ (4.23)
1198
+ Now if ψa,b,c /∈ Vd (which is equivalent to (a, b, c) /∈ Vd, and hence violates
1199
+ at least one of the inequalities (1) - (6) in (4.23)), we can choose a unit
1200
+ vector ξ ∈ Cd such that ψa,b,c(|ξ⟩⟨ξ|) is not positive semidefinite as in Table
1201
+ 1. This shows CovPos1(H, H) ⊆ Vd.
1202
+ TABLE 1. Non-positivity outside Vd
1203
+ (a, b, c) violates (1)
1204
+ |ξ⟩ = |1⟩ =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0
1205
+ (a, b, c) violates (2)
1206
+ |ξ⟩ =
1207
+ 1
1208
+
1209
+ 2(|1⟩ + |2⟩) =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0
1210
+ (a, b, c) violates (3)
1211
+ |ξ⟩ =
1212
+ 1
1213
+
1214
+ 2(|1⟩ + i|2⟩) =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0
1215
+ (a, b, c) violates (4)
1216
+ |ξ⟩ =
1217
+ 1
1218
+
1219
+ d
1220
+ d
1221
+
1222
+ k=1
1223
+ |k⟩ =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0
1224
+ (a, b, c) violates (5) or (6)
1225
+ |ξ⟩ =
1226
+ 1
1227
+
1228
+ d
1229
+ d
1230
+
1231
+ k=1
1232
+ e
1233
+ 2πik
1234
+ d |k⟩ =⇒ ψa,b,c(|ξ⟩⟨ξ|) ≱ 0
1235
+
1236
+
1237
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
1238
+ 21
1239
+ Proof of Theorem 4.1. Now, the conclusion is straightforward from Corol-
1240
+ lary 3.8 and Theorem 4.5.
1241
+
1242
+ Remark 4.6.
1243
+ (1) Note that Theorem 4.5 gives a complete characteri-
1244
+ zation of all positive linear maps ψ spanned by ψ0, ψ1, ψ2, ψ3. This
1245
+ strengthens the results in Section 5 of [KMS20] focusing on positive
1246
+ linear maps spanned only by ψ0, ψ1, ψ3 without ψ2.
1247
+ (2) Theorem 4.5 tells us not only POS=DEC, but also explicit decom-
1248
+ positions of our positive covariant maps into sums of CP and CCP
1249
+ maps. Note that this was one of the open questions raised in Section
1250
+ 6.c of [KMS20]. We refer to Appendix B for more details.
1251
+ 5. PPT=SEP PROBLEMS IN TRIPARTITE SYSTEMS WITH UNITARY
1252
+ GROUP SYMMETRIES
1253
+ Recall that a tripartite quantum state ρ ∈ D(HA ⊗ HB ⊗ HC) is called
1254
+ A-BC separable (resp. A-BC PPT) if ρ is separable (resp. PPT) in the
1255
+ situation where B(HA ⊗ HB ⊗ HC) is understood as the bipartite system
1256
+ B(HA) ⊗ B(HB ⊗ HC). Furthermore, C-AB or B-AC separability (resp.
1257
+ PPT) is defined similarly. We will focus on the situation where HA = HB =
1258
+ HC = Cd, and let us denote by
1259
+
1260
+
1261
+
1262
+ XTA = (Td ⊗ idd2)(X),
1263
+ XTB = (idd ⊗ Td ⊗ idd)(X),
1264
+ XTC = (idd2 ⊗ Td)(X),
1265
+ (5.1)
1266
+ the three partial transposes of X ∈ B(HA ⊗ HB ⊗ HC) = Md3(C).
1267
+ The main purpose of this section is to apply our results in Section 3 as
1268
+ new sources to study PPT=SEP problems, equivalently POS=DEC prob-
1269
+ lems for some tripartite invariant quantum states. In Section 5.1, we exhibit
1270
+ positive non-decomposable covariant maps L : Md(C) → Md2(C) satisfy-
1271
+ ing
1272
+ L(UXU T) = (U ⊗ U)L(X)(U ⊗ U)∗
1273
+ (5.2)
1274
+ for all unitary matrices U ∈ Ud and X ∈ Md(C). This result is parallel
1275
+ to the fact PPT̸=SEP for tripartite Werner states [EW01], i.e. tripartite
1276
+ quantum states ρ ∈ Md3(C) satisfying
1277
+ (U ⊗ U ⊗ U)ρ = ρ(U ⊗ U ⊗ U)
1278
+ (5.3)
1279
+ for all unitary matrices U ∈ U(d).
1280
+ On the other hand, in Section 5.2, we show that a strong contrast PPT=SEP
1281
+ holds for quantum orthogonally invariant quantum states. More generally,
1282
+ we prove that PPT=SEP holds for any tripartite quantum states ρ ∈ Md3(C)
1283
+ satisfying
1284
+ (U ⊗ U ⊗ U)ρ = ρ(U ⊗ U ⊗ U)
1285
+ (5.4)
1286
+
1287
+ 22
1288
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
1289
+ for all unitary matrices U ∈ U(d).
1290
+ 5.1. Tripartite Werner states. Let πA, πBC be unitary representations of
1291
+ the unitary group Ud given by πA(U) = U and πBC(U) = U ⊗ U. Then
1292
+ the elements in InvQS(πA ⊗ πBC) are called tripartite Werner states. Let
1293
+ us write Inv(U ⊗3) = Inv(πA ⊗ πBC) and Cov(U, UU) = Cov(πA, πBC)
1294
+ for simplicity. The application of Schur-Weyl duality [EW01] or von Neu-
1295
+ mann’s bicommutant theorem [Wat18, Theorem 7.15] implies that the space
1296
+ Inv(U ⊗3) is spanned by six unitary operators {Vσ : σ ∈ S3}. Here, Vσ :
1297
+ (Cd)⊗3 → (Cd)⊗3 is determined by Vσ(ξ1 ⊗ ξ2 ⊗ ξ3) = ξσ−1(1) ⊗ ξσ−1(2) ⊗
1298
+ ξσ−1(3) for any ξ1, ξ2, ξ3 ∈ Cd and σ ∈ S3, or equivalently,
1299
+ Vσ =
1300
+ d
1301
+
1302
+ j1,j2,j3=1
1303
+ |j1j2j3⟩⟨jσ(1)jσ(2)jσ(3)|.
1304
+ (5.5)
1305
+ Recall that A-BC PPT property and separability of ρ ∈ InvQS(U ⊗3)
1306
+ were already characterized in [EW01], and it was shown that PPT=SEP if
1307
+ and only if d = 2. Therefore, a direct application of Corollary 3.4 gives us
1308
+ the following result.
1309
+ Theorem 5.1. All positive (UU, U)-covariant maps are decomposable if
1310
+ and only if d = 2. By taking the adjoint operation L �→ L∗, the same
1311
+ conclusion holds for positive (U, UU)-covariant maps.
1312
+ In the remaining of this section, we will assume d ≥ 3 and exhibit posi-
1313
+ tive non-decomposable (U, UU)-covariant maps.
1314
+ [Step 1] First of all, let us characterize all elements in CovPos(U, UU).
1315
+ Note that Corollary 2.4 (3) implies that the space Cov(U, UU) is spanned
1316
+ by the following six linear maps Lσ whose unnormalized Choi matrices are
1317
+ the operators Vσ ∈ Inv(U ⊗3) in (5.5):
1318
+
1319
+
1320
+
1321
+
1322
+
1323
+
1324
+
1325
+
1326
+
1327
+
1328
+
1329
+
1330
+
1331
+
1332
+
1333
+ Le(X) = (Tr X) · Idd ⊗ Idd,
1334
+ L(12)(X) = XT ⊗ Idd,
1335
+ L(13)(X) = Idd ⊗ XT,
1336
+ L(23)(X) = (Tr X) · �d
1337
+ j2,j3=1 |j3j2⟩⟨j2j3|,
1338
+ L(123)(X) = �d
1339
+ j1,j2,j3=1 Xj1j2|j2j3⟩⟨j3j1|,
1340
+ L(132)(X) = �d
1341
+ j1,j2,j3=1 Xj1j3|j2j3⟩⟨j1j2|.
1342
+ (5.6)
1343
+ Lemma 5.2. Let L = �
1344
+ σ∈S3 aσLσ ∈ Cov(U, UU). Then L is positive if
1345
+ and only if
1346
+
1347
+
1348
+
1349
+
1350
+
1351
+
1352
+
1353
+ (1)
1354
+ ae, a(12), a(13), a(23) ∈ R and a(132) = a(123),
1355
+ (2)
1356
+ ae ≥ max
1357
+
1358
+ −a(12), −a(13), |a(23)|
1359
+ ���
1360
+ ,
1361
+ (3)
1362
+ ae + a(12) + a(13) + a(23) + a(123) + a(132) ≥ 0,
1363
+ (4)
1364
+
1365
+ ae + a(12)
1366
+ � �
1367
+ ae + a(13)
1368
+
1369
+
1370
+ ��a(23) + a(123)
1371
+ ��2 .
1372
+ (5.7)
1373
+
1374
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
1375
+ 23
1376
+ Proof. Since every unit vector ξ ∈ Cd can be written as |ξ⟩ = U|1⟩ for
1377
+ some U ∈ Ud, the (U, UU)-covariance property implies that L is positive if
1378
+ and only if L(e11) ≥ 0. Moreover, L(e11) has a matrix decomposition
1379
+ L(e11) ∼= (ae + a(12) + a(13) + a(23) + a(123) + a(132))1 ⊕ (ae + a(23))Idd−1
1380
+
1381
+
1382
+
1383
+ d
1384
+
1385
+ j=2
1386
+ � ae + a(12)
1387
+ a(23) + a(123)
1388
+ a(23) + a(132)
1389
+ ae + a(13)
1390
+ ��
1391
+ � ⊕
1392
+
1393
+
1394
+
1395
+ 2≤i<j≤d
1396
+ � ae
1397
+ a(23)
1398
+ a(23)
1399
+ ae
1400
+ ��
1401
+
1402
+ (5.8)
1403
+ with respect to the bases {|11⟩}, {|22⟩, |33⟩, . . . , |dd⟩}, {|1j⟩, |j1⟩} for j =
1404
+ 2, . . . , d, and {|ij⟩, |ji⟩} for 2 ≤ i < j ≤ d, respectively. Therefore,
1405
+ L(e11) ≥ 0 if only if (5.7) holds.
1406
+
1407
+ The next step is to classify CP and CCP conditions in Cov(U, UU) to
1408
+ find all PPT elements in InvQS(U ⊗3).
1409
+ Lemma 5.3. Let L = �
1410
+ σ aσLσ and let X = �
1411
+ σ aσVσ. Then
1412
+ (1) L is CP if and only if X ≥ 0 if and only if
1413
+
1414
+
1415
+
1416
+
1417
+
1418
+
1419
+
1420
+
1421
+
1422
+
1423
+
1424
+ ae, a(12), a(13), a(23) ∈ R and a(123) = a(132),
1425
+ ae + a(123) + a(132) ≥ |a(12) + a(13) + a(23)|,
1426
+ 2ae − a(123) − a(132) ≥ 0,
1427
+ (ae + ωa(123) + ωa(132))(ae + ωa(123) + ωa(132))
1428
+
1429
+ ��ωa(12) + ωa(13) + a(23)
1430
+ ��2 .
1431
+ (5.9)
1432
+ (2) L is CCP if and only if XTA ≥ 0 if and only if
1433
+
1434
+
1435
+
1436
+
1437
+
1438
+
1439
+
1440
+
1441
+
1442
+
1443
+
1444
+
1445
+
1446
+
1447
+
1448
+ ae, a(12), a(13), a(23) ∈ R and a(123) = a(132),
1449
+ ae ≥ |a(23)|,
1450
+ 2ae + a(123) + a(132) + d(a(12) + a(13)) ≥ 0,
1451
+
1452
+ ae + a(23) + d+1
1453
+ 2 (a(12) + a(13) + a(123) + a(132))
1454
+
1455
+ ×
1456
+
1457
+ ae − a(23) + d−1
1458
+ 2 (a(12) + a(13) − a(123) − a(132))
1459
+
1460
+ ≥ d2−1
1461
+ 4 (|a(12) − a(13)|2 + |a(123) − a(132)|2).
1462
+ (5.10)
1463
+ These characterizations were already known from [EW01, Lemma 2 and
1464
+ Lemma 8], but with a different parametrization. An elaboration on Lemma
1465
+ 5.3 is attached in Appendix C using the following identifications
1466
+ span {Vσ : σ ∈ S3} ∼= C ⊕ C ⊕ M2(C),
1467
+ (5.11)
1468
+ span
1469
+
1470
+ V TA
1471
+ σ
1472
+ : σ ∈ S3
1473
+ � ∼= C ⊕ C ⊕ M2(C)
1474
+ (5.12)
1475
+ as ∗-algebras.
1476
+ [Step 2] All extremal elements in CovPosTP(U, UU) are completely
1477
+ characterized in the following lemma. Our proof is straightforward but
1478
+ rather cumbersome, so we attach the proof in Appendix D.
1479
+
1480
+ 24
1481
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
1482
+ Lemma 5.4. Let L = �
1483
+ σ aσLσ ∈ Cov(U, UU). Then the following are
1484
+ equivalent.
1485
+ (1) L ∈ Ext(CovPosTP(U, UU))
1486
+ (2) ae, a(12), a(13), a(23) ∈ R, a(123) = a(132), and the associated 6-tuple
1487
+ (ae, a(12), a(13), a(23), Re(a(123)), Im(a(123))) ∈ R6
1488
+ (5.13)
1489
+ is one of the following three types:
1490
+ Type I
1491
+ c1(1, −1, −1, −1, 1, 0)
1492
+ Type II
1493
+ c2(0, A, B, 0, C, ±
1494
+
1495
+ AB − C2)
1496
+ Type III
1497
+ c3( A+B+2C
1498
+ 2
1499
+ , A−B−2C
1500
+ 2
1501
+ , −A+B−2C
1502
+ 2
1503
+ , A+B+2C
1504
+ 2
1505
+ , − A+B
1506
+ 2 , ±
1507
+
1508
+ AB − C2)
1509
+ where A, B ≥ 0, C ∈ R, AB ≥ C2, and the normalizing constants
1510
+ c1, c2, and c3 are chosen to satisfy the TP condition
1511
+ d2ae + d(a(12) + a(13) + a(23)) + (a(123) + a(132)) = 1.
1512
+ (5.14)
1513
+ Then, combining Lemma 5.3 and Lemma 5.4, we can check that
1514
+ • Every L ∈ Ext(CovPosTP(U, UU)) of Type I is CP,
1515
+ • Every L ∈ Ext(CovPosTP(U, UU)) of Type II is CCP,
1516
+ • Let L ∈ Ext(CovPosTP(U, UU)) of Type III. Then
1517
+ – L is CP if and only if A = B = C,
1518
+ – L is CCP if and only if A = B = −C.
1519
+ Thus, Type III (with neither A = B = C nor A = B = −C) provides
1520
+ explicit positive non-decomposable maps in CovPos(U, UU) by Theorem
1521
+ 3.11. For example, we can choose A = 1, B = 0, and C = 0 to obtain a
1522
+ specific extremal element
1523
+ L0 = Le+L(12)−L(13)+L(23)−L(123)−L(132) ∈ Ext(CovPosTP(U, UU))
1524
+ (5.15)
1525
+ up to a normalizing constant.
1526
+ [Step 3] On the dual side, the chosen positive non-decomposable map
1527
+ L∗
1528
+ 0 ∈ CovPos(UU, U) should play a role as an entanglement detector. In-
1529
+ deed, if we take
1530
+ ρt =
1531
+ 1
1532
+ d3 + (t + 1)d2 + 2t
1533
+ �d + t
1534
+ d
1535
+ Ve + V(13) + t
1536
+ dV(123) + t
1537
+ dV(132)
1538
+
1539
+ (5.16)
1540
+ with 0 < t ≤ 3.89 and d ≥ 3, then ρt ∈ InvQS(U ⊗3) is A-BC PPT by
1541
+ Lemma 5.3. Moreover, it is straightforward to see that
1542
+ (d3 + (t + 1)d2 + 2t) · (id ⊗ L∗
1543
+ 0)(ρt)
1544
+ =
1545
+
1546
+ d2 + (t + 2)d + 3t − 2t
1547
+ d
1548
+
1549
+ Idd ⊗ Idd −
1550
+
1551
+ d2 + (2t + 2)d
1552
+
1553
+ |Ωd⟩⟨Ωd|
1554
+ (5.17)
1555
+
1556
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
1557
+ 25
1558
+ has a negative eigenvalue −t
1559
+
1560
+ d + 2
1561
+ d − 3
1562
+
1563
+ < 0. Consequently, the quan-
1564
+ tum state ρt is A-BC PPT entangled by Theorem 3.9 or by Horodecki’s
1565
+ criterion.
1566
+ Remark 5.5. Note that ρt is also C-AB PPT entangled since V(13)ρtV(13) =
1567
+ ρt. On the other hand, ρt is not B-AC PPT (and hence entangled). Indeed,
1568
+ we can observe that
1569
+ ρTB
1570
+ t
1571
+ = V(12)(V(12)ρtV(12))TAV(12),
1572
+ (5.18)
1573
+ but V(12)ρtV(12) is not A-BC PPT since
1574
+ V(12)ρtV(12) =
1575
+ 1
1576
+ d3 + (t + 1)d2 + 2t
1577
+ �d + t
1578
+ d
1579
+ Ve + V(23) + t
1580
+ dV(123) + t
1581
+ dV(132)
1582
+
1583
+ (5.19)
1584
+ does not satisfy the CCP condition (5.10).
1585
+ It might be interesting if we can find a tripartite PPT-entangled Werner
1586
+ state with respect to all the three partitions A-BC, B-AC, and C-AB. How-
1587
+ ever, Lemma 7 of [EW01] implies that there is no such an example ρ =
1588
+
1589
+ σ aσVσ if one of the following conditions is satisfied:
1590
+ • a(12) = a(13) and a(123) = a(132),
1591
+ • a(13) = a(23) and a(123) = a(132),
1592
+ • a(23) = a(12) and a(123) = a(132),
1593
+ We leave the general situation as an open question.
1594
+ 5.2. Tripartite quantum orthogonally invariant quantum states. Within
1595
+ the framework of compact quantum groups, it is well-known that the or-
1596
+ thogonal group Od allows a universal object, namely the free orthogonal
1597
+ quantum group O+
1598
+ d [Wan95, Tim08]. In other words, the invariance prop-
1599
+ erty with respect to O+
1600
+ d is a stronger notion than the (classical) orthogonal
1601
+ group invariance. See [LY22] for a general discussion on invariant quantum
1602
+ states and covariant quantum channels with quantum group symmetries.
1603
+ In this section, we focus on the space Inv(O⊗3
1604
+ + ) of the tripartite quantum
1605
+ orthogonally invariant operators spanned by five tripartite operators
1606
+ Tσ = V TB
1607
+ σ
1608
+ =
1609
+ d
1610
+
1611
+ j1,j2,j3=1
1612
+ |j1jσ(2)j3⟩⟨jσ(1)j2jσ(3)|
1613
+ (5.20)
1614
+ for σ ∈ S3 \ {(13)} = {e, (12), (23), (123), (132)}.
1615
+ See Appendix F
1616
+ for more discussions on (5.20) and O+
1617
+ d . Although Theorem 3.9 does not
1618
+ cover quantum group symmetries, any X ∈ Inv(O⊗3
1619
+ + ) satisfies the follow-
1620
+ ing group invariance property
1621
+ (U ⊗ U ⊗ U)X(U ⊗ U ⊗ U)∗ = X
1622
+ (5.21)
1623
+
1624
+ 26
1625
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
1626
+ for all U ∈ Ud thanks to Corollary 2.4 (1). This transfers our problem to the
1627
+ realm of classical group symmetries. More precisely, we have
1628
+ Inv(O⊗3
1629
+ + ) ⊆ Inv(U ⊗ U ⊗ U) = Inv(πA ⊗ πBC)
1630
+ (5.22)
1631
+ where πA(U) = U and πBC(U) = U ⊗U. The main theorem of this section
1632
+ is the following.
1633
+ Theorem 5.6. Let ρ ∈ InvQS(U ⊗ U ⊗ U). Then ρ is A-BC separable if
1634
+ and only if ρ is A-BC PPT. In particular, A-BC PPT= A-BC SEP holds in
1635
+ InvQS(O⊗3
1636
+ + ).
1637
+ Remark 5.7. Note that, for any unitary representation π of a compact
1638
+ group, the following three problems
1639
+ • A-BC PPT = A-BC SEP in Inv(π ⊗ π ⊗ π)
1640
+ • B-AC PPT = B-AC SEP in Inv(π ⊗ π ⊗ π)
1641
+ • C-AB PPT = C-AB SEP in Inv(π ⊗ π ⊗ π)
1642
+ are equivalent. However, Theorem 5.6 implies that this equivalence is no
1643
+ longer true when π is replaced by a unitary representation of a compact
1644
+ quantum group. Indeed, a B-AC PPT entangled state V(12)ρtV(12) ∈ InvQS(U ⊗3)
1645
+ from (5.19) is transferred to the following B-AC PPT entangled state in
1646
+ InvQS(O⊗3
1647
+ + ):
1648
+ (V(12)ρtV(12))TB
1649
+ =
1650
+ 1
1651
+ d3 + (t + 1)d2 + 2t
1652
+ �d + t
1653
+ d
1654
+ Te + T(23) + t
1655
+ dT(123) + t
1656
+ dT(132)
1657
+
1658
+ . (5.23)
1659
+ In other words, A-BC PPT=SEP problem is not equivalent to B-AC PPT=SEP
1660
+ problem in InvQS(O⊗3
1661
+ + ). A reason for this genuine quantum phenomenon is
1662
+ that the associated C∗-algebra of O+
1663
+ d is non-commutative.
1664
+ [Step 1] Let us apply Corollary 3.8 to prove that POS=DEC holds in
1665
+ CovPos1(UU, U) = CovPos1(πBC, πA), or equivalently, POS=DEC holds
1666
+ in CovPosTP(U, UU). Recall that the space Cov(U, UU) is spanned by six
1667
+ linear maps
1668
+ Mσ = (Td ⊗ idd) ◦ Lσ
1669
+ (5.24)
1670
+ for σ ∈ S3, where Lσ is given by (5.6). Then the unnormalized Choi matrix
1671
+ of Mσ is given by Tσ.
1672
+
1673
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
1674
+ 27
1675
+ Lemma 5.8. Let d ≥ 3 and M = �
1676
+ σ aσMσ ∈ Cov(U, UU). Then M is
1677
+ positive if and only if
1678
+
1679
+
1680
+
1681
+
1682
+
1683
+
1684
+
1685
+
1686
+
1687
+
1688
+
1689
+
1690
+
1691
+
1692
+
1693
+ (1)
1694
+ ae, a(12), a(13), a(23) ∈ R and a(132) = a(123),
1695
+ (2)
1696
+ ae ≥ max
1697
+
1698
+ 0, −a(12), −a(13)
1699
+
1700
+ ,
1701
+ (3)
1702
+ ae + a(12) + a(13) + a(23) + a(123) + a(132) ≥ 0,
1703
+ (4)
1704
+ ae + (d − 1)a(23) ≥ 0,
1705
+ (5)
1706
+ (ae + a(12) + a(13) + a(23) + a(123) + a(132))(ae + (d − 1)a(23))
1707
+ ≥ (d − 1)|a(23) + a(123)|2.
1708
+ (5.25)
1709
+ Proof. As in the proof of Lemma 5.2, the positivity of M is equivalent to
1710
+ M(e11) ≥ 0. Moreover, M(e11) ∈ Md(C) ⊗ Md(C) has a matrix decom-
1711
+ position
1712
+ M ⊕ (ae + a(12)) Idd−1 ⊕ (ae + a(13)) Idd−1 ⊕ ae Id(d−1)(d−2),
1713
+ (5.26)
1714
+ where
1715
+ M =
1716
+
1717
+ c
1718
+ (a(23) + a(132))⟨v|
1719
+ (a(23) + a(123))|v⟩
1720
+ a(23)|v⟩⟨v|
1721
+
1722
+ + ae Idd
1723
+ (5.27)
1724
+ with c = a(12) +a(13) +a(23) +a(123) +a(132) and v = (1, 1, . . . , 1)t ∈ Cd−1.
1725
+ The four matrices in the matrix decomposition (5.26) are with respect to the
1726
+ bases {|11⟩, |22⟩, . . . , |dd⟩}, {|12⟩, |13⟩, . . . , |1d⟩}, {|21⟩, |31⟩, . . . , |d1⟩},
1727
+ and {|ij⟩ : i, j ̸= 1 and i ̸= j}, respectively. Thus, M(e11) ≥ 0 if and only
1728
+ if the conditions (1) and (2) in (5.25) hold and M ≥ 0. Moreover, we can
1729
+ rewrite (5.27) as
1730
+ M − ae Idd = V
1731
+
1732
+ c
1733
+
1734
+ d − 1α
1735
+
1736
+ d − 1α
1737
+ (d − 1)a(23)
1738
+
1739
+ V ∗,
1740
+ (5.28)
1741
+ where α = a(23) + a(123) and V =
1742
+ �1
1743
+ 0
1744
+ 0
1745
+ 1
1746
+
1747
+ d−1|v⟩
1748
+
1749
+ ∈ Md,2(C) is an isome-
1750
+ try. Thus, the nonzero eigenvalues of M − aeIdd are the same with those of
1751
+
1752
+ c
1753
+
1754
+ d − 1α
1755
+
1756
+ d − 1α
1757
+ (d − 1)a(23)
1758
+
1759
+ . Consequently, the condition M ≥ 0 is equiva-
1760
+ lent to the conditions (3), (4), and (5) of (5.25).
1761
+
1762
+ Thanks to Lemma 5.3, it is easy to derive CP and CCP conditions in
1763
+ Cov(U, UU) or A-BC PPT condition in InvQS(U ⊗ U ⊗ U).
1764
+ Lemma 5.9. Let d ≥ 3 and M = �
1765
+ σ∈S3 aσMσ ∈ CovPos(U, UU). Then
1766
+ (1) M is CP if and only if the operator
1767
+ V(12)
1768
+ ��
1769
+ σ∈S3
1770
+ aσVσ
1771
+
1772
+ V(12) =
1773
+
1774
+ σ∈S3
1775
+ a(12)σ(12)Vσ
1776
+ (5.29)
1777
+
1778
+ 28
1779
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
1780
+ satisfies the condition (5.10).
1781
+ (2) M is CCP if and only if the operator
1782
+ V(13)
1783
+ ��
1784
+ σ∈S3
1785
+ aσVσ
1786
+
1787
+ V(13) =
1788
+
1789
+ σ∈S3
1790
+ a(13)σ(13)Vσ
1791
+ (5.30)
1792
+ satisfies the condition (5.10).
1793
+ Proof. Let X = �
1794
+ σ∈S3 aσVσ ∈ Inv(U ⊗3) and X′ = V(12)XV(12). Then M
1795
+ is CP if and only if
1796
+
1797
+ σ∈S3
1798
+ aσTσ = XTB = V(12)(X′)TAV(12) ≥ 0,
1799
+ (5.31)
1800
+ which is equivalent to (X′)TA ≥ 0. On the other hand, let X′′ = V(13)XV(13).
1801
+ Then M is CCP if and only if
1802
+ ��
1803
+ σ∈S3
1804
+ aσTσ
1805
+ �TA
1806
+ =
1807
+
1808
+ XTC�T =
1809
+
1810
+ V(13)(X′′)TAV(13)
1811
+ �T ≥ 0,
1812
+ (5.32)
1813
+ and this is equivalent to (X′′)TA ≥ 0.
1814
+
1815
+ [Step 2] We refer the reader to Appendix D for a proof of the following
1816
+ Lemma 5.10 classifying all extremal elements in CovPosTP(U, UU).
1817
+ Lemma 5.10. Let d ≥ 3 and M = �
1818
+ σ∈S3 aσMσ ∈ CovPos(U, UU). Then
1819
+ the following are equivalent.
1820
+ (1) M ∈ Ext(CovPosTP(U, UU)),
1821
+ (2) ae, a(12), a(13), a(23) ∈ R, a(123) = a(132), and the associated 6-tuple
1822
+ (ae, a(12), a(13), a(23), Re(a(123)), Im(a(123))) ∈ R6
1823
+ (5.33)
1824
+ is one of the following four types:
1825
+ Type I
1826
+ c1(d − 1, −1, 1 − d, −1, 1, 0),
1827
+ Type II
1828
+ c2(d − 1, 1 − d, −1, −1, 1, 0),
1829
+ Type III
1830
+ c3(0, A + B − 2C, 0, B, C − B, ±
1831
+
1832
+ AB − C2),
1833
+ Type IV
1834
+ c4(0, 0, A + B − 2C, B, C − B, ±
1835
+
1836
+ AB − C2),
1837
+ where A, B ≥ 0, C ∈ R, AB ≥ C2, and ci (i = 1, 2, 3, 4) are
1838
+ normalizing constants chosen to satisfy the TP condition
1839
+ d2ae + d(a(12) + a(13) + a(23)) + (a(123) + a(132)) = 1.
1840
+ (5.34)
1841
+ Proof of Theorem 5.6. Let us assume d ≥ 3. According to Theorem 3.11
1842
+ and Lemma 5.10, it suffices to show that M = �
1843
+ σ∈S3 aσMσ is either CP
1844
+ or CCP whenever (aσ)σ∈S3 is one of the four Types I - IV. Now, by applying
1845
+ Lemma 5.9, we can check that
1846
+
1847
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
1848
+ 29
1849
+ • Every L ∈ Ext(CovPosTP(U, UU)) of Type I or Type III is CP,
1850
+ • Every L ∈ Ext(CovPosTP(U, UU)) of Type II or Type IV CCP,
1851
+ thanks to the conditions A, B ≥ 0 and AB ≥ C2. When d = 2, we refer to
1852
+ Appendix E for the complete proof.
1853
+
1854
+ Acknowledgements: The authors thank Professor Hun Hee Lee for the
1855
+ helpful discussions and comments. S-J.Park, Y-G.Jung and S-G.Youn were
1856
+ supported by the National Research Foundation of Korea (NRF) grant funded
1857
+ by the Ministry of Science and ICT (MSIT) (No.2021K1A3A1A21039365).
1858
+ Y-G.Jung, J.Park and S-G.Youn were also supported by Samsung Science
1859
+ and Technology Foundation under Project Number SSTF-BA2002-01. S-
1860
+ J.Park and S-G.Youn were supported by the National Research Foundation
1861
+ of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT)
1862
+ (No. 2020R1C1C1A01009681).
1863
+ APPENDIX A. GENERALIZED WERNER-HOLEVO CHANNELS
1864
+ Note that quantum channels of the form
1865
+ Φb,c(X) = (1 − b − c)Tr(X)
1866
+ d
1867
+ Idd + bX + cXT
1868
+ (A.1)
1869
+ with proper choices of b and c form a subclass of CovQC(H, H). These
1870
+ channels are called generalized Werner-Holevo channels, and they include
1871
+ all mixtures of the depolarizing and transpose depolarizing channels. It is
1872
+ known in [Has18] that the generalized Werner-Holevo channels are charac-
1873
+ terized by the canonical orthogonal group covariance property:
1874
+ Φb,c(OXOT) = OΦb,c(X)OT,
1875
+ (A.2)
1876
+ for all X ∈ Md(C) and O ∈ Od. These channels were studied in connec-
1877
+ tion with additivity problems [Mic07, DFV08]. In particular, it was conjec-
1878
+ tured PPT̸=EB for generalized Werner-Holevo channels in [DFV08], but an
1879
+ immediate Corollary of Theorem 4.1 is that a generalized Werner-Holevo
1880
+ channel Φb,c = ψ1−b−c,b,c is PPT if and only if it is EB.
1881
+ Furthermore, there is another approach to explain this fact. Note that, by
1882
+ Theorem 4.5, a generalized Werner-Holevo channel Φb,c is a PPT quantum
1883
+ channel if and only if Φb,c is a convex combination of the following four
1884
+ extremal PPT channels Φw1, · · · , Φw4, where
1885
+
1886
+ w1 =
1887
+
1888
+ 1
1889
+ d+2,
1890
+ 1
1891
+ d+2
1892
+
1893
+ ,
1894
+ w2 =
1895
+
1896
+
1897
+ 2
1898
+ d2+d−2,
1899
+ d
1900
+ d2+d−2
1901
+
1902
+ ,
1903
+ w3 =
1904
+
1905
+
1906
+ 1
1907
+ d2+d−2, −
1908
+ 1
1909
+ d2+d−2
1910
+
1911
+ ,
1912
+ w4 =
1913
+
1914
+ d
1915
+ d2+d−2, −
1916
+ 2
1917
+ d2+d−2
1918
+
1919
+ .
1920
+ (A.3)
1921
+ As DOC maps, w1 corresponds to a triple (A1, B1, C1) where A1 = B1 =
1922
+ C1 =
1923
+ 1
1924
+ d+2(Jd + 2Idd), and w3 corresponds to a triple (A3, B3, C3) where
1925
+
1926
+ 30
1927
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
1928
+ A3 =
1929
+ 1
1930
+ d2+d−2((d + 1)Jd − 2Idd) and B3 = C3 =
1931
+ 1
1932
+ d2+d−2(−Jd + dIdd), by
1933
+ the correspondence (4.15). Since
1934
+ A1 =
1935
+ 1
1936
+ d + 2|v⟩⟨v| +
1937
+ 2
1938
+ d + 2
1939
+ d
1940
+
1941
+ i=1
1942
+ |i⟩⟨i|,
1943
+ (A.4)
1944
+ where |v⟩ = �d
1945
+ i=1 |i⟩ ∈ Rd
1946
+ +, A1 is a completely positive (CP) matrix. Thus,
1947
+ (A1, A1, A1) is triplewise completely positive (TCP), so Φw1 = LA1,A1,A1
1948
+ is EB (see [NS21] for more detail). Moreover, (A3, B3, C3) is also TCP by
1949
+ [NS21, Corollary B.10]. Since Φw2 = Td ◦ Φw4 from (4.19), the only thing
1950
+ to do is to prove that
1951
+ CΦw2 =
1952
+ 2
1953
+ d2 + d − 2
1954
+ �Idd + F
1955
+ 2
1956
+ − |Ωd⟩⟨Ωd|
1957
+
1958
+ ,
1959
+ (A.5)
1960
+ is separable, where F = �d
1961
+ i,j=1 eij ⊗ eji is the flip matrix. We remark that
1962
+ [DFV08] suggested Φw2 as a possible example of a PPT non-EB map.
1963
+ Let us denote by InvQS(O ⊗ O) the set of all O ⊗ O-invariant states.
1964
+ Then InvQS(O ⊗ O) has three extreme points, namely the scalar multiples
1965
+ of mutually orthogonal projections
1966
+ Π1 = |Ωd⟩⟨Ωd|, Π2 = Idd + F
1967
+ 2
1968
+ − |Ωd⟩⟨Ωd|, Π3 = Idd − F
1969
+ 2
1970
+ .
1971
+ (A.6)
1972
+ Then Proposition 2.3 gives us a formula of the O ⊗ O-twirling map
1973
+ TO⊗O(X) =
1974
+
1975
+ Od
1976
+ (O ⊗O)X(O ⊗O)T dO =
1977
+ 3
1978
+
1979
+ i=1
1980
+ Tr(ΠiX)
1981
+ Πi
1982
+ rank(Πi). (A.7)
1983
+ Lastly, let us take a product unit vector |ψ⟩ = |ξ⟩ ⊗ |ξ⟩ with |ξ⟩ =
1984
+ 1
1985
+
1986
+ 2(|1⟩ + i|2⟩).
1987
+ Then |ψ⟩ ∈ ran(Π2), which implies TO⊗O(|ψ⟩⟨ψ|) =
1988
+ Π2
1989
+ rank(Π2).
1990
+ Thus, CΦw2 = TO⊗O(|ψ⟩⟨ψ|) is a separable quantum state by
1991
+ Proposition 2.2.
1992
+ APPENDIX B. COVARIANT POSITIVE MAPS WITH RESPECT TO
1993
+ MONOMIAL UNITARY GROUPS
1994
+ In Section 5 and Section 6 of [KMS20], the authors analyzed the general
1995
+ structure of irreducibly covariant linear maps under some natural symme-
1996
+ tries of the symmetric group S4 and the monomial unitary group MU(d, n),
1997
+ and presented new examples of positive irreducibly covariant maps. In this
1998
+ section, we elaborate on how our Theorem 4.5 strengthens their results and
1999
+ resolves several open questions raised in [KMS20].
2000
+ On one side, they considered irreducibly (τ3, τ3)-covariant maps, where
2001
+ τ3 : S4 → U3 is a 3-dimensional irreducible component of the canonical
2002
+
2003
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
2004
+ 31
2005
+ representation σ ∈ S4 �→ σ ∈ U(4), where σ is identified with the per-
2006
+ mutation matrix �4
2007
+ k=1 |σ(k)⟩⟨k|. More precisely, the canonical representa-
2008
+ tion is not irreducible, and it allows one invariant 1-dimensional subspace
2009
+ C·|v⟩ with |v⟩ = �d
2010
+ k=1 |k⟩, and the other 3-dimensional invariant subspace
2011
+ V = (C · |v⟩)⊥. Then the fundamental representation τ3 : S4 → U(3) is de-
2012
+ fined by τ3(σ) = ΠV σ
2013
+ ��
2014
+ V ∈ U(3) for all x ∈ S4, where ΠV is the orthogonal
2015
+ projection from C4 onto V .
2016
+ The authors characterized all (τ3, τ3)-covariant maps and suggested a suf-
2017
+ ficient condition for positivity using the so-called inverse reduction map cri-
2018
+ terion [MRS15]. On the other hand, it was shown in [LY22, Sectio 6.1.1]
2019
+ that, up to a change of basis, the (τ3, τ3)-covariant maps are precisely the
2020
+ linear combinations of Ψ1, Ψ2, Ψ3, Ψ4 : M3(C) → M3(C) from (4.18) with
2021
+ d = 3. In other words, we have Cov(τ3, τ3) = Cov(H, H) up to a uni-
2022
+ tary equivalence. Thus, Theorem 4.5 gives the solution to the open ques-
2023
+ tion of the characterization of all positive (τ3, τ3)-covariant maps raised in
2024
+ [KMS20].
2025
+ On the other side, recall that the monomial unitary group MU(d) is
2026
+ a subgroup of Ud generated by all permutation matrices and all diagonal
2027
+ unitary matrices. Moreover, the subgroup MU(d, n) of MU(d) is gen-
2028
+ erated by all permutation matrices and all diagonal matrices of the form
2029
+ �d
2030
+ i=1 ωi|i⟩⟨i| where ωi ∈
2031
+
2032
+ 1, e2πi/n, . . . , e2(n−1)πi/n�
2033
+ . For a closed sub-
2034
+ group G of Ud, we denote by πG : x ∈ G �→ x ∈ Ud the fundamental
2035
+ representation of G, temporarily in this section. It was shown in [KMS20]
2036
+ that, if n ≥ 3, then
2037
+ Cov(πMU(d,n), πMU(d,n)) = span {ψ0, ψ1, ψ3}
2038
+ (B.1)
2039
+ where ψ0, ψ1, ψ3 are from (4.6). Moreover, the authors characterized all
2040
+ positive maps in this class, and proved that all (πMU(d,n), πMU(d,n))-covariant
2041
+ positive maps are decomposable for n ≥ 3. However, explicit decomposi-
2042
+ tions were left as an open question, and the authors conjectured that a non-
2043
+ decomposable positive map may arise under (πMU(d), πMU(d))-covariance.
2044
+ Our results in this paper resolve their open questions in the sense that
2045
+ (πMU(d), πMU(d))-covariance does not make a difference, but a weaker con-
2046
+ dition (πMU(d,2), πMU(d,2))-covariance does. Furthermore, their POS=DEC
2047
+ result in Cov(πMU(d,n), πMU(d,n)) with n ≥ 3 (Section 6.c of [KMS20]) ex-
2048
+ tends to a more general result POS=DEC in Cov(πMU(d,2), πMU(d,2)) with
2049
+ explicit decompositions into the sum of CP and CCP maps.
2050
+ (1) More precisely, it is clear that
2051
+ Cov(πMU(d), πMU(d)) ⊆ Cov(πMU(d,n), πMU(d,n)) = span {ψ0, ψ1, ψ3} , (B.2)
2052
+
2053
+ 32
2054
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
2055
+ and all the three maps ψ0, ψ1, and ψ3 are covariant with respect to
2056
+ general diagonal unitary matrices. Therefore, for n ≥ 3 we have
2057
+ Cov(πMU(d), πMU(d)) = Cov(πMU(d,n), πMU(d,n)) = span {ψ0, ψ1, ψ3} . (B.3)
2058
+ Therefore, there is no positive non-decomposable element inside
2059
+ Cov(πMU(d), πMU(d)).
2060
+ (2) On the other hand, since MU(d, 2) = Hd, we have
2061
+ Cov(πMU(d,2), πMU(d,2)) = Cov(H, H) = span {ψ0, ψ1, ψ2, ψ3} ,
2062
+ (B.4)
2063
+ by Proposition 4.4. Moreover, POS=DEC in Cov(πMU(d), πMU(d))
2064
+ from Section 6.c of [KMS20] is strengthened to POS=DEC in the
2065
+ larger space Cov(πMU(d,2), πMU(d,2)) with explicit decompositions
2066
+ by Theorem 4.5.
2067
+ APPENDIX C. CHARACTERIZATION OF INVPPTQS(U ⊗3)
2068
+ Recall that if d ≥ 3, there exist ∗-algebra isomorphisms
2069
+ F : Inv(U ⊗ U ⊗ U) → C ⊕ C ⊕ M2(C),
2070
+ (C.1)
2071
+ G : Inv(U ⊗ U ⊗ U) → C ⊕ C ⊕ M2(C)
2072
+ (C.2)
2073
+ by the representation theory of the unitary group Ud and (2.11). Moreover,
2074
+ the authors in [EW01] proposed specific choice of ∗-isomorphisms F and
2075
+ G that can be used to characterize the PPT condition of X = �
2076
+ σ∈S3 aσVσ ∈
2077
+ Inv(U ⊗3). For the convenience of the reader, we again present explicit
2078
+ maps F and G in terms of the bases {Vσ : σ ∈ S3} and
2079
+
2080
+ V TA
2081
+ σ
2082
+ : σ ∈ S3
2083
+
2084
+ of Inv(U ⊗3) and Inv(U ⊗ U ⊗ U), respectively, in Table 2.
2085
+ Proof of Lemma 5.3. Let X = �
2086
+ σ∈S3 aσVσ. Then X∗ = X is equivalent
2087
+ to ae, a(12), a(13), a(23) ∈ R and a(123) = a(132) since {Vσ}σ∈S3 is linearly
2088
+ independent. Now X ≥ 0, or equivalently, F(X) ≥ 0 holds if and only if
2089
+ (ae + a(123) + a(132)) ± (a(12) + a(13) + a(23)) ≥ 0 and
2090
+ (C.3)
2091
+
2092
+ ae + ωa(123) + a(123)ω
2093
+ ωa(12) + ωa(13) + a(23)
2094
+ ωa(12) + ωa(13) + a(23)
2095
+ ae + ωa(123) + ωa(132)
2096
+
2097
+ ≥ 0,
2098
+ (C.4)
2099
+ which is equivalent to the condition (5.9). Similarly, we get the equivalence
2100
+ between the condition XTA ≥ 0 and (5.10).
2101
+
2102
+ APPENDIX D. EXTREMAL POSITIVE MAPS IN COVPOSTP(U, UU) AND
2103
+ COVPOSTP(U, UU)
2104
+ This section is to give detailed proofs of Lemma 5.4 and Lemma 5.10.
2105
+ For convenience, we assume ae, a(12), a(13), a(23) ∈ R, a(123) = a(132), and
2106
+ write r = Re(a(123)) and s = Im(a(123)) throughout this section.
2107
+
2108
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
2109
+ 33
2110
+ TABLE 2. The isomorphisms F and G (ω = e2πi/3)
2111
+ X
2112
+ F(X)
2113
+ XTA
2114
+ G(XTA)
2115
+ Ve
2116
+ (1, 1,
2117
+
2118
+ 1
2119
+ 0
2120
+ 0
2121
+ 1
2122
+
2123
+ )
2124
+ V TA
2125
+ e
2126
+ (1, 1,
2127
+
2128
+ 1
2129
+ 0
2130
+ 0
2131
+ 1
2132
+
2133
+ )
2134
+ V(12)
2135
+ (1, −1,
2136
+
2137
+ 0
2138
+ ω
2139
+ ω
2140
+ 0
2141
+
2142
+ )
2143
+ V TA
2144
+ (12)
2145
+ (0, 0,
2146
+
2147
+ d+1
2148
+ 2
2149
+
2150
+ d2−1
2151
+ 2
2152
+
2153
+ d2−1
2154
+ 2
2155
+ d−1
2156
+ 2
2157
+
2158
+ )
2159
+ V(13)
2160
+ (1, −1,
2161
+
2162
+ 0
2163
+ ω
2164
+ ω
2165
+ 0
2166
+
2167
+ )
2168
+ V TA
2169
+ (13)
2170
+ (0, 0,
2171
+
2172
+ d+1
2173
+ 2
2174
+
2175
+
2176
+ d2−1
2177
+ 2
2178
+
2179
+
2180
+ d2−1
2181
+ 2
2182
+ d−1
2183
+ 2
2184
+
2185
+ )
2186
+ V(23)
2187
+ (1, −1,
2188
+
2189
+ 0
2190
+ 1
2191
+ 1
2192
+ 0
2193
+
2194
+ )
2195
+ V TA
2196
+ (23)
2197
+ (1, −1,
2198
+
2199
+ 1
2200
+ 0
2201
+ 0
2202
+ −1
2203
+
2204
+ )
2205
+ V(123)
2206
+ (1, 1,
2207
+
2208
+ ω
2209
+ 0
2210
+ 0
2211
+ ω
2212
+
2213
+ )
2214
+ V TA
2215
+ (123)
2216
+ (0, 0,
2217
+
2218
+ d+1
2219
+ 2
2220
+
2221
+
2222
+ d2−1
2223
+ 2
2224
+
2225
+ d2−1
2226
+ 2
2227
+ − d−1
2228
+ 2
2229
+
2230
+ )
2231
+ V(132)
2232
+ (1, 1,
2233
+
2234
+ ω
2235
+ 0
2236
+ 0
2237
+ ω
2238
+
2239
+ )
2240
+ V TA
2241
+ (132)
2242
+ (0, 0,
2243
+
2244
+ d+1
2245
+ 2
2246
+
2247
+ d2−1
2248
+ 2
2249
+
2250
+
2251
+ d2−1
2252
+ 2
2253
+ − d−1
2254
+ 2
2255
+
2256
+ )
2257
+ Let P0 be the set of all tuples (ae, a(12), a(13), a(23), r, s) satisfying (5.7)
2258
+ and the TP condition
2259
+ d2ae + d(a(12) + a(13) + a(23)) + (a(123) + a(132)) = 1.
2260
+ (D.1)
2261
+ Then P0 describes the condition �
2262
+ σ aσLσ ∈ CovPosTP(U, UU) exactly,
2263
+ so P0 must be a convex and compact subset of R6. For simplification of the
2264
+ condition (5.7), let us consider a linear isomorphism
2265
+ α : (ae, a(12), a(13), a(23), r, s) �→ (ae, A, B, C, r, s)
2266
+ (D.2)
2267
+ of R6, where A = ae + a(12), B = ae + a(13), and C = a(23) + r. Then
2268
+ P = α(P0) is the set of all tuples (ae, A, B, C, r, s) ∈ R6 satisfying
2269
+
2270
+
2271
+
2272
+
2273
+
2274
+
2275
+
2276
+ (1)
2277
+ A, B ≥ 0,
2278
+ (2)
2279
+ AB ≥ C2 + s2,
2280
+ (3)
2281
+ A + B + C + r ≥ ae ≥ |C − r|,
2282
+ (4)
2283
+ d(d − 2)ae + d(A + B + C) − (d − 2)r = 1.
2284
+ (D.3)
2285
+ Note that we have Ext(P0) = α−1(Ext(P)). That is, it suffices to find the
2286
+ extreme points of P and restore the coefficients (aσ)σ∈S3 to get the corre-
2287
+ sponding extremal positive (U, UU)-covariant maps.
2288
+ Lemma D.1. Let S be the set of tuples (A, B, C, s) satisfying (1) and (2) of
2289
+ (D.3). Then S is a convex cone in R4. Moreover, if x0 = x1 + x2 in S with
2290
+ xi = (Ai, Bi, Ci, si) and if A0B0 = C2
2291
+ 0 + s2
2292
+ 0, then x1 = λ1x0, x2 = λ2x0
2293
+ for some λ1, λ2 ≥ 0. That is, the half-line R+ · x0 is an extremal ray of S.
2294
+
2295
+ 34
2296
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
2297
+ Proof. It is straightforward that x ∈ S implies λx ∈ S for all λ ≥ 0. Let
2298
+ us write xi = (Ai, Bi, Ci, si) ∈ S for i = 1, 2. Then A1 + A2 ≥ 0 and
2299
+ B1 + B2 ≥ 0, so the last thing to check is
2300
+ (A1 + A2) · (B1 + B2) ≥ (C1 + C2)2 + (s1 + s2)2.
2301
+ (D.4)
2302
+ Let us choose C′
2303
+ i ≥ |Ci|, s′
2304
+ i ≥ |si| such that AiBi = (C′
2305
+ i)2 + (s′
2306
+ i)2. Then,
2307
+ indeed, we have
2308
+ (A1 + A2)(B1 + B2) ≥ A1B1 + 2
2309
+
2310
+ A1B1A2B2 + A2B2
2311
+ (D.5)
2312
+ = (C′
2313
+ 1)2 + (s′
2314
+ 1)2 + 2
2315
+
2316
+ ((C′
2317
+ 1)2 + (s′
2318
+ 1)2)((C′
2319
+ 2)2 + (s′
2320
+ 2)2) + (C′
2321
+ 2)2 + (s′
2322
+ 2)2
2323
+ (D.6)
2324
+ ≥ (C′
2325
+ 1)2 + (s′
2326
+ 1)2 + 2(C′
2327
+ 1C′
2328
+ 2 + s′
2329
+ 1s′
2330
+ 2) + (C′
2331
+ 2)2 + (s′
2332
+ 2)2
2333
+ (D.7)
2334
+ = (C′
2335
+ 1 + C′
2336
+ 2)2 + (s′
2337
+ 1 + s′
2338
+ 2)2 ≥ (C1 + C2)2 + (s1 + s2)2.
2339
+ (D.8)
2340
+ by applying the AM-GM inequality and the Cauchy-Schwarz inequality.
2341
+ Therefore, x1 + x2 ∈ S, which proves that S is a convex cone. The latter
2342
+ statement follows by investigating the equality condition carefully in the
2343
+ above inequality, which is left to the reader.
2344
+
2345
+ Proof of Lemma 5.4. It is sufficient to show that all the extreme points x =
2346
+ (ae, A, B, C, r, s) of P are classified into the following three types up to
2347
+ normalizing constants: for A, B ≥ 0 and AB ≥ C2,
2348
+ Type I′
2349
+ (1, 0, 0, 0, 1, 0),
2350
+ Type II′
2351
+ (0, A, B, C, C, ±
2352
+
2353
+ AB − C2),
2354
+ Type III′
2355
+ ( A+B+2C
2356
+ 2
2357
+ , A, B, C, − A+B
2358
+ 2 , ±
2359
+
2360
+ AB − C2).
2361
+ If AB > C2+s2, then we can choose s′ > |s| such that AB = C2+(s′)2.
2362
+ In this case, x(0)
2363
+ ± = (ae, A, B, C, r, ±s′) ∈ P, and x is a (nontrivial) convex
2364
+ combination of x(0)
2365
+ + and x(0)
2366
+ − . Thus, x is not extremal in P.
2367
+ From now on, we assume AB = C2 + s2 (i.e., s = ±
2368
+
2369
+ AB − C2) and
2370
+ divide the condition (3) of (D.3) into the following cases.
2371
+ [Case 1] A + B + C + r ≥ ae > |C − r|. Then for sufficiently small
2372
+ δ > 0,
2373
+ x(1)
2374
+ ± =
2375
+
2376
+ ae ∓ 2(A + B + C)
2377
+ d − 2
2378
+ δ, A ± Aδ, B ± Bδ, C ± Cδ, r ∓ d(A + B + C)
2379
+ d − 2
2380
+ δ, s ± sδ
2381
+
2382
+ (D.9)
2383
+ are elements of P, and x = (x(1)
2384
+ + + x(1)
2385
+ − )/2. Therefore, x /∈ Ext(P).
2386
+ [Case 2] A + B + C + r > ae = |C − r| > 0. Here we consider only the
2387
+ case C > r since the other case C < r can be argued similarly. Then for
2388
+ sufficiently small δ > 0,
2389
+ x(2)
2390
+ ± = (ae ± (C − k)δ, A ± Aδ, B ± Bδ, C ± Cδ, r ± kδ, s ± sδ)
2391
+ (D.10)
2392
+
2393
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
2394
+ 35
2395
+ are elements of P, where k ∈ R satisfies
2396
+ d(d − 2)(C − k) + d(A + B + C) − (d − 2)k = 0
2397
+ (D.11)
2398
+ so that the condition (4) of (D.3) holds for x(2)
2399
+ ± . Since x = (x(2)
2400
+ + + x(2)
2401
+ − )/2,
2402
+ it is not extremal.
2403
+ [Case 3] A + B + C + r ≥ ae = |C − r| = 0, so C = r. We claim that
2404
+ x = (0, A, B, C, C, s) ∈ Ext(P) corresponding to Type II′. Suppose that x
2405
+ is a convex combination of x(3)
2406
+ ± = (a±, A±, B±, C±, r±, s±) ∈ P. Then the
2407
+ condition ae = 0 and a± ≥ 0 imply a± = 0, which again forces |C±−r±| =
2408
+ 0. Therefore, Lemma D.1 implies that x(3)
2409
+ ± = (0, A±, B±, C±, C±, s±) =
2410
+ λ±x for some λ± ≥ 0. Now the TP condition (D.3) (4) implies λ± = 1, so
2411
+ x = x(3)
2412
+ ± .
2413
+ [Case 4] A + B + C + r = ae = C − r ≥ 0. Then r = − A+B
2414
+ 2
2415
+ and
2416
+ x = ( A+B+2C
2417
+ 2
2418
+ , A, B, C, − A+B
2419
+ 2 , s). Here we claim that x ∈ Ext(P) which
2420
+ corresponds to Type III′ (note that A + B ≥ 2
2421
+
2422
+ AB = 2
2423
+
2424
+ C2 + s2 ≥ 2|C|,
2425
+ so r = − A+B
2426
+ 2
2427
+ conversely implies C ≥ r). If x is a convex combination
2428
+ of x(4)
2429
+ ±
2430
+ = (a±, A±, B±, C±, r±, s±) ∈ P, then the condition (D.3) (3) for
2431
+ x(4)
2432
+ ± implies A± + B± + C± + r± = a± = |C± − r±|. We may assume
2433
+ A+ ≥ A ≥ A− without loss of generality, so Lemma D.1 implies
2434
+ x(4)
2435
+ + =
2436
+ �A + B + 2C
2437
+ 2
2438
+ + δ′, A + Aδ, B + Bδ, C + Cδ, −A + B
2439
+ 2
2440
+ + δ′′, s + sδ
2441
+
2442
+ (D.12)
2443
+ for some δ ≥ 0, δ′, δ′′ ∈ R, and δ′ = (A + B + C)δ + δ′′ from A+ + B+ +
2444
+ C+ + r+ = a+. Now for the case a+ = r+ − C+ ≥ 0, we have
2445
+ 0 ≤ A + B + 2C = −(A + B + 2C)δ ≤ 0.
2446
+ (D.13)
2447
+ However, this says A+B = −2C and x = (0, A, B, C, C, s), which can be
2448
+ absorbed into Case 3. For the case a+ = C+ − r+, we have δ′′ = − A+B
2449
+ 2 δ
2450
+ and δ′ = A+B+2C
2451
+ 2
2452
+ δ. However, then the TP condition (D.3) (4) implies
2453
+
2454
+ d(d − 2)A + B + 2C
2455
+ 2
2456
+ + d(A + B + C) + (d − 2)A + B
2457
+ 2
2458
+
2459
+ δ = 0,
2460
+ (D.14)
2461
+ which is possible only if δ = 0. Therefore, x = x(4)
2462
+ + = x(4)
2463
+ − .
2464
+ [Case 5] A+B +C +r = ae = r−C ≥ 0. Then A+B = −2C, and the
2465
+ previous inequality A + B ≥ 2
2466
+
2467
+ AB ≥ 2|C| implies A = B = −C ≥ 0
2468
+ and s = 0. Thus, x = (r − C, −C, −C, C, r, 0) with C ≤ 0 and r ≥ C.
2469
+ Then our problem is divided into the following three subcases.
2470
+
2471
+ 36
2472
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
2473
+ • If C < 0 and r > C, then x /∈ Ext(P) since x = (x(5)
2474
+ + + x(5)
2475
+ − )/2,
2476
+ where
2477
+ x(5)
2478
+ ± =
2479
+
2480
+ r − C ∓
2481
+ 2
2482
+ d − 2δ, −C ± δ, −C ± δ, C ∓ δ, r ∓
2483
+ d
2484
+ d − 2δ, 0
2485
+
2486
+ ∈ P
2487
+ (D.15)
2488
+ for sufficiently small δ > 0.
2489
+ • If r = C, then x = (0, −C, −C, C, C, 0) is extremal since it can be
2490
+ absorbed into Case 3.
2491
+ • If C = 0, then x = r(1, 0, 0, 0, 1, 0) is indeed extremal (corre-
2492
+ sponding to Type I′) since the point (A, B, C, s) = (0, 0, 0, 0) is an
2493
+ extreme point of S in Lemma D.1 and since r is uniquely deter-
2494
+ mined by the TP condition (D.3) (4).
2495
+
2496
+ Now we shall prove Lemma 5.10 using similar arguments. Let Q0 be the
2497
+ set of all tuples (ae, a(12), a(13), a(23), r, s) satisfying (5.25) and (D.1), and
2498
+ then consider a linear isomorphism
2499
+ β : (ae, a(12), a(13), a(23), r, s) �→ (A, B, C, p, q, s)
2500
+ (D.16)
2501
+ of R6, where
2502
+
2503
+ A = �
2504
+ σ∈S3 aσ, B =
2505
+ ae
2506
+ d−1 + a(23), C = a(23) + r,
2507
+ p = ae + a(12), q = ae + a(13).
2508
+ Then
2509
+ Q = β(Q0) becomes the set of all tuples (A, B, C, p, q, s) ∈ R6 satisfying
2510
+
2511
+
2512
+
2513
+
2514
+
2515
+
2516
+
2517
+ (1)
2518
+ A, B, p, q ≥ 0,
2519
+ (2)
2520
+ AB ≥ C2 + s2,
2521
+ (3)
2522
+ A + B − 2C ≤ p + q,
2523
+ (4)
2524
+ (−d2 + d + 1)A − (d − 1)2B + 2d(d − 1)C + (d2 − 1)(p + q) = 1.
2525
+ (D.17)
2526
+ Proof of Lemma 5.10. It is sufficient to show that the extreme points y =
2527
+ (A, B, C, p, q, s) of Q are classified into the following four types up to nor-
2528
+ malizing constants: for A, B ≥ 0 and AB ≥ C2,
2529
+ Type I′
2530
+ (0, 0, 0, 1, 0, 0),
2531
+ Type II′
2532
+ (0, 0, 0, 0, 1, 0),
2533
+ Type III′
2534
+ (A, B, C, A + B − 2C, 0, ±
2535
+
2536
+ AB − C2),
2537
+ Type IV′
2538
+ (A, B, C, 0, A + B − 2C, ±
2539
+
2540
+ AB − C2).
2541
+ As in the proof of Lemma 5.4, we may assume AB = C2+s2. Furthermore,
2542
+ we may assume p = 0 or q = 0 since y is a convex combination of y(0)
2543
+ ± ∈ Q,
2544
+ where y(0)
2545
+ + = (A, B, C, p + q, 0, s) and y(0)
2546
+ − = (A, B, C, 0, p + q, s). Let us
2547
+ first assume q = 0, and divide the condition (3) of (D.17) into the following
2548
+ three cases.
2549
+
2550
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
2551
+ 37
2552
+ [Case 1] (A, B) ̸= (0, 0) and A + B − 2C < p. Then for sufficiently
2553
+ small δ > 0,
2554
+ y(1)
2555
+ ± = (A ± Aδ, B ± Bδ, C ± Cδ, p ± δ′, 0, s ± sδ) ∈ Q
2556
+ (D.18)
2557
+ where δ′ ∈ R satisfies
2558
+
2559
+ (−d2 + d + 1)A − (d − 1)2B + 2d(d − 1)C
2560
+
2561
+ δ+(d2−1)δ′ = 0, (D.19)
2562
+ so that the condition (4) of (D.17) holds for y(1)
2563
+ ± . Since y = (y(1)
2564
+ + + y(1)
2565
+ − )/2
2566
+ and y(1)
2567
+ + ̸= y(1)
2568
+ − , we have y /∈ Ext(Q).
2569
+ [Case 2] A = B = 0 (hence C = s = 0). Then y = p(0, 0, 0, 1, 0, 0) is
2570
+ extremal in Q (corresponding to Type I′) since (A, B, C, s) = (0, 0, 0, 0) is
2571
+ an extreme point of S in Lemma D.1 and since p is uniquely determined by
2572
+ (D.17) (4).
2573
+ [Case 3] A+B −2C = p. In this case, we claim that y = (A, B, C, A+
2574
+ B − 2C, 0, s) ∈ Ext(Q), which corresponds to Type III′. Indeed, if y is
2575
+ a convex combination of y(2)
2576
+ ±
2577
+ = (A±, B±, C±, p±, q±, s±) ∈ Q, then the
2578
+ conditions q = 0 and q± ≥ 0 imply q± = 0. Moreover, the conditions
2579
+ A + B − 2C = p and A± + B± − 2C± ≤ p± imply A± + B± − 2C± = p±.
2580
+ Now applying Lemma D.1, we can write
2581
+ y(2)
2582
+ + = (A(1 + δ), B(1 + δ), C(1 + δ), (A + B − 2C)(1 + δ), 0, s(1 + δ))
2583
+ (D.20)
2584
+ for some δ ∈ R. On the other hand, the TP condition (D.17) (4) for y(2)
2585
+ +
2586
+ gives
2587
+ (dA + 2(d − 1)B − 2(d − 1)C) δ = 0.
2588
+ (D.21)
2589
+ However,
2590
+ dA + 2(d − 1)B = A + (d − 1)B + (d − 1)(A + B) ≥ 2(d − 1)C (D.22)
2591
+ since A + B ≥ 2C, and the equality above holds only if A = B = C =
2592
+ p = s = 0 which is impossible. Therefore, (D.21) holds only if δ = 0, and
2593
+ hence we have y = y(2)
2594
+ + = y(2)
2595
+ − .
2596
+ Finally, we can proceed analogously when p = 0 and get the tuples of
2597
+ Type II′ and Type IV′ as extreme points of Q.
2598
+
2599
+ APPENDIX E. PROOF OF THEOREM 5.6 WHEN d = 2
2600
+ When d = 2, we have an additional relation
2601
+ Ve − V(12) − V(13) − V(23) + V(123) + V(132) = 0.
2602
+ (E.1)
2603
+ Therefore, {Vσ}σ∈S3 is no longer linearly independent, and both the spaces
2604
+ Inv(U ⊗3) = span {Vσ : σ ∈ S3} and Inv(U ⊗U ⊗U) = span {Tσ : σ ∈ S3}
2605
+ are 5-dimensional. In particular, we have Inv(O⊗3
2606
+ + ) = Inv(U ⊗ U ⊗ U) in
2607
+ this case.
2608
+
2609
+ 38
2610
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
2611
+ We can write a general element in Cov(U, UU) as M = �
2612
+ σ∈S3\{e} aσMσ.
2613
+ Then M is positive if and only if
2614
+
2615
+
2616
+
2617
+ a(12), a(13), a(23) ≥ 0 and a(132) = a(123),
2618
+ a(12) + a(13) + a(23) + a(123) + a(132) ≥ 0,
2619
+ (a(12) + a(13) + a(23) + a(123) + a(132))a(23) ≥ |a(23) + a(123)|2,
2620
+ (E.2)
2621
+ by following the same proof in Lemma 5.8. Now let us write (r, s) =
2622
+ (Re(a(123)), Im(a(123))) for convenience and consider a linear isomorphism
2623
+ ˜β : (a(12), a(13), a(23), r, s) �→ (a(12), A, B, C, s),
2624
+ (E.3)
2625
+ of R5, where A = a(12) + a(13) + a(23) + 2r, B = a(23), and C = a(23) + r.
2626
+ Then the set �Q =
2627
+
2628
+ ˜β(a(12), a(13), a(23), r, s) : M ∈ CovPosTP(U, UU)
2629
+
2630
+ is
2631
+ equal to the set of tuples (a(12), A, B, C, s) ∈ R5 satisfying
2632
+
2633
+
2634
+
2635
+
2636
+
2637
+
2638
+
2639
+ (1)
2640
+ A, B ≥ 0,
2641
+ (2)
2642
+ AB ≥ C2 + s2,
2643
+ (3)
2644
+ 0 ≤ a(12) ≤ A + B − 2C,
2645
+ (4)
2646
+ A + B − C = 1
2647
+ 2.
2648
+ (E.4)
2649
+ In order to find the extreme points y = (a(12), A, B, C, s) of �Q, note that
2650
+ we still have AB = C2 + s2 as in the proof of Lemma 5.10. Moreover,
2651
+ we have a(12) = 0 or A + B − 2C since y is a convex combination of
2652
+ y+ = (A + B − 2C, A, B, C, s) and y− = (0, A, B, C, s). Therefore, we
2653
+ can list all possible extreme points of �Q in the following two types:
2654
+ Type I′
2655
+ (A + B − 2C, A, B, C, ±
2656
+
2657
+ AB − C2),
2658
+ Type II′
2659
+ (0, A, B, C, ±
2660
+
2661
+ AB − C2),
2662
+ for A, B ≥ 0, AB ≥ C2, and A + B − C = 1
2663
+ 2. Moreover, any extreme
2664
+ point of Type I′ corresponds to a tuple
2665
+ (a(12), a(13), a(23), r, s) = (A+B −2C, 0, B, C −B, ±
2666
+
2667
+ AB − C2), (E.5)
2668
+ so the associated linear map M = �
2669
+ σ∈S3\{e} aσMσ is CP by Lemma 5.9
2670
+ (note that Lemma 5.9 (1) still gives a sufficient condition for M to be CP
2671
+ when d = 2). Similarly, any extreme point of Type II′ corresponds a CCP
2672
+ map. In other words, every element in Ext(CovPosTP(U, UU)) is CP or
2673
+ CCP, thus POS=DEC holds in CovPos1(UU, U). This completes the proof
2674
+ of Theorem 5.6 by Theorem 3.9.
2675
+
2676
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
2677
+ 39
2678
+ APPENDIX F. QUANTUM ORTHOGONAL SYMMETRY
2679
+ Within the framework of compact quantum groups, the orthogonal group
2680
+ Od is understood as the space C(Od) of continuous functions on Od en-
2681
+ dowed with the co-multiplication ∆ : C(Od) → C(Od × Od) given by
2682
+ (∆f)(x, y) = f(xy)
2683
+ (F.1)
2684
+ for all x, y ∈ Od and f ∈ C(Od). Moreover, there exists a family of
2685
+ continuous functions (πij)1≤i,j≤d generating C(Od) and
2686
+ ∆(πij) =
2687
+ d
2688
+
2689
+ k=1
2690
+ πik ⊗ πkj ∈ C(Od) ⊗min C(Od) ∼= C(Od × Od)
2691
+ (F.2)
2692
+ for all 1 ≤ i, j ≤ d, where ⊗min means the minimal tensor product of
2693
+ C∗-algebras.
2694
+ The free orthogonal quantum group O+
2695
+ d is a liberation of Od in the sense
2696
+ that the space C(O+
2697
+ d ) of ‘non-commutative’ continuous functions on O+
2698
+ d
2699
+ is the universal unital C∗-algebra generated by d2 self-adjoint operators uij
2700
+ satisfying that u =
2701
+ d
2702
+
2703
+ i,j=1
2704
+ eij ⊗ uij is a unitary, i.e. u∗u = uu∗ = Idd ⊗ 1
2705
+ in Md(C) ⊗ C(O+
2706
+ d ). The quantum group structure is encoded in the unital
2707
+ ∗-homomorphism ∆ : C(O+
2708
+ d ) → C(O+
2709
+ d ) ⊗min C(O+
2710
+ d ) determined by
2711
+ ∆(uij) =
2712
+ d
2713
+
2714
+ k=1
2715
+ uik ⊗ ukj.
2716
+ Then u =
2717
+ d
2718
+
2719
+ i,j=1
2720
+ eij ⊗ uij is the standard unitary representation of O+
2721
+ d satis-
2722
+ fying uc =
2723
+ d
2724
+
2725
+ i,j=1
2726
+ eij ⊗ u∗
2727
+ ij = u in the sense of [Wor87, Ban96]. The 3-fold
2728
+ tensor representation of u is defined by
2729
+ u ⊤ u ⊤ u =
2730
+ d
2731
+
2732
+ i1,j1,i2,j2,i3,j3=1
2733
+ ei1j1 ⊗ ei2j2 ⊗ ei3j3 ⊗ ui1j1ui2j2ui3j3.
2734
+ (F.3)
2735
+ Then the space Inv(O⊗3
2736
+ + ) in Section 5.2 is understood as the space Inv(u ⊤ u ⊤ u)
2737
+ of operators X ∈ Md(C)⊗3 satisfying
2738
+ (u ⊤ u ⊤ u) · (X ⊗ 1) = (X ⊗ 1) · (u ⊤ u ⊤ u)
2739
+ (F.4)
2740
+ in view of [LY22]. To sketch a proof of this fact, we can observe that the
2741
+ 5 operators Tσ (σ ∈ S3\ {(13)}) in (5.20) are linearly independent, and the
2742
+
2743
+ 40
2744
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
2745
+ operators Tσ satisfy (F.4) using the identity
2746
+ (u ⊤ u)(|Ωd⟩ ⊗ 1) = |Ωd⟩ ⊗ 1.
2747
+ (F.5)
2748
+ Thus, Inv(O⊗3
2749
+ + ) ⊆ Inv(u ⊤ u ⊤ u). Moreover, the space Inv(u ⊤ u ⊤ u)
2750
+ should be of dimension five thanks to the representation theory of O+
2751
+ d (see
2752
+ Corollary 6.4.12 and Corollary 5.3.5 of [Tim08]). Hence, we have Inv(O⊗3
2753
+ + ) =
2754
+ Inv(u ⊤ u ⊤ u).
2755
+ REFERENCES
2756
+ [AN14]
2757
+ Muneerah Al Nuwairan. The extreme points of SU(2)-irreducibly covariant
2758
+ channels. Internat. J. Math., 25(6):1450048, 30, 2014.
2759
+ [Ban96]
2760
+ Teodor Banica. Th´eorie des repr´esentations du groupe quantique compact
2761
+ libre O(n). C. R. Acad. Sci. Paris S´er. I Math., 322(3):241–244, 1996.
2762
+ [BBC+93]
2763
+ Charles H. Bennett, Gilles Brassard, Claude Cr´epeau, Richard Jozsa, Asher
2764
+ Peres, and William K. Wootters. Teleporting an unknown quantum state
2765
+ via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett.,
2766
+ 70(13):1895–1899, 1993.
2767
+ [Bel64]
2768
+ J. S. Bell. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz.,
2769
+ 1(3):195–200, 1964.
2770
+ [BO08]
2771
+ Nathanial P. Brown and Narutaka Ozawa. C∗-algebras and finite-
2772
+ dimensional approximations, volume 88 of Graduate Studies in Mathemat-
2773
+ ics. American Mathematical Society, Providence, RI, 2008.
2774
+ [BPM+97]
2775
+ Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald We-
2776
+ infurter, and Anton Zeilinger. Experimental quantum teleportation. Nature,
2777
+ 390(6660):575–579, 1997.
2778
+ [Bra03]
2779
+ Gilles Brassard. Quantum communication complexity. volume 33, pages
2780
+ 1593–1616. 2003. Special issue dedicated to David Mermin, Part II.
2781
+ [BSST99]
2782
+ Charles H. Bennett, Peter W. Shor, John A. Smolin, and Ashish V. Thapliyal.
2783
+ Entanglement-assisted classical capacity of noisy quantum channels. Phys.
2784
+ Rev. Lett., 83:3081–3084, Oct 1999.
2785
+ [BvDHT99] Harry Buhrman, Wim van Dam, Peter Høyer, and Alain Tapp. Multiparty
2786
+ quantum communication complexity. Phys. Rev. A, 60:2737–2741, Oct 1999.
2787
+ [BW92]
2788
+ Charles H. Bennett and Stephen J. Wiesner. Communication via one- and
2789
+ two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett.,
2790
+ 69(20):2881–2884, 1992.
2791
+ [C¯D13]
2792
+ Lin Chen and Dragomir ˇZ ¯Dokovi´c. Separability problem for multipartite
2793
+ states of rank at most 4. J. Phys. A, 46(27):275304, 24, 2013.
2794
+ [Cho82]
2795
+ M.D. Choi. Positive linear-maps. In in Operator Algebras and Applica-
2796
+ tions (Kingston, 1980), Proc.Sympos.Pure.Math., volume 38, pages 583–
2797
+ 590. Amer.Math.Soc., 1982.
2798
+ [CKK+21]
2799
+ Euijung Chang, Jaeyoung Kim, Hyesun Kwak, Hun Hee Lee, and Sang-
2800
+ Gyun Youn. Irreducibly su(2)-covariant quantum channels of low rank. to
2801
+ appear in Rev. Math. Phys., arXiv preprint arXiv:2105.00709, 2021.
2802
+ [DFV08]
2803
+ B. Dierckx, M. Fannes, and C. Vandenplas. Additivity of the Renyi entropy
2804
+ of order 2 for positive-partial-transpose-inducing channels. Phys. Rev. A (3),
2805
+ 77(6):060302, 4, 2008.
2806
+
2807
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
2808
+ 41
2809
+ [DPR07]
2810
+ A. R. Usha Devi, R. Prabhu, and A. K. Rajagopal. Characterizing multipar-
2811
+ ticle entanglement in symmetric n-qubit states via negativity of covariance
2812
+ matrices. Phys. Rev. Lett., 98:060501, Feb 2007.
2813
+ [EK00]
2814
+ Myoung-Hoe Eom and Seung-Hyeok Kye. Duality for positive linear maps
2815
+ in matrix algebras. Math. Scand., 86(1):130–142, 2000.
2816
+ [Eke91]
2817
+ Artur K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev.
2818
+ Lett., 67(6):661–663, 1991.
2819
+ [EW01]
2820
+ T. Eggeling and R. F. Werner. Separability properties of tripartite states with
2821
+ U � U � U symmetry. Phys. Rev. A, 63:042111, Mar 2001.
2822
+ [G¨11]
2823
+ Otfried G¨uhne. Entanglement criteria and full separability of multi-qubit
2824
+ quantum states. Phys. Lett. A, 375(3):406–410, 2011.
2825
+ [GBW21]
2826
+ Martina Gschwendtner, Andreas Bluhm, and Andreas Winter. Programma-
2827
+ bility of covariant quantum channels. Quant., 5(6):488, 2021.
2828
+ [Gha10]
2829
+ Sevag Gharibian. Strong NP-hardness of the quantum separability problem.
2830
+ Quantum Inf. Comput., 10(3-4):343–360, 2010.
2831
+ [Gur03]
2832
+ Leonid Gurvits. Classical deterministic complexity of Edmond’s problem
2833
+ and quantum entanglement. In Proceedings of the Thirty-Fifth Annual ACM
2834
+ Symposium on Theory of Computing, pages 10–19. ACM, New York, 2003.
2835
+ [Has18]
2836
+ Anna-Lena K. Hashagen. Symmetry Methods in Quantum Information The-
2837
+ ory. 2018. Thesis (Ph.D.)–Technische Universit¨at M¨unchen Lehrstuhl f¨ur
2838
+ mathematische Physik.
2839
+ [HH99]
2840
+ Michał Horodecki and Paweł Horodecki. Reduction criterion of separability
2841
+ and limits for a class of distillation protocols. Phys. Rev. A, 59:4206–4216,
2842
+ Jun 1999.
2843
+ [HHH96]
2844
+ MichałHorodecki, PawełHorodecki, and Ryszard Horodecki. Separability of
2845
+ mixed states: necessary and sufficient conditions. Phys. Lett. A, 223(1-2):1–
2846
+ 8, 1996.
2847
+ [HHH99]
2848
+ Paweł Horodecki, Michał Horodecki, and Ryszard Horodecki. Bound entan-
2849
+ glement can be activated. Phys. Rev. Lett., 82:1056–1059, Feb 1999.
2850
+ [HHHO05]
2851
+ Karol Horodecki, Michał Horodecki, Paweł Horodecki, and Jonathan Op-
2852
+ penheim. Secure key from bound entanglement. Phys. Rev. Lett., 94:160502,
2853
+ Apr 2005.
2854
+ [HHHO09]
2855
+ Karol Horodecki, MichałHorodecki, PawełHorodecki, and Jonathan Oppen-
2856
+ heim. General paradigm for distilling classical key from quantum states.
2857
+ IEEE Trans. Inform. Theory, 55(4):1898–1929, 2009.
2858
+ [HK16a]
2859
+ Kil-Chan Ha and Seung-Hyeok Kye. Construction of three-qubit gen-
2860
+ uine entanglement with bipartite positive partial transposes. Phys. Rev. A,
2861
+ 93:032315, Mar 2016.
2862
+ [HK16b]
2863
+ Kyung Hoon Han and Seung-Hyeok Kye. Construction of multi-qubit opti-
2864
+ mal genuine entanglement witnesses. J. Phys. A, 49(17):17503, 16, 2016.
2865
+ [HLVC00]
2866
+ Paweł Horodecki, Maciej Lewenstein, Guifr´e Vidal, and Ignacio Cirac. Op-
2867
+ erational criterion and constructive checks for the separability of low-rank
2868
+ density matrices. Phys. Rev. A, 62:032310, Aug 2000.
2869
+ [HPHH08]
2870
+ Karol Horodecki, Łukasz Pankowski, Michał Horodecki, and Paweł
2871
+ Horodecki. Low-dimensional bound entanglement with one-way distillable
2872
+ cryptographic key. IEEE Trans. Inform. Theory, 54(6):2621–2625, 2008.
2873
+
2874
+ 42
2875
+ S.-J. PARK, Y.-G. JUNG, J. PARK, AND S.-G. YOUN
2876
+ [JSW+00]
2877
+ Thomas Jennewein, Christoph Simon, Gregor Weihs, Harald Weinfurter, and
2878
+ Anton Zeilinger. Quantum cryptography with entangled photons. Phys. Rev.
2879
+ Lett., 84:4729–4732, May 2000.
2880
+ [Kay11]
2881
+ Alastair Kay. Optimal detection of entanglement in greenberger-horne-
2882
+ zeilinger states. Phys. Rev. A, 83:020303, Feb 2011.
2883
+ [KCKL00]
2884
+ B. Kraus, J. I. Cirac, S. Karnas, and M. Lewenstein. Separability in 2 × N
2885
+ composite quantum systems. Phys. Rev. A (3), 61(6):062302, 10, 2000.
2886
+ [KCL05]
2887
+ J. K. Korbicz, J. I. Cirac, and M. Lewenstein. Spin squeezing inequalities
2888
+ and entanglement of n qubit states. Phys. Rev. Lett., 95:120502, Sep 2005.
2889
+ [KMS20]
2890
+ Piotr Kopszak, Marek Mozrzymas, and MichałStudzi´nski. Positive maps
2891
+ from irreducibly covariant operators. J. Phys. A, 53(39):395306, 33, 2020.
2892
+ [Kye23]
2893
+ Seung-Hyeok Kye. Compositions and tensor products of linear maps be-
2894
+ tween matrix algebras. Linear Algebra Appl., 658:283–309, 2023.
2895
+ [Las10]
2896
+ Jean Bernard Lasserre. Moments, positive polynomials and their applica-
2897
+ tions, volume 1 of Imperial College Press Optimization Series. Imperial Col-
2898
+ lege Press, London, 2010.
2899
+ [LY22]
2900
+ Hun Hee Lee and Sang-Gyun Youn. Quantum channels with quantum group
2901
+ symmetry. Comm. Math. Phys., 389(3):1303–1329, 2022.
2902
+ [Mas06]
2903
+ Llu´ıs Masanes. All bipartite entangled states are useful for information pro-
2904
+ cessing. Phys. Rev. Lett., 96:150501, Apr 2006.
2905
+ [Mic07]
2906
+ S. Michalakis. Multiplicativity of the maximal output 2-norm for depolarized
2907
+ Werner-Holevo channels. J. Math. Phys., 48(12):122102, 5, 2007.
2908
+ [MRS15]
2909
+ Marek Mozrzymas,
2910
+ Adam Rutkowski,
2911
+ and MichałStudzi´nski. Using
2912
+ non-positive maps to characterize entanglement witnesses. J. Phys. A,
2913
+ 48(39):395302, 11, 2015.
2914
+ [MWKZ96] Klaus Mattle, Harald Weinfurter, Paul G. Kwiat, and Anton Zeilinger. Dense
2915
+ coding in experimental quantum communication. Phys. Rev. Lett., 76:4656–
2916
+ 4659, Jun 1996.
2917
+ [NPW+00]
2918
+ D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat.
2919
+ Entangled state quantum cryptography: Eavesdropping on the ekert protocol.
2920
+ Phys. Rev. Lett., 84:4733–4736, May 2000.
2921
+ [NS21]
2922
+ Ion Nechita and Satvik Singh. A graphical calculus for integration over ran-
2923
+ dom diagonal unitary matrices. Linear Algebra and its Applications, 613:46–
2924
+ 86, 2021.
2925
+ [NZ16]
2926
+ Jiawang Nie and Xinzhen Zhang. Positive maps and separable matrices.
2927
+ SIAM J. Optim., 26(2):1236–1256, 2016.
2928
+ [Pau02]
2929
+ Vern Paulsen. Completely bounded maps and operator algebras, volume 78
2930
+ of Cambridge Studies in Advanced Mathematics. Cambridge University
2931
+ Press, Cambridge, 2002.
2932
+ [Per96]
2933
+ Asher Peres. Separability criterion for density matrices. Phys. Rev. Lett.,
2934
+ 77(8):1413–1415, 1996.
2935
+ [SDN22]
2936
+ Satvik Singh, Nilanjana Datta, and Ion Nechita. Ergodic theory of diagonal
2937
+ orthogonal covariant quantum channels, 2022.
2938
+ [SN21]
2939
+ Satvik Singh and Ion Nechita. Diagonal unitary and orthogonal symmetries
2940
+ in quantum theory. Quantum, 5:519, August 2021.
2941
+ [SN22]
2942
+ Satvik Singh and Ion Nechita. The PPT2 Conjecture Holds for All Choi-Type
2943
+ Maps. Annales Henri Poincare, 23(9):3311–3329, 2022.
2944
+
2945
+ ENTANGLEMENT DETECTION OF INVARIANT QUANTUM STATES
2946
+ 43
2947
+ [Sr82]
2948
+ Erling Stø rmer. Decomposable positive maps on C∗-algebras. Proc. Amer.
2949
+ Math. Soc., 86(3):402–404, 1982.
2950
+ [TBZG00]
2951
+ W. Tittel, J. Brendel, H. Zbinden, and N. Gisin. Quantum cryptography using
2952
+ entangled photons in energy-time bell states. Phys. Rev. Lett., 84:4737–4740,
2953
+ May 2000.
2954
+ [TG09]
2955
+ G´eza T´oth and Otfried G¨uhne. Entanglement and permutational symmetry.
2956
+ Phys. Rev. Lett., 102:170503, May 2009.
2957
+ [Tim08]
2958
+ Thomas Timmermann. An Invitation to Quantum Groups and Duality. Euro-
2959
+ pean Mathematical Society, 2008.
2960
+ [UDUPR07] A. R. Usha Devi, M. S. Uma, R. Prabhu, and A. K. Rajagopal. Constraints on
2961
+ the uncertainties of entangled symmetric qubits. Phys. Lett. A, 364(3-4):203–
2962
+ 207, 2007.
2963
+ [VW02]
2964
+ Karl Gerd H. Vollbrecht and Michael M. Wolf. Activating distillation with
2965
+ an infinitesimal amount of bound entanglement. Phys. Rev. Lett., 88:247901,
2966
+ May 2002.
2967
+ [Wan95]
2968
+ Shuzhou Wang. Free products of compact quantum groups. Comm. Math.
2969
+ Phys., 167(3):671–692, 1995.
2970
+ [Wat18]
2971
+ John Watrous. The Theory of Quantum Information. Cambridge University
2972
+ Press, 2018.
2973
+ [Wer89]
2974
+ Reinhard F. Werner. Quantum states with einstein-podolsky-rosen correla-
2975
+ tions admitting a hidden-variable model. Phys. Rev. A, 40:4277–4281, Oct
2976
+ 1989.
2977
+ [Wor76a]
2978
+ S. L. Woronowicz. Nonextendible positive maps. Comm. Math. Phys.,
2979
+ 51(3):243–282, 1976.
2980
+ [Wor76b]
2981
+ S. L. Woronowicz. Positive maps of low dimensional matrix algebras. Rep.
2982
+ Math. Phys., 10(2):165–183, 1976.
2983
+ [Wor87]
2984
+ S. L. Woronowicz. Compact matrix pseudogroups. Comm. Math. Phys.,
2985
+ 111(4):613–665, 1987.
2986
+ SANG-JUN PARK, DEPARTMENT OF MATHEMATICAL SCIENCES, SEOUL NATIONAL
2987
+ UNIVERSITY, GWANAK-RO 1, GWANAK-GU, SEOUL 08826, REPUBLIC OF KOREA
2988
+ Email address: [email protected]
2989
+ YEONG-GWANG JUNG, DEPARTMENT OF MATHEMATICS EDUCATION, SEOUL NA-
2990
+ TIONAL UNIVERSITY, GWANAK-RO 1, GWANAK-GU, SEOUL 08826, REPUBLIC OF
2991
+ KOREA
2992
+ Email address: [email protected]
2993
+ JEONGEUN PARK, DEPARTMENT OF MATHEMATICS EDUCATION, SEOUL NATIONAL
2994
+ UNIVERSITY, GWANAK-RO 1, GWANAK-GU, SEOUL 08826, REPUBLIC OF KOREA
2995
+ Email address: [email protected]
2996
+ SANG-GYUN YOUN, DEPARTMENT OF MATHEMATICS EDUCATION, SEOUL NA-
2997
+ TIONAL UNIVERSITY, GWANAK-RO 1, GWANAK-GU, SEOUL 08826, REPUBLIC OF
2998
+ KOREA
2999
+ Email address: [email protected]
3000
+
V9E2T4oBgHgl3EQfYAcW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
V9E5T4oBgHgl3EQfBw5N/content/tmp_files/2301.05389v1.pdf.txt ADDED
@@ -0,0 +1,1057 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Thermal-dephasing-tolerant generation of Schr¨odinger cat states with Rydberg
2
+ dressed blockade
3
+ Ri-Hua Zheng,1 S.-L. Su,2, ∗ Jie Song,3 Weibin Li,4, † and Yan Xia1, ‡
4
+ 1Fujian Key Laboratory of Quantum Information and Quantum Optics,
5
+ College of Physics and Information Engineering,
6
+ Fuzhou University, Fuzhou, Fujian 350108, China
7
+ 2School of Physics, Zhengzhou University, Zhengzhou 450001, China
8
+ 3Department of Physics, Harbin Institute of Technology, Harbin 150001, China
9
+ 4School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
10
+ Multipartite entangled states involving non-locality are one of the most fascinating characteristics
11
+ of quantum mechanics. In this work, we propose a generation of Schr¨odinger cat states in Rydberg
12
+ atom arrays against the thermal dephasing.
13
+ Unlike the previous work for producing large-scale
14
+ entanglement [A. Omran et al, Science 365, 570 (2019)], we encode logical 1 on dressed states
15
+ rather than Rydberg states. Such treatment can increase the lifetime of multipartite entanglement
16
+ coherence to around 3 times compared to the previous work [A. Omran et al, Science 365, 570
17
+ (2019)], at the same system size, and therefore induce solid fidelities of Schr¨odinger cat states
18
+ generation.
19
+ The current work theoretically verifies the advantages of Rydberg dressed state in
20
+ many-body quantum entanglement, which is meaningful for large-scale quantum computation and
21
+ many-body Rydberg quantum simulation.
22
+ Introduction.—Multipartite entanglement lies at the
23
+ heart of quantum information processing.
24
+ Among di-
25
+ verse types of entangled states, the Greenberger-Horne-
26
+ Zeilinger (GHZ) states [1] (or called two-component
27
+ atomic Schr¨odinger cat states [2, 3]), have attracted a
28
+ lot of research interest because of their characteristics
29
+ of the maximum entanglement. Recently, two outstand-
30
+ ing experimental works [4, 5] simultaneously report the
31
+ generation of 20-qubit GHZ states with similar fidelity
32
+ F ∼ 0.55 on the Rydberg atoms platform and the super-
33
+ conducting qubits platform, respectively.
34
+ One of the major obstacles to achieving higher fidelity
35
+ in the work of Ref. [4], as well as other extensive quantum
36
+ simulation and quantum computation based on Rydberg
37
+ atoms [6–14], is thermal dephasing.
38
+ Due to the finite
39
+ temperature of neutral atoms (∼10 µK), the Doppler
40
+ shift (∼ 2π × 43 kHz) occurs on each site of the Ry-
41
+ dberg atom arrays [4, 15].
42
+ Additionally, the thermal
43
+ noise causes fluctuations of atomic distance (for exam-
44
+ ple, δR/R ∼ 6% [6]), i.e., disturbing the desired elec-
45
+ tric dipole-dipole interaction (EDDI) strength.
46
+ Above
47
+ two disturbances together constitute the thermal dephas-
48
+ ing mechanisms, which have hindered the high-precision
49
+ completion of many quantum works [4, 6, 16] in Rydberg
50
+ atoms. Especially when multiple Rydberg atoms are ex-
51
+ cited to Rydberg states, the thermal dephasing, quan-
52
+ tified by the lifetime of coherence, T2, becomes shorter
53
+ with the increase in the number of atoms N (specifically,
54
+ T2 ∼0.6 µs for N = 20 [4]).
55
+ The root cause of the thermal dephasing error is Ryd-
56
+ berg state excitation. Thus, an intuitive idea is to dilute
57
+ the percentage of Rydberg states Pr to reduce the ther-
58
+ mal dephasing error. Rydberg dressed states are efficient
59
+ to realize this goal while still retains some of the Ryd-
60
+ berg interaction strength that enough to realize the de-
61
+ sired quantum tasks [17–19]. Particularly, the Rydberg
62
+ dressed state method has been utilized for the produc-
63
+ tion of exotic quantum phases [18, 20, 21], spin squeez-
64
+ ing [17, 22], quantum computation [23, 24], and entan-
65
+ glement generation [25–27]. For Rydberg dressed states,
66
+ the percentage of Rydberg states Pr can be appropriately
67
+ adjusted by modulating the Rabi frequency and detuning
68
+ of the dressed laser on each single atom. The lower value
69
+ of Pr will bring less affection from the thermal dephas-
70
+ ing, but weaker EDDI strength, which is an interesting
71
+ trade-off.
72
+ And one can flexibly adjust the strength of
73
+ the Rydberg interaction and the percentage of Rydberg
74
+ dressed states.
75
+ In this work, we propose to generate Schr¨odinger cat
76
+ states through Rydberg dressing induced blockade. We
77
+ dress the Rydberg atoms probability Pr = 25%, leading
78
+ to coherence lifetimes T2 ={11.0, 8.2, 7.2, 6.2, 5.7, 5.1}
79
+ µs for {4, 6, 8, 10, 12, 14}-atom GHZ states, around
80
+ 3 times of T2 in the work [4], at the same system size.
81
+ For larger scale systems, the dressed lifetime T2 decreases
82
+ with the system size N as 1/
83
+
84
+ N, which is the same as
85
+ the scaling rule in the work without Rydberg dressing [4].
86
+ The fidelities are {97.2%, 95.1%, 91.1%, 84.6%} for {4,
87
+ 6, 8, 10}-atom GHZ states when considering the thermal
88
+ dephasing. Based on the above fidelities data, we give
89
+ a prediction fidelity of 80% for the 20-atom GHZ state.
90
+ The balance between dressing low-percentage Rydberg
91
+ states and shortening the evolution time in large-scale
92
+ neutral atoms systems in the present work may provide
93
+ a reference for quantum computation and quantum sim-
94
+ ulation based on multiple dressed atoms. The Rydberg-
95
+ dressing method for many-body entanglement generation
96
+ is scalable and dephasing-tolerant, which will contribute
97
+ to realizing near-term quantum simulation and quan-
98
+ tum computation with Rydberg atom arrays, such as
99
+ arXiv:2301.05389v1 [quant-ph] 13 Jan 2023
100
+
101
+ 2
102
+ |������������⟩
103
+ |1⟩
104
+ |0⟩
105
+ Δ
106
+ Ω
107
+ Ωmw
108
+ ������������mw
109
+ ������������
110
+ (b)
111
+ (a)
112
+ (c)
113
+ FIG. 1. (a) Envisioned experimental setup. All atoms fixed
114
+ on the one-dimensional array are driven by Rydberg dressed
115
+ lasers (780 and 480 nms) and Raman (microwave) drivings
116
+ with the same detunings and Rabi frequencies. Two address-
117
+ ing lasers (not shown) are added on the two edge atoms to
118
+ differentiate microwave detunings from other atomic ones. (b)
119
+ Energy levels and couplings of each atom. (c) Performance
120
+ of the entanglement generation versus dressed percentage Pr.
121
+ This performance index combines the impact of the lifetime,
122
+ dressed interaction, and dressed interaction bandwidth (See
123
+ the text for details).
124
+ entanglement-enhanced sensing [28], quantum metrology
125
+ [29], and quantum error correction [30] based on GHZ
126
+ states.
127
+ Model.—Consider a one-dimensional array with an
128
+ even number N of neutral 87Rb atoms, trapped in the op-
129
+ tical tweezers, as shown in Fig. 1. For all the atoms, we
130
+ encode two ground states |0⟩ = |5S1/2, F = 1, mF = 1⟩
131
+ and |1⟩ = |5S1/2, F = 2, mF = 2⟩ and one excited Ry-
132
+ dberg state |r⟩ = |70S, J = 1/2, mJ = −1/2⟩ [4, 31].
133
+ The coupling between |1⟩ and |r⟩ is driven by a two-
134
+ photon transition with effective coupling strength Ω and
135
+ detuning ∆. Additionally, the microwave-frequency fields
136
+ with strength Ωmw(t) and detuning δn
137
+ mw(t) are added
138
+ for driving the rotations between the ground states |0⟩
139
+ and |1⟩. We choose the nearest-neighbor EDDI energy,
140
+ V/(2π) = 21 MHz, i.e., equal adjacent atomic intervals
141
+ of 5.87 µm and C6 = 858 GHz µm6 · h. The Hamiltonian
142
+ here is given by (ℏ = 1 and n, i, j ≤ N)
143
+ H = HRDB + Hmw,
144
+ (1a)
145
+ HRDB =
146
+ N
147
+
148
+ n=1
149
+
150
+ 2 σn
151
+ x,r1 + ∆σn
152
+ rr +
153
+
154
+ i<j
155
+ V
156
+ |i − j|6 σi
157
+ rrσj
158
+ rr, (1b)
159
+ Hmw =
160
+ N
161
+
162
+ n=1
163
+ [Ωmw(t)σn
164
+ x,0d + [U1 − δn
165
+ mw(t)]σn
166
+ 00,
167
+ (1c)
168
+ with σn
169
+ αα
170
+ =
171
+ |α⟩n⟨α|,
172
+ σn
173
+ x,αβ
174
+ =
175
+ |α⟩n⟨β| + |β⟩n⟨α|
176
+ (α = r, 0; β = 1, d), where |d⟩ is the dressed state,
177
+ given by |d⟩ = −sign(∆) sin(θ/2)|1⟩ + cos(θ/2)|r⟩ with
178
+ sin θ = Ω/
179
+
180
+ Ω2 + ∆2 and cos θ = −sign(∆)∆/
181
+
182
+ Ω2 + ∆2.
183
+ Therefore, the percentage Pr of Rydberg states in the
184
+ dressed states is cos2(θ/2).
185
+ Note the driving between
186
+ |0⟩ and |r⟩ is also a two-photon transition.
187
+ For each
188
+ pair of adjacent atoms, after abandoning decoupled anti-
189
+ symmetric state (|1r⟩ − |r1⟩)/
190
+
191
+ 2, the Hamiltonian can
192
+ be reduced to
193
+ H(2)
194
+ RDB =
195
+
196
+
197
+
198
+ 0
199
+
200
+
201
+ 2
202
+ 0
203
+
204
+
205
+ 2
206
+
207
+
208
+
209
+ 2
210
+ 0
211
+
212
+
213
+ 2 2∆ + V
214
+
215
+
216
+ � ,
217
+ (2)
218
+ in basis {|11⟩, (|1r⟩ + |r1⟩)/
219
+
220
+ 2, |rr⟩}.
221
+ Equation 2 is
222
+ insightful in that it allows us to understand the energy
223
+ scales directly.
224
+ The performance of the entanglement generation is
225
+ quantified as per. = J · T2 · bwJ, shown in Fig.
226
+ 1(c)
227
+ with free units, where J and bwJ are the dressed en-
228
+ ergy and dressed energy bandwidth, respectively.
229
+ The
230
+ dressed energy, arising from the Stark shifts caused
231
+ by the reciprocity among the EDDI and dressed lasers
232
+ drivings, is given by J
233
+ = |2U1 − U2|, with U1
234
+ =
235
+ (∆ − sign(∆)
236
+
237
+ Ω2 + ∆2)/2
238
+ and
239
+ U2
240
+ =
241
+ −sign(∆) ·
242
+ min |eig(H(2)
243
+ RDB)| representing single- and double-atom
244
+ Stark shifts on the dressed states, respectively. When the
245
+ Rydberg blockade effect is strong enough (V ≫ {Ω, ∆}),
246
+ one can calculate that U2 = (∆−sign(∆)
247
+
248
+ 2Ω2 + ∆2)/2,
249
+ which is coincide with the results in [18, 19, 25]. For illu-
250
+ mination, we plot the dressed energy J versus detuning
251
+ ∆ and EDDI strength V in Fig. 2.
252
+ As exhibited in Fig. 2, the stick-shaped area around
253
+ the green dashed line processes higher dressed energy
254
+ J. This area demonstrates an interesting physical phe-
255
+ nomenon, called Rydberg anti-blockade [32–37]. In prin-
256
+ ciple, in all the regions of Fig. 2, the dressed energy J
257
+ on the two-atom dressed states |dd⟩i(i+1) blockade the
258
+ associated transitions from the ground state to |dd⟩i(i+1)
259
+ (adjusting J ≫ Ωmw, dropping (t) hereafter). That is an-
260
+ other phenomenon with rich physical connotations, called
261
+ Rydberg dressed blockade (RDB) [17–19, 25–27], which
262
+ acts like the Rydberg blockade, however with a differ-
263
+ ence that the transitions to adjacent atoms in the dressed
264
+ state |dd⟩i(i+1) rather than the two-atom Rydberg states
265
+ |rr⟩i(i+1) are forbidden.
266
+ To shorten the evolution time of the dynamics induced
267
+ by Hmw, we prefer a larger dressed energy J for RDB.
268
+ On the other hand, to reduce the thermal dephasing of
269
+ atoms, the composition of Rydberg states Pr should be
270
+ small (resisting atomic Doppler shifts). Additionally, the
271
+ dressed energy J needs to be stable within a certain
272
+ fluctuation range of V (resisting atomic position float-
273
+ ing).
274
+ Ergo, we choose (V, ∆)/(2π) = (21, −4.5) MHz
275
+ with Pr = 25%.
276
+ Up to now, the light shift (caused by the dressed
277
+
278
+ Raman
279
+ driving3
280
+ -2
281
+ -3
282
+ 4
283
+ 5
284
+
285
+
286
+
287
+
288
+ (Z
289
+ H艺
290
+ 飞N)
291
+ <1 -6
292
+ -7
293
+ -85
294
+ J (21r MHz)
295
+ Chosen point
296
+ 一一 飞一 一一一一一一一 女一一
297
+ Percentage of
298
+ Rydberg<25%
299
+ 5
300
+ 4
301
+ 3
302
+ 2
303
+ 1
304
+
305
+ 10
306
+ 15
307
+ 20
308
+ V (21r MHz)
309
+ 25
310
+ FIG. 2. (Color online) Dressed energy J versus detuning ∆
311
+ and EDDI strength V . The effective coupling strength Ω is
312
+ fixed at 2π × 8 MHz. The area where the percentage of Ry-
313
+ dberg states Pr is less than 25%, is marked below the red
314
+ dotted line.
315
+ The stick-shaped area represents the Rydberg
316
+ anti-blockade with weak regimes (not satisfying ∆ ≫ Ω). The
317
+ selected point (V, ∆)/(2π) = (21, −4.5) MHz is marked by a
318
+ cross.
319
+ laser) for each atom can be canceled by the U1|0⟩n⟨0|
320
+ term of the Hamiltonian of microwave-frequency fields,
321
+ Hmw.
322
+ Then we use Hmw to flexibly manipulate the
323
+ dynamics of multiple atoms in subspace S1 ={|0⟩, |d⟩}
324
+ (equal to an N-qubit quantum system). Moreover, due
325
+ to the RDB effect, the subspace S2 = {|dd⟩i(i+1)} are
326
+ forbidden. The calculation space is further locked into
327
+ S3 = ∁S1S2. Therefore we successfully reduce the cal-
328
+ culation dimension of the N-qubit quantum system from
329
+ 2N to �N/2
330
+ m=0 Cm
331
+ N+1−m (see Supplemental Material [38] for
332
+ details), analogous to the multiple-qubit work by Omran
333
+ et al. [4]. Remarkably, such a reduction of the dimen-
334
+ sion of the system subspace induces a non-local effect to
335
+ generate entanglement [4, 25].
336
+ Further, by appropriately adjusting the addressing
337
+ drivings applied on edge atoms, we can make their mi-
338
+ crowave detunings (δe
339
+ mw) different from other atomic
340
+ ones (δne
341
+ mw), i.e., δ1
342
+ mw = δN
343
+ mw = δe
344
+ mw ̸= δp
345
+ mw = δne
346
+ mw
347
+ (p = 2, 3, ..., N − 1).
348
+ When δe
349
+ mw is closed to δne
350
+ mw but
351
+ differs certain values, the initial state |0000 · · · ⟩ will be
352
+ driven to the GHZ state |GHZN⟩ = (|d0d0 · · · d0⟩ +
353
+ |0d0d · · · 0d⟩)/
354
+
355
+ 2 by adiabatically increasing detuning
356
+ (−δn
357
+ mw) from negative large values to positive large values
358
+ (see Supplemental Material [38] for deviations). Such an
359
+ adiabatic method has been proved in the work of Ref. [4],
360
+ and they optimize their pulses through a remote dressed
361
+ chopped-random basis algorithm [39, 40]. Here we utilize
362
+ another effective optimal control method, GRAPE [41]
363
+ (recently proved to be a precise algorithm in the experi-
364
+ ment [42–45]), to shorten the evolution time of the above
365
+ adiabatic process for the multipartite GHZ states gener-
366
+ Number of atoms
367
+ Time (µs)
368
+ Ideal fidelity
369
+ 4
370
+ 2.1
371
+ 0.9956
372
+ 6
373
+ 4.2
374
+ 0.9956
375
+ 8
376
+ 4.8
377
+ 0.9873
378
+ 10
379
+ 12.5
380
+ 0.9799
381
+ TABLE I. Ideal fidelities and preparation times optimized by
382
+ the GRAPE. The ideal fidelity is calculated in the effective
383
+ subspace S3 (no {|dd⟩i(i+1)} subspace).
384
+ ation. The optimization results are exhibited in Table I.
385
+ Note that the maximum absolute value of Ωmw does not
386
+ exceed 2π ×0.14 MHz to ensure the stability of the RDB
387
+ dynamics (J ≫ Ωmw). Detailed driving pulses for {4,
388
+ 6, 8, 10}-atom systems can be seen in the Supplemental
389
+ material [38].
390
+ Thermal dephasing.—We next consider a very critical
391
+ experimental imperfection, the thermal dephasing noise,
392
+ in the numerical simulation. The finite temperature of
393
+ atoms induces their nonzero spread velocity and position
394
+ uncertainty. Such that the thermal dephasing mechanism
395
+ is determined by these two factors.
396
+ (i) The position uncertainty can be modeled by the
397
+ Gaussian distribution with the probability density func-
398
+ tion being N(xn, σ2) = e−(x−xn)2/(2σ2)/(
399
+
400
+ 2πσ), where
401
+ xn the ideal position of the nth atom and σ2 the variance.
402
+ The adjacent distance of the atoms is R = N(xi, σ2) −
403
+ N(xi+1, σ2) = N(R0, 2σ2) with R0 = xi − xi+1 =
404
+ 5.87 µm. Specifically, the standard deviation σ of Gaus-
405
+ sian distribution for an atom in a finite temperature ∼10
406
+ µK is around 0.1 µm [4, 46]. As V = C6/R6, a spread
407
+ in interaction strength can be calculated by the posi-
408
+ tion distribution and further simulated with the original
409
+ Hamiltonian in Eq. (1).
410
+ (ii) The spread velocity causes fluctuating Doppler
411
+ shifts.
412
+ According to concrete reports [15, 47, 48], the
413
+ Doppler shift leads to a random detuning δD on each
414
+ atom-array site, viz., δD ∈ N(0, σ2
415
+ D), simulated as an
416
+ error term HD = δD|r⟩⟨r| added to the original Hamil-
417
+ tonian in Eq. (1). The value of σD is given by σD =
418
+ keff∆v with keff = |k|1⟩↔|e⟩ + k|e⟩↔|r⟩| the effective
419
+ wave vector of two-photon transition |1⟩ ↔ |r⟩ and
420
+ ∆v =
421
+
422
+ kBT/m the one-dimensional root-mean-square
423
+ (rms) velocity spread of atoms. Bringing in the values of
424
+ Boltzmann constant kB, atomic temperature T = 10 µK
425
+ [4], and atomic mass m = 87 × 1.66 × 10−27 kg, we can
426
+ give the rms velocity spread ∆v =
427
+
428
+ kBT/m = 0.031
429
+ m/s.
430
+ On the other hand, one can drive |1⟩ ↔ |e���
431
+ (|e⟩ ↔ |r⟩) by a 780 nm (480 nm) laser with |k|1⟩↔|e⟩| =
432
+ 2π/780 nm−1 (|k|e⟩↔|r⟩| = 2π/480 nm−1). These two
433
+ lasers can be focused on the atom array by opposite
434
+ directions [15] to minimize the Doppler shifts, result-
435
+ ing in keff = 2π/480 nm−1 − 2π/780 nm−1 and further
436
+ σD/(2π) = 24.77 kHz. Since the energy of ground states
437
+ |0⟩ and |1⟩ is closed, the Doppler shifts are almost the
438
+
439
+ Rydberg
440
+ anti-blockade4
441
+ 4
442
+ 6
443
+ 8
444
+ 10
445
+ 12
446
+ 14
447
+ 16
448
+ 18
449
+ 20
450
+ 0
451
+ 0.2
452
+ 0.4
453
+ 0.6
454
+ 0.8
455
+ 1
456
+ Simulated
457
+ data & Error
458
+ fit line
459
+ 4
460
+ 6
461
+ 8
462
+ 10
463
+ 12
464
+ FIG. 3. Fidelities of GHZ states in the systems at different
465
+ scales. The colors of dots scale the corresponding preparation
466
+ time for GHZ states. The green dashed line exhibits the fitting
467
+ results [based on log(F − 1/2) ∝ −
468
+
469
+ N] induced from the
470
+ fidelities for {4, 6, 8, 10}-atom systems.
