jackkuo commited on
Commit
98ad057
·
verified ·
1 Parent(s): a55d3c4

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. 1NE2T4oBgHgl3EQfigeU/content/tmp_files/2301.03959v1.pdf.txt +869 -0
  3. 1NE2T4oBgHgl3EQfigeU/content/tmp_files/load_file.txt +0 -0
  4. 39AzT4oBgHgl3EQfffxn/content/tmp_files/2301.01453v1.pdf.txt +988 -0
  5. 39AzT4oBgHgl3EQfffxn/content/tmp_files/load_file.txt +0 -0
  6. 3dAyT4oBgHgl3EQfb_e6/content/tmp_files/2301.00275v1.pdf.txt +1228 -0
  7. 3dAyT4oBgHgl3EQfb_e6/content/tmp_files/load_file.txt +0 -0
  8. 79E0T4oBgHgl3EQffQDe/content/tmp_files/2301.02403v1.pdf.txt +1025 -0
  9. 79E0T4oBgHgl3EQffQDe/content/tmp_files/load_file.txt +0 -0
  10. 8dE4T4oBgHgl3EQfCwtu/content/tmp_files/2301.04863v1.pdf.txt +2483 -0
  11. 8dE4T4oBgHgl3EQfCwtu/content/tmp_files/load_file.txt +0 -0
  12. 8tAzT4oBgHgl3EQf-v68/content/tmp_files/2301.01939v1.pdf.txt +1976 -0
  13. 8tAzT4oBgHgl3EQf-v68/content/tmp_files/load_file.txt +0 -0
  14. ANFJT4oBgHgl3EQfrC3Z/content/tmp_files/2301.11607v1.pdf.txt +1627 -0
  15. ANFJT4oBgHgl3EQfrC3Z/content/tmp_files/load_file.txt +0 -0
  16. AtAyT4oBgHgl3EQfRvdA/vector_store/index.pkl +3 -0
  17. AtAzT4oBgHgl3EQfTPzA/content/tmp_files/2301.01247v1.pdf.txt +151 -0
  18. AtAzT4oBgHgl3EQfTPzA/content/tmp_files/load_file.txt +139 -0
  19. BdE1T4oBgHgl3EQf9gYX/content/tmp_files/2301.03556v1.pdf.txt +2331 -0
  20. BdE1T4oBgHgl3EQf9gYX/content/tmp_files/load_file.txt +0 -0
  21. FtAzT4oBgHgl3EQfxP5f/content/tmp_files/2301.01734v1.pdf.txt +2484 -0
  22. FtAzT4oBgHgl3EQfxP5f/content/tmp_files/load_file.txt +0 -0
  23. JtAzT4oBgHgl3EQfVPz7/content/tmp_files/2301.01283v1.pdf.txt +1182 -0
  24. KNE4T4oBgHgl3EQfiA0C/content/tmp_files/2301.05129v1.pdf.txt +0 -0
  25. KNE4T4oBgHgl3EQfiA0C/content/tmp_files/load_file.txt +0 -0
  26. M9E0T4oBgHgl3EQfTABv/vector_store/index.pkl +3 -0
  27. N9FJT4oBgHgl3EQfHSyb/content/tmp_files/2301.11451v1.pdf.txt +892 -0
  28. N9FJT4oBgHgl3EQfHSyb/content/tmp_files/load_file.txt +0 -0
  29. OtAzT4oBgHgl3EQfWfy0/content/tmp_files/2301.01303v1.pdf.txt +2034 -0
  30. OtAzT4oBgHgl3EQfWfy0/content/tmp_files/load_file.txt +0 -0
  31. UNA0T4oBgHgl3EQfEf9Z/content/tmp_files/2301.02018v1.pdf.txt +1037 -0
  32. UNA0T4oBgHgl3EQfEf9Z/content/tmp_files/load_file.txt +398 -0
  33. UdAyT4oBgHgl3EQfuvkh/content/tmp_files/2301.00617v1.pdf.txt +1834 -0
  34. UdAyT4oBgHgl3EQfuvkh/content/tmp_files/load_file.txt +0 -0
  35. UdE1T4oBgHgl3EQfIgMu/content/tmp_files/2301.02939v1.pdf.txt +1334 -0
  36. UdE1T4oBgHgl3EQfIgMu/content/tmp_files/load_file.txt +0 -0
  37. UtE0T4oBgHgl3EQf2gK9/content/tmp_files/2301.02714v1.pdf.txt +1228 -0
  38. UtE0T4oBgHgl3EQf2gK9/content/tmp_files/load_file.txt +0 -0
  39. VdE0T4oBgHgl3EQfVgAw/content/tmp_files/2301.02264v1.pdf.txt +2200 -0
  40. VdE0T4oBgHgl3EQfVgAw/content/tmp_files/load_file.txt +0 -0
  41. X9FRT4oBgHgl3EQfODd9/vector_store/index.faiss +3 -0
  42. XtAyT4oBgHgl3EQfWfc6/content/tmp_files/2301.00163v1.pdf.txt +555 -0
  43. XtAyT4oBgHgl3EQfWfc6/content/tmp_files/load_file.txt +395 -0
  44. Y9FST4oBgHgl3EQfADiR/content/tmp_files/2301.13697v1.pdf.txt +883 -0
  45. Y9FST4oBgHgl3EQfADiR/content/tmp_files/load_file.txt +0 -0
  46. YdFAT4oBgHgl3EQf3R5S/content/tmp_files/2301.08719v1.pdf.txt +2120 -0
  47. YdFAT4oBgHgl3EQf3R5S/content/tmp_files/load_file.txt +0 -0
  48. _9FQT4oBgHgl3EQf8TZV/content/tmp_files/2301.13446v1.pdf.txt +0 -0
  49. _9FQT4oBgHgl3EQf8TZV/content/tmp_files/load_file.txt +0 -0
  50. _NE1T4oBgHgl3EQf8gXW/content/tmp_files/load_file.txt +227 -0
.gitattributes CHANGED
@@ -207,3 +207,5 @@ fNE_T4oBgHgl3EQf2BxV/content/2301.08338v1.pdf filter=lfs diff=lfs merge=lfs -tex
207
  x9E3T4oBgHgl3EQflwp-/content/2301.04610v1.pdf filter=lfs diff=lfs merge=lfs -text
208
  h9E0T4oBgHgl3EQfpgF0/content/2301.02540v1.pdf filter=lfs diff=lfs merge=lfs -text
209
  c9E3T4oBgHgl3EQfeQoX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
207
  x9E3T4oBgHgl3EQflwp-/content/2301.04610v1.pdf filter=lfs diff=lfs merge=lfs -text
208
  h9E0T4oBgHgl3EQfpgF0/content/2301.02540v1.pdf filter=lfs diff=lfs merge=lfs -text
209
  c9E3T4oBgHgl3EQfeQoX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
210
+ w9FJT4oBgHgl3EQfgiwX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
211
+ X9FRT4oBgHgl3EQfODd9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1NE2T4oBgHgl3EQfigeU/content/tmp_files/2301.03959v1.pdf.txt ADDED
@@ -0,0 +1,869 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03959v1 [astro-ph.SR] 10 Jan 2023
2
+ Astronomy & Astrophysics manuscript no. 45149corr
3
+ ©ESO 2023
4
+ January 11, 2023
5
+ Discovery of magnetic fields in five DC white dwarfs
6
+ Andrei V. Berdyugin1, Vilppu Piirola1, Stefano Bagnulo2, John D. Landstreet2, 3, and Svetlana V. Berdyugina4, 5, 6
7
+ 1 Department of Physics and Astronomy, FI-20014 University of Turku, Finland; e-mail: [email protected]
8
+ 2 Armagh Observatory & Planetarium, College Hill, Armagh BT61 9DG, UK;
9
+ 3 Department of Physics & Astronomy, University of Western Ontario, London, Ontario N6A 3K7, Canada;
10
+ 4 Leibniz-Institut für Sonnenphysik (KIS), Schöneckstr 6, Freibirg, Germany;
11
+ 5 IRSOL Istituto Ricerche Solari “Aldo e Cele Daccò", Faculty of Informatics, Università della Svizzera italiana, Via Patocci 57,
12
+ Locarno, Switzerland;
13
+ 6 Euler Institute, Faculty of Informatics, Università della Svizzera italiana, Via la Santa 1, 6962 Lugano, Switzerland
14
+ Received October 7, 2022; accepted October 27, 2022
15
+ ABSTRACT
16
+ About half of white dwarfs (WDs) evolve to the DC state as they cool; the others become DQ or (temporarily?) DZ WDs. The recent
17
+ magnetic survey of the local 20 pc volume has established a high frequency of magnetic fields among WDs older than 2–3 Gyr,
18
+ demonstrating that in low- and average-mass WDs, the effects of magnetism become more common as they age, and the fields on
19
+ average become stronger. However, the available statistics of WDs older than about 5 Gyr do not clearly establish how fields evolve
20
+ beyond this age. We are carrying out a survey to clarify the occurrence of magnetism in DC-type WDs in order to better understand this
21
+ late evolution. We use broadband filter polarimetry, arguably the most efficient way to detect magnetic fields in featureless WDs via
22
+ continuum circular polarization. Here we report the discovery of a magnetic field in five DC WDs (of 23 observed), almost doubling
23
+ the total sample of known magnetic WDs belonging to the DC spectral class.
24
+ Key words. White dwarfs – Stars: magnetic fields – polarization
25
+ 1. Introduction
26
+ Single stars of M <∼ 8M⊙ evolve to become white dwarfs (WDs).
27
+ The descendants of these single stars of intermediate mass pro-
28
+ vide most of the population of WDs, concentrated around the
29
+ mean mass of 0.6M⊙. A smaller fraction of current WDs were
30
+ also formed from close binary systems. Some of these systems
31
+ eventually merged to form a single collapsed remnant, frequently
32
+ of a significantly larger mass; others ended their nuclear lifetimes
33
+ as double WD binaries.
34
+ Once formed, the evolution of a WD is normally to cool
35
+ slowly over several gigayears. Cooling is a fairly complex process
36
+ even for single-star evolution, both to observe and to understand.
37
+ Observationally, young hot WDs usually show strong spectra of
38
+ H (DA WDs), He (DB WDs), or sometimes C (DQs). As they
39
+ cool, spectral lines of the dominant elements H or He become
40
+ weaker: He lines vanish at about 11000 K, H lines around 5000 K.
41
+ In parallel with this general evolution, WDs may (temporarily)
42
+ show lines of metals such as Mg, Si, Ca, and/or Fe (DZ, DAZ,
43
+ and DZA stars), and some have spectra dominated by C. Below
44
+ about 5000 K, about one-quarter of WDs have very weak Hα,
45
+ another quarter show spectral lines of metals (especially Ca ii) or
46
+ of C2, and the remaining half show essentially featureless spectra
47
+ (DC WDs; Bagnulo & Landstreet 2021, Table 1). It appears that
48
+ the dominant element(s) in the atmosphere can change as cooling
49
+ occurs, for example due to gravitational diffusion, development
50
+ of convection, and accretion of circumstellar planetary debris.
51
+ One of the physical effects adding complexity to our ef-
52
+ forts to understand WD evolution is that a significant frac-
53
+ tion, about 20-25%, of WDs in the local volume near the Sun
54
+ (Bagnulo & Landstreet 2021) possess detectable surface mag-
55
+ netic fields (this high frequency was already suggested on the
56
+ basis of literature reports of fields in nine WDs in the 13 pc vol-
57
+ ume by Kawka et al. 2007). The fields observed at the surface
58
+ range in strength, measured by the mean surface field ⟨|B|⟩, from
59
+ tens of kG to hundreds of MG. Such fields can significantly affect
60
+ WD evolution by altering or suppressing surface convection and
61
+ internal shear, and by transferring angular momentum between
62
+ internal layers or during accretion or mass loss (see for example
63
+ Tremblay et al. 2015). The fields may also introduce additional
64
+ forces into envelope and atmosphere layers, altering their hy-
65
+ drostatic structure from that expected when magnetic effects are
66
+ absent (Landstreet 1987).
67
+ For WDs formed by single-star evolution, which generates
68
+ most of the large populationsof WDs with masses around 0.6M⊙,
69
+ it has become clear that recently formed WDs (with cooling
70
+ ages of less than, say, 1 Gyr) are very rarely detectably mag-
71
+ netic, and when they are magnetic, the fields are usually very
72
+ weak (Bagnulo & Landstreet 2022). As WDs cool, fields begin
73
+ to appear more frequently and usually become stronger. In WDs
74
+ older than 3 or 4 Gyr, megagauss-scale fields are not uncommon
75
+ (Bagnulo & Landstreet 2021).
76
+ The observed evolution in magnetic field frequency and
77
+ strength of normal-mass WDs for the first few gigayears of cool-
78
+ ing may be understood as a slow emergence – as a result of field
79
+ relaxation to the stellar surface – of the internal fields present
80
+ in the degenerate cores of the WD precursors. An additional
81
+ contribution to observed surface fields may be due to magnetic
82
+ fields generated during cooling by a dynamo that acts during
83
+ the period when the core of the WD is crystallising (Isern et al.
84
+ 2017; Gentile Fusillo et al. 2018). Beyond the end of crystalli-
85
+ Article number, page 1 of 6
86
+
87
+ A&A proofs: manuscript no. 45149corr
88
+ sation, the only identified evolution mechanisms are continued
89
+ field relaxation and Ohmic decay.
90
+ Observationally, however, after about 5 Gyr of WD cooling,
91
+ we have very limited information with which to guide and con-
92
+ front theory. Only small survey samples constrain observed field
93
+ evolution on cool WDs, such as DQ WDs, where C2 bands show
94
+ no polarization in strong fields (Berdyugina et al. 2007). Partic-
95
+ ularly little is known about the magnetic fields of DC WDs, in
96
+ which no spectral features are seen at all, leading to the ques-
97
+ tions of whether field strength begins to decay Ohmically and
98
+ whether the frequency of surface fields continues to increase.
99
+ Data that could help us answer these questions are very limited.
100
+ For WDs within 20 pc of the Sun (the 20 pc volume sample),
101
+ Bagnulo & Landstreet (2021) showed that of 31 DC WDs, only 4
102
+ are magnetic white dwarfs (MWDs), and that only 4 of 24 WDs
103
+ of any spectral class older than ∼ 6 Gyr are magnetic. These
104
+ data are obviously too limited to clearly describe the evolution of
105
+ fields in these old WDs.
106
+ Previous surveys have provided almost no information about
107
+ magnetic fields in DC WDs. Fields in such stars cannot be de-
108
+ tected through the magnetic splitting of spectral lines. They can
109
+ only be detected via the observation of continuum circular po-
110
+ larisation (CCP; Kemp 1970), a method of observation hardly
111
+ employed since the 1970s (Angel et al. 1981). Remarkably, most
112
+ CCP observations have led to the discovery of magnetic fields
113
+ in stars that are not featureless but in which the magnetic field
114
+ is strong enough to shift and broaden spectral lines in a such
115
+ a way as to make their intensity spectra unrecognisable. Only
116
+ seven featureless DC WDs are presently known to be mag-
117
+ netic. Five of them were discovered only in the last couple of
118
+ years (Bagnulo & Landstreet 2020; Berdyugin et al. 2022). Be-
119
+ fore these results, the only known magnetic DC stars were G195-
120
+ 19 and G111-49, discovered respectively by Angel & Landstreet
121
+ (1971) and Putney (1995).
122
+ To improve our knowledge of the magnetic fields in the latest
123
+ stages of stellar evolution, we have started a volume-limited sur-
124
+ vey of DC stars in the local 33 pc volume,which is about4.5 times
125
+ larger than the previously explored 20 pc volume and should have
126
+ a correspondingly larger sample of DCs and DC MWDs. With
127
+ this sample we expect to find enough DC MWDs to delineate the
128
+ evolution of their magnetic fields, both in the WDs with He-rich
129
+ atmospheres that become DCs as soon as their effective tempera-
130
+ tures reach about 11 000 K (‘young’ DCs), and in DC WDs with
131
+ Teff below about 5000 K, with cooling ages of around 4 Gyr or
132
+ more (‘old’ DCs).
133
+ 2. Observations
134
+ Almost all known MWDs have been discovered via the mag-
135
+ netic (Zeeman) splitting of spectral lines, observed in stellar
136
+ flux spectra, or via the Zeeman polarisation of spectral features
137
+ (Ferrario et al. 2015). Using these methods, fields of a few kG
138
+ up to 1 GG can be reliably detected. However, these techniques
139
+ cannot be used to measure fields in WDs that lack spectral lines.
140
+ For such stars, it is necessary to rely on continuum polarisation,
141
+ which Kemp (1970) showed should occur in radiation from a
142
+ magnetized emitter. The value of this effect was confirmed by the
143
+ discovery of a very strong field in the bright WD Grw+70 8247
144
+ = WD 1900+705 through the detection of broadband circular po-
145
+ larisation (BBCP) by Kemp et al. (1970).
146
+ Broadband circular polarisation is a relatively weak effect.
147
+ Bagnulo & Landstreet(2020) have estimated that a field of ⟨Bz⟩ ∼
148
+ 15 MG is required to produce BBCP of order 1 % in optical
149
+ radiation from a cool WD. However, with a sensitive polarimeter,
150
+ especially one with a very stable and well-established zero point,
151
+ it is possible in principle to detect polarisation of 10−4 or less,
152
+ corresponding to ∼ 100 kG fields in ‘sufficiently bright’ WDs.
153
+ To detect and measure broadband continuum polarisation,
154
+ one uses either spectropolarimetry or filter polarimetry with
155
+ broad, photometry-like filters. It is very difficult to establish the
156
+ zero point with sufficient accuracy below polarisation levels of
157
+ the order of 10−3 in spectropolarimetric measurements ofthe con-
158
+ tinuum (Fossati et al. 2007; Siebenmorgen et al. 2014); therefore,
159
+ in DC WDs, only megagauss-scale fields can be detected in this
160
+ way (Bagnulo & Landstreet 2020). In contrast, broadband filter
161
+ polarimeters can be very stable, and instrumental polarisation
162
+ can be calibrated at the 10−5 level, so detections with such instru-
163
+ ments of fields of hundreds of kilogauss are in practice limited
164
+ by the telescope aperture and WD brightness (Berdyugin et al.
165
+ 2022).
166
+ The search for magnetic fields of a fraction of 1 MG or
167
+ stronger in DC WDs that is reported here was carried out with
168
+ the DIPol-UF broadband filter polarimeter (Piirola et al. 2020)
169
+ mounted on the 2.5 m Nordic Optical Telescope (NOT) at the
170
+ Observatorio del Roque de los Muchachos on the island of La
171
+ Palma, in the Canaries. This instrument obtains simultaneous
172
+ circular polarisation (normalized Stokes V/I) measurements in
173
+ three filter bands isolated by dichroic mirrors. The passbands are
174
+ centred at about 4450 Å (the B′ band), 5400 Å (the V′ band), and
175
+ 6400Å (the R′ band) with full widths at half maximum (FWHMs)
176
+ of 1140, 750, and 960 Å , respectively. With this instrument on
177
+ the NOT, we can detect a polarisation degree at the 3σ level of
178
+ ∼ 10−4 for the Gaia G-band magnitude G ∼ 12, down to a degree
179
+ of ∼ 10−3 at G ∼ 17. This instrument and the filter system are
180
+ discussed in more detail in our previous paper, which reports the
181
+ results of the first part of our search for magnetic fields in DC
182
+ WDs (Berdyugin et al. 2022).
183
+ Here we report observations of 23 DC WDs and discovery
184
+ of 5 new DC MWDs. We note that our survey includes nine
185
+ young DCs of He-rich atmospheres with 11000 <∼ Teff <∼ 5000 K
186
+ and 14 old WDs with Teff <∼ 5000 K and ages τ >∼ 4 Gyr. The
187
+ stars are selected from available classifications and with help
188
+ from Gentile Fusillo et al. (2021). Our new observations were
189
+ obtained between June 27 and July 5, 2022.
190
+ 2.1. Instrumental polarisation and alignment of the
191
+ polarimetric optics
192
+ During our observing run we obtained seven observations of
193
+ seven different bright nearby stars, which are believed to have
194
+ zero circular polarisation, to check for instrumental polarisation.
195
+ These observations are reported in Table 1.
196
+ As in our previous run in July 2021, the high S/N measure-
197
+ ments of non-polarised stars yield the instrumental polarisation
198
+ to a precision better than 10−5. In the B′V′R′ bands, the values
199
+ of Stokes V/I are 0.0121 ± 0.0004 %, 0.0109 ± 0.0005 %, and
200
+ 0.0084 ± 0.0004 %, respectively. These are very close to the
201
+ values obtained in 2021. The instrumental polarisation was sub-
202
+ tracted from the observed polarisation of all targets, including
203
+ the measurements of the standard stars reported in Table 1.
204
+ In addition, we obtained one measurement of the well-known
205
+ MWD WD 1900+705, which appears to show a signal of cir-
206
+ cular polarisation that is nearly constant with time (see e.g.
207
+ Bagnulo & Landstreet2019). Our new measurementis compared
208
+ in Table 1 to one of the same star that we made during the July
209
+ 2021 run. The agreement is very satisfactory and demonstrates
210
+ that we can obtain measurements that are precise at the 0.02 %
211
+ Article number, page 2 of 6
212
+
213
+ Andrei V. Berdyugin et al.: Discovery of magnetic fields in five DC white dwarfs
214
+ Table 1. Observing log of bright non-polarised standard stars and the highly polarised MWD WD 1900+705. Polarisation values are given assuming
215
+ as instrumental polarisation the values of 0.0121±0.0004 %, 0.0109±0.0005 %, and 0.0084±0.0004 % in the B′, V′, and R′ filters, respectively. For
216
+ comparison, we report the polarisation values of WD 1900+705 measured in our 2021 and 2022 runs.
217
+ STAR
218
+ G
219
+ DATE
220
+ UT
221
+ JD –
222
+ Exp.
223
+ VI (%)
224
+ yyyy-mm-dd
225
+ hh:mm
226
+ 2400000
227
+ (s)
228
+ B′
229
+ V′
230
+ R′
231
+ HD 107146
232
+ 6.9
233
+ 2022-06-27
234
+ 21:23
235
+ 59758.391
236
+ 1680
237
+ 0.0005±0.0007
238
+ −0.0006±0.0007
239
+ −0.0001±0.0006
240
+ HD 115043
241
+ 6.7
242
+ 2022-06-28
243
+ 21:21
244
+ 59759.390
245
+ 1520
246
+ 0.0005±0.0008
247
+ −0.0001±0.0012
248
+ −0.0004±0.0004
249
+ HD 122652
250
+ 7.0
251
+ 2022-06-29
252
+ 21:18
253
+ 59760.387
254
+ 1520
255
+ −0.0012±0.0009
256
+ −0.0015±0.0015
257
+ −0.0019±0.0014
258
+ HD 122676
259
+ 7.1
260
+ 2022-06-30
261
+ 21:17
262
+ 59761.387
263
+ 1520
264
+ 0.0000±0.0011
265
+ 0.0003±0.0010
266
+ 0.0018±0.0008
267
+ HD 124694
268
+ 7.0
269
+ 2022-07-01
270
+ 21:16
271
+ 59762.386
272
+ 1520
273
+ −0.0012±0.0008
274
+ 0.0014±0.0011
275
+ 0.0002±0.0007
276
+ HD 135891
277
+ 6.9
278
+ 2022-07-02
279
+ 21:18
280
+ 59763.387
281
+ 1520
282
+ 0.0014±0.0008
283
+ 0.0006±0.0010
284
+ −0.0004±0.0007
285
+ HD 117860
286
+ 7.2
287
+ 2022-07-03
288
+ 21:16
289
+ 59764.386
290
+ 1520
291
+ −0.0004±0.0010
292
+ −0.0002±0.0012
293
+ 0.0005±0.0006
294
+ WD 1900+705
295
+ 13.2
296
+ 2021-07-02
297
+ 22:22
298
+ 59398.432
299
+ 640
300
+ 3.756±0.016
301
+ 3.604±0.016
302
+ 3.827±0.019
303
+ 2022-07-02
304
+ 00:25
305
+ 59762.518
306
+ 3.789±0.016
307
+ 3.602±0.019
308
+ 3.838±0.018
309
+ Table 2. Programme stars and their main physical features. Star names in boldface identify WDs in which fields were discovered during the
310
+ observations reported in this paper (see Table 3).
311
+ STAR
312
+ G
313
+ d
314
+ Teff
315
+ log g
316
+ M
317
+ Age
318
+ Atmosphere and ref.
319
+ (pc)
320
+ (K)
321
+ c.g.s.
322
+ (M⊙)
323
+ (Gyr)
324
+ WD 0005+395
325
+ LP 240-30
326
+ 16.6
327
+ 34.4
328
+ 4680
329
+ 6.77
330
+ 0.08
331
+ 1.40
332
+ DC, H ProbWD 0.70 (1,3)
333
+ WD 0010+543
334
+ LSR J0013+5437
335
+ 18.0
336
+ 32.3
337
+ 4123
338
+ 7.77
339
+ 0.46
340
+ 7.08
341
+ DC, (2, H assumed)
342
+ WD 0028+035
343
+ PB 6002
344
+ 16.1
345
+ 27.8
346
+ 6548
347
+ 8.14
348
+ 0.68
349
+ 2.40
350
+ DC, (2, H assumed)
351
+ WD 1251+366
352
+ LP 267-311
353
+ 17.2
354
+ 28.5
355
+ 4445
356
+ 7.62
357
+ 0.37
358
+ 3.78
359
+ DC, He (1)
360
+ WD 1315+222
361
+ LP 378-956
362
+ 16.7
363
+ 31.8
364
+ 6235
365
+ 8.21
366
+ 0.71
367
+ 3.61
368
+ DCH, He (1)
369
+ WD 1346+121
370
+ LP 498-66
371
+ 17.8
372
+ 28.3
373
+ 4150
374
+ 7.88
375
+ 0.50
376
+ 6.58
377
+ DCH, He (1)
378
+ WD 1425+495
379
+ CSO 649
380
+ 16.7
381
+ 33.9
382
+ 6895
383
+ 8.41
384
+ 0.85
385
+ 3.77
386
+ DC, (2, H assumed)
387
+ WD 1427−238
388
+ LP 857-45
389
+ 17.4
390
+ 32.6
391
+ 4866
392
+ 7.90
393
+ 0.52
394
+ 5.40
395
+ DC, (2, H assumed)
396
+ WD 1434+437
397
+ LP 221-217
398
+ 17.2
399
+ 27.2
400
+ 4685
401
+ 7.93
402
+ 0.54
403
+ 6.30
404
+ DC, H-He (1)
405
+ WD 1533+469
406
+ LP 176-60
407
+ 17.8
408
+ 30.8
409
+ 4310
410
+ 7.83
411
+ 0.48
412
+ 6.45
413
+ DC?, H (1)
414
+ WD 1601−073
415
+ LP 684-16
416
+ 17.9
417
+ 26.9
418
+ 4920
419
+ 8.55
420
+ 0.94
421
+ 9.83
422
+ DCH, (2, H assumed)
423
+ WD 1612+092
424
+ LSPM J1614+0906
425
+ 17.2
426
+ 27.9
427
+ 4775
428
+ 7.90
429
+ 0.52
430
+ 5.57
431
+ DC, H (1)
432
+ WD 1702−016
433
+ LP 626-29
434
+ 17.3
435
+ 28.3
436
+ 4700
437
+ 7.94
438
+ 0.54
439
+ 6.50
440
+ DC, (2, H assumed)
441
+ WD 1737+798
442
+ LP 24-66
443
+ 16.9
444
+ 26.8
445
+ 5535
446
+ 8.28
447
+ 0.75
448
+ 5.72
449
+ DC, He (1)
450
+ WD 1746+450
451
+ GD 366
452
+ 15.5
453
+ 29.9
454
+ 9331
455
+ 8.47
456
+ 0.90
457
+ 1.72
458
+ DC, (2, H assumed)
459
+ WD 1800+508
460
+ LP 139-38
461
+ 17.4
462
+ 31.0
463
+ 4635
464
+ 7.85
465
+ 0.48
466
+ 5.12
467
+ DC, He-H (1)
468
+ WD 1853+775
469
+ LP 25-7
470
+ 17.0
471
+ 30.5
472
+ 4850
473
+ 7.74
474
+ 0.43
475
+ 3.63
476
+ DCH, He (1)
477
+ WD 2058+550
478
+ LSR J2059+5517
479
+ 17.1
480
+ 22.7
481
+ 4415
482
+ 7.93
483
+ 0.53
484
+ 7.15
485
+ DC, H-He (1)
486
+ WD 2109−295
487
+ EC 21096-2934
488
+ 15.1
489
+ 32.8
490
+ 9260
491
+ 7.98
492
+ 0.57
493
+ 0.78
494
+ DC, He-H (3)
495
+ WD 2152−280
496
+ LP930-61
497
+ 16.3
498
+ 23.5
499
+ 5220
500
+ 7.85
501
+ 0.48
502
+ 3.68
503
+ DC, He (1)
504
+ WD 2211+372
505
+ LP 287-35
506
+ 16.8
507
+ 29.2
508
+ 6345
509
+ 8.47
510
+ 0.88
511
+ 4.56
512
+ DC?H, He (1)
513
+ WD 2215+368
514
+ LP 287-39
515
+ 16.8
516
+ 20.3
517
+ 4485
518
+ 7.92
519
+ 0.53
520
+ 6.80
521
+ DC, H (1)
522
+ WD 2311−068
523
+ G 157-34
524
+ 15.3
525
+ 25.9
526
+ 7360
527
+ 7.97
528
+ 0.56
529
+ 1.31
530
+ DC, He (1)
531
+ Key to references: 1: Blouin et al. (2019); 2: Gentile Fusillo et al. (2021); 3: Bergeron et al. (2021). Where not found in these
532
+ references, ages have been interpolated using the tables from Bédard et al. (2020).
533
+ level for a G = 13.2 star with about 10 minutes of exposure time.
534
+ This shows that the alignment of our polarimetric optics is stable
535
+ over a few years.
536
+ 2.2. Results
537
+ The WDs observed during our 2022 June-July run are listed in
538
+ Table 2, with their G magnitudes, distances, physical parameters,
539
+ cooling ages, and some comments. Physical parameters were
540
+ obtained from various studies, cited in the table’s notes; cooling
541
+ ages are interpolated from the online cooling data provided by
542
+ the Montreal group (Bédard et al. 2020).
543
+ The observations are described in the log in Table 3, which
544
+ gives dates, integration times, and the polarisation data in the
545
+ three filter bands for each WD observation. We list measured
546
+ BBCP values in boldface if non-zero polarisation is detected at
547
+ above the 3σ level. We consider that real polarisation has been
548
+ detected if a consistent picture of detection is found across the
549
+ bands, and we highlight star names of WDs in which polarisation
550
+ is convincingly detected in boldface in Tables2 and 3. Of the 23
551
+ stars observed, BBCP has been definitely detected in 5 WDs. The
552
+ data for these stars are plotted in Fig. 1.
553
+ We observed three of the five WDs in which fields were de-
554
+ tected in order to fully confirm the weak field detections and to
555
+ check for possible variability. No variability is detected with con-
556
+ fidence. There are in addition two further WDs, WD 1434+437
557
+ and WD 1533+469, in which marginal polarisation detections
558
+ have been obtained; these WDs await further observation to con-
559
+ Article number, page 3 of 6
560
+
561
+ A&A proofs: manuscript no. 45149corr
562
+ Table 3. Observing log of WDs. Detections are marked in boldface.
563
+ STAR
564
+ DATE
565
+ UT
566
+ JD –
567
+ Exp.
568
+ VI (%)
569
+ yyyy-mm-dd hh:mm
570
+ 2400000
571
+ (s)
572
+ B′
573
+ V′
574
+ R′
575
+ WD 0005+395
576
+ 2022-07-06
577
+ 04:38
578
+ 59766.693 3900 −0.017±0.063 −0.082±0.056
579
+ 0.028±0.044
580
+ WD 0010+543
581
+ 2022-07-05
582
+ 04:12
583
+ 59765.675 7100 −0.028±0.140 −0.011±0.129
584
+ 0.094±0.067
585
+ WD 0028+035
586
+ 2002-07-06
587
+ 03:39
588
+ 59766.652 3300 −0.084±0.045 −0.051±0.050 −0.010±0.058
589
+ WD 1251+366
590
+ 2022-06-27
591
+ 22:41
592
+ 59758.445 5200 −0.155±0.065
593
+ 0.006±0.063
594
+ 0.039±0.038
595
+ WD 1315+222
596
+ 2022-06-28
597
+ 22:25
598
+ 59759.435 4200
599
+ 0.104±0.045
600
+ 0.182±0.052
601
+ 0.215±0.064
602
+ 2022-07-01
603
+ 22:24
604
+ 59762.434 4200
605
+ 0.084±0.040
606
+ 0.253±0.061
607
+ 0.199±0.044
608
+ WD 1346+121
609
+ 2022-07-02
610
+ 22:43
611
+ 59763.446 6500 −0.508±0.093
612
+ 0.044±0.091 −1.074±0.054
613
+ 2022-07-04
614
+ 22:34
615
+ 59765.44
616
+ 6500 −0.691±0.109
617
+ 0.222±0.098 −1.256±0.062
618
+ WD 1425+495
619
+ 2022-06-29
620
+ 22:22
621
+ 59760.432 4200
622
+ 0.012±0.045 −0.002±0.058
623
+ 0.018±0.038
624
+ WD 1427-238
625
+ 2022-06-30
626
+ 23:11
627
+ 59761.466 5600 −0.038±0.114
628
+ 0.102±0.078 −0.044±0.061
629
+ WD 1434+437
630
+ 2022-06-30
631
+ 00:04
632
+ 59760.503 5200
633
+ 0.231±0.077 −0.019±0.067 −0.019±0.059
634
+ WD 1533+469
635
+ 2022-07-01
636
+ 01:02
637
+ 59761.543 6600 −0.065±0.127 −0.273±0.110 −0.195±0.052
638
+ 2022-07-03
639
+ 00:42
640
+ 59763.529 6600
641
+ 0.139±0.098 −0.300±0.090 −0.019±0.042
642
+ WD 1601-073
643
+ 2022-07-05
644
+ 22:52
645
+ 59766.453 6800 −0.484±0.111 −0.386±0.106
646
+ 1.597±0.054
647
+ WD 1612+092
648
+ 2022-06-28
649
+ 00:59
650
+ 59758.541 5100
651
+ 0.087±0.069
652
+ 0.033±0.052
653
+ 0.097±0.046
654
+ WD 1702-016
655
+ 2022-06-30
656
+ 01:59
657
+ 59760.582 5300
658
+ 0.215±0.091
659
+ 0.087±0.086 −0.104±0.053
660
+ WD 1737+798
661
+ 2022-06-29
662
+ 01:34
663
+ 59759.566 4500 −0.014±0.082 −0.085±0.093 −0.071±0.056
664
+ WD 1746+450
665
+ 2022-06-28
666
+ 02:12
667
+ 59758.592 2600
668
+ 0.012±0.035 −0.049±0.032 −0.074±0.035
669
+ WD 1800+508
670
+ 2022-07-05
671
+ 00:59
672
+ 59765.541 5600 −0.157±0.073 −0.047±0.061
673
+ 0.051±0.053
674
+ WD 1853+775
675
+ 2002-07-06
676
+ 01:15
677
+ 59766.552 4800 −0.098±0.066 −0.680±0.068 −0.492±0.039
678
+ WD 2058+550
679
+ 2022-07-02
680
+ 04:15
681
+ 59762.677 5000
682
+ 0.068±0.075 −0.052±0.070
683
+ 0.064±0.045
684
+ WD 2109-295
685
+ 2022-07-01
686
+ 03:51
687
+ 59761.660 2200
688
+ 0.011±0.020
689
+ 0.036±0.034 −0.039±0.037
690
+ WD 2152-280
691
+ 2022-06-28
692
+ 03:59
693
+ 59758.666 3600
694
+ 0.007±0.040 −0.055±0.041 −0.043±0.022
695
+ WD 2211+372
696
+ 2022-07-02
697
+ 02:10
698
+ 59762.590 4400
699
+ 1.254±0.041
700
+ 0.703±0.054
701
+ 0.446±0.044
702
+ 2022-07-03
703
+ 04:24
704
+ 59763.683 4400
705
+ 1.333±0.038
706
+ 0.623±0.044
707
+ 0.285±0.040
708
+ WD 2215+368
709
+ 2022-06-30
710
+ 04:12
711
+ 59760.675 4400
712
+ 0.187±0.083
713
+ 0.133±0.068
714
+ 0.101±0.044
715
+ WD 2311-068
716
+ 2022-06-29
717
+ 04:38
718
+ 59759.693 2400 −0.011±0.028
719
+ 0.011±0.039
720
+ 0.032±0.032
721
+ firm (or not) the fields that may have been detected. However,
722
+ a single pair of measurements does not probe all the possible
723
+ timescales of variation; in particular, our measurements require
724
+ integration of the order of one hour and so cannot probe all the
725
+ rotation periods that might result from the formation of a MWD
726
+ from a close binary.
727
+ With these new discoveries, we almost double the number of
728
+ DC WDs in which magnetic fields have been detected. One of
729
+ the new MWDs discovered, LP 684-16 = WD 1601–073, is quite
730
+ massive compared to most of the rest of the DC WDs observed.
731
+ Therefore, because of its relatively small radius, it has cooled
732
+ quite slowly, reaching only Teff = 4920 K, but has a computed
733
+ cooling time of 9.8 Gyr. It is probably the oldest magnetic WD of
734
+ any spectral type discovered so far. For comparison, according to
735
+ the parameters listed by Bagnulo & Landstreet (2021), the oldest
736
+ MWD in the 20 pc volume, in which such old MWDs are most
737
+ likely to be discovered, is WD 1008+290 = LHS 2229. It is a
738
+ DQpec star with an age of about 7.9 Gyr, almost 2 Gyr younger
739
+ than LP 684-16.
740
+ We note that no really large polarisation signals, such as that
741
+ exhibited by WD 1900+705 (see Table 1), are found. However,
742
+ the observed level of polarisation in three of the five definite
743
+ detections reaches the range 1.2 to 1.6%, so some of the fields
744
+ detected are probably quite strong.
745
+ 3. Discussion and conclusions
746
+ We continue to detect MWDs in roughly one-fifth of the DC
747
+ sample observed. Considering that only relatively strong fields
748
+ can be detected in featureless stars, our results suggest that the
749
+ frequency of the occurrence of magnetic fields in older WDs
750
+ may be as high as 25 or even 30 %, consistent with the frequency
751
+ suggested by Bagnulo & Landstreet (2021).
752
+ Polarisation levels in the seven DC MWDs discovered
753
+ by Berdyugin et al. (2022) and in this paper range from
754
+ about 0.1 to 1.6 %. Using the order-of-magnitude estimator of
755
+ Bagnulo & Landstreet (2020) of a longitudinal field of 15 MG,
756
+ which leads to BBCP of the order of 1%, inferred fields ⟨Bz⟩
757
+ are thus estimated to lie between perhaps 1 and 30 MG. From
758
+ this result, the fields ⟨|B|⟩ that we detect likely lie in the range of
759
+ roughly 3 to 200 MG.
760
+ Some of the fields produce a polarisation with the same sign
761
+ in the three filter bands, while in other stars we detect a polar-
762
+ isation that reverses sign between one filter band and another
763
+ (Fig. 1). Similar behaviour was found in our earlier survey data
764
+ (Berdyugin et al. 2022) as well as in other strongly magnetic old
765
+ WDs (Angel & Landstreet 1971; Angel et al. 1974, 1975; Putney
766
+ 1995).
767
+ Article number, page 4 of 6
768
+
769
+ Andrei V. Berdyugin et al.: Discovery of magnetic fields in five DC white dwarfs
770
+ Fig. 1. Wavelength dependence of circular polarisation detected for five
771
+ targets (> 3σ confidence level). A wide variety of polarisation behaviour
772
+ is observed. Horizontal bars in the bottom panel show the FWHM of the
773
+ B′V′R′ filter passbands.
774
+ We carried out a second observation for three of our five new
775
+ discoveries and for one suspected candidate. The confirming ob-
776
+ servations were obtained between one and three days after the
777
+ discovery observations. For each of these four stars, the repeated
778
+ observation confirms the presence of the magnetic field first de-
779
+ tected, except for one R′ observationof WD 1533+469.In no case
780
+ do we detect clearly significant variability; we note, however, that
781
+ our repeated measurements probe only a very limited range of
782
+ timescales.
783
+ We find that, in practice, a magnetic field can be reliably
784
+ detected from BBCP at the polarization levels of approximately
785
+ 0.2% with our broadband filter polarimeter on a 2.5 m telescope
786
+ in a DC WD of G ∼ 17. We would gain about a factor of 3 in
787
+ precision, or a 2.5 magnitude increase in limiting magnitude, by
788
+ going to an 8 m telescope.
789
+ To summarise the current statistical situation, we com-
790
+ bine the results from the 20 pc volume magnetic field survey
791
+ (Bagnulo & Landstreet 2021), our exploratory observing run
792
+ (Berdyugin et al. 2022), and this work. We have collected lit-
793
+ erature data on and surveyed 30 young DC stars, of which 7 have
794
+ been found to host magnetic fields, and 43 old DCs, of which 6
795
+ are magnetic.
796
+ As more detections of DC MWDs are made, especially in
797
+ the context of volume-limited surveys such as ours, comparisons
798
+ with magnetic data for other types of WDs will at first be ham-
799
+ pered by our current inability to assign precise field strength
800
+ values to magnetic DC WDs. However, a first comparison can be
801
+ made between the overall level of polarisation observed in young
802
+ and old DC MWDs, which may be taken as an indicator of the
803
+ evolution of the overall field strength with cooling age between
804
+ these two populations. In the currently small sample, it appears
805
+ that larger polarisation levels (say, above Stokes V/I >∼ 1 %) ap-
806
+ pear to be at least as common in the old DC MWD population
807
+ as in the young group. There is no clear signal of Ohmic field
808
+ strength decay. However, the available sample is still very small,
809
+ and as our sample increases we can hope to obtain a statistically
810
+ more significant constraint and carry out modelling to provide
811
+ more accurate field strength estimates corresponding to observed
812
+ polarisation. Such surveys need to be carried on until a clearer
813
+ statistical view of the magnetism in DC WDs is obtained.
814
+ Acknowledgements. Based on observations made with the Nordic Optical Tele-
815
+ scope, owned in collaboration by the University of Turku and Aarhus University,
816
+ and operated jointly by Aarhus University, the University of Turku and the Uni-
817
+ versity of Oslo, representing Denmark, Finland and Norway, the University of
818
+ Iceland and Stockholm University at the Observatorio del Roque de los Mucha-
819
+ chos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. DIPol-UF
820
+ is a joint effort between University of Turku (Finland) and Leibniz Institute for
821
+ Solar Physics (Germany). We acknowledge support from the Magnus Ehrnrooth
822
+ foundation and the ERC Advanced Grant HotMol ERC-2011-AdG-291659. JDL
823
+ acknowledges the financial support of the Natural Sciences and Engineering
824
+ Research Council of Canada (NSERC), funding reference number 6377-2016.
825
+ 4. Data Availability
826
+ All raw data and calibrations are available on request from the
827
+ authors.
828
+ References
829
+ Angel, J. R. P., Borra, E. F., & Landstreet, J. D. 1981, ApJS, 45, 457
830
+ Angel, J. R. P., Hintzen, P., & Landstreet, J. D. 1975, ApJ, 196, L27
831
+ Angel, J. R. P., Hintzen, P., Strittmatter, P. A., & Martin, P. G. 1974, ApJ, 190,
832
+ L71
833
+ Angel, J. R. P. & Landstreet, J. D. 1971, ApJ, 164, L15
834
+ Bagnulo, S. & Landstreet, J. D. 2019, MNRAS, 486, 4655
835
+ Bagnulo, S. & Landstreet, J. D. 2020, A&A, 643, A134
836
+ Bagnulo, S. & Landstreet, J. D. 2021, MNRAS, 507, 5902
837
+ Bagnulo, S. & Landstreet, J. D. 2022, ApJ, 935, L12
838
+ Bédard, A., Bergeron, P., Brassard, P., & Fontaine, G. 2020, ApJ, 901, 93
839
+ Berdyugin, A. V., Piirola, V., Bagnulo, S., Landstreet, J. D., & Berdyugina, S. V.
840
+ 2022, A&A, 657, A105
841
+ Berdyugina, S. V., Berdyugin, A. V., & Piirola, V. 2007, Phys. Rev. Lett., 99,
842
+ 091101
843
+ Bergeron, P., Wesemael, F., Fontaine, G., et al. 2021, AJ, 162, 188
844
+ Blouin, S., Dufour, P., Thibeault, C., & Allard, N. F. 2019, ApJ, 878, 63
845
+ Ferrario, L., de Martino, D., & Gänsicke, B. T. 2015, Space Sci. Rev., 191, 111
846
+ Article number, page 5 of 6
847
+
848
+ A&A proofs: manuscript no. 45149corr
849
+ Fossati, L., Bagnulo, S., Mason, E., & Landi Degl’Innocenti, E. 2007, in As-
850
+ tronomical Society of the Pacific Conference Series, Vol. 364, The Future
851
+ of Photometric, Spectrophotometric and Polarimetric Standardization, ed.
852
+ C. Sterken, 503
853
+ Gentile Fusillo, N. P., Tremblay, P. E., Cukanovaite, E., et al. 2021, MNRAS,
854
+ 508, 3877
855
+ Gentile Fusillo, N. P., Tremblay, P. E., Jordan, S., et al. 2018, MNRAS, 473, 3693
856
+ Isern, J., García-Berro, E., Külebi, B., & Lorén-Aguilar, P. 2017, ApJ, 836, L28
857
+ Kawka, A., Vennes, S., Schmidt, G. D., Wickramasinghe, D. T., & Koch, R. 2007,
858
+ ApJ, 654, 499
859
+ Kemp, J. C. 1970, ApJ, 162, 169
860
+ Kemp, J. C., Swedlund, J. B., Landstreet, J. D., & Angel, J. R. P. 1970, ApJ, 161,
861
+ L77
862
+ Landstreet, J. D. 1987, MNRAS, 225, 437
863
+ Piirola, V., Kosenkov, I. A., Berdyugin, A. V., Berdyugina, S. V., & Poutanen, J.
864
+ 2020, The Astronomical Journal, 161, 20
865
+ Putney, A. 1995, ApJ, 451, L67
866
+ Siebenmorgen, R., Voshchinnikov, N. V., & Bagnulo, S. 2014, A&A, 561, A82
867
+ Tremblay, P. E., Fontaine, G., Freytag, B., et al. 2015, ApJ, 812, 19
868
+ Article number, page 6 of 6
869
+
1NE2T4oBgHgl3EQfigeU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
39AzT4oBgHgl3EQfffxn/content/tmp_files/2301.01453v1.pdf.txt ADDED
@@ -0,0 +1,988 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Information-Theoretic Secure Key Sharing for Wide-Area Mobile
3
+ Applications
4
+ Guyue Li, Member, IEEE, Hongyi Luo, Jiabao Yu, Aiqun Hu, Senior Member, IEEE and Jiangzhou Wang, Fellow, IEEE
5
+ With the rapid growth of handheld devices in the internet
6
+ of things (IoT) networks, mobile applications have become
7
+ ubiquitous in everyday life. As technology is developed, so do
8
+ also the risks and threats associated with it, especially in the
9
+ forthcoming quantum era. Existing IoT networks, however, lack a
10
+ quantum-resistant secret key sharing scheme to meet confidential
11
+ message transmission demands in wide-area mobile applications.
12
+ To address this issue, this article proposes a new scheme, channel
13
+ reciprocity (CR) based quantum key distribution (QKD) CR-
14
+ QKD, which accomplishes the goal of secret key sharing by
15
+ combining emerging techniques of QKD and CR-based key
16
+ generation (CRKG). Exploiting laws of quantum physics and
17
+ properties of wireless channels, the proposed scheme is able
18
+ to ensure the secrecy of the key, even against computationally
19
+ unbounded adversaries. The basic mechanism is elaborated for
20
+ a single-user case and it is extended into a multi-user case by
21
+ redesigning a multi-user edge forwarding strategy. In addition, to
22
+ make CR-QKD more practical, some enhancement strategies are
23
+ studied to reduce the time delay and to improve the secret key
24
+ generation rate in a secure manner. A prototype of CR-QKD
25
+ is demonstrated in a metropolitan area network, where secret
26
+ keys are shared between two remote IoT devices that are roughly
27
+ fifteen kilometers apart from each other. The experimental results
28
+ have verified that CR-QKD allows a secret key rate of 424 bits
29
+ per second with a retransmission rate of 2.1%.
30
+ Index Terms—Secret key generation, physical layer security,
31
+ quantum key distribution, wide-area mobile applications, Inter-
32
+ net of Things
33
+ I. INTRODUCTION
34
+ Recent years have witnessed a remarkable growth in the
35
+ number and variety of mobile devices and applications in
36
+ the Internet of Things (IoT) networks. The flourish of IoT,
37
+ however, has resulted in the generation of a substantial amount
38
+ of private messages exchanged over public channels, which
39
+ has grabbed one’s attention. Unfortunately, IoT devices are
40
+ susceptible to various threats and security challenges, which
41
+ pose hazards for the advancement of IoT in sensitive fields,
42
+ such as smart homes, unmanned vehicles, e-health, and mili-
43
+ tary networks [1]. In order to avoid being revealed to a third
44
+ Guyue Li and Hongyi Luo are with the School of Cyber Science
45
+ and Engineering, Southeast University, Nanjing 210096, China (e-mail:
46
47
+ Jiabao Yu is with the Purple Mountain Laboratories, Nanjing 210096, China
48
+ (e-mail:[email protected]).
49
+ Aiqun Hu is with National Mobile Communications Research Laboratory,
50
+ Southeast University, Nanjing 210096, China (e-mail: [email protected]).
51
+ Jiangzhou Wang is with the School of Engineering, University of Kent,
52
+ Canterbury CT2 7NT, U.K. Email: (e-mail: [email protected]).
53
+ Guyue Li and Aiqun Hu are also with Purple Mountain Laboratories,
54
+ Nanjing 210096, China.
55
+ party, a message is usually encrypted using a secret key shared
56
+ among the communicating devices. Thus, a key prerequisite
57
+ of achieving IoT network security is secret key sharing that
58
+ avoids eavesdropper interception [2].
59
+ In a classic cryptographic scheme, two legitimate parties,
60
+ namely Alice and Bob use the public-key cryptosystem (PKC)
61
+ for key distribution. It is extremely difficult for a third party,
62
+ namely Eve, to derive the private key or message compu-
63
+ tationally, due to the intractability of certain mathematical
64
+ problems used in encryption algorithms. However, the emerg-
65
+ ing quantum computing technology has the potential to make
66
+ some previously-intractable problems tractable [3]. Thus, the
67
+ security of computational security-based key distribution will
68
+ be rendered insecure by substantial progress in quantum
69
+ computing in the coming years, which necessitates the study of
70
+ alternative solutions that do not rely on computational security.
71
+ In this context, much attention has been paid to emerging
72
+ techniques, such as quantum key distribution (QKD) [4] and
73
+ channel reciprocity-based key generation (CRKG) [5], which
74
+ can provide secret key sharing service with information-
75
+ theoretic security, also known as unconditional security or
76
+ physical security.
77
+ • QKD is a well-known quantum-resistant mechanism,
78
+ which distributes secret keys to distant parties by trans-
79
+ mitting single photon through a quantum channel [6].
80
+ Employing the laws of quantum physics, QKD can de-
81
+ tect eavesdroppers during the key generation process,
82
+ in which unauthorized observation of quantum commu-
83
+ nication induces a discernible increase of errors. This
84
+ sensitivity to eavesdropping makes QKD possible to en-
85
+ sure the secrecy of the key, even against computationally
86
+ unbounded adversaries.
87
+ • CRKG is built on the basis of channel reciprocity, which
88
+ means that the channel responses of the forward and
89
+ backward communication links are very similar in a time
90
+ division duplex (TDD) system. In addition, the dynamic
91
+ and complex wireless communication environment makes
92
+ the channel responses change over time and hard to
93
+ predict. Therefore, legitimate users can share a pair of
94
+ common randomness from their radio channel measure-
95
+ ments. Since CRKG does not require assistance from a
96
+ third party nor expensive infrastructure, it has recently
97
+ emerged as a new paradigm that provides a lightweight
98
+ and information-theoretic secure key sharing solution for
99
+ decentralized or device-to-device sensor applications [7].
100
+ Table I summarizes these typical secret key distribution
101
+ arXiv:2301.01453v1 [cs.IT] 4 Jan 2023
102
+
103
+ 2
104
+ TABLE I
105
+ A SUMMARY AND COMPARATION OF TYPICAL SECRET KEY DISTRIBUTION METHODS
106
+ Method
107
+ Metric
108
+ Security Level
109
+ Mobility Support
110
+ Distribution Distance
111
+ User Cost
112
+ PKC
113
+ Computational secure
114
+ Middle
115
+ Long
116
+ Middle
117
+ QKD
118
+ Information theoretically secure
119
+ Weak
120
+ Long
121
+ High
122
+ CRKG
123
+ Information theoretically secure
124
+ Strong
125
+ Short
126
+ Low
127
+ CR-QKD
128
+ Information theoretically secure
129
+ Strong
130
+ Long
131
+ Low
132
+ methods, and identify their characteristics from perspectives of
133
+ security level, mobility support, distribution distance and user
134
+ cost. We find that although the separate construction of QKD
135
+ and CRKG can be supported in the physical layer, there is no
136
+ investigation of a secret key sharing scheme for the security
137
+ demands from remote mobile devices. Although point-to-point
138
+ connections are suitable to form a backbone quantum core
139
+ network to bridge long distances, they are less suitable to
140
+ provide the last-mile service needed to give a multitude of
141
+ users access to this QKD infrastructure [6]. Similarly, despite
142
+ many research efforts in the field of CRKG, its widespread
143
+ application is unfortunately hindered by the short distance
144
+ between transceivers. With a rapid growth of handheld devices,
145
+ wide-area mobile applications, such as remote environmental
146
+ and elderly monitoring, have become an inseparable part of
147
+ IoT networks. A new architecture needs to be developed
148
+ where end-users between two access networks are connected
149
+ to a metro network, thus realizing unconditionally secure key
150
+ sharing in a more cost-effective and flexible manner.
151
+ In this article, we introduce and experimentally demonstrate
152
+ the concept of a ‘channel reciprocity-aided quantum key
153
+ distribution (CR-QKD)’ based on simple and cost-effective
154
+ telecommunication technologies. This scheme can expand the
155
+ scope of QKD to IoT networks and therefore vastly broaden
156
+ users’ appeal. The contributions of this article are three-fold:
157
+ • We introduce a novel secret key sharing architecture, re-
158
+ ferred to as CR-QKD, which bridges a backbone quantum
159
+ core network and IoT users by exploiting the technique
160
+ of CRKG to provide the last-mile service. CR-QKD is
161
+ information-theoretically secure and it does not require
162
+ IoT users to be equipped with expensive quantum infras-
163
+ tructures for exchanging secret keys, thereby significantly
164
+ reducing the hardware requirements.
165
+ • We propose a multi-user mechanism to realize the con-
166
+ cept of CR-QKD with an elaborate design of key align-
167
+ ment. We also identify challenges that arise due to the
168
+ hybrid architecture of CR-QKD from the perspective
169
+ of feasibility and security, respectively. Countermeasures
170
+ have been studied to reduce the time delay and to improve
171
+ the secret key generation rate in a secure manner.
172
+ • We implement a prototype CR-QKD system in a
173
+ metropolitan area network, in which secret keys are
174
+ shared between two remote IoT devices that are roughly
175
+ fifteen kilometers apart from each other. The experimental
176
+ results have verified that CR-QKD can provide a secret
177
+ key rate of 424 bits per second with a retransmission rate
178
+ of 2.1%.
179
+ II. AN OVERVIEW OF THE CR-QKD ARCHITECTURE
180
+ In this section, we first introduce QKD and CRKG, and then
181
+ discuss their combination modes to realize secure communi-
182
+ cation in wide-area mobile applications.
183
+ A. QKD
184
+ QKD protocols exploit a quantum communication channel
185
+ and an authenticated classical channel to ensure the exchange
186
+ of a cryptographic key between two remote parties with proven
187
+ security. Since its inception in [8], QKD protocol design
188
+ and analyses have flourished as a field yielding numerous
189
+ protocols, security analyses, and practical implementation
190
+ methodologies. Although QKD research has made remarkable
191
+ progress, these developments have been largely focused on
192
+ securing large-scale infrastructures using long distance fiber
193
+ transmission and free space transmission between fixed ter-
194
+ minals. Some efforts have been made toward handheld free-
195
+ space QKD by exploiting a beam-steering module, which
196
+ compensates for hand movement of the QKD module at
197
+ the transmitter [9, 10]. However, these schemes have limited
198
+ transmission range and their QKD receiver is currently difficult
199
+ to be miniaturized. In other words, they can not provide a bi-
200
+ directional transmission and are thus not applicable to the case
201
+ of distributing a quantum key from a core network to an end-
202
+ user. In this article, QKD is exploited to form a backbone
203
+ quantum core network to bridge long distances.
204
+ B. CRKG
205
+ CRKG exploits wireless channels between transceivers as
206
+ random sources for key generation, and these keys can be
207
+ replenished dynamically as wireless channels vary over time.
208
+ Eavesdroppers in such situations experience physical channels
209
+ independent of those of the legitimate users as long as they
210
+ are a few wavelengths away from these legitimate parties,
211
+ which is generally the case in wireless networks. So far,
212
+ the CRKG field has yielded fruitful results from aspects of
213
+ theoretical exploration, modeling, protocol design, and proto-
214
+ type implementation in various IoT platforms [11]. However,
215
+ these developments have been largely focused on wireless
216
+ communication technologies for short-range applications, such
217
+ as ZigBee, ultra-wideband, Bluetooth and WiFi. When the
218
+ distance is in the order of a few kilometers, the signal-to-
219
+ noise ratio is small and the time delay between uplink and
220
+ downlink packets becomes large. Therefore, CRKG at a long
221
+ distance is challenging to meet the requirement of high cor-
222
+ relation between channel parameter measurements for secret
223
+ key generation [11]. Due to these reasons, CRKG is more
224
+ suitable for secret key sharing between wireless transceivers
225
+
226
+ 3
227
+ Alice
228
+ Bob
229
+ K𝑪𝟏
230
+ K𝑪𝟏
231
+ KQ
232
+ KQ
233
+ K𝐂𝟐
234
+ K𝐂𝟐
235
+ QAP1
236
+ QAP2
237
+ Fig. 1. An illustration of combining QKD and CRKG to realize secure communication between two remote users.
238
+ that are within one kilometer apart and thus exploited in this
239
+ article to complete the last-mile secret key distribution task
240
+ from quantum access points (QAP) to IoT users.
241
+ C. The Combination Mode of QKD and CRKG
242
+ Neither QKD nor PKG is applicable to long-range IoT
243
+ networks, therefore, a critical problem is how to combine their
244
+ advantages to apply to the new scenario. Fig. 1 describes the
245
+ system model and illustrates one possible combination mode.
246
+ Alice and Bob are two distant wireless users, who do not have
247
+ direct links with each other. QAP1 and QAP2 are two quantum
248
+ nodes that are connected through long-distance optical fibers,
249
+ or ground-to-satellite free-space links. QAP1 and QAP2 have
250
+ a wireless link to Alice and Bob, respectively.
251
+ To complete the secret key distribution between Alice and
252
+ Bob, three keys are first shared between Alice and QAP1 (link
253
+ 1), QAP1 and QAP2 (link 2), and QAP2 and Bob (link 3).
254
+ Channel keys are generated from wireless links 1 and 3 by us-
255
+ ing the technique of CRKG, while quantum key is distributed
256
+ from QAP1 to QAP2, or in the reverse direction, with mature
257
+ QKD techniques. Next, the quantum key is securely delivered
258
+ to Alice and Bob by encrypting it with channel keys. In other
259
+ words, Alice and Bob share a unified key, which is then used to
260
+ encrypt and to decrypt the message in the data transmissions.
261
+ Therefore, this mode is also abbreviated as unified-key mode.
262
+ Notably, Alice and Bob are free to choose wireless and Internet
263
+ routes for message transmission. This consideration is due to
264
+ the following reasons. First, due to the limited rate of the
265
+ quantum link, its message transmission rate is relatively small.
266
+ Second, as Alice and Bob are mobile devices, they are more
267
+ likely to use communication routes that are different from
268
+ those in the key distribution process. Finally, the unified-key
269
+ requires less time delay for message transmission as it only
270
+ needs one time of message encryption and decryption. The
271
+ essential process to obtain unified quantum keys is referred to
272
+ as CR-QKD, which is elaborated in the following section.
273
+ III. CONCEPTUAL DESIGN OF CR-QKD
274
+ In this section, we will first introduce the basic mechanism
275
+ of CR-QKD and then study the key aligment, efficiency and
276
+ security issues that exist in CR-QKD.
277
+ A. Mechanism description
278
+ As shown in Fig. 1, Alice and Bob intend to share quantum
279
+ key with the help of QAP1 and QAP2, against an adversarial
280
+ eavesdropper, Eve, tapping on the quantum channel and lis-
281
+ tening to all the exchanges on the classical channels. Similar
282
+ to most existing QKD and CRKG protocols, the classical
283
+ communication channels are assumed to be authenticated,
284
+ in which the identities of the communicating parties have
285
+ been verified and the integrity of the transmitted messages
286
+ is promised.
287
+ The CR-QKD protocol comprises three main phases, i.e,
288
+ QKD 1, CRKG and edge forwarding, which will be elaborated
289
+ below.
290
+ • QKD phase: First, QAP1 prepares and sends to QAP2
291
+ a set of random qubits via a single-photon signal over a
292
+ quantum channel. These qubits are selected from a set of
293
+ four states with two bases. For every incoming state from
294
+ QAP1, QAP2 randomly chooses one of the two bases to
295
+ measure and record the results. Once quantum commu-
296
+ nication has finished, QAP2 starts base reconciliation by
297
+ announcing the position of the detected bits and the basis
298
+ used to QAP1 over a classic channel. Then, QAP1 and
299
+ QAP2 retain the bits with a coincident basis and discard
300
+ the rest. After that, QAP1 publishes a subset of these bits
301
+ to QAP2 for eavesdropping detection. If the error rate
302
+ between what QAP2 detects and what QAP1 has sent
303
+ is high, the eavesdropping is detected and these shared
304
+ bits will be invalid. Otherwise, QAP1 and QAP2 perform
305
+ information reconciliation and privacy amplification over
306
+ the rest of the bits that have not been made public. At
307
+ last, QAP1 and QAP2 check whether they obtain the same
308
+ result via key verification. If so, they retain the pair of
309
+ bits as quantum key KQ, otherwise, they discard both of
310
+ them.
311
+ • CRKG phase: A CRKG protocol typically contains four
312
+ stages, i.e., channel probing, quantization, information
313
+ reconciliation, and privacy amplification. Alice and QAP1
314
+ first carry out channel probing, which involves bidirec-
315
+ tional measurements within a channel coherence time.
316
+ They then convert the analog measurements into digital
317
+ 1Our study is not bound to specific QKD protocols, and we choose the
318
+ BB84 protocol as a representative to introduce the CR-QKD mechanism.
319
+
320
+ 4
321
+ Pair
322
+ 𝐴𝑀1-𝐵1
323
+ ...
324
+ 𝐴𝑀1-𝐵1
325
+ ...
326
+ 𝐴𝑀1-𝐵𝑀2
327
+ Number
328
+ 1
329
+ ...
330
+
331
+ 𝑖=1
332
+ 𝑀𝑖
333
+ 𝑁𝐴𝑖 +1
334
+ ...
335
+ 𝑁𝐴𝑀1
336
+ 𝐾𝑄
337
+ 1110…010
338
+ ...
339
+ 0011…010
340
+ ...
341
+ 1011…111
342
+ Pair
343
+ 𝐴2-𝐵1
344
+ ...
345
+ 𝐴2-𝐵1
346
+ ...
347
+ 𝐴2-𝐵𝑁
348
+ Number
349
+ 𝑁𝐴1+
350
+ ...
351
+ 𝑁𝐴2,𝐵1
352
+ ...
353
+ 𝑁𝐴2
354
+ 𝐾𝑄
355
+ 1110…010
356
+ ...
357
+ 0011…010
358
+ ...
359
+ 1011…110
360
+ 𝐴1
361
+ 𝑲𝑸
362
+ 𝑲𝑸
363
+ 𝑄𝐴𝑃1
364
+ 𝑄𝐴𝑃2
365
+ Quantum
366
+ Key Buffer
367
+ Quantum
368
+ Key Buffer
369
+ 𝐴2
370
+ 𝐴𝑀1
371
+ ...
372
+ ...
373
+ 𝐵1
374
+ 𝐵2
375
+ 𝐵𝑀2
376
+ ...
377
+ ...
378
+ Request
379
+ Request
380
+ Pair
381
+ 𝐴1-𝐵1
382
+ ...
383
+ 𝐴1-𝐵1
384
+ ...
385
+ 𝐴1-𝐵𝑀2
386
+ Number
387
+ 1
388
+ ...
389
+ 𝑁𝐴1,𝐵1
390
+ ...
391
+ 𝑁𝐴1
392
+ 𝐾𝑄
393
+ 1010…010
394
+ ...
395
+ 1011…010
396
+ ...
397
+ 1011…011
398
+ Pair
399
+ 𝐴2-𝐵1
400
+ ...
401
+ 𝐴2-𝐵1
402
+ ...
403
+ 𝐴2-𝐵𝑁
404
+ Number
405
+ 𝑁𝐴1+
406
+ ...
407
+ 𝑁𝐴2,𝐵1
408
+ ...
409
+ 𝑁𝐴2
410
+ 𝐾𝑄
411
+ 1110…010
412
+ ...
413
+ 0011…010
414
+ ...
415
+ 1011…110
416
+ Pair
417
+ 𝐴1-𝐵1
418
+ ...
419
+ 𝐴1-𝐵1
420
+ ...
421
+ 𝐴1-𝐵𝑀2
422
+ Number
423
+ 1
424
+ ...
425
+ 𝑁𝐴1,𝐵1
426
+ ...
427
+ 𝑁𝐴1
428
+ 𝐾𝑄
429
+ 1010…010
430
+ ...
431
+ 1011…010
432
+ ...
433
+ 1011…011
434
+ Pair
435
+ 𝐴1-𝐵𝑀2
436
+ 𝐴2-𝐵𝑀2
437
+ ...
438
+ 𝐴𝑀1-𝐵𝑀2
439
+ Number
440
+ 𝑁𝐴1
441
+ 𝑁𝐴1 + 𝑁𝐴2
442
+ ...
443
+
444
+ 𝑖=1
445
+ 𝑀1 𝑁𝐴𝑖
446
+ 𝐾𝑄
447
+ 1011…011
448
+ 1111…010
449
+ ...
450
+ 1011…111
451
+ Pair
452
+ 𝐴𝑀1-𝐵1
453
+ ...
454
+ 𝐴𝑀1-𝐵1
455
+ ...
456
+ 𝐴𝑀1-𝐵𝑀2
457
+ Number
458
+ 1
459
+ ...
460
+
461
+ 𝑖=1
462
+ 𝑀𝑖
463
+ 𝑁𝐴𝑖 +1
464
+ ...
465
+ 𝑁𝐴𝑀1
466
+ 𝐾𝑄
467
+ 1110…010
468
+ ...
469
+ 0011…010
470
+ ...
471
+ 1011…111
472
+ Pair
473
+ 𝐴2-𝐵1
474
+ ...
475
+ 𝐴2-𝐵1
476
+ ...
477
+ 𝐴2-𝐵𝑁
478
+ Number
479
+ 𝑁𝐴1+
480
+ ...
481
+ 𝑁𝐴2,𝐵1
482
+ ...
483
+ 𝑁𝐴2
484
+ 𝐾𝑄
485
+ 1110…010
486
+ ...
487
+ 0011…010
488
+ ...
489
+ 1011…110
490
+ Pair
491
+ 𝐴2-𝐵1
492
+ ...
493
+ 𝐴2-𝐵1
494
+ ...
495
+ 𝐴2-𝐵𝑁
496
+ Number
497
+ 𝑁𝐴1+
498
+ ...
499
+ 𝑁𝐴2,𝐵1
500
+ ...
501
+ 𝑁𝐴2
502
+ 𝐾𝑄
503
+ 1110…010
504
+ ...
505
+ 0011…010
506
+ ...
507
+ 1011…110
508
+ Pair
509
+ 𝐴1-𝐵1
510
+ ...
511
+ 𝐴1-𝐵1
512
+ ...
513
+ 𝐴1-𝐵𝑀2
514
+ Number
515
+ 1
516
+ ...
517
+ 𝑁𝐴1,𝐵1
518
+ ...
519
+ 𝑁𝐴1
520
+ 𝐾𝑄
521
+ 1010…010
522
+ ...
523
+ 1011…010
524
+ ...
525
+ 1011…011
526
+ Fig. 2. An illustration of CR-QKD in a multi-user scenario: edges distribute quantum keys to users according to their needs, where NAi,Bj represents the
527
+ number of key groups required by Ai − Bj user pair and NAi represents the total number of key groups required by user Ai.
528
+ binaries. There will probably be a mismatch between
529
+ these binaries, hence information reconciliation has to be
530
+ adopted to correct the mismatch. To avoid information
531
+ leakage, privacy amplification is employed to distill the
532
+ reconciliated binaries. Finally, after key verification, Alice
533
+ and QAP1 retain the pair of bits as channel key KC1 and
534
+ Bob and QAP2 retain the pair of bits as channel key KC2.
535
+ • Edge forwarding phase: In the last phase, previous
536
+ quantum keys shared between QAP1 and QAP2 are
537
+ forwarded to Alice and Bob, completing the ultimate task
538
+ of secret key sharing. Security is the primary concern
539
+ here, as eavesdroppers should not learn any information
540
+ about the quantum key through this forwarding process.
541
+ With the help of channel keys, it is possible for edges
542
+ to encrypt quantum keys with them using the One-Time-
543
+ Pad (OTP) encryption algorithm and then forward the
544
+ ciphertext to users. So far, the secret key sharing task is
545
+ completed.
546
+ Although CR-QKD provides a potential solution, it still faces
547
+ some challenges to be implemented in practice. We divide
548
+ these challenges into three categories and discuss along coun-
549
+ termeasures below.
550
+ B. Key alignment
551
+ OTP is a well-known example of encryption scheme that
552
+ provides “perfect secrecy”, however, one challenge here is that
553
+ the channel key used for OTP must be at least as long as
554
+ the quantum key to be encrypted. As channel keys, KC1 and
555
+ KC2, are generated from different wireless channels, their key
556
+ generation rates are likely to be different from each other, and
557
+ that of the quantum key KQ. As a result, the quantum keys
558
+ distributed to Alice and Bob may be disordered.
559
+ We address the key alignment issue by segmenting quantum
560
+ key and channel key into groups and numbering them before
561
+ edge forwarding. Each group has a fixed bit number of LG.
562
+ Those quantum key and channel key bits belonging to the
563
+ same group are encrypted through a binary XOR operation.
564
+ Then, the ciphertext is forwarded, together with the group
565
+ number. Alice and Bob eventually obtain the quantum key
566
+ by decrypting the ciphertext using their corresponding channel
567
+ keys. Here, the trade-off between overhead and real-time must
568
+ be taken into account in the selection of the group size.
569
+ If the group size is small, the group number will occupy
570
+ a field length comparable to that of the ciphertext, and the
571
+ communication overhead will become significant. Otherwise,
572
+ if the group size is large, the communication overhead is
573
+ reduced but it will take a long time to accumulate sufficient
574
+ keys for forwarding.
575
+ Next, we extend the key alignment issue into a multi-
576
+ user scenario, where A = {A1, A2, · · · , AM1} and B =
577
+ {B1, B2, · · · , BM2} are two sets of IoT users at the service
578
+ range of QAP1 and QAP2, respectively. Users in A desire to
579
+ share secret keys with users in B. When CR-QKD is applied
580
+ to this case, a new problem arises, i.e., how to distribute
581
+ quantum keys from the edge to multiple users, who have
582
+ different requirements and channel conditions. In this article,
583
+ we introduce a multi-user edge forwarding strategy, which
584
+ distributes quantum keys to each user according to its needs.
585
+ Fig. 2 illustrates one round of the quantum key distribution
586
+ process using this strategy.
587
+ To start with, users in A broadcast the name of their
588
+ target users for key sharing and the number of required
589
+ key groups. After receiving these requests, QAP1 shares the
590
+ information with QAP2. Then, QAP2 broadcasts it over the
591
+ air and the relevant users in B record them locally. Next,
592
+ quantum key sequences are shared between QAP1 and QAP2
593
+ through the above QKD phase. These quantum key sequences
594
+ are segmented into groups and numbered, each having LG
595
+ bits. QAP1 allocates quantum key groups for each user pair
596
+ according to their requests. The mapping relationship of user
597
+ pairs and the key group number is transmitted to QAP2. This
598
+ allocation information is saved in a quantum key buffer. In this
599
+ way, the quantum keys are synchronized at QAP1 and QAP2.
600
+ Next, they yield channel keys with these demanding users,
601
+ respectively. For each user, the CRKG process is performed
602
+ multiple times until it has accumulated sufficient number of
603
+ key groups. Finally, QAP1 and QAP2 use these CRKG keys
604
+ to encrypt the corresponding quantum keys and broadcast the
605
+
606
+ 5
607
+ ciphertext together with the user pairs and group number to
608
+ end-users. Each end-user obtains quantum keys by decrypting
609
+ the related ciphertext with its own CRKG keys. Finally, these
610
+ quantum keys are divided into each user pair for message
611
+ encryption and this round of quantum key distribution has
612
+ come to an end.
613
+ C. Efficiency improvement
614
+ The basic CR-QKD mechanism is time-consuming as it
615
+ interacts heavily to obtain identical keys in both QKD and
616
+ CRKG phases. This situation becomes more severe in a multi-
617
+ user case. For each round of multi-user key distribution, in a
618
+ time division multiple access (TDMA) system, the time delay
619
+ is the sum of the time spent on yielding quantum keys and
620
+ channel keys plus the time used for key forwarding. The time
621
+ spent on quantum keys is calculated by dividing the number
622
+ of quantum key bits by the quantum key generation rate. The
623
+ time spent on channel keys is equal to the larger one of QAP1
624
+ and QAP2. For each QAP, its time delay is the sum of that
625
+ used for yielding channel keys between it and all users. One
626
+ approach to reducing the time delay is to make QKD and
627
+ CRKG processes work in parallel. However, its reduction ratio
628
+ is less than 50% due to the positive forwarding time and the
629
+ maximum operation.
630
+ Another solution to further reduce the time delay is to
631
+ improve the secret key generation rate. In practice, key
632
+ generation rates are largely subject to the long time delay
633
+ caused by information reconciliation, which exchanges parity
634
+ information or syndromes over classic channels to detect and
635
+ correct errors in the preliminary key material. According to
636
+ OTP with un-identical keys [12], we propose a simplified CR-
637
+ QKD mechanism that abolishes the sophisticated information
638
+ reconciliation step in the CRKG phase and forwards quantum
639
+ keys using non-reconciled channel keys. The challenge is to
640
+ decrypt the quantum keys correctly when the non-reconciled
641
+ channel keys of two parties are different but highly correlated.
642
+ We deem the XOR encryption and decryption modules along
643
+ with the physical channel as an equivalent cascade channel.
644
+ Then, the tiny differences between keys can be seen as part of
645
+ the transmission error, and thus can be corrected by the off-
646
+ the-shelf channel coding with a stronger correction capability.
647
+ Fig. 3 plots performance improvement ratios of the simplified
648
+ CR-QKD mechanism compared with the paralleled CR-QKD
649
+ mechanism in terms of time delay and upper bound of secret
650
+ key generation rate in a typical WiFi scenario. As shown in
651
+ the left panel, the proportion of delay reduction decreases with
652
+ the rise of LG, still achieving a reduction ratio above 20%
653
+ at LG ≤ 1024. The reduction of HT-Mixed mode is more
654
+ remarkable than Non-HT mode, as the former has a larger
655
+ time overhead than the latter. The right panel shows that the
656
+ growth of the upper bound of the secret key generation rate
657
+ is more remarkable when the bit disagreement ratio between
658
+ quantized channel measurements gets larger, while it has a
659
+ slight fall with the rise of LG. When LG = 1024 and ϵq = 0.1,
660
+ the proportion of delay reduction and upper bound of secret
661
+ key rate growth are roughly 20% and 10%, respectively. These
662
+ simulation results verify the effectiveness of the proposed
663
+ simplified CR-QKD mechanism.
664
+ 32
665
+ 64
666
+ 128
667
+ 256
668
+ 512
669
+ 1024
670
+ LG/bits
671
+ 0
672
+ 0.1
673
+ 0.2
674
+ 0.3
675
+ 0.4
676
+ 0.5
677
+ 0.6
678
+ 0.7
679
+ The Proportion of Delay Reduction
680
+ Non-HT
681
+ HT-Mixed
682
+ 0
683
+ 0.05
684
+ 0.10
685
+ 0.15
686
+ 0.20
687
+ q
688
+ 0
689
+ 0.05
690
+ 0.1
691
+ 0.15
692
+ 0.2
693
+ 0.25
694
+ 0.3
695
+ 0.35
696
+ Upper Bound of Secret Key Generation Rate Growth
697
+ LG=32bit
698
+ LG=256bit
699
+ LG=1024bit
700
+ Fig. 3. Performance improvements of time delay and secret key generation
701
+ rate in a typical WiFi scenario: the transmission distance is set as 150 meters
702
+ and the bandwidth is set as 20 MHz. The fixed overhead of a WiFi frame
703
+ under the Non-HT (Non-High Throughput) and HT-Mixed mode is 20 us and
704
+ 40 us, respectively.
705
+ D. Security enhancement
706
+ Another challenge of CRKG lies in the increased security
707
+ risks caused by its hybrid architecture, as security is only
708
+ as strong as its weakest link. We assume that the terminal
709
+ security of QAP1 and QAP2 is guaranteed by techniques
710
+ such as trusted computing. Operations that are relevant to
711
+ secret keys are run in a trusted execution environment, thereby
712
+ attackers can read neither quantum keys nor channel keys
713
+ from the hybrid interface on QAP1 and QAP2. Since the
714
+ edge forwarding phase employs the OTP encryption scheme,
715
+ its security depends on the key used for OTP. The security
716
+ of existing CRKG approaches, however, heavily relies on
717
+ the channel variation and thus suffers from vulnerabilities
718
+ in slowly varying environments [13]. When users have low
719
+ mobility, e.g. in a wireless sensor network, there exist in-
720
+ evitable and unknown temporal correlations between adjacent
721
+ channel samples, resulting in a large proportion of repeated bit
722
+ segments in the quantized bit sequences. Several solutions can
723
+ be used to facilitate the practical usage of CRKG in slowly
724
+ varying environments. One solution is to introduce helper de-
725
+ vices, e.g., relays and reconfigurable intelligent surface (RIS)
726
+ to boost the key generation rate and randomness [14]. How-
727
+ ever, this solution encounters some practical problems, such
728
+ as the unavailability of trust relays and additional hardware
729
+ overheads of RIS devices. Another idea is to scramble these
730
+ bits segments through some permutation or interleaving tech-
731
+ niques. However, the security of the key may be compromised
732
+ when the permutation information is public. [15] has proposed
733
+ a new physical-layer secret key generation approach with
734
+ channel obfuscation, which improved the dynamic property
735
+ of channel parameters based on random filtering and random
736
+ antenna scheduling, which have mutual remedying parameters
737
+ in hiding the obfuscation information.
738
+
739
+ 6
740
+ YUHUATAI
741
+ DISTRICT
742
+ JIANGNING
743
+ DISTRICT
744
+ GULI
745
+ RESIDENTIAL
746
+ DISTRICT
747
+ Jiangjunshan
748
+ Tourism
749
+ Scenic Area
750
+ Fangshan
751
+ Scenic Area
752
+ XISHANQIAO
753
+ RESIDENTIAL
754
+ DISTRICT
755
+ TIEXINQIAO
756
+ RESIDENTIAL
757
+ DISTRICT
758
+ Qinhuai New River
759
+ QAP2
760
+ Total length: 15km
761
+ QAP1
762
+ Alice
763
+ QAP2
764
+ Bob
765
+ Bob
766
+ Quantum Key
767
+ Eve
768
+ Fig. 4. An illustration of the CR-QKD prototype platform in a metropolitan area network at Nanjing, which is the capital of Jiangsu Province, East-central
769
+ China. One is located in Yuhuatai District and the other is at Chinese Network Valley in Jiangning District.
770
+ IV. CASE STUDY: AN IMPLEMENTATION OF CR-QKD
771
+ To realize the concept of CR-QKD, we implement a single-
772
+ user confidential transmission prototype system in a metropoli-
773
+ tan area network.
774
+ A. Experimental Setup
775
+ As shown in the left panel of Fig. 4, QAP1 and QAP2 are
776
+ two quantum access points at a distance of fifteen kilometers.
777
+ Alice and Bob are two remote IoT users in the wireless
778
+ service ranges of QAP1 and QAP2, respectively. Without loss
779
+ of generality, we zoom in on the wireless access network
780
+ at Chinese Network Valley, as depicted in the right panel
781
+ of Fig. 4. Here, QAP2 is composed of a QKD terminal
782
+ under the series of QKDM-POL40-S for yielding quantum
783
+ keys 2, a USRP N210 SDR device embedded with the CBX
784
+ daughterboards for providing a wireless connection service,
785
+ and a computer under the trusted execution environment for
786
+ yielding wireless channel keys and distributing quantum keys.
787
+ Both the QKD terminal and USRP N210 are connected to
788
+ the computer via the ethernet cable in QAP2. The end-user,
789
+ Bob, and a passive eavesdropper, Eve, are realized through two
790
+ USRP N210 SDR devices, respectively. We design a TDD
791
+ frame for channel sounding, which consists of a sinusoidal
792
+ sequence for synchronization and an M-sequence for channel
793
+ estimation. The signal operates at 2.605GHz and 20MHz
794
+ bandwidth to avoid collisions with ubiquitous 2.4GHz signals
795
+ such as WiFi. Once Bob receives the channel sounding signal
796
+ from AP2, it will immediately switch to TX mode and send
797
+ the same channel sounding signal. By using the same channel
798
+ sounding signal for channel estimation, the amplitude part of
799
+ the CSI is further preprocessed and quantized to generate the
800
+ wireless keys.
801
+ B. Performance Results
802
+ Considering the comparable experimental scenarios and
803
+ results of QAP1 and QAP2, we only take QAP2 as an example
804
+ for performance analysis.
805
+ 2The quantum keys meet strict key randomness, as they conform to the
806
+ specification of the GM/T 0005-2012.
807
+ Table II summarizes the secret key sharing results from
808
+ QAP2 to Bob and Eve in three typical indoor scenarios,
809
+ namely office, hall and corridor. First, the measured key
810
+ generation rates (KGRs) of the channel keys between QAP2
811
+ and Bob in above scenarios are 315.4, 424.7 and 383.7 bits per
812
+ second (bps), respectively. They are sufficient for traditional
813
+ symmetric encryption algorithms (such as AES) to update
814
+ 256-bit keys every second for secure communications. In
815
+ the random test, we examined a bit sequence of length 3.4
816
+ million bits that was obtained at the output of the quantization
817
+ stage without further processing. The generated channel keys
818
+ passed 14 NIST statistical tests, indicating their randomness.
819
+ However, while the simplified CR-QKD mechanism leads to
820
+ high KGRs and high randomness, removing the complicated
821
+ information reconciliation step also results in relatively high
822
+ key disagreement rates (KDRs) of 8.1%, 4.7% and 5.8%
823
+ between QAP2 and Bob, respectively. The number of person-
824
+ nel, the frequency of movement, and the switching time of
825
+ USRP affect the reciprocity of uplink and downlink channels,
826
+ eventually leading to KDR differences in the noisy office,
827
+ occasionally infested corridor, and empty hall. Meanwhile,
828
+ along with forwarding quantum keys using non-reconciled
829
+ channel keys based on channel error correction coding, the
830
+ need arises to retransmit quantum keys when unsuccessfully
831
+ decoded. The corresponding retransmission rates (RRs) using
832
+ Polar codes from QAP2 to Bob are 11.6%, 2.1%, and 6.7%,
833
+ respectively, which are proportional to the KDRs.
