jackkuo commited on
Commit
d57d448
·
verified ·
1 Parent(s): 2430923

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -dE3T4oBgHgl3EQfrgpm/content/tmp_files/2301.04660v1.pdf.txt +1165 -0
  2. -dE3T4oBgHgl3EQfrgpm/content/tmp_files/load_file.txt +0 -0
  3. .gitattributes +49 -0
  4. 0tE1T4oBgHgl3EQf4wXL/vector_store/index.pkl +3 -0
  5. 19E1T4oBgHgl3EQflQTp/content/tmp_files/2301.03284v1.pdf.txt +665 -0
  6. 19E1T4oBgHgl3EQflQTp/content/tmp_files/load_file.txt +0 -0
  7. 1NFAT4oBgHgl3EQfCxwU/content/tmp_files/2301.08411v1.pdf.txt +2104 -0
  8. 1NFAT4oBgHgl3EQfCxwU/content/tmp_files/load_file.txt +0 -0
  9. 1dE0T4oBgHgl3EQf_wJK/content/2301.02830v1.pdf +3 -0
  10. 1dE0T4oBgHgl3EQf_wJK/vector_store/index.faiss +3 -0
  11. 2tE1T4oBgHgl3EQfSAOy/content/tmp_files/2301.03061v1.pdf.txt +3048 -0
  12. 2tE1T4oBgHgl3EQfSAOy/content/tmp_files/load_file.txt +0 -0
  13. 6tE5T4oBgHgl3EQfPw5R/content/2301.05507v1.pdf +3 -0
  14. 6tE5T4oBgHgl3EQfPw5R/vector_store/index.pkl +3 -0
  15. 8tE4T4oBgHgl3EQf3A1I/content/2301.05302v1.pdf +3 -0
  16. 9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/2301.05304v1.pdf.txt +2415 -0
  17. 9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/load_file.txt +0 -0
  18. 9dAyT4oBgHgl3EQfdPeW/content/2301.00299v1.pdf +3 -0
  19. 9dAyT4oBgHgl3EQfdPeW/vector_store/index.faiss +3 -0
  20. A9AzT4oBgHgl3EQfv_5R/content/2301.01715v1.pdf +3 -0
  21. A9AzT4oBgHgl3EQfv_5R/vector_store/index.faiss +3 -0
  22. A9AzT4oBgHgl3EQfv_5R/vector_store/index.pkl +3 -0
  23. AdE0T4oBgHgl3EQfxgLI/content/tmp_files/2301.02648v1.pdf.txt +2950 -0
  24. AdE0T4oBgHgl3EQfxgLI/content/tmp_files/load_file.txt +0 -0
  25. B9AzT4oBgHgl3EQfh_2U/content/tmp_files/2301.01493v1.pdf.txt +0 -0
  26. B9AzT4oBgHgl3EQfh_2U/content/tmp_files/load_file.txt +0 -0
  27. CdFRT4oBgHgl3EQfwDjC/content/tmp_files/2301.13637v1.pdf.txt +1335 -0
  28. CdFRT4oBgHgl3EQfwDjC/content/tmp_files/load_file.txt +0 -0
  29. DdAyT4oBgHgl3EQfSPd1/content/tmp_files/2301.00082v1.pdf.txt +1456 -0
  30. DdAyT4oBgHgl3EQfSPd1/content/tmp_files/load_file.txt +0 -0
  31. EdE1T4oBgHgl3EQfWgTb/content/2301.03116v1.pdf +3 -0
  32. EdE1T4oBgHgl3EQfWgTb/vector_store/index.pkl +3 -0
  33. F9AzT4oBgHgl3EQfi_2P/vector_store/index.faiss +3 -0
  34. F9AzT4oBgHgl3EQfi_2P/vector_store/index.pkl +3 -0
  35. GtE1T4oBgHgl3EQf_QYB/content/2301.03577v1.pdf +3 -0
  36. GtE1T4oBgHgl3EQf_QYB/vector_store/index.faiss +3 -0
  37. HtFIT4oBgHgl3EQfXys9/content/2301.11245v1.pdf +3 -0
  38. HtFIT4oBgHgl3EQfXys9/vector_store/index.pkl +3 -0
  39. IdAzT4oBgHgl3EQfU_z6/content/2301.01278v1.pdf +3 -0
  40. IdAzT4oBgHgl3EQfU_z6/vector_store/index.pkl +3 -0
  41. JdFAT4oBgHgl3EQfvB7v/content/2301.08674v1.pdf +3 -0
  42. JdFAT4oBgHgl3EQfvB7v/vector_store/index.pkl +3 -0
  43. KtA0T4oBgHgl3EQfCv_p/content/tmp_files/load_file.txt +0 -0
  44. LdAyT4oBgHgl3EQfsvlL/content/tmp_files/2301.00581v1.pdf.txt +2193 -0
  45. LdAyT4oBgHgl3EQfsvlL/content/tmp_files/load_file.txt +0 -0
  46. N9E4T4oBgHgl3EQfjw0A/content/tmp_files/2301.05144v1.pdf.txt +792 -0
  47. N9E4T4oBgHgl3EQfjw0A/content/tmp_files/load_file.txt +0 -0
  48. NdFLT4oBgHgl3EQfOC8n/content/2301.12022v1.pdf +3 -0
  49. NdFLT4oBgHgl3EQfOC8n/vector_store/index.faiss +3 -0
  50. NdFLT4oBgHgl3EQfOC8n/vector_store/index.pkl +3 -0
-dE3T4oBgHgl3EQfrgpm/content/tmp_files/2301.04660v1.pdf.txt ADDED
@@ -0,0 +1,1165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SciPost Physics
2
+ Submission
3
+ Anomalies, Representations, and Self-Supervision
4
+ Barry M. Dillon, Luigi Favaro, Friedrich Feiden, Tanmoy Modak, Tilman Plehn
5
+ Institut für Theoretische Physik, Universität Heidelberg, Germany
6
+ January 13, 2023
7
+ Abstract
8
+ We develop a self-supervised method for density-based anomaly detection using contrastive
9
+ learning, and test it using event-level anomaly data from CMS ADC2021. The Anomaly-
10
+ CLR technique is data-driven and uses augmentations of the background data to mimic
11
+ non-Standard-Model events in a model-agnostic way. It uses a permutation-invariant Trans-
12
+ former Encoder architecture to map the objects measured in a collider event to the represen-
13
+ tation space, where the data augmentations define a representation space which is sensitive
14
+ to potential anomalous features. An AutoEncoder trained on background representations
15
+ then computes anomaly scores for a variety of signals in the representation space. With
16
+ AnomalyCLR we find significant improvements on performance metrics for all signals when
17
+ compared to the raw data baseline.
18
+ Contents
19
+ 1
20
+ Introduction
21
+ 2
22
+ 2
23
+ Dataset
24
+ 4
25
+ 3
26
+ AnomalyCLR
27
+ 5
28
+ 3.1
29
+ Contrastive learning
30
+ 5
31
+ 3.2
32
+ CLR for anomaly detection
33
+ 6
34
+ 4
35
+ Application to event-level anomalies
36
+ 8
37
+ 5
38
+ Anomaly scores
39
+ 10
40
+ 6
41
+ Results
42
+ 11
43
+ 6.1
44
+ Comparison of methods
45
+ 11
46
+ 6.2
47
+ The effect of anomaly-augmentations
48
+ 12
49
+ 6.3
50
+ The effect of representation dimension
51
+ 13
52
+ 7
53
+ Summary & conclusions
54
+ 14
55
+ References
56
+ 15
57
+ 1
58
+ arXiv:2301.04660v1 [hep-ph] 11 Jan 2023
59
+
60
+ SciPost Physics
61
+ Submission
62
+ 1
63
+ Introduction
64
+ Model-agnostic new physics searches are one of the most interesting analysis prospects for the
65
+ LHC and other colliders. Over the past decade the LHC has searched for new physics based on
66
+ model-specific hypothesis testing. Despite these efforts there has been no strong evidence of new
67
+ physics found. It is possible that new physics does exist at the scales probed by the LHC, and has
68
+ not been uncovered due to the particular signal not being covered by previous analysis hypotheses.
69
+ The ATLAS and CMS collaborations have both implemented model-agnostic new physics searches
70
+ to deal with this [1, 2], however these methods suffer some drawbacks. For example scanning
71
+ high-dimensional parameter spaces can lead to large look-elsewhere effects, or methods can lack
72
+ the ability to make full use of the high-granularity low-level information collected in the experi-
73
+ ments. Recent progress in machine learning based high-energy physics tools are making significant
74
+ advances in solving many problems of such classical methods [3].
75
+ The main machine learning tools to date for data-driven model-agnostic searches are based
76
+ either on density-related scores, or on classification scores using a background-dominated control
77
+ sample. The latter, typically known as CWoLa methods (Classification Without Labels) [4–6] have
78
+ been shown to be very successful in applications such as bump hunting [7–14] and semi-visible jet
79
+ searches [15], providing both anomaly scores and background estimates. However they run into
80
+ difficulty when the dimension of the input space or number of observables becomes large, and so
81
+ the question of whether or not they can be used on low level data is still uncertain. CWoLa tools
82
+ have already been adopted by the ATLAS collaboration [16].
83
+ Density-based methods use machine learning to estimate the density in the phase space, and
84
+ then identify anomalies as those laying in the low density regions. These tools typically work
85
+ on high-dimensional inputs and so can be used on low-level data. The first density-based meth-
86
+ ods were the AutoEncoder studies [17, 18], where the network is optimised to compress and
87
+ reconstruct the kinematics of a jet or event. While this is not strictly density estimation, the
88
+ optimisation is highly aligned with learning a density, since regions of the phase space which
89
+ are most populated are those which should be reconstructed the best and thus have the low-
90
+ est anomaly score. There has been significant progress with the AutoEncoder tools and other
91
+ density-based anomaly detection methods in recent years [19–33], with studies covering inter-
92
+ pretability of AutoEncoders [34, 35], topic modelling [36, 37], null hypothesis tests for anomaly
93
+ detection [38], ABCD methods [39], the Normalised AutoEncoder (NAE) [40], and normalising
94
+ flow techniques [41–44]. For a comprehensive summary of many different anomaly detection
95
+ methods we refer the reader to the community challenge papers in Refs [45,46].
96
+ One issue with the density-based approaches [44,47] is that the score is not invariant under
97
+ simple transformations in the phase space. This means that a simple re-mapping of the momenta
98
+ or coordinates fundamentally changes what the anomaly score is. This poses the question of how
99
+ to choose a representation of the data for use in density-based anomaly detection tasks. It is
100
+ also worth noting that despite the great progress that more sophisticated neural network archi-
101
+ tectures and the implementation of symmetries in networks has brought to supervised classifi-
102
+ cation [48–51], they have not yet led to the same progress in anomaly detection. In this work
103
+ we develop a new approach to density-based anomaly detection using self-supervision, which de-
104
+ fines the representation of the data in a model-agnostic way using the power of highly expressive
105
+ networks such as transformers or graph networks to boost anomaly detection performance.
106
+ Supervised machine learning methods use the idea of a truth-label to optimise the neural net-
107
+ 2
108
+
109
+ SciPost Physics
110
+ Submission
111
+ works, usually to classify between data with different truth labels. Unsupervised methods are
112
+ those which do not require truth labels, instead optimising a network using a reconstruction loss
113
+ or a negative log likelihood, for example. Self-supervision on the other hand uses ‘pseudo-labels’,
114
+ labels generated from the data without knowledge of a truth label, to optimise the networks. In
115
+ contrastive learning [52], these labels correspond to a link between an original event and an aug-
116
+ mented event. We define the augmentation as some physical modification of the event kinematics.
117
+ Contrastive learning uses the pseudo-labels to devise an auxiliary task for the network optimisation
118
+ through the contrastive loss function. Now the network learns how to process high-dimensional
119
+ correlations in the data, and thus the representations learned by these networks can be very useful
120
+ for downstream tasks. We introduced the self-supervised JetCLR method in [53] and demonstrated
121
+ its ability to construct highly expressive representations for classification tasks. In [54] this same
122
+ technique was used to construct representations for CWoLa-based anomaly detection. In addition
123
+ to these works, other self-supervised / representation learning techniques have been applied in
124
+ particle physics [55,56] and in other scientific disciplines such as astrophysics [57–60]. In [53,54]
125
+ the augmentations corresponded to transformations of the event to which the underlying physics
126
+ should be invariant to rotations or translations, but also soft-collinear parton splittings.
127
+ We introduce AnomalyCLR, a new method based on the idea of ‘anomaly-augmentations’.
128
+ These anomaly-augmentations are modifications of the original event to which the underlying
129
+ physics is not invariant. In fact these augmentations are chosen to mimic very general features
130
+ that anomalous events might have, such as high multiplicity, large MET, or large pT. Despite choos-
131
+ ing explicitly the augmentations, the approach does not target any specific new physics model, and
132
+ we will see from the results that the approach is model agnostic. AnomalyCLR projects the kine-
133
+ matics of each event to a representation vector, which we then use to train an AutoEncoder and
134
+ define the anomaly scores. It enriches the representation space using known invariances in the
135
+ data, such as invariance to azimuthal rotations, and known generic features of anomalies. Self-
136
+ supervised anomaly detection methods have gained prominence in the machine learning literature
137
+ recently [61–64], and while the approaches are necessarily domain specific, we have drawn on
138
+ these methods. The anomaly score can be computed in different ways, and we opt for the Au-
139
+ toEncoder approach. So the workflow is as follows; train AnomalyCLR to obtain a representation
140
+ vector for each event in the dataset, then train an AutoEncoder on these representations to obtain
141
+ the anomaly scores. This is in contrast to the typical approach of training the AutoEncoder directly
142
+ on the raw kinematical data from the events. We test AnomalyCLR on the CMS Anomaly Detection
143
+ Challenge dataset [65], and, compared to the raw data baseline, we find significant improvements
144
+ on all signals.
145
+ In Section 2 we will discuss the dataset and the different backgrounds and signals. In Section 3
146
+ we will then introduce the AnomalyCLR idea, first discussing contrastive learning and then how
147
+ this can be modified for use in anomaly detection. The specifics of the application to event-level
148
+ collider data such as the CMS ADC dataset is given in Section 4. The discussion on how we estimate
149
+ anomaly scores is given in Section 5, where the architecture and optimisation of the AutoEncoder
150
+ we use is discussed. The results are presented in Section 6, along with an analysis of how different
151
+ anomaly-augmentations and different representation dimensions affect the results. We conclude
152
+ in Section 7 with a discussion of the results and future directions.
153
+ 3
154
+
155
+ SciPost Physics
156
+ Submission
157
+ 2
158
+ Dataset
159
+ To test the performance of the AnomalyCLR representations compared to raw data in an anomaly
160
+ detection task we use the CMS anomaly detection challenge dataset [65], which contains simu-
161
+ lated proton-proton collisions with a 13 TeV centre-of-mass energy. The events are selected to
162
+ have at least one e or µ with transverse momenta pT >23. The pseudo-rapidity (|η|) is required
163
+ to be <3 and <2.1 respectively for e and µ. Further, the events are allowed to have up to 10 jets
164
+ with pT > 15 GeV and |η| < 4, up to 4 muons pT > 3 GeV and |η| < 2.1, up to 4 electrons pT > 3
165
+ GeV and |η|<3 and missing transverse energy (MET). The dataset is generated with Pythia 8.240
166
+ generator [66] with a fast detector simulation using Delphes 3.3.2 [67] with the Phase-II CMS
167
+ detector card. The jets are reconstructed using anti-kt algorithm [68]. In the provided dataset
168
+ each event is formatted such that the first entry is assigned for MET, next eight are assigned for
169
+ electrons and muons respectively and, the final 10 entries are for jets. For each particle object
170
+ the data set contains information of pT, η, φ and particle id such that the shape of an event in
171
+ the data frame is [N,19,4] where N is the total number of events. Note that if an event has less
172
+ than the maximum allowed of a type of object, the remaining entries in that case are zero padded.
173
+ The background dataset consists of a number of Standard Model processes and to determine the
174
+ performance of the anomaly detection algorithm four light BSM scenarios are considered.
175
+ Backgrounds
176
+ For the SM background a collection of events are generated from production channels with at
177
+ least a single lepton in the final state. The fraction of events to be included in the SM for each
178
+ process is fixed by its trigger efficiency and the LO cross section. Thus, four leading processes are
179
+ considered: W and Z inclusive productions, QCD multijet contributions, and t¯t production. The
180
+ proportions between the four processes are given in [69] as:
181
+ pp → W ± + jets → ℓ±νℓ + jets
182
+ (59.2%)
183
+ pp → Z + jets → ℓ+ℓ− + jets
184
+ (6.7%)
185
+ pp → t¯t + jets
186
+ (0.3%)
187
+ pp → jets
188
+ (33.8%) .
189
+ (1)
190
+ with ℓ = e,µ,τ. The QCD multijet production is by far the largest production process at the
191
+ LHC. Although leptons in QCD multijet backgrounds are rarely present and mainly originate from
192
+ decays of unstable hadrons, the sheer volume of QCD multijet production makes it one of the
193
+ largest processes in the data stream for the challenge.
194
+ New physics signals
195
+ The signal datasets provided by the challenge consist of events simulated from the following signal
196
+ models:
197
+ • Leptoquark (LQ): A 80 GeV LQ decaying in to a b and τ.
198
+ • Neutral scalar boson A: A 50 GeV neutral scalar boson A. The production mechanism
199
+ pp → A+X → Z∗Z∗+X (with X is inclusive activity) followed by both Z∗ decaying into charged
200
+ leptons.
201
+ • Scalar boson h0: A scalar boson 60 GeV h0 with pp → h0 + X → τ+τ− + X production.
202
+ 4
203
+
204
+ SciPost Physics
205
+ Submission
206
+ • A charged scalar h±: Charged scalar with 60 GeV mass and pp → h±+X → τν+X production.
207
+ The most distinguishing high-level features of these signals when compared with the background
208
+ processes are the electron, muon, and jet multiplicities and the pT and MET distributions † .
209
+ 3
210
+ AnomalyCLR
211
+ In this section we describe the AnomalyCLR method ‡. Contrastive learning of representations
212
+ (CLR) [52] is a technique used to construct highly-expressive representations of data for use in
213
+ downstream tasks, in our case this task is anomaly detection. It is self-supervised in that the
214
+ technique does not require any ‘truth’ labels for the training data. The advantage of this from the
215
+ collider physics perspective is that the technique could be run directly on experimental data rather
216
+ than on simulation. Due to the ability of deep learning methods to learn non-trivial correlations
217
+ in data that is not expected to be well-modelled by simulation, this is an important aspect of CLR
218
+ for anomaly detection.
219
+ 3.1
220
+ Contrastive learning
221
+ The basic idea is that some function f (·) (typically a neural network) is used to map from the data
222
+ space D to a representation space R, with the function being optimised to solve some auxiliary
223
+ task which does not require truth labels. This auxiliary task is framed as an optimisation problem
224
+ using ‘pseudo-labels’. In the anomaly detection scenario addressed in this work, the function that
225
+ performs the mapping from D to R is optimised only on background data. Given that the collider
226
+ events or objects such as jets typically consist of unordered sets of particles reconstructed by the
227
+ experiment, we opt for a permutation-invariant function to perform the mapping from D to R.
228
+ Specifically, we use a transformer encoder neural network, there are more details on this later in
229
+ the section.
230
+ The auxiliary task that our function is optimised to solve uses augmentations of the collider
231
+ data. In the traditional contrastive learning approach these augmentations are used to define two
232
+ types of pseudo-labels:
233
+ 1. Positive-pair labels
234
+ These labels match each data point in the sample to an augmented version of itself.
235
+ 2. Negative-pair labels
236
+ These labels match each data point in the sample to every other data point which is not itself
237
+ or an augmented/transformed version of itself.
238
+ The function f (·) is then trained to map from the raw data to the representation space such that
239
+ positive-pairs are close together in R and negative-pairs are far apart in R. These two optimi-
240
+ sation goals are referred to as alignment (of positive-pairs) and uniformity (of negative-pairs),
241
+ respectively. The augmentations are chosen to be modifications of the data that should leave the
242
+ underlying physics unchanged, for example a symmetry in the physical system or an augmentation
243
+ that could mimic a detector resolution effect.
244
+ †We note that since the publication of previous papers using this dataset, a bug fix in the simulation has resulted in
245
+ a new dataset, and so it is difficult to make direct comparisons between new and old results.
246
+ ‡The code will be made available at https://github.com/bmdillon/AnomalyCLR.
247
+ 5
248
+
249
+ SciPost Physics
250
+ Submission
251
+ Each data point is described by an array of data xi with the subscript labelling the specific data
252
+ point. We denote an augmentation of a data point as x′
253
+ i, with the positive-pairs and negative-pairs
254
+ being defined as the sets {(xi, x′
255
+ i)} and {(xi, x j)}∪{(xi, x′
256
+ j)} for i ̸= j, respectively. The contrastive
257
+ loss function that the network is trained to minimise then is
258
+ LCLR = −log
259
+ es(zi,z′
260
+ i)/τ
261
+
262
+ j̸=i∈batch
263
+
264
+ es(zi,zj)/τ + es(zi,z′
265
+ j)/τ� ,
266
+ (2)
267
+ where zi = f (xi) and z′
268
+ i = f (x′
269
+ i) are the outputs of the mapping function. The cosine similar-
270
+ ity measure s(·,·) is used to compare events and measure distances between them in the new
271
+ representation space,
272
+ s(zi,zj) =
273
+ zi · zj
274
+ |zi||zj| = cosθi j .
275
+ (3)
276
+ In this way, s(·,·) projects each vector zi to the surface of a unit hypersphere and computes the
277
+ cosine distance between each pair. As it stands, s(·,·) is not a proper distance metric, however we
278
+ could form one by taking di j = θi j/π as the distance between each event in the representation
279
+ space, although we do not explore this here. The numerator of the contrastive loss in Eq. (2)
280
+ accounts for the positive-pair and alignment, where distances between events and their augmented
281
+ counter-parts enter. While the denominator accounts for the negative-pairs and uniformity, where
282
+ distances between completely different events are accounted for. The degree to which we trade
283
+ off between the different tasks is determined by the temperature hyper-parameter τ in the loss
284
+ function.
285
+ 3.2
286
+ CLR for anomaly detection
287
+ While contrastive learning has been shown to be very useful in generating representations for
288
+ downstream classification tasks [53], there is a potential issue when using this approach for down-
289
+ stream anomaly detection tasks. For the classification task, for example in [53], the function f (·)
290
+ is optimised on data from both the background and signal classes, despite not using their truth-
291
+ labels explicitly in the optimisation. Through the contrastive learning this allows the function to
292
+ encode non-trivial features of both the background and signal data in the representations. When
293
+ using contrastive learning for a downstream anomaly detection task however, the function f (·) is
294
+ optimised on just the background data (or at least a significantly background-dominated dataset).
295
+ This means that the representation learned by the function f (·) will focus solely on features rele-
296
+ vant for the background data. This could mean that anomalous data is not out-of-distribution and
297
+ so may not lead to competitive performance in downstream anomaly detection tasks. This will
298
+ become evident when we look at the results in Section 6. To remedy this we introduce Anoma-
299
+ lyCLR, a modified approach to contrastive learning for anomaly detection in particle physics. At
300
+ the core of this approach is the introduction of ‘anomaly-augmentations’, such that we now have
301
+ two categories for augmentations:
302
+ 1. Physical augmentations
303
+ These are augmentations of the data that we would like the mapping to be invariant to.
304
+ 2. Anomaly-augmentations
305
+ These are unphysical augmentations of the data that are supposed to mimic potential anoma-
306
+ lies, we want the representations to be highly discriminative towards these augmentations.
307
+ 6
308
+
309
+ SciPost Physics
310
+ Submission
311
+ We add a third pseudo-label:
312
+ 3. Anomaly-pair labels
313
+ These labels match each data point in the sample to an anomaly-augmented version of itself.
314
+ The advantage of anomaly-augmentations is that we can increase the sensitivity of the anomaly
315
+ detection tools to anomalies using just the background data, potentially the data directly measured
316
+ at colliders. This keeps the approach in line with the original data-driven CLR idea. We can then
317
+ define the anomaly-augmented contrastive loss function as
318
+ LAnomCLR = −log
319
+ e[s(zi,z′
320
+ i)−s(zi,z∗
321
+ i )]/τ
322
+
323
+ j̸=i∈batch
324
+
325
+ es(zi,zj)/τ + es(zi,z′
326
+ j)/τ� ,
327
+ (4)
328
+ where we denote the representations of the anomaly-augmented events by z∗, and so the anomaly-
329
+ pair is defined as {(xi, x∗
330
+ i )}. Note that the anomaly-augmentations only enter in the numerator
331
+ of Eq. (4), and without these the loss function becomes the regular contrastive loss function.
332
+ Introducing the anomaly-pairs we expose the network to data features that are outside of the
333
+ background distribution. The CLR portion of the loss function still optimises for alignment and
334
+ uniformity, however this uniformity is now disrupted by the anomaly-pair term. As a result the
335
+ background data will not be uniformly distributed in the representation space, with some regions
336
+ encoding features of the anomaly-augmented data. This means that anomalous data with features
337
+ similar to those generated by the anomaly-augmentations should be out-of-distribution in this
338
+ representation space.
339
+ We did some minor testing on alternative forms of this loss function, for example including
340
+ the anomaly-augmentations in the denominator of the loss function with the negative-pairs. How-
341
+ ever since the anomaly-augmentations compute distances between a data point and its augmented
342
+ counter-part, and not between other data points (i.e. i ̸= j), it is more intuitive to include this
343
+ term in the numerator. The denominator in Eq. (4) is used to encode features in the represen-
344
+ tation space that discriminate between the different data points used during training, which for
345
+ anomaly detection is the background data. This is not necessary for anomaly detection, and the
346
+ anomaly-pairs should provide the representations with all the discriminative power they need,
347
+ so we experimented with removing the denominator in Eq. (4) altogether, and found that this is
348
+ sufficient. In this case the loss function is written as
349
+ L+
350
+ AnomCLR = −log e[s(zi,z′
351
+ i)−s(zi,z∗
352
+ i )]/τ =
353
+ s(zi,z∗
354
+ i ) − s(zi,z′
355
+ i)
356
+ τ
357
+ ,
358
+ (5)
359
+ where the plus sign in L+
360
+ AnomCLR indicates that only positive-pairs are used. This results in a much
361
+ less computationally expensive loss function, since we no longer need to compute pair-wise cor-
362
+ relations between each entry in a batch the complexity scales as Nbatch rather than N 2
363
+ batch. We also
364
+ remove the dependence on τ in L+
365
+ AnomCLR, since there is no longer a trade-off between positive-
366
+ and negative-pairs. We could of course introduce a term to control the trade-off between the
367
+ physical and anomaly-augmentation terms, but we do not explore that here. In our results we will
368
+ compare the performance of both loss functions.
369
+ 7
370
+
371
+ SciPost Physics
372
+ Submission
373
+ 4
374
+ Application to event-level anomalies
375
+ The application of AnomalyCLR to different physical scenarios requires an understanding of the
376
+ data and the physics in order to construct the physical and anomaly-augmentations. For the event-
377
+ level dataset discussed in Section 2 we consider three physical augmentations the data:
378
+ 1. Azimuthal rotations
379
+ The whole final state is rotated by an angle φ randomly sampled from [0,2π].
380
+ 2. η − φ smearing
381
+ The (η,φ) coordinate of every object in the event is resampled according from a Normal
382
+ distribution centred on the original coordinate and with a variance inversely proportional to
383
+ the pT, i.e. η′ ∼ N (η,σ(pT)) and φ′ ∼ N (φ,σ(pT)).
384
+ 3. Energy smearing
385
+ The pT of every object in the event is re-sampled according to p′
386
+ T ∼ N (pT, f (pT)) with f (pT)
387
+ determining the strength of the smearing.
388
+ These augmentations reflect both the symmetries in the data and the experimental resolution of
389
+ the detector. Detectors are imperfect, especially in measuring jet energies, and we encode this in
390
+ the representations of the data through the energy-smearing augmentation. Here we re-sample
391
+ the jet pT’s as p′
392
+ T ∼ N (pT, f (pT)), where f (pT) =
393
+
394
+ 0.052p2
395
+ T + 1.502pT is the energy smearing
396
+ applied by Delphes (the pT’s are normalised by 1GeV). If not explicitly mentioned, we always
397
+ assume units of GeV for energy. For the anomaly-augmentation we consider some very simple
398
+ scenarios:
399
+ 1. Multiplicity shift, x′
400
+ i = m(xi)
401
+ For each event m(·) adds a random number of electrons, muons, and jets to the event. The
402
+ number is chosen randomly within the limits (ne,4− ne), (nµ,4− nµ), and (nj,10− nj) for
403
+ electrons, muons, and jet, respectively. The azimuthal angle and pseudo-rapidities are also
404
+ chosen randomly within the limits allowed, and the pT for each object is chosen as a random
405
+ fraction of the maximum pT in the event. Once the objects have been added, the MET of the
406
+ event is recalculated and updated.
407
+ 2. Multiplicity shift, keeping MET and the total pT constant, , x′
408
+ i = m(xi)
409
+ This is similar to the above augmentation, but now m(·) generates the extra objects by splitting
410
+ the existing objects and smearing the η−φ coordinates using the function used in the physical
411
+ augmentations above.
412
+ 3. pT and MET shifts, x′
413
+ i = spT (xi)
414
+ Here spT (·) shifts the pT’s in the event by the same random factor. We randomly choose whether
415
+ we shift just the MET, just the reconstructed object pT’s, or both. And we ensure that the the
416
+ trigger selection is not spoiled by these shifts.
417
+ With the physical augmentations we apply all of them simultaneously, whereas for the anomaly-
418
+ augmentations we apply just one augmentation to each event. The augmentation that is applied is
419
+ selected randomly and uniformly. We do not apply both a physical augmentation and an anomaly-
420
+ augmentation to the events in s(zi,z∗
421
+ i ), since this would conflict with the optimisation goal of the
422
+ s(zi,z′
423
+ i) term. It would also be possible to have an anomaly-augmentation that removes objects
424
+ from the event, however this effect is already captured by the augmentation that adds objects to
425
+ the event. Many of the events in the background have the minimal multiplicity allowed by the
426
+ applied cuts, so the effect of an anomaly-pair with a low multiplicity background event and the
427
+ same event augmented to have more objects is the exact same as the effect of an anomaly-pair
428
+ 8
429
+
430
+ SciPost Physics
431
+ Submission
432
+ with a high-multiplicity background event augmented to have less objects. This is because of the
433
+ symmetry in the distance function s(zi,z∗
434
+ i ). So the anomaly-augmentations here are as general
435
+ as can be, and do not target any specific new physics scenario, therefore the technique should be
436
+ model-agnostic.
437
+ Architecture and training
438
+ The collider event data being used has a well-defined structure:
439
+ • MET: one entry with (pT,η,φ)
440
+ • Electrons: four entries, each with (pT,η,φ)
441
+ • Muons: four entries, each with (pT,η,φ)
442
+ • Jets: ten entries, each with (pT,η,φ).
443
+ This amounts to a 19 × 3 array, with the electrons, muons, and jets being ordered by pT and hav-
444
+ ing zero-padded entries where there is less than the maximum allowed number of reconstructed
445
+ objects. The multiplicity is typically much less than the maximum allowed, so the data for a
446
+ single collider event can have many zeros. The transformer allows us to avoid this by having a
447
+ permutation-invariant and variable length input format. Because the data is now processed in
448
+ a permutation-invariant way, the information on which entry corresponds to which object (MET,
449
+ electron, muon, or jet) is lost. We reinstate this information by adding a one-hot encoded ID vec-
450
+ tor to (pT,η,φ), with a 1 indicating the correct ID. This means that each reconstructed object is
451
+ now represented by a 7D vector. Before passing the kinematic data to the transformer we do some
452
+ very minor preprocessing to make sure that the numbers the networks see are O(1). Specifically,
453
+ we divide all MET and pT values by the average pT of all objects (electrons, muons, jets) in the
454
+ background dataset, we do not shift the values to be centred on zero because the distribution is
455
+ highly peaked at zero and we want the preprocessed data to have the same sparsity as the original
456
+ data. We then divide all η and φ values by 4 and π, respectively. When training the AutoEncoder
457
+ networks discussed in the next section we use the same preprocessing of the data, this ensures
458
+ that any difference in the results can be attributed to AnomalyCLR.
459
+ The transformer starts by projecting each object to a larger vector whose dimension is deter-
460
+ mined by the embedding dimension. The embeddings for each object are then passed through the
461
+ transformer, with a feed-forward network between each transformer layer. The output from the
462
+ transformer has a dimension of (n× model dimension) with n being the number of objects in the
463
+ event. The last steps are to sum over the n vectors in this output, which enforces the permutation-
464
+ invariance, and to pass this vector through a fully-connected head network. The output of this
465
+ head network is what is passed to the loss function. For more details on the architecture we re-
466
+ fer the reader to [53], here we only list the hyper-parameters used in training the network in
467
+ Table 1. The representation used in the anomaly detection task is taken from the output of the
468
+ transformer network, before being passed through the head network. It is well documented in the
469
+ machine learning literature that these intermediate representations from self-supervised networks
470
+ generally contain more discriminating features, for example in [52].
471
+ 9
472
+
473
+ SciPost Physics
474
+ Submission
475
+ hyper-parameter
476
+ model (embedding) dimension 160
477
+ feed-forward hidden dimension 160
478
+ output dimension
479
+ 160
480
+ # self-attention heads
481
+ 4
482
+ # transformer layers (N)
483
+ 4
484
+ # layers
485
+ 2
486
+ dropout rate
487
+ 0.1
488
+ hyper-parameter
489
+ optimiser
490
+ Adam(β1=0.9, β2=0.999)
491
+ learning rate
492
+ 5 × 10−5
493
+ batch size
494
+ 128
495
+ # epochs
496
+ 500
497
+ Table 1: Default setup of the transformer-encoder network and the AnomalyCLR train-
498
+ ing, unless noted explicitly.
499
+ 5
500
+ Anomaly scores
501
+ The basic flow in an AutoEncoder involves two steps; (i) mapping high-dimensional input data
502
+ to a compressed latent space using a neural network called an encoder, and (ii) mapping the
503
+ compressed latent space representation to a reconstructed version of the input data using a neural
504
+ network called a decoder. We refer to the encoder network as e(·) and the decoder network as d(·).
505
+ With input data of dimension D, and a bottleneck of dimension B, the encoder maps e : �D → �B,
506
+ while the decoder maps d : �B → �D, with the AutoEncoder defined as h = e ◦ d : �D → �D.
507
+ Acting on a single input ⃗x, the AutoEncoder returns ⃗x′ = h(⃗x), and is optimised to minimise the
508
+ mean-squared-error (MSE) loss function between the input and reconstructed input,
509
+ L(⃗x,θ) =
510
+
511
+ ⃗x − ⃗x′�2 ,
512
+ (6)
513
+ where θ represents the learnable parameters of the AutoEncoder. In the limit where the AutoEn-
514
+ coder is able to reconstruct inputs perfectly, which is guaranteed to be possible when D = B, the
515
+ function hθ(·) is simply the identity. But with B < D the AutoEncoder may not be able to perfectly
516
+ reconstruct all features in the data, and therefore it should learn to reconstruct only the most
517
+ common or prominent features in the data. This means that events containing rare or anomalous
518
+ features should have a larger ‘reconstruction loss’, i.e. L(⃗x,θ), and this can then be used as the
519
+ anomaly score.
520
+ The encoder and decoder networks have 5 feed forward layers each with 256, 128, 64, 32, and
521
+ 16 neurons, connected by a 5-dimensional bottleneck. The activation function between layers is
522
+ a LeakyReLU with default slope. The decoder is a mirrored version of the encoder. We don’t apply
523
+ regularization techniques during training. The training is performed using Adam optimiser with
524
+ learning rate 0.001 for 100 epochs, the batch size is 4096, and the number of SM events used is
525
+ 106. Note that we have not optimised the AutoEncoder architecture, simply choosing the same
526
+ architecture used in [39]. Instead we have only ensured that they are trained to convergence and
527
+ that the training is stable. The AutoEncoder is trained on both the representations obtained from
528
+ contrastive learning and the raw data. In the case of the raw data we apply the same preprocessing
529
+ to the data as is applied to the data in the contrastive learning network. In this way we ensure
530
+ that any differences in the anomaly detection performance can be attributed to the contrastive
531
+ learning methods.
532
+ 10
533
+
534
+ SciPost Physics
535
+ Submission
536
+ 6
537
+ Results
538
+ In this section we present some results using the different techniques discussed in the preceding
539
+ sections. The results here are three-fold; we first compare the different methods based on anomaly
540
+ detection performance, we then study the effects of the different anomaly-augmentations on the
541
+ AnomalyCLR performance, and lastly we look at the effect of the representation dimension on the
542
+ performance.
543
+ 6.1
544
+ Comparison of methods
545
+ We compare the methods using the ROC (Receiver Operating Characteristic) curves, the SI (Signif-
546
+ icance Improvement) curves, and the AUC (Area Under the ROC Curve). The baseline we compare
547
+ to is the AutoEncoder trained on raw kinematic data. We present results using the CLR method
548
+ without anomaly-augmentations (LCLR), and the CLR method with anomaly-augmentations (both
549
+ LAnomCLR and L+
550
+ AnomCLR). So we have 4 methods in total to compare. For all results on the raw
551
+ data we have trained 5 AutoEncoder networks and taken the central value and the error estimation
552
+ from the mean and standard deviation of the results. For the CLR methods we also aggregate over
553
+ 5 different runs, where in each run we train a different transformer network and a different Au-
554
+ toEncoder. The CLR representations have a dimension of 160 and where anomaly-augmentations
555
+ are used we have used them all as outlined in Section 4. In Fig. 1 we present AnomalyCLR results
556
+ using L+
557
+ AnomCLR and see that it leads to significant improvements over the raw data representations,
558
+ not only in the AUC but also at all signal efficiencies. In the Significance Improvement (SI) curves
559
+ we also see large improvements, with the SI being between ∼ 3.5−4 for A → 4l and h+. We can see
560
+ from Table 2 that the L+
561
+ AnomCLR loss function is clearly advantageous over LAnomCLR, beating it on
562
+ all signals with the exception of A → 4l, where LAnomCLR achieves better performance at εs =0.3.
563
+ A point of interest here is that the AutoEncoder on raw data outperforms the AutoEncoder on the
564
+ CLR representations in most cases. This is likely due to the fact that traditional CLR optimises
565
+ for uniformity, and since it is trained on background only, the mapping is not optimised to sepa-
566
+ rate SM-like background events from any event which may look different to that. The benefit of
567
+ Signal
568
+ AE-Raw
569
+ CLR
570
+ AnomCLR
571
+ AnomCLR+
572
+ AUC
573
+ A
574
+ 0.885(2)
575
+ 0.880(7)
576
+ 0.907(6)
577
+ 0.909(3)
578
+ h0
579
+ 0.755(2)
580
+ 0.740(5)
581
+ 0.765(4)
582
+ 0.776(2)
583
+ h+
584
+ 0.900(4)
585
+ 0.87(1)
586
+ 0.913(2)
587
+ 0.930(1)
588
+ LQ
589
+ 0.856(2)
590
+ 0.841(9)
591
+ 0.854(3)
592
+ 0.880(1)
593
+ ε−1
594
+ b (εs =0.3)
595
+ A
596
+ 47(2)
597
+ 80(22)
598
+ 156(34)
599
+ 139(20)
600
+ h0
601
+ 14.9(7)
602
+ 11(1)
603
+ 18(1)
604
+ 23(1)
605
+ h+
606
+ 60(10)
607
+ 28(6)
608
+ 98(9)
609
+ 171(7)
610
+ LQ
611
+ 24.4(6)
612
+ 18(2)
613
+ 28(3)
614
+ 39(1)
615
+ SI(εs =0.3)
616
+ A
617
+ 2.05(5)
618
+ 2.7(4)
619
+ 3.7(4)
620
+ 3.5(2)
621
+ h0
622
+ 1.16(3)
623
+ 0.99(4)
624
+ 1.26(4)
625
+ 1.44(3)
626
+ h+
627
+ 2.3(2)
628
+ 1.6(2)
629
+ 3.0(1)
630
+ 3.9(1)
631
+ LQ
632
+ 1.48(2)
633
+ 1.3(1)
634
+ 1.6(1)
635
+ 1.88(2)
636
+ Table 2: Comparison of the different CLR loss functions, with and without anomaly-
637
+ augmentations, and the AE trained on raw data.
638
+ 11
639
+
640
+ SciPost Physics
641
+ Submission
642
+ 0.0
643
+ 0.2
644
+ 0.4
645
+ 0.6
646
+ 0.8
647
+ 1.0
648
+ ϵs
649
+ 100
650
+ 101
651
+ 102
652
+ 103
653
+ ϵ−1
654
+ b
655
+ AE-Raw
656
+ A, AUC=0.885(2)
657
+ h0, AUC=0.755(2)
658
+ h+, AUC=0.900(4)
659
+ LQ, AUC=0.856(2)
660
+ 0.0
661
+ 0.2
662
+ 0.4
663
+ 0.6
664
+ 0.8
665
+ 1.0
666
+ ϵs
667
+ 100
668
+ 101
669
+ 102
670
+ 103
671
+ ϵ−1
672
+ b
673
+ AnomCLR+
674
+ A, AUC:0.909(3)
675
+ h0, AUC:0.776(2)
676
+ h+, AUC:0.930(1)
677
+ LQ, AUC:0.880(1)
678
+ 0.0
679
+ 0.2
680
+ 0.4
681
+ 0.6
682
+ 0.8
683
+ 1.0
684
+ ϵs
685
+ 0.0
686
+ 1.0
687
+ 2.0
688
+ 3.0
689
+ 4.0
690
+ 5.0
691
+ SI
692
+ AE-Raw
693
+ A
694
+ h0
695
+ h+
696
+ LQ
697
+ 0.0
698
+ 0.2
699
+ 0.4
700
+ 0.6
701
+ 0.8
702
+ 1.0
703
+ ϵs
704
+ 0.0
705
+ 1.0
706
+ 2.0
707
+ 3.0
708
+ 4.0
709
+ 5.0
710
+ SI
711
+ AnomCLR+
712
+ A
713
+ h0
714
+ h+
715
+ LQ
716
+ Figure 1: Comparison between the AE on raw data and the AE on the CLR representa-
717
+ tions trained with the L+
718
+ AnomCLR loss function.
719
+ anomaly-augmentations here is strikingly clear.
720
+ 6.2
721
+ The effect of anomaly-augmentations
722
+ We now want to study how the addition of the individual anomaly-augmentations affects the
723
+ anomaly detection performance. For this we use just L+
724
+ AnomCLR , however we expect the results
725
+ with LAnomCLR to be similar. We use a representation dimension of 160 and obtain the error
726
+ estimate from just 2 runs due to the computational cost of the scan.
727
+ We can see from Fig. 2 that the affect of the augmentations together results in the best over-
728
+ all performance. One thing we noticed is that it can be difficult to determine from the affect of
729
+ individual augmentations, or subgroups of them, what the performance of all of them together
730
+ will be. For example, in most cases if we take just the m(x) augmentation, i.e. the multiplicity
731
+ augmentation that simply adds reconstructed objects, we see that it alone decreases performance
732
+ below baseline for three out of four signals. However when used in combination with the others
733
+ it increases the performance. This is most clear for the leptoquark signal, where all augmenta-
734
+ 12
735
+
736
+ SciPost Physics
737
+ Submission
738
+ 0.800
739
+ 0.850
740
+ 0.900
741
+ A
742
+ AUC
743
+ 0.700
744
+ 0.750
745
+ h0
746
+ 0.800
747
+ 0.850
748
+ 0.900
749
+ 0.950
750
+ h+
751
+ m(x)
752
+ m(x)
753
+ spT(x) m(x)/m(x)
754
+ all
755
+ anomaly augmentations
756
+ 0.750
757
+ 0.800
758
+ 0.850
759
+ LQ
760
+ Figure 2: Results of a scan on the anomaly-augmentations used with the L+
761
+ AnomCLR loss
762
+ function. The augmentations are defined in Section 4. The dashed lines here correspond
763
+ to the AutoEncoder on raw data baseline performance.
764
+ tions taken individually result in a performance which is at or below baseline, but when taken
765
+ together we get a significant boost in the AUC. We also see the interplay between the m(x) and
766
+ m(x) augmentations, since individually these augmentations do not seem to help much, but when
767
+ they are both applied in the same optimisation we see a reduced error and in most cases better
768
+ performance. When drawing conclusions here we should keep in mind that only two runs for each
769
+ combination have been used to compute the mean and error estimation.
770
+ 6.3
771
+ The effect of representation dimension
772
+ With CLR we can project our raw data from D to a representation of any dimension we like.
773
+ We would expect that the larger the representation dimension the more information that can be
774
+ encoded in the space. However we also expect that this would plateau or even peak at some point,
775
+ and this what we want to investigate here. For this we use just L+
776
+ AnomCLR , however we expect the
777
+ results with LAnomCLR to be similar. Here we also obtain the error estimate from just 2 runs due
778
+ to the computational cost of the scan.
779
+ In Fig. 3 we see that increasing the representation dimension certainly improves the perfor-
780
+ mance of the anomaly detection, at least up until a certain point. The A, h0, and LQ signals
781
+ all appear to achieve peak performance somewhere between dimensions 120 and 200, while the
782
+ h+ signals performance increases right up until 400. There is no fundamental limitation related
783
+ to the representation size which we would expect to cause a degradation at larger dimensions,
784
+ however there are two points we should keep in mind here. The first is simple, these means and
785
+ variances are calculated with only two runs, so more runs might present a clearer picture. The
786
+ 13
787
+
788
+ SciPost Physics
789
+ Submission
790
+ 0.850
791
+ 0.875
792
+ 0.900
793
+ 0.925
794
+ A
795
+ AUC
796
+ 0.740
797
+ 0.760
798
+ 0.780
799
+ h0
800
+ 0.900
801
+ 0.920
802
+ 0.940
803
+ h+
804
+ 4
805
+ 8
806
+ 12
807
+ 20
808
+ 40
809
+ 80
810
+ 120
811
+ 160
812
+ 200
813
+ 300
814
+ 400
815
+ 500
816
+ representation dimension
817
+ 0.840
818
+ 0.860
819
+ 0.880
820
+ LQ
821
+ Figure 3: Results of a scan on the representation dimension used with the L+
822
+ AnomCLR loss
823
+ function. The dashed lines here correspond to the AutoEncoder on raw data baseline
824
+ performance.
825
+ second point is that we have not optimised the AutoEncoder architecture or hyper-parameters as
826
+ the representation size increases. While it is beyond the scope of this paper, it is possible that
827
+ an independent hyper-parameter optimisation for each representation dimension would improve
828
+ these results, particularly at larger dimensions. What these results show is that there is a clear
829
+ tendancy for the results to improve as we increase from dimensions of ∼ 4 to ∼ 100, as we would
830
+ naturally expect.
831
+ 7
832
+ Summary & conclusions
833
+ In this paper we have introduced AnomalyCLR§, a new method for density-based anomaly detec-
834
+ tion in high-energy physics. It makes use of anomalous augmentations of collider data to build a
835
+ representation space from which to construct anomaly scores with a range of methods, for exam-
836
+ ple using AutoEncoders. It is a self-supervised method, based on the contrastive learning idea. We
837
+ tested this method on the CMS ADC dataset, and compared to the raw data baselines we find large
838
+ improvements on all signals. At a fixed signal efficiency of 0.3 and a fixed representation dimen-
839
+ sion of 160 we find significance improvements for the different signals in the range of 14−70%,
840
+ and a decreased relative error on the significance improvement in each case. Allowing for varying
841
+ signal efficiencies and representation dimensions would improve these performance markers even
842
+ §The AnomalyCLR code, along with the event-level anomaly detection application, will be made available at
843
+ https://github.com/bmdillon/AnomalyCLR.
844
+ 14
845
+
846
+ SciPost Physics
847
+ Submission
848
+ further.
849
+ Density-based anomaly detection, using AutoEncoders or normalising flows, suffer from the
850
+ ambiguity that a change in the ‘coordinate system’ or representation of the data results in a fun-
851
+ damental change in how the anomaly score is defined. This makes it difficult to choose a suitable
852
+ representation by hand, for example a simple re-mapping of pT’s along with some re-scaling of
853
+ numerical inputs. These simple choices are difficult to motivate from a physics perspective and
854
+ can drastically change the results of the anomaly detection. This change can be for better or for
855
+ worse, and typically depends on the signal models used to test the algorithm.
856
+ AnomalyCLR addresses this by constructing a representation of the data using self-supervised
857
+ contrastive learning with the addition of anomaly-augmented data. The anomaly-augmented data
858
+ is constructed from the background data through feature augmentation, designed to emulate a
859
+ generic anomaly. We have discussed in detail how we do this for the event-level anomalies in
860
+ the CMS ADC dataset, however this would of course be different in different physics cases. We
861
+ proposed a new loss function which we use to train a deep transformer-based neural network. This
862
+ network projects the events to a new representation, in which the anomaly-augmented events are
863
+ far from their original counterparts, while being close to events which are similar. The transformer
864
+ network then learns a highly discriminative representation of the events which is sensitive to
865
+ the presence of potential anomalies. We have seen that the choice of these augmentations is
866
+ quite model agnostic. This model-agnostic nature of the approach can be seen in how the results
867
+ improve across all four signals considered.
868
+ We have shown the effectiveness of self-supervision and the idea of anomaly-augmentations
869
+ in significantly enhancing anomaly detection performance in a model-agnostic way. This opens
870
+ the door to further studies, such as improving the density-estimation portion of the method with a
871
+ more sophisticated hyper-parameter optimisation of the AutoEncoders, using normalising flows,
872
+ or even using the Normalised AutoEncoder. More generally, the use of anomaly-augmented data
873
+ could be explored further in other anomaly detection approaches.
874
+ Acknowledgements
875
+ We would like to thank Jernej Kamenik and Ben Nachman for their helpful comments on the
876
+ manuscript. BMD acknowledges funding from the Alexander von Humboldt Foundation. LF, TM,
877
+ and TP are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
878
+ under grant 396021762 – TRR 257: Particle Physics Phenomenology after the Higgs Discovery
879
+ and Germany’s Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRUCTURES Ex-
880
+ cellence Cluster).
881
+ References
882
+ [1] A general search for new phenomena with the ATLAS detector in pp collisions at �s = 8
883
+ TeV, ATLAS-CONF-2014-006 (ATLAS-CONF-2014-006) (2014), https://cds.cern.ch/record/
884
+ 1666536.
885
+ [2] C. Collaboration, MUSiC, a Model Unspecific Search for New Physics, in pp Collisions at �s = 8
886
+ TeV (2017).
887
+ 15
888
+
889
+ SciPost Physics
890
+ Submission
891
+ [3] T. Plehn, A. Butter, B. Dillon and C. Krause, Modern Machine Learning for LHC Physicists
892
+ (2022), arXiv:2211.01421.
893
+ [4] E. M. Metodiev, B. Nachman and J. Thaler, Classification without labels: Learning from mixed
894
+ samples in high energy physics,
895
+ JHEP 10, 174 (2017),
896
+ doi:10.1007/JHEP10(2017)174,
897
+ arXiv:1708.02949.
898
+ [5] B. Nachman and D. Shih, Anomaly Detection with Density Estimation, Phys. Rev. D 101,
899
+ 075042 (2020), doi:10.1103/PhysRevD.101.075042, arXiv:2001.04990.
900
+ [6] A. Hallin, J. Isaacson, G. Kasieczka, C. Krause, B. Nachman, T. Quadfasel, M. Schlaffer,
901
+ D. Shih and M. Sommerhalder, Classifying anomalies through outer density estimation, Phys-
902
+ ical Review D 106(5) (2022),
903
+ doi:10.1103/physrevd.106.055006,
904
+ https://doi.org/10.
905
+ 1103%2Fphysrevd.106.055006.
906
+ [7] J.
907
+ H.
908
+ Collins,
909
+ K.
910
+ Howe
911
+ and
912
+ B.
913
+ Nachman,
914
+ Anomaly
915
+ Detection
916
+ for
917
+ Resonant
918
+ New Physics with Machine Learning,
919
+ Phys. Rev. Lett. 121(24),
920
+ 241803 (2018),
921
+ doi:10.1103/PhysRevLett.121.241803, arXiv:1805.02664.
922
+ [8] J. H. Collins, K. Howe and B. Nachman, Extending the search for new resonances with ma-
923
+ chine learning,
924
+ Phys. Rev. D99(1), 014038 (2019),
925
+ doi:10.1103/PhysRevD.99.014038,
926
+ arXiv:1902.02634.
927
+ [9] A. Andreassen, B. Nachman and D. Shih,
928
+ Simulation Assisted Likelihood-free Anomaly
929
+ Detection,
930
+ Phys. Rev. D 101(9), 095004 (2020),
931
+ doi:10.1103/PhysRevD.101.095004,
932
+ arXiv:2001.05001.
933
+ [10] O. Amram and C. M. Suarez, Tag N’ Train: a technique to train improved classifiers on unlabeled
934
+ data, JHEP 01, 153 (2021), doi:10.1007/JHEP01(2021)153, arXiv:2002.12376.
935
+ [11] J. A. Raine, S. Klein, D. Sengupta and T. Golling, CURTAINs for your Sliding Window: Con-
936
+ structing Unobserved Regions by Transforming Adjacent Intervals (2022), arXiv:2203.09470.
937
+ [12] A. Hallin, G. Kasieczka, T. Quadfasel, D. Shih and M. Sommerhalder, Resonant anomaly
938
+ detection without background sculpting (2022), arXiv:2210.14924.
939
+ [13] M. F. Chen, B. Nachman and F. Sala, Resonant Anomaly Detection with Multiple Reference
940
+ Datasets (2022), arXiv:2212.10579.
941
+ [14] T. Golling, S. Klein, R. Mastandrea and B. Nachman, FETA: Flow-Enhanced Transportation
942
+ for Anomaly Detection (2022), arXiv:2212.11285.
943
+ [15] T. Finke, M. Krämer, M. Lipp and A. Mück, Boosting mono-jet searches with model-agnostic ma-
944
+ chine learning, JHEP 08, 015 (2022), doi:10.1007/JHEP08(2022)015, arXiv:2204.11889.
945
+ [16] G. Aad et al.,
946
+ Dijet resonance search with weak supervision using �s
947
+ =
948
+ 13 TeV
949
+ pp collisions in the ATLAS detector,
950
+ Phys. Rev. Lett. 125(13),
951
+ 131801 (2020),
952
+ doi:10.1103/PhysRevLett.125.131801, arXiv:2005.02983.
953
+ [17] T. Heimel, G. Kasieczka, T. Plehn and J. M. Thompson, QCD or What?, SciPost Phys. 6, 030
954
+ (2019), doi:10.21468/SciPostPhys.6.3.030, arXiv:1808.08979.
955
+ 16
956
+
957
+ SciPost Physics
958
+ Submission
959
+ [18] M. Farina, Y. Nakai and D. Shih, Searching for New Physics with Deep Autoencoders, Phys.
960
+ Rev. D 101, 075021 (2020), doi:10.1103/PhysRevD.101.075021, arXiv:1808.08992.
961
+ [19] A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust un-
962
+ supervised new physics searches,
963
+ JHEP 10, 047 (2019),
964
+ doi:10.1007/JHEP10(2019)047,
965
+ arXiv:1905.10384.
966
+ [20] T. S. Roy and A. H. Vijay,
967
+ A robust anomaly finder based on autoencoder (2019),
968
+ arXiv:1903.02032.
969
+ [21] T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette and T. Golling, Variational Autoencoders
970
+ for Anomalous Jet Tagging (2020), arXiv:2007.01850.
971
+ [22] A. A. Pol, V. Berger, G. Cerminara, C. Germain and M. Pierini, Anomaly Detection With Condi-
972
+ tional Variational Autoencoders, In Eighteenth International Conference on Machine Learning
973
+ and Applications (2020), arXiv:2010.05531.
974
+ [23] O.
975
+ Atkinson,
976
+ A. Bhardwaj,
977
+ C. Englert,
978
+ V. S. Ngairangbam and M. Spannowsky,
979
+ Anomaly detection with convolutional Graph Neural Networks,
980
+ JHEP 08, 080 (2021),
981
+ doi:10.1007/JHEP08(2021)080, arXiv:2105.07988.
982
+ [24] S. Tsan, R. Kansal, A. Aportela, D. Diaz, J. Duarte, S. Krishna, F. Mokhtar, J.-R. Vlimant and
983
+ M. Pierini, Particle Graph Autoencoders and Differentiable, Learned Energy Mover’s Distance,
984
+ In 35th Conference on Neural Information Processing Systems (2021), arXiv:2111.12849.
985
+ [25] V. S. Ngairangbam, M. Spannowsky and M. Takeuchi,
986
+ Anomaly detection in high-
987
+ energy physics using a quantum autoencoder,
988
+ Phys. Rev. D 105(9), 095004 (2022),
989
+ doi:10.1103/PhysRevD.105.095004, arXiv:2112.04958.
990
+ [26] B. Ostdiek,
991
+ Deep Set Auto Encoders for Anomaly Detection in Particle Physics (2021),
992
+ arXiv:2109.01695.
993
+ [27] J. Barron, D. Curtin, G. Kasieczka, T. Plehn and A. Spourdalakis, Unsupervised Hadronic SUEP
994
+ at the LHC, JHEP 12, 129 (2021), doi:10.1007/JHEP12(2021)129, arXiv:2107.12379.
995
+ [28] A. Kahn, J. Gonski, I. Ochoa, D. Williams and G. Brooijmans, Anomalous jet identification via
996
+ sequence modeling, JINST 16(08), P08012 (2021), doi:10.1088/1748-0221/16/08/P08012,
997
+ arXiv:2105.09274.
998
+ [29] K. Fraser,
999
+ S. Homiller,
1000
+ R. K. Mishra,
1001
+ B. Ostdiek and M. D. Schwartz,
1002
+ Chal-
1003
+ lenges for unsupervised anomaly detection in particle physics,
1004
+ JHEP 03, 066 (2022),
1005
+ doi:10.1007/JHEP03(2022)066, arXiv:2110.06948.
1006
+ [30] F. Canelli, A. de Cosa, L. L. Pottier, J. Niedziela, K. Pedro and M. Pierini,
1007
+ Autoencoders
1008
+ for semivisible jet detection,
1009
+ JHEP 02, 074 (2022),
1010
+ doi:10.1007/JHEP02(2022)074,
1011
+ arXiv:2112.02864.
1012
+ [31] Z. Hao, R. Kansal, J. Duarte and N. Chernyavskaya, Lorentz Group Equivariant Autoencoders
1013
+ (2022), arXiv:2212.07347.
1014
+ [32] O. Atkinson, A. Bhardwaj, C. Englert, P. Konar, V. S. Ngairangbam and M. Spannowsky, IRC-
1015
+ Safe Graph Autoencoder for Unsupervised Anomaly Detection, Front. Artif. Intell. 5, 943135
1016
+ (2022), doi:10.3389/frai.2022.943135, arXiv:2204.12231.
1017
+ 17
1018
+
1019
+ SciPost Physics
1020
+ Submission
1021
+ [33] L. Bradshaw, S. Chang and B. Ostdiek,
1022
+ Creating simple, interpretable anomaly de-
1023
+ tectors for new physics in jet substructure,
1024
+ Phys. Rev. D 106(3), 035014 (2022),
1025
+ doi:10.1103/PhysRevD.106.035014, arXiv:2203.01343.
1026
+ [34] B. Bortolato, B. M. Dillon, J. F. Kamenik and A. Smolkoviˇc, Bump Hunting in Latent Space
1027
+ (2021), arXiv:2103.06595.
1028
+ [35] B. M. Dillon, T. Plehn, C. Sauer and P. Sorrenson, Better Latent Spaces for Better Autoencoders,
1029
+ SciPost Phys. 11, 061 (2021), doi:10.21468/SciPostPhys.11.3.061, arXiv:2104.08291.
1030
+ [36] B. M. Dillon, D. A. Faroughy and J. F. Kamenik, Uncovering latent jet substructure, Phys. Rev.
1031
+ D 100, 056002 (2019), doi:10.1103/PhysRevD.100.056002, arXiv:1904.04200.
1032
+ [37] B. M. Dillon, D. A. Faroughy, J. F. Kamenik and M. Szewc, Learning the latent structure of
1033
+ collider events, JHEP 10, 206 (2020), doi:10.1007/JHEP10(2020)206, arXiv:2005.12319.
1034
+ [38] J. F. Kamenik and M. Szewc,
1035
+ Null Hypothesis Test for Anomaly Detection (2022),
1036
+ arXiv:2210.02226.
1037
+ [39] V. Mikuni, B. Nachman and D. Shih, Online-compatible unsupervised nonresonant anomaly
1038
+ detection,
1039
+ Phys. Rev. D 105(5), 055006 (2022),
1040
+ doi:10.1103/PhysRevD.105.055006,
1041
+ arXiv:2111.06417.
1042
+ [40] B. M. Dillon, L. Favaro, T. Plehn, P. Sorrenson and M. Krämer, A Normalized Autoencoder for
1043
+ LHC Triggers (2022), arXiv:2206.14225.
1044
+ [41] S. E. Park, D. Rankin, S.-M. Udrescu, M. Yunus and P. Harris, Quasi Anomalous Knowledge:
1045
+ Searching for new physics with embedded knowledge (2020), arXiv:2011.03550.
1046
+ [42] P. Jawahar, T. Aarrestad, N. Chernyavskaya, M. Pierini, K. A. Wozniak, J. Ngadiuba, J. Duarte
1047
+ and S. Tsan, Improving Variational Autoencoders for New Physics Detection at the LHC With
1048
+ Normalizing Flows, Front. Big Data 5, 803685 (2022), doi:10.3389/fdata.2022.803685,
1049
+ arXiv:2110.08508.
1050
+ [43] S. Caron, L. Hendriks and R. Verheyen, Rare and Different: Anomaly Scores from a combi-
1051
+ nation of likelihood and out-of-distribution models to detect new physics at the LHC, SciPost
1052
+ Phys. 12(2), 077 (2022), doi:10.21468/SciPostPhys.12.2.077, arXiv:2106.10164.
1053
+ [44] T. Buss, B. M. Dillon, T. Finke, M. Krämer, A. Morandini, A. Mück, I. Oleksiyuk and T. Plehn,
1054
+ What’s Anomalous in LHC Jets? (2022), arXiv:2202.00686.
1055
+ [45] G. Kasieczka et al., The LHC Olympics 2020: A Community Challenge for Anomaly Detection
1056
+ in High Energy Physics (2021), arXiv:2101.08320.
1057
+ [46] T. Aarrestad et al., The Dark Machines Anomaly Score Challenge: Benchmark Data and Model
1058
+ Independent Event Classification for the Large Hadron Collider,
1059
+ SciPost Phys. 12(1), 043
1060
+ (2022), doi:10.21468/SciPostPhys.12.1.043, arXiv:2105.14027.
1061
+ [47] G. Kasieczka, R. Mastandrea, V. Mikuni, B. Nachman, M. Pettee and D. Shih, Anomaly Detec-
1062
+ tion under Coordinate Transformations (2022), arXiv:2209.06225.
1063
+ 18
1064
+
1065
+ SciPost Physics
1066
+ Submission
1067
+ [48] G. Kasieczka, T. Plehn, A. Butter, K. Cranmer, D. Debnath, B. M. Dillon, M. Fairbairn, D. A.
1068
+ Faroughy, W. Fedorko, C. Gay, L. Gouskos, J. F. Kamenik et al., The Machine Learning Land-
1069
+ scape of Top Taggers,
1070
+ SciPost Phys. 7, 014 (2019),
1071
+ doi:10.21468/SciPostPhys.7.1.014,
1072
+ arXiv:1902.09914.
1073
+ [49] H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D 101, 056019
1074
+ (2020), doi:10.1103/PhysRevD.101.056019, arXiv:1902.08570.
1075
+ [50] H. Qu, C. Li and S. Qian, Particle Transformer for Jet Tagging (2022), arXiv:2202.03772.
1076
+ [51] A. Bogatskiy, T. Hoffman, D. W. Miller and J. T. Offermann, PELICAN: Permutation Equiv-
1077
+ ariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics (2022),
1078
+ arXiv:2211.00454.
1079
+ [52] T. Chen, S. Kornblith, M. Norouzi and G. E. Hinton, A Simple Framework for Contrastive
1080
+ Learning of Visual Representations,
1081
+ Proceedings of the 37th International Conference on
1082
+ Machine Learning, PMLR 119, 1597 (2020), https://proceedings.mlr.press/v119/chen20j.
1083
+ html, arXiv:2002.05709.
1084
+ [53] B.
1085
+ M.
1086
+ Dillon,
1087
+ G.
1088
+ Kasieczka,
1089
+ H.
1090
+ Olischlager,
1091
+ T.
1092
+ Plehn,
1093
+ P.
1094
+ Sorrenson
1095
+ and
1096
+ L.
1097
+ Vo-
1098
+ gel,
1099
+ Symmetries, safety, and self-supervision,
1100
+ SciPost Phys. 12(6), 188 (2022),
1101
+ doi:10.21468/SciPostPhys.12.6.188, arXiv:2108.04253.
1102
+ [54] B. M. Dillon, R. Mastandrea and B. Nachman,
1103
+ Self-supervised anomaly detection for
1104
+ new physics,
1105
+ Phys. Rev. D 106(5), 056005 (2022),
1106
+ doi:10.1103/PhysRevD.106.056005,
1107
+ arXiv:2205.10380.
1108
+ [55] R. Tombs and C. G. Lester, A method to challenge symmetries in data with self-supervised
1109
+ learning,
1110
+ JINST 17(08), P08024 (2022),
1111
+ doi:10.1088/1748-0221/17/08/P08024,
1112
+ arXiv:2111.05442.
1113
+ [56] T. Cheng and A. Courville, Invariant representation driven neural classifier for anti-QCD jet
1114
+ tagging, JHEP 10, 152 (2022), doi:10.1007/JHEP10(2022)152, arXiv:2201.07199.
1115
+ [57] M. A. Hayat, P. Harrington, G. Stein, Z. Luki´c and M. Mustafa, Estimating Galactic Distances
1116
+ From Images Using Self-supervised Representation Learning (2021), arXiv:2101.04293.
1117
+ [58] G. Stein, J. Blaum, P. Harrington, T. Medan and Z. Lukic, Mining for Strong Gravitational
1118
+ Lenses with Self-supervised Learning, Astrophys. J. 932(2), 107 (2022), doi:10.3847/1538-
1119
+ 4357/ac6d63, arXiv:2110.00023.
1120
+ [59] G. Stein, P. Harrington, J. Blaum, T. Medan and Z. Lukic, Self-supervised similarity search for
1121
+ large scientific datasets, In 35th Conference on Neural Information Processing Systems (2021),
1122
+ arXiv:2110.13151.
1123
+ [60] V. Bonjean, H. Tanimura, N. Aghanim, T. Bonnaire and M. Douspis, Self-supervised component
1124
+ separation for the extragalactic submillimeter sky (2022), arXiv:2212.02847.
1125
+ [61] J. Tack, S. Mo, J. Jeong and J. Shin, Csi: Novelty detection via contrastive learning on distri-
1126
+ butionally shifted instances, doi:10.48550/ARXIV.2007.08176 (2020).
1127
+ 19
1128
+
1129
+ SciPost Physics
1130
+ Submission
1131
+ [62] V. Sehwag, M. Chiang and P. Mittal, Ssd: A unified framework for self-supervised outlier detec-
1132
+ tion, doi:10.48550/ARXIV.2103.12051 (2021).
1133
+ [63] T.
1134
+ Reiss
1135
+ and
1136
+ Y.
1137
+ Hoshen,
1138
+ Mean-shifted
1139
+ contrastive
1140
+ loss
1141
+ for
1142
+ anomaly
1143
+ detection,
1144
+ doi:10.48550/ARXIV.2106.03844 (2021).
1145
+ [64] H. Hojjati, T. K. K. Ho and N. Armanfard, Self-supervised anomaly detection: A survey and
1146
+ outlook, doi:10.48550/ARXIV.2205.05173 (2022).
1147
+ [65] E. Govorkova, E. Puljak, T. Aarrestad, M. Pierini, K. A. Wo´zniak and J. Ngadiuba,
1148
+ LHC
1149
+ physics dataset for unsupervised New Physics detection at 40 MHz, Sci. Data 9, 118 (2022),
1150
+ doi:10.1038/s41597-022-01187-8, arXiv:2107.02157.
1151
+ [66] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel,
1152
+ C. O. Rasmussen and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. Commun.
1153
+ 191, 159 (2015), doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
1154
+ [67] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens and M. Selvaggi,
1155
+ DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP
1156
+ 02, 057 (2014), doi:10.1007/JHEP02(2014)057, arXiv:1307.6346.
1157
+ [68] M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04, 063
1158
+ (2008), doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
1159
+ [69] O. Cerri, T. Q. Nguyen, M. Pierini, M. Spiropulu and J.-R. Vlimant,
1160
+ Variational Au-
1161
+ toencoders for New Physics Mining at the Large Hadron Collider,
1162
+ JHEP 05, 036 (2019),
1163
+ doi:10.1007/JHEP05(2019)036, arXiv:1811.10276.
1164
+ 20
1165
+
-dE3T4oBgHgl3EQfrgpm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -2528,3 +2528,52 @@ y9E3T4oBgHgl3EQfmQpK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
2528
  atFQT4oBgHgl3EQfgDa2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2529
  FtE3T4oBgHgl3EQftQtg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2530
  Z9FJT4oBgHgl3EQf7y3s/content/2301.11680v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528
  atFQT4oBgHgl3EQfgDa2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2529
  FtE3T4oBgHgl3EQftQtg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2530
  Z9FJT4oBgHgl3EQf7y3s/content/2301.11680v1.pdf filter=lfs diff=lfs merge=lfs -text
2531
+ x9E4T4oBgHgl3EQfYQwo/content/2301.05047v1.pdf filter=lfs diff=lfs merge=lfs -text
2532
+ 8tE4T4oBgHgl3EQf3A1I/content/2301.05302v1.pdf filter=lfs diff=lfs merge=lfs -text
2533
+ VtE4T4oBgHgl3EQfMgzk/content/2301.04949v1.pdf filter=lfs diff=lfs merge=lfs -text
2534
+ GtE1T4oBgHgl3EQf_QYB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2535
+ NdFLT4oBgHgl3EQfOC8n/content/2301.12022v1.pdf filter=lfs diff=lfs merge=lfs -text
2536
+ gNFLT4oBgHgl3EQfYy_o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2537
+ 9dAyT4oBgHgl3EQfdPeW/content/2301.00299v1.pdf filter=lfs diff=lfs merge=lfs -text
2538
+ atFQT4oBgHgl3EQfgDa2/content/2301.13342v1.pdf filter=lfs diff=lfs merge=lfs -text
2539
+ sdFKT4oBgHgl3EQf1i6S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2540
+ GtE1T4oBgHgl3EQf_QYB/content/2301.03577v1.pdf filter=lfs diff=lfs merge=lfs -text
2541
+ VtE4T4oBgHgl3EQfMgzk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2542
+ j9E0T4oBgHgl3EQf7QLf/content/2301.02775v1.pdf filter=lfs diff=lfs merge=lfs -text
2543
+ pNFAT4oBgHgl3EQfeR0E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2544
+ idE3T4oBgHgl3EQf4wsK/content/2301.04774v1.pdf filter=lfs diff=lfs merge=lfs -text
2545
+ _dA0T4oBgHgl3EQfPf96/content/2301.02176v1.pdf filter=lfs diff=lfs merge=lfs -text
2546
+ jNE4T4oBgHgl3EQfTAww/content/2301.05003v1.pdf filter=lfs diff=lfs merge=lfs -text
2547
+ _9AyT4oBgHgl3EQfRfam/content/2301.00068v1.pdf filter=lfs diff=lfs merge=lfs -text
2548
+ _dAyT4oBgHgl3EQfdvdN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2549
+ ytAzT4oBgHgl3EQfQvv4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2550
+ jNE4T4oBgHgl3EQfTAww/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2551
+ 1dE0T4oBgHgl3EQf_wJK/content/2301.02830v1.pdf filter=lfs diff=lfs merge=lfs -text
2552
+ XNAyT4oBgHgl3EQf9PpX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2553
+ ytAzT4oBgHgl3EQfQvv4/content/2301.01206v1.pdf filter=lfs diff=lfs merge=lfs -text
2554
+ 9dAyT4oBgHgl3EQfdPeW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2555
+ _9AyT4oBgHgl3EQfRfam/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2556
+ A9AzT4oBgHgl3EQfv_5R/content/2301.01715v1.pdf filter=lfs diff=lfs merge=lfs -text
2557
+ X9AyT4oBgHgl3EQfWfd0/content/2301.00164v1.pdf filter=lfs diff=lfs merge=lfs -text
2558
+ sdFKT4oBgHgl3EQf1i6S/content/2301.11920v1.pdf filter=lfs diff=lfs merge=lfs -text
2559
+ Z9FJT4oBgHgl3EQf7y3s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2560
+ HtFIT4oBgHgl3EQfXys9/content/2301.11245v1.pdf filter=lfs diff=lfs merge=lfs -text
2561
+ atAyT4oBgHgl3EQf9_py/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2562
+ 1dE0T4oBgHgl3EQf_wJK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2563
+ TNE3T4oBgHgl3EQfzgsS/content/2301.04728v1.pdf filter=lfs diff=lfs merge=lfs -text
2564
+ NdFLT4oBgHgl3EQfOC8n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2565
+ xtFQT4oBgHgl3EQfAjU_/content/2301.13223v1.pdf filter=lfs diff=lfs merge=lfs -text
2566
+ X9AyT4oBgHgl3EQfWfd0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2567
+ F9AzT4oBgHgl3EQfi_2P/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2568
+ TNE3T4oBgHgl3EQfzgsS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2569
+ idE3T4oBgHgl3EQf4wsK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2570
+ IdAzT4oBgHgl3EQfU_z6/content/2301.01278v1.pdf filter=lfs diff=lfs merge=lfs -text
2571
+ A9AzT4oBgHgl3EQfv_5R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2572
+ qNFKT4oBgHgl3EQfzS7F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2573
+ EdE1T4oBgHgl3EQfWgTb/content/2301.03116v1.pdf filter=lfs diff=lfs merge=lfs -text
2574
+ rtE0T4oBgHgl3EQfawAZ/content/2301.02338v1.pdf filter=lfs diff=lfs merge=lfs -text
2575
+ YdE2T4oBgHgl3EQfEQZV/content/2301.03633v1.pdf filter=lfs diff=lfs merge=lfs -text
2576
+ otFMT4oBgHgl3EQf7TEy/content/2301.12463v1.pdf filter=lfs diff=lfs merge=lfs -text
2577
+ JdFAT4oBgHgl3EQfvB7v/content/2301.08674v1.pdf filter=lfs diff=lfs merge=lfs -text
2578
+ 6tE5T4oBgHgl3EQfPw5R/content/2301.05507v1.pdf filter=lfs diff=lfs merge=lfs -text
2579
+ otFMT4oBgHgl3EQf7TEy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0tE1T4oBgHgl3EQf4wXL/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10dbaf2aaaef8957c56f121e92a30e79a1b17f8b2738d9b6e64175e99545de7e
3
+ size 947504
19E1T4oBgHgl3EQflQTp/content/tmp_files/2301.03284v1.pdf.txt ADDED
@@ -0,0 +1,665 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ On the accuracy of one-way approximate models
2
+ for nonlinear waves in soft solids
3
+ Harold Berjamin a
4
+ aSchool of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Republic of Ireland
5
+ Abstract
6
+ A simple strain-rate viscoelasticity model of isotropic soft solid is introduced. The constitutive equations account for
7
+ finite strain, incompressibility, material frame-indifference, nonlinear elasticity, and viscous dissipation. A nonlinear
8
+ viscous wave equation for the shear strain is obtained exactly, and a corresponding one-way Burgers-type equation
9
+ is derived by making standard approximations. Analysis of the travelling wave solutions shows that the two partial
10
+ differential equations produce distinct solutions, and that deviations are exacerbated when wave amplitudes are not
11
+ arbitrarily small. In the elastic limit, the one-way approximate wave equation can be linked to simple wave theory,
12
+ thus allowing direct error measurements.
13
+ 1
14
+ Introduction
15
+ In nonlinear acoustics, the Burgers equation is often viewed as the simplest model equation that includes nonlinear
16
+ wave propagation and diffusion effects (Witham, 1999). This partial differential equation in space and time can be
17
+ derived directly from the one-dimensional Navier–Stokes equation by dropping the pressure term, or as a special case
18
+ of the Westerwelt equation. Besides Burgers’ equation, other one-way wave equations have been derived to describe
19
+ wave propagation in fluids and solids at large amplitudes (Hamilton and Blackstock, 1998; Naugolnykh and Ostro-
20
+ vsky, 1998). Based on an appropriate scaling of the wave amplitude, such approximate partial differential equations
21
+ describe unidirectional wave motion for slowly-varying wave profiles of moderate amplitude.
22
+ One-way approximate wave equations have found applications in various areas of nonlinear acoustics. For in-
23
+ stance, works by Radostin et al. (2013) and Nazarov et al. (2017) describe compression wave propagation in solids with
24
+ bimodular elastic behaviour. Another example is the Zabolotskaya equation that describes unidirectional plane shear
25
+ wave propagation in soft solids such as gels and brain tissue (Zabolotskaya et al., 2004), see also Cormack and Hamil-
26
+ ton (2018). In these latter cases, the underlying three-dimensional constitutive theories were revisited by Destrade
27
+ et al. (2013) as well as Saccomandi and Vianello (2021) to enforce objectivity (i.e., invariance by change of observer),
28
+ leading to slight modifications of the equations of motion.
29
+ For these partial differential equations, not many analytical solutions are known. Nevertheless, it is sometimes
30
+ possible to derive exact stationary wave solutions that keep an invariant wave profile throughout the motion, which
31
+ occurs at a suitable constant speed. Those permanent waveforms result from the interaction between nonlinearity
32
+ and dispersion (here of dissipative nature), a common feature that they share with solitary waves.
33
+ One might wonder whether it is preferable to seek closed-form travelling wave solutions by using directly the
34
+ full equations of motion, or by using their one-way approximation. As a matter of fact, both approaches have been
35
+ considered separately in the above literature. The present study aims to provide evidence to advocate for a derivation
36
+ of travelling waves based on the complete equations of motion, thus supporting a remark by Jordan and Puri (2005)
37
+ in relation with the study by Catheline et al. (2003) — this remark led to the publication of an erratum that briefly
38
+ discusses the validity of a particular one-way wave equation (Catheline et al., 2005).
39
+ For this purpose, we consider the case of shear wave propagation in soft viscoelastic solids of strain rate type. We
40
+ derive the simplest three-dimensional constitutive theory that accounts for finite strain, incompressibility, material
41
+ frame-indifference, and viscous dissipation (Section 2). Then, this theory is applied to simple shear deformations, aka.
42
+ transverse plane waves (Section 3), including the reduction to a one-way model described by a Burgers-type equation
43
+ with cubic nonlinearity. Finally, we investigate the travelling wave solutions deduced from the full equations of motion
44
+ as well as from the reduced wave equation (Section 4). Results show non-negligible discrepancies introduced by the
45
+ reduction to unidirectional motion as soon as wave amplitudes are no longer infinitesimal. These comparisons are
46
+ reconsidered in the lossless elastic limit where connections between the one-way model and simple wave theory are
47
+ established (Section 5).
48
+ 1
49
+ arXiv:2301.03284v1 [cond-mat.soft] 9 Jan 2023
50
+
51
+ 2
52
+ Strain-rate model
53
+ 2.1
54
+ Basic equations
55
+ In what follows, we present the basic equations of Lagrangian dynamics for incompressible solids (Holzapfel, 2000).
56
+ We consider a homogeneous and isotropic solid continuum on which no external body force is applied. Its motion
57
+ in the Euclidean space is described by using an orthonormal Cartesian coordinate system (O,x, y,z). Thus, a particle
58
+ initially located at some position X of the reference configuration moves to a position x of the current configuration.
59
+ The deformation gradient is the second-order tensor defined as F = ∂x/∂X . Introducing the displacement field u =
60
+ x − X and the identity tensor I = [δi j ] whose components are represented by Kronecker’s delta, we therefore have
61
+ F = I +Gradu where Grad denotes the gradient operator with respect to the material coordinates X = (x, y,z).
62
+ In incompressible solids, isochoricity
63
+ J = detF ≡ 1
64
+ (1)
65
+ is prescribed. Thus, the mass density ρ is constant in time. It follows also that ˙J = JF −⊺ : ˙F ≡ 0, where the dot de-
66
+ notes the material time derivative ∂/∂t and the colon indicates double contraction. Introducing the Eulerian velocity
67
+ gradient L = ˙FF −1, this condition can be rewritten as trL = 0.
68
+ Various strain tensors are defined as functions of F. Here, constitutive laws are expressed in terms of the Green–
69
+ Lagrange strain tensor E = 1
70
+ 2(F ⊺F − I), which is often a preferred choice in physical acoustics. We introduce also its
71
+ rate ˙E = F ⊺DF obtained by differentiation with respect to time, where D = 1
72
+ 2(L +L⊺) is the strain rate tensor. We note
73
+ that D is trace-free due to incompressibility (1).
74
+ The motion is governed by the conservation of linear momentum equation ρ ˙v = DivP, where v = ˙x is the velocity
75
+ field and ρ is the mass density. The equation of motion involves the Lagrangian divergence of the first Piola–Kirchhoff
76
+ stress tensor P = FS where S is the second Piola–Kirchhoff stress tensor. Those stress tensors are specified later on by
77
+ the provision of a constitutive law.
78
+ The present definitions are consistent with notations and conventions used in the monograph by Holzapfel (2000).
79
+ In particular, the divergence of the tensor P reads [DivP]i = Pi j,j componentwise, where indices after the coma de-
80
+ note spatial differentiation. In some other texts, a transposed definition of the divergence is used. Then, the equation
81
+ of motion involves the material divergence of the nominal stress tensor P⊺ instead of P.
82
+ 2.2
83
+ Generalities
84
+ In the present study, we consider deformable solids whose constitutive behaviour is described by the state vari-
85
+ ables S = {s,E}, where s is the specific entropy. The choice of variables S is coherent with the postulate of frame-
86
+ indifference of the internal energy (Holzapfel, 2000). In fact, a change of observer specified by a superimposed rigid-
87
+ body motion leaves S invariant, as well as the internal energy U. Note that the internal energy does not depend on
88
+ rates of strain.
89
+ The internal energy per unit volume U is a function of state to be specified. The thermodynamic temperature
90
+ is defined as the conjugate variable of s in the partial Legendre transform of U/ρ with respect to s (Berjamin et al.,
91
+ 2021). However, the explicit dependence of U with respect to s is usually omitted in the definition of a strain energy
92
+ density function W e such that U = W e(E). The strain energy W e is regarded as a scalar-valued isotropic function of
93
+ its arguments. Thus, its dependence with respect to E can be reduced to a dependence with respect to three scalar
94
+ invariants
95
+ I1 = tr(E),
96
+ I2 = tr(E2),
97
+ I3 = tr(E3).
98
+ (2)
99
+ They can be used directly, or other physically meaningful scalar quantities might be defined from them.
100
+ The first and second principles of thermodynamics yield the Clausius–Duhem inequality
101
+ D = (S −Se) : ˙E = Sv : ˙E ≥ 0,
102
+ (3)
103
+ where D is the dissipation, S = Se +Sv is the total second Piola–Kirchhoff stress,
104
+ Se = −pC −1 + ∂W e
105
+ ∂E
106
+ (4)
107
+ denotes the elastic part, and Sv is a viscous contribution to be specified subsequently. The scalar p is an arbitrary
108
+ Lagrange multiplier for the incompressibility constraint (1), see Sec. 6.3 of Holzapfel (2000), and C = I +2E is the right
109
+ Cauchy–Green strain tensor F ⊺F. Therefore, no dissipation occurs in the elastic case S = Se where the viscous stress
110
+ tensor Sv is equal to zero.
111
+ According to the dissipation inequality (3), the viscous stress Sv is a function of state and evolution variables, e.g.
112
+ the set S ∪ { ˙E} which is a consistent choice to enforce frame-invariance (Antman, 1998; Ball, 2002). We introduce a
113
+ dissipation potential W v(E, ˙E) such that
114
+ Sv = ∂W v
115
+ ∂ ˙E
116
+ (5)
117
+ 2
118
+
119
+ defines the viscous stress (Maugin, 1999). In general, the dissipation potential is described by additional invariants
120
+ (Pioletti and Rakotomanana, 2000)
121
+ I4 = tr( ˙E),
122
+ I5 = tr( ˙E2),
123
+ I6 = tr( ˙E3),
124
+ I7 = tr( ˙EE),
125
+ I8 = tr( ˙EE2),
126
+ I9 = tr( ˙E2E),
127
+ I10 = tr( ˙E2E2).
128
+ (6)
129
+ In the present study, we consider Newtonian-type viscosity models whose dissipation potential is as simple as possi-
130
+ ble.
131
+ 2.3
132
+ Consequences of incompressibility
133
+ First, let us investigate the consequences of the incompressibility constraint (1). As noted in Jacob et al. (2007), the
134
+ invariants (2) of E are linked through
135
+ I1 = I2 − 4
136
+ 3 I3 − I 2
137
+ 1 +2I1I2 − 2
138
+ 3 I 3
139
+ 1 ,
140
+ (7)
141
+ by virtue of incompressibility. This identity follows from the expression of the principal invariants of the unimodular
142
+ tensor C = I +2E in terms of the invariants Ik, see the Appendix of Destrade et al. (2010). Using the differential version
143
+ of the incompressibility constraint, the invariants (2)-(6) of E, ˙E satisfy the particular relationship
144
+ 1
145
+ 2 I4 = I7 −2I8 +2I1I7 −
146
+
147
+ I1 − I2 + I 2
148
+ 1
149
+
150
+ I4
151
+ (8)
152
+ deduced from the identity trD = 0, see Appendix.
153
+ The relationship (7) means that the invariant I1 = tr(E) is no longer linear with respect to the components of the
154
+ strain tensor E; instead, Eq. (7) shows that it has terms of polynomial order two and three with respect to the strain.
155
+ Furthermore, due to the relationship (8), the invariant I4 = tr( ˙E) is still linear with respect to the components of the
156
+ strain-rate tensor ˙E. However, Eq. (8) shows that I4 is no longer invariant on the strain tensor E; instead, it has terms
157
+ of polynomial order one, two and three with respect to the Green–Lagrange strain.
158
+ 2.4
159
+ Constitutive assumptions
160
+ In weakly nonlinear elasticity, the strain energy density function is sought in the form of a polynomial of the invariants
161
+ Ik with constant coefficients. Similarly to Zabolotskaya et al. (2004), we assume that the internal energyU has a fourth-
162
+ order polynomial expression with respect to the components of the strain tensor E of the form
163
+ W e = µI2 + 1
164
+ 3 AI3 +DI 2
165
+ 2,
166
+ (9)
167
+ where µ ≥ 0 is the shear modulus (in Pa), and the coefficients A, D are higher-order elastic constants.
168
+ Now, let us propose an expression for the dissipation potential. To end up with a linear viscosity model similar to
169
+ that by Destrade et al. (2013), we assume that the dissipation potential is a second-order polynomial expansion of the
170
+ strain rate tensor ˙E, and a zeroth-order polynomial of E. This assumption amounts to selecting W v of second order
171
+ in (E, ˙E), and to ignore the terms proportional to ˙E that produce elastic stresses. Due to the relationships (7)-(8), we
172
+ therefore keep
173
+ W v = ηI5,
174
+ (10)
175
+ where η ≥ 0 is the shear viscosity (in Pa.s). In the above expression, the absence of bulk viscosity “ζ” is due to the
176
+ assumption on polynomial orders for the viscous part, and to the incompressibility property (8). Setting the bulk
177
+ viscosity ζ = 2
178
+ 3η in Destrade et al. (2013) yields the same expressions as above.
179
+ Computation of the tensor derivatives of the potentials (9)-(10) by means of the chain rule for W •(Ik,...) yields the
180
+ following elastic (4) and viscous stress contributions (5)
181
+ Se = −pC −1 +2(µ+2DI2)E + AE2,
182
+ Sv = 2η ˙E.
183
+ (11)
184
+ Thermodynamic consistency (3) is ensured provided that the dissipation D = 2W v is non-negative. In fact, the present
185
+ dissipation potential W v is a homogeneous function of degree two with respect to ˙E (Maugin, 1999). A sufficient
186
+ condition for the restriction D ≥ 0 to be always satisfied is that the viscosity η is non-negative.
187
+ 3
188
+
189
+ 3
190
+ Plane shear waves
191
+ 3.1
192
+ Nonlinear viscous wave equation
193
+ Similarly to Destrade et al. (2013), we consider simple shear deformations described by the displacement field u =
194
+ [u,0,0]⊺ where u = u(z,t) denotes the particle displacement along the x-direction. Thus, the deformation gradient
195
+ tensor reads
196
+ F =
197
+
198
+
199
+ 1
200
+ 0
201
+ γ
202
+ 0
203
+ 1
204
+ 0
205
+ 0
206
+ 0
207
+ 1
208
+
209
+ �,
210
+ (12)
211
+ where γ = ∂u/∂z is the shear strain. The velocity field takes the form v = [v,0,0]⊺ where v = ∂u/∂t is the shear velocity.
212
+ In the equation of motion ρ ˙v = DivP, the relevant first Piola–Kirchhoff stress component P13 is deduced from
213
+ the expression of the elastic and viscous parts Pe
214
+ 13 = µγ+Γγ3 and Pv
215
+ 13 = η(1+2γ2) ˙γ, where only terms up to order γ3
216
+ have been kept. The non-negative constant Γ = µ+ A/2+D is a parameter of nonlinearity (Zabolotskaya et al., 2004).
217
+ Hence, upon division by the shear modulus µ, the x-component of the equation of motion produces the nonlinear
218
+ wave equation
219
+ 1
220
+ c2
221
+ ∂2u
222
+ ∂t2 = ∂2u
223
+ ∂z2 + 2
224
+ 3β ∂
225
+ ∂z
226
+ �∂u
227
+ ∂z
228
+ �3
229
+ +τ ∂
230
+ ∂z
231
+ ��
232
+ 1+2
233
+ �∂u
234
+ ∂z
235
+ �2� ∂2u
236
+ ∂z∂t
237
+
238
+ ,
239
+ (13)
240
+ describing transverse wave propagation along the z-direction, where we have introduced the notations
241
+ c =
242
+
243
+ µ
244
+ ρ ,
245
+ β = 3
246
+ 2
247
+ Γ
248
+ µ,
249
+ τ = η
250
+ µ.
251
+ (14)
252
+ Spatial differentiation of Eq. (13) allows to write a similar wave equation for the strain
253
+ 1
254
+ c2
255
+ ∂2γ
256
+ ∂t2 = ∂2γ
257
+ ∂z2 + 2
258
+ 3β ∂2
259
+ ∂z2 γ3 +τ ∂2
260
+ ∂z2
261
+ ��
262
+ 1+2γ2� ∂γ
263
+ ∂t
264
+
265
+ ,
266
+ (15)
267
+ which will be used later on.
268
+ According to the wave equations (13)-(15), shear waves of infinitesimal amplitude propagate at the shear wave
269
+ speed c =
270
+
271
+ µ/ρ in the absence of nonlinearity and viscosity (β = 0, τ = 0). Typically, this sound velocity equals
272
+ c ≈ 2 m/s in gels (Jacob et al., 2007), whereas β ≈ 10 and τ ≈ 0.12 ms at a loading frequency of 100 Hz. Here, we have
273
+ obtained the same wave equations than those derived in Destrade et al. (2013) for the particular bulk viscosity ζ = 2
274
+ 3η.
275
+ Note in passing the presence of a nonlinear viscous term which is absent in Zabolotskaya et al. (2004).1
276
+ 3.2
277
+ Slow scale approximations
278
+ Similarly to Zabolotskaya et al. (2004) and Pucci et al. (2019), we proceed now to a reduction of the above wave equa-
279
+ tion (13) for one-way wave propagation with slowly varying profile. We present two approximations based either on a
280
+ slow space variable or a slow time variable.
281
+ Slow space
282
+ Let us follow the scaling procedure in Zabolotskaya et al. (2004). For this purpose, we introduce the
283
+ following scaling defined by the change of variables {˜z = ϵ2z, ˜t = t − z/c,u = ϵ ˜u}, where ϵ is a small parameter and
284
+ ˜u = ˜u(˜z, ˜t). Furthermore, we assume that τ is of order ϵ2. Note that this set of assumptions corresponds to a slowly-
285
+ varying profile in space.
286
+ This Ansatz is then substituted in the equation of motion (13). At leading (cubic) order in ϵ, the motion of soft
287
+ viscous solids is governed by the scalar equation
288
+ ϵ3c ∂2 ˜u
289
+ ∂˜z∂˜t = ϵ3 β
290
+ c2
291
+ �∂ ˜u
292
+ ∂˜t
293
+ �2 ∂2 ˜u
294
+ ∂˜t2 +ϵτ
295
+ 2
296
+ ∂3 ˜u
297
+ ∂˜t3 .
298
+ (16)
299
+ Transforming back to the initial displacement u and physical coordinates (z,t) leads to a reduced wave equation
300
+ c ∂v
301
+ ∂z +
302
+
303
+ 1−βv2/c2� ∂v
304
+ ∂t = τ
305
+ 2
306
+ ∂2v
307
+ ∂t2 ,
308
+ (17)
309
+ for the velocity v = ∂u/∂t.
310
+ 1The wave equation proposed by Catheline et al. (2003) and analysed by Jordan and Puri (2005) cannot be obtained rigorously from the equations
311
+ of motion unless time derivatives are (questionably) replaced by spatial derivatives.
312
+ 4
313
+
314
+ Up to the choice of time variable used here (i.e., the physical time t instead of the retarded time ˜t), the partial
315
+ differential equation (17) is identical to the cubic Burgers-type equation of Zabolotskaya et al. (2004). However, the
316
+ underlying modelling assumptions are not equivalent, since the initial wave equation (13) includes the extra nonlinear
317
+ viscosity term 2τ∂(γ2 ˙γ)/∂z. This additional term is lost in the rescaling procedure given that it is of higher order in ϵ
318
+ than the leading-order viscous term τ∂ ˙γ/∂z. In the end, while the modelling efforts by Destrade et al. (2013) aimed
319
+ at enforcing objectivity lead to a slight modification of the wave equation (more precisely, the addition of a nonlinear
320
+ viscous term), they do not induce any modification of the transport equation (17).
321
+ Slow time
322
+ For later comparisons, let us derive a similar Burgers-type equation governing the evolution of the strain
323
+ instead of the velocity by following Pucci et al. (2019). To do so, we introduce the slow-time scaling based on the
324
+ change of variables {˜t = ϵ2t, ˜z = z −ct,u = ϵ ˜u} where ϵ is a small parameter. Proceeding in a similar fashion to above,
325
+ we end up with the nonlinear transport equation
326
+ ∂γ
327
+ ∂t +c
328
+
329
+ 1+βγ2� ∂γ
330
+ ∂z = τc2
331
+ 2
332
+ ∂2γ
333
+ ∂z2 ,
334
+ (18)
335
+ where γ = ∂u/∂z is the shear strain. Here too, after keeping leading order terms, we have transformed back to the
336
+ initial physical coordinates (z,t). Therefore, the above partial differential equation may be viewed as a one-way ap-
337
+ proximation of the wave equation (15). Their travelling wave solutions are compared in the next section.
338
+ 4
339
+ Travelling wave solutions
340
+ 4.1
341
+ Nonlinear viscous wave equation
342
+ Let us seek travelling wave solutions to the wave equation (15), i.e. specific smooth waveforms that propagate at a
343
+ constant velocity with a steady profile. In a similar fashion to Destrade et al. (2013), we first introduce the following
344
+ rescaled dimensionless variables and coordinates
345
+ g(¯z, ¯t) =
346
+
347
+ 2
348
+ 3βγ(z,t),
349
+ ¯t = t/τ,
350
+ ¯z = z/(cτ),
351
+ (19)
352
+ in Eq. (15), such that
353
+ ∂2g
354
+ ∂¯t2 = ∂2g
355
+ ∂¯z2 + ∂2
356
+ ∂¯z2 g 3 + ∂2
357
+ ∂¯z2
358
+ ��
359
+ 1+ 3
360
+ β g 2
361
+ � ∂g
362
+ ∂¯t
363
+
364
+ .
365
+ (20)
366
+ Next, we seek travelling wave solutions of the form g =
367
+
368
+ ν2 −1G(ξ) where ξ = (ν2 − 1)(¯t − ¯z/ν) involves the dimen-
369
+ sionless wave velocity ν ≥ 1. Injecting this Ansatz in the above partial differential equation and integrating twice with
370
+ respect to ξ with vanishing integration constants yields a nonlinear differential equation for the strain:
371
+ G = G3 +
372
+
373
+ 1+αG2� d
374
+ dξG,
375
+ (21)
376
+ where α = 3(ν2 −1)/β is a parameter.
377
+ From the above differential equation, one observes that travelling wave solutions to the wave equation (15) should
378
+ connect the equilibrium strains G = 0 and G = ±1 by following a smooth transition that depends on the parameter α.
379
+ Solutions read (Destrade et al., 2013)
380
+ ξ = −ln
381
+
382
+ 1
383
+ 2G
384
+ �4
385
+ 3(1−G2)
386
+ � 1+α
387
+ 2
388
+
389
+ (22)
390
+ in implicit form, where we have enforced G(0) = 1/2 without loss of generality. Illustrations are provided later on.
391
+ 4.2
392
+ Slow time approximation
393
+ In a similar fashion, let us now seek travelling wave solutions to the reduced wave equation (18). Thus, we first perform
394
+ the substitutions (19) to get
395
+ ∂g
396
+ ∂¯t + ∂
397
+ ∂¯z
398
+
399
+ g + 1
400
+ 2 g 3
401
+
402
+ = 1
403
+ 2
404
+ ∂2g
405
+ ∂¯z2 .
406
+ (23)
407
+ In order to obtain wave solutions that correspond to the same strain values at infinity as in Sec. 4.1, we introduce a
408
+ slightly different scaling. Indeed, let us inject the Ansatz g =
409
+
410
+ ν2 −1G(χ) with χ = (ν2 − 1)(ϑ¯t − ¯z) in Eq. (23), where
411
+ ϑ = 1+ 1
412
+ 2(ν2 −1) is the new dimensionless velocity (Fig. 1). Thus, we arrive at the differential equation
413
+ G = G3 + d
414
+ dχG
415
+ (24)
416
+ 5
417
+
418
+ 1
419
+ 1.2
420
+ 1.4
421
+ 1.6
422
+ 1.8
423
+ 1
424
+ 1.5
425
+ 2
426
+ ν
427
+ ϑ
428
+ Figure 1: Scaled velocity ϑ = 1+ 1
429
+ 2(ν2 −1) for the ‘slow-time’ reduced model in terms of the scaled velocity ν for the full
430
+ wave equation.
431
+ of which the strain values 0 and 1 are steady states. Enforcing the initial value G = 1/2 at χ = 0 gives
432
+ G =
433
+ 1
434
+
435
+ 1+3e−2χ ,
436
+ (25)
437
+ which does not involve any extra parameter. One observes that this expression corresponds to the case α = 0 in
438
+ Eqs. (21)-(22).
439
+ Remark. One might proceed in a similar fashion with the Burgers-type equation (17) corresponding to the slow space
440
+ approximation. Similarly to (19), we perform the substitutions r(¯z, ¯t) =
441
+
442
+ 2β/3v(z,t)/c in Eq. (17) to get
443
+ ∂r
444
+ ∂¯z + ∂
445
+ ∂¯t
446
+
447
+ r − 1
448
+ 2r 3
449
+
450
+ = 1
451
+ 2
452
+ ∂2r
453
+ ∂¯t2 .
454
+ (26)
455
+ Next, we introduce r =
456
+
457
+ ν2 −1V (ψ) where ψ = (ν2 −1)(¯t − ¯z/κ) involves the dimensionless velocity κ defined by the
458
+ relationship κ−1 = 1− 1
459
+ 2(ν2 −1). This way, we obtain the same differential equation V = V 3 + d
460
+ dψV for the dimension-
461
+ less velocity V as previously for the strain (24). Therefore, within the scope of the present study, the slow time and
462
+ slow space approximations lead to related travelling wave solutions that describe the evolution of distinct kinematic
463
+ variables (strain and velocity, respectively).
