jackkuo commited on
Commit
b707b14
·
verified ·
1 Parent(s): 68c213d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +46 -0
  2. 09AyT4oBgHgl3EQfoPj8/content/tmp_files/2301.00506v1.pdf.txt +0 -0
  3. 09AyT4oBgHgl3EQfoPj8/content/tmp_files/load_file.txt +0 -0
  4. 1NFQT4oBgHgl3EQfETVZ/content/tmp_files/2301.13237v1.pdf.txt +2224 -0
  5. 1NFQT4oBgHgl3EQfETVZ/content/tmp_files/load_file.txt +0 -0
  6. 29E2T4oBgHgl3EQfNwZM/content/2301.03740v1.pdf +3 -0
  7. 29E2T4oBgHgl3EQfNwZM/vector_store/index.faiss +3 -0
  8. 29E2T4oBgHgl3EQfNwZM/vector_store/index.pkl +3 -0
  9. 3tFKT4oBgHgl3EQf8i6_/content/2301.11950v1.pdf +3 -0
  10. 3tFKT4oBgHgl3EQf8i6_/vector_store/index.faiss +3 -0
  11. 4NAyT4oBgHgl3EQfo_jf/vector_store/index.faiss +3 -0
  12. 4NE4T4oBgHgl3EQfAwuD/content/tmp_files/2301.04846v1.pdf.txt +738 -0
  13. 4NE4T4oBgHgl3EQfAwuD/content/tmp_files/load_file.txt +506 -0
  14. 5dFJT4oBgHgl3EQfkywG/content/tmp_files/2301.11580v1.pdf.txt +818 -0
  15. 5dFJT4oBgHgl3EQfkywG/content/tmp_files/load_file.txt +0 -0
  16. 8NAzT4oBgHgl3EQf-v4l/vector_store/index.faiss +3 -0
  17. 9NE1T4oBgHgl3EQfUQM_/content/2301.03087v1.pdf +3 -0
  18. 9NE1T4oBgHgl3EQfUQM_/vector_store/index.pkl +3 -0
  19. 9tE3T4oBgHgl3EQfrArn/content/tmp_files/2301.04657v1.pdf.txt +0 -0
  20. 9tE3T4oBgHgl3EQfrArn/content/tmp_files/load_file.txt +0 -0
  21. ANE1T4oBgHgl3EQfowXh/content/2301.03325v1.pdf +3 -0
  22. ANE2T4oBgHgl3EQfnAgQ/content/tmp_files/2301.04003v1.pdf.txt +0 -0
  23. ANE2T4oBgHgl3EQfnAgQ/content/tmp_files/load_file.txt +0 -0
  24. B9AyT4oBgHgl3EQfePhg/content/tmp_files/2301.00317v1.pdf.txt +1145 -0
  25. B9AyT4oBgHgl3EQfePhg/content/tmp_files/load_file.txt +0 -0
  26. DNE1T4oBgHgl3EQfqAUl/content/2301.03337v1.pdf +3 -0
  27. EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf +3 -0
  28. EtAyT4oBgHgl3EQfevi1/vector_store/index.faiss +3 -0
  29. FdAyT4oBgHgl3EQf4_rs/content/tmp_files/2301.00798v1.pdf.txt +806 -0
  30. FdAyT4oBgHgl3EQf4_rs/content/tmp_files/load_file.txt +393 -0
  31. GNFJT4oBgHgl3EQfDyxI/content/tmp_files/2301.11435v1.pdf.txt +1472 -0
  32. GNFJT4oBgHgl3EQfDyxI/content/tmp_files/load_file.txt +0 -0
  33. GNFKT4oBgHgl3EQfbi5K/content/tmp_files/2301.11812v1.pdf.txt +1096 -0
  34. GNFKT4oBgHgl3EQfbi5K/content/tmp_files/load_file.txt +0 -0
  35. HdFAT4oBgHgl3EQftx6O/content/2301.08666v1.pdf +3 -0
  36. HdFAT4oBgHgl3EQftx6O/vector_store/index.faiss +3 -0
  37. HdFAT4oBgHgl3EQftx6O/vector_store/index.pkl +3 -0
  38. IdAyT4oBgHgl3EQfffja/content/tmp_files/2301.00343v1.pdf.txt +594 -0
  39. IdAyT4oBgHgl3EQfffja/content/tmp_files/load_file.txt +234 -0
  40. JNE2T4oBgHgl3EQfAAax/content/tmp_files/2301.03587v1.pdf.txt +523 -0
  41. JNE2T4oBgHgl3EQfAAax/content/tmp_files/load_file.txt +275 -0
  42. K9FIT4oBgHgl3EQfaiv2/content/2301.11258v1.pdf +3 -0
  43. K9FIT4oBgHgl3EQfaiv2/vector_store/index.faiss +3 -0
  44. K9FIT4oBgHgl3EQfaiv2/vector_store/index.pkl +3 -0
  45. KdE1T4oBgHgl3EQfYgTD/content/tmp_files/2301.03140v1.pdf.txt +2740 -0
  46. KdE1T4oBgHgl3EQfYgTD/content/tmp_files/load_file.txt +0 -0
  47. M9FPT4oBgHgl3EQflTVS/content/tmp_files/2301.13121v1.pdf.txt +721 -0
  48. M9FPT4oBgHgl3EQflTVS/content/tmp_files/load_file.txt +535 -0
  49. NNE4T4oBgHgl3EQfjQ2i/content/2301.05141v1.pdf +3 -0
  50. NNE4T4oBgHgl3EQfjQ2i/vector_store/index.faiss +3 -0
.gitattributes CHANGED
@@ -511,3 +511,49 @@ JNFRT4oBgHgl3EQfzTgG/content/2301.13649v1.pdf filter=lfs diff=lfs merge=lfs -tex
511
  K9E5T4oBgHgl3EQfYQ9F/content/2301.05572v1.pdf filter=lfs diff=lfs merge=lfs -text
512
  FtE3T4oBgHgl3EQfVwq1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
513
  K9E5T4oBgHgl3EQfYQ9F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511
  K9E5T4oBgHgl3EQfYQ9F/content/2301.05572v1.pdf filter=lfs diff=lfs merge=lfs -text
512
  FtE3T4oBgHgl3EQfVwq1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
513
  K9E5T4oBgHgl3EQfYQ9F/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
514
+ o9FLT4oBgHgl3EQfhS9Z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
515
+ 3tFKT4oBgHgl3EQf8i6_/content/2301.11950v1.pdf filter=lfs diff=lfs merge=lfs -text
516
+ EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf filter=lfs diff=lfs merge=lfs -text
517
+ EtAyT4oBgHgl3EQfevi1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
518
+ 4NAyT4oBgHgl3EQfo_jf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
519
+ PNE0T4oBgHgl3EQfjwHm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
520
+ PNE0T4oBgHgl3EQfjwHm/content/2301.02465v1.pdf filter=lfs diff=lfs merge=lfs -text
521
+ UNAzT4oBgHgl3EQf0_5k/content/2301.01792v1.pdf filter=lfs diff=lfs merge=lfs -text
522
+ oNE3T4oBgHgl3EQfjQoa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
523
+ ANE1T4oBgHgl3EQfowXh/content/2301.03325v1.pdf filter=lfs diff=lfs merge=lfs -text
524
+ NNE4T4oBgHgl3EQfjQ2i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
525
+ 3tFKT4oBgHgl3EQf8i6_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
526
+ NNE4T4oBgHgl3EQfjQ2i/content/2301.05141v1.pdf filter=lfs diff=lfs merge=lfs -text
527
+ qdAzT4oBgHgl3EQfOvvj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
528
+ j9E2T4oBgHgl3EQfdQfR/content/2301.03905v1.pdf filter=lfs diff=lfs merge=lfs -text
529
+ ktE1T4oBgHgl3EQfNgPF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
530
+ qdAzT4oBgHgl3EQfOvvj/content/2301.01173v1.pdf filter=lfs diff=lfs merge=lfs -text
531
+ 29E2T4oBgHgl3EQfNwZM/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
532
+ cdE2T4oBgHgl3EQfFwYw/content/2301.03649v1.pdf filter=lfs diff=lfs merge=lfs -text
533
+ ydFKT4oBgHgl3EQfLy3J/content/2301.11748v1.pdf filter=lfs diff=lfs merge=lfs -text
534
+ 29E2T4oBgHgl3EQfNwZM/content/2301.03740v1.pdf filter=lfs diff=lfs merge=lfs -text
535
+ ctE2T4oBgHgl3EQfwwgO/content/2301.04103v1.pdf filter=lfs diff=lfs merge=lfs -text
536
+ cdE2T4oBgHgl3EQfFwYw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
537
+ UNE1T4oBgHgl3EQfIQPc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
538
+ HdFAT4oBgHgl3EQftx6O/content/2301.08666v1.pdf filter=lfs diff=lfs merge=lfs -text
539
+ YtE2T4oBgHgl3EQfZAd1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
540
+ K9FIT4oBgHgl3EQfaiv2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
541
+ _tAzT4oBgHgl3EQf_v4O/content/2301.01951v1.pdf filter=lfs diff=lfs merge=lfs -text
542
+ ctE2T4oBgHgl3EQfwwgO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
543
+ K9FIT4oBgHgl3EQfaiv2/content/2301.11258v1.pdf filter=lfs diff=lfs merge=lfs -text
544
+ 8NAzT4oBgHgl3EQf-v4l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
545
+ HdFAT4oBgHgl3EQftx6O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
546
+ s9E1T4oBgHgl3EQfQQNJ/content/2301.03037v1.pdf filter=lfs diff=lfs merge=lfs -text
547
+ _tAzT4oBgHgl3EQf_v4O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
548
+ UNAzT4oBgHgl3EQf0_5k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
549
+ ntAzT4oBgHgl3EQfAPov/content/2301.00921v1.pdf filter=lfs diff=lfs merge=lfs -text
550
+ uNAzT4oBgHgl3EQfPvtT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
551
+ g9A0T4oBgHgl3EQfH_-Y/content/2301.02069v1.pdf filter=lfs diff=lfs merge=lfs -text
552
+ ydFKT4oBgHgl3EQfLy3J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
553
+ qtE4T4oBgHgl3EQfvw2m/content/2301.05245v1.pdf filter=lfs diff=lfs merge=lfs -text
554
+ j9E2T4oBgHgl3EQfdQfR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
555
+ DNE1T4oBgHgl3EQfqAUl/content/2301.03337v1.pdf filter=lfs diff=lfs merge=lfs -text
556
+ 9NE1T4oBgHgl3EQfUQM_/content/2301.03087v1.pdf filter=lfs diff=lfs merge=lfs -text
557
+ Y9E5T4oBgHgl3EQfdw8X/content/2301.05613v1.pdf filter=lfs diff=lfs merge=lfs -text
558
+ s9E1T4oBgHgl3EQfQQNJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
559
+ WtE1T4oBgHgl3EQfvgVo/content/2301.03400v1.pdf filter=lfs diff=lfs merge=lfs -text
09AyT4oBgHgl3EQfoPj8/content/tmp_files/2301.00506v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
09AyT4oBgHgl3EQfoPj8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1NFQT4oBgHgl3EQfETVZ/content/tmp_files/2301.13237v1.pdf.txt ADDED
@@ -0,0 +1,2224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–14 (2022)
2
+ Preprint 1 February 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ Tree-based solvers for adaptive mesh refinement code FLASH - IV: An
5
+ X-ray radiation scheme to couple discrete and diffuse X-ray emission
6
+ sources to the thermochemistry of the interstellar medium
7
+ Brandt A. L. Gaches,1,2★ Stefanie Walch,1,3 Richard Wünsch4 and Jonathan Mackey5
8
+ 1I. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937, Köln, Germany
9
+ 2Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
10
+ 3Center for Data and Simulation Science (CDS), University of Cologne, www.cds.uni-koeln.de, Germany
11
+ 4Astronomical Institute, Czech Academy of Sciences, Bo˘ciní II 1401, 141 00 Prague, Czech Republic
12
+ 5Centre for AstroParticle Physics and Astrophysics, DIAS Dunsink Observatory, Dunsink Lane, Dublin 15, Ireland
13
+ Accepted XXX. Received YYY; in original form ZZZ
14
+ ABSTRACT
15
+ X-ray radiation, in particular radiation between 0.1 keV and 10 keV, is evident from both point-like sources, such as compact
16
+ objects and T-Tauri young stellar objects, and extended emission from hot, cooling gas, such as in supernova remnants. The
17
+ X-ray radiation is absorbed by nearby gas, providing a source of both heating and ionization. While protoplanetary chemistry
18
+ models now often include X-ray emission from the central young stellar object, simulations of star-forming regions have yet to
19
+ include X-ray emission coupled to the chemo-dynamical evolution of the gas. We present an extension of the TreeRay reverse
20
+ raytrace algorithm implemented in the Flash magneto-hydrodynamic code which enables the inclusion of X-ray radiation from
21
+ 0.1 keV < 𝐸𝛾 < 100 keV, dubbed XrayTheSpot. XrayTheSpot allows for the use of an arbitrary number of bins, minimum and
22
+ maximum energies, and both temperature-independent and temperature-dependent user-defined cross sections, along with the
23
+ ability to include both point and extended diffuse emission and is coupled to the thermochemical evolution. We demonstrate the
24
+ method with several multi-bin benchmarks testing the radiation transfer solution and coupling to the thermochemistry. Finally,
25
+ we show two example star formation science cases for this module: X-ray emission from protostellar accretion irradiating an
26
+ accretion disk and simulations of molecular clouds with active chemistry, radiation pressure, protostellar radiation feedback from
27
+ infrared to X-ray radiation.
28
+ Key words: astrochemistry -– radiative transfer -– methods:numerical — ISM:clouds -– X-rays: general — X-rays: ISM.
29
+ 1 INTRODUCTION
30
+ Molecular gas is subjected to radiation across the electromagnetic
31
+ spectrum. Hard radiation, such as X-ray and gamma-ray radiation,
32
+ can penetrate deep into molecular gas and drive the thermochemistry
33
+ of dense gas (Spitzer & Tomasko 1968; Maloney et al. 1996; Yan
34
+ 1997; Wolfire et al. 2022). X-rays provide an important source of ion-
35
+ ization in dense gas, driving the ion-neutral chemistry and providing
36
+ heating through photo-electrons (Lepp & Shull 1983; Maloney et al.
37
+ 1996; Dalgarno et al. 1999). Using the typical molecular gas photoab-
38
+ sorption cross sections (Maloney et al. 1996), the 𝜏 = 1 surface for 1
39
+ keV photons is approximately 4 × 1021 cm−2 (compared to ≈ 10−18
40
+ cm−2 for UV radiation). However, the photoabsorption cross sections
41
+ scale roughly as 𝐸−2.5 (Mackey et al. 2019), so harder radiation pen-
42
+ etrates much further into the cloud. Therefore, in regions near bright
43
+ X-ray sources, the cloud structure can become dominated through-
44
+ out by the X-ray radiation. Regions in which the thermochemistry
45
+ is regulated primarily through X-ray radiation are often denoted as
46
+ X-ray Dominated Regions (XDRs) (coined by Maloney et al. 1996),
47
+ in analogue to photo-dissociation regions (PDRs).
48
+ ★ E-mail: [email protected] (BALG)
49
+ X-ray radiation drives ionization primarily through secondary, in-
50
+ duced processes. While the primary ionization cross sections are
51
+ low, the resulting ejected fast electrons can produce a cascade of
52
+ secondary ionizations and pumped far ultraviolet (FUV) radiation
53
+ through the excitation and subsequent de-exictation of H and H2
54
+ (Prasad & Tarafdar 1983; Dalgarno et al. 1999; Meijerink & Spaans
55
+ 2005). These fast electrons can also provide heating through pho-
56
+ toelectric heating of dust grains. In this way, X-ray radiation acts
57
+ in a very similar manner as cosmic rays, and untangling the two
58
+ contributions can be difficult (see e.g. Meijerink et al. 2006).
59
+ Molecular clouds are immersed in a bath of X-ray radiation, with
60
+ contributions from both external and internal sources. Externally,
61
+ molecular gas can be irradiated through supernovae and their rem-
62
+ nants (e.g. Yamane et al. 2018; Brose et al. 2022), X-ray binaries
63
+ (e.g. White et al. 1988; Remillard & McClintock 2006; Reig 2011;
64
+ Mineo et al. 2012; Lutovinov et al. 2013; Giacobbo et al. 2018),
65
+ nearby activate galactic nuclei (AGN) (e.g. Sunyaev et al. 1993; Sun-
66
+ yaev & Churazov 1998; Harada et al. 2013; Churazov et al. 2017;
67
+ Mingozzi et al. 2018; Cruz-González et al. 2020). Internally, young
68
+ stellar objects, including embedded accreting protostars and more
69
+ evolved T-Tauri stars (Calvet & Gullbring 1998; Feigelson & Mont-
70
+ merle 1999; Feigelson et al. 2007), and high-mass stars just reaching
71
+ © 2022 The Authors
72
+ arXiv:2301.13237v1 [astro-ph.IM] 30 Jan 2023
73
+
74
+ 2
75
+ Gaches et al.
76
+ the main sequence can become X-ray bright (e.g. Cassinelli et al.
77
+ 1994), whether through accretion or magnetic powered radiation or
78
+ coronal emission. Finally, gas heated through feedback processes,
79
+ such as winds and supernovae, can become warm enough to emit
80
+ X-ray radiation while they cool (Raymond & Smith 1977). Observa-
81
+ tional X-ray surveys of molecular gas and star-forming regions show
82
+ substantial amounts of diffuse emission and a sizable number of point
83
+ sources (Sunyaev et al. 1993; Feigelson et al. 2013; Townsley et al.
84
+ 2014, 2019).
85
+ Despite their potential importance, their inclusion into simulations
86
+ of molecular clouds has been sparse. There has been substantial focus
87
+ on thermochemical models of protoplanetary disks (e.g. Glassgold
88
+ et al. 1997; Igea & Glassgold 1999; Ercolano et al. 2008a, 2009;
89
+ Owen et al. 2011; Meijerink et al. 2012; Cleeves et al. 2017; Picogna
90
+ et al. 2019; Waggoner & Cleeves 2019) and models of molecular
91
+ gas near external sources or compact objects (e.g. Krolik & Kallman
92
+ 1983; Lepp & McCray 1983; Draine & Woods 1991; García-Burillo
93
+ et al. 2010; Hocuk & Spaans 2010; Meijerink et al. 2011; Odaka
94
+ et al. 2011; Orlando et al. 2011; Mackey et al. 2019). These methods
95
+ typically utilize Monte Carlo methods (Ercolano et al. 2008a; Odaka
96
+ et al. 2011; Molaro et al. 2016; Walls et al. 2016; Cleeves et al. 2017),
97
+ or ray-trace schemes and focus primarily either on the inclusion of
98
+ point sources or external radiation fields (e.g. Wise & Abel 2011;
99
+ Mackey et al. 2019; Khabibullin et al. 2020)
100
+ In this paper, we will present an X-ray extension of the reverse
101
+ ray tracing scheme TreeRay (Wünsch et al. 2021), which allows
102
+ for the inclusion of an arbitrary number of point sources and diffuse
103
+ radiation. The module is a TreeRay extension of the diffuse X-ray
104
+ module presented in Mackey et al. (2019), which enabled diffuse X-
105
+ ray irradiation at the domain boundary. Our implementation enables
106
+ up to 100 energy bins at arbitrary locations between 0.1 and 100
107
+ keV and temperature-dependent photoabsorption cross sections. In
108
+ Section 2 we give an overview of the X-ray TreeRay algorithm,
109
+ called XRayTheSpot, and the coupling of it to the X-ray-driven
110
+ chemistry. In Section 3 we show the performance of the module with
111
+ different radiation transfer tests and a benchmark against the Cloudy
112
+ code. In Sections 4 and 5 we demonstrate the use of this module for
113
+ protostellar emission irradiating a surrounding disk and in a star
114
+ formation simulation, respectively. Finally, in Section 6 we discuss
115
+ the future extensions and scientific applications of XRayTheSpot.
116
+ 2 METHODS
117
+ Our new XRayTheSpot module is able to treat radiation from
118
+ 0.1 keV to 100 keV. We describe below in detail the adopted pho-
119
+ toabsorption cross sections and the module’s implementation within
120
+ TreeRay.
121
+ 2.1 XRay Cross Sections
122
+ X-ray radiation is attenuated as it propagates through gas via a com-
123
+ bination of photoionization, at lower energies, and the Compton pro-
124
+ cess, at high energies. The previous module, described in Mackey
125
+ et al. (2019), used the low-energy approximation for the X-ray cross
126
+ section, 𝜎𝑥, from Panoglou et al. (2012):
127
+ 𝜎𝑥 = 2.27 × 10−22𝐸−2.485
128
+ 𝛾
129
+ cm2
130
+ (1)
131
+ per H-nucleus, where 𝐸𝛾 is the photon energy. However, this cross
132
+ section is valid only for cold, neutral gas and for solar metallicity.
133
+ We include now, as input during run time, temperature-dependent
134
+ cross sections, which can be re-computed for problems with different
135
+ metallicities. For photoionization, we use the analytic fits from Verner
136
+ & Yakovlev (1995), 𝜎pi, where
137
+ 𝜎pi = 𝜎0𝐹(𝐸𝛾/𝐸0),
138
+ (2)
139
+ where
140
+ 𝐹(𝑦) =
141
+
142
+ (𝑦 − 1)2 + 𝑦2
143
+ 𝑤
144
+
145
+ 𝑦−𝑄 �
146
+ 1 +
147
+ √︁
148
+ 𝑦/𝑦𝑎
149
+ �−𝑃
150
+ ,
151
+ (3)
152
+ 𝑦 = 𝐸𝛾/𝐸0, 𝑄 = 5.5 + 𝑙 − 0.5P, 𝑙 = 0, 1, 2 is the subshell orbital
153
+ quantum number, and 𝜎0, 𝐸0, 𝑦𝑤, 𝑦𝑎 and P are fit parameters from
154
+ the associated public ViZieR catalog1. However, to utilize these cross
155
+ sections, the ionization level populations must be known. We assume
156
+ collisional ionization equilibrium and use the ChiantiPy package
157
+ (Dere 2013), using version 9 of the Chianti atomic database (Dere
158
+ et al. 1997, 2019) to compute the ionization fraction as a function of
159
+ temperature.
160
+ Figure 1 shows the equilibrium ionization fractions as a function
161
+ of temperature for the 15 different elements (see Table 1) we include
162
+ in the cross sections. These computations show that, particularly for
163
+ 𝑇 > 105 K, there are multiple ionization states for metals which
164
+ contribute to the photoionization cross section.
165
+ We also include the cross section for the Compton effect, which
166
+ becomes particularly important at higher energies. We use the total
167
+ Klein-Nishina (KN) cross section (Klein & Nishina 1929; Longair
168
+ 2011), 𝜎KN,
169
+ 𝜎KN = 𝜋𝑟2
170
+ 𝑒𝑥−1
171
+ ��
172
+ 1 − 2(𝑥 + 1)
173
+ 𝑥2
174
+
175
+ ln(2𝑥 + 1) + 1
176
+ 2 + 4
177
+ 𝑥 −
178
+ 1
179
+ 2(2𝑥 + 1)2
180
+
181
+ ,
182
+ (4)
183
+ where 𝑟𝑒 is the classical electron radius and 𝑥 = 𝐸𝛾/(𝑚𝑒𝑐2). While
184
+ most applications will be in the limit of Thomson scattering, we
185
+ include the full Compton cross sections to enable more flexibility
186
+ in the choice of energy bins. In the cross-section plots, we show the
187
+ total Compton cross-section weighted by the number of free electrons
188
+ contributed by each species. The total cross section, 𝜎𝑥, is thus
189
+ 𝜎𝑥(𝐸) =
190
+ 𝑁elem
191
+ ∑︁
192
+ 𝑖
193
+ 𝑥𝑖𝜎pi,i(𝐸) + 𝜎KN,i(𝐸),
194
+ (5)
195
+ where 𝑥𝑖 is the abundance of element 𝑖 with respect to hydrogen and
196
+ the sum is carried out including the cross sections for the 𝑁elem ele-
197
+ ments. Table 1 shows the elements we include in the photoabsorption
198
+ cross section and their fiducial abundances relative to hydrogen.
199
+ Figure 2 shows the photoionization cross sections and free-electron
200
+ contributions to the Compton cross section as a function of energy for
201
+ gas with𝑇 = 105 K. As shown, for some elements, the Compton cross
202
+ section becomes more important than photoionization, in particular
203
+ for hydrogen and helium above 1 keV, and for carbon and oxygen
204
+ above 30 keV. For hydrogen, the Compton effect is dominant due to
205
+ the negligible neutral fraction at T = 105 K. Figure 3 shows the total
206
+ cross section as a function of energy for 𝑇 = 105 K and each of the
207
+ total elemental contributions. Here, the X-ray photoabsorption cross
208
+ section is dominated by helium (< 0.3 keV), then carbon (0.3 − 0.6
209
+ keV) and oxygen (0.8−4 keV). At energies above 4 keV, the hydrogen
210
+ and helium Compton cross sections dominate with a contribution
211
+ from the iron photoionization cross section around 10 keV. However,
212
+ many of the metals contribute equally to the total cross section around
213
+ 1 keV.
214
+ Finally, Figure 4 shows 𝜎𝑥 as a function of energy and temperature
215
+ from 𝑇 = 104 to 107 K. At low temperatures, we recover the analytic
216
+ 1 https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+AS/109/125
217
+ MNRAS 000, 1–14 (2022)
218
+
219
+ XRayTheSpot: X-raying Molecular Gas
220
+ 3
221
+ Table 1. Elements included in our photoabsorption cross section calculation
222
+ and their fiducial abundances, 𝐴𝑋, reported as 𝐴𝑋 = log(𝑁𝑥/𝑁𝐻) + 12
223
+ (Asplund et al. 2009).
224
+ Element
225
+ Abundance (𝐴𝑋)
226
+ H
227
+ 12
228
+ He
229
+ 10.986
230
+ C
231
+ 8.443
232
+ O
233
+ 8.783
234
+ N
235
+ 7.913
236
+ Ne
237
+ 8.103
238
+ Na
239
+ 6.353
240
+ Mg
241
+ 7.593
242
+ Al
243
+ 6.523
244
+ Si
245
+ 7.573
246
+ S
247
+ 7.193
248
+ Ar
249
+ 6.553
250
+ Ca
251
+ 6.383
252
+ Fe
253
+ 7.503
254
+ Ni
255
+ 6.283
256
+ cross section previously used, although around 10 keV there is an in-
257
+ crease in the cross section due to iron. However, the rather significant
258
+ temperature dependence highlights the necessity of including a tem-
259
+ perature dependent cross section: at high temperatures, the higher
260
+ thermal ionization state leads to a reduction of nearly two orders of
261
+ magnitude in the cross section, thereby making the gas significantly
262
+ more optically thin to the X-ray radiation, producing less heating and
263
+ enabling more X-rays to escape. Below 104 K, the cross section does
264
+ not noticeably change since hydrogen is not significantly collisional
265
+ ionized. Therefore, for the results of this paper, for colder gas, we
266
+ use the 𝑇 = 104 photoabsorption cross section. The module though
267
+ allows for the user to define their own temperature dependent cross
268
+ sections across any temperature range.
269
+ For a given set of energy bins, {(𝐸𝑙,𝑖, 𝐸𝑟,𝑖)}, where 𝑖 = 1, 𝑁bin
270
+ for 𝑁bin bins, we define:
271
+ 𝐸𝑐,𝑖 = 1
272
+ 2
273
+ �𝐸𝑙,𝑖 + 𝐸𝑟,𝑖
274
+ � ,
275
+ (6)
276
+ where 𝐸𝑙,𝑖 is the left bound of the 𝑖th bin, 𝐸𝑟,𝑖 is the right bound,
277
+ and 𝐸𝑐,𝑖 is the midpoint of the bin. We derive bin-averaged cross
278
+ sections, such that
279
+ exp
280
+
281
+ − ⟨𝜎𝑋,𝑖⟩
282
+ 𝜎𝑐
283
+
284
+ =
285
+ 1
286
+ 𝐸𝑙,𝑖 − 𝐸𝑟,𝑖
287
+ ∫ 𝐸𝑟,𝑖
288
+ 𝐸𝑙,𝑖
289
+ exp
290
+
291
+ −𝜎𝑥(𝐸𝛾)
292
+ 𝜎𝑐
293
+
294
+ 𝑑𝐸,
295
+ (7)
296
+ where ⟨𝜎𝑥,𝑖⟩ is the bin-averaged cross section for bin, 𝑖, and 𝜎𝑐 =
297
+ 𝜎𝑥(𝐸𝑐,𝑖). Our fiducial tests use 𝑁bin = 8 between 1 – 10 keV using
298
+ logarithmically spaced bins.
299
+ All of these cross section data, and the initialization and storage
300
+ of the bins and bin-averaged cross sections are kept in a new Flash
301
+ module, XrayCommon. Flash is a highly module public magneto-
302
+ hydrodynamic code (Fryxell et al. 2000) written in Fortran and
303
+ highly-scalable with MPI. The scripts necessary to compute the X-
304
+ ray cross sections are publicly available on GitHub2. This module
305
+ enables the coupling of X-ray physics to multiple other modules.
306
+ Plasma models and the necessary X-ray data are also stored within
307
+ this module, as a unified location.
308
+ 2.2 TreeRay
309
+ TreeRay is a novel reverse ray tracing scheme, described fully in
310
+ 2 � https://github.com/AstroBrandt/XRayCrossSections
311
+ Wünsch et al. (2021), implemented in Flash. Simply, TreeRay
312
+ enables an efficient method to compute the contributions of radiation
313
+ from every cell, for every cell. It does so through the combination of
314
+ a reverse ray-trace algorithm with a tree (Wünsch et al. 2018), which
315
+ also currently is used in the gravity solver. Below we describe briefly
316
+ the different aspects of the TreeRay algorithm and XRayTheSpot
317
+ extension and refer the reader to Wünsch et al. (2021) for more
318
+ details.
319
+ 2.2.1 Building the Tree
320
+ The foundation of the TreeRay algorithm is an octtree which stores
321
+ all necessary variables for the various TreeRay modules. At min-
322
+ imum, the tree stores the mass and center of mass coordinates for
323
+ the respective cell, or leaf, or higher nodes. For XRayTheSpot, two
324
+ further quantities are stored onto the tree: the bin-integrated X-ray
325
+ luminosity in each energy bin and the gas temperature. While the
326
+ bin-integrated X-ray luminosity is purely additive, the temperature is
327
+ stored as a mass-weighted average of each set of eight sub-nodes (or
328
+ leaves).
329
+ 2.2.2 Ray Structure
330
+ Before the tree walk is executed for a given cell, rays are generated by
331
+ casting 𝑁pix = 12𝑁2
332
+ side rays from each cell using directions defined
333
+ by the HealPix (Górski et al. 2005) algorithm. HealPix tessellates
334
+ the unit sphere into areas representing equal solid angles with a unit
335
+ vector pointing to the center of each of these surface areas from the
336
+ sphere’s center. TreeRay allows for 𝑁side = 1, 2, 4, 8, ..., with higher
337
+ values representing higher angular resolution. The rays are split into
338
+ 𝑁𝑟 evaluation points, set by the grid resolution, Δ𝑥, the allowed
339
+ length of the ray, 𝐿ray, which is set to three-dimensional diagonal of
340
+ the computational domain, and a free parameter, 𝜂𝑅.
341
+ Along each ray, the radial coordinate point of the ith evaluation
342
+ point is
343
+ 𝑟𝑖 = Δ𝑥𝑖2
344
+ 2𝜂2
345
+ 𝑅
346
+ ,
347
+ (8)
348
+ leading to segments with increasing lengths. This behavior coincides
349
+ well with the geometric acceptance criterion described below for
350
+ deciding whether or not to accept a tree node. The total number of
351
+ evaluation points is
352
+ 𝑁𝑅 = 𝜂𝑅 × floor
353
+ �√︂
354
+ 2𝐿ray
355
+ Δ𝑋
356
+
357
+ + 1.
358
+ (9)
359
+ 2.2.3 Tree Walk
360
+ The mapping of the cells/nodes onto the rays requires two factors: a
361
+ multipole acceptance criterion (MAC) and a weighting function to
362
+ map from the tree onto the different radial evaluation points. When
363
+ the MAC is met, a node is accepted and used. The simplest MAC is
364
+ the Barnes-Hut (BH) geometric MAC (Barnes & Hut 1986), where
365
+ a node of size ℎ𝑛, at a distance 𝑑, from the cell is opened if
366
+ ℎ𝑛/𝑑 < 𝜃lim
367
+ (10)
368
+ where 𝜃lim is a user-defined opening angle with a sensible choice
369
+ being 𝜃lim =
370
+ √︃
371
+ 4𝜋/𝑁pix3. We also utilize the ‘Src MAC’ (Wünsch
372
+ 3 The resulting 𝜃lim for 𝑁side = 1, 2, 4, 8 is 1.0, 0.5, 0.25, 0.125, respec-
373
+ tively. For the results of this paper, we adopted these recommended values of
374
+ MNRAS 000, 1–14 (2022)
375
+
376
+ 4
377
+ Gaches et al.
378
+ 0.0
379
+ 0.2
380
+ 0.4
381
+ 0.6
382
+ 0.8
383
+ 1.0
384
+ Ionization Fraction
385
+ I
386
+ II
387
+ I
388
+ II
389
+ III
390
+ IV
391
+ V
392
+ VI
393
+ I
394
+ II
395
+ III
396
+ IV
397
+ V
398
+ VI
399
+ VII
400
+ VIII
401
+ H
402
+ He
403
+ C
404
+ O
405
+ 0.0
406
+ 0.2
407
+ 0.4
408
+ 0.6
409
+ 0.8
410
+ 1.0
411
+ Ionization Fraction
412
+ I
413
+ II
414
+ III
415
+ IV
416
+ V
417
+ VI
418
+ VII
419
+ I
420
+ II
421
+ III
422
+ IV
423
+ V
424
+ VI
425
+ VII
426
+ VIII
427
+ IX
428
+ X
429
+ I
430
+ II
431
+ III
432
+ IV
433
+ V
434
+ VI
435
+ VII
436
+ VIII IX X
437
+ XI
438
+ XII
439
+ XIII
440
+ I
441
+ II
442
+ III
443
+ IV
444
+ V
445
+ VI VII
446
+ VIII
447
+ IX
448
+ X
449
+ XI
450
+ XII
451
+ N
452
+ Ne
453
+ Si
454
+ Mg
455
+ 0.0
456
+ 0.2
457
+ 0.4
458
+ 0.6
459
+ 0.8
460
+ 1.0
461
+ Ionization Fraction
462
+ I
463
+ II
464
+ III
465
+ IV
466
+ V
467
+ VI
468
+ VII
469
+ VIII IX X XIXIIXIIIXIV
470
+ XV
471
+ I
472
+ II
473
+ III
474
+ IV
475
+ V
476
+ VI
477
+ VII
478
+ VIII
479
+ IX
480
+ X XI
481
+ XIIXIII
482
+ XIV
483
+ XV
484
+ I
485
+ II
486
+ III
487
+ IV
488
+ V
489
+ VI
490
+ VII
491
+ VIII
492
+ IX
493
+ X
494
+ XI
495
+ I
496
+ II
497
+ III
498
+ IV
499
+ V
500
+ VI
501
+ VIIVIII
502
+ IX
503
+ X
504
+ XI
505
+ XII
506
+ S
507
+ Fe
508
+ Na
509
+ Al
510
+ 104
511
+ 105
512
+ 106
513
+ 107
514
+ Temperature (K)
515
+ 0.0
516
+ 0.2
517
+ 0.4
518
+ 0.6
519
+ 0.8
520
+ 1.0
521
+ Ionization Fraction
522
+ I
523
+ II
524
+ III
525
+ IV
526
+ V VIVII
527
+ VIII
528
+ IX
529
+ X XI XIIXIIIXIVXV
530
+ I
531
+ II
532
+ III
533
+ IV
534
+ V
535
+ VI
536
+ VIIVIIIIX
537
+ X
538
+ XI
539
+ XIIXIIIXIVXV
540
+ I
541
+ II
542
+ III
543
+ IV
544
+ V
545
+ VI
546
+ VII VIII IX
547
+ X
548
+ XI
549
+ XIIXIII
550
+ XIV
551
+ XV
552
+ Ar
553
+ Ca
554
+ Ni
555
+ Figure 1. Ionization fraction for different elements as a function of temperature. Annotated in the text are the peaks of different ionization levels for each element.
556
+ MNRAS 000, 1–14 (2022)
557
+
558
+ XRayTheSpot: X-raying Molecular Gas
559
+ 5
560
+ 10
561
+ 15
562
+ 10
563
+ 12
564
+ 10
565
+ 9
566
+ 10
567
+ 6
568
+ 10
569
+ 3
570
+ (Mbarn/H-nucleus)
571
+ Photoionization
572
+ Compton
573
+ H
574
+ He
575
+ C
576
+ O
577
+ 10
578
+ 10
579
+ 10
580
+ 8
581
+ 10
582
+ 6
583
+ 10
584
+ 4
585
+ (Mbarn/H-nucleus)
586
+ N
587
+ Ne
588
+ Si
589
+ Mg
590
+ 10
591
+ 11
592
+ 10
593
+ 9
594
+ 10
595
+ 7
596
+ 10
597
+ 5
598
+ (Mbarn/H-nucleus)
599
+ S
600
+ Fe
601
+ Na
602
+ Al
603
+ 102
604
+ 103
605
+ 104
606
+ 105
607
+ Energy (eV)
608
+ 10
609
+ 10
610
+ 10
611
+ 8
612
+ 10
613
+ 6
614
+ (Mbarn/H-nucleus)
615
+ Ar
616
+ Ca
617
+ Ni
618
+ Figure 2. Photoionization (solid) and Compton process (dashed) cross sec-
619
+ tions for each element as a function of energy, assuming thermal ionization
620
+ equilibrium at 𝑇 = 105 K. Each elemental contribution is weighted by the
621
+ assumed abundance with respect to hydrogen.
622
+ et al. 2021), where a node with sources is opened if
623
+ ℎ𝑛/𝑑 < 𝜃src,
624
+ (11)
625
+ where 𝜃src is a user-defined parameter.
626
+ Quantities on the tree are mapped onto the radial evaluation points
627
+ of a ray through the use of kernels. We utilize both a piece-wise
628
+ third-order polynomial, ����𝑝(𝛿), and a kernel derived to ensure it
629
+ meets the requirements of the radiation transfer equation, 𝑊 𝑓 (𝛿),
630
+ where 𝛿 = (𝑟𝑖 − 𝑑)/ℎ𝑛 and 𝑑 is the distance from the node center
631
+ of mass and the ray evaluation point (see Wünsch et al. 2021) and
632
+ ℎ𝑛 is the node’s linear size. The node quantites are weighted by the
633
+ overlap of the volume of the ray segment and the node.
634
+ 𝜃lim for the corresponding 𝑁side. See Wünsch et al. (2018) for 𝜃lim resolution
635
+ tests in the context of TreeRay/OpticalDepth
636
+ 102
637
+ 103
638
+ 104
639
+ Energy (eV)
640
+ 10
641
+ 10
642
+ 10
643
+ 8
644
+ 10
645
+ 6
646
+ 10
647
+ 4
648
+ 10
649
+ 2
650
+ tot (Mbar/H-nucleus)
651
+ H
652
+ He
653
+ C
654
+ O
655
+ N
656
+ Ne
657
+ Si
658
+ Mg
659
+ S
660
+ Fe
661
+ Na
662
+ Al
663
+ Ar
664
+ Ca
665
+ Ni
666
+ Figure 3. Total photo-absorption cross section (black) with each element
667
+ contribution highlighted (colors) as a function of energy for gas at temper-
668
+ ature, 𝑇 = 105 K. Each elemental contribution is weighted by the assumed
669
+ abundance with respect to hydrogen.
670
+ 102
671
+ 103
672
+ 104
673
+ 105
674
+ Energy (eV)
675
+ 10
676
+ 6
677
+ 10
678
+ 5
679
+ 10
680
+ 4
681
+ 10
682
+ 3
683
+ 10
684
+ 2
685
+ 10
686
+ 1
687
+ Cross section (Mbarn)
688
+ 103
689
+ 104
690
+ Energy (eV)
691
+ 10
692
+ 6
693
+ 10
694
+ 5
695
+ 10
696
+ 4
697
+ Cross section (Mbarn)
698
+ 4.0
699
+ 4.5
700
+ 5.0
701
+ 5.5
702
+ 6.0
703
+ 6.5
704
+ 7.0
705
+ Temperature
706
+ Figure 4. Total photoabsorption cross section as a function of energy and
707
+ temperature (color). The black dashed line shows the previously used analytic
708
+ cross section from Panoglou et al. (2012). Inset: Zoom-in to 1 – 10 keV.
709
+ Following the tree walk, the rays from a cell outward store the
710
+ mass, center of mass, gas temperature and bin-integrated luminosi-
711
+ ties. These provide all the necessary information to solve the equation
712
+ of radiation transfer along each ray.
713
+ 2.2.4 Solving the Radiation Transfer Equation
714
+ Along the rays, the one-dimensional radiation transfer equation is
715
+ solved:
716
+ 𝑑𝐼𝜈
717
+ 𝑑𝑠 = −𝜖𝜈 + 𝛼𝜈𝐼𝜈
718
+ (12)
719
+ where 𝑠 is the distance along the ray, and 𝜖𝜈 and 𝛼𝜈 are the emission
720
+ and absorption coefficients. The band-integrated flux, 𝐽(𝐸), irradiat-
721
+ MNRAS 000, 1–14 (2022)
722
+
723
+ 6
724
+ Gaches et al.
725
+ ing a cell 𝑖 due to the band-integrated luminosity, 𝐿𝑋, emitting from
726
+ node 𝑗 can be simply written
727
+ 𝐽 𝑗𝑖(𝐸) = 𝐿𝑋, 𝑗 (𝐸) 𝑒−𝜏𝑥
728
+ 4𝜋𝑟2
729
+ 𝑖 𝑗
730
+ (13)
731
+ where 𝑟𝑖 𝑗 is the distance between the centers of cell 𝑖 to node 𝑗 and
732
+ 𝜏𝑥 =
733
+
734
+ 𝑛H(𝑠)𝜎𝑥(𝐸,𝑇(𝑠))𝑑𝑠 ≈
735
+ ∑︁
736
+ 𝑘
737
+ 𝜌𝑘
738
+ 𝜇𝑚𝐻
739
+ ⟨𝜎𝑋 (𝐸,𝑇𝑘)⟩ 𝛿𝑠
740
+ (14)
741
+ is the X-ray opacity between cell 𝑖 and node 𝑗 and 𝜌𝑘 is the density
742
+ at evaluation point 𝑘 along the ray, 𝑛H is the hydrogen nuclei density,
743
+ and 𝛿𝑠 = 𝑟𝑘 − 𝑟𝑘−1. We store the solution as an energy density,
744
+ 𝜀𝑥 = 𝐽/𝑐, where 𝑐 is the speed of light, onto the grid to be used in
745
+ chemistry, described below. The total energy density is the sum over
746
+ the HealPix rays:
747
+ 𝜀𝑖 =
748
+ 𝑁pix
749
+ ∑︁
750
+ 𝑘
751
+ 𝜀𝑘𝑖(𝐸).
752
+ (15)
753
+ For the solution, we also store the cell mass and temperature onto
754
+ the tree and map these to the rays using 𝑊𝑝. In our algorithm, no
755
+ assumption is made with respect to what produces the X-ray energy
756
+ density, enabling both point sources (with their radiation spread over
757
+ their host cells) and diffuse emission produced via cooling of hot gas
758
+ in the cell.
759
+ 2.3 Pre-existing Chemistry
760
+ We briefly describe here the previous treatment of X-ray radiation
761
+ within the chemical network (see Mackey et al. (2019) for more
762
+ details). The chemical network consists of 17 species, of which 9 are
763
+ solved numerically and the rest are followed through conservation
764
+ equations. We solve the non-equilibrum species H+, H2, C+, CO,
765
+ HCO+, CHx, OHx, He+ and M+. CHx is a proxy species for simple
766
+ hydrocarbons, e.g. CH, CH2, etc, and simple ions CH+, CH2+, etc.
767
+ Similarly, OHx is a proxy for OH, H2O and ions OH+, H2O+, etc. M
768
+ is a proxy for metals that can become the primary source of electrons
769
+ in shielded regions of molecular clouds, where reaction rates treat
770
+ M as Si. The network is primarily based on the ‘NL99’ network of
771
+ Glover & Clark (2012), which uses the hydrogen chemistry from
772
+ Glover & Mac Low (2007a,b) with the CO chemistry of Nelson &
773
+ Langer (1999) including updated reaction rates from Gong et al.
774
+ (2017). For this work, all photodissociation rates have been updated
775
+ using the KIDA astrochemistry database (Wakelam et al. 2012).
776
+ X-ray radiation is coupled to the thermochemistry through the
777
+ following primary processes (see also Mackey et al. 2019):
778
+ • Dust heating, following the analytic prescription in Yan (1997).
779
+ • Primary ionization of a species by X-rays. Note though that is is
780
+ relatively unimportant for our considered species, and plays a minor
781
+ role in the heating and ionization for hydrogen species and helium.
782
+ • Secondary ionization through collisional ionization by fast elec-
783
+ trons produced following primary ionizations (e.g. Dalgarno et al.
784
+ 1999; Meijerink & Spaans 2005).
785
+ • Induced FUV radiation generated by H2, which is collisionally
786
+ excited by fast electrons and the subsequent ionizations and dissoci-
787
+ ations (Prasad & Tarafdar 1983; Gredel et al. 1987; Maloney et al.
788
+ 1996; Meijerink & Spaans 2005).
789
+ • Coulomb heating of the gas via energy exchange between the
790
+ produced fast electrons and other charged particles (Dalgarno et al.
791
+ 1999).
792
+ These processes have all been generalized for the arbitrary number
793
+ of energy bins and the temperature-dependent cross sections. The
794
+ input X-rays are computed by the XRayTheSpot module. Since we
795
+ use band-integrated radiative variables, the heating parameter for a
796
+ particular cell 𝑖 due to the impinging X-ray radiation is
797
+ 𝐻𝑥,𝑖 =
798
+ 𝑁bin
799
+ ∑︁
800
+ 𝑛
801
+ 𝑗𝑖(𝐸𝑛) ⟨𝜎𝑥(𝐸𝑛,𝑇𝑖)⟩ .
802
+ (16)
803
+ 3 TESTS AND BENCHMARKING
804
+ Here we show various numerical tests of the radiation transfer and a
805
+ benchmark of the thermochemsitry against Cloudy. For our bench-
806
+ marks, we fiducially use 8 bins, logarithmically spaced between 1 -
807
+ 10 keV, following Meijerink & Spaans (2005).
808
+ 3.1 Point Source Test
809
+ Our first test is a single central point source with a constant luminosity
810
+ distribution, 𝐿𝑥,𝑛 = 1 L⊙ for all 𝑁bin bins, embedded in a volume
811
+ with a uniform density of 𝑛(𝐻) = 2 × 103 cm−3 and a spatially
812
+ constant temperature 𝑇 = 10 Kelvin in a (30 pc)3 volume. We use
813
+ a constant luminosity to better compare the solutions of different
814
+ energy bins. We then compute the radial profiles of the energy density
815
+ and compare against the analytic solution:
816
+ 𝐽(𝐸, 𝑟) = 𝐿𝑥(𝐸) 𝑒−𝜎𝑥 (𝐸)𝜌𝑟
817
+ 4𝜋𝑟2
818
+ (17)
819
+ where the energy density, 𝜖 = 𝐽(𝐸)/𝑐.
820
+ Figure 5 shows the performance of XRayTheSpot for a single
821
+ bright point source as a function of radius. The results in figure 5
822
+ used 𝜂𝑅 = 4, 𝑁side = 8 and 𝑁block = 8, where 𝑁block is the number of
823
+ blocks of cells per spatial dimension, and one block consists of a cube
824
+ of 83 cells. The radial range was chosen that for the lowest energy bin,
825
+ the emission transitions from optically thin to strongly optically thick,
826
+ with the maximum radius corresponding to 𝜏(𝐸 = 1.17eV) ≈ 10.
827
+ The left panel shows the comparison between the ray trace solution
828
+ and the analytic solution. These solutions agree well with each other
829
+ with the lines largely overlapping. The right panel shows the relative
830
+ error, defined as
831
+ 𝛿𝑐 = |𝑐𝜀 − 𝐽(𝐸, 𝑟)|
832
+ 𝐽(𝐸, 𝑟)
833
+ (18)
834
+ where 𝜀 is the solution from XRayTheSpot. The relative error is
835
+ rather insensitive to the optical depth but more sensitive to how
836
+ strongly the radiation field is coupled to the gas (e.g. the magnitude
837
+ of the photoabsorption cross section). The 10% error shown for the
838
+ most optically thick bin at low energies is due to the mapping of
839
+ the density structure onto the rays using the kernel. For X-ray optical
840
+ depths greater than 𝜏𝑥 ≈ 10, the error starts to increase towards unity,
841
+ but at these energy densities, the X-rays have a negligible impact on
842
+ the thermochemistry. Therefore, these relative differences will have
843
+ no discernible impact on the thermochemical evolution of the gas.
844
+ In order to highlight the differences of the new module with the
845
+ previous cross section implementation presented in Mackey et al.
846
+ (2019), we perform a second calculation imposing a strong temper-
847
+ ature gradient such that the radial temperature profile is
848
+ 𝑇(𝑟) = 5 × 105 [1 − tanh(𝑟 − 8 pc)] + 100 K.
849
+ (19)
850
+ This temperature is artificial and chosen such that the X-ray radiation
851
+ transitions from optically thin to optically thick due to the change in
852
+ MNRAS 000, 1–14 (2022)
853
+
854
+ XRayTheSpot: X-raying Molecular Gas
855
+ 7
856
+ 𝑁block
857
+ 𝑁side
858
+ 𝜂𝑅
859
+ Initialization (s/proc)
860
+ Evolution (s/proc)
861
+ 4
862
+ 2
863
+ 2
864
+ 2.3
865
+ 1.3
866
+ 4
867
+ 4
868
+ 2
869
+ 5.5
870
+ 3.6
871
+ 4
872
+ 4
873
+ 4
874
+ 6.1
875
+ 4.6
876
+ 4
877
+ 8
878
+ 2
879
+ 22.1
880
+ 14.0
881
+ 8
882
+ 4
883
+ 2
884
+ 17.4
885
+ 29.3
886
+ 8
887
+ 8
888
+ 4
889
+ 94.0
890
+ 167.2
891
+ Table 2. Timing for the pont source test for the different runs in Figure 7.
892
+ Each row gives the model parameters of 𝑁block, 𝑁side and 𝜂𝑅 and the time
893
+ in seconds per processor for the initialization of the tree and a ray trace step.
894
+ cross section. Figure 6 shows the result of this comparison and as
895
+ expected, the emission for the lower energy bins is up to an order of
896
+ magnitude greater than the low-temperature solution and maintains
897
+ an 𝑟−2 trend until a much greater radius.
898
+ Figure 7 shows the performance of XRayTheSpot for a range of
899
+ parameters, exploring both low- and high- spatial and ray resolutions.
900
+ We find that grid resolution is the primary source of deviations at
901
+ small radius, while the ray resolution increases the accuracy at larger
902
+ radii. At large distances from the source, the solution tends to slightly
903
+ under predict for low ray and angular resolution due to overestimation
904
+ of the column density. At small radii, the solution over-predicts the
905
+ resulting flux. For optically thin radiation bins, the solution almost
906
+ exactly matches the analytic. Therefore, the deviations come about
907
+ due to mapping the mass from the cells and tree nodes onto the rays
908
+ using the kernel.
909
+ For science uses, the number of blocks, 𝑁block, is determined by
910
+ the necessary resolution to resolve crucial gas dynamics (e.g. the
911
+ Jeans length for gravity simulations). Increasing both 𝑁side and 𝜂𝑅,
912
+ while producing more accurate radiation transfer solutions, leads to
913
+ substantially higher computational costs. Table 2 shows the compu-
914
+ tational time per processor for the initialization and per ray trace step
915
+ for the models in Figure 7. Between the lowest and highest accuracy
916
+ tests, (𝑁block, 𝑁side, 𝜂𝑅) = (4, 2, 2) and (8, 8, 4), respectively, the
917
+ increase in cost of the initialization and ray trace was a factor of ≈
918
+ 40 and ≈ 130, respectively. The time for the raytrace is dominated
919
+ (≥ 95%) by the tree walk. We find using 𝑁side = 4 is the best balance
920
+ of time and accuracy.
921
+ 3.2 Shadow Test
922
+ Our next test is a shadow test to verify the solution of the solver when
923
+ sources are placed near dense regions. Here, we have a 𝐿𝑋 = 10 L⊙
924
+ source with a spectrum, 𝑑𝐿/𝑑𝐸 ∝ 𝐸−2, placed near a dense core with
925
+ a hydrogen-nuclei number density of 𝑛H = 103 cm−3. We consider
926
+ radiation between 1 - 10 keV, moving from optically thick bands to
927
+ optically thin. Figures 8 and 9 show the results of this test, for both
928
+ low- and high- ray resolution which use (𝑁block = 8, 𝑁side = 4,
929
+ 𝜂𝑅 = 2) and (𝑁block = 8, 𝑁side = 8, 𝜂𝑅 = 4), respectively. For both
930
+ cases, the test reveals the expected results that the low-energy X-rays
931
+ are absorbed by the dense core and this creates a wide-angle shadow,
932
+ while higher energy X-rays are barely attenuated, producing smaller
933
+ to no shadows. The high-ray resolution test also shows the expected
934
+ drop in ray-tracing artifacts.
935
+ Figure 10 shows a one-dimensional cut along the z-axis from the
936
+ source through the dense blob of gas for the two ray resolutions
937
+ compared. The figure shows that higher ray resolution leads to a
938
+ smoother attenuation of the flux for the optically thick, lower energy
939
+ bins while there is very little change for higher energy bins which
940
+ are substantially less attenuated. This is most pronounced for the
941
+ 𝐸𝑐 = 1.33 keV bin
942
+ 3.3 Benchmark against Cloudy
943
+ The final benchmark tests the X-ray radiation coupling to the ther-
944
+ mochemistry. We place a point source with a physical size of 1016
945
+ cm and total X-ray luminosity, 𝐿XR = 1036 erg s−1, and a luminosity
946
+ spectrum 𝑑𝐿/𝑑𝐸 ∝ 𝐸−2 between 1 - 10 keV in a (1.3 pc)3 volume
947
+ filled with a gas number density of 𝑛H = 103 cm−3, 𝑁side = 4,
948
+ and 𝜂𝑅 = 2. and compare with a one-dimensional model using the
949
+ Cloudy code. The volume and resolution were chosen such the inner
950
+ XDR is resolved by ≈ 20 cells while the optically thick regime is
951
+ also traced. In particular, we use 7 maximum adaptive-mesh reso-
952
+ lution levels refining on the density and temperature, such that the
953
+ maximal resolution is 1.3 × 10−3 pc. The one-dimensional Cloudy
954
+ model used a “sphere” geometry, an input power-law spectrum be-
955
+ tween 1 - 10 keV for the X-ray radiation source, a cosmic microwave
956
+ background and a cosmic-ray ionization rate of 3 × 10−17 s−1. Fur-
957
+ ther, we turn off grain physics, induced radiative processes, radiation
958
+ pressure, radiation scattering, outward line radiation transfer and
959
+ molecule freeze-out, since the Flash simulations do not have these
960
+ processes. Finally, we set refractory metal abundances to zero, with
961
+ the exception of silicon which Flash uses as the proxy for metals
962
+ for the chemistry (as described above). The Cloudy script used is
963
+ shown in Appendix A.
964
+ Using uniform-spaced grids, even with substantial AMR levels
965
+ and, it is in practice difficult to fully capture sharp thermochemical
966
+ transition regions, such as that shown below as captured by Cloudy.
967
+ Further, the source encompasses several cells at the highest reso-
968
+ lution, rather than an infinitely small point source. Capturing such
969
+ ionization and dissociation fronts entirely is numerically intensive
970
+ and generally requires the use of one-dimensional models tailored to
971
+ do so (as with Cloudy).
972
+ Figure 11 shows the result of this benchmark, using . Near the
973
+ source, the temperature and chemistry solutions well match the
974
+ Cloudy solution. The Flash and Cloudy solutions qualitatively
975
+ reproduce the chemical structure, although due to the larger cell-size
976
+ of the Flash grids, the sharp HI transition seen at 𝑁(𝐻) ≈ 5 × 1020
977
+ cm−2 is not fully captured and is instead smoothed over a few cells.
978
+ The temperature solutions agree within a factor of a few. However,
979
+ Cloudy solves the line cooling and level excitations in a much more
980
+ robust manner than the included Flash thermochemistry, including
981
+ a full non-equilibrium solution with many more electronic and ion-
982
+ ization states. Such inclusions though are not numerically feasible
983
+ for in-situ thermochemistry in three-dimensional MHD simulations.
984
+ Further, Cloudy solves the full radiation transfer solution from radio
985
+ through X-ray radiation with substantially more bins. Given the con-
986
+ straints of these physics, the found solution is deemed to be adequate
987
+ and matches the overall trends as determined by Cloudy.
988
+ 4 PROTOSTELLAR DISK
989
+ Evolved protostellar objects, in particular Class II objects in which the
990
+ lack of a surrounding gaseous envelope leaves the central protostar
991
+ and disk exposed, are known to be X-ray emitters. These X-rays
992
+ can become important for disk dynamics and planet formation (e.g.
993
+ Ercolano et al. 2008b; Mohanty et al. 2013). For these stars, the
994
+ X-ray emission is thought to come from a combination of accretion
995
+ and magnetospheric emission (Hartmann et al. 2016). As a first test
996
+ science case, we model the X-ray radiation transport from a central
997
+ protostar into a protostellar disk.
998
+ The surface density follows from the often used truncated power-
999
+ law (e.g. Lynden-Bell & Pringle 1974; Andrews et al. 2011; Cleeves
1000
+ MNRAS 000, 1–14 (2022)
1001
+
1002
+ 8
1003
+ Gaches et al.
1004
+ 100
1005
+ 101
1006
+ r (pc)
1007
+ 10
1008
+ 20
1009
+ 10
1010
+ 18
1011
+ 10
1012
+ 16
1013
+ 10
1014
+ 14
1015
+ (erg/cm3)
1016
+ 1.17 keV
1017
+ 1.56 keV
1018
+ 2.07 keV
1019
+ 2.77 keV
1020
+ TreeRay
1021
+ 3.69 keV
1022
+ 4.92 keV
1023
+ 6.56 keV
1024
+ 8.75 keV
1025
+ Analytic
1026
+ 100
1027
+ 101
1028
+ E (keV)
1029
+ 10
1030
+ 24
1031
+ 10
1032
+ 23
1033
+ 10
1034
+ 22
1035
+ (cm
1036
+ 2)
1037
+ 1.17 keV
1038
+ 1.56 keV
1039
+ 2.07 keV
1040
+ 2.77 keV
1041
+ TreeRay
1042
+ 3.69 keV
1043
+ 4.92 keV
1044
+ 6.56 keV
1045
+ 8.75 keV
1046
+ Analytic
1047
+ 2
1048
+ 4
1049
+ 6
1050
+ 8
1051
+ 10
1052
+ r (pc)
1053
+ 10
1054
+ 4
1055
+ 10
1056
+ 3
1057
+ 10
1058
+ 2
1059
+ 10
1060
+ 1
1061
+ 100
1062
+ Relative Error
1063
+ c
1064
+ Figure 5. Radial profile test for a single source in a constant density and temperature medium. Left: Radiation density versus radius for each bin for the TreeRay
1065
+ (solid) and analytic solution (dotted). Left inset: Bin-averaged cross sections (black points) and the analytic cross section in Eq. 1. Right: Relative errors for each
1066
+ bin as a function of radius.
1067
+ 100
1068
+ 101
1069
+ r (pc)
1070
+ 10
1071
+ 20
1072
+ 10
1073
+ 18
1074
+ 10
1075
+ 16
1076
+ 10
1077
+ 14
1078
+ (erg/cm3)
1079
+ 1.17 keV
1080
+ 1.56 keV
1081
+ 2.07 keV
1082
+ 2.77 keV
1083
+ 3.69 keV
1084
+ 4.92 keV
1085
+ 6.56 keV
1086
+ 8.75 keV
1087
+ Const T
1088
+ Temp Grad
1089
+ Const T
1090
+ Temp Grad
1091
+ 103
1092
+ 104
1093
+ 105
1094
+ 106
1095
+ Temperature (K)
1096
+ Figure 6. X-ray energy density versus radius for single point source. The
1097
+ solid line uses the constant temperature at 𝑇 = 10 K (same as Figure 5) while
1098
+ the dashed-dotted line uses the temperature profile shown by the red dotted
1099
+ line.
1100
+ et al. 2016):
1101
+ Σ𝑔(𝑅) = Σ𝑐
1102
+ � 𝑅
1103
+ 𝑅𝑐
1104
+ �−𝛼
1105
+ exp
1106
+
1107
+
1108
+ � 𝑅
1109
+ 𝑅𝑐
1110
+ �2−𝛼�
1111
+ (20)
1112
+ between an inner and outer radius, 𝑅in and 𝑅out, respectively, 𝑅𝑐
1113
+ is the critical radius where the surface density distribution becomes
1114
+ exponential, 𝛼 is the power law index and Σ𝑐 is the characteristic
1115
+ surface where the disk transitions to an exponential profile. For the
1116
+ initial conditions, we assume the gas is in hyrostatic equilibrium,
1117
+ such that the density follows
1118
+ 𝜌𝑔(𝑅, 𝑧) = Σ𝑔(𝑅)
1119
+
1120
+ 2𝜋ℎ
1121
+ exp
1122
+
1123
+
1124
+ � 𝑧2
1125
+ 2ℎ2
1126
+ ��
1127
+ (21)
1128
+ where ℎ = 𝑐𝑠/Ω is the disk scale height, 𝑐𝑠 =
1129
+ √︃ 𝛾𝑘𝑏𝑇𝑔
1130
+ 𝜇𝑚H , 𝑘𝐵 is
1131
+ Boltzmann’s constant, 𝛾 = 5/3 is the adiabatic index, 𝑇𝑔 is the gas
1132
+ temperature, 𝜇 = 2.33 is the mean mass per particle for molecular gas,
1133
+ 𝑚𝐻 is the mass of the hydrogen atom, Ω = 3
1134
+ 4
1135
+ √︃
1136
+ 𝐺𝑀∗
1137
+ 𝑅3
1138
+ is the Keplerian
1139
+ rotational frequency and 𝑀∗ is the mass of the central protostellar
1140
+ object. For this fiducial test, we set 𝑀∗ = 0.7 M⊙, Σ𝑐 = 64 g cm−2,
1141
+ 𝑅𝑐 = 100 AU, 𝛼 = 1. The temperature profile is given by
1142
+ 𝑇(𝑅) = max
1143
+
1144
+ 𝑇0
1145
+
1146
+ 𝑅
1147
+ 1𝐴𝑈
1148
+ �−0.5
1149
+ , 10 K
1150
+
1151
+ ,
1152
+ (22)
1153
+ where we fiducially take 𝑇0 = 50 K. The disk is initialized to be
1154
+ rotating in Keplerian motion around the central protostellar object.
1155
+ We assume the disk is magnetized with an initial toroidal field such
1156
+ that the ratio of the magnetic to thermal pressure, 𝜇𝑀 = 10−5. We
1157
+ simulate the domain in a 240 AU box with a maximal resolution of
1158
+ 1 AU.
1159
+ The central protostar is put in by hand, with active accretion. For
1160
+ the X-ray emission, we assume an accretion floor of 10−9 M⊙ yr−1,
1161
+ similar to rates observed in young stellar objects (e.g. Ingleby et al.
1162
+ 2013). The simulation is run using the Bouchut-5 MHD solver, grav-
1163
+ ity, and XRayTheSpot. The X-ray emission is derived by assuming
1164
+ there is an accretion shock, with properties following “hot spot” ac-
1165
+ cretion (Hartmann et al. 2016) with accretion columns filling 10% of
1166
+ the protostar surface, thermally emitting X-ray emission. The ther-
1167
+ mal X-ray emission is computed using a one-temperature Raymond-
1168
+ Smith plasma model (Raymond & Smith 1977). The implementation
1169
+ of a coronal model is left for a future work.
1170
+ Figure 12 shows a slice of the density, gas temperature, X-ray
1171
+ emission at 1.17 keV (1st bin) and 6.56 keV (8th bin), the heating
1172
+ rate per H nucleus, 𝐻𝑥, and 𝐻𝑥/𝑛, which is often used as a diagnostic
1173
+ for the importance of the X-ray heating (Wolfire et al. 2022). We find
1174
+ that the lowest energy X-rays are all absorbed near the protostar or
1175
+ escape through the outflow. However, the harder X-rays at 6.56 keV
1176
+ are able to permeate much of the domain. The 𝐻𝑋 and 𝐻𝑥/𝑛 slices
1177
+ MNRAS 000, 1–14 (2022)
1178
+
1179
+ XRayTheSpot: X-raying Molecular Gas
1180
+ 9
1181
+ 101
1182
+ 2 × 100
1183
+ 3 × 100
1184
+ 4 × 100
1185
+ 6 × 100
1186
+ r (pc)
1187
+ 10
1188
+ 20
1189
+ 10
1190
+ 18
1191
+ 10
1192
+ 16
1193
+ 10
1194
+ 14
1195
+ (erg/cm3)
1196
+ Nblock = 4, Nside = 4,
1197
+ R = 4
1198
+ 1.17 keV
1199
+ 1.56 keV
1200
+ 2.07 keV
1201
+ 2.77 keV
1202
+ TreeRay
1203
+ 3.69 keV
1204
+ 4.92 keV
1205
+ 6.56 keV
1206
+ 8.75 keV
1207
+ Analytic
1208
+ 2
1209
+ 4
1210
+ 6
1211
+ 8
1212
+ 10
1213
+ r (pc)
1214
+ 10
1215
+ 3
1216
+ 10
1217
+ 2
1218
+ 10
1219
+ 1
1220
+ 100
1221
+ c
1222
+ 1.17 keV
1223
+ 1.56 keV
1224
+ 2.07 keV
1225
+ 2.77 keV
1226
+ TreeRay
1227
+ 3.69 keV
1228
+ 4.92 keV
1229
+ 6.56 keV
1230
+ 8.75 keV
1231
+ Analytic
1232
+ 101
1233
+ 2 × 100
1234
+ 3 × 100
1235
+ 4 × 100
1236
+ 6 × 100
1237
+ r (pc)
1238
+ 10
1239
+ 20
1240
+ 10
1241
+ 18
1242
+ 10
1243
+ 16
1244
+ 10
1245
+ 14
1246
+ (erg/cm3)
1247
+ Nblock = 4, Nside = 2,
1248
+ R = 2
1249
+ 2.5
1250
+ 5.0
1251
+ 7.5
1252
+ 10.0
1253
+ r (pc)
1254
+ 10
1255
+ 3
1256
+ 10
1257
+ 2
1258
+ 10
1259
+ 1
1260
+ 100
1261
+ c
1262
+ 101
1263
+ 2 × 100
1264
+ 3 × 100
1265
+ 4 × 100
1266
+ 6 × 100
1267
+ r (pc)
1268
+ 10
1269
+ 21
1270
+ 10
1271
+ 19
1272
+ 10
1273
+ 17
1274
+ 10
1275
+ 15
1276
+ 10
1277
+ 13
1278
+ (erg/cm3)
1279
+ Nblock = 4, Nside = 4,
1280
+ R = 2
1281
+ 2.5
1282
+ 5.0
1283
+ 7.5
1284
+ 10.0
1285
+ r (pc)
1286
+ 10
1287
+ 3
1288
+ 10
1289
+ 2
1290
+ 10
1291
+ 1
1292
+ 100
1293
+ c
1294
+ 101
1295
+ 2 × 100
1296
+ 3 × 100
1297
+ 4 × 100
1298
+ 6 × 100
1299
+ r (pc)
1300
+ 10
1301
+ 20
1302
+ 10
1303
+ 18
1304
+ 10
1305
+ 16
1306
+ 10
1307
+ 14
1308
+ (erg/cm3)
1309
+ Nblock = 4, Nside = 8,
1310
+ R = 2
1311
+ 2.5
1312
+ 5.0
1313
+ 7.5
1314
+ 10.0
1315
+ r (pc)
1316
+ 10
1317
+ 3
1318
+ 10
1319
+ 2
1320
+ 10
1321
+ 1
1322
+ 100
1323
+ c
1324
+ 101
1325
+ 2 × 100
1326
+ 3 × 100 4 × 100
1327
+ 6 × 100
1328
+ r (pc)
1329
+ 10
1330
+ 21
1331
+ 10
1332
+ 19
1333
+ 10
1334
+ 17
1335
+ 10
1336
+ 15
1337
+ 10
1338
+ 13
1339
+ (erg/cm3)
1340
+ Nblock = 8, Nside = 4,
1341
+ R = 2
1342
+ 2.5
1343
+ 5.0
1344
+ 7.5
1345
+ 10.0
1346
+ r (pc)
1347
+ 10
1348
+ 3
1349
+ 10
1350
+ 2
1351
+ 10
1352
+ 1
1353
+ 100
1354
+ c
1355
+ 101
1356
+ 2 × 100
1357
+ 3 × 100 4 × 100
1358
+ 6 × 100
1359
+ r (pc)
1360
+ 10
1361
+ 20
1362
+ 10
1363
+ 18
1364
+ 10
1365
+ 16
1366
+ 10
1367
+ 14
1368
+ (erg/cm3)
1369
+ Nblock = 8, Nside = 8,
1370
+ R = 4
1371
+ 2.5
1372
+ 5.0
1373
+ 7.5
1374
+ 10.0
1375
+ r (pc)
1376
+ 10
1377
+ 3
1378
+ 10
1379
+ 2
1380
+ 10
1381
+ 1
1382
+ 100
1383
+ c
1384
+ Figure 7. . Energy density versus radius for the different model parameters, annotated in the top left of each subfigure. Inset: Relative error, 𝛿𝑐, of the numerical
1385
+ solution against the analytic solution as a function of radius from the source.
1386
+ MNRAS 000, 1–14 (2022)
1387
+
1388
+ 10
1389
+ Gaches et al.
1390
+ 15
1391
+ 10
1392
+ 5
1393
+ 0
1394
+ 5
1395
+ 10
1396
+ 15
1397
+ y (pc)
1398
+ Density
1399
+ 1.33 keV
1400
+ 1.78 keV
1401
+ 15
1402
+ 10
1403
+ 5
1404
+ 0
1405
+ 5
1406
+ 10
1407
+ 15
1408
+ y (pc)
1409
+ 2.37 keV
1410
+ 3.16 keV
1411
+ 4.22 keV
1412
+ 10
1413
+ 0
1414
+ 10
1415
+ x (pc)
1416
+ 15
1417
+ 10
1418
+ 5
1419
+ 0
1420
+ 5
1421
+ 10
1422
+ 15
1423
+ y (pc)
1424
+ 5.62 keV
1425
+ 10
1426
+ 0
1427
+ 10
1428
+ x (pc)
1429
+ 7.50 keV
1430
+ 10
1431
+ 0
1432
+ 10
1433
+ x (pc)
1434
+ 10.00 keV
1435
+ 0
1436
+ 2
1437
+ 4
1438
+ nH (cm
1439
+ 3)
1440
+ 18.0
1441
+ 17.5
1442
+ 17.0
1443
+ 16.5
1444
+ 16.0
1445
+ 15.5
1446
+ 15.0
1447
+ 14.5
1448
+ 14.0
1449
+ Fi (erg cm
1450
+ 2 s
1451
+ 1)
1452
+ Figure 8. Shadow test, consisting of a point source illuminating a constant
1453
+ density core. Top left corner: Number density distribution for a z-axis slice.
1454
+ Others: X-ray flux in the given energy band for a z-axis slice using 𝑁block = 8,
1455
+ 𝑁side = 4, 𝜂𝑅 = 2.
1456
+ 15
1457
+ 10
1458
+ 5
1459
+ 0
1460
+ 5
1461
+ 10
1462
+ 15
1463
+ y (pc)
1464
+ Density
1465
+ 1.33 keV
1466
+ 1.78 keV
1467
+ 15
1468
+ 10
1469
+ 5
1470
+ 0
1471
+ 5
1472
+ 10
1473
+ 15
1474
+ y (pc)
1475
+ 2.37 keV
1476
+ 3.16 keV
1477
+ 4.22 keV
1478
+ 10
1479
+ 0
1480
+ 10
1481
+ x (pc)
1482
+ 15
1483
+ 10
1484
+ 5
1485
+ 0
1486
+ 5
1487
+ 10
1488
+ 15
1489
+ y (pc)
1490
+ 5.62 keV
1491
+ 10
1492
+ 0
1493
+ 10
1494
+ x (pc)
1495
+ 7.50 keV
1496
+ 10
1497
+ 0
1498
+ 10
1499
+ x (pc)
1500
+ 10.00 keV
1501
+ 0
1502
+ 2
1503
+ 4
1504
+ nH (cm
1505
+ 3)
1506
+ 18.0
1507
+ 17.5
1508
+ 17.0
1509
+ 16.5
1510
+ 16.0
1511
+ 15.5
1512
+ 15.0
1513
+ 14.5
1514
+ 14.0
1515
+ Fi (erg cm
1516
+ 2 s
1517
+ 1)
1518
+ Figure 9. Same as Figure 8, but with 𝑁block = 8, 𝑁side = 8 and 𝜂𝑅 = 4.
1519
+ 100
1520
+ 101
1521
+ zsrc (pc)
1522
+ 0
1523
+ 10
1524
+ 18
1525
+ 10
1526
+ 17
1527
+ 10
1528
+ 16
1529
+ 10
1530
+ 15
1531
+ 10
1532
+ 14
1533
+ e (erg/cm3)
1534
+ 1.33 keV
1535
+ 1.78 keV
1536
+ 2.37 keV
1537
+ 3.16 keV
1538
+ 4.22 keV
1539
+ 5.62 keV
1540
+ 7.50 keV
1541
+ 10.00 keV
1542
+ Fiducial
1543
+ High Res.
1544
+ Fiducial
1545
+ High Res.
1546
+ 100
1547
+ 101
1548
+ 102
1549
+ 103
1550
+ 104
1551
+ Hydrogen Density (cm
1552
+ 3)
1553
+ Figure 10. X-ray energy density versus distance along the z-axis from the
1554
+ source for the shadow test. The solid line uses the ray resolution in Figure 8 and
1555
+ the dashed-dot uses the ray resolution in Figure 9. The dotted red line shows
1556
+ the hydrogen nuclei density highlighting the location of the high-density blob.
1557
+ clearly show that the disk midplane is left relatively unheated by the
1558
+ X-rays, although the X-rays become important in the cavity and outer
1559
+ disk regions. In particular, most of the cavity exhibits very warm gas,
1560
+ even with only X-ray emission included, due to the rapid absorption
1561
+ of soft X-ray emission. The cavity heats to temperatures exceeding
1562
+ 104 Kelvin, potentially becoming bright in hydrogen recombination
1563
+ lines. The inclusion of EUV radiation will heat the diffuse gas further,
1564
+ along with further ionizing the surrounding low-density cavity.
1565
+ 5 MOLECULAR CLOUD
1566
+ We present an example application for XRayTheSpot, to demon-
1567
+ strate how all the different TreeRay energy bands work together: a
1568
+ virialized, magnetized turbulent cloud. We consider a 2 pc region of
1569
+ a molecular cloud resolved with 2563 cells. We produce an initial
1570
+ turbulent field by stirring the domain with a flat power spectrum
1571
+ between the largest wave modes 𝑘 = 1...3 for 10 crossing times at
1572
+ a velocity dispersion of 0.72 km s−1, consistent with the observed
1573
+ linewidth-size relationship (McKee & Ostriker 2007). During the stir-
1574
+ ring, we use periodic boundary conditions and chemistry to achieve
1575
+ more accurate initial conditions for the abundances before collapse.
1576
+ The choice of stirring for 10 crossing times is to ensure the chemistry
1577
+ has reached a more quiescent state, with the kinetic energy spectrum
1578
+ generally being reached after two crossing times (Federrath et al.
1579
+ 2010). We assume the cloud is nearly virialized, such that the virial
1580
+ parameter
1581
+ 𝛼 ≡ 5𝜎2𝑅
1582
+ 𝐺𝜌𝐿3 = 2
1583
+ (23)
1584
+ where 𝑅 = 𝐿 is the box length, resulting in 𝜌 = 5 × 10−21 (g cm−3)
1585
+ and a total box mass of 𝑀 = 590 M⊙. Before stirring, we initialize
1586
+ a magnetic field in the 𝑧-axis with a magnitude such that the plasma
1587
+ beta,
1588
+ 𝛽 ≡
1589
+ 𝜌𝑐2𝑠
1590
+ 𝐵2/8𝜋 = 103.
1591
+ (24)
1592
+ After the turbulence is initialized, gravity and source particles (stars)
1593
+ are turned on and the boundary conditions are changed to “diode”
1594
+ MNRAS 000, 1–14 (2022)
1595
+
1596
+ XRayTheSpot: X-raying Molecular Gas
1597
+ 11
1598
+ 1019
1599
+ 1020
1600
+ 1021
1601
+ Hydrogen Column Density
1602
+ 101
1603
+ 102
1604
+ 103
1605
+ 104
1606
+ Temperature (K)
1607
+ Cloudy
1608
+ Flash
1609
+ 1019
1610
+ 1020
1611
+ 1021
1612
+ Hydrogen Column Density
1613
+ 10
1614
+ 7
1615
+ 10
1616
+ 6
1617
+ 10
1618
+ 5
1619
+ 10
1620
+ 4
1621
+ 10
1622
+ 3
1623
+ 10
1624
+ 2
1625
+ 10
1626
+ 1
1627
+ 100
1628
+ Abundances
1629
+ H/Htot
1630
+ 2H2/Htot
1631
+ Figure 11. Flash vs Cloudy benchmark. Left: Temperature versus hydrogen column density from the central point source for Flash (black) and Cloudy
1632
+ (blue). Right: Atomic (solid) and molecular (dashed) hydrogen abundances versus total hydrogen column density from the source, where Htot = H+ + H + 2H2.
1633
+ t = 100 yr
1634
+ 10
1635
+ 20
1636
+ 10
1637
+ 19
1638
+ 10
1639
+ 18
1640
+ 10
1641
+ 17
1642
+ 10
1643
+ 16
1644
+ 10
1645
+ 15
1646
+ 10
1647
+ 14
1648
+ 102
1649
+ 103
1650
+ 104
1651
+ 10
1652
+ 10
1653
+ 10
1654
+ 9
1655
+ 10
1656
+ 8
1657
+ 10
1658
+ 7
1659
+ 10
1660
+ 6
1661
+ 10
1662
+ 23
1663
+ 10
1664
+ 22
1665
+ 10
1666
+ 21
1667
+ 10
1668
+ 20
1669
+ 10
1670
+ 19
1671
+ 10
1672
+ 18
1673
+ 10
1674
+ 17
1675
+ 10
1676
+ 29
1677
+ 10
1678
+ 28
1679
+ 10
1680
+ 27
1681
+ 10
1682
+ 26
1683
+ 10
1684
+ 25
1685
+ 10
1686
+ 24
1687
+ 10
1688
+ 23
1689
+ 10
1690
+ 10
1691
+ 10
1692
+ 9
1693
+ 10
1694
+ 8
1695
+ 10
1696
+ 7
1697
+ 10
1698
+ 6
1699
+ Figure 12. Protostellar disk example case usage. Top row: Slice plots at 𝑧 = 0 for the density (left), gas temperature (middle) and 1.17 keV radiation energy
1700
+ density. Bottom row: X-ray heating rate, H𝑥 (left), H𝑥/n diagnostic term (middle) and 6.56 keV radiation energy density.
1701
+ such that gas can flow out of the domain. During the simulation, the
1702
+ cloud is irradiated by an FUV radiation field of 𝜒 = 1.7 in units
1703
+ of the Habing field (Habing 1968). The simulation is run using the
1704
+ chemistry described above, and all TreeRay modules:
1705
+ • OpticalDepth for the external radiation field (Wünsch et al.
1706
+ 2018). OpticalDepth solves for the column density from a cell to
1707
+ the external boundary and attenuates a prescribes external radiation
1708
+ flux (𝜒 = 1.7). In this study, it is only used for the FUV radiation,
1709
+ while (Mackey et al. 2019) implemented the ability to include an
1710
+ impinging X-ray flux.
1711
+ • OnTheSpot for the EUV emission (Wünsch et al. 2021). This
1712
+ module solves for UV-ionizing radiation from arbitrary sources and
1713
+ MNRAS 000, 1–14 (2022)
1714
+
1715
+ 12
1716
+ Gaches et al.
1717
+ iterates to convergence. The UV photon flux is coupled to the ther-
1718
+ mochemistry to model photochemistry.
1719
+ • RadPressure to account for the thermal radiation and radiation
1720
+ pressure (Klepitko et al. 2022). This module enables the inclusion
1721
+ of thermal radiation from point and diffuse sources and the resulting
1722
+ radiation pressure. The thermal radiation is included in the chemistry
1723
+ through radiative dust heating.
1724
+ • XRayTheSpot, described above.
1725
+ Sink particles representing protostars are injected when the den-
1726
+ sity exceeds 𝜌thresh ≥ 4.59×10−18 g cm−3. Further criteria are used:
1727
+ there are checks to ensure a local gravitational potential and a con-
1728
+ verging flow. The protostar evolution follows the Offner et al. (2009)
1729
+ model and implemented in Flash (Klepitko et al. 2022). Protostellar
1730
+ emission consists of the intrinsic and accretion luminosities, where
1731
+ the total accretion luminosity is
1732
+ 𝐿acc = 𝑓acc
1733
+ 𝐺𝑀∗ �𝑀∗
1734
+ 𝑅∗
1735
+ ,
1736
+ (25)
1737
+ where 𝑀∗ is the mass of the protostar,
1738
+ �𝑀∗ is the accretion rate,
1739
+ 𝑅∗ is the protostar’s radius and we take 𝑓acc = 0.33. The X-ray
1740
+ spectrum was computed by assuming hot-spot accretion, described
1741
+ above, which provides the temperature and the density of the accre-
1742
+ tion shocks near the protostellar surface (Calvet & Gullbring 1998;
1743
+ Hartmann et al. 2016) and a single temperature plasma model (Ray-
1744
+ mond & Smith 1977). Due to the low resolution, we set a minimum
1745
+ of �𝑀∗ = 10−9 M⊙ yr−1. This is needed since when the protostar
1746
+ particles first form, the burst of accretion blows out HII regions, and
1747
+ the low resolution inhibits resolving the proper structure around the
1748
+ cores. The infrared to EUV spectrum, used for RadPressure and
1749
+ OnTheSpot is computed assuming the emission is composed of two
1750
+ blackbodies: one for the intrinsic spectrum of the protostar at the
1751
+ photosphere, such that
1752
+ 𝑇∗ =
1753
+
1754
+ 𝐿∗
1755
+ 4𝜋𝜎sb𝑅2∗
1756
+ �1/4
1757
+ ,
1758
+ (26)
1759
+ which is provided by the protostellar evolution model, and another
1760
+ assuming the accretion luminosityisreprocessedprimarily as a black-
1761
+ body with temperature 𝑇acc, such that
1762
+ 𝑇acc =
1763
+
1764
+ 𝐿acc
1765
+ 4𝜋𝜎sb𝑅2∗
1766
+ �1/4
1767
+ ,
1768
+ (27)
1769
+ where 𝜎sb is the Stefan-Boltzmann constant. Therefore, the total
1770
+ infrared luminosity from the protostar is described as
1771
+ 𝐿∗,IR = 𝑓∗,IR(𝑇∗)𝐿∗ + 𝑓acc,IR(𝑇acc)𝐿acc
1772
+ (28)
1773
+ and the EUV luminosity as
1774
+ 𝐿∗,EUV = 𝑓∗,EUV(𝑇∗)𝐿∗ + 𝑓acc,EUV(𝑇acc)𝐿acc
1775
+ (29)
1776
+ where 𝑓IR(𝑇) and 𝑓UV(𝑇) are the fraction of the blackbody emis-
1777
+ sion in each of these bands (𝐸 < 13.6 eV and 13.6 eV ≤ 𝐸 ≤ 100
1778
+ eV, respectively). The X-ray emission was computed assuming the
1779
+ “hot-spot” model, described above. While there may be some double
1780
+ counting of emission by treating the total spectrum in the two differ-
1781
+ ent methods, we find this impact is marginal as the X-ray emission
1782
+ generally accounts for only a small fraction (≤ 10%) of the total
1783
+ protostellar luminosity.
1784
+ Figure 13 shows the column density, and density-weighted projec-
1785
+ tions of the gas and temperature, radiation temperature, EUV photon
1786
+ density and X-ray energy densities after ≈ 1 Myr of evolution with
1787
+ gravity. The star formation, as traced by heated knots of gas, is oc-
1788
+ curring along a main filament structure. The high temperatures here
1789
+ are primarily caused by the EUV photons, which are rapidly ab-
1790
+ sorbed in the nearby gas. The X-ray emission is found to be highly
1791
+ absorbed along the main filament structure, and instead traces out the
1792
+ more diffuse turbulent structure of the molecular cloud. As expected,
1793
+ higher energy X-ray bands showcase more extended emission with
1794
+ the brightest emission in the 3.7 keV band. In all X-ray bands, the tur-
1795
+ bulent structure of the molecular cloud is seen in the density-weighted
1796
+ integrated emission. This case study highlights the new capabilities
1797
+ of including protostellar radiative feedback from infrared to X-ray in
1798
+ star formation simulations.
1799
+ 6 DISCUSSION/FUTURE WORK
1800
+ We have presented the new X-ray radiation transfer module,
1801
+ XRayTheSpot using the reverse ray-tracing scheme TreeRay im-
1802
+ plemented in Flash (Wünsch et al. 2021). XRayTheSpot enables
1803
+ an arbitrary number of point or diffusive sources of X-ray emission,
1804
+ and an arbitrary number and position of energy bins. The module
1805
+ uses temperature dependent cross sections assuming gas in thermal
1806
+ ionization equilibrium. However, the module is flexible enough such
1807
+ that the user can provide their own cross section data to be used. The
1808
+ module produces the expected behavior for X-ray point sources and
1809
+ shadow tests and is able to reasonably reproduce the thermochemistry
1810
+ compared to Cloudy, despite the significantly simpler treatment of
1811
+ X-ray chemistry and grain-processes in Flash.
1812
+ We demonstrated the utility of this module with two example sci-
1813
+ ence cases focusing on protostellar X-ray emission. First, we mod-
1814
+ elled the emission of an 0.7 M⊙ protostar with an accretion rate of
1815
+ 10−9 M⊙ yr−1 through a protostellar disk. We find that soft X-rays
1816
+ are rapidly absorbed at the disk surfance, with most of the emission
1817
+ escaping through the outflow cavity. However, harder X-rays are able
1818
+ to permeate the disk due to their significantly lower optical depth.
1819
+ The X-ray heating was also strong within the outflow cavity, with no
1820
+ X-ray heating towards the midplane of the disk, as expected. Second,
1821
+ we perform a low-resolution star formation simulation of a turbulent
1822
+ molecular cloud. In this simulation, protostars are self-consistently
1823
+ formed and the X-ray emission modelled on the fly. This simulation
1824
+ includes the entire range of different TreeRay radiation modules:
1825
+ diffuse FUV (OpticalDepth Wünsch et al. (2018)), EUV (OnTheS-
1826
+ pot Wünsch et al. (2021)), thermal radiation and radiation pressure
1827
+ (RadPressure Klepitko et al. (2022)) and X-ray emission from 1
1828
+ keV to 10 keV. Since the X-ray emission in the simulation comes en-
1829
+ tirely from accretion onto the protostars, the X-ray emission is highly
1830
+ variable. Due to the lower resolution and the inclusion of ionizing
1831
+ radiation, the accretion occurs in bursts followed by the expansion of
1832
+ HII regions, which cut off accretion. With higher resolution, accre-
1833
+ tion may still be able to occur through disks, instabilities and more
1834
+ porous density structures. In future work, we will perform higher
1835
+ resolution simulations to model star formation including chemistry
1836
+ and radiation feedback across the electromagnetic spectrum.
1837
+ In this work, we focus primarily on point sources. However,
1838
+ XRayTheSpot makes no differentiation between point sources ver-
1839
+ sus extended more diffusion emission. Future studies will include
1840
+ diffuse X-ray emission from cooling hot gas and shocked gas. Our
1841
+ module currently includes the computation of X-ray emission from
1842
+ accretion onto protostars, and future work will include X-ray models
1843
+ for more types of point sources such as X-ray binaries. The module
1844
+ presented in this work will allow the first-generation of simulations
1845
+ of star formation and galaxies with the inclusion of a wide range of
1846
+ X-ray sources.
1847
+ MNRAS 000, 1–14 (2022)
1848
+
1849
+ XRayTheSpot: X-raying Molecular Gas
1850
+ 13
1851
+ t = 1.08 Myr
1852
+ 10
1853
+ 2
1854
+ 10
1855
+ 1
1856
+ 100
1857
+ 101
1858
+ 102
1859
+ 10
1860
+ 15
1861
+ 20
1862
+ 25
1863
+ 30
1864
+ 8
1865
+ 10
1866
+ 12
1867
+ 14
1868
+ 16
1869
+ 10
1870
+ 10
1871
+ 10
1872
+ 8
1873
+ 10
1874
+ 6
1875
+ 10
1876
+ 4
1877
+ 10
1878
+ 2
1879
+ 10
1880
+ 22
1881
+ 10
1882
+ 21
1883
+ 10
1884
+ 20
1885
+ 10
1886
+ 19
1887
+ 10
1888
+ 18
1889
+ 10
1890
+ 17
1891
+ 10
1892
+ 19
1893
+ 10
1894
+ 18
1895
+ 10
1896
+ 17
1897
+ 10
1898
+ 19
1899
+ 10
1900
+ 18
1901
+ 10
1902
+ 17
1903
+ 10
1904
+ 16
1905
+ 10
1906
+ 18
1907
+ 10
1908
+ 17
1909
+ 10
1910
+ 16
1911
+ Figure 13. Panel plots highlighting the features of a 2 pc piece of a molecular cloud after 𝑡 = 1.08 Myr of evolution. For all fields except the column density, the
1912
+ panel is showing the density-weighted projection. All projections are along the z-axis. The figure shows a simulated molecular cloud after 1 Myr of gravitational
1913
+ evolution including protostar sink particles and radiation feedback from infrared to X-rays. While the EUV radiation is rapidly absorbed (indicated by the black
1914
+ background color), the infrared and X-ray emission is able to penetrate much further into the cloud.
1915
+ ACKNOWLEDGEMENTS
1916
+ BALG and SWG acknowledges support by the ERC starting grant
1917
+ No. 679852 ‘RADFEEDBACK’. SWG and BALG thank the German
1918
+ Science Foundation (DFG) for funding through SFB956 project C5.
1919
+ We also thank the Regional Computing Center Cologne (RRZK)
1920
+ for hosting our HPC cluster, Odin, on which the simulations have
1921
+ been performed. RW acknowledges the support by project 20-
1922
+ 19854S of the Czech Science Foundation and by the institutional
1923
+ project RVO:67985815. JM acknowledges support from a Royal
1924
+ Society-Science Foundation Ireland University Research Fellowship
1925
+ (20/RS-URF-R/3712) and an Irish Research Council Starting Lau-
1926
+ reate Award (IRCLA\2017\83). The authors thank Andre Klepitko
1927
+ for many helpful discussions. Andre Klepitko also implemented the
1928
+ protostellar evolution model into the code. The software used in this
1929
+ work was in part developed by the DOE NNSA-ASC OASCR Flash
1930
+ Centre at the University of Chicago (Fryxell et al. 2000). The fol-
1931
+ lowing Python packages were utilized: NumPy (Harris et al. 2020),
1932
+ SciPy (Virtanen et al. 2020), Matplotlib (Hunter 2007), yt (Turk
1933
+ et al. 2011), ChiantiPy (Dere 2013).
1934
+ DATA AVAILABILITY
1935
+ REFERENCES
1936
+ Andrews S. M., Wilner D. J., Espaillat C., Hughes A. M., Dullemond C. P.,
1937
+ McClure M. K., Qi C., Brown J. M., 2011, ApJ, 732, 42
1938
+ Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
1939
+ Barnes J., Hut P., 1986, Nature, 324, 446
1940
+ Brose R., Sushch I., Mackey J., 2022, MNRAS, 516, 492
1941
+ Calvet N., Gullbring E., 1998, ApJ, 509, 802
1942
+ Cassinelli J. P., Cohen D. H., Macfarlane J. J., Sanders W. T., Welsh B. Y.,
1943
+ 1994, ApJ, 421, 705
1944
+ Churazov E., Khabibullin I., Sunyaev R., Ponti G., 2017, MNRAS, 465, 45
1945
+ MNRAS 000, 1–14 (2022)
1946
+
1947
+ 14
1948
+ Gaches et al.
1949
+ Cleeves L. I., Öberg K. I., Wilner D. J., Huang J., Loomis R. A., Andrews
1950
+ S. M., Czekala I., 2016, ApJ, 832, 110
1951
+ Cleeves L. I., Bergin E. A., Öberg K. I., Andrews S., Wilner D., Loomis R.,
1952
+ 2017, ApJ, 843, L3
1953
+ Cruz-González I., et al., 2020, MNRAS, 499, 2042
1954
+ Dalgarno A., Yan M., Liu W., 1999, ApJS, 125, 237
1955
+ Dere K., 2013, ChiantiPy: Python package for the CHIANTI atomic database
1956
+ (ascl:1308.017)
1957
+ Dere K. P., Landi E., Mason H. E., Monsignori Fossi B. C., Young P. R.,
1958
+ 1997, A&AS, 125, 149
1959
+ Dere K. P., Del Zanna G., Young P. R., Landi E., Sutherland R. S., 2019,
1960
+ ApJS, 241, 22
1961
+ Draine B. T., Woods D. T., 1991, ApJ, 383, 621
1962
+ Ercolano B., Young P. R., Drake J. J., Raymond J. C., 2008a, ApJS, 175, 534
1963
+ Ercolano B., Drake J. J., Raymond J. C., Clarke C. C., 2008b, ApJ, 688, 398
1964
+ Ercolano B., Clarke C. J., Drake J. J., 2009, ApJ, 699, 1639
1965
+ Federrath C., Roman-Duval J., Klessen R. S., Schmidt W., Mac Low M. M.,
1966
+ 2010, A&A, 512, A81
1967
+ Feigelson E. D., Montmerle T., 1999, ARA&A, 37, 363
1968
+ Feigelson E., Townsley L., Güdel M., Stassun K., 2007, in Reipurth
1969
+ B., Jewitt D., Keil K., eds, Protostars and Planets V. p. 313
1970
+ (arXiv:astro-ph/0602603)
1971
+ Feigelson E. D., et al., 2013, ApJS, 209, 26
1972
+ Fryxell B., et al., 2000, ApJS, 131, 273
1973
+ García-Burillo S., et al., 2010, A&A, 519, A2
1974
+ Giacobbo N., Mapelli M., Spera M., 2018, MNRAS, 474, 2959
1975
+ Glassgold A. E., Najita J., Igea J., 1997, ApJ, 480, 344
1976
+ Glover S. C. O., Clark P. C., 2012, MNRAS, 421, 9
1977
+ Glover S. C. O., Mac Low M.-M., 2007a, ApJS, 169, 239
1978
+ Glover S. C. O., Mac Low M.-M., 2007b, ApJ, 659, 1317
1979
+ Gong M., Ostriker E. C., Wolfire M. G., 2017, ApJ, 843, 38
1980
+ Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke
1981
+ M., Bartelmann M., 2005, ApJ, 622, 759
1982
+ Gredel R., Lepp S., Dalgarno A., 1987, ApJ, 323, L137
1983
+ Habing H. J., 1968, Bull. Astron. Inst. Netherlands, 19, 421
1984
+ Harada N., Thompson T. A., Herbst E., 2013, ApJ, 765, 108
1985
+ Harris C. R., et al., 2020, Nature, 585, 357
1986
+ Hartmann L., Herczeg G., Calvet N., 2016, ARA&A, 54, 135
1987
+ Hocuk S., Spaans M., 2010, A&A, 522, A24
1988
+ Hunter J. D., 2007, Computing in Science & Engineering, 9, 90
1989
+ Igea J., Glassgold A. E., 1999, ApJ, 518, 848
1990
+ Ingleby L., et al., 2013, ApJ, 767, 112
1991
+ Khabibullin I., Churazov E., Sunyaev R., Federrath C., Seifried D., Walch S.,
1992
+ 2020, MNRAS, 495, 1414
1993
+ Klein O., Nishina T., 1929, Zeitschrift fur Physik, 52, 853
1994
+ Klepitko A., Walch S., Wünsch R., Seifried D., Dinnbier F., Haid S., 2022,
1995
+ arXiv e-prints, p. arXiv:2204.09072
1996
+ Krolik J. H., Kallman T. R., 1983, ApJ, 267, 610
1997
+ Lepp S., McCray R., 1983, ApJ, 269, 560
1998
+ Lepp S., Shull J. M., 1983, ApJ, 270, 578
1999
+ Longair M. S., 2011, High Energy Astrophysics
2000
+ Lutovinov A. A., Revnivtsev M. G., Tsygankov S. S., Krivonos R. A., 2013,
2001
+ MNRAS, 431, 327
2002
+ Lynden-Bell D., Pringle J. E., 1974, MNRAS, 168, 603
2003
+ Mackey J., Walch S., Seifried D., Glover S. C. O., Wünsch R., Aharonian F.,
2004
+ 2019, MNRAS, 486, 1094
2005
+ Maloney P. R., Hollenbach D. J., Tielens A. G. G. M., 1996, ApJ, 466, 561
2006
+ McKee C. F., Ostriker E. C., 2007, ARA&A, 45, 565
2007
+ Meijerink R., Spaans M., 2005, A&A, 436, 397
2008
+ Meijerink R., Spaans M., Israel F. P., 2006, ApJ, 650, L103
2009
+ Meijerink R., Spaans M., Loenen A. F., van der Werf P. P., 2011, A&A, 525,
2010
+ A119
2011
+ Meijerink R., Cazaux S., Spaans M., 2012, A&A, 537, A102
2012
+ Mineo S., Gilfanov M., Sunyaev R., 2012, MNRAS, 419, 2095
2013
+ Mingozzi M., et al., 2018, MNRAS, 474, 3640
2014
+ Mohanty S., Ercolano B., Turner N. J., 2013, ApJ, 764, 65
2015
+ Molaro M., Khatri R., Sunyaev R. A., 2016, A&A, 589, A88
2016
+ Nelson R. P., Langer W. D., 1999, ApJ, 524, 923
2017
+ Odaka H., Aharonian F., Watanabe S., Tanaka Y., Khangulyan D., Takahashi
2018
+ T., 2011, ApJ, 740, 103
2019
+ Offner S. S. R., Klein R. I., McKee C. F., Krumholz M. R., 2009, ApJ, 703,
2020
+ 131
2021
+ Orlando S., Petruk O., Bocchino F., Miceli M., 2011, A&A, 526, A129
2022
+ Owen J. E., Ercolano B., Clarke C. J., 2011, MNRAS, 412, 13
2023
+ Panoglou D., Cabrit S., Pineau Des Forêts G., Garcia P. J. V., Ferreira J.,
2024
+ Casse F., 2012, A&A, 538, A2
2025
+ Picogna G., Ercolano B., Owen J. E., Weber M. L., 2019, MNRAS, 487, 691
2026
+ Prasad S. S., Tarafdar S. P., 1983, ApJ, 267, 603
2027
+ Raymond J. C., Smith B. W., 1977, ApJS, 35, 419
2028
+ Reig P., 2011, Ap&SS, 332, 1
2029
+ Remillard R. A., McClintock J. E., 2006, ARA&A, 44, 49
2030
+ Spitzer Lyman J., Tomasko M. G., 1968, ApJ, 152, 971
2031
+ Sunyaev R., Churazov E., 1998, MNRAS, 297, 1279
2032
+ Sunyaev R. A., Markevitch M., Pavlinsky M., 1993, ApJ, 407, 606
2033
+ Townsley L. K., Broos P. S., Garmire G. P., Bouwman J., Povich M. S.,
2034
+ Feigelson E. D., Getman K. V., Kuhn M. A., 2014, ApJS, 213, 1
2035
+ Townsley L. K., Broos P. S., Garmire G. P., Povich M. S., 2019, ApJS, 244,
2036
+ 28
2037
+ Turk M. J., Smith B. D., Oishi J. S., Skory S., Skillman S. W., Abel T., Norman
2038
+ M. L., 2011, The Astrophysical Journal Supplement Series, 192, 9
2039
+ Verner D. A., Yakovlev D. G., 1995, A&AS, 109, 125
2040
+ Virtanen P., et al., 2020, Nature Methods, 17, 261
2041
+ Waggoner A. R., Cleeves L. I., 2019, ApJ, 883, 197
2042
+ Wakelam V., et al., 2012, ApJS, 199, 21
2043
+ Walls M., Chernyakova M., Terrier R., Goldwurm A., 2016, MNRAS, 463,
2044
+ 2893
2045
+ White N. E., Stella L., Parmar A. N., 1988, ApJ, 324, 363
2046
+ Wise J. H., Abel T., 2011, MNRAS, 414, 3458
2047
+ Wolfire M. G., Vallini L., Chevance M., 2022, arXiv e-prints, p.