834
+ To demonstrate the security of our proposed scheme, we
835
+ also evaluate the quantum key cracking performance of the
836
+ near-end eavesdropper Eve in terms of KDR and cracking rate
837
+ (CR). The KDRs between QAP2 and Eve under these three
838
+ scenarios are all around 50%, where the line of sight in the
839
+ straight corridor contributes to a relatively lower KDR but is
840
+ still above 45%. What’s more, the experimental results show
841
+ that the CRs of Eve in the three scenarios are all zero, which
842
+ means that none of the quantum keys have been cracked.
843
+ V. CONCLUSION AND FUTURE DIRECTIONS
844
+ Integrating QKD into IoT networks is beneficial for QKD’s
845
+ practical deployment and end-user’s security enhancement.
846
+
847
+ (0)目7
848
+ TABLE II
849
+ THE QUANTUM KEY WIRELESS DISTRIBUTION PERFORMANCE IN THREE
850
+ INDOOR SCENARIOS
851
+ Scenario
852
+ QAP2 - Bob
853
+ QAP2 - Eve
854
+ Metrics
855
+ KGR/bps
856
+ NIST
857
+ KDR
858
+ RR
859
+ KDR
860
+ CR
861
+ Office
862
+ 315.4
863
+ 14
864
+ 8.1%
865
+ 11.6%
866
+ 48.1%
867
+ 0%
868
+ Hall
869
+ 424.7
870
+ 14
871
+ 4.7%
872
+ 2.1%
873
+ 49.2%
874
+ 0%
875
+ Corridor
876
+ 383.7
877
+ 14
878
+ 5.8%
879
+ 6.7%
880
+ 45.3%
881
+ 0%
882
+ This article proposed a framework of CR-QKD over IoT
883
+ networks. QKD and CRKG assembly were adopted for se-
884
+ cret key sharing over backbone core networks and the last-
885
+ mile wireless access networks in CR-QKD, respectively. The
886
+ demonstration of CR-QKD prototype represented a major step
887
+ towards real-world information theoretically security for wide-
888
+ area mobile applications, such as confidential VoLTE and
889
+ confidential VoWiFi.
890
+ Some open issues in future work are given below.
891
+ • Device Authentication: Considering the hybrid archi-
892
+ tecture of CR-QKD, it is more vulnerable to spoofing
893
+ attacks from either user’s side or QAP’s side. However,
894
+ neither QKD nor CRKG provides a means to authenticate
895
+ the transmission source. Therefore, source authentication
896
+ in CR-QKD should be further studied by using asym-
897
+ metric cryptography techniques or emerging physical-
898
+ layer techniques, such as radio frequency fingerprinting
899
+ identification and physical unclonable function [1].
900
+ • Untrusted QAPs: The proposed CR-QKD scheme relies
901
+ on the trust of the intermediate QAPs. In this paper, we
902
+ use techniques of trust computing to ensure that the the
903
+ information stored in QAP is protected from external
904
+ software attacks. When a trusted platform is not available,
905
+ designing a scheme that relaxes this assumption could
906
+ also be a very good future research direction.
907
+ • Performance Optimization: In this article, we presented
908
+ a multi-user edge forwarding strategy, in which quantum
909
+ keys were allocated as needed. Unfortunately, its perfor-
910
+ mance metrics, e.g., delay, secret key generation rate, and
911
+ energy efficiency, are limited by those user pairs with
912
+ weak channel reciprocity. How to optimize these perfor-
913
+ mance metrics by allocating power or spectrum resources
914
+ among different user pairs becomes an interesting topic
915
+ and needs to be investigated.
916
+ • System Integration and Compatibility: Our prototype
917
+ was built on the USRP platform, which was different
918
+ from commercial-off-the-shelf (COTS) devices. It is un-
919
+ known whether these performances are still achievable on
920
+ existing communication standards and whether CR-QKD
921
+ will affect the network efficiency. More studies should be
922
+ done on its system integration and compatibility issues,
923
+ including frame format design, key management scheme
924
+ and efficiency evaluation in practical communication sys-
925
+ tems.
926
+ VI. ACKNOWLEDGMENT
927
+ We thank our colleagues Prof. Linning Peng, Mr. Yanjun
928
+ Ding, Dr. Dong Wang, Mr. Siyun Wu and Dr. Xuyang Wang
929
+ from the Purple Mountain Laboratories, for their help with
930
+ the experimental platform. This work was supported in part
931
+ by the National Key Research and Development Program of
932
+ China under Grant 2020YFE0200600 and 2022YFB2902202,
933
+ in part by the National Natural Science Foundation of China
934
+ under Grant 62171121, in part by the Natural Science Foun-
935
+ dation of Jiangsu Province under Grant BK20211160 and in
936
+ part by Jiangsu Provincial Key Laboratory of Network and
937
+ Information Security under Grant BM2003201.
938
+ REFERENCES
939
+ [1] K. Sood, S. Yu, D. D. N. Nguyen, Y. Xiang, B. Feng, and X. Zhang,
940
+ “A tutorial on next generation heterogeneous IoT networks and node
941
+ authentication,” IEEE Internet of Things Magazine, vol. 4, no. 4, pp.
942
+ 120–126, 2021.
943
+ [2] M. S. Hossain, G. Muhammad, S. M. M. Rahman, W. Abdul, A. Ale-
944
+ laiwi, and A. Alamri, “Toward end-to-end biomet rics-based security for
945
+ IoT infrastructure,” IEEE Wireless Communications, vol. 23, no. 5, pp.
946
+ 44–51, 2016.
947
+ [3] S. Imre, “Quantum communications: explained for communication en-
948
+ gineers,” IEEE Communications Magazine, vol. 51, no. 8, pp. 28–35,
949
+ 2013.
950
+ [4] C. Wang and A. Rahman, “Quantum-enabled 6G wireless networks:
951
+ Opportunities and challenges,” IEEE Wireless Communications, vol. 29,
952
+ no. 1, pp. 58–69, 2022.
953
+ [5] G. Li, C. Sun, J. Zhang, E. Jorswieck, B. Xiao, and A. Hu, “Physical
954
+ layer key generation in 5G and beyond wireless communications:
955
+ Challenges and opportunities,” Entropy, vol. 21, 2019.
956
+ [6] B. Fr¨ohlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, and
957
+ A. J. Shields, “A quantum access network,” Nature, vol. 501, pp. 69–72,
958
+ 2013.
959
+ [7] U. M. Maurer, “Secret key agreement by public discussion from common
960
+ information,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 733–742, May
961
+ 1993.
962
+ [8] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
963
+ distribution and coin tossing,” Proc. IEEE Int. Conf. Comput., Syst.
964
+ Signal Process., vol. 175, p. 175–179, 1984.
965
+ [9] H. Chun, I. Choi, G. Faulkner, L. Clarke, B. Barber, G. George,
966
+ C. Capon, A. Niskanen, J. Wabnig, D. O’Brien, and D. Bitauld,
967
+ “Handheld free space quantum key distribution with dynamic motion
968
+ compensation,” Opt. Express, vol. 25, no. 6, pp. 6784–6795, Mar 2017.
969
+ [10] Elmabrok, Osama, Razavi, and Mohsen, “Wireless quantum key distribu-
970
+ tion in indoor environments,” Journal of the Optical Society of America
971
+ B Optical Physics, vol. 35, no. 2, pp. 197–207, 2018.
972
+ [11] J. Zhang, G. Li, A. Marshall, A. Hu, and L. Hanzo, “A new frontier for
973
+ IoT security emerging from three decades of key generation relying on
974
+ wireless channels,” IEEE Access, vol. 8, pp. 138 406–138 446, 2020.
975
+ [12] G. Li, Z. Zhang, J. Zhang, and A. Hu, “Encrypting wireless communica-
976
+ tions on the fly using one-time pad and key generation,” IEEE Internet
977
+ of Things Journal, vol. 8, no. 1, pp. 357–369, 2021.
978
+ [13] N. Aldaghri and H. Mahdavifar, “Physical layer secret key generation
979
+ in static environments,” IEEE Trans. Inf. Forensics Security, vol. 15, pp.
980
+ 2692–2705, Feb. 2020.
981
+ [14] G. Li, L. Hu, P. Staat, H. Elders-Boll, C. Zenger, C. Paar, and A. Hu,
982
+ “Reconfigurable intelligent surface for physical layer key generation:
983
+ Constructive or destructive?” IEEE Wireless Communications, pp. 1–12,
984
+ 2022.
985
+ [15] G. Li, H. Yang, J. Zhang, H. Liu, and A. Hu, “Fast and secure key
986
+ generation with channel obfuscation in slowly varying environments,”
987
+ in Proc. IEEE INFOCOM, Virtual Conference, May 2022, pp. 1–10.
988
+
39AzT4oBgHgl3EQfffxn/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3dAyT4oBgHgl3EQfb_e6/content/tmp_files/2301.00275v1.pdf.txt ADDED
@@ -0,0 +1,1228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Normal and anomalous diffusion in a bouncing ball over an irregular surface
2
+ Ana Laura Boscoloa,∗, Valdir Barbosa da Silva Juniora, Luiz Antonio Barreiroa
3
+ aSão Paulo State University (Unesp), Institute of Geosciences and Exact Sciences,
4
+ Physics Department, CEP 13506-900, Rio Claro, São Paulo, Brazil
5
+ Abstract
6
+ The problem of a bouncing ball on a non-planar surface is investigated. We discovered that surface undulation adds
7
+ a horizontal component to the impact force, which acquires a random character. Some aspects of Brownian motion
8
+ are found in the horizontal distribution of the particle. On the x-axis, normal and super diffusion are observed. For
9
+ the probability density’s functional form, a scaling hypothesis is presented.
10
+ Keywords:
11
+ Scaling Hypothesis, Anomalous Diffusion, Brownian Motion
12
+ 1. Introduction
13
+ Diffusion is a common natural phenomenon and generally occurs when a system moves toward the equilibrium
14
+ state [1]. Many domains employ the notion of diffusion, including physics (particle diffusion), chemistry, biology,
15
+ sociology, economics, and finance [2, 3, 4]. They all represent the fundamental concept of diffusion, which asserts
16
+ that a substance or collection expands away from a point or location where that material or collection is more
17
+ concentrated. In a diffusion process in a set of moving elements - energy, linear momentum, atoms, molecules, cells,
18
+ animals, etc - each element performs a random trajectory. As a result of this highly irregular individual movement,
19
+ the ensemble diffuses. Many non-linear systems also present a diffusive behavior in your phase space. Modeling
20
+ such a dynamic system has become one of the most challenging subjects among scientists. The modeling helps to
21
+ understand in many cases how the system evolves in time [5, 6, 7].
22
+ On a macroscopic level, the average collective behavior, in contrast to the microscopic individual movement,
23
+ shows great regularity and follows well-defined dynamic laws. The non-linear dynamic formulation of these transport
24
+ phenomena, as well as the diffusion equation, are two ways to describe the diffusion phenomena. The form of the
25
+ temporal dependence of the mean squared distance (MSD),
26
+
27
+ x2�
28
+ ∝ t2µ, or, equivalently, of the variance, allows
29
+ classifying the type of diffusion. For µ = 1/2 we have the usual or normal diffusion, which can be described by
30
+ Fick’s laws. Otherwise, we have an anomalous diffusion (or non-Fickian diffusion). When µ > 1/2 the case is
31
+ classified as superdiffusive [8, 9] and for µ < 1/2 we have the subdiffusive case [10, 11]. Indeed, a wide diversity of
32
+ systems presents a non-linear growth of the mean squared displacement.
33
+ In this work, we explore the diffusive behavior that occurs in a free-falling particle colliding with a non-planar
34
+ surface. Compared to a flat surface, on which the falling particles maintain their velocity in the horizontal direction,
35
+ a non-planar surface introduces changes in the horizontal component of velocity after each collision. This creates
36
+ a spread in the absolute value of the horizontal component of velocity as well as in its signal. Thus, in section
37
+ 2 we study the dynamics of the model, in which the equations of motion are established, and how the iterative
38
+ process takes place. Some special points are explored in 2.3, for which no diffusion is observed. In section 3, the
39
+ randomness of the horizontal component of the collision force is studied. Also, the diffusion in the signal of the
40
+ horizontal component of velocity and its relation to the random walk problem is explored. Section 4devoted to
41
+ discussing the behavior of the mean square displacement in relation to the initial collision point and the Probability
42
+ Distribution Function (PDF) numerically and analitically. In section 5, the conclusions and final considerations
43
+ about the problem addressed are presented.
44
+ 2. The Model
45
+ We now discuss how to construct the equations of the mapping that describe the dynamics of the particles.
46
+ The model under study consists of an ensemble of non-interacting classical particles of mass m travelling in the
47
+ ∗Corresponding author
48
+ Email address: [email protected] (Ana Laura Boscolo)
49
+ Preprint submitted to Elsevier
50
+ January 3, 2023
51
+ arXiv:2301.00275v1 [nlin.CD] 31 Dec 2022
52
+
53
+ 2.1
54
+ The Map
55
+ 2
56
+ presence of a constant gravitational field g and colliding with a non-flat ground via elastic collisions. The ground
57
+ is parametrically described by:
58
+ x(p) = α p
59
+ y(p) = β [1 + cos (p)] ,
60
+ (1)
61
+ The figure 1 shows an example of a ground.
62
+ Figure 1: Graph obtained from equations (1) using the parameters α = 0.01 and β = 0.001.
63
+ Here it is worth noting that if the β parameter is null then the floor becomes flat, recovering the traditional
64
+ Bouncer model [12] with a static floor. However, different from the traditional Bouncer model, if β ̸= 0, the particles
65
+ gain an extra degree of freedom, with movement in the x-direction too. Also, as in the Bouncer model, the action of
66
+ the constant gravitational field g is responsable for the return mechanism of the particle for the next collision with
67
+ the floor. The conservation of energy during the collision is controlled by a parameter which is called the coefficient
68
+ of restitution and it is denoted by γ. Indeed γ plays a key role in our model. For γ = 1 the conservative dynamics
69
+ is observed. However, if 0 < γ < 1 we found a dissipative behavior.
70
+ 2.1. The Map
71
+ We now move on to the study of the temporal evolution of particles, obtaining the position coordinates of
72
+ the collision points and their respective velocities. The dynamic evolution of the particle can be described by the
73
+ Newton’s equation of motion
74
+ mdv
75
+ dt = F grav + F col,
76
+ (2)
77
+ where F grav = mg is the gravitational force acting on the particle and F col represents the instantaneous force of
78
+ collision with the ground. We will assume that the collision force only changes the velocity component orthogonal
79
+ to the surface. It is also an acceptable assumption that during the collision process the force F col has an extremely
80
+ rapid variation.
81
+ A typical path taken by the particles is shown in the figure 2. After the nth collision at the point defined by the
82
+ parameter pn, the particle travels in the gravitational field until it collides at the point pn+1. This journey takes a
83
+ δtn,n+1 time and continues incessantly if no dissipation is taken into account.
84
+ Figure 2: Schematic drawing of the trajectory of a particle, with its collision points and the respective normal vectors.
85
+ The normal vectors at each collision point are also shown. The unit normal and tangent vectors at the point pn
86
+ can be written in terms of the Cartesian vectors as
87
+ ˆnn = (−λn i + j)
88
+
89
+ 1 + λ2n
90
+ and ˆtn = (i + λn j)
91
+
92
+ 1 + λ2n
93
+ (3)
94
+
95
+ 0.015
96
+ 0.010
97
+ 0.005
98
+ 0.000
99
+ 0.10
100
+ 0.05
101
+ 0.00
102
+ 0.05
103
+ 0.10
104
+ 3.ina
105
+ fin+1
106
+ Stn,n+1
107
+ Pn
108
+ Pn+12.1
109
+ The Map
110
+ 3
111
+ where λn is the local inclination of the ground, which for the functions in (1), is given by
112
+ λn = (dy/dp)pn
113
+ (dx/dp)pn
114
+ = −β
115
+ αsin (pn) .
116
+ (4)
117
+ Since motion in the gravitational field is a well-known problem, the fundamental question in determining the
118
+ dynamic evolution of the particle will be to find the points of collision with the ground. To proceed with this
119
+ determination, we define the following two functions
120
+ GX(p, t) = x (p) −
121
+
122
+ x (pn) + v(r)
123
+ xn t
124
+
125
+ GY (p, t) = y (p) −
126
+
127
+ y (pn) + v(r)
128
+ yn t − g
129
+ 2t2�
130
+ ,
131
+ (5)
132
+ where
133
+
134
+ v(r)
135
+ xn , v(r)
136
+ yn
137
+
138
+ is the velocity of the particle after it collides at point pn. The next point pn+1 and the travel time
139
+ δtn,n+1 = (tn+1−tn) spent by the particle between pn and pn+1 are obtained by solving the system of transcendental
140
+ equations
141
+
142
+ GX(pn+1, δtn,n+1) = 0
143
+ GY (pn+1, δtn,n+1) = 0.
144
+ (6)
145
+ In such a way, if the particles make a trip with N collisions, the total time spent will be
146
+ tN =
147
+ N
148
+
149
+ n=1
150
+ δtn−1,n with t0 = 0.
151
+ (7)
152
+ In our model, we assume that only the component of the velocity normal to the surface at the collision point is
153
+ altered (inverted) [13]. Then, at the instant of collision, the law of reflection relating the incident velocity vector
154
+ v(i)
155
+ n to the reflected velocity vector v(r)
156
+ n
157
+ is,
158
+ v(r)
159
+ n
160
+ =
161
+
162
+ v(i)
163
+ n · ˆtn
164
+
165
+ ˆtn − γn
166
+
167
+ v(i)
168
+ n · ˆnn
169
+
170
+ ˆnn.
171
+ (8)
172
+ Obviously, the velocity vector, incident at a point pn+1, is related to the velocity vector reflected at the previous point pn as
173
+ v(i)
174
+ n+1 = v(r)
175
+ xn i +
176
+
177
+ v(r)
178
+ yn − g δtn,n+1
179
+
180
+ j.
181
+ Now we can define the following dimensionless variables ¯x(p) = x(p)/gt2
182
+ N, ¯y(p) = y(p)/gt2
183
+ N, ¯v(r)
184
+ n
185
+ = v(r)
186
+ n /gtN and φn = tn/tN
187
+ , where tN is defined in (7). Therefore, the dimensionless velocity vector components in (8) take the form
188
+ ¯v(r)
189
+ xn+1 =
190
+
191
+ 1 − γn+1λ2
192
+ n+1
193
+
194
+ ¯v(r)
195
+ xn + λn+1 (1 + γn+1)
196
+
197
+ ¯v(r)
198
+ yn − δφn,n+1
199
+
200
+ 1 + λ2
201
+ n+1
202
+ ¯v(r)
203
+ yn+1 =
204
+ λn+1 (1 + γn+1) ¯v(r)
205
+ xn +
206
+
207
+ λ2
208
+ n+1 − γn+1
209
+ � �
210
+ ¯v(r)
211
+ yn − δφn,n+1
212
+
213
+ 1 + λ2
214
+ n+1
215
+ .
216
+ (9)
217
+ and the system (6) becomes
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+ pn+1 = pn + ¯v(r)
228
+ xn
229
+ ¯α δφn,n+1
230
+ cos (pn+1) = cos (pn) + ¯v(r)
231
+ yn
232
+ ¯β δφn,n+1 − 1
233
+ 2¯β δφ2
234
+ n,n+1
235
+ (10)
236
+ where ¯α = α/gt2
237
+ N and ¯β = β/gt2
238
+ N. Given the values of pn, ¯v(r)
239
+ xn and ¯v(r)
240
+ yn of the nth iteraction, the set of equations
241
+ (10) produce the values of pn+1 and the travel time δφn,n+1 which allows us to find ¯v(r)
242
+ xn+1 and ¯v(r)
243
+ yn+1through (9).
244
+ After that, the iteractive process restart.
245
+ The last ingredient is the dimensionless energy
246
+ ¯En = 1
247
+ 2
248
+ ��
249
+ ¯v(r)
250
+ xn
251
+ �2
252
+ +
253
+
254
+ ¯v(r)
255
+ yn
256
+ �2�
257
+ + ¯yn
258
+ (11)
259
+ which is used to establish the initial conditions to be chosen so that all particles in the ensemble have the same
260
+ initial energy.
261
+
262
+ 2.2
263
+ Conservative case
264
+ 4
265
+ 2.2. Conservative case
266
+ We shall only consider the conservative scenario, when γn=γn+1 = 1. Since we choose ¯β ≪ 1, it is appropriate
267
+ to consider that the point of collision with the ground has a height ¯y(pn) ≃ ¯y(pn+1) ≃ 0 , but with local slope not
268
+ necessarily zero. This approach avoids transcendental equations and simplifies the calculation. As a consequence,
269
+ the second of the equations in (10) yields δφn,n+1 = φn,n+1 − φn = 2¯v(r)
270
+ yn . Finally, a simplified form of the map
271
+ equations used to explain motion is expressed as
272
+ ¯v(r)
273
+ xn+1 =F1
274
+
275
+ ¯v(r)
276
+ xn , ¯v(r)
277
+ yn , pn
278
+
279
+ ¯v(r)
280
+ yn+1 =
281
+ ���F2
282
+
283
+ ¯v(r)
284
+ xn , ¯v(r)
285
+ yn , pn
286
+ ����
287
+ pn+1 =F3
288
+
289
+ ¯v(r)
290
+ xn , ¯v(r)
291
+ yn , pn
292
+
293
+ (12)
294
+ where
295
+ F1
296
+
297
+ ¯v(r)
298
+ xn , ¯v(r)
299
+ yn , pn
300
+
301
+ =
302
+
303
+ 1 − ¯λ2
304
+ n
305
+
306
+ ¯v(r)
307
+ xn − 2¯λn¯v(r)
308
+ yn
309
+ 1 + ¯λ2n
310
+ F2
311
+
312
+ ¯v(r)
313
+ xn , ¯v(r)
314
+ yn , pn
315
+
316
+ =2¯λn¯v(r)
317
+ xn +
318
+
319
+ 1 − ¯λ2
320
+ n
321
+
322
+ ¯v(r)
323
+ yn
324
+ 1 + ¯λ2n
325
+ F3
326
+
327
+ ¯v(r)
328
+ xn , ¯v(r)
329
+ yn , pn
330
+
331
+ =pn + 2
332
+ α ¯v(r)
333
+ xn ¯v(r)
334
+ yn
335
+ (13)
336
+ and were defined
337
+ ¯λn = λn+1 =
338
+ ∂ ¯YS/∂p
339
+ ∂ ¯
340
+ XS/∂p
341
+ ����
342
+ pn+ 2
343
+ α ¯v(r)
344
+ xn ¯v(r)
345
+ yn
346
+ = −
347
+ ¯β
348
+ ¯αsin
349
+
350
+ pn + 2
351
+ α ¯v(r)
352
+ xn ¯v(r)
353
+ yn
354
+
355
+ .
356
+ (14)
357
+ The ground was assumed to be flat, as a consequence there is a small possibility of the particle presenting a negative
358
+ value for ¯v(r)
359
+ y . This non-physical situation is bypassed by introducing the modulus in the second equation of (12).
360
+ This means that if such a case happens, the particle is reinjected back to the dynamics with the same velocity but
361
+ with a positive direction.
362
+ 2.2.1. Jacobian Matrix
363
+ The Jacobian matrix for this dynamical system may be simply calculated using equations (12-14),
364
+ J =
365
+
366
+
367
+
368
+ ∂F1
369
+ ∂vx
370
+ ∂F1
371
+ ∂vy
372
+ ∂F1
373
+ ∂p
374
+ ∂F2
375
+ ∂vx
376
+ ∂F2
377
+ ∂vy
378
+ ∂F2
379
+ ∂p
380
+ ∂F3
381
+ ∂vx
382
+ ∂F3
383
+ ∂vy
384
+ ∂F3
385
+ ∂p
386
+
387
+
388
+
389
+ leading to1
390
+ ∂F1
391
+ ∂vx
392
+ =
393
+ ¯α4 + 4 ¯βvy
394
+ 2 cos
395
+
396
+ p +
397
+ 2vxvy
398
+ ¯
399
+ α
400
+ � �
401
+ ¯α2 − ¯β2 sin2 �
402
+ p +
403
+ 2vxvy
404
+ ¯
405
+ α
406
+ ��
407
+ − ¯β4 sin4 �
408
+ p +
409
+ 2vxvy
410
+ ¯
411
+ α
412
+
413
+ − 4¯α ¯β2vxvy sin
414
+
415
+ 2p +
416
+ 4vxvy
417
+ ¯
418
+ α
419
+
420
+
421
+ ¯α2 + ¯β2 sin2 �
422
+ p +
423
+ 2vxvy
424
+ ¯
425
+ α
426
+ ��2
427
+ ∂F1
428
+ ∂vy
429
+ =
430
+ 2 ¯β
431
+
432
+ ¯α
433
+
434
+ −2 ¯βvx
435
+ 2 sin
436
+
437
+ 2p +
438
+ 4vxvy
439
+ ¯
440
+ α
441
+
442
+ + ¯α2 sin
443
+
444
+ p +
445
+ 2vxvy
446
+ ¯
447
+ α
448
+
449
+ + ¯β2 sin3 �
450
+ p +
451
+ 2vxvy
452
+ ¯
453
+ α
454
+ ��
455
+ + 2vxvy cos
456
+
457
+ p +
458
+ 2vxvy
459
+ ¯
460
+ α
461
+ � �
462
+ ¯α2 − ¯β2 sin2 �
463
+ p +
464
+ 2vxvy
465
+ ¯
466
+ α
467
+ ���
468
+
469
+ ¯α2 + ¯β2 sin2 �
470
+ p +
471
+ 2vxvy
472
+ ¯
473
+ α
474
+ ��2
475
+ ∂F1
476
+ ∂p
477
+ =
478
+ 2¯α ¯β cos
479
+
480
+ p +
481
+ 2vxvy
482
+ ¯
483
+ α
484
+ � �
485
+ ¯α2vy − ¯β sin
486
+
487
+ p +
488
+ 2vxvy
489
+ ¯
490
+ α
491
+ � �
492
+ ¯βvy sin
493
+
494
+ p +
495
+ 2vxvy
496
+ ¯
497
+ α
498
+
499
+ + 2¯αvx
500
+ ��
501
+
502
+ ¯α2 + ¯β2 sin2 �
503
+ p +
504
+ 2vxvy
505
+ ¯
506
+ α
507
+ ��2
508
+ 1In Jacobian expressions, we utilize (vx, vy, p) rather than (¯v(r)
509
+ xn , ¯v(r)
510
+ yn , pn) to simplify notation.
511
+
512
+ 2.3
513
+ Periodic points
514
+ 5
515
+ ∂F2
516
+ ∂vx
517
+ =
518
+
519
+ 2 ¯β
520
+
521
+ ¯α
522
+
523
+ 2 ¯βvy
524
+ 2 sin
525
+
526
+ 2p +
527
+ 4vxvy
528
+ ¯
529
+ α
530
+
531
+ + ¯α2 sin
532
+
533
+ p +
534
+ 2vxvy
535
+ ¯
536
+ α
537
+
538
+ + ¯β2 sin3 �
539
+ p +
540
+ 2vxvy
541
+ ¯
542
+ α
543
+ ��
544
+ + 2vxvy cos
545
+
546
+ p +
547
+ 2vxvy
548
+ ¯
549
+ α
550
+ � �
551
+ ¯α2 − ¯β2 sin2 �
552
+ p +
553
+ 2vxvy
554
+ ¯
555
+ α
556
+ ���
557
+
558
+ ¯α2 + ¯β2 sin2 �
559
+ p +
560
+ 2vxvy
561
+ ¯
562
+ α
563
+ ��2
564
+ ∂F2
565
+ ∂vy
566
+ =
567
+ ¯α4 − ¯β
568
+
569
+ 4vx
570
+ 2 cos
571
+
572
+ p +
573
+ 2vxvy
574
+ ¯
575
+ α
576
+ � �
577
+ ¯α2 − ¯β2 sin2 �
578
+ p +
579
+ 2vxvy
580
+ ¯
581
+ α
582
+ ��
583
+ + ¯β3 sin4 �
584
+ p +
585
+ 2vxvy
586
+ ¯
587
+ α
588
+
589
+ + 4¯α ¯βvxvy sin
590
+
591
+ 2p +
592
+ 4vxvy
593
+ ¯
594
+ α
595
+ ��
596
+
597
+ ¯α2 + ¯β2 sin2 �
598
+ p +
599
+ 2vxvy
600
+ ¯
601
+ α
602
+ ��2
603
+ ∂F2
604
+ ∂p
605
+ =
606
+
607
+ 2¯α ¯β cos
608
+
609
+ p +
610
+ 2vxvy
611
+ ¯
612
+ α
613
+ � �
614
+ ¯β sin
615
+
616
+ p +
617
+ 2vxvy
618
+ ¯
619
+ α
620
+ � �
621
+ 2¯αvy − ¯βvx sin
622
+
623
+ p +
624
+ 2vxvy
625
+ ¯
626
+ α
627
+ ��
628
+ + ¯α2vx
629
+
630
+
631
+ ¯α2 + ¯β2 sin2 �
632
+ p +
633
+ 2vxvy
634
+ ¯
635
+ α
636
+ ��2
637
+ ∂F3
638
+ ∂vx
639
+ =
640
+ 2vy
641
+ ¯α
642
+ ∂F3
643
+ ∂vy
644
+ =
645
+ 2vx
646
+ ¯α
647
+ ∂F3
648
+ ∂p
649
+ =
650
+ 1
651
+ This Jacobian matrix’s determinant is equal to one, confirming that the system is indeed conservative.
652
+ 2.3. Periodic points
653
+ We can anticipate the occurrence of some exceptional points using the physics of the problem. These are known
654
+ as fixed points, to which the dynamical system returns after one iteration (period-one fixed point), two iterations
655
+ (period-two fixed point), or n iterations (period-n fixed point). The figure 3 illustrates two fixed points: (a) Fixed
656
+ points for period one and (b) Fixed points for period two.
657
+ Figure 3: Examples of fixed points: (a) Fixed point of period one. The dynamical system returns to the point in phase space at each
658
+ iteration and (b) the system returns to the point after 2 iterations.
659
+ 2.3.1. Period-one Point
660
+ It is evident that period-one fixed points, as shown in portion (a) of the figure, have a zero local slope. So, as long
661
+ as the x component of the initial velocity is zero, the system will not experience any diffusion in the horizontal axis.
662
+ A period-one point is obtained by solving the following equations: ¯v(r)
663
+ xn+1 = ¯v(r)
664
+ xn = 0, ¯v(r)
665
+ yn+1 = ¯v(r)
666
+ yn and pn+1 = pn
667
+ with ¯λn = 0 (zero slope). We can verify the fact considering first eq (14)
668
+ ¯λn = 0 ⇒ sin
669
+
670
+ pn + 2
671
+ α ¯v(r)
672
+ xn ¯v(r)
673
+ yn
674
+
675
+ = 0
676
+
677
+ ¯v(r)
678
+ xn =0
679
+ pn = mπ,
680
+ where m is a integer. These points indicate the locations of the peaks and valleys in Figure 1 - part (a). Thus
681
+ ¯v(r)
682
+ xn+1
683
+ =
684
+ F1
685
+
686
+ 0, ¯v(r)
687
+ yn , mπ
688
+
689
+ = 0
690
+ ¯v(r)
691
+ yn+1
692
+ =
693
+ F2
694
+
695
+ 0, ¯v(r)
696
+ yn , mπ
697
+
698
+ = ¯v(r)
699
+ yn
700
+ (15)
701
+ pn+1
702
+ =
703
+ F3
704
+
705
+ 0, ¯v(r)
706
+ yn , mπ
707
+
708
+ = mπ
709
+ We have the following physical situation: If a particle is chosen whose horizontal component of velocity is zero, in
710
+ a zero slope point, clearly the x-coordinate of the particle will never change and the particle does not scatter in the
711
+ x-direction.
712
+
713
+ P
714
+ Pn = Pn+1
715
+ pn
716
+ Pn+1
717
+ x
718
+ T元
719
+ X
720
+ (a)
721
+ (b)2.3
722
+ Periodic points
723
+ 6
724
+ 2.3.2. Period-two Points
725
+ We now consider points with non-zero slope. In general, the particle gains a non-zero horizontal component
726
+ to the velocity and then diffuses along the horizontal axis. Nevertheless, depending on the initial conditions, it is
727
+ possible for the particle to strike the surface at point pn with velocity ⃗vn, reflect there, then it reaches point pn+1
728
+ with velocity ⃗vn+1, where it will then reflect again and go back to point pn with velocity ⃗vn. Part (b) of Fig. 3
729
+ depicts an illustration of this kind.. Inspired by the figure, consider points connected by ¯v(r)
730
+ xn+2 = −¯v(r)
731
+ xn+1 = ¯v(r)
732
+ xn ,
733
+ ¯v(r)
734
+ yn+2 = ¯v(r)
735
+ yn+1 = ¯v(r)
736
+ yn , pn+2 = pn, ¯y(pn+1) = ¯y(pn) and opposite local slopes λn+1 = −λn.
737
+ Taking into account the figure 3 portion (b) , the points pn and pn+1 must be connected by
738
+
739
+ pn = −π − χ
740
+ pn+1 = π + χ
741
+ with 0 < χ < π
742
+ where we are solely concerned with the most straightforward solution. Then, with the help of equations (10), we
743
+ can write
744
+ ¯v(r)
745
+ xn ¯v(r)
746
+ yn = ¯α (π + χ) .
747
+ (16)
748
+ In addition, the first of the equations (13) yields
749
+ ¯v(r)
750
+ yn =
751
+ ¯α
752
+ ¯βsin (χ) ¯v(r)
753
+ xn .
754
+ (17)
755
+ These results allow us to determine both ¯v(r)
756
+ xn and ¯v(r)
757
+ yn as functions of χ. So the period two fixed point is written as
758
+ ¯v(r)
759
+ xn
760
+ =
761
+ ±
762
+
763
+ ¯β (π + χ) sin (χ)
764
+ ¯v(r)
765
+ yn
766
+ =
767
+ ¯α (π + χ)
768
+ �¯β (π + χ) sin (χ)
769
+ ,
770
+ pn
771
+ =
772
+ ∓ (π + χ)
773
+ Figure 4 illustrates these fixed points. The middle points in black in this picture indicate the period-1 fixed
774
+ points. The graphic also illustrates the effect of the β−parameter on the formation of period-2 fixed points. The
775
+ points are calculated by altering the value of χ from 0 to π, and each color indicates a β parameter value: red
776
+ (β = 0.00001), green (β = 0.00002),..., purple (β = 0.0001). α = 0.001 is used for all points.
777
+ Figure 4: Period one fixed points are represented by the black dots in the center of the line. The other points are the period 2 fixed
778
+ points.The gray dots at the end of the curves are the points obtained with the value χ = π/2.
779
+
780
+ 1.0
781
+ 0.8
782
+ 0.6
783
+ 0.4
784
+ 0.2
785
+ 0.0
786
+ 8.03
787
+ -0.02
788
+ -0.01
789
+ 0.00
790
+ 0.01
791
+ 0.02
792
+ 0.03
793
+ Vx7
794
+ The choice χ = π/2 is used to calculate the gray dots in the figure 4. Each curve is divided into two branches by
795
+ these points. The points that make up the branches we name external have χ > π/2, whereas the points that make
796
+ up the branches we term internal have χ < π/2 . Consider the eigenvalues of the Jacobian matrix to categorize
797
+ the stability of these points. The external points (χ ≥ π/2) can be classified as node-type stable points since the
798
+ modules of their Jacobian matrix eigenvalues are all equal to 1. On the other hand, because all of the eigenvalues
799
+ are real with one positive and the others negatives, the internal points (χ < π/2) are categorized as unstable points
800
+ of the saddle type. Therefore, the gray dots in the phase space represent saddle-node bifurcations [14].
801
+ Many additional sorts of fixed points may exist, but the purpose of this paper is to study the diffusion process
802
+ along the x-axis.
803
+ 3. Diffusion Proccess
804
+ 3.1. The stochastic character of force
805
+ Clearly, unless we are in some special initial point, the particles must diffuse in the x-direction. This diffusion is
806
+ caused by the collision force with the ground. Due to the irregular nature of the ground, the collision force F col has
807
+ components in both horizontal and vertical directions. It is intuitive to notice that the horizontal component presents
808
+ different magnitudes and directions at each collision. To understand the behavior of this horizontal component of
809
+ the collision force, we can describe it as
810
+ ¯Fcolx(φn) = ∆¯v
811
+ ¯τ
812
+ ����
813
+ pn
814
+ = ¯v(r)
815
+ xn − ¯v(i)
816
+ xn
817
+ ¯τ
818
+ = ¯v(r)
819
+ xn − ¯v(r)
820
+ xn−1
821
+ ¯τ
822
+ where ¯τ is the dimensionless collision time, which is extremely small. We will also assume that the collision force
823
+ is approximately constant during the collision time and a typical example of what this force looks like is shown in
824
+ figure 5.
825
+ Figure 5: Typical behavior of the horizontal component of the collision force. Here we have used ¯α = 0.01 and ¯β = 0.005. The graph
826
+ has two regions with different scales. On the left we have the region magnified between φ = 0.000 and φ = 0.020 and on the right, after
827
+ a cut in the graph, the normal scale from φ = 0.5 to φ = 1.0 is shown.
828
+ The width of each rectangle represents the collision time and despite the dynamics being well known and
829
+ the irregularities in the ground having a periodicity, the numerical results presented show that the effects of the
830
+ horizontal component of this force has a behavior comparable to a stochastic force. It is actually extremely difficult
831
+ to tell whether a sequence is random or chaotic, but there are some proposed procedures to distinguish between
832
+ these two behaviors. In this work we will make use of the permutation entropy (PE) method [15, 16] to establish the
833
+ randomness of the time series produced by the collision force. Denoting the time series as {St}t=1,...,T the method
834
+ consists in defining subsets of order O, forming the set S = {{S1, S2, . . . , SO}, {S2, S3, . . . , SO+1}, . . . , {ST −O+1, . . . ,
835
+ ST −1, ST }}. We then compare consecutive values from each subset to establish the associated permutation. For
836
+ example, {S1 < S2 < . . . < SO} represents the permutation {1, 2, ..., O}, while {S2 < S1 < . . . < SO} represents
837
+
838
+ 1.5
839
+ 1.0
840
+ 0.5
841
+ 0.0
842
+ -0.5
843
+ -1.0
844
+ -1.5
845
+ 0.0
846
+ 0.005
847
+ 0.010
848
+ 0.015
849
+ 0.020
850
+ 0.6
851
+ 0.8
852
+ 1.08
853
+ the permutation 2, 1, ..., O and so on, yielding the set of all permutations associated with the sequence S, named
854
+ Π(S). Then, the set of all O! possible permutations πi of the numbers {1, 2, ..., O} are constructed. The relative
855
+ frequency of each permutation πi can be calculated by counting the number of times the permutation πi is found
856
+ in the set Π(S) divided by the total number of sequences,
857
+ Pi = Number of times that πi appears in Π(S)
858
+ T − O + 1
859
+ .
860
+ (18)
861
+ and the normalized permutation entropy function is written as,
862
+ PEO = −
863
+ 1
864
+ log2(O!)
865
+ O!
866
+
867
+ i=1
868
+ Pi log2(Pi).
869
+ (19)
870
+ Formulas (18) and (19) were applied to the temporal sequences of collision forces for three different initial
871
+ conditions and also different orders O. The table 1 shows the results obtained.
872
+ floor parameters
873
+ initial condiction
874
+ O = 3
875
+ O = 4
876
+ O = 5
877
+ O = 6
878
+ α = 0.01
879
+ β = 0.05
880
+ p0 = −0.033
881
+ 0.998569
882
+ 0.995189
883
+ 0.981222
884
+ 0.92671
885
+ p0 = 0.032
886
+ 0.999633
887
+ 0.995120
888
+ 0.982245
889
+ 0.925946
890
+ α = 0.01
891
+ β = 0.0005
892
+ p0 = −0.033
893
+ 0.998874
894
+ 0.994082
895
+ 0.986440
896
+ 0.935262
897
+ p0 = 0.032
898
+ 0.999501
899
+ 0.996295
900
+ 0.984878
901
+ 0.934281
902
+ Table 1: The initial conditions are chosen in order to vary the initial point (x(p0), y(p0)) and keeping the energy ¯E = 4 constant.
903
+ The smaller the PEO is, the more regular and more deterministic the time series is. Contrarily, the closer to 1
904
+ the value of PEO is, the more noisy and random the time series is. The results allow us to assume that the force
905
+ is random.
906
+ 4. Probability Distribution Function (PDF)
907
+ This section’s major purpose is to establish the probability distribution function (PDF) Ψ(x, t), which provides
908
+ us the probability of the particle being on the coordinate x at time t, and what it has to do with normal and
909
+ superdiffusive processes. Among the various diffusive processes, Brownian motion is the prototype for the description
910
+ of non-equilibrium dynamical systems. Due to the stochastic behavior of the collision force, the jumps performed
911
+ by the particles also reproduce characteristics of random walk. We can comprehend this by calculating the chance
912
+ of each particle going to the right. After each impact, we obtain the x−component of the velocity. Then, by
913
+ examining the sign of these velocities and associating +1 for vx > 0 and 0 for vx < 0, we can count the number of
914
+ jumps to the right and derive the evolution of this probability as the number of jumps increases. It is appropriate
915
+ at this point to introduce an index that specifies the initial condition (ν), which is used to compute the Probability
916
+ Density Function (PDF) for the complete ensemble. So, starting with an initial state labeled by ν, the probability
917
+ of jumping to the right after n jumps is calculated as follows:
918
+ Pr−jump(n, ν) = 1
919
+ n
920
+ n
921
+
922
+ i=1
923
+ SgnPlus(v(ν)
924
+ x,i ) where SgnPlus(v(ν)
925
+ x,i ) =
926
+
927
+ 1
928
+ if vx > 0
929
+ 0
930
+ if vx < 0
931
+ Figure 6, on the left, shows examples of the time progression of individual particle jumps for four distinct initial
932
+ conditions and two ground parameter adjustments, as well as the corresponding PDFs Ψ(x, t). With time evolution,
933
+ the left/right jump probabilities for a ground with α = 0.01 and β = 0.005 tend to be 0.5 very quickly as we can
934
+ see into upper graphic on the left. However, if the beta parameter is set to β = 0.0005 the graph indicates an initial
935
+ oscillation, but the probability ultimately tends to reach 0.5.
936
+ The coordinates of the collision points and the travel time between one point and the next are obtained from
937
+ the mapping given in equations (9) and (10). It is obvious that the travel time varies between jumps. However, for
938
+ our analysis, it is critical to obtain the particle’s position as a function of time with equal time intervals. This is
939
+ simple because the particle moves in a gravitational field g, and we can easily calculate its position as a function of
940
+ time. The time is then normalized so that the maximum time equals one. So, to get the probability distribution,
941
+ for all iterative processes, we begin by subtracting the starting position of the particles. As a result, all of the
942
+ particles in the ensemble start from the same position. In our scenario, we have 2000 particles performing 4000
943
+
944
+ 9
945
+ Figure 6: The first graphic of each column contains time evolution examples for the likelihood of a single particle jumping to the right.
946
+ The difference is in the β parameter value, which is lowered to one-tenth and one-hundredth of its initial value in the columns on the
947
+ left. The evolution of the 4-particle leaps (4 initial conditions) is explored in the graphs. The different initial conditions for the particles
948
+ are obtained by changing the initial parameter p in the functions x(p) and y(p) in Eq (1) and keeping the energy ¯E = 4 constant. The
949
+ selected p-parameters are shown in the figures. The respective contour plots for the probability distributions are shown on the right.
950
+ leaps, totaling 8 million collision points, but it is clear that the number of points as a function of time depends on
951
+ the choice of interval dt and can be much higher. To demonstrate the procedure, the simulation is configured so
952
+ that each particle in the ensemble has an energy of E = 4. The outcomes for two different types of grounds are
953
+ shown in Figure 6 on the right.
954
+ The first PDF graph was obtained with the parameters α = 0.01 and β = 0.005, and shows a probability density
955
+ region following a format very similar to a Gaussian distribution. The second pdf, obtained with the parameters
956
+ α = 0.01 and β = 0.0005, has an extremely anomalous diffusion in the early part of its time evolution, however
957
+ when the time evolution takes place, the PDF apparently starts to show a Gaussian behavior. In order to have a
958
+ better understanding of this behavior, we studied the moments associated with each distribution. Inspired by the
959
+ Gaussian form of normal diffusion, with an anomalous diffusion we make a scaling hypothesis [17] so that we can
960
+ express the anomalous distribution as
961
+ Ψµ(x, t) =
962
+ � a
963
+ π
964
+ 1
965
+ tµ exp
966
+
967
+ −a
968
+ � x
969
+
970
+ �2�
971
+ .
972
+ (20)
973
+ The associated moments are easily obtained as
974
+ ⟨|x(t)|m⟩ =
975
+
976
+ ˆ
977
+ −∞
978
+ xmΨµ(x, t) dx =
979
+ 1
980
+
981
+ amπ Γ
982
+ �m + 1
983
+ 2
984
+
985
+ tmµ.
986
+ (21)
987
+ The result shows a behavior of MSD as
988
+
989
+ x2�
990
+ ∝ t2µ, therefore normal distribution has a scale parameter µ = 1/2.
991
+ If µ < 1/2 we have a subdifussive process and for µ > 1/2 we found a superdiffusive behavior. Figure 7 shows
992
+ the results of the moments calculations for two different grounds. We can observe that at left we obtain the scale
993
+ µ = 0.5 and at right we obtain µ = 0.65. So, we have two distinct behaviors: at left a normal diffusion and at right
994
+ we have a superdiffusive behavior.
995
+
996
+ 0.8
997
+ 500
998
+ 0.00200
999
+ .0.6
1000
+ x-coordinate
1001
+ 0.00175
1002
+ 0.00150
1003
+ α = 0.01
1004
+ 0.00125
1005
+ pue
1006
+ 0.4
1007
+ 0.00100
1008
+ β = 0.005
1009
+ p=2.82156
1010
+ 0.00075
1011
+ 0.2
1012
+ p=-2.50841
1013
+ 0.00050
1014
+ p=2.19525
1015
+ 500
1016
+ 0.00025
1017
+ 0.0
1018
+ p=-1.88209
1019
+ 0
1020
+ 1000
1021
+ 2000
1022
+ 3000
1023
+ 4000
1024
+ number of iteractions
1025
+ 0.2
1026
+ 0.4
1027
+ 0.6
1028
+ 0.8
1029
+ 1.0
1030
+ time
1031
+ 1.0F
1032
+ 4000
1033
+ 0.8
1034
+ 2000
1035
+ 0.00030
1036
+ X-coordinate
1037
+ 0.00025
1038
+ α= 0.01
1039
+ 0.00020
1040
+ and
1041
+ 0.4
1042
+ p=-2.82156
1043
+ 0.00015
1044
+ β=0.0005
1045
+ p=-2.50841
1046
+ 2000
1047
+ 0.00010
1048
+ 0.2
1049
+ p=-2.19525
1050
+ 0.00005
1051
+ 0.0E
1052
+ p=1.88209
1053
+ 4000
1054
+ 0
1055
+ 1000
1056
+ 2000
1057
+ 3000
1058
+ 4000
1059
+ number of iteractions
1060
+ 0.2
1061
+ 0.4
1062
+ 0.8
1063
+ 0.8
1064
+ 1.0
1065
+ time10
1066
+ Figure 8: PDF’s rescaled by the factor ξ = x2/
1067
+
1068
+ x(t)2�
1069
+ for four distinct times. The theoretical prediction given in Eq. (22) with an
1070
+ a = 3.75 × 10−8 is shown by the black dot-dashed line.
1071
+ Figure 7: The red lines represent equations of lines with powers mµ.
1072
+ At left we have a normal diffusion and at right we have a
1073
+ superdiffusive diffusion. We can see that almost half of the time evolution has passed before the superdiffusive behavior with scale
1074
+ µ = 0.65 manifests.
1075
+ The scaling hypothesis is carried forward using equation (21) to obtain t2µ = a√π
1076
+
1077
+ x(t)2�
1078
+ /Γ (3/2), which
1079
+ enables us to specify the subsequent function
1080
+ F(ξ) = tµΨµ(x, t) =
1081
+ � a
1082
+ π exp
1083
+
1084
+ −Γ (3/2)
1085
+ √π
1086
+ ξ
1087
+
1088
+ (22)
1089
+ where ξ = x2/
1090
+
1091
+ x(t)2�
1092
+ . Using the PDF data for the superdiffusive process (µ = 0.65) we obtain F(ξ) numerically
1093
+ and the results for t = 0.76, t = 0.765, t = 0.89 and t = 0.995 are presented in the figure 8 . The only parameter
1094
+ that can be adjusted in the theoretical forecast stated in Eq (22) is the value of a. We get a remarkable agreement
1095
+ with the simulation findings when we choose a = 3.75 × 10−8. The black dot-dashed line on the graph denotes the
1096
+ theoretical result obtained in equation (22). We observe that the theoretical modeling and the simulation outcome
1097
+ start to diverge for periods of time less than 76.5% of the overall duration of the iterative procedure. Rescaling
1098
+ the data, all simulation points for times more than this amount lie exactly on the same curve. This was already a
1099
+ foregone conclusion if we look at the second PDF in the figure 6, which shows quite anomalous behavior for times
1100
+ less than 0.8. Before this time has elapsed the particles display a strongly anomalous diffusion with a scale that
1101
+ must rely on the moment being estimated, ⟨|x|m⟩ ∝ tmµ(m), [18].
1102
+ 5. Conclusions and Outlook
1103
+ In this work, we have studied a falling particle in the gravitational field colliding with a non-plane surface. We
1104
+ could observe that the horizontal component of the collision force presented a stochastic behavior. This was verified
1105
+
1106
+ α=0.01andβ=0.005
1107
+ α = 0.01and β
1108
+ 3=0.0005
1109
+ 1016
1110
+ 1016
1111
+ <1 x(t) /*)~ ++x0.65
1112
+ <1 x(t) 1*)~t+x0.5
1113
+ 1012
1114
+ 1012
1115
+ <1 x() 3)~ 3-0.65
1116
+ <ul(a)xI)
1117
+ <1x()13)~ f3x0.5
1118
+ <ul(0)xI)
1119
+ 108
1120
+ (1 (t) 13)~(20.65
1121
+ 00
1122
+ 108
1123
+ (1 (t)/3)~f20.5
1124
+ 104
1125
+ sol(1(0)x1)
1126
+ <1 (t) ~10.65
1127
+ 00000000
1128
+ 104
1129
+ 0000000
1130
+ 0000000000000
1131
+ 1
1132
+ 0.01
1133
+ 0.05
1134
+ 0.10
1135
+ 0.50
1136
+ 1
1137
+ 0.01
1138
+ 0.05
1139
+ 0.10
1140
+ 0.50
1141
+ 1
1142
+ time
1143
+ time1.1 × 10-4
1144
+ 1.0 × 10-4
1145
+ 9.0× 10-5
1146
+ .
1147
+ t=0.76
1148
+ t=0.765
1149
+ 8.0×10-5
1150
+ o t=0.89
1151
+ 7.0×10-5
1152
+ .95.
1153
+ t=0.995
1154
+ 2.0
1155
+ 6.0× 10-5
1156
+ 5.0× 10-5
1157
+ 0.0
1158
+ 0.5
1159
+ 1.0
1160
+ 1.5REFERENCES
1161
+ 11
1162
+ by using the entropy permutation method applied to the collision force time series. Additionally, we established
1163
+ that the jumps to the right and left follow a distribution whose probabilities tend toward 0.5 while the particle’s
1164
+ temporal development takes place. It can be seen that the convergence to the factor 0.5 occurs significantly more
1165
+ quickly using the ground with parameters α = 0.01 and β = 0.005 than with β = 0.0005. We assume that a surface
1166
+ with more pronounced undulations produces a horizontal component of the force that swiftly alters the particle’s
1167
+ horizontal motion, causing the probability of jumps to fast converge to 0.5. The first case implied a diffusion process
1168
+ that follows Einstein’s famous relationship so that the horizontal mean square displacement is proportional to time,
1169
+
1170
+ x(t)2�
1171
+ ∼ t. The system begins to become superdiffusive as the ground gets smoother. In fact, it is observed
1172
+ that the system with β = 0.0005 exhibits a strongly anomalous mean squared deviation with temporal increase
1173
+ over the earliest portion of its temporal history. Subsequently, the movement becomes "standard superdiffusive".
1174
+ To comprehend this behavior, we assumed that the probability density’s functional form must take on a Gaussian
1175
+ form of normal diffusion, with the exception that the distribution’s time dependence is scaled by tµ. We get a
1176
+ remarkable consistency between the theoretical expression and the simulation results using this approach. Future
1177
+ works are being developed including changes in the function that describes the floor, introduction of dissipation
1178
+ and oscillations in the ground, among other works, [19].
1179
+ Acknowledgments
1180
+ The authors would like to thank Prof.
1181
+ Edson Denis Leonel for the observations and comments, as well as
1182
+ Coordination for the Improvement of Higher Education Personnel (Capes) for the financial support.
1183
+ —————–
1184
+ References
1185
+ [1] S. Ma, Statistical mechanics (may 1985). doi:10.1142/0073.
1186
+ [2] J. G. Berryman, Evolution of a stable profile for a class of nonlinear diffusion equations with fixed boundaries,
1187
+ Journal of Mathematical Physics 18 (11) (1977) 2108–2115. doi:10.1063/1.523190.
1188
+ [3] M. F. Shlesinger, J. Klafter, B. J. West, Levy walks with applications to turbulence and chaos, Physica A:
1189
+ Statistical Mechanics and its Applications 140 (1-2) (1986) 212–218. doi:10.1016/0378-4371(86)90224-4.
1190
+ [4] X. Yu, D. M. Leitner, Anomalous diffusion of vibrational energy in proteins 119 (2003) 12673–12679. doi:
1191
+ 10.1063/1.1626636.
1192
+ [5] A. J. Lichtenberg, M. A. Lieberman, Regular and chaotic dynamics (1992). doi:10.1007/978-1-4757-2184-3.
1193
+ [6] S. H. Strogatz, Nonlinear dynamics and chaos with student solutions manual (sep 2018).
1194
+ doi:10.1201/
1195
+ 9780429399640.
1196
+ [7] S. Strogatz, M. Friedman, A. J. Mallinckrodt, S. McKay, Nonlinear dynamics and chaos: With applications to
1197
+ physics, biology, chemistry, and engineering, Computers in Physics 8 (5) (1994) 532. doi:10.1063/1.4823332.
1198
+ [8] T. Geisel, J. Nierwetberg, A. Zacherl, Accelerated diffusion in josephson junctions and related chaotic systems,
1199
+ Physical Review Letters 54 (7) (1985) 616–619. doi:10.1103/physrevlett.54.616.
1200
+ [9] J. Szymanski, M. Weiss, Elucidating the origin of anomalous diffusion in crowded fluids, Physical Review
1201
+ Letters 103 (3) (2009) 038102. doi:10.1103/physrevlett.103.038102.
1202
+ [10] M. J. Saxton, Anomalous subdiffusion in fluorescence photobleaching recovery: A monte carlo study, Biophys-
1203
+ ical Journal 81 (4) (2001) 2226–2240. doi:10.1016/s0006-3495(01)75870-5.
1204
+ [11] P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. GarcÃa-Parajo, M. Lewenstein, G. J. L. Jr, Nonergodic
1205
+ subdiffusion from brownian motion in an inhomogeneous medium, Phys. Rev. Lett. 112, 150603 (2014) (Jan.
1206
+ 2014). arXiv:1401.6110, doi:10.1103/PhysRevLett.112.150603.
1207
+ [12] A. L. P. Livorati, T. Kroetz, C. P. Dettmann, I. L. Caldas, E. D. Leonel, Stickiness in a bouncer model: A
1208
+ slowing mechanism for fermi acceleration, Physical Review E 86 (3) (sep 2012). doi:10.1103/physreve.86.
1209
+ 036203.
1210
+
1211
+ REFERENCES
1212
+ 12
1213
+ [13] E. D. Leonel, M. V. C. Galia, L. A. Barreiro, D. F. M. Oliveira, Thermodynamics of a time-dependent and
1214
+ dissipative oval billiard: A heat transfer and billiard approach, Physical Review E 94 (6) (2016) 062211.
1215
+ doi:10.1103/physreve.94.062211.
1216
+ [14] Y. A. Kuznetsov, Elements of applied bifurcation theory (1995). doi:10.1007/978-1-4757-2421-9.
1217
+ [15] C. Bandt, B. Pompe, Permutation entropy: A natural complexity measure for time series, Physical Review
1218
+ Letters 88 (17) (apr 2002). doi:10.1103/physrevlett.88.174102.
1219
+ [16] M. Riedl, A. Muller, N. Wessel, Practical considerations of permutation entropy, The European Physical
1220
+ Journal Special Topics 222 (2) (2013) 249–262. doi:10.1140/epjst/e2013-01862-7.
1221
+ [17] F. Cecconi, G. Costantini, A. Taloni, A. Vulpiani, Probability distribution functions of sub- and superdiffusive
1222
+ systems, Physical Review Research 4 (2) (2022) 023192. arXiv:2206.06786, doi:10.1103/PhysRevResearch.
1223
+ 4.023192.
1224
+ URL https://ui.adsabs.harvard.edu/abs/2022PhRvR...4b3192C
1225
+ [18] K. H. Andersen, P. Castiglione, A. Mazzino, A. Vulpiani, Simple stochastic models showing strong anomalous
1226
+ diffusion, The European Physical Journal B 18 (3) (2000) 447–452. doi:10.1007/s100510070032.
1227
+ [19] A. L. Boscolo, V. B. da Silva Junior, L. A. Barreiro, Work in progress (2022).
1228
+
3dAyT4oBgHgl3EQfb_e6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
79E0T4oBgHgl3EQffQDe/content/tmp_files/2301.02403v1.pdf.txt ADDED
@@ -0,0 +1,1025 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CyberLoc: Towards Accurate Long-term Visual
2
+ Localization
3
+ Liu Liu ⋆, Yukai Lin ⋆, Xiao Liang ⋆, Qichao Xu ⋆, Miao Jia, Yangdong Liu, Yuxiang
4
+ Wen, Wei Luo, Jiangwei Li
5
+ Cyberverse Dept, Huawei Cloud Computing Technologies Co., Ltd.
6
+ Abstract. This technical report introduces CyberLoc, an image-based
7
+ visual localization pipeline for robust and accurate long-term pose es-
8
+ timation under challenging conditions. The proposed method comprises
9
+ four modules connected in a sequence. First, a mapping module is ap-
10
+ plied to build accurate 3D maps of the scene, one map for each refer-
11
+ ence sequence if there exist multiple reference sequences under different
12
+ conditions. Second, a single-image-based localization pipeline (retrieval–
13
+ matching–PnP) is performed to estimate 6-DoF camera poses for each
14
+ query image, one for each 3D map. Third, a consensus set maximiza-
15
+ tion module is proposed to filter out outlier 6-DoF camera poses, and
16
+ outputs one 6-DoF camera pose for a query. Finally, a robust pose re-
17
+ finement module is proposed to optimize 6-DoF query poses, taking can-
18
+ didate global 6-DoF camera poses and their corresponding global 2D-3D
19
+ matches, sparse 2D-2D feature matches between consecutive query im-
20
+ ages and SLAM poses of the query sequence as input. Experiments on
21
+ the 4seasons dataset show that our method achieves high accuracy and
22
+ robustness. In particular, our approach wins the localization challenge
23
+ of ECCV 2022 workshop on Map-based Localization for Autonomous
24
+ Driving (MLAD-ECCV2022).
25
+ Keywords: autonomous driving, image-based localization, image re-
26
+ trieval, image matching, multiple maps, multi-session PnP, consensus
27
+ set maximization, pose graph optimization, bundle adjustment, slam
28
+ 1
29
+ Introduction
30
+ This technical report studies the problem of image-based localization with re-
31
+ spect to a pre-built 3D map. This problem has attracted considerable attention
32
+ recently due to the widespread potential applications, such as in autonomous
33
+ driving [1], robotics [2] and VR/AR [3]. It aims to estimate the 6-DoF global
34
+ pose for a query image given a pre-built 3D map. Although visual localization
35
+ has progressed rapidly in the past few years, how to achieve a robust and ac-
36
+ curate localization under long-term challenging conditions still remains to be
37
+ solved.
38
+ ⋆ Equal contributions
39
+ arXiv:2301.02403v1 [cs.CV] 6 Jan 2023
40
+
41
+ 2
42
+ SfM
43
+ SLAM
44
+ Dense Mapping
45
+ Disparity
46
+ Session 1
47
+ Session i
48
+ Session C
49
+ P1,1
50
+ P1,i
51
+ P1,C
52
+ Pk,1
53
+ Pk,i
54
+ Pk,C
55
+ PK,1
56
+ PK,i
57
+ PK,C
58
+ Frame 1
59
+ Frame k
60
+ Frame K
61
+ Pose Refinement & Polish
62
+ SLAM or VO
63
+ Query
64
+ Mutilple Reference Maps
65
+ 2D-2D matches
66
+ relative poses
67
+ Global absolute poses
68
+ Global 2D-3D matches
69
+ ...
70
+ ...
71
+ ...
72
+ ...
73
+ ...
74
+ ...
75
+ ...
76
+ ...
77
+ Fig. 1: The overall framework of our method. A scene can be visited multiple times,
78
+ resulting in multiple reference maps under different conditions (weather, lighting, etc.).
79
+ For each reference sequence, we perform stereo SfM, SLAM, dense mapping, and dispar-
80
+ ity to reconstruct four 3D maps for robustness. Given a query frame, we first perform
81
+ localization with respect to each session map and obtain multiple global poses corre-
82
+ sponding to sessions (one global absolute pose per session). We then use a consensus
83
+ set maximization module to select the best poses for query frames (one pose per query).
84
+ We further use a SLAM module to obtain 2D-2D matches and relative poses between
85
+ consecutive query frames. Finally, with 2D-2D matches, relative pose, global absolute
86
+ poses and their corresponding global 2D-3D matches, we use a pose refinement module
87
+ to optimize the query poses. A pose polish module can be optionally used for better
88
+ performance.
89
+
90
+ CyberLoc
91
+ 3
92
+ The main challenges are: 1) how to create accurate 3D maps that are robust
93
+ to environmental changes, and 2) how to use the pre-built maps to accurately
94
+ localize the camera.
95
+ To address the first challenge, we propose to use a stereo-camera rig with
96
+ GPS-IMU to mapping the world. Given stereo image sequences with ground-
97
+ truth 6-DoF poses, we separately reconstruct four 3D maps using four methods:
98
+ 1) stereo Structure from Motion (SfM) with sparse 2D image features; 2) stereo
99
+ SLAM; 3) stereo SfM with dense image matching; and 4) stereo disparity for
100
+ each frame. Our motivation of using the above four 3D methods is to build a
101
+ robust 3D map with respect to scene changes.
102
+ To address the second challenge, we introduce two modules, namely the con-
103
+ sensus set maximization and pose refinement module. Given multiple global
104
+ poses corresponding to multiple reference maps, the consensus set maximization
105
+ aims to select the best pose for each query, resulting in one global pose and one
106
+ set of global 2D-3D matches per query image. For query image sequences, the
107
+ pose refinement module utilizes the global information (i. e., the global poses
108
+ and 2D-3D matches), and the local information (i. e., SLAM poses and 2D-2D
109
+ matches between consecutive query images), to further optimize query poses.
110
+ The entire localization pipeline of CyberLoc is given in Figure 1.
111
+ The main contributions of this technical report are:
112
+ 1. We propose a visual localization pipeline consisting of four consecutive mod-
113
+ ules that help to achieve high accuracy and robustness under long-term en-
114
+ vironmental changes;
115
+ 2. We show that using multiple reference maps helps to overcome failed lo-
116
+ calization caused by long-term scene changes. This is achieved by a new
117
+ consensus set maximization module that identifies the best query pose with
118
+ respect to multiple reference maps;
119
+ 3. We introduce a robust pose refinement method, combining global informa-
120
+ tion from pre-built maps and local information from SLAM, to refine query
121
+ poses.
122
+ The proposed method is validated on the 4seasons dataset [1] and achieves state-
123
+ of-the-art performance. In the following sections, we will give details of the pro-
124
+ posed four modules. We first give our mapping pipeline in Sec. 2, to reconstruct
125
+ 3D maps for multiple reference sessions. Next, we present our single image local-
126
+ ization in Sec. 3, to obtain multiple global poses for each query image. We then
127
+ give the proposed consensus set maximization method in Sec. 4, to select the
128
+ best query pose for each query image. Finally, in Sec. 5, we provide the proposed
129
+ robust pose refinement method.
130
+ 2
131
+ Mapping
132
+ 2.1
133
+ Image Pre-processing
134
+ In this section, we introduce some image pre-processing steps before using images
135
+ for sparse 3D map reconstruction.
136
+
137
+ 4
138
+ Low light image enhancement. For images captured in the night, we perform low
139
+ light image enhancement using LLFlow [4]. An example is given in Figure 2. We
140
+ find that using enhanced images would help to extract better 2D local features
141
+ and global feature vectors from images.
142
+ (a) low light image
143
+ (b) enhanced image
144
+ Fig. 2: An example of low light image enhancement.
145
+ Semantic segmentation. When working in highly dynamic environment, both
146
+ SfM and SLAM methods would perform poorly due to interference from dynamic
147
+ objects [5]. Feature points on dynamic objects are either unrepeatable when
148
+ performing 3D reconstruction or ‘fool’ the feature tracking in SLAM. Following
149
+ common practice [6], we perform semantic segmentation using SegFormer [7] to
150
+ mask out dynamic objects (e.g., car, cyclist, etc.). Furthermore, pixels belong to
151
+ the car shield are also masked out.
152
+ Resizing. Before using images to extract features, we resize images while keeping
153
+ their original aspect ratio. The reason is that the performance of feature extrac-
154
+ tion networks is vulnerable to image size. To extract a global feature vector from
155
+ an image, we use a size of 800 (long side). To extract 2D local features from an
156
+ image, we use a size of 2000. The two values are used as they perform best on
157
+ the validation dataset.
158
+ 2.2
159
+ Feature Extraction
160
+ Global feature vector. Global feature vectors of images are used by image retrieval
161
+ to, 1) find co-visible images for an image in the mapping (i. e., SfM) stage; or
162
+ 2) find a local map for each query image in the localization stage. To extract
163
+ discriminative global feature vectors, we use an internal neural network trained
164
+ on open street-view images and internal datasets. The comparison with respect
165
+ to state-of-the-art NetVLAD [8], SARE [9], SFRS [10] on typical benchmarks
166
+ and the 4seasons dataset is given in Table 1.
167
+ Assembling multiple Global feature vectors from multiple networks is a com-
168
+ mon practice to improve the performance of image retrieval 1. However, we found
169
+ 1 Please refer to the Google landmark retrieval challenge for more information
170
+
171
+ CyberLoc
172
+ 5
173
+ Table 1: Comparison of our image retrieval method with respect to state-of-the-art
174
+ methods. We use the same distance threshold (25m) and evaluation metric as [8] to
175
+ determine whether an image is successfully localized. Our model consistently outperform
176
+ other methods on standard benchmarks and the 4seasons dataset.
177
+ Methods
178
+ Pitts250k
179
+ Tokyo 24/7
180
+ St Lucia
181
+ Cityloop
182
+ Oldtown
183
+ Parkinggarage
184
+ R@1
185
+ R@5
186
+ R@1
187
+ R@5
188
+ R@1
189
+ R@5
190
+ R@1
191
+ R@5
192
+ R@1
193
+ R@5
194
+ R@1
195
+ R@5
196
+ NetVLAD[8]
197
+ 86.0
198
+ 93.2
199
+ 73.3
200
+ 82.9
201
+ -
202
+ -
203
+ -
204
+ -
205
+ -
206
+ -
207
+ -
208
+ -
209
+ SARE[9]
210
+ 89.0
211
+ 95.5
212
+ 79.7
213
+ 86.7
214
+ -
215
+ -
216
+ -
217
+ -
218
+ -
219
+ -
220
+ -
221
+ -
222
+ SFRS[10]
223
+ 90.7
224
+ 96.4
225
+ 85.4
226
+ 91.1
227
+ 86.1
228
+ 93.5
229
+ 73.3
230
+ 82.4
231
+ 32.8
232
+ 44.8
233
+ 97.2
234
+ 99.3
235
+ Ours
236
+ 93.0
237
+ 97.5
238
+ 89.5
239
+ 94.6
240
+ 99.6
241
+ 99.9
242
+ 95.9
243
+ 97.2
244
+ 67.7
245
+ 74.7
246
+ 99.7
247
+ 100.
248
+ that the assembling technique does not work on the 4seasons dataset. The reason
249
+ is that our single model outperforms other state-of-the-art methods by a large
250
+ margin on the 4seasons dataset.
251
+ Local features. 2D local features are used to perform sparse 3D reconstruction
252
+ of the environment. We extract around 2000 SuperPoint [11] feature points for
253
+ an image.
254
+ 2.3
255
+ SfM
256
+ We have pre-recorded database images with ground-truth 6-DoF camera poses
257
+ in a world coordinate system. We perform image retrieval to find Top-K (K=40)
258
+ similar database images. For each database image pair, we perform sparse feature
259
+ matching and find 2D-2D matches. We further prune out wrong 2D-2D matches
260
+ by enforcing the epipolar constraint using the ground-truth poses. With 2D-
261
+ 2D matches and ground-truth poses, we triangulate 2 3D points and perform
262
+ structure-only bundle adjustment 3 to refine the positions of 3D points using
263
+ colmap [12].
264
+ Remark 1. Given Superpoint feature points, though SGMNet [13], ClusterGNN
265
+ [14] and ELA [15] successfully reduce the computation complexity, their per-
266
+ formance is worse than the pre-trained SuperGlue 4. Recently, our proposed
267
+ FGCNet [18] achieves 4x speedup than SuperGlue, while maintaining competi-
268
+ tive performance with respect to the pre-trained SuperGlue.
269
+ Remark 2. For a triangulated 3D point, its precision depends on point-camera
270
+ distances, number of visible cameras, view angles, etc. Though MegLoc [19] pro-
271
+ poses to prune out 3D points with large uncertainty 5, we found the uncertainty
272
+ threshold is hard to tune and we decided not to use this filtering step.
273
+ 2 SVD with post non-linear refinement.
274
+ 3 Fixing camera poses.
275
+ 4 See results on the YFCC100M [16] and FM-Bench [17] datasets.
276
+ 5 Please refer to Sec.5.1 of [20].
277
+
278
+ 6
279
+ 2.4
280
+ SLAM
281
+ Given ground-truth 6-DoF camera poses of images, with SuperPoint feature
282
+ points, we perform SLAM using the ptam [21]. Note that we skip the pose
283
+ estimation stage in the SLAM and only optimize 3D points in the local map
284
+ optimization stage.
285
+ Remark. The main difference between 3D points from SfM and SLAM is that
286
+ we use ALL images in SLAM rather than keyframes in SfM. 3D points are
287
+ triangulated and updated sequentially, rather than in a bundle.
288
+ 2.5
289
+ Dense Mapping
290
+ Using the same retrieved pairs in Sec.2.3, we use dense feature matching method
291
+ QTA [22] to build sparse 2D-2D matches and then triangulate 3D points in the
292
+ same way as Sec.2.3. Since dense feature matching methods do not detect sparse
293
+ 2D feature points and can generate unrepeatable 2D-2D matches 6, we use the
294
+ same quantization technique in Patch2Pix [23] to alleviate this problem.
295
+ Remark. The main difference between 3D points from Dense Mapping and SfM
296
+ is that we use dense feature matching method QTA [22] rather than sparse fea-
297
+ ture matching method SuperGlue [24] to build 2D-2D matches. The motivation
298
+ is that QTA [22] can generate more matches than SuperGlue [24] for texture-
299
+ less image pairs. More 3D points can be triangulated, resulting in a robust 3D
300
+ representation for textureless areas.
301
+ 2.6
302
+ Disparity
303
+ For each image pair, we can estimate a dense disparity map using the pre-
304
+ trained LEAStereo [25], thus obtaining a local 3D map for each database image.
305
+ An example of the estimated disparity map is given in Figure 3.
306
+ 3
307
+ Localization
308
+ For each query image, we retrieve a set of candidate database keyframes using
309
+ the same global feature vectors described in Sec.2.2. Since we have four pre-
310
+ reconstructed 3D maps from SfM, SLAM, dense mapping, and disparity, we first
311
+ perform four independent localization steps and then combine these localization
312
+ results.
313
+ Specifically, for maps from SfM and SLAM, we first find 2D-2D matches using
314
+ SuperGlue for each query and candidate database pair. Since we have recorded
315
+ 6 Given 2D-2D matches for image pair A-B and A-C, 2D feature points in image A
316
+ are different.
317
+
318
+ CyberLoc
319
+ 7
320
+ Fig. 3: An example of disparity estimation. Top: a database image; Bottom: the corre-
321
+ sponding disparity image.
322
+ the matching 3D point (if have) of each database 2D feature point, a set of 2D-
323
+ 3D matches are automatically obtained for each query and candidate database
324
+ image pair.
325
+ For maps from dense mapping, the only difference is that we use the dense
326
+ feature matching method QTA [22] to find 2D-3D matches and all other com-
327
+ ponents are the same.
328
+ For maps from disparity, we also use QTA [22] to find 2D-2D matches. For
329
+ each 2D feature point from the database image, we triangulate 3D points using
330
+ the disparity map. With 2D-2D matches and 3D points for database feature
331
+ points, we obtain a set of 2D-3D matches.
332
+ Finally, the 2D-3D matches from the top-K (K = 40) candidate database
333
+ images and above four maps are combined to perform PnP 7 to estimate a 6-
334
+ DoF camera pose in the world coordinate system.
335
+ Remark 1. The motivation of using 2D-3D matches from different maps is to uti-
336
+ lize their complimentary characteristics to improve the robustness of our method
337
+ with respect to large scene changes.
338
+ Remark 2. Directly combining all 2D-3D matches from top-K (K = 40) can-
339
+ didate database keyframes and above four maps would generate a large set of
340
+ 2D-3D matches with low inlier ratio, posing significant challenge for the subse-
341
+ quent RANSAC-PnP step. To improve the inlier ratio, for each map, we perform
342
+ RANSAC-PnP to obtain a set of inlier 2D-3D matches, and remove duplicated
343
+ 2D-3D matches 8 before combing 2D-3D matches from four maps.
344
+ 7 Generalized camera model, aka, Pl¨ucker lines [26].
345
+ 8 One 2D feature point from the query image may be matched to multiple different
346
+ 3D points. We only keep one 2D-3D pair with minimal reprojection error.
347
+
348
+ 8
349
+ 4
350
+ Multi-session Consensus Set Maximization
351
+ In a scene with multiple reference sequences such as the 4seasons[1] dataset,
352
+ multi-session maps can be generated for the scene. In this section, we introduce
353
+ a consensus set maximization method to fuse localization results using these
354
+ multi-session maps.
355
+ A simple method to use multi-session maps is to combine 2D-3D matches
356
+ from multi-session maps to perform RANSAC-PnP. Although it works for com-
357
+ plementary multi-session results, the performance is limited since the best lo-
358
+ calization result from one-session map can be worsened by 2D-3D matches from
359
+ other-session maps. Using combined 2D-3D matches for RANSAC-PnP would
360
+ prone to produce averaged (or one dominant) 6-DoF pose, for poses from multi-
361
+ session maps.
362
+ Another method to use multi-session maps is to find the best combination
363
+ of multi-session maps using trial-and-error [27]. It works for multi-session maps
364
+ captured in different times of a day, in small-scale room environment. For the
365
+ 4seasons dataset, the large-scale multi-session maps are captured in different
366
+ times of a year, making it hard to find the best combination.
367
+ The key idea of our method is finding the best 6-DoF pose from multi-session
368
+ maps for each query image through an optimization process, rather than com-
369
+ bining 2D-3D matches from multi-session maps to perform RANSAC-PnP. The
370
+ proposed method consistently produces optimal results across different datasets.
371
+ 4.1
372
+ Problem Definition
373
+ Let IK = {Ik|k = 1, · · · , K} denotes a query image sequence up to timestamp
374
+ K. For each query image Ik, we have C candidate 6-DoF poses Pk = {Pk,i =
375
+ (Rk,i, tk,i)|i = 1, · · · , C}, one from a reference map.
376
+ We aim to find the most accurate 6-DoF pose Pk,i∗ for Ik.
377
+ 4.2
378
+ Consensus Set Maximization
379
+ For query images Im and In, we can obtain a set of 2D-2D matches Qm,n via
380
+ feature tracking in SLAM. Given query poses Pm,i and Pn,j, we can compute the
381
+ number of inlier 2D-2D matches subject to Pm,i and Pn,j, by thresholding the
382
+ Sampson errors [28] of 2D-2D matches Qm,n. We denote the number of inlier 2D-
383
+ 2D matches as Sm,i,n,j and use it to measure the compatibleness of poses Pm,i
384
+ and Pn,j. We assume the best poses would generate the largest score � Sm,i,n,j,
385
+ i. e., finding the largest consensus set. Though the problem is non-convex [29]
386
+ and the original Qm,n contains outlier matches, we found the score � Sm,i,n,j
387
+ describes the correctness of poses well. The consensus set maximization problem
388
+ is solved by a integer programming process.
389
+
390
+ CyberLoc
391
+ 9
392
+ Timestamp
393
+ Session
394
+ Pk,C
395
+ Pk,i
396
+ Pk,1
397
+ Pm,C
398
+ Pm,j
399
+ Pm,1
400
+ Pn,C
401
+ Pn,l
402
+ Pn,1
403
+ n
404
+ m
405
+ k
406
+ C
407
+ 1
408
+ ek,i,j
409
+ em,j,l
410
+ Fig. 4: We use three frames k, m, n to describe our integer programming process. Given
411
+ poses Pk, Pm, Pn from multi-session maps at timestamps k, m, n, respectively, we aim
412
+ to find the best poses connected by the red edges. Edges ek,i,j ∈ {0, 1} denotes the
413
+ connectivity between nodes (poses) Pk,i and Pm,j. ek,i,j equals 1 only when both nodes
414
+ Pk,i and Pm,j are selected (deemed as the best poses). For the sake of clarity, we
415
+ only draw edges connecting the node Pm,j. Note that all nodes are fully connected for
416
+ consecutive timestamps.
417
+ 4.3
418
+ Integer Programming
419
+ We use three frames k, m, n to describe our integer programming process, as
420
+ is given in Figure 4. We first build a densely connected graph for consecutive
421
+ timestamps. For nodes Pk,i and Pm,j, there is an edge ek,i,j ∈ {0, 1} connecting
422
+ them. The score of edge ek,i,j is Sk,i,m,j (abbrev. Sk,i,j for clarity), which is
423
+ the number of inlier 2D-2D matches using poses Pk,i and Pm,j. Our integer
424
+ programming process is given by,
425
+ arg min
426
+ E={ek,i,j}
427
+ K−1
428
+
429
+ k=1
430
+ C
431
+
432
+ i=1
433
+ C
434
+
435
+ j=1
436
+ −ek,i,jSk,i,j,
437
+ (1)
438
+ s.t.
439
+ C
440
+
441
+ i=1
442
+ C
443
+
444
+ j=1
445
+ ek,i,j = 1,
446
+ (2)
447
+ C
448
+
449
+ i=1
450
+ ek,i,j =
451
+ C
452
+
453
+ l=1
454
+ em,j,l.
455
+ (3)
456
+ Eq.(2) enforces that exactly one edge should be selected for the connectiv-
457
+ ity of the graph. Eq.(3) enforces the following relationship: 1) if node Pm,j is
458
+ selected, there must be an edge connecting Pm,j to other nodes in consecutive
459
+ frames; 2) if node Pm,j is NOT selected, all edges connecting Pm,j to other
460
+ nodes in consecutive frames should be removed.
461
+
462
+ 10
463
+ Table 2: Result of the proposed consensus set maximization on the oldtown dataset.
464
+ We report localization recalls with respect to different translation error thresholds. Both
465
+ merging 2D-3D matches from multi-session maps and our integer programming method
466
+ achieve the best performance.
467
+ Trans.Err.
468
+ Ref 0
469
+ Ref 1
470
+ Ref 2
471
+ 2D-3D Merge
472
+ Int. Prog.
473
+ 0.05m
474
+ 36.60%
475
+ 39.80%
476
+ 43.20%
477
+ 51.00%
478
+ 49.80%
479
+ 0.1m
480
+ 60.80%
481
+ 68.40%
482
+ 69.20%
483
+ 78.30%
484
+ 78.40%
485
+ 0.2m
486
+ 79.30%
487
+ 87.00%
488
+ 85.60%
489
+ 94.10%
490
+ 93.20%
491
+ 0.5m
492
+ 89.20%
493
+ 93.50%
494
+ 92.30%
495
+ 96.60%
496
+ 96.50%
497
+ 1.0m
498
+ 92.00%
499
+ 95.50%
500
+ 94.10%
501
+ 97.80%
502
+ 97.80%
503
+ 3.0m
504
+ 93.70%
505
+ 96.50%
506
+ 95.00%
507
+ 98.30%
508
+ 98.30%
509
+ Table 3: Result of the proposed consensus set maximization on the cityloop dataset. Our
510
+ integer programming method achieves the best performance. In contrast, simply merging
511
+ 2D-3D matches from multi-session maps does not work. Its performance is even worse
512
+ than single-session localization.
513
+ Trans. Err.
514
+ Ref 0
515
+ Ref 1
516
+ 2D-3D Merge
517
+ Int. Prog.
518
+ 0.05m
519
+ 69.20%
520
+ 74.20%
521
+ 73.30%
522
+ 79.20%
523
+ 0.1m
524
+ 91.80%
525
+ 88.00%
526
+ 87.30%
527
+ 92.30%
528
+ 0.2m
529
+ 98.00%
530
+ 94.70%
531
+ 94.20%
532
+ 97.70%
533
+ 0.5m
534
+ 99.60%
535
+ 99.20%
536
+ 99.10%
537
+ 99.70%
538
+ 1.0m
539
+ 99.90%
540
+ 99.50%
541
+ 99.60%
542
+ 100.00%
543
+ 3.0m
544
+ 100.00%
545
+ 99.70%
546
+ 99.70%
547
+ 100.00%
548
+ There are a maximum 9 of (K − 1) × C × C edges (optimization variables) in
549
+ our integer programming. The solution can be found very efficiently by off-the-
550
+ shelf toolboxes. After optimization, nodes (poses) connected by edges ek,i,j = 1
551
+ are deemed as the best poses.
552
+ 4.4
553
+ Experimental Result
554
+ We validate the proposed consensus set maximization method on the oldtown
555
+ and cityloop datasets, from the 4seasons dataset. The number of image sequences
556
+ with ground-truth poses is four and three, for the oldtown and cityloop dataset,
557
+ respectively. For each dataset, one sequence is used for testing and the rest se-
558
+ quences are used for mapping. The localization results are separately given in
559
+ Table 2 and Table 3. The results show that the proposed consensus set max-
560
+ imization method is robust and consistently shows good performance on the
561
+ two datasets. In contrast, the simple method of merging 2D-3D matches does
562
+ not work on the cityloop dataset. The reason is that localization results using
563
+ multi-session maps are not compatible, on the cityloop dataset.
564
+ We run our method on a PC equipped with a 2TB RAM and an AMD
565
+ EPYC 7742 CPU. The running time of our method is given in Table 4. The
566
+ 9 If one map session fails to estimate a camera pose, the number of edges between
567
+ consecutive timestamps is smaller than C × C.
568
+
569
+ CyberLoc
570
+ 11
571
+ Table 4: Running time of the proposed consensus set maximization. For the oldtown
572
+ dataset, we have three reference sequences (C = 3), and each of the sequence has 3296
573
+ frames (K = 3296). For the cityloop dataset, C = 2 and K = 10224.