464
+ 4.3
465
+ Comparison
466
+ Let us compare the solutions (22)-(25) obtained for the full wave equation (15) and the one-way model (18). First, one
467
+ observes that these travelling waves of same amplitude do not propagate at the same speed, as illustrated in Fig. 1.
468
+ Indeed, given the expression of ϑ, we can express the relative error E = ϑ/ν−1 on the scaled velocity as a function of
469
+ ν. To ensure that the latter remains less than 5% (respectively 1%), we obtain the requirement ν ≤ 1.3 (resp. ν ≤ 1.1)
470
+ marked by dotted lines in the figure.
471
+ Now, let us observe that for a unit kink covering the range 0 ≤ G ≤ 1, the corresponding shear strains satisfy
472
+ 0 ≤ γ ≤
473
+
474
+ α/2
475
+ (27)
476
+ where α = 3(ν2 − 1)/β was introduced earlier on, see Eq. (19). In other words, the coefficient α in the differential
477
+ equation (21) is related to the maximum strain of travelling waves, and these bounds are valid for both models at hand
478
+ due to application of the rescaling procedure (19). Thus, restrictions of the wave speed ν can be expressed in terms of
479
+ the strain. To ensure that the velocity error E remains less than 5% (respectively 1%), we therefore require γ
480
+
481
+ β ≤ 1.0
482
+ (resp. γ
483
+
484
+ β ≤ 0.56). Note that the parameter of nonlinearity can take such values as β ≈ 10 for gels (Jacob et al., 2007).
485
+ Therefore, the slow scale approximation has a very restricted validity for such a soft viscoelastic material.
486
+ This property is further illustrated in Fig. 2, where we have represented the evolution of the relative velocity ν−1
487
+ (or ϑ−1) in terms of the maximum strain amplitude, both for the full wave equation and its one-way approximation.
488
+ According to the expression of α above, we have the relationship ϑ−1 = 1
489
+ 3β(
490
+
491
+ α/2)2 in the case of the one-way approx-
492
+ imate model, which produce lines of slope two in log-log coordinates (dashed lines in the figure). However, for the full
493
+ wave equation, this relationship between the wave speed ν and the strain amplitude is not satisfied. For fixed values
494
+ of the nonlinearity parameter β, differences between the one-way model and the full wave equation become visible
495
+ at large strains.
496
+ In Fig. 3, we display the evolution of the waveforms (22)-(25) in terms of the scaled coordinates ξ, χ. In the case
497
+ of the full wave equation (21), the parameter α takes the values {0,1.2,3}. It appears that the waveforms so-obtained
498
+ follow a drastically different evolution when parameters are modified. In particular, the wavefront deduced from
499
+ the full wave equation (solid lines) does not exhibit the same invariance and symmetry properties as the wavefront
500
+ deduced from the one-way model (dashed line).
501
+ 6
502
+
503
+ 10−1
504
+ 100
505
+ 10−3
506
+ 10−2
507
+ 10−1
508
+ 100
509
+ β = 3
510
+ β = 1
511
+ Strain amplitude
512
+ Relative velocity
513
+ one-way
514
+ wave eq.
515
+ Figure 2: For the full wave equation (solid line) and the ‘slow-time’ reduced model (dashed line), we represent the
516
+ evolution of the relative velocity ν − 1 (respectively, ϑ − 1) in terms of the strain amplitude
517
+
518
+ α/2. The axes have a
519
+ logarithmic scale.
520
+ −2
521
+ 0
522
+ 2
523
+ 0
524
+ 0.5
525
+ 1
526
+ α
527
+ ξ, χ
528
+ G
529
+ wave eq.
530
+ one-way
531
+ Figure 3: Steady waveforms deduced from Eqs. (22)-(25) for increasing values of the parameter 0 ≤ α ≤ 3 (arrow).
532
+ Evolution of the scaled shear strain G in terms of the related dimensionless coordinate ξ or χ.
533
+ 7
534
+
535
+ 5
536
+ Simple waves
537
+ In the lossless case, exact one-way wave equations can be derived by using the method of Riemann invariants, see
538
+ for instance the introductory example by John (1976). Such particular wave solutions called simple waves keep one
539
+ Riemann invariant constant. In other words, the particle velocity v = R−−Q(γ) withQ(γ) = c
540
+ �γ
541
+ 0
542
+
543
+ 1+2βg 2 dg depends
544
+ explicitly on the strain γ. The scalar R− is an arbitrary constant, for instance R− ≡ 0 in some specific boundary-value
545
+ problems (Berjamin and Chockalingam, 2022), which will be assumed satisfied from now on. Spatial differentiation
546
+ of the velocity then produces
547
+ ∂γ
548
+ ∂t +c
549
+
550
+ 1+2βγ2 ∂γ
551
+ ∂z = 0,
552
+ (28)
553
+ where we have used the equality of mixed partials ∂v/∂z = ∂γ/∂t. Obviously, the lossless one-way wave equation (18)
554
+ with τ = 0 is an approximation of (28) for 2βγ2 ≪ 1.
555
+ Let us analyse this requirement in a more quantitative manner. To ensure that the relative error on the advection
556
+ velocity E =
557
+ 1+a
558
+
559
+ 1+2a −1 for a = βγ2 remains less than 5% (respectively 1%), we obtain the requirement a ≤ 0.44 (resp.
560
+ a ≤ 0.16). Application of the square root leads to the restriction γ
561
+
562
+ β ≤ 0.66 (resp. γ
563
+
564
+ β ≤ 0.40) which is slightly more
565
+ constraining than in the case of viscoelastic travelling waves (Sec. 4.3).
566
+ Along a simple wave, computation of the partial derivative of the velocity v = R− −Q(γ) with respect to time pro-
567
+ duces
568
+ c ∂v
569
+ ∂z +
570
+
571
+ 1+2βγ2�−1/2 ∂v
572
+ ∂t = 0,
573
+ (29)
574
+ where the strain γ = Q−1(−v) can be expressed formally as a function of the velocity, despite no analytical expression
575
+ of the inverse function Q−1 of Q is known in the present case. If |v| is small, then we can use the approximation
576
+ γ ≃ −v/c of the strain which follows from the asymptotic equivalence of Q ∼ cγ at small strains. Next, the (·)−1/2-
577
+ factor in Eq. (29) can be approximated by the polynomial expression 1−βγ2 as long as 2βγ2 ≪ 1. This way, we have
578
+ shown that the one-way wave equation (17) is an approximation of Eq. (29) obtained for R− = 0 and 2βv2/c2 ≪ 1 in
579
+ the elastic limit τ = 0. This observation is consistent with the discussions in Catheline et al. (2005). In summary, the
580
+ lossless ‘slow-space’ and ‘slow-time’ reductions (17)-(18) with τ = 0 are approximate governing equations for simple
581
+ waves with small values of βv2/c2 and of βγ2, respectively.
582
+ 6
583
+ Conclusion
584
+ For a specific strain-rate viscoelasticity theory of soft solids, we have shown that one-way approximate wave propaga-
585
+ tion models produce significantly different travelling wave solutions than the full equations of motion as soon as the
586
+ wave amplitude is not infinitesimal. Similar observations are reported in the literature in relation with shear shock
587
+ formation (Berjamin and Chockalingam, 2022). In the elastic limit, we have examined the validity of one-way approx-
588
+ imations in relation with simple wave theory, thus leading to dedicated criteria of validity involving small velocity and
589
+ strain amplitudes. We conclude that these approximations should be used with care given their limited accuracy, in
590
+ general. Nevertheless, they might remain useful for the interpretation of experimental results where their validity is
591
+ not always severely penalised (Catheline et al., 2003, 2005).
592
+ Acknowledgments
593
+ The author is grateful to Michel Destrade (Galway, Ireland) for support. This project has received funding from the
594
+ European Union’s Horizon 2020 research and innovation programme under grant agreement TBI-WAVES — H2020-
595
+ MSCA-IF-2020 project No. 101023950.
596
+ A
597
+ Consequence of incompressibility
598
+ This Appendix is devoted to the derivation of Eq. (8). We start with the Cayley–Hamilton identity for the right Cauchy–
599
+ Green tensor C = F ⊤F, which reads
600
+ C 3 −I C 2 +II C −III I = 0,
601
+ (30)
602
+ where I, II, III are the principal invariants of C. In the case of volume-preserving motions (1), the tensor C is uni-
603
+ modular, i.e. we have III = 1. Next, multiplication of (30) by C −1 ˙E on the right side, substitution of C = I + 2E and
604
+ computation of the trace entails the relationship
605
+ (I4 +4I7 +4I8)−(3+2I1)(I4 +2I7)
606
+ +(3+4I1 +2I 2
607
+ 1 −2I2)I4 = 0,
608
+ (31)
609
+ 8
610
+
611
+ where we have used the incompressibility property trD = tr(C −1 ˙E) = 0, the definition of the invariants (2)-(6), and the
612
+ relationship between I, II and the invariants Ik used here (Destrade et al., 2010). Rearranging terms, we get the desired
613
+ identity (8).
614
+ References
615
+ S. S. Antman.
616
+ Physically unacceptable viscous stresses.
617
+ Z. angew. Math. Phys.,
618
+ 49(6):980–988,
619
+ 1998.
620
+ doi:10.1007/s000330050134.
621
+ J. M. Ball. Some open problems in elasticity. In P. Newton, P. Holmes, and A. Weinstein, editors, Geometry, Mechanics,
622
+ and Dynamics, pages 3–59. Springer, New York, 2002. doi:10.1007/0-387-21791-6_1.
623
+ H. Berjamin and S. Chockalingam. Shear shock formation in incompressible viscoelastic solids. Wave Motion, 110:
624
+ 102899, 2022. doi:10.1016/j.wavemoti.2022.102899.
625
+ H. Berjamin, M. Destrade, and W. J. Parnell. On the thermodynamic consistency of quasi-linear viscoelastic models
626
+ for soft solids. Mech. Res. Commun., 111:103648, 2021. doi:10.1016/j.mechrescom.2020.103648.
627
+ S. Catheline, J.-L. Gennisson, M. Tanter, and M. Fink. Observation of shock transverse waves in elastic media. Phys.
628
+ Rev. Lett., 91(16):164301, 2003. doi:10.1103/PhysRevLett.91.164301.
629
+ S. Catheline, J.-L. Gennisson, M. Tanter, and M. Fink. Erratum: Observation of shock transverse waves in elastic media
630
+ [Phys. Rev. Lett. 91, 164301 (2003)]. Phys. Rev. Lett., 95(13):139902, 2005. doi:10.1103/PhysRevLett.95.139902.
631
+ J. M. Cormack and M. F. Hamilton. Plane nonlinear shear waves in relaxing media. J. Acoust. Soc. Am., 143(2):1035–
632
+ 1048, 2018. doi:10.1121/1.5023394.
633
+ M. Destrade, M. D. Gilchrist, and J. G. Murphy. Onset of nonlinearity in the elastic bending of blocks. J. Appl. Mech.,
634
+ 77(6), 2010. doi:10.1115/1.4001282.
635
+ M. Destrade, G. Saccomandi, and M. Vianello. Proper formulation of viscous dissipation for nonlinear waves in solids.
636
+ J. Acoust. Soc. Am., 133(3):1255–1259, 2013. doi:10.1121/1.4776178.
637
+ M. F. Hamilton and D. T. Blackstock, editors. Nonlinear Acoustics. Academic Press, 1998.
638
+ G. A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons Ltd., Chich-
639
+ ester, 2000.
640
+ X. Jacob, S. Catheline, J.-L. Gennisson, C. Barrière, D. Royer, and M. Fink. Nonlinear shear wave interaction in soft
641
+ solids. J. Acoust. Soc. Am., 122(4):1917–1926, 2007. doi:10.1121/1.2775871.
642
+ F. John. Delayed singularity formation in solution of nonlinear wave equations in higher dimensions. Comm. Pure
643
+ Appl. Math., 29(6):649–682, 1976. doi:10.1002/cpa.3160290608.
644
+ P. M. Jordan and A. Puri. A note on traveling wave solutions for a class of nonlinear viscoelastic media. Phys. Lett. A,
645
+ 335(2-3):150–156, 2005. doi:10.1016/j.physleta.2004.11.058.
646
+ G. A. Maugin.
647
+ The Thermomechanics of Nonlinear Irreversible Behaviors.
648
+ World Scientific Publishing, 1999.
649
+ doi:10.1142/3700.
650
+ K. Naugolnykh and L. Ostrovsky. Nonlinear Wave Processes in Acoustics. Cambridge University Press, 1998.
651
+ V. E. Nazarov, S. B. Kiyashko, and A. V. Radostin. Stationary waves in a bimodular rod of finite radius. Wave Motion, 75:
652
+ 72–76, 2017. doi:10.1016/j.wavemoti.2017.09.003.
653
+ D. P. Pioletti and L. R. Rakotomanana. Non-linear viscoelastic laws for soft biological tissues. Eur. J. Mech. A-Solids, 19
654
+ (5):749–759, 2000. doi:10.1016/S0997-7538(00)00202-3.
655
+ E. Pucci, G. Saccomandi, and L. Vergori. Linearly polarized waves of finite amplitude in pre-strained elastic materials.
656
+ Proc. R. Soc. A, 475(2226):20180891, 2019. doi:10.1098/rspa.2018.0891.
657
+ A. Radostin, V. Nazarov, and S. Kiyashko. Propagation of nonlinear acoustic waves in bimodular media with linear
658
+ dissipation. Wave Motion, 50(2):191–196, 2013. doi:10.1016/j.wavemoti.2012.08.005.
659
+ G. Saccomandi and M. S. Vianello. Shear waves in a nonlinear relaxing media: A three-dimensional perspective. J.
660
+ Acoust. Soc. Am., 149(3):1589–1595, 2021. doi:10.1121/10.0003605.
661
+ G. B. Witham. Linear and Nonlinear Waves. John Wiley & Sons, Inc., 1999. doi:10.1002/9781118032954.
662
+ E. A. Zabolotskaya, M. F. Hamilton, Y. A. Ilinskii, and G. D. Meegan. Modeling of nonlinear shear waves in soft solids.
663
+ J. Acoust. Soc. Am., 116(5):2807–2813, 2004. doi:10.1121/1.1802533.
664
+ 9
665
+
19E1T4oBgHgl3EQflQTp/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1NFAT4oBgHgl3EQfCxwU/content/tmp_files/2301.08411v1.pdf.txt ADDED
@@ -0,0 +1,2104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Can Continuous Aperture MIMO Achieve Much
3
+ Better Performance than Discrete MIMO?
4
+ Zhongzhichao Wan, Jieao Zhu, and Linglong Dai, Fellow, IEEE
5
+ Abstract—The concept of continuous-aperture multiple-
6
+ input multiple-output (CAP-MIMO) technology has been
7
+ proposed recently, which aims at achieving high spectrum
8
+ density by deploying extremely dense antennas or even
9
+ continuous antennas in a given aperture. The fundamental
10
+ question of CAP-MIMO is whether it can achieve much
11
+ better performance than the traditional discrete MIMO
12
+ system. In this paper, to model the CAP-MIMO, we use self-
13
+ adjoint operators to depict the structural characteristics of
14
+ the continuous random electromagnetic fields from physical
15
+ laws. Then, we propose a non-asymptotic performance
16
+ comparison scheme between continuous and discrete MIMO
17
+ systems based on the analysis of mutual information. We
18
+ show the consistency of the proposed scheme by proving
19
+ that the mutual information between discretized transceivers
20
+ converges to that between continuous transceivers. Numeri-
21
+ cal analysis verifies the theoretical results, and suggests that
22
+ the mutual information obtained from the discrete MIMO
23
+ with widely adopted half-wavelength spaced antennas al-
24
+ most achieves the mutual information obtained from CAP-
25
+ MIMO.
26
+ Index Terms—Multiple-input multiple-output (MIMO),
27
+ Continuous-aperture MIMO (CAP-MIMO), mutual infor-
28
+ mation, random fields, Fredholm determinant.
29
+ I. INTRODUCTION
30
+ The spectrum efficiency of wireless communication
31
+ systems has been greatly improved from 3G to 5G
32
+ because of the use of multiple-input multiple-output
33
+ (MIMO) technology [1]–[3]. The MIMO systems utilize
34
+ multiple antennas to exploit the spatial multiplexing gain
35
+ [4], where the antennas are modeled as discrete points
36
+ in the continuous space. Along with the tendency of
37
+ increasing the number of antennas to achieve higher
38
+ spectrum efficiency, people are considering deploying
39
+ extremely dense antennas in a given aperture [5], [6].
40
+ When the number of antennas in a given aperture tends to
41
+ infinity, the traditional MIMO systems with transceivers
42
+ composed of discrete point antennas are equivalent
43
+ to the MIMO systems with continuously controllable
44
+ transceivers. Therefore, the MIMO with extremely dense
45
+ All authors are with the Department of Electronic Engineer-
46
+ ing, Tsinghua University as well as Beijing National Research
47
+ Center
48
+ for
49
+ Information Science
50
+ and
51
+ Technology
52
+ (BNRist), Bei-
53
+ jing 100084, China (E-mails: {wzzc20, zja21}@mails.tsinghua.edu.cn;
54
55
+ This work was supported in part by the National Key Research
56
+ and Development Program of China (Grant No. 2020YFB1807201), in
57
+ part by the National Natural Science Foundation of China (Grant No.
58
+ 62031019).
59
+ antennas is called continuous-aperture MIMO (CAP-
60
+ MIMO), and is also called holographic MIMO [7]–[9]
61
+ or large intelligent surface [5], [10] in the recent litera-
62
+ ture1. It has attracted increasing interest in the research
63
+ of MIMO technology. Recent works about CAP-MIMO
64
+ include pattern optimization [6], antenna design [11],
65
+ channel estimation [7], and so on. For CAP-MIMO, the
66
+ fundamental question is whether the CAP-MIMO system
67
+ can achieve much better performance than the traditional
68
+ discrete MIMO system.
69
+ A. Related works
70
+ The structure of CAP-MIMO has been defined in the
71
+ previous part but there are many structures for realizing
72
+ the discrete MIMO. Therefore, we need to choose which
73
+ structure of the discrete MIMO to compare with CAP-
74
+ MIMO. A representative structure of discrete MIMO
75
+ uses half-wavelength spaced antennas to compose the
76
+ transceivers [12]–[14], because half-wavelength sampling
77
+ of the electromagnetic field can reconstruct the original
78
+ field according to the sampling theorem.
79
+ There have been several works discussing the per-
80
+ formance comparison between CAP-MIMO and discrete
81
+ MIMO with half-wavelength spaced antennas. The perfor-
82
+ mance comparison is from the degrees of freedom (DoF)
83
+ perspective. Specifically, when discarding the evanescent
84
+ wave components, the Fourier transform of the received
85
+ field, which is in the wavenumber domain, is concentrated
86
+ in a circle or a segment. This concentration phenomenon
87
+ means that the field is bandlimited in the wavenumber
88
+ domain, thus it can be perfectly recovered from the half-
89
+ wavelength sampling points in the spatial domain [15]
90
+ according to the Nyquist sampling theorem [16]. The
91
+ above conclusion is based on the assumption that we can
92
+ observe the received field in the infinitely large spatial
93
+ domain. However, in practice, the destination where we
94
+ can observe the field is in a finitely large aperture.
95
+ For a rigorous analysis framework of the DoF in a
96
+ finitely large aperture, the prolate spheroidal wave func-
97
+ tion (PSWF) [17] is introduced to perform orthogonal
98
+ expansion on the electromagnetic field. Specifically, to
99
+ 1The MIMO with extremely dense antennas can be accurately de-
100
+ scribed by the name CAP-MIMO, while holographic MIMO and large
101
+ intelligent surface do not focus on the continuity of the transceiver
102
+ apertures. Therefore, in the rest part of the paper, we will prefer using
103
+ the name CAP-MIMO rather than using other names like holographic
104
+ MIMO.
105
+ arXiv:2301.08411v1 [cs.IT] 20 Jan 2023
106
+
107
+ 2
108
+ reconstruct the wavenumber-bandlimited electromagnetic
109
+ field observed in a length-l spatial region, the PSWFs
110
+ were used as the basis based on the Slepian’s concentra-
111
+ tion problem [18]. Such an electromagnetic field can be
112
+ perfectly reconstructed from infinite number of PSWFs,
113
+ and approximately reconstructed from a finite number
114
+ of PSWFs. If the reconstruction error can be controlled
115
+ within a given threshold by using N0 PSWFs, the number
116
+ of DoFs of the field can be approximated by N0 [19].
117
+ This analyzing scheme is strict for arbitrary l, but can
118
+ only provide the asymptotic result of the DoF, i.e., the
119
+ quantitative result of N0 can be obtained only when
120
+ the length l or the frequency tends to infinity. However,
121
+ the practical systems are with finitely large aperture and
122
+ finite frequency. The asymptotic result can not provide
123
+ quantitative number of DoFs for practical systems. There-
124
+ fore, a non-asymptotic performance comparison scheme
125
+ between CAP-MIMO and discrete MIMO is required for
126
+ the accurate performance comparison with finitely large
127
+ apertures.
128
+ B. Our contributions
129
+ To solve this problem, in this paper, we provide a non-
130
+ asymptotic performance comparison scheme between
131
+ CAP-MIMO and discrete MIMO, and we further prove
132
+ the rationality of the scheme2. Specifically, the contribu-
133
+ tions of this paper can be summarized as follows:
134
+ • We build models of CAP-MIMO and discrete MIMO
135
+ based on electromagnetic theory. For CAP-MIMO
136
+ with continuous transceivers, we model the structural
137
+ characteristics of the continuous random electro-
138
+ magnetic fields from physical laws by using self-
139
+ adjoint operators. Based on this model, we can
140
+ utilize the spectrum theory of operators to derive the
141
+ information that can be obtained from the received
142
+ field. The existing models of MIMO with discrete
143
+ transceivers are spatially discretized from the contin-
144
+ uous model. Moreover, signal-to-noise ratio (SNR)
145
+ control schemes are introduced to ensure the fairness
146
+ of the comparison between CAP-MIMO and discrete
147
+ MIMO.
148
+ • Then, before comparing the performance between
149
+ CAP-MIMO with continuous transceivers and tra-
150
+ ditional MIMO with discrete transceivers, we first
151
+ utilize the simplified model with continuous trans-
152
+ mitter and discrete receiver. Under this simplified
153
+ model, the transmitter is continuous, which is the
154
+ same as that in the CAP-MIMO system. By theo-
155
+ retically analyzing the mutual information that can
156
+ be obtained from the discrete receiver in this sim-
157
+ plified model, we can obtain some insights about
158
+ how the discretization of the receiver affects the
159
+ mutual information. Moreover, the theoretical proof
160
+ 2Simulation
161
+ codes
162
+ will
163
+ be
164
+ provided
165
+ to
166
+ reproduce
167
+ the
168
+ re-
169
+ sults in this paper: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/
170
+ publications.html.
171
+ of the convergence of the mutual information in the
172
+ simplified model can inspire the analysis of a more
173
+ practical scenario, i.e., the discrete transceivers.
174
+ • Finally, we extend the convergence proof from the
175
+ model with discrete receiver to the model with
176
+ discrete transceiver. We prove that the mutual in-
177
+ formation between the discrete transceivers con-
178
+ verges to the mutual information between continuous
179
+ transceivers when the number of antennas of the
180
+ discretized transceivers tends to infinity. Therefore,
181
+ the fairness of the performance comparison is guar-
182
+ anteed. Numerical results are provided to verify the
183
+ theoretical analysis. Moreover, it shows the near-
184
+ optimality of the half-wavelength sampling of the
185
+ transceivers in traditional discrete MIMO.
186
+ C. Organization and notation
187
+ Organization: The rest of our paper is organized as
188
+ follows. Section. II introduces the basic model of EIT and
189
+ proposes models with continuous or discrete transceivers.
190
+ The mutual information between the transceivers is also
191
+ derived. Section. III proves the convergence of the mutual
192
+ information between continuous transmitter and discrete
193
+ receiver when the number of discrete antennas increases.
194
+ Then, the convergence of the mutual information between
195
+ discrete transceivers is illustrated in Section IV. Finally,
196
+ we conclude the paper in Section V.
197
+ Notation: bold characters denote matrices and vectors;
198
+ j is the imaginary unit; E [x] denotes the mean of random
199
+ variable x; x∗ denotes the conjugation of a number or
200
+ a function x; XH denotes the conjugate transpose of
201
+ a vector or a matrix X; µ0 is the permeability of a
202
+ vacuum, Z0 is the free-space intrinsic impedance and
203
+ c is the speed of light in a vacuum; ∇ is the nabla
204
+ operator, and ∇× is the curl operator; |φ⟩ is the quantum
205
+ mechanical notation of a function φ, where the inner
206
+ product is denoted by ⟨ψ| φ⟩; det(·) denotes the matrix
207
+ determinant or the Fredholm determinant; tr(·) denotes
208
+ the trace of a matrix or an operator. Im denotes the m×m
209
+ identity matrix, 1 denotes the indentity operator, δ(x)
210
+ denotes the delta function, and 1i=j denotes the indicator
211
+ function; |x| denotes the modulus of a complex variable,
212
+ and ∥f(x)∥L∞(a,b) is the uniform norm of the function
213
+ f(x) over the interval [a, b]. C∞(K) denotes the set of
214
+ smooth functions supported on a compact set K.
215
+ II. MODELS OF CONTINUOUS AND DISCRETE
216
+ SYSTEMS
217
+ In this section, we introduce the models of contin-
218
+ uous and discrete systems for performance comparison
219
+ between CAP-MIMO and discrete MIMO. We control
220
+ the SNR at the receiver side to ensure the fairness of the
221
+ comparison. The information obtained from these models
222
+ is derived from operators and matrices.
223
+
224
+ 3
225
+ A. Basic model of electromagnetic information theory
226
+ To model the transceivers and the channel, we follow
227
+ the approach of electromagnetic information theory (EIT).
228
+ The EIT is an interdisciplinary subject that integrates the
229
+ classical electromagnetic theory and information theory to
230
+ build an analysis framework for the ultimate performance
231
+ bound of wireless communication systems [20]. The anal-
232
+ ysis framework of EIT is based on spatially continuous
233
+ electromagnetic fields, which provides us the tool to
234
+ model and analyze the continuous transceivers. Then, for
235
+ the consistency, the model of discrete transceivers are
236
+ viewed as the discretization of the continuous model from
237
+ EIT.
238
+ The model of EIT is built on the vector wave equa-
239
+ tion [21] without boundary conditions, which is expressed
240
+ by
241
+ ∇×∇×E (r)−κ2
242
+ 0E (r) = jωµ0J (r) = jκ0Z0J (r) , (1)
243
+ where κ0 = ω√µ0ε0 is the wavenumber, and Z0 =
244
+ µ0c = 120π [Ω] is the free-space intrinsic impedance.
245
+ We assume that the transceivers are confined in two
246
+ regions Vs and Vr, separately. The current density at the
247
+ source is J(s), where s ∈ R3 is the coordinate of the
248
+ source. The induced electric field at the destination is
249
+ E(r), where r ∈ R3 is the coordinate of the field observer.
250
+ To solve the linear partial differential equation (1), a
251
+ general theoretical approach is to introduce the dyadic
252
+ Green’s function G(r, s) ∈ C3×3. According to the
253
+ linearity of (1), the electric field E(r) can be expressed
254
+ by
255
+ E(r) =
256
+
257
+ Vs
258
+ G(r, s)J(s)ds,
259
+ r ∈ Vr.
260
+ (2)
261
+ By exploiting the symmetric properties of the free space,
262
+ the Green’s function in unbounded, homogeneous medi-
263
+ ums at a fixed frequency point is [22]
264
+ G(r, s) = jκ0Z0
265
+
266
+
267
+ I + ∇r∇H
268
+ r
269
+ κ2
270
+ 0
271
+ � ejκ0∥r−s∥
272
+ ∥r − s∥
273
+ = jκ0Z0
274
+
275
+ ejκ0∥r−s∥
276
+ ∥r − s∥
277
+
278
+
279
+ I − ˆpˆpH�
280
+ +
281
+ j
282
+ 2π ∥r − s∥ /λ
283
+
284
+ I − 3ˆpˆpH�
285
+
286
+ 1
287
+ (2π ∥r − s∥ /λ)2
288
+
289
+ I − 3ˆpˆpH�
290
+
291
+ [Ω/m2],
292
+ (3)
293
+ where ˆp =
294
+ p
295
+ ∥p∥ and p = r − s.
296
+ Since there are some non-ideal factors at the receiver
297
+ that corrupts the recieved field, we call them the noise
298
+ field N(r). The received electric field can be expressed
299
+ by Y(r) = E(r) + N(r). The above equations represent
300
+ the deterministic model in the electromagnetic theory. To
301
+ satisfy the demand of wireless communication, we need
302
+ to convey information through the electromagnetic field.
303
+ Specifically, the wireless communiation system encodes
304
+ the information in the current J(s), and decodes the
305
+ information from the noisy electric field Y(r). Due to
306
+ the randomness of the transmitted bit source, the electro-
307
+ magnetic fields are randomly excited by the transmitter
308
+ equipments before being radiated into the propagation
309
+ media. Therefore, the electromagnetic fields should be
310
+ modeled as random fields [23], which are random func-
311
+ tions with several arguments. We denote the autocorre-
312
+ lation function of the current and the electric field as
313
+ matrix-valued functions RJ(s, s
314
+ ′) = E[J(s)JH(s
315
+ ′)] and
316
+ RE(r, r
317
+ ′) = E[E(r)EH(r
318
+ ′)]. The relationship between
319
+ RJ and RE is determined by the Green’s function, which
320
+ is
321
+ RE(r, r′) =
322
+
323
+ Vs
324
+
325
+ Vs
326
+ G(r, s)RJ(s, s′)GH(r, s)dsds′.
327
+ (4)
328
+ Similar definitions of the autocorrelation functions for
329
+ the noise field and the noisy electric field are repre-
330
+ sented as RN(r, r
331
+ ′) = E[N(r)NH(r
332
+ ′)] and RY(r, r
333
+ ′) =
334
+ E[Y(r)YH(r
335
+ ′)].
336
+ B. Continuous trasceivers
337
+ In this part, we will build the model of CAP-MIMO
338
+ with continuous transceivers based on the EIT model
339
+ in the above subsection, and then derive the mutual
340
+ information between the continuous transceivers. For sim-
341
+ plicity, in the rest part of the paper, we assume that the
342
+ transceivers are linear along the ˆz-direction. Moreover,
343
+ since the current J can only exist on the linear source
344
+ and we only observe the electric field on the linear
345
+ receiver, we express all the physical quantities in a
346
+ Cartesian coordinate system that satisfies s = (0, 0, s) and
347
+ r = (d, 0, r), where d is the distance between the parallel
348
+ source and destination line. This model corresponds to
349
+ single-polarized linear antennas. Through this simplifica-
350
+ tion scheme, we use J(s) and E(r) instead of J(s) and
351
+ E(r). The relationship between them can be expressed by
352
+ E(r) =
353
+ � l
354
+ 0 G(r, s)J(s)ds, where G(r, s) is the upper left
355
+ element of the matrix G(r, s). We can derive G(r, s) as
356
+ G(r, s) =jZ0ej2π
357
+
358
+ x2+d2/λ
359
+
360
+
361
+ x2 + d2
362
+
363
+ j
364
+
365
+
366
+ x2 + d2/λ
367
+ d2 − 2x2
368
+ x2 + d2
369
+ +
370
+ d2
371
+ x2 + d2 −
372
+ 1
373
+ (2π/λ)2(x2 + d2)
374
+ d2 − 2x2
375
+ x2 + d2
376
+
377
+ ,
378
+ (5)
379
+ where x = r − s and λ = 2π/κ0 is the wavelength.
380
+ Here we consider the scenario with no channel state
381
+ information, which means that the signals on the source
382
+ are under equal power allocation. The second moments
383
+ (autocorrelation) of J are denoted by RJ(s, s′) = Pδ(s−
384
+ s′), s, s′ ∈ [0, l].
385
+ Since the noiseless received field is uniquely deter-
386
+ mined by the source and the deterministic channel, the
387
+ autocorrelation function of the electric field is expressed
388
+
389
+ 4
390
+ by the source autocorrelation RJ(s, s′) and the Green’s
391
+ function G(r, s), written as
392
+ RE(r, r′) =
393
+ � l
394
+ 0
395
+ � l
396
+ 0
397
+ G(r, s)RJ(s, s′)G∗(r′, s′)dsds′
398
+ = P
399
+ � l
400
+ 0
401
+ G(r, s)G∗(r′, s)ds.
402
+ (6)
403
+ The received field on the destination is Y (r)
404
+ =
405
+ E(r) + N(r), where N(r) is the noise field at the
406
+ receiver. In this paper, we consider thermal noise model
407
+ E [N(r)N ∗(r′)] =
408
+ n0
409
+ 2 δ(r − r′). According to [24], we
410
+ can perform Mercer expansion on the electric field E(r)
411
+ to obtain a set of mutually independent random variables
412
+ ξk. The expansion can be written as E(r) = �
413
+ k ξkφk(r),
414
+ where E[ξkiξ∗
415
+ kj] = λki1i=j and ⟨φki(r), φkj(r)⟩ = δkikj.
416
+ This expansion scheme has split the continuous field
417
+ into independent components. Since the white noise field
418
+ can be expanded under arbitrary orthogonal bases, the
419
+ continuous channel is also decomposed into independent
420
+ subchannels, which makes the mutual information of the
421
+ subchannels summable.
422
+ Next we will show that for the operator TE := φ(r) →
423
+ � l
424
+ 0 KE(r, r′)φ(r′)dr′, where KE(r, r′) = RE(r, r′) =
425
+ P
426
+ � l
427
+ 0 G(r, s)G∗(r′, s)ds, all of its eigenvalues are real
428
+ and nonnegative. Moreover, the sum of its eigenval-
429
+ ues �∞
430
+ i=1 λi equals P
431
+ � l
432
+ 0
433
+ � l
434
+ 0 G(r, s)G∗(r, s)drds. Notice
435
+ that TE can be decomposed to T ∗T, where T
436
+ :=
437
+ φ(r) →
438
+
439
+ P
440
+ � l
441
+ 0 G(r, s)φ(r)ds and T ∗
442
+ := φ(r) →
443
+
444
+ P
445
+ � l
446
+ 0 G∗(r, s)φ(r)ds. This decomposition means that
447
+ TE = T ∗
448
+ E is a self-adjoint operator. We assume that λ
449
+ is an eigenvalue of TE and φ(r) is the corresponding
450
+ eigenfunction. Since
451
+ λ = λ⟨φ(r), φ(r)⟩ = ⟨T ∗
452
+ Eφ(r), φ(r)⟩
453
+ = ⟨φ(r), TEφ(r)⟩ = λ∗,
454
+ (7)
455
+ we know that λ is real. From
456
+ λ = λ⟨φ(r), φ(r)⟩ = ⟨T ∗Tφ(r), φ(r)⟩
457
+ = ⟨Tφ(r), Tφ(r)⟩ ⩾ 0,
458
+ (8)
459
+ we know that λ is nonnegative.
460
+ From [25] we know that an integral operator on [a, b]
461
+ is a trace class operator if its kernel K(x, y) satisfies
462
+ K(x, y) and ∂yK(x, y) are continuous on [a, b]2. There-
463
+ fore TE is a trace class operator, which means that the
464
+ sum of its eigenvalues is finite and can be expressed
465
+ by [26]
466
+ tr(TE) =
467
+ � l
468
+ 0
469
+ KE(r, r)dr = P
470
+ � l
471
+ 0
472
+ � l
473
+ 0
474
+ G(r, s)G∗(r, s)drds.
475
+ (9)
476
+ Corollary 1. The non-negative values
477
+ λk
478
+ n0/2 represent
479
+ the SNR of the independent subchannels. The mutual
480
+ information between the noisy received field and the
481
+ current on the source can be expressed by
482
+ I0(J; Y ) =
483
+ +∞
484
+
485
+ k=1
486
+ log
487
+
488
+ 1 +
489
+ λk
490
+ n0/2
491
+
492
+ .
493
+ (10)
494
+ By introducing the Fredholm determinant which is the
495
+ determinant of operators, we can express (10) by
496
+ I0(J; Y ) = log det
497
+
498
+ 1 + TE
499
+ n0/2
500
+
501
+ ,
502
+ (11)
503
+ where (TEφ)(r) :=
504
+ � L
505
+ 0 RE(r, r′)φ(r′)dr′ and λk are the
506
+ eigenvalues of TE.
507
+ Remark 1. Our analysis here is based on the sim-
508
+ plified model with uni-polarized linear antennas as the
509
+ transceiver. This simplification reduces the dimension of
510
+ the problem, where random fields degenerate to one-
511
+ dimensional random processes. For the more general
512
+ scenarios, such analyzing schemes are still effective. If
513
+ the random field is defined in a region X, we can expand
514
+ E(r) by E(r) = �
515
+ k ξkΦk(r) and its autocorrelation
516
+ function RE(r, r
517
+ ′) by RE(r, r
518
+ ′) = �
519
+ k λkΦk(r)ΦH
520
+ k (r
521
+ ′)
522
+ [27]. The expansion satisfies that λk and Φk(r) are
523
+ eigenvalues and eigenfunctions of the integral equation
524
+
525
+ X RE(r, r
526
+ ′)Φ(r
527
+ ′)dr
528
+ ′ = λkΦ(r). Similar expressions of
529
+ the mutual information in (10) and (11) can be derived.
530
+ C. Continuous transmitter and discrete receiver
531
+ Before building the model with discrete transceivers,
532
+ in this subsection, we will first build a simplfied model
533
+ with continuous transmitter and discrete receiver. The
534
+ simplfied model analyzed here can bring some insights
535
+ about the discretization of both transceivers and the
536
+ SNR control schemes. For the continuous transmitter,
537
+ we still use the length-l linear transmitter along the ˆz-
538
+ direction. For the discrete receiver, we build a model
539
+ with m point antennas on a segment parallel to the
540
+ linear transmitter in the destination region. The ith point
541
+ antenna is placed on ri ∈ [0, l]. The correlation matrices
542
+ of the received signals and received noise are denoted
543
+ by K
544
+
545
+ E and K
546
+
547
+ N. For the received signals, we assume
548
+ that it is the sampling of the continuous electric field
549
+ on the point ri, which means that K
550
+
551
+ E = KE(ri, rj).
552
+ However, for the received noise on the antenna, it can
553
+ not directly be assumed as the point sampling of the
554
+ noise field, because of the delta function. To solve this
555
+ problem, we assume that K
556
+
557
+ N =
558
+ n1
559
+ 2 Im is an identity
560
+ matrix, and control the signal-to-noise ratio (SNR) of this
561
+ model the same as that of the continuous model to ensure
562
+ the fairness of the comparison. The SNR at the receiver
563
+ of the continuous model is �∞
564
+ i=1
565
+ λi
566
+ n0/2, where λi is the
567
+ ith eigenvalue of the operator TE. From Lemma 1 we
568
+ know that �∞
569
+ i=1
570
+ λi
571
+ n0/2 =
572
+ P
573
+ n0/2
574
+ � l
575
+ 0
576
+ � l
577
+ 0 G(r, s)G∗(r, s)drds
578
+ is finite. The SNR at the receiver of the discrete model is
579
+ �m
580
+ i=1
581
+ λ
582
+
583
+ i
584
+ n1/2, where λ
585
+
586
+ i is the ith eigenvalue of the matrix
587
+ K
588
+
589
+ E.
590
+ The SNR control scheme is necessary because if we
591
+ do not control the SNR, the mutual information that can
592
+ be obtained from the discrete antennas in the receiver
593
+ may infinitely increase. Let us take a counter-example
594
+ where the power of received signal and received noise on
595
+
596
+ 5
597
+ each point antenna remain unchanged when the number
598
+ of antennas in a given aperture increases. For dense
599
+ antennas we can assume that N received signals of the
600
+ antennas in a small aperture are nearly the same, while
601
+ the corresponding noises are independent according to
602
+ the model. Then, the SNR for the N antennas will
603
+ keep near-linearity increasing with N, since when we
604
+ perform combing of the N received signals we have
605
+ SNR =
606
+ E[(�N
607
+ i=1 Ei)(�N
608
+ i=1 E∗
609
+ i )]
610
+ E[(�N
611
+ i=1 Ni)(�N
612
+ i=1 N ∗
613
+ i )] ≈ N E[E1E∗
614
+ 1 ]
615
+ E[N1N ∗
616
+ 1 ]. Therefore
617
+ the mutual information that can be obtained from the
618
+ N antennas will keep near-logarithm increasing with N,
619
+ which corresponds to the simulation in [28].
620
+ According to (9), the noise power in the discrete
621
+ receiver model can be controlled by
622
+ n1 = n0
623
+ �m
624
+ i=1 KE(ri, ri)
625
+ � l
626
+ 0 KE(r, r)dr
627
+ .
628
+ (12)
629
+ We denote the determinant of matrix K ∈ Cm×m by
630
+ det(Ki,j)m
631
+ i,j=1. Then we can express the mutual informa-
632
+ tion between the transceivers by
633
+ I1 = log
634
+
635
+ det(K
636
+
637
+ N + K
638
+
639
+ E)
640
+ det(K
641
+
642
+ N)
643
+
644
+ = logdet
645
+
646
+ 1i=j + KE(ri, rj)
647
+ n1/2
648
+ �m
649
+ i,j=1
650
+ .
651
+ (13)
652
+ Remark 2. Here the SNR on each of the point antennas in
653
+ the discrete model changes with the density of point anten-
654
+ nas. Notice that L
655
+ m
656
+ �m
657
+ i=1 KE(ri, ri) is the approximation
658
+ of the integral
659
+ � l
660
+ 0 KE(r, r)dr. When m approximates
661
+ infinity, n1 will approximate mn0
662
+ 2l . This phenomenon has
663
+ several annotations, including the increase of the noise
664
+ power on each point antenna, the reduction of antenna
665
+ efficiency, and the corollary of the discretization of EIT
666
+ continuous models.
667
+ From the perspective of noise power, we can explain it
668
+ by spatial sampling. For the point antenna arrays, more
669
+ antennas on a given aperture corresponds to a higher
670
+ sampling rate in the spatial domain and a wider lowpass
671
+ filter in the wavenumber domain. Since a wide lowpass
672
+ filter can receive more noise power from the white noise
673
+ field, the noise power should increase with the density of
674
+ the antennas.
675
+ From the perspective of antenna efficiency, the well-
676
+ known Hannan’s efficiency shows that for both transmit-
677
+ ting and receiving antennas, the antenna gain is propor-
678
+ tional to lxly for two-dimensional surface antennas [29].
679
+ Therefore, for the linear model we considered, the an-
680
+ tenna gain will be inversely proportional to the sampling
681
+ number when the antennas are dense enough.
682
+ Besides these two annotations, another perspective is
683
+ viewing the model of discrete point antennas as the
684
+ discretization from the EIT continuous model. If we
685
+ consider m linear continuous antennas instead of point
686
+ antennas in the destination region. All the antennas are
687
+ connected head to tail to occupy the [0, l] position in the
688
+ space and detect the electric field by inner producting it
689
+ with its eigenmode. This model fulfills the requirement of
690
+ discretizing the continuous receiver to discrete receiving
691
+ antennas. The signal received by the ith antenna is
692
+ Yi =
693
+ � ai+1
694
+ ai
695
+ Y (r)φ(r)dr, where [ai, ai+1] is the occupied
696
+ region of the ith antenna, and φ(r) is the eigenmode of the
697
+ antenna. If we assume φ(r) ≡ 1, the correlation matrix
698
+ of the received electric field can be expressed by
699
+ (KE)i,j = E
700
+ �� ai+1
701
+ ai
702
+ � aj+1
703
+ aj
704
+ E(r)E∗(r′)drdr′
705
+
706
+ = (ai+1 − ai)(aj+1 − aj)KE(ri, rj),
707
+ (14)
708
+ where ri ∈ [ai, ai+1] and rj ∈ [aj, aj+1] according to
709
+ the mean value theorem for integrals. For the noise field
710
+ on the destination, we have
711
+ (KN)i,j = E
712
+ �� ai+1
713
+ ai
714
+ � aj+1
715
+ aj
716
+ N(r)N ∗(r′)drdr′
717
+
718
+ =
719
+
720
+ (ai+1 − ai) n0
721
+ 2
722
+ i = j
723
+ 0
724
+ i ̸= j .
725
+ (15)
726
+ Therefore, the SNR after the discretization will discreases
727
+ by ai+1 − ai, which is the case when the antennas are
728
+ dense enough.
729
+ After explaining the rationality of the SNR control
730
+ scheme, we will introduce the following lemma to show
731
+ the convergence of the noise power on each discrete point
732
+ antenna, which will be useful for the following proofs.
733
+ Lemma 1. When the number of antennas m in a given
734
+ aperture increases, the noise power on each antenna n1/2
735
+ will approach
736
+ mn0
737
+ 2l . The difference between them is at
738
+ most inverse-proportional to m.
739
+ Proof: From (12) and the middle point quadrature
740
+ rule, we have
741
+ ����
742
+ l
743
+ mn1 − n0
744
+ ���� = n0
745
+ ���
746
+ � l
747
+ 0 KE(r, r)dr − l/m �m
748
+ i=1 KE(ri, ri)
749
+ ���
750
+ ���
751
+ � l
752
+ 0 KE(r, r)dr
753
+ ���
754
+
755
+ n0l3 ���K
756
+ ′′
757
+ E(r, r)
758
+ ���
759
+ L∞(0,l)
760
+ 24m2
761
+ ���
762
+ � l
763
+ 0 KE(r, r)dr
764
+ ���
765
+ ,
766
+ (16)
767
+ which completes the proof.
768
+ D. Discrete transceivers
769
+ The models discussed in the above subsections keep
770
+ the transmitter continuous and only perform discretization
771
+ on the receiver. However, the commonly used model
772
+ to depict wireless communication is the discrete MIMO
773
+ model, in which both the transceivers are modeled as
774
+ discrete point antennas. Therefore, in this section, we
775
+ will introduce a model which discretizes the transceivers
776
+ simultaneously, which is the extension of the model with
777
+ continuous transmitter and discrete receiver. Then, similar
778
+
779
+ 6
780
+ d
781
+ Continuous
782
+ Transmitter
783
+ Continuous
784
+ Receiver
785
+ d
786
+ Discrete
787
+ Receiver
788
+ l
789
+ / 2
790
+
791
+ l
792
+ d
793
+ Discrete
794
+ Receiver
795
+ l
796
+ / 2
797
+
798
+ Discrete
799
+ Transmitter
800
+ Continuous
801
+ Transmitter
802
+ 0I
803
+ 1I
804
+ 2I
805
+ Fig. 1. Comparison between the three models in this section with continuous transceivers and the model with discrete transceivers.
806
+ to the scheme in the above subsection, we will provide the
807
+ corresponding SNR control scheme to ensure the fairness
808
+ of the comparison.
809
+ Specifically, we build a model with m point antennas
810
+ on a length-l segment in the source region and m point
811
+ antennas on a length-l segment in the destination region.
812
+ Similar to the above subsection, we assume that the ith
813
+ point antenna is placed at si in the source region and ri
814
+ in the destination region. The correlation matrix of the
815
+ signals in the source region is set to be an identity matrix
816
+ K
817
+ ′′
818
+ J = PIm, which corresponds to the power allocation
819
+ scheme with no channel state information at the transmit-
820
+ ter. The channel gain from the ith antenna in the source
821
+ region and the jth antenna in the destination region can be
822
+ expressed by Hi,j = G(si, rj). The correlation matrix of
823
+ the received signal is denoted by K
824
+ ′′
825
+ E = HK
826
+ ′′
827
+ JHH. The
828
+ noise matrix is denoted by K
829
+ ′′
830
+ N = n2
831
+ 2 Im. Similar SNR
832
+ control on the receiver side is used, which is expressed
833
+ by
834
+ n2 = n0
835
+ �m
836
+ i=1
837
+ �m
838
+ j=1 G(ri, sj)G∗(ri, sj)
839
+ � l
840
+ 0
841
+ � l
842
+ 0 G(r, s)G∗(r, s)drds
843
+ .
844
+ (17)
845
+ The mutual information between the transceivers is ex-
846
+ pressed as:
847
+ I2 = log
848
+
849
+ det(K
850
+ ′′
851
+ N + K
852
+ ′′
853
+ E)
854
+ det(K
855
+ ′′
856
+ N)
857
+
858
+ = logdet
859
+
860
+ 1i=j +
861
+
862
+ k G(ri, rk)G∗(rj, rk)
863
+ n2/2
864
+ �m
865
+ i,j=1
866
+ .
867
+ (18)
868
+ The comparison between the three models built in Sec-
869
+ tion. II-B, Section. II-C and in this subsection is shown
870
+ in Fig. 1. In the following two sections we will introduce
871
+ the intermediate quantity I
872
+
873
+ 0 and I
874
+ ′′
875
+ 0 to theoretically prove
876
+ that I1 and I2 converge to I0. The flow chart of the proof
877
+ is shown in Fig. 2
878
+ III. PERFORMANCE COMPARISON BETWEEN DISCRETE
879
+ AND CONTINUOUS RECEIVERS
880
+ In the above section we have proposed the mod-
881
+ els of continuous and discrete transceivers and derived
882
+ the corresponding mutual information. Before compar-
883
+ ing the performance between CAP-MIMO with contin-
884
+ uous transceivers and traditional MIMO with discrete
885
+ transceivers, we first utilize the simplified model with
886
+ continuous transmitter and discrete receiver in this sec-
887
+ tion. Under this simplified model, the transmitter is con-
888
+ tinuous, which is the same as that in the CAP-MIMO
889
+ system. The comparison is based on the convergence
890
+ analysis of the mutual information when the number
891
+ of antennas in the discrete receiver increases. Numer-
892
+ ical analysis is provided to verify the correctness of
893
+ the convergence analysis. The discussion about discrete
894
+ transceivers inspired by the analysis in this part will be
895
+ in the next section.
896
+ A. Convergence analysis of the mutual information
897
+ To compare the mutual information I0 and I1, we intro-
898
+ duce an intermediate quantity I
899
+
900
+ 0 = logdet
901
+
902
+ 1 + mTE
903
+ ln1/2
904
+
905
+ .
906
+ We can bound |I0 −I1| by |I0 −I
907
+
908
+ 0|+|I1 −I
909
+
910
+ 0|. According
911
+ to [30], I1 can be viewed as the approximation of I
912
+
913
+ 0
914
+ using a numerical integral scheme. In our discussion the
915
+ point antennas in the destination region are evenly spaced,
916
+ which means that ai = (i−1)l/m and ri = (i−0.5)l/m.
917
+ To bound |I1 − I
918
+
919
+ 0|, we introduce the following lemma
920
+ from [30]:
921
+ Lemma 2. We define d(z) := det(1+zT) and dQ(z) :=
922
+ det (1i=j + wjzK(ri, rj))m
923
+ i,j=1, where K is the kernel of
924
+ the operator T. The difference between d(z) and dQ(z)
925
+
926
+ 7
927
+ 0I
928
+ '
929
+ 0I
930
+ 1I
931
+ 2I
932
+ ''
933
+ 0I
934
+ Discretize the receiver
935
+ Discretize the transmitter
936
+ Discretize the transceivers
937
+ Lemma 1
938
+ Lemma 2
939
+ Lemma 3
940
+ Lemma 4
941
+ Lemma 5
942
+ Theorem 1
943
+ Theorem 2
944
+ Fig. 2. Flow chart of the proof in this paper.
945
+ is
946
+ d(z) − dQ(z) =
947
+
948
+
949
+ n=1
950
+ zn
951
+ n!
952
+
953
+ Qn
954
+ m(Kn)
955
+
956
+
957
+ [a,b]n Kn(x1, · · · , xn)dx1 · · · dxn
958
+
959
+ ,
960
+ (19)
961
+ where Kn(x1, · · · , xn)
962
+ =
963
+ det (K(xi, xj))n
964
+ i,j=1, and
965
+ Qn
966
+ m(f) = �m
967
+ j1=1,··· ,jn=1
968
+ �n
969
+ i=1 wjif(rj1, · · · , rjn).
970
+ Lemma 2 provides a method to compare the difference
971
+ between a Fredholm determinant of operator and a clas-
972
+ sical determinant of matrix. In our model, the operator T
973
+ corresponds to the integral operator TE, z equals 2m
974
+ ln1 ,and
975
+ wj = l/m according to the equally spaced antennas.
976
+ Notice that Qn
977
+ m(f) is the numerical approximation of
978
+ the integral
979
+
980
+ [a,b]n Kn(x1, · · · , xn)dx1 · · · dxn, we need
981
+ to use numerical integral theory to estiamte the approxi-
982
+ mation error. For the model with equally spaced antennas,
983
+ this expression corresponds to a multivariate m-point
984
+ composite midpoint quadrature rule.
985
+ For the error bound of a m-point composite midpoint
986
+ quadrature [31], we have
987
+ �����Qm(f) −
988
+ � l
989
+ 0
990
+ f(x)dx
991
+ ����� ⩽
992
+ l3
993
+ 24m2 ∥f
994
+ ′′∥L∞(0,l)
995
+ (20)
996
+ According to [32], the numerical approximation error
997
+ for multiple integrals in a n-dimensional unit cube can be
998
+ bounded by
999
+ �����
1000
+
1001
+ Gn
1002
+ f −
1003
+ � n
1004
+
1005
+ i=1
1006
+
1007
+ Qi(f)
1008
+ ����� ⩽ E1 +
1009
+ n
1010
+
1011
+ i=2
1012
+ i−1
1013
+
1014
+ j=1
1015
+ WjEi,
1016
+ (21)
1017
+ where Qj(g) := �
1018
+ j wi,jg(xi,j), Wi = �
1019
+ j |wi,j| and
1020
+ Ei ⩾
1021
+ ���Qi(f; xi) −
1022
+ � 1
1023
+ 0 f(x1, · · · , xn)dxi
1024
+ ���. According to
1025
+ the models in this paper, we have wi,j = l/m and Wi = l.
1026
+ By simple variation of the integral band, we can bound the
1027
+ approximation error of the multi-dimensional numerical
1028
+ integral quadrature rule by
1029
+ �����Qn
1030
+ m(Kn) −
1031
+
1032
+ [0,l]n Kn(x1, · · · , xn)dx1 · · · dxn
1033
+ �����
1034
+ ⩽ ni−1
1035
+ n
1036
+
1037
+ i=1
1038
+ Ei,
1039
+ (22)
1040
+ where
1041
+ Ei =
1042
+ �����Qi(Kn; xi) −
1043
+ � l
1044
+ 0
1045
+ Kn(x1, · · · , xn)dxi
1046
+ ����� .
1047
+ (23)
1048
+ Therefore, we have
1049
+ �����Qn
1050
+ m(Kn) −
1051
+
1052
+ [0,l]n Kn(x1, · · · , xn)dx1 · · · dxn
1053
+ �����
1054
+ ⩽ nln+2
1055
+ 24m2 |Kn|2
1056
+ (24)
1057
+ where |Kn|2 = max
1058
+ i ∥ ∂2Kn
1059
+ ∂x2
1060
+ i ∥L∞((0,l)n).
1061
+ Similar to [30, Lemma A.4], we can bound |Kn|k by
1062
+ using the Hadamard’s inequality, which leads to
1063
+ |Kn|k ⩽ 2knn/2
1064
+
1065
+ � max
1066
+ i+j⩽k
1067
+ �����
1068
+ ∂i
1069
+ x∂j
1070
+ yK(x, y)
1071
+ ∂xi∂yj
1072
+ �����
1073
+ L∞((0,l)2)
1074
+
1075
+
1076
+ n
1077
+ .
1078
+ (25)
1079
+ Next we will show that
1080
+ ���
1081
+ ∂i
1082
+ x∂j
1083
+ yK(x,y)
1084
+ ∂xi∂yj
1085
+ ��� is upper-bounded.
1086
+ Since we have K(x, y) =
1087
+ � l
1088
+ 0 G(x, s)G∗(y, s)ds, we
1089
+ will first analyze the property of G(x, s). We decom-
1090
+ pose G(x, s) as G1(x, s) + jG2(x, s), where G1, G2 ∈
1091
+ C∞([0, l]2). The smoothness of G1, G2 in their domains
1092
+
1093
+ 8
1094
+ is trivial since they are compositions of polynomial func-
1095
+ tions, trigonometric functions and square root functions.
1096
+ Consider the integral kernel K(x, y) expressed in terms
1097
+ of G1, G2, i.e.,
1098
+ K(x, y) =
1099
+ � l
1100
+ 0
1101
+
1102
+ G1(x, s)G1(y, s) + G2(x, s)G2(y, s)
1103
+
1104
+ ds
1105
+ + j
1106
+ � l
1107
+ 0
1108
+
1109
+ G1(y, s)G2(x, s) − G1(x, s)G2(y, s)
1110
+
1111
+ ds.
1112
+ (26)
1113
+ Since G1(x, s) and G2(y, s) are smooth in [0, l]2,
1114
+ we can conclude that f1(x, y) = G1(x, s)G1(y, s) +
1115
+ G2(x, s)G2(y, s) and f2(x, y) = G1(y, s)G2(x, s) −
1116
+ G1(x, s)G2(y, s) are smooth in the same domain. Since
1117
+ compactly supported smooth functions attain their maxi-
1118
+ mum or minimum values, the partial derivatives of K(·, ·)
1119
+ are upper-bounded for any order i, j, i.e.,
1120
+ ����
1121
+ ∂i+jK(x, y)
1122
+ ∂xi∂yj
1123
+ ���� < ∞,
1124
+ ∀i, j.
1125
+ (27)
1126
+ Therefore, by substituting (24) and (25) into Lemma
1127
+ 2, we can bound the difference between the mutual
1128
+ information I
1129
+
1130
+ 0 and I1 by the following lemma:
1131
+ Lemma 3. The mutual information I1 converges to the
1132
+ mutual information I
1133
+
1134
+ 0. The difference
1135
+ ���I1 − I
1136
+
1137
+ 0
1138
+ ��� is at most
1139
+ inverse-proportional to m2.
1140
+ Proof: From (6) we know that for the operator
1141
+ TE, the kernel function can be expressed by K(x, y) =
1142
+ � L
1143
+ 0 g(x, s)g∗(y, s)ds. From (25) we have
1144
+ |Kn|2 ⩽ 4nn/2An,
1145
+ (28)
1146
+ where A = max
1147
+ ��� ∂i+jK(x,y)
1148
+ ∂xi∂yj
1149
+ ���
1150
+ L∞((0,l)2) is a constant.
1151
+ Therefore we have
1152
+ |d(z) − dQ(z)| ⩽
1153
+
1154
+
1155
+ n=1
1156
+ zn
1157
+ n!
1158
+ nln+2
1159
+ 24m2 max
1160
+ i
1161
+ ����
1162
+ ∂2Kn
1163
+ ∂x2
1164
+ ����
1165
+ L∞((0,l)n)
1166
+
1167
+
1168
+
1169
+ n=1
1170
+ zn
1171
+ n!
1172
+ nln+2
1173
+ 6m2 nn/2An.
1174
+ (29)
1175
+ According to the Stirling’s approximation, we have n! ⩾
1176
+ nne−n√
1177
+ 2πn, which leads to
1178
+ |d(z) − dQ(z)| ⩽
1179
+ l2
1180
+ 6m2
1181
+
1182
+
1183
+ n=1
1184
+ � n
1185
+
1186
+ (Aezl)n
1187
+ nn/2
1188
+ .
1189
+ (30)
1190
+ Since it is obvious that �∞
1191
+ n=1
1192
+ � n
1193
+
1194
+ (Aezl)n
1195
+ nn/2
1196
+ is convergent,
1197
+ the difference between d(z) and dQ(z) is proportional to
1198
+ m−2. For the difference between mutual information I1
1199
+ and I
1200
+
1201
+ 0, we have
1202
+ |I1−I
1203
+
1204
+ 0| ⩽
1205
+ |d(z) − dQ(z)|
1206
+ min(d(z), dQ(z)) <
1207
+ l2
1208
+ 6m2
1209
+
1210
+
1211
+ n=1
1212
+ � n
1213
+
1214
+ (Aezl)n
1215
+ nn/2
1216
+ ,
1217
+ (31)
1218
+ where z =
1219
+ m
1220
+ ln1/2. From Lemma 1 we know that
1221
+ l
1222
+ mn1 ⩾
1223
+ n0 −
1224
+ n0l3���K
1225
+ ′′
1226
+ E(r,r)
1227
+ ���
1228
+ L∞(0,l)
1229
+ 24m2|
1230
+ � l
1231
+ 0 KE(r,r)dr| . Therefore, z is upperbounded,
1232
+ which completes the proof of Lemma 3.
1233
+ According to Lemma 1 and Lemma 3, we have
1234
+ Theorem 1, which bounds the difference between I0 and
1235
+ I1.
1236
+ Theorem 1. The mutual information I1 that can be
1237
+ obtained from the discrete receiver converges to the
1238
+ mutual information I0 that can be obtained from the
1239
+ continuous receiver when the number of points increases.
1240
+ The convergence rate is at least inverse-proportional to
1241
+ the square of the sampling number m.
1242
+ Proof: Since the Fredholm determinant f(z) =
1243
+ det(1 + zTE) is an analytic function, we have
1244
+ |det(1 + zTE) − det(1 + z1TE)|
1245
+ = |z − z1|
1246
+ ����
1247
+ ∂det(1 + xTE)
1248
+ ∂x
1249
+ ����
1250
+ x∈[min(z,z1),max(z,z1)]
1251
+ .
1252
+ (32)
1253
+ In our assumption z
1254
+ =
1255
+ 2
1256
+ n0
1257
+ and z1
1258
+ =
1259
+ 2m
1260
+ ln1 . The
1261
+ analycity of det(1 + zTE) implies that
1262
+ ∂det(1+xTE)
1263
+ ∂x
1264
+ is also an anlytic function and is bounded on the
1265
+ interval
1266
+ [min(z, z1), max(z, z1)].
1267
+ We
1268
+ denote
1269
+ M
1270
+ =
1271
+ max
1272
+ x
1273
+ ��� ∂det(1+xTE)
1274
+ ∂x
1275
+ ���, where x ∈ [min(z, z1), max(z, z1)].
1276
+ From Lemma 1 we have
1277
+ ����
1278
+ l
1279
+ mn1 − n0
1280
+ ���� ⩽
1281
+ n0l3 ���K
1282
+ ′′
1283
+ E(r, r)
1284
+ ���
1285
+ L∞(0,l)
1286
+ 24m2 � l
1287
+ 0 KE(r, r)dr
1288
+ .
1289
+ (33)
1290
+ Since n1/m → n0/l when m approximates infinity, we
1291
+ denote the minimum value of n1/m by c. Therefore,
1292
+ ���det(1 +
1293
+ 2
1294
+ n0 TE) − det(1 + 2m
1295
+ ln1 TE)
1296
+ ��� can be bounded by
1297
+ ����det(1 + 2
1298
+ n0
1299
+ TE) − det(1 + 2m
1300
+ ln1
1301
+ TE)
1302
+ ����
1303
+
1304
+ Ml2 ���K
1305
+ ′′
1306
+ E(r, r)
1307
+ ���
1308
+ L∞(0,l)
1309
+ 12m2c
1310
+ � l
1311
+ 0 KE(r, r)dr
1312
+ .
1313
+ (34)
1314
+ Similar to the direvation of (31), we know that when m
1315
+ increases, I
1316
+
1317
+ 0 will converge to I0. The convergence rate
1318
+ is at least inverse-proportional to m2. From Lemma 3
1319
+ we know that
1320
+ ���I1 − I
1321
+
1322
+ 0
1323
+ ��� is at most inverse-proportional to
1324
+ m2. Since |I0 − I1| ⩽
1325
+ ���I0 − I
1326
+
1327
+ 0
1328
+ ��� +
1329
+ ���I1 − I
1330
+
1331
+ 0
1332
+ ���, Theorem 1
1333
+ is proved.
1334
+ Remark 3. Theorem 1 shows that the SNR control
1335
+ scheme between the discrete and continuous models is
1336
+ appropriate, since the limit of the mutual information of
1337
+ the discrete model is proved to be that of the continu-
1338
+ ous model. That is to say, our proposed model is self-
1339
+ consistent. Therefore, we can use the proposed model
1340
+ to compare the mutual information from the discrete
1341
+ and continuous receivers. Our analysis is based on
1342
+
1343
+ 9
1344
+ 0
1345
+ 50
1346
+ 100
1347
+ 150
1348
+ 0
1349
+ 20
1350
+ 40
1351
+ 60
1352
+ 80
1353
+ 100
1354
+ 120
1355
+ 140
1356
+ 160
1357
+ 180
1358
+ continuous receiver
1359
+ discrete receiver
1360
+ 5 10 15 20
1361
+ 1.5
1362
+ 2
1363
+ 2.5
1364
+ 3
1365
+ continuous receiver
1366
+ discrete receiver
1367
+ Fig. 3. The mutual information as a function of the sampling number.
1368
+ The transmitter is kept continuous and the receiver is discretized.
1369
+ RE(r, r′) = P
1370
+ � l
1371
+ 0 G(r, s)G∗(r′, s)ds which corresponds
1372
+ to the scenario when no CSI can be obtained at the
1373
+ transmitter but not limited to this scenario. It can be eas-
1374
+ ily extended to other shapes of autocorrelation functions
1375
+ after power allocation at the transmitter, as long as the
1376
+ analyticity of RE(r, r′) is guaranteed.
1377
+ B. Numerical analysis about the mutual information
1378
+ As proven in the above subsection, the mutual infor-
1379
+ mation between the continuous transmitter and discrete
1380
+ receiver converges to the mutual information between
1381
+ continuous transceivers. Therefore, the model of the dis-
1382
+ crete receiver can be viewed as the discretization of the
1383
+ continuous receiver. In this subsection, we will use nu-
1384
+ merical analysis to show the correctness of the theoretical
1385
+ results. Moreover, we will show the near-optimality of the
1386
+ discrete receiver with half-wavelength sampling.
1387
+ We set the length l of the transceivers to 2 m. The trans-
1388
+ mitter is kept continuous, while the receiver is discretized
1389
+ to m point antennas. The wavelength of the electromag-
1390
+ netic field is fixed to 0.04 m, which correpsonds to the fre-
1391
+ quency of 7.5 GHz. The distance between the transceivers
1392
+ varies from 10 m to 0.1 m. The simulation results are
1393
+ shown in Fig. 3. From the simulation, we can observe
1394
+ the convergence of the mutual information between the
1395
+ continuous transmitter and the discrete receiver, which
1396
+ verifies the theoretical analysis. For the three distances
1397
+ between transceivers, the half-wavelength sampling al-
1398
+ most achieves the supremum mutual information between
1399
+ continuous transceivers. Therefore, half-wavelength sam-
1400
+ pling of the receiver is suboptimal. Moreover, when the
1401
+ distance between transceivers decreases, we can observe
1402
+ that the mutual information converges slower. When the
1403
+ distance equals 0.1 m, the half wavelength sampling is at
1404
+ the critical state of convergence. If the distance is less
1405
+ than 0.1 m, a performance gap between the model with
1406
+ the continuous receiver and that with the discrete receiver
1407
+ may be observed. This performance gap has theoretical
1408
+ meaning but may not be useful because the distance will
1409
+ be comparable to the wavelength in this scenario, where
1410
+ the evanescent wave components will hold a dominant
1411
+ position.
1412
+ IV. COMPARISON BETWEEN CONTINUOUS AND
1413
+ DISCRETE TRANSCEIVERS
1414
+ In the above section we have compared the mutual
1415
+ information between the models with continuous and
1416
+ discrete receivers. For both models the transmitter is kept
1417
+ continuous, which simplifies the analyzing procedure. In-
1418
+ spired by the analysis in the above section, in this section
1419
+ we will compare the mutual information between contin-
1420
+ uous transceivers and that between discrete transceivers.
1421
+ Numerical analysis is then provided to show the near-
1422
+ optimality of the half-wavelength sampling scheme.
1423
+ A. Convergence analysis of the mutual information
1424
+ The analysis in this section focuses on the difference
1425
+ between I0 and I2. It is an extension of the conver-
1426
+ gence analysis in the above section. We define I
1427
+ ′′
1428
+ 0
1429
+ =
1430
+ logdet
1431
+
1432
+ 1 + m2TE
1433
+ l2n2/2
1434
+
1435
+ as an intermediate variable similar
1436
+ to I
1437
+
1438
+ 0. First we will discuss the convergence of |I0 − I
1439
+ ′′
1440
+ 0 |
1441
+ in the following lemma:
1442
+ Lemma 4. The mutual information I
1443
+ ′′
1444
+ 0 converges to the
1445
+ mutual information I0. The difference
1446
+ ���I0 − I
1447
+ ′′
1448
+ 0
1449
+ ��� is at most
1450
+ inverse-proportional to m2.
1451
+ Proof: From the SNR control scheme of discrete
1452
+ transceivers (17) and the multivariate m-point composite
1453
+ midpoint quadrature rule, we have
1454
+ ����n0 − l2
1455
+ m2 n2
1456
+ ���� =
1457
+ n0
1458
+ � l
1459
+ 0 K(r, r)dr
1460
+ �����
1461
+ � l
1462
+ 0
1463
+ � l
1464
+ 0
1465
+ g(r, r, z)dzdr
1466
+ − l2
1467
+ m2
1468
+ m
1469
+
1470
+ i=1,j=1
1471
+ g(ri, ri, rj)
1472
+ �����
1473
+
1474
+ n0l4
1475
+ 24m2 � l
1476
+ 0 K(r, r)dr
1477
+ � ����
1478
+ ∂2g(r, r, z)
1479
+ ∂r2
1480
+ ����
1481
+ L∞((0,l)2)
1482
+ +
1483
+ ����
1484
+ ∂2g(r, r, z)
1485
+ ∂z2
1486
+ ����
1487
+ L∞((0,l)2)
1488
+
1489
+ ,
1490
+ (35)
1491
+ where g(x, y, z)
1492
+ :=
1493
+ G(x, z)G∗(y, z), ri
1494
+ =
1495
+ (i −
1496
+ 0.5)l/m. It is obvious that n2/m2 converges to n0/l2
1497
+ when m
1498
+
1499
+ ∞. We denote the minimum value
1500
+ of n2/m2 by c. Then, according to (32), we know
1501
+ that
1502
+ ���det(1 +
1503
+ 2
1504
+ n0 TE) − det(1 + 2m2
1505
+ l2n2 TE)
1506
+ ��� converges to 0
1507
+ when m → ∞. Therefore, |I0 − I
1508
+ ′′
1509
+ 0 | converges to 0, and
1510
+ the convergence rate is at least inversely proportional to
1511
+ m2.
1512
+
1513
+ 10
1514
+ Then we will discuss the convergence of |I2 − I
1515
+ ′′
1516
+ 0 | in
1517
+ the following lemma:
1518
+ Lemma 5. The difference
1519
+ ���I2 − I
1520
+ ′′
1521
+ 0
1522
+ ��� approaches 0 when
1523
+ m approaches infinity. Moreover, it is at most inverse-
1524
+ proportional to m2.
1525
+ Proof: We denote the Fredholm determinant and
1526
+ its discretization by d(z) = det(1 + zT) and dV (z) =
1527
+ det (1i=j + wjz �m
1528
+ k=1 wkG(ri, rk)G∗(rj, rk))m
1529
+ i,j=1,
1530
+ where K is the kernel of the operator T. To bound
1531
+ the difference between d(z) and dV (z), we define
1532
+ gn(x1, · · · , xn, s1, · · · , sn) as
1533
+ gn(x1, · · · , xn, s1, · · · , sn)
1534
+ = det
1535
+
1536
+
1537
+ g(x1, x1, s1)
1538
+ · · ·
1539
+ g(x1, xn, s1)
1540
+ · · ·
1541
+ g(xi, xj, si)
1542
+ · · ·
1543
+ g(xn, x1, sn)
1544
+ · · ·
1545
+ g(xn, xn, sn)
1546
+
1547
+ � .
1548
+ (36)
1549
+ From the definition of g(x, y, z), we know that
1550
+ � l
1551
+ 0 g(xi, xj, si)dsi
1552
+ =
1553
+ K(xi, xj). According
1554
+ to the
1555
+ property
1556
+ of
1557
+ determinants
1558
+ that
1559
+ det(ai,j)m
1560
+ i,j=1
1561
+ =
1562
+
1563
+ k1,··· ,km(−1)ka1,k1 · · · am,km,
1564
+ where
1565
+ k1 · · · km
1566
+ is
1567
+ the kth exchange of 1 · · · n, we can find that
1568
+ Kn(x1, · · · , xn) =
1569
+
1570
+ [0,l]n gn(x1, · · · , xn, s1, · · · , sn)
1571
+ ds1 · · · dsn.
1572
+ (37)
1573
+ If we define Cn
1574
+ m(gn) by (38) we have (39). Here
1575
+ wαi correspondes to the distance between antennas in
1576
+ the source region and s correpsonds to the location
1577
+ of the antennas in the source region. When further
1578
+ considering
1579
+ the
1580
+ discretization
1581
+ of
1582
+ the
1583
+ receiver
1584
+ as
1585
+ in (19), we should set xn
1586
+ 1
1587
+ to the location of the
1588
+ antennas in the destination region, and add additional
1589
+ weights w which equals the distance between antennas
1590
+ in the destination region. Similar to the definition
1591
+ of Qn
1592
+ m in (19), we define V n
1593
+ m(gn) by V n
1594
+ m(gn)
1595
+ =
1596
+ �m
1597
+ j1,··· ,jn=1
1598
+
1599
+ i wjiCn
1600
+ m(gn(rj1, · · · , rjn, s1,α1, · · · , sn,αn)).
1601
+ When sj,αi = rαi, we have
1602
+ V n
1603
+ m(gn) =
1604
+ m
1605
+
1606
+ j1,··· ,jn=1
1607
+ m
1608
+
1609
+ α1,··· ,αn=1
1610
+ � n
1611
+
1612
+ i=1
1613
+ ji
1614
+ � � n
1615
+
1616
+ i=1
1617
+ αi
1618
+
1619
+ gn(rj1, · · · , rjn, rα1, · · · , rαn)
1620
+ =
1621
+ m
1622
+
1623
+ j1,··· ,j2n=1
1624
+ � 2n
1625
+
1626
+ i=1
1627
+ ji
1628
+
1629
+ gn(rj1, · · · , rj2n).
1630
+ (40)
1631
+ The difference between d(z) and dV (z) is
1632
+ d(z) − dV (z)
1633
+ =
1634
+
1635
+
1636
+ n=1
1637
+ zn
1638
+ n!
1639
+
1640
+ V n
1641
+ m(gn) −
1642
+
1643
+ [0,l]n Kn(x1, · · · , xn)dx1 · · · dxn
1644
+
1645
+ =
1646
+
1647
+
1648
+ n=1
1649
+ zn
1650
+ n!
1651
+
1652
+ V n
1653
+ m(gn) −
1654
+
1655
+ [0,l]2n gn(x1, · · · , x2n)dx1 · · · dx2n
1656
+
1657
+ (41)
1658
+ Note that V n
1659
+ m(gn) is the numerical discretization of the
1660
+ function gn with 2n variables, we can bound V n
1661
+ m(gn) −
1662
+
1663
+ [a,b]2n gn(x1, · · · , x2n)dx1 · · · dx2n by using the multi-
1664
+ variate numerical integration error bound:
1665
+ �����V n
1666
+ m(gn) −
1667
+
1668
+ [0,l]2n gn(x1, · · · , x2n)dx1 · · · dx2n
1669
+ �����
1670
+ ⩽ l2n−1
1671
+ 2n
1672
+
1673
+ i=1
1674
+ Ei,
1675
+ (42)
1676
+ where
1677
+ Ei =
1678
+ �����Qi(gn; xi) −
1679
+ � l
1680
+ 0
1681
+ gn(x1, · · · , x2n)dxi
1682
+ ����� .
1683
+ (43)
1684
+ According to the m-point composite midpoint quadrature
1685
+ rule, we have
1686
+ �����Qi(gn; xi) −
1687
+ � l
1688
+ 0
1689
+ gn(x1, · · · , x2n)dxi
1690
+ �����
1691
+
1692
+ l3
1693
+ 24m2
1694
+ ����
1695
+ ∂2gn
1696
+ ∂x2
1697
+ i
1698
+ ����
1699
+ L∞((0,l)2n)
1700
+ ,
1701
+ (44)
1702
+ From the Hadamard’s inequality [33], we can further
1703
+ bound it by
1704
+ �����V n
1705
+ m(gn) −
1706
+
1707
+ [a,b]2n gn(x1, · · · , x2n)dx1 · · · dx2n
1708
+ �����
1709
+ ⩽ 2nl2n+2
1710
+ 24m2 max
1711
+ j
1712
+ �����
1713
+ ∂2gn
1714
+ ∂x2
1715
+ j
1716
+ �����
1717
+ L∞((0,l)2n)
1718
+ ⩽ 2nl2n+2
1719
+ 24m2 max
1720
+
1721
+ �nn/2
1722
+ �����
1723
+ ∂2g(x, y, z)
1724
+ ∂z2
1725
+ ����
1726
+ L∞((0,l)3)
1727
+ �n
1728
+ ,
1729
+ 4nn/2
1730
+
1731
+ � max
1732
+ i+j⩽2
1733
+ �����
1734
+ ∂i
1735
+ x∂j
1736
+ yg(x, y, z)
1737
+ ∂xi∂yj
1738
+ �����
1739
+ L∞((0,l)3)
1740
+
1741
+
1742
+ n �
1743
+
1744
+ ⩽ l2n+2
1745
+ 3m2 n(n+2)/2
1746
+
1747
+ � max
1748
+ i+j+k⩽2
1749
+ �����
1750
+ ∂i
1751
+ x∂j
1752
+ y∂k
1753
+ z g(x, y, z)
1754
+ ∂xi∂yj∂zk
1755
+ �����
1756
+ L∞((0,l)3)
1757
+
1758
+
1759
+ n
1760
+ .
1761
+ (45)
1762
+ Similar to Lemma 3, we know that |I2 −I
1763
+
1764
+ 0| converges
1765
+ to 0, and the error is at most inverse proportional to m2.
1766
+ Therefore, we have Theorem 2:
1767
+ Theorem 2. The mutual information I2 that can be
1768
+ obtained from the discrete transceivers converges to the
1769
+ mutual information I0 that can be obtained from the
1770
+ continuous transceivers when the number of antennas in
1771
+ the discrete transceivers increases. The difference |I0−I2|
1772
+ is at least inverse-proportional to the square of the
1773
+ sampling number m.
1774
+ Remark
1775
+ 4. Similar to Remark
1776
+ 3 in Section. III,
1777
+ the convergence analysis in this section is not lim-
1778
+ ited to the scenario with equal power allocation.
1779
+
1780
+ 11
1781
+ Cn
1782
+ m(gn) = det
1783
+
1784
+
1785
+
1786
+ α1 wα1g(x1, x1, s1,α1)
1787
+ · · ·
1788
+
1789
+ α1 wα1g(xn, xn, s1,α1)
1790
+ · · ·
1791
+
1792
+ αi wαig(xi, xj, si,αi)
1793
+ · · ·
1794
+
1795
+ αn wαng(xn, x1, sn,αn)
1796
+ · · ·
1797
+
1798
+ αn wαng(xn, xn, sn,αn),
1799
+
1800
+ � .
1801
+ (38)
1802
+ Cn
1803
+ m(gn) =
1804
+
1805
+ k1···kn
1806
+ (−1)k(
1807
+ m
1808
+
1809
+ α1=1
1810
+ wα1g(x1, xk1, s1,α1)) · · · (
1811
+ m
1812
+
1813
+ αn=1
1814
+ wαng(xn, xkn, sn,αn))
1815
+ =
1816
+
1817
+ k1···kn
1818
+
1819
+ (−1)k
1820
+ m
1821
+
1822
+ α1,··· ,αn=1
1823
+ n
1824
+
1825
+ i=1
1826
+ wαig(xi, xki, si,αi)
1827
+
1828
+ =
1829
+ m
1830
+
1831
+ α1,··· ,αn=1
1832
+ �� n
1833
+
1834
+ i=1
1835
+ wαi
1836
+ � �
1837
+ k1···kn
1838
+ (−1)k
1839
+ n
1840
+
1841
+ i=1
1842
+ g(xi, xki, si,αi)
1843
+
1844
+ =
1845
+ m
1846
+
1847
+ α1,··· ,αn=1
1848
+ �� n
1849
+
1850
+ i=1
1851
+ wαi
1852
+
1853
+ gn(x1, · · · , xn, s1,α1, · · · , sn,αn)
1854
+
1855
+ .
1856
+ (39)
1857
+ 0
1858
+ 50
1859
+ 100
1860
+ 150
1861
+ 0
1862
+ 0.02
1863
+ 0.04
1864
+ 0.06
1865
+ 0.08
1866
+ 0.1
1867
+ 0.12
1868
+ continuous transceiver
1869
+ discrete receiver
1870
+ discrete transceiver
1871
+ 10
1872
+ 20
1873
+ 0.1188
1874
+ 0.119
1875
+ 0.1192
1876
+ Fig. 4. The mutual information variation with different sampling num-
1877
+ bers. The mutual information that correpsonds to the three models with
1878
+ continuous and discrete transceivers is plotted. The distance between
1879
+ the transceivers is large.
1880
+ For arbitrary analytic function RJ(s, s′), the conver-
1881
+ gence of |I0 − I2| can be obtained. Instead of dis-
1882
+ cretizing
1883
+
1884
+ G(r, z)G∗(r′, z)dz to �
1885
+ i G(r, ri)G(r′, ri),
1886
+ we will discretize
1887
+ ��
1888
+ G(r, z)RJ(z, z′)G∗(r′, z′)dzdz′ to
1889
+
1890
+ i,j G(r, ri)RJ(ri, rj)G(r′, rj) in the extended sce-
1891
+ narios
1892
+ with
1893
+ power
1894
+ allocation
1895
+ schemes.
1896
+ Then,
1897
+ in-
1898
+ stead of g(x, y, z) we need a four-variable function
1899
+ h(x, y, z, ω) := G(x, z)RJ(z, ω)G(y, ω) and the deriva-
1900
+ tion procedure of the convergence has no essential differ-
1901
+ ence with Theorem 2.
1902
+ B. Numerical analysis about the mutual information
1903
+ In this subsection, we will verify the correctness of
1904
+ the convergence analysis in the above subsection by
1905
+ simulations. The length l of the transceivers is fixed
1906
+ to 2 m. We have plotted the mutual information of the
1907
+ three models: continuous transceiver, continuous trans-
1908
+ mitter and discrete receiver, and discrete transceiver. The
1909
+ transceivers are both discretized to m point antennas.
1910
+ The wavelength of the electromagnetic field is fixed to
1911
+ 0.04 m, which corresponds to the frequency of 7.5 GHz.
1912
+ First we will show the scenarios when the distance be-
1913
+ tween the transceivers is large. The distance between the
1914
+ transceivers varies from 50 m to 200 m. The simulation
1915
+ results are shown in Fig. 4.
1916
+ From the simulation results we find that the mutual
1917
+ information nearly keeps the same when the sampling
1918
+ number increases. The reason for this phenomenon is that
1919
+ the DoF of the channel is nearly inverse-proportional to
1920
+ the distance between transceivers. For example, the DoF
1921
+ when the distance equals 50 m can be approximated by
1922
+ l2/(dλ) = 2, which means that when the sampling num-
1923
+ ber is 5, the multiplexing gain is almost fully explored.
1924
+ Therefore, for large distances between transceivers, the
1925
+ dominant limitation is the channel DoF, which means that
1926
+ the suboptimal performance can be achieved by sampling
1927
+ sparser than half-wavelength.
1928
+ Moreover, we have shown the variation of the mutual
1929
+ information with the sampling number when the distance
1930
+ between transceivers is small. In Fig. 5 the distance
1931
+ between the transceiver is 0.1 m and 1 m. We can find that
1932
+ when the distance decreases, the dense sampling of the
1933
+ transceivers becomes important to fully explore the limit
1934
+ of the mutual information. However, the half-wavelength
1935
+ sampling of the transceivers still achieves suboptimal
1936
+ performance, which means that denser sampling schemes
1937
+ are not necessary.
1938
+ V. CONCLUSION
1939
+ In this paper, we proposed a comparison scheme be-
1940
+ tween continuous and discrete MIMO systems which is
1941
+
1942
+ 12
1943
+ 0
1944
+ 50
1945
+ 100
1946
+ 150
1947
+ 0
1948
+ 20
1949
+ 40
1950
+ 60
1951
+ 80
1952
+ 100
1953
+ 120
1954
+ 140
1955
+ 160
1956
+ 180
1957
+ continuous transceiver
1958
+ discrete receiver
1959
+ discrete transceiver
1960
+ Fig. 5. The mutual information as a function of the sampling number.
1961
+ The mutual information values that correspond to the three models with
1962
+ continuous and discrete transceivers are plotted. The distance between
1963
+ the transceivers is small.
1964
+ based on a precise non-asymptotic analysis framework.
1965
+ Three information-theoretic models of the continuous
1966
+ and discrete transceivers were built, with the first model
1967
+ corresponds to the fully continuous electromagnetic infor-
1968
+ mation theory model, and the third model corresponds to
1969
+ the matrix-vector MIMO model. We proposed physically
1970
+ consistent SNR control schemes to ensure the fairness of
1971
+ the comparison, and proved that the mutual information
1972
+ between discrete MIMO transceivers converges to that
1973
+ of continuous electromagnetic transceivers. Numerical
1974
+ results verified the theoretical analysis and showed the
1975
+ near-optimality of the half-wavelength sampling scheme.
1976
+ Further works can be done by extending the lin-
1977
+ ear transceivers to rectangular or other two-dimensional
1978
+ transceivers for generality. The analysis based on the
1979
+ capacity after water-filling of the mutual information also
1980
+ remains to be explored.
1981
+ REFERENCES
1982
+ [1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
1983
+ Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas
1984
+ Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
1985
+ [2] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and
1986
+ P. Popovski, “Five disruptive technology directions for 5G,” IEEE
1987
+ Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.
1988
+ [3] J. G. Andrews, X. Zhang, G. D. Durgin, and A. K. Gupta,
1989
+ “Are we approaching the fundamental limits of wireless network
1990
+ densification?” IEEE Commun. Mag., vol. 54, no. 10, pp. 1558–
1991
+ 1896, Oct. 2016.
1992
+ [4] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang,
1993
+ “An overview of massive MIMO: Benefits and challenges,” IEEE
1994
+ J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct.
1995
+ 2014.
1996
+ [5] N.
1997
+ Decarli
1998
+ and
1999
+ D.
2000
+ Dardari,
2001
+ “Communication
2002
+ modes
2003
+ with
2004
+ large intelligent surfaces in the near field,” arXiv preprint
2005
+ arXiv:2108.10569, Aug. 2021.
2006
+ [6] Z.
2007
+ Zhang
2008
+ and
2009
+ L.
2010
+ Dai,
2011
+ “Pattern-division
2012
+ multiplexing
2013
+ for
2014
+ continuous-aperture mimo,” in Proc. 2022 IEEE International
2015
+ Conference on Communications (ICC’22), May 2022, pp. 3287–
2016
+ 3292.
2017
+ [7]
2018
+ ¨O. Demir, E. Bj¨ornson, and L. Sanguinetti, “Channel modeling and
2019
+ channel estimation for holographic massive MIMO with planar
2020
+ arrays,” IEEE Wireless Commun. Lett., Feb. 2022.
2021
+ [8] A. Pizzo, T. L. Marzetta, and L. Sanguinetti, “Spatially-stationary
2022
+ model for holographic MIMO small-scale fading,” IEEE J. Sel.
2023
+ Areas Commun., vol. 38, no. 9, pp. 1964–1979, Sep. 2020.
2024
+ [9] L. Sanguinetti, A. A. D’Amico, and M. Debbah, “Wavenumber-
2025
+ division multiplexing in line-of-sight holographic MIMO com-
2026
+ munications,” IEEE Trans. Wireless Commun., early access, Sep.
2027
+ 2022, doi: 10.1109/TWC.2022.3208961.
2028
+ [10] J. Yuan, H. Q. Ngo, and M. Matthaiou, “Towards large intelligent
2029
+ surface (LIS)-based communications,” IEEE Trans. Commun.,
2030
+ vol. 68, no. 10, pp. 6568–6582, Oct. 2020.
2031
+ [11] O. Yurduseven, D. L. Marks, T. Fromenteze, and D. R. Smith,
2032
+ “Dynamically reconfigurable holographic metasurface aperture for
2033
+ a mills-cross monochromatic microwave camera,” Opt. Express,
2034
+ vol. 26, no. 5, p. 5281–5291, Feb. 2018.
2035
+ [12] Y. Sun, Z. Gao, H. Wang, B. Shim, G. Gui, G. Mao, and
2036
+ F. Adachi, “Principal component analysis-based broadband hybrid
2037
+ precoding for millimeter-wave massive MIMO systems,” IEEE
2038
+ Trans. Wireless Commun., vol. 19, no. 10, pp. 6331–6346, Oct.
2039
+ 2020.
2040
+ [13] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani,
2041
+ and Y. C. Eldar, “Beam focusing for near-field multi-user MIMO
2042
+ communications,” IEEE Trans. Wireless Commun., vol. 21, no. 9,
2043
+ pp. 7476–7490, Sep. 2022.
2044
+ [14] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced
2045
+ wireless network via joint active and passive beamforming,” IEEE
2046
+ Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Aug.
2047
+ 2019.
2048
+ [15] M. D. Migliore, “Near field antenna measurement sampling strate-
2049
+ gies: From linear to nonlinear interpolation,” Electronics, vol. 7,
2050
+ no. 10, p. 257, Sep. 2018.
2051
+ [16] H. Landau, “Sampling, data transmission, and the Nyquist rate,”
2052
+ Proc. IEEE, vol. 55, no. 10, pp. 1701–1706, Oct. 1967.
2053
+ [17] D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions,
2054
+ Fourier analysis and uncertainty—I,” Bell System Techn. Journal,
2055
+ vol. 40, no. 1, pp. 43–63, Jan. 1961.
2056
+ [18] D. Slepian, “On bandwidth,” Proc. of the IEEE, vol. 64, no. 3, pp.
2057
+ 292–300, Mar. 1976.
2058
+ [19] F. Massimo, Wave Theory of Information.
2059
+ Cambridge, U.K.:
2060
+ Cambridge Univ. Press, 2017.
2061
+ [20] J. Zhu, Z. Wan, L. Dai, M. Debbah, and H. V. Poor, “Electromag-
2062
+ netic information theory: Fundamentals, modeling, applications,
2063
+ and open problems,” arXiv preprint arXiv:2212.02882, Dec. 2022.
2064
+ [21] D. Dardari, “Communicating with large intelligent surfaces: Fun-
2065
+ damental limits and models,” IEEE J. Sel. Areas Commun., vol. 38,
2066
+ no. 11, pp. 2526–2537, Nov. 2020.
2067
+ [22] A. S. Poon, R. W. Brodersen, and D. N. Tse, “Degrees of freedom
2068
+ in multiple-antenna channels: A signal space approach,” IEEE
2069
+ Trans. Inf. Theory, vol. 51, no. 2, pp. 523–536, Jan. 2005.
2070
+ [23] A. M. Yaglom, “Some classes of random fields in n-dimensional
2071
+ space, related to stationary random processes,” Theory of Proba-
2072
+ bility & Its Applications, vol. 2, no. 3, pp. 273–320, Jul. 1957.
2073
+ [24] Z. Wan, J. Zhu, Z. Zhang, L. Dai, and C.-B. Chae, “Mutual infor-
2074
+ mation for electromagnetic information theory based on random
2075
+ fields,” arXiv preprint arXiv:2111.00496, Sep. 2022.
2076
+ [25] P. D. Lax, Functional analysis. John Wiley & Sons, 2002, vol. 55.
2077
+ [26] I. Gohberg and M. G. Kre˘ın, Introduction to the theory of linear
2078
+ nonselfadjoint operators.
2079
+ American Mathematical Soc., 1978,
2080
+ vol. 18.
2081
+ [27] E. De Vito, V. Umanit`a, and S. Villa, “An extension of mercer
2082
+ theorem to matrix-valued measurable kernels,” Applied and Com-
2083
+ putational Harmonic Analysis, vol. 34, no. 3, pp. 339–351, May
2084
+ 2013.
2085
+ [28] A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave
2086
+ series expansion for holographic MIMO communications,” IEEE
2087
+ Trans. Wireless Commun., vol. 21, no. 9, pp. 6890–6905, Mar.
2088
+ 2022.
2089
+ [29] P. Hannan, “The element-gain paradox for a phased-array an-
2090
+ tenna,” IEEE Trans. Antennas Propag., vol. 12, no. 4, pp. 423–433,
2091
+ Jul. 1964.
2092
+ [30] F. Bornemann, “On the numerical evaluation of Fredholm deter-
2093
+ minants,” Mathematics of Computation, vol. 79, no. 270, pp. 871–
2094
+ 915, Sep. 2009.
2095
+
2096
+ 13
2097
+ [31] P. J. Davis and P. Rabinowitz, Methods of numerical integration.
2098
+ Courier Corporation, 2007.
2099
+ [32] S. Haber, “Numerical evaluation of multiple integrals,” SIAM
2100
+ review, vol. 12, no. 4, pp. 481–526, 1970.
2101
+ [33] C. D. Meyer, Matrix analysis and applied linear algebra.
2102
+ Siam,
2103
+ 2000, vol. 71.
2104
+
1NFAT4oBgHgl3EQfCxwU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dE0T4oBgHgl3EQf_wJK/content/2301.02830v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e93c16ec62795ee2aa0f4d13a049f1a824636c85afee37b5d948a7a17c965cec
3
+ size 23363041
1dE0T4oBgHgl3EQf_wJK/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8d960b3192e4b0f073a4c1b6d6b6fed9a1caf6293b1b688a220f7345ecc5827
3
+ size 11010093
2tE1T4oBgHgl3EQfSAOy/content/tmp_files/2301.03061v1.pdf.txt ADDED
@@ -0,0 +1,3048 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantum interference in the resonance fluorescence of a J = 1/2 − J′ = 1/2
2
+ atomic system: Quantum beats, nonclassicality, and non-Gaussianity
3
+ H. M. Castro-Beltr´an,1, ∗ O. de los Santos-S´anchez,2 L. Guti´errez,3 and A. D. Alcantar-Vidal1
4
+ 1Centro de Investigaci´on en Ingenier´ıa y Ciencias Aplicadas and Instituto de Investigaci´on en Ciencias B´asicas y Aplicadas,
5
+ Universidad Aut´onoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos, M´exico
6
+ 2Tecnologico de Monterrey, Escuela de Ingenier´ıa y Ciencias,
7
+ Ave.
8
+ Carlos Lazo 100, Santa Fe, Mexico City, Mexico, 01389
9
+ 3Instituto de Ciencias F´ısicas, Universidad Nacional Aut´onoma de M´exico,
10
+ 62210 Cuernavaca, Morelos, M´exico
11
+ (Dated: January 10, 2023)
12
+ We study the resonance fluorescence of a system with angular momentum J = 1/2−J′ = 1/2 level
13
+ structure driven by a single, linearly polarized, monochromatic laser field. Quantum interference
14
+ among the two, antiparallel, π transitions leads to rich results. We develop the article around two
15
+ broad overlapping themes: (i) the observation of quantum beats in the intensity and the dipole-
16
+ dipole, intensity-intensity, and quadrature-intensity correlations, when the atom is subject to a
17
+ strong laser and large Zeeman splittings. The mean and modulation frequencies of the beats are
18
+ given by the average and difference, respectively, among two close generalized Rabi frequencies
19
+ related to a Mollow-like spectrum with two pairs of sidebands.
20
+ (ii) The nonclassical and non-
21
+ Gaussian properties of phase-dependent fluorescence for the cases of weak to moderate excitation
22
+ and in the regime of beats. The fluorescence in the beats regime is nonclassical, mainly from the
23
+ third-order dipole fluctuations, which reveal them to be also strongly non-Gaussian. For weak to
24
+ moderate driving laser and small detunings and Zeeman splittings the nonclassicality is an interplay
25
+ of second- (squeezing) and third-order dipole noise.
26
+ I.
27
+ INTRODUCTION
28
+ Recently, the properties of the resonance fluorescence
29
+ of a single atomic system with angular momentum transi-
30
+ tion J = 1/2−J′ = 1/2 driven by a monochromatic laser
31
+ have been the subject of great interest due to the possi-
32
+ bility of observing vacuum-induced coherence effects due
33
+ to interference among the two antiparallel π transitions,
34
+ emitting into the same frequency range of the electro-
35
+ magnetic vacuum. Here, the π transitions are incoher-
36
+ ently coupled, mediated by spontaneous emision in the σ
37
+ transitions and then excited by the laser. The antiparal-
38
+ lel dipoles of the transitions makes it realistic to observe
39
+ interference effects, while V and Λ three-level systems re-
40
+ quire additional preparation because the transitions are
41
+ perpendicular [1, 2]. Particular attention has been de-
42
+ voted to the spectrum [3–6], time-energy complementar-
43
+ ity [4, 5], Young’s interference [7], photon correlations
44
+ [8], frequency-resolved photon correlations [9], squeezing
45
+ [10], phase shifts [11], and cooperative effects in photon
46
+ correlations [12]. The case of additional laser excitation
47
+ of one of the σ transitions on the spectrum and squeezing
48
+ has been studied in [13–15].
49
+ Quantum beats are among the more familiar mani-
50
+ festations of quantum interference. They appear in the
51
+ modulation of the decay by spontaneous emission of mul-
52
+ tilevel systems due to the energy difference among transi-
53
+ tions [2]. So far, few experiments of quantum interference
54
+ experiments have been performed on the J = 1/2 − J′ =
55
56
+ 1/2, in this case observing Young-type fringes [7]. Hence,
57
+ further experiments are desirable. Quantum beats in the
58
+ intensity are the result of the inability to tell the path
59
+ of a particular photon when observed by a broadband
60
+ detector. The beats can also occur in two-time correla-
61
+ tions. As a general rule, initial conditions should be a
62
+ superposition state.
63
+ In this paper we investigate theoretically effects of
64
+ quantum interference on the total intensity and two-time
65
+ correlations such as dipole-dipole (to calculate spectra),
66
+ intensity-intensity, intensity-amplitude correlations, and
67
+ variance of the light emitted into the π transitions of the
68
+ J = 1/2−J′ = 1/2 atomic system driven by a linearly po-
69
+ larized laser and a magnetic field to break the degeneracy.
70
+ While we put emphasis on the regime of observation of
71
+ quantum beats, the nonclassical and non-Gaussian prop-
72
+ erties of the fluorescence are also investigated.
73
+ After describing the main features of the model in
74
+ Section II, we discuss the basic dynamic and stationary
75
+ properties of the atomic expectation values in Section
76
+ III. Here, we analyze the previously overlooked time-
77
+ dependent behavior of the atomic populations.
78
+ Those
79
+ of the excited states, for instance, although equal in the
80
+ steady state, evolve with different Rabi frequencies and
81
+ amplitudes. This is at the root of the formation of beats
82
+ in the intensity and the correlations. In the regime of
83
+ strong laser and magnetic fields these beats are character-
84
+ ized by well-defined oscillations at the average frequency
85
+ among two generalized Rabi frequencies, modulated at
86
+ the difference of those frequencies.
87
+ To observe beats
88
+ in the intensity both ground state populations must be
89
+ nonzero initially, ideally equal [1]. Similarly, for the two-
90
+ time correlations, the vector of initial conditions must
91
+ arXiv:2301.03061v1 [quant-ph] 8 Jan 2023
92
+
93
+ 2
94
+ have at least two nonzero terms.
95
+ In Section IV we describe the scattered field intensity
96
+ and quadratures. Here, beats depend only on the inter-
97
+ ference of the two upper populations in the nondegener-
98
+ ate case, with both lower populations initially nonzero.
99
+ Cross terms of the oppposite π transitions represent in-
100
+ terference in the steady state intensity. Then, In Section
101
+ V, using the dressed states approach, we show that the
102
+ double sideband spectrum [5] stems from a dipole-dipole
103
+ correlation with beats, where the terms of addition of sin-
104
+ gle π transitions dominate over those of the cross terms.