471
+ This line gives a
472
+ prediction of the fidelities for larger N ≥ 12 and also more
473
+ difficult to compute systems, marked by a gray area.
474
+ same for |1⟩ ↔ |r⟩ and |0⟩ ↔ |r⟩. Therefore the error
475
+ term HD = δD|r⟩⟨r| can well describe the Doppler shifts
476
+ effect in the present atomic systems.
477
+ Scaling of fidelities.—Considering the above two nega-
478
+ tive factors, the simulation results for GHZ states prepa-
479
+ ration in {4, 6, 8, 10}-atom systems are shown in Fig. 3.
480
+ The full Hamiltonian in Eq. (1) is utilized to calculate
481
+ the fidelities for {4, 6, 8, 10}-atom systems. The ther-
482
+ mal dephasing (including the position uncertainty and
483
+ the Doppler shifts) is considered during the numerical
484
+ simulation by repeatedly calculating fidelities based on
485
+ different values of R and δD (obeying the normal dis-
486
+ tribution), which induces the error bars (standard devi-
487
+ ation) in Fig. 3. For each simulated final density ma-
488
+ trix ρf, we deduce fidelity F = ⟨GHZN|ρf|GHZN⟩ =
489
+ 1
490
+ 2(pAN + p ¯
491
+ AN + cN + c∗
492
+ N) [4], where pAN (p ¯
493
+ AN ) is pop-
494
+ ulation on |AN⟩ = |d0d0 · · · d0⟩ (| ¯AN⟩ = |0d0d · · · 0d⟩)
495
+ and cN = ⟨ ¯AN|ρf|AN⟩ describes the coincidence of off-
496
+ diagonal terms. The fidelity of the 4-atom GHZ state is
497
+ higher than 97%. Even in the 10-atom system, the fi-
498
+ delity is still close to 85%. Additionally, according to the
499
+ prediction line in Fig. 3, the fidelity of 20-atom will be
500
+ around 80%.
501
+ Scaling of T2.—To further benchmark the dephasing
502
+ effect of present dressed-atom systems, we assume the
503
+ initial state is |GHZN⟩ and turn off all the driving lases
504
+ for a specific time τ and calculate the corresponding den-
505
+ sity matrix ρ′(τ). By counting 2|⟨ ¯AN|ρ′(τ)|AN⟩| as the
506
+ coherence and defining the coherence lifetime T2 satisfy-
507
+ ing 2|⟨ ¯AN|ρ′(T2)|AN⟩| = e−1, we show T2 versus system
508
+ size N in Fig. 4. These T2 data are around 3 times of the
509
+ observed data in the previous work [4] without dressing
510
+ atoms, at the same system size.
511
+ The above results come from the current cooling lim-
512
+ 4
513
+ 6
514
+ 8
515
+ 10
516
+ 12
517
+ 14
518
+ 16
519
+ 18
520
+ 20
521
+ 2
522
+ 4
523
+ 6
524
+ 8
525
+ 10
526
+ 12
527
+ 0
528
+ 5
529
+ 10
530
+ 0
531
+ 1
532
+ Simulated
533
+ data & Error
534
+ fit line
535
+ FIG. 4. Coherence lifetime (T2) versus system size N. The
536
+ circles show the T2 data inferred by Gaussian fittings of the co-
537
+ herence damping for systems with different sizes and the blue
538
+ dashed line gives a predicted trend (T2 ∝ 1/
539
+
540
+ N) for larger
541
+ systems (N ≥ 16). As an example, the inset exhibits the co-
542
+ herence damping of an 8-atom system with a green dashed
543
+ line obeying Gaussian fitting. Similar to Fig. 3, the dots and
544
+ error bars are mean values and stand deviations of coherence.
545
+ ited temperature T = 10 µK of cold atoms [4, 49]. In the
546
+ future, with the development of experimental techniques,
547
+ the atoms may be cooled to lower temperatures. We here
548
+ give an estimate of fidelity F versus atomic temperature
549
+ T to show the prospect of our scheme, with the simula-
550
+ tion results of {4, 6, 8, 10}-atom systems shown in Fig.
551
+ 5. The relationship between fidelity F and decoherence
552
+ time T2 is log(F − 1/2) ∝ −1/T2. The coherence T2 re-
553
+ sults from to thermal motion described by the Boltzmann
554
+ distribution and therefore satisfies T2 ∝ 1/
555
+
556
+ T. The final
557
+ relationship between fidelity F and atomic temperature
558
+ T is log(F − 1/2) ∝ −
559
+
560
+ T, which coincides well with the
561
+ simulation results in Fig.
562
+ 5, and also gives prediction
563
+ that the fidelities of {4, 6, 8, 10}-atom GHZ states can
564
+ reach around 95% when the atomic temperature is lower
565
+ than 10 µK.
566
+ It is worth noting that the Rydberg state percentage
567
+ Pr of the dressed state is 25%. According to the lifetime
568
+ of 70S Rydberg state of 146 µs [15, 50], the lifetime of
569
+ the dressed state could extend to 573 µs, long enough
570
+ to ignore the depopulation effect factor as the prepara-
571
+ tion times of GHZ states around 10 µs. Additionally, we
572
+ only consider the near-neighbor and next-neighbor inter-
573
+ actions.
574
+ Conclusion.—We
575
+ have
576
+ explored
577
+ the
578
+ thermal-
579
+ dephasing-tolerant
580
+ generation
581
+ of
582
+ GHZ
583
+ states
584
+ in
585
+ dressed-atom
586
+ systems.
587
+ The
588
+ thermal
589
+ dephasing
590
+ is
591
+ suppressed here to 1/3 of the original performance
592
+ in multi-body entangled systems [4], leading to solid
593
+ fidelities of multi-body GHZ states.
594
+ As the dephasing
595
+ factor becomes an important obstacle to large-scale
596
+
597
+ 5
598
+ 0
599
+ 2
600
+ 4
601
+ 6
602
+ 8
603
+ 0.7
604
+ 0.8
605
+ 0.9
606
+ 1
607
+ Fidelity
608
+ 4 atoms
609
+ 6 atoms
610
+ 8 atoms
611
+ 10 atoms
612
+ FIG. 5. Fidelities of GHZ states versus atomic temperature.
613
+ The circles, diamonds, triangles, and squares represent the
614
+ fidelity of {4, 6, 8, 10}-atom GHZ states, respectively. The
615
+ dash lines correspondingly show the fitting results based on
616
+ log(F − 1/2) ∝ −
617
+
618
+ T for different scales systems.
619
+ quantum computation and quantum simulation based
620
+ on neutral atoms, the present work may be referable to
621
+ building dephasing-tolerant quantum tasks in large-scale
622
+ systems. Combining the Rydberg dressed state method
623
+ with GPAPE optimal control techniques also provides
624
+ an enlightening new perspective for robust handling of
625
+ many-body Rydberg quantum simulations and quantum
626
+ computation.
627
+ This work was supported by the National Natural Sci-
628
+ ence Foundation of China under Grants No. 11575045,
629
+ No. 11874114, No. 11674060, No. 11805036, and the
630
+ Natural Science Funds for Distinguished Young Scholar
631
+ of Fujian Province under Grant 2020J06011, Project from
632
+ Fuzhou University under Grant JG202001-2. S. L. S. ac-
633
+ knowledges support from National Natural Science Foun-
634
+ dation of China under Grant No. 12274376 and Major
635
+ science and technology project of Henan Province under
636
+ Grant No. 221100210400. W. L. acknowledges support
637
+ from the EPSRC through Grant No. EP/W015641/1 and
638
+ the British Council through an Industry Academia Col-
639
+ laborative Grant (No. IND/CONT/G/22-23/26).
640
641
642
643
+ [1] D. M. Greenberger, M. A. Horne, A. Shimony, and
644
+ A. Zeilinger, Bell’s theorem without inequalities, Am. J
645
+ Phys. 58, 1131 (1990).
646
+ [2] G. S. Agarwal, R. R. Puri, and R. P. Singh, Atomic
647
+ Schr¨odinger cat states, Phys. Rev. A 56, 2249 (1997).
648
+ [3] C. C. Gerry and R. Grobe, Generation and properties
649
+ of collective atomic Schr¨odinger-cat states, Phys. Rev. A
650
+ 56, 2390 (1997).
651
+ [4] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T.
652
+ Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler,
653
+ S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Mon-
654
+ tangero, T. Calarco, M. Endres, M. Greiner, V. Vuleti´c,
655
+ and M. D. Lukin, Generation and manipulation of
656
+ Schr¨odinger cat states in Rydberg atom arrays, Science
657
+ 365, 570 (2019).
658
+ [5] C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu,
659
+ Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan,
660
+ D. Zheng, D.-W. Wang, H. Wang, and S.-Y. Zhu, Gen-
661
+ eration of multicomponent atomic Schr¨odinger cat states
662
+ of up to 20 qubits, Science 365, 574 (2019).
663
+ [6] S. Ravets, H. Labuhn, D. Barredo, L. B´eguin, T. Lahaye,
664
+ and A. Browaeys, Coherent dipole–dipole coupling be-
665
+ tween two single Rydberg atoms at an electrically-tuned
666
+ F¨orster resonance, Nat. Phys. 10, 914 (2014).
667
+ [7] I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale,
668
+ A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and
669
+ M. Endres, High-fidelity entanglement and detection of
670
+ alkaline-earth Rydberg atoms, Nat. Phys. 16, 857 (2020).
671
+ [8] Y.-H. Kang, Y.-H. Chen, Z.-C. Shi, B.-H. Huang, J. Song,
672
+ and Y. Xia, Nonadiabatic holonomic quantum computa-
673
+ tion using Rydberg blockade, Phys. Rev. A 97, 042336
674
+ (2018).
675
+ [9] Y. Wang, C.-S. Hu, Z.-C. Shi, B.-H. Huang, J. Song,
676
+ and Y. Xia, Accelerated and noise-resistant protocol of
677
+ dissipation-based Knill–Laflamme–Milburn state gener-
678
+ ation with Lyapunov control, Ann. Phys. (Berlin) 531,
679
+ 1900006 (2019).
680
+ [10] S.-L. Su, F.-Q. Guo, L. Tian, X.-Y. Zhu, L.-L. Yan, E.-
681
+ J. Liang, and M. Feng, Nondestructive Rydberg parity
682
+ meter and its applications, Phys. Rev. A 101, 012347
683
+ (2020).
684
+ [11] R.-H. Zheng, Y.-H. Kang, D. Ran, Z.-C. Shi, and Y. Xia,
685
+ Deterministic interconversions between the Greenberger-
686
+ Horne-Zeilinger states and the W states by invariant-
687
+ based pulse design, Phys. Rev. A 101, 012345 (2020).
688
+ [12] Y.-H. Kang, Z.-C. Shi, J. Song, and Y. Xia, Her-
689
+ alded atomic nonadiabatic holonomic quantum compu-
690
+ tation with Rydberg blockade, Phys. Rev. A 102, 022617
691
+ (2020).
692
+ [13] S.-L. Su and W. Li, Dipole-dipole-interaction–driven an-
693
+ tiblockade of two Rydberg atoms, Phys. Rev. A 104,
694
+ 033716 (2021).
695
+ [14] S. Liu, J.-H. Shen, R.-H. Zheng, Y.-H. Kang, Z.-C. Shi,
696
+ J. Song, and Y. Xia, Optimized nonadiabatic holonomic
697
+ quantum computation based on F¨orster resonance in Ry-
698
+ dberg atoms, Frontiers of Physics 17, 21502 (2022).
699
+ [15] H.
700
+ Levine,
701
+ A.
702
+ Keesling,
703
+ A.
704
+ Omran,
705
+ H.
706
+ Bernien,
707
+ S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner,
708
+ V. Vuleti´c, and M. D. Lukin, High-fidelity control and
709
+ entanglement of Rydberg-atom qubits, Phys. Rev. Lett.
710
+ 121, 123603 (2018).
711
+ [16] I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale,
712
+ A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and
713
+ M. Endres, High-fidelity entanglement and detection of
714
+ alkaline-earth Rydberg atoms, Nat. Phys. 16, 857 (2020).
715
+ [17] I. Bouchoule and K. Mølmer, Spin squeezing of atoms by
716
+ the dipole interaction in virtually excited Rydberg states,
717
+ Phys. Rev. A 65, 041803(R) (2002).
718
+ [18] J. E. Johnson and S. L. Rolston, Interactions between
719
+ Rydberg-dressed atoms, Phys. Rev. A 82, 033412 (2010).
720
+ [19] J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth,
721
+ R. L¨ow, and T. Pfau, Rydberg dressing: understanding
722
+ of collective many-body effects and implications for ex-
723
+ periments, New J. Phys. 16, 063012 (2014).
724
+ [20] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and
725
+
726
+ 6
727
+ P. Zoller, Strongly correlated gases of Rydberg-dressed
728
+ atoms:
729
+ Quantum and classical dynamics, Phys. Rev.
730
+ Lett. 104, 223002 (2010).
731
+ [21] S. Yan, D. A. Huse, and S. R. White, Spin-liquid ground
732
+ state of the S = 1/2 kagome Heisenberg antiferromagnet,
733
+ Science 332, 1173 (2011).
734
+ [22] L. I. R. Gil, R. Mukherjee, E. M. Bridge, M. P. A. Jones,
735
+ and T. Pohl, Spin Squeezing in a Rydberg Lattice Clock,
736
+ Phys. Rev. Lett. 112, 103601 (2014).
737
+ [23] T. Keating, K. Goyal, Y.-Y. Jau, G. W. Biedermann,
738
+ A. J. Landahl, and I. H. Deutsch, Adiabatic quantum
739
+ computation with Rydberg-dressed atoms, Phys. Rev. A
740
+ 87, 052314 (2013).
741
+ [24] T. Keating, R. L. Cook, A. M. Hankin, Y.-Y. Jau, G. W.
742
+ Biedermann, and I. H. Deutsch, Robust quantum logic
743
+ in neutral atoms via adiabatic Rydberg dressing, Phys.
744
+ Rev. A 91, 012337 (2015).
745
+ [25] Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch,
746
+ and G. W. Biedermann, Entangling atomic spins with
747
+ a Rydberg-dressed spin-flip blockade, Nat. Phys. 12, 71
748
+ (2015).
749
+ [26] X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi,
750
+ Ground-state blockade of Rydberg atoms and applica-
751
+ tion in entanglement generation, Phys. Rev. A 96, 012328
752
+ (2017).
753
+ [27] D.-X. Li, T.-Y. Zheng, and X.-Q. Shao, Adiabatic prepa-
754
+ ration of multipartite GHZ states via Rydberg ground-
755
+ state blockade, Opt. Express 27, 20874 (2019).
756
+ [28] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum
757
+ sensing, Rev. Mod. Phys. 89, 035002 (2017).
758
+ [29] W. D¨ur, M. Skotiniotis, F. Fr¨owis, and B. Kraus, Im-
759
+ proved quantum metrology using quantum error correc-
760
+ tion, Phys. Rev. Lett. 112, 080801 (2014).
761
+ [30] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
762
+ D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina,
763
+ and C. Monroe, Fault-tolerant operation of a quantum
764
+ error-correction code, arXiv:2009.11482v2 (2020).
765
+ [31] T. Wilk, A. Ga¨etan, C. Evellin, J. Wolters, Y. Mirosh-
766
+ nychenko, P. Grangier, and A. Browaeys, Entanglement
767
+ of two individual neutral atoms using Rydberg blockade,
768
+ Phys. Rev. Lett. 104, 010502 (2010).
769
+ [32] C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblock-
770
+ ade in Rydberg excitation of an ultracold lattice gas,
771
+ Phys. Rev. Lett. 98, 023002 (2007).
772
+ [33] T. Amthor, C. Giese, C. S. Hofmann, and M. Wei-
773
+ dem¨uller, Evidence of antiblockade in an ultracold Ry-
774
+ dberg gas, Phys. Rev. Lett. 104, 013001 (2010).
775
+ [34] Z. Zuo and K. Nakagawa, Multiparticle entanglement in
776
+ a one-dimensional optical lattice using Rydberg-atom in-
777
+ teractions, Phys. Rev. A 82, 062328 (2010).
778
+ [35] T. E. Lee, H. H¨affner, and M. C. Cross, Collective quan-
779
+ tum jumps of Rydberg atoms, Phys. Rev. Lett. 108,
780
+ 023602 (2012).
781
+ [36] W. Li, C. Ates, and I. Lesanovsky, Nonadiabatic motional
782
+ effects and dissipative blockade for Rydberg atoms ex-
783
+ cited from optical lattices or microtraps, Phys. Rev. Lett.
784
+ 110, 213005 (2013).
785
+ [37] S.-L. Su, E. Liang, S. Zhang, J.-J. Wen, L.-L. Sun,
786
+ Z. Jin, and A.-D. Zhu, One-step implementation of the
787
+ Rydberg-Rydberg-interaction gate, Phys. Rev. A 93,
788
+ 012306 (2016).
789
+ [38] See Supplemental Material for additional details of
790
+ derivation and calculation, which includes Refs. [4, 28].
791
+ [39] N. Rach, M. M. M¨uller, T. Calarco, and S. Mon-
792
+ tangero, Dressing the chopped-random-basis optimiza-
793
+ tion: A bandwidth-limited access to the trap-free land-
794
+ scape, Phys. Rev. A 92, 062343 (2015).
795
+ [40] R. Heck, O. Vuculescu, J. J. Sørensen, J. Zoller, M. G.
796
+ Andreasen, M. G. Bason, P. Ejlertsen, O. El´ıasson,
797
+ P. Haikka, J. S. Laustsen, L. L. Nielsen, A. Mao,
798
+ R. M¨uller, M. Napolitano, M. K. Pedersen, A. R.
799
+ Thorsen, C. Bergenholtz, T. Calarco, S. Montangero, and
800
+ J. F. Sherson, Remote optimization of an ultracold atoms
801
+ experiment by experts and citizen scientists, Proc. Natl.
802
+ Acad. Sci. U.S.A. 115, E11231 (2018).
803
+ [41] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbr¨uggen,
804
+ and S. J. Glaser, Optimal control of coupled spin dynam-
805
+ ics: design of NMR pulse sequences by gradient ascent
806
+ algorithms, J. Magn. Reson. 172, 296 (2005).
807
+ [42] L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu,
808
+ H. Wang, Y. P. Song, C.-L. Zou, S. M. Girvin, L.-M.
809
+ Duan, and L. Sun, Quantum error correction and univer-
810
+ sal gate set operation on a binomial bosonic logical qubit,
811
+ Nat. Phys. 15, 503 (2019).
812
+ [43] Y. Ma, Y. Xu, X. Mu, W. Cai, L. Hu, W. Wang, X. Pan,
813
+ H. Wang, Y. P. Song, C.-L. Zou, and L. Sun, Error-
814
+ transparent operations on a logical qubit protected by
815
+ quantum error correction, Nat. Phys. 16, 827 (2020).
816
+ [44] Y. Ma, X. Pan, W. Cai, X. Mu, Y. Xu, L. Hu, W. Wang,
817
+ H. Wang, Y. P. Song, Z.-B. Yang, S.-B. Zheng, and
818
+ L. Sun, Manipulating complex hybrid entanglement and
819
+ testing multipartite Bell inequalities in a superconduct-
820
+ ing circuit, Phys. Rev. Lett. 125, 180503 (2020).
821
+ [45] Y. Xu, Y. Ma, W. Cai, X. Mu, W. Dai, W. Wang, L. Hu,
822
+ X. Li, J. Han, H. Wang, Y. P. Song, Z.-B. Yang, S.-B.
823
+ Zheng, and L. Sun, Demonstration of controlled-phase
824
+ gates between two error-correctable photonic qubits,
825
+ Phys. Rev. Lett. 124, 120501 (2020).
826
+ [46] A. Omran, Personal communication, (2022).
827
+ [47] S. de L´es´eleuc, D. Barredo, V. Lienhard, A. Browaeys,
828
+ and T. Lahaye, Analysis of imperfections in the coher-
829
+ ent optical excitation of single atoms to Rydberg states,
830
+ Phys. Rev. A 97, 053803 (2018).
831
+ [48] J.-L. Wu, Y. Wang, J.-X. Han, S.-L. Su, Y. Xia, Y. Jiang,
832
+ and J. Song, Resilient quantum gates on periodically
833
+ driven Rydberg atoms, Phys. Rev. A 103, 012601 (2021).
834
+ [49] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Se-
835
+ meghini, A. Omran, D. Bluvstein, R. Samajdar, H. Pich-
836
+ ler, W. W. Ho, S. Choi, S. Sachdev, M. Greiner,
837
+ V. Vuleti´c, and M. D. Lukin, Quantum phases of matter
838
+ on a 256-atom programmable quantum simulator, Nature
839
+ 595, 227 (2021).
840
+ [50] I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and
841
+ V. M. Entin, Quasiclassical calculations of blackbody-
842
+ radiation-induced depopulation rates and effective life-
843
+ times of Rydberg nS, nP, and nD alkali-metal atoms
844
+ with n ≤ 80, Phys. Rev. A 79, 052504 (2009).
845
+
846
+ Supplementary Material for “Thermal-dephasing-tolerant generation of Schr¨odinger
847
+ cat states with Rydberg dressed blockade”
848
+ Ri-Hua Zheng,1 S.-L. Su,2, ∗ Jie Song,3 and Yan Xia1, †
849
+ 1Fujian Key Laboratory of Quantum Information and Quantum Optics,
850
+ College of Physics and Information Engineering,
851
+ Fuzhou University, Fuzhou, Fujian 350108, China
852
+ 2School of Physics, Zhengzhou University, Zhengzhou 450001, China
853
+ 3Department of Physics, Harbin Institute of Technology, Harbin 150001, China
854
+ CONTENTS
855
+ S1. Calculation dimension reduction through the Rydberg dressed blockade
856
+ 1
857
+ S2. Adiabatic passage for the GHZ states generation
858
+ 2
859
+ S3. GRAPE-optimized pulses for the GHZ states generation
860
+ 2
861
+ S4. Parameter choice of the simulation for Fig. 5 in the main text
862
+ 3
863
+ References
864
+ 3
865
+ S1.
866
+ CALCULATION DIMENSION REDUCTION THROUGH THE RYDBERG DRESSED BLOCKADE
867
+ In the main text, we use Hmw to manipulate the dynamics of multiple atoms in subspace S1 ={|0⟩, |d⟩}. Further,
868
+ the subspace S2 = {|dd⟩i(i+1)} are forbidden because of the Rydberg dressed blockade (RDB) effect. Therefore, the
869
+ calculation space is locked to S3 = ∁S1S2, with the calculation dimension reduced from 2N to �N/2
870
+ m=0 Cm
871
+ N+1−m (see
872
+ Fig. S1).
873
+ 4
874
+ 6
875
+ 8
876
+ 10
877
+ 12
878
+ 14
879
+ 16
880
+ 0
881
+ 2
882
+ 4
883
+ 6
884
+ 8
885
+ Calculation dimension
886
+ 104
887
+ with the RDB
888
+ without the RDB
889
+ 14
890
+ 22
891
+ 30
892
+ 105
893
+ 1010
894
+ FIG. S1. Calculation dimension versus the number of atoms N (a) with RDB and (b) without RDB effects. The inset shows
895
+ the case of logarithmic coordinates when N ∈ [14, 30].
896
897
898
+ arXiv:2301.05389v1 [quant-ph] 13 Jan 2023
899
+
900
+ 2
901
+ |
902
+
903
+ |
904
+
905
+ |
906
+
907
+ quench
908
+ |
909
+
910
+ |
911
+
912
+ |
913
+
914
+ |
915
+
916
+ |
917
+
918
+ |
919
+
920
+ |
921
+
922
+ |
923
+
924
+ |
925
+
926
+ |
927
+
928
+ |
929
+
930
+ |
931
+
932
+ quench
933
+ quench
934
+ |
935
+
936
+ |
937
+
938
+ |
939
+
940
+ |
941
+
942
+ |
943
+
944
+ |
945
+
946
+ |
947
+
948
+ quench
949
+ Detuning −𝛿mw
950
+ 𝑛
951
+ (2𝜋 MHz)
952
+ Detuning −𝛿mw
953
+ 𝑛
954
+ (2𝜋 MHz)
955
+ 𝑁 = 4
956
+ 𝑁 = 6
957
+ 𝑁 = 8
958
+ 𝑁 = 10
959
+ 𝛿𝑑
960
+ 𝛿𝑑
961
+ 𝛿𝑑
962
+ 𝛿𝑑
963
+ FIG. S2. (Color online) Energy gaps versus the microwave detuning −δn
964
+ mw for the system size (a) N = 4, (b) N = 6, (c)
965
+ N = 8, and (d) N = 10. We choose Ωmw/(2π) = 0.2 MHz and (δe
966
+ mw − δne
967
+ mw)/(2π) = δd/(2π) = 0.5 MHz. Formats |◦⟩ and |•⟩
968
+ represent |0⟩ and |d⟩ for visual intuition, respectively. Some unimportant eigenstates are plotted as gray. This graph refers to
969
+ the presentation form of Fig. 1(b) in Ref. [S1], with data differences.
970
+ S2.
971
+ ADIABATIC PASSAGE FOR THE GHZ STATES GENERATION
972
+ In the subspace S2 restricted by the RDB, there are at most N/2 atoms in dressed states, when the detuning
973
+ −δn
974
+ mw be large negative values (compare to Ωmw), the system ground state is clearly |0000 · · · ⟩. While −δn
975
+ mw be large
976
+ positive values, the system ground state becomes degenerate with N/2 + 1 states with N/2 dressed-state excitation,
977
+ for examples, ground states {|d00d⟩, |0d0d⟩, |d0d0⟩} when N = 4 and {|d0d00d⟩, |d00d0d⟩, |0d0d0d⟩, |d0d0d0⟩} when
978
+ N = 6. Further, by differing the detuning −δn
979
+ mw between the edge atoms and other atoms, one can separate such
980
+ degenerate ground states with energy δd/(2π) = (δe
981
+ mw − δne
982
+ mw)/(2π) = 0.5 MHz. Subsequently, the ground state when
983
+ −δn
984
+ mw be large positive values becomes only the GHZ state |GHZN⟩. That is why we can adiabatically change the
985
+ detuning −δn
986
+ mw from large negative values to large positive values to prepare the GHZ states from the initial state
987
+ |0000 · · · ⟩. For visualization, we have drawn the diagram of adiabatic passages for systems with different sizes in Fig.
988
+ S2. Such an adiabatic method has been proved in the work of Ref. [S1].
989
+ S3.
990
+ GRAPE-OPTIMIZED PULSES FOR THE GHZ STATES GENERATION
991
+ The optimized method we used is call gradient ascent pulse engineering (GRAPE) [S2]. We preset the control
992
+ Hamiltonians as Hh (h = 1, 2, 3) with H1 = �N
993
+ n=1 |0⟩n⟨d| + H.c., H2 = �N−1
994
+ p=2 |0⟩p⟨0|, and H3 = �
995
+ l=1,N |0⟩l⟨0|. The
996
+ corresponding control pulses are set as fh (clearly, Ωmw = f1, δne
997
+ mw = −f2, and δe
998
+ mw = −f3). The detailed derivation
999
+ can be found in Ref. [S2], and here we only give the specific optimization steps:
1000
+ (1) Guess initial control pulses f1/(2π) = 0.2 MHz, f2/(2π) = (−2 + 4t/tf) MHz, and f3 = f2 + 2π × 0.5 MHz,
1001
+ where t is the evolution time and tf the final evolution time depended on the system size N.
1002
+
1003
+ 3
1004
+ 0
1005
+ 0.5
1006
+ 1
1007
+ 1.5
1008
+ -2
1009
+ 0
1010
+ 2
1011
+ 0
1012
+ 2
1013
+ -2
1014
+ -1
1015
+ 0
1016
+ 1
1017
+ 0
1018
+ 2
1019
+ -4
1020
+ -2
1021
+ 0
1022
+ 2
1023
+ 0
1024
+ 5
1025
+ -2
1026
+ -1
1027
+ 0
1028
+ 1
1029
+ FIG. S3. Optimized microwave pulses by the GRAPE for systems with different sizes N = {4, 6, 8, 10}. The dashed, solid, and
1030
+ dash-dotted lines in each subplot represent Ωmw, δne
1031
+ mw, and δe
1032
+ mw, respectively.
1033
+ (2) Calculate the evolution operator U(t).
1034
+ (3) Change new control pulses as f ′
1035
+ h = fh − iϵh · ∆t · Tr
1036
+
1037
+ [Hk, U(t)ρ0U(t)†] · U(t)U(tf)†ρfU(tf)U(t)†�
1038
+ , with ρf
1039
+ the desire state, i.e., the GHZ state. Here ϵh and ∆t = tf/200 are the correction strength and the time derivative,
1040
+ respectively. Specifically, {ϵ1, ϵ2, ϵ3} · ∆t/(2π) = {0.02, 0.2, 0.2} MHz.
1041
+ (4) Go to step (2) until the fidelity Tr[U(t)ρ0U(t)†ρf] reaches a certain requirement.
1042
+ The Optimization results are shown in Table I in the main text. Note that the maximum absolute value of Ωmw
1043
+ does not exceed 2π × 0.2 MHz to ensure the stability of the RDB dynamics (J ≫ Ωmw). Detailed driving pulses for
1044
+ systems at different scales can be seen in Fig. S3.
1045
+ S4.
1046
+ PARAMETER CHOICE OF THE SIMULATION FOR FIG. 5 IN THE MAIN TEXT
1047
+ We have shown Fig. 5 in the main text to demonstrate the relationship between fidelities of GHZ states F and
1048
+ atomic temperature T.
1049
+ The selection of parameters for each temperature is different to ensure high fidelity F.
1050
+ Specifically, we choose {V, ∆, |Ωmw|max}/(2π) = {22, 7, 0.1}, {20, 6, 0.1}, {20, 6, 0.1}, {20, 6, 0.1}, and {22, 6, 0.1} MHz
1051
+ for T = 0, 2, 4, 6, and 8 µK, respectively.
1052
+ [S1] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi,
1053
+ J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuleti´c, and M. D. Lukin,
1054
+ Generation and manipulation of Schr¨odinger cat states in Rydberg atom arrays, Science 365, 570 (2019).
1055
+ [S2] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbr¨uggen, and S. J. Glaser, Optimal control of coupled spin dynamics:
1056
+ design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson. 172, 296 (2005).
1057
+
V9E5T4oBgHgl3EQfBw5N/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
WdE4T4oBgHgl3EQfNAwx/content/tmp_files/2301.04952v1.pdf.txt ADDED
@@ -0,0 +1,1428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sensing Diamagnetic Electrolytes with Spin
2
+ Defects in Diamond
3
+ Fabian A. Freire-Moschovitis,† Roberto Rizzato,† Anton Pershin,‡ Moritz R.
4
+ Schepp,† Robin D. Allert,† Lina M. Todenhagen,¶ Martin S. Brandt,¶ ´Ad´am
5
+ Gali,‡,§ and Dominik B. Bucher∗,†
6
+ †TUM School of Natural Sciences, Department of Chemistry, Technical University of
7
+ Munich, Lichtenbergstraße 4, 85748 Garching bei M¨unchen, Germany
8
+ ‡Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, PO.
9
+ Box 49, Budapest H-1525, Hungary
10
+ ¶Walter Schottky Institut and Physik-Department, Technical University of Munich, Am
11
+ Coulombwall 4, 85748 Garching bei M¨unchen, Germany
12
+ §Department of Atomic Physics, Institute of Physics, Budapest University of Technology
13
+ and Economics, M˝uegyetem rakpart 3, Budapest H-1111, Hungary
14
+ E-mail: [email protected]
15
+ Abstract
16
+ Quantum sensing with spin defects in diamond, such as the nitrogen vacancy (NV)
17
+ center, enables the detection of various chemical species on the nanoscale. Molecules or
18
+ ions with unpaired electronic spins are typically probed by their influence on the NV-
19
+ center’s spin relaxation. Whereas it is well-known that paramagnetic ions reduce the
20
+ NV-center’s relaxation time (T1), here we report on the opposite effect for diamagnetic
21
+ ions.
22
+ We demonstrate that millimolar concentrations of aqueous diamagnetic elec-
23
+ trolyte solutions increase the T1 time of near-surface NV-center ensembles compared
24
+ 1
25
+ arXiv:2301.04952v1 [physics.app-ph] 12 Jan 2023
26
+
27
+ to pure water. To elucidate the underlying mechanism of this surprising effect, single
28
+ and double quantum NV experiments are performed, which indicate a reduction of
29
+ magnetic and electric noise in the presence of diamagnetic electrolytes. In combination
30
+ with ab initio simulations, we propose that a change in the interfacial band bending
31
+ due to the formation of an electric double layer leads to a stabilization of fluctuating
32
+ charges at the interface of an oxygen-terminated diamond. This work not only helps
33
+ to understand noise sources in quantum systems but also broadens the application
34
+ space of quantum sensors towards electrolyte sensing in cell biology, neuroscience and
35
+ electrochemistry.
36
+ Introduction
37
+ Nitrogen vacancy (NV) centers in diamond offer a broad platform for quantum sensing ap-
38
+ plications ranging from the measurement of basic physical properties, such as temperature,1
39
+ pressure,2 strain,3 electric4 and magnetic fields5,6 down to single cells,7 single molecules,8
40
+ or even single nuclear spins.9,10 This unprecedented sensitivity is achieved due to the atomic
41
+ size of the qubit enabling its location only a few nanometer away from the diamond interface
42
+ (see Figure 1a).11 Near surface NV-centers (≤ 20 nm below the surface) can be used to sense
43
+ nuclear magnetic resonance (NMR)8,12–15 and electron spin resonance (ESR) signals16 from
44
+ nanoscale chemical and biological samples. The NV-center translates these magnetic field
45
+ fluctuations directly to an optical signal, detected by a change in the fluorescence intensity.
46
+ Together with optical spin state initialization with green laser light and coherent spin state
47
+ manipulation with microwave pulses, these key features make the NV-center a unique tool
48
+ for (bio)chemical analysis.11,15,17,18
49
+ NV-centers are also perceptive to electric fields.4,19 Even a single elementary charge
50
+ located ∼ 150 nm away from the quantum sensor produces a strong enough static electric field
51
+ to affect an NV-center’s ODMR (optically detected magnetic resonance) transitions.4 This
52
+ high sensitivity of NV-centers to magnetic or electric fields marks a narrow ridge: On the
53
+ 2
54
+
55
+ one hand, it allows for single nuclear spin or elementary charge detection, on the other hand
56
+ it makes the qubit prone to magnetic or electronic spin noise in its close environment. This
57
+ is particularly relevant for NV-centers close to the surface, where interfacial processes and
58
+ defects cause additional noise and reduce the performance of the NV-quantum sensors.20–23
59
+ Due to the NV-center’s susceptibility to a broad range of frequencies (from DC to GHz),24
60
+ noise can be measured by applying different sensing protocols.18 High frequency noise (∼
61
+ GHz) can be probed by the longitudinal spin-lattice relaxation time (T1) with a protocol
62
+ that is usually referred to as NV-relaxometry.17,18,24–26 The T1 time defines the time constant
63
+ of the spin-state-dependent fluorescence decay from the magnetic sublevel ms = 0 (bright
64
+ state) to thermal equilibrium (mixed state) and is on the order of a few milliseconds for near-
65
+ surface NV-ensembles in bulk diamonds,11 or on the order of a few hundred microseconds for
66
+ nanodiamonds (depending on their size).17 Generally, any magnetic noise overlapping with
67
+ the NV-center’s Larmor frequency (on the order of the zero-field splitting D = 2.87 GHz) will
68
+ decrease the T1 relaxation time (see Figure 1b).18,25,27,28 Relaxometry has been successfully
69
+ applied to map high frequency magnetic noise originating from inside the diamond (e.g.
70
+ paramagnetic impurities29), at the diamond interface (e.g.
71
+ dangling bonds20,30) or from
72
+ samples on top of the diamond (e.g.
73
+ organic radicals27,31 or paramagnetic ions, such as
74
+ Mn2+,32 Fe3+,33 or Gd3+ 25,28). Furthermore, nanoscale NV-relaxometry has also been used
75
+ to determine the pH value34 or to monitor chemical reactions in situ.35
76
+ While the increase of the relaxation rate due to paramagnetic species has been studied
77
+ extensively, herein we detect the opposite effect for diamagnetic ions. When near-surface
78
+ NV-centers in oxygen-terminated diamonds are exposed to aqueous diamagnetic electrolytes,
79
+ we observe a systematic extension of the T1 relaxation time compared to pure (deionized)
80
+ water. We show that this unexpected effect is proportional to the electrolyte concentration,
81
+ reversible and dependent on the NV-center’s implantation depth. In order to shed light
82
+ on the underlying sensing mechanism, we perform single and double quantum relaxometry
83
+ experiments which indicate a reduction of electric as well as magnetic noise. Furthermore,
84
+ 3
85
+
86
+ double electron electron resonance (DEER) spectroscopy experiments show a similar effect
87
+ on surface dark spins, which possibly act as surface reporter spins. In combination with
88
+ theoretical methods including ab initio simulations of the diamond/electrolyte interface, we
89
+ propose that diamagnetic ions alter the interfacial band bending. This leads to a stabilization
90
+ of fluctuating charges at the interface and to the increase of the T1 relaxation time.
91
+ Results
92
+ T1 Relaxometry on Electrolytes with Near-Surface NV-Center En-
93
+ sembles
94
+ In this study we use near-surface high dense NV-center ensembles (implanted with 15N
95
+ at an energy of 2.5 keV and a fluence of 2 × 1012 cm−2), distributed ∼ 5 nm underneath the
96
+ diamond surface,13,36,37 to investigate the effect of aqueous electrolyte solutions on the spin-
97
+ lattice relaxation time T1 probed by NV-relaxometry. Before experiments are conducted,
98
+ we prepare the diamond surface with a tri-acid clean procedure according to Brown et al.38
99
+ This procedure not only ensures to remove non-diamond carbon material from the interface
100
+ but also creates an oxygen-terminated surface comprised of mixed carbon oxide species
101
+ including hydroxyl groups, ethers, ketones, aldehydes and carboxylic acids.39 We position
102
+ the diamond in a microfluidic device that guarantees controllable in- and output of the
103
+ applied liquids, prevents sample evaporation and provides a constant and defined volume
104
+ for following measurements (see Figure 1a).15 Importantly, the microfluidic device avoids a
105
+ direct contact between the liquid and the microwave delivery.
106
+ The NV-relaxometry protocol is depicted in Figure 1b and essentially consists of two
107
+ 532 nm laser pulses of 5 µs duration for optical spin state initialization and readout separated
108
+ by a sweep time t. A subsequent measurement with a π0,-1-pulse (where the subscripts 0 and
109
+ -1 indicate transitions between ms = 0 ↔ ms = −1) at the start is used for normalization and
110
+ noise cancellation purposes.18 The T1 time can be extracted from the (bi)exponential fit of
111
+ 4
112
+
113
+ Figure 1: Scheme of NV-relaxometry experiments with aqueous electrolyte so-
114
+ lutions. a) Top (left): The NV-center in the diamond crystal lattice. A nitrogen atom
115
+ (blue) replaces a carbon atom (black) in the crystal. Together with an adjacent vacancy
116
+ an NV-center is formed. The orbitals (petrol) indicate four possible NV-center orienta-
117
+ tions within the diamond lattice. Top (right): Scheme of an oxygen-terminated diamond
118
+ surface with an ensemble of near-surface NV-centers (dNV ∼ 5 nm). The oxygen termi-
119
+ nation consists of hydroxyl groups, ethers, ketones, aldehydes and carboxylic acids. We
120
+ probe pure water, paramagnetic (purple) and diamagnetic (yellow) ions. Bottom: A mi-
121
+ crofluidic device placed on top of the diamond. In- and outlet allow for adding and remov-
122
+ ing aqueous electrolyte solutions or pure water from the diamond surface. b) Top (left):
123
+ NV-relaxometry pulse sequence. Two laser pulses for spin state initialization and read-
124
+ out are separated by a sweep time (t). A consecutive measurement with a π-pulse at the
125
+ start is used for noise cancellation.18 Top (right): Energy levels of the NV-center’s elec-
126
+ tronic ground state (S = 1). The zero-field splitting (D = 2.87 GHz) separates the
127
+ ms = 0 (bright) and ms = ±1 states (dark). A bias magnetic field B0 splits the degen-
128
+ erate ms = ±1 states according to the Zeeman effect. Bottom: T1 relaxation curves of pure
129
+ water and solutions of NaCl (500 mM) and MnCl2 (1 µM). While paramagnetic MnCl2 re-
130
+ duces the T1 relaxation time with respect to pure water, diamagnetic NaCl extends the
131
+ relaxation time. Experiments are performed at fNV = 1.88 GHz.
132
+ 5
133
+
134
+ a)
135
+ b)
136
+ Init. Read
137
+ ms = +1
138
+ Laser
139
+ t
140
+ ms = -1
141
+ GHz
142
+ 元0,1
143
+ MW
144
+ ms = 0
145
+ 元0,1
146
+ OH
147
+ Bo = 0
148
+ Bo > 0
149
+ ~ 5 nm
150
+ 0.25
151
+ Inlet
152
+ [Norm.]
153
+ Diamagnetic
154
+ Microfluidic
155
+ 0.5
156
+ Device
157
+ Contrast [
158
+ Paramagnetic
159
+ Near-Surface
160
+ 0.5
161
+ 1.5
162
+ 2.5
163
+ NV-Ensemble
164
+ 3.5
165
+ Outlet
166
+ Pure Water
167
+ NaCI (aq.)
168
+ MnCl2 (ag.)
169
+ Laser (532 nm)
170
+ Diamond
171
+ 0
172
+ 1
173
+ 2
174
+ 4
175
+ 7
176
+ 8
177
+ 9
178
+ Fluorescence (635 to 800 nm)
179
+ Sweep Time t [ms]the relaxation curves depicting the contrast as a function of sweep time t (see Supplementary
180
+ Note 1 for fitting details).
181
+ We perform the measurements by filling the microfluidic channel and covering the di-
182
+ amond surface either with pure water or aqueous electrolyte solutions (see Methods for
183
+ detail). Figure 1b depicts the T1 relaxation curves when water and solutions of diamagnetic
184
+ NaCl or paramagnetic MnCl2 cover the diamond surface. Paramagnetic MnCl2 (1 µM) on
185
+ the diamond leads to a T1 time reduction of 0.47 ± 0.19 with respect to water, which is in
186
+ accordance with other studies and can be ascribed to the strong dipole-dipole interaction of
187
+ the NV-center with the paramagnetic species.25,32 In contrast, when we repeat the same ex-
188
+ periment with diamagnetic NaCl (500 mM) solution, we observe an extension of the T1 time
189
+ by a factor of 2.04 ± 0.45 compared to water. Experiments supporting this observation are
190
+ also conducted with other diamagnetic salt solutions (mono-, di- and trivalent) and reveal
191
+ similar results (see Supplementary Note 2). Therefore, we choose NaCl as a representative
192
+ of a standard diamagnetic electrolyte for the following measurements in our work and expect
193
+ comparable results for other diamagnetic salt solutions.
194
+ Moreover, by tuning the magnetic field B0 and thereby the NV-center’s Larmor fre-
195
+ quency NV0,-1 (i.e., the ms = 0 → ms = −1 transition frequency) we are able to map the
196
+ spectral noise density. We probe water/NaCl (500 mM) solution with NV0,-1 frequencies from
197
+ 131 MHz to 2.87 GHz and observe a similar effect over the entire frequency range (see Supple-
198
+ mentary Note 2). Consequently, the extension of the T1 time of near-surface NV-ensembles
199
+ with exposure to diamagnetic electrolyte solutions is an effect that covers a broad range of
200
+ (high) frequencies (i.e., from ∼ hundreds of MHz to GHz).
201
+ Additionally, in order to exclude an impact of the solvent’s physical properties (i.e.,
202
+ polarity) on our experiments,19 we choose typical organic solvents whose dielectric constants
203
+ (κ) and chemical structure differ significantly from water (κ = 8040) and probe them with
204
+ relaxometry (see Supplementary Note 3). Since the T1 time remains unaffected, we conclude
205
+ that the herein described effect is not induced by the physical properties of water, but by
206
+ 6
207
+
208
+ the diamagnetic electrolyte.
209
+ Sensitivity of T1 Relaxometry on Electrolytes
210
+ In order to obtain information about the sensitivity of the NV-relaxometry protocol
211
+ to para- and diamagnetic electrolyte solutions, we perform additional measurement series
212
+ where the electrolyte concentration is increased stepwise by one order of magnitude (from
213
+ 10−5 to 10−2 mM in the case of paramagnetic MnCl2 and from 10−4 to 103 mM in the case
214
+ of diamagnetic NaCl).
215
+ Paramagnetic MnCl2 shows a stepwise T1 decrease in micromolar concentrations reaching
216
+ a decline of up to 86 ± 10% for a 10 µM solution with respect to water covering the diamond
217
+ (see Figure 2a and Supplementary Note 4).
218
+ Note that a further concentration increase
219
+ (> 10 µM) is not measurable, as it leads to a collapse of the T1 time. In contrast, diamagnetic
220
+ NaCl shows a slight T1 increase compared to water, which then fluctuates moderately from
221
+ micromolar to lower millimolar concentrations. Importantly, a significant and gradual T1
222
+ increase is measurable from 10 mM to 500 mM NaCl solution, where the effect saturates at
223
+ 81 ± 11% with respect to water (see Figure 2b and Supplementary Note 4).
224
+ The decrease of the T1 time with paramagnetic species (e.g., MnCl2) is expected and well
225
+ studied.17,25,26,30 Here, high frequency (∼ GHz) noise originates from magnetic dipole-dipole
226
+ interactions of the NV-center’s electronic spin and the sample’s electronic spin (“spin-flips”),
227
+ resulting in a decline of the T1 time if unpaired electrons are near the sensor. On the other
228
+ hand, for diamagnetic ions (e.g., NaCl) these interactions are absent as only paired electrons
229
+ without a (net) magnetic moment are present.
230
+ Surprisingly, here we observe a gradual
231
+ extension of the T1 time with increasing millimolar concentrations of diamagnetic NaCl
232
+ solution.
233
+ Importantly, both sensitivity regimes (∼ nano- to micromolar for paramagnetic and ∼
234
+ millimolar for diamagnetic species) match the typical physiological41,43 or (for diamagnetic
235
+ electrolytes) electrochemical concentrations,44 opening up sensing applications in cell biology
236
+ 7
237
+
238
+ Figure 2: NV-relaxometry with increasing concentrations of para- and diamag-
239
+ netic electrolyte solutions. a) Paramagnetic MnCl2 shows a stepwise T1 time decrease
240
+ for concentrations in the micromolar regime until the effect reaches a maximum measur-
241
+ able decline of 86 ± 10% for 10 µM solutions with respect to water covering the diamond.
242
+ b) In contrast to that, diamagnetic NaCl (right) shows a slight increase of the T1 time
243
+ compared to water, which then fluctuates moderately from the micromolar to the lower
244
+ millimolar regime. For concentrations ≥ 10 mM the T1 time increases gradually along with
245
+ the NaCl concentration until the effect saturates to 81 ± 11% for NaCl (500 mM) solutions.
246
+ Shaded areas indicate typical physiological concentration regimes for para- and diamag-
247
+ netic ions.41–43 Experiments are performed at fNV = 1.88 GHz.
248
+ or electrochemistry.
249
+ 8
250
+
251
+ InCl2 (aq.)
252
+ Conc.
253
+ Flips
254
+ Conc.Reversibility, Passivation and NV-Center Depth
255
+ Because of the surprising observation, that the T1 time increases with diamagnetic elec-
256
+ trolyte solutions compared to water covering the diamond, the next experiments concentrate
257
+ on the mechanism behind this effect. Therefore, we probe the reversibility and passivation
258
+ of the effect along with the sensor’s response in dependence of its implantation depth. First,
259
+ we evaluate if the extension of the T1 relaxation time is a reversible process by exposing an
260
+ oxygen-terminated diamond alternatingly to water and NaCl (500 mM) solution. Thereby,
261
+ we show that the T1 relaxation time is altered from “short” in case of water exposure to
262
+ “long” when NaCl solution covers the surface (see Figure 3a in green). Alternating between
263
+ water and electrolyte solution demonstrates a 1.83±0.35 fold increase of the T1 time with elec-
264
+ trolyte exposure on the oxygen-terminated diamond. In a next step, we examine if the effect
265
+ is specific to the diamond surface termination. Therefore, the formerly oxygen-terminated
266
+ diamond is coated with an aluminium oxide (Al2O3) thin film (thickness ∼ 1 nm)13 prepared
267
+ by Atomic Layer Deposition (ALD). The aluminium oxide thin film ensures a controllable
268
+ and uniform surface termination with hydroxyl groups. We repeat the previous experiment,
269
+ but this time the T1 relaxation time remains unaffected by the NaCl solution (see Figure 3a
270
+ in black).
271
+ Additionally, we investigate if the extent of the electrolyte’s effect is dependent on the
272
+ depth of the embedded NV-center ensemble. Therefore, we prepare two diamonds with 15N
273
+ implantation energies of 2.5 and 4 keV with the tri-acid clean procedure described before
274
+ and probe them with NV-relaxometry. Near-surface NV-centers implanted with an energy
275
+ of 2.5 keV are mainly distributed within a depth of ∼ 5 nm below the surface, while ensembles
276
+ created with 4 keV 15N are located about ∼ 12 nm beneath the surface.37 Figure 3b shows a
277
+ significantly larger effect of the electrolyte on the relaxation time of the shallow implanted
278
+ NV-diamond with respect to the deeper one, although a T1 time extension is still detectable
279
+ in the latter case (see also Supplementary Note 5). Importantly, while the effect with the
280
+ ∼ 1 nm thick aluminium oxide layer is completely passivated, a T1 time increase can still be
281
+ 9
282
+
283
+ Figure 3: NV-relaxometry experiments with different surface terminations and
284
+ NV-center ensemble implantation depths. a) An oxygen-terminated diamond sur-
285
+ face is alternatingly exposed to water and NaCl (500 mM) solution. The T1 time increases
286
+ with electrolyte exposure by a factor of 1.83 ± 0.35 with respect to water. Importantly,
287
+ this behavior can be altered by either the presence or absence of water or NaCl solution.
288
+ After coating the same diamond with an aluminium oxide (Al2O3) thin film (thickness
289
+ ∼ 1 nm) the T1 time is unaffected by the NaCl. b) T1 relaxation curves of water and NaCl
290
+ (500 mM) solution covering the diamond surface. Diamonds were implanted with 15N at
291
+ an energy of 2.5 keV (top) and 4 keV (bottom) resulting in different NV-center ensemble
292
+ depths (dNV). While on the shallower implanted diamond the T1 time increases by a factor
293
+ of around two with exposure to NaCl solution, on the deeper implanted diamond the effect
294
+ is strongly reduced. Experiments are performed at fNV = 1.88 GHz.
295
+ 10
296
+
297
+ 2.2
298
+ 1.8
299
+ 1.4
300
+ 1.0
301
+ dv ~ 5 nm
302
+ Oxygen-Terminated Diamond
303
+ OHO OH @ OH e
304
+ ~ 1 nm Al203
305
+ dnv ~ 5 nm
306
+ dnv ~ 5 nm
307
+ dnv ~ 10-15 nmobserved with the oxygen-termination when the sensor is ∼ 5 to 10 nm further away from
308
+ the electrolyte. Note that the same measurements conducted with LiCl (500 mM) solution
309
+ lead to similar results (see Supplementary Note 5).
310
+ From these experiments we conclude that the extension of the T1 relaxation time is a
311
+ reversible and interfacial process which is dependent on the distance of the sensor to the
312
+ sample.
313
+ Additionally, NV-charge state alterations or changes in NV-dephasing and NV-coherence
314
+ are not observed in our experiments (see Supplementary Note 6).
315
+ Probing Magnetic and Electric Noise Contributions
316
+ In the next set of experiments we investigate if the T1 relaxation time increase originates
317
+ from a reduction of electric and/or magnetic field noise. Since we are dealing with electrolytes
318
+ dissolved in water, it is particularly interesting to explore the influence that charged ions
319
+ and their randomly fluctuating electric fields might have on the T1 relaxation time of the
320
+ near-surface NV-ensembles. Whereas the typically used relaxometry experiments use single
321
+ quantum (SQ) transitions to probe magnetic field noise (as in the experiments from the
322
+ previous sections), double quantum (DQ) transitions are influenced by electric field noise.45
323
+ For these transitions, the full NV-center ground state (S = 1) is considered, where an
324
+ additional relaxation pathway between ms = −1 ↔ ms = +1 with ∆ms = 2 (see Figure 4a)
325
+ becomes accessible, the DQ transition. Regarding the NV-center as a “qutrit” rather than a
326
+ qubit allows to probe the effect of the diamagnetic electrolyte solution on both electric and
327
+ magnetic field noise at the same time.
328
+ SQ and DQ relaxometry measurements on the system water/NaCl (500 mM) solution
329
+ reveal that the diamagnetic electrolyte has an effect on both relaxation channels, i.e., it
330
+ reduces magnetic as well as electric field fluctuations (see Figure 4b). Here, two different T1
331
+ times can be defined: T1,SQ for the relaxation time in the SQ and T1,DQ in the DQ channel.
332
+ An extension of T1,SQ by a factor of 1.52 ± 0.16 and a 2.84 ± 0.31 increase of T1,DQ can
333
+ 11
334
+
335
+ Figure 4: Single quantum (SQ) and double quantum (DQ) relaxation experi-
336
+ ments. a) Energy level scheme of the NV-center ground state transitions. SQ transitions
337
+ (∆ms = ±1) with relaxation rates Ω are susceptible to magnetic noise. The DQ relax-
338
+ ation (∆ms = ±2) with relaxation rate γ is magnetically forbidden but susceptible to
339
+ electric noise.45 b) Top: DQ pulse sequence. Bottom: SQ and DQ relaxation curves of
340
+ water and NaCl (500 mM) solution covering the diamond. Experiments are performed at
341
+ B0 = 15 G, where the NV0,-1 transition is at fNV = 2.83 GHz (corresponding to a DQ tran-
342
+ sition frequency of 80 MHz). T1,SQ increases by a factor of 1.52±0.16 and T1,DQ by a factor
343
+ of 2.84 ± 0.31
344
+ when the diamond is exposed to NaCl solution.
345
+ 12
346
+
347
+ SQ Relaxatior
348
+ ating
349
+ Spin
350
+ bles
351
+ ~MHz
352
+ Q ~GHzbe measured in presence of NaCl solution with respect to water (see also Supplementary
353
+ Note 7). Thus, diamagnetic electrolytes reduce both – electric and magnetic – noise at the
354
+ diamond surface. Importantly, when we repeat the same experiments with paramagnetic
355
+ MnCl2, only T1,SQ reduces by 80%, whereas the DQ transition remains unaffected compared
356
+ to water (see Supplementary Note 7). This indicates an exclusive impact of the paramagnetic
357
+ electrolyte on magnetic field noise and could provide a possible pathway to distinguish para-
358
+ from diamagnetic ions in solution.
359
+ Additionally, we can exclude an influence of diamagnetic NaCl solution on the static
360
+ electric field environment by performing zero field ESR Measurements (see Supplementary
361
+ Note 7).
362
+ Influence of Electrolytes on Surface Dark Spins: DEER Experi-
363
+ ments
364
+ So far, we have focused on the direct influence of electrolytes on the NV-centers. How-
365
+ ever, the diamond as the NV-center’s host material provides various surface dark spins, e.g.
366
+ dangling bonds, whose response to the electrolytes is probed in the next set of experiments.
367
+ Intrinsic T1 times of these surface dark spins are often long (∼ a few microseconds)46 which
368
+ allows us to probe them with NV-based double electron electron resonance (DEER) spec-
369
+ troscopy.16,47 Figure 5a shows the pulse sequence of a typical DEER experiment: A spin-echo
370
+ is performed on the NV-center’s electronic spin (MWNV spin-echo), at the same time, in the
371
+ second free precession time of the echo, an additional microwave pulse (MWDEER) is ap-
372
+ plied to drive the target electronic spins. Sweeping the MW frequency (f DEER) flips the
373
+ surface dark spins when their Larmor frequency is matched and causes a dip in the DEER
374
+ signal (see Figure 5b). As shown in Figure 5b, a clear dip in the DEER spectrum appears
375
+ when the diamond interface is covered with NaCl (500 mM) solution.
376
+ The resonance at
377
+ f DEER = 0.887 GHz corresponds to ge ∼ 2 spins and is typically assigned to dangling bonds
378
+ at the diamond surface.50 Interestingly, the dip is drastically reduced when the experiment
379
+ 13
380
+
381
+ Figure 5: NV-DEER experiments probing the response of surface dark spins
382
+ to electrolyte exposure. a) Pulse sequence of the double electron electron resonance
383
+ (DEER) experiment. Sweeping the microwave frequency of the MWDEER pulse (f DEER)
384
+ while applying a spin-echo experiment on the NV-center (MWNV spin-echo) allows for the
385
+ detection of electronic (surface dark) spins coupled to the NV-centers.48 b) DEER ex-
386
+ periment with water and NaCl (500 mM) solution covering the diamond surface. A pro-
387
+ nounced dip in the DEER spectrum appears at around 0.887 GHz (where ge ∼ 2) when the
388
+ diamond is exposed to NaCl solution. The dip gets drastically reduced when water cov-
389
+ ers the diamond surface. c) Top: Pulse sequence of the DEER-Rabi experiment. Bottom:
390
+ When the pulse duration of the microwave drive (MWDEER) at the surface dark spins’
391
+ resonance frequency is swept during the spin-echo, DEER-Rabi oscillations can be ob-
392
+ served.49 While the πds-pulse lengths remain equal when water or NaCl (500 mM) solution
393
+ cover the diamond surface (πds ∼ 24 ns), the latter causes a by a factor of around three
394
+ more pronounced Rabi amplitude. d) Top: Pulse sequence of the DEER-T1 experiment.
395
+ Bottom: Varying the correlation time (tcorr) between two subsequent DEER segments,46
396
+ shows a surface dark spin relaxation with T1,ds = 7.20±1.10 µs in case of NaCl exposure. In
397
+ contrast, no significant relaxation decay can be observed when water covers the diamond
398
+ surface. DEER experiments are performed at fNV = 1.98 GHz.
399
+ 14
400
+
401
+ MWDEER
402
+ Surface
403
+ Dark Spins
404
+ +
405
+ dNvis repeated with water.
406
+ Once the resonance condition for the ge ∼ 2 spins is found, coherent control of the
407
+ surface dark spin state can be demonstrated. Figure 5c shows a DEER-Rabi experiment
408
+ on the surface dark spins. Sweeping the microwave pulse duration (MWDEER) during the
409
+ spin-echo causes oscillations of the defect’s spin state.49 While we determine equal πds pulse
410
+ lengths (πds ∼ 24 ns) for water and the electrolyte, the former leads to an about three
411
+ times increased DEER-Rabi amplitude with respect to the latter.
412
+ In the next step, we
413
+ probe the surface dark spin relaxation time (T1,ds). Figure 5d depicts a pulse sequence from
414
+ Sushkov et al.,46 where the T1 time of the surface dark spins can be measured by correlating
415
+ two subsequent DEER segments and varying the correlation time tcorr. Interestingly, we
416
+ measure a relaxation time T1,ds of 7.20 ± 1.10 µs for the surface dark spins exposed to the
417
+ NaCl solution. In contrast, a clear relaxation decay cannot be observed in case of pure water
418
+ covering the diamond. Although we cannot exclude that the surface dark spins vanish, the
419
+ more likely case is that the dark spins act as reporter spins46 experiencing the same effect of
420
+ the electrolyte solution as the NV-center: “fast” relaxation in the case of water and “slow”
421
+ relaxation when diamagnetic electrolyte solutions cover the diamond, which is also expressed
422
+ in the increased DEER signals (see Figure 5b-d). Accordingly, we enhance the sensitivity of
423
+ our sensor by the proximity of the reporter spins to the electrolyte solutions.46,51
424
+ Theoretical Modeling
425
+ Our experimental results show an influence of diamagnetic electrolyte solutions on near-
426
+ surface spin defects in diamond where electric as well as magnetic noise is suppressed resulting
427
+ in an increase of the T1 relaxation time. To further study this surprising effect computational
428
+ modeling is used. Here, as a working assumption, we focus on charge fluctuations within the
429
+ diamond lattice. We note, that further processes such as proton hopping at the interface or
430
+ water and ion dynamics within the electric double layer can also play a role but have not
431
+ 15
432
+
433
+ been treated herein.
434
+ To this end, we model an interface between a slab of diamond and a thin layer of water
435
+ subsequently enriched by Na+ and Cl- ions (see Methods for detail). Then, we probe the
436
+ interfacial structure and vacuum level shifts (VLS) based on the configurations obtained
437
+ from the ab initio molecular dynamics (MD)(see Figure 6a). The calculated alignment of
438
+ the electronic levels of water and the model diamond surface is shown in Figure S10. Here,
439
+ a mismatch of the chemical potentials (defined as a center of the band gap) promotes an
440
+ electron leakage from the diamond surface towards the water. The resulting redistribution
441
+ of charges leads to the development of an electric field, that further rearranges the charged
442
+ solvated Na+ and Cl- ions. The large positive VLS of 1.1 eV (see Figure S10a) causes the
443
+ ions to rearrange with the direction of the field, facilitating the effect of band bending. By
444
+ adding a carboxyl group, we observe a stabilization of the downwards band bending relative
445
+ to the case of the model diamond surface in water. However, in both cases, we obtain a
446
+ broad distribution of surface dipoles, owing to the complexity of ion dynamics within the
447
+ Stern layer. By contrast, a sharp distribution of the dipole moments is observed between a
448
+ dissociated carboxyl group and a solvated Na+ ion nearby. This stable configuration gives
449
+ rise to a large VLS of ∼ -1.9 eV. This value is further used to trace the evolution of the
450
+ electrostatic potential at the microscopic level. More specifically, we set it as a boundary
451
+ condition for solving the Poisson equation to access the modifications of the potential inside
452
+ a semi-infinite diamond slab. As shown in Figure 6b, we observe that the interfacial region
453
+ of ∼ 40 nm is affected by the respective readjustments of the charges, resulting in a rapid
454
+ decay of the potential near the interface and a slow saturation towards the bulk.
455
+ To establish a relation between the band bending and the noise reduction, we consider the
456
+ electric and magnetic fluctuations caused by a pair of active defects around the NV-centers.
457
+ The charge transfer process leads to a continuous change in the charge/spin state of the
458
+ nearby defects, which can affect the relaxation and coherence time of the NV-center when
459
+ the rate approaches the timescale of the quantum sensing experiment. In the Marcus theory,
460
+ 16
461
+
462
+ Figure 6: Ab initio MD simulations of the diamond/electrolyte interface. a)
463
+ Representative snapshot of the diamond/electrolyte interface from the ab initio MD simu-
464
+ lations. Color code: C (grey), O (red), H (white), Na+ (yellow), Cl- (green). b) Variations
465
+ of the electrostatic potential in a semi-infinite diamond due the arrangement of NaCl at
466
+ the interface. Inset: Electrostatic potential (∆Vmax) for a pair of defects in 3 nm distance
467
+ to each other surrounding a ∼ 5 nm deep NV-center. c) Schematic representation of a con-
468
+ tinuous charge hopping between two defects around the NV-center. HAB is the transfer
469
+ integral, ∆G0 is calculated as ∆Vmax/2 from b). d) Calculated rate constants for pairs of
470
+ substitutional nitrogen and vacancy defects as a function of distance between the defects.
471
+ e) Rate constants for the forward and backward electron transfer between a pair of va-
472
+ cancy defects as a function of bias due to the interfacial band bending. Vertical lines refer
473
+ to an estimated difference in the effects by replacing the electrolyte with pure water, con-
474
+ sidering a pair of defects and a NV-center in a configuration from the inset in b).
475
+ 17
476
+
477
+ a)
478
+ b)
479
+ c)
480
+ forward
481
+ Electrostatic potential [eV]
482
+ 0
483
+ A
484
+ B
485
+ -0.5
486
+ -1.25
487
+ V-
488
+ NV
489
+ ↑ HAB
490
+ -1
491
+ vo
492
+ AV
493
+ -1.5
494
+ -1.5
495
+ -1.75
496
+ △G0
497
+ 3
498
+ 4
499
+ 5
500
+ 6
501
+ 7
502
+ -2
503
+ back
504
+ 0
505
+ 10
506
+ 20 30
507
+ 40
508
+ 50 60
509
+ Distance [nm]
510
+ d)
511
+ 10 12
512
+ 10 10
513
+ 108
514
+ _s] -
515
+ 108
516
+ INON+
517
+ H20
518
+ NaCI
519
+ 107
520
+ 106
521
+ forward
522
+ 104
523
+ back
524
+ 10 6
525
+ 0
526
+ 5 10 15 20 25 30
527
+ 0
528
+ 0.05
529
+ 0.1
530
+ 0.15
531
+ △G° [eV]
532
+ Distance [A]such fluctuations are described as a sequence of thermally activated hopping events, whilst
533
+ the rate constants are determined from the distance-dependent coupling parameters and
534
+ the required structural reorganizations (see Figure 6c). The dipoles at the diamond/solvent
535
+ interface affect this equilibrium by altering the onsite Gibbs energy term with a contribution
536
+ from the electrostatic potential (∆V ). As shown in Figures 6c and 6e, the band bending
537
+ accelerates a forward charge transfer process (until reaching the Marcus inverted region), but
538
+ at the same time, the magnitude of the back charge transfer (BCT) rate drops exponentially.
539
+ Hence, regardless of the defect type, large interfacial band bending can lead to a dynamical
540
+ trapping of the charges around a site with the lower Gibbs energy. For a numerical validation,
541
+ we focus on the electron fluctuations between a pair of carbon vacancies as well as on the hole
542
+ fluctuations between two substitutional nitrogen defects. We note that carbon vacancies are
543
+ often generated by the implantation and irradiation techniques used to create the NV-centers,
544
+ and substitutional N defects are present around NV-centers to stabilize the negative charge
545
+ state of the NV-center. After determining the relevant parameters in the periodic supercells
546
+ (see Methods for detail), we first analyze the possible contribution of each charge transfer
547
+ reaction to the electrical noise. To this end, we compare the fluctuation rates, calculated for
548
+ both defect pairs in a bulk-like environment (∆V = 0). As shown in Figure 6d, the charge
549
+ fluctuation rates for a pair of nitrogen defects is remarkably smaller than for a vacancy pair.
550
+ This difference is attributed to a formation of an energetically unfavorable N0 configuration,
551
+ that hinders the charge fluctuations by large structural reorganizations (λreorg = 1.89 eV).
552
+ Hence, substitutional N0 pairs are unlikely to be the origin of electric and magnetic noise,
553
+ affecting the T1 time due to charge fluctuation. By contrast, owing to a rather modest λreorg
554
+ of 0.28 eV, a vacancy pair gives rise to noise in a broad frequency range, where the respective
555
+ rate constants are controlled by the separation between the active sites.
556
+ The relevant distance between a pair of vacancies is readily obtained from an exponential
557
+ fit of the rate constants in Figure 6d. More specifically, we find the charge fluctuation rates,
558
+ which would be relevant for an influence on the T1 time (∼ 0.1 GHz) at a separation of ∼
559
+ 18
560
+
561
+ 3 nm. The molecular dynamics simulations performed by F´avaro de Oliveira et al. show
562
+ that such a high local density of vacancies around the region of a NV-center is achieved
563
+ during the nitrogen implantation due to the cascade process of the “kick-out” mechanism.52
564
+ Using the variations of electrostatic potential from Figure 6b for the implantation depths of
565
+ 5 and 12 nm, we calculate a contribution to the onsite Gibbs energies by 0.125 and 0.075 eV,
566
+ respectively (see Methods for details).
567
+ As shown in Figure 6e, the BCT rate at 12 nm
568
+ reduces by a factor of ∼ 7 relative to the case of ∆V = 0. Moreover, in agreement with
569
+ our experimental results, the faster changes in the potential at 5 nm enhances the reduction
570
+ factor to ∼ 19 for the shallower NV-centers. Relative to pure water, the BCT rates decrease
571
+ by factors of ∼ 10 and 3.5 for the depths of 5 nm and 12 nm, respectively. Furthermore, the
572
+ proposed mechanism is consistent with the experimental results on dark spins (see Figure 5).
573
+ Interestingly, our calculations point to an even larger decrease of the BCT rate at smaller
574
+ distances from the interface which should translate to an even larger sensitivity.
575
+ Given
576
+ the favorable downwards band bending, these results call for a further optimization of the
577
+ implantation parameters as well as the surface structure to fully exploit the extension of the
578
+ T1 time by diamagnetic electrolyte solutions.
579
+ Conclusion and Outlook
580
+ We report on the effect of diamagnetic electrolyte solutions on highly dense near-surface
581
+ spin defects in oxygen-terminated diamonds. Surprisingly, we observe that diamagnetic ions
582
+ increase the T1 relaxation time of NV-centers. We demonstrate that this effect is reversible,
583
+ surface sensitive and responsive to millimolar concentrations. We find that also interfacial
584
+ spin defects are sensitive to diamagnetic species, anticipating their possible use as reporter
585
+ spins for future optimization. Furthermore, we investigate the underlying mechanism by
586
+ single and double quantum NV-relaxometry experiments in combination with ab initio sim-
587
+ ulations. We propose that ions at the interface stabilize charge fluctuations between pairs of
588
+ 19
589
+
590
+ carbon vacancies and alike deep defects, surrounding the NV-centers. This reduces magnetic
591
+ as well as electric noise at the diamond interface by a dynamical trapping of mobile electrons
592
+ to a site with lower Gibbs energy. These findings encourage further simulations and experi-
593
+ ments (e.g, on other NV-diamond systems, such as nanodiamonds or single NV-centers) to
594
+ elaborate on a comprehensive understanding of the complex processes at the solid/liquid
595
+ interface.
596
+ We would like to emphasize that the sensitivities of relaxometry to para- and diamagnetic
597
+ electrolyte solutions both represent scientifically relevant concentration regimes. Paramag-
598
+ netic species in the physiological environment, e.g., reactive oxygen species (ROS) or trace
599
+ metals, e.g., manganese can typically be found in ∼ nanomolar to micromolar concentra-
600
+ tions fitting the highly sensitive feedback of NV-relaxometry (see Figure 2a).41,53 However,
601
+ diamagnetic ion concentrations are typically orders of magnitude higher in the cytoplasm
602
+ (∼ millimolar)42,43 or in electrochemistry (∼ 0.1 to 1 molar)44 which fit very well the NV-
603
+ center’s response reported in our work (see Figure 2b). Importantly, these two effects may
604
+ counteract if both species are present. A possible pathway to differentiate between these
605
+ two could be recording single and double quantum experiments, which are only affected by
606
+ diamagnetic species in the latter case (see Figure 4 and Supplementary Note 7). Therefore,
607
+ we propose to probe both relaxation times in future relaxometry studies. We envision ap-
608
+ plications ranging from probing electrochemical interfaces54 to nanoscale ion sensing in cells
609
+ or neuroscience, where changes in the membrane potential occur as a result of concentration
610
+ gradients of diamagnetic ions.55–57
611
+ Methods
612
+ Sample Preparation
613
+ Two 2 × 2 × 0.5 mm electronic grade diamond samples (natural 13C abundance, Element
614
+ Six) were implanted with 15N at an energy of 2.5 keV or 4 keV, an off-axis tilt of 7° and a
615
+ 20
616
+
617
+ fluence of 2×1012 cm−2 by Innovion and annealed according to Bucher et al.18 Before exper-
618
+ iments are conducted, the diamonds are cleaned with a tri-acid cleaning protocol according
619
+ to Brown et al.:38 Samples are boiled in equal parts of sulfuric, nitric and perchloric acid at
620
+ a temperature of 280 °C for two hours. This cleaning procedure is also applied before the
621
+ deposition of aluminium oxide (Al2O3) on the diamond.
622
+ Preparation of Electrolyte Solutions
623
+ For the measurements where pure water is used, deionized water with a resistivity of
624
+ 18.2 MΩ·cm at 25 °C (Merck Millipore) is utilized.
625
+ Sodium chloride (NaCl, Merck 106404) is prepared in a 1 M stock solution, where NaCl is
626
+ dissolved in deionized water. Before the experiments, NaCl is diluted from the stock solution
627
+ to obtain 500, 250, 100, 50, 10 and 1 mM concentrated solutions. The other salt solutions
628
+ used within this work are prepared in the same manner.
629
+ Atomic Layer Deposition (ALD)
630
+ The 2.5 keV 15N implanted diamond is coated with an aluminium oxide (Al2O3) thin
631
+ film by ALD according to Liu et al.13 The deposition includes 10 cycles of alternated sample
632
+ exposure to trimethyl aluminium (TMA) and H2O. This procedure results in a film thickness
633
+ of ∼ 1 nm and ensures surface termination with hydroxyl groups by exposing the diamond
634
+ to a remote oxygen plasma within the ALD system.13,58 The Al2O3 layer can be removed
635
+ from the diamond surface by soaking the sample overnight in 5% NaOH solution.
636
+ Experimental Setup
637
+ The quantum sensing setup is based on a modified version of the experiment described
638
+ in Bucher et al.18 Before experiments are performed, the diamond is glued to a thin glass
639
+ cover slide (48393026, VWR) together with a microfluidic device that encloses the diamond
640
+ 21
641
+
642
+ edges and covers its surface, such that a volume of ∼ 0.60 µL of the sample liquid can be
643
+ applied in a controllable way. On the other side of the cover slide a 6 mm diameter glass
644
+ hemisphere (TECHSPEC® N-BK7 Half-Ball Lenses, Edmund Optics) is glued, in order to
645
+ improve the fluorescence light collection efficiency. The glass cover slide is then fixed on a
646
+ 30 mm cage plate (CP4S, Thorlabs). This whole assembly is then positioned between two
647
+ permanent magnets, that are rotated and tilted in order to align the B0 field with one of
648
+ the four possible NV-center orientations. The distance between the two magnets can be
649
+ adjusted in order to correspond to the working magnetic field strengths B0 (in this work:
650
+ 15, 316, 352 and 978 G). Initialization of the NV-ensemble is realized with a 532 nm laser
651
+ (Verdi G5, Coherent) with a power of ∼ 250 mW (CW) after the AOM. The laser light is
652
+ focused on the diamond by a Plano-Convex Lens (LA 1986-A-M, Thorlabs) in a total internal
653
+ reflection geometry. Laser pulses are regulated by an acousto-optic modulator (Gooch and
654
+ Housego, model 3260-220) with pulse durations of 5 µs. Photoluminescence (PL) is collected
655
+ and focused on a large area photodiode (OE-300-SI-10, Femto Messtechnik GmbH, Berlin,
656
+ Germany) by two condenser lenses (ACL25416U-B, Thorlabs). The excitation light is filtered
657
+ by a long-pass optical filter (Edge Basic 647 Long Wave Pass, Semrock) placed between
658
+ the bottom condenser lens and the photodiode. The output voltage of the photodiode is
659
+ digitized with a data acquisition unit (USB-6229 DAQ, National Instruments). A 500 MHz
660
+ PulseBlaster card (ESR-Pro-II, Spincore) is utilized to trigger and to time the microwave
661
+ and light pulses used for quantum control of the NV-centers. The microwave frequencies
662
+ are produced by a signal source (SynthHD, Windfreak Technologies, LLC.).
663
+ Microwave
664
+ phase control is obtained by a combination of a phase-shifting splitter (ZX10Q-2-27-S+,
665
+ Mini-Circuits), two switches (ZASWA-2-50dRA+, Mini-Circuits) and a combiner (ZX10-2-
666
+ 42-S+, Mini-Circuits). The amplified microwave pulses (ZHL-16W-43-S+, Mini-Circuits)
667
+ are delivered by a homebuilt microwave loop on top of the microfluidic chip. The electron
668
+ spin resonance (ESR) frequency is used to determine the magnetic field strength B0 as well
669
+ as the NV0,-1 resonance frequency f NV.
670
+ 22
671
+
672
+ T1 Relaxometry Experiments (Single and Double Quantum)
673
+ Single quantum (SQ) relaxometry experiments: To obtain a signal-to-noise ratio (SNR)
674
+ as shown in Figure 1b the sequence is repeated 5,000 times for every data point.
675
+ Each
676
+ experiment consists of 31 data points measured in a logarithmic increasing sweep time t to
677
+ guarantee more sampling points at short times t. Note that these parameters are also used
678
+ for double quantum (DQ) relaxometry. For normalization and noise cancellation, the second
679
+ half of the sequence contains a MW π0,-1-pulse, where the subscripts 0 and -1 indicate the
680
+ initialization of the spin state from ms = 0 to ms = −1.18 The spectra are then plotted
681
+ as the measurement result of the first half divided by the result of the second half of the
682
+ sequence.
683
+ Double quantum (DQ) relaxometry experiments: For a detailed discussion of the DQ
684
+ relaxation and pulse sequence, the reader is referred to Myers et al.45 In short, the DQ pulse
685
+ sequence (see inset of Figure 4b) consists of two consecutive measurements where MW π-
686
+ pulses are used to control spin state initialization and readout. In both halves of the sequence
687
+ the NV-center is initialized in ms = −1. After a sweep time t the spin state population of
688
+ either ms = −1 (in the first part) or ms = +1 (in the second part) is read out. Dividing the
689
+ second by the first part yields a population ratio of the two states.
690
+ Sensitivity of T1 Relaxometry on Electrolytes
691
+ Experiments to determine the sensitivity of T1 relaxometry measurements on para- and
692
+ diamagnetic electrolytes are conducted for MnCl2 and NaCl solutions using the SQ relax-
693
+ ometry pulse sequence. Probing each concentration results in a relaxation curve of which
694
+ the T1 time is determined. The T1 time is then normalized to the one of water covering
695
+ the diamond. Before probing any electrolyte concentration, we wash the microfluidic device
696
+ with water to ensure equal starting conditions, i.e. a constant T1 time for water covering
697
+ the diamond. We perform each series three times resulting in a mean T1 value for each
698
+ concentration (see also Supplementary Note 4). Figure 2 in the main text shows the mean
699
+ 23
700
+
701
+ (normalized) T1 time along with the standard deviation.
702
+ DEER Measurements
703
+ DEER spectra (see Figure 5b) are recorded by performing a spin-echo sequence on the
704
+ NV-center spins with a free evolution time of 1 µs. The duration of the MW-pulse (MWDEER)
705
+ applied to the surface dark spins is set to 200 ns and the driving frequency (f DEER) is swept
706
+ over 90 MHz (from fDEER = 0.84 to 0.93 GHz). To obtain a SNR as shown in Figure 5b
707
+ the sequence is repeated 10,000 times for every data point. Each experiment consists of
708
+ 67 data points in equally separated time steps and this whole experiment is repeated four
709
+ times. Referencing for noise cancellation is achieved by alternating the last MW-pulse of the
710
+ spin-echo sequence from π/2 to 3/2π.
711
+ Once the resonance condition for ge = 2 is found, DEER-Rabi experiments on the surface
712
+ dark spins are performed by sweeping the MW-pulse duration (MWDEER) during the NV
713
+ spin-echo (see Figure 5c) as described above. The sequence is repeated 10,000 times for
714
+ every data point.
715
+ Each experiment consists of 101 equally spaced data points and this
716
+ whole experiment is repeated ten times. To account for MW (MWDEER) noise, the same
717
+ procedure is repeated 20 MHz off the resonance condition. The outcome of both on- and
718
+ off-resonant measurements are subtracted resulting in the spectra shown in Figure 5c. After
719
+ that, measurements of the surface dark spin population relaxation are carried out according
720
+ to Sushkov et al. with a πds-pulse length of 24 ns.46 The sequence shown in Figure 5d is
721
+ repeated 10,000 times for every data point. Each experiment consists of 21 data points in
722
+ equally separated time steps. This whole experiment is then repeated 50 times. Background
723
+ subtraction is achieved by performing the experiment in the same procedure without the
724
+ additional MW drive (MWDEER). Subtracting the outcome of both MW-on and MW-off
725
+ measurements then yields the spectra shown in Figure 5d.
726
+ 24
727
+
728
+ Simulation of the Diamond/Water Interface
729
+ In our simulations, we use a slab of a model diamond surface with hydrogen, hydroxyl,
730
+ and ether surface terminations (see Figure S10d). It is a symmetric (100) surface of ∼ 1.4 nm
731
+ with a 2 × 1 surface reconstruction pattern, exhibiting a positive electron affinity and no
732
+ surface states inside the band gap.59 The water layer on top of the diamond (thickness
733
+ ∼ 2 nm) was constructed as follows. First, we equilibrate 74 water molecules with the clas-
734
+ sical molecular dynamics (MD) for 5 ns in a simulation box of commensurate lateral size
735
+ with the diamond slab. These calculations are done with the GROMACS software in the
736
+ canonical NVT ensemble,60 using the GROMOS 54A7 force field.61 After that, we superim-
737
+ pose the water box and the diamond surface and allow for an additional equilibration step
738
+ of 10 ps with the ab initio MD, as implemented in the VASP package.62 We also incorporate
739
+ ∼ 1.9 nm of vacuum together with a dipole correction scheme to eliminate the interaction
740
+ with the periodic images. This yields the simulation supercell of 1.0097 × 1.0097 × 5.3 nm3,
741
+ which is further used in the ab initio MD calculations. Ab initio calculations are performed
742
+ using the PBE functional63 in conjunction with the D2 dispersion correction, using a pro-
743
+ jector augmented wave method with the kinetic energy cutoff of 370 eV. We note that the
744
+ PBE functional provides semi-quantitative results for the electronic structure but is able to
745
+ accurately yield the trends in the change of the electronic structure upon different surface
746
+ terminations and environments of diamond. Further, we note that we focus on the difference
747
+ in the electrostatic environment due to the interaction of the electrolyte with the surface
748
+ groups, assuming no change in the microstructure of the carbon layer.
749
+ Charge Transfer Rates
750
+ We calculate the charge transfer rate with an expression from the Marcus theory,64 given
751
+ as:
752
+ kCT = 2π
753
+ ℏ |HAB|2
754
+ 1
755
+ √4πλkBT exp
756
+
757
+ −(λ + ∆G)2
758
+ 4πλkBT
759
+
760
+ 25
761
+
762
+ where HAB is the transfer integral, λ the reorganization energy, ∆G the Gibbs energy dif-
763
+ ference due to an external field, kB the Boltzmann constant, ℏ the reduced Planck constant,
764
+ and T the temperature. The reorganization energy is determined for a single defect (either
765
+ a carbon vacancy or a substitutional nitrogen) in a 1000-carbon supercell. For computing
766
+ the transfer integrals as a function of distance, we use diamond supercells of different sizes,
767
+ varying between 64 and 1000-carbon atoms. The reorganization energies are calculated by
768
+ the four-point scheme, while the transfer integrals are estimated at a high symmetry con-
769
+ figuration as 1/4 of the bandwidth along the Γ-X direction. The contribution to the Gibbs
770
+ energy is computed by solving the one dimensional Poisson equation given the experimental
771
+ depth of the NV center.65 Noteworthy, the effect from the band bending is governed by the
772
+ orientation of defect pairs relative to the direction of the electric field. At a reference depth
773
+ of the NV-center, the maximum strength, corresponding to a change in the electrostatic
774
+ potential (∆Vmax), is reached in a parallel configuration, whilst the effect is quenched to-
775
+ wards the orthogonal arrangement. Considering a uniform distribution of the defects in our
776
+ samples, we compute an expectation value of ∆V as ∆Vmax/2.
777
+ Acknowledgement
778
+ This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
779
+ Foundation) - 412351169 within the Emmy Noether program. R.R. acknowledges support
780
+ from the DFG Walter Benjamin Programme (Project RI 3319/1-1). D.B.B. acknowledges
781
+ support from the DFG under Germany’s Excellence Strategy—EXC 2089/1—390776260 and
782
+ the EXC-2111 390814868. M.S.B. acknowledges support from the DFG through the Munich
783
+ Center of Quantum Science and Technology (MCQST, EXC-2111) and by BMBF (epiNV,
784
+ 13N15702). A.G. acknowledges the Hungarian NKFIH grant No. KKP129866 of the National
785
+ Excellence Program of Quantum-coherent materials project, the support for the Quantum
786
+ Information National Laboratory from the Ministry of Culture and Innovation of Hungary
787
+ 26
788
+
789
+ (NKFIH grant No. 2022-2.1.1-NL-2022-00004), the EU EIC Pathfinder project ”QuMicro”
790
+ (grant No. 101046911) and the EU QuantERA for the project MAESTRO. We acknowledge
791
+ KIF¨U for awarding us access to computational resources based in Hungary.
792
+ Author Contributions
793
+ D.B.B., R.R. and F.A.F.-M. discovered the effect of diamagnetic electrolytes on the
794
+ relaxation of NV-centers. D.B.B., R.R. and F.A.F.-M. designed the experiments. D.B.B.
795
+ supervised the study. F.A.F.-M. performed the experiments and was supported by M.R.S. for
796
+ NV-relaxometry. F.A.F.-M., R.R. and D.B.B. analyzed the data. R.D.A. built the quantum
797
+ sensing setup and designed the microfluidic device. A.G. and A.P. incorporated theoretical
798
+ modeling and simulations. M.S.B. and L.M.T. helped with the charge state experiments.
799
+ All authors discussed the results and contributed to the writing of the manuscript.
800
+ Additional Information
801
+ Competing interests: The authors declare no competing interests.
802
+ Data availability
803
+ The data supporting our findings are available within the paper and the Supplementary
804
+ Information. Additional relevant data are available from the corresponding author upon
805
+ reasonable request.
806
+ Code availability
807
+ The codes used for data acquisition and processing are available from the corresponding
808
+ author upon reasonable request.
809
+ 27
810
+
811
+ Supplementary Information
812
+ Supplementary Note 1: Fitting of T1 Single Quantum (SQ), Double
813
+ Quantum (DQ) and Surface Dark Spin Relaxation Curves
814
+ Recorded single quantum (SQ) and double quantum (DQ) relaxation curves are fitted
815
+ with a biexponential function as the T1 decay exhibited two components according to prior
816
+ work:25,27,28,32,66
817
+ C(t) = A · exp(− 1
818
+ T1a
819
+ · t) + (1 − A) · exp(− 1
820
+ T1b
821
+ · t)
822
+ where C is the contrast, A is the amplitude and T1a >> T1b. For completeness, relaxation
823
+ times in the tables are given by both time constants. In agreement with prior work,25,27,32
824
+ values of T1 in the main text are only considering the longer component T1a. However, both
825
+ time constants are longer in all cases where diamagnetic electrolytes are measured with NV-
826
+ relaxometry and compared to water (see Table S1). Errors and errorbars from SQ and DQ
827
+ relaxation curves shown in tables or figures are standard deviations from the biexponential fit
828
+ function or in case of the sensitivity experiments (see Figure 2) the standard deviation from
829
+ three consecutive measurements. T1 time constants in the tables are given to three significant
830
+ digits. In case of the T1,ds relaxation measurements (see Figure 5d), the relaxation curve is
831
+ fitted to a single exponential decay: C(t) = A · exp(−
832
+ 1
833
+ T1,ds · t).46
834
+ Supplementary Note 2: T1 Time Constants of Measured Electrolytes
835
+ and T1 Time Magnetic Field Dependence for Pure Water/NaCl
836
+ (500 mM)
837
+ Table S1 and Figure S1 show the T1 time constants (T1a and T1b) and T1 relaxation
838
+ curves of the measured electrolyte solutions in this work. Experiments are conducted with
839
+ the relaxometry pulse sequence according to the main text.
840
+ 28
841
+
842
+ Figure S1: T1 relaxation curves of water and a-f) diamagnetic electrolyte
843
+ (500 mM) solutions as well as g) and h) paramagnetic electrolyte (1 µM) so-
844
+ lutions covering the diamond surface. Experiments are performed at f NV =
845
+ 1.88 GHz.
846
+ 29
847
+
848
+ Table S1: T1 time constants (T1a and T1b) of water and measured diamagnetic
849
+ electrolyte solutions (500 mM) as well as paramagnetic electrolyte solutions
850
+ (1 µM) covering the diamond surface. Experiments are performed at fNV = 1.88 GHz
851
+ .
852
+ Electrolyte [c = 500 mM]
853
+ T1a [µs]
854
+ T1b [µs]
855
+ Water
856
+ 920 ± 170
857
+ 140 ± 60.0
858
+ CsF
859
+ 1510 ± 250
860
+ 200 ± 60.0
861
+ KCl
862
+ 1720 ± 300
863
+ 270 ± 90.0
864
+ KNO3
865
+ 1360 ± 220
866
+ 240 ± 50.0
867
+ LiCl
868
+ 2940 ± 720
869
+ 930 ± 40.0
870
+ NaCl
871
+ 1920 ± 200
872
+ 170 ± 20.0
873
+ CaCl2
874
+ 2920 ± 260
875
+ 460 ± 190
876
+ MgSO4
877
+ 3600 ± 160
878
+ 310 ± 100
879
+ AlCl3
880
+ 2070 ± 370
881
+ 360 ± 190
882
+ Electrolyte [c = 1 µM]
883
+ T1a [µs]
884
+ T1b [µs]
885
+ MnCl2
886
+ 430 ± 160
887
+ 140 ± 50.0
888
+ Gd(NO3)3
889
+ 250 ± 15.0
890
+ 21 ± 6.00
891
+ Further measurements of water/NaCl (500 mM) solution are performed in different mag-
892
+ netic fields B0 (978, 352, 15 and 0 G), i.e., different resonance frequencies of the NV-center’s
893
+ ms = 0 → ms = −1 transition (f NV = 0.131, 1.88, 2.83 and 2.87 GHz). Figure S2 shows the
894
+ T1a time constants depending on f NV (see Supplementary Note 1 for details). In Table S2
895
+ both time constants (T1a and T1b) are listed.
896
+ Figure S2: T1a time constants for water and NaCl (500 mM) solution and their
897
+ dependence on the NV0,-1 resonance frequency f NV.
898
+ 30
899
+
900
+ Table S2: T1 time constants (T1a and T1b) for water and NaCl (500 mM) solution
901
+ covering the diamond surface depending on the NV0,-1 resonance frequency
902
+ f NV.
903
+ T1a [µs]
904
+ T1b [µs]
905
+ f NV = 0.131 GHz
906
+ Water
907
+ 1810±460
908
+ 400±60.0
909
+ NaCl 500 mM
910
+ 2300±340
911
+ 670±130
912
+ f NV = 1.88 GHz
913
+ Water
914
+ 940±180
915
+ 130±20.0
916
+ NaCl 500 mM
917
+ 1990±200
918
+ 170±20.0
919
+ f NV = 2.83 GHz
920
+ Water
921
+ 2660±110
922
+ 510±80.0
923
+ NaCl 500 mM
924
+ 3970±400
925
+ 1210±410
926
+ f NV = 2.87 GHz
927
+ Water
928
+ 3460±630
929
+ 930±190
930
+ NaCl 500 mM
931
+ 4830±740
932
+ 1830±510
933
+ Supplementary Note 3: NV-Relaxometry Experiments with Differ-
934
+ ent Organic Solvents
935
+ Following measurements are performed in order to investigate the impact of the solvent’s
936
+ physical properties on NV-relaxometry experiments. Therefore, we choose organic solvents
937
+ with dielectric constants (κ) which differ significantly from the properties of water.40 The
938
+ diamond is covered three times alternatingly with water and the organic solvent. T1 times
939
+ of the solvents are then normalized to the T1 time of water. Figure S3 shows that the T1
940
+ time remains unaffected by the solvent.
941
+ 31
942
+
943
+ Figure S3: NV-relaxometry experiments showing the impact of the solvent’s di-
944
+ electric constant (κ). Experiments are performed at f NV = 1.88 GHz.
945
+ Supplementary Note 4: NV-Relaxometry Measurement Series of
946
+ Para- and Diamagnetic Electrolyte Solutions in Increasing Con-
947
+ centrations
948
+ Figure S4: NV-relaxometry measurement series with increasing concentrations
949
+ of a) MnCl2 and b) NaCl solutions. Data points are T1 times normalized to the
950
+ T1 time of water for each series. Solid lines connect the mean values of three
951
+ consecutive performed series. Experiments are performed at f NV = 1.88 GHz.
952
+ The NV-relaxometry measurement series with paramagnetic MnCl2 and diamagnetic
953
+ NaCl solutions are performed in order to determine the sensitivity of the protocol to increas-
954
+ 32
955
+
956
+ ing electrolyte solutions in each case. Experiments are conducted using the SQ relaxometry
957
+ pulse sequence (see Methods for detail). We perform each series three times resulting in a
958
+ mean value for each concentration (see color codes in Figure S4). Figure 2 in the main text
959
+ shows the mean (normalized) T1 time along with the standard deviation.
960
+ Paramagnetic MnCl2 solutions decrease the T1 time in ∼ nano- to micromolar concen-
961
+ trations with respect to water. In contrast to that, diamagnetic NaCl solutions increase the
962
+ T1 time in ∼ millimolar concentrations.
963
+ Supplementary Note 5: NV-Depth Dependence Measurements with
964
+ Water/LiCl (500 mM)
965
+ Figure S5: T1 relaxation curves of water and LiCl 500 mM solution covering
966
+ the diamond surface. Diamonds were implanted with 15N at an energy of a)
967
+ 2.5 keV and b) 4 keV. Experiments are performed at f NV = 1.88 GHz.
968
+ NV-relaxometry with water/LiCl (500 mM) covering the diamond is performed in order
969
+ to investigate the impact of another diamagnetic electrolyte and to support the experiments
970
+ with NaCl (500 mM) solution using differently deep NV-center ensembles (implanted with
971
+ 2.5 keV and 4 keV, see Figure 3b). Figure S5 and Table S3 show similar results for both
972
+ NaCl and LiCl (500 mM) solution.
973
+ 33
974
+
975
+ Table S3: T1 time constants (T1a and T1b) of water, NaCl (500 mM) and LiCl
976
+ (500 mM) solution on the diamond surface depending on the nitrogen implan-
977
+ tation energy. Experiments are performed at f NV = 1.88 GHz.
978
+ Implantation energy [keV]
979
+ T1a [µs]
980
+ T1b [µs]
981
+ 2.5
982
+ Water
983
+ 940 ± 180
984
+ 130 ± 20.0
985
+ NaCl 500 mM
986
+ 1920 ± 200
987
+ 170 ± 20.0
988
+ Water
989
+ 660 ± 180
990
+ 200 ± 50.0
991
+ LiCl 500 mM
992
+ 2940 ± 720
993
+ 930 ± 40.0
994
+ 4
995
+ Water
996
+ 1090 ± 190
997
+ 190 ± 30.0
998
+ NaCl 500 mM
999
+ 1270 ± 180
1000
+ 220 ± 40.0
1001
+ Water
1002
+ 2750 ± 340
1003
+ 380 ± 80.0
1004
+ LiCl 500 mM
1005
+ 2880 ± 270
1006
+ 440 ± 90.0
1007
+ Supplementary Note 6: NV-Charge State, Coherence and Dephas-
1008
+ ing Measurements
1009
+ We observe an increase of T1 by diamagnetic electrolyte solutions. However, it is known
1010
+ that NV-charge state alteration (i.e., NV0 ↔ NV–) can influence the outcome of NV-
1011
+ relaxometry measurements.67,68 For that reason, we perform NV-Rabi experiments with
1012
+ water/NaCl (500 mM) solution (see Figure S6a). Any change in the NV-Rabi contrast indi-
1013
+ cates an alteration of the NV-center’s charge state. For instance, an ionization of NV– would
1014
+ increase the proportion of NV0, thereby raising the background fluorescence and lowering
1015
+ the contrast. The NV-Rabi experiments show no difference in the outcome between water
1016
+ and the electrolyte implying a constant charge state distribution during the measurement.
1017
+ Secondly, to supplement the NV-Rabi experiments, we conduct NV-relaxometry with dis-
1018
+ tinct optical readout of the NV0 and NV– charge states and with three different laser powers
1019
+ (see Figure S6b and Figure S6c). Possible ionization of NV– in the dark or recombination
1020
+ processes would be visible as an alteration in the readout signal of the NV0 charge state
1021
+ (see Figure S6b).67,68 These measurements are carried out using the first half of the relax-
1022
+ ometry pulse sequence (i.e., without a π-pulse) and with two different optical filters. The
1023
+ 647 nm long pass filter predominantly reads out the fluorescence from the NV– state and the
1024
+ 600 ± 40 band pass filter mostly reads out the fluorescence from the NV0 state.69 While a T1
1025
+ 34
1026
+
1027
+ Figure S6: Pulse sequences and spectra of NV-charge state measurements. a)
1028
+ NV-Rabi experiments, b) NV-charge state measurements with selective read-
1029
+ out of the NV0 or the NV– state and c) T1 relaxation curves using three differ-
1030
+ ent laser powers.
1031
+ 35
1032
+
1033
+ fluorescence decay curve can be extracted from the measurements with the long pass filter,
1034
+ no decisive change in the NV0 state is visible using the band pass filter. Probable impact of
1035
+ the laser power on the NV–/NV0 ratio and a subsequent change in the T1 relaxation curves
1036
+ is probed with relaxometry experiments using laser powers of 25, 50 and 100 µW µm−2 (see
1037
+ Figure S6c). Both NV-Rabi and NV-charge state experiments do not show an impact on
1038
+ NV-charge state alteration on the relevant timescales of the relaxometry measurements we
1039
+ conduct herein.
1040
+ Figure S7: Pulse sequences and spectra of Ramsey and T2 Hahn-echo mea-
1041
+ surements. a) Ramsey oscillations performed at a 4 MHz detuned NV0,-1 reso-
1042
+ nance frequency f NV and b) T2 Hahn-echo experiments with water and NaCl
1043
+ (500 mM) solution covering the diamond surface at f NV = 1.88 GHz.
1044
+ Additionally, we perform Ramsey (NV-dephasing) and T2 (NV-coherence) Hahn-echo
1045
+ experiments, whose outcome is typically affected by changes in the low frequency components
1046
+ of the noise (see Figure S7a and S7b).30 Both experiments show no difference in the outcome
1047
+ for water or NaCl (500 mM) solution. However, we note that probable changes in this noise
1048
+ frequency regime might not be observable with the high-dense NV-center ensemble we use in
1049
+ this work, since the surrounding spin-bath (e.g. P1-centers or other paramagnetic impurities)
1050
+ is limiting the NV-dephasing and NV-coherence in this case.37,50
1051
+ 36
1052
+
1053
+ Supplementary Note 7: T1 Time Constants for Single Quantum and
1054
+ Double Quantum Experiments at B0 = 15 G and Zero Field ESR
1055
+ Measurements
1056
+ Figure S8: a) SQ and b) DQ relaxation curves of water and MnCl2 (100 µM) so-
1057
+ lution covering the diamond. Experiments are performed at B0 = 15 G, where
1058
+ the NV0,-1 transition is at fNV = 2.83 GHz (corresponding to a DQ transi-
1059
+ tion frequency of 80 MHz). T1,SQ decreases by 80%, whereas T1,DQ remains un-
1060
+ changed compared to water when MnCl2 solution covers the diamond.
1061
+ Single and double quantum T1 experiments of water/NaCl (500 mM) and water/MnCl2
1062
+ (100 µM) solution covering the diamond surface are performed in order to elucidate the effect
1063
+ of the electrolyte on magnetic and electric field noise. In the case of the NaCl solution, both
1064
+ T1 time constants (T 1a,SQ and T 1a,DQ) increase compared to water, indicating a reduction of
1065
+ both magnetic and electric field noise (see also Table S4). Importantly, MnCl2 only reduces
1066
+ the T1 time for the SQ relaxation, whereas the DQ transition remains unaffected compared to
1067
+ 37
1068
+
1069
+ Table S4: T1 time constants (T 1a,SQ and T 1a,DQ) for water/NaCl (500 mM) and
1070
+ water/MnCl2 (100 µM) solution covering the diamond surface. Experiments
1071
+ are performed at B0 = 15 G
1072
+ .
1073
+ T 1a,SQ [µs]
1074
+ T 1a,DQ [µs]
1075
+ Water
1076
+ 2600 ± 280
1077
+ 440 ± 24.0
1078
+ NaCl 500 mM
1079
+ 3970 ± 400
1080
+ 1250 ± 120
1081
+ Water
1082
+ 2000 ± 340
1083
+ 410 ± 71
1084
+ MnCl2 100 µM
1085
+ 390 ± 71.0
1086
+ 390 ± 78.0
1087
+ water (see also Table S4). This indicates an exclusive impact of the paramagnetic electrolyte
1088
+ on magnetic field noise. However, we note that probing MnCl2 in higher (> 100 µM) concen-
1089
+ trations would lead to a collapse of the NV-center’s T1 time (see also Figure 2). Therefore, a
1090
+ final statement on the impact of higher concentrated paramagnetic electrolyte solutions on
1091
+ the DQ (as well as the SQ) relaxation cannot be made.
1092
+ Additionally, we investigate the static electric field environment of the NV-center, i.e.,
1093
+ charges within the diamond and adjacent to the NV-center (e.g., N+ and NV–).70 Therefore,
1094
+ we measure ESR at zero magnetic field (here the earth’s magnetic field ∼ 0.5 G), because
1095
+ any difference in the static electric field in the proximity of the NV-center with respect to
1096
+ water or the electrolyte solution covering the surface would induce a shifting and/or splitting
1097
+ of the ms = ±1 states apparent in the ESR spectra.70 Figure S9 shows no significant change
1098
+ of the ESR resonance lines for the exposure of water or electrolyte solution, indicating that
1099
+ static electric fields do not contribute.
1100
+ 38
1101
+
1102
+ Figure S9: ESR experiments at zero magnetic field with water and NaCl
1103
+ (500 mM) solution covering the diamond surface.
1104
+ 39
1105
+
1106
+ Supplementary Note 8: Results of DFT-PBE Ab Initio Molecular
1107
+ Dynamics Simulations
1108
+ Figure S10: a) Band alignment of the water layer and the model diamond sur-
1109
+ face. b) Distribution of interfacial dipoles, sampled from the MD trajectories
1110
+ for three different compositions of the interface and solvent. c) Average elec-
1111
+ trostatic potentials and vacuum level shifts (VLS) computed for the configu-
1112
+ rations corresponding to the middle of the distributions in b). Vertical lines
1113
+ show the parts of the simulation box, spanned by diamond (C), water or aque-
1114
+ ous NaCl solution and vacuum. d) Structures of the model diamond surface
1115
+ before and after adding a COOH group.
1116
+ 40
1117
+
1118
+ a)
1119
+ Band alignment
1120
+ b)
1121
+ 600
1122
+ model
1123
+ -0.86 eV
1124
+ Intensity [arb.units]
1125
+ model+COOH
1126
+ CBM
1127
+ 500
1128
+ model+CoOo'Na
1129
+ LUMO
1130
+ -1.94 eV
1131
+ 400
1132
+ 300
1133
+ 200
1134
+ VBM
1135
+ -5.20 eV
1136
+ 100
1137
+ HOMO
1138
+ -6.32 eV
1139
+ Diamond
1140
+ 0
1141
+ -2
1142
+ -1
1143
+ 0
1144
+ c)
1145
+ Water
1146
+ 1
1147
+ 2
1148
+ Dipole moment [at.units]
1149
+ 10
1150
+ Electrostatic potential [eV]
1151
+ model+ Na*cl
1152
+ model +COOH
1153
+ model+Coo'Nat
1154
+ 5
1155
+
1156
+ VLS=1.1
1157
+ VLS=-0.6
1158
+ VLS=-1.9
1159
+ 0
1160
+ -5
1161
+ -10
1162
+ -15
1163
+ c
1164
+ H20
1165
+ -20
1166
+ NaCI
1167
+ -25
1168
+ WW
1169
+ -10
1170
+ 0
1171
+ 10 20 30
1172
+ 40
1173
+ 50
1174
+ -10
1175
+ 10 20 30
1176
+ 4050
1177
+ 10
1178
+ 0
1179
+ 10
1180
+ 20 30 40
1181
+ 50
1182
+ Z-coordinate [A]
1183
+ Z-coordinate [A]
1184
+ Z-coordinate [A]
1185
+ d)
1186
+ model
1187
+ model+COOHReferences
1188
+ (1) Acosta, V. M.; Bauch, E.; Ledbetter, M. P.; Waxman, A.; Bouchard, L.-S.; Budker, D.
1189
+ Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond.
1190
+ Physical Review Letters 2010, 104, 070801.
1191
+ (2) Iv´ady, V.; Simon, T.; Maze, J. R.; Abrikosov, I. A.; Gali, A. Pressure and temperature
1192
+ dependence of the zero-field splitting in the ground state of NV centers in diamond: A
1193
+ first-principles study. Physical Review B 2014, 90, 235205.
1194
+ (3) Teissier, J.; Barfuss, A.; Appel, P.; Neu, E.; Maletinsky, P. Strain Coupling of a
1195
+ Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator. Physical Review
1196
+ Letters 2014, 113, 020503.
1197
+ (4) Dolde, F.; Fedder, H.; Doherty, M. W.; N¨obauer, T.; Rempp, F.; Balasubramanian, G.;
1198
+ Wolf, T.; Reinhard, F.; Hollenberg, L. C. L.; Jelezko, F.; Wrachtrup, J. Electric-field
1199
+ sensing using single diamond spins. Nature Physics 2011, 7, 459–463.
1200
+ (5) Balasubramanian, G.; Chan, I. Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.;
1201
+ Kim, C.; Wojcik, A.; Hemmer, P. R.; Krueger, A.; Hanke, T.; Leitenstorfer, A.; Brats-
1202
+ chitsch, R.; Jelezko, F.; Wrachtrup, J. Nanoscale imaging magnetometry with diamond
1203
+ spins under ambient conditions. Nature 2008, 455, 648–651.
1204
+ (6) Maze, J. R.; Stanwix, P. L.; Hodges, J. S.; Hong, S.; Taylor, J. M.; Cappellaro, P.;
1205
+ Jiang, L.; Dutt, M. V. G.; Togan, E.; Zibrov, A. S.; Yacoby, A.; Walsworth, R. L.;
1206
+ Lukin, M. D. Nanoscale magnetic sensing with an individual electronic spin in diamond.
1207
+ Nature 2008, 455, 644–647.
1208
+ (7) Glenn, D. R.; Lee, K.; Park, H.; Weissleder, R.; Yacoby, A.; Lukin, M. D.; Lee, H.;
1209
+ Walsworth, R. L.; Connolly, C. B. Single-cell magnetic imaging using a quantum dia-
1210
+ mond microscope. Nature Methods 2015, 12, 736–738.
1211
+ 41
1212
+
1213
+ (8) Lovchinsky, I.; Sushkov, A. O.; Urbach, E.; de Leon, N. P.; Choi, S.; De Greve, K.;
1214
+ Evans, R.;
1215
+ Gertner, R.;
1216
+ Bersin, E.;
1217
+ Muller, C.;
1218
+ McGuinness, L.;
1219
+ Jelezko, F.;
1220
+ Walsworth, R. L.; Park, H.; Lukin, M. D. Nuclear magnetic resonance detection and
1221
+ spectroscopy of single proteins using quantum logic. Science 2016, 351, 836–841.
1222
+ (9) M¨uller, C.; Kong, X.; Cai, J.-M.; Melentijevi´c, K.; Stacey, A.; Markham, M.;
1223
+ Twitchen, D.; Isoya, J.; Pezzagna, S.; Meijer, J.; Du, J. F.; Plenio, M. B.; Nayde-
1224
+ nov, B.; McGuinness, L. P.; Jelezko, F. Nuclear magnetic resonance spectroscopy with
1225
+ single spin sensitivity. Nature Communications 2014, 5, 4703.
1226
+ (10) Sushkov, A. O.; Lovchinsky, I.; Chisholm, N.; Walsworth, R. L.; Park, H.; Lukin, M. D.
1227
+ Magnetic Resonance Detection of Individual Proton Spins Using Quantum Reporters.
1228
+ Physical Review Letters 2014, 113, 197601.
1229
+ (11) Bucher, D. B. Principles of nano-and microscale NMR-spectroscopy with NV-diamond
1230
+ sensors. eMagRes 2019, 8, 363–370.
1231
+ (12) Lovchinsky, I.; Sanchez-Yamagishi, J. D.; Urbach, E. K.; Choi, S.; Fang, S.; Ander-
1232
+ sen, T. I.; Watanabe, K.; Taniguchi, T.; Bylinskii, A.; Kaxiras, E.; Kim, P.; Park, H.;
1233
+ Lukin, M. D. Magnetic resonance spectroscopy of an atomically thin material using a
1234
+ single-spin qubit. Science 2017, 355, 503–507.