574
+ Dataset
575
+ Total time
576
+ Single frame time
577
+ Oldtown
578
+ 24.4s
579
+ 7.4ms
580
+ Cityloop
581
+ 70.7s
582
+ 6.9ms
583
+ implementation is based on Python and uses CBC solver for optimization. The
584
+ running time can be significantly reduced using C++.
585
+ 5
586
+ Pose Refinement
587
+ In this section, we show how to combine global information from Sec. 4 and local
588
+ information from SLAM to refine query poses.
589
+ 5.1
590
+ Problem Definition
591
+ For each query image Ik, we have obtained its best global pose Pk from the multi-
592
+ session localization step (Sec. 4). Considering that the accuracy (even being an
593
+ outlier) of Pk varies for different frames, we associate a weight variable wk ∈ [0, 1]
594
+ for each Pk, describing the weight of Pk in our optimization process. We also
595
+ retrieve 2D-3D matches Fk corresponding to Pk, and denote the reprojection
596
+ error at pose Xk as π (Xk, Fk).
597
+ For consecutive frames, we can obtain their local relative poses Zk−1,k and
598
+ 2D-2D matches Qk−1,k through SLAM. Given query poses Xk−1 and Xk, we
599
+ denote the two-view matching (Sampson) error as ρ (Xk−1, Xk, Qk−1,k).
600
+ Given query images IK = {Ik|k = 1, · · · , K} up to timestamp K, we aim to
601
+ solve query poses XK = {Xk|k = 1, · · · , K} and latent weights WK = {wk|k =
602
+ 1, · · · , K}. The overall framework of our optimization problem is given in Fig. 5.
603
+ Our objective function is given by,
604
+ arg min
605
+ XK,WK
606
+
607
+ k
608
+ wk
609
+
610
+ ∥Pk − Xk∥2 + λ1π (Xk, Fk)
611
+
612
+ +
613
+ ∥h (Xk−1, Xk) − Zk−1,k∥2 + λ2ρ (Xk−1, Xk, Qk−1,k) ,
614
+ (4)
615
+ where ∥·∥2 denotes the pose error, and h (Xk−1, Xk) denotes the relative pose
616
+ between Xk−1 and Xk, λ1 and λ2 are two weights to balance the 2D-3D repro-
617
+ jection error and 2D-2D Sampson error.
618
+ Remark 1 If no global pose can be obtained at frame k, one can simply remove
619
+ Fk, Pk, and wk.
620
+ Remark 2 One can also add skip constrains Zm,n and Qm,n (n ̸= m + 1).
621
+
622
+ 12
623
+ X1
624
+ X2
625
+ Xk−1
626
+ Xk
627
+ XK
628
+ P1
629
+ w1
630
+ F1
631
+ Pk
632
+ wk
633
+ Fk
634
+ Zk−1,k
635
+ Qk−1,k
636
+ Z1,2
637
+ Q1,2
638
+ ...
639
+ ...
640
+ Fig. 5: The framework of our pose refinement step. {X1, ..., Xk, XC} denotes query
641
+ poses. Pk denotes the best pose from multi-session localization (Sec. 4). Fk denotes the
642
+ 2D-3D matches corresponding to the best pose Pk. wk ∈ [0, 1] separately denotes the
643
+ weight of Pk. Zk−1,k denotes the relative pose from SLAM. Qk−1,k denotes the 2D-2D
644
+ matches from SLAM. Green lines denote a pose-graph in our framework. We aim to
645
+ solve for red variables.
646
+ 5.2
647
+ Robust Optimization
648
+ Inspired by [30], we use Expectation-Maximization (EM) algorithm to solve
649
+ Eq.(4). The latent weights WK and query poses XK are alternatively optimized
650
+ until convergence (the change of WK is smaller than a threshold).
651
+ Expectation Step We aim to find the best WK while fixing XK, the Expectation
652
+ step becomes,
653
+ arg min
654
+ WK
655
+
656
+ k
657
+ wk
658
+
659
+ ∥Pk − Xk∥2 + λ1π (Xk, Fk)
660
+
661
+ − U 2 (log wk − wk)
662
+
663
+ ��
664
+
665
+ Regularization
666
+ ,
667
+ (5)
668
+ where the regularization term is added to avoid a trivial solution of WK = 0 and
669
+ U is a constant.
670
+ Eq.(5) is convex, and the minimum can be found by differentiating it with
671
+ respect to wk and setting the gradient to zero. The updating of wk at the t-th
672
+ iteration using query pose Xt
673
+ k is given by,
674
+ wt+1
675
+ k
676
+ =
677
+ U 2
678
+ U 2 + ∥Pk − Xt
679
+ k∥2 + λ1π (Xt
680
+ k, Fk)
681
+ .
682
+ (6)
683
+ Maximization Step We aim to find the best XK while fixing WK, the updating
684
+ of XK at the t-th iteration using weights Wt
685
+ K is given by,
686
+ X t+1
687
+ K
688
+ = arg min
689
+ XK
690
+
691
+ k
692
+ wt
693
+ k
694
+
695
+ ∥Pk − Xk∥2 + λ1π (Xk, Fk)
696
+
697
+ +
698
+ ∥h (Xk−1, Xk) − Zk−1,k∥2 + λ2ρ (Xk−1, Xk, Qk−1,k) .
699
+ (7)
700
+ We solve (7) using ceres [31].
701
+
702
+ CyberLoc
703
+ 13
704
+ Table 5: Result of pose refinement on the oldtown datasets. Method PGBA achieves the
705
+ best performance.
706
+ Trans. Err.
707
+ Baseline
708
+ PGO
709
+ PGO 2D2D
710
+ PGO 2D3D
711
+ PGBA
712
+ 0.05m
713
+ 49.80%
714
+ 55.10%
715
+ 56.20%
716
+ 56.80%
717
+ 56.90%
718
+ 0.1m
719
+ 78.40%
720
+ 83.80%
721
+ 84.30%
722
+ 85.20%
723
+ 85.30%
724
+ 0.2m
725
+ 93.30%
726
+ 96.80%
727
+ 96.80%
728
+ 97.20%
729
+ 97.30%
730
+ 0.5m
731
+ 96.50%
732
+ 98.50%
733
+ 98.40%
734
+ 98.40%
735
+ 98.40%
736
+ 1.0m
737
+ 97.80%
738
+ 99.00%
739
+ 99.00%
740
+ 99.00%
741
+ 99.00%
742
+ 3.0m
743
+ 98.30%
744
+ 99.30%
745
+ 99.30%
746
+ 99.30%
747
+ 99.30%
748
+ Initialization To initialize the iterative E-M updating process, we select a good
749
+ subset of poses from PK as seeds and initialize other query poses using their
750
+ most recent seeds and relative SLAM poses, resulting in X 1
751
+ K. A query pose with
752
+ the number of 2D-3D matches (Fk) larger than a pre-defined threshold is deemed
753
+ as a seed.
754
+ 5.3
755
+ Experimental Result
756
+ Based on the global localization results of Sec. 4.4, we run the pose refinement
757
+ step. Our refinement objective function has four terms (Eq. (4)) and we conduct
758
+ following ablation studies to validate the effectiveness of each term. Specifically,
759
+ 1. Pose Graph Optimization (PGO). By removing global 2D-3D reprojection
760
+ term π (Xk, Fk) and 2D-2D Sampson term ρ (Xk−1, Xk, Qk−1,k), the objec-
761
+ tive function becomes PGO.
762
+ 2. PGO 2D2D. By removing global 2D-3D reprojection term π (Xk, Fk), the
763
+ objective function becomes PGO with 2D-2D sampson term.
764
+ 3. PGO 2D3D. By removing 2D-2D Sampson term ρ (Xk−1, Xk, Qk−1,k), the
765
+ objective function becomes PGO with 2D-3D reprojection term.
766
+ 4. PGBA. We keep all four terms and denote the objective function as PGBA
767
+ (PGO with Bundle Adjustment).
768
+ The results of the above four methods are given in Table 5 and 6. For the oldtown
769
+ dataset, both PGO 2D2D and PGO 2D3D outperforms PGO, showing the ef-
770
+ fectiveness of adding global 2D-3D reprojection and 2D-2D Sampson terms. The
771
+ best performance is obtained by combining the two terms, resulting in PGBA.
772
+ For the cityloop dataset, all methods have similar performance probably because
773
+ this dataset is saturated.
774
+ We show estimated query positions before and after consensus set maximiza-
775
+ tion and pose refinement steps in Fig. 6. It clearly shows that wrong estimated
776
+ query positions are refined to correct positions, resulting in a smooth trajectory
777
+ after refinement.
778
+ Our pose refinement step is implemented using C++, and the processing time
779
+ is given in Table 7. For time-critical applications, methods PGO and PGO 2D3D
780
+ are good candidates.
781
+
782
+ 14
783
+ Table 6: Result of pose refinement on the cityloop dataset. Method PGBA achieves the
784
+ best performance.
785
+ Trans. Err.
786
+ Baseline
787
+ PGO
788
+ PGO 2D2D
789
+ PGO 2D3D
790
+ PGBA
791
+ 0.05m
792
+ 79.20%
793
+ 81.00%
794
+ 81.00%
795
+ 81.30%
796
+ 81.40%
797
+ 0.1m
798
+ 92.30%
799
+ 93.00%
800
+ 93.00%
801
+ 93.10%
802
+ 93.00%
803
+ 0.2m
804
+ 97.70%
805
+ 98.20%
806
+ 98.20%
807
+ 98.60%
808
+ 98.60%
809
+ 0.5m
810
+ 99.70%
811
+ 99.70%
812
+ 99.70%
813
+ 99.70%
814
+ 99.70%
815
+ 1.0m
816
+ 100.00%
817
+ 100.00%
818
+ 100.00%
819
+ 100.00%
820
+ 100.00%
821
+ 3.0m
822
+ 100.00%
823
+ 100.00%
824
+ 100.00%
825
+ 100.00%
826
+ 100.00%
827
+ Table 7: Running time of pose refinement. We have 3296 and 10224 query frames for
828
+ the oldtown and cityloop dataset, respectively. Since initial poses of the cityloop dataset
829
+ are more accurate than those of oldtown dataset, fewer EM iterations are performed
830
+ for cityloop, resulting in its smaller running time.
831
+ Dataset
832
+ PGO
833
+ PGO 2D2D
834
+ PGO 2D3D
835
+ PGBA
836
+ Oldtown
837
+ 26.7s
838
+ 2486.7s
839
+ 102.0s
840
+ 2245.0s
841
+ Cityloop
842
+ 21.0s
843
+ 2263.8s
844
+ 93.9s
845
+ 2677.8s
846
+ (a) Oldtown
847
+ (b) Cityloop
848
+ Fig. 6: Query positions before and after refinement. Outlier positions are refined to
849
+ correct ones, resulting in smooth trajectories.
850
+
851
+ Groundtruth
852
+ Stereo localization
853
+ After CSM & PGBACyberLoc
854
+ 15
855
+ Table 8: Results of pose polish on the oldtown and cityloop datasets. With the second
856
+ round of consensus set maximization and pose refinement, we get more accurate poses.
857
+ Oldtown
858
+ Cityloop
859
+ Trans. Err.
860
+ Baseline
861
+ Polish
862
+ Baseline
863
+ Polish
864
+ 0.05m
865
+ 56.90%
866
+ 59.70%
867
+ 81.40%
868
+ 82.10%
869
+ 0.1m
870
+ 85.30%
871
+ 85.20%
872
+ 93.00%
873
+ 93.30%
874
+ 0.2m
875
+ 97.30%
876
+ 97.20%
877
+ 98.60%
878
+ 98.60%
879
+ 0.5m
880
+ 98.40%
881
+ 98.50%
882
+ 99.70%
883
+ 99.70%
884
+ 1.0m
885
+ 99.00%
886
+ 99.00%
887
+ 100.00%
888
+ 100.00%
889
+ 3.0m
890
+ 99.30%
891
+ 99.30%
892
+ 100.00%
893
+ 100.00%
894
+ 6
895
+ Pose Polishing
896
+ Note that the global pose Pk used in the pose refinement (Sec.5) step is from
897
+ one of the multi-sessions localization results. Using optimized query poses XK
898
+ from Sec.5, we can unify information from multi-sessions to obtain a better Pk,i,
899
+ followed by another round of consensus set maximization and pose refinement
900
+ as described in Sec.4 and Sec.5. This final pose polishing step is performed
901
+ (optionally) only once.
902
+ As discussed in Sec.4, simply combining all 2D-3D matches from multi-session
903
+ maps would produce an averaged (or one dominant) pose over multi-session
904
+ poses. Using the accurate XK as an anchor, we first compute reprojection errors
905
+ of all 2D-3D matches from multi-session maps and then prune out outlier 2D-3D
906
+ matches. Remaining 2D-3D matches are used to compute the final global pose
907
+ Pki for the final round of pose fusion and refinement. This guided pose polish
908
+ step could further improve the final pose accuracy for better application.
909
+ 6.1
910
+ Experimental Result
911
+ Based on estimated poses from Sec. 5.3, we test the pose polish module. We use
912
+ refined poses XK to filter 2D-3D matches and recompute the pose for each session.
913
+ A second round of consensus set maximization and pose refinement is performed
914
+ on these poses. The results are given in Table 8. For both datasets, polishing
915
+ helps to further improve pose accuracies, as the [email protected] increases.
916
+ 7
917
+ Conclusions
918
+ We have proposed a method, named CyberLoc, for robust and accurate visual lo-
919
+ calization under challenging conditions. The key idea is to build a robust map for
920
+ each reference sequence, find the best global camera pose with respect to multi-
921
+ session maps, and combine global localization and local SLAM to refine camera
922
+ poses. The proposed robust mapping and localization, consensus set maximiza-
923
+ tion and pose refinement facilitates the success of our method, to be used in
924
+ scenes with illumination and environmental changes. Extensive experiments on
925
+ 4seasons datasets demonstrate the high accuracy and robustness of our method.
926
+
927
+ 16
928
+ References
929
+ 1. Wenzel, P., Wang, R., Yang, N., Cheng, Q., Khan, Q., von Stumberg, L., Zeller,
930
+ N., Cremers, D.:
931
+ 4seasons: A cross-season dataset for multi-weather slam in
932
+ autonomous driving.
933
+ In: DAGM German Conference on Pattern Recognition,
934
+ Springer (2020) 404–417
935
+ 2. Strisciuglio, N., Tylecek, R., Blaich, M., Petkov, N., Biber, P., Hemming, J., van
936
+ Henten, E., Sattler, T., Pollefeys, M., Gevers, T., et al.: Trimbot2020: An outdoor
937
+ robot for automatic gardening. In: ISR 2018; 50th International Symposium on
938
+ Robotics, VDE (2018) 1–6
939
+ 3. Sarlin, P.E., Dusmanu, M., Sch¨onberger, J.L., Speciale, P., Gruber, L., Larsson,
940
+ V., Miksik, O., Pollefeys, M.: Lamar: Benchmarking localization and mapping for
941
+ augmented reality. arXiv preprint arXiv:2210.10770 (2022)
942
+ 4. Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.P., Kot, A.C.: Low-light image
943
+ enhancement with normalizing flow. arXiv preprint arXiv:2109.05923 (2021)
944
+ 5. Liu, L., Li, H., Dai, Y., Pan, Q.: Robust and efficient relative pose with a multi-
945
+ camera system for autonomous driving in highly dynamic environments. IEEE
946
+ Transactions on Intelligent Transportation Systems 19(8) (2017) 2432–2444
947
+ 6. Saputra, M.R.U., Markham, A., Trigoni, N.: Visual slam and structure from motion
948
+ in dynamic environments: A survey.
949
+ ACM Computing Surveys (CSUR) 51(2)
950
+ (2018) 1–36
951
+ 7. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer:
952
+ Simple and efficient design for semantic segmentation with transformers. Advances
953
+ in Neural Information Processing Systems 34 (2021) 12077–12090
954
+ 8. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.:
955
+ Netvlad: Cnn ar-
956
+ chitecture for weakly supervised place recognition. In: Proceedings of the IEEE
957
+ conference on computer vision and pattern recognition. (2016) 5297–5307
958
+ 9. Liu, L., Li, H., Dai, Y.: Stochastic attraction-repulsion embedding for large scale
959
+ image localization. In: Proceedings of the IEEE/CVF International Conference on
960
+ Computer Vision. (2019) 2570–2579
961
+ 10. Ge, Y., Wang, H., Zhu, F., Zhao, R., Li, H.: Self-supervising fine-grained region
962
+ similarities for large-scale image localization. In: European conference on computer
963
+ vision, Springer (2020) 369–386
964
+ 11. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: Self-supervised inter-
965
+ est point detection and description. In: Proceedings of the IEEE conference on
966
+ computer vision and pattern recognition workshops. (2018) 224–236
967
+ 12. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings
968
+ of the IEEE conference on computer vision and pattern recognition. (2016) 4104–
969
+ 4113
970
+ 13. Chen, H., Luo, Z., Zhang, J., Zhou, L., Bai, X., Hu, Z., Tai, C.L., Quan, L.:
971
+ Learning to match features with seeded graph matching network. In: Proceedings
972
+ of the IEEE/CVF International Conference on Computer Vision. (2021) 6301–6310
973
+ 14. Shi, Y., Cai, J.X., Shavit, Y., Mu, T.J., Feng, W., Zhang, K.: Clustergnn: Cluster-
974
+ based coarse-to-fine graph neural network for efficient feature matching.
975
+ arXiv
976
+ preprint arXiv:2204.11700 (2022)
977
+ 15. Suwanwimolkul, S., Komorita, S.: Efficient linear attention for fast and accurate
978
+ keypoint matching. arXiv preprint arXiv:2204.07731 (2022)
979
+ 16. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth,
980
+ D., Li, L.J.: Yfcc100m: The new data in multimedia research. Communications of
981
+ the ACM 59(2) (2016) 64–73
982
+
983
+ CyberLoc
984
+ 17
985
+ 17. Bian, J.W., Wu, Y.H., Zhao, J., Liu, Y., Zhang, L., Cheng, M.M., Reid, I.: An
986
+ evaluation of feature matchers for fundamental matrix estimation. arXiv preprint
987
+ arXiv:1908.09474 (2019)
988
+ 18. Liu, L., Liyuan, P., Wei, L., Qichao, X., Yuxiang, W., Jiangwei, L.: Fgcnet: Fast
989
+ graph convolution for matching features. ISMAR (2022)
990
+ 19. Peng, S., He, Z., Zhang, H., Yan, R., Wang, C., Zhu, Q., Liu, X.: Megloc: A robust
991
+ and accurate visual localization pipeline. arXiv preprint arXiv:2111.13063 (2021)
992
+ 20. Zou, D., Tan, P.:
993
+ Coslam: Collaborative visual slam in dynamic environments.
994
+ IEEE transactions on pattern analysis and machine intelligence 35(2) (2012) 354–
995
+ 366
996
+ 21. Pire, T., Fischer, T., Castro, G., De Crist´oforis, P., Civera, J., Berlles, J.J.: S-
997
+ ptam: Stereo parallel tracking and mapping. Robotics and Autonomous Systems
998
+ 93 (2017) 27–42
999
+ 22. Tang, S., Zhang, J., Zhu, S., Tan, P.: Quadtree attention for vision transformers.
1000
+ arXiv preprint arXiv:2201.02767 (2022)
1001
+ 23. Zhou, Q., Sattler, T., Leal-Taixe, L.: Patch2pix: Epipolar-guided pixel-level corre-
1002
+ spondences. In: Proceedings of the IEEE/CVF conference on computer vision and
1003
+ pattern recognition. (2021) 4669–4678
1004
+ 24. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.:
1005
+ Superglue: Learning
1006
+ feature matching with graph neural networks. In: Proceedings of the IEEE/CVF
1007
+ conference on computer vision and pattern recognition. (2020) 4938–4947
1008
+ 25. Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Li, H., Drummond, T.,
1009
+ Ge, Z.: Hierarchical neural architecture search for deep stereo matching. Advances
1010
+ in Neural Information Processing Systems 33 (2020)
1011
+ 26. Pless, R.: Using many cameras as one. In: 2003 IEEE Computer Society Conference
1012
+ on Computer Vision and Pattern Recognition, 2003. Proceedings. Volume 2., IEEE
1013
+ (2003) II–587
1014
+ 27. Labb´e, M., Michaud, F.: Multi-session visual slam for illumination invariant local-
1015
+ ization in indoor environments. arXiv preprint arXiv:2103.03827 (2021)
1016
+ 28. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
1017
+ university press (2003)
1018
+ 29. Li, H.: Consensus set maximization with guaranteed global optimality for robust
1019
+ geometry estimation. In: 2009 IEEE 12th International Conference on Computer
1020
+ Vision, IEEE (2009) 1074–1080
1021
+ 30. Lee, G.H., Fraundorfer, F., Pollefeys, M.: Robust pose-graph loop-closures with
1022
+ expectation-maximization. In: 2013 IEEE/RSJ International Conference on Intel-
1023
+ ligent Robots and Systems, IEEE (2013) 556–563
1024
+ 31. Agarwal, S., Mierle, K., Team, T.C.S.: Ceres Solver (3 2022)
1025
+
79E0T4oBgHgl3EQffQDe/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8dE4T4oBgHgl3EQfCwtu/content/tmp_files/2301.04863v1.pdf.txt ADDED
@@ -0,0 +1,2483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04863v1 [math.ST] 12 Jan 2023
2
+ Choosing observation operators to mitigate
3
+ model error in Bayesian inverse problems
4
+ Nada Cvetkovi´c1, Han Cheng Lie2, Harshit Bansal1, and Karen
5
+ Veroy–Grepl1
6
+ 1Centre for Analysis, Scientific computing and Applications, Eindhoven University of Technology,
7
+ Groene Loper 3, 5612 AE Eindhoven, the Netherlands
8
+ 2 Institut f¨ur Mathematik, Universit¨at Potsdam, Campus Golm, Haus 9, Karl-Liebknecht-Straße 24–25,
9
+ Potsdam OT Golm 14476, Germany
10
+ Abstract
11
+ In Bayesian inverse problems, ‘model error’ refers to the discrepancy between the parameter-
12
+ to-observable map that generates the data and the parameter-to-observable map that is
13
+ used for inference. Model error is important because it can lead to misspecified likelihoods,
14
+ and thus to incorrect inference. We consider some deterministic approaches for accounting
15
+ for model error in inverse problems with additive Gaussian observation noise, where the
16
+ parameter-to-observable map is the composition of a possibly nonlinear parameter-to-state
17
+ map or ‘model’ and a linear state-to-observable map or ‘observation operator’. Using local
18
+ Lipschitz stability estimates of posteriors with respect to likelihood perturbations, we bound
19
+ the symmetrised Kullback–Leibler divergence of the posterior generated by each approach
20
+ with respect to the posterior associated to the true model and the posterior associated to the
21
+ wrong model. Our bounds lead to criteria for choosing observation operators that mitigate
22
+ the effect of model error on the posterior.
23
+ Keywords: Model error, Bayesian inverse problems, experimental design, misspecified like-
24
+ lihood, posterior error bounds
25
+ 1. Introduction
26
+ In many applications, one considers an inverse problem where the data is a noisy observation of
27
+ the true state of some phenomenon of interest, where the true state is the output of a parameter-
28
+ to-state mapping or ‘model’ corresponding to an unknown parameter. That is, for the unknown
29
+ true parameter θ† and the true model M†, the true state is u† = M†(θ†), and the data y is a
30
+ realisation of the random variable
31
+ Y := O ◦ M†(θ†) + ε
32
+ (1.1)
33
+ for an observation operator O and additive noise ε. The inverse problem consists in inferring
34
+ the data-generating parameter θ† from the data y.
35
+ We consider Bayesian inverse problems with finite-dimensional data, centred Gaussian obser-
36
+ vation noise, and linear observation operators. In this setting, ε has the normal distribution
37
+ 1
38
+
39
+ N(mε, Σε) for mε = 0 ∈ Rn and positive definite covariance Σε ∈ Rn×n, and the observation
40
+ operator O is a linear mapping from the ‘state space’ U of candidate states to the ‘data space’
41
+ Y = Rn. One fixes a possibly infinite-dimensional parameter space Θ consisting of candidate
42
+ values of θ†, and describes the unknown true parameter θ† using a random variable θ with prior
43
+ law µθ supported on Θ. Under certain assumptions on the prior µθ, the observation operator O,
44
+ and the model M†, the posterior measure µy,†
45
+ θ
46
+ of θ|y that corresponds to O ◦M† is well-defined
47
+ and admits the following likelihood with respect to the prior µθ:
48
+ Θ ∋ θ′ �→ dµy,†
49
+ θ
50
+ dµθ
51
+ (θ′) =
52
+ exp(− 1
53
+ 2∥y − O ◦ M†(θ′)∥2
54
+ Σ−1
55
+ ε )
56
+
57
+ Θ exp(− 1
58
+ 2∥y − O ◦ M†(ˆθ)∥2
59
+ Σ−1
60
+ ε )dµθ(ˆθ)
61
+ .
62
+ (1.2)
63
+ See e.g. [24, Theorem 4.1] for sufficient conditions for well-definedness in the case of a Gaussian
64
+ prior µθ.
65
+ In practice, the true model M† : Θ → U is not available, so an approximate model M : Θ → U
66
+ is used instead. Alternatively, M† may be available but impractical or costly to evaluate: in
67
+ the context of multifidelity or reduced order models, M† may be the element of a collection M
68
+ of models that yields the most accurate predictions of state, and M may be a reduced-order
69
+ model, an emulator, or a surrogate, i.e. a model that yields less accurate predictions but can
70
+ be evaluated more cheaply and quickly than M†.
71
+ We shall refer to the difference δ† := M† − M as the ‘model error of the appproximate
72
+ model’, or simply the ‘model error’. Model error is also known as ‘model inadequacy’, ‘model
73
+ discrepancy’, or ‘structural uncertainty’, for example; see [14, 4]. We do not use the term ‘model
74
+ misspecification’, since this term is used in the statistics literature to refer to the distinct problem
75
+ where the parameter space Θ does not contain the true parameter θ†; see e.g. [9, Section 8.5].
76
+ In the context of inverse problems, model error is important because it may lead to a wrong
77
+ or ‘misspecified’ likelihood, which in turn may lead to incorrect inference. The negative effects
78
+ may persist even after applying or approximating common limits from statistics. For example,
79
+ numerical experiments in [4, Section 3] show how ignoring the model error results in posterior
80
+ distributions that do not converge to the true data-generating parameter as the number of
81
+ observations grows larger. An analytical example in [1, Section 8.1] considers the problem of
82
+ inferring the initial condition of an initial value problem on the time interval [0, T] from a noisy
83
+ observation of the state at time T, and shows that the posterior density contracts around the
84
+ wrong initial condition in the limit of small observation noise and T → 0.
85
+ This raises the
86
+ question of how to mitigate the effect of model error in Bayesian inverse problems.
87
+ We approach this question from the point of view of selecting an appropriate observation
88
+ operator O. Using that O is a linear mapping and substituting M† with M + δ† in (1.2) yields
89
+ Θ ∋ θ′ �→
90
+ exp(− 1
91
+ 2∥y − O ◦ M(θ′) − O ◦ δ†(θ′)∥2
92
+ Σ−1
93
+ ε )
94
+
95
+ Θ exp(− 1
96
+ 2∥y − O ◦ M(ˆθ) − O ◦ δ†(ˆθ)∥2
97
+ Σ−1
98
+ ε )dµθ(ˆθ)
99
+ .
100
+ The posterior µy,A
101
+ θ
102
+ that uses the approximate model M and ignores δ† has the likelihood
103
+ Θ ∋ θ′ �→ dµy,A
104
+ θ
105
+ dµθ
106
+ (θ′) =
107
+ exp(− 1
108
+ 2∥y − O ◦ M(θ′)∥2
109
+ Σ−1
110
+ ε )
111
+
112
+ Θ exp(− 1
113
+ 2∥y − O ◦ M(ˆθ)∥2
114
+ Σ−1
115
+ ε )dµθ(ˆθ)
116
+ .
117
+ Thus, the presence of model error δ† leads to a misspecified likelihood if and only if O ◦ δ†(θ′)
118
+ is nonzero with positive µθ-probability. This suggests that a possible approach to mitigate the
119
+ 2
120
+
121
+ effect of model error in Bayesian inverse problems of the type given by (1.1) is to choose an
122
+ observation operator O so that O ◦ δ†(θ′) is close to zero with high µθ-probability.
123
+ The approach of choosing observation operators suggests a connection with experimental
124
+ design. In Bayesian experimental design, the main task is to select observations in order to
125
+ maximise information about the parameter to be inferred. To quantify the information gain,
126
+ one may use the Kullback–Leibler divergence of the posterior with respect to the prior, for
127
+ example. In contrast, we control the Kullback–Leibler divergence between pairs of posteriors
128
+ defined by the same prior but different likelihoods, by using the L1
129
+ µθ difference between the pair
130
+ of negative log-likelihoods or ‘misfits’. The main task is then to select observations in order to
131
+ minimise this L1
132
+ µθ difference. This approach can be seen as experimental design for reducing
133
+ the impact of likelihood misspecification due to model error.
134
+ Contributions.
135
+ In this paper, we consider three deterministic approaches for accounting for
136
+ model error in Bayesian inference: the ‘enhanced error approach’ of [13]; the ‘joint approach’
137
+ that infers both θ† and δ†; and the marginalisation approach, which integrates out the model
138
+ error component of the posterior from the joint inference approach.
139
+ For the first two ap-
140
+ proaches, we compute upper bounds for the L1
141
+ µθ difference between the misfit of each approach
142
+ and the misfit of the best posterior µy,†
143
+ θ
144
+ defined by (1.2).
145
+ These upper bounds on the L1
146
+ µθ
147
+ difference between misfits yield upper bounds for the symmetrised Kullback–Leibler divergence
148
+ max{dKL(µy,•
149
+ θ ∥µy,†
150
+ θ ), dKL(µy,†
151
+ θ ∥µy,•
152
+ θ )} between the posterior µy,•
153
+ θ
154
+ that results from each approach
155
+ and the best posterior µy,†
156
+ θ
157
+ defined by (1.2).
158
+ We repeat the procedure for the approximate
159
+ posterior µy,A
160
+ θ
161
+ instead of µy,†
162
+ θ . For each approach, we express the upper bounds on the L1
163
+ µθ
164
+ differences in terms of the model error δ† and the objects that each approach uses to account
165
+ for model error.
166
+ To prove these bounds, we rely on the assumption of additive Gaussian noise, in the form of a
167
+ lemma concerning the difference of two quadratic forms that are weighted by different matrices;
168
+ see Lemma A.2. We prove the upper bounds on the symmetrised Kullback–Leibler divergence
169
+ between the posteriors by combining the upper bounds on the L1
170
+ µθ differences between the
171
+ misfits with a local Lipschitz stability estimate of posteriors from [23]. An important advantage
172
+ of this estimate is that it holds for the Kullback–Leibler topology under the mild assumption
173
+ of L1
174
+ µθ-integrable misfits; see Theorem 3.1.
175
+ The upper bounds on the symmetrised Kullback–Leibler divergence with respect to the best
176
+ posterior µy,†
177
+ θ
178
+ provide sufficient conditions on the observation operator O, the model error δ†,
179
+ and the approach, in order for the resulting posterior µy,•
180
+ θ
181
+ to closely approximate µy,†
182
+ θ .
183
+ In
184
+ contrast, the upper bounds on the symmetrised Kullback–Leibler divergence with respect to
185
+ the approximate posterior µy,A
186
+ θ
187
+ provide necessary conditions for the resulting posterior µy,•
188
+ θ
189
+ to
190
+ differ from µy,A
191
+ θ
192
+ . The first and second set of upper bounds give respectively a set of ‘positive’
193
+ and ‘negative’ criteria by which to choose observation operators for Bayesian inverse problems
194
+ in the presence of model error.
195
+ 1.1. Overview of related work
196
+ The importance of accounting for the model error is well-documented in the literature on
197
+ Bayesian inverse problems; see e.g. [14, 12, 13, 4] and the references therein. The ‘Bayesian
198
+ approximation error’ and ‘enhanced error’ approaches due to [13] and [12] respectively have
199
+ been applied in various contexts. For example, the enhanced error approach has been applied
200
+ with premarginalisation to electrical impedance tomography [19], diffuse optical tomography
201
+ 3
202
+
203
+ [15], and inversion for coefficient fields in the presence of uncertain conductivities [18].
204
+ Various methods have been developed to estimate or account for model error in Bayesian
205
+ inference. For example, the work [5] presented an iterative algorithm to update an estimate of
206
+ the model error in a model order reduction context, and proved geometric convergence of the
207
+ algorithm. The authors of [20, 21] take a different perspective: instead of viewing model errors
208
+ as additive perturbations to an approximate model, they incorporate these model errors into
209
+ parametrisations of some phenomenon of interest, and use polynomial chaos expansions. Infor-
210
+ mation theory has been used to quantify model error uncertainty or model bias in goal-oriented
211
+ inference settings [11] and by exploiting concentration inequalities [10]. Optimal transport was
212
+ applied to tackle problems due to model errors in [22].
213
+ In the context of Bayesian optimal experimental design, model error is also referred to as
214
+ ‘model uncertainty’. The work [16] considers A-optimal designs for inverse problems in the
215
+ presence of so-called ‘irreducible’ model uncertainties, i.e. uncertainties that cannot be reduced
216
+ by collecting more data. In contrast, the work [3] considers reducible uncertainties, and describes
217
+ an A-optimality criterion that involves marginalising out this reducible uncertainty. The work
218
+ [2] combines the Laplace approximation and the Bayesian approximation error approach to find
219
+ A-optimal designs for nonlinear Bayesian inverse problems.
220
+ As far as we are aware, the work that is most closely related to our paper consists in [6, 8]. The
221
+ work [6] considers Bayesian inverse problems where the observation operator may be nonlinear
222
+ and the model is approximated by a neural network. In particular, [6, Theorem 1] bounds the
223
+ Kullback–Leibler divergence between the original and approximated posterior in terms of an Lp
224
+ norm for p ≥ 2 of the model error itself. In contrast, we consider linear observation operators,
225
+ do not focus on any specific class of approximate models, and bound the Kullback–Leibler
226
+ divergence in terms of an L1 norm of the observed model error. In [8], the main stability estimate
227
+ [8, Theorem 3.4] bounds the expected utility of a design in terms of a sequence of likelihoods.
228
+ The focus of [8] is not model error, but on the convergence of the utility of approximate optimal
229
+ designs corresponding to a convergent sequence of likelihoods. In contrast, we focus on choosing
230
+ observation operators to mitigate the effect of model error on Bayesian inference instead of
231
+ ‘classical’ experimental design, and compare pairs of likelihoods instead of sequences.
232
+ 1.2. Outline
233
+ We describe the notation that we use in Section 1.3. In Section 2 we define the posteriors
234
+ that we analyse in this paper and state our main assumptions. In Section 3 we bound the L1
235
+ µθ
236
+ differences between misfits, and the symmetrised Kullback–Leibler divergences between their
237
+ associated posterior measures. We first consider posteriors defined only on parameter space
238
+ in Section 3.1, before we consider the misfit and posterior obtained from jointly inferring the
239
+ parameter and model error in Section 3.2. We use the Kullback–Leibler bounds to identify
240
+ conditions on observation operators so as to mitigate the effect of model error on parameter
241
+ inference. We conclude in Section 4. Appendix A contains the proofs of lemmas and results
242
+ that we do not write in the main text.
243
+ 1.3. Notation
244
+ Let P be the probability measure of a probability space that serves as a common domain for
245
+ all random variables of interest. Given a measurable space (E, E) and an E-valued random
246
+ variable ξ : (Ω, F) → (E, E), we denote the law of ξ by µξ and write ξ ∼ µξ.
247
+ Given a metric space (E, dE) with Borel σ-algebra B(E), let M1(E) denote the set of all
248
+ 4
249
+
250
+ probability measures µ on (E, B(E)). Thus, for µ ∈ M1(E) and an E-valued random variable
251
+ ξ, the expression ξ ∼ ν means that µξ = ν as measures. Given two measures µ and ν on a
252
+ common measurable space (E, E), we denote the absolute continuity of µ with respect to ν by
253
+ µ ≪ ν and the mutual equivalence of µ and ν by µ ∼ ν. For µ ∈ M1(E), p ≥ 1, and d ∈ N,
254
+ Lp
255
+ µ(E; Rd) := {f : E → Rd : ∥f∥Lp
256
+ µ < ∞},
257
+ ∥f∥p
258
+ Lp
259
+ µ :=
260
+
261
+ E
262
+ |f(x)|pdµ(x).
263
+ We will denote a Gaussian measure with mean m and covariance operator Σ by N(m, Σ).
264
+ The notation a ← b indicates the replacement of a using b.
265
+ We denote the standard Euclidean inner product and norm on Rd by ⟨·, ·⟩ and ∥·∥. For d ∈ N
266
+ and a symmetric positive semidefinite matrix L ∈ Rd×d, the matrix-weighted inner product and
267
+ norm are
268
+ ⟨a, b⟩L := a⊤Lb = ⟨L1/2a, L1/2b⟩,
269
+ ∥a∥L := ⟨a, a⟩1/2
270
+ L
271
+ = ∥L1/2a∥.
272
+ (1.3)
273
+ Below, Θ will denote the parameter space, M will denote the space of models, O will denote
274
+ the space of observation operators, and D will denote the space of model errors.
275
+ Given normed vector spaces (Vi, ∥ · ∥Vi) for i = 1, 2, L (V1, V2) denotes the space of bounded
276
+ linear operators from V1 to V2, and V ∗
277
+ i
278
+ denotes the continuous dual space of Vi. We denote
279
+ the kernel, range, and adjoint of L ∈ L (V1, V2) by ker(L), ran(L), and L∗. In particular, for a
280
+ matrix A ∈ Rm×n, ∥A∥ denotes the norm of A : Rn → Rm where both Rn and Rm are equipped
281
+ with the Euclidean norm.
282
+ 2. Description of assumptions and posterior measures
283
+ Setup and assumptions
284
+ Fix a space (Θ, ∥ · ∥Θ) of admissible unknown parameters or ‘pa-
285
+ rameters’ θ, which we take to be a measurable subset of a Banach space. Fix a Banach space
286
+ (U, ∥ · ∥U) of ‘states’ u. We shall refer to a measurable mapping M : Θ → U as a ‘model’. Let
287
+ M denote a fixed collection of admissible models. We shall refer to M as the ‘model space’.
288
+ In many inverse problems, the state space U is a Banach space of functions on a fixed, bounded
289
+ spatial or spatiotemporal domain D that take values in a common Euclidean space, e.g. U may
290
+ be the space (C(D), ∥ · ∥L∞) of continuous functions on a bounded domain, equipped with the
291
+ supremum norm, or a Sobolev space (Hk(D), ∥ · ∥Hk) for some k > 0. The parameter space
292
+ is also a function space. The model M is often described implicitly, by an ordinary or partial
293
+ differential equation where one or more coefficients are determined by the parameter θ.
294
+ Assumption 2.1. There exists a unique best model M† ∈ M and a unique best parameter
295
+ θ† ∈ Θ such that among all model-unknown pairs (M′, θ′) ∈ M × Θ, the corresponding ‘best
296
+ state’ u† := M†(θ†) describes the phenomenon of interest most accurately.
297
+ The assumption of a unique θ† is commonly made in the context of frequentist statistics,
298
+ where θ† is often referred to as the ‘true parameter’. However, in the context of experimental
299
+ design for statistical inverse problems where observations are assumed to have the form (1.1),
300
+ the question of whether a parameter is the true parameter makes sense only when a parameter-
301
+ to-state map or model has been specified. Hence, for θ† to have the interpretation of the ‘true
302
+ parameter’, we must also fix a unique ‘true model’ M†.
303
+ Remark 2.2. In this paper, we shall consider the setting where the best model M† in Assump-
304
+ tion 2.1 is unknown. However, one may also consider the best model M† to be a model that is
305
+ known but is too expensive to use ‘frequently’, where the meaning of ‘frequently’ depends on the
306
+ 5
307
+
308
+ context or the target application. The model M can be considered as an emulator, a surrogate,
309
+ or a reduced order model; M ideally has the property that it approximates M† reasonably well
310
+ and is cheaper to evaluate than M†.
311
+ Assumption 2.3. There is a fixed collection of measurement functions (ℓi)i∈I indexed by a
312
+ countable set I ⊂ N, where each ℓi is a continuous linear mapping from U to Rd for some d ∈ N.
313
+ In addition, every admissible observation operator O has the form
314
+ O : U → RNd,
315
+ u �→ (ℓi1(u), . . . , ℓiN (u)),
316
+ ij ∈ I,
317
+ (2.1)
318
+ where the (ℓij)N
319
+ j=1 are distinct. Associated to the collection (ℓij)N
320
+ j=1 of measurement functions in
321
+ (2.1) is a collection of random variables (εij)N
322
+ j=1 that are independent and identically N(0, Σ0)-
323
+ distributed, where Σ0 ∈ Rd×d is positive definite.
324
+ The random variables (εij)N
325
+ j=1 represent
326
+ additive measurement noise.
327
+ If U = C(D, ∥ · ∥L∞), then pointwise evaluation functionals of the form ℓij(u) := u(xij) for
328
+ some xij ∈ D give an example of the measurement functions in (2.1).
329
+ An important consequence of the assumptions on the measurement noise (εij)N
330
+ j=1 in Assump-
331
+ tion 2.3 is that the RNd-valued random variable satisfies
332
+ ε := (εi1, . . . , εiN ) ∼ N(0, Σε),
333
+ Σε = diag(Σ0, . . . Σ0) ∈ RNd×Nd.
334
+ The last equation above means that Σε is a block-diagonal matrix with identical blocks that
335
+ do not depend on O. In particular, Σε depends on the choice of O only via the number N
336
+ of observations. One could achieve greater generality by allowing the (εij)N
337
+ j=1 in (2.1) to be
338
+ statistically correlated or to have different distributions. This generality would allow Σε to
339
+ depend not only on N but on O itself.
340
+ In the remainder of this section, we will describe the posterior measures that we shall analyse
341
+ in this paper. For a measurable misfit Φ : Θ → R, we will write
342
+ Z(Φ) :=
343
+
344
+ Θ
345
+ exp(−Φ(θ′))dµθ(θ′)
346
+ to denote the normalisation constant that makes θ′ �→ exp(−Φ(θ′))Z(Φ)−1 a probability density
347
+ function with respect to µθ, whenever the normalisation constant belongs to (0, ∞).
348
+ Approximate posterior
349
+ Given O as in (2.1) and some model M ∈ M , we assume that an
350
+ observation y is a noisy observation of state, i.e. a realisation of the Y := RNd-valued random
351
+ variable
352
+ Y := O ◦ M(θ†) + ε.
353
+ (2.2)
354
+ Given Assumption 2.3, the observation model (2.2), a prior µθ on θ, the data y and Bayes’ law,
355
+ we obtain the approximate misfit Φy,A and the approximate posterior
356
+ Φy,A(θ′) := 1
357
+ 2∥y − O ◦ M(θ′)∥2
358
+ Σ−1
359
+ ε ,
360
+ (2.3a)
361
+ dµy,A
362
+ θ
363
+ (θ′) := exp(−Φy,A(θ′))
364
+ Z(Φy,A)
365
+ dµθ(θ′).
366
+ (2.3b)
367
+ 6
368
+
369
+ Best posterior
370
+ Recall from Assumption 2.1 that u† := M†(θ†) best describes the phenomenon
371
+ of interest. For an arbitrary O ∈ O, the ‘best model’ is given by replacing M with M† in (2.2):
372
+ Y = O ◦ M†(θ†) + ε.
373
+ The corresponding best misfit Φy,† and best posterior µy,†
374
+ θ
375
+ are defined by
376
+ Φy,†(θ′) := 1
377
+ 2∥y − O ◦ M†(θ′)∥2
378
+ Σ−1
379
+ ε ,
380
+ (2.4a)
381
+ dµy,†
382
+ θ (θ′) := exp(−Φy,†(θ′))
383
+ Z(Φy,†)
384
+ dµθ(θ′).
385
+ (2.4b)
386
+ Given M ∈ M , the corresponding ‘model error’ is given by the difference
387
+ δ† := M† − M ∈ D,
388
+ D := M† − M .
389
+ (2.5)
390
+ We refer to D as the ‘model error space’. If the model space M is a vector space, then the
391
+ model error space D and M coincide. If M† is not known or too expensive to evaluate, then
392
+ so is δ†. For the unique, fixed θ† in Assumption 2.1, define the corresponding ‘state error’
393
+ δ†(θ†) = M†(θ†) − M(θ†) ∈ U.
394
+ Rewriting (2.5) as M† = M + δ†, substituting the latter equation into the best observation
395
+ model, and using the linearity of O, we obtain
396
+ Y = O ◦ M(θ†) + O ◦ δ†(θ†) + ε.
397
+ The observation model (2.2) thus corresponds to the assumption of zero observed state error
398
+ O ◦ δ†(θ†).
399
+ Enhanced noise posterior
400
+ One approach that aims to account for the observed state error
401
+ is to group the observed state error O ◦ δ†(θ†) with the noise ε to obtain O ◦ δ†(θ†) + ε, and
402
+ to model this random variable with an ‘enhanced noise’ random variable [12, 13]. This is also
403
+ known as the ‘pre-marginalisation’ approach, e.g. [15]. We approximate the unknown state
404
+ error δ†(θ†) with a random variable u, and make the following assumption.
405
+ Assumption 2.4. The random variable u that approximates the unknown state error δ†(θ†) is
406
+ Gaussian with mean mu and covariance Σu, and is independent of θ ∼ µθ and ε ∼ N(0, Σε).
407
+ Given the distributional assumptions in Assumption 2.4 and the linearity assumption on O in
408
+ Assumption 2.3, it follows from the properties of Gaussian random variables that the enhanced
409
+ noise random variable Ou + ε has the law N(Omu, Σε + OΣuO∗). This yields the enhanced
410
+ noise observation model
411
+ Y = O ◦ M(θ†) + Ou + ε,
412
+ which yields the enhanced noise misfit and enhanced noise posterior
413
+ Φy,E(θ′) := 1
414
+ 2∥y − O ◦ M(θ′) − Omu∥2
415
+ (Σε+OΣuO∗)−1,
416
+ (2.6a)
417
+ dµy,E
418
+ θ
419
+ (θ′) := exp(−Φy,E(θ′))
420
+ Z(Φy,E)
421
+ dµθ(θ′).
422
+ (2.6b)
423
+ 7
424
+
425
+ Joint parameter-error posterior
426
+ In the enhanced noise approach presented in (2.6), we account
427
+ for the uncertainty due to the state error δ†(θ†) by approximating it using a random variable u.
428
+ The only unknown that we aim to infer is θ†. In the joint parameter-error inference approach,
429
+ one aims to infer (θ†, δ†) jointly, by using a random variable (θ, δ) with prior µθ,δ and using
430
+ Bayes’ formula.
431
+ Assumption 2.5. The joint prior on the random variable (θ, δ) is a product measure of the
432
+ form µθ ⊗ µδ, for µθ ∈ M1(Θ) and µδ ∈ M1(D).
433
+ The assumption that the prior µθ,δ on (θ, δ) has product structure is equivalent to the as-
434
+ sumption that θ and δ are independent random variables.
435
+ Under the observation model
436
+ Y = O ◦ M(θ) + O ◦ δ(θ) + ε
437
+ and under the distributional assumptions on ε in Assumption 2.3, we have the joint misfit and
438
+ joint posterior
439
+ Φy,J(θ′, δ′) := 1
440
+ 2∥y − O ◦ M(θ′) − O ◦ δ′(θ′)∥2
441
+ Σ−1
442
+ ε ,
443
+ (2.7a)
444
+ dµy,J
445
+ θ,δ(θ′, δ′) := exp(−Φy,J(θ′, δ′))
446
+ Z(Φy,J)
447
+ dµθ ⊗ µδ(θ′, δ′).
448
+ (2.7b)
449
+ One important disadvantage of jointly inferring the parameter and model error is that the di-
450
+ mension of the space on which one performs inference increases; this tends to make the inference
451
+ task more computationally expensive. It is also known that the problem of identifiability may
452
+ arise, but we shall not consider the problem of identifiability here. On the other hand, jointly
453
+ inferring the parameter and model error is consistent with the Bayesian approach of treating
454
+ all unknowns as random variables and updating these distributions using the data. In addition,
455
+ the joint inference approach offers the possibility to improve a possibly incorrect model M ∈ M
456
+ by posterior estimates of δ†, and thus also the possibility of obtaining better estimates of both
457
+ the parameter θ† as well as the state u† = M†(θ†).
458
+ Marginal posterior
459
+ The marginal approach involves first using the joint inference approach to
460
+ obtain the joint posterior µy,J
461
+ θ,δ on (θ, δ), and then integrating over all δ′ ∈ D:
462
+ µy,M
463
+ θ
464
+ (S) =
465
+
466
+ S×D
467
+ dµy,J
468
+ θ,δ(θ′, δ′),
469
+ S ∈ B(Θ).
470
+ (2.8)
471
+ The marginal posterior µy,M
472
+ θ
473
+ in (2.8) can be approximated by using Monte Carlo integration
474
+ of the joint posterior µy,J
475
+ θ,δ over δ′ ∈ D. The marginal approach inherits the problem of high
476
+ computational cost from the joint inference approach. On the other hand, it has an advantage
477
+ over the enhanced noise approach, namely that it involves a Bayesian update of the distribution
478
+ of δ.
479
+ 3. Error bounds on misfits and posteriors
480
+ In this section we compare the approaches presented above, by using some local Lipschitz
481
+ stability bounds with respect to the Kullback–Leibler divergence. Recall that the Kullback–
482
+ Leibler divergence between two probability measures µ and ν on a metric space (E, dE) is given
483
+ 8
484
+
485
+ by
486
+ dKL(µ∥ν) :=
487
+ ��
488
+ E log dµ
489
+ dν dµ
490
+ µ ≪ ν
491
+ +∞
492
+ otherwise.
493
+ (3.1)
494
+ Given µ ∈ M1(E) and Φ ∈ L1
495
+ µ(E; R), define µΦ ∈ M1(E) by
496
+ dµΦ
497
+ dµ (x′) = exp(−Φ(x′))
498
+ Z(Φ)
499
+ ,
500
+ Z(Φ) :=
501
+
502
+ E
503
+ exp(−Φ(x′))dµ(x′).
504
+ For a measure µ on some measurable space (E, E) and a measurable function f : E → R,
505
+ ess infµf denotes the essential infimum of f with respect to µ.
506
+ The following local Lipschitz stability result is due to [23].
507
+ Theorem 3.1. Let µ ∈ M1(E), Φ(1) ∈ L1
508
+ µ(E; R≥0), and Φ(2) ∈ L1
509
+ µ(E; R).
510
+ Assume that
511
+ ess infµΦ(1) = 0. Then
512
+ dKL(µΦ(1)∥µΦ(2))
513
+ ≤ 2 exp
514
+
515
+ − min{ess infµΦ(2), 0} + ∥Φ(1)∥L1µ + ∥Φ(1) − Φ(2)∥L1µ
516
+
517
+ ∥Φ(1) − Φ(2)∥L1µ,
518
+ and thus µΦ(1) is absolutely continuous with respect to µΦ(2). In particular,
519
+ max{dKL(µΦ(1)∥µΦ(2)), dKL(µΦ(2)∥µΦ(1))}
520
+ ≤ 2 exp
521
+
522
+ − min{ess infµΦ(2), 0} + 2∥Φ(1)∥L1µ + 2∥Φ(2)∥L1µ
523
+
524
+ ∥Φ(1) − Φ(2)∥L1µ,
525
+ and thus µΦ(1) is mutually equivalent to µΦ(2).
526
+ Proof. The first statement follows by combining [23, Theorem 11] and [23, Proposition 6]. By
527
+ the triangle inequality,
528
+ max{∥Φ(1)∥L1µ + ∥Φ(1) − Φ(2)∥L1µ, ∥Φ(2)∥L1µ + ∥Φ(1) − Φ(2)∥L1µ} ≤ 2∥Φ(1)∥L1µ + 2∥Φ(2)∥L1µ,
529
+ and thus the second statement follows from the first.
530
+ Below, we will use Theorem 3.1 to bound the Kullback–Leibler error between pairs of poste-
531
+ riors, for the posteriors defined in Section 2.
532
+ Recall that the Hellinger metric between µ, ν ∈ M1(E) is defined by
533
+ d2
534
+ H(µ, ν) :=
535
+
536
+ E
537
+ ��
538
+
539
+ dλ −
540
+
541
+
542
+
543
+ �2
544
+ dλ,
545
+ where λ is any measure such that both µ ≪ λ and ν ≪ λ. The definition of dH(µ, ν) does not
546
+ depend on the choice of ν. The Hellinger metric and Kullback–Leibler divergence satisfy
547
+ d2
548
+ H(µ, ν) ≤ dKL(µ∥ν),
549
+ see e.g. [25, Lemma 2.4]. Hence, the bounds on the Kullback–Leibler error that we present
550
+ below imply bounds with respect to the Hellinger metric.
551
+ 9
552
+
553
+ 3.1. Kullback–Leibler error of posteriors on parameter space
554
+ 3.1.1. Error with respect to the best posterior
555
+ Error of approximate posterior with respect to best posterior
556
+ In Lemma 3.2 below, we bound
557
+ the L1
558
+ µθ error between the approximate misfit Φy,A and the best misfit Φy,† defined in (2.3a)
559
+ and (2.4a) respectively. We express the bound in terms of the average observed model error
560
+ O ◦ δ†.
561
+ Lemma 3.2. Suppose Φy,† ∈ L1
562
+ µθ. If Φy,A ∈ L1
563
+ µθ, then
564
+ ∥Φy,† − Φy,A∥L1µθ ≤ 2−1/2∥∥O ◦ δ†∥2
565
+ Σ−1
566
+ ε ∥1/2
567
+ L1µθ
568
+
569
+ ∥Φy,†∥1/2
570
+ L1µθ + ∥Φy,A∥1/2
571
+ L1µθ
572
+
573
+ .
574
+ (3.2)
575
+ where
576
+ ∥∥O ◦ δ†∥2
577
+ Σ−1
578
+ ε ∥L1µθ ≤ 21/2�
579
+ ∥Φy,†∥1/2
580
+ L1µθ + ∥Φy,A∥1/2
581
+ L1µθ
582
+
583
+ .
584
+ (3.3)
585
+ See Appendix A.1.1 for the proof of Lemma 3.2.
586
+ Remark 3.3. Combining (3.2) and (3.3) yields
587
+ ∥Φy,† − Φy,A∥L1µθ ≤
588
+
589
+ ∥Φy,†∥1/2
590
+ L1µθ + ∥Φy,A∥1/2
591
+ L1µθ
592
+ �2.
593
+ Since
594
+ ∥Φy,†∥L1µθ + ∥Φy,A∥L1µθ ≤
595
+
596
+ ∥Φy,†∥1/2
597
+ L1µθ + ∥Φy,A∥1/2
598
+ L1µθ
599
+ �2,
600
+ it follows that (3.2) and (3.3) together are not optimal: they yield a worse bound on ∥Φy,† −
601
+ Φy,A∥L1µθ than the bound we could obtain using the triangle inequality. However, the bound
602
+ (3.2) is useful, because it bounds ∥Φy,† − Φy,A∥L1µθ in terms of the average observed model error
603
+ ∥∥O ◦ δ†∥2
604
+ Σ−1
605
+ ε ∥1/2
606
+ L1µθ and quantities that are assumed to be finite.
607
+ Proposition 3.4. If Φy,A, Φy,† ∈ L1
608
+ µθ(Θ, R), then
609
+ max{dKL(µy,A
610
+ θ
611
+ ∥µy,†
612
+ θ ), dKL(µy,†
613
+ θ ∥µy,A
614
+ θ
615
+ )} ≤C∥∥O ◦ δ†∥2
616
+ Σ−1
617
+ ε ∥1/2
618
+ L1µθ
619
+ for
620
+ C = C(∥Φy,A∥L1µθ , ∥Φy,†∥L1µθ ) := 21/2 exp(2∥Φy,†∥L1µθ + 2∥Φy,A∥L1µθ )
621
+
622
+ ∥Φy,†∥1/2
623
+ L1µθ + ∥Φy,A∥1/2
624
+ L1µθ
625
+
626
+ .
627
+ The constant C in Proposition 3.4 is not optimal. The main value in defining C is to show
628
+ that, given the hypotheses, the constant C is finite.
629
+ Proof of Proposition 3.4. By the definition (2.3a) of Φy,A, it follows that ess infµΦy,A ≥ 0, so
630
+ min{ess infµθΦy,A, 0} = 0. Given that Φy,A, Φy,† ∈ L1
631
+ µθ, we may apply Lemma 3.2, and also the
632
+ second statement of Theorem 3.1 with Φ(1) ← Φy,†, Φ(2) ← Φy,A, and µ ← µθ, which yields
633
+ max{dKL(µy,A
634
+ θ
635
+ ∥µy,†
636
+ θ ), dKL(µy,†
637
+ θ ∥µy,A
638
+ θ
639
+ )}
640
+ ≤2 exp
641
+
642
+ 2∥Φy,A∥L1µθ + 2∥Φy,†∥L1µθ
643
+
644
+ ∥Φy,† − Φy,A∥L1µθ
645
+ ≤21/2 exp
646
+
647
+ 2∥Φy,A∥L1µθ + 2∥Φy,†∥L1µθ
648
+ ��
649
+ ∥Φy,†∥1/2
650
+ L1µθ + ∥Φy,A∥1/2
651
+ L1µθ
652
+
653
+ ∥∥O ◦ δ†∥2
654
+ Σ−1
655
+ ε ∥1/2
656
+ L1µθ .
657
+ This completes the proof of Proposition 3.4.
658
+ 10
659
+
660
+ If M† is not completely known, then neither are Φy,† nor δ†. Furthermore, it may be difficult
661
+ to compute ∥Φy,A∥L1µθ exactly. Thus, it will in general be difficult to compute the constant C
662
+ in Proposition 3.4.
663
+ Proposition 3.4 shows that the Kullback–Leibler divergences of the approximate posterior
664
+ µy,A
665
+ θ
666
+ with respect to the best posterior µy,†
667
+ θ
668
+ and vice versa are controlled by the average ob-
669
+ served model error ∥∥O ◦δ†∥2
670
+ Σ−1
671
+ ε ∥1/2
672
+ L1µθ . In order for dKL(µy,A
673
+ θ
674
+ ∥µy,†
675
+ θ ) or dKL(µy,†
676
+ θ ∥µy,A
677
+ θ
678
+ ) to be small,
679
+ Proposition 3.4 suggests that one could choose the observation operator O such that δ† takes
680
+ values in or near ker(O) with high µθ-probability. In particular, if the observation operator O
681
+ satisfies
682
+ P(O ◦ δ†(θ) = 0) = 1
683
+ (3.4)
684
+ then the corresponding approximate posterior and the best posterior coincide.
685
+ This is not
686
+ surprising, since if (3.4) holds then Φy,† = Φy,A coincide µθ-almost everywhere, by Lemma 3.2,
687
+ and hence µy,†
688
+ θ
689
+ and µy,A
690
+ θ
691
+ coincide.
692
+ The condition (3.4) can be useful for guiding the choice of observation operator O even if δ† is
693
+ not fully known. For example, if the state space U is a Hilbert space, and if one can determine
694
+ a priori that δ† takes values in some proper subspace V of U without knowing δ† exactly, then
695
+ any choice of observation operator O such that V ⊆ ker(O) will yield an approximate posterior
696
+ µy,A
697
+ θ
698
+ that agrees with the best posterior µy,†
699
+ θ . The problem then consists in choosing O so that
700
+ ker(O) is as small as possible, while satisfying the constraint that the model error takes values
701
+ in ker(O) µθ-almost surely. The payoff in choosing O in this way is that Bayesian inference with
702
+ µy,A
703
+ θ
704
+ will be as good as Bayesian inference with µy,†
705
+ θ . Thus, the key idea in choosing observation
706
+ operators to mitigate the effect of model error on Bayesian inference is to exploit all available
707
+ knowledge about the model error.
708
+ Remark 3.5. Recall from Remark 2.2 that we may also interpret M as a reduced-order model
709
+ or surrogate for a more accurate but costly model M†. The preceding discussion then implies
710
+ that, for suitably chosen observation operators, Bayesian inference with µy,A
711
+ θ
712
+ will be as good as
713
+ µy,†
714
+ θ , and have smaller computational cost.
715
+ Error of enhanced noise posterior with respect to best posterior
716
+ Lemma 3.6 below bounds
717
+ the L1
718
+ µθ error between the misfits Φy,† and Φy,E from (2.4a) and (2.6a) respectively. The bound
719
+ indicates the importance of the shifted observed model error term O ◦ (δ† − mu) and difference
720
+ Σ−1
721
+ ε
722
+ − (Σε + OΣuO∗)−1 of covariance matrices.
723
+ Define the scalar
724
+ CE := ∥Σ−1/2
725
+ ε
726
+ (Σε + OΣuO∗)1/2∥.
727
+ (3.5)
728
+ By Lemma A.1, CE satisfies
729
+ ∥z∥Σ−1
730
+ ε
731
+ ≤ CE∥z∥(Σε+OΣuO∗)−1,
732
+ z ∈ Rd.
733
+ Lemma 3.6. Suppose Φy,† ∈ L1
734
+ µθ. If Φy,E ∈ L1
735
+ µθ, then for CE as in (3.5),
736
+ ∥Φy,† − Φy,E∥L1µθ ≤2−1/2∥∥O ◦ (δ† − mu)∥2
737
+ Σ−1
738
+ ε ∥1/2
739
+ L1µθ
740
+
741
+ ∥Φy,†∥1/2
742
+ L1µθ + CE∥Φy,E∥1/2
743
+ L1µθ
744
+
745
+ (3.6)
746
+ + 2−1∥∥y − O ◦ M − Omu∥2
747
+ Σ−1
748
+ ε
749
+ −(Σε+OΣuO∗)−1∥L1µθ .
750
+ Furthermore,
751
+ ∥∥O ◦ (δ† − mu)∥2
752
+ Σ−1
753
+ ε ∥1/2
754
+ L1µθ ≤21/2�
755
+ ∥Φy,†∥1/2
756
+ L1µθ + CE∥Φy,E∥1/2
757
+ L1µθ
758
+
759
+ ,
760
+ ∥∥y − O ◦ M − Omu∥2
761
+ Σ−1
762
+ ε
763
+ −(Σε+OΣuO∗)−1∥L1µθ ≤(CE + 1)∥2Φy,E∥L1µθ .
764
+ 11
765
+
766
+ See Appendix A.1.1 for the proof of Lemma 3.6.
767
+ Proposition 3.7. If Φy,E, Φy,† ∈ L1
768
+ µθ(Θ, R), then
769
+ max{dKL(µy,†
770
+ θ ∥µy,E
771
+ θ
772
+ ), dKL(µy,E
773
+ θ
774
+ ∥µy,†
775
+ θ )}
776
+ ≤C
777
+
778
+ ∥∥O ◦ (δ† − mu)∥2
779
+ Σ−1
780
+ ε ∥1/2
781
+ L1µθ + ∥∥y − O ◦ M − Omu∥2
782
+ Σ−1
783
+ ε
784
+ −(Σε+OΣuO∗)−1∥L1µθ
785
+
786
+ for C = C(∥Φy,E∥L1µθ , ∥Φy,†∥L1µθ , CE), where
787
+ C := exp
788
+
789
+ 2∥Φy,†∥L1µθ + 2∥Φy,E∥L1µθ
790
+
791
+ max
792
+ �√
793
+ 2
794
+
795
+ ∥Φy,†∥1/2
796
+ L1µθ + CE∥Φy,E∥1/2
797
+ L1µθ
798
+
799
+ , 1
800
+
801
+ .
802
+ As with Proposition 3.4, the importance of the constant C above is that C is finite under the
803
+ hypotheses of Proposition 3.7.
804
+ Proof of Proposition 3.7. By the definition (2.6a) of Φy,E, it follows that ess infµΦy,E ≥ 0, so
805
+ min{ess infµθΦy,E, 0} = 0. Given that Φy,E, Φy,† ∈ L1
806
+ µθ, we may apply Theorem 3.1 with Φ(1) ←
807
+ Φy,†, Φ(2) ← Φy,E, and µ ← µθ, to obtain
808
+ max{dKL(µy,†
809
+ θ ∥µy,E
810
+ θ
811
+ ), dKL(µy,E
812
+ θ
813
+ ∥µy,†
814
+ θ )}
815
+ ≤2 exp
816
+
817
+ 2∥Φy,E∥L1µθ + 2∥Φy,†∥L1µθ
818
+
819
+ ∥Φy,† − Φy,E∥L1µθ
820
+ ≤ exp
821
+
822
+ 2∥Φy,E∥L1µθ + 2∥Φy,†∥L1µθ
823
+
824
+ max{
825
+
826
+ 2
827
+
828
+ ∥Φy,†∥1/2
829
+ L1µθ + CE∥Φy,E∥1/2
830
+ L1µθ
831
+
832
+ , 1}
833
+ ×
834
+
835
+ ∥∥O ◦ (δ† − mu)∥2
836
+ Σ−1
837
+ ε ∥1/2
838
+ L1µθ + ∥∥y − O ◦ M − Omu∥2
839
+ Σ−1
840
+ ε
841
+ −(Σε+OΣuO∗)−1∥L1µθ
842
+
843
+ where the second inequality follows from the bound (3.6) of Lemma 3.6.
844
+ The significance of Proposition 3.7 is similar to that of Proposition 3.4. The main differences
845
+ follow from the fact the L1
846
+ µθ error between the enhanced noise misfit Φy,E and the best misfit
847
+ Φy,† — and hence also the Kullback–Leibler error between µy,E
848
+ θ
849
+ and µy,†
850
+ θ
851
+ — is now controlled
852
+ by the sum
853
+ ∥∥O ◦ (δ† − mu)∥2
854
+ Σ−1
855
+ ε ∥1/2
856
+ L1µθ + ∥∥y − O ◦ M − Omu∥2
857
+ Σ−1
858
+ ε
859
+ −(Σε+OΣuO∗)−1∥L1µθ .
860
+ (3.7)
861
+ Recall from Section 2 that the enhanced noise approach consists in modelling the unknown
862
+ state correction term δ†(θ†) ∈ U by a Gaussian random variable u ∼ N(mu, Σu). Since Σ−1
863
+ ε
864
+ is
865
+ invertible by Assumption 2.3, the first term in (3.7) vanishes if and only if δ† − mu ∈ ker(O)
866
+ µθ-almost surely. This condition differs from the sufficient condition for µy,†
867
+ θ
868
+ = µy,A
869
+ θ
870
+ that was
871
+ implied by Lemma 3.2, namely, that δ† ∈ ker(O) µθ-almost surely. The difference consists in
872
+ the mu term.
873
+ By recalling (1.3), the second term in (3.7) vanishes if and only if
874
+ P
875
+
876
+ y − O ◦ M(θ) − Omu ∈ ker
877
+
878
+ Σ−1
879
+ ε
880
+ − (Σε + OΣuO∗)−1�
881
+ = 1.
882
+ (3.8)
883
+ By a rearrangement of the Woodbury formula that we obtained from [7, Eq. (3)], we have
884
+ Σ−1
885
+ ε
886
+ − (Σε + OΣuO∗)−1 = Σ−1
887
+ ε OΣuO∗Σ−1
888
+ ε (Σε + OΣuO)−1Σ−1
889
+ ε .
890
+ The equation above holds for non-invertible OΣuO∗. If OΣuO∗ = 0, then both sides of the
891
+ equation above vanish, and thus the condition (3.8) follows immediately. Since Σu describes the
892
+ 12
893
+
894
+ covariance of the U-valued random model u of the state error δ†(θ†), the condition OΣuO∗ = 0
895
+ has the equivalent formulation that the RNd-valued random variable Ou is constant P-almost
896
+ surely. Since Ou = O(u − mu) + Omu, the latter condition is equivalent to u − mu ∈ ker(O)
897
+ P-almost surely. More generally, if OΣuO∗ is nonzero but has non-trivial kernel, then Σ−1
898
+ ε
899
+
900
+ (Σε + OΣuO∗)−1 also has a non-trivial kernel, and it may be possible for (3.8) to be satisfied.
901
+ If one knows a priori that the image of Θ under δ† is contained in some affine subspace x + V
902
+ of U for a linear subspace V of U, then one can exploit this information. For example, given
903
+ the enhanced noise model N(mu, Σu), one should choose the observation operator O so that
904
+ V ⊆ mu + ker(O) and u takes values in mu + ker(O) P-almost surely. In this case, the enhanced
905
+ noise posterior µy,E
906
+ θ
907
+ and the best posterior µy,†
908
+ θ
909
+ will coincide.
910
+ 3.1.2. Error of enhanced noise posterior with respect to approximate posterior
911
+ Lemma 3.8. Suppose Φy,A ∈ L1
912
+ µθ. If Φy,E ∈ L1
913
+ µθ, then for CE as in (3.5),
914
+ ∥Φy,A − Φy,E∥L1µθ ≤2−1/2∥Omu∥Σ−1
915
+ ε
916
+
917
+ ∥Φy,A∥1/2
918
+ L1µθ + CE∥Φy,E∥1/2
919
+ L1µθ
920
+
921
+ (3.9)
922
+ + 2−1∥∥y − O ◦ M − Omu∥2
923
+ Σ−1
924
+ ε
925
+ −(Σε+OΣuO∗)−1∥L1µθ
926
+ where ∥∥y − O ◦ M − Omu∥2
927
+ Σ−1
928
+ ε
929
+ −(Σε+OΣuO∗)−1∥L1µθ satisfies the bound in Lemma 3.6.
930
+ For the proof of Lemma 3.8, see Appendix A.1.2.
931
+ Proposition 3.9. If Φy,A, Φy,E ∈ L1
932
+ µθ(Θ, R), then
933
+ max{dKL(µy,A
934
+ θ
935
+ ∥µy,E
936
+ θ
937
+ ), dKL(µy,E
938
+ θ
939
+ ∥µy,A
940
+ θ
941
+ )}
942
+ ≤C
943
+
944
+ ∥Omu∥Σ−1
945
+ ε
946
+ + ∥∥y − O ◦ M − Omu∥2
947
+ Σ−1
948
+ ε
949
+ −(Σε+OΣuO∗)−1∥L1µθ
950
+
951
+ for C = C(∥Φy,E∥L1µθ , ∥Φy,A∥L1µθ , CE), where
952
+ C := exp
953
+
954
+ 2∥Φy,A∥L1µθ + 2∥Φy,E∥L1µθ
955
+
956
+ max
957
+ �√
958
+ 2
959
+
960
+ ∥Φy,A∥1/2
961
+ L1µθ + CE∥Φy,E∥1/2
962
+ L1µθ
963
+
964
+ , 1
965
+
966
+ .
967
+ Proof of Proposition 3.9. By Theorem 3.1 and Lemma 3.8,
968
+ max{dKL(µy,A
969
+ θ
970
+ ∥µy,E
971
+ θ
972
+ ), dKL(µy,E
973
+ θ
974
+ ∥µy,A
975
+ θ
976
+ )}
977
+ ≤2 exp
978
+
979
+ 2∥Φy,E∥L1µθ + 2∥Φy,A∥L1µθ
980
+
981
+ ∥Φy,A − Φy,E∥L1µθ
982
+ ≤ exp
983
+
984
+ 2∥Φy,E∥L1µθ + 2∥Φy,A∥L1µθ
985
+
986
+ max{
987
+
988
+ 2
989
+
990
+ ∥Φy,A∥1/2
991
+ L1µθ + CE∥Φy,E∥1/2
992
+ L1µθ
993
+
994
+ , 1}
995
+ ×
996
+
997
+ ∥Omu∥Σ−1
998
+ ε
999
+ + ∥∥y − O ◦ M − Omu∥2
1000
+ Σ−1
1001
+ ε
1002
+ −(Σε+OΣuO∗)−1∥L1µθ
1003
+
1004
+ .
1005
+ This completes the proof of Proposition 3.9.
1006
+ Proposition 3.9 implies that if, given an enhanced noise model with mean mu and covariance
1007
+ Σu, one chooses the observation operator O so that
1008
+ ∥Omu∥Σ−1
1009
+ ε
1010
+ = ∥∥y − O ◦ M − Omu∥2
1011
+ Σ−1
1012
+ ε
1013
+ −(Σε+OΣuO∗)−1∥L1µθ = 0,
1014
+ then the enhanced noise posterior µy,E
1015
+ θ
1016
+ and the approximate posterior µy,A
1017
+ θ
1018
+ coincide. Equiva-
1019
+ lently, Omu = 0 and (3.8) together imply that µy,E
1020
+ θ
1021
+ = µy,A
1022
+ θ
1023
+ . Thus, such a choice of observation
1024
+ 13
1025
+
1026
+ operator yields an enhanced noise posterior µy,E
1027
+ θ
1028
+ that does not account for model error, in which
1029
+ case it would be simpler to use the approximate posterior µy,A
1030
+ θ
1031
+ instead. By the contrapositive
1032
+ statement, if µy,E
1033
+ θ
1034
+ and µy,A
1035
+ θ
1036
+ differ, then either Omu does not vanish, or (3.8) does not hold. If
1037
+ OΣuO∗ = 0, then (3.8) does not hold if and only if
1038
+ P(y − O ◦ M(θ) − Omu ̸= 0) > 0.
1039
+ We expect that in many cases, the latter condition will hold — and thus that µy,A
1040
+ θ
1041
+ and µy,E
1042
+ θ
1043
+ will
1044
+ differ — for a large collection of observation operators.
1045
+ 3.2. Kullback–Leibler error of joint parameter-error posterior
1046
+ Recall from (2.7) that the joint misfit and the joint posterior are defined by
1047
+ Φy,J(θ′, δ′) := 1
1048
+ 2∥y − O ◦ M(θ′) − O ◦ δ′(θ′)∥2
1049
+ Σ−1
1050
+ ε ,
1051
+ dµy,J
1052
+ θ,δ(θ′, δ′) := exp(−Φy,J(θ′, δ′))
1053
+ Z(Φy,J)
1054
+ dµθ ⊗ µδ(θ′, δ′).
1055
+ In this section, we shall compare µy,J
1056
+ θ
1057
+ ∈ M1(Θ×D) with the other posterior measures considered
1058
+ so far. To do this, we need to redefine these posteriors as measures on Θ × D.
1059
+ For • ∈ {A, †, E}, define the lifted misfit and lifted posterior by
1060
+ Φy,•(θ′, δ′) := Φy,•(θ′),
1061
+ (3.11a)
1062
+ dµy,•
1063
+ θ,δ(θ′, δ′) := exp(−Φy,•(θ′, δ′))
1064
+ Z(Φy,•)
1065
+ dµθ ⊗ µδ,
1066
+ (3.11b)
1067
+ where the definition (3.11b) follows from Assumption 2.5, namely that the joint prior is a
1068
+ product measure.
1069
+ Note that in (3.11a), we use the notation Φy,• to refer to two functions defined on different
1070
+ domains. The following lemma shows that this abuse of notation is not problematic.
1071
+ Lemma 3.10. Let µθ, µδ, Φy,• and µy,•
1072
+ θ,δ be as in (3.11). Then for • ∈ {A, †, E},
1073
+ dµy,•
1074
+ θ,δ(θ′, δ′) = dµy,•
1075
+ θ (θ′) ⊗ µδ(δ′).
1076
+ (3.12)
1077
+ If Φy,• : Θ → R belongs to L1
1078
+ µθ, then its lifted version Φy,• defined in (3.11a) belongs to L1
1079
+ µθ⊗µδ,
1080
+ and for every q > 0,
1081
+ ∥Φy,•∥Lq
1082
+ µθ⊗µδ = ∥Φy,•∥Lq
1083
+ µθ .
1084
+ (3.13)
1085
+ Proof. The second statement follows immediately from the definition (3.11a).
1086
+ For the first
1087
+ statement, observe that
1088
+
1089
+ Θ×D
1090
+ exp(−Φy,•(θ′, δ′))dµθ ⊗ µδ(θ′, δ′) =
1091
+
1092
+ Θ
1093
+ exp(−Φy,•(θ′))dµθ(θ′).
1094
+ Thus, the normalisation constant Z(Φy,•) for the lifted posterior µy,•
1095
+ θ,δ in (3.11b) agrees with the
1096
+ corresponding normalisation constant for the posterior µy,•
1097
+ θ . This implies (3.12).
1098
+ 14
1099
+
1100
+ Notation:
1101
+ Recall from Section 1.3 that P denotes the probability measure in the probability
1102
+ space on which we define all random variables. In this subsection, we will sometimes write the
1103
+ random variables θ and δ explicitly, and take Lp-norms with respect to P instead of µθ ⊗ µδ.
1104
+ For example,
1105
+ ∥∥O ◦ (δ† − δ)(θ)∥2
1106
+ Σ−1
1107
+ ε ∥L1
1108
+ P =
1109
+
1110
+ Θ×D
1111
+ ∥O ◦ (δ† − δ′)(θ′)∥2
1112
+ Σ−1
1113
+ ε dµθ ⊗ µδ(θ′, δ′).
1114
+ See Lemma 3.11 below for an example where we use this notation.
1115
+ Error with respect to lifted best posterior
1116
+ Lemma 3.11. Let Φy,† be defined as in (3.11a) with • = †. If Φy,† ∈ L1
1117
+ µθ and Φy,J ∈ L1
1118
+ µθ⊗µδ,
1119
+ then
1120
+ ∥Φy,† − Φy,J∥L1
1121
+ µθ⊗µδ ≤ 2−1/2∥∥O ◦ (δ† − δ)(θ)∥2
1122
+ Σ−1
1123
+ ε ∥1/2
1124
+ L1
1125
+ P
1126
+
1127
+ ∥Φy,J∥1/2
1128
+ L1
1129
+ µθ⊗µδ
1130
+ + ∥Φy,†∥1/2
1131
+ L1µθ
1132
+
1133
+ .
1134
+ (3.14)
1135
+ Furthermore,
1136
+ ∥∥O ◦ (δ† − δ)(θ)∥2
1137
+ Σ−1
1138
+ ε ∥1/2
1139
+ L1
1140
+ P ≤ 21/2�
1141
+ ∥Φy,J∥1/2
1142
+ L1
1143
+ µθ⊗µδ
1144
+ + ∥Φy,†∥1/2
1145
+ L1µθ
1146
+
1147
+ .
1148
+ Proposition 3.12. Let Φy,† and Φy,J be as in Lemma 3.11 and let µy,†
1149
+ θ,δ be defined as in (3.11b)
1150
+ with • = †. Then
1151
+ max{dKL(µy,†
1152
+ θ,δ∥µy,J
1153
+ θ,δ), dKL(µy,J
1154
+ θ,δ∥µy,†
1155
+ θ,δ)} ≤ C∥∥O ◦ (δ† − δ)(θ)∥2
1156
+ Σ−1
1157
+ ε ∥1/2
1158
+ L1
1159
+ P ,
1160
+ where
1161
+ C = 21/2 exp
1162
+
1163
+ 2∥Φy,J∥L1
1164
+ µθ⊗µδ + 2∥Φy,†∥L1µθ
1165
+ ��
1166
+ ∥Φy,J∥1/2
1167
+ L1
1168
+ µθ⊗µδ
1169
+ + ∥Φy,†∥1/2
1170
+ L1µθ
1171
+
1172
+ .
1173
+ See Appendix A.2 for the proofs of Lemma 3.11 and Proposition 3.12.
1174
+ By Proposition 3.12, a sufficient condition for µy,J
1175
+ θ,δ to coincide with µy,†
1176
+ θ,δ is
1177
+ P
1178
+
1179
+ (δ† − δ)(θ) ∈ ker(O)
1180
+
1181
+ = 1.
1182
+ (3.15)
1183
+ For example, suppose that one knows a priori that there exist a vector x ∈ U and a linear
1184
+ subspace V of U such that
1185
+ {δ†(θ′) : θ′ ∈ Θ} ⊆ x + V.
1186
+ Suppose that (D, ⟨·, ·⟩D) is a Hilbert space and δ ∼ µδ = N(mδ, Σδ). Then mδ + Σ1/2
1187
+ δ
1188
+ D is the
1189
+ Cameron–Martin space of µδ, and the support supp(µδ) of µδ is the closure of mδ +Σ1/2
1190
+ δ
1191
+ D with
1192
+ respect to ∥ · ∥D. Assume there exists y ∈ U and a closed linear subspace W ⊆ U such that
1193
+ {δ′(θ′) : θ′ ∈ Θ, δ′ ∈ supp(µδ)} ⊆ y + W.
1194
+ If for every v ∈ V and w ∈ W it holds that (x+v)−(y +w) ∈ ker(O), then the condition (3.15)
1195
+ holds.
1196
+ The preceding example suggests that, in general, it may be difficult to choose µδ and O so
1197
+ that µy,†
1198
+ θ,δ and µy,J
1199
+ θ,δ coincide. This is to be expected, since the lifted best posterior measure µy,†
1200
+ θ,δ
1201
+ is a product measure with δ-marginal equal to µδ, whereas for many reasonable choices of µδ
1202
+ the joint posterior measure µy,J
1203
+ θ,δ will not have δ-marginal equal to µδ.
1204
+ 15
1205
+
1206
+ Error with respect to lifted approximate posterior
1207
+ Lemma 3.13. Let Φy,A be defined as in (3.11a) with • = A. If Φy,A ∈ L1
1208
+ µθ and Φy,J ∈ L1
1209
+ µθ⊗µδ,
1210
+ then
1211
+ ∥Φy,A − Φy,J∥L1
1212
+ µθ⊗µδ ≤ 2−1/2∥∥O ◦ δ(θ)∥2
1213
+ Σ−1
1214
+ ε ∥1/2
1215
+ L1
1216
+ P
1217
+
1218
+ ∥Φy,J∥1/2
1219
+ L1
1220
+ µθ⊗µδ
1221
+ + ∥Φy,A∥1/2
1222
+ L1µθ
1223
+
1224
+ .
1225
+ (3.16)
1226
+ Furthermore,
1227
+ ∥∥O ◦ δ(θ)∥2
1228
+ Σ−1
1229
+ ε ∥1/2
1230
+ L1
1231
+ P ≤ 21/2�
1232
+ ∥Φy,J∥1/2
1233
+ L1
1234
+ µθ⊗µδ
1235
+ + ∥Φy,A∥1/2
1236
+ L1µθ
1237
+
1238
+ .
1239
+ Proposition 3.14. Let Φy,A and Φy,J be as in Lemma 3.13 and let µy,A
1240
+ θ,δ be defined as in (3.11b)
1241
+ with • = A. Then
1242
+ max{dKL(µy,A
1243
+ θ,δ ∥µy,J
1244
+ θ,δ), dKL(µy,J
1245
+ θ,δ∥µy,A
1246
+ θ,δ )} ≤ C∥∥O ◦ δ(θ)∥2
1247
+ Σ−1
1248
+ ε ∥1/2
1249
+ L1
1250
+ P ,
1251
+ where
1252
+ C = 21/2 exp
1253
+
1254
+ 2∥Φy,J∥L1
1255
+ µθ⊗µδ + 2∥Φy,A∥L1µθ
1256
+ ��
1257
+ ∥Φy,J∥1/2
1258
+ L1
1259
+ µθ⊗µδ
1260
+ + ∥Φy,A∥1/2
1261
+ L1µθ
1262
+
1263
+ .
1264
+ See Appendix A.2 for the proofs of Lemma 3.13 and Proposition 3.14.
1265
+ By Proposition 3.14, a sufficient condition for µy,A
1266
+ θ,δ and µy,J
1267
+ θ,δ to coincide is that δ(θ) ∈ ker(O),
1268
+ P-almost surely. By the same reasoning that we used when considering µy,†
1269
+ θ,δ and µy,J
1270
+ θ,δ, we do not
1271
+ expect µy,A
1272
+ θ,δ and µy,J
1273
+ θ,δ to coincide, since the former is a product measure with δ-marginal equal
1274
+ to µδ, and the latter will not have this property in general.