105
+ In Section VI we study Brown-Twiss photon-photon
106
+ correlations [16, 17], extending the work of Ref.[8] to the
107
+ nondegenerate case. Besides the ubiquitous antibunching
108
+ effect, for weak to moderate laser drivings the interplay
109
+ of parameters, together with detuning and Zeeman split-
110
+ tings, can make for somewhat involved evolutions, e.g.,
111
+ long decays due to optical pumping in the non-degenerate
112
+ case. Again, cross terms are minor contributors to the
113
+ full correlation in the beats regime.
114
+ Section VII is devoted to a study of phase-dependent
115
+ fluctuations by conditional homodyne detection (CHD)
116
+ [18, 19] in both the temporal and spectral domains. The
117
+ CHD method is characterized by amplitude-intensity cor-
118
+ relations (AIC), which are of third order in the field am-
119
+ plitude. When the atomic operators are decomposed into
120
+ a mean plus a noise operator the AIC is split into a
121
+ second-order term which would be a measure of squeezing
122
+ if the third-order one were negligible. But the latter is
123
+ not negligible outside the weak field regime of resonance
124
+ fluorescence, which make the fluctuations non-Gaussian
125
+ and also nonclassical by the violation of classical inequal-
126
+ ities [20]. We obtain the spectra of the total, second- and
127
+ third-order terms of the AIC. Narrow peaks in the spec-
128
+ tra reveal population trapping when detunings favour the
129
+ long term population or optical pumping of the ground
130
+ state of the more detuned transition, which in the time
131
+ domain show the above mentioned long decays.
132
+ The
133
+ third-order terms make up most of the beats and thus
134
+ they are non-Gaussian and nonclassical but not squeezed.
135
+ In Section VIII we consider squeezing by means of the
136
+ variance of fluctuations. As usual, squeezing in resonance
137
+ fluorescence is small and restricted to weak or moderate
138
+ Rabi frequencies.
139
+ Finally, in Section IX we provide a
140
+ discussion and conclusions, and two Appendices give de-
141
+ tails on solution methods, initial conditions, and optimal
142
+ appearance of beats.
143
+ II.
144
+ MODEL
145
+ The system, illustrated in Fig. 1, consists of a two-level
146
+ atom with transition J = 1/2 – J = 1/2 and states with
147
+ magnetic quantum number m = ±J,
148
+ |1⟩ = |J, −1/2⟩,
149
+ |2⟩ = |J, 1/2⟩,
150
+ |3⟩ = |J, −1/2⟩,
151
+ |4⟩ = |J, 1/2⟩.
152
+ (1)
153
+ The matrix elements are
154
+ FIG. 1.
155
+ Scheme of the J = 1/2 – J = 1/2 atomic system
156
+ interacting with a laser driving the |1⟩ − |3⟩ and |2⟩ − |4⟩
157
+ transitions with Rabi frequency Ω and detuning ∆.
158
+ There
159
+ are spontaneous decay rates γ1, γ2 and γσ, vacuum-induced
160
+ coherence γ12, and Zeeman frequency splittings Bℓ and Bu.
161
+ d1 = ⟨1|ˆd|3⟩ = − 1
162
+
163
+ 3Dez,
164
+ d2 = ⟨2|ˆd|4⟩ = −d1,
165
+ d3 = ⟨2|ˆd|3⟩ =
166
+
167
+ 2
168
+ 3De−,
169
+ d4 = ⟨1|ˆd|4⟩ = d∗
170
+ 3,
171
+ (2)
172
+ where D is the reduced dipole matrix element. We choose
173
+ the field polarization basis {ez, e−, e+} (linear, left cir-
174
+ cular, right circular), where e± = ∓(ex ± iey)/2.
175
+ The π transitions, |1⟩ − |3⟩ and |2⟩ − |4⟩ (m = m′), are
176
+ coupled to linearly polarized light and have their dipole
177
+ moments antiparallel. On the other hand, the σ tran-
178
+ sitions, |1⟩ − |4⟩ and |2⟩ − |3⟩ (m ̸= m′), are coupled
179
+ to circularly polarized light. This configuration can be
180
+ found, for example, in 198Hg+ [3], and 40Ca+ [12].
181
+ The level degeneracy is removed by the application of
182
+ a static magnetic field Bz along the z direction, the Zee-
183
+ man effect.
184
+ Note that the energy splittings gµBBz of
185
+ the upper (u) and lower (ℓ) levels are different due to
186
+ unequal Land´e g factors, gu and gℓ, respectively; µB is
187
+ Bohr’s magneton. The difference Zeeman splitting is
188
+ δ = (gu − gℓ)µBBz
189
+ ¯h
190
+ = gu − gℓ
191
+ gℓ
192
+ Bℓ,
193
+ (3)
194
+ where Bℓ = glµBBz/¯h. For 198Hg+ gu = 2/3 and gℓ = 2,
195
+ so ¯hδ = −(4/3)µBBz = −(2/3)¯hBℓ.
196
+ The atom is driven by a monochromatic laser of fre-
197
+ quency ωL, linearly polarized in the z direction, propa-
198
+ gating in the x direction,
199
+ EL(x, t) = E0ei(ωLt−kLx)ez + c.c.,
200
+ (4)
201
+ thus driving only the π transitions.
202
+ The free atomic, H0, and interaction, V , parts of the
203
+ Hamiltonian are, respectively:
204
+ H0 = ¯hω13A11 + ¯h(ω24 + Bℓ)A22 + ¯hBℓA44,
205
+ (5)
206
+ V = ¯hΩ(A13 − A24)eiωLt + h.c.
207
+ (6)
208
+
209
+ 3
210
+ where Ajk = |j⟩⟨k| are atomic operators, ω13 and ω24 =
211
+ ω13 + δ are the frequencies of the |1⟩ − |3⟩ and |2⟩ − |4⟩
212
+ transitions, respectively, and Ω = E0D/
213
+
214
+ 3 ¯h is the Rabi
215
+ frequency. The frequencies of the other transitions are
216
+ ω23 = ω13 − δ and ω14 = ω13 − Bℓ. Using the unitary
217
+ transformation
218
+ U = exp [(A11 + A22)iωLt],
219
+ (7)
220
+ the Hamiltonian in the frame rotating at the laser fre-
221
+ quency is
222
+ H = U †(H0 + V )U,
223
+ = −¯h∆A11 − ¯h(∆ − δ)A22 + ¯hBℓ(A22 + A44)
224
+ +¯hΩ [(A13 − A24) + h.c.] ,
225
+ (8)
226
+ where ∆ = ωL −ω13 is the detuning of the laser from the
227
+ |1⟩ − |3⟩ resonance transition, and ∆ − δ is the detuning
228
+ on the |2⟩ − |4⟩ transition.
229
+ The excited states decay either in the π transitions
230
+ emitting photons with linear polarization at rates γ1 =
231
+ γ2, or in the σ transitions emitting photons of circular
232
+ polarization at rate γσ. There is also a cross-coupling
233
+ of the excited states by the reservoir, responsible for the
234
+ quantum interference we wish to study. In general, the
235
+ decay rates are written as
236
+ γij = di · d∗
237
+ j
238
+ |di||dj|
239
+ √γiγj,
240
+ i, j = 1, 2.
241
+ (9)
242
+ In particular, we have γii = γ1 = γ2 and γ13 = γ24 = γσ.
243
+ Also, given that d1 and d2 are antiparallel, γ12 = γ21 =
244
+ −√γ1γ2 = −γ1.
245
+ The total decay rate is
246
+ γ = γ1 + γσ = γ2 + γσ.
247
+ (10)
248
+ The decays for the π and σ transitions occur with the
249
+ branching fractions bπ and bσ [5], respectively,
250
+ γ1 = γ2 = bπγ,
251
+ bπ = 1/3,
252
+ (11a)
253
+ γσ = bσγ,
254
+ bσ = 2/3.
255
+ (11b)
256
+ III.
257
+ MASTER EQUATION
258
+ The dynamics of the atom-laser-reservoir system is de-
259
+ scribed by the master equation for the reduced atomic
260
+ density operator, ρ. In a frame rotating at the laser fre-
261
+ quency (˜ρ = UρU †) it is given by
262
+ ˙˜ρ = − i
263
+ ¯h[H, ˜ρ] + Lγ ˜ρ,
264
+ (12)
265
+ where −(i/¯h)[H, ˜ρ] describes the coherent atom-laser in-
266
+ teraction and Lγ ˜ρ describes the damping due to sponta-
267
+ neous emission [5, 21]. Defining
268
+ S−
269
+ 1 = A31,
270
+ S−
271
+ 2 = A42,
272
+ S−
273
+ 3 = A32,
274
+ S−
275
+ 4 = A41,
276
+ S+
277
+ i = (S−
278
+ i )†,
279
+ (13)
280
+ the dissipative part is written as
281
+ Lγ ˜ρ = 1
282
+ 2
283
+ 2
284
+
285
+ i,j=1
286
+ γij
287
+
288
+ 2S−
289
+ i ˜ρS+
290
+ j − S+
291
+ i S−
292
+ j ˜ρ − ˜ρS+
293
+ i S−
294
+ j
295
+
296
+ +γσ
297
+ 2
298
+ 4
299
+
300
+ i=3
301
+
302
+ 2S−
303
+ i ˜ρS+
304
+ i − S+
305
+ i S−
306
+ i ˜ρ − ˜ρS+
307
+ i S−
308
+ i
309
+
310
+ . (14)
311
+ We now define the Bloch vector of the system as
312
+ Q ≡ (A11, A12, A13, A14, A21, A22, A23, A24,
313
+ A31, A32, A33, A34, A41, A42, A43, A44)T . (15)
314
+ The equations for the expectation values of the atomic
315
+ operators, ⟨Ajk⟩ = ˜ρkj, are the so-called Bloch equations,
316
+ which we write as
317
+ d
318
+ dt⟨Q(t)⟩ = MB⟨Q(t)⟩,
319
+ (16)
320
+ where MB is a matrix of coeficients of the full master
321
+ equation, and the formal solution is
322
+ ⟨Q(t)⟩ = eMBt⟨Q(0)⟩.
323
+ (17)
324
+ Since we are interested only in properties of the fluores-
325
+ cence emitted in the π transitions we use the simplifying
326
+ fact, already noticed in [8], that these Bloch equations
327
+ can be split into two decoupled homogeneous sets. Set 1
328
+ contains the equations for the populations and the coher-
329
+ ences of the coherently driven π transitions; these are
330
+ ⟨ ˙A11⟩ = −γ⟨A11⟩ + iΩ(⟨A31⟩ − ⟨A13⟩),
331
+ ⟨ ˙A13⟩ = −
332
+ �γ
333
+ 2 + i∆
334
+
335
+ ⟨A13⟩ − iΩ(⟨A11⟩ − ⟨A33⟩),
336
+ ⟨ ˙A22⟩ = −γ⟨A22⟩ − iΩ(⟨A42⟩ − ⟨A24⟩),
337
+ ⟨ ˙A24⟩ = −
338
+ �γ
339
+ 2 + i(∆ − δ)
340
+
341
+ ⟨A24⟩ + iΩ(⟨A22⟩ − ⟨A44⟩),
342
+ ⟨ ˙A31⟩ = −
343
+ �γ
344
+ 2 − i∆
345
+
346
+ ⟨A31⟩ + iΩ(⟨A11⟩ − ⟨A33⟩),
347
+ ⟨ ˙A33⟩ = γ1⟨A11⟩ + γσ⟨A22⟩ − iΩ(⟨A31⟩ − ⟨A13⟩),
348
+ ⟨ ˙A42⟩ = −
349
+ �γ
350
+ 2 − i(∆ − δ)
351
+
352
+ ⟨A42⟩ − iΩ(⟨A22⟩ − ⟨A44⟩),
353
+ ⟨ ˙A44⟩ = γσ⟨A11⟩ + γ2⟨A22⟩ + iΩ(⟨A42⟩ − ⟨A24⟩).
354
+ (18)
355
+ with Bloch vector
356
+ R ≡ (A11, A13, A22, A24, A31, A33, A42, A44)T
357
+ (19)
358
+ and a corresponding matrix M, Eq. (A3). Equations (18)
359
+ do not depend on γ12, the vacuum-induced coupling of
360
+ the upper levels, but on the applied magnetic field only
361
+ through the difference of Zeeman splittings, δ.
362
+ The steady state solutions, for which we introduce the
363
+
364
+ 4
365
+ 0
366
+ 2
367
+ 4
368
+ 6
369
+ 8
370
+ 10
371
+ 12
372
+ 0
373
+ 0.2
374
+ 0.4
375
+ 0.6
376
+ 0.8
377
+ 1.0
378
+ 0
379
+ 2
380
+ 4
381
+ 6
382
+ 8
383
+ 10
384
+ 12
385
+ 0
386
+ 0.2
387
+ 0.4
388
+ 0.6
389
+ 0.8
390
+ 1.0
391
+ 0
392
+ 2
393
+ 4
394
+ 6
395
+ 8
396
+ 10
397
+ 12
398
+ 0
399
+ 0.2
400
+ 0.4
401
+ 0.6
402
+ 0.8
403
+ 1.0
404
+ 0
405
+ 2
406
+ 4
407
+ 6
408
+ 8
409
+ 10
410
+ 12
411
+ 0
412
+ 0.2
413
+ 0.4
414
+ 0.6
415
+ 0.8
416
+ 1.0
417
+ γt
418
+ γt
419
+ (d) ∆ = −2γ, δ = −4γ
420
+ (b) ∆ = 2γ, δ = −2γ
421
+ (
422
+ ⟨A22 (t)⟩
423
+ ⟨A44 (t)⟩
424
+ ⟨A11 (t)⟩
425
+ ⟨A33 (t)⟩
426
+ (a) ∆ = 0, δ = 0
427
+ FIG. 2.
428
+ Time-dependent populations ⟨A11(t)⟩ (solid-black),
429
+ ⟨A22(t)⟩ (dashed-red), ⟨A33(t)⟩ (dots-green), and ⟨A44(t)⟩
430
+ (dashed-dots-blue), with the atom initially in state |3⟩. The
431
+ parameters are: Ω = γ and (a) ∆ = δ = 0; (b) ∆ = 2γ,
432
+ δ = −2γ; (c) ∆ = δ = −2γ; (d) ∆ = −2γ, δ = −4γ.
433
+ short notation αjk = ⟨Ajk⟩st, are
434
+ α11 = α22 = Ω2
435
+ 2D,
436
+ (20a)
437
+ α33 = Ω2 + γ2/4 + ∆2
438
+ 2D
439
+ ,
440
+ (20b)
441
+ α44 = Ω2 + γ2/4 + (∆ − δ)2
442
+ 2D
443
+ ,
444
+ (20c)
445
+ α13 = Ω(∆ + iγ/2)
446
+ 2D
447
+ ,
448
+ (20d)
449
+ α24 = Ω(δ − ∆ − iγ/2)
450
+ 2D
451
+ ,
452
+ (20e)
453
+ αkj = α∗
454
+ jk.
455
+ where
456
+ D = 2Ω2 + γ2 + δ2
457
+ 4
458
+ +
459
+
460
+ ∆ − δ
461
+ 2
462
+ �2
463
+ .
464
+ (21)
465
+ Note also that in the degenerate system (δ = 0) α33 =
466
+ α44 and that α31 = −α42, where the minus sign arises
467
+ from the fact that the dipole moments d1 and d2 are
468
+ antiparallel.
469
+ Set 2 contains the equations for the coherences of the σ
470
+ transitions and those among both upper and both lower
471
+ levels,
472
+ R2 ≡ (A12, A14, A21, A23, A32, A34, A41, A43)T . (22)
473
+ The equations for their expected values do depend on Bℓ
474
+ and γ12. These coherences vanish because the σ tran-
475
+ sitions are driven incoherently (⟨{A14, A23, A32, A41}⟩),
476
+ i.e., by spontaneous emission, or because they are medi-
477
+ ated by those σ transitions (⟨{A12, A21, A34, A43}⟩). For
478
+ completeness, we write the steady state results:
479
+ α12 = α34 = α14 = α23 = 0,
480
+ αkj = α∗
481
+ jk.
482
+ (23)
483
+ 0
484
+ 1
485
+ 2
486
+ 3
487
+ 4
488
+ 5
489
+ 6
490
+ 0
491
+ 0.1
492
+ 0.2
493
+ 0.3
494
+ 0.4
495
+ 0.5
496
+ 0
497
+ 1
498
+ 2
499
+ 3
500
+ 4
501
+ 5
502
+ 6
503
+ 0
504
+ 0.2
505
+ 0.4
506
+ 0.6
507
+ 0.8
508
+ 0
509
+ 1
510
+ 2
511
+ 3
512
+ 4
513
+ 5
514
+ 6
515
+ 0
516
+ 0.2
517
+ 0.4
518
+ 0.6
519
+ 0.8
520
+ 0
521
+ 1
522
+ 2
523
+ 3
524
+ 4
525
+ 5
526
+ 6
527
+ 0
528
+ 0.1
529
+ 0.2
530
+ 0.3
531
+ 0.4
532
+ 0.5
533
+ α11 = α22
534
+ α33
535
+ α44
536
+ (d) ∆ = −2γ, δ = −4γ
537
+ (b) ∆ = 2γ, δ = −2γ
538
+ (a) ∆ = 0, δ = 0
539
+ (
540
+ Ω/γ
541
+ Ω/γ
542
+ FIG. 3.
543
+ Steady-state populations as a function of Rabi
544
+ frequency: α11 = α22 (dashed-red), α33 (solid-black), and
545
+ α44 (dots-blue). All other parameters as in Fig. 2.
546
+ The properties of the fluorescence of the π transitions,
547
+ the subject matter of this article, do not depend on the
548
+ equations for Set 2. Only the second- and third-order
549
+ amplitude-intensity correlations and the dipole correla-
550
+ tion for the spectrum of the σ transitions would require
551
+ the full set of Bloch equations.
552
+ We gain valuable information on the nontrivial dynam-
553
+ ics of the atomic system from single-time expectation val-
554
+ ues, apparently ignored in the previous literature on the
555
+ system. In Fig. 2 we show the populations for several
556
+ particular cases, all with the atom initially in state |3⟩.
557
+ In the degenerate case, δ = 0, the upper populations
558
+ reach opposite phases by the end of the first Rabi cycle,
559
+ Fig. 2(a). This is understandable since the electron oc-
560
+ cupation of, say, state |1⟩ implies not to be in state |2⟩,
561
+ and viceversa. The same occurs for the lower popula-
562
+ tions. Next, we show three situations for the nondegen-
563
+ erate case with δ < 0 (as it is for 198Hg+). In Fig. 2(b)
564
+ the laser is slightly detuned above the |1⟩−|3⟩ transition,
565
+ but highly detuned from the |2⟩−|4⟩ transition; the oscil-
566
+ lations get out of phase and most of the population ends
567
+ up in state |4⟩ by optical pumping. In Fig. 2(c) the laser
568
+ is detuned below the |1⟩−|3⟩ transition, and the |2⟩−|4⟩
569
+ transition is now on resonance with the laser; again, the
570
+ oscillations are out of phase but most of the population
571
+ ends up now in state |3⟩. In Fig. 2(d) we extend the pre-
572
+ vious case but with stronger applied magnetic field, thus
573
+ the non-degeneracy is more evident; the large detuning
574
+ on both transitions makes it recover the opposite phases
575
+ of the degenerate case.
576
+ In Fig. 3 we show the steady state populations as a
577
+ function of the Rabi frequency; the other parameters are
578
+ the same as in Fig. 2. For strong fields the populations
579
+ tend to be equal (1/4), but arrive at that limit at dif-
580
+ ferent rates; for instance, for large detunings on both
581
+ transitions, Fig. 3(d), it takes larger fields, as compared
582
+ to the degenerate case, Fig. 3(a). On the other hand,
583
+ for small detunings and weak-moderate fields, when one
584
+
585
+ 5
586
+ transition is closer to resonance than the other, the lower
587
+ state of the more detuned transition is more populated,
588
+ as seen in Figs. 3 (b) and (c).
589
+ IV.
590
+ THE SCATTERED FIELD
591
+ In this Section we present the main dynamical and
592
+ stationary properties of the field scattered by the atom,
593
+ with emphasis on the π transitions.
594
+ A.
595
+ Single-Time and Stationary Properties
596
+ The positive-frequency part of the emitted field oper-
597
+ ator is [5, 21]
598
+ ˆE+(r, t) = ˆE+
599
+ free(r, t) + ˆE+
600
+ S (r, ˆt),
601
+ (24)
602
+ where ˆE+
603
+ free(r, t) is the free-field part, which does not con-
604
+ tribute to normally ordered correlations, hence we omit
605
+ it in further calculations, and
606
+ ˆE+
607
+ S (r, t) = −η
608
+ r
609
+ 4
610
+
611
+ i=1
612
+ ω2
613
+ i ˆr × (ˆr × di)S−
614
+ i (ˆt)
615
+ (25)
616
+ is the dipole source field operator in the far-field zone,
617
+ where ˆt = t−r/c is the retarded time and η = (4πϵ0c2)−1.
618
+ Since ωi ≫ δ, we may approximate the four transition as
619
+ a single one ω0 in Eq. (25, but cannot do so at the level
620
+ of decay rates, Rabi frequencies, and splittings.
621
+ Making ˆr = ey the direction of observation and using
622
+ Eq. (2) we have
623
+ ˆE+
624
+ S (r, ˆt) = ˆE+
625
+ π (r, ˆt) ez + ˆE+
626
+ σ (r, ˆt) ex,
627
+ (26)
628
+ i.e., the fields scattered from the π and σ transitions are
629
+ polarized in the ez and ex directions, respectively, where
630
+ ˆE+
631
+ π (r, ˆt) = fπ(r)
632
+
633
+ A31(ˆt) − A42(ˆt)
634
+
635
+ ,
636
+ (27a)
637
+ ˆE+
638
+ σ (r, ˆt) = fσ(r)
639
+
640
+ A32(ˆt) − A41(ˆt)
641
+
642
+ ,
643
+ (27b)
644
+ are the positive-frequency source field operators of the π
645
+ and σ transitions, and
646
+ fπ(r) = −ηω2
647
+ 1D/
648
+
649
+ 3r,
650
+ fσ(r) =
651
+
652
+ 2fπ(r),
653
+ (28)
654
+ are their geometric factors.
655
+ The intensity in the π transitions is given by
656
+ Iπ(r, ˆt) = ⟨ ˆE−
657
+ π (r, ˆt) · ˆE+
658
+ π (r, ˆt)⟩
659
+ = f 2
660
+ π(r)⟨A13(ˆt)A31(ˆt) + A24(ˆt)A42(ˆt)⟩
661
+ = f 2
662
+ π(r)⟨A11(ˆt) + A22(ˆt)⟩,
663
+ (29a)
664
+ while in the steady state is
665
+ Ist
666
+ π = f 2
667
+ π(r) [α11 + α22] = Ω2
668
+ D .
669
+ (29b)
670
+ 0
671
+ 2
672
+ 4
673
+ 6
674
+ 8
675
+ 10
676
+ 0
677
+ 0.05
678
+ 0.10
679
+ 0.15
680
+ 0.20
681
+ 0
682
+ 2
683
+ 4
684
+ 6
685
+ 8
686
+ 10
687
+ 0
688
+ 0.1
689
+ 0.2
690
+ 0.3
691
+ 0
692
+ 2
693
+ 4
694
+ 6
695
+ 8
696
+ 10
697
+ 0
698
+ 0.1
699
+ 0.2
700
+ 0.3
701
+ 0.4
702
+ 0.5
703
+ 0
704
+ 2
705
+ 4
706
+ 6
707
+ 8
708
+ 10
709
+ 0
710
+ 0.1
711
+ 0.2
712
+ 0.3
713
+ 0.4
714
+ 0
715
+ 2
716
+ 4
717
+ 6
718
+ 8
719
+ 10
720
+ 0
721
+ 0.05
722
+ 0.10
723
+ 0.15
724
+ 0.20
725
+ 0.25
726
+ 0
727
+ 2
728
+ 4
729
+ 6
730
+ 8
731
+ 10
732
+ 0
733
+ 0.05
734
+ 0.10
735
+ 0.15
736
+ 0
737
+ 2
738
+ 4
739
+ 6
740
+ 8
741
+ 10
742
+ 0
743
+ 0.05
744
+ 0.10
745
+ 0.15
746
+ 0
747
+ 2
748
+ 4
749
+ 6
750
+ 8
751
+ 10
752
+ 0
753
+ 0.05
754
+ 0.10
755
+ 0.15
756
+ 0.20
757
+ 0.25
758
+ Iπ (r, t) �f 2
759
+ π (r)
760
+ Iπ (r, t) �f 2
761
+ π (r)
762
+ ⟨A11 (t)⟩
763
+ ⟨A22 (t)⟩
764
+ ⟨A11 (t)⟩
765
+ ⟨A22 (t)⟩
766
+ ⟨A11 (t)⟩
767
+ ⟨A22 (t)⟩
768
+ ⟨A11 (t)⟩
769
+ ⟨A22 (t)⟩
770
+ γt
771
+ γt
772
+ γt
773
+ γt
774
+ γt
775
+ γt
776
+ (d)
777
+ (c)
778
+ (a)
779
+ (b)
780
+ FIG. 4.
781
+ Fluorescence intensity of the π transitions with equal
782
+ initial ground state populations, ⟨A33(0)⟩ = ⟨A44(0)⟩ = 1/2.
783
+ The other parameters are as in Fig. 2: Ω = γ and (a) ∆ =
784
+ δ = 0; (b) ∆ = 2γ, δ = −2γ; (c) ∆ = δ = −2γ; (d) ∆ = −2γ,
785
+ δ = −4γ.
786
+ The insets show the excited states populations:
787
+ ⟨A11(t)⟩ (solid), ⟨A22(t)⟩ (dashed).
788
+ Adding the excited state populations with the atom
789
+ initially in the single state |3⟩ in Eq. 29a gives simply
790
+ Iπ(r, ˆt) = f 2
791
+ π(r)⟨A11(ˆt)⟩, i.e., without the contribution
792
+ of ⟨A22(ˆt)⟩. More interesting is the case where the ini-
793
+ tial condition is ⟨A33(0)⟩ = ⟨A44(0)⟩ = 1/2, shown in
794
+ Fig. 4 (see the populations ⟨A11(t)⟩ and ⟨A22(t)⟩ in the
795
+ insets). The modulation in the intensity is reminiscent
796
+ of the quantum beats in the spontaneous decay in the V
797
+ three-level system [1, 2]. These beats are basically due
798
+ to the inability to tell from which of the π transitions
799
+ a photon comes from. This is the standard Young-type
800
+ interference [4, 5, 7]. The main requirement is that the
801
+ initial condition for both ground states are nonzero (see
802
+ Appendix B.
803
+ More interesting, though, is the case of strong resonant
804
+ laser and magnetic fields and the laser is detuned far from
805
+ the |2⟩ − |4⟩ resonance frequency, shown in Fig. 5. Due
806
+ to the laser detuning, the population ⟨A22(t)⟩ has larger
807
+ frequency and smaller amplitude than that of ⟨A11(t)⟩, as
808
+ seen in the insets. Remarkably well-defined wave-packets
809
+ or beats are observed due to the interference of the flu-
810
+ orescence of both π transitions with close Rabi frequen-
811
+ cies, with clear average and modulation frequencies (see
812
+ Fig. 5a). The beats get scrambled with larger frequency
813
+ and amplitude differences, Fig. 5b.
814
+ Save for the decay, these beats are more like the classic
815
+ textbook ones, described by a modulation and an average
816
+ frequency, unlike the beats from spontaneous emission or
817
+ weak resonance fluorescence from two or more closely sep-
818
+ arated levels. Henceforth, we reserve the moniker beats
819
+ to those due to strong applied fields. Further analyses of
820
+ the beats are given in the next Sections, as they show up
821
+
822
+ 6
823
+ 0
824
+ 2
825
+ 4
826
+ 6
827
+ 8
828
+ 10
829
+ 0
830
+ 0.2
831
+ 0.4
832
+ 0.6
833
+ 0
834
+ 2
835
+ 4
836
+ 6
837
+ 8
838
+ 10
839
+ 0
840
+ 0.2
841
+ 0.4
842
+ 0.6
843
+ 0.8
844
+ 0
845
+ 1
846
+ 2
847
+ 3
848
+ 4
849
+ 5
850
+ 0
851
+ 0.1
852
+ 0.2
853
+ 0.3
854
+ 0.4
855
+ 0
856
+ 1
857
+ 2
858
+ 3
859
+ 4
860
+ 5
861
+ 0
862
+ 0.1
863
+ 0.2
864
+ 0.3
865
+ 0.4
866
+ Iπ (r, t)
867
+
868
+ f2
869
+ π (r)
870
+ Iπ (r, t)
871
+
872
+ f2
873
+ π (r)
874
+ ⟨A22 (t)⟩
875
+ ⟨A11 (t)⟩
876
+ ⟨A22 (t)⟩
877
+ ⟨A11 (t)⟩
878
+ γt
879
+ γt
880
+ γt
881
+ γt
882
+ (b)
883
+ (a)
884
+ FIG. 5.
885
+ Fluorescence intensity for Ω = 9γ, ∆ = 0, and (a)
886
+ δ = −8γ and (b) δ = −15γ. The insets show the excited state
887
+ populations ⟨A11⟩ (solid line) and ⟨A22⟩ (dotted line). The
888
+ initial conditions are ⟨A33(0)⟩ = ⟨A44(0)⟩ = 1/2, ⟨A11(0)⟩ =
889
+ ⟨A22(0)⟩ = 0.
890
+ also in two-time correlations with particular features.
891
+ Similarly, for the σ transitions we have
892
+ Iσ(r, ˆt) = ⟨ ˆE−
893
+ σ (r, ˆt) · ˆE+
894
+ σ (r, ˆt)⟩
895
+ = f 2
896
+ σ(r)[⟨A23(ˆt)A32(ˆt) + A14(ˆt)A41(ˆt)⟩]
897
+ = f 2
898
+ σ(r)[⟨A11(ˆt) + A22(ˆt)⟩],
899
+ (30a)
900
+ Ist
901
+ σ = f 2
902
+ σ(r) [α11 + α22] ,
903
+ (30b)
904
+ also showing beats with intensity twice that of the π tran-
905
+ sitions given that f 2
906
+ σ(r) = 2f 2
907
+ π(r).
908
+ The field quadrature operator at any time is
909
+ ˆEπ,φ(r, ˆt) = 1
910
+ 2
911
+
912
+ E−
913
+ π (r, ˆt)e−iφ + E+
914
+ π (r, ˆt)eiφ�
915
+ = fπ(r)(S1,φ − S2,φ),
916
+ (31)
917
+ where φ = 0, π/2 are the quadrature phases we consider,
918
+ and
919
+ S1,φ = 1
920
+ 2
921
+
922
+ A13e−iφ + A31eiφ�
923
+ ,
924
+ (32a)
925
+ S2,φ = 1
926
+ 2
927
+
928
+ A24e−iφ + A42eiφ�
929
+ .
930
+ (32b)
931
+ The mean quadrature field is given by
932
+ ⟨ ˆEπ,φ⟩st = fπ(r)
933
+ 2
934
+
935
+ (α13 − α24) e−iφ + (α31 − α42) eiφ�
936
+ = fπ(r)Re
937
+
938
+ (α13 − α24) e−iφ�
939
+ (33)
940
+ = fπ(r)Re
941
+ �Ω (∆ + (iγ − δ)/2)
942
+ D
943
+ e−iφ
944
+
945
+ ,
946
+ B.
947
+ Intensity and Quadrature Fluctuations
948
+ Here we introduce the intensity and quadratures of the
949
+ field in terms of atomic fluctuation operators ∆Ajk =
950
+ Ajk − ⟨Ajk⟩st, such that
951
+ ⟨AklAmn⟩ = αklαmn + ⟨∆Akl∆Amn⟩.
952
+ (34)
953
+ Only the π transitions have nonvanishing coherence
954
+ terms (α13, α24 ̸= 0). The fluorescence in the σ transi-
955
+ tions is fully incoherent (α14 = α23 = 0), so its intensity
956
+ is given by Eq. (30b). In the remainder of this section
957
+ we deal only with the π transition. The quadrature op-
958
+ erators are then written as
959
+ ˆEπ,φ(r, ˆt) = fπ(r)[απ,φ + ∆Sπ,φ(ˆt)],
960
+ (35a)
961
+ where
962
+ απ,φ = 1
963
+ 2(α31 − α42)eiφ + 1
964
+ 2(α13 − α24)e−iφ,
965
+ (35b)
966
+ = Re
967
+ �Ω (∆ + (iγ − δ)/2)
968
+ D
969
+ e−iφ
970
+
971
+ ,
972
+ ∆Sπ,φ = 1
973
+ 2(∆A31 − ∆A42)eiφ + 1
974
+ 2(∆A13 − ∆24)e−iφ.
975
+ (35c)
976
+ From Eqs. (29b) and (34) we write the steady state
977
+ intensity in terms of products of dipole and dipole fluc-
978
+ tuation operator expectation values,
979
+ Ist
980
+ π (r) = f 2
981
+ π(r)
982
+
983
+ Icoh
984
+ π,0 + Iinc
985
+ π,0 + Icoh
986
+ π,cross + Iinc
987
+ π,cross
988
+
989
+ ,(36)
990
+ where
991
+ Icoh
992
+ π,0 = |⟨A13⟩st|2 + |⟨A24⟩st|2,
993
+ (37a)
994
+ Iinc
995
+ π,0 = ⟨∆A13∆A31⟩ + ⟨∆A24∆A42⟩,
996
+ (37b)
997
+ Icoh
998
+ π,cross = −⟨A13⟩st⟨A42⟩st − ⟨A24⟩st⟨A31⟩st
999
+ = −2Re (⟨A13⟩st⟨A42⟩st) ,
1000
+ (37c)
1001
+ Iinc
1002
+ π,cross = −⟨∆A13∆A42⟩ − ⟨∆A24∆A31⟩
1003
+ = −2Re (⟨∆A13∆A42⟩) .
1004
+ (37d)
1005
+ Superindices coh and inc stand, respectively, for the co-
1006
+ herent (depending on mean dipoles) and incoherent (de-
1007
+ pending on noise terms) parts of the emission. Subindex
1008
+ 0 stands for terms with the addition of single transition
1009
+ products, giving the total intensity, while subindex cross
1010
+ stands for terms with products of the two π transitions,
1011
+ the steady state interference part of the intensity.
1012
+ In
1013
+
1014
+ 7
1015
+ terms of atomic expectation values these intensities are:
1016
+ Icoh
1017
+ π,0 = |α13|2 + |α24|2
1018
+ (38a)
1019
+ = Ω2
1020
+ 4D2
1021
+ �γ2
1022
+ 2 + ∆2 + (δ − ∆)2
1023
+
1024
+ ,
1025
+ Iinc
1026
+ π,0 = α11 + α22 − |α13|2 − |α24|2
1027
+ (38b)
1028
+ = Ω2
1029
+ D2
1030
+
1031
+ 2Ω2 − γ2
1032
+ 4 − ∆2 − δ2
1033
+
1034
+ ,
1035
+ Icoh
1036
+ π,cross = −2Re (α13α42)
1037
+ (38c)
1038
+ = Ω2
1039
+ 2D2
1040
+ �γ2
1041
+ 4 + ∆(∆ − δ)
1042
+
1043
+ ,
1044
+ Iinc
1045
+ π,cross = 2Re (α13α42) = −Icoh
1046
+ π,cross,
1047
+ (38d)
1048
+ The sum of these terms is, of course, the total intensity,
1049
+ Eq. (29a). As usual in resonance fluorescence, the coher-
1050
+ ent and incoherent intensities are similar only in the weak
1051
+ field regime, Ω ≤ γ. Here, in particular, the term Iinc
1052
+ π,0
1053
+ (no interference) becomes much larger than the others
1054
+ for strong driving.
1055
+ C.
1056
+ Degree of Interference - Coherent Part
1057
+ In Ref. [5], a measure of the effect of interference in
1058
+ the coherent part of the intensity was as
1059
+ Icoh
1060
+ π,0 + Icoh
1061
+ π,cross = Icoh
1062
+ π,0 (1 + C(δ)),
1063
+ C(δ) = Icoh
1064
+ π,cross
1065
+ Icoh
1066
+ π,0
1067
+ =
1068
+ γ2/4 + ∆(∆ − δ)
1069
+ γ2/4 + δ2/4 + (∆ − δ/2)2 , (39)
1070
+ independent
1071
+ of
1072
+ the
1073
+ Rabi
1074
+ frequency
1075
+ and
1076
+ shown
1077
+ in
1078
+ Fig. 6(a).
1079
+ Some special cases are found analytically:
1080
+ C(0) = 1,
1081
+ δ = 0,
1082
+ (40a)
1083
+ C(δ0) = 0,
1084
+ δ0 = ∆[1 + (γ/2∆)2],
1085
+ (40b)
1086
+ C(δmin) =
1087
+ −1
1088
+ 1 + γ2/2∆2 ,
1089
+ δmin = 2∆[1 + (γ/2∆)2],
1090
+ (40c)
1091
+ C(δ±
1092
+ 1/2) = 1/2,
1093
+ δ±
1094
+ 1/2 = −∆ ±
1095
+
1096
+ 3∆2 + (γ2/2).
1097
+ (40d)
1098
+ In the degenerate case, C(δ = 0) = 1 means perfect
1099
+ constructive interference. That is because at δ = 0 both
1100
+ π transitions (and both σ transitions) share the same
1101
+ reservoir environment. Increasing δ the reservoir overlap
1102
+ decreases, so is the interference. Negative values of C
1103
+ indicate destructive interference; its minimum is given
1104
+ by δmin. For large detunings, ∆2 ≫ γ2 we have
1105
+ δ0 = ∆,
1106
+ δmin = 2∆,
1107
+ δ±
1108
+ 1/2 = −∆ ±
1109
+
1110
+ 3 |∆|.
1111
+ (40e)
1112
+ We have used the special cases δ = {0, δ0, δmin} as a
1113
+ guide to obtain many of the figures in this paper.
1114
+ -1.0
1115
+ -0.5
1116
+ 0
1117
+ 0.5
1118
+ 1.0
1119
+ -20
1120
+ -10
1121
+ 0
1122
+ 10
1123
+ 20
1124
+ 0
1125
+ 0.5
1126
+ 1.0
1127
+ δ/γ
1128
+ ∆ = −5γ
1129
+ K(δ)
1130
+ C(δ)
1131
+ ∆ = −2γ
1132
+ ∆ = 0
1133
+ (a)
1134
+ (b)
1135
+ FIG. 6.
1136
+ Relative weight of the interference terms C(δ) (a)
1137
+ and K(δ) (b). In (b) Ω = γ/4. For 198Hg+, δ ≤ 0.
1138
+ D.
1139
+ Degree of Interference - Incoherent Part
1140
+ Likewise, we define a measure, K(δ), of the effect of
1141
+ interference in the intensity’s incoherent part,
1142
+ Iinc
1143
+ π,0 + Iinc
1144
+ π,cross = Iinc
1145
+ π,0(1 + K(δ)),
1146
+ K(δ) = Iinc
1147
+ π,cross
1148
+ Iinc
1149
+ π,0
1150
+ =
1151
+ γ2/4 + ∆(∆ − δ)
1152
+ 2 [γ2/4 + δ2 + ∆2 − 2Ω2]. (41)
1153
+ Unlike C(δ), K(δ) also depends on the Rabi frequency
1154
+ as Ω−2, since fluctuations increase with laser intensity.
1155
+ Special cases are:
1156
+ K(0) =
1157
+ γ2/4 + ∆2
1158
+ 2 [γ2/4 + ∆2 − 2Ω2],
1159
+ δ = 0,
1160
+ (42a)
1161
+ K(δ) = 0,
1162
+ δ = ∆ + γ2
1163
+ 4∆
1164
+ or
1165
+ Ω ≫ γ, ∆, δ.
1166
+ (42b)
1167
+ The behavior of K(δ) with ∆ is more subtle. It is ba-
1168
+ sically required that ∆ ∼ Ω in order to preserve the
1169
+ shape seen in Fig. 6(b), in which case the minima for
1170
+ C(δ) and K(δ) are very similar. On-resonance, for ex-
1171
+ ample, Ω should be no larger than 0.35γ. Also, we can
1172
+ infer that the beats are little affected by the interference
1173
+ term unless ∆ >∼ Ω ≫ γ.
1174
+ V.
1175
+ TWO-TIME DIPOLE CORRELATIONS AND
1176
+ POWER SPECTRUM
1177
+ The resonance fluorescence spectrum of the J = 1/2 →
1178
+ J = 1/2 atomic system was first considered in [3] and
1179
+ then very thoroughly in [4, 5]. Thus, here we only con-
1180
+ sider basic definitions and issues related to the observa-
1181
+ tion of beats.
1182
+ The stationary Wiener-Khintchine power spectrum is
1183
+ given by the Fourier transform of the field autocorrelation
1184
+ function
1185
+ Sπ(ω) = Re
1186
+ � ∞
1187
+ 0
1188
+ dτe−iωτ⟨ ˆE−
1189
+ π (0) ˆE+
1190
+ π (τ)⟩,
1191
+ (43)
1192
+
1193
+ 8
1194
+ 0
1195
+ 2
1196
+ 4
1197
+ 6
1198
+ 8
1199
+ 10
1200
+ 0
1201
+ 0.05
1202
+ 0.10
1203
+ 0.15
1204
+ 0.20
1205
+ 0.25
1206
+ 0.30
1207
+ 0.35
1208
+ -20
1209
+ -10
1210
+ 0
1211
+ 10
1212
+ 20
1213
+ ω/γ
1214
+ Sinc
1215
+ π (ω) (arb. units)
1216
+ γτ
1217
+
1218
+ ∆E−
1219
+ π (0) ∆E+
1220
+ π (τ)
1221
+ � �
1222
+ f2
1223
+ π (r)
1224
+ FIG. 7.
1225
+ Dipole correlation function ⟨∆ ˆE−
1226
+ π (0)∆ ˆE+
1227
+ π (τ)⟩ for
1228
+ Ω = 9γ, δ = −8γ, and ∆ = 0. The inset shows the corre-
1229
+ sponding incoherent spectrum Sinc
1230
+ π
1231
+ (ω).
1232
+ such that
1233
+ � ∞
1234
+ −∞ Sπ(ω)dω = Ist
1235
+ π . By writing the atomic
1236
+ operators in Eq. (27a) as Ajk(t) = αjk + ∆Ajk(t), we
1237
+ separate the spectrum in two parts: a coherent one,
1238
+ Scoh
1239
+ π
1240
+ (ω) = Re
1241
+ � ∞
1242
+ 0
1243
+ e−iωτdτ
1244
+
1245
+ Icoh
1246
+ π,0 + Icoh
1247
+ π,cross
1248
+
1249
+ = π
1250
+
1251
+ Icoh
1252
+ π,0 + Icoh
1253
+ π,cross
1254
+
1255
+ δ(ω)
1256
+ = πΩ2
1257
+ D2
1258
+
1259
+ γ2
1260
+ 4 +
1261
+
1262
+ ∆ − δ
1263
+ 2
1264
+ �2�
1265
+ δ(ω),
1266
+ (44)
1267
+ due to elastic scattering, where Icoh
1268
+ π,0 and Icoh
1269
+ π,cross are given
1270
+ by Eqs. (38) (a) and (c), respectively; and an incoherent
1271
+ part,
1272
+ Sinc
1273
+ π (ω) = Re
1274
+ � ∞
1275
+ 0
1276
+ dτe−iωτ⟨∆ ˆE−
1277
+ π (0)∆ ˆE+
1278
+ π (τ)⟩,
1279
+ specifically,
1280
+ Sinc
1281
+ π (ω) = Re
1282
+ � ∞
1283
+ 0
1284
+ dτe−iωτ [⟨∆A13(0)∆A31(τ)⟩
1285
+ +⟨∆A24(0)∆A42(τ)⟩ − ⟨∆A13(0)∆A42(τ)⟩
1286
+ −⟨∆A24(0)∆A31(τ)⟩] ,
1287
+ (45)
1288
+ due to atomic fluctuations. An outline of the numerical
1289
+ calculation is given in Appendix A.
1290
+ The dipole correlation ⟨ ˆE−
1291
+ π (0) ˆE+
1292
+ π (τ)⟩ and the incoher-
1293
+ ent spectrum in the strong driving regime and strong
1294
+ nondegeneracy (large δ) are shown in Fig. 7. The spec-
1295
+ trum (inset) displays a central peak and two pairs of
1296
+ Mollow-like-sidebands [22] with peaks at the Rabi side-
1297
+ bands ±Ω1 and ±Ω2, while the correlation features de-
1298
+ caying quantum beats due to the closeness of the Rabi
1299
+ peaks.
1300
+ As usual in the strong-field regime, the dressed system
1301
+ approach allows to discern the origin of the peaks from
1302
+ the transitions among the dressed states, to find their
1303
+ positions [5], and thus find the frequencies of the beats.
1304
+ The generalized Rabi frequencies are
1305
+ Ω1 = E+
1306
+ 1 − E−
1307
+ 1 =
1308
+
1309
+ 4Ω2 + ∆2,
1310
+ (46a)
1311
+ Ω2 = E+
1312
+ 2 − E−
1313
+ 2 =
1314
+
1315
+ 4Ω2 + (δ − ∆)2,
1316
+ (46b)
1317
+ TABLE I. Eigenvalues of matrix M/γ and initial conditions
1318
+ of the correlations in Eq. (45) for Ω = 9γ and ∆ = 0.
1319
+ Eigenvalues
1320
+ δ = −8γ
1321
+ δ = −15γ
1322
+ λ1
1323
+ −0.749386 + 0i
1324
+ −0.836531 + 0i
1325
+ λ2
1326
+ −0.583099 − 18.0094i
1327
+ −0.583308 − 17.9981i
1328
+ λ3
1329
+ −0.583099 + 18.0094i
1330
+ −0.583308 + 17.9981i
1331
+ λ4
1332
+ −0.569785 − 19.6808i
1333
+ −0.5492 − 23.4257i
1334
+ λ5
1335
+ −0.569785 + 19.6808i
1336
+ −0.5492 + 23.4257i
1337
+ λ6
1338
+ −0.5 + 0i
1339
+ −0.5 + 0i
1340
+ λ7
1341
+ −0.444846 + 0i
1342
+ −0.398452 + 0i
1343
+ λ8
1344
+ 0 + 0i
1345
+ 0 + 0i
1346
+ Init. cond.
1347
+ ⟨∆A13∆A31⟩
1348
+ 0.20836 + 0i
1349
+ 0.14734 + 0i
1350
+ ⟨∆A24∆A42⟩
1351
+ 0.174014 + 0i
1352
+ 0.086982 + 0i
1353
+ ⟨∆A13∆A42⟩
1354
+ 0.000134 + 0.002146i
1355
+ 0.000067 + 0.002011i
1356
+ ⟨∆A24∆A31⟩
1357
+ 0.000134 − 0.002146i
1358
+ 0.000067 − 0.002011i
1359
+ where
1360
+
1361
+ 1 = −∆
1362
+ 2 ± 1
1363
+ 2
1364
+
1365
+ 4Ω2 + ∆2,
1366
+ (47a)
1367
+
1368
+ 2 = Bℓ + δ − ∆
1369
+ 2
1370
+ ± 1
1371
+ 2
1372
+
1373
+ 4Ω2 + (δ − ∆)2,
1374
+ (47b)
1375
+ are the eigenvalues of the Hamiltonian (8). Due to the
1376
+ spontaneous decays these frequencies would have to be
1377
+ corrected, but they are very good in the relevant strong
1378
+ field limit. Indeed, we notice that Ω1 and Ω2 are very
1379
+ close to the imaginary parts of the eigenvalues λ2,3 and
1380
+ λ4,5, respectively, of matrix M, shown in Table I.
1381
+ The beats are the result of the superposition of waves
1382
+ at the frequencies Ω1 and Ω2 of the spectral sidebands,
1383
+ with average frequency
1384
+ Ωav = Ω2 + Ω1
1385
+ 2
1386
+ =
1387
+
1388
+ 4Ω2 + (δ − ∆)2 +
1389
+
1390
+ 4Ω2 + ∆2
1391
+ 2
1392
+ ,
1393
+ (48)
1394
+ and beat or modulation frequency
1395
+ Ωbeat = Ω2 − Ω1
1396
+ 2
1397
+ =
1398
+
1399
+ 4Ω2 + (δ − ∆)2 −
1400
+
1401
+ 4Ω2 + ∆2
1402
+ 2
1403
+ .
1404
+ (49)
1405
+ Now, we can identify the origin and modulation fre-
1406
+ quency of the beats in the time-dependent intensity,
1407
+ Eq. (29a), since the excited state populations ⟨A11(t)⟩
1408
+ and ⟨A22(t)⟩ oscillate at the generalized Rabi frequen-
1409
+ cies Ω1 and Ω2, respectively, with initial conditions
1410
+ given by a nonzero superposition of ground state pop-
1411
+ ulations at t = 0. In the case of the dipole correlation
1412
+ ⟨ ˆE−
1413
+ π (0) ˆE+
1414
+ π (τ)⟩, however, the initial conditions are given
1415
+ by products of stationary atomic expectation values,
1416
+ most of them the coherences α13, α24, which become very
1417
+ small in the regime of beats. Thus, as seen in Table I,
1418
+ the terms ⟨∆A13(0)∆A31(τ)⟩ and ⟨∆A24(0)∆A42(τ)⟩ are
1419
+
1420
+ 9
1421
+ 0
1422
+ 3
1423
+ 6
1424
+ 9
1425
+ 12
1426
+ 15
1427
+ 0
1428
+ 0.5
1429
+ 1.0
1430
+ 1.5
1431
+ 2.0
1432
+ 2.5
1433
+ 3.0
1434
+ 0
1435
+ 3
1436
+ 6
1437
+ 9
1438
+ 12
1439
+ 15
1440
+ 0
1441
+ 0.5
1442
+ 1.0
1443
+ 1.5
1444
+ 2.0
1445
+ 2.5
1446
+ 0
1447
+ 3
1448
+ 6
1449
+ 9
1450
+ 12
1451
+ 15
1452
+ 0
1453
+ 0.5
1454
+ 1.0
1455
+ 1.5
1456
+ 2.0
1457
+ 2.5
1458
+ γτ
1459
+ ∆ = −2γ, δ = −4γ
1460
+ ∆ = −2γ, δ = −2γ
1461
+ ∆ = 2γ,
1462
+ δ = −2γ
1463
+ ∆ = 0,
1464
+ δ = 0
1465
+ (
1466
+ (a) Ω = γ/4
1467
+ (b) Ω = γ/2
1468
+ g(2)
1469
+ π (τ)
1470
+ g(2)
1471
+ π (τ)
1472
+ g(2)
1473
+ π (τ)
1474
+ FIG. 8.
1475
+ Photon correlations for (a) Ω = 0.25γ, (b) Ω = 0.5γ
1476
+ and (c) Ω = γ. The pairs of values (∆, δ) are the same as
1477
+ those in Fig. 2.
1478
+ much larger than the cross terms ⟨∆A13(0)∆A42(τ)⟩ and
1479
+ ⟨∆A24(0)∆A31(τ)⟩, so the beats are basically due to the
1480
+ interference of those dominant terms.
1481
+ VI.
1482
+ PHOTON-PHOTON CORRELATIONS
1483
+ The standard method to investigate intensity fluctua-
1484
+ tions of a light source uses Brown-Twiss photon-photon
1485
+ correlations [16, 17]. The conditional character of this
1486
+ type of measurement makes it nearly free of detector in-
1487
+ efficiencies, unlike a single-detector measurement of the
1488
+ photoelectron probability distribution.
1489
+ In Ref. [8] the
1490
+ correlations of two photons from the π transitions were
1491
+ studied, albeit only for the degenerate case. In this paper
1492
+ we extend it to the case of nondegenerate states. These
1493
+ correlations are defined as
1494
+ g(2)
1495
+ π (τ) =
1496
+ G(2)
1497
+ π (τ)
1498
+ G(2)
1499
+ π (τ → ∞)
1500
+ (50)
1501
+ where, using Eq. (27a) for the field operators,
1502
+ G(2)
1503
+ π (τ) = ⟨ ˆE−
1504
+ π (0) ˆE−
1505
+ π (τ) ˆE+
1506
+ π (τ) ˆE+
1507
+ π (0)⟩
1508
+ = f 4
1509
+ π(r)⟨[A13(0) − A24(0)][A11(τ) + A22(τ)]
1510
+ ×[A31(0) − A42(0)]⟩,
1511
+ (51a)
1512
+ and
1513
+ G(2)
1514
+ π (τ → ∞) =
1515
+
1516
+ Ist
1517
+ π
1518
+ �2 = f 4
1519
+ π(r) (α11 + α22)2 (51b)
1520
+ is the normalization factor. G(2)
1521
+ π (τ) can be further re-
1522
+ duced, since ⟨A13Ajk(τ)A42(0)⟩ = ⟨A24Ajk(τ)A31(0)⟩ =
1523
+ 0, due to having vanishing initial conditions.
1524
+ Figure 8 shows g(2)
1525
+ π (τ) for moderate values of the Rabi
1526
+ frequency (near saturation) and the same sets of detun-
1527
+ ings ∆ and δ of Fig. 2. As usual in resonance fluores-
1528
+ cence, the correlation shows antibunching, g(2)
1529
+ π (0) = 0,
1530
+ 0
1531
+ 2
1532
+ 4
1533
+ 6
1534
+ 8
1535
+ 10
1536
+ 0
1537
+ 0.5
1538
+ 1.0
1539
+ 1.5
1540
+ 2.0
1541
+ 0
1542
+ 2
1543
+ 4
1544
+ 6
1545
+ 8
1546
+ 10
1547
+ 0
1548
+ 0.5
1549
+ 1.0
1550
+ 1.5
1551
+ 2.0
1552
+ 0
1553
+ 2
1554
+ 4
1555
+ 6
1556
+ 8
1557
+ 10
1558
+ 0
1559
+ 0.5
1560
+ 1.0
1561
+ 1.5
1562
+ 2.0
1563
+ 0
1564
+ 2
1565
+ 4
1566
+ 6
1567
+ 8
1568
+ 10
1569
+ 0
1570
+ 0.5
1571
+ 1.0
1572
+ 1.5
1573
+ 2.0
1574
+ 2.5
1575
+ g(2)
1576
+ π (τ)
1577
+ γτ
1578
+ γτ
1579
+ g(2)
1580
+ π (τ)
1581
+ (b) δ = −10γ
1582
+ (d) δ = −15γ
1583
+ (
1584
+ (a) δ = −8γ
1585
+ FIG. 9.
1586
+ Photon-photon correlations showing beats in the
1587
+ strong field limit, Ω = 9γ, ∆ = 0, and large Zeeman splittings.
1588
+ The horizontal line helps to see that the wave packet is slightly
1589
+ rised.
1590
+ that is, a single atom cannot emit two photons simultane-
1591
+ ously. Unlike the two-level atom resonance fluorescence,
1592
+ the correlation is not simply the normalized population
1593
+ of the excited state, nor it is only the sum of the cor-
1594
+ relations of each single π transition. Besides the terms
1595
+ ⟨A13(0)A11(τ)A31(0)⟩ and ⟨A24(0)A22(τ)A42(0)⟩, which
1596
+ are also out of phase, as seen from the time-dependent
1597
+ populations of their excited states (Fig. 2), there are six
1598
+ cross terms in the full correlation. In the nondegenerate
1599
+ case the multiple contributions cause in some cases quite
1600
+ irregular evolution. For instance, as we will see in the
1601
+ next Section, the slow decay of the correlation when the
1602
+ laser drives the atom near saturation, but below the ω13
1603
+ resonance transition, is related to a very narrow peak in
1604
+ the spectrum.
1605
+ The case of strong driving and large nondegeneracy
1606
+ is shown in Fig. 9, featuring quantum beats. There are
1607
+ several effects resulting from the increase of the nonde-
1608
+ generacy factor δ: (i) the larger number of visible wave
1609
+ packets; (ii) both average and beat frequencies approach
1610
+ one another, so the wave packets get shorter for larger
1611
+ photon-pair intervals τ, containing very few of the fast
1612
+ oscillations, as seen in Fig. 9(d); (iii) the wavepackets are
1613
+ initially slightly lifted above the g(2)(τ) = 1 value.
1614
+ VII.
1615
+ QUADRATURE FLUCTUATIONS
1616
+ Squeezing, the reduction of noise in one quadrature
1617
+ below that of a coherent state at the expense of the
1618
+ other, is the hallmark of phase-dependent fluctuations
1619
+ of the electromagnetic field [cite]. It is usually measured
1620
+ by balanced homodyne detection (BHD), but low quan-
1621
+ tum detector efficiency degrade the weak squeezing pro-
1622
+ duced in resonance fluorescence and cavity QED systems.
1623
+ One alternative our group has used is conditional homo-
1624
+ dyne detection (CHD) [18, 19], which correlates a quadra-
1625
+ ture amplitude on the cue of an intensity measurement.
1626
+ CHD measures a third-order amplitude-intensity corre-
1627
+
1628
+ 10
1629
+ lation (AIC) which, in the weak driving limit is reduced
1630
+ to the second-order one and that allows for measuring
1631
+ squeezing. Being a conditional measurement it is nearly
1632
+ free of detector inefficiencies.
1633
+ While the original goal of CHD was to measure the
1634
+ weak squeezing in cavity QED [18, 19], it was soon re-
1635
+ alized that nonzero third-order fluctuations of the am-
1636
+ plitude provide clear evidence of non-Gaussian fluctua-
1637
+ tions and higher-order field nonclassicality. In the present
1638
+ work the fluctuations are mainly third-order ones, due to
1639
+ near and above saturation excitation, and violate classi-
1640
+ cal bounds. We thus explore the phase-dependent fluctu-
1641
+ ations under conditions of quantum interference following
1642
+ our recent work [20, 23, 24].
1643
+ A.
1644
+ Amplitude-Intensity Correlations
1645
+ In CHD a quadrature’s field Eφ is measured by BHD
1646
+ on the cue of photon countings in a separate detector,
1647
+ where φ = 0, π/2 is the phase of the local oscillator. This
1648
+ is characterized by a correlation among the amplitude
1649
+ and the intensity of the field,
1650
+ hπ,φ(τ) =
1651
+ Hπ,φ(τ)
1652
+ Hπ,φ(τ → ∞),
1653
+ (52)
1654
+ where
1655
+ Hπ,φ(τ) = ⟨: ˆE−
1656
+ π (0) ˆE+
1657
+ π (0) ˆEπ,φ(τ) :⟩,
1658
+ (53a)
1659
+ the dots :: indicating time and normal operator orderings,
1660
+ and
1661
+ Hπ,φ(τ → ∞) = Ist
1662
+ π ⟨Eπ,φ⟩st
1663
+ (53b)
1664
+ = f 3
1665
+ π(r) [α11 + α22] Re
1666
+
1667
+ (α13 − α24) e−iφ�
1668
+ = f 3
1669
+ π(r) Ω3
1670
+ D2 Re
1671
+
1672
+ (∆ + (iγ − δ)/2) e−iφ�
1673
+ is the normalization factor.
1674
+ For the sake of concreteness, in this Section we limit
1675
+ our discussion to the out-of-phase quadrature, φ = π/2,
1676
+ which is the one that features squeezing when ωL = ω13,
1677
+ that is ∆ = 0. We do consider, however, squeezing in the
1678
+ in-phase quadrature φ = 0 in Sect. VIII on the variance.
1679
+ In several atom-laser systems hπ,φ(τ) has been proven
1680
+ to be time-asymmetric [20, 24]. This is not the case with
1681
+ the J = 1/2 → J = 1/2 system so we limit the analysis
1682
+ to positive intervals τ ≥ 0.
1683
+ Omitting the geometrical
1684
+ factor f 3
1685
+ π(r), which is later cancelled by normalization,
1686
+ we have
1687
+ Hπ,φ(τ) = ⟨ ˆE−
1688
+ π (0) ˆEπ,φ(τ) ˆE+
1689
+ π (0)⟩
1690
+ = Re
1691
+
1692
+ e−iφ⟨A13(0)[A13(τ) − A24(τ)]A31(0)
1693
+ +A24(0)[A13(τ) − A24(τ)]A42(0)⟩} .
1694
+ (54)
1695
+ Note that Hπ,φ(0) = 0 meaning that, like antibunching
1696
+ in g(2), the atom has to build a new photon wavepacket
1697
+ after one has been emitted.
1698
+ The AIC suggests nontrivial behavior when we take
1699
+ dipole fluctuations into account, that is, when the atomic
1700
+ operators are split into their mean plus noise, Ajk =
1701
+ αjk + ∆Ajk; upon substitution in Eq. (54) we get
1702
+ Hπ,φ(τ) = Ist
1703
+ π ⟨Eπ,φ⟩st + H(2)
1704
+ π,φ(τ) + H(3)
1705
+ π,φ(τ),
1706
+ (55)
1707
+ or in normalized form as
1708
+ hπ,φ(τ) = 1 +
1709
+ H(2)
1710
+ π,φ(τ)
1711
+ Ist
1712
+ π ⟨Eπ,φ⟩st
1713
+ +
1714
+ H(3)
1715
+ π,φ(τ)
1716
+ Ist
1717
+ π ⟨Eπ,φ⟩st
1718
+ ,
1719
+ (56)
1720
+ where
1721
+ H(2)
1722
+ π,φ(τ) = 2Re
1723
+
1724
+ ⟨ ˆE+
1725
+ π ⟩st⟨∆ ˆE−
1726
+ π (0)∆ ˆEπ,φ(τ)⟩
1727
+
1728
+ = Re
1729
+
1730
+ (α31 − α42) [⟨(∆A13(0) − ∆A24(0))
1731
+
1732
+ ∆A13(τ) − ∆A24(τ))⟩e−iφ
1733
+ +⟨(∆A13(0) − ∆A24(0))
1734
+
1735
+ ∆A31(τ)⟩ − ∆A42(τ))⟩eiφ��
1736
+ ,
1737
+ (57)
1738
+ H(3)
1739
+ π,φ(τ) = ⟨∆ ˆE−
1740
+ π (0)∆ ˆEπ,φ(τ)∆ ˆE+
1741
+ π (0)⟩
1742
+ = Re
1743
+
1744
+ eiφ⟨[∆A13(0) − ∆A24(0)] [∆A31(τ) − ∆A42(τ)] [∆A31(0) − ∆A42(0)]⟩
1745
+
1746
+ .
1747
+ (58)
1748
+ The initial conditions of the correlations are given in Ap-
1749
+ pendix A.
1750
+ From hπ,π/2(0) = 0 we can obtain analytically the ini-
1751
+ tial values of the second- and third-order terms,
1752
+ h(2)
1753
+ π,π/2(0) = 1 − (2∆ − δ)2 + γ2
1754
+ 2D
1755
+ ,
1756
+ (59)
1757
+ h(3)
1758
+ π,π/2(0) = (2∆ − δ)2 + γ2
1759
+ 2D
1760
+ − 2,
1761
+ (60)
1762
+ where D is given by Eq. (21).
1763
+
1764
+ 11
1765
+ Being the AIC a function of odd-order in the field am-
1766
+ plitude we rightly expect a richer landscape than that
1767
+ of the intensity correlations, more so when one considers
1768
+ quantum interference and the complex parameter space.
1769
+ For instance, the correlation can take on not only nega-
1770
+ tive values but break classical bounds [18, 19]:
1771
+ 0 ≤ hφ(τ) − 1 ≤ 1 ,
1772
+ (61a)
1773
+ |h(2)
1774
+ φ (τ) − 1| ≤ |h(2)
1775
+ φ (0) − 1| ≤ 1 ,
1776
+ (61b)
1777
+ where the second line is valid only for weak fields such
1778
+ that h(3)
1779
+ φ (τ) ∼ 0. These classical bounds are stronger cri-
1780
+ teria for nonclassicality of the emitted field than squeezed
1781
+ light measurements, the more familiar probing of phase-
1782
+ dependent fluctuations. A detailed hierarchy of nonclas-
1783
+ sicality measures for higher-order correlation functions is
1784
+ presented in Refs. [25, 26]. In Ref. [20] an inequality was
1785
+ obtained that considers the full hφ(τ) by calculating the
1786
+ AIC for a field in a coherent state,
1787
+ −1 ≤ hφ(τ) ≤ 1 .
1788
+ (62)
1789
+ For a meaningful violation of Poisson statistics, hφ(τ)
1790
+ must be outside these bounds.
1791
+ Also, hφ(τ) is a measure of non-Gaussian fluctuations,
1792
+ here of third-order in the field fluctuations. Resonance
1793
+ fluorescence is a particularly strong case of non-Gaussian
1794
+ noise by being a highly nonlinear stationary nonequilib-
1795
+ rium process [20, 23, 24, 27, 28], thanks also to its small
1796
+ Hilbert space. This makes resonance fluorescence unsuit-
1797
+ able to a quasiprobability distribution approach.
1798
+ B.
1799
+ Fluctuations Spectra
1800
+ Since quadrature fluctuations, such as squeezing, are
1801
+ often studied in the frequency domain we now define the
1802
+ spectrum of the amplitude-intensity correlations:
1803
+ Sπ,φ(ω) = 8γ1
1804
+ � ∞
1805
+ 0
1806
+ dτ cos (ωτ) [hπ,φ(τ) − 1]
1807
+ (63)
1808
+ which, following Eqs. (52) and (55), can be decomposed
1809
+ into terms of second- and third-order in the dipole fluc-
1810
+ tuations
1811
+ S(q)
1812
+ π,φ(ω) = 8γ1
1813
+ � ∞
1814
+ 0
1815
+ dτ cos (ωτ)h(q)
1816
+ π,φ(τ),
1817
+ (64)
1818
+ where q = 2, 3, so that Sπ,φ(ω) = S(2)
1819
+ π,φ(ω) + S(3)
1820
+ π,φ(ω).
1821
+ As mentioned above, the AIC was devised initially to
1822
+ measure squeezing without the issue of imperfect detec-
1823
+ tion efficiencies. Obviously, hπ,φ(τ) and Sπ,φ(ω) are not
1824
+ measures of squeezing. They measure a third-order mo-
1825
+ ment in the field’s amplitude, while squeezing is a second-
1826
+ order one in its fluctuations.
1827
+ The so-called spectrum
1828
+ of squeezing is the one for q = 2, with the advantage
1829
+ of the AIC of not depending on the efficiency of detec-
1830
+ tion. Squeezing is signaled by frequency intervals where
1831
+ 0
1832
+ 2
1833
+ 4
1834
+ 6
1835
+ 8
1836
+ 10
1837
+ 12
1838
+ 0
1839
+ 2
1840
+ 4
1841
+ 6
1842
+ -10
1843
+ -5
1844
+ 0
1845
+ 5
1846
+ 10
1847
+ 0
1848
+ 1
1849
+ 2
1850
+ 0
1851
+ 2
1852
+ 4
1853
+ 6
1854
+ 8
1855
+ 10
1856
+ 12
1857
+ 0
1858
+ 2
1859
+ 4
1860
+ 6
1861
+ -10
1862
+ -5
1863
+ 0
1864
+ 5
1865
+ 10
1866
+ -1
1867
+ 0
1868
+ 1
1869
+ 2
1870
+ 0
1871
+ 2
1872
+ 4
1873
+ 6
1874
+ 8
1875
+ 10
1876
+ 12
1877
+ 0
1878
+ 2
1879
+ 4
1880
+ 6
1881
+ -10
1882
+ -5
1883
+ 0
1884
+ 5
1885
+ 10
1886
+ -1
1887
+ 0
1888
+ 1
1889
+ 2
1890
+ Sπ,π/2 (ω)
1891
+ hπ,π/2 (τ)
1892
+ (b) Ω = γ/2
1893
+ γτ
1894
+ ω/γ
1895
+ (a) Ω = γ/4
1896
+ (d) Ω = γ/4
1897
+ (e) Ω = γ/2
1898
+ (f
1899
+ ) Ω = γ
1900
+ (
1901
+ FIG. 10.
1902
+ Amplitude-intensity correlations (left panel) and
1903
+ spectra (right panel) for the φ = π/2 quadrature in the weak-
1904
+ moderate field limit. Parameters and line styles are the same
1905
+ as in Fig. 8: ∆ = δ = 0 (solid-black); ∆ = 2γ and δ = −2γ
1906
+ (dots-red); ∆ = −2γ and δ = −2γ (dashed-green); ∆ = −2γ
1907
+ and δ = −4γ (dot-dashed-blue).
1908
+ S(2)
1909
+ π,φ(ω) < 0. As a further note, the full incoherent spec-
1910
+ trum, Eq. (45), can be obtained by adding the squeezing
1911
+ spectra of both quadratures [29],
1912
+ Sinc
1913
+ π (ω) =
1914
+ 1
1915
+ 8γ1
1916
+
1917
+ S(2)
1918
+ π,0(ω) + S(2)
1919
+ π,π/2(ω)
1920
+
1921
+ .
1922
+ (65)
1923
+ C.
1924
+ Results
1925
+ We now show plots of the AICs and their spectra in
1926
+ Figs. 10-12 for the φ = π/2 quadrature and the same sets
1927
+ of detunings ∆, δ of Fig. 2, and weak to moderate Rabi
1928
+ frequencies, γ/4 < Ω < γ. With the three parameters Ω,
1929
+ ∆, and δ, the landscape of effects is vast.
1930
+ We first notice a few general features seen in hπ,π/2(τ),
1931
+ Fig. 10.
1932
+ With increasing Rabi frequencies, detunings,
1933
+ and Zeeman splittings we observe the clear breakdown of
1934
+ the classical inequalities besides the one at τ = 0. Cor-
1935
+ respondingly, in the spectra, the extrema get displaced
1936
+ and broadened.
1937
+ Now, we want to single out the case
1938
+ of nondegeneracy with small detuning on the |1⟩ − |3⟩
1939
+ transition but large on the |2⟩ − |4⟩ one, ∆ = −δ = 2γ
1940
+ (green-dashed line). For weak field, Ω = γ/4, the AIC
1941
+ does not have a regular evolution for short times but it
1942
+ does decay very slowly, with a correponding very narrow
1943
+ spectral peak. The slow decay is also clearly visible in the
1944
+ photon correlation, Fig. 8a. As we mentioned in Sect. III
1945
+ regarding Fig. 2b, state |4⟩ ends up with a large portion
1946
+ of the steady state population due to optical pumping;
1947
+ not quite a trapping state, so there is no electron shelv-
1948
+ ing per se, as argued in [5]. This effect is washed out for
1949
+ larger Rabi frequencies, which allow for faster recycling
1950
+ of the populations. To a lesser degree, slow decay and
1951
+ sharp peak occur for opposite signs of ∆ and δ.
1952
+
1953
+ 12
1954
+ 0
1955
+ 2
1956
+ 4
1957
+ 6
1958
+ 8
1959
+ 10
1960
+ -2
1961
+ -1
1962
+ 0
1963
+ 1
1964
+ 2
1965
+ 3
1966
+ 4
1967
+ -10 -8
1968
+ -6
1969
+ -4
1970
+ -2
1971
+ 0
1972
+ 2
1973
+ 4
1974
+ 6
1975
+ 8
1976
+ 10
1977
+ -0.2
1978
+ 0
1979
+ 0.2
1980
+ 0.4
1981
+ 0.6
1982
+ 0.8
1983
+ 0
1984
+ 2
1985
+ 4
1986
+ 6
1987
+ 8
1988
+ 10
1989
+ -2
1990
+ -1
1991
+ 0
1992
+ 1
1993
+ 2
1994
+ 3
1995
+ 4
1996
+ -10 -8
1997
+ -6
1998
+ -4
1999
+ -2
2000
+ 0
2001
+ 2
2002
+ 4
2003
+ 6
2004
+ 8
2005
+ 10
2006
+ -0.2
2007
+ 0
2008
+ 0.2
2009
+ 0.4
2010
+ 0.6
2011
+ 0.8
2012
+ 0
2013
+ 2
2014
+ 4
2015
+ 6
2016
+ 8
2017
+ 10
2018
+ -1
2019
+ 0
2020
+ 1
2021
+ 2
2022
+ 3
2023
+ -10 -8
2024
+ -6
2025
+ -4
2026
+ -2
2027
+ 0
2028
+ 2
2029
+ 4
2030
+ 6
2031
+ 8
2032
+ 10
2033
+ -0.5
2034
+ 0
2035
+ 0.5
2036
+ 1.0
2037
+ (f
2038
+ ) Ω = γ
2039
+ (
2040
+ (b) Ω = γ/2
2041
+ (e) Ω = γ/2
2042
+ (a) Ω = γ/4
2043
+ (d) Ω = γ/4
2044
+ h(2)
2045
+ π,π/2 (τ)
2046
+ ω/γ
2047
+ γτ
2048
+ S(2)
2049
+ π,π/2 (ω)
2050
+ FIG. 11.
2051
+ Second-order component of the AIC and spectra of
2052
+ Fig. 10.
2053
+ 0
2054
+ 2
2055
+ 4
2056
+ 6
2057
+ 8
2058
+ 10
2059
+ -1
2060
+ 0
2061
+ 1
2062
+ 2
2063
+ -10 -8 -6 -4 -2
2064
+ 0
2065
+ 2
2066
+ 4
2067
+ 6
2068
+ 8
2069
+ 10
2070
+ 0
2071
+ 1
2072
+ 2
2073
+ 0
2074
+ 2
2075
+ 4
2076
+ 6
2077
+ 8
2078
+ 10
2079
+ -1
2080
+ 0
2081
+ 1
2082
+ 2
2083
+ -10 -8 -6 -4 -2
2084
+ 0
2085
+ 2
2086
+ 4
2087
+ 6
2088
+ 8
2089
+ 10
2090
+ -1
2091
+ 0
2092
+ 1
2093
+ 2
2094
+ 0
2095
+ 2
2096
+ 4
2097
+ 6
2098
+ 8
2099
+ 10
2100
+ -1
2101
+ 0
2102
+ 1
2103
+ 2
2104
+ 3
2105
+ -10 -8 -6 -4 -2
2106
+ 0
2107
+ 2
2108
+ 4
2109
+ 6
2110
+ 8
2111
+ 10
2112
+ -2
2113
+ -1
2114
+ 0
2115
+ 1
2116
+ (f
2117
+ ) Ω = γ
2118
+ (
2119
+ (b) Ω = γ/2
2120
+ (e) Ω = γ/2
2121
+ (a) Ω = γ/4
2122
+ (d) Ω = γ/4
2123
+ h(3)
2124
+ π,π/2 (τ)
2125
+ ω/γ
2126
+ γτ
2127
+ S(3)
2128
+ π,π/2 (ω)
2129
+ FIG. 12.
2130
+ Third-order component of the AIC and spectra of
2131
+ Fig. 10.
2132
+ The splitting of the AIC and spectra into components
2133
+ of second and third order in the fluctuations, Figs. 11, 12,
2134
+ helps to understand better the quadrature fluctuations.
2135
+ For the second-order ones we have the squeezing spectra:
2136
+ around ω = 0 for ∆ = 0 and small Rabi frequencies,
2137
+ Ω < γ/4; and in sidebands for larger detunings, Rabi
2138
+ frequencies and Zeeman splittings. In h(2)
2139
+ π,π/2(τ) there is a
2140
+ reduction in amplitudes and nonclassicality for increasing
2141
+ Rabi frequencies except for the case of oppposite signs of
2142
+ detuning and difference Zeeman splitting. Note that the
2143
+ sharp spectral peak in the latter case takes up most of
2144
+ the corresponding peak in Fig. 10. This is because both
2145
+ π transitions are largely detuned from the laser, keeping
2146
+ Ω small.
2147
+ Increasing the laser strength the third-order effects
2148
+ overcome the second-order ones. For instance, regarding
2149
+ the size of the features. Also, a comparison of Figs. 11
2150
+ 0
2151
+ 2
2152
+ 4
2153
+ 6
2154
+ 8
2155
+ 10
2156
+ -10
2157
+ 0
2158
+ 10
2159
+ 20
2160
+ -40
2161
+ -20
2162
+ 0
2163
+ 20
2164
+ 40
2165
+ -10
2166
+ -5
2167
+ 0
2168
+ 5
2169
+ 10
2170
+ 0
2171
+ 2
2172
+ 4
2173
+ 6
2174
+ 8
2175
+ 10
2176
+ -10
2177
+ 0
2178
+ 10
2179
+ 20
2180
+ -40
2181
+ -20
2182
+ 0
2183
+ 20
2184
+ 40
2185
+ -10
2186
+ -5
2187
+ 0
2188
+ 5
2189
+ 10
2190
+ 0
2191
+ 2
2192
+ 4
2193
+ 6
2194
+ 8
2195
+ 10
2196
+ -10
2197
+ 0
2198
+ 10
2199
+ 20
2200
+ -40
2201
+ -20
2202
+ 0
2203
+ 20
2204
+ 40
2205
+ -10
2206
+ -5
2207
+ 0
2208
+ 5
2209
+ 10
2210
+ 0
2211
+ 2
2212
+ 4
2213
+ 6
2214
+ 8
2215
+ 10
2216
+ -10
2217
+ 0
2218
+ 10
2219
+ 20
2220
+ -40
2221
+ -20
2222
+ 0
2223
+ 20
2224
+ 40
2225
+ -5
2226
+ 0
2227
+ 5
2228
+ hπ,π/2 (τ)
2229
+ h
2230
+ (2)
2231
+ π,π/2 (τ)
2232
+ h
2233
+ (3)
2234
+ π,π/2 (τ)
2235
+ S
2236
+ (3)
2237
+ π,π/2 (τ)
2238
+ S
2239
+ (2)
2240
+ π,π/2 (τ)
2241
+ Sπ,π/2 (τ)
2242
+ γτ
2243
+ ω/γ
2244
+ (b)
2245
+ (f
2246
+ )
2247
+ (
2248
+ (g)
2249
+ (d)
2250
+ (h)
2251
+ (a)
2252
+ (e)
2253
+ FIG. 13.
2254
+ AIC and spectra for Ω = 9γ, ∆ = 0, (a,e) δ = −8γ,
2255
+ (b,f) δ = −10γ, (c,g) δ = −12γ, (d,h) δ = −15γ. Lines are:
2256
+ full AIC and spectra (solid-black), second-order (dots-red),
2257
+ and third-order (dashed-blue).
2258
+ and 12 shows that h(3)
2259
+ φ (τ) is mainly responsible for the
2260
+ breakdown of the classical bounds when the driving field
2261
+ is on or above saturation.
2262
+ Moreover, we see that the
2263
+ slow-decay–sharp-peak is mainly a third-order effect.
2264
+ To close this Section, the AIC and spectra for very
2265
+ strong fields and large Zeeman splittings, Ω, |δ| ≫ γ are
2266
+ shown in Fig. 13. The AIC shows beats as in the photon
2267
+ correlations.
2268
+ Unlike those in g(2)(τ), these wavepack-
2269
+ ets oscillate around h(τ) = 1.
2270
+ Because the regime
2271
+ is that of strong excitation the third-order component
2272
+ clearly dominates, making the fluorescence notably non-
2273
+ Gaussian, and clearly violates the classical inequalities.
2274
+ The spectral peaks are localized around the Rabi frequen-
2275
+ cies ±Ω1, ±Ω2. Studies of the spectrum of squeezing for
2276
+ the J = 1/2 − J = 1/2 system were reported in [10].
2277
+ Those authors choose ±Ω1, ±Ω2 with a less strong laser
2278
+ but large detuning and large Zeeman splittings, observ-
2279
+ ing the double sidebands, but no mention or hint of beats
2280
+ was made.
2281
+ VIII.
2282
+ VARIANCE
2283
+ The variance is a measure of the total noise in a
2284
+ quadrature; it is defined as
2285
+ Vφ = ⟨: (∆Eφ)2 :⟩ = Re
2286
+
2287
+ e−iφ⟨∆ ˆE−∆ ˆEφ⟩st
2288
+
2289
+ , (66)
2290
+
2291
+ 13
2292
+ and is related to the spectrum of squeezing as
2293
+ Vφ =
2294
+ 1
2295
+ 4πγη
2296
+ � ∞
2297
+ −∞
2298
+ dωS(2)
2299
+ φ (ω).
2300
+ (67)
2301
+ where η is the detector efficiency. The maximum value
2302
+ of Vφ is 1/4, obtained when there is very strong driving,
2303
+ when almost all the emitted light is incoherent. Negative
2304
+ values of the variance are a signature of squeezing but,
2305
+ unlike the quadrature spectra, the squeezing is the total
2306
+ one in the field, independent of frequency.
2307
+ For the π transitions we have
2308
+ Vπ,φ = f 2
2309
+ π(r)
2310
+ 2
2311
+ Re
2312
+
2313
+ −(α13 − α24)2e−2iφ
2314
+ +(α11 + α22 − |α13 − α24|2)
2315
+
2316
+ ,
2317
+ (68)
2318
+ = f 2
2319
+ π(r)
2320
+ 2
2321
+ Ω2
2322
+ D
2323
+
2324
+ 1 − [(2∆ − δ) cos φ + γ sin φ]2
2325
+ 2D
2326
+
2327
+ .
2328
+ (69)
2329
+ For φ = π/2 and φ = 0 we have, respectively,
2330
+ Vπ,π/2 = f 2
2331
+ π(r)
2332
+ 2
2333
+ Ω2
2334
+ D
2335
+
2336
+ 1 − γ2
2337
+ 2D
2338
+
2339
+ ,
2340
+ (70a)
2341
+ Vπ,0 = f 2
2342
+ π(r)
2343
+ 2
2344
+ Ω2
2345
+ D
2346
+
2347
+ 1 − (2∆ − δ)2
2348
+ 2D
2349
+
2350
+ ,
2351
+ (70b)
2352
+ where D is given by Eq. (21).
2353
+ In Fig. 14 we plot the variances of the out-of-phase
2354
+ φ = π/2 (left panel) and in-phase φ = 0 (right panel)
2355
+ quadratures. The interplay of parameters is a complex
2356
+ one, but we mostly use the ones of previous figures. For
2357
+ φ = π/2 and ∆ = 0, as usual in resonance fluorescence
2358
+ systems, squeezing is restricted to a small range of Rabi
2359
+ frequencies, detunings, and Zeeman splittings. For φ = 0
2360
+ nonzero laser or Zeeman detunings are necessary to pro-
2361
+ duce squeezing, with a strong dependence on their sign:
2362
+ on-resonance (not shown) there is no squeezing, as for
2363
+ a two-level atom; in Fig. 14(d) the laser is tuned be-
2364
+ low that transition, ∆ = −2γ, and there is no squeezing
2365
+ (positive variance) but the variance is reduced for large
2366
+ δ; in Fig. 14(e) the laser is tuned above the transition,
2367
+ ∆ = −2γ, and there is squeezing for larger Rabi frequen-
2368
+ cies. Large values of δ tend to reduce the variance, be it
2369
+ positive or negative.
2370
+ A.
2371
+ Out-of-phase quadrature
2372
+ We now discuss a complementary view of the variance.
2373
+ For φ = π/2 we can identify the Rabi frequency interval
2374
+ within which squeezing takes place,
2375
+ 0 < Ω < 1
2376
+ 2
2377
+
2378
+ γ2/2 − δ2/2 − 2(∆ − δ/2)2,
2379
+ (71)
2380
+ and the Rabi frequency for maximum squeezing is
2381
+ ˜Ωπ/2 = 1
2382
+ 2
2383
+
2384
+ γ4/2 − 2[(δ − ∆)2 + ∆2]2
2385
+ 3γ2 + 2[(δ − ∆)2 + ∆2]2 .
2386
+ (72)
2387
+ 0
2388
+ 0.5
2389
+ 1.0
2390
+ 1.5
2391
+ 2.0
2392
+ -0.05
2393
+ 0
2394
+ 0.05
2395
+ 0.10
2396
+ 0.15
2397
+ 0.20
2398
+ 0
2399
+ 0.5
2400
+ 1.0
2401
+ 1.5
2402
+ 2.0
2403
+ 0
2404
+ 0.04
2405
+ 0.08
2406
+ 0.12
2407
+ 0.16
2408
+ 0.20
2409
+ 0.24
2410
+ 0
2411
+ 0.5
2412
+ 1.0
2413
+ 1.5
2414
+ 2.0
2415
+ 0
2416
+ 0.04
2417
+ 0.08
2418
+ 0.12
2419
+ 0.16
2420
+ 0
2421
+ 0.5
2422
+ 1.0
2423
+ 1.5
2424
+ 2.0
2425
+ -0.02
2426
+ 0
2427
+ 0.02
2428
+ 0.04
2429
+ -3
2430
+ -2
2431
+ -1
2432
+ 0
2433
+ 1
2434
+ 2
2435
+ 3
2436
+ -0.03
2437
+ -0.02
2438
+ -0.01
2439
+ 0
2440
+ 0.01
2441
+ -3
2442
+ -2
2443
+ -1
2444
+ 0
2445
+ 1
2446
+ 2
2447
+ 3
2448
+ -0.04
2449
+ 0
2450
+ 0.04
2451
+ 0.08
2452
+ 0.12
2453
+ 0.16
2454
+ 0.2
2455
+ Vπ,π/2/f2
2456
+ π(r)
2457
+ Vπ,0/f2
2458
+ π(r)
2459
+ Ω/γ
2460
+ Ω/γ
2461
+ Ω/γ
2462
+ ∆/γ
2463
+ ∆/γ
2464
+ Ω/γ
2465
+ (
2466
+ (a)
2467
+ (b)
2468
+ (d)
2469
+ (e)
2470
+ (f
2471
+ )
2472
+ FIG. 14.
2473
+ Variance of the quadratures of the fluorescence of
2474
+ the π transitions: left panel for φ = π/2 and right panel for
2475
+ φ = 0. (a,b,d,e) as a function of Rabi frequency and (c,f)
2476
+ as a function of detuning.
2477
+ In all cases δ = 0 is given by
2478
+ a solid-black line, and δ = −0.5γ by a dashed-red line; the
2479
+ dotted-blue line is δ = −2γ in (a,b,d,e) and δ = −γ in (c,f).
2480
+ Additionally, (a) ∆ = 0, (b) ∆ = −2γ, (c) Ω = 0.2γ, (d)
2481
+ ∆ = 0, (e) ∆ = 2γ, (f) Ω = 0.8γ.
2482
+ Thus, the variance at ˜Ωπ/2 is
2483
+ V
2484
+ (˜Ωπ/2)
2485
+ π,π/2 (∆ = 0, δ) = f 2
2486
+ π(r)
2487
+ 16
2488
+ (γ4/2 − 2δ4)(δ2 − γ2)
2489
+ γ2(γ2 + 2δ2)(δ2 + γ2),
2490
+ (73a)
2491
+ for ∆ = 0 and |δ/γ| < 1/
2492
+
2493
+ 2;
2494
+ V
2495
+ (˜Ωπ/2)
2496
+ π,π/2 (∆, δ = 0) = f 2
2497
+ π(r)
2498
+ 16
2499
+ (γ4/2 − 8∆4)(4∆2 − γ2)
2500
+ γ2(γ2 + 4∆2)2
2501
+ ,
2502
+ (73b)
2503
+ for δ = 0 and |∆/γ| < 1/
2504
+
2505
+ 2; and the maximum total
2506
+ squeezing is obtained at ∆ = δ = 0,
2507
+ V
2508
+ (˜Ωπ/2)
2509
+ π,π/2 (0, 0) = −f 2
2510
+ π(r)
2511
+ 32 ,
2512
+ ˜Ωπ/2 =
2513
+ γ
2514
+ 2
2515
+
2516
+ 6.
2517
+ (73c)
2518
+ For φ = π/2 squeezing is limited to elliptical regions
2519
+ of weak driving and small detunings ∆ and δ:
2520
+ 2δ2 + 8Ω2 < γ2,
2521
+ ∆ = 0,
2522
+ (74a)
2523
+ 4∆2 + 8Ω2 < γ2,
2524
+ δ = 0.
2525
+ (74b)
2526
+ B.
2527
+ In-phase quadrature
2528
+ For φ = 0, squeezing is obtained in the Rabi frequency
2529
+ interval, for δ = 0,
2530
+ 0 < Ω <
2531
+ 1
2532
+
2533
+ 2
2534
+
2535
+ ∆2 − γ2/4,
2536
+ |∆| > γ/2,
2537
+ (75)
2538
+
2539
+ 14
2540
+ with maximum squeezing at the Rabi frequency
2541
+ ˜Ω0 =
2542
+ 1
2543
+ 2
2544
+
2545
+ 2
2546
+
2547
+ 16∆2 − γ2
2548
+ 12∆2 + γ2 ,
2549
+ (76)
2550
+ requiring finite detuning from both π transitions (∆ ̸= 0)
2551
+ and stronger driving, Ω ∼ γ [see Fig. 14(d)-(f)].
2552
+ Thus, the variance at ˜Ω0 is
2553
+ V (˜Ω0)
2554
+ π,0 (δ) = −f 2
2555
+ π(r)
2556
+ 128
2557
+ 4∆2 − γ2
2558
+ ∆2(4∆2 + γ2),
2559
+ |∆| ≥ γ/2. (77)
2560
+ This expression gets the asymptotic value
2561
+ lim
2562
+ ∆→∞ V (˜Ω0)
2563
+ π,0
2564
+ = −f 2
2565
+ π(r)
2566
+ 32 ,
2567
+ (78)
2568
+ which is the same as that for the π/2 quadrature. The
2569
+ region for squeezing obeys the relation
2570
+ 4∆2 − 8Ω2 < γ2.
2571
+ (79)
2572
+ So, to obtain squeezing in this quadrature it is necessary
2573
+ to have detunings ∆ > γ/4 for any Rabi frequency.
2574
+ IX.
2575
+ DISCUSSION AND CONCLUSIONS
2576
+ We have studied several properties of the resonance
2577
+ fluorescence of the π transitions in a J = 1/2 − J = 1/2
2578
+ angular momentum atomic system driven by a linearly
2579
+ polarized laser field and a magnetic field along the π tran-
2580
+ sition to lift the level degeneracies. Interference among
2581
+ the various transition amplitudes create a rich landscape
2582
+ of effects. Most notable among our results is the observa-
2583
+ tion of quantum beats when the atom is subject to large
2584
+ laser and magnetic fields. In this regime, two close Rabi
2585
+ frequencies interfere, giving rise to a well-defined modu-
2586
+ lation of the fast oscillations. These Rabi frequencies are
2587
+ the source of the two pairs of sidebands in the incoherent
2588
+ part of the power spectrum [5] and in the squeezing spec-
2589
+ trum [10]. We studied beats in the total intensity and
2590
+ two-time functions such as the dipole-dipole, intensity-
2591
+ intensity and intensity-amplitude correlations.
2592
+ In the
2593
+ beats’ regime the role of vacuum-induced coherence is
2594
+ small because the upper levels are very separated due to
2595
+ very large difference Zeeman splitting.
2596
+ Before the beats we considered the previously over-
2597
+ looked time-dependent populations and reviewed aspects
2598
+ of the known stationary ones. The fact that the upper
2599
+ state populations evolve out of phase should not be a
2600
+ surprise.
2601
+ This, and nonzero initial population of both
2602
+ ground states (in contrast to nonzero populations of ex-
2603
+ cited states for spontaneous emission), are major factors
2604
+ in the interference among the terms in the intensity. Ex-
2605
+ cept for very strong laser fields, the steady state popula-
2606
+ tions depend strongly on the difference Zeeman splitting.
2607
+ The AIC also permits to quantify the degree of non-
2608
+ Gaussianity; the fluctuations of third-order in the field
2609
+ quadrature amplitude due to strong atom-laser nonlin-
2610
+ earity dominate over the second-order ones with strong
2611
+ driving.
2612
+ The beats are in the strongly non-Gaussian
2613
+ regime.
2614
+ The correlations show nonclassical features of the fluo-
2615
+ rescence light such as antibunching, g(2)(0) = 0, and vio-
2616
+ lation of classical inequalities in the amplitude-intensity
2617
+ correlations, Eqs. (61 -62). We studied squeezing using
2618
+ the variance, i. e., the total noise in a quadrature, as
2619
+ well as using the second-order part of the spectrum. In
2620
+ the regime of beats there is squeezing, near the effective
2621
+ Rabi frequencies, but none in the total noise.
2622
+ For a system with many parameters the interplay
2623
+ among them is a complex one, making the interpretation
2624
+ of results nontrivial. Thus, for most of our plots we chose
2625
+ parameters in two groups: i) where they are relatively
2626
+ small, Ω, ∆, δ ∼ γ, chosen to illustrate several degrees of
2627
+ vacuum-induced coherence; and ii) where they are large,
2628
+ Ω, ∆, δ ≫ γ, and quantum beats are revealed. Overall,
2629
+ particular care must be taken regarding detunings. On
2630
+ the one hand, large difference Zeeman splitting means
2631
+ that the excited levels would be very separated and in-
2632
+ teract with different frequency portions of the reservoir,
2633
+ hence diminishing the vacuum-induced coherence.
2634
+ On
2635
+ the other, large laser-atom detunings, which might in-
2636
+ crease the VIC, mean reduced fluorescence rates, which
2637
+ may also be detrimental in measurements. The beats,
2638
+ then, would be better observed if ∆ ≤ γ and δ of just
2639
+ several γ in the strong field regime.
2640
+ X.
2641
+ ACKNOWLEDGMENTS.
2642
+ The authors thank Dr. Ricardo Rom´an-Ancheyta and
2643
+ Dr. Ir´an Ramos-Prieto for useful comments at an early
2644
+ stage of the project. ADAV thanks CONACYT, Mexico,
2645
+ for scholarship No. 804318.
2646
+ ORCID
2647
+ numbers:
2648
+ H´ector
2649
+ M.
2650
+ Castro-Beltr´an
2651
+ https://orcid.org/0000-0002-3400-7652, Octavio de los
2652
+ Santos-S´anchez https://orcid.org/0000-0002-4316-0114,
2653
+ Luis Guti´errez https://orcid.org/0000-0002-5144-4782,
2654
+ Appendix A: Time-Dependent Matrix Solutions and
2655
+ Spectra
2656
+ The two-time photon correlations under study have
2657
+ the general form ⟨W(τ)⟩ = ⟨O1(0)R(τ)O2(0)⟩, where
2658
+ R is the Bloch vector and O1,2 are system operators.
2659
+ The same applies to correlations of fluctuation operators
2660
+ ∆R, ∆O1,2. Using the quantum regression formula [30],
2661
+ the correlations obey the equation
2662
+ ⟨ ˙W(τ)⟩ = M⟨W(τ)⟩,
2663
+ (A1)
2664
+ which has the formal solution
2665
+ ⟨W(τ)⟩ = eMτ⟨W(0)⟩,
2666
+ (A2)
2667
+ where M is given by
2668
+
2669
+ 15
2670
+ M =
2671
+
2672
+
2673
+
2674
+
2675
+
2676
+
2677
+
2678
+
2679
+
2680
+
2681
+
2682
+
2683
+
2684
+
2685
+ −γ
2686
+ −iΩ
2687
+ 0
2688
+ 0
2689
+ iΩ
2690
+ 0
2691
+ 0
2692
+ 0
2693
+ −iΩ −
2694
+ � γ
2695
+ 2 + i∆
2696
+
2697
+ 0
2698
+ 0
2699
+ 0
2700
+ iΩ
2701
+ 0
2702
+ 0
2703
+ 0
2704
+ 0
2705
+ −γ
2706
+ iΩ
2707
+ 0
2708
+ 0
2709
+ −iΩ
2710
+ 0
2711
+ 0
2712
+ 0
2713
+ iΩ
2714
+
2715
+ � γ
2716
+ 2 + i(∆ − δ)
2717
+
2718
+ 0
2719
+ 0
2720
+ 0
2721
+ −iΩ
2722
+ iΩ
2723
+ 0
2724
+ 0
2725
+ 0
2726
+
2727
+ � γ
2728
+ 2 − i∆
2729
+
2730
+ −iΩ
2731
+ 0
2732
+ 0
2733
+ γ1
2734
+ iΩ
2735
+ γσ
2736
+ 0
2737
+ −iΩ
2738
+ 0
2739
+ 0
2740
+ 0
2741
+ 0
2742
+ 0
2743
+ −iΩ
2744
+ 0
2745
+ 0
2746
+ 0
2747
+
2748
+ � γ
2749
+ 2 − i(∆ − δ)
2750
+
2751
+ iΩ
2752
+ γσ
2753
+ 0
2754
+ γ2
2755
+ −iΩ
2756
+ 0
2757
+ 0
2758
+ iΩ
2759
+ 0
2760
+
2761
+
2762
+
2763
+
2764
+
2765
+
2766
+
2767
+
2768
+
2769
+
2770
+
2771
+
2772
+
2773
+
2774
+ .
2775
+ (A3)
2776
+ Also, spectra of stationary systems can be evaluated
2777
+ more effectively using the above formal approach.
2778
+ Be
2779
+ g(τ) = ⟨W(τ)⟩. Then, a spectrum is calculated as
2780
+ S(ω) ∝
2781
+ � ∞
2782
+ 0
2783
+ cos ωτ g(τ) dτ =
2784
+ � ∞
2785
+ 0
2786
+ cos ωτ eMτg(0) dτ
2787
+ = Re
2788
+ � ∞
2789
+ 0
2790
+ e−(iω1−M)τg(0) dτ
2791
+ = Re
2792
+
2793
+ (iω1 − M)−1g(0)
2794
+
2795
+ ,
2796
+ (A4)
2797
+ where 1 is the identity matrix. For example, the inco-
2798
+ herent spectrum requires calculations of the type
2799
+ Sinc(ω) = Re
2800
+ � ∞
2801
+ 0
2802
+ dτe−iωτeMτ⟨∆Aij(0)∆Akl(0)⟩st
2803
+ = Re
2804
+
2805
+ (M − iω1)−1⟨∆Aij(0)∆Akl(0)⟩st
2806
+
2807
+ . (A5)
2808
+ For the initial conditions of the correlations we use the
2809
+ following operator products and correlations in compact
2810
+ form:
2811
+ AklAmn = Aknδlm ,
2812
+ (A6a)
2813
+ ⟨AklAmn⟩ = αknδlm,
2814
+ (A6b)
2815
+ AijAklAmn = Ainδjkδlm,
2816
+ (A6c)
2817
+ ⟨AijAklAmn⟩ = αinδjkδlm.
2818
+ (A6d)
2819
+ Hence, the relevant initial conditions are:
2820
+ ⟨A13R⟩ = (0, 0, 0, 0, α11, α13, 0, 0)T ,
2821
+ (A7a)
2822
+ ⟨A24R⟩ = (0, 0, 0, 0, 0, 0, α22, α24)T ,
2823
+ (A7b)
2824
+ ⟨A13RA31⟩ = (0, 0, 0, 0, 0, α11, 0, 0)T ,
2825
+ (A7c)
2826
+ ⟨A24RA42⟩ = (0, 0, 0, 0, 0, 0, 0, α22)T ,
2827
+ (A7d)
2828
+ ⟨A13RA42⟩ = ⟨A24RA31⟩ = 0,
2829
+ (A7e)
2830
+ where R = (A11, A13, A22, A24, A31, A33, A42, A44)T is
2831
+ the Bloch vector. For correlations with fluctuation oper-
2832
+ ator products, ∆Aij = Aij − αij, we have
2833
+ ⟨∆Akl∆Amn⟩ = αknδlm − αklαmn,
2834
+ (A8)
2835
+ ⟨∆Aij∆Akl∆Amn⟩ = αinδlmδjk − αilαmnδjk
2836
+ −αinαklδjm − αijαknδlm
2837
+ +2αijαklαmn.
2838
+ (A9)
2839
+ Now, recalling that α12 = α14 = α23 = α34 = 0, we
2840
+ write the detailed initial conditions of the correlations
2841
+ (Set 1 of Bloch equations and quantum regression for-
2842
+ mula):
2843
+ ⟨∆A13∆R⟩ =
2844
+
2845
+ −α13α11, −α2
2846
+ 13, −α13α22, −α13α24, α11 − |α13|2, α13 − α13α33, −α13α42, −α13α44
2847
+ �T ,
2848
+ (A10a)
2849
+ ⟨∆A24∆R⟩ =
2850
+
2851
+ −α24α11, −α24α13, −α24α22, −α2
2852
+ 24, −α24α31, −α24α33, α22 − |α24|2, α24 − α24α44
2853
+ �T ,
2854
+ (A10b)
2855
+ ⟨∆A13∆R∆A31⟩ =
2856
+
2857
+ 2|α13|2α11 − α2
2858
+ 11, 2|α13|2α13 − 2α11α13,
2859
+ 2|α13|2α22 − α11α22, 2|α13|2α24 − α11α24,
2860
+ 2|α13|2α31 − 2α11α31, 2|α13|2α33 + α11 − 2|α13|2 − α11α33,
2861
+ 2|α13|2α42 − 2α11α42, 2|α13|2α44 − α11α44
2862
+ �T .