2048
+ arXiv:2202.05867
2049
+ Wünsch R., Walch S., Dinnbier F., Whitworth A., 2018, MNRAS, 475, 3393
2050
+ Wünsch R., Walch S., Dinnbier F., Seifried D., Haid S., Klepitko A., Whit-
2051
+ worth A. P., Palouš J., 2021, MNRAS, 505, 3730
2052
+ Yamane Y., et al., 2018, ApJ, 863, 55
2053
+ Yan M., 1997, PhD thesis, HARVARD UNIVERSITY
2054
+ APPENDIX A: CLOUDY BENCHMARK SCRIPT
2055
+ We present the Cloudy script which was used for the X-ray bench-
2056
+ marking. The Cloudy model consists of a uniform density medium
2057
+ with 𝑛H = 103 solved using the “sphere” command. We turn off most
2058
+ induced and grain processes and set the abundances for most metals
2059
+ to zero to better match the methods used in our Flash simulations.
2060
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
2061
+ MNRAS 000, 1–14 (2022)
2062
+
2063
+ XRayTheSpot: X-raying Molecular Gas
2064
+ 15
2065
+ 1 t i t l e XDR source
2066
+ 2 ## r a d i a t i o n
2067
+ s o u rces
2068
+ 3 CMB
2069
+ 4 t a b l e SED " plaw . sed "
2070
+ 5 l u m i n o s i t y
2071
+ 35 range
2072
+ 73.5
2073
+ to
2074
+ 735 Ryd
2075
+ 6 ##Geometry
2076
+ 7 r a d i u s
2077
+ 16.1938
2078
+ 8 hden
2079
+ 3.0
2080
+ 9 sphere
2081
+ 10 ## Stopping
2082
+ and
2083
+ i t e r a t e
2084
+ 11 stop H2 column
2085
+ d e n s i t y
2086
+ 24.0
2087
+ 12 stop
2088
+ t e m p e r a t u r e
2089
+ l i n e a r
2090
+ 3.0
2091
+ 13 i t e r a t e
2092
+ to
2093
+ convergence
2094
+ 14 ##ISM and
2095
+ Grain
2096
+ physics
2097
+ 15 cosmic
2098
+ ray
2099
+ r a t e
2100
+ −16.523
2101
+ 16 abundances ISM
2102
+ 17 g r a i n s ISM no
2103
+ qheat
2104
+ 0.56
2105
+ 18 no
2106
+ g r a i n x−ray
2107
+ t r e a t m e n t
2108
+ 19 no induced
2109
+ p r o c e s s e s
2110
+ 20 no
2111
+ r a d i a t i o n
2112
+ p r e s s u r e
2113
+ 21 no
2114
+ s c a t t e r i n g
2115
+ o p a c i t y
2116
+ 22 no
2117
+ g r a i n
2118
+ p h y s i c s
2119
+ 23 no
2120
+ g r a i n
2121
+ molecules
2122
+ 24 no
2123
+ l i n e
2124
+ t r a n s f e r
2125
+ 25 ##Abundances
2126
+ 26 element
2127
+ carbon
2128
+ abundance
2129
+ −3.853872
2130
+ 27 element
2131
+ helium
2132
+ abundance −1
2133
+ 28 element
2134
+ oxygen
2135
+ abundance
2136
+ −3.494850
2137
+ 29 element
2138
+ s i l i c o n
2139
+ abundance −7
2140
+ 30 element
2141
+ n i t r o g e n
2142
+ o f f
2143
+ 31 element
2144
+ s u l p h u r
2145
+ o f f
2146
+ 32 element
2147
+ neon
2148
+ o f f
2149
+ 33 element
2150
+ aluminium
2151
+ o f f
2152
+ 34 element
2153
+ phosphor
2154
+ o f f
2155
+ 35 element
2156
+ c h l o r i n e
2157
+ o f f
2158
+ 36 element
2159
+ argon
2160
+ o f f
2161
+ 37 element
2162
+ calcium
2163
+ o f f
2164
+ 38 element
2165
+ chromium
2166
+ o f f
2167
+ 39 element
2168
+ n i c k e l
2169
+ o f f
2170
+ 40 element
2171
+ l i t h i u m
2172
+ o f f
2173
+ 41 element
2174
+ b e r y l l i u m
2175
+ o f f
2176
+ 42 element
2177
+ f l u o r i n e
2178
+ o f f
2179
+ 43 element
2180
+ potassium
2181
+ o f f
2182
+ 44 element
2183
+ scandium
2184
+ o f f
2185
+ 45 element
2186
+ t i t a n i u m
2187
+ o f f
2188
+ 46 element
2189
+ vanadium
2190
+ o f f
2191
+ 47 element
2192
+ manganese
2193
+ o f f
2194
+ 48 element
2195
+ c o b a l t
2196
+ o f f
2197
+ 49 element
2198
+ copper
2199
+ o f f
2200
+ 50 element
2201
+ zinc
2202
+ o f f
2203
+ 51 ## output
2204
+ 52 save
2205
+ overview
2206
+ l a s t
2207
+ " xdr . ovr "
2208
+ 53 save
2209
+ molecules
2210
+ l a s t
2211
+ " xdr . mol "
2212
+ 54 save
2213
+ abundances
2214
+ l a s t
2215
+ " xdr . abund "
2216
+ 55 save
2217
+ continuum
2218
+ l a s t
2219
+ " xdr . cont "
2220
+ 56 save PDR l a s t
2221
+ " xdr . pdr "
2222
+ Listing 1: Input file for Cloudy benchmark
2223
+ MNRAS 000, 1–14 (2022)
2224
+
1NFQT4oBgHgl3EQfETVZ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29E2T4oBgHgl3EQfNwZM/content/2301.03740v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b735ef7ba80e15406c3c6bbdc00490ce1c54ce4f1bded5e08eea25fdbaba6f6
3
+ size 447715
29E2T4oBgHgl3EQfNwZM/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22b37dfe1e39f25c28a18e8798f4b4333fbafe52ab14bd594d740575625e8495
3
+ size 983085
29E2T4oBgHgl3EQfNwZM/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b26fc42e74cf30278687701f6dec95994eb72d62a6df9157922f88baf0eb4ebb
3
+ size 50417
3tFKT4oBgHgl3EQf8i6_/content/2301.11950v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00404ec63c36725f9cefb3f7ebc736a2ef189c3146a90c14d9644105deff3264
3
+ size 698937
3tFKT4oBgHgl3EQf8i6_/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a326f734a36ebae717989bc84377fa12b1660b1b3748dad94daf584ab1897ae3
3
+ size 3866669
4NAyT4oBgHgl3EQfo_jf/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09159f832b077d0da364f687851e9a42a709ded041dfef04fd560e4d534234ae
3
+ size 17563693
4NE4T4oBgHgl3EQfAwuD/content/tmp_files/2301.04846v1.pdf.txt ADDED
@@ -0,0 +1,738 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Algebraic Model Management: A Survey
2
+ Patrick Schultz1, David I. Spivak1, and Ryan Wisnesky2
3
+ 1 Massachusetts Institute of Technology
4
+ 2 Conexus AI
5
+ Abstract. We survey the field of model management and describe a
6
+ new model management approach based on algebraic specification.
7
+ 1
8
+ Introduction
9
+ In this paper we survey the field of model management and describe a new
10
+ model management approach based on techniques from the field of algebraic
11
+ specification, with the hope of establishing an interlingua between the two fields.
12
+ By “model management” we mean “meta-data intensive” database management
13
+ in the sense of Bernstein & Melnik [4], which we define in Section 2. By “a new
14
+ algebraic model management approach” we mean our particular way [19] [20] of
15
+ specifying database schemas and instances using algebraic (equational) theories.
16
+ We first noticed a connection between model management and algebraic spec-
17
+ ification while investigating applications of category theory [3] to data integra-
18
+ tion [5]. These investigations are described in [19] and [20], and we present no
19
+ substantial new results in this paper. We assume readers have basic proficiency
20
+ with category theory [3], algebraic specification [17], and SQL.
21
+ Outline. In Section 2 we describe the traditional approach to model manage-
22
+ ment and in Section 3 we describe our algebraic approach. Also in Section 3 we
23
+ describe the open-source CQL (Categorical Query Language) tool, available for
24
+ download at http://categoricaldata.net, which implements our approach in
25
+ software. We conclude in Section 4 by comparing our approach with the tradi-
26
+ tional approach.
27
+ 2
28
+ Model Management
29
+ To quote from Melnik [16]:
30
+ Many challenging problems facing information systems engineering in-
31
+ volve the manipulation of complex metadata artifacts, or models, such
32
+ as database schemas, interface specifications, or object diagrams, and
33
+ mappings between models. The applications that solve metadata ma-
34
+ nipulation problems are complex and hard to build. The goal of generic
35
+ model management is to reduce the amount of programming needed
36
+ to develop such applications by providing a database infrastructure in
37
+ which a set of high-level algebraic operators, such as Match, Merge, and
38
+ Compose, are applied to models and mappings as a whole rather than
39
+ to their individual building blocks.
40
+ arXiv:2301.04846v1 [cs.LO] 12 Jan 2023
41
+
42
+ In the paragraph above the word “model” is defined to mean a metadata ar-
43
+ tifact such as a schema, which conflicts with the definition of the word “model”
44
+ as a structure satisfying a theory. In this paper, we use the phrase “model man-
45
+ agement” to mean the field identified above, and use the word “model” to mean
46
+ a structure satisfying a theory.
47
+ Today model management is a large sub-field of information management
48
+ with a research literature containing hundreds of published articles [4]. There is
49
+ a consensus in that literature [4] that model management is concerned with at
50
+ least the problems described in the next sections.
51
+ 2.1
52
+ Schema mapping
53
+ Given two database schemas S and T, the schema mapping problem [7] is to
54
+ construct a “mapping” F : S → T that captures some user-specified relationship
55
+ between S and T. Different model management systems use different notions
56
+ of schema, including SQL, XML, and RDF [4]. The most common mapping
57
+ formalism studied in the literature is that of “embedded dependencies” (EDs) [5]:
58
+ formulae in a fragment of first-order logic with useful computational properties.
59
+ We will use SQL schemas and EDs in our examples in this section. Consider
60
+ the following SQL schema S, consisting of two tables connected by a foreign key:
61
+ CREATE TABLE N2(ID INT PRIMARY KEY, age INT)
62
+ CREATE TABLE N1(ID INT PRIMARY KEY, name STRING, salary INT,
63
+ f INT FOREIGN KEY REFERENCES N2(ID))
64
+ and the following SQL schema T, consisting of one table:
65
+ CREATE TABLE N(ID INT PRIMARY KEY, age INT,
66
+ name STRING, salary INT).
67
+ These two SQL schemas are displayed graphically in Figure 1.
68
+ An example schema mapping F : S → T expressing that the target table N
69
+ is the join of source tables N1 and N2 along the column f is:
70
+ ∀id1, id2, a, n, s. N1(id1, n, s, id2) ∧ N2(id2, a) → N(id1, a, n, s).
71
+ Two instances satisfying the above ED are shown in Figure 1. In general, many
72
+ EDs can map between two SQL schemas.
73
+ 2.2
74
+ Query generation
75
+ Given a schema mapping F : S → T, the query generation problem [4] is to
76
+ construct a query which converts databases on S to databases on T in a way
77
+ that satisfies F. The query languages typically studied include SQL, XQuery,
78
+ and various comprehension- and λ-calculi [4].
79
+ A SQL query to implement the example mapping from Section 2.1 is:
80
+
81
+ String
82
+
83
+ N1•
84
+ name
85
+
86
+ salary
87
+
88
+ f
89
+ � N2•
90
+ age
91
+
92
+
93
+ Int
94
+ F
95
+ −−−→
96
+ String
97
+
98
+ N•
99
+ name
100
+
101
+ age
102
+
103
+ salary � ◦
104
+ Int
105
+ N1
106
+ ID name salary f
107
+ 1 Alice $100 1
108
+ 2
109
+ Bob $250 2
110
+ 3
111
+ Sue
112
+ $300 3
113
+ N2
114
+ ID age
115
+ 1 20
116
+ 2 20
117
+ 3 30
118
+ �∆F �
119
+ ←−−−−−−
120
+ �ΠF �,�ΣF �
121
+ −��−−−−−−−−→
122
+ N
123
+ ID name salary age
124
+ 1 Alice $100 20
125
+ 2
126
+ Bob $250 20
127
+ 3
128
+ Sue
129
+ $300 30
130
+ Fig. 1. Example Data Migrations, with Foreign Keys (see Sections 2.1, 3.2)
131
+ INSERT INTO N
132
+ SELECT N1.ID, N1.age, N2.name, N1.sal
133
+ FROM N1, N2
134
+ WHERE N1.f = N2.ID
135
+ Technically, the INSERT portion of the above SQL code is not a “query”, but
136
+ rather an “update”, and in practice the code generated from a query generation
137
+ task will often store the results of the query. An example of running the above
138
+ SQL is shown as the left-to-right direction of Figure 1. In general, many or no
139
+ SQL queries may implement a set of EDs [5]. EDs can also be directly executed
140
+ by an algorithm called “the chase” [5].
141
+ 2.3
142
+ Mapping Inversion
143
+ Given a schema mapping F : S → T, the mapping inversion problem [10] is to
144
+ construct a schema mapping F −1 : T → S that undoes F with respect to query
145
+ generation (i.e. the queries generated from F and F −1 should be inverses).
146
+ The natural candidate ED to invert the schema mapping of Section 2.1 ex-
147
+ presses that N projects onto N1 and N2:
148
+ ∀id1, a, n, s. N(id1, a, n, s) → ∃id2. N1(id, n, s, id2) ∧ N2(id2, a)
149
+ and a possible SQL implementation of this ED is:
150
+ INSERT INTO N1
151
+ SELECT ID, name, sal, ID
152
+ FROM N
153
+ INSERT INTO N2
154
+ SELECT ID, age
155
+ FROM N
156
+
157
+ However, the above ED is not an inverse to the ED of Section 2.1, as is seen by
158
+ taking ∅ = N1 ̸= N2. Indeed, it is rare for an ED, or set of EDs, to be invertible,
159
+ and weaker notions of inverse, such as “quasi-inverse” [10], are common in the
160
+ literature [10]. An example of running the above SQL is shown as the right-to-left
161
+ direction of Figure 1.
162
+ 2.4
163
+ Mapping Composition
164
+ Given schema mappings F : S → T and G : T → U, the mapping composition
165
+ problem [8] is to construct a schema mapping G ◦ F : S → U that is equivalent
166
+ with respect to the query generation problem (i.e. running the query generated
167
+ from G ◦ F should have the same effect as running the query generated from G
168
+ on the results of the query generated from F).
169
+ The composition of the ED from Section 2.1 with the ED from Section 2.3 is
170
+ ∀id1, id2, n, s, a. N1(id1, n, s, id2) ∧ N2(id2, a) → ∃x. N1′(id, n, s, x) ∧ N2′(x, a)
171
+ where N1’, N2’ are target “copies” of source tables N1, N2. This composed ED is
172
+ not the identity, thereby showing that the ED from Section 2.3 does not invert the
173
+ ED from Section 2.1. In the case of EDs, composed mappings may not exist [8],
174
+ but some restrictions and extensions of EDs are closed under composition [8].
175
+ 2.5
176
+ Schema matching
177
+ Given two database schemas S and T, the schema matching problem [5] is to au-
178
+ tomatically find “correspondences” between S and T and to automatically infer
179
+ schema mappings S → T from these correspondences. In general, inference of en-
180
+ tire mappings cannot be fully automated and the focus of the matching problem
181
+ is to reduce the human effort required to construct a schema mapping by e.g.,
182
+ suggesting partial mappings that can be completed by users. There are many
183
+ techniques for schema matching ranging from comparison of column names by
184
+ string similarity to machine learning algorithms; for an overview, see [5]. In the
185
+ example from Section 2.1, two correspondences that are easy to automatically
186
+ find are (N1, N) and (N2, N) and tools such as Clio [14] can create the ED from
187
+ Section 2.1 from these two correspondences.
188
+ 2.6
189
+ Further References
190
+ In this paper we will focus on the problems described in the previous sec-
191
+ tions, but many other problems are studied in the model management litera-
192
+ ture [4], and many of these problems are related to algebraic specification. For
193
+ example, schema/instance merge problems [4], which arise often in data inte-
194
+ gration scenarios [2], can be formalized as pushouts in suitable categories of
195
+ schemas/instances [20], and such pushouts are related to model-theoretic con-
196
+ cepts such as model amalgamation [15].
197
+
198
+ Many software products solve model management problems [4], including
199
+ ETL (Extract, Transform, Load) tools [5], which extract data from separate
200
+ databases, apply user-specified transformations, and then load the result into
201
+ a target system such as a data warehouse; query mediators [5], which answer
202
+ queries about a “virtual” integrated database by combining queries about sep-
203
+ arate source databases; and visual schema mapping tools [14] which allow users
204
+ to create schema mappings by visually connecting related schema elements with
205
+ lines, as shown in Figure 2.
206
+ There have been at least two attempts to provide a “meta semantics” for
207
+ model management operations. In [16] Melnik gives a “state based” meta se-
208
+ mantics to some of the above operations by defining a schema mapping S → T
209
+ to be an arbitrary binary relation between instances on S and instances on T;
210
+ the ED-based semantics described above is an instantiation of this meta seman-
211
+ tics. In [2] and [13] the authors give an “institution theoretic” meta semantics
212
+ to some of the above operations by defining a schema mapping S → T to be a
213
+ morphism in a suitable category of schemas; CQL’s semantics is an instantiation
214
+ of this meta semantics.
215
+ Fig. 2. A schema mapping in Clio [14]
216
+
217
+ file:students.xsml (managed)
218
+
219
+ Source
220
+ Target
221
+ S File:StudentsSource.xsd
222
+ S File:StudentsTarget,xsd
223
+ qa
224
+ e? targetDB
225
+ e gradEnrolls
226
+ e Evaluations
227
+ * gradEnroll [o,*]
228
+ [* eval [0.*]
229
+ e: sid (xsistring)-
230
+ e: name (xsistring)--
231
+ e: grade (xsiint)
232
+ (buuisisn) pp a
233
+ e? File (μsistring)
234
+ ..
235
+ @ Enrollment
236
+ e: File (xsistring)-
237
+ e* Student [0.*]
238
+ e* underGrad [o,*]
239
+ e: sid (xsistring)
240
+ e: name (rsistring)
241
+ .
242
+ (ouuisisi) pis a
243
+ e Courses
244
+ e: name (xsistring)
245
+ e: address (xsistring)
246
+ [* course [o,*]
247
+ e enrolls
248
+ e eid (xsint) ..-
249
+ [ enroll [o,*]
250
+ e: addr (xsistring)
251
+ e cid (xsistring)
252
+ e: sid (rsistring)3
253
+ Algebraic Model Management
254
+ Our approach to model management is based on the algebraic approach to
255
+ databases, data migration, and data integration we describe in [19] and [20].
256
+ Those works, and hence this work, extend a particular category-theoretic data
257
+ model that originated in the late 1990s [11] and was later extended in [21] and [23]
258
+ and implemented in CQL (http://categoricaldata.net).
259
+ In the next section we describe our formalism for database schemas and
260
+ instances and introduce CQL. The subsequent sections implement the model
261
+ management operations from Section 2 using our formalism. In this section we
262
+ abbreviate “algebraic theory” as “theory”.
263
+ 3.1
264
+ Algebraic Databases
265
+ In our formalism [20], database schemas and instances are defined as theories of
266
+ a certain kind, which we describe in the next sections. For ease of exposition, we
267
+ will sometimes conflate schemas and instances as defined in our formalism with
268
+ their CQL equivalents.
269
+ Type sides We first fix a theory, Ty, called the type side of our formalism. The
270
+ sorts of Ty are called types and the functions of Ty are the functions that can
271
+ appear in schemas and instances.
272
+ CQL allows arbitrary theories to be used as type sides. But we have found
273
+ that in practice, CQL users almost always want to use the theory of an existing
274
+ programming language, say java, for their type side. The ability to “bind” CQL
275
+ to an existing language is particularly important in model management because
276
+ input data may only be accessible through, e.g., a java API. For this reason,
277
+ CQL allows a type side to be defined by specifying, for each sort s, a java class
278
+ Cs and a java function String → Cs that tells CQL how to interpret the strings
279
+ it encounters in CQL programs as objects of Cs.
280
+ An example CQL type side about integers and strings is shown in Figure 3.
281
+ This type side defines a theory with two sorts and infinitely many constants –
282
+ all the java strings and integers – and no equations. The java code for Int says
283
+ that whenever a string x is encountered in an CQL program and a term of sort
284
+ Int is required, that java’s parseInt function should be applied to x to yield
285
+ the desired Int. The keyword literal, used in many places in CQL, indicates
286
+ a literal (user-defined constant) definition.
287
+ Schemas A schema on type side Ty is a theory extending Ty with new sorts
288
+ (called entities), new unary functions from entities to types (called attributes),
289
+ new unary functions from entities to entities (called foreign keys), and new equa-
290
+ tions (called data integrity constraints) of the form ∀v : s. t = t′, where s is an
291
+ entity and t, t′ are terms of the same type, each containing a single free variable v.
292
+ The restrictions in the preceding sentence (e.g., no functions from types to enti-
293
+ ties) are necessary to use our formalism for model management purposes [19] [20].
294
+ Figure 4 shows the CQL schemas corresponding to Figure 1. These schemas
295
+ contain no equations and are both on the type side Ty defined in Figure 3.
296
+
297
+ typeside Ty = literal {
298
+ java_types
299
+ String = "java.lang.String"
300
+ Int = "java.lang.Integer"
301
+ java_constants
302
+ String = "return input[0]"
303
+ Int = "return java.lang.Integer.parseInt(input[0])"
304
+ }
305
+ Fig. 3. CQL type side Ty
306
+ schema S = literal : Ty {
307
+ entities
308
+ N1
309
+ N2
310
+ foreign_keys
311
+ f : N1 -> N2
312
+ attributes
313
+ name : N1 -> String
314
+ salary : N1 -> Int
315
+ age : N2 -> Int
316
+ }
317
+ schema T = literal : Ty {
318
+ entities
319
+ N
320
+ attributes
321
+ name : N -> String
322
+ salary : N -> Int
323
+ age : N -> Int
324
+ }
325
+ Fig. 4. CQL schemas S and T on type side Ty
326
+ instance I = literal : S {
327
+ generators
328
+ 1 2 3 : N1
329
+ equations
330
+ name(1) = Alice
331
+ salary(1) = 100
332
+ age(f(1)) = 20
333
+ name(2) = Bob
334
+ salary(2) = 250
335
+ age(f(2)) = 20
336
+ name(3) = Sue
337
+ salary(3) = 300
338
+ age(f(3)) = 30
339
+ }
340
+ Fig. 5. CQL instance I on schema S
341
+ Fig. 6. Initial algebra for CQL instance I
342
+
343
+ Delta - 9:36:11 PM 1 (exec: 0s)(gui: 0s)
344
+ Select:
345
+ Tables
346
+ Type Algebra
347
+ DP
348
+ Text
349
+ typeside Ty
350
+ N1 (3)
351
+ N2 (3)
352
+ schema S
353
+ ID
354
+ name
355
+ salary
356
+ f
357
+ ID
358
+ age
359
+ schema T
360
+ [1]
361
+ Alice
362
+ 100
363
+ [1.f]
364
+ [1.f]
365
+ 20
366
+ mapping F : S -> T
367
+ [2]
368
+ Bob
369
+ 250
370
+ [2.f]
371
+ [2.f]
372
+ 20
373
+ instance I : S
374
+ [3]
375
+ Sue
376
+ 300
377
+ [3.f]
378
+ [3.f]
379
+ 30Instances An instance I on schema S is a theory extending S with new 0-ary
380
+ function (constant) symbols called generators and non-quantified equations. An
381
+ example CQL instance on schema S (Figure 4) is shown in Figure 5.
382
+ The intended meaning of an instance I, written �I�, is the term model (i.e.,
383
+ initial algebra) for I which contains, for each sort s, a carrier set consisting of the
384
+ closed terms of sort s modulo provability in I. A morphism of instances I → J
385
+ is a homomorphism (natural transformation) of algebras �I� → �J�.
386
+ Figure 6 shows the meaning of the instance I from Figure 5 in the CQL tool.
387
+ The CQL tool visually displays term models as sets of tables, one per entity e,
388
+ each with an ID column corresponding to the carrier set for e. The tables in
389
+ Figure 6 are isomorphic to the left tables in Figure 1.
390
+ In the following sections we implement the model management operations
391
+ from Section 2 using the preceding definitions of schema and instance.
392
+ 3.2
393
+ Schema mapping
394
+ Given schemas S, T, the schema mapping problem (Section 2.1) is to construct
395
+ a “mapping” F : S → T that captures some relationship between S and T.
396
+ Let S and T be CQL schemas on the same type side Ty. An CQL schema
397
+ mapping F : S → T is defined as a “derived signature morphism” [18] from
398
+ S to T that is the identity on Ty. That is, F : S → T assigns to each entity
399
+ e ∈ S an entity F(e) ∈ T, and to each attribute / foreign key f : s → s′ a
400
+ term F(f), of type F(s′) and with one free variable of type F(s), in a way that
401
+ respects equality: if S ⊢ t = t′, then T ⊢ F(t) = F(t′). We have found that
402
+ many mappings arising in practice cannot be expressed using plain signature
403
+ morphisms and require the more general notion of “derived” signature morphism.
404
+ Whereas a schema mapping in Section 2.1 was an ED (formula in a fragment
405
+ of first-order logic), which induces a single binary satisfaction relation between
406
+ instances, CQL schema mappings are derived signature morphisms and induce
407
+ three relations between instances, which we will describe in the next section.
408
+ An example CQL schema mapping F : S → T is shown in Figure 7, where
409
+ CQL schemas S and T are defined in Figure 4. This mapping is also shown
410
+ graphically in Figure 1.
411
+ 3.3
412
+ Query generation
413
+ Given a mapping F : S → T, the query generation problem (Section 2.2) is to
414
+ use F to construct a query which converts databases on S to databases on T.
415
+ In our formalism, the database instances and morphisms on a schema S
416
+ constitute a category, denoted S–Inst, and a schema mapping F : S → T induces
417
+ a functor ΣF : S–Inst → T–Inst defined by substitution. The functor ΣF has a
418
+ right adjoint, ∆F : T–Inst → S–Inst, which corresponds to the “model reduct
419
+ functor” when our formalism is described in institution-theoretic terms [2]. The
420
+ functor ∆F has a right adjoint, ΠF : S–Inst → T–Inst. See [19] for proof
421
+ that ∆F always has left and right adjoints. As adjoints, ∆F , ΠF preserve limits
422
+ and ∆F , ΣF preserve colimits, implying many useful properties; for example,
423
+ ΣF (I + J) ∼= ΣF (I) + ΣF (J) and ΠF (I × J) ∼= ΠF (I) × ΠF (J).
424
+
425
+ mapping F = literal : S -> T {
426
+ entities
427
+ N1 -> N
428
+ N2 -> N
429
+ foreign_keys
430
+ f -> lambda x:N. x
431
+ attributes
432
+ name -> lambda x:N. name(x)
433
+ salary -> lambda x:N. salary(x)
434
+ age -> lambda x:N. age(x)
435
+ }
436
+ Fig. 7. CQL schema mapping F : S → T
437
+ Note that unlike Section 2.1, where there was a single query associated with a
438
+ schema mapping (ED), in our algebraic approach there are three queries, one for
439
+ each of ∆F , ΣF , ΠF . The conditions under which ∆F ,ΣF , ΠF can be expressed
440
+ in SQL and vice-versa are characterized in [23].
441
+ Although it is possible to give explicit formulae to define ∆F , ΣF , ΠF [19]
442
+ we instead give examples in Figures 1 and 8. Note that in these examples we are
443
+ not showing instances (theories) as defined in Section 3.1; we are showing term
444
+ models. For this reason, we surround ∆F , ΣF , ΠF with denotation brackets �� in
445
+ these examples. In addition, as adjoints ∆, Σ, Π are only defined up to unique
446
+ isomorphism, so we arbitrarily make up names for IDs and in these examples.
447
+ Figures 1 and 8 show an CQL schema mapping F which takes two distinct source
448
+ entities, N1 and N2, to the target entity N. The �∆F � functor projects in the
449
+ opposite direction of F: it projects columns from the single table for N to two
450
+ separate tables for N1 and N2, similar to FROM N AS N1 and FROM N AS N2 in
451
+ SQL. When there is a foreign key from N1 to N2, the �∆F � functor populates it
452
+ so that N can be recovered by joining N1 and N2. The �ΠF � functor takes the
453
+ cartesian product of N1 and N2 when there is no foreign key between N1 and
454
+ N2, and joins N1 and N2 along the foreign key when there is. The �ΣF � functor
455
+ disjointly unions N1 and N2; because N1 and N2 are not union compatible (have
456
+ different columns), �ΣF � creates null values. When there is a foreign key between
457
+ N1 and N2, �ΣF � merges the tuples that are related by the foreign key, resulting
458
+ in a join. As these examples illustrate, ∆F can be thought of as projection,
459
+ ΠF can be thought of as a product followed by a filter (which can result in a
460
+ join), and ΣF can be thought of as a disjoint union (which does not require
461
+ union-compatibility) followed by a merge (which can also result in a join).
462
+ 3.4
463
+ Mapping Composition
464
+ Given schema mappings F : S → T and G : T → U, the mapping composition
465
+ problem (Section 2.4) is to construct a schema mapping G ◦ F : S → U that is
466
+ equivalent with respect to query generation.
467
+ In one sense, the mapping composition problem is trivial [19] for our for-
468
+ malism: ∆F ◦G ∼= ∆G ◦ ∆F , ΠF ◦G ∼= ΠF ◦ ΠG, and ΣF ◦G ∼= ΣF ◦ ΣG. But
469
+
470
+ String
471
+
472
+ N1•
473
+ name
474
+
475
+ salary
476
+
477
+ N2•
478
+ age
479
+
480
+
481
+ Int
482
+ F
483
+ −−−→
484
+ String
485
+
486
+ N•
487
+ name
488
+
489
+ age
490
+
491
+ salary � ◦
492
+ Int
493
+ N1
494
+ ID name salary
495
+ 1 Alice $100
496
+ 2
497
+ Bob $250
498
+ 3
499
+ Sue
500
+ $300
501
+ N2
502
+ ID age
503
+ 4 20
504
+ 5 20
505
+ 6 30
506
+ �∆F �
507
+ ←−−−−−−
508
+ N
509
+ ID name salary age
510
+ 1 Alice $100 20
511
+ 2
512
+ Bob $250 20
513
+ 3
514
+ Sue
515
+ $300 30
516
+ N1
517
+ ID name salary
518
+ 1 Alice $100
519
+ 2
520
+ Bob $250
521
+ 3
522
+ Sue
523
+ $300
524
+ N2
525
+ ID age
526
+ 4 20
527
+ 5 20
528
+ 6 30
529
+ �ΣF �
530
+ −−−−−−→
531
+ N
532
+ ID
533
+ name
534
+ salary
535
+ age
536
+ 1
537
+ Alice
538
+ $100
539
+ age(1)
540
+ 2
541
+ Bob
542
+ $250
543
+ age(2)
544
+ 3
545
+ Sue
546
+ $300
547
+ age(3)
548
+ 4 name(4) salary(4)
549
+ 20
550
+ 5 name(5) salary(5)
551
+ 20
552
+ 6 name(6) salary(6)
553
+ 30
554
+ N1
555
+ ID name salary
556
+ 1 Alice $100
557
+ 2
558
+ Bob $250
559
+ 3
560
+ Sue
561
+ $300
562
+ N2
563
+ ID age
564
+ 4 20
565
+ 5 20
566
+ 6 30
567
+ �ΠF �
568
+ −−−−−−→
569
+ N
570
+ ID name salary age
571
+ 1 Alice $100 20
572
+ 2
573
+ Bob $250 20
574
+ 3
575
+ Sue
576
+ $300 20
577
+ 4 Alice $100 20
578
+ 5
579
+ Bob $250 20
580
+ 6
581
+ Sue
582
+ $300 20
583
+ 7 Alice $100 30
584
+ 8
585
+ Bob $250 30
586
+ 9
587
+ Sue
588
+ $300 30
589
+ Fig. 8. Example Data Migrations (see Section 3.2)
590
+
591
+ this solution is not wholly satisfactory because in practice a mixture of ∆, Σ, Π
592
+ functors may be needed to accomplish any particular task (similarly, in SQL a
593
+ mixture of joins and unions may be needed to accomplish any particular task).
594
+ The following results are proved in [19] and [23]:
595
+ – Every composition ΣF ◦∆G is isomorphic to ∆F ′ ◦ΣG′ for some F ′, G′. This
596
+ statement is also true if ΣF is replaced with ΠF .
597
+ – Pairs of the form (F, G), denoting ΣF ◦ ∆G, are closed under composition.
598
+ This statement is also true if ΣF is replaced with ΠF . Such pairs can be spec-
599
+ ified in an intuitive “select-from-where” syntax, described in [19] and [20].
600
+ – Triples of the form (F, G, H), denoting ΣF ◦ ΠG ◦ ∆H, are closed under
601
+ composition, provided that F is a discrete op-fibration [3], which is exactly
602
+ the “union compatibility” condition [5] that ΣF performs unions over tables
603
+ whose columns match; Figure 1 is not a discrete op-fibration.
604
+ 3.5
605
+ Mapping Inversion
606
+ Given a schema mapping F : S → T, the mapping inversion problem (Sec-
607
+ tion 2.3) is to construct a mapping F −1 : T → S that somehow “undoes” F.
608
+ Our formalism has strong inversion properties but does not have inverses per
609
+ se. When there exists F −1 : T → S such that F ◦ F −1 = id and F −1 ◦ F = id,
610
+ then ∆F ◦ ∆F −1 ∼= id, ΣF ◦ ΣF −1 ∼= id, and ΠF ◦ ΠF −1 ∼= id. In general F
611
+ need not have an inverse, but when S and T have finite initial algebras / term
612
+ models (which is a priori undecidable, and implies decidability of S and T) it is
613
+ possible to construct F −1 whenever it exists by considering all possible functors
614
+ T → S. When F has a right adjoint G : T → S, a weaker condition than having
615
+ an inverse, there are canonical morphisms ΣF → ∆G and ∆F → ΠG.
616
+ In practice “round-tripping” [5] of data is desirable even when inverses do not
617
+ exist. For example, projection, because it forgets information, typically cannot
618
+ be inverted, but we may want to remember where the projected data originated.
619
+ In our formalism the adjunctions between Σ,∆,Π provide round-tripping. For
620
+ example, for every F : S → T and S-instance I there is a canonical morphism
621
+ I → ∆F (ΣF (I)), the unit of the ΣF ⊣ ∆F adjunction, which describes where
622
+ each ID in I is sent to by ΣF (and similarly for ΠF ). Dually, for every T-
623
+ instance J there is a canonical morphism ΣF (∆F (J)) → J, the co-unit of the
624
+ ΣF ⊣ ∆F adjunction, which describes where the IDs in ∆F (J) originate (and
625
+ similarly for ΠF ). The unit and co-unit can be used to obtain, for every morphism
626
+ h : ΣF (I) → J, a mate h′ : I → ∆F (J) and vice-versa (and similarly for
627
+ ΠF ). Relating adjointness to existing relaxed notions of inverse such as quasi-
628
+ inverse [9] is an important area for future work.
629
+ 3.6
630
+ Schema matching
631
+ Given database schemas S and T, the schema matching problem (Section 2.5)
632
+ is to automatically suggest schema mappings S → T to the user.
633
+
634
+ In this section, we define two schema matching techniques used by CQL.
635
+ Our techniques compare entities, and foreign keys and attributes (“symbols”)
636
+ by name, as strings, and so our techniques depend on having (probably user-
637
+ provided) names whose similarity as strings reflects their semantic similarity. Let
638
+ σ : String, String → [0, 1] be any string similarity function [5] where a value of 1
639
+ indicates a “good” match and a value of 0 indicates a “bad” match.
640
+ – The first technique attempts to infer a schema mapping F : S → T. For each
641
+ entity s ∈ S, we define F(s) := t where t ∈ T is an entity that maximizes
642
+ σ(s, t). For each symbol f : s → s′ ∈ S, we then consider the set X of
643
+ symbols F(s) → F(s′). If X is non-empty, we choose a symbol g ∈ X that
644
+ maximizes σ(f, g) and set F(f) := g. If X is empty but there is a shortest
645
+ path p from F(s) to F(s′), we set F(f) := p. If no shortest path exists, the
646
+ match fails. The F so constructed is only a candidate schema mapping: CQL
647
+ must verify that F preserves provable equality in S.
648
+ – The second technique attempts to infer a schema A and schema mappings
649
+ F : A → S and G : A → T. Such a span of mappings can be interpreted
650
+ as a query of the form ΣF ◦ ∆G or ΠF ◦ ∆G. Let c be some user-provided
651
+ string similarity cutoff. The entities of A are those pairs of S-entities and
652
+ T-entities (s, t) such that σ(s, t) > c. The symbols (s, t) → (s′, t′) of A are
653
+ those pairs of S-symbols and T-symbols (f : s → s′, g : t → t′) such that
654
+ σ(f, g) > c. The mappings F and G are projections.
655
+ 4
656
+ Conclusion
657
+ When comparing our algebraic approach to model management with other ap-
658
+ proaches originating in relational database theory [1] it is important to note that
659
+ our databases are “deductive databases” [1]. That is, we define databases “inten-
660
+ sionally”, as sets of equations, rather than as sets of tables. As such, care must
661
+ be taken when mediating between our definitions and relational definitions. For
662
+ example, our instances can be “inconsistent” in the sense that an instance can
663
+ prove 1 = 2 for two distinct constant symbols 1 and 2. Such situations are often,
664
+ but not always [12], errors, and the CQL tool checks for such situations using
665
+ standard techniques based on “conservative theory extensions” [12]. In addition,
666
+ our schemas do not define a set of constants (a “domain”) that all the instances
667
+ on that schema share, as is customary in relational database theory [7]. Hence
668
+ our approach is closer in spirit to traditional logic [6] than database theory [1].
669
+ There are many connections between our algebraic approach to model man-
670
+ agement and the ED-based approach described in Section 2. EDs are more ex-
671
+ pressive than our purely equational data integrity constraints and can be added
672
+ to our formalism in a simple way, described in [22] (although in [22], EDs are
673
+ called “lifting problems”). In ED-based approaches the “chase” [5] operation has
674
+ a similar semantics to our Σ operation, and a formal comparison between the
675
+ chase and Σ is forthcoming.
676
+
677
+ Acknowledgements.
678
+ The authors thank Lucian Popa, Eswaran Subrah-
679
+ manian, and Peter Gates and were supported by NIST SBIR grant 70NANB
680
+ 16H178, AFOSR grant FA9550–14–1–0031 and NASA grant NNL14AA05C.
681
+ This paper appears in WADT 2016: Recent Trends in Algebraic
682
+ Development Techniques, pp 56–69.
683
+ References
684
+ 1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley-
685
+ Longman (1995)
686
+ 2. Alagic, S., Bernstein, P.: A model theory for generic schema management. DBPL
687
+ (2001)
688
+ 3. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall Inter-
689
+ national (1995)
690
+ 4. Bernstein, P.A., Melnik, S.: Model management 2.0: Manipulating richer mappings.
691
+ ICMD (2007)
692
+ 5. Doan, H., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan Kaufmann
693
+ (2012)
694
+ 6. Enderton, H.B.: A Mathematical introduction to logic. Academic Press (2001)
695
+ 7. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
696
+ query answering. Theoretical Computer Science (2005)
697
+ 8. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.: Composing schema mappings: Second-
698
+ order dependencies to the rescue. TODS (2005)
699
+ 9. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.: Quasi-inverses of schema mappings.
700
+ TODS (2008)
701
+ 10. Fagin, R.: Inverting schema mappings. TODS (2007)
702
+ 11. Fleming, M., Gunther, R., Rosebrugh, R.: A database of categories. Journal of
703
+ Symbolic Computation 35(2) (2003)
704
+ 12. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? Principles of Knowl-
705
+ edge Representation and Reasoning (2006)
706
+ 13. Goguen,
707
+ J.:
708
+ Information
709
+ integration
710
+ in
711
+ institutions
712
+ (unpublished).
713
+ http://cseweb.ucsd.edu/˜goguen/pps/ifi04.pdf (2004)
714
+ 14. Haas, L.M., Hern´andez, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: From
715
+ research prototype to industrial tool. ICMD (2005)
716
+ 15. Hodges, W.: A Shorter Model Theory. Cambridge University Press (1997)
717
+ 16. Melnik, S.: Generic Model Management: Concepts And Algorithms (Lecture Notes
718
+ in Computer Science). Springer-Verlag (2004)
719
+ 17. Mitchell, J.C.: Foundations of Programming Languages. MIT Press (1996)
720
+ 18. Mossakowski, T., Krumnack, U., Maibaum, T.: What is a derived signature mor-
721
+ phism? RTADT (2014)
722
+ 19. Schultz, P., Spivak, D.I., Vasilakopoulou, C., Wisnesky, R.: Algebraic databases.
723
+ Theory and Applications of Categories (2017)
724
+ 20. Schultz,
725
+ P.,
726
+ Wisnesky,
727
+ R.:
728
+ Algebraic
729
+ data
730
+ integration
731
+ (unpublished).
732
+ http://arxiv.org/abs/1503.03571 (2016)
733
+ 21. Spivak, D.I.: Functorial data migration. Information and Computation (2012)
734
+ 22. Spivak, D.I.: Database queries and constraints via lifting problems. Mathematical
735
+ Structures in Computer Science (2014)
736
+ 23. Spivak, D.I., Wisnesky, R.: Relational foundations for functorial data migration.
737
+ DBPL (2015)
738
+
4NE4T4oBgHgl3EQfAwuD/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf,len=505
2
+ page_content='Algebraic Model Management: A Survey Patrick Schultz1, David I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
3
+ page_content=' Spivak1, and Ryan Wisnesky2 1 Massachusetts Institute of Technology 2 Conexus AI Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
4
+ page_content=' We survey the field of model management and describe a new model management approach based on algebraic specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
5
+ page_content=' 1 Introduction In this paper we survey the field of model management and describe a new model management approach based on techniques from the field of algebraic specification, with the hope of establishing an interlingua between the two fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
6
+ page_content=' By “model management” we mean “meta-data intensive” database management in the sense of Bernstein & Melnik [4], which we define in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
7
+ page_content=' By “a new algebraic model management approach” we mean our particular way [19] [20] of specifying database schemas and instances using algebraic (equational) theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
8
+ page_content=' We first noticed a connection between model management and algebraic spec- ification while investigating applications of category theory [3] to data integra- tion [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
9
+ page_content=' These investigations are described in [19] and [20], and we present no substantial new results in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
10
+ page_content=' We assume readers have basic proficiency with category theory [3], algebraic specification [17], and SQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
11
+ page_content=' Outline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
12
+ page_content=' In Section 2 we describe the traditional approach to model manage- ment and in Section 3 we describe our algebraic approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
13
+ page_content=' Also in Section 3 we describe the open-source CQL (Categorical Query Language) tool, available for download at http://categoricaldata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
14
+ page_content='net, which implements our approach in software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
15
+ page_content=' We conclude in Section 4 by comparing our approach with the tradi- tional approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
16
+ page_content=' 2 Model Management To quote from Melnik [16]: Many challenging problems facing information systems engineering in- volve the manipulation of complex metadata artifacts, or models, such as database schemas, interface specifications, or object diagrams, and mappings between models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
17
+ page_content=' The applications that solve metadata ma- nipulation problems are complex and hard to build.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
18
+ page_content=' The goal of generic model management is to reduce the amount of programming needed to develop such applications by providing a database infrastructure in which a set of high-level algebraic operators, such as Match, Merge, and Compose, are applied to models and mappings as a whole rather than to their individual building blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
19
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
20
+ page_content='04846v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
21
+ page_content='LO] 12 Jan 2023 In the paragraph above the word “model” is defined to mean a metadata ar- tifact such as a schema, which conflicts with the definition of the word “model” as a structure satisfying a theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
22
+ page_content=' In this paper, we use the phrase “model man- agement” to mean the field identified above, and use the word “model” to mean a structure satisfying a theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
23
+ page_content=' Today model management is a large sub-field of information management with a research literature containing hundreds of published articles [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
24
+ page_content=' There is a consensus in that literature [4] that model management is concerned with at least the problems described in the next sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
25
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
26
+ page_content='1 Schema mapping Given two database schemas S and T, the schema mapping problem [7] is to construct a “mapping” F : S → T that captures some user-specified relationship between S and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
27
+ page_content=' Different model management systems use different notions of schema, including SQL, XML, and RDF [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
28
+ page_content=' The most common mapping formalism studied in the literature is that of “embedded dependencies” (EDs) [5]: formulae in a fragment of first-order logic with useful computational properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
29
+ page_content=' We will use SQL schemas and EDs in our examples in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
30
+ page_content=' Consider the following SQL schema S, consisting of two tables connected by a foreign key: CREATE TABLE N2(ID INT PRIMARY KEY, age INT) CREATE TABLE N1(ID INT PRIMARY KEY, name STRING, salary INT, f INT FOREIGN KEY REFERENCES N2(ID)) and the following SQL schema T, consisting of one table: CREATE TABLE N(ID INT PRIMARY KEY, age INT, name STRING, salary INT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
31
+ page_content=' These two SQL schemas are displayed graphically in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
32
+ page_content=' An example schema mapping F : S → T expressing that the target table N is the join of source tables N1 and N2 along the column f is: ∀id1, id2, a, n, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
33
+ page_content=' N1(id1, n, s, id2) ∧ N2(id2, a) → N(id1, a, n, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
34
+ page_content=' Two instances satisfying the above ED are shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
35
+ page_content=' In general, many EDs can map between two SQL schemas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
36
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
37
+ page_content='2 Query generation Given a schema mapping F : S → T, the query generation problem [4] is to construct a query which converts databases on S to databases on T in a way that satisfies F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
38
+ page_content=' The query languages typically studied include SQL, XQuery, and various comprehension- and λ-calculi [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
39
+ page_content=' A SQL query to implement the example mapping from Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
40
+ page_content='1 is: String N1• name � salary � f � N2• age � Int F −−−→ String N• name � age � salary � ◦ Int N1 ID name salary f 1 Alice $100 1 2 Bob $250 2 3 Sue $300 3 N2 ID age 1 20 2 20 3 30 �∆F � ←−−−−−− �ΠF �,�ΣF � −−−−−−−−−−→ N ID name salary age 1 Alice $100 20 2 Bob $250 20 3 Sue $300 30 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
41
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
42
+ page_content=' Example Data Migrations, with Foreign Keys (see Sections 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
43
+ page_content='1, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
44
+ page_content='2) INSERT INTO N SELECT N1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
45
+ page_content='ID, N1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
46
+ page_content='age, N2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
47
+ page_content='name, N1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
48
+ page_content='sal FROM N1, N2 WHERE N1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
49
+ page_content='f = N2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
50
+ page_content='ID Technically, the INSERT portion of the above SQL code is not a “query”, but rather an “update”, and in practice the code generated from a query generation task will often store the results of the query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
51
+ page_content=' An example of running the above SQL is shown as the left-to-right direction of Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
52
+ page_content=' In general, many or no SQL queries may implement a set of EDs [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
53
+ page_content=' EDs can also be directly executed by an algorithm called “the chase” [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
54
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
55
+ page_content='3 Mapping Inversion Given a schema mapping F : S → T, the mapping inversion problem [10] is to construct a schema mapping F −1 : T → S that undoes F with respect to query generation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
56
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
57
+ page_content=' the queries generated from F and F −1 should be inverses).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
58
+ page_content=' The natural candidate ED to invert the schema mapping of Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
59
+ page_content='1 ex- presses that N projects onto N1 and N2: ∀id1, a, n, s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
60
+ page_content=' N(id1, a, n, s) → ∃id2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
61
+ page_content=' N1(id, n, s, id2) ∧ N2(id2, a) and a possible SQL implementation of this ED is: INSERT INTO N1 SELECT ID, name, sal, ID FROM N INSERT INTO N2 SELECT ID, age FROM N However, the above ED is not an inverse to the ED of Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
62
+ page_content='1, as is seen by taking ∅ = N1 ̸= N2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
63
+ page_content=' Indeed, it is rare for an ED, or set of EDs, to be invertible, and weaker notions of inverse, such as “quasi-inverse” [10], are common in the literature [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
64
+ page_content=' An example of running the above SQL is shown as the right-to-left direction of Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
65
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
66
+ page_content='4 Mapping Composition Given schema mappings F : S → T and G : T → U, the mapping composition problem [8] is to construct a schema mapping G ◦ F : S → U that is equivalent with respect to the query generation problem (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
67
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
68
+ page_content=' running the query generated from G ◦ F should have the same effect as running the query generated from G on the results of the query generated from F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
69
+ page_content=' The composition of the ED from Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
70
+ page_content='1 with the ED from Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
71
+ page_content='3 is ∀id1, id2, n, s, a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
72
+ page_content=' N1(id1, n, s, id2) ∧ N2(id2, a) → ∃x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
73
+ page_content=' N1′(id, n, s, x) ∧ N2′(x, a) where N1’, N2’ are target “copies” of source tables N1, N2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
74
+ page_content=' This composed ED is not the identity, thereby showing that the ED from Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
75
+ page_content='3 does not invert the ED from Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
76
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
77
+ page_content=' In the case of EDs, composed mappings may not exist [8], but some restrictions and extensions of EDs are closed under composition [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
78
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
79
+ page_content='5 Schema matching Given two database schemas S and T, the schema matching problem [5] is to au- tomatically find “correspondences” between S and T and to automatically infer schema mappings S → T from these correspondences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
80
+ page_content=' In general, inference of en- tire mappings cannot be fully automated and the focus of the matching problem is to reduce the human effort required to construct a schema mapping by e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
81
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
82
+ page_content=', suggesting partial mappings that can be completed by users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
83
+ page_content=' There are many techniques for schema matching ranging from comparison of column names by string similarity to machine learning algorithms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
84
+ page_content=' for an overview, see [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
85
+ page_content=' In the example from Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
86
+ page_content='1, two correspondences that are easy to automatically find are (N1, N) and (N2, N) and tools such as Clio [14] can create the ED from Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
87
+ page_content='1 from these two correspondences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
88
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
89
+ page_content='6 Further References In this paper we will focus on the problems described in the previous sec- tions, but many other problems are studied in the model management litera- ture [4], and many of these problems are related to algebraic specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
90
+ page_content=' For example, schema/instance merge problems [4], which arise often in data inte- gration scenarios [2], can be formalized as pushouts in suitable categories of schemas/instances [20], and such pushouts are related to model-theoretic con- cepts such as model amalgamation [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
91
+ page_content=' Many software products solve model management problems [4], including ETL (Extract, Transform, Load) tools [5], which extract data from separate databases, apply user-specified transformations, and then load the result into a target system such as a data warehouse;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
92
+ page_content=' query mediators [5], which answer queries about a “virtual” integrated database by combining queries about sep- arate source databases;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
93
+ page_content=' and visual schema mapping tools [14] which allow users to create schema mappings by visually connecting related schema elements with lines, as shown in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
94
+ page_content=' There have been at least two attempts to provide a “meta semantics” for model management operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
95
+ page_content=' In [16] Melnik gives a “state based” meta se- mantics to some of the above operations by defining a schema mapping S → T to be an arbitrary binary relation between instances on S and instances on T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
96
+ page_content=' the ED-based semantics described above is an instantiation of this meta seman- tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
97
+ page_content=' In [2] and [13] the authors give an “institution theoretic” meta semantics to some of the above operations by defining a schema mapping S → T to be a morphism in a suitable category of schemas;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
98
+ page_content=' CQL’s semantics is an instantiation of this meta semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
99
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
100
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
101
+ page_content=' A schema mapping in Clio [14] file:students.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
102
+ page_content='xsml (managed) 口 Source Target S File:StudentsSource.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
103
+ page_content='xsd S File:StudentsTarget,xsd qa e?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
104
+ page_content=' targetDB e gradEnrolls e Evaluations gradEnroll [o,*] [* eval [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
105
+ page_content=' *] e: sid (xsistring)- e: name (xsistring)-- e: grade (xsiint) (buuisisn) pp a e?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
106
+ page_content=' File (μsistring) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
107
+ page_content='. @ Enrollment e: File (xsistring)- e* Student [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
108
+ page_content=' *] e* underGrad [o,*] e: sid (xsistring) e: name (rsistring) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
109
+ page_content=' (ouuisisi) pis a e Courses e: name (xsistring) e: address (xsistring) [* course [o,*] e enrolls e eid (xsint) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
110
+ page_content='.- [ enroll [o,*] e: addr (xsistring) e cid (xsistring) e: sid (rsistring)3 Algebraic Model Management Our approach to model management is based on the algebraic approach to databases, data migration, and data integration we describe in [19] and [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
111
+ page_content=' Those works, and hence this work, extend a particular category-theoretic data model that originated in the late 1990s [11] and was later extended in [21] and [23] and implemented in CQL (http://categoricaldata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
112
+ page_content='net).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
113
+ page_content=' In the next section we describe our formalism for database schemas and instances and introduce CQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
114
+ page_content=' The subsequent sections implement the model management operations from Section 2 using our formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
115
+ page_content=' In this section we abbreviate “algebraic theory” as “theory”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
116
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
117
+ page_content='1 Algebraic Databases In our formalism [20], database schemas and instances are defined as theories of a certain kind, which we describe in the next sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
118
+ page_content=' For ease of exposition, we will sometimes conflate schemas and instances as defined in our formalism with their CQL equivalents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
119
+ page_content=' Type sides We first fix a theory, Ty, called the type side of our formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
120
+ page_content=' The sorts of Ty are called types and the functions of Ty are the functions that can appear in schemas and instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
121
+ page_content=' CQL allows arbitrary theories to be used as type sides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
122
+ page_content=' But we have found that in practice, CQL users almost always want to use the theory of an existing programming language, say java, for their type side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
123
+ page_content=' The ability to “bind” CQL to an existing language is particularly important in model management because input data may only be accessible through, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
124
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
125
+ page_content=', a java API.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
126
+ page_content=' For this reason, CQL allows a type side to be defined by specifying, for each sort s, a java class Cs and a java function String → Cs that tells CQL how to interpret the strings it encounters in CQL programs as objects of Cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
127
+ page_content=' An example CQL type side about integers and strings is shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
128
+ page_content=' This type side defines a theory with two sorts and infinitely many constants – all the java strings and integers – and no equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
129
+ page_content=' The java code for Int says that whenever a string x is encountered in an CQL program and a term of sort Int is required, that java’s parseInt function should be applied to x to yield the desired Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
130
+ page_content=' The keyword literal, used in many places in CQL, indicates a literal (user-defined constant) definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
131
+ page_content=' Schemas A schema on type side Ty is a theory extending Ty with new sorts (called entities), new unary functions from entities to types (called attributes), new unary functions from entities to entities (called foreign keys), and new equa- tions (called data integrity constraints) of the form ∀v : s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
132
+ page_content=' t = t′, where s is an entity and t, t′ are terms of the same type, each containing a single free variable v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
133
+ page_content=' The restrictions in the preceding sentence (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
134
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
135
+ page_content=', no functions from types to enti- ties) are necessary to use our formalism for model management purposes [19] [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
136
+ page_content=' Figure 4 shows the CQL schemas corresponding to Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
137
+ page_content=' These schemas contain no equations and are both on the type side Ty defined in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
138
+ page_content=' typeside Ty = literal { java_types String = "java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
139
+ page_content='lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
140
+ page_content='String" Int = "java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
141
+ page_content='lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
142
+ page_content='Integer" java_constants String = "return input[0]" Int = "return java.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
143
+ page_content='lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
144
+ page_content='Integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
145
+ page_content='parseInt(input[0])" } Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
146
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
147
+ page_content=' CQL type side Ty schema S = literal : Ty { entities N1 N2 foreign_keys f : N1 -> N2 attributes name : N1 -> String salary : N1 -> Int age : N2 -> Int } schema T = literal : Ty { entities N attributes name : N -> String salary : N -> Int age : N -> Int } Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
148
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
149
+ page_content=' CQL schemas S and T on type side Ty instance I = literal : S { generators 1 2 3 : N1 equations name(1) = Alice salary(1) = 100 age(f(1)) = 20 name(2) = Bob salary(2) = 250 age(f(2)) = 20 name(3) = Sue salary(3) = 300 age(f(3)) = 30 } Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
150
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
151
+ page_content=' CQL instance I on schema S Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
152
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
153
+ page_content=' Initial algebra for CQL instance I Delta - 9:36:11 PM 1 (exec: 0s)(gui: 0s) Select: Tables Type Algebra DP Text typeside Ty N1 (3) N2 (3) schema S ID name salary f ID age schema T [1] Alice 100 [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
154
+ page_content='f] [1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
155
+ page_content='f] 20 mapping F : S -> T [2] Bob 250 [2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
156
+ page_content='f] [2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
157
+ page_content='f] 20 instance I : S [3] Sue 300 [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
158
+ page_content='f] [3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
159
+ page_content='f] 30Instances An instance I on schema S is a theory extending S with new 0-ary function (constant) symbols called generators and non-quantified equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
160
+ page_content=' An example CQL instance on schema S (Figure 4) is shown in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
161
+ page_content=' The intended meaning of an instance I, written �I�, is the term model (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
162
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
163
+ page_content=', initial algebra) for I which contains, for each sort s, a carrier set consisting of the closed terms of sort s modulo provability in I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
164
+ page_content=' A morphism of instances I → J is a homomorphism (natural transformation) of algebras �I� → �J�.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
165
+ page_content=' Figure 6 shows the meaning of the instance I from Figure 5 in the CQL tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
166
+ page_content=' The CQL tool visually displays term models as sets of tables, one per entity e, each with an ID column corresponding to the carrier set for e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
167
+ page_content=' The tables in Figure 6 are isomorphic to the left tables in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
168
+ page_content=' In the following sections we implement the model management operations from Section 2 using the preceding definitions of schema and instance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
169
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
170
+ page_content='2 Schema mapping Given schemas S, T, the schema mapping problem (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
171
+ page_content='1) is to construct a “mapping” F : S → T that captures some relationship between S and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
172
+ page_content=' Let S and T be CQL schemas on the same type side Ty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
173
+ page_content=' An CQL schema mapping F : S → T is defined as a “derived signature morphism” [18] from S to T that is the identity on Ty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
174
+ page_content=' That is, F : S → T assigns to each entity e ∈ S an entity F(e) ∈ T, and to each attribute / foreign key f : s → s′ a term F(f), of type F(s′) and with one free variable of type F(s), in a way that respects equality: if S ⊢ t = t′, then T ⊢ F(t) = F(t′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
175
+ page_content=' We have found that many mappings arising in practice cannot be expressed using plain signature morphisms and require the more general notion of “derived” signature morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
176
+ page_content=' Whereas a schema mapping in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
177
+ page_content='1 was an ED (formula in a fragment of first-order logic), which induces a single binary satisfaction relation between instances, CQL schema mappings are derived signature morphisms and induce three relations between instances, which we will describe in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
178
+ page_content=' An example CQL schema mapping F : S → T is shown in Figure 7, where CQL schemas S and T are defined in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
179
+ page_content=' This mapping is also shown graphically in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
180
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
181
+ page_content='3 Query generation Given a mapping F : S → T, the query generation problem (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
182
+ page_content='2) is to use F to construct a query which converts databases on S to databases on T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
183
+ page_content=' In our formalism, the database instances and morphisms on a schema S constitute a category, denoted S–Inst, and a schema mapping F : S → T induces a functor ΣF : S–Inst → T–Inst defined by substitution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
184
+ page_content=' The functor ΣF has a right adjoint, ∆F : T–Inst → S–Inst, which corresponds to the “model reduct functor” when our formalism is described in institution-theoretic terms [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
185
+ page_content=' The functor ∆F has a right adjoint, ΠF : S–Inst → T–Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
186
+ page_content=' See [19] for proof that ∆F always has left and right adjoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
187
+ page_content=' As adjoints, ∆F , ΠF preserve limits and ∆F , ΣF preserve colimits, implying many useful properties;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
188
+ page_content=' for example, ΣF (I + J) ∼= ΣF (I) + ΣF (J) and ΠF (I × J) ∼= ΠF (I) × ΠF (J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
189
+ page_content=' mapping F = literal : S -> T { entities N1 -> N N2 -> N foreign_keys f -> lambda x:N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
190
+ page_content=' x attributes name -> lambda x:N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
191
+ page_content=' name(x) salary -> lambda x:N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
192
+ page_content=' salary(x) age -> lambda x:N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
193
+ page_content=' age(x) } Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
194
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
195
+ page_content=' CQL schema mapping F : S → T Note that unlike Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
196
+ page_content='1, where there was a single query associated with a schema mapping (ED), in our algebraic approach there are three queries, one for each of ∆F , ΣF , ΠF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
197
+ page_content=' The conditions under which ∆F ,ΣF , ΠF can be expressed in SQL and vice-versa are characterized in [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
198
+ page_content=' Although it is possible to give explicit formulae to define ∆F , ΣF , ΠF [19] we instead give examples in Figures 1 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
199
+ page_content=' Note that in these examples we are not showing instances (theories) as defined in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
200
+ page_content='1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
201
+ page_content=' we are showing term models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
202
+ page_content=' For this reason, we surround ∆F , ΣF , ΠF with denotation brackets �� in these examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
203
+ page_content=' In addition, as adjoints ∆, Σ, Π are only defined up to unique isomorphism, so we arbitrarily make up names for IDs and in these examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
204
+ page_content=' Figures 1 and 8 show an CQL schema mapping F which takes two distinct source entities, N1 and N2, to the target entity N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
205
+ page_content=' The �∆F � functor projects in the opposite direction of F: it projects columns from the single table for N to two separate tables for N1 and N2, similar to FROM N AS N1 and FROM N AS N2 in SQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
206
+ page_content=' When there is a foreign key from N1 to N2, the �∆F � functor populates it so that N can be recovered by joining N1 and N2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
207
+ page_content=' The �ΠF � functor takes the cartesian product of N1 and N2 when there is no foreign key between N1 and N2, and joins N1 and N2 along the foreign key when there is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
208
+ page_content=' The �ΣF � functor disjointly unions N1 and N2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
209
+ page_content=' because N1 and N2 are not union compatible (have different columns), �ΣF � creates null values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
210
+ page_content=' When there is a foreign key between N1 and N2, �ΣF � merges the tuples that are related by the foreign key, resulting in a join.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
211
+ page_content=' As these examples illustrate, ∆F can be thought of as projection, ΠF can be thought of as a product followed by a filter (which can result in a join), and ΣF can be thought of as a disjoint union (which does not require union-compatibility) followed by a merge (which can also result in a join).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
212
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
213
+ page_content='4 Mapping Composition Given schema mappings F : S → T and G : T → U, the mapping composition problem (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
214
+ page_content='4) is to construct a schema mapping G ◦ F : S → U that is equivalent with respect to query generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
215
+ page_content=' In one sense, the mapping composition problem is trivial [19] for our for- malism: ∆F ◦G ∼= ∆G ◦ ∆F , ΠF ◦G ∼= ΠF ◦ ΠG, and ΣF ◦G ∼= ΣF ◦ ΣG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
216
+ page_content=' But ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
217
+ page_content='String N1• ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
218
+ page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
219
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
220
+ page_content='salary ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
221
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
222
+ page_content='N2• ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
223
+ page_content='age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
224
+ page_content='� Int ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
225
+ page_content='F ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
226
+ page_content='−−−→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
227
+ page_content='String N• ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
228
+ page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
229
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
230
+ page_content='age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
231
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
232
+ page_content='salary � ◦ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
233
+ page_content='Int ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
234
+ page_content='N1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
235
+ page_content='ID name salary ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
236
+ page_content='1 Alice $100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
237
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
238
+ page_content='Bob $250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
239
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
240
+ page_content='Sue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
241
+ page_content='$300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
242
+ page_content='N2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
243
+ page_content='ID age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
244
+ page_content='4 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
245
+ page_content='5 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
246
+ page_content='6 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
247
+ page_content='�∆F � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
248
+ page_content='←−−−−−− ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
249
+ page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
250
+ page_content='ID name salary age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
251
+ page_content='1 Alice $100 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
252
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
253
+ page_content='Bob $250 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
254
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
255
+ page_content='Sue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
256
+ page_content='$300 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
257
+ page_content='N1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
258
+ page_content='ID name salary ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
259
+ page_content='1 Alice $100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
260
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
261
+ page_content='Bob $250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
262
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
263
+ page_content='Sue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
264
+ page_content='$300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
265
+ page_content='N2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
266
+ page_content='ID age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
267
+ page_content='4 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
268
+ page_content='5 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
269
+ page_content='6 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
270
+ page_content='�ΣF � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
271
+ page_content='−−−−−−→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
272
+ page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
273
+ page_content='ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
274
+ page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
275
+ page_content='salary ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
276
+ page_content='age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
277
+ page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
278
+ page_content='Alice ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
279
+ page_content='$100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
280
+ page_content='age(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
281
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
282
+ page_content='Bob ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
283
+ page_content='$250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
284
+ page_content='age(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
285
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
286
+ page_content='Sue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
287
+ page_content='$300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
288
+ page_content='age(3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
289
+ page_content='4 name(4) salary(4) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
290
+ page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
291
+ page_content='5 name(5) salary(5) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
292
+ page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
293
+ page_content='6 name(6) salary(6) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
294
+ page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
295
+ page_content='N1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
296
+ page_content='ID name salary ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
297
+ page_content='1 Alice $100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
298
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
299
+ page_content='Bob $250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
300
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
301
+ page_content='Sue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
302
+ page_content='$300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
303
+ page_content='N2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
304
+ page_content='ID age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
305
+ page_content='4 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
306
+ page_content='5 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
307
+ page_content='6 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
308
+ page_content='�ΠF � ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
309
+ page_content='−−−−−−→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
310
+ page_content='N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
311
+ page_content='ID name salary age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
312
+ page_content='1 Alice $100 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
313
+ page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
314
+ page_content='Bob $250 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
315
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
316
+ page_content='Sue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
317
+ page_content='$300 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
318
+ page_content='4 Alice $100 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
319
+ page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
320
+ page_content='Bob $250 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
321
+ page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
322
+ page_content='Sue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
323
+ page_content='$300 20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
324
+ page_content='7 Alice $100 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
325
+ page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
326
+ page_content='Bob $250 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
327
+ page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
328
+ page_content='Sue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
329
+ page_content='$300 30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
330
+ page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
331
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
332
+ page_content=' Example Data Migrations (see Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
333
+ page_content='2) this solution is not wholly satisfactory because in practice a mixture of ∆, Σ, Π functors may be needed to accomplish any particular task (similarly, in SQL a mixture of joins and unions may be needed to accomplish any particular task).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
334
+ page_content=' The following results are proved in [19] and [23]: – Every composition ΣF ◦∆G is isomorphic to ∆F ′ ◦ΣG′ for some F ′, G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
335
+ page_content=' This statement is also true if ΣF is replaced with ΠF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
336
+ page_content=' – Pairs of the form (F, G), denoting ΣF ◦ ∆G, are closed under composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
337
+ page_content=' This statement is also true if ΣF is replaced with ΠF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
338
+ page_content=' Such pairs can be spec- ified in an intuitive “select-from-where” syntax, described in [19] and [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
339
+ page_content=' – Triples of the form (F, G, H), denoting ΣF ◦ ΠG ◦ ∆H, are closed under composition, provided that F is a discrete op-fibration [3], which is exactly the “union compatibility” condition [5] that ΣF performs unions over tables whose columns match;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
340
+ page_content=' Figure 1 is not a discrete op-fibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
341
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
342
+ page_content='5 Mapping Inversion Given a schema mapping F : S → T, the mapping inversion problem (Sec- tion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
343
+ page_content='3) is to construct a mapping F −1 : T → S that somehow “undoes” F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
344
+ page_content=' Our formalism has strong inversion properties but does not have inverses per se.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
345
+ page_content=' When there exists F −1 : T → S such that F ◦ F −1 = id and F −1 ◦ F = id, then ∆F ◦ ∆F −1 ∼= id, ΣF ◦ ΣF −1 ∼= id, and ΠF ◦ ΠF −1 ∼= id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
346
+ page_content=' In general F need not have an inverse, but when S and T have finite initial algebras / term models (which is a priori undecidable, and implies decidability of S and T) it is possible to construct F −1 whenever it exists by considering all possible functors T → S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
347
+ page_content=' When F has a right adjoint G : T → S, a weaker condition than having an inverse, there are canonical morphisms ΣF → ∆G and ∆F → ΠG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
348
+ page_content=' In practice “round-tripping” [5] of data is desirable even when inverses do not exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
349
+ page_content=' For example, projection, because it forgets information, typically cannot be inverted, but we may want to remember where the projected data originated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
350
+ page_content=' In our formalism the adjunctions between Σ,∆,Π provide round-tripping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
351
+ page_content=' For example, for every F : S → T and S-instance I there is a canonical morphism I → ∆F (ΣF (I)), the unit of the ΣF ⊣ ∆F adjunction, which describes where each ID in I is sent to by ΣF (and similarly for ΠF ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
352
+ page_content=' Dually, for every T- instance J there is a canonical morphism ΣF (∆F (J)) → J, the co-unit of the ΣF ⊣ ∆F adjunction, which describes where the IDs in ∆F (J) originate (and similarly for ΠF ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
353
+ page_content=' The unit and co-unit can be used to obtain, for every morphism h : ΣF (I) → J, a mate h′ : I → ∆F (J) and vice-versa (and similarly for ΠF ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
354
+ page_content=' Relating adjointness to existing relaxed notions of inverse such as quasi- inverse [9] is an important area for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
355
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
356
+ page_content='6 Schema matching Given database schemas S and T, the schema matching problem (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
357
+ page_content='5) is to automatically suggest schema mappings S → T to the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
358
+ page_content=' In this section, we define two schema matching techniques used by CQL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
359
+ page_content=' Our techniques compare entities, and foreign keys and attributes (“symbols”) by name, as strings, and so our techniques depend on having (probably user- provided) names whose similarity as strings reflects their semantic similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
360
+ page_content=' Let σ : String, String → [0, 1] be any string similarity function [5] where a value of 1 indicates a “good” match and a value of 0 indicates a “bad” match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
361
+ page_content=' – The first technique attempts to infer a schema mapping F : S → T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
362
+ page_content=' For each entity s ∈ S, we define F(s) := t where t ∈ T is an entity that maximizes σ(s, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
363
+ page_content=' For each symbol f : s → s′ ∈ S, we then consider the set X of symbols F(s) → F(s′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
364
+ page_content=' If X is non-empty, we choose a symbol g ∈ X that maximizes σ(f, g) and set F(f) := g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
365
+ page_content=' If X is empty but there is a shortest path p from F(s) to F(s′), we set F(f) := p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
366
+ page_content=' If no shortest path exists, the match fails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
367
+ page_content=' The F so constructed is only a candidate schema mapping: CQL must verify that F preserves provable equality in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
368
+ page_content=' – The second technique attempts to infer a schema A and schema mappings F : A → S and G : A → T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
369
+ page_content=' Such a span of mappings can be interpreted as a query of the form ΣF ◦ ∆G or ΠF ◦ ∆G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
370
+ page_content=' Let c be some user-provided string similarity cutoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
371
+ page_content=' The entities of A are those pairs of S-entities and T-entities (s, t) such that σ(s, t) > c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
372
+ page_content=' The symbols (s, t) → (s′, t′) of A are those pairs of S-symbols and T-symbols (f : s → s′, g : t → t′) such that σ(f, g) > c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
373
+ page_content=' The mappings F and G are projections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
374
+ page_content=' 4 Conclusion When comparing our algebraic approach to model management with other ap- proaches originating in relational database theory [1] it is important to note that our databases are “deductive databases” [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
375
+ page_content=' That is, we define databases “inten- sionally”, as sets of equations, rather than as sets of tables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
376
+ page_content=' As such, care must be taken when mediating between our definitions and relational definitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
377
+ page_content=' For example, our instances can be “inconsistent” in the sense that an instance can prove 1 = 2 for two distinct constant symbols 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
378
+ page_content=' Such situations are often, but not always [12], errors, and the CQL tool checks for such situations using standard techniques based on “conservative theory extensions” [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
379
+ page_content=' In addition, our schemas do not define a set of constants (a “domain”) that all the instances on that schema share, as is customary in relational database theory [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
380
+ page_content=' Hence our approach is closer in spirit to traditional logic [6] than database theory [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
381
+ page_content=' There are many connections between our algebraic approach to model man- agement and the ED-based approach described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
382
+ page_content=' EDs are more ex- pressive than our purely equational data integrity constraints and can be added to our formalism in a simple way, described in [22] (although in [22], EDs are called “lifting problems”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
383
+ page_content=' In ED-based approaches the “chase” [5] operation has a similar semantics to our Σ operation, and a formal comparison between the chase and Σ is forthcoming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
384
+ page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
385
+ page_content=' The authors thank Lucian Popa, Eswaran Subrah- manian, and Peter Gates and were supported by NIST SBIR grant 70NANB 16H178, AFOSR grant FA9550–14–1–0031 and NASA grant NNL14AA05C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
386
+ page_content=' This paper appears in WADT 2016: Recent Trends in Algebraic Development Techniques, pp 56–69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
387
+ page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
388
+ page_content=' Abiteboul, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
389
+ page_content=', Hull, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
390
+ page_content=', Vianu, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
391
+ page_content=': Foundations of Databases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
392
+ page_content=' Addison-Wesley- Longman (1995) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
393
+ page_content=' Alagic, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
394
+ page_content=', Bernstein, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
395
+ page_content=': A model theory for generic schema management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
396
+ page_content=' DBPL (2001) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
397
+ page_content=' Barr, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
398
+ page_content=', Wells, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
399
+ page_content=': Category Theory for Computing Science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
400
+ page_content=' Prentice Hall Inter- national (1995) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
401
+ page_content=' Bernstein, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
402
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
403
+ page_content=', Melnik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
404
+ page_content=': Model management 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
405
+ page_content='0: Manipulating richer mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
406
+ page_content=' ICMD (2007) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
407
+ page_content=' Doan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
408
+ page_content=', Halevy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
409
+ page_content=', Ives, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
410
+ page_content=': Principles of Data Integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
411
+ page_content=' Morgan Kaufmann (2012) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
412
+ page_content=' Enderton, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
413
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
414
+ page_content=' : A Mathematical introduction to logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
415
+ page_content=' Academic Press (2001) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
416
+ page_content=' Fagin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
417
+ page_content=', Kolaitis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
418
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
419
+ page_content=', Miller, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
420
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
421
+ page_content=', Popa, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
422
+ page_content=': Data exchange: Semantics and query answering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
423
+ page_content=' Theoretical Computer Science (2005) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
424
+ page_content=' Fagin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
425
+ page_content=', Kolaitis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
426
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
427
+ page_content=', Popa, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
428
+ page_content=', Tan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
429
+ page_content=': Composing schema mappings: Second- order dependencies to the rescue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
430
+ page_content=' TODS (2005) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
431
+ page_content=' Fagin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
432
+ page_content=', Kolaitis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
433
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
434
+ page_content=', Popa, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
435
+ page_content=', Tan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
436
+ page_content=': Quasi-inverses of schema mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
437
+ page_content=' TODS (2008) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
438
+ page_content=' Fagin, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
439
+ page_content=': Inverting schema mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
440
+ page_content=' TODS (2007) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
441
+ page_content=' Fleming, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
442
+ page_content=', Gunther, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
443
+ page_content=', Rosebrugh, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
444
+ page_content=': A database of categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
445
+ page_content=' Journal of Symbolic Computation 35(2) (2003) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
446
+ page_content=' Ghilardi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
447
+ page_content=', Lutz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
448
+ page_content=', Wolter, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
449
+ page_content=': Did I damage my ontology?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
450
+ page_content=' Principles of Knowl- edge Representation and Reasoning (2006) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
451
+ page_content=' Goguen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
452
+ page_content=': Information integration in institutions (unpublished).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
453
+ page_content=' http://cseweb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
454
+ page_content='ucsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
455
+ page_content='edu/˜goguen/pps/ifi04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
456
+ page_content='pdf (2004) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
457
+ page_content=' Haas, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
458
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
459
+ page_content=', Hern´andez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
460
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
461
+ page_content=', Ho, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
462
+ page_content=', Popa, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
463
+ page_content=', Roth, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
464
+ page_content=': Clio grows up: From research prototype to industrial tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
465
+ page_content=' ICMD (2005) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
466
+ page_content=' Hodges, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
467
+ page_content=': A Shorter Model Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
468
+ page_content=' Cambridge University Press (1997) 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
469
+ page_content=' Melnik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
470
+ page_content=': Generic Model Management: Concepts And Algorithms (Lecture Notes in Computer Science).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
471
+ page_content=' Springer-Verlag (2004) 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
472
+ page_content=' Mitchell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
473
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
474
+ page_content=': Foundations of Programming Languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
475
+ page_content=' MIT Press (1996) 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
476
+ page_content=' Mossakowski, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
477
+ page_content=', Krumnack, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
478
+ page_content=', Maibaum, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
479
+ page_content=': What is a derived signature mor- phism?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
480
+ page_content=' RTADT (2014) 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
481
+ page_content=' Schultz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
482
+ page_content=', Spivak, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
483
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
484
+ page_content=', Vasilakopoulou, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
485
+ page_content=', Wisnesky, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
486
+ page_content=': Algebraic databases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
487
+ page_content=' Theory and Applications of Categories (2017) 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
488
+ page_content=' Schultz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
489
+ page_content=', Wisnesky, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
490
+ page_content=': Algebraic data integration (unpublished).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
491
+ page_content=' http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
492
+ page_content='org/abs/1503.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
493
+ page_content='03571 (2016) 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
494
+ page_content=' Spivak, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
495
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
496
+ page_content=' : Functorial data migration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
497
+ page_content=' Information and Computation (2012) 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
498
+ page_content=' Spivak, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
499
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
500
+ page_content=' : Database queries and constraints via lifting problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
501
+ page_content=' Mathematical Structures in Computer Science (2014) 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
502
+ page_content=' Spivak, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
503
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
504
+ page_content=', Wisnesky, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
505
+ page_content=': Relational foundations for functorial data migration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
506
+ page_content=' DBPL (2015)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE4T4oBgHgl3EQfAwuD/content/2301.04846v1.pdf'}
5dFJT4oBgHgl3EQfkywG/content/tmp_files/2301.11580v1.pdf.txt ADDED
@@ -0,0 +1,818 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Characterization of Complexity in Public Goods Games
2
+ MATAN GILBOA
3
+ We complete the characterization of the computational complexity of equilibrium in public goods games on
4
+ graphs by proving that the problem is NP-complete for every finite non-monotone best-response pattern. This
5
+ answers the open problem of [Gilboa and Nisan, 2022], and completes the answer to a question raised by
6
+ [Papadimitriou and Peng, 2021], for all finite best-response patterns.
7
+ Manuscript submitted for review to the 24nd ACM Conference on Economics & Computation (EC'23).
8
+ arXiv:2301.11580v1 [cs.GT] 27 Jan 2023
9
+
10
+ M. Gilboa
11
+ 1
12
+ 1
13
+ INTRODUCTION
14
+ Public goods games describe scenarios where multiple agents face a decision of whether or not
15
+ to produce some "good", such that producing this good benefits not only themselves, but also
16
+ other (though not necessarily all) agents. Typically, we consider the good to be costly to produce,
17
+ and therefore an agent might choose not to produce it, depending on the actions of the agents
18
+ that affect her. This type of social scenarios can be found in various real-life examples, such as
19
+ vaccination efforts (an individual pays some personal cost for being vaccinated but she and other
20
+ people in her proximity gain from it) and research efforts (a research requires many resources,
21
+ but the researcher benefits from the result along with other researchers in similar areas). As is
22
+ common in the literature, to model this we use an undirected graph, where each node represents
23
+ an agent and an edge between two nodes captures the fact that these nodes directly affect one
24
+ another by their strategy. As in [Kempe et al., 2021, Maiti and Dey, 2022, Papadimitriou and Peng,
25
+ 2021, Yang and Wang, 2020, Yu et al., 2021], in our model the utility of an agent is completely
26
+ determined by the number of productive neighbors she has, as well as by her own action. We focus
27
+ on a specific version of the game which has the following characteristics. Firstly, our strategy space
28
+ is binary, i.e. an agent can only choose whether or not to produce the good, rather than choose
29
+ a quantity (we call an agent who produces the good a productive agent); secondly, our game is
30
+ fully-homogeneous, meaning that all agents share the same utility function and cost of producing
31
+ the good; and thirdly, our game is strict, which means that an agent has a single best response to
32
+ any number of productive neighbors she might have (i.e. we do not allow indifference between the
33
+ actions).
34
+ The game is formally defined by some fixed cost 𝑐 of producing the good, and by some "social"
35
+ function 𝑋 (𝑠𝑖,𝑛𝑖), which takes into account the boolean strategy of agent 𝑖 and the number of
36
+ productive neighbors she has (marked as 𝑠𝑖 and 𝑛𝑖 respectively), and outputs a number representing
37
+ how much the agent gains. The utility 𝑢𝑖 of agent 𝑖 is then given by the social function 𝑋 (𝑠𝑖,𝑛𝑖),
38
+ reduced by the cost 𝑐 if the agent produces the good, i.e. 𝑢𝑖 (𝑠𝑖,𝑛𝑖) = 𝑋 (𝑠𝑖,𝑛𝑖) −𝑐 ·𝑠𝑖. However, since
39
+ any number of productive neighbors yields a unique best response (i.e. the game is strict), we can
40
+ capture the essence of the utility function and the cost using what we call (as in [Gilboa and Nisan,
41
+ 2022]), a Best-Response Pattern𝑇 : IN → {0, 1}. We think of the Best-Response Pattern as a boolean
42
+ vector in which the 𝑘𝑡ℎ entry represents the best response to exactly 𝑘 productive neighbors. We
43
+ are interested in the problem of determining the existence of a non-trivial pure Nash equilibrium
44
+ in these games, which is defined as follows.
45
+ Equilibrium decision problem in a public goods game: For a fixed Best-Response Pattern
46
+ 𝑇 : IN → {0, 1}, and with an undirected graph 𝐺 = (𝑉, 𝐸) given as input, determine whether there
47
+ exists a pure non-trivial Nash equilibrium of the public goods game defined by 𝑇 on 𝐺, i.e. an
48
+ assignment 𝑠 : 𝑉 → {0, 1} that is not all 0, such that for every 1 ≤ 𝑖 ≤ |𝑉 | we have that
49
+ 𝑠𝑖 = 𝑇 [
50
+ ∑︁
51
+ 𝑗
52
+ 𝑠.𝑡 (𝑣𝑖,𝑣𝑗) ∈𝐸
53
+ 𝑠𝑗].
54
+ The first Best-Response Pattern for which this problem was studies was the so-called Best-Shot
55
+ pattern (where an agent’s best response is to produce the good only if she has no productive
56
+ neighbors), which was shown in [Bramoullé and Kranton, 2007] to have a pure Nash equilibrium
57
+ in any graph. In [Bramoullé and Kranton, 2007], they also show algorithmic results for "convex"
58
+ patterns, which are monotonically increasing (best response is 1 if you have at least 𝑘 productive
59
+ neighbors). The question of characterizing the complexity of this problem for all possible patterns
60
+
61
+ M. Gilboa
62
+ 2
63
+ was first raised by [Papadimitriou and Peng, 2021], where they manage to fully answer an equivalent
64
+ problem on directed graphs, showing NP-completeness for most patterns, and algorithmic results
65
+ for the remaining few. The open question on undirected graphs was then partially answered in
66
+ [Gilboa and Nisan, 2022], where they show NP-completeness for several classes of patterns, and a
67
+ polynomial-time algorithm for one other pattern. There have been several studies concerning other
68
+ versions of this problem as well. In [Yang and Wang, 2020], the general version of this problem
69
+ (where the pattern is part of the input rather than being fixed) was shown to be NP-complete
70
+ when removing the strictness assumption, (i.e. allowing indifference between actions, such that
71
+ both 0 and 1 are best responses in certain cases) 1. In [Yu et al., 2021], NP-completeness is shown
72
+ for the general version of the problem in the heterogeneous public goods game, in which the
73
+ utility function varies between agents. In [Kempe et al., 2021], they show NP-completeness of the
74
+ equilibrium problem when restricting the equilibrium to have at least 𝑘 productive agents, or at
75
+ least some specific subset of agents. In [Maiti and Dey, 2022], the parameterized complexity of the
76
+ equilibrium problem is studied, for a number of parameters of the graph on which the game is
77
+ defined.
78
+ Papadimitirou and Peng raised the problem of characterizing all Best-Response Patterns, and
79
+ Gilboa and Nisan suggested two specific open problems regarding two specific patterns. One of
80
+ these patterns has been recently solved by Max Klimm (personal communication) who showed
81
+ that all monotonically decreasing patterns can be viewed as potential games, and thus always have
82
+ a pure Nash equilibrium2.
83
+ Our main contribution is completing the characterization of the equilibrium decision problem
84
+ for all finite patterns, by showing that for all non-monotone patterns the problem is NP-complete.
85
+ Theorem: For any Best-Response Pattern that is non-monotone and finite (i.e., has a finite number
86
+ of entries with value 1), the equilibrium decision problem in a public goods game is NP-complete
87
+ (under Turing reductions).
88
+ The first step along this way was to prove NP-completeness for the specific open problem by
89
+ [Gilboa and Nisan, 2022]. It has come to our attention that an alternative proof to this specific open
90
+ problem was obtained independently and concurrently by Max Klimm and Maximilian Stahlberg
91
+ (private communication).
92
+ We note that we only focus on finite patterns, which we believe to be more applicable to real-life
93
+ problems that can be modeled by this game. We believe that the characterization for all infinite
94
+ patterns is of interest, and remains open, though some results can be found in Corollary 3.9.
95
+ The rest of this paper is organized as follows. In Section 2 we introduce the formal model and
96
+ some relevant definitions. We then set out to show hardness of all remaining patterns, dividing
97
+ them into classes. In Section 3 we present a solution for an open question from [Gilboa and Nisan,
98
+ 2022], showing hardness of a pattern we call the 0-Or-2-Neighbors Best Response Pattern, and
99
+ expanding the result to a larger sub-class of patterns that begin with 1,0,1. In Section 4 we show
100
+ hardness of all patterns beginning with 1,0,0 (where we also have a slightly more subtle division
101
+ into sub-classes), and in Section 5 we show hardness of all patterns beginning with 1,0,1 that were
102
+ not covered in Section 3, thus completing the characterization for all finite patterns. The outline of
103
+ this paper is also depicted3 in Figure 1.
104
+ 1The paper [Yu et al., 2020] had an earlier version [Yu et al., 2021] which presented a proof for this case as well, but an error
105
+ in the proof was pointed out by [Yang and Wang, 2020], who then also provided an alternative proof.
106
+ 2Alternatively, Sigal Oren (personal communication) observed that known results about 𝑘-Dominating and 𝑘-independent
107
+ sets [Chellali et al., 2012] (Theorem 19) can be used to prove this.
108
+ 3Some patterns which start with 1,0 were solved in [Gilboa and Nisan, 2022], though for simplicity we omit them from
109
+ Figure 1.
110
+
111
+ M. Gilboa
112
+ 3
113
+ Fig. 1. Outline of this paper.
114
+ 2
115
+ MODEL AND DEFINITIONS
116
+ A Public Goods Game (PGG) is defined on an undirected graph 𝐺 = (𝑉, 𝐸), 𝑉 = {𝑣1, ..., 𝑣𝑛}, where
117
+ each node represents an agent. The strategy space, which is identical for all agents, is 𝑆 = {0, 1},
118
+ where 1 represent producing the good and 0 represents not producing it. The utility of node
119
+ 𝑣𝑖 (which is assumed to be the same for all agents) is completely determined by the number of
120
+ productive neighbors 𝑣𝑖 has, as well as by 𝑣𝑖’s own strategy. Moreover, our model is restricted to
121
+ utility functions where an agent always has a single best response to the strategies of its neighbors,
122
+ i.e. there is no indifference between actions in the game. Therefore, rather than defining a PGG
123
+ with an explicit utility function and cost for producing the good, we can simply consider the best
124
+ response of an agent for any number of productive agents in its neighborhood. Essentially, this can
125
+ be modeled as a function 𝑇 : IN → {0, 1}, which, as in [Gilboa and Nisan, 2022], we represent in
126
+ the form of a Best Response Pattern:
127
+ Definition 2.1. A Best-Response Pattern (BRP) of a PGG, denoted by 𝑇, is an infinite boolean
128
+ vector in which the 𝑘𝑡ℎ entry indicates the best response for each agent 𝑣𝑖 given that exactly 𝑘
129
+ neighbors of 𝑣𝑖 (excluding 𝑣𝑖) produce the good:
130
+ ∀𝑘 ≥ 0 𝑇 [𝑘] = best response to 𝑘 productive neighbors.
131
+ Definition 2.2. Given a Public Goods Game defined on a graph 𝐺 = (𝑉, 𝐸) with respect to a
132
+ BRP 𝑇, a strategy profile 𝑠 = (𝑠1, ...,𝑠𝑛) ∈ 𝑆𝑛 (where 𝑠𝑖 ∈ {0, 1} represents the strategy of node
133
+ 𝑣𝑖 ∈ 𝑉 ) is a pure Nash equilibrium (PNE) if all agents play the best response to the strategies of
134
+ their neighbors:
135
+ ∀1 ≤ 𝑖 ≤ 𝑛 𝑠𝑖 = 𝑇 [
136
+ ∑︁
137
+ 𝑗
138
+ 𝑠.𝑡 (𝑣𝑖,𝑣𝑗) ∈𝐸
139
+ 𝑠𝑗].
140
+
141
+ finite,non-monotonepatterns
142
+ starts with 0
143
+ starts with 1,0
144
+ starts with 1,1
145
+ Solved
146
+ Solved
147
+ [GilboaandNisan,2022]
148
+ [GilboaandNisan,2022]
149
+ starts with1,0,1
150
+ starts with1,0,0
151
+ of the form:
152
+ all other forms
153
+ has"isolated" odd 1
154
+ doesn't have
155
+ 1,0,1,0,1,0,..,1,0,0,0,...
156
+ "isolated"odd 1
157
+ or
158
+ 1,0,1,0,1,0, .,1,1,?,?..
159
+ Section 3
160
+ Section 5
161
+ Section 4.1
162
+ Section 4.2M. Gilboa
163
+ 4
164
+ In addition, if there exists 1 ≤ 𝑖 ≤ 𝑛 s.t 𝑠𝑖 = 1, then 𝑠 is called a non-trivial pure Nash equilibrium
165
+ (NTPNE).
166
+ We note that throughout the paper we also use the notation 𝑣𝑖 = 0 and 𝑣𝑖 = 1 to indicate the
167
+ strategy of some node 𝑣𝑖, rather than use 𝑠𝑖 = 0 and 𝑠𝑖 = 1, respectively.
168
+ Definition 2.3. For a fixed BRP 𝑇, the non-trivial4 pure Nash equilibrium decision problem
169
+ corresponding to 𝑇, denoted by NTPNE(𝑇), is defined as follows: The input is an undirected graph
170
+ 𝐺. The output is ’True’ if there exists an NTPNE in the PGG defined on 𝐺 with respect to 𝑇, and
171
+ ’False’ otherwise.
172
+ Definition 2.4. A BRP 𝑇 is called monotonically increasing (resp. decreasing) if ∀𝑘 ∈ IN, 𝑇 [𝑘] ≤
173
+ 𝑇 [𝑘 + 1] (resp. 𝑇 [𝑘] ≥ 𝑇 [𝑘 + 1]).
174
+ Definition 2.5. A BRP 𝑇 is called finite if it has a finite number of entries with value 1:
175
+ ∃𝑁 ∈ IN 𝑠.𝑡 ∀𝑛 > 𝑁 𝑇 [𝑛] = 0
176
+ As seen in Figure 1, the only patterns for which the equilibrium decision problem remains open
177
+ are patterns that begin with 1,0. We divide those into the two following classes of patterns.
178
+ Definition 2.6. A BRP 𝑇 is called semi-sharp if:
179
+ (1) 𝑇 [0] = 1
180
+ (2) 𝑇 [1] = 𝑇 [2] = 0
181
+ i.e. 𝑇 begins with 1, 0, 0.
182
+ Definition 2.7. A BRP 𝑇 is called spiked if:
183
+ (1) 𝑇 [0] = 𝑇 [2] = 1
184
+ (2) 𝑇 [1] = 0
185
+ i.e. 𝑇 begins with 1, 0, 1.
186
+ 3
187
+ HARDNESS OF THE 0-OR-2-NEIGHBORS PATTERN
188
+ In this section we show that the equilibrium problem is NP-complete for the 0-Or-2-Neighbors
189
+ pattern, and provide some intuition about the problem. This result answers an open question by
190
+ Gilboa and Nisan [Gilboa and Nisan, 2022]. We then expand this to show hardness of a slightly
191
+ more general class of patterns. In the 0-Or-2-Neighbors BRP the best response is 1 only to zero or
192
+ two productive neighbors, as we now define.
193
+ Definition 3.1. The 0-Or-2-Neighbors Best Response Pattern is defined as follows:
194
+ ∀𝑘 ∈ IN 𝑇 [𝑘] =
195
+
196
+ 1
197
+ if 𝑘 = 0 𝑜𝑟 𝑘 = 2
198
+ 0
199
+ otherwise
200
+ i.e.
201
+ 𝑇 = [1, 0, 1, 0, 0, 0, ...].
202
+ Theorem 3.2. Let 𝑇 be the 0-Or-2 Neighbors BRP. Then NTPNE(𝑇) is NP-complete.
203
+ 4In this paper, we only study BRPs where the best response for zero productive neighbors is 1, for which there never exists
204
+ a trivial all-zero PNE (as these are the only BRPs left to solve). However, we sometimes reduce from patterns where this is
205
+ not the case, and therefore include the non-triviality restriction in our problem definition, in order to correspond with the
206
+ literature.
207
+
208
+ M. Gilboa
209
+ 5
210
+ Before proving the theorem, we wish to provide basic intuition about the 0-Or-2-Neighbors BRP,
211
+ by examining several simple graphs. Take for example a simple cycle graph. Since𝑇 [2] = 1 (i.e. best
212
+ response for two productive neighbors is 1), we have that any simple cycle admits a non-trivial pure
213
+ Nash equilibrium, assigning 1 to all nodes (see Figure 2. However, looking at a simple path with 𝑛
214
+ nodes, we see that the all-ones assignment is never a pure Nash equilibrium. The reason for this is
215
+ that 𝑇 [1] = 0 (i.e. best response for one productive neighbors is 0), and so the two nodes at both
216
+ edges of the path, having only one productive neighbor, do not play best response. Nevertheless,
217
+ any simple path does admit a pure Nash equilibrium. To see why, let us observe the three smallest
218
+ paths, of length 2,3 and 4. Notice that in a path of length two a PNE is given by the assignment 0,1;
219
+ in a path of length three a PNE is given by the assignment 0,1,0; and in a path of length four a PNE
220
+ is given by the assignment 1,0,0,1. We can use these assignment to achieve a PNE in any simple
221
+ path: given a simple path of length 𝑛, if 𝑛 ≡ 0 (mod 3) we use the path of length three as our basis,
222
+ adding 0,1,0 to it as many times as needed; if 𝑛 ≡ 1 (mod 3) we use the path of length four as our
223
+ basis, adding 0,0,1 to it as many times as needed; and if 𝑛 ≡ 2 (mod 3) we use the path of length
224
+ two as our basis, adding 0,0,1 to it as many times as needed (see example in Figure 3).
225
+ Fig. 2. PNE in cycles.
226
+ Fig. 3. PNE in paths of lengths 2 and 5.
227
+ In contrast to the graphs we have discussed so far, there are graphs in which a pure Nash
228
+ equilibrium doesn’t exist for the 0-Or-2-Neighbors pattern. An example of this can be seen in a
229
+ graph composed of four triangles, connected as a chain where each two neighboring triangles have
230
+ a single overlapping vertex, as demonstrated in Figure 4. One may verify that no PNE exists in this
231
+ graph. This specific graph will also be of use to us during our proof5.
232
+ Fig. 4. No PNE exists in this graph.