1275
+ Connection with parametrised background data-weak approach
1276
+ Recall the definition (2.1) of
1277
+ the observation operator as O := (ℓi1, . . . , ℓiN ). Suppose the state space U is a Hilbert space and
1278
+ d = 1, i.e. suppose that the measurement functions (ℓij)N
1279
+ j=1 are continuous linear functionals
1280
+ on U with Riesz representatives denoted by (Rℓij)N
1281
+ j=1 ⊂ U. Then the condition δ(θ) ∈ ker(O) is
1282
+ equivalent to δ(θ) ∈ (span(Rℓij, j = 1, . . . , N))⊥. We may reformulate the necessary condition
1283
+ for µy,A
1284
+ θ,δ and µy,J
1285
+ θ,δ to differ, namely that δ(θ) /∈ ker(O) with positive P-probability, as δ(θ) ∈
1286
+ span(Rℓij, j = 1, . . . , N) with positive P-probability.
1287
+ Given the interpretation of δ(θ) as a
1288
+ state correction term, the condition that δ(θ) ∈ span(Rℓij, j = 1, . . . , N) closely resembles the
1289
+ ‘variational update’ from the parametrised background data-weak approach for state inference;
1290
+ see e.g. [17, Section 2.3].
1291
+ It is possible to state and prove the analogues of the preceding bounds for the lifted enhanced
1292
+ noise posterior µy,E
1293
+ θ,δ . These bounds are not relevant for the main goal of this paper. However,
1294
+ for the sake of completeness, we state them in Appendix A.2.
1295
+ 3.3. Kullback–Leibler error of marginal posterior
1296
+ Recall from (2.8) that the marginal posterior is defined by
1297
+ µy,M
1298
+ θ
1299
+ (S) =
1300
+
1301
+ S×D
1302
+ dµy,J
1303
+ θ,δ(θ′, δ′),
1304
+ S ∈ B(Θ).
1305
+ In Section 3.2, we bounded the Kullback–Leibler error of the joint posterior µy,J
1306
+ θ,δ with respect
1307
+ to the lifted posteriors µy,•
1308
+ θ,δ for • ∈ {A, †, E} that were defined in (3.11b), and we observed in
1309
+ Lemma 3.10 that the θ-marginal of the lifted posterior µy,•
1310
+ θ,δ is exactly µy,•
1311
+ θ .
1312
+ 16
1313
+
1314
+ In this section, we shall bound the Kullback–Leibler error of the marginal posterior µy,M with
1315
+ respect to the θ-marginals of the lifted posteriors that we considered in Section 3.2, i.e. with
1316
+ respect to µy,†
1317
+ θ , µy,A
1318
+ θ
1319
+ , and µy,E
1320
+ θ
1321
+ .
1322
+ Below, µy,•
1323
+ δ|θ denotes the regular version of the posterior distribution of δ conditioned on θ, for
1324
+ • ∈ {A, †, E, J}. We assume that such regular conditional distributions exist and are unique up
1325
+ to sets of measure zero.
1326
+ Proposition 3.15. Let Φy,J ∈ L1
1327
+ µθ⊗µδ and • ∈ {A, †, E}. Suppose Φy,• : Θ → R≥0 belongs to
1328
+ L1
1329
+ µθ. Then
1330
+ dKL(µy,M
1331
+ θ
1332
+ ∥µy,•
1333
+ θ ) =dKL(µy,J
1334
+ θ,δ∥µy,•
1335
+ θ,δ) −
1336
+
1337
+ Θ
1338
+ dKL(µy,J
1339
+ δ|θ∥µy,•
1340
+ δ|θ)dµθ,
1341
+ dKL(µy,•
1342
+ θ ∥µy,M
1343
+ θ
1344
+ ) =dKL(µy,•
1345
+ θ,δ∥µy,J
1346
+ θ,δ) −
1347
+
1348
+ Θ
1349
+ dKL(µy,•
1350
+ δ|θ∥µy,J
1351
+ δ|θ)dµθ.
1352
+ In particular,
1353
+ max{dKL(µy,M
1354
+ θ
1355
+ ∥µy,•
1356
+ θ ), dKL(µy,•
1357
+ θ ∥µy,M
1358
+ θ
1359
+ )}
1360
+ ≤ max{dKL(µy,J
1361
+ θ,δ∥µy,•
1362
+ θ,δ), dKL(µy,•
1363
+ θ,δ∥µy,J
1364
+ θ,δ)} − min
1365
+ � �
1366
+ Θ
1367
+ dKL(µy,J
1368
+ δ|θ∥µy,•
1369
+ δ|θ)dµθ,
1370
+
1371
+ Θ
1372
+ dKL(µy,•
1373
+ δ|θ∥µy,J
1374
+ δ|θ)dµθ
1375
+
1376
+ .
1377
+ Proof. By nonnegativity of the Kullback–Leibler divergence, the first statement implies the
1378
+ second statement.
1379
+ The first statement follows by recalling the chain rule for the Kullback–Leibler divergence,
1380
+ see e.g. [26, Exercise 3.2]:
1381
+ dKL(µy,J
1382
+ θ,δ∥µy,•
1383
+ θ,δ) =dKL(µy,M
1384
+ θ
1385
+ ∥µy,•
1386
+ θ ) +
1387
+
1388
+ Θ
1389
+ dKL(µy,J
1390
+ δ|θ∥µy,•
1391
+ δ|θ)dµy,M
1392
+ θ
1393
+ ,
1394
+ (3.17)
1395
+ dKL(µy,•
1396
+ θ,δ∥µy,J
1397
+ θ,δ) =dKL(µy,•
1398
+ θ ∥µy,M
1399
+ θ
1400
+ ) +
1401
+
1402
+ Θ
1403
+ dKL(µy,•
1404
+ δ|θ∥µy,J
1405
+ δ|θ)dµy,•
1406
+ θ .
1407
+ (3.18)
1408
+ Above, we used the definition (2.8) of the marginal posterior µy,M
1409
+ θ
1410
+ , and the fact expressed in
1411
+ (3.12), namely that the θ-marginal of µy,•
1412
+ θ,δ is µy,•
1413
+ θ .
1414
+ Proposition 3.15 is important for the following reasons. First, it implies that the Kullback–
1415
+ Leibler error of the marginal posterior µy,M
1416
+ θ
1417
+ with respect to any of the above-mentioned poste-
1418
+ riors on Θ cannot be larger than the Kullback–Leibler error of the joint posterior µy,J
1419
+ θ,δ and the
1420
+ corresponding lifted version of the posterior on Θ. In other words, marginalisation can only
1421
+ reduce the Kullback–Leibler error. As a result, for • ∈ {A, †, E}, the Kullback–Leibler error
1422
+ of the marginal posterior µy,M
1423
+ θ
1424
+ with respect to µy,•
1425
+ θ
1426
+ satisfies the same bounds as the Kullback–
1427
+ Leibler error of the joint posterior µy,J
1428
+ θ,δ with respect to the lifted posterior µy,•
1429
+ θ,δ. Thus, the same
1430
+ statements regarding sufficient conditions for the coincidence of the posteriors on Θ × D that
1431
+ were made after Proposition 3.12, Proposition 3.14, and Proposition A.4, also apply to the
1432
+ marginalised versions of the posteriors in the above-mentioned propositions.
1433
+ 4. Conclusion
1434
+ We considered Bayesian inverse problems in the presence of model error in the following set-
1435
+ ting: the data is finite-dimensional; the noise is additive, Gaussian, and independent; and the
1436
+ 17
1437
+
1438
+ parameter-to-observable map is the composition of a possibly nonlinear model with a linear
1439
+ observation operator. We assumed that there exists a unique best model and best parameter,
1440
+ such that the resulting best state most accurately describes the phenomenon of interest. The
1441
+ ‘model error’ is then the difference between the model that one uses and the best model.
1442
+ We described some existing deterministic approaches for accounting for model error and
1443
+ used the local Lipschitz stability property of posteriors with respect to perturbations in the
1444
+ likelihood to bound the symmetrised Kullback–Leibler error between pairs of posteriors. These
1445
+ bounds have two important properties: first, they control the Kullback–Leibler error in terms of
1446
+ quantities that depend on the observation operator and the objects used to account for model
1447
+ error; and second, the other terms in the bounds are finite under mild hypotheses, namely
1448
+ L1-integrability of the misfits with respect to the prior.
1449
+ The bounds yield sufficient conditions on the observation operator and the model error-aware
1450
+ approach to yield a posterior that performs almost as well as the best posterior that uses the
1451
+ best model. They also yield necessary conditions for a model error-aware approach to yield
1452
+ a posterior that differs from the posterior yielded by the model error-agnostic approach. A
1453
+ recurring theme in the sufficient conditions is the importance of the kernel of the observation
1454
+ operator. We expect that the design of observation operators that approximately or exactly
1455
+ satisfy the sufficient conditions will be challenging and highly problem-specific. It would be
1456
+ of interest to study the setting of nonlinear observation operators and other approaches for
1457
+ accounting for model error.
1458
+ Acknowledgements
1459
+ The research of HCL has been partially funded by the DFG — Project-ID 318763901 —
1460
+ SFB1294.
1461
+ A. Technical lemmas
1462
+ Let d ∈ N and Mi ∈ Rd×d, i = 1, 2 be symmetric and positive definite.
1463
+ For convenience, we state the following lemma.
1464
+ Lemma A.1. Suppose that M1, M2 ∈ Rd×d are symmetric, that M1 is positive definite, and that
1465
+ M2 is nonnegative definite. Then M1+M2 is symmetric positive definite and M−1
1466
+ 1 −(M1+M2)−1
1467
+ is symmetric nonnegative definite. In addition,
1468
+ ∥z∥(M1+M2)−1
1469
+ ∥(M1 + M2)−1/2M1/2
1470
+ 1
1471
+
1472
+ ≤ ∥z∥M−1
1473
+ 1
1474
+ ≤ ∥M−1/2
1475
+ 1
1476
+ (M1 + M2)1/2∥∥z∥(M1+M2)−1,
1477
+ z ∈ Rd.
1478
+ (A.1)
1479
+ Proof. Let λmin(A) denote the smallest eigenvalue of a matrix A. By the assumptions on M1
1480
+ and M2, M1 + M2 is positive definite.
1481
+ As the difference of two symmetric matrices, M−1
1482
+ 1
1483
+ − (M1 + M2)−1 is symmetric. To show
1484
+ that it is nonnegative, we use the following rearrangement of the Woodbury formula, which we
1485
+ take from [7, Equation (3)]:
1486
+ (M1 + M2)−1 =M−1
1487
+ 1
1488
+ − M−1
1489
+ 1 M2(I + M−1
1490
+ 1 M2)−1M−1
1491
+ 1
1492
+ ⇐⇒ M−1
1493
+ 1
1494
+ − (M1 + M2)−1 =M−1
1495
+ 1 M2(I + M−1
1496
+ 1 M2)−1M−1
1497
+ 1 .
1498
+ 18
1499
+
1500
+ Invertibility of I+M−1
1501
+ 1 M2 = M−1
1502
+ 1 (M1+M2) follows from the invertibility of M−1
1503
+ 1
1504
+ and M1+M2.
1505
+ From the second equation above, M−1
1506
+ 1
1507
+ − (M1 + M2)−1 inherits the nonnegative definiteness of
1508
+ M2.
1509
+ Recall the notation (1.3) for a matrix-weighted norm. The first inequality of (A.1) follows by
1510
+ ∥z∥(M1+M2)−1 = ∥(M1 + M2)−1/2z∥ = ∥(M1 + M2)−1/2M1/2
1511
+ 1
1512
+ M−1/2
1513
+ 1
1514
+ z∥
1515
+ ≤ ∥(M1 + M2)−1/2M1/2
1516
+ 1
1517
+ ∥∥M−1/2
1518
+ 1
1519
+ z∥
1520
+ = ∥(M1 + M2)−1/2M1/2
1521
+ 1
1522
+ ∥∥z∥M−1
1523
+ 1 .
1524
+ The second inequality of (A.1) follows by
1525
+ ∥z∥M−1
1526
+ 1
1527
+ = ∥M−1/2
1528
+ 1
1529
+ z∥ = ∥M−1/2
1530
+ 1
1531
+ (M1 + M2)1/2(M1 + M2)−1/2z∥
1532
+ ≤ ∥M−1/2
1533
+ 1
1534
+ (M1 + M2)1/2∥∥(M1 + M2)−1/2z∥
1535
+ = ∥M−1/2
1536
+ 1
1537
+ (M1 + M2)1/2∥∥z∥(M1+M2)−1.
1538
+ This completes the proof of Lemma A.1.
1539
+ We will use the following bound in the proofs below.
1540
+ Lemma A.2. Let (E, dE) be a metric space, µ ∈ M1(E), and f and g be Rd-valued measurable
1541
+ functions on E. Let M1 ∈ Rd×d be symmetric and positive definite and M2 ∈ Rd×d be symmetric
1542
+ nonnegative definite. Then
1543
+ ∥∥f∥2
1544
+ M−1
1545
+ 1
1546
+ − ∥f + g∥2
1547
+ M−1
1548
+ 1 ∥L1µ ≤ ∥∥g∥2
1549
+ M−1
1550
+ 1 ∥1/2
1551
+ L1µ
1552
+
1553
+ ∥∥f + g∥2
1554
+ M−1
1555
+ 1 ∥1/2
1556
+ L1µ + ∥∥f∥2
1557
+ M−1
1558
+ 1 ∥1/2
1559
+ L1µ
1560
+
1561
+ .
1562
+ (A.2)
1563
+ More generally,
1564
+ ∥∥f∥2
1565
+ M−1
1566
+ 1
1567
+ − ∥f + g∥2
1568
+ (M1+M2)−1∥L1µ
1569
+ ≤∥∥g∥2
1570
+ M−1
1571
+ 1 ∥1/2
1572
+ L1µ
1573
+
1574
+ ∥M−1/2
1575
+ 1
1576
+ (M1 + M2)1/2∥ · ∥∥f + g∥2
1577
+ (M1+M2)−1∥1/2
1578
+ L1µ + ∥∥f∥2
1579
+ M−1
1580
+ 1 ∥1/2
1581
+ L1µ
1582
+
1583
+ (A.3)
1584
+ + ∥∥f + g∥2
1585
+ M−1
1586
+ 1
1587
+ −(M1+M2)−1∥L1µ,
1588
+ where ∥f + g∥2
1589
+ M−1
1590
+ 1
1591
+ −(M1+M2)−1 := ∥f + g∥2
1592
+ M−1
1593
+ 1
1594
+ − ∥f + g∥2
1595
+ (M1+M2)−1. In addition,
1596
+ ∥∥g∥2
1597
+ M−1
1598
+ 1 ∥1/2
1599
+ L1µ ≤ ∥∥f∥2
1600
+ M−1
1601
+ 1 ∥1/2
1602
+ L1µ + ∥M−1/2
1603
+ 1
1604
+ (M1 + M2)1/2∥∥∥f + g∥2
1605
+ (M1+M2)−1∥1/2
1606
+ L1µ
1607
+ (A.4)
1608
+ ∥∥f + g∥2
1609
+ M−1
1610
+ 1
1611
+ −(M1+M2)−1∥L1µ ≤
1612
+
1613
+ 1 + ∥M−1/2
1614
+ 1
1615
+ (M1 + M2)1/2∥
1616
+
1617
+ ∥∥f + g∥2
1618
+ (M1+M2)−1∥L1µ.
1619
+ (A.5)
1620
+ Proof. We claim that for arbitrary a, b ∈ Rd, symmetric positive definite M1 ∈ Rd×d, and
1621
+ symmetric nonnegative definite M2 ∈ Rd×d,
1622
+ ∥a∥2
1623
+ M−1
1624
+ 1
1625
+ − ∥a + b∥2
1626
+ (M1+M2)−1 = −⟨b, 2a + b⟩M−1
1627
+ 1
1628
+ + ∥a + b∥2
1629
+ M−1
1630
+ 1
1631
+ −(M1+M2)−1.
1632
+ (A.6)
1633
+ Recall that (M1 + M2)−1 exists and is positive definite, by Lemma A.1.
1634
+ 19
1635
+
1636
+ Using the matrix-weighted inner product and norm notation from (1.3),
1637
+ ∥a∥2
1638
+ M−1
1639
+ 1
1640
+ − ∥a + b∥2
1641
+ M−1
1642
+ 1
1643
+ =a⊤M−1
1644
+ 1 a − (a + b)⊤M−1
1645
+ 1 (a + b)
1646
+ =a⊤M−1
1647
+ 1 a − (a⊤M−1
1648
+ 1 a + 2a⊤M−1
1649
+ 1 b + b⊤M−1
1650
+ 1 b)
1651
+ = − b⊤M−1
1652
+ 1 (2a + b)
1653
+ = − ⟨b, 2a + b⟩M−1
1654
+ 1 .
1655
+ This implies (A.6), since
1656
+ ∥a∥2
1657
+ M−1
1658
+ 1
1659
+ − ∥a + b∥2
1660
+ M−1
1661
+ 1
1662
+ + ∥a + b∥2
1663
+ M−1
1664
+ 1
1665
+ − ∥a + b∥2
1666
+ (M1+M2)−1
1667
+ = − ⟨b, 2a + b⟩M−1
1668
+ 1
1669
+ + ∥a + b∥2
1670
+ M−1
1671
+ 1
1672
+ − ∥a + b∥2
1673
+ (M1+M2)−1.
1674
+ Now let f, g, and µ be as in the statement of the lemma. Then by (A.6) and the triangle
1675
+ inequality,
1676
+ ∥∥f∥2
1677
+ M−1
1678
+ 1
1679
+ − ∥f + g∥2
1680
+ (M1+M2)−1∥L1µ =∥ − ⟨g, 2f + g⟩M−1
1681
+ 1
1682
+ + ∥f + g∥2
1683
+ M−1
1684
+ 1
1685
+ −(M1+M2)−1∥L1µ
1686
+ ≤∥⟨g, 2f + g⟩M−1
1687
+ 1 ∥L1µ + ∥∥f + g∥2
1688
+ M−1
1689
+ 1
1690
+ −(M1+M2)−1∥L1µ.
1691
+ (A.7)
1692
+ Next,
1693
+ ∥⟨g, 2f + g⟩M−1
1694
+ 1 ∥L1µ ≤∥∥g∥M−1
1695
+ 1 ∥2f + g∥M−1
1696
+ 1 ∥L1µ
1697
+ ≤∥∥g∥M−1
1698
+ 1 ∥L2µ∥∥2f + g∥M−1
1699
+ 1 ∥L2µ
1700
+ ≤∥∥g∥M−1
1701
+ 1 ∥L2µ
1702
+
1703
+ ∥∥f + g∥M−1
1704
+ 1 ∥L2µ + ∥∥f∥M−1
1705
+ 1 ∥L2µ
1706
+
1707
+ =∥∥g∥2
1708
+ M−1
1709
+ 1 ∥1/2
1710
+ L1µ
1711
+
1712
+ ∥∥f + g∥2
1713
+ M−1
1714
+ 1 ∥1/2
1715
+ L1µ + ∥∥f∥2
1716
+ M−1
1717
+ 1 ∥1/2
1718
+ L1µ
1719
+
1720
+ .
1721
+ (A.8)
1722
+ The first and second inequalities follow by applying the Cauchy–Schwarz inequality with respect
1723
+ to ⟨·, ·⟩M−1
1724
+ 1
1725
+ and ∥·∥L1µ respectively. The third inequality and the equation follow from the ∥·∥L2µ-
1726
+ triangle inequality and the definition of the Lp
1727
+ µ norm for p = 1, 2. By (A.8), we bound the first
1728
+ term on the right-hand side of (A.7). By using M2 ← 0, the second term on the right-hand side
1729
+ of (A.7) vanishes. Thus (A.2) follows from (A.7).
1730
+ Next, we bound the first term inside the parentheses on the right-hand side of (A.8). By
1731
+ (A.1),
1732
+ ∥∥f + g∥2
1733
+ M−1
1734
+ 1 ∥1/2
1735
+ L1µ ≤ ∥M−1/2
1736
+ 1
1737
+ (M1 + M2)1/2∥∥∥f + g∥2
1738
+ (M1+M2)−1∥1/2
1739
+ L1µ .
1740
+ Using the above bound yields (A.3).
1741
+ To prove (A.4),
1742
+ ∥∥g∥2
1743
+ M−1
1744
+ 1 ∥1/2
1745
+ L1µ =∥∥ − f + (f + g)∥M−1
1746
+ 1 ∥L2µ
1747
+ ≤∥∥f∥M−1
1748
+ 1 ∥L2µθ + ∥∥f + g∥M−1
1749
+ 1 ∥L2µ
1750
+ ≤∥∥f∥2
1751
+ M−1
1752
+ 1 ∥1/2
1753
+ L1µθ + ∥M−1/2
1754
+ 1
1755
+ (M1 + M2)1/2∥∥∥f + g∥2
1756
+ (M1+M2)−1∥1/2
1757
+ L1µ
1758
+ 20
1759
+
1760
+ where the last inequality uses (A.1). To prove (A.5), observe that
1761
+ ∥∥f + g∥2
1762
+ M−1
1763
+ 1
1764
+ −(M1+M2)−1∥L1µ =∥∥f + g∥2
1765
+ M−1
1766
+ 1
1767
+ − ∥f + g∥2
1768
+ (M1+M2)−1∥L1µ
1769
+ ≤∥∥f + g∥2
1770
+ M−1
1771
+ 1 ∥L1µ + ∥∥f + g∥2
1772
+ (M1+M2)−1∥L1µ
1773
+ ≤(∥M−1/2
1774
+ 1
1775
+ (M1 + M2)1/2∥ + 1)∥∥f + g∥2
1776
+ (M1+M2)−1∥L1µ
1777
+ where the first and second inequality follow from the triangle inequality and (A.1) in Lemma A.1.
1778
+ This completes the proof of Lemma A.2.
1779
+ A.1. Proof of lemmas in Section 3.1
1780
+ A.1.1. Proofs for Section 3.1.1
1781
+ Proof of error of approximate posterior with respect to best posterior
1782
+ Lemma 3.2 bounds
1783
+ ∥Φy,†−Φy,A∥Lq
1784
+ µθ in terms of the observed model error O◦δ†, under the hypothesis that Φy,† ∈ L1
1785
+ µθ
1786
+ and Φy,A ∈ L1
1787
+ µθ. The bound is given in (3.2):
1788
+ ∥Φy,† − Φy,A∥L1µθ ≤ 2−1/2∥∥O ◦ δ†∥Σ−1
1789
+ ε ∥L2µθ
1790
+
1791
+ ∥Φy,†∥1/2
1792
+ L1µθ + ∥Φy,A∥1/2
1793
+ L1µθ
1794
+
1795
+ .
1796
+ Proof of Lemma 3.2. Recall from (2.4a) and (2.3a) that Φy,†(θ′) = 1
1797
+ 2∥y − O ◦ M†(θ′)∥2
1798
+ Σ−1
1799
+ ε
1800
+ and
1801
+ Φy,A(θ′) = 1
1802
+ 2∥y − O ◦ M(θ′)∥2
1803
+ Σ−1
1804
+ ε
1805
+ respectively. By these definitions,
1806
+ ∥2 · 1
1807
+ 2∥y − O ◦ M†∥2
1808
+ Σ−1
1809
+ ε ∥1/2
1810
+ L1µθ = ∥2Φy,†∥1/2
1811
+ L1µθ =
1812
+
1813
+ 2∥Φy,†∥1/2
1814
+ L1µθ
1815
+ (A.9)
1816
+ and similarly
1817
+ ∥∥y − O ◦ M∥2
1818
+ Σ−1
1819
+ ε ∥1/2
1820
+ L1µθ =
1821
+
1822
+ 2∥Φy,A∥1/2
1823
+ L1µθ .
1824
+ (A.10)
1825
+ Now set f ← y − O ◦ M†, g ← O ◦ δ†, µ ← µθ, M1 ← Σε, and M2 ← 0. By (2.5), we have
1826
+ f + g = y − O ◦ (M† − δ†) = y − O ◦ M. Hence ∥f∥2
1827
+ M−1
1828
+ 1
1829
+ = 2Φy,† and ∥f + g∥2
1830
+ M−1
1831
+ 1
1832
+ = 2Φy,A.
1833
+ Applying (A.2) from Lemma A.2 with these choices yields
1834
+ 2∥Φy,† − Φy,A∥L1µθ ≤∥∥O ◦ δ†∥2
1835
+ Σ−1
1836
+ ε ∥1/2
1837
+ L1µθ
1838
+
1839
+ ∥∥y − O ◦ M†∥2
1840
+ Σ−1
1841
+ ε ∥1/2
1842
+ L1µθ + ∥∥y − O ◦ M∥2
1843
+ Σ−1
1844
+ ε ∥1/2
1845
+ L1µθ
1846
+
1847
+ =∥∥O ◦ δ†∥2
1848
+ Σ−1
1849
+ ε ∥1/2
1850
+ L1µθ
1851
+
1852
+ 2
1853
+
1854
+ ∥Φy,†∥1/2
1855
+ L1µθ + ∥Φy,A∥1/2
1856
+ L1µθ
1857
+
1858
+ ,
1859
+ where we used (A.9) and (A.10) for the equation. This proves (3.2). The bound on ∥∥O ◦
1860
+ δ†∥2
1861
+ Σ−1
1862
+ ε ∥1/2
1863
+ L1µθ in the statement of Lemma 3.2 follows from (A.4) in Lemma A.2 with the choices
1864
+ above:
1865
+ ∥∥O ◦ δ†∥2
1866
+ Σ−1
1867
+ ε ∥1/2
1868
+ L1µθ ≤
1869
+
1870
+ 2
1871
+
1872
+ ∥Φy,†∥1/2
1873
+ L1µθ + ∥Φy,A∥1/2
1874
+ L1µθ
1875
+
1876
+ .
1877
+ This completes the proof of Lemma 3.2.
1878
+ Proof of error of enhanced noise posterior with respect to best posterior
1879
+ Lemma 3.6 bounds
1880
+ ∥Φy,† −Φy,E∥L1µθ in terms of the observed model error O◦δ† and the Gaussian model N(mu, Σδ)
1881
+ 21
1882
+
1883
+ of δ†(θ†).
1884
+ In particular, under the hypotheses that Φy,† ∈ L1
1885
+ µθ and Φy,E ∈ L1
1886
+ µθ, then for
1887
+ CE := ∥Σ−1/2
1888
+ ε
1889
+ (Σε + OΣuO∗)1/2∥ as in (3.5), the bound (3.6)
1890
+ ∥Φy,† − Φy,E∥L1µθ ≤2−1/2∥∥O ◦ (δ† − mu)∥2
1891
+ Σ−1
1892
+ ε ∥1/2
1893
+ L1µθ
1894
+
1895
+ ∥Φy,†∥1/2
1896
+ L1µθ + CE∥Φy,E∥1/2
1897
+ L1µθ
1898
+
1899
+ + 2−1∥∥y − O ◦ M − Omu∥2
1900
+ Σ−1
1901
+ ε
1902
+ −(Σε+OΣuO∗)−1∥L1µθ ,
1903
+ holds, and all terms on the right-hand side are finite.
1904
+ Proof of Lemma 3.6. In the same way that we proved (A.9), we can use the definition (2.6a) of
1905
+ Φy,E to prove
1906
+ ∥∥y − O ◦ M − Omu∥2
1907
+ (Σε+OΣuO∗)−1∥1/2
1908
+ L1µθ =
1909
+
1910
+ 2∥Φy,E∥1/2
1911
+ L1µθ .
1912
+ (A.11)
1913
+ Let f ← y − O ◦ M†, g ← O ◦ (δ† − mu), µ ← µθ, M1 ← Σε, and M2 ← OΣuO∗. Then
1914
+ f + g = y − O ◦ (M† − δ†) − Omu = y − O ◦ M − Omu,
1915
+ ∥f∥2
1916
+ M−1
1917
+ 1
1918
+ = 2Φy,†, and ∥f + g∥2
1919
+ (M1+M2)−1 = 2Φy,E. Applying (A.3) from Lemma A.2 yields
1920
+ 2∥Φy,† − Φy,E∥L1µθ ≤∥∥O ◦ (δ† − mu)∥2
1921
+ Σ−1
1922
+ ε ∥1/2
1923
+ L1µθ
1924
+
1925
+ CE∥2Φy,E∥1/2
1926
+ L1µθ + ∥2Φy,†∥1/2
1927
+ L1µθ
1928
+
1929
+ (A.12)
1930
+ + ∥∥y − O ◦ M − Omu∥2
1931
+ Σ−1
1932
+ ε
1933
+ −(Σε+OΣuO∗)−1∥L1µθ .
1934
+ This proves (3.6). By (A.4) and CE as in (3.5),
1935
+ ∥∥O ◦ (δ† − mu)∥2
1936
+ Σ−1
1937
+ ε ∥1/2
1938
+ L1µθ ≤ ∥2Φy,†∥1/2
1939
+ L1µθ + CE∥2Φy,E∥1/2
1940
+ L1µθ .
1941
+ By (A.5) from Lemma A.2,
1942
+ ∥∥y − O ◦ M − Omu∥2
1943
+ Σ−1
1944
+ ε
1945
+ −(Σε+OΣuO∗)−1∥L1µθ ≤ (CE + 1)∥2Φy,E∥L1µθ .
1946
+ This completes the proof of Lemma 3.6.
1947
+ A.1.2. Proofs for Section 3.1.2
1948
+ Lemma 3.8 asserts that, under the hypotheses that Φy,A ∈ L1
1949
+ µθ and Φy,E ∈ L1
1950
+ µθ, then for
1951
+ CE := ∥Σ−1/2
1952
+ ε
1953
+ (Σε + OΣuO∗)1/2∥ as in (3.5), the bound (3.9)
1954
+ ∥Φy,A − Φy,E∥L1µθ ≤2−1/2∥Omu∥Σ−1
1955
+ ε
1956
+
1957
+ ∥Φy,A∥1/2
1958
+ L1µθ + CE∥Φy,E∥1/2
1959
+ L1µθ
1960
+
1961
+ + 2−1∥∥y − O ◦ M − Omu∥2
1962
+ Σ−1
1963
+ ε
1964
+ −(Σε+OΣuO∗)−1∥L1µθ ,
1965
+ holds, and all terms on the right-hand side are finite.
1966
+ Proof of Lemma 3.8. Let f ← y −O ◦M, g ← −Omu, M1 ← Σ−1
1967
+ ε , M2 ← OΣuO∗, and µ ← µθ.
1968
+ Then ∥f∥2
1969
+ M−1
1970
+ 1
1971
+ = 2Φy,A and ∥f + g∥2
1972
+ (M1+M2)−1 = 2Φy,E. Applying (A.3) from Lemma A.2 yields
1973
+ 2∥Φy,A − Φy,E∥L1µθ
1974
+ ≤∥Omu∥Σ−1
1975
+ ε
1976
+
1977
+ 2
1978
+
1979
+ ∥Φy,A∥1/2
1980
+ L1µθ + CE∥Φy,E∥1/2
1981
+ L1µθ
1982
+
1983
+ + ∥∥y − O ◦ M − Omu∥2
1984
+ Σ−1
1985
+ ε
1986
+ −(Σε+OΣuO∗)−1∥L1µθ ,
1987
+ for CE := ∥Σ−1/2
1988
+ ε
1989
+ (Σε + OΣuO∗)1/2∥ as in (3.5). This proves (3.9). Next, (A.5) in Lemma A.2
1990
+ yields
1991
+ ∥∥y − O ◦ M − Omu∥2
1992
+ Σ−1
1993
+ ε
1994
+ −(Σε+OΣuO∗)−1∥L1µθ ≤ 2
1995
+
1996
+ CE + 1)∥Φy,E∥L1µθ .
1997
+ This completes the proof of Lemma 3.8.
1998
+ 22
1999
+
2000
+ A.2. Proofs for Kullback–Leibler error of joint parameter-error posterior
2001
+ Proof of error of joint parameter-error posterior with respect to lifted best posterior
2002
+ In
2003
+ Lemma 3.11, one assumes that Φy,† as defined in (2.4a) belongs to L1
2004
+ µθ, and also that Φy,J ∈
2005
+ L1
2006
+ µθ⊗µδ. The resulting bound (3.14) is
2007
+ ∥Φy,† − Φy,J∥L1
2008
+ µθ⊗µδ ≤ 2−1/2∥∥O ◦ (δ† − δ)(θ)∥2
2009
+ Σ−1
2010
+ ε ∥1/2
2011
+ L1
2012
+ P
2013
+
2014
+ ∥Φy,J∥1/2
2015
+ L1
2016
+ µθ⊗µδ
2017
+ + ∥Φy,†∥1/2
2018
+ L1µθ
2019
+
2020
+ .
2021
+ Proof of Lemma 3.11. Let f ← y − O ◦ M†(θ), g ← O ◦ (δ† − δ)(θ), M1 ← Σε, M2 ← 0, and
2022
+ µ ← P. Then ∥f∥2
2023
+ M−1
2024
+ 1
2025
+ = 2Φy,†(θ, δ) and ∥f + g∥2
2026
+ M−1
2027
+ 1
2028
+ = 2Φy,J(θ, δ). Using the same argument
2029
+ that we used to prove (A.9), it follows from (2.7a) that
2030
+ ∥∥y − O ◦ M(θ) − O ◦ δ(θ)∥2
2031
+ Σ−1
2032
+ ε ∥1/2
2033
+ L1
2034
+ P =
2035
+
2036
+ 2∥Φy,J∥1/2
2037
+ L1
2038
+ µθ⊗µδ
2039
+ .
2040
+ (A.13)
2041
+ By (A.9) and (3.13) from Lemma 3.10,
2042
+ ∥∥y − O ◦ M†(θ)∥2
2043
+ Σ−1
2044
+ ε ∥1/2
2045
+ L1
2046
+ P =
2047
+
2048
+ 2∥Φy,†∥1/2
2049
+ L1µθ =
2050
+
2051
+ 2∥Φy,†∥1/2
2052
+ L1
2053
+ µθ⊗µδ
2054
+ .
2055
+ (A.14)
2056
+ Applying (A.2) Lemma A.2 with these choices yields (3.14):
2057
+ 2∥Φy,A − Φy,J∥L1
2058
+ µθ⊗µδ ≤∥∥O ◦ (δ† − δ)(θ)∥2
2059
+ Σ−1
2060
+ ε ∥1/2
2061
+ L1
2062
+ P
2063
+
2064
+ 2
2065
+
2066
+ ∥Φy,J∥1/2
2067
+ L1
2068
+ µθ⊗µδ
2069
+ + ∥Φy,†∥1/2
2070
+ L1µθ
2071
+
2072
+ .
2073
+ Next,
2074
+ ∥∥O ◦ (δ† − δ)(θ)∥2
2075
+ Σ−1
2076
+ ε ∥1/2
2077
+ L1
2078
+ P ≤
2079
+
2080
+ 2
2081
+
2082
+ ∥Φy,J∥1/2
2083
+ L1
2084
+ µθ⊗µδ
2085
+ + ∥Φy,†∥1/2
2086
+ L1µθ
2087
+
2088
+ ,
2089
+ follows from (A.13), (A.14), and (A.4) of Lemma A.2 with the choices stated above.
2090
+ Proof of Proposition 3.12. Both ess infµθ⊗µδΦy,J and ess infµθ⊗µδΦy,† are nonnegative, by (2.7a)
2091
+ and (2.4a). Applying Theorem 3.1 and Lemma 3.11 yields
2092
+ max{dKL(µy,†
2093
+ θ,δ∥µy,J
2094
+ θ,δ), dKL(µy,J
2095
+ θ,δ∥µy,†
2096
+ θ,δ)}
2097
+ ≤2 exp
2098
+
2099
+ 2∥Φy,J∥L1
2100
+ µθ⊗µδ + 2∥Φy,†∥L1
2101
+ µθ⊗µδ
2102
+
2103
+ ∥Φy,† − Φy,J∥L1
2104
+ µθ⊗µδ
2105
+ ≤21/2 exp
2106
+
2107
+ 2∥Φy,J∥L1
2108
+ µθ⊗µδ + 2∥Φy,†∥L1
2109
+ µθ⊗µδ
2110
+ ��
2111
+ ∥Φy,J∥1/2
2112
+ L1
2113
+ µθ⊗µδ
2114
+ + ∥Φy,†∥1/2
2115
+ L1
2116
+ µθ⊗µδ
2117
+
2118
+ × ∥∥O ◦ (δ† − δ)(θ)∥2
2119
+ Σ−1
2120
+ ε ∥1/2
2121
+ L1
2122
+ P .
2123
+ Using the definition of C given in the statement of Proposition 3.12 and (A.14) completes the
2124
+ proof.
2125
+ Proof of error of joint parameter-error posterior with respect to lifted approximate posterior
2126
+ In Lemma 3.13, one assumes that Φy,A as defined in (2.3a) belongs to L1
2127
+ µθ, and also that
2128
+ Φy,J ∈ L1
2129
+ µθ⊗µδ. The resulting bound (3.16) is
2130
+ ∥Φy,A − Φy,J∥L1
2131
+ µθ⊗µδ ≤ 2−1/2∥∥O ◦ δ(θ)∥2
2132
+ Σ−1
2133
+ ε ∥1/2
2134
+ L1
2135
+ P
2136
+
2137
+ ∥Φy,J∥1/2
2138
+ L1
2139
+ µθ⊗µδ
2140
+ + ∥Φy,A∥1/2
2141
+ L1µθ
2142
+
2143
+ .
2144
+ The proof of Lemma 3.13 is very similar to the proof of Lemma 3.11 above.
2145
+ 23
2146
+
2147
+ Proof of Lemma 3.13. Let f ← y −O ◦M(θ), g ← O ◦(−δ)(θ), M1 ← Σε, M2 ← 0, and µ ← P.
2148
+ Then ∥f + g∥2
2149
+ M−1
2150
+ 1
2151
+ = 2Φy,J(θ, δ) and ∥f∥2
2152
+ M−1
2153
+ 1
2154
+ = 2Φy,A(θ, δ). Analogously to (A.14), we have by
2155
+ (2.3a) and (3.13) of Lemma 3.10 that
2156
+ ∥∥y − O ◦ M(θ)∥2
2157
+ Σ−1
2158
+ ε ∥1/2
2159
+ L1
2160
+ P =
2161
+
2162
+ 2∥Φy,A∥1/2
2163
+ L1µθ =
2164
+
2165
+ 2∥Φy,A∥1/2
2166
+ L1
2167
+ µθ⊗µδ
2168
+ .
2169
+ (A.15)
2170
+ Applying (A.2) of Lemma A.2 with the choices above yields (3.16):
2171
+ 2∥Φy,A − Φy,J∥L1
2172
+ µθ⊗µδ ≤∥∥O ◦ (−δ)(θ)∥2
2173
+ Σ−1
2174
+ ε ∥1/2
2175
+ L1
2176
+ P
2177
+
2178
+ 2
2179
+
2180
+ ∥Φy,J∥1/2
2181
+ L1
2182
+ µθ⊗µδ
2183
+ + ∥Φy,A∥1/2
2184
+ L1µθ
2185
+
2186
+ .
2187
+ Next,
2188
+ ∥∥O ◦ (−δ)(θ)∥2
2189
+ Σ−1
2190
+ ε ∥1/2
2191
+ L1
2192
+ P ≤
2193
+
2194
+ 2
2195
+
2196
+ ∥Φy,A∥1/2
2197
+ L1µθ + ∥Φy,J∥1/2
2198
+ L1
2199
+ µθ⊗µδ
2200
+
2201
+ follows from (A.13), (A.15), and (A.4) of Lemma A.2.
2202
+ Proof of Proposition 3.14. Both ess infµθ⊗µδΦy,J and ess infµθ⊗µδΦy,A are nonnegative, by (2.7a)
2203
+ and (2.3a). Applying Theorem 3.1 and Lemma 3.13 yields
2204
+ max{dKL(µy,A
2205
+ θ,δ ∥µy,J
2206
+ θ,δ), dKL(µy,J
2207
+ θ,δ∥µy,A
2208
+ θ,δ )}
2209
+ ≤2 exp
2210
+
2211
+ 2∥Φy,J∥L1
2212
+ µθ⊗µδ + 2∥Φy,A∥L1
2213
+ µθ⊗µδ
2214
+
2215
+ ∥Φy,A − Φy,J∥L1
2216
+ µθ⊗µδ
2217
+ ≤21/2 exp
2218
+
2219
+ 2∥Φy,J∥L1
2220
+ µθ⊗µδ + 2∥Φy,A∥L1
2221
+ µθ⊗µδ
2222
+ ��
2223
+ ∥Φy,J∥1/2
2224
+ L1
2225
+ µθ⊗µδ
2226
+ + ∥Φy,A∥1/2
2227
+ L1
2228
+ µθ⊗µδ
2229
+
2230
+ × ∥∥O ◦ (−δ)(θ)∥2
2231
+ Σ−1
2232
+ ε ∥1/2
2233
+ L1
2234
+ P .
2235
+ Using the definition of C given in the statement of Proposition 3.14 and (A.15) completes the
2236
+ proof.
2237
+ Proof of error of joint parameter-error posterior with respect to lifted enhanced noise
2238
+ posterior
2239
+ For the sake of completeness, we compare the joint posterior with the lifted enhanced
2240
+ noise posterior.
2241
+ Lemma A.3. Let Φy,E be defined as in (3.11a) with • = E. If Φy,E ∈ L1
2242
+ µθ and Φy,J ∈ L1
2243
+ µθ⊗µδ,
2244
+ then
2245
+ ∥Φy,E − Φy,J∥L1
2246
+ µθ⊗µδ ≤2−1/2∥∥O ◦ (δ(θ) − mu)∥2
2247
+ Σ−1
2248
+ ε ∥1/2
2249
+ L1
2250
+ P
2251
+
2252
+ CE∥Φy,E∥1/2
2253
+ L1µθ + ∥Φy,J∥1/2
2254
+ L1
2255
+ µθ⊗µδ
2256
+
2257
+ (A.16)
2258
+ + 2−1∥∥y − O ◦ M(θ) − Omu∥2
2259
+ Σ−1
2260
+ ε
2261
+ −(Σε+OΣuO∗)−1∥L1
2262
+ P.
2263
+ Furthermore,
2264
+ ∥∥O ◦ (δ(θ) − mu)∥2
2265
+ Σ−1
2266
+ ε ∥1/2
2267
+ L1
2268
+ P ≤
2269
+
2270
+ 2
2271
+
2272
+ CE∥Φy,E∥1/2
2273
+ L1µθ + ∥Φy,J∥1/2
2274
+ L1
2275
+ µθ⊗µδ
2276
+
2277
+ ∥∥y − O ◦ M(θ) − Omu∥2
2278
+ Σ−1
2279
+ ε
2280
+ −(Σε+OΣuO∗)−1∥L1
2281
+ P ≤ 2(CE + 1)∥Φy,E∥L1µθ .
2282
+ Proof of Lemma A.3. Let f ← y − O ◦ (M(θ) + δ(θ)), g ← O ◦ (δ(θ) − mu), M1 ← Σε,
2283
+ M2 ← OΣuO∗, and µ ← P. Then ∥f∥2
2284
+ M−1
2285
+ 1
2286
+ = 2Φy,J(θ, δ) and ∥f + g∥2
2287
+ (M1+M2)−1 = 2Φy,E(θ, δ).
2288
+ Analogously to (A.14), we have by (2.6a) and (3.13) of Lemma 3.10 that
2289
+ ∥∥y − O ◦ M(θ) − Omu∥2
2290
+ (Σε+OΣuO∗)−1∥1/2
2291
+ L1
2292
+ P =
2293
+
2294
+ 2∥Φy,E∥1/2
2295
+ L1µθ =
2296
+
2297
+ 2∥Φy,E∥1/2
2298
+ L1
2299
+ µθ⊗µδ
2300
+ .
2301
+ (A.17)
2302
+ 24
2303
+
2304
+ Applying (A.3) of Lemma A.2 with the choices above yields (A.16):
2305
+ 2∥Φy,E − Φy,J∥L1
2306
+ µθ⊗µδ ≤∥∥O ◦ (δ(θ) − mu)∥2
2307
+ Σ−1
2308
+ ε ∥1/2
2309
+ L1
2310
+ P
2311
+
2312
+ CE∥2Φy,E∥1/2
2313
+ L1µθ + ∥2Φy,J∥1/2
2314
+ L1
2315
+ µθ⊗µδ
2316
+
2317
+ + ∥∥y − O ◦ M(θ) − Omu∥2
2318
+ Σ−1
2319
+ ε
2320
+ −(Σε+OΣuO∗)−1∥L1
2321
+ P.
2322
+ Next, we apply (A.4) and (A.5) from Lemma A.2, and use (A.17):
2323
+ ∥∥O ◦ (δ(θ) − mu)∥2
2324
+ Σ−1
2325
+ ε ∥1/2
2326
+ L1
2327
+ P ≤
2328
+
2329
+ 2
2330
+
2331
+ CE∥Φy,E∥1/2
2332
+ L1µθ + ∥Φy,J∥1/2
2333
+ L1
2334
+ µθ⊗µδ
2335
+
2336
+ ∥∥y − O ◦ M(θ) − Omu∥2
2337
+ Σ−1
2338
+ ε
2339
+ −(Σε+OΣuO∗)−1∥L1
2340
+ P ≤ 2(CE + 1)∥Φy,E∥L1µθ .
2341
+ This completes the proof of Lemma A.3.
2342
+ Proposition A.4. Let Φy,E and Φy,J be as in Lemma A.3, and let µy,E
2343
+ θ,δ be as in (3.11b) with
2344
+ • = E. Then
2345
+ max{dKL(µy,E
2346
+ θ,δ ∥µy,J
2347
+ θ,δ), dKL(µy,J
2348
+ θ,δ∥µy,E
2349
+ θ,δ )} ≤ C∥∥O ◦ (mu − δ)(θ)∥2
2350
+ Σ−1
2351
+ ε ∥1/2
2352
+ L1
2353
+ P ,
2354
+ where
2355
+ C = exp
2356
+
2357
+ 2∥Φy,J∥L1
2358
+ µθ⊗µδ + 2∥Φy,E∥L1µθ
2359
+
2360
+ max{21/2�
2361
+ CE∥Φy,E∥1/2
2362
+ L1
2363
+ µθ⊗µδ
2364
+ + ∥Φy,J∥1/2
2365
+ L1
2366
+ µθ⊗µδ
2367
+
2368
+ , 1}.
2369
+ Proof of Proposition A.4. Both ess infµθ⊗µδΦy,J and ess infµθ⊗µδΦy,E are nonnegative, by (2.7a)
2370
+ and (2.6a). Applying Theorem 3.1 and Lemma A.3 yields
2371
+ max{dKL(µy,E
2372
+ θ,δ ∥µy,J
2373
+ θ,δ), dKL(µy,J
2374
+ θ,δ∥µy,E
2375
+ θ,δ )}
2376
+ ≤2 exp
2377
+
2378
+ 2∥Φy,J∥L1
2379
+ µθ⊗µδ + 2∥Φy,E∥L1
2380
+ µθ⊗µδ
2381
+
2382
+ ∥Φy,E − Φy,J∥L1
2383
+ µθ⊗µδ
2384
+ ≤ exp
2385
+
2386
+ 2∥Φy,J∥L1
2387
+ µθ⊗µδ + 2∥Φy,E∥L1
2388
+ µθ⊗µδ
2389
+
2390
+ max{21/2�
2391
+ CE∥Φy,E∥1/2
2392
+ L1
2393
+ µθ⊗µδ
2394
+ + ∥Φy,J∥1/2
2395
+ L1
2396
+ µθ⊗µδ
2397
+
2398
+ , 1}
2399
+ ×
2400
+
2401
+ ∥∥O ◦ (mu − δ)(θ)∥2
2402
+ Σ−1
2403
+ ε ∥L1
2404
+ P + ∥∥y − O ◦ M(θ) − Omu∥2
2405
+ Σ−1
2406
+ ε
2407
+ −(Σε+OΣuO∗)−1∥L1
2408
+ P
2409
+
2410
+ .
2411
+ Using the definition of C given in the statement of Proposition A.4 and (3.13) from Lemma 3.10
2412
+ completes the proof.
2413
+ References
2414
+ [1] Assyr Abdulle and Giacomo Garegnani, Random time step probabilistic methods for un-
2415
+ certainty quantification in chaotic and geometric numerical integration, Stat. Comput. 30
2416
+ (2020), no. 4, 907–932.
2417
+ [2] Alen Alexanderian, Ruanui Nicholson, and No´emi Petra, Optimal design of large-scale
2418
+ nonlinear Bayesian inverse problems under model uncertainty, 2022, arXiv:2211.03952.
2419
+ [3] Alen Alexanderian, No´emi Petra, Georg Stadler, and Isaac Sunseri, Optimal design of
2420
+ large-scale Bayesian linear inverse problems under reducible model uncertainty: Good to
2421
+ know what you don’t know, SIAM/ASA J. Uncertainty Quantif. 9 (2021), no. 1, 163–184.
2422
+ [4] Jenn´y Brynjarsd´ottir and Anthony O’Hagan, Learning about physical parameters: the im-
2423
+ portance of model discrepancy, Inverse Probl. 30 (2014), no. 11, 114007.
2424
+ 25
2425
+
2426
+ [5] Daniela Calvetti, Matthew Dunlop, Erkki Somersalo, and Andrew Stuart, Iterative updat-
2427
+ ing of model error for Bayesian inversion, Inverse Probl. 34 (2018), no. 2, 025008.
2428
+ [6] Lianghao Cao, Thomas O’Leary-Roseberry, Prashant K. Jha, J. Tinsley Oden, and
2429
+ Omar Ghattas, Residual-based error correction for neural operator accelerated infinite-
2430
+ dimensional Bayesian inverse problems, 2022, arXiv:2210.03008.
2431
+ [7] Feng Cheng Chang, Inversion of a perturbed matrix, Appl. Math. Lett. 19 (2006), no. 2,
2432
+ 169–173.
2433
+ [8] Duc-Lam Duong, Tapio Helin, and Jose Rodrigo Rojo-Garcia, Stability estimates for the
2434
+ expected utility in Bayesian optimal experimental design, 2022, arXiv:2211.04399.
2435
+ [9] Subhashis Ghosal and Aad van der Vaart, Fundamentals of Nonparametric Bayesian In-
2436
+ ference, vol. 44, Cambridge: Cambridge University Press, 2017.
2437
+ [10] Konstantinos Gourgoulias, Markos A. Katsoulakis, Luc Rey-Bellet, and Jie Wang, How
2438
+ biased is your model? Concentration inequalities, information and model bias, IEEE Trans.
2439
+ Inform. Theory 66 (2020), no. 5, 3079–3097.
2440
+ [11] Eric Joseph Hall and Markos A. Katsoulakis, Robust information divergences for model-
2441
+ form uncertainty arising from sparse data in random PDE, SIAM/ASA J. Uncertain. Quan-
2442
+ tif. 6 (2018), no. 4, 1364–1394.
2443
+ [12] Jari Kaipio and Erkki Somersalo, Statistical and computational inverse problems, vol. 160,
2444
+ Springer Science & Business Media, 2005.
2445
+ [13]
2446
+ , Statistical inverse problems: discretization, model reduction and inverse crimes,
2447
+ J. Comput. Appl. Math. 198 (2007), no. 2, 493–504.
2448
+ [14] Marc C. Kennedy and Anthony O’Hagan, Bayesian calibration of computer models, J. R.
2449
+ Stat. Soc., Ser. B, Stat. Methodol. 63 (2001), no. 3, 425–464.
2450
+ [15] Ville Kolehmainen, Tanja Tarvainen, Simon R. Arridge, and Jari P. Kaipio, Marginalization
2451
+ of uninteresting distributed parameters in inverse problems – application to diffuse optical
2452
+ tomography, Int. J. Uncertain. Quantif. 1 (2011), no. 1, 1–17.
2453
+ [16] Karina Koval, Alen Alexanderian, and Georg Stadler, Optimal experimental design under
2454
+ irreducible uncertainty for linear inverse problems governed by PDEs, Inverse Probl. 36
2455
+ (2020), no. 7, 075007.
2456
+ [17] Yvon Maday and Tommaso Taddei, Adaptive PBDW approach to state estimation: noisy
2457
+ observations; user-defined update spaces, SIAM J. Sci. Comput. 41 (2019), no. 4, b669–
2458
+ b693.
2459
+ [18] Ruanui Nicholson, No´emi Petra, and Jari P Kaipio, Estimation of the Robin coefficient field
2460
+ in a Poisson problem with uncertain conductivity field, Inverse Probl. 34 (2018), no. 11,
2461
+ 115005.
2462
+ [19] A. Nissinen, L. M. Heikkinen, V. Kolehmainen, and J. P. Kaipio, Compensation of errors
2463
+ due to discretization, domain truncation and unknown contact impedances in electrical
2464
+ impedance tomography, Meas. Sci. Technol. 20 (2009), no. 10, 105504.
2465
+ 26
2466
+
2467
+ [20] K. Sargsyan, H. N. Najm, and R. Ghanem, On the statistical calibration of physical models,
2468
+ Int. J. Chem. Kinet. 47 (2015), no. 4, 246–276.
2469
+ [21] Khachik Sargsyan, Xun Huan, and Habib N. Najm, Embedded model error representation
2470
+ for Bayesian model calibration, Int. J. Uncertain. Quantif. 9 (2019), no. 4, 365–394.
2471
+ [22] Andrea Scarinci, Michael Fehler, and Youssef Marzouk, Bayesian inference under model
2472
+ misspecification using transport-Lagrangian distances: an application to seismic inversion,
2473
+ 2021, arXiv:2105.07027.
2474
+ [23] Bj¨orn Sprungk, On the local Lipschitz stability of Bayesian inverse problems, Inverse Probl.
2475
+ 36 (2020), 055015.
2476
+ [24] Andrew M. Stuart, Inverse problems: A Bayesian perspective, Acta Numerica 19 (2010),
2477
+ 451–559.
2478
+ [25] Alexandre B. Tsybakov, Introduction to nonparametric estimation, Springer series in statis-
2479
+ tics, vol. 160, Springer Science & Business Media, 2009.
2480
+ [26] Martin J. Wainwright, High-dimensional statistics, Cambridge Series in Statistical and
2481
+ Probabilistic Mathematics, vol. 48, Cambridge University Press, Cambridge, 2019.
2482
+ 27
2483
+
8dE4T4oBgHgl3EQfCwtu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8tAzT4oBgHgl3EQf-v68/content/tmp_files/2301.01939v1.pdf.txt ADDED
@@ -0,0 +1,1976 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Thomsen-type parameters and attenuation coefficients for constant-Q
2
+ transverse isotropy
3
+ Qi Haoa,∗, Ilya Tsvankinb
4
+ aCollege of Geoexploration Science and Technology, Jilin University, Changchun, 130026, P. R. China
5
+ bDepartment of Geophysics, Colorado School of Mines, Golden, 80401, USA
6
+ Abstract
7
+ Transversely isotropic (TI) media with the frequency-independent quality-factor elements (also called “constant-Q”
8
+ transverse isotropy) are often used to describe attenuation anisotropy in sedimentary rocks. The attenuation coef-
9
+ ficients in constant-Q TI models can be conveniently defined in terms of the Thomsen-type attenuation-anisotropy
10
+ parameters.
11
+ Recent research indicates that not all those parameters for such constant-Q media are frequency-
12
+ independent. Here, we present concise analytic formulae for the Thomsen-type attenuation parameters for Kjar-
13
+ tansson’s constant-Q TI model and show that one of them (δQ) varies with frequency. The analytic expression
14
+ for δQ helps evaluate the frequency dependence of the normalized attenuation coefficients of P- and SV-waves by
15
+ introducing the newly defined “dispersion factors”. Viscoacoustic constant-Q transverse isotropy is also discussed as
16
+ a special case, for which the elliptical condition and simplified expressions for the parameters δ and δQ are derived.
17
+ Our results show that in the presence of significant absorption the attenuation coefficients of the “constant-Q”
18
+ model vary with frequency for oblique propagation with respect to the symmetry axis. This variation needs to be
19
+ taken into account when applying the spectral-ratio method and other attenuation-analysis techniques.
20
+ Keywords:
21
+ seismic, attenuation, anisotropy, wave, Q
22
+ 1. Introduction
23
+ The frequency-independent quality factor (called “constant-Q” for brevity) provides a useful phenomenologi-
24
+ cal description of seismic attenuation in rocks and is widely used in seismic attenuation analysis. Among such
25
+ constant-Q dissipative models are those proposed by [1] and [2]. For isotropic media, the Kjartansson model pro-
26
+ duces the constant-Q factor for all frequencies, whereas the Kolsky model leads to nearly constant Q-values. The
27
+ complex moduli for the Kolsky model represent the first-order Maclaurin series expansion with respect to 1/Q of
28
+ the corresponding moduli for the Kjartansson model [3, 4].
29
+ As an extension of non-dissipative transverse isotropy, the constant-Q TI model can be used to process seismic
30
+ attenuation data for most sedimentary rocks, such as shale formations.
31
+ The constant-Q assumption facilitates
32
+ estimation of the quality factor and attenuation anisotropy [e.g., 5, 6, 7, 8]. Ultrasonic measurements demonstrate
33
+ that attenuation anisotropy generally is stronger than velocity anisotropy for rock samples [9, 10, 11].
34
+ Velocity anisotropy for TI media can be efficiently described by the Thomsen anisotropy parameters [12, 13].
35
+ Likewise, attenuation anisotropy for dissipative TI media is convenient to study using the Thomsen-type nota-
36
+ tion introduced by [14]. The combination of the velocity- and attenuation-related Thomsen-type parameters [14]
37
+ completely defines the complex stiffness matrix at a specified frequency for a general dissipative TI model with
38
+ a vertical symmetry axis (VTI medium). The generic Thomsen velocity parameters depend on the real parts of
39
+ the stiffness coefficients (cij), whereas the Thomsen-type attenuation parameters are defined by both the real and
40
+ imaginary parts of cij. [15] found that some Thomsen-type parameters in constant-Q VTI media are frequency
41
+ ∗Corresponding author
42
+ Email addresses: [email protected] (Qi Hao), [email protected] (Ilya Tsvankin)
43
+ January 6, 2023
44
+ arXiv:2301.01939v1 [physics.geo-ph] 5 Jan 2023
45
+
46
+ dependent. This phenomenon is not entirely surprising, because all stiffness coefficients of constant-Q TI media,
47
+ which are involved in the definition of the Thomsen-type parameters, are functions of frequency. Investigating
48
+ the frequency variations of these parameters can facilitate understanding of such key signatures in TI media as
49
+ velocities, traveltimes, attenuation coefficients, and polarization vectors. However, to our knowledge, there are no
50
+ analytic expressions for the frequency-dependent Thomsen-type attenuation parameters in constant-Q dissipative
51
+ VTI media.
52
+ Here, we derive analytic formulae for the Thomsen-type parameters using Kjartansson’s constant-Q VTI model.
53
+ A set of the corresponding reference parameters is defined at a specified frequency and used to obtain those
54
+ parameters for the entire frequency range. We also present a formula for the frequency-dependent anellipticity
55
+ and define the condition for elliptical anisotropy in constant-Q TI media. The newly proposed formulae for the
56
+ Thomsen-type parameters allow us to study the normalized plane-wave attenuation coefficients in constant-Q media
57
+ with weak attenuation anisotropy and define the “dispersion factors” for P- and SV-waves. Numerical examples
58
+ are used to analyze the accuracy of the obtained expressions for the Thomsen-type parameters, the validity of the
59
+ elliptical condition, and the frequency dependence of the attenuation coefficients.
60
+ 2. Thomsen-type parameters of constant-Q VTI media
61
+ 2.1. Constant-Q dissipative VTI model
62
+ Referring to [14] and [16], the complex stiffness (or modulus) matrix M for viscoelastic VTI media is given by:
63
+ M =
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+ M11
73
+ M11 − 2M66
74
+ M13
75
+ 0
76
+ 0
77
+ 0
78
+ M11 − 2M66
79
+ M11
80
+ M13
81
+ 0
82
+ 0
83
+ 0
84
+ M13
85
+ M13
86
+ M33
87
+ 0
88
+ 0
89
+ 0
90
+ 0
91
+ 0
92
+ 0
93
+ M55
94
+ 0
95
+ 0
96
+ 0
97
+ 0
98
+ 0
99
+ 0
100
+ M55
101
+ 0
102
+ 0
103
+ 0
104
+ 0
105
+ 0
106
+ 0
107
+ M66
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+ ,
117
+ (1)
118
+ where Mij = M R
119
+ ij − i sgn(f)M I
120
+ ij denote the complex stiffness coefficients for the frequency f, and the minus sign in
121
+ front of i sgn(f)M I
122
+ ij follows from the definition of the Fourier transform in [17] and [3]. Both the real and imaginary
123
+ parts of Mij generally are frequency dependent.
124
+ For the [2] model (also called the constant-Q model), the nonzero independent elements in equation 1 are
125
+ expressed as:
126
+ Mij =
127
+ ˜
128
+ M R
129
+ ij
130
+ cos(πγij)
131
+
132
+ −i f
133
+ f0
134
+ �2γij
135
+ ,
136
+ (2)
137
+ with
138
+ γij = 1
139
+ π tan−1
140
+ � 1
141
+ Qij
142
+
143
+ ,
144
+ (3)
145
+ where Qij ≡ M R
146
+ ij /M I
147
+ ij, f0 is the reference frequency, and ˜
148
+ M R
149
+ ij denote the real parts of Mij at f0: ˜
150
+ M R
151
+ ij = Re(Mij)|f=f0.
152
+ By design, the quality-factor elements Qij for the Kjartansson model are independent of frequency. As follows from
153
+ equation 2, the complex stiffness coefficients Mij for a given frequency can be expressed in terms of ˜
154
+ M R
155
+ ij and Qij.
156
+ 2.2. Thomsen-type parameterization
157
+ [14] and [18] show that dissipative VTI media can be conveniently parameterized by the Thomsen-type attenu-
158
+ ation parameters. The [12] velocity parameters [see 13] are defined in the nonattenuative reference VTI medium.
159
+ The parameter VP 0 is the vertical velocity of P-waves:
160
+ VP 0 ≡
161
+
162
+ M R
163
+ 33
164
+ ρ ,
165
+ (4)
166
+ where ρ denotes density.
167
+ 2
168
+
169
+ The parameter VS0 is the vertical velocity of S-waves:
170
+ VS0 ≡
171
+
172
+ M R
173
+ 55
174
+ ρ .
175
+ (5)
176
+ The parameter ϵ is approximately equal to the fractional difference between the horizontal and vertical velocities
177
+ of P-waves:
178
+ ϵ ≡ M R
179
+ 33 − M R
180
+ 11
181
+ 2M R
182
+ 33
183
+ .
184
+ (6)
185
+ The parameter δ determines the second derivative of the P-wave phase velocity at vertical incidence and is given
186
+ by:
187
+ δ ≡
188
+
189
+ M R
190
+ 13 + M R
191
+ 55
192
+ �2 −
193
+
194
+ M R
195
+ 33 − M R
196
+ 55
197
+ �2
198
+ 2M R
199
+ 33(M R
200
+ 33 − M R
201
+ 55)
202
+ .
203
+ (7)
204
+ The parameter γ is approximately equal to the fractional difference between the horizontal and vertical velocities
205
+ of SH-waves:
206
+ γ ≡ M R
207
+ 66 − M R
208
+ 55
209
+ 2M R
210
+ 55
211
+ .
212
+ (8)
213
+ The Thomsen-type attenuation parameters [14] can be used to define the normalized phase attenuation coefficient
214
+ A ≡ |kI|/|kR| for P-, SV-, and SH-waves, which is generally supposed to be frequency-independent in constant-Q
215
+ models. For more details about A, see the section “Plane-wave attenuation in constant-Q VTI media” below.
216
+ The parameter AP 0 is the vertical attenuation coefficient of P-waves:
217
+ AP 0 ≡ Q33
218
+ ��
219
+ 1 +
220
+ 1
221
+ Q2
222
+ 33
223
+ − 1
224
+
225
+
226
+ 1
227
+ 2Q33
228
+ .
229
+ (9)
230
+ The parameter AS0 is the vertical attenuation coefficient of S-waves:
231
+ AS0 ≡ Q55
232
+ ��
233
+ 1 +
234
+ 1
235
+ Q2
236
+ 55
237
+ − 1
238
+
239
+
240
+ 1
241
+ 2Q55
242
+ .
243
+ (10)
244
+ The parameter ϵQ is close to the fractional difference between the horizontal and vertical attenuation coefficients
245
+ of P-waves:
246
+ ϵQ ≡ Q33 − Q11
247
+ Q11
248
+ .
249
+ (11)
250
+ The parameter δQ controls the second derivative of the P-wave attenuation coefficient at vertical incidence and
251
+ is expressed as [14]:
252
+ δQ ≡
253
+ Q33−Q55
254
+ Q55
255
+ M R
256
+ 55
257
+ (M R
258
+ 13+M R
259
+ 33)
260
+ 2
261
+ M R
262
+ 33−M R
263
+ 55
264
+ + 2 Q33−Q13
265
+ Q13
266
+ M R
267
+ 13(M R
268
+ 13 + M R
269
+ 55)
270
+ M R
271
+ 33(M R
272
+ 33 − M R
273
+ 55)
274
+ .
275
+ (12)
276
+ The parameter γQ is close to the fractional difference between the horizontal and vertical attenuation coefficients
277
+ of SH-waves:
278
+ γQ ≡ Q55 − Q66
279
+ Q66
280
+ .
281
+ (13)
282
+ 3
283
+
284
+ 3. Analytic description of Thomsen-type parameters
285
+ In this section, we represent the Thomsen velocity parameters and Thomsen-type attenuation parameters in
286
+ terms of their reference values defined at f = f0:
287
+ ˜VP 0 = VP 0|f=f0, ˜VS0 = VS0|f=f0, ˜ϵ = ϵ|f=f0, ˜δ = δ|f=f0,
288
+ ˜
289
+ AP 0 = AP 0|f=f0,
290
+ ˜
291
+ AS0 = AS0|f=f0, ˜ϵQ = ϵQ|f=f0, and ˜δQ = δQ|f=f0. These parameters are used to find the
292
+ real parts of the reference stiffness coefficients ( ˜
293
+ M R
294
+ ij ), the quality-factor elements Qij (see Appendix A), and the
295
+ frequency-dependent stiffness matrix M.
296
+ According to equations 4–7 and 12, the Thomsen-type parameters involve the coefficients M R
297
+ ij , where ij=11, 13,
298
+ 33, 55 and 66. Using equations 2 and 3, M R
299
+ ij are approximately expressed as:
300
+ M R
301
+ ij ≈ ˜
302
+ M R
303
+ ij
304
+
305
+ 1 + 2
306
+ π Q−1
307
+ ij ln
308
+ ����
309
+ f
310
+ f0
311
+ ���� + 2
312
+ π2 Q−2
313
+ ij ln2
314
+ ����
315
+ f
316
+ f0
317
+ ����
318
+
319
+ ,
320
+ (14)
321
+ where we use the approximation tan−1(Q−1
322
+ ij ) ≈ Q−1
323
+ ij because typically Qij ≫ 1.
324
+ Substitution of equation 14 into equations 4–7 and 12 allows us to derive approximate expressions for the
325
+ frequency-dependent Thomsen-type parameters, which are discussed in the following two subsections.
326
+ 3.1. Velocity parameters
327
+ The second-order approximations for the Thomsen velocity parameters with respect to ln|f/f0| are given by:
328
+ VP 0 = ˜VP 0
329
+
330
+ 1 + 1
331
+ π Q−1
332
+ 33 ln
333
+ ����
334
+ f
335
+ f0
336
+ ���� +
337
+ 1
338
+ 2π2 Q−2
339
+ 33 ln2
340
+ ����
341
+ f
342
+ f0
343
+ ����
344
+
345
+ ,
346
+ (15)
347
+ VS0 = ˜VS0
348
+
349
+ 1 + 1
350
+ π Q−1
351
+ 55 ln
352
+ ����
353
+ f
354
+ f0
355
+ ���� +
356
+ 1
357
+ 2π2 Q−2
358
+ 55 ln2
359
+ ����
360
+ f
361
+ f0
362
+ ����
363
+
364
+ ,
365
+ (16)
366
+ ϵ = ˜ϵ + 1
367
+ π (1 + 2˜ϵ) Q−1
368
+ 33 ˜ϵQ ln
369
+ ����
370
+ f
371
+ f0
372
+ ���� + 1
373
+ π2 (1 + 2˜ϵ) Q−2
374
+ 33 ˜ϵ2
375
+ Q ln2
376
+ ����
377
+ f
378
+ f0
379
+ ���� ,
380
+ (17)
381
+ δ = ˜δ + 1
382
+ π Q−1
383
+ 33 ˜δQ ln
384
+ ����
385
+ f
386
+ f0
387
+ ���� + 1
388
+ π2 Q−2
389
+ 33 ζQ ln2
390
+ ����
391
+ f
392
+ f0
393
+ ���� ,
394
+ (18)
395
+ γ = ˜γ + 1
396
+ π (1 + 2˜γ) Q−1
397
+ 55 ˜γQ ln
398
+ ����
399
+ f
400
+ f0
401
+ ���� + 1
402
+ π2 (1 + 2˜γ) Q−2
403
+ 55 ˜γ2
404
+ Q ln2
405
+ ����
406
+ f
407
+ f0
408
+ ���� ,
409
+ (19)
410
+ where the P- and S-wave inverse vertical quality factors Q33 and Q55 (respectively) are:
411
+ Q−1
412
+ 33 =
413
+ ˜
414
+ AP 0
415
+ 2(1 − ˜
416
+ A2
417
+ P 0)
418
+ ,
419
+ (20)
420
+ Q−1
421
+ 55 =
422
+ ˜
423
+ AS0
424
+ 2(1 − ˜
425
+ A2
426
+ S0)
427
+ .
428
+ (21)
429
+ The coefficient ζQ in equation 18 is defined as:
430
+ ζQ = d0 (1 − gQ)2 + d1 (1 − gQ) ˜δQ + d2 ˜δ2
431
+ Q ,
432
+ (22)
433
+ with
434
+ gQ ≡ Q33
435
+ Q55
436
+ ,
437
+ (23)
438
+ 4
439
+
440
+ d0 =
441
+ g(1 − g + χ)2 �
442
+ (1 + 2˜δ) χ − (1 + 2˜δ) g + (1 + ˜δ) g2�
443
+ (1 − g)2(χ − g)χ2
444
+ ,
445
+ (24)
446
+ d1 =
447
+ 2g
448
+
449
+ 1 + 2˜δ + χ − (2 + ˜δ + χ) g + g2�
450
+ (χ − g)χ2
451
+ ,
452
+ (25)
453
+ d2 =
454
+ 2χ − g
455
+ 2(1 + 2˜δ − g)(χ − g)
456
+ ;
457
+ (26)
458
+ g ≡
459
+ ˜V 2
460
+ S0
461
+ ˜V 2
462
+ P 0
463
+ ,
464
+ (27)
465
+ χ =
466
+
467
+ (1 − g)(1 + 2˜δ − g) .
468
+ (28)
469
+ In equations 15–19, the first-order terms with respect to ln|f/f0| are scaled by Q−1
470
+ 33 or Q−1
471
+ 55 , whereas the second-
472
+ order terms by Q−2
473
+ 33 or Q−2
474
+ 55 . Because Q33 and Q55 typically are much greater than unity, the frequency dependence
475
+ of the velocity parameters is mostly determined by the first-order terms. Equations 15–19 indicate that: (1) VP 0
476
+ and VS0 always monotonically increase with frequency; (2) ϵ, δ and γ also monotonically increase with f, if ˜ϵQ > 0,
477
+ ˜δQ > 0, and ˜γQ > 0, respectively. Overall, the frequency dependence of VP 0, VS0, ϵ, δ, and γ for realistic values of
478
+ Q33 and Q55 (Q33 ≫ 1 and Q55 ≫ 1) remains weak, as illustrated by the numerical examples below.
479
+ Note that phase and group velocities in strongly dissipative TI media are influenced by attenuation and do
480
+ not represent the same functions of the Thomsen parameters as in purely elastic models [14, 13]. For sedimentary
481
+ formations, both gQ and g vary within a limited range.
482
+ In particular, according to [9], for relatively shallow
483
+ sedimentary rocks 0.5 < gQ ≤ 3 (Figure 1).
484
+ gQ= 1
485
+ 2
486
+ gQ=1
487
+ gQ=2
488
+ gQ=3
489
+ 0
490
+ 20
491
+ 40
492
+ 60
493
+ 80
494
+ 100
495
+ 0
496
+ 50
497
+ 100
498
+ 150
499
+ Q55
500
+ Q33
501
+ Figure 1: Vertical quality factors Q33 and Q55 in dissipative VTI rocks. The black dots are the data from Table 3
502
+ of [9]; gQ ≡ Q33/Q55.
503
+ Using equations 17 and 18 for ϵ and δ, the anellipticity parameter η [19] can be approximately obtained as:
504
+ η ≡ ϵ − δ
505
+ 1 + 2δ = η0 + η1 Q−1
506
+ 33 ln
507
+ ����
508
+ f
509
+ f0
510
+ ���� + η2 Q−2
511
+ 33 ln2
512
+ ����
513
+ f
514
+ f0
515
+ ����,
516
+ (29)
517
+ 5
518
+
519
+ where Q33 is given by equation 20, and
520
+ η0 = ˜η = ˜ϵ − ˜δ
521
+ 1 + 2˜δ
522
+ ,
523
+ (30)
524
+ η1 =
525
+ 1 + 2˜ϵ
526
+ (1 + 2˜δ)2
527
+
528
+ (1 + 2˜δ)˜ϵQ − ˜δQ
529
+
530
+ ,
531
+ (31)
532
+ η2 = 1 + 2˜ϵ
533
+ 1 + 2˜δ
534
+
535
+ r0 +
536
+ r1
537
+ 1 + 2˜δ
538
+ +
539
+ r2
540
+ (1 + 2˜δ)2
541
+
542
+ ,
543
+ (32)
544
+ with
545
+ r0 = ˜ϵ2
546
+ Q,
547
+ (33)
548
+ r1 = −ζQ − 2˜ϵQ ˜δQ,
549
+ (34)
550
+ r2 = 2˜δ2
551
+ Q.
552
+ (35)
553
+ The parameter η controls (along with the zero-dip normal-moveout velocity) all P-wave time-domain signatures for
554
+ laterally homogeneous VTI media above a horizontal or dipping target reflector [19, 13].
555
+ 3.2. Attenuation parameters
556
+ The following Thomsen-type attenuation parameters are expressed directly through the elements Qij and, there-
557
+ fore, are frequency-independent in constant-Q VTI media:
558
+ AP 0 = ˜
559
+ AP 0,
560
+ (36)
561
+ AS0 = ˜
562
+ AS0,
563
+ (37)
564
+ ϵQ = ˜ϵQ,
565
+ (38)
566
+ γQ = ˜γQ.
567
+ (39)
568
+ The attenuation parameter δQ, however, also depends on the coefficients M R
569
+ ij (equation 12), which vary with
570
+ frequency. The second-order approximation for δQ with respect to ln |f/f0| is:
571
+ δQ = ˜δQ + 2
572
+ π Q−1
573
+ 33 ζQ ln
574
+ ����
575
+ f
576
+ f0
577
+ ���� + 2
578
+ π2 Q−2
579
+ 33 ξQ ln2
580
+ ����
581
+ f
582
+ f0
583
+ ����,
584
+ (40)
585
+ where ζQ is defined in equation 22, and
586
+ ξQ = s0(1 − gQ)3 + s1(1 − gQ)2 ˜δQ + s2(1 − gQ) ˜δ2
587
+ Q + s3 ˜δ3
588
+ Q.
589
+ (41)
590
+ The explicit expressions for the coefficients si are given in Appendix B.
591
+ Because for Q33 ≫ 1 the influence of the second-order term in equation 40 is insignificant, the frequency variation
592
+ of δQ is largely controlled by the coefficient ζQ. For ζQ > 0, δQ monotonically increases with frequency. As follows
593
+ from equations 22 and 24–28, ζQ is a function of g (equation 27), gQ (equation 23), ˜δ, and ˜δQ.
594
+ 3.3. Numerical analysis
595
+ Here, we analyze the above expressions for the Thomsen-type parameters numerically. The reference frequency
596
+ is set as f0 = 40 Hz and the frequency range as [1, 200] Hz for all examples below.
597
+ First, we test the accuracy of the equations 15 and 16 for the vertical velocities and their first-order versions
598
+ (i.e., those without the second-order term with respect to ln|f/f0|). As demonstrated by Figure 2, the first-order
599
+ approximations for VP 0 and VS0 are sufficiently accurate even for strong attenuation in a wide frequency range.
600
+ Overall, the frequency dependence of the vertical velocities is almost negligible, except for very low frequencies.
601
+ 6
602
+
603
+ exact
604
+ 1st
605
+ 2nd
606
+ 0
607
+ 50
608
+ 100
609
+ 150
610
+ 200
611
+ 2.92
612
+ 2.94
613
+ 2.96
614
+ 2.98
615
+ 3.00
616
+ 3.02
617
+ 3.04
618
+ f (Hz)
619
+ vP0 (km/s)
620
+ (a)
621
+ exact
622
+ 1st
623
+ 2nd
624
+ 0
625
+ 50
626
+ 100
627
+ 150
628
+ 200
629
+ 1.42
630
+ 1.44
631
+ 1.46
632
+ 1.48
633
+ 1.50
634
+ 1.52
635
+ 1.54
636
+ f (Hz)
637
+ vS0 (km/s)
638
+ (b)
639
+ Figure 2: Frequency-dependent vertical velocities (a) VP 0 and (b) VS0. “Exact” in the legend refers to the exact
640
+ values, whereas “1st” and “2nd” denote the first- and second-order approximations with respect to ln |f/f0|, re-
641
+ spectively. On plot (a), ˜VP 0 = 3.0 km/s and Q33 = 40 ( ˜
642
+ AP 0 = 0.0125); on plot (b), ˜VS0 = 1.5 km/s and Q55 = 20
643
+ ( ˜
644
+ AS0 = 0.025).
645
+ Table 1: Medium parameters for two constant-Q VTI models at the reference frequency f0 = 40 Hz.
646
+ [H]
647
+ Model
648
+ ˜VP 0
649
+ ˜VS0
650
+ ˜ϵ
651
+ ˜δ
652
+ ˜γ
653
+ ˜
654
+ AP 0 (Q33)
655
+ ˜
656
+ AS0 (Q55)
657
+ ˜ϵQ
658
+ ˜δQ
659
+ ˜γQ
660
+ 1
661
+ 3.0
662
+ 1.5
663
+ 0.3
664
+ -0.1
665
+ 0.1
666
+ 0.0125 (40)
667
+ 0.0167 (30)
668
+ -0.3
669
+ -1.91
670
+ 0.5
671
+ 2
672
+ 3.0
673
+ 1.5
674
+ 0.3
675
+ -0.1
676
+ 0.2
677
+ 0.0250 (20)
678
+ 0.0333 (15)
679
+ 0.3
680
+ 0.98
681
+ -0.2
682
+ Figures 3, 4 and 5 show that the first-order versions of equations 17–19 can accurately describe the variations of
683
+ the anisotropy parameters ϵ, δ, and γ with frequency. Comparison of Figures 3, 4, and 5 confirms that the reference
684
+ parameters ˜ϵQ, ˜δQ, and ˜γQ govern the frequency dependence of ϵ, δ, and γ. For example, if ˜ϵQ > 0, ϵ increases
685
+ with frequency. As is the case for VP 0 and VS0, the anisotropy coefficients vary with frequency primarily in the
686
+ low-frequency range.
687
+ exact
688
+ 1st
689
+ 2nd
690
+ 0
691
+ 50
692
+ 100
693
+ 150
694
+ 200
695
+ 0.295
696
+ 0.300
697
+ 0.305
698
+ 0.310
699
+ 0.315
700
+ f (Hz)
701
+ ϵ
702
+ (a)
703
+ exact
704
+ 1st
705
+ 2nd
706
+ 0
707
+ 50
708
+ 100
709
+ 150
710
+ 200
711
+ 0.27
712
+ 0.28
713
+ 0.29
714
+ 0.30
715
+ 0.31
716
+ f (Hz)
717
+ ϵ
718
+ (b)
719
+ Figure 3: Variation of the Thomsen parameter ϵ with frequency for (a) Model 1 and (b) Model 2 from Table 1.
720
+ The legend is the same as in Figure 2.
721
+ Next, we investigate the only frequency-dependent attenuation-anisotropy parameter, δQ, by comparing the
722
+ exact equation for δQ with its first- and second-order approximations. The first-order equation accurately models
723
+ δQ in a wide frequency range, whereas contribution of the second-order term is practically negligible (Figure 6).
724
+ As mentioned above, the coefficient ζQ in equation 40 is largely responsible for the frequency variation of δQ for
725
+ 7
726
+
727
+ exact
728
+ 1st
729
+ 2nd
730
+ 0
731
+ 50
732
+ 100
733
+ 150
734
+ 200
735
+ -0.12
736
+ -0.11
737
+ -0.10
738
+ -0.09
739
+ -0.08
740
+ -0.07
741
+ f (Hz)
742
+ δ
743
+ (a)
744
+ exact
745
+ 1st
746
+ 2nd
747
+ 0
748
+ 50
749
+ 100
750
+ 150
751
+ 200
752
+ -0.16
753
+ -0.14
754
+ -0.12
755
+ -0.10
756
+ -0.08
757
+ f (Hz)
758
+ δ
759
+ (b)
760
+ Figure 4: Same as Figure 3 but for the parameter δ.
761
+ exact
762
+ 1st
763
+ 2nd
764
+ 0
765
+ 50
766
+ 100
767
+ 150
768
+ 200
769
+ 0.075
770
+ 0.080
771
+ 0.085
772
+ 0.090
773
+ 0.095
774
+ 0.100
775
+ 0.105
776
+ 0.110
777
+ f (Hz)
778
+ γ
779
+ (a)
780
+ exact
781
+ 1st
782
+ 2nd
783
+ 0
784
+ 50
785
+ 100
786
+ 150
787
+ 200
788
+ 0.190
789
+ 0.195
790
+ 0.200
791
+ 0.205
792
+ 0.210
793
+ 0.215
794
+ 0.220
795
+ f (Hz)
796
+ γ
797
+ (b)
798
+ Figure 5: Same as Figure 3 but for the parameter γ.
799
+ exact
800
+ 1st
801
+ 2nd
802
+ 0
803
+ 50
804
+ 100
805
+ 150
806
+ 200
807
+ -2.3
808
+ -2.2
809
+ -2.1
810
+ -2.0
811
+ -1.9
812
+ -1.8
813
+ -1.7
814
+ -1.6
815
+ f (Hz)
816
+ δQ
817
+ (a)
818
+ exact
819
+ 1st
820
+ 2nd
821
+ 0
822
+ 50
823
+ 100
824
+ 150
825
+ 200
826
+ 0.80
827
+ 0.85
828
+ 0.90
829
+ 0.95
830
+ 1.00
831
+ 1.05
832
+ f (Hz)
833
+ δQ
834
+ (b)
835
+ Figure 6: Frequency-dependent Thomsen-type attenuation parameter δQ for (a) Model 1 and (b) Model 2 from
836
+ Table 1. The legend is the same as in Figure 2.
837
+ 8
838
+
839
+ a specified value of Q33. Equation 22 shows that ζQ is a function of the parameters g = ˜V 2
840
+ S0/ ˜V 2
841
+ P 0, gQ = Q−1
842
+ 55 /Q−1
843
+ 33 ,
844
+ ˜δ and ˜δQ. Using the results from Figure 1, we restrict gQ to the range 0.5 ≤ gQ ≤ 3. Figures 7 and 8 show that
845
+ the smallest absolute value of ζQ corresponds to gQ = 1, and |ζQ| increases with the deviation of gQ from unity.
846
+ As a result, the parameter δQ is almost independent of frequency for gQ = 1 (Figure 9). Overall, the frequency
847
+ dependence of δQ becomes noticeable for large |gQ − 1| (e.g., gQ = 3; Figure 9), but it is also influenced by the
848
+ parameters ˜δ and ˜δQ. For the most common values of gQ considered here, the parameter δQ significantly varies
849
+ with f only for low frequencies.