2863
+ (A10c)
2864
+ ⟨∆A24∆R∆A42⟩ =
2865
+
2866
+ 2|α24|2α11 − α11α22, 2|α24|2α13 − α22α13,
2867
+ 2|α24|2α22 − α2
2868
+ 22, 2|α24|2α24 − 2α22α24,
2869
+ 2|α24|2α31 − α22α31, 2|α24|2α33 − α22α33,
2870
+ 2|α24|2α42 − 2α22α42, 2|α24|2α44 + α22 − 2|α24|2 − α22α44
2871
+ �T .
2872
+ (A10d)
2873
+
2874
+ 16
2875
+ ⟨∆A13∆R∆A42⟩ =
2876
+
2877
+ 2α13α11α42, 2α2
2878
+ 13α42, 2α13α22α42, (2|α24|2 − α22)α13,
2879
+ (2|α13|2 − α11)α42, (2α13α33 − α13)α42, 2α13α2
2880
+ 42, (2α13α44 − α13)α42
2881
+ �T ,
2882
+ (A10e)
2883
+ ⟨∆A24∆R∆A31⟩ =
2884
+
2885
+ 2α24α11α31, (2|α13|2 − α11)α24, 2α24α22α31, 2α2
2886
+ 24α31,
2887
+ 2α24α2
2888
+ 31, (2α24α33 − α24)α31, (2|α24|2 − α22)α31, (2α24α44 − α24)α31
2889
+ �T .
2890
+ (A10f)
2891
+ Appendix B: Condition for Optimal Appearance of
2892
+ Beats in the Intensity
2893
+ We consider a simplified, unitary, model to estimate
2894
+ the optimal initial population of the ground states to
2895
+ make well-formed beats. First, we diagonalize the Hamil-
2896
+ tonian Eq. (8). The eigenvalues and eigenstates are
2897
+
2898
+ 1 = −∆
2899
+ 2 ± 1
2900
+ 2
2901
+
2902
+ 4Ω2 + ∆2,
2903
+ (B1a)
2904
+
2905
+ 2 = Bℓ + δ − ∆
2906
+ 2
2907
+ ± 1
2908
+ 2
2909
+
2910
+ 4Ω2 + (δ − ∆)2,
2911
+ (B1b)
2912
+ and
2913
+ |u1⟩ = sin Θ1|1⟩ + cos Θ1|3⟩,
2914
+ |u2⟩ = − cos Θ1|1⟩ + sin Θ1|3⟩,
2915
+ |u3⟩ = sin Θ2|2⟩ + cos Θ2|4⟩,
2916
+ |u4⟩ = − cos Θ2|2⟩ + sin Θ2|4⟩,
2917
+ (B2)
2918
+ respectively, where
2919
+ sin Θ1 =
2920
+ 2Ω
2921
+ ��
2922
+ ∆ +
2923
+
2924
+ ∆2 + 4Ω2�2 + 4Ω2
2925
+ ,
2926
+ cos Θ1 =
2927
+ ∆ +
2928
+
2929
+ ∆2 + 4Ω2
2930
+ ��
2931
+ ∆ +
2932
+
2933
+ ∆2 + 4Ω2�2 + 4Ω2
2934
+ ,
2935
+ sin Θ2 =
2936
+ 2Ω
2937
+ ��
2938
+ (δ − ∆) +
2939
+
2940
+ (δ − ∆)2 + 4Ω2
2941
+ �2
2942
+ + 4Ω2
2943
+ ,
2944
+ cos Θ2 =
2945
+ (δ − ∆) +
2946
+
2947
+ (δ − ∆)2 + 4Ω2
2948
+ ��
2949
+ (δ − ∆) +
2950
+
2951
+ (δ − ∆)2 + 4Ω2
2952
+ �2
2953
+ + 4Ω2
2954
+ .
2955
+ (B3)
2956
+ It is now straightforward to obtain the excited-state
2957
+ populations. If the initial state of the system is ρ(0) =
2958
+ ⟨A33(0)⟩|3⟩⟨3| + ⟨A44(0)⟩|4⟩⟨4| we get
2959
+ ⟨A33(t)⟩ = 1
2960
+ 2⟨A33(0)⟩ sin2 (2Θ1)(1 − cos (Ω1t)), (B4a)
2961
+ ⟨A44(t)⟩ = 1
2962
+ 2⟨A44(0)⟩ sin2 (2Θ2)(1 − cos (Ω2t)), (B4b)
2963
+ and the intensity of the field is
2964
+ Iπ(r, t)
2965
+ f 2π(r) = ⟨A33(0)⟩ sin2 (2Θ1) + A44(0)⟩ sin2 (2Θ2)
2966
+ −⟨A33(0)⟩ sin2 (2Θ1) cos (Ω1t)
2967
+ −⟨A44(0)⟩ sin2 (2Θ2) cos (Ω2t).
2968
+ (B5)
2969
+ A necessary condition for the beating behavior to oc-
2970
+ cur is that the initial ground-state populations are both
2971
+ nonvanishing in the nondegenerate case. Now, assuming
2972
+ the relation
2973
+ ⟨A33(0)⟩
2974
+ ⟨A44(0)⟩ = sin2 (2Θ2)
2975
+ sin2 (2Θ1)
2976
+ (B6)
2977
+ is satisfied by chossing appropriate parameter values
2978
+ (Ω, δ, ∆) for given values of initial ground state popu-
2979
+ lations we would get
2980
+ Iπ(r, t) = f 2
2981
+ π(r)⟨A33(0)⟩ sin2 (2Θ1)
2982
+ × [1 − cos (Ωbeatt) cos (Ωavt)] ,
2983
+ (B7)
2984
+ where Ωbeat = (Ω2 − Ω1)/2 and Ωav = (Ω2 + Ω1)/2.
2985
+ [1] Z. Ficek and S. Swain, Phys. Rev. A 69, 023401 (2004).
2986
+ [2] Z. Ficek and S. Swain, Quantum Interference and Co-
2987
+ herence: Theory and Experiments (Springer, New York,
2988
+ 2005).
2989
+ [3] D. Polder and M. F. H. Schuurmans, Phys. Rev. A 14,
2990
+ 1468 (1976).
2991
+ [4] M. Kiffner, J. Evers, and C. H. Keitel, Phys. Rev. Lett.
2992
+ 96, 100403 (2006).
2993
+ [5] M. Kiffner, J. Evers, and C. H. Keitel, Phys. Rev. A 73,
2994
+ 063814 (2006).
2995
+ [6] M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, in
2996
+ Progress in Optics, E. Wolf, ed. 55, 85 (2010).
2997
+ [7] U. Eichmann, J. C. Bergquist, J. J. Bollinger, J. M. Gilli-
2998
+ gan, W. M. Itano, D. J. Wineland, and M. G. Raizen,
2999
+ Phys. Rev. Lett. 70, 2359 (1993).
3000
+ [8] S. Das and G. S. Agarwal, Phys. Rev. A 77, 033850
3001
+ (2008).
3002
+ [9] H.-B. Zhang, S.-P. Wu, and G.-X. Li, Phys. Rev. A 102,
3003
+ 053717 (2020).
3004
+ [10] H.-T. Tan, H.-X. Xia, and G.-X. Li, J. Phys. B: At. Mol.
3005
+
3006
+ 17
3007
+ Opt. Phys., 42, 125502 (2009).
3008
+ [11] M. Fischer, B. Srivathsan, L. Alber, M. Weber, M. Son-
3009
+ derman, and G. Leuchs, Appl. Phys. B: Lasers and Op-
3010
+ tics, 123, 48 (2017).
3011
+ [12] S. Wolf, S. Richter, J. von Zanthier, and F. Schmidt-
3012
+ Kaler, Phys. Rev. Lett. 124, 063603 (2020).
3013
+ [13] M. Jakob and J. Bergou, Phys. Rev. A 60, 4179 (1999).
3014
+ [14] H. B. Crispin and R. Arun, J. Phys. B: At. Mol. Opt.
3015
+ Phys., 52, 075402 (2019).
3016
+ [15] H. B. Crispin and R. Arun, J. Phys. B: At. Mol. Opt.
3017
+ Phys., 53, 055402 (2020).
3018
+ [16] R. Hanbury-Brown and R. Q. Twiss, Nature 177, 27
3019
+ (1956).
3020
+ [17] R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963).
3021
+ [18] H. J. Carmichael, H. M. Castro-Beltran, G. T. Foster,
3022
+ and L. A. Orozco, Phys. Rev. Lett. 85, 1855 (2000).
3023
+ [19] G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and
3024
+ H. J. Carmichael, Phys. Rev. Lett. 85, 3149 (2000).
3025
+ [20] L. Guti´errez, H. M. Castro-Beltr´an, R. Rom´an-Ancheyta,
3026
+ and L. Horvath, J. Opt. Soc. Am. B 34, 2301 (2017).
3027
+ [21] G. S. Agarwal, Quantum Statistical Theories of Sponta-
3028
+ neous Emission and their Relation to Other Approaches
3029
+ (Springer-Verlag, Berlin, 1974).
3030
+ [22] B. R. Mollow, Phys. Rev. 188, 1969 (1969).
3031
+ [23] H. M. Castro-Beltr´an, R. Rom´an-Ancheyta, and L.
3032
+ Guti´errez, Phys. Rev. A 93, 033801 (2016).
3033
+ [24] O. de los Santos-S´anchez and H. M. Castro-Beltr´an, J.
3034
+ Phys. B: At. Mol. Opt. Phys. 54, 055002 (2021).
3035
+ [25] E. V. Shchukin and W. Vogel, Phys. Rev. A 72, 043808
3036
+ (2005).
3037
+ [26] E. V. Shchukin and W. Vogel, Phys. Rev. Lett. 96,
3038
+ 200403 (2006).
3039
+ [27] Y.-X. Wang and A. A. Clerk, Phys. Rev. R 2, 033196
3040
+ (2020).
3041
+ [28] Q. Xu, E. Greplova, B. Julsgaard, and K. Mølmer, Phys.
3042
+ Scripta, 90, 128004 (2015).
3043
+ [29] P. R. Rice and H. J. Carmichael, J. Opt. Soc. Am. B 5,
3044
+ 1661 (1988).
3045
+ [30] H. J. Carmichael, Statistical Methods in Quantum Op-
3046
+ tics 1: Master Equations and Fokker-Planck Equations
3047
+ (Springer-Verlag, Berlin, 2002).
3048
+
2tE1T4oBgHgl3EQfSAOy/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tE5T4oBgHgl3EQfPw5R/content/2301.05507v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18fc7c042819e1ef57f8933c9bc460ba6e0486645bb86bdee1f1be4c2305ac53
3
+ size 154062
6tE5T4oBgHgl3EQfPw5R/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87b16d5aede46f06d4ed15a933549fc16b19a2239968ffca532f2129d404183f
3
+ size 74346
8tE4T4oBgHgl3EQf3A1I/content/2301.05302v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80cc757d9823a0cf10d2ba05ee6b92e9903518fe89b2a94ee75fe072c46eb8c0
3
+ size 16728847
9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/2301.05304v1.pdf.txt ADDED
@@ -0,0 +1,2415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.05304v1 [math.RT] 12 Jan 2023
2
+ A characterization of the L2-range of the Poisson transforms on a class of
3
+ vector bundles over the quaternionic hyperbolic spaces
4
+ Abdelhamid Boussejra ∗Achraf Ouald Chaib†
5
+ Department of Mathematics, Faculty of Sciences
6
+ University Ibn Tofail, Kénitra, Morocco
7
+ Abstract
8
+ We study the L2-boundedness of the Poisson transforms associated to the homogeneous vector bundles
9
+ Sp(n, 1)×Sp(n)×Sp(1) Vτ over the quaternionic hyperbolic spaces Sp(n, 1)/Sp(n)× Sp(1) associated with irreducible
10
+ representations τ of Sp(n)×Sp(1) which are trivial on Sp(n). As a consequence, we describe the image of the section
11
+ space L2(Sp(n, 1)×Sp(n)×Sp(1) Vτ) under the generalized spectral projections associated to a family of eigensections
12
+ of the Casimir operator.
13
+ Keywords: Vector Poisson transform, Fourier restriction estimate, Strichartz conjecture.
14
+ 1
15
+ Introduction
16
+ Let G be a connected real semisimple noncompact Lie group with finite center, and K a maximal compact subgroup.
17
+ Then X = G/K is a Riemannian symmetric space of noncompact type. Let G = KAN be an Iwasawa decomposition
18
+ of G, and let M be the centralizer of A in K. We write g = κ(g)eH(g)n(g), for each g ∈ G according to G = KAN.
19
+ A central result in harmonic analysis (see [17]) asserts that all joint eigenfunctions F of the algebra D(X) of invariant
20
+ differential operators, are Poisson integrals
21
+ F(g) = Pλf(g) :=
22
+
23
+ K
24
+ e(iλ+ρ)H(g−1k)f(k) dk,
25
+ of a hyperfunction f on K/M, for a generic λ ∈ a∗
26
+ c (the complexification of a∗ the real dual of a).
27
+ Since then a characterization of the Lp-range of the Poisson transform was developed in several articles such as [3],
28
+ [5], [6], [7], [15], [20], [21], [22], [24], [25].
29
+ The problem of characterizing the image of the Poisson transform Pλ of L2(K/M) with real and regular spectral
30
+ parameter λ is intimately related to Strichartz conjecture [[25], Conjecture 4.5] on the uniform L2-boundedness of
31
+ the generalized spectral projections associated with D(X).
32
+ To be more specific, consider the generalized spectral
33
+ projections Qλ defined initially for F ∈ C∞
34
+ c (X) by
35
+ QλF(x) =| c(λ) |−2 Pλ(FF(λ, .)(x),
36
+ λ ∈ a∗,
37
+ (1.1)
38
+ where FF is the Helgason Fourier transform of F and c(λ) is the Harish-Chandra c-function.
39
+ Conjecture (Strichartz [[25], Conjecture 4.5]). There exists a positive constant C such that for any Fλ = QλF with
40
+ ∗e-mail: [email protected]
41
+ †e-mail:[email protected]
42
+ 1
43
+
44
+ F ∈ L2(X) we have
45
+ C−1 ∥ F ∥2
46
+ L2(X)≤
47
+ sup
48
+ R>0,y∈X
49
+
50
+ a∗
51
+ +
52
+ 1
53
+ Rr
54
+
55
+ B(y,R)
56
+ | Fλ(x) |2 dx dλ ≤ C ∥ F ∥2
57
+ L2(X),
58
+ (1.2)
59
+ and
60
+ ∥ F ∥2
61
+ L2(X)= γr lim
62
+ R→∞
63
+
64
+ a∗
65
+ +
66
+ 1
67
+ Rr
68
+
69
+ B(y,R)
70
+ | Fλ(x) |2 dx dλ.
71
+ (1.3)
72
+ Conversely, if Fλ is any family of joint eigenfunctions for which the right hand side of (1.2) or (1.3) is finite, then there
73
+ exists F ∈ L2(X) such that Fλ = QλF for a.e. λ ∈ a∗
74
+ +.
75
+ Here r = rank X, and B(y, R) denotes the open ball in X of radius R about y. The constant γr depends on the
76
+ normalizations of the measures dx and dλ.
77
+ The strichartz conjecture has been recently settled by Kaizuka, see [16]. Most of the proof consists in proving a
78
+ uniform estimate for the Poisson transform. More precisely, the following was proved by Kaizuka [[16], Theorem 3.3]:
79
+ Let F be a joint eigenfunction with eigenvalue corresponding to a real and regular spectral parameter λ . Then F is
80
+ the Poisson transform by Pλ of some f ∈ L2(K/M) if and only if
81
+ sup
82
+ R>1
83
+ 1
84
+ Rr
85
+
86
+ B(0,R)
87
+ | F(x) |2 dx < ∞.
88
+ Moreover there exists a positive constant C independent of such λ,
89
+ C−1 | c(λ) |2∥ f ∥2
90
+ L2(K/M)≤ sup
91
+ R>1
92
+ 1
93
+ Rr
94
+
95
+ B(0,R)
96
+ | Pλf(x) |2 dx ≤ C | c(λ) |2∥ f ∥2
97
+ L2(K/M) .
98
+ The generalization of these results to vector bundles setting has only just begin. In [8] we extend Kaizuka result to
99
+ homogeneous line bundles over non-compact complex Grassmann manifolds (See also [4]).
100
+ Our aim in this paper is to generalize theses results to a class of homogeneous vector bundles over the quaternionic
101
+ hyperbolic space G/K, where G is the symplectic group Sp(n, 1) with maximal compact subgroup K = Sp(n)×Sp(1).
102
+ To state our results in rough form, let us first introduce the class of the homogenous vector bundles that we consider
103
+ in this paper. Let τν be a unitary irreducible representation of Sp(1) realized on a (ν + 1)-dimensional Hilbert space
104
+ (V, (., .)ν). We extend τν to a representation of K by setting τν ≡ 1 on Sp(n). As usual the space of sections of the
105
+ homogeneous vector bundle G ×K V associated with τν will be identified with the space Γ(G, τν) of vector valued
106
+ functions F : G → Vν which are right K-covariant of type τν, i.e.,
107
+ F(gk) = τν(k)−1F(g),
108
+ ∀g ∈ G,
109
+ ∀k ∈ K.
110
+ (1.4)
111
+ We denote by C∞(G, τν) and C∞
112
+ c (G, τν) the elements of Γ(G, τν) that are respectively smooth, smooth with compact
113
+ support in G, and by L2(G, τν) the elements of Γ(G, τν) such that
114
+ ∥ F ∥L2(G,τν)=
115
+ ��
116
+ G/K
117
+ ∥ F(g) ∥2
118
+ ν dgK
119
+ � 1
120
+ 2
121
+ < ∞.
122
+ In above ∥ . ∥ν is the norm in Vν and ∥ F(gK) ∥ν=∥ F(g) ∥ν is well defined for F satisfying (1.4).
123
+ Let σν denote the restriction of τν to the group M ≃ Sp(n−1)×Sp(1). Over K/M we have the associated homogeneous
124
+ vector bundle K ×M Vν with L2-sections identified with L2(K, σν) the space of all functions f : K → Vν which are
125
+ M-covariant of type σν and satisfy
126
+ ∥ f ∥2
127
+ L2(K,σν)=
128
+
129
+ K
130
+ ∥ f(k) ∥2
131
+ ν dk < ∞,
132
+ 2
133
+
134
+ where dk is the normalized Haar measure of K.
135
+ For λ ∈ C and f ∈ L2(K, σν), the Poisson transform Pν
136
+ λf is defined by
137
+
138
+ λf(g) =
139
+
140
+ K
141
+ e−(iλ+ρ)H(g−1k)τν(κ(g−1k))f(k) dk
142
+ Let Ω denote the Casimir element of the Lie algebra g of G, viewed as a differential operator acting on C∞(G, τ).
143
+ Then the image Pν
144
+ λ(L2(K, σν)) is a proper closed subspace of Eλ(G, τν) the space of all F ∈ C∞(G, τν) satisfying
145
+ Ω F = −(λ2 + ρ2 − ν(ν + 2))F.
146
+ For more details see section 2.
147
+ For λ ∈ R \ {0}, we define a weighted L2-space E2
148
+ λ(G, τν) consisting of all F in Eλ(G, τν) that satisfy
149
+ ∥ F ∥∗= sup
150
+ R>1
151
+
152
+ 1
153
+ R
154
+
155
+ B(R)
156
+ ∥F(g)∥2
157
+ ν dgK
158
+ � 1
159
+ 2
160
+ < ∞.
161
+ Our first main result is an image characterization of the Poisson transform Pν
162
+ λ of L2(K, σν) for λ ∈ R \ {0}.
163
+ Theorem 1.1. Let λ ∈ R\{0} and ν a nonnegative integer.
164
+ (i) There exists a positive constant Cν independent of λ such that for f ∈ L2(K, σν) we have
165
+ C−1
166
+ ν |cν(λ)| ∥f∥L2(K,σν) ≤ ∥Pν
167
+ λf∥∗ ≤ Cν| | cν(λ) | ∥f∥L2(K,σν),
168
+ (1.5)
169
+ with
170
+ cν(λ) = 2ρ−iλ
171
+ Γ(ρ − 1)Γ(iλ)
172
+ Γ( iλ+ν+ρ
173
+ 2
174
+ )Γ( iλ+ρ−ν−2
175
+ 2
176
+ )
177
+ .
178
+ Furthermore we have the following Plancherel type formula for the Poisson transform
179
+ lim
180
+ R→+∞
181
+ 1
182
+ R
183
+
184
+ B(R)
185
+ ∥Pν
186
+ λf(g)∥2
187
+ ν dgK = 2 | cν(λ) |2 ∥f∥2
188
+ L2(K,σν) .
189
+ (1.6)
190
+ ii) Pν
191
+ λ is a topological isomorphism from L2(K, σν) onto E2
192
+ λ(G, τν).
193
+ This generalizes the result of Kaizuka [[16], (i) and (ii) in Theorem 3.3] which corresponds to τν trivial.
194
+ Consequence
195
+ For λ ∈ R we define the space
196
+ E∗
197
+ λ(G, τν) = {F ∈ Eλ(G, τν) : M(F) < ∞},
198
+ where
199
+ M(F) = lim sup
200
+ R→∞
201
+
202
+ 1
203
+ R
204
+
205
+ B(R)
206
+ | F(g) |2 dgK
207
+ � 1
208
+ 2
209
+ .
210
+ Then as an immediate consequence of Theorem 1.1 we obtain the following result which generalizes a conjecture of
211
+ W. Bray [10] which corresponds to τν trivial.
212
+ Corollary 1.1. If λ ∈ R \ {0} then E∗
213
+ λ(G, τν), M) is a Banach space.
214
+ Remark 1.1. In the case of the trivial bundle (the scalar case) the conjecture of Bray was proved by Ionescu [15] for
215
+ all rank one symmetric spaces . It was generalized to Riemannian symmetric spaces of higher rank by Kaizuka, see
216
+ [16].
217
+ 3
218
+
219
+ Next, let us introduce our second main result on the L2-range of the generalized spectral projections.
220
+ For F ∈ C∞
221
+ c (G, τν) the vector valued Helgason-Fourier transform FνF is given by (see [11])
222
+ Fν F(λ, k) =
223
+
224
+ G
225
+ e(iλ−ρ)H(g−1k)τν(κ(g−1k)−1)F(g) dg
226
+ λ ∈ C,
227
+ Then the following inversion formula holds (see section 4)
228
+ F(g) = 1
229
+
230
+ � ∞
231
+ 0
232
+
233
+ K
234
+ e−(iλ+ρ)H(g−1k)τν(κ(g−1k))FνF(λ, k) | cν(λ) |−2 dλ dk
235
+ +
236
+
237
+ λj∈Dν
238
+ dν(λj)
239
+
240
+ K
241
+ e−(iλj+ρ)H(g−1k)τν(κ(g−1k))FνF(λj, k) dk.
242
+ (1.7)
243
+ In above dν(λ) = −iResµ=λ(cν(µ)cν(−µ))−1, λ ∈ Dν and Dν is a finite set in {λ ∈ C; ℑ(λ) > 0} which parametrizes
244
+ the τν-spherical functions arising from the discrete series of G. It is empty if ν ≤ ρ − 2.
245
+ The formula (1.7) gives rise to the decomposition of L2(G, τν) into a continuous part and a discrete part:
246
+ L2(G, τν) = L2
247
+ cont(G, τν) ⊕ L2
248
+ disc(G, τν)
249
+ Our aim here is to study the operator Qν
250
+ λ, λ ∈ R, defined for F ∈ L2
251
+ cont(G, τν) ∩ C∞
252
+ c (C, τν) by
253
+
254
+ λF(g) =| cν(λ) |−2 Pν
255
+ λ[Fν F(λ, .)](g),
256
+ (1.8)
257
+ More precisely, following Strichartz idea, we are interested in the following question:
258
+ Characterize those Fλ ∈ Eλ(G, τν) (λ ∈ (0, ∞)) for which there exists F ∈ L2
259
+ cont(G, τν) such that Fλ = Qν
260
+ λF.
261
+ To do so, we introduce the space E2
262
+ +(G, τν) consisting of all Vτν-valued measurable functions ψ on (0, ∞) × G such
263
+ that
264
+ (i) Ω ψ(λ, .) = −(λ2 + ρ2 − ν(ν + 2)) ψ(λ, .) a.e. λ ∈ (0, ∞)
265
+ (ii) ∥ ψ ∥+< ∞.
266
+ where
267
+ ∥ ψ ∥2
268
+ += sup
269
+ R>1
270
+ � ∞
271
+ 0
272
+ 1
273
+ R
274
+
275
+ B(R)
276
+ ∥ ψ(λ, g) ∥2
277
+ ν dgK dλ.
278
+ The second main result we prove in this paper can be stated as follows
279
+ Theorem 1.2.
280
+ (i) There exists a positive constant C such that for F ∈ L2(G, τν) we have
281
+ C−1 ∥ F ∥L2(G,τν)≤∥ Qν
282
+ λF ∥+≤ C ∥ F ∥L2(G,τν)
283
+ (1.9)
284
+ Furthermore we have
285
+ lim
286
+ R→∞
287
+ � ∞
288
+ 0
289
+ 1
290
+ R
291
+
292
+ B(R)
293
+ ∥ Qν
294
+ λF ∥2
295
+ ν dgK dλ = 2 ∥ F ∥2
296
+ L2(G,τν)
297
+ (1.10)
298
+ (ii) The linear map Qν
299
+ λ is a topological isomorphism from L2
300
+ cont(G, τν) onto E2
301
+ +(G, τν).
302
+ This extends Kaizuka result [ [16], (i) and (ii) in Theorem 3.6] on the Strichartz conjecture (see [25] Conjecture
303
+ 4.5] to the class of vector bundles considered here.
304
+ Before giving the outline of the paper, let us mention that a number of authors have obtained an image characterization
305
+ for the Poisson transform Pλ (λ ∈ a∗ \ {0}) of L2-functions on K/M in the rank one case, see [[3], [5], [7], [15]].
306
+ Nevertheless, the obtained characterization is weaker than the one conjectured by Strichartz. The approach taken in
307
+ 4
308
+
309
+ the quoted papers is based on the theory of Calderon-Zygmund singular integrals (see also [21]). Using a different
310
+ approach based on the techniques used in the scattering theory, Kaizuka [16] settled the Strichartz conjecture on
311
+ Riemannian symmetric spaces of noncompact type, of arbitrary rank.
312
+ We now describe the contents of this paper. The proofs of our results are a generalisation of Kaizuka’s method [16]. In
313
+ section 2 we recall some basic facts on the quaternionc hyperbolic spaces and introduce the vector Poisson transforms.
314
+ In section 3, we define the Helgason-Fourier transform on the vector bundles G ×K Vν and give the inversion and
315
+ Plancherel Theorem. The proof of Theorem 1.2 follows from the Plancherel formula and Theorem 1.1. The main
316
+ ingredients in proving Theorem 1.1 are a Fourier restriction estimate for the vector valued Helgason-Fourier transform
317
+ (Proposition 4.1 in section 4) and an asymptotic formula for the vector Poisson transform in the framework of Agmon-
318
+ Hörmander spaces [2] (Theorem 5.1). The proof of Theorem 5.1 will be derived from the Key lemma of this paper
319
+ giving the asymptotic behaviour of the translate of the τν-spherical functions. Section 6 is devoted to the proof of our
320
+ main results. In section 7 we prove the Key Lemma.
321
+ 2
322
+ Preliminaries
323
+ 2.1
324
+ The quaternionic hyperbolic space
325
+ Let G = Sp(n, 1) be the group of all linear transformations of the right H-vector space Hn+1 which preserve the
326
+ quadratic form
327
+ n
328
+
329
+ j=1
330
+ | uj |2 − | un+1 |2. Let K = Sp(n) × Sp(1) be the subgroup of G consisting of pairs (a, d)
331
+ of unitaries.
332
+ Then K is a maximal compact subgroup of G.
333
+ The quaternionic hyperbolic space is the rank one
334
+ symmetric space G/K of the noncompact type. It can be realized as the unit ball B(Hn) = {x ∈ Hn; | x |< 1}.
335
+ The group G acts on B(Hn) by the fractional linear mappings x �→ g.x = (ax + b)(cx + d)−1, if g =
336
+
337
+ a
338
+ b
339
+ c
340
+ d
341
+
342
+ , with
343
+ a ∈ Hn×n, b ∈ Hn×1, c ∈ H1×n and d ∈ H.
344
+ Denote by g the Lie algebra of G; g = k ⊕ p the Cartan decomposition of g, where p is a vector space of matrices of
345
+ the form
346
+ ��
347
+ 0
348
+ x
349
+ x∗
350
+ 0
351
+
352
+ , x ∈ Hn
353
+
354
+ , and k =
355
+ ��
356
+ X
357
+ 0
358
+ 0
359
+ q
360
+
361
+ , X∗ + X = 0, q + q = 0
362
+
363
+ , where X∗ is the conjugate transpose
364
+ of the matrix X and q ∈ H.
365
+ Let H =
366
+
367
+ 0n
368
+ e1
369
+ te1
370
+ 0
371
+
372
+ ∈ p with te1 = (1, 0, · · · , 0). Then a = R H is a Cartan subspace in p, and the corresponding
373
+ analytic subgroup A = {at = exp t H; t ∈ R}, where at =
374
+
375
+
376
+
377
+ cht
378
+ 0
379
+ sht
380
+ 0
381
+ 0n−1
382
+ 0
383
+ sht
384
+ 0
385
+ cht
386
+
387
+
388
+  . With A determined we then have that
389
+ M =
390
+
391
+
392
+
393
+
394
+
395
+ g =
396
+
397
+
398
+
399
+ q
400
+ 0
401
+ 0
402
+ 0
403
+ m
404
+ 0
405
+ 0
406
+ 0
407
+ q
408
+
409
+
410
+  , m ∈ Sp(n − 1), | q |= 1
411
+
412
+
413
+
414
+
415
+
416
+ ≃ Sp(n − 1) × Sp(1).
417
+ Let α ∈ a∗ be defined by α(H) = 1. Then a system Σ of restricted roots of the pair (g, a) is Σ = {±α, ±2α} if n ≥ 2
418
+ and Σ = {±2α} if n = 1, with Weyl group W ≃ {±Id}. A positive subsystem of roots corresponding to the positive
419
+ Weyl chamber a+ ≃ (0, ∞) in a is Σ+ = {α, 2α} if n ≥ 2 and Σ+ = {2α} if n = 1.
420
+ Let n = gα + g2α be the direct sum of the positive root subspaces, with dim gα = 4(n − 1) and dim g2α = 3 and N the
421
+ corresponding analytic subgroup of G. Then the half sum of the positive restricted roots with multiplicities counted
422
+ ρ equals to (2n + 1)α, and shall be viewed as a real number ρ = 2n + 1 by the identification a∗
423
+ c ≃ C via λα ↔ λ.
424
+ Let A+ = {at ∈ A;
425
+ t ≥ 0}. Then we have the Cartan decomposition G = KA+K, that is any g ∈ G can be written
426
+ g = k1(g) eA+(g) k2(g),
427
+ k1(g), k2(g) ∈ K and A+(g) ∈ a+.
428
+ 5
429
+
430
+ If we write g ∈ G in (n + 1) × (n + 1) block notation as g =
431
+
432
+ a
433
+ b
434
+ c
435
+ d
436
+
437
+ . Then a straightforward computation gives
438
+ cosh A+(g) =| d |
439
+ and
440
+ H(g) = log | ce1 + d | .
441
+ (2.1)
442
+ We normalize the invariant measure dgK on G/K so that the following integral formula holds: for all h ∈ L1(G/K),
443
+
444
+ G/K
445
+ h(gK)dgK =
446
+
447
+ G
448
+ h(g.0)dg =
449
+
450
+ K
451
+ � ∞
452
+ 0
453
+ h(k at)∆(t) dk dt,
454
+ (2.2)
455
+ where dt is the Lebesgue measure, ∆(t) = (2 sinh t)4n−1(2 cosh t)3, and dk is the Haar measure of K with
456
+
457
+ K
458
+ dk = 1.
459
+ 2.2
460
+ The vector Poisson transform
461
+ In this subsection we define the Poisson transform associated to the vector bundles G×KVν over Sp(n, 1)/Sp(n)×Sp(1)
462
+ and derive some results referring to [23], [27], and [28] for more informations on the subject.
463
+ Let σν denote the restriction of τν to M. For λ ∈ C we consider the representation σν,λ of P = MAN on Vν defined
464
+ by σν,λ(man) = aρ−iλσν(m). Then σν,λ defines a principal series representations of G on the Hilbert space
465
+ Hν,λ := {f : G → Vν | f(gman) = σ−1
466
+ ν,λ(man)f(g) ∀man ∈ MAN, f|K ∈ L2},
467
+ where G acts by the left regular representation. We shall denote by C−ω(G, σν,λ) the space of its hyperfunctions
468
+ vectors. By the Iwasawa decomposition, the restriction map from G to K gives an isomorphism from Hν,λ onto the
469
+ space L2(K, σν). This yields, the so-called compact picture of Hν,λ, with the group action given by
470
+ πσν,λ(g)f(k) = e(iλ−ρ)H(g−1k)f(κ(g−1k)).
471
+ By C−ω(K, σν) we denote the space of its hyperfunctions vectors.
472
+ A Poisson transform is the continuous, linear, G-equivariant map Pν
473
+ λ from C−ω(G, σν,λ) to C∞(G, τν) defined by
474
+
475
+ λ f(g) =
476
+
477
+ K
478
+ τν(k)f(gk) dk.
479
+ In the compact picture the Poisson transform is given by
480
+
481
+ λ f(g) =
482
+
483
+ K
484
+ e−(iλ+ρ)H(g−1k)τν(κ(g−1k)) f(k) dk.
485
+ Let D(G, τν) denote the algebra of left invariant differential operators on C∞(G, τν). Let Eν,λ(G) be the space of all
486
+ F ∈ C∞(G, τν) such that Ω F = −(λ2 + ρ2 − ν(ν + 2)) F.
487
+ Proposition 2.1. (i) D(G, τν) is the algebra generated by the Casimir operator Ω of g.
488
+ (ii) For λ ∈ C, ν ∈ N, the Poisson transform Pν
489
+ λ maps C−ω(G, σν,λ) to Eν,λ(G).
490
+ Proof. (i) Let U(a) be the universal enveloping algebra of the complexification of a. Since the restriction of τν to M
491
+ is irreducible, then D(G, τν) ≃ U(a)W . As a is one dimensional, then D(G, τν) ≃ C[s2], symmetric functions of one
492
+ variable . Thus D(G, τν) is generated by the Casimir element Ω of the Lie algebra g of G, viewed as a differential
493
+ operator acting on C∞(G, τν).
494
+ (ii) Since σν is irreducible, the image of Pν
495
+ λ consists of joint eigenfunctions with respect to the action of Ω. Moreover
496
+ Ω acts by the infinitesimal character of the the principal series representations πσν,λ. It follows from Proposition 8.22
497
+ and Lemma 12.28 in [18], that
498
+ πσν,λ(Ω) = −(λ2 + ρ2 − c(σν))Id
499
+ on
500
+ C−ω(G, σν,λ),
501
+ (2.3)
502
+ where c(σν) is the Casimir value of σν given by c(σν) = ν(ν + 2).
503
+ 6
504
+
505
+ Let Φν,λ be the τν-spherical function associated to σν. Then Φν,λ admits the following Eisenstein integral repre-
506
+ sentation (see [[11], Lemma 3.2]):
507
+ Φν,λ(g) =
508
+
509
+ K
510
+ e−(iλ+ρ)H(g−1k)τν(κ(g−1k)k−1) dk.
511
+ Note that Φν,λ lies in C∞(G, τν, τν) the space of smooth functions F : G → End(Vτν) satisfying
512
+ F(k1gk2) = τν(k−1
513
+ 2 )F(g)τν(k−1
514
+ 1 ),
515
+ the so called τν-radial functions. Being τν-radial, Φν,λ is completely determined by its restriction to A, by the Cartan
516
+ decomposition G = KAK. Moreover, since σν is irreducible, it follows that Φν,λ(at) ∈ EndM(Vν) ≃ CIdVν, ∀at ∈ A.
517
+ Therefore there exists ϕν : R → C such that Φν,λ(at) = ϕν(t).IdVν. We have
518
+ ϕν,λ(t) =
519
+ 1
520
+ ν + 1
521
+
522
+ K
523
+ e−(iλ+ρ)H(g−1k)χν(κ(g−1k)k−1) dk,
524
+ (2.4)
525
+ where χν is the character of τν.
526
+ This so-called trace τν-spherical function has been computed explicitly in [12] using the radial part of the Casimir
527
+ operator Ω (see also [26] ). We have ϕν,λ(t) = (cosh t)νφ(ρ−2,ν+1)
528
+ λ
529
+ (t), where φ(ρ−2,ν+1)
530
+ λ
531
+ (t) is the Jacobi function (cf.
532
+ [19])
533
+ φ(ρ−2,ν+1)
534
+ λ
535
+ (t) = 2F1(iλ + ρ + ν
536
+ 2
537
+ , −iλ + ρ + ν
538
+ 2
539
+ ; ρ − 1; − sinh2 t).
540
+ We deduce from (A4) the asymptotic behaviour of ϕν,λ
541
+ ϕλ,ν(at) = e(iλ−ρ)t[cν(λ) + ◦(1)], as t → ∞
542
+ if
543
+ ℑ(λ) < 0.
544
+ (2.5)
545
+ where
546
+ cν(λ) =
547
+ 2ρ−iλΓ(ρ − 1)Γ(iλ)
548
+ Γ( iλ+ρ+ν
549
+ 2
550
+ )Γ( iλ+ρ−ν−2
551
+ 2
552
+ )
553
+ .
554
+ (2.6)
555
+ For λ ∈ C the c-function of Harish-Chandra associated to τν is defined by
556
+ c(τν, λ) =
557
+
558
+ N
559
+ e−(iλ+ρ)H(n)τν(κ(n)) dn.
560
+ The integral converges for λ such that ℜ(iλ) > 0 and it has a meromorphic continuation to C.
561
+ In above dn is the Haar measure of N = θ(N), θ being the Cartan involution.
562
+ We may use formula (2.6) to give explicitly c(τν, λ). Indeed, one easily check that c(τν, λ) ∈ EndM(Vν) = CIdVν.
563
+ Then using the following result on the behaviour of Φν,λ(at) ([28], Proposition 2.4)
564
+ Φν,λ(at) = e(iλ−ρ)t(c(τν, λ) + ◦(1))as
565
+ t → ∞,
566
+ together with Φν,λ(at) = ϕν,λ(t).Id, we find then from (2.5) that c(τν, λ) = cν(λ)IdVν.
567
+ We end this section by recalling a result of Olbrich [23] on the range of the Poisson transform on vector bundles which
568
+ reads in our case as follows
569
+ Theorem 2.1. [23] Let ν ∈ N and λ ∈ C such that
570
+ (i) −2iλ /∈ N
571
+ (ii) iλ + ρ /∈ −2N − ν ∪ −2N + ν + 2.
572
+ Then the Poisson transform Pν
573
+ λ is a K-isomorphism from C−ω(K, σν) onto Eν,λ(G).
574
+ 7
575
+
576
+ 3
577
+ The vector-valued Helgason-Fourier transfrorm
578
+ In this section we give the inversion and the Plancherel formulas for the Helgason-Fourier transform on the vector
579
+ bundle G ×K Vν.
580
+ According to [11] the vector-valued Helgason-Fourier transform of f ∈ C∞
581
+ c (G, τν) is the Vν-valued function on C × K
582
+ defined by:
583
+ Fνf(λ, k) =
584
+
585
+ G
586
+ eλ,ν(k−1g) f(g)dg,
587
+ where eλ,ν is the vector valued function eλ,ν : G → End(Vν) given by
588
+ eλ,ν(g) = e(iλ−ρ)H(g−1)τ −1
589
+ ν (κ(g−1)).
590
+ Notice that our sign on "λ" is the opposite of the one in [11].
591
+ In order to state the next theorem, we introduce the finite set in {λ, ℑ(λ) ≥ 0}
592
+ Dν = {λj = i(ν − ρ + 2 − 2j), j = 0, 1, · · · , ν − ρ + 2 − 2j > 0}.
593
+ Note that Dν is empty if ν ≤ ρ − 2. It parametrizes the discrete series representation of G containing τν, see [12].
594
+ Let
595
+ dν(λj) = 2−2(ρ−ν−1)(ν − ρ − 2j + 2)(ρ − 2 + j)!(ν − j)!
596
+ Γ2(ρ − 1)j!(ν − ρ − j + 2)!
597
+ ,
598
+ λj ∈ Dν
599
+ For λj ∈ Dν, we define the operators Qν
600
+ j
601
+ L2(G, τν) → Eν,λj(G, τν)
602
+ F �→ dν(λj) Φν,λj ∗ F
603
+ We denote the image by A2
604
+ j. We set
605
+ L2
606
+ disc(G, τν) =
607
+
608
+ j; ν−ρ+2−2j>0
609
+ A2
610
+ j,
611
+ and denote by L2
612
+ cont(G, τν) its orthocomplement. Let L2
613
+ σν(R+ × K, | cν(λ) |−2 dλ dk) be the space of vector functions
614
+ φ : R+ × K → Vν satisfying
615
+ (i) For each fixed λ, φ(λ, km) = σν(m)−1φ(λ, k), ∀m ∈ M
616
+ (ii)
617
+
618
+ R+×K ∥ Fνφ(λ, k) ∥2 | cν(λ) |−2 dλ dk < ∞.
619
+ Theorem 3.1. (i) For F ∈ C∞
620
+ c (G, τν) we have the following inversion and Plancherel formulas
621
+ F(g) = 1
622
+
623
+ � ∞
624
+ 0
625
+
626
+ K
627
+ e∗
628
+ λ,ν(k−1g)FνF(λ, k) | cν(λ) |−2 dλ dk +
629
+
630
+ λj∈Dν
631
+ dν(λj)
632
+
633
+ K
634
+ e∗
635
+ λj,ν(k−1g)FνF(λj, k) dk,
636
+ (3.1)
637
+
638
+ G
639
+ ∥ F(g) ∥2
640
+ ν dgK = 1
641
+
642
+ � ∞
643
+ 0
644
+
645
+ K
646
+ ∥ FνF((λ, k) ∥2
647
+ ν| cν(λ) |−2 dλ dk+
648
+
649
+ λj∈Dν
650
+ dν(λj)
651
+
652
+ K
653
+ < FνF(λj, k), FνF(−λj, k) >ν dk
654
+ (3.2)
655
+ (ii) The Fourier transform Fν extends to an isometry from L2
656
+ cont(G, τν) onto the space L2
657
+ σν(R+ ×K, | cν(λ) |−2 dλ dk).
658
+ The first part of Theorem 3.1 can be easily deduced from the inversion and Plancherel formulas for the spherical
659
+ transform.
660
+ 8
661
+
662
+ Let C∞
663
+ c (G, τν, τν) denote the space of smooth compactly supported τν-radial functions. The spherical transform of
664
+ F ∈ C∞
665
+ c (G, τν, τν) is the C-valued function HνF defined by:
666
+ HνF(λ) =
667
+ 1
668
+ ν + 1
669
+
670
+ G
671
+ T r[Φν,λ(g−1)F(g))]dg,
672
+ λ ∈ C.
673
+ The inversion and the Plancherel formulas for the τ-spherical transform have been given explicitly in [12]. For the
674
+ convenience of the reader we give an elementary proof by using the Jacobi transform.
675
+ Theorem 3.2. For F ∈ C∞
676
+ c (G, τν, τν) we have the following inversion and Plancherel formulas
677
+ F(g) = 1
678
+
679
+ � +∞
680
+ 0
681
+ Φν,λ(g)HνF(λ) | cν(λ) |−2 dλ +
682
+
683
+ λj∈Dν
684
+ Φν,λj(g)Hνf(λj) dν(λj),
685
+ (3.3)
686
+
687
+ G
688
+ ∥ F(g) ∥2
689
+ HS dg = ν + 1
690
+
691
+ � +∞
692
+ 0
693
+ | HνF((λ) |2| cν(λ) |−2 dλ + (ν + 1)
694
+
695
+ λj∈Dν
696
+ dν(λj) | HνF((λj) |2,
697
+ (3.4)
698
+ In above ∥ ∥HS stands for the Hilbert-Schmidt norm.
699
+ Proof. Let F ∈ C∞
700
+ c (G, τν, τν) and let fν be its scalar component.
701
+ Using the integral formula (2.2), the identity
702
+ Φν,λ(at) = Φν,λ(a−t) = (cosh t)νφ(ρ−2,ν+1)
703
+ λ
704
+ (t) and the fact that ∆(t) = (2 cosh t)−2ν∆ρ−2,ν+1, we have
705
+ HνF(λ) =
706
+ � ∞
707
+ 0
708
+ fν(t)(cosh t)νφ(ρ−2,ν+1)
709
+ λ
710
+ (t) ∆(t) dt
711
+ =
712
+ � ∞
713
+ 0
714
+ fν(t)(22 cosh t)−νφ(ρ−2,ν+1)
715
+ λ
716
+ (t) ∆ρ−2,ν+1(t) dt.
717
+ (3.5)
718
+ Thus the τν-spherical transform HνF may be written in terms of the Jacobi transform J α,β, with α = ρ − 2 and
719
+ β = ν + 1. Namely, we have
720
+ HνF(λ) = J ρ−2,ν+1[(22 cosh t)−νfν](λ).
721
+ We refer to (A5) in the Appendix for the definition of the Jacobi transform.
722
+ Now the theorem follows from the inversion and the Plancherel formulas for the Jacobi transform (A6), (A6’) and
723
+ (A7) in the Appendix.
724
+ For the proof of the surjectivity statement in Theorem 3.1 we shall need the following result
725
+ Proposition 3.1. Let F ∈ C∞
726
+ c (G, τν) and Φ ∈ C∞(G, τν, τν). Then we have
727
+ Fν(F ∗ Φ)(λ, k) = HνΦ(λ)FνF(λ, k),
728
+ λ ∈ C, k ∈ K,
729
+ where the convolution is defined by
730
+ (Φ ∗ F)(g) =
731
+
732
+ G
733
+ Φν,λ(x−1g)F(x) dx.
734
+ Proof. Let Φ ∈ C∞(G, τν, τν), v ∈ Vν, and set Fv = Φ(. )v. Then we have the following relation between the Fourier
735
+ transform and the spherical transform
736
+ FνFv(λ, k) = HνΦ(λ)τ(k−1)v.
737
+ (3.6)
738
+ By definition
739
+ Fν(F ∗ Φ)(λ, k) =
740
+
741
+ G
742
+
743
+ G
744
+
745
+ λ(k−1g)Φ(x−1g)F(x)dxdg
746
+ =
747
+
748
+ G
749
+ dx
750
+
751
+ G
752
+
753
+ λ(k−1xy)Φ(y)F(x)dy
754
+ 9
755
+
756
+ Using the following cocycle relations for the Iwasawa function H(x)
757
+ H(xy) = H(xκ(y)) + H(y),
758
+ and
759
+ κ(xy) = κ(xκ(y)),
760
+ for all x, y ∈ G, we get the following identity
761
+
762
+ λ(k−1xy) = e(iλ−ρ)H(x−1k)eν
763
+ λ(κ−1(x−1k)y),
764
+ from which we obtain
765
+ Fν(Φ ∗ F)(λ, k) =
766
+
767
+ G
768
+ e(iλ−ρ)H(x−1k)
769
+ ��
770
+ G
771
+ eλ,ν(κ−1(x−1k)y)Φ(y)F(x) dy
772
+
773
+ dx.
774
+ Next, put hv(y) = Φ(y)v, v ∈ Vτν. Then (3.6) implies
775
+
776
+ G
777
+ eλ,ν(κ−1(x−1k)y)Φ(y)F(x) dy = Fν(hF (x))(λ, κ−1(x−1k))
778
+ = H(Φ)(λ)τν(κ−1(x−1k))F(x),
779
+ from which we deduce
780
+ Fν(Φ ∗ F)(λ, k) = H(Φ)(λ)
781
+
782
+ G
783
+ e(iλ−ρ)H(x−1k)τν(κ−1(x−1k))F(x)dx,
784
+ and the proposition follows.
785
+ We now come to the proof of Theorem 3.1.
786
+ Proof. (i) We may follow the same method as in [11] to prove the inversion formula (3.1) and the Plancherel formula
787
+ (3.2) from Theorem 3.2. We give an outline of the proof.
788
+ Let F ∈ C∞
789
+ c (G, τν) and consider the τν-radial function defined for any g ∈ G by
790
+ Fg,v(x).w =
791
+
792
+ K
793
+ < τν(k)w, v >ν F(gkx) dk,
794
+ v being a fixed vector in Vν. Then a straightforward calculation shows that
795
+ HνFg,v(λ) =
796
+ 1
797
+ ν + 1 < (Φν,λ ∗ F)(g), v >ν .
798
+ The inversion formula for the spherical transform together with T rFg,v(e) =< F(g), v >ν imply
799
+ F(g) = 1
800
+
801
+ � ∞
802
+ 0
803
+ (Φν,λ ∗ F)(g) | cν(λ) |−2 dλ +
804
+
805
+ λj∈Dν
806
+ (Φν,λj ∗ F)(g)dν(λj).
807
+ To conclude use the following result for the translated spherical function ( see [11] Proposition 3.3)
808
+ Φν,λ(x−1y) =
809
+
810
+ K
811
+ e−(iλ+ρ)H(y−1k)e(iλ−rho)H(x−1k)τν(κ(y−1k))τν(κ−1(x−1k)) dk,
812
+ (3.7)
813
+ to get
814
+ (Φν,λ ∗ F)(g) =
815
+
816
+ K
817
+ e−(iλ+ρ)H(g−1k)τν(κ(g−1k))FνF(λ, k) dk,
818
+ 10
819
+
820
+ and the inversion formula (3.1) follows.
821
+ The proof of the Plancherel formula (3.2) is essentially the same as in the scalar case, so we omit it.
822
+ Note that as a consequence of the Plancherel formula not involving the discrete series, we have
823
+
824
+ G
825
+ ∥ F(g) ∥2 dgK = 1
826
+ π
827
+ � ∞
828
+ 0
829
+
830
+ K
831
+ ∥ FνF(λ, k) ∥2 | cν(λ) |−2 dλ dk,
832
+ for every F ∈ L2
833
+ cont(G, τν).
834
+ (ii) We prove the surjectivity statement. Suppose that there exists a function f in L2
835
+ σν(R+ × K, | cν(λ) |−2 dλ dk)
836
+ such that
837
+ � ∞
838
+ 0
839
+
840
+ K
841
+ < f(λ, k), FνF(λ, k) >| cν(λ) |−2 dλ dk = 0
842
+ for all F ∈ C∞
843
+ c (G, τν). Changing F into F ∗ Φ where Φ ∈ C∞(G, τν, τν) and using Proposition 3.1, we have
844
+ � ∞
845
+ 0
846
+
847
+ K
848
+ < f(λ, k), FνF(λ, k) > Hνφ(λ) | cν(λ) |−2 dλ dk = 0
849
+ By the Stone-Weierstrass theorem, the algebra {HνΦ, Φ ∈ C∞(G, τν, τν)} is dense in C∞
850
+ e (R) the space of even
851
+ continuous functions on R vanishing at infinity. Therefore for every F ∈ C∞
852
+ c (G, τν) there is a set EF of measure zero
853
+ in R such that
854
+
855
+ K
856
+ < f(λ, k), FνF(λ, k) > dk = 0
857
+ for all λ not in EF . The rest of the proof is based on an adaptation of the arguments given in [14] Theorem 1.5, for
858
+ the scalar case, and the proof of Theorem 3.1 is completed.
859
+ 4
860
+ Fourier restriction estimate
861
+ The main result of this section is the following uniform continuity estimate for the Fourier-Helgason restriction operator.
862
+ Proposition 4.1. Let ν ∈ N. There exists a positive constant Cν such that for λ ∈ R\{0} and R > 1, we have
863
+ � �
864
+ K
865
+ ∥FνF(λ, k)∥2
866
+ νdk
867
+ �1/2
868
+ ≤ Cν|cν(λ)|R1/2
869
+ � �
870
+ G/K
871
+ ∥F(g)∥2
872
+ ν dgK
873
+ �1/2
874
+ ,
875
+ (4.1)
876
+ for every F ∈ L2(G, τν) with suppF ⊂ B(R).
877
+ To prove this result we shall need estimates of the Harish-Chandra c-function.
878
+ To this end we introduce the
879
+ function bν(λ) defined on R by
880
+ bν(λ) =
881
+
882
+
883
+
884
+ cν(λ)
885
+ if
886
+ ν−ρ+2
887
+ 2
888
+ ∈ Z+
889
+ λ cν(λ)
890
+ if
891
+ ν−ρ+2
892
+ 2
893
+ /∈ Z+
894
+ Lemma 4.1. Assume ν > ρ − 2.
895
+ (i) The function bν(λ) has no zero in R.
896
+ (ii) There exists a positive constant C such that for λ ∈ R, we have
897
+ C−1(1 + λ2)
898
+ 2ρ−4−ε(ν)
899
+ 4
900
+ ≤| bν(λ) |−1≤ C(1 + λ2)
901
+ 2ρ−4−ε(ν)
902
+ 4
903
+ ,
904
+ (4.2)
905
+ 11
906
+
907
+ with ε(ν) = ±1 according to ν−ρ+2
908
+ 2
909
+ /∈ Z+ or ν−ρ+2
910
+ 2
911
+ ∈ Z+
912
+ Proof.
913
+ (i) If ν−ρ+2
914
+ 2
915
+ /∈ Z+, then bν(λ) = 2ρ+ν−iλΓ(ρ−1)Γ(iλ+1)
916
+ Γ( iλ+ρ+ν
917
+ 2
918
+ )Γ( iλ+ρ−ν−2
919
+ 2
920
+ ), and clearly bν(λ) has no zero on R.
921
+ If ν−ρ+2
922
+ 2
923
+ ∈ Z+ then bν(λ) a priori can have zero and pole at λ = 0. This is not the case, since
924
+ lim
925
+ λ→0 bν(λ) = (−1)
926
+ ν−ρ+2
927
+ 2
928
+ 2ρ+νΓ(ρ − 1)( ν−ρ+2
929
+ 2
930
+ )!
931
+ Γ( ρ+ν
932
+ 2 )
933
+ .
934
+ (ii) To prove the estimate (4.2) we shall use the following property of the Γ-function
935
+ lim
936
+ |z|→∞
937
+ Γ(z + a)
938
+ Γ(z)
939
+ z−a = 1, | arg(z) |< π − δ,
940
+ (4.3)
941
+ where a is any complex number, and log is the principal value of the logarithm and δ > 0.
942
+ Assume first that ν−ρ+2
943
+ 2
944
+ /∈ Z+. Using the duplicata formula for the function gamma
945
+ Γ(2z) = 22z−2
946
+ √π Γ(z)Γ(z + 1
947
+ 2),
948
+ we rewrite bν(λ) as
949
+ bν(λ) = 2ρ+ν−1
950
+ √π
951
+ Γ( iλ+1
952
+ 2
953
+ )Γ( iλ+2
954
+ 2
955
+ )
956
+ Γ( iλ+ρ+ν
957
+ 2
958
+ )Γ( iλ+ρ−ν−2
959
+ 2
960
+ )
961
+ .
962
+ It follows from (4.3) that for every λ ∈ R, we have
963
+ | bν(λ) |≤ C(1 + λ2)− 2ρ−5
964
+ 4
965
+ and
966
+ | bν(λ) |−1≤ C(1 + λ2)
967
+ 2ρ−5
968
+ 4 .
969
+ The proof for the case ν−ρ+2
970
+ 2
971
+ ∈ Z+ follows the same line as in the case ν−ρ+2
972
+ 2
973
+ /∈ Z+, so we omit it.
974
+ This finishes the proof of the Lemma.
975
+ Let us recall from [1] an auxiliary lemma which will be useful for the proof of Proposition 4.1.
976
+ Let η be a positive Schwartz function on R whose Fourier transform has a compact support. For m ∈ R, set
977
+ ηm(x) =
978
+
979
+ R
980
+ η(t)(1 + |t − x|)m/2 dt.
981
+ Lemma 4.2.
982
+ i) ηm is a positive C∞-function with
983
+ C−1(1 + t2)
984
+ m
985
+ 2 ≤ ηm(t) ≤ C(1 + t2)
986
+ m
987
+ 2 ,
988
+ (4.4)
989
+ for some positive constant C.
990
+ ii) The Fourier transform of ηm has a compact support.
991
+ In order to prove the Fourier restriction Theorem, we need to introduce the bundle valued Radon transform, see
992
+ [9] for more informations.
993
+ The Radon transform for F ∈ C∞
994
+ c (G, τν) is defined by
995
+ RF(g) = eρH(g)
996
+
997
+ N
998
+ F(gn)dn.
999
+ 12
1000
+
1001
+ We set RF(t, k) = RF(kat). Then, using the Iwaswa decomposition G = NAK, we may rewrite the Helgason-Fourier
1002
+ transform as
1003
+ FνF(λ, k) = FR(RF(·, k))(λ),
1004
+ where
1005
+ FRφ(λ) =
1006
+
1007
+ R
1008
+ e−iλtφ(t) dt,
1009
+ is the Euclidean Fourier transform of φ a Vν-valued smooth function with compact support in R.
1010
+ We define on p the scalar product < X, Y >= 1
1011
+ 2T r(XY ) and denote by | | the corresponding norm. It induces a distance
1012
+ function d on G/K. By the Cartan decomposition G = K exp p, any g ∈ G may be written uniquely as g = k exp X,
1013
+ so that d(0, gK) =| X |. Define the open ball centred at 0 and of radius R by B(R) = {gK ∈ G/K;
1014
+ d(0, gK) < R}.
1015
+ Lemma 4.3. Let F ∈ C∞
1016
+ 0 (G, τν). If supp F ⊂ B(R), then supp RF ⊂ [−R, R] × K.
1017
+ Proof. As (see [[13], page 476]
1018
+ d(0, ketHnK) ≥| t |,
1019
+ k ∈ K, n ∈ N, t ∈ R
1020
+ it follows that supp RF ⊂ [−R, R] × K if supp F ⊂ B(R)
1021
+ Proof of Proposition 4.1. It suffices to prove the estimate (4.1) for functions F ∈ C∞
1022
+ c (G, τν) supported in B(R).
1023
+ It follows from the Plancherel formula (3.2) that
1024
+
1025
+ B(R)
1026
+ ∥ F(g) ∥2
1027
+ ν dgK ≥
1028
+
1029
+ K
1030
+
1031
+ R
1032
+ ∥ FνF(λ, k) ∥2
1033
+ ν | cν(λ) |−2 dλ dk
1034
+ Therefore it is sufficient to show
1035
+
1036
+ K
1037
+
1038
+ R
1039
+ ∥ FνF(λ, k) ∥2
1040
+ ν | cν(λ) |−2 dλ dk ≥ C | cν(λ) |−2
1041
+ R
1042
+
1043
+ R
1044
+ ∥ FνF(λ, k) ∥2
1045
+ ν dk,
1046
+ (4.5)
1047
+ fir some positive constant C.
1048
+ By (4.2) we have | cν(λ) |−1≍ η 2ρ−3
1049
+ 2 (λ). Therefore (4.5) is equivalent to
1050
+ η 2ρ−3
1051
+ 2 (λ)
1052
+ R
1053
+
1054
+ K
1055
+ ∥ FνF(λ, k) ∥2
1056
+ ν dk ≤
1057
+
1058
+ K
1059
+
1060
+ R
1061
+ ∥ FνF(λ, k) ∥2
1062
+ ν η 2ρ−3
1063
+ 2 (λ)dλ dk
1064
+ (4.6)
1065
+ Let T be the tempered distribution on R defined by T := F−1
1066
+ R η 2ρ−3
1067
+ 2 . By Lemma 4.2, T is compactly supported . Let
1068
+ R0 > 1 such that supp T ⊂ [−R0, R0]. Then (4.6) is equivalent to
1069
+
1070
+ K
1071
+ ∥ FR(T ∗ RF(. , k))(λ) ∥2
1072
+ ν dk ≤ CR
1073
+
1074
+ K
1075
+
1076
+ R
1077
+ FR(T ∗ RF(. , k))(λ) ∥2
1078
+ ν dλ dk,
1079
+ (4.7)
1080
+ where ∗ denotes the convolution on R.
1081
+ From suppT ⊂ [−R0, R0] and Lemma 4.3, it follows that for any k ∈ K, supp (T ∗ RF(. , k)) ⊂ [−(R + R0), R + R0].
1082
+ Thus
1083
+
1084
+ K
1085
+ ∥ FR(T ∗ RF(. , k)(λ) ∥2
1086
+ ν dk ≤ 2(R + R0)
1087
+
1088
+ K
1089
+
1090
+ R
1091
+ ∥ (T ∗ RF(. k))(t) ∥2
1092
+ ν dt dk
1093
+ Next use the Euclidean Plancherel formula to get (4.7), and the proof is finished.
1094
+ As a consequence of Proposition 4.1, we obtain the uniform continuity estimate for the Poisson transform Pν
1095
+ λ.
1096
+ Corollary 4.1. Let ν ∈ N. There exists a positive constant Cν such that for λ ∈ R\{0}, we have
1097
+ sup
1098
+ R>1
1099
+
1100
+ 1
1101
+ R
1102
+
1103
+ B(R)
1104
+ ∥ Pν
1105
+ λf(g) ∥2
1106
+ ν dgK
1107
+ �1/2
1108
+ ≤ Cν |cν(λ)| ∥ f ∥L2(K,σν)
1109
+ (4.8)
1110
+ for every f ∈ L2(K, σν).
1111
+ 13
1112
+
1113
+ Proof. Let F ∈ L2(G, τν) with supp F ⊂ B(R), and let f ∈ L2(K, σν). Since λ is real and τν is unitary, the Poisson
1114
+ transform and the restriction Fourier transform are related by the following formula
1115
+
1116
+ B(R)
1117
+ < Pν
1118
+ λf(g), F(g) >ν dg =
1119
+
1120
+ K
1121
+ < f(k), FνF(λ, k) >ν dk.
1122
+ Thus
1123
+ |
1124
+
1125
+ B(R)
1126
+ < Pν
1127
+ λf(g), F(g) >ν dg | ≤ ∥f∥L2(K,σν)(
1128
+
1129
+ K
1130
+ ∥ FνF(λ, k) ∥2
1131
+ ν dk)
1132
+ 1
1133
+ 2
1134
+ ≤ Cν|cν(λ)|R1/2 ∥ f ∥L2(K,τν)∥ F ∥L2(G,τν),
1135
+ by the restriction Fourier theorem. Taking the supermum over all F with ∥ F ∥L2(G,τν)= 1, the corollary follows.
1136
+ 5
1137
+ Asymptotic expansion for the Poisson transform
1138
+ In this section we give an asymptotic expansion for the Poisson transform.
1139
+ We first start by establishing some
1140
+ intermediate results.
1141
+ Let L2
1142
+ λ(K, σν) denote the finite linear span of the functions
1143
+ f g
1144
+ λ,v : k �−→ f g
1145
+ λ,v(k) = e(iλ−ρ)H(g−1k)τ −1
1146
+ ν (κ(g−1k))v,
1147
+ g ∈ G, v ∈ Vν.
1148
+ Lemma 5.1. For λ ∈ R \ {0}, ν ∈ N the space L2
1149
+ λ(K, σν) is a dense subspace of L2(K, σν).
1150
+ Proof. As λ ∈ R \ {0}, the density is just a reformulation of the injectivity of the Poisson transform Pν,λ.
1151
+ Lemma 5.2. Let λ ∈ R \ {0}, ν ∈ N. Then there exists a unique unitary isomorphism U ν
1152
+ λ on L2(K, σν) such that :
1153
+ U ν
1154
+ λ f g
1155
+ λ,v = f g
1156
+ −λ,v,
1157
+ g ∈ G.
1158
+ Moreover, for f1, f2 ∈ L2(K, σν), we have Pν
1159
+ λF1 = Pν
1160
+ −λF2 if and only if U ν
1161
+ λF1 = F2 ( i.e. U ν
1162
+ λ = (Pν
1163
+ −λ)−1 ◦ Pν
1164
+ λ).
1165
+ Proof. The proof is the same as in the scalar case so we omit it.
1166
+ We now introduce the function space B∗(G, τν) on G, consisting of functions F in L2
1167
+ loc(G, τν) satisfying
1168
+ ∥ F ∥B∗(G,τν)= sup
1169
+ j∈N
1170
+ [2− j
1171
+ 2
1172
+
1173
+ Aj
1174
+ ∥ F(g) ∥2
1175
+ ν dgK] < ∞,
1176
+ where A0 = {g ∈ G; d(0, g.0) < 1} and Aj = {g ∈ G; 2j−1 ≤ d(0, g.0) < 2j}, for j ≥ 1.
1177
+ One could easily show that ∥ F ∥B∗(G,τν)≤∥ F ∥∗≤ 2 ∥ F ∥B∗(G,τν).
1178
+ We define an equivalent relation on B∗(G, τν). For F1, F2 ∈ B∗(G, τν) we write F1 ≃ F2 if
1179
+ lim
1180
+ R→+∞
1181
+ 1
1182
+ R
1183
+
1184
+ B(R)
1185
+ ∥ F1(g) − F2(g) ∥2
1186
+ ν dg = 0.
1187
+ Note that by using the polar decomposition we see that F1 ≃ F2 if
1188
+ lim
1189
+ R→+∞
1190
+ 1
1191
+ R
1192
+
1193
+ K×[0,R]
1194
+ ∥ F1(ketH)) − F2(ketH)) ∥2
1195
+ ν ∆(t) dt dk = 0.
1196
+ We now state the main result of this section
1197
+ 14
1198
+
1199
+ Theorem 5.1. Let ν ∈ N, λ ∈ R\{0}. For f ∈ L2(K, σν) we have the following asymptotic expansions for the Poisson
1200
+ transform in B∗(G, τν)
1201
+ Pλ,νf(x) ≃ τ −1
1202
+ ν (k2(x))[cν(λ)e(i��−ρ)(A+(x)f(k1(x)) + cν(−λ)e(−iλ−ρ)(A+(x))U ν
1203
+ λf(k1(x))],
1204
+ (5.1)
1205
+ where x = k1(x)eA+(x)k2(x).
1206
+ Most of the proof of the above theorem consists in proving the following Key Lemma, giving the asymptotic ex-
1207
+ pansion for the translates of the τν-spherical function.
1208
+ KEY LEMMA. For λ ∈ R \ {0}, g ∈ G and v ∈ Vν, we have the following asymptotic expansion in B∗(G, τν)
1209
+ Φν,λ(g−1x). v ≃ τ −1
1210
+ ν (k2(x))
1211
+
1212
+ s∈{±1}
1213
+ cν(sλ)e(isλ−ρ)A+(x)f g
1214
+ sλ,v(k1(x)),
1215
+ x = k1(x)eA+(x)k2(x).
1216
+ Proof of Theorem 5.1. We first note that both side of (5.1) depend continuously on f ∈ L2(K, σν). This can
1217
+ be proved in the same manner as in [8]. Therefore we only have to prove that the asymptotic expansion (5.1) holds
1218
+ for f ∈ L2
1219
+ λ(K, σν). Let f = f g
1220
+ λ,v. Then according to [[11], Proposition 3.3], we have
1221
+
1222
+ λf(x) = Φν,λ(g−1x)v.
1223
+ The theorem follows from the Key lemma.
1224
+ As a consequence of Theorem 5.1 we obtain the following result giving the behaviour of the Poisson integrals.
1225
+ Proposition 5.1.
1226
+ 1. For any f ∈ L2(K, σν) we have the Plancherel-Poisson formula
1227
+ lim
1228
+ R→+∞
1229
+ 1
1230
+ R
1231
+
1232
+ B(R)
1233
+ ∥ Pν
1234
+ λf(g) ∥2
1235
+ ν dgK = 2 | cν(λ) |2 ∥ f ∥2
1236
+ L2(K,σν)
1237
+ (5.2)
1238
+ 2. Let ν ∈ N. There exists a positive constant Cν such that for any λ ∈ R \ {0}, we have
1239
+ C−1
1240
+ ν
1241
+ | cν(λ) | ∥ f ∥L2(K,σν)≤∥ Pλ
1242
+ ν f ∥∗≤ Cν | cν(λ) | ∥ f ∥L2(K,σν),
1243
+ (5.3)
1244
+ for every f ∈ L2(K, σν).
1245
+ Proof.
1246
+ 1. We define for f ∈ L2(K, σν)
1247
+
1248
+ λf(x) := τ −1
1249
+ ν (k2(x))[cν(λ)e(iλ−ρ)(A+(x)f(k1(x)) + cν(−λ)e(−iλ−ρ)(A+(x))U ν
1250
+ λf(k1(x))],
1251
+ x = k1(x)eA+(x)k2(x).
1252
+ By the unitarity of Uλ, we have
1253
+ 1
1254
+ R
1255
+
1256
+ B(R)
1257
+ ∥Sν
1258
+ λf(g)∥2dgK = 2|cν(λ)|2∥f∥2
1259
+ L2(K,τν)
1260
+
1261
+ 1
1262
+ R
1263
+ � R
1264
+ 0
1265
+ e−2ρt∆(t)dt
1266
+
1267
+ + 2|cν(λ)|2ℜ
1268
+
1269
+ < f, Uλf >L2(K,σν)
1270
+ 1
1271
+ R
1272
+ � R
1273
+ 0
1274
+ e2(iλ−ρ)t∆(t)dt
1275
+
1276
+ .
1277
+ From
1278
+ lim
1279
+ R→+∞
1280
+ 1
1281
+ R
1282
+ � R
1283
+ 0
1284
+ e−2ρt∆(t)dt = 1, and
1285
+ lim
1286
+ R→+∞
1287
+ 1
1288
+ R
1289
+ � R
1290
+ 0
1291
+ e2(iλ−ρ)t∆(t)dt = 0, we deduce that
1292
+ lim
1293
+ R→+∞
1294
+ 1
1295
+ R
1296
+
1297
+ B(R)
1298
+ ∥ Sν
1299
+ λf(g) ∥2
1300
+ ν dgK = 2 | cν(λ) |2∥ f ∥2
1301
+ L2(K,σν) .
1302
+ (5.4)
1303
+ 15
1304
+
1305
+ Next write
1306
+ 1
1307
+ R
1308
+
1309
+ B(R)
1310
+ ∥ Pν
1311
+ λf(g) ∥2
1312
+ ν dgK = 1
1313
+ R
1314
+
1315
+ B(R)
1316
+ (∥ Sν
1317
+ λf(g) ∥2
1318
+ ν + ∥ Pν
1319
+ λf(g) − Sν
1320
+ λf(g) ∥2
1321
+ ν
1322
+ + 2Re[< Pν
1323
+ λf(g) − Sν
1324
+ λf(g), Sν
1325
+ λf(g) >])dgK.
1326
+ The estimate (5.2) then follows from (5.4), Theorem 5.1 and the Schwarz inequality.
1327
+ 2. The right hand side of the estimate (5.3) has already been proved, see corollary 4.1.
1328
+ The left hand side of the estimate (5.3) obviously follows from the estimate (5.2). This finishes the proof of the
1329
+ proposition.
1330
+ Remark 5.1. Let f1, f2 ∈ L2(K, σν). Then using the polarization identity as well as the estimate (5.2), we get
1331
+ lim
1332
+ R→+∞
1333
+ 1
1334
+ R
1335
+
1336
+ B(R)
1337
+ < Pν
1338
+ λf1(g), Pν
1339
+ λf2(g) >ν dgK = 2 | cν(λ) |2< f1, f2 >L2(K,σν)
1340
+ (5.5)
1341
+ 6
1342
+ Proof of the main results
1343
+ In this section we shall prove Theorem 1.1 on the L2-range of the vector Poisson transform and Theorem 1.2 charac-
1344
+ terizing the image Qν
1345
+ λ(L2(G, τν).
1346
+ 6.1
1347
+ The L2-range of the Poisson transform
1348
+ We first recall some results of harmonic analysis on the homogeneous vector bundle K ×M Vν associated to the
1349
+ representation σν of M.
1350
+ Let �K be the unitary dual of K. For δ ∈ �K let Vδ denote a representation space of δ with dδ = dim Vδ. We denote by
1351
+ �K(σν) the set of δ ∈ �K such that σν occurs in δ |M with multiplicity mδ > 0.
1352
+ The decomposition of L2(K, σν) under K (the group K acts by left translations on this space) is given by the Frobenius
1353
+ reciprocity law
1354
+ L2(K, σν) =
1355
+
1356
+ δ∈�
1357
+ K(σν)
1358
+ Vδ ⊗ HomM(Vν, Vδ),
1359
+ where v ⊗L, for v ∈ Vδ, L ∈ HomM(Vν, Vδ) is identified with the function (v ⊗L)(k) = L∗(δ(k−1)v), where L∗ denotes
1360
+ the adjoint of L.
1361
+ For each δ ∈ �K(σν) let (Lj)mδ
1362
+ j=1 be an orthonormal basis of HomM(Vν, Vδ) with respect to the inner product
1363
+ < L1, L2 >=
1364
+ 1
1365
+ ν + 1T r(L1L∗
1366
+ 2).
1367
+ Let {v1, · · · , vdδ} be an orhonormal basis of Vδ. Then
1368
+ f δ
1369
+ ij : k →
1370
+
1371
+
1372
+ ν + 1L∗
1373
+ i δ(k−1)vj,
1374
+ 1 ≤ i ≤ mδ,
1375
+ 1 ≤ j ≤ dδ,
1376
+ δ ∈ �K(σ)
1377
+ form an orthonormal basis of L2(K, σν).
1378
+ For f ∈ L2(K, σν) we have the Fourier series expansion f(k) =
1379
+
1380
+ δ∈�
1381
+ K(σ)
1382
+
1383
+
1384
+ i=1
1385
+
1386
+
1387
+ j=1
1388
+
1389
+ ijf δ
1390
+ ij(k) with
1391
+ ∥ f ∥2
1392
+ L2(K,σ)=
1393
+
1394
+ δ∈�
1395
+ K(σ)
1396
+
1397
+
1398
+ i=1
1399
+
1400
+
1401
+ j=1
1402
+ | aδ
1403
+ ij |2 .
1404
+ 16
1405
+
1406
+ We define for δ ∈ �K(σ) and λ ∈ C, the generalized Eisenstein integral
1407
+ ΦL
1408
+ λ,δ(g) =
1409
+
1410
+ K
1411
+ e−(iλ+ρ)H(g−1k)τν(κ(g−1k))L∗δ(k−1)dk,
1412
+ L ∈ HomM(Vν, Vδ).
1413
+ It is easy to see that ΦL
1414
+ λ,δ satisfies the following identity
1415
+ ΦL
1416
+ λ,δ(k1gk2) = τν(k−1
1417
+ 2 )ΦL
1418
+ λ,δ(g)δ(k−1
1419
+ 1 ),
1420
+ k1, k2 ∈ K, g ∈ G.
1421
+ We now prove an asymptotic estimate for the generalized Eisenstein integrals.
1422
+ Proposition 6.1. Let ν ∈ N, λ ∈ R \ {0}. Then for δ ∈ �K(σν), T, S ∈ HomM(Vν, Vδ) we have
1423
+ lim
1424
+ R→+∞
1425
+ 1
1426
+ R
1427
+
1428
+ B(R)
1429
+ Tr
1430
+
1431
+ ΦT
1432
+ λ,δ(g)∗ΦS
1433
+ λ,δ(g)
1434
+
1435
+ dgK = 2 | cν(λ) |2 Tr(T S∗).
1436
+ (6.1)
1437
+ Proof. By definition we have
1438
+ lim
1439
+ R→+∞
1440
+ 1
1441
+ R
1442
+
1443
+ B(R)
1444
+ Tr
1445
+
1446
+ ΦT
1447
+ λ,δ(g)∗ΦS
1448
+ λ,δ(g)
1449
+
1450
+ dgK =
1451
+
1452
+
1453
+ j=1
1454
+ lim
1455
+ R→+∞
1456
+ 1
1457
+ R
1458
+
1459
+ B(R)
1460
+ < ΦS
1461
+ λ,δ(g)vj, ΦT
1462
+ λ,δ(g)vj >ν dgK
1463
+ Noting that ΦT
1464
+ λ,δ(g)vj is the Poisson transform of the function k �→ L∗δ(k−1)vj and using (5.5), we get
1465
+ lim
1466
+ R→+∞
1467
+ 1
1468
+ R
1469
+
1470
+ B(R)
1471
+ Tr
1472
+
1473
+ ΦT
1474
+ λ,δ(g)∗ΦS
1475
+ λ,δ(g)
1476
+
1477
+ dgK = 2 | cν(λ) |2
1478
+
1479
+
1480
+ j=1
1481
+
1482
+ K
1483
+ < S∗δ(k−1)vj, T ∗δ(k−1)vj >ν dk.
1484
+ Hence Schur Lemma lead us to conclude that
1485
+ lim
1486
+ R→+∞
1487
+ 1
1488
+ R
1489
+
1490
+ B(R)
1491
+ Tr
1492
+
1493
+ ΦT
1494
+ λ,δ(g)∗ΦS
1495
+ λ,δ(g)
1496
+
1497
+ dgK = 2 | cν(λ) |2 Tr(T S∗), and
1498
+ the proof is finished.
1499
+ Remark 6.1. Noting that
1500
+ T r(
1501
+
1502
+ ΦT
1503
+ λ,δ(g)∗ΦS
1504
+ λ,δ(g)
1505
+
1506
+ = T r(
1507
+
1508
+ ΦT
1509
+ λ,δ(a)∗ΦS
1510
+ λ,δ(a)
1511
+
1512
+ ,
1513
+ g = k1 a k2,
1514
+ it follows from (6.1) that
1515
+ lim
1516
+ R→+∞
1517
+ 1
1518
+ R
1519
+ � R
1520
+ 0
1521
+ T r
1522
+
1523
+ ΦT
1524
+ λ,δ(at)∗ΦS
1525
+ λ,δ(at)
1526
+
1527
+ ∆(t)dt =| cν(λ) |2 Tr(T S∗).
1528
+ (6.2)
1529
+ Proof of Theorem 1.1.
1530
+ (i) The estimate (5.3) implies that the Poisson transform Pλ,ν maps L2(K, σν) into Eλ(G, τν) and that the estimate
1531
+ (1.5) holds.
1532
+ (ii) We now prove that the Poisson transform maps L2(K, σν) onto E2
1533
+ λ(G, τν). Let F ∈ E2
1534
+ λ(G, τν). Since λ ∈ R \ {0},
1535
+ we know by Theorem 2.1 that there exists a hyperfunction f ∈ C−ω(K, σν) such that F = Pλ,νf.
1536
+ Let f =
1537
+
1538
+ δ∈�
1539
+ K(σ)
1540
+
1541
+
1542
+ j=1
1543
+
1544
+
1545
+ i=1
1546
+
1547
+ ijf δ
1548
+ ij, be the Fourier series expansion of f. Then we have
1549
+ F(g) =
1550
+
1551
+ δ∈�
1552
+ K(σ)
1553
+
1554
+
1555
+ ν + 1
1556
+
1557
+
1558
+ j=1
1559
+
1560
+
1561
+ i=1
1562
+
1563
+ ijΦLi
1564
+ λ,δ(g)vj
1565
+ in
1566
+ C∞(G, V ).
1567
+ By the Schur relations, we have
1568
+
1569
+ K
1570
+ < ΦLi
1571
+ λ,δ(kat)vj, ΦLm
1572
+ λ,δ′(kat)vn >ν dk =
1573
+
1574
+ 0
1575
+ if δ ≁ δ′
1576
+ 1
1577
+ dδ T r(ΦLm
1578
+ λ,δ′ (at))∗ΦLi
1579
+ λ,δ(at) < vj, vn > if
1580
+ δ′ = δ
1581
+ 17
1582
+
1583
+ Therefore
1584
+
1585
+ K
1586
+ ∥ F(kat) ∥2 dk =
1587
+ 1
1588
+ ν + 1
1589
+
1590
+ δ∈�
1591
+ K(σ)
1592
+
1593
+
1594
+ j=1
1595
+
1596
+ 1≤i,j≤mδ
1597
+
1598
+ ijaδ
1599
+ mjT r[(ΦLm
1600
+ λ,δ (at))∗ΦLi
1601
+ λ,δ(at)]
1602
+ =
1603
+ 1
1604
+ ν + 1
1605
+
1606
+ δ∈�
1607
+ K(σ)
1608
+
1609
+
1610
+ j=1
1611
+ T r
1612
+
1613
+
1614
+
1615
+ 1≤i,m≤mδ
1616
+ (aδ
1617
+ mjΦLm
1618
+ λ,δ (at))∗(aδ
1619
+ ijΦLi
1620
+ λ,δ(at)
1621
+
1622
+
1623
+ =
1624
+ 1
1625
+ ν + 1
1626
+
1627
+ δ∈�
1628
+ K(σ)
1629
+
1630
+
1631
+ j=1
1632
+
1633
+
1634
+
1635
+ i=1
1636
+
1637
+ ijΦLi
1638
+ λ,δ(at) ∥2
1639
+ HS,
1640
+ Let Λ be a finite subset in �K(σ). Since ∥ F ∥∗< ∞, it follows that, for any R > 1 we have
1641
+ ∞ >∥ F ∥2
1642
+ ∗≥
1643
+ 1
1644
+ ν + 1
1645
+
1646
+ δ∈Λ
1647
+
1648
+
1649
+ j=1
1650
+ 1
1651
+ R
1652
+ � R
1653
+ 0
1654
+
1655
+
1656
+
1657
+ i=1
1658
+
1659
+ ijΦLi
1660
+ λ,δ(at) ∥2
1661
+ HS ∆(t) dt
1662
+ By (6.2) we have
1663
+ lim
1664
+ R→∞
1665
+ 1
1666
+ R
1667
+ � R
1668
+ 0
1669
+
1670
+
1671
+
1672
+ i=1
1673
+
1674
+ ijΦLi
1675
+ λ,δ(at) ∥2
1676
+ HS ∆(t) dt = lim
1677
+ R→∞
1678
+
1679
+ 1≤i,m≤mδ
1680
+
1681
+ ijaδ
1682
+ mj
1683
+ 1
1684
+ R
1685
+ � R
1686
+ 0
1687
+ T r[(ΦLm
1688
+ λ,δ (at))∗ΦLi
1689
+ λ,δ(at)] ∆(t)dt
1690
+ = 2 | cν(λ) |2
1691
+
1692
+ 1≤i,m≤mδ
1693
+
1694
+ ijaδ
1695
+ mjT r(LiL∗
1696
+ m)
1697
+ = 2(ν + 1) | cν(λ) |2
1698
+
1699
+
1700
+ i=1
1701
+ | aδ
1702
+ ij |2 .
1703
+ Thus ∞ >∥ F ∥2
1704
+ ∗≥| cν(λ) |2 �
1705
+ δ∈Λ
1706
+
1707
+
1708
+ j=1
1709
+
1710
+
1711
+ i=1
1712
+ | aδ
1713
+ ij |2. Since Λ is arbitrary, it follows that
1714
+ | cν(λ) |2
1715
+
1716
+ δ∈�
1717
+ K(σ)
1718
+
1719
+
1720
+ j=1
1721
+
1722
+
1723
+ i=1
1724
+ | aδ
1725
+ ij |2≤∥ F ∥2
1726
+ ∗ .
1727
+ This shows that f ∈ L2(K, σν) with | cν(λ) |∥ f ∥L2(K,σν)≤∥ Pν
1728
+ λf ∥∗ and the proof of the theorem is completed.
1729
+ 6.2
1730
+ The L2-range of the generalized spectral projections
1731
+ We now proceed to the poof of the second main result of this paper.
1732
+ Proof of Theorem 1.2.
1733
+ Let F ∈ L2
1734
+ c(G, τν) ∩ C∞(G, τν). It follows from the definition ( see (1.8)) that the operator Qν
1735
+ λ may be written as
1736
+
1737
+ λF(g) =| cν(λ) |−2 Pν
1738
+ λ(FνF(λ, .))(g).
1739
+ (6.3)
1740
+ Using Theorem 1.1 we deduce that
1741
+ sup
1742
+ R>1
1743
+ 1
1744
+ R
1745
+
1746
+ B(R)
1747
+ ∥ Qν
1748
+ λF(g) ∥2
1749
+ ν dgK ≤ Cν | cν(λ) |−2
1750
+
1751
+ K
1752
+ ∥ FνF(λ, k) ∥2
1753
+ ν dk.
1754
+ The above inequality and the Plancherel formula (3.4) imply
1755
+ � ∞
1756
+ 0
1757
+ (sup
1758
+ R>1
1759
+ 1
1760
+ R
1761
+
1762
+ B(R)
1763
+ ∥ Qν
1764
+ λF(g) ∥2
1765
+ ν dgK) dλ ≤ Cν
1766
+ � ∞
1767
+ 0
1768
+
1769
+ K
1770
+ ∥ FνF(λ, k) ∥2
1771
+ ν| cν(λ) |−2 dk dλ
1772
+ ≤ Cν ∥ F ∥2
1773
+ L2(G,τ) .
1774
+ 18
1775
+
1776
+ This prove the right hand side of the inequality (1.9).
1777
+ From (6.3) and (1.6) we have
1778
+ lim
1779
+ R→∞
1780
+ 1
1781
+ R
1782
+
1783
+ B(R)
1784
+ ∥ Qν
1785
+ λF(g) ∥2
1786
+ ν dgK = 2 | cν(λ) |−2
1787
+
1788
+ K
1789
+ ∥ FνF(λ, k) ∥2
1790
+ ν dk,
1791
+ and since for all R > 1
1792
+ 1
1793
+ R
1794
+
1795
+ B(R)
1796
+ ∥ Qν
1797
+ λF(g) ∥2 dgK ≤ Cν | cν(λ) |−2
1798
+
1799
+ K
1800
+ ∥ FνF(λ, k) ∥2 dk,
1801
+ a.e. λ ∈ (0, ∞),
1802
+ we may apply the Lebesgue’s dominated convergence theorem to get
1803
+ lim
1804
+ R→∞
1805
+ � ∞
1806
+ 0
1807
+
1808
+ 1
1809
+ R
1810
+
1811
+ B(R)
1812
+ ∥ Qν
1813
+ λF(g) ∥2
1814
+ ν dgK
1815
+
1816
+ dλ = 2 ∥ F ∥2
1817
+ L2(G,τν) .
1818
+ It follows from the above equality that
1819
+ C ∥ F ∥2
1820
+ L2(G,τν)≤
1821
+ � ∞
1822
+ 0
1823
+ (sup
1824
+ R>1
1825
+
1826
+ B(R)
1827
+ ∥ Qν
1828
+ λF(x) ∥2 dx) dλ.
1829
+ This complete the proof of the inequality (1.9).
1830
+ We now prove that Qν
1831
+ λ maps L2
1832
+ c(G, τν) onto E2
1833
+ λ(G, τν). Let Fλ ∈ E2
1834
+ λ(G, τν). Then we have
1835
+ sup
1836
+ R>1
1837
+ 1
1838
+ R
1839
+
1840
+ B(R)
1841
+ ∥ Fλ(g) ∥2
1842
+ ν dgK < ∞,
1843
+ for a.e.
1844
+ λ ∈ (0, ∞).
1845
+ By Theorem 1.1, there exists fλ ∈ L2(K, σν) such that Fλ(g) =| cν(λ) |−2 Pν
1846
+ λfλ(g) with
1847
+ sup
1848
+ R>1
1849
+ 1
1850
+ R
1851
+
1852
+ B(R)
1853
+ ∥ Fλ(g) ∥2
1854
+ ν dgK ≥ C−1
1855
+ ν
1856
+ | cν(λ) |−2
1857
+
1858
+ K
1859
+ ∥ fλ(k) ∥2 dk
1860
+ Integrating the both side of the above inequality over (0, ∞), we get
1861
+ ∞ >∥ Fλ ∥2
1862
+ ∗≥ C−1
1863
+ ν
1864
+ � ∞
1865
+ O
1866
+
1867
+ K
1868
+ ∥ fλ(k) ∥2
1869
+ ν | cν(λ) |−2 dk dλ.
1870
+ It now follows from Theorem 3.1, that there exists F ∈ L2
1871
+ c(G, τν) such that FνF(λ, k) = fλ(k).
1872
+ Henceforth Fλ(g) =| cν(λ) |−2 Pλ,ν(FνF(λ, .)(g). This finishes the proof of Theorem 1.2.
1873
+ 7
1874
+ Proof of the Key Lemma
1875
+ In this section we prove the Key Lemma of this paper. To this end we need to establish some auxiliary results. We
1876
+ first prove an asymptotic formula for the τν-spherical function.
1877
+ Proposition 7.1. Let λ ∈ R \ {0}. For any v ∈ Vν we have
1878
+ Φν,λ(g). v ≃
1879
+
1880
+ s∈{±1}
1881
+ cν(sλ)e(isλ−ρ)A+(g)τ −1
1882
+ ν (κ1(g)κ2(g)). v,
1883
+ (7.1)
1884
+ g = κ1(g)eA+(g)κ2(g)
1885
+ Proof. Since ∆(t) ≤ e2ρ t, we get
1886
+ 1
1887
+ R
1888
+
1889
+ B(R)
1890
+ ∥ e(iλ−ρ)A+(g)τ −1
1891
+ ν (κ1(g)κ2(g)). v ∥2 dg = 1
1892
+ R ∥ v ∥2
1893
+ � R
1894
+ 0
1895
+ e−2ρ t∆(t)dt
1896
+ ≤∥ v ∥2 .
1897
+ 19
1898
+
1899
+ This shows that the right hand side of (7.1) belongs to B∗(G, τν).
1900
+ Since λ ∈ R \ {0}, we may use the identity (A3) to write
1901
+ ϕν,λ(t) −
1902
+
1903
+ s∈{±1}
1904
+ cν(sλ)e(isλ−ρ)t =
1905
+
1906
+ s∈{±1}
1907
+ cν(sλ)
1908
+
1909
+ (2 cosh t)νΨρ−2,ν+1
1910
+
1911
+ (t) − e(isλ−ρ)t�
1912
+ =
1913
+
1914
+ s∈{±1}
1915
+ cν(sλ)e(isλ−ρ)t �
1916
+ (1 + e−2t)νe(ρ+ν−isλ)tΨρ−2,ν+1
1917
+
1918
+ (t) − 1
1919
+
1920
+ .
1921
+ It follows from (A2’) that
1922
+ ϕν,λ(t) −
1923
+
1924
+ s∈{±1}
1925
+ cν(sλ)e(isλ−ρ)t =
1926
+
1927
+ s∈{±1}
1928
+ cν(sλ)e(isλ−ρ)t �
1929
+ (1 + e−2t)ν − 1) + e−2tEsλ(t)
1930
+
1931
+ ,
1932
+ where | Esλ(t) |≤ 2νC if t ≥ 1. Therefore
1933
+ | ϕν,λ(t) −
1934
+
1935
+ s∈{±1}
1936
+ cν(sλ)e(isλ−ρ)t |≤ Cν,λe−ρe−2t,
1937
+ if t ≥ 1. This together with
1938
+ | ϕν,λ(t) −
1939
+
1940
+ s∈{±1}
1941
+ cν(sλ)e(isλ−ρ)t |≤ Cν,λe−ρt,
1942
+ for t ∈ [0, 1], imply that
1943
+ lim
1944
+ R→∞
1945
+ 1
1946
+ R
1947
+
1948
+ B(R)
1949
+ ∥ Φν,λ(g). v −
1950
+
1951
+ s∈{±1}
1952
+ cν(sλ)e(isλ−ρ)A+(g)τ −1(κ1(g)κ2(g)). v ∥2
1953
+ ν dgK =
1954
+ =∥ v ∥2 lim
1955
+ R→∞
1956
+ 1
1957
+ R
1958
+ � R
1959
+ 0
1960
+ | ϕν,λ(t) −
1961
+
1962
+ s∈{±1}
1963
+ cν(sλ)e(isλ−ρ)t |2 ∆(t) dt = 0,
1964
+ and the proof is finished.
1965
+ Lemma 7.1. Let g ∈ G, k ∈ K and t a non negative real number . Then we have
1966
+ 0 ≤ A+(g−1k exp(tH)) − H(g−1k exp(tH)) ≤ 1+ | g.0 |
1967
+ 1− | g.0 |e−2t,
1968
+ (7.2)
1969
+ Proof. Let g−1 =
1970
+
1971
+ a
1972
+ b
1973
+ c
1974
+ d,
1975
+
1976
+ and k ==
1977
+
1978
+ u
1979
+ 0
1980
+ O
1981
+ v,
1982
+
1983
+ , where a, b, c and d are n×n, n×1, 1×n and 1×1 matrices respectively.
1984
+ A direct computation yields
1985
+ g−1k exp(tH) =
1986
+
1987
+
1988
+ ∗ ∗
1989
+ c1
1990
+ d1
1991
+
1992
+ ,
1993
+ where c1 = c u
1994
+
1995
+ cosh t
1996
+ 0
1997
+ 0
1998
+ In−1
1999
+
2000
+ and d1 = sinh t cue1 + cosh t dv.
2001
+ By (2.1) we have
2002
+ eH(g−1k exp(tH)) = et | cue1 + dv |,
2003
+ and
2004
+ eA+(g−1k exp(tH)) =| sinh t cue1 + cosh t dv | +(| sinh t cue1 + cosh t dv |2 −1)
2005
+ 1
2006
+ 2 .
2007
+ 20
2008
+
2009
+ From
2010
+ eA+(g−1k exp(tH))−H(g−1k exp(tH)) =
2011
+ e−t
2012
+ | cue1 + dv |[| sinh t cue1 + cosh t dv | +(| sinh t cue1 + cosh t dv |2 −1)
2013
+ 1
2014
+ 2 ],
2015
+ together with
2016
+ | sinh t cue1 + cosh t dv | +(| sinh t cue1 + cosh t dv |2 −1)
2017
+ 1
2018
+ 2 ≤ 2 | sinh t cue1v−1 + cosh t d |
2019
+ ≤| cue1v−1 + d | et+ | d − cue1v−1 | e−t
2020
+ we deduce that
2021
+ e(A+(g−1k exp(tH))−H(g−1k exp(tH)) ≤ 1 + | d − cue1v−1 |
2022
+ | cue1v−1 + d |e−2t.
2023
+ Noting that (g.0)∗ = −(d−1c), and k.e1 = ue1v−1, we get
2024
+ e(A+(g−1k exp(tH))−H(g−1k exp(tH)) ≤ 1 + | 1+ < g.0, k.e1 >|
2025
+ | 1− < g.0, k.e1 >|e−2t
2026
+ ≤ 1 + 1+ | g.0 |
2027
+ 1− | g.0 |e−2t,
2028
+ from which we deduce (7.2), and the proof of the lemma is finished.
2029
+ Proof of the Key Lemma. Since B∗(G, τν) is G-invariant, we may apply Proposition 7.1 to get
2030
+ Φν,λ(g−1x)v ≃ τ −1
2031
+ ν (κ1(g−1x)κ2(g−1x)
2032
+
2033
+ s∈{±}
2034
+ cν(sλ)e(isλ−ρ)A+(g−1x)v.
2035
+ Thus it suffices to show that
2036
+ τ −1
2037
+ ν (κ1(g−1x)κ2(g−1x)
2038
+
2039
+ s∈{±}
2040
+ cν(sλ)e(isλ−ρ)A+(g−1x)v ≃ τ −1
2041
+ ν (k2(x))
2042
+
2043
+ s∈{±1}
2044
+ cν(sλ)e(isλ−ρ)A+(x)f g
2045
+ sλ,v(k1(x)),
2046
+ (7.3)
2047
+ Note that
2048
+ τ −1
2049
+ ν [k1(g−1k1(x)eA+(x)k2(x))k2(g−1k1(x)eA+(x)k2(x))] = τ −1
2050
+ ν [k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))k2(x))],
2051
+ x = k1(x)eA+(x)k2(x).
2052
+ Henceforth (7.3) is equivalent to
2053
+ τ −1
2054
+ ν [k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))]
2055
+
2056
+ s∈{±1}
2057
+ cν(λ)e(isλ−ρ)A+(g−1k1(x)eA+(x)) v
2058
+
2059
+
2060
+ s∈{±1}
2061
+ cν(λ)e(isλ−ρ)A+(x)f g
2062
+ sλ,v(k1(x))
2063
+ (7.4)
2064
+ We write the left hand side of (7.4) as
2065
+
2066
+ s∈{±1}
2067
+ cν(λ)e(isλ−ρ)A+(x)f g
2068
+ sλ,v(k1(x)) + rg(x)v,
2069
+ where
2070
+ rg(x) =τ −1
2071
+ ν [k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))]
2072
+
2073
+ s∈{±1}
2074
+ cν(λ)e(isλ−ρ)A+(g−1k1(x)eA+(x))
2075
+
2076
+
2077
+ s∈{±1}
2078
+ cν(λ)e(isλ−ρ)[A+(x)+H(g−1k1(x))]τ −1
2079
+ ν (κ(g−1k1(x)),
2080
+ x ∈ G
2081
+ (7.5)
2082
+ 21
2083
+
2084
+ To finish the proof we show that for each g ∈ G, rg ≃ 0.
2085
+ Noting that
2086
+ H(g−1k1(x)eA+(x)) = H(g−1k1(x)) + A+(x),
2087
+ we rewrite rg as
2088
+ rg(x) = [τ −1
2089
+ ν (k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x))) − τ−1
2090
+ ν (κ(g−1k1(x))]
2091
+
2092
+ s∈{±1}
2093
+ cν(λ)e(isλ−ρ)H(g−1k1(x)eA+(x))
2094
+ + τ −1
2095
+ ν (k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x)))
2096
+
2097
+  �
2098
+ s∈{±1}
2099
+ cν(λ)[e(isλ−ρ)A+(g−1k1(x)eA+(x))) − e(isλ−ρ)H((g−1k1(x)eA+(x))]
2100
+
2101
+
2102
+ =: Ig(x) + Jg(x).
2103
+ Using the following
2104
+ Lemma 7.2. Let g =
2105
+
2106
+ a
2107
+ b
2108
+ c
2109
+ d
2110
+
2111
+ ∈ Sp(n, 1). Then we have
2112
+ τν(κ1(g)κ2(g)) = τν( d
2113
+ | d |)
2114
+ (7.6)
2115
+ τν(κ(g)) = τν( ce1 + d
2116
+ | ce1 + d |)
2117
+ (7.7)
2118
+ lim
2119
+ R→∞ τν(κ1(g exp(RH))κ2(g exp(RH))) = τν(κ(g)).
2120
+ (7.8)
2121
+ we easily see that Igv ≃ 0.
2122
+ We have
2123
+ Jg(x) =τ −1
2124
+ ν (k1(g−1k1(x)eA+(x))k2(g−1k1(x)eA+(x)))e(isλ−ρ)H(g−1k1(x)eA+(x))
2125
+
2126
+ s∈{±1}
2127
+ cν(λ)
2128
+
2129
+ e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1
2130
+
2131
+ As τν is unitary we have
2132
+ 1
2133
+ R
2134
+
2135
+ K×[0,R]
2136
+ ∥ Jg(ketH)v ∥2
2137
+ ν ∆(t)dt dk
2138
+ ≤∥ v ∥2 2 | cν(λ) |2
2139
+ R
2140
+
2141
+ K×[0,R]
2142
+ e−2ρH(g−1ketH) | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |2
2143
+ From
2144
+ | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |≤ C(| λ | +ρ) | A+(g−1k1(x)eA+(x)) − H(g−1k1(x)eA+(x) |
2145
+ together with Lemma 7.2 we get
2146
+
2147
+ K×[0,R]
2148
+ e−2ρH(g−1ketH) | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |2
2149
+
2150
+
2151
+ C(| λ | +ρ)1+ | g.0 |
2152
+ 1− | g.0 |
2153
+ �2 1
2154
+ R
2155
+
2156
+ K×[0,R]
2157
+ e−2ρH(g−1k)e−2(ρ+2t)∆(t) dk dt.