233
+ Having provided some intuition regarding the problem, we move on to prove Theorem 3.2. The
234
+ reduction is from ONE-IN-THREE 3SAT, which is a well known NP-complete problem [Schaefer,
235
+ 1978]. In ONE-IN-THREE 3SAT, the input is a CNF formula with 3 literals in each clause, and the
236
+ 5The Negation Gadget defined throughout the proof of Theorem 3.2 is constructed similarly to the graph described here.
237
+
238
+ 10
239
+ 0
240
+ 0
241
+ 0M. Gilboa
242
+ 6
243
+ Fig. 5. Clause Gadget.
244
+ goal is to determine whether there exists a boolean assignment to the variables such that in each
245
+ clause exactly one of the literals is assigned True. We begin by introducing our Clause Gadget,
246
+ which is a main component of the proof. Given a CNF formula, for each of its clauses we construct
247
+ a 21-nodes Clause Gadget, in which three of the nodes, denoted 𝑙1,𝑙2,𝑙3 (also referred to as the
248
+ literal nodes) represent the three literals of the matching clause. The purpose of this gadget is to
249
+ enforce the property that in any NTPNE, exactly one literal node in the gadget will be assigned 1,
250
+ which easily translates to the key property of a satisfying assignment in the ONE-IN-THREE 3SAT
251
+ problem. The three literal nodes are connected to one another, forming a triangle. Additionally, for
252
+ each 𝑖 ∈ {1, 2, 3}, 𝑙𝑖 is connected to two other nodes 𝑥𝑖,𝑦𝑖, which are also connected to one another,
253
+ forming another triangle. Lastly, 𝑥𝑖 and 𝑦𝑖 each form yet another triangle, along with nodes 𝑎𝑖,𝑏𝑖
254
+ and 𝑐𝑖,𝑑𝑖 respectively. We refer to 𝑥𝑖,𝑦𝑖,𝑎𝑖,𝑏𝑖,𝑐𝑖,𝑑𝑖 as the sub-gadget of 𝑙𝑖. We note that out of the
255
+ nodes of the Clause Gadget, only the literal nodes may be connected to other nodes outside of their
256
+ gadget, a property on which we rely throughout the proof. The structure of the Clause Gadget is
257
+ demonstrated in Figure 5, where each sub-gadget is colored differently.
258
+ The next four lemmas lead us to the conclusion that the gadget indeed has the desired property
259
+ mentioned above.
260
+ Lemma 3.3. In any NTPNE in a graph 𝐺 which includes a Clause Gadget 𝑐𝑔, if a literal node 𝑙𝑖 of 𝑐𝑔
261
+ is assigned 1 then so are its two neighbors from its respective sub-gadget, 𝑥𝑖,𝑦𝑖.
262
+ Proof. Divide into cases.
263
+ Case 1: If 𝑥𝑖 = 𝑦𝑖 = 0, then if 𝑎𝑖 ≠ 𝑏𝑖 (meaning only one of them is assigned 1) then 𝑥𝑖 would
264
+ have two productive neighbors and would not be playing its best response. However, if 𝑎𝑖 = 𝑏𝑖 then
265
+ 𝑎𝑖 and 𝑏𝑖 would not be playing their best response, and we reach a contradiction.
266
+ Case 2: If 𝑥𝑖 = 1,𝑦𝑖 = 0 (the case where 𝑥𝑖 = 0,𝑦𝑖 = 1 is, of course, symmetrical) then 𝑥𝑖 must
267
+ have exactly one more productive neighbor (either 𝑎𝑖 or 𝑏𝑖) in order to be playing best response.
268
+ But then that node would not be playing best response, in contradiction.
269
+
270
+ C1
271
+ d1
272
+ a1
273
+ X1
274
+ Y1
275
+ V3
276
+ 3
277
+ 3
278
+ V2
279
+ a3M. Gilboa
280
+ 7
281
+ Case 3: We are left with the option where 𝑥𝑖 = 𝑦𝑖 = 1, where it is easy to verify that all nodes of
282
+ the sub-gadget of 𝑙𝑖 are playing their best response if we set 𝑎𝑖 = 𝑏𝑖 = 𝑐𝑖 = 𝑑𝑖 = 0.
283
+
284
+ Lemma 3.4. In any NTPNE in a graph 𝐺 which includes a Clause Gadget 𝑐𝑔, if one of the literal
285
+ nodes 𝑙𝑖 of 𝑐𝑔 is assigned 1 then the other two literal nodes of 𝑐𝑔 must be assigned 0.
286
+ Proof. Since 𝑙𝑖 = 1, from Lemma 3.3 we have that 𝑥𝑖 = 𝑦𝑖 = 1. Therefore, 𝑙𝑖 has two productive
287
+ neighbors and cannot have any more, and so we have that the other two literal nodes must play
288
+ 0.
289
+
290
+ Lemma 3.5. In any graph 𝐺 which includes a Clause Gadget 𝑐𝑔, if exactly one of the literal nodes of
291
+ 𝑐𝑔 is assigned 1 then there exists a unique assignment to the other nodes of 𝑐𝑔 such that they all play
292
+ their best response.6
293
+ Proof. W.l.o.g assume that 𝑙1 = 1,𝑙2 = 𝑙3 = 0. Then, focusing first on the sub-gadget of 𝑙1,
294
+ according to Lemma 3.3 we have that 𝑥1 = 𝑦1 = 1. Since 𝑥1,𝑦1 already have two productive
295
+ neighbors, they mustn’t have any others, and so it must be that 𝑎1 = 𝑏1 = 𝑐1 = 𝑑1 = 0. We move
296
+ on to the sub-gadget of 𝑙2. If 𝑥2 ≠ 𝑦2 then 𝑙2 would have 2 productive neighbors and would not be
297
+ playing its best response. If 𝑥2 = 𝑦2 = 1 then there is no assignment to 𝑎2,𝑏2 s.t 𝑎2,𝑏2,𝑥2 all play
298
+ their best response. Therefore 𝑥2 = 𝑦2 = 0. We are left only with the option of setting 𝑎2 ≠ 𝑏2 and
299
+ 𝑐2 ≠ 𝑑2 (for instance 𝑎2 = 𝑐2 = 1,𝑏2 = 𝑑2 = 0). The sub-gadget of 𝑙3 is symmetrical to that of 𝑙2. One
300
+ may verify that in this assignment all nodes of 𝑐𝑔 indeed play their best response.
301
+
302
+ Lemma 3.6. In any graph 𝐺 which includes a Clause Gadget 𝑐𝑔, if all three of the literal nodes of
303
+ 𝑐𝑔 are assigned 0, and the literal nodes do not have any productive neighbors outside of 𝑐𝑔, then the
304
+ assignment is not a PNE.
305
+ Proof. Assume by way of contradiction that there exists a PNE where 𝑙1 = 𝑙2 = 𝑙3 = 0, and all
306
+ three of them have no productive neighbors outside 𝑐𝑔. It must be that the other two neighbors of
307
+ 𝑙1, 𝑥1,𝑦1, are assigned with different values (otherwise 𝑙1 is not playing its best response). W.l.o.g
308
+ assume 𝑥1 = 1,𝑦1 = 0. Now, If the remaining neighbors of 𝑦1 (𝑐1 and 𝑑1) are both assigned with 0 or
309
+ both assigned with 1, then they themselves would not be playing their best response. On the other
310
+ hand, if we assign them with different values then 𝑦1 would not be playing its best response, and
311
+ so we have reached a contradiction.
312
+
313
+ So far, we have seen that in any PNE which includes a Clause Gadget, it must be that exactly
314
+ one of the literal nodes of that gadget is assigned with 1, as long as the literal nodes don’t have
315
+ productive neighbors outside of their Clause Gadget. As we introduce the external nodes that will
316
+ be connected to the literal nodes, we will show that they all must be assigned with 0 in any PNE,
317
+ and thus a literal node cannot have any productive neighbor outside of its Clause Gadget, which
318
+ will finalize the property we were looking to achieve with the Clause Gadget.
319
+ Our next goal is to make sure the translation between solutions from one domain to the other is
320
+ always valid. Specifically, we wish to ensure that in any PNE in our constructed graph, if any two
321
+ literal nodes represent the same variable in the CNF formula then they will be assigned the same
322
+ value, and if they represent a variable and its negation then they will be assigned opposite values.
323
+ We begin with the latter, introducing our Negation Gadget. The goal of the Negation Gadget is to
324
+ force opposite assignments to two chosen nodes, in any Nash equilibrium. The Negation Gadget
325
+ is composed of 9 nodes: five ’bottom’ nodes 𝑏1,𝑏2,𝑏3,𝑏4,𝑏5, and four ’top’ nodes 𝑡1,𝑡2,𝑡3,𝑡4, and
326
+ for each 𝑘 ≤ 4 we create the edges (𝑏𝑖,𝑏𝑖+1), (𝑡𝑖,𝑏𝑖) and (𝑡𝑖,𝑏𝑖+1). It can intuitively be described as
327
+ 6We ignore the possibility of changing between the assignments of 𝑎𝑖 and 𝑏𝑖, or 𝑐𝑖 and 𝑑𝑖 for 𝑖 ∈ {1, 2, 3}, as it does not
328
+ affect anything in our proof.
329
+
330
+ M. Gilboa
331
+ 8
332
+ four triangles that are connected as a chain. Say we have two nodes 𝑢, 𝑣 which we want to force
333
+ to have opposite assignments, we simply connect them both to node 𝑡2 of a Negation Gadget, as
334
+ demonstrated in Figure 6.
335
+ Lemma 3.7. In any Nash equilibrium in a graph 𝐺 which includes two nodes 𝑢, 𝑣 connected through
336
+ a Negation Gadget 𝑛𝑔, 𝑢 and 𝑣 must have different assignments. In addition, the node 𝑡2 of 𝑛𝑔, to which
337
+ 𝑢 and 𝑣 are connected, must be assigned 0.
338
+ Proof. We first show that 𝑢 and 𝑣 must have different assignments, dividing into two cases.
339
+ Case 1: Assume by way of contradiction that 𝑢 = 𝑣 = 0. We divide into two sub-cases, where in
340
+ the first one 𝑡2 = 0; in this case, exactly one of the two remaining neighbors of 𝑡2 must be assigned
341
+ 1 in order for 𝑡2 itself to be playing best response. If 𝑏2 = 0 then 𝑏3 = 1 and so, looking at 𝑡1,𝑏1 (the
342
+ remaining neighbors of 𝑏2), we see that any assignment to them results either in 𝑏2 not playing
343
+ best response, or in 𝑡1,𝑏1 not playing best response, in contradiction. If, however, 𝑏3 = 0, then
344
+ 𝑏2 = 1, and so, looking at 𝑡3,𝑏4 (the remaining neighbors of 𝑏3), the same logic leads us to a similar
345
+ contradiction. In the second sub-case, where 𝑡2 = 1, we have that its two remaining neighbors must
346
+ be assigned the same value in order for 𝑡2 itself to be playing best response. If 𝑏2 = 𝑏3 = 0 then
347
+ again there is no assignment to 𝑏1,𝑡1 s.t all of 𝑏1,𝑡1,𝑏2 play best response, and if 𝑏2 = 𝑏3 = 1 then
348
+ one may verify that there is no assignment to 𝑡3,𝑡4,𝑏4,𝑏5 s.t all of 𝑡3,𝑡4,𝑏3,𝑏4,𝑏5 play best response,
349
+ and so we reach a contradiction.
350
+ Case 2: Assume 𝑢 = 𝑣 = 1. Then we again divide into sub-cases according to 𝑡2’s assignment.
351
+ If 𝑡2 = 0, it must have at least one more productive neighbor in order to play best response. The
352
+ assignments where 𝑏2 = 𝑏3 = 1 or 𝑏2 = 0,𝑏1 = 1 are easily disqualified, seeing as there is no
353
+ assignment to 𝑡1,𝑏1 s.t 𝑡1,𝑏1,𝑏2 all play best response. If 𝑏2 = 1,𝑏3 = 0 then it must hold that 𝑡3 = 𝑏4
354
+ in order for 𝑏3 to play best response, but this would mean that 𝑡3 is not playing best response, in
355
+ contradiction. If 𝑡2 = 1, then its two remaining neighbors 𝑏2,𝑏3 must be set to 0 in order for it to
356
+ play best response, and then there is no assignment to 𝑏1,𝑡1 s.t all of 𝑡1,𝑏1,𝑏2 play best response, in
357
+ contradiction.
358
+ And so it cannot be that 𝑢 = 𝑣. We move on to show that 𝑡2 must play 0. Assume by way of
359
+ contradiction that 𝑡2 = 1. Then, seeing as exactly one of 𝑢, 𝑣 is productive, 𝑡2 must have exactly one
360
+ more productive neighbor in order to play best response. If 𝑏2 = 1,𝑏3 = 0 we reach a contradiction
361
+ as there is no assignment to 𝑡1,𝑏1 s.t 𝑡1,𝑏1,𝑏2 all play best response. If 𝑏2 = 0,𝑏3 = 1 we reach a
362
+ contradiction as there is no assignment to 𝑡3,𝑡4,𝑏4,𝑏5 s.t all of 𝑡3,𝑡4,𝑏3,𝑏4,𝑏5 play best response.
363
+ Lastly, one may verify that in the assignment where 𝑡1 = 𝑏4 = 1,𝑏1 = 𝑏2 = 𝑏3 = 𝑏5 = 𝑡2 = 𝑡3 = 𝑡4 = 0
364
+ all nodes of the gadget play best response.
365
+
366
+ Now, for each variable that appears in the CNF formula, we choose one instance of it and one
367
+ instance of its negation7 and connect the literal nodes representing these instances via a Negation
368
+ Gadget, thus ensuring they are assigned opposite values in any PNE, according to Lemma 3.7. We
369
+ note that this is not the only place where we use this gadget, as we will see shortly.
370
+ We move on to introduce our Copy Gadget, which we will use to force literal nodes which
371
+ represent the same variable to have the same assignment in any PNE. The Copy Gadget is composed
372
+ of two negation gadgets 𝑛𝑔1,𝑛𝑔2, and two additional nodes 𝑥,𝑦 which have an edge between them.
373
+ Say we have two nodes 𝑢, 𝑣 which we want to force to have the same assignment in any PNE, then
374
+ we simply connect 𝑢 and 𝑥 to 𝑛𝑔1, and we connect 𝑣 and 𝑥 to 𝑛𝑔2. The gadget is demonstrated in
375
+ Figure 7.
376
+ 7We will soon ensure that instances of the same variable would get the same assignment in any PNE, and thus it is sufficient
377
+ to negate the assignments of only one instance of a variable and its negation.
378
+
379
+ M. Gilboa
380
+ 9
381
+ Fig. 6. Negation Gadget connecting 𝑢 and 𝑣.
382
+ Fig. 7. Copy Gadget connecting 𝑢 and 𝑣.
383
+ Lemma 3.8. In any Nash equilibrium in a graph 𝐺 which includes two nodes 𝑢, 𝑣 connected through
384
+ a Copy Gadget 𝑐𝑝𝑔, 𝑢, 𝑣 must have the same assignment, and must have no productive neighbors from
385
+ 𝑐𝑝𝑔. In addition, if 𝑢 = 𝑣 then there exists an assignment to the nodes of 𝑐𝑝𝑔 s.t all of them play best
386
+ response.
387
+ Proof. We first show that 𝑢 and 𝑣 must have the same assignment. This follows directly from
388
+ the fact that 𝑥 is connected to both 𝑢 and 𝑣 via a Negation Gadget. Therefore, from Lemma 3.7
389
+ we have that 𝑥 ≠ 𝑢 and 𝑥 ≠ 𝑣, and so 𝑢 = 𝑣. Lemma 3.7 also tells us that the Negation Gadget
390
+ cannot add productive neighbors to the nodes that are connected to it in any PNE, and therefore 𝑢
391
+ and 𝑣 have no productive neighbors from 𝑐𝑝𝑔. Lastly, we show that there exists an assignment to
392
+ the nodes of 𝑐𝑝𝑔 s.t they all play best response. From Lemma 3.7 𝑥 cannot have any productive
393
+ neighbors from 𝑛𝑔1 or 𝑛𝑔2. Therefore, if 𝑢 = 𝑣 = 0 then we can assign 𝑥 = 1,𝑦 = 0, and if 𝑢 = 𝑣 = 1
394
+ then we can assign 𝑥 = 0,𝑦 = 1. In both cases, we assign 𝑛𝑔1 and 𝑛𝑔2 as suggested in Lemma 3.7.
395
+ One may verify that in this assignment indeed all nodes of 𝑐𝑝𝑔 play best response.
396
+
397
+ Now, for each variable in the CNF formula, we connect all the literal nodes representing its
398
+ different instances via a chain of copy gadgets, thus (transitively) ensuring they are all assigned the
399
+ same value in any PNE, according to Lemma 3.8.
400
+ Given these lemmas and the graph we constructed, we can now prove Theorem 3.2.
401
+ Proof. (Theorem 3.2) The problem is in NP, since an assignment to the nodes can be easily
402
+ verified as a NTPNE by iterating over the nodes and checking whether they all play their best
403
+ response. It is left to show the problem is NP-hard. Given a ONE-IN-THREE 3SAT instance, we
404
+ construct a graph 𝐺 as described previously. If there exists a satisfying assignment to the 3SAT
405
+ problem, we can set all literal nodes according to the assignment of their matching variable, and
406
+ set all other nodes as described throughout lemmas 3.5, 3.7, 3.8, and according to those lemmas,
407
+ we get a pure Nash equilibrium. On the opposite direction, if there exists a non-trivial pure Nash
408
+ equilibrium, then by lemmas 3.6,3.4 in each clause exactly one literal node is assigned 1, and by
409
+ lemmas 3.7,3.8 we have that literal nodes have the same assignment if they represent the same
410
+ variable, and opposite ones if they represent a variable and its negation. Thus we can easily translate
411
+ the NTPNE into a satisfying ONE-IN-THREE 3SAT assignment, assigning ’True’ to variables whose
412
+ literal nodes are set to 1, and ’False’ otherwise.
413
+
414
+
415
+ u
416
+ V
417
+ t2
418
+ t3
419
+ b1
420
+ b2
421
+ b3
422
+ b4
423
+ b5u
424
+ x
425
+ ng1
426
+ ng2M. Gilboa
427
+ 10
428
+ We now wish to expand this result to two slightly more general classes of patterns. Firstly, we
429
+ notice that the graph constructed throughout the proof of Theorem 3.2 is bounded8 by a maximum
430
+ degree of 6. Therefore, the proof is indifferent to entries of the pattern from index 7 onward, which
431
+ means it holds for any pattern that agrees with the first 7 entries of the 0-Or-2-Neighbors pattern.
432
+ Corollary 3.9. Let 𝑇 be a BRP such that:
433
+ • 𝑇 [0] = 𝑇 [2] = 1
434
+ • ∀𝑘 ∈ {1, 3, 4, 5, 6} 𝑇 [𝑘] = 0
435
+ Then NTPNE(𝑇) is NP-complete.
436
+ Secondly, according to Theorem 7 in [Gilboa and Nisan, 2022], adding 1,0 at the beginning of a
437
+ hard pattern that begins with 1 yields yet another hard pattern. Using this theorem recursively on
438
+ the patterns of Corollary 3.9, we have that the equilibrium decision problem is hard for any pattern
439
+ of the form:
440
+ 𝑇 = [1, 0, 1, 0, 1, 0, ..., 1, 0
441
+ ��������������������������������������
442
+ 𝑓 𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ′1,0′
443
+ , 0, 0, 0, ?, ?, ...].
444
+ Corollary 3.10. Fix 𝑚 ≥ 1, and let 𝑇 be a BRP such that:
445
+ • ∀0 ≤ 𝑘 ≤ 𝑚
446
+ (1) 𝑇 [2𝑘] = 1
447
+ (2) 𝑇 [2𝑘 + 1] = 0
448
+ • 𝑇 [2𝑚 + 2] = 𝑇 [2𝑚 + 3] = 𝑇 [2𝑚 + 4] = 0
449
+ Then NTPNE(𝑇) is NP-complete.
450
+ We will see later on that this result will also be of use during the proof of Theorem 5.1.
451
+ There is one very similar class of patterns on which the proofs throughout the paper rely. This is
452
+ the class of all finite patterns that start with a finite number of 1,0, followed by 1,1, i.e. all patterns
453
+ of the form:
454
+ 𝑇 = [1, 0, 1, 0, 1, 0, ..., 1, 0
455
+ ��������������������������������������
456
+ 𝑓 𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ′1,0′
457
+ , 1, 1, ?, ?, ..., 0, 0, ...].
458
+ The complexity of those patterns was already discussed and solved in Section 5.4 of [Gilboa and
459
+ Nisan, 2022], but was not formalized and so we state it here in the following lemma.
460
+ Lemma 3.11. Fix 𝑚 ≥ 2, and let 𝑇 be a BRP s.t:
461
+ • 𝑇 is finite
462
+ • ∀𝑘 ∈ IN 𝑠.𝑡 2𝑘 ≤ 𝑚 𝑇 [2𝑘] = 1
463
+ • 𝑇 [1] = 0
464
+ • ∃1 ≤ 𝑛 𝑤ℎ𝑒𝑟𝑒 2𝑛 + 1 ≤ 𝑚 + 1, 𝑠.𝑡 𝑇 [2𝑛 + 1] = 1
465
+ Then NTPNE(𝑇) is NP-complete under Turing reduction.
466
+ Proof. The proof follows directly from Theorems 6 and 7 from [Gilboa and Nisan, 2022]9.
467
+
468
+ 8A literal node is connected to 4 nodes within its clause gadget, and possibly 2 nodes from copy gadgets or 1 node from a
469
+ negation gadget and 1 node from a copy gadget (assuming we connect the negation gadgets at the end of their respective
470
+ Copy-Gadget-chains).
471
+ 9The reader who has read the details of Section 5.4 of [Gilboa and Nisan, 2022] may notice that in fact the use of Theorems
472
+ 6 and 7 from [Gilboa and Nisan, 2022] covers a slightly more general class of patterns, but this entire class is not needed
473
+ currently, and is covered in Section 5.
474
+
475
+ M. Gilboa
476
+ 11
477
+ 4
478
+ HARDNESS OF SEMI-SHARP PATTERNS
479
+ In this section we show hardness of semi-sharp Best-Response Patterns, beginning with a specific
480
+ sub-class of those patterns in Section 4.1, and expanding to all other semi-sharp patterns in Section
481
+ 4.2. We remind the reader that semi-sharp patterns are patterns that begin with 1,0,0.
482
+ 4.1
483
+ Semi-Sharp Patterns with Isolated Odd 1
484
+ In this section we prove that any finite, semi-sharp pattern such that there exists some ’isolated’
485
+ 1 (meaning it has a zero right before and after it) at an odd index, presents a hard equilibrium
486
+ decision problem. Those patterns can be summarized by the following form:
487
+ 𝑇 = [1, 0, 0, ?, ?, ..., 0
488
+ 1
489
+ ����
490
+ 𝑜𝑑𝑑 𝑖𝑛𝑑𝑒𝑥
491
+ , 0, ?, ?, ..., 0, 0, 0, ...]
492
+ Theorem 4.1. Let 𝑇 be a BRP which satisfies the following conditions:
493
+ • 𝑇 is finite
494
+ • 𝑇 is semi-sharp
495
+ • ∃𝑚 ≥ 1
496
+ s.t:
497
+ (1) 𝑇 [2𝑚] = 𝑇 [2𝑚 + 2] = 0
498
+ (2) 𝑇 [2𝑚 + 1] = 1
499
+ Then NTPNE(𝑇) is NP-complete under Turing reduction.
500
+ Before proceeding to the proof, we introduce two gadgets and prove two lemmas regarding their
501
+ functionality.
502
+ Force-1-Gadget: The first gadget is denoted the Force-1-Gadget, and it will appear in several parts
503
+ of the graph we construct for the reduction. The goal of this gadget is to enable us to force any
504
+ node to be assigned 1 in any Nash equilibrium in a PGG defined by 𝑇. This gadget is composed
505
+ primarily of a triangle 𝑥,𝑦,𝑧, where the triangle’s nodes have also several ’Antenna’ nodes, which
506
+ are connected only to their respective node from the triangle. Specifically, 𝑥 will have 2𝑚 + 1
507
+ Antenna nodes, and 𝑦 and 𝑧 will each have 2𝑚 Antenna nodes. Say we have some node 𝑢, whose
508
+ assignment we wish to force to be 1, then we simply connect 𝑢 to one of of the Antenna nodes of 𝑥,
509
+ denoted 𝑎. The gadget is demonstrated in Figure 8.
510
+ Add-1-Gadget: our second gadget of this proof is denoted the Add-1-Gadget, and its goal is
511
+ to enable us to assure the existence of (at least) a single productive neighbor to any node in a
512
+ Nash equilibrium of a PGG defined by 𝑇. Say we have a node 𝑣, to which we wish to add a single
513
+ productive neighbors, in any equilibrium. We construct the Add-1-Gadget as follows. We create
514
+ 𝑚 + 1 nodes denoted 𝑥1, ...,𝑥𝑚+1, 𝑚 + 1 nodes denoted 𝑦1, ...𝑦𝑚+1, and an additional ’bridge’ node,
515
+ denoted 𝑏. We connect 𝑥1 and 𝑦1 to all of the other 𝑥𝑖 and 𝑦𝑖 nodes. For all 𝑖, 𝑗 ≥ 2 s.t 𝑖 ≠ 𝑗, we
516
+ create the edges (𝑥𝑖,𝑥𝑗), (𝑦𝑖,𝑦𝑗), (𝑥𝑖,𝑦𝑗) (the 𝑥𝑖,𝑦𝑖 nodes almost form a clique, except that for each
517
+ 𝑖 ≥ 2 we omit the edge (𝑥𝑖,𝑦𝑖)). Additionally, For all 𝑖 ≥ 2 the bridge node 𝑏 is connected to 𝑥𝑖 and
518
+ to 𝑦𝑖. To 𝑏 we attach a Force-1-Gadget, and we also connect 𝑏 to 𝑣. The gadget is demonstrated in
519
+ Figure 9.
520
+ The following lemmas formalize the functionality of the two gadgets, beginning with the Force-
521
+ 1-Gadget in Lemma 4.2.
522
+ Lemma 4.2. In any PNE in a graph 𝐺 corresponding to the BRP 𝑇 (from Theorem 4.1), where 𝐺 has
523
+ a node 𝑢 that is connected to a Force-1-Gadget 𝑓 𝑔 as described, 𝑢 must be assigned 1, and its neighbor
524
+
525
+ M. Gilboa
526
+ 12
527
+ Fig. 8. Force-1-Gadget with 𝑚 = 2, attached to 𝑢.
528
+ Fig. 9. Add-1-Gadget with 𝑚 = 2, attached to 𝑣.
529
+ from 𝑓 𝑔, 𝑎, must be assigned 0.10 Furthermore, if 𝑢 = 1 there exists an assignment to the nodes of 𝑓 𝑔
530
+ such that they each play their best response.
531
+ Proof. First we show that 𝑢 must be assigned 1. Assume by way of contradiction that 𝑢 = 0.
532
+ Divide into the following two cases. If 𝑥 = 1, then all of its Antenna nodes must be assigned 0
533
+ (according to 𝑇). Additionally, 𝑦 and 𝑧 must also be assigned 0, as otherwise 𝑥 wouldn’t be playing
534
+ best response, since 𝑇 is semi-sharp. Therefore, the best response of all of the Antenna nodes of 𝑦
535
+ and 𝑧 is to play 1, which leaves 𝑦 and 𝑧 with 2𝑚 + 1 productive neighbors each, and so they are
536
+ not playing best response, in contradiction. If 𝑥 = 0, then all of its Antenna nodes must play 1.
537
+ Therefore, 𝑥 must have at least one other productive neighbor, as otherwise it would have 2𝑚 + 1
538
+ productive neighbors and wouldn’t be playing best response; w.l.o.g assume 𝑦 = 1. Then all of
539
+ 𝑦’s Antenna nodes must play 0. Therefore, 𝑧 must play 0, as otherwise 𝑦 wouldn’t be playing best
540
+ response. This means the best response for 𝑧’s Antenna nodes is to play 1, which leaves 𝑧 with
541
+ 2𝑚 + 1 productive neighbors, and so it isn’t playing best response, in contradiction. We move on
542
+ to showing that 𝑎 must play 0. This follows directly from the fact that 𝑢 = 1. Since 𝑎 only has
543
+ one other neighbor (𝑥), regardless of its strategy the best response for 𝑎, according to 𝑇, would be
544
+ playing 0. It is left to show that when 𝑢 = 1 and 𝑎 = 0, there exists an assignment to the nodes
545
+ of 𝑓 𝑔 s.t they all play best response. One may verify that when we set 𝑥 = 𝑦 = 𝑧 = 0 and set all
546
+ the Antenna nodes in 𝑓 𝑔 (except for 𝑎) to 1, then all nodes of 𝑓 𝑔 play best response (specifically,
547
+ 𝑥,𝑦,𝑧 would each have exactly 2𝑚 productive neighbors, which, by definition of 𝑇, means they are
548
+ playing best response).
549
+
550
+ We move on to proving the following Lemma, which formalizes the functionality of the Add-1-
551
+ Gadget.
552
+ Lemma 4.3. Lemma 8 In any graph 𝐺 corresponding to the BRP 𝑇 (from Theorem 4.1), where 𝐺 has
553
+ a node 𝑣 that is connected to an Add-1-Gadget 𝑎𝑔 as described, there always exists an assignment to
554
+ the nodes of 𝑎𝑔 s t they all play best response, regardless of 𝑣’s strategy. In addition, the bridge node 𝑏
555
+ of 𝑎𝑔 must be assigned 1 in such an assignment.
556
+ Proof. The claim that 𝑏 must play 1 follows directly from the fact that it has a Force-1-Gadget
557
+ attached to it, i.e. from Lemma 4.2. Additionally, all the nodes of the Force-1-Gadget attached to 𝑏
558
+ 10The property that 𝑎 = 0 allows us to use the Force-1-Gadget without risking potentially adding productive neighbors to
559
+ the respective node.
560
+
561
+ a
562
+ u
563
+ X
564
+ ZX1
565
+ Y1
566
+ X2
567
+ Y2
568
+ X3
569
+ Y3
570
+ b
571
+ Force- 1-GadgetM. Gilboa
572
+ 13
573
+ can be assigned as suggested in Lemma 4.2. It is left to show a possible assignment to the rest of the
574
+ nodes of 𝑎𝑔. We divide into cases. If 𝑣 = 0, then we set 𝑥1 = 1 and all other 𝑥𝑖,𝑦𝑖 nodes we set to 0.
575
+ If 𝑣 = 1, then we set 𝑥𝑖 = 𝑦𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑚 + 1. One may verify that given these assignments
576
+ all nodes of 𝑎𝑔 play their best response.
577
+
578
+ In addition to these two gadgets, we wish to introduce the following definition, after which we
579
+ will proceed to the proof of Theorem 4.1, which we can now prove.
580
+ Definition 4.4. Let 𝑇,𝑇 ′ be two BRPs. We say that 𝑇 ′ is shifted left by 𝑡 from 𝑇 if
581
+ ∀𝑘 ≥ 0 𝑇 ′[𝑘] = 𝑇 [𝑘 + 𝑡].
582
+ Proof. (Theorem 4.1) Denote by 𝑇 ′ the pattern which is shifted left by 1 from T, i.e.:
583
+ ∀𝑘 ≥ 0 𝑇 ′[𝑘] = 𝑇 [𝑘 + 1].
584
+ Notice that𝑇 ′ is flat, non-monotonic and finite, and therefore NTPNE(𝑇 ′) is NP-complete according
585
+ to Theorem 4 in [Gilboa and Nisan, 2022], which allows us to construct a Turing reduction from it.
586
+ The technique of the reduction is very similar to those of the proofs of Theorems 5,6 in [Gilboa and
587
+ Nisan, 2022]. Given any graph 𝐺 = (𝑉, 𝐸), where 𝑉 = 𝑣1, ..., 𝑣𝑛, we construct 𝑛 graphs 𝐺1, ...,𝐺𝑛,
588
+ where for each 1 ≤ 𝑖 ≤ 𝑛 the graph 𝐺𝑖 is defined as follows. The graph 𝐺𝑖 contains the original
589
+ input graph 𝐺, and in addition, we connect a unique Add-1-Gadget to each of the original nodes,
590
+ and a Force-1-Gadget only to node 𝑣𝑖. If there exists some non-trivial PNE in the PGG defined on
591
+ 𝐺 by 𝑇, let 𝑣 𝑗 be some node who plays 1. Then the same NTPNE is also an NTPNE in the PGG
592
+ defined by 𝑇 ′ on 𝐺𝑗, when we assign the nodes of the additional gadget as suggested in lemmas
593
+ 4.2,4.3. To see why, notice that 𝑇 ′ is shifted left by 1 from 𝑇, and the Add-1-Gadgets ensure that all
594
+ nodes have exactly one additional productive neighbor than they had in 𝐺.
595
+ In the other direction, if there exists an NTPNE in a PGG defined by 𝑇 ′ on one of the graphs 𝐺𝑗,
596
+ then by the same logic this is also a PNE in the game defined by 𝑇 on 𝐺 (ignoring the assignments
597
+ of the added nodes). Moreover, the Force-1-Gadget ensures this assignment is non-trivial even after
598
+ removing the added nodes, since 𝑣 𝑗 must play 1 in this assignment.
599
+
600
+ 4.2
601
+ All Semi-Sharp Patterns
602
+ In this section we show that any finite, non-monotone, semi-sharp pattern presents a hard equilib-
603
+ rium problem.
604
+ Theorem 4.5. Let 𝑇1 be a finite, non-monotone, semi-sharp BRP. Then NTPNE(𝑇1) is NP-complete
605
+ under Turing reduction.
606
+ Before proceeding to the proof, we wish to introduce the following definition and prove two
607
+ lemmas related to it.
608
+ Definition 4.6. Let 𝑇,𝑇 ′ be two BRPs such that ∀𝑘 ∈ IN it holds that 𝑇 [𝑘] = 𝑇 ′[2𝑘]. Then we say
609
+ that 𝑇 ′ is a double-pattern of 𝑇, and 𝑇 is the half-pattern of 𝑇 ′. Notice that a pattern has a unique
610
+ half-pattern, whereas, since the definition does not restrict 𝑇 ′ in the odd indices, any pattern has
611
+ infinite double-patterns.
612
+ The first lemma is very simple and intuitive, stating that the largest index with value 1 in a half
613
+ pattern is strictly smaller than the largest index with value 1 in its original pattern. This is true
614
+ since for any index 𝑖 s.t the value of the half pattern is 1 in that index, the original pattern has a
615
+ value of 1 in index 2𝑖.
616
+ Lemma 4.7. Let 𝑇,𝑇 ′ be two finite BRPs such that 𝑇 is the half-pattern of 𝑇 ′. Denote by 𝑖 the largest
617
+ index s.t 𝑇 [𝑖] = 1 and denote by 𝑗 the largest index s.t 𝑇 ′[𝑗] = 1. Then if 𝑗 > 0 we have that 𝑖 < 𝑗.
618
+
619
+ M. Gilboa
620
+ 14
621
+ Proof. The proof is trivially given by the definition of a half pattern, since 𝑇 ′[2𝑖] = 𝑇 [𝑖].
622
+
623
+ The next lemma is less trivial, stating the relation between hardness of a pattern and its double-
624
+ pattern.
625
+ Lemma 4.8. Let 𝑇 be a BRP such that NTPNE(𝑇) is NP-complete, and let 𝑇 ′ be a double-pattern of
626
+ 𝑇. Then NTPNE(𝑇 ′) is NP-complete.
627
+ Proof. We use a specific case of the same reduction that was used to prove Theorem 4 in [Gilboa
628
+ and Nisan, 2022]. Given a graph 𝐺1 = (𝑉1, 𝐸1) as input, where 𝑉1 = 𝑣1
629
+ 1, ..., 𝑣1
630
+ 𝑛, we create another
631
+ replica of it 𝐺2 = (𝑉2, 𝐸2), where 𝑉2 = 𝑣2
632
+ 1, ..., 𝑣2
633
+ 𝑛. For each node (from both graphs), we add edges
634
+ connecting it to all replicas of its neighbors from the opposite graph. That is, the following group
635
+ of edges is added to the graph:
636
+ 𝐸 = {(𝑣1
637
+ 𝑖 , 𝑣2
638
+ 𝑗)|(𝑣1
639
+ 𝑖 , 𝑣1
640
+ 𝑗) ∈ 𝐸1}.
641
+ A demonstration of the reduction can be seen in Figure 10.
642
+ Fig. 10. Example of the reduction of Lemma 4.8’s proof.
643
+ Denote by 𝑃 the PGG defined on 𝐺1 by 𝑇, and by 𝑃 ′ the PGG defined by 𝑇 ′ on 𝐺 ′ = (𝑉 ′, 𝐸′)
644
+ where 𝑉 ′ = 𝑉1 ∪ 𝑉2, 𝐸′ = 𝐸 ∪ 𝐸1 ∪ 𝐸2. We show that there exists an NTPNE in 𝑃 iff there exists
645
+ one in 𝑃 ′. If there exists an NTPNE in 𝑃, we simply give the nodes of 𝐺2 the same assignment as
646
+ those of 𝐺1. Since 𝑇 ′ is a double pattern of 𝑇, any node 𝑣 ′ ∈ 𝑉 ′ must play best response, having
647
+ exactly twice as many supporting neighbors than it had (or its replica had) in 𝑃.
648
+ In the opposite direction, if there exists an NTPNE in 𝑃 ′, notice that for all 1 ≤ 𝑖 ≤ 𝑛 it must
649
+ be that 𝑣1
650
+ 𝑖 and 𝑣2
651
+ 𝑖 have identical assignments, since they both share exactly the same neighbors,
652
+ and thus have identical best responses. Therefore, any node 𝑣 ′ ∈ 𝑉 must have an even number
653
+ of productive neighbors, half of which are in 𝑉1 and the other half in 𝑉2 (as for each productive
654
+ neighbor from 𝑉1 there is a respective productive neighbor from 𝑉2). We then simply ignore 𝐺2, and
655
+ leave the assignment of 𝐺1 as it is, and each node shall now have exactly half as many productive
656
+ neighbors as it had in the original assignment. Since 𝑇 is a half pattern of 𝑇 ′, we get an NTPNE in
657
+ 𝑃.11
658
+
659
+ Given lemmas 4.7,4.8, we are now able to prove Theorem 4.5. The intuitive idea of the proof is
660
+ that we halve the pattern 𝑇1 (i.e. find its half-pattern) repeatedly, until eventually we reach some
661
+ pattern for which we already know the equilibrium problem is hard, which, as we will see, must
662
+ happen at some point. Then, by applying Lemma 4.8 recursively, we have that 𝑇1 is hard.
663
+ 11In both directions of this proof, the non-triviality comes from the fact that 𝑇 [0] = 𝑇 ′[0], by definition. Therefore, a
664
+ non-trivial PNE in one domain must translate to a non-trivial one in the other.
665
+
666
+ Vi
667
+ 2
668
+ V2
669
+ 2
670
+ V
671
+ 3M. Gilboa
672
+ 15
673
+ Proof. (Theorem 4.5) From Lemma 4.7 we have that if we halve a non-flat pattern enough times,
674
+ we will eventually reach the Best-Shot pattern: 𝑇𝐵𝑒𝑠𝑡−𝑆ℎ𝑜𝑡 [0] = 1 and ∀𝑘 ≥ 1 𝑇𝐵𝑒𝑠𝑡−𝑆ℎ𝑜𝑡 [𝑘] = 0.
675
+ Divide into two cases.
676
+ In the first case assume that ∀𝑘 ∈ IN it holds that𝑇1[2𝑘] = 0. In this case, we know that no matter
677
+ how many times we halve 𝑇1 into patterns 𝑇2,𝑇3, ..., for each 𝑖 we will have that 𝑇𝑖 [1] = 0, i.e. the
678
+ value in index 1 of all these half-patterns will always be 0, i.e. 𝑇𝑖 [1] = 0 for all 𝑖. Assume that we
679
+ halve𝑇1 repeatedly into patterns𝑇2,𝑇3, ...,𝑇𝑚 (where𝑇𝑖 is the half pattern of𝑇𝑖−1) such that𝑇𝑚 is the
680
+ first time that we reach the Best-Shot pattern. Observe 𝑇𝑚−1. For any even index 𝑘 ≠ 0 it must hold
681
+ that 𝑇𝑚−1[𝑘] = 0, otherwise 𝑇𝑚 would not be the Best-Shot pattern. Additionally, there must exist
682
+ at least one odd index 𝑗 s.t 𝑇𝑚−1[𝑗] = 1, since 𝑇𝑚 is the first time we reach the Best-Shot pattern.
683
+ For these two reasons, we have that 𝑇𝑚−1 satisfies the conditions of Theorem 4.1 and therefore
684
+ NTPNE(𝑇𝑚−1) is NP-complete under Turing reduction. From Lemma 4.8 (used inductively), we
685
+ have that ∀1 ≤ 𝑖 ≤ 𝑚 − 2 NTPNE(𝑇𝑖) is also NP-complete under Turing reduction, and specifically
686
+ NTPNE(𝑇1).
687
+ In the second case, assume that there exists some 𝑘 ∈ IN s.t 𝑇1[2𝑘] = 1. In that case, after at most
688
+ 𝑘 halvings, we reach some pattern for which the value of index 1 is 1. Assume that we halve 𝑇1
689
+ repeatedly into patterns 𝑇2,𝑇3, ...,𝑇𝑛 (where 𝑇𝑖 is the half pattern of 𝑇𝑖−1) such that 𝑇𝑛 is the first
690
+ time that we reach a pattern for which index 1 is 1, i.e. ∀1 ≤ 𝑖 ≤ 𝑛 − 1 𝑇𝑖 [1] = 0 and 𝑇𝑛[1] = 1.
691
+ Notice that, additionally, by definition of a half-pattern for each 𝑖 it holds that 𝑇𝑖 [0] = 1 (since
692
+ 𝑇1[0] = 1). If 𝑇𝑛 is non-monotone, then by Theorem 5 in [Gilboa and Nisan, 2022] we have that
693
+ NTPNE(𝑇𝑛) is NP-complete under Turing reduction, and from Lemma 4.8 (used inductively), we
694
+ have that ∀1 ≤ 𝑖 ≤ 𝑛 − 1 NTPNE(𝑇𝑖) is also NP-complete under Turing reduction, and specifically
695
+ NTPNE(𝑇1). Otherwise (i.e. 𝑇𝑛 is monotone), denote by 𝑙 the largest index s.t 𝑇𝑛[𝑙] = 1, and observe
696
+ 𝑇𝑛−1. By definition of double-patterns, we have that:
697
+ ∀𝑗 ∈ IN 𝑇𝑛−1[2𝑗] =
698
+
699
+ 1
700
+ if 𝑗 ≤ 𝑙
701
+ 0
702
+ otherwise
703
+ i.e. the value in the even indices is 1 until 2𝑙, and 0 afterwards. Since 𝑇𝑛 is defined to be the first
704
+ halving of 𝑇1 s.t its value in index 1 is 1, we have that 𝑇𝑛−1[1] = 0. However, since the definition of
705
+ a double-pattern does not restrict it in the odd indices, there might be some odd indices (strictly
706
+ larger than 1) for which the value of 𝑇𝑛−1 is 1. Divide into 3 sub-cases:
707
+ Sub-case 1: If there exists some 𝑧 ≤ 𝑙 s.t 𝑇𝑛−1[2𝑧 + 1] = 1, then by Lemma 3.11, we have that
708
+ NTPNE(𝑇𝑛−1) is NP-complete under Turing reduction.
709
+ Sub-case 2: Otherwise, if there exists some 𝑧 > 𝑙 s.t 𝑇𝑛−1[2𝑧 + 1] = 1, then observe the pattern
710
+ 𝑇 ′
711
+ 𝑛−1, which we define as the pattern shifted left by 2𝑙 from 𝑇𝑛−1 i.e.:
712
+ ∀𝑗 ∈ IN 𝑇 ′
713
+ 𝑛−1[𝑗] = 𝑇𝑛−1[𝑗 + 2𝑙]
714
+ Notice that this pattern satisfies the conditions of Theorem 4.1, and therefore NTPNE(𝑇 ′
715
+ 𝑛−1) is
716
+ NP-complete under Turing reduction. Then, by applying Theorem 7 from [Gilboa and Nisan, 2022]
717
+ 𝑙 times, we have that NTPNE(𝑇𝑛−1) is also NP-complete under Turing reduction.
718
+ Sub-case 3: Otherwise (i.e. there is no odd index whatsoever in which the value of 𝑇𝑛−1 is 1), then
719
+ by Corollary 3.10 we have that NTPNE(𝑇𝑛−1) is NP-complete under Turing reduction.
720
+ And so, in either case we have that NTPNE(𝑇𝑛−1) is NP-complete under Turing reduction, and
721
+ therefore from Lemma 4.8 (used inductively), we have that ∀1 ≤ 𝑖 ≤ 𝑛 − 1 NTPNE(𝑇𝑖) is also
722
+ NP-complete under Turing reduction, and specifically NTPNE(𝑇1).
723
+
724
+
725
+ M. Gilboa
726
+ 16
727
+ 5
728
+ HARDNESS OF ALL SPIKED PATTERNS
729
+ There are several finite, spiked patterns that we have not yet proved hardness for, and we now have
730
+ enough tools to close the remaining gaps. We remind the reader that spiked patterns are patterns
731
+ that begin with 1,0,1. The following theorem formalizes the result of this section, and completes
732
+ the characterization of all finite patterns.
733
+ Theorem 5.1. Let𝑇 be a finite, spiked BRP. Then NTPNE(𝑇) is NP-complete under Turing reduction.
734
+ The intuitive idea of the proof is as follows. If the pattern simply alternates between 1 and 0 a
735
+ finite amount of times, followed infinite 0’s, i.e. the pattern is of the form
736
+ 𝑇 = [1, 0, 1, 0, 1, 0, ..., 1, 0
737
+ ��������������������������������������
738
+ 𝑓 𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ′1,0′
739
+ , 0, 0, 0, ...]
740
+ then the problem12 is already shown to be hard by Corollary 3.10. Otherwise, we wish to look at
741
+ the first "disturbance" where this pattern stops alternating from 1 to 0 regularly. Either the first
742
+ "disturbance" is a 1 at an odd index, i.e. the pattern is of the form
743
+ 𝑇 = [1, 0, 1, 0, 1, 0, ..., 1, 0
744
+ ��������������������������������������
745
+ 𝑓 𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ′1,0′
746
+ , 1, 1, ?, ?, ...]
747
+ or the first "disturbance" is a 0 at an even index, i.e. the pattern is of the form
748
+ 𝑇 = [1, 0, 1, 0, 1, 0, ..., 1, 0
749
+ ��������������������������������������
750
+ 𝑓 𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ′1,0′
751
+ , 0, ?, ?, ..., 1, ?, ?, ...]
752
+ (in the latter option, after the first "disturbance" there must be some other index with value 1, since
753
+ the pattern does not fit the form of Corollary 3.10). The first option was solved in Lemma 3.11, and
754
+ the second option can be solved using our previous results, as we shall now formalize in the proof.
755
+ Proof. (Theorem 5.1) If𝑇 satisfies the conditions of Corollary 3.10 or Lemma 3.11 then NTPNE(𝑇)
756
+ is NP-complete under Turing reduction according to them. Otherwise, let 𝑘 be the smallest integer
757
+ such that 𝑇 [2𝑘] = 0. Denote by 𝑇 ′ the pattern which is shifted left by 2𝑘 − 2 from T, i.e.:
758
+ ∀𝑗 ≥ 0 𝑇 ′[𝑗] = 𝑇 [𝑗 + 2𝑘 − 2]
759
+ Notice that from definition of 𝑘 (being the first even index such that 𝑇 [2𝑘] = 0) we have that for
760
+ all 𝑗 < 𝑘 it holds that 𝑇 [2𝑗] = 1. Moreover, since 𝑇 does not satisfy the conditions of Lemma 3.11
761
+ it must hold for all 𝑗 ≤ 𝑘 that 𝑇 [2𝑗 − 1] = 0, i.e. the value of 𝑇 in the odd indices until 2𝑘 is 0
762
+ (since otherwise𝑇 would start with a finite number of 1,0, followed by 2 consecutive 1’s, and would
763
+ satisfy the conditions of Lemma 3.11). Thus, we have that
764
+ ∀𝑗 < 2𝑘 𝑇 [𝑗] =
765
+
766
+ 1 if 𝑗 is even
767
+ 0 if 𝑗 is odd
768
+ (1)
769
+ In particular, we have that𝑇 [2𝑘 − 2] = 1, 𝑇 [2𝑘 − 1] = 0, which implies that𝑇 ′[0] = 1, 𝑇 ′[1] = 0;
770
+ as 𝑇 [2𝑘] = 0 we have that 𝑇 ′[2] = 0, and thus we conclude that 𝑇 ′ is semi-sharp. In addition, since
771
+ 𝑇 does not satisfy the conditions of Corollary 3.10, there must be some other index 𝑥 > 2𝑘 such
772
+ that 𝑇 [𝑥] = 1, and therefore we have that 𝑇 ′ is non-monotone. Therefore, by Theorems 4.1, 4.5, we
773
+ have that NTPNE(𝑇 ′) is NP-complete under Turing reduction. We now wish to use this in order to
774
+ prove that NTPNE(𝑇) is also hard.
775
+ 12In fact, Corollary 3.10 gives a more general result, but we currently only need the private case where the pattern ends
776
+ with infinite 0’s.
777
+
778
+ M. Gilboa
779
+ 17
780
+ From Equation 1, we can apply Theorem 7 of [Gilboa and Nisan, 2022] (𝑘 − 1) times, and we
781
+ have that NTPNE(𝑇) is NP-complete under Turing reduction.
782
+
783
+ ACKNOWLEDGMENTS
784
+ I would like to thank Noam Nisan for many useful conversations throughout the work, and for
785
+ suggesting the Copy Gadget seen in the proof of Theorem 3.2.
786
+ I would like to thank Roy Gilboa for many useful conversations throughout the work and for
787
+ adjusting the Copy Gadget seen in the proof of Theorem 3.2.
788
+ I would like to thank Noam Nisan for communicating to me the solution of the monotone case by
789
+ Max Klimm, and the alternative derivation by Sigal Oren.
790
+ This project has received funding from the European Research Council (ERC) under the European
791
+ Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 740282).
792
+ REFERENCES
793
+ Yann Bramoullé and Rachel Kranton. 2007. Public Goods in Networks. Journal of Economic Theory 135, 1 (2007), 478–494.
794
+ https://doi.org/10.1016/j.jet.2006.06.006
795
+ Mustapha Chellali, Odile Favaron, Adriana Hansberg, and Lutz Volkmann. 2012. k-Domination and k-Independence in
796
+ Graphs: A Survey. Graphs and Combinatorics 28, 1 (2012), 1–55. https://doi.org/10.1007/s00373-011-1040-3
797
+ Matan Gilboa and Noam Nisan. 2022. Complexity of Public Goods Games on Graphs. In Proceedings of the 15th International
798
+ Symposium on Algorithmic Game Theory (Lecture Notes in Computer Science), Panagiotis Kanellopoulos, Maria Kyropoulou,
799
+ and Alexandros Voudouris (Eds.). Springer Cham, Colchester UK, 151–168.
800
+ David Kempe, Sixie Yu, and Yevgeniy Vorobeychik. 2021. Inducing Equilibria in Networked Public Goods Games through
801
+ Network Structure Modification. (2021). https://doi.org/10.48550/arXiv.2002.10627
802
+ Arnab Maiti and Palash Dey. 2022. On Parameterized Complexity of Binary Networked Public Goods Game. In proceedings of
803
+ the 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2022). International Foundation
804
+ for Autonomous Agents and Multiagent Systems (IFAAMAS), Auckland New Zealand, 871–879.
805
+ Christos Papadimitriou and Binghui Peng. 2021. Public Goods Games in Directed Networks. In EC ’21: Proceedings of the
806
+ 22nd ACM Conference on Economics and Computation. Association for Computing Machinery, New York, NY, United
807
+ States, Budapest Hungary, 745–762.
808
+ Thomas J. Schaefer. 1978. The Complexity of Satisfiability Problems. In STOC ’78: Proceedings of the tenth annual ACM
809
+ symposium on Theory of computing. Association for Computing Machinery, New York, NY, United States, San Diego
810
+ California USA, 216–226.
811
+ Yongjie Yang and Jianxin Wang. 2020. A Refined Study of the Complexity of Binary Networked Public Goods Games. (2020).
812
+ https://doi.org/10.48550/arXiv.2012.02916
813
+ Sixie Yu, Kai Zhou, Jeffrey Brantingham, and Yevgeniy Vorobeychik. 2020. Computing Equilibria in Binary Networked
814
+ Public Goods Games. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34(2). Association for the
815
+ Advancement of Artificial Intelligence (AAAI), New York, NY, USA, 2310–2317. https://doi.org/10.1609/aaai.v34i02.5609
816
+ Sixie Yu, Kai Zhou, Jeffrey Brantingham, and Yevgeniy Vorobeychik. 2021. Computing Equilibria in Binary Networked
817
+ Public Goods Games. (2021). https://doi.org/10.48550/arXiv.1911.05788
818
+
5dFJT4oBgHgl3EQfkywG/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NAzT4oBgHgl3EQf-v4l/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4953398243f8976432ab35662002a8ed79c8797171fda4bdfa790e9542067e10
3
+ size 17760301
9NE1T4oBgHgl3EQfUQM_/content/2301.03087v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcce71b4e7dfa47ef4470851a4bb52d0b32811603921dae40bf67a4c72037a89
3
+ size 1174025
9NE1T4oBgHgl3EQfUQM_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a1df9a348cf028e372395c01857500cab7a5197dc28e3b8d4f873f48b58fa30
3
+ size 99930
9tE3T4oBgHgl3EQfrArn/content/tmp_files/2301.04657v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tE3T4oBgHgl3EQfrArn/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANE1T4oBgHgl3EQfowXh/content/2301.03325v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6d1b5af610b94ce6c61e925653696d3dcba8d0fc0beb89866b60a975e4a8518
3
+ size 19176121
ANE2T4oBgHgl3EQfnAgQ/content/tmp_files/2301.04003v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANE2T4oBgHgl3EQfnAgQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
B9AyT4oBgHgl3EQfePhg/content/tmp_files/2301.00317v1.pdf.txt ADDED
@@ -0,0 +1,1145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Note On Acyclic Token Sliding Reconfiguration
2
+ Graphs of Independent Sets
3
+ David Avis1
4
+ Duc A. Hoang2
5
+ 1 Graduate School of Informatics, Kyoto University, Japan
6
+ School of Computer Science, McGill University, Canada
7
8
+ 2 Graduate School of Informatics, Kyoto University, Japan
9
10
+ Abstract
11
+ We continue the study of token sliding reconfiguration graphs of independent sets initiated by
12
+ the authors in an earlier paper (arXiv:2203.16861). Two of the topics in that paper were to study
13
+ which graphs G are token sliding graphs and which properties of a graph are inherited by a token
14
+ sliding graph. In this paper we continue this study specializing on the case of when G and/or its
15
+ token sliding graph TSk(G) is a tree or forest, where k is the size of the independent sets considered.
16
+ We consider two problems. The first is to find necessary and sufficient conditions on G for TSk(G)
17
+ to be a forest. The second is to find necessary and sufficient conditions for a tree or forest to be
18
+ a token sliding graph. For the first problem we give a forbidden subgraph characterization for the
19
+ cases of k = 2, 3. For the second problem we show that for every k-ary tree T there is a graph G for
20
+ which TSk+1(G) is isomorphic to T. A number of other results are given along with a join operation
21
+ that aids in the construction of TSk(G)-graphs.
22
+ 1
23
+ Introduction
24
+ In a reconfiguration variant of a computational problem (e.g., Satisfiability, Independent Set,
25
+ Vertex-Coloring, etc.), a transformation rule that describes an adjacency relation between feasi-
26
+ ble solutions (e.g., satisfying truth assignments, independent sets, proper vertex-colorings, etc.) of the
27
+ problem is given. One of the main goals is to decide whether there is a sequence of adjacent feasible
28
+ solutions that “reconfigures” one given solution into another. Another way of looking at these reconfig-
29
+ uration problems is via the so-called reconfiguration graph—a graph whose nodes are feasible solutions
30
+ and two nodes are adjacent if one can be obtained from the other by applying the given rule exactly once.
31
+ The mentioned question now becomes deciding whether there is a path between two given nodes in the
32
+ reconfiguration graph. Recently, reconfiguration problems have been intensively studied from different
33
+ perspectives [2, 6–8].
34
+ One of the most well-studied reconfiguration variants of Independent Set is the so-called Token
35
+ Sliding problem, which was first introduced by Hearn and Demaine [4] in 2005.
36
+ We refer readers
37
+ to [2, 7, 8] and the references therein for more details. Surprisingly, though Token Sliding has been
38
+ well-investigated, the realizability and structural properties of its corresponding reconfiguration graph—
39
+ the one which we will refer to as the TSk-graph (which stands for Token Sliding (Reconfiguration)
40
+ graph)—have not been studied until recently [1]. On the other hand, when considering either general
41
+ vertex subsets, dominating sets, or proper vertex-colorings of a graph as the “input feasible solutions”,
42
+ their corresponding reconfiguration graphs have been very well-characterized [5, 6].
43
+ For any graph-theoretic terminology and notation not defined here, we refer readers to [3]. Given a
44
+ graph G = (V, E) and an integer k ≥ 2. For two sets X, Y , we sometimes use X + Y and X − Y to
45
+ indicate X ∪ Y and X \ Y . We abbreviate X ∪ {u} (resp., X \ {u}) by X + u (resp., X − u). We use
46
+ NG(u), or simply just N(u) when the graph G is clear from the context, to denote the (open) neighbors
47
+ of u, i.e., set of all vertices in G that are adjacent to u. The closed neighbors of u, denoted by NG[u]
48
+ or simply N[u], is the set NG(u) + u. The degree of u, denoted by degG(u), is nothing but the size of
49
+ NG(u). An independent set (or stable set) of G is a vertex subset I such that for every u, v ∈ I we
50
+ have uv /∈ E(G). The TSk-graph of G, denoted by TSk(G), takes all size-k independent sets of G as its
51
+ 1
52
+ arXiv:2301.00317v1 [math.CO] 1 Jan 2023
53
+
54
+ nodes and two nodes I, J are adjacent (under Token Sliding (TS)) if there exist two vertices u, v ∈ V (G)
55
+ such that I − J = {u}, J − I = {v}, and uv ∈ E(G). Two graphs G and H are isomorphic, denoted
56
+ by G ≃ H, if there exists a bijective mapping f : V (G) → V (H) such that uv ∈ E(G) if and only if
57
+ f(u)f(v) ∈ E(H). A graph G is called a TSk-graph if there exists a graph H such that G ≃ TSk(H). A
58
+ forest is a graph having no cycles (i.e., it is acyclic) and a connected forest is a tree. A TSk-tree/forest
59
+ is a TSk-graph which is also a tree/forest. Figure 1 illustrates a TS2-tree on six vertices (right). In [1],
60
+ ab
61
+ ac
62
+ bd
63
+ ae
64
+ ef
65
+ ce
66
+ TS2(G)
67
+ a
68
+ b
69
+ c
70
+ d
71
+ e
72
+ f
73
+ G
74
+ Figure 1: A graph G with TS2(G) = D1,3,2. Each node ab represents a size-2 stable set of G.
75
+ the authors studied various properties of the family of TSk-graphs. For a graph G, two of the questions
76
+ studied were:
77
+ (Q1) What are necessary and sufficient conditions for G so that TSk(G) is a forest?
78
+ (Q2) What are necessary and sufficient conditions for G to be a TSk-graph?
79
+ In this paper, we study these two questions for the case when G is a tree or a forest.
80
+ The union G ∪ H of two (labelled) graphs G and H is the graph with V (G ∪ H) = V (G) ∪ V (H) and
81
+ E(G ∪ H) = E(G) ∪ E(H). When vertices and edges of G and H are considered distinct regardless of
82
+ their labels, we say that G ∪ H is the disjoint union of G and H, and write G + H instead of G ∪ H to
83
+ distinguish from their union. We respectively denote by Kn, Pn, and Cn the complete graph, path, and
84
+ cycle on n vertices. Km,n (m ≤ n) is the complete bipartite graph whose two partite sets are of sizes m
85
+ and n respectively. K1,n is also called a star—a tree obtained by attaching n leaves to a central vertex.
86
+ A family of graphs that we will use in the sequel generalizes stars and paths. For fix integers n, r, s ≥ 1,
87
+ let Dr,n,s be the tree obtained from Pn by appending r leaves at one end and s leaves at the other. Note
88
+ that D1,1,s is the star K1,s+1 and D1,n,1 is the path Pn+2. Figure 1 illustrates D1,3,2 (right). An n-ary
89
+ tree is a rooted tree in which each node has at most n children. Any tree with maximum degree at most
90
+ n+1 can be rooted at a vertex with degree at most n (e.g., a leaf) to produce a n-ary tree. In particular,
91
+ a 2-ary tree is nothing but the well-known binary tree.
92
+ In the next section, we begin by partially answering (Q1) when G is a tree/forest and k ∈ {2, 3} and
93
+ conclude the section by conjecturing for k ≥ 4. Then, before addressing (Q2) for some trees/forests, in
94
+ particular k-ary trees and Dr,n,s, we define an important graph operation which, under certain conditions,
95
+ can be used for combining two TSk-graphs by taking their union to obtain a new one. The final section
96
+ of the paper gives some concluding remarks.
97
+ 2
98
+ Results on (Q1)
99
+ In this section, we prove the necessary and sufficient conditions on a tree/forest G such that TSk(G) is
100
+ acyclic for k ∈ {2, 3}, partially answering (Q1).
101
+ We begin with some definitions and observations. The complement G of a graph G is the graph
102
+ with V (G) = V (G) and E(G) = {uv : uv /∈ E(G)}. The size-m matching, denoted by mK2, is the
103
+ graph obtained by taking the disjoint union of m copies of K2. Observe that TS2(2K2) ≃ C4. We
104
+ label vertices in a Dr,n,s (r, s ≥ 1) as follows: Vertices of Pn are labelled p1, . . . , pn.
105
+ The r leaves
106
+ attached to p1 are u1, . . . , ur and the s leaves attached to pn are v1, . . . , vn. D2,2,2 is shaped like an
107
+ 2
108
+
109
+ G
110
+ TS2(G)
111
+ Figure 2: A list G of n-vertex graphs G (4 ≤ n ≤ 7) excluding Cn (n ≥ 5) such that if TS2(G′) has no
112
+ cycle then G′ does not contain any member G of G as an induced subgraph.
113
+ 3
114
+
115
+ H and TS2(D2,2,2) contains a cycle C8 whose vertex-set is {u1v1, u1p2, u1v2, p1v2, u2v2, u2p2, u2v1, p1v1}.
116
+ Indeed, respectively from Lemma 1 of [1] and Figure 2, if a n-vertex graph G is either Cn (n ≥ 5) or a
117
+ graph in the list G described in Figure 2 (which includes 2K2 and D2,2,2), the graph TS2(G) contains a
118
+ cycle. Additionally, we have:
119
+ Lemma 1.
120
+ (a) For k ≥ 2, TSk(2K2 + nK1) contains a cycle C4 if n ≥ k − 2 otherwise it is acyclic.
121
+ (b) For k ∈ {2, 3}, s ≥ 1, TSk(D1,n,s) contains a cycle C4 if n ≥ 2k − 1 otherwise it is acyclic.
122
+ (c) For k ∈ {2, 3} and r, s ≥ 2, TSk(Dr,n,s) contains a cycle C8 if n ≥ 2k − 2 otherwise it is acyclic.
123
+ Proof.
124
+ (a) If n < k − 2, there is no size-k independent set in 2K2 + nK1, thus its TSk-graph is
125
+ obviously acyclic. Otherwise, let I ⊆ V (nK1) be an arbitrary independent set of size k − 2, and let
126
+ E(2K2) = {ab, cd}. Then, {I +a+c, I +a+d, I +b+c, I +b+d} induce a C4 in TSk(2K2 +nK1).
127
+ (b) Observe that if n ≥ 2k − 1, D1,n,s contains an induced 2K2 + (k − 2)K1, which can be obtained
128
+ by taking u1p1 and pnv1 as edges of 2K2 and the remaining k − 2 independent vertices from the
129
+ path D1,n,s − {u1, p1, p2, pn−1, pn, v1, . . . , vs} on n − 4 vertices. (Since n ≥ 2k − 1, this path has
130
+ an independent set of size at least ⌈(n − 4)/2⌉ ≥ ⌈(2k − 5)/2⌉ = k − 2.) Then, using a similar
131
+ argument as in (a) we have TSk(D1,n,s) contains a C4.
132
+ On the other hand, if n ≤ 2k − 2 for k ∈ {2, 3}, since D1,n−1,s is always an induced subgraph of
133
+ D1,n,s for n ≥ 2, it follows that if TS2(D1,n−1,s) has a cycle then so is TS2(D1,n,s). Therefore,
134
+ it suffices to show that TSk(D1,2k−2,s) is acyclic for k ∈ {2, 3}. Indeed, based on the number of
135
+ tokens placed on the path u1p1 . . . pn (which is at most three), one can verify that each component
136
+ of TSk(D1,2k−2,s) is either an isolated vertex, a path, or a star.
137
+ (c) Observe that if n ≥ 2k −2, Dr,n,s contains the independent sets I +u1 +v1, I +u1 +pn, I +u1 +vs,
138
+ I + p1 + v1, I + p1 + vs, I + ur + v1, I + ur + pn, and I + ur + vs, where I = ∅ when n = 2 and
139
+ otherwise I is an independent set of the path p2 . . . pn−1 of size k − 2. (Note that p2 . . . pn−1 has
140
+ an independent set of size at most ⌈(n − 2)/2⌉ ≥ k − 2.) They indeed induce a C8 in TSk(Dr,n,s).
141
+ On the other hand, if n ≤ 2k−3 for k ∈ {2, 3}, using a similar case-analysis as in (b), one can verify
142
+ that each component of TSk(Dr,n,s) is either an isolated vertex, a path, or a star, and therefore it
143
+ is acyclic.
144
+ We are now ready to show the necessary and sufficient conditions for a tree/forest G such that TSk(G)
145
+ is acyclic, where k ∈ {2, 3}.
146
+ Proposition 2. Let T be a tree. Then TS2(T) is acyclic if and only if T is {2K2, D2,2,2}-free.
147
+ Proof. (⇒) Suppose to the contrary that either 2K2 or D2,2,2 is an induced subgraph of T. In the first
148
+ case it follows from the discussion above that TS2(T) contains a C4 and in the second case that it
149
+ contains a C8.
150
+ (⇐) We assume that TS2(T) contains a cycle and show that it must contain one of the two forbidden
151
+ subgraphs. Firstly, suppose that T is a path Pn. Since TS2(T) contains a cycle, it follows from
152
+ Lemma 1(b) that n ≥ 5 and so T contains an induced 2K2.
153
+ We now assume T has a vertex of at least degree 3. We will construct a copy T ′ of T by initially
154
+ choosing a vertex a of maximum degree in T and letting T ′ = N[a]. Note that TS2(T ′) is acyclic.
155
+ We add edges from T to T ′ and show after each addition that either T ′ contains a forbidden
156
+ subgraph, so we are done, or that TS2(T ′) remains acyclic so that T ̸= T ′.
157
+ Let b be a child of a of highest degree, c be a child of next highest degree, and d be any other
158
+ child. Since TS2(T ′) is acyclic T ̸= T ′ and b must have r ≥ 1 children. Let e be a child of b with
159
+ maximum degree. We add N[b] to T ′ obtaining a copy of Dr,2,s, where s = degT (a) − 1 ≥ 2. If
160
+ r ≥ 2, we have the required forbidden induced subgraph. If r = 1 then by Lemma 1(b) TS2(T ′)
161
+ is acyclic, so there must be extra edges to add to T ′. If c has a child y then {b, c, e, y} induce a
162
+ 2K2. Otherwise, e must have at least one child g. Adding eg to T ′ we obtain 2K2 as an induced
163
+ subgraph on {a, d, e, g}. This completes the proof.
164
+ 4
165
+
166
+ a
167
+ b
168
+ c
169
+ d
170
+ e
171
+ a
172
+ d
173
+ e
174
+ b
175
+ c
176
+ y
177
+ a
178
+ d
179
+ b
180
+ c
181
+ e
182
+ g
183
+ r ≥ 2
184
+ r = 1
185
+ Figure 3: Illustration for Proposition 2: Some trees T ′ containing N[b] whose TS2-graphs have a cycle.
186
+ Here r is the number of children of b. Copies of 2K2 and D2,2,2 are marked by red color.
187
+ Corollary 3. Let T be a tree. Then TS2(T) is acyclic if and only if T is either K1,s or D1,2,s for some
188
+ positive integer s.
189
+ Proof. The proof of Proposition 2 can be viewed as an algorithm that takes a tree T and either terminates
190
+ with T = T ′ being one of the trees in the corollary or finds a forbidden induced graph in T.
191
+ Corollary 4. Let F be a forest. Then TS2(F) is a acyclic if and only if F is {2K2, D2,2,2}-free.
192
+ Proof. We prove that TS2(F) contains a cycle if and only if F contains one of the graphs in {2K2, D2,2,2}
193
+ as an induced subgraph.
194
+ Suppose that TS2(F) contains a cycle. Since the independent sets have size two, both vertices of
195
+ each independent set must lie in the same connected component T of F. By Proposition 2, the tree T
196
+ must have either 2K2 or D2,2,2 as an induced subgraph.
197
+ Conversely if F contains 2K2 or D2,2,2 as an induced subgraph then TS2(F) contains respectively a
198
+ C4 or a C8.
199
+ Moving to the case of stable sets of size three, the conditions for trees and forests differ slightly. We
200
+ deal with the tree case first.
201
+ Proposition 5. Let T be a tree. Then TS3(T) is acyclic if and only if T is {2K2 + K1, D2,4,2}-free.
202
+ Proof. The structure of the proof is the same as for Proposition 2. However, there are more cases to
203
+ consider.
204
+ (⇒) Suppose to the contrary that either 2K2 + K1 or D2,4,2 is an induced subgraph of T. In the first
205
+ case it follows that TS3(T) contains a C4 and in the second case that it contains a C8.
206
+ (⇐) We assume that TS3(T) contains a cycle and show that it must contain one of the two forbidden
207
+ subgraphs. The first part of the proof is essentially the same as for Proposition 2 with minor
208
+ modifications. Firstly suppose that T is a path Pn. Since TS3(T) contains a cycle it follows from
209
+ Lemma 1(b) that n ≥ 7 and so T contains an induced 2K2 + K1.
210
+ We now assume T has a vertex of at least degree 3. We will construct a copy T ′ of T by initially
211
+ choosing a vertex a of maximum degree in T and letting T ′ = N[a]. Note that TS3(T ′) is acyclic.
212
+ We add edges from T to T ′ showing after each addition that either T ′ contains a forbidden subgraph,
213
+ so we are done, or that TS3(T ′) remains acyclic so that T ̸= T ′.
214
+ Let b be a child of a of highest degree, c be a child of next highest degree, and d be any other child.
215
+ Since TS3(T ′) is acyclic T ̸= T ′ and b must have r ≥ 1 children. Let e be a child of b with maximum
216
+ degree. If c has a child y then {b, c, d, e, y} induce a 2K2 + K1 and we are done. Otherwise we
217
+ 5
218
+
219
+ add N[b] to T ′ obtaining a copy of Dr,2,s, where s = degT (a) − 1 ≥ 2. By Lemma 1(c), TS3(T ′) is
220
+ acyclic and so T ̸= T ′. There are two cases:
221
+ (r ≥ 2) Let f be a second child of b and let g be a child of e. Adding eg to T ′ we obtain 2K2 + K1
222
+ as an induced subgraph on {a, d, e, f, g}.
223
+ (r = 1) Since e is the only child of b it must have children. Let t ≥ 1 be the number of children of e
224
+ and let h be the child of e of maximum degree. We add N[e] to T ′ obtaining a copy of Dt,3,s
225
+ and TS3(T ′) is acyclic by Lemma 1(c). There are two subcases:
226
+ (t ≥ 2) Let i be any other child of e. Since TS3(T ′) is acyclic h must have at least one child j.
227
+ We have now constructed an induced 2K2 + K1 on {a, d, h, i, j}.
228
+ (t = 1) If h has a single child k add hk to T ′ which is a copy of D1,4,s and again by Lemma 1(c)
229
+ TS3(T ′) is acyclic. So k has a child l. Adding kl to T ′ it contains an induced P7 and we
230
+ find the forbidden subgraph 2K2 + K1 on vertices {a, d, e, k, l}. Otherwise, h has at least
231
+ two children including vertices k and m. Adding edges hk and hm to T ′ we obtain the
232
+ forbidden subgraph D2,4,2. This completes the proof.
233
+ a
234
+ b
235
+ c
236
+ d
237
+ e
238
+ f
239
+ g
240
+ a
241
+ c
242
+ d
243
+ b
244
+ e
245
+ h
246
+ i
247
+ j
248
+ a
249
+ c
250
+ d
251
+ b
252
+ e
253
+ h
254
+ k
255
+ l
256
+ a
257
+ c
258
+ d
259
+ b
260
+ h
261
+ i
262
+ j
263
+ r ≥ 2
264
+ r = 1, t ≥ 2
265
+ r = 1, t = 1
266
+ e
267
+ Figure 4: Illustration for Proposition 5: Some trees T ′ containing N[b] whose TS3-graphs have a cycle.
268
+ Here r and t are respectively the number of children of b and its child e. Copies of 2K2 + K1 and D2,4,2
269
+ are marked by red color.
270
+ Corollary 6. Let T be a tree. Then TS3(T) is a acyclic if and only if for some positive integer s, T is
271
+ either K1,s, D1,n,s where n ≤ 4, or Dr,n,s where r ≥ 2 and n ≤ 3.
272
+ Proof. The proof of Proposition 5 can be viewed as an algorithm that takes a tree T and either terminates
273
+ with T = T ′ being one of the trees in the corollary or finds a forbidden induced graph in T showing that
274
+ TS3(T) has a cycle.
275
+ 6
276
+
277
+ Corollary 7. Let F be a forest.
278
+ Then TS3(F) is a forest if and only if F is {2K2 + K1, D2,2,2 +
279
+ K1, D2,4,2}-free.
280
+ Proof. We prove that TS3(F) contains a cycle if and only if F contains one of the graphs in {2K2 +
281
+ K1, D2,2,2 + K1, D2,4,2} as an induced subgraph.
282
+ Suppose that TS3(F) contains a cycle C. Since the independent sets have size three, there are three
283
+ cases to consider. Firstly, if the three vertices of each independent set in C lie in the same connected
284
+ component T of F, by Proposition 5, the tree T must have either 2K2 + K1 or D2,4,2 as an induced
285
+ subgraph. Secondly, suppose two of the vertices of each stable set lie in the same connected component
286
+ T of F, which must have at least two connected components. Thus, C induces a cycle in TS2(T). So by
287
+ Proposition 2, the tree T must have either 2K2 or D2,2,2 as an induced subgraph. Since F has at least
288
+ two components, F contains 2K2 + K1 or D2,2,2 + K1. Finally, suppose each vertex of each stable set
289
+ lies in a different component of F, which therefore has at least three components. At least two of these
290
+ components must be non-trivial, i.e., contain an edge. Therefore, F contains an induced 2K2 + K1.
291
+ Conversely, suppose F contains 2K2 + K1, D2,2,2 + K1 or D2,4,2 as an induced subgraph. Then
292
+ TS3(F) contains a C4 in the first instance or a C8 in the other two.
293
+ For k ≥ 4, we have the following proposition.
294
+ Proposition 8. Let F be a forest. For k ≥ 4, if F contains either 2K2+(k−2)K1, or D2,2,2+(k−2)K1,
295
+ or D2,4,2 + (k − 3)K1 as an induced subgraph, TSk(F) has a cycle.
296
+ Proof. One can verify that TS2(2K2) contains a C4, and TS2(D2,2,2) and TS3(D2,4,2) both contain a
297
+ C8. As a result, so do TSk(2K2 + (k − 2)K1), TSk(D2,2,2 + (k − 2)K1), and TSk(D2,4,2 + (k − 3)K1),
298
+ respectively. Consequently, TSk(F) has a cycle, as desired.
299
+ We conclude this section with the following conjecture for k ≥ 4.
300
+ Conjecture 9. Let F be a forest. For k ≥ 4, if TSk(F) is a forest, F is {2K2 + (k − 2)K1, D2,2,2 + (k −
301
+ 2)K1, D2,4,2 + (k − 3)K1}-free.
302
+ 3
303
+ H-join and H-decomposition
304
+ Before considering (Q2), in this section, we describe an operation for combining TSk-graphs to produce
305
+ new ones. We first define a family of base graphs as follows. Let V be a set of k + 1 vertices including
306
+ two labelled u and v. Then Bk(V, uv) is the graph with vertex set V and single edge uv. We have
307
+ TSk(Bk(V, uv)) = K2 whose two vertices are labelled by the independent sets V − u and V − v. Next,
308
+ we define the H-join operation and its inverse.
309
+ Definition 10. Vertex-labelled graphs G1 and G2 are H-consistent if the (possibly empty) intersection
310
+ of their vertex sets define the same (possibly empty) common induced subgraph H. The H-join of H-
311
+ consistent graphs G1 and G2 is the graph H(G1, G2) with V (H(G1, G2)) = V (G1) ∪ V (G2). The edges
312
+ E(H(G1, G2)) consist of E(G1)∪E(G2) plus all edges vw with v ∈ V (G1)\V (H) and w ∈ V (G2)\V (H).
313
+ Recall that a (vertex) cut-set in a connected graph G is a vertex set W such that G−W is disconnected.
314
+ We extend this definition to the case where G is disconnected by allowing W = ∅. We say that W
315
+ decomposes G into two (not necessarily connected) induced subgraphs G1 and G2 for which V (G1) ∩
316
+ V (G2) = W and V (G1) ∪ V (G2) = V (G). If G − W has more than two (connected) components, the
317
+ decomposition is not unique.
318
+ Definition 11. Let G be a vertex-labelled graph. Let W ⊂ V (G) = V (G) decompose the complement
319
+ G into G1 and G2. Let H be the subgraph of G induced by W. We say that G can be H-decomposed
320
+ into G1 and G2.
321
+ It follows from the definitions that if G = H(G1, G2) then G can be H-decomposed into G1 and G2,
322
+ and vice versa. It is easy to verify that the size-k independent sets of H(G1, G2) are the union of those
323
+ of G1 and those of G2.
324
+ As an example consider the two 4-vertex graphs G1 and G2 that are paths with edge sets E(G1) =
325
+ {ad, bc, cd} and E(G2) = {ad, ae, eb}. These share a common induced subgraph H with V (H) = {a, b, d}
326
+ and E(H) = {ad}. We have V (H(G1, G2)) = {a, b, c, d, e} and E(H(G1, G2)) = {ad, ae, bc, cd, ce, be}.
327
+ Note that TS2(G1) is the path with edges {ac − ab, ab − bd} and that TS2(G2) is the path with edges
328
+ 7
329
+
330
+ a
331
+ b
332
+ c
333
+ d
334
+ G1
335
+ a
336
+ b
337
+ e
338
+ d
339
+ G2
340
+ c
341
+ e
342
+ a
343
+ b
344
+ d
345
+ H(G1, G2)
346
+ ab
347
+ ac
348
+ bd
349
+ TS2(G1)
350
+ ab
351
+ de
352
+ bd
353
+ TS2(G2)
354
+ ab
355
+ ac
356
+ de
357
+ bd
358
+ TS2(H(G1, G2))
359
+ Figure 5: The graphs G1, G2, H(G1, G2), and their corresponding TS2-graphs. Here TS2(H(G1, G2)) =
360
+ TS2(G1) ∪ TS2(G2).
361
+ {ab−bd, bd−de}. It can be verified that TS2(H(G1, G2)) is the path with edges {ac−ab, ab−bd, bd−de}
362
+ which is the union of two paths TS2(G1) and TS2(G2). (See Figure 5.)
363
+ Now consider the graph G3 which is the path with edges {ad, cd, ce}.
364
+ G1 and G3 share a com-
365
+ mon induced subgraph H with V (H) = {a, c, d} and E(H) = {ad, cd}.
366
+ We have E(H(G1, G3)) =
367
+ {ad, bc, be, cd, ce}. Note that TS2(G3) is the path with edges {ac−ae, ae−de}. In this case, TS2(H(G1, G3))
368
+ is the graph with edges {ab − ac, ac − ae, ae − de, de − bd, bd − ab, ab − ae} which is the union of TS2(G1),
369
+ TS2(G3), and the two additional edges de − bd, ab − ae. (See Figure 6.)
370
+ a
371
+ b
372
+ c
373
+ d
374
+ G1
375
+ a
376
+ e
377
+ c
378
+ d
379
+ G3
380
+ b
381
+ e
382
+ a
383
+ c
384
+ d
385
+ H(G1, G3)
386
+ ab
387
+ ac
388
+ bd
389
+ TS2(G1)
390
+ ac
391
+ ae
392
+ ed
393
+ TS2(G3)
394
+ ab
395
+ ac
396
+ ae
397
+ bd
398
+ ed
399
+ TS2(H(G1, G3))
400
+ Figure 6: The graphs G1, G3, H(G1, G3), and their corresponding TS2-graphs. Here TS2(H(G1, G3)) ̸=
401
+ TS2(G1) ∪ TS2(G3).
402
+ As the last example in this section, consider the graphs G4 and G5 as follows.
403
+ G4 is the cycle
404
+ with edges {ae, eb, bc, cd, ad} and G5 is the graph with edges {ae, eb, bc, ag, eg, bg}. G4 and G5 shares a
405
+ common induced subgraph H with V (H) = {a, e, b, c} and E(H) = {ae, eb, bc}. We have E(H(G4, G5)) =
406
+ {ae, eb, bc, cd, ad, ag, eg, bg, dg}. In this case, TS2(H(G4, G5)) is the (non-acyclic) graph with edges {ab−
407
+ ac, ac − ce, ce − de, de − bd, ab − bd, ac − cg, ce − cg} which is the union of TS2(G4) and TS2(G5). (See
408
+ Figure 7.)
409
+ In the next proposition, we show how to compute the TSk-graph of an H-join, generalizing the
410
+ examples given above.
411
+ Proposition 12. Let k ≥ 2 and let G1 and G2 be two H-consistent graphs. TSk(H(G1, G2)) is the
412
+ union of TSk(G1), TSk(G2) and for every pair of k-element independent sets S1 in G1 and S2 in G2
413
+ satisfying
414
+ |S1 ∩ V (H)| = |S2 ∩ V (H)| = |S1 ∩ S2| = k − 1,
415
+ (1)
416
+ the edge between S1 and S2.
417
+ 8
418
+
419
+ a
420
+ e
421
+ b
422
+ c
423
+ d
424
+ G4
425
+ a
426
+ e
427
+ b
428
+ c
429
+ g
430
+ G5
431
+ d
432
+ g
433
+ a
434
+ e
435
+ b
436
+ c
437
+ H(G4, G5)
438
+ ab
439
+ ac
440
+ ce
441
+ de
442
+ bd
443
+ TS2(G4)
444
+ ab
445
+ ac
446
+ ce
447
+ cg
448
+ TS2(G5)
449
+ ab
450
+ ac
451
+ ce
452
+ de
453
+ bd
454
+ cg
455
+ TS2(H(G4, G5))
456
+ Figure 7: The graphs G4, G5, H(G4, G5) and their corresponding (non-acyclic) TS2-graphs.
457
+ Here
458
+ TS2(G4, G5) = TS2(G4) ∪ TS2(G5).
459
+ Proof. As remarked, the k-element independent sets of H(G1, G2) are the same as the union of those
460
+ of G1 and G2. Therefore, V (TSk(H(G1, G2))) = V (TSk(G1)) ∪ V (TSk(G2)). Next, consider an edge in
461
+ E(TSk(G1)) (respectively, E(TSk(G2))). It is a token-slide between two independent sets S1 and S2 in G1
462
+ (respectively, G2). This remains as a token-slide in H(G1, G2). Therefore, E(TSk(G1)) ∪ E(TSk(G2)) ⊆
463
+ E(TSk(H(G1, G2))). Now, consider an edge in E(TSk(H(G1, G2))) between two independent sets S1
464
+ and S2. If both of these are independent sets are in G1 (respectively, G2) then the edge is also present
465
+ in E(TSk(G1)) (respectively, E(TSk(G2))). Otherwise, we may assume the edge in E(TSk(H(G1, G2)))
466
+ has as endpoints an independent set S1 in G1 (but not G2) and an independent set S2 in G2 (but not
467
+ G1). We have S1 ∩ S2 ⊂ V (H) and since S1 and S2 are adjacent |S1 ∩ S2| = k − 1. It follows that
468
+ |S1 ∩ V (H)| = |S2 ∩ V (H)| = k − 1 and so condition (1) is satisfied. We have shown that each edge in
469
+ E(TSk(H(G1, G2))) is either in TSk(G1), TSk(G2) or satisfies condition (1), proving the proposition.
470
+ For two H-consistent graphs G1 and G2, we say that H(G1, G2) is k-crossing free if there are no
471
+ k-element independent sets satisfying condition (1) of Proposition 12. For example, one can verify that
472
+ the graphs H(G1, G2) in Figure 5 and H(G4, G5) in Figure 7 are both k-crossing free, while the graph
473
+ H(G1, G3) in Figure 6 is not. The following result will be used for constructing TSk-trees/forests.
474
+ Corollary 13. Let k ≥ 2 and let G1 and G2 be two H-consistent graphs. H(G1, G2) is k-crossing free
475
+ if and only if
476
+ TSk(H(G1, G2)) = TSk(G1) ∪ TSk(G2).
477
+ (2)
478
+ Proof. If H(G1, G2) is k-crossing free then (2) follows from Proposition 12. Otherwise their exist k-
479
+ element independent sets S1 is in G1 and S2 is in G2 satisfying (1). This implies that TSk(H(G1, G2))
480
+ contains an additional edge between S1 and S2.
481
+ Therefore, if H(G1, G2) is k-crossing free and both TSk(G1) and TSk(G2) are acyclic, then so is
482
+ TSk(H(G1, G2)). The reason for allowing H to be empty in defining an H-join is that the corollary
483
+ then applies to vertex disjoint graphs G1 and G2, since in this case H(G1, G2) is trivially k-crossing free.
484
+ Therefore, we can create reconfiguration graphs that are forests from reconfiguration graphs that are
485
+ trees (or forests).
486
+ The following result follows from the relationship between H-join and H-decomposition discussed
487
+ above.
488
+ Corollary 14. If G can be H-decomposed into G1 and G2 and H(G1, G2) is k-crossing free then TSk(G)
489
+ can be decomposed into TSk(G1) ∪ TSk(G2).
490
+ 9
491
+
492
+ 4
493
+ Results on (Q2)
494
+ We currently have no general necessary and sufficient conditions for when a forest F is a TSk-graph,
495
+ but we present some partial results in this section. Firstly, we recall that in [1] it is shown that Pn is
496
+ a TSk-graph for all n ≥ 1 and k ≥ 2 and K1,n is a TSk-graph if and only if n ≤ k. In this section, we
497
+ show how to construct acyclic TSk-graphs from graphs that have a single edge using the join operation
498
+ that was introduced in Section 3. We show that it gives an alternate method of constructing TSk-graphs
499
+ which are paths and stars. Moreover, this operation can also be applied to construct more general TSk
500
+ trees/forests, especially members of the classes k-ary trees and Dr,n,s.
501
+ 4.1
502
+ Paths and stars revisited
503
+ Using just the base graphs and the H-join operation defined in Section 3, we can obtain large families
504
+ of TSk trees/forests. We begin with paths. For any k ≥ 2, let Jk = {b1, . . . , bk} be an independent set
505
+ of size k and define the base graph Bi
506
+ k = Bk(Jk−2 ∪ {ai, ai+1, ai+2}, aiai+2) and let G2 = Bi
507
+ k.
508
+ Proposition 15. For i ≥ 2, Gi and Bi
509
+ k are H-consistent with H being the independent set Jk−2 ∪
510
+ {ai, ai+1}. Define Gi+1 := H(Gi, Bi
511
+ k). Then
512
+ TSk(Gi+1) = TSk(Gi) ∪ TSk(Bi
513
+ k) ≃ Pi+1.
514
+ Proof. We will prove by induction, for i ≥ 2, that TSk(Gi) is the path Pi with vertices labelled Jk−2 ∪
515
+ {aj, aj+1}, j = 1, . . . , i. For the base case i = 2, we observe that indeed TSk(Bi
516
+ k) is a P2 with vertices
517
+ labelled Jk−2 ∪ {a1, a2} and Jk−2 ∪ {a2, a3}.
518
+ For the inductive step we observe that, for i ≥ 2, Gi and Bi
519
+ k are H-consistent with H the independent
520
+ set Jk−2 ∪ {ai, ai+1}. To verify that H(Gi, Bi
521
+ k) is k-crossing free, note that the only independent set we
522
+ need to consider in Bi
523
+ k is Jk−2∪{ai+1, ai+2}. In the path Pi which is TSk(Gi), the candidate independent
524
+ sets are Jk−2 ∪ {aj, aj+1}, j = 1, . . . , i. Their intersection with Bi
525
+ k is Jk−2 which has cardinality k − 2.
526
+ Therefore condition (1) of Proposition 12 is not satisfied, which indeed confirms that H(Gi, Bi
527
+ k) is k-
528
+ crossing free. We define Gi+1 := H(Gi, Bi
529
+ k). By Corollary 13, TSk(Gi+1) is the union of the above
530
+ labelled Pi with a P2 with endpoints Jk−2 ∪ {ai, ai+1} and Jk−2 ∪ {ai+1, ai+2}. This is the required
531
+ Pi+1.
532
+ An easy inductive argument based on the H-join in the proposition shows that, for i ≥ 2, Gi is
533
+ isomorphic to P n+1 ∪ Jk−2, a result proved in Corollary 5(a) of [1]. (Observe that the vertex ai+1 in Gi
534
+ is adjacent to every aj for 1 ≤ j ≤ i − 1.)
535
+ Next we consider graphs Gi such that TSk(Gi) is the star K1,i.
536
+ For k ≥ 2 and 1 ≤ i ≤ k, let
537
+ Ik = {a1, . . . , ak} be an independent set of size k, define the base graph Ci
538
+ k = Bk(Ik + bi, aibi) and let
539
+ G1 = C1
540
+ k.
541
+ Proposition 16. For k ≥ 2 and 1 ≤ i ≤ k, Gi and Ci+1
542
+ k
543
+ are H-consistent with H being the independent
544
+ set Ik. Define Gi+1 := H(Gi, Ci+1
545
+ k
546
+ ). Then
547
+ TSk(Gi+1) = TSk(Gi) ∪ TSk(Ci+1
548
+ k
549
+ ) ≃ K1,i+1.
550
+ Proof. We will prove by induction, for i ≥ 1, that TSk(Gi) is the star K1,i with centre labelled Ik and
551
+ leaves labelled Ik + bj − aj, j = 1, . . . , i. For the base case i = 1, we observe that indeed TSk(Ci
552
+ k) is a
553
+ K1,1 with centre labelled Ik and leaf labelled Ik + b1 − a1.
554
+ For the inductive step we observe that, for i ≥ 1, Gi and Ci+1
555
+ k
556
+ are H-consistent with H the in-
557
+ dependent set Ik. To verify that H(Gi, Ci+1
558
+ k
559
+ ) is k-crossing free, note that the only independent set
560
+ we need to consider in Ci+1
561
+ k
562
+ is Ik + bi+1 − ai+1.
563
+ In the above labelled K1,i which is TSk(Gi), the
564
+ candidate independent sets for condition (1) of Proposition 12 are Ik + bj − aj, j = 1, . . . , i. Their inter-
565
+ section with Ik + bi+1 − ai+1 has cardinality k − 2. Therefore, condition (1) is not satisfied. We define
566
+ Gi+1 := H(Gi, Ci+1
567
+ k
568
+ ). By Corollary 13, TSk(Gi+1) is the union of the above labelled K1,i and a K1,1
569
+ with centre also labelled Ik and leaf labelled Ik + bi+1 − ai+1. This is the required K1,i+1.
570
+ 4.2
571
+ k-ary trees
572
+ In this section, we show that for each k ≥ 2, every k-ary tree is a TSk+1-graph (Proposition 19). Next,
573
+ we show that any tree T is an induced subgraph of some TS2-forest (Proposition 22). Moreover, we
574
+ state and prove the necessary and sufficient conditions for T to be an induced subgraph of some TS2-tree
575
+ 10
576
+
577
+ (Proposition 23). Additionally, when T = K1,n, we describe a sufficient condition for T to be an induced
578
+ subgraph of some TSk-tree (Proposition 24).
579
+ We begin by defining a canonical vertex labelling.
580
+ In this subsection, for any integer n, define
581
+ In := {a1, . . . , an} and Jn := {b1, . . . , bn}.
582
+ Definition 17. Let k ≥ 2 and G be a graph for which T := TSk+1(G) is a k-ary tree. We say that G
583
+ and T are canonically labelled if
584
+ (a) the root of T is labelled Ik+1,
585
+ (b) the d ≤ k children of the root are labelled Ik+1 − ai + bi, i = 1, . . . , d,
586
+ (c) the labels bj, j = d + 1, . . . , k (if any) are not used, and
587
+ (d) all other nodes in T receive a label S such that |Ik+1 ∩ S| ≤ k − 1.
588
+ It is clear that labelling K1,d, d ≤ k according to (a) and (b) with root the centre of the star is a
589
+ canonical labelling. In this subsection, we will show that every k-ary tree has canonical labelling hence
590
+ proving it is a TSk+1-graph. First, we give a lemma that shows how to combine canonically labelled
591
+ k-ary trees to get a larger k-ary tree that is canonically labelled.
592
+ Lemma 18. For integers k ≥ 2 and 1 ≤ i ≤ d ≤ k, let Gi be a graph for which TSk+1(Gi) a canonically
593
+ labelled k-ary tree. We can construct a canonically labelled k-ary tree T isomorphic to the tree formed
594
+ by choosing a new root and adjoining it to the root of each Ti.
595
+ Proof. The proof consists of showing that we can make a series of H-joins between the leaves of a
596
+ canonically labelled K1,d and the roots of the canonically labelled trees Ti, i = 1, . . . , d, after a suitable
597
+ relabelling. Suppose the root of Ti has ni ≤ k children. We relabel the vertices in the underlying graphs
598
+ as follows:
599
+ (i) relabel vertices of the Gi not in Ik+1 ∪ Jk to be distinct, ie, for 1 ≤ i ≤ j ≤ d, we have V (Gi) ∩
600
+ V (Gj) ⊆ Ik+1 ∪ Jk,
601
+ (ii) for i = 1, . . . d, j = 1, . . . , ni set bj ← bi
602
+ j, where the bi
603
+ j were previously unused, and
604
+ (iii) for i = 1, . . . d, set ai ← ak+1 and ak+1 ← bi.
605
+ By an abuse of notation, for simplicity we let for i = 1, . . . , d, Gi and Ti refer to the relabelled graphs
606
+ and trees. Item (i) ensures that the only labels shared between two trees are in Ik+1 ∪ Jk, (ii) ensures
607
+ that all labels from Jk in the Ti are given unique labels to avoid clashes, and (iii) gives the root of Ti a
608
+ correct label to be a child of a new root labelled Ik. We note that after relabelling bi only appears in
609
+ Ti, ai does not appear in Ti and the only labels shared between the Ti are in Ik. Furthermore all tree
610
+ vertices have unique labels.
611
+ Next take a canonically labelled graph G0 such that TSk+1(G0) ≃ K1,d, with the centre of the star
612
+ labelled Ik+1. For i = 1, . . . , d, we claim that the H-join Gi := H(Gi−1, Gi) is well-defined, k-crossing
613
+ free, and TSk+1(Gi) is canonically labelled. To see this, note at that iteration i, V (Gi−1) ∩ V (Gi) =
614
+ Ik+1 −ai +bi which is the label of the root of Ti and a leaf of TSk+1(Gi−1). Definition 17(d) implies that
615
+ condition (1) of Proposition 12 is not satisfied. Therefore by Corollary 13, TSk+1(Gi) is obtained from
616
+ TSk+1(Gi−1) by appending Ti to the corresponding leaf in TSk+1(Gi−1). The conditions of Definition
617
+ 17 are satisfied so TSk+1(Gi) is canonically labelled. At the end of iteration d, T := TSk+1(Gd) is the
618
+ required tree.
619
+ The construction described in the proof is illustrated in Figure 8. We may now prove the main result
620
+ of this section.
621
+ Proposition 19. For every k-ary tree T, there is a canonically labelled graph G such that T ≃ TSk+1(G).
622
+ Proof. Suppose that the root r of T has d ≤ k children. We prove the proposition by induction on the
623
+ height t of T, which is the length of the longest path to a leaf from the root. If t = 1 then T ≃ K1,d
624
+ and so has a canonically representation as described following Definition 17. Otherwise, by deleting r
625
+ we obtain d subtrees Ti, i = 1, . . . , d, which are also k-ary trees, with height less than t. Therefore, by
626
+ induction each Ti can be represented by a canonically labelled graph Gi. It follows from Proposition 18
627
+ that we can perform d H-joins to obtain a canonically labelled graph G for which T ≃ TSk+1(G).
628
+ 11
629
+
630
+ a1a2a3
631
+ b1a2a3
632
+ a1b2a3
633
+ a1a2a3
634
+ b1a2a3
635
+ a1b2a3
636
+ T1
637
+ T2
638
+ Relabel
639
+ a3a2b1
640
+ b1
641
+ 1a2a3
642
+ a3b1
643
+ 2b1
644
+ a1a3b2
645
+ b2
646
+ 1a2a3
647
+ a1b2
648
+ 2b2
649
+ k = 2
650
+ a1a2a3
651
+ K1,2
652
+ Figure 8: Construction of D2,3,2 from two K1,2.
653
+ As noted in Section 4 of [1], K1,k+1 is an example of a k-ary tree that is not an TSk-graph so the
654
+ proposition is tight. Nevertheless, if we add a sufficient number of isolated vertices to K1,t, for t > k, it
655
+ becomes a TS2-graph—a result we will now prove in general. We will need a special labelling of a tree
656
+ that will be defined next.
657
+ Definition 20. A tree T is well-labelled if
658
+ (a) the root r of T is labelled ab,
659
+ (b) the d children of r have roots labelled ri = bci, i = 1, . . . , d − 1 and rd = acd,
660
+ (c) the only labels containing a and b are ab, acd, bci, 1 ≤ i ≤ d − 1, and
661
+ (d) for i = 1, . . . , d label ci only occurs in the subtree with root ri.
662
+ We note that there is nothing special about the ordering of the subtrees of r. The subtree rooted
663
+ at ri can play the role of rd by relabelling those two subtrees with the exchanges a ↔ b and ci ↔ cd,
664
+ which leaves T well-labelled. As an example, for d ≥ 1 we can well-label K1,d simply by using (a) and
665
+ (b). Consider the graph G defined by V (G) = {a, b} ∪ {ci : 1 ≤ i ≤ d} and E(G) = {aci, cicd : 1 ≤
666
+ i ≤ d − 1} ∪ {bcd}. Furthermore let J = {cicj : 1 ≤ i < j ≤ d − 1}. Then it is not hard to verify that
667
+ TS2(G) ≃ K1,d + (d − 1)(d − 2)K1, where the K1,d is well-labelled and the K1 are labelled by the set J.