850
+ -0.1 0.0
851
+ 0.1
852
+ 0.2
853
+ 0.3
854
+ 0.4
855
+ 0.5
856
+ -1.0
857
+ -0.5
858
+ 0.0
859
+ 0.5
860
+ 1.0
861
+ δ˜
862
+ δ˜
863
+ Q
864
+ ζQ
865
+ 7.5
866
+ 10.0
867
+ 12.5
868
+ 15.0
869
+ 17.5
870
+ 20.0
871
+ 22.5
872
+ (a)
873
+ -0.1 0.0
874
+ 0.1
875
+ 0.2
876
+ 0.3
877
+ 0.4
878
+ 0.5
879
+ -1.0
880
+ -0.5
881
+ 0.0
882
+ 0.5
883
+ 1.0
884
+ δ˜
885
+ δ˜
886
+ Q
887
+ ζQ
888
+ 2
889
+ 4
890
+ 6
891
+ 8
892
+ 10
893
+ (b)
894
+ -0.1 0.0
895
+ 0.1
896
+ 0.2
897
+ 0.3
898
+ 0.4
899
+ 0.5
900
+ -1.0
901
+ -0.5
902
+ 0.0
903
+ 0.5
904
+ 1.0
905
+ δ˜
906
+ δ˜
907
+ Q
908
+ ζQ
909
+ 0
910
+ 0.5
911
+ 1.0
912
+ 1.5
913
+ 2.0
914
+ 2.5
915
+ 3.0
916
+ (c)
917
+ -0.1 0.0
918
+ 0.1
919
+ 0.2
920
+ 0.3
921
+ 0.4
922
+ 0.5
923
+ -1.0
924
+ -0.5
925
+ 0.0
926
+ 0.5
927
+ 1.0
928
+ δ˜
929
+ δ˜
930
+ Q
931
+ ζQ
932
+ 0
933
+ 1
934
+ 2
935
+ 3
936
+ 4
937
+ 5
938
+ 6
939
+ (d)
940
+ Figure 7: Contour plots of the coefficient ζQ as a function of ˜δ and ˜δQ. The parameter g = ˜V 2
941
+ S0/ ˜V 2
942
+ P 0 = 0.3. The
943
+ parameter gQ = Q−1
944
+ 55 / ˜Q−1
945
+ P 0 is defined as (a) gQ = 3, (b) gQ = 2, (c) gQ = 1, and (d) gQ = 0.5.
946
+ 9
947
+
948
+ g=0
949
+ g=0.1
950
+ g=0.3
951
+ g=0.5
952
+ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
953
+ -10
954
+ -5
955
+ 0
956
+ 5
957
+ 10
958
+ 15
959
+ gQ
960
+ ζQ
961
+ (a)
962
+ g=0
963
+ g=0.1
964
+ g=0.3
965
+ g=0.5
966
+ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
967
+ -6
968
+ -4
969
+ -2
970
+ 0
971
+ 2
972
+ 4
973
+ 6
974
+ 8
975
+ gQ
976
+ ζQ
977
+ (b)
978
+ g=0
979
+ g=0.1
980
+ g=0.3
981
+ g=0.5
982
+ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
983
+ 0
984
+ 10
985
+ 20
986
+ 30
987
+ 40
988
+ 50
989
+ gQ
990
+ ζQ
991
+ (c)
992
+ g=0
993
+ g=0.1
994
+ g=0.3
995
+ g=0.5
996
+ 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
997
+ 0
998
+ 10
999
+ 20
1000
+ 30
1001
+ gQ
1002
+ ζQ
1003
+ (d)
1004
+ Figure 8: Variation of the coefficient ζQ with gQ for different values of g. (a) ˜δ = −0.2 and ˜δQ = −0.6; (b) ˜δ = −0.2
1005
+ and ˜δQ = 0; (c) ˜δ = 0.2 and ˜δQ = −0.4; (d) ˜δ = 0.2 and ˜δQ = 0.98.
1006
+ gQ=3
1007
+ gQ=2
1008
+ gQ=1
1009
+ gQ= 1
1010
+ 2
1011
+ 0
1012
+ 50
1013
+ 100
1014
+ 150
1015
+ 200
1016
+ -1.0
1017
+ -0.8
1018
+ -0.6
1019
+ -0.4
1020
+ -0.2
1021
+ 0.0
1022
+ 0.2
1023
+ f (Hz)
1024
+ δQ
1025
+ (a)
1026
+ gQ=3
1027
+ gQ=2
1028
+ gQ=1
1029
+ gQ= 1
1030
+ 2
1031
+ 0
1032
+ 50
1033
+ 100
1034
+ 150
1035
+ 200
1036
+ -0.2
1037
+ -0.1
1038
+ 0.0
1039
+ 0.1
1040
+ 0.2
1041
+ 0.3
1042
+ 0.4
1043
+ f (Hz)
1044
+ δQ
1045
+ (b)
1046
+ gQ=3
1047
+ gQ=2
1048
+ gQ=1
1049
+ gQ= 1
1050
+ 2
1051
+ 0
1052
+ 50
1053
+ 100
1054
+ 150
1055
+ 200
1056
+ -0.8
1057
+ -0.6
1058
+ -0.4
1059
+ -0.2
1060
+ 0.0
1061
+ 0.2
1062
+ f (Hz)
1063
+ δQ
1064
+ (c)
1065
+ gQ=3
1066
+ gQ=2
1067
+ gQ=1
1068
+ gQ= 1
1069
+ 2
1070
+ 0
1071
+ 50
1072
+ 100
1073
+ 150
1074
+ 200
1075
+ 0.6
1076
+ 0.7
1077
+ 0.8
1078
+ 0.9
1079
+ 1.0
1080
+ 1.1
1081
+ 1.2
1082
+ 1.3
1083
+ f (Hz)
1084
+ δQ
1085
+ (d)
1086
+ Figure 9: Variation of the attenuation parameter δQ with frequency for different gQ and g = 0.3. The parameters
1087
+ ˜δ and ˜δQ are the same as in Figure 8.
1088
+ 10
1089
+
1090
+ 4. Viscoacoustic constant-Q transverse isotropy
1091
+ 4.1. Simplified parameter expressions
1092
+ Next, we consider the so-called “viscoacoustic” constant-Q media described by the Thomsen-type notation. The
1093
+ acoustic approximation is implemented by setting ˜VS0 = AS0 = 0 in equations 18, 40, and 29 [20, 21, 22] . The
1094
+ parameters δ, η, and δQ then reduce to:
1095
+ δ = ˜δ + 1
1096
+ π Q−1
1097
+ 33 ˜δQ ln
1098
+ ����
1099
+ f
1100
+ f0
1101
+ ���� + 1
1102
+ π2 Q−2
1103
+ 33
1104
+ ˜δ2
1105
+ Q
1106
+ 1 + 2˜δ
1107
+ ln2
1108
+ ����
1109
+ f
1110
+ f0
1111
+ ����,
1112
+ (42)
1113
+ η = η0 + η1 Q−1
1114
+ 33 ln
1115
+ ����
1116
+ f
1117
+ f0
1118
+ ���� +
1119
+
1120
+ ˜ϵQ −
1121
+ ˜δQ
1122
+ 1 + 2˜δ
1123
+
1124
+ η1 Q−2
1125
+ 33 ln2
1126
+ ����
1127
+ f
1128
+ f0
1129
+ ����,
1130
+ (43)
1131
+ δQ = ˜δQ + 2
1132
+ π Q−1
1133
+ 33
1134
+ ˜δ2
1135
+ Q
1136
+ 1 + 2˜δ
1137
+ ln
1138
+ ����
1139
+ f
1140
+ f0
1141
+ ���� + 2
1142
+ π2 Q−2
1143
+ 33
1144
+ ˜δ3
1145
+ Q
1146
+ (1 + 2˜δ)2 ln2
1147
+ ����
1148
+ f
1149
+ f0
1150
+ ����.
1151
+ (44)
1152
+ Setting η (equation 43) to zero, which requires η0 = η1 = 0 (see equations 30 and 31), we obtain the elliptical
1153
+ conditions:
1154
+ ˜ϵ = ˜δ,
1155
+ (45)
1156
+ ˜ϵQ =
1157
+ ˜δQ
1158
+ 1 + 2˜δ
1159
+ .
1160
+ (46)
1161
+ Equations 45 and 46 make the parameters of viscoacoustic constant-Q media satisfy the same conditions at all
1162
+ frequencies:
1163
+ ϵ = δ,
1164
+ (47)
1165
+ ϵQ =
1166
+ δQ
1167
+ 1 + 2δ ,
1168
+ (48)
1169
+ which follows from equations 17, 31, 42, and 44. Equation 47 implies that the elliptical conditions at the reference
1170
+ frequency ensure that η = 0 at all frequencies.
1171
+ For viscoelastic constant-Q media discussed earlier, equation 47 remains approximately valid (i.e., the model is
1172
+ elliptical at all frequencies), if equations 45 and 46 are satisfied (see equations 29–31).
1173
+ 4.2. Numerical validation
1174
+ Here, we verify the elliptical conditions (equations 45 and 46) by computing the anellipticity parameter η. The
1175
+ exact η is calculated using equations 6, 7, 11 and 12 along with equations 2 and 3 under the acoustic approximation
1176
+ ( ˜VS0 = 0 and Q−1
1177
+ 55 = 0). The first-order approximation for η is given by equation 43 without the second-order term
1178
+ with respect to ln|f/f0|.
1179
+ Figure 10 shows that for models that satisfy equations 45 and 46 the exact anellipticity parameter is negligibly
1180
+ small for all frequencies (on the order of 10−7 for both models), which confirms that the elliptical conditions at the
1181
+ reference frequency lead to equation 47. In addition, our testing confirms that the difference between the left and
1182
+ right sides of equation 48 is negligible, if equations 45 and 46 are satisfied.
1183
+ 11
1184
+
1185
+ exact
1186
+ 1st
1187
+ 2nd
1188
+ 0
1189
+ 50
1190
+ 100
1191
+ 150
1192
+ 200
1193
+ -4.×10-7
1194
+ -2.×10-7
1195
+ 0
1196
+ 2.×10-7
1197
+ 4.×10-7
1198
+ f (Hz)
1199
+ η
1200
+ (a)
1201
+ exact
1202
+ 1st
1203
+ 2nd
1204
+ 0
1205
+ 50
1206
+ 100
1207
+ 150
1208
+ 200
1209
+ -5.×10-7
1210
+ 0
1211
+ 5.×10-7
1212
+ 1.×10-6
1213
+ f (Hz)
1214
+ η
1215
+ (b)
1216
+ Figure 10: Variation of the anellipticity parameter η with frequency under the elliptical conditions (equations 45
1217
+ and 46). The P-wave quality factor and reference vertical velocity at f0 = 40 Hz are Q33 = 40 and ˜VP 0 = 3 km/s.
1218
+ The parameters ˜ϵ and ˜ϵQ are (a) ˜ϵ = 0.3 and ˜ϵQ = −0.33; (b) ˜ϵ = 0.2 and ˜ϵQ = 0.4.
1219
+ 5. Plane-wave attenuation in constant-Q VTI media
1220
+ In this section, we apply the obtained expressions for the Thomsen-type parameters to study the normalized
1221
+ plane-wave attenuation coefficients in constant-Q VTI media.
1222
+ The normalized phase attenuation coefficient is
1223
+ defined as A ≡ |kI|/|kR|, where kR and kI denote the real and imaginary parts of the complex wave vector [14].
1224
+ The words “phase” and “normalized” are omitted below for brevity. The angle between kR and kI is called the
1225
+ “inhomogeneity” angle, which is not defined in plane-wave propagation (i.e., it is a free parameter that can vary
1226
+ within certain bounds). The coefficient A corresponding to kR ∥ kI is approximately equal to the group attenuation
1227
+ coefficient, which can be estimated from seismic data, for a wide range of “inhomogeneity” angles [23, 18].
1228
+ 5.1. Attenuation coefficients
1229
+ [14] and [18] show that the approximate attenuation coefficients of plane waves in viscoelastic constant-Q VTI
1230
+ media are given by:
1231
+ AP = AP 0 (1 + δQ sin2 θ cos2 θ + ϵQ sin4 θ),
1232
+ (49)
1233
+ ASV = AS0 (1 + σQ sin2 θ cos2 θ),
1234
+ (50)
1235
+ ASH = AS0 (1 + γQ sin2 θ),
1236
+ (51)
1237
+ where the subscripts P, SV, and SH denote the wave types, and θ is the phase angle measured from the vertical.
1238
+ The quantity σQ in equation 52 is defined as [14]:
1239
+ σQ = 2V 2
1240
+ P 0
1241
+ V 2
1242
+ S0
1243
+ �Q33
1244
+ Q55
1245
+ − 1
1246
+
1247
+ (ϵ − δ) + V 2
1248
+ P 0 Q55
1249
+ V 2
1250
+ S0 Q33
1251
+ (ϵQ − δQ).
1252
+ (52)
1253
+ Equations 49–51 are derived under the assumption of weak attenuation and weak anisotropy (in both velocity
1254
+ and attenuation). Note that the effective quality factor, assumed to be frequency-independent in constant-Q TI
1255
+ media, is proportional to the inverse of the attenuation coefficient [14].
1256
+ Substitution of the Thomsen parameters from equations 15–19 and 36–40 into equations 49–52 allows us to sepa-
1257
+ rate the frequency-dependent parts of the attenuation coefficients. The approximate P-wave attenuation coefficient
1258
+ then becomes (only the linear term in ln |f/f0| is retained):
1259
+ AP = ˜
1260
+ AP 0
1261
+
1262
+ 1 + ˜δQ sin2 θ cos2 θ + ˜ϵQ sin4 θ + RP ln
1263
+ ����
1264
+ f
1265
+ f0
1266
+ ����
1267
+
1268
+ ,
1269
+ (53)
1270
+ 12
1271
+
1272
+ where RP controls the derivative of AP with respect to ln |f/f0|,
1273
+ RP = 1
1274
+ π
1275
+ ˜
1276
+ AP 0 ζQ sin2 θ cos2 θ;
1277
+ (54)
1278
+ ζQ is defined in equation 22.
1279
+ For SV-waves,
1280
+ ASV = ˜
1281
+ AS0
1282
+
1283
+ 1 + ˜σQ sin2 θ cos2 θ + RSV ln
1284
+ ����
1285
+ f
1286
+ f0
1287
+ ����
1288
+
1289
+ ,
1290
+ (55)
1291
+ with
1292
+ ˜σQ = 2˜σ (gQ − 1) +
1293
+ 1
1294
+ g gQ
1295
+ (˜ϵQ − ˜δQ),
1296
+ (56)
1297
+ RSV = 1
1298
+ π
1299
+ ˜
1300
+ AS0 σ′
1301
+ Q sin2 θ cos2 θ,
1302
+ (57)
1303
+ σ′
1304
+ Q = 2(1 − gQ)
1305
+ g g2
1306
+ Q
1307
+
1308
+ (1 − gQ)(˜ϵ − ˜δ) − ˜δQ + (1 + ˜ϵ)˜ϵQ
1309
+
1310
+ − ζQ
1311
+ g g2
1312
+ Q
1313
+ ,
1314
+ (58)
1315
+ where g and gQ are given by equations 27 and 23, respectively. The factor RSV controls the derivative of ASV with
1316
+ respect to ln |f/f0|.
1317
+ The terms ˜
1318
+ AP 0 RP and ˜
1319
+ AS0 RSV define the rate of the P- and SV-wave attenuation-coefficient change (increase
1320
+ or decrease) with respect to ln |f/f0|.
1321
+ The larger RP and RSV are, the stronger is the dispersion (frequency
1322
+ dependence) of AP and ASV .
1323
+ Therefore, RP and RSV can be called the P- and SV-wave dispersion factors,
1324
+ respectively.
1325
+ The SH-wave attenuation coefficient (equation 51) is independent of frequency, with γQ = ˜γQ:
1326
+ ASH = ˜
1327
+ AS0(1 + ˜γQ sin2 θ).
1328
+ (59)
1329
+ 5.2. Numerical dispersion analysis
1330
+ Here, we evaluate the frequency dependence of the attenuation coefficients of P- and SV-waves, starting with the
1331
+ dispersion factors RP and RSV (equations 54 and 57). As before, we restrict gQ to the realistic range 0.5 < gQ ≤ 3
1332
+ (Figure 1). Figures 11 and 12 show that gQ = 1 yields the smallest values of RP and RSV ; the dispersion factors
1333
+ and the magnitude of their variation with angle increase with the deviation of gQ from unity.
1334
+ Next, we use the medium parameters from Figures 11d and 12d to calculate the exact attenuation coefficients
1335
+ for P- and SV-waves (respectively) at three frequencies. For the reference frequency f0 = 40 Hz, the term ln |f/f0|
1336
+ in equations 54 and 57 is close to −1 at f = 15 Hz and 1 at f = 109 Hz. In agreement with equations 53 and 55,
1337
+ the variation of AP with ln |f/f0| between 15 Hz and 40 Hz (and 40 Hz and 109 Hz) is approximately proportional
1338
+ to RP , and the corresponding variation of ASV is approximately proportional to RSV .
1339
+ Figures 13 and 14 show that the frequency dependence of the P- and SV-wave attenuation coefficients AP and
1340
+ ASV is generally mild. However, they may become noticeable for propagation angles close to 45◦ as illustrated in
1341
+ Figures 15 and 16. Both AP and ASV exhibit a more significant variation with frequency for strongly attenuative
1342
+ media (Q33=Q55=20) when gQ ≥ 2 (for P-waves) and gQ ≤ 0.5 (for SV-waves).
1343
+ 13
1344
+
1345
+ gQ=3
1346
+ gQ=2
1347
+ gQ=1
1348
+ gQ= 1
1349
+ 2
1350
+ 0
1351
+ 20
1352
+ 40
1353
+ 60
1354
+ 80
1355
+ 0
1356
+ 1
1357
+ 2
1358
+ 3
1359
+ 4
1360
+ 5
1361
+ 6
1362
+ θ (degrees)
1363
+ RP (%)
1364
+ (a)
1365
+ gQ=3
1366
+ gQ=2
1367
+ gQ=1
1368
+ gQ= 1
1369
+ 2
1370
+ 0
1371
+ 20
1372
+ 40
1373
+ 60
1374
+ 80
1375
+ 0
1376
+ 1
1377
+ 2
1378
+ 3
1379
+ 4
1380
+ 5
1381
+ θ (degrees)
1382
+ RP (%)
1383
+ (b)
1384
+ gQ=3
1385
+ gQ=2
1386
+ gQ=1
1387
+ gQ= 1
1388
+ 2
1389
+ 0
1390
+ 20
1391
+ 40
1392
+ 60
1393
+ 80
1394
+ 0
1395
+ 1
1396
+ 2
1397
+ 3
1398
+ 4
1399
+ 5
1400
+ 6
1401
+ θ (degrees)
1402
+ RP (%)
1403
+ (c)
1404
+ gQ=3
1405
+ gQ=2
1406
+ gQ=1
1407
+ gQ= 1
1408
+ 2
1409
+ 0
1410
+ 20
1411
+ 40
1412
+ 60
1413
+ 80
1414
+ 0
1415
+ 1
1416
+ 2
1417
+ 3
1418
+ 4
1419
+ 5
1420
+ θ (degrees)
1421
+ RP (%)
1422
+ (d)
1423
+ Figure 11: Variation of the P-wave dispersion factor RP (equation 54) with the phase angle for different gQ. The
1424
+ reference parameters defined at f0 = 40 Hz are ˜VP 0 = 3.0 km/s, g = 0.3, ˜ϵ = 0.2, ˜
1425
+ AP 0 = 0.0125 (corresponding to
1426
+ Q33 = 40), ˜ϵQ = −0.1 and ˜δQ = −0.2. (a) ˜δ = 0.1 and ˜δQ = −0.2; (b) ˜δ = 0.1 and ˜δQ = 0.2; (c) ˜δ = −0.1 and
1427
+ ˜δQ = −0.2; (d) ˜δ = −0.1 and ˜δQ = 0.2.
1428
+ gQ=3
1429
+ gQ=2
1430
+ gQ=1
1431
+ gQ= 1
1432
+ 2
1433
+ 0
1434
+ 20
1435
+ 40
1436
+ 60
1437
+ 80
1438
+ -2.5
1439
+ -2.0
1440
+ -1.5
1441
+ -1.0
1442
+ -0.5
1443
+ 0.0
1444
+ θ (degrees)
1445
+ RSV (%)
1446
+ (a)
1447
+ gQ=3
1448
+ gQ=2
1449
+ gQ=1
1450
+ gQ= 1
1451
+ 2
1452
+ 0
1453
+ 20
1454
+ 40
1455
+ 60
1456
+ 80
1457
+ -7
1458
+ -6
1459
+ -5
1460
+ -4
1461
+ -3
1462
+ -2
1463
+ -1
1464
+ 0
1465
+ θ (degrees)
1466
+ RSV (%)
1467
+ (b)
1468
+ gQ=3
1469
+ gQ=2
1470
+ gQ=1
1471
+ gQ= 1
1472
+ 2
1473
+ 0
1474
+ 20
1475
+ 40
1476
+ 60
1477
+ 80
1478
+ -2.0
1479
+ -1.5
1480
+ -1.0
1481
+ -0.5
1482
+ 0.0
1483
+ θ (degrees)
1484
+ RSV (%)
1485
+ (c)
1486
+ gQ=3
1487
+ gQ=2
1488
+ gQ=1
1489
+ gQ= 1
1490
+ 2
1491
+ 0
1492
+ 20
1493
+ 40
1494
+ 60
1495
+ 80
1496
+ -8
1497
+ -6
1498
+ -4
1499
+ -2
1500
+ 0
1501
+ θ (degrees)
1502
+ RSV (%)
1503
+ (d)
1504
+ Figure 12: Variation of the SV-wave dispersion factor RSV (equation 57) with the phase angle for different gQ. The
1505
+ reference parameters defined at f0 = 40 Hz are ˜VP 0 = 3.0 km/s, g = 0.3, ˜ϵ = 0.2, ˜
1506
+ AS0 = 0.0125 (corresponding to
1507
+ Q55 = 40), ˜ϵQ = −0.1 and ˜ϵQ = −0.2. The parameters ˜δ and ˜δQ are the same as in Figure 11.
1508
+ 14
1509
+
1510
+ f=15 Hz
1511
+ f=40 Hz
1512
+ f=109 Hz
1513
+ 0
1514
+ 20
1515
+ 40
1516
+ 60
1517
+ 80
1518
+ 0.0115
1519
+ 0.0120
1520
+ 0.0125
1521
+ 0.0130
1522
+ 0.0135
1523
+ θ (degrees)
1524
+ AP
1525
+ (a)
1526
+ f=15 Hz
1527
+ f=40 Hz
1528
+ f=109 Hz
1529
+ 0
1530
+ 20
1531
+ 40
1532
+ 60
1533
+ 80
1534
+ 0.0115
1535
+ 0.0120
1536
+ 0.0125
1537
+ 0.0130
1538
+ θ (degrees)
1539
+ AP
1540
+ (b)
1541
+ f=15 Hz
1542
+ f=40 Hz
1543
+ f=109 Hz
1544
+ 0
1545
+ 20
1546
+ 40
1547
+ 60
1548
+ 80
1549
+ 0.0115
1550
+ 0.0120
1551
+ 0.0125
1552
+ 0.0130
1553
+ θ (degrees)
1554
+ AP
1555
+ (c)
1556
+ f=15 Hz
1557
+ f=40 Hz
1558
+ f=109 Hz
1559
+ 0
1560
+ 20
1561
+ 40
1562
+ 60
1563
+ 80
1564
+ 0.0115
1565
+ 0.0120
1566
+ 0.0125
1567
+ 0.0130
1568
+ θ (degrees)
1569
+ AP
1570
+ (d)
1571
+ Figure 13: Variation of the P-wave normalized phase attenuation coefficient with the phase angle at different
1572
+ frequencies. The medium parameters are the same as in Figure 11d, and (a) gQ = 3; (b) gQ = 2; (c) gQ = 1; (d)
1573
+ gQ = 0.5.
1574
+ f=15 Hz
1575
+ f=40 Hz
1576
+ f=109 Hz
1577
+ 0
1578
+ 20
1579
+ 40
1580
+ 60
1581
+ 80
1582
+ 0.009
1583
+ 0.010
1584
+ 0.011
1585
+ 0.012
1586
+ θ (degrees)
1587
+ ASV
1588
+ (a)
1589
+ f=15 Hz
1590
+ f=40 Hz
1591
+ f=109 Hz
1592
+ 0
1593
+ 20
1594
+ 40
1595
+ 60
1596
+ 80
1597
+ 0.0095
1598
+ 0.0100
1599
+ 0.0105
1600
+ 0.0110
1601
+ 0.0115
1602
+ 0.0120
1603
+ 0.0125
1604
+ θ (degrees)
1605
+ ASV
1606
+ (b)
1607
+ f=15 Hz
1608
+ f=40 Hz
1609
+ f=109 Hz
1610
+ 0
1611
+ 20
1612
+ 40
1613
+ 60
1614
+ 80
1615
+ 0.0100
1616
+ 0.0105
1617
+ 0.0110
1618
+ 0.0115
1619
+ 0.0120
1620
+ 0.0125
1621
+ θ (degrees)
1622
+ ASV
1623
+ (c)
1624
+ f=15 Hz
1625
+ f=40 Hz
1626
+ f=109 Hz
1627
+ 0
1628
+ 20
1629
+ 40
1630
+ 60
1631
+ 80
1632
+ 0.0110
1633
+ 0.0115
1634
+ 0.0120
1635
+ 0.0125
1636
+ 0.0130
1637
+ θ (degrees)
1638
+ ASV
1639
+ (d)
1640
+ Figure 14: Variation of the SV-wave attenuation coefficient with the phase angle at different frequencies. The
1641
+ medium parameters are the same as in Figure 12d, and (a) gQ = 3; (b) gQ = 2; (c) gQ = 1; (d) gQ = 0.5.
1642
+ 15
1643
+
1644
+ gQ=3
1645
+ gQ=2
1646
+ gQ=1
1647
+ gQ= 1
1648
+ 2
1649
+ 0
1650
+ 50
1651
+ 100
1652
+ 150
1653
+ 200
1654
+ 0.0120
1655
+ 0.0125
1656
+ 0.0130
1657
+ 0.0135
1658
+ f (Hz)
1659
+ AP
1660
+ (a)
1661
+ gQ=3
1662
+ gQ=2
1663
+ gQ=1
1664
+ gQ= 1
1665
+ 2
1666
+ 0
1667
+ 50
1668
+ 100
1669
+ 150
1670
+ 200
1671
+ 0.024
1672
+ 0.025
1673
+ 0.026
1674
+ 0.027
1675
+ 0.028
1676
+ 0.029
1677
+ f (Hz)
1678
+ AP
1679
+ (b)
1680
+ Figure 15: Variation of the P-wave attenuation coefficient with frequency at θ = 45◦ for different gQ. Except for
1681
+ ˜
1682
+ AP 0, the medium parameters are the same as in Figures 11d and 13. On plot (a), ˜
1683
+ AP 0 = 0.0125 (corresponding to
1684
+ Q33 = 40); on plot (b), ˜
1685
+ AP 0 = 0.025 (corresponding to Q33 = 20).
1686
+ gQ=3
1687
+ gQ=2
1688
+ gQ=1
1689
+ gQ= 1
1690
+ 2
1691
+ 0
1692
+ 50
1693
+ 100
1694
+ 150
1695
+ 200
1696
+ 0.009
1697
+ 0.010
1698
+ 0.011
1699
+ 0.012
1700
+ 0.013
1701
+ 0.014
1702
+ f (Hz)
1703
+ ASV
1704
+ (a)
1705
+ gQ=3
1706
+ gQ=2
1707
+ gQ=1
1708
+ gQ= 1
1709
+ 2
1710
+ 0
1711
+ 50
1712
+ 100
1713
+ 150
1714
+ 200
1715
+ 0.018
1716
+ 0.020
1717
+ 0.022
1718
+ 0.024
1719
+ f (Hz)
1720
+ ASV
1721
+ (b)
1722
+ Figure 16: Variation of the SV-wave attenuation coefficient with frequency at θ = 45◦ for different gQ. Except for
1723
+ ˜
1724
+ AS0, the medium parameters are the same as in Figures 12d and 14. On plot (a), ˜
1725
+ AS0 = 0.0125 (corresponding to
1726
+ Q55 = 40); on plot (b), ˜
1727
+ AS0 = 0.025 (corresponding to Q55 = 20).
1728
+ 16
1729
+
1730
+ 6. Conclusions
1731
+ We obtained concise analytic expressions for the Thomsen-type parameters of constant-Q TI media. All Thomsen
1732
+ velocity parameters (VP 0, VS0, ϵ, δ and γ) are frequency dependent, with the reference attenuation parameters ˜
1733
+ AP 0
1734
+ (proportional to 1/Q33) and ˜
1735
+ AS0 (proportional to 1/Q55) controlling the dispersion (frequency dependence) of the
1736
+ vertical velocities VP 0 and VS0, respectively. The reference attenuation parameters ˜ϵQ, ˜δQ, and ˜γQ govern the
1737
+ variations of the anisotropy parameters ϵ, δ, and γ with frequency.
1738
+ However, the frequency dependence of all
1739
+ Thomsen velocity parameters is weak in a wide frequency range, even for strong attenuation. In viscoacoustic
1740
+ constant-Q TI media, the elliptical conditions at the reference frequency ensure that the anellipticity parameter η
1741
+ vanishes for all frequencies.
1742
+ Despite the fact that all Qij elements in constant-Q TI media are frequency independent, one of the Thomsen-
1743
+ type attenuation parameters (δQ) does vary with frequency. The frequency dependence of δQ is controlled by the
1744
+ newly defined coefficient ζQ and can be substantial when ζQ has a large magnitude. As a result, the frequency
1745
+ variation of the P- and SV-wave attenuation coefficients may be non-negligible at oblique propagation angles with
1746
+ the symmetry axis. That variation is highly sensitive to the ratio of the vertical quality factors gQ = Q33/Q55.
1747
+ Both attenuation coefficients are insensitive to frequency for gQ = 1, whereas their frequency dependence is most
1748
+ substantial for gQ ≥ 3 (for P-waves) and gQ ≤ 0.5 (for SV-waves). In contrast, the SH-wave attenuation coefficient
1749
+ in constant-Q TI media is frequency-independent.
1750
+ The constant-Q assumption is often made in attenuation analysis because the effective attenuation coefficients
1751
+ estimated from seismic data (e.g., using the spectral-ratio method) become linear functions of frequency. However,
1752
+ our results show that this linear dependence may not hold for constant-Q TI models, which can cause errors in the
1753
+ inversion for the attenuation parameters.
1754
+ Appendix A. Appendix A: Complex stiffness coefficients expressed in terms of the Thomsen-type
1755
+ parameters
1756
+ The stiffness coefficients for the constant-Q dissipative VTI model (equations 1–3) can be found at the reference
1757
+ frequency as Mij|f=f0 = ˜
1758
+ M R
1759
+ ij (1 − i/Qij). Using the parameter definitions in equations 4–12, we express ˜
1760
+ M R
1761
+ ij and
1762
+ Qij in terms of the reference Thomsen-type parameters as follows:
1763
+ ˜
1764
+ M R
1765
+ 33 = ρ ˜V 2
1766
+ P 0,
1767
+ (A.1)
1768
+ ˜
1769
+ M R
1770
+ 55 = ρ ˜V 2
1771
+ S0,
1772
+ (A.2)
1773
+ ˜
1774
+ M R
1775
+ 11 = ρ ˜V 2
1776
+ P 0(1 + 2˜ϵ),
1777
+ (A.3)
1778
+ ˜
1779
+ M R
1780
+ 66 = ρ ˜V 2
1781
+ S0(1 + 2˜γ),
1782
+ (A.4)
1783
+ ˜
1784
+ M R
1785
+ 13 = −ρ ˜V 2
1786
+ S0 + ρ
1787
+
1788
+ ( ˜V 2
1789
+ P 0 − ˜V 2
1790
+ S0)
1791
+
1792
+ (1 + 2˜δ) ˜V 2
1793
+ P 0 − ˜V 2
1794
+ S0
1795
+
1796
+ ,
1797
+ (A.5)
1798
+ Q−1
1799
+ 33 =
1800
+ 2 ˜
1801
+ AP 0
1802
+ 1 − ˜
1803
+ A2
1804
+ P 0
1805
+ ,
1806
+ (A.6)
1807
+ Q−1
1808
+ 55 =
1809
+ 2 ˜
1810
+ AS0
1811
+ 1 − ˜
1812
+ A2
1813
+ S0
1814
+ ,
1815
+ (A.7)
1816
+ Q−1
1817
+ 11 = Q−1
1818
+ 33 (1 + ˜ϵQ),
1819
+ (A.8)
1820
+ Q−1
1821
+ 66 = Q−1
1822
+ 55 (1 + ˜γQ)
1823
+ (A.9)
1824
+ Q−1
1825
+ 13 = ˜Q−1
1826
+ 33
1827
+
1828
+ 1 + ˜δQf1 + f2
1829
+
1830
+ − Q−1
1831
+ 55 f2,
1832
+ (A.10)
1833
+ 17
1834
+
1835
+ with
1836
+ f1 =
1837
+ ˜
1838
+ M R
1839
+ 33 ( ˜
1840
+ M R
1841
+ 33 − ˜
1842
+ M R
1843
+ 55)
1844
+ 2 ˜
1845
+ M R
1846
+ 13( ˜
1847
+ M R
1848
+ 13 + ˜
1849
+ M R
1850
+ 55)
1851
+ ,
1852
+ (A.11)
1853
+ f2 =
1854
+ ˜
1855
+ M R
1856
+ 55 ( ˜
1857
+ M R
1858
+ 13 + ˜
1859
+ M R
1860
+ 33)2
1861
+ 2 ˜
1862
+ M R
1863
+ 13( ˜
1864
+ M R
1865
+ 13 + ˜
1866
+ M R
1867
+ 55)( ˜
1868
+ M R
1869
+ 33 − ˜
1870
+ M R
1871
+ 55)
1872
+ .
1873
+ (A.12)
1874
+ Appendix B. Appendix B: Explicit expressions for sn
1875
+ Here, we provide explicit expressions for the coefficients sn in equation 41.
1876
+ The coefficient s0 is given by:
1877
+ s0 = g(1 − g + χ)2(h0 + h1g + h2g2 + h3g3 + h4g4 + h5g5)
1878
+ (1 − g)3χ3(g − χ)2
1879
+ ,
1880
+ (B.1)
1881
+ where
1882
+ h0 = −(1 + 2˜δ)2χ,
1883
+ (B.2)
1884
+ h1 = (1 + 2˜δ)(5 + 10˜δ + 2χ),
1885
+ (B.3)
1886
+ h2 = (1 + 2˜δ)(2(˜δ − 3)χ − 13˜δ − 14),
1887
+ (B.4)
1888
+ h3 = ˜δ(7˜δ + 9χ + 30) + 7χ + 15,
1889
+ (B.5)
1890
+ h4 = −˜δ2 − 2(˜δ + 1)χ − 11˜δ − 8,
1891
+ (B.6)
1892
+ h5 = 2(1 + 2˜δ).
1893
+ (B.7)
1894
+ For the coefficient s1 we have:
1895
+ s1 = 3g(g − χ − 1)(k0 + k1g + k2g2 + k3g3 + k4g4)
1896
+ 2(1 − g)χ3(g − χ)2
1897
+ ,
1898
+ (B.8)
1899
+ where
1900
+ k0 = −2(1 + 2˜δ)2,
1901
+ (B.9)
1902
+ k1 = 2
1903
+
1904
+ 1 + χ + 4˜δ(˜δ + χ + 1)
1905
+
1906
+ ,
1907
+ (B.10)
1908
+ k2 = 2(χ + 1) − ˜δ(χ + 3),
1909
+ (B.11)
1910
+ k3 = −(˜δ + 2χ + 4),
1911
+ (B.12)
1912
+ k4 = 2;
1913
+ (B.13)
1914
+ Finally, the coefficient s2 has the form:
1915
+ s2 =
1916
+ 3g
1917
+
1918
+ 3 + 6˜δ + 2χ − 3g(3˜δ + 2χ + 3) + 3g2(˜δ + χ + 3) − 3g3�
1919
+ 2χ3(g − χ)2
1920
+ ;
1921
+ (B.14)
1922
+ s3 = (1 − g)2(4χ − 3g)
1923
+ 4χ3(g − χ)2
1924
+ .
1925
+ (B.15)
1926
+ The quantities g and χ are defined in equations 27 and 28, respectively.
1927
+ 18
1928
+
1929
+ References
1930
+ [1] H. Kolsky, The propagation of stress pulses in viscoelastic solids, Philosophical magazine 1 (8) (1956) 693–710.
1931
+ [2] Kjartansson, Constant Q-wave propagation and attenuation, Journal of Geophysical Research 84 (1979) 4737–
1932
+ 4748.
1933
+ [3] Q. Hao, S. Greenhalgh, Nearly constant Q models of the generalized standard linear solid type and the corre-
1934
+ sponding wave equations, Geophysics 86 (4) (2021) T239–T260.
1935
+ [4] Q. Hao, S. Greenhalgh, Nearly constant Q dissipative models and wave equations for general viscoelastic
1936
+ anisotropy, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477 (2251)
1937
+ (2021) 20210170.
1938
+ [5] J. Behura, I. Tsvankin, Estimation of interval anisotropic attenuation from reflection data, Geophysics 74 (6)
1939
+ (2009) A69–A74.
1940
+ [6] B. Shekar, I. Tsvankin, Estimation of shear-wave interval attenuation from mode-converted data, Geophysics
1941
+ 76 (6) (2011) D11–D19.
1942
+ [7] B. Shekar, I. Tsvankin, Anisotropic attenuation analysis of crosshole data generated during hydraulic fracturing,
1943
+ The Leading Edge 31 (5) (2012) 588–593.
1944
+ [8] J. Behura, I. Tsvankin, E. Jenner, A. Calvert, Estimation of interval velocity and attenuation anisotropy from
1945
+ reflection data at coronation field, The Leading Edge 31 (5) (2012) 580–587.
1946
+ [9] A. I. Best, J. Sothcott, C. McCann, A laboratory study of seismic velocity and attenuation anisotropy in
1947
+ near-surface sedimentary rocks, Geophysical Prospecting 55 (5) (2007) 609–625.
1948
+ [10] Y. Zhu, I. Tsvankin, P. Dewangan, K. van Wijk, Physical modeling and analysis of p-wave attenuation
1949
+ anisotropy in transversely isotropic media, Geophysics 72 (1) (2007) D1–D7.
1950
+ [11] A. Zhubayev, M. E. Houben, D. M. Smeulders, A. Barnhoorn, Ultrasonic velocity and attenuation anisotropy
1951
+ of shales, Whitby, United Kingdom, Geophysics 81 (1) (2016) D45–D56.
1952
+ [12] L. Thomsen, Weak elastic anisotropy, Geophysics 51 (10) (1986) 1954–1996.
1953
+ [13] I. Tsvankin, Seismic signatures and analysis of reflection data in anisotropic media, Elsevier Science Ltd., 2001.
1954
+ [14] Y. Zhu, I. Tsvankin, Plane-wave propagation in attenuative transversely isotropic media, Geophysics 71 (2)
1955
+ (2006) T17–T30.
1956
+ [15] Q. Hao, S. Greenhalgh, X. Huang, H. Li, Viscoelastic wave propagation for nearly constant Q transverse
1957
+ isotropy, Geophysical Prospecting 70 (7) (2022) 1176–1192.
1958
+ [16] J. M. Carcione, Wave fields in real media: Theory and numerical simulation of wave propagation in anisotropic,
1959
+ anelastic, porous and electromagnetic media: Handbook of Geophysical exploration (3rd ed.), Elsevier, 2014.
1960
+ [17] V. ˇCerven´y, I. Pˇsenc´ık, Perturbation hamiltonians in heterogeneous anisotropic weakly dissipative media,
1961
+ Geophysical Journal International 178 (2) (2009) 939–949.
1962
+ [18] I. Tsvankin, V. Grechka, Seismology of azimuthally anisotropic media and seismic fracture characterization,
1963
+ Society of Exploration Geophysicists, 2011.
1964
+ [19] T. Alkhalifah, I. Tsvankin, Velocity analysis for transversely isotropic media, Geophysics 60 (5) (1995) 1550–
1965
+ 1566.
1966
+ 19
1967
+
1968
+ [20] Q. Hao, T. Alkhalifah, An acoustic eikonal equation for attenuating transversely isotropic media with a vertical
1969
+ symmetry axis, Geophysics 82 (1) (2017) C9–C20.
1970
+ [21] Q. Hao, T. Alkhalifah, An acoustic eikonal equation for attenuating orthorhombic media, Geophysics 82 (4)
1971
+ (2017) WA67–WA81.
1972
+ [22] Q. Hao, T. Alkhalifah, Viscoacoustic anisotropic wave equations, Geophysics 84 (6) (2019) C323–C337.
1973
+ [23] J. Behura, I. Tsvankin, Role of the inhomogeneity angle in anisotropic attenuation analysis, Geophysics 74 (5)
1974
+ (2009) WB177–WB191.
1975
+ 20
1976
+
8tAzT4oBgHgl3EQf-v68/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANFJT4oBgHgl3EQfrC3Z/content/tmp_files/2301.11607v1.pdf.txt ADDED
@@ -0,0 +1,1627 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Work flux and efficiency at maximum power of a triply squeezed engine
2
+ Manash Jyoti Sarmah and Himangshu Prabal Goswami∗
3
+ Department of Chemistry, Gauhati University, Jalukbari, Guwahati-781014, Assam, India
4
+ (Dated: January 30, 2023)
5
+ We explore the effects of quantum mechanical squeezing on the nonequilibrium thermodynamics
6
+ of a coherent heat engine with squeezed reservoirs coupled to a squeezed cavity. We observe that
7
+ the standard known phenomenon of flux- optimization beyond the classical limit with respect to
8
+ quantum coherence is destroyed in presence of squeezing. Under extreme nonequilibrium conditions,
9
+ the flux is rendered independent of squeezing. The efficiency at maximum power (EMP) obtained
10
+ by optimizing the cavity’s squeezing parameter is greater than what was predicted by Curzon and
11
+ Ahlborn even in the absence of reservoir squeezing. The EMP with respect to the either of reservoirs’
12
+ squeezing parameters is surprisingly equal and linear in ηC with a slope unequal to the universally
13
+ accepted slope, 1/2. The slope is found to be proportional to the dissipation into the cavity mode
14
+ and an intercept equal to a specific numerical value of the engine’s efficiency.
15
+ I.
16
+ INTRODUCTION
17
+ One or more quantum systems that operate between
18
+ two separate reservoirs make up a Quantum Heat En-
19
+ gine (QHE). QHEs have the primary function of convert-
20
+ ing heat into work [1–7]. Apart from traditional thermal
21
+ reservoirs, the use of non-thermal baths, which are con-
22
+ structed reservoirs with correlated characteristics, have
23
+ provided a thorough setting for examining the relation-
24
+ ship between quantum effects and thermodynamic quan-
25
+ tities [8–12].
26
+ Squeezed states or non-canonical initial
27
+ states [13–15] are such non-thermal baths which allow
28
+ additional control over any quantum systems’ dynamics
29
+ garnering tremendous interest off late in the context of
30
+ open quantum systems [11, 15, 16].
31
+ Current technologies permit experimental realization
32
+ of such states [17] and its effects on the thermodynamics
33
+ are experimentally realizable through recently designed
34
+ experimental quantum heat engines (QHE)[18–22]. In-
35
+ tense efforts have been made to interrogate QHEs on
36
+ the role of coherence, correlations or entanglement on
37
+ the underlying dynamics [23–26].
38
+ It has already been
39
+ demonstrated that certain quantum resources can be ex-
40
+ ploited to bend the limits of classical thermodynamics
41
+ [16, 27, 28]. Coherence enhanced power and efficiency
42
+ and optimization of the flux via quantum coherences in
43
+ QHEs are well studied and established phenomena [7, 29–
44
+ 32].
45
+ Squeezed thermal baths too have proven crucial,
46
+ especially in the light of a proof-of-concept experiment
47
+ based on a nanobeam heat engine[18]. Efficiency greater
48
+ than that of Carnot has also been predicted [20].
49
+ On the theoretical front, quantum thermodynamic
50
+ analysis of QHEs s are performed by combining principles
51
+ from quantum optics and nonequilibrium statistical me-
52
+ chanics [9, 33–35]. In quantum optics, squeezing [36, 37]
53
+ generally leads to less observation of quantum noise than
54
+ thermal states [38].
55
+ Squeezing alters the entropy flow
56
+ associated with the heat exchanged with the system and
57
58
+ introduces an additional term proportional to the second-
59
+ order coherences which determines the asymmetry in the
60
+ second-order moments of the mode quadratures, which
61
+ takes into account both the relative variance shape and
62
+ the relative optical phase space displacements[33]. This
63
+ manifests in an increased efficiency, even surpassing the
64
+ Carnot bound [10, 18, 23, 39, 40]. To account for a re-
65
+ alistic performance of such QHEs, usually a finite time
66
+ assessment is performed by evaluating the efficiency at
67
+ maximum power (EMP), originally introduced in a clas-
68
+ sical context [41]. From a nonequilibrium quantum sta-
69
+ tistical point of view, the near equilibrium EMP is univer-
70
+ sally accepted to be ηC/2 [42], with ηC being the stan-
71
+ dard Carnot efficiency of a classical heat engine.
72
+ Re-
73
+ cently, this robust expression has been showed to be in-
74
+ valid if the engine is locally optimized [43]. The EMP
75
+ has been shown to be modified into several forms as
76
+ one keeps changing or introducing or optimizing addi-
77
+ tional system parameters [39, 44]. One particularly in-
78
+ teresting form of the EMP has been predicted recently
79
+ which holds in the presence of squeezed reservoirs, be-
80
+ ing equal to η2
81
+ m/(ηm − (1 − ηm) ln(1 − ηm)). Here, ηm
82
+ being a squeezing-dependent effective Carnot efficiency
83
+ [11].
84
+ However, the validity of such robust thermody-
85
+ namic expressions remains questionable when engines op-
86
+ erate in presence of both quantum coherences and quan-
87
+ tum squeezing since the general framework on which such
88
+ studies were based didn’t take such effects into account.
89
+ The current work is motivated on this latter aspect.
90
+ In this work, we address how the thermodynamics of
91
+ a QHE coupled to squeezed cavity respond to reservoir
92
+ squeezing in presence of coherences using a quantum mas-
93
+ ter equation technique.
94
+ Such a technique is standard
95
+ and has already been used in nonequilibrium quantum
96
+ transport studies with squeezed reservoirs [45–47]. Un-
97
+ squeezed dynamics of the engine that we cosider has
98
+ also been well studied [7, 31, 48].
99
+ In Sec.(II), we in-
100
+ troduce our triple squeezed QHE model and its dynam-
101
+ ics. In Sec.(III), we explore the effects of squeezing on
102
+ the flux into the cavity mode, which we call the work-
103
+ flux. In Sec.(IV), we evaluate the EMP with respect to
104
+ three squeezing parameters and a system parameter after
105
+ arXiv:2301.11607v1 [quant-ph] 27 Jan 2023
106
+
107
+ 2
108
+ which we conclude.
109
+ II.
110
+ SQUEEZED ENGINE DYNAMICS
111
+ The QHE model consists of four quantum levels cou-
112
+ pled asymmetrically to two squeezed baths with the up-
113
+ per two levels coupled to a squeezed unimodal cavity as
114
+ shown schematically in Fig.(1a). Experimentally, similar
115
+ QHEs have been realized in cold Rb and Cs atoms us-
116
+ ing magneto optical traps [21, 49]. The squeezed density
117
+ matrices of the QHE can be written as[46, 50],
118
+ ¯ρℓ = 1
119
+ Zℓ
120
+ exp{−βℓ ˆSℓ ˆHℓ ˆS†
121
+ ℓ},
122
+ (1)
123
+ ¯ρν = 1
124
+
125
+ exp{−βν ˆSν ˆHν ˆS†
126
+ ν}, ν = h, c,
127
+ (2)
128
+ with βz = (kBTz)−1, z = ℓ, h, c being the inverse temper-
129
+ atures of the cavity, hot and cold reservoirs respectively.
130
+ ˆS( ˆSν) is the squeezing operator on the squeezed cavity’s
131
+
132
+
133
+
134
+
135
+ 0
136
+ 1
137
+ 2
138
+ 3
139
+ 4
140
+ 5
141
+ 6
142
+ 0.1
143
+ 0.2
144
+ 0.3
145
+ 0.4
146
+ 0.5
147
+ xc
148
+ Ρ12
149
+ ss
150
+ 0
151
+ 1
152
+ 2
153
+ 3
154
+ 4
155
+ 5
156
+ 6
157
+ 0.1
158
+ 0.2
159
+ 0.3
160
+ 0.4
161
+ 0.5
162
+ 0.6
163
+ 0.7
164
+ xh
165
+ Ρ12
166
+ ss
167
+ 0
168
+ 1
169
+ 2
170
+ 3
171
+ 4
172
+ 5
173
+ 6
174
+ 0.1
175
+ 0.2
176
+ 0.3
177
+ 0.4
178
+ 0.5
179
+ x
180
+ Ρ12
181
+ ss
182
+ a
183
+ b
184
+ d
185
+ c
186
+ Th
187
+
188
+ Tc
189
+ xh
190
+ xc
191
+ x
192
+ (a)
193
+ (b)
194
+ (c)
195
+ (d)
196
+ FIG. 1. (Color online) a) Level scheme of the model quan-
197
+ tum heat engine. A pair of degenerate levels |1⟩ , |2⟩ is reso-
198
+ nantly coupled to two excited levels |a⟩ and |b⟩ by two ther-
199
+ mally populated squeezed field modes with hot (Th) and cold
200
+ (Tc) temperatures.
201
+ Levels |a⟩ and |b⟩ are coupled through
202
+ a squeezed cavity mode of frequency νℓ . Emission of pho-
203
+ tons into this squeezed cavity is the work done by the QHE.
204
+ The engine parameters are fixed through out the manuscript
205
+ at E1 = E2 = 0.1, Eb = 0.4, Ea = 1.5, g = 1, r = 0.7 and
206
+ τ = 0.5 in the unit of kB → 1 and ¯h → 1. b) The solid (dot-
207
+ ted) curves represent the steadystate coherence, ρss
208
+ 12 (solved
209
+ by setting the RHS of Eq.(8)=0) as a function of the b) cold
210
+ bath squeezing parameter xc evaluated at different values of
211
+ xh = 0, 0.5, 1, 2, bottom to top with x = 1 (x = 0), c) hot
212
+ squeezing parameter, xh with xc = 0, 0.5, 1, 2, bottom to top
213
+ and x = 1 (x = 0), d) cavity squeezing,x with the solid curves
214
+ (bottom to top) evaluated at xh = 0, xc = 0, 0.5, 1, 2. The
215
+ dotted ones represent xc = 0, xh = 0, 0.5, 1, 2.
216
+ mode (reservoirs’ modes) given by :
217
+ ˆSℓ = e
218
+ 1
219
+ 2 (xˆa†2
220
+ ℓ −h.c),
221
+ (3)
222
+ ˆSν =
223
+
224
+ k
225
+ e
226
+ 1
227
+ 2 (λ∗
228
+ kνˆa†2
229
+ kν−h.c),
230
+ (4)
231
+ λkν = xkνeiθkν, xkν > 0.
232
+ (5)
233
+ θkν and xkν are the squeezing parameters of the reservoirs
234
+ and x is the squeezing parameter [46, 47, 50, 51]. ˆHℓ =
235
+ ϵℓˆa†
236
+ ℓˆaℓ is the Hamiltonian for the cavity mode and ˆHν =
237
+
238
+ k ϵkνˆa†
239
+ kνˆakν is the Hamiltonian for the ν-th reservoir.
240
+ The total Hamiltonian of the four level QHE is ˆHT =
241
+
242
+ ν = 1,2,a,b Eν|ν⟩⟨ν|+ ˆHℓ+ ˆHν+ ˆVsb+ ˆVsc, with the system-
243
+ reservoir and system-cavity coupling Hamiltonians given
244
+ by,
245
+ ˆVsb =
246
+
247
+ k ∈ h.c
248
+
249
+ i = 1,2
250
+
251
+ x = a,b
252
+ rikˆak|x⟩⟨i| + h.c
253
+ (6)
254
+ ˆVsc = gˆa†
255
+ ℓ|b⟩⟨a| + h.c.
256
+ (7)
257
+ ϵk, ϵℓ and Eν denote the energy of the kth mode of the
258
+ two thermal reservoirs, the unimodal cavity and system’s
259
+ νth energy level respectively. The system-reservoir cou-
260
+ pling of the ith state with the kth mode of the reservoirs
261
+ is denoted by rik.
262
+ ˆa†(ˆa) are the bosonic creation (an-
263
+ nihilation) operators.
264
+ The radiative decay originating
265
+ from the transition |a⟩ → |b⟩ is the work done by the
266
+ engine.
267
+ Unsqueezed version of such a QHE has been
268
+ thoroughly studied using a Markovian quantum mas-
269
+ ter equation [7, 30, 31, 48, 52]. Following such a stan-
270
+ dard procedure to derive of a quantum master equation
271
+ [46, 48] for the matrix elements of the reduced density
272
+ matrix ρ (supplementary information) has four popula-
273
+ tions, ρii, i = 1, 2, a, b coupled to the real part of a co-
274
+ herence term, ρ12. The coherence ρ12 between states |1⟩
275
+ and |2⟩ arise due to interactions with the hot and the
276
+ cold baths. This thermally induced coherence couples to
277
+ populations due to transition involving the states |1⟩ and
278
+ |2⟩. Under the symmetric coupling regime, we can now
279
+ write down five coupled first order differential equations
280
+ describing the time-evolution of the four populations and
281
+ the coherence (under symmetric coupling, r), given by
282
+ ˙ρ12 = −ry
283
+ 2 ρ11 − ry
284
+ 2 ρ22 + rph ˜Nhρaa + rpc ˜Ncρbb
285
+ − r(n + τ)ρ12
286
+ (8)
287
+ ˙ρii = −rnρii + r ˜Nhρaa + ˜Ncρbb − ryρ12, i = 1, 2 (9)
288
+ ˙ρbb = rNcρ11 + rNcρ22 + g2 ˜Nℓρaa
289
+ − (g2Nℓ + 2r ˜Nc)ρbb + 2rpcNcρ12
290
+ (10)
291
+ ˙ρaa = rNhρ11 + rNhρ22 − (g2 ˜Nℓ + 2r ��Nh)ρaa
292
+ + g2Nℓρbb + 2rphNhρ12
293
+ (11)
294
+ with, �
295
+ i ρii = 1, i = 1, 2, a, b and n = Nc + Nh, y =
296
+ Ncpc + Nhph, with the reorganized occupation factors
297
+
298
+ 3
299
+
300
+
301
+ 0.0 0.5 1.0 1.5 2.0 2.5 3.0
302
+ 0.00
303
+ 0.05
304
+ 0.10
305
+ 0.15
306
+ 0.20
307
+ 0.25
308
+ 0.30
309
+ t
310
+ Ρij
311
+ �a�
312
+ Ρ11,Ρ22�black�
313
+ Ρaa�green�
314
+ Ρbb�blue�
315
+ Ρ12�brown�
316
+ 0
317
+ 1
318
+ 2
319
+ 3
320
+ 0.10
321
+ 0.15
322
+ 0.20
323
+ 0.25
324
+ 0.30
325
+ x
326
+ Ρij
327
+ ss
328
+ x
329
+ 0
330
+ 1
331
+ 2
332
+ 3
333
+ 1.00
334
+ 1.01
335
+ 1.02
336
+ 1.03
337
+ 1.04
338
+ 1.05
339
+ 1.06
340
+ 1.07
341
+ x
342
+ Ρbb
343
+ ss �Ρaa
344
+ ss
345
+ x
346
+ 0
347
+ 1
348
+ 0.96
349
+ 0.97
350
+ 0.98
351
+ 0.99
352
+ 1.00
353
+ 1.01
354
+ 1.02
355
+ 1.03
356
+ ph
357
+ j�jo
358
+ ph
359
+ �d�
360
+ (b)
361
+ (c)
362
+ (a)
363
+ (b)
364
+ (d)
365
+ (c)
366
+ FIG. 2.
367
+ a) The solid (dotted) curves represent time evo-
368
+ lution of ρij with, x = 2 (without, x = 0) squeezing ob-
369
+ tained by solving Eq.(8-11) for Th = 2, Tc = 0.5, Tl = 0.9.
370
+ b) Steady state values as a function of the squeezing pa-
371
+ rameters for the same parameters as (a) c) Ratio of the
372
+ steady state values between states |b⟩ and |a⟩ reaching unity
373
+ highlighting the equipopulated nature under high squeezing;
374
+ pc = 0.2, 0.3, 0.5, 0.7, 0.8 from the top to the bottom curves.
375
+ (d) Optimization of the flux ratio as a function of hot coher-
376
+ ence parameter, ph for different squeezing parameters under
377
+ far from equilibrium conditions and pc = 1 (top to bottom:
378
+ x = 0, π/6, π/π/2, 2π/3, 5π/6, π, 3π/2). Other parameters are
379
+ same as Fig.(1a).
380
+ given by
381
+ Nz = cosh(2xz)(nz + 1
382
+ 2) − 1
383
+ 2, z = h, c,
384
+ (12)
385
+ Nℓ = cosh(2x)(nℓ + 1
386
+ 2) − 1
387
+ 2.
388
+ (13)
389
+ Here, nc, nh andnl are the Bose-Einstein distributions
390
+ for the cold reservoir, hot reservoir and the cavity re-
391
+ spectively. These factors are now squeezing dependent
392
+ via the dimensionless parameters, xh, xc and x represent-
393
+ ing the extent of squeezing in the hot, cold reservoirs
394
+ and the cavity respectively. pν = | cos φν|, ν = h, c are
395
+ two dimensionless parameters that governs the strength
396
+ of coherences and whose values are dictated by the an-
397
+ gles of relative orientation (φν) of the ν−th bath induced
398
+ transition in the system [7, 48, 52]. A phenomenological
399
+ dimensionless rate τ has been added to take care of the
400
+ dephasing. Setting ˙ρ = 0, at the steady state, we can
401
+ solve for the steady state values of ρaa, ρbb, ρ11, ρ22, and
402
+ ρ12 and obtain these analytically (supplementary text).
403
+ The steadystate value of the coherence term ρss
404
+ 12 as a
405
+ function of the squeezing parameters, xh, xc and x are
406
+ shown in Fig.(1b,c,d)) for different engine parameters.
407
+ The different curves in Fig.(1b) represent ρss
408
+ 12 evaluated
409
+ for different xh and x values as a function of xc. The
410
+ solid (dotted) lines represent ρss
411
+ 12 when xh ̸= 0(xh = 0)
412
+ and x = 0(x ̸= 0). At high xc values, the coherence is re-
413
+ duced and saturates to a lower value in comparison to ρss
414
+ 12
415
+ values of lower xc. At high xh values (black curve), ρss
416
+ 12
417
+ steadily increases and reaches a maximum value around
418
+ some intermediate xc value and then sharply drops as
419
+ 0
420
+ 1
421
+ 0.90
422
+ 0.92
423
+ 0.94
424
+ 0.96
425
+ 0.98
426
+ 1.00
427
+ j� jo
428
+ ph
429
+ 0
430
+ 1
431
+ 1
432
+ ph
433
+ j� jo
434
+ ph
435
+ FIG. 3.
436
+ Failure of coherence to optimize the flux beyond
437
+ classical values (j/j0 > 1) under high squeezing as given by
438
+ Eq.(17). Inset: Linear dependence of the flux ratio on p − j
439
+ under high squeezing (x ≫ 0) and Tl ≫ 0 given by Eq.(18)
440
+ evaluated at pc = 1, Tc = 0.5, Th = 1.
441
+ The square boxes
442
+ represent linear fit.
443
+ xc keeps increasing. This behavior is however absent for
444
+ lower xh values. Fig.(1c) represent ρss
445
+ 12 evaluated for dif-
446
+ ferent xc and x values as a function of xh.
447
+ The solid
448
+ (dotted) lines represent ρss
449
+ 12 when xc ̸= 0(xc = 0) and
450
+ x = 0(x ̸= 0). At high xh values, the steady state values
451
+ of the coherence term increases and saturates to a higher
452
+ value in comparison to coherence at lower xh values. We
453
+ can rationalize that, xc(xh) tend to reduce (increase) the
454
+ steadystate values of the coherences as we keep squeez-
455
+ ing the baths more and more. The same however cannot
456
+ be said for ρss
457
+ 12 vs x as seen from Fig. (1d). The solid
458
+ (dotted) lines represent the behavior at xh = 0(xh ̸= 0)
459
+ for finite xc values.
460
+ The time evolution of each of the equations (Eq.(8-11))
461
+ for various engine parameters for xh = xc = 0 and x = 2
462
+ is shown in Fig.(2a). In Fig.(2b), the steadystate values
463
+ of the populations as a function of x is shown where solid
464
+ (dotted) curves represent cavity-squeezed, x ̸= 0 (cavity-
465
+ unsqueezed, x = 0) evolutions.
466
+ Note that under high
467
+ squeezing of the cavity mode, the steady state values,
468
+ ρss
469
+ aa and ρss
470
+ bb equipopulate giving,
471
+ lim
472
+ x→∞
473
+ ρss
474
+ bb
475
+ ρss
476
+ aa
477
+ = 1
478
+ (14)
479
+ and is shown numerically in Fig.(2c) for different values
480
+ of the hot coherence parameter, ph. The analytical ex-
481
+ pressions for the steadystate values are provided in the
482
+ supplementary information.
483
+ III.
484
+ WORK FLUX
485
+ We interprete the emission of photons into the
486
+ squeezed cavity as the work done by the engine. This
487
+ photon exchange process between the levels |a⟩, |b⟩ with
488
+ the squeezed cavity is quantified by the rate of photon
489
+ exchange with the cavity which we refer to as the work
490
+ flux, j =
491
+ d
492
+ dt⟨a†
493
+ ℓaℓ⟩, where the trace is with respect to
494
+
495
+ 4
496
+ 0
497
+ 1
498
+ 0.6
499
+ 0.7
500
+ 0.8
501
+ 0.9
502
+ 1.0
503
+ ph
504
+ j�jo
505
+ ph
506
+ �a�
507
+ 0.7
508
+ 0.8
509
+ 0.9
510
+ 1
511
+ 0.4
512
+ 0.5
513
+ 0.6
514
+ 0.7
515
+ 0.8
516
+ 0.9
517
+ pc
518
+ ph
519
+
520
+ Tc�Colour
521
+ 0.1�Pink
522
+ 0.2�Blue
523
+ 0.3�Red
524
+ 0.4�Orange
525
+ 0.5�Blue
526
+ 1.0�Black
527
+ pc
528
+ �b�
529
+ 0
530
+ 1
531
+ 2
532
+ 3
533
+ 0.6
534
+ 1
535
+ 1.5
536
+ x
537
+ ph
538
+
539
+ x
540
+ �c�
541
+ 0
542
+ 1
543
+ 2
544
+ 3
545
+ 0.2
546
+ 0.4
547
+ 0.6
548
+ 0.8
549
+ 1.0
550
+ x
551
+ Ζ�Ζx�0
552
+ Tl�10
553
+ Tl�0.5
554
+ Tl�1
555
+ Tl�2.5
556
+ x
557
+ �d�
558
+ FIG. 4.
559
+ a) Loss of optimization of flux as a function
560
+ of ph for different squeezing parameters, near equilibrium
561
+ (Tc = 0.9, Th = 1, Tl = 10). (b) Loss of linear dependence of
562
+ pc on the optimal value p∗
563
+ h as given by Eq.(21). The topmost
564
+ curve represents Eq.(22). (c) Plot showing breakdown of the
565
+ coherent optimization of the flux as a function of squeezing
566
+ parameter. The shaded region is not allowed since the maxi-
567
+ mum possible value of p∗
568
+ h is unity. Under far from equilibrium
569
+ condition p∗
570
+ h exists which saturates (bottom curve) at higher
571
+ values of x given by Eq.(21). The top curve shows the behav-
572
+ ior of p∗
573
+ h near equilibrium which is nonexistent after a certain
574
+ squeezing value. (d) (d) Lowering of thermodynamic affinity
575
+ as a function of squeezing evaluated at Tc = 0.1, Th = 2 and
576
+ xc = xh = 0.
577
+ the squeezed cavity density matrix.
578
+ Following a stan-
579
+ dard procedure to second order in the coupling as devel-
580
+ oped in[30, 48] we get, j = g2( ˜Nℓρss
581
+ aa − Nℓρss
582
+ bb). We can
583
+ substitute the values of the steadystate populations to
584
+ obtain an analytical expression for the flux (supplemen-
585
+ tary information). When, the hot and the cold coherence
586
+ parameters individually go to zero (pc = ph = 0), the
587
+ coherence vanishes (ρss
588
+ 12=0) and we obtain a coherence -
589
+ unaffected value of the flux, which we denote as jo. Note
590
+ that, jo depends on the squeezing parameters x, xh and
591
+ xc. In the absence of squeezing (xh = xc = x = 0), jo
592
+ shall be denoted by j0
593
+ o, which we refer to as the classical
594
+ value of the flux. There are no effects of coherence or
595
+ squeezing on j0
596
+ o. It is a well known phenomena that, in
597
+ absence of squeezing, j > jo can be achieved as a func-
598
+ tion of coherence parameter, ph [7, 29]. We plot the ratio
599
+ j/jo in shown in Fig.(2d) for different squeezing values
600
+ of the cavity for xc = xh = 0. As the cavity squeezing
601
+ parameter is increased the optimal value of the flux grad-
602
+ ually decreases and the ph value that optimizes the ratio
603
+ (denoted as p∗
604
+ h) shifts towards larger ph values. We now
605
+ attempt to explore the dependence of the flux in presence
606
+ of squeezing on the coherences in detail. Since the ana-
607
+ lytical expressions of j and j0
608
+ o are too lengthy we focus
609
+ on some limiting cases.
610
+ Under high cavity squeezing, (x → ∞), we obtain
611
+ ρaa
612
+ aa = ρss
613
+ bb as seen from Eq.(14). The expression for the
614
+ flux in this case is simply given by,
615
+ lim
616
+ x→∞ j = g2( lim
617
+ x→∞ ρss
618
+ aa),
619
+ (15)
620
+ which under the condition pc = 0, ph = 0 in Eq.(15) is,
621
+ lim
622
+ x→∞ jo = r(Nh − Nc)
623
+ 2(n + 1)
624
+ .
625
+ (16)
626
+ Eq. (15), with pc = 1 can be expressed as,
627
+ lim
628
+ x→∞ j|pc=1 = r(Nh − Nc)
629
+
630
+ Nh
631
+
632
+ 1 − p2
633
+ h
634
+
635
+ + t
636
+
637
+ (1 − ph)fn + 2τ(n + 1)
638
+ (17)
639
+ with fn = 4NcNh + n(2Nh(ph + 1) + ph + 2). The RHS
640
+ of Eq.(16) is always greater than RHS of Eq.(17) as seen
641
+ from the numerical result in Fig (3). The physical in-
642
+ terpretation is that the coherences are no longer able to
643
+ increase the flux beyond the non coherence values. Un-
644
+ der this condition, the ratio is bounded below unity as
645
+ seen in Fig.(3). We can analytically prove this by invok-
646
+ ing a few conditions. In Eq.(16) and (17), if τ = 0 and
647
+ Nh = zNc, z being a positive integer), the ratio between
648
+ the two fluxes becomes,
649
+ lim
650
+ x→∞ j|pc=1
651
+ lim
652
+ x→∞ jo
653
+ ����
654
+ Nh=zNc
655
+ =
656
+ 2z(ph+1)(Ncz+ Nc+ 1)
657
+ 2Nc(ph+1)z2+z(4Nc+ ph+2)+1
658
+ (18)
659
+ which is a rational fraction of two linear terms of ph.
660
+ Eq.(18) can be shown to have a linear dependence on ph
661
+ for some appropriate conditions of the coefficients which
662
+ is graphically shown as an inset in Fig.(3). In Eq.(18),
663
+ for z = 1 and Nh = Nc (no bias), we see a flux value that
664
+ solely depends on only the coherence value, given by
665
+ lim
666
+ x→∞
667
+ j
668
+ jo
669
+ |Nh=Nc = 2(1 + ph)
670
+ (3 + ph)
671
+ (19)
672
+ ≤ 1
673
+ (20)
674
+ and is linear in ph for small values as seen in the inset
675
+ of Fig.(3) and in Fig.(4a).
676
+ In Fig.(4a), the flux ratio
677
+ j/jo is plotted for different squeezing parameters. The
678
+ squeezing decreases from top to bottom. For smaller ph,
679
+ the linearity is prominent, but for higher ph values, the
680
+ linearity is gradually less apparent as the squeezing pa-
681
+ rameter increases.
682
+ It has been previously reported that p∗
683
+ h increases lin-
684
+ early in pc under the unsqueezed case [30]. In the current
685
+ case, we observe that under an extremely biased scenario
686
+ (Nh ≫ 0) and high squeezing, x ≫ 0, the linear depen-
687
+ dence is lost as shown graphically in Fig.(4b) and the
688
+ dependence of p∗
689
+ h on the cold coherence parameter, pc is
690
+ given by the nonlinear function,
691
+ p∗
692
+ h| =
693
+
694
+ (1−p2c) (4N 2c (1−p2c)+4Nc+1)+2Nc
695
+
696
+ p2
697
+ c+1
698
+
699
+ +1
700
+ 4Ncpc + pc
701
+ (21)
702
+ which reduces to unity when pc = 1 as seen in the Fig.
703
+ (4b). The nonlinear dependence takes a simplistic form
704
+ when Tc → 0, where the above expression reduces to,
705
+ p∗
706
+ h|Tc=0 = 1 −
707
+
708
+ 1 − p2c
709
+ pc
710
+ (22)
711
+
712
+ 5
713
+ which is shown as the topmost curve in Fig.(4b). The
714
+ RHS of Eq.(21) also has a strange dependence on the cav-
715
+ ity squeezing parameter. p∗
716
+ h increases as a function of x
717
+ and saturates at higher x values as shown in the bottom-
718
+ most curve of Fig.(4c). However under extremely biased
719
+ conditions, p∗
720
+ h sharply rises beyond unity and goes to the
721
+ shaded region. The shaded region is not allowed as the
722
+ maximum value of p∗
723
+ h is unity. Since an analytical expres-
724
+ sion of p∗
725
+ h as a function of x is beyond the scope of sim-
726
+ plistic analysis, the exact identification of this numerical
727
+ fallout range is not possible. We simply speculate that
728
+ such a breakdown happens when the cavity temperature
729
+ Tℓ is set to be very high. Since nℓ is a function of Tℓ, the
730
+ numerics blows when there is competition between x and
731
+ Tℓ to dominate the behavior. The upper dashed curve in
732
+ the shaded portion also corresponds to an unrealistic p∗
733
+ h
734
+ evaluated at a high cavity temperature. In Fig.(4d), we
735
+ plot the thermodynamic force as a function of squeezing.
736
+ The force can be identified from the analytical expression
737
+ of the flux (supplementary text) and is given by,
738
+ ζ =
739
+ ˜Nc ˜
740
+ NℓNh
741
+ Nc ˜NhNℓ
742
+ .
743
+ (23)
744
+ When ζ > (<)1, j > (<)1. In Fig.(4d), we plot the ratio
745
+ between the thermodynamic forces in presence and ab-
746
+ sence of squeezing for different cavity temperatures. As
747
+ squeezing increases, the ratio decreases for a fixed set
748
+ of engine parameters and then saturates. This leads to
749
+ lower magnitude of the flux in comparison to the un-
750
+ squeezed case and is more prominent when the cavity
751
+ temperature is low.
752
+ In Fig.(5a,b and c), we plot the ratio between the total
753
+ flux j and the classical flux j0
754
+ o as a function of xc, xh and
755
+ x respectively for the same parameters as Fig.(2).
756
+ As
757
+ a function of both the baths’ squeezing parameters, the
758
+ increase of the total flux is quite large in comparison to
759
+ the classical case. All of the curves show saturation be-
760
+ havior. Particularly interesting is the ratio’s dependence
761
+ on xh where the saturation value of the ratio is always
762
+ greater than unity.
763
+ We now focus on an extreme biased case (Th ≫ Tc, a
764
+ limit which we invoke by taking Th → ∞ and Tc → 0),
765
+ a scenario when the temperature gradient is very high.
766
+ This case is different from a standard extreme nonequilib-
767
+ rium case where the thermodynamic force must be very
768
+ high (ζ ≫ 0). Under the high temperature gradient sce-
769
+ nario, the steadystate populations of the upper two states
770
+ are given by,
771
+ lim
772
+ Th≫Tc ρss
773
+ aa =
774
+
775
+ p2
776
+ h + 1
777
+ � �
778
+ g2Nℓ + 2r
779
+
780
+ g2 (4Nℓ + p2
781
+ h + 1) − 2 (p2
782
+ h − 3) r
783
+ (24)
784
+ lim
785
+ Th≫Tc ρss
786
+ bb =
787
+ g2 ˜Nℓ
788
+
789
+ p2
790
+ h + 1
791
+
792
+ g2 (4Nℓ + p2
793
+ h + 1) − 2 (p2
794
+ h − 3) r,
795
+ (25)
796
+ which no longer depends on the squeezing parameters of
797
+ the two baths. Using these above values the flux can be
798
+ (a)
799
+ (b)
800
+ (d)
801
+ (c)
802
+ FIG. 5. Giant increase of the total flux (in presence of squeez-
803
+ ing as well as coherence) in comparison to the classical case.
804
+ The solid (dotted) lines represent the ratio between the to-
805
+ tal flux j and the classical flux j0
806
+ o as a function of a) xc
807
+ evaluated at x = 0(1), xh = 0, 0.5, 1, 2, b) xh evaluated at
808
+ x = 0(1), xc = 0, 0.5, 1, 2. c) Solid (dotted) curves indicate the
809
+ total flux ratio as a function of cavity squeezing x evaluated
810
+ at Tc = 0.5(0.1) with {xh, xc} = {0.5, 0.1}, {0.1, 0.5}, {0, 0}
811
+ (top to bottom). (d) Change in the sign of the thermody-
812
+ namic affinity, A = log ζ as function of cavity squeezing pa-
813
+ rameter evaluated at{xh, xc} = {1, 0.1} (upper curve) and
814
+ {0.1, 1} (lower curve). The sign change happens at x∗ given
815
+ by Eq.(32).
816
+ recast as,
817
+ lim
818
+ Th≫Tc j =
819
+ 2g2r ˜Nℓ(1 + p2
820
+ h)
821
+ g2(1 + 4Nl + p2
822
+ h) − 2r(p2
823
+ h − 3)
824
+ (26)
825
+ while the coherence-unaffected value of the flux is simply,
826
+ lim
827
+ Th≫Tc jo =
828
+ 2g2 ˜Nℓr
829
+ g2(1 + 4Nℓ) + 6r
830
+ (27)
831
+ It is interesting to note that, in this highly biased sce-
832
+ nario, the flux expression (RHS of Eq.(26)) doesn’t de-
833
+ pend on the cold coherence parameter any more. In the
834
+ above two expressions, if we invoke the high squeezing
835
+ scenario (x → ∞), we can write down the ratio between
836
+ the two fluxes as,
837
+ lim
838
+ x→∞
839
+ lim
840
+ Th≫Tc j
841
+ lim
842
+ Th≫Tc jo
843
+ = (1 + p2
844
+ h)
845
+ (28)
846
+ Note that, the above expression is bound, 1 ≤ 1 + p2
847
+ h ≤
848
+ 2.
849
+ In this limit with ph = 1(pc ̸= 1), coherences can
850
+ double the value of the flux from its zero coherence value.
851
+ Likewise, the ratio between the flux in this limit and the
852
+ classical value of the flux can be written as,
853
+ lim
854
+ x→∞
855
+ lim
856
+ Th≫Tc j
857
+ lim
858
+ Th≫Tc j0
859
+ o
860
+ = (1 + p2
861
+ h)(1 + 6r − 3g2
862
+ 4g2˜nℓ
863
+ )
864
+ (29)
865
+ ≥ 1.
866
+ (30)
867
+ As long as r > g2/2 and pc ̸= ph, within the high bias
868
+ scenario and maximal cavity-squeezing, the flux is always
869
+ greater than unity in comparison to the classical case.
870
+
871
+ 20
872
+ 15
873
+ 15
874
+ 10
875
+ 10
876
+ 5
877
+ 5
878
+ 0
879
+ 0
880
+ 0
881
+ 1
882
+ 2
883
+ 3
884
+ 4
885
+ 5
886
+ 6
887
+ 0
888
+ 1
889
+ 2
890
+ 3
891
+ 4
892
+ 5
893
+ 6
894
+ Xc
895
+ Xh
896
+ 3.0
897
+ 1.5
898
+ 2.5
899
+ 1.0
900
+ 0, 2.0
901
+ 0.5
902
+ A
903
+ 0.0
904
+ 1.0
905
+ 0.5
906
+ 0.5
907
+ 0
908
+ 1
909
+ 2
910
+ 3
911
+ 4
912
+ 5
913
+ 6
914
+ 0.0 0.5 1.0 1.5 2.0 2.5 3.0
915
+ X
916
+ X6
917
+ 0
918
+ 0.7 1.2
919
+ 2
920
+ 2.5
921
+ 3
922
+ 1.00
923
+ 1.05
924
+ 1.10
925
+ 1.15
926
+ 1.20
927
+ 1.25
928
+ 1.30
929
+ x
930
+ W�Wo
931
+ Tl�0.5
932
+ Tl�0.4
933
+ Tl�1.0
934
+ Tl�10
935
+ x
936
+ �a�
937
+ 0
938
+ 0.7 1.2
939
+ 2
940
+ 2.5
941
+ 3
942
+ �1
943
+ 0
944
+ 1
945
+ 2
946
+ 3
947
+ x
948
+ W�Wo
949
+ Tc�0.1
950
+ Tc�2.0
951
+ Tc�0.4
952
+ Tc�0.7
953
+ x
954
+ �b�
955
+ 0
956
+ 0.2
957
+ 0.7
958
+ 1
959
+ 0.990
960
+ 0.995
961
+ 1.000
962
+ 1.005
963
+ ph
964
+ ΗEa
965
+ � �Ηo
966
+
967
+ x�0.5
968
+ x�0
969
+ x�1
970
+ x�2Π
971
+ �c�
972
+ ph
973
+ 0
974
+ 1
975
+ 2
976
+ 3
977
+ 1.0
978
+ 1.1
979
+ 1.2
980
+ 1.3
981
+ 1.4
982
+ 1.5
983
+ x
984
+ ΗEa
985
+ � �Ηo
986
+
987
+ Tl�0.9
988
+ Tl�1.0
989
+ Tl�1.2
990
+ Tl�1.7
991
+ x
992
+ �d�
993
+ FIG. 6.
994
+ (a) Squeezing induced increase of the work done
995
+ beyond classical limits (Tc = 0.1, Th = 1). The increase is
996
+ larger when the cavity temperature is lower.
997
+ (b) Negative
998
+ work done as a function of squeezing for different Tc( Th =
999
+ 2, Tl = 1). (c) EMP with respect to Ea as a function of ph
1000
+ for different squeezing values. (d) EMP with respect to Ea
1001
+ for the range of squeezing at different cavity temperatures
1002
+ (pc = 0.1, ph = 1).
1003
+ IV.
1004
+ EFFICIENCY AT MAXIMUM POWER
1005
+ We now move to perform a thorough analysis on the
1006
+ efficiency at maximum power (EMP or η∗). In a stan-
1007
+ dard context, the EMP is calculated by maximizing the
1008
+ efficiency with respect to a system parameter.
1009
+ In our
1010
+ QHE model, the efficiency is defined as η = W/Qh with
1011
+ Qh = (Ea −E1), and the useful work done (W) is defined
1012
+ as,
1013
+ W = Ea − Eb − WdissTc,
1014
+ (31)
1015
+ with Wdiss = kBln
1016
+ ˜
1017
+ Nℓ
1018
+ Nℓ is the dissipation into the cavity
1019
+ mode [30, 48]. W doesn’t depend on the squeezing pa-
1020
+ rameters of the two squeezed reservoirs or the noise in-
1021
+ duced coherences. In Fig. (6a), we show the variation of
1022
+ W/Wo (Wo being the useful work in absence of squeez-
1023
+ ing, x = 0) as a function of x for several values of the
1024
+ cavity temperature, Tl. As can be seen, the work done
1025
+ increases as Tl is lowered and saturates at higher values
1026
+ of x and is always greater than unity as long as Tc > Tℓ.
1027
+ When Tc < Tℓ (Fig.(6)b), the work done is negative. In
1028
+ general, the work changes its sign at x = x∗, given by
1029
+ x∗ = 1
1030
+ 2ℜ
1031
+
1032
+ cosh−1
1033
+
1034
+ ˜NcNh + Nc ˜Nh
1035
+ (2nℓ + 1)(Nc − Nh)
1036
+ ��
1037
+ .
1038
+ (32)
1039
+ Although W and η are independent of coherences and
1040
+ the reservoir squeezing parameters, the EMP however de-
1041
+ pends on these parameters. The EMP obtained by max-
1042
+ imizing P with respect to any system parameter puts an
1043
+ implicit dependence via the optimized value of the chosen
1044
+ parameter. We choose the three squeezing parameters
1045
+ xc, xh, x and Ea to optimize the EMP and denote these
1046
+ by η∗
1047
+ xc, η∗
1048
+ xh, η∗
1049
+ x and η∗
1050
+ Ea respectively. The squeezing unaf-
1051
+ fected values of the EMP are denoted by η∗
1052
+ o. In Fig.(6c),
1053
+
1054
+
1055
+ 0
1056
+ 0.2
1057
+ 0.8
1058
+ 1
1059
+ 0.990
1060
+ 0.995
1061
+ 1.000
1062
+ 1.005
1063
+ 1.010
1064
+ ph
1065
+ Ηx
1066
+ ��Ηo
1067
+
1068
+ �a�
1069
+ 0.6
1070
+ 0.8
1071
+ 0.40
1072
+ 0.45
1073
+ 0.50
1074
+ 0.55
1075
+ 0.60
1076
+ Ηx
1077
+
1078
+ �b� r � g
1079
+ Η�2
1080
+ ��2��
1081
+ ΗC
1082
+ Ηc
1083
+ 0.6
1084
+ 0.75
1085
+ 0.9
1086
+ 0.40
1087
+ 0.45
1088
+ 0.50
1089
+ 0.55
1090
+ 0.60
1091
+ Ηx
1092
+
1093
+ �c� r � g
1094
+ ��2��
1095
+ ΗC
1096
+ Ηc
1097
+ 0.6
1098
+ 0.7
1099
+ 0.8
1100
+ 0.40
1101
+ 0.45
1102
+ 0.50
1103
+ 0.55
1104
+ 0.60
1105
+ 0.65
1106
+ 0.70
1107
+ ΗEa
1108
+
1109
+ �d�
1110
+ ΗC
1111
+ ��2��
1112
+ (c)
1113
+ (a)
1114
+ (b)
1115
+ (b)
1116
+ (d)
1117
+ FIG. 7. (Color online)(a) EMP with respect to squeezing as a
1118
+ function of ph fr various pc. In a), b) and c), the black curves
1119
+ (overlayed with red color) represent the evaluated EMP of
1120
+ our QHE. The green dashed curve is the upper bound on
1121
+ the EMP, η∗∗. The brown dashed line represents ηCA. The
1122
+ dotted line represent ηL. (b) and (c) EMP with respect to x
1123
+ as a function of ηC with r = 0.7, g = 1) and r = 0.1, g = 3
1124
+ respectively. When r ≈ g, η∗
1125
+ x > ηCA as seen in (b). (d) EMP
1126
+ with respect to Ea as a function of ηC with r = 0.7, g = 1).
1127
+ Here, η∗
1128
+ Ea > ηCA with x = 1(xc = xh = 0).