2158
+ 22
2159
+
2160
+ As
2161
+
2162
+ K
2163
+ e−2ρH(g−1k) dk = 1 and ∆(t) ≤ 2ρe2ρt we obtain
2164
+ lim
2165
+ R→∞
2166
+ 1
2167
+ R
2168
+
2169
+ K×[0,R]
2170
+ e−2ρH(g−1ketH) | e(isλ−ρ)(A+(g−1k1(x)eA+(x))−H(g−1k1(x)eA+(x))] − 1 |2= 0.
2171
+ This shows that Jg ≃ 0. Therefore we have proved that for each g ∈ G, rg ≃ 0 as to be shown.
2172
+ It remain to prove Lemma 7.2.
2173
+ Proof of Lemma 7.2. If g =
2174
+
2175
+ a
2176
+ b
2177
+ c
2178
+ d
2179
+
2180
+ =
2181
+
2182
+ u1
2183
+ 0
2184
+ 0
2185
+ v1
2186
+
2187
+ at
2188
+
2189
+ u2
2190
+ 0
2191
+ 0
2192
+ v2
2193
+
2194
+ with respect to the Cartan decomposition G =
2195
+ KAK. Then we easily see that d = cosh t v1v2 and (7.6) follows. Analogously if g =
2196
+
2197
+ a
2198
+ b
2199
+ c
2200
+ d
2201
+
2202
+ =
2203
+
2204
+ u
2205
+ 0
2206
+ 0
2207
+ v
2208
+
2209
+ at n with
2210
+ respect to the Iwasawa decomposition. Then from g.e1 =
2211
+
2212
+ ae1 + b
2213
+ ce1 + d
2214
+
2215
+ = et
2216
+
2217
+ u
2218
+ v
2219
+
2220
+ we get et v = ce1 + d and (7.7) follows.
2221
+ We have
2222
+ g exp(RH) =
2223
+
2224
+
2225
+ ∗∗
2226
+ ∗ ∗ ∗
2227
+ sinh Re1 + cosh Rd
2228
+
2229
+ Then (7.6) imply that τν(κ1(g)κ2(g)) = τν( tanh Rce1+d
2230
+ |tanh Rce1+d|). Thus limR→∞ τν(κ1(g)κ2(g)) = τν( ce1+d
2231
+ |ce1+d|). This finishes
2232
+ the proof of Lemma 7.2, and the proof of the Key Lemma is completed.
2233
+ 8
2234
+ Appendix
2235
+ In this section we collect some results on the Jacobi functions, referring to [19] for more details.
2236
+ For α, β, λ ∈ C; α ̸= −1, −2, · · · and t ∈ R, the Jacobi function is defined by
2237
+ φ(α,β)
2238
+ λ
2239
+ (t) = 2F1(iλ + ρα,β
2240
+ 2
2241
+ , −iλ + ρα,β
2242
+ 2
2243
+ ; α + 1; − sinh2 t),
2244
+ where 2F1 is the Gauss hypergeometric function and ρα,β = α + β + 1.
2245
+ The Jacobi function φ(α,β)
2246
+ λ
2247
+ is the unique even smooth function on R which satisfy φ(α,β)
2248
+ λ
2249
+ (0) = 1 and the differential
2250
+ equation
2251
+ { d2
2252
+ dt2 + [(2α + 1) coth t + (2β + 1) tanh t] d
2253
+ dt + λ2 + ρ2
2254
+ α,β}φ(α,β)
2255
+ λ
2256
+ (t) = 0.
2257
+ (A1)
2258
+ For λ /∈ −iN another solution Ψα,β
2259
+ λ
2260
+ of (A1) such that
2261
+ Ψα,β
2262
+ λ
2263
+ (t) = e(iλ−ρα,β)t(1 + ◦(1)),
2264
+ as
2265
+ t → ∞
2266
+ (A2)
2267
+ is given by
2268
+ Ψα,β
2269
+ λ
2270
+ (t) = (2 sinh t)iλ−ρα,β 2F1(ρα,β − iλ
2271
+ 2
2272
+ , β − α + 1 − iλ
2273
+ 2
2274
+ ; 1 − iλ; −
2275
+ 1
2276
+ sinh2 t).
2277
+ Moreover there exists a constant C > 0 such that for all λ ∈ R and all t ≥ 1 we have
2278
+ Ψα,β
2279
+ λ
2280
+ (t) = e(iλ−ρα,β)t(1 + e−2tΘλ(t)),
2281
+ with
2282
+ | Θλ(t) |≤ C.
2283
+ (A2’)
2284
+ For λ /∈ iZ, we have
2285
+ φ(α,β)
2286
+ λ
2287
+ (t) =
2288
+
2289
+ s=±1
2290
+ cα,β(sλ)Ψα,β
2291
+ sλ (t)
2292
+ (A3)
2293
+ 23
2294
+
2295
+ where
2296
+ cα,β(λ) = 2ρα,β−iλ Γ(α + 1)Γ(iλ)
2297
+ Γ( iλ+ρα,β
2298
+ 2
2299
+ )Γ( iλ+α−β+1
2300
+ 2
2301
+ )
2302
+ .
2303
+ For ℜ(iλ) > 0, the asymptotic behaviour of φ(α,β)
2304
+ λ
2305
+ as t → ∞ is then given by
2306
+ lim
2307
+ t→∞ e(ρα,β−iλ)tφ(α,β)
2308
+ λ
2309
+ (t) = cα,β(λ).
2310
+ (A4)
2311
+ Let De(R) denote the space of even smooth function with compact support on R. For f ∈ De(R), the Fourier-Jacobi
2312
+ transform J α,βf (λ ∈ C) is defined by
2313
+ J α,βf(λ) =
2314
+ � ∞
2315
+ 0
2316
+ f(t)φ(α,β)
2317
+ λ
2318
+ (t)∆α,β(t) dt,
2319
+ (A5)
2320
+ where ∆α,β(t) = (2 sinh t)2α+1(2 cosh t)2β+1.
2321
+ In the sequel, we assume that α > −1, β ∈ R. Then the meromorphic function cα,β(−λ)−1 has only simple poles for
2322
+ ℑλ ≥ 0 which occur in the set
2323
+ Dα,β = {λk = i(| β | −α − 1 − 2k); k = 0, 1, · · · , | β | −α − 1 − 2k > 0}.
2324
+ (If | β |≤ α + 1, then Dα,β is empty).
2325
+ The following inversion and Plancherel formulas for the Jacobi transform hold for every f ∈ De(R):
2326
+ f(t) = 1
2327
+
2328
+ � ∞
2329
+ 0
2330
+ (J α,βf)(λ) φ(α,β)
2331
+ λ
2332
+ (t) | cα,β(λ) |−2 dλ +
2333
+
2334
+ λk∈Dα,β
2335
+ dk(J α,βf)(λk) φ(α,β)
2336
+ λk
2337
+ (t),
2338
+ (A6)
2339
+ � ∞
2340
+ 0
2341
+ | f(t) |2 ∆(t) dt = 1
2342
+
2343
+ � ∞
2344
+ 0
2345
+ | (J α,βf)(λ) |2 | cα,β(λ) |−2 dλ +
2346
+
2347
+ λk∈Dα,β
2348
+ dk | (J α,βf)(λk) |2
2349
+ (A6’)
2350
+ where dk = −i Resλ=λk(cα,β(λ)cα,β(−λ))−1, is given explicitly by
2351
+ dk = (β − α − 2k − 1)2−2(α+β)Γ(α + k + 1)Γ(β − k)
2352
+ Γ2(α + 1)Γ(β − α − k)k!
2353
+ .
2354
+ (A7)
2355
+ References
2356
+ [1] Anker,J. P.: A basis inequality for Scattering Theory for Riemannian Symmetric Spaces of the Noncompact Type.
2357
+ Amer. J. Math. 113 (3), 391-398 (1991)
2358
+ [2] A. Agmon, L. Hormander, Asymptotic properties of solutions of differential equations with simple characteristics,
2359
+ J. Analyse Math, 30 (1976), 1-38.
2360
+ [3] A. Boussejra, A. Intissar, Caractérisation des integrales de Poisson-Szego de L2(∂Bn) dans la boule de Bergman
2361
+ Bn, n ≥ 2. C. R. Acad. Sci. 318 (1994).
2362
+ [4] A. Boussejra, A. Intissar, L2-concrete Spectral Analysis of the Invariant Laplacian in the Unit Complex Ball. J.
2363
+ Funct. Anal. 160 (1998), 115-140.
2364
+ [5] A. Boussejra, H. Sami Characterization of the Lp-range of the Poisson transform in Hyperbolic spaces. J. Lie
2365
+ Theory. 12 (2002), 1-14.
2366
+ 24
2367
+
2368
+ [6] A. Boussejra, Boundary behavior of Poisson integrals on Boundaries of Symmetric Spaces, J. Lie Theory. 21
2369
+ (2011), 243-261.
2370
+ [7] A. Boussejra, N. Ourchane, Characterization of the Lp-range of the Poisson Transform On the Octonionic Plane.
2371
+ J. Lie Theory. 28 (2018) 805-828.
2372
+ [8] A. Boussejra, N. Imesmad, and A. Ouald Chaib, L2-Poisson integral representations of eigensections of invariant
2373
+ differential operators on a homogeneous line bundle over the complex Grassmann manifold SU(r, r +b)/S(U(r)×
2374
+ U(r + b)). Ann Glob Anal Geom 61, 399–426 (2022).
2375
+ [9] T. P. Branson, G. Olafsson, and H. Schlichtkrull, A bundle-valued Radon transform with applications to invariant
2376
+ wave equations, Quart. J. Math. Oxford (2) 45 (1994), 429-461.
2377
+ [10] W. O. Bray, Aspects of harmonic analysis on real hyperbolic space. Fourier analysis (Orono, ME, 1992), Lecture
2378
+ Notes in Pure and Appl. Math., vol. 157, Dekker, New York, 1994, pp. 77-102.
2379
+ [11] R. Camporesi, The Helgason Fourier transform for homogeneous vector bundles over Riemannian symmetric
2380
+ spaces, Pacific J. Math. 179 (1997) 263–300.
2381
+ [12] G. van Djick, A. Pasquale, Harmonic Analysis on Vector bundles over Sp(1, n)/Sp(1) × Sp(n), L’Enseignement
2382
+ Mathématique, t. 45 (1999), 219-252.
2383
+ [13] S. Helgason, Groups and Geometric Analysis; Integral geometry, Invariant Differential operators and Spherical
2384
+ Functions. Academic Press, New York 1984.
2385
+ [14] S. Helgason, Groups and Geometric Analysis, volume 83 of Mathematical Surveys and Monographs. Amer. Math.
2386
+ Soc., Providence, RI, 2000.
2387
+ [15] A. D. Ionescu, On the Poisson transform on symmetric spaces of rank one, J. Funct. Anal. 174 (2000), no 2,513-523.
2388
+ [16] K. Kaizuka, A characterization of the L2-range of the Poisson transform related to Strichartz conjecture on
2389
+ symmetric spaces of noncompact type, Adv. Math. 303 (2016) 464-501.
2390
+ [17] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, M. Tanaka, Eigenfunctions of invariant
2391
+ differential operators on a symmetric space, Ann. of Math. (2) 111 (1980), no. 3, 589-608.
2392
+ [18] A. W. Knapp, Representation Theory of Semisimple Groups. An overview based on Examples, Princeton Math.
2393
+ Ser.36, Princeton Univ. Press, Princeton, NJ, 1986.
2394
+ [19] T. H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups. In: Askey, R.A., Koorn-
2395
+ winder, T.H., Schempp, N. (eds.), Special functions: Group theoretical aspects and applications. Dordrecht:
2396
+ Reidel Publishing Company, 1984, pp. 1–85
2397
+ [20] P. Kumar, S. K. Ray, and R. P. Sarkar, Characterization of almost Lp-eigenfunctions of the Laplace-Beltrami
2398
+ operator, Trans. Amer. Math. Soc. 366 (2014), 3191-3225.
2399
+ [21] P. Kumar, Fourier restriction theorem and characterization on weak L2-eigenfunctions of the Laplace-Beltrami
2400
+ operator, J. Funct. Anal. 266 (2014) 5584–5597.
2401
+ [22] N. Lohoué and Th. Rychner, Some function spaces on symmetric spaces related to convolution operators, J.
2402
+ Funct. Anal. 55 (1984), no. 2, 200-219.
2403
+ 25
2404
+
2405
+ [23] M. Olbrich, Die Poisson-transformation für homogene Vektorbündel. PhD thesis, Humboldt-Unversität zu Berlin,
2406
+ 1995.
2407
+ [24] P. Sjögren, Characterization of Poisson integrals on symmaetric spaces, Math. Scand. 49(1981), no 2, 229-249.
2408
+ [25] R S. Strichartz, Harmonic Analysis as Spectral Theory of Laplacians, J. Funct. Anal. 87 (1991) 51-148.
2409
+ [26] R, Takahashi, Fonctions sphériques dans les groupes Sp(n, 1). In J. Faraut (ed.),Théorie du potentiel et analyse
2410
+ harmonique, Lecture Notes in Mathematics 404. Springer Verlag, Berlin 218-238.
2411
+ [27] H. van der Ven, Vector valued Poisson transforms on Riemannian symmetric spaces of rank one, J. Funct. Anal.
2412
+ 119 (1994), 358–400.
2413
+ [28] A. Yang, Poisson transform on vector bundles, Trans. Amer. Math. Soc. 350 (1998), 857-887.
2414
+ 26
2415
+
9NE4T4oBgHgl3EQf3Q1N/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dAyT4oBgHgl3EQfdPeW/content/2301.00299v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d9d344411b84209f769536e243eccc2f8e15260d659ff4b7feb390783776ee0
3
+ size 2019813
9dAyT4oBgHgl3EQfdPeW/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3941fbe1257c57c9e55aadd42a568e2c253742236113d10d772ec4bf54334a8
3
+ size 3014701
A9AzT4oBgHgl3EQfv_5R/content/2301.01715v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8182638d5d7e925d82e53c3b35e7606670147e90e45f203387462176149d263
3
+ size 1856310
A9AzT4oBgHgl3EQfv_5R/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e418626cafc7c72992510d69d7ec7a5d44cf531391bc06f7ac21f49545ec9598
3
+ size 2097197
A9AzT4oBgHgl3EQfv_5R/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d68f002bbdc73edd3dd14f04a207878fe866aca162a02b668385b3e2d94f048
3
+ size 78789
AdE0T4oBgHgl3EQfxgLI/content/tmp_files/2301.02648v1.pdf.txt ADDED
@@ -0,0 +1,2950 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Climate change heterogeneity:
2
+ A new quantitative approach
3
+
4
+ Mar´ıa Dolores Gadea Rivas †
5
+ University of Zaragoza
6
+ Jes´us Gonzalo ‡
7
+ U. Carlos III de Madrid
8
+ July 10, 2022
9
+ Abstract
10
+ Climate change is a non-uniform phenomenon.
11
+ This paper proposes a new
12
+ quantitative methodology to characterize, measure and test the existence of
13
+ climate change heterogeneity. It consists of three steps. First, we introduce a
14
+ new testable warming typology based on the evolution of the trend of the whole
15
+ temperature distribution and not only on the average. Second, we define the
16
+ concepts of warming acceleration and warming amplification in a testable for-
17
+ mat. And third, we introduce the new testable concept of warming dominance
18
+ to determine whether region A is suffering a worse warming process than region
19
+ B. Applying this three-step methodology, we find that Spain and the Globe ex-
20
+ perience a clear distributional warming process (beyond the standard average)
21
+ but of different types. In both cases, this process is accelerating over time and
22
+ asymmetrically amplified. Overall, warming in Spain dominates the Globe in
23
+ all the quantiles except the lower tail of the global temperature distribution
24
+ that corresponds to the Artic region. Our climate change heterogeneity results
25
+ open the door to the need for a non-uniform causal-effect climate analysis that
26
+ goes beyond the standard causality in mean as well as for a more efficient design
27
+ of the mitigation-adaptation policies. In particular, the heterogeneity we find
28
+ suggests that these policies should contain a common global component and a
29
+ clear local-regional element. Future climate agreements should take the whole
30
+ temperature distribution into account.
31
+ JEL classification: C31, C32, Q54
32
+ Keywords:
33
+ Climate change; Climate heterogeneity; Global-Local Warming;
34
+ Functional stochastic processes; Distributional characteristics; Trends; Quan-
35
+ tiles; Temperature distributions.
36
+ ∗The authors gratefully acknowledge the financial support from the Gobierno de Aragon and FEDER
37
+ funds (grant, LMP71-18), the Spanish Ministerio de Ciencia y Tecnolog´ıa, Agencia Espa˜nola de Investi-
38
+ gaci´on (AEI) and European Regional Development Fund (ERDF, EU) under grants PID2019-104960GB-
39
+ IOO, ECO2017-83255-C3-1-P (AEI/ERDF, EU) and ECO2016-81901-REDT, and Bank of Spain (ER grant
40
+ program). We thank Rodrigo Gonzalez Laiz for excellent research assistance.
41
+ † Department of Applied Economics, University of Zaragoza. Gran V´ıa, 4, 50005 Zaragoza (Spain). Tel:
42
+ +34 9767 61842, fax: +34 976 761840 and e-mail: [email protected]
43
+ ‡ Department of Economics, University Carlos III, Madrid 126 28903 Getafe (Spain).
44
+ Tel: +34 91
45
+ 6249853, fax: +34 91 6249329 and e-mail: [email protected] (corresponding author)
46
+ 1
47
+ arXiv:2301.02648v1 [econ.EM] 6 Jan 2023
48
+
49
+ Climate change heterogeneity
50
+ 2
51
+ 1
52
+ Introduction
53
+ All the assessment reports (AR) published by the Intergovernmental Panel of Cli-
54
+ mate Change (IPCC) show that there is overwhelming scientific evidence of the
55
+ existence of global warming (GW). It is also well known that climate change (CC)
56
+ is a non-uniform phenomenon. What is not so clear is the degree of heterogeneity
57
+ across all the regions in our planet. In fact, an important part of the Sixth Assess-
58
+ ment Report (AR6) published by the IPCC in 2021-2022 is dedicated to this issue:
59
+ climate (warming) heterogeneity. This is reflected in the chapters studying regional
60
+ climate change. Our paper introduces a new quantitative methodology that builds
61
+ on that described in Gadea and Gonzalo 2020 (GG2020) to characterize, measure
62
+ and test the existence of such climate change heterogeneity (CCH). This is done in
63
+ three steps. First, we introduce a warming typology (W1, W2 and W3) based on
64
+ the trending behavior of the quantiles of the temperature distribution of a given ge-
65
+ ographical location. Second, we define in a testable format the concepts of warming
66
+ acceleration and warming amplification. These concepts help to characterize (more
67
+ ordinally than cardinally) the warming process of different regions. And third, we
68
+ propose the new concept of warming dominance (WD) to establish when region A
69
+ suffers a worse warming process than region B.
70
+ We have chosen Spain as a benchmark geographical location because, as the AR6
71
+ report states “. . . Spain is fully included in the Mediterranean (MED) Reference
72
+ Region, but is one of the most climatically diverse countries in the world. . . ”.
73
+ This fact opens up the possibility of studying warming heterogeneity (WH) from
74
+ Spain to the Globe (outer heterogeneity, OWH) and also from Spain to some of its
75
+ regions represented by Madrid and Barcelona (inner heterogeneity, IWH).
76
+ The three steps rely on the results reported in GG2020, where the different
77
+ distributional characteristics (moments, quantiles, inter quantile range, etc.) of the
78
+ temperature distribution of a given geographical location are converted into time
79
+ series objects. By doing this, we can easily implement and test all the concepts
80
+ involved in the three steps.
81
+ A summary of the results is as follows. Spain and the Globe present a clear
82
+ warming process; but it evolves differently. Spain goes from a warming process where
83
+ lower and upper temperatures share the same trend behavior (IQR is maintained
84
+ constant over time, warming type W1) to one characterized by a larger increase in
85
+ the upper temperatures (IQR increases over time, warming type W3). In contrast,
86
+
87
+ Climate change heterogeneity
88
+ 3
89
+ the Globe as a whole maintains a stable warming type process characterized by lower
90
+ temperatures that increase more than the upper ones (IQR decreases in time).1 In
91
+ our typology, this constitutes a case of warming type W2. Climate heterogeneity
92
+ can go further.
93
+ For instance, within Spain we find that Madrid is of type W3
94
+ while the warming process of Barcelona is of type W1. This is in concordance with
95
+ the Madrid climate being considered a Continental Mediterranean climate while
96
+ Barcelona is more a pure Mediterranean one.
97
+ The proposed warming typology (W1, W2 and W3), although dynamic, is more
98
+ ordinal than cardinal. In this paper, the strength of a warming process is captured
99
+ in the second step by analyzing its acceleration and its amplification with respect
100
+ to a central tendency measure of the temperature distribution. Acceleration and
101
+ amplification contribute to the analysis of warming heterogeneity. The acceleration
102
+ in the Globe is present in all the quantiles above q30 while in Spain it already
103
+ becomes significant above the 10th quantile. We find an asymmetric behavior of
104
+ warming amplification; in Spain (in comparison with the Globe mean temperature)
105
+ this is present in the upper temperatures (above the 80th and 90th quantiles) while
106
+ in the Globe the opposite occurs (below the 20th and 30th quantiles). Within Spain,
107
+ Madrid and Barcelona also behave differently in terms of acceleration and amplifi-
108
+ cation. Overall, warming in Spain dominates that of the Globe in all the quantiles
109
+ except for the lower quantile q05, and between Madrid and Barcelona there is a par-
110
+ tial WD. Madrid WD Barcelona in the upper part of the distribution and Barcelona
111
+ WD Madrid in the lower one.
112
+ The existence of a clear heterogeneous warming process opens the door to the
113
+ need of a new non-uniform causal (effect) research. One that goes beyond the stan-
114
+ dard causality in mean analysis (see Tol, 2021). CCH also suggests that in order
115
+ for the mitigation-adaptation policies to be as efficient as possible they should be
116
+ designed following a type of common factor structure: a common global compo-
117
+ nent plus an idiosyncratic local element.
118
+ This goes in the line with the results
119
+ found in Brock and Xepapadeas (2017), D’Autume et al. (2016) and Peng et al.
120
+ (2021). Future climate agreements should clearly have this CCH into account. An
121
+ important by-product of our warming heterogeneity results is the increase that this
122
+ heterogeneity can generate in the public awareness of the GW process. A possible
123
+ explanation for that can be found in the behavioral economics work by Malmendier
124
+ 1Similar results for Central England are found in GG2020 and for the US in Diebold and Rude-
125
+ bush, 2022.
126
+
127
+ Climate change heterogeneity
128
+ 4
129
+ (2021), in the results of the European Social Survey analyzed in Nowakowski and
130
+ Oswald (2020) or in the psychology survey by Maiella et al. (2020).
131
+ The rest of the paper is organized as follows. Section 2 describes our basic climate
132
+ econometrics methodology. Section 3 presents a brief description of the temperature
133
+ data from Spain and the Globe. Section 4 addresses the application of our quantita-
134
+ tive methodology in the cross-sectional version (temperatures measured monthly by
135
+ stations in an annual interval) to Spain and (versus) the Globe. It also reports the
136
+ results of applying the methodology using a purely temporal dimension (local daily
137
+ temperature on an annual basis) for two representative stations in Spain (Madrid
138
+ and Barcelona, empirical details in the Appendix). Section 5 offers a comparison
139
+ and interpretation of the results. Finally, Section 6 concludes the paper.
140
+ 2
141
+ Climate Econometrics Methodology
142
+ In this section, we briefly summarize the novel econometric methodology introduced
143
+ in GG2020 to analyze Global and Local Warming processes. Following GG2020,
144
+ Warming is defined as an increasing trend in certain characteristics of the temper-
145
+ ature distribution. More precisely:
146
+ Definition 1. (Warming):
147
+ Warming is defined as the existence of an increas-
148
+ ing trend in some of the characteristics measuring the central tendency or position
149
+ (quantiles) of the temperature distribution.
150
+ An example is a deterministic trend with a polynomial function for certain val-
151
+ ues of the β parameters Ct = β0 + β1t + β2t2 + ... + βktk.
152
+ In GG2020 temperature is viewed as a functional stochastic process X = (Xt(ω), t ∈
153
+ T), where T is an interval in R, defined in a probability space (Ω, ℑ, P). A conve-
154
+ nient example of an infinite-dimensional discrete-time process consists of associating
155
+ ξ = (ξn, n ∈ R+) with a sequence of random variables whose values are in an appro-
156
+ priate function space. This may be obtained by setting
157
+ Xt(n) = ξtN+n, 0 ≤ n ≤ N, t = 0, 1, 2, ..., T
158
+ (1)
159
+ so X = (Xt, t = 0, 1, 2, ..., T). If the sample paths of ξ are continuous, then we have
160
+ a sequence X0, X1, .... of random variables in the space C[0, N]. The choice of the
161
+ period or segment t will depend on the situation in hand. In our case, t will be the
162
+
163
+ Climate change heterogeneity
164
+ 5
165
+ period of a year, and N represents cross-sectional units or higher-frequency time
166
+ series.
167
+ We may be interested in modeling the whole sequence of G functions, for instance
168
+ the sequence of state densities (f1(ω), f2(ω), ..., fT (ω) ) as in Chang et al. (2015,
169
+ 2016) or only certain characteristics (Ct(w)) of these G functions, for instance, the
170
+ state mean, the state variance, the state quantile, etc. These characteristics can
171
+ be considered time series objects and, therefore, all the econometric tools already
172
+ developed in the time series literature can be applied to Ct(w). With this charac-
173
+ teristic approach we go from Ω to RT , as in a standard stochastic process, passing
174
+ through a G functional space:
175
+
176
+ (w)
177
+ X
178
+ −→
179
+ G
180
+ Xt(w)
181
+ C−→
182
+ R
183
+ Ct(w)
184
+ Going back to the convenient example and abusing notation, the stochastic struc-
185
+ ture can be summarized in the following array:
186
+ X10(w) = ξ0(w)
187
+ X11(w) = ξ1(w)
188
+ . . .
189
+ X1N(w) = ξN(w)
190
+ C1(w)
191
+ X20(w) = ξN+1(w)
192
+ X21(w) = ξN+2(w)
193
+ . . .
194
+ X2N(w) = ξ2N(w)
195
+ C2(w)
196
+ .
197
+ .
198
+ .
199
+ .
200
+ .
201
+ .
202
+ . . .
203
+ . . .
204
+ . . .
205
+ .
206
+ .
207
+ .
208
+ .
209
+ .
210
+ .
211
+ XT0(w) = ξ(T−1)N+1(w)
212
+ XT1(w) = ξ(T−1)N+2(w)
213
+ . . .
214
+ XTN(w) = ξTN(w)
215
+ CT (w)
216
+ (2)
217
+ The objective of this section is to provide a simple test to detect the existence of
218
+ a general unknown trend component in a given characteristic Ct of the temperature
219
+ process Xt.
220
+ To do this, we need to convert Definition 1 into a more practical
221
+ definition.
222
+ Definition 2. (Trend test): Let h(t) be an increasing function of t. A characteristic
223
+ Ct of a functional stochastic process Xt contains a trend if β ̸= 0 in the regression
224
+ Ct = α + βh(t) + ut, t = 1, ..., T.
225
+ (3)
226
+ The main problem of this definition is that the trend component in Ct as well
227
+ as the function h(t) are unknown. Therefore this definition can not be easily imple-
228
+ mented. If we assume that Ct does not have a trend component (it is I(0))2 and
229
+ 2Our definition of an I(0) process follows Johansen (1995). A stochastic process Yt that satisfies
230
+ Yt − E(Yt) =
231
+
232
+
233
+ i=1
234
+ Ψiεt−i is called I(0) if
235
+
236
+
237
+ i=1
238
+ Ψ izi converges for |z| < 1 + δ, for some δ > 0 and
239
+
240
+
241
+ i=1
242
+ Ψ
243
+ i ̸= 0, where the condition εt ∼ iid(0,σ2) with σ2 > 0 is understood.
244
+
245
+ Climate change heterogeneity
246
+ 6
247
+ h(t) is linear, then we have the following well known result.
248
+ Proposition 1. Let Ct = I(0). In the regression
249
+ Ct = α + βt + ut
250
+ (4)
251
+ the OLS estimator
252
+ �β =
253
+ T�
254
+ t=1
255
+ (Ct − C)(t − t)
256
+ T�
257
+ t=1
258
+ (t − t)2
259
+ (5)
260
+ satisfies
261
+ T 3/2 �β = Op(1)
262
+ (6)
263
+ and asymptotically (T → ∞)
264
+ tβ=0 is N(0, 1).
265
+ In order to analyze the behavior of the t-statistic tβ = 0, for a general trend
266
+ component in Ct, it is very convenient to use the concept of Summability (Berenguer-
267
+ Rico and Gonzalo, 2014)
268
+ Definition 3. (Order of Summability):
269
+ A trend h(t) is said to be summable of
270
+ order “δ” (S(δ)) if there exists a slowly varying function L(T),3 such that
271
+ ST =
272
+ 1
273
+ T 1+δ L(T)
274
+ T
275
+
276
+ t=1
277
+ h(t)
278
+ (8)
279
+ is O(1), but not o(1).
280
+ Proposition 2. Let Ct = h(t) + I(0) such that h(t) is S(δ) with δ ≥ 0, and such
281
+ that the function g(t) = h(t)t is S(δ + 1). In the regression
282
+ Ct = α + βt + ut
283
+ (9)
284
+ the OLS �β estimator satisfies
285
+ T (1−δ) �β = Op(1).
286
+ (10)
287
+ Assuming that the function h(t)2 is S(1 + 2δ − γ) with 0 ≤ γ ≤ 1 + δ, then
288
+ 3A positive Lebesgue measurable function, L, on (0, ∞) is slowly varying (in Karamata’s sense)
289
+ at ∞ if
290
+ L(λn)
291
+ L(n) → 1 (n → ∞) ∀λ > 0.
292
+ (7)
293
+ (See Embrechts et al., 1999, p. 564).
294
+
295
+ Climate change heterogeneity
296
+ 7
297
+ tβ=0 =
298
+ � Op(T γ/2) for 0 ≤ γ ≤ 1
299
+ Op(T 1/2) for 1 ≤ γ ≤ 1 + δ
300
+ (11)
301
+ Examples of how this proposition applies for different particular Data Generat-
302
+ ing Processes (DGP) can be found in GG.
303
+ A question of great empirical importance is how our trend test (TT) of Proposi-
304
+ tion 2 behaves when Ct = I(1) (accumulation of an I(0) process). Following Durlauf
305
+ and Phillips (1988), T 1/2 �β = Op(1); however, tβ=0 diverges as T→∞. Therefore,
306
+ our TT can detect the stochastic trend generated by an I(1) process. In fact, our
307
+ test will detect trends generated by any of the three standard persistent processes
308
+ considered in the literature (see Muller and Watson, 2008): (i) fractional or long-
309
+ memory models; (ii) near-unit-root AR models; and (iii) local-level models. Let
310
+ Ct = µ + zt, t = 1, ..., T.
311
+ (12)
312
+ In the first model, zt is a fractional process with 1/2 < d < 3/2. In the second
313
+ model, zt follows an AR, with its largest root close to unity, ρT = 1 − c/T. In the
314
+ third model, zt is decomposed into an I(1) and an I(0) component. Its simplest
315
+ format is zt = υt + ϵt with υt = υt−1 +ηt, where ϵt is ID(0, q ∗ σ2), ηt is ID(0, σ2),
316
+ σ2 > 0 and both disturbances are serially and mutually independent. Note that the
317
+ pure unit-root process is nested in all three models: d = 1, c = 0, and q = 0.
318
+ The long-run properties implied by each of these models can be characterized
319
+ using the stochastic properties of the partial sum process for zt.
320
+ The standard
321
+ assumptions considered in the macroeconomics or finance literature assume the ex-
322
+ istence of a “δ,” such that T −1/2+δ �T
323
+ t=1 zt −→ σ H(.), where “δ” is a model-specific
324
+ constant and H is a model-specific zero-mean Gaussian process with a given covari-
325
+ ance kernel k(r, s). Then, it is clear that the process Ct = µ + zt is summable (see
326
+ Berenguer-Rico and Gonzalo, 2014). This is the main reason why Proposition 3
327
+ holds for these three persistent processes.
328
+ Proposition 3. Let Ct = µ + zt, t = 1, ..., T, with zt any of the following three
329
+ processes: (i) a fractional or long-memory model, with 1/2 < d < 3/2; (ii) a near-
330
+ unit-root AR model; or (iii) a local-level model. Furthermore, T −1/2+δ �T
331
+ t=1 zt −→ σ
332
+ H(.), where “δ” is a model-specific constant and H is a model-specific zero-mean
333
+ Gaussian process with a given covariance kernel k(r, s). Then, in the LS regression
334
+ Ct = α + βt + ut,
335
+
336
+ Climate change heterogeneity
337
+ 8
338
+ the t-statistic diverges,
339
+ tβ=0 = Op(T 1/2).
340
+ After the development of the theoretical core, we are in a position to design
341
+ tools to approach the empirical strategy. The following subsection describes each of
342
+ them.
343
+ 2.1
344
+ Empirical tools: definitions and tests
345
+ From Propositions 2 and 3, Definition 2 can be simplified into the following testable
346
+ and practical definition.
347
+ Definition 4. (Practical definition 2):
348
+ A characteristic Ct of a functional stochas-
349
+ tic process Xt contains a trend if in the LS regression,
350
+ Ct = α + βt + ut, t = 1, ..., T,
351
+ (13)
352
+ β = 0 is rejected.
353
+ Several remarks are relevant with respect to this definition: (i) regression (13)
354
+ has to be understood as the linear LS approximation of an unknown trend function
355
+ h(t) (see White, 1980); (ii) the parameter β is the plim of �βols; (iii) if the regression
356
+ (13) is the true data-generating process, with ut ∼ I(0), then the OLS �β estimator
357
+ is asymptotically equivalent to the GLS estimator (see Grenander and Rosenblatt,
358
+ 1957); (iv) in practice, in order to test β = 0, it is recommended to use a robust
359
+ HAC version of tβ=0 (see Busetti and Harvey, 2008); and (v) this test only detects
360
+ the existence of a trend but not the type of trend.
361
+ For all these reasons, in the empirical applications we implement Definition 4
362
+ by estimating regression (13) using OLS and constructing a HAC version of tβ=0
363
+ (Newey and West, 1987).
364
+ These linear trends can be common across characteristics indicating similar pat-
365
+ ters in the time evolution of these characteristics.
366
+ Definition 5. (Co-trending): A set of m distributional characteristics (C1t,C2t,...,Cmt)
367
+ do linearly co-trend if in the multivariate regression
368
+
369
+
370
+ C1t
371
+ ...
372
+ Cmt
373
+
374
+ � =
375
+
376
+
377
+ α1
378
+ ...
379
+ αm
380
+
381
+ � +
382
+
383
+
384
+ β1
385
+ ...
386
+ βm
387
+
388
+ � t +
389
+
390
+
391
+ u1t
392
+ ...
393
+ umt
394
+
395
+
396
+ (14)
397
+
398
+ Climate change heterogeneity
399
+ 9
400
+ all the slopes are equal, β1 = β2 = ... = βm. 4
401
+ This co-trending hypothesis can be tested by a standard Wald test.
402
+ When m = 2 an alternative linear co-trending test can be obtained from the
403
+ regression
404
+ Cit − Cjt = α + βt + ut
405
+ i ̸= j i, j = 1, ..., m by testing the null hypothesis of β = 0 vs β ̸= 0 using a simple
406
+ tβ=0 test.
407
+ Climate classification is a tool used to recognize, clarify and simplify the existent
408
+ climate heterogeneity in the Globe. It also helps us to better understand the Globe’s
409
+ climate and therefore to design more efficient global warming mitigation policies.
410
+ The prevalent climate typology is that proposed by K¨oppen (1900) and later on
411
+ modified in K¨oppen and Geiger (1930). It is an empirical classification that divides
412
+ the climate into five major types, which are represented by the capital letters A
413
+ (tropical zone), B (dry zone), C (temperate zone), D (continental zone), and E
414
+ (polar zone). Each of these climate types except for B is defined by temperature
415
+ criteria. More recent classifications can been found in the AR6 of the IPCC (2021,
416
+ 2022) but all of them share the spirit of the original one of K¨oppen (1900).
417
+ The climate classification we propose in this section is also based on temperature
418
+ data and it has three simple distinctive characteristics:
419
+ • It considers the whole temperature distribution and not only the average
420
+ • It has a dynamic nature: it is based on the evolution of the trend of the
421
+ temperature quantiles (lower and upper).
422
+ • It can be easily tested
423
+ Definition 6. (Warming Typology): We define four types of warming processes:
424
+ • W0: There is no trend in any of the quantiles (No warming).
425
+ • W1: All the location distributional characteristics have the same positive trend
426
+ (dispersion does not contain a trend)
427
+ • W2: The Lower quantiles have a larger positive trend than the Upper quantiles
428
+ (dispersion has a negative trend)
429
+ • W3: The Upper quantiles have a larger positive trend than the Lower quantiles
430
+ (dispersion has a positive trend).
431
+ 4This definition is slightly different from the one in Carrion-i-Silvestre and Kim (2019).
432
+
433
+ Climate change heterogeneity
434
+ 10
435
+ Climate is understood, unlike weather, as a medium and long-term phenomenon
436
+ and, therefore, it is crucial to take trends into account. Notice that this typology
437
+ can be used to describe macroclimate as well as microclimate locations.
438
+ Most of the literature on Global or Local warming only considers the trend
439
+ behavior of the central part of the distribution (mean or median). By doing this, we
440
+ are losing very useful information that can be used to describe the whole warming
441
+ process. This information is considered in the other elements of the typology W1,
442
+ W2 and W3. This typology does not say anything about the intensity of the warming
443
+ process and its dynamic. Part of this intensity is captured in the following definitions
444
+ of warming acceleration and warming amplification.
445
+ Definition 7. (Warming Acceleration):
446
+ We say that there is warming acceler-
447
+ ation in a distributional temperature characteristic Ct between the time periods
448
+ t1 = (1, ..., s) and t2 = (s + 1, ..., T) if in the following two regressions:
449
+ Ct = α1 + β1t + ut, t = 1, ..., s, ..., T,
450
+ (15)
451
+ Ct = α2 + β2t + ut, t = s + 1, ..., T,
452
+ (16)
453
+ the second trend slope is larger than the first one: β2 > β1.
454
+ In practice, we implement this definition by testing in the previous system the
455
+ null hypothesis β2 = β1 against the alternative β2 > β1 An alternative warming
456
+ acceleration test can be formed by testing for a structural break at t = s. Neverthe-
457
+ less, we prefer the approach of Definition 7 because it matches closely the existent
458
+ narrative on warming acceleration in the climate literature.
459
+ Definition 8. (Warming Amplification with respect to the mean):
460
+ We say that
461
+ there is a warming amplification in distributional characteristic Ct with respect the
462
+ mean if in the following regression:
463
+ Ct = β0 + β1meant + ϵt
464
+ (17)
465
+ the mean slope is greater than one: β1 > 1.
466
+ When the mean, meant, and Ct come from the same distribution, we name this
467
+ “inner” warming amplification. Otherwise, the mean may come from an external
468
+ environment and, in that case, we call it “outer” warming amplification.
469
+ Both concepts, acceleration and amplification, introduce a quantitative dimen-
470
+ sion to the ordinarily defined classification. For example, the acceleration, which
471
+
472
+ Climate change heterogeneity
473
+ 11
474
+ has a dynamic character, allows us to observe the transition from one type of cli-
475
+ mate to another. Amplification, on the other hand, makes it possible to compare
476
+ the magnitude of the trends that define each type of climate. It should be noted
477
+ that, although static in nature, it can be computed recursively at different points in
478
+ time.
479
+ In the previous definitions, we classify the warming process of different regions
480
+ which is crucial in the design of local mitigation and adaptation policies. But we,
481
+ also, need to compare the different climate change processes of two regions in order
482
+ to characterize climate heterogeneity independently of the type of warming they are
483
+ experimenting. For this purpose, we propose the following definition that shares the
484
+ spirit of the stochastic dominance concept used in the economic-finance literature.
485
+ Definition 9. (Warming Dominance (WD): We say that the temperature distri-
486
+ butions of Region A warming dominates (WD) the temperature distributions of
487
+ Region B if in the following regression
488
+ qτt(A) − qτt(B) = ατ + βτt + uτt,
489
+ (18)
490
+ βτ ≥ 0 for all 0 < τ < 1 and there is at least one value τ ∗ for which a strict
491
+ inequality holds.
492
+ It is also possible to have only partial (WD). For instance, in the lower or upper
493
+ quantiles.
494
+ 3
495
+ The data
496
+ 3.1
497
+ Spain
498
+ The measurement of meteorological information in Spain started in the eighteenth
499
+ century. However, it was not until the mid-nineteenth century that reliable and reg-
500
+ ular data became available. In Spain, there are four main sources of meteorological
501
+ information: the Resumen Anual, Bolet´ın Diario, Bolet´ın Mensual de Climatolog´ıa
502
+ and Calendario Meteorol´ogico. These were first published in 1866, 1893, 1940 and
503
+ 1943, respectively. A detailed explanation of the different sources can be found in
504
+ Carreras and Tafunell (2006).
505
+ Currently, AEMET (Agencia Estatal de Meterolog´ıa) is the agency responsible
506
+ for storing, managing and providing meteorological data to the public. Some of the
507
+ historical publications, such as the Bolet´ın Diario and Calendario Meteorol´ogico can
508
+
509
+ Climate change heterogeneity
510
+ 12
511
+ be found in digital format in their respective archives for whose use it is necessary
512
+ to use some kind of Optical Character Recognition (OCR) software.5
513
+ In 2015, AEMET developed AEMET OpenData, an Application Programming
514
+ Interface (API REST) that allows the dissemination and reuse of Spanish meteoro-
515
+ logical and climatological information. To use it, the user needs to obtain an API
516
+ key to allow access to the application. Then, either through the GUI or through
517
+ a programming language such as Java or Python, the user can request data. More
518
+ information about the use of the API can be found on their webpage.6
519
+ In this paper, we are concerned with Spanish daily station data, specifically
520
+ temperature data. Each station records the minimum, maximum and average tem-
521
+ perature as well as the amount of precipitation, measured as liters per square meter.
522
+ The data period ranges from 1920 to 2019. However, in 1920 there were only 13
523
+ provinces (out of 52) who had stations available. It was not until 1965 that all the
524
+ 52 provinces had at least one working station. Moreover, it is important to keep in
525
+ mind that the number of stations has increased substantially from only 14 stations in
526
+ 1920 to more than 250 in 2019. With this information in mind, we select the longest
527
+ span of time that guarantees a wide sample of stations so that all the geographical
528
+ areas of peninsular Spain are represented. For this reason, we decided to work with
529
+ station data from 1950 to 2019. There are 30 stations whose geographical distri-
530
+ bution is displayed in the map in Figure 1. The original daily data are converted
531
+ into monthly data, so that we finally work with a total of 30x12 station-month units
532
+ corresponding to peninsular Spain and, consequently, we have 360 observations each
533
+ year with which to construct the annual distributional characteristics.
534
+ 3.2
535
+ The Globe
536
+ In the case of the Globe, we use the database of the Climate Research Unit (CRU)
537
+ that offers monthly and yearly data of land and sea temperatures in both hemi-
538
+ spheres from 1850 to the present, collected from different stations around the world.7
539
+ Each station temperature is converted to an anomaly, taking 1961-1990 as the base
540
+ 5http : //www.aemet.es/es/conocermas/recursosenlinea/calendarios?n = todos and https :
541
+ //repositorio.aemet.es/handle/20.500.11765/6290.
542
+ 6https : //opendata.aemet.es/centrodedescargas/inicio. The use of AEMET data is regulated
543
+ in the following resolution https : //www.boe.es/boe/dias/2016/01/05/pdfs/BOE − A − 2016 −
544
+ 111.pdf.
545
+ 7We
546
+ use
547
+ CRUTEM
548
+ version
549
+ 5.0.1.0,
550
+ which
551
+ can
552
+ be
553
+ downloaded
554
+ from
555
+ (https://crudata.uea.ac.uk/cru/data/temperature/).
556
+ A recent revision of the methodology
557
+ can be found in Jones et al. (2012).
558
+
559
+ Climate change heterogeneity
560
+ 13
561
+ period, and each grid-box value, on a five-degree grid, is the mean of all the station
562
+ anomalies within that grid box. This database (in particular, the annual temper-
563
+ ature of the Northern Hemisphere) has become one of the most widely used to
564
+ illustrate GW from records of thermometer readings. These records form the blade
565
+ of the well-known “hockey stick” graph, frequently used by academics and other
566
+ institutions, such as, the IPCC. In this paper, we prefer to base our analysis on raw
567
+ station data, as in GG2020.
568
+ The database provides data from 1850 to nowadays, although due to the high
569
+ variability at the beginning of the period it is customary in the literature to begin
570
+ in 1880. In this work, we have selected the stations that are permanently present
571
+ in the period 1950-2019 according to the concept of the station-month unit. In this
572
+ way, the results are comparable with those obtained for Spain. Although there are
573
+ 10,633 stations on record, the effective number fluctuates each year and there are
574
+ only 2,192 stations with data for all the years in the sample period, which yields
575
+ 19,284 station-month units each year (see this geographical distribution in the map
576
+ in Figure 1).8 In summary, we analyze raw global data (stations instead of grids)
577
+ for the period 1950 to 2019, compute station-month units that remain all the time
578
+ and with these build the annual distributional characteristics.
579
+ 4
580
+ Empirical strategy
581
+ In this section we apply our three-step quantitative methodology to show the ex-
582
+ istent climate heterogeneity between Spain and the Globe as well as within Spain,
583
+ between Madrid and Barcelona. Because all our definitions are written in a test-
584
+ ing format, it is straightforward to empirically apply them. First, we test for the
585
+ existence of warming by testing the existence of a trend in a given distributional
586
+ characteristic. How common are the trends of the different characteristics (revealed
587
+ by a co-trending test) determine the warming typology. Second, the strength of
588
+ the warming process is tested by testing the hypothesis of warming acceleration
589
+ and warming amplification. And third, independently of the warming typology, we
590
+ determine how the warming process of Spain compares with that of the Globe as
591
+ a whole (we do the same for Madrid and Barcelona). This is done by testing for
592
+ warming dominance.
593
+ 8In the CRU data there are 115 Spanish stations. However, after removing stations not present
594
+ for the whole 1880 to 2019 period, only Madrid-Retiro, Valladolid and Soria remain. Since 1950,
595
+ applying the same criteria, only 30 remain.
596
+
597
+ Climate change heterogeneity
598
+ 14
599
+ (a) Spain. Selected stations, AEMET data 1950-2019
600
+ (b) The Globe. Selected stations, CRU data 1950-2019
601
+ Figure 1
602
+ Geographical distribution of stations
603
+ The results are presented according to the following steps: first, we apply our
604
+ trend test (see Definition 4) to determine the existence of local or global warming
605
+ and test for any possible warming acceleration; second, we test different co-trending
606
+
607
+ 45
608
+ 18d:w 135°W 90
609
+ 45°
610
+ S
611
+ 90Climate change heterogeneity
612
+ 15
613
+ hypotheses to determine the type of warming of each area; thirdly, we test the
614
+ warming amplification hypothesis for different quantiles with respect to the mean
615
+ (of Spain as well as of the Globe): H0 : β1 = 1 versus Ha : β1 > 1 in (17); and
616
+ finally, we compare the CC of different regions, for Spain and the Globe, and within
617
+ Spain, between Madrid and Barcelona, with our warming dominance test (see 18).9
618
+ 4.1
619
+ Local warming: Spain
620
+ The cross-sectional analysis is approached under two assumptions. First, choosing a
621
+ sufficiently long and representative period of the geographical diversity of the Span-
622
+ ish Iberian Peninsula, 1950-2019. Second, we work with month-station units from
623
+ daily observations to construct the annual observations of the time series object from
624
+ the data supplied by the stations, following a methodology similar to that carried
625
+ out for the whole planet in GG2020.10 The study comprises the steps described in
626
+ the previous section. The density of the data and the evolution of characteristics
627
+ are displayed, respectively in Figures 2 and 3.
628
+ We find positive and significant trends in the mean, max, min and all the quan-
629
+ tiles. Therefore from definition 1, we conclude there exists a clear local warming
630
+ (see Table 1).
631
+ The recursive evolution for the periods 1950-2019 and 1970-2019 shows a clear
632
+ increase in the trends of the mean, some dispersion measures and higher quantiles
633
+ (see the last column of Table 1). More precisely, there is a significant trend acceler-
634
+ ation in most of the distributional characteristics except the lower quantiles (below
635
+ q20). These quantiles, q05 and q10, remain stable.
636
+ The co-trending tests for the full sample 1950-2019 show a similar evolution of
637
+ the trend for all the quantiles with a constant iqr (see Table 2). This indicates
638
+ that in this period the warming process of Spain can be considered a W1 type.
639
+ More recently, 1970-2019, the co-trending tests (see Table 3) indicate the upper
640
+ quantiles grow faster than the lower ones. This, together with a positive trend in
641
+ the dispersion measured by the iqr shows that Spain has evolved from a W1 to a
642
+ 9Before testing for the presence of trends in the distributional characteristics of the data, we
643
+ test for the existence of unit roots. To do so, we use the well-known Augmented Dickey-Fuller test
644
+ (ADF; Dickey and Fuller, 1979), where the number of lags is selected in accordance with the SBIC
645
+ criterion. The results, available from the authors on request, show that the null hypothesis of a
646
+ unit root is rejected for all the characteristics considered.
647
+ 10The results with daily averages are very similar.
648
+ The decision to work with monthly data
649
+ instead of daily in the cross-sectional approach has been based on its compatibility with the data
650
+ available for the Globe.
651
+
652
+ Climate change heterogeneity
653
+ 16
654
+ W3 warming type process
655
+ Finally, no evidence of “inner” amplification during the period 1950-2019 is found
656
+ in the lower quantiles. Regarding the upper quantiles, we found both “inner” and
657
+ “outer” amplification in the second period, which supports the previous finding of
658
+ a transition from type W1 to type W3 (see Table 4).
659
+ Summing up, with our proposed tests for the evolution of the trend of the whole
660
+ temperature distribution, we conclude that Spain has evolved from a W1 type to a
661
+ much more dangerous W3 type. The results of acceleration and dynamic amplifi-
662
+ cation reinforce the finding of this transition to type W3.
663
+ Figure 2
664
+ Spain annual temperature density calculated with monthly data across stations
665
+
666
+ 0.06
667
+ 0.05
668
+ 0.04
669
+ 0.03 -
670
+ 0.02 -
671
+ 0.01 ~
672
+ 0
673
+ 30.6096
674
+ 26.691
675
+ 22.7724
676
+ 18.8538
677
+ 14.9352
678
+ 11.0166
679
+ 7.09796
680
+ 3.17936
681
+ 1970
682
+ -0.739249
683
+ 1960
684
+ -4.65786
685
+ 1950
686
+ temperature in degrees Celsius (month-station units)2010
687
+ 2000
688
+ 1990
689
+ 1980
690
+ vears0.07Climate change heterogeneity
691
+ 17
692
+ Figure 3
693
+ Characteristics of temperature data in Spain with stations selected since 1950
694
+ (monthly data across stations, AEMET, 1950-2019)
695
+
696
+ 30
697
+ 15
698
+ mean
699
+ max
700
+ 13
701
+ 25
702
+ 1950
703
+ 1970
704
+ 1990
705
+ 2010
706
+ 1950
707
+ 1970
708
+ 1990
709
+ 2010
710
+ 0
711
+ -6
712
+ min
713
+ std
714
+ 1950
715
+ 1970
716
+ 1990
717
+ 2010
718
+ 1950
719
+ 1970
720
+ 1990
721
+ 2010
722
+ 35
723
+ range
724
+ 30
725
+ iqr
726
+ 8
727
+ 25
728
+ 1950
729
+ 1970
730
+ 1990
731
+ 2010
732
+ 1950
733
+ 1970
734
+ 1990
735
+ 2010
736
+ 0.2
737
+ 2.5
738
+ kurtosis
739
+ skewness
740
+ 2
741
+ 0.2
742
+ 1950
743
+ 1970
744
+ 1990
745
+ 2010
746
+ 1950
747
+ 1970
748
+ 1990
749
+ 2010
750
+ 20
751
+ 10
752
+ 0
753
+ 1950
754
+ 1970
755
+ 1990
756
+ 2010
757
+ q5
758
+ q10
759
+ q20
760
+ q30
761
+ q40
762
+ q50
763
+ q60
764
+ q70
765
+ q80
766
+ q90
767
+ q95Climate change heterogeneity
768
+ 18
769
+ Table 1
770
+ Trend acceleration hypothesis (Spain monthly data across stations, AEMET,
771
+ 1950-2019)
772
+ Trend test by periods
773
+ Acceleration test
774
+ names/periods
775
+ 1950-2019
776
+ 1970-2019
777
+ 1950-2019, 1970-2019
778
+ mean
779
+ 0.0242
780
+ 0.0389
781
+ 3.0294
782
+ (0.0000)
783
+ (0.0000)
784
+ (0.0015)
785
+ max
786
+ 0.0312
787
+ 0.0526
788
+ 2.7871
789
+ (0.0000)
790
+ (0.0000)
791
+ (0.0030)
792
+ min
793
+ 0.0289
794
+ 0.0251
795
+ -0.2557
796
+ (0.0000)
797
+ (0.0654)
798
+ (0.6007)
799
+ std
800
+ 0.0036
801
+ 0.0098
802
+ 1.7952
803
+ (0.0518)
804
+ (0.0021)
805
+ (0.0374)
806
+ iqr
807
+ 0.0051
808
+ 0.0158
809
+ 1.8197
810
+ (0.1793)
811
+ (0.0028)
812
+ (0.0355)
813
+ rank
814
+ 0.0023
815
+ 0.0276
816
+ 1.2705
817
+ (0.8249)
818
+ (0.1127)
819
+ (0.1030)
820
+ kur
821
+ -0.0010
822
+ -0.0018
823
+ -0.9191
824
+ (0.0203)
825
+ (0.0198)
826
+ (0.8202)
827
+ skw
828
+ 0.0011
829
+ -0.0002
830
+ -1.5989
831
+ (0.0271)
832
+ (0.7423)
833
+ (0.9439)
834
+ q5
835
+ 0.0227
836
+ 0.0206
837
+ -0.2559
838
+ (0.0000)
839
+ (0.0059)
840
+ (0.6008)
841
+ q10
842
+ 0.0200
843
+ 0.0203
844
+ 0.0406
845
+ (0.0000)
846
+ (0.0077)
847
+ (0.4838)
848
+ q20
849
+ 0.0209
850
+ 0.0300
851
+ 1.4158
852
+ (0.0000)
853
+ (0.0000)
854
+ (0.0796)
855
+ q30
856
+ 0.0221
857
+ 0.0333
858
+ 2.0100
859
+ (0.0000)
860
+ (0.0000)
861
+ (0.0232)
862
+ q40
863
+ 0.0213
864
+ 0.0366
865
+ 2.4867
866
+ (0.0000)
867
+ (0.0000)
868
+ (0.0071)
869
+ q50
870
+ 0.0211
871
+ 0.0404
872
+ 3.2496
873
+ (0.0000)
874
+ (0.0000)
875
+ (0.0007)
876
+ q60
877
+ 0.0246
878
+ 0.0446
879
+ 3.1147
880
+ (0.0000)
881
+ (0.0000)
882
+ (0.0011)
883
+ q70
884
+ 0.0273
885
+ 0.0478
886
+ 3.3143
887
+ (0.0000)
888
+ (0.0000)
889
+ (0.0006)
890
+ q80
891
+ 0.0275
892
+ 0.0471
893
+ 2.6949
894
+ (0.0000)
895
+ (0.0000)
896
+ (0.0040)
897
+ q90
898
+ 0.0321
899
+ 0.0548
900
+ 3.2441
901
+ (0.0000)
902
+ (0.0000)
903
+ (0.0007)
904
+ q95
905
+ 0.0335
906
+ 0.0526
907
+ 3.3568
908
+ (0.0000)
909
+ (0.0000)
910
+ (0.0005)
911
+ Note:
912
+ OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression:
913
+ Ct = α + βt + ut, for two
914
+ different time periods. For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, ..., s, ..., T, Ct =
915
+ α2 + β2t + ut, t = s + 1, ..., T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1. We show the value of
916
+ the t-statistic and its HAC p-value.
917
+ Table 2
918
+ Co-trending analysis (Spain monthly data across stations, AEMET, 1950-2019)
919
+ Joint hypothesis tests
920
+ Wald test
921
+ p-value
922
+ All quantiles (q05, q10,...,q90, q95)
923
+ 13.235
924
+ 0.211
925
+ Lower quantiles (q05, q10, q20, q30)
926
+ 0.310
927
+ 0.958
928
+ Medium quantiles (q40, q50, q60)
929
+ 0.438
930
+ 0.803
931
+ Upper quantiles (q70, q80, q90, q95)
932
+ 1.515
933
+ 0.679
934
+ Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60)
935
+ 0.771
936
+ 0.993
937
+ Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95)
938
+ 8.331
939
+ 0.215
940
+ Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 )
941
+ 11.705
942
+ 0.111
943
+ Spacing hypothesis
944
+ Trend-coeff.
945
+ p-value
946
+ q50-q05
947
+ -0.002
948
+ 0.786
949
+ q95-q50
950
+ 0.012
951
+ 0.000
952
+ q95-q05
953
+ 0.011
954
+ 0.096
955
+ q75-q25 (iqr)
956
+ 0.005
957
+ 0.179
958
+ Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the
959
+ Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.
960
+ In the bottom panel, the TT is applied to the difference between two representative quantiles.
961
+
962
+ Climate change heterogeneity
963
+ 19
964
+ Table 3
965
+ Co-trending analysis (Spain monthly data across stations, AEMET, 1970-2019)
966
+ Joint hypothesis tests
967
+ Wald test
968
+ p-value
969
+ All quantiles (q05, q10,...,q90, q95)
970
+ 38.879
971
+ 0.000
972
+ Lower quantiles (q05, q10, q20, q30)
973
+ 3.121
974
+ 0.373
975
+ Medium quantiles (q40, q50, q60)
976
+ 1.314
977
+ 0.518
978
+ Upper quantiles (q70, q80, q90, q95)
979
+ 1.719
980
+ 0.633
981
+ Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60)
982
+ 12.771
983
+ 0.047
984
+ Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95)
985
+ 10.675
986
+ 0.099
987
+ Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 )
988
+ 37.892
989
+ 0.000
990
+ Spacing hypothesis
991
+ Trend-coeff.
992
+ p-value
993
+ q50-q05
994
+ 0.020
995
+ 0.029
996
+ q95-q50
997
+ 0.012
998
+ 0.050
999
+ q55-q05
1000
+ 0.032
1001
+ 0.002
1002
+ q75-q25 (iqr)
1003
+ 0.016
1004
+ 0.003
1005
+ Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the
1006
+ Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.
1007
+ In the bottom panel, the TT is applied to the difference between two representative quantiles.
1008
+ Table 4
1009
+ Amplification hypothesis (Spain monthly data, AEMET 1950-2019
1010
+ periods/variables
1011
+ 1950-2019
1012
+ 1970-2019
1013
+ 1950-2019
1014
+ 1970-2019
1015
+ Inner
1016
+ Outer
1017
+ q05
1018
+ 0.80
1019
+ 0.56
1020
+ 0.55
1021
+ 0.39
1022
+ (0.866)
1023
+ (0.998)
1024
+ (0.990)
1025
+ (0.996)
1026
+ q10
1027
+ 0.83
1028
+ 0.65
1029
+ 0.62
1030
+ 0.52
1031
+ (0.899)
1032
+ (0.994)
1033
+ (0.992)
1034
+ (0.986)
1035
+ q20
1036
+ 0.94
1037
+ 0.90
1038
+ 0.76
1039
+ 0.81
1040
+ (0.816)
1041
+ (0.890)
1042
+ (0.993)
1043
+ (0.899)
1044
+ q30
1045
+ 0.93
1046
+ 0.91
1047
+ 0.77
1048
+ 0.87
1049
+ (0.935)
1050
+ (0.929)
1051
+ (0.997)
1052
+ (0.834)
1053
+ q40
1054
+ 0.97
1055
+ 1.03
1056
+ 0.80
1057
+ 0.97
1058
+ (0.744)
1059
+ (0.318)
1060
+ (0.978)
1061
+ (0.566)
1062
+ q50
1063
+ 0.98
1064
+ 1.10
1065
+ 0.83
1066
+ 1.12
1067
+ (0.612)
1068
+ (0.067)
1069
+ (0.944)
1070
+ (0.212)
1071
+ q60
1072
+ 1.09
1073
+ 1.15
1074
+ 0.96
1075
+ 1.23
1076
+ (0.103)
1077
+ (0.051)
1078
+ (0.619)
1079
+ (0.056)
1080
+ q70
1081
+ 1.11
1082
+ 1.16
1083
+ 1.05
1084
+ 1.30
1085
+ (0.040)
1086
+ (0.006)
1087
+ (0.350)
1088
+ (0.028)
1089
+ q80
1090
+ 1.11
1091
+ 1.14
1092
+ 1.06
1093
+ 1.29
1094
+ (0.083)
1095
+ (0.071)
1096
+ (0.325)
1097
+ (0.060)
1098
+ q90
1099
+ 1.14
1100
+ 1.16
1101
+ 1.19
1102
+ 1.45
1103
+ (0.101)
1104
+ (0.118)
1105
+ (0.078)
1106
+ (0.007)
1107
+ q95
1108
+ 1.10
1109
+ 1.09
1110
+ 1.18
1111
+ 1.36
1112
+ (0.089)
1113
+ (0.191)
1114
+ (0.051)
1115
+ (0.008)
1116
+ Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1
1117
+ in the regression: Cit = βi0 + βi1meant + ϵit. mean refers to the average of the Spanish Global
1118
+ temperature distribution for the “inner” and “outer”cases, respectively.
1119
+
1120
+ Climate change heterogeneity
1121
+ 20
1122
+ 4.2
1123
+ Global warming: the Globe
1124
+ In this section, we carry out a similar analysis to that described in the previous
1125
+ subsection for Spain. Figures 4 and 5 show the time evolution of the Global temper-
1126
+ ature densities and their different distributional characteristics from 1950 to 2019.
1127
+ The data in both figures are obtained from stations that report data throughout the
1128
+ sample period.
1129
+ Table 5 shows a positive trend in the mean as well as in all the quantiles. This
1130
+ indicates the clear existence of Global warming, more pronounced (larger trend) in
1131
+ the lower part of the distribution (a negative trend in the dispersion measures). The
1132
+ warming process suffers an acceleration in all the quantiles above q30.
1133
+ From the co-trending analysis (see Tables 6 and 7) we can determine the type
1134
+ of warming process characterizing the whole Globe. Table 6 indicates that in the
1135
+ period 1950-2019 the Globe experimented a W2 warming type (the lower part of
1136
+ the temperature distribution grows faster than the middle and upper part, implying
1137
+ iqr and std have a negative trend). Similar results are maintained for the period
1138
+ 1970-2019 (in this case only the dispersion measure std has a negative trend).
1139
+ The asymmetric amplification results shown in Table 8 reinforce the W2 typology
1140
+ for the whole Globe: an increase of one degree in the global mean temperature
1141
+ increases the lower quantiles by more than one degree. This does not occur with
1142
+ the upper part of the distribution. Notice that this amplification goes beyond the
1143
+ standard Artic amplification (q05) affecting also q10, q20 and q30.
1144
+ Summing up, the results from our different proposed tests for the evolution of
1145
+ the trend of the whole temperature distribution indicate that the Globe can be
1146
+ cataloged as a undergoing type W2 warming process.
1147
+ This warming type may
1148
+ have more serious consequences for ice melting, sea level increases, permafrost, CO2
1149
+ migration, etc. than the other types.
1150
+
1151
+ Climate change heterogeneity
1152
+ 21
1153
+ Figure 4
1154
+ Global annual temperature density calculated with monthly data across stations
1155
+
1156
+ 0.03
1157
+ 0.025
1158
+ density
1159
+ 0.02
1160
+ 0.015
1161
+ 0.01 -
1162
+ 0.005 ~
1163
+ 0
1164
+ 33.369
1165
+ 21.5248
1166
+ 9.68063
1167
+ -2.16358
1168
+ -14.0078
1169
+ -25.852
1170
+ -37.6962
1171
+ -49.5404
1172
+ 1970
1173
+ -61.3846
1174
+ 1960
1175
+ -73.2288
1176
+ 1950
1177
+ temperature in degrees Celsius (month-station units)2010
1178
+ 2000
1179
+ 1990
1180
+ 1980
1181
+ vears0.04
1182
+ 0.035Climate change heterogeneity
1183
+ 22
1184
+ Figure 5
1185
+ Characteristics of temperature data in the Globe (monthly data across stations, CRU,
1186
+ 1950-2019)
1187
+
1188
+ 12
1189
+ 40
1190
+ 11
1191
+ 38
1192
+ 10
1193
+ mean
1194
+ max
1195
+ 1950196019701980199020002010
1196
+ 1950196019701980
1197
+ 199020002010
1198
+ 13
1199
+ -44
1200
+ -46
1201
+ -48
1202
+ 50
1203
+ -52
1204
+ std
1205
+ 11
1206
+ 1950196019701980199020002010
1207
+ 1950196019701980199020002010
1208
+ 8
1209
+ 90
1210
+ 85
1211
+ 16
1212
+ iqr
1213
+ range
1214
+ 80
1215
+ 19501960 1970198019902000 2010
1216
+ 1950196019701980199020002010
1217
+ G
1218
+ kur
1219
+ -0.8
1220
+ W
1221
+ -0.9
1222
+ skw
1223
+ 195019601970:1980199020002010
1224
+ 195019601970198019902000:2010
1225
+ 20
1226
+ 10
1227
+ 0
1228
+ 10
1229
+ 1950196019701980199020002010
1230
+ q5
1231
+ q10
1232
+ q20
1233
+ q30
1234
+ q40
1235
+ q50
1236
+ q60
1237
+ q70
1238
+ q80
1239
+ q90
1240
+ q95Climate change heterogeneity
1241
+ 23
1242
+ Table 5
1243
+ Trend acceleration hypothesis (CRU monthly data across stations, 1950-2019)
1244
+ Trend test by periods
1245
+ Acceleration test
1246
+ names/periods
1247
+ 1950-2019
1248
+ 1970-2019
1249
+ 1950-2019, 1970-2019
1250
+ mean
1251
+ 0.0213
1252
+ 0.0300
1253
+ 2.2023
1254
+ (0.0000)
1255
+ (0.0000)
1256
+ (0.0147)
1257
+ max
1258
+ 0.0361
1259
+ 0.0523
1260
+ 1.1217
1261
+ (0.0000)
1262
+ (0.0001)
1263
+ (0.1320)
1264
+ min
1265
+ 0.0423
1266
+ -0.0109
1267
+ 0.5016
1268
+ (0.0000)
1269
+ (0.5867)
1270
+ (0.3084)
1271
+ std
1272
+ -0.0070
1273
+ -0.0057
1274
+ 0.1776
1275
+ (0.0000)
1276
+ (0.0570)
1277
+ (0.4296)
1278
+ iqr
1279
+ -0.0067
1280
+ -0.0043
1281
+ 0.2454
1282
+ (0.0435)
1283
+ (0.4183)
1284
+ (0.4033)
1285
+ rank
1286
+ -0.0062
1287
+ 0.0632
1288
+ 0.2181
1289
+ (0.5876)
1290
+ (0.0005)
1291
+ (0.4138)
1292
+ kur
1293
+ -0.0010
1294
+ 0.0001
1295
+ 0.0445
1296
+ (0.5205)
1297
+ (0.9566)
1298
+ (0.4823)
1299
+ skw
1300
+ 0.0006
1301
+ 0.0003
1302
+ 0.0301
1303
+ (0.0577)
1304
+ (0.5726)
1305
+ (0.4880)
1306
+ q5
1307
+ 0.0404
1308
+ 0.0468
1309
+ 0.7035
1310
+ (0.0000)
1311
+ (0.0000)
1312
+ (0.2415)
1313
+ q10
1314
+ 0.0305
1315
+ 0.0406
1316
+ 0.9273
1317
+ (0.0000)
1318
+ (0.0001)
1319
+ (0.1777)
1320
+ q20
1321
+ 0.0253
1322
+ 0.0342
1323
+ 1.0156
1324
+ (0.0000)
1325
+ (0.0000)
1326
+ (0.1558)
1327
+ q30
1328
+ 0.0215
1329
+ 0.0280
1330
+ 1.2056
1331
+ (0.0000)
1332
+ (0.0000)
1333
+ (0.1150)
1334
+ q40
1335
+ 0.0192
1336
+ 0.0293
1337
+ 1.9873
1338
+ (0.0000)
1339
+ (0.0000)
1340
+ (0.0245)
1341
+ q50
1342
+ 0.0179
1343
+ 0.0268
1344
+ 1.8614
1345
+ (0.0000)
1346
+ (0.0000)
1347
+ (0.0324)
1348
+ q60
1349
+ 0.0185
1350
+ 0.0291
1351
+ 2.1971
1352
+ (0.0000)
1353
+ (0.0000)
1354
+ (0.0149)
1355
+ q70
1356
+ 0.0185
1357
+ 0.0288
1358
+ 2.5770
1359
+ (0.0000)
1360
+ (0.0000)
1361
+ (0.0055)
1362
+ q80
1363
+ 0.0160
1364
+ 0.0257
1365
+ 2.2460
1366
+ (0.0000)
1367
+ (0.0000)
1368
+ (0.0132)
1369
+ q90
1370
+ 0.0146
1371
+ 0.0243
1372
+ 2.0848
1373
+ (0.0005)
1374
+ (0.0000)
1375
+ (0.0195)
1376
+ q95
1377
+ 0.0143
1378
+ 0.0239
1379
+ 1.7520
1380
+ (0.0001)
1381
+ (0.0000)
1382
+ (0.0410)
1383
+ Note:
1384
+ OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression:
1385
+ Ct = α + βt + ut, for two
1386
+ different time periods. For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, ..., s, ..., T, Ct =
1387
+ α2 + β2t + ut, t = s + 1, ..., T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1. We show the value of
1388
+ the t-statistic and its HAC p-value.
1389
+ Table 6
1390
+ Co-trending analysis (CRU montly data, 1950-2019)
1391
+ Joint hypothesis tests
1392
+ Wald test
1393
+ p-value
1394
+ All quantiles (q05, q10,...,q90, q95)
1395
+ 25.143
1396
+ 0.005
1397
+ Lower quantiles (q05, q10, q20, q30)
1398
+ 9.545
1399
+ 0.023
1400
+ Medium quantiles (q40, q50, q60)
1401
+ 0.078
1402
+ 0.962
1403
+ Upper quantiles (q70, q80, q90, q95)
1404
+ 1.099
1405
+ 0.777
1406
+ Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60)
1407
+ 17.691
1408
+ 0.007
1409
+ Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95)
1410
+ 2.041
1411
+ 0.916
1412
+ Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 )
1413
+ 24.683
1414
+ 0.001
1415
+ Spacing hypothesis
1416
+ Trend-coeff.
1417
+ p-value
1418
+ q50-q05
1419
+ -0.022
1420
+ 0.000
1421
+ q95-q50
1422
+ -0.004
1423
+ 0.193
1424
+ q95-q05
1425
+ -0.026
1426
+ 0.000
1427
+ q75-q25 (iqr)
1428
+ -0.007
1429
+ 0.043
1430
+ Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the
1431
+ Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.
1432
+ In the bottom panel, the TT is applied to the difference between two representative quantiles.
1433
+
1434
+ Climate change heterogeneity
1435
+ 24
1436
+ Table 7
1437
+ Co-trending analysis (CRU montly data, 1970-2019)
1438
+ Joint hypothesis tests
1439
+ Wald test
1440
+ p-value
1441
+ All quantiles (q05, q10,...,q90, q95)
1442
+ 18.478
1443
+ 0.047
1444
+ Lower quantiles (q05, q10, q20, q30)
1445
+ 5.523
1446
+ 0.137
1447
+ Medium quantiles (q40, q50, q60)
1448
+ 0.569
1449
+ 0.752
1450
+ Upper quantiles (q70, q80, q90, q95)
1451
+ 2.667
1452
+ 0.446
1453
+ Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60)
1454
+ 7.606
1455
+ 0.268
1456
+ Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95)
1457
+ 6.714
1458
+ 0.348
1459
+ Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 )
1460
+ 14.520
1461
+ 0.043
1462
+ Spacing hypothesis
1463
+ Trend-coeff.
1464
+ p-value
1465
+ q50-q05
1466
+ -0.020
1467
+ 0.047
1468
+ q95-q50
1469
+ -0.003
1470
+ 0.462
1471
+ q95-q05
1472
+ -0.023
1473
+ 0.048
1474
+ q75-q25 (iqr)
1475
+ -0.004
1476
+ 0.418
1477
+ Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the
1478
+ Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.
1479
+ In the bottom panel, the TT is applied to the difference between two representative quantiles.
1480
+ Table 8
1481
+ Amplification hypotheses (CRU monthly data across stations, 1950-2019)
1482
+ periods/variables
1483
+ 1950-2019
1484
+ 1970-2019
1485
+ q05
1486
+ 2.00
1487
+ 1.83
1488
+ (0.000)
1489
+ (0.000)
1490
+ q10
1491
+ 1.79
1492
+ 1.73
1493
+ (0.000)
1494
+ (0.001)
1495
+ q20
1496
+ 1.41
1497
+ 1.37
1498
+ (0.000)
1499
+ (0.000)
1500
+ q30
1501
+ 1.07
1502
+ 1.00
1503
+ (0.089)
1504
+ (0.502)
1505
+ q40
1506
+ 0.88
1507
+ 0.91
1508
+ (0.999)
1509
+ (0.973)
1510
+ q50
1511
+ 0.74
1512
+ 0.81
1513
+ (1.000)
1514
+ (0.997)
1515
+ q60
1516
+ 0.74
1517
+ 0.85
1518
+ (0.999)
1519
+ (0.973)
1520
+ q70
1521
+ 0.77
1522
+ 0.85
1523
+ (1.000)
1524
+ (0.988)
1525
+ q80
1526
+ 0.72
1527
+ 0.78
1528
+ (1.000)
1529
+ (1.000)
1530
+ q90
1531
+ 0.69
1532
+ 0.70
1533
+ (1.000)
1534
+ (1.000)
1535
+ q95
1536
+ 0.60
1537
+ 0.64
1538
+ (1.000)
1539
+ (1.000)
1540
+ Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1
1541
+ in the regression: Cit = βi0 +βi1meant +ϵit. mean refers to the average of the Global temperature
1542
+ distribution.
1543
+
1544
+ Climate change heterogeneity
1545
+ 25
1546
+ 4.3
1547
+ Micro-local warming: Madrid and Barcelona
1548
+ The existence of warming heterogeneity implies that in order to design more ef-
1549
+ ficient mitigation policies, they have to be developed at different levels: global,
1550
+ country, region etc. How local we need to go will depend on the existing degree of
1551
+ micro-warming heterogeneity. In this subsection, we go to the smallest level, cli-
1552
+ mate station level . We analyze, within Spain, the warming process in two weather
1553
+ stations corresponding to two cities: Madrid (Retiro station) and Barcelona (Fabra
1554
+ station).
1555
+ 11 Obviously, the data provided by these stations is not cross-sectional
1556
+ data but directly pure time series data. Our methodology can be easily applied to
1557
+ higher frequency time series, in this case daily data, to compute the distributional
1558
+ characteristics (see Figures A1 and A2)12.
1559
+ The results are shown in the Appendix. These two stations, Madrid-Retiro and
1560
+ Barcelona-Fabra clearly experience two different types of warming.
1561
+ First, there
1562
+ is evidence of micro-local warming, understood as the presence of significant and
1563
+ positive trends, in all the important temperature distributional characteristics of
1564
+ both stations. The acceleration phenomenon is also clearly detected, in other words,
1565
+ the warming increases as time passes (see Tables A1 and A5). Secondly, from the
1566
+ co-trending tests (Tables A2-A3 and A6-A7), it can be concluded that the warming
1567
+ process of Madrid-Retiro is type W3 while for Barcelona-Fabra it is type W1. In
1568
+ both cases the warming typology is stable through both sample periods (1950-2019
1569
+ and 1970-2019). Thirdly, as expected, Madrid-Retiro presents “inner” and “outer”
1570
+ amplification for the upper quantiles, while Barcelona-Fabra does so only for the
1571
+ center part of its temperature distribution (see Tables A4 and A8).
1572
+ Summing up, even within Spain we find evidence of warming heterogeneity.
1573
+ While Madrid (Continental Mediterranean climate) has a similar pattern as that
1574
+ of peninsular Spain (1970-2019) W3, Barcelona (Mediterranean coastline climate)
1575
+ maintains a W1 typology. Thus there are two different warming processes which
1576
+ require mitigation policies at the country as well as the very local level.
1577
+ 11From Madrid and Barcelona there is data since 1920’s, nevertheless we began the study in 1950
1578
+ for consistency with the previous analysis of Spain and the Globe.
1579
+ 12See the application to Central England in GG2020 and in Gadea and Gonzalo (2022) to Madrid,
1580
+ Zaragoza and Oxford.
1581
+
1582
+ Climate change heterogeneity
1583
+ 26
1584
+ 5
1585
+ Comparing results
1586
+ The goal of this section is to show the existence of climate heterogeneity by com-
1587
+ paring the results obtained from applying our three-step methodology to different
1588
+ regions. These results are summarized in Table 10. It is clear that there is distribu-
1589
+ tional warming in all the analyzed areas; but this warming follows different patterns
1590
+ and sometimes the warming type is not even stable. In the case of Spain, it depends
1591
+ on the period under consideration. Figure 6 captures graphically the different trend
1592
+ behavior and intensity of the distributional characteristics by regions (Spain and the
1593
+ Globe and Madrid and Barcelona).13 The graphical results in this figure coincide
1594
+ with the results of the warming typology tests shown in Table 10.
1595
+ The middle of Table 10 shows that warming acceleration is detected in all the
1596
+ locations. This acceleration is more general in Spain than in the Globe (see also the
1597
+ heatmap in Figure 7) and in Barcelona than in Madrid. Apart from these differences,
1598
+ the acceleration shares certain similarities across regions. This is not the case for
1599
+ the warming amplification that is clearly asymmetric. Spain suffers an amplification
1600
+ in the upper quantiles while the Globe does so in the lower ones. Notice that the
1601
+ latter amplification goes beyond the standard results found in the literature for the
1602
+ Arctic region (q05). We detect amplification also for the regions corresponding to
1603
+ the quantiles q10-q30. In the case of Madrid and Barcelona, Madrid suffers a wider
1604
+ warming amplification than Barcelona.
1605
+ The results of the first two steps of our methodology are obtained region by region
1606
+ (Spain, the Globe, Madrid and Barcelona). It is the last step, via the warming
1607
+ dominance test (see the numerical results in Table 9) where we compare directly
1608
+ one region with another. Warming in Spain dominates that of the Globe in all the
1609
+ quantiles except the lower q05.14 This would support the idea held in European
1610
+ institutions and gathered in international reports on the greater intensity of climate
1611
+ 13The analysis of other characteristics such as the third and fourth order moments can contribute
1612
+ to the temperature distributions. In the case of Spain, the kurtosis is always negative with a mean
1613
+ value of -0.8 and a significant negative trend, which means that we are dealing with a platykurtic
1614
+ distribution with tails less thick than Normal, a shape that is accelerating over time. However, it
1615
+ is ot possible to draw conclusions about symmetry given its high variability over time. Conversely,
1616
+ the temperature distribution in the Globe is clearly leptokurtic with an average kurtosis of 0.9
1617
+ and a negative but not significant trend. The global temperature observations are therefore more
1618
+ concentrated around the mean and their tails are thicker than in a Normal distribution.
1619
+ The
1620
+ skewness is clearly negative although a decreasing and significant trend points to a reduction of the
1621
+ negative skewness.
1622
+ 14A more detailed analysis of the warming process suffered in the Artic region can be found in
1623
+ Gadea and Gonzalo (2021).
1624
+
1625
+ Climate change heterogeneity
1626
+ 27
1627
+ change in the Iberian Peninsula. Warming in Madrid dominates that of Barcelona
1628
+ in the upper quantiles, while the reverse is the case in the lower quantiles. This
1629
+ latter result coincides with the idea that regions close to the sea have milder upper
1630
+ temperatures.
1631
+ Further research (beyond the scope of this paper) will go in the direction of
1632
+ finding the possible causes behind the warming types W1, W2, and W3. Following
1633
+ the literature, on diurnal temperature asymmetry (Diurnal Temperature Range =
1634
+ DTR = Tmax − Tmin) we can suggest as possible causes for W2 the cloud coverage
1635
+ (Karl et al. 1993) and the planetary boundary layer (see Davy et al. 2017). For
1636
+ W3, the process of desertification (see Karl et al. 1993).
1637
+ Summarizing, in this section we describe, measure and test the existence of
1638
+ warming heterogeneity in different regions of the planet. It is important to note
1639
+ that these extensive results can not be obtained by the standard analysis of the
1640
+ average temperature.
1641
+ Table 9
1642
+ Warming dominance
1643
+ Spain-Globe
1644
+ Madrid-Barcelona
1645
+ Quantile
1646
+ β
1647
+ t-ratio
1648
+ β
1649
+ t-ratio
1650
+ q05
1651
+ -0.018
1652
+ (-2.770)
1653
+ -0.013
1654
+ (-3.730)
1655
+ q10
1656
+ -0.010
1657
+ (-1.504)
1658
+ -0.013
1659
+ (-4.215)
1660
+ q20
1661
+ -0.004
1662
+ (-0.950)
1663
+ -0.012
1664
+ (-2.988)
1665
+ q30
1666
+ 0.001
1667
+ (0.180)
1668
+ -0.013
1669
+ (-4.164)
1670
+ q40
1671
+ 0.002
1672
+ (0.788)
1673
+ -0.009
1674
+ (-2.909)
1675
+ q50
1676
+ 0.003
1677
+ (1.025)
1678
+ -0.003
1679
+ (-0.701)
1680
+ q60
1681
+ 0.006
1682
+ (1.933)
1683
+ -0.001
1684
+ (-0.219)
1685
+ q70
1686
+ 0.009
1687
+ (3.266)
1688
+ 0.006
1689
+ (1.252)
1690
+ q80
1691
+ 0.012
1692
+ (3.203)
1693
+ 0.016
1694
+ (3.331)
1695
+ q90
1696
+ 0.017
1697
+ (3.862)
1698
+ 0.010
1699
+ (1.869)
1700
+ q95
1701
+ 0.019
1702
+ (4.930)
1703
+ 0.014
1704
+ (1.993)
1705
+ Note: The slopes (t-statistic) of the following regression
1706
+ qτt(A) − qτt(B) = ατ + βτt + uτt
1707
+ In the first column A=Spain, B=Globe and in the second A=Madrid, B=Barcelona.
1708
+
1709
+ Climate change heterogeneity
1710
+ 28
1711
+ Table 10
1712
+ Summary of results
1713
+ Cross analysis
1714
+ Sample
1715
+ Period
1716
+ Type
1717
+ Acceleration
1718
+ Amplification
1719
+ Dominance
1720
+ Inner
1721
+ Outer
1722
+ Spain
1723
+ 1950-2019
1724
+ W1
1725
+ [mean, std, iqr, rank,
1726
+ [q70, q80, q95]
1727
+ [q90, q95]
1728
+ [q60,..., q95]
1729
+ q20,..., q95]
1730
+ 1970-2019
1731
+ W3
1732
+ [q50,..., q80]
1733
+ [q60,..., q95]
1734
+ The Globe
1735
+ 1950-2019
1736
+ W2
1737
+ [mean
1738
+ [q05,..., q30]
1739
+ [q05]
1740
+ q40,..., q95]
1741
+ 1970-2019
1742
+ W2
1743
+ [q05,..., q20]
1744
+ Time analysis
1745
+ Sample
1746
+ Period
1747
+ Type
1748
+ Acceleration
1749
+ Amplification
1750
+ Dominance
1751
+ Madrid, Retiro Station
1752
+ 1950-2019
1753
+ W3
1754
+ [mean, std, rank,
1755
+ [q50,..., q95]
1756
+ [ q40,..., q95]
1757
+ [q80,..., q95]
1758
+ q40, ..., q95]
1759
+ 1970-2019
1760
+ W3
1761
+ [q50,..., q95]
1762
+ [q40,..., q95]
1763
+ Barcelona, Fabra Station
1764
+ 1950-2019
1765
+ W1
1766
+ [mean,
1767
+ -
1768
+ [q30,..., q90]
1769
+ [q05,..., q40]
1770
+ q20,..., q95]
1771
+ 1970-2019
1772
+ W1
1773
+ [q60, q70]
1774
+ [q30,..., q70]
1775
+ Note: For Spain and the Globe we build characteristics from station-months units. For Madrid and Barcelona we use daily
1776
+ frequency time series. A significance level of 10% is considered for all tests and characteristics.
1777
+
1778
+ Climate change heterogeneity
1779
+ 29
1780
+ -0.01
1781
+ 0
1782
+ 0.01
1783
+ 0.02
1784
+ 0.03
1785
+ 0.04
1786
+ 0.05
1787
+ 0.06
1788
+ mean
1789
+ max
1790
+ min
1791
+ std
1792
+ iqr
1793
+ rank
1794
+ kur
1795
+ skw
1796
+ q5
1797
+ q10
1798
+ q20
1799
+ q30
1800
+ q40
1801
+ q50
1802
+ q60
1803
+ q70
1804
+ q80
1805
+ q90
1806
+ q95
1807
+ Globe-montly-1950
1808
+ Spain-montly-1950
1809
+ -0.01
1810
+ 0
1811
+ 0.01
1812
+ 0.02
1813
+ 0.03
1814
+ 0.04
1815
+ 0.05
1816
+ 0.06
1817
+ mean
1818
+ max
1819
+ min
1820
+ std
1821
+ iqr
1822
+ rank
1823
+ kur
1824
+ skw
1825
+ q5
1826
+ q10
1827
+ q20
1828
+ q30
1829
+ q40
1830
+ q50
1831
+ q60
1832
+ q70
1833
+ q80
1834
+ q90
1835
+ q95
1836
+ Spain-montly-1950
1837
+ Madrid-daily-1950
1838
+ Barcelona-daily-1950
1839
+ Note: The bars represent the intensity of the trends found in each characteristic measured through
1840
+ the value of the β-coefficient estimated in the regression Ct = α + βt + ut.
1841
+ Figure 6
1842
+ Trend evolution of different temperature distributional characteristics
1843
+
1844
+ Climate change heterogeneity
1845
+ 30
1846
+ 1950-2019
1847
+ 1955-2019
1848
+ 1960-2019
1849
+ 1965-2019
1850
+ 1970-2019
1851
+ 1975-2019
1852
+ 1980-2019
1853
+ 1985-2019
1854
+ 1990-2019
1855
+ 1995-2019
1856
+ 2000-2019
1857
+ mean
1858
+ max
1859
+ min
1860
+ std
1861
+ iqr
1862
+ rank
1863
+ kur
1864
+ skw
1865
+ q5
1866
+ q10
1867
+ q20
1868
+ q30
1869
+ q40
1870
+ q50
1871
+ q60
1872
+ q70
1873
+ q80
1874
+ q90
1875
+ q95
1876
+ -0.08
1877
+ -0.06
1878
+ -0.04
1879
+ -0.02
1880
+ 0
1881
+ 0.02
1882
+ 0.04
1883
+ 0.06
1884
+ 0.08
1885
+ 0.1
1886
+ (a) Globe
1887
+ Spain
1888
+ 1950-2019
1889
+ 1955-2019
1890
+ 1960-2019
1891
+ 1965-2019
1892
+ 1970-2019
1893
+ 1975-2019
1894
+ 1980-2019
1895
+ 1985-2019
1896
+ 1990-2019
1897
+ 1995-2019
1898
+ 2000-2019
1899
+ mean
1900
+ max
1901
+ min
1902
+ std
1903
+ iqr
1904
+ rank
1905
+ kur
1906
+ skw
1907
+ q5
1908
+ q10
1909
+ q20
1910
+ q30
1911
+ q40
1912
+ q50
1913
+ q60
1914
+ q70
1915
+ q80
1916
+ q90
1917
+ q95
1918
+ -0.08
1919
+ -0.06
1920
+ -0.04
1921
+ -0.02
1922
+ 0
1923
+ 0.02
1924
+ 0.04
1925
+ 0.06
1926
+ 0.08
1927
+ 0.1
1928
+ (b) Spain
1929
+ Note: The color scale on the right side of the figure shows the intensity of the trend, based on the
1930
+ value of the β-coefficient estimated in the regression Ct = α + βt + ut.
1931
+ Figure 7
1932
+ Comparing heatmaps
1933
+
1934
+ Climate change heterogeneity
1935
+ 31
1936
+ 6
1937
+ Conclusions
1938
+ The existence of Global Warming is very well documented in all the scientific reports
1939
+ published by the IPCC. In the last one, the AR6 report (2022), special attention is
1940
+ dedicated to climate change heterogeneity (regional climate). Our paper presents a
1941
+ new quantitative methodology, based on the evolution of the trend of the whole tem-
1942
+ perature distribution and not only on the average, to characterize, to measure and
1943
+ to test the existence of such warming heterogeneity. It is found that the local warm-
1944
+ ing experienced by Spain (one of most climatically diverse areas) is very different
1945
+ from that of the Globe as a whole. In Spain, the upper-temperature quantiles tend
1946
+ to increase more than the lower ones, while in the Globe just the opposite occurs.
1947
+ In both cases the warming process is accelerating over time. Both regions suffer an
1948
+ amplification effect of an asymmetric nature: there is warming amplification in the
1949
+ lower quantiles of the Globe temperature (beyond the standard well-known results
1950
+ of the Arctic zone) and in the upper ones of Spain. Overall, warming in Spain domi-
1951
+ nates that of the Globe in all the quantiles except the lower q05. This places Spain in
1952
+ a very difficult warming situation compared to the Globe. Such a situation requires
1953
+ stronger mitigation-adaptation policies. For this reason, future climate agreements
1954
+ should take into consideration the whole temperature distribution and not only the
1955
+ average.
1956
+ Any time a novel methodology is proposed, new research issues emerge for future
1957
+ investigation. Among those which have been left out of this paper (some are part
1958
+ of our current research agenda), three points stand out as important:
1959
+ • There is a clear need for a new non-uniform causal-effect climate change anal-
1960
+ ysis beyond the standard causality in mean.
1961
+ • In order to improve efficiency, mitigation-adaptation policies should be de-
1962
+ signed containing a common global component and an idiosyncratic regional
1963
+ element.
1964
+ • The relation between warming heterogeneity and public awareness of climate
1965
+ change deserves to be analyzed.
1966
+
1967
+ Climate change heterogeneity
1968
+ 32
1969
+ References
1970
+ [1] Berenguer-Rico, V., Gonzalo, J., 2014. Summability of stochastic processes- A
1971
+ generalization of integration and co-integration valid for non-linear processes.
1972
+ Journal of Econometrics 178, 331-341.
1973
+ [2] Brock, W., Xepapadeas, A. 2017. Climate change policy under polar amplifi-
1974
+ cation. European Economic Review 94, 263-282.
1975
+ [3] Busetti, F., Harvey, A., 2008. Testing for trend. Econometric 24, 72-87.
1976
+ [4] Carreras, A., Tafunell Sambola, X., 2006. Estad´ısticas hist´oricas de Espa˜n a,
1977
+ siglos XIX-XX, 2ª ed., Fundacion BBVA / BBVA Foundation.
1978
+ [5] Carrion-i-Sivestre, J.L, Kim, D., 2019. Quasi-likelihood ratio tests for cointe-
1979
+ gration, cobreaking, and cotrending. Econometric Reviews 38(8),881-898.
1980
+ [6] Chang, Y., Kim, Ch.S., Miller, J.I., Park, J.Y., Park, S., 2015. Time series
1981
+ analysis of global temperature distributions: identifying and estimating per-
1982
+ sistent features in temperature anomalies. Working Paper 15-13, University of
1983
+ Missouri.
1984
+ [7] Chang, Y., Kim, Ch.S, Park, J.Y., 2016. Nonstationarity in time series of state
1985
+ densities. Journal of Econometrics 192, 152-167.
1986
+ [8] D’Autume, A., Schubert, K., 2016. Should the Carbon Price Be the Same in
1987
+ All Countries? Journal of Public Economy Theory 18(5), 709-725.
1988
+ [9] Davy, R., Esau, I., Chernokulsky, A., Outten, S., Zilitinkevich, S. 2017. Diurnal
1989
+ asymmetry to the observed global warming. Int. J. Climatol., 37: 79-93.
1990
+ [10] Diebold, F.X. Rudebusch, G.D., 2022. On the Evolution of U.S. Temperature
1991
+ Dynamics, in A. Chudek, C. Hsiao and A Timmermann (eds.), Essays in Honor
1992
+ of M. Hashem Pesaran (Advances in Econometrics, Volume 43), 9-28. Online
1993
+ appendix here. Code here. Working paper at arXiv:1907.06303.
1994
+ [11] Durlauf, S.N., Phillips, P.C.B., 1988. Trends versus random walks in time series
1995
+ analysis. Econometrica 56, 1333-1354.
1996
+ [12] Embrechts, P., Kl¨uppelberg, C., Mikosh, T., 1999. Modelling Extremal Events
1997
+ for Insurance and Finance. Springer-Verlag, Berlin.
1998
+
1999
+ Climate change heterogeneity
2000
+ 33
2001
+ [13] Gadea, M.D., Gonzalo, J., 2020. Trends in distributional characteristics: Exis-
2002
+ tence of global warming. Journal of Econometrics 214, 153-174.
2003
+ [14] Gadea, M.D., Gonzalo, J., 2021. Polar Warming. mimeo.
2004
+ [15] Gadea, M.D., Gonzalo, J., 2022. A Tale of three cities: Climate heterogeneity.
2005
+ SERIES 13(1-2) (Special Issue in honour of Juan Jos´e Dolado) 475-511.
2006
+ [16] Grenander, U., Rosenblatt, M., 1957. Statistical Analysis of Stationary Time
2007
+ Series. New York: Wiley.
2008
+ [17] IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribu-
2009
+ tion of Working Group I to the Sixth Assessment Report of the Intergov-
2010
+ ernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pi-
2011
+ rani, S.L. Connors, C. P´ean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I.
2012
+ Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock,
2013
+ T. Waterfield, O. Yelek¸ci, R. Yu, and B. Zhou (eds.)]. Cambridge Univer-
2014
+ sity Press, Cambridge, United Kingdom and New York, NY, USA, In press,
2015
+ doi:10.1017/9781009157896.
2016
+ [18] IPCC, 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability.
2017
+ Contribution of Working Group II to the Sixth Assessment Report of the In-
2018
+ tergovernmental Panel on Climate Change [H.-O. P¨ortner, D.C. Roberts, M.
2019
+ Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegr´ıa, M. Craig, S. Langsdorf,
2020
+ S. L¨oschke, V. M¨oller, A. Okem, B. Rama (eds.)]. Cambridge University Press.
2021
+ In Press.
2022
+ [19] IPCC, 2022. Climate Change 2022: Mitigation of Climate Change. Contribution
2023
+ of Working Group III to the Sixth Assessment Report of the Intergovernmental
2024
+ Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R.
2025
+ van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belka-
2026
+ cemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University
2027
+ Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.
2028
+ [20] Johansen, S., 1995. Likelihood-based Inference in Cointegrated Vector Autore-
2029
+ gressive Models. Oxford: Oxford University Press.
2030
+ [21] Jones, P.D., Lister, D.H., Osborn, T.J., Harpham, C., Salmon, M., Morice,
2031
+ C.P., 2012. Hemispheric and large-scale land surface air temperature variations:
2032
+
2033
+ Climate change heterogeneity
2034
+ 34
2035
+ an extensive revision and an update to 2010. Journal of Geophysical Research
2036
+ 117, 1-29.
2037
+ [22] Karl T.R., Jones P.D., Knight R.W., Kukla G, Plummer N, Razuvaev V, Gallo
2038
+ KP, Lindseay J, Charlson RJ, Peterson TC. 1993. A new perspective on recent
2039
+ global warming: asymmetric trends of daily maximum and minimum temper-
2040
+ ature. Bull. Am. Meteorol. Soc. 74, 1007–1023.
2041
+ [23] K¨oppen, W. 1900. Versucheiner Klassifikation der Klimate, vorzugsweise nach
2042
+ ihren Beziehungen zur Pflanzenwelt, Geographische Zeitschrift, 6, 657–679.
2043
+ [24] K¨oppen, W., Geiger, R., 1930. Handbuch der Klimatologie. Gebrueder Born-
2044
+ traeger, Berlin.
2045
+ [25] Maiella,
2046
+ R.,
2047
+ La Malva,
2048
+ P,
2049
+ Marchetti,
2050
+ D.,
2051
+ Pomarico,
2052
+ E.,
2053
+ Di
2054
+ Crosta,
2055
+ A., Palumbo, R., Cetara, L, Di Domenico, A., M.C. Verrocchio, 2020.
2056
+ The Psychological Distance and Climate Change:
2057
+ A Systematic Review
2058
+ on the Mitigation and Adaptation Behaviors. Frontiers in Psychology 11,
2059
+ https://doi.org/10.3389/fpsyg.2020.568899.
2060
+ [26] Malmendier, U. 2021. Exposure, Experience, and Expertise: Why Personal
2061
+ Histories Matter in Economics. Journal of the European Economic Association
2062
+ 19(6), 2857–2894.
2063
+ [27] M¨ueller, U.K., Watson, M., 2008. Testing models of low-frequency variability.
2064
+ Econometrica 76, 979-1016.
2065
+ [28] Newey, W.K., West, K.D., 1987. A Simple positive semi-definite, hetereko-
2066
+ dasticity and autocorrelation consistent covariance matrix. Econometrica 55,
2067
+ 703-708.
2068
+ [29] Nowakowski, A., Oswald, A. J., 2020. Do Europeans Care about Climate
2069
+ Change? An Illustration of the Importance of Data on Human Feelings, IZA
2070
+ Discussion Papers 13660, Institute of Labor Economics (IZA).
2071
+ [30] Peng, W., Iyer, G., Binsted, M. et al.,2021. The surprisingly inexpensive cost
2072
+ of state-driven emission control strategies. Nat. Clim. Chang. 738–745.
2073
+ [31] Tol, R. S. J., 2021. The distributional impact of climate change. Annals of the
2074
+ New York. Academy of Sciences 1504 (1), 63-75.
2075
+
2076
+ Climate change heterogeneity
2077
+ 35
2078
+ [32] White, H., 1980. Using least square to approximate unknown regression func-
2079
+ tion. International Economic Review 21, 149–170.