1235
+ (13) Liu, K. S.; Henning, A.; Heindl, M. W.; Allert, R. D.; Bartl, J. D.; Sharp, I. D.;
1236
+ Rizzato, R.; Bucher, D. B. Surface NMR using quantum sensors in diamond. Proceedings
1237
+ of the National Academy of Sciences 2022, 119, e2111607119.
1238
+ (14) Allert, R. D.; Briegel, K. D.; Bucher, D. B. Advances in nano- and microscale NMR
1239
+ spectroscopy using diamond quantum sensors. Chemical Communications 2022, 58,
1240
+ 8165–8181.
1241
+ (15) Allert, R. D.; Bruckmaier, F.; Neuling, N. R.; Freire-Moschovitis, F. A.; Liu, K. S.;
1242
+ 42
1243
+
1244
+ Schrepel, C.; Sch¨atzle, P.; Knittel, P.; Hermans, M.; Bucher, D. B. Microfluidic quantum
1245
+ sensing platform for lab-on-a-chip applications. Lab on a Chip 2022, 22, 4831–4840.
1246
+ (16) Shi, F.; Zhang, Q.; Wang, P.; Sun, H.; Wang, J.; Rong, X.; Chen, M.; Ju, C.; Rein-
1247
+ hard, F.; Chen, H.; Wrachtrup, J.; Wang, J.; Du, J. Single-protein spin resonance
1248
+ spectroscopy under ambient conditions. Science 2015, 347, 1135–1138.
1249
+ (17) Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C. L. Nitrogen-Vacancy Centers in Dia-
1250
+ mond: Nanoscale Sensors for Physics and Biology. Annual Review of Physical Chemistry
1251
+ 2014, 65, 83–105.
1252
+ (18) Bucher, D. B.; Aude Craik, D. P.; Backlund, M. P.; Turner, M. J.; Ben Dor, O.;
1253
+ Glenn, D. R.; Walsworth, R. L. Quantum diamond spectrometer for nanoscale NMR
1254
+ and ESR spectroscopy. Nature Protocols 2019, 14, 2707–2747.
1255
+ (19) Kim, M.; Mamin, H. J.; Sherwood, M. H.; Ohno, K.; Awschalom, D. D.; Rugar, D.
1256
+ Decoherence of Near-Surface Nitrogen-Vacancy Centers Due to Electric Field Noise.
1257
+ Physical Review Letters 2015, 115, 087602.
1258
+ (20) Stacey, A.; Dontschuk, N.; Chou, J.; Broadway, D. A.; Schenk, A. K.; Sear, M. J.;
1259
+ Tetienne, J.; Hoffman, A.; Prawer, S.; Pakes, C. I.; Tadich, A.; de Leon, N. P.; Gali, A.;
1260
+ Hollenberg, L. C. L. Evidence for Primal sp 2 Defects at the Diamond Surface: Can-
1261
+ didates for Electron Trapping and Noise Sources. Advanced Materials Interfaces 2019,
1262
+ 6, 1801449.
1263
+ (21) Sangtawesin, S. et al. Origins of Diamond Surface Noise Probed by Correlating Single-
1264
+ Spin Measurements with Surface Spectroscopy. Physical Review X 2019, 9, 031052.
1265
+ (22) Romach, Y.; M¨uller, C.; Unden, T.; Rogers, L. J.; Isoda, T.; Itoh, K. M.; Markham, M.;
1266
+ Stacey, A.; Meijer, J.; Pezzagna, S.; Naydenov, B.; McGuinness, L. P.; Bar-Gill, N.;
1267
+ Jelezko, F. Spectroscopy of Surface-Induced Noise Using Shallow Spins in Diamond.
1268
+ Physical Review Letters 2015, 114, 017601.
1269
+ 43
1270
+
1271
+ (23) Chrostoski, P.; Sadeghpour, H. R.; Santamore, D. H. Electric Noise Spectra of a Near-
1272
+ Surface Nitrogen-Vacancy Center in Diamond with a Protective Layer. Physical Review
1273
+ Applied 2018, 10, 064056.
1274
+ (24) Degen, C. L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Reviews of Modern
1275
+ Physics 2017, 89, 035002.
1276
+ (25) Steinert, S.; Ziem, F.; Hall, L. T.; Zappe, A.; Schweikert, M.; G¨otz, N.; Aird, A.; Bala-
1277
+ subramanian, G.; Hollenberg, L.; Wrachtrup, J. Magnetic spin imaging under ambient
1278
+ conditions with sub-cellular resolution. Nature Communications 2013, 4, 1607.
1279
+ (26) Mzyk, A.; Sigaeva, A.; Schirhagl, R. Relaxometry with Nitrogen Vacancy (NV) Centers
1280
+ in Diamond. Accounts of Chemical Research 2022, 55, 3572–3580.
1281
+ (27) Perona Mart´ınez, F.; Nusantara, A. C.; Chipaux, M.; Padamati, S. K.; Schirhagl, R.
1282
+ Nanodiamond Relaxometry-Based Detection of Free-Radical Species When Produced in
1283
+ Chemical Reactions in Biologically Relevant Conditions. ACS Sensors 2020, 5, 3862–
1284
+ 3869.
1285
+ (28) Li, R.; Vedelaar, T.; Mzyk, A.; Morita, A.; Padamati, S. K.; Schirhagl, R. Following
1286
+ Polymer Degradation with Nanodiamond Magnetometry. ACS Sensors 2022, 7, 123–
1287
+ 130.
1288
+ (29) Jarmola, A.; Acosta, V. M.; Jensen, K.; Chemerisov, S.; Budker, D. Temperature- and
1289
+ Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensem-
1290
+ bles in Diamond. Physical Review Letters 2012, 108, 197601.
1291
+ (30) Rosskopf, T.; Dussaux, A.; Ohashi, K.; Loretz, M.; Schirhagl, R.; Watanabe, H.;
1292
+ Shikata, S.; Itoh, K. M.; Degen, C. L. Investigation of Surface Magnetic Noise by
1293
+ Shallow Spins in Diamond. Physical Review Letters 2014, 112, 147602.
1294
+ 44
1295
+
1296
+ (31) Nie, L.; Nusantara, A. C.; Damle, V. G.; Baranov, M. V.; Chipaux, M.; Reyes-San-
1297
+ Martin, C.; Hamoh, T.; Epperla, C. P.; Guricova, M.; Cigler, P.; van den Bogaart, G.;
1298
+ Schirhagl, R. Quantum Sensing of Free Radicals in Primary Human Dendritic Cells.
1299
+ Nano Letters 2022, 22, 1818–1825.
1300
+ (32) Ziem, F. C.; G¨otz, N. S.; Zappe, A.; Steinert, S.; Wrachtrup, J. Highly Sensitive Detec-
1301
+ tion of Physiological Spins in a Microfluidic Device. Nano Letters 2013, 13, 4093–4098.
1302
+ (33) Ermakova, A.; Pramanik, G.; Cai, J.-M.; Algara-Siller, G.; Kaiser, U.; Weil, T.;
1303
+ Tzeng, Y.-K.; Chang, H. C.; McGuinness, L. P.; Plenio, M. B.; Naydenov, B.; Jelezko, F.
1304
+ Detection of a Few Metallo-Protein Molecules Using Color Centers in Nanodiamonds.
1305
+ Nano Letters 2013, 13, 3305–3309.
1306
+ (34) Fujisaku, T.; Tanabe, R.; Onoda, S.; Kubota, R.; Segawa, T. F.; So, F. T.-K.;
1307
+ Ohshima, T.; Hamachi, I.; Shirakawa, M.; Igarashi, R. pH Nanosensor Using Electronic
1308
+ Spins in Diamond. ACS Nano 2019, 13, 11726–11732.
1309
+ (35) Simpson, D. A.; Ryan, R. G.; Hall, L. T.; Panchenko, E.; Drew, S. C.; Petrou, S.;
1310
+ Donnelly, P. S.; Mulvaney, P.; Hollenberg, L. C. L. Electron paramagnetic resonance
1311
+ microscopy using spins in diamond under ambient conditions. Nature Communications
1312
+ 2017, 8, 458.
1313
+ (36) Pham, L. M.; DeVience, S. J.; Casola, F.; Lovchinsky, I.; Sushkov, A. O.; Bersin, E.;
1314
+ Lee, J.; Urbach, E.; Cappellaro, P.; Park, H.; Yacoby, A.; Lukin, M.; Walsworth, R. L.
1315
+ NMR technique for determining the depth of shallow nitrogen-vacancy centers in dia-
1316
+ mond. Physical Review B 2016, 93, 045425.
1317
+ (37) Henshaw, J.; Kehayias, P.; Saleh Ziabari, M.; Titze, M.; Morissette, E.; Watanabe, K.;
1318
+ Taniguchi, T.; Li, J. I. A.; Acosta, V. M.; Bielejec, E. S.; Lilly, M. P.; Mounce, A. M.
1319
+ Nanoscale solid-state nuclear quadrupole resonance spectroscopy using depth-optimized
1320
+ nitrogen-vacancy ensembles in diamond. Applied Physics Letters 2022, 120, 174002.
1321
+ 45
1322
+
1323
+ (38) Brown, K. J.; Chartier, E.; Sweet, E. M.; Hopper, D. A.; Bassett, L. C. Cleaning
1324
+ diamond surfaces using boiling acid treatment in a standard laboratory chemical hood.
1325
+ Journal of Chemical Health & Safety 2019, 26, 40–44.
1326
+ (39) Li, C.; Zhang, X.; Oliveira, E. F.; Puthirath, A. B.; Neupane, M. R.; Weil, J. D.;
1327
+ Birdwell, A. G.; Ivanov, T. G.; Kong, S.; Gray, T.; Kannan, H.; Biswas, A.; Vajtai, R.;
1328
+ Galvao, D. S.; Ajayan, P. M. Systematic comparison of various oxidation treatments
1329
+ on diamond surface. Carbon 2021, 182, 725–734.
1330
+ (40) Seyferth, D. Organic Solvents. Physical Properties and Methods of Purification. Fourth
1331
+ Edition. Volume 11 of Weissberger’s ”Techniques of Chemistry”. Organometallics 1987,
1332
+ 6, 1375–1376.
1333
+ (41) Flora, S. J. Biomarkers in Toxicology; Elsevier, 2014; pp 485–519.
1334
+ (42) Flowers, T. J.; Munns, R.; Colmer, T. D. Sodium chloride toxicity and the cellular
1335
+ basis of salt tolerance in halophytes. Annals of Botany 2015, 115, 419–431.
1336
+ (43) Ladenson, J. H.; Apple, F. S.; Aguanno, J. J.; Koch, D. D. Sodium measurements in
1337
+ multiple myeloma: two techniques compared. Clinical Chemistry 1982, 28, 2383–2386.
1338
+ (44) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications,
1339
+ 2nd ed.; Wiley, 2001.
1340
+ (45) Myers, B. A.; Ariyaratne, A.; Jayich, A. C. B. Double-Quantum Spin-Relaxation Limits
1341
+ to Coherence of Near-Surface Nitrogen-Vacancy Centers. Physical Review Letters 2017,
1342
+ 118, 197201.
1343
+ (46) Sushkov, A. O.; Lovchinsky, I.; Chisholm, N.; Walsworth, R. L.; Park, H.; Lukin, M. D.
1344
+ Magnetic Resonance Detection of Individual Proton Spins Using Quantum Reporters.
1345
+ Physical Review Letters 2014, 113, 197601.
1346
+ 46
1347
+
1348
+ (47) Schlipf, L.; Oeckinghaus, T.; Xu, K.; Dasari, D. B. R.; Zappe, A.; de Oliveira, F. F.;
1349
+ Kern, B.; Azarkh, M.; Drescher, M.; Ternes, M.; Kern, K.; Wrachtrup, J.; Finkler, A. A
1350
+ molecular quantum spin network controlled by a single qubit. Science Advances 2017,
1351
+ 3.
1352
+ (48) Mamin, H. J.; Sherwood, M. H.; Rugar, D. Detecting external electron spins using
1353
+ nitrogen-vacancy centers. Physical Review B 2012, 86, 195422.
1354
+ (49) Bluvstein, D.; Zhang, Z.; McLellan, C. A.; Williams, N. R.; Jayich, A. C. B. Extending
1355
+ the Quantum Coherence of a Near-Surface Qubit by Coherently Driving the Paramag-
1356
+ netic Surface Environment. Physical Review Letters 2019, 123, 146804.
1357
+ (50) Barry, J. F.; Schloss, J. M.; Bauch, E.; Turner, M. J.; Hart, C. A.; Pham, L. M.;
1358
+ Walsworth, R. L. Sensitivity optimization for NV-diamond magnetometry. Reviews of
1359
+ Modern Physics 2020, 92, 015004.
1360
+ (51) Zhang, Z.; Joos, M.; Bluvstein, D.; Lyu, Y.; Jayich, A. C. B. Reporter-spin-assisted T1
1361
+ relaxometry. 2022, arXiv:2208.11470 [quant–ph].
1362
+ (52) F´avaro de Oliveira, F.; Antonov, D.; Wang, Y.; Neumann, P.; Momenzadeh, S. A.;
1363
+ H¨außermann, T.; Pasquarelli, A.; Denisenko, A.; Wrachtrup, J. Tailoring spin defects
1364
+ in diamond by lattice charging. Nature Communications 2017, 8, 15409.
1365
+ (53) Sies, H.; Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological sig-
1366
+ nalling agents. Nature Reviews Molecular Cell Biology 2020, 21, 363–383.
1367
+ (54) Favaro, M.; Jeong, B.; Ross, P. N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E. J. Unrav-
1368
+ elling the electrochemical double layer by direct probing of the solid/liquid interface.
1369
+ Nature Communications 2016, 7, 12695.
1370
+ (55) Kaufmann, S.; Simpson, D. A.; Hall, L. T.; Perunicic, V.; Senn, P.; Steinert, S.;
1371
+ McGuinness, L. P.;
1372
+ Johnson, B. C.;
1373
+ Ohshima, T.;
1374
+ Caruso, F.;
1375
+ Wrachtrup, J.;
1376
+ 47
1377
+
1378
+ Scholten, R. E.; Mulvaney, P.; Hollenberg, L. Detection of atomic spin labels in a lipid
1379
+ bilayer using a single-spin nanodiamond probe. Proceedings of the National Academy
1380
+ of Sciences 2013, 110, 10894–10898.
1381
+ (56) Hall, L. T.; Hill, C. D.; Cole, J. H.; St¨adler, B.; Caruso, F.; Mulvaney, P.; Wrachtrup, J.;
1382
+ Hollenberg, L. C. L. Monitoring ion-channel function in real time through quantum
1383
+ decoherence. Proceedings of the National Academy of Sciences 2010, 107, 18777–18782.
1384
+ (57) Szatm´ari, D.; S´ark´any, P.; Kocsis, B.; Nagy, T.; Miseta, A.; Bark´o, S.; Longauer, B.;
1385
+ Robinson, R. C.; Nyitrai, M. Intracellular ion concentrations and cation-dependent
1386
+ remodelling of bacterial MreB assemblies. Scientific Reports 2020, 10, 12002.
1387
+ (58) Henning, A.; Bartl, J. D.; Zeidler, A.; Qian, S.; Bienek, O.; Jiang, C.; Paulus, C.;
1388
+ Rieger, B.; Stutzmann, M.; Sharp, I. D. Aluminum Oxide at the Monolayer Limit via
1389
+ Oxidant-Free Plasma-Assisted Atomic Layer Deposition on GaN. Advanced Functional
1390
+ Materials 2021, 31, 2101441.
1391
+ (59) Kaviani, M.; De´ak, P.; Aradi, B.; Frauenheim, T.; Chou, J.-P.; Gali, A. Proper Sur-
1392
+ face Termination for Luminescent Near-Surface NV Centers in Diamond. Nano Letters
1393
+ 2014, 14, 4772–4777.
1394
+ (60) Berendsen, H.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing par-
1395
+ allel molecular dynamics implementation. Computer Physics Communications 1995,
1396
+ 91, 43–56.
1397
+ (61) Schmid, N.; Eichenberger, A. P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A. E.;
1398
+ van Gunsteren, W. F. Definition and testing of the GROMOS force-field versions 54A7
1399
+ and 54B7. European Biophysics Journal 2011, 40, 843–856.
1400
+ (62) Kresse, G.; Furthm¨uller, J. Efficient iterative schemes for ab initio total-energy calcu-
1401
+ lations using a plane-wave basis set. Physical Review B 1996, 54, 11169–11186.
1402
+ 48
1403
+
1404
+ (63) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made
1405
+ Simple. Physical Review Letters 1996, 77, 3865–3868.
1406
+ (64) Marcus, R. A. On the Theory of Oxidation-Reduction Reactions Involving Electron
1407
+ Transfer. I. The Journal of Chemical Physics 1956, 24, 966–978.
1408
+ (65) Broadway, D. A.; Dontschuk, N.; Tsai, A.; Lillie, S. E.; Lew, C. T.-K.; McCallum, J. C.;
1409
+ Johnson, B. C.; Doherty, M. W.; Stacey, A.; Hollenberg, L. C. L.; Tetienne, J.-P. Spatial
1410
+ mapping of band bending in semiconductor devices using in situ quantum sensors.
1411
+ Nature Electronics 2018, 1, 502–507.
1412
+ (66) Rioux, J. A.; Levesque, I. R.; Rutt, B. K. Biexponential longitudinal relaxation in white
1413
+ matter: Characterization and impact on T1 mapping with IR-FSE and MP2RAGE.
1414
+ Magnetic Resonance in Medicine 2016, 75, 2265–2277.
1415
+ (67) Bluvstein, D.; Zhang, Z.; Jayich, A. C. B. Identifying and Mitigating Charge Insta-
1416
+ bilities in Shallow Diamond Nitrogen-Vacancy Centers. Physical Review Letters 2019,
1417
+ 122, 076101.
1418
+ (68) Dhomkar, S.; Jayakumar, H.; Zangara, P. R.; Meriles, C. A. Charge Dynamics in near-
1419
+ Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond. Nano
1420
+ Letters 2018, 18, 4046–4052.
1421
+ (69) Doherty, M. W.; Manson, N. B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollen-
1422
+ berg, L. C. The nitrogen-vacancy colour centre in diamond. Physics Reports 2013,
1423
+ 528, 1–45.
1424
+ (70) Mittiga, T.; Hsieh, S.; Zu, C.; Kobrin, B.; Machado, F.; Bhattacharyya, P.; Rui, N. Z.;
1425
+ Jarmola, A.; Choi, S.; Budker, D.; Yao, N. Y. Imaging the Local Charge Environment
1426
+ of Nitrogen-Vacancy Centers in Diamond. Physical Review Letters 2018, 121, 246402.
1427
+ 49
1428
+
WdE4T4oBgHgl3EQfNAwx/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
YNFQT4oBgHgl3EQfdzaO/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6b216a73a369bdf832b9621c567a83e4a6115a2568d6a8d1d8245870406ab55
3
+ size 2949165
ZNAyT4oBgHgl3EQfWveE/content/tmp_files/2301.00169v1.pdf.txt ADDED
@@ -0,0 +1,2171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Generative Graph Neural Networks for Link Prediction
2
+ Xingping Xiana, Tao Wua,∗, Xiaoke Mab, Shaojie Qiaoc, Yabin Shaod, Chao Wange, Lin Yuana, Yu Wua
3
+ aSchool of Cybersecurity and Information Law, Chongqing University of Posts and Telecommunications, Chongqing, China.
4
+ bSchool of Computer Science and Technology, XiDian University, XiAn, China.
5
+ cSchool of Software Engineering, Chengdu University of Information Technology, Chengdu, China.
6
+ dSchool of Science, Chongqing University of Posts and Telecommunications, Chongqing, China.
7
+ eSchool of Computer and Information Science, Chongqing Normal University, Chongqing, China.
8
+ Abstract
9
+ Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge
10
+ in graph data analysis. With the recent advances in deep learning, graph neural networks have been used for link prediction and
11
+ have achieved state-of-the-art performance. Nevertheless, existing methods developed for this purpose are typically discriminative,
12
+ computing features of local subgraphs around two neighboring nodes and predicting potential links between them from the perspec-
13
+ tive of subgraph classification. In this formalism, the selection of enclosing subgraphs and heuristic structural features for subgraph
14
+ classification significantly affects the performance of the methods. To overcome this limitation, this paper proposes a novel and rad-
15
+ ically different link prediction algorithm based on the network reconstruction theory, called GraphLP. Instead of sampling positive
16
+ and negative links and heuristically computing the features of their enclosing subgraphs, GraphLP utilizes the feature learning abil-
17
+ ity of deep-learning models to automatically extract the structural patterns of graphs for link prediction under the assumption that
18
+ real-world graphs are not locally isolated. Moreover, GraphLP explores high-order connectivity patterns to utilize the hierarchical
19
+ organizational structures of graphs for link prediction. Our experimental results on all common benchmark datasets from different
20
+ applications demonstrate that the proposed method consistently outperforms other state-of-the-art methods. Unlike the discriminative
21
+ neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link
22
+ prediction. The code is available at https://github.com/star4455/GraphLP.
23
+ Keywords: Graph Machine Learning, Graph Neural Networks, Link Prediction, Structural Patterns, Network Reconstruction.
24
+ 1. Introduction
25
+ Graphs provide an elegant representation for characterizing
26
+ entities and their interrelations in complex systems. Given that
27
+ real-world graphs can usually only be partially observed and
28
+ are often noisy, link prediction aimed at inferring missing and
29
+ spurious links based on observed graphs is a paradigmatic and
30
+ fundamental problem across many scientific domains, including
31
+ knowledge graph completion [52], experimental design in bio-
32
+ logical networks [6], fake account detection in online social net-
33
+ works [24], and product recommendation on e-commerce web-
34
+ sites [31].
35
+ To address the link prediction problem, numerous heuristic
36
+ methods have been proposed, including local indices such as
37
+ Common Neighbors (CN) [2], and Resource Allocation (RA)
38
+ [61], global indices such as Katz [25], and SimRank [23], and
39
+ quasi-local indices such as the Local Path Index (LP) [61]. How-
40
+ ever, heuristic methods have a strong assumption on when two
41
+ nodes are likely to be linked in real-world graphs and lack uni-
42
+ versal applicability to diverse areas [8]. Subsequently, statistical
43
+ learning-based algorithms have been proposed to obtain ground-
44
+ breaking results, such as maximum likelihood-based hierarchi-
45
+ cal structure model [13], stochastic block model [21], matrix
46
+ factorization-based link prediction method [37], Linear Opti-
47
+ mization (LO) link prediction method [38], and Low Frobenius
48
+ norm-based Link Prediction (LFLP) method [53]. With the pro-
49
+ posal of network representation learning, various network em-
50
+ ∗Corresponding author.
51
+ Email addresses: [email protected] (Xingping Xian),
52
+ [email protected] (Tao Wu)
53
+ bedding algorithms have been put forth so that the likelihood of
54
+ a non-observed links can be estimated based on the proximity
55
+ of nodes in low-dimensional vector space, including LINE [44],
56
+ Node2Vec [20], and DNGR [10].
57
+ Recently, driven by the dramatic advances in deep learning
58
+ techniques, neural networks have gradually been used to solve
59
+ the link prediction problem. [56] trained a fully-connected neu-
60
+ ral network on the enclosing subgraphs of target links for link
61
+ prediction, wherein a Weisfeiler-Lehman (WL) algorithm-based
62
+ graph labeling mechanism was proposed to encode subgraphs.
63
+ Based on the enclosing subgraphs extracted around links, [57]
64
+ trained a Graph Neural Network (GNN) for link prediction to
65
+ achieve a performance comparable to that of heuristic meth-
66
+ ods. Along this line of research, [36] encoded subgraphs into
67
+ random-walk transition probabilities and then computed fea-
68
+ tures using these probabilities to classify positive and negative
69
+ links.
70
+ Although these subgraph classification-based methods
71
+ have achieved state-of-the-art link prediction performance, the
72
+ prediction results are found to be considerably affected by the
73
+ extraction process of the k-hop enclosing subgraphs and the
74
+ graph structure features for them. For example, in representa-
75
+ tion learning on graphs [55], the range of enclosing subgraphs
76
+ strongly depends on the graph structure, and the effective range
77
+ should be different for subgraphs with varying properties.
78
+ Typically, from the perspective of subgraph classification, link
79
+ prediction methods treat subgraphs in real-world graphs inde-
80
+ pendently and equivalently. That is, the global structural in-
81
+ formation of real-world graphs is totally neglected during this
82
+ process.
83
+ However, extensive empirical analyses indicate that
84
+ real-world graphs are not locally isolated but globally relevant
85
+ Preprint submitted to Journal of LATEX Templates
86
+ January 3, 2023
87
+ arXiv:2301.00169v1 [cs.SI] 31 Dec 2022
88
+
89
+ Figure 1: An illustrative example depicting the global and high-order organizations of real-world graphs. (a) Gene network for C.
90
+ elegans [12]. (b) Representative hierarchical star-like structure [45]. (c) Representative hierarchical modular organization [39]. (b) and
91
+ (c) depict the representative structural patterns of real-world graphs such as (a).
92
+ [35, 51]; here, nodes and edges naturally portray different struc-
93
+ tural roles and contribute differently to the global organization of
94
+ real-world graphs [53, 54]. Moreover, subgraph classification-
95
+ based link prediction methods assume that real-world graphs ex-
96
+ hibit low-order connectivity patterns and can be captured at the
97
+ level of individual nodes and edges. However, empirical studies
98
+ have discovered that real-world graphs exhibit high-order orga-
99
+ nizations at the level of small subgraphs, which are recursively
100
+ grouped into a hierarchical structure [7, 3]. An illustrative ex-
101
+ ample of the global and high-order organization in real-world
102
+ graphs is depicted in Figure 1. Hence, two challenges need to be
103
+ addressed for link prediction: (i) how to learn good representa-
104
+ tion preserving both local and global graph structural features?
105
+ and (ii) how to characterize and utilize hierarchical structure pat-
106
+ terns?
107
+ To address these challenges, instead of predicting poten-
108
+ tial links through subgraph classification, this study designs a
109
+ novel generative and multi-order GNN for link prediction, called
110
+ GraphLP. Evidently, real-world graphs share some global prop-
111
+ erties, such as low-rank and sparsity, that can be used to pro-
112
+ vide guidance for graph learning.
113
+ Hence, motivated by the
114
+ network reconstruction theory [21], GraphLP defines a self-
115
+ representation model-based collaborative inference operation to
116
+ refine the observed graphs globally, which assumes that the orig-
117
+ inal graph can be reconstructed utilizing the correlation between
118
+ subgraph patterns.
119
+ Assuming that the paths between a pair
120
+ of nodes provide evidence for the existence of potential links,
121
+ GraphLP extracts the local structural information via a high-
122
+ order connectivity operation on the observed graphs. Thus, ev-
123
+ ery neural network layer obtains the connectivity of node pairs
124
+ within two-hop neighborhood, and a neural network with multi-
125
+ ple connectivity layers captures the degree of connectivity be-
126
+ tween node pairs with various path lengths.
127
+ Meanwhile, the
128
+ weighted adjacency matrices generated by the connectivity op-
129
+ eration in every neural network layer reflect the multi-order con-
130
+ nectivity pattern in the graphs. Further, the hierarchical organi-
131
+ zational structure of real-world graphs is explored by applying
132
+ a collaborative inference operation. The contributions of this
133
+ study can be summarized as follows:
134
+ • Generative framework.
135
+ Rather than subgraph classi-
136
+ fication based discriminative schemes, a novel network
137
+ reconstruction-based generative GNN is proposed for link
138
+ prediction, which provides a new paradigm for the applica-
139
+ tion of neural networks in link prediction problem.
140
+ • End-to-end learning. Instead of designing heuristic graph
141
+ structural features for subgraph representation, local and
142
+ global structural patterns are extracted and fused in an end-
143
+ to-end fashion for link prediction.
144
+ • Algorithm. A novel collaborative inference operation and
145
+ high-order connectivity computation mechanism are devel-
146
+ oped to characterize the structural patterns in real-world
147
+ graphs at different scales.
148
+ • Experiment. Extensive experiments on real-world datasets
149
+ from different areas reveal that the proposed method,
150
+ GraphLP, achieves promising performance and consistently
151
+ outperforms other state-of-the-art methods.
152
+ Paper Organization. The rest of this work is organized as
153
+ follows. Section 2 discusses related studies. Section 3 presents
154
+ the problem definitions and describes the preliminaries. Section
155
+ 4 describes the proposed method. Section 5 presents the experi-
156
+ mental results, and finally, Section 6 presents the conclusion and
157
+ discussion.
158
+ 2. Related Work
159
+ GNNs and link prediction task have been extensively investi-
160
+ gated in recent years. A brief review of related studies is pro-
161
+ vided in this section.
162
+ 2.1. Graph Neural Networks
163
+ Owing to their potential in modeling the complex structures
164
+ of non-Euclidean graphs, GNNs have achieved state-of-the-art
165
+ performance on almost all graph-based tasks, such as node clas-
166
+ sification, graph classification, link prediction. Based on differ-
167
+ ent theories and perspectives, a plethora of different GNNs have
168
+ 2
169
+
170
+ (a)
171
+ (b)
172
+ (c)
173
+ 8.80been proposed over the years. Generally, GNNs can be divided
174
+ into two categories: spectral-based and spatial-based methods.
175
+ Of these, spectral-based GNNs are types of GNNs that design
176
+ graph convolution operators in the spectral domain using Fourier
177
+ transform. The involved convolution operation is defined as fol-
178
+ lows:
179
+ f1 ∗ f2 = U[(UT f1) ⊙ (UT f2)],
180
+ (1)
181
+ where ⊙ denotes an element-wise product. The spectral filter is
182
+ defined as g = UT f1, and the node signal X can be processed as
183
+ follows:
184
+ Z = U[g(Λ) ⊙ (UTX)] = Ug(Λ)UTX.
185
+ (2)
186
+ where U denotes a matrix of eigenvectors of the normalized
187
+ Laplacian graph L = I − D− 1
188
+ 2 AD− 1
189
+ 2 = UΛUT [11]. Assum-
190
+ ing that feature representation of node should be affected only
191
+ by its k-hop neighborhood, [16] proposed a Chebyshev poly-
192
+ nomial based k-localized convolution and developed a convolu-
193
+ tional neural network, ChebNet, which eliminated the need to
194
+ compute the eigenvectors of the Laplacian. Subsequently, [50]
195
+ simplified the Chebshev polynomial filter using its first-order
196
+ approximation and proposed the popular spectral-based method
197
+ called Graph Convolutional Networks (GCNs). Notably, spatial-
198
+ based GNNs define graph convolution operator based on graph
199
+ topology wherein the feature vectors of node’s neighbors are ag-
200
+ gregated via a permutation-invariant function. Specifically, [22]
201
+ proposed a GraphSAGE approach that sampled fixed size neigh-
202
+ borhood nodes and used max pooling, mean pooling, and LSTM
203
+ pooling scheme to aggregate neighbor information. Considering
204
+ the different weights of node’s neighbors, [46] proposed a Graph
205
+ Attention Network (GAT) algorithm to calculate attention coeffi-
206
+ cient and then aggregated the neighborhood information. Other
207
+ related models include PATCHY-SAN [34], DCNN [4], and fur-
208
+ ther details on GNNs can be found in the review [60].
209
+ 2.2. Neural Networks based Link Prediction
210
+ Following heuristic methods, matrix completion-based meth-
211
+ ods and network embedding-based methods, neural networks
212
+ have been gradually applied to link prediction problem and
213
+ have achieved state-of-the-art results.
214
+ Specifically, [56] pro-
215
+ posed a link prediction method called Weisfeiler-Lehman Neural
216
+ Machine (WLNM), which labeled nodes using the Weisfeiler-
217
+ Lehman algorithm and encoded subgraphs to construct a feed-
218
+ forward neural network-based classification model. Next, from
219
+ the perspective of subgraph classification, [57] proposed a novel
220
+ GNN-based link prediction framework, SEAL, to learn subgraph
221
+ structures and node features from local enclosing subgraphs.
222
+ Along this line, to directly leverage the topology features of lo-
223
+ cal subgraphs, [36] proposed a new random-walk-based pool-
224
+ ing scheme, WalkPool, and built features for subgraph classifi-
225
+ cation. Moreover, [18] proposed a neural network-based link
226
+ prediction method with only one-hop neighborhood informa-
227
+ tion, which demonstrated almost equivalent performance to the
228
+ WLNM and SEAL. Instead of subgraph classification, [8] con-
229
+ verted the original graph into a corresponding line graph and
230
+ solved the node classification problem for link prediction. To
231
+ perform link prediction for general directed or undirected com-
232
+ plex networks, [48] represented the adjacency matrices of net-
233
+ works as binary images and developed a generative adversarial
234
+ networks (GANs)-based method. In addition, because existing
235
+ GNN-based methods do not scale appropriately to large graphs,
236
+ [30] extracted sparse enclosing subgraphs based on multiple ran-
237
+ dom walks and presented a scalable link prediction solution,
238
+ called ScaLed. To reduce the time required to determine the
239
+ distances between two nodes, [27] defined an anchor-based dis-
240
+ tance and proposed a new distance-enhanced GNN method for
241
+ link prediction.
242
+ Among all existing methods for link prediction, the work clos-
243
+ est to the one condidered in this study is the GANs-based method
244
+ [48]. However, this method predicts potential links via image
245
+ processing within the GANs framework, whereas the proposed
246
+ method conducts link prediction via GNNs-based network re-
247
+ construction.
248
+ 2.3. Network Structure Analysis
249
+ Real-world graphs, also known as complex networks, are ab-
250
+ stract representation of complex systems and have been exten-
251
+ sively studied in the field of network science. Consequently,
252
+ numerous studies have revealed that complex networks exhibit
253
+ rich and diverse connectivity patterns. [32] augmented that the
254
+ organization of real networks usually embodies both regularities
255
+ and irregularities, where the former can be modeled and decides
256
+ the extent to which the formation of a network can be explained.
257
+ Notably, link predictability reflects the structural regularities in
258
+ real-world networks and denotes the inherent difficulty of link
259
+ prediction. [53] proposed a self-representation network model-
260
+ based method, called NetSRE, for measuring and regulating link
261
+ predictability of networks. [54] proposed a deep linear coding-
262
+ based link prediction adversarial attack method by disturbing
263
+ the underlying structural pattern of networks, which proved that
264
+ links play global structural roles in network organization. More-
265
+ over, [7] suggested that high-order connectivity patterns are es-
266
+ sential for understanding the fundamental structures of networks
267
+ and developed a framework that identified clusters of network
268
+ motifs. [41] claimed that hierarchical structure plays an impor-
269
+ tant role in complex systems. To prove the existence of hierar-
270
+ chical organization, an unsupervised method for extracting the
271
+ hierarchical organization of complex networks was introduced
272
+ and validated.
273
+ Although real-world graphs exhibit various structural pat-
274
+ terns, most existing neural networks-based link prediction meth-
275
+ ods simply assume that they are flattened and locally isolated,
276
+ and these methods judge the existence of links explicitly based
277
+ only on local enclosing subgraphs. With the exception of local
278
+ structural features, this study focuses on integrating global and
279
+ hierarchical structural patterns into neural networks for link pre-
280
+ diction.
281
+ 3. Problem Definition and Preliminaries
282
+ 3.1. Problem Definition
283
+ Notations.
284
+ Let G = (V, E) denote an undirected and un-
285
+ weighted graph, where V = {v1, · · · , vN} denotes the set of nodes
286
+ and E = {e1, · · · , eM} denotes the set of edges. The adjacency
287
+ matrix of graph G is denoted as A ∈ {0, 1}N×N, where Ai j = 1 if
288
+ nodes i and j are connected and Ai j = 0 otherwise. Each edge
289
+ e can be represented as a node pair (u, v, ), where u, v ∈ V. Let
290
+ N (u) denote the neighbors of node u, N (u) = {v|(u, v) ∈ E}.
291
+ Link Prediction. Given an observed graph Go = (V, Eo) that
292
+ corresponds to the original graph G = (V, E), link prediction
293
+ aims to infer the presence or absence of an edge between a
294
+ pair of target nodes based on Go, thereby generating a recovered
295
+ graph G∗ to approximate the original graph G. In particular, the
296
+ prediction problem involves identifying a function that generates
297
+ 3
298
+
299
+ a likelihood score for a pair of nodes (u, v) � E to infer the miss-
300
+ ing link (u, v), or to produce a likelihood score for an existing
301
+ edge (u, v) ∈ E to identify spurious links. Thus, the link predic-
302
+ tion problem can be formulated as suv = f(u, v, A|θ), where θ
303
+ denotes the parameter of link prediction model. In this work, Em
304
+ and Es denote the identified missing and spurious links, respec-
305
+ tively.
306
+ Note that data augmentation is a set of techniques that in-
307
+ creases the amount and diversity of data by creating reasonable
308
+ virtual data points from existing data, such that better machine
309
+ learning models can be constructed based on them. According
310
+ to [59], this study considers graph data augmentation and adopts
311
+ a random mapping mechanism to produce augmented graph set
312
+ D based on the observed graph Go = (V, Eo). Specifically, the
313
+ set of all possible edges in the graph Go is denoted as Ω, the ex-
314
+ isting edge set is denoted as Eo, and the non-existing edge set is
315
+ denoted as Enon = Ω − Eo. Thus, the candidate sets for random
316
+ mapping are defined as follows:
317
+ Ec
318
+ del = Eo,
319
+ Ec
320
+ add = Enon.
321
+ (3)
322
+ Thereafter, samples are randomly produced from the candidate
323
+ sets to obtain the edge sets Edel and Eadd. Finally, a new aug-
324
+ mented graph is generated by modifying the graph Go based on
325
+ Edel and Eadd:
326
+ G′ = (V, (E ∪ Eadd)\Edel).
327
+ (4)
328
+ Each input graph can be viewed as an instance for link pre-
329
+ diction, owing to the generative learning scheme of the models
330
+ considered in this work. Thus, the dataset containing a series of
331
+ augmented graphs can be denoted as D = {Gi|i = 1, ..., t} and
332
+ split to yield disjoint training and validation sets. These can be
333
+ denoted as Dtrain and Dval respectively, wherein the missing and
334
+ spurious links of the validation set are guaranteed not to appear
335
+ in the training set. The observed graph Go used to generate the
336
+ augmented graphs is defined as test set Dtest.
337
+ 3.2. Graph Convolutional Networks
338
+ GCNs are a class of neural networks designed to general-
339
+ ize traditional convolution operator for non-euclidean graph-
340
+ structured data. In essence, GCNs aim to learn new feature rep-
341
+ resentations of nodes in graphs by exploiting their structural in-
342
+ formation. Let adjacency matrix A ∈ {0, 1}N×N denote the struc-
343
+ tural information of the graph G, and X ∈ RN×F denote the fea-
344
+ ture matrix of all graph nodes. Mathematically, using the output
345
+ of the l-th layer as the input for the next layer, each neural net-
346
+ work layer can be formulated as a nonlinear function:
347
+ H(l+1) = f(H(l), A)
348
+ (5)
349
+ where H(l) corresponds to the feature matrix of the l-th layer, and
350
+ H(0) = X is the input feature matrix of the first layer. Specific
351
+ GCNs models differ only in the manner in which the nonlinear
352
+ function f(·) is instantiated. A simple example of f(·) is as fol-
353
+ lows:
354
+ f(H(l), A) = σ(AH(l)W(l))
355
+ (6)
356
+ where σ(·) denotes a nonlinear activation function, such as
357
+ a Rectified Linear Unit (ReLU), and W(l) denotes a trainable
358
+ weight matrix for the l-th layer. With this propagation rule, the
359
+ neighbour’s features are aggregated to represent each node at
360
+ every layer, and the features become increasingly abstract by
361
+ stacking layers on top of each other. However, there exist two
362
+ limitations: the propagation rule simply aggregates the features
363
+ Table 1: Notations and meanings.
364
+ Notations
365
+ Descriptions
366
+ G
367
+ Original graph
368
+ Go
369
+ Observed graph
370
+ A
371
+ Adjacency matrix of graph
372
+ Em
373
+ Missing links
374
+ Es
375
+ Spurious links
376
+ D
377
+ Dataset that contains augmented graphs
378
+ H(l)
379
+ Feature matrix of l-th neural network layer
380
+ W(l)
381
+ Trainable weight matrix for the l-th layer
382
+ || · ||0
383
+ ℓ0−norm
384
+ || · ||2,1
385
+ ℓ2,1−norm
386
+ of neighboring nodes but not the node itself, and the multiplica-
387
+ tion with A expected to change the scale of the feature vectors.
388
+ That is, the nodes with a high degree will have a larger value,
389
+ and the nodes with a low degree may have smaller values. To
390
+ address the problems, a new propagation function, f(·), is pre-
391
+ sented as follows:
392
+ f(H(l), A) = σ( ˆD− 1
393
+ 2 ˆA ˆD− 1
394
+ 2 H(l)W(l))
395
+ (7)
396
+ where ˆA is obtained by adding an identity matrix I to the adja-
397
+ cency matrix ˆA = A + I, ˆD denotes the diagonal node degree
398
+ matrix of ˆA, and ˆD− 1
399
+ 2 ˆA ˆD− 1
400
+ 2 denotes symmetric normalization.
401
+ 3.3. Low-rank and Sparse Modeling
402
+ Traditionally, Principal component analysis (PCA) was pro-
403
+ posed to determine a low-dimensional representation of data
404
+ while retaining as much information as possible. However, the
405
+ PCA is particularly effective when dealing with Gaussian noise,
406
+ which is independent and identically distributed with respect to
407
+ the original data. Hence, the Robust Principal Component Anal-
408
+ ysis (RPCA) [9] has been proposed to eliminate the effect of
409
+ erratic noise (outliers). PCA and RPCA methods implicitly as-
410
+ sume that the underlying data structure is a single low-rank sub-
411
+ space; however, real-world data may be drawn from a union of
412
+ multiple subspaces, and therefore, modeling may be inaccurate.
413
+ To this end, Low-Rank Representation (LRR) [28] has been pro-
414
+ posed.
415
+ Considering the correlation between the connectivity patterns
416
+ of nodes in real-world graphs, the adjacency matrix of the graphs
417
+ should be low-rank. In other words, the rows or columns of the
418
+ adjacency matrix must not be linearly independent. Thus, as-
419
+ suming that hidden non-zero entries representing missing links
420
+ can be recovered according to the adjacency matrix, [37] pro-
421
+ posed an RPCA-based link prediction method, which is formu-
422
+ lated as the following optimization problem:
423
+ min
424
+ X∗,E rank(X∗) + γ||E||0 s.t., A = X∗ + E
425
+ (8)
426
+ where rank(X∗) denotes the rank of matrix X∗, || · ||0 is the
427
+ ℓ0−norm, and γ denots the balancing parameter. The method
428
+ searches for X∗ with a low rank as low as possible and E as
429
+ sparse as possible from A. Moreover, by representing a net-
430
+ work structure with as few representative subgraphs as possible,
431
+ [53] proposed an LRR-based link prediction method, wherein
432
+ networks could be modeled via a low-rank and sparse represen-
433
+ 4
434
+
435
+ Figure 2: Demonstration of our link prediction method, GraphLP. (a) Link prediction method, GraphLP. The original graph is per-
436
+ turbed using a random mapping mechanism to obtain the observed graph; after this, the observed graph is further perturbed to generate
437
+ augmented graphs. These augmented graphs are fed into GraphLP to learn the model using the observed graph as the label. Subse-
438
+ quently, the learned model is used to infer the original graph based on the observed graph. (b) Self-representation-based collaborative
439
+ inference. Based on the structural regularity of graphs, the original graph can be reconstructed by utilizing the correlation between
440
+ subgraph patterns. (c) Example of high-order connectivity. In addition to the 1-hop neighborhood, multi-hop connectivity influences
441
+ the existence of links. The right graph represents the two-hop connectivity of the graph on the left, and the red dotted lines in the left
442
+ graph provide an example of the two-hop connectivity path of node 2.
443
+ tation, as follows:
444
+ min
445
+ Z,E rank(Z) + α||Z||0 + β||E||2,1 s.t., A = AZ + E
446
+ (9)
447
+ where Z denotes the representation matrix reflecting the organi-
448
+ zation principle of the network, and || · ||2,1 is the ℓ2,1−norm.
449
+ The notations used in this study are listed in Table 1.
450
+ 4. The Proposed Method
451
+ This section presents the proposed link prediction method,
452
+ GraphLP. As depicted in Figure 2, the framework of GraphLP
453
+ consists of three main components:
454
+ • Collaborative inference operation. There exist certain sim-
455
+ ilarities between the connection patterns of individuals in
456
+ a complex system such that the perturbed structure of real-
457
+ world graphs can be recovered globally based on the corre-
458
+ lation between subgraph patterns (Section 4.1).
459
+ • High-order connectivity computation. The existence of a
460
+ link between any two target nodes is intended to be primar-
461
+ ily determined by the connectivity degree between nodes,
462
+ i.e., the number of paths and their length. Thus, the like-
463
+ lihood of a link can be estimated locally by computing the
464
+ connectivity (Section 4.2).
465
+ • Pattern fusion operation. In addition to the first-order adja-
466
+ cency matrix, the connection patterns of nodes in the high-
467
+ order adjacency matrix are also considered to be correlated,
468
+ and the high-order connectivity can be reconstructed based
469
+ on the collaborative inference. Thus, the graph topology
470
+ can be estimated by fusing the k-order (k ≥ 1) adjacency
471
+ matrix (Section 4.3).
472
+ 4.1. Collaborative Inference Operation
473
+ [32] suggested that link formation in real-world graphs is usu-
474
+ ally driven by both regular and irregular factors, and the for-
475
+ mer can be explained based on the mixture of multiple mech-
476
+ anisms, such as homophily, triadic closure, preferential attach-
477
+ ment. Meanwhile, assuming that high-dimensional data are a
478
+ mixture of simple data and are drawn from a union of multiple
479
+ low-dimensional linear subspaces, the LRR has been proposed
480
+ to represent the data A = [a1, a2, ..., aN] as a linear combination
481
+ of the basis in a ”dictionary” D = [d1, d2, ..., dM]:
482
+ min
483
+ Z rank(Z) s.t., A = DZ,
484
+ (10)
485
+ 5
486
+
487
+ (a) Link Prediction Method GraphLP
488
+ Target Graph for
489
+ A* = AZ*
490
+ (D 2AD 2H()W()
491
+ Original Graph Observed Graph
492
+ Model Testing
493
+ Collaborative
494
+ Collaborative
495
+ Connectivity
496
+ Connectivity
497
+ Connectivity
498
+ High-order
499
+ Inference
500
+ Inference
501
+ Inference
502
+ Concat
503
+ Augmented Graph
504
+ Target Graph for
505
+ Process of Model Training
506
+ Flatten of Adjacency Matrix
507
+ Model Training
508
+ -→ Process of Link Prediction
509
+ (c) High-order Connectivity
510
+ (b) Self-representation based Collaborative Inference
511
+ 2-order Connectivity Path
512
+ A
513
+ E
514
+ A
515
+ *
516
+ Z
517
+ +Thus, the optimal representation matrix Z∗ uncovers the under-
518
+ lying subspaces in the data. By using each subspace to model
519
+ a homogeneous subset of the data, multiple subspaces in LRR
520
+ can capture heterogeneous structures within the data. There-
521
+ fore, considering the above ideas, the regular structure of real-
522
+ world graphs can be described appropriately by the LRR model,
523
+ wherein the generation mechanisms of graph organization essen-
524
+ tially corresponds to subspaces and the low rankness constraint
525
+ captures the global correlation in graphs.
526
+ Meanwhile, based
527
+ on the generation mechanisms of graph organization, individual
528
+ nodes may have similar connection patterns, and substructures
529
+ that follow the same generation mechanism can be represented
530
+ by each other, as depicted in Figure 2(b). Therefore, by using
531
+ the adjacency matrix A as the dictionary, the real-world graph
532
+ can be represented by itself, as follows:
533
+ min
534
+ Z rank(Z) s.t., A = AZ.
535
+ (11)
536
+ In addition to their regular structure, real-world graphs also
537
+ contain irregular components. Thus, we let matrix E denote such
538
+ irregular connections; then, the proposed self-representation
539
+ model can be modified as A = AZ + E. According to the LRR,
540
+ data are considered to be ”sample specific”, and the ℓ21−norm
541
+ is adopted to constrain the matrix E, i.e., ||E||2,1. However, al-
542
+ though the proposed method can be used to model real-world
543
+ graphs, the low-rank model and ℓ21−norm constraints are usu-
544
+ ally solved using Alternating direction method (ADM), which
545
+ requires a large number of iterations and has high complexity.
546
+ Therefore, a reasonable strategy is to relax the constraints with
547
+ Frobenius norm:
548
+ min
549
+ Z ||Z||2
550
+ F + λ||A − AZ||2
551
+ F s.t. , A = AZ + E
552
+ (12)
553
+ Let L = ||Z||2
554
+ F + λ||A − AZ||2
555
+ F denote the partial derivative of L
556
+ with respect to Z is ∂L/∂Z = 2Z + λ(−2ATA + 2ATAZ). By
557
+ setting ∂L/∂Z = 0, the optimal representation Z∗ can be obtained
558
+ as follows:
559
+ Z∗ = λ(λATA+I)−1ATA.
560
+ (13)
561
+ where I denotes the identity matrix. Thus, in the case that the
562
+ clean data is sufficient enough to represent the graph’s struc-
563
+ tural patterns and the irregular connections are properly char-
564
+ acterized, the structure perturbations can be inferred using AZ∗.
565
+ Hence, the collaborative inference operation is defined as fol-
566
+ lows:
567
+ CI(A) = λA(λATA+I)−1ATA
568
+ (14)
569
+ 4.2. High-order Connectivity Computation
570
+ According to local similarity indices for link prediction, the
571
+ more the number of paths two nodes possess, the greater the
572
+ similarity between them. Specifically, two nodes with a high
573
+ mutual connectivity are more likely to generate a link between
574
+ them. Thus, n-hop-based (n ≥ 2) paths must be explored to char-
575
+ acterize the local structural features for link prediction. Using a
576
+ deep learning framework, the n-hop computation can be decom-
577
+ posed into two-hop operations on each neural layer. Hence, a
578
+ high-order connectivity computation calculates the two hop con-
579
+ nectivity of graph nodes in each layer, and the mutual connec-
580
+ tivity of two nodes can be estimated by stacking the high-order
581
+ connectivity computation mechanism. Assuming that the integer
582
+ powers of the adjacency matrix characterizes the mutual connec-
583
+ tivity of graph nodes, that is, [An]ij denotes the number of paths
584
+ Figure 3: Illustration of high-order connectivity computation.
585
+ with length n connecting nodes i and j, the high-order connectiv-
586
+ ity computation in each neural layer can be defined based on the
587
+ idea of the second power of adjacency matrix A. From the per-
588
+ spective of graph convolution networks, high-order connectivity
589
+ computation can be defined as
590
+ HCCA(A) = ˆD− 1
591
+ 2 ˆA ˆD− 1
592
+ 2 CI(A),
593
+ (15)
594
+ where the weighted adjacency matrix generated by the proposed
595
+ collaborative inference operation is viewed as the features of
596
+ graph nodes. Figure 3 illustrates a high-order connectivity com-
597
+ putation. As presented in Equation (15), the global and local
598
+ structural features can be captured for link prediction at the level
599
+ of individual nodes and edges. Thus, the nonlinear propagation
600
+ function can be defined as follows:
601
+ H(l+1) = ˆD− 1
602
+ 2 ˆA ˆD− 1
603
+ 2 CI(H(l))W(l).
604
+ (16)
605
+ Thus, the hierarchical structure of real-world graphs can be char-
606
+ acterized by executing the nonlinear propagation function itera-
607
+ tively, in which HCCA(H(l)) = ˆD− 1
608
+ 2 ˆA ˆD− 1
609
+ 2 CI(H(l)) represents
610
+ the high-order connectivity of graph nodes, as depicted in Figure
611
+ 2(c), and CI(H(l+1)) denotes the collaborative inference.
612
+ 4.3. Pattern Fusion Operation
613
+ To estimate the likelihood of potential links, the output of the
614
+ (l − 1)-th layer, i.e., H(l), is fed as the input of the l-th layer.
615
+ Based on CI(H(l)) and HCCA(H(l)), the shallow layers extract
616
+ the low-order global and local structure features, while the deep
617
+ layers extract the high-order global and local structure features.
618
+ Meanwhile, the effective range that the local structure features
619
+ drawn from increases as the model depth increases. Therefore,
620
+ the structure features in different range at various order, i.e.,
621
+ HCCA(H(l)) and CI(H(l)), 0 ≤ l ≤ L, all contribute to the
622
+ inference of potential links, although the exact extent of their
623
+ contribution depends on the graph data.
624
+ To overcome the issues mentioned above, in addition to being
625
+ used as the inputs of the next layer, the outputs of neural net-
626
+ work layers are mapped to skip a block of several layers based
627
+ on residual connections, as illustrated in Figure 2(a). Next, all
628
+ outputs are concatenated and used as the input of a two-layer
629
+ Multi-layer Perceptron (MLP), which is defined as:
630
+ O= MLP(concat(CI(H(l)), HCCA(H(l)))),0 ≤ l ≤ L.
631
+ (17)
632
+ where O is a vector containing the probabilities of links between
633
+ all possible node pairs, and missing and spurious links can be
634
+ inferred based on it.
635
+ 6
636
+
637
+ Central node
638
+ 1-hop neighbor nodes
639
+ 2-hop neighbor nodes
640
+ Node features representing link
641
+ weights to 2-hop neighbors
642
+ Computing connectivity of
643
+ central node to 2-hop neighbors
644
+ Adjacency relations of central node
645
+ Weighted links produced by C(A)4.4. Model Training
646
+ To train the proposed model, augmented graphs generated
647
+ based on the observed graph are used as training data, and the
648
+ adjacency matrix of the observed graph is flatten as its labels Y,
649
+ where Yi∗N+j denotes the existence of the link between nodes i
650
+ and j. Correspondingly, O represents the prediction results ob-
651
+ tained by the proposed model for all possible links. Here, the
652
+ Binary Cross-Entropy (BCE) is used as the loss function:
653
+ L = − 1
654
+ N2
655
+ N2
656
+
657
+ i=1
658
+ Yi log(Oi) + (1 − Yi) log(1 − Oi).
659
+ (18)
660
+ The learned model is then deployed on the observed graph to
661
+ reconstruct the original graph. The training process of GraphLP
662
+ is outlined in Algorithm 1.
663
+ Algorithm 1 Training Process of GraphLP
664
+ Input: Training set Dtrain, validation set Dval, and test set Dtest,
665
+ number of neural network layers L.
666
+ Output: The well-trained model GraphLP.
667
+ 1: while not convergence do
668
+ 2:
669
+ for 0 ≤ l ≤ L do
670
+ 3:
671
+ Conduct collaborative inference operation using (14);
672
+ 4:
673
+ Compute high-order connectivity using (16);
674
+ 5:
675
+ end for
676
+ 6:
677
+ Fuse the outputs based on MLP using (17);
678
+ 7:
679
+ Update the model by minimizing the loss function (18);
680
+ 8: end while
681
+ 4.5. Model Analysis
682
+ (1) Generalized local similarity indices. The high-order con-
683
+ nectivity computation HCCA(H(l)) in every neural network
684
+ layer is essentially the second power of the adjacency matrix,
685
+ and it obtains the connectivity of node pairs within two-hop
686
+ neighborhood. As the model depth increases, the connectivity
687
+ of node pairs in a wider range is considered. Thus, GraphLP can
688
+ degenerate to S i j = A2 + αA3 + βA4 + · · · when collaborative
689
+ inference and deep learning mechanism are abolished.
690
+ (2) Connection to WalkPool. WalkPool [36] first generates
691
+ node representations based on GNN and encodes them into edge
692
+ weights of the extracted enclosing subgraphs; following this, it
693
+ uses the edge weights to compute the transition probabilities of
694
+ random walk.
695
+ Next, the method calculates a list of features
696
+ based on the transition probabilities to classify the subgraphs.
697
+ However, for an enclosing subgraph G = (V, E), its variants
698
+ G+ = (V, E ∪ {i, j}) and G− = (V, E\{i, j}) are used as positive
699
+ and negative samples, respectively. In essence, this method dis-
700
+ criminates only those subgraphs that differ by a single edge and
701
+ is not suitable for practical link prediction scenarios. In contrast,
702
+ GraphLP can predict any potential links based on graph structure
703
+ features.
704
+ (3) Connection to LFLP. The LFLP [53] constructs an ad-
705
+ jacency matrix based on a self-representation model and then
706
+ combines it with the observed network to identify missing and
707
+ spurious links. The collaborative inference operation CI(H(l))
708
+ of our work is similar to that in the LFLP with respect to model-
709
+ ing the global structure of graphs; however, the difference is that
710
+ only low-order global structural features are considered in LFLP,
711
+ whereas multi-order global and local structural features are char-
712
+ acterized based on the deep-learning framework in GraphLP.
713
+ 5. Experiments
714
+ Further, extensive experiments are conducted on real-world
715
+ graphs to evaluate the performance of the proposed method
716
+ GraphLP: (1) Compare GraphLP with state-of-the-art meth-
717
+ ods; (2) Compare GraphLP with traditional baseline methods;
718
+ (3) Model architecture analysis; (4) Model sensitivity analysis.
719
+ Here, Area Under Curve (AUC) and Average Precision (AP) are
720
+ adopted to evaluate the performance of the methods. Further-
721
+ more, Precision is used to verify the superiority of GraphLP over
722
+ traditional link prediction methods. Based on the link prediction
723
+ results O, the scores are sorted in descending and ascending or-
724
+ ders, and following this, their top-L links are taken as the pre-
725
+ dicted missing and spurious links. Note that Precision is defined
726
+ by calculating the ratio of accurately discovered links to the total
727
+ number of links in the probe set:
728
+ Precision = T/R
729
+ (19)
730
+ where T is the number of accurately identified links, and R is
731
+ the total number of links in the probe set.
732
+ 5.1. Experimental Settings
733
+ 5.1.1. Experimental Datasets
734
+ Herein, seven widely used graph datasets are used for link
735
+ prediction. (1) USAir [40]. This is the transportation network
736
+ of the United States, including 332 airports as nodes and 2,126
737
+ airlines as edges, connecting the United States worldwide. The
738
+ average node degree is 12.81. (2) C.ele [49]. This is a neu-
739
+ ral network of C. elegans, with 297 neurons representing nodes
740
+ and 2,148 synaptic connections representing edges. The average
741
+ node degree is 14.46. (3) PB [1]. This dataset is a network of
742
+ hyperlinks between weblogs on US political blogs, with 1,222
743
+ blogs on US politics as nodes and 16,714 hyperlinks between
744
+ blogs as edges. The average node degree is 27.36. (4) NS [33].
745
+ This is an undirected co-authorship network with 1,589 nodes
746
+ and 2,742 edges, where the nodes denote the scientists engaged
747
+ in network science research, and the edges denote two scientists
748
+ have co-authored a publication. The average node degree is 3.45.
749
+ (5) Yeast [47]. This represents a protein-protein interaction net-
750
+ work formed in yeast with 2,375 proteins as nodes and 11,693
751
+ protein-protein interactions as edges. The average node degree
752
+ is 9.85. (6) E.coli [58]. This is a pairwise reaction network of
753
+ metabolites with 1,805 nodes and 14,660 edges. The average
754
+ node degree is 12.55. (7) Router [43]. It is a snapshot of the In-
755
+ ternet structure at the level of autonomous systems, with 5,022
756
+ nodes and 6,258 edges, in which the nodes represent routers and
757
+ the edges represent the data transmission between routers. The
758
+ average node degree is 2.49. The properties of the datasets are
759
+ listed in Table 2.
760
+ To extensively validate the performance of the proposed
761
+ method, 90% and 50% of the links of the original graph are se-
762
+ lected randomly to first construct the observed graphs. There-
763
+ after, based on the observed graph Go, 10% nonexisting links
764
+ are add randomly as spurious links, and 10% existing links are
765
+ removed randomly as missing links, denoted as Edel and Eadd
766
+ respectively, to generate the augmented graph set D = {Gi|i =
767
+ 1, ..., t}. Following this, 90% and 10% graphs are randomly se-
768
+ lect from D as the training and validation set, respectively, and
769
+ the observed graph Go is used as the test set.
770
+ 7
771
+
772
+ Table 2: Summary of the datasets. ACC is the average clustering
773
+ coefficient, and AD is the average node degree.
774
+ Dataset USAir
775
+ NS
776
+ PB
777
+ Yeast
778
+ C.ele
779
+ Router
780
+ E.coli
781
+ Node
782
+ 332
783
+ 1589
784
+ 1222
785
+ 2375
786
+ 297
787
+ 5022
788
+ 1805
789
+ Edges
790
+ 2126
791
+ 2742
792
+ 16714 11693
793
+ 2148
794
+ 6258
795
+ 14660
796
+ ACC
797
+ 0.625
798
+ 0.638
799
+ 0.320
800
+ 0.306
801
+ 0.292
802
+ 0.012
803
+ 0.516
804
+ AD
805
+ 12.81
806
+ 3.45
807
+ 27.36
808
+ 9.85
809
+ 14.46
810
+ 2.49
811
+ 12.55
812
+ 5.1.2. Comparison Methods
813
+ The proposed method was compared with six state-of-the-art
814
+ deep learning-based link prediction methods, including:
815
+ (1) Weisfeiler-Lehman graph kernel (WLK) [42] is a fast fea-
816
+ ture extraction scheme based on the WL test for graph isomor-
817
+ phism, which maps the original graph to a graph sequence and
818
+ adds the pair-wise similarities between the graphs.
819
+ (2) Weifeiler-Lehmam Neural Machine (WLNM) [56] is a
820
+ subgraph classification-based link prediction method that lever-
821
+ age deep learning to automatically learn topological features
822
+ from enclosing subgraphs.
823
+ (3) Node2Vec [20] is a network embedding method that en-
824
+ codes proximity information into low-dimensional vectors. The
825
+ node features and low-dimensional vectors are then fed into the
826
+ MLP for link prediction.
827
+ (4) LINE [44] learns network embeddings that preserve the
828
+ first-order and second-order proximity, and the resulting low-
829
+ dimensional vectors are used for link prediction.
830
+ (5) SEAL [57] extracts the enclosing subgraphs of positive
831
+ and negative links and marks different roles of their nodes. The
832
+ method then trains a GNN based on the node information matrix
833
+ to classify subgraphs for link prediction.
834
+ (6) WalkPool (WP) [36] is a subgraph classification-based
835
+ link prediction method. It encodes node feature and graph topol-
836
+ ogy into the transition probabilities of random walk, and follow-
837
+ ing this, a list of features is computed to classify subgraphs.
838
+ 5.1.3. Parameter Settings
839
+ GraphLP is implemented on a Pytorch platform with a
840
+ NVIDIA GeForce RTX GPU and optimized using Adam op-
841
+ timizer. All models are implemented using Python 3.6. The
842
+ learning rate is set to 0.0012 for the NS dataset and 0.0005 for
843
+ the other graphs. For all the datasets, the weight decay is set to
844
+ 0.0. The number of epochs on the E.coli and Yeast dataset is
845
+ 300, whereas it was 200 on the other datasets. Dropout is ap-
846
+ plied to the MLP, and the dropout rate is set to 0.5 on Router
847
+ and 0.2 on the others. The trade-off parameter λ is set to 0.13,
848
+ and the number of neural network layers in the GraphLP is set
849
+ to three. The detailed hyperparameter settings for the model are
850
+ listed in Table 3.
851
+ Table 3: Hyperparameter setting for the proposed method.
852
+ Name
853
+ Value
854
+ optimizer
855
+ Adam
856
+ loss function
857
+ binary cross entropy
858
+ learning rate
859
+ NS=0.0012, others=0.0005
860
+ weight decay
861
+ 0.0
862
+ epochs
863
+ Ecoli, Yeast=300, others=200
864
+ dropout
865
+ Router=0.5, others=0.2
866
+ λ
867
+ 0.13
868
+ number of network layers
869
+ 3
870
+ 5.2. Experimental Result
871
+ For 90% of the observed links, the results about the AUC
872
+ and AP with standard deviations are presented in Table 4 and
873
+ 5, which indicate that GraphLP significantly outperforms other
874
+ state-of-the-art algorithms in terms of both AUC and AP, with
875
+ exception of the NS and Router datasets. The results demon-
876
+ strate that the learning of local and global graph structure en-
877
+ tirely characterizes the underlying structural patterns; thus, the
878
+ missing links and spurious links can be better identified. Ta-
879
+ ble 4 indicates that GraphLP significantly improves the AUC
880
+ on the PB, C.ele, and Router datasets, with approximately 4%,
881
+ 7%, and 3% performance improvement, respectively, compared
882
+ to the WP algorithm. In addition, the proposed method still per-
883
+ forms better than other state-of-the-art methods on the USAir,
884
+ Yeast and NS datasets. Moreover, the results for the AP pre-
885
+ sented in Table 5 also indicate that GraphLP outperforms state-
886
+ of-the-art methods on most of datasets, and GraphLP achieves a
887
+ maximum performance enhancement of approximately 9% com-
888
+ pared to the best performing graph neural network method WP.
889
+ For 50% of the observed links, the results also demonstrate
890
+ that the proposed model achieves remarkable performance com-
891
+ pared to the methods, as described in Table 6 and 7. The results
892
+ illustrate that, as the amount of structure perturbation increases,
893
+ GraphLP can still appropriately learn the real graph structure,
894
+ thus recovering the original graph effectively. Therefore, the
895
+ values of the AUC and AP decreased to a lower extent. Fur-
896
+ thermore, by comparing Table 4 with Table 6 and Table 5 with
897
+ Table 7, we can infer that the AUC and AP values drop faster
898
+ for the other state-of-the-art methods than those for GraphLP,
899
+ which demonstrates that GraphLP can better capture the under-
900
+ lying structural patterns to demonstrate better performance.
901
+ 5.3. Compared with Traditional Link Prediction Methods
902
+ To further verify the proposed method, the precision of
903
+ GraphLP and traditional link prediction methods are calculated
904
+ based on the following datasets: (1) Macaque [15], cortical net-
905
+ works of the macaque monkey; (2) Mangwet [5], the food web
906
+ in Mangrove Estuary during the wet season; (3) Jazz [19], a
907
+ collaboration network of jazz musicians; (4) Metabolic [17], a
908
+ metabolic network of C.elegans; (5) USAir, (6) C.ele, (7) E.coli
909
+ and (8) Yeast. Here, six representative traditional link prediction
910
+ methods are selected for comparison.
911
+ (1) The CN [29] metric is among the most widely used meth-
912
+ ods for link prediction problem. It assumes that two nodes will
913
+ be more easily connected if they share more common neighbors;
914
+ (2) The RA [61] metric is inspired by the physical processes
915
+ involved in resource allocation, which suppresses the contribu-
916
+ tion of high-degree common neighbors;
917
+ (3) The LP [61] index measures the structural similarity of
918
+ node pairs within three-hops;
919
+ (4) The Non-negative Matrix Factorization (NMF) [26] model
920
+ is used for structure prediction by learning the latent features of
921
+ real-world graphs;
922
+ (5) The Robust Principal Component Analysis (RPCA) [37]
923
+ represents a real-world graph based on the sparsity and low rank
924
+ property of its adjacency matrix and infers potential links based
925
+ on matrix completion.
926
+ (6) The LFLP [53] uses a self-representation model to re-
927
+ construct the original graph based on a few representative sub-
928
+ graphs.
929
+ The results of missing link prediction with respect to Preci-
930
+ sion are shown in Table 8. For each network, the bold number
931
+ 8
932
+
933
+ Table 4: Prediction measured by AUC (90% observed links). Bold numbers are the best results of all methods.
934
+ Data
935
+ USAir
936
+ NS
937
+ PB
938
+ Yeast
939
+ C.ele
940
+ Router
941
+ E.coli
942
+ WLK
943
+ 96.63 ± 0.73
944
+ 98.57 ± 0.51
945
+ 93.83 ± 0.59
946
+ 95.86 ± 0.54
947
+ 89.72 ± 1.67
948
+ 87.42 ± 2.08
949
+ 96.94 ± 0.29
950
+ WLNM
951
+ 95.95 ± 1.10
952
+ 98.61 ± 0.49
953
+ 93.49 ± 0.47
954
+ 95.62 ± 0.52
955
+ 86.18 ± 1.72
956
+ 94.41 ± 0.88
957
+ 97.21 ± 0.27
958
+ Node2Vec
959
+ 91.44 ± 1.78
960
+ 91.52 ± 1.28
961
+ 85.79 ± 0.78
962
+ 93.67 ± 0.46
963
+ 84.11 ± 1.27
964
+ 65.46 ± 0.86
965
+ 90.82 ± 1.49
966
+ LINE
967
+ 81.47 ± 10.71
968
+ 80.63 ± 1.90
969
+ 76.95 ± 2.76
970
+ 87.45 ± 3.33
971
+ 69.21 ± 3.14
972
+ 67.15 ± 2.10
973
+ 82.38 ± 2.19
974
+ SEAL
975
+ 97.09 ± 0.7
976
+ 98.85 ± 0.41
977
+ 95.01 ± 0.34
978
+ 97.91 ± 0.52
979
+ 90.30 ± 1.35
980
+ 96.38 ± 1.45
981
+ 97.64 ± 0.22
982
+ WP
983
+ 98.68 ± 0.48
984
+ 98.95 ± 0.41
985
+ 95.60 ± 0.37
986
+ 98.37 ± 0.25
987
+ 95.79 ± 1.09
988
+ 97.27 ± 0.28
989
+ 98.58 ± 0.19
990
+ GraphLP
991
+ 99.26 ± 1.01
992
+ 99.64 ± 0.98
993
+ 99.73 ± 0.25
994
+ 99.41 ± 0.15
995
+ 99.90 ± 0.14
996
+ 99.02 ± 0.19
997
+ 99.23 ± 0.23
998
+ Table 5: Prediction measured by AP (90% observed links). Bold numbers are the best results of all methods.
999
+ Data
1000
+ USAir
1001
+ NS
1002
+ PB
1003
+ Yeast
1004
+ C.ele
1005
+ Router
1006
+ E.coli
1007
+ WLK
1008
+ 96.82 ± 0.84
1009
+ 98.79 ± 0.40
1010
+ 93.34 ± 0.89
1011
+ 96.82 ± 0.35
1012
+ 88.96 ± 2.06
1013
+ 86.59 ± 2.23
1014
+ 97.25 ± 0.42
1015
+ WLNM
1016
+ 95.95 ± 1.13
1017
+ 98.81 ± 0.49
1018
+ 92.69 ± 0.64
1019
+ 96.40 ± 0.38
1020
+ 85.08 ± 2.05
1021
+ 93.53 ± 1.09
1022
+ 97.50 ± 0.23
1023
+ Node2Vec
1024
+ 89.71 ± 2.97
1025
+ 94.28 ± 0.91
1026
+ 84.79 ± 1.03
1027
+ 94.90 ± 0.38
1028
+ 83.12 ± 1.90
1029
+ 68.66 ± 1.49
1030
+ 90.87 ± 1.48
1031
+ LINE
1032
+ 97.70 ± 11.76
1033
+ 85.17 ± 1.65
1034
+ 78.82 ± 2.71
1035
+ 90.55 ± 2.39
1036
+ 67.51 ± 2.72
1037
+ 71.92 ± 1.53
1038
+ 86.45 ± 1.82
1039
+ SEAL
1040
+ 97.13 ± 0.80
1041
+ 99.06 ± 0.37
1042
+ 94.55 ± 0.43
1043
+ 98.33 ± 0.37
1044
+ 89.48 ± 1.85
1045
+ 96.23 ± 1.71
1046
+ 98.03 ± 0.20
1047
+ WP
1048
+ 98.66 ± 0.55
1049
+ 99.09 ± 0.29
1050
+ 95.28 ± 0.41
1051
+ 98.64 ± 0.28
1052
+ 91.53 ± 1.33
1053
+ 97.20 ± 0.38
1054
+ 98.79 ± 0.21
1055
+ GraphLP
1056
+ 99.91 ± 1.03
1057
+ 98.94 ± 0.96
1058
+ 98.32 ± 1.43
1059
+ 98.74 ± 0.16
1060
+ 99.41 ± 0.42
1061
+ 79.30 ± 0.19
1062
+ 98.96 ± 0.19
1063
+ Table 6: Prediction measured by AUC ( 50% observed links). Bold numbers are the best results of all methods.
1064
+ Data
1065
+ USAir
1066
+ NS
1067
+ PB
1068
+ Yeast
1069
+ C.ele
1070
+ Router
1071
+ E.coli
1072
+ WLK
1073
+ 91.93 ± 0.71
1074
+ 87.27 ± 1.71
1075
+ 92.54 ± 0.33
1076
+ 91.15 ± 0.35
1077
+ 83.29 ± 0.89
1078
+ 71.25 ± 4.37
1079
+ 92.38 ± 0.46
1080
+ WLNM
1081
+ 91.42 ± 0.95
1082
+ 87.61 ± 1.63
1083
+ 90.93 ± 0.23
1084
+ 92.22 ± 0.32
1085
+ 75.72 ± 1.33
1086
+ 86.10 ± 0.52
1087
+ 92.81 ± 0.30
1088
+ Node2Vec
1089
+ 84.63 ± 1.58
1090
+ 80.29 ± 1.20
1091
+ 79.29 ± 0.67
1092
+ 90.18 ± 0.17
1093
+ 75.53 ± 1.23
1094
+ 62.45 ± 0.81
1095
+ 84.73 ± 0.81
1096
+ LINE
1097
+ 72.51 ± 12.19
1098
+ 65.96 ± 1.60
1099
+ 75.53 ± 1.78
1100
+ 79.44 ± 7.90
1101
+ 59.46 ± 7.08
1102
+ 62.43 ± 3.10
1103
+ 74.50 ± 11.10
1104
+ SEAL
1105
+ 93.36 ± 0.67
1106
+ 90.88 ± 1.18
1107
+ 93.79 ± 0.25
1108
+ 93.90 ± 0.54
1109
+ 82.33 ± 2.31
1110
+ 86.64 ± 1.58
1111
+ 94.18 ± 0.41
1112
+ WP
1113
+ 95.50 ± 0.74
1114
+ 90.97 ± 0.96
1115
+ 94.57 ± 0.16
1116
+ 95.00 ± 0.21
1117
+ 87.62 ± 1.39
1118
+ 88.13 ± 0.61
1119
+ 95.33 ± 0.30
1120
+ GraphLP
1121
+ 98.97 ± 0.15
1122
+ 97.08 ± 0.14
1123
+ 98.19 ± 0.10
1124
+ 98.74 ± 0.25
1125
+ 97.96 ± 0.14
1126
+ 98.10 ± 0.15
1127
+ 98.05 ± 0.14
1128
+ Table 7: Prediction measured by AP ( 50% observed links). Bold numbers are the best results of all methods.
1129
+ Data
1130
+ USAir
1131
+ NS
1132
+ PB
1133
+ Yeast
1134
+ C.ele
1135
+ Router
1136
+ E.coli
1137
+ WLK
1138
+ 93.34 ± 0.51
1139
+ 89.97 ± 1.02
1140
+ 92.34 ± 0.34
1141
+ 93.55 ± 0.46
1142
+ 83.20 ± 0.90
1143
+ 75.49 ± 3.43
1144
+ 94.51 ± 0.32
1145
+ WLNM
1146
+ 92.54 ± 0.81
1147
+ 90.10 ± 1.11
1148
+ 91.01 ± 0.20
1149
+ 93.93 ± 0.20
1150
+ 76.12 ± 1.08
1151
+ 86.12 ± 0.68
1152
+ 94.47 ± 0.21
1153
+ Node2Vec
1154
+ 82.51 ± 2.08
1155
+ 86.01 ± 0.87
1156
+ 77.21 ± 0.97
1157
+ 92.45 ± 0.23
1158
+ 72.91 ± 1.74
1159
+ 66.77 ± 0.57
1160
+ 85.41 ± 0.94
1161
+ LINE
1162
+ 71.75 ± 11.85
1163
+ 71.53 ± 0.97
1164
+ 78.72 ± 1.24
1165
+ 83.06 ± 9.70
1166
+ 60.71 ± 6.26
1167
+ 64.87 ± 6.76
1168
+ 75.98 ± 14.45
1169
+ SEAL
1170
+ 94.15 ± 0.54
1171
+ 92.21 ± 0.97
1172
+ 93.42 ± 0.19
1173
+ 95.32 ± 0.38
1174
+ 81.99 ± 2.18
1175
+ 87.79 ± 1.71
1176
+ 95.67 ± 0.24
1177
+ WP
1178
+ 95.87 ± 0.74
1179
+ 92.33 ± 0.76
1180
+ 94.22 ± 0.27
1181
+ 96.15 ± 0.13
1182
+ 86.25 ± 1.42
1183
+ 89.17 ± 0.55
1184
+ 96.36 ± 0.34
1185
+ GraphLP
1186
+ 97.96 ± 0.09
1187
+ 93.08 ± 0.08
1188
+ 96.27 ± 0.10
1189
+ 97.27 ± 0.09
1190
+ 95.89 ± 0.11
1191
+ 79.23 ± 0.14
1192
+ 96.48 ± 0.13
1193
+ Table 8: The precision (90% observed links) of missing links prediction. Bold numbers are the best results of all methods.
1194
+ Data
1195
+ Macaque
1196
+ Mangwet
1197
+ Jazz
1198
+ Metabolic
1199
+ USAir
1200
+ C.ele
1201
+ E.coli
1202
+ Yeast
1203
+ RA
1204
+ 0.5099
1205
+ 0.1292
1206
+ 0.5547
1207
+ 0.2451
1208
+ 0.4443
1209
+ 0.093
1210
+ 0.4857
1211
+ 0.2609
1212
+ CN
1213
+ 0.5695
1214
+ 0.125
1215
+ 0.5292
1216
+ 0.1127
1217
+ 0.3764
1218
+ 0.091
1219
+ 0.4399
1220
+ 0.1334
1221
+ LP
1222
+ 0.5483
1223
+ 0.1319
1224
+ 0.5109
1225
+ 0.1275
1226
+ 0.3821
1227
+ 0.089
1228
+ 0.4837
1229
+ 0.1454
1230
+ NMF
1231
+ 0.7316
1232
+ 0.4398
1233
+ 0.5309
1234
+ 0.2315
1235
+ 0.3981
1236
+ 0.1270
1237
+ 0.5013
1238
+ 0.3812
1239
+ RPCA
1240
+ 0.7421
1241
+ 0.5421
1242
+ 0.6138
1243
+ 0.1842
1244
+ 0.3596
1245
+ 0.098
1246
+ 0.3418
1247
+ 0.5359
1248
+ LFLP
1249
+ 0.7605
1250
+ 0.5572
1251
+ 0.5956
1252
+ 0.3241
1253
+ 0.4545
1254
+ 0.2010
1255
+ 0.5007
1256
+ 0.60
1257
+ GraphLP
1258
+ 0.7881
1259
+ 0.7986
1260
+ 0.8212
1261
+ 0.7030
1262
+ 0.8208
1263
+ 0.8224
1264
+ 0.7169
1265
+ 0.7374
1266
+ 9
1267
+
1268
+ Table 9: The precision (90% observed links) of spurious links prediction. Bold numbers are the best results of all methods.
1269
+ Data
1270
+ Macaque
1271
+ Mangwet
1272
+ Jazz
1273
+ Metabolic
1274
+ USAir
1275
+ C.ele
1276
+ E.coli
1277
+ Yeast
1278
+ RA
1279
+ 0.5490
1280
+ 0.1380
1281
+ 0.5410
1282
+ 0.140
1283
+ 0.2650
1284
+ 0.2790
1285
+ 0.4171
1286
+ 0.1110
1287
+ CN
1288
+ 0.5710
1289
+ 0.2880
1290
+ 0.5690
1291
+ 0.1670
1292
+ 0.2480
1293
+ 0.2458
1294
+ 0.3222
1295
+ 0.073
1296
+ LP
1297
+ 0.5939
1298
+ 0.3280
1299
+ 0.7016
1300
+ 0.6911
1301
+ 0.6271
1302
+ 0.4780
1303
+ 0.6089
1304
+ 0.4585
1305
+ NMF
1306
+ 0.8090
1307
+ 0.5660
1308
+ 0.6510
1309
+ 0.2430
1310
+ 0.4820
1311
+ 0.4333
1312
+ 0.4662
1313
+ 0.2330
1314
+ RPCA
1315
+ 0.810
1316
+ 0.5180
1317
+ 0.5920
1318
+ 0.074
1319
+ 0.443
1320
+ 0.2609
1321
+ 0.3795
1322
+ 0.4250
1323
+ LFLP
1324
+ 0.818
1325
+ 0.583
1326
+ 0.663
1327
+ 0.2210
1328
+ 0.5970
1329
+ 0.4390
1330
+ 0.4246
1331
+ 0.5680
1332
+ GraphLP
1333
+ 0.9073
1334
+ 0.8750
1335
+ 0.9197
1336
+ 0.8812
1337
+ 0.9057
1338
+ 0.9533
1339
+ 0.8452
1340
+ 0.6210
1341
+ Figure 4: The topology visualization of Club dataset. The experiment performs 10% link perturbation, i.e. 10% spurious links are
1342
+ added and 10% missing links are deleted.
1343
+ Figure 5: The topology visualization of Club dataset. The experiment performs 20% link perturbation, i.e. 20% spurious links are
1344
+ added and 20% missing links are deleted.
1345
+ in the corresponding column indicates the highest accuracy. The
1346
+ results presented in Table 8 demonstrate that the proposed model
1347
+ GraphLP model performs the best among the methods. Further-
1348
+ more, the link prediction accuracy of the proposed model is far
1349
+ higher than that of the other methods, which can be at least three
1350
+ times higher than that of the best-performing method. For spuri-
1351
+ ous links prediction, the results measured by Precision are listed
1352
+ in Table 9. For all networks, GraphLP performs the best among
1353
+ the methods and is remarkably better than the second best algo-
1354
+ rithm. The results presented in Table 8 and 9 demonstrate that
1355
+ GraphLP has stronger ability to learn structural features, and can
1356
+ recover the structure of the original network more accurately.
1357
+ Based on Table 2, it can be observed that the Precision of our
1358
+ proposed model performs best, despite the large differences be-
1359
+ tween the ACC and AD across all the datasets; thus indicates
1360
+ that the proposed model performs well for heterogeneous graph
1361
+ structures.
1362
+ 5.4. Recovered Graph Visualization
1363
+ To verify the effectiveness of the proposed model of miss-
1364
+ ing and spurious links inference, the topology of the recovered
1365
+ graphs in the model training process on Club dataset is visually
1366
+ compared, as depicted in Figure 4 and 5. The top half depicts the
1367
+ topology of the graphs, wherein the red links denote the missing
1368
+ 10
1369
+
1370
+ missing links
1371
+ spurious links
1372
+ missing links
1373
+ spurious links
1374
+ spurious links
1375
+ missing links
1376
+ spurious links
1377
+ missing links
1378
+ spurious links
1379
+ missing links
1380
+ 19): 0.4048
1381
+ (6 , 18): 0.4008
1382
+ (1 .
1383
+ ,19): 0.2513
1384
+ (6 , 18): 0.5258
1385
+ (1
1386
+ (1 , 19): 0.2069
1387
+ (6 , 18): 0.6525
1388
+ 19): 0.2090
1389
+ (6 , 18): 0.6648
1390
+ 19): 0.2329
1391
+ (6 , 18): 0.6827
1392
+ (14, 22): 0.4129
1393
+ (14, 22): 0.3667
1394
+ (19, 25): 0.4614
1395
+ (14, 22): 0.2958
1396
+ (14, 22): 0.2439
1397
+ (14, 22): 0.1988
1398
+ (19, 25): 0.4028
1399
+ (19, 25): 0.6381
1400
+ (19, 25): 0.7258
1401
+ (19, 25): 0.7441
1402
+ (6 , 26): 0.4099
1403
+ (6 , 17): 0.4039
1404
+ (6 , 26): 0.2985
1405
+ (6 , 17): 0.4416
1406
+ (6 , 26): 0.1294
1407
+ (6 , 17): 0.6539
1408
+ (6 , 26): 0.1033
1409
+ (6 , 17): 0.7358
1410
+ (6,
1411
+ , 26): 0.0972
1412
+ (6 , 17): 0.7634
1413
+ (25, 27): 0.1967
1414
+ 8): 0.4286
1415
+ (25, 27): 0.0915
1416
+ (25, 27): 0.4147
1417
+ (6 ,8): 0.4008
1418
+ (25, 27): 0.1181
1419
+ 8): 0.6909
1420
+ (25, 27): 0.1132
1421
+ (6 ,8): 0.7282
1422
+ 8): 0.7768
1423
+ (6
1424
+ (6
1425
+ (6
1426
+ ,9): 0.2884
1427
+ (18, 32): 0.3396
1428
+ 9): 0.1618
1429
+ (3
1430
+ 9): 0.4123
1431
+ (18, 32): 0.4053
1432
+ (3
1433
+ (3
1434
+ 9): 0.1895
1435
+ (18, 32): 0.6068
1436
+ (3,
1437
+ 9): 0.1828
1438
+ (18, 32): 0.7402
1439
+ (3
1440
+ (18, 32): 0.7749
1441
+ ,19): 0.2591
1442
+ ,19): 0.4038
1443
+ , 14): 0.4049
1444
+ 14): 0.4613
1445
+ (6 , 19): 0.1851
1446
+ (2 , 14): 0.6174
1447
+ (6 , 19): 0.1719
1448
+ ,14): 0.7085
1449
+ 19): 0.1827
1450
+ (6
1451
+ (2.
1452
+ (2 , 14): 0.7264
1453
+ (2
1454
+ 7): 0.4149
1455
+ , 32): 0.4041
1456
+ , 17): 0.2157
1457
+ 32): 0.3625
1458
+ (6
1459
+ 17): 0.1525
1460
+ (6 , 32): 0.6537
1461
+ 17): 0.1588
1462
+ (6
1463
+ 32): 0.7956
1464
+ (3
1465
+ 17): 0.1412
1466
+ (6 , 32): 0.8063
1467
+ (3
1468
+ (6
1469
+ 3
1470
+ (3 ,
1471
+ (3
1472
+ (11, 18): 0.4092
1473
+ (1, 17): 0.4071
1474
+ (11, 18): 0.2697
1475
+ 17): 0.3585
1476
+ (11, 18): 0.2444
1477
+ 17): 0.4941
1478
+ (11, 18): 0.2197
1479
+ 17): 0.6085
1480
+ (11, 18): 0.2203
1481
+ (1,
1482
+ 17): 0.5978
1483
+ 25): 0.4102
1484
+ (13, 19): 0.3980
1485
+ , 25): 0.3579
1486
+ (13, 19): 0.2835
1487
+ (2 , 25): 0.2842
1488
+ 3, 19): 0.3608
1489
+ (2
1490
+ (2
1491
+ , 25): 0.2526
1492
+ (13, 19): 0.4578
1493
+ (2
1494
+ 25): 0.2606
1495
+ (13, 19): 0.5659
1496
+ , 32): 0.4138
1497
+ (18, 21): 0.4040
1498
+ (8 , 32): 0.1396
1499
+ (18, 21): 0.4487
1500
+ (8
1501
+ (8 , 32): 0.0680
1502
+ , 32): 0.0656
1503
+ (18, 21): 0.7626
1504
+ (8
1505
+ ,32): 0.0697
1506
+ (18, 21): 0.7722
1507
+ (18, 21): 0.6938
1508
+ (8
1509
+ (11, 14): 0.4051
1510
+ (11, 14): 0.5059
1511
+ (9 , 11): 0.4131
1512
+ (9
1513
+ , 11): 0.3098
1514
+ (9 , 11): 0.2488
1515
+ (11, 14): 0.7683
1516
+ (9 , 11): 0.2433
1517
+ (11, 14): 0.8456
1518
+ ,11): 0.2229
1519
+ (9
1520
+ (11, 14): 0.8543
1521
+ , 10): 0.1805
1522
+ 8): 0.3698
1523
+ 10): 0.4088
1524
+ 8): 0.4026
1525
+ (2,
1526
+ (2 , 10): 0.0934
1527
+ 8): 0.5869
1528
+ 10): 0.0770
1529
+ 8): 0.6296
1530
+ (2
1531
+ 10): 0.0706
1532
+ 8): 0.6542
1533
+ (1
1534
+ (1
1535
+ , 14): 0.4129
1536
+ (5 , 14): 0.3129
1537
+ (10, 17): 0.3848
1538
+ (10, 17): 0.4076
1539
+ (5 , 14): 0.2576
1540
+ (10, 17): 0.5349
1541
+ (5
1542
+ (5
1543
+ ,14): 0.2454
1544
+ (10, 17): 0.5966
1545
+ (5
1546
+ 14): 0.2427
1547
+ (10, 17): 0.5926
1548
+ (4 , 25): 0.2169
1549
+ ,25): 0.4127
1550
+ , 25): 0.2767
1551
+ 7): 0.3751
1552
+ ,25): 0.2205
1553
+ (4
1554
+ 7): 0.4047
1555
+ , 25): 0.2369
1556
+ 7): 0.4549
1557
+ (1,
1558
+ 7): 0.5862
1559
+ (1 ,
1560
+ 7): 0.6325
1561
+ (4
1562
+ (4
1563
+ 33): 0.4091
1564
+ 7): 0.4049
1565
+ (9 , 33): 0.3014
1566
+ 7): 0.5319
1567
+ (9 , 33): 0.2692
1568
+ 7): 0.5389
1569
+ (9
1570
+ (9
1571
+ (3
1572
+ ,33): 0.1888
1573
+ 7): 0.6441
1574
+ (9
1575
+ , 33): 0.1894
1576
+ 7): 0.6740
1577
+ (3,
1578
+ (a)The similarity of spurious and
1579
+ (b)The similarity of spurious and
1580
+ (b)The similarity of spurious and
1581
+ (b)The similarity of spurious and
1582
+ (b)The similarity of spurious and
1583
+ missing links performed 40 epochs
1584
+ missing links performed 120 epochs
1585
+ missing links performed 1 epochs
1586
+ missing links performed 80 epochs
1587
+ missing links performed 140 epochsnegative links
1588
+ positive links
1589
+ negative links
1590
+ positive links
1591
+ negative links
1592
+ positive links
1593
+ negative links
1594
+ positive links
1595
+ negative links
1596
+ positive links
1597
+ 28): 0.5039
1598
+ (10, 25): 0.2858
1599
+ (5,
1600
+ 28): 0.5615
1601
+ (10, 25): 0.3655
1602
+ (10, 25): 0.1989
1603
+ (5.
1604
+ 28): 0.8291
1605
+ (10, 25): 0.1192
1606
+ (5.
1607
+ 28): 0.9795
1608
+ (10, 25): 0.0702
1609
+ (5.
1610
+ 28): 0.9960
1611
+ 14): 0.5108
1612
+ 32): 0.2786
1613
+ (0,
1614
+ 14): 0.6029
1615
+ 32): 0.1386
1616
+ 14): 0.7367
1617
+ 32): 0.0366
1618
+ (0,
1619
+ 32): 0.4057
1620
+ (0,
1621
+ (0,
1622
+ (0,
1623
+ (0,
1624
+ (0,
1625
+ (0,
1626
+ 14): 0.9393
1627
+ (0,
1628
+ 32): 0.0814
1629
+ (0,
1630
+ 14): 0.9787
1631
+ 32): 0.3874
1632
+ 32): 0.5822
1633
+ (5,32): 0.2812
1634
+ 32): 0.6264
1635
+ (5, 32): 0.1954
1636
+ 32): 0.7374
1637
+ 32): 0.1713
1638
+ 32): 0.8605
1639
+ 32): 0.1426
1640
+ 32): 0.9424
1641
+ (5.
1642
+ (1,
1643
+ (1,
1644
+ (5,
1645
+ (1,
1646
+ (5,
1647
+ (1,
1648
+ 19): 0.2930
1649
+ (18, 24): 0.4254
1650
+ 19): 0.2342
1651
+ (18, 24): 0.4081
1652
+ 19): 0.1049
1653
+ (18, 24): 0.5512
1654
+ 19): 0.0263
1655
+ (18, 24): 0.8087
1656
+ 19): 0.0058
1657
+ (18, 24): 0.8801
1658
+ (0.
1659
+ (0,
1660
+ (0,
1661
+ (0,
1662
+ (18, 33): 0.1842
1663
+ 17): 0.6631
1664
+ (18, 33): 0.0816
1665
+ 17): 0.8405
1666
+ (18, 33): 0.0169
1667
+ 17): 0.9706
1668
+ (18, 33): 0.0029
1669
+ 17): 0.9902
1670
+ (18, 33): 0.3128
1671
+ (2,
1672
+ 17): 0.5981
1673
+ (2.
1674
+ (2,
1675
+ (2,
1676
+ (2,
1677
+ 21): 0.2887
1678
+ 23): 0.5964
1679
+ 21): 0.2166
1680
+ (0,
1681
+ (0,
1682
+ 21): 0.0993
1683
+ (0,
1684
+ 23): 0.8907
1685
+ 23): 0.9841
1686
+ (0, 21): 0.0085
1687
+ (0,
1688
+ (0,
1689
+ 23): 0.6629
1690
+ (0, 21): 0.0200
1691
+ (0,
1692
+ (0,
1693
+ 23): 0.9933
1694
+ (12, 18): 0.3138
1695
+ 16): 0.4231
1696
+ (12, 18): 0.2342
1697
+ 16): 0.4246
1698
+ (12, 18): 0.1588
1699
+ 16): 0.4794
1700
+ (12, 18): 0.0733
1701
+ 16): 0.6510
1702
+ (9,
1703
+ (9.
1704
+ (9,
1705
+ (9,
1706
+ (12, 18): 0.0378
1707
+ (9,
1708
+ 16): 0.8059
1709
+ (a)The similarity of negative and
1710
+ (b)The similarity of negative and
1711
+ (c)The similarity of negative and
1712
+ (d) The similarity of negative and
1713
+ (c)The similarity of negative and
1714
+ positive links performed 20 epochs
1715
+ positive links performed 40 epochs
1716
+ positive links performed 60 epochs
1717
+ positive links performed 100 epochs
1718
+ positive links performed 80 epochsYeast
1719
+ USAir
1720
+ C.ele
1721
+ E.coli
1722
+ PB
1723
+ NS
1724
+ Router
1725
+ Training networks
1726
+ 0.4
1727
+ 0.6
1728
+ 0.8
1729
+ 1.0
1730
+ AUC
1731
+ Layer=1
1732
+ Layer=2
1733
+ Layer=3
1734
+ Layer=4
1735
+ (a)
1736
+ Yeast
1737
+ USAir
1738
+ C.ele
1739
+ E.coli
1740
+ PB
1741
+ NS
1742
+ Router
1743
+ Training networks
1744
+ 0.0
1745
+ 0.2
1746
+ 0.4
1747
+ 0.6
1748
+ 0.8
1749
+ 1.0
1750
+ AP
1751
+ Layer=1
1752
+ Layer=2
1753
+ Layer=3
1754
+ Layer=4
1755
+ (b)
1756
+ Figure 6: The performance of link prediction under various model depth. (a) AUC of link prediction method GraphLP with different
1757
+ layer number. (b) AP of link prediction method GraphLP with different layer number.
1758
+ Yeast
1759
+ USAir
1760
+ C.ele
1761
+ E.coli
1762
+ PB
1763
+ NS
1764
+ Router
1765
+ Training networks
1766
+ 0.980
1767
+ 0.985
1768
+ 0.990
1769
+ 0.995
1770
+ 1.000
1771
+ AUC
1772
+ =0.08
1773
+ =0.10
1774
+ =0.13
1775
+ =0.15
1776
+ =0.20
1777
+ (a)
1778
+ Yeast
1779
+ USAir
1780
+ C.ele
1781
+ E.coli
1782
+ PB
1783
+ NS
1784
+ Router
1785
+ Training networks
1786
+ 0.75
1787
+ 0.80
1788
+ 0.85
1789
+ 0.90
1790
+ 0.95
1791
+ 1.00
1792
+ AP
1793
+ =0.08
1794
+ =0.10
1795
+ =0.13
1796
+ =0.15
1797
+ =0.20
1798
+ (b)
1799
+ Figure 7: The performance of link prediction under different values of λ. (a) AUC of link prediction method GraphLP under different
1800
+ values of λ. (b) AP of link prediction method GraphLP under different values of λ.
1801
+ 0
1802
+ 50
1803
+ 100
1804
+ 150
1805
+ epoch
1806
+ 0.40
1807
+ 0.45
1808
+ 0.50
1809
+ 0.55
1810
+ train_loss
1811
+ 0
1812
+ 50
1813
+ 100
1814
+ 150
1815
+ epoch
1816
+ 0.25
1817
+ 0.50
1818
+ 0.75
1819
+ 1.00
1820
+ val_auc
1821
+ 0
1822
+ 50
1823
+ 100
1824
+ 150
1825
+ epoch
1826
+ 0.0
1827
+ 0.5
1828
+ 1.0
1829
+ val_ap
1830
+ 0
1831
+ 50
1832
+ 100
1833
+ 150
1834
+ epoch
1835
+ 0.2
1836
+ 0.4
1837
+ val_loss
1838
+ (a)
1839
+ 0
1840
+ 50
1841
+ 100
1842
+ 150
1843
+ epoch
1844
+ 0.4
1845
+ 0.5
1846
+ 0.6
1847
+ train_loss
1848
+ 0
1849
+ 50
1850
+ 100
1851
+ 150
1852
+ epoch
1853
+ 0.96
1854
+ 0.98
1855
+ 1.00
1856
+ val_auc
1857
+ 0
1858
+ 50
1859
+ 100
1860
+ 150
1861
+ epoch
1862
+ 0.85
1863
+ 0.90
1864
+ 0.95
1865
+ val_ap
1866
+ 0
1867
+ 50
1868
+ 100
1869
+ 150
1870
+ epoch
1871
+ 0.2
1872
+ 0.4
1873
+ 0.6
1874
+ val_loss
1875
+ (b)
1876
+ Figure 8: Visualization of model convergence. (a) Convergence of USAir dataset. (b) Convergence of C.ele dataset.
1877
+ links, the blue links denote the spurious links, and the gray links
1878
+ denote the original links. The bottom half depicts the likelihood
1879
+ scores of missing and spurious links. Based on the results, it
1880
+ can be concluded that with an increase in epoch times, the like-
1881
+ lihood scores of missing links increases gradually, and the like-
1882
+ lihood scores of spurious links decline gradually. The widths
1883
+ of the lines indicate the following process: when the number of
1884
+ epochs reaches 100, the likelihood scores of missing links ap-
1885
+ proach 1.0, and the likelihood scores of spurious links approach
1886
+ 0.0. This proves that the proposed GraphLP model can distin-
1887
+ guish between missing links and spurious links and infer them
1888
+ effectively. Moreover, to further prove the effectiveness of the
1889
+ proposed model, the topology of the recovered graphs in the
1890
+ model training process is visualized when 20% of the links of
1891
+ Club are perturbed, as depicted in Figure 5. Compared to Fig-
1892
+ ure 4, we determined that the likelihood of missing and spuri-
1893
+ ous links is weakened with an increase in the structure pertur-
1894
+ bation ratio. However, with an increase in the training epochs,
1895
+ the model is still able to distinguish and infer the missing and
1896
+ spurious links according to the structural patterns. For instance,
1897
+ when the training epoch reaches 140, the likelihood scores of
1898
+ missing links are greater than 0.5, and those of spurious links
1899
+ 11
1900
+
1901
+ are less than 0.3, indicating that the proposed model can still
1902
+ predict missing and spurious links with high accuracy.
1903
+ 5.5. Impact of Model Depth
1904
+ Next, the performance of GraphLP is explored at various
1905
+ model depths. As depicted in Figure 6, the performance of the
1906
+ model in terms of the AUC and AP trained with one-layer neu-
1907
+ ral network is poor; however, its performance improves signif-
1908
+ icantly with an increase in the number of layers. In particular,
1909
+ when the model depth is equal to two, a significant performance
1910
+ improvement is noted. The primary reason for this is that the
1911
+ model with two-layers multi-order global and local structural
1912
+ features is integrated adaptively based on the MLP component,
1913
+ which considerably improves the performance of the model.
1914
+ Subsequently, as the layer number increases, a slight improve-
1915
+ ment in model performance is still noted. When the number of
1916
+ layers is four, the accuracy of GraphLP declines significantly on
1917
+ NS and fluctuates on other datasets. A possible reason for this is
1918
+ that the model with four layers becomes more complex, thereby
1919
+ requiring more training iterations or an appropriate learning rate
1920
+ [14]. In general, the performance of the proposed model is opti-
1921
+ mal when the depth is three, and a deep architecture is necessary.
1922
+ 5.6. Impact of Trade-off Parameter
1923
+ To examine the sensitivity of the proposed model to the trade-
1924
+ off parameter, the AUC and AP values of link prediction meth-
1925
+ ods with different λ are presented in Figure 7. Based on the re-
1926
+ sults, it can be concluded that the performance of the proposed
1927
+ model is not sensitive to λ for most datasets. In Figure 7(a), for
1928
+ the USAir and NS datsets, the AUC value varies significantly
1929
+ under different λ, but the performance is still better than other
1930
+ of the other algorithms. In Figure 7(b), the AP value remains
1931
+ stable for different λ values, indicating that the proposed model
1932
+ is insensitive to different λ. Overall, our proposed algorithm ex-
1933
+ hibited satisfactory performance on most datasets with various
1934
+ λ.
1935
+ 5.7. The Convergence Analysis
1936
+ Generally, GraphLP converges to optimal values after approx-
1937
+ imitely 200 epochs on most datasets. In particular, Figure 8 plots
1938
+ the learning curves of GraphLP on the USAir and C.ele datasets,
1939
+ including the training loss, validation AUC, validation AP, and
1940
+ validation loss. The results indicate that the AUC and AP values
1941
+ increase rapidly with the decrease in training loss and validation
1942
+ loss, and these values converge to the optimal value when the
1943
+ validation loss approaches a minimum value. Additionally, we
1944
+ discover that validation loss is lower than training loss, and the
1945
+ difference between them remains relatively stable. A possible
1946
+ reason for this is that the dropout manipulation is only applied
1947
+ to the training process.
1948
+ 6. Conclusion
1949
+ This paper aims to reconstruct graph structure to improve the
1950
+ performance of link prediction. In particular, unlike existing
1951
+ subgraph-classification-based discriminative methods, this work
1952
+ achieves the aforementioned objective by developing a genera-
1953
+ tive GNN, namely GraphLP, which considered both global and
1954
+ local structure features and hierarchical structural patterns. Con-
1955
+ currently, a novel collaborative inference operation and high-
1956
+ order connectivity computation mechanism are developed. We
1957
+ also present an analysis about the relation between GraphLP and
1958
+ other classical link prediction methods. Extensive experimental
1959
+ results demonstrate the superiority of the proposed method over
1960
+ other state-of-the-art models and traditional baseline methods.
1961
+ This could be a fruitful avenue for future research aimed at ad-
1962
+ dressing graph learning tasks.
1963
+ Acknowledgment
1964
+ This work was partially supported by the National Natu-
1965
+ ral Science Foundation of China under Grant Nos. 62106030,
1966
+ 61802039, 62272066; Chongqing Municipal Postdoctoral Sci-
1967
+ ence Foundation under Grant No.
1968
+ cstc2021jcyj-bsh0176;
1969
+ Chongqing Municipal Natural Science Foundation under Grant
1970
+ No. cstc2020jcyj-msxmX0804; the Chongqing Research Pro-
1971
+ gram of Basic Research and Frontier Technology under Grant
1972
+ No. cstc2021jcyj-msxmX0530.
1973
+ References
1974
+ [1] Robert Ackland et al. Mapping the us political blogosphere: Are conserva-
1975
+ tive bloggers more prominent? In BlogTalk Downunder 2005 Conference,
1976
+ Sydney. BlogTalk Downunder 2005 Conference, Sydney, 2005.
1977
+ [2] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social
1978
+ networks, 25(3):211–230, 2003.
1979
+ [3] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. Link communi-
1980
+ ties reveal multiscale complexity in networks. nature, 466(7307):761–764,
1981
+ 2010.
1982
+ [4] James Atwood and Don Towsley.
1983
+ Diffusion-convolutional neural net-
1984
+ works. In Advances in neural information processing systems, pages 1993–
1985
+ 2001, 2016.
1986
+ [5] Daniel Baird, J Luczkovich, and Robert R Christian. Assessment of spa-
1987
+ tial and temporal variability in ecosystem attributes of the st marks national
1988
+ wildlife refuge, apalachee bay, florida. Estuarine, Coastal and Shelf Sci-
1989
+ ence, 47(3):329–349, 1998.
1990
+ [6] Baruch Barzel and Albert-L´aszl´o Barab��asi. Network link prediction by
1991
+ global silencing of indirect correlations. Nature biotechnology, 31(8):720–
1992
+ 725, 2013.
1993
+ [7] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order orga-
1994
+ nization of complex networks. Science, 353(6295):163–166, 2016.
1995
+ [8] Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural net-
1996
+ works for link prediction. IEEE Transactions on Pattern Analysis and Ma-
1997
+ chine Intelligence, 2021.
1998
+ [9] Emmanuel J Cand`es, Xiaodong Li, Yi Ma, and John Wright. Robust prin-
1999
+ cipal component analysis? Journal of the ACM (JACM), 58(3):1–37, 2011.
2000
+ [10] Shaosheng Cao, Wei Lu, and Qiongkai Xu.
2001
+ Deep neural networks for
2002
+ learning graph representations. In Proceedings of the AAAI Conference on
2003
+ Artificial Intelligence, volume 30, 2016.
2004
+ [11] Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang
2005
+ Zhao, Feng Chen, Lingfei Wu, Charu Aggarwal, and Chang-Tien Lu.
2006
+ Bridging the gap between spatial and spectral domains: A survey on graph
2007
+ neural networks. arXiv preprint arXiv:2002.11867, 2020.
2008
+ [12] Ara Cho, Junha Shin, Sohyun Hwang, Chanyoung Kim, Hongseok Shim,
2009
+ Hyojin Kim, Hanhae Kim, and Insuk Lee. Wormnet v3: a network-assisted
2010
+ hypothesis-generating server for caenorhabditis elegans. Nucleic acids re-
2011
+ search, 42(W1):76–82, 2014.
2012
+ [13] Aaron Clauset, Cristopher Moore, and Mark EJ Newman. Hierarchical
2013
+ structure and the prediction of missing links in networks.
2014
+ Nature, 453
2015
+ (7191):98–101, 2008.
2016
+ [14] Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable
2017
+ benefits of depth in training graph convolutional networks. Advances in
2018
+ Neural Information Processing Systems, 34:9936–9949, 2021.
2019
+ [15] Lucianoda F Costa, Marcus Kaiser, and Claus C Hilgetag. Predicting the
2020
+ connectivity of primate cortical networks from topological and spatial node
2021
+ properties. BMC systems biology, 1(1):1–17, 2007.
2022
+ [16] Micha¨el Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolu-
2023
+ tional neural networks on graphs with fast localized spectral filtering. In
2024
+ Proceedings of the 30th International Conference on Neural Information
2025
+ Processing Systems, pages 3844–3852, 2016.
2026
+ [17] Jordi Duch and Alex Arenas. Community detection in complex networks
2027
+ using extremal optimization. Physical review E, 72(2):027104, 2005.
2028
+ [18] Zhihong Fang, Shaolin Tan, Yaonan Wang, and Jinhu Lu. Elementary sub-
2029
+ graph features for link prediction with neural networks. IEEE Transactions
2030
+ on Knowledge and Data Engineering, 2021.
2031
+ 12
2032
+
2033
+ [19] Pablo M Gleiser and Leon Danon. Community structure in jazz. Advances
2034
+ in complex systems, 6(04):565–573, 2003.
2035
+ [20] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
2036
+ networks. In Proceedings of the 22nd ACM SIGKDD international confer-
2037
+ ence on Knowledge discovery and data mining, pages 855–864, 2016.
2038
+ [21] Roger Guimer`a and Marta Sales-Pardo. Missing and spurious interactions
2039
+ and the reconstruction of complex networks. Proceedings of the National
2040
+ Academy of Sciences, 106(52):22073–22078, 2009.
2041
+ [22] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
2042
+ learning on large graphs. Advances in neural information processing sys-
2043
+ tems, 30, 2017.