1129
+ we show the dependence of the ratio η∗
1130
+ Ea/η∗
1131
+ o as a function
1132
+ of ph for several x-values evaluated at xc = xh = 0 and
1133
+ pc = 0.9. The dependence of this ratio on ph is extremely
1134
+ nonlinear and is unity at ph = 0.8 where effects of coher-
1135
+ ence vanish. At lower (higher) squeezing values, the ratio
1136
+ decreases (increases) to unity and then sharply increases
1137
+ beyond unity as a function of ph. We can theorize that,
1138
+ lower ph values (under the condition ph < pc), smaller
1139
+ values of cavity squeezing favor increasing the EMP be-
1140
+ yond classical values while for larger ph (ph > pc), high
1141
+ squeezing favor increase of the EMP beyond classical val-
1142
+ ues. In Fig.(6d), we plot the same ratio as a function of
1143
+ cavity squeezing parameter for different cavity tempera-
1144
+ tures, Tl. There is an optimization of the EMP at lower
1145
+ values of x and the hump keeps shifting leftward to even
1146
+ smaller values as Tl is increased and the EMP ratio keeps
1147
+ decreasing. From Fig.(6d), we can conclude that lower
1148
+ values of Tℓ yield very high values of EMP with respect
1149
+ to Ea under moderate squeezing conditions of the cavity.
1150
+ In Fig. (7a), we plot η∗
1151
+ x as a function of ph for differ-
1152
+ ent combinations of xc and xh for a fixed pc value (0.5).
1153
+ Here, for a fixed set of engine parameters, when xc < xh
1154
+ leads to a larger optimized value (around ph = 0.5) of the
1155
+ EMP with respect to x (blue curve in the figure). How-
1156
+ ever as ph approaches unity, there is a sharper fall in the
1157
+ EMP and goes below unity. For the case when xc = xh,
1158
+ the behavior is similar (dotted curve) but the increase is
1159
+ not as high as the previous case. When squeezed to the
1160
+ limits, xc → ∞, xh → ∞, the EMP with respect to x no
1161
+ longer depends on the coherence (dashed curve). This
1162
+ is due to the fact that, under this scenario, the power
1163
+ cannot be optimized with respect to x and the maximum
1164
+ value occurs at x = 0.
1165
+ In general, the EMP has a universally accepted for-
1166
+ mula, the Curzon-Ahlborn EMP, ηCA = 1 − √1 − ηC
1167
+
1168
+ 7
1169
+
1170
+
1171
+ 0
1172
+ 0.3
1173
+ 0.6 0.8
1174
+ 1
1175
+ 0.0
1176
+ 0.2
1177
+ 0.4
1178
+ 0.6
1179
+ 0.8
1180
+ 1.0
1181
+ Ηc
1182
+ Ηxc
1183
+
1184
+ Ηc
1185
+ 0
1186
+ 0.3
1187
+ 0.6 0.8
1188
+ 1
1189
+ 0.0
1190
+ 0.2
1191
+ 0.4
1192
+ 0.6
1193
+ 0.8
1194
+ 1.0
1195
+ Ηc
1196
+ Ηxh
1197
+
1198
+ Ηc
1199
+ 0.0
1200
+ 0.2
1201
+ 0.4
1202
+ 0.6
1203
+ 0.8
1204
+ 1.0
1205
+ 0.55
1206
+ 0.60
1207
+ 0.65
1208
+ 0.70
1209
+ 0.75
1210
+ Tc
1211
+ Η,Η�
1212
+ 0.0
1213
+ 0.2
1214
+ 0.4
1215
+ 0.6
1216
+ 0.8
1217
+ 0.65
1218
+ 0.70
1219
+ 0.75
1220
+ 0.80
1221
+ 0.85
1222
+ Ηc
1223
+ ΗEa
1224
+
1225
+ (a)
1226
+ (b)
1227
+ (d)
1228
+ (c)
1229
+ FIG. 8.
1230
+ Linear dependence of η∗
1231
+ xc(a) and η∗
1232
+ xh(b) as a func-
1233
+ tion of ηC, governed by Eq.(33) evaluated at x = ∞, 1 and 0
1234
+ (top to bottom ). Note that η∗
1235
+ xh = η∗
1236
+ xc with the upper (mid-
1237
+ dle) curves having a slope of m = 0.02(0.19) and intercept
1238
+ of c = 0.76(0.59). c) Solid line represents the EMP, given by
1239
+ Eq.(34) while the dotted line is simply the normal efficiency,
1240
+ η = W/Qh. d) Appearance of a quadratic term and an in-
1241
+ tercept for η∗
1242
+ Ea as a function of ηC, evaluated at x = 1.5(∞)
1243
+ denoted by lower (upper) curves. The fit parameters for the
1244
+ upper (lower) curves are a1 = 0.85(0.76), a2 = 1.7(0.75), a3 =
1245
+ 0.05(−0.28), a4 = 0.07(−0.28).
1246
+ [41, 53] and is represented by the dashed curves in
1247
+ Fig.(7b,c and d). As a function of ηC, the EMP is bound
1248
+ between ηC/2 ≤ η∗ ≤ η∗∗, where the upper bound is
1249
+ η∗∗ =
1250
+ ηC
1251
+ 2−ηC [54]. In Fig.(7b,c and d), we show the be-
1252
+ havior of our engine’s EMP as a function of the Carnot
1253
+ efficiency, ηC.
1254
+ The solid (topmost green) curve repre-
1255
+ sent the upper bound η∗∗. The EMP of the QHE op-
1256
+ timized with respect to x for xc = xh = 0 is repre-
1257
+ sented by the solid line highlighted with red dots.
1258
+ In
1259
+ Fig.(7b,c), η∗
1260
+ x ≥ (<)ηCA is observed under the condition
1261
+ r ≥ (<)g.
1262
+ Values of EMP larger than ηCA has been
1263
+ previously reported with squeezed reservoirs [17, 20]. In
1264
+ our case, one can have EMP more than the predicted
1265
+ ηCA just by squeezing the cavity even in the absence
1266
+ of squeezed reservoirs. In Fig.(7d), for nonzero values of
1267
+ cavity-squeezing, η∗
1268
+ Ea > ηCA is shown (solid black curve).
1269
+ This result is valid irrespective of r and g values. The
1270
+ upper bound is always obeyed in presence of squeezing
1271
+ as evident from Fig.(8b,c and d). The EMP of the QHE
1272
+ is always lower than the upper dashed curve (η∗∗). Note
1273
+ that the universal slope of 1/2 (any EMP = ηC/2 near
1274
+ equilibrium)[42] is maintained in all the curves for smaller
1275
+ values of ηC when maximized with respect to x.
1276
+ We now move to discuss a rather interesting finding
1277
+ observed when the EMP is maximized with respect to
1278
+ a reservoir squeezing parameter. As can be seen from
1279
+ Fig.(8a and b), both η∗
1280
+ xh and η∗
1281
+ xc are found to be linear
1282
+ in ηC with a slope which is not equal to the universally
1283
+ predicted value of 1/2[53]. By a linear curve fitting tech-
1284
+ nique, we infer that the EMP with respect to xc or xh is
1285
+ dictated by the equation,
1286
+ η∗
1287
+ xh = η∗
1288
+ xc = mηC + c.
1289
+ (33)
1290
+ Our numerical results reveal that the slope, m is equal
1291
+ to the numerical value of Wdiss/Qh and the intercept, c
1292
+ being given by the numerical value of the quantity, (Eab−
1293
+ Wdiss)/Qh. This intercept is interestingly the efficiency
1294
+ of the engine albeit with Tc = 1. Note that, η∗
1295
+ xc = η∗
1296
+ xh
1297
+ and is shown as two identical plots in Fig.(8a,b). In these
1298
+ two figures. The numerical plots reveal that the m ̸=
1299
+ 1/2. Such a breakdown of the universality of the linear
1300
+ coefficient has also been observed in presence of geometric
1301
+ phaselike effects [52, 55].
1302
+ Since Wdiss > 1, the EMP
1303
+ increases as x is increased (for fixed Tℓ) to a maximum
1304
+ value of Eab/Qh at ηC = 1. The efficiency of the QHE,
1305
+ η = W/Qh is always less than η∗
1306
+ ν and is shown as a
1307
+ function of Tc in Fig.(8c).
1308
+ This linear dependence doesn’t exist for η∗
1309
+ Ea for finite
1310
+ x as seen from the numerical results in Fig.(8d) for x = 1
1311
+ and x → ∞. It has been previously reported that such
1312
+ a nonlinear dependence of the EMP on the squeezing
1313
+ parameter x takes the form η∗
1314
+ ∗ = 1 −
1315
+
1316
+ sech(2x)√1 − ηC
1317
+ [56]. We assess the validity if this expression by defining
1318
+ two curve fitting equations,
1319
+ η∗
1320
+ Ea ≈ a1 −
1321
+
1322
+ sech(a2x)√a3 − a4ηC
1323
+ (34)
1324
+ ≈ a5ηC + a6η2
1325
+ C + c
1326
+ (35)
1327
+ that can best represent the EMP with respect to the sys-
1328
+ tem parameter Ea. Here, ai-s are fit parameters. We
1329
+ observe that a1 ̸= a3 ̸= a4 ̸= 1 and a3 ̸= 2 result-
1330
+ ing in η∗
1331
+ Ea ̸= η∗
1332
+ ∗ and is shown in Fig.(8d). Further, in
1333
+ Eq.(35), a5 ̸= 1/2 and a6 ̸= 1/8. In this engine, it is al-
1334
+ ready known that the quadratic coefficient is not 1/8 [30].
1335
+ Both the above equations are good fits (solid curves) on
1336
+ the numerically evaluated η∗
1337
+ Ea (dots) as function of ηC
1338
+ as seen in Fig.(8d). It is interesting to note that the in-
1339
+ tercept of η∗
1340
+ Ea as a function of ηC in Eq.(35) is the same
1341
+ numerical value of the engine’s efficiency of the engine,
1342
+ η = W/Qh similar to what was observed in Eq.(33). This
1343
+ lets us rationalize that Eq.(35) is a better representation
1344
+ of η∗
1345
+ Ea vs ηC than Eq.(34). At ηC = 1, η∗
1346
+ Ea again reaches
1347
+ a maximum value of Eab/Qh. For x = 0, m = 1/2 is
1348
+ recovered. Further for x = 0, the intercept in Eq.(34)
1349
+ also vanishes by mixing with the quadratic term. Since
1350
+ we cannot derive analytical expressions for these coeffi-
1351
+ cients, we demonstrated it this numerically shown as the
1352
+ bottom-most dotted line in Fig.(7d)).
1353
+ The EMP also has other interesting logarithmic
1354
+ expressions[43, 57, 58], one particularly claimed to be
1355
+ valid for squeezed states[11], η∗
1356
+ L = η2
1357
+ m/{1−(1−ηm) ln(1−
1358
+ ηm)}. ηm is a modified Carnot efficiency given by ηm =
1359
+ 1−Tc/T m
1360
+ h . T m
1361
+ h is a modified but fictitious reservoir tem-
1362
+ perature and is directly proportional to the energy of the
1363
+ squeezed mode and inversely proportional to the logarith-
1364
+ mic ratio of the squeezed mode’s occupation factor. By
1365
+ an analogy with this previous work [11], we can express
1366
+ the modified temperature in our QHE to be,
1367
+ T m
1368
+ h = Ea − E1
1369
+ ln 1+Nh
1370
+ Nh
1371
+ .
1372
+ (36)
1373
+
1374
+ 8
1375
+ 0
1376
+ 0.3
1377
+ 0.6
1378
+ 0.8
1379
+ 1
1380
+ 0.0
1381
+ 0.2
1382
+ 0.4
1383
+ 0.6
1384
+ 0.8
1385
+ 1.0
1386
+ Ηc
1387
+ ΗEa
1388
+
1389
+ Ηc
1390
+ FIG. 9.
1391
+ Disagreement between the QHE’s EMP optimized
1392
+ with respect to Ea and the predicted EMP, η∗
1393
+ L for the same
1394
+ parameters. η∗
1395
+ L is evaluated using the definition in Eq.(36).
1396
+ The dotted (dashed) curves represent η∗
1397
+ Ea(η∗
1398
+ L). Parameters
1399
+ used are Th = 3, xc = xh = 0.1, x = 0.6 (top dotted), Th =
1400
+ 4, xc = xh = 0.2, x = 0.5 (middle dotted) and Th = 6, xc =
1401
+ xh = 0.2, x = 2π.
1402
+ We numerically evaluate ηE∗
1403
+ a for different squeezing pa-
1404
+ rameters and Th values and plot it in Fig.(9) along side
1405
+ the corresponding η∗
1406
+ L values. As can be seen, η∗
1407
+ Ea ̸= η∗
1408
+ L.
1409
+ Further since η∗
1410
+ xh and η∗
1411
+ xc is found to be linear in ηC, these
1412
+ anyway don’t agree with the predicted value η∗
1413
+ L.
1414
+ Un-
1415
+ der extremely low squeezing conditions of the hot bath,
1416
+ ηm
1417
+ C → ηC in the expression for η∗
1418
+ L. Under this condition,
1419
+ η∗
1420
+ L has been high lighted as dotted curves in Fig.(7b,c
1421
+ and d) and is seen to be unequal to η∗
1422
+ x.
1423
+ V.
1424
+ CONCLUSION
1425
+ By deriving a coherence-population coupled quantum
1426
+ master equation, we carried out a comprehensive study
1427
+ of the thermodynamics of quantum heat engine coupled
1428
+ to two squeezed reservoirs and a squeezed unimodal cav-
1429
+ ity.
1430
+ We showed that the steadystate value of the co-
1431
+ herence term of the density matrix vanishes (saturates)
1432
+ under maximal squeezing of the cold (hot) bath. Under
1433
+ high squeezing conditions of the cavity, the two upper
1434
+ states of the engine equipopulate. We showed that under
1435
+ high squeezing of the cavity, the quantum coherence can
1436
+ no longer optimize the flux beyond the classical values.
1437
+ We also showed how the flux can be linearized with re-
1438
+ spect to coherences under high squeezing conditions and
1439
+ equal Bose-Einstein distributions for the hot and cold
1440
+ baths. We also showed that larger EMP favors lower val-
1441
+ ues of cavity temperatures and lower values of squeezing.
1442
+ The EMP can be increased beyond the Curzon-Ahlborn
1443
+ limit by squeezing the cavity alone even if the baths are
1444
+ unsqueezed.
1445
+ We also show a linear dependence of the
1446
+ EMP with respect to the reservoirs’ squeezing parameters
1447
+ which we identify analytically with a slope proportional
1448
+ to the dissipation into the cavity mode. The EMP with
1449
+ respect to a system parameter, Ea doesn’t obey the uni-
1450
+ versal slope of 1/2 for finite squeezing and is not equal to
1451
+ a recently proposed general form of the EMP in presence
1452
+ of squeezed reservoirs [11].
1453
+ ACKNOWLEDGMENTS
1454
+ MJS and HPG acknowledge the support from Science
1455
+ and Engineering Board, India for the start-up grant,
1456
+ SERB/SRG/2021/001088.
1457
+ [1] H.-T. Quan, Y.-x. Liu, C.-P. Sun, and F. Nori, Physical
1458
+ Review E 76, 031105 (2007).
1459
+ [2] R. Kosloff and A. Levy, Annual Review of Physical
1460
+ Chemistry 65, 365 (2014).
1461
+ [3] M. Campisi, J. Pekola,
1462
+ and R. Fazio, New Journal of
1463
+ Physics 17, 035012 (2015).
1464
+ [4] H. Scovil and E. Schulz-DuBois, Phys. Rev. Lett. 2, 262
1465
+ (1959).
1466
+ [5] J.-P. Brantut,
1467
+ C. Grenier,
1468
+ J. Meineke,
1469
+ D. Stadler,
1470
+ S. Krinner, C. Kollath, T. Esslinger,
1471
+ and A. Georges,
1472
+ Science 342, 713 (2013).
1473
+ [6] J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl,
1474
+ K. T. Kaczmarek, D. J. Saunders, J. Nunn, I. A. Walm-
1475
+ sley, R. Uzdin,
1476
+ and E. Poem, Phys. Rev. Lett. 122,
1477
+ 110601 (2019).
1478
+ [7] M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim,
1479
+ and A. Svidzinsky, Proc. Natl. Acad. Sci. U.S.A. 108,
1480
+ 15097 (2011).
1481
+ [8] M.
1482
+ O.
1483
+ Scully,
1484
+ M.
1485
+ S.
1486
+ Zubairy,
1487
+ G.
1488
+ S.
1489
+ Agar-
1490
+ wal,
1491
+ and
1492
+ H.
1493
+ Walther,
1494
+ Science
1495
+ 299,
1496
+ 862
1497
+ (2003),
1498
+ https://www.science.org/doi/pdf/10.1126/science.1078955.
1499
+ [9] X. L. Huang, T. Wang, and X. X. Yi, Phys. Rev. E 86,
1500
+ 051105 (2012).
1501
+ [10] G. Manzano, F. Galve, R. Zambrini, and J. M. R. Par-
1502
+ rondo, Phys. Rev. E 93, 052120 (2016).
1503
+ [11] J. Wang, J. He, and Y. Ma, Phys. Rev. E 100, 052126
1504
+ (2019).
1505
+ [12] G. Manzano, Phys. Rev. E 98, 042123 (2018).
1506
+ [13] D. F. Walls, nature 306, 141 (1983).
1507
+ [14] R. Puri, pramana 48, 787 (1997).
1508
+ [15] L. Dupays and A. Chenu, Quantum 5, 449 (2021).
1509
+ [16] A. Kumar, T. Bagarti, S. Lahiri, and S. Banerjee, arXiv
1510
+ preprint arXiv:2209.06433 (2022).
1511
+ [17] J. Klaers, S. Faelt, A. Imamoglu, and E. Togan, Physical
1512
+ Review X 7, 031044 (2017).
1513
+
1514
+ 9
1515
+ [18] J. Klaers, S. Faelt, A. Imamoglu, and E. Togan, Phys.
1516
+ Rev. X 7, 031044 (2017).
1517
+ [19] S. Pal, T. Mahesh, and B. K. Agarwalla, Physical Review
1518
+ A 100, 042119 (2019).
1519
+ [20] J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and
1520
+ E. Lutz, Physical review letters 112, 030602 (2014).
1521
+ [21] Y. Zou, Y. Jiang, Y. Mei, X. Guo, and S. Du, Physical
1522
+ Review Letters 119, 050602 (2017).
1523
+ [22] F. V. Melo, N. S´a, I. Roditi, R. S. Sarthour, I. S. Oliveira,
1524
+ and A. M. Souza, arXiv preprint arXiv:2203.13773
1525
+ (2022).
1526
+ [23] W. Niedenzu, D. Gelbwaser-Klimovsky, A. G. Kofman,
1527
+ and G. Kurizki, New Journal of Physics 18, 083012
1528
+ (2016).
1529
+ [24] M. Lostaglio, D. Jennings,
1530
+ and T. Rudolph, Nature
1531
+ Communications 6 (2015), 10.1038/ncomms7383.
1532
+ [25] M.
1533
+ Lostaglio,
1534
+ K.
1535
+ Korzekwa,
1536
+ D.
1537
+ Jennings,
1538
+ and
1539
+ T. Rudolph, Phys. Rev. X 5, 021001 (2015).
1540
+ [26] K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jen-
1541
+ nings, New Journal of Physics 18, 023045 (2016).
1542
+ [27] O. Abah and E. Lutz, EPL (Europhysics Letters) 106,
1543
+ 20001 (2014).
1544
+ [28] J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and
1545
+ E. Lutz, Phys. Rev. Lett. 112, 030602 (2014).
1546
+ [29] J. Um, K. E. Dorfman,
1547
+ and H. Park, Physical Review
1548
+ Research 4, L032034 (2022).
1549
+ [30] H. P. Goswami and U. Harbola, Phys. Rev. A 88, 013842
1550
+ (2013).
1551
+ [31] S. Rahav, U. Harbola,
1552
+ and S. Mukamel, Phys. Rev. A
1553
+ 86, 043843 (2012).
1554
+ [32] C. L. Latune, I. Sinayskiy, and F. Petruccione, The Eu-
1555
+ ropean Physical Journal Special Topics 230, 841 (2021).
1556
+ [33] G. Manzano, F. Galve, R. Zambrini,
1557
+ and J. M. R.
1558
+ Parrondo, Physical Review E 93 (2016), 10.1103/phys-
1559
+ reve.93.052120.
1560
+ [34] B. K. Agarwalla, J.-H. Jiang,
1561
+ and D. Segal,
1562
+ (2017),
1563
+ 10.48550/ARXIV.1706.06206.
1564
+ [35] R. Long and W. Liu, Phys. Rev. E 91, 062137 (2015).
1565
+ [36] G. Chen, D. A. Church, B.-G. Englert, C. Henkel, B. Ro-
1566
+ hwedder, M. O. Scully,
1567
+ and M. S. Zubairy, Quan-
1568
+ tum computing devices: principles, designs, and analysis
1569
+ (Chapman and Hall/CRC, 2006).
1570
+ [37] M. Teich and B. Saleh, Quantum Optics Journal of the
1571
+ European Optical Society Part B 1, 153 (1989).
1572
+ [38] R.
1573
+ R.
1574
+ TUCCI,
1575
+ International
1576
+ Journal
1577
+ of
1578
+ Modern
1579
+ Physics
1580
+ B
1581
+ 05,
1582
+ 545
1583
+ (1991),
1584
+ https://doi.org/10.1142/S021797929100033X.
1585
+ [39] B. K. Agarwalla, J.-H. Jiang, and D. Segal, Phys. Rev.
1586
+ B 96, 104304 (2017).
1587
+ [40] D. Newman, F. Mintert, and A. Nazir, Phys. Rev. E 95,
1588
+ 032139 (2017).
1589
+ [41] F. L. Curzon and B. Ahlborn, American Journal of
1590
+ Physics 43, 22 (1975).
1591
+ [42] C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005).
1592
+ [43] S. H. Lee, J. Um, and H. Park, Phys. Rev. E 98, 052137
1593
+ (2018).
1594
+ [44] Z. Ye and V. Holubec, Phys. Rev. E 103, 052125 (2021).
1595
+ [45] T. Abebe, D. Jobir, C. Gashu, and E. Mosisa, Advances
1596
+ in Mathematical Physics 2021 (2021).
1597
+ [46] S.-W. Li et al., Physical Review E 96, 012139 (2017).
1598
+ [47] M. J. Sarmah, A. Bansal,
1599
+ and H. P. Goswami, arXiv
1600
+ preprint arXiv:2206.07606 (2022).
1601
+ [48] U. Harbola, S. Rahav,
1602
+ and S. Mukamel, EPL (Euro-
1603
+ physics Letters) 99, 50005 (2012).
1604
+ [49] Q. Bouton, J. Nettersheim, S. Burgardt, D. Adam,
1605
+ E. Lutz,
1606
+ and A. Widera, Nature Communications 12,
1607
+ 2063 (2021).
1608
+ [50] H. K. Yadalam, B. K. Agarwalla, and U. Harbola, Phys.
1609
+ Rev. A 105, 062219 (2022).
1610
+ [51] V. Dodonov, Journal of Optics B: Quantum and Semi-
1611
+ classical Optics 4, R1 (2002).
1612
+ [52] S. K. Giri and H. P. Goswami, Phys. Rev. E 99, 022104
1613
+ (2019).
1614
+ [53] M. Esposito, K. Lindenberg,
1615
+ and C. Van den Broeck,
1616
+ Phys. Rev. Lett. 102, 130602 (2009).
1617
+ [54] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den
1618
+ Broeck, Phys. Rev. Lett. 105, 150603 (2010).
1619
+ [55] S. K. Giri and H. P. Goswami, Phys. Rev. E 106, 024131
1620
+ (2022).
1621
+ [56] H. Liu, J. He, and J. Wang, Journal of Applied Physics
1622
+ 131, 214303 (2022).
1623
+ [57] A. Dechant, N. Kiesel, and E. Lutz, EPL (Europhysics
1624
+ Letters) 119, 50003 (2017).
1625
+ [58] I. Iyyappan and R. S. Johal, EPL (Europhysics Letters)
1626
+ 128, 50004 (2020).
1627
+
ANFJT4oBgHgl3EQfrC3Z/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtAyT4oBgHgl3EQfRvdA/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2463740c54760cb886095259b4160ca74a8a2fc22863f0d561a998a863ef0fc4
3
+ size 113711
AtAzT4oBgHgl3EQfTPzA/content/tmp_files/2301.01247v1.pdf.txt ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Rate Adaptive Autoencoder-based Geometric Constellation
2
+ Shaping
3
+
4
+ Ognjen Jovanovic, Metodi P. Yankov, Francesco Da Ros and Darko Zibar
5
+ Department of Electrical and Photonics Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
6
7
+
8
+ Abstract: An autoencoder is used to optimize bit-to-symbol mappings for geometric constellation
9
+ shaping. The mappings allow for net rate adaptivity without additional hardware complexity, while
10
+ achieving up to 300km of transmission distance compared to uniform QAM. © 2023 The Author(s)
11
+
12
+ 1. Introduction
13
+ State of the art coherent optical communications need to be deployed in dynamic network scenarios, which require
14
+ a certain degree of adaptivity to varying channel conditions [1]. Classically, this is handled by varying the modulation
15
+ format size, which 1) often produces a coarse granularity in the rate with steps of 2 bits/symbol; and 2) requires the
16
+ transceiver to support bit to symbol mapping and demapping to/from constellations of different size, increasing the
17
+ complexity. The probabilistic amplitude shaping (PAS) scheme [1] has emerged as an efficient architecture that
18
+ provides a solution to the first problem, at the cost of rate matcher and dematcher, which increases complexity.
19
+ Autoencoders (AEs) are becoming a popular tool to optimize the signaling constellation of digital communication
20
+ transceivers [2, 3]. In optical communications, AEs have been employed for geometric constellation shaping (GCS)
21
+ [4], bit labeling [5], mostly with the target of mitigating the impact of fiber nonlinearities, as well as transceiver
22
+ impairment mitigation [6, 7]. GCS is beneficial over PAS because it does not require explicit matcher and dematcher
23
+ blocks. However, rate adaptivity with GCS typically requires a rate-flexible forward error correction (FEC), which
24
+ may increase the complexity of the digital logic. Further, GCS does not allow for straight-forward Gray labeling to be
25
+ performed, which may lead to sub-optimality when combined with conventional bit-metric decoders as in standard
26
+ coherent optical communications [8].
27
+ In this paper, an AE is used to 1) find optimal bit mappings; and 2) find optimized constellation points for a variety
28
+ of net rates while maintaining a fixed FEC and demapper logic (i.e. log-likelihood ratio (LLR) computation). The
29
+ system therefore allows for shaping gain to be achieved with a finer granularity without a complexity increase w.r.t.
30
+ conventional bit-interleaved coded modulation (BICM).
31
+ 2. System description
32
+ The AE-based GCS training setup is given in Fig. 1 a). The
33
+ mapping function is learned using the AE architecture from [5] to
34
+ jointly optimize bit labeling and constellation position on the I/Q
35
+ plane. During the AE training, the transmitter and receiver employ
36
+ neural networks for mapping of bits and demapping to LLRs,
37
+ respectively. The transmitter of the proposed system is given in Fig
38
+ 1. b). During testing, the mapping and demapping functionalities are
39
+ replaced by a look-up table (LUT) and conventional Gaussian bit-
40
+ metric receiver [8], respectively.
41
+ The AE requires that the modulation format size is known and fixed. For a fixed modulation format size, the
42
+ generalized mutual information (GMI) typically is penalized w.r.t. the mutual information, as the signal to noise ratio
43
+ (SNR) decreases. This is due to the penalty in the demapper function related to the inability to resolve constellation
44
+ points with similar likelihoods at the receiver. An AE implicitly addresses this problem by ‘merging’ such points
45
+ closer together and assigning (more than 2) labels with a very small Hamming distance to virtually the same point [7],
46
+ i.e. a many-to-one mapping (MOM) of bits-to-symbols is produced. Here, we exploit this fact to achieve rate adaptivity
47
+ in the following way. The GMI of the MOM is analyzed and the bit levels which are ambiguous are not used for data.
48
+ Instead, they are assigned dummy bits in order to maintain the bit flow and logic at the transmitter and receiver. For a
49
+ system with an FEC rate of ������������ = ������������/������������, a code length of N, information block length of K and a modulation format size
50
+ of M, the net data rate per dual polarization channel may be calculated as ������������′ = (2������������ − ������������������������)������������, where ������������ = ������������������������������������2 ������������ is
51
+ the number of bit carried by the constellation and ������������������������ is the number of dummy bits in the labeling. If ������������������������ is even, each
52
+ polarization gets the same number of dummy bits, whereas if it is odd, the allocation is done such that the GMI per
53
+
54
+ a)
55
+ bits-
56
+ >.Channeli
57
+ LLRS
58
+ nd@
59
+ b)
60
+ LUT
61
+ FEC
62
+ Channel
63
+ bits-
64
+ S/P
65
+ K/N
66
+ 2m - nd
67
+ Fig. 1. a) Training setup; b) Testing setup with
68
+ dummy bit insertionpolarization is similar for both polarization. In this paper, the ������������������������ bit positions are selected by sorting their per-bit GMI
69
+ and choosing as many as required from the lowest ones. For example, when the SNR decreases, ������������������������ can be increased.
70
+ The performance degradation of the large-size constellation at low SNR is compensated for by the increased Euclidean
71
+ distance of the effectively smaller constellation achieved via MOM. The receiver architecture does not change since
72
+ K, N, and M are fixed. The only addition w.r.t. BICM is the additional LUTs for mapping depending on the channel
73
+ conditions.
74
+ 3. Results
75
+ A wavelength division multiplexing system is optimized using the nonlinear interference noise model from [9]
76
+ with dual polarization, 5 channels, 100km spacing, FEC of rate 3/4 and modulation size ������������ = 256. Fig. 2 a) shows the
77
+ maximum distance for a given data rate at which the GMI is above the target rate for the AE-based MOM and uniform
78
+ QAM (red dotted line, ������������������������ = 0) for the central channel. The AE-optimized MOM achieve an extra span of transmission
79
+ distance with respect to both 256QAM and 128QAM. Here, due to the SNR reduction with the increase of distance,
80
+ the AE learns a MOM allowing the system to be rate adaptive through insertion of dummy bits without losing the
81
+ shaping gain or changing the modulation format. Fig. 2 b) shows the constellation learned for 8 spans transmission
82
+ which does not achieve MOM. In Fig. 2 c), the constellation learned for 20 spans that achieves MOM is shown. In the
83
+ latter, the AE “merged” some of the points together as shown in Fig. 2 d). The red box shows the bits that are not
84
+ shared by the 4 points. These 2 bits effectively carry no information and can be assigned dummy bits. The system then
85
+ exploits the resulting increased Euclidean distance of the constellation to improve the performance.
86
+
87
+ Fig. 2. a) Net rate per dual polarization channel w.r.t. distance for uniform QAM and AE-based GCS with 3/4 FEC;
88
+ GCS learned at: b) 8 spans; c) 20 spans; d) Zoomed in point to show that 4 points collapsed to each other.
89
+ 4. Conclusion
90
+ An autoencoder (AE) is used to optimize rate dependent bit-to-symbol mappings for QAM of fixed size and FEC
91
+ of fixed rate. Rate adaptivity is achieved through the AE-optimized mapping functions as a result of many-to-one
92
+ mapping. It achieves shaping gain for a variety of net rates without changing the receiver architecture, the modulation
93
+ format size or requiring a distribution matcher and dematcher, resulting in a hardware friendly flexible architecture.
94
+ Acknowledgement: This work was financially supported by the ERC-CoG FRECOM project (grant no. 771878),
95
+ the Villum Young Investigator OPTIC-AI project (grant no. 29334), and DNRF SPOC, DNRF123.
96
+ References
97
+ [1] G. Böcherer, et. al, “Bandwidth efficient and rate matched low-density parity-check coded modulation,” IEEE Trans. on Comm., 2015.
98
+ [2] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the Physical Layer,” IEEE Trans. on Cognitive Comm. and Net., 2017.
99
+ [3] B. Karanov, et. al., “End-to-End Deep Learning of Optical Fiber Communications,” JLT, 2018.
100
+ [4] R. T. Jones, et. al., “Deep Learning of Geometric Constellation Shaping Including Fiber Nonlinearities,” in ECOC, 2018.
101
+ [5] R. T. Jones, et. al., “End-to-end learning for GMI optimized geometric constellation shape,” in ECOC, 2019.
102
+ [6] J. Song, et.al., “Model-Based End-to-End Learning for WDM Systems With Transceiver Hardware Impairments,” IEEE JOSTQE, 2022.
103
+ [7] O. Jovanovic, et. al.” Geometric Constellation Shaping for Fiber-Optic Channels via End-to-End Learning,” arXiv:2211.04311, 2022.
104
+ [8] G. Böcherer, et. al., "Probabilistic Shaping and Forward Error Correction for Fiber-Optic Communication Systems," JLT, 2019.
105
+ [9] R. Dar, et. al., “Accumulation of nonlinear interference noise in fiber-optic systems,” Optics Express, 2014.
106
+
107
+ 0.71
108
+ 256QAM
109
+ 12
110
+ Xn
111
+ =0
112
+ 10101100
113
+ 10111100
114
+ Xn
115
+ 3/4 FEC
116
+ 11
117
+ 256GS
118
+ b)
119
+ 0.7
120
+ 128QAM
121
+ -2
122
+ 0
123
+ 10.5
124
+ = 2
125
+ 2
126
+ 10
127
+ Xn_=3
128
+ 10110
129
+ 00
130
+ 9.5
131
+ 0.69
132
+ 1
133
+ 10100100
134
+ 64QAM
135
+ n
136
+ (e 6
137
+ c)
138
+ d)
139
+ -2
140
+ 0
141
+ 5
142
+ 10
143
+ 15
144
+ 20
145
+ -2
146
+ 0
147
+ 2
148
+ 1.125
149
+ 1.135
150
+ 1.145
151
+ Number of spans
AtAzT4oBgHgl3EQfTPzA/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf,len=138
2
+ page_content='Rate Adaptive Autoencoder-based Geometric Constellation Shaping Ognjen Jovanovic, Metodi P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
3
+ page_content=' Yankov, Francesco Da Ros and Darko Zibar Department of Electrical and Photonics Engineering, Technical University of Denmark, Kgs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
4
+ page_content=' Lyngby, 2800, Denmark ognjo@dtu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
5
+ page_content='dk Abstract: An autoencoder is used to optimize bit-to-symbol mappings for geometric constellation shaping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
6
+ page_content=' The mappings allow for net rate adaptivity without additional hardware complexity, while achieving up to 300km of transmission distance compared to uniform QAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
7
+ page_content=' © 2023 The Author(s) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
8
+ page_content=' Introduction State of the art coherent optical communications need to be deployed in dynamic network scenarios, which require a certain degree of adaptivity to varying channel conditions [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
9
+ page_content=' Classically, this is handled by varying the modulation format size, which 1) often produces a coarse granularity in the rate with steps of 2 bits/symbol;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
10
+ page_content=' and 2) requires the transceiver to support bit to symbol mapping and demapping to/from constellations of different size, increasing the complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
11
+ page_content=' The probabilistic amplitude shaping (PAS) scheme [1] has emerged as an efficient architecture that provides a solution to the first problem, at the cost of rate matcher and dematcher, which increases complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
12
+ page_content=' Autoencoders (AEs) are becoming a popular tool to optimize the signaling constellation of digital communication transceivers [2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
13
+ page_content=' In optical communications, AEs have been employed for geometric constellation shaping (GCS) [4], bit labeling [5], mostly with the target of mitigating the impact of fiber nonlinearities, as well as transceiver impairment mitigation [6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
14
+ page_content=' GCS is beneficial over PAS because it does not require explicit matcher and dematcher blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
15
+ page_content=' However, rate adaptivity with GCS typically requires a rate-flexible forward error correction (FEC), which may increase the complexity of the digital logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
16
+ page_content=' Further, GCS does not allow for straight-forward Gray labeling to be performed, which may lead to sub-optimality when combined with conventional bit-metric decoders as in standard coherent optical communications [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
17
+ page_content=' In this paper, an AE is used to 1) find optimal bit mappings;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
18
+ page_content=' and 2) find optimized constellation points for a variety of net rates while maintaining a fixed FEC and demapper logic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
19
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
20
+ page_content=' log-likelihood ratio (LLR) computation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
21
+ page_content=' The system therefore allows for shaping gain to be achieved with a finer granularity without a complexity increase w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
22
+ page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
23
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
24
+ page_content=' conventional bit-interleaved coded modulation (BICM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
25
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
26
+ page_content=' System description The AE-based GCS training setup is given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
27
+ page_content=' 1 a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
28
+ page_content=' The mapping function is learned using the AE architecture from [5] to jointly optimize bit labeling and constellation position on the I/Q plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
29
+ page_content=' During the AE training, the transmitter and receiver employ neural networks for mapping of bits and demapping to LLRs, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
30
+ page_content=' The transmitter of the proposed system is given in Fig 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
31
+ page_content=' b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
32
+ page_content=' During testing, the mapping and demapping functionalities are replaced by a look-up table (LUT) and conventional Gaussian bit- metric receiver [8], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
33
+ page_content=' The AE requires that the modulation format size is known and fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
34
+ page_content=' For a fixed modulation format size, the generalized mutual information (GMI) typically is penalized w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
35
+ page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
36
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
37
+ page_content=' the mutual information, as the signal to noise ratio (SNR) decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
38
+ page_content=' This is due to the penalty in the demapper function related to the inability to resolve constellation points with similar likelihoods at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
39
+ page_content=' An AE implicitly addresses this problem by ‘merging’ such points closer together and assigning (more than 2) labels with a very small Hamming distance to virtually the same point [7], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
40
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
41
+ page_content=' a many-to-one mapping (MOM) of bits-to-symbols is produced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
42
+ page_content=' Here, we exploit this fact to achieve rate adaptivity in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
43
+ page_content=' The GMI of the MOM is analyzed and the bit levels which are ambiguous are not used for data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
44
+ page_content=' Instead, they are assigned dummy bits in order to maintain the bit flow and logic at the transmitter and receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
45
+ page_content=' For a system with an FEC rate of ������������ = ������������/������������, a code length of N, information block length of K and a modulation format size of M, the net data rate per dual polarization channel may be calculated as ������������′ = (2������������ − ������������������������)������������, where ������������ = ������������������������������������2 ������������ is the number of bit carried by the constellation and ������������������������ is the number of dummy bits in the labeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
46
+ page_content=' If ������������������������ is even, each polarization gets the same number of dummy bits, whereas if it is odd, the allocation is done such that the GMI per a) bits- >.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
47
+ page_content='Channeli LLRS nd@ b) LUT FEC Channel bits- S/P K/N 2m - nd Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
48
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
49
+ page_content=' a) Training setup;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
50
+ page_content=' b) Testing setup with dummy bit insertionpolarization is similar for both polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
51
+ page_content=' In this paper, the ������������������������ bit positions are selected by sorting their per-bit GMI and choosing as many as required from the lowest ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
52
+ page_content=' For example, when the SNR decreases, ������������������������ can be increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
53
+ page_content=' The performance degradation of the large-size constellation at low SNR is compensated for by the increased Euclidean distance of the effectively smaller constellation achieved via MOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
54
+ page_content=' The receiver architecture does not change since K, N, and M are fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
55
+ page_content=' The only addition w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
56
+ page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
57
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
58
+ page_content=' BICM is the additional LUTs for mapping depending on the channel conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
59
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
60
+ page_content=' Results A wavelength division multiplexing system is optimized using the nonlinear interference noise model from [9] with dual polarization, 5 channels, 100km spacing, FEC of rate 3/4 and modulation size ������������ = 256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
61
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
62
+ page_content=' 2 a) shows the maximum distance for a given data rate at which the GMI is above the target rate for the AE-based MOM and uniform QAM (red dotted line, ������������������������ = 0) for the central channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
63
+ page_content=' The AE-optimized MOM achieve an extra span of transmission distance with respect to both 256QAM and 128QAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
64
+ page_content=' Here, due to the SNR reduction with the increase of distance, the AE learns a MOM allowing the system to be rate adaptive through insertion of dummy bits without losing the shaping gain or changing the modulation format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
65
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
66
+ page_content=' 2 b) shows the constellation learned for 8 spans transmission which does not achieve MOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
67
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
68
+ page_content=' 2 c), the constellation learned for 20 spans that achieves MOM is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
69
+ page_content=' In the latter, the AE “merged” some of the points together as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
70
+ page_content=' 2 d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
71
+ page_content=' The red box shows the bits that are not shared by the 4 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
72
+ page_content=' These 2 bits effectively carry no information and can be assigned dummy bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
73
+ page_content=' The system then exploits the resulting increased Euclidean distance of the constellation to improve the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
74
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
75
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
76
+ page_content=' a) Net rate per dual polarization channel w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
77
+ page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
78
+ page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
79
+ page_content=' distance for uniform QAM and AE-based GCS with 3/4 FEC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
80
+ page_content=' GCS learned at: b) 8 spans;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
81
+ page_content=' c) 20 spans;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
82
+ page_content=' d) Zoomed in point to show that 4 points collapsed to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
83
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
84
+ page_content=' Conclusion An autoencoder (AE) is used to optimize rate dependent bit-to-symbol mappings for QAM of fixed size and FEC of fixed rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
85
+ page_content=' Rate adaptivity is achieved through the AE-optimized mapping functions as a result of many-to-one mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
86
+ page_content=' It achieves shaping gain for a variety of net rates without changing the receiver architecture, the modulation format size or requiring a distribution matcher and dematcher, resulting in a hardware friendly flexible architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
87
+ page_content=' Acknowledgement: This work was financially supported by the ERC-CoG FRECOM project (grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
88
+ page_content=' 771878), the Villum Young Investigator OPTIC-AI project (grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
89
+ page_content=' 29334), and DNRF SPOC, DNRF123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
90
+ page_content=' References [1] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
91
+ page_content=' Böcherer, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
92
+ page_content=' al, “Bandwidth efficient and rate matched low-density parity-check coded modulation,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
93
+ page_content=' on Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
94
+ page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
95
+ page_content=' [2] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
96
+ page_content=' O’Shea and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
97
+ page_content=' Hoydis, “An Introduction to Deep Learning for the Physical Layer,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
98
+ page_content=' on Cognitive Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
99
+ page_content=' and Net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
100
+ page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
101
+ page_content=' [3] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
102
+ page_content=' Karanov, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
103
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
104
+ page_content=', “End-to-End Deep Learning of Optical Fiber Communications,” JLT, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
105
+ page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
106
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
107
+ page_content=' Jones, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
108
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
109
+ page_content=', “Deep Learning of Geometric Constellation Shaping Including Fiber Nonlinearities,” in ECOC, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
110
+ page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
111
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
112
+ page_content=' Jones, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
113
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
114
+ page_content=', “End-to-end learning for GMI optimized geometric constellation shape,” in ECOC, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
115
+ page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
116
+ page_content=' Song, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
117
+ page_content='al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
118
+ page_content=', “Model-Based End-to-End Learning for WDM Systems With Transceiver Hardware Impairments,” IEEE JOSTQE, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
119
+ page_content=' [7] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
120
+ page_content=' Jovanovic, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
121
+ page_content=' al.” Geometric Constellation Shaping for Fiber-Optic Channels via End-to-End Learning,” arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
122
+ page_content='04311, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
123
+ page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
124
+ page_content=' Böcherer, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
125
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
126
+ page_content=', "Probabilistic Shaping and Forward Error Correction for Fiber-Optic Communication Systems," JLT, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
127
+ page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
128
+ page_content=' Dar, et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
129
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
130
+ page_content=', “Accumulation of nonlinear interference noise in fiber-optic systems,” Optics Express, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
131
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
132
+ page_content='71 256QAM 12 Xn =0 10101100 10111100 Xn 3/4 FEC 11 256GS b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
133
+ page_content='7 128QAM 2 0 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
134
+ page_content='5 = 2 2 10 Xn_=3 10110 00 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
135
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
136
+ page_content='69 1 10100100 64QAM n (e 6 c) d) 2 0 5 10 15 20 2 0 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
137
+ page_content='125 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
138
+ page_content='135 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
139
+ page_content='145 Number of spans' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtAzT4oBgHgl3EQfTPzA/content/2301.01247v1.pdf'}
BdE1T4oBgHgl3EQf9gYX/content/tmp_files/2301.03556v1.pdf.txt ADDED
@@ -0,0 +1,2331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Nuclear shape fluctuations in high-energy heavy ion collisions
2
+ Aman Dimri,1, ∗ Somadutta Bhatta,1 and Jiangyong Jia1, 2, †
3
+ 1Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
4
+ 2Physics Department, Brookhaven National Laboratory, Upton, NY 11976, USA
5
+ (Dated: January 10, 2023)
6
+ Atomic nuclei often exhibit a quadrupole shape that fluctuates around some average profile.
7
+ We investigate the impact of nuclear shape fluctuation on the initial state geometry in heavy ion
8
+ collisions, particularly its eccentricity ε2 and inverse size d⊥, which can be related to the elliptic flow
9
+ and radial flow in the final state. The fluctuation in overall quadrupole deformation enhances the
10
+ variances and modifies the skewness and kurtosis of the ε2 and d⊥ in a controllable manner. The
11
+ fluctuation in triaxiality reduces the difference between prolate and oblate shape for any observable,
12
+ whose values, in the large fluctuation limit, approach those obtained in collisions of rigid triaxial
13
+ nuclei. The method to disentangle the mean and variance of the quadrupole deformation is discussed.
14
+ PACS numbers: 25.75.Gz, 25.75.Ld, 25.75.-1
15
+ I.
16
+ INTRODUCTION
17
+ Ultra-relativistic heavy ion physics aims to understand the dynamics and properties of the Quark-Gluon Plasma
18
+ (QGP) created in collisions of atomic nuclei at very high energy [1].
19
+ Achieving this goal is currently limited by
20
+ the lack of understanding of the initial condition, i.e. how the energy is deposited in the overlap region before the
21
+ formation of QGP [2]. The energy deposition process is not calculable from first principles and is often parameterized
22
+ via phenomenological approaches with multiple free parameters [3]. On the other hand, heavy atomic nuclei are
23
+ well-studied objects exhibiting a wide range of shapes and radial profiles [4], which are often characterized by a few
24
+ collective nuclear structure parameters such as quadrupole, triaxial, and octupole deformations, nuclear radius and
25
+ skin thickness. One can leverage species with similar mass numbers but different structures, such as isobars, to directly
26
+ probe the energy deposition mechanism and hence constrain the initial condition. The efficacy of this approach has
27
+ been investigated recently [5–7].
28
+ One good example demonstrating this possibility is the 96Ru+96Ru and 96Zr+96Zr collisions, recently carried out
29
+ by the STAR Collaboration at the relativistic heavy ion collider [8, 9]. Ratios of many bulk observables between
30
+ the isobars, such as harmonic flow vn, charged particle multiplicity Nch, and average transverse momentum ⟨pT⟩,
31
+ have been measured, which show significant and observable- and centrality-dependent deviation from unity. Model
32
+ studies show that these ratios are insensitive to final-state effects and are controlled mainly by the differences of the
33
+ collective nuclear structure parameters between 96Ru and 96Zr [10]. Comparing the calculations with experimental
34
+ data, Refs. [5, 11] have estimated structure parameters that are broadly consistent with general knowledge from low
35
+ energy. However, these studies also suggest a sizable octupole collectivity for Zr, not predicted by mean field structure
36
+ models [12]. The rich and versatile information from isobar or isobar-like collisions provides a new constraint on the
37
+ heavy ion initial condition and a new way to probe nuclear structure at high energy [13].
38
+ However, it is important to point out that atomic nuclei in the ground state often do not have a static shape, but
39
+ can fluctuate due to interplay between collective modes and single-particle states [14]. The potential energy surface of
40
+ such species usually has shallow minimums as a function of deformation parameters, such as quadruple deformation
41
+ β and triaxiality γ. The ground state nuclear wave function is often treated as a mixture of configurations with
42
+ different (β,γ) values [4, 15]. Then there are the phenomena of shape coexistence, which happens when the same
43
+ nuclei can have multiple low-lying states with widely different shapes but small energy differences [16]. From the
44
+ nuclear structure side, the quadrupole fluctuations can be estimated from the sum rules of matrix elements of various
45
+ moments of quadrupole operators that can be measured experimentally [17, 18]. From the heavy ion collision side,
46
+ the shape fluctuations can be accessed using multi-particle correlations, which probe moments of the nucleon position
47
+ in the initial condition [19]. For instance, the elliptic flow v2 in each event is proportional to the elliptic eccentricity
48
+ ε2, v2 = kε2 calculable from participating nucleons [20]. Therefore, the fluctuations of flow are related to fluctuations
49
+ of quadruple deformation via their respective moments: ⟨vm
50
+ 2 ⟩ = km ⟨εm
51
+ 2 ⟩ ∝ ⟨βm⟩,m = 2,4... In principle, one could
52
+ ∗Electronic address: [email protected]
53
+ †Electronic address: [email protected]
54
+ arXiv:2301.03556v1 [nucl-th] 9 Jan 2023
55
+
56
+ 2
57
+ constrain the mean and variance of quadrupole fluctuations from the ⟨β2⟩ and ⟨β4⟩, which in terms can be determined
58
+ from ⟨v2
59
+ 2⟩ and ⟨v4
60
+ 2⟩.
61
+ This paper extends our previous study to investigate the influence of fluctuations of quadruple deformation param-
62
+ eters (β,γ) to several selected two-, three- and four-particle heavy-ion observables. We first derive simple analytical
63
+ relations between these observables and the means and variances of (β,γ). We then perform a more realistic Glauber
64
+ model simulation, assuming Gaussian fluctuations, to quantify the region of validity of these relations. We discuss
65
+ the sensitivity of these observables on the nuclear shape, as well as the prospect of separating the average shape from
66
+ shape fluctuations.
67
+ II.
68
+ EXPECTATION AND MODEL SETUP
69
+ We consider the eccentricity vector ϵ2 and inverse transverse size d⊥, which are estimators for elliptic flow V2 ≡
70
+ v2e2iΨ2 and average transverse momentum ⟨pT⟩ or radial flow, calculated from the transverse position of nucleon
71
+ participants in each event,
72
+ ϵ2 = −
73
+ ⟨r2
74
+ ⊥ei2φ⟩
75
+ ⟨r2⊥⟩
76
+ , d⊥ =
77
+
78
+ Npart/⟨r2⊥⟩,
79
+ (1)
80
+ where r⊥ is the transverse radius and Npart is the number of participating nucleons. Following the heuristic argument
81
+ from Ref. [21], for collisions of nuclei with small quadrupole deformation, the eccentricity vector and d⊥ in a given
82
+ event have the following leading-order form:
83
+ δd⊥
84
+ d⊥
85
+ ≈ δd + p0(Ωp,γp)βp + p0(Ωt,γt)βt , ϵ2 ≈ ϵ0 + p2(Ωp,γp)βp + p2(Ωt,γt)βt,
86
+ (2)
87
+ where the scalar δd and vector ϵ0 are valued for spherical nuclei, and we are considering the general situation where
88
+ the projectile and target, denoted by subscripts “p” and “t”, have different deformation values. The p0 and p2 are
89
+ phase space factors, which depend on γ and the Euler angles Ω.
90
+ Since the fluctuations of δd (ϵ0) are uncorrelated with p0 (p2), an average over collisions with different Euler angles
91
+ is expected to give the following leading-order expressions for the variances, skewness, and kurtosis of the fluctuations
92
+ c2,ϵ{2} ≡ ⟨ε2
93
+ 2⟩ = ⟨ε2
94
+ 0⟩ + ⟨p2(γp)p∗
95
+ 2(γp)⟩β2
96
+ p + ⟨p2(γt)p∗
97
+ 2(γt)⟩β2
98
+ t
99
+ cd{2} ≡ ⟨(δd⊥
100
+ d⊥
101
+ )
102
+ 2
103
+ ⟩ = ⟨δ2
104
+ d⟩ + ⟨p0(γp)2⟩β2
105
+ p + ⟨p0(γt)2⟩β2
106
+ t
107
+ Cov ≡ ⟨ε2
108
+ 2
109
+ δd⊥
110
+ d⊥
111
+ ⟩ = ⟨ε2
112
+ 0δd⟩ + ⟨p0(γp)p2(γp)p2(γp)∗⟩β3
113
+ p + ⟨p0(γt)p2(γt)p2(γt)∗⟩β3
114
+ t
115
+ cd{3} ≡ ⟨(δd⊥
116
+ d⊥
117
+ )
118
+ 3
119
+ ⟩ = ⟨δ3
120
+ d⟩ + ⟨p0(γp)3⟩β3
121
+ p + ⟨p0(γt)3⟩β3
122
+ t
123
+ c2,ϵ{4} ≡ ⟨ε4
124
+ 2⟩ − 2⟨ε2
125
+ 2⟩
126
+ 2 = ⟨ε4
127
+ 0⟩ − 2⟨ε2
128
+ 0⟩
129
+ 2 + (⟨p2
130
+ 2p2∗
131
+ 2 ⟩⟨β4⟩ − 2⟨p2p∗
132
+ 2⟩2 ⟨β2⟩
133
+ 2)
134
+ p + (⟨p2
135
+ 2p2∗
136
+ 2 ⟩⟨β4⟩ − 2⟨p2p∗
137
+ 2⟩2 ⟨β2⟩
138
+ 2)
139
+ t .
140
+ (3)
141
+ These quantities relate directly to the final state observables, ⟨v2
142
+ 2⟩, ⟨(δpT/⟨pT⟩)2⟩, ⟨v2
143
+ 2
144
+ δpT
145
+ ⟨pT⟩⟩, ⟨(δpT/⟨pT⟩)3⟩ and
146
+ ⟨v4
147
+ 2⟩ − 2⟨v2
148
+ 2⟩
149
+ 2, respectively.
150
+ Previous studies have demonstrated that the moments ⟨p2
151
+ 0⟩, ⟨p2p∗
152
+ 2⟩, and ⟨p2
153
+ 2p2∗
154
+ 2 ⟩ are independent of γ, while
155
+ ⟨p0p2p∗
156
+ 2⟩ and ⟨p3
157
+ 0⟩ have leading order dependence on γ: c + bcos(3γ). Here, c ≪ b for ⟨p0p2p∗
158
+ 2⟩, whereas c ≲ b for
159
+ ⟨p3
160
+ 0⟩ [21]. In the presence of quadrupole fluctuations, we also need to average these quantities over “independent”
161
+
162
+ 3
163
+ fluctuations for projectile and target, giving,
164
+ ⟨(δd⊥
165
+ d⊥
166
+ )
167
+ 2
168
+ ⟩ = a0 + b0
169
+ 2 (⟨β2
170
+ p⟩ + ⟨β2
171
+ t ⟩) = a0 + b0 ⟨β2⟩
172
+ ⟨ε2
173
+ 2⟩ = a1 + b1
174
+ 2 (⟨β2
175
+ p⟩ + ⟨β2
176
+ t ⟩) = a1 + b1 ⟨β2⟩
177
+ ⟨ε2
178
+ 2
179
+ δd⊥
180
+ d⊥
181
+ ⟩ = a2 − 1
182
+ 2 (⟨(c2 + b2 cos(3γp))β3
183
+ p⟩ + ⟨(c2 + b2 cos(3γt))β3
184
+ t ⟩) = a2 − ⟨(c2 + b2 cos(3γ))β3⟩
185
+ ⟨(δd⊥
186
+ d⊥
187
+ )
188
+ 3
189
+ ⟩ = a3 + 1
190
+ 2 (⟨(c3 + b3 cos(3γp))β3
191
+ p⟩ + ⟨(c3 + b3 cos(3γt)β3
192
+ t ⟩) = a3 + ⟨(c3 + b3 cos(3γ))β3⟩
193
+ ⟨ε4
194
+ 2⟩ − 2⟨ε2
195
+ 2⟩
196
+ 2 = a4 + b4
197
+ 2 (⟨β4
198
+ p⟩ + ⟨β4
199
+ t ⟩) − c4
200
+ 2 (⟨β2
201
+ p⟩
202
+ 2 + ⟨β2
203
+ t ⟩
204
+ 2) = a4 + b4 ⟨β4⟩ − c4 ⟨β2⟩
205
+ 2 ,
206
+ (4)
207
+ where the averages are performed over fluctuations in β and γ, and the coefficients an, bn and cn are centrality-
208
+ dependent positive quantities satisfying c2 ≪ b2 and c3 ≲ b3 [21]. The second part of these equations is obtained by
209
+ assuming that the fluctuations of the projectile and target are sampled from the same probability density distributions.
210
+ For a more quantitative estimation, we consider the liquid-drop model where the nucleon density distribution has
211
+ a sharp surface. For head-on collisions with zero impact parameter, it predicts the following simple relations [21],
212
+ δd⊥
213
+ d⊥
214
+ =
215
+
216
+ 5
217
+ 16π β2 (cosγD2
218
+ 0,0 + sinγ
219
+
220
+ 2
221
+ [D2
222
+ 0,2 + D2
223
+ 0,−2]) , ϵ2 = −
224
+
225
+ 15
226
+ 2π β2 (cosγD2
227
+ 2,0 + sinγ
228
+
229
+ 2
230
+ [D2
231
+ 2,2 + D2
232
+ 2,−2]) ,
233
+ (5)
234
+ where the Dl
235
+ m,m′(Ω) are the Wigner matrices. The analytical results obtained for various cumulants are listed in
236
+ Table I. They provide approximate estimates for the values of bn in most central collisions.
237
+ ⟨(δd⊥/d⊥)2⟩
238
+ ⟨(δd⊥/d⊥)3⟩
239
+ ⟨(δd⊥/d⊥)4⟩ − 3 ⟨(δd⊥/d⊥)2⟩
240
+ 2
241
+ 1
242
+ 32π ⟨β2⟩
243
+
244
+ 5
245
+ 896π3/2 ⟨cos(3γ)β3⟩
246
+
247
+ 3
248
+ 14336π2 (7 ⟨β2⟩
249
+ 2 − 5 ⟨β4⟩)
250
+ ⟨ε2
251
+ 2⟩
252
+ ⟨ε4
253
+ 2⟩ − 2 ⟨ε2
254
+ 2⟩
255
+ 2
256
+ (⟨ε6
257
+ 2⟩ − 9 ⟨ε4
258
+ 2⟩ ⟨ε2
259
+ 2⟩ + 12 ⟨ε2
260
+ 2⟩
261
+ 3)/4
262
+ 3
263
+ 4π ⟨β2⟩
264
+
265
+ 9
266
+ 112π2 (7 ⟨β2⟩
267
+ 2 − 5 ⟨β4⟩)
268
+ 81
269
+ 256π3 [⟨β2⟩
270
+ 3 − 45
271
+ 14 ⟨β4⟩ ⟨β2⟩ − 1175
272
+ 6006 ⟨β6⟩ +
273
+ 25
274
+ 3003 ⟨cos(6γ)β6⟩]
275
+ ⟨ε2
276
+ 2(δd⊥/d⊥)⟩
277
+ ⟨ε2
278
+ 2(δd⊥/d⊥)2⟩ − ⟨ε2
279
+ 2⟩ ⟨(δd⊥/d⊥)2⟩
280
+ ⟨ϵ2
281
+ 2ϵ∗
282
+ 4⟩
283
+
284
+ 3
285
+
286
+ 5
287
+ 112π3/2 ⟨cos(3γ)β3⟩
288
+
289
+ 3
290
+ 1792π2 (7 ⟨β2⟩
291
+ 2 − 5 ⟨β4⟩)
292
+ 45
293
+ 56π2 ⟨β4⟩
294
+ TABLE I: The leading-order results of various cumulants calculated for the nucleus with a sharp surface via Eq. 5. The two
295
+ nuclei are placed with zero impact parameter and results are obtained by averaging over random orientations.
296
+ To make further progress, we consider the case where the fluctuations of β and γ are independent of each other.
297
+ The observables in Eq. 4 and Table I can be expressed in terms of central moments. Assuming Gaussian fluctuations
298
+ with means ¯β or ¯γ and variances σβ or σγ, Eq. 4 becomes
299
+ ⟨ε2
300
+ 2⟩ = a1 + b1(¯β2 + σ2
301
+ β) ,⟨(δd⊥
302
+ d⊥
303
+ )
304
+ 2
305
+ ⟩ = a0 + b0(¯β2 + σ2
306
+ β)
307
+ ⟨ε2
308
+ 2
309
+ δd⊥
310
+ d⊥
311
+ ⟩ = a2 − (b2e−
312
+ 9σ2
313
+ γ
314
+ 2 cos(3¯γ) + c2)¯β(¯β2 + 3σ2
315
+ β)
316
+ ⟨(δd⊥
317
+ d⊥
318
+ )
319
+ 3
320
+ ⟩ = a3 + (b3e−
321
+ 9σ2
322
+ γ
323
+ 2 cos(3¯γ) + c3)¯β(¯β2 + 3σ2
324
+ β)
325
+ ⟨ε4
326
+ 2⟩ − 2⟨ε2
327
+ 2⟩
328
+ 2 = a4 + b4(¯β4 + 6σ2
329
+ β ¯β2 + 3σ4
330
+ β) − c4(¯β2 + σ2
331
+ β)2 .
332
+ (6)
333
+ where we have used the well-known expression for Gaussian smearing of an exponential function, ⟨einγ⟩ = e−
334
+ n2σ2
335
+ γ
336
+ 2
337
+ ein¯γ.
338
+
339
+ 4
340
+ If the fluctuations of β and γ are non-Gaussian, one should also consider the higher cumulants of β. For example,
341
+ ⟨β3⟩ = ¯β(¯β + 3σ2
342
+ β) + k3,β and ⟨β4⟩ = ¯β4 + 6σ2
343
+ β ¯β2 + 3σ4
344
+ β + 4¯βk3,β + k4,β, where k3,β = ⟨(β − ¯β)3⟩ and k4,β = ⟨(β − ¯β)4⟩ −
345
+ 3⟨(β − ¯β)2⟩
346
+ 2 are the skewness and kurtosis of the β fluctuation. The expectation value of cos(nγ) can be expressed
347
+ via the cumulant generating function of γ. Keeping the cumulants km,γ up to leading order correction in skewness
348
+ and kurtosis, k3,γ = ⟨(γ − ¯γ)3⟩ and k4,γ = ⟨(γ − ¯γ)4⟩ − 3⟨(γ − ¯γ)2⟩
349
+ 2, we have,
350
+ ⟨cos(nγ)⟩ = 1
351
+ 2 (⟨ein¯γ⟩ + ⟨e−in¯γ⟩) = 1
352
+ 2 (exp(
353
+
354
+
355
+ m=1
356
+ κm,γ
357
+ (in)m
358
+ m!
359
+ ) + exp(
360
+
361
+
362
+ m=1
363
+ κm,γ
364
+ (−in)m
365
+ m!
366
+ ))
367
+ = exp(
368
+
369
+
370
+ m=1
371
+ κ2m,γ
372
+ (−1)m(n)2m
373
+ 2m!
374
+ )[cos(
375
+
376
+
377
+ m=1
378
+ κ2m+1,γ
379
+ (−1)m(n)2m+1
380
+ (2m + 1)!
381
+ + n¯γ)]
382
+ ≈ e−
383
+ n2σ2
384
+ γ
385
+ 2
386
+ +
387
+ n4k4,γ
388
+ 24
389
+ cos(n¯γ + n3
390
+ 6 k3,γ) ≈ e−
391
+ n2σ2
392
+ γ
393
+ 2
394
+ [cos(n¯γ) + sin(n¯γ)n3
395
+ 6 k3,γ](1 + n4
396
+ 24k4,γ).
397
+ (7)
398
+ Clearly, the net effect of skewness is a rotation of ¯γ by k3,γn2/6, and the net effect of kurtosis is to increase or decrease
399
+ the overall variation with γ depending on its sign.
400
+ For a more realistic estimation of the influences of shape fluctuations, we perform a Monte-Carlo Glauber model
401
+ simulation of 238U+238U collisions. The setup of the model and the data used in this analysis are the same as those
402
+ used in our previous work [19]. We simulate ultra-central collisions with zero impact parameter, where the impact of
403
+ nuclear deformation reaches maximum. The nucleon distribution is described by a deformed Woods-Saxon function
404
+ ρ(r,θ,φ) =
405
+ ρ0
406
+ 1 + e[r−R(θ,φ)/a] , R(θ,φ) = R0 (1 + β[cosγY2,0(θ,φ) + sinγY2,2(θ,φ)]),
407
+ (8)
408
+ where the nuclear surface R(θ,φ) is expanded into spherical harmonics Y2,m in the intrinsic frame. Each nucleus is
409
+ assigned a random (β,γ) value, sampled from Gaussian distributions with means (¯β, ¯γ) and variances (σβ,σγ). The
410
+ nucleus is then rotated by random Euler angles before they are set on a straight line trajectory towards each other
411
+ along the z direction. Furthermore, three quark constituents are generated for each nucleon according to the quark
412
+ Glauber model from Ref. [22]. From this, the nucleons or the constituent quarks in the overlap region are identified,
413
+ which are used to calculate the ε2 and d⊥ defined in Eqs. (1), and the results are presented as a function of deformation
414
+ parameters.
415
+ For the study of the β fluctuation, we fix the γ = 0 (prolate nucleus) and choose 11 values each for ¯β2 and
416
+ σ2
417
+ β with 0, 0.01,...,0.09, 0.1. So a total of 11 × 11 = 121 simulations have been performed. For the study of the
418
+ γ fluctuation, we fix β = 0.28 and choose seven ¯γ and seven σγ values: cos(3¯γ) = 1,0.87,0.5,0,−0.5,0.87,−1 and
419
+ σγ = 0,π/18,2π/18,...,6π/18, so a total of 7 × 7 = 49 simulation have been performed. For each case, about 50 Million
420
+ events were generated and all the observables were calculated. Our discussion is mainly based on the nucleon Glauber
421
+ model, and the results from the quark Glauber model are included in the Appendix.
422
+ III.
423
+ IMPACT OF TRIAXIALITY FLUCTUATION
424
+ Due to the three-fold symmetry of nuclei shape in triaxiality, the γ dependence of a given observable can be
425
+ generally expressed as a0 +∑∞
426
+ n=1 [an cos(3n¯γ) + bn sin(3n¯γ)]e−
427
+ n2σ2
428
+ γ
429
+ 2
430
+ . If we further impose the condition that a random
431
+ fluctuation for a triaxial nucleus does not impact the value of the observable, which is found to be true in our analysis.
432
+ This leads to the γ dependence of the form a0 + ∑∞
433
+ n=1 [an(cos(3n¯γ) − cos(3n π
434
+ 6 )) + bn(sin(3n¯γ) − sin(3n π
435
+ 6 ))]e−
436
+ n2σ2
437
+ γ
438
+ 2
439
+ .
440
+ We first discuss the impact of triaxiality fluctuation on three-particle observables ⟨ε2
441
+ 2
442
+ δd⊥
443
+ d⊥ ⟩ and ⟨(δd⊥/d⊥)3⟩. We first
444
+ subtract them by the values for the undeformed case, to isolate the second term in Eq. 4 containing the triaxiality.
445
+ Figure 1 show the results obtained for different values of cos3¯γ as a function of σγ. The values for triaxial nucleus
446
+ cos(3¯γ) = 0 are indeed independent of σγ. The fluctuation of γ reduces the difference between the prolate ¯γ = 0 and
447
+ the oblate ¯γ = π/3 shape. This reduction is largely described by e−
448
+ 9σ2
449
+ γ
450
+ 2 cos(3¯γ), except for a small asymmetry between
451
+ ¯γ = 0 and ¯γ = π/3, clearly visible for ⟨(δd⊥/d⊥)3⟩.
452
+ We account for this small asymmetry by including higher-order terms in the fit function allowed by symmetry.
453
+
454
+ 5
455
+ 0
456
+ 0.2
457
+ 0.4
458
+ 0.6
459
+ 0.8
460
+ 1
461
+ γ
462
+ σ
463
+ 0.2
464
+
465
+ 0.15
466
+
467
+ 0.1
468
+
469
+ 0.05
470
+
471
+ 0
472
+ 0.05
473
+ 0.1
474
+ 0.15
475
+ 0.2
476
+ 3
477
+
478
+ 10
479
+ ×
480
+
481
+ =0
482
+ β
483
+ Cov - Cov
484
+ 1.00
485
+ 0.50
486
+ -0.50
487
+ -1.00
488
+
489
+
490
+
491
+
492
+
493
+
494
+
495
+
496
+ -5
497
+ 10
498
+ ×
499
+ = -0.85
500
+ 0
501
+ a
502
+ -5
503
+ 10
504
+ ×
505
+ ) = (-19.98,-0.03)
506
+ 2
507
+ ,a
508
+ 1
509
+ (a
510
+ U+U Glauber Model
511
+ -5
512
+ 10
513
+ ×
514
+ ) = (0.28,0.08)
515
+ 2
516
+ ,b
517
+ 1
518
+ (b
519
+ = 0.28
520
+ β
521
+ b = 0 fm,
522
+ ) Data Fit
523
+ γ
524
+ Cos(3
525
+ 0
526
+ 0.2
527
+ 0.4
528
+ 0.6
529
+ 0.8
530
+ 1
531
+ γ
532
+ σ
533
+ 2
534
+
535
+ 0
536
+ 2
537
+ 4
538
+ 6
539
+ 8
540
+ 6
541
+
542
+ 10
543
+ ×
544
+
545
+ =0
546
+ β
547
+ {3}
548
+ d
549
+ - C
550
+ {3}
551
+ d
552
+ C
553
+ 0.87
554
+ 0.00
555
+ -0.87
556
+
557
+
558
+
559
+
560
+
561
+
562
+ -6
563
+ 10
564
+ ×
565
+ = 3.19
566
+ 0
567
+ a
568
+ -6
569
+ 10
570
+ ×
571
+ ) = (5.18,-0.18)
572
+ 2
573
+ ,a
574
+ 1
575
+ (a
576
+ U+U Glauber Model
577
+ -6
578
+ 10
579
+ ×
580
+ ) = (0.27,0.04)
581
+ 2
582
+ ,b
583
+ 1
584
+ (b
585
+ = 0.28
586
+ β
587
+ b = 0 fm,
588
+ ) Data Fit
589
+ γ
590
+ Cos(3
591
+ FIG. 1:
592
+ The dependence of ⟨ε2
593
+ 2
594
+ δd⊥
595
+ d⊥ ⟩ (left) and ⟨(δd⊥/d⊥)3⟩ (right) on smearing in triaxiality σγ for different values of ¯γ. The
596
+ lines indicate a simultaneous fit to Eq. 10 with the parameter values displayed on the plot.
597
+ Keeping leading and subleading terms, we have,
598
+ ⟨ε2
599
+ 2
600
+ δd⊥
601
+ d⊥
602
+ ⟩ − ⟨ε2
603
+ 2
604
+ δd⊥
605
+ d⊥
606
+
607
+ β=0
608
+ = [a′
609
+ 0 + (a′
610
+ 1 cos(3¯γ) + b′
611
+ 1 [sin(3¯γ) − 1])e−
612
+ 9σ2
613
+ γ
614
+ 2
615
+ + (a′
616
+ 2 [cos(6¯γ) + 1] + b′
617
+ 2 sin(6¯γ))e−
618
+ 36σ2
619
+ γ
620
+ 2 ] ¯β3
621
+ (9)
622
+ = a0 + (a1 cos(3¯γ) + b1 [sin(3¯γ) − 1])e−
623
+ 9σ2
624
+ γ
625
+ 2
626
+ + (a2 [cos(6¯γ) + 1] + b2 sin(6¯γ))e−
627
+ 36σ2
628
+ γ
629
+ 2
630
+ .
631
+ (10)
632
+ The same fit function is also used to describe ⟨(δd⊥/d⊥)3⟩. The parameters in the first line and those in the second
633
+ line differ by a scale factor ¯β3 = 0.283 = 0.021. From the values of parameters displayed in Fig. 1, we concluded that
634
+ the magnitude of the high-order order terms is less than 2% of the magnitude of a1 for ⟨ε2
635
+ 2
636
+ δd⊥
637
+ d⊥ ⟩ but reaches up to 5%
638
+ for ⟨(δd⊥/d⊥)3⟩.
639
+ Figure 1 shows that the signature of triaxiality in heavy ion collisions is greatly reduced for large value of σγ, often
640
+ found in γ-soft nuclei. A twenty-degree fluctuation in triaxiality, for example, reduces the signal by nearly 50%. It
641
+ would be difficult to distinguish between static rigid triaxial nuclei and nuclei with large fluctuations around ¯γ = π/6
642
+ using heavy ion collisions. In particular, nuclei that fluctuate uniformly between prolate and oblate shapes would give
643
+ the same three-particle correlation signal as rigid triaxial nuclei! Such strong smearing also degrades the prospects of
644
+ using higher-order cumulants of ε2 to infer the value of σγ.
645
+ For the other three observables, ⟨ε2
646
+ 2⟩, ⟨(δd⊥/d⊥)2⟩ and ⟨ε4
647
+ 2⟩ − 2⟨ε2
648
+ 2⟩
649
+ 2, γ dependence are known to be very weak [19].
650
+ Nevertheless, up to a few percent dependence is observed, which can also be parameterized by Eq. 9, except that
651
+ we should change ¯β3 to ¯β2 for the variances and to ¯β4 for ⟨ε4
652
+ 2⟩ − 2⟨ε2
653
+ 2⟩
654
+ 2. However, since ¯β is fixed at 0.28, all these
655
+ observables can be parameterized by Eq. 10. The data and the results of the fits are shown in Fig. 2. First, we observe
656
+ that the parameter a0, representing the baseline contribution associated with ¯β is by far the largest, and the other
657
+ terms only cause a few percent of modulation. Secondly, while the ⟨ε2
658
+ 2⟩ and ⟨ε4
659
+ 2⟩ − 2⟨ε2
660
+ 2⟩
661
+ 2 can be largely described
662
+ by including the cos(3¯γ) term, the description of ⟨(δd⊥/d⊥)2⟩ requires the inclusion of sin(3¯γ), cos(6¯γ) and sin(6¯γ)
663
+ terms with comparable magnitudes. Lastly, all three observables have no sensitivity to ¯γ at large σγ.
664
+ IV.
665
+ IMPACT OF QUADRUPLE DEFORMATION FLUCTUATION
666
+ Next, we consider the impact of β fluctuations.
667
+ For this purpose, we shall fix the γ to be prolate shape, e.g
668
+ cos(3γ) = 1. Figure 3 displays the finding for two-particle observables ⟨ε2
669
+ 2⟩ and ⟨(δd⊥/d⊥)2⟩, again they are corrected
670
+ by the undeformed baseline. Although approximately-linear dependencies on ¯β2 are observed for both observables,
671
+ the slopes of the data points also vary with σβ. To describe this feature, we include two higher-order terms,
672
+
673
+ 6
674
+ 0
675
+ 0.2
676
+ 0.4
677
+ 0.6
678
+ 0.8
679
+ 1
680
+ γ
681
+ σ
682
+ 15.8
683
+ 16
684
+ 16.2
685
+ 16.4
686
+ 16.6
687
+ 16.8
688
+ 3
689
+
690
+ 10
691
+ ×
692
+ =0
693
+ β〉
694
+ 2
695
+ 2
696
+ ε 〈
697
+ -
698
+
699
+ 2
700
+ 2
701
+ ε 〈
702
+ 1.00
703
+ 0.50
704
+ -0.50
705
+ -1.00
706
+
707
+
708
+
709
+
710
+
711
+
712
+
713
+
714
+ -5
715
+ 10
716
+ ×
717
+ = 1621.87
718
+ 0
719
+ a
720
+ -5
721
+ 10
722
+ ×
723
+ ) = (52.46,-0.29)
724
+ 2
725
+ ,a
726
+ 1
727
+ (a
728
+ U+U Glauber Model
729
+ -5
730
+ 10
731
+ ×
732
+ ) = (-0.79,-0.53)
733
+ 2
734
+ ,b
735
+ 1
736
+ (b
737
+ = 0.28
738
+ β
739
+ b = 0 fm,
740
+ ) Data Fit
741
+ γ
742
+ Cos(3
743
+ 0
744
+ 0.2
745
+ 0.4
746
+ 0.6
747
+ 0.8
748
+ 1
749
+ γ
750
+ σ
751
+ 0.6
752
+ 0.62
753
+ 0.64
754
+ 0.66
755
+ 0.68
756
+ 3
757
+
758
+ 10
759
+ ×
760
+ =0
761
+ β
762
+ {2}
763
+ d
764
+ - C
765
+ {2}
766
+ d
767
+ C
768
+ 0.87
769
+ 0.00
770
+ -0.87
771
+
772
+
773
+
774
+
775
+
776
+
777
+ -5
778
+ 10
779
+ ×
780
+ = 65.83
781
+ 0
782
+ a
783
+ -5
784
+ 10
785
+ ×
786
+ ) = (-1.89,-1.31)
787
+ 2
788
+ ,a
789
+ 1
790
+ (a
791
+ U+U Glauber Model
792
+ -5
793
+ 10
794
+ ×
795
+ ) = (1.48,0.08)
796
+ 2
797
+ ,b
798
+ 1
799
+ (b
800
+ = 0.28
801
+ β
802
+ b = 0 fm,
803
+ ) Data Fit
804
+ γ
805
+ Cos(3
806
+ 0
807
+ 0.2
808
+ 0.4
809
+ 0.6
810
+ 0.8
811
+ 1
812
+ γ
813
+ σ
814
+ 0.105
815
+
816
+ 0.1
817
+
818
+ 0.095
819
+
820
+ 0.09
821
+
822
+ 0.085
823
+
824
+ 3
825
+
826
+ 10
827
+ ×
828
+ =0
829
+ β
830
+ {4}
831
+ ε
832
+ 2,
833
+ - c
834
+ {4}
835
+ ε
836
+ 2,
837
+ c
838
+ -5
839
+ 10
840
+ ×
841
+ = -9.76
842
+ 0
843
+ a
844
+ -5
845
+ 10
846
+ ×
847
+ ) = (1.03,0.10)
848
+ 2
849
+ ,a
850
+ 1
851
+ (a
852
+ U+U Glauber Model
853
+ -5
854
+ 10
855
+ ×
856
+ ) = (-0.13,-0.01)
857
+ 2
858
+ ,b
859
+ 1
860
+ (b
861
+ = 0.28
862
+ β
863
+ b = 0 fm,
864
+ FIG. 2:
865
+ The dependence of ⟨ε2
866
+ 2⟩ (left), ⟨(δd⊥/d⊥)2⟩ (middle), and ⟨ε4
867
+ 2⟩ − 2 ⟨ε2
868
+ 2⟩
869
+ 2 (right) on σγ for different values of ¯γ. The
870
+ dashed lines indicate a simultaneous fit to Eq. 10, with fit results are displayed on the plot.
871
+ ⟨ε2
872
+ 2⟩ − ⟨ε2
873
+ 2⟩β=0 or ⟨(δd⊥
874
+ d⊥
875
+ )
876
+ 2
877
+ ⟩ − ⟨(δd⊥
878
+ d⊥
879
+ )
880
+ 2
881
+
882
+ β=0
883
+ = c1 ⟨β2⟩ + c2 ⟨β3⟩ + c3 ⟨β4⟩
884
+ = c1(¯β2 + σ2
885
+ β) + c2 ¯β(¯β2 + 3σ2
886
+ β) + c3(¯β4 + 6σ2
887
+ β ¯β2 + 3σ4
888
+ β)
889
+ (11)
890
+ The fits including only the leading term and all three terms are shown in the first row and the last row of Fig. 3,
891
+ respectively. The fits in the middle row include the c1 and c3 terms for ⟨ε2
892
+ 2⟩, while they include c1 and c2 terms for
893
+ ⟨(δd⊥/d⊥)2⟩. Clearly, the behavior of ⟨(δd⊥/d⊥)2⟩ at large ¯β or σβ requires the presence of the ⟨β3⟩ term in Eq. 11
894
+ with a negative coefficient c2 < 0. In general, a large fluctuation σβ tends to reduce the slope of the dependence on
895
+ ¯β2.
896
+ For the three-particle correlators, we include three terms in the fitting function as
897
+ ⟨ε2
898
+ 2
899
+ δd⊥
900
+ d⊥
901
+ ⟩ − ⟨ε2
902
+ 2
903
+ δd⊥
904
+ d⊥
905
+
906
+ β=0
907
+ or ⟨(δd⊥
908
+ d⊥
909
+ )
910
+ 3
911
+ ⟩ − ⟨(δd⊥
912
+ d⊥
913
+ )
914
+ 3
915
+
916
+ β=0
917
+ = c1 ⟨β3 cos(3γ)⟩ + c2 ⟨β4 cos(3γ)⟩ + c3 ⟨β5 cos(3γ)⟩
918
+ = [c1 ¯β(¯β2 + 3σ2
919
+ β) + c2(¯β4 + 6σ2
920
+ β ¯β2 + 3σ4
921
+ β) + c3(¯β5 + 10σ3
922
+ β ¯β2 + 15¯βσ4
923
+ β)]cos(3γ)
924
+ (12)
925
+ The fitting results are shown in Fig. 4 as a function of ¯β3 for the prolate case cos(3γ) = 1. Inclusion of the high-order
926
+ terms, mostly contribution from the ⟨β5⟩ component, improves the description of ⟨ε2
927
+ 2
928
+ δd⊥
929
+ d⊥ ⟩ in the region of large σβ.
930
+ However, they are not sufficient to describe the ⟨(δd⊥/d⊥)3⟩ in the region of large ¯β and σβ. In particular, the fit also
931
+ misses all points at ¯β = 0. We checked that the fit can be systematically improved by including more higher moment
932
+ terms, albeit only very slowly.
933
+ Lastly, we consider the four-particle observable c2,ε{4} = ⟨ε4
934
+ 2⟩ − 2⟨ε2
935
+ 2⟩
936
+ 2. According to findings in Fig. 3, the Taylor
937
+ expansion of ⟨ε2
938
+ 2⟩ should give the first two terms as c1 ⟨β2⟩ + c2 ⟨β4⟩, similarly the first few terms of ⟨ε4
939
+ 2⟩ has the form
940
+ of a0 ⟨β2⟩
941
+ 2 + a1 ⟨β4⟩ + a2 ⟨β6⟩. Therefore, the natural expression for c2,ε{4} up to second order correction should be
942
+ c2,ε{4} − c2,ε{4}β=0 = a0 ⟨β2⟩
943
+ 2 + a1 ⟨β4⟩ + a2 ⟨β6⟩ − (c1 ⟨β2⟩ + c2 ⟨β4⟩)2 ≈ a1 ⟨β4⟩ − b1 ⟨β2⟩
944
+ 2 + a2 ⟨β6⟩ − b2 ⟨β2⟩⟨β4⟩
945
+ = a1(¯β4 + 6¯β2σ2
946
+ β + 3σ4
947
+ β) − b1(¯β2 + σ2
948
+ β)2 + a2(¯β6 + 15¯β4σ2
949
+ β + 45¯β2σ4
950
+ β + 15σ6
951
+ β) − b2(¯β2 + σ2
952
+ β)(¯β4 + 6¯β2σ2
953
+ β + 3σ4
954
+ β)
955
+ (13)
956
+ with b1 = c2
957
+ 1 − a0 and b2 = 2c1c2. The leading order correction includes the first two terms with a1 and b1, while the
958
+ remaining two terms are the subleading-order corrections.
959
+ The results from the Glauber model and the fit to Eq. 13 are shown in the left panel of Fig. 5. The strong variation
960
+ of c2,ε{4} with both ¯β and σβ is captured nicely by the fit. For small values of σβ, the deformation has a negative
961
+ contribution to c2,ε{4} that is proportional to ¯β4.
962
+ For large values of σβ, c2,ε{4} becomes positive.
963
+ A previous
964
+ study shows that the centrality fluctuation also tends to give a positive value of c2,ε{4} [23]. Therefore, a negative
965
+ c2,ε{4} which decreases further in central collisions would be an unambiguous indication for a large static quadrupole
966
+ deformation of the colliding nuclei.