2080
+
2081
+ Climate change heterogeneity
2082
+ 36
2083
+ 7
2084
+ Appendix: Climate change of Madrid and Barcelona
2085
+ 7.1
2086
+ Madrid-Retiro
2087
+ Figure A1
2088
+ Characteristics of temperature data in Madrid-Retiro (AEMET daily data, 1950-2019)
2089
+
2090
+ 16
2091
+ 32
2092
+ 30
2093
+ mean
2094
+ 28
2095
+ max
2096
+ 1950
2097
+ 1970
2098
+ 1990
2099
+ 2010 2019
2100
+ 1950
2101
+ 1970
2102
+ 1990
2103
+ 2010 2019
2104
+ 5
2105
+ 8
2106
+ wmw
2107
+ min
2108
+ std
2109
+ 5
2110
+ 6
2111
+ 1950
2112
+ 1970
2113
+ 1990
2114
+ 2010 2019
2115
+ 1950
2116
+ 1970
2117
+ 1990
2118
+ 2010 2019
2119
+ 15
2120
+ 35
2121
+ rank
2122
+ w
2123
+ 30
2124
+ 10
2125
+ igr
2126
+ 25
2127
+ 1950
2128
+ 1970
2129
+ 1990
2130
+ 2010 2019
2131
+ 1950
2132
+ 1970
2133
+ 1990
2134
+ 2010 2019
2135
+ kur
2136
+ 0.4
2137
+ 0.2
2138
+ 1.5
2139
+ 0
2140
+ 1950
2141
+ 1970
2142
+ 1990
2143
+ 2010 2019
2144
+ 1950
2145
+ 1970
2146
+ 1990
2147
+ 2010 2019
2148
+ 30
2149
+ 20
2150
+ 10
2151
+ 0
2152
+ 1950
2153
+ 1970
2154
+ 1990
2155
+ 2010 2019
2156
+ q5
2157
+ q10
2158
+ q20
2159
+ q30
2160
+ q40
2161
+ q50
2162
+ q60
2163
+ q70
2164
+ q80
2165
+ q90
2166
+ q95Climate change heterogeneity
2167
+ 37
2168
+ Table A1
2169
+ Trend acceleration hypothesis (Madrid, daily data, AEMET, 1950-2019)
2170
+ Trend test by periods
2171
+ Acceleration test
2172
+ names/periods
2173
+ 1950-2019
2174
+ 1970-2019
2175
+ 1950-2019, 1970-2019
2176
+ mean
2177
+ 0.0326
2178
+ 0.0447
2179
+ 2.0972
2180
+ (0.0000)
2181
+ (0.0000)
2182
+ (0.0189)
2183
+ max
2184
+ 0.0477
2185
+ 0.0636
2186
+ 1.2043
2187
+ (0.0000)
2188
+ (0.0000)
2189
+ (0.1153)
2190
+ min
2191
+ 0.0362
2192
+ 0.0087
2193
+ -1.5077
2194
+ (0.0011)
2195
+ (0.5859)
2196
+ (0.9330)
2197
+ std
2198
+ 0.0112
2199
+ 0.0197
2200
+ 2.1160
2201
+ (0.0000)
2202
+ (0.0000)
2203
+ (0.0181)
2204
+ iqr
2205
+ 0.0270
2206
+ 0.0399
2207
+ 1.1110
2208
+ (0.0000)
2209
+ (0.0004)
2210
+ (0.1343)
2211
+ rank
2212
+ 0.0115
2213
+ 0.0549
2214
+ 2.0160
2215
+ (0.3666)
2216
+ (0.0045)
2217
+ (0.0229)
2218
+ kur
2219
+ -0.0016
2220
+ -0.0022
2221
+ -0.4449
2222
+ (0.0278)
2223
+ (0.0660)
2224
+ (0.6714)
2225
+ skw
2226
+ 0.0012
2227
+ -0.0013
2228
+ -1.7769
2229
+ (0.1538)
2230
+ (0.2695)
2231
+ (0.9611)
2232
+ q5
2233
+ 0.0248
2234
+ 0.0183
2235
+ -0.5712
2236
+ (0.0000)
2237
+ (0.0774)
2238
+ (0.7156)
2239
+ q10
2240
+ 0.0220
2241
+ 0.0174
2242
+ -0.5815
2243
+ (0.0000)
2244
+ (0.0162)
2245
+ (0.7191)
2246
+ q20
2247
+ 0.0200
2248
+ 0.0187
2249
+ -0.1777
2250
+ (0.0000)
2251
+ (0.0099)
2252
+ (0.5704)
2253
+ q30
2254
+ 0.0181
2255
+ 0.0235
2256
+ 0.6959
2257
+ (0.0000)
2258
+ (0.0019)
2259
+ (0.2438)
2260
+ q40
2261
+ 0.0236
2262
+ 0.0362
2263
+ 1.6625
2264
+ (0.0000)
2265
+ (0.0000)
2266
+ (0.0494)
2267
+ q50
2268
+ 0.0299
2269
+ 0.0545
2270
+ 2.8801
2271
+ (0.0000)
2272
+ (0.0000)
2273
+ (0.0023)
2274
+ q60
2275
+ 0.0334
2276
+ 0.0604
2277
+ 3.1655
2278
+ (0.0000)
2279
+ (0.0000)
2280
+ (0.0010)
2281
+ q70
2282
+ 0.0388
2283
+ 0.0550
2284
+ 1.7385
2285
+ (0.0000)
2286
+ (0.0000)
2287
+ (0.0422)
2288
+ q80
2289
+ 0.0519
2290
+ 0.0712
2291
+ 1.9750
2292
+ (0.0000)
2293
+ (0.0000)
2294
+ (0.0251)
2295
+ q90
2296
+ 0.0494
2297
+ 0.0687
2298
+ 1.7956
2299
+ (0.0000)
2300
+ (0.0000)
2301
+ (0.0374)
2302
+ q95
2303
+ 0.0527
2304
+ 0.0710
2305
+ 1.7839
2306
+ (0.0000)
2307
+ (0.0000)
2308
+ (0.0383)
2309
+ Note:
2310
+ OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression:
2311
+ Ct = α + βt + ut, for two
2312
+ different time periods. For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, ..., s, ..., T, Ct =
2313
+ α2 + β2t + ut, t = s + 1, ..., T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1. We show the value of
2314
+ the t-statistic and its HAC p-value.
2315
+ Table A2
2316
+ Co-trending analysis (Madrid-Retiro daily data, AEMET 1950-2019)
2317
+ Joint hypothesis tests
2318
+ Wald test
2319
+ p-value
2320
+ All quantiles (q05, q10,...,q90, q95)
2321
+ 77.046
2322
+ 0.000
2323
+ Lower quantiles (q05, q10, q20, q30)
2324
+ 1.360
2325
+ 0.715
2326
+ Medium quantiles (q40, q50, q60)
2327
+ 2.036
2328
+ 0.361
2329
+ Upper quantiles (q70, q80, q90, q95)
2330
+ 3.944
2331
+ 0.268
2332
+ Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60)
2333
+ 6.707
2334
+ 0.349
2335
+ Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95)
2336
+ 31.822
2337
+ 0.000
2338
+ Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 )
2339
+ 74.967
2340
+ 0.000
2341
+ Spacing hypothesis
2342
+ Trend-coeff.
2343
+ p-value
2344
+ q50-q05
2345
+ 0.005
2346
+ 0.505
2347
+ q95-q50
2348
+ 0.023
2349
+ 0.000
2350
+ q05-q95
2351
+ -0.028
2352
+ 0.000
2353
+ q75-q25 (iqr)
2354
+ 0.027
2355
+ 0.000
2356
+ Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the
2357
+ Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.
2358
+ In the bottom panel, the TT is applied to the difference between two representative quantiles.
2359
+
2360
+ Climate change heterogeneity
2361
+ 38
2362
+ Table A3
2363
+ Co-trending analysis (Madrid-Retiro daily data, AEMET, 1970-2019)
2364
+ Joint hypothesis tests
2365
+ Wald test
2366
+ p-value
2367
+ All quantiles (q05, q10,...,q90, q95)
2368
+ 81.371
2369
+ 0.000
2370
+ Lower quantiles (q05, q10, q20, q30)
2371
+ 0.424
2372
+ 0.935
2373
+ Medium quantiles (q40, q50, q60)
2374
+ 8.111
2375
+ 0.017
2376
+ Upper quantiles (q70, q80, q90, q95)
2377
+ 3.214
2378
+ 0.360
2379
+ Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60)
2380
+ 45.687
2381
+ 0.000
2382
+ Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95)
2383
+ 18.851
2384
+ 0.004
2385
+ Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 )
2386
+ 71.094
2387
+ 0.000
2388
+ Spacing hypothesis
2389
+ Trend-coeff.
2390
+ p-value
2391
+ q50-q05
2392
+ 0.036
2393
+ 0.004
2394
+ q95-q50
2395
+ 0.017
2396
+ 0.051
2397
+ q05-q95
2398
+ -0.053
2399
+ 0.000
2400
+ q75-q25 (iqr)
2401
+ 0.040
2402
+ 0.000
2403
+ Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the
2404
+ Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.
2405
+ In the bottom panel, the TT is applied to the difference between two representative quantiles.
2406
+ Table A4
2407
+ Amplification hypothesis (Madrid daily data, AEMET 1950-2019)
2408
+ periods/variables
2409
+ 1950-2019
2410
+ 1970-2019
2411
+ 1950-2019
2412
+ 1970-2019
2413
+ Inner
2414
+ Outer
2415
+ q05
2416
+ 0.66
2417
+ 0.43
2418
+ 0.83
2419
+ 0.56
2420
+ (0.993)
2421
+ (1.000)
2422
+ (0.802)
2423
+ (0.990)
2424
+ q10
2425
+ 0.58
2426
+ 0.42
2427
+ 0.73
2428
+ 0.54
2429
+ (1.000)
2430
+ (1.000)
2431
+ (0.974)
2432
+ (1.000)
2433
+ q20
2434
+ 0.66
2435
+ 0.53
2436
+ 0.81
2437
+ 0.65
2438
+ (1.000)
2439
+ (1.000)
2440
+ (0.961)
2441
+ (0.999)
2442
+ q30
2443
+ 0.72
2444
+ 0.74
2445
+ 0.94
2446
+ 0.90
2447
+ (1.000)
2448
+ (0.996)
2449
+ (0.758)
2450
+ (0.836)
2451
+ q40
2452
+ 0.90
2453
+ 1.02
2454
+ 1.15
2455
+ 1.21
2456
+ (0.887)
2457
+ (0.436)
2458
+ (0.072)
2459
+ (0.041)
2460
+ q50
2461
+ 1.08
2462
+ 1.29
2463
+ 1.38
2464
+ 1.53
2465
+ (0.188)
2466
+ (0.001)
2467
+ (0.001)
2468
+ (0.000)
2469
+ q60
2470
+ 1.14
2471
+ 1.31
2472
+ 1.44
2473
+ 1.54
2474
+ (0.040)
2475
+ (0.000)
2476
+ (0.000)
2477
+ (0.000)
2478
+ q70
2479
+ 1.22
2480
+ 1.23
2481
+ 1.46
2482
+ 1.38
2483
+ (0.012)
2484
+ (0.019)
2485
+ (0.000)
2486
+ (0.002)
2487
+ q80
2488
+ 1.45
2489
+ 1.36
2490
+ 1.70
2491
+ 1.52
2492
+ (0.000)
2493
+ (0.003)
2494
+ (0.000)
2495
+ (0.002)
2496
+ q90
2497
+ 1.31
2498
+ 1.29
2499
+ 1.48
2500
+ 1.38
2501
+ (0.004)
2502
+ (0.041)
2503
+ (0.005)
2504
+ (0.064)
2505
+ q95
2506
+ 1.31
2507
+ 1.33
2508
+ 1.46
2509
+ 1.39
2510
+ (0.001)
2511
+ (0.021)
2512
+ (0.007)
2513
+ (0.073)
2514
+ Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1
2515
+ in the regression: Cit = βi0 + βi1meant + ϵit. mean refers to the average of the Madrid or Spanish
2516
+ temperature distribution for the “inner” and “outer”cases, respectively.
2517
+
2518
+ Climate change heterogeneity
2519
+ 39
2520
+ 7.2
2521
+ Barcelona-Fabra
2522
+ Figure A2
2523
+ Characteristics of temperature data in Barcelona-Fabra (AEMET daily data,
2524
+ 1950-2019)
2525
+
2526
+ 16
2527
+ 30
2528
+ 15
2529
+ 14
2530
+ mean
2531
+ 25
2532
+ 1950
2533
+ 1970
2534
+ 1990
2535
+ 2010 2019
2536
+ 1950
2537
+ 1970
2538
+ 1990
2539
+ 2010 2019
2540
+ 8
2541
+ 5
2542
+ std
2543
+ www
2544
+ min
2545
+ -5
2546
+ 1950
2547
+ 1970
2548
+ 1990
2549
+ 2010 2019
2550
+ 1950
2551
+ 1970
2552
+ 1990
2553
+ 2010 2019
2554
+ 30
2555
+ 25
2556
+ igr
2557
+ 20
2558
+ 1950
2559
+ 1970
2560
+ 1990
2561
+ 2010 2019
2562
+ 1950
2563
+ 1970
2564
+ 1990
2565
+ 2010 2019
2566
+ 2.5
2567
+ kur
2568
+ 0.4
2569
+ skw
2570
+ 0.2
2571
+ M
2572
+ 0
2573
+ -0.2
2574
+ 1950
2575
+ 1970
2576
+ 1990
2577
+ 2010 2019
2578
+ 1950
2579
+ 1970
2580
+ 1990
2581
+ 2010 2019
2582
+ 20
2583
+ 10
2584
+ 0
2585
+ 1950
2586
+ 1970
2587
+ 1990
2588
+ 2010 2019
2589
+ q5
2590
+ q10
2591
+ q20
2592
+ q30
2593
+ q40
2594
+ q50
2595
+ q60
2596
+ q70
2597
+ q80
2598
+ q90
2599
+ q95Climate change heterogeneity
2600
+ 40
2601
+ Table A5
2602
+ Trend acceleration hypothesis (Barcelona, daily data, AEMET, 1950-2019)
2603
+ Trend test by periods
2604
+ Acceleration test
2605
+ names/periods
2606
+ 1950-2019
2607
+ 1970-2019
2608
+ 1950-2019, 1970-2019
2609
+ mean
2610
+ 0.0340
2611
+ 0.0512
2612
+ 3.2979
2613
+ (0.0000)
2614
+ (0.0000)
2615
+ (0.0006)
2616
+ max
2617
+ 0.0394
2618
+ 0.0531
2619
+ 0.7280
2620
+ (0.0000)
2621
+ (0.0038)
2622
+ (0.2339)
2623
+ min
2624
+ 0.0397
2625
+ 0.0231
2626
+ -0.7411
2627
+ (0.0011)
2628
+ (0.2654)
2629
+ (0.7700)
2630
+ std
2631
+ 0.0013
2632
+ 0.0057
2633
+ 0.9146
2634
+ (0.6185)
2635
+ (0.1787)
2636
+ (0.1810)
2637
+ iqr
2638
+ 0.0042
2639
+ 0.0113
2640
+ 0.7351
2641
+ (0.4418)
2642
+ (0.1892)
2643
+ (0.2318)
2644
+ rank
2645
+ -0.0004
2646
+ 0.0300
2647
+ 0.9299
2648
+ (0.9806)
2649
+ (0.3322)
2650
+ (0.1770)
2651
+ kur
2652
+ -0.0013
2653
+ -0.0018
2654
+ -0.2693
2655
+ (0.1555)
2656
+ (0.2075)
2657
+ (0.6060)
2658
+ skw
2659
+ 0.0011
2660
+ -0.0022
2661
+ -1.7869
2662
+ (0.2678)
2663
+ (0.1942)
2664
+ (0.9619)
2665
+ q5
2666
+ 0.0374
2667
+ 0.0358
2668
+ -0.1381
2669
+ (0.0000)
2670
+ (0.0015)
2671
+ (0.5548)
2672
+ q10
2673
+ 0.0350
2674
+ 0.0385
2675
+ 0.4361
2676
+ (0.0000)
2677
+ (0.0000)
2678
+ (0.3317)
2679
+ q20
2680
+ 0.0317
2681
+ 0.0439
2682
+ 1.7009
2683
+ (0.0000)
2684
+ (0.0000)
2685
+ (0.0456)
2686
+ q30
2687
+ 0.0308
2688
+ 0.0488
2689
+ 2.4813
2690
+ (0.0000)
2691
+ (0.0000)
2692
+ (0.0072)
2693
+ q40
2694
+ 0.0324
2695
+ 0.0537
2696
+ 2.9244
2697
+ (0.0000)
2698
+ (0.0000)
2699
+ (0.0020)
2700
+ q50
2701
+ 0.0325
2702
+ 0.0548
2703
+ 2.7535
2704
+ (0.0000)
2705
+ (0.0000)
2706
+ (0.0034)
2707
+ q60
2708
+ 0.0344
2709
+ 0.0636
2710
+ 3.0915
2711
+ (0.0000)
2712
+ (0.0000)
2713
+ (0.0012)
2714
+ q70
2715
+ 0.0330
2716
+ 0.0583
2717
+ 2.9241
2718
+ (0.0000)
2719
+ (0.0000)
2720
+ (0.0020)
2721
+ q80
2722
+ 0.0357
2723
+ 0.0551
2724
+ 2.4081
2725
+ (0.0000)
2726
+ (0.0000)
2727
+ (0.0087)
2728
+ q90
2729
+ 0.0394
2730
+ 0.0567
2731
+ 2.0957
2732
+ (0.0000)
2733
+ (0.0000)
2734
+ (0.0190)
2735
+ q95
2736
+ 0.0390
2737
+ 0.0525
2738
+ 1.3435
2739
+ (0.0000)
2740
+ (0.0000)
2741
+ (0.0907)
2742
+ Note:
2743
+ OLS estimates and HAC p-values in parenthesis of the tβ=0 test from regression:
2744
+ Ct = α + βt + ut, for two
2745
+ different time periods. For the acceleration hypothesis we run the system: Ct = α1 + β1t + ut, t = 1, ..., s, ..., T, Ct =
2746
+ α2 + β2t + ut, t = s + 1, ..., T, and test the null hypothesis β2 = β1 against the alternativeβ2 > β1. We show the value of
2747
+ the t-statistic and its HAC p-value.
2748
+ Table A6
2749
+ Co-trending analysis (Barcelona-Fabra daily data, AEMET, 1950-2019)
2750
+ Joint hypothesis tests
2751
+ Wald test
2752
+ p-value
2753
+ All quantiles (q05, q10,...,q90, q95)
2754
+ 3.368
2755
+ 0.971
2756
+ Lower quantiles (q05, q10, q20, q30)
2757
+ 1.036
2758
+ 0.792
2759
+ Medium quantiles (q40, q50, q60)
2760
+ 0.073
2761
+ 0.964
2762
+ Upper quantiles (q70, q80, q90, q95)
2763
+ 0.784
2764
+ 0.853
2765
+ Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60)
2766
+ 1.171
2767
+ 0.978
2768
+ Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95)
2769
+ 1.901
2770
+ 0.929
2771
+ Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 )
2772
+ 2.969
2773
+ 0.888
2774
+ Spacing hypothesis
2775
+ Trend-coeff.
2776
+ p-value
2777
+ q50-q05
2778
+ -0.005
2779
+ 0.528
2780
+ q95-q50
2781
+ 0.006
2782
+ 0.233
2783
+ q05-q95
2784
+ -0.002
2785
+ 0.856
2786
+ q75-q25 (iqr)
2787
+ 0.004
2788
+ 0.442
2789
+ Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the
2790
+ Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.
2791
+ In the bottom panel, the TT is applied to the difference between two representative quantiles.
2792
+
2793
+ Climate change heterogeneity
2794
+ 41
2795
+ Table A7
2796
+ Co-trending analysis (Barcelona-Fabra daily data, AEMET, 1970-2019)
2797
+ Joint hypothesis tests
2798
+ Wald test
2799
+ p-value
2800
+ All quantiles (q05, q10,...,q90, q95)
2801
+ 13.165
2802
+ 0.215
2803
+ Lower quantiles (q05, q10, q20, q30)
2804
+ 1.904
2805
+ 0.593
2806
+ Medium quantiles (q40, q50, q60)
2807
+ 1.267
2808
+ 0.531
2809
+ Upper quantiles (q70, q80, q90, q95)
2810
+ 0.384
2811
+ 0.943
2812
+ Lower-Medium quantiles (q05, q10, q20, q30, q40, q50, q60)
2813
+ 10.103
2814
+ 0.120
2815
+ Medium-Upper quantiles (q40, q50, q60, q70, q80, q90, q95)
2816
+ 1.642
2817
+ 0.949
2818
+ Lower-Upper quantiles (q05, q10, q20,q30, q70, q80, q90, q95 )
2819
+ 9.693
2820
+ 0.207
2821
+ Spacing hypothesis
2822
+ Trend-coeff.
2823
+ p-value
2824
+ q50-q05
2825
+ 0.019
2826
+ 0.192
2827
+ q95-q50
2828
+ -0.002
2829
+ 0.821
2830
+ q05-q95
2831
+ -0.017
2832
+ 0.241
2833
+ q75-q25 (iqr)
2834
+ 0.011
2835
+ 0.189
2836
+ Note: Annual distributional characteristics (quantiles) of temperature. The top panel shows the
2837
+ Wald test of the null hypothesis of equality of trend coefficients for a given set of characteristics.
2838
+ In the bottom panel, the TT is applied to the difference between two representative quantiles.
2839
+ Table A8
2840
+ Amplification hypothesis (Barcelona daily data, AEMET 1950-2019)
2841
+ periods/variables
2842
+ 1950-2019
2843
+ 1970-2019
2844
+ 1950-2019
2845
+ 1970-2019
2846
+ Inner
2847
+ Outer
2848
+ q05
2849
+ 0.99
2850
+ 0.76
2851
+ 1.19
2852
+ 0.87
2853
+ (0.523)
2854
+ (0.918)
2855
+ (0.225)
2856
+ (0.720)
2857
+ q10
2858
+ 0.90
2859
+ 0.79
2860
+ 1.10
2861
+ 0.94
2862
+ (0.824)
2863
+ (0.980)
2864
+ (0.263)
2865
+ (0.668)
2866
+ q20
2867
+ 0.89
2868
+ 0.85
2869
+ 1.09
2870
+ 1.04
2871
+ (0.931)
2872
+ (0.964)
2873
+ (0.192)
2874
+ (0.318)
2875
+ q30
2876
+ 0.96
2877
+ 0.98
2878
+ 1.22
2879
+ 1.25
2880
+ (0.813)
2881
+ (0.585)
2882
+ (0.000)
2883
+ (0.000)
2884
+ q40
2885
+ 0.99
2886
+ 1.04
2887
+ 1.27
2888
+ 1.33
2889
+ (0.570)
2890
+ (0.300)
2891
+ (0.000)
2892
+ (0.000)
2893
+ q50
2894
+ 1.01
2895
+ 1.07
2896
+ 1.27
2897
+ 1.32
2898
+ (0.466)
2899
+ (0.224)
2900
+ (0.002)
2901
+ (0.003)
2902
+ q60
2903
+ 1.09
2904
+ 1.23
2905
+ 1.29
2906
+ 1.42
2907
+ (0.175)
2908
+ (0.005)
2909
+ (0.014)
2910
+ (0.001)
2911
+ q70
2912
+ 1.09
2913
+ 1.17
2914
+ 1.26
2915
+ 1.31
2916
+ (0.128)
2917
+ (0.012)
2918
+ (0.022)
2919
+ (0.008)
2920
+ q80
2921
+ 1.06
2922
+ 1.04
2923
+ 1.22
2924
+ 1.17
2925
+ (0.191)
2926
+ (0.338)
2927
+ (0.052)
2928
+ (0.117)
2929
+ q90
2930
+ 1.09
2931
+ 1.08
2932
+ 1.22
2933
+ 1.20
2934
+ (0.125)
2935
+ (0.241)
2936
+ (0.047)
2937
+ (0.121)
2938
+ q95
2939
+ 1.06
2940
+ 1.03
2941
+ 1.16
2942
+ 1.12
2943
+ (0.304)
2944
+ (0.432)
2945
+ (0.192)
2946
+ (0.298)
2947
+ Note: OLS estimates and HAC p-values of the t-statistic of testing H0 : βi = 1 versus Ha : βi > 1 in
2948
+ the regression: Cit = βi0 + βi1meant + ϵit. mean refers to the average of the Barcelona or Spanish
2949
+ temperature distribution for the “inner” and “outer”cases, respectively.
2950
+
AdE0T4oBgHgl3EQfxgLI/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
B9AzT4oBgHgl3EQfh_2U/content/tmp_files/2301.01493v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
B9AzT4oBgHgl3EQfh_2U/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdFRT4oBgHgl3EQfwDjC/content/tmp_files/2301.13637v1.pdf.txt ADDED
@@ -0,0 +1,1335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tricking AI chips into Simulating the Human Brain:
2
+ A Detailed Performance Analysis
3
+ Lennart P. L. Landsmeer∗
4
+ Quantum & Computer
5
+ Engineering Department
6
+ Delft University of Technology
7
+ Delft, The Netherlands
8
+ Dept. of Neuroscience
9
+ Erasmus Medical Center
10
+ Rotterdam, The Netherlands
11
+ ORCID 0000-0003-0010-7249
12
+ Max C.W. Engelen∗
13
+ Dept. of Neuroscience
14
+ Erasmus Medical Center
15
+ Rotterdam, The Netherlands
16
+ &
17
+ Maxeler IoT Labs
18
+ Delft, Netherlands
19
+ ORCID 0000-0002-5762-1276
20
+ Rene Miedema
21
+ Quantum & Computer
22
+ Engineering Department
23
+ Delft University of Technology
24
+ Delft, The Netherlands
25
+ &
26
+ Dept. of Neuroscience
27
+ Erasmus Medical Center
28
+ Rotterdam, The Netherlands
29
+ ORCID 0000-0002-0447-1083
30
+ Christos Strydis
31
+ Quantum & Computer
32
+ Engineering Department
33
+ Delft University of Technology
34
+ Delft, The Netherlands
35
+ &
36
+ Dept. of Neuroscience
37
+ Erasmus Medical Center
38
+ Rotterdam, The Netherlands
39
+ ORCID 0000-0002-0935-9322
40
+ Abstract—Challenging the Nvidia monopoly, dedicated AI-
41
+ accelerator chips have begun emerging for tackling the compu-
42
+ tational challenge that the inference and, especially, the training
43
+ of modern deep neural networks (DNNs) poses to modern
44
+ computers. The field has been ridden with studies assessing
45
+ the performance of these contestants across various DNN model
46
+ types. However, AI-experts are aware of the limitations of current
47
+ DNNs and have been working towards the fourth AI wave
48
+ which will, arguably, rely on more biologically inspired models,
49
+ predominantly on spiking neural networks (SNNs). At the same
50
+ time, GPUs have been heavily used for simulating such models
51
+ in the field of computational neuroscience, yet AI-chips have not
52
+ been tested on such workloads. The current paper aims at filling
53
+ this important gap by evaluating multiple, cutting-edge AI-chips
54
+ (Graphcore IPU, GroqChip, Nvidia GPU with Tensor Cores and
55
+ Google TPU) on simulating a highly biologically detailed model of
56
+ a brain region, the inferior olive (IO). This IO application stress-
57
+ tests the different AI-platforms for highlighting architectural
58
+ tradeoffs by varying its compute density, memory requirements
59
+ and floating-point numerical accuracy. Our performance analysis
60
+ reveals that the simulation problem maps extremely well onto the
61
+ GPU and TPU architectures, which for networks of 125,000 cells
62
+ leads to a 28x respectively 1,208x speedup over CPU runtimes.
63
+ At this speed, the TPU sets a new record for largest real-time IO
64
+ simulation. The GroqChip outperforms both platforms for small
65
+ networks but, due to implementing some floating-point operations
66
+ at reduced accuracy, is found not yet usable for brain simulation.
67
+ Index Terms—AI accelerator, GPU, Brain simulation, com-
68
+ puter architecture
69
+ I. INTRODUCTION
70
+ To date, GPUs have achieved spectacularly better perfor-
71
+ mance in deep learning (DL) than CPUs [1]. Recently, novel,
72
+ specialized AI hardware platforms have begun to emerge,
73
+ holding the promise of accelerating training and inference
74
+ even further. The workloads targeted mainly are artificial, and
75
+ specifically, deep neural networks (DNNs), which have shown
76
+ great potential in recent years. On the other hand, highly
77
+ biologically plausible models such as conductance-based (e.g.,
78
+ Hodgkin-Huxley) neurons have not attracted similar atten-
79
+ tion from AI-chip manufacturers and analysts alike. This is
80
+ strange, given that biological brains – the inspiration behind
81
+ these DNNs – are modeled using equations built on similar
82
+ elementary functions. What is more, high-detail models are
83
+ touted as the next AI wave, which is intended to be more
84
+ biologically inspired than its predecessors [2], [3]. Therefore,
85
+ it makes sense both for neuroscientists and for AI researchers
86
+ to reach for these AI accelerators and deploy them for brain
87
+ simulations; yet no performance studies exist.
88
+ In this work, we evaluate multiple, cutting-edge AI chips
89
+ (Graphcore IPU [4], GroqChip [5], TensorRT-capable GPU [6]
90
+ and Google TPU v3 [7]) on simulating a highly biologically
91
+ detailed model of a brain region, the Inferior-Olivary nucleus
92
+ (IO). Biologically detailed brain models, such as the IO,
93
+ chiefly involve addition, multiplication, division and expo-
94
+ nential operations, arranged as sparse computations. There
95
+ is, thus, a large operation overlap with artificial networks.
96
+ Therefore, new AI chips seem a good fit for these types
97
+ of models. This IO application represents timely, relevant
98
+ research and is constructed as an extended-Hodgkin-Huxley
99
+ model. It is very suitable for stress-testing the different AI
100
+ platforms and highlighting architectural tradeoffs by adjusting
101
+ the compute density, memory requirements and numerical
102
+ accuracy of the IO model. Evaluation is performed using the
103
+ application encoded as a TensorFlow 2 [8] kernel, which in the
104
+ case of the GroqChip, is necessarily compiled to its ONNX [9]
105
+ equivalent. ONNX is an intermediary tool used to convert
106
+ models between different machine-learning (ML) frameworks.
107
+ In the analysis of the different accelerators, the exact same
108
+ TensorFlow model is used, ensuring a fair comparison across
109
+ the board. This is either used directly or ported to ONNX
110
+ via the Python package tf2onnx. TensorFlow is a high-level
111
+ API, requiring little to moderate intervention from the user
112
+ and is therefore suitable for a wide user base. A schematic
113
+ overview of this setup is presented in Fig. 1.
114
+ While all accelerators in this study support chip-to-chip
115
+ communication, this work constrains the application to single-
116
+ chip performance comparisons; multi-chip is left as future
117
+ 1
118
+ arXiv:2301.13637v1 [cs.LG] 31 Jan 2023
119
+
120
+ IO-model
121
+ TensorFlow
122
+ CPU
123
+ GPU
124
+ IPU
125
+ ONNX
126
+ tf2onnx
127
+ CPU
128
+ GPU
129
+ Groq
130
+ TPU
131
+ Fig. 1: Overview of the performance-analysis strategy followed in this work
132
+ work. The contributions of this work are:
133
+ • We take a deep dive into four cutting-edge AI architec-
134
+ tures with a focus on biologically plausible spiking neural
135
+ networks (SNNs).
136
+ • We build the first ML-library-based, efficient implemen-
137
+ tation of a detailed brain model, the Inferior Olive (IO).
138
+ • We deploy the IO model onto the four AI platforms and
139
+ benchmark their performance and numerical accuracy.
140
+ • We demonstrate that modern ML libraries are seman-
141
+ tically able to model classical problems in scientific
142
+ computing, offering large performance gains and reduced
143
+ development times while remaining hardware-agnostic.
144
+ • Lastly, this work is the first to ever simulate a realistic
145
+ mouse-sized IO model with real-time performance.
146
+ The paper is organized as follows: Section II presents
147
+ related works in the field. Section III introduces the IO
148
+ model used as our benchmarking application, while Section IV
149
+ briefly presents the four AI architectures under evaluation and
150
+ attempts some performance predictions. Section V ensures
151
+ experiment reproducibility by detailing the experiment param-
152
+ eters and platform configurations used to acquire our results
153
+ presented in Section VI. A general discussion of our findings
154
+ is included in Section VII and conclusions in Section VIII.
155
+ II. RELATED WORKS
156
+ Models of biological neurons come in various levels of
157
+ detail, ranging from population-level dynamics, from simpli-
158
+ fied models of single neurons to highly detailed biophysically
159
+ realistic neurons [10]. Coarse models of single neurons, no-
160
+ tably leaky-integrate-and-fire (LIF) type models have seen a
161
+ renewed interest in the DL-community (often referred here
162
+ to as SNNs) as an alternative to artificial neural networks
163
+ (ANNs) [11]. In contrast, computational neuroscience is usu-
164
+ ally interested in biophysically accurate models that model the
165
+ underlying biological processes in a way that makes it possible
166
+ to gain insights about these processes. These conductance
167
+ based models can be made more realistic by modeling of
168
+ their 3-dimensional structure (the morphology) using multiple
169
+ discretized compartments. Multi-compartmental conductance-
170
+ based neurons are then simulated by explicit calculation of
171
+ electrical currents flowing within, between and into discretized
172
+ compartments [12].
173
+ Due to the computional resources needed for large-scale
174
+ conductance level brain simulations, computational neuro-
175
+ science was an early adopter of general-purpose GPU (GP-
176
+ GPU) in the HPC environment. Notable GPU-based ex-
177
+ amples of large-scale, biologically detailed brain simulators
178
+ include CoreNeuron [13], which enabled porting of exist-
179
+ ing conductance-level NEURON [14] models to the GPU,
180
+ and more recently, Arbor [15], a library-based approach to
181
+ performance-portable, large-scale brain simulation. Their suc-
182
+ cess shows that the computational problems of neuroscience
183
+ map well to GP-GPU platforms and result in significant
184
+ speedups for large-scale brain models. Still, even with hand-
185
+ optimized CUDA code [16], the IO application (to be detailed
186
+ in the next section) at biological sizes runs order-of-magnitude
187
+ slower than the biological brain, hampering research.
188
+ With respect to TensorFlow-based implementations of
189
+ conductance-level models, there is PymoNNto [17], an attempt
190
+ to bring the Brian [18] API of neural models to TensorFlow.
191
+ While faster than the Brian simulator on a GTX1080 GPU,
192
+ performance was not a primary goal and the architecture pro-
193
+ hibits optimizations using TensorFlow’s JIT compiler backend,
194
+ by scattering the computational definitions across the code-
195
+ base. Although this shows that TensorFlow does express the
196
+ right API surface for neural models, no efficient ML-library
197
+ based conductance-level GP-GPU brain simulators exist.
198
+ Simplified SNN models have readily available GP-GPU
199
+ implementations of LIF and similar models as well. High-
200
+ level ML-libraries like TensorFlow and PyTorch allowed for
201
+ the hardware-agnostic implementation of their neural dy-
202
+ namics, considerably lowering development efforts to build
203
+ SNN simulators for GP-GPU simulation. For example, Nengo
204
+ DL [19] allows for the GPU-based simulation of existing SNN
205
+ models defined in the Nengo framework using TensorFlow.
206
+ Beyond just simulating neural networks on the GPU, novel
207
+ developments in surrogate gradients for event-based SNNs
208
+ and automatic gradient calculation provided by ML-libraries
209
+ allowed for the nearly simultaneous appearance of similar
210
+ SNN deep-learning libraries Norse [20], snnTorch [21] and
211
+ SpikingJelly [22]. BindsNET [23] is another, efficient SNN
212
+ implementation in PyTorch with a focus on reinforcement
213
+ learning. Again, these project show that not only ML-libraries
214
+ have the expressive power and performance needed to run
215
+ large-scale SNN models, also that this arguably can be devel-
216
+ oped faster than hardware-specific low-level code. As these
217
+ libraries had DL-oriented goals in mind, none of these imple-
218
+ ments multi-compartmental, conductance-level neural models.
219
+ Simplified SNN models also led to the development of
220
+ specialized neuromorphic hardware to simulate them. Numer-
221
+ ous publications show the benefits of using these chips for
222
+ simplified-SNN simulation. For a short review of the various
223
+ chips, we point the reader to [24]. While exciting with respect
224
+ to low-power inference of SNN-based deep-learning models,
225
+ these chips, due to their hardwired dynamics, lack the ability
226
+ to simulate conductance level neural models.
227
+ On AI chips that have the semantic power to capture
228
+ more general HPC workloads, little has been published about
229
+ both simplified and conductance-level SNNs. With respect
230
+ to simplified SNN simulation, we find just one preprint tar-
231
+ geting an AI chip, introducing an IPU-optimized version of
232
+ 2
233
+
234
+ snnTorch [25]. Training throughput of a dense 3-layer LIF
235
+ network on an image classification task is 3.4x higher on the
236
+ IPU than on the A100. The reported performance benefits
237
+ decrease if the network size is increased, with the A100
238
+ apparently underutilized throughout the entire application.
239
+ This shows the potential of using the IPU for simple SNN
240
+ workloads, but the performance characteristics of other AI
241
+ chips or more complex SNNs are not yet obvious.
242
+ No works have been published targeting AI chips with
243
+ conductance-level models or other biologically realistic brain
244
+ simulation scenarios, neither using high-level ML libraries or
245
+ hardware-specific SDKs. To the authors’ knowledge, this is the
246
+ first work to implement an efficient, conductance-level, multi-
247
+ compartmental neuron in an ML library and also the first to
248
+ benchmark multiple AI chips on this workload class.
249
+ III. THE INFERIOR-OLIVE APPLICATION
250
+ The IO is a intrinsically oscillating brain region located
251
+ in the brainstem, and is key to motor control and learn-
252
+ ing [26]. The estimated neuron population for the mouse
253
+ brain is approx. 104 neurons [27] and for humans between
254
+ 106 − 107 neurons [28]. These numbers will be referred to
255
+ during hardware-performance evaluation (Section VI). In this
256
+ work, we will capture in TensorFlow 2 the IO nucleus as
257
+ an extended Hodgkin-Huxley (eHH) model, conductance-level
258
+ brain model, first published in [29]. The model is a good
259
+ example of the computational load of realistic brain models
260
+ and, also, a good fit for our benchmarking purposes, since
261
+ it captures complex neuron dynamics and fast interneural
262
+ communication (in the form of gap junctions), as will be
263
+ shown next.
264
+ We restate the IO-neuron main equations in this section, but
265
+ refer the reader to [29] for more details. In addition, we model
266
+ connectivity based on the network described in [30].
267
+ 1) The cable model:
268
+ Cm
269
+ dV (i)
270
+ dt
271
+ = −
272
+
273
+ k∈Channels
274
+ I(i)
275
+ k
276
+
277
+
278
+ i∈Compartments
279
+ Ik,j
280
+
281
+
282
+ i∈Gap junctions
283
+ Igj,k,j − I(i)
284
+ app
285
+ (1)
286
+ The eHH model describes the membrane that envelops the
287
+ neurons as a capacitor. The cell internal voltage can thus be
288
+ calculated by integrating currents flowing into and out of the
289
+ cell (eq. 1). Here, Iapp is an optional term describing externally
290
+ applied currents by the experimenter.
291
+ 2) Channel currents: Channels (CaL, h, KCa, Na, Kdr, K,
292
+ CaH, Na, K) allow currents to flow through the cell membrane.
293
+ They produce this current as function of internal state variables
294
+ changing over time. In general, this current (eq. 2) results from
295
+ the potential difference to an channel specific reversal potential
296
+ E multiplied by the product of one or more internal gating
297
+ variables, each optionally raised to an integer power (eq. 2).
298
+ The gating variables follow an Ordinary Differential Equation
299
+ (ODE), that brings them to a certain cell-voltage dependent
300
+ steady state at a given speed (eq. 3). These latter equations
301
+ Listing 1 Axonal sodium-channel current
302
+ m inf = 1/(1+ t f . exp ( −(V axon+30) / 5 . 5 ) )
303
+ h
304
+ inf = 1/(1+ t f . exp ( ( V axon+60) / 5 . 8 ) )
305
+ tau h = 1.5* t f . exp ( −(V axon+40) /33)
306
+ dh dt = ( h inf −h ) / tau h
307
+ I na
308
+ = g Na * ( V axon−V Na) * m inf **3* h
309
+ Listing 2 Sparse gap-junction current
310
+ V d i f f
311
+ =
312
+ t f . gather ( V dend ,
313
+ gj
314
+ src ) \
315
+
316
+ t f . gather ( V dend ,
317
+ g j
318
+ t g t )
319
+ I
320
+ per
321
+ gj = V d i f f
322
+ *
323
+ g gj
324
+ *
325
+ (0.2 + \
326
+ 0.8
327
+ *
328
+ t f . exp ( −0.01* V d i f f * V d i f f ) )
329
+ I gapp
330
+ =
331
+ t f . tensor scatter nd add (
332
+ t f . zeros
333
+ like (V) ,
334
+ t f . reshape ( gj
335
+ tgt ,
336
+ ( −1 ,1) ) ,
337
+ I
338
+ per
339
+ gj )
340
+ are usually gaussian or sigmoidal functions of the voltage.
341
+ For certain fast operating channels we set n(t) = n∞(V ) as
342
+ a numerical stability optimization.
343
+ Ii = ¯gi
344
+ ��
345
+ k
346
+ ni,k(t)mk
347
+
348
+ (V − Ei)
349
+ (2)
350
+ τn (V ) dn
351
+ dt = n∞ (V ) − n (t)
352
+ (3)
353
+ 3) Compartmental currents: A single IO cell consist of
354
+ three separate compartments, the axon, soma and dendrite.
355
+ Currents flowing between different compartments are modeled
356
+ resistively as: Ii,j = gi,j (Vj − Vi)
357
+ 4) Gap-junction currents: Gap junctions are direct electri-
358
+ cal connections between different IO cells and allow current
359
+ to flow between them. They follow experimentally determined
360
+ Connexin-36 protein dynamics:
361
+ Igj = ggj∆V
362
+
363
+ 0.2 + 0.8 exp
364
+
365
+ −∆V 2/100
366
+ ��
367
+ (4)
368
+ with ∆V the potential-difference between two connected cells.
369
+ 5) Topology: The real IO looks like a large, folded sheet
370
+ with mostly local connectivity. As approximating this structure
371
+ is not a focus of this paper, our model neurons are assumed
372
+ to exist on a discrete 3-D grid with wrap-around connectivity
373
+ (i.e., a hypertorus). This should exhibit the same non-local
374
+ memory-access patterns as a more realistic model. Connec-
375
+ tions are sampled as a function of inter-neuron distance r on
376
+ a radially symmetric distribution: p(r) ∝ u(rmax − r)(e−r2 −
377
+ e−r2
378
+ max)n(r), where n(r) is the density of neurons in the
379
+ volume shell around r. This distribution is sampled until we
380
+ have 10 connections per neuron on average.
381
+ 6) TensorFlow Translation: The previous equations sum up
382
+ to a total of 14 ODEs per neuron. This system of ODEs is
383
+ translated to a series of TensorFlow operators in Python. By
384
+ defining the model in TensorFlow instead of using platform-
385
+ specific APIs, we make sure all platforms have equal op-
386
+ timization opportunities. Furthermore, TensorFlow naturally
387
+ translates to ONNX models, which is the only high-level
388
+ API available for GroqChip. Straightforward translation to
389
+ TensorFlow is achieved by storing all state in a large 2d-array
390
+ and direct substitution of mathematical expressions by their
391
+ 3
392
+
393
+ TensorFlow counterparts (see Listing 1). When certain model
394
+ parameters need to be user-specified (e.g., gi or Iapp), these
395
+ are passed to the TensorFlow kernel, which then needs to be
396
+ recompiled before running again.
397
+ Translating gap junctions to both TensorFlow and ONNX
398
+ in a performant way requires expressing them as vector
399
+ operations, as opposed to more traditional for-loop-based
400
+ approaches [16]. With just 10 connections per IO neuron on
401
+ average, cell-to-cell communication is sparse. The effective
402
+ operation from a TensorFlow perspective is two sparse-matrix
403
+ (SM) multiplications. As a novel contribution in computa-
404
+ tional neuroscience, we model those as tf.gather and
405
+ tf.tensor_scatter_nd_add operations (see Listing 2).
406
+ Apart from being more specific and memory-efficient in
407
+ describing SM multiplications, these functions have a direct
408
+ mapping to ONNX operators as Gather and ScatterND since
409
+ ONNX specification opset 11, contrary to SM multiplica-
410
+ tions which currently are not possible in ONNX.
411
+ At each timestep, ODEs are integrated using Forward-Euler
412
+ to produce the next state array, resulting in a hardware-
413
+ agnostic timestepping function. For TensorFlow backends, a
414
+ JIT-compilable TensorFlow function is constructed that exe-
415
+ cutes 40 timesteps at a ∆t of 0.025ms, resulting in a 1ms
416
+ sampling accuracy. For ONNX backends, the timestep function
417
+ is converted to an ONNX model and either the public onnx-
418
+ runtime library or Groq compiler is used to compile this
419
+ into executable code. This does not lead to the best possible
420
+ performance by default, thus hardware-specific optimizations
421
+ are discussed in Section V-B.
422
+ IV. TARGET PLATFORMS
423
+ Hardware platforms were selected from the top-performing
424
+ AI accelerators in the MLCommons MLPerf training bench-
425
+ mark v2.0 [31]. From this, the Intel Habana Gaudi was not
426
+ available to us. The GroqChip was included as it was already
427
+ available through academic channels. An overview of all AI
428
+ chips is given in Tab. I and will be presented next. A modern,
429
+ server-grade CPU is also included as a baseline for our
430
+ subsequent performance and numerical-accuracy comparisons.
431
+ 1) Nvidia GPU [6]: These are well-established accelerators
432
+ in the HPC world. With the introduction of the Tensor Cores
433
+ in Nvidia GPUs, they also became well-known for their AI
434
+ capabilities. Tensor Cores are capable of matrix multiplications
435
+ in a very efficient manner. The current generation of tensor
436
+ cores can support up to TensorFloat-32 (TF32) precision TF32
437
+ is a floating point with float 32 dynamic range but float 16
438
+ precision. There are multiple ways of interacting with them;
439
+ e.g., via cuBLAS and TensorRT.
440
+ 2) GroqChip [5]: This is a deterministic Tensor Streaming
441
+ Processor (TSP), resembling a modified systolic array archi-
442
+ tecture. The chip layout is a conventional 2D mesh of cores,
443
+ each with its own dedicated functionality. A column of these
444
+ cores – all of the same type – is called a functional slice.
445
+ Data travels horizontally, executing 320 SIMD-style lanes. A
446
+ single instruction can control 16 lanes, effectively creating 20
447
+ superlanes that can all be operated independently from each
448
+ other. The functional slices consist of one vector processor
449
+ (VXM), two matrix execution modules (MXM), switch ex-
450
+ ecution modules (SXM) and memory modules (MEM). Each
451
+ functional unit (core) accepts a set of instructions; for example,
452
+ the MEM unit could receive the instruction to put a vector onto
453
+ one of the data streams or store the results from the data stream
454
+ in its available SRAM. As soon as data is loaded onto a data
455
+ stream, it automatically ‘flows’ in the direction of the stream,
456
+ which can be either EAST-bound or WEST-bound. When an
457
+ addition needs to be performed, both inputs need to arrive
458
+ at the same time as the add instruction at the corresponding
459
+ VXM core. This design choice puts the burden of optimization
460
+ on the software generating the instructions. This is either done
461
+ by the Groq compiler automatically from an ONNX-graph
462
+ input or manually controlled by a user through the exposed
463
+ Groq-API, which has different levels of abstraction on top of
464
+ the Groq-ISA. To support the creation of large-scale systems,
465
+ the GroqChip has dedicated Chip-to-Chip modules that are
466
+ capable of performing off-chip communication without losing
467
+ their determinism [32]. For this work, we will mainly utilize
468
+ the VXM and MEM units, The memory modules add up
469
+ to a total of 220 MiB of on-chip SRAM. Each superlane
470
+ implements a 4x4 mesh of vector ALUs capable of doing
471
+ x16-SIMD. Each ALU has a 32-bit input operand but with
472
+ the exception of additions and multiplications, instructions are
473
+ done in a reduced-precision FP32 format.
474
+ 3) Graphcore IPU [4]: The Graphcore Intelligence Pro-
475
+ cessing Unit (IPU) is designed for efficient execution of fine-
476
+ grained operations across a large number of parallel threads.
477
+ By design, the IPU offers true Multiple Instruction, Multi-
478
+ ple Data (MIMD) parallelism. This unique style of parallel-
479
+ processor design adapts well to fine-grained computations that
480
+ exhibit irregular data-access patterns. Each IPU contains 1,472
481
+ tiles, containing 1 core and 624KiB of SRAM memory. A sin-
482
+ gle core can only access the memory in its own tile. Intra-IPU
483
+ communication relies on a powerful, low-latency interconnect
484
+ called IPU exchange. For inter-IPU communications, each
485
+ chip contains 10 so-called IPU links. The IPU compute
486
+ units, called Accumulating Matrix Product (AMP)
487
+ units, support FP32 arithmetic and are designed to accelerate
488
+ matrix multiplications and convolutions. With respect to the
489
+ programming model, the IPU adopts the Bulk Synchronous
490
+ Parallel (BSP) model [33] through which it organizes its
491
+ compute and data-exchange operations. This abstraction for
492
+ parallel computations consists of multiple sequential super-
493
+ steps. A superstep consists of a local computation phase;
494
+ every process (tile, in the IPU case) operates in isolation
495
+ performing compute only on its local memory, followed by a
496
+ communication phase where each process can exchange values
497
+ needed by other tiles. These activities are concluded with a
498
+ barrier synchronization phase; only when all processes have
499
+ reached the barrier can the next superstep be started. Because
500
+ of this, the IPU can be described as a true BSP machine.
501
+ 4) Google TPU [7]: The TPU (version 1) was designed
502
+ as a systolic-array processor for inference, only supporting
503
+ 8/16-bit operations. By supporting only matrix-multiply and
504
+ 4
505
+
506
+ TABLE I: Overview of all hardware used in experimental setups
507
+ Device
508
+ On-chip Memory
509
+ Process node
510
+ Transistor count (Bn)
511
+ Base-boost freq. (MHz)
512
+ TDP (W) Software
513
+ AMD 3955WX CPU *
514
+ 128 GB DDR4
515
+ 7 nm
516
+ 19.94
517
+ 3900 - 4300
518
+ 280
519
+ TF 2.11.0
520
+ GroqChip TSP
521
+ 230 MB on-chip
522
+ 14 nm
523
+ 26.8
524
+ 900
525
+ -
526
+ Groq SDK 0.9.1 ***
527
+ Nvidia A100 GPU
528
+ 80 GB HBM2e
529
+ 7 nm
530
+ 54.2
531
+ 1275 - 1410
532
+ 400
533
+ TF 2.11.0
534
+ Graphcore IPU (GC200) **
535
+ 900 MB on-chip
536
+ 7 nm
537
+ 59.4
538
+ 1330
539
+ 185
540
+ TF IPU 2.6.3+gc3.0.0
541
+ Google TPUv3
542
+ 32 GiB HBM
543
+ 16 nm
544
+ (est.) 11
545
+ 940
546
+ 450
547
+ TF 2.11.0
548
+ *AMD Ryzen Threadripper PRO 3955WX (16-Core) | **Single M2000 in IPU-POD16 (with 4 GC200 chips) | ***TF2ONNX 1.13.0 and ONNX opset 16
549
+ basic nonlinear activation functions, it was unfit for training
550
+ neural networks. Consequentially, an HPC application – for
551
+ example, the one demonstrated in this paper – would also
552
+ not be a suitable fit for this processor. However, with the
553
+ TPUv2, Google shifted their focus towards supporting training
554
+ on their TPU chips. Google added a vector-processing unit
555
+ (VPU) and changed the matrix-multiply units to support the
556
+ FP16 format (FP32, with only a 7-bit mantissa). The VPU
557
+ most likely supports higher precision, as can be deducted from
558
+ results in this work but no confirmation of this is found in the
559
+ public domain. These two major (micro)architectural changes
560
+ made it possible to run a wider range of applications including
561
+ training neural models on the TPU. All are supported through
562
+ the Google XLA compiler taking TensorFlow as input. The
563
+ TPUv3, assessed in this work, is an upgrade in terms of
564
+ functional-unit count, higher memory speed, and optimized
565
+ chip layout, but did not include any fundamental changes.
566
+ A. Performance Predictions
567
+ The IO application has two components that map differently
568
+ onto different types of hardware: i) a part with embarrassingly
569
+ parallel computations for updating local neuron states; and
570
+ ii) a part with SM computations for exchanging membrane
571
+ voltages over gap junctions. Before we proceed to the actual
572
+ experiments, we attempt performance predictions, driven by
573
+ the idiosyncrasies of the different AI-chip architectures.
574
+ Embarrassing parallelism: These are calculations for up-
575
+ dating the state of every single neuron. This boils down to
576
+ elementwise vector operations. The GPU architecture featuring
577
+ one Warp execution per Streaming Multiprocessor or multiple
578
+ Tensor Cores is very well-suited for this type of parallelization.
579
+ The TPU and the GroqChip are both based upon systolic-array
580
+ architectures, both natively supporting Matrix-Multiplication
581
+ but also Vector-Operation operations that can be utilized
582
+ for these calculations. In fact, since neuron updates require
583
+ only
584
+ 1-D
585
+ data, the Matrix-Multiplication units (which is
586
+ the focus of these chips) are effectively underutilized in these
587
+ architectures. The IPU, with a large amount of very small
588
+ general-purpose cores, should also do well on parallelizing
589
+ neuron-state calculations, however, its architecture is geared
590
+ towards irregular data-access patterns, which is not essential
591
+ to the particular task. The extra overhead of such advanced
592
+ features, therefore, will not help performance in terms of
593
+ computing this embarrassingly parallel part of the simulation.
594
+ Communication:
595
+ As described previously, gap-junction
596
+ communication employs the gather-scatter operations (essen-
597
+ tially, SM operations) from TensorFlow. For either the GPU or
598
+ the IPU, such operations are handled better due to the different
599
+ execution paths that can be handled within the architecture by
600
+ design. In contrast, the GroqChip and TPU need to handle
601
+ these differently: a naive approach would be to enforce dense-
602
+ matrix operations via one-hot encoding of operands and,
603
+ then, utilizing the matrix-multiplication hardware. In case the
604
+ GroqChip or the TPU happen to use such a strategy, we expect
605
+ that performance will deteriorate very rapidly or memory will
606
+ be depleted with increasing IO-network sizes.
607
+ 1) CPU + TensorFlow: For this platform, JIT compila-
608
+ tion through the XLA compiler [34] will be used; it will
609
+ automatically utilize the many threads nowadays available in
610
+ CPUs. We expect decent performance and very accurate results
611
+ because of full FP32 support. Since it is the hardware on which
612
+ brain models are traditionally executed and gives accurate
613
+ results, the CPU will form our baseline. Accelerators should
614
+ outperform this implementation in terms of runtime, especially
615
+ for larger network sizes.
616
+ 2) GPU + TensorFlow: The XLA compiler is used, which
617
+ optimizes the graph resulting in a single kernel launch. Among
618
+ others, it does this by “fusing” the calculations. Moreover, this
619
+ fusion keeps intermediate values stored in GPU registers [35].
620
+ The TensorFlow backend for CUDA use Tensor Cores, at
621
+ a loss of FP32 accuracy. However, this only happens when
622
+ explicit matrix-multiplications are requested and not as an
623
+ optimization. So in our case, the compiler will only use float32
624
+ CUDA operations.
625
+ 3) IPU + TensorFlow: The IPU architecture is not a perfect
626
+ fit for the embarrassingly parallel part of the computation.
627
+ For the interneuron-communication part, the BSP model is a
628
+ better fit and thus is expected to perform better. However, as
629
+ the topology is given as an unknown parameter to the model,
630
+ the IPU compiler can not be expected to allocate neighboring
631
+ cells on adjacent tiles, resulting in sub-par communication
632
+ performance. Available memory should easily be able to
633
+ handle large problem sizes.
634
+ 4) TPUv3 + TensorFlow: The TPU supports FP32 and
635
+ is expected to handle our workload, especially for the un-
636
+ connected case, very well. As Google put much effort into
637
+ TensorFlow support, gather-scatter operations are expected to
638
+ be optimized, to the best of the hardware capabilities. Because
639
+ of FP32 support in the v3 model, we expect correct numerics
640
+ in the output, as well.
641
+ 5) CPU/GPU + ONNX: Expectations are the same as for
642
+ CPU/GPU + TensorFlow. We expect the XLA compiler to
643
+ outperform the ONNX runtime slightly for the CPU case
644
+ simply because it can perform whole-program optimization.
645
+ For the GPU, this effect is expected to be much larger and
646
+ the TensorFlow is expected to dominate ONNX as the ability
647
+ 5
648
+
649
+ to fuse kernels will be a big advantage for TensorFlow over
650
+ single-kernel invocations in ONNX. Especially the invocation
651
+ overhead for small GPU kernels will hurt the performance
652
+ of the ONNX-GPU-runtime. TensorRT is also a supported
653
+ backend in ONNX that is expected to outperform the CUDA
654
+ runtime in performance; it will, however, drop precision as the
655
+ backend switches to TF32 numerics.
656
+ 6) GroqChip + ONNX: The GroqChip is a new, upcoming
657
+ modified systolic-array processor. Its compiler takes in the
658
+ ONNX graph but is not limited to executing this on an
659
+ operation-per-operation basis as it recompiles the full ONNX
660
+ graph at once. Therefore, it can potentially perform the same
661
+ optimizations as the XLA compiler for the TPU. As the first
662
+ version of the architecture, current compiler development is
663
+ still exploring ways to map non-standard ML-operations to
664
+ the hardware. Besides, the GroqChip VXM is not capable of
665
+ doing all operations in IEEE FP32 arithmetic. Because of this,
666
+ it can be expected to perform slightly better than the TPU at
667
+ the cost of reduced accuracy.
668
+ V. EXPERIMENTAL SETUP
669
+ A. Benchmarking Parameters
670
+ Each platform is benchmarked for performance on a set
671
+ problem (i.e., network) size as well as for its performance
672
+ scalability by simulating the IO network for small population
673
+ sizes in the range [43, 53, . . . , 203] and, again, for larger sizes
674
+ in the range [303, 403, . . . , 1003], where the third power is
675
+ an artifact of the cubic network-topology generation method.
676
+ These experiments are focusing on four different aspects of
677
+ each AI platform, discussed next.
678
+ 1) Unconnected Network: By removing the communica-
679
+ tion step (gap junctions) from the model, we obtain a (bio-
680
+ logically unrealistic) compute-heavy, embarrassingly parallel
681
+ workload. First, we measure the setup time for each AI
682
+ platform, including on-chip buffer allocation, Ahead-Of-Time
683
+ (AOT) compilation or definition of Just-In-Time (JIT)-enabled
684
+ functions. Next, we simulate an IO network for 100ms of
685
+ biological time and take the minimum wall-clock time from
686
+ 5 runs (including data-transfer times). For JIT targets, the
687
+ first runtime (if outside the other runtimes’ standard deviation)
688
+ minus follow-up runtimes is taken as the JIT compilation time,
689
+ such that we can compare setup times between AOT and JIT
690
+ targets.
691
+ 2) Connected Network: By restoring gap junctions into the
692
+ IO network, we assess communication overhead. Runtimes are
693
+ obtained in an identical way as before, yet the expectation here
694
+ is that they are markedly longer than the unconnected case.
695
+ 3) Numerical Validation: Measuring performance is our
696
+ main focus, yet this must not come at the cost of functional
697
+ correctness. Here, we simulate connected networks up to 729
698
+ neurons for 10 seconds of biological time and numerically
699
+ compare the various results to the reference CPU output.
700
+ 4) Numerical Stress-test: Here, we simulate the IO in a
701
+ more biologically realistic way that is of interest to neurosci-
702
+ entists: We add more variance to the neural parameters and,
703
+ most importantly, a lot of external current inputs (simulating
704
+ other brain regions) that will evoke action potentials (spikes)
705
+ in the IO dynamics. These fast transients will stress-test the
706
+ numerical performance of the AI hardware, especially non-
707
+ IEEE754 targets (Tensor Cores and GroqChip). We perform
708
+ this experiment on the smallest 64-neuron network and then
709
+ compare for numerical accuracy against the CPU.
710
+ Benchmarking
711
+ is
712
+ implemented
713
+ in
714
+ a
715
+ publicly
716
+ avail-
717
+ able
718
+ and
719
+ modular,
720
+ extensible
721
+ framework,
722
+ downloadable
723
+ from GitLab https://gitlab.com/neurocomputing-lab/Inferior
724
+ OliveEMC/ioperf.
725
+ The
726
+ main
727
+ benchmarking
728
+ script
729
+ auto-
730
+ discovers available hardware, runs the appropriate benchmarks
731
+ and records results. Used software versions are also shown in
732
+ Tab. I.
733
+ B. Hardware-specific Optimizations
734
+ While our original goal was not to write platform-specific
735
+ code, we found that by default some of the AI platforms did
736
+ not perform very well. For example, most platforms defaulted
737
+ to copying over the entire parameters arrays for each kernel
738
+ invocation, which was not needed for this mostly constant data.
739
+ For a fair comparison between hardware platforms, we allowed
740
+ optimizations to be applied to hardware-specific code that
741
+ either led to operation fusion across different execution kernels
742
+ or prevented unnecessary device-host data transfers. The exact
743
+ optimizations have been applied in close collaboration with
744
+ Graphcore and Groq for the respective chips, and are as
745
+ follows:
746
+ 1) TensorFlow XLA: The TensorFlow graph executor typi-
747
+ cally performs each operation separately when a graph is run
748
+ with a corresponding kernel invocation. A different way to
749
+ run TensorFlow models is made available by XLA, which
750
+ turns a TensorFlow graph into a series of kernels created for
751
+ a particular application. These kernels can take advantage of
752
+ application-specific information for performing optimizations,
753
+ e.g., operation fusion. The CPU, GPU, and TPU are the
754
+ three available backends for the XLA compiler. For the IO
755
+ application, a TensorFlow wrapper function was implemented
756
+ that fuses up to 40 timesteps together for each call in order to
757
+ fully exploit the XLA compiler.
758
+ 2) ONNX: Except for the GroqChip, all ONNX imple-
759
+ mentations build on top of onnxruntime or onnxruntime-
760
+ gpu. We enable all backend-supported graph-optimizations.
761
+ Explicit IOBindings are used to prevent unneeded host-
762
+ device data copies. Parameters are copied once to the device
763
+ at simulation start. Then, state is allocated twice, with each
764
+ timestep toggling between two buffers, one as the input state
765
+ and the other as the output (next) state. For TensorRT, we
766
+ leave the default behavior of using TF32 enabled, otherwise,
767
+ it will not utilize its Tensor Cores.
768
+ 3) Groq: After the compilation of an ONNX graph with
769
+ the Groq Compiler, the binary can be executed directly on the
770
+ GroqChip. A naive approach here would be to invoke this
771
+ binary 40 times for 40 timesteps and move the data back
772
+ and forth continuously since the GroqChip only has SRAM
773
+ which is fully managed at compile time. However, the Groq
774
+ Compiler is able to tie input and output tensors together into
775
+ 6
776
+
777
+ 10
778
+ 1
779
+ 100
780
+ 101
781
+ 102
782
+ 103
783
+ CPU (ONNX)
784
+ CPU (TF)
785
+ 10
786
+ 1
787
+ 100
788
+ 101
789
+ 102
790
+ 103
791
+ GPU (TF)
792
+ IPU (TF)
793
+ 102
794
+ 103
795
+ 104
796
+ 105
797
+ 106
798
+ 10
799
+ 1
800
+ 100
801
+ 101
802
+ 102
803
+ 103
804
+ TPU (TF)
805
+ 102
806
+ 103
807
+ 104
808
+ 105
809
+ 106
810
+ GroqChip (ONNX)
811
+ Network size (#neurons)
812
+ Time required to simulate one biological second (s)
813
+ Fig. 2: Runtime performance (lower is better), comparison between CPU baseline, GPU and AI chips. For scale, the mouse (•) and human (▲) Inferior Olive
814
+ are shown as running in realtime in all figures. The CPU is included twice to explain the observed switching behavior of the IPU. On the CPU, while the XLA
815
+ optimizer builds a single-core, connected-network simulation, it builds a multicore, unconnected-network simulation (as observed by load-testing), leading to
816
+ an unexpectedly slow simulation for the latter case. The same behavior can be observed for the IPU, which uses the XLA compiler as well.
817
+ a persistent memory buffer in the on-chip SRAM. Utilizing
818
+ this results still in 40 invocations of the binary but skips the
819
+ continuous I/O between host and accelerator. A more radical
820
+ way to improve the performance is to compile the 40 timesteps
821
+ into a single ONNX graph that can then be converted with the
822
+ Groq Compiler; this method will reduce 40 invocations to a
823
+ single invocation. We implemented all optimizations as long
824
+ as the compiler was able to compile them. The 40 timesteps at
825
+ once quickly ran into compiler errors with growing networks.
826
+ 4) Graphcore:
827
+ The IPU has architectural support for
828
+ streaming memory. This means that we can run a single
829
+ program on-chip for the entire simulation that will stream
830
+ out samples every 40 timesteps. The inner, unsampled 1-
831
+ msec 40-timestep loop, is run using ipu.loops.repeat,
832
+ after
833
+ which
834
+ the
835
+ recorded
836
+ voltages
837
+ are
838
+ pushed
839
+ to
840
+ an
841
+ IPUOutfeedQueue with a 200-sample size. This is, then,
842
+ looped once more using ipu.loops.repeat for the re-
843
+ quired amount of milliseconds to simulate and wrapped in
844
+ a TensorFlow JIT function. Furthermore, the fast-math op-
845
+ timization is enabled, 128 IPU tiles are reserved for I/O
846
+ with place_ops_on_io_tiles = True and program
847
+ execution is limited to a single IPU.
848
+ VI. EXPERIMENTAL RESULTS
849
+ With the exception of the reference CPU, for brevity we
850
+ report here either TensorFlow or ONNX results, depending
851
+ on which of the two leads to better performance. Overall
852
+ performance plots are shown in Fig. 2 and will be detailed
853
+ in the next sections. In general, it is found that, for the
854
+ IO application, the ONNX ports are outperformed by their
855
+ TensorFlow counterparts. This is due to the fact that the
856
+ onnx-runtime library currently does not perform as extensive
857
+ optimizations as the XLA compiler. For example, the CUDA
858
+ target translates each compute step into a single predefined
859
+ kernel call. The TensorRT backend performs operator fusion,
860
+ resulting in multiple kernels that chain arithmetic operations.
861
+ Still, the CUDA XLA-backend vastly outperforms both ONNX
862
+ CUDA targets, and as such we removed the corresponding
863
+ findings from the main analysis. Note that the Groq platform
864
+ only supports AOT compilation of ONNX models.
865
+ A. Compilation Time
866
+ Both software stack and hardware influence program setup
867
+ time, as illustrated in Fig. 3 for the largest network (729 cells)
868
+ that could fit in all AI chips. The CPU compiles the fastest
869
+ across the board as we have a direct translation of ONNX
870
+ operations to their CPU-optimized callbacks. The TensorFlow
871
+ (XLA) version, not included in the figure, was much slower
872
+ 7
873
+
874
+ 100
875
+ 101
876
+ 102
877
+ 103
878
+ Compile time (s)
879
+ (A). Network type at compile time (n=729)
880
+ Unconnected
881
+ Connected
882
+ CPU
883
+ IPU
884
+ GPU
885
+ TPU
886
+ GroqChip
887
+ 10
888
+ 2
889
+ 10
890
+ 1
891
+ 100
892
+ 101
893
+ 102
894
+ Run time (s)
895
+ (B).Connected network size at run time
896
+ n=64
897
+ n=729
898
+ n=125000
899
+ 1.0x
900
+ 2.3x
901
+ 8.7x
902
+ 7.7x
903
+ 32.9x
904
+ 1.0x
905
+ 4.3x
906
+ 17.4x
907
+ 16.4x
908
+ 2.6x
909
+ 1.0x
910
+ 28.6x
911
+ 269.5x
912
+ 1208.5x
913
+ Fig. 3: (A) Setup (AOT+JIT compile + memory allocation) times for a network
914
+ of 729 neurons in both Unconnected- and Connected-network configurations.
915
+ JIT compile times are extracted from the first run of 5 performance runs
916
+ and added to the initial setup time (if outside one standard deviation). (B)
917
+ Performance and speedup of different AI chips vs. the CPU reference on
918
+ the Connected benchmark, for different network sizes. Sizes were chosen to
919
+ be the smallest (64) and largest connected networks that could fit on the
920
+ GroqChip (729) and the TPUv3 (125,000). The rightmost GroqChip bar is
921
+ absent, corresponding to the model that could not be compiled.
922
+ due to the increased compiler complexity. Both the IPU and
923
+ GPU exhibit similar JIT compilation speeds. The GroqChip’s
924
+ AOT compiler takes significantly longer for this workload due
925
+ to the explicitly concatenated 40 timesteps. The GroqChip
926
+ version with a single timestep per program compiles much
927
+ faster than the Graphcore or A100 versions, but at a small
928
+ performance loss.
929
+ B. Runtime Performance
930
+ 1) Unconnected Network (embarrassingly parallel): For
931
+ unconnected cells, neural dynamics are expressed only using
932
+ vectorized operations. As predicted, this fits the compute
933
+ paradigm of the GPU very well. Performance scales linearly
934
+ with problem size (horizontal line), showing that the GPU
935
+ cores are underutilized for all simulated network sizes.
936
+ The TPU and GroqChip, as systolic-array-based processors,
937
+ were expected to be a poorer architectural fit because large
938
+ parts of the chip would be left unused. Still, the focus on
939
+ efficient vector operations could result in speedups. We can
940
+ indeed observe this in Fig. 2, although in different ways. The
941
+ TPU, similar to the GPU, flatlines across all problem sizes,
942
+ although being 4.1x slower. Consequently, memory capacity
943
+ is not a problem for the TPU but performance capping in raw
944
+ single-cell computations due to architectural design choices.
945
+ In contrast, the GroqChip starts out 2.0x faster than the GPU,
946
+ quickly loses this edge and, between 103 and 104 cells, starts
947
+ to hit its memory-capacity limits, degrading performance with
948
+ higher problem sizes. Networks of more than 640, 000 cells
949
+ simply do not fit on the chip. The GroqView analyzer confirms
950
+ that the problem is core-to-core-memory communication and
951
+ that most dedicated cores are not used most of the time.
952
+ The IPU was expected to perform well given its large core
953
+ count but the very homogeneous compute load proved a poor
954
+ fit for its MIMD design, leading to large under-utilization
955
+ of the chip. With respect to real-time performance, only the
956
+ GPU followed by the GroqChip (ignoring memory issues) and
957
+ marginally the TPU makes the 1-sec cut.
958
+ 2) Connected Network (high communication overhead): As
959
+ predicted, communication patterns induced by a small number
960
+ of gap junctions lead to a large performance reduction of 4.6x
961
+ for small networks on the GPU. For higher problem sizes,
962
+ performance drops at a growing rate, with a 141x degradation
963
+ for networks of 106 cells. The AI chips fare much better here,
964
+ most of which initially shows a less than 20% reduction in
965
+ performance against their unconnected counterparts.
966
+ As an exception, the GroqChip’s connected-network sim-
967
+ ulation runs 2.5x slower than the unconnected version; even
968
+ so, it outperforms the GPU on very small, connected neural
969
+ networks by a 3.7x speedup. However, the GroqChip (as
970
+ expected) converts the SM communication into a dense-
971
+ matrix multiplication, making the best out of its deterministic-
972
+ execution hardware. This quickly leads to prohibitively large
973
+ matrix multiplications and, beyond 729 cells, the scheduler
974
+ is unable to allocate the necessary instructions. In effect, the
975
+ GroqChip loses its edge over the GPU for larger networks.
976
+ In contrast, the TPU shows nearly identical behavior to
977
+ the unconnected case and its performance does still not scale
978
+ with problem size. This changes around networks larger than
979
+ 105, where the JIT compiler seems to run into performance
980
+ problems. Here, we observed large random fluctuations in
981
+ performance that either led to approx. 1-sec or very long more
982
+ than 400-sec run-times over the 5 repeated runs. We expect
983
+ that these originate from memory limits of the TPU and had
984
+ to stop benchmarking due to impractically large run times.
985
+ However, we could not determine the true source of variation.
986
+ The IPU, severely underutilized for the unconnected case,
987
+ sees in fact a performance improvement when we increase
988
+ the communication overhead in small networks. While coun-
989
+ terintuitive, this is actually the same effect we see on the
990
+ XLA-based CPU backend. Here, we see that gap junctions
991
+ force the simulation to become single core, which actually
992
+ becomes faster than the parallel, multi-core, unconnected case,
993
+ due to the lower synchronization overhead. Around 104 cells,
994
+ this behavior changes, gap-junction communication becomes a
995
+ fixed overhead on top of normal simulation. At a certain point,
996
+ this growth becomes exponential and the largest simulated
997
+ network does not fit on a single IPU anymore.
998
+ C. Numerical Validation
999
+ While all AI chips outperform the CPU baseline, it is wise
1000
+ to explore also any potential decrease in numerical accuracy
1001
+ of the different runs with respect to that of the same CPU.
1002
+ Here, we compare 1-msec sampled cell somatic voltages of an
1003
+ extended, 10-sec simulation for a 729-cell, connected network
1004
+ 8
1005
+
1006
+ IPU
1007
+ GPU
1008
+ TPU
1009
+ GroqChip
1010
+ 10
1011
+ 5
1012
+ 10
1013
+ 4
1014
+ 10
1015
+ 3
1016
+ 10
1017
+ 2
1018
+ 10
1019
+ 1
1020
+ 100
1021
+ 101
1022
+ Abs. difference to CPU reference (mV)
1023
+ Left
1024
+ boxp.
1025
+ Right
1026
+ boxp.
1027
+ Vgroqchip
1028
+ Vcpu
1029
+ Fig. 4: Numerical-accuracy validation (lower is better). Box plots show
1030
+ deviations from CPU baseline, as recorded over two 1-sec timespans, one
1031
+ at the start (left) and one at the end (right) of the 10-sec numerical-validation
1032
+ simulation. The GroqChip result, showing the largest deviation, is plotted in
1033
+ the upper left corner together with the two recording spans .
1034
+ (the largest population supported by all platforms); results are
1035
+ shown in the box plots of Fig. 4.
1036
+ As expected, platforms supporting IEEE754 floating-point
1037
+ numerics (IPU, GPU, TPU) show accurate reproduction of
1038
+ voltage traces. The IPU, even with fast-math enabled, is the
1039
+ most faithful to the CPU baseline. The GPU and TPU exhibit
1040
+ increasingly large deviations but still fall within limits explain-
1041
+ able by floating-point instruction reordering. The GroqChip,
1042
+ while supporting FP32 number storage, implements certain
1043
+ operations at lower precision including exponent calculation.
1044
+ This is visible by a quite large mV -order deviation from the
1045
+ CPU baseline, for a process that happens at the 10 − 100mV -
1046
+ scales. This voltage difference mostly stems from a slowly
1047
+ accrued phase difference for the oscillating cells. TensorRT
1048
+ (not shown in this plot) is by default using Nvidia’s TF32, for
1049
+ which accuracy was found similar to that of the GroqChip.
1050
+ D. Numerical Stress-test
1051
+ The numerical stress test increases neuronal variation and
1052
+ adds external inputs that lead the neurons to spike. These
1053
+ fast transients can not be simulated using FP16 precision, but
1054
+ reduced-accuracy FP32 operations as used in Tensor Cores
1055
+ or GroqChip are still untested. Once more, we compare the
1056
+ deviation of the somatic-voltage traces of the various AI chips
1057
+ against the CPU baseline.
1058
+ Again, the platforms with native FP32 support show the
1059
+ lowest deviation: For the IPU this is 0.087mV , for the
1060
+ GPU this is 0.135mV and for the TPU this is a 0.672mV
1061
+ maximum absolute difference from the CPU baseline. These
1062
+ moderate, mV -order differences can be explained by small
1063
+ spike-time differences which due to the large neuronal-spike
1064
+ sizes quickly lead to large voltage discrepancies. Importantly,
1065
+ all simulations run stably; i.e., do not cause this chaotic IO-
1066
+ model simulator to crash. The GroqChip simulation initially
1067
+ starts out the same as in the numerical-validation test, but as
1068
+ soon as input perturbations are applied, it becomes unstable
1069
+ and settles on voltage deviation at a measured maximum
1070
+ of 8.51 × 1036mV , unacceptable for scientific applications.
1071
+ Notably, the error stabilizes at this point and does not explode
1072
+ to infinity or NaN values, as observed with FP16 simulations.
1073
+ To regain numerical stability, we tried lowering the time-
1074
+ stepping constant ∆t 10-fold and 100-fold for the GroqChip
1075
+ simulation, but this did not lead to results more closely in
1076
+ range with the CPU ones.
1077
+ VII. DISCUSSION
1078
+ As this work has shown, utilizing AI platforms for executing
1079
+ highly biologically plausible SNN workloads is made exceed-
1080
+ ingly user-friendly when using a ML-library like TensorFlow.
1081
+ Arguably, even better performances could be obtained by
1082
+ coding via the various hardware SDKs (Software Development
1083
+ Kits), but it is unrealistic to expect computational scientists
1084
+ to learn the low-level details of all hardware options made
1085
+ available to them these days.
1086
+ As shown, the added benefits from JIT compilation make
1087
+ a hand-coded CUDA implementation perform on par with the
1088
+ XLA-compiled TensorFlow version while, at the same time,
1089
+ allowing one to move easily to a new piece of hardware
1090
+ when this is released. We expect that, in the future, more
1091
+ classical HPC workloads will see ML-library, that is, tensor-
1092
+ based implementations.
1093
+ For promising upcoming accelerators like those by Graph-
1094
+ core and Groq, we believe that future speedups will chiefly
1095
+ come from software and compiler upgrades, as current SDKs
1096
+ are mostly optimized for ML workloads. For instance, gather-
1097
+ scatter operations on the GroqChip do not have to be im-
1098
+ plemented as dense-matrix operations, memory can be better
1099
+ utilized, and better support for iterative programs must also
1100
+ be introduced. The TPU which is architecturally similar to the
1101
+ GroqChip, clearly performs gather-scatter operations in a more
1102
+ efficient way than encoding indexing as one-hot vectors.
1103
+ Speed-ups could be gained by effective use of mixed
1104
+ precision on the IPU or reduced accuracy FP32 operations
1105
+ using Tensor Cores or GroqChip. For the IPU, this would
1106
+ constitute a separate numerical sensitivity analysis to find out
1107
+ which parts of the compute graph can be lowered to (stochastic
1108
+ rounded) FP16. As shown, the accuracy loss on Tensor Cores
1109
+ and GroqChip does in its current form not allow for brain
1110
+ simulation, but possible these could be put to use by switching
1111
+ the integration scheme or other numerical optimizations.
1112
+ Finally, this work has steered clear off multi-chip topologies.
1113
+ All discussed architectures do support specifically developed,
1114
+ low-latency, chip-to-chip hardware and assorted communica-
1115
+ tion protocols. In many ways, such coherent communication
1116
+ is a bigger and more timely challenge than acceleration speed
1117
+ itself, which would deliver massive benefits for large-scale
1118
+ SNN simulation (or training). However, tapping into those
1119
+ platform-specific interfaces requires SDK-specific coding of
1120
+ the IO application; relying on TensorFlow or ONNX frame-
1121
+ works will, generally, not work. Careful and platform-specific
1122
+ coding is necessary, which we leave as future work.
1123
+ VIII. CONCLUSION
1124
+ In this work, we built the first ML-library-based, effi-
1125
+ cient implementation of a large-scale, conductance-level brain
1126
+ 9
1127
+
1128
+ model, the Inferior Olive (IO). Subsequently, we benchmarked
1129
+ the performance of simulating this model on a 16-core AMD
1130
+ Ryzen Threadripper PRO 3955WX CPU, an Nvidia A100
1131
+ GPU, and different AI chips (Graphcore IPU M2000, Gro-
1132
+ qChip and Google TPU v3). We found that all accelerators
1133
+ provide significant speedups over the CPU implementation.
1134
+ For this specific problem, the GPU and TPU seem most
1135
+ fit for simulation, with the TPU setting a new record for
1136
+ real-time IO simulation. For small networks, the GroqChip
1137
+ outperforms the other accelerators, but large networks could
1138
+ not fit in the on-chip instruction memory. More generally, we
1139
+ hypothesize that modern ML-libraries possess the semantic
1140
+ power to model classical problems in scientific computing.
1141
+ These, then, map extremely well to ML-driven, novel AI-chip
1142
+ architectures, which apart from large performance benefits,
1143
+ also benefit from reduced development times. For example, the
1144
+ version of our IO application running on the TPU outperforms
1145
+ the handwritten and hand-optimized CUDA implementation by
1146
+ a large factor, at a fraction of the development cost. The exact
1147
+ hardware trade-off will vary on an application-by-application
1148
+ basis, and hardware selection also benefits significantly from
1149
+ the hardware-agnostic model description.
1150
+ ACKNOWLEDGEMENT
1151
+ This research would not have been possible without access
1152
+ to dedicated hardware: The RTX6000 was gifted from the
1153
+ NVIDIA Hardware Grant Program, Google provided free
1154
+ cloud credits for TPU access and Graphcore provided access
1155
+ to POD16 machines through Paperspace and Gcore cloud
1156
+ via its Academia program. Furthermore, we’d like to thank
1157
+ Graphcore employees for helping with optimizing the IPU
1158
+ code and Dr. Mario Negrello for neuroscientific insights.
1159
+ REFERENCES
1160
+ [1] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
1161
+ J. Kepner, “Survey and benchmarking of machine learning accelerators,”
1162
+ in 2019 IEEE high performance extreme computing conference (HPEC).
1163
+ IEEE, 2019, pp. 1–9.
1164
+ [2] N. Kasabov, “Chapter 6 - evolving and spiking connectionist systems
1165
+ for brain-inspired artificial intelligence,” in Artificial Intelligence in the
1166
+ Age of Neural Networks and Brain Computing, R. Kozma, C. Alippi,
1167
+ Y. Choe, and F. C. Morabito, Eds.
1168
+ Academic Press, 2019, pp.
1169
+ 111–138. [Online]. Available: https://www.sciencedirect.com/science/
1170
+ article/pii/B9780128154809000062
1171
+ [3] W. Maass, “Networks of spiking neurons: The third generation
1172
+ of neural network models,” Neural Networks, vol. 10, no. 9, pp.
1173
+ 1659–1671, 1997. [Online]. Available: https://www.sciencedirect.com/
1174
+ science/article/pii/S0893608097000117
1175
+ [4] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting the
1176
+ graphcore ipu architecture via microbenchmarking,” 2019. [Online].
1177
+ Available: https://arxiv.org/abs/1912.03413
1178
+ [5] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker,
1179
+ T. Hawkins, A. Bell, J. Thompson, T. Kahsai, G. Kimmell, J. Hwang,
1180
+ R. Leslie-Hurd, M. Bye, E. R. Creswick, M. Boyd, M. Venigalla,
1181
+ E. Laforge, J. Purdy, P. Kamath, D. Maheshwari, M. Beidler,
1182
+ G. Rosseel, O. Ahmad, G. Gagarin, R. Czekalski, A. Rane, S. Parmar,
1183
+ J. Werner, J. Sproch, A. Macias, and B. Kurtz, “Think fast: A tensor
1184
+ streaming processor (tsp) for accelerating deep learning workloads,” in
1185
+ Proceedings of the ACM/IEEE 47th Annual International Symposium on
1186
+ Computer Architecture, ser. ISCA ’20.
1187
+ IEEE Press, 2020, p. 145–158.
1188
+ [Online]. Available: https://doi.org/10.1109/ISCA45697.2020.00023
1189
+ [6] R. Krashinsky, O. Giroux, S. Jones, N. Stam, and S. Ramaswamy,
1190
+ “Nvidia ampere architecture in-depth.” [Online]. Available: https:
1191
+ //developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
1192
+ [7] N. Jouppi, D. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,
1193
+ and D. Patterson, “A domain-specific supercomputer for training deep
1194
+ neural networks,” Communications of the ACM, vol. 63, pp. 67–78, 06
1195
+ 2020.
1196
+ [8] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
1197
+ Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
1198
+ A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
1199
+ M. Kudlur, J. Levenberg, D. Man´e, R. Monga, S. Moore, D. Murray,
1200
+ C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
1201
+ P. Tucker, V. Vanhoucke, V. Vasudevan, F. Vi´egas, O. Vinyals,
1202
+ P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
1203
+ “TensorFlow: Large-scale machine learning on heterogeneous systems,”
1204
+ 2015, software available from tensorflow.org. [Online]. Available:
1205
+ https://www.tensorflow.org/
1206
+ [9] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,”
1207
+ https://github.com/onnx/onnx, 2019.
1208
+ [10] W. Gerstner, H. Sprekeler, and G. Deco, “Theory and simulation in
1209
+ neuroscience,” science, vol. 338, no. 6103, pp. 60–65, 2012.
1210
+ [11] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
1211
+ A. Maida, “Deep learning in spiking neural networks,” Neural networks,
1212
+ vol. 111, pp. 47–63, 2019.
1213
+ [12] E. M. Izhikevich, Dynamical systems in neuroscience. MIT press, 2007.
1214
+ [13] P. Kumbhar, M. Hines, J. Fouriaux, A. Ovcharenko, J. King, F. Delalon-
1215
+ dre, and F. Sch¨urmann, “Coreneuron: an optimized compute engine for
1216
+ the neuron simulator,” Frontiers in neuroinformatics, vol. 13, p. 63, 2019.
1217
+ [14] N. T. Carnevale and M. L. Hines, The NEURON book.
1218
+ Cambridge
1219
+ University Press, 2006.
1220
+ [15] N. Abi Akar, B. Cumming, V. Karakasis, A. K¨usters, W. Klijn, A. Peyser,
1221
+ and S. Yates, “Arbor—a morphologically-detailed neural network simu-
1222
+ lation library for contemporary high-performance computing architec-
1223
+ tures,” in 2019 27th euromicro international conference on parallel,
1224
+ distributed and network-based processing (PDP).
1225
+ IEEE, 2019, pp.
1226
+ 274–282.
1227
+ [16] M. A. v. d. Vlag, G. Smaragdos, Z. Al-Ars, and C. Strydis, “Exploring
1228
+ complex brain-simulation workloads on multi-gpu deployments,” ACM
1229
+ Transactions on Architecture and Code Optimization (TACO), vol. 16,
1230
+ no. 4, pp. 1–25, 2019.
1231
+ [17] M. Vieth, T. M. St¨ober, and J. Triesch, “Pymonnto: A flexible modular
1232
+ toolbox for designing brain-inspired neural networks,” Frontiers in
1233
+ Neuroinformatics, vol. 15, p. 715131, 2021.
1234
+ [18] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in
1235
+ neuroscience, p. 26, 2009.
1236
+ [19] D. Rasmussen, “Nengodl: Combining deep learning and neuromorphic
1237
+ modelling methods,” Neuroinformatics, vol. 17, no. 4, pp. 611–628,
1238
+ 2019.
1239
+ [20] C. Pehle and J. E. Pedersen, “Norse - A deep learning library for spiking
1240
+ neural networks,” Jan. 2021, documentation: https://norse.ai/docs/.
1241
+ [Online]. Available: https://doi.org/10.5281/zenodo.4422025
1242
+ [21] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi,
1243
+ M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking
1244
+ neural networks using lessons from deep learning,” arXiv preprint
1245
+ arXiv:2109.12894, 2021.
1246
+ [22] W. Fang, Y. Chen, J. Ding, D. Chen, Z. Yu, H. Zhou, T. Masque-
1247
+ lier, Y. Tian, and other contributors, “Spikingjelly,” https://github.com/
1248
+ fangwei123456/spikingjelly, 2020.
1249
+ [23] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi,
1250
+ H. T. Siegelmann, and R. Kozma, “Bindsnet: A machine learning-
1251
+ oriented
1252
+ spiking
1253
+ neural
1254
+ networks
1255
+ library
1256
+ in
1257
+ python,”
1258
+ Frontiers
1259
+ in
1260
+ Neuroinformatics,
1261
+ vol.
1262
+ 12,
1263
+ p.
1264
+ 89,
1265
+ 2018.
1266
+ [Online].
1267
+ Available:
1268
+ https://www.frontiersin.org/article/10.3389/fninf.2018.00089
1269
+ [24] R. A. Nawrocki, R. M. Voyles, and S. E. Shaheen, “A mini review of
1270
+ neuromorphic architectures and implementations,” IEEE Transactions
1271
+ on Electron Devices, vol. 63, no. 10, pp. 3819–3829, 2016.
1272
+ [25] P.-S. V. Sun, A. Titterton, A. Gopiani, T. Santos, A. Basu, W. D. Lu, and
1273
+ J. K. Eshraghian, “Intelligence processing units accelerate neuromorphic
1274
+ learning,” arXiv preprint arXiv:2211.10725, 2022.
1275
+ [26] J. De Gruijl, L. Bosman, C. I. De Zeeuw, and M. De Jeu, “Inferior
1276
+ olive: all ins and outs,” Handbook of the Cerebellum and Cerebellar
1277
+ Disorders, vol. 3, pp. 1013–58, 2013.
1278
+ [27] Y. Yu, Y. Fu, and C. Watson, “The inferior olive of the c57bl/6j mouse:
1279
+ a chemoarchitectonic study,” The Anatomical Record, vol. 297, no. 2,
1280
+ pp. 289–300, 2014.
1281
+ [28] V. Braitenberg and A. Sch¨uz, Cortex: statistics and geometry of neuronal
1282
+ connectivity.
1283
+ Springer Science & Business Media, 2013.
1284
+ 10
1285
+
1286
+ [29] J. R. De Gruijl, P. Bazzigaluppi, M. T. de Jeu, and C. I. De Zeeuw,
1287
+ “Climbing fiber burst size and olivary sub-threshold oscillations in
1288
+ a network setting,” PLoS computational biology, vol. 8, no. 12, p.
1289
+ e1002814, 2012.
1290
+ [30] M. Negrello, P. Warnaar, V. Romano, C. B. Owens, S. Lindeman,
1291
+ E. Iavarone, J. K. Spanke, L. W. Bosman, and C. I. De Zeeuw,
1292
+ “Quasiperiodic rhythms of the inferior olive,” PLoS computational
1293
+ biology, vol. 15, no. 5, p. e1006475, 2019.
1294
+ [31] “Mlperf training v2.0.” [Online]. Available: https://mlcommons.org/en/
1295
+ training-normal-20/
1296
+ [32] D.
1297
+ Abts,
1298
+ G.
1299
+ Kimmell,
1300
+ A.
1301
+ Ling,
1302
+ J.
1303
+ Kim,
1304
+ M.
1305
+ Boyd,
1306
+ A.
1307
+ Bitar,
1308
+ S. Parmar, I. Ahmed, R. DiCecco, D. Han, J. Thompson, M. Bye,
1309
+ J. Hwang, J. Fowers, P. Lillian, A. Murthy, E. Mehtabuddin, C. Tekur,
1310
+ T. Sohmers, K. Kang, S. Maresh, and J. Ross, “A software-defined
1311
+ tensor streaming multiprocessor for large-scale machine learning,” in
1312
+ Proceedings of the 49th Annual International Symposium on Computer
1313
+ Architecture, ser. ISCA ’22.
1314
+ New York, NY, USA: Association
1315
+ for Computing Machinery, 2022, p. 567–580. [Online]. Available:
1316
+ https://doi.org/10.1145/3470496.3527405
1317
+ [33] L. G. Valiant, “A bridging model for parallel computation,” Commun.
1318
+ ACM, vol. 33, no. 8, p. 103–111, aug 1990. [Online]. Available:
1319
+ https://doi.org/10.1145/79173.79181
1320
+ [34] “Xla: Optimizing compiler for machine learning.” [Online]. Available:
1321
+ https://www.tensorflow.org/xla
1322
+ [35] “Pushing
1323
+ the
1324
+ limits
1325
+ of
1326
+ gpu
1327
+ performance
1328
+ with
1329
+ xla.”
1330
+ [Online].
1331
+ Available:
1332
+ https://blog.tensorflow.org/2018/11/
1333
+ pushing-limits-of-gpu-performance-with-xla.html
1334
+ 11
1335
+
CdFRT4oBgHgl3EQfwDjC/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DdAyT4oBgHgl3EQfSPd1/content/tmp_files/2301.00082v1.pdf.txt ADDED
@@ -0,0 +1,1456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SURFACES OF MINIMUM CURVATURE VARIATION
2
+ LUIS A. CAFFARELLI, PABLO RA´UL STINGA, AND HERN´AN VIVAS
3
+ Abstract. We establish the analytical theory of surfaces of minimum curvature variation.
4
+ We construct classical, G2 continuous surfaces, as well as weak solutions in the context of
5
+ geometric measure theory.
6
+ 1. Introduction
7
+ Computer-aided design (CAD) and computer-aided manufacturing (CAM) are widely pop-
8
+ ular techniques whose basic feature is the use of computer software to create or modify shapes
9
+ in such a way that some aspects of the design process, such as quality of the object or produc-
10
+ tivity of the process, are optimized, see, for example, [9]. Their origins can be traced back
11
+ to the 1950s and 60s and their development have been continuous since then. Nowadays,
12
+ CAD/CAM are used in contexts as varied as engineering, particularly in automotive, ship-
13
+ building and aerospace industries; architectural design; and computer animation for creation
14
+ of special effects in movies, among many other applications.
15
+ Within this realm, of particular interest are geometric problems in computer-aided geomet-
16
+ ric design (CAGD). The goal of CAGD is the creation of complex smoothly shaped models
17
+ and surfaces with specified geometric constraints. The resulting surfaces have to accurately
18
+ reflect these specifications and be free of unwanted wrinkles, bulges and ripples. In many
19
+ instances, the aim is to create fair surfaces that are aesthetically pleasing to the eye. As it
20
+ turns out, many of these problems can be approached via a variational principle, that is, by
21
+ looking for a surface that minimizes an appropriate functional or fairness energy subject to
22
+ adequate geometric boundary conditions, see [10].
23
+ The most commonly used fairness energy functionals can be split into two groups: physical-
24
+ based or geometric-based. The first group roughly corresponds to interpreting the surface as
25
+ an ideal elastic membrane or plate and minimize energies such as
26
+ ´
27
+ |∇u|2 dx or
28
+ ´
29
+ |∆u|2 dx.
30
+ The second group aims at minimizing energies that relate to geometric invariants of the
31
+ surface such as the area or curvature, see [11] and the references therein. In 1992, Moreton
32
+ and S´equin proposed in [8] a numerical algorithm for the creation of 2-dimensional fair
33
+ surfaces M as minimizers of the energy functional
34
+ ˆ
35
+ M
36
+ ��dκ1
37
+ de1
38
+ �2
39
+ +
40
+ �dκ2
41
+ de2
42
+ �2�
43
+ dA.
44
+ Here e1 and e2 are the principal directions corresponding to the principal curvatures κ1 and
45
+ κ2 of M and dA is the differential of surface area.
46
+ It is a key aspect in CAGD to be able to construct fair surfaces that preserve several degrees
47
+ of geometric continuity. This is particularly important at the boundary of the domains where
48
+ 2010 Mathematics Subject Classification. Primary: 35B65, 49Q10, 53A10.
49
+ Secondary: 49Q20, 65D17,
50
+ 68U07.
51
+ Key words and phrases. Curvature variation, computer-aided design, prescribed mean curvature, regularity.
52
+ Research partially supported by NSF grant 1500871 (USA), Simons Foundation grant 580911 (USA), and
53
+ Agencia Nacional de Promoci´on Cient´ıfica y Tecnol´ogica under grant PICT 2019-3530 (Argentina).
54
+ 1
55
+ arXiv:2301.00082v1 [math.DG] 31 Dec 2022
56
+
57
+ 2
58
+ L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS
59
+ the surfaces meet. The notions of geometric continuity are referred to as G0 continuity, where
60
+ two surfaces meet in a continuous fashion, without jumps; G1 continuity, where the tangent
61
+ planes of the surfaces meet with continuity; and G2 continuity, where the curvatures meet
62
+ with continuity. These are not the same as the classical notions of C0, C1 and C2 continuities,
63
+ as those require some specific combination of the derivatives of the solutions to be continuous
64
+ up to the boundary. In particular, G2 continuity turns out to be crucial in applications such
65
+ as the streamlined surfaces of aircrafts, ships and cars, and this was the main motivation
66
+ for the numerical study in [8].
67
+ In [11], a numerical finite difference method is proposed
68
+ to construct surfaces that would enjoy G2 continuity as steady states of a sixth order flow
69
+ derived from the Euler–Lagrange equation of the energy functional
70
+ ˆ
71
+ M
72
+ |∇H|2 dA
73
+ where H is the mean curvature of M. Numerical evidence of G2 continuity is observed in [11],
74
+ while G1 continuity is expected according to [8]. To the best of our knowledge, the analytical
75
+ theory of surfaces of minimum curvature variation in general is missing. Furthermore, no
76
+ proof of G2 continuity is available thus far.
77
+ The aim of this paper is to fill these gaps and to develop the analytical foundation from
78
+ the PDE perspective of the theory of surfaces of minimum curvature variation. We give
79
+ two constructions of surfaces: classical solutions that are G2-continuous, and weak solutions
80
+ through geometric measure theory methods.
81
+ Therefore, we consider the minimization problem
82
+ (1.1)
83
+ min
84
+ M
85
+ 1
86
+ 2
87
+ ˆ
88
+ M
89
+ |∇MH|2 dA
90
+ where M ranges over all n−dimensional manifolds in Rn+1, n ≥ 1, with prescribed bound-
91
+ ary, H is the mean curvature of M and dA is the differential of surface area. Notice that
92
+ (1.1) minimizes the (quadratic) variation of the mean curvature of M so that surfaces with
93
+ constant mean curvature such as planes, circles and cylinders are minimizers.
94
+ If M is the graph of a function defined on a bounded domain Ω ⊂ Rn, that is,
95
+ M = {(x, u(x)) : x ∈ Ω}
96
+ for some u : Ω → R, then the values of u at ∂Ω prescribe the boundary ∂M of M. For a
97
+ point x0 ∈ Ω, the tangent plane to M at (x0, u(x0)) and its upward pointing unit normal are
98
+ P(x) = u(x0) + ∇u(x0) · (x − x0)
99
+ and
100
+ ν(x0) =
101
+ (−∇u(x0), 1)
102
+ (1 + |∇u(x0)|2)1/2 ,
103
+ respectively. The mean curvature H of M at a point is defined as the average of the n
104
+ principal curvatures of M at that point. In the coordinates given by u, it takes the form
105
+ H ≡ H(u) = 1
106
+ n div
107
+
108
+ ∇u
109
+ (1 + |∇u|2)1/2
110
+
111
+ .
112
+ If we set
113
+ D(u) := (1 + |∇u|2)1/2
114
+ we then have that dA = D(u) dx.
115
+ Let f be a function in C1(Ω × R). The tangential gradient of f on M is obtained by
116
+ projecting the gradient of f in Rn+1 onto the plane orthogonal to ν:
117
+ ∇Mf = ∇Rn+1f − (ν · ∇Rn+1f)ν
118
+ on M.
119
+
120
+ SURFACES OF MINIMUM CURVATURE VARIATION
121
+ 3
122
+ Clearly, ν · ∇Mf = 0 and
123
+ (1.2)
124
+ |∇Mf|2 = |∇Rn+1f|2 − |ν · ∇Rn+1f|2.
125
+ Furthermore, ∇Mf depends only on the values of f on M, see, for instance, [6, Section 16.1].
126
+ To compute ∇MH we extend H as a function of (x, xn+1) ∈ Ω × R by making it constant
127
+ in xn+1: H(x, xn+1) ≡ H(x). This is enough to compute ∇MH because the resulting value
128
+ is independent of the extension. Since ∇Rn+1H = (∇H, Hxn+1) = (∇H, 0), by (1.2) we get
129
+ |∇MH|2 = |(∇H, 0)|2 −
130
+ ����(−∇u · ∇H)(−∇u, 1)
131
+ D(u)2
132
+ ����
133
+ 2
134
+ = |∇H|2 −
135
+ ����
136
+ ∇u · ∇H
137
+ D(u)
138
+ ����
139
+ 2
140
+ .
141
+ With this formula the energy in (1.1) becomes
142
+ (1.3)
143
+ E[M] = 1
144
+ 2
145
+ ˆ
146
+
147
+
148
+ |∇H|2 −
149
+ ����
150
+ ∇u · ∇H
151
+ D(u)
152
+ ����
153
+ 2�
154
+ D(u) dx.
155
+ We will call this the geometric energy. It follows from the Cauchy–Schwartz inequality that
156
+ |∇H|2
157
+ D(u)2 ≤ |∇MH|2 ≤ |∇H|2.
158
+ Therefore, we will also study the (larger) simplified energy functional
159
+ (1.4)
160
+ E[H, u] := 1
161
+ 2
162
+ ˆ
163
+
164
+ |∇H|2D(u) dx.
165
+ In Section 2 we consider (1.4) and show how to construct smooth solutions that satisfy the
166
+ prescribed mean curvature equation for a curvature of minimum variation. Section 3 shows
167
+ how to modify the argument to construct solutions of the geometric energy functional (1.3).
168
+ Finally, in Section 4 we provide a weak formulation of the problem and prove existence of
169
+ minimizers in the context of geometric measure theory.