668
+ This motivates the following definition.
669
+ Definition 21. A tree T is well-labelled by a labelled graph G if there is an integer n such that TS2(G) ≃
670
+ T + nK1 and T is well-labelled.
671
+ We now show the following general result.
672
+ Proposition 22. For every tree T there is a graph G and integer n such that T is well-labelled by G
673
+ and TS2(G) ≃ T + nK1.
674
+ Proof. The proof is by induction on N, the number of nodes in a given tree T. As noted above, the
675
+ proposition is true for all stars K1,t and these act as base cases. For the inductive step, assume the
676
+ proposition is true for all trees on N nodes and consider a tree T with N + 1 nodes. If T is a star
677
+ we are done. Otherwise, let r be the root of T and assume r has degree d with its children ri being
678
+ roots of subtrees Ti, 1, . . . , d. We may also assume that Td is a subtree of T with height at least one.
679
+ We now construct two trees from T. The first, T 1 consists of T with subtree Td deleted and a pendant
680
+ vertex added to its root r.
681
+ The second, T 2 consists of Td with a pendant vertex added to its root
682
+ rd. By induction, there are integers n1, n2 and graphs G1, G2 which well-label T 1 and T 2 such that
683
+ TS2(G1) ≃ T 1 + n1K1 and TS2(G2) ≃ T 2 + n2K1. Apart from the vertex labels used in Definition 20,
684
+ we may assume the vertex labels in G1 and G2 are different.
685
+ We will show that G1 and a relabelled G2 can be H-joined and that this will identify the pendant
686
+ edges added to T 1 and T 2 to give us back T. In T 1 we note that root r is labelled ab, and by relabelling
687
+ subtree roots if necessary, that the added pendent vertex can be labelled acd. In T 2 the root rd is also
688
+ 12
689
+
690
+ labelled ab and we can again assume the added pendant vertex is labelled acd. In T 2 we interchange the
691
+ labels b ↔ cd and set ci ← c′
692
+ i, i = 1, . . . , d−1, for labels c′
693
+ i that are unused in either T 1 or T 2. Let G3 and
694
+ T 3 denote the relabelled G2 and T 2. Setting H = {a, b, cd}, we have V (G1) ∩ V (G3) = H. H induces
695
+ the same subgraph, containing the single edge bcd, in both G1 and G3. G1 and G3 are H-consistent and
696
+ since k = 2 and their vertex sets are otherwise disjoint, condition (1) of Proposition 12 is not satisfied.
697
+ Let G4 = H(G1, G3). Applying Corollary 13 we have that
698
+ T 4 := TS2(G4) ≃ TS2(G1) ∪ TS2(G3) ≃ {T 1 + n1K1} ∪ {T 3 + n2K1} ≃ T + (n1 + n2)K1.
699
+ is well-labelled by G4. This proves the proposition.
700
+ The proof of the proposition is illustrated in Figure 9. The proposition tells us that for every tree
701
+ r
702
+ r1
703
+ r2
704
+ r3
705
+ r4
706
+ T
707
+ r
708
+ r1
709
+ r2
710
+ r3
711
+ r4
712
+ new pendant edges
713
+ bc1
714
+ bc2
715
+ bc3
716
+ ab
717
+ ac4
718
+ c4c′
719
+ 1
720
+ c4c′
721
+ 2
722
+ c4c′
723
+ 3
724
+ ab
725
+ a
726
+ c4
727
+ c′
728
+ 1
729
+ c′
730
+ 2
731
+ c′
732
+ 3
733
+ a
734
+ b
735
+ c1
736
+ c2
737
+ c3
738
+ c4
739
+ (relabelled) G2
740
+ G1
741
+ (relabelled) T 2
742
+ T 1
743
+ ac4
744
+ b
745
+ Figure 9: Illustrating Proposition 22.
746
+ T there is a graph G for which TS2(G) is forest containing T as an induced subgraph. Therefore, there
747
+ can be no forbidden induced subgraph characterization of which forests are TS2-graphs. However, this
748
+ does not imply that there can be no forbidden induced subgraph characterization of which trees are
749
+ TS2-graphs. Indeed, in the next propositions, we present some of such characterizations.
750
+ Proposition 23. Let T be a tree. Then there exists a TS2-tree containing T if and only if T is a 3-ary
751
+ tree.
752
+ Proof. (⇐) In the proof of Proposition 22, we see that isolated vertices are only added when the base
753
+ case of a star appears as a subproblem. Therefore, it suffices to consider only the case T = K1,t, 1 ≤
754
+ t ≤ 4. As we have noted, neither K1,3 nor K1,4 are TS2-graphs. It is not hard to see that there is
755
+ a G1 such that TS2(G1) ≃ K1,3 + K1. However, by adding an extra vertex to G1, we can construct
756
+ a graph G2 such that TS2(G2) ≃ D1,3,2. Furthermore, we can construct a graph G3 by applying
757
+ H-join to two copies of G2 with slightly different vertex-labellings such that TS2(G3) is isomorphic
758
+ to a P7 with two pendant vertices attached to the midpoint of the path. (See Figure 10.) Thus,
759
+ if follows that when T = K1,t, 1 ≤ t ≤ 4, we can embed it as an induced subgraph of a tree
760
+ T ′ = TS2(G), for some graph G (see Figure 10). Our proof of the if direction is complete.
761
+ 13
762
+
763
+ a
764
+ c
765
+ d
766
+ e
767
+ f
768
+ b
769
+ ab
770
+ ae
771
+ bd
772
+ ac
773
+ b
774
+ g
775
+ c
776
+ d
777
+ h
778
+ a
779
+ ab
780
+ bd
781
+ ac
782
+ bg
783
+ ce
784
+ ef
785
+ dh
786
+ dg
787
+ ab
788
+ ae
789
+ bd
790
+ ac
791
+ ce
792
+ ef
793
+ dh
794
+ dg
795
+ G2
796
+ TS2(G2)
797
+ bg
798
+ TS2(G3)
799
+ Figure 10: Taking H-join of two copies of G2, where H is the path adcb, results a graph G3 such that
800
+ TS2(G3) is isomorphic to a P7 with two pendant vertices attached to the midpoint of the path.
801
+ (⇒) We show that if T is a k-ary tree but not a 3-ary tree for k ≥ 4 then there does not exist any
802
+ TS2-tree T ′ containing T (as an induced subgraph). (By definition, any k-ary tree is also a ℓ-ary
803
+ tree for ℓ ≥ k.) Let x be a vertex of T whose degree is at least five. (Since T is a k-ary tree but
804
+ not a 3-ary tree, such a vertex x exists.)
805
+ Suppose to the contrary that T ′ exists, i.e., there exists a graph G′ such that T ′ ≃ TS2(G′) contains
806
+ T. Without loss of generality, assume that x is labelled by ab, where {a, b} is a size-2 stable set
807
+ of G′. By the pigeonhole principle, we may further assume that three neighbors x1, x2, and x3
808
+ of x are labelled ac, ad, and ae, respectively. Since T ′ is a tree, it follows that cd, ce, and de are
809
+ respectively the labels of y1, y2, and y3 where yi is not adjacent to any of �
810
+ j{xj}+x+�
811
+ j̸=i{yj} for
812
+ 1 ≤ i, j ≤ 3. It follows that T ′ contains the labelled graph F ≃ K1,3 + 3K1 and therefore G′ must
813
+ ab
814
+ ac
815
+ ad
816
+ ae
817
+ cd
818
+ ce
819
+ de
820
+ F
821
+ a
822
+ b
823
+ c
824
+ d
825
+ e
826
+ G
827
+ Figure 11: The graphs F and G in the proof of Proposition 23.
828
+ contain the labelled graph G ≃ K1,3 + K1, both described in Figure 11, as an induced subgraph.
829
+ Since T ′ ≃ TS2(G′) is a tree and G′ contains G, it follows that G′ has exactly one non-trivial
830
+ component C (having more than two vertices) and C contains G, otherwise G′ must contain an
831
+ 14
832
+
833
+ induced 2K2 and by Proposition 2 its TS2-graph is not a tree, a contradiction.
834
+ – Case 1: a ∈ V (C). By definition, the distance from a to any of b, c, d, e in G′ must be at
835
+ least two. If there is a path of length at least two between a and one of c, d, e not passing
836
+ through b, the graph G′ contains a 2K2, a contradiction. Thus, any path between a and one
837
+ of c, d, e must go through b. Moreover, if there is a path of length at least three between a
838
+ and b not passing through any of c, d, e, again the graph G′ contains a 2K2, a contradiction.
839
+ Since a ∈ V (C), it follows that a and b must have a common neighbor in G′, say f. Observe
840
+ that for each y ∈ V (C) − {a, b, c, d, e, f}, y must be adjacent to b in G′, otherwise G′ either
841
+ contains 2K2 or D2,2,2 and again by Proposition 2 its TS2-graph is not a tree, a contradiction.
842
+ However, this implies that TS2(C) must be a forest and since G′ has exactly one non-trivial
843
+ component C, we have TS2(G′) is also a forest, a contradiction.
844
+ – Case 2:
845
+ a /∈ V (C).
846
+ In this case, there are two types of size-2 stable sets of G′: those
847
+ containing a and those do not. Since G′ contains G, each type has at least one member.
848
+ Moreover, since a is isolated (the only non-trivial component is C and a is not in it), no
849
+ member from one type is adjacent to a member from another type in TS2(G′), which means
850
+ TS2(G′) is indeed disconnected, a contradiction.
851
+ In the above cases, we proved that some contradiction must happen. Our proof is complete.
852
+ Indeed, for K1,n, in general we have
853
+ Proposition 24. There exists a TSk-ary tree T containing K1,n if n ≤ 2k.
854
+ Proof. From either [1] or Proposition 16, the proposition holds for n ≤ k. (Indeed, in this case, T = K1,n.)
855
+ Thus, it suffices to consider k + 1 ≤ n ≤ 2k. For each i ∈ {1, . . . , n − k}, let Ai = {1, . . . , k} − i.
856
+ Let Ik = {a1, . . . , ak} and Bn = {b1, . . . , bn}.
857
+ We construct a graph G0 such that TSk(G0) ≃
858
+ K1,n + (n − k)(k − 1)K1. Let Ik = {a1, . . . , ak} and Bn = {b1, . . . , bn}. Let V (G) = Ik + Bn. Vertices in
859
+ Bn form a graph Kn − M where M is the matching that contains bibk+i for 1 ≤ i ≤ n − k. Additionally,
860
+ for each i ∈ {1, . . . , k}, we add an edge in G0 between ai and both bi and bk+i. Observe that V (TSk(G0))
861
+ consists of Ik, the sets Ik −ai +bi (1 ≤ i ≤ k), Ik −ai +bk+i (1 ≤ i ≤ n−k), and (Ik −ai +bi)−aj +bk+i
862
+ (1 ≤ i ≤ n − k and j ∈ Ai). Moreover, one can verify that the independent sets (Ik − ai + bi) − aj + bk+i
863
+ are isolated in TSk(G0) and the remaining independent sets form a K1,n in which Ik is adjacent to every
864
+ other set. In short, G0 is indeed our desired graph.
865
+ For each i ∈ {1, . . . , n − k}, we construct a graph Gi whose TSk-graph is a star K1,k−1 as follows.
866
+ Let V (Gi) = (Ik − ai + bi) + �
867
+ j∈{1,...,k}−i{ci
868
+ j}. Vertices in �
869
+ j∈Ai{ci
870
+ j} form a clique in Gi of size k − 1.
871
+ We also add an edge in Gi between aj and ci
872
+ j for each j ∈ Ai. From either [1] or Proposition 16, one can
873
+ verify that TSk(Gi) ≃ K1,k−1 as desired. For each i ∈ {1, . . . , n − k} and j ∈ Ai, we construct a graph
874
+ Gi
875
+ j whose TSk-graph is a K2 as follows. Let V (Gi
876
+ j) = (Ik − ai + bi) − aj + bk+i + ci
877
+ j. The only edge in
878
+ Gi
879
+ j is the one joining ci
880
+ j and bk+i. From either [1] or Proposition 15, one can verify that TSk(Gi
881
+ j) ≃ K2
882
+ as desired.
883
+ Now, we construct a graph G whose TSk-graph is a tree containing K1,n as follows. For convenience,
884
+ we assume that for each i ∈ {1, . . . , n−k} the set Ai = {1, . . . , k}−i can be enumerated as {j1, . . . , jk−1}.
885
+ We define Ki
886
+ j0 = Gi and Ki
887
+ jp = Hjp(Ki
888
+ jp−1, Gi
889
+ jp) for jp ∈ Ai where Hjp is the stable set (Ik − ai + bi) −
890
+ ajp +ci
891
+ jp for p ∈ {1, . . . , k −1}. Observe that the graphs Ki
892
+ jp−1 and Gi
893
+ jp are Hjp-consistent, which implies
894
+ that Ki
895
+ jp are well-defined. Moreover, one can also directly verify that the sets (Ik − ai + bi) − aj + ci
896
+ j
897
+ and (Ik − ai′ + bi′) − aj′ + ci′
898
+ j′ always differ in at least two members, which means the condition (1) of
899
+ Proposition 12 is not satisfied. In short, for each i ∈ {1, . . . , n − k}, we obtain the graph Ki
900
+ jk−1 whose
901
+ TSk-graph is isomorphic to the one obtained from K1,k−1 by replacing each edge with a P3. Next, we
902
+ define K0 = G0 and Ki = Hi(Ki−1, Gi) where i ∈ {1, . . . , n − k} and Hi is the subgraph induced by
903
+ (Ik −ai +bi)+bk+i. Observe that the graphs Ki are well-defined because Ki−1 and Gi are Hi-consistent.
904
+ Moreover, we have Ik and each (Ik − ai + bi) − aj + ci
905
+ j for 1 ≤ i ≤ n − k and j ∈ Ai always differ in
906
+ at least two members. It follows that the condition (1) of Proposition 12 is not satisfied. In short, we
907
+ finally obtain the graph G = Kn−k whose TSk-graph is indeed a tree containing K1,n as desired.
908
+ Unfortunately, we have not been able to show whether the reverse statement of Proposition 24 also
909
+ holds. We conclude this section with the following open problems:
910
+ 15
911
+
912
+ b5a2a3a4
913
+ b1a2a3a4
914
+ a1a2a3b8
915
+ b1c1
916
+ 2a3a4
917
+ b1a2c1
918
+ 3a4
919
+ a1a2a3b4
920
+ a1c4
921
+ 2a3b4
922
+ a1a2a3a4
923
+ TS4(G)
924
+ b2
925
+ b1
926
+ b3
927
+ b4
928
+ b5
929
+ b6
930
+ b7
931
+ b8
932
+ c1
933
+ 2
934
+ c1
935
+ 3
936
+ c1
937
+ 4
938
+ c4
939
+ 1
940
+ c4
941
+ 2
942
+ c4
943
+ 3
944
+ a1
945
+ a2
946
+ a3
947
+ a4
948
+ G
949
+ b1a2a3c1
950
+ 4
951
+ c4
952
+ 1a2a3b4
953
+ a1a2c4
954
+ 3b4
955
+ b1b5a3a4
956
+ b1a2b5a4
957
+ b1a2a3b5
958
+ b8a2a3b4
959
+ a1b8a2b4
960
+ a1a2b8b4
961
+ Figure 12: Construction of a graph G such that TS4(G) is a tree containing K1,8. Vertices of G in the
962
+ yellow box form a clique having all dashed edges removed. The red induced subgraph of G forms a graph
963
+ G0 whose TS4(G0) ≃ K1,8 + 12K1.
964
+ Problem 25. For every k ≥ 3 and tree T, is there a graph G such that TSk(G) is a forest containing T
965
+ as an induced subgraph?
966
+ Problem 26. For every k ≥ 3 and (k + 1)-ary tree T, is there a graph G such that TSk(G) is a tree
967
+ containing T as an induced subgraph?
968
+ Problem 27. Does there exist a TSk-tree T containing K1,n for n > 2k?
969
+ 4.3
970
+ Dr,n,s
971
+ We now consider graphs in the Dr,n,s family for whose TSk-graphs are trees and show how they can
972
+ be constructed by the H-join operation. We remark that when n = 1, Dr,n,s is nothing but a star
973
+ K1,r+s and this case was considered in [1] and revisited in Proposition 16. Furthermore, it follows from
974
+ Proposition 19 that for n, k ≥ 2 and 1 ≤ r ≤ s ≤ k − 1, Dr,n,s is a k-ary tree and so by Proposition 19
975
+ it is a TSk-graph. The reverse statement does not hold in general: there exists a TSk-graph Dr,n,s even
976
+ when s ≥ k. For example, one of such graphs, as already proved in [1], is D1,3,2 (r = 1, s = k = 2, and
977
+ n = 3). (See also Figure 1.) Indeed, as we will see in Proposition 29, it is the unique TS2-graph among
978
+ all trees D1,n,2 for n ≥ 1. Additionally, for the sake of completeness, we will also show in Proposition 30
979
+ that the reverse statement indeed holds when n = 2.
980
+ We are now characterizing which D1,n,2-graphs are TS2-graphs and show that this property is non-
981
+ hereditary for this simple class of trees. We then consider the Dr,2,s-graphs characterizing those that are
982
+ TSk-graphs.
983
+ Assume for some G, TS2(G) is a forest containing a K1,3. There are four stable sets in G corresponding
984
+ to the vertices of the K1,3. There are two ways of labelling the K1,3 but in each case there are five vertices,
985
+ say a, . . . , e, of G involved. Up to permutations of the labels, the corresponding stable sets in G are
986
+ either {ab, ac, bd, ae} or {ab, ac, ad, ae}. Using these definitions we have the following lemma.
987
+ Lemma 28. Let H be the subgraph of G induced by a, b, . . . , e. The edges of H are
988
+ (a) ad, de, eb, bc, cd, if the K1,3 is labelled {ab, ac, bd, ae}, or
989
+ (b) bc, bd, be if the K1,3 is labelled {ab, ac, ad, ae}.
990
+ Proof.
991
+ (a) This labelling of K1,3 immediately gives edges ad, bc, be and non-edges ab, ac, ae, bd. That
992
+ leaves three edges of H to be decided:
993
+ (i) ce must be a non-edge else there is an edge ae, ac in the K1,3.
994
+ (ii) cd is an edge else there is a cycle ab, bd, cd, ad in TS2(G), so it is not a tree.
995
+ 16
996
+
997
+ ab
998
+ ac
999
+ bd
1000
+ ae
1001
+ ab
1002
+ ac
1003
+ ad
1004
+ ae
1005
+ a
1006
+ b
1007
+ c
1008
+ d
1009
+ e
1010
+ b
1011
+ c
1012
+ d
1013
+ e
1014
+ (a)
1015
+ (b)
1016
+ K1,3
1017
+ H
1018
+ a
1019
+ Figure 13: If TS2(G) is a forest containing a K1,3 then G must contain one of the induced subgraphs H.
1020
+ (iii) de is an edge else there is a cycle de, bd, ab, ae in TS2(G).
1021
+ Note that ce must also be a vertex in TS2(G).
1022
+ (b) This labelling of K1,3 immediately gives edges bc, bd, be and non-edges ab, ac, ad, ae. There are no
1023
+ other edges in H as c, d, e form a stable set. This implies that TS2(G) must also contain vertices
1024
+ cd, ce and de.
1025
+ Using the lemma we show that precisely one of the D1,n,2-graphs is a TS2-graph, incidentally proving
1026
+ the non-hereditary property mentioned above for this class of graphs.
1027
+ Proposition 29. D1,n,2 is a TS2-graph if and only if n = 3.
1028
+ Proof. We first consider 1 ≤ n ��� 3 and show that D1,3,2 is a TS2-graph while D1,1,2 = K1,3 and D1,2,2
1029
+ are not. (We note that the results for the first two graphs have also been proved in [1].) According to
1030
+ Lemma 28, if D1,n,2 is a TS2-graph of some graph G, the unique star K1,3 in D1,n,2 can be labelled
1031
+ in one of two ways. However, we may immediately eliminate the possibility of the labelling in Lemma
1032
+ 28(b). This is because, as pointed out in the proof, there must be additional vertices in D1,n,2 = TS2(G)
1033
+ labelled cd, ce and de which are non-adjacent since c, d, e form a stable set in G.
1034
+ This implies that
1035
+ n ≥ 6. So we may assume that if D1,n,2 is a TS2-graph, the K1,3 must be labelled as in Lemma 28(a)
1036
+ with corresponding induced subgraph H of D1,n,2. From the proof of Lemma 28(a) there must be an
1037
+ additional vertex ce in D1,n,2 however this cannot be adjacent to any of the other four vertices. This
1038
+ implies that n ≥ 3 and so neither D1,1,2 nor D1,2,2 can be TS2-graphs. However we may extend H to
1039
+ G by adding a vertex f adjacent to all vertices except e, as illustrated in Figure 1. This introduces the
1040
+ new stable set ef which is adjacent to both ae and ce. Therefore D1,3,2 is isomorphic to TS2(G). We
1041
+ note that G is the unique graph (up to label permutations) for which this is true, due to the uniqueness
1042
+ of the labelling of K1,3.
1043
+ It remains to consider n ≥ 4 and show that D1,n,2 is not a TS2-graph. Suppose to the contrary that
1044
+ there exists a graph G such that D1,n,2 = TS2(G). Again, D1,n,2 must contain a copy of K1,3 with
1045
+ exactly two ways of labelling (up to label permutations) by size-2 independent sets of G.
1046
+ • Case 1: K1,3 is labelled {ab, ac, bd, ae}. Since ac and ae are not adjacent, ce must be a vertex
1047
+ of D1,n,2 = TS2(G). We consider the following cases:
1048
+ – Case 1.1: the distance between ce and any vertex of {ac, bd, ae} is at least three.
1049
+ Since the roles of c and e are equal, we assume without loss of generality that ce is adjacent
1050
+ to some vertex cf. Observe that a and f are not adjacent in G, otherwise ac and cf are
1051
+ adjacent, which means the distance between ac and ce is two, a contradiction. Since ce and
1052
+ cf are adjacent, so are ae and af. Moreover, bf must be a vertex, otherwise there is an edge
1053
+ between ab and af in D1,n,2 = TS2(G) which creates a C3 having {ab, ae, af} as its vertex-set,
1054
+ a contradiction. Since ab and ac are adjacent, so are cf and bf. Now, df must be a vertex,
1055
+ 17
1056
+
1057
+ otherwise bd and bf are adjacent which contradicts D1,n,2 = TS2(G). Since ab and bd are
1058
+ adjacent, so are af and df. From the proof of Lemma 28(a)(ii) c and d are adjacent in G, so
1059
+ df and cf are adjacent, which again contradicts D1,n,2 = TS2(G).
1060
+ – Case 1.2: the distance between ce and one of {ac, bd, ae} is exactly two. Observe
1061
+ that bd and ce has no common neighbor, otherwise that neighbor must be labelled as one of
1062
+ {bc, be, dc, de}: the first two can be ignored because ab and ac (resp., ab and ae) are adjacent,
1063
+ the last two can be ignored because ab and bd are adjacent. Again, since the roles of c and
1064
+ e are equal, we assume without loss of generality that ae and ce has a common neighbor ef.
1065
+ Since n ≥ 4, ce must have another neighbor which is different from ef, which can be either
1066
+ cg or eg for some vertex g of G.
1067
+ ∗ If it is cg then ag must be a vertex, otherwise cg and ac must be adjacent, which creates a
1068
+ C6 whose vertex-set is {ac, ab, ae, ef, ce, cg}, a contradiction. Since ce and cg are adjacent,
1069
+ so are ae and ag, which contradicts D1,n,2 = TS2(G).
1070
+ ∗ If it is eg then ag must be a vertex, otherwise eg and ae must be adjacent, which creates
1071
+ a C4 whose vertex-set is {ae, ef, ce, eg}, a contradiction. Since ce and eg are adjacent, so
1072
+ are ag and ac, which contradicts D1,n,2 = TS2(G).
1073
+ • Case 2: K1,3 is labelled {ab, ac, ad, ae}. As before, cd, ce, and de must be vertices in D1,n,2.
1074
+ Without loss of generality, since the roles of c, d, e are equal, we may assume that only ae is
1075
+ adjacent to another vertex of D1,n,2. As shown in the proof of Lemma 28(b), D1,n,2 must also
1076
+ contain vertices cd, ce, de. Let P be the path between ae and cd. Since the roles of c and d are
1077
+ equal, we can assume without loss of generality that cd is adjacent to a vertex cf in P. Observe
1078
+ that if af is not a vertex ac and cf are adjacent contradicting the choice of ae. So af is a vertex
1079
+ and since cd and cf are adjacent so are ad and af, which contradicts D1,n,2 = TS2(G).
1080
+ We remark that if we add a vertex g to G in Figure 1 joining it to all vertices except d the corresponding
1081
+ TS2-graph is obtained by adding the edge between bd and dg to TS2(G). Note that this tree is not in
1082
+ the class Dr,n,s.
1083
+ In the next proposition we consider two arbitrary stars whose centers are connected by an edge.
1084
+ Proposition 30. Dr,2,s (1 ≤ r ≤ s) is a TSk-graph if and only if s ≤ k − 1.
1085
+ Proof. (⇐) It follows directly from Proposition 19.
1086
+ (⇒) Suppose that Dr,2,s (r ≤ s) is obtained from P2 = p1p2 by attaching r leaves u1, . . . , ur at p1
1087
+ and s leaves v1, . . . , vs at p2 for some s ≥ k. We show that this graph is not a TSk-graph for
1088
+ any fixed k ≥ 2. Suppose to the contrary that there exists a graph G such that Dr,2,s ≃ TSk(G),
1089
+ i.e., there exists a bijective mapping f : V (Dr,2,s) → V (TSk(G)) such that uv ∈ E(Dr,2,s) if and
1090
+ only if f(u)f(v) ∈ E(TSk(G)). Without loss of generality, let f(p2) = I = {a1, . . . , ak}, where I
1091
+ is a size-k independent set of G. Since p2 has s + 1 neighbors, from the pigeonhole principle, it
1092
+ follows that there must be some i ∈ {1, . . . , k} such that f(u) = I − ai + x and f(v) = I − ai + y,
1093
+ where u, v ∈ N(p2). Observe that J = (I − ai − aj) + x + y /∈ {f(p2), f(u), f(v)} must be a size-k
1094
+ independent set of G, where j ∈ {1, . . . , k} − i and therefore there exists z ∈ V (Dr,2,s) − {p2, u, v}
1095
+ such that f(z) = J. We consider the following cases:
1096
+ – Neither u nor v is p1. In this case, we must have z /∈ N(p2), otherwise it must be adjacent to
1097
+ p2, but then f(z) = J and f(p2) = I must be adjacent in TSk(G), a contradiction. It follows
1098
+ that z ∈ N(p1) − p2 and thus f(p1) must be in {I − ai + x, I − ai + y, I − aj + x, I − aj + y}.
1099
+ Since neither u nor v is p1, the first two can be ignored. Now, if f(p1) = I − aj + x, the
1100
+ vertices x and aj must be adjacent in G, which contradicts the fact that f(u) ∈ TSk(G). A
1101
+ similar contradiction can be derived for the case f(p1) = I − aj + y. Thus, f(p1) cannot be
1102
+ defined.
1103
+ – u is p1. Again, z /∈ N(p2). Thus, z ∈ N(p1) − p2, which implies that y and aj must be
1104
+ adjacent in G. This contradicts f(v) ∈ TSk(G). Thus, f(z) cannot be defined.
1105
+ In both cases, we showed that some contradiction must occur. Our proof is complete.
1106
+ 18
1107
+
1108
+ 5
1109
+ Conclusions
1110
+ In this paper, we considered two token sliding problems for trees and forests. The two questions studied
1111
+ seem remarkably complicated, even for this simple class of graphs. For the first question, finding necessary
1112
+ and sufficient conditions on G for TSk(G) to be a forest, we could only get a complete solution for
1113
+ k = 2, 3. For the second question, finding necessary and sufficient conditions for a tree or forest to be
1114
+ a token sliding graph, we could get more general results. Nevertheless, as noted in Section 4 several
1115
+ interesting important questions remain. We expect the join and decomposition operations introduced
1116
+ there will be of use for similar questions for more general graphs.
1117
+ Acknowledgments
1118
+ Avis’ research is partially supported by the Japan Society for the Promotion of Science (JSPS) KAK-
1119
+ ENHI Grants JP18H05291, JP20H00579, and JP20H05965 (AFSA) and Hoang’s research by JP20H05964
1120
+ (AFSA).
1121
+ References
1122
+ [1] David Avis and Duc A. Hoang. On reconfiguration graphs of independent sets under token sliding.
1123
+ arXiv preprint, 2022. arXiv:2203.16861.
1124
+ [2] Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz. A survey on the
1125
+ parameterized complexity of the independent set and (connected) dominating set reconfiguration
1126
+ problems. arXiv preprint, 2022. arXiv:2204.10526.
1127
+ [3] Reinhard Diestel.
1128
+ Graph Theory, volume 173 of Graduate Texts in Mathematics.
1129
+ Springer, 5th
1130
+ edition, 2017.
1131
+ [4] Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and other
1132
+ problems through the nondeterministic constraint logic model of computation. Theoretical Computer
1133
+ Science, 343(1-2):72–96, 2005.
1134
+ [5] Ruy Fabila Monroy, David Flores-Pe˜naloza, Clemens Huemer, Ferran Hurtado, Jorge Urrutia, and
1135
+ David R. Wood. Token graphs. Graphs and Combinatorics, 28(3):365–380, 2012.
1136
+ [6] C.M. Mynhardt and S. Nasserasr.
1137
+ Reconfiguration of colourings and dominating sets in graphs.
1138
+ In Fan Chung, Ron Graham, Frederick Hoffman, Ronald C. Mullin, Leslie Hogben, and Douglas B.
1139
+ West, editors, 50 years of Combinatorics, Graph Theory, and Computing, pages 171–191. CRC Press,
1140
+ 1st edition, 2019.
1141
+ [7] Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.
1142
+ [8] Jan van den Heuvel. The complexity of change. In Surveys in Combinatorics, volume 409 of London
1143
+ Mathematical Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013.
1144
+ 19
1145
+
B9AyT4oBgHgl3EQfePhg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNE1T4oBgHgl3EQfqAUl/content/2301.03337v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39a48f14a2b2308f53cf4cdb5a02a810b1e06031e9258d89c0267a9f453f6d25
3
+ size 3910529
EtAyT4oBgHgl3EQfevi1/content/2301.00328v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:066035c919034b4192353c9691d110ffee94906dac45f1ae5ebfd01d56490c68
3
+ size 566624
EtAyT4oBgHgl3EQfevi1/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a490ee66f3b42fb61468cab8bb4a798db5398bc515387cbabe6223ae9427f0fa
3
+ size 2097197
FdAyT4oBgHgl3EQf4_rs/content/tmp_files/2301.00798v1.pdf.txt ADDED
@@ -0,0 +1,806 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00798v1 [cs.IT] 2 Jan 2023
2
+ Timely Opportunistic Gossiping in Dense Networks
3
+ Purbesh Mitra
4
+ Sennur Ulukus
5
+ Department of Electrical and Computer Engineering
6
+ University of Maryland, College Park, MD 20742
7
8
9
+ Abstract—We consider gossiping in a fully-connected wireless
10
+ network consisting of n nodes. The network receives Poisson up-
11
+ dates from a source, which generates new information. The nodes
12
+ gossip their available information with the neighboring nodes
13
+ to maintain network timeliness. In this work, we propose two
14
+ gossiping schemes, one semi-distributed and the other one fully-
15
+ distributed. In the semi-distributed scheme, the freshest nodes
16
+ use pilot signals to interact with the network and gossip with the
17
+ full available update rate B. In the fully-distributed scheme, each
18
+ node gossips for a fixed amount of time duration with the full
19
+ update rate B. Both schemes achieve O(1) age scaling, and the
20
+ semi-distributed scheme has the best age performance for any
21
+ symmetric randomized gossiping policy. We compare the results
22
+ with the recently proposed ASUMAN scheme [1], which also gives
23
+ O(1) age performance, but the nodes need to be age-aware.
24
+ I. INTRODUCTION
25
+ Gossiping is an information sharing mechanism where
26
+ nodes transmit their own data to the neighboring nodes ran-
27
+ domly. Gossiping does not require any centralized schedul-
28
+ ing and is particularly suitable for communication in dense
29
+ networks. There are many gossip algorithms in the literature,
30
+ e.g., [2]–[4], that focus on maximizing the effectiveness of
31
+ information dispersion. Gossip algorithms have been studied
32
+ from a timeliness point of view in [5]. The analysis in [5]
33
+ uses the version age metric, which is one of the measures of
34
+ information freshness in the literature [6]–[19].
35
+ The analysis in [5] shows that for a fully-connected network
36
+ of n nodes, if each node gossips with a fixed rate λ, the
37
+ average version age of any individual node scales as O(log n)
38
+ with the network size. Subsequent works [20]–[26] show that
39
+ there can be improvements in the age scaling by introducing
40
+ particular network mechanisms, such as clustering, file slicing
41
+ and network coding. In this paper, we focus on another aspect
42
+ of existing gossip schemes, which is their uniform gossip rate
43
+ assignment to all nodes. A main drawback of uniform rate
44
+ gossiping is that it allocates the same gossip rate to nodes
45
+ with relatively stale and relatively fresh information. This
46
+ negatively impacts the timeliness performance of the network.
47
+ Our goal in this paper is to efficiently and distributedly allocate
48
+ the total network gossip capacity dynamically among the users,
49
+ thereby enabling opportunistic gossiping, where fresher nodes
50
+ gossip with higher gossip rates.
51
+ The first paper to address the inefficiency of uniform
52
+ rate gossiping is [1] which proposed the ASUMAN scheme,
53
+ which is an opportunistic gossiping scheme that relies on the
54
+ assumption that the nodes are age-aware. In ASUMAN, since
55
+ the nodes are age-aware, whenever the source updates itself,
56
+ all the nodes in the network get synchronized and a new
57
+ gossiping frame starts. When a new frame starts, the nodes
58
+ stop gossiping and send a small pilot signal after waiting for
59
+ a back-off period proportional to their current age. In this way,
60
+ the freshest nodes get to start gossiping first as their back-off
61
+ period is smallest and the relatively staler nodes do not gossip
62
+ after receiving the pilot signal from the freshest nodes. If in
63
+ any frame, the number of fresh nodes is more than one, then
64
+ that number is estimated from the received pilot signals and
65
+ the total update rate B = nλ is equally divided between them.
66
+ The analysis in [1] shows that the version age of an individual
67
+ node scales as O(1) with the network size n.
68
+ Although ASUMAN achieves better age performance, the
69
+ system model poses some challenges in real-life implementa-
70
+ tions. One such challenge is that when multiple nodes have
71
+ the same minimum age, all of them transmit the pilot signal
72
+ simultaneously. Thus, multiple short signals overlap over the
73
+ air, which leads to incorrect estimation of the minimum-
74
+ age nodes, causing interference within the gossiping nodes.
75
+ Another downside of ASUMAN is that the nodes have to be
76
+ age-aware. This can be achieved if the source sends a signal to
77
+ the nodes when it updates itself, adding additional complexity
78
+ to the simple gossiping model.
79
+ gossiping scheme
80
+ age scaling
81
+ ASUMAN proposed in [1]
82
+ 2 λe
83
+ λ + 1
84
+ semi-distributed proposed here
85
+ 2 λe
86
+ λ
87
+ fully-distributed proposed here
88
+ (1 + e) λe
89
+ λ
90
+ TABLE I
91
+ AGE SCALING COMPARISON FOR DIFFERENT GOSSIPING SCHEMES.
92
+ In this paper, we propose two new gossiping schemes, one
93
+ semi-distributed and the other fully-distributed, that both yield
94
+ O(1) performance. These schemes are able to circumvent
95
+ the previously mentioned downsides. In the semi-distributed
96
+ scheme, each time a node gets updated by the source, it
97
+ transmits a pilot signal to the neighboring nodes and starts
98
+ gossiping with the maximum capacity until it receives a signal
99
+ from some other node. In the fully-distributed scheme, each
100
+ time a node gets updated by the source, it gossips for a
101
+ fixed duration with the maximum capacity and stops. The
102
+ age scaling comparison of these schemes is shown in Table I.
103
+ Further, we prove that the semi-distributed gossiping scheme
104
+ yields the best age performance among all possible symmetric
105
+ gossiping schemes with an upper bound on the instantaneous
106
+ maximum gossip rate. For our analysis, we use stochastic
107
+
108
+ hybrid system (SHS) formulation [27], similar to [1], [5], to
109
+ calculate of mean steady-state version age of the nodes.
110
+ II. SYSTEM MODEL
111
+ We consider a gossip network consisting of a source labeled
112
+ node 0, and a set of nodes labeled N = {1, 2, . . ., n}, as
113
+ shown in Fig. 1. The source updates its information with
114
+ Poisson arrivals of rate λe, and it sends Poisson updates to
115
+ the network with a total rate of λ. For simplicity, we consider
116
+ a symmetric network, i.e., each of the nodes receives updates
117
+ from the source with a rate λ
118
+ n. In the timely gossiping papers
119
+ in the literature [5], [20]–[26], it is assumed that each node
120
+ of the network gossips with a rate of λ; thus, on a fully
121
+ connected network where each node is connected to (n − 1)
122
+ other nodes, each node i gossips with a node j with a rate
123
+ of
124
+ λ
125
+ n−1. Therefore, the total update capacity of the network is
126
+ B = nλ. As in [1], in this paper, we consider allocating this
127
+ total update rate B to users dynamically. Once a gossip rate is
128
+ assigned to a node, it gossips with its (n − 1) neighbors with
129
+ equal rates in the fully connected network.
130
+ Thus, the network has an upper bound of B on the instan-
131
+ taneous gossiping rate. If at any time, multiple nodes transmit
132
+ and the total instantaneous gossip rate exceeds B, there will be
133
+ interference, and the gossiped data is lost. Hence, for effective
134
+ gossiping, at any time instant, the total instantaneous gossip
135
+ rate has to be less than or equal to B. The goal of our work
136
+ is to improve the timeliness of such a network. To measure
137
+ the timeliness of the ith node, we use version age, denoted
138
+ as ∆i(t). This measure counts how many versions the data at
139
+ the ith node is lagging, compared to the data available at the
140
+ source at time t. Mathematically, we write
141
+ ∆i(t) = Ns(t) − Ni(t),
142
+ (1)
143
+ where Ns(t) and Ni(t) are the versions of the data available
144
+ at the source and at the ith node, respectively, at time t.
145
+ We denote all the ages of nodes at time t as the age vector
146
+ ∆(t) = [∆1(t), ∆2(t), . . . , ∆n(t)]. When the source updates
147
+ itself, all the ages of the nodes increase by 1. If the source
148
+ sends an update to a node, its age becomes 0. When node
149
+ i sends a gossip update to node j, it stores the data with
150
+ the freshest version, i.e., the age of the jth node becomes
151
+ ˆ∆j(t) = ∆{i,j}(t) = min{∆i(t), ∆j(t)}.
152
+ III. SEMI-DISTRIBUTED GOSSIPING
153
+ In this section, we introduce the semi-distributed gossiping
154
+ scheme. The motivation for this is to allow the freshest node
155
+ of the network to gossip with maximum capacity. Suppose
156
+ we denote the kth source-to-ith node update as t(i)
157
+ k . In this
158
+ scheme, at time t(i)
159
+ k , i transmits a small pilot signal to all the
160
+ other nodes in the network and starts gossiping with rate B to
161
+ the other nodes with equal rate. While gossiping, if i receives
162
+ a pilot signal from any other node, it will stop gossiping. We
163
+ define the gossiping node at any given time t as M(t). Since,
164
+ the probability of two simultaneous Poisson arrivals is 0, i.e.,
165
+ P(|M(t)| ≥ 2) = 0, here we do not face the problem of
166
+ overlapping pilot signals like ASUMAN [1].
167
+ 0
168
+ 1
169
+ 2
170
+ 3
171
+ 4
172
+ λe
173
+ λ
174
+ 5
175
+ Fig. 1. Source 0 updates itself with rate λe and sends updates to the nodes
176
+ N = {1, 2, 3, 4, 5} uniformly with total rate λ, i.e., with rate λ/5 to each
177
+ of the nodes. The nodes gossip with each other with total update rate B.
178
+ We investigate the mean steady-state age of an individual
179
+ node, denoted as,
180
+ ai = lim
181
+ t→∞ ai(t) = lim
182
+ t→∞ E[∆i(t)],
183
+ (2)
184
+ in particular, how network size n affects ai, in Theorem 1.
185
+ Theorem 1 If B = nλ, the average version age of a node ai
186
+ in a semi-distributed gossip network scales as O(1).
187
+ Proof: We use SHS formulation of [27]. Note that, for any
188
+ time t, the gossiping node is the minimum age node in the
189
+ network. Let us denote this minimum age as ∆min(t) =
190
+ min{∆1(t), ∆2(t), . . . , ∆n(t)}. From [5], we know that
191
+ limt→∞ E[∆min(t)] =
192
+ λe
193
+ λ . Since for any given t, only the
194
+ node with the minimum age is gossiping, we can express
195
+ the state transition of the system as an SHS with only one
196
+ type of transition, i.e., Q = 0. We choose the test function
197
+ ψi :
198
+ Rn × [0, ∞) →
199
+ R, where i ∈ N, as
200
+ ψi(∆(t), t) = ∆i(t).
201
+ (3)
202
+ Now, following [27, Thm. 1], we evaluate the extended gen-
203
+ erator function as
204
+ E[(Lψi)(∆(t), t)] =
205
+
206
+ (j,ℓ)∈L
207
+ λj,ℓ(∆(t), t)E
208
+
209
+ ψi(φj,ℓ(∆(t), t))
210
+ − ψi(∆(t), t)
211
+
212
+ ,
213
+ (4)
214
+ where L denotes all possible state transitions. We define the
215
+ reset maps φj,ℓ(∆(t), t) = ˆ∆(t) = [ ˆ∆1(t), ˆ∆2(t), . . . , ˆ∆n(t)]
216
+ as follows
217
+ ˆ∆i(t) =
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+ ∆i(t) + 1,
226
+ if j = 0, ℓ = 0
227
+ 0,
228
+ if j = 0, ℓ = i
229
+ min(∆j(t), ∆ℓ(t)),
230
+ if j ∈ N, ℓ = i
231
+ ∆i(t),
232
+ otherwise.
233
+ (5)
234
+ The update rates λj,ℓ are given as
235
+ λj,ℓ(∆(t), t) =
236
+
237
+
238
+
239
+ λe,
240
+ if j = 0, ℓ = 0
241
+ λ
242
+ n,
243
+ if j = 0, ℓ = i
244
+ B
245
+ n−1
246
+ 1{j = M(t)},
247
+ otherwise,
248
+ (6)
249
+
250
+ where
251
+ 1{·} denotes the indicator function. Now, we can
252
+ rewrite (4) as
253
+ E[(Lψi)(∆(t), t)]
254
+ = E
255
+
256
+ λe(∆i(t) + 1 − ∆i(t)) + λ
257
+ n(0 − ∆i(t))
258
+ +
259
+
260
+ j∈N
261
+ B
262
+ n − 1
263
+ 1{j = M(t)}
264
+
265
+ ∆{j,i}(t) − ∆i(t)
266
+ � �
267
+ . (7)
268
+ Since the gossiping node is always the minimum age node,
269
+ we can write
270
+ E[(Lψi)(∆(t), t)]
271
+ = λe − λ
272
+ nai(t) + E
273
+
274
+
275
+ j=M(t)
276
+ B
277
+ n − 1(∆min(t) − ∆i(t))
278
+
279
+ = λe − λ
280
+ nai(t) +
281
+ B
282
+ n − 1(amin(t) − ai(t)).
283
+ (8)
284
+ Now, since the version age is a piece-wise constant function
285
+ of time, we obtain
286
+ dE[ψi(∆(t), t)]
287
+ dt
288
+ = dE[∆i(t)]
289
+ dt
290
+ = 0,
291
+ (9)
292
+ for any continuity point t. Hence, the expected value in (8) is
293
+ 0, by Dynkin’s formula, as given in [27]. Thus, (8) becomes
294
+ 0 = λe − λ
295
+ nai(t) +
296
+ B
297
+ n − 1(amin(t) − ai(t)).
298
+ (10)
299
+ Hence, the mean age of an individual node is expressed as
300
+ ai(t) =
301
+ λe +
302
+ B
303
+ n−1amin(t)
304
+ λ
305
+ n +
306
+ B
307
+ n−1
308
+ .
309
+ (11)
310
+ To evaluate the steady-state mean age, we take t → ∞ in (11)
311
+ which gives
312
+ ai =
313
+ λe +
314
+ B
315
+ n−1
316
+ λe
317
+ λ
318
+ λ
319
+ n +
320
+ B
321
+ n−1
322
+ .
323
+ (12)
324
+ Finally, to calculate the scaling of the average age, we use
325
+ B = nλ, which yields
326
+ lim
327
+ n→∞ ai = lim
328
+ n→∞
329
+ λe
330
+ λ
331
+
332
+ 1 +
333
+ n
334
+ n−1
335
+ 1
336
+ n +
337
+ n
338
+ n−1
339
+
340
+ = 2λe
341
+ λ ,
342
+ (13)
343
+ concluding the proof. ■
344
+ Next, we show that this semi-distributed scheme gives
345
+ the best version age performance for any possible gossip-
346
+ ing scheme with a constraint on the instantaneous gossiping
347
+ scheme, in Theorem 2.
348
+ Theorem 2 For any symmetric network with maximum in-
349
+ stantaneous gossip rate of B, the semi-distributed gossiping
350
+ scheme yields the minimum average age for the nodes.
351
+ Proof: Suppose we use any arbitrary gossiping policy. Since
352
+ the total gossip rate is upper bounded by B, we have
353
+
354
+ j,i∈N,j̸=i
355
+ λj,i(∆(t), t) ≤ B,
356
+ ∀t.
357
+ (14)
358
+ From the symmetry of the network, we can write
359
+ E
360
+
361
+
362
+
363
+ j∈N,j̸=i
364
+ λj,i(∆(t), t)
365
+
366
+  ≤
367
+ B
368
+ n − 1.
369
+ (15)
370
+ Note that the sum in (14) is over all i, j whereas the sum
371
+ in (15) is over j only. Now, equating the extended generator
372
+ function to 0, yields
373
+ λ
374
+ nai(t) + E
375
+
376
+
377
+
378
+ j∈N,j̸=i
379
+ λj,i(∆(t), t)∆i(t)
380
+
381
+
382
+ = λe + E
383
+
384
+
385
+
386
+ j∈N,j̸=i
387
+ λj,i(∆(t), t)∆{j,i}(t)
388
+
389
+  .
390
+ (16)
391
+ Using the inequality in (15) and by definition the fact that
392
+ ∆{j,i}(t) ≥ ∆min(t), we can rewrite (16) as
393
+ λ
394
+ nai(t) +
395
+ B
396
+ n − 1ai(t) ≥ λe +
397
+ B
398
+ n − 1amin(t).
399
+ (17)
400
+ Taking t → ∞ in (17) and using the expression of amin(t),
401
+ we obtain
402
+ ai ≥
403
+ λe +
404
+ B
405
+ n−1
406
+ λe
407
+ λ
408
+ λ
409
+ n +
410
+ B
411
+ n−1
412
+ ,
413
+ (18)
414
+ where the right-hand side of the inequality is the average
415
+ age of a node with the proposed semi-distributed policy. This
416
+ concludes the proof. ■
417
+ IV. FULLY-DISTRIBUTED GOSSIPING
418
+ In this section, we introduce a gossiping policy which is
419
+ fully-distributed. In ASUMAN [1], the nodes need to be age-
420
+ aware and in the semi-distributed scheme, the nodes need to
421
+ implement a pilot-signal based communication in the network.
422
+ We improve upon them and formulate a gossiping policy that
423
+ does not require age-awareness or pilot-signal transmissions.
424
+ In this scheme, whenever node i receives an update from the
425
+ source at time t(i)
426
+ k , it starts gossiping to all the other nodes
427
+ with rate B for a fixed time duration δ, and then it stops, as
428
+ shown in Fig. 2. We investigate the age performance of this
429
+ scheme in Theorem 3.
430
+ Theorem 3 If B = nλ, the average version age of a node in
431
+ a fully-distributed gossip network scales as O(1).
432
+ Proof: From Fig. 2, we observe that at any given time, if
433
+ there is any effective gossiping, only the minimum age node
434
+ is responsible for it. This is because, effective gossiping is
435
+ possible only if a single node is gossiping and in that case, the
436
+ node has to be a minimum age node. Whereas, when multiple
437
+ nodes are gossiping with rate B, there will be no effective
438
+ gossiping due to interference. Additionally, each update from
439
+ the source is a Poisson arrival with rate λ, and gossiping starts
440
+ immediately for a time duration of δ. Hence, we can model
441
+ this process as an M/D/∞ queue. Now, from [28], [29], we
442
+
443
+ version age
444
+ t
445
+ t(1)
446
+ 1
447
+ t(2)
448
+ 1
449
+ t(1)
450
+ 2
451
+ t(2)
452
+ 2
453
+ t(1)
454
+ 3
455
+ t(2)
456
+ 3
457
+ t(1)
458
+ 4
459
+ t(2)
460
+ 4
461
+ t(1)
462
+ 5
463
+ t(1)
464
+ 6
465
+ t(2)
466
+ 5
467
+ t(2)
468
+ 6
469
+ t(1)
470
+ 7
471
+ δ
472
+ δ
473
+ number of entries in M/D/∞ queue
474
+ effective gossiping
475
+ interference
476
+ 1
477
+ 2
478
+ 1
479
+ 2
480
+ t
481
+ ∆1(t)
482
+ ∆2(t)
483
+ ∆min(t)
484
+ Fig. 2. Distributed gossiping in a 2 node network. At each t(i)
485
+ k , ∆i(t) becomes zero and node i starts gossiping for a δ duration. The corresponding M/D/∞
486
+ queue indicates the number of nodes gossiping simultaneously. Effective gossiping only happens when only one node is gossiping. Presence of multiple
487
+ gossiping nodes creates interference, resulting in no net gossip.
488
+ know that the stationary distribution for any general M/G/∞
489
+ queue follows the Poisson distribution,
490
+ πk = (λ/µ)ke−λ/µ
491
+ k!
492
+ ,
493
+ k = 0, 1, 2, . . .
494
+ (19)
495
+ For this M/D/∞ queue, µ = 1
496
+ δ . Since effective gossip happens
497
+ only when there is one entry in the queue, the effective gossip
498
+ rate becomes
499
+ ˜B = π1B = λδe−λδB.
500
+ (20)
501
+ The rest of the analysis is the same as in Theorem 1. Therefore,
502
+ we can directly substitute ˜B instead of B in (12) to obtain the
503
+ mean age of the ith node as
504
+ ai =
505
+ λe +
506
+ ˜
507
+ B
508
+ n−1
509
+ λe
510
+ λ
511
+ λ
512
+ n +
513
+ ˜
514
+ B
515
+ n−1
516
+ .
517
+ (21)
518
+ Using B = nλ and taking n → ∞ in (21), we get the age
519
+ scaling as
520
+ lim
521
+ n→∞ ai = lim
522
+ n→∞
523
+ λe + λδe−λδnλ
524
+ n−1
525
+ λe
526
+ λ
527
+ λ
528
+ n + λδe−λδnλ
529
+ n−1
530
+ (22)
531
+ = λe
532
+ λ
533
+
534
+ 1 +
535
+ 1
536
+ λδe−λδ
537
+
538
+ ,
539
+ (23)
540
+ which concludes the proof. ■
541
+ Finally, we note that the age expression in (23) for the fully-
542
+ distributed gossiping scheme depends on the chosen gossiping
543
+ duration δ. Thus, we can improve the age expression in (23)
544
+ by choosing an optimal δ that minimizes the mean age. Since
545
+ λδe−λδ ≤ 1
546
+ e, the maxima being at δ∗ = 1
547
+ λ, the lower bound
548
+ of mean age of distributed gossiping is λe
549
+ λ
550
+
551
+ 1 +
552
+ 1
553
+ e−1
554
+
555
+ = (1 +
556
+ e) λe
557
+ λ . This result matches our intuition, because if δ is too
558
+ small, it will not allow sufficient time to gossip. On the other
559
+ hand, if δ is too large, there will not be effective gossiping
560
+ due to interference from simultaneous gossiping nodes. The
561
+ minimum age is achieved when the effective gossiping rate ˜B
562
+ is maximized, which is ˜B|δ∗ = B
563
+ e .
564
+ V. NUMERICAL RESULTS
565
+ In this section, we present simulation results for the two
566
+ proposed gossiping schemes, and compare them with the
567
+ theoretically derived age expressions. We also show the results
568
+ for ASUMAN [1] as a benchmark.
569
+ In Fig. 3, we present the numerical results for λe
570
+ λ = 0.4,
571
+ λe
572
+ λ
573
+ = 1 and
574
+ λe
575
+ λ
576
+ = 2 in Fig. 3(a), Fig. 3(b) and Fig. 3(c),
577
+ respectively, with λ = 1 in all cases. From the figures,
578
+ it is evident that all the gossiping schemes result in O(1)
579
+ performance and the semi-distributed gossiping scheme yields
580
+ the best performance among all.
581
+ In Fig. 3(a), where λe
582
+ λ = 0.4 <
583
+ 1
584
+ e−1, ASUMAN gives the
585
+ worst age performance among the three schemes. However,
586
+ in Fig. 3(b) and Fig. 3(c), i.e., for
587
+ λe
588
+ λ
589
+ >
590
+ 1
591
+ e−1, ASUMAN
592
+ performs worse than the semi-distributed scheme, but is better
593
+ than the fully-distributed scheme. This matches our intuition
594
+ because, in ASUMAN, we use the information about source
595
+ self-updates to allocate gossip rate more efficiently, while in
596
+ the fully-distributed scheme, multiple nodes gossiping together
597
+ causes interference to lose some portion of the total gossip
598
+ rate. This effect of interference becomes more prominent when
599
+ the source to network update rate λ is high as compared
600
+ to source self-update rate λe. We have chosen δ =
601
+ 1
602
+ λ = 1
603
+ for the simulation to get the minimum average age for fully-
604
+ distributed gossiping.
605
+ For
606
+ ASUMAN,
607
+ the
608
+ asymptotic
609
+ age
610
+ scales
611
+ as
612
+ limn→∞ λe
613
+ λ
614
+
615
+ 1+
616
+ n
617
+ n−1 (1+ λ
618
+ λe )
619
+ 1
620
+ n +
621
+ n
622
+ n−1
623
+
624
+ = 2 λe
625
+ λ + 1, while the other two
626
+
627
+ 0
628
+ 100
629
+ 200
630
+ 300
631
+ 400
632
+ 500
633
+ 600
634
+ 0
635
+ 0.2
636
+ 0.4
637
+ 0.6
638
+ 0.8
639
+ 1
640
+ 1.2
641
+ 1.4
642
+ 1.6
643
+ 1.8
644
+ 2
645
+ Theorem 1 formula (12)
646
+ semi-distributed gossip
647
+ Theorem 3 formula (21)
648
+ fully-distributed gossip
649
+ ASUMAN
650
+ (a) λe
651
+ λ = 0.4
652
+ 0
653
+ 100
654
+ 200
655
+ 300
656
+ 400
657
+ 500
658
+ 600
659
+ 1
660
+ 1.5
661
+ 2
662
+ 2.5
663
+ 3
664
+ 3.5
665
+ 4
666
+ Theorem 1 formula (12)
667
+ semi-distributed gossip
668
+ Theorem 3 formula (21)
669
+ fully-distributed gossip
670
+ ASUMAN
671
+ (b) λe
672
+ λ = 1
673
+ 0
674
+ 100
675
+ 200
676
+ 300
677
+ 400
678
+ 500
679
+ 600
680
+ 2
681
+ 3
682
+ 4
683
+ 5
684
+ 6
685
+ 7
686
+ 8
687
+ Theorem 1 formula (12)
688
+ semi-distributed gossip
689
+ Theorem 3 formula (21)
690
+ fully-distributed gossip
691
+ ASUMAN
692
+ (c) λe
693
+ λ = 2
694
+ Fig. 3.
695
+ Average version age of a single node versus the total number of
696
+ nodes in the network n for semi-distributed, fully-distributed and ASUMAN
697
+ schemes.
698
+ schemes obtain 2 λe
699
+ λ
700
+ and (1 + e) λe
701
+ λ , as shown in (13) and
702
+ (23) (with optimized δ), respectively, and as listed in Table I.
703
+ The numerical simulation results exactly match the derived
704
+ formulas. With an increase in the ratio
705
+ λe
706
+ λ , the average
707
+ age increases due to source being updated more frequently
708
+ compared to the network for all schemes, as we observe
709
+ going from Fig. 3(a) to Fig. 3(b) to Fig. 3(c).
710
+ VI. CONCLUSION
711
+ We proposed a semi-distributed and a fully-distributed
712
+ gossiping scheme for a fully-connected network. The semi-
713
+ distributed scheme allows the freshest node to communicate
714
+ in the network through pilot signals and to gossip with full
715
+ capacity. This scheme archives the lowest possible average
716
+ age for any symmetric network, with a constraint on the
717
+ instantaneous gossip rate. On the other hand, in the fully-
718
+ distributed scheme, the freshest node gossips for a fixed time
719
+ duration with full capacity. The effective gossip happens only
720
+ a fraction of the total time, when there is no interference
721
+ from multiple nodes gossiping. Both of the proposed schemes
722
+ yield O(1) age performance. Compared to our previous work
723
+ ASUMAN, which also gives O(1) age scaling, this work is an
724
+ improvement because here we do not require the nodes to be
725
+ age-aware or to transmit pilot signals for channel reservation.
726
+ REFERENCES
727
+ [1] P. Mitra and S. Ulukus. ASUMAN: Age sense updating multiple access
728
+ in networks. In Allerton Conference, September 2022.
729
+ [2] Y. Minsky.
730
+ Spreading Rumors Cheaply, Quickly, and Reliably.
731
+ PhD
732
+ thesis, Cornell University, March 2002.
733
+ [3] D. Shah. Gossip algorithms. Foundations and Trends in Networking,
734
+ 3(1):1–125, 2008.
735
+ [4] S. Sanghavi, B. Hajek, and L. Massoulie.
736
+ Gossiping with multiple
737
+ messages.
738
+ IEEE Trans. on Information Theory, 53(12):4640–4654,
739
+ December 2007.
740
+ [5] R. D. Yates. The age of gossip in networks. In IEEE ISIT, July 2021.
741
+ [6] S. K. Kaul, M. Gruteser, V. Rai, and J. Kenney. Minimizing age of
742
+ information in vehicular networks. In IEEE Infocom, March 2011.
743
+ [7] A. Kosta, N. Pappas, and V. Angelakis. Age of information: A new
744
+ concept, metric, and tool. In Foundations and Trends in Networking,
745
+ volume 12, pages 162–259, November 2017.
746
+ [8] Y. Sun, I. Kadota, R. Talak, and E. H. Modiano. Age of information: A
747
+ new metric for information freshness. In Age of Information, volume 12,
748
+ pages 1–224, December 2019.
749
+ [9] R. D. Yates, Y. Sun, D. Brown, S. K. Kaul, E. Modiano, and S. Ulukus.
750
+ Age of information: An introduction and survey. IEEE Jour. on Selected
751
+ Areas in Communications, 39(5):1183–1210, May 2020.
752
+ [10] J. Cho and H. Garcia-Molina. Effective page refresh policies for web
753
+ crawlers. ACM Trans. on Database Systems, 28(4):390–426, December
754
+ 2003.
755
+ [11] J. Zhong, R. D. Yates, and E. Soljanin. Two freshness metrics for local
756
+ cache refresh. In IEEE ISIT, June 2018.
757
+ [12] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides. The age of
758
+ incorrect information: A new performance metric for status updates.
759
+ IEEE/ACM Trans. on Networking, 28(5):2215–2228, October 2020.
760
+ [13] M. Bastopcu and S. Ulukus. Who should Google Scholar update more
761
+ often? In IEEE Infocom, July 2020.
762
+ [14] B. Abolhassani, J. Tadrous, A. Eryilmaz, and E. Yeh. Fresh caching for
763
+ dynamic content. In IEEE Infocom, May 2021.
764
+ [15] M. Wang, W. Chen, and A. Ephremides. Reconstruction of counting
765
+ process in real-time: The freshness of information through queues. In
766
+ IEEE ICC, July 2019.
767
+ [16] M. Bastopcu and S. Ulukus. Information freshness in cache updating
768
+ systems. IEEE Trans. on Wireless Communications, 20(3):1861–1874,
769
+ March 2021.
770
+
771
+ [17] M. Bastopcu and S. Ulukus.
772
+ Maximizing information freshness in
773
+ caching systems with limited cache storage capacity.
774
+ In Asilomar
775
+ Conference, November 2020.
776
+ [18] P. Kaswan, M. Bastopcu, and S. Ulukus. Freshness based cache updating
777
+ in parallel relay networks. In IEEE ISIT, July 2021.
778
+ [19] M. Bastopcu and S. Ulukus.
779
+ Timely tracking of infection status of
780
+ individuals in a population. In IEEE Infocom, May 2021.
781
+ [20] R. D. Yates. Timely gossip. In IEEE SPAWC, September 2021.
782
+ [21] B. Buyukates, M. Bastopcu, and S. Ulukus. Age of gossip in networks
783
+ with community structure. In IEEE SPAWC, September 2021.
784
+ [22] B. Buyukates, M. Bastopcu, and S. Ulukus. Version age of information
785
+ in clustered gossip networks. IEEE Jour. on Selected Areas in Informa-
786
+ tion Theory, 3(1):85–97, March 2022.
787
+ [23] M. Bastopcu, B. Buyukates, and S. Ulukus.
788
+ Gossiping with binary
789
+ freshness metric. In IEEE Globecom, December 2021.
790
+ [24] P. Kaswan and S. Ulukus. Timely gossiping with file slicing and network
791
+ coding. In IEEE ISIT, June 2022.
792
+ [25] P. Kaswan and S. Ulukus. Age of gossip in ring networks in the presence
793
+ of jamming attacks. In Asilomar Conference, October 2022.
794
+ [26] P. Kaswan and S. Ulukus. Susceptibility of age of gossip to timestomp-
795
+ ing. In IEEE ITW, November 2022.
796
+ [27] J. Hespanha.
797
+ Modeling and analysis of stochastic hybrid systems.
798
+ IEEE Proceedings – Control Theory and Applications, 153(5):520–535,
799
+ January 2006.
800
+ [28] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi.
801
+ Queueing
802
+ Networks and Markov Chains: Modeling and Performance Evaluation
803
+ with Computer Science Applications. John Wiley & Sons, 2006.
804
+ [29] G. F. Newell. The M/G/∞ queue. SIAM Journal on Applied Mathe-
805
+ matics, 14(1):86–88, January 1966.
806
+
FdAyT4oBgHgl3EQf4_rs/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf,len=392
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
3
+ page_content='00798v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
4
+ page_content='IT] 2 Jan 2023 Timely Opportunistic Gossiping in Dense Networks Purbesh Mitra Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 20742 pmitra@umd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
5
+ page_content='edu ulukus@umd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
6
+ page_content='edu Abstract—We consider gossiping in a fully-connected wireless network consisting of n nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
7
+ page_content=' The network receives Poisson up- dates from a source, which generates new information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
8
+ page_content=' The nodes gossip their available information with the neighboring nodes to maintain network timeliness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
9
+ page_content=' In this work, we propose two gossiping schemes, one semi-distributed and the other one fully- distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
10
+ page_content=' In the semi-distributed scheme, the freshest nodes use pilot signals to interact with the network and gossip with the full available update rate B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
11
+ page_content=' In the fully-distributed scheme, each node gossips for a fixed amount of time duration with the full update rate B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
12
+ page_content=' Both schemes achieve O(1) age scaling, and the semi-distributed scheme has the best age performance for any symmetric randomized gossiping policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
13
+ page_content=' We compare the results with the recently proposed ASUMAN scheme [1], which also gives O(1) age performance, but the nodes need to be age-aware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
14
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
15
+ page_content=' INTRODUCTION Gossiping is an information sharing mechanism where nodes transmit their own data to the neighboring nodes ran- domly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
16
+ page_content=' Gossiping does not require any centralized schedul- ing and is particularly suitable for communication in dense networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
17
+ page_content=' There are many gossip algorithms in the literature, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
18
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
19
+ page_content=', [2]–[4], that focus on maximizing the effectiveness of information dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
20
+ page_content=' Gossip algorithms have been studied from a timeliness point of view in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
21
+ page_content=' The analysis in [5] uses the version age metric, which is one of the measures of information freshness in the literature [6]–[19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
22
+ page_content=' The analysis in [5] shows that for a fully-connected network of n nodes, if each node gossips with a fixed rate λ, the average version age of any individual node scales as O(log n) with the network size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
23
+ page_content=' Subsequent works [20]–[26] show that there can be improvements in the age scaling by introducing particular network mechanisms, such as clustering, file slicing and network coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
24
+ page_content=' In this paper, we focus on another aspect of existing gossip schemes, which is their uniform gossip rate assignment to all nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
25
+ page_content=' A main drawback of uniform rate gossiping is that it allocates the same gossip rate to nodes with relatively stale and relatively fresh information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
26
+ page_content=' This negatively impacts the timeliness performance of the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
27
+ page_content=' Our goal in this paper is to efficiently and distributedly allocate the total network gossip capacity dynamically among the users, thereby enabling opportunistic gossiping, where fresher nodes gossip with higher gossip rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
28
+ page_content=' The first paper to address the inefficiency of uniform rate gossiping is [1] which proposed the ASUMAN scheme, which is an opportunistic gossiping scheme that relies on the assumption that the nodes are age-aware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
29
+ page_content=' In ASUMAN, since the nodes are age-aware, whenever the source updates itself, all the nodes in the network get synchronized and a new gossiping frame starts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
30
+ page_content=' When a new frame starts, the nodes stop gossiping and send a small pilot signal after waiting for a back-off period proportional to their current age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
31
+ page_content=' In this way, the freshest nodes get to start gossiping first as their back-off period is smallest and the relatively staler nodes do not gossip after receiving the pilot signal from the freshest nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
32
+ page_content=' If in any frame, the number of fresh nodes is more than one, then that number is estimated from the received pilot signals and the total update rate B = nλ is equally divided between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
33
+ page_content=' The analysis in [1] shows that the version age of an individual node scales as O(1) with the network size n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
34
+ page_content=' Although ASUMAN achieves better age performance, the system model poses some challenges in real-life implementa- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
35
+ page_content=' One such challenge is that when multiple nodes have the same minimum age, all of them transmit the pilot signal simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
36
+ page_content=' Thus, multiple short signals overlap over the air, which leads to incorrect estimation of the minimum- age nodes, causing interference within the gossiping nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
37
+ page_content=' Another downside of ASUMAN is that the nodes have to be age-aware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
38
+ page_content=' This can be achieved if the source sends a signal to the nodes when it updates itself, adding additional complexity to the simple gossiping model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
39
+ page_content=' gossiping scheme age scaling ASUMAN proposed in [1] 2 λe λ + 1 semi-distributed proposed here 2 λe λ fully-distributed proposed here (1 + e) λe λ TABLE I AGE SCALING COMPARISON FOR DIFFERENT GOSSIPING SCHEMES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
40
+ page_content=' In this paper, we propose two new gossiping schemes, one semi-distributed and the other fully-distributed, that both yield O(1) performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
41
+ page_content=' These schemes are able to circumvent the previously mentioned downsides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
42
+ page_content=' In the semi-distributed scheme, each time a node gets updated by the source, it transmits a pilot signal to the neighboring nodes and starts gossiping with the maximum capacity until it receives a signal from some other node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
43
+ page_content=' In the fully-distributed scheme, each time a node gets updated by the source, it gossips for a fixed duration with the maximum capacity and stops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
44
+ page_content=' The age scaling comparison of these schemes is shown in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
45
+ page_content=' Further, we prove that the semi-distributed gossiping scheme yields the best age performance among all possible symmetric gossiping schemes with an upper bound on the instantaneous maximum gossip rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
46
+ page_content=' For our analysis, we use stochastic hybrid system (SHS) formulation [27], similar to [1], [5], to calculate of mean steady-state version age of the nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
47
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
48
+ page_content=' SYSTEM MODEL We consider a gossip network consisting of a source labeled node 0, and a set of nodes labeled N = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
49
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
50
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
51
+ page_content=', n}, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
52
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
53
+ page_content=' The source updates its information with Poisson arrivals of rate λe, and it sends Poisson updates to the network with a total rate of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
54
+ page_content=' For simplicity, we consider a symmetric network, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
55
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
56
+ page_content=', each of the nodes receives updates from the source with a rate λ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
57
+ page_content=' In the timely gossiping papers in the literature [5], [20]–[26], it is assumed that each node of the network gossips with a rate of λ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
58
+ page_content=' thus, on a fully connected network where each node is connected to (n − 1) other nodes, each node i gossips with a node j with a rate of λ n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
59
+ page_content=' Therefore, the total update capacity of the network is B = nλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
60
+ page_content=' As in [1], in this paper, we consider allocating this total update rate B to users dynamically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
61
+ page_content=' Once a gossip rate is assigned to a node, it gossips with its (n − 1) neighbors with equal rates in the fully connected network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
62
+ page_content=' Thus, the network has an upper bound of B on the instan- taneous gossiping rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
63
+ page_content=' If at any time, multiple nodes transmit and the total instantaneous gossip rate exceeds B, there will be interference, and the gossiped data is lost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
64
+ page_content=' Hence, for effective gossiping, at any time instant, the total instantaneous gossip rate has to be less than or equal to B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
65
+ page_content=' The goal of our work is to improve the timeliness of such a network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
66
+ page_content=' To measure the timeliness of the ith node, we use version age, denoted as ∆i(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
67
+ page_content=' This measure counts how many versions the data at the ith node is lagging, compared to the data available at the source at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
68
+ page_content=' Mathematically, we write ∆i(t) = Ns(t) − Ni(t), (1) where Ns(t) and Ni(t) are the versions of the data available at the source and at the ith node, respectively, at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
69
+ page_content=' We denote all the ages of nodes at time t as the age vector ∆(t) = [∆1(t), ∆2(t), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
70
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
71
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
72
+ page_content=' , ∆n(t)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
73
+ page_content=' When the source updates itself, all the ages of the nodes increase by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
74
+ page_content=' If the source sends an update to a node, its age becomes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
75
+ page_content=' When node i sends a gossip update to node j, it stores the data with the freshest version, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
76
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
77
+ page_content=', the age of the jth node becomes ˆ∆j(t) = ∆{i,j}(t) = min{∆i(t), ∆j(t)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
78
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
79
+ page_content=' SEMI-DISTRIBUTED GOSSIPING In this section, we introduce the semi-distributed gossiping scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
80
+ page_content=' The motivation for this is to allow the freshest node of the network to gossip with maximum capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
81
+ page_content=' Suppose we denote the kth source-to-ith node update as t(i) k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
82
+ page_content=' In this scheme, at time t(i) k , i transmits a small pilot signal to all the other nodes in the network and starts gossiping with rate B to the other nodes with equal rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
83
+ page_content=' While gossiping, if i receives a pilot signal from any other node, it will stop gossiping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
84
+ page_content=' We define the gossiping node at any given time t as M(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
85
+ page_content=' Since, the probability of two simultaneous Poisson arrivals is 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
86
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
87
+ page_content=', P(|M(t)| ≥ 2) = 0, here we do not face the problem of overlapping pilot signals like ASUMAN [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
88
+ page_content=' 0 1 2 3 4 λe λ 5 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
89
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
90
+ page_content=' Source 0 updates itself with rate λe and sends updates to the nodes N = {1, 2, 3, 4, 5} uniformly with total rate λ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
91
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
92
+ page_content=', with rate λ/5 to each of the nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
93
+ page_content=' The nodes gossip with each other with total update rate B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
94
+ page_content=' We investigate the mean steady-state age of an individual node, denoted as, ai = lim t→∞ ai(t) = lim t→∞ E[∆i(t)], (2) in particular, how network size n affects ai, in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
95
+ page_content=' Theorem 1 If B = nλ, the average version age of a node ai in a semi-distributed gossip network scales as O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
96
+ page_content=' Proof: We use SHS formulation of [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
97
+ page_content=' Note that, for any time t, the gossiping node is the minimum age node in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
98
+ page_content=' Let us denote this minimum age as ∆min(t) = min{∆1(t), ∆2(t), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
99
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
100
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
101
+ page_content=' , ∆n(t)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
102
+ page_content=' From [5], we know that limt→∞ E[∆min(t)] = λe λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
103
+ page_content=' Since for any given t, only the node with the minimum age is gossiping, we can express the state transition of the system as an SHS with only one type of transition, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
104
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
105
+ page_content=', Q = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
106
+ page_content=' We choose the test function ψi : Rn × [0, ∞) → R, where i ∈ N, as ψi(∆(t), t) = ∆i(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
107
+ page_content=' (3) Now, following [27, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
108
+ page_content=' 1], we evaluate the extended gen- erator function as E[(Lψi)(∆(t), t)] = � (j,ℓ)∈L λj,ℓ(∆(t), t)E � ψi(φj,ℓ(∆(t), t)) − ψi(∆(t), t) � , (4) where L denotes all possible state transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
109
+ page_content=' We define the reset maps φj,ℓ(∆(t), t) = ˆ∆(t) = [ ˆ∆1(t), ˆ∆2(t), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
110
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
111
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
112
+ page_content=' , ˆ∆n(t)] as follows ˆ∆i(t) = \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 ∆i(t) + 1, if j = 0, ℓ = 0 0, if j = 0, ℓ = i min(∆j(t), ∆ℓ(t)), if j ∈ N, ℓ = i ∆i(t), otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
113
+ page_content=' (5) The update rates λj,ℓ are given as λj,ℓ(∆(t), t) = \uf8f1 \uf8f2 \uf8f3 ��e, if j = 0, ℓ = 0 λ n, if j = 0, ℓ = i B n−1 1{j = M(t)}, otherwise, (6) where 1{·} denotes the indicator function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
114
+ page_content=' Now, we can rewrite (4) as E[(Lψi)(∆(t), t)] = E � λe(∆i(t) + 1 − ∆i(t)) + λ n(0 − ∆i(t)) + � j∈N B n − 1 1{j = M(t)} � ∆{j,i}(t) − ∆i(t) � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
115
+ page_content=' (7) Since the gossiping node is always the minimum age node, we can write E[(Lψi)(∆(t), t)] = λe − λ nai(t) + E � � j=M(t) B n − 1(∆min(t) − ∆i(t)) � = λe − λ nai(t) + B n − 1(amin(t) − ai(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
116
+ page_content=' (8) Now, since the version age is a piece-wise constant function of time, we obtain dE[ψi(∆(t), t)] dt = dE[∆i(t)] dt = 0, (9) for any continuity point t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
117
+ page_content=' Hence, the expected value in (8) is 0, by Dynkin’s formula, as given in [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
118
+ page_content=' Thus, (8) becomes 0 = λe − λ nai(t) + B n − 1(amin(t) − ai(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
119
+ page_content=' (10) Hence, the mean age of an individual node is expressed as ai(t) = λe + B n−1amin(t) λ n + B n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
120
+ page_content=' (11) To evaluate the steady-state mean age, we take t → ∞ in (11) which gives ai = λe + B n−1 λe λ λ n + B n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
121
+ page_content=' (12) Finally, to calculate the scaling of the average age, we use B = nλ, which yields lim n→∞ ai = lim n→∞ λe λ � 1 + n n−1 1 n + n n−1 � = 2λe λ , (13) concluding the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
122
+ page_content=' ■ Next, we show that this semi-distributed scheme gives the best version age performance for any possible gossip- ing scheme with a constraint on the instantaneous gossiping scheme, in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
123
+ page_content=' Theorem 2 For any symmetric network with maximum in- stantaneous gossip rate of B, the semi-distributed gossiping scheme yields the minimum average age for the nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
124
+ page_content=' Proof: Suppose we use any arbitrary gossiping policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
125
+ page_content=' Since the total gossip rate is upper bounded by B, we have � j,i∈N,j̸=i λj,i(∆(t), t) ≤ B, ∀t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
126
+ page_content=' (14) From the symmetry of the network, we can write E \uf8ee \uf8f0 � j∈N,j̸=i λj,i(∆(t), t) \uf8f9 \uf8fb ≤ B n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
127
+ page_content=' (15) Note that the sum in (14) is over all i, j whereas the sum in (15) is over j only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
128
+ page_content=' Now, equating the extended generator function to 0, yields λ nai(t) + E \uf8ee \uf8f0 � j∈N,j̸=i λj,i(∆(t), t)∆i(t) \uf8f9 \uf8fb = λe + E \uf8ee \uf8f0 � j∈N,j̸=i λj,i(∆(t), t)∆{j,i}(t) \uf8f9 \uf8fb .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
129
+ page_content=' (16) Using the inequality in (15) and by definition the fact that ∆{j,i}(t) ≥ ∆min(t), we can rewrite (16) as λ nai(t) + B n − 1ai(t) ≥ λe + B n − 1amin(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
130
+ page_content=' (17) Taking t → ∞ in (17) and using the expression of amin(t), we obtain ai ≥ λe + B n−1 λe λ λ n + B n−1 , (18) where the right-hand side of the inequality is the average age of a node with the proposed semi-distributed policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
131
+ page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
132
+ page_content=' ■ IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
133
+ page_content=' FULLY-DISTRIBUTED GOSSIPING In this section, we introduce a gossiping policy which is fully-distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
134
+ page_content=' In ASUMAN [1], the nodes need to be age- aware and in the semi-distributed scheme, the nodes need to implement a pilot-signal based communication in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
135
+ page_content=' We improve upon them and formulate a gossiping policy that does not require age-awareness or pilot-signal transmissions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
136
+ page_content=' In this scheme, whenever node i receives an update from the source at time t(i) k , it starts gossiping to all the other nodes with rate B for a fixed time duration δ, and then it stops, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
137
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
138
+ page_content=' We investigate the age performance of this scheme in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
139
+ page_content=' Theorem 3 If B = nλ, the average version age of a node in a fully-distributed gossip network scales as O(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
140
+ page_content=' Proof: From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
141
+ page_content=' 2, we observe that at any given time, if there is any effective gossiping, only the minimum age node is responsible for it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
142
+ page_content=' This is because, effective gossiping is possible only if a single node is gossiping and in that case, the node has to be a minimum age node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
143
+ page_content=' Whereas, when multiple nodes are gossiping with rate B, there will be no effective gossiping due to interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
144
+ page_content=' Additionally, each update from the source is a Poisson arrival with rate λ, and gossiping starts immediately for a time duration of δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
145
+ page_content=' Hence, we can model this process as an M/D/∞ queue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
146
+ page_content=' Now, from [28], [29], we version age t t(1) 1 t(2) 1 t(1) 2 t(2) 2 t(1) 3 t(2) 3 t(1) 4 t(2) 4 t(1) 5 t(1) 6 t(2) 5 t(2) 6 t(1) 7 δ δ number of entries in M/D/∞ queue effective gossiping interference 1 2 1 2 t ∆1(t) ∆2(t) ∆min(t) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
147
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
148
+ page_content=' Distributed gossiping in a 2 node network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
149
+ page_content=' At each t(i) k , ∆i(t) becomes zero and node i starts gossiping for a δ duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
150
+ page_content=' The corresponding M/D/∞ queue indicates the number of nodes gossiping simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
151
+ page_content=' Effective gossiping only happens when only one node is gossiping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
152
+ page_content=' Presence of multiple gossiping nodes creates interference, resulting in no net gossip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
153
+ page_content=' know that the stationary distribution for any general M/G/∞ queue follows the Poisson distribution, πk = (λ/µ)ke−λ/µ k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
154
+ page_content=' , k = 0, 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
155
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
156
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
157
+ page_content=' (19) For this M/D/∞ queue, µ = 1 δ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
158
+ page_content=' Since effective gossip happens only when there is one entry in the queue, the effective gossip rate becomes ˜B = π1B = λδe−λδB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
159
+ page_content=' (20) The rest of the analysis is the same as in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
160
+ page_content=' Therefore, we can directly substitute ˜B instead of B in (12) to obtain the mean age of the ith node as ai = λe + ˜ B n−1 λe λ λ n + ˜ B n−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
161
+ page_content=' (21) Using B = nλ and taking n → ∞ in (21), we get the age scaling as lim n→∞ ai = lim n→∞ λe + λδe−λδnλ n−1 λe λ λ n + λδe−λδnλ n−1 (22) = λe λ � 1 + 1 λδe−λδ � , (23) which concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
162
+ page_content=' ■ Finally, we note that the age expression in (23) for the fully- distributed gossiping scheme depends on the chosen gossiping duration δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
163
+ page_content=' Thus, we can improve the age expression in (23) by choosing an optimal δ that minimizes the mean age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
164
+ page_content=' Since λδe−λδ ≤ 1 e, the maxima being at δ∗ = 1 λ, the lower bound of mean age of distributed gossiping is λe λ � 1 + 1 e−1 � = (1 + e) λe λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
165
+ page_content=' This result matches our intuition, because if δ is too small, it will not allow sufficient time to gossip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
166
+ page_content=' On the other hand, if δ is too large, there will not be effective gossiping due to interference from simultaneous gossiping nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
167
+ page_content=' The minimum age is achieved when the effective gossiping rate ˜B is maximized, which is ˜B|δ∗ = B e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
168
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
169
+ page_content=' NUMERICAL RESULTS In this section, we present simulation results for the two proposed gossiping schemes, and compare them with the theoretically derived age expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
170
+ page_content=' We also show the results for ASUMAN [1] as a benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
171
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
172
+ page_content=' 3, we present the numerical results for λe λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
173
+ page_content='4, λe λ = 1 and λe λ = 2 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
174
+ page_content=' 3(a), Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
175
+ page_content=' 3(b) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
176
+ page_content=' 3(c), respectively, with λ = 1 in all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
177
+ page_content=' From the figures, it is evident that all the gossiping schemes result in O(1) performance and the semi-distributed gossiping scheme yields the best performance among all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
178
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
179
+ page_content=' 3(a), where λe λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
180
+ page_content='4 < 1 e−1, ASUMAN gives the worst age performance among the three schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
181
+ page_content=' However, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
182
+ page_content=' 3(b) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
183
+ page_content=' 3(c), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
184
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
185
+ page_content=', for λe λ > 1 e−1, ASUMAN performs worse than the semi-distributed scheme, but is better than the fully-distributed scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
186
+ page_content=' This matches our intuition because, in ASUMAN, we use the information about source self-updates to allocate gossip rate more efficiently, while in the fully-distributed scheme, multiple nodes gossiping together causes interference to lose some portion of the total gossip rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
187
+ page_content=' This effect of interference becomes more prominent when the source to network update rate λ is high as compared to source self-update rate λe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
188
+ page_content=' We have chosen δ = 1 λ = 1 for the simulation to get the minimum average age for fully- distributed gossiping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
189
+ page_content=' For ASUMAN, the asymptotic age scales as limn→∞ λe λ � 1+ n n−1 (1+ λ λe ) 1 n + n n−1 � = 2 λe λ + 1, while the other two 0 100 200 300 400 500 600 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
190
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
191
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
192
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
193
+ page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
194
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
195
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
196
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
197
+ page_content='8 2 Theorem 1 formula (12) semi-distributed gossip Theorem 3 formula (21) fully-distributed gossip ASUMAN (a) λe λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
198
+ page_content='4 0 100 200 300 400 500 600 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
199
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
200
+ page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
201
+ page_content='5 4 Theorem 1 formula (12) semi-distributed gossip Theorem 3 formula (21) fully-distributed gossip ASUMAN (b) λe λ = 1 0 100 200 300 400 500 600 2 3 4 5 6 7 8 Theorem 1 formula (12) semi-distributed gossip Theorem 3 formula (21) fully-distributed gossip ASUMAN (c) λe λ = 2 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
202
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
203
+ page_content=' Average version age of a single node versus the total number of nodes in the network n for semi-distributed, fully-distributed and ASUMAN schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
204
+ page_content=' schemes obtain 2 λe λ and (1 + e) λe λ , as shown in (13) and (23) (with optimized δ), respectively, and as listed in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
205
+ page_content=' The numerical simulation results exactly match the derived formulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
206
+ page_content=' With an increase in the ratio λe λ , the average age increases due to source being updated more frequently compared to the network for all schemes, as we observe going from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
207
+ page_content=' 3(a) to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
208
+ page_content=' 3(b) to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
209
+ page_content=' 3(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
210
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
211
+ page_content=' CONCLUSION We proposed a semi-distributed and a fully-distributed gossiping scheme for a fully-connected network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
212
+ page_content=' The semi- distributed scheme allows the freshest node to communicate in the network through pilot signals and to gossip with full capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
213
+ page_content=' This scheme archives the lowest possible average age for any symmetric network, with a constraint on the instantaneous gossip rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
214
+ page_content=' On the other hand, in the fully- distributed scheme, the freshest node gossips for a fixed time duration with full capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
215
+ page_content=' The effective gossip happens only a fraction of the total time, when there is no interference from multiple nodes gossiping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
216
+ page_content=' Both of the proposed schemes yield O(1) age performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
217
+ page_content=' Compared to our previous work ASUMAN, which also gives O(1) age scaling, this work is an improvement because here we do not require the nodes to be age-aware or to transmit pilot signals for channel reservation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
218
+ page_content=' REFERENCES [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
219
+ page_content=' Mitra and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
220
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
221
+ page_content=' ASUMAN: Age sense updating multiple access in networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
222
+ page_content=' In Allerton Conference, September 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
223
+ page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
224
+ page_content=' Minsky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
225
+ page_content=' Spreading Rumors Cheaply, Quickly, and Reliably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
226
+ page_content=' PhD thesis, Cornell University, March 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
227
+ page_content=' [3] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
228
+ page_content=' Shah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
229
+ page_content=' Gossip algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
230
+ page_content=' Foundations and Trends in Networking, 3(1):1–125, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
231
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
232
+ page_content=' Sanghavi, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
233
+ page_content=' Hajek, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
234
+ page_content=' Massoulie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
235
+ page_content=' Gossiping with multiple messages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
236
+ page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
237
+ page_content=' on Information Theory, 53(12):4640–4654, December 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
238
+ page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
239
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
240
+ page_content=' Yates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
241
+ page_content=' The age of gossip in networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
242
+ page_content=' In IEEE ISIT, July 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
243
+ page_content=' [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
244
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
245
+ page_content=' Kaul, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
246
+ page_content=' Gruteser, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
247
+ page_content=' Rai, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
248
+ page_content=' Kenney.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
249
+ page_content=' Minimizing age of information in vehicular networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
250
+ page_content=' In IEEE Infocom, March 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
251
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
252
+ page_content=' Kosta, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
253
+ page_content=' Pappas, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
254
+ page_content=' Angelakis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
255
+ page_content=' Age of information: A new concept, metric, and tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
256
+ page_content=' In Foundations and Trends in Networking, volume 12, pages 162–259, November 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
257
+ page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
258
+ page_content=' Sun, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
259
+ page_content=' Kadota, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
260
+ page_content=' Talak, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
261
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
262
+ page_content=' Modiano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
263
+ page_content=' Age of information: A new metric for information freshness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
264
+ page_content=' In Age of Information, volume 12, pages 1–224, December 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
265
+ page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
266
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
267
+ page_content=' Yates, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
268
+ page_content=' Sun, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
269
+ page_content=' Brown, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
270
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
271
+ page_content=' Kaul, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
272
+ page_content=' Modiano, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
273
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
274
+ page_content=' Age of information: An introduction and survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
275
+ page_content=' IEEE Jour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
276
+ page_content=' on Selected Areas in Communications, 39(5):1183–1210, May 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
277
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
278
+ page_content=' Cho and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
279
+ page_content=' Garcia-Molina.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
280
+ page_content=' Effective page refresh policies for web crawlers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
281
+ page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
282
+ page_content=' on Database Systems, 28(4):390–426, December 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
283
+ page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
284
+ page_content=' Zhong, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
285
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
286
+ page_content=' Yates, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
287
+ page_content=' Soljanin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
288
+ page_content=' Two freshness metrics for local cache refresh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
289
+ page_content=' In IEEE ISIT, June 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
290
+ page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
291
+ page_content=' Maatouk, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
292
+ page_content=' Kriouile, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
293
+ page_content=' Assaad, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
294
+ page_content=' Ephremides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
295
+ page_content=' The age of incorrect information: A new performance metric for status updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
296
+ page_content=' IEEE/ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
297
+ page_content=' on Networking, 28(5):2215–2228, October 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
298
+ page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
299
+ page_content=' Bastopcu and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
300
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
301
+ page_content=' Who should Google Scholar update more often?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
302
+ page_content=' In IEEE Infocom, July 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
303
+ page_content=' [14] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
304
+ page_content=' Abolhassani, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
305
+ page_content=' Tadrous, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
306
+ page_content=' Eryilmaz, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
307
+ page_content=' Yeh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
308
+ page_content=' Fresh caching for dynamic content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
309
+ page_content=' In IEEE Infocom, May 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
310
+ page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
311
+ page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
312
+ page_content=' Chen, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
313
+ page_content=' Ephremides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
314
+ page_content=' Reconstruction of counting process in real-time: The freshness of information through queues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
315
+ page_content=' In IEEE ICC, July 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
316
+ page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
317
+ page_content=' Bastopcu and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
318
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
319
+ page_content=' Information freshness in cache updating systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
320
+ page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
321
+ page_content=' on Wireless Communications, 20(3):1861–1874, March 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
322
+ page_content=' [17] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
323
+ page_content=' Bastopcu and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
324
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
325
+ page_content=' Maximizing information freshness in caching systems with limited cache storage capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
326
+ page_content=' In Asilomar Conference, November 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
327
+ page_content=' [18] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
328
+ page_content=' Kaswan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
329
+ page_content=' Bastopcu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
330
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
331
+ page_content=' Freshness based cache updating in parallel relay networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
332
+ page_content=' In IEEE ISIT, July 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
333
+ page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
334
+ page_content=' Bastopcu and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
335
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
336
+ page_content=' Timely tracking of infection status of individuals in a population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
337
+ page_content=' In IEEE Infocom, May 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
338
+ page_content=' [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
339
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
340
+ page_content=' Yates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
341
+ page_content=' Timely gossip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
342
+ page_content=' In IEEE SPAWC, September 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
343
+ page_content=' [21] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
344
+ page_content=' Buyukates, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
345
+ page_content=' Bastopcu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
346
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
347
+ page_content=' Age of gossip in networks with community structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
348
+ page_content=' In IEEE SPAWC, September 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
349
+ page_content=' [22] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
350
+ page_content=' Buyukates, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
351
+ page_content=' Bastopcu, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
352
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
353
+ page_content=' Version age of information in clustered gossip networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
354
+ page_content=' IEEE Jour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
355
+ page_content=' on Selected Areas in Informa- tion Theory, 3(1):85–97, March 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
356
+ page_content=' [23] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
357
+ page_content=' Bastopcu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
358
+ page_content=' Buyukates, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
359
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
360
+ page_content=' Gossiping with binary freshness metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
361
+ page_content=' In IEEE Globecom, December 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
362
+ page_content=' [24] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
363
+ page_content=' Kaswan and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
364
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
365
+ page_content=' Timely gossiping with file slicing and network coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
366
+ page_content=' In IEEE ISIT, June 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
367
+ page_content=' [25] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
368
+ page_content=' Kaswan and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
369
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
370
+ page_content=' Age of gossip in ring networks in the presence of jamming attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
371
+ page_content=' In Asilomar Conference, October 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
372
+ page_content=' [26] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
373
+ page_content=' Kaswan and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
374
+ page_content=' Ulukus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
375
+ page_content=' Susceptibility of age of gossip to timestomp- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
376
+ page_content=' In IEEE ITW, November 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
377
+ page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
378
+ page_content=' Hespanha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
379
+ page_content=' Modeling and analysis of stochastic hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
380
+ page_content=' IEEE Proceedings – Control Theory and Applications, 153(5):520–535, January 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
381
+ page_content=' [28] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
382
+ page_content=' Bolch, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
383
+ page_content=' Greiner, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
384
+ page_content=' de Meer, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
385
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
386
+ page_content=' Trivedi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
387
+ page_content=' Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
388
+ page_content=' John Wiley & Sons, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
389
+ page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
390
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
391
+ page_content=' Newell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
392
+ page_content=' The M/G/∞ queue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
393
+ page_content=' SIAM Journal on Applied Mathe- matics, 14(1):86–88, January 1966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/FdAyT4oBgHgl3EQf4_rs/content/2301.00798v1.pdf'}
GNFJT4oBgHgl3EQfDyxI/content/tmp_files/2301.11435v1.pdf.txt ADDED
@@ -0,0 +1,1472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Learning Modulo Theories
2
+ Matt Fredrikson 1 Kaiji Lu 1 Saranya Vijayakumar 1 Somesh Jha 2 Vijay Ganesh 3 Zifan Wang 1
3
+ Abstract
4
+ Recent techniques that integrate solver layers
5
+ into Deep Neural Networks (DNNs) have shown
6
+ promise in bridging a long-standing gap between
7
+ inductive learning and symbolic reasoning tech-
8
+ niques. In this paper we present a set of tech-
9
+ niques for integrating Satisfiability Modulo Theo-
10
+ ries (SMT) solvers into the forward and backward
11
+ passes of a deep network layer, called SMTLayer.
12
+ Using this approach, one can encode rich domain
13
+ knowledge into the network in the form of mathe-
14
+ matical formulas. In the forward pass, the solver
15
+ uses symbols produced by prior layers, along with
16
+ these formulas, to construct inferences; in the
17
+ backward pass, the solver informs updates to the
18
+ network, driving it towards representations that
19
+ are compatible with the solver’s theory. Notably,
20
+ the solver need not be differentiable. We imple-
21
+ ment SMTLayer as a Pytorch module, and our
22
+ empirical results show that it leads to models that
23
+ 1) require fewer training samples than conven-
24
+ tional models, 2) that are robust to certain types
25
+ of covariate shift, and 3) that ultimately learn
26
+ representations that are consistent with symbolic
27
+ knowledge, and thus naturally interpretable.
28
+ 1. Introduction
29
+ A recent class of techniques aims at integrating solver
30
+ layer(s) within deep neural networks (DNNs) (Wang et al.,
31
+ 2019a; Pogancic et al., 2020; Huang et al., 2021; Manhaeve
32
+ et al., 2018), both during training and inference. A class
33
+ of problems which can benefit from such an integration is
34
+ one that has both a perceptual and a symbolic sub-problem,
35
+ such as “visual” Sudoku (Wang et al., 2019a), or the prob-
36
+ lem of determining the shortest path from a picture of a
37
+ map (Pogancic et al., 2020).
38
+ The most straightforward way to incorporate a solver layer
39
+ 1Carnegie Mellon University, Pittsburgh, PA, USA 2University
40
+ of Wisconsin-Madison, Madison, WI, USA 3University of Water-
41
+ loo, Waterloo, ON, Canada. Correspondence to: Matt Fredrikson
42
43
+ into an ML model is to learn models with representations
44
+ that are compatible with symbols used by the solver. For
45
+ example, if one wanted to leverage symbolic domain knowl-
46
+ edge to classify images of birds, or diagnose ailments from
47
+ CT scans, then one could train a model in a fashion similar
48
+ to “concept bottlenecking” (Koh et al., 2020). This requires
49
+ detailed labels for supervision, which may be prohibitively
50
+ expensive to obtain and keep consistent with a potentially
51
+ evolving domain theory.
52
+ We present a set of techniques for incorporating a Satisfia-
53
+ bility Modulo Theories (SMT) solver into a DNN layer so
54
+ that symbolic knowledge can be leveraged to learn such a
55
+ compatible representation, without requiring label super-
56
+ vision. Our approach is general, and can handle a broad
57
+ range of domain knowledge encoded as SMT constraints,
58
+ provided that they interface with the surrounding neural net-
59
+ work layers over propositional variables. Unlike the most
60
+ closely related prior work (Wang et al., 2019a), our approach
61
+ does not approximate the solver’s behavior by formulating
62
+ a differentiable relaxation. Rather, we extract information
63
+ from the solver as it works on a set of constraints, that is
64
+ geared towards checking the correctness of the output of the
65
+ model that precedes the solver, and use that information to
66
+ construct updates to the model during training (Section 4.2).
67
+ We present two different approaches for this, one based
68
+ on unsatisfiable cores, and another based on weighted
69
+ MaxSMT (Section 4.2). There are several advantages to
70
+ this approach. Aside from the mild interface constraints
71
+ mentioned earlier (i.e., solver and neural layers interface
72
+ with each other via boolean variables), our approach does
73
+ not place any restrictions on the theory solver embedded in
74
+ the layer, such as linearity (Pogancic et al., 2020) or even
75
+ decidability—if the solver is capable of efficiently discharg-
76
+ ing the relevant constraints, then the layer can operate as
77
+ intended. Because there is no need to provide a differen-
78
+ tiable relaxation for each theory or solver technique that one
79
+ may want to incorporate, we can leverage the continuous
80
+ and unabated progress being made in solver technology.
81
+ We implement our approach as a PyTorch (Paszke et al.,
82
+ 2019) layer, using the Z3 (De Moura & Bjørner, 2008) SMT
83
+ solver as the solver layer to solve SMT and MaxSMT con-
84
+ straints. On three applications involving vision and natural
85
+ language: visual arithmetic, algebraic equation solving, and
86
+ arXiv:2301.11435v1 [cs.LG] 26 Jan 2023
87
+
88
+ Learning Modulo Theories
89
+ a so-called natural language “liar’s puzzle,” we demonstrate
90
+ that our implementation can be incorporated into DNN ar-
91
+ chitectures to solve problems more effectively than conven-
92
+ tional DNNs (Section 5). In particular, our results show that
93
+ the data needed to train a DNN with symbolic knowledge
94
+ may be much simpler than may be necessary otherwise, and
95
+ that while doing so is more expensive computationally, of-
96
+ ten times the more efficient (i.e., not involving MaxSMT)
97
+ algorithms perform well in practice.
98
+ Our contributions are as follows:
99
+ 1. We present SMTLayer, a framework for incorporating
100
+ an SMT solver into a DNN, as a layer that leverages
101
+ symbolic knowledge during training and inference.
102
+ 2. We prototype our approach in Pytorch1, and show that
103
+ it can be applied to solve a range of problems that
104
+ incorporate symbolic knowledge.
105
+ 3. Our empirical evaluation, over four diverse applica-
106
+ tions, shows that models using SMTLayer require sig-
107
+ nificantly less training data, can be trained more ef-
108
+ ficiently, and are more robust than those based on
109
+ closely-related prior work (Wang et al., 2019a; Huang
110
+ et al., 2021).