967
+ The values of the fit parameters show some interesting relations, i.e. b1 ≈ 3/2a1 and b2 ≈ 2a2. This means that the
968
+
969
+ 7
970
+ 0
971
+ 0.02
972
+ 0.04
973
+ 0.06
974
+ 0.08
975
+ 0.1
976
+ 2
977
+ β
978
+ 0
979
+ 5
980
+ 10
981
+ 15
982
+ 20
983
+ 25
984
+ 30
985
+ 35
986
+ 40
987
+ 3
988
+
989
+ 10
990
+ ×
991
+ 0,0
992
+
993
+ 2
994
+ 2
995
+ ε 〈
996
+ -
997
+
998
+ 2
999
+ 2
1000
+ ε 〈
1001
+ 0.00
1002
+ 0.01
1003
+ 0.02
1004
+ 0.03
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+
1013
+ U+U Glauber Model
1014
+ -1
1015
+ 10
1016
+ ×
1017
+ = 1.93
1018
+ 1
1019
+ c
1020
+ b = 0 fm
1021
+ Data Fit
1022
+ 2
1023
+ β
1024
+ σ
1025
+ 0
1026
+ 0.02
1027
+ 0.04
1028
+ 0.06
1029
+ 0.08
1030
+ 0.1
1031
+ 2
1032
+ β
1033
+ 0
1034
+ 0.2
1035
+ 0.4
1036
+ 0.6
1037
+ 0.8
1038
+ 1
1039
+ 3
1040
+
1041
+ 10
1042
+ ×
1043
+ 0,0
1044
+ {2}
1045
+ d
1046
+ - C
1047
+ {2}
1048
+ d
1049
+ C
1050
+ U+U Glauber Model
1051
+ -3
1052
+ 10
1053
+ ×
1054
+ = 5.94
1055
+ 1
1056
+ c
1057
+ b = 0 fm
1058
+ 0
1059
+ 0.02
1060
+ 0.04
1061
+ 0.06
1062
+ 0.08
1063
+ 0.1
1064
+ 2
1065
+ β
1066
+ 0
1067
+ 5
1068
+ 10
1069
+ 15
1070
+ 20
1071
+ 25
1072
+ 30
1073
+ 35
1074
+ 40
1075
+ 3
1076
+
1077
+ 10
1078
+ ×
1079
+ 0,0
1080
+
1081
+ 2
1082
+ 2
1083
+ ε 〈
1084
+ -
1085
+
1086
+ 2
1087
+ 2
1088
+ ε 〈
1089
+ 0.04
1090
+ 0.05
1091
+ 0.06
1092
+ 0.07
1093
+
1094
+
1095
+
1096
+
1097
+
1098
+
1099
+
1100
+
1101
+ U+U Glauber Model
1102
+ -1
1103
+ 10
1104
+ ×
1105
+ ) = (2.15,-0.68)
1106
+ 3
1107
+ ,c
1108
+ 1
1109
+ (c
1110
+ b = 0 fm
1111
+ Data Fit
1112
+ 2
1113
+ β
1114
+ σ
1115
+ 0
1116
+ 0.02
1117
+ 0.04
1118
+ 0.06
1119
+ 0.08
1120
+ 0.1
1121
+ 2
1122
+ β
1123
+ 0
1124
+ 0.2
1125
+ 0.4
1126
+ 0.6
1127
+ 0.8
1128
+ 1
1129
+ 3
1130
+
1131
+ 10
1132
+ ×
1133
+ 0,0
1134
+ {2}
1135
+ d
1136
+ - C
1137
+ {2}
1138
+ d
1139
+ C
1140
+ U+U Glauber Model
1141
+ -3
1142
+ 10
1143
+ ×
1144
+ ) = (8.89,-5.98)
1145
+ 2
1146
+ ,c
1147
+ 1
1148
+ (c
1149
+ b = 0 fm
1150
+ 0
1151
+ 0.02
1152
+ 0.04
1153
+ 0.06
1154
+ 0.08
1155
+ 0.1
1156
+ 2
1157
+ β
1158
+ 0
1159
+ 5
1160
+ 10
1161
+ 15
1162
+ 20
1163
+ 25
1164
+ 30
1165
+ 35
1166
+ 40
1167
+ 3
1168
+
1169
+ 10
1170
+ ×
1171
+ 0,0
1172
+
1173
+ 2
1174
+ 2
1175
+ ε 〈
1176
+ -
1177
+
1178
+ 2
1179
+ 2
1180
+ ε 〈
1181
+ 0.08
1182
+ 0.09
1183
+ 0.10
1184
+
1185
+
1186
+
1187
+
1188
+
1189
+
1190
+ U+U Glauber Model
1191
+ -1
1192
+ 10
1193
+ ×
1194
+ ) = (2.10,0.27,-0.91)
1195
+ 3
1196
+ ,c
1197
+ 2
1198
+ ,c
1199
+ 1
1200
+ (c
1201
+ b = 0 fm
1202
+ Data Fit
1203
+ 2
1204
+ β
1205
+ σ
1206
+ 0
1207
+ 0.02
1208
+ 0.04
1209
+ 0.06
1210
+ 0.08
1211
+ 0.1
1212
+ 2
1213
+ β
1214
+ 0
1215
+ 0.2
1216
+ 0.4
1217
+ 0.6
1218
+ 0.8
1219
+ 1
1220
+ 3
1221
+
1222
+ 10
1223
+ ×
1224
+ 0,0
1225
+ {2}
1226
+ d
1227
+ - C
1228
+ {2}
1229
+ d
1230
+ C
1231
+ U+U Glauber Model
1232
+ -3
1233
+ 10
1234
+ ×
1235
+ ) = (8.74,-3.62,-3.01)
1236
+ 3
1237
+ ,c
1238
+ 2
1239
+ ,c
1240
+ 1
1241
+ (c
1242
+ b = 0 fm
1243
+ FIG. 3:
1244
+ The simultaneous fit of the ⟨ε2
1245
+ 2⟩ (¯β, σβ) (left column) and ⟨(δd⊥/d⊥)2⟩ (¯β, σβ) (right column) calculated in U+U
1246
+ collisions with zero impact parameter. The top row shows the fits to Eq. 11 with only the leading term and the last row
1247
+ shows the fits with all three terms. The middle row show the fits including c1 and c3 terms for ⟨ε2
1248
+ 2⟩ and c1 and c2 terms for
1249
+ ⟨(δd⊥/d⊥)2⟩.
1250
+ distribution can also be described by the following alternative form,
1251
+ c2,ε{4} − c2,ε{4}β=0 ≈ a1
1252
+ 2 (6¯β2σ2
1253
+ β + 3σ4
1254
+ β − ¯β4) + a2(¯β4σ2
1255
+ β + 27¯β2σ4
1256
+ β + 9σ6
1257
+ β − ¯β6)
1258
+ (14)
1259
+
1260
+ 8
1261
+ 0
1262
+ 0.005
1263
+ 0.01
1264
+ 0.015
1265
+ 0.02
1266
+ 0.025
1267
+ 0.03
1268
+ 3
1269
+ β
1270
+ 0.8
1271
+
1272
+ 0.7
1273
+
1274
+ 0.6
1275
+
1276
+ 0.5
1277
+
1278
+ 0.4
1279
+
1280
+ 0.3
1281
+
1282
+ 0.2
1283
+
1284
+ 0.1
1285
+
1286
+ 0
1287
+ 0.1
1288
+ 3
1289
+
1290
+ 10
1291
+ ×
1292
+ 0,0
1293
+ Cov - Cov
1294
+ 0.00
1295
+ 0.01
1296
+ 0.02
1297
+ 0.03
1298
+ 0.04
1299
+ 0.05
1300
+
1301
+
1302
+
1303
+
1304
+
1305
+
1306
+
1307
+
1308
+
1309
+
1310
+
1311
+
1312
+ U+U Glauber Model
1313
+ b = 0 fm
1314
+ -3
1315
+ 10
1316
+ ×
1317
+ = -6.63
1318
+ 1
1319
+ c
1320
+ Data Fit
1321
+ 2
1322
+ β
1323
+ σ
1324
+ 0
1325
+ 0.005
1326
+ 0.01
1327
+ 0.015
1328
+ 0.02
1329
+ 0.025
1330
+ 0.03
1331
+ 3
1332
+ β
1333
+ 4
1334
+
1335
+ 2
1336
+
1337
+ 0
1338
+ 2
1339
+ 4
1340
+ 6
1341
+ 8
1342
+ 10
1343
+ 12
1344
+ 14
1345
+ 6
1346
+
1347
+ 10
1348
+ ×
1349
+ 0,0
1350
+ {3}
1351
+ d
1352
+ - C
1353
+ {3}
1354
+ d
1355
+ C
1356
+ U+U Glauber Model
1357
+ b = 0 fm
1358
+ -4
1359
+ 10
1360
+ ×
1361
+ = 1.36
1362
+ 1
1363
+ c
1364
+ 0
1365
+ 0.005
1366
+ 0.01
1367
+ 0.015
1368
+ 0.02
1369
+ 0.025
1370
+ 0.03
1371
+ 3
1372
+ β
1373
+ 0.8
1374
+
1375
+ 0.7
1376
+
1377
+ 0.6
1378
+
1379
+ 0.5
1380
+
1381
+ 0.4
1382
+
1383
+ 0.3
1384
+
1385
+ 0.2
1386
+
1387
+ 0.1
1388
+
1389
+ 0
1390
+ 0.1
1391
+ 0.2
1392
+ 3
1393
+
1394
+ 10
1395
+ ×
1396
+ 0,0
1397
+ Cov - Cov
1398
+ 0.06
1399
+ 0.07
1400
+ 0.08
1401
+ 0.09
1402
+ 0.10
1403
+
1404
+
1405
+
1406
+
1407
+
1408
+
1409
+
1410
+
1411
+
1412
+
1413
+ U+U Glauber Model
1414
+ b = 0 fm
1415
+ -3
1416
+ ) = (-8.96,-0.47,5.95)*10
1417
+ 3
1418
+ ,c
1419
+ 2
1420
+ ,c
1421
+ 1
1422
+ (c
1423
+ Data Fit
1424
+ 2
1425
+ β
1426
+ σ
1427
+ 0
1428
+ 0.005
1429
+ 0.01
1430
+ 0.015
1431
+ 0.02
1432
+ 0.025
1433
+ 0.03
1434
+ 3
1435
+ β
1436
+ 4
1437
+
1438
+ 2
1439
+
1440
+ 0
1441
+ 2
1442
+ 4
1443
+ 6
1444
+ 8
1445
+ 10
1446
+ 12
1447
+ 14
1448
+ 6
1449
+
1450
+ 10
1451
+ ×
1452
+ 0,0
1453
+ {3}
1454
+ d
1455
+ - C
1456
+ {3}
1457
+ d
1458
+ C
1459
+ U+U Glauber Model
1460
+ b = 0 fm
1461
+ -4
1462
+ ) = (3.11,-0.69,-2.74)*10
1463
+ 3
1464
+ ,c
1465
+ 2
1466
+ ,c
1467
+ 1
1468
+ (c
1469
+ FIG. 4:
1470
+ The simultaneous fit of the ⟨ε2
1471
+ 2
1472
+ δd⊥
1473
+ d⊥ ⟩ (¯β, σβ) (left column) and ⟨(δd⊥/d⊥)3⟩ (¯β, σβ) (right column) calculated in U+U
1474
+ collisions with zero impact parameter. The top row shows the results of the fit to Eq. 12 with only the leading term and the
1475
+ second row shows the fits with all three terms. The fit results imply that the contribution from ⟨β4⟩ is negligible, though.
1476
+ 0
1477
+ 0.02
1478
+ 0.04
1479
+ 0.06
1480
+ 0.08
1481
+ 0.1
1482
+ 2
1483
+ β
1484
+ 0.4
1485
+
1486
+ 0.2
1487
+
1488
+ 0
1489
+ 0.2
1490
+ 0.4
1491
+ 0.6
1492
+ 3
1493
+
1494
+ 10
1495
+ ×
1496
+ 0,0
1497
+ {4}
1498
+ ε
1499
+ 2,
1500
+ - c
1501
+ {4}
1502
+ ε
1503
+ 2,
1504
+ c
1505
+ 0.00
1506
+ 0.01
1507
+ 0.02
1508
+ 0.03
1509
+ 0.04
1510
+ 0.05
1511
+
1512
+
1513
+
1514
+
1515
+
1516
+
1517
+
1518
+
1519
+
1520
+
1521
+
1522
+
1523
+ U+U Glauber Model
1524
+ b = 0 fm
1525
+ -2
1526
+ 10
1527
+ ×
1528
+ ) = (2.78,4.20,-1.55,-2.92)
1529
+ 2
1530
+ ,b
1531
+ 2
1532
+ ,a
1533
+ 1
1534
+ ,b
1535
+ 1
1536
+ (a
1537
+ Data Fit
1538
+ 2
1539
+ β
1540
+ σ
1541
+ 0
1542
+ 0.02
1543
+ 0.04
1544
+ 0.06
1545
+ 0.08
1546
+ 0.1
1547
+ 2
1548
+ β
1549
+ 0.4
1550
+
1551
+ 0.2
1552
+
1553
+ 0
1554
+ 0.2
1555
+ 0.4
1556
+ 0.6
1557
+ 3
1558
+
1559
+ 10
1560
+ ×
1561
+ 0,0
1562
+ {4}
1563
+ ε
1564
+ 2,
1565
+ - c
1566
+ {4}
1567
+ ε
1568
+ 2,
1569
+ c
1570
+ 0.06
1571
+ 0.07
1572
+ 0.08
1573
+ 0.09
1574
+ 0.10
1575
+
1576
+
1577
+
1578
+
1579
+
1580
+
1581
+
1582
+
1583
+
1584
+
1585
+ U+U Glauber Model
1586
+ b = 0 fm
1587
+ -2
1588
+ 10
1589
+ ×
1590
+ ) = (2.74,-1.64)
1591
+ 2
1592
+ ,a
1593
+ 1
1594
+ (a
1595
+ Modified Fit Function
1596
+ Data Fit
1597
+ 2
1598
+ β
1599
+ σ
1600
+ FIG. 5:
1601
+ The fit of the c2,ε{4}(¯β, σβ) data calculated in U+U collisions with zero impact parameter to Eq. 13 (left) and Eq. 14
1602
+ (right).
1603
+ The contribution of residual terms is only a few percent. Indeed, a fit of this form describes the data very well as
1604
+ shown in the right panel of Fig. 5. This behavior provides clear intuition on how the fluctuation terms containing σβ
1605
+ compete with the terms containing only ¯β. For example, assuming ¯β = σβ, the contribution from fluctuation-related
1606
+ terms is a factor of 9 (37) times the ¯β4 (¯β6) in the leading-order (subleading order). Thus, even a relatively small
1607
+
1608
+ 9
1609
+ 0
1610
+ 0.005
1611
+ 0.01
1612
+ 4
1613
+ β
1614
+ 0.5
1615
+
1616
+ 0.4
1617
+
1618
+ 0.3
1619
+
1620
+ 0.2
1621
+
1622
+ 0.1
1623
+
1624
+ 0
1625
+ 3
1626
+
1627
+ 10
1628
+ ×
1629
+ 0,0
1630
+ 2〉
1631
+ 2
1632
+ 2
1633
+ ε〈
1634
+ - k
1635
+
1636
+ 2
1637
+ 4
1638
+ ε〈
1639
+ -
1640
+ 2〉
1641
+ 2
1642
+ 2
1643
+ ε〈
1644
+ - k
1645
+
1646
+ 2
1647
+ 4
1648
+ ε〈
1649
+ 2
1650
+ β
1651
+ σ
1652
+ 0.00
1653
+ 0.01
1654
+ 0.02
1655
+ 0.03
1656
+ 0.04
1657
+ 0.05
1658
+ 0.06
1659
+ 0.07
1660
+ 0.08
1661
+ 0.09
1662
+ 0.10
1663
+ k=2.541
1664
+ Nucleon Glauber
1665
+ k
1666
+ 2.4
1667
+ 2.5
1668
+ 2.6
1669
+ 2.7
1670
+ 5
1671
+ 10
1672
+ (ab. units)
1673
+ 2
1674
+ χ
1675
+ 0
1676
+ 0.005
1677
+ 0.01
1678
+ 4
1679
+ β
1680
+ 0.5
1681
+
1682
+ 0.4
1683
+
1684
+ 0.3
1685
+
1686
+ 0.2
1687
+
1688
+ 0.1
1689
+
1690
+ 0
1691
+ 3
1692
+
1693
+ 10
1694
+ ×
1695
+ 0,0
1696
+ 2〉
1697
+ 2
1698
+ 2
1699
+ ε〈
1700
+ - k
1701
+
1702
+ 2
1703
+ 4
1704
+ ε〈
1705
+ -
1706
+ 2〉
1707
+ 2
1708
+ 2
1709
+ ε〈
1710
+ - k
1711
+
1712
+ 2
1713
+ 4
1714
+ ε〈
1715
+ 2
1716
+ β
1717
+ σ
1718
+ 0.00
1719
+ 0.01
1720
+ 0.02
1721
+ 0.03
1722
+ 0.04
1723
+ 0.05
1724
+ 0.06
1725
+ 0.07
1726
+ 0.08
1727
+ 0.09
1728
+ 0.10
1729
+ =2.530
1730
+ 0
1731
+ k
1732
+ Quark Glauber
1733
+ k
1734
+ 2.4
1735
+ 2.5
1736
+ 2.6
1737
+ 2.7
1738
+ 5
1739
+ 10
1740
+ (ab. units)
1741
+ 2
1742
+ χ
1743
+ FIG. 6:
1744
+ The values of ⟨ε4
1745
+ 2⟩−K ⟨ε2
1746
+ 2⟩
1747
+ 2 for the value of K that minimize the dependence on σβ in the nucleon Glauber model (left)
1748
+ and quark Glauber model (right). The inserts shows the K dependence of χ2, which is calculated as χ2 = ∑i ∑j(fij − ¯fi)2/σ2
1749
+ i.j,
1750
+ where fij = f(¯βi, σβ,j, ¯fi = ∑j fij/ ∑j and σij is the statistical error bar on the i, j-th data point.
1751
+ fluctuation could have a stronger impact on c2,ε{4} than the modestly large ¯β. Note that the liquid-drop model
1752
+ results in Table I predict b1 = 7/5a1, slightly smaller than the Glauber model expectation.
1753
+ Experimentally, we can measure ⟨v2
1754
+ 2⟩ and ⟨v2
1755
+ 4⟩, which are linearly related to ⟨ε2
1756
+ 2⟩ and ⟨ε4
1757
+ 2⟩, respectively. Thus, it is
1758
+ natural to ask whether one could constrain the ¯β and σβ from these two quantities. So far we have learned that the
1759
+ combination in the cumulant definition c2,ε{4} = ⟨ε4
1760
+ 2⟩ − 2⟨ε2
1761
+ 2⟩
1762
+ 2 is not sufficient to achieve such separation. Motivated
1763
+ by this fact, we tried a more general combination f(¯β,σβ;k) = ⟨ε4
1764
+ 2⟩ − k ⟨ε2
1765
+ 2⟩
1766
+ 2, and identify the k value for which the
1767
+ f(¯β,σβ;k) have the least variation in σβ. The best value found is k = k0 = 2.541, for which the data points follow an
1768
+ approximately-linear dependence ¯β4 as shown in the left panel of Fig. 6. The right panel of Fig. 6 shows a similar
1769
+ exercise in the quark Glauber model which gives a nearly identical k0 value. The data points yet do not collapse on a
1770
+ single curve, implying a small σβ dependence remaining. The amount of spread is estimated to be about 25% relative
1771
+ for a given ¯β, corresponding to a variation of ¯β of about 1 −
1772
+ 4√
1773
+ 0.75 = 7%. This 7% value is the best precision for
1774
+ determining the ¯β in the Glauber model using this method. The determined ¯β value can then be plugged into Eq. 11
1775
+ (considering only the leading order is sufficient for ⟨ε2
1776
+ 2⟩ as shown in Fig. 3) to determine the σβ.
1777
+ In the study of flow fluctuations in heavy ion collisions, it is often desirable to calculate the normalized quantities
1778
+ between high-order cumulant and low-order cumulants, which have the advantage of canceling the final state effects.
1779
+ Here we study the following three quantities following the convention from Ref. [21],
1780
+ ρ =
1781
+ ⟨ε2
1782
+ 2
1783
+ δd⊥
1784
+ d⊥ ⟩ − ⟨ε2
1785
+ 2
1786
+ δd⊥
1787
+ d⊥ ⟩
1788
+ β=0
1789
+ (⟨ε2
1790
+ 2⟩ − ⟨ε2⟩β=0)
1791
+
1792
+ ⟨( δd⊥
1793
+ d⊥ )
1794
+ 2
1795
+ ⟩ − ⟨( δd⊥
1796
+ d⊥ )
1797
+ 2
1798
+
1799
+ β=0
1800
+ , ncd{3} =
1801
+ ⟨( δd⊥
1802
+ d⊥ )3⟩ − ⟨( δd⊥
1803
+ d⊥ )3⟩
1804
+ β=0
1805
+ (⟨( δd⊥
1806
+ d⊥ )
1807
+ 2
1808
+ ⟩ − ⟨( δd⊥
1809
+ d⊥ )
1810
+ 2
1811
+
1812
+ β=0
1813
+ )
1814
+ 3/2 , ncε{4} = c2,ε{4} − c2,ε{4}β=0
1815
+ (⟨ε2
1816
+ 2⟩ − ⟨ε2
1817
+ 2⟩β=0)
1818
+ 2
1819
+ (15)
1820
+ Since 96Zr has little quadruple deformation βZr ≈ 0, these quantities can be constructed from measurements in
1821
+ 96Ru+96Ru and 96Zr+96Zr collisions.
1822
+ The results from our Glauber model calculation are shown in Fig. 7 for prolate nuclei cos(3γ) = 0. The values of ρ
1823
+ are nearly independent of ¯β and have a weak dependence on σβ. In the large ¯β region, ρ quickly converges to a value
1824
+ around −0.62 nearly independent of σβ. In the moderate ¯β region say ¯β ∼ 0.2, the ρ first decreases quickly to a value
1825
+ around -0.6, but then increases gradually with σβ. The values of ncd{3} have similar convergence trends towards large
1826
+ ¯β around 0.4, but much more slowly compare to ρ. The ncε{4} has a negative and nearly constant value when σβ = 0,
1827
+ while it increases rather quickly with σβ. Even for a value of σ2
1828
+ β = 0.01, the ncε{4} stays positive until ¯β2 > 0.06. For
1829
+ larger values of σ2
1830
+ β, the ncε{4} decreases with increasing ¯β2, but always remains positive over the range of ¯β studied.
1831
+ V.
1832
+ SUMMARY
1833
+ We studied the impact of the fluctuations of nuclear quadrupole deformation on the heavy ion observables in a Monte
1834
+ Carlo Glauber model. In particular, we focus on eccentricity ε2 and inverse size d⊥ in each event, which can be related
1835
+
1836
+ 10
1837
+ 2
1838
+ β
1839
+ 0
1840
+ 0.05
1841
+ 0.1
1842
+ ρ
1843
+ 0.6
1844
+
1845
+ 0.5
1846
+
1847
+ 0.4
1848
+
1849
+ 0.3
1850
+
1851
+
1852
+ 2
1853
+ β
1854
+ σ
1855
+ 0.00
1856
+ 0.01
1857
+ 0.02
1858
+ 0.03
1859
+ 0.04
1860
+ 0.05
1861
+ 0.06
1862
+ 0.07
1863
+ 0.08
1864
+ 0.09
1865
+ 0.10
1866
+ 2
1867
+ β
1868
+ 0
1869
+ 0.05
1870
+ 0.1
1871
+ {3}
1872
+ d
1873
+ nc
1874
+ 0
1875
+ 0.2
1876
+ 0.4
1877
+ 0.6
1878
+ 0.8
1879
+ ) = 0
1880
+ γ
1881
+ cos(3
1882
+ 2
1883
+ β
1884
+ 0
1885
+ 0.05
1886
+ 0.1
1887
+ {4}
1888
+ ε
1889
+ nc
1890
+ 0
1891
+ 0.5
1892
+ 1
1893
+ FIG. 7:
1894
+ The normalized three-particle correlators, ρ (left) and ncd{3} (middle) and normalized four-particle correlator ncε{4}
1895
+ (right) defined in Eq. 11 as a function of ¯β2 for different values of σ2
1896
+ β.
1897
+ to the event-wise elliptic flow and mean transverse momentum in the final state. The triaxiality γ has a strong impact
1898
+ on three-particle correlators, but the impact diminishes for larger σγ. In particular, when σγ is large, the observables
1899
+ do not distinguish between prolate deformation and oblate deformation, i.e. the values of all observables approach
1900
+ those obtained in collisions of rigid triaxial nuclei with the same β. The mean and variance of quadrupole fluctuations,
1901
+ ¯β and σ2
1902
+ β, have a strong influence on all observables. The influence on two-particle observables ⟨ε2
1903
+ 2⟩ and ⟨(δd⊥/d⊥)2⟩ is
1904
+ proportional to ⟨β2⟩ = ¯β2 +σ2
1905
+ β, however, the ⟨(δd⊥/d⊥)2⟩ also has a sizable subleading order term proportional to ⟨β3⟩.
1906
+ The three-particle observables to the leading order are proportional to ⟨cos(3γ)β3⟩ = cos(3γ)¯β(¯β + 3σ2
1907
+ β), whereas the
1908
+ four-particle observables to the leading order are proportional to ⟨β4⟩ = ¯β4 + 6σ2
1909
+ β ¯β2 + 3σ4
1910
+ β. Hence, the variance of β
1911
+ fluctuation has a stronger impact than ¯β for these higher-order observables.
1912
+ By combining two and four-particle cumulant of ε2, we have constructed a simple formula to constrain parameters ¯β
1913
+ and σβ simultaneously. Such separation becomes less effective when σβ is comparable or larger than ¯β. In the future,
1914
+ it would be interesting to carry out a full hydrodynamic model simulation to quantify the efficacy of this method on
1915
+ the final state flow observables.
1916
+ This research is supported by DOE DE-FG02-87ER40331.
1917
+ Appendix
1918
+ The default results in this paper are obtained with the nucleon Glauber model. We have repeated the analysis for
1919
+ the quark Glauber model and compared it with the nucleon Glauber model results in Figs. 8 and 9 for the impact of
1920
+ γ fluctuation and β fluctuation, respectively. The trends are mostly very similar. A few exceptions are observed. In
1921
+ particular, the results of the two models are shifted vertically from each other in Fig. 8. In the case of β fluctuation
1922
+ in Fig. 9, the variance cd{2} and skewness cd{3} are systematically different between the two models in the high ¯β
1923
+ region.
1924
+
1925
+ 11
1926
+ 0
1927
+ 0.2
1928
+ 0.4
1929
+ 0.6
1930
+ 0.8
1931
+ 1
1932
+ 2
1933
+ γ
1934
+ σ
1935
+ 0.2
1936
+
1937
+ 0.15
1938
+
1939
+ 0.1
1940
+
1941
+ 0.05
1942
+
1943
+ 0
1944
+ 0.05
1945
+ 0.1
1946
+ 0.15
1947
+ 0.2
1948
+ 3
1949
+
1950
+ 10
1951
+ ×
1952
+ =0
1953
+ β
1954
+ Cov - Cov
1955
+ Nucleon Glauber
1956
+ Quark Glauber
1957
+ U+U Glauber Model
1958
+ = 0.28
1959
+ β
1960
+ b = 0 fm,
1961
+ 0
1962
+ 0.2
1963
+ 0.4
1964
+ 0.6
1965
+ 0.8
1966
+ 1
1967
+ 2
1968
+ γ
1969
+ σ
1970
+ 2
1971
+
1972
+ 0
1973
+ 2
1974
+ 4
1975
+ 6
1976
+ 8
1977
+ 6
1978
+
1979
+ 10
1980
+ ×
1981
+ =0
1982
+ β
1983
+ {3}
1984
+ d
1985
+ - C
1986
+ {3}
1987
+ d
1988
+ C
1989
+ Nucleon Glauber
1990
+ Quark Glauber
1991
+ U+U Glauber Model
1992
+ = 0.28
1993
+ β
1994
+ b = 0 fm,
1995
+ 0
1996
+ 0.2
1997
+ 0.4
1998
+ 0.6
1999
+ 0.8
2000
+ 1
2001
+ 2
2002
+ γ
2003
+ σ
2004
+ 0.12
2005
+
2006
+ 0.11
2007
+
2008
+ 0.1
2009
+
2010
+ 0.09
2011
+
2012
+ 0.08
2013
+
2014
+ 3
2015
+
2016
+ 10
2017
+ ×
2018
+ =0
2019
+ β
2020
+ {4}
2021
+ ε
2022
+ 2,
2023
+ - c
2024
+ {4}
2025
+ ε
2026
+ 2,
2027
+ c
2028
+ Nucleon Glauber
2029
+ Quark Glauber
2030
+ U+U Glauber Model
2031
+ = 0.28
2032
+ β
2033
+ b = 0 fm,
2034
+ 0
2035
+ 0.2
2036
+ 0.4
2037
+ 0.6
2038
+ 0.8
2039
+ 1
2040
+ 2
2041
+ γ
2042
+ σ
2043
+ 15.8
2044
+ 16
2045
+ 16.2
2046
+ 16.4
2047
+ 16.6
2048
+ 16.8
2049
+ 3
2050
+
2051
+ 10
2052
+ ×
2053
+ =0
2054
+ β〉
2055
+ 2
2056
+ 2
2057
+ ε 〈
2058
+ -
2059
+
2060
+ 2
2061
+ 2
2062
+ ε 〈
2063
+ )
2064
+ γ
2065
+ Cos(3
2066
+ 1.00
2067
+ 0.87
2068
+ 0.50
2069
+ 0.00
2070
+ -0.50
2071
+ -0.87
2072
+ -1.00
2073
+ Nucleon Glauber
2074
+ Quark Glauber
2075
+ U+U Glauber Model
2076
+ = 0.28
2077
+ β
2078
+ b = 0 fm,
2079
+ 0
2080
+ 0.2
2081
+ 0.4
2082
+ 0.6
2083
+ 0.8
2084
+ 1
2085
+ 2
2086
+ γ
2087
+ σ
2088
+ 0.54
2089
+ 0.56
2090
+ 0.58
2091
+ 0.6
2092
+ 0.62
2093
+ 0.64
2094
+ 0.66
2095
+ 3
2096
+
2097
+ 10
2098
+ ×
2099
+ =0
2100
+ β
2101
+ {2}
2102
+ d
2103
+ - C
2104
+ {2}
2105
+ d
2106
+ C
2107
+ Nucleon Glauber
2108
+ Quark Glauber
2109
+ U+U Glauber Model
2110
+ = 0.28
2111
+ β
2112
+ b = 0 fm,
2113
+ FIG. 8:
2114
+ Comparison of the five observables between nucleon Glauber model (symbols) and quark Glauber model (lines with
2115
+ matching colors) as a function of σγ for different values of ¯γ.
2116
+ !
2117
+ 0
2118
+ 0.02
2119
+ 0.04
2120
+ 0.06
2121
+ 0.08
2122
+ 0.1
2123
+ 2
2124
+ β
2125
+ 0.8
2126
+
2127
+ 0.7
2128
+
2129
+ 0.6
2130
+
2131
+ 0.5
2132
+
2133
+ 0.4
2134
+
2135
+ 0.3
2136
+
2137
+ 0.2
2138
+
2139
+ 0.1
2140
+
2141
+ 0
2142
+ 3
2143
+
2144
+ 10
2145
+ ×
2146
+ 0,0
2147
+ Cov - Cov
2148
+ Nucleon Glauber
2149
+ Quark Glauber
2150
+ U+U Glauber Model
2151
+ b = 0 fm
2152
+ 0
2153
+ 0.02
2154
+ 0.04
2155
+ 0.06
2156
+ 0.08
2157
+ 0.1
2158
+ 2
2159
+ β
2160
+ 2
2161
+
2162
+ 0
2163
+ 2
2164
+ 4
2165
+ 6
2166
+ 8
2167
+ 10
2168
+ 12
2169
+ 6
2170
+
2171
+ 10
2172
+ ×
2173
+ 0,0
2174
+ {3}
2175
+ d
2176
+ - C
2177
+ {3}
2178
+ d
2179
+ C
2180
+ Nucleon Glauber
2181
+ Quark Glauber
2182
+ U+U Glauber Model
2183
+ b = 0 fm
2184
+ 0
2185
+ 0.02
2186
+ 0.04
2187
+ 0.06
2188
+ 0.08
2189
+ 0.1
2190
+ 2
2191
+ β
2192
+ 0.1
2193
+
2194
+ 0
2195
+ 0.1
2196
+ 0.2
2197
+ 0.3
2198
+ 0.4
2199
+ 0.5
2200
+ 0.6
2201
+ 3
2202
+
2203
+ 10
2204
+ ×
2205
+ 0,0
2206
+ {4}
2207
+ ε
2208
+ 2,
2209
+ - c
2210
+ {4}
2211
+ ε
2212
+ 2,
2213
+ c
2214
+ Nucleon Glauber
2215
+ Quark Glauber
2216
+ U+U Glauber Model
2217
+ b = 0 fm
2218
+ 0
2219
+ 0.02
2220
+ 0.04
2221
+ 0.06
2222
+ 0.08
2223
+ 0.1
2224
+ 2
2225
+ β
2226
+ 0
2227
+ 5
2228
+ 10
2229
+ 15
2230
+ 20
2231
+ 25
2232
+ 30
2233
+ 35
2234
+ 40
2235
+ 3
2236
+
2237
+ 10
2238
+ ×
2239
+ 0,0
2240
+
2241
+ 2
2242
+ 2
2243
+ ε 〈
2244
+ -
2245
+
2246
+ 2
2247
+ 2
2248
+ ε 〈
2249
+ 2
2250
+ β
2251
+ σ
2252
+ 0.00
2253
+ 0.01
2254
+ 0.02
2255
+ 0.03
2256
+ 0.04
2257
+ 0.05
2258
+ 0.06
2259
+ 0.07
2260
+ 0.08
2261
+ 0.09
2262
+ 0.10
2263
+ Nucleon Glauber
2264
+ Quark Glauber
2265
+ U+U Glauber Model
2266
+ b = 0 fm
2267
+ 0
2268
+ 0.02
2269
+ 0.04
2270
+ 0.06
2271
+ 0.08
2272
+ 0.1
2273
+ 2
2274
+ β
2275
+ 0
2276
+ 0.2
2277
+ 0.4
2278
+ 0.6
2279
+ 0.8
2280
+ 1
2281
+ 3
2282
+
2283
+ 10
2284
+ ×
2285
+ 0,0
2286
+ {2}
2287
+ d
2288
+ - C
2289
+ {2}
2290
+ d
2291
+ C
2292
+ Nucleon Glauber
2293
+ Quark Glauber
2294
+ U+U Glauber Model
2295
+ b = 0 fm
2296
+ FIG. 9:
2297
+ Comparison of the five observables between nucleon Glauber model (symbols) and quark Glauber model (lines with
2298
+ matching colors) as a function of ¯β2 for different values of σβ.
2299
+
2300
+ 12
2301
+ [1] W. Busza, K. Rajagopal, and W. van der Schee, Ann. Rev. Nucl. Part. Sci. 68, 339 (2018), arXiv:1802.04801 [hep-ph] .
2302
+ [2] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu,
2303
+ and U. Heinz, Phys. Rev. C 94, 024907 (2016), arXiv:1605.03954
2304
+ [nucl-th] .
2305
+ [3] G. Giacalone, (2022), arXiv:2208.06839 [nucl-th] .
2306
+ [4] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).
2307
+ [5] J. Jia and C.-J. Zhang, (2021), arXiv:2111.15559 [nucl-th] .
2308
+ [6] G. Nijs and W. van der Schee, (2021), arXiv:2112.13771 [nucl-th] .
2309
+ [7] J. Jia, G. Giacalone, and C. Zhang, (2022), arXiv:2206.10449 [nucl-th] .
2310
+ [8] M. Abdallah et al. (STAR), Phys. Rev. C 105, 014901 (2022), arXiv:2109.00131 [nucl-ex] .
2311
+ [9] Haojie Xu and Chunjian Zhang (STAR Collabration), Constraints on neutron skin thickness and nuclear deformations using
2312
+ relativistic heavy-ion collisions from STAR, “https://indico.cern.ch/event/895086/contributions/4724887/,https:
2313
+ //indico.cern.ch/event/895086/contributions/4749420/,” (2022).
2314
+ [10] C. Zhang, S. Bhatta, and J. Jia, Phys. Rev. C 106, L031901 (2022), arXiv:2206.01943 [nucl-th] .
2315
+ [11] C. Zhang and J. Jia, Phys. Rev. Lett. 128, 022301 (2022), arXiv:2109.01631 [nucl-th] .
2316
+ [12] Y. Cao, S. E. Agbemava, A. V. Afanasjev, W. Nazarewicz,
2317
+ and E. Olsen, Phys. Rev. C 102, 024311 (2020),
2318
+ arXiv:2004.01319 [nucl-th] .
2319
+ [13] B. Bally et al., (2022), arXiv:2209.11042 [nucl-ex] .
2320
+ [14] T. Otsuka, Y. Tsunoda, T. Togashi, N. Shimizu, and T. Abe, in European Physical Journal Web of Conferences, European
2321
+ Physical Journal Web of Conferences, Vol. 178 (2018) p. 02003.
2322
+ [15] M. Bender and P.-H. Heenen, Phys. Rev. C 78, 024309 (2008), arXiv:0805.4383 [nucl-th] .
2323
+ [16] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
2324
+ [17] K. Kumar, Phys. Rev. Lett. 28, 249 (1972).
2325
+ [18] A. Poves, F. Nowacki, and Y. Alhassid, Phys. Rev. C 101, 054307 (2020), arXiv:1906.07542 [nucl-th] .
2326
+ [19] J. Jia, Phys. Rev. C 105, 014905 (2022), arXiv:2106.08768 [nucl-th] .
2327
+ [20] D. Teaney and L. Yan, Phys. Rev. C 83, 064904 (2011), arXiv:1010.1876 [nucl-th] .
2328
+ [21] J. Jia, Phys. Rev. C 105, 044905 (2022), arXiv:2109.00604 [nucl-th] .
2329
+ [22] C. Loizides, Phys. Rev. C94, 024914 (2016), arXiv:1603.07375 [nucl-ex] .
2330
+ [23] M. Zhou and J. Jia, Phys. Rev. C 98, 044903 (2018), arXiv:1803.01812 [nucl-th] .
2331
+
BdE1T4oBgHgl3EQf9gYX/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FtAzT4oBgHgl3EQfxP5f/content/tmp_files/2301.01734v1.pdf.txt ADDED
@@ -0,0 +1,2484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Super-resolution with Sparse Arrays: A Non-
3
+ Asymptotic Analysis of Spatio-temporal Trade-offs
4
+ Pulak Sarangi, Mehmet Can H¨uc¨umeno˘glu, Robin Rajam¨aki, and Piya Pal
5
+ Abstract—Sparse arrays have emerged as a popular alternative to
6
+ the conventional uniform linear array (ULA) due to the enhanced
7
+ degrees of freedom (DOF) and superior resolution offered by
8
+ them. In the passive setting, these advantages are realized by
9
+ leveraging correlation between the received signals at different
10
+ sensors. This has led to the belief that sparse arrays require
11
+ a large number of temporal measurements to reliably estimate
12
+ parameters of interest from these correlations, and therefore
13
+ they may not be preferred in the sample-starved regime. In
14
+ this paper, we debunk this myth by performing a rigorous non-
15
+ asymptotic analysis of the Coarray ESPRIT algorithm. This
16
+ seemingly counter-intuitive result is a consequence of the scaling
17
+ of the singular value of the coarray manifold, which compensates
18
+ for the potentially large covariance estimation error in the limited
19
+ snapshot regime. Specifically, we show that for a nested array
20
+ operating in the regime of fewer sources than sensors (S = O(1)),
21
+ it is possible to bound the matching distance error between the
22
+ estimated and true directions of arrival (DOAs) by an arbitrarily
23
+ small quantity (ϵ) with high probability, provided (i) the number
24
+ of temporal snapshots (L) scales only logarithmically with the
25
+ number of sensors (P), i.e. L = Ω(ln(P)/ϵ2), and (ii) a suitable
26
+ separation condition is satisfied. Our results also formally prove
27
+ the well-known empirical resolution benefits of sparse arrays,
28
+ by establishing that the minimum separation between sources
29
+ can be Ω(1/P 2), as opposed to separation Ω(1/P) required by
30
+ a ULA with the same number of sensors. In addition to the
31
+ array geometry, our sample complexity expression reveals the
32
+ dependence on other key model parameters such as Signal to
33
+ Noise Ratio (SNR) and the dynamic range of the source powers.
34
+ This enables us to establish the superior noise-resilience of nested
35
+ arrays both theoretically and empirically. 1
36
+ Index Terms—Sparse Arrays, Nested Sampling, Super-resolution,
37
+ Toeplitz Covariance Matrix, Non-Asymptotic Guarantees.
38
+ I. INTRODUCTION
39
+ The problem of source localization arises in different contexts
40
+ ranging from target detection in sonar and radar, hybrid
41
+ mmWave channel estimation, and DOA estimation in array
42
+ signal processing [1]–[3]. Traditionally, these applications
43
+ consider ULAs, which are known to resolve up to S = O(P)
44
+ sources with P sensors. However, deterministic sparse array
45
+ geometries, such as nested and coprime arrays [1], [2], have
46
+ recently gained significant attention primarily due to two
47
+ attractive properties. Firstly, sparse arrays are able to identify
48
+ up to S = O(P 2) uncorrelated sources using only P sensors.
49
+ Secondly, sparse arrays enjoy a performance gain showcased
50
+ by lower Cram´er-Rao bound and higher angular resolution [4]–
51
+ [8]. Both of these properties can be attributed to the enhanced
52
+ spatial DOF enabled by the so-called difference coarray, which
53
+ can be as large as Θ(P 2).
54
+ 1This work was supported by Grants ONR N00014-19-1-2256, ONR
55
+ N00014-19-1-2227, NSF 2124929, and NSF CAREER ECCS 1700506.
56
+ The enhanced DOF of the coarray are realized by comput-
57
+ ing temporal correlations between the spatial measurements
58
+ and constructing an augmented covariance matrix called the
59
+ “coarray covariance matrix”, whose size is determined by the
60
+ size of the difference coarray. Following the construction of
61
+ the coarray covariance matrix, it is possible to fully harness
62
+ the power of the difference coarray and identify the unknown
63
+ source directions using classical subspace techniques, such
64
+ as MUSIC, ESPRIT or the matrix pencil method [9]–[11].
65
+ Despite the success of coarray-based algorithms, a common
66
+ belief is that they require a large number of temporal snapshots
67
+ to fully utilize the number of DOFs provided by the coarray.
68
+ The root of this belief mainly lies in the inadequacy of
69
+ existing performance analyses, which are primarily based on
70
+ characterizing the asymptotic Mean Squared Error (MSE) of
71
+ the Coarray MUSIC [5] and Coarray ESPRIT algorithms [12].
72
+ In particular, such asymptotic results primarily rely on the
73
+ first-order perturbation analysis framework proposed in [13],
74
+ which leaves two key questions unanswered regarding the
75
+ performance of coarray algorithms. Firstly, the perturbation
76
+ framework fails to theoretically explain the improvement in
77
+ resolution offered by sparse arrays over the ULA—a phe-
78
+ nomenon that has been extensively observed in numerical ex-
79
+ periments [5], [14]. Secondly, the analysis does not adequately
80
+ reveal the dependence of temporal snapshots on key model
81
+ parameters such as the array geometry, number of sensors,
82
+ SNR and dynamic range of the source powers.
83
+ The aforementioned shortcomings are partially addressed in
84
+ [15], which adapts recent advances in the theory of super-
85
+ resolution [16], [17] to the coarray setting. The analysis,
86
+ which is based on Total-Variational norm minimization, is
87
+ indeed non-asymptotic. However, it is possible to show that
88
+ the snapshot requirement in this setting scales quadratically
89
+ (rather than linearly) with the number of sensors P, which
90
+ is undesirable. In a parallel line of work using a grid-based
91
+ model, we recently showed that Ω(P 2) snapshots are sufficient
92
+ for ensuring exact support recovery with high probability
93
+ even for closely-spaced sources, where the smallest source
94
+ separation scales as Ω(1/P 2) [18]. Although the analysis is
95
+ applicable for scenarios where S > P (more sources than
96
+ sensors), the sample complexity Ω(P 2) is still conservative
97
+ when S ≤ P. In [19], an atomic norm formulation is adopted
98
+ to exploit the Toeplitz structure of the coarray covariance
99
+ matrix. The analysis provides a characterization of the covari-
100
+ ance matrix estimation error, but not of the sample complexity
101
+ required to achieve a desired DOA estimation error, which is
102
+ often the main quantity of interest. Indeed, common folklore
103
+ arXiv:2301.01734v1 [eess.SP] 4 Jan 2023
104
+
105
+ 2
106
+ suggests that the benefits of sparse arrays necessarily come
107
+ at the cost of a large number of snapshots, since the coarray
108
+ covariance matrix, which typically needs to be estimated, is of
109
+ size Θ(P 2). Hence, one might be tempted to falsely conclude
110
+ that sparse arrays are at a disadvantage compared to ULAs.
111
+ In this paper, our goal is to dispel this belief by providing
112
+ new non-asymptotic results on the performance of Coarray
113
+ ESPRIT with a focus on nested arrays in the regime S ≤ P.
114
+ Our analysis is motivated by contemporary applications such
115
+ as autonomous sensing and mmWave channel estimation [3],
116
+ [14], where identifying more sources than sensors may not be
117
+ necessary, and the number snapshots may be restricted either
118
+ due to coherent multipaths or a rapidly varying environment.
119
+ While subspace-based algorithms have been around for several
120
+ decades and actively used in practice, performance guarantees
121
+ characterizing their precise resolution limit were obtained only
122
+ recently [20]–[24]. This analysis has also been extended to
123
+ multi-snapshot setting in [25]. The key factor enabling these
124
+ guarantees is the characterization of the smallest singular value
125
+ of Vandermonde matrices [24]. However, all the aforemen-
126
+ tioned results are only applicable to the ULA. Furthermore,
127
+ no statistical assumptions are made on the source signals, and
128
+ hence, the coarray perspective is missing. The key difference
129
+ between deterministic and random sources is that in the latter
130
+ case, the perturbation to the subspace of interest is a con-
131
+ sequence of both noise as well as finite-snapshot covariance
132
+ estimation error. Therefore, extending the analysis in [20], [25]
133
+ to the stochastic case requires non-trivial modifications.
134
+ Contributions: Our first main contribution is to probabilis-
135
+ tically characterize the coarray covariance matrix estimation
136
+ error due to finite snapshots. Our second main contribution is a
137
+ non-asymptotic performance analysis for the Coarray ESPRIT
138
+ algorithm in terms of the matching distance error metric.
139
+ Specifically, we characterize the number of temporal snapshots
140
+ (sample complexity) required to bound the matching distance
141
+ error by a specified parameter. To the best of our knowledge,
142
+ our sample complexity expression (in terms of snapshots) is
143
+ the first to explicitly bring out the dependence on key model
144
+ parameters such as the array geometry, SNR and dynamic
145
+ range of the source powers. Furthermore, we establish that it
146
+ is possible to bound the matching distance error with an arbi-
147
+ trarily small quantity for both the nested array and ULA, using
148
+ the (order-wise) same number of snapshots L = Ω(ln P).
149
+ However, a nested array can achieve this in a much smaller
150
+ separation regime ∆min = Ω(1/P 2) compared to the ULA, for
151
+ which ∆min = Ω(1/P). Our analysis dispels the widely-held
152
+ belief that sparse arrays require significantly more snapshots
153
+ compared to ULAs when the number of sources is less than
154
+ the number of sensors, and at the same time establishes the
155
+ superior resolution capabilities of nested arrays. In addition
156
+ to advancing the theoretical understanding, this analysis could
157
+ also serve as a guiding principle for practitioners to determine
158
+ suitable operating conditions. Notations: Symbol ⊙ represents
159
+ the Khatri-Rao (columnwise Kronecker) product, whereas ∥·∥2
160
+ and ∥·∥F denote the spectral and Frobenius norm of a matrix.
161
+ Moreover, σi(A) is the i-th largest singular value of A. For
162
+ a set real numbers {p1, p2, . . . , pK}, pmin and pmax denote
163
+ the minimum and maximum numbers in the set, respectively.
164
+ The symbol T := [0, 1) denotes the torus. For a sub-Gaussian
165
+ random variable X, ∥X∥ψ2 denotes its sub-Gaussian norm
166
+ defined as ∥X∥ψ2 := inf{t > 0 | E[exp X2/t2] ≤ 2}.
167
+ II. BACKGROUND ON SPARSE ARRAYS
168
+ Consider a sparse linear array (SLA) with P sensors located
169
+ at {dpλ/2}P
170
+ p=1, where λ is the wavelength of the incoming
171
+ far-field narrow-band source signals and dp belongs to an
172
+ integer set S (|S| = P). Suppose S sources with distinct
173
+ DOAs θ = {θ1, θ2, · · · , θS} impinge on the array where
174
+ θi ∈ (−π/2, π/2] for i = 1, . . . , S. The signal received at
175
+ the P sensors at time instance t is given by:
176
+ y(t) = AS(θ)x(t) + n(t),
177
+ t = 1, . . . , L.
178
+ (1)
179
+ The
180
+ matrix
181
+ AS(θ)
182
+ =
183
+ [aS(θ1), aS(θ2), . . . , aS(θS)]
184
+
185
+ CP ×S
186
+ is the array manifold matrix where: aS(θi)
187
+ =
188
+ [ejπd1 sin(θi), ejπd2 sin(θi)
189
+ . . . ejπdP sin(θi)]⊤, represents the
190
+ steering vector corresponding to the direction θi, L denotes
191
+ the total number of temporal snapshots, x(t) ∈ CS is the tth
192
+ temporal snapshot of the source signal vector and n(t) ∈ CP
193
+ is an additive noise term. We define the normalized spatial
194
+ frequencies (which we refer to as normalized DOAs) as
195
+ ωi = sin(θi)/2. Throughout this paper, we make the following
196
+ statistical assumptions on the source signals and noise:
197
+ [A1] Uncorrelated Gaussian Sources: The source signals
198
+ x(t) are assumed to be uncorrelated white circularly sym-
199
+ metric Gaussian CN(0, P) where P = diag(p1, p2, . . . , pS)
200
+ represents a diagonal covariance matrix of source powers.
201
+ [A2] Gaussian Noise: The noise n(t) follows a zero-mean
202
+ circularly symmetric complex Gaussian distribution n(t) ∼
203
+ CN(0, σ2I), and is uncorrelated with x(t).
204
+ Under assumptions [A1-A2], the measurements follow y(t) ∼
205
+ CN(0, Ry), where Ry is given by:
206
+ Ry = AS(θ)PAH
207
+ S (θ) + σ2IP ∈ CP ×P .
208
+ (2)
209
+ By vectorizing Ry, we obtain the “virtual measurements”:
210
+ ry = (AS(θ)∗ ⊙ AS(θ))p + σ2i, where i = vec(IP ) and
211
+ p = [p1, . . . , pS]T . The matrix AS(θ)∗ ⊙ AS(θ) can be
212
+ viewed as a “virtual array” with sensor locations given by
213
+ the difference set of the SLA.
214
+ Definition
215
+ II.1
216
+ (Difference
217
+ Set).
218
+ Given
219
+ a
220
+ SLA
221
+ S
222
+ =
223
+ {d1, d2, · · · , dP },
224
+ its
225
+ difference
226
+ set
227
+ DS
228
+ is
229
+ defined
230
+ as:
231
+ DS = {dm − dn|dm, dn ∈ S}.
232
+ The difference set DS of S is also called its virtual difference
233
+ coarray. Let Mca > 0 be the largest integer such that the
234
+ set US := {0, 1, . . . , Mca} satisfies US ⊆ DS. This set
235
+ US denotes the largest contiguous non-negative segment of
236
+ the difference set and is essentially a ULA with Mca + 1
237
+ sensors. By harnessing the structure of US, sparse arrays enjoy
238
+ enhanced degrees of freedom over the physical SLA. An
239
+ array is called hole-free if its difference set is a ULA, i.e.,
240
+ DS = {−Mca, · · · , Mca}. We now introduce the notation for
241
+ a “generalized nested array”, which is a special hole-free array.
242
+
243
+ 3
244
+ Definition II.2 (Nested array). A generalized nested array
245
+ S(N1,N2) with N1 ≥ N2 > 0, is defined as: S(N1,N2) =
246
+ {n}N1
247
+ n=1 ∪ {m(N1 + 1)}N2
248
+ m=1.
249
+ It can be shown that any nested array S(N1,N2) is hole-free,
250
+ i.e., US = {0, 1, · · · , Mca} with Mca = N2(N1 + 1) − 1.
251
+ Furthermore, Sula = S(P −1,1), i.e., choosing N1 = P − 1 and
252
+ N2 = 1, yields a ULA with P sensors. For a given P, if
253
+ N1 = ⌈ P
254
+ 2 ⌉, N2 = ⌊ P
255
+ 2 ⌋, then Mca + 1 = ⌊ P
256
+ 2 ⌋(⌈ P
257
+ 2 ⌉ + 1). It can
258
+ be verified that for P ≥ 3, we have:
259
+ P 2/5 ≤ Mca + 1 ≤ P 2.
260
+ (3)
261
+ Therefore, Mca = Θ(P 2) is indeed achievable. Next, we
262
+ introduce an important quantity that is essential for describing
263
+ correlation-based processing.
264
+ Definition II.3 (Weight Function). Consider a hole-free array
265
+ S. For every i ∈ DS, its weight function is defined as |Ωi|:
266
+ Ωi = {(m, n)|dm − dn = i, 1 ≤ m, n ≤ P} where the set Ωi
267
+ essentially captures all pairs (dm, dn) of sensor locations that
268
+ generate the difference of i = dm − dn.
269
+ Due to symmetry, it can be verified that |Ωi| = |Ω−i|. Next,
270
+ we review the widely-used “redundancy averaging” technique
271
+ used for correlation-domain processing. Following [1], [5],
272
+ [26], the virtual ULA measurements are given by:
273
+ t = Favry,
274
+ (4)
275
+ where t = [t−Mca, · · · , t−1, t0, t1, · · · , tMca]⊤ and Fav is the
276
+ redundancy averaging matrix given by:
277
+ [Fav]i+Mca+1,m+P (n−1) =
278
+
279
+ 1
280
+ |Ωi|
281
+ If dm − dn = i
282
+ 0
283
+ Otherwise,
284
+ (5)
285
+ with −Mca ≤ i ≤ Mca and 1 ≤ m, n ≤ P. The element
286
+ ti is obtained by averaging all entries [Ry]m,n whose indices
287
+ (m, n) generate a difference of i, i.e., dm − dn = i. Define
288
+ a Toeplitz operator TMca : C2Mca+1 → CMca+1×Mca+1 as:
289
+ [TMca(z)]m,n = zMca+1+m−n, 1 ≤ m, n ≤ Mca + 1.
290
+ If
291
+ the
292
+ vector z ∈ C2Mca+1 is conjugate symmetric, i.e., zMca+1+i =
293
+ z∗
294
+ Mca+1−i, i = 0, 1, . . . , Mca, then TMca(z) is a Hermitian
295
+ matrix. Using the virtual measurement t, an augmented vir-
296
+ tual co-array covariance matrix Tca ∈ C(Mca+1)×(Mca+1) is
297
+ constructed as follows:
298
+ Tca := TMca(t) = AUS(θ)PAUS(θ)H + σ2IMca+1.
299
+ (6)
300
+ Once this virtual coarray covariance matrix has been obtained,
301
+ any subspace-based algorithm [9], [10] applied to Tca can
302
+ exactly recover the source DOAs provided Mca ≥ S. Hence,
303
+ this also reveals that by efficiently designing sparse arrays,
304
+ we can resolve up to Θ(P 2) sources with only P sensors. In
305
+ the next section, we describe how the correlation processing
306
+ is modified in the finite snapshot setting.
307
+ A. Finite-Snapshot Coarray Covariance Estimation
308
+ Let �Ry be the sample covariance matrix given by:
309
+ �Ry := 1
310
+ L
311
+ L
312
+
313
+ t=1
314
+ y(t)y(t)H.
315
+ (7)
316
+ With a finite L, all the operations on the true covariance matrix
317
+ are replaced by operations on the sample covariance matrix.
318
+ First, we apply the redundancy averaging on ˆry:
319
+ ˆt := Favˆry, where ˆry := vec( �Ry).
320
+ (8)
321
+ Here ˆt
322
+ =
323
+ [ˆt−Mca, · · · , ˆt−1, ˆt0, ˆt1, · · · , ˆtMca]⊤ with ˆti
324
+ =
325
+ 1
326
+ |Ωi|
327
+
328
+ dm−dn=i[ �Ry]m,n. Next, the estimated coarray covari-
329
+ ance matrix is obtained by constructing a Toeplitz Hermitian
330
+ matrix from ˆt as follows:
331
+ �Tca = TMca(ˆt).
332
+ (9)
333
+ For a hole-free sparse array S, from (4), the elements of the
334
+ matrix Ry are given by:
335
+ [Ry]m,n = tdm−dn 1 ≤ m, n ≤ P.
336
+ (10)
337
+ Similarly, using the estimated coarray covariance matrix �Tca,
338
+ we define matrix Rav ∈ CP ×P as
339
+ [Rav]m,n := �tdm−dn, 1 ≤ m, n ≤ P.
340
+ (11)
341
+ This essentially maps the entries ˆti into a P × P matrix with
342
+ the assignments specified by the difference set of the array
343
+ S. Since the sample covariance matrix �Ry is imperfect, the
344
+ estimate �Tca also incurs an error due to a finite number of
345
+ snapshots. We denote the covariance estimation error as:
346
+ EL = Tca − �Tca.
347
+ (12)
348
+ The error in estimating the coarray covariance matrix naturally
349
+ causes errors in DOA estimation as well. Since subspace based
350
+ algorithms are typically applied to this estimated covariance
351
+ matrix �Tca, it becomes crucial to probabilistically characterize
352
+ the estimation error EL and how it affects the DOA estimation
353
+ error. This paper provides such a rigorous theoretical charac-
354
+ terization of the DOA estimation error with limited snapshots.
355
+ B. Review of Existing Performance Analysis of Coarray-Based
356
+ Angle Estimation
357
+ The existing performance analyses for coarray-based algo-
358
+ rithms are largely asymptotic in nature. In particular, they rely
359
+ on the first-order perturbation analysis framework proposed
360
+ in [13], which has been used to obtain expressions for the
361
+ mean square error (MSE) of coarray MUSIC [5], and coarray
362
+ ESPRIT [12]. Consider the eigen decomposition Tca
363
+ =
364
+ UΓsU + U⊥ΓnUH
365
+ ⊥, where U ∈ CMca+1×S and U⊥ ∈
366
+ CMca+1×Mca+1−S denote the eigenvectors corresponding to
367
+ the signal and noise subspaces, respectively. The correspond-
368
+ ing perturbed matrices are denoted as �Tca = Tca + ∆Tca,
369
+ �U⊥ = U⊥ + ∆U⊥ and �Γn = Γn + ∆Γn. The perturbed
370
+ matrices satisfy: (Tca + ∆Tca)(U⊥ + ∆U⊥) = (U⊥ +
371
+ ∆U⊥)(Γn+∆Γn). The perturbation analysis in [5] hinges on
372
+ (i) the perturbations being “small enough” and (ii) ignoring
373
+ the higher order perturbation terms such as ∆Tca∆U⊥ etc.
374
+ One of the key drawbacks of this analysis is that a rigorous
375
+ characterization of an upper bound on the “small enough
376
+ perturbation” ∥∆Tca∥2 ≤ ϵ1 has not been provided explicitly.
377
+ Secondly, [5, Theorem 1] makes a critical assumption that “the
378
+ signal subspace and the noise subspace are well-separated”.
379
+
380
+ 4
381
+ This assumption leaves open the possibility of problematic
382
+ (unidentifiable) source configurations, which have not been
383
+ explicitly addressed in their analysis. We address both of the
384
+ aforementioned issues by adopting a non-asymptotic analysis
385
+ framework that is free from any approximations. Our analysis
386
+ also explicitly characterizes source configurations that ensure
387
+ separation between the so-called signal and noise subspaces. In
388
+ [18], the first rigorous non-asymptotic probabilistic guarantees
389
+ were provided for support recovery using a grid-based model.
390
+ Although their analysis is valid for S > P, the sample
391
+ complexity L = Ω(P 2) is conservative when S < P as our
392
+ analysis in Section IV will show.
393
+ III. PERFORMANCE ANALYSIS OF COARRAY ESPRIT
394
+ WITH FINITE SNAPSHOTS
395
+ The Coarray ESPRIT algorithm, an adaptation of ESPRIT in
396
+ the coarray domain, was introduced in [12]. It applies ESPRIT
397
+ on the estimated coarray covariance matrix �Tca as opposed to
398
+ covariance matrix �Ry of the physical measurements. For a
399
+ self-contained exposition, we review the Coarray ESPRIT al-
400
+ gorithm and point out certain invariance properties of Coarray
401
+ ESPRIT. We describe Coarray ESPRIT for the ideal coarray
402
+ covariance matrix Tca. The extension to the sample covariance
403
+ estimate is straightforward.
404
+ A. The Coarray ESPRIT Algorithm
405
+ The coarray signal subspace is defined as the span of
406
+ the steering vectors: Sca := R (AUS(θ)) . Matrix T0 :=
407
+ AUS(θ)PAUS(θ)H is positive semi-definite and permits the
408
+ following eigendecompostion: T0 = BΓBH, where the di-
409
+ agonal of Γ comprises of the eigenvalues ordered in non-
410
+ increasing fashion and B is a unitary matrix. We can partition
411
+ B as B = [U, U⊥], where the columns of U ∈ C(Mca+1)×S
412
+ denote the eigenvectors of T0 corresponding to its non-zero
413
+ eigenvalues. Following this decomposition, we write Tca as:
414
+ Tca = T0 + σ2IMca+1 = B(Γ + σ2IMca+1)BH.
415
+ (13)
416
+ If Mca ≥ S, the Vandermonde structure of AUS(θ) allows us
417
+ to argue that rank(AUS(θ)PAUS(θ)H) = S, and hence:
418
+ Sca = R(AUS(θ)) = R(AUS(θ)PAUS(θ)H) = R(U). (14)
419
+ As a result of (14), ∃ an invertible Q ∈ CS×S such that
420
+ U = AUS(θ)Q.
421
+ (15)
422
+ Let U0 ∈ CMca×S and U1 ∈ CMca×S denote the submatrices
423
+ corresponding to the first and last Mca rows of U. Similarly,
424
+ let V0, V1 ∈ CMca×S be the submatrices corresponding to the
425
+ first and last Mca rows of AUS(θ). Due to the Vandermonde
426
+ structure of AUS(θ), the following holds: V1 = V0D, where
427
+ D = diag(ejπ sin(θ1), ejπ sin(θ2), . . . , ejπ sin(θS)). By (15), ma-
428
+ trices U0 and U1 satisfy:
429
+ U0 = V0Q,
430
+ U1 = V0DQ.
431
+ (16)
432
+ Now, consider the matrix
433
+ Ψ = U†
434
+ 0U1 ∈ CS×S.
435
+ (17)
436
+ Since U0 has full column rank (17) implies U†
437
+ 0 = Q−1V†
438
+ 0.
439
+ Plugging this in (17) and combining with (16), we have:
440
+ Ψ = Q−1DQ. Hence, the DOAs can be inferred from the
441
+ eigenvalues of Ψ. Since L is finite, we do not have access to
442
+ Tca and Coarray ESPRIT is instead applied on its estimate
443
+ �Tca defined in (9). If we can ensure that the error EL is
444
+ small enough (which we will rigorously specify using Weyl’s
445
+ inequality), �Tca will be at least rank-S. Let ˆU be the matrix
446
+ of eigenvectors corresponding to the largest S eigenvalues of
447
+ �Tca (which is well-defined). We can consider �U as a basis of
448
+ the perturbed coarray signal space ˆSca. From �U, we compute
449
+ the matrices �U0, �U1, �Ψ following the same construction as
450
+ U0, U1 and Ψ. Let ˆλi = riej �φi be the polar representation
451
+ of the eigenvalues of the matrix ˆΨ. The estimated normalized
452
+ frequencies ˆΩ = {�ωi}S
453
+ i=1 are then given by �ωi =
454
+ �φi
455
+ 2π.
456
+ B. Basis Invariance Property of ESPRIT
457
+ In the previous section, ESPRIT is performed using the basis
458
+ given by the singular vectors �U (U) of �Tca (Tca). However,
459
+ the following Lemma shows that the output of ESPRIT is
460
+ invariant to the choice of the basis for the subspace.
461
+ Lemma 1. Let �U ∈ C(Mca+1)×S be another basis for R( �U).
462
+ Then, the matrix �Ψ := �U†
463
+ 0 �U1 is similar to the matrix �Ψ, i.e.,
464
+ �Ψ and �Ψ share the same eigenvalues.
465
+ Proof. Since R( �U) = R( �U), there exists an invertible matrix
466
+ W ∈ CS×S such that �U :=
467
+ �UW. Thus, the following
468
+ holds: �U0 = �U0W, �U1 = �U1W. Since W is an invertible
469
+ matrix, �U†
470
+ 0 = W−1 �U†
471
+ 0 and �Ψ = �U†
472
+ 0 �U1 = W−1 �U†
473
+ 0 �U1W =
474
+ W−1 �ΨW. This completes the proof.
475
+ C. Covariance Estimation Error
476
+ In this section, we obtain tail bounds on ∥EL∥2 in terms of
477
+ array parameters in a finite snapshot setting. Such a bound
478
+ brings out the effect of the array geometry on the estimation
479
+ error. Our analysis leverages recent results derived in [27]
480
+ which we specialize for complex Toeplitz Hermitian matrices.
481
+ Some of our intermediate steps depart from [27] by invoking
482
+ a result on the bounding the supremum of a certain spectral
483
+ function from [28]. We first introduce the key quantities
484
+ and intermediate results on bounding the spectral norm of a
485
+ Toeplitz Hermitian matrix from [28], [29].
486
+ Let M
487
+
488
+ CN×N be any Hermitian symmetric Toeplitz
489
+ matrix. Such a matrix can be completely described by only
490
+ its first column. Consider the “spectral function” associated
491
+ with m = [m−(N−1), . . . , m−1, m0, m1, . . . , mN−1]⊤ [29]:
492
+ fm(θ) = �N−1
493
+ k=−(N−1) mk exp(−jkθ), where mk = Mk+1,1
494
+ and m−k = m∗
495
+ k as a result of the Hermitian Toeplitz structure.
496
+ Evidently, the spectral function is a trigonometric polynomial
497
+ of order N − 1 [28] whose coefficients are determined by the
498
+ vector m. This spectral function fm(θ) can be used to bound
499
+ ∥M∥2 as indicated by the following lemma from [27]–[29]:
500
+ Lemma 2. Let M∈CN×N be a Hermitian symmetric Toeplitz
501
+ matrix and fm be the associated spectral function. Then,
502
+ ∥M∥2 ≤ supθ∈[−π,π] |fm(θ)|.
503
+
504
+ 5
505
+ Lemma 2 indicates that the spectral norm of a Hermitian
506
+ symmetric Toeplitz matrix can be bounded by the supre-
507
+ mum of its associated spectral function. Note that the co-
508
+ variance estimation error EL = Tca − �Tca is a Toeplitz
509
+ Hermitian matrix, satisfying EL
510
+ =
511
+ T (e), where e
512
+ =
513
+ [e−Mca, . . . , e−1, e0, e1, . . . , eMca]T is conjugate symmetric
514
+ and ei = ti − ˆti. Therefore, to bound ∥EL∥2 using Lemma 2,
515
+ we need to investigate the spectral function fe(θ):
516
+ fe(θ) :=
517
+ Mca
518
+
519
+ k=−Mca
520
+ ek exp(−jθk).
521
+ (18)
522
+ Towards this purpose, define Λ(θ), for 1 ≤ m, n ≤ P,
523
+ [Λ(θ)]m,n =
524
+ 1
525
+ |Ωdm−dn| exp(j(dm − dn)θ),
526
+ (19)
527
+ and Ey := Ry − Rav, where Ry and Rav are defined in (10)
528
+ and (11), respectively. The elements of Ey are given by:
529
+ [Ey]m,n = tdm−dn − �tdm−dn = edm−dn, 1 ≤ m, n ≤ P. (20)
530
+ Proposition 1 provides a compact representation of fe(θ).
531
+ Proposition 1. Let fe(θ) be the spectral function defined in
532
+ (18). Then, the following equality holds: fe(θ) = tr (EyΛ(θ))
533
+ where Λ(θ) and Ey are defined in (19) and (20), respectively.
534
+ Proof.
535
+ tr (EyΛ(θ)) =
536
+ P
537
+
538
+ m,n=1
539
+ [Ey]m,n[Λ(θ)]n,m =
540
+ P
541
+
542
+ m,n=1
543
+ edm−dn
544
+ e−j(dm−dn)θ
545
+ |Ωdm−dn|
546
+ =
547
+ Mca
548
+
549
+ s=��Mca
550
+
551
+ m,n
552
+ dm−dn=s
553
+ es
554
+ exp(−jsθ)
555
+ |Ωs|
556
+ =
557
+ Mca
558
+
559
+ s=−Mca
560
+ es exp(−jsθ).
561
+ We introduce a quantity referred to as “Redundancy coeffi-
562
+ cient” that will play an important role in bounding ∥EL∥2.
563
+ Definition III.1 (Redundancy Coefficient). Given a hole-free
564
+ sparse array S, let Mca be the largest element in its differ-
565
+ ence set DS. The redundancy coefficient ∆(S) is defined as:
566
+ ∆(S) := �Mca
567
+ i=0
568
+ 1
569
+ |Ωi|, where set Ωi is defined in Definition II.3.
570
+ The quantity ∆(S) is controlled by the redundancy pattern of
571
+ the sparse array S, i.e., the number of times an element repeats
572
+ in the difference set. We provide an illustrative example to
573
+ show how the quantity ∆(S) grows as a function of P.
574
+ Lemma 3. Given a generalized nested array S(N1,N2)
575
+ nest
576
+ with
577
+ P := N1 + N2 ≥ 3 sensors, the following holds: ln(P) ≤
578
+ ∆(S(N1,N2)
579
+ nest
580
+ )
581
+
582
+ 2 ln(P), if N2
583
+ =
584
+ 1, and P 2/16
585
+
586
+ ∆(S(N1,N2)
587
+ nest
588
+ ) ≤ P 2, if N1 = ⌈P/2⌉ and N2 = ⌊P/2⌋ ≥ 2.
589
+ Proof. Case I (N2 = 1): The choice N2 = 1 corresponds to
590
+ a ULA, with P = N1 + 1 sensors and |Ωi| = P − i, i ≥ 0.
591
+ Therefore, ∆(S(P −1,1)
592
+ nest
593
+ ) = �P −1
594
+ i=0
595
+ 1
596
+ P −i. Such a harmonic sum
597
+ can be bounded as ln(P) ≤ �P −1
598
+ i=0
599
+ 1
600
+ P −i ≤ 1+ln(P) [30]. For
601
+ P ≥ 3, we get the desired bound since 1 + ln(P) ≤ 2 ln(P).
602
+ Case II (N2 = ⌊P/2⌋ ≥ 2): The differences between the
603
+ elements of the outer and inner ULA which are of the form
604
+ k = i(⌈P/2⌉ + 1) − j, 2 ≤ i ≤ ⌊P/2⌋ and 1 ≤ j ≤
605
+ ⌈P/2⌉, satisfy |Ωk| = 1. Therefore, we have ∆(S(N1,N2)
606
+ nest
607
+ ) ≥
608
+ ⌈P/2⌉⌊P/2⌋/2 ≥ (P 2/8 − P/8) ≥ P 2/16, where the first
609
+ inequality follows from ⌊P/2⌋ − 1 ≥ ⌊P/2⌋/2 and the last
610
+ inequality uses P ≤ P 2/2 for P ≥ 2. Since S(N1,N2)
611
+ nest
612
+ is hole
613
+ free, it implies 1/|Ωi| ≤ 1 for all 0 ≤ i ≤ Mca. Therefore, we
614
+ can bound ∆(S(N1,N2)
615
+ nest
616
+ ) ≤ Mca + 1 ≤ P 2.
617
+ As the following Theorem will show, ∆(S) determines the
618
+ sample complexity for controlling the covariance estimation
619
+ error. Therefore, with the same number of sensors, two differ-
620
+ ent array geometries could require drastically different sample
621
+ complexity for ensuring that the covariance estimation error is
622
+ bounded by the same quantity with high probability.
623
+ Theorem 1. Consider the measurement model (1) obeying
624
+ assumptions [A1-A2], where S is a hole-free sparse array with
625
+ redundancy coefficient ∆(S). Let Tca ∈ CMca+1×Mca+1 be
626
+ the coarray covariance matrix defined in (6) and �Tca be its
627
+ estimate given by (9). For any ϵ ≥ 0, we have
628
+ P
629
+
630
+ ∥Tca − �Tca∥2 ≥ ϵ
631
+
632
+ ≤ 8Mca exp
633
+
634
+ −c1L min
635
+
636
+ c2ϵ2
637
+ ∥Ry∥2
638
+ 2∆(S) ,
639
+ ϵ
640
+ ∥Ry∥2
641
+
642
+ ∆(S)
643
+ ��
644
+ ,
645
+ where c1 and c2 are a positive universal constants.
646
+ Proof. The proof is in Appendix A-B.
647
+ D. Frequency/Angle Estimation Error of Coarray ESPRIT
648
+ We next bound the DOA estimation error in terms of the
649
+ covariance estimation error EL. Finally, we will combine this
650
+ bound with the probabilistic bounds on ∥EL∥2 in Theorem 1
651
+ to obtain the main sample complexity result (in Theorem 3).
652
+ We will use the matching distance metric, defined as follows
653
+ [20]:
654
+ md(θ, ˆθ) := min
655
+ Π∈P max
656
+ j
657
+ min
658
+ k∈Z |ˆωΠ(j) − ωj + k|
659
+ (21)
660
+ where ωi (ˆωi) are the normalized DOAs and P denotes the
661
+ set of all possible permutations on {1, 2, · · · , S}.
662
+ For our analysis, we will use an additional assumption that
663
+ will be invoked whenever suitable:
664
+ [A3] The number of sources S = O(1), i.e., S is held
665
+ constant and does not grow with P.
666
+ Eigen Gap condition: Define:
667
+ β := pminσ2
668
+ S(AUS(θ)) − σ2.
669
+ (22)
670
+ Henceforth, we will refer the condition β > 0 as the “eigen
671
+ gap condition” and it will play an important role in our analy-
672
+ sis. Recall, from the definition of Tca = AUS(θ)PAUS(θ)H +
673
+ σ2, β > 0 ensures that there is a margin between the smallest
674
+ singular value of AUS(θ)PAUS(θ)H and the (S+1)th singular
675
+ value of Tca (determined by the noise σ) as pminσ2
676
+ S(AUS(θ))
677
+ is a lower bound on σS(Tca). The following theorem relates
678
+ the DOA estimation error in terms of matching distance to the
679
+ covariance estimation error EL, provided the latter is upper
680
+ bounded by a suitable quantity.
681
+ Theorem 2. Let S be a hole-free sparse linear array with P
682
+ sensors. Let Tca ∈ CMca+1×Mca+1 be the coarray covariance
683
+
684
+ 6
685
+ matrix defined in (6) and �Tca be its estimate given by (9).
686
+ If assumption [A3] holds and the following conditions are
687
+ satisfied:
688
+ β > 0
689
+ and ∥EL∥2 ≤ CSβ
690
+ (23)
691
+ then the matching distance error of ESPRIT algorithm satisfies
692
+ md(θ, ˆθ) ≤ q∥EL∥2
693
+ (24)
694
+ where
695
+ EL,
696
+ β
697
+ are
698
+ defined
699
+ in
700
+ (12),
701
+ (22),
702
+ q
703
+ =
704
+ (C′
705
+ S
706
+ √Mca + 1)/(βσS(AUS(θ))). Quantities CS, C′
707
+ S
708
+ are
709
+ dependent only on S which is assumed to be O(1).
710
+ Proof. See Appendix B-A.
711
+ The following Lemma obtains both lower and upper bounds
712
+ on the spectral norm ∥Ry∥2 that are valid regardless of the
713
+ array geometry.
714
+ Lemma 4. Consider the covariance matrix Ry given by (2),
715
+ where S is any (sparse) array. Given a fixed S, signal powers
716
+ p and noise power σ2, for all θ the following holds:
717
+ pminP ≤ ∥Ry∥2 ≤ pmaxPS + σ2.
718
+ (25)
719
+ Proof. For any S, we can bound the spectral norm ∥Ry∥2 as:
720
+ ∥Ry∥2 = σ1(AS(θ)PAS(θ)H) + σ2 ≤ pmaxσ1(AS(θ))2 + σ2
721
+ ≤ pmaxPS + σ2
722
+ where
723
+ the
724
+ last
725
+ inequality
726
+ follows
727
+ from
728
+ the
729
+ fact
730
+ that
731
+ σ1(AS(θ))2
732
+
733
+ ∥AS(θ)∥2
734
+ F
735
+ =
736
+ PS. Similarly, we can
737
+ lower bound the norm ∥Ry∥2 ≥ σ1(AS(θ)PAS(θ)H) ≥
738
+ pminσ2
739
+ 1(AS(θ)) ≥ pmin∥AS(θ)∥2
740
+ F /S = pminP.
741
+ Combining Theorem 1 and 2, we next present a sufficient
742
+ condition on the number (L) of snapshots in terms of the
743
+ model parameters (array geometry, SNR and source config-
744
+ uration) that allows us to bound the matching distance error
745
+ by a prescribed ϵ with probability at least 1 − δ.
746
+ Theorem 3. Consider the measurement model (1), where S
747
+ is a hole-free sparse array. Suppose β > 0 and the statistical
748
+ assumptions [A1-A3] hold. Then for any 0 < δ < 1 and ϵ > 0,
749
+ the matching distance error satisfies md(θ, ˆθ) ≤ min(ϵ, CSβq)
750
+ with probability at least 1 − δ, provided
751
+ L≥c3 ln
752
+ �8Mca
753
+ δ
754
+
755
+ max
756
+
757
+ q2
758
+ 1∆(S)
759
+ c2ϵ2
760
+ ,q1
761
+
762
+ ∆(S)
763
+ ϵ
764
+ ,L2
765
+ 0
766
+ c2
767
+ ,L0
768
+
769
+ . (26)
770
+ Here q1 = q∥Ry∥2, L0 = ∥Ry∥2
771
+
772
+ ∆(S)/(CSβ) and c2, c3
773
+ are universal constants.
774
+ Proof. See Appendix B-C
775
+ Corollary 1. Consider the measurement model (1), where
776
+ S is a hole-free sparse array. Suppose β
777
+ > 0 and the
778
+ statistical assumptions [A1-A3] hold. Then for any 0 < δ < 1
779
+ and 0 < ϵ ≤ q min(CSβ, pminP
780
+
781
+ ∆(S)/c2), the matching
782
+ distance error satisfies md(θ, ˆθ) ≤ ϵ with probability at least
783
+ 1 − δ provided
784
+ L ≥ c3 ln (8Mca/δ) q2
785
+ 1∆(S)/(c2ϵ2),
786
+ (27)
787
+ where q1, L0,c2, c3 are given in Theorem 3.
788
+ Proof. Using the lower bound on ∥Ry∥2 from Lemma 4,
789
+ we can see ϵ
790
+
791
+ min(CSβq, q1
792
+
793
+ ∆(S)/c2). Since β
794
+
795
+ ϵ/(CSq),
796
+ this
797
+ implies
798
+ L0
799
+
800
+ q1
801
+
802
+ ∆(S)/ϵ.
803
+ This
804
+ in-
805
+ equality
806
+ also
807
+ implies
808
+ L2
809
+ 0/c2
810
+
811
+ q2
812
+ 1∆(S)/(c2ϵ2).
813
+ Us-
814
+ ing ϵ
815
+
816
+ q1
817
+
818
+ ∆(S)/c2, we can conclude that L0
819
+
820
+ (q1
821
+
822
+ ∆(S)/ϵ2)(q1
823
+
824
+ ∆(S)/c2) = q2
825
+ 1∆(S)
826
+ c2ϵ2 . Therefore, (27) im-
827
+ plies (26) since max( q2
828
+ 1∆(S)
829
+ c2ϵ2 ,
830
+ q1√
831
+ ∆(S)
832
+ ϵ
833
+ , L2
834
+ 0
835
+ c2 , L0) = q2
836
+ 1∆(S)
837
+ c2ϵ2 , and
838
+ the proof is completed.
839
+ Role of redundancy coefficient in determining Temporal
840
+ Sample Complexity: Corollary 1 indicates that if the number
841
+ of snapshots grows proportional to the redundancy coefficient
842
+ ∆(S), then it is possible to bound the matching distance error
843
+ by an arbitrarily small ϵ. Recall that ∆(S) is a function of
844
+ the redundancy pattern of S and from Lemma 3 we have
845
+ ∆(Sula) = Θ(ln(P)) and ∆(Snest) = Θ(P 2). Based on this, at
846
+ a cursory glance, one may be tempted to conclude from (27)
847
+ that for the same number of sensors, the snapshot requirement
848
+ for the nested array is significantly larger than for the ULA.
849
+ This is also consistent with an existing misconception that co-
850
+ array based processing requires a large number of snapshots.
851
+ However, in reality the sample complexity is also controlled
852
+ by the interaction of ∆(S) with other geometry dependent
853
+ terms in (27) such as q1 = q∥Ry∥2, which in turn depend on
854
+ both the physical array and coarray size. In the next section,
855
+ we clarify this misconception regarding the seemingly higher
856
+ snapshot requirement of nested arrays in the setting S = O(1).
857
+ Spatiotemporal trade-offs: The snapshot requirement in
858
+ Corollary 1 is inversely proportional to β (since q ∝
859
+ 1
860
+ β ).
861
+ If the array geometry and source configuration are kept
862
+ fixed and we increase the SNR (either by increasing pmin
863
+ or decreasing noise power σ), Corollary 1 suggests that it
864
+ is possible to achieve the same probability of error with
865
+ fewer snapshots. Our simulations also are consistent with
866
+ this theoretical prediction. This SNR and geometry dependent
867
+ snapshot characterization is another novel contribution of our
868
+ work.
869
+ IV. A CLOSER LOOK AT THE SEPARATION CONDITION FOR
870
+ SUPER-RESOLUTION WITH SPARSE ARRAYS
871
+ In order to understand the behavior of the smallest non-
872
+ zero singular value σS(AUS(θ)), we consider the notion of
873
+ minimum separation [20]:
874
+ ∆min(θ) = min
875
+ i,j∈Ω
876
+ i̸=j
877
+ min
878
+ k∈Z
879
+ ���ωi − ωj + k
880
+ ���
881
+ (28)
882
+ where ωi is the normalized spatial frequency corresponding to
883
+ direction θi. By definition, for all θ we have 0 ≤ ∆min(θ) ≤
884
+ 1/2. Instead of analyzing an arbitrary source configuration θ,
885
+ one can obtain a more interpretable condition by representing
886
+
887
+ 7
888
+ (23) as a function of the minimum separation. The source
889
+ configurations where ∆min(θ) is larger than some threshold
890
+ inversely proportional to Mca +1 (i.e. ∆min(θ) >
891
+ γ
892
+ Mca+1, γ >
893
+ 1) will be referred to as the “well-separated” regime. We will
894
+ inspect what this means for specific array geometries such as
895
+ the ULA and nested array, and obtain tight bounds on L.
896
+ A. The “Well-Separated” Case
897
+ In this section, we turn our attention to how the eigen gap
898
+ condition can be utilized to obtain sufficient conditions on
899
+ SNR for different array geometries in the “well-separated”
900
+ regime. Let V ∈ CK×S be a Vandermonde matrix, with
901
+ [V]m,n = zm−1
902
+ n
903
+ where {zn}S
904
+ n=1 are the so called “nodes”
905
+ of the matrix. We begin by summarizing results from [21],
906
+ [24], [31], [32] which characterize the minimum singular value
907
+ of a Vandermonde matrix in the well-separated regime. The
908
+ following Lemma follows from [32, Eq. (32)] which is an
909
+ intermediate result from [32, Theorem 1].