170
+ 2. Existence of G2 surfaces for the simplified energy
171
+ In this section we work with the simplified energy functional (1.4). Let Ω ⊂ Rn be a
172
+ bounded domain such that ∂Ω ∈ C3,α for some 0 < α < 1 fixed. We assume that we are
173
+ given prescribed boundary values g ∈ C3,α(Ω) for u and h ∈ C1,α(Ω) for H on ∂Ω.
174
+ We address the following problem: given Ω and the boundary datum g, find a surface
175
+ given by the graph of a function u such that its mean curvature H is a minimizer of (1.4)
176
+ among all functions with prescribed boundary values h ∈ C1,α(Ω).
177
+ We will use Schauder’s fixed point theorem:
178
+ Theorem 2.1 (see [6, Corollary 11.2]). Let G be a closed convex set in a Banach space B
179
+ and let T be a continuous mapping of G into itself such that the image T(G) is precompact.
180
+ Then T has a fixed point.
181
+ Consider the Banach space B = C1,α(Ω) and its subset
182
+ G :=
183
+
184
+ v ∈ C1,α(Ω) : v = g on ∂Ω
185
+
186
+ .
187
+ Observe that G is nonempty because g ∈ C3,α(Ω). By classical global Schauder estimates,
188
+ we see that another example of function in G is the harmonic extension v of g inside of Ω:
189
+
190
+ ∆v = 0
191
+ in Ω
192
+ v = g
193
+ on ∂Ω.
194
+
195
+ 4
196
+ L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS
197
+ It is clear that G is convex and closed.
198
+ For any v ∈ G, we define the functional
199
+ (2.1)
200
+ E[H, v] := 1
201
+ 2
202
+ ˆ
203
+
204
+ |∇H|2D(v) dx.
205
+ The map T : G → G is constructed in a 2-step process.
206
+ Step 1. Given any v ∈ G, we find the unique minimizer H ∈ W 1,2(Ω) to (2.1) such that
207
+ H − h ∈ W 1,2
208
+ 0 (Ω). This can be done because the coefficient D(v) satisfies
209
+ 1 ≤ D(v) ≤ (1 + ∥∇v∥2
210
+ L∞(Ω))1/2 < ∞,
211
+ so that (2.1) is a coercive functional. Then H is the unique weak solution to
212
+
213
+ div(D(v)∇H) = 0
214
+ in Ω
215
+ H = h
216
+ on ∂Ω.
217
+ Since v ∈ C1,α(Ω), the coefficient D(v) ∈ C0,α(Ω). Thus, by global Schauder estimates (see
218
+ [6, Section 8.11]),
219
+ (2.2)
220
+ ∥H∥C1,α(Ω) ≤ Cn[∂Ω]C1,α∥D(v)∥C0,α(Ω)∥h∥C1,α(∂Ω)
221
+ where Cn > 0 is a constant that depends only on dimension n.
222
+ Step 2. Given H ∈ C1,α(Ω) from Step 1, we find the solution u to the prescribed mean
223
+ curvature equation
224
+ (2.3)
225
+
226
+
227
+
228
+ div
229
+ � ∇u
230
+ D(u)
231
+
232
+ = nH
233
+ in Ω
234
+ u = g
235
+ on ∂Ω.
236
+ For this, we use the following result (where we use nH instead of H in [7]).
237
+ Theorem 2.2 ([7, Theorem 3.4.1] and its proof). Let 0 < α < 1 and Ω ⊂ Rn be a bounded
238
+ domain with C3,α boundary. Suppose that H ∈ C1,α(Ω) satisfies
239
+ (2.4)
240
+ ∥H∥Ln(Ω) <
241
+ �ˆ
242
+ Rn(1 + |p|2)− n+2
243
+ 2
244
+ dp
245
+ �1/n
246
+ and, for any y ∈ ∂Ω,
247
+ (2.5)
248
+ |H(y)| ≤ H∂Ω(y),
249
+ where H∂Ω is the mean curvature of ∂Ω corresponding to the inner unit normal vector to ∂Ω.
250
+ Then for any g ∈ C3,α(Ω) there exists a unique solution u ∈ C3,α(Ω) to (2.3). In particular,
251
+ there exists a constant C∗ > 0, depending only on n, α, ∥H∥Ln(Ω), ∥H∥C1(Ω), ∥g∥C2,α(Ω) and
252
+ Ω, such that
253
+ (2.6)
254
+ ∥u∥C2,α(Ω) ≤ C∗.
255
+ The constant in the right-hand side of (2.4) can be simplified. Recall the definition of the
256
+ Beta function and its relation with the Gamma function: for x, y > 0,
257
+ B(x, y) :=
258
+ ˆ ∞
259
+ 0
260
+ tx−1
261
+ (1 + t)x+y dt = Γ(x)Γ(y)
262
+ Γ(x + y) .
263
+
264
+ SURFACES OF MINIMUM CURVATURE VARIATION
265
+ 5
266
+ We have that Γ(1) = 1 and xΓ(x) = Γ(x + 1), for all x > 0. By passing to polar coordinates
267
+ p = rθ, for r > 0 and θ ∈ Sn−1, performing the change of variables t = r2 which makes
268
+ 2dr/r = dt/t, and using that |Sn−1| = n|B1|, we get
269
+ ˆ
270
+ Rn(1 + |p|2)− n+2
271
+ 2 dp = |Sn−1|
272
+ ˆ ∞
273
+ 0
274
+ rn
275
+ (1 + r2)
276
+ n+2
277
+ 2
278
+ dr
279
+ r
280
+ = n|B1|
281
+ 2
282
+ ˆ ∞
283
+ 0
284
+ tn/2
285
+ (1 + t)
286
+ n+2
287
+ 2
288
+ dt
289
+ t
290
+ = n|B1|
291
+ 2
292
+ B(n/2, 1) = n|B1|
293
+ 2
294
+ Γ(n/2)
295
+ Γ(n/2 + 1) = |B1|.
296
+ Therefore, (2.4) reads
297
+ (2.7)
298
+ ∥H∥Ln(Ω) < |B1|1/n.
299
+ Now (2.5) and (2.7) impose further restrictions on the boundary values h of H. Condition
300
+ (2.5) is natural to assume and cannot be avoided (see, for example, the nonexistence results [6,
301
+ Theorem 16.11] and [7, Theorem 3.4.5]). Therefore, we assume that h ∈ C1,α(Ω) additionally
302
+ satisfies
303
+ (2.8)
304
+ |h(y)| ≤ H∂Ω(y)
305
+ for all y ∈ ∂Ω.
306
+ On the other hand, by the maximum principle (see [6, Section 8.1]), we can estimate
307
+ (2.9)
308
+ ˆ
309
+
310
+ |H|n dx ≤ |Ω|
311
+
312
+ max
313
+ ∂Ω |h|
314
+ �n
315
+ .
316
+ or
317
+ ∥H∥Ln(Ω) ≤ |Ω|1/n max
318
+ ∂Ω |h|.
319
+ Thus, in order to ensure (2.7), we further assume that
320
+ (2.10)
321
+ max
322
+ ∂Ω |h| <
323
+ �|B1|
324
+ |Ω|
325
+ �1/n
326
+ .
327
+ From the computer science point of view, this means that for large boundary curvatures h
328
+ the domain Ω for the reconstruction should be sufficiently small.
329
+ Therefore, under the additional assumptions (2.8) and (2.10), we can apply Theorem 2.2
330
+ and find the unique solution u ∈ C3,α(Ω) to (2.3). This completes Step 2.
331
+ Using these two steps, we define T : G → G by T(v) = u. In order to apply Theorem 2.1,
332
+ we need to verify that
333
+ (1) T is continuous, and
334
+ (2) T(G) is precompact.
335
+ Let us begin with (1). Fix v1 ∈ G. We need to show that given any ε > 0 there exists
336
+ δ = δ(ε, v1) > 0 such that for any v2 ∈ G satisfying ∥v1 − v2∥C1,α(Ω) < δ we have ∥u1 −
337
+ u2∥C1,α(Ω) < ε, where uj = Tvj, for j = 1, 2.
338
+ Let Hj denote the minimizer of E[·, vj],
339
+ j = 1, 2, as constructed in Step 1. Then the difference H = H1 − H2 is the unique weak
340
+ solution to
341
+
342
+ div(D(v1)∇H) = div
343
+
344
+ (D(v2) − D(v1))∇H2
345
+
346
+ in Ω
347
+ H = 0
348
+ on ∂Ω.
349
+
350
+ 6
351
+ L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS
352
+ By global Schauder estimates (see [6, Section 8.11]),
353
+ (2.11)
354
+ ∥H∥C1,α(Ω) ≤ Cn[∂Ω]C1,α∥D(v1)∥C0,α(Ω)∥(D(v2) − D(v1))∇H2∥C0,α(Ω)
355
+ ≤ C(n, α, Ω, v1, ∇H2)∥v1 − v2∥C1,α(Ω)
356
+ =: C1∥v1 − v2∥C1,α(Ω).
357
+ Let us now estimate the difference u = u1 − u2 ∈ C3,α(Ω). Since
358
+
359
+
360
+
361
+ div
362
+ � ∇ui
363
+ D(ui)
364
+
365
+ = nHi
366
+ in Ω, for i = 1, 2
367
+ u1 = u2 = g
368
+ on ∂Ω
369
+ we find that
370
+
371
+
372
+
373
+ div
374
+ � ∇u1
375
+ D(u1) − ∇u2
376
+ D(u2)
377
+
378
+ = nH
379
+ in Ω
380
+ u = 0
381
+ on ∂Ω.
382
+ In order to apply global Schauder estimates one more time we need to find an equation for
383
+ u. Set
384
+ F(p) :=
385
+ p
386
+
387
+ 1 + |p|2
388
+ p ∈ Rn.
389
+ Then F is a smooth, bounded vector field with entries Fi(p) =
390
+ pi
391
+
392
+ 1+|p|2 , for i = 1, . . . , n. Note
393
+ that, for j = 1, . . . , n,
394
+ ∂jFi(p) =
395
+
396
+
397
+
398
+ 1
399
+
400
+ 1+|p|2 −
401
+ p2
402
+ i
403
+ (1+|p|2)3/2
404
+ if i = j
405
+
406
+ pipj
407
+ (1+|p|2)3/2
408
+ if i ̸= j
409
+ =
410
+ δij
411
+ D(p) − pipj
412
+ D(p)3 .
413
+ In particular,
414
+ (2.12)
415
+ ∂jFi(p) = ∂iFj(p)
416
+ so that ∇F is a symmetric matrix. It is clear that ∇F is bounded. To see that it is locally
417
+ strictly elliptic, observe that, for any ξ ∈ Rn, by the Cauchy–Schwartz inequality,
418
+ n
419
+
420
+ i,j=1
421
+ ∂jFi(p)ξiξj =
422
+ n
423
+
424
+ i,j=1
425
+ �δijξiξj
426
+ D(p) − pipjξiξj
427
+ D(p)3
428
+
429
+ ≥ |ξ|2
430
+
431
+ 1
432
+ D(p) −
433
+ |p|2
434
+ D(p)3
435
+
436
+ =
437
+ |ξ|2
438
+ D(p)3 ≥ θ(R)|ξ|2
439
+ for all |p| < R, where θ(R) → 0 as R → ∞. Furthermore, we can write
440
+ Fi(∇u1) − Fi(∇u2) =
441
+ ˆ 1
442
+ 0
443
+ d
444
+ dtFi(t∇u1 + (1 − t)∇u2) dt
445
+ =
446
+ ˆ 1
447
+ 0
448
+ ∇Fi(t∇u1 + (1 − t)∇u2) · ∇(u1 − u2) dt
449
+ so that
450
+ F(∇u1) − F(∇u2) = A(x)∇u
451
+ with
452
+ Aij(x) =
453
+ ˆ 1
454
+ 0
455
+ ∂jFi(t∇u1 + (1 − t)∇u2) dt.
456
+
457
+ SURFACES OF MINIMUM CURVATURE VARIATION
458
+ 7
459
+ The matrix A is symmetric thanks to (2.12), as well as bounded. Recall that ∇F is locally
460
+ strictly elliptic. Now, u1 ∈ C3,α(Ω) is fixed. By (2.6), the C2,α(Ω) norm of u2 is uniformly
461
+ controlled by the C1(Ω) norm of H2, which in turn is uniformly close to the C1(Ω) norm of
462
+ the initially fixed H1. These facts imply that that A(x) is strictly elliptic. Moreover, we have
463
+ the following technical lemma.
464
+ Lemma 2.3. Let U, V : Ω → Rn, U, V ∈ C0,α(Ω) and let ψ : Rn → R be a smooth function
465
+ such that
466
+ ∥ψ∥L∞(Rn) + ∥∇ψ∥L∞(Rn) < ∞.
467
+ Define
468
+ φ(x) :=
469
+ ˆ 1
470
+ 0
471
+ ψ(tU(x) + (1 − t)V (x)) dt
472
+ for every x ∈ Ω.
473
+ Then φ ∈ C0,α(Ω), with
474
+ ∥φ∥C0,α(Ω) ≤ ∥ψ∥L∞(Rn) + ∥∇ψ∥L∞(Rn)
475
+
476
+ [U]Cα(Ω) + [V ]Cα(Ω)
477
+
478
+ .
479
+ Proof. The boundedness of ψ implies that φ is bounded with ∥φ∥L∞(Ω) ≤ ∥ψ∥L∞(Rn). To
480
+ bound the H¨older seminorm of φ, let x, y ∈ Ω. Then
481
+ |φ(x) − φ(y)| =
482
+ ����
483
+ ˆ 1
484
+ 0
485
+
486
+ ψ(tU(x) + (1 − t)V (x)) − ψ(tU(y) + (1 − t)V (y))
487
+
488
+ dt
489
+ ����
490
+ ≤ ∥∇ψ∥L∞(Rn)
491
+ ˆ 1
492
+ 0
493
+ |t(U(x) − U(y)) + (1 − t)(V (x) − V (y))| dt
494
+ ≤ ∥∇ψ∥L∞(Rn) (|U(x) − U(y)| + |V (x) − V (y)|)
495
+ ≤ ∥∇ψ∥L∞(Rn)
496
+
497
+ [U]Cα(Ω) + [V ]Cα(Ω)
498
+
499
+ |x − y|α.
500
+
501
+ Lemma 2.3 gives the H¨older continuity of A(x). Indeed, let ψ be any of the entries of the
502
+ gradient matrix of F:
503
+ (∇F(p))ij =
504
+ δij
505
+ D(p) − pipj
506
+ D(p)3
507
+ for i, j = 1, . . . , n,
508
+ which are smooth and bounded, so ∥ψ∥L∞(Rn) ≤ M1, where M1 is independent of i and j.
509
+ For any k = 1, . . . , n, we have
510
+ ∂k(∇F(p))ij = −δijpk + δikpj + δjkpi
511
+ D(p)3
512
+ + pipjpk
513
+ D(p)5
514
+ and these are all bounded. Therefore, ∥∇ψ∥L∞(Rn) ≤ M2, where M2 > 0 is independent of i
515
+ and j. By setting U = ∇u1 and V = ∇u2 in Lemma 2.3, we get
516
+ ∥A∥C0,α(Ω) ≤ M1 + M2
517
+
518
+ [∇u1]Cα(Ω) + ([∇u2]Cα(Ω)
519
+
520
+ ≤ M3
521
+ with M3 > 0 a constant depending only on n, α, ∥H1∥Ln(Ω), ∥H1∥C1(Ω), ∥g∥C2,α(Ω), and
522
+ Ω, see (2.6). Observe that all these quantities are independent of u2 if v2 is close to v1 in
523
+ C1,α(Ω). In summary, we have found that u is a solution to
524
+
525
+ div(A(x)∇u) = nH
526
+ in Ω
527
+ u = 0
528
+ on ∂Ω
529
+ and so, by Schauder estimates,
530
+ (2.13)
531
+ ∥u∥C1,α(Ω) ≤ Cn[∂Ω]C1,αM3∥H∥C1,α(Ω) =: C2∥H∥C1,α(Ω).
532
+
533
+ 8
534
+ L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS
535
+ Therefore, by collecting estimates (2.11) and (2.13), and recalling that u = u1 − u2 = Tv1 −
536
+ Tv2, and H = H1 − H2, we obtain
537
+ ∥Tv1 − Tv2∥C1,α(Ω) ≤ C1C2∥v1 − v2∥C1,α(Ω).
538
+ If we choose δ = ε/(C1C2) then we see that T is continuous, as desired.
539
+ Let us now turn to (2), which will follow from a priori estimates for prescribed mean
540
+ curvature equations. Let {vk}k≥1 be a sequence in G such that
541
+ sup
542
+ k≥1
543
+ ∥vk∥C1,α(Ω) ≤ N1 < ∞
544
+ and consider the corresponding solutions Hk ∈ C1,α(Ω) found in Step 1. Set uk = Tvk. By
545
+ (2.6),
546
+ ∥uk∥C2,α(Ω) ≤ Ck
547
+ where Ck > 0 is a constant depending only on n, α, ∥Hk∥Ln(Ω), ∥Hk∥C1(Ω), ∥h∥C2,α(Ω), and
548
+ Ω. Since all Hk have the same boundary values h, by (2.9), we get that
549
+ sup
550
+ k≥1
551
+ ∥Hk∥Ln(Ω) = N2 < ∞.
552
+ Furthermore, from the C1,α estimate in (2.2),
553
+ sup
554
+ k≥1
555
+ ∥Hk∥C1(Ω) ≤ Cn[∂Ω]C1,α∥h∥C1,α(∂Ω) sup
556
+ k≥1
557
+ ∥D(vk)∥C0,α(Ω) = N3 < ∞.
558
+ Consequently,
559
+ sup
560
+ k≥1
561
+ ∥uk∥C2,α(Ω) ≤ sup
562
+ k≥1
563
+ Ck = N4 < ∞.
564
+ By the Arzel`a–Ascoli compact embedding C2,α(Ω) ⊂⊂ C1,α(Ω), there exist a subsequence
565
+ {ukj}j≥1 of {uk}k≥1 and u ∈ G such that ukj → u in C1,α(Ω). We conclude that T(G) is
566
+ precompact and (2) is proved.
567
+ Thus, by Theorem 2.1, there exists u ∈ G such that Tu = u. We have proved the following:
568
+ Theorem 2.4 (Existence for the simplified energy). Let Ω ⊂ Rn be a bounded domain with
569
+ C3,α boundary ∂Ω, for some 0 < α < 1. Fix g ∈ C3,α(Ω). Let h ∈ C1,α(Ω) such that
570
+ (2.14)
571
+ |h(y)| ≤ H∂Ω(y)
572
+ for all y ∈ ∂Ω,
573
+ where H∂Ω is the mean curvature of ∂Ω corresponding to the inner unit normal vector to ∂Ω,
574
+ and
575
+ (2.15)
576
+ max
577
+ ∂Ω |h| <
578
+ �|B1|
579
+ |Ω|
580
+ �1/n
581
+ .
582
+ Then there exist u ∈ C3,α(Ω) and H ∈ C1,α(Ω) such that H minimizes the energy
583
+ 1
584
+ 2
585
+ ˆ
586
+
587
+ |∇H|2D(u) dx
588
+ among all H ∈ W 1,2(Ω) such that H − h ∈ W 1,2
589
+ 0 (Ω), or, equivalently, H is the unique weak
590
+ solution to
591
+
592
+ div(D(u)∇H) = 0
593
+ in Ω
594
+ H = h
595
+ on ∂Ω,
596
+
597
+ SURFACES OF MINIMUM CURVATURE VARIATION
598
+ 9
599
+ and, in addition, H is the mean curvature of the graph of u with prescribed values on ∂Ω,
600
+ that is,
601
+
602
+
603
+
604
+ 1
605
+ n div
606
+ � ∇u
607
+ D(u)
608
+
609
+ = H
610
+ in Ω
611
+ u = g
612
+ on ∂Ω.
613
+ Remark 2.5 (Nonexistence of solutions). The conditions imposed on the curvature at the
614
+ boundary datum h in Theorem 2.4 come from restrictions already present when one seeks for
615
+ solutions of the prescribed mean curvature equation. Indeed, the divergence form equation for
616
+ H is uniformly elliptic when u is, say, Lipschitz continuous and therefore is always solvable.
617
+ On the other hand, if condition (2.14) is not satisfied, that is,
618
+ |h(y0)| > H∂Ω(y0)
619
+ for some y0 ∈ ∂Ω
620
+ and h ≥ 0 (or h ≤ 0) on ∂Ω then H ≥ 0 (or H ≤ 0) in Ω and we have that for any ε > 0
621
+ there exists g ∈ C∞(Ω) with |g| < ε such that the prescribed mean curvature equation with
622
+ curvature H and boundary values h is not solvable (see [7, Theorem 3.4.5] or [6, Corollary
623
+ 14.13]) and hence neither is the minimum curvature variation system.
624
+ On the other hand, a necessary condition for existence of solutions of the prescribed mean
625
+ curvature equation is
626
+ (2.16)
627
+ ����
628
+ ˆ
629
+
630
+ Hη dx
631
+ ���� ≤ 1 − ε0
632
+ n
633
+ ˆ
634
+
635
+ |∇η| dx
636
+ for all η ∈ C1
637
+ 0(Ω) and with
638
+ 1 − ε0 = sup
639
+
640
+ |∇u|
641
+
642
+ 1 + |∇u|2 ,
643
+ see [6, eq. (16.60)]. This condition implies ∥H∥Ln(Ω) < |B1|1/n, which is the structural con-
644
+ dition on H that motivates (2.15). The requirement in Theorem 2.4 could be thus weakened,
645
+ but (2.16) is the least requirement under which existence for the prescribed mean curvature
646
+ equation can be obtained and hence also for the system at hand.
647
+ 3. Existence of G2 surfaces for the geometric energy
648
+ In this section we discuss how the technique we developed in the previous section can be
649
+ applied to the geometric energy functional
650
+ E[M] = 1
651
+ 2
652
+ ˆ
653
+
654
+
655
+ |∇H|2 −
656
+ ����
657
+ ∇u · ∇H
658
+ D(u)
659
+ ����
660
+ 2�
661
+ D(u) dx.
662
+ Let Ω, α, h and g be as in Section 2. Fix v ∈ C1,α(Ω) such that v = g on ∂Ω. Consider the
663
+ energy
664
+ Ev[H] := 1
665
+ 2
666
+ ˆ
667
+
668
+
669
+ |∇H|2 −
670
+ ����
671
+ ∇v · ∇H
672
+ D(v)
673
+ ����
674
+ 2�
675
+ D(v) dx =
676
+ ˆ
677
+
678
+ L(∇H) dx
679
+ where the smooth Lagrangian L is given by
680
+ L(p) = 1
681
+ 2
682
+
683
+ |p|2 −
684
+ ����
685
+ ∇v · p
686
+ D(v)
687
+ ����
688
+ 2�
689
+ D(v)
690
+ for p ∈ Rn.
691
+ Then L is coercive, as
692
+ L(p) ≥ 1
693
+ 2
694
+
695
+ |p|2 − |∇v|2|p|2
696
+ D(v)2
697
+
698
+ D(v) = 1
699
+ 2
700
+
701
+ D(v) − |∇v|2
702
+ D(v)
703
+
704
+ |p|2 =
705
+ 1
706
+ 2D(v)|p|2.
707
+
708
+ 10
709
+ L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS
710
+ To prove that L is convex, first observe that, for i = 1, . . . , n,
711
+ Lpi(p) =
712
+
713
+ pi − (∇v · p)
714
+ D(v)2 vxi
715
+
716
+ D(v) =
717
+ n
718
+
719
+ j=1
720
+
721
+ δijD(v) − vxivxj
722
+ D(v)
723
+
724
+ pj
725
+ and, for i, j = 1, . . . , n,
726
+ Lpipj(p) = δijD(v) − vxivxj
727
+ D(v) .
728
+ Then, for any ξ ∈ Rn,
729
+ Lpipj(p)ξiξj = D(v)|ξ|2 − (∇v · ξ)2
730
+ D(v)
731
+
732
+
733
+ D(v) − |∇v|2
734
+ D(v)
735
+
736
+ |ξ|2 =
737
+ 1
738
+ D(v)|ξ|2.
739
+ Thus, D2
740
+ pL is a positive definite matrix, and L is uniformly convex. It follows that there
741
+ exists a unique minimizer H ∈ W 1,2(Ω) of the energy Ev[H] such that H − h ∈ W 1,2
742
+ 0 (Ω). In
743
+ particular, H is the unique weak solution to
744
+
745
+
746
+
747
+
748
+
749
+ n
750
+
751
+ i=1
752
+ (Lpi(∇H))xi = 0
753
+ in Ω
754
+ H = h
755
+ on ∂Ω.
756
+ Since
757
+ Lpi(∇H) =
758
+ n
759
+
760
+ j=1
761
+
762
+ δijD(v) − vxivxj
763
+ D(v)
764
+
765
+ Hxj
766
+ we find that H is the unique weak solution to the linear problem
767
+
768
+ div(a(x)∇H) = 0
769
+ in Ω
770
+ H = h
771
+ on ∂Ω
772
+ where
773
+ aij(x) = δijD(v) − vxivxj
774
+ D(v) = Lpipj.
775
+ Observe that
776
+ |aij(x)| ≤ C
777
+
778
+ D(v) + |∇v|2
779
+ D(v)
780
+
781
+ ≤ C(D(v) + |∇v|) ≤ C(n, ∥∇v∥L∞(Ω)).
782
+ We have already seen that aij(x) is uniformly elliptic. Moreover, if v ∈ C1,α(Ω) then aij(x) ∈
783
+ C0,α(Ω). Hence, H ∈ C1,α(Ω), with
784
+ ∥H∥C1,α(Ω) ≤ Cn[∂Ω]C1,α∥v∥C1,α(Ω)∥h∥C1,α(∂Ω).
785
+ If h satisfies (2.8) and (2.10) then we can apply Theorem 2.2 and find the unique solution
786
+ u ∈ C3,α(Ω) to (2.3). From here on we can continue with the fixed point arguments we did
787
+ in Section 2 to conclude the following result.
788
+ Theorem 3.1 (Existence for the geometric functional). Let Ω ⊂ Rn be a bounded domain
789
+ with C3,α boundary ∂Ω, for some 0 < α < 1. Fix g ∈ C3,α(Ω). Let h ∈ C1,α(Ω) such that
790
+ |h(y)| ≤ H∂Ω(y)
791
+ for all y ∈ ∂Ω,
792
+
793
+ SURFACES OF MINIMUM CURVATURE VARIATION
794
+ 11
795
+ where H∂Ω is the mean curvature of ∂Ω corresponding to the inner unit normal vector to ∂Ω,
796
+ and
797
+ max
798
+ ∂Ω |h| <
799
+ �|B1|
800
+ |Ω|
801
+ �1/n
802
+ .
803
+ Then there exist u ∈ C3,α(Ω) and H ∈ C1,α(Ω) such that H minimizes the energy
804
+ 1
805
+ 2
806
+ ˆ
807
+
808
+
809
+ |∇H|2 −
810
+ ����
811
+ ∇u · ∇H
812
+ D(u)
813
+ ����
814
+ 2�
815
+ D(u) dx
816
+ among all H ∈ W 1,2(Ω) such that H − h ∈ W 1,2
817
+ 0 (Ω), or, equivalently, H is the unique weak
818
+ solution to
819
+
820
+ div(a(x)∇H) = 0
821
+ in Ω
822
+ H = h
823
+ on ∂Ω,
824
+ where
825
+ aij(x) = δijD(u) − uxiuxj
826
+ D(u)
827
+ and, in addition, H is the mean curvature of the graph of u with prescribed values on ∂Ω,
828
+ that is,
829
+
830
+
831
+
832
+ 1
833
+ n div
834
+ � ∇u
835
+ D(u)
836
+
837
+ = H
838
+ in Ω
839
+ u = g
840
+ on ∂Ω.
841
+ 4. Weak solutions
842
+ In this section we develop the weak formulation of the minimum curvature variation prob-
843
+ lem in the context of geometric measure theory.
844
+ Given a Lipschitz bounded domain Ω, we denote by BV(Ω) the space of functions of
845
+ bounded variation in Ω. We start by recalling that u ∈ BV(Ω) is a generalized solution
846
+ to the prescribed mean curvature equation with (weak) mean curvature H ∈ L1(Ω) and
847
+ boundary value g ∈ L1(∂Ω) if
848
+ (WPMC)
849
+ J [u] =
850
+ min
851
+ v∈BV(Ω) J [v]
852
+ where
853
+ J [v] :=
854
+ ˆ
855
+
856
+ D(v) +
857
+ ˆ
858
+
859
+ nHv dx +
860
+ ˆ
861
+ ∂Ω
862
+ |v − g| dS
863
+ and
864
+ (4.1)
865
+ ˆ
866
+
867
+ D(v) := sup
868
+ � ˆ
869
+
870
+
871
+ v
872
+ n
873
+
874
+ i=1
875
+ ∂xiφi + φn+1
876
+
877
+ dx : φi ∈ C1
878
+ c (Ω),
879
+ n+1
880
+
881
+ i=1
882
+ φ2
883
+ i ≤ 1
884
+
885
+ .
886
+ Note that
887
+ ´
888
+
889
+
890
+ 1 + |∇u|2 dx does not make usual sense a priori for a function of bounded
891
+ variation and so (4.1) is indeed a definition. Furthermore, this definition is consistent in the
892
+ sense that for v ∈ W 1,1(Ω) we have
893
+ ˆ
894
+
895
+ D(v) =
896
+ ˆ
897
+
898
+
899
+ 1 + |∇v|2 dx,
900
+ see the proof of Lemma 4.1.
901
+
902
+ 12
903
+ L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS
904
+ In [3, Theorem 1.1], Giaquinta proved that if H is a measurable function then (WPMC)
905
+ is solvable in BV(Ω) if and only if there exists ε0 > 0 such that, for every measurable subset
906
+ A ⊂ Ω,
907
+ (4.2)
908
+ ����
909
+ ˆ
910
+ A
911
+ H dx
912
+ ���� ≤ (1 − ε0) 1
913
+ nP(∂A)
914
+ where P(∂A) denotes the perimeter of A. Clearly, (4.2) is significant only when A is a set of
915
+ finite perimeter (or Caccioppoli set).
916
+ We need a generalized measure of surface area. In that regard, we recall that the dis-
917
+ tributional gradient of u ∈ BV(Ω) is a vector valued Radon measure whose total variation
918
+ is identified with |∇u|. This is again consistent in the sense that if u ∈ W 1,1(Ω) then the
919
+ total variation equals
920
+ ´
921
+ Ω |∇u| dx (see [2, Chapter 5] for this and other properties of the space
922
+ BV(Ω) used hereafter). In general, for an open set U ⊂⊂ Ω the variation measure of ∇u
923
+ over U is given by
924
+ |∇u|(U) = sup
925
+ �ˆ
926
+ U
927
+ u div φ dx : φ ∈ C1
928
+ c (U; Rn), |φ| ≤ 1
929
+
930
+ and, for an arbitrary set V ⊂ Ω,
931
+ |∇u|(V ) = inf
932
+
933
+ |∇u|(U) : V ⊂ U and U is open
934
+
935
+ .
936
+ Taking this into account, and in analogy with (4.1), we define for the area measure by
937
+ (4.3)
938
+ D(u)(U) = sup
939
+ � ˆ
940
+
941
+
942
+ u
943
+ n
944
+
945
+ i=1
946
+ ∂xiφi + φn+1
947
+
948
+ dx : φi ∈ C1
949
+ c (U),
950
+ n+1
951
+
952
+ i=1
953
+ φ2
954
+ i ≤ 1
955
+
956
+ for any U ⊂⊂ Ω open and, for an arbitrary set V ⊂ Ω,
957
+ D(u)(V ) = inf {D(u)(U) : V ⊂ U and U is open} .
958
+ Although (4.3) could be defined, in principle, for functions in L1(Ω), it is easy to check that
959
+ (4.3) is finite if and only if u ∈ BV(Ω).
960
+ Similarly as for the variation measure, D(u) is a Radon measure, namely, a locally finite,
961
+ Borel regular measure in Rn (to prove that it is locally finite, see the ideas in [5, eq. (14.2)]).
962
+ The following observation will be useful.
963
+ Lemma 4.1. Let U ⊂ Ω be a Borel set. Then
964
+ (4.4)
965
+ |U| ≤ D(u)(U).
966
+ Proof. Due to the Borel regularity of both D(u) and the Lebesugue measure it suffices to
967
+ prove (4.4) for open sets. Let U ⊂ Rn be open.
968
+ First, we note that
969
+ (4.5)
970
+ D(u)(U) =
971
+ ˆ
972
+ U
973
+
974
+ 1 + |∇u|2 dx
975
+ for any u ∈ C1(Ω).
976
+ Indeed, an integration by parts yields
977
+ ˆ
978
+
979
+
980
+ u
981
+ n
982
+
983
+ i=1
984
+ ∂xiφi + φn+1
985
+
986
+ dx =
987
+ ˆ
988
+ U
989
+ (−∇u, 1) · Φ dx
990
+ where Φ = (φ1, . . . , φn, φn+1). Then the Cauchy-Schwartz inequality in Rn+1 and the condi-
991
+ tion |Φ| ≤ 1 give
992
+ D(u)(U) ≤
993
+ ˆ
994
+ U
995
+
996
+ 1 + |∇u|2 dx.
997
+
998
+ SURFACES OF MINIMUM CURVATURE VARIATION
999
+ 13
1000
+ On the other hand,
1001
+
1002
+ 1 + |∇u|2 ∈ L1(U) and so there exists a sequence Φj = (φj
1003
+ 1, . . . , φj
1004
+ n, φj
1005
+ n+1)
1006
+ with φj
1007
+ i ∈ C1
1008
+ c (U), j ≥ 1, that converges in L1(U) and almost everywhere to
1009
+ (−∇u,1)
1010
+
1011
+ 1+|∇u|2 . Fur-
1012
+ thermore,
1013
+ (−∇u,1)
1014
+
1015
+ 1+|∇u|2 is a unit vector so we may assume that �n+1
1016
+ i=1 (φj
1017
+ i)2 ≤ 1. Since
1018
+ ��Φj · (−∇u, 1)
1019
+ �� ≤ |Φj|
1020
+
1021
+ 1 + |∇u|2 ≤
1022
+
1023
+ 1 + |∇u|2 ∈ L1(U)
1024
+ we can use the dominated convergence theorem to get
1025
+ lim
1026
+ j→∞
1027
+ ˆ
1028
+
1029
+
1030
+ u
1031
+ n
1032
+
1033
+ i=1
1034
+ ∂xiφj
1035
+ i + φj
1036
+ n+1
1037
+
1038
+ dx = lim
1039
+ j→∞
1040
+ ˆ
1041
+ U
1042
+ (−∇u, 1) · Φj dx =
1043
+ ˆ
1044
+ U
1045
+
1046
+ 1 + |∇u|2 dx
1047
+ and the supremum is achieved. Thus (4.5) holds.
1048
+ Second, we have that u ∈ BV(U) and there exists {uk}k≥1 ⊂ BV(U) ∩ C∞(U) such that
1049
+ uk → u in L1(Ω) and
1050
+ (4.6)
1051
+ lim
1052
+ k→∞ D(uk)(U) = D(u)(U),
1053
+ see [2, Theorem 5.3]. Since, by (4.5), the conclusion (4.4) is trivial for C1 functions, we have
1054
+ |U| ≤ lim
1055
+ k→∞ D(uk)(U) = D(u)(U)
1056
+ as desired.
1057
+
1058
+ From now on, we fix a bounded, C1,1 domain Ω. We consider the minimization problem
1059
+ min
1060
+ (u,H)∈A I[u, H]
1061
+ where
1062
+ (4.7)
1063
+ I[u, H] :=
1064
+ ˆ
1065
+
1066
+ |∇H|2 dD(u)
1067
+ and dD(u) stands for the area measure defined in (4.3). The admissible set A is defined as
1068
+ follows. Let h ∈ W 2,2(Ω) ∩ Lip(∂Ω) satisfying
1069
+ (4.8)
1070
+ |h(y)| ≤ n − 1
1071
+ n
1072
+ Λ(y), y ∈ ∂Ω,
1073
+ and
1074
+ max
1075
+ ∂Ω |h| ≤ (1 − ε0)
1076
+ �|B1|
1077
+ |Ω|
1078
+ �1/n
1079
+ ,
1080
+ where Λ(y) is the weak mean curvature of ∂Ω at y ∈ ∂Ω and
1081
+ (4.9)
1082
+ n − 1
1083
+ n
1084
+ < ε0 < 1.
1085
+ Define
1086
+ (4.10)
1087
+ A :=
1088
+ � (u, H) ∈ BV(Ω) × (Ln(Ω) ∩ W 2,2(Ω)) : u solves (WPMC)
1089
+ and ∥H∥Ln(Ω) + ∥H∥W 2,2(Ω) ≤ C0, H = h on ∂Ω
1090
+
1091
+ with C0 > 0 is to be appropriately chosen. The equality H = h is understood in the sense of
1092
+ traces.
1093
+ Remark 4.2. The condition H ∈ W 2,2(Ω) is certainly natural for applications to the design
1094
+ of fair G2-continuous surfaces in CAD/CAM/CAGD. Indeed, in dimensions n = 1, 2, 3, the
1095
+ Sobolev embedding gives that the curvature H is H¨older continuous.
1096
+ The main result of this section is the following:
1097
+ Theorem 4.3 (Existence of weak solutions). Let I be defined by (4.7), h ∈ W 2,2(Ω)∩Lip(∂Ω)
1098
+ satisfying (4.8) and ε0 ∈ (0, 1) satisfying (4.9). Then the set of admissible functions A in
1099
+ (4.10) is nonempty and there exists a minimizer of I within the class A.
1100
+
1101
+ 14
1102
+ L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS
1103
+ To prove Theorem 4.3 we recall the notion and properties of Γ−convergence in our context,
1104
+ referring the reader to [1] for an introduction to the topic.
1105
+ Let Jk, k ≥ 1, and J∞ be
1106
+ functionals defined on the common space BV(Ω) and taking values in [−∞, ∞]. The sequence
1107
+ {Jk}k≥1 is said to Γ−converge to J∞ if the following two conditions hold:
1108
+ (a) For every v ∈ BV(Ω) and every sequence {vk}k≥1 ⊂ BV(Ω) such that vk → v in BV(Ω)
1109
+ it holds
1110
+ lim inf
1111
+ k→∞ Jk(vk) ≥ J∞(v).
1112
+ (b) For every v ∈ BV(Ω) there exists a sequence {vk}k≥1 ⊂ BV(Ω) such that vk → v in
1113
+ BV(Ω) for which
1114
+ lim sup
1115
+ k→∞
1116
+ Jk(vk) ≤ J∞(v).
1117
+ We will use the following result.
1118
+ Theorem 4.4 (see [1, Theorem 1.21]). Let (X, d) be a metric space and let {fk}k≥1 be an
1119
+ equi-mildly coercive sequence of functions on X that Γ−converges to f∞. Then, there exits
1120
+ min
1121
+ X f∞ = lim
1122
+ k→∞ inf
1123
+ X fk.
1124
+ Moreover, if {xk}k≥1 ⊂ X is a precompact sequence such that
1125
+ lim
1126
+ k→∞ fk(xk) = lim
1127
+ k→∞ inf
1128
+ X fk
1129
+ then every limit of {xk}k≥1 is a minimum point for f∞.
1130
+ Here f is said to be mildly coercive if there exists a nonempty compact set K ⊂ X such
1131
+ that infK f = infX f, and equi-mild coercivity means that the set K is the same for the whole
1132
+ sequence {fk}k≥1.
1133
+ Proof of Theorem 4.3. The proof is divided into 4 steps.
1134
+ Step 1. A ̸= ∅. We can extend h to Ω by solving
1135
+
1136
+ ∆H = 0
1137
+ in Ω
1138
+ H = h
1139
+ on ∂Ω.
1140
+ By classical elliptic regularity, H ∈ W 2,2(Ω) and
1141
+ ∥H∥W 2,2(Ω) ≤ C0
1142
+ where C0 = C0(∂Ω, ∥h∥L∞(∂Ω)) > 0. Moreover, by the H¨older and isoperimetric inequalities,
1143
+ ����
1144
+ ˆ
1145
+ A
1146
+ H dx
1147
+ ���� ≤ ∥H∥Ln(Ω)|A|
1148
+ n−1
1149
+ n
1150
+ ≤ ∥H∥Ln(Ω)
1151
+ P(∂A)
1152
+ n|B1|1/n .
1153
+ By the maximum principle and (4.8) we have
1154
+ ∥H∥Ln(Ω) ≤ |Ω|1/n max
1155
+ ∂Ω |h| ≤ (1 − ε0)|B1|1/n,
1156
+ where we make C0 larger if needed. Therefore,
1157
+ ����
1158
+ ˆ
1159
+ A
1160
+ H dx
1161
+ ���� ≤ (1 − ε0)
1162
+ n
1163
+ P(∂A)
1164
+ and (WPMC) is solvable for this H. Let u ∈ BV(Ω) be the corresponding minimizer of J .
1165
+ We have that A ̸= ∅. We further point out that
1166
+ ´
1167
+ Ω D(u) < ∞ and H ∈ Lip(Ω) so that
1168
+ ˆ
1169
+
1170
+ |∇H|2 dD(u) ≤ ∥∇H∥2
1171
+ L∞(Ω)D(u)(Ω) < ∞.
1172
+
1173
+ SURFACES OF MINIMUM CURVATURE VARIATION
1174
+ 15
1175
+ In particular,
1176
+ 0 ≤
1177
+ inf
1178
+ (u,H)∈A I[u, H] < ∞.
1179
+ Step 2. Construction of a minimizer. Let {(uk, Hk)}k≥1 ⊂ A be a minimizing sequence:
1180
+ m :=
1181
+ inf
1182
+ (u,H)∈A I[u, H] = lim
1183
+ k→∞ I[uk, Hk].
1184
+ To get a convergent subsequence of {uk}k≥1 we show its uniform boundedness in BV(Ω) and
1185
+ use that BV(Ω) embedds compactly in L1(Ω). Since every uk is a minimizer of the functional
1186
+ Jk defined by
1187
+ (4.11)
1188
+ Jk[v] :=
1189
+ ˆ
1190
+
1191
+ D(v) +
1192
+ ˆ
1193
+
1194
+ nHkv dx +
1195
+ ˆ
1196
+ ∂Ω
1197
+ |v − g| dS
1198
+ we have that, for any u0 ∈ BV(Ω),
1199
+ ˆ
1200
+
1201
+ D(uk) +
1202
+ ˆ
1203
+
1204
+ nHkuk dx +
1205
+ ˆ
1206
+ ∂Ω
1207
+ |uk − g| dS ≤
1208
+ ˆ
1209
+
1210
+ D(u0) +
1211
+ ˆ
1212
+
1213
+ nHku0 dx +
1214
+ ˆ
1215
+ ∂Ω
1216
+ |u0 − g| dS
1217
+ from where
1218
+ (4.12)
1219
+ ˆ
1220
+
1221
+ D(uk) +
1222
+ ˆ
1223
+
1224
+ nHkuk dx ≤ C +
1225
+ ˆ
1226
+
1227
+ nHku0 dx
1228
+ for C > 0 independent of k. Reasoning as in [3, eq. (1.4)] we have that
1229
+ (4.13)
1230
+ ˆ
1231
+
1232
+ Hkuk dx ≥ −(1 − ε0)
1233
+ ˆ
1234
+
1235
+ |∇uk| − C.
1236
+ Furthermore, BV(Ω) ⊂ L
1237
+ n
1238
+ n−1 (Ω) so (4.13) and the H¨older inequality in (4.12) give
1239
+ ˆ
1240
+
1241
+ D(uk) ≤ −n
1242
+ ˆ
1243
+
1244
+ Hkuk dx + C +
1245
+ ˆ
1246
+
1247
+ nHku0 dx
1248
+ ≤ n(1 − ε0)
1249
+ ˆ
1250
+
1251
+ |∇uk| + n∥Hk∥Ln(Ω)∥u0∥L
1252
+ n
1253
+ n−1 (Ω) + C
1254
+ for a new constant C > 0 that is independent of k. Moreover, the uniform bound on the
1255
+ Ln(Ω) norm of {Hk}k≥1 (they all belong to A) gives
1256
+ ˆ
1257
+
1258
+ |∇uk| ≤ n(1 − ε0)
1259
+ ˆ
1260
+
1261
+ |∇uk| + nC0∥u0∥L
1262
+ n
1263
+ n−1 (Ω) + C.
1264
+ Thus, after rearranging terms and recalling (4.9),
1265
+ ˆ
1266
+
1267
+ |∇uk| ≤
1268
+ 1
1269
+ (1 − n(1 − ε0))
1270
+
1271
+ nC0∥u0∥L
1272
+ n
1273
+ n−1 (Ω) + C
1274
+
1275
+ .
1276
+ Hence, by compactness in BV(Ω), there exists a subsequence of {uk}k≥1, still denoted by the
1277
+ same indexes, and u∞ ∈ BV(Ω) such that
1278
+ uk → u∞ in L1(Ω) as k → ∞, and
1279
+ |∇u∞|(Ω) ≤ lim inf
1280
+ k→∞ |∇uk|.
1281
+ Note that we also have
1282
+ (4.14)
1283
+ D(u∞) ≤ lim inf
1284
+ k→∞ D(uk).
1285
+ By Poincar´e’s inequality and the Rellich–Kondrachov compactness theorem, there exist a
1286
+ subsequence of {Hk}k≥1, still denoted by the same indexes, and H∞ ∈ W 2,2(Ω) such that
1287
+ (4.15)
1288
+ ∇Hk → ∇H∞ in L2(Ω), as k → ∞.
1289
+
1290
+ 16
1291
+ L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS
1292
+ Further, due to the uniform bound on ∥Hk∥Ln(Ω), we may assume that Hk converges weakly
1293
+ in Ln(Ω) to H∞. Finally, the weak convergence ensures that
1294
+ ∥H∞∥Ln(Ω) + ∥H∞∥W 2,2(Ω) ≤ C0.
1295
+ Step 3. (u∞, H∞) ∈ A. For this step we use Γ−convergence. Recall the functionals Jk
1296
+ defined in (4.11) (for the subsequence Hk we found in Step 2) and define J∞ analogously.
1297
+ We want to show that u∞ is a solution of (WPMC), namely, that u∞ is a minimizer of J∞
1298
+ over BV(Ω). Let us show that {Jk}k≥1 Γ−converges to J∞. A first remark is that it is
1299
+ enough to prove the Γ−convergence of
1300
+
1301
+ Jk(v) :=
1302
+ ˆ
1303
+
1304
+ vHk dx
1305
+ to
1306
+
1307
+ J∞(v) :=
1308
+ ˆ
1309
+
1310
+ vH∞ dx
1311
+ since the other two terms do not depend on k and can be considered as continuous pertur-
1312
+ bations of Jk, see [1, Remark 1.7]. To prove the liminf inequality (a), let {vk}k≥1 ⊂ BV(Ω)
1313
+ and v ∈ BV(Ω) such that vk → v in BV(Ω). We write
1314
+ ˆ
1315
+
1316
+ vkHk dx −
1317
+ ˆ
1318
+
1319
+ vH∞ dx = Ik + IIk + IIIk
1320
+ with
1321
+ Ik =
1322
+ ˆ
1323
+
1324
+ (vk − v)H∞ dx
1325
+ IIk =
1326
+ ˆ
1327
+
1328
+ (vk − v)(Hk − H∞) dx
1329
+ IIIk =
1330
+ ˆ
1331
+
1332
+ v(Hk − H∞) dx.
1333
+ By lower semicontinuity [4, Proposition 2.1],
1334
+ lim inf
1335
+ k→∞ Ik ≥ 0
1336
+ Next, we bound
1337
+ |IIk| ≤ ∥vk − v∥L
1338
+ n
1339
+ n−1 (Ω)
1340
+
1341
+ ∥Hk∥Ln(Ω) + ∥H∞∥Ln(Ω)
1342
+
1343
+ .
1344
+ Since vk converge to v in BV(Ω), by the isoperimetric embedding, the convergence also holds
1345
+ in L
1346
+ n
1347
+ n−1 (Ω). This and the uniform bound of Hk in Ln(Ω) give
1348
+ lim
1349
+ k→∞ IIk = 0.
1350
+ Finally, limk→∞ IIIk = 0 by the weak convergence of Hk to H∞ in Ln(Ω). As for the limsup
1351
+ inequality (b), given any v ∈ BV(Ω), consider the constant sequence vk = v for all k ≥ 1 and
1352
+ notice that, using the weak convergence of Hk to H∞ in Ln(Ω), we have that
1353
+ lim
1354
+ k→∞
1355
+
1356
+ Jk(vk) = �
1357
+ J∞(v).
1358
+ Hence, {Jk}k≥1 converges to J∞ in the Γ sense. Therefore, we can apply Theorem 4.4 with
1359
+ X = BV(Ω), fk = Jk, f∞ = J∞ and {xk}k≥1 and x∞ given by {uk}k≥1 and u∞, respectively
1360
+ (note that the sequence {Jk}k is equi-mildly coercive), to conclude that u∞ is a minimizer
1361
+ of J∞. We have thus shown that (u∞, H∞) ∈ A.
1362
+
1363
+ SURFACES OF MINIMUM CURVATURE VARIATION
1364
+ 17
1365
+ Step 4. (u∞, H∞) is a minimizer. Recall that L(p) = 1
1366
+ 2|p|2, p ∈ Rn, is convex, that is,
1367
+ 1
1368
+ 2|p|2 ≥ 1
1369
+ 2|p0|2 + p0 · (p − p0)
1370
+ for every p, p0 ∈ Rn. Then we can write
1371
+ 1
1372
+ 2
1373
+ ˆ
1374
+
1375
+ |∇Hk|2 dD(uk) ≥ 1
1376
+ 2
1377
+ ˆ
1378
+
1379
+ |∇H∞|2 dD(uk)
1380
+ +
1381
+ ˆ
1382
+
1383
+ ∇H∞ · (∇Hk − ∇H∞) dD(uk).
1384
+ As k → ∞, the left hand side of this inequality converges to m. As for the right hand side,
1385
+ (4.6) implies that
1386
+ lim inf
1387
+ k→∞
1388
+ 1
1389
+ 2
1390
+ ˆ
1391
+
1392
+ |∇H∞|2 dD(uk) ≥ 1
1393
+ 2
1394
+ ˆ
1395
+
1396
+ |∇H∞|2 dD(u∞).
1397
+ It remains to analyze the second term on the right hand side. For this, notice that Lemma
1398
+ 4.1 implies that dD(uk) is absolutely continuous with respect to the Lebesgue measure, see
1399
+ (4.4). This and H¨older’s inequality give
1400
+ ����
1401
+ ˆ
1402
+
1403
+ ∇H∞ · (∇Hk − ∇H∞) dD(uk)
1404
+ ���� ≤
1405
+ ˆ
1406
+
1407
+ |∇H∞||∇Hk − ∇H∞| dD(uk)
1408
+ ≤ C
1409
+ ˆ
1410
+
1411
+ |∇H∞||∇Hk − ∇H∞| dx
1412
+ ≤ C∥∇H∞∥L2(Ω)∥∇Hk − ∇H∞∥L2(Ω).
1413
+ In view of (4.15), this term goes to 0 as k → ∞. We have shown that
1414
+ m ≥
1415
+ ˆ
1416
+
1417
+ |∇H∞|2 dD(u∞).
1418
+ Since (u∞, H∞) ∈ A equality must be attained and (u∞, H∞) is a minimizer, as desired.
1419
+
1420
+ References
1421
+ [1] A. Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22,
1422
+ Oxford University Press, Oxford, 2002.
1423
+ [2] L. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Revised Edition, Text-
1424
+ books in Mathematics, CRC Press, Boca Raton, FL, 2015.
1425
+ [3] M. Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature, Manuscripta Math.
1426
+ 12 (1974), 73–86.
1427
+ [4] E. Giusti, Boundary value problems for non-parametric surfaces of prescribed mean curvature, Ann.
1428
+ Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 501–548.
1429
+ [5] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics 80,
1430
+ Birkh¨auser Verlag, Basel, 1984.
1431
+ [6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in
1432
+ Mathematics, Springer-Verlag, Berlin, 2001.
1433
+ [7] Q. Han, Nonlinear Elliptic Equations of the Second Order, Graduate Studies in Mathematics 171, Amer-
1434
+ ican Mathematical Society, Providence, RI, 2016.
1435
+ [8] H. P. Moreton and C. H. S´equin Functional optimization for fair surface design, ACM SIGGRAPH
1436
+ Computer Graphics 2 (1992), 167-176.
1437
+ [9] K. L. Narayan, K. M. Rao and M. M. M. Sacar, Computer Aided Design and Manufacturing, PHI Learning
1438
+ Pvt. Ltd., 2008.
1439
+ [10] W. Welch and A. Witkin, Variational surface modeling, ACM SIGGRAPH computer graphics 2 (1992),
1440
+ 157-166.
1441
+
1442
+ 18
1443
+ L. A. CAFFARELLI, P. R. STINGA, AND H. VIVAS
1444
+ [11] G. Xu and Q. Zhang, Minimal mean-curvature-variation surfaces and their applications in surface mod-
1445
+ eling, in: International Conference on Geometric Modeling and Processing, 357–370, Springer, Berlin,
1446
+ Heidelberg, 2006.
1447
+ Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Austin, TX
1448
+ 78712, United States of America
1449
+ Email address: [email protected]
1450
+ Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, IA 50011, United
1451
+ States of America
1452
+ Email address: [email protected]
1453
+ Centro Marplatense de Investigaciones Matem´aticas/CONICET, Dean Funes 3350, 7600 Mar
1454
+ del Plata, Argentina
1455
+ Email address: [email protected]
1456
+
DdAyT4oBgHgl3EQfSPd1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EdE1T4oBgHgl3EQfWgTb/content/2301.03116v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6026ced5a28577f9308053424d85cf28131586cff6cf1065b5afc00a198f7576
3
+ size 747155
EdE1T4oBgHgl3EQfWgTb/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7dc39e9aa2e56d6384642e0fa55677e687b502dad592b78bdd686f450d0b37f
3
+ size 244332
F9AzT4oBgHgl3EQfi_2P/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:010bfeb2cd9ab6919976b917eb1d8a32fa94cc9cfd945cea3872e702244577d7
3
+ size 3538989
F9AzT4oBgHgl3EQfi_2P/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba744cc3e8cfc68a463fbcb7aac4f3ffe5ce99f2f70302cfface9b13a1fcf5cc
3
+ size 123197
GtE1T4oBgHgl3EQf_QYB/content/2301.03577v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a268aa703369f7700237e68cf5435b817221e67b953329888ccd8747d646d74c
3
+ size 1440273
GtE1T4oBgHgl3EQf_QYB/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8655c73d95c06d90f3f1f15677dacd17f1ab3e8b404f0754a2940063239df414
3
+ size 3211309
HtFIT4oBgHgl3EQfXys9/content/2301.11245v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b7abce9c22adf0df73242499d095c9e0f2f1bd26da25e0a9e1377e3bdcb78d8
3
+ size 236446
HtFIT4oBgHgl3EQfXys9/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:322812ee3ffde9d42a97e37e92bb514e3ae640c82d0031fb0105b3f027fe23ef
3
+ size 122134
IdAzT4oBgHgl3EQfU_z6/content/2301.01278v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:039271ace6316b1ac10367449a41e266a634f0935dd04d933feac8241daccfb4
3
+ size 529839
IdAzT4oBgHgl3EQfU_z6/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4dbf870587653c15ca70ea43863583ece3d27b109a776c57a8717792831bb53
3
+ size 163414
JdFAT4oBgHgl3EQfvB7v/content/2301.08674v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be7a908e7be7ab93a909b718b41289988142d3b0f5bffc18d381b39e9933e38b
3
+ size 705746
JdFAT4oBgHgl3EQfvB7v/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f266cc30d88df1baae907271435ddcef802b617b22f12670de8423d24e35f8b
3
+ size 82920
KtA0T4oBgHgl3EQfCv_p/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
LdAyT4oBgHgl3EQfsvlL/content/tmp_files/2301.00581v1.pdf.txt ADDED
@@ -0,0 +1,2193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00581v1 [cs.IT] 2 Jan 2023
2
+ 1
3
+ Bent Partitions, Vectorial Dual-Bent Functions and Partial Difference Sets†
4
+ Jiaxin Wang, Fang-Wei Fu, Yadi Wei
5
+ Abstract
6
+ Bent partitions of V (p)
7
+ n
8
+ are quite powerful in constructing bent functions, vectorial bent functions and
9
+ generalized bent functions, where V (p)
10
+ n
11
+ is an n-dimensional vector space over Fp, n is an even positive
12
+ integer and p is a prime. It is known that partial spreads is a class of bent partitions. In [4], [18], two
13
+ classes of bent partitions whose forms are similar to partial spreads were presented. In [3], more bent
14
+ partitions Γ1, Γ2, Γ•
15
+ 1, Γ•
16
+ 2, Θ1, Θ2 were presented from (pre)semifields, including the bent partitions given
17
+ in [4], [18]. In this paper, we investigate the relations between bent partitions and vectorial dual-bent
18
+ functions. For any prime p, we show that one can generate certain bent partitions (called bent partitions
19
+ satisfying Condition C) from certain vectorial dual-bent functions (called vectorial dual-bent functions
20
+ satisfying Condition A). In particular, when p is an odd prime, we show that bent partitions satisfying
21
+ Condition C one-to-one correspond to vectorial dual-bent functions satisfying Condition A. We give an
22
+ alternative proof that Γ1, Γ2, Γ•
23
+ 1, Γ•
24
+ 2, Θ1, Θ2 are bent partitions in terms of vectorial dual-bent functions.
25
+ We present a secondary construction of vectorial dual-bent functions, which can be used to generate
26
+ more bent partitions. We show that any ternary weakly regular bent function f : V (3)
27
+ n
28
+ → F3 (n even) of
29
+ 2-form can generate a bent partition. When such f is weakly regular but not regular, the generated bent
30
+ partition by f is not coming from a normal bent partition, which answers an open problem proposed in
31
+ [4]. We give a sufficient condition on constructing partial difference sets from bent partitions, and when
32
+ p is an odd prime, we provide a characterization of bent partitions satisfying Condition C in terms of
33
+ partial difference sets.
34
+ Index Terms
35
+ Bent partitions; bent functions; vectorial bent functions; vectorial dual-bent functions; semifields;
36
+ partial difference sets
37
+ Jiaxin Wang, Fang-Wei Fu and Yadi Wei are with Chern Institute of Mathematics and LPMC, Nankai University, Tianjin
38
39
+ †This research is supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0704703
40
+ and 2022YFA1005001), the National Natural Science Foundation of China (Grant Nos. 12141108, 61971243, 12226336), the
41
+ Natural Science Foundation of Tianjin (20JCZDJC00610), the Fundamental Research Funds for the Central Universities of China
42
+ (Nankai University), and the Nankai Zhide Foundation.
43
+ January 3, 2023
44
+ DRAFT
45
+
46
+ 2
47
+ I. INTRODUCTION
48
+ Boolean bent functions were introduced by Rothaus [21] and were generalized to p-ary bent
49
+ functions by Kumar, Scholtz and Welch [15], where p is an arbitrary prime. Due to applications
50
+ of p-ary bent functions in cryptography, coding theory, sequence and combinatorics, they have
51
+ been extensively studied. We refer to surveys [5], [17] and a book [19] on p-ary bent functions
52
+ and their generalizations such as vectorial bent functions and generalized bent functions.
53
+ In [10], C¸ es¸melio˘glu et al. introduced vectorial dual-bent functions, which is a special class
54
+ of vectorial bent functions. In [7], [8], [22], vectorial dual-bent functions were used to construct
55
+ partial difference sets. In particular, Wang and Fu [22] showed that for certain vectorial dual-bent
56
+ functions F : V (p)
57
+ n
58
+ → V (p)
59
+ s
60
+ (where V (p)
61
+ n
62
+ is an n-dimensional vector space over the prime field
63
+ Fp), the preimage set of any subset of V (p)
64
+ s
65
+ for F forms a partial difference set.
66
+ Very recently, bent partitions of V (p)
67
+ n
68
+ were introduced [4], [18], which are quite powerful in
69
+ constructing bent functions, vectorial bent functions and generalized bent functions. The well-
70
+ known partial spreads is a class of bent partitions. In [18], Meidl and Pirsic for the first time
71
+ presented two classes of bent partitions for p = 2 different from partial spreads. In [4], Anbar and
72
+ Meidl generalized the contributions in [18] to the case of p being odd and gave the corresponding
73
+ two classes of bent partitions for odd p. In [3], Anbar, Kalaycı and Meidl presented more bent
74
+ partitions Γ1, Γ2, Γ•
75
+ 1, Γ•
76
+ 2, Θ1, Θ2 from (pre)semifields, including the bent partitions given in [4],
77
+ [18]. In [2], Anbar, Kalaycı and Meidl showed that any union of elements in the bent partition
78
+ given in [4], [18] forms a partial difference set. In terms of constructing partial difference sets,
79
+ certain vectorial dual-bent functions and certain bent partitions seem to play the same role.
80
+ Therefore, it is interesting to investigate the relations between vectorial dual-bent functions
81
+ and bent partitions. In this paper, we show that by using certain vectorial dual-bent functions
82
+ (called vectorial dual-bent functions satisfying Condition A), we can construct bent partitions
83
+ of V (p)
84
+ n
85
+ with certain properties (called bent partitions satisfying Condition C) for any prime
86
+ p. Particularly, when p is an odd prime, we prove that bent partitions of V (p)
87
+ n
88
+ with Condition
89
+ C one-to-one correspond to vectorial dual-bent functions satisfying Condition A. In terms of
90
+ vectorial dual-bent functions, we provide an alternative proof that Γ1, Γ2, Γ•
91
+ 1, Γ•
92
+ 2, Θ1, Θ2 given
93
+ in [3] are bent partitions. We provide a secondary construction of vectorial dual-bent functions,
94
+ which can be used to generate more bent partitions. We prove that any ternary weakly regular
95
+ bent function f : V (3)
96
+ n
97
+ → F3 (n even) of 2-form can generate a bent partition. In the special case
98
+ January 3, 2023
99
+ DRAFT
100
+
101
+ 3
102
+ that f is weakly regular but not regular, the generated bent partition by f is not coming from
103
+ a normal bent partition, which answers an open problem proposed in [4]. By using vectorial
104
+ dual-bent functions as the link between bent partitions and partial difference sets, we give a
105
+ sufficient condition on constructing partial difference sets from bent partitions. When p is an
106
+ odd prime, we provide a characterization of bent partitions satisfying Condition C in terms of
107
+ partial difference sets.
108
+ The rest of the paper is organized as follows. In Section II, we state some needed results on
109
+ vectorial dual-bent functions and bent partitions. In Section III, we present relations between
110
+ certain bent partitions and certain vectorial dual-bent functions. In Section IV, we give a sec-
111
+ ondary construction of vectorial dual-bent functions, which can be used to generate more bent
112
+ partitions. In Section V, we present relations between certain bent partitions and certain partial
113
+ difference sets. In Section VI, we make a conclusion.
114
+ II. PRELIMINARIES
115
+ In this section, we state some basic results on vectorial dual-bent functions and bent partitions.
116
+ First, we fix some notations used throughout this paper.
117
+ • p is a prime.
118
+ • ζp = e
119
+ 2π√−1
120
+ p
121
+ is a complex primitive p-th root of unity. Note that ζ2 = −1.
122
+ • Fpn is the finite field with pn elements.
123
+ • Fn
124
+ p is the vector space of the n-tuples over Fp.
125
+ • V (p)
126
+ n
127
+ is an n-dimensional vector space over Fp.
128
+ • ⟨·⟩n denotes a (non-degenerate) inner product of V (p)
129
+ n . In this paper, when V (p)
130
+ n
131
+ = Fpn,
132
+ let ⟨a, b⟩n = Trn
133
+ 1(ab), where a, b ∈ Fpn, Trn
134
+ k(·) denotes the trace function from Fpn to
135
+ Fpk, k | n; when V (p)
136
+ n
137
+ = Fn
138
+ p, let ⟨a, b⟩n = a · b = �n
139
+ i=1 aibi, where a = (a1, . . . , an), b =
140
+ (b1, . . . , bn) ∈ Fn
141
+ p; when V (p)
142
+ n
143
+ = V (p)
144
+ n1 ×· · ·×V (p)
145
+ nm (n = �m
146
+ i=1 ni), let ⟨a, b⟩n = �m
147
+ i=1⟨ai, bi⟩ni,
148
+ where a = (a1, . . . , am), b = (b1, . . . , bm) ∈ V (p)
149
+ n .
150
+ • For any set A ⊆ V (p)
151
+ n
152
+ and u ∈ V (p)
153
+ n , let χu(A) = �
154
+ x∈A χu(x), where χu denotes the
155
+ character χu(x) = ζ⟨u,x⟩n
156
+ p
157
+ .
158
+ A. Vectorial dual-bent functions
159
+ A function F : V (p)
160
+ n
161
+ → V (p)
162
+ s
163
+ is called a vectorial p-ary function, or simply p-ary function
164
+ when s = 1. The Walsh transform of a p-ary function f : V (p)
165
+ n
166
+ → Fp is the complex valued
167
+ January 3, 2023
168
+ DRAFT
169
+
170
+ 4
171
+ function defined by
172
+ Wf(a) =
173
+
174
+ x∈V (p)
175
+ n
176
+ ζf(x)−⟨a,x⟩n
177
+ p
178
+ , a ∈ V (p)
179
+ n .
180
+ (1)
181
+ A p-ary function f : V (p)
182
+ n
183
+ → Fp is called bent if |Wf(a)| = p
184
+ n
185
+ 2 for all a ∈ V (p)
186
+ n . Note that
187
+ when f is a Boolean bent function, that is, p = 2, then n must be even since in this case, Wf is
188
+ an integer valued function. A vectorial p-ary function F : V (p)
189
+ n
190
+ → V (p)
191
+ s
192
+ is called vectorial bent
193
+ if all component functions Fc : V (p)
194
+ n
195
+ → Fp, c ∈ V (p)
196
+ s
197
+ \{0} defined as Fc(x) = ⟨c, F(x)⟩s are bent.
198
+ It is known that if F : V (p)
199
+ n
200
+ → V (p)
201
+ s
202
+ is vectorial bent, then s ≤ n
203
+ 2 if p = 2, and s ≤ n if p is
204
+ an odd prime. If f : V (p)
205
+ n
206
+ → Fp is bent, then so are cf, c ∈ F∗
207
+ p, that is, any p-ary bent function
208
+ is vectorial bent. For F : V (p)
209
+ n
210
+ → V (p)
211
+ s
212
+ , the vectorial bentness of F is independent of the inner
213
+ products of V (p)
214
+ n
215
+ and V (p)
216
+ s
217
+ . The Walsh transform of a p-ary bent function f : V (p)
218
+ n
219
+ → Fp satisfies
220
+ that for any a ∈ V (p)
221
+ n , when p = 2, we have
222
+ Wf(a) = 2
223
+ n
224
+ 2 (−1)f∗(a),
225
+ (2)
226
+ and when p is an odd prime, we have
227
+ Wf(a) =
228
+
229
+
230
+
231
+ ±p
232
+ n
233
+ 2 ζf∗(a)
234
+ p
235
+ if p ≡ 1 (mod 4) or n is even,
236
+ ±
237
+
238
+ −1p
239
+ n
240
+ 2 ζf∗(a)
241
+ p
242
+ if p ≡ 3 (mod 4) and n is odd,
243
+ (3)
244
+ where f ∗ is a function from V (p)
245
+ n
246
+ to Fp, called the dual of f. A p-ary bent function f : V (p)
247
+ n
248
+ → Fp
249
+ is called weakly regular if Wf(a) = εfp
250
+ n
251
+ 2 ζf∗(a)
252
+ p
253
+ , where εf is a constant independent of a,
254
+ otherwise f is called non-weakly regular. In particular, if εf = 1, f is called regular. The (non-
255
+ )weakly regularity of f is independent of the inner product of V (p)
256
+ n
257
+ and if f is weakly regular,
258
+ εf is independent of the inner product of V (p)
259
+ n . By (2), all Boolean bent functions are regular.
260
+ If f is a p-ary weakly regular bent function, then the dual f ∗ of f is also weakly regular bent
261
+ with (f ∗)∗(x) = f(��x) (see [9]).
262
+ In 2018, C¸ es¸melio˘glu et al. [10] introduced vectorial dual-bent functions.
263
+ Definition 1. A vectorial p-ary bent function F : V (p)
264
+ n
265
+ → V (p)
266
+ s
267
+ is called vectorial dual-bent
268
+ if there exists a vectorial bent function G : V (p)
269
+ n
270
+ → V (p)
271
+ s
272
+ such that (Fc)∗ = Gσ(c) for any
273
+ c ∈ V (p)
274
+ s
275
+ \{0}, where (Fc)∗ is the dual of the component function ⟨c, F(x)⟩s and σ is some
276
+ permutation over V (p)
277
+ s
278
+ \{0}. The vectorial bent function G is called a vectorial dual of F and
279
+ denoted by F ∗.
280
+ January 3, 2023
281
+ DRAFT
282
+
283
+ 5
284
+ It is known in [10] that the property of being vectorial dual-bent is independent of the inner
285
+ products of V (p)
286
+ n
287
+ and V (p)
288
+ s
289
+ . Note that for a vectorial dual-bent function, its vectorial dual is not
290
+ unique since being vectorial bent and vectorial dual-bent for a function is a property of the
291
+ vector space consisting of all component functions (see Remark 1 of [10]). For example, if a
292
+ p-ary function f (seen as a vectorial function into V (p)
293
+ 1
294
+ , p odd) is vectorial dual-bent under any
295
+ fixed inner product, then its dual f ∗ is unique, but its vectorial dual is not unique since for any
296
+ c ∈ F∗
297
+ p, cf ∗ is a vectorial dual of f. A p-ary function f : V (p)
298
+ n
299
+ → Fp is called an l-form if
300
+ f(ax) = alf(x) for any a ∈ F∗
301
+ p and x ∈ V (p)
302
+ n , where 1 ≤ l ≤ p − 1 is an integer. By the results
303
+ in [7], [22], we have the following proposition.
304
+ Proposition 1 ( [7], [22]). A p-ary function f with f(0) = 0 is a weakly regular vectorial dual-
305
+ bent function if and only if f is a weakly regular bent function of l-form with gcd(l−1, p−1) = 1.
306
+ In particular, a p-ary function f is a weakly regular vectorial dual-bent function with (cf)∗ = cf ∗
307
+ for any c ∈ F∗
308
+ p if and only if f is a weakly regular bent function of (p − 1)-form.
309
+ In the rest of this subsection, we recall an important class of p-ary bent functions, called
310
+ Maiorana-McFarland bent functions.
311
+ • Let f : Fpn × Fpn → Fp be defined as
312
+ f(x, y) = Trn
313
+ 1(αxπ(y)) + g(y),
314
+ where α ∈ F∗
315
+ pn, π is a permutation over Fpn and g : Fpn → Fp is an arbitrary function.
316
+ Then f is bent and is called a Maiorana-McFarland bent function. The dual f ∗ of f is
317
+ f ∗(x, y) = Trn
318
+ 1(−π−1(α−1x)y) + g(π−1(α−1x)).
319
+ (4)
320
+ All Maiorana-McFarland bent functions are regular (see [15]).
321
+ B. Bent partitions
322
+ Very recently, the concept of bent partitions of V (p)
323
+ n
324
+ were introduced [4], [18].
325
+ Definition 2. Let n be an even positive integer, K be a positive integer divisible by p.
326
+ • Let Γ = {A1, . . . , AK} be a partition of V (p)
327
+ n . Assume that every function f for which every
328
+ i ∈ Fp has exactly K
329
+ p of sets Aj in Γ in its preimage, is a p-ary bent function. Then Γ is
330
+ called a bent partition of V (p)
331
+ n
332
+ of depth K and every such bent function f is called a bent
333
+ function constructed from bent partition Γ.
334
+ January 3, 2023
335
+ DRAFT
336
+
337
+ 6
338
+ • Let Γ = {U, A1, . . . , AK} be a partition of V (p)
339
+ n . Assume that every function f with the
340
+ following properties is bent:
341
+ (1) Every c ∈ Fp has exactly K
342
+ p of the sets A1, . . . , AK in its preimage set;
343
+ (2) f(x) = c0 for all x ∈ U and some fixed c0 ∈ Fp.
344
+ Then we call Γ a normal bent partition of V (p)
345
+ n
346
+ of depth K.
347
+ Bent partitions are very powerful in constructing bent functions, vectorial bent function and
348
+ generalized bent functions. In this paper, we focus on the relations between bent partitions and
349
+ vectorial bent functions.
350
+ Proposition 2 ( [4]). Let Γ = {A1, . . . , Aps} be a bent partition of V (p)
351
+ n . Then every function
352
+ F : V (p)
353
+ n
354
+ → V (p)
355
+ s
356
+ such that every element i ∈ V (p)
357
+ s
358
+ has the elements of exactly one of the sets
359
+ Aj, 1 ≤ j ≤ ps, in its preimage, is a vectorial bent function.
360
+ It is known that partial spreads is a class of bent partitions (for instance see Section 2 of [4]). In
361
+ [4], [18], two classes of explicit bent partitions different from partial spreads were presented. In
362
+ [3], bent partitions Γ1, Γ2, Γ•
363
+ 1, Γ•
364
+ 2, Θ1, Θ2 were presented from certain (pre)semifields, including
365
+ the bent partitions given in [4], [18]. We will recall bent partitions Γ1, Γ2, Γ•
366
+ 1, Γ•
367
+ 2, Θ1, Θ2 given
368
+ in [3]. First, we need to introduce some basic knowledge on (pre)semifields.
369
+ Definition 3. Let ◦ be a binary operation defined on (V (p)
370
+ n , +) such that
371
+ (i) x ◦ y = 0 implies x = 0 or y = 0,
372
+ (ii) (x + y) ◦ z = (x ◦ z) + (y ◦ z), (z ◦ (x + y) = (z ◦ x) + (z ◦ y), respectively),
373
+ for all x, y, z ∈ V (p)
374
+ n . Then (V (p)
375
+ n , +, ◦) is called a right (left, respectively) prequasifield. If
376
+ (V (p)
377
+ n , +, ◦) is a right and a left prequasifield, then it is called a presemifield. If (V (p)
378
+ n , +, ◦) is
379
+ a presemifield for which there is an element e ̸= 0 such that e ◦ x = x ◦ e = x for all x ∈ V (p)
380
+ n ,
381
+ then it is called a semifield.
382
+ Let P = (Fpn, +, ◦) be a presemifield. Then one can obtain presemifields P • = (Fpn, +, •)
383
+ and P ⋆ = (Fpn, +, ⋆) from P, where • and ⋆ are given by
384
+ x • y = y ◦ x for all x, y ∈ Fpn,
385
+ and
386
+ Trn
387
+ 1(z(x ◦ y)) = Trn
388
+ 1(x(z ⋆ y)) for all x, y, z ∈ Fpn,
389
+ January 3, 2023
390
+ DRAFT
391
+
392
+ 7
393
+ respectively. The presemifield P ⋆ is called the dual of P. Let s be a positive divisor of n.
394
+ If x ◦ (cy) = c(x ◦ y) holds for any x, y ∈ Fpn, c ∈ Fps, then P is called right Fps-linear.
395
+ Each presemifield P = (Fpn, +, ◦) can induce a semifield P ′ = (Fpn, +, ∗) via the following
396
+ transformation: choose any α ∈ F∗
397
+ pn and give ∗ by
398
+ (x ◦ α) ∗ (α ◦ y) = x ◦ y for all x, y ∈ Fpn.
399
+ By Lemma 2 of [3], if P is right Fps-linear, then P ′ is also right Fps-linear. The finite field Fpn
400
+ is a right Fps-linear semifield (that is, ◦ is the field multiplication). For more right Fps-linear
401
+ (pre)semifields, see Section 3 of [3].
402
+ Now we recall bent partitions Γ1, Γ2, Γ•
403
+ 1, Γ•
404
+ 2, Θ1, Θ2 given in [3].
405
+ • Let n, s be positive integers satisfying s | n and gcd(pn−1, ps+p−1) = 1. Set u = ps+p−1,
406
+ and let d be an integer with du ≡ 1 mod (pn − 1). Let P = (Fpn, +, ◦) be a (pre)semifield
407
+ such that its dual P ⋆ = (Fpn, +, ⋆) is right Fps-linear. For given x ∈ Fpn, if x = 0, then let
408
+ ηx = 0, and if x ̸= 0, then let ηx be given by x ⋆ η−1
409
+ x
410
+ = 1.
411
+ • Define
412
+ Ut = {(x, t ◦ xu) : x ∈ F∗
413
+ pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}.
414
+ Let i0 ∈ Fps be an arbitrary element. Define
415
+ Γ1 = {Ai, i ∈ Fps},
416
+ (5)
417
+ where Ai = �
418
+ t∈Fpn:Trn
419
+ s (t)=i Ut if i ̸= i0, Ai0 = �
420
+ t∈Fpn:Trn
421
+ s (t)=i0 Ut
422
+ � U.
423
+ • Define
424
+ U•
425
+ t = {(x, xu ◦ t) : x ∈ F∗
426
+ pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}.
427
+ Let i0 ∈ Fps be an arbitrary element. Define
428
+ Γ•
429
+ 1 = {A•
430
+ i , i ∈ Fps},
431
+ (6)
432
+ where A•
433
+ i = �
434
+ t∈Fpn:Trn
435
+ s (t)=i U•
436
+ t if i ̸= i0, A•
437
+ i0 = �
438
+ t∈Fpn:Trn
439
+ s (t)=i0 U•
440
+ t
441
+ � U.
442
+ • Define
443
+ Vt = {(t ◦ xd, x) : x ∈ F∗
444
+ pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}.
445
+ Let i0 ∈ Fps be an arbitrary element. Define
446
+ Γ2 = {Bi, i ∈ Fps},
447
+ (7)
448
+ January 3, 2023
449
+ DRAFT
450
+
451
+ 8
452
+ where Bi = �
453
+ t∈Fpn:Trn
454
+ s (t)=i Vi if i ̸= i0, Bi0 = �
455
+ t∈Fpn:Trn
456
+ s (t)=i0 Vi
457
+ � V .
458
+ • Define
459
+ V •
460
+ t = {(xd ◦ t, x) : x ∈ F∗
461
+ pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}.
462
+ Let i0 ∈ Fps be an arbitrary element. Define
463
+ Γ•
464
+ 2 = {B•
465
+ i , i ∈ Fps},
466
+ (8)
467
+ where B•
468
+ i = �
469
+ t∈Fpn:Trn
470
+ s (t)=i V •
471
+ i if i ̸= i0, Bi0 = �
472
+ t∈Fpn:Trn
473
+ s (t)=i0 V •
474
+ i
475
+ � V .
476
+ • Define
477
+ Xt = {(tηd
478
+ x, x) : x ∈ F∗
479
+ pn} if t ∈ Fpn, and X = {(x, 0) : x ∈ Fpn}.
480
+ Let i0 ∈ Fps be an arbitrary element. Define
481
+ Θ1 = {Si, i ∈ Fps},
482
+ (9)
483
+ where Si = �
484
+ t∈Fpn:Trn
485
+ s (t)=i Xt if i ̸= i0, Si0 = �
486
+ t∈Fpn:Trn
487
+ s (t)=i0 Xt
488
+ � X.
489
+ • Define
490
+ Yt = {(x, tηu
491
+ x) : x ∈ F∗
492
+ pn} if t ∈ Fpn, and Y = {(0, y) : y ∈ Fpn}.
493
+ Let i0 ∈ Fps be an arbitrary element. Define
494
+ Θ2 = {Ti, i ∈ Fps},
495
+ (10)
496
+ where Ti = �
497
+ t∈Fpn:Trn
498
+ s (t)=i Yt if i ̸= i0, Ti0 = �
499
+ t∈Fpn:Trn
500
+ s (t)=i0 Yt
501
+ � Y .
502
+ Remark 1. In the finite field case, that is, ◦ and ⋆ are the field multiplication, then Γ1 = Γ•
503
+ 1 =
504
+ Θ2, Γ2 = Γ•
505
+ 2 = Θ1, which reduces to the two classes bent partitions given in [4], [18].
506
+ Remark 2. In fact, for the parameter u in the bent partitions Γ1, Γ•
507
+ 1, Γ2, Γ•
508
+ 2, Θ1, Θ2, one can
509
+ consider the more general form u ≡ pj mod (ps − 1) by the proofs in [3].
510
+ III. RELATIONS BETWEEN CERTAIN BENT PARTITIONS AND CERTAIN VECTORIAL
511
+ DUAL-BENT FUNCTIONS
512
+ Throughout this section, we consider bent partitions and vectorial dual-bent functions satisfy-
513
+ ing the following conditions, respectively.
514
+ Condition C: Let n be an even positive integer, s be a positive integer with s ≤
515
+ n
516
+ 2. Let
517
+ Γ = {Ai, i ∈ V (p)
518
+ s
519
+ } be a bent partition of V (p)
520
+ n
521
+ which satisfies that F∗
522
+ pAi = Ai for all i ∈ V (p)
523
+ s
524
+ January 3, 2023
525
+ DRAFT
526
+
527
+ 9
528
+ and all bent functions f constructed from Γ are regular (that is, εf = 1) or weakly regular but
529
+ not regular (that is, εf = −1). We denote by ε = εf for all bent functions f constructed from Γ.
530
+ Condition A: Let n be an even positive integer, s be a positive integer with s ≤
531
+ n
532
+ 2. Let
533
+ F : V (p)
534
+ n
535
+ → V (p)
536
+ s
537
+ be a vectorial dual-bent function with (Fc)∗ = (F ∗)c, c ∈ V (p)
538
+ s
539
+ \{0} for a
540
+ vectorial dual F ∗ of F and all component functions being regular or weakly regular but not
541
+ regular, that is, εFc, c ∈ V (p)
542
+ s
543
+ \{0} are all the same. We denote by ε = εFc for all c ∈ V (p)
544
+ s
545
+ \{0}.
546
+ It is easy to see that the known bent partitions, including partial spreads and Γi, Γ•
547
+ i , Θi, i = 1, 2
548
+ defined by (5)-(10), all satisfy F∗
549
+ pAi = Ai, i ∈ V (p)
550
+ s
551
+ . By the results in [3], [11], [14], all bent
552
+ functions constructed from partial spreads and Γi, Γ•
553
+ i , Θi, i = 1, 2 are regular. Thus, the known
554
+ bent partitions all satisfy Condition C with ε = 1. Moreover, when p = 2, it is easy to see that
555
+ Condition C is trivial for any bent partition of V (2)
556
+ n
557
+ of depth powers of 2. In this section, we
558
+ present relations between bent partitions satisfying Condition C and vectorial dual-bent functions
559
+ satisfying Condition A. First, we need a lemma.
560
+ Lemma 1. Let n be an even positive integer, s be a positive integer with s ≤ n
561
+ 2, and F : V (p)
562
+ n
563
+
564
+ V (p)
565
+ s
566
+ . Then the following two statements are equivalent.
567
+ (1) F is a vectorial dual-bent function satisfying Condition A.
568
+ (2) There exist pairwise disjoint sets Wi ⊆ V (p)
569
+ n , i ∈ V (p)
570
+ s
571
+ with �
572
+ i∈V (p)
573
+ s
574
+ Wi = V (p)
575
+ n
576
+ and a
577
+ constant ε ∈ {±1} (ε = 1 if p = 2) such that for any nonempty set I ⊆ V (p)
578
+ s
579
+ ,
580
+ χu(DF,I) = pn−sδ{0}(u)|I| + εp
581
+ n
582
+ 2 −s(psδWI(u) − |I|), u ∈ V (p)
583
+ n ,
584
+ (11)
585
+ where DF,I = {x ∈ V (p)
586
+ n
587
+ : F(x) ∈ I}, WI = �
588
+ i∈I Wi, and for any set S, δS denotes the
589
+ indicator function of S.
590
+ Proof. By Proposition 3 of [22] (Note that although Proposition 3 of [22] only considers the
591
+ case of p being odd, p = 2 also holds), for any u ∈ V (p)
592
+ n , i ∈ V (p)
593
+ s
594
+ we have
595
+ χu(DF,i) = pn−sδ{0}(u) + p−s
596
+
597
+ c∈V (p)
598
+ s
599
+ \{0}
600
+ WFc(−u)ζ−⟨c,i⟩s
601
+ p
602
+ ,
603
+ (12)
604
+ where DF,i = {x ∈ V (p)
605
+ n
606
+ : F(x) = i}.
607
+ January 3, 2023
608
+ DRAFT
609
+
610
+ 10
611
+ (1) ⇒ (2): If F is a vectorial dual-bent function satisfying Condition A (Note that if p = 2,
612
+ then ε = 1 since all Boolean bent functions are regular), then
613
+ χu(DF,i) = pn−sδ{0}(u) + εp
614
+ n
615
+ 2 −s
616
+
617
+ c∈V (p)
618
+ s
619
+ \{0}
620
+ ζ(Fc)∗(−u)−⟨c,i⟩s
621
+ p
622
+ = pn−sδ{0}(u) + εp
623
+ n
624
+ 2 −s
625
+
626
+ c∈V (p)
627
+ s
628
+ \{0}
629
+ ζ(F ∗)c(−u)−⟨c,i⟩s
630
+ p
631
+ = pn−sδ{0}(u) + εp
632
+ n
633
+ 2 −s
634
+
635
+ c∈V (p)
636
+ s
637
+ \{0}
638
+ ζ⟨c,F ∗(−u)−i⟩s
639
+ p
640
+ = pn−sδ{0}(u) + εp
641
+ n
642
+ 2 −s(psδ{0}(F ∗(−u) − i) − 1).
643
+ (13)
644
+ Define Wi = {x ∈ V (p)
645
+ n
646
+ : F ∗(−x) = i}, i ∈ V (p)
647
+ s
648
+ . Then Wi
649
+ � Wj = ∅ for any i ̸= j and
650
+
651
+ i∈V (p)
652
+ s
653
+ Wi = V (p)
654
+ n . By (13), for any nonempty set I ⊆ V (p)
655
+ s
656
+ and u ∈ V (p)
657
+ n
658
+ we have
659
+ χu(DF,I) =
660
+
661
+ i∈I
662
+ χu(DF,i)
663
+ =
664
+
665
+ i∈I
666
+ pn−sδ{0}(u) + εp
667
+ n
668
+ 2 −s(psδWi(u) − 1)
669
+ = pn−sδ{0}(u)|I| + εp
670
+ n
671
+ 2 −s(psδWI(u) − |I|).
672
+ (2) ⇒ (1): By the assumption on Wi, i ∈ V (p)
673
+ s
674
+ , we have that for any x ∈ V (p)
675
+ n , there exists a
676
+ unique i ∈ V (p)
677
+ s
678
+ such that x ∈ Wi. Define G : V (p)
679
+ n
680
+ → V (p)
681
+ s
682
+ by
683
+ G(x) = i if − x ∈ Wi.
684
+ By the definition of G, for any u ∈ V (p)
685
+ n , i ∈ V (p)
686
+ s
687
+ we have
688
+ χu(DF,i) = pn−sδ{0}(u) + εp
689
+ n
690
+ 2 −s(psδ{0}(G(−u) − i) − 1).
691
+ (14)
692
+ For any c ∈ V (p)
693
+ s
694
+ \{0},
695
+ WFc(−u) =
696
+
697
+ x∈V (p)
698
+ n
699
+ ζ⟨c,F (x)⟩s+⟨u,x⟩n
700
+ p
701
+ =
702
+
703
+ i∈V (p)
704
+ s
705
+
706
+ x∈V (p)
707
+ n
708
+ :F (x)=i
709
+ ζ⟨c,i⟩s+⟨u,x⟩n
710
+ p
711
+ January 3, 2023
712
+ DRAFT
713
+
714
+ 11
715
+ =
716
+
717
+ i∈V (p)
718
+ s
719
+ ζ⟨c,i⟩s
720
+ p
721
+ χu(DF,i)
722
+ =
723
+
724
+ i∈V (p)
725
+ s
726
+ \{G(−u)}
727
+ ζ⟨c,i⟩s
728
+ p
729
+ (pn−sδ{0}(u) − εp
730
+ n
731
+ 2 −s) + (pn−sδ{0}(u) + εp
732
+ n
733
+ 2 −s(ps − 1))ζ⟨c,G(−u)⟩s
734
+ p
735
+ = (pn−sδ{0}(u) − εp
736
+ n
737
+ 2 −s)
738
+
739
+ i∈V (p)
740
+ s
741
+ ζ⟨c,i⟩s
742
+ p
743
+ + εp
744
+ n
745
+ 2 ζGc(−u)
746
+ p
747
+ = εp
748
+ n
749
+ 2 ζGc(−u)
750
+ p
751
+ .
752
+ (15)
753
+ By (15) and the assumption that ε = 1 if p = 2, F is a vectorial bent function with εFc = ε
754
+ and (Fc)∗ = Gc for any c ∈ V (p)
755
+ s
756
+ \{0}. Since Fc is a weakly regular bent function, we have that
757
+ Gc = (Fc)∗ is also weakly regular bent and G is vectorial bent. Thus, F is vectorial dual-bent
758
+ with εFc = ε and (Fc)∗ = (F ∗)c for any c ∈ V (p)
759
+ s
760
+ \{0}, where F ∗ = G, that is, F satisfies
761
+ Condition A.
762
+ Based on Lemma 1, we have the following theorem.
763
+ Theorem 1. Let F : V (p)
764
+ n
765
+ → V (p)
766
+ s
767
+ be a vectorial dual-bent function satisfying Condition A.
768
+ Define
769
+ Ai = DF,i, i ∈ V (p)
770
+ s
771
+ ,
772
+ where DF,i = {x ∈ V (p)
773
+ n
774
+ : F(x) = i}. Then Γ = {Ai, i ∈ V (p)
775
+ s
776
+ } is a bent partition satisfying
777
+ Condition C.
778
+ Proof. By Lemma 1 and its proof, for any i ∈ V (p)
779
+ s
780
+ and u ∈ V (p)
781
+ n ,
782
+ χu(Ai) = χu(DF,i) = pn−sδ{0}(u) + εp
783
+ n
784
+ 2 −s(psδ{0}(F ∗(−u) − i) − 1),
785
+ where ε = 1 if p = 2 since all Boolean bent functions are regular. For any union S of ps−1 sets
786
+ of {Ai : i ∈ V (p)
787
+ s
788
+ }, we have
789
+ χu(S) =
790
+
791
+
792
+
793
+ pn−1δ{0}(u) + εp
794
+ n
795
+ 2 −1(p − 1), if AF ∗(−u) ⊆ S,
796
+ pn−1δ{0}(u) − εp
797
+ n
798
+ 2 −1, if AF ∗(−u) ⊈ S.
799
+ (16)
800
+ Let f be an arbitrary function such that for every j ∈ Fp, there are exactly ps−1 sets Ai in Γ in
801
+ its preimage. Define g(u) = f(AF ∗(−u)). Note that g is a p-ary function from V (p)
802
+ n
803
+ to Fp. Then
804
+ by (16), we have
805
+ χu(Df,j) =
806
+
807
+
808
+
809
+ pn−1δ{0}(u) + εp
810
+ n
811
+ 2 −1(p − 1), if j = g(u),
812
+ pn−1δ{0}(u) − εp
813
+ n
814
+ 2 −1, if j ̸= g(u).
815
+ (17)
816
+ January 3, 2023
817
+ DRAFT
818
+
819
+ 12
820
+ By (17), for any u ∈ V (p)
821
+ n
822
+ we have
823
+ Wf(−u) =
824
+
825
+ x∈V (p)
826
+ n
827
+ ζf(x)+⟨u,x⟩n
828
+ p
829
+ =
830
+
831
+ j∈Fp
832
+ ζj
833
+ p
834
+
835
+ x∈V (p)
836
+ n
837
+ :f(x)=j
838
+ ζ⟨u,x⟩n
839
+ p
840
+ =
841
+
842
+ j∈Fp
843
+ ζj
844
+ pχu(Df,j)
845
+ =
846
+
847
+ j∈Fp\{g(u)}
848
+ ζj
849
+ p(pn−1δ{0}(u) − εp
850
+ n
851
+ 2 −1) + ζg(u)
852
+ p
853
+ (pn−1δ{0}(u) + εp
854
+ n
855
+ 2 −1(p − 1))
856
+ = (pn−1δ{0}(u) − εp
857
+ n
858
+ 2 −1)
859
+
860
+ j∈Fp
861
+ ζj
862
+ p + εp
863
+ n
864
+ 2 ζg(u)
865
+ p
866
+ = εp
867
+ n
868
+ 2 ζg(u)
869
+ p
870
+ .
871
+ (18)
872
+ By (18) and ε = 1 if p = 2, f is a weakly regular bent function with εf = ε and f ∗(x) = g(−x).
873
+ Let
874
+ Wj = {u ∈ V (p)
875
+ n
876
+ : g(u) = j}, j ∈ Fp,
877
+ then Wj, j ∈ Fp are pairwise disjoint and �
878
+ j���Fp Wj = V (p)
879
+ n . By (17), for any u ∈ V (p)
880
+ n
881
+ and
882
+ nonempty set J ⊆ Fp we have
883
+ χu(Df,J) = pn−1δ{0}(u)|J| + εp
884
+ n
885
+ 2 −1(pδWJ(u) − |J|),
886
+ (19)
887
+ where Df,J = {x ∈ V (p)
888
+ n
889
+ : f(x) ∈ J}, WJ = �
890
+ j∈J Wj. By (19) and Lemma 1, f is vectorial dual-
891
+ bent with (cf)∗ = c(βf ∗), c ∈ F∗
892
+ p for some β ∈ F∗
893
+ p (since all vectorial duals of f are cf ∗, c ∈ F∗
894
+ p).
895
+ Let c = 1, we obtain β = 1, that is, f is vectorial dual-bent with (cf)∗ = cf ∗, c ∈ F∗
896
+ p. By
897
+ Proposition 1, f is a (p − 1)-form. In particular, Fc is a (p − 1)-form for any c ∈ F∗
898
+ ps, which
899
+ yields that F(αx) = F(x) for any α ∈ F∗
900
+ p and F∗
901
+ pAi = Ai, i ∈ V (p)
902
+ s
903
+ . Hence, Γ is a bent partition
904
+ satisfying Condition C.
905
+ By Theorem 1, we have the following corollary.
906
+ Corollary 1. Let n be an even positive integer. Let f : V (p)
907
+ n
908
+ → Fp be a weakly regular bent
909
+ function of (p − 1)-form, then {Df,j, j ∈ Fp} is a bent partition of V (p)
910
+ n , where Df,j = {x ∈
911
+ V (p)
912
+ n
913
+ : f(x) = j}.
914
+ Proof. By Proposition 1, f is a weakly regular vectorial dual-bent function with (cf)∗ = cf ∗.
915
+ Since n is even, εcf = εf for all c ∈ F∗
916
+ p (see Theorem 1 of [6]). Then by Theorem 1, the
917
+ conclusion holds.
918
+ January 3, 2023
919
+ DRAFT
920
+
921
+ 13
922
+ A bent partition Γ = {A1, . . . , AK} of depth K is called coming from a normal bent partition
923
+ if there is U ⊆ Ai for some i such that {U, A1, . . . , Ai−1, Ai\U, Ai+1, . . . , AK} is a normal bent
924
+ partition. In [4], there is an open problem: Do bent partitions exist which are not coming from
925
+ a normal bent partition of depth K > 2? In the following, we provide a positive answer for
926
+ this open problem. By the definition of l-form, a ternary function f is a 2-form if and only if
927
+ f(x) = f(−x). Let n be an even positive integer. If f : V (3)
928
+ n
929
+ → F3 with f(x) = f(−x) is a
930
+ ternary weakly regular but not regular bent function (that is, εf = −1), then by Corollary 1,
931
+ {Df,0, Df,1, Df,2} is a bent partition of depth 3. There exist such ternary bent functions f, for
932
+ instance see [7], [17]:
933
+
934
+ f(x) = Trn
935
+ 1(αx2), x ∈ F3n,
936
+ (20)
937
+ where n is even, α ∈ F∗
938
+ 3n is a square element if 4 | n, and α ∈ F∗
939
+ 3n is a non-square element
940
+ if 4 ∤ n;
941
+
942
+ f(x) = Trn
943
+ 1(ax
944
+ 3n−1
945
+ 4
946
+ +3m+1), x ∈ F3n,
947
+ (21)
948
+ where n = 2m, m odd, a = α
949
+ 3m+1
950
+ 4
951
+ for a primitive element α of F3n;
952
+
953
+ f(x) = Trn
954
+ 1(α(x33k+32k−3k+1 + x2)), x ∈ F3n,
955
+ (22)
956
+ where n = 4k for an arbitrary positive integer k, α ∈ F∗
957
+ 32k;
958
+
959
+ f(x, y, z) = (g(x) − h(x))z2 + yz + g(x), (x, y, z) ∈ F3n × F3 × F3,
960
+ (23)
961
+ where n is even, g and h are distinct bent functions constructed by (20) or (22) if 4 | n, g
962
+ and h are distinct bent functions constructed by (20) or (21) if 4 ∤ n.
963
+ For any ternary weakly regular but not regular bent function f : V (3)
964
+ n
965
+ → F3 (n even) with
966
+ f(x) = f(−x), the corresponding bent partition {Df,0, Df,1, Df,2} is not coming from a normal
967
+ bent partition by Theorem 4 (i) of [4], which provides a positive answer for the above open
968
+ problem proposed in [4]. We first recall Theorem 4 (i) of [4] and then give an example to
969
+ illustrate this fact.
970
+ Lemma 2 ( [4]). Let Γ = {U, A1, . . . , AK} be a normal bent partition of V (p)
971
+ n . Then |U| = p
972
+ n
973
+ 2
974
+ and |Aj| = pn−p
975
+ n
976
+ 2
977
+ K
978
+ , 1 ≤ j ≤ K.
979
+ January 3, 2023
980
+ DRAFT
981
+
982
+ 14
983
+ Example 1. Let f : F34 → F3 be defined by f(x) = Tr4
984
+ 1(x2). Then f is ternary weakly regular
985
+ bent with f(x) = f(−x) and εf = −1. By Corollary 1, {Df,0, Df,1, Df,2} is a bent partition.
986
+ By the result of Nyberg [20], for any weakly regular p-ary bent function g : V (p)
987
+ n
988
+ → Fp with
989
+ n even, we have {|Dg,i|, i ∈ Fp} = {pn−1 + εfp
990
+ n
991
+ 2 −1(p − 1), pn−1 − εfp
992
+ n
993
+ 2 −1}. For our example,
994
+ |Df,0| = 21, |Df,1| = |Df,2| = 30. By Lemma 2, it is easy to see that {Df,0, Df,1, Df,2} can not
995
+ be from a normal bent partition.
996
+ In the following, based on Theorem 1, we give an alternative proof that Γi, Γ•
997
+ i , Θi, i = 1, 2
998
+ defined by (5)-(10) given in [3] are bent partitions.