111
+ Section 3 provides background on ERM and the first-
112
+ order theories used in our framework. Section 4 describes
113
+ SMTLayer, Section 5 gives our empirical evaluation, and
114
+ Section 6 concludes the paper.
115
+ 2. Related Work
116
+ Combining logical solvers and deep models can be diffi-
117
+ cult because logic has discrete structure while the most
118
+ successful way to construct neural networks today requires
119
+ differentiability (Riegel et al., 2020).
120
+ Combinatorial Solver Layers.
121
+ Vlastelica et al. (2019) in-
122
+ tegrate a blackbox, non-differentiable combinatorial solver
123
+ on top of a deep network. To propagate the gradient through
124
+ the solver on the backward pass, they linearly interpolate
125
+ the loss w.r.t the solver’s input and define the gradient of the
126
+ solver as the slopes of the line segments. CSL solves a set
127
+ of problems where the solver’s objective must be linear w.r.t
128
+ its input, e.g. finding the shortest path and travel salesman
129
+ problem (TSP). Further, the authors assume that the only
130
+ labels available are the outputs of solvers, e.g. the minimum
131
+ cost in TSP, and hence their tool has to discover the label for
132
+ the output of the network itself. These requirements limit
133
+ the choices one has for the solver layer.
134
+ 1We plan to release our implementation as an open source
135
+ library upon publication of this paper
136
+ Neural Logic Programming.
137
+ While SATNet integrates
138
+ a logic-based solver on top of a network, DeepProbLog
139
+ takes the opposite approach, extending the capability of a
140
+ probabilistic logic programming language with neural pred-
141
+ icates Manhaeve et al. (2018). In the context of our work,
142
+ the logic program can be viewed as a “solver layer” that
143
+ explicitly encodes symbolic knowledge. Scallop (Huang
144
+ et al., 2021) extends DeepProbLog to scale without sacri-
145
+ ficing accuracy compared to DeepProbLog. Similarly to
146
+ DeepProbLog, each possible result of the sum of two digits
147
+ in MNIST is given a probability, in the form of a weighted
148
+ Boolean formula. They prune unlikely clauses of the for-
149
+ mula, represented by proofs, only keeping the top-k most
150
+ likely. Likelihood is computed using weighted model count-
151
+ ing (Huang et al., 2021; Chavira & Darwiche, 2008). These
152
+ techniques are well-suited to problems that benefit from
153
+ probabilistic Datalog, but have inherent limitations: they
154
+ cannot handle quantifiers, general negation, and the range
155
+ of supported first-order theories is more restrictive.
156
+ SATNet.
157
+ Wang et al. (2019b) present SATNet, a network
158
+ architecture with a differentiable approximate MAXSAT
159
+ solver layer. Their approximation is based on a coordinate
160
+ descent approach to solving the semidefinite program (SDP)
161
+ relaxation of the MAXSAT problem. SATNet does not as-
162
+ sume that the logical structure of the problem is given, and
163
+ instead attempts to learn it. By placing the MAXSAT solver
164
+ layer on top of a convolution network to learn represen-
165
+ tations from images, SATNet directly solve problems like
166
+ Visual Sudoku, for which neural networks alone are not well
167
+ suited (Wang et al., 2019b).
168
+ Differentiable Logic.
169
+ Another recent direction has ex-
170
+ plored differentiable logics (Fischer et al., 2019; Varnai &
171
+ Dimarogonas, 2020; van Krieken et al., 2022). These ap-
172
+ proaches provide ways of integrating symbolic knowledge
173
+ into training, by making logical formulas differentiable, and
174
+ therefore amenable to optimization when included in a loss
175
+ function. This line of work does not explicitly aim to make
176
+ use of symbolic information during inference. In contrast,
177
+ the information that our approach extracts from the solver
178
+ during training is used to condition the model towards a rep-
179
+ resentation that will allow it to communicate effectively with
180
+ the solver during inference. Additionally, we do not require
181
+ the logical formulas, or the solver, to be differentiable.
182
+ 3. Background
183
+ Let X denote a domain of features, Y a domain of labels,
184
+ and D a distribution over X × Y. Formally, D is a proba-
185
+ bility measure on a space given by a σ-algebra over subsets
186
+ of ℘(X × Y). The goal of a learning algorithm A is to
187
+ find a function h : X → Y that, for (x, y) ∼ D, can be
188
+ used to predict y when given x. To do this, A is given a set
189
+
190
+ Learning Modulo Theories
191
+ of training examples S = (x1, y1), . . . , (xm, ym) sampled
192
+ i.i.d. from D, and uses some criterion to select h from a
193
+ hypothesis class H of functions. We refer to h as the model
194
+ learned by A on S. When the learning algorithm A is clear
195
+ from the context, we will write hS to denote the model pro-
196
+ duced from the given sample. Throughout this paper, we
197
+ will generally assume that the loss is either the 0-1 loss ℓ01
198
+ or binary cross-entropy ℓbce.
199
+ A theory T consists of a signature Σ of constant, predicate,
200
+ and function symbols, as well as a set of axioms over Σ.
201
+ Formulas in a theory are composed of elements of Σ, vari-
202
+ ables, and logical symbols such as quantifiers and Boolean
203
+ operations. We use the term decision procedure to refer to
204
+ an algorithm that is given an open T-formula, and returns
205
+ true if it is satisfiable, and false otherwise. Additionally, it
206
+ may return an assignment to all of the variables that demon-
207
+ strates satisfiability, or if the formula is not satisfiable, then
208
+ it may return an unsatisfiable core, which is a subset of
209
+ clauses taken from the formula’s representation in conjunc-
210
+ tive normal form that remains unsatisfiable. Loosely, we
211
+ also refer to such an algorithm as a “solver”, but this term is
212
+ more general, and could also refer to an algorithm that iden-
213
+ tifies the maximal set of clauses, possibly weighted by some
214
+ user-defined values, that are satisfiable when conjoined.
215
+ 4. Constructing SMTLayer
216
+ In this section, we present SMTLayer, a set of algorithms
217
+ for computing the forward and backward passes of a layer
218
+ whose behavior is defined by a set of user-defined SMT
219
+ constraints. SMTLayer does not have trainable parame-
220
+ ters, and its functionality is wholly defined by a set of
221
+ SMT constraints φ that are provided by the model de-
222
+ signer. SMTLayer can be used in modern deep-learning
223
+ frameworks as a drop-in replacement for more conven-
224
+ tional neural network layers, e.g., dense, convolutional, and
225
+ LSTM (Hochreiter & Schmidhuber, 1997) are prominent
226
+ examples of widely-used layers.
227
+ Section 4.1 provides a high-level overview of our approach,
228
+ Section 4.2 describes them in detail, and Section 4.3 begins
229
+ an analysis of this setting that we hope future work will
230
+ continue developing.
231
+ 4.1. Overview
232
+ We envision SMTLayer being used primarily at the top of
233
+ a DNN taking inputs from a stack of conventional DNN
234
+ layers that convert raw input features into ground terms for
235
+ the constraints φ(z0, . . . , zp−1, y0, . . . , yq−1) embedded in
236
+ SMTLayer, and producing outputs that are consistent with
237
+ φ and the given ground terms. Figure 1 shows an illustrative
238
+ example, with the previously-studied problem of MNIST
239
+ addition (Manhaeve et al., 2018; Huang et al., 2021).
240
+ Algorithm 1 Fφ
241
+ max(z)
242
+ MaxSMT-based forward pass of SMTLayer
243
+ Inputs: z ∈ Rp layer input
244
+ φ(z0, . . . , zp−1, y0, . . . , yq−1) T-formula
245
+ Output: y ∈ Rq
246
+ 1 begin
247
+ 2
248
+ zb ← [z[i] > 0 : i = 0 . . . p − 1]
249
+ 3
250
+ C ← �
251
+ i∈I softmax(|z|)[i]
252
+ 4
253
+ y ← arg maxyb maxI C·1(φ∧�
254
+ i∈I yi = yb[i]∧zi = zb[i])
255
+ 5
256
+ return y
257
+ 6 end
258
+ During the forward pass the outputs of the previous layer
259
+ are mapped to designated free variables z0, . . . , zp−1. The
260
+ layer then checks the satisfiability of φ, a formula in an
261
+ appropriate combination of first-order theories, after substi-
262
+ tuting these ground terms for the zi, and the output of the
263
+ layer consists of the solver’s model for y0, . . . , yq−1. These
264
+ outputs are converted from Boolean to floating-point values
265
+ by mapping false to -1 and true to 1. At the moment, the
266
+ only restriction on φ that our layer requires is that z and y
267
+ be vectors of Booleans, so that they can be appropriately
268
+ mapped to continuous values; any other symbols appear-
269
+ ing in φ can come from arbitrary domains (e.g. strings)
270
+ supported by the underlying SMT solver.
271
+ In the backward pass, the layer receives the gradient of
272
+ its output with respect to the function whose derivative
273
+ is being computed, which we will assume is the binary
274
+ cross-entropy loss ℓ(y, y⋆). Unless stated otherwise, we
275
+ will assume this loss for the remainder of the section. This
276
+ gradient is used, along with the inputs and outputs of the
277
+ corresponding forward pass, to first compute an amended
278
+ output ˆy which corresponds to an output that would have
279
+ yielded a smaller loss. Because the outputs are Boolean,
280
+ it is always possible to determine the ground truth output
281
+ y⋆ from this information. Using ˆy, the layer determines
282
+ which of components of its inputs are inconsistent with
283
+ φ and ˆy, and provides the corresponding gradients to the
284
+ previous layer. Section 4.2 details the manner in which these
285
+ gradients are computed.
286
+ 4.2. SMTLayer, forward and backward
287
+ We now present the details of the forward and backward
288
+ passes of SMTLayer. There are two algorithms for each
289
+ pass, Fφ
290
+ max and Fφ
291
+ smt are forward passes, and Bφ
292
+ max, Bφ
293
+ core
294
+ are backward passes. Fφ
295
+ max and Bφ
296
+ max both make use of
297
+ MaxSMT solvers, whereas Fφ
298
+ smt and Bφ
299
+ core rely on satisfia-
300
+ bility solvers (SMT). Despite the symmetry in which type
301
+ of solver each algorithm uses, they are all compatible with
302
+ each other. That is, Fφ
303
+ smt can be used with either Bφ
304
+ max or
305
+
306
+ core, and the same for Fφ
307
+ max.
308
+
309
+ Learning Modulo Theories
310
+ Features X
311
+ Symbolic Domain Z
312
+ 0010000111
313
+ Neural
314
+ Network
315
+ φ(
316
+ z1∥ . . . ∥z10,
317
+ y
318
+ ) ≡
319
+ a = 1z1>0∥ . . . ∥1z5>0 ∧ b = 1z5>0∥ . . . ∥1z10>0 ∧
320
+ a + b = y
321
+ Prediction Logic φ
322
+ Labels Y
323
+ {01011}
324
+ Satisfying
325
+ Assignments
326
+ Figure 1. MNIST Addition example.
327
+ Algorithm 2 Fφ
328
+ smt(z)
329
+ SMT-based forward pass of SMTLayer
330
+ Inputs: z ∈ Rp layer input
331
+ φ(z0, . . . , zp−1, y0, . . . , yq−1) T-formula
332
+ Output: y ∈ Rq
333
+ 1 begin
334
+ 2
335
+ zb ← [z[i] > 0 : i = 0 . . . p − 1]
336
+ 3
337
+ ˆφ ← φ(zb[0], . . . , zb[p − 1])
338
+ 4
339
+ if ˆφ is satisfiable then
340
+ 5
341
+ yb[0], . . . , yb[q − 1] ← solve(ˆφ, y0, . . . , yq−1)
342
+ 6
343
+ y ← [yb[i] > 0
344
+ : i = 0 . . . q − 1]
345
+ 7
346
+ else
347
+ 8
348
+ y ← 0
349
+ 9
350
+ end
351
+ 10
352
+ return y
353
+ 11 end
354
+ Forward pass.
355
+ Algorithms 1 and 2 illustrate Fφ
356
+ max and
357
+
358
+ smt, the methods for computing the forward pass based
359
+ on weighted MaxSMT and SMT, respectively. Both of the
360
+ algorithms are parameterized by a user-provided first-order
361
+ formula φ, and take a single vector-valued input consisting
362
+ of unscaled floating-point values (logits). These values are
363
+ cast to Boolean constants by taking their sign on line 2
364
+ of both algorithms, so that they can be equated with the
365
+ corresponding free variables z0, . . . , zp−1.
366
+ The key difference between Fφ
367
+ max and Fφ
368
+ smt is the way in
369
+ which they handle inputs that are inconsistent with φ when
370
+ interpreted as Booleans. Fφ
371
+ smt addresses this by provid-
372
+ ing an output that is also inconsistent with φ, i.e. a vector
373
+ of zeroes, effectively signaling that the network below it
374
+ did not provide consistent inputs. Alternatively, we can
375
+ interpret the values provided by the network as Booleans
376
+ enriched with “confidence” values. Although we expect
377
+ inputs to SMTLayer to be unscaled floating-point values,
378
+ Algorithm 1 scales them to a formal probability distribution
379
+ via the softmax function (line 3) for use as weights to find
380
+ the weighted MaxSMT solution of φ. With this approach,
381
+ Algorithm 3 Bφ
382
+ max(z, y, ∂yℓ(y, y⋆))
383
+ MaxSMT-based backward pass of SMTLayer
384
+ Inputs: z ∈ Rp input of forward pass
385
+ y ∈ Rq output of forward pass
386
+ ∂yℓ(y, y⋆) gradient with respect to output
387
+ φ(z0, . . . , zp−1, y0, . . . , yq−1) a T-formula
388
+ Output: ∂zℓ(y, y⋆) ∈ Rp approximate gradient of ℓ
389
+ 1 begin
390
+ 2
391
+ Gz ← ∂zℓ(z, sign(z))
392
+ 3
393
+ ˆy = sign(y) − 2 · sign (∂yℓ(y, y⋆))
394
+ 4
395
+ if sign(y) ̸= sign(ˆy) then
396
+ 5
397
+ zb ← [z[i] > 0 : i = 0 . . . p − 1]
398
+ 6
399
+ ˆyb ← [ˆy[i] > 0 : i = 0 . . . q − 1]
400
+ 7
401
+ φy ← �
402
+ 0≤i<q yi = ˆyb[i]
403
+ 8
404
+ C ← �
405
+ i∈I softmax(|z|)[i]
406
+ 9
407
+ I ← arg maxI⊆[0,p) 1(φ ∧ φy ∧ �
408
+ i∈I zi = zb[i]) · C
409
+ 10
410
+ foreach i ∈ ¯I do
411
+ 11
412
+ Gz[i] ← ∂z[i]ℓ(z[i], 1 − sign(z[i]))
413
+ 12
414
+ end
415
+ 13
416
+ end
417
+ 14
418
+ return Gz
419
+ 15 end
420
+ SMTLayer will always provide a valid, although not neces-
421
+ sarily correct, output that is consistent wrt φ with the inputs
422
+ of which the network below is most “confident.” (line 4).
423
+ Backward pass.
424
+ The backward pass is responsible for
425
+ computing the gradient of the loss with respect to the layer
426
+ inputs. It is given the gradient of the loss with respect to the
427
+ layer outputs, and is assumed to have memoized the inputs
428
+ that it received previously on the forward pass, as well as the
429
+ outputs that they produced. The gradients returned by this
430
+ pass are then used by the backward pass of previous layers,
431
+ and ultimately to derive updates to trainable parameters that
432
+ will yield smaller loss.
433
+ The key issue in designing a backward pass for SMTLayer
434
+ is the geometry of the functions computed by either for-
435
+ ward pass. For any vector v ∈ {−1, 0, 1}p and x, x′ with
436
+ sign(x) = sign(x′) = v, then Bφ
437
+ · (x) = Bφ
438
+ · (x′), so these
439
+
440
+ 47Learning Modulo Theories
441
+ Algorithm 4 Bφ
442
+ core(z, y, ∂yℓ(y, y⋆))
443
+ unsat core-based backward pass of SMTLayer
444
+ Inputs: z ∈ Rp input of forward pass
445
+ y ∈ Rq output of forward pass
446
+ ∂yℓ(y, y⋆) gradient with respect to output
447
+ φ(z0, . . . , zp−1, y0, . . . , yq−1) a T-formula
448
+ Output: ∂zℓ(y, y⋆) ∈ Rp approximate gradient of ℓ
449
+ 1 begin
450
+ 2
451
+ Gz ← ∂zℓ(z, sign(z))
452
+ 3
453
+ ˆy = sign(y) − 2 · sign (∂yℓ(y, y⋆))
454
+ 4
455
+ if sign(y) ̸= sign(ˆy) then
456
+ 5
457
+ zb ← [z[i] > 0 : i = 0 . . . p − 1]
458
+ 6
459
+ ˆyb ← [ˆy[i] > 0 : i = 0 . . . q − 1]
460
+ 7
461
+ φz, φy ← �
462
+ 0≤i<p zi = zb[i], �
463
+ 0≤i<q yi = ˆyb[i]
464
+ 8
465
+ I ← arg minI⊆[0,p) 1(¬φ∨¬φy ∨�
466
+ i∈I zi ̸= zb[i])·|I|
467
+ 9
468
+ foreach i ∈ I do
469
+ 10
470
+ Gz[i] ← ∂z[i]ℓ(z[i], 1 − sign(z[i]))
471
+ 11
472
+ end
473
+ 12
474
+ foreach i ∈ ¯I do
475
+ 13
476
+ Gz[i] ← 0
477
+ 14
478
+ end
479
+ 15
480
+ end
481
+ 16
482
+ return Gz
483
+ 17 end
484
+ functions are piece-wise constant step functions ranging
485
+ over the corners of the Rq unit hypercube. Thus, while
486
+ they are differentiable almost everywhere, the gradient is
487
+ not helpful for training because it is always zero. Prior
488
+ work on integrating such step functions into deep networks
489
+ primarily addresses this problem by relaxing the function
490
+ computed by the forward pass, so that its gradients are no
491
+ longer constant and hopefully more informative.
492
+ In contrast, Bφ
493
+ max (Algorithm 3) and Bφ
494
+ core (Algorithm 4)
495
+ do not attempt to provide gradients for a relaxation of the
496
+ forward pass. Instead, they use information provided by
497
+ the solver in its computation of the forward pass to identify
498
+ which components of the input may have contributed to
499
+ higher loss. The gradient is then computed by constructing
500
+ a counterfactual variant of the input provided to the for-
501
+ ward pass, which differs on the identified components, and
502
+ returning the gradient of the binary cross-entropy loss of
503
+ the original input on this counterfactual variant. The two
504
+ algorithms differ in the information that they extract from
505
+ the solver, i.e., either solutions to a MaxSMT instance or an
506
+ unsatisfiable core.
507
+ Both algorithms begin by initializing the gradient to be the
508
+ loss between the logit inputs, and their hard labels (line 2).
509
+ Recall that we assume the loss ℓ is binary cross-entropy, so
510
+ the result will not be zero. The purpose of this initialization
511
+ is to emulate the dynamics of training with cross-entropy
512
+ loss with a conventional layer; when the rounded output
513
+ matches the target, the loss is not zero, and training will
514
+ continue to move the parameters in a direction that makes
515
+ them agree “more” with the hard target. One line 3, they
516
+ then use the provided gradient from the subsequent layer
517
+ together with the memoized output from the forward pass
518
+ to construct ˆy, a “corrected” output that satisfies ℓ(ˆy, y⋆) ≤
519
+ ℓ(y, y⋆). If the sign of ˆy is the same as that of y, then both
520
+ algorithms return the initialized gradient. Otherwise, they
521
+ extract information from the solver using the inputs to the
522
+ forward pass z and ˆy.
523
+
524
+ max constructs a set of clauses φy that constrain the free
525
+ y0, . . . , yq−1 to take the values of ˆyb, the Boolean conver-
526
+ sion of ˆy. It then computes the softmax values of the abso-
527
+ lute incoming logits |z|, and uses them to find the maximally-
528
+ weighted set of clauses (softmax(|z|)[i], zi = zb[i]) that are
529
+ consistent with φ ∧ φy. Intuitively, these are the inputs that
530
+ the previous layer is most confident in that can be made
531
+ consistent with the corrected label ˆy by changing some of
532
+ the less confident inputs. Bφ
533
+ max then updates the initialized
534
+ gradient at each index for which the solution to this instance
535
+ does not match the sign of the original input.
536
+
537
+ core also constructs φy, but instead identifies a set of con-
538
+ straints zi = zb[i] that are inconsistent with φ ∧ φy. Note
539
+ that line 7 specifies a minimal unsatisfiable core, but this is
540
+ not necessary. All that is needed is that none of the clauses
541
+ in the core be superfluous, i.e., deleting any singleton clause
542
+ from I will cause it to be satisfiable. If a superfluous clause
543
+ remains in the core, then the gradient returned for the corre-
544
+ sponding input will have the incorrect sign, which may lead
545
+ to issues with training. Bφ
546
+ core then updates the gradient at
547
+ each input identified in the core using the loss of z[i] with
548
+ respect to 1 − sign(z[i]), which will lead to updates in a
549
+ direction that would have modified the input such that i was
550
+ not in the unsat core. The indices not in the unsat core have
551
+ their gradients set to zero, as their absence in the core is not
552
+ evidence that these inputs were correct or incorrect.
553
+ 4.3. Analysis
554
+ To understand the settings where SMTLayer will provide op-
555
+ timal results, we introduce a class of decomposable learning
556
+ problems (Definition 1).
557
+ Definition 1 (Decomposable problem). Let T be a first-
558
+ order theory with constants in Z. An ERM problem D, H
559
+ is decomposable by T if there exists a function f : X → Z,
560
+ companion hypothesis class Hf ⊆ X → Z, and T-formula
561
+ φ such that:
562
+ 1. For any h ∈ H, there exists hf ∈ Hf and h′ such that
563
+ h = h′ ◦ hf.
564
+ 2. There exists a random function g : ℘(Y) → Y such
565
+ that for any n > 0 and ∀S in the support of Dn,
566
+ Pr
567
+ (x,y)∼D[(x, y) ∈ S] =
568
+ Pr
569
+ (x,·)∼D[(x, g(⟨x⟩f,φ)) ∈ S]
570
+ where ⟨x⟩f,φ = {y : φ(f(x), y) is satisfied}.
571
+
572
+ Learning Modulo Theories
573
+ In (2), f is called the grounding function and φ is called the
574
+ prediction logic.
575
+ Intuitively, a learning problem defined in terms of a distribu-
576
+ tion D and hypothesis class H is decomposable if members
577
+ of H can be decomposed into functions that are responsible
578
+ for grounding and prediction, and D can be expressed in
579
+ terms of a grounding function and a first-order formula φ.
580
+ There are a few important things to note. First, there is no re-
581
+ quirement that the grounding function f be a member of Hf.
582
+ While this may be realized at times, we should not assume
583
+ that the data is actually generated, or otherwise described
584
+ with perfect fidelity, by a function in the class that one learns
585
+ over. In fact, we do not assume that f is efficiently com-
586
+ putable, as it may correspond to a natural process, or an
587
+ aspect of data generation that is not understood well enough
588
+ to make such computational claims.
589
+ Second, for a given x, there may be more than one satis-
590
+ fying assignment for y to φ(f(x), y). The function g in
591
+ (2) accounts for this, requiring only that when solutions
592
+ to φ(f(x), y) are sampled by g, the result is distributed
593
+ identically to D. This paper will focus on the case where
594
+ satisfying assignments for y are unique, as these are more in
595
+ line with ”classic” ERM classification problems. We leave
596
+ exploration of the more general setting to future work.
597
+ We note that if the grounding function is known, can be
598
+ computed efficiently, and φ is efficiently solvable, then the
599
+ learning problem effectively has a closed-form solution.
600
+ Rather, we assume that only φ and perhaps g are known,
601
+ and a sample of D is given. The remaining challenge is
602
+ to identify a grounding hypothesis hf ∈ Hf for which the
603
+ construction in (2) is an effective solution to the end-to-end
604
+ learning problem posed by D, H. This stands in contrast to
605
+ traditional ERM, in which a good solution h ∈ H must ei-
606
+ ther solve both grounding and prediction, or find a “shortcut”
607
+ that manages to predict D as well as the decomposition.
608
+ Convergence.
609
+ Regarding the backward passes, Theo-
610
+ rem 2 below demonstrates that when φ satisfies certain
611
+ conditions, and the companion hypothesis class Hf satisfies
612
+ conditions that are sufficient to guarantee convergence with
613
+ SGD, then training with Fφ
614
+ smt and Bφ
615
+ max will converge to
616
+ the optimal solution in the number of iterations. The proof
617
+ of this theorem is based on the observation that when the
618
+ conditions on φ are met, then training with Bφ
619
+ max obtains the
620
+ same solution that would be obtained if the labels of φ were
621
+ available for supervised learning. Thus, the conditions on
622
+ Hf are sufficient to ensure the stated convergence, as stated
623
+ in a well-known result outlined in Chapter 14 of (Shalev-
624
+ Shwartz & Ben-David, 2014).
625
+ It is also worth noting that Theorem 2 does not necessar-
626
+ ily hold if Bφ
627
+ core is used instead of Bφ
628
+ max. The reason is
629
+ that there may be many unsatisfiable cores that are locally
630
+ minimal in cardinality, and gradients are set only for in-
631
+ puts that appear in the computed core. These gradients will
632
+ not match those of the loss on a grounding sample, so the
633
+ training dynamics are likely to be different. We believe that
634
+ training with Bφ
635
+ core may have more in common with block
636
+ coordinate descent than gradient descent, and save a more
637
+ detailed exploration of the topic for future work.
638
+ Theorem 2. Let D, H be a T-decomposable problem with
639
+ grounding function f and prediction logic φ where:
640
+ 1. Z and Y are Cartesian products of Booleans.
641
+ 2. For any (x, y) ∼ D and y′ ̸= y, φ(f(x), y′) is T-
642
+ equivalent to false and there is exactly one z such that
643
+ φ(z, y) is T-equivalent to true.
644
+ 3. Hf is a convex set and for all hf ∈ Hf, ∥hf∥ ≤ B,
645
+ and the loss ℓ(hf(·), z) is M-Lipschitz and convex in
646
+ x for any fixed z.
647
+ Then for any ϵ > 0, selecting hf by minimizing either
648
+ LS(Fφ
649
+ smt(hf(·))) with τ ≥ M 2B2/ϵ2 iterations of stochastic
650
+ gradient descent, with gradients provided by Bφ
651
+ max, and
652
+ learning rate η =
653
+
654
+ B2/M 2τ yields a grounding hypothesis
655
+ ˆhf ∈ Hf that satisfies: E[LD( ˆhf)] ≤ minhf ∈Hf LD(hf)+
656
+ ϵ. The randomness in this expectation is taken over the
657
+ choices of the SGD algorithm.
658
+ 5. Experimental Evaluation
659
+ In this section we present an empirical evaluation of
660
+ SMTLayer on four learning problems that can be decom-
661
+ posed into perceptual and symbolic subtasks. Our results
662
+ demonstrate the following primary findings. 1) SMTLayer
663
+ is effective: on every benchmark, it provides superior re-
664
+ sults over “conventional” learning that takes place without
665
+ encoded symbolic knowledge. 2) SMTLayer has distinct
666
+ advantages over prior approaches. Compared with SAT-
667
+ Net (Wang et al., 2019a), it requires significantly less train-
668
+ ing data to converge, and in all cases yields a more accurate
669
+ model; compared with Scallop (Huang et al., 2021), it is
670
+ less computationally expensive, requires less training data,
671
+ and it is more expressive in terms of the knowledge that
672
+ it can encode. 3) Models trained with SMTLayer may be
673
+ more robust to certain types of covariate shift that occur
674
+ relative to the symbolic component of the problem; when
675
+ SMTLayer succeeds at learning a compatible representation,
676
+ then it will continue to produce correct inferences provided
677
+ the perceptual component remains stationary.
678
+ 5.1. Datasets
679
+ Additional details on the datasets and corresponding ar-
680
+ chitectures used in our evaluation can be found in Ap-
681
+
682
+ Learning Modulo Theories
683
+ pendix A.2, and specific hyperparameters used when train-
684
+ ing on each dataset are in Appendix A.3.
685
+ MNIST Addition.
686
+ The MNIST addition problem is illus-
687
+ trated in Figure 1, and is similar to the benchmark described
688
+ by Huang et al. (2021). For training, we use “MNIST +p%”
689
+ to denote a training set of size 60,000 that contains p% of
690
+ the possible pairs of digits. So p = 100 indicates all pos-
691
+ sible pairs of digits are used, and for p = 10, we only use
692
+ pairs of the same digit. We use p = 10, 25, 50, 75 and 100
693
+ in our experiments. In all cases, we use the same test set
694
+ consisting of instances from all possible pairs of digits.
695
+ Visual Algebra.
696
+ The task is to solve for the variable x in
697
+ a graphical depiction of the equation ax + b = c, where
698
+ a, b and c are randomly-chosen numbers, and each symbol
699
+ is depicted visually using EMNIST (Cohen et al., 2017a)
700
+ and HASY graphics (Thoma, 2017b). Similar to MNIST
701
+ addition, the training sample selects a and b uniformly from
702
+ pairs of the same digit, and x uniformly from the odd num-
703
+ bers between 0 and 9. The test sample was generated by
704
+ sampling a, b uniformly from all pairs of digits, and x from
705
+ all numbers 0 to 9.
706
+ Liar’s Puzzle.
707
+ The liar’s puzzle is comprised of three
708
+ sentences spoken by three distinct agents: Alice, Bob, and
709
+ Charlie. One of the agents is “guilty” of an unspecified
710
+ offense, and in each sentence, the corresponding agent either
711
+ states that one of the other parties is either guilty or innocent.
712
+ For example, “Alice says that Bob is innocent.” It is assumed
713
+ that two of the agents are honest, and the guilty party is not.
714
+ The solution to the problem is an identification of the guilty
715
+ party. A formal characterization of the underlying logic
716
+ is given in Appendix A.2. We note that the logic has non-
717
+ stratified occurrences of negation, so it cannot be encoded
718
+ with Scallop. We select a training sample that does not
719
+ fully specify the logic, so conventional training should be
720
+ insufficient to identify a good model.
721
+ Visual Sudoku.
722
+ This task is to complete a 9 × 9 Sudoku
723
+ board where each entry is an MNIST digit. We use the
724
+ dataset from the SATNet evaluation (Wang et al., 2019a),
725
+ and examine three configurations obtained by sampling 10%,
726
+ 50%, and 100% of the original training set. Although there
727
+ are examples of Sudoku solvers implemented as logic pro-
728
+ grams, we were not able to implement one in Scallop with-
729
+ out violating stratified negation. When calculating accuracy,
730
+ we check that the entire Sudoku board is correct.
731
+ 5.2. Setup
732
+ We implemented a prototype of our approach using Py-
733
+ torch (Paszke et al., 2019) and Z3 (De Moura & Bjørner,
734
+ 2008), which will be made available in open-source when
735
+ this paper is published.
736
+ When training models with
737
+ SMTLayer, we use SGD with Nesterov momentum at rate
738
+ 0.9 and gradient clipping rate 0.1. Before training a model
739
+ with SMTLayer (or a comparison technique, unless stated
740
+ otherwise), we first pre-train the neural network by replac-
741
+ ing SMTLayer with a dense network containing one hidden
742
+ layer of 512 neurons. This can potentially limit the num-
743
+ ber of training updates needed at lower layers, but will not
744
+ result in a model with a representation that is compatible
745
+ with symbolic knowledge, so further training is needed. The
746
+ models labeled “conventional” in our evaluation have the
747
+ same architecture as the one used for pre-training. Results
748
+ were averaged over five runs of training.
749
+ Our evaluation was performed on a machine with an Intel
750
+ i9 1050K CPU, 64GB memory, and a GeForce RTX 3080
751
+ accelerator running Ubuntu 20.04.4, with CUDA 11.1.0 and
752
+ cuDNN 8.0.4. We developed and tested our prototype with
753
+ Pytorch version 1.7.0a0+7036e91 and Z3 4.8.14, and the
754
+ results in our evaluation use these versions as well.
755
+ 5.3. Results
756
+ Overall performance.
757
+ In terms of accuracy, Table 1
758
+ shows that SMTLayer outperforms both the conventional
759
+ network and prior work in terms of accuracy, training
760
+ time, or both, on all configurations. While training with
761
+ SMTLayer (or any of the above approaches) is more ex-
762
+ pensive than conventional, SMTLayer is consistently faster
763
+ than Scallop (nearly 4× in the case of visual algebra). The
764
+ per-epoch time to train the SATNet models is less expensive
765
+ than SMTLayer, but this is not always conclusive. In the
766
+ case of visual sudoku, the 10% SMTLayer model achieved
767
+ superior error rates in 15 epochs, compared with 100 epochs
768
+ for the 100% SATNet model; this means that the SMTLayer
769
+ model took less than one-tenth the amount of time to train.
770
+ It is also worth noting that although Theorem 2 suggests
771
+ that Algorithm 3 might have learning advantages over Algo-
772
+ rithm 4, we found this not to be the case on these datasets.
773
+ All of the results in Table 1 were trained with Algorithm 4,
774
+ and test inference was done using Algorithm 1.
775
+ Training sample size.
776
+ Because SMTLayer encodes ex-
777
+ plicit knowledge that is essential to correct inference on
778
+ these datasets, our approach is able to perform well in data-
779
+ impoverished settings where the training sample is insuffi-
780
+ cient to fully specify the symbolic component of the learning
781
+ task. This is readily apparent across the results in Table 1: in
782
+ the MNIST addition and first visual algebra configuration,
783
+ SMTLayer yields a model that performs nearly perfectly
784
+ despite not being given a sufficient sample in most cases.
785
+ Because SATNet must learn the symbolic component, it is
786
+ at a disadvantage, and in these settings performs similarly
787
+ to a conventional model. In theory, Scallop should be able
788
+
789
+ Learning Modulo Theories
790
+ Conventional
791
+ w/ SMTLayer
792
+ w/ SATNet
793
+ w/ Scallop
794
+ configuration
795
+ test
796
+ epoch
797
+ test
798
+ epoch
799
+ test
800
+ epoch
801
+ test
802
+ epoch
803
+ acc. (%)
804
+ time (sec.)
805
+ acc.(%)
806
+ time (sec.)
807
+ acc.(%)
808
+ time (sec.)
809
+ acc. (%)
810
+ time (sec.)
811
+ MNIST+ 10%
812
+ 10.0
813
+ 7.1
814
+ 98.1
815
+ 75.4
816
+ 10.0
817
+ 31.0
818
+ 33.7
819
+ 96.3
820
+ MNIST+ 25%
821
+ 32.5
822
+ 7.1
823
+ 98.3
824
+ 74.8
825
+ 34.2
826
+ 30.9
827
+ 65.8
828
+ 96.4
829
+ MNIST+ 50%
830
+ 51.5
831
+ 7.0
832
+ 98.6
833
+ 75.8
834
+ 54.8
835
+ 32.8
836
+ 98.4
837
+ 96.5
838
+ MNIST+ 75%
839
+ 76.1
840
+ 7.0
841
+ 98.5
842
+ 75.0
843
+ 78.4
844
+ 31.9
845
+ 93.5
846
+ 96.4
847
+ MNIST+ 100%
848
+ 98.3
849
+ 7.1
850
+ 98.5
851
+ 75.8
852
+ 96.7
853
+ 33.5
854
+ 98.6
855
+ 96.6
856
+ Vis. Alg. #1
857
+ 24.1
858
+ 13.2
859
+ 98.2
860
+ 168.2
861
+ 19.6
862
+ 80.1
863
+ 18.7
864
+ 602.8
865
+ Vis. Alg. #2
866
+ 25.4
867
+ 11.2
868
+ 25.4
869
+ 127.2
870
+ 18.6
871
+ 52.5
872
+ 21.3
873
+ 636.1
874
+ Liar’s Puzzle
875
+ 54.2
876
+ 3.1
877
+ 86.1
878
+ 28.7
879
+ 84.6
880
+ 3.0
881
+
882
+
883
+ Vis. Sudoku 10%
884
+ 0.0
885
+ 6.3
886
+ 66.0
887
+ 135.7
888
+ 0.0
889
+ 9.9
890
+
891
+
892
+ Vis. Sudoku 50%
893
+ 0.0
894
+ 28.3
895
+ 73.1
896
+ 608.1
897
+ 0.0
898
+ 45.4
899
+
900
+
901
+ Vis. Sudoku 100%
902
+ 0.0
903
+ 26.7
904
+ 79.1
905
+ 1199.0
906
+ 63.2
907
+ 86.5
908
+
909
+
910
+ Table 1. Results after training and inference with SMTLayer versus a conventional architecture. We use the publicly-available imple-
911
+ mentations of SATNet (Wang et al., 2019a) and Scallop (Huang et al., 2021), with hyperparameters matching those in their code. All
912
+ SMTLayer test accuracies were measured with the MaxSMT forward pass. Epoch times are averaged over all epochs on which the model
913
+ was trained. Cells marked — denote that the problem is not compatible with the approach.
914
+ to perform as well as SMTLayer, as it also encodes explicit
915
+ knowledge. However, it is unable to learn a useful model
916
+ for either visual algebra configuration, and does not learn
917
+ the correct representation for MNIST addition until it is
918
+ exposed to half of the possible digit pairs during training.
919
+ SMTLayer does particularly well on the visual Sudoku
920
+ dataset introduced by Wang et al.. When trained on just
921
+ 10% of the original sample, it learns a function that exceeds
922
+ the performance of the SATNet model by a healthy margin,
923
+ which continues to grow as it is exposed to more training
924
+ data. On the other hand, we found that SATNet failed to
925
+ converge with less than the full original training sample.
926
+ Robustness
927
+ &
928
+ interpretability.
929
+ The
930
+ reason
931
+ that
932
+ SMTLayer is able to perform well, and often near the
933
+ optimum, in configurations that other approaches perform
934
+ poorly on, is that it learns a representation that is consistent
935
+ with the symbolic knowledge encoded in the SMTLayer.
936
+ For example, the constraints that we use for MNIST
937
+ addition, visual algebra, and visual sudoku all encode digits
938
+ as bitvectors. In order to make a correct inference, the
939
+ neural network must learn to encode MNIST digits in their
940
+ correct bitvector representation. If learning succeeds at
941
+ this, then there are two positive outcomes that follow. First,
942
+ the model’s representation will be inherently interpretable,
943
+ because it will coincide with the provided symbolic domain
944
+ knowledge, which is also (presumably) interpretable.
945
+ Second, the resulting model is naturally robust to covariate
946
+ shift that does not affect the distribution of perceptual data
947
+ that the network translates into theory symbols, but that
948
+ does affect the statistics of their composition.
949
+ This type of shift is on display in the MNIST 10% and visual
950
+ algebra experiments, where at training time, the model only
951
+ sees pairs of same-numbered digits, and at test time it is
952
+ exposed to a substantially different distribution of digit pairs
953
+ or formulas. We verified this by examining the representa-
954
+ tions learned by SMTLayer and Scallop on MNIST Addi-
955
+ tion 10%; it is unreasonable to expect SATNet to learn an
956
+ interpretable representation, as it is not provided with an in-
957
+ terpretable theory during training. As expected, SMTLayer
958
+ produces the correct representation at the rate of accuracy of
959
+ a typical MNIST model (≈ 99%), whereas Scallop’s digit
960
+ representation was correct roughly 50% of the time. How-
961
+ ever, architecture plays a role in this robustness, as shown in
962
+ the SMTLayer results for the second visual algebra configu-
963
+ ration. Because the network is shown the full instance, and
964
+ not the individual digits, it learns the training bias. Despite
965
+ having access to the symbolic formulas in SMTLayer, it
966
+ cannot disentangle the perceptual symbols from their covari-
967
+ ance. Understanding this issue is an important direction for
968
+ future work.
969
+ 6. Conclusion
970
+ Our approach for integrating logical theories into deep learn-
971
+ ing, SMTLayer, provides a pragmatic solution to the prob-
972
+ lem of incorporating symbolic knowledge into learning for
973
+ training and inference, which we demonstrate on several
974
+ problems involving both perceptual tasks—vision and natu-
975
+ ral language—and logical reasoning. Notably, we show that
976
+ models which incorporate symbolic knowledge during train-
977
+ ing and inference can outperform conventional models as
978
+ well as prior work in this area, especially in settings where
979
+ training data is limited. Continued progress on automated
980
+ reasoning techniques has played a pivotal role in the devel-
981
+ opment of several fields over the past decades, and our hope
982
+ is that the contributions in this paper will aid in progress
983
+ towards realizing their potential in challenges that surpass
984
+ the capabilities of existing learning techniques.
985
+
986
+ Learning Modulo Theories
987
+ References
988
+ Chang, O., Flokas, L., Lipson, H., and Spranger, M. As-
989
+ sessing satnet’s ability to solve the symbol grounding
990
+ problem. Advances in Neural Information Processing
991
+ Systems, 33:1428–1439, 2020.
992
+ Chavira, M. and Darwiche, A. On probabilistic inference
993
+ by weighted model counting. Artificial Intelligence, 172
994
+ (6-7):772–799, 2008.
995
+ Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. Em-
996
+ nist: Extending mnist to handwritten letters. In 2017 in-
997
+ ternational joint conference on neural networks (IJCNN),
998
+ pp. 2921–2926. IEEE, 2017a.
999
+ Cohen, G., Afshar, S., Tapson, J., and van Schaik, A.
1000
+ EMNIST: an extension of MNIST to handwritten let-
1001
+ ters.
1002
+ CoRR, abs/1702.05373, 2017b.
1003
+ URL http:
1004
+ //arxiv.org/abs/1702.05373.
1005
+ De Moura, L. and Bjørner, N. Z3: An efficient smt solver.
1006
+ In International conference on Tools and Algorithms for
1007
+ the Construction and Analysis of Systems, pp. 337–340.
1008
+ Springer, 2008.
1009
+ Deng, L. The mnist database of handwritten digit images
1010
+ for machine learning research. IEEE Signal Processing
1011
+ Magazine, 29(6):141–142, 2012.
1012
+ Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T.,
1013
+ Zhang, C., and Vechev, M. DL2: Training and query-
1014
+ ing neural networks with logic. In Proceedings of the
1015
+ 36th International Conference on Machine Learning, vol-
1016
+ ume 97 of Proceedings of Machine Learning Research,
1017
+ pp. 1931–1941. PMLR, 2019.
1018
+ Hochreiter, S. and Schmidhuber, J. Long short-term memory.
1019
+ Neural Comput., 9(8):1735–1780, nov 1997. ISSN 0899-
1020
+ 7667.
1021
+ Huang, J., Li, Z., Chen, B., Samel, K., Naik, M., Song,
1022
+ L., and Si, X. Scallop: From probabilistic deductive
1023
+ databases to scalable differentiable reasoning. Advances
1024
+ in Neural Information Processing Systems, 34:25134–
1025
+ 25145, 2021.
1026
+ Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson,
1027
+ E., Kim, B., and Liang, P. Concept bottleneck models.
1028
+ In International Conference on Machine Learning, pp.
1029
+ 5338–5348. PMLR, 2020.
1030
+ Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
1031
+ and De Raedt, L. Deepproblog: Neural probabilistic
1032
+ logic programming. Advances in Neural Information
1033
+ Processing Systems, 31, 2018.
1034
+ Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
1035
+ Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
1036
+ L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
1037
+ M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
1038
+ Bai, J., and Chintala, S. Pytorch: An imperative style,
1039
+ high-performance deep learning library. In Advances in
1040
+ Neural Information Processing Systems 32. 2019.
1041
+ Pennington, J., Socher, R., and Manning, C. D. Glove:
1042
+ Global vectors for word representation. In Proceedings
1043
+ of the 2014 conference on empirical methods in natural
1044
+ language processing (EMNLP), pp. 1532–1543, 2014.
1045
+ Pogancic, M. V., Paulus, A., Musil, V., Martius, G., and
1046
+ Rol´ınek, M.
1047
+ Differentiation of blackbox combinato-
1048
+ rial solvers. In 8th International Conference on Learn-
1049
+ ing Representations, ICLR 2020, Addis Ababa, Ethiopia,
1050
+ April 26-30, 2020. OpenReview.net, 2020. URL https:
1051
+ //openreview.net/forum?id=BkevoJSYPB.
1052
+ Riegel, R., Gray, A., Luus, F., Khan, N., Makondo, N.,
1053
+ Akhalwaya, I. Y., Qian, H., Fagin, R., Barahona, F.,
1054
+ Sharma, U., et al. Logical neural networks. arXiv preprint
1055
+ arXiv:2006.13155, 2020.
1056
+ Shalev-Shwartz, S. and Ben-David, S. Understanding Ma-
1057
+ chine Learning: From Theory to Algorithms. Cambridge
1058
+ University Press, 2014. ISBN 1107057132.
1059
+ Thoma, M. The hasyv2 dataset. CoRR, abs/1701.08380,
1060
+ 2017a.
1061
+ URL http://arxiv.org/abs/1701.
1062
+ 08380.
1063
+ Thoma, M. Hasyv2 - handwritten symbol database, Jan-
1064
+ uary 2017b. URL https://doi.org/10.5281/
1065
+ zenodo.259444.
1066
+ Topan, S., Rolnick, D., and Si, X. Techniques for symbol
1067
+ grounding with satnet. Advances in Neural Information
1068
+ Processing Systems, 34:20733–20744, 2021.
1069
+ van Krieken, E., Acar, E., and van Harmelen, F. Analyzing
1070
+ differentiable fuzzy logic operators.
1071
+ Artificial Intelli-
1072
+ gence, 302:1–46, January 2022.
1073
+ Varnai, P. and Dimarogonas, D. V. On robustness metrics for
1074
+ learning stl tasks. In 2020 American Control Conference
1075
+ (ACC), pp. 5394–5399. IEEE, 2020.
1076
+ Vlastelica, M., Paulus, A., Musil, V., Martius, G., and
1077
+ Rol´ınek, M. Differentiation of blackbox combinatorial
1078
+ solvers. arXiv preprint arXiv:1912.02175, 2019.
1079
+ Wang, P., Donti, P. L., Wilder, B., and Kolter, J. Z. Sat-
1080
+ net: Bridging deep learning and logical reasoning using a
1081
+ differentiable satisfiability solver. In Chaudhuri, K. and
1082
+ Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
1083
+ national Conference on Machine Learning, ICML 2019,
1084
+
1085
+ Learning Modulo Theories
1086
+ 9-15 June 2019, Long Beach, California, USA, volume 97
1087
+ of Proceedings of Machine Learning Research, pp. 6545–
1088
+ 6554. PMLR, 2019a. URL http://proceedings.
1089
+ mlr.press/v97/wang19e.html.
1090
+ Wang, P.-W., Donti, P., Wilder, B., and Kolter, Z. Satnet:
1091
+ Bridging deep learning and logical reasoning using a
1092
+ differentiable satisfiability solver. In International Con-
1093
+ ference on Machine Learning, pp. 6545–6554. PMLR,
1094
+ 2019b.
1095
+ Yurichev, D. SAT/SMT by example, 2020. Available at
1096
+ https://sat-smt.codes/ (January, 2023).
1097
+
1098
+ Learning Modulo Theories
1099
+ A. Appendix
1100
+ A.1. Proofs
1101
+ Theorem 2. Let D, H be a T-decomposable problem with grounding function f and prediction logic φ where:
1102
+ 1. Z and Y are Cartesian products of Booleans.
1103
+ 2. For any (x, y) ∼ D and y′ ̸= y, φ(f(x), y′) is T-equivalent to false and there is exactly one z such that φ(z, y) is
1104
+ T-equivalent to true.
1105
+ 3. Hf is a convex set and for all hf ∈ Hf, ∥hf∥ ≤ B, and the loss ℓ(hf(·), z) is M-Lipschitz and convex in x for any
1106
+ fixed z.
1107
+ Then for any ϵ > 0, selecting hf by minimizing either LS(Fφ
1108
+ smt(hf(·))) with τ ≥ M 2B2/ϵ2 iterations of stochastic gradient
1109
+ descent, with gradients provided by Bφ
1110
+ max, and learning rate η =
1111
+
1112
+ B2/M 2τ yields a grounding hypothesis ˆhf ∈ Hf that
1113
+ satisfies: E[LD( ˆhf)] ≤ minhf ∈Hf LD(hf) + ϵ. The randomness in this expectation is taken over the choices of the SGD
1114
+ algorithm.
1115
+ Proof. To prove this result, we introduce the notion of a grounding sample.
1116
+ Definition 4 (Grounding sample). Let D, H be a T-decomposable problem with grounding function f. The grounding
1117
+ sample Sf for S ∼ D is given by [(xi, f(xi)) : (xi, yi) ∈ S], i.e., tuples that consist of the first element of each instance in
1118
+ S and its image under f.
1119
+ Now observe that the conditions stated in assumption (3) are sufficient to yield the result if instead of optimizing
1120
+ LS(Fφ
1121
+ smt(hf(·))), we were given the grounding sample Sf and minimized LSf (hf) (see (Shalev-Shwartz & Ben-David,
1122
+ 2014), Theorem 14.8). The result follows as stated then because of assumptions (1) and (2), which imply that the update
1123
+ vectors provided by Bφ
1124
+ max are the gradients of LSf (hf).
1125
+ To understand why, observe that the sign of ˆy computed on line 3 of both algorithms must be equal to that of y⋆. This
1126
+ follows from two facts:
1127
+ 1. At any coordinate i where y[i] ̸= y⋆[i], sign(∂yℓ(y, y⋆))[i] = sign(y)[i].
1128
+ 2. At any coordinate i where y[i] = y⋆[i], sign(∂yℓ(y, y⋆))[i] = −1 · sign(y)[i].
1129
+ Now there are two cases to consider.
1130
+ Case 1: sign(y) = sign(ˆy).
1131
+ In this case the algorithm returns ∂zℓ(z, sign(z)). Because solutions to φ(·, y) are unique,
1132
+ sign(z) is the correct grounding, i.e., z = f(x) for the original features x.
1133
+ Case 2: sign(y) ̸= sign(ˆy).
1134
+ Because of assumption (2), the set of indices computed on line 8 will contain all of the
1135
+ coordinates at which z matches the correct value z⋆ = f(x). Note that at these coordinates, the vector returned by the
1136
+ algorithm matches the gradient of ℓ(z, z⋆), which is ∂z[i]ℓ(z[i], sign(z[i])). In the remaining coordinates, the vector will
1137
+ contain ∂z[i]ℓ(z[i], 1 − sign(z[i])), which also matches the gradient of ℓ(z, z⋆). The result follows.
1138
+ A.2. Dataset details
1139
+ Two of the three problems that we examine are based on the MNIST handwritten digit dataset (Deng, 2012), which consists of
1140
+ 60,000 28x28 gray-scale images of handwritten numerals for training and 10,000 instances for testing. The digits on the left
1141
+ of Figure 1 are examples of instances from this data. To generate data for the visual algebra problem, we additionally drew
1142
+ from EMNIST (Cohen et al., 2017b), which extends MNIST with handwritten letters, and HASY (Thoma, 2017a), which
1143
+ contains handwritten symbols with similar characteristics to MNIST. For the liar’s puzzle, inspired by examples (Yurichev,
1144
+ 2020) which formulate similar examples as SMT constraints, we constructed examples using a set of common phrases that
1145
+ we devised ourselves, and did not otherwise draw from publicly-available data.
1146
+
1147
+ Learning Modulo Theories
1148
+ Below, we describe the way in which we used these data sources to construct training and test samples, and the neural
1149
+ network architectures that we used with SMTLayer to solve them.
1150
+ MNIST Addition.
1151
+ The MNIST addition problem is described in Example 1. In each instance, two MNIST digits are
1152
+ presented as features, and the task of the model is to provide their sum represented as a bitvector. The architecture that
1153
+ we use consists of four convolutional layers with kernels of size 3, depths in the order 64, 64, 128, 128, and a stride of
1154
+ width 2 on the first layer, and two dense layers of width 256 and 4. This network is applied to each digit, and the results are
1155
+ concatenated to obtain a vector of size 8 that is passed to an instance of SMTLayer with SMT constraints from Example 1,
1156
+ which ultimately produces a vector of width 5 that represents the bitvector sum of the digits.
1157
+ We generated five training samples starting with one containing only pairs of the same digit, i.e. (0, 0), (1, 1), . . .. We then
1158
+ added progressively more from the full set of possible pairs, using 25%, 50%, and 100%, and trained on batches of 128
1159
+ across all datasets. Note that although we change the number of digit pairs that appear between samples, we always map
1160
+ these pairs to random MNIST images to obtain 60,000 training instances. This is to ensure that the training sample contains
1161
+ a sufficient sample of MNIST images to be able to perform well on the test data. In all cases, we use the same test set
1162
+ consisting of instances from all possible pairs of digits. The purpose of this is to demonstrate that the conventional network
1163
+ will not generalize until it has seen the full distribution, whereas the model with SMTLayer should be able to generalize
1164
+ after seeing many fewer examples.
1165
+ Visual Algebra.
1166
+ The visual algebra problem is described in Example 2 and Example 3. Recall that features depict
1167
+ handwritten depictions of linear equations of the form ax + b = c. Values for a, x and b are randomly drawn from the
1168
+ range 1-9 to ensure that solutions are unique. Then the corresponding value of c is decomposed into c = 10 · c1 + c2,
1169
+ and MNIST digits are selected at random to represent a, b, c1, c2. A random EMNIST alphabet character is drawn for the
1170
+ variable, and random multiplication, addition, and equality symbols are drawn from HASY. A minor note is that HASY does
1171
+ not contain the standard equality symbol “=”, so we instead use “ .=”. These images are then concatenated horizontally in
1172
+ the appropriate order.
1173
+ We evaluate two architectures for this problem. The first uses the same neural network that was used for MNIST addition,
1174
+ and an instance of SMTLayer with the constraints given in Example 2. It assumes that the four numeric digits in the problem
1175
+ have already been extracted, e.g. by a separate vision routine that can recognize digits from letters and arithmetic symbols,
1176
+ and are provided directly to the model. The four inputs are given separately to the neural network, which produces four
1177
+ 4-bit bitvectors that are concatenated and passed to SMTLayer, which produces a 4-bit bitvector result. We refer to this as
1178
+ configuration #1 in our results.
1179
+ The second uses an architecture which takes the entire image containing the problem as a whole, and produces a 16-bit
1180
+ bitvector that is passed directly to SMTLayer. This architecture uses a similar stack of convolutional layers, but has a larger
1181
+ initial dense layer containing 26,112 neurons, as it is given a larger image. The difference in the convolutional stack is at the
1182
+ second layer, which also has a stride of width 2, to reduce the size of the feature map and mitigate the need for an even larger
1183
+ dense connection. The difference between these architectures relates to one of the challenges of this problem. Much of the
1184
+ information contained in the features is irrelevant to the solution, e.g., it is irrelevant which letter is chosen for the variable,
1185
+ or what the arithmetic operators look like, so this architecture must also learn to disregard these parts of the instance. We
1186
+ refer to this as configuration #2 in our results and in Example 3.
1187
+ We generated a training sample by selecting a and b uniformly from pairs of the same digit, i.e. (0, 0), (1, 1), . . ., and
1188
+ sampling x uniformly from the odd numbers between 0 and 9. The test sample was generated by sampling a, b uniformly
1189
+ from all pairs of digits, and x from all numbers 0 to 9. We then map these values to random MNIST, EMNIST, and HASY
1190
+ images to obtain 60,000 samples. The intention is to study a problem wherein the model is not shown all possible problems
1191
+ (modulo representation as digits), or all of the solutions. This is more challenging than MNIST addition for two reasons:
1192
+ for a given solution, there are many more compatible ground terms, and the model does not see examples of some of
1193
+ the solutions it must provide for the test set. Thus, in order for SMTLayer to succeed, it must use the provided symbolic
1194
+ knowledge to approximate the correct grounding function, despite these deficiencies in the data.
1195
+ Liar’s Puzzle.
1196
+ The liar’s puzzle is comprised of three sentences spoken by three distinct agents: Alice, Bob, and Charlie.
1197
+ One of the agents is “guilty” of an unspecified offense, and in each sentence, the corresponding agent either states that one
1198
+ of the other parties is either guilty or innocent. It is assumed that two of the agents are honest, and the guilty party is not.
1199
+ The solution to the problem is an identification of the guilty party. An example is described in Example 4
1200
+
1201
+ Learning Modulo Theories
1202
+ Features
1203
+ Symbolic Domain Z
1204
+ 0010000111
1205
+ Grounding
1206
+ Function f
1207
+ φ(
1208
+ z1∥ . . . ∥z10,
1209
+ y
1210
+ ) ≡
1211
+ a = 1z1>0∥ . . . ∥1z5>0 ∧ b = 1z5>0∥ . . . ∥1z10>0 ∧
1212
+ c = 1z5>0∥ . . . ∥1z10>0
1213
+
1214
+ ax + b = c
1215
+ Prediction Logic φ
1216
+ Labels Y
1217
+ {00101}
1218
+ Satisfying
1219
+ Assignments
1220
+ Figure 2. Visual Algebra configuration 1 example.
1221
+ We synthesized a dataset for the liar’s puzzle based on a limited set of utterances about who speaks in each sentence,
1222
+ which agent is the subject, and whether the subject is guilty or innocent. There are five ways of denoting the speaker: “*
1223
+ says”, “* says that”, “* said”, “* said that”, and a colon “* :” separating the speaker’s name from the rest of the sentence.
1224
+ There are five ways of uttering either innocence or guilt: “* did it/did not do it”, “* is guilty/innocent”, “* is definitely
1225
+ guilty/innocent”, and “* definitely did it/did not do it”, “* is the criminal/is a good person”. We generated all of the
1226
+ combinations of subject, speaker, and proclaimed innocence or guilt, and took the product with all possible combinations of
1227
+ these utterances. The result is a dataset of 375,000 instances, each containing three natural language sentences.
1228
+ The
1229
+ prediction
1230
+ logic
1231
+ for
1232
+ this
1233
+ problem
1234
+ assumes
1235
+ a
1236
+ set
1237
+ of
1238
+ ground
1239
+ predicates
1240
+ speaker(agent, sentence),
1241
+ subject(agent, sentence), accuses(sentence), and guilty(agent).
1242
+ For example, if the first sentence was “Alice
1243
+ says that Bob is innocent”, the ground predicates would be speaker(alice, 1), subject(bob, 1), and ¬guilty(bob). Then the
1244
+ prediction logic is shown in Equation 1.
1245
+ |{a : guilty(a)}| = 1
1246
+
1247
+ ∀a.|{s : speaker(a, s)}| = 1
1248
+
1249
+ ∀s.|{a : subject(a, s)}| = 1
1250
+
1251
+ ∀s, a1, a2.speaker(a1, s) ∧ subject(a2, s) →
1252
+ (¬guilty(a1) ↔ accuses(s) ↔ guilty(a2))
1253
+ (1)
1254
+ In our implementation, agents and sentence identifiers are encoded unary as 3-bit bitvectors. The quantifiers are removed
1255
+ by substituting for each ground term or sentence identifier, and the cardinality constraints are expanded into propositional
1256
+ formulas. The architecture that we adopt is a two-layer bidirectional long short-term model (LSTM) with 512 dimensions at
1257
+ each layer, and a 300-dimension trainable embedding layer initialized from GloVe-6B (Pennington et al., 2014). The hidden
1258
+ units of the last LSTM layer were connected to 2-layer dense network containing 128 followed by 7 neurons. This network
1259
+ is applied to each sentence in the input, and the concatenated results are passed to the SMTLayer, which solves the formula
1260
+ in Equation 1 to produce a unary encoding of the guilty party.
1261
+ To evaluate solver layers on this problem, we selected training and test samples by first subsampling half of the full 375,000
1262
+ available instances. We then selected half of the speaker, subject, accuses predicate configurations for all three sentences
1263
+ appearing in this subsample to appear in the training sample, and the other half to appear in the test sample. To further limit
1264
+ the amount of information in the training sample, we randomly selected one ordering for each predicate configuration to
1265
+ remain for training. There were 9,400 resulting training instances, and 28,062 test instances. Restricting the training set as
1266
+ described ensures that the model is trained on a limited subset of possible sentence configurations, and one that is logically
1267
+ disjoint from those that appear in the test sample. Because there is not enough information in the training sample to learn
1268
+ Equation 1, we expect only the model with SMTLayer to succeed, but to do so it must approximate the grounding function
1269
+ well from a limited sample.
1270
+ A.3. Hyperparameters
1271
+ The four problems that our evaluation studies vary considerably in size and complexity, and the models used to train them
1272
+ require different considerations. This section details these differences. Table 2 relates the optimizers and epochs for each
1273
+
1274
+ 4X+Learning Modulo Theories
1275
+ Features
1276
+ Symbolic Domain Z
1277
+ 0100010000100100
1278
+ Grounding
1279
+ Function f
1280
+ φ(
1281
+ z1∥ . . . ∥z10,
1282
+ y
1283
+ ) ≡
1284
+ a = 1z1>0∥ . . . ∥1z5>0 ∧ b = 1z5>0∥ . . . ∥1z10>0 ∧
1285
+ ax + b = c
1286
+ Prediction Logic φ
1287
+ Labels Y
1288
+ {00101}
1289
+ Satisfying
1290
+ Assignments
1291
+ Figure 3. Visual Algebra configuration 2 example.
1292
+ Input
1293
+ Alice said that Bob
1294
+ did not do it.
1295
+ Bob: Alice is
1296
+ definitely innocent
1297
+ Charlie: Alice did it
1298
+ Symbolic Domain Z
1299
+ 100010001010100100110
1300
+ Grounding
1301
+ Function f
1302
+ |{a : guilty(a)}| = 1
1303
+
1304
+ ∀a.|{s : speaker(a, s)}| = 1
1305
+
1306
+ ∀s.|{a : subject(a, s)}| = 1
1307
+
1308
+ ∀s, a1, a2.speaker(a1, s) ∧ subject(a2, s) →
1309
+ (¬guilty(a1) ↔ accuses(s) ↔ guilty(a2))
1310
+ Prediction Logic φ
1311
+ Labels (Liar) Y
1312
+ {2}
1313
+ Satisfying
1314
+ Assignments
1315
+ Figure 4. Liar’s Puzzle example.
1316
+ dataset and solver layer configuration. For SATNet and Scallop, we use the optimization settings described in their respective
1317
+ papers, and found in their public implementations. For SATNet models, the MaxSAT clause parameters were trained at a
1318
+ rate of 2e-3, and the convnet at rate 1e-5. When SGD(1.0) is stated, we used a warmup period spanning the first epoch, and
1319
+ cosine annealing for the remainder of training.
1320
+ MNIST Addition.
1321
+ The MNIST addition problem is the easiest of the problems that we study, at least in its full (100%)
1322
+ configuration. We find that for the 100% configuration, all of the solver layers converge to a nearly optimal solution with
1323
+ three epochs of supervised pre-training, and five epochs of subsequent training with the solver layer attached. For the
1324
+ subsample configurations, all of the solver layers converge to a stable, although in many cases suboptimal, solution within
1325
+ these parameters as well. For SMTLayer, we clipped gradients for all parameters at 0.1, and did not clip gradients for the
1326
+ other solver layer models. For all configurations, we used batches of size 128.
1327
+ Visual Algebra.
1328
+ Although visual algebra is a more difficult learning problem than MNIST addition, as evidenced by the
1329
+ results in Table 1, we find that the same parameters allow all of the configurations studied in our evaluation to converge. After
1330
+ 3/5 epochs of training, the models stabilize, and in some cases, further training yields an overfit model. For SMTLayer, we
1331
+ clipped gradients for all parameters at 0.1, and did not clip gradients for the other solver layer models. For all configurations,
1332
+ we used batches of size 64.
1333
+ Liar’s Puzzle.
1334
+ The Liar’s Puzzle is the only problem to use a recurrent model, and we found that it required more epochs
1335
+ of pre-training to reduce the variance of the final model with the solver layer. Additionally, the SGD optimizer used
1336
+ with SMTLayer on other datasets caused the model to converge at local minima. We found that pre-training at a higher
1337
+ learning rate, and using Adam with a default learning rate, let to the best results. Additionally, we did not clip gradients
1338
+ for the SMTLayer model. We used the same parameters, but the normal SATNet optimizer, for the SATNet model. For all
1339
+ configurations, we used batches of size 32.
1340
+
1341
+ 4x+4=ayLearning Modulo Theories
1342
+ Conventional
1343
+ w/ SMTLayer
1344
+ w/ SATNet
1345
+ w/ Scallop
1346
+ optimizer
1347
+ epochs
1348
+ optimizer
1349
+ epochs
1350
+ optimizer
1351
+ epochs
1352
+ optimizer
1353
+ epochs
1354
+ MNIST+ 10%
1355
+ SGD(1.0)
1356
+ 0/5
1357
+ SGD(1.0)
1358
+ 3/5
1359
+ Adam(2e-3, 1e-5)
1360
+ 3/5
1361
+ Adam(1e-3)
1362
+ 3/5
1363
+ MNIST+ 25%
1364
+ SGD(1.0)
1365
+ 0/5
1366
+ SGD(1.0)
1367
+ 3/5
1368
+ Adam(2e-3, 1e-5)
1369
+ 3/5
1370
+ Adam(1e-3)
1371
+ 3/5
1372
+ MNIST+ 50%
1373
+ SGD(1.0)
1374
+ 0/5
1375
+ SGD(1.0)
1376
+ 3/5
1377
+ Adam(2e-3, 1e-5)
1378
+ 3/5
1379
+ Adam(1e-3)
1380
+ 3/5
1381
+ MNIST+ 75%
1382
+ SGD(1.0)
1383
+ 0/5
1384
+ SGD(1.0)
1385
+ 3/5
1386
+ Adam(2e-3, 1e-5)
1387
+ 3/5
1388
+ Adam(1e-3)
1389
+ 3/5
1390
+ MNIST+ 100%
1391
+ SGD(1.0)
1392
+ 0/5
1393
+ SGD(1.0)
1394
+ 3/5
1395
+ Adam(2e-3, 1e-5)
1396
+ 3/5
1397
+ Adam(1e-3)
1398
+ 3/5
1399
+ Vis. Alg. #1
1400
+ SGD(1.0)
1401
+ 0/5
1402
+ SGD(1.0)
1403
+ 3/5
1404
+ Adam(2e-3, 1e-5)
1405
+ 3/5
1406
+ Adam(1e-3)
1407
+ 3/5
1408
+ Vis. Alg. #2
1409
+ SGD(1.0)
1410
+ 0/5
1411
+ SGD(1.0)
1412
+ 3/5
1413
+ Adam(2e-3, 1e-5)
1414
+ 3/5
1415
+ Adam(1e-3)
1416
+ 3/5
1417
+ Liar’s Puzzle
1418
+ Adam(2e-3)
1419
+ 0/15
1420
+ Adam(1e-3)
1421
+ 15/5
1422
+ Adam(2e-3, 1e-5)
1423
+ 15/5
1424
+
1425
+
1426
+ Vis. Sudoku 10%
1427
+ SGD(1.0)
1428
+ 0/100
1429
+ SGD(1.0)
1430
+ 30/15
1431
+ Adam(2e-3, 1e-5)
1432
+ 30/100
1433
+
1434
+
1435
+ Vis. Sudoku 50%
1436
+ SGD(1.0)
1437
+ 0/100
1438
+ SGD(1.0)
1439
+ 30/5
1440
+ Adam(2e-3, 1e-5)
1441
+ 30/100
1442
+
1443
+
1444
+ Vis. Sudoku 100%
1445
+ SGD(1.0)
1446
+ 0/100
1447
+ SGD(1.0)
1448
+ 30/5
1449
+ Adam(2e-3, 1e-5)
1450
+ 0/100
1451
+
1452
+
1453
+ Table 2. Training hyperparameters. Numbers in parentheses after the optimizer denote the learning rate; when there are multiple numbers,
1454
+ different learning rates were applied to different parameter groups, as detailed in the text. Each epoch pair corresponds to the pre-training
1455
+ and training phases, i.e., 3/5 denotes three epochs of pre-training and five subsequent training epochs with the solver layer.
1456
+ Visual Sudoku.
1457
+ Visual Sudoku is the most challenging problem that we studied, for all solver layers as well as the
1458
+ conventional model. We did not use supervised pre-training, as the supervision in this problem leaks the correct labels
1459
+ directly to the model, bypassing the solver layer and the need for its updates (Chang et al., 2020). We instead used the
1460
+ unsupervised pre-training method described in (Topan et al., 2021), and found that 30 epochs of unsupervised pre-training
1461
+ was sufficient to yield consistent and quick convergence with the solver layer. For the most data-scarce configuration (10%),
1462
+ 15 epochs of training with the solver layer were needed to converge, and for the others five epochs were sufficient. For the
1463
+ SMTLayer model, we used batches of size 1 after pretraining (batch size 64 during pre-training), primarily due to the fact
1464
+ that SMTLayer returns only the indices masked as non-hint elements on the Sudoku board. Because each instance has a
1465
+ different number of hint elements, this would lead to ragged tensors during training, which Pytorch does not support.
1466
+ When assessing SATNet on Visual Sudoku, we were unable to converge to a useful model on any except the full (100%)
1467
+ configuration, as discussed in Section 5.2. Using the authors’ public implementation and training script, we attempted the
1468
+ 10% and 50% configurations with and without unsupervised pre-training, with and without the measures taken in (Chang
1469
+ et al., 2020) to prevent label leakage, and with batches of size 40 (as used in the original paper) as well as 1, to no avail. For
1470
+ the 100% configuration, we were able to reproduce a useful model; we use the accuracy reported in the original paper in
1471
+ Table 1 for consistency, as the average that we obtained did not differ significantly from this.
1472
+
GNFJT4oBgHgl3EQfDyxI/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GNFKT4oBgHgl3EQfbi5K/content/tmp_files/2301.11812v1.pdf.txt ADDED
@@ -0,0 +1,1096 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ What is a Mathematical Structure
2
+ of Conscious Experience?
3
+ Johannes Kleiner1,2,3 and Tim Ludwig4
4
+ 1Munich Center for Mathematical Philosophy, LMU Munich
5
+ 2Munich Graduate School of Systemic Neurosciences, LMU Munich
6
+ 3Association for Mathematical Consciousness Science
7
+ 4Institute for Theoretical Physics, Utrecht University
8
+ Princetonplein 5, 3584 CC Utrecht, The Netherlands
9
+ Abstract. In consciousness science, several promising approaches have been
10
+ developed for how to represent conscious experience in terms of mathematical
11
+ spaces and structures. What is missing, however, is an explicit definition of
12
+ what a ‘mathematical structure of conscious experience’ is. Here, we propose
13
+ such a definition. This definition provides a link between the abstract formal
14
+ entities of mathematics and the concreta of conscious experience; it comple-
15
+ ments recent approaches that study quality spaces, qualia spaces or phenome-
16
+ nal spaces; it provides a general method to identify and investigate structures
17
+ of conscious experience; and it may serve as a framework to unify the various
18
+ approaches from different fields. We hope that ultimately this work provides
19
+ a basis for developing a common formal language to study consciousness.
20
+ Attempts to represent conscious experiences mathematically go back at least to 1860 [15],
21
+ and a large number of approaches have been developed since. They span psycho-physics [35,
22
+ 36, 39, 51, 73], philosophy [9, 10, 12, 17, 18, 42, 43, 55, 56, 57], phenomenology [50, 72], neu-
23
+ roscience [64, 74], theories of consciousness [21, 22, 46, 49] and mathematical consciousness
24
+ science [19, 32, 52, 63, 66, 67], and are known under various different names, including qual-
25
+ ity spaces [9], qualia spaces [63], experience spaces [33, 34], Q-spaces [8], Q-structure [45],
26
+ Φ-structures [65], perceptual spaces [74], phenomenal spaces [16], spaces of subjective experi-
27
+ ence [64], and spaces of states of conscious experiences [31].1 The mathematical structures and
28
+ spaces, which these approaches introduced, have enabled important results in their respective
29
+ fields. Yet, they remain largely fragmented. What is missing, from our perspective, is a defi-
30
+ nition of what the term ‘mathematical structure of conscious experience’ refers to in the first
31
+ place.
32
+ 1There is a vast literature of articles that either make use of these constructions or which offer important
33
+ insights that concern these structures; for examples, see [1, 2, 6, 7, 13, 14, 20, 23, 28, 30, 29, 38, 40, 41, 43, 47,
34
+ 54, 60, 61, 62, 67, 68, 69].
35
+ 1
36
+ arXiv:2301.11812v1 [q-bio.NC] 26 Jan 2023
37
+
38
+ 2
39
+ In this article, we propose a definition of mathematical structures of conscious experience.
40
+ Our main desideratum is that for a mathematical structure to be of conscious experience,
41
+ there must be something in conscious experience that corresponds to that structure. We call
42
+ this “something” a structural aspect of conscious experience.
43
+ Our key idea is to use variations to identify and investigate structural aspects of conscious
44
+ experience. That is because the concept of variation can serve as a binding link between con-
45
+ scious experiences and mathematical structures: on the one hand, variations relate to conscious
46
+ experiences, because they change some of their aspects (like qualia, qualities, or phenomenal
47
+ properties); on the other hand, variations relate to mathematical structures, because they may
48
+ or may not preserve them.
49
+ In defining what it means for a mathematical structure to be of conscious experience, our
50
+ proposal does not answer the question of what this mathematical structure is.
51
+ Rather, it
52
+ provides an analysandum for future work on spaces and structures of conscious experience.
53
+ Furthermore, by providing a general way to identify and investigate such structures, our pro-
54
+ posal provides a framework to unify the various approaches from different fields.
55
+ Before presenting the details of our proposal, we discuss how recent approaches relate math-
56
+ ematical structures to conscious experience in Section 1; we identify three key problems. In
57
+ Section 2, we present our proposal together with the necessary background information. In
58
+ Sections 3, 4, and 5, we consider three important examples; namely relative similarity, metric
59
+ spaces, and topological spaces. In Section 6, we show how our proposal resolves the three
60
+ problems identified in Section 1.
61
+ 1. The Status Quo
62
+ So where do things stand? Most of the early work that has attributed mathematical struc-
63
+ ture to conscious experience was grounded in intuition. That is, whether or not a specific
64
+ mathematical structure pertains to consciousness was not assessed systematically; instead, it
65
+ was assessed based on an intuitive insight of appropriateness. More recent approaches have
66
+ realized the need for a more systematic method, for example [18, 42, 44, 50, 52, 56, 57]. In
67
+ this section, we analyze what we take to be the condition that underlies these approaches:
68
+ a condition on what justifies prescribing a mathematical structure to conscious experience.
69
+ As we will see, this condition is quite natural. But, as we will show, when understood as a
70
+ sufficient condition, it is problematic.
71
+ In a nutshell, a mathematical structure consists of two building blocks; for a detailed intro-
72
+ duction, see Section 2.2. The first building block brings in one or more sets called the domains
73
+ of the structure. The second building block are relations or functions which are defined on the
74
+ domains. For reasons explained below, we will denote them as structures in the narrow sense
75
+ of the term. A metric space, for example, is a mathematical structure that is defined on the
76
+ two domains: a set of points and the real numbers. Furthermore, it comprises a function—the
77
+ so-called metric function—which maps two points to a real number. A topological space, to
78
+ give another example, is a mathematical structure that is defined on a single domain: a set
79
+
80
+ 3
81
+ of points. Furthermore, it comprises a collection of unary relations, which are subsets of the
82
+ domain.2
83
+ Usually, a mathematical structure also comes with axioms. The axioms establish conditions
84
+ that the functions or relations have to satisfy. In the case of a metric structure, the axioms
85
+ require the metric function to satisfy three conditions, called positive definiteness, symmetry,
86
+ and triangle inequality. In the case of a topological structure, the axioms ensure the collection
87
+ includes the empty set and the whole domain, that it is closed under finite intersections, and
88
+ that it is closed under arbitrary unions.
89
+ When put in these terms, recent proposals that go beyond intuitive assessments, make use,
90
+ either directly or indirectly, of the following condition to justify that a specific mathematical
91
+ structure pertains to consciousness.
92
+ A mathematical structure describes conscious experience (MDC) if and only if
93
+ the following two conditions are satisfied:
94
+ (D1) The domains of the structure are sets whose elements correspond to aspects of
95
+ conscious experiences.
96
+ (D2) The axioms of the structure are satisfied.
97
+ Here, we use the term aspect as a placeholder for qualia, qualities, (instantiated) phenomenal
98
+ properties or similar concepts.
99
+ In the case of the metric structure introduced in [9], for example, (D1) is satisfied because
100
+ the set of points corresponds to qualities of conscious experience. The real numbers might
101
+ have a phenomenal interpretation as describing degrees of similarity, as for example in [42]; for
102
+ details see Section 4. Condition (D2) requires positive definiteness, symmetry, and the triangle
103
+ inequality to hold. This includes, for example, the condition that “points should have distance
104
+ zero just in case the qualities represented by those points are phenomenally identical” [42,
105
+ p. 14]. In the case of the topological structure introduced in [63], to give another example,
106
+ (D1) is satisfied because the domain of the structure refers to qualia. Condition (D2) would
107
+ require, then, that the chosen collection of subsets satisfies the axioms of a topological space.
108
+ Prima facie, (MDC) could be taken to define what a mathematical structure of conscious
109
+ experience is. However, if understood as sufficient condition, three problems arise. This implies,
110
+ in particular, that (MDC) cannot be used to justify that a mathematical structure pertains to
111
+ consciousness.
112
+ Problem 1: Incompatible Structures. A first reason why (MDC) cannot be a sufficient
113
+ condition to asses whether a mathematical structure pertains to consciousness is that it would
114
+ allow for incompatible structures to pertain to consciousness.
115
+ Consider, as an example, the case of topology. A basic question in topology is whether a
116
+ target domain is discrete or not. A target domain is discrete if and only if its topology contains
117
+ all subsets of the domain [26]. Otherwise, the target domain is not discrete. These two cases
118
+ are exclusive, meaning that discrete and non-discrete topological structures are incompatible.
119
+ 2A unary relation on a domain, in the mathematical sense, is a subset of the domain; see Section 5.
120
+
121
+ 4
122
+ According to (MDC), conscious experience has a discrete structure. That is because any set
123
+ whatsoever can be equipped with the discrete topology. Therefore, picking a set X of aspects
124
+ (qualia, qualities, phenomenal properties, etc.) and choosing its discrete topology provides a
125
+ mathematical structure that satisfies both conditions (D1) and (D2). But, according to (MDC),
126
+ consciousness also has a non-discrete structure. That is because any set can also be equipped
127
+ with a non-discrete topology. We can, for example, take an arbitrary decomposition of the set
128
+ X into two subsets A and A⊥, where A⊥ is the complement of A, and consider the topology
129
+ {∅, A, A⊥, X}.
130
+ This choice satisfies all axioms of a topology, and therefore satisfies (D2).
131
+ Furthermore, it is built on the same set X as the discrete topology above, which implies that
132
+ it also satisfies (D1). Therefore, the discrete and the non-discrete topological structures are
133
+ both structures of conscious experience, according to (MDC).
134
+ This example shows that, if understood as sufficient condition, (MDC) implies that two
135
+ incompatible structures pertain to conscious experience and that they do so with respect to the
136
+ exact same domain of aspects. The condition fails to determine which of the two incompatible
137
+ structures is the right one, or to remain silent on the issue.
138
+ Problem 2: Arbitrary Re-Definitions. A second reason why (MDC) cannot be a suf-
139
+ ficient condition is that it allows for arbitrary re-definitions: if one structure is given that
140
+ satisfies (MDC), then any arbitrary definition of a new structure in terms of the given struc-
141
+ ture also satisfies (MDC), so long as the domains of the structure remain unchanged. If the
142
+ former pertains to consciousness, so does the latter.
143
+ A simple and well-behaved example of this is given by rescaling a metric function. Let us
144
+ suppose that (M, d) is a metric structure which pertains to consciousness according to (MDC),
145
+ where M is a set of aspects and d is the metric function, which provides a real number
146
+ d(a, b) for every two aspects a and b. Since (M, d) satisfies (MDC), so does every structure
147
+ (M, C · d), where C · d is the multiplication of the function d by a positive real number C.
148
+ Here, the number C can be chosen arbitrarily. If one metric structure pertains to consciousness
149
+ according (MDC), so does an uncountably infinite number of metric structures.
150
+ What is more, when re-defining structures, one is free to change the axioms as one pleases.
151
+ For example, we could pick any function f that maps M to the positive real numbers and
152
+ define a new distance function by (f(a)+f(b))·d(a, b). This is not a metric structure anymore,
153
+ because the triangle inequality axiom does not hold. But it still satisfies positive definiteness
154
+ and symmetry, and therefore satisfies (MDC), with a new set of axioms. One could even break
155
+ asymmetry to get a distance function like the one applied by IIT [34]. More severe cases appear
156
+ with more complicated structures.
157
+ This is a problem, not only because of the unlimited number of structures that appear, but
158
+ also because there is an arbitrariness in the definition of a new structure, specifically concerning
159
+ the axioms. It seems strange that the axioms can be redefined at will, so as to always satisfy
160
+ Condition (D2). Something is missing that restricts this arbitrariness in (MDC).
161
+ Problem 3: Indifference to Consciousness. The third reason, which speaks against the
162
+ sufficiency of (MDC), is that the proposed condition seems somewhat indifferent to details of
163
+ conscious experience.
164
+
165
+ 5
166
+ To illustrate this indifference, let us consider again the discrete and non-discrete topological
167
+ structures from above. As we have shown, these structures pertain to conscious experience
168
+ according to (MDC). Yet, nothing more than a few lines needed to be said to establish this
169
+ fact. In particular, we did not need to use any noteworthy input related to consciousness other
170
+ than picking some set of aspects; and it didn’t matter which aspects we picked.
171
+ It is a red flag if so short an analysis, which does not depend on consciousness in a meaningful
172
+ way, establishes facts about the mathematical structure of conscious experience. This is another
173
+ hint that condition (MDC) is missing some important piece, if used as sufficient condition.
174
+ The Way Forward. To resolve the three problems, our task is to find the missing piece and
175
+ to propose a definition for a mathematical structure of conscious experience that makes sense
176
+ as a necessary and sufficient condition. Two desiderata guide our search. First, as is the case
177
+ with (MDC), the definition should be about conscious experience in the sense that it describes
178
+ aspects of conscious experience. Second, there should be something in conscious experience
179
+ that relates to a mathematical structure if that structure is a mathematical structure of con-
180
+ scious experience. This “something” should make sure that the definition is not indifferent
181
+ to conscious experience (Problem 3) and that it relates to the mathematical structure in a
182
+ meaningful way, so as to stop arbitrary re-definitions (Problem 2). The proposal which we
183
+ present in the next section is the result of our search.
184
+ Looking back at Condition (MDC) after our analysis, we think that (MDC) is best under-
185
+ stood as an expression of what it takes for a mathematical structure to describe conscious
186
+ experience. Because of the problems with sufficiency, a structure that satisfies this condition
187
+ might not pertain to consciousness; but it might still be a valuable descriptive tool that is dis-
188
+ tinguished from other structures by its relation to aspects of conscious experience. This is why,
189
+ retrospectively, we have chosen the term ‘describes conscious experiences’ when specifying the
190
+ condition. Our first desideratum will lead us to develop a new condition that contains (MDC)
191
+ as necessary part; this is aligned with the intuition that any mathematical structure of con-
192
+ scious experience also describes conscious experience.
193
+ 2. Mathematical Structures of Conscious Experience
194
+ For a mathematical structure to be of conscious experience, rather than just a descriptive
195
+ tool for conscious experience, there should be something in conscious experience that relates
196
+ to that structure. Denoting a mathematical structure by S, we call this structural aspect of
197
+ consciousness an S-aspect.
198
+ To make sense of what an S-aspect is, we need to understand how aspects (like qualia, qual-
199
+ ities or phenomenal properties) relate to mathematical structures. While aspects may have
200
+ an arity (meaning they may be instantiated relative to other aspects), they are not experi-
201
+ enced as having a mathematical structure per se.3 Therefore, relating aspects to mathematical
202
+ structures requires a tool that applies both; concreta and abstract formal entities. Variations
203
+ provide such a tool.
204
+ 3With the exception of experiences of mathematical structures themselves, of course.
205
+
206
+ 6
207
+ In general, a variation is a change of something into something else; in our case, it is a
208
+ change of one experience into another experience. Such variations may be induced by external
209
+ stimuli or interventions, come about naturally, or be subjected to imagination (‘imaginary
210
+ variations’ [24]). Variations are intimately related to aspects of conscious experiences because
211
+ they may or may not change them. And they are intimately related to mathematical structures,
212
+ because they may or may not preserve them. An S-aspect, then, is an aspect that is changed
213
+ by a variation if and only if the variation does not preserve the structure S. To explain this in
214
+ detail is the purpose of the remainder of this section.
215
+ 2.1. Terminology and Notation. Here, we introduce the key terms we use to define math-
216
+ ematical structures of conscious experience. These terms are conscious experiences, aspects
217
+ of conscious experiences, and variations of conscious experiences. The introduction proceeds
218
+ axiomatically, so that our construction does not rely on a specific choice of these concepts.
219
+ Rather, any choice that is compatible with what we say here can be the basis of an application
220
+ of our definition.
221
+ Our construction is based on a set E of conscious experiences of an experiencing subject. We
222
+ denote individual conscious experiences in that set by symbols like e and e′; formally e, e′ ∈ E.
223
+ From a theoretical or philosophical perspective, one may think of the set E as comprising all
224
+ conscious experiences which one experiencing subject can have, i.e. all nomologically possible
225
+ experiences of that subject. From an experimental or phenomenological perspective, one may
226
+ think of this set as comprising all conscious experiences that can be induced in the lab or
227
+ in introspection. Different such choices may lead to different mathematical structures being
228
+ accessible.
229
+ We use the term aspect as a placeholder for concepts such as qualia [70], qualities [55],
230
+ or (instantiated) phenomenal properties.4 For every experience e ∈ E, we denote the set of
231
+ aspects instantiated in this experience by A(e). The set of all aspects of the experiences in E,
232
+ denoted by A, is the union of all A(e); formally A = �
233
+ e∈E A(e). Individual aspects, that is
234
+ members of A, will be denoted by small letters such as a, b, c. When explaining examples, we
235
+ will often use the abbreviation ‘a is the experience of ...’ as a shorthand for saying ‘a is a ...
236
+ aspect of an experience’. For example, ‘a is the experience of red color’ means ‘a is a red color
237
+ aspect of an experience’.
238
+ Some aspects may require other aspects for their instantiation. For example, it is usually the
239
+ case that an experience of relative similarity is an experience of relative similarity of something,
240
+ for example two color aspects relative to a third color aspect. If an aspect a requires other
241
+ aspects for its instantiation, we will say that the aspect a is instantiated relative to aspects
242
+ b1, ..., bm, or simply that a is relative to b1, ..., bm. Aspects which are instantiated relative to
243
+ other aspects are the building blocks for the structure of conscious experience.
244
+ 4Many other concepts work as well.
245
+ For example, if one works with an atomistic conception of states of
246
+ consciousness, where the total phenomenal state of a subject—what it is like to be that subject at a particular
247
+ time—is built up from individual atomic states of consciousness, one can take e to denote the total phenomenal
248
+ state and aspects to be the states of consciousness in that total state. Another example would be to take
249
+ aspects to denote phenomenal distinctions as used in Integrated Information Theory [65]. What matters for
250
+ our definition to be applicable is only that according to one’s chosen concept of conscious experience, every
251
+ conscious experience exhibits a set of aspects.
252
+
253
+ 7
254
+ A variation of a conscious experience e changes e into another experience e′.
255
+ Because
256
+ experiences have structure, there may be various different ways to go from e to e′.5 Therefore,
257
+ in addition to specifying e and e′, a variation is a partial mapping
258
+ v : A(e) → A(e′) .
259
+ This mapping describes how aspects are replaced or reshuffled by the variation. A mapping
260
+ which is not surjective, meaning that it does not map to all aspects in A(e′), makes room for
261
+ appearance of new aspects. A mapping which is partial, meaning that it does not specify a
262
+ target for every aspect in A(e), makes room for aspects to disappear.
263
+ 2.2. What is a Mathematical Structure? To find a rigorous definition of the mathematical
264
+ structure of conscious experience, we need to work with a rigorous definition of mathematical
265
+ structure. But, what is a mathematical structure? Fortunately, mathematical logic provides
266
+ us with an answer to just that question.
267
+ A mathematical structure S consists of two things: domains, on the one hand, and func-
268
+ tions or relations, on the other hand. We now introduce these concepts based on two simple
269
+ examples.
270
+ The domains of a structure S are the sets on which the structure is built. We denote them
271
+ by Ai, where i is some index in a parameter range I. In the case of a metric structure, for
272
+ example, the domains would be A1 = M and A2 = R, where M is a set of points and R
273
+ denotes the real numbers, understood as a set. In the case of a strict partial order, there is
274
+ just one domain A, which contains the elements that are to be ordered.
275
+ The second ingredient are functions and/or relations. Functions f map some of the domains
276
+ to other domains. In the case of a metric structure, the function would be a metric function
277
+ d : M × M → R, which maps from A1 × A1 to A2. A relation R, in the mathematical sense,
278
+ is a subset of the m-fold product Ai × ... × Ai. Here, Ai is the domain on which the relation
279
+ is defined, and m is the arity of the relation, which expresses how many relata the relation
280
+ relates. The product is usually just written as Am
281
+ i . In the case of a strict partial order, the
282
+ relation is binary, which means that R is a subset of A2. For binary relations, one usually uses
283
+ notation like a < b instead of writing (a, b) ∈ R; still, it is important to keep in mind that
284
+ relations are subsets in that sense.
285
+ In almost all cases, mathematical structures also come with axioms, which establish condi-
286
+ tions that the functions or relations have to satisfy. They are useful because they constrain
287
+ and classify the structure at hand. For S to be a metric structure, for example, the function d
288
+ has to satisfy the axioms of positive definiteness, symmetry, and triangle inequality [59]. For S
289
+ to be a strict partial order, the relation R has to be irrefelxive, asymmetric, and transitive [27].
290
+ 5To illustrate this point, consider, for example, the following two mappings v and v′ which map the numbers 1,
291
+ 2, and 3 to the numbers 2, 4, and 6. The mapping v is the multiplication of every number by 2, meaning that
292
+ we have v(1) = 2, v(2) = 4, v(3) = 6. The mapping v′, on the other hand, is defined by v(1) = 6, v(2) = 2,
293
+ v(3) = 4. If we only cared about the sets of elements that these mappings connect, the mappings would be
294
+ equivalent: there is no difference between the set {2, 4, 6}, which is the image of v, and {6, 2, 4}, which is the
295
+ image of v′. If, however, we care about the ordering of the elements of the sets, which we usually do in the
296
+ case of numbers, then there is a difference. While 2 ≤ 4 ≤ 6, it is not the case that 6 ≤ 2 ≤ 4. Because we care
297
+ about the order of the elements, we need to say which element goes where.
298
+
299
+ 8
300
+ To have a nice and compact notation, we will use one symbol Sj to denote both functions
301
+ relations. That is because, in any concrete proposal, it is always clear whether Sj is a function
302
+ or a relation.6 The index j takes values in some parameter range J that specifies how many
303
+ functions or relations there are. In summary, the desired rigorous definition is:
304
+ A mathematical structure S is a tuple
305
+ S =
306
+
307
+ (Ai)i∈I, (Sj)j∈J
308
+
309
+ of domains Ai and functions or relations Sj.
310
+ For given domains Ai, the mathematical structure S is fully determined by the Sj. Thus,
311
+ we can also refer to Sj as ‘structures’, if the domains are clear from context. For simplicity,
312
+ we can drop the index j and simply write S whenever we consider just one such structure.
313
+ As a final step in this section, we introduce the relata of a structure S.
314
+ This will be
315
+ helpful to write things concisely below. The term relata designates those elements that are
316
+ related by a structure. In the case where S is a relation R on a domain A and has arity m,
317
+ these are the elements of the m-tuples (b1, ..., bm) ∈ R. In the case where S is a function
318
+ f : A1 × ... × Am−1 → Am, the relata are the elements of the m-tuples (b1, ..., bm−1, bm) where
319
+ bm = f(b1, ..., bm−1), and where the other bi range over their whole domains. For notational
320
+ simplicity, we write b1, ..., bm instead of (b1, ..., bm) when designating relata below.
321
+ 2.3. What is a Mathematical Structure of Conscious Experience? Finally, to the
322
+ heart of the matter! We recall that we have so far identified two desiderata for a mathematical
323
+ structure S to be a mathematical structure of conscious experience. First, it should be about
324
+ conscious experiences in the sense that it describes aspects of conscious experiences. Second,
325
+ there should be aspects in conscious experience that relate to the structure S. The following
326
+ definition satisfies these two desiderata.
327
+ A mathematical structure S is a mathematical structure of conscious experi-
328
+ ence (MSC) if and only if the following two conditions hold:
329
+ (S1) The domains Ai of S are subsets of A.
330
+ (S2) For every Sj, there is a Sj-aspect in A.
331
+ Here, A denotes the set of all aspects of the experiences in E; formally A = �
332
+ e∈E A(e),
333
+ the Ai denote the domains of the structure S, and the Sj-aspects are defined below.
334
+ Condition (S1) guarantees that the first desideratum is satisfied. Condition (S2) guarantees
335
+ that the second desideratum is satisfied. Furthermore, whenever a certain type of structure
336
+ (metric, topological, partial order, manifold, etc.) is claimed to be a structure of conscious
337
+ experience, the axioms that constrain and classify that type have to hold. Therefore, any
338
+ mathematical structure of conscious experience (MSC) is also a mathematical structure that
339
+ describes conscious experience according to (MDC). The requirement that has been applied in
340
+ previous proposals remains a necessary condition.
341
+ 6In mathematical logic, mathematical structures are denoted as triples of domains, relations, and functions.
342
+ However, in our case, using just one symbol for functions and relations improves readability substantially.
343
+
344
+ 9
345
+ The remaining task of this section, then, is to explain what an Sj-aspect is. For notational
346
+ simplicity, we use the symbol S to denote Sj. As we have emphasized before, variations are key
347
+ to understand the structure of conscious experience, because they link aspects and structure.
348
+ Therefore, to be able to precisely define what an S-aspect is, we need to understand how
349
+ variations relate to aspects, on the one hand, and structures, on the other hand. Our strategy
350
+ is to first discuss how variations relate to aspects. This amounts to specifying what precisely
351
+ it means for a variation to change an aspect. Second, we focus on how variations relate to
352
+ mathematical structure. This amounts to explaining what it means for a variation to preserve
353
+ a structure. Finally, combing these two steps allows us to understand S-aspects and provide a
354
+ useful definition.
355
+ What does it mean for a variation v : A(e) → A(e′) to change aspects? The underlying idea
356
+ is simply that an aspect is present in the source of the variation, A(e), but not present any
357
+ more in the target of the variation, A(e′). We need to take into account, though, that aspects
358
+ are often instantiated relative to other aspects (see Section 2.1). This can be done as follows.
359
+ A variation v : A(e) → A(e′) changes an aspect a ∈ A(e) relative to b1, ..., bm ∈ A(e) if
360
+ and only if a is instantiated relative to b1, ..., bm in A(e), but a is not instantiated relative
361
+ to v(b1), ..., v(bm) in A(e′).
362
+ In the case where a ∈ A(e) is not instantiated relative to other aspects, the definition indeed
363
+ reduces to the simple condition that a ∈ A(e) but a ̸∈ A(e′). The negation of the definition is
364
+ also as intuitively expected: the aspect is present both in the source and in the target.7
365
+ For applications it is important to understand that this definition can fail to apply in
366
+ two ways. First, it can fail because there is no a in A(e′) which is instantiated relative to
367
+ v(b1), ..., v(bm). This, in turn, can be the case either because there is not a in A(e′) at all, or
368
+ because there is an a in A(e′) but it is instantiated relative to other aspects. Second, it can fail
369
+ because one or more of the v(b1), ..., v(bm) do not exist. The second case is possible because v
370
+ is a partial mapping, which means aspects can disappear.
371
+ What does it mean for a variation to preserve a mathematical structure? The underlying
372
+ idea is that a variation preserves the structure if and only if the structure is satisfied before the
373
+ variation and remains to be satisfied after the variation. By its very nature, this is a mathemat-
374
+ ical condition, namely the condition of being a homomorphism, as specified by mathematical
375
+ logic [48]. The definition of a homomorphism, though, always applies to all elements of a
376
+ domain at once. For our case, it is best to refine this definition to a single set of relata.8
377
+ A variation v : A(e) → A(e′) preserves a structure S with respect to relata b1, ..., bm ∈
378
+ A(e) if and only if we have
379
+ 7Because the definiendum already includes the first part of the condition, the negation is as follows:
380
+ A variation v : A(e) → A(e′) does not change an aspect a ∈ A(e) relative to b1, ..., bm ∈ A(e) if and only if a
381
+ is instantiated relative to b1, ..., bm in A(e) and a is also instantiated relative to v(b1), ..., v(bm) in A(e′).
382
+ We felt that is the best way of writing things to optimize clarity.
383
+ 8For notational simplicity,
384
+ we write R
385
+
386
+ b1, ..., bm
387
+
388
+ =
389
+ R
390
+
391
+ v(b1), ..., v(bm)
392
+
393
+ instead of R
394
+
395
+ b1, ..., bm
396
+
397
+
398
+ R
399
+
400
+ v(b1), ..., v(bm)
401
+
402
+ .
403
+
404
+ 10
405
+ (P1) R
406
+
407
+ b1, ..., bm
408
+
409
+ = R
410
+
411
+ v(b1), ..., v(bm)
412
+
413
+ if S is a relation R, or
414
+ (P2) v
415
+
416
+ f(b1, ..., bm−1)
417
+
418
+ = f
419
+
420
+ v(b1), ..., v(bm−1)
421
+
422
+ if S is a function f.
423
+ As in the previous case, the negation of this definition is exactly what is intuitively expected:
424
+ a variation does not preserve the structure if and only if the structure is satisfied before the
425
+ variation, but not satisfied after the variation.9
426
+ For applications it is again important to see that the definition can fail for two reasons. First,
427
+ it could be the case that one or more of the v(bi) do not exist in A(e′), if the corresponding
428
+ aspect disappears. Second, the identities may fail to hold.
429
+ We finally have the keys to understand S-aspects and provide a useful definition.
430
+ The
431
+ underlying idea is that an S-aspect is an aspect that, under any variation, behaves exactly as
432
+ the structure S does. Whenever S is preserved, the S-aspect does not change. Whenever the
433
+ S-aspect changes, the structure S is not preserved. That is, it needs to satisfy the following
434
+ definition.
435
+ An aspect a ∈ A is a S-aspect if and only if the following condition holds:
436
+ A variation does not preserve S with respect to relata b1, ..., bm if and only if the variation
437
+ changes a relative to b1, ..., bm.
438
+ Here, the condition needs to hold true for all variations and all relata. This means that it
439
+ needs to hold true for all variations of all experiences e in the set E that instantiate relata of
440
+ the structure S.