2044
+ [23] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context
2045
+ similarity. In Proceedings of the eighth ACM SIGKDD international con-
2046
+ ference on Knowledge discovery and data mining, pages 538–543, 2002.
2047
+ [24] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang
2048
+ Yang. Detecting suspicious following behavior in multimillion-node so-
2049
+ cial networks. In Proceedings of the 23rd International Conference on
2050
+ World Wide Web, pages 305–306, 2014.
2051
+ [25] Leo Katz. A new status index derived from sociometric analysis. Psy-
2052
+ chometrika, 18(1):39–43, 1953.
2053
+ [26] Daniel Lee and H Sebastian Seung. Algorithms for non-negative matrix
2054
+ factorization.
2055
+ Advances in neural information processing systems, 13,
2056
+ 2000.
2057
+ [27] Boning Li, Yingce Xia, Shufang Xie, Lijun Wu, and Tao Qin. Distance-
2058
+ enhanced graph neural network for link prediction. In ICML 2021 Work-
2059
+ shop on Computational Biology, 2021.
2060
+ [28] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and
2061
+ Yi Ma. Robust recovery of subspace structures by low-rank representa-
2062
+ tion. IEEE transactions on pattern analysis and machine intelligence, 35
2063
+ (1):171–184, 2012.
2064
+ [29] Francois Lorrain and Harrison C White. Structural equivalence of indi-
2065
+ viduals in social networks. The Journal of mathematical sociology, 1(1):
2066
+ 49–80, 1971.
2067
+ [30] Paul Louis, Shweta Ann Jacob, and Amirali Salehi-Abari. Sampling en-
2068
+ closing subgraphs for link prediction. arXiv preprint arXiv:2206.12004,
2069
+ 2022.
2070
+ [31] Linyuan L¨u, Mat´uˇs Medo, Chi Ho Yeung, Yi-Cheng Zhang, Zi-Ke Zhang,
2071
+ and Tao Zhou.
2072
+ Recommender systems.
2073
+ Physics reports, 519(1):1–49,
2074
+ 2012.
2075
+ [32] Linyuan L¨u, Liming Pan, Tao Zhou, Yi-Cheng Zhang, and H Eugene Stan-
2076
+ ley. Toward link predictability of complex networks. Proceedings of the
2077
+ National Academy of Sciences, 112(8):2325–2330, 2015.
2078
+ [33] Mark EJ Newman. Finding community structure in networks using the
2079
+ eigenvectors of matrices. Physical review E, 74(3):036104, 2006.
2080
+ [34] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning
2081
+ convolutional neural networks for graphs. In International conference on
2082
+ machine learning, pages 2014–2023. PMLR, 2016.
2083
+ [35] Gergely Palla, Imre Der´enyi, Ill´es Farkas, and Tam´as Vicsek. Uncovering
2084
+ the overlapping community structure of complex networks in nature and
2085
+ society. nature, 435(7043):814–818, 2005.
2086
+ [36] Liming Pan, Cheng Shi, and Ivan Dokmani´c. Neural link prediction with
2087
+ walk pooling. In International Conference on Learning Representations,
2088
+ pages 5171–5181, 2021.
2089
+ [37] Ratha Pech, Dong Hao, Liming Pan, Hong Cheng, and Tao Zhou. Link pre-
2090
+ diction via matrix completion. EPL (Europhysics Letters), 117(3):38002,
2091
+ 2017.
2092
+ [38] Ratha Pech, Dong Hao, Yan-Li Lee, Ye Yuan, and Tao Zhou. Link pre-
2093
+ diction via linear optimization. Physica A: Statistical Mechanics and its
2094
+ Applications, 528:121319, 2019.
2095
+ [39] Erzs´ebet Ravasz and Albert-L´aszl´o Barab´asi. Hierarchical organization in
2096
+ complex networks. Physical review E, 67(2):026112, 2003.
2097
+ [40] Ryan Rossi and Nesreen Ahmed. The network data repository with inter-
2098
+ active graph analytics and visualization. In Twenty-ninth AAAI conference
2099
+ on artificial intelligence, 2015.
2100
+ [41] Marta Sales-Pardo, Roger Guimera, Andr´e A Moreira, and Lu´ıs A Nunes
2101
+ Amaral.
2102
+ Extracting the hierarchical organization of complex systems.
2103
+ Proceedings of the National Academy of Sciences, 104(39):15224–15229,
2104
+ 2007.
2105
+ [42] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt
2106
+ Mehlhorn, and Karsten M Borgwardt. Weisfeiler-lehman graph kernels.
2107
+ Journal of Machine Learning Research, 12(9), 2011.
2108
+ [43] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp topolo-
2109
+ gies with rocketfuel. ACM SIGCOMM Computer Communication Review,
2110
+ 32(4):133–145, 2002.
2111
+ [44] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
2112
+ Mei. Line: Large-scale information network embedding. In Proceedings
2113
+ of the 24th international conference on world wide web, pages 1067–1077,
2114
+ 2015.
2115
+ [45] Ala Trusina, Sergei Maslov, Petter Minnhagen, and Kim Sneppen. Hi-
2116
+ erarchy measures in complex networks. Physical review letters, 92(17):
2117
+ 178702, 2004.
2118
+ [46] Petar Veliˇckovi´c, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
2119
+ Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
2120
+ arXiv:1710.10903, 2017.
2121
+ [47] Christian Von Mering, Roland Krause, Berend Snel, Michael Cornell,
2122
+ Stephen G Oliver, Stanley Fields, and Peer Bork. Comparative assess-
2123
+ ment of large-scale data sets of protein–protein interactions. Nature, 417
2124
+ (6887):399–403, 2002.
2125
+ [48] Xu-Wen Wang, Yize Chen, and Yang-Yu Liu. Link prediction through
2126
+ deep generative model. iScience, 23(10):101626, 2020.
2127
+ [49] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
2128
+ world’networks. nature, 393(6684):440–442, 1998.
2129
+ [50] Max Welling and Thomas N Kipf.
2130
+ Semi-supervised classification with
2131
+ graph convolutional networks. In J. International Conference on Learning
2132
+ Representations (ICLR 2017), 2016.
2133
+ [51] Tao Wu, Yuxiao Guo, Leiting Chen, and Yanbing Liu. Integrated struc-
2134
+ ture investigation in complex networks by label propagation. Physica A:
2135
+ Statistical Mechanics and its Applications, 448:68–80, 2016.
2136
+ [52] Tao Wu, Hongyu Ma, Chao Wang, Shaojie Qiao, Liang Zhang, and Shui
2137
+ Yu. Heterogeneous representation learning and matching for few-shot re-
2138
+ lation prediction. Pattern Recognition, page 108830, 2022.
2139
+ [53] Xingping Xian, Tao Wu, Shaojie Qiao, Xi-Zhao Wang, Wei Wang, and
2140
+ Yanbing Liu.
2141
+ Netsre:
2142
+ Link predictability measuring and regulating.
2143
+ Knowledge-Based Systems, 196:105800, 2020.
2144
+ [54] Xingping Xian, Tao Wu, Shaojie Qiao, Wei Wang, Chao Wang, Yanbing
2145
+ Liu, and Guangxia Xu. Deepec: Adversarial attacks against graph structure
2146
+ prediction models. Neurocomputing, 437:168–185, 2021.
2147
+ [55] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
2148
+ Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs
2149
+ with jumping knowledge networks. In International conference on ma-
2150
+ chine learning, pages 5453–5462. PMLR, 2018.
2151
+ [56] Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link
2152
+ prediction. In Proceedings of the 23rd ACM SIGKDD international con-
2153
+ ference on knowledge discovery and data mining, pages 575–583, 2017.
2154
+ [57] Muhan Zhang and Yixin Chen. Link prediction based on graph neural
2155
+ networks. In Proceedings of the 32nd International Conference on Neural
2156
+ Information Processing Systems, pages 5171–5181, 2018.
2157
+ [58] Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link
2158
+ prediction: Predicting hyperlinks in adjacency space. In Proceedings of
2159
+ the AAAI Conference on Artificial Intelligence, volume 32, 2018.
2160
+ [59] Jiajun Zhou, Jie Shen, and Qi Xuan. Data augmentation for graph clas-
2161
+ sification. In Proceedings of the 29th ACM International Conference on
2162
+ Information & Knowledge Management, pages 2341–2344, 2020.
2163
+ [60] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
2164
+ Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
2165
+ neural networks: A review of methods and applications. AI Open, 1:57–
2166
+ 81, 2020.
2167
+ [61] Tao Zhou, Linyuan L¨u, and Yi-Cheng Zhang. Predicting missing links
2168
+ via local information. The European Physical Journal B, 71(4):623–630,
2169
+ 2009.
2170
+ 13
2171
+
ZNAyT4oBgHgl3EQfWveE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ZNFIT4oBgHgl3EQfkSuq/content/tmp_files/2301.11300v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
ZNFIT4oBgHgl3EQfkSuq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
_NFKT4oBgHgl3EQfUi2J/content/tmp_files/2301.11784v1.pdf.txt ADDED
@@ -0,0 +1,1418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Description of the cattle and small ruminants
2
+ trade network in Senegal and implication for
3
+ the surveillance of animal diseases
4
+
5
+
6
+ Mamadou Ciss1§, Alessandra Giacomini2,3,4§, Mame Nahé Diouf1, Alexis Delabouglise2,3, Asma
7
+ Mesdour2,3, Katherin Garcia Garcia2,3, Facundo Munoz2,3, Eric Cardinale2,3, Mbargou Lo5, Adji
8
+ Marème Gaye5, Mathioro Fall5, Khady Ndiaye5, Assane Guèye Fall1, Catherine Cetre-Sossah2,3,
9
+ Andrea Apolloni2,3
10
+
11
+ 1 Institut Sénégalais de Recherches Agricoles/Laboratoire National de l’Elevage et de Recherches
12
+ Vétérinaires BP 2057 Dakar-Hann, Sénégal
13
+ 2 CIRAD, UMR ASTRE, Montpellier, France
14
+ 3 CIRAD, UMR ASTRE, Univ Montpellier, INRAE, Montpellier, France
15
+ 4 Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
16
+ 5 Direction des Services Vétérinaires, Dakar, Sénégal
17
+ § M. C. and A. G. contributed equally
18
+
19
+ Corresponding author: Alessandra Giacomini; [email protected]
20
+
21
+
22
+ Abstract
23
+ Livestock mobility, particularly that of small and large ruminants, is one of the main pillars of
24
+ production and trade in West Africa: livestock is moved around in search of better grazing or sold in
25
+ markets for domestic consumption and for festival-related activities. These movements cover several
26
+ thousand kilometers and have the capability of connecting the whole West African region thus
27
+ facilitating the diffusion of many animal and zoonotic diseases. Several factors shape mobility
28
+ patterns even in normal years and surveillance systems need to account for such changes. In this
29
+ paper, we present a procedure based on temporal network theory to identify possible sentinel locations
30
+ using two indicators: vulnerability (i.e. the probability of being reached by the disease) and time of
31
+ infection (i.e. the time of first arrival of the disease). Using these indicators in our structural analysis
32
+
33
+ of the changing network enabled us to identify a set of nodes that could be used in an early warning
34
+ system.
35
+ As a case study we simulated the introduction of F.A.S.T. (Foot and Mouth Similar Transboundary)
36
+ diseases in Senegal and used data taken from 2020 Sanitary certificates (LPS – laissez-passer
37
+ sanitaire) issued by the Senegalese Veterinary Services to reconstruct the national mobility network.
38
+ Our analysis showed that a static approach can significantly overestimate the speed and the extent of
39
+ disease propagation, whereas temporal analysis revealed that the reachability and vulnerability of the
40
+ different administrative departments (used as nodes of the mobility network) change over the course
41
+ of the year. For this reason, several sets of sentinel nodes were identified in different periods of the
42
+ year, underlining the role of temporality in shaping patterns of disease diffusion.
43
+
44
+ Keywords: network analysis, livestock mobility, epidemiology, livestock production
45
+
46
+ 1. Introduction
47
+
48
+ The West African region includes the southern part of the bulge in the African continent and is crossed
49
+ by the Sahel, a transitional strip between the Sahara Desert in the north and the Sudanic zone in the
50
+ south (Bossard, 2009). The region is composed of 18 countries and is bounded in the north by
51
+ Mauritania, Mali and Niger, in the east by Chad and Cameroon, in the south and west by the Atlantic
52
+ Ocean. The region is characterized by different climates, and hence, different agro-ecological zones
53
+ and different livestock farming systems (Missohou et al., 2016). Livestock farming (particularly
54
+ cattle and small ruminants) is one of the most important economic activities in this area.
55
+
56
+ In West Africa, livestock mobility is an intrinsic component of livestock production and trade. The
57
+ harsh environmental conditions, as well as the absence of the facilities required to slaughter animals
58
+ and store meat, means livestock has to be mobile. To optimize the use of natural resources such as
59
+ pasture and surface water, whose availability varies throughout the year, livestock farmers are forced
60
+ to move their herds around: these movements occur all the year round (nomadism) or in specific
61
+ periods (transhumance). Because of the lack of storage facilities and infrastructure, the majority of
62
+ animals are sold alive at markets all year round. Most animals are concentrated in the northern part
63
+ of West Africa, notably in Mali, Chad, Niger, and Mauritania, where the vast uninhabited areas are
64
+ unsuitable for cropping but allow extensive livestock raising, and the animals are moved towards the
65
+ greener southern coastal areas. These movements are seasonal, and depend both on the availability
66
+ of resources and on other socio-cultural factors, and the mobility patterns and the distribution of the
67
+
68
+ volume of animals involved change over the course of the year (Apolloni et al., 2019; Bouslikhane,
69
+ 2015). These movements integrate the region, connect contrasted agro-ecological areas, and, in
70
+ addition, generate income for many supply chain actors, including producers, traders, transporters,
71
+ and vendors, and contribute to the food and nutrition security of the region (Valerio, 2020).
72
+ As it is, mobility in West Africa is a complex phenomenon involving different temporal scales (from
73
+ a few days to several months) and spatial scales (from a few kilometers to reach local markets to
74
+ international transhumance and/or international trade), and whose determinants range from
75
+ environmental factors, e.g. the availability of natural resources, commercial factors, e.g. market
76
+ demand and prices, to social factors, such as religious festivals (Apolloni et al., 2019).
77
+
78
+ In Senegal, livestock production is one of the main economic activities, it involves 28% of the
79
+ population (ANSD, 2013) and provides almost 4% (ANSD, 2020) of gross national domestic product.
80
+ Due to the different agro-ecological zones, several production systems co-exist. Senegal is located on
81
+ the Atlantic Coast axes of the transhumance routes (from Mauritania and Mali to Guinea and Guinea-
82
+ Bissau) and is involved in international trade movements. Within Senegal, trade follows a strict
83
+ market hierarchy: from village markets to consumption markets in coastal areas. National
84
+ transhumance involves movements from the central and southern predominantly agricultural area
85
+ towards the area of Ferlo in the north.
86
+ Like in other West African countries, movements within and towards Senegal vary over the course
87
+ of the year. This is particularly true of the Tabaski religious festival, an important Muslim festival
88
+ characterized by the sacrifice of rams, and the Grand Magal of Touba, during which the consumption
89
+ of beef increases significantly. The two festivals mean imports of livestock increase enormously in a
90
+ short period of time (Apolloni et al., 2019; Cesaro et al., 2010).
91
+ Animal movements also mean pathogens can be introduced and spread at national and international
92
+ scales. Such pathogens spread very rapidly across national borders and have serious socio-economic
93
+ and public health consequences. Some of these, such as Contagious Bovine Pleuropneumonia
94
+ (CBPP), Foot-and-Mouth Disease (FMD), Peste des Petits Ruminants (PPR), and Rift Valley Fever
95
+ (RVF) are currently a major problem in West Africa (Apolloni et al., 2019; Bouslikhane, 2015;
96
+ Chaters et al., 2019; Di Nardo et al., 2011).
97
+ The porosity of the border, the absence of an animal identification system, together with the lack of
98
+ coordinated control and surveillance systems hinders the development of a regional surveillance
99
+ system and increases the risk of epidemics (Apolloni et al., 2019). Understanding mobility patterns,
100
+ as well as their variations, is of the uttermost importance to optimize surveillance and control systems.
101
+ Senegal is one of the few countries in West Africa already equipped with a system for mapping and
102
+
103
+ controlling animal movements within its borders. Movements are regulated through the use of
104
+ sanitary certificates (LPS – laissez-passer sanitaire), issued by the veterinary services to livestock
105
+ transporters every time they move animals. The certificates are also routinely collected and
106
+ centralized by the veterinary services. The information that can be retrieved from these data provides
107
+ a snapshot of the livestock mobility network at each period of the year and could be used to develop
108
+ tools to improve the surveillance system, adapted to the period concerned.
109
+ Network-based approaches are widely used in veterinary epidemiology to study the role of animal
110
+ mobility in the spread of diseases, with the aim of developing effective strategies for disease
111
+ surveillance and control (Dubé et al., 2009; Motta et al., 2017). Network-based approaches make it
112
+ possible to depict livestock movements as a spatial network in which the nodes represent villages,
113
+ administrative units, markets or herds, and a link is created each time at least one animal is moved
114
+ from one node to another. However, while network methods have been extensively applied to
115
+ engineer surveillance system in European countries thanks to the existence of vast live animal
116
+ movement traceability datasets (i.e. Lentz et al. (Lentz et al., 2016) and Schirdewahn et al.
117
+ (Schirdewahn et al., 2021)), little has been done in West Africa due to the scarcity of such information
118
+ (Muwonge et al., 2021). Only a few articles that report network analysis in West Africa have been
119
+ published recently, including Apolloni et al. (Apolloni et al., 2018), and Nicolas et al. (Nicolas et al.,
120
+ 2018) for Mauritania, Jahel et al. (Jahel et al., 2020) for Senegal and Mauritania, and Valerio et al.
121
+ (Valerio et al., 2020) for the whole West Africa region.
122
+ Static network approaches may not be the best way to create effective surveillance and control tools
123
+ against the spread of infectious diseases, as a static approach can overestimate or underestimate the
124
+ rate and extent of outbreaks (Masuda & Holme, 2013). The influence of temporality on the structure
125
+ of the network can significantly affect the spread of a disease, which consequently can only be
126
+ accurately predicted if the chronology of links is accurately represented (Masuda & Holme, 2013;
127
+ Williams & Musolesi, 2016).
128
+
129
+ In this work, we used a temporal network approach to assess the influence of change on the diffusion
130
+ of animal diseases over time. We used data collected in 2020 by the Senegalese Veterinary Services
131
+ to build a representation of the network, and adapted tools from complex networks to assess the risk
132
+ of being infected and the role of different Senegalese areas in spreading infections over the course of
133
+ the year. To this end, we relied on measures of the “vulnerability” and “reachability” of nodes.
134
+ Vulnerability gives an indication of the likelihood a node will be infected, while reachability gives
135
+ an indication of the time to infection. This approach takes changes in the network over time into
136
+ account as well as the network structure, and differs markedly from the static, individual-centric
137
+
138
+ approaches used in previous risk assessments. The objective of the present work is to provide a
139
+ theoretical basis for improving the Senegalese surveillance system by identifying different potential
140
+ geographical spots that contribute to the spread of pathogens at different times of the year and that
141
+ could be used as sentinel nodes.
142
+
143
+ 2. Materials and methods
144
+
145
+
146
+ 2.1 Study area
147
+ Bordering Mauritania to the north, Mali to the east, Guinea and Guinea-Bissau to the south, and the
148
+ Gambia and the Atlantic Ocean to the west, Senegal occupies an area of 196,722 km2 and in 2020,
149
+ had an estimated population of more than 16.7 million (World Bank, 2022).
150
+
151
+ The administration of the Senegalese territory is organized in 14 regions, 45 departments, and 123
152
+ arrondissements (Ministère de l’Intérieur du Sénégal, 2017). There is a clear contrast between the
153
+ empty area in the east (hosting around 10% of the human population of Senegal) and the populated
154
+ and urbanized central and areas in the west, where 90% of human population is concentrated, of
155
+ which 25% in the Dakar area (ANSD, 2020; World Bank, 2022).
156
+
157
+ Senegal’s climate is very varied and distinct climatic zones are characterized by different levels of
158
+ rainfall and different types of vegetation. This diverse climate strongly influences the livestock
159
+ farming sector, whose different farming systems depending on agro-climatic gradients, among other
160
+ factors (Cesaro et al., 2010).
161
+
162
+ As mentioned above, the livestock trade is organized in a strict hierarchical system starting at village
163
+ weekly markets (Lumo), the animals are collected by traders to be sold at collection markets before
164
+ being sent on to consumer markets, where they are sold to be slaughtered. Because there are
165
+ practically no meat storage facilities, most trade involves live animals. Livestock trade routes
166
+ converge on the Dakar region, the main consumer market, with stops in smaller markets such as Saint-
167
+ Louis, Touba, Thiès, and Kaolack. Before reaching the urban markets, the vast majority of the animals
168
+ originating from northern Senegal, Mauritania, and Mali, are grouped in Dahra, called the “livestock
169
+ capital” of Senegal. Another collection market in the southeastern part of the country also plays a
170
+ major role in the livestock trade: Tambacounda, the point of convergence for animals from eastern
171
+
172
+ and southern Senegal, as well as from southern Mauritania and Mali. In addition to the movement of
173
+ animals for sale, transhumance is widespread in Senegal, both at national scale from the central area
174
+ to the north (in particular the Ferlo region), and, due to its location, international, from Mali and
175
+ Mauritania to the Senegalese coast (Apolloni et al., 2019; Cesaro et al., 2010) (SI Figure 1).
176
+
177
+ 2.2 Data
178
+ In Senegal, a certification system based on a sanitary pass named “Laissez-Passer Sanitaire” (LPS)
179
+ is used to track animal mobility and to map the most important axes of movement in the region.
180
+ Veterinary posts belonging to the Senegalese Ministry of Livestock and Animal Production provide
181
+ an LPS each time a herd is moved, the document states the origin of the movement (village,
182
+ department, region, country), the destination (village, department, region, country), the date, the
183
+ species and number of animals involved, and the means of transport. Copies of the LPS are centralized
184
+ and stored in electronic form.
185
+
186
+ We focused our analyses on movements of cattle and small ruminants (goats and sheep), either
187
+ separately or together. For analytical purposes, the two were aggregated on the spatial scale of an
188
+ administrative department (all 45 Senegalese departments are involved in this trade) and on a time
189
+ scale of one month or one week, depending on the type of analysis: we chose a month as the temporal
190
+ unit for the general description of the data and for cluster analysis, and a week to simulate the disease
191
+ spread, as a week is a more realistic unit to study disease propagation.
192
+
193
+ 3. Methods
194
+ 3.1 Descriptive and network analyses
195
+ We analyzed mobility data using a complex network approach. LPS data were used to build three
196
+ oriented and weighted networks, one for each species plus one species-independent network: the
197
+ nodes corresponded to the departments of origin and destination; a direct link existed between two
198
+ nodes if at least one animal was moved from the department of origin to the destination department;
199
+ the link was weighted according to the number of animals moved along it.
200
+
201
+ A cluster analysis was performed to explore the behavior of the different nodes over the study period.
202
+ The nodes were ranked based on their activity, defined as the effective number of animals traded each
203
+ month; the number being positive if the inflow of animals was greater than the outflow (importing
204
+ behavior), otherwise negative (exporting behavior).
205
+
206
+
207
+ Clustering was performed using HCPC (Hierarchical Clustering on Principal Components), which
208
+ successively applies three standard methods used in multivariate analyses: (i) Principal Component
209
+ Analysis (PCA), which identifies the principal components, (ii) hierarchical clustering, which defines
210
+ the optimal number of clusters of nodes according to their score on the principal components, and
211
+ (iii) non-hierarchical clustering (in particular the k-means algorithm), which associates a cluster with
212
+ each node (Celebi, 2015).
213
+ To study the structure of the livestock network, we conducted a spatio-temporal analysis of link’s
214
+ frequency, defined as the number of months in the year in which movements occur on the link. We
215
+ considered a link to be active when at least one trade movement was recorded in a given month. We
216
+ then categorized the links according to the number of months in which they were active. In particular,
217
+ we identified four frequency categories, which were, starting from the least frequent: occasional
218
+ (activity only occurred in one month per year), intermediate (activity occurred in two or three months
219
+ per year), frequent (activity in four to nine months per year), and backbone (activity in 10 to 12
220
+ months).
221
+
222
+ To compare the risk of diffusion over the course of the year, we used the epidemic threshold q
223
+ (Volkova et al., 2010). This measure provides information on the minimum probability for a virus to
224
+ spread throughout the network: the lower the value of the epidemic threshold, the higher the risk of
225
+ propagation.
226
+ For a weighted network, this parameter can be estimated as follows:
227
+ 𝑞𝑤 =
228
+ 〈𝑤𝑜𝑢𝑡〉
229
+ 〈𝑤𝑖𝑛 × 𝑤𝑜𝑢𝑡〉
230
+ where 〈 〉 indicates the average value, win and wout indicate the nodes’ in-weight and out-weight,
231
+ respectively (Nicolas et al., 2018).
232
+
233
+ Following the procedures of Lancelot et al. (Lancelot et al., 2017) and Nicolas et al. (Nicolas et al.
234
+ 2018), for each of the three mobility networks considered (All species, Cattle, Small ruminants
235
+ separately), the epidemic threshold was estimated for each monthly snapshot of the network, to assess
236
+ the risk of an epidemic occurring over the course of the year.
237
+
238
+ 3.2 Simulation of disease spread
239
+ Temporality, i.e. the variation in time of the mobility network, affects disease spread. Figure 1 – A
240
+ shows an example of a temporal network and its static counterpart. The network is composed of seven
241
+
242
+ nodes and eight possible links, whose direction is indicated by the arrows. In this case, the temporal
243
+ network is characterized by three temporal snapshots that contain the same nodes but different links.
244
+ A link that is present and active in a snapshot is not necessarily the same in the previous or the
245
+ following snapshots. If we disregard the information on timing, we obtain an aggregated/static
246
+ network composed of the same nodes and links as the temporal network, all present and active at the
247
+ same time. If we simulate an outbreak in the two networks (temporal and static) (Figure 1 – B), we
248
+ can see that the potential diffusion of the pathogen differs in the two situations. In this case, there is
249
+ significantly more propagation in the static network than in the temporal one. This happens because,
250
+ in the temporal network, the disease can only propagate through temporal paths. In other words, if a
251
+ link connecting an infected node to a susceptible one is active in a specific temporal snapshot, the
252
+ disease can spread to the latter; conversely, if the link is not active in the temporal window concerned,
253
+ disease propagation stops.
254
+
255
+ To study the influence of temporality on disease propagation, we simulated the spread of an animal
256
+ disease transmitted by direct contact through the livestock mobility networks. We used a SI
257
+ (Susceptible-Infected) model: the disease was transmitted from an infected node to a susceptible one
258
+ with a probability of 1, and the infected nodes remained infected for the entire period of analysis, and
259
+ were consequently able to continue to spread the disease even weeks after being infected. The aim of
260
+ this procedure was to estimate the number of potentially infected nodes when the underlying structure
261
+ varied. Because of our focus on the control of transboundary animal diseases, the departments of Mali
262
+ and Mauritania, which export livestock directly to Senegal, were chosen as sources of the disease, as
263
+ the majority of Senegalese imports of small ruminants and cattle are from these two countries
264
+ (Apolloni et al., 2019; Cesaro et al., 2010).
265
+ To explore the effect of temporality on the structure of the network, and hence on diffusion of the
266
+ disease, we compared results obtained with a static representation (in which the structure of the
267
+ network remains unchanged throughout the year) with results obtained with a temporal
268
+ representation. In the first case, all the links recorded in the dataset were present at the same time, the
269
+ time of activation was not taken into account, while in the second case, we included changes in the
270
+ structure in every week of the study period. To this end, we used temporal path formalism, according
271
+ to which a temporal path is a sequence of links connecting two nodes with each link in the path
272
+ coming temporally after the one before it (Masuda & Holme, 2013). This approach enabled us to
273
+ estimate the infection time: that is the minimum number of timesteps (i.e. weeks) needed to create a
274
+ temporal path between an infected node and the node under observation.
275
+
276
+
277
+
278
+
279
+ Figure 1: (A) An example of a directed temporal network and its static counterpart. The dark links are those in the temporal snapshot,
280
+ while the pale links are those that are possible but are not present in the temporal snapshot. (B) Simple simulation of disease spread
281
+ in the temporal network (on the left) and the static network (on the right).
282
+ Among all the possible temporal paths between the sources and the other nodes, we decided to
283
+ consider the “earliest arriving” paths, which represent the first time a node is infected by the disease
284
+ (Bender-deMoll et al., 2021; Berlingerio et al., 2013). The speed/rate at which a node became infected
285
+ was estimated by the infection time, i.e. the number of weeks that elapsed between the onset of the
286
+ disease and the time at which the department concerned was reached for the first time. For static
287
+ networks, the speed/rate of infection was estimated from the length of the shortest paths, converting
288
+ the links into temporal units, specifically, weeks. If a node was reached by more than one source, the
289
+ shortest infection time (for temporal networks) or the shortest path (for static networks) was chosen.
290
+
291
+ All descriptive analyses and static/temporal network analyses were carried out using R software with
292
+ the following packages: ggplot2 for graphs (Wickham, 2016), ggplot2 and tmap for maps (Tennekes,
293
+ 2018); FactoMineR (Lê et al., 2008) and factoextra (Kassambara & Mundt, 2020) for cluster analysis,
294
+ sna (Butts, 2020), and tsna (Bender-deMoll et al., 2021) for static and temporal network analysis,
295
+ respectively.
296
+
297
+ B
298
+ A
299
+
300
+ Temporal network
301
+ Static network
302
+ t2
303
+ t1,3
304
+ ti
305
+ t2
306
+ t3
307
+ t1,3
308
+ Susceptiblenode
309
+ Infectednode
310
+ Sourceofthe disease4. Results
311
+ 4.1 Summary statistics
312
+ The database contained information on 8,861 livestock trade movements from January to December
313
+ 2020. The network is composed of a total of 88 nodes, corresponding to an Administrative Unit of
314
+ level 2, of which 45 are Senegalese (Departments), and 590 unique links, i.e. origin-destination
315
+ combinations. The movements concerned Senegal as the origin and/or destination of 87% of the
316
+ movements, and eight other countries: Mali (9%), Gambia (2%), Mauritania (1%), Guinea, Guinea-
317
+ Bissau, Burkina Faso, Niger and Nigeria (<1% each) as either the origin or as the destination of
318
+ movements. Focusing on Senegal, a total of 6,511 national movements and 2,350 international
319
+ movements, over respectively 458 and 132 unique links, involving 87,017 cattle and 553,718 small
320
+ ruminants were recorded in the dataset. Despite the large number of national trades, the majority of
321
+ animals were moved for the purpose of international trade. More than 95% of these movements were
322
+ in trucks, which is the most widely used means of transport for animals in the region concerned. More
323
+ than 600,000 animals were transported by truck, the remainder mainly on foot (Table 1).
324
+
325
+ The livestock network was analyzed as static but also took temporality into account, which influences
326
+ the presence/absence of links.
327
+ Table 1: summary of the characteristics of the data analyzed in the study. The number of movements, the number of animals and the
328
+ number of unique links are given for each species, type of trade, and means of transport.
329
+
330
+
331
+ Trade movements Headcount
332
+ Number of
333
+ unique links
334
+ Species
335
+
336
+
337
+
338
+
339
+
340
+ Cattle
341
+ 3,186
342
+ 87,017
343
+ 328
344
+
345
+ Small Ruminants 5,675
346
+ 553,718
347
+ 502
348
+ Type
349
+
350
+
351
+
352
+
353
+
354
+ International
355
+ 2,350
356
+ 365,903
357
+ 132
358
+
359
+ National
360
+ 6,511
361
+ 274,832
362
+ 458
363
+ Means of
364
+ transport
365
+
366
+
367
+
368
+
369
+
370
+ Train
371
+ 4
372
+ 170
373
+ 2
374
+
375
+ Truck
376
+ 8,239
377
+ 608,816
378
+ 552
379
+
380
+ On foot
381
+ 587
382
+ 30,354
383
+ 85
384
+
385
+ Boat
386
+ 31
387
+ 1,395
388
+ 9
389
+
390
+ As shown in Figure 2, all Senegalese administrative departments are involved in animal trade either
391
+ as the origin, the destination, or both. Movements are both national and international, and, while
392
+ Senegal is the final destination of almost all the trade, many animals are moved not only from other
393
+ Senegalese departments, but also from Mali and Mauritania, the main exporters, with some
394
+ departments, particularly in Mali, exporting a significant number of animals (Figure 2– A).
395
+
396
+ The departments in north-eastern Senegal (Podor, Matam, Kanel, and Ranérou Ferlo), are notable for
397
+ their high level of animal “exports”. Other Senegalese departments (Tambacounda in the south,
398
+ Koungheul and Gossas in the center, Louga and Kébémer in the north) also export considerable
399
+ numbers of animals.
400
+
401
+ Concerning imports, the departments that import the most animals are located in the Dakar region, in
402
+ particular Pikine, Rufisque, Thiès, and M’bour, where the majority of consumer markets are located.
403
+ Other Senegalese departments that import large numbers of animals are Saint-Louis in the north,
404
+ Mbacké and Guinguinéo in the center, Ziguinchor in the south-west, Tambacounda and Sayara in the
405
+ south-east, on the border with Mali (Figure 2– B).
406
+
407
+ Figure 2: Distribution of the volume of animals in the administrative departments of Senegal, according to whether the department is
408
+ the origin (A) or the destination (B) of livestock movement. The miniature pie charts show the percentage of cattle (yellow) and small
409
+ ruminants (green) in the total number of animals. Quartiles were chosen for the colors representing the volume of animals traded.
410
+ Only countries that account for at least 1% of exports (A) or imports (B) are shown.
411
+ Figure 3 shows the number of movements and the volume of animals traded in each species (cattle or
412
+ small ruminants) per month. Overall, movements of animals for the purpose of trade were less
413
+ frequent in the first six months of the year, but increased in July, particularly trade in small ruminants.
414
+ Similarly, July was the month with the most trade in small ruminants in the study period, involving
415
+ N
416
+ 0
417
+ 50
418
+ 100
419
+ 150
420
+ 200 km
421
+ Volume of animals
422
+ 0 to 9
423
+ 10 to 109
424
+ 110 to 724
425
+ 725 to 6337
426
+ 6338 to 209485
427
+ Species
428
+ Cattle
429
+ Small Ruminants
430
+ 0
431
+ 50 100 150 200km
432
+ A
433
+ N
434
+ 0
435
+ 50
436
+ 100
437
+ 150
438
+ 200 km
439
+ Volume of animals
440
+ 0 to 20
441
+ 21 to 560
442
+ 561 to 2438
443
+ 2439 to 8464
444
+ 8465 to 199744
445
+ Species
446
+ Cattle
447
+ Small Ruminants
448
+ B
449
+
450
+ more than 300,000 animals. In August and September, the volume of small ruminants decreased,
451
+ while both the movement and volume of cattle traded increased, overtaking those of small ruminants.
452
+ In October, November and December, the number of cattle trades decreased, but remained higher
453
+ than in the rest of the year, while the number and volume of trade in small ruminants increased,
454
+ although less sharply. In 2020, two important Muslin festivals took place at the end of July (Tabaski)
455
+ and at the beginning of October (Grand Magal of Touba) and are represented on the chart by a dashed
456
+ line and a dotted line, respectively (Figure 3).
457
+
458
+
459
+ Figure 3: Number of trade movements (line plot) and volume of livestock traded (bar plot) recorded in 2020, per species and per
460
+ month. Data concerning cattle are in yellow, data concerning small ruminants are in green. The dashed line represents the Tabaski
461
+ festival (July 31), the dotted line represents the Grand Magal of Touba festival (October 6).
462
+
463
+ In the whole year, trades of small ruminants were concentrated on 503 links and trades in cattle on
464
+ 329 links, including 242 links trades of both species. Like for small ruminants, the highest number of
465
+ unique trade links occurred in July, followed by, in decreasing order, December, November and
466
+ 0
467
+ 500
468
+ 1,000
469
+ 1,500
470
+ 0
471
+ 100,000
472
+ 200,000
473
+ 300,000
474
+ Jan.
475
+ Feb.
476
+ March
477
+ April
478
+ May
479
+ June
480
+ July
481
+ Aug.
482
+ Sept.
483
+ Oct.
484
+ Nov.
485
+ Dec.
486
+ Month
487
+ Number of trade movements
488
+ Volume of animals
489
+ Number of trades
490
+ Cattle
491
+ Small ruminants
492
+ Species
493
+ Cattle
494
+ Small ruminants
495
+
496
+ October, also the months with the highest number of trade links for cattle. The links used by the two
497
+ species also increased in the last three months of the year (SI Table 1).
498
+ Concerning the means of transport, trucks were used for almost all movements of animals for sale
499
+ throughout the year. The number of movements peaked in July, and, then after a significant drop,
500
+ started to increase again in September (SI Table 2).
501
+
502
+ 4.2 Cluster analysis
503
+ Figure 5 shows the nodes of the livestock network in three (3) clusters:
504
+ • Cluster 1, composed of 7 nodes and characterized by a “weak”1 exporting behavior;
505
+ • Cluster 2, composed of 61 nodes and characterized by a “strong”1 exporting behavior;
506
+ • Cluster 3, composed by 20 nodes and characterized by a “strong”1 importing behavior.
507
+ Cluster 1 (in red) aggregates seven nodes, of which four are located on the north-eastern border of
508
+ Senegal (Matam, Podor, Kanel, and Ranérou Ferlo) with high volumes of animals traded, while the
509
+ other three (Foundiougne, Kaffrine, Gossas) are located on the southern border of Dakar region
510
+ (Figure 4 – A). However, in September, Cluster 1 imports are “weak”, with a slightly less than 3,000
511
+ animals imported (Figure 4 – B).
512
+
513
+ Cluster 2 (in green) aggregates all the foreign nodes, except Banjul (Gambia), and several nodes
514
+ across Senegal, accounting for a total of 61 nodes out of 88. Cluster 2 is “strong” in terms of volume
515
+ of animals exported over the year, despite the fact some nodes import more than export. Some nodes
516
+ that export large numbers of livestock include Bamako (Mali, 208,462) and Nouakchott (Mauritania,
517
+ 43,472), while Tambacounda (Senegal, 70,845) is a good example of an importing node (Figure 4 –
518
+ A). The highest number of exports by this cluster occurred in July, when the number of animals
519
+ exported was slightly under 200,000. (Figure 4 – B).
520
+ Cluster 3 (in blue) aggregates 20 nodes of which the majority is concentrated in the Dakar region but
521
+ includes some nodes in southern Senegal and one foreign node, Banjul (Gambia). Of the nodes
522
+ located in southern Senegal, two are on the border with Mali (Saraya and Kédougou), while the other
523
+ four are located farther west. All the nodes in this cluster were characterized by strong import trade,
524
+ with most imported animals via Pikine (Senegal, 199,703), but also via Thiès (Senegal, 51,939) and
525
+ Kaolack (Senegal, 46,432) (Figure 4 – A). Reflecting the movements of livestock for export, this
526
+ cluster shows a peak of imported animals in July, with a volume of around 250,000 animals, and
527
+
528
+ 1 We introduce the terms importing and exporting behaviour to indicate those nodes whose net flow of animals (difference
529
+ between inflow and outflow) through them is positive and negative respectively. Weak and strong refer to magnitude of
530
+ the net flow (small or large).
531
+
532
+ another,
533
+ less
534
+ significant
535
+ increase
536
+ from
537
+ September
538
+ to
539
+ October
540
+ (Figure
541
+ 4
542
+
543
+ B).
544
+
545
+ Figure 4: Clustering of livestock network. (A) Spatial representation of nodes colored according to the cluster to which they belong.
546
+ The size of each dot indicates the volume of animals traded over the course of the year and the division is made in quantiles. (B)
547
+ Temporal representation of trade by the three clusters over the course of the year, in terms of the volume of animals traded. Imported
548
+ animals are represented as positive numbers, exported animals as negative numbers. The dashed line represents the Tabaski festival
549
+ on July 31, the dotted line represents the Grand Magal of Touba festival on October 6.
550
+ 4.3 Frequency of links
551
+ Figure 5 shows the trade links divided by the frequency of their activity over the course of the year.
552
+ In general, far more links were characterized by low and very low activity than by very high activity.
553
+
554
+ The backbone links are three national, short-range connections between north-eastern and north-
555
+ western nodes: Kanel – Pikine, Ranérou Ferlo – Linguère, Ranérou Ferlo – Mbacké. The majority of
556
+ frequent links is concentrated in the north of Senegal, where several connections link eastern and
557
+ western nodes, but some connections link northern and southern nodes. Moreover, some international
558
+ links are frequent, in particular four originating from Mali and one from Guinea-Bissau. The number
559
+ of intermediate links is significantly larger than that of the two previous categories, with several
560
+ connections between Senegal and Mali, and between Senegal and Mauritania. Occasional links are
561
+ extremely numerous and dense, with several connections in Senegal but also links to all its
562
+ neighboring countries (Figure 5). The majority of intermediate and occasional links are active in July
563
+ and October, due to the Tabaski and the Grand Magal of Touba religious festivals. However,
564
+ considering the whole study period, frequent links are the most common (SI Figure 4).
565
+ 10°N
566
+ 12°N
567
+ 14°N
568
+ 16°N
569
+ 18°N
570
+ 20°N
571
+ 15°W
572
+ 10°W
573
+ 5°W
574
+
575
+ 5°E
576
+ Longitude
577
+ Latitude
578
+ Cluster
579
+ 1
580
+ 2
581
+ 3
582
+ Volume
583
+ 202
584
+ 1892
585
+ 8912
586
+ 208462
587
+ A
588
+ −200,000
589
+ −100,000
590
+ 0
591
+ 100,000
592
+ 200,000
593
+ Jan.
594
+ Feb. March April May June July
595
+ Aug. Sept. Oct. Nov. Dec.
596
+ Month
597
+ Volume of animals
598
+ Cluster
599
+ 1
600
+ 2
601
+ 3
602
+ B
603
+
604
+
605
+ Figure 5: Geographical representation of the livestock network links, divided by the frequency of their activity over the year. Backbone
606
+ links were active in more than nine months, frequent links were active between four and nine months, intermediate links were active
607
+ for two or three months, and occasional links were active for only one month of the study period. We decided to only show the
608
+ administrative departments of Senegal on these maps. Therefore, concerning national trade, the origin and the destination are both
609
+ Senegalese departments, while for international trades, they may be a Senegalese department or a central point in a foreign country.
610
+
611
+ Backbone
612
+ 18°N
613
+ Mauritania
614
+ 17N
615
+ 16°N
616
+ 15°N
617
+ Mall
618
+ No
619
+ 13°N
620
+ 12°N
621
+ 11°N
622
+ Guinea
623
+ Frequent
624
+ 18°N
625
+ Mauritania
626
+ 17°N
627
+ 16°N
628
+ 15"N
629
+ Mali
630
+ 14°N
631
+ Gambia
632
+ 13°N
633
+ 12°N
634
+ Guinea
635
+ Frequency category
636
+ Backbone
637
+ Intermediate
638
+ Frequent
639
+ 18°N
640
+ Mauritania
641
+ intermediate
642
+ Occasional
643
+ 17°N
644
+ 16°N
645
+ 15°N
646
+ 14°N
647
+ Gambia
648
+ 13-N
649
+ 12°N
650
+ 11°N
651
+ Guinea
652
+ Occasional
653
+ 18°N
654
+ Mauritania
655
+ 17°N
656
+ 16°N
657
+ Niger
658
+ 15°N
659
+ Mali
660
+ 14°N
661
+ Gambia
662
+ 13°N
663
+ Burkina Faso
664
+ 12°N
665
+ Nigeria
666
+ 11°N
667
+ Guinea
668
+ 18W
669
+ 12°W
670
+ 10W
671
+ M.8
672
+ Mot
673
+ Longitude4.4 Epidemic threshold
674
+ Overall, the values of the epidemic threshold of all three networks are extremely low, particularly for
675
+ the combined livestock and the small ruminants network, whose results are almost identical. April is
676
+ the only month with a significantly higher value than in the rest of the year. On the other hand, the
677
+ epidemic threshold values of the cattle network (yellow curve in Figure 6), are higher overall, with a
678
+ value of 1 in April. The lowest values of this network were measured in January, June, and from
679
+ October until the end of the year (Figure 6).
680
+
681
+
682
+ Figure 6: Logarithmic representation of changes in the epidemic threshold over the course of the year in the three livestock mobility
683
+ networks. The zero on the left extremity of the horizontal axis identifies the value calculated for the whole year. The small ruminants
684
+ network is in yellow, the cattle network in green, and the combined livestock network in blue.
685
+
686
+ 4.5 Simulation of disease spread
687
+
688
+ Maps focused on Senegalese departments were drawn to compare the results of the simulations run
689
+ on the three networks in an efficient and easily understandable way (Figure 7). To assess the role of
690
+ changes in the structure of the networks over time, and hence changes in disease spread, we compared
691
+ the results of a static representation (in the column on the left) with those of a temporal representation
692
+ 1e−04
693
+ 1e−02
694
+ 1e+00
695
+ 0
696
+ 1
697
+ 2
698
+ 3
699
+ 4
700
+ 5
701
+ 6
702
+ 7
703
+ 8
704
+ 9
705
+ 10
706
+ 11
707
+ 12
708
+ Epidemic Threshold
709
+ Network
710
+ Cattle
711
+ Cattle and small ruminants
712
+ Small ruminants
713
+
714
+ (in the other seven columns). For the static representation, considering the time the outbreak began is
715
+ meaningless, whereas for the temporal one, it is important, as the network structure can change over
716
+ time. Therefore, each element in the seven columns representing the temporal networks corresponds
717
+ to the results of an outbreak that began in a specific week of the year (the number of the week is given
718
+ in the header of each map).
719
+
720
+ The departments are colored according to their infection time, i.e. the length of the period before they
721
+ were reached by the virus. For each scenario, the infection time was estimated as the time (number of
722
+ weeks) elapsed since the outbreak of the epidemic. We created four categories of infection time, each
723
+ category is shown in a different color: red for departments infected less than one month from the
724
+ beginning of the disease spread (less than 5 weeks), orange for departments infected after 1-2 months
725
+ (between 5 and 9 weeks), yellow for departments infected after more than two months (more than 9
726
+ weeks), and green for those never reached by the disease. If a node was reached by infections from
727
+ several sources, the shortest infection time was chosen.
728
+
729
+ For the static networks, we considered the number of links in the shortest path between the source
730
+ and the node as weeks: red for the shortest paths with less than 5 links, orange for paths with between
731
+ 5 and 9 links, yellow for paths with more than 9 links, and green for nodes that were never reached
732
+ by the disease.
733
+
734
+ The results presented are those of the simulation of a disease spreading from Mali, the origin of most
735
+ animals imported into Senegal in 2020. For the temporal networks, we present only a few weeks
736
+ characterized by activity, in order to be able to simultaneously show changes over time and
737
+ differences between the three networks. The complete results of the spread of a disease from Mali
738
+ plus for a disease spreading from Mauritania can be found in Supplementary Information (SI Figure
739
+ 5 – 10).
740
+
741
+ In general, in all three networks, maps representing aggregate networks strongly overestimated both
742
+ the quantity of potentially infected nodes and the earliness of infection, compared to those of temporal
743
+ networks. In addition, there is a difference in the potential sanitary risk between the cattle temporal
744
+ network and small ruminants temporal network, the latter showing on average wider and potentially
745
+ greater disease propagation. However, the combined network of cattle and small ruminants (the
746
+ livestock network) is under the greatest sanitary risk.
747
+
748
+
749
+ Figure 7 also shows that, particularly for the livestock network and the small ruminants network, the
750
+ periods around religious festivals (weeks 30 and 31 for the Tabaski, and weeks 40 and 41 for the
751
+ Grand Magal of Touba) are characterized by a large number of infected departments, some of which
752
+ are infected early.
753
+
754
+
755
+ Figure 7: Geographical representation of infection time in the case of disease propagation from Mali. For each mobility network, the
756
+ first column on the left represents the spread in the static network, the other seven columns represent the seven worst scenarios of
757
+ transmission if that specific week represents the beginning of the disease spread. The colors indicate the infection time of the disease:
758
+ red for less than one month, orange for less than two months, yellow for more than two months, green for nodes that have never been
759
+ touched in one year time. For the static networks in the first column on the left, the colors are based on the number of links in the path:
760
+ up to 5 in red, green for nodes that have never been touched in one year time. The squares outlined in blue identify the week of the
761
+ Tabaski festival (week 31) and the week of the Grand Magal of Touba festival (week 41).
762
+ 5. Discussion and conclusions
763
+ In 2020, during the COVID-19 pandemic, several restrictive measures were introduced in Senegal
764
+ that affected both human and livestock mobility. Borders were closed for both humans and animals
765
+ in March 2020 and, at the same time, movements between regions were regulated. To supply markets
766
+ and families in preparation for the Tabaski festival on July 31, borders were reopened 45 days before
767
+ Tabaski and measures were eased for national and international movement (lettre circulaire n° 01806
768
+ PR/MESG/CT-PSS du 17 juin 2020). Similar decisions were taken on the occasion of the Grand
769
+ Magal of Touba, a religious pilgrimage during which a large number of cattle in particular are sold
770
+ and consumed. The application of these restrictions had a huge effect on the structure of the networks
771
+ and on the risk of introduction and diffusion of pathogens, as did re-opening the border. To assess the
772
+ impact of these measures on the spread of livestock diseases, and for possible future use, we used
773
+ tools from temporal network theory to identify the area with the highest risk of introduction. It is
774
+
775
+ Static
776
+ All
777
+ merimportant to note that normally, there are other religious festivals, like Gamou of Tivaouane, in
778
+ addition to the Grand Magal of Touba, but these were cancelled due to COVID-19 pandemic.
779
+
780
+ In our study, we considered the diffusion of a generic direct animal disease transmission and
781
+ estimated the vulnerability and the reachability of nodes when the underlined network changes over
782
+ time. In this way, we were able to identify Senegalese departments that could be infected at the earliest
783
+ stage of an epidemic. With a few modifications, our approach could be extended to include vector-
784
+ borne diseases.
785
+ The structure of the Senegalese livestock network varies widely over the course of the year due to the
786
+ seasonality of transhumance and the effect of religious festivals (Apolloni et al., 2019; Jahel et al.,
787
+ 2020) but, in 2020, these effects were exacerbated by the restrictive measures introduced as a result
788
+ of Covid-19. In fact, around June and July, we noted a pickup in the movement and exchange of
789
+ animals (mainly small ruminants) mainly due to the easing of the restrictive measures in preparation
790
+ for the Tabaski festival and (mainly cattle) for the Grand Magal of Touba festival. We also noted that
791
+ the dynamics of the small ruminants trade strongly drive the dynamics of the network as a whole.
792
+
793
+ Dakar is the main consumption area of Senegal because almost a quarter of the population of the
794
+ country live in the city. Consequently, the main markets of Dakar and Pikine (at the entrance of
795
+ Dakar) are the main destination of livestock movements. In particular, regular movements occur
796
+ between the areas of Kanel, Ranerou Ferlo, Dahra and the Senegalese capital. In these areas, there is
797
+ a high concentration of collection markets (local name luma), where traders frequently buy animals
798
+ to be sold directly to Dakar, or to the other collection markets in Dahra or Thiès before being sent on
799
+ to the capital city. Overall, the majority of northern links end in the Dakar region, or in some smaller
800
+ but nevertheless important markets such as Saint-Louis, Thiès, Mbour, but also Ziguinchor in the
801
+ south. Some links in the southeast start from Tambacounda, an important point of convergence for
802
+ animals from eastern Senegal, as well as from Mauritania and Mali. Our analysis revealed that the
803
+ role played by the different departments changes over the course of the year. Locations that are idle
804
+ for a large part of the year become active during the Tabaski period and continue to be active until
805
+ the end of the year, in particular, departments that produce small ruminants. Occasional and
806
+ intermediate links that are active a few times a year, are usually located near festival centers, to
807
+ support the increased supply of livestock, thereby increasing the sanitary risk.
808
+
809
+ Analysis of the threshold parameters showed that the network is prone to disease spread, but that the
810
+ risk fluctuates over the course of the year. The risk increases significantly on the occasion of festivals
811
+
812
+ due to the introduction of large numbers of animals and the creation of new commercial routes, and
813
+ diseases can then spread easily across the network. However, the potential infected areas, and the
814
+ reachable time does not remain stable over the course of the year and this information cannot be
815
+ captured using a static representation of the network. In fact, a static representation of the mobility
816
+ patterns may largely overestimate the speed and the extent of disease diffusion: when the simple static
817
+ approach is used, diseases appear to spread throughout the country in less than a month, whereas
818
+ temporal analysis shows that reachability and vulnerability of departments varies over the course of
819
+ the year. In most cases, and depending on the species involved, few departments are reached in a
820
+ month, although during the months around Tabaski and Grand Magal, the number of departments that
821
+ can be reached increases drastically, and for some departments (like Dakar, Thiès, Tambacounda and
822
+ Dahra) where the main markets are located, and at the border, this risk is even higher. These results
823
+ could be of great interest not only for risk-based surveillance but also for optimizing the distribution
824
+ of resources and personnel needed for control at specific times of the year by focusing on the areas
825
+ that are most likely to be reached. The fact that departments located at the border are most prone to
826
+ early infection, means that sanitary control at the border should be strengthened and surveillance and
827
+ control measures should be harmonized at regional level.
828
+
829
+ Previous works already underlined the importance of mobility and of data collection as a tool to
830
+ improve surveillance and control in Africa (Chaters et al., 2019; Motta et al., 2017; Nicolas et al.,
831
+ 2018). Our work fits into this strand, emphasizing the importance of collecting data on animal
832
+ mobility on a regular basis in order to retrieve information on structural changes. The objective of the
833
+ present study is to provide theoretical tools to assess the importance of network dynamics when
834
+ planning control and surveillance policies. A more detailed analysis focused on specific diseases and
835
+ that accounts for volume distribution may reduce the list of departments to monitor. To this end,
836
+ further simulations are needed and their results will depend to a large extent on the characteristics of
837
+ the disease concerned, e.g. it transmissibility and incubation period, that could shape the spatio-
838
+ temporal pattern of the epidemics and hence the involvement of the different departments. Future
839
+ works should thus also consider stochastic models like Kim et al. (2018) (Kim et al., 2018) for specific
840
+ diseases. In the model we used here, we aggregated data at the spatial scale of an administrative
841
+ department, based on the assumption that the diffusion within a department is homogeneous. In
842
+ practice, the presence of markets or transhumance corridors could attract movements in specific parts
843
+ of the department, thereby increasing the risk in certain locations over the risk in other parts of the
844
+ same department. Data on movements within departments were rare in our dataset (because of the
845
+ way data were collected) and further field studies are recommended to collect data at a finer scale.
846
+
847
+
848
+
849
+ 6. Acknowledgments
850
+ The authors are grateful to Dr Mbargou Lô, head of the veterinary Services Directorate, and Dr
851
+ Mathioro Fall, head of Animal Health Protection Division. The authors acknowledge the support of
852
+ Yves Amevoin, Alioune Ka, Fallou Niakh, and Khady Ndiaye, and all those who assisted in the LPS
853
+ collection. We thank all the donors who supported the CGIAR Livestock research program through
854
+ their contributions to the CGIAR trust fund.
855
+ 7. Funding
856
+ This study was partially funded by the Project Eco-PPR (European Commission through the
857
+ International Fund for Agricultural Development (grant number 2000002577) and the CGIAR
858
+ Livestock research program, RVF OIE twinning program (CIRAD-ISRA) granted through the EBO-
859
+ SURSY project (European Union FOOD/2016/379-660). The funders had no role in study design,
860
+ data collection and analysis, decision to publish, or preparation of the manuscript.
861
+
862
+ 8. Conflict of interest statement
863
+ All authors declare that they have no conflicts of interest.
864
+
865
+ 9. References
866
+ ANSD. (2013). Recensement Général de la Population et de l’Habitat, de l’Agriculture et de l’Elevage
867
+ (RGPHAE).
868
+ ANSD. (2020). Situation économique et sociale du Sénégal Ed. 2017/2018 (p. 413).
869
+ Apolloni, A., Corniaux, C., Coste, C., Lancelot, R., & Toure, I. (2019). Livestock Mobility in West
870
+ Africa and Sahel and Transboundary Animal Diseases. In Transboundary Animal Diseases in
871
+ Sahelian Africa and Connected Regions (p. 31:52). Springer International Publishing.
872
+ https://doi.org/10.1007/978-3-030-25385-1
873
+ Apolloni, A., Nicolas, G., Coste, C., EL Mamy, A. B., Yahya, B., EL Arbi, A. S., Gueya, M. B.,
874
+ Baba, D., Gilbert, M., & Lancelot, R. (2018). Towards the description of livestock mobility
875
+
876
+ in Sahelian Africa: Some results from a survey in Mauritania. PLoS ONE, 13(1).
877
+ https://doi.org/10.1371/journal.pone.0191565
878
+ Bender-deMoll, S., Morris, M., & Moody, J. (2021, aprile 23). Tools for Temporal Social Network
879
+ Analysis [R package tsna version 0.3.3]. Comprehensive R Archive Network (CRAN).
880
+ https://CRAN.R-project.org/package=tsna
881
+ Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., & Pedreschi, D. (2013). Evolving networks:
882
+ Eras and turning points. Intell. Data Anal. https://doi.org/10.3233/IDA-120566
883
+ Bossard,
884
+ L.
885
+ (2009).
886
+ Regional
887
+ Atlas
888
+ on
889
+ West
890
+ Africa.
891
+ Éditions
892
+ OCDE.
893
+ https://doi.org/10.1787/9789264056763-en
894
+ Bouslikhane, M. (2015). CROSS BORDER MOVEMENTS OF ANIMALS AND ANIMAL
895
+ PRODUCTS AND THEIR RELEVANCE TO THE EPIDEMIOLOGY OF ANIMAL
896
+ DISEASES IN AFRICA. OIE Regional Commission.
897
+ Butts, C. T. (2020, ottobre 6). Tools for Social Network Analysis [R package sna version 2.6].
898
+ Comprehensive R Archive Network (CRAN). https://CRAN.R-project.org/package=sna
899
+ Celebi, M. E. (A c. Di). (2015). Partitional Clustering Algorithms. Springer International Publishing.
900
+ https://doi.org/10.1007/978-3-319-09259-1
901
+ Cesaro, J. D., Magrin, G., & Ninot, O. (2010). Atlas de l’elevage au Senegal: Commerces et
902
+ territoires. PRODIG. http://publications.cirad.fr/une_notice.php?dk=558823
903
+ Chaters, G., Johnson, P., Cleaveland, S., Crispell, J., De Glanville, W., Doherty, T., Matthews, L.,
904
+ Mohr, S., Nyasebwa, O., Rossi, G., Salvador, L., Swai, E., & Kao, R. (2019). Analysing
905
+ livestock network data for infectious disease control: An argument for routine data collection
906
+ in emerging economies. Philosophical Transactions of the Royal Society B: Biological
907
+ Sciences, 374, 20180264. https://doi.org/10.1098/rstb.2018.0264
908
+ Di Nardo, A., Knowles, N. j, & Paton, D. j. (2011). Combining livestock trade patterns with
909
+ phylogenetics to help understand the spread of foot and mouth disease in sub-Saharan Africa,
910
+ the Middle East and Southeast Asia. 30(1), 63. https://doi.org/10.20506/rst.30.1.2022
911
+
912
+ Dubé, C., Ribble, C., Kelton, D., & McNab, B. (2009). A Review of Network Analysis Terminology
913
+ and its Application to Foot-and-Mouth Disease Modelling and Policy Development.
914
+ Transboundary and Emerging Diseases, 56(3), 73–85. https://doi.org/10.1111/j.1865-
915
+ 1682.2008.01064.x
916
+ Jahel, C., Lenormand, M., Seck, I., Apolloni, A., Toure, I., Faye, C., Sall, B., Lo, M., Diaw, C. S.,
917
+ Lancelot, R., & Coste, C. (2020). Mapping livestock movements in Sahelian Africa. Scientific
918
+ Reports, 10. https://doi.org/10.1038/s41598-020-65132-8
919
+ Kassambara, A., & Mundt, F. (2020, aprile 1). Extract and Visualize the Results of Multivariate Data
920
+ Analyses [R package factoextra version 1.0.7]. Comprehensive R Archive Network (CRAN).
921
+ https://CRAN.R-project.org/package=factoextra
922
+ Kim, Y., Dommergues, L., M’sa, A. B., Mérot, P., Cardinale, E., Edmunds, J., Pfeiffer, D., Fournié,
923
+ G., & Métras, R. (2018). Livestock trade network: Potential for disease transmission and
924
+ implications for risk-based surveillance on the island of Mayotte. Scientific Reports, 8(1),
925
+ 11550. https://doi.org/10.1038/s41598-018-29999-y
926
+ Lancelot, R., Béral, M., Rakotoharinome, V. M., Andriamandimby, S.-F., Héraud, J.-M., Coste, C.,
927
+ Apolloni, A., Squarzoni-Diaw, C., de La Rocque, S., Formenty, P. B. H., Bouyer, J., Wint, G.
928
+ R. W., & Cardinale, E. (2017). Drivers of Rift Valley fever epidemics in Madagascar.
929
+ Proceedings
930
+ of
931
+ the
932
+ National
933
+ Academy
934
+ of
935
+ Sciences,
936
+ 114(5),
937
+ 938–943.
938
+ https://doi.org/10.1073/pnas.1607948114
939
+ Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: A Package for Multivariate Analysis. Journal of
940
+ Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
941
+ Lentz, H. H. K., Koher, A., Hövel, P., Gethmann, J., Sauter-Louis, C., Selhorst, T., & Conraths, F. J.
942
+ (2016). Disease Spread through Animal Movements: A Static and Temporal Network
943
+ Analysis
944
+ of
945
+ Pig
946
+ Trade
947
+ in
948
+ Germany.
949
+ PloS
950
+ One,
951
+ 11(5),
952
+ e0155196.
953
+ https://doi.org/10.1371/journal.pone.0155196
954
+
955
+ Masuda, N., & Holme, P. (2013). Predicting and controlling infectious disease epidemics using
956
+ temporal networks. F1000Prime Reports, 5, 6. https://doi.org/10.12703/P5-6
957
+ Ministère de l’Intérieur du Sénégal. (2017). Politique de Gouvernance intérieure | Ministère de
958
+ l’Intérieur. https://interieur.sec.gouv.sn/administration-territoriale/politique-de-gouvernance-
959
+ interieure
960
+ Missohou, A., Nahimana, G., Ayssiwede, S. B., & Sembene, M. (2016). Elevage caprin en Afrique
961
+ de l’Ouest: Une synthèse. Revue d’élevage et de médecine vétérinaire des pays tropicaux,
962
+ 69(1), 3. https://doi.org/10.19182/remvt.31167
963
+ Motta, P., Porphyre, T., Handel, I., Hamman, S. M., Ngu Ngwa, V., Tanya, V., Morgan, K., Christley,
964
+ R., & Bronsvoort, B. M. deC. (2017). Implications of the cattle trade network in Cameroon
965
+ for
966
+ regional
967
+ disease
968
+ prevention
969
+ and
970
+ control.
971
+ Scientific
972
+ Reports,
973
+ 7.
974
+ https://doi.org/10.1038/srep43932
975
+ Muwonge, A., Bessell, P. R., Porphyre, T., Motta, P., Rydevik, G., Devailly, G., Egbe, N. F., Kelly,
976
+ R. F., Handel, I. G., Mazeri, S., & Bronsvoort, B. M. deC. (2021). Inferring livestock
977
+ movement networks from archived data to support infectious disease control in developing
978
+ countries. https://doi.org/10.1101/2021.03.18.435930
979
+ Nicolas, G., Apolloni, A., Coste, C., Wint, G. R. W., Lancelot, R., & Gilbert, M. (2018). Predictive
980
+ gravity models of livestock mobility in Mauritania: The effects of supply, demand and cultural
981
+ factors. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0199547
982
+ Schirdewahn, F., Lentz, H. H. K., Colizza, V., Koher, A., Hövel, P., & Vidondo, B. (2021). Early
983
+ warning of infectious disease outbreaks on cattle-transport networks. PLOS ONE, 16(1),
984
+ e0244999. https://doi.org/10.1371/journal.pone.0244999
985
+ Tennekes, M. (2018). tmap: Thematic Maps in R. Journal of Statistical Software, 84(6).
986
+ https://doi.org/10.18637/jss.v084.i06
987
+ Valerio, V. C. (2020). The structure of livestock trade in West Africa (West African Papers Fasc. 29;
988
+ West African Papers, Vol. 29). https://doi.org/10.1787/f8c71341-en
989
+
990
+ Valerio, V. C., Walther, O. J., Eilittä, M., Cissé, B., Muneepeerakul, R., & Kiker, G. A. (2020).
991
+ Network analysis of regional livestock trade in West Africa. PLoS ONE, 15(5).
992
+ https://doi.org/10.1371/journal.pone.0232681
993
+ Volkova, V. V., Howey, R., Savill, N. J., & Woolhouse, M. E. J. (2010). Sheep Movement Networks
994
+ and
995
+ the
996
+ Transmission
997
+ of
998
+ Infectious
999
+ Diseases.
1000
+ PLoS
1001
+ ONE,
1002
+ 5(6),
1003
+ e11185.
1004
+ https://doi.org/10.1371/journal.pone.0011185
1005
+ Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd ed. 2016). Springer
1006
+ International Publishing : Imprint: Springer. https://doi.org/10.1007/978-3-319-24277-4
1007
+ Williams, M. J., & Musolesi, M. (2016). Spatio-temporal networks: Reachability, centrality and
1008
+ robustness. Royal Society Open Science, 3(6), 160196. https://doi.org/10.1098/rsos.160196
1009
+ World
1010
+ Bank.
1011
+ (2022).
1012
+ Population
1013
+ Senegal
1014
+ [Text/HTML].
1015
+ World
1016
+ Bank.
1017
+ https://www.worldbank.org/en/country/senegal/overview
1018
+
1019
+
1020
+
1021
+
1022
+ Supplementary information
1023
+
1024
+
1025
+
1026
+ SI Figure 1: Map of Senegal colored based on the aridity index. The inset map shows all the countries involved in livestock mobility
1027
+ network.
1028
+
1029
+
1030
+
1031
+ V
1032
+ Mauritania
1033
+ Mali
1034
+ Niger
1035
+ SENEGAL
1036
+ MAURITANIA
1037
+ Gambia
1038
+ Burkina Faso
1039
+ Podor
1040
+ suin
1041
+ Nigeria
1042
+ Senegal
1043
+ Saint-Louis
1044
+ RiverValley
1045
+ Matam
1046
+ Louga
1047
+ Sylvopastoral
1048
+ Dahra
1049
+ zone
1050
+ Kanel
1051
+ Pikine
1052
+ Tivaouane
1053
+ Touba
1054
+ Thies
1055
+ Mbake
1056
+ DAKAR
1057
+ Rur
1058
+ oue
1059
+ Diourbel
1060
+ M'bour
1061
+ Groundnut
1062
+ -Kaolack
1063
+ basin
1064
+ Tambacounda
1065
+ Eastern
1066
+ MALI
1067
+ Senegal
1068
+ GAMBIA
1069
+ casamdne
1070
+ OKolda
1071
+ Ziguinchor
1072
+ GUINEA-BISSAU
1073
+ GUINEA
1074
+ 0
1075
+ 100
1076
+ 200km
1077
+ Aridity Index
1078
+ Maincities(population)
1079
+ Agro-ecologicalzones
1080
+ 0.03 -0.2
1081
+ Morethan500,000
1082
+ Borders
1083
+ 0.2-0.35
1084
+ 100,000-500,000
1085
+ 0.35-0.5
1086
+ Main rivers
1087
+ 50000-100,000
1088
+ 0.5-0.65
1089
+ o
1090
+ Lessthan50,000
1091
+ 0.65-0.8
1092
+
1093
+ Small Ruminants
1094
+ Cattle
1095
+ Links in common
1096
+ Whole year
1097
+
1098
+ 503
1099
+ 329
1100
+ 242
1101
+ Months
1102
+
1103
+
1104
+
1105
+
1106
+
1107
+ January
1108
+ 42
1109
+ 27
1110
+ 13
1111
+
1112
+ February
1113
+ 52
1114
+ 27
1115
+ 22
1116
+
1117
+ March
1118
+ 59
1119
+ 30
1120
+ 19
1121
+
1122
+ April
1123
+ 26
1124
+ 18
1125
+ 12
1126
+
1127
+ May
1128
+ 27
1129
+ 22
1130
+ 11
1131
+
1132
+ June
1133
+ 71
1134
+ 28
1135
+ 20
1136
+
1137
+ July
1138
+ 202
1139
+ 47
1140
+ 37
1141
+
1142
+ August
1143
+ 29
1144
+ 21
1145
+ 6
1146
+
1147
+ September
1148
+ 24
1149
+ 41
1150
+ 14
1151
+
1152
+ October
1153
+ 131
1154
+ 123
1155
+ 66
1156
+
1157
+ November
1158
+ 163
1159
+ 113
1160
+ 69
1161
+
1162
+ December
1163
+ 184
1164
+ 128
1165
+ 82
1166
+ SI Table 1: Number of unique trade links in the small ruminant network and in the cattle network. The values are represented divided
1167
+ by month, while the “whole year” line corresponds to the number of unique links considering the network as static. The last column
1168
+ shows the number of links that are used by the two species.
1169
+
1170
+
1171
+
1172
+
1173
+
1174
+ Truck
1175
+ Others
1176
+ Links in common
1177
+
1178
+
1179
+ Water
1180
+ Walking
1181
+ Train
1182
+ Whole year
1183
+
1184
+ 552
1185
+ 9
1186
+ 85
1187
+ 2
1188
+ 55
1189
+ Months
1190
+
1191
+
1192
+
1193
+
1194
+
1195
+
1196
+
1197
+ January
1198
+ 49
1199
+ 0
1200
+ 8
1201
+ 0
1202
+ 1
1203
+
1204
+ February
1205
+ 56
1206
+ 0
1207
+ 3
1208
+ 0
1209
+ 2
1210
+
1211
+ March
1212
+ 67
1213
+ 0
1214
+ 3
1215
+ 0
1216
+ 0
1217
+
1218
+ April
1219
+ 31
1220
+ 0
1221
+ 1
1222
+ 0
1223
+ 0
1224
+
1225
+ May
1226
+ 38
1227
+ 0
1228
+ 0
1229
+ 0
1230
+ 0
1231
+
1232
+ June
1233
+ 73
1234
+ 0
1235
+ 9
1236
+ 0
1237
+ 3
1238
+
1239
+ July
1240
+ 207
1241
+ 0
1242
+ 11
1243
+ 0
1244
+ 6
1245
+
1246
+ August
1247
+ 43
1248
+ 0
1249
+ 3
1250
+ 0
1251
+ 2
1252
+
1253
+ September
1254
+ 42
1255
+ 3
1256
+ 11
1257
+ 0
1258
+ 5
1259
+
1260
+ October
1261
+ 178
1262
+ 1
1263
+ 17
1264
+ 1
1265
+ 9
1266
+
1267
+ November
1268
+ 178
1269
+ 3
1270
+ 33
1271
+ 0
1272
+ 7
1273
+
1274
+ December
1275
+ 219
1276
+ 3
1277
+ 20
1278
+ 1
1279
+ 11
1280
+ SI Table 2: Number of unique trade links according to the means of transport. The values are given per month, while the “whole year”
1281
+ line corresponds to the number of unique links considering the network as static. The last column shows the number of links that are
1282
+ shared by the movements made by truck and those made by all other types of transport, including on foot.
1283
+
1284
+
1285
+
1286
+
1287
+
1288
+
1289
+ SI Figure 2: volume of livestock traded in 2020 divided by week. Cattle are shown in yellow and small ruminants are in green. The
1290
+ black dashed line represents the day of the Tabaski festival (July 31), the black dotted line represents the day of the Grand Magal of
1291
+ Touba (October 6). The months are indicated by the gray dashed lines.
1292
+
1293
+
1294
+
1295
+ SI Figure 3: Graphical visualization of methods chosen to assess the number of clusters: (A) Elbow method, (B) cluster dendrogram,
1296
+ and (C) cluster division with the HCPC (Hierarchical Clustering on Principal Components) function of the FactoMineR package.
1297
+
1298
+ 120.000
1299
+ B0T000
1300
+ folume of animal
1301
+ WCK
1302
+ Spedes
1303
+ Cefle
1304
+ Smel rumnantOptimalnumberofclusters
1305
+ Factormap
1306
+ 5e+05
1307
+ ofSqu
1308
+ 4e+05
1309
+ 2e+05
1310
+ 2
1311
+ 3
1312
+ 4
1313
+ 5
1314
+ 6
1315
+ 10
1316
+ cluster
1317
+ Numberofclustersk
1318
+ ClusterDendrogram
1319
+ 4-
1320
+ Height
1321
+ -2.
1322
+ Dim1 (50.9%)
1323
+
1324
+ SI Figure 4: Activity of the links over the course of the year. For each month, the quantity of active links is shown, colored according
1325
+ to their frequency. Backbone links are those active more than nine months a year, frequent links are those active from four to nine
1326
+ months, intermediate links are those active two or three months, and occasional links are only active one month. The orange line
1327
+ represents the Tabaski festival (July 31), the violet line represents the Grand Magal of Touba festival (October 6).
1328
+
1329
+ 200
1330
+ 150
1331
+ 100
1332
+ 50
1333
+ Jan.
1334
+ Fob.
1335
+ April
1336
+ May
1337
+ Juy
1338
+ Aug.
1339
+ Sept.
1340
+ Ort.
1341
+ Nov.
1342
+ Dec.
1343
+ Month
1344
+ Berckbone
1345
+ I feguon
1346
+ I reguency category
1347
+ Intermeclafe
1348
+ Occasional
1349
+
1350
+ SI Figure 5: Geographical representation of infection time, in the case of a disease propagated from Mali through the livestock
1351
+ network. Temporal network on the left, static network on the right. For the static network, the colors are based on the links in the
1352
+ path: up to 5 in red, between 5 and 9 in orange, more than 9 in yellow. Nodes that have never been reached are in green.
1353
+
1354
+ Infectiontime
1355
+ Withinonemonth
1356
+ Withintwomonths
1357
+ Aftertwomonths
1358
+ Never
1359
+ 42
1360
+
1361
+ SI Figure 6: Geographical representation of infection time, in the case of a disease propagated from Mali through the small ruminant
1362
+ network. Temporal network on the left, static network on the right. For the static network, the colors are based on the links in the path:
1363
+ up to 5 in red, between 5 and 9 in orange, more than 9 in yellow. Nodes that have never been touched are colored green.
1364
+
1365
+ Infectiontime
1366
+ Withinonemonth
1367
+ Withintwomonths
1368
+ Aftertwomonths
1369
+ Never
1370
+
1371
+ SI Figure 7: Geographical representation of infection time in the case of a disease propagated from Mali through the cattle network.
1372
+ Temporal network on the left, static network on the right. For the static network, the colors are based on the links in the path: up to 5
1373
+ in red, between 5 and 9 in orange, more than 9 in yellow. Nodes that have never been touched are colored green.
1374
+
1375
+ Infectiontime
1376
+ Withinonemonth
1377
+ Withintwomonths
1378
+ Aftertwomonths
1379
+ Never
1380
+
1381
+ SI Figure 8: Geographical representation of infection time in the case of a disease propagated from Mauritania through the livestock
1382
+ network. Temporal network on the left, static network on the right. For the static network, the colors are based on the links in the
1383
+ path: up to 5 in red, between 5 and 9 in orange, more than 9 in yellow. Nodes that have never been touched are colored green.
1384
+
1385
+ Infectiontime
1386
+ Withinonemonth
1387
+ Withintwomonths
1388
+ Aftertwomonths
1389
+ Never
1390
+
1391
+
1392
+ SI Figure 9: Geographical representation of infection time in the case of a disease propagated from Mauritania through the small
1393
+ ruminant network. Temporal network on the left, static network on the right. For the static network, the colors are based on the links
1394
+ in the path: up to 5 in red, between 5 and 9 in orange, more than 9 in yellow. Nodes that have never been touched are colored green.
1395
+
1396
+
1397
+
1398
+ Infectiontime
1399
+ Withinonemonth
1400
+ Withintwomonths
1401
+ Aftertwomonths
1402
+ Never
1403
+ 45
1404
+
1405
+ SI Figure 10: Geographical representation of infection time in the case of a disease propagated from Mauritania through the cattle
1406
+ network. Temporal network on the left, static network on the right. For the static network, the colors are based on the links in the path:
1407
+ up to 5 in red, between 5 and 9 in orange, more than 9 in yellow. Nodes that have never been touched are colored green.
1408
+
1409
+ 37
1410
+ 38
1411
+ 39
1412
+ Infectiontime
1413
+ 42
1414
+ Withinonemonth
1415
+ Withintwomonths
1416
+ Aftertwomonths
1417
+ Never
1418
+ Gt
_NFKT4oBgHgl3EQfUi2J/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
btFAT4oBgHgl3EQf5R5J/content/tmp_files/2301.08732v1.pdf.txt ADDED
@@ -0,0 +1,2691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime
2
+ Rick Bebon and Aljaˇz Godec∗
3
+ Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 G¨ottingen, Germany
4
+ We derive general bounds on the probability that the empirical first-passage time τ n ≡ �n
5
+ i=1 τi/n
6
+ of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates
7
+ from the true mean first-passage time by more than any given amount in either direction. We
8
+ construct non-asymptotic confidence intervals that hold in the elusive small-sample regime and
9
+ thus fill the gap between asymptotic methods and the Bayesian approach that is known to be
10
+ sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. Our
11
+ concentration-of-measure-based results allow for model-free error control and reliable error estimation
12
+ in kinetic inference, and are thus important for the analysis of experimental and simulation data in
13
+ the presence of limited sampling.
14
+ The first-passage time τ denotes the time a random pro-
15
+ cess reaches a threshold a, typically referred to as the “tar-
16
+ get”, for the first time. First-passage times [1–4] quantify
17
+ the kinetics of chemical reactions [5–10], cell signaling and
18
+ gene regulation in the low-copy [11–20] and “fastest en-
19
+ counter” limits [21–29], intracellular transport [30], RNA
20
+ biosynthesis [31], protein accumulation [32, 33] and DNA-
21
+ binding [34], emergence of drug resistance [35], virus up-
22
+ take [36], spreading of diseases [37, 38], and the foraging
23
+ behavior of bacteria and animals [39]. First-passage the-
24
+ ory was further applied to nanocluster formation [40], cell
25
+ adhesion [41–43], gating of ion channels [44], and diffusion
26
+ through interfaces [45] and across phase boundaries [46].
27
+ In more abstract settings, first-passage times charac-
28
+ terize barrier-crossing in energy landscapes [6, 23, 47–
29
+ 54], persistence properties [55–61], and the statistics of
30
+ stochastic currents [62, 63], thermodynamic entropy pro-
31
+ duction [64–67], and dynamical activity [68, 69] in non-
32
+ equilibrium systems. First-passage ideas are intimately
33
+ tied to the statistics of extremes [70–73], and were ex-
34
+ tended to quantum systems [74, 75], additive functionals
35
+ of stochastic paths [76–81], intermittent targets [82–85],
36
+ active particles [86, 87], non-Markovian dynamics [88–91],
37
+ and processes under resetting [92–101].
38
+ Whereas theoretical studies focus on predicting first-
39
+ passage statistics, practical applications typically aim
40
+ at inferring kinetic rates—inverse mean first-passage
41
+ times—from experimental [52, 102–106] or simulation
42
+ data [51, 107–113]. The inference of empirical first-passage
43
+ times τ n ≡ �n
44
+ i=1 τi/n from data is, however, challenging
45
+ because usually only a small number of realizations n
46
+ (typically 1-10 [113–118], sometimes up to 100 [119]) is
47
+ available, which gives rise to large uncertainties and non-
48
+ Gaussian errors. Insufficient sampling is especially detri-
49
+ mental in the case of broadly distributed [51, 120, 121]
50
+ and high-dimensional data [106]. Moreover, first-passage
51
+ times are generically not exponentially distributed [8, 9,
52
+ 17, 19, 23, 24, 122–127], which further complicates quan-
53
+ tification of uncertainty. A systematic understanding of
54
+ statistical deviations of the empirical from the true mean
55
+ first-passage time (see Fig. 1a), especially in the small-
56
+ sample n ≲ 100 regime, remains elusive.
57
+ Computer simulations in particular often suffer from
58
+ FIG. 1. Deviations of empirical first-passage times from the
59
+ true mean and model systems. (a) Schematic probability den-
60
+ sity of empirical first-passage time τ n inferred from a sample
61
+ of n realizations of an ergodic reversible Markov process. The
62
+ tail probability that the estimate τ n deviates from the true
63
+ mean ⟨τ⟩ by more or equal than t upwards P(τ n ≥ ⟨τ⟩ + t)
64
+ or downwards P(τ n ≤ ⟨τ⟩ − t) is shown in green and blue,
65
+ respectively. (b) Brownian molecular search process in a d-
66
+ dimensional domain (here d = 2) with outer radius R and
67
+ target radius a. Discrete-state Markov jump models of protein
68
+ folding for (c) a toy protein and (d) experimentally inferred
69
+ model of calmodulin [124]. Transitions between states are in-
70
+ dicated by arrows and obey detailed balance. For all systems
71
+ considered the absorbing target is colored red.
72
+ insufficient sampling, which leads to substantial errors in
73
+ inferred rates [128–131] and, in the worst case, erroneous
74
+ conclusions (see discussion in [113, 132]). Even extensive
75
+ computing resources may result in only a few indepen-
76
+ dent estimates spread over many orders of magnitude,
77
+ rendering uncertainty quantification challenging and not
78
+ amenable to standard error analysis [116].
79
+ Constructing reliable confidence intervals is a fundamen-
80
+ tal challenge in statistical inference, and many prevalent
81
+ methods rely on asymptotic arguments that hold when
82
+ the number of realizations tends to infinity. However, the
83
+ applicability of asymptotic results in a finite-sample set-
84
+ ting is, by definition, problematic. In particular, Central-
85
+ Limit- and bootstrapping-based methods [133] may easily
86
+ arXiv:2301.08732v1 [cond-mat.stat-mech] 20 Jan 2023
87
+
88
+ 2
89
+ underestimate the uncertainty for small n and fail to guar-
90
+ antee coverage of the confidence level [116, 134–139].
91
+ Conversely, Bayesian methods (see e.g. [140]) do not
92
+ rely on asymptotic arguments and are therefore often (in
93
+ general erroneously [141, 142]) believed to readily alle-
94
+ viate the small-sample problem. Bayesian estimates are
95
+ sensitive to, dependent on, and potentially biased by, the
96
+ specification of the prior distribution, especially in the
97
+ small-sample setting [140, 143–145]. Due to the prior
98
+ dependence of estimates and their uncertainties, Bayesian
99
+ methods must be treated with care when applied to small
100
+ samples [146, 147] (see [123, 129, 148–150] specifically for
101
+ kinetic inference) and can perform worse than asymptotic
102
+ frequentist methods [146].
103
+ Moreover, so-called “credible intervals”—the Bayesian
104
+ analogue to confidence intervals—have a nominally differ-
105
+ ent meaning, as they treat the estimated parameter as a
106
+ random variable. Bayesian posterior intervals are similarly
107
+ affected by limited sampling [116], i.e. the constructed
108
+ uncertainty estimates and their quality are sensitive to
109
+ the choice of prior probability [141, 142] and may likely
110
+ underestimate the true uncertainty and thus fail to pro-
111
+ vide trustworthy confidence intervals [129, 151].
112
+ On a more subtle level, the classical Bernstein-von-
113
+ Mises theorem establishes a rigorous (frequentist) justi-
114
+ fication of posterior-based Bayesian credible intervals as
115
+ asymptotically correct, prior independent confidence inter-
116
+ vals for (finite dimensional) parametric models in the large-
117
+ sample limit [152–154]. Analogous statements for semi-
118
+ parametric and (infinite dimensional) non-parametric
119
+ models are more delicate [155–158] and, despite having
120
+ received signifficant attention [159–170] (see also [171]
121
+ for misspecified and high dimensional [172] parametric
122
+ models), seem to remain—even in the asymptotic, large-
123
+ sample regime—an elusive problem.
124
+ There is thus a pressing need for understanding fluctu-
125
+ ations of inferred empirical first-passage times, a rigorous
126
+ error control, and reliable non-asymptotic error estima-
127
+ tion in the small-sample regime. These are fundamental
128
+ problems of statistical kinetics and are essential for the
129
+ analysis of experimental and simulation data.
130
+ Here, we present general bounds on fluctuations of
131
+ empirical first-passage times that allow a rigorous uncer-
132
+ tainty quantification (e.g. using confidence intervals with
133
+ guaranteed coverage probabilities for all sample sizes)
134
+ under minimal assumptions. We prove non-asymptotic
135
+ lower (L) and upper (U) bounds on the deviation proba-
136
+ bility P(τ n ≥ ⟨τ⟩ + t) and P(τ n ≤ ⟨τ⟩ − t) (see Fig. 1a),
137
+ i.e., the probability that the empirical first-passage time
138
+ inferred from a sample of n ≥ 1 realizations of an ergodic
139
+ reversible Markov process, τ n, deviates from the true
140
+ mean ⟨τ⟩ by more than t in either direction,
141
+
142
+ n (t) ≤ P(±[τ n − ⟨τ⟩] ≥ t) ≤ U±
143
+ n (t)
144
+ ∀t ≥ 0,
145
+ (1)
146
+ the upper bounds U±
147
+ n (t) corresponding to so-called concen-
148
+ tration inequalities [173]. The most conservative version
149
+ of the derived upper bounds is independent of any details
150
+ about the underlying dynamics. The validity and sharpness
151
+ of the bounds are demonstrated by means of spatially con-
152
+ fined Brownian molecular search processes in dimensions
153
+ 1 and 3 (Fig. 1b), and discrete-state Markov jump models
154
+ of protein folding for a toy protein [24, 129, 174, 175]
155
+ (Fig. 1c) and the experimentally inferred model of calmod-
156
+ ulin [124] (Fig. 1d). We use the bounds U±
157
+ n (t) to quantify
158
+ the uncertainty of the inferred sample mean τ n in a gen-
159
+ eral setting and under minimal assumptions, for all n ≥ 1.
160
+ We conclude with a discussion of the practical implications
161
+ of the results and further research directions.
162
+ Setup.—We consider time-homogeneous Markov pro-
163
+ cesses xt on a continuous or discrete state-space Ω with
164
+ (forward) generator ˆL corresponding to a Markov rate-
165
+ matrix or an effectively one-dimensional Fokker-Planck
166
+ operator. Let the transition probability density to find
167
+ xt at x at time t given that it evolved from x0 be
168
+ pt(x|x0) ≡ eˆLtδx0(x) where δx0(x) denotes the Dirac
169
+ or Kronecker delta for continuous and discrete state-
170
+ spaces, respectively. We assume the process to be ergodic
171
+ limt→∞ pt(x|x0) = peq(x), where peq(x) ≡ e−ϕ(x) denotes
172
+ the equilibrium probability density and ϕ(x) the general-
173
+ ized potential in units of thermal energy kBT [176]. We
174
+ assume that ˆL obeys detailed balance [177] and is either
175
+ (i) bounded, (ii) Ω is finite with reflecting boundary ∂Ω,
176
+ or (iii) Ω is infinite but ϕ(x) sufficiently confining (see
177
+ [178]). Each of the conditions (i)-(iii) ensures that the
178
+ spectrum of ˆL is discrete [179].
179
+ We are interested in the first-passage time to a target
180
+ a when xt=0 is drawn from a density p0(x)
181
+ τ = inf
182
+ t [ t |xt = a, p0(x0)],
183
+ (2)
184
+ and focus on p0(x) = ˜peq(x) where the tilde denotes that
185
+ the absorbing state is excluded [180]. For completeness we
186
+ also provide in [181] results for general initial conditions
187
+ p0(x) that require more precise conditions on ϕ(x) [182].
188
+ The probability density of τ for such processes has the
189
+ generic form [23, 24]
190
+ ℘a(t|x0) =
191
+
192
+ k>0
193
+ µkwx0
194
+ k e−µkt,
195
+ (3)
196
+ where µk > 0 denote first-passage rates and wx0
197
+ k
198
+ the
199
+ (not necessarily positive) spectral “weights” normalized
200
+ according to �
201
+ k>0 wx0
202
+ k
203
+ = 1 and wx0
204
+ 1
205
+ > 0. The m-
206
+ th moment of τ is given by ⟨τ m⟩ = m! �
207
+ k>0 wx0
208
+ k /µm
209
+ k
210
+ and the survival probability
211
+ reads P(τ
212
+ >
213
+ t)
214
+
215
+ Sa(t|x0)
216
+ =
217
+
218
+ k>0 wx0
219
+ k e−µkt.
220
+ If x0 is drawn from
221
+ the equilibrium density, ˜peq(x), we have ℘a(t|˜peq) ≡
222
+
223
+ Ω\a ℘a(t|x0)˜peq(x0)dx0 [183] which renders all weights
224
+ non-negative, wk ≡
225
+
226
+ Ω\a wx0
227
+ k ˜peqdx0 ≥ 0 (see proof in
228
+ [181]). We henceforth abbreviate Sa(t|˜peq) ≡ Sa(t).
229
+ To examplify the need for uncertainty bounds in Eq. (1)
230
+ we show in Fig. 2a-d that the probability that τ n − ⟨τ⟩
231
+ lies within a desired range of say ± 10% of the longest
232
+ first-passage time scale µ−1
233
+ 1 , P(µ1[τ n − ⟨τ⟩] ∈ [−0.1, 0.1])
234
+ is low even for n ≈ 50 for all models in Fig. 1b-d.
235
+ Lower bounds on deviation probability.—There exists
236
+ a “noise floor” for τ n for any n. Since µk ≤ µk+1 and
237
+
238
+ 3
239
+ FIG. 2.
240
+ Deviation probabilities and corresponding bounds for a spatially confined Brownian search process in (a,e) d = 1 and
241
+ (b,f) d = 3 dimensions, and Markov-jump models of protein folding for (c,g) the experimentally inferred model of calmodulin
242
+ and (d,h) the toy protein. (a-d) Probability that δτ n = τ n − ⟨τ⟩ lies within a range of ±10% of the longest time-scale 1/µ1,
243
+ P(µ1δτ n ∈ [−0.1, 0.1]), as a function of n determined from the statistics of τ n for different fixed n for all model systems. (e-h)
244
+ Scaled probabilities P1/n(sgn(t)δτ n ≥ |t|) that the sample mean τ n inferred from n realizations deviates from ⟨τ⟩ by more
245
+ than t in either direction. Right tail areas are shown for t > 0 and left for t < 0, respectively. Lower L±
246
+ n (t) and upper U±
247
+ n (t; C)
248
+ bounds are depicted as red and black lines, respectively, and the model-free upper bound U±
249
+ n (t; 2) as the dashed yellow line.
250
+ Symbols denote corresponding scaled empirical deviation probabilities as a function of t and are sampled for different n.
251
+ wk are non-negative [184] and normalized [23, 24], the
252
+ equilibrium survival probability obeys w1e−µ1t ≤ Sa(t) ≤
253
+ e−µ1t, which directly leads to lower bounds L±
254
+ n (t) in
255
+ Eq. (1). Namely, τ n ≥ mini∈[1,n] τi ≡ τ min
256
+ n
257
+ and τ n ≤
258
+ maxi∈[1,n] τi ≡ τ max
259
+ n
260
+ . Therefore, P(τ min
261
+ n
262
+ ≥ t) ≤ P(τ n ≥
263
+ t) ≤ P(τ max
264
+ n
265
+ ≥ t) and we have P(τ min
266
+ n
267
+ ≥ t) = S(t)n and
268
+ P(τ max
269
+ n
270
+ ≤ t) = (1 − S(t))n, leading to lower bounds
271
+ P (τ n − ⟨τ⟩ ≥ t) ≥
272
+
273
+ w1e−µ1(⟨τ⟩+t)�n
274
+ ≡ L+
275
+ n (t)
276
+ P (τ n − ⟨τ⟩ ≤ −t) ≥
277
+
278
+ 1 − e−µ1(⟨τ⟩−t)�n
279
+ ≡ L−
280
+ n (t),
281
+ (4)
282
+ where equality is reached for n = 1 and w1 → 1. Anal-
283
+ ogous results are obtained for upper bounds (see [181])
284
+ which, however, are much weaker than those derived be-
285
+ low with the Cram´er-Chernoff approach and concurrently
286
+ require even more information about the dynamics.
287
+ We remark that bounds on the survival probability
288
+ consequently also bound the probability density ℘(n)
289
+ a (t)
290
+ of the fastest first-passage time of n independent par-
291
+ ticles [23, 25, 26, 185] according to nw1e−µ1(n−1)t ≤
292
+ ℘(n)
293
+ a (t)/℘a(t) ≤ ne−(n−1)µ1t. We now turn to the more
294
+ challenging upper bounds.
295
+ Cram´er-Chernoff bounds.—Let δτ n ≡ |τ n−⟨τ⟩| and λ ∈
296
+ R+. We start with the obvious inequality eλt1δτ n≥t ≤
297
+ eλτ n, where 1b is the indicator function of the set b. Tak-
298
+ ing the expectation yields P(δτ n ≥ t) ≤ e−λt⟨eλδτ n⟩ ≡
299
+ e−λt+ψδτn(λ), where we defined the cumulant generating
300
+ function of δτ n, ψδτ n(λ) ≡ ln⟨eλδτ n⟩. Note that τi are sta-
301
+ tistically independent. The bound can be optimized [186]
302
+ to find Chernoff’s inequality, P(δτ n ≥ t) ≤ e−nψ†δτ(t),
303
+ where ψ∗
304
+ δτ(t) is the Cram´er transform of ψδτ(λ) [173], i.e.
305
+ ψ∗
306
+ δτ(t) ≡ sup
307
+ λ
308
+ (λt − ψδτ(λ)),
309
+ (5)
310
+ where δτ ≡ δτ 1. On the interval λ ∈ [0, µ1) we have the
311
+ following bounds on ψδτ(λ) (see proof in [181])
312
+ ψδτ(λ) ≤ φδτ(λ; C) ≡
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+ λ2
321
+ 2µ2
322
+ 1
323
+ C
324
+ 1 − λ/µ1
325
+ τ ≥ ⟨τ⟩
326
+ λ2
327
+ 2µ2
328
+ 1
329
+ C
330
+ 1 − (λ/µ1)2
331
+ τ < ⟨τ⟩,
332
+ (6)
333
+ which are non-negative, convex, and increasing on λ ∈
334
+ [0, µ1), and we introduced C ≡ µ2
335
+ 1⟨τ 2⟩ [187]. The bound (6)
336
+ further implies ψ∗
337
+ δτ(t) ≥ φ∗
338
+ δτ(t; C) ∀t ≥ 0, and may thus
339
+ be optimized according to [186] to obtain the inequalities
340
+ announced in Eq. (1) via Chernoff’s inequality:
341
+ U+
342
+ n (t; C) = exp (−nCh+ (µ1t/C))
343
+ 0 ≤ t ≤ ∞
344
+ U−
345
+ n (t; C) = exp (−nCh− (µ1t/C))
346
+ 0 ≤ t ≤ ⟨τ⟩
347
+ (7)
348
+ where we defined the functions
349
+ h+(u) ≡ 1 + u −
350
+
351
+ 1 + 2u
352
+ (8)
353
+ h−(u) ≡ Λ(u)u − 1
354
+ 2
355
+ Λ(u)2
356
+ 1 − Λ(u)2
357
+ (9)
358
+ with Λ(u) ≡ 1
359
+ 2
360
+
361
+ g(u) −
362
+
363
+ 4 + 2/g(u)u − g(u)2
364
+
365
+ and
366
+ g(u) ≡
367
+ 2
368
+
369
+ 3
370
+
371
+ 1 + 2 cosh
372
+ �1
373
+ 3arcosh
374
+
375
+ 1 +
376
+ 33
377
+ 27u2
378
+ ���1/2
379
+ . (10)
380
+
381
+ 4
382
+ The tail behavior of δτ in Eq. (7) provides quantitative
383
+ insight into fluctuations of τ even when ⟨τ⟩ is unknown
384
+ or is an insufficient or non-representative observable [188–
385
+ 190].
386
+ Deviations are readily expressed relative to the
387
+ longest natural time scale 1/µ1 that does not need to be
388
+ known. That is, deviations are naturally parameterized
389
+ by the dimensionless variable ˜t = µ1t. Asymptotically
390
+ as n → ∞, U±
391
+ n is substantial only for ˜t/C ≪ 1 and the
392
+ tails become symmetric and sub-Gaussian [173], h+(u) =
393
+ u2/2 − O(u3) and h−(u) = u2/2 − O(u4) (see [181]).
394
+ Notably, details about the underlying dynamics only
395
+ enter the tail bounds (7) via the system-dependent con-
396
+ stant C that, however, can be bounded. In particular, for
397
+ equilibrium initial conditions we have 0 ≤ 2w1 ≤ C ≤ 2
398
+ (see [181]). Since φδτ(λ; C) is monotonically increasing
399
+ with C ∈ (0, 2], we have φδτ(λ; C) ≤ φδτ(λ; 2) which im-
400
+ plies φ∗
401
+ δτ(t; C) ≥ φ∗
402
+ δτ(t; 2). Thus, we find the model-free
403
+ bounds
404
+
405
+ n (t; C) ≤ U±
406
+ n (t; 2) ≡ U±
407
+ n (t)
408
+ (11)
409
+ requiring no information about the system. The non-
410
+ asymptotic bounds on deviation probabilities of τ n in
411
+ Eqs. (7) and (11) are our first main result.
412
+ Notably, analogous concentration inequalities were pre-
413
+ viously derived for time-averages of Markov processes
414
+ [191–193] (see also [194]), and were recently applied to
415
+ bound time-averaged measurement outcomes in quantum
416
+ Markov processes [195] and to derive inverse thermody-
417
+ namic uncertainty relations [196].
418
+ Illustration of bounds.—The lower L±
419
+ n (t) and upper
420
+
421
+ n (t) bounds on P(±[τ n − ⟨τ⟩] ≥ t) in Eqs. (4) and (7),
422
+ respectively, are examplified in Fig. 2e-h (see red and
423
+ black lines) for the model systems shown in Fig. 1b-d.
424
+ Note that to illustrate all bounds, for convenience in a
425
+ single panel, we formally let t → −t for the left tails
426
+ L−
427
+ n (t) and U−
428
+ n (t), such that t (as shown) has support on
429
+ [−⟨τ⟩, ∞). Deviation probabilities are in turn expressed
430
+ as P(sgn(t)δτ n ≥ |t|) where sgn(x) denotes the signum
431
+ function and δτ n = τ n − ⟨τ⟩.
432
+ To assess the quality of our bounds for several n we
433
+ further scale probabilities P1/n such that L±
434
+ n (t) and U±
435
+ n (t)
436
+ collapse onto a master curve for all n (see also inset in
437
+ Fig. 2f). Symbols denote empirical deviation probabili-
438
+ ties obtained by sampling τ n for different n (see [181] for
439
+ details), which approach the upper bound as n increases.
440
+ For n = 1 empirical right-tail deviations are close to L+
441
+ 1 (t)
442
+ even for w1 ≤ 1 [197]. As expected the model-free upper
443
+ bound U±
444
+ n (t; 2) (yellow) holds universally but is generally
445
+ more conservative, however, it is remarkably good for
446
+ C ≳ 1.3 (see e.g. Fig. 2e-g) but becomes weaker as C
447
+ approaches 0 (see e.g. Fig. 2h).
448
+ Uncertainty quantification.—The bounds (7) provide
449
+ the elusive systematic framework to rigorously quantify
450
+ the uncertainty of the estimate τ n for any, and especially
451
+ for small, sample sizes. In particular, they allow us to
452
+ construct “with high probability” guarantees such as con-
453
+ fidence intervals, which—unlike traditional confidence
454
+ intervals in statistics—are not only asymptotically correct
455
+ but hold for any n. Furthermore, these concentration-
456
+ based guarantees do not require specifying a prior belief
457
+ as in the Bayesian context. Setting U±
458
+ n (t±
459
+ α±; C) = α± for
460
+ chosen acceptable left- and right-tail error probabilities
461
+ α± (with α+ + α− < 1) we get an implicit definition of
462
+ the confidence interval [−t−
463
+ α−, t+
464
+ α+] at confidence level (or
465
+ “coverage probability”) 1 − (α+ + α−) in the form
466
+ P(−t−
467
+ α− ≤ δτ n ≤ t+
468
+ α+) ≥ 1 − α− − α+ ≡ 1 − α,
469
+ (12)
470
+ stating that with probability of at least 1 − α the sample
471
+ mean τ n lies within [⟨τ⟩ − t−
472
+ α−, ⟨τ⟩ + t+
473
+ α+]. Confidence
474
+ intervals are closely related to, and can be used for, statis-
475
+ tical significance tests [198, 199]. However, they provide
476
+ more insight; instead of mere rejection/acceptance they
477
+ provide quantitative bounds on statistical uncertainty.
478
+ Two-sided intervals are not uniquely determined by
479
+ specifying a confidence level. It is customary to choose
480
+ equal tail probabilities α+ = α− = α/2 yielding so-called
481
+ central confidence intervals for which t±
482
+ α± are generally
483
+ not equidistant. Two-sided central confidence intervals
484
+ for δτ n as a function of n for a confidence level of α = 0.1
485
+ and models systems in Fig. 1b-d are shown (rescaled to a
486
+ master scaling) in Fig. 3a. One may also choose symmetric
487
+ intervals which in turn do not necessarily imply equal tail
488
+ probabilities (i.e. α+ ̸= α−). In some situations only one-
489
+ sided confidence intervals are required P(±δτ n ≤ t±
490
+ α±) ≥
491
+ 1 − α± (for a discussion see [181]).
492
+ In particular, we may now also answer the practical
493
+ question: How many realizations are required to achieve
494
+ a desired accuracy with a specified probability? To ensure
495
+ with probability of at least 1 − α that δτ n∗ ∈ [−t−
496
+ α−, t+
497
+ α+]
498
+ one needs n∗ realizations defined via
499
+ U+
500
+ n∗(t+
501
+ α+; C) + U−
502
+ n∗(t−
503
+ α−; C) = α.
504
+ (13)
505
+ The number of samples n∗ required to guarantee that τ n∗
506
+ falls within a symmetric interval of length ∆t = 0.2/µ1,
507
+ (i.e. τ n∗ ∈ [⟨τ⟩ − 0.1/µ1, ⟨τ⟩ + 0.1/µ1]) with probability
508
+ of at least 1 − α is shown in Fig. 3b for several values of C
509
+ (intersections with the dashed line yield n∗ guaranteeing
510
+ a coverage of at least 90%). Fig. 3c depicts the comple-
511
+ mentary symmetric interval ∆t covering the range of δτ n
512
+ for a given n with probability of at least 90%. Note that
513
+ hundreds to thousands of samples may be required to
514
+ ensure an accuracy of ±0.1/µ1 with a 90% confidence,
515
+ which is seemingly not met in experiments [113–119].
516
+ Eqs. (12) and (13) constitute our second main result as
517
+ they provide rigorous error estimates in the small-sample
518
+ regime that allow for systematic error control in kinetic
519
+ inference and can be solved for t±
520
+ α± and n∗, respectively,
521
+ using standard root-finding methods (see [181]).
522
+ Using Eq. (11) we can construct system-independent
523
+ but more conservative universal confidence intervals (see
524
+ yellow line in Fig. 3b,c). Interestingly, even when C ≈ 1
525
+ the universal bound remains reasonably tight, only for
526
+ C ≪ 1 differences become substantial.
527
+ Conclusion.—Leveraging spectral analysis and the
528
+ framework of concentration inequalities we derived gen-
529
+ eral upper and lower bounds on the probability that the
530
+
531
+ 5
532
+ FIG. 3. Non-asymptotic uncertainty quantification of the sam-
533
+ ple mean τ n. (a) Relative error µ1δτ n = µ1(τ n−⟨τ⟩) (symbols)
534
+ obtained from sampling of τ n for different model systems and
535
+ as a function n (re-scaled to a master scaling). The correspond-
536
+ ing two-sided central confidence interval [−µ1t−
537
+ α/2, µ1t+
538
+ α/2] with
539
+ α = 0.1 is shown as black lines. (b) Required number of sam-
540
+ ples n∗ to ensure that the relative error δτ n∗ falls within the
541
+ symmetric interval [−0.1, 0.1] of length ∆t = 0.2/µ1 with
542
+ probability of at least 1 − α for several values of C. (c) Cor-
543
+ responding symmetric confidence interval [−µ1∆t/2, µ1∆t/2]
544
+ (only the upper limit is shown) at confidence level α = 0.1 as
545
+ a function of n for different C.
546
+ empirical first-passage time τ n inferred from n indepen-
547
+ dent realizations deviates from the true mean ⟨τ⟩ by any
548
+ given amount. We used these bounds to construct non-
549
+ asymptotic confidence intervals that hold in the elusive
550
+ small-sample regime and thus go beyond Central-Limit-
551
+ and bootstrapping-based methods, which are known to
552
+ fail for small n. The results require minimal input and
553
+ in particular do not require any prior belief as in the
554
+ Bayesian approach that is known to be problematic and
555
+ likely underestimates the uncertainty in the small-sample
556
+ setting. Our concentration-based results allow for rigor-
557
+ ous, model-free error control and reliable error estimation,
558
+ which is essential for the analysis of experimental and
559
+ simulation data. They may further be applied to popu-
560
+ lation dynamics and epidemiology, e.g. in the inference
561
+ of extinction or incubation times of diseases [200–204],
562
+ and may be extended to the concentration around the
563
+ typical instead of mean first-passage times [205] as well
564
+ as non-ergodic and irreversible dynamics.
565
+ Acknowledgments.—Financial support from Studiens-
566
+ tiftung des Deutschen Volkes (to R. B.) and the German
567
+ Research Foundation (DFG) through the Emmy Noether
568
+ Program GO 2762/1-2 (to A. G.) is gratefully acknowl-
569
+ edged.
570
571
+ [1] S. Redner, A Guide to First-Passage Processes (Cam-
572
+ bridge University Press, 2001).
573
+ [2] R. Metzler, S. Redner, and G. Oshanin, First-Passage
574
+ Phenomena and their Applications, Vol. 35 (World Scien-
575
+ tific, 2014).
576
+ [3] Y. Zhang and O. K. Dudko, Annu. Rev. Biophys. 45, 117
577
+ (2016).
578
+ [4] S. Iyer-Biswas and A. Zilman, Adv. Chem. Phys. 160,
579
+ 261 (2016).
580
+ [5] A. Szabo, K. Schulten, and Z. Schulten, J. Chem. Phys.
581
+ 72, 4350–4357 (1980).
582
+ [6] P. H¨anggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.
583
+ 62, 251 (1990).
584
+ [7] E. Ben-Naim, S. Redner, and F. Leyvraz, Phys. Rev. Lett.
585
+ 70, 1890 (1993).
586
+ [8] D. S. Grebenkov, R. Metzler, and G. Oshanin, Phys.
587
+ Chem. Chem. Phys. 20, 16393–16401 (2018).
588
+ [9] D. S. Grebenkov, R. Metzler, and G. Oshanin, Commun.
589
+ Chem. 1, 1 (2018).
590
+ [10] D. S. Grebenkov, Phys. Rev. Lett. 117, 260201 (2016).
591
+ [11] O. G. Berg, R. B. Winter, and P. H. Von Hippel, Bio-
592
+ chemistry 20, 6929–6948 (1981).
593
+ [12] E. Koslover, M. D´ıaz de la Rosa, and A. Spakowitz, Bio-
594
+ phys. J. 101, 856 (2011).
595
+ [13] D. Holcman and Z. Schuss, J. Phys. A: Math. Theor. 47,
596
+ 173001 (2014).
597
+ [14] O. B´enichou, C. Chevalier, B. Meyer, and R. Voituriez,
598
+ Phys. Rev. Lett. 106, 038102 (2011).
599
+ [15] E. G. Marklund, A. Mahmutovic, O. G. Berg, P. Hammar,
600
+ D. van der Spoel, D. Fange, and J. Elf, Proc. Natl. Acad.
601
+ Sci. 110, 19796–19801 (2013).
602
+ [16] M. Bauer and R. Metzler, PLoS ONE 8, e53956 (2013).