999
+ Let s, n be positive integers with s | n, u be an integer with u ≡ pj0 mod (ps − 1) for some
1000
+ 0 ≤ j0 ≤ s − 1 and gcd(u, pn − 1) = 1, and let d be an integer with du ≡ 1 mod (pn − 1). Let
1001
+ P = (Fpn, +, ◦) be a (pre)semifield such that its dual P ⋆ = (Fpn, +, ⋆) is right Fps-linear. For
1002
+ given x ∈ Fpn, if x = 0, then let ηx = 0, and if x ̸= 0, then let ηx be given by x ⋆ η−1
1003
+ x
1004
+ = 1 (For
1005
+ convention we set η−1
1006
+ 0
1007
+ = ηpn−2
1008
+ 0
1009
+ = 0). For any α ∈ F∗
1010
+ pn and i0 ∈ Fps, define
1011
+ F(x, y) = Trn
1012
+ s (αa(x, y)) + i0(1 − xpn−1), (x, y) ∈ Fpn × Fpn,
1013
+ (24)
1014
+ where for given (x, y), if x = 0, then a(x, y) = 0, and if x ̸= 0, then a(x, y) is given by
1015
+ a(x, y) ◦ xu = y, and
1016
+ F •(x, y) = Trn
1017
+ s (αa•(x, y)) + i0(1 − xpn−1), (x, y) ∈ Fpn × Fpn,
1018
+ (25)
1019
+ where for given (x, y), if x = 0, then a•(x, y) = 0, and if x ̸= 0, then a•(x, y) is given by
1020
+ xu ◦ a•(x, y) = y, and
1021
+ G(x, y) = Trn
1022
+ s (αb(x, y)) + i0(1 − ypn−1), (x, y) ∈ Fpn × Fpn,
1023
+ (26)
1024
+ where for given (x, y), if y = 0, then b(x, y) = 0, and if y ̸= 0, then b(x, y) is given by
1025
+ b(x, y) ◦ yd = x, and
1026
+ G•(x, y) = Trn
1027
+ s (αb•(x, y)) + i0(1 − ypn−1), (x, y) ∈ Fpn × Fpn,
1028
+ (27)
1029
+ where for given (x, y), if y = 0, then b•(x, y) = 0, and if y ̸= 0, then b•(x, y) is given by
1030
+ yd ◦ b•(x, y) = x, and
1031
+ M(x, y) = Trn
1032
+ s (αη−u
1033
+ x y) + i0(1 − xpn−1), (x, y) ∈ Fpn × Fpn,
1034
+ (28)
1035
+ and
1036
+ N(x, y) = Trn
1037
+ s (αxη−d
1038
+ y ) + i0(1 − ypn−1), (x, y) ∈ Fpn × Fpn.
1039
+ (29)
1040
+ January 3, 2023
1041
+ DRAFT
1042
+
1043
+ 15
1044
+ Proposition 3. Let F, F •, G, G•, M, N be defined as above. Then they are all vectorial dual-bent
1045
+ functions satisfying Condition A with ε = 1.
1046
+ Proof. We only prove the result for F and M since the proofs for F •, G, G• are similar to the
1047
+ proof for F, and the proof for N is similar to the proof for M.
1048
+ • For F:
1049
+ For any c ∈ F∗
1050
+ ps, we have
1051
+ Fc(x, y) = Trn
1052
+ 1(cαa(x, y)) + Trs
1053
+ 1(ci0)(1 − xpn−1).
1054
+ For any c ∈ F∗
1055
+ ps and (w, v) ∈ Fpn × Fpn, we have
1056
+ WFcu(w, v) =
1057
+
1058
+ x∈F∗
1059
+ pn
1060
+
1061
+ y∈Fpn
1062
+ ζTrn
1063
+ 1 (cuαa(x,y))−Trn
1064
+ 1 (wx+vy)
1065
+ p
1066
+ + ζTrs
1067
+ 1(cui0)
1068
+ p
1069
+
1070
+ y∈Fpn
1071
+ ζ−Trn
1072
+ 1 (vy)
1073
+ p
1074
+ =
1075
+
1076
+ x∈Fpn
1077
+
1078
+ y∈Fpn
1079
+ ζTrn
1080
+ 1 (cuαa(x,y))−Trn
1081
+ 1 (wx+vy)
1082
+ p
1083
+ + pn(ζTrs
1084
+ 1(cui0)
1085
+ p
1086
+ − 1)δ{0}(v)
1087
+ = Wh(w, v) + pn(ζTrs
1088
+ 1(cui0)
1089
+ p
1090
+ − 1)δ{0}(v),
1091
+ where h(x, y) = Trn
1092
+ 1(cuαa(x, y)). For given x ∈ Fpn, if x = 0, then let λx = 0, and if
1093
+ x ̸= 0, then let λx be given by x ⋆ λ−1
1094
+ x
1095
+ = α (For convention we set λ−1
1096
+ 0
1097
+ = λpn−2
1098
+ 0
1099
+ = 0). Define
1100
+ ρ(x) = λ−d
1101
+ x . Then ρ is a permutation over Fpn. For any x ∈ F∗
1102
+ pn, set z = ρ−1(c−1x). Then
1103
+ λ−d
1104
+ z
1105
+ = ρ(z) = c−1x. By du ≡ 1 mod (pn − 1), we have λ−1
1106
+ z
1107
+ = c−uxu. Since z ̸= 0 and P ⋆ is
1108
+ right Fps-linear, we have α = z ⋆ λ−1
1109
+ z
1110
+ = z ⋆ (c−uxu) = c−u(z ⋆ xu), that is, ρ−1(c−1x) ⋆ xu =
1111
+ αcu for any x ̸= 0. Thus, when x ̸= 0, Trn
1112
+ 1(cuαa(x, y)) = Trn
1113
+ 1(a(x, y)(ρ−1(c−1x) ⋆ xu)) =
1114
+ Trn
1115
+ 1(ρ−1(c−1x)(a(x, y) ◦ xu)) = Trn
1116
+ 1(ρ−1(c−1x)y). When x = 0, by a(0, y) = ρ−1(0) = 0, we
1117
+ have Trn
1118
+ 1(cuαa(x, y)) = Trn
1119
+ 1(ρ−1(c−1x)y) = 0. Hence, h(x, y) = Trn
1120
+ 1(ρ−1(c−1x)y), which is a
1121
+ Maiorana-McFarland bent function and by (4),
1122
+ Wh(w, v) = pnζ−Trn
1123
+ 1 (cwρ(v))
1124
+ p
1125
+ .
1126
+ Therefore, for any c ∈ F∗
1127
+ ps,
1128
+ WFcu(w, v) = pn(ζ−Trn
1129
+ 1 (cwρ(v))
1130
+ p
1131
+ + (ζTrs
1132
+ 1(cui0)
1133
+ p
1134
+ − 1)δ{0}(v))
1135
+ = pnζ−Trn
1136
+ 1 (cwρ(v))+Trs
1137
+ 1(cui0)(1−vpn−1)
1138
+ p
1139
+ .
1140
+ (30)
1141
+ By (30) and ud ≡ 1 mod (pn − 1), we have that for any c ∈ F∗
1142
+ ps, Fc is a regular bent function
1143
+ with
1144
+ (Fc)∗(x, y) = −Trn
1145
+ 1(cdxρ(y)) + Trs
1146
+ 1(ci0)(1 − ypn−1)
1147
+ = −Trn
1148
+ 1(cdpj0(xρ(y))pj0) + Trs
1149
+ 1(ci0)(1 − ypn−1).
1150
+ January 3, 2023
1151
+ DRAFT
1152
+
1153
+ 16
1154
+ Since u ≡ pj0 mod (ps − 1) and du ≡ 1 mod (pn − 1), we have d ≡ ps−j0 mod (ps − 1) and
1155
+ thus (cd)pj0 = c for any c ∈ F∗
1156
+ ps. Therefore, F is a vectorial bent function with εFc = 1 and
1157
+ (Fc)∗ = Hc for all c ∈ F∗
1158
+ ps, where
1159
+ H(x, y) = −Trn
1160
+ s ((xρ(y))pj0) + i0(1 − ypn−1) = −(Trn
1161
+ s (xρ(y)))pj0 + i0(1 − ypn−1).
1162
+ Since Fc is regular bent, we have that (Fc)∗ = Hc is also regular bent and H is vectorial bent.
1163
+ Thus, F is vectorial dual-bent with εFc = 1 and (Fc)∗ = (F ∗)c for all c ∈ F∗
1164
+ ps, where F ∗ = H,
1165
+ that is, F satisfies Condition A.
1166
+ • For M:
1167
+ For any c ∈ F∗
1168
+ ps,
1169
+ Mc(x, y) = Trn
1170
+ 1(cαη−u
1171
+ x y) + Trs
1172
+ 1(ci0)(1 − xpn−1).
1173
+ Similar to the discussion for F, for any c ∈ F∗
1174
+ ps and (w, v) ∈ Fpn × Fpn we have
1175
+ WMc(w, v) = Wg(w, v) + pn(ζTrs
1176
+ 1(ci0)
1177
+ p
1178
+ − 1)δ{0}(v),
1179
+ where g(x, y) = Trn
1180
+ 1(cαη−u
1181
+ x y). Let π(x) = η−u
1182
+ x , then π is a permutation over Fpn. Since g is a
1183
+ Maiorana-McFarland bent function, then by (4),
1184
+ Wg(w, v) = pnζ−Trn
1185
+ 1 (wπ−1(c−1α−1v))
1186
+ p
1187
+ .
1188
+ For any given y ∈ F∗
1189
+ pn, set π−1(c−1α−1y) = z. Then c−1α−1y = π(z) = η−u
1190
+ z . By ud ≡
1191
+ 1 mod (pn − 1), we have η−1
1192
+ z
1193
+ = c−dα−dyd. Since z ̸= 0 and P ⋆ is right Fps-linear, we have
1194
+ 1 = z ⋆ η−1
1195
+ z
1196
+ = z ⋆ (c−dα−dyd) = c−d(z ⋆ α−dyd), that is, π−1(c−1α−1y) ⋆ α−dyd = cd. For given
1197
+ (x, y) ∈ Fpn × Fpn, if y = 0, then let r(x, y) = 0, and if y ̸= 0, then let r(x, y) be given by
1198
+ r(x, y)◦α−dyd = x. When v ̸= 0, we have Trn
1199
+ 1(wπ−1(c−1α−1v)) = Trn
1200
+ 1(π−1(c−1α−1v)(r(w, v)◦
1201
+ α−dvd)) = Trn
1202
+ 1(r(w, v)(π−1(c−1α−1v) ⋆ α−dvd)) = Trn
1203
+ 1(cdr(w, v)) = Trn
1204
+ 1(c(r(w, v))pj0). When
1205
+ v = 0, since π−1(0) = 0 and r(w, 0) = 0, we have Trn
1206
+ 1(wπ−1(c−1α−1v)) = Trn
1207
+ 1(c(r(w, v))pj0) =
1208
+ 0. Thus, −Trn
1209
+ 1(wπ−1(c−1α−1v)) = −Trn
1210
+ 1(c(r(w, v))pj0) and
1211
+ WMc(w, v) = pn(ζ−Trn
1212
+ 1 (c(r(w,v))pj0 )
1213
+ p
1214
+ + (ζTrs
1215
+ 1(ci0)
1216
+ p
1217
+ − 1)δ{0}(v))
1218
+ = pnζ−Trn
1219
+ 1 (c(r(w,v))pj0 )+Trs
1220
+ 1(ci0)(1−vpn−1)
1221
+ p
1222
+ ,
1223
+ which implies that M is a vectorial dual-bent function with εMc = 1 and (Mc)∗ = (M∗)c for all
1224
+ c ∈ F∗
1225
+ ps, where
1226
+ M∗(x, y) = −Trn
1227
+ s ((r(x, y))pj0) + i0(1 − ypn−1),
1228
+ January 3, 2023
1229
+ DRAFT
1230
+
1231
+ 17
1232
+ that is, M satisfies Condition A.
1233
+ By Theorem 1 and Proposition 3, we have that {DF,i, i ∈ Fps}, {DF ��,i, i ∈ Fps}, {DG,i, i ∈
1234
+ Fps}, {DG•,i, i ∈ Fps}, {DM,i, i ∈ Fps} and {DN,i, i ∈ Fps} are bent partitions. It is easy to
1235
+ verify that
1236
+ DF,i =
1237
+
1238
+
1239
+
1240
+
1241
+
1242
+
1243
+
1244
+
1245
+
1246
+
1247
+
1248
+
1249
+ t∈Fpn:T rn
1250
+ s (αt)=i
1251
+ Ut, if i ̸= i0,
1252
+
1253
+ t∈Fpn:T rn
1254
+ s (αt)=i0
1255
+ Ut
1256
+
1257
+ U, if i = i0,
1258
+ , DF •,i =
1259
+
1260
+
1261
+
1262
+
1263
+
1264
+
1265
+
1266
+
1267
+
1268
+
1269
+
1270
+
1271
+ t∈Fpn:T rn
1272
+ s (αt)=i
1273
+ U •
1274
+ t , if i ̸= i0,
1275
+
1276
+ t∈Fpn:T rn
1277
+ s (αt)=i0
1278
+ U •
1279
+ t
1280
+
1281
+ U, if i = i0,
1282
+ ,
1283
+ DG,i =
1284
+
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+
1291
+
1292
+
1293
+
1294
+
1295
+
1296
+ t∈Fpn:T rn
1297
+ s (αt)=i
1298
+ Vt, if i ̸= i0,
1299
+
1300
+ t∈Fpn:T rn
1301
+ s (αt)=i0
1302
+ Vt
1303
+
1304
+ V, if i = i0,
1305
+ , DG•,i =
1306
+
1307
+
1308
+
1309
+
1310
+
1311
+
1312
+
1313
+
1314
+
1315
+
1316
+
1317
+
1318
+ t∈Fpn:T rn
1319
+ s (αt)=i
1320
+ V •
1321
+ t , if i ̸= i0,
1322
+
1323
+ t∈Fpn:T rn
1324
+ s (αt)=i0
1325
+ V •
1326
+ t
1327
+
1328
+ V, if i = i0,
1329
+ ,
1330
+ DM,i =
1331
+
1332
+
1333
+
1334
+
1335
+
1336
+
1337
+
1338
+
1339
+
1340
+
1341
+
1342
+
1343
+ t∈Fpn:T rn
1344
+ s (αt)=i
1345
+ Xt, if i ̸= i0,
1346
+
1347
+ t∈Fpn:T rn
1348
+ s (αt)=i0
1349
+ Xt
1350
+
1351
+ X, if i = i0,
1352
+ , DN,i =
1353
+
1354
+
1355
+
1356
+
1357
+
1358
+
1359
+
1360
+
1361
+
1362
+
1363
+
1364
+
1365
+ t∈Fpn:T rn
1366
+ s (αt)=i
1367
+ Yt, if i ̸= i0,
1368
+
1369
+ t∈Fpn:T rn
1370
+ s (αt)=i0
1371
+ Yt
1372
+
1373
+ Y, if i = i0,
1374
+ where
1375
+ Ut = {(x, t ◦ xu) : x ∈ F∗
1376
+ pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn},
1377
+ U•
1378
+ t = {(x, xu ◦ t) : x ∈ F∗
1379
+ pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn},
1380
+ Vt = {(t ◦ xd, x) : x ∈ F∗
1381
+ pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn},
1382
+ V •
1383
+ t = {(xd ◦ t, x) : x ∈ F∗
1384
+ pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn},
1385
+ Xt = {(tηd
1386
+ x, x) : x ∈ F∗
1387
+ pn} if t ∈ Fpn, and X = {(x, 0) : x ∈ Fpn},
1388
+ Yt = {(x, tηu
1389
+ x) : x ∈ F∗
1390
+ pn} if t ∈ Fpn, and Y = {(0, y) : y ∈ Fpn}.
1391
+ For the above bent partitions from vectorial dual-bent functions F, F •, G, G•, M, N, by set-
1392
+ ting α = 1, u = ps + p − 1 with gcd(u, pn − 1) = 1, then we can obtain bent partitions
1393
+ Γ1, Γ•
1394
+ 1, Γ2, Γ•
1395
+ 2, Θ1, Θ2 defined by (5)-(10) respectively. Thus by the above analysis, we provide
1396
+ an alternative derivation that Γ1, Γ•
1397
+ 1, Γ2, Γ•
1398
+ 2, Θ1, Θ2 are bent partitions.
1399
+ When p is an odd prime, we show that the converse of Theorem 1 also holds.
1400
+ Theorem 2. Let p be an odd prime. Let Γ = {Ai, i ∈ V (p)
1401
+ s
1402
+ } be a bent partition of V (p)
1403
+ n
1404
+ satisfying
1405
+ Condition C. Define F : V (p)
1406
+ n
1407
+ → V (p)
1408
+ s
1409
+ by
1410
+ F(x) = i if x ∈ Ai.
1411
+ Then F is a vectorial dual-bent function satisfying Condition A.
1412
+ January 3, 2023
1413
+ DRAFT
1414
+
1415
+ 18
1416
+ Proof. Since F∗
1417
+ pAi = Ai for any i ∈ V (p)
1418
+ s
1419
+ , all bent functions constructed from Γ are (p−1)-form.
1420
+ When s = 1, the conclusion follows from Proposition 1. In the following, we consider the case
1421
+ of s ≥ 2.
1422
+ Let f be an arbitrary bent function constructed from Γ. By Lemma 3.4 of [13], for any
1423
+ u ∈ V (p)
1424
+ n
1425
+ and j ∈ Fp we have
1426
+ χu(Df,j) =
1427
+
1428
+
1429
+
1430
+ pn−1δ{0}(u) + εp
1431
+ n
1432
+ 2 −1(p − 1), if f ∗(u) = j,
1433
+ pn−1δ{0}(u) − εp
1434
+ n
1435
+ 2 −1, if f ∗(u) ̸= j,
1436
+ (31)
1437
+ where Df,j = {x ∈ V (p)
1438
+ n
1439
+ : f(x) = j}, j ∈ Fp. For any fixed u ∈ V (p)
1440
+ n , since
1441
+ {χu(Df,j), j ∈ Fp} = {pn−1δ{0}(u) + εp
1442
+ n
1443
+ 2 −1(p − 1), pn−1δ{0}(u) − εp
1444
+ n
1445
+ 2 −1}
1446
+ for any bent function f constructed from Γ, we have that for any fixed u ∈ V (p)
1447
+ n , there exists a
1448
+ unique G(u) ∈ V (p)
1449
+ s
1450
+ such that χu(Ai), i ̸= G(u) are all the same and χu(Ai) ̸= χu(AG(u)), i ̸=
1451
+ G(u). Note that G is a function from V (p)
1452
+ n
1453
+ to V (p)
1454
+ s
1455
+ . Moreover by (31), for any fixed u ∈ V (p)
1456
+ n
1457
+ we have
1458
+ χu(Ai) =
1459
+
1460
+
1461
+
1462
+ pn−sδ{0}(u) + εp
1463
+ n
1464
+ 2 −s(ps − 1), if i = G(u),
1465
+ pn−sδ{0}(u) − εp
1466
+ n
1467
+ 2 −s, if i ̸= G(u).
1468
+ (32)
1469
+ Define
1470
+ Wi = {u ∈ V (p)
1471
+ n
1472
+ : G(u) = i}, i ∈ V (p)
1473
+ s
1474
+ .
1475
+ Then obviously Wi, i ∈ V (p)
1476
+ s
1477
+ are pairwise disjoint and �
1478
+ i∈V (p)
1479
+ s
1480
+ Wi = V (p)
1481
+ n . By (32), for any
1482
+ u ∈ V (p)
1483
+ n
1484
+ and nonempty set I ⊆ V (p)
1485
+ s
1486
+ we have
1487
+ χu(DF,I) =
1488
+
1489
+ i∈I
1490
+ χu(Ai) = pn−sδ{0}(u)|I| + εp
1491
+ n
1492
+ 2 −s(psδWI(u) − |I|),
1493
+ (33)
1494
+ where DF,I = {x ∈ V (p)
1495
+ n
1496
+ : F(x) ∈ I}, WI = �
1497
+ i∈I Wi. By (33) and Lemma 1, the conclusion
1498
+ holds.
1499
+ When p is an odd prime, from Theorems 1 and 2 we obtain a characterization of bent partitions
1500
+ satisfying Condition C in terms of vectorial dual-bent functions.
1501
+ Theorem 3. Let p be an odd prime. Let Γ = {Ai, i ∈ V (p)
1502
+ s
1503
+ } be a partition of V (p)
1504
+ n , where n is
1505
+ even, s ≤ n
1506
+ 2. Define F : V (p)
1507
+ n
1508
+ → V (p)
1509
+ s
1510
+ as
1511
+ F(x) = i if x ∈ Ai.
1512
+ Then Γ is a bent partition satisfying Condition C if and only if F is a vectorial dual-bent function
1513
+ satisfying Condition A.
1514
+ January 3, 2023
1515
+ DRAFT
1516
+
1517
+ 19
1518
+ IV. CONSTRUCTING BENT PARTITIONS FROM VECTORIAL DUAL-BENT FUNCTIONS
1519
+ In this section, we construct bent partitions from vectorial dual-bent functions.
1520
+ The following theorem provides a secondary construction of vectorial dual-bent functions,
1521
+ which can be used to generate more bent partitions.
1522
+ Theorem 4. Let n, m, s be positive integers for which n is even and s ≤ n
1523
+ 2, s | m, s ̸= m. For
1524
+ any i ∈ Fps, let F(i; x) : V (p)
1525
+ n
1526
+ → Fps be a vectorial dual-bent function with ((F(i; x))c)∗ =
1527
+ ((F(i; x))∗)c and ε(F (i;x))c = ε for any c ∈ F∗
1528
+ ps, where (F(i; x))∗ is a vectorial dual of F(i; x)
1529
+ and ε ∈ {±1} is a constant independent of i, c. Let α, β ∈ Fpm be linearly independent over Fps.
1530
+ Let R be a permutation over Fpm with R(0) = 0 and T : Fps → Fps be an arbitrary function.
1531
+ Define H : V (p)
1532
+ n
1533
+ × Fpm × Fpm → Fps as
1534
+ H(x, y1, y2) = F(T rm
1535
+ s (αR(y1ypm−2
1536
+ 2
1537
+ )); x) + T rm
1538
+ s (βR(y1ypm−2
1539
+ 2
1540
+ )) + T (T rm
1541
+ s (αR(y1ypm−2
1542
+ 2
1543
+ ))).
1544
+ Then H is a vectorial dual-bent function satisfying Condition A and Γ = {Ai, i ∈ Fps} is a bent
1545
+ partition satisfying Condition C, where Ai = {(x, y1, y2) ∈ V (p)
1546
+ n
1547
+ ×Fpm ×Fpm : H(x, y1, y2) = i}.
1548
+ Proof. Denote
1549
+ d(y) = Trm
1550
+ s (βR(y1ypm−2
1551
+ 2
1552
+ )), e(y) = Trm
1553
+ s ((β − α)R(y1ypm−2
1554
+ 2
1555
+ )), y = (y1, y2) ∈ Fpm × Fpm.
1556
+ For any c ∈ F∗
1557
+ ps and (a, b) = (a, b1, b2) ∈ V (p)
1558
+ n
1559
+ × Fpm × Fpm, we have
1560
+ WHc(a, b)
1561
+ =
1562
+
1563
+ x∈V (p)
1564
+ n
1565
+
1566
+ y=(y1,y2)∈Fpm×Fpm
1567
+ ζT rs
1568
+ 1(cF (d(y)−e(y);x))+T rs
1569
+ 1(cd(y))+T rs
1570
+ 1(cT (d(y)−e(y)))
1571
+ p
1572
+ ζ−⟨a,x⟩n−T rm
1573
+ 1 (b1y1+b2y2)
1574
+ p
1575
+ =
1576
+
1577
+ i∈Fps
1578
+
1579
+ y=(y1,y2)∈Fpm×Fpm:d(y)−e(y)=i
1580
+
1581
+ x∈V (p)
1582
+ n
1583
+ ζT rs
1584
+ 1(cF (i;x))+T rs
1585
+ 1(cd(y))+T rs
1586
+ 1(cT (i))
1587
+ p
1588
+ ζ−⟨a,x⟩n−T rm
1589
+ 1 (b1y1+b2y2)
1590
+ p
1591
+ = p−s �
1592
+ i∈Fps
1593
+ W(F (i;x))c(a)ζT rs
1594
+ 1(cT (i))
1595
+ p
1596
+
1597
+ y=(y1,y2)∈Fpm×Fpm
1598
+ ζT rs
1599
+ 1(cd(y))−T rm
1600
+ 1 (b1y1+b2y2)
1601
+ p
1602
+
1603
+ j∈Fps
1604
+ ζT rs
1605
+ 1(cj(i−(d(y)−e(y))))
1606
+ p
1607
+ = p−s �
1608
+ i∈Fps
1609
+ W(F (i;x))c(a)ζT rs
1610
+ 1(cT (i))
1611
+ p
1612
+
1613
+ j∈Fps
1614
+ ζT rs
1615
+ 1(ijc)
1616
+ p
1617
+
1618
+ y=(y1,y2)∈Fpm×Fpm
1619
+ ζT rs
1620
+ 1(c((1−j)d(y)+je(y)))−T rm
1621
+ 1 (b1y1+b2y2)
1622
+ p
1623
+ .
1624
+ By Theorem 3 of [10], for any j ∈ Fps, J(j; y) = (1−j)d(y)+je(y) is a partial spread vectorial
1625
+ dual-bent function with ε(J(j;y))c = 1 and ((J(j; y))c)∗ = ((1−j)d∗(y)+je∗(y))c for any c ∈ F∗
1626
+ ps,
1627
+ January 3, 2023
1628
+ DRAFT
1629
+
1630
+ 20
1631
+ where d∗(y) = Trm
1632
+ s (βR(−ypm−2
1633
+ 1
1634
+ y2)), e∗(y) = Trm
1635
+ s ((β − α)R(−ypm−2
1636
+ 1
1637
+ y2)). Therefore,
1638
+ WHc(a, b)
1639
+ = pm−s �
1640
+ i∈Fps
1641
+ W(F (i;x))c(a)ζT rs
1642
+ 1(cT (i))
1643
+ p
1644
+
1645
+ j∈Fps
1646
+ ζT rs
1647
+ 1(ijc)
1648
+ p
1649
+ ζT rs
1650
+ 1(c((1−j)d∗(b)+je∗(b)))
1651
+ p
1652
+ = pm−sζT rs
1653
+ 1(cd∗(b))
1654
+ p
1655
+
1656
+ i∈Fps
1657
+ W(F (i;x))c(a)ζT rs
1658
+ 1(cT (i))
1659
+ p
1660
+
1661
+ j∈Fps
1662
+ ζT rs
1663
+ 1(cj(i−(d∗(b)−e∗(b))))
1664
+ p
1665
+ = pmζT rs
1666
+ 1(cd∗(b))
1667
+ p
1668
+ W(F (d∗(b)−e∗(b);x))c(a)ζT rs
1669
+ 1(cT (d∗(b)−e∗(b)))
1670
+ p
1671
+ = εp
1672
+ n
1673
+ 2 +mζ
1674
+ ((F (T rm
1675
+ s (αR(−bpm−2
1676
+ 1
1677
+ b2));x))c)∗(a)+T rs
1678
+ 1(cT rm
1679
+ s (βR(−bpm−2
1680
+ 1
1681
+ b2)))+T rs
1682
+ 1(cT (T rm
1683
+ s (αR(−bpm−2
1684
+ 1
1685
+ b2))))
1686
+ p
1687
+ = εp
1688
+ n
1689
+ 2 +mζ((F (T rm
1690
+ s (αR(−bpm−2
1691
+ 1
1692
+ b2));x))∗)c(a)+T rs
1693
+ 1(cT rm
1694
+ s (βR(−bpm−2
1695
+ 1
1696
+ b2)))+T rs
1697
+ 1(cT (T rm
1698
+ s (αR(−bpm−2
1699
+ 1
1700
+ b2))))
1701
+ p
1702
+ .
1703
+ (34)
1704
+ Note that ε = 1 if p = 2 since all Boolean bent functions are regular. By (34), H is a vectorial
1705
+ bent function with (Hc)∗ = Gc and εHc = ε for any c ∈ F∗
1706
+ ps, where
1707
+ G(a, b1, b2) = (F(T rm
1708
+ s (αR(−bpm−2
1709
+ 1
1710
+ b2)); x))∗(a) + T rm
1711
+ s (βR(−bpm−2
1712
+ 1
1713
+ b2)) + T (T rm
1714
+ s (αR(−bpm−2
1715
+ 1
1716
+ b2))).
1717
+ Since Hc is weakly regular bent, we have that Gc = (Hc)∗ is also weakly regular bent and G is
1718
+ vectorial bent. Thus, H is vectorial dual-bent with (Hc)∗ = (H∗)c and εHc = ε for any c ∈ F∗
1719
+ ps,
1720
+ where H∗ = G, that is, H satisfies Condition A. By Theorem 1, the partition Γ generated from
1721
+ H is a bent partition satisfying Condition C.
1722
+ The following explicit construction of bent partitions is an immediate result of Proposition 3
1723
+ and Theorem 4.
1724
+ Theorem 5. Let n, m, s be positive integers with s | n, s | m, s ̸= m, and ui, i ∈ Fps be
1725
+ integers for which for any i ∈ Fps, ui ≡ pji mod (ps − 1) for some 0 ≤ ji ≤ s − 1 and
1726
+ gcd(ui, pn − 1) = 1. For any i ∈ Fps, let di be an integer with uidi ≡ 1 mod (pn − 1), and
1727
+ Pi = (Fpn, +, ◦i) be a (pre)semifield for which its dual P ⋆
1728
+ i is right Fps-linear. For any i ∈ Fps,
1729
+ let F(i; x1, x2) : Fpn × Fpn → Fps be an arbitrary vectorial dual-bent function constructed by
1730
+ Proposition 3 with u = ui, d = di, P = Pi. Let α, β ∈ Fpm be linearly independent over Fps, R
1731
+ be a permutation over Fpm with R(0) = 0 and T : Fps → Fps be an arbitrary function. Define
1732
+ H : Fpn × Fpn × Fpm × Fpm → Fps as
1733
+ H(x1, x2, y1, y2) = F(T rm
1734
+ s (αR(y1ypm−2
1735
+ 2
1736
+ )); x1, x2) + T rm
1737
+ s (βR(y1ypm−2
1738
+ 2
1739
+ )) + T (T rm
1740
+ s (αR(y1ypm−2
1741
+ 2
1742
+ ))).
1743
+ Then
1744
+ Γ = {Ai, i ∈ Fps}
1745
+ is a bent partition satisfying Condition C, where
1746
+ Ai = {(x1, x2, y1, y2) ∈ Fpn × Fpn × Fpm × Fpm : H(x1, x2, y1, y2) = i}.
1747
+ January 3, 2023
1748
+ DRAFT
1749
+
1750
+ 21
1751
+ Remark 3. With the same notation as in Theorem 4. Note that in Theorem 4, by setting vectorial
1752
+ dual-bent functions H constructed by Theorem 5 as building blocks (that is, as F(i; x)), we can
1753
+ obtain more explicit vectorial dual-bent functions which can generate more bent partitions by
1754
+ Theorem 4.
1755
+ We give an example by using Theorem 5.
1756
+ Example 2. Let p = 3, s = 4, n = m = 8. Let α be a primitive element of F38 and β = 1, R be
1757
+ the identity map and T = 0. For any i ∈ F34, let
1758
+ F(i; x1, x2) =
1759
+
1760
+
1761
+
1762
+ Tr8
1763
+ 4(x−89
1764
+ 1
1765
+ x2), if i ∈ F∗
1766
+ 34,
1767
+ Tr8
1768
+ 4(x1x−83
1769
+ 2
1770
+ ), if i = 0.
1771
+ Then
1772
+ H(x1, x2, y2, y2) = (Tr8
1773
+ 4(αy1y6559
1774
+ 2
1775
+ ))80(Tr8
1776
+ 4(x−89
1777
+ 1
1778
+ x2 − x1x−83
1779
+ 2
1780
+ )) + Tr8
1781
+ 4(x1x−83
1782
+ 2
1783
+ + y1y6559
1784
+ 2
1785
+ ),
1786
+ and Γ = {DH,i, i ∈ F34} is a bent partition satisfying Condition C, where DH,i = {(x1, x2, y1, y2) ∈
1787
+ (F38)4 : H(x1, x2, y1, y2) = i}.
1788
+ V. RELATIONS BETWEEN BENT PARTITIONS AND PARTIAL DIFFERENCE SETS
1789
+ In this section, by taking vectorial dual-bent functions as the link between bent partitions and
1790
+ partial difference sets, we give a sufficient condition on constructing partial difference sets from
1791
+ bent partitions. When p is an odd prime, we characterize bent partitions satisfying Condition C
1792
+ in terms of partial difference sets.
1793
+ Definition 4. Let (G, +) be a finite abelian group of order v and D be a subset of G with k
1794
+ elements. Then D is called a (v, k, λ, µ) partial difference set of G, if the expressions d1 − d2,
1795
+ for d1 and d2 in D with d1 ̸= d2, represent each nonzero element in D exactly λ times, and
1796
+ represent each nonzero element in G \ D exactly µ times. When λ = µ, then D is called a
1797
+ (v, k, λ) difference set.
1798
+ Note that if D is a partial difference set of G with −D = D, then so are D∪{0}, D \ {0}, G \ D
1799
+ (see [16]). There is an important tool to characterize partial difference sets in terms of characters.
1800
+ January 3, 2023
1801
+ DRAFT
1802
+
1803
+ 22
1804
+ Lemma 3 ( [16]). Let G be an abelian group of order v. Suppose that D is a subset of G with
1805
+ k elements which satisfies −D = D and 0 /∈ D. Then D is a (v, k, λ, µ) partial difference set
1806
+ if and only if for each non-principal character χ of G,
1807
+ χ(D) = β ±
1808
+
1809
+
1810
+ 2
1811
+ ,
1812
+ where χ(D) = �
1813
+ x∈D χ(x), β = λ − µ, γ = k − µ, ∆ = β2 + 4γ.
1814
+ When p is an odd prime or s ≥ 2, we give the value distribution of vectorial dual-bent
1815
+ functions satisfying Condition A.
1816
+ Proposition 4. Let F : V (p)
1817
+ n
1818
+ → V (p)
1819
+ s
1820
+ be a vectorial dual-bent function satisfying Condition A,
1821
+ where p is odd or s ≥ 2. Then
1822
+ |DF,F (0)| = pn−s + εp
1823
+ n
1824
+ 2 −s(ps − 1), |DF,i| = pn−s − εp
1825
+ n
1826
+ 2 −s if i ̸= F(0).
1827
+ Proof. Note that if f is a weakly regular p-ary bent function, then for any a ∈ Fp, f − a is
1828
+ a weakly regular bent function with (f − a)∗ = f ∗ − a and εf−a = εf. Since F is a vectorial
1829
+ dual-bent function with (Fc)∗ = (F ∗)c, c ∈ V (p)
1830
+ s
1831
+ \{0}, we have that F(x) − F(0) is a vectorial
1832
+ bent function and for any c ∈ V (p)
1833
+ s
1834
+ \{0},
1835
+ ((F − F(0))c)∗ = (Fc)∗ − ⟨c, F(0)⟩s = (F ∗)c − ⟨c, F(0)⟩s = (F ∗ − F(0))c,
1836
+ which implies that F(x) − F(0) is a vectorial dual-bent function with ((F − F(0))c)∗ = (F ∗ −
1837
+ F(0))c and ε(F −F (0))c = ε for any c ∈ V (p)
1838
+ s
1839
+ \{0}. By the proof of Theorem 1, F(ax) = F(x) for
1840
+ any a ∈ F∗
1841
+ p and thus F(x) = F(−x). By Corollary 1 of [22] (Note that although Corollary 1 of
1842
+ [22] only considers the case of p being odd, the conclusion of Corollary 1 of [22] also holds
1843
+ for p = 2, s ≥ 2), we have
1844
+ |DF −F (0),0| = pn−s + εp
1845
+ n
1846
+ 2 −s(ps − 1), |DF −F (0),i| = pn−s − εp
1847
+ n
1848
+ 2 −s if i ̸= 0,
1849
+ that is,
1850
+ |DF,F (0)| = pn−s + εp
1851
+ n
1852
+ 2 −s(ps − 1), |DF,i| = pn−s − εp
1853
+ n
1854
+ 2 −s if i ̸= F(0).
1855
+ In the following, we give a characterization of vectorial dual-bent functions satisfying Con-
1856
+ dition A in terms of partial difference sets.
1857
+ January 3, 2023
1858
+ DRAFT
1859
+
1860
+ 23
1861
+ Theorem 6. Let n be an even positive integer, s be a positive integer with s ≤ n
1862
+ 2, and F :
1863
+ V (p)
1864
+ n
1865
+ → V (p)
1866
+ s
1867
+ . The following two statements are equivalent.
1868
+ (1) F is a vectorial dual-bent function satisfying Condition A.
1869
+ (2) When p = 2, s = 1, then the support supp(F) of F defined as supp(F) = {x ∈ V (2)
1870
+ n
1871
+ :
1872
+ F(x) = 1} is a (2n, 2n−1 ± 2
1873
+ n
1874
+ 2 −1, 2n−2 ± 2
1875
+ n
1876
+ 2 −1) difference set, and when p is odd or s ≥ 2,
1877
+ then for any nonempty set I ⊆ V (p)
1878
+ s
1879
+ , DF,I\{0} is a (pn, k, λ, µ) partial difference set for which
1880
+ −DF,I = DF,I and if F(0) ∈ I, then
1881
+ k = pn−s|I| + εp
1882
+ n
1883
+ 2 −s(ps − |I|) − 1,
1884
+ λ = pn−2s|I|2 + εp
1885
+ n
1886
+ 2 −s(ps − |I|) − 2,
1887
+ µ = pn−2s|I|2 + εp
1888
+ n
1889
+ 2 −s|I|,
1890
+ (35)
1891
+ and if F(0) /∈ I, then
1892
+ k = pn−s|I| − εp
1893
+ n
1894
+ 2 −s|I|,
1895
+ λ = pn−2s|I|2 + εp
1896
+ n
1897
+ 2 −s(ps − 3|I|),
1898
+ µ = pn−2s|I|2 − εp
1899
+ n
1900
+ 2 −s|I|,
1901
+ (36)
1902
+ where DF,I = {x ∈ V (p)
1903
+ n
1904
+ : F(x) ∈ I} and ε ∈ {±1} is a constant (ε = 1 if p = 2).
1905
+ Proof. It is easy to see that a Boolean function F is a vectorial dual-bent function satisfying
1906
+ Condition A if and only if F is bent, that is, Condition A is trivial for any Boolean bent function.
1907
+ By the well-known result that a Boolean function F : V (2)
1908
+ n
1909
+ → F2 is bent if and only if its support
1910
+ supp(F) = {x ∈ V (2)
1911
+ n
1912
+ : F(x) = 1} is a (2n, 2n−1 ± 2
1913
+ n
1914
+ 2 −1, 2n−2 ± 2
1915
+ n
1916
+ 2 −1) difference set (see [11]),
1917
+ the conclusion obviously holds for p = 2, s = 1. In the following, we prove the conclusion for
1918
+ p being odd or s ≥ 2.
1919
+ (1) ⇒ (2): By the proof of Theorem 1, F(−x) = F(x), that is, −DF,I = DF,I. For any
1920
+ u ∈ V (p)
1921
+ n \{0}, with the same argument as in the proof of Theorem 2 of [22],
1922
+ χu(DF,I) =
1923
+
1924
+
1925
+
1926
+ εp
1927
+ n
1928
+ 2 − εp
1929
+ n
1930
+ 2 −s|I|, if F ∗(−u) ∈ I,
1931
+ −εp
1932
+ n
1933
+ 2 −s|I|, if F ∗(−u) /∈ I.
1934
+ where ε = 1 if p = 2 since all Boolean bent functions are regular.
1935
+ If F(0) ∈ I, then |DF,I\{0}| = |DF,I|−1 and χu(DF,I\{0}) = χu(DF,I)−1. By Proposition 4,
1936
+ |DF,I\{0}| = (|I|−1)(pn−s−εp
1937
+ n
1938
+ 2 −s)+(pn−s+εp
1939
+ n
1940
+ 2 −s(ps−1)−1) = pn−s|I|+εp
1941
+ n
1942
+ 2 −s(ps−|I|)−1.
1943
+ By Lemma 3, DF,I\{0} is a (pn, k, λ, µ) partial difference set, where k, λ, µ are given in (35).
1944
+ January 3, 2023
1945
+ DRAFT
1946
+
1947
+ 24
1948
+ If F(0) /∈ I, then |DF,I\{0}| = |DF,I| and χu(DF,I\{0}) = χu(DF,I). By Proposition 4,
1949
+ |DF,I\{0}| = |I|(pn−s − εp
1950
+ n
1951
+ 2 −s). By Lemma 3, DF,I\{0} is a (pn, k, λ, µ) partial difference set,
1952
+ where k, λ, µ are given in (36).
1953
+ (2) ⇒ (1): By Lemma 3, for any u ∈ V (p)
1954
+ n
1955
+ and nonempty set I ⊆ V (p)
1956
+ s
1957
+ we have
1958
+ χu(DF,I) = pn−sδ{0}(u)|I| + εp
1959
+ n
1960
+ 2 − εp
1961
+ n
1962
+ 2 −s|I| or χu(DF,I) = pn−sδ{0}(u)|I| − εp
1963
+ n
1964
+ 2 −s|I|.
1965
+ (37)
1966
+ For any i ∈ V (p)
1967
+ s
1968
+ , define Wi = {u ∈ V (p)
1969
+ n
1970
+ : χu(DF,i) = pn−sδ{0}(u) + εp
1971
+ n
1972
+ 2 − εp
1973
+ n
1974
+ 2 −s}, where
1975
+ DF,i = {x ∈ V (p)
1976
+ n
1977
+ : F(x) = i}. We claim that Wi
1978
+ � Wi′ = ∅ for any i ̸= i′ and �
1979
+ i∈V (p)
1980
+ s
1981
+ Wi = V (p)
1982
+ n .
1983
+ Indeed, if there exist i ̸= i′ such that Wi
1984
+ � Wi′ ̸= ∅, that is, there exists u ∈ V (p)
1985
+ n
1986
+ such that
1987
+ χu(DF,i) = χu(DF,i′) = pn−sδ{0}(u) + εp
1988
+ n
1989
+ 2 − εp
1990
+ n
1991
+ 2 −s, then χu(DF,i
1992
+ � DF,i′) = 2pn−sδ{0}(u) +
1993
+ 2εp
1994
+ n
1995
+ 2 − 2εp
1996
+ n
1997
+ 2 −s, which contradicts with (37). Thus, Wi
1998
+ � Wi′ = ∅ for any i ̸= i′. If there exists
1999
+ u ∈ V (p)
2000
+ n
2001
+ such that u /∈ Wi for any i ∈ V (p)
2002
+ s
2003
+ , that is, χu(DF,i) = pn−sδ{0}(u) − εp
2004
+ n
2005
+ 2 −s for
2006
+ any i ∈ V (p)
2007
+ s
2008
+ , then χu(V (p)
2009
+ n ) = �
2010
+ i∈V (p)
2011
+ s
2012
+ χu(DF,i) = pnδ{0}(u) − εp
2013
+ n
2014
+ 2 , which contradicts with
2015
+ χu(V (p)
2016
+ n ) = �
2017
+ x∈V (p)
2018
+ n
2019
+ ζ⟨u,x⟩n
2020
+ p
2021
+ = pnδ{0}(u). Thus, �
2022
+ i∈V (p)
2023
+ s
2024
+ Wi = V (p)
2025
+ n . By the above analysis, we
2026
+ have
2027
+ χu(DF,I) = pn−sδ{0}(u)|I| + εp
2028
+ n
2029
+ 2 −s(psδWI(u) − |I|),
2030
+ (38)
2031
+ where WI = �
2032
+ i∈I Wi. By (38) and Lemma 1, F is a vectorial dual-bent function satisfying
2033
+ Condition A.
2034
+ The following theorem provides a sufficient condition on constructing partial difference sets
2035
+ from bent partitions.
2036
+ Theorem 7. Let n be an even positive integer and s be a positive integer with s ≤ n
2037
+ 2. Assume
2038
+ that Γ = {Ai, i ∈ V (p)
2039
+ s
2040
+ } is a bent partition of V (p)
2041
+ n
2042
+ for which the function F : V (p)
2043
+ n
2044
+ → V (p)
2045
+ s
2046
+ defined by
2047
+ F(x) = i if x ∈ Ai
2048
+ is a vectorial dual-bent function satisfying Condition A. Then when p = 2, s = 1, A0 and A1 are
2049
+ (2n, 2n−1 ± 2
2050
+ n
2051
+ 2 −1, 2n−2 ± 2
2052
+ n
2053
+ 2 −1) difference set and (2n, 2n−1 ∓ 2
2054
+ n
2055
+ 2 −1, 2n−2 ∓ 2
2056
+ n
2057
+ 2 −1) difference set,
2058
+ respectively, and when p is odd or s ≥ 2, for any nonempty set I ⊆ V (p)
2059
+ s
2060
+ , AI\{0} = �
2061
+ i∈I Ai\{0}
2062
+ is a (pn, k, λ, µ) partial difference set, where (k, λ, µ) are given in (35) if 0 ∈ AI and (k, λ, µ)
2063
+ are given in (36) if 0 /∈ AI.
2064
+ January 3, 2023
2065
+ DRAFT
2066
+
2067
+ 25
2068
+ Proof. Note that if D is a (v, k, λ) difference set of a finite abelian group G, then G\D is a
2069
+ (v, v − k, v − 2k + λ) difference set of G (for instance see [12]). Then the result follows from
2070
+ Theorem 6.
2071
+ Remark 4. By Proposition 3, the bent partition Γ1 (resp. Γ2, Γ•
2072
+ 1, Γ•
2073
+ 2, Θ1, Θ2) satisfies the
2074
+ condition in Theorem 7. By Theorem 7, any union of sets from Γ1 (resp, Γ2, Γ•
2075
+ 1, Γ•
2076
+ 2, Θ1, Θ2)
2077
+ forms a partial difference set. Thus, the results given in Corollary 15 of [1] on constructing
2078
+ partial difference sets from Γ1 (resp. Γ2, Γ•
2079
+ 1, Γ•
2080
+ 2, Θ1, Θ2) (which includes the results given in
2081
+ Theorem 2 of [2] on constructing partial difference sets from Γ1, resp. Γ2, in the finite field)
2082
+ can also be illustrated by our results.
2083
+ Since the bent partitions constructed in Theorem 5 satisfy the condition in Theorem 7, we
2084
+ have the following corollary from Theorem 7.
2085
+ Corollary 2. Let Γ = {Ai, i ∈ Fps} be a bent partition constructed by Theorem 5. Then when
2086
+ p = 2, s = 1, A0 and A1 are (2n, 2n−1 ± 2
2087
+ n
2088
+ 2 −1, 2n−2 ± 2
2089
+ n
2090
+ 2 −1) difference set and (2n, 2n−1 ∓
2091
+ 2
2092
+ n
2093
+ 2 −1, 2n−2 ∓ 2
2094
+ n
2095
+ 2 −1) difference set, respectively, and when p is odd or s ≥ 2, for any nonempty
2096
+ set I ⊆ Fps, AI\{0} = �
2097
+ i∈I Ai\{0} is a (pn, k, λ, µ) partial difference set, where (k, λ, µ) are
2098
+ given in (35) with ε = 1 if 0 ∈ AI and (k, λ, µ) are given in (36) with ε = 1 if 0 /∈ AI.
2099
+ We give an example by Corollary 2.
2100
+ Example 3. Let Γ = {DH,i, i ∈ F34} be the bent partition constructed in Example 2. By Corol-
2101
+ lary 2, DH,i is a (1853020188851841, 22876791923520, 282470988879, 282429005040) partial difference
2102
+ set for any i ∈ F∗
2103
+ 34, DH,0\{0} is a (1853020188851841, 22876834970240, 282472051759, 282430067922)
2104
+ partial difference set, (DH,0
2105
+ � DH,1)\{0} is a (1853020188851841, 45753626893760, 1129760129761,
2106
+ 1129719208806) partial difference set.
2107
+ When p is an odd prime, we immediately obtain the following characterization of bent
2108
+ partitions of V (p)
2109
+ n
2110
+ satisfying Condition C from Theorems 3 and 6.
2111
+ Theorem 8. Let p be an odd prime. Let Γ = {Ai, i ∈ V (p)
2112
+ s
2113
+ } be a partition of V (p)
2114
+ n , where n is
2115
+ even and s ≤ n
2116
+ 2. Then the following two statements are equivalent.
2117
+ (1) Γ is a bent partition satisfying Condition C.
2118
+ (2) For any nonempty set I ⊆ V (p)
2119
+ s
2120
+ , AI\{0} = �
2121
+ i∈I Ai\{0} is a (pn, k, λ, µ) partial difference
2122
+ January 3, 2023
2123
+ DRAFT
2124
+
2125
+ 26
2126
+ set with −AI = AI, where (k, λ, µ) are given in (35) if 0 ∈ AI and (k, λ, µ) are given in (36)
2127
+ if 0 /∈ AI.
2128
+ VI. CONCLUSION
2129
+ In this paper, we investigated relations between bent partitions and vectorial dual-bent functions
2130
+ (Theorems 1, 2, 3) and gave some new constructions of bent partitions satisfying Condition C
2131
+ (Corollary 1, Theorems 4 and 5). We illustrated that for any ternary weakly regular bent function
2132
+ f : V (3)
2133
+ n
2134
+ → F3 (n even) with f(x) = f(−x) and εf = −1, the generated bent partition by f
2135
+ is not coming from a normal bent partition (see Example 1), which answers an open problem
2136
+ proposed in [4]. By taking vectorial dual-bent functions as the link between bent partitions and
2137
+ partial difference sets, we give a sufficient condition on constructing partial difference sets from
2138
+ bent partitions (Theorem 7). When p is an odd prime, we characterized bent partitions satisfying
2139
+ Condition C in terms of partial difference sets (Theorem 8).
2140
+ REFERENCES
2141
+ [1] N.
2142
+ Anbar,
2143
+ T.
2144
+ Kalaycı,
2145
+ Amorphic
2146
+ association
2147
+ schemes
2148
+ from
2149
+ bent
2150
+ partitions,
2151
+ Available:
2152
+ https://www.researchgate.net/publication/366593699 Amorphic association schemes from bent partitions
2153
+ [2] N. Anbar, T. Kalaycı and W. Meidl, Bent partitions and partial difference sets, IEEE Trans. Inf. Theory, vol. 68, no. 10,
2154
+ pp. 6894-6903, 2022
2155
+ [3] N. Anbar, T. Kalaycı and W. Meidl, Generalized semifield spreads, Des. Codes Cryptogr., Online. DOI: 10.1007/s10623-
2156
+ 022-01115-2
2157
+ [4] N. Anbar and W. Meidl, Bent partitions, Des. Codes Cryptogr., vol. 90, no. 4, pp. 1081-1101, 2022.
2158
+ [5] C. Carlet and S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr., vol. 78, no. 1, pp. 5-50,
2159
+ 2016.
2160
+ [6] A. C¸ es¸melio˘glu, W. Meidl, A construction of bent functions from plateaued functions, Des. Codes Cryptogr., vol. 66, pp.
2161
+ 231-242, 2013.
2162
+ [7] A. C¸ es¸melio˘glu, W. Meidl, Bent and vectorial bent functions, partial difference sets, and strongly regular graphs, Adv. Math.
2163
+ Commun. vol. 12, pp. 691-705, 2018.
2164
+ [8] A. C¸ es¸melio˘glu, W. Meidl, I. Pirsic, Vectorial bent functions and partial difference sets, Des. Codes Cryptogr. vol. 89, no.
2165
+ 10, pp. 2313-2330, 2021.
2166
+ [9] A. C¸ es¸melio˘glu, W. Meidl, and A. Pott, On the dual of (non)-weakly regular bent functions and self-dual bent functions,
2167
+ Adv. Math. Commun., vol. 7, no. 4, pp. 425-440, 2013.
2168
+ [10] A. C¸ es¸melio˘glu, W. Meidl and A. Pott, Vectorial bent functions and their duals, Linear Algebra Appl., vol. 548, pp.
2169
+ 305-320, 2018.
2170
+ [11] J. F. Dillon, Elementary Hadamard difference sets, Ph. D. Thesis, University of Maryland, 1974.
2171
+ [12] C. Ding, Codes from Difference Sets, World Scientific, Singapore, 2015.
2172
+ [13] J. Y. Hyun, J. Lee and Y. Lee, Ramanujan graphs and expander families constructed from p-ary bent functions, Des. Codes
2173
+ Cryptogr. vol. 88, no. 2, pp.453-470, 2020.
2174
+ January 3, 2023
2175
+ DRAFT
2176
+
2177
+ 27
2178
+ [14] P. Lisonˇek and H. Y. Lu, Bent functions on partial spreads, Des. Codes Cryptogr. vol. 73, no. 1, pp. 209-216, 2014.
2179
+ [15] P. V. Kumar, R. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, J. Comb. Theory Ser. A, vol.
2180
+ 40, no. 1, pp. 90-107, 1985.
2181
+ [16] S. L. Ma, A survey of partial difference sets, Des. Codes Cryptogr. vol. 4, no. 4, pp. 221-261, 1994.
2182
+ [17] W. Meidl, A survey on p-ary and generalized bent functions, Cryptogr. Commun. vol. 14, no.4, pp. 737-782, 2022.
2183
+ [18] W. Meidl and I. Pirsic, Bent and Z2k-Bent functions from spread-like partitions, Des. Codes Cryptogr., vol. 89, no. 1, pp.
2184
+ 75-89, 2021.
2185
+ [19] S. Mesnager, Bent Functions-Fundamentals and Results, Springer, Switzerland, 2016.
2186
+ [20] K. Nyberg, Constructions of bent functions and difference sets, In: Advances in cryptology-EUROCRYPT’ 90, Lecture
2187
+ Notes in Comput. Sci. 473, Springer, Berlin, pp. 151-160, 1991.
2188
+ [21] O. S. Rothaus, On “bent” functions, J. Comb. Theory Ser. A, vol. 20, no. 3, pp. 300-305, 1976.
2189
+ [22] J. Wang and F.-W. Fu, New results on vectoril dual-bent functions and partial difference sets, Des. Codes Cryptogr., Online.
2190
+ DOI: 10.1007/s10623-022-01103-6
2191
+ January 3, 2023
2192
+ DRAFT
2193
+
LdAyT4oBgHgl3EQfsvlL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
N9E4T4oBgHgl3EQfjw0A/content/tmp_files/2301.05144v1.pdf.txt ADDED
@@ -0,0 +1,792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 13, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ The implications of large binding energies of massive stripped core collapse supernova progenitors on
4
+ the explosion mechanism
5
+ Dmitry Shishkin1 and Noam Soker1
6
+ 1Department of Physics, Technion, Haifa, 3200003, Israel; [email protected]; [email protected]
7
+ (Dated: January 2023)
8
+ ABSTRACT
9
+ We examine the binding energy of massive stripped-envelope core collapse supernova (SECCSN)
10
+ progenitors with the stellar evolution code mesa, and find that only the jittering jets explosion mech-
11
+ anism can account for explosions where carbon-oxygen cores with masses of ≳ 20M⊙ collapse to leave
12
+ a neutron star (NS) remnant. We calculate the binding energy at core collapse under the assumption
13
+ that the remnant is a NS. Namely, stellar gas above mass coordinate of ≃ 1.5−2.5M⊙ is ejected in the
14
+ explosion. We find that the typical binding energy of the ejecta of stripped-envelope progenitors with
15
+ carbon-oxygen core masses of MCO ≳ 20M⊙ is Ebind ≳ 2 × 1051 erg. Since only jet-driven explosion
16
+ mechanisms can supply such high energies, we conclude that jets must explode such cores. We apply
17
+ our results to SN 2020qlb, which is a SECCSN with a claimed core mass of ≃ 30−50M⊙, and conclude
18
+ that the jittering jets explosion mechanism best account for such an explosion that leaves a NS.
19
+ Keywords: stars: jets – stars: massive – supernovae: general – supernovae: individual: 2020qlb
20
+ 1. INTRODUCTION
21
+ The binding energy of a core collapse supernova
22
+ (CCSN) progenitor plays a crucial role in determining
23
+ the explosion outcome, like explosion energy and rem-
24
+ nant mass. Typical explosion energies are estimated to
25
+ be in the range of Eexp ≃ 1050 − 1052 erg (e.g., Yang
26
+ & Chevalier 2015; Utrobin et al. 2015; Gal-Yam 2019;
27
+ Burrows & Vartanyan 2021a). The binding energy of
28
+ the most massive pre-collapse cores have similar or even
29
+ larger values than these typical explosion energies (e.g.,
30
+ Pejcha & Thompson 2015; Bruenn et al. 2016; Chan
31
+ et al. 2020; Wang et al. 2022; Burrows et al. 2020). The
32
+ explosion mechanism should both overcome the binding
33
+ energy and account for the explosion energy (radiation
34
+ + final kinetic energy of the ejecta).
35
+ Two theoretical explosion mechanisms of non-rotating
36
+ (or slowly rotating) pre-collapse cores utilize the grav-
37
+ itational energy of the collapsing core to power CC-
38
+ SNe. These are the delayed-neutrino explosion mech-
39
+ anism (e.g., Bethe & Wilson 1985; Ertl et al. 2016; Bur-
40
+ rows et al. 2020; Bruenn et al. 2020; Bollig et al. 2021;
41
+ Burrows & Vartanyan 2021b; Zha et al. 2023) and the
42
+ jittering-jets explosion mechanism (e.g., Soker 2010; Pa-
43
+ pish & Soker 2011; Gilkis & Soker 2015; Soker 2019,
44
+ 2022a). Studies show that the maximum energy that the
45
+ delayed neutrino mechanism can supply to overcome the
46
+ binding energy of the ejecta is ≃ 2 × 1051 erg, resulting
47
+ in maximum explosion energies (after removing binding
48
+ energy) of Eexp ≃ 2 × 1051 erg (e.g., Fryer et al. 2012;
49
+ Ertl et al. 2016; Sukhbold et al. 2016; Gogilashvili et al.
50
+ 2021). In addition, the delayed neutrino mechanism has
51
+ problems in producing the observed amount of 56Ni, in
52
+ particular in stripped-envelope CCSNe (SECCSNe; for
53
+ a recent study see Sawada & Suwa 2023)
54
+ The jittering jets explosion mechanism, on the other
55
+ hand, can account for much larger explosion energies
56
+ (e.g., Gilkis et al. 2016; Soker 2022b).
57
+ The mag-
58
+ neto rotational explosion mechanism that works only
59
+ for rapidly rotating pre-collapse cores can also account
60
+ for large explosion energies (e.g., LeBlanc & Wilson
61
+ 1970; Khokhlov et al. 1999; L´opez-C´amara et al. 2013;
62
+ Wheeler et al. 2015; Bromberg & Tchekhovskoy 2016;
63
+ Kuroda et al. 2020; Gottlieb et al. 2022c,a; Fujibayashi
64
+ et al. 2022; Powell et al. 2022) because the newly born
65
+ neutron star (NS) launches fixed-axis jets. Whether the
66
+ explosion is by jittering jets (most CCSNe according to
67
+ that model; e.g., Soker 2022b) or by fixed-axis jets, the
68
+ jets operate in a negative feedback cycle, i.e., the jet
69
+ feedback explosion mechanism (e.g., Soker 2016a). As
70
+ well, the jets can influence the direction of later jets (e.g.,
71
+ Papish & Soker 2014; Gottlieb et al. 2022b). Even if the
72
+ stochastically accreted mass has sub-Keplerian angular
73
+ arXiv:2301.05144v1 [astro-ph.HE] 12 Jan 2023
74
+
75
+ 2
76
+ momentum, it might still form an accretion belt that
77
+ can launch jets (e.g., Schreier & Soker 2016; Garain &
78
+ Kim 2022).
79
+ The above discussion implies that CCSNe with large
80
+ kinetic energies of Eexp ≳ 2 × 1051, e.g., SN 2020jfo
81
+ (Ailawadhi et al. 2022 – Eexp
82
+ =
83
+ 2.9 × 1051 erg);
84
+ SN 2020qlb (West et al. 2022 – Eexp = 20 × 1051 erg);
85
+ SN 2012au (Pandey et al. 2021 – Eexp = 4.8 − 5.4 ×
86
+ 1051 erg) require jets to drive the explosion.
87
+ In this study we examine the interesting case of the
88
+ hydrogen-poor and super-energetic CCSN SN 2020qlb.
89
+ West et al. (2022) estimate the kinetic energy of
90
+ SN 2020qlb as ≃ 20 × 1051 erg and suggest that a mag-
91
+ netar supplies the large amount of energy of the ejecta.
92
+ They also provide fitting parameters for the magnetar
93
+ model (e.g., Maeda et al. 2007; Kasen & Bildsten 2010;
94
+ Woosley 2010; Metzger et al. 2015; Nicholl et al. 2017;
95
+ Gomez et al. 2022) and estimate the progenitor pre-
96
+ explosion mass, namely, about the ejecta plus the rem-
97
+ nant mass, to be Mej + Mrem ≃ few × 10M⊙.
98
+ It seems nonetheless, that there are two reasons why
99
+ the explosion of SN 2020qlb must be driven by jets and
100
+ not by the delayed neutrino mechanism. The first one is
101
+ that the formation of an energetic magnetar must be ac-
102
+ companied by the launching of even more energetic jets
103
+ at the explosion itself and possibly after the explosion
104
+ as well (e.g. Soker 2016b, 2017; Soker & Gilkis 2017;
105
+ Shankar et al. 2021; Soker 2022c,b). The second rea-
106
+ son is the new finding of the present study, where by a
107
+ stellar evolutionary code (section 2) we show (section 3)
108
+ that the binding energies of such massive cores are much
109
+ above what the delayed neutrino mechanism can supply
110
+ (Janka 2012; Soker 2022b). In section 4 we summarize
111
+ our results and discuss their implications in the context
112
+ of the jet feedback explosion mechanism.
113
+ 2. NUMERICAL SCHEME
114
+ We use the stellar evolution code mesa (Paxton et al.
115
+ 2010, 2013, 2015, 2018, 2019) to simulate the struc-
116
+ ture of 52 CCSN progenitor models, all with initial
117
+ metalicity of z = 0.02.
118
+ We base our numerical rou-
119
+ tine on the ‘20M pre ms to core collapse’ example from
120
+ mesa r22.05.1, but simulate the evolution using ver-
121
+ sion r15140. Starting from the zero age main sequence
122
+ (ZAMS), we evolve the star until center He depletion
123
+ (when helium abundance in the center is either ≃ 1%
124
+ or ≃ 5%), at which point we numerically remove the
125
+ hydrogen-rich envelope, leaving only the He core. We
126
+ then evolve the star until core-collapse. We introduce
127
+ several changes to the example routine to both adhere
128
+ to our requirements, i.e., having at least 21 isotopes
129
+ and having sufficiently high resolution (Shishkin & Soker
130
+ 2021), and to fit mesa version r15140. We expand on
131
+ the numerical scheme in appendix A.
132
+ By varying the ZAMS stellar mass, the wind parame-
133
+ ters, and the exact time when we numerically remove
134
+ the envelope we obtain stripped-envelope CCSN pro-
135
+ genitors, i.e., hydrogen-poor stellar progenitors, with
136
+ varying mass of a carbon-oxygen (CO) core, MCO ≃
137
+ 4 − 35M⊙. This mass range of SECCSNe corresponds
138
+ to ZAMS stellar masses range of ≃ 20 − 82M⊙. In some
139
+ cases the core contains several solar masses of helium,
140
+ while in other cases the core has a much lower helium
141
+ mass, depending on the above parameters.
142
+ Because the inner part of the core collapses to form
143
+ a NS or a black hole (BH) remnant, only the binding
144
+ energy of the outer core is relevant to our study. We
145
+ calculate the binding energy of the outer core, Ebind(r),
146
+ by integrating over the sum of the internal energy and
147
+ gravitational energy from the surface down to the mass
148
+ coordinate that separates the ejecta and the final rem-
149
+ nant m = Min, i.e., the inner boundary of the ejecta. We
150
+ calculate the binding energy of the ejecta for two values
151
+ of this mass coordinate Min = 1.5 , 2.5M⊙, because we
152
+ consider cases where the remnant is a NS.
153
+ We refer to the latest evolution point we simulate
154
+ in the stellar evolution as collapse. This point of col-
155
+ lapse must adhere to an iron core more massive than
156
+ MFe > 1.5, where we assume collapse is imminent. This
157
+ value of iron core mass is more or less when the iron
158
+ core mass reaches its maximum value (as at the onset
159
+ of collapse the iron disintegrates). About half of simu-
160
+ lations reach infall velocities at the edge of the iron core
161
+ of vfe,infall > 100 km s−1. Other simulations encounter
162
+ numerical difficulties and we had to terminate them at
163
+ somewhat earlier times.
164
+ 3. RESULTS
165
+ 3.1. Binding Energy towards Collapse
166
+ As the stellar core evolves towards collapse and nu-
167
+ cleosynthesis of heavier elements takes place, the core
168
+ becomes denser and the binding energy of the inner lay-
169
+ ers of the star increases. We demonstrate this for one
170
+ stellar model of carbon-oxygen core mass (mainly oxy-
171
+ gen) of MCO = 13.2M⊙ in Fig 1 where we present the
172
+ star at three times: at center oxygen depletion, at cen-
173
+ ter silicon depletion, and at collapse. We present the
174
+ composition of the main isotopes by lines with differ-
175
+ ent colors and the binding energy Ebind(m) by the black
176
+ lines. Here Ebind(m) is the binding energy (gravitational
177
+ + internal) of the envelope laying above mass coordi-
178
+ nate m. Relevant to this study is the binding energy
179
+ of the ejecta, which is the mass above mass coordinate
180
+ m = Min ≃ 1.5, 2.5M⊙. The mass Min is the baryonic
181
+
182
+ 3
183
+ Figure 1. Abundances and the binding energy as function
184
+ of mass coordinate at three times for a SECCSN (hydrogen-
185
+ poor) progenitor model with carbon-oxygen core mass of
186
+ M collapse
187
+ CO
188
+ = 13.2M⊙, which corresponds to a ZAMS mass of
189
+ MZAMS ≈ 40M⊙. The colored step-like lines are the abun-
190
+ dances according to the inset in the lower panel. The black
191
+ and smoothly varying lines represent Ebind(m), which is the
192
+ binding energy of the envelope laying above mass coordi-
193
+ nate m. The three panels present these quantities at three
194
+ different times: center oxygen depletion (upper panel, bind-
195
+ ing energy by the black solid-line), center silicon depletion
196
+ (middle panel; binding energy by the black dashed-line), core
197
+ collapse (lower panel; binding energy by black dotted-line).
198
+ Note that the middle panel contains the binding energy at
199
+ the three times to allow for comparison. The two vertical
200
+ lines mark the mass coordinates m = Min = 1.5M⊙ and
201
+ m = Min = 2.5M⊙. Helium that appears only at collapse
202
+ results from disintegration of iron.
203
+ mass of the NS remnant (the corresponding final gravi-
204
+ tational masses will be ≃ 1.35, 2.1M⊙). We mark these
205
+ two masses by the vertical lines. We see that at collapse
206
+ the binding energy Ebind(Min) is larger than at earlier
207
+ times.
208
+ In Fig.
209
+ 2 we present composition and binding en-
210
+ ergy for a model with a much more massive core of
211
+ MCO = 27M⊙.
212
+ There are two qualitative differences
213
+ between this model and the one we present in Fig. 1.
214
+ The first qualitative difference is that the binding en-
215
+ Figure 2. Similar to Fig. 1 but for a more massive core of
216
+ M collapse
217
+ CO
218
+ = 26.5M⊙, which corresponds to a ZAMS mass of
219
+ MZAMS ≈ 65M⊙. Note that the left vertical axis is scaled
220
+ differently than in Fig. 1.
221
+ ergy at collapse is somewhat smaller than at the earlier
222
+ time that we present in the figure. The explanation to
223
+ the decreasing binding energy shortly before collapse is
224
+ that the envelope expands starting from deep in the oxy-
225
+ gen burning shell and outwards. We find (by drawing
226
+ the density profiles) that moving from the upper to the
227
+ middle panel of Fig. 2 the density from m ≃ 10M⊙ and
228
+ outward decreases, reducing the binding energy. This
229
+ mass coordinate is deep inside the shell where oxygen
230
+ (teal line) burns to S+Si (yellow line).
231
+ The second qualitative difference comes from the much
232
+ higher binding energy of the ejecta of the descendant
233
+ CCSN of the more massive model, i.e., Ebind(Min) ≳ 2×
234
+ 1051 erg. The implication is that we do not expect that
235
+ the neutrino driven explosion mechanism can account
236
+ for explosions of such cores. We argue that jets explode
237
+ these cores. We leave the discussion of this point, as
238
+ well as our view that jets also explode cores with lower
239
+ binding energy, to section 4, where we also refer to the
240
+ claim of a very massive core of SN 2020qlb (West et al.
241
+ 2022).
242
+ We first find the range of such high-binding-
243
+ energy cores.
244
+
245
+ 0
246
+ 3
247
+ OCoreDepletion
248
+ 2
249
+ 91
250
+ erg
251
+ 0
252
+ SiCoreDepletion
253
+ BEatO
254
+ dep.
255
+ BEatSi
256
+ dep
257
+ BEatCollapse
258
+ 2
259
+ 0
260
+ 3
261
+ Collapse
262
+ 2
263
+ Helium
264
+ Carbon
265
+ Oxygen
266
+ S+Si
267
+ "Fe Group"
268
+ 2
269
+ 0
270
+ 2
271
+ 4
272
+ 6
273
+ 8
274
+ 10
275
+ 12Abundance6
276
+ 0
277
+ 4
278
+ OCoreDepletion
279
+ 2
280
+ 6
281
+ 0
282
+ Si Core Depletion
283
+ BEatOont
284
+ . dep.
285
+ - BEat Si
286
+ dep
287
+ "BEatCollapse
288
+ 2
289
+ 0
290
+ 4
291
+ Collapse
292
+ 2
293
+ Helium
294
+ Oxygen
295
+ "Fe Group'
296
+ Carbon
297
+ S+Si
298
+ 2
299
+ 0
300
+ 4
301
+ 8
302
+ 12
303
+ 16
304
+ 20
305
+ 24Abundance4
306
+ 3.2. High-binding-energy cores
307
+ We search for the mass range of cores that have bind-
308
+ ing energies at collapse of Ebind(Min) ≳ 2×1051 erg. We
309
+ present the results in Fig. 3. We present the binding en-
310
+ ergy for an inner ejecta mass coordinate of Min = 2.5M⊙
311
+ (upper panel) and Min = 1.5M⊙ (lower panel).
312
+ We
313
+ focus on the binding energy of these two mass coordi-
314
+ nates Min = 1.5 − 2.5M⊙ as the iron core masses at col-
315
+ lapse falls within this mass range. The horizontal line
316
+ at 2 × 1051 erg is the approximate energy above which
317
+ we do not expect that neutrino heating by itself can ex-
318
+ plode the core. In appendix B we provide linear fits to
319
+ the binding energy at collapse as function of CO core
320
+ mass for these two mass coordinates Min = 1.5, 2.5M⊙
321
+ (table B.1).
322
+ We simulated 52 stripped-hydrogen envelope cases. In
323
+ 27 cases the cores reach collapse as we present by the
324
+ red circles in the figure. In 25 cases cases the numeri-
325
+ cal code encountered difficulties and we had to stop the
326
+ simulation before reaching collapse. In these cases we
327
+ extrapolate from an evolutionary time before collapse
328
+ to the collapse time as we explain in appendix B (red
329
+ stars in the figure). We also include 35 in the figure the
330
+ binding energies of models with hydrogen-rich envelope
331
+ that we take from Shishkin & Soker (2022), as we mark
332
+ by open purple circles.
333
+ From Fig. 3 (with a more rigorous derivation in ap-
334
+ pendix B) we draw our conclusion that in cases where
335
+ the inner mass of Min = 2.5M⊙ of the core collapses
336
+ to form a NS, the delayed neutrino mechanism cannot
337
+ explode cores with masses of MCO ≳ 15M⊙ (or maybe
338
+ rarely do so). For Min = 1.5M⊙ we find this limit to be
339
+ MCO ≳ 13M⊙.
340
+ In Fig. 4 we present a more detailed binding energy
341
+ profile of the pre-collapse stripped-envelope models that
342
+ we simulated. When we take the lowest binding energy
343
+ of the inner core at the onset of collapse we find the limit
344
+ of core mass that the neutrino-driven explosion cannot
345
+ account for to be MCO > 20M⊙. Namely, still a large
346
+ range.
347
+ In table B.1 we provide the linear fit parameters for
348
+ the binding energy at collapse for the edge of the iron
349
+ core (gray squares in the figure) and the binding energy
350
+ curve break (black circles). The binding energy curve
351
+ break is point we refer to as separating the inner core
352
+ from the outer core, and is the point of lowest binding
353
+ energy for most simulated cases that reached collapse.
354
+ 4. DISCUSSION AND SUMMARY
355
+ We simulated the evolution of 52 massive SECCSN
356
+ progenitor models corresponding to ZAMS masses of
357
+ 20 ≲ MZAMS ≲ 82. We removed the entire hydrogen-
358
+ rich envelope, and calculated the binding energy just
359
+ before core collapse.
360
+ The final core mass depends on
361
+ the ZAMS mass and on the mass loss parameter (ap-
362
+ pendix C). We present the structure of the pre-collapse
363
+ progenitor for two cases in Figs. 1 and 2. We find that
364
+ to a fare accuracy we can linearly fit the binding energy
365
+ of these stripped-envelope progenitors to the CO core
366
+ mass MCO (Fig. 3 and table B.1).
367
+ We present our main results in Fig.
368
+ 3.
369
+ In those
370
+ figures the horizontal gray line represents the approx-
371
+ imate maximum energy that the neutrino-driven mech-
372
+ anism can supply, Emax
373
+ ν
374
+ = 2 × 1051 erg. We find that
375
+ the binding energy calculated at Min = 1.5M⊙ and
376
+ Min = 2.5M⊙, of progenitors with a carbon-oxygen core
377
+ mass of MCO ≳ 13M⊙ and MCO ≳ 15M⊙, respectively,
378
+ are larger than Emax
379
+ ν
380
+ . Namely,
381
+ Emax
382
+ ν
383
+
384
+
385
+
386
+
387
+ Ebind,1.5
388
+ for
389
+ MCO ≳ 13M⊙
390
+ Ebind,2.5
391
+ for
392
+ MCO ≳ 15M⊙.
393
+ (1)
394
+ The main conclusion is that the delayed neutrino ex-
395
+ plosion mechanism cannot explode stars with a core
396
+ mass of MCO ≳ 13 − 15M⊙. The jittering jets explosion
397
+ mechanism, on the other hand, has no limiting explosion
398
+ energy in these ranges as it is fueled by accretion onto
399
+ the compact remnant (e.g., (Gilkis et al. 2016; Soker &
400
+ Gilkis 2017)).
401
+ Let us apply our results to a specific SECCSN. In a
402
+ recent paper West et al. (2022) deduce that SN 2020qlb
403
+ had an explosion energy of ≃ 20×1051 erg and estimate
404
+ the progenitor pre-explosion mass, ejecta plus remnant
405
+ mass, to be Mej + Mrem ≃ 30 − 50M⊙. According to
406
+ our results the binding energy alone of such cores is
407
+ Ebind > 3 × 1051 erg. We therefore conclude that jets
408
+ must have exploded SN 2020qlb. Jets can also supply
409
+ the kinetic energy of the ejecta. Namely, jet-driven ex-
410
+ plosions might make the magnetar powering less criti-
411
+ cal or not needed at all (although a magnetar might be
412
+ present). Most likely the explosion is via jittering jets.
413
+ The reason is that an explosion driven by a fixed-axis
414
+ jets, like if the core is rapidly rotating, will not expel
415
+ mass from the equatorial region, which it turn is ac-
416
+ creted by the newly formed central object. Therefore,
417
+ the final mass of the remnant will be large and the rem-
418
+ nant will be a BH (see discussion in Soker 2022b).
419
+ On a large scope, our study adds to the growing evi-
420
+ dence pointing to the major roles that jets play in the
421
+ explosion, as well as pre-explosion and post-explosion,
422
+ of CCSNe (for a recent review see Soker 2022b).
423
+ ACKNOWLEDGMENTS
424
+ This research was supported by a grant from the Israel
425
+ Science Foundation (769/20).
426
+
427
+ 5
428
+ Figure 3. The binding energies of the simulated models as a function of the carbon-oxygen core mass nearing collapse (vertical
429
+ axis). The panels show the final binding energy at two mass coordinates: Min = 2.5M⊙ (top) and Min = 1.5M⊙ (bottom). The
430
+ red data points (filled circles and stars at the outer panels) are stripped-envelope (SE) models (SECCSNe), whilst purple empty-
431
+ circles data points are models from Shishkin & Soker (2022) that have hydrogen rich envelopes. Red stars are extrapolated
432
+ data points, as explained in appendix B. The horizontal line at 2 × 1051 erg denotes the binding energy above which we do not
433
+ expect the neutrino delayed explosion mechanism to explode the core.
434
+ Data availability
435
+ The data underlying this article will be shared upon
436
+ reasonable request to the corresponding author.
437
+ REFERENCES
438
+ Ailawadhi, B., Dastidar, R., Misra, K., et al. 2022, arXiv
439
+ e-prints, arXiv:2211.02823.
440
+ https://arxiv.org/abs/2211.02823
441
+ Angulo, C., Arnould, M., Rayet, M., et al. 1999, NuPhA,
442
+ 656, 3, doi: 10.1016/S0375-9474(99)00030-5
443
+ Bethe, H. A., & Wilson, J. R. 1985, ApJ, 295, 14,
444
+ doi: 10.1086/163343
445
+ Blouin, S., Shaffer, N. R., Saumon, D., & Starrett, C. E.
446
+ 2020, ApJ, 899, 46, doi: 10.3847/1538-4357/ab9e75
447
+ B¨ohm-Vitense, E. 1958, ZA, 46, 108
448
+ Bollig, R., Yadav, N., Kresse, D., et al. 2021, ApJ, 915, 28,
449
+ doi: 10.3847/1538-4357/abf82e
450
+ Bromberg, O., & Tchekhovskoy, A. 2016, MNRAS, 456,
451
+ 1739, doi: 10.1093/mnras/stv2591
452
+ Bruenn, S. W., Lentz, E. J., Hix, W. R., et al. 2016, ApJ,
453
+ 818, 123, doi: 10.3847/0004-637X/818/2/123
454
+ Bruenn, S. W., Blondin, J. M., Hix, W. R., et al. 2020,
455
+ ApJS, 248, 11, doi: 10.3847/1538-4365/ab7aff
456
+ Burrows, A., Radice, D., Vartanyan, D., et al. 2020,
457
+ MNRAS, 491, 2715, doi: 10.1093/mnras/stz3223
458
+
459
+ 6
460
+ Figure 4. Upper panel: The binding energies of the simulated stripped-envelope models (vertical axis) as a function of the
461
+ mass coordinate (horizontal axis) at collapse. The color of each line signifies the final CO core mass at collapse, scaled with the
462
+ color bar on the right. Black dots mark the mass coordinate where there is a steep decrease in the density inside the core. Gray
463
+ squares denote the edge of the iron core. Lower panel: The binding energy for hydrogen-rich envelope models from Shishkin &
464
+ Soker (2022). The grey horizontal line marks more or less the upper binding energy that the neutrino delayed mechanism can
465
+ account for.
466
+ Burrows, A., & Vartanyan, D. 2021a, Nature, 589, 29,
467
+ doi: 10.1038/s41586-020-03059-w
468
+ —. 2021b, Nature, 589, 29,
469
+ doi: 10.1038/s41586-020-03059-w
470
+ Cassisi, S., Potekhin, A. Y., Pietrinferni, A., Catelan, M., &
471
+ Salaris, M. 2007, ApJ, 661, 1094, doi: 10.1086/516819
472
+ Chan, C., M¨uller, B., & Heger, A. 2020, MNRAS, 495,
473
+ 3751, doi: 10.1093/mnras/staa1431
474
+ Chugunov, A. I., Dewitt, H. E., & Yakovlev, D. G. 2007,
475
+ PhRvD, 76, 025028, doi: 10.1103/PhysRevD.76.025028
476
+ Cyburt, R. H., Amthor, A. M., Ferguson, R., et al. 2010,
477
+ ApJS, 189, 240, doi: 10.1088/0067-0049/189/1/240
478
+ Ertl, T., Janka, H. T., Woosley, S. E., Sukhbold, T., &
479
+ Ugliano, M. 2016, ApJ, 818, 124,
480
+ doi: 10.3847/0004-637X/818/2/124
481
+ Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005,
482
+ ApJ, 623, 585, doi: 10.1086/428642
483
+ Fryer, C. L., Belczynski, K., Wiktorowicz, G., et al. 2012,
484
+ ApJ, 749, 91, doi: 10.1088/0004-637X/749/1/91
485
+
486
+ 6
487
+ 35
488
+ Stripped Envelope
489
+ 5
490
+ 30
491
+ erg]
492
+ 25
493
+ CO core mass [M.
494
+ 4
495
+ 20
496
+ Y
497
+ 15
498
+ 10
499
+ 5
500
+ 0
501
+ 654332
502
+ 14
503
+ No envelope remova
504
+ 12
505
+ MZAMs 11-48 [M。] progenitors
506
+ 10
507
+ CO core [M
508
+ 8642
509
+ 1
510
+ 0
511
+ 0
512
+ 0
513
+ 1
514
+ 2
515
+ 3
516
+ 4
517
+ 5
518
+ 6
519
+ 7
520
+ 8
521
+ mass coordinate [M。]7
522
+ Fujibayashi, S., Sekiguchi, Y., Shibata, M., & Wanajo, S.
523
+ 2022, arXiv e-prints, arXiv:2212.03958.
524
+ https://arxiv.org/abs/2212.03958
525
+ Fuller, G. M., Fowler, W. A., & Newman, M. J. 1985, ApJ,
526
+ 293, 1, doi: 10.1086/163208
527
+ Gal-Yam, A. 2019, ARA&A, 57, 305,
528
+ doi: 10.1146/annurev-astro-081817-051819
529
+ Garain, S. K., & Kim, J. 2022, arXiv e-prints,
530
+ arXiv:2212.08310. https://arxiv.org/abs/2212.08310
531
+ Gilkis, A., & Soker, N. 2015, ApJ, 806, 28,
532
+ doi: 10.1088/0004-637X/806/1/28
533
+ Gilkis, A., Soker, N., & Papish, O. 2016, ApJ, 826, 178,
534
+ doi: 10.3847/0004-637X/826/2/178
535
+ Gogilashvili, M., Murphy, J. W., & Mabanta, Q. 2021,
536
+ MNRAS, 500, 5393, doi: 10.1093/mnras/staa3546
537
+ Gomez, S., Berger, E., Nicholl, M., Blanchard, P. K., &
538
+ Hosseinzadeh, G. 2022, ApJ, 941, 107,
539
+ doi: 10.3847/1538-4357/ac9842
540
+ Gottlieb, O., Lalakos, A., Bromberg, O., Liska, M., &
541
+ Tchekhovskoy, A. 2022a, MNRAS, 510, 4962,
542
+ doi: 10.1093/mnras/stab3784
543
+ Gottlieb, O., Liska, M., Tchekhovskoy, A., et al. 2022b,
544
+ ApJL, 933, L9, doi: 10.3847/2041-8213/ac7530
545
+ Gottlieb, O., Tchekhovskoy, A., & Margutti, R. 2022c,
546
+ MNRAS, 513, 3810, doi: 10.1093/mnras/stac910
547
+ Henyey, L., Vardya, M. S., & Bodenheimer, P. 1965, ApJ,
548
+ 142, 841, doi: 10.1086/148357
549
+ Herwig, F. 2000, A&A, 360, 952.
550
+ https://arxiv.org/abs/astro-ph/0007139
551
+ Iglesias, C. A., & Rogers, F. J. 1993, ApJ, 412, 752,
552
+ doi: 10.1086/172958
553
+ —. 1996, ApJ, 464, 943, doi: 10.1086/177381
554
+ Irwin, A. W. 2004, The FreeEOS Code for Calculating the
555
+ Equation of State for Stellar Interiors.
556
+ http://freeeos.sourceforge.net/
557
+ Itoh, N., Hayashi, H., Nishikawa, A., & Kohyama, Y. 1996,
558
+ ApJS, 102, 411, doi: 10.1086/192264
559
+ Janka, H.-T. 2012, Annual Review of Nuclear and Particle
560
+ Science, 62, 407,
561
+ doi: 10.1146/annurev-nucl-102711-094901
562
+ Jermyn, A. S., Schwab, J., Bauer, E., Timmes, F. X., &
563
+ Potekhin, A. Y. 2021, ApJ, 913, 72,
564
+ doi: 10.3847/1538-4357/abf48e
565
+ Kasen, D., & Bildsten, L. 2010, ApJ, 717, 245,
566
+ doi: 10.1088/0004-637X/717/1/245
567
+ Khokhlov, A. M., H¨oflich, P. A., Oran, E. S., et al. 1999,
568
+ ApJL, 524, L107, doi: 10.1086/312305
569
+ Kuroda, T., Arcones, A., Takiwaki, T., & Kotake, K. 2020,
570
+ ApJ, 896, 102, doi: 10.3847/1538-4357/ab9308
571
+ Langanke, K., & Mart´ınez-Pinedo, G. 2000, Nuclear
572
+ Physics A, 673, 481, doi: 10.1016/S0375-9474(00)00131-7
573
+ LeBlanc, J. M., & Wilson, J. R. 1970, ApJ, 161, 541,
574
+ doi: 10.1086/150558
575
+ Ledoux, P. 1947, ApJ, 105, 305, doi: 10.1086/144905
576
+ L´opez-C´amara, D., Morsony, B. J., Begelman, M. C., &
577
+ Lazzati, D. 2013, ApJ, 767, 19,
578
+ doi: 10.1088/0004-637X/767/1/19
579
+ Maeda, K., Tanaka, M., Nomoto, K., et al. 2007, ApJ, 666,
580
+ 1069, doi: 10.1086/520054
581
+ Metzger, B. D., Margalit, B., Kasen, D., & Quataert, E.
582
+ 2015, MNRAS, 454, 3311, doi: 10.1093/mnras/stv2224
583
+ Nicholl, M., Guillochon, J., & Berger, E. 2017, ApJ, 850,
584
+ 55, doi: 10.3847/1538-4357/aa9334
585
+ Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227
586
+ Oda, T., Hino, M., Muto, K., Takahara, M., & Sato, K.
587
+ 1994, Atomic Data and Nuclear Data Tables, 56, 231,
588
+ doi: 10.1006/adnd.1994.1007
589
+ Pandey, S. B., Kumar, A., Kumar, B., et al. 2021, MNRAS,
590
+ 507, 1229, doi: 10.1093/mnras/stab1889
591
+ Papish, O., & Soker, N. 2011, MNRAS, 416, 1697,
592
+ doi: 10.1111/j.1365-2966.2011.18671.x
593
+ —. 2014, MNRAS, 443, 664, doi: 10.1093/mnras/stu1129
594
+ Paxton, B., Bildsten, L., Dotter, A., et al. 2010, ApJS, 192,
595
+ 3, doi: 10.1088/0067-0049/192/1/3
596
+ Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208,
597
+ 4, doi: 10.1088/0067-0049/208/1/4
598
+ Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS,
599
+ 220, 15, doi: 10.1088/0067-0049/220/1/15
600
+ Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS,
601
+ 234, 34, doi: 10.3847/1538-4365/aaa5a8
602
+ Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243,
603
+ 10, doi: 10.3847/1538-4365/ab2241
604
+ Pejcha, O., & Thompson, T. A. 2015, ApJ, 801, 90,
605
+ doi: 10.1088/0004-637X/801/2/90
606
+ Potekhin, A. Y., & Chabrier, G. 2010, Contributions to
607
+ Plasma Physics, 50, 82, doi: 10.1002/ctpp.201010017
608
+ Poutanen, J. 2017, ApJ, 835, 119,
609
+ doi: 10.3847/1538-4357/835/2/119
610
+ Powell, J., Mueller, B., Aguilera-Dena, D. R., & Langer, N.
611
+ 2022, arXiv e-prints, arXiv:2212.00200.
612
+ https://arxiv.org/abs/2212.00200
613
+ Rogers, F. J., & Nayfonov, A. 2002, ApJ, 576, 1064,
614
+ doi: 10.1086/341894
615
+ Saumon, D., Chabrier, G., & van Horn, H. M. 1995, ApJS,
616
+ 99, 713, doi: 10.1086/192204
617
+ Sawada, R., & Suwa, Y. 2023, arXiv e-prints,
618
+ arXiv:2301.03610. https://arxiv.org/abs/2301.03610
619
+ Schreier, R., & Soker, N. 2016, Research in Astronomy and
620
+ Astrophysics, 16, 70, doi: 10.1088/1674-4527/16/5/070
621
+
622
+ 8
623
+ Shankar, S., M¨osta, P., Barnes, J., Duffell, P. C., & Kasen,
624
+ D. 2021, MNRAS, 508, 5390,
625
+ doi: 10.1093/mnras/stab2964
626
+ Shishkin, D., & Soker, N. 2021, MNRAS: Letters, 508, L43,
627
+ doi: 10.1093/mnrasl/slab105
628
+ Shishkin, D., & Soker, N. 2022, MNRAS, 513, 4224,
629
+ doi: 10.1093/mnras/stac1075
630
+ Soker, N. 2010, MNRAS, 401, 2793,
631
+ doi: 10.1111/j.1365-2966.2009.15862.x
632
+ —. 2016a, NewAR, 75, 1, doi: 10.1016/j.newar.2016.08.002
633
+ —. 2016b, NewA, 47, 88, doi: 10.1016/j.newast.2016.02.009
634
+ —. 2017, ApJL, 839, L6, doi: 10.3847/2041-8213/aa6a10
635
+ —. 2019, Research in Astronomy and Astrophysics, 19, 095,
636
+ doi: 10.1088/1674-4527/19/7/95
637
+ —. 2022a, Research in Astronomy and Astrophysics, 22,
638
+ 095007, doi: 10.1088/1674-4527/ac7cbc
639
+ —. 2022b, Research in Astronomy and Astrophysics, 22,
640
+ 122003, doi: 10.1088/1674-4527/ac9782
641
+ —. 2022c, ApJ, 935, 108, doi: 10.3847/1538-4357/ac822d
642
+ Soker, N., & Gilkis, A. 2017, ApJ, 851, 95,
643
+ doi: 10.3847/1538-4357/aa9c83
644
+ Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., &
645
+ Janka, H. T. 2016, ApJ, 821, 38,
646
+ doi: 10.3847/0004-637X/821/1/38
647
+ Timmes, F. X. 1999, ApJS, 124, 241, doi: 10.1086/313257
648
+ Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501,
649
+ doi: 10.1086/313304
650
+ Utrobin, V. P., Wongwathanarat, A., Janka, H. T., &
651
+ M¨uller, E. 2015, A&A, 581, A40,
652
+ doi: 10.1051/0004-6361/201425513
653
+ Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001,
654
+ A&A, 369, 574, doi: 10.1051/0004-6361:20010127
655
+ Wang, T., Vartanyan, D., Burrows, A., & Coleman, M.
656
+ S. B. 2022, MNRAS, 517, 543,
657
+ doi: 10.1093/mnras/stac2691
658
+ West, S. L., Lunnan, R., Omand, C. M. B., et al. 2022,
659
+ arXiv e-prints, arXiv:2205.11143.
660
+ https://arxiv.org/abs/2205.11143
661
+ Wheeler, J. C., Kagan, D., & Chatzopoulos, E. 2015, ApJ,
662
+ 799, 85, doi: 10.1088/0004-637X/799/1/85
663
+ Woosley, S. E. 2010, ApJL, 719, L204,
664
+ doi: 10.1088/2041-8205/719/2/L204
665
+ Yang, H., & Chevalier, R. A. 2015, ApJ, 806, 153,
666
+ doi: 10.1088/0004-637X/806/2/153
667
+ Zha, S., M¨uller, B., Weir, A., & Heger, A. 2023, arXiv
668
+ e-prints, arXiv:2301.00359.
669
+ https://arxiv.org/abs/2301.00359
670
+
671
+ 9
672
+ APPENDIX
673
+ A. NUMERICAL PRESCRIPTION DETAILS
674
+ Our numerical scheme files (‘inlists’) are a modified version of the ‘20 pre ms to cc’ mesa version r22.05.1 ‘test suite’
675
+ example. We adapted this example to run on mesa version r15140 and incorporated certain parameters (e.g., over-
676
+ shooting and mesh resolution) according to our previous works (Shishkin & Soker 2021; Shishkin & Soker 2022). The
677
+ full ’inlists’ that we used are available online1. Here we mention some of the important parameters.
678
+ In a similar fashion to our previous works which focus on the convective profile of the inner layers of massive stars
679
+ (Shishkin & Soker 2021; Shishkin & Soker 2022), we use the exponential overshooting prescription (Herwig 2000)
680
+ with symmetrical (both ‘bottom’ and ‘above’) and uniform (all burning regions) settings and f = 0.01, f0 = 0.004
681
+ parameters.
682
+ We chose the Henyey scheme (Henyey et al. 1965) for mixing length theory (MLT, B¨ohm-Vitense 1958) with
683
+ αMLT = 1.5.
684
+ We also enable the Ledoux criterion (Ledoux 1947) and set thermohaline option to ‘Kippenhahn’
685
+ with ‘thermohaline coeff = 1’ alongside ‘alpha semiconvection = 0.01.
686
+ We make use of the ’Dutch’ wind loss scheme (e.g., Vink et al. 2001; Nugis & Lamers 2000), and vary the scaling
687
+ factor (along with the initial mass) to achieve different core masses.
688
+ For the nuclear network we use the 22 isotopes of ‘approx21 cr60 plus co56’ (e.g., Timmes 1999), aimed at
689
+ stellar evolution up to collapse.
690
+ This network includes hydrogen, He3 and He4 up to the heavier isotopes of
691
+ Fe52 , Fe54 , Fe56 , Co56 , Ni56 , Cr60.
692
+ We scale mesh refinement gradually up to ‘max dq’ values of 1d − 4 at the later stages (from the default value of
693
+ 1d − 2) to properly resolve the fine burning features close to core collapse.
694
+ The mesa equation of state (EOS) is a blend of the OPAL (Rogers & Nayfonov 2002), SCVH (Saumon et al. 1995),
695
+ FreeEOS (Irwin 2004), HELM (Timmes & Swesty 2000), PC (Potekhin & Chabrier 2010), and Skye (Jermyn et al.
696
+ 2021) EOSs. Nuclear reaction rates are from JINA REACLIB (Cyburt et al. 2010), NACRE (Angulo et al. 1999) and
697
+ additional tabulated weak reaction rates Fuller et al. (1985); Oda et al. (1994); Langanke & Mart´ınez-Pinedo (2000).
698
+ Screening is included via the prescription of Chugunov et al. (2007). Thermal neutrino loss rates are from Itoh et al.
699
+ (1996). Radiative opacities are primarily from OPAL (Iglesias & Rogers 1993, 1996), with low-temperature data from
700
+ Ferguson et al. (2005) and the high-temperature, Compton-scattering dominated regime by Poutanen (2017). Electron
701
+ conduction opacities are from Cassisi et al. (2007) and Blouin et al. (2020).
702
+ B. BINDING ENERGY ESTIMATION
703
+ Because of numerical difficulties of stripped-envelope progenitors (specifically some steep gradients) some simulations
704
+ did not reach the phase of core collapse, although they did reach oxygen depletion and/or silicon depletion at the center.
705
+ Time steps became much too short and we had to terminate the simulations before core collapse. In these cases we
706
+ estimated the binding energy at collapse (red-stars in Fig. 3) by extrapolating the binding energy during earlier phases
707
+ using linear fits.
708
+ We made linear fits to the binding energies as function of the CO core masses at three evolutionary phases: oxygen
709
+ depletion, silicon depletion, and core collapse. In Fig. B.1 we present these three fittings by blue, orange, and red
710
+ lines, respectively, for Min = 2.5M⊙ (upper panel) and Min = 1.5M⊙ (lower panel). From these three lines we can find
711
+ the ratio of the binding energy at core collapse to the binding energy at oxygen depletion and to the binding energy
712
+ at silicon depletion. In cases where we did not reach core collapse we use this ratio at the given CO core mass to
713
+ calculate the expected binding energy at core collapse. We mark these energies by red-stars in Fig. B.1 and use them
714
+ in Fig. 3. Error bars attached to the red stars signify the 1σ intervals of the this extrapolation procedure. We note
715
+ that the CO core mass does not change much after oxygen depletion in the non-extended helium phase. The average
716
+ difference between the CO core mass at central oxygen depletion and at core collapse is ∆mcore
717
+ CO = 0.06 ± 0.33M⊙.
718
+ 1 Zenodo: Modified inlists to reproduce the models. Also included
719
+ a full simulation list and the simulated models at different time
720
+ points.
721
+
722
+ 10
723
+ Figure B.1. The binding energy of the envelope above mass coordinate Min = 2.5M⊙ (upper panel) and Min = 1.5M⊙ (lower
724
+ panel) as a function of the final carbon-oxygen core mass. The blue circles are at central oxygen depletion (5% oxygen in the
725
+ center), the orange circles are at silicon depletion (5% silicon in the center), and red circles are at core collapse. The three
726
+ respective lines are the linear fit to the points. Red stars are the extrapolated values for the binding energy at collapse based
727
+ on available earlier data points (oxygen depletion or silicon depletion) for the cases that did not reach collapse (see text).
728
+ We fit the binding energy Ebind versus the CO core mass MCO by a linear fit Ebind = aMCO + b. In Table B.1 we
729
+ list the values of the two coefficients for the six lines (three stage for two values of the mass that collapses to form the
730
+ NS). We also list (last column) the number of data points that were used at each fitting.
731
+
732
+ 11
733
+ aMCO + b
734
+ Fit1.5M⊙
735
+ Fit2.5M⊙
736
+ FitBEbreak
737
+ FitFecore
738
+ No. of points
739
+ Collapse
740
+ a [1051erg/M⊙]
741
+ 0.122 ± 0.024
742
+ 0.137 ± 0.024
743
+ 0.117 ± 0.021
744
+ 0.114 ± 0.02
745
+ 27
746
+ b [1051erg]
747
+ 0.537 ± 0.46
748
+ −0.053 ± 0.444
749
+ 0.165 ± 0.423
750
+ 0.442 ± 0.406
751
+ Sicntr depletion
752
+ a [1051erg/M⊙]
753
+ 0.132 ± 0.017
754
+ 0.145 ± 0.02
755
+ −−
756
+ −−
757
+ 43
758
+ b [1051erg]
759
+ 0.159 ± 0.38
760
+ −0.099 ± 0.445
761
+ −−
762
+ −−
763
+ Ocntr depletion
764
+ a [1051erg/M⊙]
765
+ 0.15 ± 0.017
766
+ 0.175 ± 0.02
767
+ −−
768
+ −−
769
+ 47
770
+ b [1051erg]
771
+ 0.002 ± 0.394
772
+ −0.447 ± 0.479
773
+ −−
774
+ −−
775
+ Table B.1. The linear fits to the lines in Fig. B.1 and the number of data points for each of the simulation groups: at collapse
776
+ (second row), at center silicon depletion (third row) and center oxygen depletion (bottom row). The third and fourth columns
777
+ are the fits to the binding energy Ebind,1.5, Ebind,2.5 at mass coordinates Min = 1.5M⊙ and Min = 2.5M⊙, respectively. In the
778
+ fifth column we present the linear fit to the variation of the binding energy at the black dots in Fig. 4 with the CO core mass.
779
+ In the fifth column we present the linear fit to the variation of the binding energy at the edge of the iron core (gray squares in
780
+ Fig. 4) with the CO core mass. Linear fits are in units of energy Ebind [1051erg] to CO core mass MCO [M⊙]. Values and errors
781
+ (2σ) are in accordance with Fig. B.1.
782
+
783
+ 12
784
+ C. SIMULATIONS LIST
785
+ In Fig. C.2 we present the simulations that we conducted in a three-parameters space. As input we show the dutch
786
+ wind scaling factor in mesa in the range of 0.5 < αDutch,wind < 1 and the zero age main sequence (ZAMS) mass in the
787
+ range of 20M⊙ < MZAMS < 82M⊙. As an output we present the final CO core mass (mainly oxygen mass) in units of
788
+ solar mass according to the color bar.
789
+ Figure C.2. Wind (Dutch scheme) scaling factors (vertical axis) and the ZAMS masses of the cases (horizontal axis) that we
790
+ simulated, and the final CO core mass (by color bar). We denote with a black X the cases where we extended the He burning
791
+ to a later stage before removing the hydrogen envelope.
792
+
N9E4T4oBgHgl3EQfjw0A/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NdFLT4oBgHgl3EQfOC8n/content/2301.12022v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eaf813ab34f6385812048b74d295c1416b51546935b3a194ab9e1ff627381a6
3
+ size 176982
NdFLT4oBgHgl3EQfOC8n/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6c8299fbfcd81c346228c4b7f0bcb846bb2eb29991c1846efdedf74deee4f5f
3
+ size 2359341
NdFLT4oBgHgl3EQfOC8n/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81c472ccac2cba688fba44cc5fdb03f48f1081b6cf2e0178bcb9a0f7467f2426
3
+ size 92474