441
+ This concludes our proposal for the definition of the mathematical structure of conscious
442
+ experience. It is a structure whose domains correspond to sets of aspects, and which contains
443
+ an S-aspect for every relation or function of the structure. In the next three sections, we apply
444
+ this definition to three examples. On the one hand, these examples illustrate the definition. On
445
+ the other hand, they provide new insights to structures that have been featured prominently
446
+ in previous approaches.
447
+ 3. Relative Similarity
448
+ Our first example concerns relative similarity, which plays an important role, for example,
449
+ in the construction of quality spaces by Austen Clark [9, 10]. In this example, we use natural
450
+ language to pick out experiences and aspects. As we will see, this works fine to a large extend,
451
+ but at one point we will have to show a bit of good faith when it comes to the precision of
452
+ natural language.
453
+ 9A variation v : A(e) → A(e′) does not preserve a structure S with respect to relata b1, ..., bm ∈ A(e) if and only
454
+ if we have R
455
+
456
+ b1, ..., bm
457
+
458
+ ̸= R
459
+
460
+ v(b1), ..., v(bm)
461
+
462
+ if S is a relation R, or v
463
+
464
+ f(b1, ..., bm−1
465
+
466
+ ̸= f
467
+
468
+ v(b1), ..., v(bm−1)
469
+
470
+ if S is a function f.
471
+ This negation agrees with the intuition because the definiendum already states part of the condition that
472
+ follows, namely that b1, ..., bm are relata of the structure S in A(e), which implies that (b1, ..., bm) ∈ R if S is a
473
+ relation and that f(b1, ..., bm−1) exists in A(e) if S is a function, meaning that the structure is satisfied before
474
+ the variation.
475
+
476
+ 11
477
+ A first step in applying our definition is to choose a set E. Here we take E to comprise
478
+ experiences of three color chips, as indicated in Figure 1A, where one of the chip (the reference)
479
+ has a fixed color coating and the others vary in a range of color coatings Λ.10
480
+ The second step is to specify the set of aspects A(e) for every experience e ∈ E. Here,
481
+ we take A(e) to comprise:11 (a) the color qualities in e, that is, the experienced colors of the
482
+ individual chips; (b) positional qualities of the color experiences, that is, which chip has which
483
+ color; and (c) the experience of relative similarity. Relative similarity is an experience of one
484
+ pair of aspects to be more, less, or equally similar to each other than another pair of aspects;
485
+ here, the two pairs have to have one aspect—the reference—in common. In Figure 1A, for
486
+ example, the color of the top left chip will, for many readers, be less similar to the reference
487
+ chip than the color of the top right chip.
488
+ To pick out relative similarity more precisely, we let b0, b1 and b2 denote the color aspects of
489
+ the three chips in an experience e, where b0 is the color aspect of the reference; see Figure 1B.
490
+ For some experience e, it might be the case that the colors b1 and b0 are experienced as less
491
+ similar to each other than the colors b2 and b0. In this case, the experience e has a relative
492
+ similarity aspect in the above sense; we denote this “less-similar” relative similarity aspect
493
+ by a. So, a is an aspect of e, and it is instantiated relative to b1 and b2.12
494
+ Variations change one experience e into another experience e′. An example for a variation
495
+ would be a swap of the coatings of the two non-reference chips, as in Figure 1C. Another
496
+ example for a variation would be to change the coatings of both non-reference chips to some
497
+ other coating in Λ, as in Figure 1D. Formally, variations are represented by mappings v :
498
+ A(e) → A(e′). In the first example, Figure 1C, the mapping is of the form v(b1) = b2 and
499
+ v(b2) = b1, and v(c) = c for all other aspects c, except for the relative similarity aspect a,
500
+ which is discussed in detail below. In the second example, Figure 1D, the mapping is as in the
501
+ first example but with v(b1) = b3 and v(b2) = b4.
502
+ The key question of this example is: Is there a mathematical structure of conscious experi-
503
+ ence which corresponds to relative similarity? To answer this question, we propose a structure
504
+ and check whether (MSC) applies.
505
+ The words “less similar than” in the description of relative similarity already indicate that
506
+ some order, in the mathematical sense of the word, might be involved. For reasons that will
507
+ become clear below, we propose a strict partial order as mathematical structure. A strict
508
+ partial order (C, <), consists of a set C, which is the domain of the structure, and a binary
509
+ relation ‘<’ on C. For all x, y, z ∈ C, this binary relation has to satisfy the following axioms:
510
+ ▶ Irreflexivity, meaning that there is no x ∈ C with x < x.
511
+ ▶ Asymmetry, meaning that if x < y, then it is not the case that y < x.
512
+ ▶ Transitivity, meaning that if x < y and y < z, then also x < z.
513
+ 10The “color coating” here denotes the physical stimuli. Alternative choices would be to speak of wavelength
514
+ mixtures, presentation, etc.
515
+ 11The experience e may contain many other aspects. However, in A(e) we only include those which are relevant
516
+ for our investigation.
517
+ 12To be precise, a is also relative to b0. But since b0 does not vary in E we can leave this implicit.
518
+
519
+ 12
520
+ Figure 1. To help explain the example of relative similarity, this figure il-
521
+ lustrates experiences with color qualities and variations thereof. Subfigure A
522
+ illustrates an experience of three color chips as well as the concept of relative
523
+ similarity: many readers will experience the color of the top-left color chip to
524
+ be less similar to the reference chip than the color of the top-right color chip.
525
+ Subfigure B illustrates our notation for the color aspects corresponding to the
526
+ color chips. Subfigures C and D illustrate variations v of experiences: a swap
527
+ of two color aspects in C; and a replacement of two color aspects in D.
528
+ In order to propose a strict partial order structure of conscious experiences, we need to
529
+ specify how the set C and the relation < relate to (aspects of) conscious experience. For the
530
+ set C we choose the color qualities of the experiences in E, meaning that C now comprises the
531
+ color qualities evoked by the coatings Λ of the chips we consider. For example, it contains
532
+ what we have labelled b0, b1, b2, b3 and b4 in Figure 1. For the relation, we define bi < bj if
533
+ and only if bi is experienced as less similar to b0 than bj is to b0.13
534
+ For this proposal to make sense, we first need to check whether the axioms are satisfied.
535
+ If they were not satisfied, the proposal could still be a structure of conscious experience; but
536
+ it wouldn’t be a strict partial order.
537
+ That’s why the axioms are not explicitly mentioned
538
+ in (MSC). Irreflexivity is satisfied because no color quality is less similar to the reference than
539
+ itself. Asymmetry is satisfied because if a bi is less similar to the reference than bj, then bj is
540
+ not less similar to the reference than bi.
541
+ Transitivity is a more interesting case. The use of terms like ‘less similar to’ in natural
542
+ language suggests that transitivity is also satisfied; it suggests that, if bi is less similar to the
543
+ reference than bj and bj is less similar to the reference than bk, then bi should be less similar
544
+ to the reference than bk. But it might very well be the case that natural language is not
545
+ precise enough to describe its target domain. The use of natural language may be justified
546
+ in simple cases, or even in a majority of cases, but whether or not transitivity holds for all
547
+ bi, bj, bk ∈ C is, ultimately, an empirical question. Already in such a simple example one can see
548
+ how the mathematical-structure approach might be used to identify subtle details of conscious
549
+ experiences for which natural language alone is not precise enough. Still, for the purpose of this
550
+ 13Since relative similarity, as defined above, depends on the choice of reference b0, it would be more precise to
551
+ write <b0 instead of <. However, to simplify the notation, we keep the reference implicit.
552
+
553
+ bo
554
+ 60
555
+ 62
556
+ b
557
+ bo
558
+ 6013
559
+ example, we’re going to show the above-mentioned bit of good faith and assume transitivity
560
+ to hold as well.
561
+ Having checked that the axioms hold—that is, that the proposal is indeed a strict partial
562
+ order—we can proceed to check whether the structure is a mathematical structure of conscious
563
+ experience according to (MSC). Concerning Condition (S1), there is one domain C and it
564
+ consists of color qualities, so this condition is satisfied. Therefore, only Condition (S2) remains
565
+ to be checked.
566
+ We claim that the relative similarity aspect a, as defined above, is in fact a <-aspect. To
567
+ see that this is true, we have to show that a variation does not preserve < with respect to
568
+ relata b1 and b2 if and only if the variation changes a relative to b1 and b2.
569
+ Consider any variation v : A(e) → A(e′) that does not preserve < with respect to relata
570
+ b1, b2 ∈ A(e). Two aspects b1 and b2 are relata of < if either b1 < b2 or b2 < b1. We focus
571
+ on the first case as the other one follows from the first by renaming b2 and b1 in what follows.
572
+ By definition of the < relation, b1 < b2 means that b1 is experienced as less similar to the
573
+ reference than b2. Therefore, there is also a relative similarity aspect a ∈ A(e) as defined
574
+ above. As explained in Section 2.3, there can be two ways in which the variation v might not
575
+ preserve <. Either v(b1) or v(b2) are not defined, or, if they are defined, it is not the case that
576
+ v(b1) < v(b2). In the former case, there cannot be an a in A(e′) relative to v(b1) or v(b2),
577
+ simply because the latter do not both exist. In the latter case, it follows from the definition
578
+ of < that v(b1) is not experienced as less similar to the reference than v(b2). So, there is no
579
+ a ∈ A(e′) relative to v(b1) and v(b2). Hence, we may conclude that v changes a relative to b1
580
+ and b2.
581
+ For the opposite case, let v : A(e) → A(e′) be a variation which preserves < with respect
582
+ to relata b1 and b2. As before, this implies that a is in A(e) relative to b1 and b2. Because v
583
+ preserves <, v(b1) and v(b2) both exist and we also have v(b1) < v(b2). Applying the definition
584
+ of < then implies that a is also in A(e′) relative to v(b1) and v(b2). Hence v does not change a
585
+ relative to b1 and b2.
586
+ Because in both of these cases, v was arbitrary, it follows that a is indeed a <-aspect.
587
+ Therefore, Conditions (S1) and (S2) of (MSC) are both satisfied, and the strict partial order
588
+ (C, <) is indeed a mathematical structure of conscious experience; it is the mathematical
589
+ structure of relative similarity of color experiences with respect to b0.
590
+ 4. Metric Structure
591
+ Our next example is a metric structure. Metric structures feature prominently in various
592
+ different approaches, for example [9, 10, 42, 55, 56, 57]. In some cases, such as [9], their intro-
593
+ duction is motivated by mathematical convenience. In others, such as [56], their introduction
594
+ is closely tied to laboratory features, such as the topology of physical stimuli. Therefore, it is
595
+ not so clear whether the prominent role metric structures play is due to an intimate relation
596
+ to consciousness or just due to them being a very handy mathematical tool. A principled
597
+ investigation, we take it, is highly imperative.
598
+
599
+ 14
600
+ A metric structure (M, d) consists of a set M of ‘points’ together with a function d :
601
+ M × M → R. Therefore, the domains of the structure are M and R. For the function to be a
602
+ metric function, three axioms have to be satisfied for all points x, y, z ∈ M:
603
+ ▶ Positive definiteness, which requires that d(x, y) ≥ 0 and that d(x, y) = 0 if and only
604
+ if x = y.
605
+ ▶ Symmetry, which requires that d(x, y) = d(y, x).
606
+ ▶ The triangle inequality, which requires that d(x, y) ≤ d(x, z) + d(z, y).
607
+ We will turn to previous work on metric structure momentarily, but before doing so, we
608
+ can ask whether this type of structure could possibly be a structure of conscious experience,
609
+ according to either (MDC) or (MSC)?
610
+ To answer this question, we look at one of the two domains of the metric structure, namely
611
+ the real numbers R. What is not well-known outside of mathematics is that the real numbers
612
+ are not simply given, as the natural numbers or rationals might be, but that they have to be
613
+ constructed in a comparably involved procedure. There are a small number of such procedures
614
+ which yield equivalent results; the most common procedure is to construct the real numbers
615
+ as equivalence classes of Cauchy sequences of rational numbers.14
616
+ If real numbers are equivalence classes of sequences of rational numbers, it is hard to see
617
+ how one might reasonably claim that these correspond to aspects of conscious experiences, as
618
+ required by both (MDC) and (MSC). Independently of whether aspects are taken to denote
619
+ qualities, qualia or phenomenal properties, there do not seem to be aspects that are equivalence
620
+ classes of sequences of rational numbers. Phenomenal similarity, relative similarity, or similar
621
+ aspects which have been associated to metric structures in previous work (see for example [9,
622
+ 42, 55]), do not have anything to do, in our eyes, with Cauchy sequences of rational numbers
623
+ or any of the other real number construction schemes, such as Dedekind cuts.
624
+ Therefore, when understood in the precise sense of the term, a metric structure can neither
625
+ be a structure of conscious experience (MSC), nor a structure to describe conscious experience
626
+ in the sense of (MDC); it can only be an auxiliary tool.
627
+ The way to move forward, if one wants to consider something like a metric structure as
628
+ a structure of conscious experience, is to restrict the target domain of the metric function d
629
+ to something that could reasonably be “in” conscious experience; that is, something closer to
630
+ degrees of phenomenal similarity or a similar concept, for example, natural or rational numbers.
631
+ We will now turn to this option. But it is important to note that most theorems about metric
632
+ spaces cease to hold true if the real numbers are replaced by something else. That’s because
633
+ the convergence properties of sequences of real numbers (called completeness [58]) are crucial
634
+ for the definition of metric spaces.
635
+ The received wisdom on how to link metric structures to conscious experience is summarized
636
+ concisely by Lee when discussing the “standard framework” for modeling mental qualities [42]:
637
+ “There are three main desiderata when constructing a model in the standard
638
+ framework. First, there should be one-to-one correspondence between points in
639
+ 14A Cauchy sequence is, roughly speaking, a sequence of rational numbers that get arbitrarily close to each
640
+ other. Two Cauchy sequences are defined to be equivalent if the difference between their elements tends to
641
+ zero.
642
+
643
+ 15
644
+ the model and qualities in the targeted domain. Second, points that are more
645
+ distant in the model should represent qualities that are less phenomenally
646
+ similar to each other. Third, points should have distance zero just in case the
647
+ qualities represented by those points are phenomenally identical.” [42, p. 14]
648
+ The first desideratum states that the metric structure contains a set of points M that corre-
649
+ sponds to the targeted domain; for example, qualities of a certain type. The third desideratum
650
+ alludes to one of the three axioms of the metric structure, namely positive definiteness; it
651
+ is implicitly understood that the other axioms should also hold. But what does the second
652
+ desideratum mean? And how does it relate to a metric function that takes values in some
653
+ number range?
654
+ To interpret the second desideratum, we have to understand how phenomenal similarity
655
+ may relate to numbers; this will lead us to “degrees” of phenomenal similarity. To have a
656
+ foundation on which to build this understanding, we will assume that phenomenal similarity
657
+ can be described by a strict partial order (M, <) as introduced in Section 3. This assumption
658
+ is in line with Clark’s proposal in [9] and [10], where a metric structure is based on relative
659
+ similarity.
660
+ Given a strict partial order (M, <) that describes phenomenal similarity (meaning that
661
+ x < y if and only if x is less similar to some reference than y), a metric-like function d on M
662
+ can be given by defining
663
+ d(x, y) = length<(x, y) ,
664
+ where length<(x, y) denotes the number of elements of the shortest path that connects x and
665
+ y.15 This definition of d(x, y) means that the metric function counts degrees of phenomenal
666
+ similarity in-between x and y, so that “points that are more distant in the model [...] represent
667
+ qualities that are less phenomenally similar to each other” (ibid.), as required by the second
668
+ desideratum.
669
+ As the reader can check, this definition of d(x, y) indeed satisfies the three axioms of a
670
+ metric function.
671
+ Furthermore, it takes values in the natural numbers N, so that the real-
672
+ number problem is avoided. So, with d : M × M → N defined as above, is (M, d) a structure
673
+ of conscious experience?
674
+ By assumption, M consists of aspects of conscious experiences: qualities of the targeted
675
+ domain. Furthermore, there is no obvious reason why a bounded subset of the natural numbers
676
+ should not be aspects of conscious experiences of a suitable set E. Therefore, Condition (S1)
677
+ might well be satisfied.
678
+ So, whether or not (M, d) is a structure of conscious experience
679
+ (MSC), as compared to just a structure to describe conscious experiences (MDC), boils down
680
+ to whether there is a d-aspect for d as defined above. Let us check if there is one.
681
+ 15Formally, it is defined as
682
+ length<(x, y) =
683
+
684
+
685
+
686
+
687
+
688
+
689
+
690
+
691
+
692
+
693
+
694
+ 0
695
+ if x = y
696
+ min |{x → y}|
697
+ if x < y
698
+ min |{y → x}|
699
+ if y < x
700
+
701
+ otherwise ,
702
+ where x → y denotes a path along the strict partial order from x to y, |{x → y}| denotes the number of
703
+ elements in the path (with x counted but y not counted), and where the minimum selects the shortest path.
704
+
705
+ 16
706
+ An aspect a is a d-aspect if and only if every variation v which does not preserve d with
707
+ respect to relata b1, ..., bm changes a relative to b1, ..., bm, and vice versa. The definition of
708
+ relata in case of the function d means that m = 3 and b3 = d(b1, b2). Therefore, a variation
709
+ v doesn’t preserve d with respect to b1, b2, b3 if either the v(bi) do not all exist or if v(b3) ̸=
710
+ d(v(b1), v(b2)), which means that the variation changes the experience of the number b3 =
711
+ d(b1, b2) in such a way that it does not agree any more with the experienced distance of v(b1)
712
+ and v(b2). A variation v preserves d with respect to relata b1, b2, b3, on the other hand, if
713
+ v(b3) = d(v(b1), v(b2)). Therefore, what we’re looking for is an aspect a of some experience e
714
+ in which the identity b3 = d(b1, b2) holds, that changes relative to b1, b2, b3 if the above identity
715
+ breaks, and that does not change relative to b1, b2, b3 if the above identity holds true. This
716
+ must be true of all relata b1, b2, b3 of d, that is, of all experiences which exhibit aspects b1, b2
717
+ and b3 such that b3 = d(b1, b2).
718
+ Taking into account that b3 is the experience of a number, the only aspect which can satisfy
719
+ these two conditions is the experience of b1 and b2 having distance b3, or put differently: the
720
+ aspect in question would have to be an experience of ‘having distance’, which is instantiated
721
+ relative to b1, b2 and the number b3. We do not think there is such an aspect. Aspects might
722
+ be experienced as more or less similar, but we doubt that they are experienced as being a
723
+ specific number apart, be that number natural or rational. Therefore, even if watered down
724
+ to avoid the issues with real numbers, a metric structure does not seem to be a structure of
725
+ conscious experience.
726
+ So, in summary, there is one immediate and one deep reason why conscious experience does
727
+ not have a metric structure. The immediate reason is that the real numbers with their very
728
+ involved construction scheme do not seem to have anything to do with aspects of conscious
729
+ experience. The deep reason is that we simply do not experience qualities or other aspects as
730
+ being a particular number of degrees of similarity apart. This might explain why in approaches
731
+ such as that of Clark [9, 10], the details of the introduction of a metric structure point outside
732
+ the realm of conscious experience.
733
+ 5. Phenomenal Unity and Topological Structure
734
+ Our final example concerns topological structure. Interestingly, this is intimately tied to
735
+ phenomenal unity, the thesis that phenomenal states of a subject at a given time are unified [5].
736
+ Recall that we have introduced the set A(e) to denote aspects of the conscious experience e,
737
+ where we have used the term ‘aspect’ as a placeholder for concepts like qualia, qualities, or
738
+ (instantiated) phenomenal properties.
739
+ Most examples of these concepts are “independent”
740
+ from the experience in which they occur; they could be experienced together with a largely
741
+ different set of aspects in a different experience. Yet, experiences seem unified; their aspects are
742
+ experienced as tied together in some essential way. This raises the question of what underlies
743
+ this experience of the unity of a conscious experience? As we will see, somewhat surprisingly,
744
+ the answer is: a topological structure of conscious experience.
745
+ Much has been written about the question of phenomenal unity in the literature, for exam-
746
+ ple [4, 5, 11, 47, 53, 71], and in order to make use of some of the results, we assume that the
747
+
748
+ 17
749
+ term ‘aspect’ denotes an instantiated phenomenal property or quale. The set of aspects A(e),
750
+ then, comprises the phenomenal properties or qualia which are instantiated in the experience e,
751
+ also called the phenomenal states of the experience e.16 Our question, then, is what it means
752
+ that “any set of phenomenal states of a subject at a time is phenomenally unified” [5, p. 12].
753
+ There are various answers one might give to this question.
754
+ A promising answer is the
755
+ so-called subsumptive unity thesis, developed in [5]:
756
+ “For any set of phenomenal states of a subject at a time, the subject has a
757
+ phenomenal state that subsumes each of the states in that set.” [5, p. 20]
758
+ According to this thesis, what underlies the experience of the unity of a conscious experience
759
+ is that for any set X of phenomenal states in the conscious experience, there is a further
760
+ phenomenal state that subsumes each of the states in X. This phenomenal state characterizes
761
+ what it is like to be in all of the states of X at once [5, p. 20].
762
+ Put in terms of aspects, the subsumptive unity thesis says that for any set X ⊂ A(e) of
763
+ aspects of an experience, there is an additional aspect in A(e) that subsumes the aspects in X.
764
+ This aspect is the experience of what it is like to experience the aspects in X as part of one
765
+ experience e together, the experience that they are unified, as we will say. Let us call this
766
+ aspect the phenomenal unity aspect of X and denote it by aX. It is instantiated relative to
767
+ the elements of X.
768
+ Phenomenal unity gives rise to a mathematical structure of conscious experience. To see
769
+ how, let us use the symbol T to denote a collection of subsets of A(e), to be specified in
770
+ more detail below. Every subset of A(e) is a unary relation on A(e),17 and hence also on the
771
+ set A that comprises all aspects of the experiences in E. Therefore, (A, T ) is a mathematical
772
+ structure; it has domain A and its structures are the unary relations in T . The next paragraph
773
+ shows that because of the subsumptive unity thesis, the mathematical structure (A, T ) is a
774
+ mathematical structure of conscious experience according to (MSC).
775
+ Because A is the set of all aspects of E, Condition (S1) of (MSC) is satisfied. Therefore,
776
+ only Condition (S2) remains to be checked. This condition is satisfied because for every set
777
+ X ∈ T , the phenomenal unity aspect aX is an X-aspect. To show that this is the case, we need
778
+ to check that a variation does not preserve X with respect to relata b1, ..., bm if and only if it
779
+ changes aX relative to b1, ..., bm. Let v : A(e) → A(e′) be a variation that does not preserve X
780
+ with respect to relata b1, ..., bm . The relata of the subset X are the elements of that subset.
781
+ Therefore, we have b1, ..., bm ∈ A(e), so that the subsumptive unity thesis implies that there
782
+ is a phenomenal unity aspect aX relative to the b1, ..., bm in A(e). The condition that v does
783
+ not preserve X furthermore implies that either not all of the v(bi) exist or that at least one
784
+ of them is not in the set X. Therefore, there is no phenomenal unity aspect aX relative to
785
+ v(b1), ..., v(bm) in A(e′). Hence, the variation v changes aX relative to b1, ..., bm ∈ X. Vice
786
+ versa, let v : A(e) → A(e′) be a variation which preserves X with respect to relata b1, ..., bm.
787
+ 16A phenomenal state is an instantiation of a phenomenal property, or quale, by a subject at a given time. This
788
+ instantiation constitutes part of the experience of the subject at the time. An experience e, in our terminology,
789
+ is an experience of a subject at a given time. Hence, a phenomenal state is an instantiation of a phenomenal
790
+ property, or quale, in an experience e.
791
+ 17An m-ary relation on a set X is a subset R of Xm. Hence, a unary relation, where m = 1, is a subset of X.
792
+
793
+ 18
794
+ This implies that aX is instantiated relative to b1, ..., bm in A(e). The condition that v preserves
795
+ X furthermore implies that v(b1), ..., v(bm) exist, and that they are elements of X. Therefore,
796
+ aX is also instantiated relative to v(b1), ..., v(bm) in A(e′). This shows that the variation does
797
+ not change aX relative to b1, ..., bm. Thus, aX is indeed an X-aspect. And because that is true
798
+ for any X ∈ T , (A, T ) indeed satisfies Condition (S2) and hence (MSC).
799
+ The previous paragraph proves that, if the subsumptive unity thesis holds true for all sets
800
+ X in T , then (A, T ) is indeed a mathematical structure of conscious experience. As we will
801
+ explain next, this structure is intimately tied to a topological structure.
802
+ A topological structure (M, T ) consists of a set M and a collection T of subsets of M. The
803
+ collection has to satisfy three axioms, and there are a few different ways of formulating these
804
+ axioms. Here, we choose the formulation that corresponds to what is usually called ‘closed
805
+ sets’. The axioms are:
806
+ ▶ The empty set ∅ and the whole set M are both in T .
807
+ ▶ The intersection of any collection of sets of T is also in T .
808
+ ▶ The union of any finite number of sets of T is also in T .
809
+ Having specified what a topological structure is, we return to the structure (A, T ), which is
810
+ induced by phenomenal unity, and ask what the collection T of subsets is?
811
+ First, it is important to note that the subsumptive unity thesis does not provide a phenom-
812
+ enal unity aspect aX for every subset of A; it can only provide such an aspect for a set of
813
+ aspects that are actually experienced together, that is, for a subset X of A(e). Therefore, T
814
+ is not the discrete topology introduced in Section 1. Second, it also cannot be the case that it
815
+ provides a phenomenal unity aspect for every subset of A(e). That’s because then there would
816
+ be an infinite regress: for every subset X of A(e) there would be a new aspect aX in A(e),
817
+ giving a new subset X ∪ {aX} that would give a new phenomenal unity aspect aX∪{aX}, and
818
+ so forth. This problem is well-known in the literature [3, 71]. Rather, we take it, the quantifier
819
+ ‘any set’ in the subsumptive unity thesis must be understood as ‘any set of aspects that are
820
+ experienced as being unified’. While it is arguably the case that the whole set of aspects A(e)
821
+ of an experience is always experienced as unified, introspection suggests that we consciously
822
+ experience only a select group of aspects as unified at a time.18
823
+ So, which sets of aspects do we experience as unified? While it might be difficult to give a
824
+ general answer to this question, there is a special case where a sufficiently detailed specification
825
+ can be given: the case of regions in visual experience. Here, ‘regions’ are sets of positions of
826
+ the space that visually perceived objects occupy.19 The positions in a region are experienced
827
+ as unified. Therefore, the regions of visual experience are members of the collection T which
828
+ is induced by phenomenal unity. Furthermore, they appear to satisfy the axioms of a topology
829
+ as stated above: the whole set of positions in a visual experience is a region; it seems to be the
830
+ case that intersections of regions in visual experience are also regions in visual experience; and
831
+ 18This solves the infinite regress problem because, arguably, we do not always experience the phenomenal unity
832
+ aspects as unified with the sets they correspond to. So, there is not always a phenomenal unity aspect aX∪{aX}
833
+ for the set that consists of aX and X.
834
+ 19It is also plausible to think that visual experiences do not contain positions as aspects, but only regions.
835
+ However, assessing whether or not this is the case goes beyond the scope of this paper. Here, we assume that
836
+ positions are aspects of visual experiences.
837
+
838
+ 19
839
+ it seems to be the case that the union of any two regions in visual experience is also a region
840
+ in visual experience. For the empty set, no S-aspect of consciousness is required (there are
841
+ no relata of the corresponding unary relation), so we can take the empty set to be a member
842
+ of T . Thus, all axioms of a topology are satisfied.
843
+ Therefore, if we take M to denote the position aspects of visual experiences, and choose T to
844
+ comprise the regions of visual experience, then (M, T ) is indeed a topological structure. And,
845
+ as shown above, it is a structure of conscious experience as defined in (MSC). We thus find that,
846
+ because of the subsumptive unity thesis, this topological structure is indeed a mathematical
847
+ structure of conscious experience; much like conjectured in [64], it is a topology of the visual
848
+ content of subjective experience.
849
+ 6. The Three Problems Revisited
850
+ In this section, we discuss how the new approach (MSC), which we have developed in
851
+ Section 2.2, resolves the three problems discovered in Section 1.
852
+ Problem 1: Incompatible Structures. The first problem was that the condition (MDC),
853
+ which has been applied in previous approaches, admits incompatible structures to conscious
854
+ experience. Is this also true of (MSC)?
855
+ If two structures are incompatible, then there exists at least one automorphism of one struc-
856
+ ture that is not an automorphism of the other structure.20 As we explain below, this condition
857
+ implies that two incompatible structures cannot have an S-aspect in common. Therefore, it
858
+ is not possible for two incompatible structures to pertain to conscious experience in the exact
859
+ same way; so, (MSC) indeed resolves the problem of incompatible structures.
860
+ Let S and S′ denote two incompatible structures with the same domains. Then, there is at
861
+ least one automorphism of one structure that is not an automorphism of the other structure.
862
+ Let us denote such an automorphism by v and assume that it is an automorphism of S but
863
+ not of S′. Because v is not an automorphism of S′, it follows that there is at least one set of
864
+ relata b1, ..., bm of S′ in some A(e), such that the variation v : A(e) → A(e) induced by the
865
+ automorphism does not preserve S′ with respect to these relata. On the other hand, because
866
+ v is an automorphism of S, it follows that this variation preserves S with respect to b1, ..., bm.
867
+ If an aspect a is an S′-aspect, then, applying the definition of S′-aspects, we find that the
868
+ variation v needs to change it. In contrast, if an aspect a is an S-aspect, then, applying the
869
+ definition of S-aspects, we find that the variation v needs to not change it; either because the
870
+ b1, ..., bm do not constitute relata of S, or because the variation v preserves S with respect
871
+ to relata b1, ..., bm. So, because an aspect cannot be both changed and not changed under a
872
+ single variation, there cannot be an aspect a that is both an S-aspect and an S′-aspect.
873
+ 20Automorphisms are structure-preserving mappings from a structure to itself. Put in terms of the terminology
874
+ we have introduced in Section 2.2, automorphisms are mappings v that map the domains of a structure to
875
+ themselves. These mappings have to be bijective, and they have to preserve the structure, meaning that they
876
+ have to satisfy (P1) for all elements of the domain in case of relations, and (P2) for elements of the domains in
877
+ the case of functions.
878
+
879
+ 20
880
+ Problem 2: Arbitrary Re-Definitions. The definition (MSC) also resolves the problem of
881
+ arbitrary re-definitions. That’s because any re-definition changes the relata of the respective
882
+ structure, and therefore generates an own, independent condition for something to be an S-
883
+ aspect of the redefined structure. Whether or not this new S-aspect is a part of conscious
884
+ experience is a substantive question that depends on the actual experiences of the subject
885
+ under consideration; it is not automatically the case.
886
+ Consider, as examples, the cases of rescaling a metric, which we have introduced in Sec-
887
+ tion 1.
888
+ If, per assumption, (M, d) were a structure of conscious experience, then for any
889
+ relata (b1, b2, d(b1, b2)), the condition for d-aspects would have to be satisfied.
890
+ Rescaling
891
+ this to (M, C · d) generates a new condition because now, the relata to be considered are
892
+ (b1, b2, C · d(b1, b2)).
893
+ These are different relata, and correspondingly, different experiences
894
+ and different variations will enter the definition of a C · d-aspect. The same is true for an
895
+ (f(a) + f(b)) · d(a, b)-aspect. Whether or not these structures satisfy (MSC) depends on the
896
+ details of the conscious experiences under consideration; but they do not automatically sat-
897
+ isfy (MSC) just because (M, d) does.
898
+ Problem 3: Indifference to Consciousness. The third problem is resolved, finally, because
899
+ of the introduction of S-aspects, which are a counterpart “in” conscious experience to the
900
+ proposed mathematical structure. Because S-aspects are part of the definition (MSC), any
901
+ application of (MSC) requires one to engage with details of the conscious experiences of the
902
+ subject under consideration; (MSC) is not indifferent to conscious experience.
903
+ Consider, for example, the two topological structures of Section 1.
904
+ While (MDC) only
905
+ required us to check whether the structures are about aspects and satisfy the axioms, (MSC)
906
+ also requires us to check whether there is an S-aspect in conscious experience that corresponds
907
+ to the structures. As we have seen in Section 5, this involves a careful investigation of conscious
908
+ experience, for example, concerning the phenomenal unity.
909
+ 7. Conclusion
910
+ In this article, we investigated mathematical structures of conscious experience. Our main
911
+ result is a definition of what mathematical structures of conscious experience are. This defi-
912
+ nition provides a general method to identify and study structures of conscious experience; it
913
+ is grounded in a foundational understanding of mathematical structures as laid out by math-
914
+ ematical logic; and it provides a link between the abstract formal entities of mathematics,
915
+ on the one hand, and the concreta of conscious experience, on the other hand, see Section 2.
916
+ Our definition also resolves three problems that interfere with recent approaches that relate
917
+ mathematical structures to conscious experience, see Section 1.
918
+ What we consider noteworthy about our definition is that it is conceptually neutral, meaning
919
+ that it does not rely on any specific conception of conscious experience or aspects. Rather, it
920
+ is applicable to any conception of ‘conscious experience’ and ‘aspects’ in which every conscious
921
+ experience comes with a set of aspects. This includes common conceptions built on qualities,
922
+ qualia, or phenomenal properties, but also less common ideas built on atomistic conceptions of
923
+
924
+ 21
925
+ states of consciousness or phenomenal distinctions. Furthermore, our definition is methodolog-
926
+ ically neutral, meaning that it can be combined with many methods, practices, and procedures
927
+ that are used to investigate conscious experience, spanning empirical, analytical, and phe-
928
+ nomenological research. That is because the definition rests on the concept of variations, and
929
+ variations can be induced in three major ways: introspectively (for example, as in Husserl’s
930
+ imaginary variations [24]); in a laboratory by change of stimuli; or theoretically based on a
931
+ proposed theory of consciousness.
932
+ As first applications of our definition, we considered relative similarity, metric spaces, and
933
+ topological spaces. We found that relative similarity, which plays an important role in several
934
+ constructions of quality spaces, is indeed a mathematical structure of conscious experience, see
935
+ Section 3. Topological spaces are too, but for a surprising reason: they are intimately related
936
+ to phenomenal unity, see Section 5. Metric spaces, however, are not structures of conscious
937
+ experience; see Section 4. One of the two reasons for that is that metric spaces are built on
938
+ the real numbers, which have to be constructed with involved procedures using, for example,
939
+ equivalence classes of Cauchy sequences that do not seem to correspond to aspects of conscious
940
+ experience, however conceived.
941
+ We view the result presented here as one further step in a long journey to investigate
942
+ conscious experience mathematically. This step raises new questions and creates new oppor-
943
+ tunities, both of which can only be explored in an interdisciplinary manner. A new question,
944
+ for example, is whether our result on mathematical structures might open new perspectives
945
+ on measurements of consciousness [25], as arguably promised by the Representational Theory
946
+ of Measurement [37] whenever an axiomatic structure on a target domain is available. A new
947
+ opportunity, in our eyes, is the unification of the various approaches to represent consciousness
948
+ mathematically that have emerged in different fields. Because our result is conceptually and
949
+ methodologically neutral, it can provide a framework for this unification; but to develop a
950
+ unification that is both useful and valuable in practice requires experts from the respective
951
+ fields. We hope that, ultimately, our result provides a basis for developing a common formal
952
+ language to study consciousness.
953
+ Acknowledgments. We would like to thank the participants of the 2022 Modelling Con-
954
+ sciousness Workshop and of the Models of Consciousness 3 conference, both organized under
955
+ the umbrella of the Association for Mathematical Consciousness Science, as well as members of
956
+ the Munich Center for Mathematical Philosophy for fruitful discussions and helpful comments,
957
+ and in particular Jonathan Mason for valuable feedback on the manuscript. This research was
958
+ supported by grant number FQXi-RFP-CPW-2018 from the Foundational Questions Institute
959
+ and Fetzer Franklin Fund, a donor advised fund of the Silicon Valley Community Foundation.
960
+ We would like to thank the Dutch Research Council (NWO) for (partly) financing TL’s work
961
+ on project number 182.069 of the research programme Fluid Spintronics, and the Mathematical
962
+ Institute of the University of Oxford for hosting JK while working on this project.
963
+
964
+ 22
965
+ References
966
+ [1] N. Ay. Information geometry on complexity and stochastic interaction. Entropy, 17(4):2432–2458, 2015.
967
+ [2] L. S. Barbosa, W. Marshall, S. Streipert, L. Albantakis, and G. Tononi. A measure for intrinsic information.
968
+ Scientific reports, 10(1):1–9, 2020.
969
+ [3] T. Bayne. Divided brains and unified phenomenology: a review essay on Michael Tye’s consciousness and
970
+ persons. Philosophical Psychology, 18(4):495–512, 2005.
971
+ [4] T. Bayne. The Unity of Consciousness. Oxford University Press, 2012.
972
+ [5] T. J. Bayne and D. J. Chalmers. What is the unity of consciousness? In A. Cleeremans, editor, The Unity
973
+ of Consciousness. Oxford University Press, 2003.
974
+ [6] L. Blum and M. Blum. A theory of consciousness from a theoretical computer science perspective: Insights
975
+ from the conscious turing machine. arXiv preprint arXiv:2107.13704, 2021.
976
+ [7] M. Blum and L. Blum. A theoretical computer science perspective on consciousness. Journal of Artificial
977
+ Intelligence and Consciousness, 8(01):1–42, 2021.
978
+ [8] D. J. Chalmers and K. J. McQueen. Consciousness and the collapse of the wave function. In S. Gao, editor,
979
+ Consciousness and Quantum Mechanics. Oxford University Press, forthcoming.
980
+ [9] A. Clark. Sensory qualities. Clarendon Library of Logic and Philosophy, 1996.
981
+ [10] A. Clark. A theory of sentience. Clarendon press, 2000.
982
+ [11] A. Cleeremans and C. Frith. The Unity of Consciousness. Oxford University Press, 2003.
983
+ [12] S. Coninx. A multidimensional phenomenal space for pain: structure, primitiveness, and utility. Phe-
984
+ nomenology and the Cognitive Sciences, 21(1):223–243, 2022.
985
+ [13] I. Durham. A formal model for adaptive free choice in complex systems. Entropy, 22(5):568, 2020.
986
+ [14] M. Ebner. A communication-based model of consciousness. Journal of Artificial Intelligence and Con-
987
+ sciousness, 9(02):193–226, 2022.
988
+ [15] G. Fechner. Elements of psychophysics. Vol. I. New York, 1966.
989
+ [16] S. B. Fink, L. Kob, and H. Lyre. A structural constraint on neural correlates of consciousness. Philosophy
990
+ and the Mind Sciences, 2, 2021.
991
+ [17] M. Fortier-Davy and R. Milli`ere. The multi-dimensional approach to drug-induced states: A commentary
992
+ on bayne and carter’s “dimensions of consciousness and the psychedelic state”. Neuroscience of Conscious-
993
+ ness, 2020(1):niaa004, 2020.
994
+ [18] J. Gert. Quality spaces: Mental and physical. Philosophical Psychology, 30(5):525–544, 2017.
995
+ [19] P. Grindrod. On human consciousness: A mathematical perspective. Network neuroscience, 2(1):23–40,
996
+ 2018.
997
+ [20] P. Grindrod and C. Lester. Cortex-like complex systems:
998
+ what occurs within?
999
+ Frontiers in Applied
1000
+ Mathematics and Statistics, 7, 2021.
1001
+ [21] A. Haun and G. Tononi. Why does space feel the way it does? Towards a principled account of spatial
1002
+ experience. Entropy, 21(12):1160, 2019.
1003
+ [22] D. D. Hoffman and C. Prakash. Objects of consciousness. Frontiers in Psychology, page 577, 2014.
1004
+ [23] D. D. Hoffman, C. Prakash, and R. Prentner. Fusions of consciousness. Entropy, 25(1):129, 2023.
1005
+ [24] E. Husserl. The crisis of European sciences and transcendental phenomenology: An introduction to phe-
1006
+ nomenological philosophy. Northwestern University Press, 1936/1970.
1007
+ [25] E. Irvine. Measures of consciousness. Philosophy Compass, 8(3):285–297, 2013.
1008
+ [26] K. Joshi. Introduction to General Topology. Wiley Eastern, 1983.
1009
+ [27] K. D. Joshi. Foundations of Discrete Mathematics. New Age International, 1989.
1010
+ [28] J. Jost. Information theory and consciousness. Frontiers in Applied Mathematics and Statistics, page 50,
1011
+ 2021.
1012
+ [29] A. Kent. Quanta and qualia. Foundations of Physics, 48(9):1021–1037, 2018.
1013
+ [30] A. Kent. Beyond IIT: (how) can we model the evolution of consciousness? PsyArXiv preprint, 2021.
1014
+ [31] J. Kleiner. Brain states matter. A reply to the unfolding argument. Consciousness and Cognition,
1015
+ 85:102981, 2020.
1016
+
1017
+ 23
1018
+ [32] J. Kleiner. Mathematical models of consciousness. Entropy, 22(6):609, 2020.
1019
+ [33] J. Kleiner and E. Hoel. Falsification and consciousness. Neuroscience of Consciousness, 2021(1):niab001,
1020
+ 2021.
1021
+ [34] J. Kleiner and S. Tull. The mathematical structure of Integrated Information Theory. Frontiers in Applied
1022
+ Mathematics and Statistics, 6:74, 2021.
1023
+ [35] M. Klincewicz. Quality space model of temporal perception. In Multidisciplinary aspects of time and time
1024
+ perception, pages 230–245. Springer, 2011.
1025
+ [36] D. Kostic. The vagueness constraint and the quality space for pain. Philosophical Psychology, 25(6):929–
1026
+ 939, 2012.
1027
+ [37] D. Krantz, D. Luce, P. Suppes, and A. Tversky. Foundations of Measurement, Vol. I-III. Academic Press,
1028
+ 1971.
1029
+ [38] K. Kremnizer and A. Ranchin. Integrated information-induced quantum collapse. Foundations of Physics,
1030
+ 45(8):889–899, 2015.
1031
+ [39] R. G. Kuehni and A. Schwarz. Color ordered: a survey of color systems from antiquity to the present.
1032
+ Oxford University Press, 2008.
1033
+ [40] C. Langer and N. Ay. Learning to predict requires integrated information. arXiv preprint arXiv:2209.01418,
1034
+ 2022.
1035
+ [41] A. Y. Lee. The microstructure of experience. Journal of the American Philosophical Association, 5(3):286–
1036
+ 305, 2019.
1037
+ [42] A. Y. Lee. Modeling mental qualities. Philosophical Review, 130(2):263–298, 2021.
1038
+ [43] A. Y. Lee. Objective phenomenology. Erkenntnis, pages 1–20, 2022.
1039
+ [44] A. Y. Lee. Degrees of consciousness. Noˆus, 2023.
1040
+ [45] H. Lyre. Neurophenomenal Structuralism. A philosophical agenda for a structuralist neuroscience of con-
1041
+ sciousness. Neuroscience of Consciousness, 2022(1):niac012, 2022.
1042
+ [46] J. W. Mason. Consciousness and the structuring property of typical data. Complexity, 18(3):28–37, 2013.
1043
+ [47] J. W. Mason. Model unity and the unity of consciousness: Developments in expected float entropy min-
1044
+ imisation. Entropy, 23(11):1444, 2021.
1045
+ [48] J. Mileti. Modern Mathematical Logic. Cambridge University Press, 2022.
1046
+ [49] M. Oizumi, L. Albantakis, and G. Tononi. From the phenomenology to the mechanisms of consciousness:
1047
+ Integrated Information Theory 3.0. PLoS Computational Biology, 10(5):e1003588, 2014.
1048
+ [50] R. Prentner. Consciousness and topologically structured phenomenal spaces. Consciousness and Cognition,
1049
+ 70:25–38, 2019.
1050
+ [51] A. Renero. Consciousness and mental qualities for auditory sensations. Journal of Consciousness Studies,
1051
+ 21(9-10):179–204, 2014.
1052
+ [52] P. Resende. Qualia as physical measurements: a mathematical model of qualia and pure concepts. arXiv
1053
+ preprint arXiv:2203.10602, 2022.
1054
+ [53] L. Roelofs. The unity of consciousness, within subjects and between subjects. Philosophical Studies,
1055
+ 173(12):3199–3221, 2016.
1056
+ [54] F. E. Rosas, P. A. Mediano, H. J. Jensen, A. K. Seth, A. B. Barrett, R. L. Carhart-Harris, and D. Bor.
1057
+ Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate
1058
+ data. PLoS computational biology, 16(12):e1008289, 2020.
1059
+ [55] D. Rosenthal. How to think about mental qualities. Philosophical Issues, 20:368–393, 2010.
1060
+ [56] D. Rosenthal. Quality spaces and sensory modalities. In P. Coates and S. Coleman, editors, Phenomenal
1061
+ qualities: sense, perception, and consciousness, pages 33–65. Oxford University Press Oxford, UK, 2015.
1062
+ [57] D. M. Rosenthal. Quality spaces, relocation, and grain. In O’Shea, editor, Sellars and his Legacy, pages
1063
+ 149–185. Oxford University Press Oxford, 2016.
1064
+ [58] W. Rudin. Real and Complex Analysis P. 2. McGraw-Hill, 1970.
1065
+ [59] W. Rudin. Principles of Mathematical Analysis, volume 3. McGraw-hill New York, 1976.
1066
+ [60] D. Rudrauf, D. Bennequin, I. Granic, G. Landini, K. Friston, and K. Williford. A mathematical model of
1067
+ embodied consciousness. Journal of Theoretical Biology, 428:106–131, 2017.
1068
+
1069
+ 24
1070
+ [61] A. K. Seth and J. Hohwy. Predictive Processing as an empirical theory for consciousness science. Cognitive
1071
+ Neuroscience, 12(2):89–90, 2021.
1072
+ [62] C. M. Signorelli, Q. Wang, and B. Coecke. Reasoning about conscious experience with axiomatic and
1073
+ graphical mathematics. Consciousness and Cognition, 95:103168, 2021.
1074
+ [63] R. P. Stanley. Qualia space. Journal of Consciousness Studies, 6(1):49–60, 1999.
1075
+ [64] C. Tallon-Baudry. The topological space of subjective experience. Trends in Cognitive Sciences, 2022.
1076
+ [65] G. Tononi. Integrated Information Theory. Scholarpedia, 10(1):4164, 2015.
1077
+ [66] N. Tsuchiya, S. Phillips, and H. Saigo. Enriched category as a model of qualia structure based on similarity
1078
+ judgements. Consciousness and Cognition, 101:103319, 2022.
1079
+ [67] N. Tsuchiya and H. Saigo. A relational approach to consciousness: categories of level and contents of
1080
+ consciousness. Neuroscience of Consciousness, 2021(2):niab034, 2021.
1081
+ [68] N. Tsuchiya, S. Taguchi, and H. Saigo. Using category theory to assess the relationship between conscious-
1082
+ ness and Integrated Information Theory. Neuroscience research, 107:1–7, 2016.
1083
+ [69] S. Tull and J. Kleiner. Integrated information in process theories: Towards categorical IIT. Journal of
1084
+ Cognitive Science, 22(2):92–123, 2021.
1085
+ [70] M. Tye. Qualia. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Stanford University, Fall
1086
+ 2021 edition, 2021.
1087
+ [71] W. Wiese. What Is It Like to Experience a Third Man? The Phenomenological Bradley and How to Solve
1088
+ It. In W. Wiese, editor, Experienced Wholeness: Integrating Insights from Gestalt Theory, Cognitive
1089
+ Neuroscience, and Predictive Processing. The MIT Press, 01 2018.
1090
+ [72] J. Yoshimi. Mathematizing phenomenology. Phenomenology and the Cognitive Sciences, 6(3):271–291,
1091
+ 2007.
1092
+ [73] B. D. Young, A. Keller, and D. Rosenthal. Quality-space theory in olfaction. Frontiers in Psychology, 5:1,
1093
+ 2014.
1094
+ [74] Q. Zaidi, J. Victor, J. McDermott, M. Geffen, S. Bensmaia, and T. A. Cleland. Perceptual spaces: math-
1095
+ ematical structures to neural mechanisms. Journal of Neuroscience, 33(45):17597–17602, 2013.
1096
+
GNFKT4oBgHgl3EQfbi5K/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HdFAT4oBgHgl3EQftx6O/content/2301.08666v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0f0571a920cf44470b0d20e41266015ed0e89171ad880599eef20d271569afd
3
+ size 209011
HdFAT4oBgHgl3EQftx6O/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b699ed5e9c33bbc5936e2afe1c46906c1a237d30cd6946df1bc2203366b21aa2
3
+ size 2687021
HdFAT4oBgHgl3EQftx6O/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:593b870f2c5acee127de4d06c582f7425bd27b8de9cd47c03a594898b652ccb5
3
+ size 110685
IdAyT4oBgHgl3EQfffja/content/tmp_files/2301.00343v1.pdf.txt ADDED
@@ -0,0 +1,594 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00343v1 [hep-th] 1 Jan 2023
2
+ On the A∞-Category of a Holomorphic Moment Map
3
+ Ahsan Z. Khan∗
4
+ School of Natural Sciences
5
+ Institute for Advanced Study
6
+ Einstein Drive, Princeton NJ 08540
7
+ January 3, 2023
8
+ Abstract
9
+ Let M be a hyperK¨ahler manifold equipped with a U(1) hyperK¨ahler isometry, and
10
+ let I be a complex structure on M. In this note, we study the A∞-category of A-branes
11
+ for the Landau-Ginzburg model with target space (M, I), and superpotential being the
12
+ I-holomorphic moment map. We show that if I is a generic complex structure, the
13
+ A∞-category is semi-simple. For exceptional complex structures, though typically not
14
+ semi-simple, the category still has no instanton corrections.
15
+ We illustrate the A∞-
16
+ category at both generic and exceptional loci when M is the cotangent bundle of the
17
+ projective line.
18
+ The Morse-Smale-Witten (MSW) complex is a cochain complex associated to a real func-
19
+ tion1 h on a Riemannian manifold (M, g). From a physics perspective, the MSW complex
20
+ is the space of perturbative ground states of an N = 2 supersymmetric quantum mechan-
21
+ ics (SQM) system [Wit82]. The differential on this complex is constructed from instanton
22
+ effects.
23
+ There is a special situation in which the MSW complex simplifies rather dramatically.
24
+ This is when (M, g) admits a g-compatible complex structure I (so that (M, g, I) is a K¨ahler
25
+ manifold), and h is the real part of an I-holomorphic function W on M. If this is the case,
26
+ it is well-known that all critical points of h have the same Morse index, equal to the complex
27
+ dimension of M. The MSW complex is thus simply a vector space concentrated in a single
28
+ degree, with one basis vector for each critical point.
29
+ This immediately implies that the
30
+ differential must vanish. In terms of physics, there is also something special that happens
31
32
+ 1Throughout this paper we assume that all critical points of h are isolated and non-degenerate
33
+ 1
34
+
35
+ in this situation. The N = 2 supersymmetry of the SQM with target space (M, g) and
36
+ superpotential h enhances to N = 4 precisely when M is K¨ahler and h = Re W. Systems
37
+ with twice the supersymmetry often have simpler properties for their supersymmetric ground
38
+ states.
39
+ Remark
40
+ Another case where the supersymmetry enhances to N = 4 is when h is the
41
+ moment map of a continuous K¨ahler isometry of M. We will use a complex version of this
42
+ statement later in the note.
43
+ We conclude that the MSW complex of Re W is not a very interesting invariant of the
44
+ pair
45
+
46
+ (M, g, I), W
47
+
48
+ . There is, however, a richer invariant of the same pair which, in a sense
49
+ that can be made precise, categorifies the MSW complex of Re W. The categorification of
50
+ the MSW complex of Re W is known (to mathematicians) as the Fukaya-Seidel A∞-category
51
+ of (M, W). In terms of physics what’s responsible for the existence of this categorification
52
+ is the fact that there is an uplift of the N = 4 SQM to a two-dimensional N = (2, 2)
53
+ Landau-Ginzburg (LG) model such that the original SQM supercharge lifts to a topological
54
+ supercharge2 of the LG model. The Fukaya-Seidel A∞-category is then simply the category
55
+ of boundary conditions of the Landau-Ginzburg model that preserve this topological super-
56
+ charge. These boundary conditions are known as A-branes. The MSW complex of Re W
57
+ can be recovered upon taking the Hochschild homology of the Fukaya-Seidel category.
58
+ To be more precise, there are a few different versions of the A∞-category associated to
59
+ (M, W) (all conjectured to be A∞-equivalent). Usually the term “Fukaya-Seidel category”
60
+ refers to a formulation by Seidel based on vanishing cycles and their intersections [Seid].
61
+ We will be working mostly with a formulation developed by Gaiotto, Moore and Witten,
62
+ which is based on particular kinds of solutions to the ζ-soliton and ζ-instanton equations3 4
63
+ [GMW15].
64
+ It is natural to wonder if there is a class of K¨ahler manifolds and superpotentials for
65
+ which the associated A∞-category simplifies. A possible criteria for such pairs could be that
66
+ the supersymmetry of the Landau-Ginzburg model of (M, W) enhances. There is indeed a
67
+ special situation where this is the case. Suppose that the target space (M, g, I) admits an
68
+ I-holomorphic two-form Ω satisfying
69
+ Ωg−1Ω + g = 0,
70
+ ∇Ω = 0,
71
+ (1)
72
+ 2A supercharge Q is called topological if all translations are in its image.
73
+ 3A similar (but not identical) formulation was also developed by Haydys [Hay10].
74
+ 4See also [KKS14] for a reformulation of the formalism of [GMW15] that generalizes to higher dimensions.
75
+ 2
76
+
77
+ so that the space (M, g, I, Ω) is a hyperK¨ahler manifold5. Moreover, suppose (M, g, I, Ω)
78
+ admits a hyperK¨ahler isometry generated by a vector field V , so that
79
+ LV g = LV I = LV Ω = 0,
80
+ (2)
81
+ and W is the corresponding holomorphic moment map
82
+ dW = ιV Ω.
83
+ (3)
84
+ If this is the case, the Landau-Ginzburg model for the pair
85
+
86
+ (M, g, I), W
87
+
88
+ has an additional
89
+ symmetry6 coming from rotating the fermions of the theory by the endomorphism
90
+ J = g−1Re
91
+
92
+
93
+
94
+ (4)
95
+ of the tangent bundle. The commutator of this symmetry transformation with the N =
96
+ (2, 2) supersymmetries generates four additional fermionic symmetries resulting in a total of
97
+ eight supercharges. The supersymmetry of the Landau-Ginzburg model of (M, W) therefore
98
+ enhances from N = (2, 2) to N = (4, 4).
99
+ The above example in fact gives us an infinite family of pairs of K¨ahler manifolds and
100
+ holomorphic functions for which the supersymmetry enhances.
101
+ In addition to I we can
102
+ define the integrable complex structures J = g−1Re(Ω) and K = g−1Im(Ω) that moreover
103
+ satisfy the quaternion relations
104
+ I2 = J2 = K2 = IJK = −1.
105
+ (5)
106
+ This brings us to the well-known fact that a hyperK¨ahler manifold M has a two-sphere’s
107
+ worth of complex structures, since for any v = (v1, v2, v3) ∈ S2, the endomorphism
108
+ I(v) = v1I + v2J + v3K
109
+ (6)
110
+ is an integrable complex structure on M. Moreover, given a hyperK¨ahler isometry generated
111
+ by a vector field V , there is a holomorphic moment map
112
+ W (v) : M → C
113
+ 5Recall that one definition of a hyperK¨ahler is as a K¨ahler manifold with a compatible parallel holomor-
114
+ phic symplectic form Ω.
115
+ 6The axial R-symmetry FA, the symmetry coming from rotating by J, and their commutator, generate
116
+ an so(3) R-symmetry algebra. Another way of seeing both the supersymmetry enhancement and this SO(3)
117
+ R-symmetry is to note that the two-dimensional theory comes from reducing a six dimensional hyperK¨ahler
118
+ sigma model, where the hyperK¨ahler isometry is gauged by a six-dimensional U(1) vector multiplet, to two
119
+ dimensions. When doing the reduction, we set the gauge fields in the four internal directions to a non-zero
120
+ vector in R4, while setting all other vector multiplet fields to vanish. The choice of a non-zero vector breaks
121
+ the SO(4) R-symmetry coming from the internal directions to SO(3).
122
+ 3
123
+
124
+ in every complex structure I(v). Explicitly, W (v) can be obtained as follows. Let µI be the
125
+ moment map corresponding to the real symplectic form, ωI = gI and let
126
+ W = µJ + iµK,
127
+ Ω = ωJ + iωK,
128
+ (7)
129
+ so that the triple (µI, µJ, µK) satisfies
130
+ dµI = ιV ωI,
131
+ (8)
132
+ dµJ = ιV ωJ,
133
+ (9)
134
+ dµK = ιV ωK.
135
+ (10)
136
+ We can obtain the complex structure I(v) from I by a hyperK¨ahler rotation: there is a
137
+ quaternion
138
+ q = q0 + q1i + q2j + q3k ∈ H
139
+ (11)
140
+ such that
141
+ ¯q i q = v1i + v2j + v3k.
142
+ (12)
143
+ The quaternion q is unique up to a redefinition by a phase q → eiθq. Organize the hy-
144
+ perK¨ahler moment map in terms of the imaginary quaternions
145
+ ⃗µ = µIi + µJj + µKk.
146
+ (13)
147
+ With respect to the complex structure I, the decomposition of the hyperK¨ahler moment
148
+ map into real and complex parts is given by
149
+ ⃗µ = h i + Wj,
150
+ (14)
151
+ so that h = µI is the real moment map and W = µJ +iµK is the complex moment map. The
152
+ real and holomorphic moment maps with respect to I(v) are then given by doing a rotation
153
+ of µ with respect to q:
154
+ q ⃗µ q = h(v)i + W (v)j.
155
+ (15)
156
+ Redefinition of q by a phase,
157
+ q → eiθq
158
+ (16)
159
+ leaves h(v) invariant whereas it transforms
160
+ W (v) → e2iθW (v).
161
+ (17)
162
+ Since redefinition of W (v) by a phase does not change the associated Landau-Ginzburg model,
163
+ we get an LG model ((M, g, I(v)), W (v)) for every point on the unit two-sphere. Because the
164
+ supersymmetry enhances for all such models, it is natural to expect that the A∞-category
165
+ of each such pair
166
+
167
+ (M, g, I(v)), W (v)�
168
+ simplifies.
169
+ 4
170
+
171
+ The purpose of this note is to show that this is indeed the case7.
172
+ For the rest of the note we assume that the hyperK¨ahler moment map has isolated and
173
+ non-degenerate critical points, and v ∈ S2 is such that the critical values of W (v) are in
174
+ general position on the complex plane.
175
+ The first basic simplification in the A∞-category of a moment map is the lack of instan-
176
+ ton corrections.
177
+ This can be seen as follows.
178
+ Recall that in the Gaiotto-Moore-Witten
179
+ formulation of the A∞-category of W, all instanton corrections come from solutions of the
180
+ ζ-instanton equation. The ζ-instanton equation for a map φ : C → M is
181
+ ∂φi
182
+ ∂¯z = ζgi¯j ∂W
183
+ ∂ ¯φ¯j ,
184
+ (18)
185
+ where ζ = eiθ is a phase we are required to choose in order to define the category, (φi, φ
186
+ ¯i) are
187
+ local complex coordinates on M and z is the standard complex coordinate on C. The par-
188
+ ticular solutions that contribute to the A∞-structure are solutions with “fan-like” boundary
189
+ conditions at infinity, that are rigid. Rigidity means that a solution has no moduli other
190
+ than overall translations of the Euclidean spacetime complex plane. That there cannot be
191
+ any such solution in the hyperK¨ahler case can be easily seen from the fact that the operator
192
+ obtained from linearizing the ζ-instanton equation has a zero-mode
193
+ δφi = V i
194
+ (19)
195
+ in addition to the translational zero-mode. There are therefore no non-trivial rigid instan-
196
+ tons.
197
+ Next we prove that at a generic point v on the two-sphere of complex structures, a stronger
198
+ statement holds: the A∞-category of the pair
199
+
200
+ (M, g, I(v)), W (v)�
201
+ is semi-simple. What we
202
+ mean by this is the following. Recall that A∞-category of a superpotential W has a generating
203
+ set of “thimble” objects {Ti} that are in one-to-one correspondence with critical points of
204
+ W. The A∞-category is said to be semi-simple if the morphism spaces between the thimble
205
+ objects satisfy
206
+ Hom(Ti, Tj) = δijC.
207
+ (20)
208
+ This property follows from an elementary Lemma.
209
+ Lemma
210
+ Let (M, g, I, J, K) be a hyperK¨ahler manifold,
211
+ ⃗µ : M → R3
212
+ 7For previous work that is related to the setting of the present note see [SV18] and [Jin21]
213
+ 5
214
+
215
+ be a hyperK¨ahler moment map, and ⃗n = (n1, n2, n3) ∈ S2 be a point on the unit sphere.
216
+ Suppose φ : R → M is a (non-constant) solution to the gradient flow equation
217
+ dφA
218
+ dy = gAB ∂(⃗n · ⃗µ)
219
+ ∂φB
220
+ (21)
221
+ where
222
+ ⃗n · ⃗µ = n1µI + n2µJ + n3µK.
223
+ (22)
224
+ Then the composition ⃗µ ◦ φ : R → R3 is an embedding with image a straight line in the
225
+ ⃗n-direction.
226
+ Proof. We show the claim for ⃗n = (0, 1, 0), so that we study the gradient flow equation for
227
+ µJ. Since µJ is the real part of the I-holomorphic function
228
+ WI = µJ + iµK,
229
+ (23)
230
+ the Cauchy-Riemann equation
231
+ dµJ = ItdµK
232
+ (24)
233
+ implies that the the gradient vector field of µJ is equivalent to the Hamiltonian vector field
234
+ of µK with respect to the symplectic form ωI
235
+ g−1dµJ = ω−1
236
+ I dµK.
237
+ (25)
238
+ Therefore µK is constant along a flow line. But µJ is also the real part of the K-holomorphic
239
+ function
240
+ WK = µJ − iµI
241
+ and so the Cauchy-Riemann equation for WK implies that the gradient flow of µJ is also
242
+ equivalent to the Hamiltonian flow for −µI with respect to the symplectic form ωK. Therefore
243
+ µI is also constant. Since µJ ◦ φ is monotonic, the image of the ⃗µ ◦ φ is a line parallel to the
244
+ J-axis. The case when ⃗n is arbitrary can be obtained by a hyperK¨ahler rotation.
245
+ Consider now the Landau-Ginzburg model with target space (M, g, I(v)) and superpoten-
246
+ tial given by the I(v)-holomorphic function W (v). A fundamental role in Landau-Ginzburg
247
+ models is played by BPS solitons. Let φi and φj be critical points of W (v). Recall that an
248
+ ij-BPS soliton is a solution of the gradient flow equation for Re(e−iθijW (v)) where
249
+ eiθij = W (v)(φi) − W (v)(φj)
250
+ |W (v)(φi) − W (v)(φj)|.
251
+ (26)
252
+ Let h(v) be the real moment map in the complex structure I(v), explicitly
253
+ h(v) = v1µI + v2µJ + v3µK = ⃗v · ⃗µ.
254
+ (27)
255
+ 6
256
+
257
+ According to the Lemma, the real moment map h(v) is conserved along the gradient flow of
258
+ Re
259
+
260
+ eiθW (v)�
261
+ (as is Im
262
+
263
+ eiθW (v)�
264
+ ) for any value of θ. An ij soliton can therefore only exist if
265
+ h(v)(φi) = h(v)(φj),
266
+ (28)
267
+ Letting ⃗µi ∈ R3 be the critical value of the hyperK¨ahler moment map in the ith vacuum,
268
+ this condition is simply saying that
269
+ ⃗v · (⃗µi − ⃗µj) = 0,
270
+ (29)
271
+ so that ⃗v is perpendicular to the vector
272
+ ⃗Zij = ⃗µi − ⃗µj
273
+ (30)
274
+ pointing from the jth critical value to the ith critical value. If this does not happen for any
275
+ pair of distinct critical points, the soliton spectrum of the Landau-Ginzburg theory is empty.
276
+ In the notation of [GMW15], the soliton space Rij is trivial
277
+ Rij = {0},
278
+ (31)
279
+ for each pair of distinct critical points (φi, φj). Since, in the Gaiotto-Moore-Witten formal-
280
+ ism, morphism spaces between different thimble objects are given as direct sums of tensor
281
+ products of soliton spaces, we obtain the following.
282
+ Corollary
283
+ Suppose ⃗v ∈ S2 is such that ⃗v · (⃗µi − ⃗µj) ̸= 0 for any pair of critical points
284
+ (φi, φj). Then the A∞-category of
285
+
286
+ (M, g, I(v)), W (v)�
287
+ is semi-simple:
288
+ Hom(Ti, Ti)
289
+ =
290
+ C, for all i,
291
+ (32)
292
+ Hom(Ti, Tj)
293
+ =
294
+ 0
295
+ for i ̸= j.
296
+ (33)
297
+ One can also rephrase the discussion in terms Lefschetz thimbles and their intersections.
298
+ The Lefschetz thimble Li(θ; v) for a critical point φi, and a given angle θ, is the space of
299
+ all gradient flow trajectories for the function Re(e−iθW (v)) that go to φi in the far past. We
300
+ are simply saying that if v is away from the exceptional locus, then the Lefschetz thimbles
301
+ Li(θ; v) and Lj(θ; v) for a given angle θ, even when slightly rotated away from θ so that their
302
+ images in the W (v)-plane intersect, will have an empty intersection
303
+ Li(θ ± ǫ; s) ∩ Lj(θ ∓ ǫ; s) = ∅
304
+ (34)
305
+ in M.
306
+ It is interesting to consider the exceptional loci, namely the points on the sphere of complex
307
+ structures where ⃗v · ⃗Zij = 0 for some pair (i, j) of vacua. The exceptional locus is typically a
308
+ set of great circles on the sphere, one such great circle Sij for each pair (i, j) of vacua. Along
309
+ a point on the great circle Sij there can be an ij-soliton, and so a morphism space between
310
+ distinct objects can be non-trivial.
311
+ 7
312
+
313
+ To get a better feeling for what happens at these exceptional points, we consider an
314
+ example. Let M be the cotangent bundle of the projective line M = T ∗P1. Consider the
315
+ complex structure induced from the complex structure on P1, and consider the holomorphic
316
+ coordinates (p, q) in one patch. We call this complex structure I. The real and holomorphic
317
+ symplectic forms in this complex structure are given by
318
+ ω
319
+ =
320
+ 2i dq ∧ d¯q
321
+ (1 + |q|2)2 − 2i(1 + |q|2)2dp ∧ d¯p,
322
+ (35)
323
+
324
+ =
325
+ dp ∧ dq.
326
+ (36)
327
+ The real and complex moment maps corresponding to the hyperK¨ahler isometry
328
+ (p, q) → (e−iθp, eiθq),
329
+ (37)
330
+ are given by
331
+ hI
332
+ =
333
+ 1 − |q|2
334
+ 1 + |q|2 − (1 + |q|2)2|p|2
335
+ (38)
336
+ WI
337
+ =
338
+ ipq.
339
+ (39)
340
+ There are two critical points, φ1 and φ2 given by (p, q) = (0, 0) and (p, q) = (0, ∞) respec-
341
+ tively, with corresponding critical values
342
+ (hI, WI)|(0,0)
343
+ =
344
+ (1, 0),
345
+ (40)
346
+ (hI, WI)|(0,∞)
347
+ =
348
+ (−1, 0).
349
+ (41)
350
+ In the complex structure I, the critical values of the real moment map are distinct, so that it
351
+ satisfies the criteria of the Corollary. The Landau-Ginzburg superpotential in this complex
352
+ structure,
353
+ WI = ipq
354
+ (42)
355
+ has no flows between the distinct critical points, since the value of WI on both critical points
356
+ is the same, being equal to zero. Therefore the A∞-category of the pair
357
+
358
+ (T ∗P1, g, I), WI
359
+
360
+ is
361
+ indeed semi-simple. On the other hand, consider the point on the sphere corresponding to
362
+ the complex structure K. The holomorphic moment map in this complex structure is
363
+ WK = hI + iRe(WI),
364
+ (43)
365
+ and the real moment map is
366
+ hK = Im(WI).
367
+ (44)
368
+ For the complex structure K we indeed find that the real moment map hK has the same
369
+ (vanishing) critical value for both critical points. The critical values of WK on the other
370
+ hand are
371
+ WK(φ1) = 1,
372
+ WK(φ2) = −1,
373
+ (45)
374
+ 8
375
+
376
+ so the phase eiθ12 of a BPS soliton interpolating between the critical points φ1 and φ2 must
377
+ be real. We therefore study the gradient flow equation for Re(WK) = hI, or equivalently, the
378
+ Hamiltonian flow equation for Re(WI) with respect to ωK = Im(Ω). This is the equation
379
+ dq
380
+ dy
381
+ =
382
+ −i∂WI
383
+ ∂p ,
384
+ (46)
385
+ dp
386
+ dy
387
+ =
388
+ i∂WI
389
+ ∂q ,
390
+ (47)
391
+ which simply becomes
392
+ dq
393
+ dy = q,
394
+ dp
395
+ dy = −p.
396
+ (48)
397
+ There is a family of solutions: for each q0 ∈ C\{0} we have
398
+ q(y)
399
+ =
400
+ q0ey,
401
+ (49)
402
+ p(y)
403
+ =
404
+ 0,
405
+ (50)
406
+ is a soliton interpolating between the critical points. Writing q0 = ey0+iα we find that y0
407
+ corresponds to an overall translation of the center, and α is the internal collective coordinate
408
+ corresponding to the U(1) isometry. Quantizing the latter collective coordinate, we conclude
409
+ that the soliton space R12 is isomorphic to the deRham cohomology of a circle.
410
+ To give a little more detail on the latter point, note that the space of one-particle BPS
411
+ states M12, namely the subspace of the Hilbert space H12 annihilated by the A-type su-
412
+ percharge (with ζ = 1) and its adjoint is four-dimensional, since there are four fermion
413
+ zero-modes: the superpartners b, b to the translational mode, and the superpartners c, ¯c to
414
+ the U(1) global symmetry. We can also see these as coming from the fact that the BPS
415
+ soliton equation is half-BPS in an eight-supercharge theory, giving us four broken super-
416
+ symmetries which we identify as the fermion zero modes. These fermion zero modes act on
417
+ the vacuum in H12 to generate an irreducible representation of a Clifford algebra with two
418
+ creation and two annihilation operators
419
+ {b, b} = {c, c} = 1,
420
+ (51)
421
+ thus giving us the four-dimensional vector space M12. To obtain R12, as done in [GMW15],
422
+ we factor out the Clifford module corresponding to the translational mode b, so that
423
+ M12 =
424
+
425
+ C ⊕ C[1]�
426
+ ⊗ R12
427
+ (52)
428
+ leaving us with
429
+ R12 = C ⊕ C[1].
430
+ (53)
431
+ 9
432
+
433
+ In a theory with two vacua 1 and 2, and ζ chosen so that T1 < T2, the morphism space
434
+ �R12 := Hom(T2, T1),
435
+ coincides with the soliton space R12. We therefore conclude that at the exceptional locus,
436
+ the thimble objects T1, T2 satisfy
437
+ �R12 = C ⊕ C[1].
438
+ (54)
439
+ The A∞-structure on the category with objects T1 and T2 is the obvious one: the only
440
+ non-trivial compositions come from the units in Hom(T1, T1) and Hom(T2, T2).
441
+ What happens at the complex structure K, and indeed for any I(0,a,b) = aJ + bK where
442
+ a2 + b2 = 1, is that we are considering an A-model for a real symplectic form
443
+ ω(0,a,b) = Im
444
+
445
+ (a + ib)Ω
446
+
447
+ ,
448
+ (55)
449
+ that is exact (since Ω is an exact form on T ∗P1). On the other hand, if we work with a complex
450
+ structure I(c,a,b) with c ̸= 0 (such as the complex structure I), then the real symplectic form
451
+ ω(c,a,b) is non-exact (since there’s a non-zero contribution from the non-exact symplectic form
452
+ ω). The A∞-categories for exact and non-exact symplectic forms indeed behave differently.
453
+ On the exceptional circle the symplectic manifold (M, ω(0,a,b)) is symplectomorphic to the
454
+ real cotangent bundle T ∗S2, in which the non-trivial morphism space Hom(T2, T1) was first
455
+ worked out in [Seid04].
456
+ Another noteworthy feature of the exact locus is the following. Consider the zero-section
457
+ of T ∗P1, which we denote as C. Note that C is an I-holomorphic submanifold of T ∗P1 such
458
+ that the holomorphic symplectic form Ω vanishes when restricted to it. C is therefore (the
459
+ support of) what is known as a (B, A, A) brane. In particular it is Lagrangian with respect
460
+ to the symplectic structure ωK. We therefore expect it to be an object in the A∞-category
461
+ of the pair
462
+
463
+ (T ∗P1, g, K), WK
464
+
465
+ . Recall that a general object or brane in the A∞-category
466
+ generated by thimbles is given by a twisted complex. A twisted complex B is specified by
467
+ a choice of graded vector space Vi for each thimble object Ti, along with a Maurer-Cartan
468
+ element (also known as a boundary amplitude): an element
469
+ γB ∈ ⊕i,jVi ⊗ �Rij ⊗ V ∨
470
+ j
471
+ (56)
472
+ of degree +1 that solves the Maurer-Cartan equation. We write such a brane as
473
+ B = [⊕iVi ⊗ Ti, γB].
474
+ (57)
475
+ We claim that the Lagrangian brane with support C is equivalent to the following twisted
476
+ complex:
477
+ BC = [T [1]
478
+ 1 ⊕ T2, γC]
479
+ (58)
480
+ 10
481
+
482
+ where T [1] denotes a choice of a multiplicity space of T being a one-dimensional vector space
483
+ in degree +1
484
+ T [1] = C[1] ⊗ T,
485
+ (59)
486
+ and γC is a Maurer-Cartan element
487
+ γC ∈ Hom(T [1]
488
+ 1
489
+ ⊕ T2, T [1]
490
+ 1 ⊕ T2).
491
+ (60)
492
+ The degree one part of this space is one-dimensional and we let γC be a spanning vector.
493
+ Since
494
+ m2(γC, γC) = 0,
495
+ (61)
496
+ it is a solution to the Maurer-Cartan equation. An elementary computation then shows that
497
+ the cohomology of the endomorphism space of this object is
498
+ H∗�
499
+ Hom(BC, BC)
500
+
501
+ = C ⊕ C[2].
502
+ (62)
503
+ Moreover as an A∞-algebra this is nothing but the ring C[x]/x2 where x is an element
504
+ carrying homological degree +2.
505
+ Thus the cohomology of Hom(BC, BC) is the deRham
506
+ cohomology ring of C, as we expect. We see that at an exceptional point the A∞-category
507
+ admits a Lagrangian sphere as an object.
508
+ In summary, for M = T ∗P1, the exceptional locus is a great circle on the twistor sphere
509
+ corresponding to when the real symplectic form is exact. If we are away from this locus, the
510
+ A∞-category of the holomorphic moment map is semi-simple, whereas on the exceptional
511
+ locus there is a non-trivial morphism space isomorphic to the cohomology of a circle. It is
512
+ also precisely at the exceptional locus that the A∞-category admits a Lagrangian sphere as
513
+ an object.
514
+ Going back to the general case, at the exceptional locus, we see that the A∞-category de-
515
+ pends on the spectrum of solitons for which in general there is no universal answer. However,
516
+ there is one feature which we comment on: A BPS soliton in the hyperK¨ahler moment map
517
+ setting is the critical point of a holomorphic functional. Indeed, the gradient flow equation
518
+ for µI is equivalent to both the ωJ-flow for µK and the ωK-flow for −µJ. We can obtain the
519
+ latter as the critical locus of the following holomorphic functional on the space of maps from
520
+ R to M:
521
+ W[ϕ] =
522
+ � �
523
+ ϕ∗(Λc) + iµc dy
524
+
525
+ ,
526
+ (63)
527
+ where ϕ : R → M, Λc is the Liouville form for Ωc = ωJ + iωK and µc = µJ + iµK. The
528
+ functional W is indeed holomorphic in the complex structure on Map(R, M) induced from I,
529
+ and a critical point of Re W obeys the ωJ-flow equation for µK. Thus we find that a soliton
530
+ is now the critical point of a holomorphic functional. This gives another argment for why
531
+ there are no instanton corrections even when there are non-trivial solitons.
532
+ 11
533
+
534
+ To conclude, this note studies the A∞-category of a holomorphic moment map in some
535
+ complex structure of a hyperK¨ahler manifold. Away from exceptional loci on the two-sphere
536
+ of complex structures, the A∞-category is semi-simple. At the exceptional loci, while the
537
+ category is not semi-simple in general, there are still no instanton corrections. We therefore
538
+ find that the A∞-category of a holomorphic moment map is not very interesting.
539
+ Just like the A∞-category of a holomorphic function categorifies the MSW complex of
540
+ its real part, it is natural to wonder if there is a categorification of the A∞-category of a
541
+ holomorphic moment map that is richer, and more intrinsic to hyperK¨ahler moment maps.
542
+ Such a proposal is supported by the fact that there is an uplift of the N = (4, 4) theory to
543
+ a three-dimensional theory with N = 4 supersymmetry, where the A-type supercharge lifts
544
+ to a topological supercharge. This would suggest that the natural invariant associated to a
545
+ hyperK¨ahler moment map is a suitable version of a 2-category.
546
+ The conjectural 2-category associated to (M, ⃗µ) is currently under investigation.
547
+ Acknowledgements
548
+ I thank Justin Hilburn, Mikhail Kapranov, Semon Rezchikov, Paul Seidel, and Edward
549
+ Witten for stimulating discussions. This work is supported by the Institute for Advanced
550
+ Study and the National Science Foundation under Grant No. PHY-2207584.
551
+ References
552
+ [GMW15] D. Gaiotto, G. W. Moore and E. Witten, “Algebra of the Infrared:
553
+ String
554
+ Field Theoretic Structures in Massive N = (2, 2) Field Theory In Two Dimensions,”
555
+ [arXiv:1506.04087 [hep-th]].
556
+ [Hay10] A. Haydys, “Fukaya-Seidel category and gauge theory,” J. Sympl. Geom. 13, 151-
557
+ 207 (2015) doi:10.4310/JSG.2015.v13.n1.a5 [arXiv:1010.2353 [math.SG]].
558
+ [Jin21] X. Jin, “Representing the Big tilting sheaves as holomorphic Morse Branes,” Ad-
559
+ vances in Mathematics, Volume 345 (2019) 845-860, [arXiv:1602.07382 [math.SG]].
560
+ [KKS14] M. Kapranov, M. Kontsevich and Y. Soibelman, “Algebra of the infrared and
561
+ secondary polytopes,” Adv. Math. 300, 616-671 (2016) doi:10.1016/j.aim.2016.03.028
562
+ [arXiv:1408.2673 [math.SG]].
563
+ [Seid] P. Seidel “Fukaya categories and Picard-Lefschetz theory,” Zurich Lectures in Ad-
564
+ vanced Mathematics. European Mathematical Society (EMS), Z¨urich
565
+ [Seid04] P. Seidel “Exact Lagrangian submanifolds of T ∗Sn and the graded Kronecker
566
+ quiver,” [arXiv:math/0401212 [math.SG]].
567
+ 12
568
+
569
+ [SV18] J.
570
+ P.
571
+ Solomon
572
+ and
573
+ M.
574
+ Verbitsky,
575
+ “Locality
576
+ in
577
+ the
578
+ Fukaya
579
+ category
580
+ of
581
+ a
582
+ hyperk¨ahler
583
+ manifold,”
584
+ Compos.
585
+ Math.
586
+ 155,
587
+ no.10,
588
+ 1924-1958
589
+ (2019)
590
+ doi:10.1112/S0010437X1900753X [arXiv:1805.00102 [math.SG]].
591
+ [Wit82] E. Witten, “Supersymmetry and Morse theory,” J. Diff. Geom. 17, no.4, 661-692
592
+ (1982)
593
+ 13
594
+
IdAyT4oBgHgl3EQfffja/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf,len=233
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
3
+ page_content='00343v1 [hep-th] 1 Jan 2023 On the A∞-Category of a Holomorphic Moment Map Ahsan Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
4
+ page_content=' Khan∗ School of Natural Sciences Institute for Advanced Study Einstein Drive, Princeton NJ 08540 January 3, 2023 Abstract Let M be a hyperK¨ahler manifold equipped with a U(1) hyperK¨ahler isometry, and let I be a complex structure on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
5
+ page_content=' In this note, we study the A∞-category of A-branes for the Landau-Ginzburg model with target space (M, I), and superpotential being the I-holomorphic moment map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
6
+ page_content=' We show that if I is a generic complex structure, the A∞-category is semi-simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
7
+ page_content=' For exceptional complex structures, though typically not semi-simple, the category still has no instanton corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
8
+ page_content=' We illustrate the A∞- category at both generic and exceptional loci when M is the cotangent bundle of the projective line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
9
+ page_content=' The Morse-Smale-Witten (MSW) complex is a cochain complex associated to a real func- tion1 h on a Riemannian manifold (M, g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
10
+ page_content=' From a physics perspective, the MSW complex is the space of perturbative ground states of an N = 2 supersymmetric quantum mechan- ics (SQM) system [Wit82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
11
+ page_content=' The differential on this complex is constructed from instanton effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
12
+ page_content=' There is a special situation in which the MSW complex simplifies rather dramatically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
13
+ page_content=' This is when (M, g) admits a g-compatible complex structure I (so that (M, g, I) is a K¨ahler manifold), and h is the real part of an I-holomorphic function W on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
14
+ page_content=' If this is the case, it is well-known that all critical points of h have the same Morse index, equal to the complex dimension of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
15
+ page_content=' The MSW complex is thus simply a vector space concentrated in a single degree, with one basis vector for each critical point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
16
+ page_content=' This immediately implies that the differential must vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
17
+ page_content=' In terms of physics, there is also something special that happens ∗khan@ias.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
18
+ page_content='edu 1Throughout this paper we assume that all critical points of h are isolated and non-degenerate 1 in this situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
19
+ page_content=' The N = 2 supersymmetry of the SQM with target space (M, g) and superpotential h enhances to N = 4 precisely when M is K¨ahler and h = Re W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
20
+ page_content=' Systems with twice the supersymmetry often have simpler properties for their supersymmetric ground states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
21
+ page_content=' Remark Another case where the supersymmetry enhances to N = 4 is when h is the moment map of a continuous K¨ahler isometry of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
22
+ page_content=' We will use a complex version of this statement later in the note.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
23
+ page_content=' We conclude that the MSW complex of Re W is not a very interesting invariant of the pair � (M, g, I), W � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
24
+ page_content=' There is, however, a richer invariant of the same pair which, in a sense that can be made precise, categorifies the MSW complex of Re W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
25
+ page_content=' The categorification of the MSW complex of Re W is known (to mathematicians) as the Fukaya-Seidel A∞-category of (M, W).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
26
+ page_content=' In terms of physics what’s responsible for the existence of this categorification is the fact that there is an uplift of the N = 4 SQM to a two-dimensional N = (2, 2) Landau-Ginzburg (LG) model such that the original SQM supercharge lifts to a topological supercharge2 of the LG model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
27
+ page_content=' The Fukaya-Seidel A∞-category is then simply the category of boundary conditions of the Landau-Ginzburg model that preserve this topological super- charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
28
+ page_content=' These boundary conditions are known as A-branes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
29
+ page_content=' The MSW complex of Re W can be recovered upon taking the Hochschild homology of the Fukaya-Seidel category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
30
+ page_content=' To be more precise, there are a few different versions of the A∞-category associated to (M, W) (all conjectured to be A∞-equivalent).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
31
+ page_content=' Usually the term “Fukaya-Seidel category” refers to a formulation by Seidel based on vanishing cycles and their intersections [Seid].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
32
+ page_content=' We will be working mostly with a formulation developed by Gaiotto, Moore and Witten, which is based on particular kinds of solutions to the ζ-soliton and ζ-instanton equations3 4 [GMW15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
33
+ page_content=' It is natural to wonder if there is a class of K¨ahler manifolds and superpotentials for which the associated A∞-category simplifies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
34
+ page_content=' A possible criteria for such pairs could be that the supersymmetry of the Landau-Ginzburg model of (M, W) enhances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
35
+ page_content=' There is indeed a special situation where this is the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
36
+ page_content=' Suppose that the target space (M, g, I) admits an I-holomorphic two-form Ω satisfying Ωg−1Ω + g = 0, ∇Ω = 0, (1) 2A supercharge Q is called topological if all translations are in its image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
37
+ page_content=' 3A similar (but not identical) formulation was also developed by Haydys [Hay10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
38
+ page_content=' 4See also [KKS14] for a reformulation of the formalism of [GMW15] that generalizes to higher dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
39
+ page_content=' 2 so that the space (M, g, I, Ω) is a hyperK¨ahler manifold5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
40
+ page_content=' Moreover, suppose (M, g, I, Ω) admits a hyperK¨ahler isometry generated by a vector field V , so that LV g = LV I = LV Ω = 0, (2) and W is the corresponding holomorphic moment map dW = ιV Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
41
+ page_content=' (3) If this is the case, the Landau-Ginzburg model for the pair � (M, g, I), W � has an additional symmetry6 coming from rotating the fermions of the theory by the endomorphism J = g−1Re � Ω � (4) of the tangent bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
42
+ page_content=' The commutator of this symmetry transformation with the N = (2, 2) supersymmetries generates four additional fermionic symmetries resulting in a total of eight supercharges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
43
+ page_content=' The supersymmetry of the Landau-Ginzburg model of (M, W) therefore enhances from N = (2, 2) to N = (4, 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
44
+ page_content=' The above example in fact gives us an infinite family of pairs of K¨ahler manifolds and holomorphic functions for which the supersymmetry enhances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
45
+ page_content=' In addition to I we can define the integrable complex structures J = g−1Re(Ω) and K = g−1Im(Ω) that moreover satisfy the quaternion relations I2 = J2 = K2 = IJK = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
46
+ page_content=' (5) This brings us to the well-known fact that a hyperK¨ahler manifold M has a two-sphere’s worth of complex structures, since for any v = (v1, v2, v3) ∈ S2, the endomorphism I(v) = v1I + v2J + v3K (6) is an integrable complex structure on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
47
+ page_content=' Moreover, given a hyperK¨ahler isometry generated by a vector field V , there is a holomorphic moment map W (v) : M → C 5Recall that one definition of a hyperK¨ahler is as a K¨ahler manifold with a compatible parallel holomor- phic symplectic form Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
48
+ page_content=' 6The axial R-symmetry FA, the symmetry coming from rotating by J, and their commutator, generate an so(3) R-symmetry algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
49
+ page_content=' Another way of seeing both the supersymmetry enhancement and this SO(3) R-symmetry is to note that the two-dimensional theory comes from reducing a six dimensional hyperK¨ahler sigma model, where the hyperK¨ahler isometry is gauged by a six-dimensional U(1) vector multiplet, to two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
50
+ page_content=' When doing the reduction, we set the gauge fields in the four internal directions to a non-zero vector in R4, while setting all other vector multiplet fields to vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
51
+ page_content=' The choice of a non-zero vector breaks the SO(4) R-symmetry coming from the internal directions to SO(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
52
+ page_content=' 3 in every complex structure I(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
53
+ page_content=' Explicitly, W (v) can be obtained as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
54
+ page_content=' Let µI be the moment map corresponding to the real symplectic form, ωI = gI and let W = µJ + iµK, Ω = ωJ + iωK, (7) so that the triple (µI, µJ, µK) satisfies dµI = ιV ωI, (8) dµJ = ιV ωJ, (9) dµK = ιV ωK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
55
+ page_content=' (10) We can obtain the complex structure I(v) from I by a hyperK¨ahler rotation: there is a quaternion q = q0 + q1i + q2j + q3k ∈ H (11) such that ¯q i q = v1i + v2j + v3k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
56
+ page_content=' (12) The quaternion q is unique up to a redefinition by a phase q → eiθq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
57
+ page_content=' Organize the hy- perK¨ahler moment map in terms of the imaginary quaternions ⃗µ = µIi + µJj + µKk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
58
+ page_content=' (13) With respect to the complex structure I, the decomposition of the hyperK¨ahler moment map into real and complex parts is given by ⃗µ = h i + Wj, (14) so that h = µI is the real moment map and W = µJ +iµK is the complex moment map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
59
+ page_content=' The real and holomorphic moment maps with respect to I(v) are then given by doing a rotation of µ with respect to q: q ⃗µ q = h(v)i + W (v)j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
60
+ page_content=' (15) Redefinition of q by a phase, q → eiθq (16) leaves h(v) invariant whereas it transforms W (v) → e2iθW (v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
61
+ page_content=' (17) Since redefinition of W (v) by a phase does not change the associated Landau-Ginzburg model, we get an LG model ((M, g, I(v)), W (v)) for every point on the unit two-sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
62
+ page_content=' Because the supersymmetry enhances for all such models, it is natural to expect that the A∞-category of each such pair � (M, g, I(v)), W (v)� simplifies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
63
+ page_content=' 4 The purpose of this note is to show that this is indeed the case7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
64
+ page_content=' For the rest of the note we assume that the hyperK¨ahler moment map has isolated and non-degenerate critical points, and v ∈ S2 is such that the critical values of W (v) are in general position on the complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
65
+ page_content=' The first basic simplification in the A∞-category of a moment map is the lack of instan- ton corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
66
+ page_content=' This can be seen as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
67
+ page_content=' Recall that in the Gaiotto-Moore-Witten formulation of the A∞-category of W, all instanton corrections come from solutions of the ζ-instanton equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
68
+ page_content=' The ζ-instanton equation for a map φ : C → M is ∂φi ∂¯z = ζgi¯j ∂W ∂ ¯φ¯j , (18) where ζ = eiθ is a phase we are required to choose in order to define the category, (φi, φ ¯i) are local complex coordinates on M and z is the standard complex coordinate on C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
69
+ page_content=' The par- ticular solutions that contribute to the A∞-structure are solutions with “fan-like” boundary conditions at infinity, that are rigid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
70
+ page_content=' Rigidity means that a solution has no moduli other than overall translations of the Euclidean spacetime complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
71
+ page_content=' That there cannot be any such solution in the hyperK¨ahler case can be easily seen from the fact that the operator obtained from linearizing the ζ-instanton equation has a zero-mode δφi = V i (19) in addition to the translational zero-mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
72
+ page_content=' There are therefore no non-trivial rigid instan- tons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
73
+ page_content=' Next we prove that at a generic point v on the two-sphere of complex structures, a stronger statement holds: the A∞-category of the pair � (M, g, I(v)), W (v)� is semi-simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
74
+ page_content=' What we mean by this is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
75
+ page_content=' Recall that A∞-category of a superpotential W has a generating set of “thimble” objects {Ti} that are in one-to-one correspondence with critical points of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
76
+ page_content=' The A∞-category is said to be semi-simple if the morphism spaces between the thimble objects satisfy Hom(Ti, Tj) = δijC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
77
+ page_content=' (20) This property follows from an elementary Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
78
+ page_content=' Lemma Let (M, g, I, J, K) be a hyperK¨ahler manifold, ⃗µ : M → R3 7For previous work that is related to the setting of the present note see [SV18] and [Jin21] 5 be a hyperK¨ahler moment map, and ⃗n = (n1, n2, n3) ∈ S2 be a point on the unit sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
79
+ page_content=' Suppose φ : R → M is a (non-constant) solution to the gradient flow equation dφA dy = gAB ∂(⃗n · ⃗µ) ∂φB (21) where ⃗n · ⃗µ = n1µI + n2µJ + n3µK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
80
+ page_content=' (22) Then the composition ⃗µ ◦ φ : R → R3 is an embedding with image a straight line in the ⃗n-direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
81
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
82
+ page_content=' We show the claim for ⃗n = (0, 1, 0), so that we study the gradient flow equation for µJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
83
+ page_content=' Since µJ is the real part of the I-holomorphic function WI = µJ + iµK, (23) the Cauchy-Riemann equation dµJ = ItdµK (24) implies that the the gradient vector field of µJ is equivalent to the Hamiltonian vector field of µK with respect to the symplectic form ωI g−1dµJ = ω−1 I dµK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
84
+ page_content=' (25) Therefore µK is constant along a flow line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
85
+ page_content=' But µJ is also the real part of the K-holomorphic function WK = µJ − iµI and so the Cauchy-Riemann equation for WK implies that the gradient flow of µJ is also equivalent to the Hamiltonian flow for −µI with respect to the symplectic form ωK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
86
+ page_content=' Therefore µI is also constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
87
+ page_content=' Since µJ ◦ φ is monotonic, the image of the ⃗µ ◦ φ is a line parallel to the J-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
88
+ page_content=' The case when ⃗n is arbitrary can be obtained by a hyperK¨ahler rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
89
+ page_content=' Consider now the Landau-Ginzburg model with target space (M, g, I(v)) and superpoten- tial given by the I(v)-holomorphic function W (v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
90
+ page_content=' A fundamental role in Landau-Ginzburg models is played by BPS solitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
91
+ page_content=' Let φi and φj be critical points of W (v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
92
+ page_content=' Recall that an ij-BPS soliton is a solution of the gradient flow equation for Re(e−iθijW (v)) where eiθij = W (v)(φi) − W (v)(φj) |W (v)(φi) − W (v)(φj)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
93
+ page_content=' (26) Let h(v) be the real moment map in the complex structure I(v), explicitly h(v) = v1µI + v2µJ + v3µK = ⃗v · ⃗µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
94
+ page_content=' (27) 6 According to the Lemma, the real moment map h(v) is conserved along the gradient flow of Re � eiθW (v)� (as is Im � eiθW (v)� ) for any value of θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
95
+ page_content=' An ij soliton can therefore only exist if h(v)(φi) = h(v)(φj), (28) Letting ⃗µi ∈ R3 be the critical value of the hyperK¨ahler moment map in the ith vacuum, this condition is simply saying that ⃗v · (⃗µi − ⃗µj) = 0, (29) so that ⃗v is perpendicular to the vector ⃗Zij = ⃗µi − ⃗µj (30) pointing from the jth critical value to the ith critical value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
96
+ page_content=' If this does not happen for any pair of distinct critical points, the soliton spectrum of the Landau-Ginzburg theory is empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
97
+ page_content=' In the notation of [GMW15], the soliton space Rij is trivial Rij = {0}, (31) for each pair of distinct critical points (φi, φj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
98
+ page_content=' Since, in the Gaiotto-Moore-Witten formal- ism, morphism spaces between different thimble objects are given as direct sums of tensor products of soliton spaces, we obtain the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
99
+ page_content=' Corollary Suppose ⃗v ∈ S2 is such that ⃗v · (⃗µi − ⃗µj) ̸= 0 for any pair of critical points (φi, φj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
100
+ page_content=' Then the A∞-category of � (M, g, I(v)), W (v)� is semi-simple: Hom(Ti, Ti) = C, for all i, (32) Hom(Ti, Tj) = 0 for i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
101
+ page_content=' (33) One can also rephrase the discussion in terms Lefschetz thimbles and their intersections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
102
+ page_content=' The Lefschetz thimble Li(θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
103
+ page_content=' v) for a critical point φi, and a given angle θ, is the space of all gradient flow trajectories for the function Re(e−iθW (v)) that go to φi in the far past.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
104
+ page_content=' We are simply saying that if v is away from the exceptional locus, then the Lefschetz thimbles Li(θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
105
+ page_content=' v) and Lj(θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
106
+ page_content=' v) for a given angle θ, even when slightly rotated away from θ so that their images in the W (v)-plane intersect, will have an empty intersection Li(θ ± ǫ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
107
+ page_content=' s) ∩ Lj(θ ∓ ǫ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
108
+ page_content=' s) = ∅ (34) in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
109
+ page_content=' It is interesting to consider the exceptional loci, namely the points on the sphere of complex structures where ⃗v · ⃗Zij = 0 for some pair (i, j) of vacua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
110
+ page_content=' The exceptional locus is typically a set of great circles on the sphere, one such great circle Sij for each pair (i, j) of vacua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
111
+ page_content=' Along a point on the great circle Sij there can be an ij-soliton, and so a morphism space between distinct objects can be non-trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
112
+ page_content=' 7 To get a better feeling for what happens at these exceptional points, we consider an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
113
+ page_content=' Let M be the cotangent bundle of the projective line M = T ∗P1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
114
+ page_content=' Consider the complex structure induced from the complex structure on P1, and consider the holomorphic coordinates (p, q) in one patch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
115
+ page_content=' We call this complex structure I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
116
+ page_content=' The real and holomorphic symplectic forms in this complex structure are given by ω = 2i dq ∧ d¯q (1 + |q|2)2 − 2i(1 + |q|2)2dp ∧ d¯p, (35) Ω = dp ∧ dq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
117
+ page_content=' (36) The real and complex moment maps corresponding to the hyperK¨ahler isometry (p, q) → (e−iθp, eiθq), (37) are given by hI = 1 − |q|2 1 + |q|2 − (1 + |q|2)2|p|2 (38) WI = ipq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
118
+ page_content=' (39) There are two critical points, φ1 and φ2 given by (p, q) = (0, 0) and (p, q) = (0, ∞) respec- tively, with corresponding critical values (hI, WI)|(0,0) = (1, 0), (40) (hI, WI)|(0,∞) = (−1, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
119
+ page_content=' (41) In the complex structure I, the critical values of the real moment map are distinct, so that it satisfies the criteria of the Corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
120
+ page_content=' The Landau-Ginzburg superpotential in this complex structure, WI = ipq (42) has no flows between the distinct critical points, since the value of WI on both critical points is the same, being equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
121
+ page_content=' Therefore the A∞-category of the pair � (T ∗P1, g, I), WI � is indeed semi-simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
122
+ page_content=' On the other hand, consider the point on the sphere corresponding to the complex structure K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
123
+ page_content=' The holomorphic moment map in this complex structure is WK = hI + iRe(WI), (43) and the real moment map is hK = Im(WI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
124
+ page_content=' (44) For the complex structure K we indeed find that the real moment map hK has the same (vanishing) critical value for both critical points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
125
+ page_content=' The critical values of WK on the other hand are WK(φ1) = 1, WK(φ2) = −1, (45) 8 so the phase eiθ12 of a BPS soliton interpolating between the critical points φ1 and φ2 must be real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
126
+ page_content=' We therefore study the gradient flow equation for Re(WK) = hI, or equivalently, the Hamiltonian flow equation for Re(WI) with respect to ωK = Im(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
127
+ page_content=' This is the equation dq dy = −i∂WI ∂p , (46) dp dy = i∂WI ∂q , (47) which simply becomes dq dy = q, dp dy = −p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
128
+ page_content=' (48) There is a family of solutions: for each q0 ∈ C\\{0} we have q(y) = q0ey, (49) p(y) = 0, (50) is a soliton interpolating between the critical points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
129
+ page_content=' Writing q0 = ey0+iα we find that y0 corresponds to an overall translation of the center, and α is the internal collective coordinate corresponding to the U(1) isometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
130
+ page_content=' Quantizing the latter collective coordinate, we conclude that the soliton space R12 is isomorphic to the deRham cohomology of a circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
131
+ page_content=' To give a little more detail on the latter point, note that the space of one-particle BPS states M12, namely the subspace of the Hilbert space H12 annihilated by the A-type su- percharge (with ζ = 1) and its adjoint is four-dimensional, since there are four fermion zero-modes: the superpartners b, b to the translational mode, and the superpartners c, ¯c to the U(1) global symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
132
+ page_content=' We can also see these as coming from the fact that the BPS soliton equation is half-BPS in an eight-supercharge theory, giving us four broken super- symmetries which we identify as the fermion zero modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
133
+ page_content=' These fermion zero modes act on the vacuum in H12 to generate an irreducible representation of a Clifford algebra with two creation and two annihilation operators {b, b} = {c, c} = 1, (51) thus giving us the four-dimensional vector space M12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
134
+ page_content=' To obtain R12, as done in [GMW15], we factor out the Clifford module corresponding to the translational mode b, so that M12 = � C ⊕ C[1]� ⊗ R12 (52) leaving us with R12 = C ⊕ C[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
135
+ page_content=' (53) 9 In a theory with two vacua 1 and 2, and ζ chosen so that T1 < T2, the morphism space �R12 := Hom(T2, T1), coincides with the soliton space R12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
136
+ page_content=' We therefore conclude that at the exceptional locus, the thimble objects T1, T2 satisfy �R12 = C ⊕ C[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
137
+ page_content=' (54) The A∞-structure on the category with objects T1 and T2 is the obvious one: the only non-trivial compositions come from the units in Hom(T1, T1) and Hom(T2, T2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
138
+ page_content=' What happens at the complex structure K, and indeed for any I(0,a,b) = aJ + bK where a2 + b2 = 1, is that we are considering an A-model for a real symplectic form ω(0,a,b) = Im � (a + ib)Ω � , (55) that is exact (since Ω is an exact form on T ∗P1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
139
+ page_content=' On the other hand, if we work with a complex structure I(c,a,b) with c ̸= 0 (such as the complex structure I), then the real symplectic form ω(c,a,b) is non-exact (since there’s a non-zero contribution from the non-exact symplectic form ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
140
+ page_content=' The A∞-categories for exact and non-exact symplectic forms indeed behave differently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
141
+ page_content=' On the exceptional circle the symplectic manifold (M, ω(0,a,b)) is symplectomorphic to the real cotangent bundle T ∗S2, in which the non-trivial morphism space Hom(T2, T1) was first worked out in [Seid04].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
142
+ page_content=' Another noteworthy feature of the exact locus is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
143
+ page_content=' Consider the zero-section of T ∗P1, which we denote as C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
144
+ page_content=' Note that C is an I-holomorphic submanifold of T ∗P1 such that the holomorphic symplectic form Ω vanishes when restricted to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
145
+ page_content=' C is therefore (the support of) what is known as a (B, A, A) brane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
146
+ page_content=' In particular it is Lagrangian with respect to the symplectic structure ωK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
147
+ page_content=' We therefore expect it to be an object in the A∞-category of the pair � (T ∗P1, g, K), WK � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
148
+ page_content=' Recall that a general object or brane in the A∞-category generated by thimbles is given by a twisted complex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
149
+ page_content=' A twisted complex B is specified by a choice of graded vector space Vi for each thimble object Ti, along with a Maurer-Cartan element (also known as a boundary amplitude): an element γB ∈ ⊕i,jVi ⊗ �Rij ⊗ V ∨ j (56) of degree +1 that solves the Maurer-Cartan equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
150
+ page_content=' We write such a brane as B = [⊕iVi ⊗ Ti, γB].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
151
+ page_content=' (57) We claim that the Lagrangian brane with support C is equivalent to the following twisted complex: BC = [T [1] 1 ⊕ T2, γC] (58) 10 where T [1] denotes a choice of a multiplicity space of T being a one-dimensional vector space in degree +1 T [1] = C[1] ⊗ T, (59) and γC is a Maurer-Cartan element γC ∈ Hom(T [1] 1 ⊕ T2, T [1] 1 ⊕ T2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
152
+ page_content=' (60) The degree one part of this space is one-dimensional and we let γC be a spanning vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
153
+ page_content=' Since m2(γC, γC) = 0, (61) it is a solution to the Maurer-Cartan equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
154
+ page_content=' An elementary computation then shows that the cohomology of the endomorphism space of this object is H∗� Hom(BC, BC) � = C ⊕ C[2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
155
+ page_content=' (62) Moreover as an A∞-algebra this is nothing but the ring C[x]/x2 where x is an element carrying homological degree +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
156
+ page_content=' Thus the cohomology of Hom(BC, BC) is the deRham cohomology ring of C, as we expect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
157
+ page_content=' We see that at an exceptional point the A∞-category admits a Lagrangian sphere as an object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
158
+ page_content=' In summary, for M = T ∗P1, the exceptional locus is a great circle on the twistor sphere corresponding to when the real symplectic form is exact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
159
+ page_content=' If we are away from this locus, the A∞-category of the holomorphic moment map is semi-simple, whereas on the exceptional locus there is a non-trivial morphism space isomorphic to the cohomology of a circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
160
+ page_content=' It is also precisely at the exceptional locus that the A∞-category admits a Lagrangian sphere as an object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
161
+ page_content=' Going back to the general case, at the exceptional locus, we see that the A∞-category de- pends on the spectrum of solitons for which in general there is no universal answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
162
+ page_content=' However, there is one feature which we comment on: A BPS soliton in the hyperK¨ahler moment map setting is the critical point of a holomorphic functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
163
+ page_content=' Indeed, the gradient flow equation for µI is equivalent to both the ωJ-flow for µK and the ωK-flow for −µJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
164
+ page_content=' We can obtain the latter as the critical locus of the following holomorphic functional on the space of maps from R to M: W[ϕ] = � � ϕ∗(Λc) + iµc dy � , (63) where ϕ : R → M, Λc is the Liouville form for Ωc = ωJ + iωK and µc = µJ + iµK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
165
+ page_content=' The functional W is indeed holomorphic in the complex structure on Map(R, M) induced from I, and a critical point of Re W obeys the ωJ-flow equation for µK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
166
+ page_content=' Thus we find that a soliton is now the critical point of a holomorphic functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
167
+ page_content=' This gives another argment for why there are no instanton corrections even when there are non-trivial solitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
168
+ page_content=' 11 To conclude, this note studies the A∞-category of a holomorphic moment map in some complex structure of a hyperK¨ahler manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
169
+ page_content=' Away from exceptional loci on the two-sphere of complex structures, the A∞-category is semi-simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
170
+ page_content=' At the exceptional loci, while the category is not semi-simple in general, there are still no instanton corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
171
+ page_content=' We therefore find that the A∞-category of a holomorphic moment map is not very interesting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
172
+ page_content=' Just like the A∞-category of a holomorphic function categorifies the MSW complex of its real part, it is natural to wonder if there is a categorification of the A∞-category of a holomorphic moment map that is richer, and more intrinsic to hyperK¨ahler moment maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
173
+ page_content=' Such a proposal is supported by the fact that there is an uplift of the N = (4, 4) theory to a three-dimensional theory with N = 4 supersymmetry, where the A-type supercharge lifts to a topological supercharge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
174
+ page_content=' This would suggest that the natural invariant associated to a hyperK¨ahler moment map is a suitable version of a 2-category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
175
+ page_content=' The conjectural 2-category associated to (M, ⃗µ) is currently under investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
176
+ page_content=' Acknowledgements I thank Justin Hilburn, Mikhail Kapranov, Semon Rezchikov, Paul Seidel, and Edward Witten for stimulating discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
177
+ page_content=' This work is supported by the Institute for Advanced Study and the National Science Foundation under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
178
+ page_content=' PHY-2207584.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
179
+ page_content=' References [GMW15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
180
+ page_content=' Gaiotto, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
181
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
182
+ page_content=' Moore and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
183
+ page_content=' Witten, “Algebra of the Infrared: String Field Theoretic Structures in Massive N = (2, 2) Field Theory In Two Dimensions,” [arXiv:1506.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
184
+ page_content='04087 [hep-th]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
185
+ page_content=' [Hay10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
186
+ page_content=' Haydys, “Fukaya-Seidel category and gauge theory,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
187
+ page_content=' Sympl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
188
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
189
+ page_content=' 13, 151- 207 (2015) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
190
+ page_content='4310/JSG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
191
+ page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
192
+ page_content='v13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
193
+ page_content='n1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
194
+ page_content='a5 [arXiv:1010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
195
+ page_content='2353 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
196
+ page_content='SG]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
197
+ page_content=' [Jin21] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
198
+ page_content=' Jin, “Representing the Big tilting sheaves as holomorphic Morse Branes,” Ad- vances in Mathematics, Volume 345 (2019) 845-860, [arXiv:1602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
199
+ page_content='07382 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
200
+ page_content='SG]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
201
+ page_content=' [KKS14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
202
+ page_content=' Kapranov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
203
+ page_content=' Kontsevich and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
204
+ page_content=' Soibelman, “Algebra of the infrared and secondary polytopes,” Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
205
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
206
+ page_content=' 300, 616-671 (2016) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
207
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
208
+ page_content='aim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
209
+ page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
210
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
211
+ page_content='028 [arXiv:1408.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
212
+ page_content='2673 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
213
+ page_content='SG]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
214
+ page_content=' [Seid] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
215
+ page_content=' Seidel “Fukaya categories and Picard-Lefschetz theory,” Zurich Lectures in Ad- vanced Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
216
+ page_content=' European Mathematical Society (EMS), Z¨urich [Seid04] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
217
+ page_content=' Seidel “Exact Lagrangian submanifolds of T ∗Sn and the graded Kronecker quiver,” [arXiv:math/0401212 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
218
+ page_content='SG]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
219
+ page_content=' 12 [SV18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
220
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
221
+ page_content=' Solomon and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
222
+ page_content=' Verbitsky, “Locality in the Fukaya category of a hyperk¨ahler manifold,” Compos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
223
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
224
+ page_content=' 155, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
225
+ page_content='10, 1924-1958 (2019) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
226
+ page_content='1112/S0010437X1900753X [arXiv:1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
227
+ page_content='00102 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
228
+ page_content='SG]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
229
+ page_content=' [Wit82] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
230
+ page_content=' Witten, “Supersymmetry and Morse theory,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
231
+ page_content=' Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
232
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
233
+ page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
234
+ page_content='4, 661-692 (1982) 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/IdAyT4oBgHgl3EQfffja/content/2301.00343v1.pdf'}
JNE2T4oBgHgl3EQfAAax/content/tmp_files/2301.03587v1.pdf.txt ADDED
@@ -0,0 +1,523 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MACHINE LEARNING APPLIED TO PERUVIAN
2
+ VEGETABLES IMPORTS
3
+ Ticona-Salluca Hugo
4
+ Faculty of Statistic and Computer Engineering,
5
+ Universidad Nacional del Altiplano de Puno, P.O. Box 291
6
+ Puno - Peru.