603
+ [17] O. B´enichou, C. Chevalier, J. Klafter, B. Meyer, and
604
+ R. Voituriez, Nat. Chem. 2, 472–477 (2010).
605
+ [18] O. B´enichou and R. Voituriez, Phys. Rep. 539, 225 (2014).
606
+ [19] A. Godec and R. Metzler, Phys. Rev. X 6, 041037 (2016).
607
+ [20] J. Newby and J. Allard, Phys. Rev. Lett. 116, 128101
608
+ (2016).
609
+ [21] S. Redner and B. Meerson, J. Stat. Mech. 2014, P06019
610
+ (2014).
611
+ [22] B. Meerson and S. Redner, Phys. Rev. Lett. 114, 198101
612
+ (2015).
613
+ [23] D. Hartich and A. Godec, New J. Phys. 20, 112002 (2018).
614
+ [24] D. Hartich and A. Godec, J. Stat. Mech. 2019, 024002
615
+ (2019).
616
+ [25] D. Hartich and A. Godec, Reaction kinetics in the few-
617
+ encounter limit, in Chemical Kinetics (World Scientific,
618
+ 2019) Chap. 11, pp. 265–283.
619
+ [26] Z. Schuss, K. Basnayake, and D. Holcman, Phys. Life Rev.
620
+ 28, 52–79 (2019).
621
+ [27] S. D. Lawley and J. B. Madrid, J. Chem. Phys. 150,
622
+ 214113 (2019).
623
+ [28] S. D. Lawley and J. B. Madrid, J. Nonlinear Sci. 30,
624
+ 1207–1227 (2020).
625
+ [29] S. D. Lawley, Phys. Rev. E 102, 062118 (2020).
626
+ [30] P. C. Bressloff and J. M. Newby, Rev. Mod. Phys. 85,
627
+ 135 (2013).
628
+ [31] ´E. Rold´an, A. Lisica, D. S´anchez-Taltavull, and S. W.
629
+ Grill, Phys. Rev. E 93, 062411 (2016).
630
+ [32] K. R. Ghusinga, J. J. Dennehy, and A. Singh, Proc. Natl.
631
+ Acad. Sci. 114, 693 (2017).
632
+ [33] K. Rijal, A. Prasad, A. Singh, and D. Das, Phys. Rev.
633
+ Lett. 128, 048101 (2022).
634
+
635
+ 6
636
+ [34] J. J. Parmar, D. Das, and R. Padinhateeri, Nucleic Acids
637
+ Res. 44, 1630 (2015).
638
+ [35] D. A. Charlebois, N. Abdennur, and M. Kaern, Phys. Rev.
639
+ Lett. 107, 218101 (2011).
640
+ [36] F. Frey, F. Ziebert, and U. S. Schwarz, Phys. Rev. Lett.
641
+ 122, 088102 (2019).
642
+ [37] A. L. Lloyd and R. M. May, Science 292, 1316 (2001).
643
+ [38] L. Hufnagel, D. Brockmann, and T. Geisel, Proc. Natl.
644
+ Acad. Sci. 101, 15124 (2004).
645
+ [39] O. B´enichou, C. Loverdo, M. Moreau, and R. Voituriez,
646
+ Rev. Mod. Phys. 83, 81 (2011).
647
+ [40] F. Boccardo and O. Pierre-Louis, Phys. Rev. Lett. 128,
648
+ 256102 (2022).
649
+ [41] T. Erdmann and U. S. Schwarz, Phys. Rev. Lett. 92,
650
+ 108102 (2004).
651
+ [42] S. Chakrabarti, M. Hinczewski, and D. Thirumalai, Proc.
652
+ Natl. Acad. Sci. 111, 9048–9053 (2014).
653
+ [43] K. Blom and A. Godec, Phys. Rev. X 11, 031067 (2021).
654
+ [44] I. Goychuk and P. H¨anggi, Proc. Natl. Acad. Sci. 99, 3552
655
+ (2002).
656
+ [45] T. Kay and L. Giuggioli, Phys. Rev. Res. 4, 032039 (2022).
657
+ [46] S. Bo, L. Hubatsch, J. Bauermann, C. A. Weber, and
658
+ F. J¨ulicher, Phys. Rev. Res. 3, 043150 (2021).
659
+ [47] H. Kramers, Physica 7, 284 (1940).
660
+ [48] S. Sabhapandit and S. N. Majumdar, Phys. Rev. Lett.
661
+ 125, 200601 (2020).
662
+ [49] B. Trendelkamp-Schroer and F. No´e, Phys. Rev. X 6,
663
+ 011009 (2016).
664
+ [50] M. Chupeau, J. Gladrow, A. Chepelianskii, U. F. Keyser,
665
+ and E. Trizac, Proc. Natl. Acad. Sci. 117, 1383 (2019).
666
+ [51] T. D. Swinburne, D. Kannan, D. J. Sharpe, and D. J.
667
+ Wales, J. Chem. Phys. 153, 134115 (2020).
668
+ [52] A. L. Thorneywork, J. Gladrow, Y. Qing, M. Rico-Pasto,
669
+ F. Ritort, H. Bayley, A. B. Kolomeisky, and U. F. Keyser,
670
+ Sci. Adv. 6, 1 (2020).
671
+ [53] A. Goychuk and E. Frey, Phys. Rev. Lett. 123, 178101
672
+ (2019).
673
+ [54] R. Bebon and U. S. Schwarz, New J. Phys. 24, 063034
674
+ (2022).
675
+ [55] D. B. Dougherty, I. Lyubinetsky, E. D. Williams, M. Con-
676
+ stantin, C. Dasgupta, and S. Sarma, Phys. Rev. Lett. 89,
677
+ 136102 (2002).
678
+ [56] M. Constantin, S. D. Sarma, C. Dasgupta, O. Bondarchuk,
679
+ D. B. Dougherty, and E. D. Williams, Phys. Rev. Lett.
680
+ 91, 086103 (2003).
681
+ [57] D. B. Dougherty, C. Tao, O. Bondarchuk, W. G. Cullen,
682
+ E. D. Williams, M. Constantin, C. Dasgupta, and S. D.
683
+ Sarma, Phys. Rev. E 71, 021602 (2005).
684
+ [58] J. Merikoski, J. Maunuksela, M. Myllys, J. Timonen, and
685
+ M. J. Alava, Phys. Rev. Lett. 90, 024501 (2003).
686
+ [59] M. Constantin, C. Dasgupta, P. P. Chatraphorn, S. N.
687
+ Majumdar, and S. D. Sarma, Phys. Rev. E 69, 061608
688
+ (2004).
689
+ [60] C. Godr`eche, S. N. Majumdar, and G. Schehr, Phys. Rev.
690
+ Lett. 102, 240602 (2009).
691
+ [61] A. J. Bray, S. N. Majumdar, and G. Schehr, Adv. Phys.
692
+ 62, 225–361 (2013).
693
+ [62] T. R. Gingrich and J. M. Horowitz, Phys. Rev. Lett. 119,
694
+ 170601 (2017).
695
+ [63] S. Singh, P. Menczel, D. S. Golubev, I. M. Khaymovich,
696
+ J. T. Peltonen, C. Flindt, K. Saito, ´E. Rold´an, and J. P.
697
+ Pekola, Phys. Rev. Lett. 122, 230602 (2019).
698
+ [64] E. Rold´an, I. Neri, M. D¨orpinghaus, H. Meyr, and
699
+ F. J¨ulicher, Phys. Rev. Lett. 115, 250602 (2015).
700
+ [65] I. Neri, E. Rold´an, and F. J¨ulicher, Phys. Rev. X 7, 011019
701
+ (2017).
702
+ [66] G. Falasco and M. Esposito, Phys. Rev. Lett. 125, 120604
703
+ (2020).
704
+ [67] I. Neri, J. Phys. A: Math. Theor. 55, 304005 (2022).
705
+ [68] J. P. Garrahan, Phys. Rev. E 95, 032134 (2017).
706
+ [69] K. Hiura and S. ichi Sasa, Phys. Rev. E 103, 050103
707
+ (2021).
708
+ [70] M. Kac, in Proceedings of the Second Berkeley Symposium
709
+ on Mathematical Statistics and Probability (University of
710
+ California Press, Berkeley, Calif., 1951) pp. 189–215.
711
+ [71] G. Schehr and S. N. Majumdar, First-Passage Phenomena
712
+ and Their Applications , 226–251 (2014).
713
+ [72] S. N. Majumdar, G. Schehr, and G. Wergen, J. Phys. A:
714
+ Math. Theor. 45, 355002 (2012).
715
+ [73] D. Hartich and A. Godec, J. Phys. A: Math. Theor. 52,
716
+ 244001 (2019).
717
+ [74] H. Friedman, D. A. Kessler, and E. Barkai, Phys. Rev. E
718
+ 95, 032141 (2017).
719
+ [75] F. Thiel, E. Barkai, and D. A. Kessler, Phys. Rev. Lett.
720
+ 120, 040502 (2018).
721
+ [76] M. J. Kearney and S. N. Majumdar, J. Phys. A: Math.
722
+ Gen. 38, 4097 (2005).
723
+ [77] M. J. Kearney, S. N. Majumdar, and R. J. Martin, J.
724
+ Phys. A: Math. Theor. 40, F863 (2007).
725
+ [78] M. J. Kearney and S. N. Majumdar, J. Phys. A: Math.
726
+ Theor. 47, 465001 (2014).
727
+ [79] M. J. Kearney and R. J. Martin, J. Phys. A: Math. Theor.
728
+ 54, 055002 (2021).
729
+ [80] S. N. Majumdar and B. Meerson, J. Stat. Mech.: Theory
730
+ Exp. 2021 (3), 039801.
731
+ [81] P. Singh and A. Pal, J. Phys. A: Math. Theor. 55, 234001
732
+ (2022).
733
+ [82] G. Mercado-V´asquez and D. Boyer, Phys. Rev. Lett. 123,
734
+ 250603 (2019).
735
+ [83] A. Kumar, A. Zodage, and M. S. Santhanam, Phys. Rev.
736
+ E 104, 052103 (2021).
737
+ [84] J. L. Spouge, A. Szabo, and G. H. Weiss, Phys. Rev. E
738
+ 54, 2248 (1996).
739
+ [85] Y. Scher and S. Reuveni, Phys. Rev. Lett. 127, 018301
740
+ (2021).
741
+ [86] E. Woillez, Y. Zhao, Y. Kafri, V. Lecomte, and J. Tailleur,
742
+ Phys. Rev. Lett. 122, 258001 (2019).
743
+ [87] F. Mori, P. L. Doussal, S. N. Majumdar, and G. Schehr,
744
+ Phys. Rev. Lett. 124, 090603 (2020).
745
+ [88] P. H¨anggi and P. Talkner, Phys. Rev. Lett. 51, 2242
746
+ (1983).
747
+ [89] P. Hanggi and P. Talkner, Phys. Rev. A 32, 1934 (1985).
748
+ [90] T. Gu´erin, N. Levernier, O. B´enichou, and R. Voituriez,
749
+ Nature 534, 356 (2016).
750
+ [91] H. Meyer and H. Rieger, Phys. Rev. Lett. 127, 070601
751
+ (2021).
752
+ [92] M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106,
753
+ 160601 (2011).
754
+ [93] L. Kusmierz, S. N. Majumdar, S. Sabhapandit, and
755
+ G. Schehr, Phys. Rev. Lett. 113, 220602 (2014).
756
+ [94] S. Reuveni, Phys. Rev. Lett. 116, 170601 (2016).
757
+ [95] A. Pal and S. Reuveni, Phys. Rev. Lett. 118, 030603
758
+ (2017).
759
+ [96] A. Pal, I. Eliazar, and S. Reuveni, Phys. Rev. Lett. 122,
760
+ 020602 (2019).
761
+ [97] M. R. Evans, S. N. Majumdar, and G. Schehr, J. Phys.
762
+ A: Math. Theor. 53, 193001 (2020).
763
+
764
+ 7
765
+ [98] B. Besga, A. Bovon, A. Petrosyan, S. N. Majumdar, and
766
+ S. Ciliberto, Phys. Rev. Res. 2, 032029 (2020).
767
+ [99] O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni, and
768
+ Y. Roichman, J. Phys. Chem. Lett. 11, 7350 (2020).
769
+ [100] B. D. Bruyne, J. Randon-Furling, and S. Redner, Phys.
770
+ Rev. Lett. 125, 050602 (2020).
771
+ [101] B. D. Bruyne, S. N. Majumdar, and G. Schehr, Phys.
772
+ Rev. Lett. 128, 200603 (2022).
773
+ [102] D. L. Ensign and V. S. Pande, J. Phys. Chem. B 113,
774
+ 12410–12423 (2009).
775
+ [103] R. Satija, A. Das, S. M¨uhle, J. Enderlein, and D. E.
776
+ Makarov, J. Phys. Chem. B 124, 3482–3493 (2020).
777
+ [104] S. Zolaktaf, F. Dannenberg, X. Rudelis, A. Condon,
778
+ J. M. Schaeffer, M. Schmidt, C. Thachuk, and E. Winfree,
779
+ Inferring Parameters for an Elementary Step Model of
780
+ DNA Structure Kinetics with Locally Context-Dependent
781
+ Arrhenius Rates (Springer International Publishing, 2017)
782
+ p. 172–187.
783
+ [105] C. Weinreb, S. Wolock, B. K. Tusi, M. Socolovsky, and
784
+ A. M. Klein, Proc. Natl. Acad. Sci. 115, E2467 (2018).
785
+ [106] P. Pearce, F. G. Woodhouse, A. Forrow, A. Kelly,
786
+ H. Kusumaatmaja, and J. Dunkel, Nat. Commun. 10,
787
+ 1 (2019).
788
+ [107] Y. Zhou, C. Zhang, G. Stell, and J. Wang, J. Am. Chem.
789
+ Soc. 125, 6300–6305 (2003).
790
+ [108] J. O. Daldrop, J. Kappler, F. N. Br¨unig, and R. R. Netz,
791
+ Proc. Natl. Acad. Sci. 115, 5169–5174 (2018).
792
+ [109] D. A. Nicholson and G. C. Rutledge, J. Chem. Phys.
793
+ 144, 134105 (2016).
794
+ [110] V. J. van Hijkoop, A. J. Dammers, K. Malek, and M.-O.
795
+ Coppens, J. Chem. Phys. 127, 085101 (2007).
796
+ [111] R. Belousov,
797
+ M. N. Qaisrani,
798
+ A. Hassanali, and
799
+ E. Roldan, Soft Matter 16, 9202–9216 (2020).
800
+ [112] S. Ditlevsen and O. Ditlevsen, Probabilistic Eng. Mech
801
+ 23, 170–179 (2008).
802
+ [113] V. Gapsys and B. L. de Groot, eLife 9, e57589 (2020).
803
+ [114] K. Lindorff-Larsen, S. Piana, R. O. Dror, and D. E.
804
+ Shaw, Science 334, 517 (2011).
805
+ [115] J. L. Adelman and M. Grabe, J. Chem. Phys. 138,
806
+ 044105 (2013).
807
+ [116] B. Mostofian and D. M. Zuckerman, J. Chem. Theory
808
+ Comput. 15, 3499 (2019).
809
+ [117] R. Mehra and K. P. Kepp, J. Chem. Phys. 151, 085101
810
+ (2019).
811
+ [118] A. Militaru, M. Innerbichler, M. Frimmer, F. Tebbenjo-
812
+ hanns, L. Novotny, and C. Dellago, Nat. Commun. 12, 1
813
+ (2021).
814
+ [119] L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago,
815
+ and L. Novotny, Nat. Nanotechnol. 12, 1130 (2017).
816
+ [120] D. J. Sharpe and D. J. Wales, J. Chem. Phys. 153,
817
+ 024121 (2020).
818
+ [121] R. M. Donovan, A. J. Sedgewick, J. R. Faeder, and D. M.
819
+ Zuckerman, J. Chem. Phys. 139, 115105 (2013).
820
+ [122] J. Sabelko, J. Ervin, and M. Gruebele, Proc. Nat. Acad.
821
+ Sci. 96, 6031 (1999).
822
+ [123] D. L. Ensign and V. S. Pande, J. Phys. Chem. B 113,
823
+ 12410 (2009).
824
+ [124] J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt,
825
+ and M. Rief, Science 334, 512 (2011).
826
+ [125] A. M. Berezhkovskii and A. Szabo, J. Chem. Phys. 150,
827
+ 054106 (2019).
828
+ [126] I. Nayak, D. Das, and A. Nandi, Phys. Rev. Res. 2,
829
+ 013114 (2020).
830
+ [127] D. J. Wales, J. Phys. Chem. Lett. 13, 6349 (2022).
831
+ [128] N. Singhal and V. S. Pande, J. Chem. Phys. 123, 204909
832
+ (2005).
833
+ [129] G. R. Bowman, V. S. Pande, and F. No´e, An Intro-
834
+ duction to Markov State Models and their Application to
835
+ Long Timescale Molecular Simulation, Vol. 797 (Springer
836
+ Science & Business Media, 2013).
837
+ [130] A. Grossfield and D. M. Zuckerman, Annu. Rep. Comput.
838
+ Chem. 5, 23 (2009).
839
+ [131] A. Grossfield, P. N. Patrone, D. R. Roe, A. J. Schultz,
840
+ D. W. Siderius, and D. M. Zuckerman, Living J. Comp.
841
+ Mol. Sci. 1 (2018).
842
+ [132] B. Knapp, L. Ospina, and C. M. Deane, J. Chem. Theory
843
+ Comput. 14, 6127 (2018).
844
+ [133] Resampling methods like bootstrapping assume the data
845
+ to be representative of the inferred statistic, which is not
846
+ necessarily the case for small n, possibly even when n is
847
+ large but finite for broad distributions.
848
+ [134] A. C. Davison and D. V. Hinkley, Bootstrap Methods and
849
+ their Application (Cambridge University Press, 1997).
850
+ [135] J. Shao, Mathematical Statistics (Springer New York,
851
+ 2003).
852
+ [136] A. Abadie and G. W. Imbens, Econometrica 76, 1537
853
+ (2008).
854
+ [137] H. Putter and W. R. van Zwet, in Selected Works of
855
+ Willem van Zwet (Springer New York, 2011) pp. 245–266.
856
+ [138] R. V. Hogg, J. W. McKean, and A. T. Craig, Introduction
857
+ to Mathematical Statistics (Pearson, 2018).
858
+ [139] N. Schenker, J. Am. Stat. Assoc. 80, 360 (1985).
859
+ [140] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin,
860
+ Bayesian Data Analysis (Chapman and Hall/CRC, 1995).
861
+ [141] A. R. Brazzale, A. C. Davison, N. Reid, et al., Applied
862
+ Asymptotics: Case Studies in Small-Sample Statistics,
863
+ Vol. 23 (Cambridge University Press, 2007).
864
+ [142] L. Lista, Statistical Methods for Data Analysis in Particle
865
+ Physics (Springer International Publishing, 2017).
866
+ [143] D. Kaplan, Bayesian Statistics for the Social Sciences
867
+ (Guilford Publications, 2014).
868
+ [144] R. McElreath, Statistical Rethinking: A Bayesian Course
869
+ with Examples in R and Stan (Chapman and Hall/CRC,
870
+ 2020).
871
+ [145] M. Tavakoli, J. N. Taylor, C.-B. Li, T. Komatsuzaki,
872
+ and S. Press´e, in Advances in Chemical Physics (John
873
+ Wiley & Sons, Inc., 2017) pp. 205–305.
874
+ [146] D. McNeish, Struct. Equ. Modeling 23, 750 (2016).
875
+ [147] S. C. Smid, D. McNeish, M. Mioˇcevi´c, and R. van de
876
+ Schoot, Struct. Equ. Modeling 27, 131 (2019).
877
+ [148] S. Bacallado, J. D. Chodera, and V. Pande, J. Chem.
878
+ Phys. 131, 045106 (2009).
879
+ [149] J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne,
880
+ M. Held, J. D. Chodera, C. Sch¨utte, and F. No´e, J. Chem.
881
+ Phys. 134, 174105 (2011).
882
+ [150] B. Trendelkamp-Schroer, H. Wu, F. Paul, and F. No´e, J.
883
+ Chem. Phys. 143, 174101 (2015).
884
+ [151] J. D. Chodera and F. No´e, J. Chem. Phys. 133, 105102
885
+ (2010).
886
+ [152] L. Le Cam, L. M. LeCam, and G. L. Yang, Asymptotics
887
+ in Statistics: Some Basic Concepts (Springer Science &
888
+ Business Media, 2000).
889
+ [153] A. W. Van der Vaart, Asymptotic Statistics, Vol. 3 (Cam-
890
+ bridge university press, 2000).
891
+ [154] L. Le Cam, Asymptotic Methods in Statistical Decision
892
+ Theory (Springer Science & Business Media, 2012).
893
+ [155] P. Diaconis and D. Freedman, Ann. Stat. 14, 1 (1986).
894
+ [156] D. D. Cox, Ann. Stat. 21, 1 (1993).
895
+
896
+ 8
897
+ [157] P. W. Diaconis and D. Freedman, Bernoulli , 411 (1998).
898
+ [158] D. Freedman, Ann. Stat. 27, 1119 (1999).
899
+ [159] A. Barron, M. J. Schervish, and L. Wasserman, Ann.
900
+ Stat. 27, 536 (1999).
901
+ [160] S. Ghosal, J. K. Ghosh, and R. Ramamoorthi, Ann. Stat.
902
+ 27, 143 (1999).
903
+ [161] J. K. Ghosh and R. V. Ramamoorthi, Bayesian Non-
904
+ parametrics (Springer-Verlag, 2003).
905
+ [162] Y. Kim and J. Lee, Ann. Stat. 32, 1 (2004).
906
+ [163] S. Boucheron and E. Gassiat, Electron. J. Stat. 3, 114
907
+ (2009).
908
+ [164] P. J. Bickel and B. J. Kleijn, Ann. Stat. 40, 206 (2012).
909
+ [165] V. Rivoirard and J. Rousseau, Ann. Stat. 40, 1489
910
+ (2012).
911
+ [166] I. Castillo and R. Nickl, Ann. Stat. 42, 1941 (2014).
912
+ [167] J. Rousseau, Annu. Rev. Stat. Appl. 3, 211 (2016).
913
+ [168] V. Rockov´a, in International Conference on Machine
914
+ Learning (PMLR, 2020) pp. 8137–8146.
915
+ [169] K. Ray and A. van der Vaart, Elec. J. Stat. 15, 1 (2021).
916
+ [170] S. Ghosal and A. Van der Vaart, Fundamentals of Non-
917
+ parametric Bayesian Inference, Vol. 44 (Cambridge Uni-
918
+ versity Press, 2017).
919
+ [171] B. Kleijn and A. van der Vaart, Electron. J. Stat. 6,
920
+ none (2012).
921
+ [172] I. M. Johnstone, in Institute of Mathematical Statistics
922
+ Collections (Institute of Mathematical Statistics, 2010)
923
+ pp. 87–98.
924
+ [173] S. Boucheron, G. Lugosi, and P. Massart, Concentration
925
+ Inequalities: A Nonasymptotic Theory of Independence
926
+ (Oxford University Press, 2013).
927
+ [174] J.-H. Prinz, B. Keller, and F. No´e, Phys. Chem. Chem.
928
+ Phys. 13, 16912 (2011).
929
+ [175] S. Olsson, H. Wu, F. Paul, C. Clementi, and F. No´e,
930
+ Proc. Nat. Acad. Sci. 114, 8265 (2017).
931
+ [176] G. A. Pavliotis, Stochastic Processes and Applications
932
+ (Springer New York, 2014).
933
+ [177] ˆL is self-adjoint in the left eigenspace with respect to
934
+ a scalar product weighted by e−ϕ(x) and the operator
935
+ eϕ(x)/2 ˆLe−ϕ(x)/2 is self-adjoint with respect to a flat mea-
936
+ sure.
937
+ [178] Precisely, we require that ϕ(x) satisfies the Poincar´e
938
+ inequality, i.e. lim|x|→∞(|∇ϕ(x)|2/2 − ∇2ϕ(x)) = ∞.
939
+ [179] The relaxation eigenvalue problem reads −ˆLΨk(x) =
940
+ νkΨk(x) with ν0 = 0 and νk≥1 > 0 [176].
941
+ [180] In a continuous state-space the absorbing state a has
942
+ zero measure and ˜peq(x) = peq(x); In the discrete case
943
+ ˜peq(xk̸=a) ≡ peq(xk)/ �
944
+ k̸=a peq(x).
945
+ [181] See Supplemental Material at [...] for further details,
946
+ mathematical proofs, and generalizations to arbitrary
947
+ initial conditions p0(x), as well as Refs [3, 8–10, 12, 14].
948
+ [182] When the initial condition is not sampled from ˜peq(x)
949
+ we assume that ϕ(x) is sufficiently confining to assure a
950
+ “nice” asymptotic growth of eigenvalues, limk→∞ νk = bkβ
951
+ with β > 1/2 and 0 < b < ∞. The latter condition
952
+ is automatically satisfied when Ω is finite, since regu-
953
+ lar Sturm-Liouville problems display Weyl asymptotics
954
+ with β = 2 [212]. The condition is in fact satisfied by
955
+ most physically relevant processes with discrete spectra,
956
+ incl. the Ornstein-Uhlenbeck or Rayleigh process [213]
957
+ with β = 1.
958
+ [183] When Ω is discrete the integral is replaced by a sum
959
+ over states excluding the target.
960
+ [184] wk ≥ 0 is a necessary condition for the validity of the
961
+ lower bounds. Thus, in contrast to our Cram´er-Chernoff
962
+ bounds U±
963
+ n (t) that generalize to arbitrary initial condi-
964
+ tions, L±
965
+ n (t) hold only for p0(x0) = ˜peq(x0).
966
+ [185] D. S. Grebenkov, R. Metzler, and G. Oshanin, New J.
967
+ Phys. 22, 103004 (2020).
968
+ [186] ψδτn(λ) is differentiable, convex, non-negative, and non-
969
+ decreasing and thus ψ∗
970
+ δτ(t) = ψδτn(λ†), where λ† solves
971
+ ψ′
972
+ δτ(λ†) = t.
973
+ [187] In case of arbitrary initial conditions ⟨τ 2⟩ becomes re-
974
+ placed by �
975
+ i wi1wi>0 < ∞ while the rest remains un-
976
+ changed.
977
+ [188] C. Mej´ıa-Monasterio, G. Oshanin, and G. Schehr, J. Stat.
978
+ Mech.: Theory Exp. 2011 (06), P06022.
979
+ [189] G. Oshanin, Y. Holovatch, and G. Schehr, Physica A
980
+ 390, 4340 (2011).
981
+ [190] T. G. Mattos, C. Mej´ıa-Monasterio, R. Metzler, and
982
+ G. Oshanin, Phys. Rev. E 86, 031143 (2012).
983
+ [191] P. Lezaud, Ann. Appl. Probab. 8, 849 (1998).
984
+ [192] P. Lezaud, ESAIM Probab. Stat. 5, 183–201 (2001).
985
+ [193] F. Gao, A. Guillin, and L. Wu, Theory Probab. its Appl.
986
+ 58, 358 (2014).
987
+ [194] Ref. [192] contains an error; the Proof of Lemma 2.3 is
988
+ only valid in the regime r < λ1/3||f||∞, but the Lemma
989
+ may be shown to hold in the claimed regime [214].
990
+ [195] F. Girotti, J. P. Garrahan, and M. Gut¸˘a, Concentra-
991
+ tion inequalities for output statistics of quantum Markov
992
+ processes (2022).
993
+ [196] G. Bakewell-Smith, F. Girotti, M. Gut¸˘a, and J. P. Garra-
994
+ han, Inverse thermodynamic uncertainty relations: Gen-
995
+ eral upper bounds on the fluctuations of trajectory ob-
996
+ servables (2022).
997
+ [197] However, w1 can get arbitrary close to 0 in principle,
998
+ rendering the lower bound trivial.
999
+ [198] D. Wackerly, W. Mendenhall, and R. L. Scheaffer, Math-
1000
+ ematical Statistics with Applications (Cengage Learning,
1001
+ 2014).
1002
+ [199] W. Q. Meeker, G. J. Hahn, and L. A. Escobar, Statistical
1003
+ Intervals: A Guide for Practitioners and Researchers, Vol.
1004
+ 541 (John Wiley & Sons, 2017).
1005
+ [200] M. Dykman, I. Schwartz, and A. Landsman, Phys. Rev.
1006
+ Lett. 101, 078101 (2008).
1007
+ [201] J. A. Gilbert, L. A. Meyers, A. P. Galvani, and J. P.
1008
+ Townsend, Epidemics 6, 37 (2014).
1009
+ [202] B. Ottino-Loffler, J. G. Scott, and S. H. Strogatz, eLife
1010
+ 6, e30212 (2017).
1011
+ [203] M. Aliee, K. S. Rock, and M. J. Keeling, J. R. Soc.
1012
+ Interface 17, 20200540 (2020).
1013
+ [204] D. Hathcock and S. H. Strogatz, Phys. Rev. Lett. 128,
1014
+ 218301 (2022).
1015
+ [205] S. Belan, Phys. Rev. Res. 2, 013243 (2020).
1016
+ [14] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical
1017
+ Analysis (Cengage Learning, 2015).
1018
+ [10] E. Barkai, E. Aghion, and D. Kessler, Phys. Rev. X 4,
1019
+ 021036 (2014).
1020
+ [9] J. W. Pitman, Adv. Appl. Probab. 7, 511 (1975).
1021
+ [3] A. J. F. Siegert, Phys. Rev. 81, 617 (1951).
1022
+ [8] U. Seifert, Annu. Rev. Condens. Matter Phys. 10, 171
1023
+ (2019).
1024
+ [12] G. Cowan, Statistical Data Analysis (Oxford University
1025
+ Press, 1998).
1026
+ [212] G. Teschl, Ordinary Differential Equations and Dynami-
1027
+ cal Systems (American Mathematical Society, 2012).
1028
+ [213] C. W. Gardiner, Handbook of Stochastic Methods for
1029
+ Physics, Chemistry and the Natural Sciences, 3rd ed.,
1030
+
1031
+ 9
1032
+ Springer Series in Synergetics, Vol. 13 (Springer-Verlag,
1033
+ Berlin, 2004).
1034
+ [214] S. C. Ibanez, Concentration inequalities for Markov jump
1035
+ processes (2022).
1036
+
1037
+ 1
1038
+ Supplementary Material for:
1039
+ Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime
1040
+ Rick Bebon and Aljaˇz Godec
1041
+ Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 G¨ottingen
1042
+ In this Supplementary Material (SM) we present additional background and details of the calculations, auxiliary
1043
+ results, numerical methods, and mathematical proofs of the claims made in the Letter. The sections are organized in
1044
+ the order as they appear in the Letter.
1045
+ CONTENTS
1046
+ References
1047
+ 5
1048
+ S1. Spectral representation and preparatory Lemmas
1049
+ 2
1050
+ A. Spectral representation
1051
+ 2
1052
+ B. Lemma 1: All weights are non-negative for equilibrium initial conditions
1053
+ 3
1054
+ C. Lemma 2: Sum of positive weights is bounded from above
1055
+ 3
1056
+ S2. Extreme value bounds and comparison with Cram´er-Chernoff bounds
1057
+ 4
1058
+ A. Extreme value bounds
1059
+ 4
1060
+ B. Comparison of Cram´er-Chernoff vs Extreme value Bounds
1061
+ 4
1062
+ S3. Complete proof of concentration inequalities and their asymptotics
1063
+ 5
1064
+ A. Theorem 1: Cram´er-Chernoff bound for the right tail τ ≥ ⟨τ⟩
1065
+ 5
1066
+ B. Theorem 2: Cram´er-Chernoff bound for the left tail ⟨τ⟩ < τ
1067
+ 7
1068
+ C. Behavior of upper bounds U±
1069
+ n (t) for large sample sizes
1070
+ 9
1071
+ D. Proof of bounds on C and model-free concentration inequalities
1072
+ 9
1073
+ S4. Model systems and details on numerical methods
1074
+ 10
1075
+ A. Continuous-time discrete-state Markov jump process
1076
+ 10
1077
+ 1. Transitions rates of the 8-state toy protein model
1078
+ 11
1079
+ 2. Transitions rates of the calmodulin protein model
1080
+ 11
1081
+ B. Spatially confined Brownian molecular search process
1082
+ 11
1083
+ C. Statistics of first-passage times ⟨τ⟩ and the sample mean τ n
1084
+ 12
1085
+ S5. Uncertainty quantification with confidence intervals
1086
+ 13
1087
+ References
1088
+ 15
1089
+
1090
+ 2
1091
+ S1.
1092
+ SPECTRAL REPRESENTATION AND PREPARATORY LEMMAS
1093
+ In this section we provide additional background on the spectral analysis of first-passage problems and some auxiliary
1094
+ Lemmas. In particular, we prove that for equilibrium initial conditions all spectral first-passage weights wk(˜peq) are
1095
+ non-negative and that general initial conditions p0(x) the sum of positive spectral weights is always bounded.
1096
+ A.
1097
+ Spectral representation
1098
+ First, we recall some general results using the spectral representation of first-passage processes (for more details on
1099
+ see e.g. [1, 2]). As stated in the Letter, we consider time-homogeneous Markov processes xt on a continuous or discrete
1100
+ state-space Ω with (forward) generator ˆL corresponding to a Markov rate-matrix or an effectively one-dimensional
1101
+ Fokker-Planck operator. Let the transition probability density to find xt at x at time t given that it evolved from x0
1102
+ be pt(x|x0) ≡ eˆLtδx0(x) where δx0(x) denotes the Dirac or Kronecker delta for continuous and discrete state-spaces,
1103
+ respectively. We assume the process to be ergodic limt→∞ pt(x|x0) = peq(x), where peq(x) ≡ e−ϕ(x) denotes the
1104
+ equilibrium probability density and ϕ(x) the corresponding generalized potential in units of thermal energy kBT. We
1105
+ assume that ˆL obeys detailed balance, such that it is self-adjoint in the left eigenspace with respect to a scalar product
1106
+ weighted by e−ϕ(x) and the operator eϕ(x)/2 ˆLe−ϕ(x)/2 is self-adjoint with respect to a flat measure.
1107
+ We assume that ˆL is either (i) bounded, (ii) Ω is finite with reflecting boundary ∂Ω, or that (iii) Ω is infinite but ϕ(x)
1108
+ is sufficiently confining (precisely, we require that ϕ(x) satisfies the Poincar´e inequality, i.e. lim|x|→∞(|∇ϕ(x)|2/2 −
1109
+ ∇2ϕ(x)) = ∞.). Each of the conditions (i)-(iii) ensures that the eigenvalue spectrum of ˆL is discrete. The relaxation
1110
+ eigenvalue problem (for the inner product (·|·) defined with respect to a flat Lebesgue measure) reads −ˆLΨR
1111
+ k (x) =
1112
+ νkΨR
1113
+ k (x) with ΨL
1114
+ k(x) = ΨR
1115
+ k (x)eϕ(x), ν0 = 0 and νk≥1 > 0.
1116
+ The first-passage time to a target a for xt=0 drawn from a density p0(x) is defined as τ = inft[ t |xt = a, p0(x0)].
1117
+ We will use ⟨·⟩ to denote an average over all first-passage paths {xt′}0≤t′≤τ, i.e. those that hit a only once. The
1118
+ first-passage time density to a, ℘a(t|x0) = ⟨δ(t − τ[{xt′}])⟩ to reach the absorbing target at x = a, starting initially
1119
+ from x0, has the general spectral representation
1120
+ ℘a(t|x0) =
1121
+
1122
+ k≥1
1123
+ wk(x0)µke−µkt,
1124
+ (S1)
1125
+ where µk is the k-th first-passage rate and wk(x0) its corresponding first-passage weight. In similar fashion the survival
1126
+ probability is expressed as
1127
+ Sa(t|x0) ≡
1128
+ � ∞
1129
+ t
1130
+ ℘a(t′|x0)dt′ =
1131
+
1132
+ k≥1
1133
+ wk(x0)e−µkt.
1134
+ (S2)
1135
+ We note that in contrast to the relaxation eigenvalues νk, the first-passage rates µk = µk(a) depend in the location of
1136
+ the absorbing target. Moreover, for any target location a the interlacing theorem holds [1, 2] :
1137
+ νk−1 ≤ µk(a) ≤ νk
1138
+ ∀k, a
1139
+ (S3)
1140
+ where equality occurs iff wk(x0) = 0, i.e. for a where ΨR
1141
+ k (a) = 0.
1142
+ Laplace transforming the spectral expansion of the first-passage time density (S1)—according to ˜f(s) ≡
1143
+
1144
+ e−stf(t) dt
1145
+ with f being a generic function locally integrable on t ∈ [0, ∞)—yields
1146
+ ˜℘a(s) =
1147
+
1148
+ k≥1
1149
+ wk(x0)µk
1150
+ s + µk
1151
+ .
1152
+ (S4)
1153
+ The first-passage weights are then obtained by using the residue theorem to invert the Laplace transformed renewal
1154
+ theorem [1–3]
1155
+ wk(x0) = ˜p(a, −µk|x0)
1156
+ µk ˙˜p(a, −µk|a) =
1157
+
1158
+ l≥0(1 − νl/µk)−1ΨR
1159
+ l (a)ΨL
1160
+ l (x0)
1161
+
1162
+ l≥0(1 − νl/µk)−2ΨR
1163
+ l (a)ΨL
1164
+ l (a) < ∞,
1165
+ (S5)
1166
+ where ˙˜p(a, s|a) = ∂s˜p(a, s|a) is taken at s = −µk and {νl, ΨR
1167
+ l , ΨL
1168
+ l } are the corresponding relaxation eigenmodes [1, 2].
1169
+ The weights satisfy �
1170
+ k≥1 wk(x0) = 1 and the first non-zero weight is strictly positive w1(x0) > 0. Moreover, the
1171
+ relaxation eigenvalues ν0 = 0 and all νk>0 ≥ 0 are real as a result of detailed balance.
1172
+
1173
+ 3
1174
+ B.
1175
+ Lemma 1: All weights are non-negative for equilibrium initial conditions
1176
+ In the Letter we focus on equilibrium initial conditions, that is we assume that x0 is drawn from the invariant
1177
+ measure, peq(x0), which in the particular case of diffusion processes is assumed to have a reflecting boundary at a
1178
+ (i.e. we focus on the one-sided first-passage process). We further introduce the non-negative modified spectral weights
1179
+ ¯wk(x0) ≡ wk(x0)θ(sgn[wk(x0)]) and now prove that for a normalized equilibrium probability density of initial conditions
1180
+ p0(x0) that excludes the target—i.e. ˜peq(x0) ≡ peq(x0)[1 − δa(x0)]/(1|peq(x0)[1 − δa(x0)]) where δa(x0) is the Dirac
1181
+ measure (note that (1|˜peq) = 1)—all weights wk are rendered non-negative. We thus have ¯wk(˜peq) = wk(˜peq) ≥ 0, ∀k.
1182
+ Namely, because ΨL
1183
+ l (a) = eβU(a)ΨR
1184
+ l (a) we have ΨR
1185
+ l (a)ΨL
1186
+ l (a) ≥ 0, ∀l, and from bi-orthogonality (ΨL
1187
+ l |peq) = δl,0 it
1188
+ follows that
1189
+ ˜wk ≡ (wk|˜peq) = ˜peq(a)
1190
+ 1 − �
1191
+ l≥0(1 − νl/µk)−1ΨR
1192
+ l (a)ΨL
1193
+ l (a)
1194
+
1195
+ l≥0(1 − νl/µk)−2ΨR
1196
+ l (a)ΨL
1197
+ l (a)
1198
+ =
1199
+ ˜peq(a)
1200
+
1201
+ l≥0(1 − νl/µk)−2ΨR
1202
+ l (a)ΨL
1203
+ l (a) ≥ 0
1204
+ (S6)
1205
+ because by definition µk > 0, ∀k ≥ 1 denotes the zeros of ˜p(a, s|a), i.e. ˜p(a, −µk|a) = �
1206
+ l≥0(νl − µk)−1ΨR
1207
+ l (a)ΨL
1208
+ l (a) =
1209
+ µ−1
1210
+ k
1211
+
1212
+ l≥0(1 − νl/µk)−1ΨR
1213
+ l (a)ΨL
1214
+ l (a) = 0 which completes the proof of the Lemma.
1215
+ C.
1216
+ Lemma 2: Sum of positive weights is bounded from above
1217
+ For the sake of completeness we here additionally present results for general initial conditions p0(x0). Recall from
1218
+ the Letter that we require some additional conditions on ϕ(x) or Ω in this more general setting.
1219
+ In particular, we assume that ϕ(x) is sufficiently confining to assure a “nice” asymptotic growth of eigenvalues,
1220
+ limk→∞ νk = bkβ with β > 1/2 and 0 < b < ∞. The latter condition is automatically satisfied when Ω is finite, since
1221
+ regular Sturm-Liouville problems display Weyl asymptotics with β = 2 [4]. The condition is in fact satisfied by most
1222
+ physically relevant processes with discrete spectra, incl. the (Sturm-Liouville irregular) Ornstein-Uhlenbeck or Rayleigh
1223
+ process [5] with β = 1. This implies, by the interlacing theorem (S3) that b(k − 1)β ≤ µk ≤ bkβ and therefore there
1224
+ exists a real constant C ∈ (0, ∞) such that limk→∞ µk diverges as Ckβ.
1225
+ Recall further that the m-th moment of τ is given by ⟨τ m⟩ = m! �
1226
+ k≥1 wk(p0)/µm
1227
+ k . By construction we obtain
1228
+ 2 �
1229
+ k≥1 ¯wk(p0)/µ2
1230
+ k ≡ ⟨¯τ 2
1231
+ p0⟩ ≥ 2 �
1232
+ k≥1 wk(p0)/µ2
1233
+ k ≡ ⟨τ 2
1234
+ p0⟩, where equality holds when p0 = ˜peq (since in this case all
1235
+ wk ≥ 0, i.e., ¯wk(˜peq) = wk(˜peq) as discussed before).
1236
+ Moreover, because we only consider Markov jump processes on finite state-spaces as well as processes for which
1237
+ limk→∞ µk = Ckα with 0 < C < ∞ and α > 1/2 (this includes confined Markov jump processes on infinite state-spaces
1238
+ and all regular Sturm-Liouville problems) convergence is ensured, i.e. 2 �
1239
+ k≥1 ¯wk(p0)/µ2+n
1240
+ k
1241
+ < ∞, ∀n ≥ 0.
1242
+ To prove this consider wmax ≡ maxk≥k∗ ¯wk(p0) such that wmax/µ2+n
1243
+ k
1244
+ ≥ wk(p0)/µ2+n
1245
+ k
1246
+ , ∀k. Let the smallest k for
1247
+ which the asymptotic scaling holds be k∗ then we may split the summation as �
1248
+ k≥1 = �k∗−1
1249
+ k=1 + �
1250
+ k≥k∗ such that
1251
+
1252
+ k≥1
1253
+ ¯wk(p0)
1254
+ µ2+n
1255
+ k
1256
+
1257
+ k∗−1
1258
+
1259
+ k=1
1260
+ ¯wk(p0)
1261
+ µ2+n
1262
+ k
1263
+ +
1264
+
1265
+ k≥k∗
1266
+ wmax
1267
+ µ2+n
1268
+ k
1269
+ .
1270
+ Because the first term is nominally finite we only need to prove convergence of the second sum, which we do by
1271
+ means of the integral test. We define a function f(k) ≡ wmax/µ2+n
1272
+ k
1273
+ that is monotonically decaying in k. This
1274
+ implies f(x) ≤ f(k), ∀x ∈ [k, ∞) and f(x) ≥ f(k), ∀x ∈ [k∗, k].
1275
+ We then have for every integer k ≥ k∗ that
1276
+ � k+1
1277
+ k
1278
+ f(x)dx ≤
1279
+ � k+1
1280
+ k
1281
+ f(k)dx = f(k) and conversely, for every integer k ≥ k∗+1 that
1282
+ � k
1283
+ k−1 f(x)dx ≥
1284
+ � k
1285
+ k−1 f(k)dx = f(k).
1286
+ We now sum over all k ≥ k∗ to obtain, using µk = Ckα∀k ≥ k∗
1287
+ � ∞
1288
+ k∗
1289
+ wmax
1290
+ (Cxα)(2+n) dx ≤
1291
+
1292
+ k
1293
+ wmax
1294
+ µ2+n
1295
+ k
1296
+
1297
+ wmax
1298
+ (Ckα∗ )2+n +
1299
+ � ∞
1300
+ k∗
1301
+ wmax
1302
+ (Cxα)2+n dx →
1303
+ wmaxC−(2+n)k1−α(2+n)
1304
+
1305
+ α(2 + n) − 1
1306
+
1307
+
1308
+ k
1309
+ wmax
1310
+ µ2+n
1311
+ k
1312
+ ≤ wmax(Ckα
1313
+ ∗ )−(2+n) + wmaxC−(2+n)k1−α(2+n)
1314
+
1315
+ α(2 + n) − 1
1316
+ < ∞
1317
+ where the last integral converges because 1−α(2+n) < 0, ∀n ≥ 0, which in turn proves convergence of �
1318
+ k≥1 ¯wk(p0)/µ2
1319
+ k.
1320
+
1321
+ 4
1322
+ S2.
1323
+ EXTREME VALUE BOUNDS AND COMPARISON WITH CRAM´ER-CHERNOFF BOUNDS
1324
+ In the Letter we derive lower bounds L±
1325
+ n (t) on the deviation probability P(τ n − ⟨τ⟩ ≥ t) and P(⟨τ⟩ − τ n ≥ t)
1326
+ by utilizing extremal events, i.e., we consider the maximal and minimal first-passage time in a sample of n ≥ 1
1327
+ i.i.d. realizations. In this section we derive analogous upper bounds building on the same ideas.
1328
+ A.
1329
+ Extreme value bounds
1330
+ Recall that for the reversible Markov dynamics considered the equilibrium survival probability Sa(t|˜peq) ≡ Sa(t) in
1331
+ its spectral representation (S2) obeys
1332
+ w1e−µ1t ≤ Sa(t) ≤ e−µ1t.
1333
+ (S7)
1334
+ For the upper bound we use µk ≤ µk+1 and that �
1335
+ k>0 wk = 1 are normalized, whereas the lower bound follows since
1336
+ wk ≥ 0, ∀k, as we consider equilibrium initial conditions throughout. Moreover, from extreme value theory it follows
1337
+ P(τ min
1338
+ n
1339
+ ≥ t) = Sa(t)n
1340
+
1341
+ P(τ min
1342
+ n
1343
+ ≤ t) = 1 − Sa(t)n,
1344
+ P(τ max
1345
+ n
1346
+ ≤ t) = (1 − Sa(t))n
1347
+
1348
+ P(τ max
1349
+ n
1350
+ ≥ t) = 1 − (1 − Sa(t))n ,
1351
+ (S8)
1352
+ where we introduce τ max
1353
+ n
1354
+ ≡ maxi∈[1,n] τi and τ min
1355
+ n
1356
+ ≡ mini∈[1,n] τi, respectively. Clearly, since τ min
1357
+ n
1358
+ ≤ τ n ≤ τ max
1359
+ n
1360
+ we
1361
+ can write P(τ min
1362
+ n
1363
+ ≥ t) ≤ P(τ n ≥ t) ≤ P(τ max
1364
+ n
1365
+ ≥ t) and analogously P(τ min
1366
+ n
1367
+ ≤ t) ≥ P(τ n ≤ t) ≥ P(τ max
1368
+ n
1369
+ ≤ t). Using
1370
+ Eq. (S8) in combination with Eq. (S7) we directly arrive at the lower bounds L±
1371
+ n (t) (see Eq. (4) in the Letter)
1372
+ P(τ n ≥ ⟨τ⟩ + t) ≥ P(τ min
1373
+ n
1374
+ ≥ ⟨τ⟩ + t) = Sa(t + ⟨τ⟩)n ≥
1375
+
1376
+ w1e−µ1(⟨τ⟩+t)�n
1377
+ (S9)
1378
+ P(τ n ≤ ⟨τ⟩ − t) ≥ P(τ max
1379
+ n
1380
+ ≤ ⟨τ⟩ − t) = (1 − Sa(⟨τ⟩ − t))n ≥
1381
+
1382
+ 1 − e−µ1(⟨τ⟩−t)�n
1383
+ .
1384
+ (S10)
1385
+ Introduced considerations are, however, not restricted to only lower bounds such that we can further leverage bounds
1386
+ on the equilibrium survival probability (S7) to analogously obtain corresponding upper bounds as
1387
+ P(τ n ≥ ⟨τ⟩ + t) ≤ P(τ max
1388
+ n
1389
+ ≥ t) = 1 − (1 − Sa(⟨τ⟩ + t))n ≤ 1 −
1390
+
1391
+ 1 − eµ1(⟨τ⟩+t)�n
1392
+ ,
1393
+ P(τ n ≤ ⟨τ⟩ − t) ≤ P(τ min
1394
+ n
1395
+ ≤ t) = 1 − Sa(t)n ≤ 1 −
1396
+
1397
+ w1e−µ1(⟨τ⟩−t)�n
1398
+ .
1399
+ (S11)
1400
+ As we will illustrate next, the upper bounds (S11) are much weaker than those derived with the Cram´er-Chernoff
1401
+ approach (Eq. (7) in the Letter) and require more information about the dynamics.
1402
+ B.
1403
+ Comparison of Cram´er-Chernoff vs Extreme value Bounds
1404
+ In this section we directly compare the concentration-based upper bounds U±
1405
+ n (t) (see Eq. (7) in the Letter) that
1406
+ are obtained with the Cram´er-Chernoff approach, with the upper bounds (S11) which are based on extreme value
1407
+ considerations in analogy to the lower bounds L±
1408
+ n (t). Similar to Fig. 2e-h of the Letter we now exemplify and compare
1409
+ both upper bounds in Fig. S1 for the model systems shown in Fig. 1b-d.
1410
+ In Fig. S1a-d we equivalently express re-scaled deviation probabilities P1/n(sgn(t)δτ n ≥ |t|) in a single panel, i.e.,
1411
+ for the left tail we formally let t → −t such that t as shown now has support in [−⟨τ⟩, ∞) and sgn(x) = ±1 for
1412
+ ±x > 0 and sgn(0) = 0 denotes the signum function. Empirical deviation probabilities (symbols) as a function of t are
1413
+ computed from statistics obtained by sampling τ n for different fixed n values. Extreme value lower bounds L±
1414
+ n (t) (S10)
1415
+ (or Eq. (4)) for both tails are depicted in red. Here we now focus on comparing the upper bounds. Concentration
1416
+ inequalities U±
1417
+ n (t; C) (Eq.(7)) are again depicted as black lines whereas the corresponding extreme value upper bounds
1418
+ are represented as dashed/dotted lines where the respective coloring indicates the number of realizations n. Note, that
1419
+ the concentration bounds (and the lower bounds) collapse onto a single master curve due to the employed scaling P1/n,
1420
+ whereas the extreme value upper bounds do not due to their different functional form (compare Eq. (S11)). Evidently,
1421
+ while for n = 1 the extreme value bounds remains close to the actual deviation probability, already for n = 3 they
1422
+ become considerably less tight and overshoot heavily for all considered models. Moreover, extreme value upper bounds
1423
+ become increasingly weak (even trivial at times) as n increases, therefore highlighting that Cram´er-Chernoff-type
1424
+ bounds are vastly more suitable.
1425
+
1426
+ 5
1427
+ Motivated by the discussion above we next want to gain more quantitative insights for which sample sizes n the
1428
+ Cram´er-Chernoff approach becomes more favorable. For this purpose we introduce a quality factor Q ∈ [0, ∞) that is
1429
+ informally defined as
1430
+ Q ≡
1431
+ Extreme value upper bound
1432
+ Cram´er-Chernoff-type upper bound.
1433
+ (S12)
1434
+ A value Q > 1 therefore indicates that the Cram´er-Chernoff bound is tighter and Q < 1 suggests that the extreme
1435
+ value bound should be favored, respectively. In Fig. S1e-h we illustrate the quality factor Q as a function of sample
1436
+ size n for different fixed dimensionless deviation values µ1t (star symbols in Fig. S1a-d). Remarkably for all model
1437
+ systems considered—which span a large range of possible C values—the Cram´er-Chernoff approach is already superior
1438
+ even in the small-sample regime n ≲ 4. Moreover, we can further study the particular n∗, for which one would reach
1439
+ Q = 1, as a function of some desired deviation µ1t relative to the longest time scale 1/µ1. Note, that again for the
1440
+ left tail we let t → −t (see discussion above). As depicted in Fig. S1i-l for our model systems, n∗ (blue) generally is
1441
+ found to be well below n = 8, i.e., even for most small sample sizes the derived Cram´er-Chernoff-type bounds can be
1442
+ considered to be the better choice, especially when considering large µ1t (i.e. large deviations).
1443
+ Lastly, one could ask the question why the extreme value upper bound is so “weak” when n increases even just
1444
+ slightly. To answer this question we recall that—since we are interested in deviations of the sample mean τ n around
1445
+ ⟨τ⟩—we bound the sample mean with the minimal and maximal first-passage time according to τ min
1446
+ n
1447
+ ≤ τ n ≤ τ max
1448
+ n
1449
+ which is further used, in combination with bounds on the survival probability (S7), to derive corresponding upper
1450
+ bounds (S11). Clearly, as n increases we expect this bound to become increasingly loose as by larger sample sizes we
1451
+ increase the chances of sampling rare first-passage times, i.e., maximal and minimal first-passage time that strongly
1452
+ deviate from the (sample) mean—this also explain why bounds (S10) and (S11) are only particularly tight for n = 1
1453
+ as here τ min
1454
+ n
1455
+ = τ 1 = τ max
1456
+ n
1457
+ . In contrast, the Cram´er-Chernoff method requires a much more delicate mathematical
1458
+ analysis involving bounds of the moment generating function. The Cram´er-Chernoff-type bound has the additional
1459
+ advantage that it can be further used to universally bound deviation probabilities where no specific information about
1460
+ the underlying system is required (see Eq. (11) in the Letter). Moreover, even the version of Cram´er-Chernoff bounds
1461
+
1462
+ n (t; C) that require input of one system-dependent constant C still require less information about the dynamics since
1463
+ extreme value upper bounds (S11) partly also require knowledge about the first-passage weight w1 and ⟨τ⟩ itself.
1464
+ S3.
1465
+ COMPLETE PROOF OF CONCENTRATION INEQUALITIES AND THEIR ASYMPTOTICS
1466
+ In this section we provide various additional details on the upper bounds U±
1467
+ n (t; C) (Eq. (7) of the Letter). In
1468
+ particular, we prove the required bounds on the cumulant generating function, compute their corresponding Cram´er
1469
+ transform, and give further information about the large-sample limit n → ∞, as well as the model-free version of the
1470
+ bounds.
1471
+ A.
1472
+ Theorem 1: Cram´er-Chernoff bound for the right tail τ ≥ ⟨τ⟩
1473
+ We begin with the right tail, i.e. upwards deviations such that τ ≥ ⟨τ⟩, and start by proving a bound for the
1474
+ moment generating function of the deviation of the first-passage time τ from the mean ⟨τ⟩. Using the spectral
1475
+ representation (S1) and the inequality x ≤ ex−1, ∀x ∈ R, we find
1476
+ ⟨eλ(τ−⟨τ⟩)⟩ = e−λ⟨τ⟩ �
1477
+ k>0
1478
+ wk
1479
+ 1 − λ/µk
1480
+ ≤ exp
1481
+
1482
+ −λ⟨τ⟩ +
1483
+
1484
+ k>0
1485
+ wk
1486
+ 1 − λ/µk
1487
+ − 1
1488
+
1489
+ (S13)
1490
+ for all λ < µk. Moreover, for |λ| < µ1 we may further expand the sum �
1491
+ k>0
1492
+ wk
1493
+ 1−λ/µk = �
1494
+ m≥0 λm �
1495
+ k>0 wk/µm
1496
+ k using
1497
+ the geometric series. Recall that the moments are given by ⟨τ m⟩ = m! �
1498
+ k>0 wk/µm
1499
+ k , such that we obtain
1500
+ ⟨eλ(τ−⟨τ⟩)⟩ ≤ exp
1501
+
1502
+ ��
1503
+ m≥2
1504
+ λm �
1505
+ k>0
1506
+ wk
1507
+ µm
1508
+ k
1509
+
1510
+ � = exp
1511
+
1512
+ λ2 ⟨τ 2⟩
1513
+ 2
1514
+ +
1515
+
1516
+ m>2
1517
+ λm �
1518
+ k>0
1519
+ wk
1520
+ µm
1521
+ k
1522
+
1523
+ .
1524
+ (S14)
1525
+
1526
+ 6
1527
+ FIG. S1. Comparison between Cram´er-Chernoff-type upper bounds U±
1528
+ n (t; C) and extreme value upper bounds for a spatially
1529
+ confined Brownian search process in dimensions (a,e,i) d = 1 and (b,f,j) d = 3, and discrete-state Markov jump processes for
1530
+ (c,d,k) the inferred model of calmodulin and (d,h,l) a 8-state toy protein. (a-d) Scaled probabilities P1/n(sgn(t)δτ n ≥ |t|) that
1531
+ the sample mean τ n inferred from n ≥ 1 realizations deviations from ⟨τ⟩ by more than t in either direction. Right tail areas
1532
+ are shown for t > 0 and left for t < 0, respectively. Cram´er-Chernoff upper bounds U±
1533
+ n (t; C) as black and extreme value upper
1534
+ bounds as dashed lines, respectively. Corresponding lower bounds L±
1535
+ n (t) are depicted as red lines and symbols denoted scaled
1536
+ empirical deviation probabilities obtained from the statistics of τ n for different n. (e-h) Quality factor Q as a function of n for
1537
+ different fixed relative deviations µ1t (see star symbols (a-d)). (i-l) Sample size n∗ (blue) for which both upper bounds are
1538
+ equal, i.e., Q = 1, as a function of re-scaled deviations.
1539
+ Since µ1 ≤ µk>1 and all first-passage weights wk are positive (due to equilibrium initial conditions) we find
1540
+ ⟨eλ(τ−⟨τ⟩)⟩ ≤ exp
1541
+
1542
+ λ2 ⟨τ 2⟩
1543
+ 2
1544
+ +
1545
+
1546
+ m>2
1547
+ λm �
1548
+ k>0
1549
+ wk
1550
+ µm
1551
+ k
1552
+
1553
+ ≤ exp
1554
+
1555
+ λ2 ⟨τ 2⟩
1556
+ 2
1557
+ +
1558
+
1559
+ m>2
1560
+ λm
1561
+ µm−2
1562
+ 1
1563
+
1564
+ k>0
1565
+ wk
1566
+ µ2
1567
+ k
1568
+
1569
+ ≤ exp
1570
+
1571
+ λ2 ⟨τ 2⟩
1572
+ 2
1573
+
1574
+ 1 +
1575
+ λ
1576
+ µ1 − λ
1577
+ ��
1578
+ = exp
1579
+
1580
+ λ2
1581
+ ⟨τ 2⟩/2
1582
+ (1 − λ/µ1)
1583
+
1584
+ .
1585
+ Introducing ψδτ(λ) ≡ ln⟨eλδτ⟩, with δτ = τ − ⟨τ⟩ for the right tail, we immediately identify the upper bound
1586
+ ψδτ(λ) ≤ λ2
1587
+ 2
1588
+ ⟨τ 2⟩
1589
+ 1 − λ/µ1
1590
+ =
1591
+ ˜λ2
1592
+ 2
1593
+ C
1594
+ 1 − ˜λ ≡ φδτ(˜λ; C)
1595
+ τ ≥ ⟨τ⟩,
1596
+ (S15)
1597
+ which concludes the derivation of the upper expression in Eq. (6) of the Letter. Note that we further have introduced
1598
+ the dimensionless quantities ˜t ≡ µ1t, C = µ2
1599
+ 1⟨τ 2⟩, and ˜λ = λ/µ1 in the last step. In the case of general initial conditions
1600
+ p0(x0) ̸= peq(x0) we must simply replace µ2
1601
+ 1⟨τ 2⟩ → C from Lemma 2.
1602
+ Next, we find the optimizing value of ˜λ, i.e., we compute the Cram´er transform of Eq. (S15) defined as
1603
+ φ∗
1604
+ δτ(˜t; C) ≡
1605
+ sup
1606
+ ˜λ∈[0,1)
1607
+ [˜λ˜t − φδτ(˜λ; C)] =
1608
+ sup
1609
+ ˜λ∈[0,1)
1610
+
1611
+ ˜λ˜t −
1612
+ ˜λ2
1613
+ 2
1614
+ C
1615
+ 1 − ˜λ
1616
+
1617
+ .
1618
+ (S16)
1619
+
1620
+ 7
1621
+ φδτ(˜λ; C) is differentiable, non-negative, convex, and increasing on
1622
+ ˜
1623
+ lambda ∈ [0, 1), which implies that Eq. (S16) can be
1624
+ obtained by differentiation of ˜λ˜t − φδτ(˜λ; C) with respect to ˜λ, hence φ∗
1625
+ δτ(˜t; C) = ˜λ†˜t − φδτ(˜λ†; C) where the optimum ˜λ†
1626
+ solves φ′
1627
+ δτ(˜λ†; C) = t. Accordingly, we find the supremum to be attained at ˜λ†(˜t) = 1 − 1/
1628
+
1629
+ 1 + 2˜t/C. For convenience
1630
+ we further introduce the auxiliary function h+(u) ≡ 1 + u − √1 + 2u such that we finally arrive at
1631
+ φ∗
1632
+ δτ(˜t; C) = Ch+(˜t/C) = Ch+(µ1t/C),
1633
+ 0 ≤ t ≤ ⟨τ⟩.
1634
+ (S17)
1635
+ By using Chernoff’s inequality we subsequently obtain the upper bound P(δτ n ≥ t) ≤ e−nφ∗
1636
+ δτ (t;C) ≡ U+
1637
+ n (t; C) for
1638
+ 0 ≤ t ≤ ∞ which completes the proof of Theorem 1 and thus the first announced inequality (7) in the Letter.
1639
+ 0
1640
+ 0.005
1641
+ 0.010 (a)
1642
+ ˜t = 0.1
1643
+ ˜λ˜t
1644
+ φ∗
1645
+ δτ (˜t; 2)
1646
+ φ∗
1647
+ δτ (˜t; C)
1648
+ φδτ (˜λ; C)
1649
+ φδτ (˜λ; 2)
1650
+ 0
1651
+ 0.005
1652
+ 0.010 (b)
1653
+ 0
1654
+ 0.005
1655
+ 0.010
1656
+ (c)
1657
+ 0
1658
+ 0.01
1659
+ 0.02 (d)
1660
+ 0
1661
+ 0.05
1662
+ 0.10
1663
+ ˜λ
1664
+ 0
1665
+ 0.002
1666
+ 0.004 (e)
1667
+ ˜λ†(˜t; C)
1668
+ ˜λ†(˜t; 2)
1669
+ φ∗
1670
+ δτ (˜t; C)
1671
+ φ∗
1672
+ δτ (˜t; 2)
1673
+ ˜λ˜t − φδτ (˜λ; C)
1674
+ ˜λ˜t − φδτ (˜λ; 2)
1675
+ 0
1676
+ 0.05
1677
+ 0.10
1678
+ ˜λ
1679
+ 0
1680
+ 0.001
1681
+ 0.002
1682
+ 0.003 (f)
1683
+ 0
1684
+ 0.05
1685
+ 0.10
1686
+ ˜λ
1687
+ 0
1688
+ 0.002
1689
+ 0.004 (g)
1690
+ 0
1691
+ 0.1
1692
+ 0.2
1693
+ ˜λ
1694
+ 0
1695
+ 0.004
1696
+ 0.008 (h)
1697
+ FIG. S2. Illustration of the Cram´er-Chernoff bounding method for the right tail with ˜t = 0.1 and parameters for spatially
1698
+ confined Brownian search process in dimensions d = 1 (a,e) or d = 3 (b,f), and discrete-state Markov jump processes for
1699
+ the model of calmodulin (c,d) and a 8-state toy protein (d,h). Top row depicts bounds of the cumulant generating function
1700
+ φδτ(˜λ; C) (black) and φδτ(˜λ; 2) (yellow) as a function of ˜λ, respectively. Bottom row shows the differences ˜λ˜t − φδτ(˜λ; C) (red)
1701
+ and ˜λ˜t − φδτ(˜λ; 2) (green) as a function of ˜λ, respectively (see also top row with ˜λ˜t in blue). The corresponding suprema are
1702
+ obtained at ˜λ†(˜t; C) and ˜λ†(˜t; 2) (dotted lines) and define the Cram´er transforms φ∗
1703
+ δτ(˜t; C) and φ∗
1704
+ δτ(˜t; 2) (compare top row). For
1705
+ all considered models we demonstrate φδτ(˜λ; C) ≤ φδτ(˜λ; 2) and φ∗
1706
+ δτ(˜t; C) ≥ φ∗
1707
+ δτ(˜t; 2) as derived in the maintext. Note for the
1708
+ panels (b,f) we have φδτ(˜λ; C) ⪅ φδτ(˜λ; 2) and φ∗
1709
+ δτ(˜t; C) ⪆ φ∗
1710
+ δτ(˜t; 2) since C = 1.99 ≈ 2.
1711
+ B.
1712
+ Theorem 2: Cram´er-Chernoff bound for the left tail ⟨τ⟩ < τ
1713
+ Next we turn to the left tail, τ < ⟨τ⟩, where the corresponding moment generating function analogously reads
1714
+ ⟨eλ(⟨τ⟩−τ)⟩ = eλ⟨τ⟩ �
1715
+ k>0
1716
+ wk
1717
+ 1 + λ/µk
1718
+ ≤ exp
1719
+
1720
+ λ⟨τ⟩ +
1721
+
1722
+ k>0
1723
+ wk
1724
+ 1 + λ/µk
1725
+ − 1
1726
+
1727
+ for λ < µk. Using equivalent arguments as for the right tail above we may further write
1728
+ eλ(⟨τ⟩−τ)⟩ ≤ exp
1729
+
1730
+ ��
1731
+ m≥2
1732
+ (−λ)m �
1733
+ k>0
1734
+ wk
1735
+ µm
1736
+ k
1737
+
1738
+
1739
+ = exp
1740
+
1741
+ λ2 ⟨τ 2⟩
1742
+ 2
1743
+ +
1744
+
1745
+ m>2
1746
+ (−λ)m �
1747
+ k>0
1748
+ wk
1749
+ µm
1750
+ k
1751
+
1752
+ ≤ exp
1753
+
1754
+ λ2 ⟨τ 2⟩
1755
+ 2
1756
+ +
1757
+
1758
+ m>0
1759
+ λ2m
1760
+ µ2m−2
1761
+ 1
1762
+
1763
+ k>0
1764
+ wk
1765
+ µ2
1766
+ k
1767
+
1768
+ = exp
1769
+
1770
+ λ2
1771
+ ⟨τ 2⟩/2
1772
+ 1 − (λ/µ1)2
1773
+
1774
+ .
1775
+ (S18)
1776
+ Recall the definition of the cumulant generating function, ψδτ(λ) ≡ ln⟨eλδτ⟩, such that Eq. (S18) directly yields
1777
+ ψδτ(λ) ≤ λ2
1778
+ 2
1779
+ ⟨τ 2⟩
1780
+ 1 − (λ/µ1)2 =
1781
+ ˜λ2
1782
+ 2
1783
+ C
1784
+ 1 − ˜λ2 ≡ φδτ(˜λ; C)
1785
+ (S19)
1786
+
1787
+ 8
1788
+ which completes the derivation of the lower expression in Eq. (6) of the Letter. Note that for the left tail we
1789
+ have δτ = ⟨τ⟩ − τ and we again let ˜t ≡ µ1t, ˜λ ≡ λ/µ1, and C ≡ µ2
1790
+ 1⟨τ 2⟩. In the case of general initial conditions
1791
+ p0(x0) ̸= peq(x0) we must simply replace µ2
1792
+ 1⟨τ 2⟩ → C from Lemma 2.
1793
+ Analogous to the right tail we next compute the Cram´er transform of Eq. (S19), i.e.,
1794
+ φ∗
1795
+ δτ(˜t; C) ≡
1796
+ sup
1797
+ ˜λ∈[0,1)
1798
+ [˜λ˜t − φδτ(˜λ; C)] =
1799
+ sup
1800
+ ˜λ∈[0,1)
1801
+
1802
+ ˜λ˜t −
1803
+ ˜λ2
1804
+ 2
1805
+ C
1806
+ 1 − ˜λ2
1807
+
1808
+ ,
1809
+ (S20)
1810
+ where we find the optimal value ˜λ†(˜t; C) to be determined by the transcendental quartic, ˜λ†(˜t) : (1− ˜λ2)2 −C˜t˜λ = 0 with
1811
+ C˜t ≡ C/˜t, which we solve according to the method of Descartes. First, we re-arrange the quartic as ˜λ4−2˜λ2−C˜t˜λ+1 = 0
1812
+ and make the factorization ansatz
1813
+ (˜λ2 − y˜t˜λ2 + w˜t)(˜λ2 + y˜t˜λ2 + z˜t) = 0
1814
+ w˜t + z˜t − y2
1815
+ ˜t = −2
1816
+ y˜t(w˜t − z˜t) = −C˜t
1817
+ z˜tw˜t = 1.
1818
+ (S21)
1819
+ The system of equations (S21) is solved by
1820
+ w˜t(y˜t) = (y2
1821
+ ˜t − 2 − C˜t/y˜t)/2,
1822
+ z˜t(y˜t) = (y2
1823
+ ˜t − 2 + C˜t/y˜t)/2,
1824
+ (S22)
1825
+ where y2
1826
+ ˜t ≡ Y˜t is the solution of the cubic Y 3
1827
+ ˜t − 4Y 2
1828
+ ˜t − C2
1829
+ ˜t = 0. Moreover, since the discriminant D is strictly
1830
+ negative, i.e. D = −28C2
1831
+ ˜t − 33C4
1832
+ ˜t < 0, the qubic has only one real root.
1833
+ The corresponding depressed qubic
1834
+ reads ˜t3 − 24/3˜t − (27/33 + C2
1835
+ ˜t ) = 0 with ˜tY˜t − 4/3.
1836
+ Let p = −24/3 < 0 and q = −(27/33 + C2
1837
+ ˜t ) < 0 then
1838
+ 22p3 + 33q2 = −212/33 + 33(27/33 + C2
1839
+ ˜t )2 > 0 for any ˜t ≥ 0. We can express the unique real root as
1840
+ y2
1841
+ ˜t = 4
1842
+ 3
1843
+
1844
+ 1 + 2 cosh
1845
+ �1
1846
+ 3arcosh
1847
+
1848
+ 1 + 33C2
1849
+ ˜t
1850
+ 27
1851
+ ���
1852
+ (S23)
1853
+ and y = ±
1854
+
1855
+ y2 with y2 from Eq. (S23) can now be plugged into Eqs. (S22) to obtain w˜t(y) and z˜t(y) that are required
1856
+ to solve the pair of quadratic equations (S21). The four roots of the transcendental quartic are hence given by
1857
+ ˜λ1(˜t) = y˜t
1858
+ 2
1859
+
1860
+ 1 +
1861
+
1862
+ 1 − 4w˜t(y˜t)/y2
1863
+ ˜t
1864
+
1865
+ ,
1866
+ ˜λ2(˜t) = y˜t
1867
+ 2
1868
+
1869
+ 1 −
1870
+
1871
+ 1 − 4w˜t(y˜t)/y2
1872
+ ˜t
1873
+
1874
+ ,
1875
+ ˜λ3(˜t) = −y˜t
1876
+ 2
1877
+
1878
+ 1 −
1879
+
1880
+ 1 − 4z˜t(y˜t)/y2
1881
+ ˜t
1882
+
1883
+ ,
1884
+ ˜λ4(˜t) = −y˜t
1885
+ 2
1886
+
1887
+ 1 +
1888
+
1889
+ 1 − 4z˜t(y˜t)/y2
1890
+ ˜t
1891
+
1892
+ .
1893
+ (S24)
1894
+ Moreover, we find w˜t(y˜t)/y2
1895
+ ˜t = (1 − 2/y2
1896
+ ˜t − C˜t/y3
1897
+ ˜t )/2 and z˜t(y˜t)/y2
1898
+ ˜t = (1 − 2/y2
1899
+ ˜t + C˜t/y3
1900
+ ˜t )/2. Since y˜t > 0 while
1901
+ ˜λ ∈ [0, 1), ˜λ2, ˜λ3 in Eq. (S24) are excluded automatically (note also that the square root in ˜λ2, ˜λ3 becomes complex for
1902
+ ˜t → ∞). We also have lim˜t→∞ y2
1903
+ ˜t = 4 and lim˜t→∞ w˜t(y˜t) = 1 such that lim˜t→∞ ˜λ1 = ˜λ2 = 1. Conversely, we find that
1904
+ lim˜t→0 ˜t2/3y2
1905
+ ˜t = C2/3 = lim˜t→0 ˜t2/3C˜t/y˜t such that lim˜t→0 w˜t(y˜t) = −1 while lim˜t→0 w˜t(y˜t)y2
1906
+ ˜t = −C2/3 = 0. Therefore,
1907
+ lim˜t→0 ˜λ1 = y˜t → ∞ whereas lim˜t→0 ˜λ2(˜t) = y˜t × 0/2 ↘ 0. We recall that ˜λ ∈ [0, 1) which therefore excludes ˜λ1(˜t)
1908
+ and identifies ˜λ†(˜t) = ˜λ2(˜t) as the supremum. Finally, we introduce the auxiliary functions
1909
+ g(u) ≡
1910
+ 2
1911
+
1912
+ 3
1913
+
1914
+ 1 + 2 cosh
1915
+ �1
1916
+ 3arcosh
1917
+
1918
+ 1 +
1919
+ 33
1920
+ 27u2
1921
+ ���1/2
1922
+ and
1923
+ Λ(u) ≡ 1
1924
+ 2
1925
+
1926
+ g(u) −
1927
+
1928
+ 4 + 2/g(u)u − g(u)2
1929
+
1930
+ ,
1931
+ (S25)
1932
+ as well as
1933
+ h−(u) ≡ Λ(u)u − 1
1934
+ 2
1935
+ Λ(u)2
1936
+ 1 − Λ(u)2
1937
+ (S26)
1938
+ which allows us to obtain and write the Cram´er transform as
1939
+ φ∗
1940
+ δτ(˜t; C) = Ch−(˜t/C) = Ch−(µ1t/C),
1941
+ 0 ≤ t ≤ ⟨τ⟩.
1942
+ (S27)
1943
+ In the last step we use Chernoff’s inequality to obtain the bound P(δτ n ≥ t) ≤ e−nφ∗
1944
+ δτ (t;C) ≡ U−
1945
+ n (t; C) for 0 ≤ t ≤ ⟨τ⟩
1946
+ which completes the proof of Theorem 2 and hence the derivation of the lower expression in Eq. (7) of the Letter.
1947
+
1948
+ 9
1949
+ 0
1950
+ 0.005
1951
+ 0.010 (a)
1952
+ ˜t = 0.1
1953
+ ˜λ˜t
1954
+ φ∗
1955
+ δτ (˜t; 2)
1956
+ φ∗
1957
+ δτ (˜t; C)
1958
+ φδτ (˜λ; C)
1959
+ φδτ (˜λ; 2)
1960
+ 0
1961
+ 0.005
1962
+ 0.010 (b)
1963
+ 0
1964
+ 0.005
1965
+ 0.010
1966
+ (c)
1967
+ 0
1968
+ 0.01
1969
+ 0.02 (d)
1970
+ 0
1971
+ 0.05
1972
+ 0.10
1973
+ ˜λ
1974
+ 0
1975
+ 0.002
1976
+ 0.004 (e)
1977
+ ˜λ†(˜t; C)
1978
+ ˜λ†(˜t; 2)
1979
+ φ∗
1980
+ δτ (˜t; C)
1981
+ φ∗
1982
+ δτ (˜t; 2)
1983
+ ˜λ˜t − φδτ (˜λ; C)
1984
+ ˜λ˜t − φδτ (˜λ; 2)
1985
+ 0
1986
+ 0.05
1987
+ 0.10
1988
+ ˜λ
1989
+ 0
1990
+ 0.001
1991
+ 0.002
1992
+ 0.003 (f)
1993
+ 0
1994
+ 0.05
1995
+ 0.10
1996
+ ˜λ
1997
+ 0
1998
+ 0.002
1999
+ 0.004 (g)
2000
+ 0
2001
+ 0.1
2002
+ 0.2
2003
+ ˜λ
2004
+ 0
2005
+ 0.004
2006
+ 0.008 (h)
2007
+ FIG. S3. Illustration of the Cram´er-Chernoff bounding method for the left tail with ˜t = 0.1 and parameters for spatially confined
2008
+ Brownian search process in dimensions d = 1 (a,e) or d = 3 (b,f), and discrete-state Markov jump processes for the model of
2009
+ calmodulin (c,d) and a 8-state toy protein (d,h). Top row depicts bounds of the cumulant generating function φδτ(˜λ; C) (black)
2010
+ and φδτ(˜λ; 2) (yellow) as a function of ˜λ, respectively. Bottom row shows the differences ˜λ˜t − φδτ(˜λ; C) (red) and ˜λ˜t − φδτ(˜λ; 2)
2011
+ (green) as a function of ˜λ, respectively (see also top row with ˜λ˜t in blue). The corresponding suprema are obtained at ˜λ†(˜t; C)
2012
+ and ˜λ†(˜t; 2) (dotted lines) and define the Cram´er transforms φ∗
2013
+ δτ(˜t; C) and φ∗
2014
+ δτ(˜t; 2) (compare top row). For all considered models
2015
+ we demonstrate φδτ(˜λ; C) ≤ φδτ(˜λ; 2) and φ∗
2016
+ δτ(˜t; C) ≥ φ∗
2017
+ δτ(˜t; 2) as derived in the maintext. Note for the panels (b,f) we have
2018
+ φδτ(˜λ; C) ⪅ φδτ(˜λ; 2) and φ∗
2019
+ δτ(˜t; C) ⪆ φ∗
2020
+ δτ(˜t; 2) since C = 1.99 ≈ 2.
2021
+ C.
2022
+ Behavior of upper bounds U±
2023
+ n (t) for large sample sizes
2024
+ Here, we present some further remarks about the limit of large sample sizes. Asymptotically as n → ∞, U±
2025
+ n (t) is
2026
+ substantial only for ˜t/C ≪ 1. For the right tail bound h+(u) we immediately find that for u ≪ 1 we can Taylor expand
2027
+ √1 + 2u = 1 + u − u2/2 + O(u3). Consequently we directly obtain h+(u) = −u2/2 + O(u3), i.e., the upper tail is
2028
+ sub-Gaussian for small deviations and will converge to a Gaussian as n → ∞. For the left tail we furthermore have
2029
+ arcosh(1 + x) = ln(1 + x +
2030
+
2031
+ x(x + 2)) and thus limx→∞ arcosh(1 + x) = ln(2x) − 1/(2x)2. As a result it follows that
2032
+ 1
2033
+ 3 limu→0 arcosh(1 + 33/27u2) ≃ 1
2034
+ 3 ln(33/26u2) = ln(3/4u2/3) − u4212/37 and thus
2035
+ lim
2036
+ u→0 g(u) ≃
2037
+ 2
2038
+
2039
+ 3{1 + 2 cosh ln(3/4u2/3)}1/2 =
2040
+ 2
2041
+
2042
+ 3[1 + 3/4u2/3]1/2
2043
+ (S28)
2044
+ = u−1/3[1 + 4u2/3/3]1/2 = u−1/3[1 + 2u2/3/3 + O(u4/3)] = u−1/3 + 2
2045
+ 3u1/3 + O(u).
2046
+ (S29)
2047
+ A lengthy but straightforward calculation subsequently reveals that limu→0 Λ(u) = u − O(u3) such that
2048
+ lim
2049
+ u→0
2050
+ Λ(u)2
2051
+ 1 − Λ(u)2 ≃
2052
+ u2
2053
+ 1 − u2 = u2 + O(u4).
2054
+ (S30)
2055
+ We therefore have that limu→0 h−(u) = u2/2 − O(u4), i.e., both tails are sub-Gaussian for ˜t/C ≪ 1 with C ≡ µ2
2056
+ 1⟨τ 2⟩.
2057
+ D.
2058
+ Proof of bounds on C and model-free concentration inequalities
2059
+ Notably, system details only enter the Cram´er transforms (S17) and (S27) (and consequently upper bounds on the
2060
+ deviation probability due to Chernoff’s inequality) in the form of a system-specific constant C ≡ µ2
2061
+ 1⟨τ 2⟩. Note that here
2062
+ we only allow for equilibrium initial conditions. Recalling that the moments of the first-passage time τ are expressed
2063
+ as ⟨τ m⟩ = m! �
2064
+ k>0 wk/µm
2065
+ k allows us to write
2066
+ 0 ≤ 2w1
2067
+ µ2
2068
+ 1
2069
+ ≤ ⟨τ 2⟩ = 2
2070
+
2071
+ k>0
2072
+ wk
2073
+ µ2
2074
+ k
2075
+ ≤ 2
2076
+
2077
+ k>0
2078
+ wk
2079
+ µ2
2080
+ 1
2081
+ = 2
2082
+ µ2
2083
+ 1
2084
+ (S31)
2085
+
2086
+ 10
2087
+ for equilibrium initial conditions where we have used that wk are non-negative, normalized, and µ1 ≤ µk>1. Conse-
2088
+ quently, by Eq. (S31), we immediately find that the system-constant itself is bounded 0 ≤ 2w1 ≤ C ≤ 2. Note that
2089
+ analogous considerations can be used to more generally obtain 0 ≤ m!w1 ≤ µm
2090
+ 1 ⟨τ m⟩ ≤ m! for the m-th moment.
2091
+ The fact that C ∈ (0, 2] can now be further leveraged to arrive at the model-free bounds (Eq. (11) in the Letter)
2092
+ which require no information about the underlying system. Recall the upper bounds of the cumulant generating
2093
+ function φδτ(˜λ; C) and their corresponding Cram´er transform φ∗
2094
+ δτ(˜t; C), i.e.,
2095
+ φδτ(˜λ; C) =
2096
+
2097
+
2098
+
2099
+
2100
+
2101
+
2102
+
2103
+ ˜λ2
2104
+ 2
2105
+ C
2106
+ 1 − ˜λ
2107
+ τ ≥ ⟨τ⟩
2108
+ ˜λ2
2109
+ 2
2110
+ C
2111
+ 1 − ˜λ2
2112
+ τ < ⟨τ⟩,
2113
+ and
2114
+ φ∗
2115
+ δτ(˜t; C) =
2116
+
2117
+ Ch+(˜t/C)
2118
+ τ ≥ ⟨τ⟩
2119
+ Ch−(˜t/C)
2120
+ τ < ⟨τ⟩.
2121
+ (S32)
2122
+ Since φδτ(˜λ; C) is monotonically increasing in C it follows that φδτ(˜λ; C) ≤ φδτ(˜λ; 2), ∀˜λ ∈ [0, 1) (see Figs S2 and S3 top
2123
+ row). By definition of φ∗
2124
+ δτ(˜t; C) ≡ sup˜λ∈[0,1)(˜λ˜t−φδτ(˜λ; C)) this bound in turn implies that φ∗
2125
+ δτ(˜t; C) ≥ φ∗
2126
+ δτ(˜t; 2) (compare
2127
+ Figs. S2 and S3 bottom row). With Chernoff’s inequality we moreover arrive at P(δτ n ≥ t) ≤ e−nφ∗
2128
+ δτ (t;C) ≤ e−nφ∗
2129
+ δτ (t;2)
2130
+ and hence U±
2131
+ n (t; C) ≤ U±
2132
+ n (t; 2) which completes the derivation of Eq. (11) in the Letter.
2133
+ S4.
2134
+ MODEL SYSTEMS AND DETAILS ON NUMERICAL METHODS
2135
+ In the Letter we exemplify our results by considering a Brownian molecular search process in dimensions d = 1 and
2136
+ d = 3, as well as discrete-state Markov-jump models of protein folding for a 8-state toy protein and the experimentally
2137
+ inferred model of calmodulin (compare Fig. 1b-d). In this section we present further details on the model systems and
2138
+ their numerical treatment.
2139
+ A.
2140
+ Continuous-time discrete-state Markov jump process
2141
+ As illustrative discrete-state continuous-time Markov-jump models of protein folding we consider a simple 8-state
2142
+ toy protein [2, 6] and further use the experimentally inferred folding network of the cellular calcium sensor protein
2143
+ calmodulin [7]. Since we consider equilibrium initial conditions, proteins start from an initial state drawn from the
2144
+ equilibrium density ˜peq(x)—note that the tilde denotes that the absorbing target is excluded—from which they search
2145
+ the native state a (here a = (1, 1, 1) for the 8-state model and a = F1234 for calmodulin; cf. Fig. 1b-d). Arrows in the
2146
+ networks denote possible transitions, e.g. a transition from state i to state j that occurs with the corresponding rate
2147
+ Lji. We consider reversible dynamics, i.e., the resulting transition matrix ˆL of the relaxation process satisfies detailed
2148
+ balance peq,j/peq,i = Lji/Lij = exp(Fi − Fj) and transitions rates are connected to the free energy of the states Fi [8].
2149
+ We recall that the first-passage time density ℘a(t) can be evaluated by using the spectral representation (S1). To this
2150
+ end we set up the modified transition matrix, adopting in this section the Dirac bra-ket notation, ˆLa = ˆL−|a⟩⟨a| where
2151
+ |a⟩ ≡ (0, . . . , 0, 1, 0, . . .)⊺ defines a vector with all entries zero expect at the a-th position of the absorbing state where
2152
+ it equals one. This effectively removes all transitions that correspond to jumps leaving the absorbing state a. Next, we
2153
+ carry out an eigendecomposition of ˆLa and determine the eigenvalues µk, right eigenvectors |φR⟩, and left eigenvectors
2154
+ ⟨φL|. We subsequently use obtained eigenmodes to compute the first-passage weights wk(x0) = −⟨a|φR
2155
+ k ⟩⟨φL
2156
+ k|x0⟩
2157
+ (see [1, 2]), and recall that µk and wk determine the moments according to ⟨τ m⟩ = m! �
2158
+ k>0 wk/µm
2159
+ k . Corresponding
2160
+ relevant parameters of the Markov jump models are listed in Tab. I. Next we give further details on how corresponding
2161
+ transition rates are constructed.
2162
+ TABLE I. Parameters for the Markov jump models for the 8-state toy protein and the inferred model of calmodulin. Listed are
2163
+ values for the first-passage eigenvalues µk, first-passage weights wk, and the first ⟨τ⟩ and second moment ⟨τ 2⟩.
2164
+ Model
2165
+ µ1
2166
+ w1
2167
+ µ2
2168
+ w2
2169
+ µ3
2170
+ w3
2171
+ µ4
2172
+ w4
2173
+ µ5
2174
+ w5
2175
+ µ6
2176
+ w6
2177
+ µ7
2178
+ w7
2179
+ ⟨τ⟩
2180
+ ⟨τ 2⟩
2181
+ Toy protein 0.976 0.337 6.148 0.009 1.551
2182
+ 0.583
2183
+ 4.203
2184
+ 0.001
2185
+ 4.396
2186
+ 0.0001 6.233 0.060 12.834 0.010 0.385 0.713
2187
+ Calmodulin 0.469 0.651 3.763 0.349 19.097 9.98E-5 143.749 2.42E-9 1581.629 1.52E-6
2188
+
2189
+
2190
+
2191
+
2192
+ 1.479 5.958
2193
+
2194
+ 11
2195
+ 1.
2196
+ Transitions rates of the 8-state toy protein model
2197
+ For the 8-state toy protein model we randomly generate a free energy level Fi for each state i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
2198
+ with Fi uniformly distributed within the interval 0 ≤ Fi ≤ 10. Transition rates that satisfy detailed balance are then
2199
+ obtained using the ansatz
2200
+ ki→j ≡ Lji = exp(∆Fi/2)
2201
+ and
2202
+ kj→i ≡ Lij = exp(−∆Fi/2),
2203
+ (S33)
2204
+ where ∆Fi ≡ Fi − Fj and thus ln(Lji/Lij) = ∆Fi = Fi − Fj. Obtained individual transition rates are listed in Tab. II.
2205
+ TABLE II. Transition rates for the 8-state toy protein model obtained via the ansatz described in the main text.
2206
+ transition rate ki→j transition rate ki→j transition rate ki→j transition rate ki→j
2207
+ 1 → 2
2208
+ 1.878
2209
+ 2 → 5
2210
+ 2.648
2211
+ 3 → 7
2212
+ 4.549
2213
+ 5 → 8
2214
+ 0.106
2215
+ 2 → 1
2216
+ 5.327
2217
+ 5 → 2
2218
+ 3.421
2219
+ 7 → 3
2220
+ 1.00994
2221
+ 8 → 5
2222
+ 124.477
2223
+ 1 → 3
2224
+ 0.00463
2225
+ 2 → 6
2226
+ 0.527
2227
+ 4 → 6
2228
+ 0.358
2229
+ 6 → 8
2230
+ 0.712
2231
+ 3 → 1
2232
+ 0.507
2233
+ 6 → 2
2234
+ 36.0577
2235
+ 6 → 4
2236
+ 36.457
2237
+ 8 → 6
2238
+ 15.794
2239
+ 1 → 4
2240
+ 0.326
2241
+ 3 → 5
2242
+ 1.109
2243
+ 4 → 7
2244
+ 0.523
2245
+ 7 → 8
2246
+ 0.322
2247
+ 4 → 1
2248
+ 0.623
2249
+ 5 → 3
2250
+ 0.0371
2251
+ 7 → 4
2252
+ 6.670
2253
+ 8 → 7
2254
+ 56.998
2255
+ 2.
2256
+ Transitions rates of the calmodulin protein model
2257
+ In the experimental setup a constant external force f, a so-called pretension, is applied to the calmodulin protein
2258
+ via optical tweezers. Folding and unfolding processes are observed at different pretensions ranging from 6pN to 13 pN
2259
+ and corresponding force-dependent transition rates ki→j(f) = Lji(f) between two conformational states i and j are
2260
+ measured. Note that i, j ∈ {Unfold, F12, F123, F23, F34, F1234} and we further map states according to Unfold ↔ 1,
2261
+ F12 ↔ 2, F123 ↔ 3, F23 ↔ 4, F34 ↔ 5, and F1234 ↔ 6 for convenience. For our purposes we choose, without loss of
2262
+ generality, a pretension of f = 9 pN and obtain the corresponding measured transitions rates from Fig. S8 in the
2263
+ Supplementary Material of [7]. Clearly, experimental transitions rates are accompanied with measurement uncertainties
2264
+ which is reflected in slight “deviations” from a mathematically precise definition of detailed balance. To mitigate this
2265
+ issue, and to ensure that transition rates precisely obey detailed balance ki→jpeq,i = kj→ipeq,j, we further have to
2266
+ slightly adjust the rates.
2267
+ First, we compute the invariant density peq from the experimental rates and obtain a corresponding free energy
2268
+ level Fi = − ln(peq,i). Next, we use the ansatz (S33), i.e., Lji = Ai exp(∆Fi/2) and Lij = Ai exp(−∆Fi/2) where we
2269
+ introduce a constant Ai. Finally, Ai’s are chosen such that resulting transition rates fall within experimental error
2270
+ bars in Ref. [7]. Obtained transition rates are listed in Table III.
2271
+ TABLE III. Transition rates of the Markov jump model for the calmodulin protein. Rates are extracted from the Supplemental
2272
+ Material of Ref. [7] and modified such that they obey detailed balance precisely according to the maintext.
2273
+ transition rate ki→j transition rate ki→j transition rate ki→j
2274
+ 1 → 2
2275
+ 5.997
2276
+ 1 → 4
2277
+ 13.439
2278
+ 1 → 5
2279
+ 15.330
2280
+ 2 → 1
2281
+ 0.774
2282
+ 4 → 1
2283
+ 127.968
2284
+ 5 → 1
2285
+ 0.121
2286
+ 5 → 6
2287
+ 3.749
2288
+ 2 → 3
2289
+ 1514.820
2290
+ 2 → 6
2291
+ 13.441
2292
+ 6 → 5
2293
+ 13.326
2294
+ 3 → 2
2295
+ 53.0661
2296
+ 6 → 2
2297
+ 2.922
2298
+ B.
2299
+ Spatially confined Brownian molecular search process
2300
+ We also test our theory for Markov processes on a continuous state-space. More precisely, we consider the spatially
2301
+ confined diffusive search of a Brownian particle in a d-dimensional unit sphere with a reflecting boundary at R = 1 and
2302
+ a perfectly absorbing spherical target of radius 0 < a < 1, here a = 0.1, in the center (compare Fig. 1b). The closest
2303
+ distance of the particle to the surface of the absorbing sphere at time t is a confined Bessel process (see e.g. [2, 9, 10])
2304
+ which time evolution obeys the Itˆo equation
2305
+ dxt = (d − 1)x−1
2306
+ t dt +
2307
+
2308
+ 2dWt,
2309
+ (S34)
2310
+
2311
+ 12
2312
+ where dWt is the increment of a Wiener process (i.e. Gaussian white noise) with ⟨dWt⟩ = 0 and ⟨dWtdWt′⟩ = δ(t−t′)dt,
2313
+ and we have set, without loss of generality, D = 1. The general case with any 0 < D < �� and a sphere of radius R is
2314
+ covered by expressing time in units of R2/D.
2315
+ For d = 1 Eq. (S34) reduces to a 1 dimensional Brownian motion which has the equilibrium first-passage weights
2316
+ weq
2317
+ k = 2
2318
+ π2
2319
+ 1 − sin [(k − 1)π]
2320
+ (k − 1/2)2
2321
+ (S35)
2322
+ and matching first-passage eigenvalues are obtained as µk = π2(k − 1/2)2. Moreover, for d = 3 the first-passage time
2323
+ probability density of the Bessel process can be evaluated exactly and has the equilibrium weights
2324
+ weq
2325
+ k = 2
2326
+ µk
2327
+ 3a2
2328
+ 1 − a3
2329
+ tan[(1 − a)√µk] +
2330
+ 1
2331
+ õk
2332
+ (1 − a) tan[(1 − a)√µk] −
2333
+ a
2334
+ õk
2335
+ ,
2336
+ (S36)
2337
+ with the first-passage eigenvalues µk being the solutions of the transcendental equation √µk = tan([1 − a]√µk) that
2338
+ can be solved analytically using Newton’s series [2]. Relevant parameters for the spatially confined Brownian search
2339
+ process with a = 0.1 are listed in Tab. IV.
2340
+ TABLE IV. Parameters for the spatially confined Brownian molecular search process in dimensions 1 and 3. Listed are values
2341
+ for the first 5 first-passage eigenvalues µk, first-passage weights wk, and the first ⟨τ⟩ and second moment ⟨τ 2⟩, respectively a.
2342
+ Model
2343
+ µ1
2344
+ w1
2345
+ µ2
2346
+ w2
2347
+ µ3
2348
+ w3
2349
+ µ4
2350
+ w4
2351
+ µ5
2352
+ w5
2353
+ ⟨τ⟩
2354
+ ⟨τ 2⟩
2355
+ 1D Brownian motion 2.467 0.811 22.207 0.0901 61.685
2356
+ 0.0324
2357
+ 120.903
2358
+ 0.0165
2359
+ 199.859 0.01001 0.333 0.267
2360
+ 3D Bessel process
2361
+ 0.363 0.994 25.174 0.00277 73.926 9.163E-4 147.037 4.573E-4 244.516 2.742E-4 2.739 1.509
2362
+ a For the numerical evaluation of ⟨τ⟩ and ⟨τ 2⟩ as listed we truncate the sum after M = 1000 terms.
2363
+ C.
2364
+ Statistics of first-passage times ⟨τ⟩ and the sample mean τ n
2365
+ Here we provide some further details on the sampling method used to obtain the statistics of (i) the first-passage
2366
+ time τ and (ii) the sample-mean τ n ≡ �
2367
+ i τi/n at some fixed value n for our considered models.
2368
+ We recall that after determining the first-passage eigenvalues µk and first-passage weights wk, the first-passage time
2369
+ density ℘a(t) (S1) and survival probability Sa(t) (S2) are fully characterized. To now sample the random variable τ,
2370
+ i.e. individual realizations of the first-passage process, we employ the so-called inversion sampling method [11]. This
2371
+ method allows us to generate independent samples of τ from ℘a(t) given its cumulative distribution function (CDF)
2372
+ which is directly related to the survival probability according to 1 − Sa(t). Note that for discrete-state dynamics the
2373
+ number of states M is finite, i.e. k = 1, . . . , M and therefore Eq. (S2) (and hence the CDF) is a finite sum. In contrast,
2374
+ for continuous-state dynamics we formally have M = ∞, meaning that sums are here not finite. For the following
2375
+ numerical evaluation of the spatially confined Brownian search process we therefore truncate the sum after M = 1000
2376
+ terms. The first-passage time densities ℘a(t) obtained via inversion sampling (symbols) for all considered models are
2377
+ shown in Fig. S4a-d and corroborated by the corresponding analytical result (S1) (dashed black line).
2378
+ For Fig. 2a-d in the Letter empirical probabilities that τ n − ⟨τ⟩ lies within a desired range of ± 10% of the
2379
+ longest first-passage time scale µ−1
2380
+ 1 , P(µ1[τ n − ⟨τ⟩] ∈ [−0.1, 0.1]), are computed using statistics of the sample
2381
+ mean τ n by fixing n, i.e., the number of individual realizations the average is taken over. In particular, we have
2382
+ n ∈ {1, 2, 3, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500}. Subsequently, for each individual fixed n the sample
2383
+ mean τ n itself is sampled a total of N = 106 times. That is, we first draw n first-passage times τ, compute τ n by
2384
+ averaging over the drawn n realizations, and finally repeat this step N = 106 times to obtain statistics of τ n for all n
2385
+ values introduced above. Probability densities of the sample mean are shown in Fig. S4e-h for n ∈ {3, 5, 10, 20} and all
2386
+ model systems. Corresponding true mean first-passage times ⟨τ⟩ are highlighted in grey.
2387
+ In Fig. 2e-h of the Letter the probabilities to deviate more than t in either direction, P(±[τ n − ⟨τ⟩] ≥ t), are
2388
+ computed from analogous statistics of the sample mean τ n. Since we also consider empirical probabilities for rare
2389
+ events with large deviations (i.e. large µ1t) we however require substantially more statistics of τ n. To this end we now
2390
+ have N = 107 for n ∈ {1, 3} and N = 1011 for n ∈ {5, 10, 20}. In addition it should be further noted that we re-scale
2391
+ obtained probabilities according to P1/n. To compute an empirical deviation probability where e.g. P1/20 = 0.1 one
2392
+ would be thus required to sample rare events that occur with a probability of ≃ 10−20.
2393
+
2394
+ 13
2395
+ In Fig. 3a of the Letter each data point corresponds to the relative error µ1(τ n − ⟨τ⟩) (note that µ1 and ⟨τ⟩ are
2396
+ different for each model) where the sample mean τ n is again obtained by first fixing n and then sampling n first-passage
2397
+ times τ according to the inversion sampling method and subsequently taking the average.
2398
+ 10−9
2399
+ 10−5
2400
+ 10−1
2401
+ t
2402
+ 10−2
2403
+ 101
2404
+ 104
2405
+ ℘a(t)
2406
+ (a)
2407
+ 10−5
2408
+ 10−1
2409
+ t
2410
+ 10−2
2411
+ 100
2412
+ 102 (b)
2413
+ 10−4
2414
+ 10−2
2415
+ 100
2416
+ t
2417
+ 10−2
2418
+ 10−1
2419
+ 100
2420
+ 101
2421
+ (c)
2422
+ 10−5
2423
+ 10−2
2424
+ t
2425
+ 100
2426
+ 102
2427
+ (d)
2428
+ 0
2429
+ 0.5
2430
+ 1
2431
+ τ n
2432
+ 0
2433
+ 1
2434
+ 2
2435
+ 3
2436
+ 4
2437
+ 5
2438
+ p(τ n)
2439
+ ⟨τ⟩
2440
+ (e)
2441
+ n = 3
2442
+ n = 5
2443
+ n = 10
2444
+ n = 20
2445
+ 0
2446
+ 2
2447
+ 4
2448
+ 6
2449
+ τ n
2450
+ 0
2451
+ 0.2
2452
+ 0.4
2453
+ 0.6
2454
+ 0.8 (f)
2455
+ 0
2456
+ 2
2457
+ 4
2458
+ τ n
2459
+ 0
2460
+ 0.5
2461
+ 1 (g)
2462
+ 0
2463
+ 0.5
2464
+ 1
2465
+ τ n
2466
+ 0
2467
+ 1
2468
+ 2
2469
+ 3
2470
+ 4
2471
+ 5 (h)
2472
+ FIG. S4. Inversion sampling of first-passage statistics for a spatially confined Brownian search process in dimensions (a,e) d = 1
2473
+ and (b,f) d = 3, and discrete-state Markov jump processes for (c,d) the inferred model of calmodulin and (d,h) a 8-state toy
2474
+ protein. (a-d) First-passage time density ℘a(t) obtained using inversion sampling (symbols) and analytical result as black dashed
2475
+ lines. (e-h) Empirical probability density of the sample mean τ n for different n values. True mean first-passage times ⟨τ⟩ are
2476
+ shown in grey.
2477
+ S5.
2478
+ UNCERTAINTY QUANTIFICATION WITH CONFIDENCE INTERVALS
2479
+ In this section we extend the discussion and present some further details on the confidence intervals introduced in
2480
+ the Letter. Our derived upper bounds U±
2481
+ n (t) can be applied to construct non-asymptotic performance guarantees such
2482
+ as confidence intervals. In particular, they can be employed to bound the probability that δτ n ≡ τ n − ⟨τ⟩ is found to
2483
+ be in some interval [−t−
2484
+ α−, t+
2485
+ α+], i.e.,
2486
+ P(δτ n ∈ [−t−
2487
+ α−, t+
2488
+ α+]) = P(−t−
2489
+ α− ≤ δτ n ≤ t+
2490
+ α+)
2491
+ = P(δτ n ≥ −t−
2492
+ α− ∩ δτ n ≤ t+
2493
+ α+)
2494
+ ≥ 1 − P(δτ n ≤ −t−
2495
+ α−) − P(δτ n ≥ t+
2496
+ α+)
2497
+ ≥ 1 − U−
2498
+ n (t−
2499
+ α−)
2500
+
2501
+ ��
2502
+
2503
+ ≡α−
2504
+ − U+
2505
+ n (t+
2506
+ α+)
2507
+
2508
+ ��
2509
+
2510
+ ≡α+
2511
+ .
2512
+ (S37)
2513
+ In passing from the second to the third line we have applied Boole’s second inequality, and from the third to forth
2514
+ line we use bounds (7) of the Letter. In the last line we additionally introduced acceptable right and left tail error
2515
+ probabilities α±. The implicit interval [−t−
2516
+ α−, t+
2517
+ α+] therefore defines a confidence interval at a confidence level of 1 − α
2518
+ with α ≡ α+ + α−, and α+ + α− < 1. In general the choice of the confidence interval for a fixed probability 1 − α is
2519
+ not unique. Some common options in the literature (see e.g. [12, 13]), all having the same confidence level, are listed
2520
+ below.
2521
+ • One common choice are so-called central intervals (blue lines in Fig. S5) which correspond to equal tail probabilities
2522
+ α+ = α− = α/2 for the complementary intervals [−⟨τ⟩, −t−
2523
+ α−] and [t+
2524
+ α+, ∞). Notably, we remark that central
2525
+ confidence intervals do not generally imply that t+
2526
+ α+ and t−
2527
+ α− are equidistant from another, i.e., t+
2528
+ α+ ̸= t−
2529
+ α−.
2530
+
2531
+ 14
2532
+ • As an alternative one could likewise choose t+
2533
+ α+ = t−
2534
+ α− ≡ ∆t/2, which subsequently leads to the symmetric
2535
+ interval [−∆t/2, ∆t/2] with total length ∆t (see red lines in Fig. S5) . Analogously, a symmetric interval does
2536
+ not necessarily imply that the corresponding tail probabilities are equal, i.e., in general α+ ̸= α−.
2537
+ • Both considerations above lead to two-sided intervals. However, another possible choice includes the fully
2538
+ asymmetric intervals [−⟨τ⟩, t+
2539
+ α+] and [−t−
2540
+ α−, ∞), i.e., one-sided intervals with a corresponding confidence level
2541
+ 1 − α+ (for the upper limit t+
2542
+ α+) and 1 − α− (for the lower limit t−
2543
+ α−), respectively,
2544
+ P(±δτ n ≤ t±
2545
+ α±) ≥ 1 − α±.
2546
+ (S38)
2547
+ 0
2548
+ 0.5
2549
+ 1
2550
+ µ1t+
2551
+ α+
2552
+ 0
2553
+ 0.5
2554
+ 1
2555
+ µ1t−
2556
+ α−
2557
+ n = 15
2558
+ (a)
2559
+ 0.5
2560
+ 0.7
2561
+ 0.9
2562
+ central int.
2563
+ symm. int.
2564
+ 0
2565
+ 0.5
2566
+ 1
2567
+ µ1t+
2568
+ α+
2569
+ n = 20
2570
+ (b)
2571
+ 0.5
2572
+ 0.7
2573
+ 0.9
2574
+ 0
2575
+ 0.5
2576
+ 1
2577
+ µ1t+
2578
+ α+
2579
+ n = 30
2580
+ (c)
2581
+ 0.5
2582
+ 0.7
2583
+ 0.9
2584
+ 0.0
2585
+ 0.2
2586
+ 0.4
2587
+ 0.6
2588
+ 0.8
2589
+ 1.0
2590
+ 1 − α
2591
+ FIG. S5.
2592
+ Contour plot of different choices of possible two-sided confidence intervals [−µ1t−
2593
+ α−, µ1t+
2594
+ α+] for a fixed confidence level
2595
+ α and (a) n = 15, (b) n = 20, (c) n = 30. Contour lines for α ∈ {0.1, 0.3, 0.5} are depicted in white. Specific choices of central
2596
+ and symmetric are shown in blue and red, respectively, and we let C = 1 for all panels.
2597
+ Confidence intervals are practically useful as they answer questions such as e.g.:
2598
+ How many realizations are required to achieve a desired accuracy with a specified probability?
2599
+ Or: For a given number of realizations a desired accuracy is achieved with at least what probability?
2600
+ In the case of symmetric confidence intervals t+
2601
+ α+ = t−
2602
+ α− (see Fig. S5 red lines) the interval endpoints are implicitly
2603
+ defined via the last line of Eq. (S37) which is easily solved using standard root-finding procedures like the bi-section
2604
+ method [14]. The same holds true for other interval choices, however, when specifying the error probabilities α±
2605
+ directly—as done for e.g. two-sided central intervals (α± = α/2) or one-sided intervals—it suffices to solve Eq. (S38) with
2606
+ the respective α±. Hereby, the lower confidence limit t−
2607
+ α− is again easily obtained using standard root-finding methods.
2608
+ Notably, the upper confidence limit t+
2609
+ α+ can now be solved analytically. To show this we consider U+
2610
+ n (t+
2611
+ α+; C) = α+,
2612
+ i.e., we identify the t+
2613
+ α+ that solves
2614
+ 0 = −nCh+(µ1t+
2615
+ α+/C) − ln(α+).
2616
+ (S39)
2617
+ The roots are identified as
2618
+ t1 = −ln (α+)
2619
+ µ1n
2620
+
2621
+
2622
+ 2
2623
+
2624
+ − ln (α+)
2625
+ µ1
2626
+
2627
+ n/C
2628
+ and
2629
+ t2 = −ln (α+)
2630
+ µ1n
2631
+ +
2632
+
2633
+ 2
2634
+
2635
+ − ln (α+)
2636
+ µ1
2637
+
2638
+ n/C
2639
+ ,
2640
+ (S40)
2641
+ and we identify t+
2642
+ α+ = t2 as the relevant solution. Having obtained an explicit expression for t+
2643
+ α+ further allows us to
2644
+ re-insert it into the left-hand side of Eq. (S38), i.e., we find that with a probability of at least 1 − α+
2645
+ δτ n ≤ −ln (α+)
2646
+ µ1n
2647
+ +
2648
+
2649
+ 2
2650
+
2651
+ − ln (α+)
2652
+ µ1
2653
+
2654
+ n/C
2655
+ .
2656
+ (S41)
2657
+ The required number of realizations n∗ to ensure with a probability of at least 1 − α that δτ n is found within some
2658
+ interval [−t−
2659
+ α−, t+
2660
+ α+] (e.g. symmetric interval in Fig. 3b) is analogous identified according to Eq. (14) in the Letter
2661
+ Un∗(t+
2662
+ α+; C) + Un∗(t−
2663
+ α−; C) = α,
2664
+ (S42)
2665
+
2666
+ 15
2667
+ which once again is readily solved via e.g. the bisection method. Moreover, in the case of one-sided intervals one
2668
+ immediately finds the corresponding analytical expression
2669
+ n∗ ≥ −
2670
+ ln(α±)
2671
+ Ch±(µ1t/C),
2672
+ (S43)
2673
+ where n∗ denotes the required number to ensure that ±δτ n ≤ t with at least 1 − α±.
2674
2675
+ [1] D. Hartich and A. Godec, New J. Phys. 20, 112002 (2018).
2676
+ [2] D. Hartich and A. Godec, J. Phys. A: Math. Theor. 52, 244001 (2019).
2677
+ [3] A. J. F. Siegert, Phys. Rev. 81, 617 (1951).
2678
+ [4] G. Teschl, Ordinary Differential Equations and Dynamical Systems (American Mathematical Society, 2012).
2679
+ [5] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3rd ed., Springer Series
2680
+ in Synergetics, Vol. 13 (Springer-Verlag, Berlin, 2004).
2681
+ [6] G. R. Bowman, V. S. Pande, and F. No´e, An Introduction to Markov State Models and their Application to Long Timescale
2682
+ Molecular Simulation, Vol. 797 (Springer Science & Business Media, 2013).
2683
+ [7] J. Stigler, F. Ziegler, A. Gieseke, J. C. M. Gebhardt, and M. Rief, Science 334, 512 (2011).
2684
+ [8] U. Seifert, Annu. Rev. Condens. Matter Phys. 10, 171 (2019).
2685
+ [9] J. W. Pitman, Adv. Appl. Probab. 7, 511 (1975).
2686
+ [10] E. Barkai, E. Aghion, and D. Kessler, Phys. Rev. X 4, 021036 (2014).
2687
+ [11] L. Devroye, Non-Uniform Random Variate Generation (Springer New York, 1986).
2688
+ [12] G. Cowan, Statistical Data Analysis (Oxford University Press, 1998).
2689
+ [13] L. Lista, Statistical Methods for Data Analysis in Particle Physics (Springer International Publishing, 2017).
2690
+ [14] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis (Cengage Learning, 2015).
2691
+
btFAT4oBgHgl3EQf5R5J/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
cNE5T4oBgHgl3EQffQ_r/content/tmp_files/2301.05626v1.pdf.txt ADDED
@@ -0,0 +1,1078 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Channel Measurement for Holographic MIMO:
2
+ Benefits and Challenges of Spatial Oversampling
3
+ Tengjiao Wang∗, Yongxi Liu†, Ming Zhang†, Wei E. I. Sha‡, Cen Ling∗, Chao Li∗, Shaobo Wang∗
4
+ ∗Wireless Network RAN Research Department, Huawei Technologies CO., Ltd, Shanghai, China
5
+ †School of Electronic and Information Engineering, Xi’an Jiaotong University, Shaanxi, China
6
+ ‡College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
7
+ Emails: ∗{wangtengjiao6, lingcen, lichao18, shaobo.wang}@huawei.com,
8
9
+ Abstract—In this paper, the channel of an indoor holographic
10
+ multiple-input multiple-output (MIMO) system is measured. It
11
+ is demonstrated through experiments for the first time that
12
+ the spatial oversampling of holographic MIMO systems is able
13
+ to increase the capacity of a wireless communication system
14
+ significantly. However, the antenna efficiency is the most crucial
15
+ challenge preventing us from getting the capacity improvement.
16
+ An extended EM-compliant channel model is also proposed
17
+ for holographic MIMO systems, which is able to take the
18
+ non-isotropic characteristics of the propagation environment,
19
+ the antenna pattern distortion, the antenna efficiency, and the
20
+ polarization characteristics into consideration.
21
+ Index Terms—Holographic MIMO, massive MIMO, spatial
22
+ oversampling, channel measurement, electromagnetic informa-
23
+ tion theory.
24
+ I. INTRODUCTION
25
+ In order to increase the spectral efficiency and energy
26
+ efficiency for the future 5G-Advanced and 6G wireless com-
27
+ munication systems, the concept of holographic multiple-input
28
+ multiple-output (MIMO) is proposed recently [1]. By inte-
29
+ grating an infinite number of antennas into a limited surface,
30
+ holographic MIMO is expected to fully exploit the propagation
31
+ characteristics offered by the electromagnetic channel and ap-
32
+ proach the fundamental performance limit [2]. For holographic
33
+ MIMO systems, both the accurate channel modeling and the
34
+ realistic performance evaluation are key problems.
35
+ In the literature, many efforts have been devoted to accu-
36
+ rately model the channel of holographic MIMO systems [3]–
37
+ [7]. In [3], a Fourier plane-wave series expansion-based chan-
38
+ nel model is proposed for holographic MIMO systems. Based
39
+ on the Fourier spectral representation, it provides a physically
40
+ meaningful model capturing the propagation characteristics of
41
+ the electromagnetic (EM) wave. In [4], the authors extend the
42
+ Fourier plane-wave channel model to a multi-user scenario.
43
+ In [5], the non-isotropic scattering environment is further con-
44
+ sidered by using the von Mises-Fisher (VMF) distributions [8].
45
+ Then in our previous works [6], [7], an EM-compliant channel
46
+ model is proposed. By combining the VMF distributions [8]
47
+ and the 3GPP TR 38.901 channel model [9], a realistic angular
48
+ power spectrum is modeled. The non-ideal factors caused by
49
+ mutual coupling at the transceivers [10], including the antenna
50
+ pattern distortion and the decrease of antenna efficiency are
51
+ also accounted for. However, in the state-of-the-art channel
52
+ models [3]–[7], the polarization of EM wave is not taken into
53
+ consideration. The polarization is an inherent characteristic of
54
+ EM waves and will have significant impact on the performance
55
+ of holographic MIMO systems.
56
+ Another key problem for holographic MIMO is the accurate
57
+ performance evaluation. In [5], the ergodic capacity of a
58
+ single-user holographic MIMO system is analyzed, which
59
+ shows the capacity improvement of holographic MIMO over
60
+ conventional MIMO. In [11], the capacity of a single-user
61
+ holographic MIMO system is investigated from a continuous
62
+ point of view, the capacity enhancement is also demonstrated.
63
+ In our previous work [6], both the single-user and the multi-
64
+ user downlink channel capacities of holographic MIMO sys-
65
+ tems are investigated. However, the performance evaluations
66
+ in the state-of-the-art researches [5], [6], [11] are all numerical
67
+ simulations based on theoretical models. No experiments have
68
+ been done to verify the accuracy of the performance evalua-
69
+ tions.
70
+ In this paper, we try to solve the above two problems
71
+ for holographic MIMO systems. Firstly, an extended EM-
72
+ compliant channel model is proposed based on the channel
73
+ model in our previous work [6]. Secondly, the channel of holo-
74
+ graphic MIMO is measured through real-world experiments,
75
+ and the performance is evaluated based on the measurement
76
+ results. The contributions of this paper can be summarized as
77
+ follows:
78
+ • An extended EM-compliant channel model is proposed
79
+ for holographic MIMO systems. In the extended model,
80
+ not only the non-isotropic characteristics of the propaga-
81
+ tion environment, the antenna pattern distortion, the an-
82
+ tenna efficiency, but also the polarization of the antennas
83
+ and the propagation environment can be modeled.
84
+ • Based on the extended channel model, the real-world
85
+ channel for holographic MIMO systems is measured for
86
+ the first time in an indoor environment. An experiment
87
+ is carefully designed, in which an electrically controlled
88
+ virtual dense array is used to realize arbitrary element
89
+ spacings of holographic MIMO.
90
+ • The channel capacity of holographic MIMO systems is
91
+ evaluated according to the measurement results. It is
92
+ arXiv:2301.05626v1 [cs.IT] 13 Jan 2023
93
+
94
+ demonstrated that the spatial oversampling of holographic
95
+ MIMO is able to provide a two to three times capacity
96
+ enhancement, without considering the antenna efficiency
97
+ loss. The antenna efficiency is the most crucial challenge
98
+ for holographic MIMO.
99
+ The rest of this paper is organized as follows. In Section II,
100
+ the proposed extended EM-compliant channel model for holo-
101
+ graphic MIMO is explained in details. Then, the setup for the
102
+ channel measurement is given in Section III. The measurement
103
+ results and the corresponding performance evaluations are
104
+ provided in Section IV. Finally, this paper is concluded in
105
+ Section V.
106
+ II. EXTENDED EM-COMPLIANT CHANNEL MODEL
107
+ A. EM-Compliant Channel Model
108
+ In this subsection, the EM-compliant channel model for
109
+ holographic MIMO in our previous work [6] is briefly in-
110
+ troduced. The central frequency and wavelength are denoted
111
+ by fc and λ. Planar antenna arrays with size {Lx
112
+ R, Ly
113
+ R} and
114
+ {Lx
115
+ S, Ly
116
+ S} are equipped at the receiver and the transmitter,
117
+ respectively. The numbers of antenna elements are denoted
118
+ by NR and NS. The spacings between antenna elements are
119
+ denoted by {∆x
120
+ R, ∆y
121
+ R} and {∆x
122
+ S, ∆y
123
+ S}. The coordinates of the
124
+ antenna elements are represented by rq = (rx
125
+ q , ry
126
+ q, rz
127
+ q), q =
128
+ 1, 2, · · · , NR and sp = (sx
129
+ p, sy
130
+ p, sz
131
+ p), p = 1, 2, · · · , NS, respec-
132
+ tively.
133
+ According to [6], the channel matrix H ∈ CNR×NS can be
134
+ expressed as
135
+ H = ΓRΨRHaΨH
136
+ S ΓS,
137
+ (1)
138
+ where Ha ∈ CnR×nS denotes the wavenumber-domain chan-
139
+ nel matrix, which has nR × nS elements. Here, nR = |ER|
140
+ and nS = |ES| are the cardinalities of the sets ER and
141
+ ES, with ER =
142
+
143
+ (lx, ly) ∈ Z2 :
144
+
145
+ lxλ
146
+ Lx
147
+ R
148
+ �2
149
+ +
150
+
151
+ lyλ
152
+ Ly
153
+ R
154
+ �2
155
+ ≤ 1
156
+
157
+ and
158
+ ES =
159
+
160
+ (mx, my) ∈ Z2 :
161
+
162
+ mxλ
163
+ Lx
164
+ S
165
+ �2
166
+ +
167
+
168
+ myλ
169
+ Ly
170
+ S
171
+ �2
172
+ ≤ 1
173
+
174
+ . Each el-
175
+ ement [Ha]β,α of Ha is a random Fourier coefficient fol-
176
+ lowing the complex Gaussian distribution CN(0, σ2
177
+ β,α), β =
178
+ 1, 2, · · · , nR, α = 1, 2, · · · , nS. The variance can be further
179
+ given by
180
+ σ2
181
+ β,α =
182
+ ��
183
+ ΩR(lx
184
+ β,ly
185
+ β)
186
+ A2(θR, φR) sin θRdθRdφR×
187
+ ��
188
+ ΩS(mxα,my
189
+ α)
190
+ A2(θS, φS) sin θSdθSdφS,
191
+ (2)
192
+ where A2(θR, φR) and A2(θS, φS) denote the angular power
193
+ spectrum at the receiver and the transmitter, respectively. The
194
+ angular power spectrum can be further modeled by a mixture
195
+ of VMF distributions [8]
196
+ A2
197
+ R(θR, φR) =
198
+ Nc
199
+
200
+ i=1
201
+ wR,ipR,i(θR, φR),
202
+ (3)
203
+ and
204
+ A2
205
+ S(θS, φS) =
206
+ Nc
207
+
208
+ i=1
209
+ wS,ipS,i(θS, φS),
210
+ (4)
211
+ where Nc denotes the number of clusters of the scatters in the
212
+ propagation environment. wR,i and wS,i denote the normal-
213
+ ization factor with �Nc
214
+ i
215
+ wR,i = �Nc
216
+ i
217
+ wS,i = 1. pR,i(θR, φR)
218
+ and pS,i(θS, φS) denote the probability functions of the VMF
219
+ distribution, which can be further expressed as [8]
220
+ pR,i(θR, φR) =
221
+ αR,i
222
+ 4πsinh(αR,i)×
223
+ eαR,i(sin θR sin ¯θR,i cos(φR− ¯φR,i)+cos θR cos ¯θR,i),
224
+ (5)
225
+ and
226
+ pS,i(θS, φS) =
227
+ αS,i
228
+ 4πsinh(αS,i)×
229
+ eαS,i(sin θS sin ¯θS,i cos(φS− ¯φS,i)+cos θS cos ¯θS,i),
230
+ (6)
231
+ where {¯φR,i, ¯θR,i} and {¯φS,i, ¯θS,i} denote the elevation and
232
+ azimuth angles of the i-th cluster at the receiver and the
233
+ transmitter. αS,i and αR,i denote the concentration parameters
234
+ for the i-th cluster. These angles can be derived from the 3GPP
235
+ TR 38.901 channel model [9] according to the relationship
236
+ defined in [6].
237
+ In (1), ΨR ∈ CNR×nR and ΨS ∈ CNS×nS denote the
238
+ modified Fourier harmonics, which take the antenna pattern
239
+ distortion into consideration. Each element of ΨR and ΨS
240
+ can be further derived as
241
+ [ΨR]q,β =
242
+ 1
243
+ √NR
244
+ e
245
+ j
246
+
247
+ 2πlx
248
+ β
249
+ Lx
250
+ R rx
251
+ q +
252
+ 2πly
253
+ β
254
+ Ly
255
+ R
256
+ ry
257
+ q +γR(lx
258
+ β,ly
259
+ β)rz
260
+ q
261
+
262
+ × FR,q
263
+
264
+ ˆθR(lx
265
+ β, ly
266
+ β), ˆφR(lx
267
+ β, ly
268
+ β)
269
+
270
+ ,
271
+ (7)
272
+ and
273
+ [ΨS]p,α =
274
+ 1
275
+ √NS
276
+ e
277
+ j
278
+
279
+ 2πmx
280
+ α
281
+ Lx
282
+ S
283
+ sx
284
+ p+ 2πmy
285
+ α
286
+ Ly
287
+ S
288
+ sy
289
+ p+γS(mx
290
+ α,my
291
+ α)sz
292
+ p
293
+
294
+ × FS,p
295
+
296
+ ˆθS(mx
297
+ α, my
298
+ α), ˆφS(mx
299
+ α, my
300
+ α)
301
+
302
+ ,
303
+ (8)
304
+ where
305
+ γR(lx, ly)
306
+ =
307
+
308
+ ( 2π
309
+ λ )2 − ( 2πlx
310
+ Lx
311
+ R )2 − ( 2πly
312
+ Ly
313
+ R )2
314
+ and
315
+ γS(mx, my)
316
+ =
317
+
318
+ ( 2π
319
+ λ )2 − ( 2πmx
320
+ Lx
321
+ S )2 − ( 2πmy
322
+ Ly
323
+ S )2.
324
+ FR,q (θR, φR) and FS,p (θS, φS) represent the embedded
325
+ element directivity pattern of the q-th antenna at the receiver
326
+ and the p-th antenna at the transmitter. The corresponding
327
+ elevation and azimuth angles {ˆφR(lx, ly), ˆθR(lx, ly)} and
328
+ {ˆφS(mx, my), ˆθS(mx, my)} for the Fourier harmonics (lx, ly)
329
+ and (mx, my) can be calculated by a transformation from the
330
+ wavenumber domain to the angular domain [6].
331
+ In the end, ΓR ∈ RNR×NR and ΓS ∈ RNS×NS are diagonal
332
+ matrices representing the efficiency of the antenna element
333
+ at the receiver and the transmitter, respectively. More details
334
+ of the channel model can be found in [6]. However, the
335
+ polarization characteristics of the antenna and the environment
336
+ are not taken into consideration.
337
+ B. Extended Channel Model with Polarization
338
+ In this subsection, we extend the EM-compliant channel
339
+ model to account for the polarization characteristics of the
340
+ antennas and the propagation environment.
341
+
342
+ From (1), the channel between the p-th antenna at the trans-
343
+ mitter and the q-th antenna at the receiver can be expressed
344
+ as
345
+ [H]q,p =
346
+ nR
347
+
348
+ β=1
349
+ nS
350
+
351
+ α=1
352
+ ηR,q[ΨR]q,β[Ha]β,α[ΨS]∗
353
+ p,αηS,p,
354
+ (9)
355
+ where ηR,q and ηS,p denote the diagonal elements of ΓR and
356
+ ΓS, representing the antenna efficiency of the corresponding
357
+ antenna. According to [10], the polarization pattern of an EM
358
+ wave can be decomposed into two components orthogonal to
359
+ the propagation direction, i.e., the vertical polarization and the
360
+ horizontal polarization. Therefore, the channel considering the
361
+ polarization characteristics can be written as
362
+ [H]pol
363
+ q,p =
364
+ nR
365
+
366
+ β=1
367
+ nS
368
+
369
+ α=1
370
+ ηR,q[Ψθ
371
+ R]q,β[Hθθ
372
+ a ]β,α[Ψθ
373
+ S]∗
374
+ p,αηS,p
375
+ +
376
+ nR
377
+
378
+ β=1
379
+ nS
380
+
381
+ α=1
382
+ ηR,q[Ψθ
383
+ R]q,β[Hθφ
384
+ a ]β,α[Ψφ
385
+ S]∗
386
+ p,αηS,p
387
+ +
388
+ nR
389
+
390
+ β=1
391
+ nS
392
+
393
+ α=1
394
+ ηR,q[Ψφ
395
+ R]q,β[Hφθ
396
+ a ]β,α[Ψθ
397
+ S]∗
398
+ p,αηS,p
399
+ +
400
+ nR
401
+
402
+ β=1
403
+ nS
404
+
405
+ α=1
406
+ ηR,q[Ψφ
407
+ R]q,β[Hφφ
408
+ a ]β,α[Ψφ
409
+ S]∗
410
+ p,αηS,p,
411
+ (10)
412
+ where Ψθ
413
+ R
414
+ ∈ CNR×nR and Ψθ
415
+ S
416
+ ∈ CNS×nS denote the
417
+ modified Fourier harmonics with the horizontal polarization,
418
+ while Ψφ
419
+ R ∈ CNR×nR and Ψφ
420
+ S ∈ CNS×nS denote the modified
421
+ Fourier harmonics with vertical polarization. Hθθ
422
+ a ∈ CnR×nS,
423
+ Hφφ
424
+ a
425
+ ∈ CnR×nS, Hθφ
426
+ a
427
+ ∈ CnR×nS, and Hφθ
428
+ a
429
+ ∈ CnR×nS
430
+ denote the co-polarization and cross-polarization wavenumber-
431
+ domain channel matrices. The details of these parameters are
432
+ explained in the following paragraphs.
433
+ Polarization of Antennas: Firstly, the polarization charac-
434
+ teristics of the antennas are modeled. The polarization of a
435
+ specific antenna can be described by its antenna pattern [10].
436
+ Therefore, we further modify the Fourier harmonics to take the
437
+ polarization of the antennas into consideration. The modified
438
+ Fourier harmonics with polarization at the receiver can be
439
+ expressed as
440
+ [Ψθ
441
+ R]q,β =
442
+ 1
443
+ √NR
444
+ e
445
+ j
446
+
447
+ 2πlx
448
+ β
449
+ Lx
450
+ R rx
451
+ q +
452
+ 2πly
453
+ β
454
+ Ly
455
+ R
456
+ ry
457
+ q +γR(lx
458
+ β,ly
459
+ β)rz
460
+ q
461
+
462
+ × F θ
463
+ R,q
464
+
465
+ ˆθR(lx
466
+ β, ly
467
+ β), ˆφR(lx
468
+ β, ly
469
+ β)
470
+
471
+ ,
472
+ (11)
473
+ and
474
+ [Ψφ
475
+ R]q,β =
476
+ 1
477
+ √NR
478
+ e
479
+ j
480
+
481
+ 2πlx
482
+ β
483
+ Lx
484
+ R rx
485
+ q +
486
+ 2πly
487
+ β
488
+ Ly
489
+ R
490
+ ry
491
+ q +γR(lx
492
+ β,ly
493
+ β)rz
494
+ q
495
+
496
+ × F φ
497
+ R,q
498
+
499
+ ˆθR(lx
500
+ β, ly
501
+ β), ˆφR(lx
502
+ β, ly
503
+ β)
504
+
505
+ ,
506
+ (12)
507
+ where F θ
508
+ R,q (θR, φR) and F φ
509
+ R,q (θR, φR) denote the embedded
510
+ element directivity patterns in the horizontal and the vertical
511
+ polarization. Similarly, the modified Fourier harmonics at the
512
+ transmitter can be expressed as
513
+ [Ψθ
514
+ S]p,α =
515
+ 1
516
+ √NS
517
+ e
518
+ j
519
+
520
+ 2πmx
521
+ α
522
+ Lx
523
+ S
524
+ sx
525
+ p+ 2πmy
526
+ α
527
+ Ly
528
+ S
529
+ sy
530
+ p+γS(mx
531
+ α,my
532
+ α)sz
533
+ p
534
+
535
+ × F θ
536
+ S,p
537
+
538
+ ˆθS(mx
539
+ α, my
540
+ α), ˆφS(mx
541
+ α, my
542
+ α)
543
+
544
+ ,
545
+ (13)
546
+ and
547
+ [Ψφ
548
+ S]p,α =
549
+ 1
550
+ √NS
551
+ e
552
+ j
553
+
554
+ 2πmx
555
+ α
556
+ Lx
557
+ S
558
+ sx
559
+ p+ 2πmy
560
+ α
561
+ Ly
562
+ S
563
+ sy
564
+ p+γS(mx
565
+ α,my
566
+ α)sz
567
+ p
568
+
569
+ × F φ
570
+ S,p
571
+
572
+ ˆθS(mx
573
+ α, my
574
+ α), ˆφS(mx
575
+ α, my
576
+ α)
577
+
578
+ ,
579
+ (14)
580
+ where F θ
581
+ S,p (θS, φS) and F φ
582
+ S,p (θS, φS) denote the embedded
583
+ element directivity patterns in the horizontal and the vertical
584
+ polarization for the p-th antenna at the transmitter.
585
+ Polarization of Propagation Environment: Secondly, the
586
+ polarization characteristics of the propagation environment is
587
+ modeled. Similar to [9], we involve random phase shifts and
588
+ cross polarization power ratios (XPR) to model the polariza-
589
+ tion characteristics of the propagation environment. For the
590
+ co-polarization wavenumber-domain channels, a phase shift
591
+ is added to account for the polarization distortion by the
592
+ propagation environment, which can be expressed as
593
+ [Hθθ
594
+ a ]β,α = [Ha]β,α × ejΦθθ
595
+ β,α,
596
+ (15)
597
+ and
598
+ [Hφφ
599
+ a ]β,α = [Ha]β,α × ejΦφφ
600
+ β,α.
601
+ (16)
602
+ Otherwise, the cross-polarization wavenumber-domain chan-
603
+ nels can be expressed as
604
+ [Hθφ
605
+ a ]β,α = [Ha]β,α × ejΦθφ
606
+ β,α ×
607
+
608
+ κ−1
609
+ β,α,
610
+ (17)
611
+ and
612
+ [Hφθ
613
+ a ]β,α = [Ha]β,α × ejΦφθ
614
+ β,α ×
615
+
616
+ κ−1
617
+ β,α,
618
+ (18)
619
+ where Φθθ
620
+ β,α, Φφφ
621
+ β,α, Φφθ
622
+ β,α, and Φθφ
623
+ β,α are random phase shifts
624
+ following the uniform distribution within [−π, π]. κβ,α de-
625
+ notes the XPR of the propagation environment, which follows
626
+ the log-normal distribution κβ,α = 10Xβ,α/10 with Xβ,α ∼
627
+ N(µXPR, σ2
628
+ XPR).
629
+ Matrix Formulation: Finally, we transform the item-wise
630
+ channel model into a matrix form. The item-wise channel
631
+ model in (10) can be further expressed as
632
+ Hpol =ΓRΨθ
633
+ RHθθ
634
+ a Ψθ
635
+ S
636
+ HΓS + ΓRΨθ
637
+ RHθφ
638
+ a Ψφ
639
+ S
640
+ HΓS
641
+ + ΓRΨφ
642
+ RHφθ
643
+ a Ψθ
644
+ S
645
+ HΓS + ΓRΨφ
646
+ RHφφ
647
+ a Ψφ
648
+ S
649
+ HΓS
650
+ =ΓR
651
+
652
+ Ψθ
653
+ R, Ψφ
654
+ R
655
+ � �Hθθ
656
+ a
657
+ Hθφ
658
+ a
659
+ Hφθ
660
+ a
661
+ Hφφ
662
+ a
663
+ � �
664
+ Ψθ
665
+ S, Ψφ
666
+ S
667
+ ��H ΓS.
668
+ (19)
669
+ Therefore, the final channel matrix can be derived as
670
+ Hpol = ΓRΨpol
671
+ R Hpol
672
+ a Ψpol
673
+ S
674
+ HΓS,
675
+ (20)
676
+ where Ψpol
677
+ R
678
+ = [Ψθ
679
+ R, Ψφ
680
+ R], Ψpol
681
+ S
682
+ = [Ψθ
683
+ S, Ψφ
684
+ S], and Hpol
685
+ a
686
+ =
687
+ �Hθθ
688
+ a
689
+ Hθφ
690
+ a
691
+ Hφθ
692
+ a
693
+ Hφφ
694
+ a
695
+
696
+ .
697
+
698
+ Network Analyzer
699
+ Computer
700
+ 1
701
+ 2
702
+ 3
703
+ 4
704
+ 5
705
+ 6
706
+ 7
707
+ 8
708
+ 9
709
+ 10 11 12 13 14 15 16
710
+ 17
711
+ 33
712
+ 49
713
+ 65
714
+ 81
715
+ 97
716
+ 113
717
+ 129
718
+ 145
719
+ 161
720
+ 177
721
+ 193
722
+ 209
723
+ 225
724
+ 241
725
+ 120 121
726
+ 128
727
+ 1
728
+ 2
729
+ 3
730
+ 4
731
+ 13
732
+ 16
733
+ Receiver
734
+ Transmitter
735
+ Virtual
736
+ Antenna
737
+ Array
738
+ Position
739
+ Control
740
+ Data
741
+ Collect
742
+ Antenna
743
+ Array
744
+ Channel
745
+ Signal
746
+ Generate
747
+ Signal
748
+ Detect
749
+
750
+ 𝜆 2
751
+
752
+ 𝜆 2
753
+
754
+ 𝜆 4
755
+
756
+ 𝜆 8
757
+ 9
758
+ 5
759
+ 6
760
+ 7
761
+ 8
762
+ 10
763
+ 11
764
+ 12
765
+ 13
766
+ 14
767
+ 15
768
+ 16
769
+ (120,6)
770
+ (121,6)
771
+ (113,6)
772
+ (128,6)
773
+ Fig. 1. Schematic diagram of the measurement equipment.
774
+ As a result, not only the non-isotropic characteristics of the
775
+ propagation environment, the antenna pattern distortion, the
776
+ antenna efficiency, but also the polarization characteristics of
777
+ the antennas and the propagation environment are all taken
778
+ into consideration in the extended channel model.
779
+ III. MEASUREMENT SETUP
780
+ In order to evaluate the extended EM-compliant channel
781
+ model and implement a realistic performance evaluation for
782
+ holographic MIMO systems, an experiment is conducted to
783
+ measure the real-world channel of holographic MIMO sys-
784
+ tems. To the best of our knowledge, it is the first attempt to
785
+ measure the channel of a holographic MIMO system.
786
+ A schematic diagram of the measurement equipment is
787
+ shown in Fig. 1. In the experiment, the dense antenna array of
788
+ holographic MIMO is realized by a virtual antenna array. A
789
+ discone antenna is used to achieve an omnidirectional pattern
790
+ and the position of it is controlled by an electrical machine.
791
+ Through computer programming, the antenna can be moved
792
+ to different positions to construct a virtual dense array with
793
+ arbitrary element spacings. In the experiment, the virtual an-
794
+ tenna array is equipped at the receiver to realize a holographic
795
+ MIMO array with spacing ∆x
796
+ R = ∆y
797
+ R ∈ {λ/8, λ/4, λ/2}. At
798
+ the transmitter, a conventional antenna array with NS = 16
799
+ antennas and spacings ∆x
800
+ S = ∆y
801
+ S = λ/2 is used. It is
802
+ composed of patch antennas whose half power beam width
803
+ is 70◦. A calibrated network analyzer is used to measure the
804
+ channel and a computer is utilized to collect the measurement
805
+ results. The center frequency is fc = 4.7 GHz and the
806
+ bandwidth is 200 MHz from 4.6 GHz to 4.8 GHz with 1023
807
+ samples.
808
+ The experiment is performed in an indoor environment
809
+ where the line-of-sight path is blocked by a metal object. Many
810
+ scatters are present to create a rich scattering environment. The
811
+ schematic diagram of the measurement environment is shown
812
+ in Fig. 2. We consider two scenarios. In the first scenario, the
813
+ virtual receive array plane is perpendicular to the transmitter,
814
+ Receiver
815
+ (Scenario2)
816
+ Receiver
817
+ (Scenario1)
818
+ Transmitter
819
+ Work Bench
820
+ Storage Rack
821
+ Medal Object
822
+ 1.55m
823
+ 5.65m
824
+ 1.70m
825
+ 2.18m
826
+ 2.00m
827
+ Fig. 2. Schematic diagram of the measurement environment.
828
+ while in the second scenario, the virtual receive array plane is
829
+ parallel to the transmit array plane.
830
+ IV. MEASUREMENT RESULTS AND EVALUATIONS
831
+ In this section, we use the measurement results to evaluate
832
+ the performance of an indoor holographic MIMO system.
833
+ The measurement results are shown in Section IV-A and
834
+ corresponding performance evaluations are provided in Sec-
835
+ tion IV-B. Because the dense array of holographic MIMO
836
+ is implemented virtually, the antenna efficiency loss is not
837
+ accounted for in the measurement. Finally, the performance
838
+ evaluations with antenna efficiency loss are provided in Sec-
839
+ tion IV-C.
840
+ A. Channel Measurement Results
841
+ After measurement, a channel matrix Hpol with size NR ×
842
+ NS can be derived. Here we plot several channel measurement
843
+ results to show the correlation of antennas at different position.
844
+ We use the pair (q, p) to represent the q-th antenna in the
845
+ virtual receive array and the p-th antenna in the transmit array.
846
+ The channel responses corresponding to (120, 6) and
847
+ (121, 6) transceiver pairs are shown in Fig. 3a. In these two
848
+ pairs, the transmit antennas are the same and the receive
849
+ antennas are adjacent, we can observe that the channel re-
850
+ sponses are quite similar. Instead, if we choose transceiver
851
+ pairs whose receiver elements are not adjacent, e.g., (113, 6)
852
+ and (128, 6), the results are shown in Fig. 3b. Since their
853
+ receiver elements are separated by 2λ, we can find that the
854
+ red line differs from the blue line in the spectrum, showing
855
+ a low correlation compared with the results in Fig. 3a. The
856
+ difference between these two figures shows the effect of spatial
857
+ coherence. In an array, adjacent elements are more likely
858
+ to sense the channel inside the same cluster, and thus the
859
+ correlation of their channel responses are stronger.
860
+ B. Performance Evaluation without Antenna Efficiency Loss
861
+ Once the channel matrix Hpol is obtained, we can evaluate
862
+ the channel capacity based on the measurement results. The
863
+ variation of channel capacity with different element spacings
864
+ in both scenarios are shown in Fig 4. In these figures, the
865
+ antenna spacings are ∆x
866
+ R = ∆y
867
+ R ∈ {λ/8, λ/4, λ/2} and the
868
+ corresponding numbers of antennas are NR ∈ {256, 64, 16}
869
+ at the receiver. The signal to noise ratio (SNR) is set to 0 dB.
870
+
871
+ 4.6
872
+ 4.62
873
+ 4.64
874
+ 4.66
875
+ 4.68
876
+ 4.7
877
+ 4.72
878
+ 4.74
879
+ 4.76
880
+ 4.78
881
+ 4.8
882
+ Frequency [GHz]
883
+ -100
884
+ -95
885
+ -90
886
+ -85
887
+ -80
888
+ -75
889
+ -70
890
+ -65
891
+ -60
892
+ S parrameter [dB]
893
+ (a)
894
+ 4.6
895
+ 4.62
896
+ 4.64
897
+ 4.66
898
+ 4.68
899
+ 4.7
900
+ 4.72
901
+ 4.74
902
+ 4.76
903
+ 4.78
904
+ 4.8
905
+ Frequency [GHz]
906
+ -100
907
+ -95
908
+ -90
909
+ -85
910
+ -80
911
+ -75
912
+ -70
913
+ -65
914
+ -60
915
+ S parrameter [dB]
916
+ (b)
917
+ Fig. 3.
918
+ Channel response between q-th antenna at the receiver and p-th
919
+ antenna at the transmitter in Scenario 2. (a) q = 120, 121, p = 6; (b)
920
+ q = 113, 128, p = 6.
921
+ Both the water filling and the equal power allocation strategies
922
+ are adopted to evaluate the channel capacity performance. The
923
+ blue lines correspond to the channel capacity, while the red
924
+ lines correspond to the relative capacity with respect to the
925
+ case with ∆x
926
+ R = ∆y
927
+ R = λ/2 spacing.
928
+ From the results in Fig. 4, we can see that the spatial
929
+ oversampling of holographic MIMO is able to increase the
930
+ channel capacity. Using equal power allocation strategy, a four
931
+ times spatial oversampling with ∆x
932
+ R = ∆y
933
+ R = λ/4 can offer
934
+ about 120% capacity gain, and a 16 times oversampling with
935
+ ∆x
936
+ R = ∆y
937
+ R = λ/8 provides more than 300% capacity gain.
938
+ While using the water filling strategy, the corresponding ca-
939
+ pacity gains are about 80% and 200%. Therefore, the capacity
940
+ enhancement capability of holographic MIMO stated in the
941
+ previous research works [5], [6], [11] is verified by practical
942
+ experiment. It is worth noting that the antenna efficiency
943
+ loss at the receiver is not taken into consideration in the
944
+ measurement because the dense array is realized virtually,
945
+ Antenna spacing
946
+ Capacity [bit/s/Hz]
947
+ Water filling
948
+ Equal power
949
+ Water filling
950
+ Equal power
951
+ (a)
952
+ Antenna spacing
953
+ Capacity [bit/s/Hz]
954
+ Water filling
955
+ Equal power
956
+ Water filling
957
+ Equal power
958
+ (b)
959
+ Fig. 4. Channel capacity and relative capacity with different antenna spacings.
960
+ (a) Scenario 1; (b) Scenario 2.
961
+ which means ηR,q = 1. In the next subsection, the antenna
962
+ efficiency loss is further considered in analyzing the capacity
963
+ of a holographic MIMO system.
964
+ C. Performance Evaluation with Antenna Efficiency Loss
965
+ In a practical dense antenna array with small element
966
+ spacing, the efficiency of the antenna elements will decrease
967
+ because of the mutual coupling among them. In [12], a
968
+ relationship between the antenna efficiency and the element
969
+ spacing is established for a dense array, which is called
970
+ Hannan’s element efficiency. According to [12], for a practical
971
+ dense array at the receiver, the efficiency of the antenna
972
+ element can be estimated as
973
+ ηR,q ≈ π∆x
974
+ R∆y
975
+ R
976
+ λ2
977
+ ,
978
+ (21)
979
+ which means that the element efficiency is proportional to the
980
+ area allocated to the element. It implies that when the spacing
981
+ of antenna element is small (∆x
982
+ R∆y
983
+ R < λ2/π), the element
984
+
985
+ Antenna spacing
986
+ Capacity [bit/s/Hz]
987
+ Water filling
988
+ Equal power
989
+ Water filling
990
+ Equal power
991
+ (a)
992
+ Antenna spacing
993
+ Capacity [bit/s/Hz]
994
+ Water filling
995
+ Equal power
996
+ Water filling
997
+ Equal power
998
+ (b)
999
+ Fig. 5. Channel capacity and relative capacity with antenna efficiency loss. (a) Scenario 1; (b) Scenario 2.
1000
+ efficiency cannot reach 1, and it will decrease as the antenna
1001
+ elements are placed closer.
1002
+ Using the efficiency estimation in (21), we modify the chan-
1003
+ nel measurement results and evaluate the channel capacity of
1004
+ holographic MIMO systems. The results are shown in Fig. 5.
1005
+ It can be seen that in both scenarios, the channel capacities
1006
+ will not keep increasing with more antenna elements and
1007
+ smaller element spacings. Using the equal power allocation
1008
+ strategy, a 16 times oversampling with ∆x
1009
+ R = ∆y
1010
+ R = λ/8
1011
+ can only provide 4% capacity gain. While using the water
1012
+ filling strategy, the channel capacities even slightly decrease.
1013
+ The reason behind this is that the array gain and multiplexing
1014
+ gain by deploying more antenna elements are reduced by the
1015
+ decrease of the antenna efficiency.
1016
+ From the above analyses, we can find that although the
1017
+ channel correlation increases with smaller antenna spacings,
1018
+ the spatial oversampling of holographic MIMO is able to
1019
+ offer an obvious capacity enhancement. However, the antenna
1020
+ efficiency loss due to mutual coupling will greatly decrease the
1021
+ capacity gain, which is one of the most important challenges
1022
+ for a practical holographic MIMO system. Therefore, design-
1023
+ ing a dense antenna array with element efficiency above the
1024
+ Hannan’s efficiency scaling law will be the promising ways to
1025
+ exploit the benefit of spatial oversampling for the holographic
1026
+ MIMO systems.
1027
+ V. CONCLUSION
1028
+ In this paper, an extended EM-compliant channel model
1029
+ is proposed for holographic MIMO systems, which takes the
1030
+ non-isotropic characteristics of the propagation environment,
1031
+ the antenna pattern distortion, the antenna efficiency, and the
1032
+ polarization into account. An experiment is also conducted to
1033
+ measure the channel of an indoor holographic MIMO system
1034
+ through virtual antenna arrays. It is demonstrated through
1035
+ experiments for the first time that the spatial oversampling
1036
+ of holographic MIMO is able to increase the capacity of a
1037
+ wireless communication system significantly. However, the
1038
+ antenna efficiency is the most crucial challenge preventing us
1039
+ from getting the capacity improvement.
1040
+ REFERENCES
1041
+ [1] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen,
1042
+ R. Zhang, M. D. Renzo, and M. Debbah, “Holographic MIMO surfaces
1043
+ for 6G wireless networks: Opportunities, challenges, and trends,” IEEE
1044
+ Wireless Commun., vol. 27, no. 5, pp. 118–125, Oct. 2020.
1045
+ [2] D. Dardari and N. Decarli, “Holographic communication using intelli-
1046
+ gent surfaces,” IEEE Commun. Mag., vol. 59, no. 6, pp. 35–41, Jun.
1047
+ 2021.
1048
+ [3] A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary
1049
+ model for holographic MIMO small-scale fading,” IEEE J. Sel. Areas
1050
+ Commun., vol. 38, no. 9, pp. 1964–1979, Sep. 2020.
1051
+ [4] L. Wei, C. Huang, G. Alexandropoulus, W. E. I. Sha, Z. Zhang,
1052
+ M. Debbah, and C. Yuen, “Multi-user holographic MIMO surfaces:
1053
+ Channel modeling and spectral efficiency analysis,” IEEE J. Sel. Topics
1054
+ Signal Process., vol. 16, no. 5, pp. 1112–1124, Aug. 2022.
1055
+ [5] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave
1056
+ series expansion for holographic MIMO communications,” IEEE Trans.
1057
+ Wireless Commun., vol. 21, no. 9, pp. 6890–6905, Sep. 2022.
1058
+ [6] T. Wang, W. Han, Z. Zhong, J. Pang, G. Zhou, S. Wang, and
1059
+ Q. Li, “Electromagnetic-compliant channel modeling and performance
1060
+ evaluation for holographic MIMO,” in IEEE Global Communications
1061
+ Conference (GLOBECOM), Rio de Janeiro, Brazil, Dec. 2022.
1062
+ [7] Y. Liu, M. Zhang, and T. Wang, “Effect of antenna pattern on electro-
1063
+ magnetic MIMO communication,” in IEEE International Conference on
1064
+ Communication Technology (ICCT), Nanjing, China, Nov. 2022.
1065
+ [8] K. Mammasis, R. W. Stewart, and J. S. Thompson, “Spatial fading
1066
+ correlation model using mixtures of von Mises Fisher distributions,”
1067
+ IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 2046–2055, Apr. 2009.
1068
+ [9] 3GPP TR 38.901, “Study on channel model for frequencies from 0.5 to
1069
+ 100 GHz,” 2020.
1070
+ [10] C. A. Balanis, Antenna Theory: Analysis and Design.
1071
+ New York: John
1072
+ Wiley & Sons Ltd, 2015.
1073
+ [11] Z. Zhang and L. Dai, “Continuous-aperture MIMO for electromagnetic
1074
+ information theory,” arXiv, 2021. [Online]. Available: https://arxiv.org/
1075
+ abs/2111.08630
1076
+ [12] P. Hannan, “The element-gain paradox for a phased-array antenna,”
1077
+ IEEE Trans. Antenna Propag., vol. 12, no. 4, pp. 423–433, Jul. 1964.
1078
+
cNE5T4oBgHgl3EQffQ_r/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf,len=417
2
+ page_content='Channel Measurement for Holographic MIMO: Benefits and Challenges of Spatial Oversampling Tengjiao Wang∗, Yongxi Liu†, Ming Zhang†, Wei E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
3
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
4
+ page_content=' Sha‡, Cen Ling∗, Chao Li∗, Shaobo Wang∗ ∗Wireless Network RAN Research Department, Huawei Technologies CO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
5
+ page_content=', Ltd, Shanghai, China †School of Electronic and Information Engineering, Xi’an Jiaotong University, Shaanxi, China ‡College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China Emails: ∗{wangtengjiao6, lingcen, lichao18, shaobo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
6
+ page_content='wang}@huawei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
7
+ page_content='com, †liuyongxi@stu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
8
+ page_content='xjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
9
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
10
+ page_content='cn, ming20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
11
+ page_content='zhang@xjtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
12
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
13
+ page_content='cn, ‡ weisha@zju.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
14
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
15
+ page_content='cn Abstract—In this paper, the channel of an indoor holographic multiple-input multiple-output (MIMO) system is measured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
16
+ page_content=' It is demonstrated through experiments for the first time that the spatial oversampling of holographic MIMO systems is able to increase the capacity of a wireless communication system significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
17
+ page_content=' However, the antenna efficiency is the most crucial challenge preventing us from getting the capacity improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
18
+ page_content=' An extended EM-compliant channel model is also proposed for holographic MIMO systems, which is able to take the non-isotropic characteristics of the propagation environment, the antenna pattern distortion, the antenna efficiency, and the polarization characteristics into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
19
+ page_content=' Index Terms—Holographic MIMO, massive MIMO, spatial oversampling, channel measurement, electromagnetic informa- tion theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
20
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
21
+ page_content=' INTRODUCTION In order to increase the spectral efficiency and energy efficiency for the future 5G-Advanced and 6G wireless com- munication systems, the concept of holographic multiple-input multiple-output (MIMO) is proposed recently [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
22
+ page_content=' By inte- grating an infinite number of antennas into a limited surface, holographic MIMO is expected to fully exploit the propagation characteristics offered by the electromagnetic channel and ap- proach the fundamental performance limit [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
23
+ page_content=' For holographic MIMO systems, both the accurate channel modeling and the realistic performance evaluation are key problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
24
+ page_content=' In the literature, many efforts have been devoted to accu- rately model the channel of holographic MIMO systems [3]– [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
25
+ page_content=' In [3], a Fourier plane-wave series expansion-based chan- nel model is proposed for holographic MIMO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
26
+ page_content=' Based on the Fourier spectral representation, it provides a physically meaningful model capturing the propagation characteristics of the electromagnetic (EM) wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
27
+ page_content=' In [4], the authors extend the Fourier plane-wave channel model to a multi-user scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
28
+ page_content=' In [5], the non-isotropic scattering environment is further con- sidered by using the von Mises-Fisher (VMF) distributions [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
29
+ page_content=' Then in our previous works [6], [7], an EM-compliant channel model is proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
30
+ page_content=' By combining the VMF distributions [8] and the 3GPP TR 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
31
+ page_content='901 channel model [9], a realistic angular power spectrum is modeled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
32
+ page_content=' The non-ideal factors caused by mutual coupling at the transceivers [10], including the antenna pattern distortion and the decrease of antenna efficiency are also accounted for.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
33
+ page_content=' However, in the state-of-the-art channel models [3]–[7], the polarization of EM wave is not taken into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
34
+ page_content=' The polarization is an inherent characteristic of EM waves and will have significant impact on the performance of holographic MIMO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
35
+ page_content=' Another key problem for holographic MIMO is the accurate performance evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
36
+ page_content=' In [5], the ergodic capacity of a single-user holographic MIMO system is analyzed, which shows the capacity improvement of holographic MIMO over conventional MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
37
+ page_content=' In [11], the capacity of a single-user holographic MIMO system is investigated from a continuous point of view, the capacity enhancement is also demonstrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
38
+ page_content=' In our previous work [6], both the single-user and the multi- user downlink channel capacities of holographic MIMO sys- tems are investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
39
+ page_content=' However, the performance evaluations in the state-of-the-art researches [5], [6], [11] are all numerical simulations based on theoretical models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
40
+ page_content=' No experiments have been done to verify the accuracy of the performance evalua- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
41
+ page_content=' In this paper, we try to solve the above two problems for holographic MIMO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
42
+ page_content=' Firstly, an extended EM- compliant channel model is proposed based on the channel model in our previous work [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
43
+ page_content=' Secondly, the channel of holo- graphic MIMO is measured through real-world experiments, and the performance is evaluated based on the measurement results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
44
+ page_content=' The contributions of this paper can be summarized as follows: An extended EM-compliant channel model is proposed for holographic MIMO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
45
+ page_content=' In the extended model, not only the non-isotropic characteristics of the propaga- tion environment, the antenna pattern distortion, the an- tenna efficiency, but also the polarization of the antennas and the propagation environment can be modeled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
46
+ page_content=' Based on the extended channel model, the real-world channel for holographic MIMO systems is measured for the first time in an indoor environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
47
+ page_content=' An experiment is carefully designed, in which an electrically controlled virtual dense array is used to realize arbitrary element spacings of holographic MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
48
+ page_content=' The channel capacity of holographic MIMO systems is evaluated according to the measurement results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
49
+ page_content=' It is arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
50
+ page_content='05626v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
51
+ page_content='IT] 13 Jan 2023 demonstrated that the spatial oversampling of holographic MIMO is able to provide a two to three times capacity enhancement, without considering the antenna efficiency loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
52
+ page_content=' The antenna efficiency is the most crucial challenge for holographic MIMO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
53
+ page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
54
+ page_content=' In Section II, the proposed extended EM-compliant channel model for holo- graphic MIMO is explained in details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
55
+ page_content=' Then, the setup for the channel measurement is given in Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
56
+ page_content=' The measurement results and the corresponding performance evaluations are provided in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
57
+ page_content=' Finally, this paper is concluded in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
58
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
59
+ page_content=' EXTENDED EM-COMPLIANT CHANNEL MODEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
60
+ page_content=' EM-Compliant Channel Model In this subsection, the EM-compliant channel model for holographic MIMO in our previous work [6] is briefly in- troduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
61
+ page_content=' The central frequency and wavelength are denoted by fc and λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
62
+ page_content=' Planar antenna arrays with size {Lx R, Ly R} and {Lx S, Ly S} are equipped at the receiver and the transmitter, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
63
+ page_content=' The numbers of antenna elements are denoted by NR and NS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
64
+ page_content=' The spacings between antenna elements are denoted by {∆x R, ∆y R} and {∆x S, ∆y S}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
65
+ page_content=' The coordinates of the antenna elements are represented by rq = (rx q , ry q, rz q), q = 1, 2, · · · , NR and sp = (sx p, sy p, sz p), p = 1, 2, · · · , NS, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
66
+ page_content=' According to [6], the channel matrix H ∈ CNR×NS can be expressed as H = ΓRΨRHaΨH S ΓS, (1) where Ha ∈ CnR×nS denotes the wavenumber-domain chan- nel matrix, which has nR × nS elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
67
+ page_content=' Here, nR = |ER| and nS = |ES| are the cardinalities of the sets ER and ES, with ER = � (lx, ly) ∈ Z2 : � lxλ Lx R �2 + � lyλ Ly R �2 ≤ 1 � and ES = � (mx, my) ∈ Z2 : � mxλ Lx S �2 + � myλ Ly S �2 ≤ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
68
+ page_content=' Each el- ement [Ha]β,α of Ha is a random Fourier coefficient fol- lowing the complex Gaussian distribution CN(0, σ2 β,α), β = 1, 2, · · · , nR, α = 1, 2, · · · , nS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
69
+ page_content=' The variance can be further given by σ2 β,α = �� ΩR(lx β,ly β) A2(θR, φR) sin θRdθRdφR× �� ΩS(mxα,my α) A2(θS, φS) sin θSdθSdφS, (2) where A2(θR, φR) and A2(θS, φS) denote the angular power spectrum at the receiver and the transmitter, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
70
+ page_content=' The angular power spectrum can be further modeled by a mixture of VMF distributions [8] A2 R(θR, φR) = Nc � i=1 wR,ipR,i(θR, φR), (3) and A2 S(θS, φS) = Nc � i=1 wS,ipS,i(θS, φS), (4) where Nc denotes the number of clusters of the scatters in the propagation environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
71
+ page_content=' wR,i and wS,i denote the normal- ization factor with �Nc i wR,i = �Nc i wS,i = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
72
+ page_content=' pR,i(θR, φR) and pS,i(θS, φS) denote the probability functions of the VMF distribution, which can be further expressed as [8] pR,i(θR, φR) = αR,i 4πsinh(αR,i)× eαR,i(sin θR sin ¯θR,i cos(φR− ¯φR,i)+cos θR cos ¯θR,i), (5) and pS,i(θS, φS) = αS,i 4πsinh(αS,i)× eαS,i(sin θS sin ¯θS,i cos(φS− ¯φS,i)+cos θS cos ¯θS,i), (6) where {¯φR,i, ¯θR,i} and {¯φS,i, ¯θS,i} denote the elevation and azimuth angles of the i-th cluster at the receiver and the transmitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
73
+ page_content=' αS,i and αR,i denote the concentration parameters for the i-th cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
74
+ page_content=' These angles can be derived from the 3GPP TR 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
75
+ page_content='901 channel model [9] according to the relationship defined in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
76
+ page_content=' In (1), ΨR ∈ CNR×nR and ΨS ∈ CNS×nS denote the modified Fourier harmonics, which take the antenna pattern distortion into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
77
+ page_content=' Each element of ΨR and ΨS can be further derived as [ΨR]q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
78
+ page_content='β = 1 √NR e j � 2πlx β Lx R rx q + 2πly β Ly R ry q +γR(lx β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
79
+ page_content='ly β)rz q � × FR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
80
+ page_content='q � ˆθR(lx β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
81
+ page_content=' ly β),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
82
+ page_content=' ˆφR(lx β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
83
+ page_content=' ly β) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
84
+ page_content=' (7) and [ΨS]p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
85
+ page_content='α = 1 √NS e j � 2πmx α Lx S sx p+ 2πmy α Ly S sy p+γS(mx α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
86
+ page_content='my α)sz p � × FS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
87
+ page_content='p � ˆθS(mx α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
88
+ page_content=' my α),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
89
+ page_content=' ˆφS(mx α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
90
+ page_content=' my α) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
91
+ page_content=' (8) where γR(lx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
92
+ page_content=' ly) = � ( 2π λ )2 − ( 2πlx Lx R )2 − ( 2πly Ly R )2 and γS(mx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
93
+ page_content=' my) = � ( 2π λ )2 − ( 2πmx Lx S )2 − ( 2πmy Ly S )2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
94
+ page_content=' FR,q (θR, φR) and FS,p (θS, φS) represent the embedded element directivity pattern of the q-th antenna at the receiver and the p-th antenna at the transmitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
95
+ page_content=' The corresponding elevation and azimuth angles {ˆφR(lx, ly), ˆθR(lx, ly)} and {ˆφS(mx, my), ˆθS(mx, my)} for the Fourier harmonics (lx, ly) and (mx, my) can be calculated by a transformation from the wavenumber domain to the angular domain [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
96
+ page_content=' In the end, ΓR ∈ RNR×NR and ΓS ∈ RNS×NS are diagonal matrices representing the efficiency of the antenna element at the receiver and the transmitter, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
97
+ page_content=' More details of the channel model can be found in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
98
+ page_content=' However, the polarization characteristics of the antenna and the environment are not taken into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
99
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
100
+ page_content=' Extended Channel Model with Polarization In this subsection, we extend the EM-compliant channel model to account for the polarization characteristics of the antennas and the propagation environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
101
+ page_content=' From (1), the channel between the p-th antenna at the trans- mitter and the q-th antenna at the receiver can be expressed as [H]q,p = nR � β=1 nS � α=1 ηR,q[ΨR]q,β[Ha]β,α[ΨS]∗ p,αηS,p, (9) where ηR,q and ηS,p denote the diagonal elements of ΓR and ΓS, representing the antenna efficiency of the corresponding antenna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
102
+ page_content=' According to [10], the polarization pattern of an EM wave can be decomposed into two components orthogonal to the propagation direction, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
103
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
104
+ page_content=', the vertical polarization and the horizontal polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
105
+ page_content=' Therefore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
106
+ page_content=' the channel considering the polarization characteristics can be written as [H]pol q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
107
+ page_content='p = nR � β=1 nS � α=1 ηR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
108
+ page_content='q[Ψθ R]q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
109
+ page_content='β[Hθθ a ]β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
110
+ page_content='α[Ψθ S]∗ p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
111
+ page_content='αηS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
112
+ page_content='p + nR � β=1 nS � α=1 ηR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
113
+ page_content='q[Ψθ R]q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
114
+ page_content='β[Hθφ a ]β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
115
+ page_content='α[Ψφ S]∗ p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
116
+ page_content='αηS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
117
+ page_content='p + nR � β=1 nS � α=1 ηR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
118
+ page_content='q[Ψφ R]q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
119
+ page_content='β[Hφθ a ]β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
120
+ page_content='α[Ψθ S]∗ p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
121
+ page_content='αηS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
122
+ page_content='p + nR � β=1 nS � α=1 ηR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
123
+ page_content='q[Ψφ R]q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
124
+ page_content='β[Hφφ a ]β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
125
+ page_content='α[Ψφ S]∗ p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
126
+ page_content='αηS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
127
+ page_content='p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
128
+ page_content=' (10) where Ψθ R ∈ CNR×nR and Ψθ S ∈ CNS×nS denote the modified Fourier harmonics with the horizontal polarization,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
129
+ page_content=' while Ψφ R ∈ CNR×nR and Ψφ S ∈ CNS×nS denote the modified Fourier harmonics with vertical polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
130
+ page_content=' Hθθ a ∈ CnR×nS, Hφφ a ∈ CnR×nS, Hθφ a ∈ CnR×nS, and Hφθ a ∈ CnR×nS denote the co-polarization and cross-polarization wavenumber- domain channel matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
131
+ page_content=' The details of these parameters are explained in the following paragraphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
132
+ page_content=' Polarization of Antennas: Firstly, the polarization charac- teristics of the antennas are modeled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
133
+ page_content=' The polarization of a specific antenna can be described by its antenna pattern [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
134
+ page_content=' Therefore, we further modify the Fourier harmonics to take the polarization of the antennas into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
135
+ page_content=' The modified Fourier harmonics with polarization at the receiver can be expressed as [Ψθ R]q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
136
+ page_content='β = 1 √NR e j � 2πlx β Lx R rx q + 2πly β Ly R ry q +γR(lx β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
137
+ page_content='ly β)rz q � × F θ R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
138
+ page_content='q � ˆθR(lx β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
139
+ page_content=' ly β),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
140
+ page_content=' ˆφR(lx β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
141
+ page_content=' ly β) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
142
+ page_content=' (11) and [Ψφ R]q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
143
+ page_content='β = 1 √NR e j � 2πlx β Lx R rx q + 2πly β Ly R ry q +γR(lx β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
144
+ page_content='ly β)rz q � × F φ R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
145
+ page_content='q � ˆθR(lx β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
146
+ page_content=' ly β),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
147
+ page_content=' ˆφR(lx β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
148
+ page_content=' ly β) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
149
+ page_content=' (12) where F θ R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
150
+ page_content='q (θR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
151
+ page_content=' φR) and F φ R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
152
+ page_content='q (θR,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
153
+ page_content=' φR) denote the embedded element directivity patterns in the horizontal and the vertical polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
154
+ page_content=' Similarly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
155
+ page_content=' the modified Fourier harmonics at the transmitter can be expressed as [Ψθ S]p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
156
+ page_content='α = 1 √NS e j � 2πmx α Lx S sx p+ 2πmy α Ly S sy p+γS(mx α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
157
+ page_content='my α)sz p � × F θ S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
158
+ page_content='p � ˆθS(mx α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
159
+ page_content=' my α),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
160
+ page_content=' ˆφS(mx α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
161
+ page_content=' my α) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
162
+ page_content=' (13) and [Ψφ S]p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
163
+ page_content='α = 1 √NS e j � 2πmx α Lx S sx p+ 2πmy α Ly S sy p+γS(mx α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
164
+ page_content='my α)sz p � × F φ S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
165
+ page_content='p � ˆθS(mx α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
166
+ page_content=' my α),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
167
+ page_content=' ˆφS(mx α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
168
+ page_content=' my α) � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
169
+ page_content=' (14) where F θ S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
170
+ page_content='p (θS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
171
+ page_content=' φS) and F φ S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
172
+ page_content='p (θS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
173
+ page_content=' φS) denote the embedded element directivity patterns in the horizontal and the vertical polarization for the p-th antenna at the transmitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
174
+ page_content=' Polarization of Propagation Environment: Secondly, the polarization characteristics of the propagation environment is modeled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
175
+ page_content=' Similar to [9], we involve random phase shifts and cross polarization power ratios (XPR) to model the polariza- tion characteristics of the propagation environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
176
+ page_content=' For the co-polarization wavenumber-domain channels, a phase shift is added to account for the polarization distortion by the propagation environment, which can be expressed as [Hθθ a ]β,α = [Ha]β,α × ejΦθθ β,α, (15) and [Hφφ a ]β,α = [Ha]β,α × ejΦφφ β,α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
177
+ page_content=' (16) Otherwise, the cross-polarization wavenumber-domain chan- nels can be expressed as [Hθφ a ]β,α = [Ha]β,α × ejΦθφ β,α × � κ−1 β,α, (17) and [Hφθ a ]β,α = [Ha]β,α × ejΦφθ β,α × � κ−1 β,α, (18) where Φθθ β,α, Φφφ β,α, Φφθ β,α, and Φθφ β,α are random phase shifts following the uniform distribution within [−π, π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
178
+ page_content=' κβ,α de- notes the XPR of the propagation environment, which follows the log-normal distribution κβ,α = 10Xβ,α/10 with Xβ,α ∼ N(µXPR, σ2 XPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
179
+ page_content=' Matrix Formulation: Finally, we transform the item-wise channel model into a matrix form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
180
+ page_content=' The item-wise channel model in (10) can be further expressed as Hpol =ΓRΨθ RHθθ a Ψθ S HΓS + ΓRΨθ RHθφ a Ψφ S HΓS + ΓRΨφ RHφθ a Ψθ S HΓS + ΓRΨφ RHφφ a Ψφ S HΓS =ΓR � Ψθ R, Ψφ R � �Hθθ a Hθφ a Hφθ a Hφφ a � � Ψθ S, Ψφ S �H ΓS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
181
+ page_content=' (19) Therefore, the final channel matrix can be derived as Hpol = ΓRΨpol R Hpol a Ψpol S HΓS, (20) where Ψpol R = [Ψθ R, Ψφ R], Ψpol S = [Ψθ S, Ψφ S], and Hpol a = �Hθθ a Hθφ a Hφθ a Hφφ a � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
182
+ page_content=' Network Analyzer Computer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 120 121 128 1 2 3 4 13 16 Receiver Transmitter Virtual Antenna Array Position Control Data Collect Antenna Array Channel Signal Generate Signal Detect ൗ 𝜆 2 ൗ 𝜆 2 ൗ 𝜆 4 ൗ 𝜆 8 9 5 6 7 8 10 11 12 13 14 15 16 (120,6) (121,6) (113,6) (128,6) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
183
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
184
+ page_content=' Schematic diagram of the measurement equipment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
185
+ page_content=' As a result, not only the non-isotropic characteristics of the propagation environment, the antenna pattern distortion, the antenna efficiency, but also the polarization characteristics of the antennas and the propagation environment are all taken into consideration in the extended channel model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
186
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
187
+ page_content=' MEASUREMENT SETUP In order to evaluate the extended EM-compliant channel model and implement a realistic performance evaluation for holographic MIMO systems, an experiment is conducted to measure the real-world channel of holographic MIMO sys- tems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
188
+ page_content=' To the best of our knowledge, it is the first attempt to measure the channel of a holographic MIMO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
189
+ page_content=' A schematic diagram of the measurement equipment is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
190
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
191
+ page_content=' In the experiment, the dense antenna array of holographic MIMO is realized by a virtual antenna array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
192
+ page_content=' A discone antenna is used to achieve an omnidirectional pattern and the position of it is controlled by an electrical machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
193
+ page_content=' Through computer programming, the antenna can be moved to different positions to construct a virtual dense array with arbitrary element spacings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
194
+ page_content=' In the experiment, the virtual an- tenna array is equipped at the receiver to realize a holographic MIMO array with spacing ∆x R = ∆y R ∈ {λ/8, λ/4, λ/2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
195
+ page_content=' At the transmitter, a conventional antenna array with NS = 16 antennas and spacings ∆x S = ∆y S = λ/2 is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
196
+ page_content=' It is composed of patch antennas whose half power beam width is 70◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
197
+ page_content=' A calibrated network analyzer is used to measure the channel and a computer is utilized to collect the measurement results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
198
+ page_content=' The center frequency is fc = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
199
+ page_content='7 GHz and the bandwidth is 200 MHz from 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
200
+ page_content='6 GHz to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
201
+ page_content='8 GHz with 1023 samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
202
+ page_content=' The experiment is performed in an indoor environment where the line-of-sight path is blocked by a metal object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
203
+ page_content=' Many scatters are present to create a rich scattering environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
204
+ page_content=' The schematic diagram of the measurement environment is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
205
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
206
+ page_content=' We consider two scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
207
+ page_content=' In the first scenario, the virtual receive array plane is perpendicular to the transmitter, Receiver (Scenario2) Receiver (Scenario1) Transmitter Work Bench Storage Rack Medal Object 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
208
+ page_content='55m 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
209
+ page_content='65m 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
210
+ page_content='70m 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
211
+ page_content='18m 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
212
+ page_content='00m Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
213
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
214
+ page_content=' Schematic diagram of the measurement environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
215
+ page_content=' while in the second scenario, the virtual receive array plane is parallel to the transmit array plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
216
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
217
+ page_content=' MEASUREMENT RESULTS AND EVALUATIONS In this section, we use the measurement results to evaluate the performance of an indoor holographic MIMO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
218
+ page_content=' The measurement results are shown in Section IV-A and corresponding performance evaluations are provided in Sec- tion IV-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
219
+ page_content=' Because the dense array of holographic MIMO is implemented virtually, the antenna efficiency loss is not accounted for in the measurement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
220
+ page_content=' Finally, the performance evaluations with antenna efficiency loss are provided in Sec- tion IV-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
221
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
222
+ page_content=' Channel Measurement Results After measurement, a channel matrix Hpol with size NR × NS can be derived.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
223
+ page_content=' Here we plot several channel measurement results to show the correlation of antennas at different position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
224
+ page_content=' We use the pair (q, p) to represent the q-th antenna in the virtual receive array and the p-th antenna in the transmit array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
225
+ page_content=' The channel responses corresponding to (120, 6) and (121, 6) transceiver pairs are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
226
+ page_content=' 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
227
+ page_content=' In these two pairs, the transmit antennas are the same and the receive antennas are adjacent, we can observe that the channel re- sponses are quite similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
228
+ page_content=' Instead, if we choose transceiver pairs whose receiver elements are not adjacent, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
229
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
230
+ page_content=', (113, 6) and (128, 6), the results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
231
+ page_content=' 3b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
232
+ page_content=' Since their receiver elements are separated by 2λ, we can find that the red line differs from the blue line in the spectrum, showing a low correlation compared with the results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
233
+ page_content=' 3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
234
+ page_content=' The difference between these two figures shows the effect of spatial coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
235
+ page_content=' In an array, adjacent elements are more likely to sense the channel inside the same cluster, and thus the correlation of their channel responses are stronger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
236
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
237
+ page_content=' Performance Evaluation without Antenna Efficiency Loss Once the channel matrix Hpol is obtained, we can evaluate the channel capacity based on the measurement results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
238
+ page_content=' The variation of channel capacity with different element spacings in both scenarios are shown in Fig 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
239
+ page_content=' In these figures, the antenna spacings are ∆x R = ∆y R ∈ {λ/8, λ/4, λ/2} and the corresponding numbers of antennas are NR ∈ {256, 64, 16} at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
240
+ page_content=' The signal to noise ratio (SNR) is set to 0 dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
241
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
242
+ page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
243
+ page_content='62 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
244
+ page_content='64 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
245
+ page_content='66 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
246
+ page_content='68 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
247
+ page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
248
+ page_content='72 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
249
+ page_content='74 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
250
+ page_content='76 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
251
+ page_content='78 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
252
+ page_content='8 Frequency [GHz] 100 95 90 85 80 75 70 65 60 S parrameter [dB] (a) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
253
+ page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
254
+ page_content='62 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
255
+ page_content='64 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
256
+ page_content='66 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
257
+ page_content='68 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
258
+ page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
259
+ page_content='72 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
260
+ page_content='74 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
261
+ page_content='76 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
262
+ page_content='78 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
263
+ page_content='8 Frequency [GHz] 100 95 90 85 80 75 70 65 60 S parrameter [dB] (b) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
264
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
265
+ page_content=' Channel response between q-th antenna at the receiver and p-th antenna at the transmitter in Scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
266
+ page_content=' (a) q = 120, 121, p = 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
267
+ page_content=' (b) q = 113, 128, p = 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
268
+ page_content=' Both the water filling and the equal power allocation strategies are adopted to evaluate the channel capacity performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
269
+ page_content=' The blue lines correspond to the channel capacity, while the red lines correspond to the relative capacity with respect to the case with ∆x R = ∆y R = λ/2 spacing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
270
+ page_content=' From the results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
271
+ page_content=' 4, we can see that the spatial oversampling of holographic MIMO is able to increase the channel capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
272
+ page_content=' Using equal power allocation strategy, a four times spatial oversampling with ∆x R = ∆y R = λ/4 can offer about 120% capacity gain, and a 16 times oversampling with ∆x R = ∆y R = λ/8 provides more than 300% capacity gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
273
+ page_content=' While using the water filling strategy, the corresponding ca- pacity gains are about 80% and 200%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
274
+ page_content=' Therefore, the capacity enhancement capability of holographic MIMO stated in the previous research works [5], [6], [11] is verified by practical experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
275
+ page_content=' It is worth noting that the antenna efficiency loss at the receiver is not taken into consideration in the measurement because the dense array is realized virtually, Antenna spacing Capacity [bit/s/Hz] Water filling Equal power Water filling Equal power (a) Antenna spacing Capacity [bit/s/Hz] Water filling Equal power Water filling Equal power (b) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
276
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
277
+ page_content=' Channel capacity and relative capacity with different antenna spacings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
278
+ page_content=' (a) Scenario 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
279
+ page_content=' (b) Scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
280
+ page_content=' which means ηR,q = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
281
+ page_content=' In the next subsection, the antenna efficiency loss is further considered in analyzing the capacity of a holographic MIMO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
282
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
283
+ page_content=' Performance Evaluation with Antenna Efficiency Loss In a practical dense antenna array with small element spacing, the efficiency of the antenna elements will decrease because of the mutual coupling among them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
284
+ page_content=' In [12], a relationship between the antenna efficiency and the element spacing is established for a dense array, which is called Hannan’s element efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
285
+ page_content=' According to [12], for a practical dense array at the receiver, the efficiency of the antenna element can be estimated as ηR,q ≈ π∆x R∆y R λ2 , (21) which means that the element efficiency is proportional to the area allocated to the element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
286
+ page_content=' It implies that when the spacing of antenna element is small (∆x R∆y R < λ2/π), the element Antenna spacing Capacity [bit/s/Hz] Water filling Equal power Water filling Equal power (a) Antenna spacing Capacity [bit/s/Hz] Water filling Equal power Water filling Equal power (b) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
287
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
288
+ page_content=' Channel capacity and relative capacity with antenna efficiency loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
289
+ page_content=' (a) Scenario 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
290
+ page_content=' (b) Scenario 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
291
+ page_content=' efficiency cannot reach 1, and it will decrease as the antenna elements are placed closer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
292
+ page_content=' Using the efficiency estimation in (21), we modify the chan- nel measurement results and evaluate the channel capacity of holographic MIMO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
293
+ page_content=' The results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
294
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
295
+ page_content=' It can be seen that in both scenarios, the channel capacities will not keep increasing with more antenna elements and smaller element spacings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
296
+ page_content=' Using the equal power allocation strategy, a 16 times oversampling with ∆x R = ∆y R = λ/8 can only provide 4% capacity gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
297
+ page_content=' While using the water filling strategy, the channel capacities even slightly decrease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
298
+ page_content=' The reason behind this is that the array gain and multiplexing gain by deploying more antenna elements are reduced by the decrease of the antenna efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
299
+ page_content=' From the above analyses, we can find that although the channel correlation increases with smaller antenna spacings, the spatial oversampling of holographic MIMO is able to offer an obvious capacity enhancement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
300
+ page_content=' However, the antenna efficiency loss due to mutual coupling will greatly decrease the capacity gain, which is one of the most important challenges for a practical holographic MIMO system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
301
+ page_content=' Therefore, design- ing a dense antenna array with element efficiency above the Hannan’s efficiency scaling law will be the promising ways to exploit the benefit of spatial oversampling for the holographic MIMO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
302
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
303
+ page_content=' CONCLUSION In this paper, an extended EM-compliant channel model is proposed for holographic MIMO systems, which takes the non-isotropic characteristics of the propagation environment, the antenna pattern distortion, the antenna efficiency, and the polarization into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
304
+ page_content=' An experiment is also conducted to measure the channel of an indoor holographic MIMO system through virtual antenna arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
305
+ page_content=' It is demonstrated through experiments for the first time that the spatial oversampling of holographic MIMO is able to increase the capacity of a wireless communication system significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
306
+ page_content=' However, the antenna efficiency is the most crucial challenge preventing us from getting the capacity improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
307
+ page_content=' REFERENCES [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
308
+ page_content=' Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
309
+ page_content=' Hu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
310
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
311
+ page_content=' Alexandropoulos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
312
+ page_content=' Zappone, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
313
+ page_content=' Yuen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
314
+ page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
315
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
316
+ page_content=' Renzo, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
317
+ page_content=' Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
318
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
319
+ page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
320
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
321
+ page_content=' 118–125, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
322
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
323
+ page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
324
+ page_content=' Dardari and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
325
+ page_content=' Decarli, “Holographic communication using intelli- gent surfaces,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
326
+ page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
327
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
328
+ page_content=' 59, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
329
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
330
+ page_content=' 35–41, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
331
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
332
+ page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
333
+ page_content=' Pizzo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
334
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
335
+ page_content=' Marzetta, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
336
+ page_content=' Sanguinetti, “Spatially-stationary model for holographic MIMO small-scale fading,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
337
+ page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
338
+ page_content=' Areas Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
339
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
340
+ page_content=' 38, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
341
+ page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
342
+ page_content=' 1964–1979, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
343
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
344
+ page_content=' [4] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
345
+ page_content=' Wei, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
346
+ page_content=' Huang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
347
+ page_content=' Alexandropoulus, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
348
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
349
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
350
+ page_content=' Sha, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
351
+ page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
352
+ page_content=' Debbah, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
353
+ page_content=' Yuen, “Multi-user holographic MIMO surfaces: Channel modeling and spectral efficiency analysis,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
354
+ page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
355
+ page_content=' Topics Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
356
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
357
+ page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
358
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
359
+ page_content=' 1112–1124, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
360
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
361
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
362
+ page_content=' Pizzo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
363
+ page_content=' Sanguinetti, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
364
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
365
+ page_content=' Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
366
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
367
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
368
+ page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
369
+ page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
370
+ page_content=' 6890–6905, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
371
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
372
+ page_content=' [6] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
373
+ page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
374
+ page_content=' Han, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
375
+ page_content=' Zhong, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
376
+ page_content=' Pang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
377
+ page_content=' Zhou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
378
+ page_content=' Wang, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
379
+ page_content=' Li, “Electromagnetic-compliant channel modeling and performance evaluation for holographic MIMO,” in IEEE Global Communications Conference (GLOBECOM), Rio de Janeiro, Brazil, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
380
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
381
+ page_content=' [7] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
382
+ page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
383
+ page_content=' Zhang, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
384
+ page_content=' Wang, “Effect of antenna pattern on electro- magnetic MIMO communication,” in IEEE International Conference on Communication Technology (ICCT), Nanjing, China, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
385
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
386
+ page_content=' [8] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
387
+ page_content=' Mammasis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
388
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
389
+ page_content=' Stewart, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
390
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
391
+ page_content=' Thompson, “Spatial fading correlation model using mixtures of von Mises Fisher distributions,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
392
+ page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
393
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
394
+ page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
395
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
396
+ page_content=' 2046–2055, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
397
+ page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
398
+ page_content=' [9] 3GPP TR 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
399
+ page_content='901, “Study on channel model for frequencies from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
400
+ page_content='5 to 100 GHz,” 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
401
+ page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
402
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
403
+ page_content=' Balanis, Antenna Theory: Analysis and Design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
404
+ page_content=' New York: John Wiley & Sons Ltd, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
405
+ page_content=' [11] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
406
+ page_content=' Zhang and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
407
+ page_content=' Dai, “Continuous-aperture MIMO for electromagnetic information theory,” arXiv, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
408
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
409
+ page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
410
+ page_content='org/ abs/2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
411
+ page_content='08630 [12] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
412
+ page_content=' Hannan, “The element-gain paradox for a phased-array antenna,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
413
+ page_content=' Antenna Propag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
414
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
415
+ page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
416
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
417
+ page_content=' 423–433, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
418
+ page_content=' 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/cNE5T4oBgHgl3EQffQ_r/content/2301.05626v1.pdf'}
d9AyT4oBgHgl3EQfjfgx/content/tmp_files/2301.00414v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
d9AyT4oBgHgl3EQfjfgx/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
dtE3T4oBgHgl3EQfGwnT/content/tmp_files/2301.04318v1.pdf.txt ADDED
@@ -0,0 +1,1832 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Beyond Graph Convolutional Network: An Interpretable Regularizer-centered
2
+ Optimization Framework
3
+ Shiping Wang1,2, Zhihao Wu1,2, Yuhong Chen1,2, Yong Chen3*
4
+ 1 College of Computer and Data Science, Fuzhou University
5
+ 2 Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University
6
+ 3 School of Computer Science, Beijing University of Posts and Telecommunications
7
8
+ Abstract
9
+ Graph convolutional networks (GCNs) have been attracting
10
+ widespread attentions due to their encouraging performance
11
+ and powerful generalizations. However, few work provide a
12
+ general view to interpret various GCNs and guide GCNs’ de-
13
+ signs. In this paper, by revisiting the original GCN, we in-
14
+ duce an interpretable regularizer-centerd optimization frame-
15
+ work, in which by building appropriate regularizers we can
16
+ interpret most GCNs, such as APPNP, JKNet, DAGNN, and
17
+ GNN-LF/HF. Further, under the proposed framework, we de-
18
+ vise a dual-regularizer graph convolutional network (dubbed
19
+ tsGCN) to capture topological and semantic structures from
20
+ graph data. Since the derived learning rule for tsGCN con-
21
+ tains an inverse of a large matrix and thus is time-consuming,
22
+ we leverage the Woodbury matrix identity and low-rank ap-
23
+ proximation tricks to successfully decrease the high computa-
24
+ tional complexity of computing infinite-order graph convolu-
25
+ tions. Extensive experiments on eight public datasets demon-
26
+ strate that tsGCN achieves superior performance against quite
27
+ a few state-of-the-art competitors w.r.t. classification tasks.
28
+ Introduction
29
+ Owing to the powerful ability to aggregate neighborhood in-
30
+ formation, Graph Convolutional Network (GCN) has been
31
+ successfully applied to diverse domains, such as computer
32
+ vision [1, 2, 3], recommender systems [4, 5], privacy pre-
33
+ serving [6], and traffic forecasting [7, 8]. Rooted in a series
34
+ of theoretical foundations, GCN extends convolution opera-
35
+ tions to the non-Euclidean spaces and effectively propagates
36
+ label signals, and therefore its variants have been extensively
37
+ employed for a variety of graph-related tasks, including clas-
38
+ sification [9, 10], clustering [11, 12] and link prediction
39
+ [13, 14]. In a nutshell, GCN generates the graph embedding
40
+ with the well-established graph convolutional layers gath-
41
+ ering semantics from neighbors according to the network
42
+ topology, which are revealed to be the most critical com-
43
+ ponent.
44
+ Although GCN has behaved well in many machine learn-
45
+ ing tasks, lots of studies have pointed out its certain draw-
46
+ backs and made efforts for further improvements. Bo et al.
47
+ [15] indicated that the propagation mechanism could be con-
48
+ sidered as a special form of low-pass filter, and presented a
49
+ *Corresponding author
50
+ Copyright © 2023, Association for the Advancement of Artificial
51
+ Intelligence (www.aaai.org). All rights reserved.
52
+ GCN with an adaptive frequency. Zhang et al. [16] argued
53
+ that most GCN-based methods ignored the global informa-
54
+ tion and proposed SHNE, which leveraged the structure and
55
+ feature similarity to capture latent semantics. Wang et al.
56
+ [17] revealed that the original GCN aggregated informa-
57
+ tion from node neighbors inadequately, and then developed
58
+ a multi-channel GCN by utilizing feature-based semantic
59
+ graph. In spite of the performance boosts of these GCN
60
+ variants, they didn’t establish a generalized framework, i.e.,
61
+ these approaches understood and enhanced GCN from cer-
62
+ tain and non-generalizable perspectives, thereby they are ex-
63
+ ceedingly difficult to be further developed, and with limited
64
+ interpretability.
65
+ Consequently, it is expected to construct a unified frame-
66
+ work for various GCNs with better interpretability; however,
67
+ it is a pity that this kind of work is still in shortage. Zhao et
68
+ al. [18] linked GCN and Graph-regularized PCA (GPCA),
69
+ and then proposed a multi-layer network by stacking the
70
+ GPCA layers. Zhu et al. [19] attempted to interpret exist-
71
+ ing GCN-based methods with a unified optimization frame-
72
+ work, under which they devised an adjustable graph filter
73
+ for a new GCN variant. Yang et al. [20] designed a family of
74
+ graph convolutional layers inspired by the updating rules of
75
+ two typical iterative algorithms. Although these efforts have
76
+ contributed to better understanding of GCNs, they only ex-
77
+ plained GCNs in partial aspects, promoting the expectation
78
+ of a more comprehensive analysis of GCNs.
79
+ To tackle the aforementioned issues, this paper induces an
80
+ interpretable regularizer-centered optimization framework,
81
+ which provides a novel perspective to digest various GCNs,
82
+ i.e., this framework captures the common essential proper-
83
+ ties of existing state-of-the-art GCN variants and could de-
84
+ fines them just by devising different regularizers. Moreover,
85
+ in light of the analyses on current representative GCNs, we
86
+ find that most of the existing approaches only consider cap-
87
+ turing the topological regularization, while the feature-based
88
+ semantic structure is underutilized, and hence this motivates
89
+ us to design a dual-regularizer graph convolutional network
90
+ (called tsGCN) within the regularizer-centered optimization
91
+ framework for the fullest explorations of both structures
92
+ and semantics from graph data. Due to the high computa-
93
+ tional complexity of performing infinite-order graph con-
94
+ volutions, the unified framework provides a straightforward
95
+ way employing truncated polynomials to approximate the
96
+ arXiv:2301.04318v1 [cs.LG] 11 Jan 2023
97
+
98
+ graph Laplacian, similar to the truncated Chebyshev poly-
99
+ nomials by vanilla GCN, restricting the message passing of
100
+ a single graph convolution to the first-order neighborhood.
101
+ The main contributions of this paper can be summarized
102
+ as the following three aspects:
103
+ • Propose a regularizer-centered constrained optimization
104
+ framework, which interprets various existing GCNs with
105
+ specific regularizers.
106
+ • Establish a new dual-regularizer graph convolutional net-
107
+ work (tsGCN), which exploits topological and semantic
108
+ structures of the given data; and develop an efficient algo-
109
+ rithm to reduce the computational complexity of solving
110
+ infinite-order graph convolutions.
111
+ • Conduct a series of experiments to show that tsGCN per-
112
+ forms much better than many SOTA GCNs, and also con-
113
+ sumes much less time than the newly GNN-HF/LF.
114
+ Related Work
115
+ Graph Convolutional Networks
116
+ The original GCN was first introduced by Kipf et al. [21],
117
+ who generalized the convolution operations from the Eu-
118
+ clidean domain to the non-Euclidean domain. SGC [22] as-
119
+ sumed that the nonlinear transform of GCN was not that
120
+ significant, and then devised a simplified GCN by remov-
121
+ ing the nonlinear activation functions and collapsing the
122
+ weight matrices. PPNP [23] employed the relationship be-
123
+ tween PageRank and GCN for the improvement on the prop-
124
+ agation mechanism of GCN, and an iterative version called
125
+ APPNP was further proposed to reduce the high compu-
126
+ tational complexity. Attempting to adaptively learn the in-
127
+ fluence radii for each node and task, JKNet [24] combined
128
+ various aggregations at the last layer and was able to learn
129
+ representations of different orders for graph substructures.
130
+ GNN-LF and GNN-HF [19] considered the low-pass and the
131
+ high-pass filter as the convolution kernels to improve GCN’s
132
+ expressive power, respectively. AdaGCN [25] leveraged Ad-
133
+ aboost strategy for the enhancement of GCN, allowing in-
134
+ formation to be shared between layers. To sum up, a main
135
+ characteristic of these methods is exploring GCN from the
136
+ perspectives of redesigning information aggregation strate-
137
+ gies or modifying graph convolutions, and few work try to
138
+ construct a unified framework to interpret various GCNs and
139
+ reveal the underlying common principles.
140
+ Further Insights on GCNs
141
+ Quite a few studies have been devoted to explore the mech-
142
+ anisms of GCN for deeper insights. Li et al. [26] indicated
143
+ that the convolutional operation of GCN was a special form
144
+ of Laplacian smoothing, attributed to which GCN suffered
145
+ from the so-called over-smoothing problem. Specifically, the
146
+ performance of GCN will decrease as the number of layers
147
+ increases, which has been validated by many other studies.
148
+ However, Liu et al. [27] held a different opinion that the en-
149
+ tanglement of two steps in GCN damages the performance
150
+ of the deep GCN, where the two steps were explained as
151
+ propagation and transformation. Based on this view, they de-
152
+ coupled the two operations and further presented a deeper
153
+ GCN. Zhu et al. [19] also decomposed the convolution op-
154
+ eration of GCN into two separate stages, called aggregation
155
+ and transformation, and focused on the aggregation process,
156
+ formulating an optimization objective to interpret it. Yang et
157
+ al. [28] explored network topology refinement, leveraging a
158
+ topology optimization process for the explanation. Oono et
159
+ al. [29] analyzed the forward propagation of GCN and in-
160
+ terpreted it with a specific dynamical system, allowing GCN
161
+ to be related to the underlying topological structures. Over-
162
+ all, these studies have contributed to the interpretability of
163
+ GCNs, and also let researchers better understand GCNs. In
164
+ this paper, we build a unified optimization framework from a
165
+ novel view of graph regularizers to interpret and understand
166
+ GCNs.
167
+ Mathematical Notations
168
+ For the convenience of formal descriptions, derivations, and
169
+ analyses, necessary notations are narrated as below. A graph
170
+ is denoted as G = (V, E, A), where V marks the vertex set
171
+ with |V| = N (N is the total number of nodes in graph G),
172
+ E marks the edge set, and A = [Aij]N×N marks an affinity
173
+ matrix of which Aij measures the similarity between the i-
174
+ th and the j-th node. In addition, D = [Dij]N×N represents
175
+ the degree matrix of G with Dii = �N
176
+ j=1 Aij, and then the
177
+ normalized symmetrical graph Laplacian of G is computed
178
+ as �L = I − �A with �A = D− 1
179
+ 2 AD− 1
180
+ 2 .
181
+ Revisiting Graph Convolutional Network
182
+ For a graph G = (V, E, A), the svd of its graph Laplacian is
183
+ L = UΛU⊤, where U ∈ RN×N is comprised of orthonor-
184
+ mal eigenvectors and Λ = diag(λ1, · · · , λN) is a diagonal
185
+ matrix with λi denoting the i-th eigenvalue and λi ≥ λj
186
+ (i = 1, · · · , N). Essentially, this decomposition induces a
187
+ Fourier transform on the graph domain, where eigenvectors
188
+ correspond to Fourier components and eigenvalues represent
189
+ frequencies of the graph. For an input signal x ∈ RN defined
190
+ on the graph G, the corresponding graph Fourier transform
191
+ of x is �x = U⊤x, and its inverse transform is derived as
192
+ x = U�x. Consequently, the graph convolution between the
193
+ signal x and the filter g ∈ RN is
194
+ g ∗ x = U(�g ⊙ �x) = U((U⊤g) ⊙ (U⊤x)),
195
+ (1)
196
+ where ⊙ is the Hadamard product between two vectors. Par-
197
+ ticularly, denoting gΘ = diag(Θ) := U⊤g parameterized
198
+ by Θ ∈ RN, the graph convolution between x and g can be
199
+ rewritten as
200
+ g ∗ x = U(�g ⊙ �x) = UgΘU⊤x,
201
+ (2)
202
+ where Θ is regarded as the filter coefficients to be optimized.
203
+ Especially, Θ is assumed to be the polynomials of the spec-
204
+ trums of the graph Laplacian [30], i.e.,
205
+ Θ = Θ(Λ) =
206
+ K
207
+
208
+ i=1
209
+ ΘiΛi,
210
+ (3)
211
+ where K is the order of Chebyshev polynomials. By fixing
212
+ K = 2, the graph convolutional network (GCN) [21] takes
213
+ an effective form
214
+ g ∗ x = θ(I + L)x,
215
+ (4)
216
+
217
+ Methods
218
+ Propagation Rules
219
+ Regularizer L(H(l); G)
220
+ Projective Set
221
+ GCN
222
+ H(l) = σ
223
+
224
+ �AH(l−1)Θ(l)�
225
+ Tr
226
+
227
+ H(l)⊤�LH(l)�
228
+
229
+ S(l) = S+, l ∈ [L−1],
230
+ S(L) = Ssimplex
231
+ SGC
232
+ H(l) = σ
233
+
234
+ �AH(l−1)Θ(l)�
235
+ Tr
236
+
237
+ H(l)⊤�LH(l)�
238
+
239
+ S(l) = S, l ∈ [L−1],
240
+ S(L) = Ssimplex
241
+ APPNP
242
+ H(l) = σ
243
+
244
+ (1 − α) �AH(l−1) + αH(0)�
245
+ Tr
246
+
247
+ 1
248
+ 1−αH(l)⊤ �A−1(H(l) − 2αH(0))
249
+
250
+
251
+ S(l) = S, l ∈ [L−1],
252
+ S(L) = Ssimplex
253
+ JKNet
254
+ H(l) = σ
255
+ ��K
256
+ k=1 αk �AkH(l−1)Θ(l)�
257
+ Tr
258
+
259
+ H(l)⊤ �A−1(I + β�L)H(l)�
260
+
261
+ S(l) = S, l ∈ [L−1],
262
+ S(L) = Ssimplex
263
+ DAGNN
264
+ H(l) = σ
265
+ ��K
266
+ k=0 αk �AkH(l−1)�
267
+ Tr
268
+
269
+ H(l)⊤(I + β�L)H(l)�
270
+
271
+ S(l) = S, l ∈ [L−1],
272
+ S(L) = Ssimplex
273
+ GNN-HF
274
+ H(l) = σ
275
+
276
+ (I + α�L)−1(I + β�L)H(l−1)Θ(l)�
277
+ Tr
278
+
279
+ H(l)⊤(I + β�L)−1(I + α�L)H(l)�
280
+
281
+ S(l) = S+, l ∈ [L−1],
282
+ S(L) = Ssimplex.
283
+ GNN-LF
284
+ H(l) = σ
285
+
286
+ (I + α �A)−1(I + β �A)H(l−1)Θ(l)�
287
+ Tr
288
+
289
+ H(l)⊤(I + β �A)−1(I + α �A)H(l)�
290
+
291
+ S(l) = S+, l ∈ [L−1],
292
+ S(L) = Ssimplex
293
+ tsGCN
294
+ H(l) = σ
295
+
296
+ (I + α�LG + β�LX )−1H(l−1)Θ(l)�
297
+ Tr
298
+
299
+ H(l)⊤(I + α�LG + β�LX )H(l)�
300
+
301
+ S(l) = S+, l ∈ [L−1],
302
+ S(L) = Ssimplex
303
+ Table 1: Different regularizers can derive different GCN variants under the regularizer-centered optimization framework.
304
+ where Θ = [θ] is a parameter to be optimized. When ex-
305
+ tending single channel signal x and filter θ to multi-channel
306
+ H(l) ∈ RN×dl and Θ(l) ∈ Rdl×fl, the GCN is converted to
307
+ H(l) = σ( �AH(l−1)Θ(l)),
308
+ (5)
309
+ where �A is a normalized version of I + �A, σ(·) is an acti-
310
+ vation function, and H(l) ∈ RN×dl is the output of the l-th
311
+ layer with H(0) = X being the input feature matrix.
312
+ An Interpretable Regularizer-centered
313
+ Optimization Framework for GCNs
314
+ Given the input H(l−1) of the (l)-th layer, GCN can compute
315
+ the output H(l) by minimizing
316
+ L = −Tr(H(l)⊤H(l−1)Θ(l)) + 1
317
+ 2Tr(H(l)⊤�LH(l))
318
+ (6)
319
+ s.t. H(l) ≥ 0,
320
+ where
321
+ 1
322
+ 2Tr(H(l)⊤�LH(l)) =
323
+ 1
324
+ 4
325
+ �N
326
+ j=1
327
+ �N
328
+ i=1 Aij|| h(l)
329
+ i
330
+ √Dii −
331
+ h(l)
332
+ j
333
+
334
+ Djj ||2
335
+ 2 with H(l) = [h(l)
336
+ 1 ; · · · ; h(l)
337
+ N ]; it is a normalized reg-
338
+ ularizer to preserve the pairwise similarity of any two nodes
339
+ in the given graph. Besides, the −Tr(H(l)⊤H(l−1)Θ(l)) is
340
+ actually a fitting loss term bewteen H(l) and H(l−1)Θ(l),
341
+ i.e., ||H(l)−H(l−1)Θ(l)||2
342
+ F with H(l−1) and Θ(l) fixed when
343
+ optimizing H(l). Note that the square term ||H(l)||2
344
+ F is a L2-
345
+ regularized smoother, which can be ignored or absorbed in
346
+ the second graph regularizer Tr(H(l)⊤�LH(l)).
347
+ Taking derivative of L with respect to H(l) and setting it
348
+ to zero, we obtain H(l+) as
349
+ H(l+) = (I − �A)−1H(l−1)Θ(l);
350
+ (7)
351
+ and then there yields
352
+ H(l) = σ
353
+
354
+ H(l+)�
355
+ ,
356
+ (8)
357
+ when the nonnegative constraints H(l) ≥ 0 are further con-
358
+ sidered. Notice that σ(·) is the ReLU(·) activation function.
359
+ Here, if the matix inverse (I− ˜A)−1 = �∞
360
+ i=0 ˜Ai is approxi-
361
+ mated by the first-order expansion, i.e., (I− ˜A)−1 ≈ I+ ˜A,
362
+ then Eq. (8) will lead to the updating rule (5) of GCN.
363
+ Usually, the activation functions in GCN are ReLU(·) and
364
+ Softmax(·), which could be converted to different projec-
365
+ tion optimizations. Concretely, the ReLU(·) activation func-
366
+ tion is equivalent to project a point x onto the non-negative
367
+ plane S+ = {s ∈ Rd|s ≥ 0}, i.e.,
368
+ ReLU(x) = arg min
369
+ y∈S+
370
+ −x⊤y + 1
371
+ 2||y||2
372
+ 2.
373
+ (9)
374
+ By the way, we denote S = {s ∈ Rd}, which corresponds
375
+ to an identity activation function. In terms of the Softmax(·)
376
+ activation function, it can be regarded as projecting x onto
377
+ the set Ssimplex = {s ∈ Rd|1⊤s = 1, s ≥ 0}, i.e.,
378
+ Softmax(x) = arg min
379
+ y∈Ssimplex
380
+ −x⊤y + y⊤ log(y),
381
+ (10)
382
+ where y⊤ log(y) = �d
383
+ i=1 yi log(yi) is the negative entropy
384
+ of y [31]. In fact, with respect to other activation functions,
385
+ they can also be equivalent to project a point onto some fea-
386
+ sible set with some metric.
387
+ Up to present, we have actually utilized a constrained op-
388
+ timization problem to interpret GCN, including information
389
+ propagations (i.e., Eq. (7)) and the nonlinear activation func-
390
+ tions (i.e., ReLU(·) and Softmax(·)).
391
+ The above analyses can not only explain the vanilla GCN,
392
+ but also stimulate a regularizer-centered optimization frame-
393
+ work that can further unify various GCNs. By extending the
394
+ optimization (6), a more general framework is written as
395
+ L = −Tr(H(l)⊤H(l−1)Θ(l)) + 1
396
+ 2L(H(l); G)
397
+ (11)
398
+ s.t. H(l) ∈ {S+ or S}, l ∈ [L − 1], H(L) ∈ Ssimplex.
399
+ Under this framework, different regularizers could derive
400
+ different GCNs, for example,
401
+
402
+ Algorithm 1: Topological and Semantic Regularized GCN
403
+ Require: Graph data G = (V, E, A), labels y, number of
404
+ layers L, and hyperparameters {α, β, r}.
405
+ Ensure: Predicted label set {y∗
406
+ i }N
407
+ i=n+1.
408
+ 1: Initialize model parameters {H(l), Θ(l)}L
409
+ l=1;
410
+ 2: Compute the joint graph Laplacian α�LG + β�LX and its
411
+ low-rank factorization WV⊤;
412
+ 3: Substitute the matrix inverse (I + α�LG + β�LX )−1 with
413
+ I − W(I + V⊤W)−1V⊤;
414
+ 4: while not convergent do
415
+ 5:
416
+ Calculate hidden layers {H(l)}L
417
+ l=1 by Eq. (14);
418
+ 6:
419
+ Update weights: Θ(l+1) ← Θ(l) − η
420
+ ∂L
421
+ ∂Θ(l) ;
422
+ 7: end while
423
+ 8: return The predicted labels: y∗
424
+ i = arg maxj H(L)
425
+ ij .
426
+ • If L(H(l); G) = Tr
427
+
428
+ H(l)⊤(I + µ�L)−1(I + λ�L)H(l)�
429
+ with λ = β +
430
+ 1
431
+ α − 1, µ = β, and �L = I − �A,
432
+ then
433
+ it
434
+ induces
435
+ the
436
+ updating
437
+ rule
438
+ H(l)
439
+ =
440
+ σ
441
+
442
+ (I + α �A)−1(I + β �A)H(l−1)Θ(l)�
443
+ ,
444
+ which
445
+ cor-
446
+ responds to GNN-HF [19].
447
+ • If L(H(l); G) = Tr
448
+
449
+ H(l)⊤(I + µ �A)−1(I + λ �A)H(l)�
450
+ with λ
451
+ =
452
+ −αβ+2α−1
453
+ αβ−α+1
454
+ and µ
455
+ =
456
+ 1
457
+ β − 1, then
458
+ it
459
+ gives
460
+ rise
461
+ to
462
+ the
463
+ updating
464
+ rule
465
+ H(l)
466
+ =
467
+ σ
468
+
469
+ (I + α �A)−1(I + β �A)H(l−1)Θ(l)�
470
+ ,
471
+ which
472
+ cor-
473
+ responds to GNN-LF [19].
474
+ For more cases, their results are summarized in Table 4, and
475
+ the derivation details can refer to those of the original GCN
476
+ (from Eq. (7) to Eq. (10)) and the supplementary.
477
+ Remarks. The work [19] is most similar to our work with
478
+ the same research idea: they both want to propose a unified
479
+ framework to interpret the current GCNs and guide the de-
480
+ sign of new GCN variants; however, they are realized in dif-
481
+ ferent ways. To be specific, (1) Zhu et al. [19] develop an
482
+ optimization framework to explain different GCNs’ prop-
483
+ agation processes; whereas we propose a constrained op-
484
+ timization framework not only to interpret various GCNs’
485
+ propagation processes, but also explain the nonlinear activa-
486
+ tion layers; (2) [19] unifies various GCNs via devising vari-
487
+ ous fitting items which are essentially constructed by limited
488
+ graph filters; while our work derives different GCNs through
489
+ designing different regularizers. To sum up, our work inter-
490
+ prets the whole (not partial) GCNs with regularizer-centered
491
+ constrained optimizations.
492
+ tsGCN: Topological and Semantic Regularized
493
+ Graph Convolutional Network
494
+ One finding from most existing GCNs is that they often ig-
495
+ nored feature-based semantic structures, which can weaken
496
+ the representation learning abilities of graph networks, then
497
+ Table 2: Dataset statistics.
498
+ Datasets
499
+ #Nodes
500
+ #Edges
501
+ #Classes
502
+ #Features
503
+ #Train/Val/Test
504
+ Cora
505
+ 2,708
506
+ 5,429
507
+ 7
508
+ 1,433
509
+ 140/500/1,000
510
+ Citeseer
511
+ 3,327
512
+ 4,732
513
+ 6
514
+ 3,703
515
+ 120/500/1,000
516
+ Pubmed
517
+ 19,717
518
+ 44,338
519
+ 3
520
+ 500
521
+ 60/500/1,000
522
+ ACM
523
+ 3,025
524
+ 13,128
525
+ 3
526
+ 1,870
527
+ 60/500/1,000
528
+ BlogCatalog
529
+ 5,196
530
+ 171,743
531
+ 6
532
+ 8,189
533
+ 120/500/1,000
534
+ CoraFull
535
+ 19,793
536
+ 65,311
537
+ 70
538
+ 8,710
539
+ 1,400/500/1,000
540
+ Flickr
541
+ 7,575
542
+ 239,738
543
+ 9
544
+ 12,047
545
+ 180/500/1,000
546
+ UAI
547
+ 3,067
548
+ 28,311
549
+ 19
550
+ 4,973
551
+ 367/500/,1000
552
+ we focus on two regularizers, i.e.,
553
+ L1(H(l); G) = 1
554
+ 2Tr
555
+
556
+ {H(l)}⊤(1
557
+ 2I + α�LG)H(l)
558
+
559
+ ,
560
+ (12)
561
+ L2(H(l); X) = 1
562
+ 2Tr
563
+
564
+ {H(l)}⊤(1
565
+ 2I + β�LX )H(l)
566
+
567
+ ,
568
+ (13)
569
+ where �LG is a graph Laplacian from the given adjacency ma-
570
+ trix (e.g., �LG = �L), and �LX is a graph Laplacian calculated
571
+ from the pairwise similarity of any two graph nodes. Hence,
572
+ we devise a dual-regularizer, i.e., L(H(l)) = L1(H(l); G) +
573
+ L2(H(l); X), and if it is under the optimization framework
574
+ (19), then there yields the following updating rule
575
+ H(l) = σ
576
+
577
+ (I + α�LG + β�LX )−1H(l−1)Θ(l)�
578
+ .
579
+ (14)
580
+ Since this method seeks to preserve both the topological and
581
+ semantic structures for more accurate presentations, we call
582
+ it tsGCN (i.e., Topological and Semantic regularized GCN).
583
+ Notably, the computational complexity of (I + α�LG +
584
+ β�LX )−1 is O(N 3), which tends to be unaffordable in prac-
585
+ tical applications. To this end, a low-rank approximation is
586
+ operated, i.e., α�LG +β�LX ≈ WV⊤, where W, V ∈ RN×r
587
+ with r ≪ N. This leads to the Woodbury matrix identity:
588
+ (I + WV⊤)−1 = I − W(I + V⊤W)−1V⊤,
589
+ (15)
590
+ of which the computational complexity costs O(N 2).
591
+ Given that the optimal M∗ of the following problem
592
+ min
593
+ M∈RN×N: rank(M)=r ||M − (α�LG + β�LX )||2
594
+ F
595
+ (16)
596
+ is attained at the r-truncated singular value decomposition
597
+ of α�LG + β�LX , i.e., M∗ = UΣU⊤, where Σ ∈ Rr×r is a
598
+ diagonal matrix containing the r largest singular values. An
599
+ optimal {W∗, V∗} to α�LG + β�LX ≈ WV⊤ can be given
600
+ by an analytic form of W∗ = V∗ = UΣ
601
+ 1
602
+ 2 .
603
+ To obtain the optimum {W∗, V∗}, the iterative algorithm
604
+ [32] with O(N 2) is leveraged as
605
+ Z(t+1) ← (α�LG + β�LX )U(t),
606
+ (17)
607
+ {U(t+1), R(t+1)} ← QR(Z(t+1)),
608
+ (18)
609
+ where QR(·) denotes the QR-decomposition. Note that this
610
+ algorithm can converge to the r largest eigenvalues R(t+1)
611
+ and its corresponding eigenvectors Z(t+1) when the iterative
612
+ number t is large enough. Finally, there will be W∗ = V∗ =
613
+ U(t+1)[R(t+1)]
614
+ 1
615
+ 2 .
616
+ Gathering all analyses mentioned above, the procedure for
617
+ tsGCN is summarized in Algorithm 1.
618
+
619
+ Table 3: Accuracy and F1-score (mean% and standard deviation%) of all methods, where the best results are in red and the
620
+ second-best are in blue. Note that GraphSAGE fails to work on the ACM dataset, and thus its results are marked with “—”.
621
+ Metrics
622
+ Methods / Datasets
623
+ Cora
624
+ Citeseer
625
+ Pubmed
626
+ ACM
627
+ BlogCatalog
628
+ CoraFull
629
+ Flickr
630
+ UAI
631
+ Chebyshev
632
+ 76.2 (0.7)
633
+ 69.3 (0.4)
634
+ 74.0 (0.8)
635
+ 82.8 (1.4)
636
+ 68.3 (1.6)
637
+ 57.2 (1.1)
638
+ 38.5 (1.6)
639
+ 49.7 (0.4)
640
+ GraphSAGE
641
+ 76.7 (0.6)
642
+ 64.4 (0.9)
643
+ 75.5 (0.2)
644
+
645
+ 57.8 (0.7)
646
+ 59.9 (0.7)
647
+ 32.7 (1.0)
648
+ 41.7 (1.4)
649
+ GAT
650
+ 79.1 (0.8)
651
+ 68.3 (0.5)
652
+ 78.4 (0.3)
653
+ 84.6 (0.5)
654
+ 67.1 (1.7)
655
+ 62.4 (0.4)
656
+ 40.4 (0.9)
657
+ 49.7 (3.0)
658
+ GCN
659
+ 80.6 (1.4)
660
+ 69.1 (1.5)
661
+ 77.6 (1.3)
662
+ 88.8 (0.5)
663
+ 84.2 (0.6)
664
+ 62.8 (0.4)
665
+ 51.0 (1.2)
666
+ 58.5 (1.1)
667
+ SGC
668
+ 79.3 (1.0)
669
+ 66.4 (1.7)
670
+ 76.8 (2.0)
671
+ 80.8 (2.7)
672
+ 81.3 (0.2)
673
+ 62.9 (2.2)
674
+ 51.0 (0.1)
675
+ 56.5 (3.5)
676
+ APPNP
677
+ 78.0 (0.1)
678
+ 65.8 (0.2)
679
+ 78.0 (0.0)
680
+ 88.2 (0.0)
681
+ 87.7 (0.3)
682
+ 63.1 (0.5)
683
+ 57.5 (0.2)
684
+ 62.3 (1.2)
685
+ JKNet
686
+ 83.1 (0.1)
687
+ 72.3 (0.1)
688
+ 80.1 (0.2)
689
+ 82.3 (0.6)
690
+ 75.7 (0.1)
691
+ 62.6 (0.0)
692
+ 54.0 (0.3)
693
+ 45.6 (0.5)
694
+ DAGNN
695
+ 81.9 (0.7)
696
+ 70.0 (1.1)
697
+ 80.6 (0.7)
698
+ 87.4 (0.9)
699
+ 84.6 (1.9)
700
+ 65.6 (0.3)
701
+ 54.6 (5.9)
702
+ 46.7 (12.4)
703
+ GNN-LF
704
+ 81.1 (0.5)
705
+ 72.3 (0.9)
706
+ 80.0 (0.4)
707
+ 90.8 (0.5)
708
+ 86.7 (0.6)
709
+ 63.5 (0.9)
710
+ 56.6 (0.6)
711
+ 36.6 (19.8)
712
+ GNN-HF
713
+ 80.7 (0.2)
714
+ 68.8 (1.3)
715
+ 77.7 (0.2)
716
+ 91.2 (0.5)
717
+ 84.5 (0.4)
718
+ 63.0 (0.7)
719
+ 60.7 (0.4)
720
+ 54.8 (1.4)
721
+ tsGCN (inv)
722
+ 80.3 (0.3)
723
+ 73.3 (0.4)
724
+ 78.4 (0.3)
725
+ 85.1 (1.6)
726
+ 87.8 (6.3)
727
+ 67.0 (0.9)
728
+ 53.3 (12.6)
729
+ 64.2 (1.8)
730
+ ACC
731
+ tsGCN
732
+ 82.0 (0.3)
733
+ 73.1 (0.4)
734
+ 82.4 (0.1)
735
+ 92.8 (0.3)
736
+ 92.3 (0.5)
737
+ 67.9 (0.9)
738
+ 79.1 (3.0)
739
+ 67.9 (0.6)
740
+ Chebyshev
741
+ 76.3 (0.7)
742
+ 65.4 (0.8)
743
+ 73.9 (0.7)
744
+ 82.5 (1.4)
745
+ 64.3 (1.6)
746
+ 40.0 (0.5)
747
+ 38.4 (1.5)
748
+ 39.1 (0.2)
749
+ GraphSAGE
750
+ 76.7 (0.5)
751
+ 60.7 (0.5)
752
+ 74.7 (0.2)
753
+
754
+ 54.7 (0.6)
755
+ 51.9 (0.6)
756
+ 31.0 (1.1)
757
+ 35.3 (1.0)
758
+ GAT
759
+ 77.1 (0.7)
760
+ 64.6 (0.5)
761
+ 78.2 (0.2)
762
+ 84.8 (0.5)
763
+ 66.3 (1.9)
764
+ 46.4 (0.4)
765
+ 38.1 (1.1)
766
+ 40.8 (1.3)
767
+ GCN
768
+ 79.4 (1.4)
769
+ 65.2 (2.4)
770
+ 77.2 (1.4)
771
+ 88.9 (0.5)
772
+ 82.4 (0.5)
773
+ 52.8 (0.8)
774
+ 50.0 (1.7)
775
+ 45.0 (1.1)
776
+ SGC
777
+ 77.7 (0.9)
778
+ 61.5 (1.7)
779
+ 76.5 (2.3)
780
+ 81.1 (2.6)
781
+ 80.7 (0.3)
782
+ 53.2 (2.1)
783
+ 44.2 (0.2)
784
+ 46.7 (1.7)
785
+ APPNP
786
+ 77.6 (0.1)
787
+ 63.2 (0.2)
788
+ 77.7 (0.0)
789
+ 88.3 (0.0)
790
+ 85.7 (0.3)
791
+ 48.2 (0.7)
792
+ 56.9 (0.2)
793
+ 48.6 (1.6)
794
+ JKNet
795
+ 82.3 (0.3)
796
+ 67.8 (0.1)
797
+ 79.3 (0.3)
798
+ 82.2 (0.6)
799
+ 75.0 (0.1)
800
+ 51.3 (0.1)
801
+ 51.1 (0.5)
802
+ 31.7 (1.5)
803
+ DAGNN
804
+ 80.0 (0.7)
805
+ 65.7 (0.7)
806
+ 80.7 (0.7)
807
+ 87.5 (0.9)
808
+ 83.8 (2.4)
809
+ 53.0 (0.9)
810
+ 55.5 (6.7)
811
+ 39.3 (11.2)
812
+ GNN-LF
813
+ 79.1 (0.7)
814
+ 66.7 (0.4)
815
+ 80.2 (0.5)
816
+ 90.9 (0.5)
817
+ 85.9 (0.6)
818
+ 50.5 (1.9)
819
+ 54.3 (1.0)
820
+ 29.7 (15.1)
821
+ GNN-HF
822
+ 78.6 (0.3)
823
+ 64.3 (1.7)
824
+ 78.1 (0.2)
825
+ 91.3 (0.5)
826
+ 83.8 (0.4)
827
+ 49.0 (1.1)
828
+ 58.6 (0.6)
829
+ 44.9 (0.8)
830
+ tsGCN (inv)
831
+ 78.5 (0.3)
832
+ 69.6 (0.4)
833
+ 78.7 (0.3)
834
+ 85.1 (1.5)
835
+ 85.2 (7.1)
836
+ 57.2 (1.1)
837
+ 52.9 (15.8)
838
+ 48.5 (0.8)
839
+ F1
840
+ tsGCN
841
+ 80.5 (0.5)
842
+ 69.0 (0.3)
843
+ 82.4 (0.1)
844
+ 92.8 (0.4)
845
+ 90.1 (0.6)
846
+ 58.7 (0.7)
847
+ 79.3 (2.9)
848
+ 50.1 (0.1)
849
+ Experiment
850
+ This section will show tsGCN’s effectiveness and efficiency
851
+ via comprehensive experiments.