7
8
+ Torres-Cruz Fred
9
+ Faculty of Statistic and Computer Engineering,
10
+ Universidad Nacional del Altiplano de Puno, P.O. Box 291
11
+ Puno - Peru.
12
13
+ Tumi-Figueroa Ernesto Nayer
14
+ Faculty of Statistic and Computer Engineering,
15
+ Universidad Nacional del Altiplano de Puno, P.O. Box 291
16
+ Puno - Peru.
17
18
+ Abstract—The current research work is being developed as a
19
+ training and evaluation object. the performance of a predictive
20
+ model to apply it to the imports of vegetable products into
21
+ Peru using artificial intelligence algorithms, specifying for this
22
+ study the Machine Learning models: LSTM and PROPHET.
23
+ The forecast is made with data from the monthly record of
24
+ imports of vegetable products(in kilograms) from Peru, collected
25
+ from the years 2021 to 2022. As part of applying the training
26
+ methodology for automatic learning algorithms, the exploration
27
+ and construction of an appropriate dataset according to the
28
+ parameters of a Time Series. Subsequently, the model with better
29
+ performance will be selected, evaluating the precision of the
30
+ predicted values so that they account for sufficient reliability to
31
+ consider it a useful resource in the forecast of imports in Peru.
32
+ Keywords—Machine Learning: forecasting; time series; im-
33
+ ports;artificial intelligence;dataset
34
+ I.
35
+ INTRODUCTION
36
+ The Machine Learning methodology is one of the most
37
+ valuable technologies in the Industry 4.0, and advances in Ma-
38
+ chine Learning have provided significant benefits in strategic
39
+ decision-making in organizations[1]. In recent years, predictive
40
+ models using Machine Learning algorithms have been imple-
41
+ mented in real environments of different organizations, and
42
+ as in this particular case that concerns us, it also operates in
43
+ the agriculture industry and optimal results are expected from
44
+ these technologies.
45
+ Likewise, Machine Learning technology has a high poten-
46
+ tial to optimize your processes and, consequently, make correct
47
+ and anticipated decisions. For this reason, Learning Algorithms
48
+ should also be considered as the next innovative direction to
49
+ significantly improve the prediction of these use cases. [2].
50
+ Therefore, this research will seek to demonstrate and
51
+ encourage the use of Machine Learning applications in the
52
+ field of agribusiness in Peru. Through the present work, the
53
+ examination and modeling of real data will be developed in
54
+ order to forecast future values with the least possible prediction
55
+ error. In this sense, this applied research work covers the
56
+ design, training, validation, and evaluation of 2 predictive
57
+ models. The research models to be explored are LSTM and
58
+ Prophet models, these being adequate and recommended to
59
+ develop applied foresting, on the one hand, LSTM is rec-
60
+ ognized for its hyperparameters which have the ability to
61
+ capture non-linear patterns using the grid search method[3]
62
+ and PROPHET for their modular regression with intuitive and
63
+ adjustable interpretation parameters applied on Time Series[4].
64
+ .
65
+ II.
66
+ DATASET
67
+ According to the purpose of the study, the official records
68
+ of the export volume (in kilograms) of vegetables in Peru were
69
+ used, collected from 2021 to 2022 in the National Open Data
70
+ Platform,[5], officially uploaded by the Ministry of Agrarian
71
+ Development and Irrigation of Peru.
72
+ Table 1
73
+ Description of the variables in the Vegetable Import Dataset
74
+ in Peru 2021-2022.
75
+ Based on this dataset, it is proposed to make a reliable
76
+ prediction, and according to the models to be developed, we
77
+ will therefore need the continuous quantitative variable, PESO.
78
+ Also according to the observed data, we find it necessary to
79
+ adapt a proper timeline; therefore, we must join the variables
80
+ A ˜NO and MES to foresee a more accurate seasonality, spec-
81
+ ifying the variables to forecast. Subsequently, to get a more
82
+ accurate overview of our data regarding products, we define
83
+ IDs for each product.
84
+ From the dataset, we highlight 3P: Soja, cake with 23.1%
85
+ in 1st position, in second position 5P: Apple, fresh fruit
86
+ with 6.3% and in third position 27P: Soja, grain with 4.2%.
87
+ The data ranges from 2021-05-01 to 2022-06-01, with 34,364
88
+ observations on imports of a total of 848 plant products.
89
+ 1 | P a g e
90
+ arXiv:2301.03587v1 [cs.LG] 8 Jan 2023
91
+
92
+ VAR
93
+ SCALA
94
+ DESCRIPTION
95
+ 1
96
+ ANO
97
+ CUANTITATIVA DISCRETA
98
+ Anodelaimportacion
99
+ 2
100
+ MES
101
+ CUANTITATIVA DISCRETA
102
+ Mes de la importacion
103
+ 3
104
+ SEDE
105
+ CUALITATIVA NOMINAL
106
+ Sede donde se registra de la Importacion
107
+ 4
108
+ PRODUCTO
109
+ CUANTITATIVA DISCRETA
110
+ Productoimportado
111
+ 7
112
+ PESO
113
+ CUANTITATIVA CONTINUA
114
+ Pesoenkilogramosdelproductc
115
+ 8
116
+ TIPO.ENVASE
117
+ CUALITATIVA NOMINAL
118
+ Envasecontenedordelaimportacion
119
+ PAIS.ORIGEN
120
+ CUALITATIVA NOMINAL
121
+ Origendelaimportacion del productoFig. 1.
122
+ Percentage description of each vegetable product imported in Peru
123
+ III.
124
+ METHODS
125
+ In this section, we will describe the models used for the
126
+ predictions.
127
+ A. LSTM MODEL
128
+ The LSTM name refers to the analogy that a standard RNN
129
+ has both ’long-term memory’ and ’short-term memory’. The
130
+ connection weights and biases in the network change once
131
+ per training episode, analogous to how physiological changes
132
+ in synaptic strengths store long-term memories; activation
133
+ patterns in the network change once per time step, analogous
134
+ to how moment-to-moment changes in electrical activation
135
+ patterns in the general brain store short-term memories. The
136
+ LSTM architecture aims to provide a short-term memory for
137
+ RNNs that can last for thousands of time steps and continue
138
+ to be reliable, hence ’short-term long-term memory’[6].
139
+ LSTM is considered a special type of recurrent neural
140
+ network (RNN), developed to solve the potential problem of
141
+ descending gradient found in traditional RNN training, and is
142
+ able to learn both short-term and long-term dependencies[7]
143
+ and is constructed of four main components: an entry gate, an
144
+ exit gate, memory cell and a forget gate.
145
+ Input Gate: controls the sending addition of information to
146
+ the cell state. In other words, the gateway will consider what
147
+ information needs to be added to the cell state to ensure that
148
+ important information is added and that there is no redundant
149
+ information or noise.
150
+ Memory Cell: controls the value that might be deleted or
151
+ updated, and contains a value that might need to be kept as
152
+ additional information for many other time steps.
153
+ Output Gate: controls the selection of useful learning
154
+ information from the current state of the cell as output.
155
+ Forget Gate: controls the removal of information that is no
156
+ longer needed for LTSM to learn things or, less importantly,
157
+ the state of the cell. This helps to optimize the performance
158
+ of the LSTM proposed network.
159
+ Also, The LSTM model follows the sequence:
160
+ 1. Decide to discard the cell state information by a Sigmoid
161
+ layer called ”forget gate”.
162
+ 2. Decide new information to store in the cell state. The
163
+ Sigmoid layer called the ”gateway layer” decides which values
164
+ will be updated. the tan coat creates a vector of new candidate
165
+ values that could be added to the state.
166
+ 3. Update the old cell state to the new cell state.
167
+ 4. Decide the filtered output based on the state of the cell.
168
+ Fig. 2.
169
+ MODEL LSTM
170
+ Considered for a normal LSTM model is the Tanh property,
171
+ which is a non-linear activation function. It regulates the values
172
+ that flow through the network, keeping the values between -
173
+ 1 and 1. To avoid information fading, a function is needed
174
+ whose second derivative can survive longer. There might be a
175
+ case where some values become huge, causing the values to
176
+ be irrelevant.
177
+ And of course an LSTM principal property: The Sigmoid
178
+ that belongs to the family of nonlinear activation functions.
179
+ Unlike Tanh, the Sigmoid holds values between 0 and 1. It
180
+ helps the network update or forget data. If the multiplication
181
+ results in 0, the information is considered forgotten. Similarly,
182
+ the information is kept if the value is relevant[8].
183
+ This will assist the network in determining what data can
184
+ be lost and what data should be kept.
185
+ B. PROPHET MODEL
186
+ PROPHET is a procedure for forecasting time series data
187
+ based on an additive model in which nonlinear trends are
188
+ adjusted for annual, weekly, and daily seasonality. It works best
189
+ with time series that have strong seasonal effects and multiple
190
+ seasons of historical data.
191
+ 2 | P a g e
192
+
193
+ 3P
194
+ 23.1%
195
+ 6
196
+ iF
197
+ 20
198
+ 6.3%
199
+ 5P
200
+ 145P
201
+ 43P
202
+ 10P
203
+ 239P
204
+ 56P
205
+ 4.2%
206
+ 86P
207
+ 11p
208
+ 106P
209
+ 31P
210
+ 3.5%
211
+ 104P
212
+ 1P
213
+ 0.8%
214
+ 42P
215
+ 27P
216
+ 3.2%
217
+ 29P
218
+ 64P
219
+ 2.8%
220
+ 59P
221
+ 2.4%
222
+ 77P
223
+ 61P
224
+ 23P
225
+ 8P
226
+ 91P
227
+ 17P
228
+ 84P
229
+ 6P
230
+ 18P
231
+ 34p
232
+ 57P
233
+ 12P
234
+ 44P
235
+ 89P
236
+ 22p
237
+ 9P
238
+ 28P
239
+ 41P
240
+ 70P
241
+ 69P
242
+ 26P
243
+ 16P
244
+ 50PForget gate
245
+ ht
246
+ Memory cell Ct
247
+ Ct-1
248
+
249
+ Ct
250
+ x
251
+ tanh
252
+ a
253
+ tanh
254
+ Hidden state ht
255
+ ht-1 -
256
+ X
257
+ >ht
258
+ Xt
259
+ Input gate
260
+ Output gateit=o(atU+ht-iW)
261
+ x, input
262
+ ft=o(atUf +ht-1Wf)
263
+ f. forget gate
264
+ i,
265
+ inputgate
266
+ Ot = o(atUo + ht-1Wo)
267
+ cellupdate
268
+ c, cell state
269
+ Ct =tanh (ctU9+ht-iW9)
270
+ o,outputgate
271
+ Ct = o(ft* Ct-1 + it*Ct)
272
+ h,output
273
+ G sigmoidactivationfunction
274
+ ht = tanh(Ct) * Ot
275
+ tanh Tanh activationfunctionIn the specification of this Prophet model, there are several
276
+ places where we can alter the model to apply your experience
277
+ and external expert knowledge without needing to understand
278
+ the underlying statistics.[4]
279
+ For the Prophet model with general theory:
280
+ We use a mathematical decomposable time series model[9]
281
+ and this model has these components: trend, seasonality, and
282
+ holidays. They are combined into the following equation:
283
+ Series Model Formula.
284
+ Here g(t) is the trend function that models non-periodic
285
+ changes in the value of the time series, s(t) represents periodic
286
+ changes (for example, weekly and yearly seasonality), and h(t)
287
+ represents the effects of the seasons, The error term represents
288
+ any idiosyncratic changes that do not fit the model.
289
+ In PROPHET we incorporate trend changes into the growth
290
+ model by explicitly determining the change points where the
291
+ growth rate is allowed to change. Suppose there are exchange
292
+ points at moments j,j= 1,..., S. We give N a vector of adjust-
293
+ ments, where only the rate change occurs at moment j. The
294
+ rate at any time is then the base rate k, plus all adjustments
295
+ up to the point of This is best represented by the vectors as
296
+ follows:
297
+ Adjustments represented.
298
+ When rate k is adjusted, the parameter set must also be
299
+ adjusted to connect the endpoints of the segments. The correct
300
+ fit at the shift point is easily calculated as:
301
+ That would be the Adjust at shift point.
302
+ The logistic piece of the growth model then looks as
303
+ follows:
304
+ The Fourier series is also applied in Prophet to provide
305
+ a flexible model of periodic effects[10]. Let P be the regular
306
+ period that we expect the time series to have (for example, P=
307
+ 365:25 for annual data or P= 7 for weekly data, when we scale
308
+ our indices of time variables). We can approximate arbitrary
309
+ uniform seasonal effects with this definition:
310
+ Fourier Definition
311
+ Sometimes we can’t just randomly split the data accord-
312
+ ingly. PROPHET develops simulated historical forecasts by
313
+ producing K forecasts at various cut-off points in history,
314
+ chosen such that the horizons are within the historical record
315
+ and the total error can be evaluated.
316
+ This procedure is based on the classic ’rolling source’ fore-
317
+ cast evaluation procedures[11], but uses only a small sequence
318
+ of target dates instead of forecasting by historical date) is that
319
+ it saves on computation and provides less correlated precision
320
+ measurements.
321
+ C. Work Sequence
322
+
323
+ We apply an EDA (Exploratory Data Analysis) it is
324
+ necessary to clean the data and adapt it for the job.
325
+
326
+ Normalization of the data, we adapt the data to follow
327
+ a supervised sequence model according to a time
328
+ series.
329
+
330
+ Let’s divide our dataset into proof and validation tests.
331
+
332
+ Coding and implementation of the models according
333
+ to the Prophet or LSTM case.
334
+
335
+ Adjustment of the parameters and extraction of pre-
336
+ dictions with their respective evaluation metrics.
337
+ IV.
338
+ RESULTS
339
+ The results using PROPHET and LSTM are shown in this
340
+ section together with the general comparison of the mentioned
341
+ models.
342
+ We will also appreciate the comparisons and metrics de-
343
+ veloped according to the models applied to the study variable:
344
+ PESO.
345
+ Result according to the validation of the LSTM model:
346
+ Fig. 3.
347
+ LSTM VALIDATION
348
+ 3 | P a g e
349
+
350
+ PESO
351
+ 600000
352
+ LSTM_Predictions
353
+ 500000
354
+ 400000
355
+ 300000
356
+ 20000
357
+ 100000
358
+ 0
359
+ 00:45:38
360
+ 00:45:40
361
+ 00:45:42
362
+ 00:45:44
363
+ 00:45:46
364
+ 00:45:48
365
+ Fechay(t) = g(t) + s(t) + h(t) + Et1,
366
+ if t≥sj,
367
+ a;(t)
368
+ 0,
369
+ otherwise.=(s-m-)(1
370
+ 1-)C(t)s(t)-(an cos()+bsin())Result according to the validation of the PROPHET model:
371
+ Fig. 4.
372
+ PROPHET VALIDATION
373
+ Comparison to the validation of the PROPHET and LSTM
374
+ model:
375
+ Fig. 5.
376
+ LSTM AND PROPHET COMPARISON
377
+ MSE(mean squared error) and the RMSE(root mean
378
+ squared error) of both models:
379
+ We can appreciate each model according to its evaluation.
380
+ Fig. 6.
381
+ RMSE Y MSE
382
+ V.
383
+ DISCUSSION AND CONCLUSIONS
384
+ In keeping with the theory, all machine learning algorithms
385
+ are unique, which is the root cause of why the prediction
386
+ results are different algorithms on the same data set differ.
387
+ LSTM was proposed for being an improvement of the RNNs
388
+ and Prophet for its versatility in data with less presence of
389
+ seasonality.
390
+ Given what was taken into consideration for LSTM, the
391
+ applied model was with the minimum parameters and show
392
+ results with much better conditioning than was expected,
393
+ remembering that in different studies the superiority of LSTM
394
+ is detailed over the basic algorithms that apply Recurrent
395
+ Neural Networks. Furthermore, it is noted from the theory
396
+ that the number of training times, known as the ’epoch’ in
397
+ learning[12], did not take into account the expected effect on
398
+ the performance of the trained forecast model and exhibited
399
+ mostly random behavior. How intuitive The developed model
400
+ based on LSTM incorporates additional ’gates’ in order to store
401
+ longer sequences of input data.
402
+ One of the main questions when developing and analyzing is
403
+ whether the gates incorporated in the LSTM architecture would
404
+ give a good prediction and if additional data training would
405
+ be needed to further improve the prediction[13] and in this
406
+ case, we can deduce that the quantity of data was acceptable
407
+ but the predictions were affected by the not very well defined
408
+ seasonality of the dataset. A more effective solution would be
409
+ to add exact dates and continuous seasonalities.
410
+ For the Prophet model, we should have some more
411
+ intuitive results according to its theory, the application of
412
+ the Fourier series could develop more precision. The model
413
+ is expected to obtain a reasonable forecast on disordered
414
+ data without too much manual effort, unlike LSTM, which
415
+ has more hyperparameters. Prophet proved to be resistant
416
+ to outliers, missing data, and drastic changes in its time
417
+ series, the intention to fit the timeline is noted. Compared
418
+ to other classical forecasting methods, Prophet should be
419
+ fast and easy to apply to time series, which is what it
420
+ was designed for in the first place; however, it could be
421
+ considerably less accurate[14] and in this case, we confirm
422
+ this appreciation by highlighting once again its intuitive factor.
423
+ The Prophet procedure should include more parameters for
424
+ users to modify and adjust the forecasts in a more effective
425
+ way. Also, a hybrid model could improve significantly.
426
+ According to the RMSE results of the import predictions,
427
+ we can conclude that the LSTM model presents a significantly
428
+ better performance and reliability with respect to the Prophet
429
+ model, however, as we deduced previously, the seasonality
430
+ of the dataset was an important key in the variation of the
431
+ development of the models and their predictions. Therefore,
432
+ increasing the size of the dataset and adapting an exact timeline
433
+ for our dataset of vegetable imports from Peru should be a
434
+ priority, in this way, we would undoubtedly obtain results
435
+ with better relevance and reliability and, of course, the field of
436
+ application with the use of machine learning techniques would
437
+ be widely used and its results would be of a strongly necessary
438
+ relevance.
439
+ REFERENCES
440
+ [1]
441
+ A. J. V. Perez, N. H. T. Vazquez, and C. M. V. Sol´orzano, “Aprendizaje
442
+ autom´atico en la industria 4.0 (machine learning)”Bolet´ın No, vol. 91,
443
+ no. 1o, 2022
444
+ [2]
445
+ J. Sarshar, S. S. Moosapour, and M. Joorabian, “Multi-objective energy
446
+ management of a micro-grid considering uncertainty in wind power
447
+ forecasting,” Energy, vol. 139, pp. 680–693, 2017. [Online]. Available:
448
+ https://www.sciencedirect.com/science/article/pii/S0360544217313221
449
+ [3]
450
+ H. Abbasimehr, M. Shabani, and M. Yousefi, “An optimized model
451
+ using lstm network for demand forecasting,” Computers & industrial
452
+ engineering, vol. 143, p. 106435, 2020.
453
+ [4]
454
+ S. J. Taylor and B. Letham, “Forecasting at scale,” The American Sta-
455
+ tistician, vol. 72, no. 1, pp. 37–45, 2018.
456
+ 4 | P a g e
457
+
458
+ 1e6
459
+ 1.5
460
+ 10
461
+ PESO
462
+ 0.5
463
+ 0.0
464
+ 0.5
465
+ 00:45:40
466
+ 00:45:45
467
+ Fecha1e6
468
+ 1.5
469
+ 10
470
+ 0.5
471
+ 0.0
472
+ 0.5
473
+ 00:45:40
474
+ 00:45:45Models
475
+ RMsE Errors
476
+ MsE Errors
477
+ 0
478
+ LSTM
479
+ 678271.532637
480
+ 4.600523e+11
481
+ 1
482
+ Prophet
483
+ 688513.667236
484
+ 4.740511e+11[5]
485
+ SENASA. https://www.datosabiertos.gob.pe/dataset/dataset/importaci´on-
486
+ de-productos-vegetales-en-senasa-para-el-2021-2022-ministerio-de-
487
+ desarrollo.
488
+ [6]
489
+ J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no.
490
+ 2, pp. 179–211, 1990.
491
+ [7]
492
+ M. C. Sorkun, ¨O. D. Incel, and C. Paoli, “Time series forecasting on
493
+ multivariate solar radiation data using deep learning (lstm),” Turkish
494
+ Journal of Electrical Engineering and Computer Sciences, vol. 28, no. 1,
495
+ pp. 211–223, 2020.
496
+ [8]
497
+ W. Liu, Y. Liu, T. Zhang, Y. Han, X. Zhou, Y. Xie, and S. Yoo, “Use of
498
+ physics to improve solar forecast: Part ii, machine learning and model
499
+ interpretability,” Solar Energy, vol. 244, pp. 362–378, 2022.
500
+ [9]
501
+ A. C. Harvey and S. Peters, “Estimation procedures for structural time
502
+ series models,” Journal of forecasting, vol. 9, no. 2, pp. 89–108, 1990.
503
+ [10]
504
+ A. C. Harvey and N. Shephard, “10 structural time series models,” 1993.
505
+ [11]
506
+ L. J. Tashman, “Out-of-sample tests of forecasting accuracy: an analy-
507
+ sis and review,” International journal of forecasting, vol. 16, no. 4, pp.
508
+ 437–450, 2000.
509
+ [12]
510
+ S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A comparison of arima
511
+ and lstm in forecasting time series,” in 2018 17th IEEE inter- national
512
+ conference on machine learning and applications (ICMLA). IEEE, 2018.
513
+ [13]
514
+ Siami-Namini, Sima, Neda Tavakoli, and Akbar Siami Namin. ”The
515
+ performance of LSTM and BiLSTM in forecasting time series.” 2019
516
+ IEEE International Conference on Big Data (Big Data). IEEE, 2019..
517
+ [14]
518
+ L. Menculini, A. Marini, M. Proietti, A. Garinei, A. Bozza, C. Moretti,
519
+ and M. Marconi, “Comparing prophet and deep learning to arima in
520
+ forecasting wholesale food prices,” Forecasting, vol. 3, no. 3, pp. 644–
521
+ 662, 2021.
522
+ 5 | P a g e
523
+
JNE2T4oBgHgl3EQfAAax/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf,len=274
2
+ page_content='MACHINE LEARNING APPLIED TO PERUVIAN VEGETABLES IMPORTS Ticona-Salluca Hugo Faculty of Statistic and Computer Engineering, Universidad Nacional del Altiplano de Puno, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
3
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
4
+ page_content=' Box 291 Puno - Peru.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
5
+ page_content=' Email: hticonas@est.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
6
+ page_content='unap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
7
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
8
+ page_content='pe Torres-Cruz Fred Faculty of Statistic and Computer Engineering, Universidad Nacional del Altiplano de Puno, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
9
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
10
+ page_content=' Box 291 Puno - Peru.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
11
+ page_content=' Email: ftorres@.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
12
+ page_content='unap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
13
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
14
+ page_content='pe Tumi-Figueroa Ernesto Nayer Faculty of Statistic and Computer Engineering, Universidad Nacional del Altiplano de Puno, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
15
+ page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
16
+ page_content=' Box 291 Puno - Peru.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
17
+ page_content=' Email: nayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
18
+ page_content='tumi@unap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
19
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
20
+ page_content='pe Abstract—The current research work is being developed as a training and evaluation object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
21
+ page_content=' the performance of a predictive model to apply it to the imports of vegetable products into Peru using artificial intelligence algorithms, specifying for this study the Machine Learning models: LSTM and PROPHET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
22
+ page_content=' The forecast is made with data from the monthly record of imports of vegetable products(in kilograms) from Peru, collected from the years 2021 to 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
23
+ page_content=' As part of applying the training methodology for automatic learning algorithms, the exploration and construction of an appropriate dataset according to the parameters of a Time Series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
24
+ page_content=' Subsequently, the model with better performance will be selected, evaluating the precision of the predicted values so that they account for sufficient reliability to consider it a useful resource in the forecast of imports in Peru.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
25
+ page_content=' Keywords—Machine Learning: forecasting;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
26
+ page_content=' time series;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
27
+ page_content=' im- ports;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
28
+ page_content='artificial intelligence;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
29
+ page_content='dataset I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
30
+ page_content=' INTRODUCTION The Machine Learning methodology is one of the most valuable technologies in the Industry 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
31
+ page_content='0, and advances in Ma- chine Learning have provided significant benefits in strategic decision-making in organizations[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
32
+ page_content=' In recent years, predictive models using Machine Learning algorithms have been imple- mented in real environments of different organizations, and as in this particular case that concerns us, it also operates in the agriculture industry and optimal results are expected from these technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
33
+ page_content=' Likewise, Machine Learning technology has a high poten- tial to optimize your processes and, consequently, make correct and anticipated decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
34
+ page_content=' For this reason, Learning Algorithms should also be considered as the next innovative direction to significantly improve the prediction of these use cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
35
+ page_content=' [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
36
+ page_content=' Therefore, this research will seek to demonstrate and encourage the use of Machine Learning applications in the field of agribusiness in Peru.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
37
+ page_content=' Through the present work, the examination and modeling of real data will be developed in order to forecast future values with the least possible prediction error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
38
+ page_content=' In this sense, this applied research work covers the design, training, validation, and evaluation of 2 predictive models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
39
+ page_content=' The research models to be explored are LSTM and Prophet models, these being adequate and recommended to develop applied foresting, on the one hand, LSTM is rec- ognized for its hyperparameters which have the ability to capture non-linear patterns using the grid search method[3] and PROPHET for their modular regression with intuitive and adjustable interpretation parameters applied on Time Series[4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
40
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
41
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
42
+ page_content=' DATASET According to the purpose of the study, the official records of the export volume (in kilograms) of vegetables in Peru were used, collected from 2021 to 2022 in the National Open Data Platform,[5], officially uploaded by the Ministry of Agrarian Development and Irrigation of Peru.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
43
+ page_content=' Table 1 Description of the variables in the Vegetable Import Dataset in Peru 2021-2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
44
+ page_content=' Based on this dataset, it is proposed to make a reliable prediction, and according to the models to be developed, we will therefore need the continuous quantitative variable, PESO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
45
+ page_content=' Also according to the observed data, we find it necessary to adapt a proper timeline;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
46
+ page_content=' therefore, we must join the variables A ˜NO and MES to foresee a more accurate seasonality, spec- ifying the variables to forecast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
47
+ page_content=' Subsequently, to get a more accurate overview of our data regarding products, we define IDs for each product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
48
+ page_content=' From the dataset, we highlight 3P: Soja, cake with 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
49
+ page_content='1% in 1st position, in second position 5P: Apple, fresh fruit with 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
50
+ page_content='3% and in third position 27P: Soja, grain with 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
51
+ page_content='2%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
52
+ page_content=' The data ranges from 2021-05-01 to 2022-06-01, with 34,364 observations on imports of a total of 848 plant products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
53
+ page_content=' 1 | P a g e arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
54
+ page_content='03587v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
55
+ page_content='LG] 8 Jan 2023 VAR SCALA DESCRIPTION 1 ANO CUANTITATIVA DISCRETA Anodelaimportacion 2 MES CUANTITATIVA DISCRETA Mes de la importacion 3 SEDE CUALITATIVA NOMINAL Sede donde se registra de la Importacion 4 PRODUCTO CUANTITATIVA DISCRETA Productoimportado 7 PESO CUANTITATIVA CONTINUA Pesoenkilogramosdelproductc 8 TIPO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
56
+ page_content='ENVASE CUALITATIVA NOMINAL Envasecontenedordelaimportacion PAIS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
57
+ page_content='ORIGEN CUALITATIVA NOMINAL Origendelaimportacion del productoFig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
58
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
59
+ page_content=' Percentage description of each vegetable product imported in Peru III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
60
+ page_content=' METHODS In this section, we will describe the models used for the predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
61
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
62
+ page_content=' LSTM MODEL The LSTM name refers to the analogy that a standard RNN has both ’long-term memory’ and ’short-term memory’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
63
+ page_content=' The connection weights and biases in the network change once per training episode, analogous to how physiological changes in synaptic strengths store long-term memories;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
64
+ page_content=' activation patterns in the network change once per time step, analogous to how moment-to-moment changes in electrical activation patterns in the general brain store short-term memories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
65
+ page_content=' The LSTM architecture aims to provide a short-term memory for RNNs that can last for thousands of time steps and continue to be reliable, hence ’short-term long-term memory’[6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
66
+ page_content=' LSTM is considered a special type of recurrent neural network (RNN), developed to solve the potential problem of descending gradient found in traditional RNN training, and is able to learn both short-term and long-term dependencies[7] and is constructed of four main components: an entry gate, an exit gate, memory cell and a forget gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
67
+ page_content=' Input Gate: controls the sending addition of information to the cell state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
68
+ page_content=' In other words, the gateway will consider what information needs to be added to the cell state to ensure that important information is added and that there is no redundant information or noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
69
+ page_content=' Memory Cell: controls the value that might be deleted or updated, and contains a value that might need to be kept as additional information for many other time steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
70
+ page_content=' Output Gate: controls the selection of useful learning information from the current state of the cell as output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
71
+ page_content=' Forget Gate: controls the removal of information that is no longer needed for LTSM to learn things or, less importantly, the state of the cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
72
+ page_content=' This helps to optimize the performance of the LSTM proposed network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
73
+ page_content=' Also, The LSTM model follows the sequence: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
74
+ page_content=' Decide to discard the cell state information by a Sigmoid layer called ”forget gate”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
75
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
76
+ page_content=' Decide new information to store in the cell state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
77
+ page_content=' The Sigmoid layer called the ”gateway layer” decides which values will be updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
78
+ page_content=' the tan coat creates a vector of new candidate values that could be added to the state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
79
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
80
+ page_content=' Update the old cell state to the new cell state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
81
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
82
+ page_content=' Decide the filtered output based on the state of the cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
83
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
84
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
85
+ page_content=' MODEL LSTM Considered for a normal LSTM model is the Tanh property, which is a non-linear activation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
86
+ page_content=' It regulates the values that flow through the network, keeping the values between - 1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
87
+ page_content=' To avoid information fading, a function is needed whose second derivative can survive longer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
88
+ page_content=' There might be a case where some values become huge, causing the values to be irrelevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
89
+ page_content=' And of course an LSTM principal property: The Sigmoid that belongs to the family of nonlinear activation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
90
+ page_content=' Unlike Tanh, the Sigmoid holds values between 0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
91
+ page_content=' It helps the network update or forget data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
92
+ page_content=' If the multiplication results in 0, the information is considered forgotten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
93
+ page_content=' Similarly, the information is kept if the value is relevant[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
94
+ page_content=' This will assist the network in determining what data can be lost and what data should be kept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
95
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
96
+ page_content=' PROPHET MODEL PROPHET is a procedure for forecasting time series data based on an additive model in which nonlinear trends are adjusted for annual, weekly, and daily seasonality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
97
+ page_content=' It works best with time series that have strong seasonal effects and multiple seasons of historical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
98
+ page_content=' 2 | P a g e 3P 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
99
+ page_content='1% 6 iF 20 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
100
+ page_content='3% 5P 145P 43P 10P 239P 56P 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
101
+ page_content='2% 86P 11p 106P 31P 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
102
+ page_content='5% 104P 1P 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
103
+ page_content='8% 42P 27P 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
104
+ page_content='2% 29P 64P 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
105
+ page_content='8% 59P 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
106
+ page_content='4% 77P 61P 23P 8P 91P 17P 84P 6P 18P 34p 57P 12P 44P 89P 22p 9P 28P 41P 70P 69P 26P 16P 50PForget gate ht Memory cell Ct Ct-1 文 Ct x tanh a tanh Hidden state ht ht-1 - X >ht Xt Input gate Output gateit=o(atU+ht-iW) x, input ft=o(atUf +ht-1Wf) f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
107
+ page_content=' forget gate i, inputgate Ot = o(atUo + ht-1Wo) cellupdate c, cell state Ct =tanh (ctU9+ht-iW9) o,outputgate Ct = o(ft* Ct-1 + it*Ct) h,output G sigmoidactivationfunction ht = tanh(Ct) * Ot tanh Tanh activationfunctionIn the specification of this Prophet model, there are several places where we can alter the model to apply your experience and external expert knowledge without needing to understand the underlying statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
108
+ page_content=' [4] For the Prophet model with general theory: We use a mathematical decomposable time series model[9] and this model has these components: trend, seasonality, and holidays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
109
+ page_content=' They are combined into the following equation: Series Model Formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
110
+ page_content=' Here g(t) is the trend function that models non-periodic changes in the value of the time series, s(t) represents periodic changes (for example, weekly and yearly seasonality), and h(t) represents the effects of the seasons, The error term represents any idiosyncratic changes that do not fit the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
111
+ page_content=' In PROPHET we incorporate trend changes into the growth model by explicitly determining the change points where the growth rate is allowed to change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
112
+ page_content=' Suppose there are exchange points at moments j,j= 1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
113
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
114
+ page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
115
+ page_content=' We give N a vector of adjust- ments, where only the rate change occurs at moment j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
116
+ page_content=' The rate at any time is then the base rate k, plus all adjustments up to the point of This is best represented by the vectors as follows: Adjustments represented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
117
+ page_content=' When rate k is adjusted, the parameter set must also be adjusted to connect the endpoints of the segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
118
+ page_content=' The correct fit at the shift point is easily calculated as: That would be the Adjust at shift point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
119
+ page_content=' The logistic piece of the growth model then looks as follows: The Fourier series is also applied in Prophet to provide a flexible model of periodic effects[10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
120
+ page_content=' Let P be the regular period that we expect the time series to have (for example, P= 365:25 for annual data or P= 7 for weekly data, when we scale our indices of time variables).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
121
+ page_content=' We can approximate arbitrary uniform seasonal effects with this definition: Fourier Definition Sometimes we can’t just randomly split the data accord- ingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
122
+ page_content=' PROPHET develops simulated historical forecasts by producing K forecasts at various cut-off points in history, chosen such that the horizons are within the historical record and the total error can be evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
123
+ page_content=' This procedure is based on the classic ’rolling source’ fore- cast evaluation procedures[11], but uses only a small sequence of target dates instead of forecasting by historical date) is that it saves on computation and provides less correlated precision measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
124
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
125
+ page_content=' Work Sequence We apply an EDA (Exploratory Data Analysis) it is necessary to clean the data and adapt it for the job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
126
+ page_content=' Normalization of the data, we adapt the data to follow a supervised sequence model according to a time series.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
127
+ page_content=' Let’s divide our dataset into proof and validation tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
128
+ page_content=' Coding and implementation of the models according to the Prophet or LSTM case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
129
+ page_content=' Adjustment of the parameters and extraction of pre- dictions with their respective evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
130
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
131
+ page_content=' RESULTS The results using PROPHET and LSTM are shown in this section together with the general comparison of the mentioned models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
132
+ page_content=' We will also appreciate the comparisons and metrics de- veloped according to the models applied to the study variable: PESO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
133
+ page_content=' Result according to the validation of the LSTM model: Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
134
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
135
+ page_content=' LSTM VALIDATION 3 | P a g e PESO 600000 LSTM_Predictions 500000 400000 300000 20000 100000 0 00:45:38 00:45:40 00:45:42 00:45:44 00:45:46 00:45:48 Fechay(t) = g(t) + s(t) + h(t) + Et1, if t≥sj, a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
136
+ page_content='(t) 0, otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
137
+ page_content='=(s-m-)(1 1-)C(t)s(t)-(an cos()+bsin())Result according to the validation of the PROPHET model: Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
138
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
139
+ page_content=' PROPHET VALIDATION Comparison to the validation of the PROPHET and LSTM model: Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
140
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
141
+ page_content=' LSTM AND PROPHET COMPARISON MSE(mean squared error) and the RMSE(root mean squared error) of both models: We can appreciate each model according to its evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
142
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
143
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
144
+ page_content=' RMSE Y MSE V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
145
+ page_content=' DISCUSSION AND CONCLUSIONS In keeping with the theory, all machine learning algorithms are unique, which is the root cause of why the prediction results are different algorithms on the same data set differ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
146
+ page_content=' LSTM was proposed for being an improvement of the RNNs and Prophet for its versatility in data with less presence of seasonality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
147
+ page_content=' Given what was taken into consideration for LSTM, the applied model was with the minimum parameters and show results with much better conditioning than was expected, remembering that in different studies the superiority of LSTM is detailed over the basic algorithms that apply Recurrent Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
148
+ page_content=' Furthermore, it is noted from the theory that the number of training times, known as the ’epoch’ in learning[12], did not take into account the expected effect on the performance of the trained forecast model and exhibited mostly random behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
149
+ page_content=' How intuitive The developed model based on LSTM incorporates additional ’gates’ in order to store longer sequences of input data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
150
+ page_content=' One of the main questions when developing and analyzing is whether the gates incorporated in the LSTM architecture would give a good prediction and if additional data training would be needed to further improve the prediction[13] and in this case, we can deduce that the quantity of data was acceptable but the predictions were affected by the not very well defined seasonality of the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
151
+ page_content=' A more effective solution would be to add exact dates and continuous seasonalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
152
+ page_content=' For the Prophet model, we should have some more intuitive results according to its theory, the application of the Fourier series could develop more precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
153
+ page_content=' The model is expected to obtain a reasonable forecast on disordered data without too much manual effort, unlike LSTM, which has more hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
154
+ page_content=' Prophet proved to be resistant to outliers, missing data, and drastic changes in its time series, the intention to fit the timeline is noted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
155
+ page_content=' Compared to other classical forecasting methods, Prophet should be fast and easy to apply to time series, which is what it was designed for in the first place;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
156
+ page_content=' however, it could be considerably less accurate[14] and in this case, we confirm this appreciation by highlighting once again its intuitive factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
157
+ page_content=' The Prophet procedure should include more parameters for users to modify and adjust the forecasts in a more effective way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
158
+ page_content=' Also, a hybrid model could improve significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
159
+ page_content=' According to the RMSE results of the import predictions, we can conclude that the LSTM model presents a significantly better performance and reliability with respect to the Prophet model, however, as we deduced previously, the seasonality of the dataset was an important key in the variation of the development of the models and their predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
160
+ page_content=' Therefore, increasing the size of the dataset and adapting an exact timeline for our dataset of vegetable imports from Peru should be a priority, in this way, we would undoubtedly obtain results with better relevance and reliability and, of course, the field of application with the use of machine learning techniques would be widely used and its results would be of a strongly necessary relevance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
161
+ page_content=' REFERENCES [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
162
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
163
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
164
+ page_content=' Perez, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
165
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
166
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
167
+ page_content=' Vazquez, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
168
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
169
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
170
+ page_content=' Sol´orzano, “Aprendizaje autom´atico en la industria 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
171
+ page_content='0 (machine learning)”Bolet´ın No, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
172
+ page_content=' 91, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
173
+ page_content=' 1o, 2022 [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
174
+ page_content=' Sarshar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
175
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
176
+ page_content=' Moosapour, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
177
+ page_content=' Joorabian, “Multi-objective energy management of a micro-grid considering uncertainty in wind power forecasting,” Energy, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
178
+ page_content=' 139, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
179
+ page_content=' 680–693, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
180
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
181
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
182
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
183
+ page_content='com/science/article/pii/S0360544217313221 [3] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
184
+ page_content=' Abbasimehr, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
185
+ page_content=' Shabani, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
186
+ page_content=' Yousefi, “An optimized model using lstm network for demand forecasting,” Computers & industrial engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
187
+ page_content=' 143, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
188
+ page_content=' 106435, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
189
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
190
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
191
+ page_content=' Taylor and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
192
+ page_content=' Letham, “Forecasting at scale,” The American Sta- tistician, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
193
+ page_content=' 72, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
194
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
195
+ page_content=' 37–45, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
196
+ page_content=' 4 | P a g e 1e6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
197
+ page_content='5 10 PESO 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
198
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
199
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
200
+ page_content='5 00:45:40 00:45:45 Fecha1e6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
201
+ page_content='5 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
202
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
203
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
204
+ page_content='5 00:45:40 00:45:45Models RMsE Errors MsE Errors 0 LSTM 678271.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
205
+ page_content='532637 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
206
+ page_content='600523e+11 1 Prophet 688513.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
207
+ page_content='667236 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
208
+ page_content='740511e+11[5] SENASA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
209
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
210
+ page_content='datosabiertos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
211
+ page_content='gob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
212
+ page_content='pe/dataset/dataset/importaci´on- de-productos-vegetales-en-senasa-para-el-2021-2022-ministerio-de- desarrollo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
213
+ page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
214
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
215
+ page_content=' Elman, “Finding structure in time,” Cognitive science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
216
+ page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
217
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
218
+ page_content=' 179–211, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
219
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
220
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
221
+ page_content=' Sorkun, ¨O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
222
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
223
+ page_content=' Incel, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
224
+ page_content=' Paoli, “Time series forecasting on multivariate solar radiation data using deep learning (lstm),” Turkish Journal of Electrical Engineering and Computer Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
225
+ page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
226
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
227
+ page_content=' 211–223, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
228
+ page_content=' [8] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
229
+ page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
230
+ page_content=' Liu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
231
+ page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
232
+ page_content=' Han, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
233
+ page_content=' Zhou, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
234
+ page_content=' Xie, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
235
+ page_content=' Yoo, “Use of physics to improve solar forecast: Part ii, machine learning and model interpretability,” Solar Energy, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
236
+ page_content=' 244, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
237
+ page_content=' 362–378, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
238
+ page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
239
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
240
+ page_content=' Harvey and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
241
+ page_content=' Peters, “Estimation procedures for structural time series models,” Journal of forecasting, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
242
+ page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
243
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
244
+ page_content=' 89–108, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
245
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
246
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
247
+ page_content=' Harvey and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
248
+ page_content=' Shephard, “10 structural time series models,” 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
249
+ page_content=' [11] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
250
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
251
+ page_content=' Tashman, “Out-of-sample tests of forecasting accuracy: an analy- sis and review,” International journal of forecasting, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
252
+ page_content=' 16, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
253
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
254
+ page_content=' 437–450, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
255
+ page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
256
+ page_content=' Siami-Namini, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
257
+ page_content=' Tavakoli, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
258
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
259
+ page_content=' Namin, “A comparison of arima and lstm in forecasting time series,” in 2018 17th IEEE inter- national conference on machine learning and applications (ICMLA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
260
+ page_content=' IEEE, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
261
+ page_content=' [13] Siami-Namini, Sima, Neda Tavakoli, and Akbar Siami Namin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
262
+ page_content=' ”The performance of LSTM and BiLSTM in forecasting time series.” 2019 IEEE International Conference on Big Data (Big Data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
263
+ page_content=' IEEE, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
264
+ page_content='. [14] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
265
+ page_content=' Menculini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
266
+ page_content=' Marini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
267
+ page_content=' Proietti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
268
+ page_content=' Garinei, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
269
+ page_content=' Bozza, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
270
+ page_content=' Moretti, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
271
+ page_content=' Marconi, “Comparing prophet and deep learning to arima in forecasting wholesale food prices,” Forecasting, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
272
+ page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
273
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
274
+ page_content=' 644– 662, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
275
+ page_content=' 5 | P a g e' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JNE2T4oBgHgl3EQfAAax/content/2301.03587v1.pdf'}
K9FIT4oBgHgl3EQfaiv2/content/2301.11258v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4b36f04bc8a5ec51259d962736af256a25a08172b5a68c4d43f8a8b95f9c8d4
3
+ size 847455
K9FIT4oBgHgl3EQfaiv2/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:982a5f2633039741a58b17791d5d604f82037677ed7065b843560c7dfd4f0c73
3
+ size 2293805
K9FIT4oBgHgl3EQfaiv2/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55fc81085e7fc12d21d3a4f8d3e37259de1a4d8b4b5cc269e13bb2a2af53f61c
3
+ size 73428
KdE1T4oBgHgl3EQfYgTD/content/tmp_files/2301.03140v1.pdf.txt ADDED
@@ -0,0 +1,2740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SCHOLAR RANKING 2023: RANKING OF COMPUTER SCIENCE
2
+ DEPARTMENTS BASED ON FACULTY CITATIONS
3
+ Sai Shi
4
+ Department of Computer & Information Science
5
+ Temple University
6
+ Philadelphia, PA 19122
7
8
+ Aniruddha Maiti
9
+ Department of Computer & Information Science
10
+ Temple University
11
+ Philadelphia, PA 19122
12
13
+ Ashis Kumar Chanda
14
+ Department of Computer & Information Science
15
+ Temple University
16
+ Philadelphia, PA 19122
17
18
+ Slobodan Vucetic
19
+ Department of Computer & Information Science
20
+ Temple University
21
+ Philadelphia, PA 19122
22
23
+ January 10, 2023
24
+ ABSTRACT
25
+ Scholar Ranking 2023 is the second edition of U.S. Computer Science (CS) departments ranking
26
+ based on faculty citation measures. Using Google Scholar, we gathered data about publication
27
+ citations for 5,574 tenure-track faculty from 185 U.S. universities. For each faculty, we extracted
28
+ their t10 index, defined as the number of citations received by their 10th highest cited paper. For each
29
+ department, we calculated four quality metrics: median t10 (m10), the geometric mean of t10 (g10),
30
+ and the number of well-cited faculty with t10 above 40% (c40) and 60% (c60) of the national average.
31
+ We fitted a linear regression model using those four measures to match the 2022 U.S. News ranking
32
+ scores of CS doctoral programs. The resulting model provides Scholar Ranking 2023, which can be
33
+ found at https://chi.temple.edu/csranking_scholar.
34
+ 1
35
+ Introduction
36
+ A previous version of the Scholar ranking [1] was published in the spring of 2017, based on citation data collected
37
+ during the fall of 2016. This previous effort demonstrated that it is possible to learn a simple formula from citation
38
+ measures that has a high correlation with peer assessment scores of CS doctoral programs published by the U.S. News
39
+ (USN).
40
+ A few years have passed since the last publication of the Scholar ranking, and a new U.S. News ranking came out
41
+ in 20221. Given the fact that the data on which the last ranking was performed is a few years old, we felt that it would
42
+ be helpful to conduct another round of data collection and validate our method with the recent U.S. News ranking. The
43
+ first objective is to refine the data collection method and collect a new set of high-quality faculty citation data. The
44
+ second objective is to use the 2022 U.S. News ranking to validate the method proposed in the first version of the scholar
45
+ ranking and observe changes in the ranking. The third objective is to analyze the trends in aggregated metrics used to
46
+ perform the ranking given the data sets, with the first collected during the fall of 2016 and the other during the fall of
47
+ 2021.
48
+ 1https://www.usnews.com/best-graduate-schools/top-science-schools/computer-science-rankings
49
+ arXiv:2301.03140v1 [cs.DL] 9 Jan 2023
50
+
51
+ A PREPRINT - JANUARY 10, 2023
52
+ 2
53
+ Data collection
54
+ In this section, we explain the data collection process which took place from September 2021 to December 2021.
55
+ The data collection team consisted of two CS graduate students and a CS professor.
56
+ 2.1
57
+ U.S. News (USN) Data
58
+ USN is well-known for producing several rankings. We gathered the scores from the most recent ranking of CS
59
+ doctoral programs, Best Computer Science Schools, which was published in 2022. USN collected the names of those to
60
+ be surveyed for the science doctoral surveys in the summer of 2021. We retained the scores from the 2013 version of
61
+ Best Computer Science Schools from previous data collection.
62
+ USN ranks programs using scores generated from surveys sent to academic professionals2. Only survey responses
63
+ from fall 2021 and early 2022 were used to compute the scores. The surveys asked respondents to rate each program
64
+ from 1 to 5, with one being marginal and five being outstanding. Respondents could skip programs and select "don’t
65
+ know" if they were unfamiliar with them. Each program’s score is the average of its survey ratings if it has at least ten
66
+ ratings. Programs with less than ten ratings are not scored. Unlike the scores reported in USN 2017, where the program
67
+ is ranked if it has a score of at least 2.0, USN 2022 published and ranked the scores of programs that are lower than
68
+ 2.0. USN does not provide raw survey data or information about potential sources of bias in responses. USN does not
69
+ attempt to fill in missing values.
70
+ 2.2
71
+ Computer Science Faculty List Data
72
+ We collected the data on 5,574 tenure-track CS professors from 185 departments ranked by USN. We identified
73
+ 2,011 faculty on our 2022 list but not on our 2017 list, including 1,750 new professors and 261 professors who joined
74
+ another department. In contrast, 4,728 professors were collected in 2017 from 173 departments. The number of CS
75
+ professors included in our list increased by 17.89%.
76
+ We consider a professor part of a department if the professor is listed on the website’s faculty list. We found each
77
+ website by performing Google searches on the school’s name followed by "computer science" or "cs." In most cases,
78
+ lists of faculty and their appointments were on pages labeled "Directory," "People," or "Faculty." Some pages did not
79
+ specify appointments. In these cases, we found a professor’s appointment by performing a Google search on their name
80
+ and exploring their website or profile page.
81
+ We only consider tenure-track professors, which would have the rank of assistant, associate, or full professor.
82
+ We excluded professors who have the titles "Clinical", "Courtesy", "Adjunct", "Research", "Teaching", "Emeritus",
83
+ "Visiting", or other additional labels that indicate that the professor was not a tenure-track professor.
84
+ For universities with CS departments, we added all professors because they were in a department for CS professors
85
+ only. In some universities, the computer science faculty are part of joint departments called "Electrical Engineering
86
+ and Computer Sciences" or "Computer Science and Engineering." Some universities have colleges or departments
87
+ of computing or informatics, which contain faculty in CS, library science, information sciences, or management
88
+ information systems. These departments made it harder to distinguish who was a CS professor. We determined that
89
+ professors with research interests and publications in CS topics will be CS professors. We looked at the publications or
90
+ research interests on their department profile page or website. CS topics include artificial intelligence, machine learning,
91
+ data science, human-computer interaction, bioinformatics, cybersecurity, and others. Some cases we do not consider
92
+ within CS are sensor networks, hardware, genomics, signals, and others.
93
+ There were some unique cases in choosing the departments. New York University has the Department of
94
+ Computer Science and Department of Computer Science and Engineering within two separate colleges. We only
95
+ considered the department within the Courant Institute of Mathematical Sciences. Case Western University has the
96
+ Department of Computer and Data Sciences and Department of Electrical, Computer and Systems Engineering. We
97
+ only included professors within The Department of Computer and Data Sciences because the faculty of the other
98
+ department generally had research interests that we excluded. Rochester Institute of Technology has a big college of
99
+ Computing and Information Sciences, which consists of several departments, such as Computer Science, Computing
100
+ and Information Sciences, Software Engineering, etc. We only included faculty from the department of Computer
101
+ Science since they listed their faculty in separate departments.
102
+ Another issue was affiliated professors and professors who have non-primary appointments. We did not include
103
+ affiliated faculty if they were in a separate section from the main faculty or labeled as having a joint or secondary
104
+ 2https://www.usnews.com/education/best-graduate-schools/articles/science-schools-methodology
105
+ 2
106
+
107
+ A PREPRINT - JANUARY 10, 2023
108
+ appointment. In cases when affiliated, joint, or secondary appointed professors were mixed in with primary faculty, we
109
+ added all professors who were on the list because the department listed them as its professors.
110
+ Outside these departments, some professors have made significant contributions in CS venues but have primary
111
+ appointments within engineering, biology, statistics, business, or other departments. We did not include non-CS
112
+ professors because we needed a time-effective and unbiased method of finding these professors.
113
+ In 2017, we found that 23.6% (1114/4728) of CS faculty are assistant professors, and that percentage has changed
114
+ to 29.2% (1630/5574) in 2022. Since assistant professors are starting to establish their publications, we treat them
115
+ differently from associate and full professors. We refer to associate and full professors as senior faculty, and our
116
+ collection of Google Scholar data focused on senior faculty.
117
+ 2.3
118
+ Google Scholar Data
119
+ After determining what professors are in each department, we identified each professor’s Google Scholar page
120
+ to collect their citation measures3. Despite some limitations of automated web crawling [2][3], the quality of Google
121
+ Scholar data is comparable to the data coming from the subscription-based services for journal publications such as
122
+ Web of Science [4]. A Google Scholar page lists the individual’s publications with each respective number of citations
123
+ and overall aggregate citation measures. A profile’s aggregate citation measures include the h-index and i10-index
124
+ (i10). The h-index [5] is defined as the highest number x for which the individual has x number of papers with at least x
125
+ number of citations. The i10 is the total number of papers with above ten citations by an individual.
126
+ We found each page by searching Google Scholar for the professor’s name and university. Some professors have
127
+ common names, and multiple people appeared in the search result. We ensured that the professor’s rank, university, and
128
+ research topics aligned with the page. Sometimes, the Google Scholar page would list a university where the professor
129
+ was a previous student or faculty member. We confirmed that it was the correct page by looking at past affiliations
130
+ through their websites or department website pages.
131
+ We found about 89.8% (5,005/5,574) of professors’ Google Scholar pages. About 85.7% (3,379/3,944) of senior
132
+ faculty have a page. We determined that using the data of professors who have Google Scholar pages is biased because
133
+ they tend to have higher citation measures. To prevent bias from affecting the results, we decided to collect citation
134
+ measures for professors who did not have a page. We introduced the t10 index, a citation measure that would be easy to
135
+ collect for professors with or without a Google Scholar page. This measure is explained in the next section.
136
+ 2.4
137
+ t10 Index
138
+ The t10 index (t10) is defined as the number of citations of one’s 10th most cited paper. Identifying this index is
139
+ more convenient and less prone to error than the h-index when performing a manual search. The t10 is obtained by
140
+ identifying an individual’s ten most cited papers. In contrast, the h-index is obtained by identifying the top x number
141
+ of papers that have at least x citations. Because assistant professors are starting to build their publication records, we
142
+ decided to focus on collecting the t10 of the senior faculty.
143
+ We obtained the t10 of the associate and full professors with a Google Scholar page using a web scraping program
144
+ that takes the 10th highest paper on each page. This is a simple process because a Google Scholar page lists the
145
+ individual’s highest-cited articles in descending order. We collected them manually for professors who do not have a
146
+ Google Scholar page. To save time, we took the t10 that were gathered in 2017 and matched them to each professor
147
+ who did not have a t10.
148
+ To manually gather the t10, we searched Google Scholar for the professor’s name. The search engine typically
149
+ retrieves publications with the name in the author list by descending the number of citations. We looked for the 10th
150
+ highest cited paper from the search results with the professor’s name in the author list. For professors with common
151
+ names, the search results would show publications from multiple people. We checked each publication to ensure the
152
+ author was the correct professor.
153
+ We identified the t10 of 5,553 of the 5,574 CS faculty (99.6% coverage) and for 3,932 of the 3,944 senior CS
154
+ faculty (99.7% coverage) by manually searching Google Scholar. However, when a faculty has a common name or a
155
+ faculty name listed on the people pages does not precisely match the name listed in their papers, obtaining t10-index
156
+ can be too time-consuming. To save time, the curators were instructed to abort the extraction if it took more than 5
157
+ minutes. As a result, we did not collect t10 for 21 of the 5,574 CS faculty (0.4%). Since a faculty’s name should not
158
+ have an influence on their citation count, the resulting sample of faculty with known t10 can be treated as an unbiased
159
+ sample of the senior CS faculty.
160
+ 3https://scholar.google.com/
161
+ 3
162
+
163
+ A PREPRINT - JANUARY 10, 2023
164
+ Furthermore, among 3,416 faculty in both the 2017 and 2022 data, we found that 2,520 (73.8% coverage) have an
165
+ h-index and t10. 459 of them have added google scholar profiles since 2017, and none of them removed their google
166
+ scholar profile. 926 of them were promoted during the past few years. Among 1,750 new faculty in our 2022 data,
167
+ 1,636 have a google scholar profile, where 205 are full professors, 196 are associate professors, and 1,235 are assistant
168
+ professors. 1,741 of these new faculty have t10, where 252 are full professors, 219 are associate professors, and 1,270
169
+ are assistant professors.
170
+ 3
171
+ Methods
172
+ 3.1
173
+ Program Strength Measures
174
+ We propose two approaches for using individual citation measures to calculate the strength of a program, averaged
175
+ and cumulative citation measures, the same as those used in 2017.
176
+ 3.2
177
+ Averaged citation measures
178
+ The first method we use to measure the strength of a program is by averaging citations of its faculty members [6].
179
+ We use three different averaging schemes. The first averaging scheme is the median of t10 values of senior CS faculty,
180
+ which we denote as m10. The second is the geometric mean of (1+t10) values of senior CS faculty, which we denote
181
+ as g10. The third is the average percentile of the senior faculty’s t10, which we denote as p10. We exclude assistant
182
+ professors from the averaged measures because their citations are typically smaller, and their inclusion would hurt
183
+ departments with more assistant professors.
184
+ 3.3
185
+ Cumulative citation measures
186
+ The second method to measure the strength of a program is to count the number of highly cited faculty in a
187
+ program. We define a t10 threshold to determine which professors are highly cited. We introduce cN, which denotes the
188
+ number of faculty whose t10 is higher than N% of senior faculty, with 0 < N < 100. For example, c40 is the count of
189
+ professors within a department with a t10 higher than 40% of senior faculty. We include all faculty to calculate cN.
190
+ 3.4
191
+ Regression Models
192
+ We use regression models that combine the averaged and cumulative citation measures into an aggregated score.
193
+ The regression models that we consider are of the type in formula 1:
194
+ si = β0 + β1ai + β2ci,
195
+ (1)
196
+ si is the predicted USN CS score, ai is an aggregated citation measure, and ci is a cumulative citation measure of
197
+ the i-th program. The regression parameters are β0, β1, and β2. Instead of learning the intercept parameter β0, we set it
198
+ to β0 = 1 by default. The primary justification is that a program with ai = 0 and si = 0 does not have active research
199
+ faculty; based on the peer assessment instructions by USN, this program would have a score of 1 ("marginal"). The
200
+ secondary justification is that the resulting regression models would be simpler because they only require fitting two
201
+ regression parameters, β1, and β2. We train one regression model for each combination of the three averaged and the
202
+ ranges of cumulative measures. We average the individual regression models to create an aggregate score.
203
+ 4
204
+ Results
205
+ 4.1
206
+ Department size
207
+ Fig.1 compares the number of assistant, associate, and full professors between our newly collected data and that
208
+ from our 2017 paper. The percentage of assistant professors increased during the past four years, which indicates that
209
+ more young professors are joining CS academia. The reason might be that recently popular areas, such as machine
210
+ learning or deep learning, are attracting more young professors to contribute to research.
211
+ Fig.2 shows the distribution of department sizes, defined as the number of tenure-track faculty in each of the 185
212
+ CS programs. The median faculty size is 23, the mode is 20, the minimum is 3, and the maximum is 170 (Carnegie
213
+ Mellon University). We also show the scatter plot between the department size in 2017 and 2022 in Fig.3. The colors
214
+ represent the USN CS scores, and it can be seen there is an overall increase in department sizes. The department
215
+ 4
216
+
217
+ A PREPRINT - JANUARY 10, 2023
218
+ Figure 1: Trend of faculty size
219
+ Figure 2: The distribution of the U.S. CS department size
220
+ size in 2022 has a similar distribution to that in 2017, since there is a nearly linear relationship between the two. The
221
+ correlation coefficient of the department sizes and the USN CS scores of the 185 programs is 0.755, which is higher
222
+ than our previous finding (0.676), indicating that larger departments are more likely to be ranked higher.
223
+ 4.2
224
+ Distribution of the Citation Indices
225
+ As shown in Fig.4, the median value of the h-index, i10-index, and t10 index all increased compared to our 2017
226
+ result. Particularly, the t10 index has a larger rise compared to the h-index and i10-index, indicating that it is a more
227
+ sensitive citation metric.
228
+ In Fig.5, we show the histogram of the t10 for the 3,944 senior faculty. We observe a similar distribution pattern
229
+ compared to the 2017 result. Since the t10 distribution resembles a lognormal distribution, the histogram of t10 is
230
+ shown in a log scale. We observe a bump at low values, representing the 70 senior faculty with a t10 of 0, meaning they
231
+ have less than ten cited papers listed in Google Scholar. The median of t10 is 114, and the percentiles of t10 are shown
232
+ in Table 1. Overall, the t10 values increased compared to our results from 2017.
233
+ 5
234
+
235
+ 60
236
+ old data
237
+ new data
238
+ 49.6%
239
+ 50
240
+ 46.8%
241
+ 40
242
+ Percentage
243
+ 29.2%
244
+ 30
245
+ 26.9%
246
+ 24.0%
247
+ 23.6%
248
+ 20
249
+ 10
250
+ 0
251
+ Full professor
252
+ Associate professor
253
+ Assistant professor50
254
+ 45
255
+ 40
256
+ 35
257
+ 30
258
+ uno
259
+ 25
260
+ 20
261
+ 15
262
+ 10
263
+ 5
264
+ 0
265
+ 0
266
+ 20
267
+ 40
268
+ 60
269
+ 80
270
+ 100
271
+ 120
272
+ 140
273
+ 160
274
+ Faculty SizeA PREPRINT - JANUARY 10, 2023
275
+ Figure 3: Department size in 2016 and 2022
276
+ Figure 4: Trend of citation measurements (median value)
277
+ The correlation coefficient between logarithms of h-index and t10 for the 3,379 senior faculty with both indices is
278
+ 0.943, which is close to our 2017 result. The sufficiently high correlation concludes that the t10 is a good proxy for the
279
+ h-index.
280
+ Table 1: Percentiles of t10
281
+ Percentile
282
+ t10
283
+ 10%
284
+ 21
285
+ 20%
286
+ 40
287
+ 30%
288
+ 60
289
+ 40%
290
+ 83
291
+ 50%
292
+ 115
293
+ 60%
294
+ 154
295
+ Percentile
296
+ t10
297
+ 70%
298
+ 212
299
+ 80%
300
+ 301
301
+ 90%
302
+ 493
303
+ 95%
304
+ 751
305
+ 98%
306
+ 1247
307
+ 99%
308
+ 1843
309
+ 6
310
+
311
+ Score.
312
+ 175
313
+ 150
314
+ (2022)
315
+ 125
316
+ 100
317
+ 3
318
+ size
319
+ Faculty
320
+ 75
321
+ 2
322
+ 50
323
+ 25
324
+ 1
325
+ F 0
326
+ 20
327
+ -0
328
+ 0
329
+ 40
330
+ 60
331
+ 80
332
+ 100
333
+ 120
334
+ 140
335
+ Faculty size (2016)80
336
+ old data
337
+ 75
338
+ new data
339
+ 70
340
+ 62
341
+ 60
342
+ indices
343
+ 50
344
+ 48
345
+ le
346
+ 44
347
+ 40
348
+ 30
349
+ 27
350
+ 25
351
+ 20
352
+ 10
353
+ 0
354
+ h-index
355
+ il0-index
356
+ tl0-indexA PREPRINT - JANUARY 10, 2023
357
+ Figure 5: Histogram of t10 of associate and full CS professors
358
+ Figure 6: Number of tenured CS faculty with (blue) and without (orange) Google scholar profile as a function of the t10
359
+ percentile
360
+ 4.3
361
+ Scholar profile bias
362
+ While the median of t10 for the 3,932 senior CS faculty is 114, it increases to 131 among the 3,379 professors
363
+ who have a Google scholar profile and drops to 33 among the 553 without a profile. In Fig. 6 we show a stacked bar
364
+ plot of the numbers of faculty with and without Google scholar profiles as a function of their t10 percentile. These
365
+ results are consistent with the observations in our 2017 paper, which indicate that CS faculty who have Google scholar
366
+ profiles are a biased sample of the entire CS faculty and validate our effort to gather the t10 values and use them in our
367
+ study instead of the h-index.
368
+ 4.4
369
+ Scholar model
370
+ According to the above analysis, it can be observed our 2022 data shows a similar pattern and trend compared to
371
+ our 2017 data. Hence, we decided to keep the same linear regression scholar model used in 2017 and directly applied it
372
+ to our 2022 data, which is shown in formula 2:
373
+ s = 1 + 0.058
374
+
375
+ m10 + 0.059
376
+
377
+ g10 + 0.121
378
+
379
+ c40 + 0.127
380
+
381
+ c60
382
+ (2)
383
+ 7
384
+
385
+ 600
386
+ 500
387
+ 400
388
+ Count
389
+ 300
390
+ 200
391
+ 100
392
+ 0
393
+ 0.5
394
+ 1.5
395
+ 2
396
+ 2.5
397
+ 3
398
+ 3.5
399
+ 4
400
+ log10(t10)450
401
+ 400
402
+ 350
403
+ 300
404
+ Count
405
+ 250
406
+ 200
407
+ 150
408
+ 100
409
+ 50
410
+ 0
411
+ 0
412
+ 0.1
413
+ 0.2
414
+ 0.3
415
+ 0.4
416
+ 0.5
417
+ 0.6
418
+ 0.7
419
+ 0.8
420
+ 0.9
421
+ -
422
+ Percentile RangeA PREPRINT - JANUARY 10, 2023
423
+ Figure 7: Comparison of scholar model scores and USN CS scores of CS graduate programs.
424
+ In Fig 7, we show a scatter plot of the USN CS scores and scholar model scores for the 185 CS programs. A
425
+ closer look at the scatter plot reveals that two groups of CS programs can be distinguished with respect to the correlation
426
+ between the USN CS scores and scholar model scores. The first group contains 73 programs that were scored 2.8
427
+ and higher by the USN. The correlation between the USN CS scores and joint model scores in this group is 0.914.
428
+ The second group contains 112 programs with USN scores between 0 and 2.7. The correlation between the USN CS
429
+ scores and scholar model scores in this low-scoring group is 0.673, which is much higher than what we observed in
430
+ 2017 (0.360) but still lower than those 73 programs. We hypothesize that the CS programs whose USN CS scores are
431
+ between 0 and 2.8 are not sufficiently well-known among the peers to provide objective and reliable peer assessment at
432
+ the national level.
433
+ 4.5
434
+ Comparison Study
435
+ We first study the newly added professor list to compare our new ranking result with the previous one conducted
436
+ in 2017. Among those 1,750 new professors, it is observed that 1,518 (86.7%) of them have a t10-index lower than
437
+ the average t10-index of all faculty from the department they join in. 223 of them are higher, and 9 of them have a
438
+ missing t10-index. Furthermore, among those 261 professors who transferred to another department, 114 have joined
439
+ a higher-ranking department than their previous department, and 147 have joined a lower-ranking department. We
440
+ also compared their t10-index in 2017 with the previous department average before they moved. It is an interesting
441
+ finding that only 66 have a t10-index higher than the department average, and 176 have a t10-index lower or equal to
442
+ the department average. 19 of them have a missing t10-index. Based on these observations, it can be inferred that new
443
+ professors are primarily young, with a lower t10-index. It is also true that young professors at the starting stage of their
444
+ careers are more likely to transfer to another university, and most of them tend to join a higher-ranking university. The
445
+ story might be they built a stronger profile during the past 5 years and then joined a higher-ranking department.
446
+ 4.5.1
447
+ 2017 ranking vs. 2022 ranking
448
+ To better understand how the ranking has changed during the past five years, we calculate the ranking difference
449
+ between the results we produced in 2017 and 2022 using the same scholar model created in 2017. Fig. 8 shows the
450
+ box plot of the absolute difference between our old (2017) and new (2022) scholar ranking results. It can be seen that
451
+ the placements of top universities above rank 90 are more stable, while lower-ranked universities tend to have more
452
+ significant variations. However, we observe some outliers. For example, Northeastern University jumped from rank 40
453
+ to 21 because this department may have recruited many new professors since 2017.
454
+ Another observation is that larger departments are not necessarily ranked higher. For example, Stanford University
455
+ and Princeton University both have relatively small departments. Still, they are within the top 10 departments in our
456
+ ranking, indicating that other factors, such as faculty citations, significantly influence the ranking result.
457
+ 8
458
+
459
+ 5.5
460
+ 5
461
+ 00
462
+ O
463
+ 000
464
+ 4.5
465
+ 8
466
+ o
467
+ 4
468
+ 900
469
+ o
470
+ 8
471
+ o
472
+ 8
473
+ o
474
+ 08
475
+ Model
476
+ 08
477
+ 80
478
+ 3
479
+ 000
480
+ .
481
+ 2.5
482
+ 08
483
+ 009
484
+ 00
485
+ 00
486
+ 8000
487
+ 08
488
+ 1.59
489
+ 8000
490
+ 8
491
+ o
492
+ 0.0
493
+ 0.5
494
+ 1.0
495
+ 1.5
496
+ 2.0
497
+ 2.5
498
+ 3.0
499
+ 3.5
500
+ 4.0
501
+ 4.5
502
+ 5.0
503
+ 5.5
504
+ U.S.News ScoreA PREPRINT - JANUARY 10, 2023
505
+ Figure 8: Absolute value of ranking difference between our 2017 and 2022 scholar ranking results
506
+ Figure 9: Absolute value of ranking difference between USN 2017 and USN 2022 results
507
+ Fig. 9 shows the absolute difference between the USN 2017 and USN 2022 ranking. It can be observed that the
508
+ ranking difference has a similar pattern compared to what has been shown in Fig. 8. This indicates that our method
509
+ using the t-10 index of faculty to rank the program produces similar ranking results compared to USN.
510
+ 4.5.2
511
+ Scholar ranking vs. USN
512
+ The new ranking results and a comparison to the USN scores are shown in the Appendix. To justify that it
513
+ is appropriate to apply the linear regression model obtained from the 2017 data to the 2022 data, we calculated the
514
+ correlations between our scholar ranking result and the USN ranking in 2017 and 2022, respectively. The results are
515
+ shown in Table 2.
516
+ Table 2: Correlation between USN ranking and our scholar ranking using the 2017 regression model
517
+ R2
518
+ Pearson
519
+ Spearman
520
+ USN 2017 vs. scholar ranking 2017
521
+ 0.8731
522
+ 0.9357
523
+ 0.8978
524
+ USN 2022 vs. scholar ranking 2022
525
+ 0.8734
526
+ 0.9390
527
+ 0.9126
528
+ Despite the fact that we used the same regression formula for both 2017 and 2022 data, our scholar ranking results
529
+ show a high correlation with both USN 2017 and USN 2022 rankings. This result confirms that our practice of using
530
+ the 2017 ranking formula on our 2022 data is justifiable.
531
+ To further investigate the relationship between our scholar ranking and the USN ranking, we calculated the
532
+ difference between our new ranking and the USN 2022 ranking. Fig. 10 shows the boxplot of the absolute value of
533
+ difference. We separate universities into six groups based on their new scholar rank. It can be observed that our ranking
534
+ 9
535
+
536
+ 50
537
+ 40
538
+ Rank difference
539
+ 30
540
+ 20
541
+ 10
542
+ 0
543
+ Rank 1-30
544
+ Rank 31-60
545
+ Rank 61-90
546
+ Rank 91-120
547
+ University ranking (2022)50
548
+ 40
549
+ 0
550
+ Rank difference
551
+ 30
552
+ 0
553
+ 20
554
+ 10
555
+ 0
556
+ Rank 1-30
557
+ Rank 31-60
558
+ Rank 61-90
559
+ Rank91-120
560
+ University ranking (2022)A PREPRINT - JANUARY 10, 2023
561
+ Figure 10: Absolute value of ranking difference between our 2022 scholar ranking and USN 2022 ranking
562
+ Figure 11: Histogram plot of ranking score increase between 2022 and 2017
563
+ model is more likely to match with the USN ranking for higher-ranking departments. For instance, all departments that
564
+ rank 1-30 show a rank difference of less than 10.
565
+ We also calculate the ranking score increase in 2022 compared to 2017 for both our scholar model and USN and
566
+ show the histogram plots in Fig. 11. It can be seen that most departments have a score increase in both the scholar
567
+ model and USN, and all of them are within the range between -0.4 and 0.8. There are a few extreme cases. For example,
568
+ the ranking score of Northeastern University increased by 0.8; where the reason may be the department recruited many
569
+ new faculty during the past few years. UNC Chapel Hill has a score decrease of 0.3. Their department size remains the
570
+ same (32), but the m10, g10, c40, and c60 values drop in 2022.
571
+ 4.5.3
572
+ Scholar ranking vs. CSRankings
573
+ Table 3: Correlation between CSRankings, USN 2022 and our scholar ranking
574
+ R2
575
+ Pearson
576
+ Spearman
577
+ USN vs. scholar ranking
578
+ 0.8734
579
+ 0.9390
580
+ 0.9126
581
+ USN vs. CSRankings
582
+ 0.8391
583
+ 0.9160
584
+ 0.9157
585
+ scholar ranking vs. CSRankings
586
+ 0.8375
587
+ 0.9151
588
+ 0.8965
589
+ USN vs. average model
590
+ 0.8462
591
+ 0.9199
592
+ 0.9305
593
+ To further investigate the relationship between our ranking and some widely-used CS ranking results, we compared
594
+ the CSRankings result with our ranking. Unlike USN ranking, CSRankings4 relies on publications in top-tier computer
595
+ science conferences, as reported by DBLP, a computer science bibliography website 5. To study the relationship between
596
+ CSRankings and our scholar ranking, we collected the current CSRankings result and calculated its correlations with
597
+ 4http://csrankings.org
598
+ 5https://dblp.org/
599
+ 10
600
+
601
+ 50
602
+ 40
603
+ Rank difference
604
+ 30
605
+ 20
606
+ 10
607
+ 0
608
+ Rank1-30
609
+ Rank 31-60
610
+ Rank 61-90
611
+ Rank 91-120
612
+ Universityranking(2022)Histogram of ranking score increase in 2022 compared to 2017
613
+ Scholarranking
614
+ USN ranking
615
+ 35
616
+ 30
617
+ 25
618
+ 20
619
+ Count
620
+ 15
621
+ 10
622
+ 5
623
+ 0
624
+ 0.4
625
+ 0.2
626
+ 0.0
627
+ 0.2
628
+ 0.4
629
+ 0.6
630
+ 0.8
631
+ 0.4
632
+ 0.2
633
+ 0.0
634
+ 0.2
635
+ 0.4
636
+ 0.6
637
+ 0.8
638
+ Ranking score increase
639
+ Ranking score increaseA PREPRINT - JANUARY 10, 2023
640
+ Figure 12: Absolute value of ranking difference between CSRankings and USN 2022
641
+ Figure 13: Absolute value of ranking difference between CSRankings and our scholar ranking
642
+ USN and our scholar ranking. Since the CSRanking score is based on a different scale, we applied log transformation
643
+ to its score before computing the correlations. The result is shown in Table 3.
644
+ It can be seen from the Table that our scholar ranking result has a higher correlation with the USN ranking, which
645
+ indicates that it is better aligned with the USN ranking compared to CSRankings. This indication is further justified
646
+ in Fig. 10 and Fig. 12, where we show the ranking difference between 1) our scholar ranking results with USN and
647
+ 2) CSRankings with USN. It can be seen that CSRankings shows an overall more significant ranking difference with
648
+ USN compared to our scholar model ranking, especially for the top 60 departments. An interesting finding is that
649
+ CSRankings is better aligned with USN than our scholar ranking for those lower-ranking departments (>90). The
650
+ ranking difference between CSRankings and our scholar model ranking is shown in Fig. 13. The result shows that the
651
+ difference increases with a larger variance as the ranking of the department decreases. This indicates that the ranking
652
+ of top departments is more stable despite which model is being used, whereas lower-ranking departments are more
653
+ sensitive to the ranking method. We also build an average model by computing the average score using the scholar
654
+ model score and CSRankings score (shown in the last row of Table), which yields a higher spearman correlation with
655
+ the USN ranking.
656
+ References
657
+ [1] Slobodan Vucetic, Ashis Kumar Chanda, Shanshan Zhang, Tian Bai, and Aniruddha Maiti. Faculty citation measures
658
+ are highly correlated with peer assessment of computer science doctoral programs. ArXiv, abs/1708.05435, 2017.
659
+ [2] Emilio Delgado López-Cózar, Nicolás Robinson-García, and Daniel Torres-Salinas. The Google scholar experiment:
660
+ How to index false papers and manipulate bibliometric indicators. Journal of the Association for Information
661
+ Science & Technology, 65(3):446–454, March 2014.
662
+ [3] Péter Jacsó. Deflated, inflated and phantom citation counts. Online Inf. Rev., 30:297–309, 2006.
663
+ 11
664
+
665
+ 50
666
+ 40
667
+ 30
668
+ 0
669
+ 0
670
+ 20
671
+ 8
672
+ 10
673
+ 0
674
+ Rank 1-30
675
+ Rank 31-60
676
+ Rank 61-90
677
+ Rank 91-120
678
+ Universityranking(2022)50
679
+ 40
680
+ 0
681
+ 30
682
+ 20
683
+ 0
684
+ Rank
685
+ 0
686
+ 10
687
+ 0
688
+ Rank 1-30
689
+ Rank 31-60
690
+ Rank 61-90
691
+ Rank91-120
692
+ University ranking (2022)A PREPRINT - JANUARY 10, 2023
693
+ [4] Judit Bar-Ilan. Which h-index?—a comparison of wos, scopus and google scholar. Scientometrics, 74:257–271, 02
694
+ 2008.
695
+ [5] J. E. Hirsch. An index to quantify an individual’s scientific research output. Proceedings of the National Academy
696
+ of Sciences, 102(46):16569–16572, 2005.
697
+ [6] Themis Lazaridis. Ranking university departments using the mean h-index. Scientometrics, 82:211–216, 2009.