852
+ Datasets
853
+ Cora, Citeseer and Pubmed are citation networks, and Cora-
854
+ Full is a larger version of Cora; ACM is a paper network, and
855
+ BlogCatalog and Flickr are social networks; UAI has been
856
+ utilized for community detection. The detailed statistics of
857
+ the above eight public datasets are concluded in Table 2.
858
+ Compared Methods
859
+ Two types of methods are employed here for comparisons.
860
+ Chebyshev [33], GraphSAGE [34] and GAT [35] are clas-
861
+ sical graph neural networks. GCN, SGC [22], APPNP [23],
862
+ JKNet [24], DAGNN [27], GNN-LF and GNN-HF [19] are
863
+ selected as state-of-the-art GCN variants.
864
+ Parameter Setups
865
+ For all experiments, we randomly split samples into a small
866
+ set of 20 labeled samples per class for training, a set of 500
867
+ samples for validating and a set of 1, 000 samples for testing.
868
+ In terms of the ten baseline methods, all their configurations
869
+ are set as the default in their original papers. With respect to
870
+ tsGCN, following the vanilla GCN, the learning rate, weight
871
+ decay and the size of hidden units are set to 1 × 10−2, 5 ×
872
+ 10−4 and 32, respectively. The hyperparameters α and β are
873
+ selected in {0.1, 0.2, . . . , 1.0} for different datasets, and r is
874
+ chosen in {⌊ d
875
+ 211 ⌋, ⌊ d
876
+ 210 ⌋, . . . , ⌊ d
877
+ 23 ⌋}, where d is the feature
878
+ dimension of the original data.
879
+ Semi-supervised Classification
880
+ Performance Comparisons. The semi-supervised classifi-
881
+ cation task is conducted on selected datasets, whose results
882
+ are recorded in Table 3. Specifically, we compare our tsGCN
883
+ with the ten baseline methods in terms of both accuracy and
884
+ F1-score, marking the best and second-best results on each
885
+ dataset. Note that tsGCN (inv) denotes tsGCN without the
886
+ low-rank approximation, which directly calculates the ma-
887
+ trix inverse in Eq. (14). From Table 3, we have the following
888
+ observations:
889
+ • tsGCN achieves the best performances on most datasets,
890
+ and is only slightly inferior to the JKNet method on the
891
+ smallest Cora dataset.
892
+ • tsGCN yields higher scores than JKNet and APPNP, es-
893
+ pecially on Pubmed, CoraFull, BlogCatalog, and Flickr,
894
+ where the first two are relatively large datasets and the
895
+ latter two have dense edges. tsGCN even outperforms the
896
+ second-best approach GNN-HF by about 20% on Flickr.
897
+ It is worth mentioning that tsGCN utilizes high-order
898
+ information by the infinite-order graph convolution, and
899
+ JKNet and APPNP also develop different techniques for the
900
+ same goal. Hence, the advantage of tsGCN over APPNP and
901
+ JKNet implies that the infinite-order graph convolution im-
902
+ plemented by the low-rank approximation not only requires
903
+ less computational complexity, but also effectively captures
904
+ high-order neighborhood information and filters significant
905
+ noises.
906
+ Runtime Comparisons. This section collects the train-
907
+ ing time (i.e., runtime) of all methods on two selected large
908
+ datasets, i.e., Pubmed and CoraFull, as exhibited in Fig. 1(a):
909
+ the first three columns correspond to classical GNNs, while
910
+
911
+ (a) Runtime
912
+ (b) Classification Accuracy
913
+ Figure 1: (a) All methods’ runtime on two large datasets. (b) The classification accuracy of tsGCN w.r.t. (α, β) on all datasets.
914
+ (a) Cora
915
+ (b) Citeseer
916
+ (c) Pubmed
917
+ (d) ACM
918
+ (e) BlogCatalog
919
+ (f) CoraFull
920
+ (g) Flickr
921
+ (h) UAI
922
+ Figure 2: The classification accuracy of tsGCN w.r.t. hyperparameters α and β on all datasets.
923
+ the rest are GCNs. From Fig. 1(a), we find that tsGCN takes
924
+ much less runtime than Chebyshev, GAT, and GraphSAGE;
925
+ however, it performs moderately well among the state-of-
926
+ the-art GCN variants. Specifically, tsGCN is (1) inferior to
927
+ SGC, JKNet, and DAGNN; (2) well-matched with the orig-
928
+ inal GCN; (3) but advantageous over the recently proposed
929
+ GNN-LF and GNN-HF.
930
+ Parameter Sensitivity Analysis
931
+ Fig. 1(b) curves the accuracy of tsGCN w.r.t. various ranks
932
+ by fixing other parameters α and β. Considering that differ-
933
+ ent datasets hold different distributions, their optimal ranks
934
+ to the optimization (16) are also different. For example, in
935
+ regard to the curves on BlogCatalog and ACM, their accu-
936
+ racy first go up to a high value and then keep steady, which
937
+ indicates that when rank r = ⌊d/512⌋, the low-rank approx-
938
+ imation is effective and efficient enough. When it comes to
939
+ the curve on Pubmed, the trend of its performance mono-
940
+ tonically decreases as rank r becomes bigger, which implies
941
+ that a very low-rank (i.e., r = ⌊d/2048⌋) approximation is
942
+ sufficient enough to preserve abundant information for good
943
+ results. However, with respect to the other curves such as on
944
+ Flickr and Cora, the y-axis’ scores generally rise to a peak
945
+ first and then fall continuously as the rank r increases. For
946
+ these cases, the optimal ranks differ at their peaks.
947
+ Fig. 2 plots the accuracy of tsGCN w.r.t. (α, β) by fixing
948
+ the optimal ranks. On Cora, Citeseer, Pubmed, BlogCatalog,
949
+ and CoraFull, tsGCN performs well with large α and small
950
+ β; while, on ACM, Flickr, and UAI, tsGCN generates high
951
+ accuracy when these two parameters are both large.
952
+ For detailed settings of these hyperparameters, please ref-
953
+ erence the codes and datasets to be released on Github.
954
+ Ablation Study
955
+ The results of GCN, tsGCN-s, tsGCN-t, tsGCN (inv), and ts-
956
+ GCN are plotted in Fig. 3 (notice that tsGCN-s and tsGCN-t
957
+ are with semantic and topological regularizer, respectively),
958
+ telling us:
959
+ • The performance is unsatisfactory when the two regular-
960
+ izers are adopted alone, while tsGCN can always effec-
961
+ tively fuse the two to better capture underlying structures.
962
+ • tsGCN (inv) is even worse than single-regularizer model
963
+ on some datasets, indicating that the infinite-order graph
964
+
965
+ Accuracy (%)
966
+ Accuracy (%)
967
+ F1-score (%)
968
+ F1-score (%)
969
+ Figure 3: Accuracy and F1-score of tsGCN and its variants on all datasets.
970
+ (a) Chebyshev
971
+ (b) GraphSAGE
972
+ (c) GAT
973
+ (d) GCN
974
+ (e) SGC
975
+ (f) APPNP
976
+ (g) JKNet
977
+ (h) DAGNN
978
+ (i) GNN-LF
979
+ (j) GNN-HF
980
+ (k) tsGCN (inv)
981
+ (l) tsGCN
982
+ Figure 4: Different methods’ t-SNE visualizations on BlogCatalog, where each color corresponds to one class.
983
+ convolutions implemented by the matrix inverse can pull-
984
+ in instability to the model.
985
+ • Compared to GCN, tsGCN (inv) performs comparable or
986
+ even worse, whereas tsGCN shows substantial improve-
987
+ ments on all datasets, which indicates that the low-rank
988
+ approximation enhances the robustness of infinite-order
989
+ graph convolutions.
990
+ Data Visualization
991
+ Fig. 4 exhibits the graph representations learned by different
992
+ methods on BlogCatalog. As can be seen clearly, the results
993
+ of the three classical graph neural networks, i.e., Chebyshev,
994
+ GraphSAGE and GAT, are unsatisfactory; while for the other
995
+ competitors, there are:
996
+ • Both tsGCN (inv) and tsGCN are better than other GCNs,
997
+ which indicates that the dual-regularizer can extract more
998
+ accurate inter-relationships from the topological and se-
999
+ mantic structures.
1000
+ • Comparing the embeddings learned by tsGCN with those
1001
+ of tsGCN (inv), classes in the former sub-figure are more
1002
+ clearly recognized and the within-clusters are more com-
1003
+ pact, which testifies the effectiveness of the low-rank ap-
1004
+ proximation.
1005
+ In a nutshell, the embeddings of the proposed model show
1006
+ the best inter-class separation and intra-class aggregation.
1007
+ Conclusion
1008
+ By revisiting GCN, this paper puts forward an interpretable
1009
+ regularizer-centered optimization framework, in which the
1010
+ connections between existing GCNs and diverse regularizers
1011
+ are revealed. It’s worth mentioning that this framework pro-
1012
+ vides a new perspective to interpret existing work and guide
1013
+ new GCNs just by designing new graph regularizers. Im-
1014
+ pressed by the significant effectiveness of the feature based
1015
+ semantic graph, we further combine it with nodes’ topolog-
1016
+ ical structures, and develop a novel dual-regularizer graph
1017
+ convolutional network, called tsGCN. Since the analytical
1018
+ updating rule of tsGCN contains a time-consuming matrix
1019
+ inverse, we devise an efficient algorithm with low-rank ap-
1020
+ proximation tricks. Experiments on node classification tasks
1021
+ demonstrate that tsGCN performs much better than quite a
1022
+ few state-of-the-art competitors, and also exhibit that tsGCN
1023
+ runs much faster than the very recently proposed GCN vari-
1024
+ ants, e.g., GNN-HF and GNN-LF.
1025
+ Acknowledgments
1026
+ This work is in part supported by the National Natu-
1027
+ ral Science Foundation of China (Grant Nos. U21A20472
1028
+ and 62276065), the Natural Science Foundation of Fujian
1029
+ Province (Grant No. 2020J01130193).
1030
+ Supplementary
1031
+ In this supplementary, we mainly present specific details to
1032
+ link various GCNs with various graph regularizers under the
1033
+ regularizer-centered optimization framework. Besides, more
1034
+ experimental settings and results are provided to further en-
1035
+ rich the main paper.
1036
+ The Framework Review
1037
+ An interpretable regularizer-centered constrained optimiaza-
1038
+ tion framework is induced as
1039
+ arg min
1040
+ H(l) L = −Tr(H(l)⊤H(l−1)Θ(l))
1041
+
1042
+ ��
1043
+
1044
+ fitting
1045
+ + 1
1046
+ 2L(H(l); G)
1047
+
1048
+ ��
1049
+
1050
+ regularization
1051
+ (19)
1052
+
1053
+ s.t. H(l) ∈ {S+ or S}, l ∈ [L − 1], H(L) ∈ Ssimplex,
1054
+ with the aim to unify various GCNs in an interpretable way,
1055
+ and also to guide the design of new GCN variants. Note that
1056
+ the first term in optimization (19) is equivalent to the fitting
1057
+ loss between the forward propagation H(l−1)Θ(l) and the
1058
+ output H(l), while the second term is the priors-based graph
1059
+ regularizer. Besides, S, S+ and Ssimplex are separately de-
1060
+ fined to be
1061
+ S = {s ∈ Rd},
1062
+ (20)
1063
+ S+ = {s ∈ Rd|s ≥ 0},
1064
+ (21)
1065
+ and
1066
+ Ssimplex = {s ∈ Rd|1⊤s = 1, s ≥ 0}.
1067
+ (22)
1068
+ The above three sets correspond to the Identity(·), Relu(·),
1069
+ and Softmax(·) activation functions frequently used in graph
1070
+ convolutional networks, respectively.
1071
+ It’s claimed that by designing different regularizers, this
1072
+ framework can give birth to different GCN methods. In the
1073
+ following, we will give specific details about how they could
1074
+ be derived from optimization (19).
1075
+ Link Various GCNs with Various Regularizers
1076
+ Theorem 1. The updating rule of the vanilla GCN [21]
1077
+ H(l) = σ
1078
+
1079
+ �AH(l−1)Θ(l)�
1080
+ , l ∈ [L],
1081
+ (23)
1082
+ is equivalent to solving the following optimization
1083
+ H(l) = arg min
1084
+ H∈S(l) J (l)
1085
+ (24)
1086
+ s.t. S(l) ∈ {S or S+ or Ssimplex},
1087
+ where
1088
+ J (l) = −Tr
1089
+
1090
+ H⊤H(l−1)Θ(l)�
1091
+ + 1
1092
+ 2Tr
1093
+
1094
+ H⊤�LH
1095
+
1096
+ .
1097
+ (25)
1098
+ Proof. Taking derivative of J (l) w.r.t. H, we obtain
1099
+ ∂J (l)
1100
+ ∂H
1101
+ = −H(l−1)Θ(l) + �LH;
1102
+ (26)
1103
+ if it ( ∂J (l)
1104
+ ∂H ) is further set to zero, then there yields
1105
+ H∗ = (I − �A)−1H(l−1)Θ(l).
1106
+ (27)
1107
+ By projecting H∗ onto S(l), we could arrive at
1108
+ H(l) = σ(H∗).
1109
+ (28)
1110
+ Notably, (I − �A)−1 = �∞
1111
+ i=0 �Ai; and when its first-order
1112
+ approximation is leveraged, i.e., (I − �A)−1 ≈ I + ˜A = �A,
1113
+ Eq. (28) gives birth to the updating rule (23).
1114
+ The above analyses reveal that when the regularizer is de-
1115
+ signed to 1
1116
+ 2Tr
1117
+
1118
+ H⊤�LH
1119
+
1120
+ , the framework (19) could gener-
1121
+ ate the vanilla GCN [21].
1122
+ Theorem 2. Given H(0) = f MLP
1123
+ Θ
1124
+ (X) and α ∈ [0, 1), the
1125
+ updating rule of APPNP [23]
1126
+ H(l) = σ
1127
+
1128
+ (1 − α) �AH(l−1) + αH(0)�
1129
+ , l ∈ [L],
1130
+ (29)
1131
+ is equivalent to solving the following optimization
1132
+ H(l) = arg min
1133
+ H∈S(l) J (l),
1134
+ (30)
1135
+ s.t. H(l) = S, l ∈ [L − 1], H(L) = Ssimplex,
1136
+ where
1137
+ J (l) = −Tr
1138
+
1139
+ H⊤H(l−1)Θ(l)�
1140
+ + 1
1141
+ 2Tr
1142
+
1143
+ 1
1144
+ 1 − αH⊤ �A−1(H − 2αH(0))
1145
+
1146
+ .
1147
+ (31)
1148
+ Proof. Taking the derivative of J (l) w.r.t. H and setting it
1149
+ to zero, we come to
1150
+ ∂J (l)
1151
+ ∂H
1152
+ = −H(l−1) +
1153
+ 1
1154
+ 1 − α
1155
+ �A−1(H − αH(0)) = 0, (32)
1156
+ which leads to
1157
+ H∗ = (1 − α) �AH(l−1) + αH(0).
1158
+ (33)
1159
+ By projecting H∗ onto S(l), we could achieve
1160
+ H(l) = σ
1161
+
1162
+ (1 − α) �AH(l−1) + αH(0)�
1163
+ , l ∈ [L],
1164
+ (34)
1165
+ which completes the proof.
1166
+ The above analyses reveal that when the regularizer is de-
1167
+ vised to 1
1168
+ 2Tr
1169
+
1170
+ 1
1171
+ 1−αH⊤ �A−1(H − 2αH(0))
1172
+
1173
+ , the framework
1174
+ (19) could give birth to APPNP [23].
1175
+ Theorem 3. The updating rule of JKNet [24]
1176
+ H(l) = σ
1177
+ � K
1178
+
1179
+ k=1
1180
+ αk �AkH(l−1)Θ(l)
1181
+
1182
+ , l ∈ [L],
1183
+ (35)
1184
+ is equivalent to solving the following optimization
1185
+ H(l) = arg min
1186
+ H∈S(l) J (l)
1187
+ (36)
1188
+ s.t. H(l) = S, l ∈ [L − 1], H(L) = Ssimplex,
1189
+ where
1190
+ J (l) = −Tr
1191
+
1192
+ H⊤H(l−1)Θ(l)�
1193
+ + 1
1194
+ 2Tr
1195
+
1196
+ H⊤ �A−1(I + β�L)H
1197
+
1198
+ .
1199
+ (37)
1200
+ Proof. Taking the derivative of J (l) w.r.t. H and setting it
1201
+ to zero, we have
1202
+ ∂J (l)
1203
+ ∂H
1204
+ = −H(l−1)Θ(l) + �A−1(I + β�L)H = 0,
1205
+ (38)
1206
+ which leads to
1207
+ H∗ =
1208
+ 1
1209
+ β + 1
1210
+
1211
+ I −
1212
+ β
1213
+ β + 1
1214
+ �A
1215
+ �−1
1216
+ �AH(l−1)Θ(l).
1217
+ (39)
1218
+
1219
+ Methods
1220
+ Propagation Rules
1221
+ Regularizer L(H(l); G)
1222
+ Projective Set
1223
+ GCN
1224
+ H(l) = σ
1225
+
1226
+ �AH(l−1)Θ(l)�
1227
+ Tr
1228
+
1229
+ H(l)⊤�LH(l)�
1230
+
1231
+ S(l) = S+, l ∈ [L−1],
1232
+ S(L) = Ssimplex
1233
+ SGC
1234
+ H(l) = σ
1235
+
1236
+ �AH(l−1)Θ(l)�
1237
+ Tr
1238
+
1239
+ H(l)⊤�LH(l)�
1240
+
1241
+ S(l) = S, l ∈ [L−1],
1242
+ S(L) = Ssimplex
1243
+ APPNP
1244
+ H(l) = σ
1245
+
1246
+ (1 − α) �AH(l−1) + αH(0)�
1247
+ Tr
1248
+
1249
+ 1
1250
+ 1−αH(l)⊤ �A−1(H(l) − 2αH(0))
1251
+
1252
+
1253
+ S(l) = S, l ∈ [L−1],
1254
+ S(L) = Ssimplex
1255
+ JKNet
1256
+ H(l) = σ
1257
+ ��K
1258
+ k=1 αk �AkH(l−1)Θ(l)�
1259
+ Tr
1260
+
1261
+ H(l)⊤ �A−1(I + β�L)H(l)�
1262
+
1263
+ S(l) = S, l ∈ [L−1],
1264
+ S(L) = Ssimplex
1265
+ DAGNN
1266
+ H(L) = σ
1267
+ ��K
1268
+ k=0 αk �AkH(0)�
1269
+ Tr
1270
+
1271
+ H(l)⊤(I + β�L)H(l)�
1272
+
1273
+ S(l) = S, l ∈ [L−1],
1274
+ S(L) = Ssimplex
1275
+ GNN-HF
1276
+ H(l) = σ
1277
+
1278
+ (I + α�L)−1(I + β�L)H(l−1)Θ(l)�
1279
+ Tr
1280
+
1281
+ H(l)⊤(I + β�L)−1(I + α�L)H(l)�
1282
+
1283
+ S(l) = S+, l ∈ [L−1],
1284
+ S(L) = Ssimplex.
1285
+ GNN-LF
1286
+ H(l) = σ
1287
+
1288
+ (I + α �A)−1(I + β �A)H(l−1)Θ(l)�
1289
+ Tr
1290
+
1291
+ H(l)⊤(I + β �A)−1(I + α �A)H(l)�
1292
+
1293
+ S(l) = S+, l ∈ [L−1],
1294
+ S(L) = Ssimplex
1295
+ tsGCN
1296
+ H(l) = σ
1297
+
1298
+ (I + α�LG + β�LX )−1H(l−1)Θ(l)�
1299
+ Tr
1300
+
1301
+ H(l)⊤(I + α�LG + β�LX )H(l)�
1302
+
1303
+ S(l) = S+, l ∈ [L−1],
1304
+ S(L) = Ssimplex
1305
+ Table 4: Different regularizers can derive different GCN variants under the regularizer-centered optimization framework.
1306
+ It is noted that the spectral radius of
1307
+ β
1308
+ β+1 �A is smaller than
1309
+ one, indicating
1310
+
1311
+ I −
1312
+ β
1313
+ β + 1
1314
+ �A
1315
+ �−1
1316
+ =
1317
+
1318
+
1319
+ k=0
1320
+
1321
+ β
1322
+ β + 1
1323
+ �A
1324
+ �k
1325
+ .
1326
+ (40)
1327
+ If its (K−1)-order approximation is employed, then there
1328
+ goes
1329
+
1330
+ I −
1331
+ β
1332
+ β + 1
1333
+ �A
1334
+ �−1
1335
+
1336
+ K−1
1337
+
1338
+ k=0
1339
+ βk
1340
+ (β + 1)k �Ak,
1341
+ (41)
1342
+ which suggests that H∗ can be approximated by
1343
+ H∗ =
1344
+ K
1345
+
1346
+ k=1
1347
+ βk−1
1348
+ (β + 1)k �AkH(l−1)Θ(l).
1349
+ (42)
1350
+ If denote αk =
1351
+ βk−1
1352
+ (β+1)k (k ∈ [K]), then {αk}∞
1353
+ k=1 is a set
1354
+ of parameters with �∞
1355
+ k=1 αk =
1356
+ 1
1357
+ β+1
1358
+ 1
1359
+ 1−
1360
+ β
1361
+ β+1 = 1.
1362
+ By projecting H∗ onto S(l), we can realize
1363
+ H(l) = σ
1364
+ � K
1365
+
1366
+ k=1
1367
+ αk �AkH(l−1)Θ(l)
1368
+
1369
+ , l ∈ [L],
1370
+ (43)
1371
+ which completes the proof.
1372
+ The above analyses reveal that when the regularizer is
1373
+ devised to 1
1374
+ 2Tr
1375
+
1376
+ H⊤ �A−1(I + β�L)H
1377
+
1378
+ , the framework (19)
1379
+ can produce JKNet [24].
1380
+ Theorem 4. Given H(0) = f MLP
1381
+ Θ
1382
+ (X) and a trainable pro-
1383
+ jection vector α ∈ RK+1, the updating rule of DAGNN [27]
1384
+ H(l) = σ
1385
+ � K
1386
+
1387
+ k=0
1388
+ αk �AkH(0)
1389
+
1390
+ ,
1391
+ (44)
1392
+ is equivalent to solving the following optimization
1393
+ H(l) = arg min
1394
+ H∈S(l) J (l)
1395
+ (45)
1396
+ s.t. H(l) = S, l ∈ [L − 1], H(L) = Ssimplex,
1397
+ where
1398
+ J (l) = −Tr
1399
+
1400
+ H⊤H(l−1)Θ(l)�
1401
+ + 1
1402
+ 2Tr
1403
+
1404
+ H⊤(I + β�L)H
1405
+
1406
+ .
1407
+ (46)
1408
+ Proof. Taking the derivative of J (l) w.r.t. H and setting it
1409
+ to zero, we can harvest
1410
+ ∂J (l)
1411
+ ∂H
1412
+ = −H(0) + (I + β�L)H = 0.
1413
+ (47)
1414
+ Similar to the proof of Theorem 3, the K-order approxi-
1415
+ mation of
1416
+
1417
+ I + β�L
1418
+ �−1
1419
+ =
1420
+ 1
1421
+ β+1
1422
+
1423
+ I −
1424
+ β
1425
+ β+1 �A
1426
+ �−1
1427
+ is utilized,
1428
+ and then we obtain
1429
+ H∗ =
1430
+ K
1431
+
1432
+ k=0
1433
+ αk �AkH(0).
1434
+ (48)
1435
+ By projecting H∗ onto S(l), we can arrive at
1436
+ H(l) = σ
1437
+ � K
1438
+
1439
+ k=0
1440
+ αk �AkH(0)
1441
+
1442
+ , l ∈ [L],
1443
+ (49)
1444
+ which completes the proof.
1445
+ The above analyses reveal that when the regularizer is
1446
+ devised to 1
1447
+ 2Tr
1448
+
1449
+ H⊤(I + β�L)H
1450
+
1451
+ , the framework (19) can
1452
+ produce DAGNN [27].
1453
+ Theorem 5. The updating rule of GNN-HF [19]
1454
+ H(l) = σ((β + 1
1455
+ α)I
1456
+ + (1 − β − 1
1457
+ α) �A−1(I + β�L)H(l−1)Θ(l)),
1458
+ (50)
1459
+
1460
+ is equivalent to solving the following optimization
1461
+ H(l) = arg min
1462
+ H∈S(l) J (l)
1463
+ (51)
1464
+ s.t. H(l) = S+, l ∈ [L − 1], H(L) = Ssimplex,
1465
+ where
1466
+ J (l) = −Tr
1467
+
1468
+ H⊤H(l−1)Θ(l)�
1469
+ + 1
1470
+ 2Tr
1471
+
1472
+ H⊤(I + µ�L)−1(I + λ�L)H
1473
+
1474
+ (52)
1475
+ with λ = β + 1
1476
+ α − 1 and µ = β.
1477
+ Proof. Taking the derivative of J (l) w.r.t. H and setting it
1478
+ to zero, we own
1479
+ ∂J (l)
1480
+ ∂H
1481
+ = −H(l−1)Θ(l)+(I+µ�L)−1(I+λ�L)H = 0. (53)
1482
+ which yields
1483
+ H∗ = (I + λ�L)−1(I + µ�L)H(l−1)Θ(l).
1484
+ (54)
1485
+ Substituting λ = β + 1
1486
+ α − 1 and µ = β into Eq. (54), we
1487
+ obtain
1488
+ (I + λ�L)−1 =
1489
+
1490
+ (1 + λ)I − λ �A
1491
+ �−1
1492
+ =
1493
+
1494
+ (β + 1
1495
+ α)I + (1 − β − 1
1496
+ α) �A
1497
+ �−1
1498
+ .
1499
+ (55)
1500
+ By projecting H∗ onto S(l), we can ahieve
1501
+ H(l) = σ (H∗) , l ∈ [L],
1502
+ (56)
1503
+ which completes the proof.
1504
+ The above analyses reveal that when the regularizer is de-
1505
+ vised to 1
1506
+ 2Tr
1507
+
1508
+ H⊤(I + µ�L)−1(I + λ�L)H
1509
+
1510
+ , the framework
1511
+ (19) can produce GNN-HF [19].
1512
+ Theorem 6. The updating rule of GNN-LF [19]
1513
+ H(l) = σ((βI + (1 − β) �A
1514
+ + ( 1
1515
+ α − 1)�L)−1(βI + (1 − β) �A)H(l−1)),
1516
+ (57)
1517
+ is equivalent to solving the following optimization
1518
+ H(l) = arg min
1519
+ H∈S(l) J (l)
1520
+ (58)
1521
+ s.t. H(l) = S+, l ∈ [L − 1], H(L) = Ssimplex,
1522
+ where
1523
+ J(l) = −Tr
1524
+
1525
+ H⊤H(l−1)Θ(l)�
1526
+ + 1
1527
+ 2Tr
1528
+
1529
+ H⊤(I + µ �A)−1(I + λ �A)H
1530
+
1531
+ (59)
1532
+ with λ = −αβ+2α−1
1533
+ αβ−α+1
1534
+ and µ = 1
1535
+ β − 1.
1536
+ Proof. Taking the derivative of J (l) w.r.t. H and setting it
1537
+ to zero, we can get
1538
+ ∂J (l)
1539
+ ∂H
1540
+ = −H(l−1)Θ(l)+(I+µ �A)−1(I+λ �A)H = 0, (60)
1541
+ which leads to
1542
+ H∗ = (I + λ �A)−1(I + µ �A)H(l−1)Θ(l).
1543
+ (61)
1544
+ Absorbing the scale
1545
+ αβ
1546
+ αβ−α+1 into the to-be-learnt variable
1547
+ Θ(l), and substituting λ = −αβ+2α−1
1548
+ αβ−α+1
1549
+ and µ = 1
1550
+ β − 1 into
1551
+ Eq. (61), we can harvest
1552
+ αβ
1553
+ αβ − α + 1(I + λ �A)−1(I + µ �A)
1554
+ =
1555
+ αβ
1556
+ αβ − α + 1(I + −αβ + 2α − 1
1557
+ αβ − α + 1
1558
+ �A)−1(I + ( 1
1559
+ β − 1) �A)
1560
+ =
1561
+
1562
+ (1 − 1
1563
+ β + 1
1564
+ αβ )I + (−1 + 2
1565
+ β − 1
1566
+ αβ ) �A
1567
+ �−1
1568
+ (I + ( 1
1569
+ β − 1) �A)
1570
+ =
1571
+
1572
+ (β − 1 + 1
1573
+ α)I + (−β + 2 − 1
1574
+ α) �A
1575
+ �−1
1576
+ (βI + (1 − β) �A).
1577
+ (62)
1578
+ By projecting H∗ onto S(l), we can attain
1579
+ H(l) = σ (H∗) , l ∈ [L],
1580
+ (63)
1581
+ For notation consistency, we denote λ and µ as α and β
1582
+ in Table 4, completing the proof.
1583
+ The above analyses reveal that when the regularizer is set
1584
+ to 1
1585
+ 2Tr
1586
+
1587
+ H⊤(I + µ �A)−1(I + λ �A)H
1588
+
1589
+ , the framework (19)
1590
+ can generate GNN-LF [19].
1591
+ More Experimental Settings and Results
1592
+ In this part, we provide more experimental settings and re-
1593
+ sults for tsGCN, including hyperparameter settings, t-SNE
1594
+ visualizations of various methods, and the parameter sensi-
1595
+ tivity analysis of tsGCN w.r.t. F1-score.
1596
+ Hyperparameter Settings. The detailed values of several
1597
+ hyperpaerameters are recorded in Table 5, which can be used
1598
+ to reproduce the reported experimental results. And the code
1599
+ is also provided as a supplementary file.
1600
+ More visualizations. We draw the t-SNE of embeddings
1601
+ generated by all methods on all datasets from Fig. 5 to
1602
+ Fig. 11, from which we have the following observations:
1603
+ • The results are generally matched with the quantitative
1604
+ performance, i.e., tsGCN achieves better results than the
1605
+ others on most datasets.
1606
+ • Embeddings generated by tsGCN achieve better inter-
1607
+ class separation alongside intra-class clustering than
1608
+ those generated by tsGCN (inv), even when their quanti-
1609
+ tative performance is comparable.
1610
+ Parameter Sensitivity. It can be seen that the F1-scores of
1611
+ tsGCN w.r.t. (α, β) hold the similar trends with the classifi-
1612
+ cation accuracies of tsGCN.
1613
+
1614
+ Table 5: Specific (α, β, r) and other parameters of tsGCN on all datasets.
1615
+ Datasets/Parameters
1616
+ α
1617
+ β
1618
+ r
1619
+ Learning rate
1620
+ Weight decay
1621
+ Hidden units
1622
+ Cora
1623
+ 1.0
1624
+ 0.2
1625
+ ⌊d/16⌋
1626
+ 1 × 10−2
1627
+ 5 × 10−4
1628
+ 32
1629
+ Citeseer
1630
+ 1.0
1631
+ 0.4
1632
+ ⌊d/16⌋
1633
+ 1 × 10−2
1634
+ 5 × 10−4
1635
+ 32
1636
+ Pubmed
1637
+ 1.0
1638
+ 0.3
1639
+ ⌊d/2048⌋
1640
+ 1 × 10−2
1641
+ 5 × 10−4
1642
+ 32
1643
+ ACM
1644
+ 1.0
1645
+ 0.9
1646
+ ⌊d/64⌋
1647
+ 1 × 10−2
1648
+ 5 × 10−4
1649
+ 32
1650
+ BlogCatalog
1651
+ 1.0
1652
+ 0.5
1653
+ ⌊d/64⌋
1654
+ 1 × 10−2
1655
+ 5 × 10−4
1656
+ 32
1657
+ CoraFull
1658
+ 1.0
1659
+ 0.1
1660
+ ⌊d/8⌋
1661
+ 1 × 10−2
1662
+ 5 × 10−4
1663
+ 32
1664
+ Flickr
1665
+ 1.0
1666
+ 1.0
1667
+ ⌊d/64⌋
1668
+ 1 × 10−2
1669
+ 5 × 10−4
1670
+ 32
1671
+ UAI
1672
+ 1.0
1673
+ 1.0
1674
+ ⌊d/16⌋
1675
+ 1 × 10−2
1676
+ 5 × 10−4
1677
+ 32
1678
+ Figure 5: Different methods’ t-SNE visualizations on Cora, where each color corresponds to one class.
1679
+ Figure 6: Different methods’ t-SNE visualizations on Citeseer, where each color corresponds to one class.
1680
+
1681
+ Figure 7: Different methods’ t-SNE visualizations on Pubmed, where each color corresponds to one class.
1682
+ Figure 8: Different methods’ t-SNE visualizations on ACM, where each color corresponds to one class. Note that GraphSAGE
1683
+ fails to run on ACM.
1684
+ Figure 9: Different methods’ t-SNE visualizations on CoraFull, where each color corresponds to one class.
1685
+
1686
+ Figure 10: Different methods’ t-SNE visualizations on Flickr, where each color corresponds to one class.
1687
+ Figure 11: Different methods’ t-SNE visualizations on UAI, where each color corresponds to one class.
1688
+ (a) Cora
1689
+ (e) BlogCatalog
1690
+ (b) Citeseer
1691
+ (f) CoraFull
1692
+ (c) Pubmed
1693
+ (g) Flickr
1694
+ (d) ACM
1695
+ (h) UAI
1696
+ Figure 12: The classification F1-scores of tsGCN w.r.t. different hyperparameters α and β on all datasets.
1697
+
1698
+ References
1699
+ [1] Z. Chen, X. Wei, P. Wang, Y. Guo, Multi-label im-
1700
+ age recognition with graph convolutional networks, in:
1701
+ CVPR, 2019, pp. 5177–5186.
1702
+ [2] W. Nie, Y. Zhao, A. Liu, Z. Gao, Y. Su, Multi-graph
1703
+ convolutional network for unsupervised 3d shape re-
1704
+ trieval, in: MM, 2020, pp. 3395–3403.
1705
+ [3] Y. Wang, M. Cao, Z. Fan, S. Peng, Learning to detect
1706
+ 3d facial landmarks via heatmap regression with graph
1707
+ convolutional network, in: AAAI, 2022, pp. 2595–
1708
+ 2603.
1709
+ [4] F. Xu, J. Lian, Z. Han, Y. Li, Y. Xu, X. Xie, Relation-
1710
+ aware graph convolutional networks for agent-initiated
1711
+ social e-commerce recommendation, in: CIKM, 2019,
1712
+ pp. 529–538.
1713
+ [5] Y. Chen, L. Huang, C. Wang, J. Lai, Hybrid-order
1714
+ gated graph neural network for session-based recom-
1715
+ mendation, IEEE Transactions on Industrial Informat-
1716
+ ics 18 (3) (2022) 1458–1467.
1717
+ [6] H. Hu, L. Cheng, J. P. Vap, M. Borowczak, Learn-
1718
+ ing privacy-preserving graph convolutional network
1719
+ with partially observed sensitive attributes, in: WWW,
1720
+ 2022, pp. 3552–3561.
1721
+ [7] B. Yu, H. Yin, Z. Zhu, Spatio-temporal graph convolu-
1722
+ tional networks: A deep learning framework for traffic
1723
+ forecasting, in: IJCAI, 2018, pp. 3634–3640.
1724
+ [8] W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, X. Feng,
1725
+ Multi-range attentive bicomponent graph convolu-
1726
+ tional network for traffic forecasting, in: AAAI, 2020,
1727
+ pp. 3529–3536.
1728
+ [9] Y. Zhang, S. Pal, M. Coates, D. ¨Ustebay, Bayesian
1729
+ graph
1730
+ convolutional
1731
+ neural
1732
+ networks
1733
+ for
1734
+ semi-
1735
+ supervised
1736
+ classification,
1737
+ in:
1738
+ AAAI,
1739
+ 2019,
1740
+ pp.
1741
+ 5829–5836.
1742
+ [10] M. Yang, Y. Shen, R. Li, H. Qi, Q. Zhang, B. Yin, A
1743
+ new perspective on the effects of spectrum in graph
1744
+ neural networks, in: ICML, 2022, pp. 25261–25279.
1745
+ [11] S. Fan, X. Wang, C. Shi, E. Lu, K. Lin, B. Wang,
1746
+ One2multi graph autoencoder for multi-view graph
1747
+ clustering, in: WWW, 2020, pp. 3070–3076.
1748
+ [12] H. Zhu, P. Koniusz, Simple spectral graph convolution,
1749
+ in: ICLR, 2021, pp. 1–11.
1750
+ [13] H. Chen, H. Yin, X. Sun, T. Chen, B. Gabrys, K. Mu-
1751
+ sial, Multi-level graph convolutional networks for
1752
+ cross-platform anchor link prediction, in: KDD, 2020,
1753
+ pp. 1503–1511.
1754
+ [14] N. Halliwell, Evaluating explanations of relational
1755
+ graph convolutional network link predictions on
1756
+ knowledge graphs, in: AAAI, 2022, pp. 12880–12881.
1757
+ [15] D. Bo, X. Wang, C. Shi, H. Shen, Beyond low-
1758
+ frequency information in graph convolutional net-
1759
+ works, in: AAAI, 2021, pp. 3950–3957.
1760
+ [16] Z. Zhang, C. Chen, Y. Chang, W. Hu, X. Xing, Y. Zhou,
1761
+ Z. Zheng, Shne: Semantics and homophily preserv-
1762
+ ing network embedding, IEEE Transactions on Neural
1763
+ Networks and Learning Systems (2021) 1–12.
1764
+ [17] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, J. Pei, Am-
1765
+ gcn: Adaptive multi-channel graph convolutional net-
1766
+ works, in: KDD, 2020, pp. 1243–1253.
1767
+ [18] L. Zhao, L. Akoglu, Connecting graph convolutional
1768
+ networks and graph-regularized pca, arXiv preprint
1769
+ arXiv:2006.12294 (2020).
1770
+ [19] M. Zhu, X. Wang, C. Shi, H. Ji, P. Cui, Interpreting and
1771
+ unifying graph neural networks with an optimization
1772
+ framework, in: WWW, 2021, pp. 1215–1226.
1773
+ [20] Y. Yang, T. Liu, Y. Wang, J. Zhou, Q. Gan, Z. Wei,
1774
+ Z. Zhang, Z. Huang, D. Wipf, Graph neural networks
1775
+ inspired by classical iterative algorithms, in: ICML,
1776
+ 2021, pp. 11773–11783.
1777
+ [21] T. N. Kipf, M. Welling, Semi-supervised classification
1778
+ with graph convolutional networks, in: ICLR, 2017,
1779
+ pp. 1–13.
1780
+ [22] F. Wu, A. H. S. Jr., T. Zhang, C. Fifty, T. Yu,
1781
+ K. Q. Weinberger, Simplifying graph convolutional
1782
+ networks, in: ICML, 2019, pp. 6861–6871.
1783
+ [23] J. Klicpera, A. Bojchevski, S. G¨unnemann, Predict
1784
+ then propagate: Graph neural networks meet person-
1785
+ alized pagerank, in: ICLR, 2019, pp. 1–15.
1786
+ [24] K.
1787
+ Xu,
1788
+ C.
1789
+ Li,
1790
+ Y.
1791
+ Tian,
1792
+ T.
1793
+ Sonobe,
1794
+ K.
1795
+ ichi
1796
+ Kawarabayashi, S. Jegelka, Representation learning on
1797
+ graphs with jumping knowledge networks, in: ICML,
1798
+ 2018, pp. 5449–5458.
1799
+ [25] K. Sun, Z. Zhu, Z. Lin, Adagcn: Adaboosting graph
1800
+ convolutional networks into deep models, in: ICLR,
1801
+ 2021, pp. 1–15.
1802
+ [26] Q. Li, Z. Han, X. Wu, Deeper insights into graph con-
1803
+ volutional networks for semi-supervised learning, in:
1804
+ AAAI, 2018, pp. 3538–3545.
1805
+ [27] M. Liu, H. Gao, S. Ji, Towards deeper graph neural
1806
+ networks, in: KDD, 2020, pp. 338–348.
1807
+ [28] L. Yang, Z. Kang, X. Cao, D. Jin, B. Yang, Y. Guo,
1808
+ Topology optimization based graph convolutional net-
1809
+ work, in: AAAI, 2019, pp. 4054–4061.
1810
+ [29] K. Oono, T. Suzuki, Graph neural networks exponen-
1811
+ tially lose expressive power for node classification, in:
1812
+ ICLR, 2020, pp. 1–8.
1813
+ [30] D. K. Hammond, P. Vandergheynst, R. Gribonval,
1814
+ Wavelets on graphs via spectral graph theory, Applied
1815
+ and Computational Harmonic Analysis 30 (2011) 129–
1816
+ 150.
1817
+ [31] B. Amos, Differentiable optimization-based modeling
1818
+ for machine learning, Ph.D. thesis, Carnegie Mellon
1819
+ University (2019).
1820
+ [32] J. Sun, Z. Xu, Neural diffusion distance for image seg-
1821
+ mentation, in: NeurIPS, 2019, pp. 1441–1451.
1822
+ [33] M. Defferrard, X. Bresson, P. Vandergheynst, Convo-
1823
+ lutional neural networks on graphs with fast localized
1824
+ spectral filtering, in: NeurIPS, 2016, pp. 1–9.
1825
+ [34] W. L. Hamilton, Z. Ying, J. Leskovec, Inductive repre-
1826
+ sentation learning on large graphs, in: NeurIPS, 2017,
1827
+ pp. 1024–1034.
1828
+
1829
+ [35] P. Velickovic, G. Cucurull, A. Casanova, A. Romero,
1830
+ P. Li`o, Y. Bengio, Graph attention networks, in: ICLR,
1831
+ 2018, pp. 1–12.
1832
+
dtE3T4oBgHgl3EQfGwnT/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
gNFKT4oBgHgl3EQftS6b/content/tmp_files/2301.11886v1.pdf.txt ADDED
@@ -0,0 +1,1600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Machine Learning Over Heuristic:
2
+ a Learned Cache Eviction Framework with Minimal Overhead
3
+ Dongsheng Yang1, Daniel S. Berger2, Kai Li1, and Wyatt Lloyd2
4
+ 1Princeton University
5
+ 2Microsoft Research
6
+ Abstract
7
+ Recent work shows the effectiveness of Machine Learning
8
+ (ML) to reduce cache miss ratios by making better eviction de-
9
+ cisions than heuristics. However, state-of-the-art ML caches
10
+ require many predictions to make an eviction decision, mak-
11
+ ing them impractical for high-throughput caching systems.
12
+ This paper introduces Machine learning At the Tail (MAT),
13
+ a framework to build efficient ML-based caching systems by
14
+ integrating an ML module with a traditional cache system
15
+ based on a heuristic algorithm. MAT treats the heuristic al-
16
+ gorithm as a “filter” to receive high-quality samples to train
17
+ an ML model and likely candidate objects for evictions. We
18
+ evaluate MAT on 8 production workloads, spanning storage,
19
+ in-memory caching, and CDNs. The simulation experiments
20
+ show MAT reduces the number of costly ML predictions-per-
21
+ eviction from 63 to 2, while achieving comparable miss ratios
22
+ to the state-of-the-art ML cache system. We compare a MAT
23
+ prototype system with an LRU-based caching system in the
24
+ same setting and show that achieve similar request rates.
25
+ 1
26
+ Introduction
27
+ Software caching systems are ubiquitous in modern comput-
28
+ ing infrastructure. Examples of large-scale use cases include
29
+ include content delivery networks (CDNs), in-memory caches,
30
+ and storage systems. CDNs protect expensive and scarce In-
31
+ ternet backbone bandwidth and are expected to serve 72%
32
+ of Internet traffic by 2022 [16]. In-memory caches protect
33
+ computationally expensive services are extensively used in
34
+ the data centers of Facebook [32] and Twitter [42]. Storage
35
+ caches reduce the data movement of large objects in the net-
36
+ work and an essential part of cloud services [22].
37
+ Caching systems seek to minimize their miss ratio, i.e.,
38
+ the fraction of requests not served by the cache. The lower
39
+ the miss ratios, the lower the load on backend servers and
40
+ Internet traffic (for CDNs). To decide which objects to keep
41
+ in the cache, current caching systems [3, 6, 12, 32] rely on
42
+ heuristic algorithms, such as Least Recently Used (LRU), and
43
+ First In First out (FIFO), and Least Frequently Used (LFU).
44
+ Recent work [8, 13, 35, 38, 40] shows that machine learning
45
+ based eviction algorithms (ML-based caching systems) signif-
46
+ icantly outperform these heuristics by using a history of past
47
+ access patterns to predict future access patterns. These accu-
48
+ rate predictions reduce miss ratios by up to 25% compared to
49
+ heuristic caches [35].
50
+ Bringing ML-based caching systems from research to pro-
51
+ duction faces a key challenge due to their computational over-
52
+ head and hardware cost. In particular, ML-based caching sys-
53
+ tems are not yet applicable in systems with high throughput
54
+ demands [10, 23] or when CPU resources are scarce due to
55
+ being coloated with other applications [12].
56
+ The overhead of ML-based caches is significantly higher
57
+ than heuristic caching systems for two reasons. First, ML-
58
+ based caching systems need to update the model online fre-
59
+ quently to retrain with more recent access patterns. For ex-
60
+ ample, a state-of-the-art ML-based caching system for CDNs,
61
+ LRB [35], uses all cache requests to generate training entries,
62
+ which leads to a large training data volume and a slow training
63
+ process.
64
+ Second, ML-based caches require running many predic-
65
+ tions to find an object to evict. For example, LRB samples 64
66
+ eviction candidates randomly within the cache to run predic-
67
+ tions. Running 64 predictions per eviction can be slow and
68
+ expensive especially in bursty production systems that can
69
+ face pressure to evict hundreds of thousands of evictions in a
70
+ second due to burst arrivals.
71
+ While the overheads of ML-based caches are known, it is
72
+ less known which of their decisions are actually required to
73
+ improve miss ratios compared to heuristics. An answer to
74
+ this question can guide applying costly ML predictions only
75
+ where they are needed. In fact, when comparing the eviction
76
+ decisions of heuristics to an offline optimal algorithm, we find
77
+ that they evict most of the objects that the optimal algorithm
78
+ evicts, but they sometimes evict objects they should keep. This
79
+ leads to our main insight that heuristic algorithms can serve
80
+ as good filters. The ML algorithm will only run predictions
81
+ on the objects evicted by the heuristic algorithm, instead of
82
+ 1
83
+ arXiv:2301.11886v1 [cs.OS] 27 Jan 2023
84
+
85
+ all objects in the cache. It can dramatically reduce the number
86
+ of predictions without affecting miss ratios.
87
+ We propose an efficient ML-based caching framework, Ma-
88
+ chine learning At the Tail (MAT), which builds on the insight
89
+ that we can effectively pair a heuristic with an ML predic-
90
+ tor. We define the tail as evictions of the heuristic algorithm,
91
+ e.g., the least recently used items in LRU. MAT feeds the tail
92
+ objects into a novel ML predictor. This ML predictor then de-
93
+ cides which objects to keep in the cache and which objects to
94
+ truly evict. This allows MAT to identify good objects to evict
95
+ using only a few predictions because the heuristic’s tail is a
96
+ small subset of objects in the cache. Similarly, it allows MAT
97
+ to focus its training on this small subset of objects. In turn,
98
+ this means MAT does far less computation per eviction than
99
+ prior ML-based caching system. But, because the heuristic’s
100
+ tail contains nearly all the objects that should be evicted, MAT
101
+ can achieve the same miss ratio as state-of-the-art ML-based
102
+ caching systems.
103
+ An additional challenge in many caches is handling scenar-
104
+ ios where computation power becomes scarce during certain
105
+ time intervals such as request load spiking or an increase in
106
+ higher-priority work that is collocated with the cache [12].
107
+ MAT’s design robustly handles these scarce computation sce-
108
+ narios by falling back to the heuristic algorithm when the ML
109
+ model cannot keep up with the request load.
110
+ To compare MAT with a variety of algorithms including
111
+ LRB, the state-of-the-art ML cache, We have also imple-
112
+ mented it in a cache simulator and run experiments with 8
113
+ production workloads from CDNs, in-memory caches, and
114
+ storage caches. Our results show that while achieving compa-
115
+ rable miss ratios, MAT dramatically reduces the overhead for
116
+ ML: it reduces the average number of predictions per evic-
117
+ tion by 31 times (from 63 to 2) and the average prediction
118
+ overhead per eviction including metadata feature building
119
+ overhead by 21 times (from 300us to 9.3us).
120
+ We have implemented MAT in Cachelib [12], which is an
121
+ open-source cache system developed by Facebook. We com-
122
+ pare its performance with the Cachelib instance with LRU al-
123
+ gorithm. Our end-to-end evaluation shows that MAT achieves
124
+ similar request rates to the LRU-based caching system.
125
+ Section 2 elaborates on the motivation of our work. Sec-
126
+ tion 3 details the observation that leads to our design. In
127
+ Section 4 we present the design of our framework MAT. Sec-
128
+ tion 5 describes how MAT is implemented in the simulator
129
+ and in the Cachelib prototype. Section 6 presents an evalu-
130
+ ation of MAT. We cover related work in Section 7 and we
131
+ conclude in Section 8.
132
+ 2
133
+ Background and Motivation
134
+ This section covers background on offline caching algorithm,
135
+ heuristic caching algorithms, and ML caching algorithms.
136
+ We will use examples from each group to study the decision
137
+ quality of heuristic algorithms in Section 3.
138
+ 2.1
139
+ Optimal Offline Algorithm
140
+ In 1966, Belady proposed the MIN algorithm that evicts a data
141
+ object whose next access occurs furthest in the future [11].
142
+ This algorithm provably optimal for caching equal-sized data
143
+ objects [31] such as cacheline or video chunks. Since knowl-
144
+ edge about future accesses is not typically available in an
145
+ online setting, we call Belady’s MIN algorithm an offline
146
+ optimal or oracle algorithm.
147
+ 2.2
148
+ Heuristic Caching Algorithms
149
+ Figure 1: Heuristic cache algorithms that maintain the
150
+ rank of objects in a priority queue.
151
+ The most common class of caching algorithms used in
152
+ production systems are based on heuristics. A heuristic is
153
+ designed to decide which object to evict from a cache to
154
+ admit an object that is currently not cached. Most heuristic
155
+ algorithms form an explicit or implicit ranking of objects in
156
+ the cache. If the cache request is a miss, it inserts the requested
157
+ object into the ranking and evicts the object with the lowest
158
+ rank. If the cache request is a hit, it re-ranks the requested
159
+ object in the cache. Figure 1 shows the typical structure of a
160
+ heuristic caching algorithm.
161
+ A well-known example is Least-Recently-Used (LRU),
162
+ which maintains a queue to implicitly rank objects by their
163
+ most recent access times. LRU inserts the most recently ac-
164
+ cessed object at the head of the queue and evicts the one at
165
+ the tail of the queue.
166
+ The main advantage of heuristic caching algorithms is their
167
+ simplicity and efficiency. For example, LRU can be imple-
168
+ mented with a doubly-linked list as its priority queue, and a
169
+ hash table to speedup the lookup operation. This implemen-
170
+ tation of LRU is the default algorithm in many production
171
+ systems such as Cachelib [12].
172
+ The main drawback of heuristic caching algorithms is that
173
+ they work well for certain workloads or access patterns while
174
+ working poorly for others [35].
175
+ 2.3
176
+ ML-Based Caching Algorithms
177
+ Machine learning is changing how caches are designed. An
178
+ ML-based cache trains a model with past access patterns and
179
+ then uses the model to predict which objects in the cache
180
+ 2
181
+
182
+ Object index
183
+ Lookup
184
+ Reinsert
185
+ Requests
186
+ Head
187
+ Tail
188
+ Insert
189
+ Evict
190
+ Priority queueshould be evicted. Recent studies [13, 35, 41, 44] show that
191
+ ML-based approaches can adapt to different workloads dy-
192
+ namically and can reduce wide area network traffic by around
193
+ 20% compared to the state-of-the-art heuristic algorithms.
194
+ Two Key Challenges.
195
+ There are two key challenges with
196
+ ML-based caching systems. The first is the overhead for train-
197
+ ing ML models. Adapting to recent access patterns requires
198
+ training and updating the model frequently. This overhead
199
+ can be significant in space and time as hardware accelerators
200
+ are usually not equipped on caching servers.
201
+ The second is the overhead for making eviction decisions.
202
+ To mimic the optimal offline oracle in a straightforward way,
203
+ the ML-based caching system needs to predict the next access
204
+ times of all objects in the cache and evicts the one with the
205
+ furthest time in the future. The prediction overhead would
206
+ be prohibitively high for large caches. Therefore, ML-based
207
+ caching systems for software caching have to decide which
208
+ subset of objects to run predictions on.
209
+ Figure 2: The state-of-the-art ML-based caching system,
210
+ Learning Relaxed Belady (LRB).
211
+ ML-Based Caching by Sampling.
212
+ LRB [35] is the state-
213
+ of-the-art ML-based caching system and it is based on sam-
214
+ pling for both training and for eviction selection. Figure 2
215
+ shows how it trains the ML model and uses the ML model to
216
+ make evictions.
217
+ LRB overcomes the first challenge by using a Gradient
218
+ Boosted Decision Tree (GBDT), a relatively simple ML ap-
219
+ proach. It trains and updates the GBDT model online with
220
+ a relatively small training dataset (about 128K objects) ran-
221
+ domly sampled from a window of recent request history. The
222
+ training overhead is small enough to update the model every
223
+ few seconds.
224
+ It overcomes the second challenge by relaxing the eviction
225
+ criteria of the Belady’s MIN algorithm. Instead of finding
226
+ the object in the cache whose next access time occurs the
227
+ furthest in the future, it picks any object whose predicted next
228
+ access time is far enough. With this approximation, LRB ap-
229
+ proach runs predictions on only k randomly sampled objects
230
+ in the cache, where k is set to 64. When k = 64, with a high
231
+ probability, LRB can find at least one object whose predicted
232
+ next access time is close to the largest next access time in the
233
+ cache.
234
+ LRB achieved better miss ratios than 14 state-of-the-art
235
+ heuristic caching algorithms over various cache sizes with 6
236
+ production CDN workloads. Since LRB is designed for CDN
237
+ workloads whose objects are quite large and requests rates
238
+ are low, it can afford some computational overhead. However,
239
+ we find that LRB requires more than two orders of magni-
240
+ tude more CPU resources than heuristic algorithms. We seek
241
+ to reduce this overhead to enable us to deploy ML-based
242
+ algorithms in high-throughput environments, application-
243
+ embedded environments, or low-power environments such
244
+ as the Internet edge.
245
+ Insertion-time ML caching algorithms.
246
+ Another cate-
247
+ gory of ML caching algorithms runs a prediction on each
248
+ object as its request arrives [13]. It maintains a data structure
249
+ that remembers the ranking of the predicted scores of all ob-
250
+ jects in the cache and chooses the lowest ranked object for an
251
+ eviction.
252
+ The prediction overhead of this method is significant for
253
+ two main reasons. First, the number of requests can be larger
254
+ than the number of evictions by an order of magnitude, de-
255
+ pending on cache miss ratios. Second, after updating the ML
256
+ model with new training data, the previous predictions are not
257
+ consistent with the new model. It needs to rerun predictions
258
+ of all objects in the cache to make the ranking up-to-date and
259
+ consistent [44]. If the frequency of retraining the model is
260
+ high, the total cost for predictions can be extremely high.
261
+ ML-based caching systems make better eviction decisions
262
+ and thus they can save cost on storage media and network
263
+ bandwidth. However, ML-based caching systems require a lot
264
+ more computation than heuristic algorithms. In high through-
265
+ put caching systems, the available computation power is not
266
+ enough for the ML-based caching systems to keep up with the
267
+ line speed. In other cases, it is also highly preferred to reduce
268
+ the computational overhead of ML-based caching systems
269
+ to save up power budget for other applications such as edge
270
+ computing. Thus, our goal is to have as good eviction deci-
271
+ sions as the state-of-the-art ML-based caching systems, while
272
+ have orders of magnitude lower computational overhead.
273
+ 3
274
+ Heuristic Algorithms as Filters
275
+ The key idea in this paper is to use a heuristic caching al-
276
+ gorithm as a filter in front of an ML-based caching system
277
+ to reduce the predictions per eviction and the samples for
278
+ training an ML model. The question is how good heuristic
279
+ algorithms are as such filters.
280
+ 3
281
+
282
+ Label
283
+ Requests
284
+ Training
285
+ Candidates
286
+ LRB Metadata
287
+ Sample
288
+ Randomly
289
+ Object index
290
+ Model
291
+ Sample
292
+ Randomly-
293
+ Eviction
294
+ Candidates
295
+ Choose one to evictLRU
296
+ FIFO
297
+ LFUDA
298
+ LRUK
299
+ Belady’s MIN
300
+ TTA<T
301
+ TTA>T
302
+ TTA<T
303
+ TTA>T
304
+ TTA<T
305
+ TTA>T
306
+ TTA<T
307
+ TTA>T
308
+ TTA<T
309
+ TTA>T
310
+ CDN1
311
+ 55%
312
+ 90%
313
+ 65%
314
+ 90%
315
+ 47%
316
+ 87%
317
+ 363%
318
+ 97%
319
+ 0%
320
+ 100%
321
+ CDN2
322
+ 47%
323
+ 95%
324
+ 57%
325
+ 95%
326
+ 36%
327
+ 96%
328
+ 487%
329
+ 92%
330
+ 0%
331
+ 100%
332
+ CDN3
333
+ 42%
334
+ 94%
335
+ 67%
336
+ 91%
337
+ 23%
338
+ 95%
339
+ 41%
340
+ 96%
341
+ 0%
342
+ 100%
343
+ Wikipedia
344
+ 129%
345
+ 94%
346
+ 196%
347
+ 87%
348
+ 86%
349
+ 95%
350
+ 89%
351
+ 93%
352
+ 0%
353
+ 100%
354
+ Table 1: Fractions of evicted objects whose TTA < T and TTA > T by 5 caching algorithms (LRU, FIFO, LFUDA, LRUK
355
+ and Belady’s MIN) with 4 workloads (CDN1, CDN2, CDN3 and Wikipedia). All fractions are normalized to the total
356
+ number of objects evicted by Belady’s MIN.
357
+ To answer this question, we compare the distribution of
358
+ evicted objects by a heuristic algorithm to Belady’s MIN
359
+ (optimal offline) algorithm. A good filter should pass over
360
+ most good eviction candidates that Belady’s MIN evicts, even
361
+ at the cost of passing over some bad candidates. We will first
362
+ look at LRU algorithm as a filter and then look at several other
363
+ heuristic algorithms.
364
+ Compare LRU to Belady’s MIN
365
+ Figure 3: Time-To-next-Access (TTA) distribution of the
366
+ evicted objects by LRU and Belady’s MIN algorithms.
367
+ The result is collected from the Wikipedia trace with
368
+ 256GB cache size.
369
+ Figure 3 compares the distributions of evicted objects by
370
+ LRU and Belady’s MIN for Wikipedia workload with a cache
371
+ size of 256 GB. The figure groups evicted objects according to
372
+ the log of their Time-To-next-Accesses (TTAs) from the time
373
+ when they are evicted by a given algorithm. The time is the
374
+ logical time, which means it is a counter that increments on
375
+ each request by 1. The figure plots the percentage of evictions
376
+ in each group normalized by the total number of evictions of
377
+ the Belady’s MIN algorithm.
378
+ The threshold T in the figure separates good eviction de-
379
+ cisions from bad ones. All evicted objects by Belady’s MIN
380
+ have their TTAs > T (on the right hand side of the threshold),
381
+ none have TTAs < T (on the left hand side of threshold).
382
+ We have two observations about the distributions of LRU.
383
+ First, the total number of evicted objects whose TTAs > T by
384
+ LRU is close to that by Belady’s MIN. This means that LRU
385
+ evicts most of objects that Belady’s MIN does. In other words,
386
+ LRU rarely keeps objects it should evict. This indicates that in
387
+ most cases, LRU does not filter out most of the good eviction
388
+ candidates.
389
+ Second, the number of objects evicted by LRU on the left
390
+ hand side of the threshold is similar to that on the right hand
391
+ side. In other words, although LRU frequently evicts objects
392
+ it should keep, one of every two evictions is a good decision
393
+ on average for this workload. This means that using LRU as a
394
+ filter, we can reduce the number of predictions from 64 to 2!
395
+ Compare Other Heuristics to Belady’s MIN.
396
+ Table 1 shows the distributions of good and bad eviction
397
+ decisions with four workloads by LRU, FIFO, LFUDA, LRUK
398
+ and Belady’s MIN algorithms. As Belady’s MIN is an optimal
399
+ offline algorithm, 100% of its evicted objects have TTA > T.
400
+ The main observation is that all heuristic algorithms in the
401
+ table can serve as filters well. They can evict 87-97% of the
402
+ objects (TTA > T) Belady’s MIN evicts.
403
+ Among these heuristic algorithms as filters, LRU and
404
+ LFUDA are better overall. LRU evicts 90%, 95%, 94%, and
405
+ 94% of the objects that Belady’s MIN evicts with CD1, CDN2,
406
+ DDN3 and Wiki workloads respectively. LFUDA evicts 87%,
407
+ 96%, 95%, and 95% of those that Belady’s MIN evicts respec-
408
+ tively. LFUDA has the smallest fractions (23-86%) of evicted
409
+ objects whose TTA < T.
410
+ LRUK achieves the highest coverage (92-97%) of the ob-
411
+ jects that Belady’s MIN evicts, but it has large fractions of bad
412
+ eviction decisions with CDN1 and CDN2 worklaods (363%
413
+ and 487% respectively).
414
+ FIFO can also be a good filter but it is slightly worse for
415
+ Wiki workload, evicting 87% of the objects that Belady’s
416
+ MIN evicts.
417
+ Filtering Training Samples
418
+ Using a heuristic caching algorithm as a filter can deliver bet-
419
+ ter training samples than random sampling. Our key insight is
420
+ that since the ML-based caching algorithm takes objects from
421
+ the tail of the heuristic algorithm as eviction candidates, the
422
+ ML model needs to learn only from such historical candidates
423
+ to make better predictions.
424
+ 4
425
+
426
+ Threshold T
427
+ Fraction of evicted objects
428
+ 50%
429
+ Should not evict
430
+ Should evict
431
+ 40%
432
+ LRU
433
+ ■Belady
434
+ 30%
435
+ 20%
436
+ 10%
437
+ 0%
438
+ ¥1112 131415 16 17 18 1920 ≥21
439
+ ≤10
440
+ log(Time-To-next-Access)Figure 4: The architecture and the data flow of the MAT system. The ML module makes predictions on objects removed
441
+ from the tail of the heuristic cache and decides to insert the objects back or evict the objects.
442
+ 4
443
+ Machine Learning at the Tail
444
+ This section describes our approach called Machine Learning
445
+ at the Tail (MAT). Section 4.1 describes the two components
446
+ of MAT, which are the heuristic cache system and the ML
447
+ module, and their interfaces. Section 4.2 describes and dis-
448
+ cusses how MAT uses a dynamic threshold to decide which
449
+ object should be evicted. Section 4.3 introduces an imple-
450
+ mentation of the machine learning method of MAT. Finally,
451
+ Section 4.3 describes how training data are generated in MAT.
452
+ 4.1
453
+ Architecture and Algorithm
454
+ Figure 4 shows the architecture of MAT, consisting of two
455
+ main modules: a heuristic cache and an ML module.
456
+ Heuristic cache.
457
+ It is a traditional cache using a priority-
458
+ queue based heuristic algorithm. It needs to provide two calls
459
+ to interface with the ML module:
460
+ • RemoveFromTail(): removes an object from the the tail
461
+ of the priority queue(s) of the heuristic algorithm and
462
+ return the object to the ML model.
463
+ • Insert(x, rank): insert object x back to a priority queue
464
+ of the heuristic algorithm. The ML model can inform
465
+ the heuristic algorithm to insert to a specific position of
466
+ the queue by providing the rank.
467
+ In the case that the heuristic algorithm uses multiple queues,
468
+ such as Segmented LRU, 2Q, and TinyLFU, the two proce-
469
+ dures need to pick one of the queues.
470
+ The MAT framework is general since most heuristic al-
471
+ gorithms use priority queue(s). We have implemented and
472
+ experimented MAT with LRU, 2Q [25] and TinyLFU [19]
473
+ algorithms. The two calls are simple to implement.
474
+ ML Module.
475
+ In the MAT design, it consists of a training
476
+ pipeline and a prediction (or inference) pipeline. The predic-
477
+ tion pipeline implements Evict() which returns an object for
478
+ eviction.
479
+ The main data structure in the training pipeline is a training
480
+ dataset, which is the recent historical candidates from the
481
+ candidate queue. The training thread uses the dataset to train
482
+ a model and update the current model with the newly trained
483
+ model.
484
+ Two kinds of threads are used in the prediction pipeline:
485
+ ML threads and eviction thread, connected by two queues:
486
+ candidate queue and eviction queue.
487
+ An ML thread removes a batch of candidate objects from
488
+ the candidate queue, predicts the time-to-next-access (TTA)
489
+ of each object in a way similar to that of LRB [35]. If the
490
+ TTA is greater than threshold T, the object will be put on the
491
+ eviction queue.
492
+ The eviction thread is responsible for removing ob-
493
+ jects from the tail of the heuristic algorithm (by calling
494
+ RemoveFromTail()) and putting them in the candidate queue,
495
+ and insert them back into the priority queue(s) (by calling
496
+ Insert()).
497
+ When the cache system needs to evict an object from the
498
+ cache, it will call Evict() which will remove an object from
499
+ the eviction queue and return it as the object for eviction. If
500
+ the eviction queue is empty, Evict() will remove an object
501
+ at the tail of priority queue(s) of the heuristic algorithm. In
502
+ either case, the cache system will evict the returned object
503
+ from the cache and also removes it from its related priority
504
+ queue.
505
+ The main advantage to allow the cache system to go ahead
506
+ when the eviction queue is empty is that the cache system can
507
+ run at a speed (or throughput) similar to the heuristic cache
508
+ system with a ML module. In this case, eviction decisions
509
+ can fall back to the heuristic algorithm. The cache system
510
+ continues functioning well when the ML thread is slow or
511
+ even fails.
512
+ 5
513
+
514
+ Requests
515
+ Training
516
+ Training
517
+ data
518
+ thread
519
+ Cache
520
+ Heuristic cache
521
+ Candidate queue
522
+ algorithm gueue
523
+ RemoveFromTail()
524
+ Eviction
525
+ ML
526
+ Model
527
+ thread
528
+ thread
529
+ Insert(), Evict()
530
+ Eviction queue
531
+ Heuristic cache system
532
+ ML module4.2
533
+ Eviction Decision
534
+ Algorithm 1: MAT Eviction
535
+ Input: The expected number of predictions per
536
+ eviction k; The TTA threshold T;
537
+ r := 1;
538
+ while r ≤ L do
539
+ obj := Heuristic.RemoveFromTail();
540
+ TTA := MLModel.Predict(obj);
541
+ if TTA ≥ T then
542
+ break;
543
+ else
544
+ r += 1;
545
+ Heuristic.Insert(obj, TTA);
546
+ end
547
+ end
548
+ if r > k then
549
+ T *= (1-δ);
550
+ end
551
+ if r < k then
552
+ T *= (1+δ);
553
+ end
554
+ return obj;
555
+ As shown in Algorithm 1, the ML thread evaluates eviction
556
+ candidates one at a time by predicting its TTA and compares
557
+ it with a threshold T. If the TTA of object x is ≥ T, object x
558
+ will be put on the eviction queue.
559
+ If the number of iterations reaches a limit L, it means none
560
+ of the L candidates satisfies TTA ≥ T. In this case, we will
561
+ choose the one with the largest TTA for eviction, putting it
562
+ on the eviction queue. Our system uses L = 10 to bound the
563
+ maximal cost for an eviction decision.
564
+ The threshold T is dynamically adjusted to achieve a target
565
+ average number of predictions per eviction, denoted as k. If it
566
+ takes fewer than k iterations to find an object whose TTA ≥ T,
567
+ we will increase the threshold slightly T = (1+δ)T. If it takes
568
+ more than k iterations, we will decrease the threshold slightly
569
+ T = (1−δ)T.
570
+ The rationale to adjust the threshold T dynamically is to
571
+ tolerate variations of the workloads as request distributions
572
+ change over time. We find that there is no optimal constant
573
+ value of T for an entire workload. Our system uses δ = 1e−4
574
+ as the default.
575
+ What happen to the objects inserted back to the priority
576
+ queue? These are the objects that the heuristic algorithm
577
+ would like to evict, but the ML model disagrees. When an
578
+ object is inserted back into the priority queue, it may take a
579
+ while for it to reach the tail of the queue again. By then, its
580
+ metadata (e.g., the time since last access) has changed. The
581
+ next time it becomes a candidate, the ML model might choose
582
+ to evict it.
583
+ 40
584
+ 60
585
+ 80
586
+ 100
587
+ Number of Requests (Million)
588
+ 0.00
589
+ 0.25
590
+ 0.50
591
+ 0.75
592
+ 1.00
593
+ 1.25
594
+ TTA Threshold T
595
+ 1e8
596
+ Wikipedia
597
+ (a) Optimal threshold
598
+ 2
599
+ 4
600
+ 8
601
+ 16
602
+ 32
603
+ 64
604
+ # predictions per eviction (k)
605
+ 0
606
+ 10
607
+ 20
608
+ 30
609
+ Miss ratio reduction of
610
+ Threshold over Top-1 (%)
611
+ CDN1
612
+ CDN2
613
+ CDN3
614
+ Wikipedia
615
+ (b) Threshold vs. Top-1
616
+ Figure 5: Why using dynamic threshold to select object
617
+ to evict. (a) The best TTA threshold is continuously changing.
618
+ (b) The dynamic threshold method reduces up to 30% misses
619
+ of the Top-1 method.
620
+ Why does MAT uses threshold T to make eviction deci-
621
+ sions? An alternative is to choose the object with the Top-1
622
+ TTA among k eviction candidates from the heuristic algo-
623
+ rithm. As shown in Figure 5, there are two advantages of us-
624
+ ing threshold T over the Top-1 method. First, in the case that
625
+ the heuristic algorithm continuously sends good candidates
626
+ with TTA ≥ T, each will be selected by our threshold method,
627
+ whereas the Top-1 method will miss k −1 good candidates.
628
+ Second, in the situation that the heuristic algorithm contin-
629
+ uously sends bad candidates with TTA (< T), our threshold
630
+ method choose the one with the largest TTA among L can-
631
+ didates, whereas the Top-1 method chooses the the best one
632
+ among k candidates. Since k ≪ L, the Top-1 method may
633
+ choose many bad candidates.
634
+ 4.3
635
+ Machine Learning Methods
636
+ MAT is a general framework that can run with any supervised
637
+ ML module. Here, we will introduce one ML method as an
638
+ example. While this is our implementation of MAT, many
639
+ other implementations can also work well.
640
+ Machine learning models.
641
+ The cache request stream can
642
+ be viewed as time-series data. To predict the TTA of an object,
643
+ we are interested in the past access pattern of the object and
644
+ also in the context of other objects. The access pattern of this
645
+ object can be viewed as low dimension tabular data, while the
646
+ context is sequence data.
647
+ We have experimented with several simple and efficient
648
+ ML approaches including Linear Regression (LR), Gradi-
649
+ ent Boosted Decision Trees (GBDT), Multi-layer Perceptron
650
+ (MLP), and Recursive Neural Network (RNN). By default,
651
+ MAT uses the GDBT model as it has a better trade-off be-
652
+ tween accuracy and computational overhead.
653
+ Metadata of input objects
654
+ The ML module in the MAT-
655
+ based caching system needs to learn from the past access
656
+ patterns to perform predictions in order to make the eviction
657
+ 6
658
+
659
+ decisions to minimize cache miss ratios. We call such data
660
+ the metadata for ML and they vary depending on the choice
661
+ of ML models.
662
+ To study MAT, we use metadata similar to those in
663
+ LRB [35]. The metadata keeps track of three clusters of fea-
664
+ tures for each object:
665
+ • Deltai is the interval between the ith and the i+1th most
666
+ recent accesses (e.g., delta1 is the interval between the
667
+ most recent and second most recent accesses).
668
+ • Exponential Decayed Counter (EDC) is a counter that is
669
+ incremented on each access and is halved after a certain
670
+ time. EDCi is halved after each 2i requests in the cache.
671
+ • Each object also has static features that are not related
672
+ to access, such as object size, object class, etc.
673
+ By default, we maintain 32 deltas, 10 EDCs and 2 static fea-
674
+ tures and the size of the metadata for each object is at most
675
+ 192 Bytes. Objects with fewer past accesses will take less
676
+ space.
677
+ 4.4
678
+ Training Dataset
679
+ In the MAT framework, a training dataset is a set of recent
680
+ historical eviction candidates, as opposed to all objects.
681
+ The training data generation involves a tagging phase
682
+ and a labelling phase. When an object is selected as
683
+ an eviction candidate by the heuristic algorithm (calling
684
+ RemoveFromTail()), it is tagged as eligible for training.
685
+ When an object is requested, if it is tagged, the tag is re-
686
+ set and MAT calculates the true label of TTA with regard to
687
+ its last access. Then the object features and the label are in-
688
+ serted into the training batch. Once the training batch reaches
689
+ a predefined batch size (e.g., 1 million ), it is used to retrain a
690
+ ML model online and then replaces the current model.
691
+ This method uses the heuristic algorithm to filter out ob-
692
+ jects that are not heuristically determined eviction candidates.
693
+ The intuition is that they are not relevant to predictions, so
694
+ excluding them will not affect the learning of the ML model.
695
+ In fact, it reduces the noise in the training data and can im-
696
+ prove the accuracy of the ML model. Depending on the miss
697
+ ratio, the tagged objects can usually be 10% to 50% of all the
698
+ objects, so the amount of the training data can be reduced by
699
+ 50% to 90%.
700
+ 4.5
701
+ Time-To-next-Access Prediction
702
+ The main goal of using the ML model is to predict the Time-
703
+ To-next-Access (TTA) of a given object. The inference opera-
704
+ tion with the ML model outputs the predicted distance to the
705
+ next access, which is defined as the difference between the
706
+ timestamps of the last access and the next access of an object.
707
+ TTA is calculated as this predicted distance minus the time
708
+ passed since the last access.
709
+ In the case that the predicted distance to the next access is
710
+ shorter than the time passed since the last access, we use the
711
+ time passed since the last access minus the predicted distance
712
+ to the next access as an estimation of TTA.
713
+ The intuition is that when the time passed since the last
714
+ access is only slightly larger than the predicted distance to
715
+ the next access, we still have confidence in the ML prediction
716
+ and we estimate the TTA to be small.
717
+ However, if the object still does not come and the time
718
+ past since last access becomes much larger than the predicted
719
+ distance to the next access, we want to stop keeping this object
720
+ in the cache.
721
+ 5
722
+ Implementations
723
+ 5.1
724
+ Optimizations
725
+ Batched predictions.
726
+ The basic MAT makes one eviction
727
+ decision at a time. To take advantage of modern processors,
728
+ MAT can exploit the data parallelism for eviction decisions.
729
+ This approach runs parallel predictions on B objects before
730
+ the tail of the heuristic algorithm. The predicted TTAs are
731
+ recorded in the metadata. When the ML model receives an
732
+ eviction candidate from the heuristic algorithm, it can directly
733
+ use the recorded TTA for making an eviction decision. If there
734
+ is no recorded TTA, it will initiate a new parallel prediction
735
+ task.
736
+ The batch size B has influence on the parallelism and the
737
+ miss ratio. If B is too small, the parallelism is not fully realized.
738
+ If B is too large, the prediction results are stall and the miss
739
+ ratio will be hurt. In our design, we use B = 64.
740
+ 5.2
741
+ Prototype
742
+ We have implemented a MAT prototype in Cachelib [12],
743
+ which is an open-source C++ caching library. Our implemen-
744
+ tation adds about 1,000 lines of code, with about 900 for MAT
745
+ itself and about 100 lines for integrating it into Cachelib. We
746
+ use LightGBM [27] to implement Gradient Boosted Decision
747
+ Trees. The LightGBM model has 32 trees and each tree has
748
+ no more than 32 leaves. The bagging frequency is 5 and the
749
+ bagging fraction is 0.8. The learning rate is 0.1.
750
+ 5.3
751
+ Simulators
752
+ To compare MAT to LRB, we also integrated MAT-LRU into
753
+ LRB’s simulation framework [2], The simulator measures
754
+ the miss ratios of caching algorithms by replaying all cache
755
+ requests in the traces. It only maintains metadata of objects
756
+ and does not allocate physical space for the objects.
757
+ The advantages are that it can simulate cache sizes much
758
+ larger than the memory on the simulation machine and the sys-
759
+ tem is always bottlenecked on the caching algorithm so that
760
+ we can measure the running time of the caching algorithms.
761
+ 7
762
+
763
+ Trace
764
+ Type
765
+ Object Size
766
+ Number of Requests
767
+ Requested Bytes
768
+ Default
769
+ Cache Size
770
+ Mean
771
+ Max
772
+ Total
773
+ Unique
774
+ Total
775
+ Unique
776
+ CDN1
777
+ CDN
778
+ 2 MB
779
+ 2 MB
780
+ 300 M
781
+ 31 M
782
+ 585 TB
783
+ 60 TB
784
+ 4 TB
785
+ CDN2
786
+ CDN
787
+ 2 MB
788
+ 2 MB
789
+ 220 M
790
+ 19 M
791
+ 430 TB
792
+ 38 TB
793
+ 4 TB
794
+ CDN3
795
+ CDN
796
+ 451 KB
797
+ 1 GB
798
+ 200 M
799
+ 22 M
800
+ 72 TB
801
+ 9.5 TB
802
+ 4 TB
803
+ Wikipedia [7]
804
+ CDN
805
+ 116 KB
806
+ 1.3 GB
807
+ 200 M
808
+ 15 M
809
+ 7.9 TB
810
+ 1.7 TB
811
+ 256 GB
812
+ Memcachier [4]
813
+ In-memory
814
+ 4.6 KB
815
+ 1 MB
816
+ 500 M
817
+ 9 M
818
+ 1 TB
819
+ 40 GB
820
+ 1 GB
821
+ InMem
822
+ In-memory
823
+ 337 B
824
+ 400 KB
825
+ 500 M
826
+ 62 M
827
+ 159 GB
828
+ 19 GB
829
+ 8 GB
830
+ IBM merged [1]
831
+ Storage
832
+ 3.1 M
833
+ 4 MB
834
+ 500 M
835
+ 30 M
836
+ 1832 TB
837
+ 89 TB
838
+ 16 TB
839
+ Microsoft [5]
840
+ Storage
841
+ 445 KB
842
+ 6 MB
843
+ 200 M
844
+ 48 M
845
+ 5.1 TB
846
+ 2 TB
847
+ 512 GB
848
+ Table 2: Overview of the traces used for evaluation.
849
+ We mainly use the simulator to perform an apple-to-apple
850
+ comparison between MAT and LRB. LRB is only available in
851
+ the simulator because it is non-trivial to implement a bug-free
852
+ LRB in the Cachelib prototype. The results in Section 6.2 and
853
+ 6.3 are collected from the simulator.
854
+ 6
855
+ Evaluation
856
+ Our evaluation answers the following questions:
857
+ • How many predictions does MAT need for each eviction
858
+ decision to achieve comparable miss ratios to SOTA?
859
+ • What is the software overhead of MAT?
860
+ • What performance can MAT prototype system achieve?
861
+ • Is MAT sensitive to heuristic algorithm choices?
862
+ • How well can MAT tolerate slow ML predictions?
863
+ In the following, we will first describe our experimental setup,
864
+ implementations, and experimental results to answer these
865
+ questions.
866
+ 6.1
867
+ Experimental Setup
868
+ Two hardware settings are used in our experiments. All simu-
869
+ lation experiments are run on servers in Cloudlab [18], each
870
+ with two 2 GHz Intel E5-2683v3 CPUs (14 physical cores)
871
+ and 256 GB of RAM.
872
+ Prototype experiments are run on two servers in Microsoft
873
+ Azure cloud, each with a 2.4 GHz AMD EPYC 7763 CPU (48
874
+ cores) and 378 GB of RAM. The two servers are connected
875
+ to 40 Gbps local area network.
876
+ Workloads.
877
+ We use 4 CDN traces and 4 other workloads
878
+ in our experiments. Table 2 shows the characteristics of these
879
+ workloads. In addition,
880
+ • CDN1, CDN2 are collected from different caching servers
881
+ (located in different regions) of same anonymous service
882
+ provider.
883
+ • CDN3 is collected from the caching server of another video
884
+ service provider.
885
+ • Wikipedia trace is from wikipedia servers.
886
+ • Memcachier is from a in-memory application cache.
887
+ • InMem is an anonymous trace collected from an in-memory
888
+ key value store of social media company.
889
+ • IBM merged is a combined workload of 99 traces from IBM
890
+ object store, which is a cloud storage service. We merge the
891
+ traces based on request timestamps.
892
+ • Microsoft is a storage trace from Microsoft.
893
+ Warmup.
894
+ The first 50 million requests of each trace are
895
+ used as a warm-up period. The byte miss ratios and through-
896
+ put are measured after the warmup period.
897
+ We measure 3 aspects of algorithms.
898
+ • Byte Miss Ratio: This metric is the total size of the objects
899
+ that are not present in the cache when requested divided by
900
+ the total size of the objects of all requests. This metric is an
901
+ indicator of the network traffic volume, which is the main
902
+ optimization goal for CDN caching.
903
+ • Request Processing Rate: This metric measures the number
904
+ of requests processed by the caching system per second. It
905
+ is greatly influenced by the object size in the workload.
906
+ • Software Overhead: Software overhead refers to the extra
907
+ computational overhead introduced by the ML algorithms.
908
+ We measure the normalized running time of each part of
909
+ the machine learning pipeline, including trainings, predic-
910
+ tions, and building features. The running time is normalized
911
+ by the number of evictions. In addition, we measure the
912
+ number of predictions and the number of training entries
913
+ incurred by the ML based caching algorithm for each evic-
914
+ tion.
915
+ 8
916
+
917
+ 256
918
+ 512
919
+ 1024
920
+ 2048
921
+ 4096
922
+ Cache Size (MB)
923
+ 0.00
924
+ 0.05
925
+ 0.10
926
+ 0.15
927
+ 0.20
928
+ 0.25
929
+ Byte Miss Ratio
930
+ MIN*
931
+ LRB(64)
932
+ LRU
933
+ MAT(2)
934
+ MAT(3)
935
+ MAT(4)
936
+ 1
937
+ 2
938
+ 4
939
+ 8
940
+ 16
941
+ Cache Size (TB)
942
+ 0.00
943
+ 0.05
944
+ 0.10
945
+ 0.15
946
+ 0.20
947
+ 0.25
948
+ Byte Miss Ratio
949
+ (a) CDN1
950
+ 1
951
+ 2
952
+ 4
953
+ 8
954
+ 16
955
+ Cache Size (TB)
956
+ 0.00
957
+ 0.05
958
+ 0.10
959
+ 0.15
960
+ 0.20
961
+ 0.25
962
+ Byte Miss Ratio
963
+ (b) CDN2
964
+ 1
965
+ 2
966
+ 4
967
+ 8
968
+ 16
969
+ Cache Size (TB)
970
+ 0.00
971
+ 0.05
972
+ 0.10
973
+ 0.15
974
+ 0.20
975
+ 0.25
976
+ Byte Miss Ratio
977
+ (c) CDN3
978
+ 64
979
+ 128
980
+ 256
981
+ 512
982
+ 1024
983
+ Cache Size (GB)
984
+ 0.0
985
+ 0.1
986
+ 0.2
987
+ 0.3
988
+ 0.4
989
+ 0.5
990
+ Byte Miss Ratio
991
+ (d) Wikipedia
992
+ 256
993
+ 512
994
+ 1024
995
+ 2048
996
+ 4096
997
+ Cache Size (MB)
998
+ 0.00
999
+ 0.05
1000
+ 0.10
1001
+ 0.15
1002
+ 0.20
1003
+ 0.25
1004
+ Byte Miss Ratio
1005
+ (e) Memcachier
1006
+ 2
1007
+ 4
1008
+ 8
1009
+ 16
1010
+ 32
1011
+ Cache Size (GB)
1012
+ 0.00
1013
+ 0.05
1014
+ 0.10
1015
+ 0.15
1016
+ Byte Miss Ratio
1017
+ (f) InMem
1018
+ 4
1019
+ 8
1020
+ 16
1021
+ 32
1022
+ 64
1023
+ Cache Size (TB)
1024
+ 0.0
1025
+ 0.2
1026
+ 0.4
1027
+ 0.6
1028
+ Byte Miss Ratio
1029
+ (g) IBM merged
1030
+ 128
1031
+ 256
1032
+ 512
1033
+ 1024
1034
+ 2048
1035
+ Cache Size (GB)
1036
+ 0.0
1037
+ 0.1
1038
+ 0.2
1039
+ 0.3
1040
+ 0.4
1041
+ 0.5
1042
+ Byte Miss Ratio
1043
+ (h) Microsoft
1044
+ Figure 6: Miss ratio comparisons in the simulator. The algorithm names show the number of predictions per eviction. MAT
1045
+ has better or similar miss ratios compared to LRB while MAT has an order of magnitude fewer number of predictions.
1046
+ 6.2
1047
+ Predictions per Eviction
1048
+ To answer the first question, we would like to experimen-
1049
+ tally evaluate how many predictions MAT needs to make
1050
+ an eviction decision, while achieving similar miss ratios to
1051
+ the LRB [35] with various workloads. We conduct our ex-
1052
+ periments using the simulator with 8 workloads as shown in
1053
+ Figure 6. Our experiments compare 3 MAT cases (2, 3, and 4
1054
+ predictions per eviction) with LRB which runs 64 predictions
1055
+ per eviction (default).
1056
+ The results show that MAT reduces the number of predic-
1057
+ tions by 31 times compared to LRB without degrading the
1058
+ miss ratios. MAT with 2, 3, and 4 predictions per eviction
1059
+ have similar miss ratios to LRB with 64 predictions.
1060
+ The differences among the 4 cases are small. Figure 6a-
1061
+ 6d are the results on the 4 CDN traces and the miss ratios of
1062
+ MAT(2), MAT(3), and MAT(4) are almost identical. MAT(2)’s
1063
+ miss ratios are slightly better than LRB(64)’s miss ratios on
1064
+ CDN1 and Wikipedia, while LRB(64) is slightly better on
1065
+ CDN1 and CDN2. Figure 6e, 6f are for in-memory traces.
1066
+ Compared to LRB(64), MAT(2) has 1% and 5% average rela-
1067
+ tive reductions in the miss ratios on Memcachier and InMem,
1068
+ respectively. Figure 6g, 6h show the results on storage traces.
1069
+ MAT(2) has in average 1% relatively lower miss ratio than
1070
+ LRB(64) on IBM merged. LRB(64) has in average 2% rela-
1071
+ tively lower miss ratio than MAT(2) on Microsoft workload.
1072
+ All ML algorithms achieve significant improvements over
1073
+ the LRU approach. For instance, on CDN1 with a 2 TB cache
1074
+ MAT has a 18% miss ratio compared to LRU’s 21%, which
1075
+ would reduce wide-area traffic by (21%-18%)/21%=14%.
1076
+ When the cache sizes are large, the differences among them
1077
+ diminish.
1078
+ However, there is still a significant gap between these algo-
1079
+ rithms and the the optimal offline algorithm. As MAT frame-
1080
+ work can reduce the number of predictions to 2, it allows
1081
+ the community to explore more sophisticated ML models to
1082
+ reduce this gap.
1083
+ 6.3
1084
+ Software Overhead
1085
+ To see how much overhead MAT can reduce compared to
1086
+ LRB with similar ML modules, we run both in the same
1087
+ simulation environment with 256 GB cache size.
1088
+ Table 3 shows the average prediction overhead per eviction.
1089
+ The average prediction overhead including the feature build-
1090
+ ing time per eviction is reduced by reduction is 32X (from
1091
+ 300us to 9.3us).
1092
+ LRB
1093
+ MAT
1094
+ Reduction
1095
+ Number of predictions
1096
+ 63.2
1097
+ 2.0
1098
+ 32 times
1099
+ Prediction time (us)
1100
+ 240
1101
+ 6.4
1102
+ 38 times
1103
+ Feature building time (us)
1104
+ 60
1105
+ 2.9
1106
+ 21 times
1107
+ Total time (us)
1108
+ 300
1109
+ 9.3
1110
+ 32 times
1111
+ Table 3: Average overhead per eviction (256 GB cache
1112
+ size, Wikipedia workload).
1113
+ 9
1114
+
1115
+ 128
1116
+ 256
1117
+ 512
1118
+ 1024
1119
+ 2048
1120
+ Cache Size (GB)
1121
+ 0.2
1122
+ 0.3
1123
+ 0.4
1124
+ Object Miss Ratio
1125
+ LRU
1126
+ MAT-LRU
1127
+ 2Q
1128
+ MAT-2Q
1129
+ Tiny
1130
+ MAT-Tiny
1131
+ 128
1132
+ 256
1133
+ 512
1134
+ 1024
1135
+ 2048
1136
+ Cache Size (GB)
1137
+ 0.2
1138
+ 0.3
1139
+ 0.4
1140
+ Byte Miss Ratio
1141
+ (a) CDN1
1142
+ 128
1143
+ 256
1144
+ 512
1145
+ 1024
1146
+ 2048
1147
+ Cache Size (GB)
1148
+ 0.20
1149
+ 0.25
1150
+ 0.30
1151
+ 0.35
1152
+ Byte Miss Ratio
1153
+ (b) CDN2
1154
+ 128
1155
+ 256
1156
+ 512
1157
+ 1024
1158
+ 2048
1159
+ Cache Size (GB)
1160
+ 0.2
1161
+ 0.3
1162
+ 0.4
1163
+ Byte Miss Ratio
1164
+ (c) CDN3
1165
+ 8
1166
+ 16
1167
+ 32
1168
+ 64
1169
+ 128
1170
+ 256
1171
+ Cache Size (GB)
1172
+ 0.4
1173
+ 0.5
1174
+ 0.6
1175
+ 0.7
1176
+ 0.8
1177
+ Byte Miss Ratio
1178
+ (d) Wikipedia
1179
+ Figure 7: The byte miss ratios of MAT with LRU, 2Q, and TinyLFU as the base algorithms. MAT in average reduce the
1180
+ byte miss ratio of LRU, 2Q, and TinyLFU by relatively 12%, 12%, and 10% respectively.
1181
+ MAT reduces the average number of predictions by 31X
1182
+ (from 63.2 to 2) while reducing the average feature building
1183
+ time by 21X (from 60us to 2.9us). Feature building refers to
1184
+ converting the object metadata to the feature matrix which
1185
+ serves as the input of the ML model, for both training and
1186
+ predictions.
1187
+ Table 4 shows the average overheads per eviction of LRB
1188
+ and MAT. The average training time reduction of MAT is
1189
+ 9.5X (from 160us to 16.9us).
1190
+ LRU
1191
+ MAT
1192
+ Reduction
1193
+ Number of training samples
1194
+ 8.6
1195
+ 0.93
1196
+ 9 times
1197
+ Training time (us)
1198
+ 100
1199
+ 14
1200
+ 7 times
1201
+ Table 4: Average training overhead per eviction ( 256 GB
1202
+ cache size, Wikipedia workload).
1203
+ The average number of training samples per eviction is
1204
+ reduced by 9.2X (from 8.6 to 0.93). The average training time
1205
+ overhead is reduced by 7X (from 100us to 14us).
1206
+ In summary, the total overhead of MAT’s ML module is
1207
+ 23.3 us per eviction, 17X reduction over LRB.
1208
+ 6.4
1209
+ Prototype Performance
1210
+ To evaluate the performance of MAT prototype, we compare
1211
+ its performance with Cachelib with LRU algorithm. We are
1212
+ interested in the request processing rate of MAT prototype
1213
+ compared to that of LRU-based caching system. Since both
1214
+ MAT and LRU are implemented in Cachelib. We conduct
1215
+ experiments in the same setting.
1216
+ To run such experiments, we extended the Cachebench
1217
+ module in the Cachelib library to support running experi-
1218
+ ments over a network. We implement a Cachebench client
1219
+ instance, a Cachebench server instance, and an Nginx server
1220
+ instance. The Cachebench client instance reads requests from
1221
+ a trace file and sends them through HTTP to the Nginx server
1222
+ using CURL. The Nginx server accepts requests and forwards
1223
+ them to the Cachebench server instance using Fastcgi. The
1224
+ Cachebench server runs either prototype which executes the
1225
+ requests and returns the results using the Fastcgi API to the
1226
+ Nginx server. The Nginx server then forwards the requests
1227
+ back to the Cachebench client.
1228
+ Trace
1229
+ Cache Size
1230
+ MAT
1231
+ LRU
1232
+ Wikipedia
1233
+ 32 GB
1234
+ 23787 req/s
1235
+ 24465 req/s
1236
+ 128 GB
1237
+ 25117 req/s
1238
+ 25577 req/s
1239
+ 512 GB
1240
+ 30258 req/s
1241
+ 31181 req/s
1242
+ Memcachier
1243
+ Infinite
1244
+ 52883 req/s
1245
+ 51380 req/s
1246
+ Table 5: Request rates of MAT and LRU prototypes with
1247
+ Wikipedia and Memcachier workloads.
1248
+ The main result is that MAT prototype achieves similar
1249
+ request rates as LRU prototype. Table 5 shows the request
1250
+ rates of MAT and LRU with Wikipedia and Memcacheir work-
1251
+ loads.
1252
+ For Wikipedia workload whose average object size is
1253
+ 116KB, MAT achieves 23,878, 25,117, and 30,258 re-
1254
+ quests/sec with cache sizes of 32GB, 128GB, and 512GB
1255
+ respectively. It is 2.8%, 1.8%, and 3.0% slower than LRU.
1256
+ The these results include the warmup period. Without the
1257
+ warmup, we expect MAT will achieve higher request rates
1258
+ than above since its miss ratio is substantially lower than
1259
+ LRU.
1260
+ The reason for using Memcachier workload is to test maxi-
1261
+ mal request rates as its average object size is relatively small
1262
+ (4.6KB). MAT achieves 52,883 requests/sec whereas LRU
1263
+ achieves 51,380 requests/sec. In this case, MAT is 2.9% faster.
1264
+ 6.5
1265
+ Heuristic Algorithm Choices
1266
+ To understand the effects of different heuristic algorithm
1267
+ choices, we compare three heuristic algorithms (LRU, 2Q
1268
+ and TinyLFU) in Cachelib with their corresponding MAT im-
1269
+ plementations (MAT-LRU, MAT-2Q and MAT-TinyLFU) as
1270
+ 10
1271
+
1272
+ shown in Figure 7. We conduct experiments with 4 workloads:
1273
+ CDN1, CDN2, CDN3 and Wikipedia.
1274
+ The experiments show two results. First, MAT is not sensi-
1275
+ tive to heuristic algorithm choices. MAT-LRU, MAT-2Q and
1276
+ MAT-TinyLFU achieve similar miss ratios with all 4 work-
1277
+ loads. MAT-TinyLFU achieves slightly worse miss ratios than
1278
+ MAT-LRU and MAT-2Q with CDN2 workload.
1279
+ Second, MAT can correct the eviction mistakes by its
1280
+ heuristic algorithm. Dramatic examples are TinyLFU with
1281
+ CDN1 and CDN2. In both cases, TinyLFU has much higher
1282
+ miss ratios than LRU and 2Q. However, MAT-TinyLFU can
1283
+ achieve miss ratios similar to those of MAT-LRU and MAT-
1284
+ 2Q. The ML model in MAT can effectively make good evic-
1285
+ tion decisions, adapting to different request patterns.
1286
+ 6.6
1287
+ Tolerance to Slow ML Predictions
1288
+ 256
1289
+ 1024
1290
+ Cache Size (MB)
1291
+ 0.00
1292
+ 0.05
1293
+ 0.10
1294
+ 0.15
1295
+ 0.20
1296
+ Reduction in Miss Ratio (%)
1297
+ MAT(0us)
1298
+ MAT(1us)
1299
+ MAT(10us)
1300
+ MAT(100us)
1301
+ MAT(1ms)
1302
+ LRU
1303
+ Figure 8: MAT with slow Predictions. When the ML model
1304
+ is slower, the miss ratio degenerates gracefully.
1305
+ MAT has the ability to fall back to its heuristic algorithm
1306
+ when its ML threads cannot keep up with the rate of evictions.
1307
+ To answer the question how well MAT can tolerate slow ML
1308
+ predictions, we conduct experiments on CDN1 by stalling
1309
+ each prediction for 1 us, 10 us, 100 us, and 1 ms. Note that a
1310
+ prediction itself takes 3 us on average.
1311
+ Figure 8 shows that the miss ratio reduction of MAT us-
1312
+ ing LRU as the baseline. MAT can always deliver better or
1313
+ equal miss ratio to LRU and MAT degrades gracefully when
1314
+ the ML model stalls. When the stall is 10 us, which means
1315
+ the ML model runs at 25% of its full speed, the miss ratio
1316
+ reduction is about 40% of the full speed ML model. This
1317
+ makes MAT particularly practical for deployment because it
1318
+ can run elastically with any available amount of computation
1319
+ resources.
1320
+ 7
1321
+ Related Work
1322
+ This section discusses related work on learning-based cache
1323
+ algorithms and heuristic cache algorithms. We also review
1324
+ systems targeting other aspects of CDN cache system.
1325
+ Learning-based cache replacement
1326
+ Existing works on ap-
1327
+ plying machine learning cache algorithms can be categorized
1328
+ into supervised learning and reinforcement learning. Most
1329
+ supervised learning approaches use regression. LRB [35] is
1330
+ the most similar approach to MAT. As we have seen in Sec-
1331
+ tion 6, LRB processing time overhead is 17× higher than
1332
+ MAT. LFO [13] uses boosting tress to predict and imitate the
1333
+ admission policy of OPT. It requires complex offline training,
1334
+ and thus is not practical to adapt quickly to workload changes.
1335
+ LFO also performed poorly in prior experiments [35]. Similar
1336
+ to regression on a single value, [44] learns the next access
1337
+ distribution, and uses it to compute a utility. However, to get
1338
+ the distribution training data, it is also limited to offline train-
1339
+ ing. Different from regression, Parrot [29] takes a ranking
1340
+ approach. Instead of predicting the time to next access, it di-
1341
+ rectly learns to rank objects. This approach is more end-to-end
1342
+ but the computation overhead is much higher than regression.
1343
+ Another line of works [17, 28, 38] apply reinforcement
1344
+ learning to cache algorithms. Instead of predicting the time
1345
+ to next access, the eviction policy is directly modeled and op-
1346
+ timized. Unfortunately, feedback loops in production systems
1347
+ would be in the tens of millions of steps, which exceeds the
1348
+ capability of current reinforcement learning frameworks. Con-
1349
+ sequently, the performance of reinforcement-learning-based
1350
+ approaches is worse than supervised learning.
1351
+ MAT is the first learning-based algorithm that can provide
1352
+ both a low miss ratio and high throughput. This is because its
1353
+ design provides efficient online training and inference.
1354
+ Heuristic-based cache replacement
1355
+ Over the past five
1356
+ decades, many cache algorithms based on heuristics have
1357
+ been proposed. Prominent examples include LRU, FIFO,
1358
+ SLRU [26], 2Q [25], LIRS [24], ARC [33], LeCaR [37], and
1359
+ LHD [10]. MAT is agnostic to most base heuristic algorithms
1360
+ and can use any priority-queue based heuristic as its base
1361
+ algorithm.
1362
+ Learning-augmented
1363
+ cache
1364
+ replacement
1365
+ Several
1366
+ learning-augmented replacement algorithms have been pro-
1367
+ posed to combine heuristic with learning-based algorithms.
1368
+ To the best of our knowledge, previous works [9, 30, 34, 39]
1369
+ focus on theoretical analysis on the competitive ratio of
1370
+ learning-augmented cache, or only evaluate the cache miss
1371
+ ratio regardless of the overhead [15]. MAT is the first
1372
+ learning-augmented cache that achieves a low byte miss
1373
+ ratio and high throughput on production cache software and
1374
+ workloads.
1375
+ Cache admission policies
1376
+ Multiple systems focus on learn-
1377
+ ing smart cache admission policies while relying on exist-
1378
+ ing cache replacement heuristics such as TinyLFU [19, 20],
1379
+ AdaptSize [14], Flashield [21], and CacheLib [12]. While
1380
+ there is no public implementation of Flashield, our evaluation
1381
+ 11
1382
+
1383
+ of TinyLFU, AdaptSize, and CacheLib shows that admission
1384
+ policies are not sufficient to achieve state-of-the-art miss ra-
1385
+ tios. LRB outperforms both systems’ miss ratio, and MAT
1386
+ achieves similar miss ratios to LRB while significantly im-
1387
+ proving throughput and reducing overhead.
1388
+ High-throughput
1389
+ in-memory
1390
+ caching
1391
+ systems
1392
+ MemC3 [23] and LHD [10] show how to significantly
1393
+ increase the throughput of in-memory caching systems based
1394
+ on replacement heuristics. The throughput challenges faced
1395
+ by a ML-based caching systems are different from the setting
1396
+ in MemC3. Some of MemC3’s techniques, such as faster
1397
+ hashing and fast approximations for a heuristic like LRU,
1398
+ are complementary to MAT. In fact, MemC3’s replacement
1399
+ heuristic can be used to create candidates for MAT’s eviction
1400
+ filter. LHD’s primary design based on sampling is similar to
1401
+ LRB. MAT effectively overcomes the challenges of sampling
1402
+ which requires too many evaluations and calls to a prediction
1403
+ model. SegCache [43] is designed for small objects with
1404
+ TTLs. It groups objects with similar TTLs together to reduce
1405
+ memory fragmentation and thus improves the hit ratios.
1406
+ CDN cache systems
1407
+ Many works optimize CDN cache sys-
1408
+ tems from other aspects. RIPQ [36] co-locates small writes to
1409
+ reduce SSD write amplification. AViC [8] designs the eviction
1410
+ algorithm based on the video chunk sequential accessed at a
1411
+ constant speed and leverages the properties of video delivery
1412
+ to optimize the hit ratio. The design of MAT is flexible for
1413
+ general cache and can be applied together with these systems.
1414
+ 8
1415
+ Conclusion
1416
+ MAT is proposed as a general framework for building an
1417
+ efficient ML-based caching system by adding an ML module
1418
+ to an existing cache system based on a heuristic algorithm.
1419
+ The key idea behind MAT is to treat a heuristic algorithm
1420
+ as a filter for the ML module. Most heuristic algorithms can
1421
+ serve as good filters, as we demonstrate that they evict most
1422
+ objects an optimal algorithm evicts while evicting some ob-
1423
+ jects they should keep. The role of ML module is to correct
1424
+ these mistakes.
1425
+ We show several simulation and prototyping results. First,
1426
+ it reduces the average number of predictions per eviction
1427
+ to 2, a 31 times reduction compared to the state-of-the-art
1428
+ ML-based caching system while achieving comparable miss
1429
+ ratios. Second, MAT is not sensitive to the choice of heuristic
1430
+ algorithms. Third, MAT can fall back to the heuristic algo-
1431
+ rithm which allows it to run efficiently, tolerating slow ML
1432
+ inferences or lack of computing power.
1433
+ The ML module used in our implementations is Gradient
1434
+ Boosted Decision Tree (GBDT) due to its simplicity and effi-
1435
+ ciency. Other ML methods that are less efficient may further
1436
+ reduce miss ratios. Since MAT framework dramatically re-
1437
+ duces the ML overhead to merely 2 predictions per eviction,
1438
+ it enables us to explore some sophisticated ML approaches.
1439
+ References
1440
+ [1] Ibm object storage.
1441
+ http://iotta.snia.org/traces/
1442
+ key-value/36305.
1443
+ [2] Lrb github repository.
1444
+ https://github.com/sunnyszy/
1445
+ lrb.
1446
+ [3] memcached - a distributed memory object caching system.
1447
+ http://memcached.org/, .
1448
+ [4] Memcachier. https://www.memcachier.com/, .
1449
+ [5] Microsoft.
1450
+ http://iotta.snia.org/traces/block-io/
1451
+ 388.
1452
+ [6] redis. https://redis.io/.
1453
+ [7] Wikipedia
1454
+ trace.
1455
+ http://lrb.cs.princeton.edu/
1456
+ wiki2019.tr.tar.gz.
1457
+ [8] Z. Akhtar, Y. Li, R. Govindan, E. Halepovic, S. Hao, Y. Liu, and
1458
+ S. Sen. Avic: a cache for adaptive bitrate video. In Proceedings
1459
+ of the 15th International Conference on Emerging Networking
1460
+ Experiments And Technologies, pages 305–317, 2019.
1461
+ [9] A. Antoniadis, C. Coester, M. Elias, A. Polak, and B. Simon.
1462
+ Online metric algorithms with untrusted predictions. In In-
1463
+ ternational Conference on Machine Learning, pages 345–355.
1464
+ PMLR, 2020.
1465
+ [10] N. Beckmann, H. Chen, and A. Cidon. LHD: Improving cache
1466
+ hit rate by maximizing hit density. In USENIX NSDI, pages
1467
+ 389–403, 2018.
1468
+ [11] L. A. Belady. A study of replacement algorithms for a virtual-
1469
+ storage computer. IBM Systems journal, 5(2):78–101, 1966.
1470
+ [12] B. Berg, D. S. Berger, S. McAllister, I. Grosof, S. Gunasekar,
1471
+ J. Lu, M. Uhlar, J. Carrig, N. Beckmann, M. Harchol-Balter,
1472
+ et al. The cachelib caching engine: Design and experiences
1473
+ at scale. In 14th {USENIX} Symposium on Operating Sys-
1474
+ tems Design and Implementation ({OSDI} 20), pages 753–768,
1475
+ 2020.
1476
+ [13] D. S. Berger. Towards lightweight and robust machine learning
1477
+ for cdn caching. In ACM HotNets, pages 134–140, 2018.
1478
+ [14] D. S. Berger, R. Sitaraman, and M. Harchol-Balter. Adapt-
1479
+ size: Orchestrating the hot object memory cache in a content
1480
+ delivery network. In USENIX NSDI, pages 483–498, 2017.
1481
+ [15] J. Chł˛edowski, A. Polak, B. Szabucki, and K. T. ˙Zołna. Robust
1482
+ learning-augmented caching: An experimental study. In Inter-
1483
+ national Conference on Machine Learning, pages 1920–1930.
1484
+ PMLR, 2021.
1485
+ [16] CISCO.
1486
+ Cisco visual networking index: Forecast and
1487
+ trends
1488
+ 2022, February
1489
+ 2019.
1490
+ Available
1491
+ at https:
1492
+ //www.cisco.com/c/en/us/solutions/collateral/
1493
+ service-provider/visual-networking-index-vni/
1494
+ white-paper-c11-741490.pdf, accessed 09/18/19.
1495
+ [17] R. Costa and J. Pazos. Mlcache: A multi-armed bandit policy
1496
+ for an operating system page cache. Technical report, Technical
1497
+ Report. University of British Columbia, 2017.
1498
+ [18] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
1499
+ 12
1500
+
1501
+ L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
1502
+ G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar,
1503
+ and P. Mishra. The design and operation of CloudLab. In Pro-
1504
+ ceedings of the USENIX Annual Technical Conference (ATC),
1505
+ pages 1–14, July 2019. URL https://www.flux.utah.edu/
1506
+ paper/duplyakin-atc19.
1507
+ [19] G. Einziger and R. Friedman. Tinylfu: A highly efficient cache
1508
+ admission policy. In IEEE Euromicro PDP, pages 146–153,
1509
+ 2014.
1510
+ [20] G. Einziger, O. Eytan, R. Friedman, and B. Manes. Adaptive
1511
+ software cache management. In ACM Middleware, pages 94–
1512
+ 106, 2018.
1513
+ [21] A. Eisenman, A. Cidon, E. Pergament, O. Haimovich,
1514
+ R. Stutsman, M. Alizadeh, and S. Katti. Flashield: a hybrid
1515
+ key-value cache that controls flash write amplification. In
1516
+ USENIX NSDI, pages 65–78, 2019.
1517
+ [22] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. Kat. It’s
1518
+ time to revisit {LRU} vs.{FIFO}. In 12th USENIX Workshop
1519
+ on Hot Topics in Storage and File Systems (HotStorage 20),
1520
+ 2020.
1521
+ [23] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact
1522
+ and concurrent memcache with dumber caching and smarter
1523
+ hashing. In USENIX NSDI, pages 371–384, 2013.
1524
+ [24] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference
1525
+ recency set replacement policy to improve buffer cache perfor-
1526
+ mance. ACM SIGMETRICS, 30(1):31–42, 2002.
1527
+ [25] T. Johnson and D. Shasha. 2Q: A low overhead high perfor-
1528
+ mance buffer management replacement algorithm. In VLDB,
1529
+ pages 439–450, 1994.
1530
+ [26] R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies
1531
+ to improve disk system performance. IEEE Computer, 27(3):
1532
+ 38–46, 1994.
1533
+ [27] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
1534
+ and T.-Y. Liu. Lightgbm: A highly efficient gradient boosting
1535
+ decision tree. In Advances in Neural Information Processing
1536
+ Systems, pages 3146–3154, 2017.
1537
+ [28] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman.
1538
+ Rl-cache: Learning-based cache admission for content delivery.
1539
+ IEEE Journal on Selected Areas in Communications, 38(10):
1540
+ 2372–2385, 2020.
1541
+ [29] E. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn.
1542
+ An imitation learning approach for cache replacement. In
1543
+ International Conference on Machine Learning, pages 6237–
1544
+ 6247. PMLR, 2020.
1545
+ [30] T. Lykouris and S. Vassilvtiskii. Competitive caching with ma-
1546
+ chine learned advice. In International Conference on Machine
1547
+ Learning, pages 3296–3305. PMLR, 2018.
1548
+ [31] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Eval-
1549
+ uation techniques for storage hierarchies. In IBM Systems
1550
+ journal, volume 9, pages 78–117, 1970.
1551
+ [32] S. McAllister, B. Berg, J. Tutuncu-Macias, J. Yang, S. Gu-
1552
+ nasekar, J. Lu, D. S. Berger, N. Beckmann, and G. R. Ganger.
1553
+ Kangaroo: Caching billions of tiny objects on flash. In Pro-
1554
+ ceedings of the ACM SIGOPS 28th Symposium on Operating
1555
+ Systems Principles, pages 243–262, 2021.
1556
+ [33] N. Megiddo and D. S. Modha. ARC: A self-tuning, low over-
1557
+ head replacement cache. In USENIX FAST, volume 3, pages
1558
+ 115–130, 2003.
1559
+ [34] D. Rohatgi. Near-optimal bounds for online caching with
1560
+ machine learned advice. In Proceedings of the Fourteenth
1561
+ Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1562
+ 1834–1845. SIAM, 2020.
1563
+ [35] Z. Song, D. S. Berger, K. Li, A. Shaikh, W. Lloyd, S. Ghorbani,
1564
+ C. Kim, A. Akella, A. Krishnamurthy, E. Witchel, et al. Learn-
1565
+ ing relaxed belady for content distribution network caching.
1566
+ In 17th {USENIX} Symposium on Networked Systems Design
1567
+ and Implementation ({NSDI} 20), pages 529–544, 2020.
1568
+ [36] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. RIPQ:
1569
+ advanced photo caching on flash for facebook. In USENIX
1570
+ FAST, pages 373–386, 2015.
1571
+ [37] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu,
1572
+ R. Rangaswami, M. Zhao, and G. Narasimhan. Driving cache
1573
+ replacement with ML-based LeCaR. In USENIX HotStorage,
1574
+ 2018.
1575
+ [38] H. Wang, H. He, M. Alizadeh, and H. Mao. Learning caching
1576
+ policies with subsampling. In NeurIPS Machine Learning for
1577
+ Systems Workshop, 2019.
1578
+ [39] A. Wei. Better and simpler learning-augmented online caching.
1579
+ arXiv preprint arXiv:2005.13716, 2020.
1580
+ [40] G. Yan and J. Li. Rl-bélády: A unified learning framework for
1581
+ content caching. In Proceedings of the 28th ACM International
1582
+ Conference on Multimedia, pages 1009–1017, 2020.
1583
+ [41] G. Yan, J. Li, and D. Towsley. Learning from optimal caching
1584
+ for content delivery. In Proceedings of the 17th International
1585
+ Conference on emerging Networking EXperiments and Tech-
1586
+ nologies, pages 344–358, 2021.
1587
+ [42] J. Yang, Y. Yue, and K. Rashmi. A large scale analysis of
1588
+ hundreds of in-memory cache clusters at twitter.
1589
+ In 14th
1590
+ {USENIX} Symposium on Operating Systems Design and Im-
1591
+ plementation ({OSDI} 20), pages 191–208, 2020.
1592
+ [43] J. Yang, Y. Yue, and R. Vinayak. Segcache: a memory-efficient
1593
+ and scalable in-memory key-value cache for small objects. In
1594
+ 18th USENIX Symposium on Networked Systems Design and
1595
+ Implementation (NSDI 21), pages 503–518, 2021.
1596
+ [44] G. Zhou and M. Maas. Learning on distributed traces for data
1597
+ center storage systems. Proceedings of Machine Learning and
1598
+ Systems, 3, 2021.
1599
+ 13
1600
+
gNFKT4oBgHgl3EQftS6b/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
htE3T4oBgHgl3EQfgQqz/content/tmp_files/2301.04560v1.pdf.txt ADDED
@@ -0,0 +1,2135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model reduction for nonlinearizable dynamics via
2
+ delay-embedded spectral submanifolds
3
+ Joar Ax˚as1, George Haller1∗
4
+ 1Institute for Mechanical Systems, ETH Z¨urich,
5
+ Leonhardstrasse 21, 8092 Zurich, Switzerland
6
+ 12.01.2023
7
+ Abstract
8
+ Delay embedding is a commonly employed technique in a wide range
9
+ of data-driven model reduction methods for dynamical systems, including
10
+ the Dynamic mode decomposition (DMD), the Hankel alternative view
11
+ of the Koopman decomposition (HAVOK), nearest-neighbor predictions
12
+ and the reduction to spectral submanifolds (SSMs). In developing these
13
+ applications, multiple authors have observed that delay embedding ap-
14
+ pears to separate the data into modes, whose orientations depend only
15
+ on the spectrum of the sampled system. In this work, we make this ob-
16
+ servation precise by proving that the eigenvectors of the delay-embedded
17
+ linearized system at a fixed point are determined solely by the correspond-
18
+ ing eigenvalues, even for multi-dimensional observables. This implies that
19
+ the tangent space of a delay-embedded invariant manifold can be pre-
20
+ dicted a priori using an estimate of the eigenvalues. We apply our results
21
+ to three datasets to identify multimodal SSMs and analyse their nonlin-
22
+ ear modal interactions.
23
+ While SSMs are the focus of our study, these
24
+ results generalize to any delay-embedded invariant manifold tangent to a
25
+ set of eigenvectors at a fixed point. Therefore, we expect this theory to
26
+ be applicable to a number of data-driven model reduction methods.
27
+ 1
28
+ Background
29
+ Much recent effort in nonlinear dynamics has focused on data-driven model
30
+ reduction methods. Such algorithms return a simplified model of the system
31
+ dynamics based on sampled trajectories from experiments or simulations. Com-
32
+ monly pursued objectives for developing these methods include dimensionality
33
+ reduction, sparsity, and interpretability. Prevalent methods include the proper
34
+ orthogonal decomposition (POD) [1, 2] and the dynamic mode decomposition
35
+ (DMD) [3, 4, 5], which fit models to data under various linearity assumptions.
36
+ ∗Corresponding author. E-mail: [email protected]
37
+ 1
38
+ arXiv:2301.04560v1 [math.DS] 11 Jan 2023
39
+
40
+ Linear models cannot, however, capture characteristically nonlinear (or non-
41
+ linearizable) phenomena. Such phenomena include the coexistence of, and the
42
+ transition between, isolated and compact stationary states, such as fixed points,
43
+ limit cycles, and invariant tori [6]. To address this shortcoming, the Sparse iden-
44
+ tification of nonlinear dynamics (SINDy) algorithm fits a sparse nonlinear model
45
+ to training data using a library of nonlinear functions [7]. However, the choice of
46
+ this library depends on the user [8] and the coordinate system used. Addition-
47
+ ally, the size of the library scales up quickly with the problem dimensionality [9].
48
+ While neural networks can pattern-match nonlinear phenomena [10, 11, 12], the
49
+ models they return are often difficult to interpret and generalize poorly outside
50
+ the range of training data [13].
51
+ In the last few years, spectral submanifolds (SSMs) have appeared as an
52
+ alternative for model reduction in intrinsically nonlinear systems. An SSM is
53
+ the unique smoothest invariant manifold tangent to a nonresonant spectral sub-
54
+ space emanating from a fixed point [14] or a periodic or quasiperiodic orbit
55
+ [15]. Therefore, an attracting SSM is the ideal candidate for a low-dimensional
56
+ model of a nonlinear system [16, 17]. Concepts related to SSMs include nonlinear
57
+ normal modes (NNMs) defined either as sets of periodic motions in conserva-
58
+ tive systems [18, 19, 20] or invariant manifolds [21, 22] and invariant spectral
59
+ foliations [23]. Here, we will apply SSMs, as they are unique, exist under well-
60
+ defined conditions in dissipative systems, can have arbitrary dimensions, and
61
+ can include internally resonant modes.
62
+ After the computation of an SSM, we can project either equations or data
63
+ onto it to reduce the system to a high-fidelity model. Automated model re-
64
+ duction to SSMs from equations [24] can successfully predict responses to small
65
+ harmonic forcing [25, 26, 27] and bifurcations of those responses [28, 29], and has
66
+ also been extended to constrained mechanical systems [30]. Recently, Ref. [31]
67
+ developed a data-driven method which identifies the SSM geometry and its re-
68
+ duced dynamics to trajectories in an observable space [32]. This approach also
69
+ transforms the SSM-reduced dynamics to a normal form, which describes the
70
+ dynamics as sparsely as possible while maintaining essential nonlinearities [33].
71
+ SSM-based model reduction has since been applied to both numerical and ex-
72
+ perimental datasets in fluid and structural dynamics [34, 35] and control [36].
73
+ Ref. [37] showed how to improve the computational efficiency of data-driven
74
+ SSM identification through a simplified formulation of the algorithm.
75
+ Delay embedding is the method of reconstructing invariant sets by viewing
76
+ a select number of measurements separated by a timelag as independent ob-
77
+ servables. This method is routinely used to aid data-driven model identification
78
+ in nonlinear dynamical systems. Examples of model reduction methods based
79
+ on delay embedding include the extended dynamic mode decomposition (DMD)
80
+ [38, 39], the Hankel alternative view of the Koopman decomposition (HAVOK)
81
+ [40], the eigensystem realization algorithm (ERA) [41], closure modeling [42],
82
+ and nearest-neighbor prediction [43, 44].
83
+ In addition, delay embedding has
84
+ been extensively employed in SSM-based model reduction from data [31, 34].
85
+ For SSMs, a closer understanding of the delay embedding map improves fits to
86
+ data and produces more accurate reduced-order models [37]. This has motivated
87
+ 2
88
+
89
+ our present study on how invariant manifolds can be efficiently and accurately
90
+ reconstructed in delay coordinates.
91
+ The main driver behind the introduction of delay embedding as a tool in dy-
92
+ namical systems was the discovery that it could reconstruct strange attractors
93
+ from scalar measurements of chaotic systems [45, 46]. Floris Takens’s celebrated
94
+ embedding theorem [47] and its later extension [48] show that, in principle, de-
95
+ lay embedding recovers invariant sets from the full state space in a suitable
96
+ observable space under generic assumptions. In practice, however, the choice of
97
+ the timelag and embedding dimension is critical to obtain robust models [49,
98
+ 50, 51]. The many methods for choosing delay parameters for chaotic attractor
99
+ reconstruction include minimization of the mutual information between subse-
100
+ quent samples [52], minimization of false nearest neighbors [53, 54], and a Monte
101
+ Carlo decision tree search formulation [55].
102
+ Recent work has also explored the geometric structure of delay embedded
103
+ invariant sets in an effort to improve model order reduction. For periodic data,
104
+ singular value decomposition (SVD) on the delay-embedded snapshot matrix
105
+ has been shown to converge to a Fourier analysis [56]. The number of delays
106
+ required to recover such periodic orbits equals the number of coefficients of
107
+ the Fourier spectrum [57]. Fitting a linear map between subsequent snapshots
108
+ of such a delay-embedded periodic orbit produces a companion matrix, whose
109
+ eigenvectors are given by the inverse Vandermonde matrix [58, 59].
110
+ Furthermore, connections to convolutional coordinates [60] and the Frenet-
111
+ Serret frame [61] have been made, and an interpretation of SVD modes in delay
112
+ coordinates as principal component trajectories has been proposed [62]. For
113
+ the special case of an observed signal composed of oscillating sinusoidal func-
114
+ tions, the observable space contains invariant spaces determined by the signal
115
+ frequencies [37].
116
+ Recently, it was shown that subsequent components of the
117
+ DMD modes of delay-embedded linear systems are related by a multiplication
118
+ of the corresponding eigenvalue [63].
119
+ In this work, we explore the local dynamics close to a fixed point of a nonlin-
120
+ ear delay-embedded system. We show that the linear part of the delay-embedded
121
+ dynamics depends solely on the corresponding eigenvalues, and not on the ob-
122
+ servable function and the full state space eigenvectors. In particular, the eigen-
123
+ vectors in the observable space are given by the columns of the Vandermonde
124
+ matrix of the exponential of the eigenvalues multiplied by the timelag. Unlike
125
+ available previous work, we do not attempt a linearization of the nonlinear dy-
126
+ namics, nor do we restrict our attention to periodic orbits. Instead, our results
127
+ imply that the nonlinear delay-embedded system has an SSM whose tangent
128
+ space coincides with the column space of this Vandermonde matrix. We exploit
129
+ this structure to aid the data-driven identification of SSMs in three mechanical
130
+ examples. We believe that these results enhance the understanding of delay
131
+ embedding in reduced-order modeling and also reveal new opportunities for
132
+ SSM-based model reduction.
133
+ The structure of this paper is the following. First, Sect. 2 briefly introduces
134
+ SSM theory and summarizes a method for fast SSM-based data-driven modeling.
135
+ Sect. 3 outlines a new theory for delay-embedding tangent spaces of invariant
136
+ 3
137
+
138
+ manifolds and discusses their application to SSM-based model reduction. In
139
+ Sect. 4, we use these results to identify SSMs in examples of a 2-degree-of-
140
+ freedom oscillator, simulations of multimodal vibrations in a von K´arm´an beam,
141
+ and experiments of complex behavior in a sloshing tank. In Sect. 5, we draw
142
+ conclusions from these examples and discuss possible further extensions of our
143
+ theory.
144
+ Finally, Appendix A contains the proofs of the results presented in
145
+ Sect. 3.
146
+ 2
147
+ Model reduction to spectral submanifolds
148
+ Here, we outline previous results on rigorous model order reduction to SSMs in
149
+ smooth nonlinear systems. We also summarize fastSSM, the algorithm we use
150
+ here to identify SSMs from data.
151
+ 2.1
152
+ Spectral submanifold theory
153
+ Consider a nonlinear, autonomous dynamical system of class Cl, l ∈ {N+, ∞, a},
154
+ where a denotes analyticity, in the form
155
+ ˙x = Ax + g(x),
156
+ x ∈ Rn,
157
+ g ∼ O(|x|2),
158
+ g : Rn → Rn.
159
+ (1)
160
+ Let us denote the flow map of the system by F t(x0) := x(t, x0), with x(t, x0)
161
+ denoting the trajectory of (1) starting from x0 at time 0.
162
+ We assume that
163
+ A ∈ Rn×n is diagonalizable and that the real parts of its eigenvalues are either
164
+ all strictly negative or all strictly positive. We take d eigenvectors of A and
165
+ denote their span by E, i.e., a d-dimensional spectral subspace of Rn. In this
166
+ step, we often choose the d slowest eigendirections.
167
+ Provided that the d eigenvalues corresponding to E are non-resonant with the
168
+ remaining n−d eigenvalues of A, the nonlinear system has a unique smoothest,
169
+ invariant manifold M tangent to E at the origin, i.e., T0M = E [14]. Following
170
+ [16], we call M a spectral submanifold (SSM). In case of a resonance between
171
+ E and the rest of the spectrum of A, the d-dimensional SSM does not exist in
172
+ general, and we must then include the resonant modal subspace in E to obtain
173
+ a higher-dimensional SSM. If all eigenvalues of A are stable, the slowest SSM
174
+ attracts nearby trajectories, which makes it suitable for model order reduction.
175
+ The open-source numerical package SSMTool computes SSMs from arbitrary
176
+ finite-dimensional nonlinear systems [24, 27]. More recently, the SSMLearn pack-
177
+ age was developed to find SSMs in data from nonlinear dynamical systems [31,
178
+ 34].
179
+ Here, we will apply the simplified data-driven SSM algorithm fastSSM
180
+ introduced by Ref. [37].
181
+ 2.2
182
+ Fast data-driven model order reduction to spectral
183
+ submanifolds
184
+ The objective of dynamics-based machine learning is to reconstruct SSMs from
185
+ data, and then use SSM-reduced models for predictions of the full system re-
186
+ 4
187
+
188
+ sponse [31]. Here, we use fastSSM [64] to identify the SSM from snaphots of
189
+ trajectories in an observable space. The procedure consists of two steps: man-
190
+ ifold geometry detection and normal form computation. The summary below
191
+ follows Ref. [37], to which we refer for further details.
192
+ Whereas that refer-
193
+ ence differentiates between the algorithm for cubic polynomial approximations
194
+ of two-dimensional SSMs and its extension to arbitrary order and dimension,
195
+ here, we will simply refer to both algorithms as fastSSM.
196
+ The SSM is parametrized in the graph style, that is, we construct M as a
197
+ graph over the spectral subspace E. The data consists of snapshots y(ti) ∈ Rp in
198
+ a p-dimensional observable space. For each trajectory we construct the snapshot
199
+ matrix Y ∈ Rp×N from N snapshots as
200
+ Y =
201
+
202
+
203
+ |
204
+ |
205
+ |
206
+ y(t1)
207
+ y(t2)
208
+ . . .
209
+ y(tN)
210
+ |
211
+ |
212
+ |
213
+
214
+
215
+ (2)
216
+ Let T ∈ Rp×d be a matrix whose columns approximately span the SSM
217
+ tangent space. In fastSSM, the standard procedure is to obtain T through SVD
218
+ on the snapshot matrix Y . However, T can also be prescribed if the tangent
219
+ space is known a priori. Denoting by (·)† the Moore-Penrose pseudoinverse, we
220
+ project each snapshot yi onto this subspace to obtain d-dimensional reduced
221
+ coordinates ξ as
222
+ ξ = T †y.
223
+ (3)
224
+ We write Ξ ∈ Cd×N for the projection of the snapshot matrix onto the tangent
225
+ space.
226
+ Next, we seek to approximate the embedding of M as the graph of a multi-
227
+ variate polynomial of order m from the data:
228
+ y(ξ) = Mξ1:m,
229
+ M
230
+ = [M1, M2, . . . , Mm],
231
+ Mi ∈ Rp×di,
232
+ (4)
233
+ where di is the number of d-variate monomials at order i and the superscript
234
+ in (·)1:l denotes a vector of all monomials from order 1 up to l. We obtain the
235
+ manifold parametrization coefficients M ∈ Rp×d1:m by a polynomial regression,
236
+ which yields the solution
237
+ M = Y (Ξ1:m)†.
238
+ (5)
239
+ The reduced dynamics are approximated by another O(r) polynomial re-
240
+ gression, with a coefficient matrix G ∈ Cd×d1:r, in the form
241
+ ˙ξ ≈ Gξ1:r,
242
+ G = ˙Ξ(Ξ1:r)†.
243
+ (6)
244
+ Finally, we compute the normal form [33] of the SSM-reduced dynamics up
245
+ to order h. This amounts to a near-identity polynomial transformation with
246
+ coefficients H ∈ Cd×d1:h from the new coordinates ζ ∈ Cd such that
247
+ ξ = Hζ1:h = ζ + H2:hζ2:h,
248
+ ˙ζ = Nζ1:h = Λζ + N2:hζ2:h.
249
+ (7)
250
+ 5
251
+
252
+ The normal form and the reduced dynamics are conjugate dynamical systems.
253
+ Therefore, we substitute (7) into (6) to obtain
254
+ Dζ(Hζ1:h)Nζ1:h = G(Hζ1:h)1:r.
255
+ (8)
256
+ The matrices H and N are computed by solving (8) recursively at increasing
257
+ orders with SSMTool [27].
258
+ This procedure requires that the training data lies sufficiently close to the
259
+ SSM, which can be achieved by removing initial transients from the input signal,
260
+ as identified by a spectral analysis on the training data [34]. Since the SSM built
261
+ over the slowest d modes is unique and attracting, this method ensures relevant
262
+ training data.
263
+ 3
264
+ Delay-embedding the tangent spaces of invari-
265
+ ant manifolds
266
+ Here, we show how tangent spaces of invariant manifolds at a fixed point can be
267
+ analytically recovered when the observable space arises from delay embedding
268
+ of a signal. We also describe how the recovered tangent spaces facilitate the
269
+ reconstruction of spectral submanifolds in such observable spaces.
270
+ 3.1
271
+ Theoretical results
272
+ For the dynamical system (1), we define a scalar observable µ(x(t)), where
273
+ µ : Rn → R is a differentiable function that returns a measured feature of
274
+ system (1), such as a displacement coordinate. In order to reconstruct features
275
+ of the full phase space from the observable, we use delay embedding. We stack p
276
+ consecutive measurements separated by a timelag τ > 0 to create an observable
277
+ space of dimension p. This yields a trajectory in the form y(t) = S(x(t)) ∈ Rp,
278
+ where we define the sampling map
279
+ S : Rn → Rp,
280
+ x �→
281
+
282
+ ������
283
+ µ(x)
284
+ µ(F τ(x))
285
+ µ(F 2τ(x))
286
+ ...
287
+ µ(F (p−1)τ(x))
288
+
289
+ ������
290
+ .
291
+ (9)
292
+ An important question is how invariant sets of system (1) in Rn are re-
293
+ produced in the observable space Rp. In particular, when the full state space
294
+ trajectory x(t) resides on a d-dimensional invariant manifold M, will y(t) also
295
+ do so? Takens’s embedding theorem gives an affirmative answer. It states that
296
+ if µ is generic and no small integer multiple of τ coincides with the period of
297
+ any possible periodic orbit of (1) lying in M, then for
298
+ p ≥ 2d + 1,
299
+ (10)
300
+ 6
301
+
302
+ the manifold M will have a diffeomorphic copy
303
+ ˜
304
+ M in Rp via the mapping
305
+ (9) [47]. Whereas Takens’s theorem was formulated only for scalar observable
306
+ functions, this result has since been extended to multi-dimensional µ as long as
307
+ the total observable space dimension exceeds 2d [65].
308
+ Both the nonlinear geometry and dynamics of M and the observable function
309
+ influence the geometry of ˜
310
+ M. It is therefore difficult to predict its geometry for
311
+ a general flow map. Around the fixed point q = S(0) ∈ Rp, however, the O(1)
312
+ expansion of ˜
313
+ M, i.e., its tangent space Tq ˜
314
+ M, can be directly determined, as we
315
+ will show next. Note that since the flow map is the identity at the origin, q lies
316
+ on the diagonal in the observable space, with each of its identical components
317
+ given by µ(0).
318
+ We start by rewriting (1) in modal coordinates:
319
+ ˙z = f(z) = Λz + E−1g(Ez),
320
+ (11)
321
+ where E = [e1, . . . , en] contains the eigenvectors of A and Λ = diag(λ1, . . . , λn)
322
+ the corresponding eigenvalues, which we assume to be distinct. We define modal
323
+ coordinates z ∈ Cn by letting z = E−1x. Whereas the observable function is
324
+ defined as a function of x, it is notationally convenient to define it as a function
325
+ of z, as µ(x) = µ(Ez).
326
+ Let M be a d-dimensional invariant manifold of (1) intersecting the origin
327
+ 0 ∈ Rn, where it is tangent to a set of d eigenvectors e1, e2, . . . , ed of A with
328
+ corresponding eigenvalues λ1, . . . , λd. We define the Vandermonde matrix V ∈
329
+ Cp×d of the d eigenvalues governing the linearized dynamics on M as Vjk =
330
+ eλkjτ, i.e.,
331
+ V =
332
+
333
+ ������
334
+ 1
335
+ 1
336
+ . . .
337
+ 1
338
+ eλ1τ
339
+ eλ2τ
340
+ . . .
341
+ eλdτ
342
+ e2λ1τ
343
+ e2λ2τ
344
+ . . .
345
+ e2λdτ
346
+ ...
347
+ ...
348
+ ...
349
+ ...
350
+ e(p−1)λ1τ
351
+ e(p−1)λ2τ
352
+ . . .
353
+ e(p−1)λdτ
354
+
355
+ ������
356
+ .
357
+ (12)
358
+ Theorem 1. Under the assumptions of a generic observable function µ : Rn →
359
+ R and distinct eigenvalues λ1 ̸= . . . ̸= λd, the tangent space of the observable
360
+ manifold
361
+ ˜
362
+ M at the fixed point can be written
363
+ Tq ˜
364
+ M = range V .
365
+ (13)
366
+ Proof. See Appendix A.1.
367
+ This result is illustrated in Fig. 1. Note that the observable function must
368
+ have full rank, as spelled out in the following remark.
369
+ Remark 1. For (13) to hold, we must have
370
+ ∂µ
371
+ ∂zk |0 ̸= 0 ∀k ∈ {1, . . . , d}, which
372
+ defines the genericity of µ. If the gradient of the observable function is orthog-
373
+ onal to any of the eigenvectors e1, . . . , ed, the sampling map S will not be an
374
+ embedding of M.
375
+ 7
376
+
377
+ Manifold in full phase space
378
+ Manifold in delay embedding space
379
+
380
+ ����
381
+ 1
382
+ eλ1τ
383
+ e2λ1τ
384
+ ...
385
+
386
+ ����
387
+
388
+ ����
389
+ 1
390
+ eλ2τ
391
+ e2λ2τ
392
+ ...
393
+
394
+ ����
395
+ Sampling map
396
+ S : Rn → Rp
397
+ Tangent space
398
+ embedding DS(T0M)
399
+ x1
400
+ x2
401
+ x3,...,n
402
+ y1
403
+ y2
404
+ y3,...,p
405
+ M
406
+ T0M
407
+ ˜
408
+ M
409
+ Tq ˜
410
+ M
411
+ Figure 1: Delay embedding of the tangent space T0M of an invariant manifold
412
+ M. The full state space manifold M (left) has a diffeomorphic copy
413
+ ˜
414
+ M in the
415
+ observable space (right) by Takens’s theorem. The shape of the reconstructed
416
+ manifold
417
+ ˜
418
+ M depends on the flow map, but its tangent space, Tq ˜
419
+ M, is directly
420
+ given by the eigenvalues at the fixed point, independent of the geometry of M
421
+ and the observable function µ.
422
+ This should be kept in mind particularly when dealing with symmetries of
423
+ engineering structures, as we will show in our examples below.
424
+ Theorem 2. The columns of V are eigenvectors of the linearized delay-embedded
425
+ system at the fixed point. Indeed, the dynamics in the observable space can be
426
+ written
427
+ ˙y = V ΛV †(y − q) + o(|y − q|)
428
+ (14)
429
+ Proof. See Appendix A.2.
430
+ Corollary 1. In the observable space Rp, the timelag τ and the eigenvalues
431
+ λk fully determine the tangent space and the linear part of the dynamics. In
432
+ particular, the linear dynamics are independent of both the full eigenvectors and
433
+ the observable function.
434
+ In the following, we will demonstrate how this structure can be exploited for
435
+ parametrizing spectral submanifolds from data, when the corresponding eigen-
436
+ values are approximately known.
437
+ Finally, when the observable function is multi-dimensional, the tangent space
438
+ is influenced by the relative dependency of each component µℓ of the observable
439
+ function on each modal coordinate zk.
440
+ Theorem 3. For a multidimensional observable µ : Rn → Rq with components
441
+ 8
442
+
443
+ µ1, . . . , µq, the tangent space Tq ˜
444
+ M ⊂ Rpq can be expressed as
445
+ Tq ˜
446
+ M = range
447
+
448
+ ����
449
+ V diag
450
+
451
+ ∂µ1
452
+ ∂z
453
+ ���
454
+ 0
455
+
456
+ ...
457
+ V diag
458
+
459
+ ∂µq
460
+ ∂z
461
+ ���
462
+ 0
463
+
464
+
465
+ ���� .
466
+ (15)
467
+ Proof. See Appendix A.3.
468
+ When the observable function is a set of displacements, the linearized multi-
469
+ dimensional observable function
470
+ ∂µ
471
+ ∂z
472
+ ���
473
+ 0 corresponds to the mode shapes of the
474
+ system in terms of those displacements.
475
+ Therefore, if the mode shapes and
476
+ eigenvalues of the observed system are known, we can directly compute the
477
+ tangent space of ˜
478
+ M. In the special case of a scalar observable, the tangent space
479
+ is independent of the observable function and we do not need any information
480
+ about the mode shapes.
481
+ 3.2
482
+ Delay-embedded spectral submanifold reconstruction
483
+ These theoretical results can be exploited as a constraint to aid SSM identi-
484
+ fication from data. In the case of a scalar signal and with the eigenvalues of
485
+ interest λ1, . . . , λd approximately known, we select the matrix representation of
486
+ the tangent space T appearing in (3) as the Vandermonde matrix (12), i.e.,
487
+ T := V .
488
+ (16)
489
+ We have seen that the gradient of a multi-dimensional observable func-
490
+ tion µ enters the expression for the tangent space (15).
491
+ While an expres-
492
+ sion for this gradient is typically not available in experiments, mode shapes
493
+ ˆE = [ˆe1, . . . , ˆed] ∈ Rq×d are often known from theory or obtained experimen-
494
+ tally. Here, each mode shape ˆek ∈ Rq describes how the eigenvector ek ∈ Rn is
495
+ observed. Specifically, they are related by
496
+ ˆek = ck
497
+ ∂µ
498
+ ∂x
499
+ ����
500
+ 0
501
+ ek,
502
+ (17)
503
+ where ck ∈ C is a nonzero constant that only rescales the eigenvectors. We
504
+ select T as the columnwise Kronecker product of the Vandermonde matrix and
505
+ the observable mode shapes, i.e.,
506
+ T :=
507
+
508
+ ��
509
+ V diag (ˆe1)
510
+ ...
511
+ V diag (ˆed)
512
+
513
+ �� .
514
+ (18)
515
+ A sketch of the geometry is shown in Fig. 2. In the case of unknown mode
516
+ shapes, it may be possible to first project low-amplitude data onto the delay-
517
+ embedded eigenvectors and then extract the observable mode shapes via SVD,
518
+ although we do not explore this idea further in this work.
519
+ 9
520
+
521
+ q
522
+ µ1(x(t + τ))
523
+ µ1(x(t))
524
+ µ2(x(t))
525
+ V
526
+ ˆE
527
+ T
528
+ ˜
529
+ M ⊂ Rpq
530
+ Figure 2: The tangent space Tq ˜
531
+ M of the delay-embedded manifold
532
+ ˜
533
+ M for a
534
+ q-dimensional observable function µ is the range of the matrix T , defined as the
535
+ columnwise Kronecker product of the Vandermonde matrix V and the mode
536
+ shapes ˆE in terms of the observable.
537
+ Prescribing T and projecting the data onto its columns yields modal reduced
538
+ coordinates. This diagonalization of the system simplifies the learning of the
539
+ geometry and the reduced dynamics of the SSM via the algorithm outlined in
540
+ Sect. 2.2.
541
+ Choosing proper delay-embedding parameters to reconstruct nonlinear sys-
542
+ tems can be a challenge. For the linear part of the system, however, our results
543
+ suggest picking the timelag τ and embedding dimensionality p so as to obtain
544
+ numerically favorable reduced coordinates along the SSM. We ideally want the
545
+ columns of the Vandermonde matrix (12) to be orthogonal in order to maxi-
546
+ mize the signal-to-noise ratio in each of the observed modes. To this end, we
547
+ formulate a minimization problem,
548
+ (κ⋆, p⋆) = argmin
549
+ κ,p∈N+
550
+ ��V (κ∆t, p)⊤V (κ∆t, p) − I
551
+ ��
552
+ F ,
553
+ (19)
554
+ in which the columns of V are normalized and ∥·∥F denotes the Frobenius norm.
555
+ Since the timelag is an integer multiple of the sampling timestep, τ = κ∆t, (19)
556
+ defines an optimization over a set of discrete variables which can be solved
557
+ simply by brute force.
558
+ Bearing in mind the nonlinear part of the system, however, an optimal choice
559
+ of delay parameters is not as straightforward. Increasing the timelag and em-
560
+ bedding dimension tends to curve the SSM, requiring higher orders of approx-
561
+ 10
562
+
563
+ imation and in extreme cases folding the manifold, so that it can no longer be
564
+ parametrized as a graph. Taking into account the nonlinear part of the SSM
565
+ reconstruction, therefore, we typically want the total delay embedding to be as
566
+ small as possible. While solving (19) gives some guidance, a suitable choice of τ
567
+ and p will also depend on the nonlinearity of the system in the data range and
568
+ the amount of signal noise.
569
+ 4
570
+ Applications
571
+ We now apply our method to three datasets: two from simulations and one from
572
+ experiments. The eigenvalues in these examples are known either from theory
573
+ or simulations. We infer the delay-embedded tangent space accordingly before
574
+ parametrizing the SSM. The examples include an oscillator chain, a clamped-
575
+ clamped beam and tank sloshing.
576
+ 4.1
577
+ Two-degree-of-freedom oscillator with nonlinear springs
578
+ As our first example, we consider an oscillator chain of two masses, both at-
579
+ tached with linear springs to each other and to the ground. In addition, the
580
+ spring connecting the left mass to the ground has a quadratic softening non-
581
+ linearity and the spring connecting the masses is of cubic hardening type. The
582
+ masses and linear spring stiffnesses are set to 1, the softening parameter is −2
583
+ and the hardening parameter is 1. Each of the springs also has a linear damp-
584
+ ing coefficient of 0.03. Fig. 3a shows the configuration. The sampling time is
585
+ ∆t = 0.1 s.
586
+ m
587
+ x1(t)
588
+ k, κ
589
+ c
590
+ m
591
+ x2(t)
592
+ k, γ
593
+ c
594
+ k
595
+ c
596
+ (a)
597
+ -0.5
598
+ 0.5
599
+ 0
600
+ -0.5
601
+ x4
602
+ 0.5
603
+ 0
604
+ 0
605
+ x1
606
+ x3
607
+ 0.5 -0.5
608
+ M
609
+ Data
610
+ Re E1
611
+ Im E1
612
+ T0M
613
+ (b)
614
+ 0.5
615
+ -0.5
616
+ 0.5
617
+ 0
618
+ 0
619
+ x1(t)
620
+ x1(t + 30"t)
621
+ 0.5
622
+ 0
623
+ x1(t + 15"t)
624
+ -0.5
625
+ -0.5
626
+ ~
627
+ M
628
+ Data
629
+ Re V1
630
+ Im V1
631
+ T0 ~
632
+ M
633
+ (c)
634
+ Figure 3: (a) Setup for the two-degree-of-freedom oscillator example with two
635
+ nonlinear springs. (b) The slow 2D SSM (gray) in the full state space, along
636
+ with its tangent space (red). (c) The delay-embedded SSM in the observable
637
+ space.
638
+ We compute an initial condition on the slow 2D SSM for the single training
639
+ trajectory using SSMTool. Our observable function is the first mass displace-
640
+ ment, µ(x) = x1. The trajectory in the full phase space and the SSM are shown
641
+ in Fig. 3b. The first two eigenvectors span the tangent space of the SSM.
642
+ 11
643
+
644
+ Next, we delay embed the trajectory with a timelag τ = 15∆t and embedding
645
+ dimension p = 5, and seek the 2D SSM in this observable space using fastSSM.
646
+ We obtain reduced coordinates by projection of the trajectory data onto the
647
+ columns of the Vandermonde matrix V as predicted by our theory.
648
+ Fig. 3c
649
+ shows the SSM in the first three coordinates of the observable space. Indeed,
650
+ the tangent space of this observable space is identical to the column space of
651
+ V .
652
+ 0.5
653
+ -0.5
654
+ 0.5
655
+ 0
656
+ 0
657
+ x2(t)
658
+ x2(t + 30"t)
659
+ 0.5
660
+ 0
661
+ x2(t + 15"t)
662
+ -0.5
663
+ -0.5
664
+ ~
665
+ M
666
+ Data
667
+ Re V1
668
+ Im V1
669
+ T0 ~
670
+ M
671
+ (a)
672
+ 0.5
673
+ -0.5
674
+ 0
675
+ 0
676
+ x3(t) + x4(t)
677
+ x3(t + 30"t) + x4(t + 30"t)
678
+ 0.5
679
+ 0.5
680
+ x3(t + 15"t) + x4(t + 15"t)
681
+ 0
682
+ -0.5
683
+ -0.5
684
+ ~
685
+ M
686
+ Data
687
+ Re V1
688
+ Im V1
689
+ T0 ~
690
+ M
691
+ (b)
692
+ -0.2
693
+ -0.15
694
+ -0.1
695
+ -0.05
696
+ 0
697
+ 0.05
698
+ 0.1
699
+ 0.15
700
+ !x1(t + 30"t) + x2(t + 30"t)
701
+ -0.2
702
+ 0.1
703
+ -0.1
704
+ !x1(t) + x2(t)
705
+ 0
706
+ !x1(t + 15"t) + x2(t + 15"t)
707
+ 0
708
+ -0.1
709
+ 0.1
710
+ -0.2
711
+ Data
712
+ (c)
713
+ Figure 4: (a,b) Changing the observable function leads to different SSM geome-
714
+ tries, but the tangent space remains the same as in Fig. 3c. (c) A nongeneric
715
+ observable function however, observing only the second mode, does not embed
716
+ the manifold.
717
+ Corollary 1 predicts that this tangent space will be independent of the ob-
718
+ servable function, provided that it is generic. To illustrate this, we plot the
719
+ delay-embedded SSM for various observable functions, µ(x) = x1 (Fig. 3c),
720
+ µ(x) = x2 (Fig. 4a), and µ(x) = ˙x1 + ˙x2 (Fig. 4b). These different observable
721
+ functions clearly produce different SSM geometries, but the eigenvectors and
722
+ tangent spaces of the manifolds all agree.
723
+ One exception is when we observe the distance between the masses, µ(x) =
724
+ x2 − x1 (Fig. 4c). In this case, the delay-embedded trajectory no longer lies on
725
+ an invariant manifold, as is evident by the nonsmooth cusp in the data at the
726
+ origin. The reason is that this observable is non-generic precisely in the sense
727
+ of our theory; it coincides with the mode shape of the second, fast mode of the
728
+ full system. This means that the observable function acts orthogonally to the
729
+ slow SSM at the fixed point and thus the delay mapping is not an embedding,
730
+ by Remark 1.
731
+ Next, we pick µ(x) = x2 and use fastSSM to approximate the cubic order
732
+ reduced dynamics on the SSM from the data.
733
+ Computing the normal form
734
+ yields
735
+ � ˙ρ1
736
+ ˙θ1
737
+
738
+ =
739
+ � −0.0014 ρ13 − 0.0148 ρ1
740
+ 1.0025 − 0.0919 ρ12
741
+
742
+ .
743
+ (20)
744
+ The trajectory projected onto the columns of V is shown in Fig. 5a. Integrating
745
+ the obtained normal form and mapping back to the observable space yields a
746
+ good reconstruction of the training data.
747
+ Finally, following Theorem 3, we demonstrate how to determine the tangent
748
+ 12
749
+
750
+ -0.1
751
+ 0
752
+ 0.1
753
+ Re(V yy)
754
+ -0.1
755
+ 0
756
+ 0.1
757
+ Im(V yy)
758
+ (a)
759
+ 0
760
+ 500
761
+ 1000
762
+ 1500
763
+ 2000
764
+ time
765
+ -0.2
766
+ 0
767
+ 0.2
768
+ 0.4
769
+ x2(t)
770
+ Simulation
771
+ Prediction
772
+ (b)
773
+ 0.4
774
+ 0.2
775
+ -0.2
776
+ 0
777
+ x1(t)
778
+ 0
779
+ 0.5
780
+ x2(t + 15"t)
781
+ 0.2
782
+ -0.2
783
+ 0.4
784
+ x1(t + 15"t)
785
+ 0
786
+ -0.4
787
+ -0.5
788
+ ~
789
+ M
790
+ Data
791
+ Re V1
792
+ Im V1
793
+ T0 ~
794
+ M
795
+ (c)
796
+ Figure 5: (a) Projection of the data onto the delay-embedded tangent space
797
+ predicted by our theory. (b) fastSSM predicts a model that successfully recon-
798
+ structs the decay of the trajectory. (c) A view of the SSM in a delay-embedded
799
+ space from a multi-dimensional observable, with the tangent space predicted by
800
+ our theory.
801
+ space of the SSM at the fixed point when the observable is a vector. When
802
+ we choose µ(x) = [x1, x2]⊤, unlike for a scalar observable function, the tangent
803
+ space orientation is influenced not only by the eigenvalues, but also by the shape
804
+ of the first mode. This first mode shape corresponds to the masses moving in
805
+ unison, i.e.
806
+ ˆe1 = ˆe2 =
807
+ � 1
808
+ 1
809
+
810
+ .
811
+ (21)
812
+ Then, by (18), we obtain vectors spanning the tangent space as the columns of
813
+ the matrix
814
+ T =
815
+ � V diag(ˆe1)
816
+ V diag(ˆe2)
817
+
818
+ =
819
+ � V
820
+ V
821
+
822
+ ,
823
+ (22)
824
+ where V is the Vandermonde matrix (12). A view of the SSM and its tangent
825
+ space in this 10-dimensional observable space is shown in Fig. 5c.
826
+ The relation of this mode shape to the observable function is given by (17).
827
+ In particular, we can compute the derivative of the observable function with
828
+ respect to the modal coordinates as
829
+
830
+ ∂µ1
831
+ ∂z1 (0)
832
+ ∂µ1
833
+ ∂z2 (0)
834
+ ∂µ2
835
+ ∂z1 (0)
836
+ ∂µ2
837
+ ∂z2 (0)
838
+
839
+ =
840
+ � c1
841
+ c2
842
+ c1
843
+ c2
844
+
845
+ ,
846
+ (23)
847
+ where c1, c2 ∈ C are nonzero constants depending on the scaling of the eigen-
848
+ vectors.
849
+ For simplicity, in (21) we chose c1 = c2 = 1, such that T is the
850
+ Vandermonde matrix vertically stacked twice.
851
+ 4.2
852
+ 6D SSM in a nonlinear finite-element model of a beam
853
+ We train an SSM-reduced model with data from numerical simulations of a
854
+ finite-element (FE) representation of a clamped-clamped von K´arm´an nonlinear
855
+ beam [66]. This example was previously studied in Refs. [31, 37], which identified
856
+ 13
857
+
858
+ the slowest 2D SSM in the delay-embedded observable space, predicted the
859
+ forced response and analyzed the radius of convergence of the analytical normal
860
+ form.
861
+ Here, thanks to our results on the tangent spaces of delay-embedded
862
+ SSMs, we can extend the analysis to the six-dimensional SSM emanating from
863
+ the three slowest modes of the linear part of the system.
864
+ Each node in the FE model has three degrees of freedom: axial deformation
865
+ u, transverse deflection w, and rotation w′. The von K´arm´an axial strain is
866
+ given by
867
+ ϵ11 = u′(x) + 1
868
+ 2 (w′(x))2 − zw′′(x).
869
+ (24)
870
+ The axial stress is given by
871
+ σ = Eϵ11 + c˙ϵ11,
872
+ (25)
873
+ where E = 70 GPa denotes the Young’s modulus and c = 1.0 × 106 Pa · s the
874
+ material rate of viscous damping. Based on a convergence analysis, we set the
875
+ number of elements to 12, resulting in a 33-degree of freedom mechanical system,
876
+ i.e., a 66-dimensional phase space. We set the beam length to 1000 mm, width
877
+ 50 mm, and thickness 20 mm. The sampling time is ∆t = 0.0955 s.
878
+ w(t)
879
+ w(t)
880
+ w(t)
881
+ Figure 6: von K´arm´an beam: schematic first, second, and third mode shapes.
882
+ The scalar observable must be generic in the sense that it must have contri-
883
+ butions from all modes of interest. For instance, the midpoint displacement
884
+ is not excited by the second mode. Instead, we choose the shown transverse
885
+ displacement at 1/4 of the beam length.
886
+ By Remark 1, the observable function µ must have significant contributions
887
+ from all modes zk that we wish to model. For example, the midpoint displace-
888
+ ment chosen as observable function in Refs. [31, 37] was sufficient to model the
889
+ 2D SSM, but cannot be employed for higher-dimensional SSMs. This is be-
890
+ cause the antisymmetric shape of the second mode has zero displacement at the
891
+ 14
892
+
893
+ midpoint (see Fig. Figure 6), i.e.
894
+ ∂µ
895
+ ∂z3
896
+ (0) = ∂µ
897
+ ∂z4
898
+ (0) = 0.
899
+ (26)
900
+ Instead, we choose the transverse displacement of the beam at one fourth of the
901
+ total length, µ = w(l/4), as this degree of freedom has nonzero contributions
902
+ from all three mode shapes.
903
+ For our data-driven modeling objectives, we need training data containing
904
+ the first three modes. To generate initial conditions for such trajectories, we
905
+ use linear combinations of the mode shapes of the system computed from its
906
+ linear part. Since the SSM is normally attracting, these trajectories will quickly
907
+ approach it and we can use them to train our reduced-order model. With this
908
+ method, we produce three trajectories close to the 6D SSM with different ini-
909
+ tial conditions, of which we use two as training data and one as test data. For
910
+ validation purposes, we also pick the individual mode shapes as initial condi-
911
+ tions and use as test data. The individual modal contributions in these initial
912
+ conditions were chosen as follows:
913
+ Initial
914
+ Mode
915
+ Type
916
+ condition
917
+ 1
918
+ 2
919
+ 3
920
+ 1
921
+ 1
922
+ 0
923
+ 0
924
+ Test
925
+ 2
926
+ 0
927
+ 1
928
+ 0
929
+ Test
930
+ 3
931
+ 0
932
+ 0
933
+ 1
934
+ Test
935
+ 4
936
+ 0.8
937
+ -0.8
938
+ 0.8
939
+ Train
940
+ 5
941
+ -0.1
942
+ 0.8
943
+ 0.8
944
+ Train
945
+ 6
946
+ -0.6
947
+ -0.2
948
+ -0.8
949
+ Test
950
+ We choose the delay embedding parameters guided by the observations in
951
+ Sect. 3.2.
952
+ Setting κ = 1 such that the timelag τ = ∆t and the embedding
953
+ dimension to p = 50 gives a local optimum of the function (19) with the com-
954
+ puted eigenvalues, while still keeping the maximal delay κp moderate to prevent
955
+ folding of the embedding.
956
+ Fig. 7a shows the delay embedding of the single-mode trajectories 1-3, cor-
957
+ responding to the first three modes, in three of the 50 delay coordinates. These
958
+ trajectories visualize the orientations of the corresponding eigenspaces in the
959
+ observable space. Indeed, minimization of (19) corresponds to making these
960
+ planes orthogonal, simplifying their identification.
961
+ Fig. 7b similarly displays the delay embedding of the first training trajectory
962
+ along with a visualization of the columns of the Vandermonde matrix as vectors.
963
+ Our delay theory predicts that projection of the data onto these vectors yields
964
+ modal coordinates, as shown in Fig. 7c. This space will serve as the reduced
965
+ coordinates of the SSM.
966
+ After projection onto these eigenvectors, we approximate the geometry of the
967
+ 6D SSM with a 3rd order polynomial. For the reduced dynamics in fastSSM, we
968
+ also use a 3rd order approximation. We compute the normal form of this reduced
969
+ dynamics up to 7th order and obtain our model for the reduced dynamics. The
970
+ 15
971
+
972
+ w(t + 16"t)
973
+ w(t)
974
+ w(t + 8"t)
975
+ Mode 1
976
+ Mode 2
977
+ Mode 3 (#2)
978
+ (a)
979
+ w(t + 16"t)
980
+ w(t)
981
+ w(t + 8"t)
982
+ Traj. 4
983
+ Re V1
984
+ Re V3
985
+ Re V5
986
+ (b)
987
+ (V yy)2
988
+ (V yy)3
989
+ (V yy)1
990
+ Projection of traj. 4 onto V
991
+ (c)
992
+ Figure 7: (a) The trajectories with single modal contributions visualize the
993
+ modal subspaces in the delay-embedded space. The third mode data has been
994
+ scaled by a factor 2 to increase visibility. (b) The same delay-embedded view
995
+ of the first training trajectory, along with the delay-embedded eigenvectors. (c)
996
+ After projection of this trajectory onto the eigenvectors, the modal structure
997
+ becomes clear.
998
+ terms up to third order in polar form are found by fastSSM to be of the form
999
+
1000
+
1001
+
1002
+
1003
+
1004
+
1005
+
1006
+
1007
+ ˙ρ1
1008
+ ρ1 ˙θ1
1009
+ ˙ρ2
1010
+ ρ2 ˙θ2
1011
+ ˙ρ3
1012
+ ρ3 ˙θ3
1013
+
1014
+
1015
+
1016
+
1017
+
1018
+
1019
+
1020
+
1021
+ =
1022
+
1023
+
1024
+
1025
+
1026
+
1027
+
1028
+
1029
+
1030
+ 0.3058 ρ13 + 2.088ρ1 ρ22 − 3.091ρ1
1031
+ 102.0 ρ13 + 82.70 ρ22ρ1 + 657.2ρ1
1032
+ −2.705 ρ12ρ2 + 1.723 ρ23 − 23.72ρ2
1033
+ 95.64 ρ12ρ2 + 115.6 ρ23 + 1812ρ2
1034
+ −8.968ρ3 ρ12 − 13.27ρ3 ρ22 − 88.47ρ3
1035
+ 115.9 ρ12ρ3 + 85.04 ρ22ρ3 + 3558ρ3
1036
+
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+
1044
+ + O(5).
1045
+ (27)
1046
+ We transform the initial conditions from the observable space to the normal
1047
+ form and integrate our model to predict signal decay. This produces a normal-
1048
+ ized mean trajectory error (as defined in [31]) of 2.2 % on the test data. Some
1049
+ of the predictions are shown in Fig. 8.
1050
+ 0
1051
+ 0.05
1052
+ 0.1
1053
+ 0.15
1054
+ 0.2
1055
+ time [s]
1056
+ -5
1057
+ 0
1058
+ 5
1059
+ u [m]
1060
+ #10-3
1061
+ Training data
1062
+ Reconstruction
1063
+ (a)
1064
+ 0
1065
+ 0.05
1066
+ 0.1
1067
+ 0.15
1068
+ 0.2
1069
+ time [s]
1070
+ -5
1071
+ 0
1072
+ 5
1073
+ u [m]
1074
+ #10-3
1075
+ Test data
1076
+ Reconstruction
1077
+ (b)
1078
+ 0
1079
+ 0
1080
+ 1
1081
+ 0.5
1082
+ ;3
1083
+ ;2
1084
+ ;1
1085
+ 0.5
1086
+ 0.5
1087
+ 1
1088
+ 0
1089
+ 1
1090
+ Traj. 1
1091
+ Traj. 2
1092
+ Traj. 3
1093
+ Traj. 4
1094
+ Traj. 5
1095
+ Traj. 6
1096
+ (c)
1097
+ Figure 8: (a,b) Predictions from fastSSM for the decaying trajectories 5 and 6
1098
+ (c) Phase portrait of the trajectories after transformation to the normal form.
1099
+ We also visualize our reduced-order model by plotting the instantaneous
1100
+ frequency and damping as predicted by the normal form (27) for varying ampli-
1101
+ tudes of mode 1 and 2. For instance, our model predicts hardening of the first
1102
+ 16
1103
+
1104
+ mode with respect to both the first and the second modal amplitudes (Fig. 9a),
1105
+ a decrease in the instantaneous damping of mode 1 with respect to mode 2
1106
+ (Fig. 9b), and independence of the third instantaneous frequency with respect
1107
+ to itself (Fig. 9c). The predictions for each of the trajectories are included for
1108
+ reference.
1109
+ 650
1110
+ 1
1111
+ 700
1112
+ 1
1113
+ _31
1114
+ 750
1115
+ ;2
1116
+ 0.5
1117
+ ;1
1118
+ 800
1119
+ 0.5
1120
+ 0
1121
+ 0
1122
+ (a)
1123
+ -3
1124
+ 1
1125
+ -2
1126
+ 1
1127
+ _;1=;1
1128
+ ;2
1129
+ 0.5
1130
+ -1
1131
+ ;1
1132
+ 0.5
1133
+ 0
1134
+ 0
1135
+ (b)
1136
+ 3550
1137
+ 1
1138
+ 3600
1139
+ 1
1140
+ _33
1141
+ ;3
1142
+ 0.5
1143
+ 3650
1144
+ ;1
1145
+ 0.5
1146
+ 0
1147
+ 0
1148
+ (c)
1149
+ Figure 9: Visualization of the normal form (27) with the trajectories for (a)
1150
+ instantaneous frequency and (b) damping of mode 1, as well as (c) frequency of
1151
+ mode 3.
1152
+ 4.3
1153
+ Multimodal sloshing of water in a tank
1154
+ 4
1155
+ B. B¨auerlein and K. Avila
1156
+ Figure 2. Sketch of the experiment. A motor (a) drives an eccentric disk which converts the
1157
+ rotary motion of the motor via a pushing rod (b) into a quasi-harmonic horizontal oscillation of
1158
+ the platform. A positioning sensor (c) directly records the motion of the platform on which
1159
+ the tank (d), two high speed cameras (e) and an USB-camera (f) are mounted. For the
1160
+ PIV measurements a light sheet (g) is provided by a laser passing through a cylinder lens
1161
+ (implemented in the stationary laser guiding arm).
1162
+ dynamics. We find that neither the exact surface shape, nor the frequency spectrum
1163
+ are useful to determine the nonlinear resonance maxima. The key indicator is the
1164
+ phase-lag between driving and response. We systematically investigate the role of initial
1165
+ conditions, characterise the sloshing amplitude with the motion of the liquid’s centre
1166
+ of mass and directly measure the damping coefficient. The results obtained with our
1167
+ approach are compared to common approaches used in the literature. The paper is
1168
+ structured as follows. In the next section, we describe the experimental methods and in
1169
+ §3 the quantitative characterisation of the sloshing phenomena. In §4 and §5, the Duffing
1170
+ and multimodal model of sloshing are respectively described and briefly compared to
1171
+ our measured data. Detailed measurements of large-amplitude sloshing are presented
1172
+ in §6 with focus on the nonlinear dynamics of the system, including multiplicity and
1173
+ competition of several flow states. The experimental response curves obtained for several
1174
+ amplitudes are presented and compared to the Duffing and multimodal model in §7. An
1175
+ assessment of the strengths and weakness of these models in capturing the experimentally
1176
+ measured response is given in §8 before the conclusion in §9.
1177
+ 2. Methods
1178
+ Our experiments were performed in a rectangular container subjected to harmonic
1179
+ horizontal excitation. As illustrated in figure 1, the flow is quasi-two-dimensional. Slosh-
1180
+ ing waves reaching from a quasi-planar surface, up to run-up at the tank walls and
1181
+ wave-breaking were investigated. A distinct feature of the sloshing waves in an oscillated
1182
+ (or pitched) tank is their asymmetric shape leading to an oscillation of the liquid’s
1183
+ centre of mass (shown as a red dot in figure 1). Many fundamental studies consider
1184
+ sloshing in wavemaker tanks (Taylor 1953; Fultz 1962; Chester 1968a). A key difference
1185
+ between oscillated and wavemaker tanks is that in the latter the primary resonant mode
1186
+ is symmetric and the liquid’s centre of mass is steady in the lateral direction.
1187
+ 2.1. Experimental setup
1188
+ A sketch of our experimental setup is shown in figure 2. The tank (width w = 500 mm,
1189
+ depth l = 50 mm) is mounted on a platform and filled with water at room temperature
1190
+ (a)
1191
+ 0
1192
+ 100
1193
+ 200
1194
+ 300
1195
+ 400
1196
+ 500
1197
+ x [mm]
1198
+ Mode 1
1199
+ Mode 2
1200
+ Mode 3
1201
+ Mode 4
1202
+ (b)
1203
+ Figure 10: (a) Experimental setup for tank sloshing (adapted from [67]) (b) The
1204
+ first four sloshing mode shapes.
1205
+ For our final example, we apply our results to sloshing experiments. Sloshing
1206
+ models have a wide range of industrial applications, including fluid container
1207
+ interaction with ship motion [68], road transportation of fluids [69], damping
1208
+ devices in towers [70], and fuel tank design in spacecraft [71, 72].
1209
+ A tank
1210
+ partially filled with water exhibits several nonlinear phenomena under horizontal
1211
+ harmonic excitation [73]. On the one hand, intensified fluid motion can alter
1212
+ the instantaneous damping and frequency of the first sloshing mode [74]. On
1213
+ the other hand, increasing the amplitude further activates several nonlinearly
1214
+ coupled modes of the system and gives rise to a range of different wave motions
1215
+ [75, 76].
1216
+ 17
1217
+
1218
+ Our training data comes from experiments described in Ref. [67] with a rect-
1219
+ angular tank of width w = 500 mm and thickness 50 mm, partially filled with
1220
+ water up to a height of h = 400 mm. The tank was attached to a horizon-
1221
+ tally moving platform harmonically excited by a motor at different frequencies.
1222
+ Then, once the system had reached a steady state, the motor was turned off.
1223
+ Depending on the forcing frequency, this periodic response exhibited planar,
1224
+ wave-breaking, or three-periodic motion. The three-periodic forced state was
1225
+ characterized by an increase in the response amplitude every third forcing cycle,
1226
+ while the wave-breaking response was defined as overturning of the water close
1227
+ to the walls [67]. A camera detected the surface profile h with the sampling
1228
+ time ∆t = 0.01 s. Figure 10a displays the experimental setup.
1229
+ While previous work successfully captured the dynamics of the main sloshing
1230
+ mode using a 2D SSM for the center of mass signal [31] and the full surface
1231
+ profile [37], here, we model the decay from a multimodal state by identifying
1232
+ a 6D SSM, corresponding to the nonlinear extension of the three dominant
1233
+ oscillatory modes. We train on three decaying measurements: Trajectory 1 and
1234
+ 2 start at a three-periodic state, and Trajectory 3 starts at a wave-breaking
1235
+ state.
1236
+ The observable vector µ is the surface profile measured at 1 771 points along
1237
+ the tank width. Since this function is multi-dimensional, in order to apply our
1238
+ theory on delay-embedded tangent spaces, we need an estimate of the eigen-
1239
+ values and linear mode shapes in our observable. The eigenfrequencies can be
1240
+ computed from potential theory [74] as
1241
+ ωk =
1242
+
1243
+
1244
+ w k tanh
1245
+
1246
+ πk h
1247
+ w
1248
+
1249
+ ,
1250
+ (28)
1251
+ which scales approximately with the square root of the mode number k for
1252
+ our configuration.
1253
+ The first five eigenfrequencies are [7.80, 11.1, 13.6, 15.7,
1254
+ 17.6] rad/s, with an approximate 1:2 resonance between frequencies 1 and 4.
1255
+ The mode shapes by the same theory are
1256
+ ˆek = cos(kx/w),
1257
+ x ∈ [0, w],
1258
+ (29)
1259
+ shown in Fig. 10b. For the tangent space, in principle, we also need the lin-
1260
+ ear damping of each mode. In practice, this real part of the eigenvalues has
1261
+ very little influence on V for limited delay embedding and we pick the values
1262
+ [−0.05, −0.07, −0.08, −0.09, −0.1] based on previous fits of the first mode and
1263
+ the assumption of increasing damping with the mode number.
1264
+ Based on (19), we delay-embed the data with timelag τ = 5∆t and dimension
1265
+ p = 47.
1266
+ A projection of the delay-embedded data onto the eigenvectors T
1267
+ predicted by our theory appears to yield modal coordinates, as indicated in
1268
+ Fig. 11a.
1269
+ Consequently, the norm of these projections can be used as a heuristic mea-
1270
+ sure of the modal content in the signal. This procedure should be used with
1271
+ caution, since it does not take manifold curvature into account, but it can be
1272
+ 18
1273
+
1274
+ -200
1275
+ -2000
1276
+ 0
1277
+ 2000
1278
+ (T yy)3
1279
+ (T yy)1
1280
+ 0
1281
+ (T yy)2
1282
+ 0
1283
+ 200
1284
+ 2000
1285
+ -2000
1286
+ Projection of traj. 2 onto T
1287
+ (a)
1288
+ 0
1289
+ 10
1290
+ 20
1291
+ 30
1292
+ 40
1293
+ time [s]
1294
+ 0
1295
+ 1000
1296
+ 2000
1297
+ 3000
1298
+ Projected amplitude
1299
+ Mode 1
1300
+ Mode 2
1301
+ Mode 3
1302
+ Mode 4
1303
+ Mode 5
1304
+ (b)
1305
+ 0
1306
+ 5
1307
+ 10
1308
+ 15
1309
+ time [s]
1310
+ 0
1311
+ 100
1312
+ 200
1313
+ 300
1314
+ Projected amplitude
1315
+ Mode 1
1316
+ Mode 2
1317
+ Mode 3
1318
+ Mode 4
1319
+ Mode 5
1320
+ (c)
1321
+ Figure 11: (a) Projecting one of the trajectories onto the tangent space vec-
1322
+ tors unveils the modal structure.
1323
+ (b) By projecting the trajectory onto the
1324
+ eigenvectors and taking the absolute value, we can estimate the relative modal
1325
+ contributions in the signal (c) A zoomed-in view of (b) indicates that modes 1,
1326
+ 2, and 4 dominate.
1327
+ employed to provide an initial guess for the SSM dimension. In Fig. 11b, we
1328
+ plot the absolute value of the projection onto each modal subspace of T over
1329
+ time for Trajectory 2. This plot shows that the first mode dominates, while the
1330
+ zoomed-in view (Fig. 11c) indicates that the second and fourth modes appear to
1331
+ be the most prevalent of the higher modes throughout the decay. The third and
1332
+ fifth mode are present at first but quickly die out. All amplitudes are decaying
1333
+ except for the fourth mode, which instead initially grows. Based on this analy-
1334
+ sis, we will identify a 6D SSM emanating from the spectral subspace of modes
1335
+ 1, 2, and 4. This choice also takes SSM theory into account, by which the 1:2
1336
+ resonance requires that the modal subspace of the fourth mode is included in
1337
+ the spectral subspace of the SSM. We choose to start our training data after
1338
+ 1.2 s, as the third and fifth modal amplitudes are small thereafter and we expect
1339
+ the trajectory to lie sufficiently close to the SSM.
1340
+ With an SSM parametrization order m = 4, reduced dynamics order r = 3,
1341
+ and normal form order h = 3, we compute the SSM geomety and dynamics and
1342
+ integrate our reduced-order model to predict the decay from the various flow
1343
+ states. This yields a normalized mean trajectory error (NMTE) [31] of 2.6 %.
1344
+ fastSSM successfully detects and accounts for the internal resonance by adding
1345
+ phase-dependent terms to the computed normal form, which reads
1346
+ ˙ρ1
1347
+ ρ1 = −0.056 − 0.0069 sin(ψ − 0.26)ρ4 − 0.0015ρ2
1348
+ 4 − 0.039ρ2
1349
+ 2 + 0.023ρ2
1350
+ 1
1351
+ ˙θ1 = 7.78 + 0.0069 cos(ψ − 0.26)ρ4 + 0.040ρ2
1352
+ 4 + 0.016ρ2
1353
+ 2 − 0.82ρ2
1354
+ 1
1355
+ ˙ρ2
1356
+ ρ2 = −0.13 + 0.15ρ2
1357
+ 4 − 0.89ρ2
1358
+ 2 + 0.37ρ2
1359
+ 1
1360
+ ˙θ2 = 11.4 + 0.57ρ2
1361
+ 4 − 0.0085ρ2
1362
+ 2 − 2.2ρ2
1363
+ 1
1364
+ ˙ρ4
1365
+ ρ4 = −0.30 − 0.29ρ2
1366
+ 4 + 0.67ρ2
1367
+ 2 − 0.27 sin(ψ + 1.4)ρ2
1368
+ 1 + 1.2ρ2
1369
+ 1
1370
+ ˙θ4 = 15.9 − 0.085ρ2
1371
+ 4 + 1.2ρ2
1372
+ 2 + 0.27 cos(ψ + 1.4)ρ2
1373
+ 1 − 2.0ρ2
1374
+ 1
1375
+ (30)
1376
+ where ψ = θ4 − 2θ1 and the subscripts denote the corresponding mode number.
1377
+ Looking at the linear part, we see that the eigenfrequencies are well captured.
1378
+ 19
1379
+
1380
+ Good agreement between the experimentally measured surface profile eleva-
1381
+ tion at the tank’s leftmost point and the delay-embedded SSM-reduced predic-
1382
+ tion is shown for the first period-three initial state in Fig. 12a and the wave-
1383
+ breaking state in Fig. 12b. Further, our 6D reduced model can accurately predict
1384
+ the full surface profile decay, with snapshots shown in Figure 13.
1385
+ 0
1386
+ 5
1387
+ 10
1388
+ 15
1389
+ 20
1390
+ time
1391
+ -100
1392
+ 0
1393
+ 100
1394
+ 200
1395
+ hx=0 [mm]
1396
+ Original
1397
+ Reconstruction
1398
+ (a)
1399
+ 0
1400
+ 10
1401
+ 20
1402
+ 30
1403
+ 40
1404
+ time
1405
+ -100
1406
+ -50
1407
+ 0
1408
+ 50
1409
+ 100
1410
+ 150
1411
+ hx=0 [mm]
1412
+ Original
1413
+ Reconstruction
1414
+ (b)
1415
+ 0
1416
+ 0.2
1417
+ 0.4
1418
+ 0.6
1419
+ 0
1420
+ 0.8
1421
+ ;4
1422
+ ;1
1423
+ 0.5
1424
+ ;2
1425
+ 0.6
1426
+ 0.4
1427
+ 0.2
1428
+ 0
1429
+ Traj. 1
1430
+ Traj. 2
1431
+ Traj. 3
1432
+ (c)
1433
+ Figure 12: The prediction on the 6D SSM for the decay of (a) Trajectory 1 and
1434
+ (b) Trajectory 3. (c) Phase portrait of the amplitudes of the normal form coor-
1435
+ dinates on the SSM for each of the trajectories shows the modal contributions
1436
+ and development for different intial flow states.
1437
+ We project the training trajectories onto the SSM and transform them to
1438
+ the normal form in polar coordinates. The development of the amplitudes in the
1439
+ normal form are shown in Fig. 12c for each trajectory. This plot suggests that (i)
1440
+ the wave-breaking motion (Traj. 3) does not seem to have any significant content
1441
+ of the second mode, (ii) the amplitude of the fourth mode indeed increases after
1442
+ motor detachment, (iii) there is a small oscillation in these signals not captured
1443
+ by our model, which may be due to noise, insufficient separation of the modal
1444
+ subspaces, a mode outside our model, or some other phenomenon.
1445
+ 0
1446
+ 100
1447
+ 200
1448
+ 300
1449
+ 400
1450
+ 500
1451
+ x [mm]
1452
+ -100
1453
+ 0
1454
+ 100
1455
+ 200
1456
+ Elevation h [mm]
1457
+ t = 1:2 s
1458
+ Experiment
1459
+ Simulation
1460
+ 0
1461
+ 100
1462
+ 200
1463
+ 300
1464
+ 400
1465
+ 500
1466
+ x [mm]
1467
+ t = 1:77 s
1468
+ 0
1469
+ 100
1470
+ 200
1471
+ 300
1472
+ 400
1473
+ 500
1474
+ x [mm]
1475
+ t = 14:49 s
1476
+ Figure 13: The experimentally measured surface profile decay agrees with our
1477
+ 6D SSM model prediction for Trajectory 2.
1478
+ We note that the combined higher modal content in the signal is small -
1479
+ only about 10 % with respect to the first mode. This is because the data is
1480
+ decaying from steady states induced by forcing near the first eigenfrequency.
1481
+ Due to their symmetric shape, isolated forcing of the second and fourth modes
1482
+ is not possible with horizontal harmonic excitation. Nevertheless, we are able
1483
+ 20
1484
+
1485
+ to capture these smaller oscillations on the SSM. The key technology allowing
1486
+ this enhancement is the enforcement of the delay-embedded tangent space in
1487
+ our SSM reconstruction, based on the theoretical eigenfrequencies and mode
1488
+ shapes.
1489
+ Due to the small activation of the higher modes, our model is expected to be
1490
+ sensitive to noise. It is, however, stable with respect to changes in starting time,
1491
+ manifold order, and delay parameters. A more robust model can be obtained by
1492
+ decreasing the manifold dimension to 4, neglecting the relatively minor influence
1493
+ of the fourth mode, resulting in an average NMTE of 3.9 %. Here, since our
1494
+ objective was modal analysis of different flow states, we chose the more detailed
1495
+ 6D model.
1496
+ 5
1497
+ Conclusions
1498
+ We have shown that for a scalar observation of an invariant manifold tangent
1499
+ to a spectral subspace at a fixed point, the delay-embedded reconstruction of
1500
+ the tangent space is dependent only on the corresponding eigenvalues of the full
1501
+ system linearized at that point. In particular, we have proven that the columns
1502
+ of a Vandermonde matrix, given by repeated multiplication of the exponential
1503
+ of the eigenvalues times the timelag, are eigenvectors for the linearized system
1504
+ in the observable space. Therefore, the Vandermonde matrix diagonalizes the
1505
+ linear part of the delay-embedded dynamics. We have also shown that when sev-
1506
+ eral quantities are measured and delay-embedded simultaneously, the tangent
1507
+ space can be expressed given the Vandermonde matrix and the mode shapes
1508
+ expressed in the observable function components. These results hold for any
1509
+ invariant manifold tangent to a modal subspace with distinct eigenvalues, in-
1510
+ cluding, e.g., classic stable manifolds. Here, our focus was the application of
1511
+ this result to spectral submanifolds of hyperbolic fixed points.
1512
+ In an attempt to exploit this uncovered structure, we have shown that
1513
+ for data-driven SSM model reduction, when the eigenvalues are approximately
1514
+ known, we can analytically predict the tangent space of the embedded SSM
1515
+ a priori to achieve local modal decomposition and aid the reconstruction of the
1516
+ nonlinear reduced dynamics. We have found that even for small activation of
1517
+ higher modes, this trick helps modeling complex multimodal nonlinear dynam-
1518
+ ics on an SSM, which in turn allows for analysis of modal energy interchange
1519
+ and instantaneous frequencies.
1520
+ Our theory assumes a generic observable function, which we describe in
1521
+ more detail in our first and second example, and distinct eigenvalues. While
1522
+ the second assumption is a generic one in a mathematical sense, it is not always
1523
+ satisfied for engineering structures with symmetry. Vibrations in a square plate
1524
+ is an example where our theory would fail, as it has repeated eigenvalues. Using
1525
+ a vector-valued observable may help in differentiating between the modes in
1526
+ such a case. Further, while technically covered by the theory, possible practical
1527
+ difficulties related to the conditioning of the Vandermonde matrix include highly
1528
+ different or very similar eigenvalues, or eigenvalues of different stability type.
1529
+ 21
1530
+
1531
+ In our third example with data from experiments, we also devised a new
1532
+ heuristic scheme for using delay embedding to study modal contents in a signal.
1533
+ With this method, that served as an initial guess, we projected the data onto
1534
+ the respective prescribed modal subspaces, thereby implicitly assuming that the
1535
+ SSM of each mode is nearly flat. An interesting development of this idea would
1536
+ be its use as a filter, which could remove or keep certain frequencies in a signal.
1537
+ Another idea would be to use the tangent space condition as a verification or
1538
+ for iterative adjustment of the linear fit of the reduced dynamics. Finally, in
1539
+ analogy with a Fourier analysis, it would be possible to estimate both instanta-
1540
+ neous frequency and damping of a signal by singular value decomposition of the
1541
+ trajectory in delay coordinates followed by analysis of the Vandermonde matrix
1542
+ columns. This ties in with several other observations made in the literature; for
1543
+ example, for a linear system, these columns agree with the recently proposed
1544
+ notion of principal component trajectories [62]. Overall, we believe that our
1545
+ findings shed more light on delay-embedding invariant manifolds and selecting
1546
+ delay parameters in particular. For that reason, we expect these results to be
1547
+ of use for a wide range of data-driven methods.
1548
+ Acknowledgements
1549
+ We are grateful to Kerstin Avila and Bastian B¨auerlein (U. Bremen) for sharing
1550
+ their experimental surface profile data from Ref. [67] with us.
1551
+ A
1552
+ Appendix
1553
+ A.1
1554
+ Proof of Theorem 1
1555
+ Let M be a d-dimensional invariant manifold of (1) containing the origin of Rn.
1556
+ The tangent space of M at the origin can be written T0M = span {ek}k∈K,
1557
+ where K ⊂ {1, . . . , n} is an index set labeling the d eigenvectors ek spanning
1558
+ the spectral subspace from which the manifold is emanating. For example, for
1559
+ a stable manifold, K = {k : Re λk < 0}. We also assume that the eigenvalues
1560
+ in question are distinct, i ̸= k ⇔ λi ̸= λk, for i, k ∈ K.
1561
+ To simplify the notation, we transform the full state space to modal coor-
1562
+ dinates (11). We rewrite the observable function on the system x ∈ Rn as an
1563
+ observable on the modal coordinate system z ∈ Cn as ˆµ(z) = µ(Ez). We de-
1564
+ note by Φt = E ◦F t ◦E−1 the flow in Cn. Consider the sampling map in modal
1565
+ coordinates
1566
+ ˆS =
1567
+
1568
+ ������
1569
+ ˆµ
1570
+ ˆµ ◦ Φτ
1571
+ ˆµ ◦ Φ2τ
1572
+ ...
1573
+ ˆµ ◦ Φ(p−1)τ
1574
+
1575
+ ������
1576
+ : Cn → Rp,
1577
+ y = ˆS(z).
1578
+ (31)
1579
+ 22
1580
+
1581
+ Under the conditions of Takens’s embedding theorem, the delay embedding
1582
+ map Ψ = ˆS|M : M →
1583
+ ˜
1584
+ M is a smooth embedding with a smooth inverse
1585
+ Ψ−1 : ˜
1586
+ M → M, and Ψ(0) = q.
1587
+ In order to derive the tangent space Tq ˜
1588
+ M, we compute the derivative of the
1589
+ embedding at 0:
1590
+ DΨ(0) =
1591
+
1592
+ ����
1593
+ Dˆµ(0)
1594
+ Dˆµ(Φτ(0)) ◦ DΦτ(0)
1595
+ ...
1596
+ Dˆµ(Φ(p−1)τ(0)) ◦ DΦ(p−1)τ(0)
1597
+
1598
+ ���� =
1599
+
1600
+ ����
1601
+ Dˆµ(0)
1602
+ Dˆµ(0) ◦ eΛτ
1603
+ ...
1604
+ Dˆµ(0) ◦ eΛ(p−1)τ
1605
+
1606
+ ���� .
1607
+ (32)
1608
+ Now note that the jth component expressed in modal coordinates is
1609
+ Dˆµ(0) ◦ eΛjτ(z) =
1610
+
1611
+ k∈K
1612
+ ∂ˆµ
1613
+ ∂zk
1614
+ ����
1615
+ 0
1616
+ eλkjτzk,
1617
+ j ∈ {1, . . . , p}.
1618
+ (33)
1619
+ We define the Vandermonde matrix V of the d eigenvalues {λk}k∈K governing
1620
+ the linearized dynamics on M as Vjk = eλkjτ. We conclude that the tangent
1621
+ space of the observable manifold at the fixed point in modal coordinates can be
1622
+ written as
1623
+ Tq ˜
1624
+ M = {DΨ(0)z, z ∈ Cn} = range
1625
+
1626
+ V diag
1627
+ � ∂ˆµ
1628
+ ∂z
1629
+ ����
1630
+ 0
1631
+ ��
1632
+ = range V ,
1633
+ (34)
1634
+ where the diagonal matrix acts only as a rescaling of each component of z.
1635
+ Therefore, one matrix representation of the tangent space of the manifold in
1636
+ the observable space is V , which is independent both of the matrix E of full
1637
+ system eigenvectors and the observable function µ.
1638
+ Note that we must have
1639
+ ∂ ˆµ
1640
+ ∂zk |0 ̸= 0
1641
+ ∀k ∈ K, which defines the genericity of
1642
+ µ. In practice, this implies that the linearized observable function must contain
1643
+ contributions from all modal coordinates that we wish to model. In addition,
1644
+ note that for the embedding of the tangent space itself, i.e., the linear system,
1645
+ p = d suffices.
1646
+ A.2
1647
+ Proof of Theorem 2
1648
+ The flow on
1649
+ ˜
1650
+ M is
1651
+ ˜Φt = Ψ ◦ Φt ◦ Ψ−1.
1652
+ (35)
1653
+ We compute the ODE on
1654
+ ˜
1655
+ M, ˙y = ˜f(y), as
1656
+ ˜f = d
1657
+ dt
1658
+ ˜Φt = DΨ ◦ f ◦ Ψ−1,
1659
+ (36)
1660
+ where f is given by (11). The derivative of ˜f at the fixed point is, therefore,
1661
+ D ˜f(q) = DΨ(0) ◦ Λ ◦ DΨ−1(q) = V diag
1662
+ � ∂ˆµ
1663
+ ∂z
1664
+ ����
1665
+ 0
1666
+
1667
+ Λ diag
1668
+ � ∂ˆµ
1669
+ ∂z
1670
+ ����
1671
+ 0
1672
+ �−1
1673
+ V †
1674
+ = V ΛV †,
1675
+ (37)
1676
+ 23
1677
+
1678
+ where we used the commutative property of multiplication of diagonal matri-
1679
+ ces, which eliminates the linearized observable function terms, and the fact
1680
+ that DΨ−1(q) = diag
1681
+
1682
+ ∂ ˆµ
1683
+ ∂z
1684
+ ���
1685
+ 0
1686
+ �−1
1687
+ V † is well-defined. To see this, note that the
1688
+ derivative of the delay embedding map composed with its inverse
1689
+ DΨ(0) ◦ DΨ−1(q) = V diag
1690
+ � ∂ˆµ
1691
+ ∂z
1692
+ ����
1693
+ 0
1694
+
1695
+ diag
1696
+ � ∂ˆµ
1697
+ ∂z
1698
+ ����
1699
+ 0
1700
+ �−1
1701
+ V † = V V †,
1702
+ (38)
1703
+ maps all points in T0M to themselves, since V has full rank under the assump-
1704
+ tion of distinct eigenvalues {λk}k∈K.
1705
+ Taylor-expanding the ODE on
1706
+ ˜
1707
+ M in the observable space yields
1708
+ ˙y = D ˜f(q)(y − q) + o(|y − q|) = V ΛV †(y − q) + o(|y − q|).
1709
+ (39)
1710
+ Therefore, under the assumptions of a generic observable function and distinct
1711
+ eigenvalues, the tangent space Tq ˜
1712
+ M and the linearized dynamics D ˜f(q) in
1713
+ the observable space Rp are both fully determined by the timelag τ and the
1714
+ eigenvalues λk, k ∈ K.
1715
+ In the special case that M = Rn, if p ≥ 2n + 1, the entire phase space can
1716
+ be reconstructed. For a linear system, p = n suffices, and the delay embedding
1717
+ reduces to a linear operator.
1718
+ A.3
1719
+ Proof of Theorem 3
1720
+ For a vector-valued observable, µ : Rn → Rq, the delay embedding map reads
1721
+ Ψ =
1722
+
1723
+ ��
1724
+ Ψµ1
1725
+ ...
1726
+ Ψµq
1727
+
1728
+ �� : M → ˜
1729
+ M ⊂ Rpq,
1730
+ DΨ(0) =
1731
+
1732
+ ��
1733
+ DΨµ1(0)
1734
+ ...
1735
+ DΨµq(0)
1736
+
1737
+ �� ,
1738
+ (40)
1739
+ where Ψµℓ is the delay embedding map corresponding to the ℓth component of
1740
+ the observable function µ. The derivatives are given by
1741
+ DΨµℓ(0) = V diag
1742
+ � ∂ˆµℓ
1743
+ ∂z
1744
+ ����
1745
+ 0
1746
+
1747
+ .
1748
+ (41)
1749
+ In this case, the tangent space is not independent of the observable function.
1750
+ Instead, it is affected by the relative dependency of each component µℓ of the ob-
1751
+ servable function on each modal coordinate zk. The tangent space can, however,
1752
+ be expressed as
1753
+ Tq ˜
1754
+ M = range
1755
+
1756
+ ����
1757
+ V diag
1758
+
1759
+ ∂ ˆµ1
1760
+ ∂z
1761
+ ���
1762
+ 0
1763
+
1764
+ ...
1765
+ V diag
1766
+
1767
+ ∂ ˆµq
1768
+ ∂z
1769
+ ���
1770
+ 0
1771
+
1772
+
1773
+ ���� .
1774
+ (42)
1775
+ 24
1776
+
1777
+ References
1778
+ [1]
1779
+ J. L. Lumley. “The Structure of Inhomogeneous Turbulent Flows”. Atmo-
1780
+ spheric Turbulence and Radio Wave Propagation (1967), pp. 166–177.
1781
+ [2]
1782
+ J. Awrejcewicz, V. A. Krys’ko, and A. F. Vakakis. “Order Reduction
1783
+ by Proper Orthogonal Decomposition (POD) Analysis”. Nonlinear Dy-
1784
+ namics of Continuous Elastic Systems. Springer, Berlin, Heidelberg, 2004,
1785
+ pp. 279–320.
1786
+ [3]
1787
+ P. Schmid. “Dynamic mode decomposition of numerical and experimental
1788
+ data”. J. Fluid Mech. 656 (2010), pp. 5–28.
1789
+ [4]
1790
+ J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor. Dynamic
1791
+ Mode Decomposition. Philadelphia, PA: SIAM, 2016.
1792
+ [5]
1793
+ P. J. Schmid. “Dynamic Mode Decomposition and Its Variants”. Annual
1794
+ Review of Fluid Mechanics 54.1 (2022), pp. 225–254. doi: 10 . 1146 /
1795
+ annurev-fluid-030121-015835.
1796
+ [6]
1797
+ J. Page and R. Kerswell. “Koopman mode expansions between simple
1798
+ invariant solutions”. J. Fluid Mech. 879 (2019), pp. 1–27.
1799
+ [7]
1800
+ S. L. Brunton, J. L. Proctor, and J. N. Kutz. “Discovering governing equa-
1801
+ tions from data by sparse identification of nonlinear dynamical systems”.
1802
+ Proceedings of the National Academy of Sciences 113.15 (2016), pp. 3932–
1803
+ 3937.
1804
+ [8]
1805
+ D. Bertsimas and W. Gurnee. Learning Sparse Nonlinear Dynamics via
1806
+ Mixed-Integer Optimization. 2022. doi: 10.48550/ARXIV.2206.00176.
1807
+ url: https://arxiv.org/abs/2206.00176.
1808
+ [9]
1809
+ J. N. Kutz and S. L. Brunton. “Parsimony as the ultimate regularizer
1810
+ for physics-informed machine learning”. Nonlinear Dynamics 107.3 (Jan.
1811
+ 2022), pp. 1801–1817. doi: 10.1007/s11071-021-07118-3. url: https:
1812
+ //doi.org/10.1007/s11071-021-07118-3.
1813
+ [10]
1814
+ S. Chen and S. A. Billings. “Neural networks for nonlinear dynamic system
1815
+ modelling and identification”. International Journal of Control 56.2 (Aug.
1816
+ 1992), pp. 319–346. doi: 10 . 1080 / 00207179208934317. url: https :
1817
+ //doi.org/10.1080/00207179208934317.
1818
+ [11]
1819
+ T. Daniel, F. Casenave, N. Akkari, and D. Ryckelynck. “Model order re-
1820
+ duction assisted by deep neural networks (ROM-net)”. Adv. Model. and
1821
+ Simul. in Eng. Sci. 7 (2020), p. 105786.
1822
+ [12]
1823
+ L. Salmela, N. Tsipinakis, A. Foi, C. Billet, J. M. Dudley, and G. Genty.
1824
+ “Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent
1825
+ neural network”. Nature Machine Intelligence 3.4 (Feb. 2021), pp. 344–
1826
+ 354. doi: 10.1038/s42256-021-00297-z. url: https://doi.org/10.
1827
+ 1038/s42256-021-00297-z.
1828
+ 25
1829
+
1830
+ [13]
1831
+ J.-C. Loiseau, S. L. Brunton, and B. R. Noack. “From the POD-Galerkin
1832
+ method to sparse manifold models”. Model Order Reduction, Volume 3:
1833
+ Applications. Ed. by P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza,
1834
+ W. Schilders, and L. M. Silveira. De Gruyter, Berlin, 2020, pp. 279–320.
1835
+ [14]
1836
+ Cabr´e, E. Fontich, and R. de la Llave. “The parameterization method for
1837
+ invariant manifolds I: Manifolds associated to non-resonant subspaces”.
1838
+ Indiana Univ. Math. J. 52.2 (2003), pp. 283–328.
1839
+ [15]
1840
+ A. Haro and R. de la Llave. “A parameterization method for the compu-
1841
+ tation of invariant tori and their whiskers in quasi-periodic maps: rigorous
1842
+ results”. J. Differential Eqs. 228.2 (2006), pp. 530–579.
1843
+ [16]
1844
+ G. Haller and S. Ponsioen. “Nonlinear normal modes and spectral sub-
1845
+ manifolds: existence, uniqueness and use in model reduction”. Nonlinear
1846
+ Dyn. 86.3 (2016), pp. 1493–1534.
1847
+ [17]
1848
+ S. Ponsioen, T. Pedergnana, and G. Haller. “Automated computation of
1849
+ autonomous spectral submanifolds for nonlinear modal analysis”. J. Sound
1850
+ and Vibration 420 (2018), pp. 269–295.
1851
+ [18]
1852
+ R. M. Rosenberg. “The Normal Modes of Nonlinear n-Degree-of-Freedom
1853
+ Systems”. Journal of Applied Mechanics 29.1 (Mar. 1962), pp. 7–14. doi:
1854
+ 10.1115/1.3636501. url: https://doi.org/10.1115/1.3636501.
1855
+ [19]
1856
+ A. Vakakis. “Non-linear normal modes (NNMs) and their applications in
1857
+ vibration theory: an overview”. Mechanical Systems and Signal Processing
1858
+ 11.1 (Jan. 1997), pp. 3–22. doi: 10.1006/mssp.1996.9999. url: https:
1859
+ //doi.org/10.1006/mssp.1996.9999.
1860
+ [20]
1861
+ G. Kerschen, M. Peeters, J. Golinval, and A. Vakakis. “Nonlinear nor-
1862
+ mal modes, Part I: A useful framework for the structural dynamicist”.
1863
+ Mechanical Systems and Signal Processing 23.1 (Jan. 2009), pp. 170–194.
1864
+ doi: 10.1016/j.ymssp.2008.04.002. url: https://doi.org/10.1016/
1865
+ j.ymssp.2008.04.002.
1866
+ [21]
1867
+ S. Shaw and C. Pierre. “Non-linear normal modes and invariant mani-
1868
+ folds”. Journal of Sound and Vibration 150.1 (Oct. 1991), pp. 170–173.
1869
+ doi: 10.1016/0022-460x(91)90412-d. url: https://doi.org/10.
1870
+ 1016/0022-460x(91)90412-d.
1871
+ [22]
1872
+ S. Shaw and C. Pierre. “Normal modes for non-linear vibratory systems”.
1873
+ J. Sound and Vibration 164.1 (1993), pp. 85–124.
1874
+ [23]
1875
+ R. Szalai. “Invariant spectral foliations with applications to model order
1876
+ reduction and synthesis”. Nonlinear Dyn. 101 (2020), pp. 2645–2669.
1877
+ [24]
1878
+ S. Jain, T. Thurner, M. Li, and G. Haller. SSMTool: Computation of
1879
+ invariant manifolds and their reduced dynamics in high-dimensional me-
1880
+ chanics problems. 2021. doi: 10 . 5281 / zenodo . 4614201. url: http :
1881
+ //www.georgehaller.com.
1882
+ [25]
1883
+ S. Ponsioen, T. Pedergnana, and G. Haller. “Analytic prediction of iso-
1884
+ lated forced response curves from spectral submanifolds”. Nonlinear Dyn.
1885
+ 98 (2019), pp. 2755–2773.
1886
+ 26
1887
+
1888
+ [26]
1889
+ S. Ponsioen, S. Jain, and G. Haller. “Model reduction to spectral sub-
1890
+ manifolds and forced-response calculation in high-dimensional mechanical
1891
+ systems”. J. Sound and Vibration 488 (2020), p. 115640.
1892
+ [27]
1893
+ S. Jain and G. Haller. “How to compute invariant manifolds and their
1894
+ reduced dynamics in high-dimensional finite element models?” Nonlinear
1895
+ Dynamics 107.2 (Oct. 2021), pp. 1417–1450. doi: 10.1007/s11071-021-
1896
+ 06957-4. url: https://doi.org/10.1007/s11071-021-06957-4.
1897
+ [28]
1898
+ M. Li, S. Jain, and G. Haller. “Nonlinear analysis of forced mechanical
1899
+ systems with internal resonance using spectral submanifolds – Part I: Pe-
1900
+ riodic response and forced response curve”. Nonlinear Dynamics (2022).
1901
+ [29]
1902
+ M. Li and G. Haller. “Nonlinear analysis of forced mechanical systems
1903
+ with internal resonance using spectral submanifolds – Part II: Bifurcation
1904
+ and quasi-periodic response”. Nonlinear Dynamics (2022). doi: https:
1905
+ //doi.org/10.1007/s11071-022-07476-6.
1906
+ [30]
1907
+ M. Li, S. Jain, and G. Haller. Model reduction for constrained mechanical
1908
+ systems via spectral submanifolds. 2022. doi: 10.48550/ARXIV.2208.
1909
+ 03119. url: https://arxiv.org/abs/2208.03119.
1910
+ [31]
1911
+ M. Cenedese, J. Ax˚as, B. B¨auerlein, K. Avila, and G. Haller. “Data-driven
1912
+ modeling and prediction of non-linearizable dynamics via spectral sub-
1913
+ manifolds”. Nat. Commun. 13.1 (Feb. 2022). doi: 10.1038/s41467-022-
1914
+ 28518-y. url: https://doi.org/10.1038/s41467-022-28518-y.
1915
+ [32]
1916
+ M. Cenedese, J. Ax˚as, and G. Haller. SSMLearn. 2021. url: http://www.
1917
+ georgehaller.com.
1918
+ [33]
1919
+ J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Sys-
1920
+ tems and Bifircation of Vector Fields. Springer, New York, 1983.
1921
+ [34]
1922
+ M. Cenedese, J. Ax˚as, H. Yang, M. Eriten, and G. Haller. “Data-driven
1923
+ nonlinear model reduction to spectral submanifolds in mechanical sys-
1924
+ tems”. Philosophical Transactions of the Royal Society A: Mathematical,
1925
+ Physical and Engineering Sciences 380.2229 (June 2022). doi: 10.1098/
1926
+ rsta.2021.0194. url: https://doi.org/10.1098/rsta.2021.0194.
1927
+ [35]
1928
+ B. Kasz´as, M. Cenedese, and G. Haller. “Dynamics-based machine learn-
1929
+ ing of transitions in Couette flow”. Physical Review Fluids 7 (8 2022),
1930
+ p. L082402.
1931
+ [36]
1932
+ J. I. Alora, M. Cenedese, E. Schmerling, G. Haller, and M. Pavone. Data-
1933
+ Driven Spectral Submanifold Reduction for Nonlinear Optimal Control of
1934
+ High-Dimensional Robots. 2022. doi: 10.48550/ARXIV.2209.05712. url:
1935
+ https://arxiv.org/abs/2209.05712.
1936
+ [37]
1937
+ J. Ax˚as, M. Cenedese, and G. Haller. “Fast data-driven model reduction
1938
+ for nonlinear dynamical systems”. Nonlinear Dyn. (2022).
1939
+ [38]
1940
+ M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. “A Data–Driven
1941
+ Approximation of the Koopman Operator: Extending Dynamic Mode De-
1942
+ composition”. J Nonlinear Sci. 9 (2015), pp. 1307–1346.
1943
+ 27
1944
+
1945
+ [39]
1946
+ D. Dylewsky, D. Barajas-Solano, T. Ma, A. M. Tartakovsky, and J. N.
1947
+ Kutz. “Stochastically Forced Ensemble Dynamic Mode Decomposition
1948
+ for Forecasting and Analysis of Near-Periodic Systems”. IEEE Access 10
1949
+ (2022), pp. 33440–33448. doi: 10.1109/ACCESS.2022.3161438.
1950
+ [40]
1951
+ S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz.
1952
+ “Chaos as an intermittently forced linear system”. Nat. Commun. 8.1
1953
+ (May 2017). doi: 10.1038/s41467-017-00030-8. url: https://doi.
1954
+ org/10.1038/s41467-017-00030-8.
1955
+ [41]
1956
+ J.-N. Juang and R. S. Pappa. “An eigensystem realization algorithm for
1957
+ modal parameter identification and model reduction”. Journal of Guid-
1958
+ ance, Control, and Dynamics 8.5 (Sept. 1985), pp. 620–627. doi: 10.
1959
+ 2514/3.20031. url: https://doi.org/10.2514/3.20031.
1960
+ [42]
1961
+ S. Pan and K. Duraisamy. “Data-Driven Discovery of Closure Models”.
1962
+ SIAM Journal on Applied Dynamical Systems 17.4 (Jan. 2018), pp. 2381–
1963
+ 2413. doi: 10.1137/18m1177263. url: https://doi.org/10.1137/
1964
+ 18m1177263.
1965
+ [43]
1966
+ A. Pikovsky. “Noise filtering in the discrete time dynamical systems”. Sov.
1967
+ J. Commun. Technol. Electron 31.5 (1986), pp. 911–914.
1968
+ [44]
1969
+ G. Sugihara and R. M. May. “Nonlinear forecasting as a way of distin-
1970
+ guishing chaos from measurement error in time series”. Nature 344.6268
1971
+ (Apr. 1990), pp. 734–741. doi: 10.1038/344734a0. url: https://doi.
1972
+ org/10.1038/344734a0.
1973
+ [45]
1974
+ J. P. Crutchfield. “Prediction and stability in classical mechanics”. Senior
1975
+ thesis in physics and mathematics, University of California, Santa Cruz.
1976
+ 1979.
1977
+ [46]
1978
+ N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. “Geometry
1979
+ from a Time Series”. Phys. Rev. Lett. 45 (9 1980), pp. 712–716. doi:
1980
+ 10.1103/PhysRevLett.45.712. url: https://link.aps.org/doi/10.
1981
+ 1103/PhysRevLett.45.712.
1982
+ [47]
1983
+ F. Takens. “Detecting strange attractors in turbulence”. Dynamical Sys-
1984
+ tems and Turbulence, Warwick 1980. Ed. by D. Rand and L. Young.
1985
+ Springer Berlin Heidelberg, 1981, pp. 366–381.
1986
+ [48]
1987
+ T. Sauer, J. Yorke, and M. Casdagli. “Embedology”. J. Stat. Phys. 65
1988
+ (1991), pp. 579–616.
1989
+ [49]
1990
+ D. Broomhead and G. P. King. “Extracting qualitative dynamics from ex-
1991
+ perimental data”. Physica D: Nonlinear Phenomena 20.2 (1986), pp. 217–
1992
+ 236. issn: 0167-2789. doi: https://doi.org/10.1016/0167-2789(86)
1993
+ 90031-X. url: https://www.sciencedirect.com/science/article/
1994
+ pii/016727898690031X.
1995
+ 28
1996
+
1997
+ [50]
1998
+ M. Casdagli, S. Eubank, J. Farmer, and J. Gibson. “State space recon-
1999
+ struction in the presence of noise”. Physica D: Nonlinear Phenomena 51.1
2000
+ (1991), pp. 52–98. issn: 0167-2789. doi: https://doi.org/10.1016/
2001
+ 0167 - 2789(91 ) 90222 - U. url: https : / / www . sciencedirect . com /
2002
+ science/article/pii/016727899190222U.
2003
+ [51]
2004
+ H. L. Yap and C. Rozell. “Stable Takens’ Embedding for Linear Dynamical
2005
+ Systems”. Vol. 59. Dec. 2010, pp. 2948–2953. doi: 10.1109/TSP.2011.
2006
+ 2160629.
2007
+ [52]
2008
+ A. M. Fraser and H. L. Swinney. “Independent coordinates for strange
2009
+ attractors from mutual information”. Phys. Rev. A 33 (2 Feb. 1986),
2010
+ pp. 1134–1140. doi: 10.1103/PhysRevA.33.1134. url: https://link.
2011
+ aps.org/doi/10.1103/PhysRevA.33.1134.
2012
+ [53]
2013
+ M. B. Kennel, R. Brown, and H. D. I. Abarbanel. “Determining embed-
2014
+ ding dimension for phase-space reconstruction using a geometrical con-
2015
+ struction”. Phys. Rev. A 45 (6 Mar. 1992), pp. 3403–3411. doi: 10.1103/
2016
+ PhysRevA . 45 . 3403. url: https : / / link . aps . org / doi / 10 . 1103 /
2017
+ PhysRevA.45.3403.
2018
+ [54]
2019
+ H. D. I. Abarbanel and M. B. Kennel. “Local false nearest neighbors
2020
+ and dynamical dimensions from observed chaotic data”. Phys. Rev. E 47
2021
+ (5 May 1993), pp. 3057–3068. doi: 10.1103/PhysRevE.47.3057. url:
2022
+ https://link.aps.org/doi/10.1103/PhysRevE.47.3057.
2023
+ [55]
2024
+ K. H. Kraemer, M. Gelbrecht, I. Pavithran, R. I. Sujith, and N. Marwan.
2025
+ “Optimal state space reconstruction via Monte Carlo decision tree search”.
2026
+ Nonlinear Dynamics 108.2 (Mar. 2022), pp. 1525–1545. doi: 10.1007/
2027
+ s11071-022-07280-2. url: https://doi.org/10.1007/s11071-022-
2028
+ 07280-2.
2029
+ [56]
2030
+ E. Bozzo, R. Carniel, and D. Fasino. “Relationship between Singular Spec-
2031
+ trum Analysis and Fourier analysis: Theory and application to the mon-
2032
+ itoring of volcanic activity”. Computers and Mathematics with Applica-
2033
+ tions 60.3 (Aug. 2010), pp. 812–820. doi: 10.1016/j.camwa.2010.05.
2034
+ 028. url: https://doi.org/10.1016/j.camwa.2010.05.028.
2035
+ [57]
2036
+ S. Pan and K. Duraisamy. “On the structure of time-delay embedding
2037
+ in linear models of non-linear dynamical systems”. Chaos: An Interdis-
2038
+ ciplinary Journal of Nonlinear Science 30.7 (July 2020), p. 073135. doi:
2039
+ 10.1063/5.0010886. url: https://doi.org/10.1063/5.0010886.
2040
+ [58]
2041
+ C. W. Rowley, I. Mezi´c, S. Bagheri, P. Schlachter, and D. Henningson.
2042
+ “Spectral analysis of nonlinear flows”. J. Fluid Mech. 641 (2009), pp. 115–
2043
+ 127.
2044
+ [59]
2045
+ Z. Drmaˇc, I. Mezi´c, and R. Mohr. “Data Driven Koopman Spectral Anal-
2046
+ ysis in Vandermonde–Cauchy Form via the DFT: Numerical Method and
2047
+ Theoretical Insights”. SIAM Journal on Scientific Computing 41.5 (2019),
2048
+ A3118–A3151. doi: 10.1137/18M1227688. url: https://doi.org/10.
2049
+ 1137/18M1227688.
2050
+ 29
2051
+
2052
+ [60]
2053
+ M. Kamb, E. Kaiser, S. L. Brunton, and J. N. Kutz. Time-Delay Ob-
2054
+ servables for Koopman: Theory and Applications. 2018. doi: 10.48550/
2055
+ ARXIV.1810.01479. url: https://arxiv.org/abs/1810.01479.
2056
+ [61]
2057
+ S. M. Hirsh, S. M. Ichinaga, S. L. Brunton, J. N. Kutz, and B. W. Brunton.
2058
+ “Structured time-delay models for dynamical systems with connections to
2059
+ Frenet–Serret frame”. Proceedings of the Royal Society A: Mathematical,
2060
+ Physical and Engineering Sciences 477.2254 (Oct. 2021). doi: 10.1098/
2061
+ rspa.2021.0097. url: https://doi.org/10.1098/rspa.2021.0097.
2062
+ [62]
2063
+ D. Dylewsky, E. Kaiser, S. L. Brunton, and J. N. Kutz. “Principal com-
2064
+ ponent trajectories for modeling spectrally continuous dynamics as forced
2065
+ linear systems”. Phys. Rev. E 105 (1 Jan. 2022), p. 015312. doi: 10.1103/
2066
+ PhysRevE.105.015312. url: https://link.aps.org/doi/10.1103/
2067
+ PhysRevE.105.015312.
2068
+ [63]
2069
+ E. Bronstein, A. Wiegner, D. Shilo, and R. Talmon. “The spatiotemporal
2070
+ coupling in delay-coordinates dynamic mode decomposition”. Chaos: An
2071
+ Interdisciplinary Journal of Nonlinear Science 32.12 (Dec. 2022), p. 123127.
2072
+ doi: 10.1063/5.0123101. url: https://doi.org/10.1063/5.0123101.
2073
+ [64]
2074
+ J. Ax˚as and G. Haller. fastSSM: Algorithm for fast computation of spec-
2075
+ tral submanifolds from data. 2022. url: https://github.com/haller-
2076
+ group/SSMLearn/tree/main/fastSSM.
2077
+ [65]
2078
+ E. R. Deyle and G. Sugihara. “Generalized Theorems for Nonlinear State
2079
+ Space Reconstruction”. PLoS ONE 6.3 (2011). url: https://doi.org/
2080
+ 10.1371/journal.pone.0018295.
2081
+ [66]
2082
+ S. Jain, P. Tiso, and G. Haller. “Exact nonlinear model reduction for a
2083
+ von K´arm´an beam: slow-fast decomposition and spectral submanifolds”.
2084
+ Journal of Sound and Vibration 423 (2018), pp. 195–211.
2085
+ [67]
2086
+ B. B¨auerlein and K. Avila. “Phase lag predicts nonlinear response maxima
2087
+ in liquid-sloshing experiments”. J. Fluid Mech. 925 (2021), A22. doi: 10.
2088
+ 1017/jfm.2021.576.
2089
+ [68]
2090
+ S. Mitra, L. V. Hai, L. Jing, and B. C. Khoo. “A fully coupled ship motion
2091
+ and sloshing analysis in various container geometries”. Journal of Marine
2092
+ Science and Technology 17.2 (Feb. 2012), pp. 139–153. doi: 10.1007/
2093
+ s00773-012-0157-2. url: https://doi.org/10.1007/s00773-012-
2094
+ 0157-2.
2095
+ [69]
2096
+ F. Fleissner, A. Lehnart, and P. Eberhard. “Dynamic simulation of slosh-
2097
+ ing fluid and granular cargo in transport vehicles”. Vehicle System Dy-
2098
+ namics 48.1 (Jan. 2010), pp. 3–15. doi: 10.1080/00423110903042717.
2099
+ url: https://doi.org/10.1080/00423110903042717.
2100
+ [70]
2101
+ J. Hickey, B. Broderick, B. Fitzgerald, and H. Moore. “Mitigation of
2102
+ wind induced accelerations in tall modular buildings”. Structures 37 (Mar.
2103
+ 2022), pp. 576–587. doi: 10.1016/j.istruc.2022.01.037. url: https:
2104
+ //doi.org/10.1016/j.istruc.2022.01.037.
2105
+ 30
2106
+
2107
+ [71]
2108
+ F. Dodge. The New ”Dynamic Behavior of Liquids in Moving Contain-
2109
+ ers”. Southwest Research Inst., 2000. url: https://books.google.ch/
2110
+ books?id=RltitwAACAAJ.
2111
+ [72]
2112
+ H. Abramson, ed. The dynamic behavior of liquids in moving contain-
2113
+ ers: with applications to space vehicle technology / edited by H. Norman
2114
+ Abramson. NASA SP-106. Washington, D.C: Scientific, Technical Infor-
2115
+ mation Division, National Aeronautics, and Space Administration, 1966.
2116
+ [73]
2117
+ G. Taylor. “An experimental study of standing waves”. Proceedings of the
2118
+ Royal Society of London. Series A. Mathematical and Physical Sciences
2119
+ 218.1132 (1953), pp. 44–59.
2120
+ [74]
2121
+ O. Faltinsen and A. Timokha. Sloshing. Cambridge University Press, 2009.
2122
+ isbn: 9780521881111. url: https : / / books . google . ch / books ? id =
2123
+ 81qkPwAACAAJ.
2124
+ [75]
2125
+ G. S. Narimanov. “Movement of a tank partly filled by a fluid: the taking
2126
+ into account of non-smallness of amplitude”. Prikl. Mat. Mekh. 21 (1957).
2127
+ in Russian, pp. 513–524.
2128
+ [76]
2129
+ O. M. Faltinsen, O. F. Rognebakke, I. A. Lukovsky, and A. N. Timokha.
2130
+ “Multidimensional modal analysis of nonlinear sloshing in a rectangu-
2131
+ lar tank with finite water depth”. Journal of Fluid Mechanics 407 (Mar.
2132
+ 2000), pp. 201–234. doi: 10 . 1017 / s0022112099007569. url: https :
2133
+ //doi.org/10.1017/s0022112099007569.
2134
+ 31
2135
+