698
+ 12
699
+
700
+ A PREPRINT - JANUARY 10, 2023
701
+ Table 4: List of 185 U.S. CS graduate programs: Ranking by our scholar model (Rank), University name (University),
702
+ Number of tenured faculty with t10 score (Size), median t10 score of all the faculty (M10), geometric mean of t10 score
703
+ of all faculty (G10), number of highly cited faculty based on c40 (C40) and c60 (C60), U.S. News CS score (USN),
704
+ Scholar score (Scholar)
705
+ Rank
706
+ University
707
+ Size
708
+ M10
709
+ G10
710
+ C40
711
+ C60
712
+ USN
713
+ Scholar
714
+ USN 2016
715
+ Scholar 2016
716
+ 1
717
+ Carnegie Mellon University
718
+ 170
719
+ 280
720
+ 262
721
+ 121
722
+ 84
723
+ 4.9
724
+ 5
725
+ 5
726
+ 5
727
+ 1
728
+ Cornell University
729
+ 102
730
+ 327
731
+ 315
732
+ 75
733
+ 58
734
+ 4.6
735
+ 5
736
+ 4.5
737
+ 4.4
738
+ 1
739
+ Massachusetts Institute of Technology
740
+ 110
741
+ 304
742
+ 302
743
+ 92
744
+ 74
745
+ 5
746
+ 5
747
+ 5
748
+ 5
749
+ 1
750
+ Stanford University
751
+ 64
752
+ 707
753
+ 706
754
+ 60
755
+ 53
756
+ 4.9
757
+ 5
758
+ 5
759
+ 5
760
+ 1
761
+ University of California Berkeley
762
+ 82
763
+ 421
764
+ 461
765
+ 68
766
+ 60
767
+ 4.9
768
+ 5
769
+ 5
770
+ 5
771
+ 6
772
+ University of Washington
773
+ 73
774
+ 345
775
+ 295
776
+ 58
777
+ 47
778
+ 4.6
779
+ 4.9
780
+ 4.5
781
+ 4.3
782
+ 7
783
+ University of California San Diego
784
+ 63
785
+ 341
786
+ 330
787
+ 49
788
+ 39
789
+ 4.3
790
+ 4.8
791
+ 4
792
+ 4.2
793
+ 8
794
+ Georgia Institute of Technology
795
+ 105
796
+ 203
797
+ 198
798
+ 75
799
+ 53
800
+ 4.6
801
+ 4.6
802
+ 4.3
803
+ 4.3
804
+ 8
805
+ Princeton University
806
+ 48
807
+ 360
808
+ 345
809
+ 36
810
+ 30
811
+ 4.5
812
+ 4.6
813
+ 4.4
814
+ 4.1
815
+ 8
816
+ University of Illinois Urbana Champaign
817
+ 76
818
+ 265
819
+ 248
820
+ 56
821
+ 43
822
+ 4.7
823
+ 4.6
824
+ 4.6
825
+ 4.1
826
+ 11
827
+ University of California Los Angeles
828
+ 44
829
+ 317
830
+ 316
831
+ 35
832
+ 31
833
+ 4.3
834
+ 4.5
835
+ 4.1
836
+ 4.2
837
+ 11
838
+ University of Pennsylvania
839
+ 67
840
+ 256
841
+ 238
842
+ 49
843
+ 39
844
+ 4.1
845
+ 4.5
846
+ 3.8
847
+ 3.7
848
+ 13
849
+ Columbia University
850
+ 52
851
+ 249
852
+ 288
853
+ 42
854
+ 34
855
+ 4.3
856
+ 4.4
857
+ 4
858
+ 4.1
859
+ 13
860
+ New York University
861
+ 44
862
+ 288
863
+ 254
864
+ 38
865
+ 29
866
+ 3.5
867
+ 4.4
868
+ 3.4
869
+ 4
870
+ 13
871
+ University of Michigan Ann Arbor
872
+ 67
873
+ 251
874
+ 254
875
+ 47
876
+ 35
877
+ 4.3
878
+ 4.4
879
+ 4.1
880
+ 4.1
881
+ 16
882
+ Harvard University
883
+ 34
884
+ 277
885
+ 286
886
+ 28
887
+ 22
888
+ 4.2
889
+ 4.2
890
+ 3.9
891
+ 3.7
892
+ 17
893
+ Duke University
894
+ 56
895
+ 216
896
+ 195
897
+ 37
898
+ 26
899
+ 3.9
900
+ 4.1
901
+ 3.6
902
+ 3.6
903
+ 17
904
+ Johns Hopkins University
905
+ 32
906
+ 258
907
+ 309
908
+ 23
909
+ 17
910
+ 4
911
+ 4.1
912
+ 3.5
913
+ 4
914
+ 17
915
+ University of Maryland College Park
916
+ 56
917
+ 219
918
+ 186
919
+ 37
920
+ 29
921
+ 4.1
922
+ 4.1
923
+ 4
924
+ 4
925
+ 17
926
+ University of Wisconsin Madison
927
+ 45
928
+ 285
929
+ 225
930
+ 28
931
+ 20
932
+ 4.1
933
+ 4.1
934
+ 4.2
935
+ 3.9
936
+ 21
937
+ Northeastern University
938
+ 77
939
+ 165
940
+ 180
941
+ 45
942
+ 30
943
+ 3.6
944
+ 4
945
+ 2.7
946
+ 3.2
947
+ 21
948
+ University of Southern California
949
+ 40
950
+ 272
951
+ 238
952
+ 26
953
+ 19
954
+ 3.9
955
+ 4
956
+ 3.7
957
+ 3.9
958
+ 21
959
+ University of Texas Austin
960
+ 53
961
+ 182
962
+ 184
963
+ 38
964
+ 25
965
+ 4.5
966
+ 4
967
+ 4.3
968
+ 3.7
969
+ 24
970
+ Brown University
971
+ 31
972
+ 224
973
+ 233
974
+ 22
975
+ 17
976
+ 3.8
977
+ 3.9
978
+ 3.7
979
+ 3.5
980
+ 24
981
+ University of Massachusetts Amherst
982
+ 59
983
+ 191
984
+ 187
985
+ 33
986
+ 22
987
+ 3.9
988
+ 3.9
989
+ 3.6
990
+ 3.7
991
+ 26
992
+ University of Chicago
993
+ 48
994
+ 174
995
+ 208
996
+ 29
997
+ 17
998
+ 3.7
999
+ 3.8
1000
+ 3.3
1001
+ 3.5
1002
+ 26
1003
+ Yale University
1004
+ 26
1005
+ 243
1006
+ 231
1007
+ 19
1008
+ 14
1009
+ 4
1010
+ 3.8
1011
+ 3.7
1012
+ 4
1013
+ 28
1014
+ California Institute of Technology
1015
+ 21
1016
+ 240
1017
+ 240
1018
+ 16
1019
+ 12
1020
+ 4.3
1021
+ 3.7
1022
+ 4.2
1023
+ 3.7
1024
+ 28
1025
+ Pennsylvania State University University Park
1026
+ 44
1027
+ 200
1028
+ 176
1029
+ 25
1030
+ 17
1031
+ 3.6
1032
+ 3.7
1033
+ 3.4
1034
+ 3.4
1035
+ 28
1036
+ Rice University
1037
+ 28
1038
+ 213
1039
+ 204
1040
+ 18
1041
+ 13
1042
+ 3.7
1043
+ 3.7
1044
+ 3.7
1045
+ 3.3
1046
+ 28
1047
+ University of California Santa Barbara
1048
+ 37
1049
+ 183
1050
+ 194
1051
+ 25
1052
+ 15
1053
+ 3.7
1054
+ 3.7
1055
+ 3.3
1056
+ 3.6
1057
+ 28
1058
+ University of Minnesota Twin Cities
1059
+ 46
1060
+ 145
1061
+ 186
1062
+ 30
1063
+ 15
1064
+ 3.6
1065
+ 3.7
1066
+ 3.4
1067
+ 3.4
1068
+ 33
1069
+ Purdue University West Lafayette
1070
+ 72
1071
+ 137
1072
+ 133
1073
+ 31
1074
+ 17
1075
+ 4
1076
+ 3.6
1077
+ 3.7
1078
+ 3.3
1079
+ 33
1080
+ Stony Brook University SUNY
1081
+ 45
1082
+ 152
1083
+ 137
1084
+ 27
1085
+ 17
1086
+ 3.4
1087
+ 3.6
1088
+ 3.1
1089
+ 3.3
1090
+ 33
1091
+ University of California Davis
1092
+ 37
1093
+ 178
1094
+ 162
1095
+ 23
1096
+ 18
1097
+ 3.4
1098
+ 3.6
1099
+ 3.3
1100
+ 3.5
1101
+ 33
1102
+ University of California Irvine
1103
+ 50
1104
+ 152
1105
+ 132
1106
+ 28
1107
+ 19
1108
+ 3.7
1109
+ 3.6
1110
+ 3.4
1111
+ 3.4
1112
+ 33
1113
+ University of Virginia
1114
+ 40
1115
+ 193
1116
+ 179
1117
+ 20
1118
+ 14
1119
+ 3.7
1120
+ 3.6
1121
+ 3.4
1122
+ 3.1
1123
+ 38
1124
+ University of California Santa Cruz
1125
+ 39
1126
+ 185
1127
+ 153
1128
+ 20
1129
+ 14
1130
+ 3.2
1131
+ 3.5
1132
+ 2.8
1133
+ 3.5
1134
+ 39
1135
+ Boston University
1136
+ 33
1137
+ 141
1138
+ 167
1139
+ 18
1140
+ 11
1141
+ 3.3
1142
+ 3.4
1143
+ 3
1144
+ 3.2
1145
+ 39
1146
+ Michigan State University
1147
+ 39
1148
+ 151
1149
+ 159
1150
+ 20
1151
+ 12
1152
+ 3
1153
+ 3.4
1154
+ 2.8
1155
+ 3
1156
+ 13
1157
+
1158
+ A PREPRINT - JANUARY 10, 2023
1159
+ 39
1160
+ Northwestern University
1161
+ 44
1162
+ 122
1163
+ 123
1164
+ 26
1165
+ 12
1166
+ 3.7
1167
+ 3.4
1168
+ 3.3
1169
+ 3.1
1170
+ 39
1171
+ Rutgers University
1172
+ 39
1173
+ 151
1174
+ 152
1175
+ 18
1176
+ 10
1177
+ 3.5
1178
+ 3.4
1179
+ 3.3
1180
+ 3.3
1181
+ 39
1182
+ University of Arizona
1183
+ 22
1184
+ 197
1185
+ 168
1186
+ 14
1187
+ 9
1188
+ 3.2
1189
+ 3.4
1190
+ 3.1
1191
+ 3.2
1192
+ 39
1193
+ University of California Riverside
1194
+ 34
1195
+ 153
1196
+ 133
1197
+ 22
1198
+ 12
1199
+ 3
1200
+ 3.4
1201
+ 2.8
1202
+ 3.3
1203
+ 45
1204
+ Arizona State University
1205
+ 54
1206
+ 92
1207
+ 122
1208
+ 21
1209
+ 16
1210
+ 3.2
1211
+ 3.3
1212
+ 3
1213
+ 2.9
1214
+ 45
1215
+ University of Colorado Boulder
1216
+ 51
1217
+ 127
1218
+ 100
1219
+ 24
1220
+ 12
1221
+ 3.5
1222
+ 3.3
1223
+ 3.1
1224
+ 3
1225
+ 45
1226
+ University of Rochester
1227
+ 18
1228
+ 186
1229
+ 160
1230
+ 10
1231
+ 7
1232
+ 3.1
1233
+ 3.3
1234
+ 2.9
1235
+ 3
1236
+ 45
1237
+ University of Utah
1238
+ 54
1239
+ 117
1240
+ 121
1241
+ 22
1242
+ 12
1243
+ 3.4
1244
+ 3.3
1245
+ 3.1
1246
+ 3
1247
+ 45
1248
+ Vanderbilt University
1249
+ 26
1250
+ 164
1251
+ 155
1252
+ 13
1253
+ 10
1254
+ 3.1
1255
+ 3.3
1256
+ 2.8
1257
+ 2.9
1258
+ 45
1259
+ Washington University in St Louis
1260
+ 28
1261
+ 135
1262
+ 150
1263
+ 17
1264
+ 10
1265
+ 3.4
1266
+ 3.3
1267
+ 3.1
1268
+ 2.9
1269
+ 51
1270
+ University of North Carolina Chapel Hill
1271
+ 32
1272
+ 139
1273
+ 122
1274
+ 16
1275
+ 10
1276
+ 3.8
1277
+ 3.2
1278
+ 3.6
1279
+ 3.5
1280
+ 51
1281
+ University of Notre Dame
1282
+ 27
1283
+ 126
1284
+ 144
1285
+ 17
1286
+ 7
1287
+ 3.2
1288
+ 3.2
1289
+ 2.7
1290
+ 2.7
1291
+ 53
1292
+ Colorado State University
1293
+ 22
1294
+ 115
1295
+ 136
1296
+ 14
1297
+ 7
1298
+ 2.5
1299
+ 3.1
1300
+ 2.4
1301
+ 3
1302
+ 53
1303
+ George Mason University
1304
+ 47
1305
+ 100
1306
+ 99
1307
+ 21
1308
+ 10
1309
+ 2.9
1310
+ 3.1
1311
+ 2.5
1312
+ 2.9
1313
+ 53
1314
+ Indiana University Bloomington
1315
+ 36
1316
+ 103
1317
+ 99
1318
+ 17
1319
+ 9
1320
+ 3.1
1321
+ 3.1
1322
+ 2.9
1323
+ 3
1324
+ 53
1325
+ Ohio State University
1326
+ 44
1327
+ 99
1328
+ 84
1329
+ 22
1330
+ 11
1331
+ 3.6
1332
+ 3.1
1333
+ 3.3
1334
+ 3.1
1335
+ 53
1336
+ Texas AM University College Station
1337
+ 48
1338
+ 94
1339
+ 90
1340
+ 22
1341
+ 9
1342
+ 3.5
1343
+ 3.1
1344
+ 3.1
1345
+ 2.9
1346
+ 53
1347
+ University of Central Florida
1348
+ 37
1349
+ 89
1350
+ 100
1351
+ 18
1352
+ 10
1353
+ 2.8
1354
+ 3.1
1355
+ 2.2
1356
+ 2.6
1357
+ 53
1358
+ University of Tennessee Knoxville
1359
+ 29
1360
+ 125
1361
+ 114
1362
+ 13
1363
+ 9
1364
+ 2.5
1365
+ 3.1
1366
+ 2.4
1367
+ 3
1368
+ 53
1369
+ University of Texas Dallas
1370
+ 52
1371
+ 88
1372
+ 76
1373
+ 24
1374
+ 15
1375
+ 2.9
1376
+ 3.1
1377
+ 2.4
1378
+ 2.9
1379
+ 53
1380
+ Virginia Tech
1381
+ 56
1382
+ 93
1383
+ 99
1384
+ 24
1385
+ 9
1386
+ 3.5
1387
+ 3.1
1388
+ 3.1
1389
+ 3
1390
+ 62
1391
+ College of William and Mary
1392
+ 21
1393
+ 136
1394
+ 140
1395
+ 9
1396
+ 6
1397
+ 2.8
1398
+ 3
1399
+ 2.4
1400
+ 2.8
1401
+ 62
1402
+ Lehigh University
1403
+ 20
1404
+ 148
1405
+ 129
1406
+ 9
1407
+ 5
1408
+ 2.5
1409
+ 3
1410
+ 2.1
1411
+ 2.7
1412
+ 62
1413
+ Temple University
1414
+ 23
1415
+ 130
1416
+ 103
1417
+ 12
1418
+ 7
1419
+ 2.4
1420
+ 3
1421
+ 2
1422
+ 2.6
1423
+ 62
1424
+ University at Buffalo SUNY
1425
+ 39
1426
+ 96
1427
+ 90
1428
+ 17
1429
+ 9
1430
+ 2.9
1431
+ 3
1432
+ 2.6
1433
+ 3
1434
+ 62
1435
+ University of Florida
1436
+ 47
1437
+ 82
1438
+ 79
1439
+ 18
1440
+ 11
1441
+ 3.4
1442
+ 3
1443
+ 3
1444
+ 2.7
1445
+ 67
1446
+ North Carolina State University
1447
+ 43
1448
+ 82
1449
+ 83
1450
+ 16
1451
+ 9
1452
+ 3.2
1453
+ 2.9
1454
+ 3
1455
+ 2.9
1456
+ 67
1457
+ Rensselaer Polytechnic Institute
1458
+ 19
1459
+ 89
1460
+ 134
1461
+ 9
1462
+ 6
1463
+ 3.1
1464
+ 2.9
1465
+ 2.9
1466
+ 2.8
1467
+ 67
1468
+ University of Maryland Baltimore County
1469
+ 29
1470
+ 94
1471
+ 101
1472
+ 12
1473
+ 6
1474
+ 2.7
1475
+ 2.9
1476
+ 2.4
1477
+ 2.7
1478
+ 67
1479
+ University of Pittsburgh
1480
+ 23
1481
+ 104
1482
+ 104
1483
+ 11
1484
+ 6
1485
+ 3.1
1486
+ 2.9
1487
+ 2.9
1488
+ 2.8
1489
+ 71
1490
+ CUNY Graduate School and University Center
1491
+ 99
1492
+ 37
1493
+ 43
1494
+ 25
1495
+ 13
1496
+ 2.1
1497
+ 2.8
1498
+ 2.3
1499
+ 2.6
1500
+ 71
1501
+ Dartmouth College
1502
+ 20
1503
+ 97
1504
+ 110
1505
+ 8
1506
+ 3
1507
+ 3.2
1508
+ 2.8
1509
+ 3.1
1510
+ 2.7
1511
+ 71
1512
+ Oregon State University
1513
+ 49
1514
+ 84
1515
+ 69
1516
+ 17
1517
+ 4
1518
+ 2.9
1519
+ 2.8
1520
+ 2.5
1521
+ 2.3
1522
+ 71
1523
+ University of Houston
1524
+ 24
1525
+ 95
1526
+ 88
1527
+ 13
1528
+ 4
1529
+ 2.2
1530
+ 2.8
1531
+ 2.1
1532
+ 2.4
1533
+ 71
1534
+ University of Illinois Chicago
1535
+ 39
1536
+ 85
1537
+ 100
1538
+ 13
1539
+ 5
1540
+ 3
1541
+ 2.8
1542
+ 2.7
1543
+ 2.7
1544
+ 71
1545
+ University of Texas Arlington
1546
+ 37
1547
+ 85
1548
+ 69
1549
+ 13
1550
+ 6
1551
+ 2.5
1552
+ 2.8
1553
+ 2.2
1554
+ 2.7
1555
+ 71
1556
+ Wayne State University
1557
+ 22
1558
+ 109
1559
+ 89
1560
+ 11
1561
+ 3
1562
+ 2.3
1563
+ 2.8
1564
+ 2
1565
+ 2.4
1566
+ 78
1567
+ New Jersey Institute of Technology
1568
+ 30
1569
+ 70
1570
+ 70
1571
+ 11
1572
+ 6
1573
+ 2.5
1574
+ 2.7
1575
+ 2.2
1576
+ 2.4
1577
+ 78
1578
+ Portland State University
1579
+ 19
1580
+ 94
1581
+ 71
1582
+ 7
1583
+ 6
1584
+ 2
1585
+ 2.7
1586
+ 0
1587
+ 2.7
1588
+ 78
1589
+ Tufts University
1590
+ 21
1591
+ 81
1592
+ 95
1593
+ 8
1594
+ 3
1595
+ 2.8
1596
+ 2.7
1597
+ 2.4
1598
+ 2.4
1599
+ 78
1600
+ University of Memphis
1601
+ 18
1602
+ 88
1603
+ 99
1604
+ 7
1605
+ 5
1606
+ 1.8
1607
+ 2.7
1608
+ 0
1609
+ 2.4
1610
+ 78
1611
+ University of New Mexico
1612
+ 16
1613
+ 93
1614
+ 89
1615
+ 7
1616
+ 3
1617
+ 2.4
1618
+ 2.7
1619
+ 2.3
1620
+ 2.4
1621
+ 78
1622
+ University of California Merced
1623
+ 20
1624
+ 91
1625
+ 106
1626
+ 7
1627
+ 4
1628
+ 2.2
1629
+ 2.7
1630
+ 84
1631
+ Binghamton University SUNY
1632
+ 27
1633
+ 76
1634
+ 56
1635
+ 11
1636
+ 4
1637
+ 2.4
1638
+ 2.6
1639
+ 2
1640
+ 2.2
1641
+ 14
1642
+
1643
+ A PREPRINT - JANUARY 10, 2023
1644
+ 84
1645
+ Drexel University
1646
+ 15
1647
+ 94
1648
+ 80
1649
+ 6
1650
+ 2
1651
+ 2.7
1652
+ 2.6
1653
+ 2.2
1654
+ 2.4
1655
+ 84
1656
+ Illinois Institute of Technology
1657
+ 23
1658
+ 74
1659
+ 65
1660
+ 9
1661
+ 4
1662
+ 2.4
1663
+ 2.6
1664
+ 2.1
1665
+ 2.5
1666
+ 84
1667
+ University of Connecticut
1668
+ 28
1669
+ 102
1670
+ 78
1671
+ 9
1672
+ 1
1673
+ 2.7
1674
+ 2.6
1675
+ 2.3
1676
+ 2.3
1677
+ 84
1678
+ University of Georgia
1679
+ 24
1680
+ 81
1681
+ 65
1682
+ 8
1683
+ 4
1684
+ 2.5
1685
+ 2.6
1686
+ 2.2
1687
+ 2.2
1688
+ 84
1689
+ University of Massachusetts Lowell
1690
+ 26
1691
+ 90
1692
+ 47
1693
+ 7
1694
+ 5
1695
+ 2.1
1696
+ 2.6
1697
+ 0
1698
+ 2.1
1699
+ 84
1700
+ University of Missouri
1701
+ 29
1702
+ 62
1703
+ 65
1704
+ 11
1705
+ 4
1706
+ 2.3
1707
+ 2.6
1708
+ 2.1
1709
+ 2.4
1710
+ 84
1711
+ University of Nebraska Lincoln
1712
+ 31
1713
+ 78
1714
+ 68
1715
+ 10
1716
+ 3
1717
+ 2.6
1718
+ 2.6
1719
+ 2.4
1720
+ 2.6
1721
+ 84
1722
+ University of Oregon
1723
+ 20
1724
+ 97
1725
+ 93
1726
+ 7
1727
+ 2
1728
+ 2.7
1729
+ 2.6
1730
+ 2.6
1731
+ 2.2
1732
+ 84
1733
+ University of South Florida
1734
+ 26
1735
+ 60
1736
+ 77
1737
+ 7
1738
+ 6
1739
+ 2.3
1740
+ 2.6
1741
+ 2.1
1742
+ 2.5
1743
+ 84
1744
+ Washington State University
1745
+ 22
1746
+ 75
1747
+ 85
1748
+ 8
1749
+ 3
1750
+ 2.7
1751
+ 2.6
1752
+ 2.4
1753
+ 2
1754
+ 84
1755
+ West Virginia University
1756
+ 11
1757
+ 117
1758
+ 62
1759
+ 6
1760
+ 4
1761
+ 2
1762
+ 2.6
1763
+ 2
1764
+ 2.3
1765
+ 84
1766
+ Worcester Polytechnic Institute
1767
+ 32
1768
+ 69
1769
+ 76
1770
+ 9
1771
+ 4
1772
+ 2.5
1773
+ 2.6
1774
+ 2.2
1775
+ 2.4
1776
+ 97
1777
+ Case Western Reserve University
1778
+ 16
1779
+ 91
1780
+ 68
1781
+ 7
1782
+ 2
1783
+ 2.9
1784
+ 2.5
1785
+ 2.4
1786
+ 2.4
1787
+ 97
1788
+ Florida Atlantic University
1789
+ 27
1790
+ 53
1791
+ 55
1792
+ 11
1793
+ 4
1794
+ 1.9
1795
+ 2.5
1796
+ 0
1797
+ 2.1
1798
+ 97
1799
+ Florida International University
1800
+ 34
1801
+ 60
1802
+ 42
1803
+ 12
1804
+ 4
1805
+ 2.1
1806
+ 2.5
1807
+ 0
1808
+ 2.2
1809
+ 97
1810
+ Georgia State University
1811
+ 28
1812
+ 59
1813
+ 65
1814
+ 9
1815
+ 3
1816
+ 2.1
1817
+ 2.5
1818
+ 2
1819
+ 2.3
1820
+ 97
1821
+ Iowa State University
1822
+ 29
1823
+ 70
1824
+ 63
1825
+ 8
1826
+ 3
1827
+ 2.9
1828
+ 2.5
1829
+ 2.6
1830
+ 2.2
1831
+ 97
1832
+ Syracuse University
1833
+ 25
1834
+ 86
1835
+ 48
1836
+ 9
1837
+ 2
1838
+ 2.8
1839
+ 2.5
1840
+ 2.5
1841
+ 2.2
1842
+ 97
1843
+ University of Delaware
1844
+ 31
1845
+ 73
1846
+ 54
1847
+ 6
1848
+ 4
1849
+ 2.6
1850
+ 2.5
1851
+ 2.4
1852
+ 2.5
1853
+ 97
1854
+ University of Iowa
1855
+ 21
1856
+ 79
1857
+ 82
1858
+ 6
1859
+ 2
1860
+ 2.8
1861
+ 2.5
1862
+ 2.6
1863
+ 2.3
1864
+ 97
1865
+ University of Massachusetts Boston
1866
+ 17
1867
+ 81
1868
+ 82
1869
+ 6
1870
+ 1
1871
+ 2.2
1872
+ 2.5
1873
+ 0
1874
+ 2
1875
+ 97
1876
+ University of South Carolina
1877
+ 28
1878
+ 65
1879
+ 73
1880
+ 10
1881
+ 1
1882
+ 2.3
1883
+ 2.5
1884
+ 2.1
1885
+ 2.2
1886
+ 97
1887
+ University of Vermont
1888
+ 11
1889
+ 113
1890
+ 95
1891
+ 2
1892
+ 2
1893
+ 1.9
1894
+ 2.5
1895
+ 108
1896
+ Brandeis University
1897
+ 18
1898
+ 67
1899
+ 36
1900
+ 7
1901
+ 4
1902
+ 2.3
1903
+ 2.4
1904
+ 2.3
1905
+ 2.3
1906
+ 108
1907
+ Brigham Young University
1908
+ 36
1909
+ 66
1910
+ 32
1911
+ 8
1912
+ 3
1913
+ 2.4
1914
+ 2.4
1915
+ 2.2
1916
+ 2.3
1917
+ 108
1918
+ Clemson University
1919
+ 38
1920
+ 62
1921
+ 51
1922
+ 8
1923
+ 3
1924
+ 2.6
1925
+ 2.4
1926
+ 2.3
1927
+ 2.2
1928
+ 108
1929
+ Florida State University
1930
+ 24
1931
+ 74
1932
+ 62
1933
+ 8
1934
+ 1
1935
+ 2.6
1936
+ 2.4
1937
+ 2.3
1938
+ 2.1
1939
+ 108
1940
+ Kansas State University
1941
+ 16
1942
+ 66
1943
+ 61
1944
+ 6
1945
+ 2
1946
+ 2.3
1947
+ 2.4
1948
+ 2.2
1949
+ 1.9
1950
+ 108
1951
+ University of Alabama Birmingham
1952
+ 9
1953
+ 94
1954
+ 80
1955
+ 3
1956
+ 1
1957
+ 2
1958
+ 2.4
1959
+ 0
1960
+ 2
1961
+ 108
1962
+ University of North Texas
1963
+ 33
1964
+ 61
1965
+ 63
1966
+ 8
1967
+ 2
1968
+ 1.9
1969
+ 2.4
1970
+ 0
1971
+ 1.8
1972
+ 115
1973
+ George Washington University
1974
+ 12
1975
+ 67
1976
+ 59
1977
+ 3
1978
+ 2
1979
+ 2.7
1980
+ 2.3
1981
+ 2.3
1982
+ 2.1
1983
+ 115
1984
+ Louisiana State University
1985
+ 18
1986
+ 54
1987
+ 46
1988
+ 5
1989
+ 2
1990
+ 2.1
1991
+ 2.3
1992
+ 2.1
1993
+ 2.2
1994
+ 115
1995
+ University of Nevada Reno
1996
+ 18
1997
+ 61
1998
+ 64
1999
+ 3
2000
+ 1
2001
+ 1.8
2002
+ 2.3
2003
+ 0
2004
+ 1.9
2005
+ 115
2006
+ University of North Carolina Charlotte
2007
+ 19
2008
+ 53
2009
+ 55
2010
+ 4
2011
+ 2
2012
+ 2.4
2013
+ 2.3
2014
+ 2.1
2015
+ 1.9
2016
+ 115
2017
+ University of Oklahoma
2018
+ 24
2019
+ 51
2020
+ 54
2021
+ 4
2022
+ 2
2023
+ 2.2
2024
+ 2.3
2025
+ 2
2026
+ 1.9
2027
+ 115
2028
+ Utah State University
2029
+ 17
2030
+ 65
2031
+ 70
2032
+ 4
2033
+ 1
2034
+ 2
2035
+ 2.3
2036
+ 0
2037
+ 1.8
2038
+ 115
2039
+ Virginia Commonwealth University
2040
+ 23
2041
+ 58
2042
+ 50
2043
+ 7
2044
+ 1
2045
+ 2.1
2046
+ 2.3
2047
+ 0
2048
+ 2
2049
+ 115
2050
+ Emory University
2051
+ 14
2052
+ 64
2053
+ 45
2054
+ 3
2055
+ 3
2056
+ 2.7
2057
+ 2.3
2058
+ 123
2059
+ Colorado School of Mines
2060
+ 15
2061
+ 70
2062
+ 61
2063
+ 4
2064
+ 0
2065
+ 2.6
2066
+ 2.2
2067
+ 2.1
2068
+ 2
2069
+ 123
2070
+ Missouri University of Science Technology
2071
+ 14
2072
+ 46
2073
+ 57
2074
+ 3
2075
+ 1
2076
+ 2.1
2077
+ 2.2
2078
+ 2
2079
+ 2.2
2080
+ 123
2081
+ University of Arkansas Fayetteville
2082
+ 22
2083
+ 59
2084
+ 51
2085
+ 4
2086
+ 1
2087
+ 1.9
2088
+ 2.2
2089
+ 0
2090
+ 2
2091
+ 123
2092
+ University of Hawaii Manoa
2093
+ 19
2094
+ 29
2095
+ 39
2096
+ 7
2097
+ 3
2098
+ 2
2099
+ 2.2
2100
+ 0
2101
+ 2.2
2102
+ 123
2103
+ University of Kansas
2104
+ 19
2105
+ 60
2106
+ 56
2107
+ 2
2108
+ 1
2109
+ 2.5
2110
+ 2.2
2111
+ 2.3
2112
+ 2.3
2113
+ 123
2114
+ University of Texas San Antonio
2115
+ 20
2116
+ 54
2117
+ 52
2118
+ 3
2119
+ 1
2120
+ 2.1
2121
+ 2.2
2122
+ 0
2123
+ 2.3
2124
+ 15
2125
+
2126
+ A PREPRINT - JANUARY 10, 2023
2127
+ 129
2128
+ Mississippi State University
2129
+ 16
2130
+ 48
2131
+ 38
2132
+ 2
2133
+ 1
2134
+ 1.9
2135
+ 2.1
2136
+ 0
2137
+ 1.6
2138
+ 129
2139
+ Naval Postgraduate School
2140
+ 20
2141
+ 45
2142
+ 39
2143
+ 2
2144
+ 1
2145
+ 0
2146
+ 2.1
2147
+ 2.4
2148
+ 2
2149
+ 129
2150
+ Old Dominion University
2151
+ 21
2152
+ 34
2153
+ 46
2154
+ 4
2155
+ 1
2156
+ 2
2157
+ 2.1
2158
+ 0
2159
+ 2
2160
+ 129
2161
+ Oregon Health and Science University
2162
+ 7
2163
+ 66
2164
+ 76
2165
+ 1
2166
+ 0
2167
+ 1.8
2168
+ 2.1
2169
+ 2.2
2170
+ 1.8
2171
+ 129
2172
+ Stevens Institute of Technology
2173
+ 20
2174
+ 54
2175
+ 53
2176
+ 3
2177
+ 0
2178
+ 2.6
2179
+ 2.1
2180
+ 2.1
2181
+ 2.1
2182
+ 129
2183
+ University of Missouri Kansas City
2184
+ 16
2185
+ 61
2186
+ 52
2187
+ 3
2188
+ 0
2189
+ 1.8
2190
+ 2.1
2191
+ 0
2192
+ 1.6
2193
+ 129
2194
+ University of Texas El Paso
2195
+ 19
2196
+ 34
2197
+ 40
2198
+ 4
2199
+ 1
2200
+ 1.6
2201
+ 2.1
2202
+ 0
2203
+ 1.9
2204
+ 129
2205
+ University of Tulsa
2206
+ 15
2207
+ 37
2208
+ 53
2209
+ 3
2210
+ 1
2211
+ 1.8
2212
+ 2.1
2213
+ 0
2214
+ 2
2215
+ 129
2216
+ Western Michigan University
2217
+ 10
2218
+ 51
2219
+ 34
2220
+ 2
2221
+ 1
2222
+ 1.5
2223
+ 2.1
2224
+ 0
2225
+ 1.6
2226
+ 138
2227
+ Auburn University
2228
+ 22
2229
+ 39
2230
+ 29
2231
+ 2
2232
+ 1
2233
+ 2.5
2234
+ 2
2235
+ 2.2
2236
+ 1.7
2237
+ 138
2238
+ Claremont Graduate University
2239
+ 5
2240
+ 66
2241
+ 43
2242
+ 2
2243
+ 0
2244
+ 1.6
2245
+ 2
2246
+ 0
2247
+ 1.9
2248
+ 138
2249
+ DePaul University
2250
+ 51
2251
+ 24
2252
+ 22
2253
+ 4
2254
+ 2
2255
+ 1.9
2256
+ 2
2257
+ 0
2258
+ 2
2259
+ 138
2260
+ Kent State University
2261
+ 20
2262
+ 39
2263
+ 27
2264
+ 3
2265
+ 1
2266
+ 1.9
2267
+ 2
2268
+ 0
2269
+ 1.7
2270
+ 138
2271
+ New Mexico State University
2272
+ 14
2273
+ 59
2274
+ 50
2275
+ 2
2276
+ 0
2277
+ 2
2278
+ 2
2279
+ 0
2280
+ 1.9
2281
+ 138
2282
+ Texas Tech University
2283
+ 17
2284
+ 41
2285
+ 34
2286
+ 1
2287
+ 1
2288
+ 2.1
2289
+ 2
2290
+ 0
2291
+ 1.7
2292
+ 138
2293
+ University at Albany SUNY
2294
+ 14
2295
+ 62
2296
+ 47
2297
+ 1
2298
+ 0
2299
+ 2.2
2300
+ 2
2301
+ 2.1
2302
+ 2.2
2303
+ 138
2304
+ University of Alabama
2305
+ 16
2306
+ 24
2307
+ 29
2308
+ 4
2309
+ 2
2310
+ 2.3
2311
+ 2
2312
+ 0
2313
+ 2
2314
+ 138
2315
+ University of Colorado Colorado Springs
2316
+ 15
2317
+ 32
2318
+ 39
2319
+ 2
2320
+ 2
2321
+ 2
2322
+ 2
2323
+ 0
2324
+ 1.9
2325
+ 138
2326
+ University of Denver
2327
+ 9
2328
+ 56
2329
+ 51
2330
+ 1
2331
+ 0
2332
+ 1.9
2333
+ 2
2334
+ 0
2335
+ 1.8
2336
+ 138
2337
+ University of Kentucky
2338
+ 19
2339
+ 59
2340
+ 32
2341
+ 3
2342
+ 0
2343
+ 2.3
2344
+ 2
2345
+ 2.2
2346
+ 2.2
2347
+ 138
2348
+ University of Louisville
2349
+ 18
2350
+ 32
2351
+ 25
2352
+ 4
2353
+ 2
2354
+ 1.8
2355
+ 2
2356
+ 0
2357
+ 1.8
2358
+ 138
2359
+ Ohio University
2360
+ 16
2361
+ 49
2362
+ 33
2363
+ 3
2364
+ 0
2365
+ 1.9
2366
+ 2
2367
+ 151
2368
+ University of Louisiana Lafayette
2369
+ 22
2370
+ 30
2371
+ 24
2372
+ 2
2373
+ 1
2374
+ 1.9
2375
+ 1.9
2376
+ 0
2377
+ 1.8
2378
+ 151
2379
+ University of Wisconsin Milwaukee
2380
+ 12
2381
+ 57
2382
+ 44
2383
+ 1
2384
+ 0
2385
+ 2
2386
+ 1.9
2387
+ 0
2388
+ 1.8
2389
+ 153
2390
+ Florida Institute of Technology
2391
+ 27
2392
+ 19
2393
+ 18
2394
+ 1
2395
+ 1
2396
+ 1.8
2397
+ 1.8
2398
+ 0
2399
+ 1.7
2400
+ 153
2401
+ Oakland University
2402
+ 23
2403
+ 16
2404
+ 25
2405
+ 2
2406
+ 1
2407
+ 1.5
2408
+ 1.8
2409
+ 0
2410
+ 1.9
2411
+ 153
2412
+ Oklahoma State University
2413
+ 10
2414
+ 18
2415
+ 24
2416
+ 2
2417
+ 1
2418
+ 2
2419
+ 1.8
2420
+ 0
2421
+ 1.4
2422
+ 153
2423
+ Southern Methodist University
2424
+ 8
2425
+ 49
2426
+ 20
2427
+ 2
2428
+ 0
2429
+ 2.1
2430
+ 1.8
2431
+ 2
2432
+ 1.6
2433
+ 153
2434
+ University of Cincinnati
2435
+ 20
2436
+ 33
2437
+ 29
2438
+ 2
2439
+ 0
2440
+ 2.2
2441
+ 1.8
2442
+ 2
2443
+ 1.8
2444
+ 153
2445
+ University of Maine
2446
+ 9
2447
+ 33
2448
+ 31
2449
+ 2
2450
+ 0
2451
+ 1.8
2452
+ 1.8
2453
+ 0
2454
+ 2
2455
+ 153
2456
+ University of Mississippi
2457
+ 7
2458
+ 33
2459
+ 32
2460
+ 2
2461
+ 0
2462
+ 1.9
2463
+ 1.8
2464
+ 0
2465
+ 1.6
2466
+ 153
2467
+ Clarkson University
2468
+ 10
2469
+ 37
2470
+ 31
2471
+ 2
2472
+ 0
2473
+ 1.7
2474
+ 1.8
2475
+ 161
2476
+ Montana State University
2477
+ 10
2478
+ 30
2479
+ 34
2480
+ 0
2481
+ 0
2482
+ 1.7
2483
+ 1.7
2484
+ 0
2485
+ 1.6
2486
+ 161
2487
+ North Dakota State University
2488
+ 12
2489
+ 38
2490
+ 32
2491
+ 0
2492
+ 0
2493
+ 1.5
2494
+ 1.7
2495
+ 0
2496
+ 1.5
2497
+ 161
2498
+ University of Idaho
2499
+ 14
2500
+ 33
2501
+ 31
2502
+ 0
2503
+ 0
2504
+ 1.8
2505
+ 1.7
2506
+ 0
2507
+ 1.5
2508
+ 161
2509
+ University of New Orleans
2510
+ 13
2511
+ 30
2512
+ 22
2513
+ 1
2514
+ 0
2515
+ 1.5
2516
+ 1.7
2517
+ 0
2518
+ 1.7
2519
+ 161
2520
+ Rochester Institute of Technology
2521
+ 24
2522
+ 26
2523
+ 20
2524
+ 2
2525
+ 0
2526
+ 2.7
2527
+ 1.7
2528
+ 161
2529
+ San Diego State University
2530
+ 13
2531
+ 41
2532
+ 15
2533
+ 1
2534
+ 0
2535
+ 1.7
2536
+ 1.7
2537
+ 167
2538
+ Michigan Technological University
2539
+ 22
2540
+ 22
2541
+ 28
2542
+ 0
2543
+ 0
2544
+ 2.1
2545
+ 1.6
2546
+ 0
2547
+ 1.5
2548
+ 167
2549
+ New Mexico Institute of Mining and Technology
2550
+ 7
2551
+ 24
2552
+ 25
2553
+ 0
2554
+ 0
2555
+ 0
2556
+ 1.6
2557
+ 0
2558
+ 1.4
2559
+ 167
2560
+ Nova Southeastern University
2561
+ 17
2562
+ 14
2563
+ 12
2564
+ 3
2565
+ 0
2566
+ 1.3
2567
+ 1.6
2568
+ 0
2569
+ 1.4
2570
+ 167
2571
+ Towson University
2572
+ 31
2573
+ 15
2574
+ 13
2575
+ 1
2576
+ 0
2577
+ 1.6
2578
+ 1.6
2579
+ 0
2580
+ 1.5
2581
+ 167
2582
+ University of Southern Mississippi
2583
+ 12
2584
+ 10
2585
+ 13
2586
+ 1
2587
+ 1
2588
+ 1.4
2589
+ 1.6
2590
+ 0
2591
+ 1.5
2592
+ 167
2593
+ University of Wyoming
2594
+ 7
2595
+ 30
2596
+ 25
2597
+ 0
2598
+ 0
2599
+ 1.6
2600
+ 1.6
2601
+ 0
2602
+ 1.6
2603
+ 16
2604
+
2605
+ A PREPRINT - JANUARY 10, 2023
2606
+ 167
2607
+ Southern Illinois University
2608
+ 12
2609
+ 27
2610
+ 28
2611
+ 0
2612
+ 0
2613
+ 1.6
2614
+ 1.6
2615
+ 167
2616
+ University of New Hampshire
2617
+ 9
2618
+ 24
2619
+ 23
2620
+ 0
2621
+ 0
2622
+ 2
2623
+ 1.6
2624
+ 167
2625
+ University of Puerto Rico Mayaguez
2626
+ 9
2627
+ 12
2628
+ 14
2629
+ 2
2630
+ 0
2631
+ 1.4
2632
+ 1.6
2633
+ 167
2634
+ University of Rhode Island
2635
+ 10
2636
+ 17
2637
+ 14
2638
+ 1
2639
+ 0
2640
+ 2
2641
+ 1.6
2642
+ 177
2643
+ Air Force Institute of Technology
2644
+ 6
2645
+ 17
2646
+ 18
2647
+ 0
2648
+ 0
2649
+ 1.8
2650
+ 1.5
2651
+ 0
2652
+ 1.5
2653
+ 177
2654
+ Louisiana Tech University
2655
+ 6
2656
+ 25
2657
+ 15
2658
+ 0
2659
+ 0
2660
+ 1.6
2661
+ 1.5
2662
+ 0
2663
+ 1.3
2664
+ 177
2665
+ University of Alabama Huntsville
2666
+ 13
2667
+ 21
2668
+ 23
2669
+ 0
2670
+ 0
2671
+ 1.8
2672
+ 1.5
2673
+ 0
2674
+ 1.7
2675
+ 177
2676
+ University of Colorado Denver
2677
+ 14
2678
+ 13
2679
+ 11
2680
+ 1
2681
+ 0
2682
+ 1.9
2683
+ 1.5
2684
+ 0
2685
+ 1.4
2686
+ 181
2687
+ University of Nebraska Omaha
2688
+ 16
2689
+ 15
2690
+ 11
2691
+ 0
2692
+ 0
2693
+ 1.7
2694
+ 1.4
2695
+ 0
2696
+ 1.4
2697
+ 182
2698
+ University of Arkansas Little Rock
2699
+ 6
2700
+ 10
2701
+ 7
2702
+ 0
2703
+ 0
2704
+ 1.7
2705
+ 1.3
2706
+ 0
2707
+ 1.7
2708
+ 183
2709
+ Bowie State University
2710
+ 12
2711
+ 2
2712
+ 5
2713
+ 0
2714
+ 0
2715
+ 1.4
2716
+ 1.2
2717
+ 184
2718
+ Indiana State University
2719
+ 6
2720
+ 0
2721
+ 2
2722
+ 0
2723
+ 0
2724
+ 1.8
2725
+ 1.1
2726
+ 0
2727
+ 1.1
2728
+ 184
2729
+ LIU Post
2730
+ 3
2731
+ 0
2732
+ 1
2733
+ 0
2734
+ 0
2735
+ 1.3
2736
+ 1.1
2737
+ 0
2738
+ 1.1
2739
+ 17
2740
+
KdE1T4oBgHgl3EQfYgTD/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
M9FPT4oBgHgl3EQflTVS/content/tmp_files/2301.13121v1.pdf.txt ADDED
@@ -0,0 +1,721 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Efficient cooling of high-angular-momentum systems
2
+ Mark G. Raizen and Logan E. Hillberry
3
+ Department of Physics, The University of Texas at Austin, Austin, Texas, 78712, USA
4
+ Dmitry Budker
5
+ Johannes Gutenberg-Universit¨at Mainz, Helmholtz-Institut Mainz,
6
+ GSI Helmholtzzentrum f¨ur Schwerionenforschung, 55128 Mainz, Germany and
7
+ Department of Physics, University of California, Berkeley, California 94720, USA
8
+ Simon M. Rochester
9
+ Rochester Scientific, LLC, El Cerrito, California 94530, USA
10
+ (Dated: January 31, 2023)
11
+ We propose a highly efficient and fast method of translational cooling for high-angular-momentum
12
+ atoms or molecules. Internal-state optical pumping and stimulated optical transitions, combined
13
+ with magnetic forces, can be used to compress phase-space density, and the efficiency of each com-
14
+ pression step increases with the angular momentum. Entropy is removed by spontaneously emitted
15
+ photons, and particle number is conserved. This method may be an attractive alternative to evap-
16
+ orative cooling of atoms and molecules in order to produce quantum degenerate gases.
17
+ INTRODUCTION
18
+ Laser cooling, first proposed almost half a century
19
+ ago, remains the standard approach for producing ultra-
20
+ cold atoms. This method relies on momentum transfer
21
+ from light to atoms as photons are repeatedly scattered,
22
+ enabling the production and study of ultracold atomic
23
+ gases. Many improvements on basic laser cooling have
24
+ advanced the state of the art, including Sisyphus cooling
25
+ [1–4], and subrecoil cooling [5, 6].
26
+ While laser cooling works extremely well, the require-
27
+ ment of a closed, two-level transition has limited the ap-
28
+ plicability of the method to a subset of elements in the
29
+ periodic table. For those atoms, after many years of re-
30
+ finement, laser cooling has reached saturation in its per-
31
+ formance due to multiple scattering of resonant photons
32
+ which create an effective repulsive interaction between
33
+ the atoms, pushing them apart.
34
+ An important figure-
35
+ of-merit is the phase-space density, a dimensionless pa-
36
+ rameter which is the product of number density and the
37
+ third power of the average de Broglie wavelength. Laser
38
+ cooling typically produces a phase-space density of 10−6.
39
+ This is also the starting point for the formation of Bose-
40
+ Einstein condensates through evaporative cooling in a
41
+ trap, and the creation of the so-called atom laser [7–9].
42
+ Evaporative cooling is even more restrictive than laser
43
+ cooling, as it relies on elastic collisions between atoms to
44
+ maintain thermal equilibrium as the hottest atoms are
45
+ ejected.
46
+ Inelastic channels create unwanted losses and
47
+ often make evaporative cooling impossible. Even when
48
+ working optimally, evaporative cooling is a slow process
49
+ and results in a significant loss of atom number. Cooling
50
+ of molecules has become the focus of much effort in re-
51
+ cent years, but is severely hampered by the difficulty of
52
+ implementing the above cooling methods.
53
+ In recent years, alternative approaches to producing
54
+ Optical
55
+ pumping
56
+ Stimulated
57
+ transitions
58
+ Magnetic
59
+ forces
60
+ (a)
61
+ (b)
62
+ FIG. 1. A schematic depiction of the MOP-cooling sequence
63
+ for ensembles with (a) angular momentum J = 1 and (b)
64
+ J = 2. The boxes represent atoms, initially trapped in a flat,
65
+ hard-wall potential.
66
+ The colors represent the atom’s mag-
67
+ netic state (orange: mJ = −J to purple: mJ = 0 to teal:
68
+ mJ = +J). A cycle begins with optically pumping all atoms
69
+ to the same state. Then, stimulated transitions correlate the
70
+ magnetic states with position along the direction of compres-
71
+ sion. A sequence of one-dimensional magnetic kicks pushes
72
+ atoms of oppositely-signed magnetic states together. The cy-
73
+ cle is closed by optically pumping the compressed atoms back
74
+ into the same magnetic state. A cycle’s compression factor is
75
+ limited by the number of available magnetic states.
76
+ cold atoms and molecules were developed (see [10] and
77
+ references therein). The starting point for much of this
78
+ work is a supersonic molecular beam where desired atoms
79
+ or molecules can be entrained in the flow and stopped in
80
+ a series of pulsed magnetic or electric fields.
81
+ Alterna-
82
+ tively, cold atoms and molecules are produced by buffer-
83
+ arXiv:2301.13121v1 [physics.atom-ph] 30 Jan 2023
84
+
85
+ 2
86
+ gas cooling. After stopping, these atoms and molecules
87
+ can be trapped, typically in a magnetic field configura-
88
+ tion that confines the low-field seekers to the center of
89
+ the trap. In parallel, cooling of atoms with a one-way
90
+ wall was proposed and demonstrated [11, 12], and re-
91
+ lies on photon entropy, not momentum as in laser cool-
92
+ ing. The one-way wall is the first practical realization
93
+ of Maxwell’s demon for an ensemble of atoms.
94
+ While
95
+ one-way-wall cooling demonstrated a large increase in
96
+ phase-space density, it did not conserve atom number.
97
+ To address this limitation, we proposed [13] a variation
98
+ which we called magneto-optical (MOP) cooling, relying
99
+ on cycles of optical pumping and magnetic kicks.
100
+ In this paper, we present a new and highly efficient
101
+ version of MOP cooling that can work for high-angular-
102
+ momentum systems of atoms and molecules and offers
103
+ an attractive alternative to laser cooling and evaporative
104
+ cooling. Our method is depicted schematically in Fig. 1
105
+ and is described in detail in the following section. We
106
+ conclude the paper with a discussion of possible limita-
107
+ tions to our new method, how those limitations may be
108
+ overcome, and the significance of MOP cooling in the
109
+ atomic physics toolbox.
110
+ MOP COOLING
111
+ MOP cooling is a conceptually new method that does
112
+ not rely on the momentum of the photon, making it
113
+ completely different from laser cooling.
114
+ The key ben-
115
+ efit of this approach is its universality and simplicity,
116
+ since it relies only on optical pumping of an atomic or
117
+ molecular internal magnetic state, combined with mag-
118
+ netic forces from pulsed coils. We evaluate the efficacy of
119
+ MOP cooling through numeric simulations. In this sec-
120
+ tion, our simulation methodology is described, followed
121
+ by a brief review of MOP cooling for a spin-1/2 system,
122
+ as was originally proposed [13]. Finally, a new and much
123
+ more efficient version of MOP cooling for high-angular-
124
+ momentum systems is considered.
125
+ Our
126
+ MOP-cooling
127
+ simulations
128
+ track
129
+ the
130
+ three-
131
+ dimensional positions x, velocities v, and magnetic states
132
+ mJ ∈ {−2J, −2J + 1, . . . , 2J} of a sample of N = 105
133
+ atoms. Positions are initialized from a flat distribution
134
+ of a 0.5 cm width.
135
+ Velocities are initialized from the
136
+ Maxwell-Boltzmann distribution corresponding to a tem-
137
+ perature of 25×Trec where Trec = h2/2mkBλ2 is the recoil
138
+ temperature imposed by, e.g., a magneto-optical trap op-
139
+ erating at wavelength λ to trap a species of mass m. Here
140
+ h is Planck’s constant and kB is Boltzmann’s constant.
141
+ A fourth-order Runge-Kutta algorithm updates the po-
142
+ sition and velocity of each atom subject to the force
143
+ F(t) = −mJgJµB∇ |B(x, t)| where gJ is the Land´e g-
144
+ factor of the atom, µB is the Bohr magneton, and B is
145
+ the pulsed magnetic field arranged to provide the one-
146
+ dimensional kick. The internal state of each atom is set
147
+ in accordance with the MOP-cooling cycle. The magnetic
148
+ field is produced with two sets of coaxial coil pairs, one
149
+ in the Maxwell configuration to provide a strong gradient
150
+ [14] and the other in the Helmholtz configuration to shift
151
+ the zero-crossing of the field away from the trap center,
152
+ thereby providing a nearly-one-dimensional kick. We use
153
+ superposition of the exact solution for a current-carrying
154
+ loop to model the full coil geometry. B is evaluated on
155
+ a dense grid for unit current. Vector interpolation allows
156
+ us to evaluate ∇ |B(x)| at arbitrary positions.
157
+ Time-
158
+ dependent current pulses are modeled by scaling the field
159
+ gradient interpolation result by I(t) = I0 sin[(t−t0)/2πτ]
160
+ for t ∈ [t0, t0 + τ] and I(t) = 0 otherwise, where I0 is the
161
+ peak current, t0 is the pulse delay, and τ is the pulse
162
+ width.
163
+ Table I reports the atomic properties used in this
164
+ study. Additionally, the simulated coil parameters are
165
+ as follows.
166
+ There are 7 turns × 2 layers, or 14 loops
167
+ per Helmholtz coil, each with a nominal radius of
168
+ RHH = 3.5 cm, axially-separated by RHH, and carry-
169
+ ing identically-oriented currents . There are 5 turns ×
170
+ 2 layers, or 10 loops per Maxwell coil, each with a nom-
171
+ inal radius of RHH/
172
+
173
+ 3, separated by RHH, and carry-
174
+ ing oppositely-oriented currents. The peak currents are
175
+ I0,HH = 1000 A for the Helmholtz coils and I0,M = 500 A
176
+ for the Maxwell coils.
177
+ The shared midpoint between
178
+ the coil pairs is displaced by 0.2 cm in the positive z-
179
+ direction from the initial center of mass of the atomic
180
+ sample (taken as the origin of the coordinate system).
181
+ We find that this region provides a more uniform and
182
+ one-dimensional kick.
183
+ TABLE I. Atomic properties used for simulation purposes.
184
+ The Ref. column provides an example of magneto-optical trap
185
+ operation for each species. Values for gJ are provided in [15],
186
+ except for Li for which we adopt the electron’s value.
187
+ Atom
188
+ m
189
+ J
190
+ gJ
191
+ λ
192
+ Trec Ref.
193
+ (10−26 kg)
194
+ (nm)
195
+ (µK)
196
+ Li
197
+ 1.15
198
+ 1/2
199
+ 2.002 32
200
+ 671
201
+ 76.2
202
+ [16]
203
+ Cr
204
+ 8.63
205
+ 3
206
+ 2.001 83
207
+ 425
208
+ 25.3
209
+ [17]
210
+ Er
211
+ 27.8
212
+ 6
213
+ 1.163 81
214
+ 583
215
+ 4.2
216
+ [18]
217
+ Dy
218
+ 27.0
219
+ 8
220
+ 1.241 59
221
+ 626
222
+ 3.7
223
+ [19]
224
+ For a specific example, consider atomic lithium (Li)
225
+ trapped using standard techniques [16].
226
+ At sufficient
227
+ magnetic fields, the electronic spin (J = 1/2) decou-
228
+ ples from the nuclear spin; the two electronic mJ states
229
+ are denoted |1/2⟩ and |−1/2⟩ and it is in this high-field
230
+ regime that we propose MOP cooling. The cooling se-
231
+ quence starts with suddenly turning off the trap so that
232
+ the atoms are free. In step (1) of MOP cooling, all of the
233
+ atoms are optically pumped to the |1/2⟩ state.
234
+ Then,
235
+ half of the cloud is transferred to the |−1/2⟩ state by
236
+ stimulated transitions , i.e., stimulated Raman adiabatic
237
+ passage (STIRAP) sequences [20, 21], thereby creating
238
+
239
+ 3
240
+ −2
241
+ 0
242
+ 2
243
+ vz (cm/s)
244
+ (a)
245
+ −50
246
+ 0
247
+ 50
248
+ (b)
249
+ −50
250
+ 0
251
+ 50
252
+ (c)
253
+ −2
254
+ 0
255
+ 2
256
+ (d)
257
+ −0.25
258
+ 0.00
259
+ 0.25
260
+ z (cm)
261
+ −0.1
262
+ 0.0
263
+ 0.1
264
+ 0.2
265
+ vz (cm/s)
266
+ (e)
267
+ −0.25
268
+ 0.00
269
+ 0.25
270
+ z (cm)
271
+ −20
272
+ 0
273
+ 20
274
+ (f)
275
+ −0.25
276
+ 0.00
277
+ 0.25
278
+ z (cm)
279
+ −20
280
+ 0
281
+ 20
282
+ (g)
283
+ −0.25
284
+ 0.00
285
+ 0.25
286
+ z (cm)
287
+ −0.1
288
+ 0.0
289
+ 0.1
290
+ 0.2
291
+ (h)
292
+ −J
293
+ 0
294
+ J
295
+ mJ
296
+ FIG. 2.
297
+ MOP cooling simulations for Li (a-d) and Dy (e-h) visualized in phase space. Each column of plots represents a
298
+ snapshot in the cycle. First, the magnetic states are correlated with position along the z-axis through optical pumping followed
299
+ by spatially-resolved coherent population transfer via stimulated transitions. The vertical dashed black lines in panels (a) and
300
+ (e) mark the ideal boundary between different magnetic states. Second, a one-dimensional magnetic kick accelerates atoms to a
301
+ velocity that is proportional to their magnetic state. Third, after waiting an optimized delay time the phase space distribution
302
+ has been compressed in real space but remains extended in velocity space. Finally, a reverse kick returns the atom’s velocity
303
+ distribution to near its original extent. More precisely, we find the standard deviation of the ensemble’s velocity is, at most,
304
+ about 11% of its initial value for all four species simulated.
305
+ two spatially-distinct populations [see Fig. 2 (a)]. In step
306
+ (2), a magnetic-field-gradient kick is applied to the cloud,
307
+ thereby causing the two halves to merge [Fig. 2 (b-c)],
308
+ and then a reverse kick returns the atoms to their origi-
309
+ nal velocity distribution [Fig. 2 (d)]. As proposed in [13]
310
+ and demonstrated experimentally in [22], such magnetic
311
+ kicks can be applied along a single axis while minimally
312
+ affecting the other two dimensions.
313
+ Two-dimensional
314
+ slices (Fig. 3) of the magnetic field gradient used in our
315
+ simulations clearly show the one-dimensional-nature of
316
+ the magnetic kick. In step (3), all atoms are optically-
317
+ pumped back to the |1/2⟩ state, thereby completing the
318
+ cooling cycle. In principle, a factor of 2× in phase-space
319
+ compression is possible.
320
+ We now generalize the method to a system with an
321
+ arbitrary total angular momentum J. There are 2J + 1
322
+ states in this case, and we assume that the atoms are
323
+ trapped in a hard-walled flat potential. Just as in the
324
+ case of Li above, we turn off the trap to start the cooling
325
+ sequence. Using optical pumping and stimulated transi-
326
+ tions in step (1), the cloud is divided into 2J + 1 com-
327
+ ponents, where the leftmost section is prepared in state
328
+ |J, −J⟩, then |J, –J + 1⟩, and so on, to the rightmost sec-
329
+ tion in state |J, J⟩. In step (2), a magnetic field gradi-
330
+ ent kick is applied to the cloud, causing each sub-section
331
+ to move at a velocity that is proportional to the mag-
332
+ netic quantum number.
333
+ Thus, the leftmost section in
334
+ state |J, J⟩ will move the fastest to the right, and lower
335
+ magnetic-quantum-numbered sections will move slower.
336
+ The cloud will collapse to a single section after an opti-
337
+ mal delay time, and a reverse magnetic kick will restore
338
+ the original velocity distributions. Finally, in step (3),
339
+ all atoms would be optically pumped to the |J, J⟩ state,
340
+ and the cloud can be re-trapped.
341
+ Figures 2 (e - h) show snapshots of the simulated phase
342
+ space for MOP cooling of Dy atoms (J = 8). Compar-
343
+ ing the final spatial distribution of Li [Fig. 2 (d)] to that
344
+ of Dy [Fig. 2 (h)] clearly demonstrates how MOP cool-
345
+ ing may leverage high-angular momentum systems for
346
+ efficient phase-space compression. The delay time is op-
347
+ timized in our numeric simulations and the results are
348
+ shown for a variety of atoms in Fig. 4.
349
+ As a figure of
350
+ merit, we compute the compression factor as the ratio
351
+ of standard deviations between the initial and final z-
352
+ coordinate distributions in the cloud. The inset of Fig. 4
353
+ shows the peak compression factor for each species is
354
+ bound by the geometric limit 2J + 1. In the following
355
+ section we consider limitations of MOP cooling and how
356
+ they may be overcome in an experiment.
357
+ DISCUSSION
358
+ In MOP cooling, a maximum compression factor of
359
+ 2J + 1 per cycle may be approached. However, in prac-
360
+ tice, the efficiency will be lower due to deviations from
361
+ a flat density distribution, imperfect kicking fields, and
362
+ photon-recoil heating during the optical pumping (OP)
363
+ stage.
364
+ The flat-density initial condition is quite different from
365
+
366
+ 4
367
+ −0.5
368
+ 0.0
369
+ 0.5
370
+ y (cm)
371
+ −0.5
372
+ 0.0
373
+ 0.5
374
+ z (cm)
375
+ (a) x = −0.25 cm
376
+ 944
377
+ 952
378
+ 952
379
+ 952
380
+ 960
381
+ 960
382
+ −0.5
383
+ 0.0
384
+ 0.5
385
+ y (cm)
386
+ (b)
387
+ x = 0.00 cm
388
+ 936
389
+ 944
390
+ 952
391
+ 952
392
+ 952
393
+ 952
394
+ 960
395
+ 960
396
+ −0.5
397
+ 0.0
398
+ 0.5
399
+ y (cm)
400
+ (c)
401
+ x = 0.25 cm
402
+ 944
403
+ 952
404
+ 952
405
+ 952
406
+ 960
407
+ 960
408
+ −0.5
409
+ 0.0
410
+ 0.5
411
+ x (cm)
412
+ −0.5
413
+ 0.0
414
+ 0.5
415
+ y (cm)
416
+ (d) z = −0.25 cm
417
+ 15
418
+ 30
419
+ 45
420
+ 45
421
+ 45
422
+ 45
423
+ −0.5
424
+ 0.0
425
+ 0.5
426
+ x (cm)
427
+ (e)
428
+ z = 0.00 cm
429
+ 10
430
+ 20
431
+ 30
432
+ 40
433
+ 40
434
+ 40
435
+ 40
436
+ −0.5
437
+ 0.0
438
+ 0.5
439
+ x (cm)
440
+ (f)
441
+ z = 0.25 cm
442
+ 8
443
+ 16
444
+ 24
445
+ 32
446
+ 40
447
+ 40
448
+ 40
449
+ 40
450
+ 900
451
+ 920
452
+ 940
453
+ 960
454
+ 980
455
+ ∇|B| (G/cm)
456
+ 0
457
+ 20
458
+ 40
459
+ 60
460
+ 80
461
+ ∇|B| (G/cm)
462
+ FIG. 3. Two-dimensional slices of the magnetic field gradient used for MOP cooling simulations, evaluated at peak current.
463
+ The red dashed line marks the initial extent of the atomic cloud. The quadrupole field provided by Maxwell coils is symmetric
464
+ under a sign change of any coordinate axis. However, the bias field provided by the Helmholtz coils breaks the symmetry along
465
+ the z-axis by shifting the center of the quadrupole off of the coordinate origin. The magnitude of the total field |B| varies
466
+ primarily along z in a nearly-linear fashion.
467
+ 0
468
+ 10
469
+ 20
470
+ 30
471
+ 40
472
+ Unkick delay (ms)
473
+ 0
474
+ 5
475
+ 10
476
+ 15
477
+ Compression factor
478
+ 0
479
+ 4
480
+ 8
481
+ J
482
+ 0
483
+ 5
484
+ 10
485
+ 15
486
+ Li
487
+ Cr
488
+ Er
489
+ Dy
490
+ FIG. 4. Optimizing the wait time between the MOP cool-
491
+ ing kick and unkick according to the compression factor. The
492
+ open circle marks the optimal delay time for each species sub-
493
+ ject to the initial conditions and magnetic forces described in
494
+ the text. The inset shows the peak compression factor vs the
495
+ species’ angular momentum J, compared to the geometric
496
+ limit 2J + 1 (black line).
497
+ that usually encountered with laser cooled atoms in a
498
+ magneto-optical trap, but turns out to be important for
499
+ the gains in efficiency that are predicted. For example,
500
+ our simulations predict a compression factor of 1.9 for
501
+ Li initialized with with a flat density or 1.66 for a Gaus-
502
+ sian distribution. For Dy initialized with a flat density,
503
+ a peak compression factor of 13.8 is observed, while for
504
+ an initially-Gaussian distribution the factor reduces to
505
+ only 4.3. To obtain a flat “boxlike” distribution in an ex-
506
+ periment, the atoms can first be confined in a magnetic
507
+ quadrupole trap. An optical box can be created around
508
+ the atoms using a time-averaged optical dipole potential
509
+ from beams that are moving rapidly in two dimensions.
510
+ Such potentials were created in the past to study opti-
511
+ cal billiards [23, 24] and BECs in painted potentials [25].
512
+ After trapping, the box can be adiabatically expanded in
513
+ three dimensions to a desired size, which will result in a
514
+ nearly flat density profile of atoms. The optical setup for
515
+ state preparation of each segment would enable multiple
516
+ cycles of cooling in each dimension. Adiabatic expansion
517
+ would lower the kinetic energy and MOP cooling would
518
+ compress the cloud spatially. The process can be dynam-
519
+ ically controlled with motorized zoom lenses [26].
520
+ Ideally, a complete cycle of MOP cooling leaves the
521
+ velocity distribution of the atomic sample unchanged.
522
+ This means that the momentum imparted on the atoms
523
+ in the kick phase must be nulled in the reverse-kick
524
+
525
+ 5
526
+ phase.
527
+ Inhomogeneities in the kicking field will result
528
+ in a nonzero mean velocity for the cloud.
529
+ Such inho-
530
+ mogeneities are noticeable in Fig. 3 (b) that shows the
531
+ peak magnetic field gradient in the x = 0 plane.
532
+ For
533
+ instance, atoms near z = 0.25 will be kicked downward
534
+ with less force than their upward motion-arresting kick
535
+ that is applied once they are near z = 0. This is why
536
+ Fig. 2 (h) shows a net positive velocity, which is partic-
537
+ ularly evident for mJ = J (teal). In our simulation, the
538
+ final mean velocity of the Dy atoms is ∼ 0.03 cm/s. In
539
+ practice, this is not a significant limitation because the
540
+ resulting net velocity is still well within the capture range
541
+ of any reasonable trap as it is smaller than the thermal
542
+ velocity. Over the same time scale t, the relative ther-
543
+ mal expansion of the cloud σ(t)/σ0 ≈
544
+
545
+ 1 + t2kBT/mσ2
546
+ 0
547
+ is insignificant compared to the MOP cooling compres-
548
+ sion factor σ0/σ(t) ≈ 2J + 1. Moreover, there exist ad-
549
+ vanced wiring-design-optimization techniques to gener-
550
+ ate uniform bias or gradient fields with minimal induc-
551
+ tance [14, 27]. Though originally developed for magnetic
552
+ resonance imaging, MOP cooling could benefit from such
553
+ analyses to improve switching times of the pulsed mag-
554
+ netic fields and increase the uniformity of the required
555
+ biased gradients.
556
+ A more significant mean velocity is incurred due to
557
+ free fall in the Earth gravitational field. For example,
558
+ in the ∼ 19 ms of delay time required for MOP cooling
559
+ of Cr, the cloud accelerates to nearly 19 cm/s and dis-
560
+ places 0.18 cm.
561
+ Depending on the details of the trap,
562
+ such velocity or displacement may result in significant
563
+ atom loss. To mitigate the free fall effects, one could use
564
+ the MOP cooling setup to apply an additional uniform
565
+ kicks against gravity.
566
+ In general, optical pumping the cloud to the same mag-
567
+ netic state is a lossy step due to, for instance, atoms de-
568
+ caying to unobserved trap states. Fortunately, there ex-
569
+ ist efficient techniques for optical pumping as discussed
570
+ in [28], where it is shown that it is possible to perform
571
+ optical pumping with only one spontaneous photon emit-
572
+ ted per atom.
573
+ The same physics lets us understand
574
+ MOP cooling’s high phase-space compression efficiency
575
+ in terms of the photon entropy carried away from the
576
+ ensemble by spontaneous emission [29].
577
+ The entropy associated with the motional degrees of
578
+ freedom is given by Smo. = kB ln V , where V is the phase-
579
+ space volume.
580
+ This volume is reduced by a factor of
581
+ (at most) 2J + 1 at each cooling step, so the maximum
582
+ entropy reduction per step is ∆Smo. = kB ln (2J + 1).
583
+ The magnetic kicks are reversible evolution, so they do
584
+ not produce a net change in entropy. Therefore the en-
585
+ tropy change must occur during the optical pumping
586
+ step.
587
+ Optical pumping of an unpolarized ensemble to
588
+ produce a pure state reduces the polarization entropy
589
+ by ∆Spol. = kB ln (2J + 1). Thus for each step, (1) OP
590
+ takes unpolarized state to pure state, reducing polariza-
591
+ tion entropy by kB ln (2J + 1); (2) kicks take pure state
592
+ to unpolarized state by overlapping ensembles, increas-
593
+ ing polarization entropy by kB ln (2J + 1) and reducing
594
+ motional entropy by the same amount. The cooling will
595
+ be limited by recoil heating.
596
+ From Ref. [28], we know
597
+ that OP can theoretically be done with only one sponta-
598
+ neously emitted photon per atom. If this is achieved, the
599
+ temperature limit will correspond to the recoil energy,
600
+ i.e., the standard recoil limit Trec. For less efficient OP
601
+ the temperature limit will be higher.
602
+ CONCLUSION
603
+ In this paper, we proposed a highly efficient method
604
+ for phase-space compression of high-angular momentum
605
+ atomic and molecular samples.
606
+ This work extends an
607
+ earlier MOP-cooling proposal from Li to general high-
608
+ angular-momentum systems. We numerically tested our
609
+ new MOP-cooling protocol on four atomic species of in-
610
+ creasing angular momenta that have each already been
611
+ cooled using traditional techniques. We find, for exam-
612
+ ple, an impressive compression factor of 13.5 is conceiv-
613
+ ably attainable in less than 13 ms for the case of Dy.
614
+ ACKNOWLEDGEMENTS
615
+ The
616
+ work
617
+ of
618
+ MGR
619
+ was
620
+ supported
621
+ by
622
+ the
623
+ Sid
624
+ W. Richardson Foundation. The work of DB was sup-
625
+ ported by the Deutsche Forschungsgemeinschaft (DFG)
626
+ - Project ID 423116110 and by the Cluster of Excellence
627
+ Precision Physics, Fundamental Interactions, and Struc-
628
+ ture of Matter (PRISMA+ EXC 2118/1) funded by the
629
+ DFG within the German Excellence Strategy (Project ID
630
+ 39083149).
631
+
632
+ 6
633
+ [1] P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips,
634
+ P. L. Gould, and H. J. Metcalf, Physical review letters
635
+ 61, 169 (1988).
636
+ [2] J. Dalibard and C. Cohen-Tannoudji, JOSA B 6, 2023
637
+ (1989).
638
+ [3] P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, JOSA B
639
+ 6, 2058 (1989).
640
+ [4] D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu,
641
+ JOSA B 6, 2072 (1989).
642
+ [5] V. Vuleti´c, C. Chin, A. J. Kerman, and S. Chu, Physical
643
+ Review Letters 81, 5768 (1998).
644
+ [6] A. J. Kerman, V. Vuleti´c, C. Chin, and S. Chu, Physical
645
+ review letters 84, 439 (2000).
646
+ [7] M.-O. Mewes,
647
+ M. Andrews,
648
+ D. Kurn,
649
+ D. Durfee,
650
+ C. Townsend,
651
+ and W. Ketterle, Physical Review Let-
652
+ ters 78, 582 (1997).
653
+ [8] M. Andrews, C. Townsend, H.-J. Miesner, D. Durfee,
654
+ D. Kurn, and W. Ketterle, Science 275, 637 (1997).
655
+ [9] I. Bloch, T. W. H¨ansch, and T. Esslinger, Physical Re-
656
+ view Letters 82, 3008 (1999).
657
+ [10] M. G. Raizen, Science 324, 1403 (2009).
658
+ [11] M. Raizen, A. Dudarev, Q. Niu, and N. Fisch, Physical
659
+ review letters 94, 053003 (2005).
660
+ [12] G. N. Price, S. T. Bannerman, K. Viering, E. Narevicius,
661
+ and M. G. Raizen, Physical Review Letters 100, 093004
662
+ (2008).
663
+ [13] M. G. Raizen, D. Budker, S. M. Rochester, J. Narevicius,
664
+ and E. Narevicius, Optics Letters 39, 4502 (2014).
665
+ [14] R. Turner, Journal of Physics E: Scientific Instruments
666
+ 21, 948 (1988).
667
+ [15] A. Kramida, Yu. Ralchenko, J. Reader, and and NIST
668
+ ASD Team, NIST Atomic Spectra Database (ver. 5.10),
669
+ [Online].
670
+ Available:
671
+ https://physics.nist.gov/asd
672
+ [2022, December 5]. National Institute of Standards and
673
+ Technology, Gaithersburg, MD. (2022).
674
+ [16] R. G. Hulet, J. H. V. Nguyen, and R. Senaratne, Review
675
+ of Scientific Instruments 91, 011101 (2020).
676
+ [17] C. C. Bradley, J. J. McClelland, W. R. Anderson, and
677
+ R. J. Celotta, Phys. Rev. A 61, 053407 (2000).
678
+ [18] A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler,
679
+ E. Zupaniˇc, R. Grimm,
680
+ and F. Ferlaino, Phys. Rev. A
681
+ 85, 051401 (2012).
682
+ [19] W. Lunden, L. Du, M. Cantara, P. Barral, A. O. Jamison,
683
+ and W. Ketterle, Phys. Rev. A 101, 063403 (2020).
684
+ [20] K. Bergmann, H. Theuer, and B. Shore, Reviews of Mod-
685
+ ern Physics 70, 1003 (1998).
686
+ [21] K. Bergmann, H.-C. N¨agerl, C. Panda, G. Gabrielse,
687
+ E. Miloglyadov, M. Quack, G. Seyfang, G. Wichmann,
688
+ S. Ospelkaus, A. Kuhn, S. Longhi, A. Szameit, P. Pirro,
689
+ B. Hillebrands, X.-F. Zhu, J. Zhu, M. Drewsen, W. K.
690
+ Hensinger, S. Weidt, T. Halfmann, H.-L. Wang, G. S.
691
+ Paraoanu, N. V. Vitanov, J. Mompart, T. Busch, T. J.
692
+ Barnum, D. D. Grimes, R. W. Field, M. G. Raizen,
693
+ E. Narevicius, M. Auzinsh, D. Budker, A. P´alffy,
694
+ and
695
+ C. H. Keitel, Journal of Physics B: Atomic, Molecular
696
+ and Optical Physics 52, 202001 (2019).
697
+ [22] K. S. Melin, P. I. Nagornykh, Y. Lu, L. E. Hillberry,
698
+ Y. Xu,
699
+ and M. G. Raizen, Phys. Rev. A 99, 063417
700
+ (2019).
701
+ [23] V. Milner, J. L. Hanssen, W. C. Campbell, and M. G.
702
+ Raizen, Phys. Rev. Lett. 86, 1514 (2001).
703
+ [24] N. Friedman, A. Kaplan, D. Carasso, and N. Davidson,
704
+ Phys. Rev. Lett. 86, 1518 (2001).
705
+ [25] K. Henderson, C. Ryu, C. MacCormick,
706
+ and M. G.
707
+ Boshier, New Journal of Physics 11, 043030 (2009).
708
+ [26] T. Kinoshita, T. Wenger,
709
+ and D. S. Weiss, Phys. Rev.
710
+ A 71, 011602 (2005).
711
+ [27] J. Wang, B. Zhou, X. Liu, W. Wu, L. Chen, B. Han, and
712
+ J. Fang, IEEE Access 7, 74800 (2019).
713
+ [28] S. M. Rochester, K. Szyma´nski, M. Raizen, S. Pustelny,
714
+ M. Auzinsh,
715
+ and D. Budker, Phys. Rev. A 94, 043416
716
+ (2016).
717
+ [29] J. P. Bartolotta, S. B. J¨ager, J. T. Reilly, M. A. Norcia,
718
+ J. K. Thompson, G. Smith,
719
+ and M. J. Holland, Phys.
720
+ Rev. Res. 4, 013218 (2022).
721
+
M9FPT4oBgHgl3EQflTVS/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,535 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf,len=534
2
+ page_content='Efficient cooling of high-angular-momentum systems Mark G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
3
+ page_content=' Raizen and Logan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
4
+ page_content=' Hillberry Department of Physics, The University of Texas at Austin, Austin, Texas, 78712, USA Dmitry Budker Johannes Gutenberg-Universit¨at Mainz, Helmholtz-Institut Mainz, GSI Helmholtzzentrum f¨ur Schwerionenforschung, 55128 Mainz, Germany and Department of Physics, University of California, Berkeley, California 94720, USA Simon M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
5
+ page_content=' Rochester Rochester Scientific, LLC, El Cerrito, California 94530, USA (Dated: January 31, 2023) We propose a highly efficient and fast method of translational cooling for high-angular-momentum atoms or molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
6
+ page_content=' Internal-state optical pumping and stimulated optical transitions, combined with magnetic forces, can be used to compress phase-space density, and the efficiency of each com- pression step increases with the angular momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
7
+ page_content=' Entropy is removed by spontaneously emitted photons, and particle number is conserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
8
+ page_content=' This method may be an attractive alternative to evap- orative cooling of atoms and molecules in order to produce quantum degenerate gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
9
+ page_content=' INTRODUCTION Laser cooling, first proposed almost half a century ago, remains the standard approach for producing ultra- cold atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
10
+ page_content=' This method relies on momentum transfer from light to atoms as photons are repeatedly scattered, enabling the production and study of ultracold atomic gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
11
+ page_content=' Many improvements on basic laser cooling have advanced the state of the art, including Sisyphus cooling [1–4], and subrecoil cooling [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
12
+ page_content=' While laser cooling works extremely well, the require- ment of a closed, two-level transition has limited the ap- plicability of the method to a subset of elements in the periodic table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
13
+ page_content=' For those atoms, after many years of re- finement, laser cooling has reached saturation in its per- formance due to multiple scattering of resonant photons which create an effective repulsive interaction between the atoms, pushing them apart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
14
+ page_content=' An important figure- of-merit is the phase-space density, a dimensionless pa- rameter which is the product of number density and the third power of the average de Broglie wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
15
+ page_content=' Laser cooling typically produces a phase-space density of 10−6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
16
+ page_content=' This is also the starting point for the formation of Bose- Einstein condensates through evaporative cooling in a trap, and the creation of the so-called atom laser [7–9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
17
+ page_content=' Evaporative cooling is even more restrictive than laser cooling, as it relies on elastic collisions between atoms to maintain thermal equilibrium as the hottest atoms are ejected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
18
+ page_content=' Inelastic channels create unwanted losses and often make evaporative cooling impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
19
+ page_content=' Even when working optimally, evaporative cooling is a slow process and results in a significant loss of atom number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
20
+ page_content=' Cooling of molecules has become the focus of much effort in re- cent years, but is severely hampered by the difficulty of implementing the above cooling methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
21
+ page_content=' In recent years, alternative approaches to producing Optical pumping Stimulated transitions Magnetic forces (a) (b) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
22
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
23
+ page_content=' A schematic depiction of the MOP-cooling sequence for ensembles with (a) angular momentum J = 1 and (b) J = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
24
+ page_content=' The boxes represent atoms, initially trapped in a flat, hard-wall potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
25
+ page_content=' The colors represent the atom’s mag- netic state (orange: mJ = −J to purple: mJ = 0 to teal: mJ = +J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
26
+ page_content=' A cycle begins with optically pumping all atoms to the same state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
27
+ page_content=' Then, stimulated transitions correlate the magnetic states with position along the direction of compres- sion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
28
+ page_content=' A sequence of one-dimensional magnetic kicks pushes atoms of oppositely-signed magnetic states together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
29
+ page_content=' The cy- cle is closed by optically pumping the compressed atoms back into the same magnetic state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
30
+ page_content=' A cycle’s compression factor is limited by the number of available magnetic states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
31
+ page_content=' cold atoms and molecules were developed (see [10] and references therein).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
32
+ page_content=' The starting point for much of this work is a supersonic molecular beam where desired atoms or molecules can be entrained in the flow and stopped in a series of pulsed magnetic or electric fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
33
+ page_content=' Alterna- tively, cold atoms and molecules are produced by buffer- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
34
+ page_content='13121v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
35
+ page_content='atom-ph] 30 Jan 2023 2 gas cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
36
+ page_content=' After stopping, these atoms and molecules can be trapped, typically in a magnetic field configura- tion that confines the low-field seekers to the center of the trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
37
+ page_content=' In parallel, cooling of atoms with a one-way wall was proposed and demonstrated [11, 12], and re- lies on photon entropy, not momentum as in laser cool- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
38
+ page_content=' The one-way wall is the first practical realization of Maxwell’s demon for an ensemble of atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
39
+ page_content=' While one-way-wall cooling demonstrated a large increase in phase-space density, it did not conserve atom number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
40
+ page_content=' To address this limitation, we proposed [13] a variation which we called magneto-optical (MOP) cooling, relying on cycles of optical pumping and magnetic kicks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
41
+ page_content=' In this paper, we present a new and highly efficient version of MOP cooling that can work for high-angular- momentum systems of atoms and molecules and offers an attractive alternative to laser cooling and evaporative cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
42
+ page_content=' Our method is depicted schematically in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
43
+ page_content=' 1 and is described in detail in the following section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
44
+ page_content=' We conclude the paper with a discussion of possible limita- tions to our new method, how those limitations may be overcome, and the significance of MOP cooling in the atomic physics toolbox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
45
+ page_content=' MOP COOLING MOP cooling is a conceptually new method that does not rely on the momentum of the photon, making it completely different from laser cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
46
+ page_content=' The key ben- efit of this approach is its universality and simplicity, since it relies only on optical pumping of an atomic or molecular internal magnetic state, combined with mag- netic forces from pulsed coils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
47
+ page_content=' We evaluate the efficacy of MOP cooling through numeric simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
48
+ page_content=' In this sec- tion, our simulation methodology is described, followed by a brief review of MOP cooling for a spin-1/2 system, as was originally proposed [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
49
+ page_content=' Finally, a new and much more efficient version of MOP cooling for high-angular- momentum systems is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
50
+ page_content=' Our MOP-cooling simulations track the three- dimensional positions x, velocities v, and magnetic states mJ ∈ {−2J, −2J + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
51
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
52
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
53
+ page_content=' , 2J} of a sample of N = 105 atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
54
+ page_content=' Positions are initialized from a flat distribution of a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
55
+ page_content='5 cm width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
56
+ page_content=' Velocities are initialized from the Maxwell-Boltzmann distribution corresponding to a tem- perature of 25×Trec where Trec = h2/2mkBλ2 is the recoil temperature imposed by, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
57
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
58
+ page_content=', a magneto-optical trap op- erating at wavelength λ to trap a species of mass m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
59
+ page_content=' Here h is Planck’s constant and kB is Boltzmann’s constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
60
+ page_content=' A fourth-order Runge-Kutta algorithm updates the po- sition and velocity of each atom subject to the force F(t) = −mJgJµB∇ |B(x, t)| where gJ is the Land´e g- factor of the atom, µB is the Bohr magneton, and B is the pulsed magnetic field arranged to provide the one- dimensional kick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
61
+ page_content=' The internal state of each atom is set in accordance with the MOP-cooling cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
62
+ page_content=' The magnetic field is produced with two sets of coaxial coil pairs, one in the Maxwell configuration to provide a strong gradient [14] and the other in the Helmholtz configuration to shift the zero-crossing of the field away from the trap center, thereby providing a nearly-one-dimensional kick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
63
+ page_content=' We use superposition of the exact solution for a current-carrying loop to model the full coil geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
64
+ page_content=' B is evaluated on a dense grid for unit current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
65
+ page_content=' Vector interpolation allows us to evaluate ∇ |B(x)| at arbitrary positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
66
+ page_content=' Time- dependent current pulses are modeled by scaling the field gradient interpolation result by I(t) = I0 sin[(t−t0)/2πτ] for t ∈ [t0, t0 + τ] and I(t) = 0 otherwise, where I0 is the peak current, t0 is the pulse delay, and τ is the pulse width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
67
+ page_content=' Table I reports the atomic properties used in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
68
+ page_content=' Additionally, the simulated coil parameters are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
69
+ page_content=' There are 7 turns × 2 layers, or 14 loops per Helmholtz coil, each with a nominal radius of RHH = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
70
+ page_content='5 cm, axially-separated by RHH, and carry- ing identically-oriented currents .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
71
+ page_content=' There are 5 turns × 2 layers, or 10 loops per Maxwell coil, each with a nom- inal radius of RHH/ √ 3, separated by RHH, and carry- ing oppositely-oriented currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
72
+ page_content=' The peak currents are I0,HH = 1000 A for the Helmholtz coils and I0,M = 500 A for the Maxwell coils.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
73
+ page_content=' The shared midpoint between the coil pairs is displaced by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
74
+ page_content='2 cm in the positive z- direction from the initial center of mass of the atomic sample (taken as the origin of the coordinate system).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
75
+ page_content=' We find that this region provides a more uniform and one-dimensional kick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
76
+ page_content=' TABLE I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
77
+ page_content=' Atomic properties used for simulation purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
78
+ page_content=' The Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
79
+ page_content=' column provides an example of magneto-optical trap operation for each species.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
80
+ page_content=' Values for gJ are provided in [15], except for Li for which we adopt the electron’s value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
81
+ page_content=' Atom m J gJ λ Trec Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
82
+ page_content=' (10−26 kg) (nm) (µK) Li 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
83
+ page_content='15 1/2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
84
+ page_content='002 32 671 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
85
+ page_content='2 [16] Cr 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
86
+ page_content='63 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
87
+ page_content='001 83 425 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
88
+ page_content='3 [17] Er 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
89
+ page_content='8 6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
90
+ page_content='163 81 583 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
91
+ page_content='2 [18] Dy 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
92
+ page_content='0 8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
93
+ page_content='241 59 626 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
94
+ page_content='7 [19] For a specific example, consider atomic lithium (Li) trapped using standard techniques [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
95
+ page_content=' At sufficient magnetic fields, the electronic spin (J = 1/2) decou- ples from the nuclear spin;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
96
+ page_content=' the two electronic mJ states are denoted |1/2⟩ and |−1/2⟩ and it is in this high-field regime that we propose MOP cooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
97
+ page_content=' The cooling se- quence starts with suddenly turning off the trap so that the atoms are free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
98
+ page_content=' In step (1) of MOP cooling, all of the atoms are optically pumped to the |1/2⟩ state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
99
+ page_content=' Then, half of the cloud is transferred to the |−1/2⟩ state by stimulated transitions , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
100
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
101
+ page_content=', stimulated Raman adiabatic passage (STIRAP) sequences [20, 21], thereby creating 3 −2 0 2 vz (cm/s) (a) −50 0 50 (b) −50 0 50 (c) −2 0 2 (d) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
102
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
103
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
104
+ page_content='25 z (cm) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
105
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
106
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
107
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
108
+ page_content='2 vz (cm/s) (e) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
109
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
110
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
111
+ page_content='25 z (cm) −20 0 20 (f) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
112
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
113
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
114
+ page_content='25 z (cm) −20 0 20 (g) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
115
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
116
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
117
+ page_content='25 z (cm) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
118
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
119
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
120
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
121
+ page_content='2 (h) −J 0 J mJ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
122
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
123
+ page_content=' MOP cooling simulations for Li (a-d) and Dy (e-h) visualized in phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
124
+ page_content=' Each column of plots represents a snapshot in the cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
125
+ page_content=' First, the magnetic states are correlated with position along the z-axis through optical pumping followed by spatially-resolved coherent population transfer via stimulated transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
126
+ page_content=' The vertical dashed black lines in panels (a) and (e) mark the ideal boundary between different magnetic states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
127
+ page_content=' Second, a one-dimensional magnetic kick accelerates atoms to a velocity that is proportional to their magnetic state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
128
+ page_content=' Third, after waiting an optimized delay time the phase space distribution has been compressed in real space but remains extended in velocity space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
129
+ page_content=' Finally, a reverse kick returns the atom’s velocity distribution to near its original extent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
130
+ page_content=' More precisely, we find the standard deviation of the ensemble’s velocity is, at most, about 11% of its initial value for all four species simulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
131
+ page_content=' two spatially-distinct populations [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
132
+ page_content=' 2 (a)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
133
+ page_content=' In step (2), a magnetic-field-gradient kick is applied to the cloud, thereby causing the two halves to merge [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
134
+ page_content=' 2 (b-c)], and then a reverse kick returns the atoms to their origi- nal velocity distribution [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
135
+ page_content=' 2 (d)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
136
+ page_content=' As proposed in [13] and demonstrated experimentally in [22], such magnetic kicks can be applied along a single axis while minimally affecting the other two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
137
+ page_content=' Two-dimensional slices (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
138
+ page_content=' 3) of the magnetic field gradient used in our simulations clearly show the one-dimensional-nature of the magnetic kick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
139
+ page_content=' In step (3), all atoms are optically- pumped back to the |1/2⟩ state, thereby completing the cooling cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
140
+ page_content=' In principle, a factor of 2× in phase-space compression is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
141
+ page_content=' We now generalize the method to a system with an arbitrary total angular momentum J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
142
+ page_content=' There are 2J + 1 states in this case, and we assume that the atoms are trapped in a hard-walled flat potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
143
+ page_content=' Just as in the case of Li above, we turn off the trap to start the cooling sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
144
+ page_content=' Using optical pumping and stimulated transi- tions in step (1), the cloud is divided into 2J + 1 com- ponents, where the leftmost section is prepared in state |J, −J⟩, then |J, –J + 1⟩, and so on, to the rightmost sec- tion in state |J, J⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
145
+ page_content=' In step (2), a magnetic field gradi- ent kick is applied to the cloud, causing each sub-section to move at a velocity that is proportional to the mag- netic quantum number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
146
+ page_content=' Thus, the leftmost section in state |J, J⟩ will move the fastest to the right, and lower magnetic-quantum-numbered sections will move slower.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
147
+ page_content=' The cloud will collapse to a single section after an opti- mal delay time, and a reverse magnetic kick will restore the original velocity distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
148
+ page_content=' Finally, in step (3), all atoms would be optically pumped to the |J, J⟩ state, and the cloud can be re-trapped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
149
+ page_content=' Figures 2 (e - h) show snapshots of the simulated phase space for MOP cooling of Dy atoms (J = 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
150
+ page_content=' Compar- ing the final spatial distribution of Li [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
151
+ page_content=' 2 (d)] to that of Dy [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
152
+ page_content=' 2 (h)] clearly demonstrates how MOP cool- ing may leverage high-angular momentum systems for efficient phase-space compression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
153
+ page_content=' The delay time is op- timized in our numeric simulations and the results are shown for a variety of atoms in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
154
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
155
+ page_content=' As a figure of merit, we compute the compression factor as the ratio of standard deviations between the initial and final z- coordinate distributions in the cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
156
+ page_content=' The inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
157
+ page_content=' 4 shows the peak compression factor for each species is bound by the geometric limit 2J + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
158
+ page_content=' In the following section we consider limitations of MOP cooling and how they may be overcome in an experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
159
+ page_content=' DISCUSSION In MOP cooling, a maximum compression factor of 2J + 1 per cycle may be approached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
160
+ page_content=' However, in prac- tice, the efficiency will be lower due to deviations from a flat density distribution, imperfect kicking fields, and photon-recoil heating during the optical pumping (OP) stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
161
+ page_content=' The flat-density initial condition is quite different from 4 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
162
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
163
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
164
+ page_content='5 y (cm) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
165
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
166
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
167
+ page_content='5 z (cm) (a) x = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
168
+ page_content='25 cm 944 952 952 952 960 960 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
169
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
170
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
171
+ page_content='5 y (cm) (b) x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
172
+ page_content='00 cm 936 944 952 952 952 952 960 960 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
173
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
174
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
175
+ page_content='5 y (cm) (c) x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
176
+ page_content='25 cm 944 952 952 952 960 960 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
177
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
178
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
179
+ page_content='5 x (cm) −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
180
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
181
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
182
+ page_content='5 y (cm) (d) z = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
183
+ page_content='25 cm 15 30 45 45 45 45 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
184
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
185
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
186
+ page_content='5 x (cm) (e) z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
187
+ page_content='00 cm 10 20 30 40 40 40 40 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
188
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
189
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
190
+ page_content='5 x (cm) (f) z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
191
+ page_content='25 cm 8 16 24 32 40 40 40 40 900 920 940 960 980 ∇|B| (G/cm) 0 20 40 60 80 ∇|B| (G/cm) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
192
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
193
+ page_content=' Two-dimensional slices of the magnetic field gradient used for MOP cooling simulations, evaluated at peak current.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
194
+ page_content=' The red dashed line marks the initial extent of the atomic cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
195
+ page_content=' The quadrupole field provided by Maxwell coils is symmetric under a sign change of any coordinate axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
196
+ page_content=' However, the bias field provided by the Helmholtz coils breaks the symmetry along the z-axis by shifting the center of the quadrupole off of the coordinate origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
197
+ page_content=' The magnitude of the total field |B| varies primarily along z in a nearly-linear fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
198
+ page_content=' 0 10 20 30 40 Unkick delay (ms) 0 5 10 15 Compression factor 0 4 8 J 0 5 10 15 Li Cr Er Dy FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
199
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
200
+ page_content=' Optimizing the wait time between the MOP cool- ing kick and unkick according to the compression factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
201
+ page_content=' The open circle marks the optimal delay time for each species sub- ject to the initial conditions and magnetic forces described in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
202
+ page_content=' The inset shows the peak compression factor vs the species’ angular momentum J, compared to the geometric limit 2J + 1 (black line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
203
+ page_content=' that usually encountered with laser cooled atoms in a magneto-optical trap, but turns out to be important for the gains in efficiency that are predicted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
204
+ page_content=' For example, our simulations predict a compression factor of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
205
+ page_content='9 for Li initialized with with a flat density or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
206
+ page_content='66 for a Gaus- sian distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
207
+ page_content=' For Dy initialized with a flat density, a peak compression factor of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
208
+ page_content='8 is observed, while for an initially-Gaussian distribution the factor reduces to only 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
209
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
210
+ page_content=' To obtain a flat “boxlike” distribution in an ex- periment, the atoms can first be confined in a magnetic quadrupole trap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
211
+ page_content=' An optical box can be created around the atoms using a time-averaged optical dipole potential from beams that are moving rapidly in two dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
212
+ page_content=' Such potentials were created in the past to study opti- cal billiards [23, 24] and BECs in painted potentials [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
213
+ page_content=' After trapping, the box can be adiabatically expanded in three dimensions to a desired size, which will result in a nearly flat density profile of atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
214
+ page_content=' The optical setup for state preparation of each segment would enable multiple cycles of cooling in each dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
215
+ page_content=' Adiabatic expansion would lower the kinetic energy and MOP cooling would compress the cloud spatially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
216
+ page_content=' The process can be dynam- ically controlled with motorized zoom lenses [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
217
+ page_content=' Ideally, a complete cycle of MOP cooling leaves the velocity distribution of the atomic sample unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
218
+ page_content=' This means that the momentum imparted on the atoms in the kick phase must be nulled in the reverse-kick 5 phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
219
+ page_content=' Inhomogeneities in the kicking field will result in a nonzero mean velocity for the cloud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
220
+ page_content=' Such inho- mogeneities are noticeable in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
221
+ page_content=' 3 (b) that shows the peak magnetic field gradient in the x = 0 plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
222
+ page_content=' For instance, atoms near z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
223
+ page_content='25 will be kicked downward with less force than their upward motion-arresting kick that is applied once they are near z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
224
+ page_content=' This is why Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
225
+ page_content=' 2 (h) shows a net positive velocity, which is partic- ularly evident for mJ = J (teal).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
226
+ page_content=' In our simulation, the final mean velocity of the Dy atoms is ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
227
+ page_content='03 cm/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
228
+ page_content=' In practice, this is not a significant limitation because the resulting net velocity is still well within the capture range of any reasonable trap as it is smaller than the thermal velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
229
+ page_content=' Over the same time scale t, the relative ther- mal expansion of the cloud σ(t)/σ0 ≈ � 1 + t2kBT/mσ2 0 is insignificant compared to the MOP cooling compres- sion factor σ0/σ(t) ≈ 2J + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
230
+ page_content=' Moreover, there exist ad- vanced wiring-design-optimization techniques to gener- ate uniform bias or gradient fields with minimal induc- tance [14, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
231
+ page_content=' Though originally developed for magnetic resonance imaging, MOP cooling could benefit from such analyses to improve switching times of the pulsed mag- netic fields and increase the uniformity of the required biased gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
232
+ page_content=' A more significant mean velocity is incurred due to free fall in the Earth gravitational field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
233
+ page_content=' For example, in the ∼ 19 ms of delay time required for MOP cooling of Cr, the cloud accelerates to nearly 19 cm/s and dis- places 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
234
+ page_content='18 cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
235
+ page_content=' Depending on the details of the trap, such velocity or displacement may result in significant atom loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
236
+ page_content=' To mitigate the free fall effects, one could use the MOP cooling setup to apply an additional uniform kicks against gravity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
237
+ page_content=' In general, optical pumping the cloud to the same mag- netic state is a lossy step due to, for instance, atoms de- caying to unobserved trap states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
238
+ page_content=' Fortunately, there ex- ist efficient techniques for optical pumping as discussed in [28], where it is shown that it is possible to perform optical pumping with only one spontaneous photon emit- ted per atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
239
+ page_content=' The same physics lets us understand MOP cooling’s high phase-space compression efficiency in terms of the photon entropy carried away from the ensemble by spontaneous emission [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
240
+ page_content=' The entropy associated with the motional degrees of freedom is given by Smo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
241
+ page_content=' = kB ln V , where V is the phase- space volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
242
+ page_content=' This volume is reduced by a factor of (at most) 2J + 1 at each cooling step, so the maximum entropy reduction per step is ∆Smo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
243
+ page_content=' = kB ln (2J + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
244
+ page_content=' The magnetic kicks are reversible evolution, so they do not produce a net change in entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
245
+ page_content=' Therefore the en- tropy change must occur during the optical pumping step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
246
+ page_content=' Optical pumping of an unpolarized ensemble to produce a pure state reduces the polarization entropy by ∆Spol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
247
+ page_content=' = kB ln (2J + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
248
+ page_content=' Thus for each step, (1) OP takes unpolarized state to pure state, reducing polariza- tion entropy by kB ln (2J + 1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
249
+ page_content=' (2) kicks take pure state to unpolarized state by overlapping ensembles, increas- ing polarization entropy by kB ln (2J + 1) and reducing motional entropy by the same amount.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
250
+ page_content=' The cooling will be limited by recoil heating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
251
+ page_content=' From Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
252
+ page_content=' [28], we know that OP can theoretically be done with only one sponta- neously emitted photon per atom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
253
+ page_content=' If this is achieved, the temperature limit will correspond to the recoil energy, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
254
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
255
+ page_content=', the standard recoil limit Trec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
256
+ page_content=' For less efficient OP the temperature limit will be higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
257
+ page_content=' CONCLUSION In this paper, we proposed a highly efficient method for phase-space compression of high-angular momentum atomic and molecular samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
258
+ page_content=' This work extends an earlier MOP-cooling proposal from Li to general high- angular-momentum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
259
+ page_content=' We numerically tested our new MOP-cooling protocol on four atomic species of in- creasing angular momenta that have each already been cooled using traditional techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
260
+ page_content=' We find, for exam- ple, an impressive compression factor of 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
261
+ page_content='5 is conceiv- ably attainable in less than 13 ms for the case of Dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
262
+ page_content=' ACKNOWLEDGEMENTS The work of MGR was supported by the Sid W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
263
+ page_content=' Richardson Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
264
+ page_content=' The work of DB was sup- ported by the Deutsche Forschungsgemeinschaft (DFG) Project ID 423116110 and by the Cluster of Excellence Precision Physics, Fundamental Interactions, and Struc- ture of Matter (PRISMA+ EXC 2118/1) funded by the DFG within the German Excellence Strategy (Project ID 39083149).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
265
+ page_content=' 6 [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
266
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
267
+ page_content=' Lett, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
268
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
269
+ page_content=' Watts, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
270
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
271
+ page_content=' Westbrook, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
272
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
273
+ page_content=' Phillips, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
274
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
275
+ page_content=' Gould, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
276
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
277
+ page_content=' Metcalf, Physical review letters 61, 169 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
278
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
279
+ page_content=' Dalibard and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
280
+ page_content=' Cohen-Tannoudji, JOSA B 6, 2023 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
281
+ page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
282
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
283
+ page_content=' Ungar, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
284
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
285
+ page_content=' Weiss, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
286
+ page_content=' Riis, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
287
+ page_content=' Chu, JOSA B 6, 2058 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
288
+ page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
289
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
290
+ page_content=' Weiss, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
291
+ page_content=' Riis, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
292
+ page_content=' Shevy, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
293
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
294
+ page_content=' Ungar, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
295
+ page_content=' Chu, JOSA B 6, 2072 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
296
+ page_content=' [5] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
297
+ page_content=' Vuleti´c, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
298
+ page_content=' Chin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
299
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
300
+ page_content=' Kerman, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
301
+ page_content=' Chu, Physical Review Letters 81, 5768 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
302
+ page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
303
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
304
+ page_content=' Kerman, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
305
+ page_content=' Vuleti´c, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
306
+ page_content=' Chin, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
307
+ page_content=' Chu, Physical review letters 84, 439 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
308
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
309
+ page_content='-O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
310
+ page_content=' Mewes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
311
+ page_content=' Andrews, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
312
+ page_content=' Kurn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
313
+ page_content=' Durfee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
314
+ page_content=' Townsend, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
315
+ page_content=' Ketterle, Physical Review Let- ters 78, 582 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
316
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
317
+ page_content=' Andrews, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
318
+ page_content=' Townsend, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
319
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
320
+ page_content=' Miesner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
321
+ page_content=' Durfee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
322
+ page_content=' Kurn, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
323
+ page_content=' Ketterle, Science 275, 637 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
324
+ page_content=' [9] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
325
+ page_content=' Bloch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
326
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
327
+ page_content=' H¨ansch, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
328
+ page_content=' Esslinger, Physical Re- view Letters 82, 3008 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
329
+ page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
330
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
331
+ page_content=' Raizen, Science 324, 1403 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
332
+ page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
333
+ page_content=' Raizen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
334
+ page_content=' Dudarev, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
335
+ page_content=' Niu, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
336
+ page_content=' Fisch, Physical review letters 94, 053003 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
337
+ page_content=' [12] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
338
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
339
+ page_content=' Price, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
340
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
341
+ page_content=' Bannerman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
342
+ page_content=' Viering, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
343
+ page_content=' Narevicius, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
344
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
345
+ page_content=' Raizen, Physical Review Letters 100, 093004 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
346
+ page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
347
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
348
+ page_content=' Raizen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
349
+ page_content=' Budker, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
350
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
351
+ page_content=' Rochester, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
352
+ page_content=' Narevicius, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
353
+ page_content=' Narevicius, Optics Letters 39, 4502 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
354
+ page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
355
+ page_content=' Turner, Journal of Physics E: Scientific Instruments 21, 948 (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
356
+ page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
357
+ page_content=' Kramida, Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
358
+ page_content=' Ralchenko, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
359
+ page_content=' Reader, and and NIST ASD Team, NIST Atomic Spectra Database (ver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
360
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
361
+ page_content='10), [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
362
+ page_content=' Available: https://physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
363
+ page_content='nist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
364
+ page_content='gov/asd [2022, December 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
365
+ page_content=' National Institute of Standards and Technology, Gaithersburg, MD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
366
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
367
+ page_content=' [16] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
368
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
369
+ page_content=' Hulet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
370
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
371
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
372
+ page_content=' Nguyen, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
373
+ page_content=' Senaratne, Review of Scientific Instruments 91, 011101 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
374
+ page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
375
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
376
+ page_content=' Bradley, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
377
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
378
+ page_content=' McClelland, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
379
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
380
+ page_content=' Anderson, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
381
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
382
+ page_content=' Celotta, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
383
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
384
+ page_content=' A 61, 053407 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
385
+ page_content=' [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
386
+ page_content=' Frisch, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
387
+ page_content=' Aikawa, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
388
+ page_content=' Mark, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
389
+ page_content=' Rietzler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
390
+ page_content=' Schindler, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
391
+ page_content=' Zupaniˇc, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
392
+ page_content=' Grimm, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
393
+ page_content=' Ferlaino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
394
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
395
+ page_content=' A 85, 051401 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
396
+ page_content=' [19] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
397
+ page_content=' Lunden, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
398
+ page_content=' Du, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
399
+ page_content=' Cantara, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
400
+ page_content=' Barral, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
401
+ page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
402
+ page_content=' Jamison, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
403
+ page_content=' Ketterle, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
404
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
405
+ page_content=' A 101, 063403 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
406
+ page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
407
+ page_content=' Bergmann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
408
+ page_content=' Theuer, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
409
+ page_content=' Shore, Reviews of Mod- ern Physics 70, 1003 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
410
+ page_content=' [21] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
411
+ page_content=' Bergmann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
412
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
413
+ page_content=' N¨agerl, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
414
+ page_content=' Panda, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
415
+ page_content=' Gabrielse, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
416
+ page_content=' Miloglyadov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
417
+ page_content=' Quack, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
418
+ page_content=' Seyfang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
419
+ page_content=' Wichmann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
420
+ page_content=' Ospelkaus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
421
+ page_content=' Kuhn, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
422
+ page_content=' Longhi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
423
+ page_content=' Szameit, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
424
+ page_content=' Pirro, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
425
+ page_content=' Hillebrands, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
426
+ page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
427
+ page_content=' Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
428
+ page_content=' Zhu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
429
+ page_content=' Drewsen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
430
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
431
+ page_content=' Hensinger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
432
+ page_content=' Weidt, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
433
+ page_content=' Halfmann, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
434
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
435
+ page_content=' Wang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
436
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
437
+ page_content=' Paraoanu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
438
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
439
+ page_content=' Vitanov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
440
+ page_content=' Mompart, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
441
+ page_content=' Busch, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
442
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
443
+ page_content=' Barnum, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
444
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
445
+ page_content=' Grimes, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
446
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
447
+ page_content=' Field, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
448
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
449
+ page_content=' Raizen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
450
+ page_content=' Narevicius, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
451
+ page_content=' Auzinsh, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
452
+ page_content=' Budker, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
453
+ page_content=' P´alffy, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
454
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
455
+ page_content=' Keitel, Journal of Physics B: Atomic, Molecular and Optical Physics 52, 202001 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
456
+ page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
457
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
458
+ page_content=' Melin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
459
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
460
+ page_content=' Nagornykh, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
461
+ page_content=' Lu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
462
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
463
+ page_content=' Hillberry, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
464
+ page_content=' Xu, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
465
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
466
+ page_content=' Raizen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
467
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
468
+ page_content=' A 99, 063417 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
469
+ page_content=' [23] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
470
+ page_content=' Milner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
471
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
472
+ page_content=' Hanssen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
473
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
474
+ page_content=' Campbell, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
475
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
476
+ page_content=' Raizen, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
477
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
478
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
479
+ page_content=' 86, 1514 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
480
+ page_content=' [24] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
481
+ page_content=' Friedman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
482
+ page_content=' Kaplan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
483
+ page_content=' Carasso, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
484
+ page_content=' Davidson, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
485
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
486
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
487
+ page_content=' 86, 1518 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
488
+ page_content=' [25] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
489
+ page_content=' Henderson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
490
+ page_content=' Ryu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
491
+ page_content=' MacCormick, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
492
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
493
+ page_content=' Boshier, New Journal of Physics 11, 043030 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
494
+ page_content=' [26] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
495
+ page_content=' Kinoshita, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
496
+ page_content=' Wenger, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
497
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
498
+ page_content=' Weiss, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
499
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
500
+ page_content=' A 71, 011602 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
501
+ page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
502
+ page_content=' Wang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
503
+ page_content=' Zhou, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
504
+ page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
505
+ page_content=' Wu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
506
+ page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
507
+ page_content=' Han, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
508
+ page_content=' Fang, IEEE Access 7, 74800 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
509
+ page_content=' [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
510
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
511
+ page_content=' Rochester, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
512
+ page_content=' Szyma´nski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
513
+ page_content=' Raizen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
514
+ page_content=' Pustelny, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
515
+ page_content=' Auzinsh, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
516
+ page_content=' Budker, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
517
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
518
+ page_content=' A 94, 043416 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
519
+ page_content=' [29] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
520
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
521
+ page_content=' Bartolotta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
522
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
523
+ page_content=' J¨ager, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
524
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
525
+ page_content=' Reilly, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
526
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
527
+ page_content=' Norcia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
528
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
529
+ page_content=' Thompson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
530
+ page_content=' Smith, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
531
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
532
+ page_content=' Holland, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
533
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
534
+ page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
535
+ page_content=' 4, 013218 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf'}
NNE4T4oBgHgl3EQfjQ2i/content/2301.05141v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e12d278439f833267368b10422fd28bd3e3c52e36dd51e5d366dd728a7fbe6ec
3
+ size 3467113
NNE4T4oBgHgl3EQfjQ2i/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30a0c5a740ec06b90206b240d93ccc7b3290e1f38174633810365532b9fef693
3
+ size 5177389