910
+ Lemma 5. Let V(α) ∈ CK×S be a Vandermonde matrix with
911
+ zn = ej2παn for 1 ≤ n ≤ S and S ≤ K. If αi ∈ [0, 1) are all
912
+ distinct and satisfy:
913
+ min
914
+ i,j∈Ω
915
+ i̸=j
916
+ min
917
+ k∈Z
918
+ ���αi − αj + k
919
+ ��� ≥ γ
920
+ K
921
+ (29)
922
+ for some constant γ > 1, then the following holds:
923
+ σS(V(α))2 ≥ K/C′, where C′ := γ/(γ − 1).
924
+ (30)
925
+ From Lemma 5, for S = Sula if the source configurations θ
926
+ satisfies ∆min(θ) ≥ γ
927
+ P for some γ > 1 and S ≤ P then we
928
+ have the following lower bound:
929
+ σS(AUS(θ))2 ≥ P/C′
930
+ (31)
931
+ In the following Proposition, we apply Lemma 5 to character-
932
+ ize lower bounds on σS(AUS) for the nested array.
933
+ Proposition 2 (Well-Separated). Let S = S(N1,N2)
934
+ nest
935
+ be a nested
936
+ array with N1 = ⌈P/2⌉ and N2 = ⌊P/2⌋ with P ≥ 3.
937
+ Suppose ∆min(θ) ≥
938
+
939
+ P 2 for some γ > 1 and S ≤ P 2/5.
940
+ Then, the following lower bound holds:
941
+ σS(AUS(θ))2 ≥ P 2/C′
942
+ n, where C′
943
+ n = 5γ/(γ − 1).
944
+ (32)
945
+ Proof. For the nested array with N1 = ⌈P/2⌉ and N2 =
946
+ ⌊P/2⌋, from (3) we have Mca + 1 ≥ P 2
947
+ 5 . Hence, ∆min(θ) ≥
948
+
949
+ P 2 implies ∆min(θ) ≥
950
+ γ
951
+ Mca+1. Therefore, the condition on
952
+ ∆min(θ) in Lemma 5 holds and we have the desired lower
953
+ bound: σS(AUS(θ))2 ≥ Mca+1
954
+ C′
955
+ ≥ ( γ−1
956
+ γ ) P 2
957
+ 5 = P 2
958
+ C′n .
959
+ Proposition 2 shows that for a nested array, the sources
960
+ are well-separated if ∆min(θ) ≥ 5γ/P 2 and in this case,
961
+ σS(AUS(θ)) grows as Ω(P), owing to the the larger difference
962
+ coarray of a nested array.
963
+ In order to highlight the dependence of sample complexity
964
+ only on key model parameters, we define quantities to combine
965
+ parameters that are held fixed (such as S, pmin, pmax, σ):
966
+ Cula(S, σ, pmax) := 8C
967
+ ′2
968
+ S C
969
+ ′3 c3
970
+ c2
971
+ (S +
972
+ σ2
973
+ pmax
974
+ )2
975
+ (33)
976
+ Cnest(S, σ, pmax) := 4C
977
+ ′2
978
+ S C
979
+ ′3
980
+ n
981
+ c3
982
+ c2
983
+ (S +
984
+ σ2
985
+ pmax
986
+ )2
987
+ (34)
988
+ where C′, C′
989
+ n are universal constants and CS defined in
990
+ Theorem 2 is dependent only on S. Using Proposition 2, we
991
+ now specialize Corollary 1 for the ULA and nested array.
992
+ Theorem 4. Let S = Sula be a ULA with P sensors. Suppose
993
+ the minimum angular separation between the sources, and the
994
+ SNR satisfy the following conditions for some γ > 1:
995
+ ∆min(θ) ≥ γ/P,
996
+ pmin/σ2 > 2C′/P, where C′ =
997
+ γ
998
+ γ − 1.
999
+ Under assumptions [A1-A3], for any 0 < δ < 1 and 0 < ϵ ≤
1000
+ C1(S) := CSC′
1001
+ S, md(θ, �θ) ≤ ϵ is satisfied with probability at
1002
+ least 1 − δ, provided P ≥ 3 and
1003
+ L ≥ Cula(S, σ, pmax)
1004
+ ϵ2
1005
+ �pmax
1006
+ pmin
1007
+ �2 �
1008
+ ln
1009
+ �8P
1010
+ δ
1011
+ ��2
1012
+ .
1013
+ (35)
1014
+ Proof. From Lemma 5, if ∆min(θ)
1015
+
1016
+ γ/P, we have
1017
+ σ2
1018
+ S(AUS(θ)) ≥
1019
+ P
1020
+ C′ . Under the assumption on the SNR, we
1021
+ have pminσ2
1022
+ S(AUS(θ)) ≥ pmin P
1023
+ C′ > 2σ2 which ensures β >
1024
+ pminσ2
1025
+ S(AUS(θ))/2 > 0. Notice that for ULA Mca + 1 = P
1026
+ and from the fact that σ2
1027
+ S(AUS(θ)) ≥
1028
+ P
1029
+ C′ , we can obtain the
1030
+ following bound:
1031
+ q =
1032
+ C′
1033
+ S
1034
+
1035
+ P
1036
+ βσS(AUS(θ)) ≤
1037
+ 2C′
1038
+ S
1039
+
1040
+ P
1041
+ pminσ3
1042
+ S(AUS(θ)) ≤
1043
+ C′′
1044
+ S
1045
+ pminP
1046
+ (36)
1047
+ where C′′
1048
+ S = 2C′
1049
+ SC′1.5. Notice that:
1050
+ CSβq = CSC′
1051
+ S
1052
+ √Mca + 1
1053
+ σS(AUS(θ))
1054
+ ≥ C1(S)
1055
+
1056
+ P
1057
+
1058
+ P
1059
+ = C1(S)
1060
+ (37)
1061
+ where the inequality follows from σS(AUS)≤∥AUS∥F /
1062
+
1063
+ S =
1064
+
1065
+ P. Using the fact that β ≤ pminσ2
1066
+ S(AUS(θ)), and the above
1067
+ lower bound on σS(AUS(θ)), we obtain
1068
+ q ≥
1069
+ C′
1070
+ S
1071
+
1072
+ P
1073
+ pminσ3
1074
+ S(AUS(θ)) ≥
1075
+ C′
1076
+ S
1077
+ pminP .
1078
+ (38)
1079
+ Therefore,
1080
+ qpminP
1081
+
1082
+ ∆(Sula)/c2
1083
+
1084
+ C′
1085
+ S
1086
+
1087
+ ∆(Sula)/c2
1088
+
1089
+ C′
1090
+ S
1091
+
1092
+ ln(P)/c2, where the last inequality follows from the
1093
+ lower bound on ∆(Sula) in Lemma 3. Recall that c2 < 1
1094
+ 2, and therefore for P ≥ 3,
1095
+
1096
+ ln P/c2 > 1. This implies that
1097
+ min(C1(S), C′
1098
+ S
1099
+
1100
+ ln(P)/c2) = C1(S). Combining this with
1101
+ (37), we have ϵ ≤ C1(S) = min(C1(S), C′
1102
+ S
1103
+
1104
+ ln(P)/c2) ≤
1105
+ min(CSβq, qpminP√∆Sula/c2), which ensures that the as-
1106
+ 2The constant c2 = 3/16
1107
+
1108
+ 2 is specified in the proof of Theorem 1 in
1109
+ Appendix A.
1110
+
1111
+ 8
1112
+ sumption on ϵ in Corollary 1 holds. From Lemma 4, we have
1113
+ ∥Ry∥2 ≤ pmaxPS + σ2. Using this bound and (36), we get:
1114
+ q1
1115
+
1116
+ ∆(Sula) ≤
1117
+ C′′
1118
+ S
1119
+ pminP (PSpmax + σ2)
1120
+
1121
+ 2 ln(P)
1122
+ = C′′
1123
+ S(S +
1124
+ σ2
1125
+ pmaxP )
1126
+ �pmax
1127
+ pmin
1128
+ � �
1129
+ 2 ln(P)
1130
+ ≤ �C1(S, σ, pmax)
1131
+ �pmax
1132
+ pmin
1133
+ � �
1134
+ ln(8P/δ)
1135
+ (39)
1136
+ where �C1(S, σ, pmax) := (S +
1137
+ σ2
1138
+ pmax )
1139
+
1140
+ 2C′′
1141
+ S. The upper bound
1142
+ follows from the observations that (S +
1143
+ σ2
1144
+ pmaxP ) ≤ (S +
1145
+ σ2
1146
+ pmax )
1147
+ for all P ≥ 1 and ln(P) ≤ ln(8P/δ) for any δ < 1. Notice
1148
+ from (33), that Cula(S, σ, pmax) = c3/c2 �C2
1149
+ 1(S, σ, pmax). From
1150
+ (39), we have
1151
+ c3 ln(8P
1152
+ δ )q2
1153
+ 1∆(Sula)
1154
+ c2ϵ2
1155
+ ��
1156
+ c3
1157
+ c2ϵ2 �C2
1158
+ 1(S, σ, pmax)(pmax
1159
+ pmin
1160
+ ln(8P/δ))2
1161
+ = Cula(S, σ, pmax)
1162
+ ϵ2
1163
+ �pmax
1164
+ pmin
1165
+ �2
1166
+ (ln(8P/δ))2 .
1167
+ Therefore, (35) implies (27) and the proof is completed by
1168
+ applying Corollary 1 since β > 0 and the conditions on ϵ and
1169
+ L required for applying the corollary are satisfied.
1170
+ Theorem 5. Let S = S(N1,N2)
1171
+ nest
1172
+ be a nested array with
1173
+ N1 = ⌈P/2⌉ and N2 = ⌊P/2⌋. Suppose the minimum
1174
+ angular separation between the sources, and the SNR satisfy
1175
+ the following conditions for some γ > 1:
1176
+ ∆min(θ) ≥ 5γ
1177
+ P 2 ,
1178
+ pmin
1179
+ σ2
1180
+ > 2C′
1181
+ n
1182
+ P 2 , where C′
1183
+ n = 5γ/(γ − 1).
1184
+ Under the assumptions [A1-A3], for any δ > 0 and 0 <
1185
+ ϵ ≤ C2(S) :=
1186
+
1187
+ 1/5CSC′
1188
+ S, md(θ, �θ) ≤ ϵ is satisfied with
1189
+ probability at least 1 − δ provided P ≥ 3 and
1190
+ L ≥ Cnest(S, σ, pmax)
1191
+ ϵ2
1192
+ �pmax
1193
+ pmin
1194
+ �2
1195
+ ln
1196
+ �8P 2
1197
+ δ
1198
+
1199
+ .
1200
+ (40)
1201
+ Proof. From Proposition 2, if ∆min(θ) ≥ 5γ/P 2, we have
1202
+ σ2
1203
+ S(AUS(θ)) ≥ P 2
1204
+ C′n . Following the same argument as Theo-
1205
+ rem 4, this ensures that β > 0. Using the fact that Mca + 1 ≤
1206
+ P 2 (from (3)) and the lower bound on σ2
1207
+ S(AUS(θ)), we obtain
1208
+ q ≤
1209
+ C′
1210
+ SP
1211
+ βσS(AUS(θ)) ≤
1212
+ 2C′
1213
+ SP
1214
+ pminσ3
1215
+ S(AUS(θ)) ≤
1216
+ ¯C′′
1217
+ S
1218
+ pminP 2
1219
+ (41)
1220
+ where
1221
+ ¯C′′
1222
+ S
1223
+ :=
1224
+ 2C′
1225
+ SC′1.5
1226
+ n
1227
+ . Notice that σS(AUS(θ))
1228
+
1229
+ ∥AUS∥F /
1230
+
1231
+ S = √Mca + 1 ≤ P. Hence, similar to (37),
1232
+ we can establish that CSβq
1233
+
1234
+ C2(S). Using the fact
1235
+ P 2/5 ≤ Mca + 1 from (3), similar to (38) we obtain q ≥
1236
+ C′
1237
+ SP
1238
+
1239
+ 5pminσ3
1240
+ S(AUS(θ)) ≥
1241
+ C′
1242
+ S
1243
+
1244
+ 5pminP 2 . From Lemma 3, ∆(Snest) ≥
1245
+ P 2/16. It follows that qpminP
1246
+
1247
+ ∆(Snest)/c2 ≥
1248
+ C′
1249
+ S
1250
+ 4c2
1251
+
1252
+ 5. Since
1253
+ 4c2 < 1, it follows that min(C2(S), C′
1254
+ S/(4c2
1255
+
1256
+ 5)) = C2(S)
1257
+ and therefore ϵ ≤ C2(S) = min(C2(S), C′
1258
+ S/(4c2
1259
+
1260
+ 5)) en-
1261
+ sures that the assumption on ϵ in Corollary 1 holds. Using
1262
+ ∆(Snest) ≤ P 2 (from Lemma 3), Lemma 4, and (41), we get:
1263
+ q1
1264
+
1265
+ ∆(Snest) ≤ �C1(S, σ, pmax)(pmax/pmin),
1266
+ (42)
1267
+ where �C1(S, σ, pmax)=(S +
1268
+ σ2
1269
+ pmax ) ¯C′′
1270
+ S. By (42), we have
1271
+ ln(8Mca
1272
+ δ
1273
+ )c3q2
1274
+ 1∆(Snst)
1275
+ c2ϵ2
1276
+
1277
+ c3
1278
+ c2ϵ2 �C2
1279
+ 1(S, σ, pmax) ln(8P 2/δ)(pmax
1280
+ pmin
1281
+ )2
1282
+ = Cnest(S, σ, pmax)
1283
+ ϵ2
1284
+ �pmax
1285
+ pmin
1286
+ �2 �
1287
+ ln(8P 2/δ)
1288
+
1289
+ .
1290
+ Therefore (40) implies (27) and the proof is again completed
1291
+ by applying Corollary 1 since β > 0 and the conditions on ϵ
1292
+ and L required for applying the corollary are satisfied.
1293
+ Note that the range of values for ϵ where Theorem 4 and
1294
+ 5 are applicable differ slightly. However in the regime ϵ ≤
1295
+ min(C1(S), C2(S)) = C2(S) and P ≥ 3, we can fairly
1296
+ compare the two array geometries.
1297
+ Towards higher resolution with same snapshots: Theorem 4
1298
+ states that for a ULA, the matching distance error for Coarray
1299
+ ESPRIT can be bounded by ϵ provided (i) the snapshots
1300
+ scales only (poly)logarithmically in the dimension of the
1301
+ coarray covariance matrix and (ii) the minimum separation
1302
+ is ∆min ≥ γ/P. On the other hand, Theorem 5 guarantees
1303
+ that for a nested array with P sensors, it is possible to bound
1304
+ the matching distance error by the same ϵ with order wise the
1305
+ same number of snapshots (L = Ω(ln(P 2)), but with a relaxed
1306
+ separation condition that allows ∆min to be ∆min = Ω(1/P 2).
1307
+ This validates the superior resolution properties of nested
1308
+ arrays compared to ULA with the same budget of temporal
1309
+ snapshots. This has been empirically observed in the literature,
1310
+ but never theoretically established, until now.
1311
+ Noise Resilience of Nested Arrays: If we consider the
1312
+ separation regime ∆min = Ω(1/P) that is applicable for both
1313
+ the ULA and nested array, Theorems 4 and 5 indicate that
1314
+ the SNR (pmin/σ2) requirement for the nested array can be
1315
+ P times smaller than that of the ULA, in order to achieve the
1316
+ same DOA error bound with order-wise the same number of
1317
+ snapshots (L = Ω(ln P)). This brings out another advantage of
1318
+ nested arrays in terms of robustness against noise, especially
1319
+ in the low-SNR regime [8].
1320
+ Effect of Dynamic Range: Our analysis also reveals the chal-
1321
+ lenge posed by sources with higher dynamic range pmax/pmin
1322
+ as also observed in [22]. Theorem 5 suggests that at the
1323
+ same SNR (defined with respect to the weakest source pmin),
1324
+ more snapshots maybe needed for resolving sources with
1325
+ disproportionately varying powers (higher pmax compared to
1326
+ the fixed pmin). As will be shown, the numerical results are
1327
+ indeed consistent with the prediction made by our analysis.
1328
+ B. The Myth of Large Snapshots: Correlation Error vs. Angle
1329
+ Estimation Error
1330
+ Since nested (and other) sparse arrays realize the virtual
1331
+ difference coarray by correlation-processing, it is commonly
1332
+ believed that one needs a large number (L = Ω(P 2)) of
1333
+ temporal snapshots to estimate Θ(P 2) (cross) correlation
1334
+ values between sensor pairs. This ‘myth’ of large snapshots
1335
+ (that grows quadratically in the number of sensors P) is
1336
+ partially true, if our goal is to estimate the coarray covariance
1337
+ matrix Tca. If we only allow L to scale as L = Θ(log P)
1338
+
1339
+ 9
1340
+ (the so-called sample-starved regime), then one may indeed
1341
+ incur large error in covariance estimation. However, Theorem
1342
+ 5 shows that the angle estimation error can be made arbitrarily
1343
+ small (ϵ) with high probability (1 − δ) provided L scales
1344
+ only as Ω( 1
1345
+ ϵ2 ln(8P 2/δ)), despite the possibility of the coarray
1346
+ covariance error of a nested array increasing with P in this
1347
+ snapshot-starved regime. This surprising phenomenon is due
1348
+ to the fact that the potentially large covariance estimation error
1349
+ (which can even grow with P in this regime) can actually be
1350
+ mitigated/counterbalanced by the enhanced aperture/difference
1351
+ set of the nested array that results in a large restricted smallest
1352
+ singular value σS(AUS). As long as ∆min(θ) ≥ 5γ
1353
+ P 2 , σ2
1354
+ S(AUS)
1355
+ scales as cP 2 (for some constant c), and this helps us obtain
1356
+ reliable angle estimation, although the covariance estimates
1357
+ may be unreliable.
1358
+ V. SIMULATIONS
1359
+ We numerically investigate the useful SNR regime for coarray
1360
+ processing (Section V-A), the impact of SNR and the number
1361
+ of snapshots on DOA estimation error (V-B and V-C), the
1362
+ relationship between DOA and covariance estimation error
1363
+ (V-D), and the effect of the dynamic range of source powers
1364
+ on resolving two closely spaced sources (V-E).
1365
+ A. When is Coarray-Based DOA Estimation Beneficial?
1366
+ We begin by examining under which circumstances coarray-
1367
+ based algorithms offer an advantage over more conventional
1368
+ DOA estimation methods. Specifically, in case of the ULA,
1369
+ we could apply MUSIC or ESPRIT directly to the sample
1370
+ covariance matrix �Ry in (7) instead of the averaged coarray
1371
+ covariance matrix �Tca in (9). Fig. 1 shows the matching
1372
+ distance error of coarray ESPRIT and direct ESPRIT, averaged
1373
+ over 103 Monte Carlo trials, in case of the ULA, and, for
1374
+ comparison, coarray ESPRIT in case of the nested array with
1375
+ the same number of sensors (P = 20). We consider L = 100
1376
+ snapshots, and S = 4 equipower sources equally spaced by
1377
+ ∆ = 2/P. At medium to low SNR, the advantage of coarray-
1378
+ based processing is apparent. At high SNR, the situation is
1379
+ reversed, as the error of direct ESPRIT continues decreasing
1380
+ as a function of SNR, whereas the error of coarray ESPRIT
1381
+ saturates3. However, coarray-based processing—including re-
1382
+ dundancy averaging (8)—can clearly offer significant benefits
1383
+ in SNR or snapshot-limited conditions. As mostly such chal-
1384
+ lenging scenarios are of interest in many applications, we focus
1385
+ on coarray ESPRIT herein.
1386
+ B. Improving Resolution by Increasing SNR or Snapshots
1387
+ Next, we compare the probability of resolution as a function of
1388
+ the minimum separation for the nested array and ULA with
1389
+ the same number of sensors, P = 20. Coarray ESPRIT is
1390
+ employed for both array geometries. We consider two sources
1391
+ with equal power (p1 = p2) and (normalized) angles ω =
1392
+ {0.1, 0.1 + ∆}. The sources are declared to be successfully
1393
+ resolved when the estimated DOAs satisfy maxi |ˆωi − ωi| ≤
1394
+ ∆/10. Fig. 2 shows the empirical probability of resolution
1395
+ (averaged over 1000 Monte-Carlo trials) for varying separation
1396
+ 3This well-known and fundamental phenomenon is due to the finite-
1397
+ snapshot error of the coarray covariance matrix, see [5]–[7].
1398
+ -20
1399
+ -10
1400
+ 0
1401
+ 10
1402
+ 20
1403
+ 30
1404
+ 40
1405
+ 50
1406
+ SNR (dB)
1407
+ 10-6
1408
+ 10-4
1409
+ 10-2
1410
+ 100
1411
+ Average Matching Distance
1412
+ ULA (coarray ESPRIT)
1413
+ Nested (coarray ESPRIT)
1414
+ ULA (direct ESPRIT)
1415
+ Fig. 1: Comparison of ESPRIT applied to the sample covariance
1416
+ matrix (7) (direct ESPRIT) and the estimated coarray covariance
1417
+ matrix (9) (coarray ESPRIT). Coarray ESPRIT achieves lower angle
1418
+ estimation error than direct ESPRIT at medium to low SNR.
1419
+ 10-3
1420
+ 10-2
1421
+ 10-1
1422
+ Angular Separation
1423
+ 0
1424
+ 0.2
1425
+ 0.4
1426
+ 0.6
1427
+ 0.8
1428
+ 1
1429
+ Probability of resolution
1430
+ # Sensors = 20, Snapshots = 55
1431
+ = (1/P)
1432
+ = (1/P2)
1433
+ ULA (SNR = 0 dB)
1434
+ Nested (SNR = 0 dB)
1435
+ ULA (SNR = -16 dB)
1436
+ Nested (SNR = -16 dB)
1437
+ 10-3
1438
+ 10-2
1439
+ 10-1
1440
+ Angular Separation
1441
+ 0
1442
+ 0.2
1443
+ 0.4
1444
+ 0.6
1445
+ 0.8
1446
+ 1
1447
+ Probability of resolution
1448
+ # Sensors = 20, SNR = 0 dB
1449
+ = (1/P)
1450
+ = (1/P2)
1451
+ ULA (L = 55)
1452
+ Nested (L = 55)
1453
+ ULA (L = 600)
1454
+ Nested (L = 600)
1455
+ Fig. 2: Probability of resolution vs. source separation for different
1456
+ SNR levels (top) and number of snapshots (bottom). Increasing either
1457
+ improves resolution for both arrays.
1458
+ ∆ and a fixed number of snapshots L = 55 and SNR = 0 and
1459
+ −16 dB. We observe that both array geometries can operate
1460
+ at a smaller separation at a higher SNR, i.e., smaller σ/pmin
1461
+ ratio. Indeed, the transition from low to high probability of
1462
+ resolution occur around ∆ ∝ 1/P for the ULA and ∆ ∝ 1/P 2
1463
+ for the nested array, as predicted by Theorems 4 and 5. It is
1464
+ also possible to enhance resolution by increasing the number
1465
+ of snapshots, as Fig. 2 demonstrates. Here, the SNR is fixed
1466
+ at 0 dB and the number of snapshots is L = 55 and L = 600,
1467
+ respectively.
1468
+ C. Snapshot and SNR Trade-off
1469
+ Section V-B showed that SNR and the number of temporal
1470
+ snapshots can be exchanged for improved resolution. We now
1471
+ study this trade-off in further detail. We consider S = 2
1472
+ equipowered sources located at ω = {0.1, 0.1 + ∆}, where
1473
+ ∆ ∈ {2/P, 2/P 2} and P = 20. Fig. 3 shows the separation-
1474
+ relative matching distance error md(θ, �θ)/∆ (averaged over
1475
+ 103 Monte Carlo trials) as a function of both the number
1476
+ of snapshots and SNR. Firstly, fewer snapshots are required
1477
+ at higher SNR (and vice versa) to obtain the same recovery
1478
+ error, both in case of the ULA (left column) and nested array
1479
+ (right column). This supports Theorem 3, where the match-
1480
+
1481
+ 10
1482
+ ing distance depends on the number of snapshots and SNR
1483
+ through (22) and (26), respectively. Secondly, the nested array
1484
+ displays a more advantageous trade-off between snapshots and
1485
+ SNR compared to the ULA for both source separation 2/P
1486
+ (top row) and 2/P 2 (bottom row). The benefit is especially
1487
+ apparent for ∆ = 2/P 2, where the nested array has a greatly
1488
+ larger range of operating points where the relative matching
1489
+ distance is low, as predicted by Theorem 5. Note that the gray
1490
+ pixels correspond to a relative error of approximately 10% of
1491
+ the separation, whereas white corresponds ≤ 1% error.
1492
+ Fig. 3: Relative matching distance error md(θ, �θ)/∆ as a function of
1493
+ snapshots and SNR. The nested array (right column) achieves lower
1494
+ error than the ULA (left column) for both source separation ∆ = 2/P
1495
+ (top row) and ∆ = 2/P 2 (bottom row).
1496
+ D. DOA and Covariance Estimation Error
1497
+ Next, we illustrate an intriguing benefit of coarray-based DOA
1498
+ estimation in case of the nested array. We consider the average
1499
+ DOA matching distance and average covariance estimation
1500
+ error defined as ∥Tca − �Tca∥2 for a varying number of
1501
+ sensors P and S = 4 equipower sources equally spaced by
1502
+ ∆ ∈ {1/P 1.5, 1/P 2}. The number of snapshots is L = 50
1503
+ and SNR = 0 dB. Fig. 4 shows that the nested array incurs a
1504
+ larger covariance estimation error compared to the ULA with
1505
+ the same number of sensors. However, despite obtaining a
1506
+ worse estimate of the covariance matrix �Tca, the nested array
1507
+ achieves superior DOA estimation performance when coarray
1508
+ ESPRIT is applied to �Tca. In fact, when the separation is
1509
+ ∆ = 1/P 2, the average matching distance no longer decays
1510
+ with P for the ULA, whereas it continues to do so for the
1511
+ nested array. This is enabled by the larger coarray aperture
1512
+ of the nested array, which offsets the effect of finite snapshot
1513
+ covariance estimation error as discussed in Section IV-B. Note
1514
+ that for a fixed number of snapshots and a growing number of
1515
+ sensors P, the entries of the coarray covariance matrix Tca
1516
+ become increasingly challenging to estimate, since the size of
1517
+ Tca is proportional to the number of coarray elements Mca,
1518
+ which is ∝ P for the ULA and ∝ P 2 for the nested array.
1519
+ E. Effect of Dynamic Range of Source Powers
1520
+ In the final experiment, we investigate the ability of coarray
1521
+ ESPRIT to resolve two sources with unequal powers. We set
1522
+ 10
1523
+ 15
1524
+ 20
1525
+ 25
1526
+ 30
1527
+ 35
1528
+ 40
1529
+ Number of sensors (P)
1530
+ 10-4
1531
+ 10-3
1532
+ 10-2
1533
+ 10-1
1534
+ Average Matching
1535
+ Distance Error
1536
+ # Snapshot = 50, SNR = 0 dB
1537
+ Nested (
1538
+ =1/P2)
1539
+ ULA (
1540
+ =1/P2)
1541
+ Nested (
1542
+ =1/P1.5)
1543
+ ULA (
1544
+ =1/P1.5)
1545
+ 10
1546
+ 15
1547
+ 20
1548
+ 25
1549
+ 30
1550
+ 35
1551
+ 40
1552
+ Number of sensors (P)
1553
+ 101
1554
+ 102
1555
+ Average Covariance
1556
+ Estimation Error
1557
+ # Snapshot = 50, SNR = 0 dB
1558
+ Fig. 4: Average matching distance (top) and covariance estimation
1559
+ error (bottom) as a function of the number of sensors P. The
1560
+ DOA estimation error of the nested array decays despite the larger
1561
+ covariance estimation error compared to the ULA.
1562
+ the dynamic range to pmax/pmin ∈ {1, 10} by fixing the power
1563
+ of the weaker source to pmin = 0.2 and varying pmax. Fig. 5
1564
+ shows that the number of snapshots required to distinguish
1565
+ two sources (separated by ∆ = 1/P) is significantly larger
1566
+ when pmax/pmin = 10 compared to pmax/pmin = 1. This
1567
+ is consistent with Theorems 4 and 5, which imply that the
1568
+ sufficient number of snapshots for resolving two sources (with
1569
+ high probability) grows with pmax if pmin and σ are held
1570
+ fixed, irrespective of the array geometry. This brings out a
1571
+ non-trivial dependence of the dynamic range pmax/pmin on
1572
+ the sample complexity. Hence, distinguishing two sources with
1573
+ greatly different powers is more challenging and requires more
1574
+ snapshots than when the powers are equal.
1575
+ 101
1576
+ 102
1577
+ 103
1578
+ 104
1579
+ Snapshots
1580
+ 0
1581
+ 0.2
1582
+ 0.4
1583
+ 0.6
1584
+ 0.8
1585
+ 1
1586
+ Probability of resolution
1587
+ ULA (pmax/pmin = 10)
1588
+ Nested ULA (pmax/pmin = 10)
1589
+ ULA (pmax/pmin = 1)
1590
+ Nested ULA (pmax/pmin = 1)
1591
+ Fig. 5: Effect of dynamic range of source powers on probability of
1592
+ resolution. Coarray ESPRIT requires more snapshots to detect two
1593
+ sources with larger dynamic range pmax/pmin.
1594
+ VI. CONCLUSION
1595
+ This paper investigated angle estimation error of coarray
1596
+ ESPRIT. We considered both additive noise and finite-snapshot
1597
+ covariance estimation error, which we probabilistically char-
1598
+ acterized in the case of Toeplitz covariance matrices. Our
1599
+ results show that if the number temporal snapshots scales
1600
+ logarithmically with the number of sensors, coarray ESPRIT
1601
+ achieves arbitrarily low estimation error with high probability.
1602
+ This also shows that the DOA estimation error can be small
1603
+ even though the covariance estimation error may be large.
1604
+
1605
+ ULA,Separation=2/P
1606
+ 10
1607
+ 100
1608
+ Matchingdistance/separation
1609
+ 5
1610
+ 0
1611
+ -5
1612
+ 10~1
1613
+ -15
1614
+ -20
1615
+ 10~2
1616
+ 101
1617
+ 102
1618
+ 103
1619
+ 104
1620
+ SnapshotsNested,Separation=2/P
1621
+ 10
1622
+ 100
1623
+ Matchingdistance/separation
1624
+ 5
1625
+ SNR (in dB)
1626
+ 0
1627
+ -5
1628
+ 10~1
1629
+ -10
1630
+ -15
1631
+ -20
1632
+ 10~2
1633
+ 101
1634
+ 102
1635
+ 103
1636
+ 104
1637
+ SnapshotsULA, Separation=2/p?
1638
+ 10
1639
+ 100
1640
+ Matchingdistance/separation
1641
+ 5
1642
+ SNR (in dB)
1643
+ 0
1644
+ -5
1645
+ 10~1
1646
+ -10
1647
+ -15
1648
+ -20
1649
+ 10~2
1650
+ 101
1651
+ 102
1652
+ 103
1653
+ 104
1654
+ SnapshotsNested, Separation=2/p?
1655
+ 10
1656
+ 100
1657
+ Matchingdistance/separation
1658
+ 5
1659
+ SNR (in dB)
1660
+ 0
1661
+ -5
1662
+ 10~1
1663
+ -10
1664
+ -15
1665
+ -20
1666
+ 102
1667
+ 101
1668
+ 102
1669
+ 103
1670
+ 104
1671
+ Snapshots11
1672
+ Finally, our theoretical and simulation results demonstrate that
1673
+ sparse arrays can provide higher resolution and better noise
1674
+ resilience compared to the ULA with the same number of
1675
+ sensors and snapshots.
1676
+ APPENDIX A
1677
+ A. Intermediate Results
1678
+ We will first state the complex extension of Hanson-Wright
1679
+ inequality [33], which is obtained by applying [34, Theorem
1680
+ 1.1] with the strategy described on [34, Section 3.1, Page 9].
1681
+ Lemma 6. Let A ∈ Cn×n be a fixed Hermitian matrix.
1682
+ Consider the random vector x = [x1, x2, · · · , xn]⊤ ∈ Cn with
1683
+ independent real and imaginary components Re(xi), Im(xi)
1684
+ satisfying E(Re(xi)) = E(Im(xi)) = 0, and ∥Re(xi)∥ψ2 ≤ K,
1685
+ ∥Im(xi)∥ψ2 ≤ K. Then for any ϵ > 0, we have
1686
+ P(|xHAx − E(xHAx)|>ϵ) ≤ 2 exp
1687
+
1688
+ − c min(
1689
+ ϵ2
1690
+ 2K4∥A∥2
1691
+ F
1692
+ ,
1693
+ ϵ
1694
+ K2∥A∥2
1695
+ )
1696
+
1697
+ where c > 0 is a universal constant.
1698
+ Proof. Let z = [Re(x)⊤, Im(x)⊤]⊤ ∈ R2n and define : ˜A =
1699
+ �Re(A)
1700
+ −Im(A)
1701
+ Im(A)
1702
+ Re(A)
1703
+
1704
+ . It is easy to see that for any Hermitian
1705
+ A, we have the following equality xHAx = zT ˜Az. Further,
1706
+ it can be verified that ∥˜A∥F =
1707
+
1708
+ 2∥A∥F and ∥˜A∥2 = ∥A∥2.
1709
+ Now, we can apply [34, Theorem 1.1], to obtain the desired
1710
+ probability bound.
1711
+ Lemma 7. Let wi ∈ Cn, 1 ≤ i ≤ T be i.i.d com-
1712
+ plex circularly symmetric Gaussian random variable with
1713
+ distribution CN(0, Σ). Let A ∈ Cn×n be a fixed Her-
1714
+ mitian matrix, then for any ϵ > 0 and universal constant
1715
+ c, we have P(| 1
1716
+ L
1717
+ �L
1718
+ i=1 wH
1719
+ i Awi − E[wH
1720
+ i Awi]| ≥ ϵ) ≤
1721
+ 2 exp
1722
+
1723
+ −cL min
1724
+
1725
+ ϵ2
1726
+ 2K4∥Σ∥2
1727
+ 2∥A∥2
1728
+ F ,
1729
+ ϵ
1730
+ K2∥Σ∥2∥A∥2
1731
+ ��
1732
+ .
1733
+ Proof. Since wi is a complex circularly symmetric Gaussian
1734
+ random variable distributed according to CN(0, Σ), we define
1735
+ a new transformed variable ui = Σ−1/2wi where Σ1/2 is the
1736
+ square root of the covariance matrix Σ. It can be verified that
1737
+ ui ∼ CN(0, In), i.e., it is also a complex circularly symmetric
1738
+ Gaussian
1739
+ random
1740
+ variable
1741
+ with
1742
+ independent
1743
+ real
1744
+ and
1745
+ imaginary components. Define block-wise diagonal matrices
1746
+ ˜A
1747
+ =
1748
+ diag(A, . . . , A), ˜Σ1/2
1749
+ =
1750
+ diag(Σ1/2, . . . , Σ1/2)
1751
+
1752
+ CnL×nL and ˜u = [uT
1753
+ 1 , . . . , uT
1754
+ L]T
1755
+ ∈ CnL. Next, we can
1756
+ observe that �L
1757
+ i=1 wH
1758
+ i Awi = �L
1759
+ i=1 uH
1760
+ i Σ1/2AΣ1/2ui =
1761
+ ˜uH ˜Σ1/2 ˜A˜Σ1/2˜u.
1762
+ We
1763
+ have
1764
+ E(�L
1765
+ i=1 wH
1766
+ i Awi)
1767
+ =
1768
+ LE
1769
+
1770
+ wH
1771
+ i Aw
1772
+
1773
+ ,
1774
+ since
1775
+ it
1776
+ is
1777
+ a
1778
+ sum
1779
+ of
1780
+ L
1781
+ i.i.d
1782
+ random
1783
+ variables. The desired probability can be re-written as:
1784
+ P(| 1
1785
+ L
1786
+ �L
1787
+ i=1 Re(wH
1788
+ i Awi) − E[Re(wH
1789
+ i Awi)]|
1790
+
1791
+ ϵ)
1792
+ =
1793
+ P(|Re(˜uH ˜Σ1/2 ˜A ˜Σ1/2˜u) − E[Re(˜uH ˜Σ1/2 ˜A ˜Σ1/2˜u)]| ≥ Lϵ).
1794
+ Recall
1795
+ that
1796
+ Re(˜ui), Im(˜ui)
1797
+ are
1798
+ i.i.d
1799
+ distributed
1800
+ as
1801
+ N(0, 1/2) and hence sub-Gaussian with K
1802
+ =
1803
+ 2/
1804
+
1805
+ 3.
1806
+ Note that due to the block-diagonal structure we have
1807
+ ∥ ˜Σ1/2 ˜A ˜Σ1/2∥2
1808
+ F = L∥Σ1/2AΣ1/2∥2
1809
+ F ≤ L∥A∥2
1810
+ F ∥Σ∥2
1811
+ 2
1812
+ and
1813
+ ∥ ˜Σ1/2 ˜A ˜Σ1/2∥2 = ∥Σ1/2AΣ1/2∥2 ≤ ∥A∥2∥Σ∥2. The proof
1814
+ is completed by applying Lemma 6 with ϵ = ϵL.
1815
+ B. Proof of Theorem 1
1816
+ From Lemma 2, we have P(∥EL∥2 ≥ ϵ)≤P(sup |fe(θ)|≥ϵ).
1817
+ In general, it is not straightforward to evaluate this supremum,
1818
+ however, we exploit the following result from [28]that bounds
1819
+ it by using the function value evaluated at a few grid points.
1820
+ Lemma 8.
1821
+ [28, Theorem 7.28, Chapter 10, Vol.2, Pg. 33]
1822
+ Let f(θ) be a trigonometric polynomial of order N. Then,
1823
+ supθ∈[−π,π] |f(θ)| ≤ 2 max1≤k≤4N |f(θk)|,
1824
+ θk = k−2N
1825
+ 4N π.
1826
+ From Proposition 1, we have fe(θ) = tr(EyΛ(θ)). However,
1827
+ we want to relate it to the sample covariance matrix �Ry. In
1828
+ order to do this, we show that tr(RavΛ(θ)) = tr( �RyΛ(θ))
1829
+ where recall from (7) that �Ry is the sample covariance matrix:
1830
+ tr(RavΛ(θ)) =
1831
+ P
1832
+
1833
+ m=1
1834
+ P
1835
+
1836
+ n=1
1837
+ [Rav]m,n[Λ(θ)]n,m
1838
+ =
1839
+ Mca
1840
+
1841
+ s=−Mca
1842
+
1843
+ m,n:
1844
+ dm−dn=s
1845
+ ˆts
1846
+ exp(−jsθ)
1847
+ |Ωs|
1848
+ =
1849
+ Mca
1850
+
1851
+ s=−Mca
1852
+ ˆts|Ωs| exp(−jsθ)
1853
+ |Ωs|
1854
+ =
1855
+ (a)
1856
+ Mca
1857
+
1858
+ s=−Mca
1859
+
1860
+ m,n:
1861
+ dm−dn=s
1862
+ [ �Ry]m,n[Λ(θ)]n,m = Tr( �RyΛ(θ)),
1863
+ where (a) follows from the redundancy averaged estimator
1864
+ where for all m, n such that dm − dn = s, we have |Ωs|ˆts =
1865
+
1866
+ dm−dn=s[ �Ry]m,n. Therefore, we have the following rela-
1867
+ tion: fe(θ)=tr (EyΛ(θ))=tr ((Ry − Rav)Λ(θ)) = tr((Ry −
1868
+ �Ry)Λ(θ)) = 1
1869
+ L
1870
+ �L
1871
+ t=1
1872
+
1873
+ E[y(t)HΛ(θ)y(t)] − y(t)HΛ(θ)y(t)
1874
+
1875
+ .
1876
+ Since the snapshots are i.i.d, we can define i.i.d ran-
1877
+ dom variables {Zt(θ)}L
1878
+ t=1 as Zt(θ) ≜ y(t)HΛ(θ)y(t) −
1879
+ E(y(t)HΛ(θ)y(t)) with y(t) ∼ CN(0, Ry). Note that Λ(θ)
1880
+ is Hermitian. Hence, we can apply Lemma 7 with Σ = Ry
1881
+ and A = Λ(θ) to obtain ∀ϵ > 0,
1882
+ P
1883
+
1884
+ 1
1885
+ L |
1886
+ L
1887
+
1888
+ t=1
1889
+ Zt(θ)| ≥ ϵ
1890
+
1891
+
1892
+ (43)
1893
+ 2 exp
1894
+
1895
+ −cL min
1896
+
1897
+ ϵ2
1898
+ 2K4∥Ry∥2
1899
+ 2∥Λ(θ)∥2
1900
+ F
1901
+ ,
1902
+ ϵ
1903
+ K2∥Ry∥2∥Λ(θ)∥2
1904
+ ��
1905
+ .
1906
+ We want to obtain a universal upper bound that is similar
1907
+ to (43) but not dependent on θ. Notice, ∥Λ(θ)∥2
1908
+ F =
1909
+ 1
1910
+ |Ω0| +
1911
+ �Mca
1912
+ s=1
1913
+ 2
1914
+ |Ωs| ≤ 2∆(S). Similarly, we can also bound ∥Λ(θ)∥2 ≤
1915
+ ∥Λ(θ)∥F ≤
1916
+
1917
+ 2∆(S). This gives us the following bound:
1918
+ P
1919
+
1920
+ 1
1921
+ L |
1922
+ L
1923
+
1924
+ t=1
1925
+ Zt(θ)| ≥ ϵ
1926
+
1927
+
1928
+ (44)
1929
+ 2 exp
1930
+
1931
+ −cL min
1932
+
1933
+ ϵ2
1934
+ 4K4∥Ry∥2
1935
+ 2∆(S) ,
1936
+ ϵ
1937
+ K2∥Ry∥2
1938
+
1939
+ 2∆(S)
1940
+ ��
1941
+ .
1942
+ Note fe is a trigonometric polynomial of order Mca. Now,
1943
+ we will use Lemma 8 to bound the spectral function |fe(θ)|.
1944
+ P(supθ∈[−π,π] |fe(θ)| ≥ ϵ) ≤ P(2 max1≤k≤4Mca |fe(θk)| ≥
1945
+ ϵ)
1946
+
1947
+ �4Mca
1948
+ k=1 P
1949
+
1950
+ |fe(θk)| ≥ ϵ
1951
+ 2
1952
+
1953
+
1954
+ 8Mca exp
1955
+
1956
+
1957
+ c1L min
1958
+
1959
+ c2ϵ2
1960
+ ∥Ry∥2
1961
+ 2∆(S),
1962
+ ϵ
1963
+ ∥Ry∥2√
1964
+ ∆(S)
1965
+ ��
1966
+ , where c1 = c/(2
1967
+
1968
+ 2K2)
1969
+ (c was given in Lemma 7) and c2
1970
+ =
1971
+ 1/(4
1972
+
1973
+ 2K2)
1974
+ =
1975
+ 3/(16
1976
+
1977
+ 2) < 1. The first inequality follows due to Lemma
1978
+ 8, the second inequality follows from union bound. The last
1979
+ inequality is a consequence of the bound computed in (44).
1980
+
1981
+ 12
1982
+ APPENDIX B
1983
+ A. Proof of Theorem 2
1984
+ The proof uses several results from [20]. However, unlike [20]
1985
+ the underlying subspace of interest is the coarray subspace
1986
+ and the perturbation is due to covariance estimation error and
1987
+ noise. We provide key intermediate steps to make the results
1988
+ self-contained.
1989
+ Recall that columns of U and �U are orthonormal bases
1990
+ for the subspaces R(U) and R( �U). Let the principal an-
1991
+ gles between the subspaces R(U) and R( �U) be denoted as
1992
+ Θ(R(U), R( �U)) := [ψ1, ψ2, · · · , ψS]T where 0 ≤ ψ1 ≤
1993
+ ψ2 ≤ · · · ≤ ψS ≤ π/2. Then from [35], we have cos(ψi) =
1994
+ σi(UH �U) i = 1, 2, · · · , S. Recall from Lemma 1, the output
1995
+ of ESPRIT is invariant to the choice of the basis. For ease
1996
+ of analysis, we will choose a pair of basis for R(U) and
1997
+ R( �U), which are also known as “canonical bases” [20]. Let
1998
+ the SVD of the matrix UH �U be of the form UH �U :=
1999
+ LΣcRH, L, R ∈ CS×S, where Σc = diag(σc
2000
+ 1, σc
2001
+ 2, · · · , σc
2002
+ S)
2003
+ where σc
2004
+ i = σi(UH �U) are arranged in descending order. The
2005
+ canonical basis U(c) and �U(c) are given by:
2006
+ U(c) := UL,
2007
+ �U(c) := �UR
2008
+ (45)
2009
+ Using the canonical basis, we define the following matrices:
2010
+ Ψ(c) :=U(c)†
2011
+ 0
2012
+ U(c)
2013
+ 1 , �Ψ(c) := �U(c)†
2014
+ 0
2015
+ �U(c)
2016
+ 1 . Since R(U)=R(U(c))
2017
+ and R( �U) = R( �U(c)), we have Θ(R(U(c)), R( �U(c))) =
2018
+ Θ(R(U), R( �U)). Notice that the canonical basis has the
2019
+ following property: cos(ψi) = σi(U(c)H �U(c)) = u(c)H
2020
+ i
2021
+ �u(c)
2022
+ i .
2023
+ We will use [20, Lemma 2] that relates the matching distance
2024
+ error to the quantity ∥ �Ψ(c) − Ψ(c)∥2 and holds universally:
2025
+ md(θ, ˆθ) ≤ π S3/2√Mca + 1
2026
+ σS(AUS(θ)) ∥ �Ψ(c) − Ψ(c)∥2.
2027
+ (46)
2028
+ B. Relating ∥ �Ψ(c) − Ψ(c)∥2 to ∥EL∥2
2029
+ Let B = A + N ∈ CM×N, where rank(A) ≥ L. Suppose ψL
2030
+ is the largest principal angle between the subspace spanned
2031
+ by L principal singular vectors (corresponding to L largest
2032
+ singular values) of A and B, respectively. If σL+1(A) ≤ α
2033
+ and σL(B) ≥ α + δ for some α ≥ 0 and δ > 0 then, Wedin’s
2034
+ Theorem [36] states that:
2035
+ sin(ψL) ≤ ∥N∥2/δ
2036
+ (47)
2037
+ Lemma
2038
+ 9. Suppose σS(Tca)
2039
+
2040
+ 2∥EL∥2
2041
+ and β
2042
+ =
2043
+ pminσ2
2044
+ S(AUS(θ)) − σ2 > 0. Then
2045
+ sin(ψS) ≤ 2∥EL∥2/β
2046
+ (48)
2047
+ Proof. Recall that ˆTca = Tca − EL. To apply Wedin’s
2048
+ theorem, we need to characterize quantities α and δ such
2049
+ that: σS( ˆTca) ≥ δ + α,
2050
+ σS+1(Tca) ≤ α. From (13), we
2051
+ have σS+1(Tca) = σ2. We choose α = σ2. Using Weyl’s
2052
+ inequality, σS(�Tca) ≥ σS(Tca) − ∥EL∥2
2053
+ (a)
2054
+ ≥ σS(Tca)/2
2055
+ (b)
2056
+ =
2057
+ (σS(AUS(θ)PAUS(θ)H) + σ2)/2, where (a) follows from
2058
+ the assumption 2∥EL∥2 ≤ σS(Tca) and (b) follows from
2059
+ (13). Combining with the preceding inequality, we obtain
2060
+ σS( ˆTca) − σ2 ≥ (σS(AUS(θ)PAUS(θ)H) − σ2)/2 ≥ β/2 >
2061
+ 0, where the last term is positive due to the given condition.
2062
+ Then we can choose δ = σS(�Tca) − σ2 which satisfies
2063
+ σS(�Tca) = α + δ with δ > 0. The proof is completed by
2064
+ using (47).
2065
+ Lemma 10. If pminσ2
2066
+ S(AUS(θ)) > σ2 and
2067
+ ∥EL∥2 ≤ σS(U(c)
2068
+ 0 )(σS(AUS(θ)PAUS(θ)H) − σ2)
2069
+ 4
2070
+
2071
+ 2
2072
+ (49)
2073
+ then ∥Ψ(c) − ˆΨ(c)∥2 ≤
2074
+ 14
2075
+
2076
+ 2∥EL∥2
2077
+ σ2
2078
+ S(U(c)
2079
+ 0 )(pminσ2
2080
+ S(AUS(θ))−σ2).
2081
+ Proof. From the definition of U(c), �U(c) we have:
2082
+ ∥U(c) − �U(c)∥2
2083
+ 2 = ∥(U(c) − �U(c))H(U(c) − �U(c))∥2
2084
+ = 2(1 − cos(ψS)) ≤ 2(1 − cos2(ψS)) = 2 sin2(ψS).
2085
+ (50)
2086
+ By
2087
+ the
2088
+ assumption
2089
+ of
2090
+ this
2091
+ lemma,
2092
+ 2∥EL∥2
2093
+
2094
+ σS(U(c)
2095
+ 0 )(σS(AUS(θ)PAUS(θ)H) − σ2) and σS(U(c)
2096
+ 0 ) ≤ 1,
2097
+ we have 2∥EL∥2 ≤ σS(Tca)σS(U(c)
2098
+ 0 ) ≤ σS(Tca). This
2099
+ together with the assumption pminσ2
2100
+ S(AUS(θ)) > σ2 enables
2101
+ us to apply Lemma 9. Combining (48) with (50) we obtain
2102
+ the following bound:
2103
+ ∥ �U(c) − U(c)∥2 ≤
2104
+ 2
2105
+
2106
+ 2∥EL∥2
2107
+ σS(AUS(θ)PAUS(θ)H) − σ2 .
2108
+ (51)
2109
+ Notice that
2110
+ ∥ �Ψ
2111
+ (c) − Ψ(c)∥2 = ∥( �U(c)†
2112
+ 0
2113
+ − U(c)†
2114
+ 0
2115
+ ) �U(c)
2116
+ 1
2117
+ + U
2118
+ (c)†
2119
+ 0
2120
+ ( �U(c)
2121
+ 1
2122
+ − U(c)
2123
+ 1 )∥2
2124
+ ≤ ∥ �U(c)†
2125
+ 0
2126
+ − U(c)†
2127
+ 0
2128
+ ∥2∥ �U(c)
2129
+ 1 ∥2 + ∥U(c)†
2130
+ 0
2131
+ ∥2∥ �U(c)
2132
+ 1
2133
+ − U(c)
2134
+ 1 ∥2
2135
+ ≤ ∥ �U(c)†
2136
+ 0
2137
+ − U(c)†
2138
+ 0
2139
+ ∥2 + ∥U(c)†
2140
+ 0
2141
+ ∥2∥ �U(c) − U(c)∥2
2142
+ (52)
2143
+ where the last inequality follows from the fact that
2144
+ �U(c)
2145
+ 1 , �U(c)
2146
+ 1
2147
+ − U(c)
2148
+ 1
2149
+ are submatrices of �U(c) and �U(c) − U(c),
2150
+ respectively. Therefore, we have ∥ �U(c)
2151
+ 1 ∥2 ≤ ∥ �U(c)∥2 = 1,
2152
+ and ∥ �U(c)
2153
+ 1
2154
+ − U(c)
2155
+ 1 ∥2 ≤ ∥ �U(c) − U(c)∥2. We use a result from
2156
+ [37, Theorem 3.2] which states that a matrix F with rank S,
2157
+ and its perturbed matrix �F = F + �E satisfy the following
2158
+ inequality: ∥F† − �F†∥2 ≤ 3∥�E∥2/(σS(F)(σS(F) − ∥�E∥2))
2159
+ provided ∥�E∥2 < σS(F). From (51), and using the assumption
2160
+ of the lemma we have:
2161
+ ∥ �U(c)
2162
+ 0
2163
+ − U(c)
2164
+ 0 ∥2 ≤ ∥ �U(c) − U(c)∥2 ≤
2165
+ 2
2166
+
2167
+ 2∥EL∥2
2168
+ σS(AUS(θ)PAUS(θ)H) − σ2
2169
+ ≤ σS(U(c)
2170
+ 0 )/2.
2171
+ (53)
2172
+ We
2173
+ can
2174
+ use
2175
+ the
2176
+ aforementioned
2177
+ result
2178
+ by
2179
+ substi-
2180
+ tuting
2181
+ F
2182
+ with
2183
+ U(c)
2184
+ 0 ,
2185
+ and
2186
+ �F
2187
+ with
2188
+ �U(c)
2189
+ 0 :
2190
+ ∥( �U(c)†
2191
+ 0
2192
+
2193
+ U(c)†
2194
+ 0
2195
+ )∥2 ≤
2196
+ 3∥( �
2197
+ U(c)
2198
+ 0 −U(c)
2199
+ 0 )∥2
2200
+ σS(U(c)
2201
+ 0 )(σS(U(c)
2202
+ 0 )−∥ �
2203
+ U(c)
2204
+ 0 −U(c)
2205
+ 0 ∥2) ≤ 6∥ �
2206
+ U(c)
2207
+ 0 −U(c)
2208
+ 0 ∥2
2209
+ σ2
2210
+ S(U(c)
2211
+ 0 )
2212
+
2213
+ 6∥ �
2214
+ U(c)−U(c)∥2
2215
+ σ2
2216
+ S(U(c)
2217
+ 0 )
2218
+ , where the second inequality follows from (53).
2219
+ Combining this with (52), we get the final bound: ∥Ψ(c) −
2220
+ ˆΨ(c)∥2 ≤
2221
+ 6∥( �
2222
+ U(c)−U(c))∥2
2223
+ σ2
2224
+ S(U(c)
2225
+ 0 )
2226
+ +
2227
+ 1
2228
+ σS(U(c)
2229
+ 0 )∥( �U(c) − U(c))∥2 ≤
2230
+ 7∥( �
2231
+ U(c)−U(c))∥2
2232
+ σ2
2233
+ S(U(c)
2234
+ 0 )
2235
+
2236
+ 14
2237
+
2238
+ 2∥EL∥2
2239
+ σ2
2240
+ S(U(c)
2241
+ 0 )(σS(AUS(θ))PAUS(θ))H)−σ2)
2242
+
2243
+ 14
2244
+
2245
+ 2∥EL∥2/σ2
2246
+ S(βU(c)
2247
+ 0 ).
2248
+ Next, we state the following Lemma from [20] that can be
2249
+ used to obtain a lower bound on σ2
2250
+ S(U(c)
2251
+ 0 ).
2252
+ Lemma 11 (Lemma 3, [20]). Let U(a) be any orthonormal
2253
+ basis for R(AUS(θ)). Then the following holds: σ2
2254
+ S(U(a)
2255
+ 0 ) ≥
2256
+ max(1 −
2257
+ S
2258
+ σ2
2259
+ S(AUS(θ)), 4−S)
2260
+
2261
+ 13
2262
+ Proof of Theorem 2. Define
2263
+ CS
2264
+ =
2265
+ 2−S
2266
+ 4
2267
+
2268
+ 2
2269
+ and
2270
+ C′
2271
+ S
2272
+ =
2273
+ 14π
2274
+
2275
+ 2S3/24S. Under Assumption A3, these quantities are
2276
+ constants since S is held fixed. If β > 0 and the assump-
2277
+ tion ∥EL∥2 ≤ CSβ ensures that condition (49) holds since
2278
+ σS(U(c)
2279
+ 0 ) ≥ 2−S from Lemma 11. Now, we can apply
2280
+ Lemma 10 to bound ∥Ψ(c) − ˆΨ(c)∥2. We plug this bound
2281
+ on ∥Ψ(c) − ˆΨ(c)∥2 in (46): md(θ, �θ) ≤ 14
2282
+
2283
+ 2π S3/2q∥EL∥2
2284
+ σ2
2285
+ S(U(c)
2286
+ 0 )C′
2287
+ S ≤
2288
+ q∥EL∥2, where the last inequality follows from the bound
2289
+ σ2
2290
+ S(U(c)
2291
+ 0 ) ≥ 4−S in Lemma 11.
2292
+ C. Proof of Theorem 3
2293
+ We will utilize Theorem 1 and Theorem 2 to prove Theorem 3.
2294
+ One can see from Theorem 2 that under the assumptions β > 0
2295
+ and ∥EL∥2 ≤ CSβ we can bound md(θ, �θ) ≤ q∥EL∥2. For a
2296
+ given ϵ > 0, two cases arise:
2297
+ Case I (ϵ ≤ CSβq): In this case, min(CSβ, ϵ
2298
+ q) = ϵ/q. There-
2299
+ fore, ∥EL∥2 ≤ ϵ
2300
+ q ⇒ ∥EL∥2 ≤ CSβ, and from Theorem 2 the
2301
+ matching distance error is less than md(θ, �θ) ≤ ϵ. This means
2302
+ P(md(θ, �θ) ≤ ϵ) ≥ P
2303
+
2304
+ ∥EL∥2 ≤ ϵ
2305
+ q
2306
+
2307
+ . From Theorem 1, we
2308
+ can obtain the following tail bound:
2309
+ P(∥EL∥2 ≤ ϵ
2310
+ q ) ≥
2311
+ 1 − 8Mca exp
2312
+
2313
+ −c1L min
2314
+
2315
+ c2ϵ2
2316
+ q2∥Ry∥2
2317
+ 2∆(S) ,
2318
+ ϵ
2319
+ q∥Ry∥2
2320
+
2321
+ ∆(S)
2322
+ ��
2323
+ . (54)
2324
+ Case II (ϵ > CSβq): For values of ϵ satisfying ϵ > Csβq,
2325
+ we have min(CSβ, ϵ/q) = CSβ. Therefore, if ∥EL∥2 ≤ CSβ,
2326
+ then from Theorem 2 we have md(θ, �θ) ≤ CSβq. We obtain
2327
+ the following bound on the tail probability due to Theorem 1,
2328
+ P(∥EL∥2 ≤ CSβ) ≥
2329
+ 1 − 8Mca exp
2330
+
2331
+ −c1L min
2332
+
2333
+ c2C2
2334
+ Sβ2
2335
+ ∥Ry∥2
2336
+ 2∆(S) ,
2337
+ CSβ
2338
+ ∥Ry∥2
2339
+
2340
+ ∆(S)
2341
+ ��
2342
+ .
2343
+ (55)
2344
+ If the number of snapshots L satisfy the following bound:
2345
+ L ≥ c3 ln
2346
+ � 8Mca
2347
+ δ
2348
+
2349
+ max
2350
+ � q2
2351
+ 1∆(S)
2352
+ c2ϵ2 ,
2353
+ q1√
2354
+ ∆(S)
2355
+ ϵ
2356
+ , L2
2357
+ 0
2358
+ c2 , L0
2359
+
2360
+ , where q1 =
2361
+ q∥Ry∥2, c3 = 1/c1 and L0 =
2362
+ ∥Ry∥2√
2363
+ ∆(S)
2364
+ CSβ
2365
+ then combining
2366
+ (54) and (55) we obtain the following bound P
2367
+
2368
+ md(θ, �θ) ≤
2369
+ min(ϵ, CSβq)) ≥ 1 − δ.
2370
+ REFERENCES
2371
+ [1] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array
2372
+ processing with enhanced degrees of freedom,” IEEE Trans. on Signal
2373
+ Processing, vol. 58, no. 8, pp. 4167–4181, 2010.
2374
+ [2] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers
2375
+ and arrays,” IEEE Trans. on Signal Processing, vol. 59, no. 2, pp. 573–
2376
+ 586, Feb 2011.
2377
+ [3] S. Haghighatshoar and G. Caire, “Low-complexity massive mimo sub-
2378
+ space estimation and tracking from low-dimensional projections,” IEEE
2379
+ Trans. on Signal Processing, vol. 66, no. 7, pp. 1832–1844, 2018.
2380
+ [4] Y. I. Abramovich, D. A. Gray, A. Y. Gorokhov, and N. K. Spencer,
2381
+ “Positive-definite Toeplitz completion in DOA estimation for nonuni-
2382
+ form linear antenna arrays. I. fully augmentable arrays,” IEEE Trans.
2383
+ on Signal Processing, vol. 46, no. 9, pp. 2458–2471, Sep 1998.
2384
+ [5] M. Wang and A. Nehorai, “Coarrays, MUSIC, and the Cram´er–Rao
2385
+ bound,” IEEE Trans. on Signal Processing, vol. 65, no. 4, pp. 933–946,
2386
+ Feb. 2017.
2387
+ [6] A. Koochakzadeh and P. Pal, “Cram´er-Rao bounds for underdetermined
2388
+ source localization,” IEEE Signal Processing Letters, vol. 23, no. 7, pp.
2389
+ 919–923, July 2016.
2390
+ [7] C.-L. Liu and P. P. Vaidyanathan, “Cram´er-Rao bounds for coprime
2391
+ and other sparse arrays, which find more sources than sensors,” Digital
2392
+ Signal Processing, vol. 61, pp. 43 – 61, Feb 2017.
2393
+ [8] S. Shahsavari, J. Millhiser, and P. Pal, “Fundamental trade-offs in noisy
2394
+ super-resolution with synthetic apertures,” in ICASSP 2021-2021 IEEE
2395
+ International Conference on Acoustics, Speech and Signal Processing
2396
+ (ICASSP).
2397
+ IEEE, 2021, pp. 4620–4624.
2398
+ [9] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
2399
+ IEEE trans. on antennas and prop., vol. 34, no. 3, pp. 276–280, 1986.
2400
+ [10] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via
2401
+ rotational invariance techniques,” IEEE Trans. on acoustics, speech, and
2402
+ signal processing, vol. 37, no. 7, pp. 984–995, 1989.
2403
+ [11] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating pa-
2404
+ rameters of exponentially damped/undamped sinusoids in noise,” IEEE
2405
+ Trans. on Acoustics, Speech, and Signal Processing, vol. 38, no. 5, pp.
2406
+ 814–824, 1990.
2407
+ [12] J. Steinwandt, F. Roemer, and M. Haardt, “Performance analysis of
2408
+ esprit-type algorithms for co-array structures,” in 2017 IEEE 7th Interna-
2409
+ tional Workshop on Computational Advances in Multi-Sensor Adaptive
2410
+ Processing (CAMSAP).
2411
+ IEEE, 2017, pp. 1–5.
2412
+ [13] F. Li, H. Liu, and R. Vaccaro, “Performance analysis for doa estimation
2413
+ algorithms: unification, simplification, and observations,” IEEE Trans.
2414
+ on Aero. and Electronic Systems, vol. 29, no. 4, pp. 1170–1184, 1993.
2415
+ [14] S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous
2416
+ vehicles: A sparsity-oriented approach,” IEEE Journal of Selected Topics
2417
+ in Signal Processing, vol. 15, no. 4, pp. 879–891, 2021.
2418
+ [15] Z. Tan, Y. C. Eldar, and A. Nehorai, “Direction of arrival estimation
2419
+ using co-prime arrays: A super resolution viewpoint,” IEEE Trans. on
2420
+ Signal Processing, vol. 62, no. 21, pp. 5565–5576, 2014.
2421
+ [16] E. J. Cand`es and C. Fernandez-Granda, “Super-resolution from noisy
2422
+ data,” Journal of Fourier Analysis and Applications, vol. 19, no. 6, pp.
2423
+ 1229–1254, 2013.
2424
+ [17] ——, “Towards a mathematical theory of super-resolution,” Comm. on
2425
+ pure and applied Mathematics, vol. 67, no. 6, pp. 906–956, 2014.
2426
+ [18] H. Qiao and P. Pal, “Guaranteed localization of more sources than
2427
+ sensors with finite snapshots in multiple measurement vector models
2428
+ using difference co-arrays,” IEEE Trans. on Signal Processing, vol. 67,
2429
+ no. 22, pp. 5715–5729, 2019.
2430
+ [19] C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, and Y. D. Zhang, “Direction-
2431
+ of-arrival estimation for coprime array via virtual array interpolation,”
2432
+ IEEE Trans. on Signal Processing, vol. 66, no. 22, pp. 5956–5971, 2018.
2433
+ [20] W. Li, W. Liao, and A. Fannjiang, “Super-resolution limit of the esprit
2434
+ algorithm,” 2019.
2435
+ [21] W. Li and W. Liao, “Stable super-resolution limit and smallest singular
2436
+ value of restricted fourier matrices,” Applied and Computational Har-
2437
+ monic Analysis, vol. 51, pp. 118–156, 2021.
2438
+ [22] W. Liao and A. Fannjiang, “Music for single-snapshot spectral es-
2439
+ timation: Stability and super-resolution,” Applied and Computational
2440
+ Harmonic Analysis, vol. 40, no. 1, pp. 33–67, 2016.
2441
+ [23] W. Liao, “Music for multidimensional spectral estimation: stability and
2442
+ super-resolution,” IEEE trans. on signal processing, vol. 63, no. 23, pp.
2443
+ 6395–6406, 2015.
2444
+ [24] A. Moitra, “Super-resolution, extremal functions and the condition
2445
+ number of vandermonde matrices,” in Proceedings of the 47th annual
2446
+ ACM symposium on Theory of computing.
2447
+ ACM, 2015, pp. 821–830.
2448
+ [25] W. Li, Z. Zhu, W. Gao, and W. Liao, “Stability and super-resolution of
2449
+ music and esprit for multi-snapshot spectral estimation,” IEEE Trans.
2450
+ on Signal Processing, vol. 70, pp. 4555–4570, 2022.
2451
+ [26] C.-L. Liu and P. P. Vaidyanathan, “Remarks on the spatial smoothing
2452
+ step in coarray music,” IEEE Signal Processing Letters, vol. 22, no. 9,
2453
+ pp. 1438–1442, 2015.
2454
+
2455
+ 14
2456
+ [27] Y. C. Eldar, J. Li, C. Musco, and C. Musco, “Sample efficient toeplitz
2457
+ covariance estimation,” in Proceedings of the 14th Annual ACM-SIAM
2458
+ Symposium on Discrete Algorithms.
2459
+ SIAM, 2020, pp. 378–397.
2460
+ [28] A. Zygmund, Trigonometric series.
2461
+ Cambridge university press, 2002.
2462
+ [29] R. M. Gray et al., “Toeplitz and circulant matrices: A review,” Founda-
2463
+ tions and Trends® in Communications and Information Theory, vol. 2,
2464
+ no. 3, pp. 155–239, 2006.
2465
+ [30] R. O’Donnell, “Lecture 1: Asymptotics,” A Theorist’s Toolkit, 2016.
2466
+ [31] D. Batenkov, L. Demanet, G. Goldman, and Y. Yomdin, “Conditioning of
2467
+ partial nonuniform fourier matrices with clustered nodes,” SIAM Journal
2468
+ on Matrix Analysis and Applications, vol. 41, no. 1, pp. 199–220, 2020.
2469
+ [32] C. Aubel and H. B¨olcskei, “Vandermonde matrices with nodes in the
2470
+ unit disk and the large sieve,” Applied and Computational Harmonic
2471
+ Analysis, vol. 47, no. 1, pp. 53–86, 2019.
2472
+ [33] D. L. Hanson and F. T. Wright, “A bound on tail probabilities for
2473
+ quadratic forms in independent random variables,” The Annals of Math-
2474
+ ematical Statistics, vol. 42, no. 3, pp. 1079–1083, 1971.
2475
+ [34] M. Rudelson, R. Vershynin et al., “Hanson-wright inequality and
2476
+ sub-gaussian concentration,” Electronic Communications in Probability,
2477
+ vol. 18, 2013.
2478
+ [35] G. W. Stewart, “Matrix perturbation theory,” 1990.
2479
+ [36] P.- ˚A. Wedin, “Perturbation bounds in connection with singular value
2480
+ decomposition,” BIT Numerical Mathematics, vol. 12, no. 1, pp. 99–
2481
+ 111, 1972.
2482
+ [37] P. C. Hansen, “The truncatedsvd as a method for regularization,” BIT
2483
+ Numerical Mathematics, vol. 27, no. 4, pp. 534–553, 1987.
2484
+
FtAzT4oBgHgl3EQfxP5f/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JtAzT4oBgHgl3EQfVPz7/content/tmp_files/2301.01283v1.pdf.txt ADDED
@@ -0,0 +1,1182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cross Modal Transformer via Coordinates Encoding for 3D Object Dectection
2
+ Junjie Yan
3
+ Yingfei Liu
4
+ Jianjian Sun
5
+ Fan Jia
6
+ Shuailin Li
7
+ Tiancai Wang
8
+ Xiangyu Zhang
9
+ MEGVII Technology
10
+ Abstract
11
+ In this paper, we propose a robust 3D detector, named
12
+ Cross Modal Transformer (CMT), for end-to-end 3D multi-
13
+ modal detection.
14
+ Without explicit view transformation,
15
+ CMT takes the image and point clouds tokens as inputs
16
+ and directly outputs accurate 3D bounding boxes.
17
+ The
18
+ spatial alignment of multi-modal tokens is performed im-
19
+ plicitly, by encoding the 3D points into multi-modal fea-
20
+ tures. The core design of CMT is quite simple while its
21
+ performance is impressive. CMT obtains 73.0% NDS on
22
+ nuScenes benchmark. Moreover, CMT has a strong robust-
23
+ ness even if the LiDAR is missing. Code will be released at
24
+ https://github.com/junjie18/CMT.
25
+ 1. Introduction
26
+ Multi-sensor fusion has shown its great superiority in au-
27
+ tonomous driving system [1,8,20,24,28]. Different sensors
28
+ usually provide the complementary information for each
29
+ other. For instance, the camera captures information in a
30
+ perspective view and the image contains rich semantic fea-
31
+ tures while point clouds provide much more localization
32
+ and geometry information. Taking full advantage of differ-
33
+ ent sensors helps reduce the uncertainty and makes accurate
34
+ and robust prediction.
35
+ Sensor data of different modalities usually has large
36
+ discrepancy in distribution, making it hard to merge the
37
+ multi-modalities. State-of-the-art (SoTA) methods tend to
38
+ fuse the multi-modality by constructing unified bird’s-eye-
39
+ view (BEV) representation [20,24,28] or querying from to-
40
+ kens [1,8]. For example, BEVFusion [28] explores a unified
41
+ representation by BEV transformation for BEV feature fu-
42
+ sion (see Fig. 1(a)). TransFusion [1] follows a two-stage
43
+ pipeline and the camera images in second stage provide
44
+ supplementary information for prediction refinement (see
45
+ Fig. 1(b)). However, exploring a truly end-to-end pipeline
46
+ for multi-sensor fusion remains to be a question.
47
+ Recently, the effectiveness of end-to-end object detec-
48
+ tion with transformer (DETR) [3, 56] has been proved in
49
+ many perception tasks, such as instance segmentation [10,
50
+ (a) BEVFusion
51
+ quries
52
+ PC
53
+ Transformer
54
+ image
55
+ quries
56
+ PC
57
+ Transformer
58
+ step1
59
+ image
60
+ Transformer
61
+ topk
62
+ step2
63
+ PC
64
+ image
65
+ BEV
66
+ Encoder
67
+ VT
68
+ (b) TransFusion
69
+ (c) CMT (Ours)
70
+ PE
71
+ Figure 1.
72
+ Comparison between BEVFusion, TransFusion, and
73
+ our proposed CMT. (a) In BEVFusion, the camera features are
74
+ transformed into BEV space by view transform. Two modality
75
+ features are concatenated in BEV space and the BEV encoder is
76
+ adopted for fusion.
77
+ (b) TransFusion first generates the queries
78
+ from the high response regions of LiDAR features. After that, ob-
79
+ ject queries interact with point cloud features and image features
80
+ separately. (c) In CMT, the object queries directly interact with
81
+ multi modality features simultaneously. Position encoding (PE) is
82
+ added to the multi-modal features for alignment. ”VT” is the view
83
+ transformation from image to 3D space.
84
+ 12], multi-object tracking [30, 51] and visual 3D detec-
85
+ tion [26, 27, 45]. The DETR architecture is simple yet ef-
86
+ fective thanks to the object queries for representing different
87
+ instances and bipartite matching for one-to-one assignment.
88
+ Inspired by DETR, we aim to build an elegant end-to-
89
+ end pipeline for multi-modal fusion in 3D object detection.
90
+ In DETR, object queries directly interact with the image to-
91
+ kens through cross-attention in transformer decoder. For 3D
92
+ arXiv:2301.01283v1 [cs.CV] 3 Jan 2023
93
+
94
+ 0
95
+ 10
96
+ 20
97
+ 30
98
+ 40
99
+ 50
100
+ 60
101
+ 70
102
+ 80
103
+ NDS[%]
104
+ CMT
105
+ w/o Cams
106
+ w/o LiDAR
107
+ PETR
108
+ CMT-L
109
+ 71.9
110
+ 67.7
111
+ 43.4
112
+ 45.5
113
+ 68.6
114
+ drop
115
+ result
116
+ Figure 2. CMT has a strong robustness under sensor missing con-
117
+ dition. During inference, CMT without LiDAR achieves similar
118
+ detection performance compared to the SoTA camera-only detec-
119
+ tor PETR [26]. CMT without camera input only introduce a slight
120
+ drop, compared to our LiDAR-only baseline CMT-L. (Note: we
121
+ evaluate without any finetune process)
122
+ object detection, one intuitive way is to concatenate the im-
123
+ age and point cloud tokens together for further interaction
124
+ with object queries. However, the concatenated tokens are
125
+ disordered and unaware of their corresponding locations in
126
+ 3D space. Therefore, it is necessary to provide the location
127
+ prior for multi-modal tokens and object queries.
128
+ In this paper, we propose Cross-Modal Transformer
129
+ (CMT), a simple yet effective end-to-end pipeline for high-
130
+ performance 3D object detection (see Fig. 1(c)). First, we
131
+ propose the Coordinates Encoding Module (CEM), which
132
+ produces position-aware features, by encoding 3D points
133
+ set implicitly into multi-modal tokens.
134
+ Specifically, for
135
+ camera images, 3D points sampled from frustum space are
136
+ used to indicate the probability of 3D positions for each
137
+ pixel. While for LiDAR, the BEV coordinates are simply
138
+ encoded into the point cloud tokens. Next, we introduce
139
+ the position-guided queries. Each query is initialized as a
140
+ 3D reference point following PETR [26]. We transform the
141
+ 3D coordinates of reference points to both image and Li-
142
+ DAR spaces, to perform the relative coordinates encoding
143
+ in each space. Moreover, for faster convergence, we in-
144
+ troduce the inductive bias of locality, by extending Query
145
+ Denoising [19] to a point-based formulation.
146
+ The proposed CMT framework brings many advantages
147
+ compared to existing methods. Firstly, our method is a sim-
148
+ ple and end-to-end pipeline and can be easily extended. The
149
+ 3D positions are encoded into the multi-modal features im-
150
+ plicitly, which avoids introducing the bias caused by ex-
151
+ plicit cross-view feature alignment. Secondly, our method
152
+ only contains basic operations, without the feature sam-
153
+ pling or complex 2D-to-3D view transformation on multi-
154
+ modal features. Thirdly, the robustness of our CMT is much
155
+ stronger than other existing approaches. Extremely, under
156
+ the condition of LiDAR miss, our CMT with only image
157
+ tokens can achieve similar performance compared to those
158
+ visual 3D object detectors [23,26] (see Fig. 2).
159
+ To summarize, our contributions are:
160
+ • we propose a robust 3D detector, which is a truly end-
161
+ to-end framework without any post-process. It over-
162
+ comes the sensor missing problem.
163
+ • The 3D positions are implicitly encoded into the multi-
164
+ modal tokens, without any complex operations, like
165
+ grid sampling and voxel-pooling.
166
+ • CMT achieves state-of-the-art 3D detection perfor-
167
+ mance on nuScenes dataset. It provides a simple base-
168
+ line for future research.
169
+ 2. Related Work
170
+ 2.1. Camera Based 3D Object Detection
171
+ Camera-based 3D object detection is one of the basic
172
+ tasks in computer vision. Early works [41, 42] mainly fol-
173
+ low the dense prediction pipeline. They first localize the
174
+ objects on image plane and then predict their relevant 3D at-
175
+ tributes, such as depth, size and orientation. However, with
176
+ the surrounding cameras, the perspective-view based design
177
+ requires elaborate post-processes to eliminate the redundant
178
+ predictions of the overlapping regions. Recently, 3D ob-
179
+ ject detection under the BEV has attracted increasing atten-
180
+ tion. The BEV representation provides a unified coordinate
181
+ to fuse information from multiple camera views. LSS [32],
182
+ BEVDet [15] and BEVDepth [21] predict the depth distri-
183
+ bution to lift the image features to 3D frustum meshgrid.
184
+ Besides, inspired by DETR [4], DETR3D [45] and BEV-
185
+ Former [23] project the predefined BEV queries onto im-
186
+ ages and then employ the transformer attention to model
187
+ the relation of multi-view features. The above methods ex-
188
+ plicitly project the local image feature from 2D perspective
189
+ view to BEV. Different from them, PETR [26,27] and Spa-
190
+ tialDETR [9] adopt the positional embedding that depends
191
+ on the camera poses, allowing the transformer to implicitly
192
+ learn the projection from image views to 3D space.
193
+ 2.2. LiDAR Based 3D Object Detection
194
+ LiDAR-based 3D object detection aims to predict 3D ob-
195
+ ject bounding boxes using the point clouds captured from
196
+ LiDAR. Existing methods process the point cloud into dif-
197
+ ferent representations. Point-based methods [22,33–36,49]
198
+ directly extract features from raw point clouds and pre-
199
+ dict 3D bounding boxes. PointNet [34] is the first archi-
200
+ tecture to process the point cloud in an end-to-end man-
201
+ ner, which preserves the spatial characteristics of the point
202
+ cloud. Other methods project the unordered, irregular Li-
203
+ DAR point clouds onto a regular feature space such as
204
+ 3D voxels [54], feature pillars [17, 44, 50] and range im-
205
+ ages [11, 38]. Then the features are extracted in the BEV
206
+
207
+ Figure 3. The architecture of Cross-Modal Transformer (CMT) paradigm. The multi-view images and point clouds are input to two back-
208
+ bone networks to extract feature tokens. In coordinates encoding module, coordinates of camera rays and BEV positions are transformed
209
+ into the image position encoding (Im PE) and point cloud position encoding (PC PE), respectively. The queries are generated by the
210
+ position-guided query generator. In query generator, 3D anchor points are projected to different modalities and the relative coordinates are
211
+ encoded (see the right part). Multi-modal tokens further interact with queries in the transformer decoder. The updated queries are further
212
+ used to predict the 3D bounding boxes. To accelerate the model convergence, the point-based query denoising is introduced.
213
+ plane using a standard 2D backbone. VoxelNet [54] first di-
214
+ vides the raw point clouds into regular voxel grids, and then
215
+ uses PointNet network to extract features from the points in
216
+ each voxel grid.
217
+ 2.3. Multi-modal 3D Object Detection
218
+ Multi-sensor fusion in 3D detection has gained great at-
219
+ tention in recent years.
220
+ State-of-the-art (SoTA) methods
221
+ tend to find a unified representation for both modalities, or
222
+ define object queries to fuse the features for further predic-
223
+ tion. For example, BEVFusion [24, 28] applies a lift-splat-
224
+ shoot (LSS) operation to project image feature onto BEV
225
+ space and concatenates it with LiDAR feature. UVTR [20]
226
+ generates a unified representation in the 3D voxel space by
227
+ deformable attention [56]. While for query-based methods,
228
+ FUTR3D [8] defines the 3D reference points as queries and
229
+ directly samples the features from the coordinates of pro-
230
+ jected planes. TransFusion [1] follows a two-stage pipeline.
231
+ The proposals are generated by LiDAR features and further
232
+ refined by querying the image features.
233
+ 2.4. Transformer-based Object Detection
234
+ The pioneering work DETR [3] proposes a transformer-
235
+ based detector paradigm without any hand-craft compo-
236
+ nents, and has achieved state-of-the-arts in both 2D and
237
+ 3D detection [6, 23, 27, 53]. However, DETR-like meth-
238
+ ods usually suffer from the slow convergence. To this end,
239
+ many works [5, 16, 19, 25, 52, 53, 56] are proposed to im-
240
+ prove the training efficiency from various aspects. Other
241
+ improvements in 2D detection mainly focus on modifying
242
+ the transformer layers [52,56], designing informative object
243
+ queries [19,25,53], or exploring the label assignment mech-
244
+ anism [5, 16].
245
+ Deformable DETR [56] proposes the de-
246
+ formable attention, which only attends to sampling points of
247
+ local regions. SAM-DETR [52] presents a semantic aligner
248
+ between object queries and encoded features to accelerate
249
+ the matching process. To alleviate the instability of bipartite
250
+ matching, DAB-DETR [25] formulates the object queries
251
+ as dynamic anchor boxes, while DN-DETR [19] auxillarily
252
+ reconstructs the ground-truths from the noisy ones. Based
253
+ on them, DINO [53] further improves the denoising anchor
254
+ boxes via a contrastive way.
255
+ 3. Method
256
+ The overall architecture of the proposed CMT is illus-
257
+ trated in Fig. 3. Multi-view images and LiDAR points are
258
+ fed into two individual backbones to extract multi-modal
259
+ tokens.
260
+ The 3D coordinates are encoded into the multi-
261
+ modal tokens by the coordinates encoding.
262
+ The queries
263
+ from the position-guided query generator are used to in-
264
+ teract with the multi-modal tokens in transformer decoder
265
+ and then predict the object class as well as the 3D bounding
266
+ boxes. Point-based query denoising is further introduced
267
+ to accelerate the training convergence by introducing local
268
+ prior. The whole framework is learned in a fully end-to-
269
+ end manner and LiDAR backbone is trained from scratch
270
+ without pretraining.
271
+ 3.1. Coordinates Encoding Module
272
+ The coordinates encoding module (CEM) is used to en-
273
+ code the 3D position information into multi-modal tokens.
274
+ It generates both the camera and BEV position encodings
275
+ (PEs), which are added to image tokens and point cloud
276
+ tokens respectively. With the help of CEM, multi-modal
277
+ tokens can be implicitly aligned in 3D space.
278
+ Let P(u, v) be the 3D points set corresponding to the
279
+
280
+ feature map F(u, v) of different modalities. Here (u, v) in-
281
+ dicates the coordinate in the feature map. Specifically, F is
282
+ the image feature for camera while BEV feature for LiDAR.
283
+ Suppose the output position embedding of CEM is Γ(u, v),
284
+ its calculation can be formulated as:
285
+ Γ(u, v) = ψ(P(u, v))
286
+ (1)
287
+ where ψ is a multi-layer perception (MLP) layer.
288
+ CE for Images. Since the image is captured from a per-
289
+ spective view, each pixel can be seen as an epipolar line
290
+ in 3D space. Inspired by PETR [26], for each image, we
291
+ encode a set of points in camera frustum space to per-
292
+ form the coordinates encoding. Given the image feature
293
+ Fim, each pixel can be formulated as a series of points
294
+ {pk(u, v) = (u ∗ dk, v ∗ dk, dk, 1)T , k = 1, 2, ..., d} in the
295
+ camera frustum coordinates. Here, d is the number of points
296
+ sampled along the depth axis. The corresponding 3D points
297
+ can be calculated by:
298
+ pim
299
+ k (u, v) = T l
300
+ ciK−1
301
+ i
302
+ pk(u, v)
303
+ (2)
304
+ where T l
305
+ ci ∈ R4×4 is the transformation matrix from the i-
306
+ th camera coordinate to the LiDAR coordinate. Ki ∈ 4 × 4
307
+ is the intrinsic matrix of i-th camera. The position encoding
308
+ of pixel (u, v) for image is formulated as:
309
+ Γim(u, v) = ψim({pim
310
+ k (u, v),
311
+ k = 1, 2, ..., d})
312
+ (3)
313
+ CE for Point Clouds.
314
+ We choose VoxelNet [48, 54] or
315
+ PointPillar [17] as backbone to encode the point cloud to-
316
+ kens Fpc.
317
+ Intuitively, the point set P in Eq. (1) can be
318
+ sampled along the Z-axis. Suppose (u, v) is the coordi-
319
+ nates in BEV feature map, the sampled point set is then
320
+ pk(u, v) = (u, v, hk, 1)T , where hk indicates the height of
321
+ k-th points and h0 = 0 as default. The corresponding 3D
322
+ points of BEV feature map can be calculated by:
323
+ ppc
324
+ k (u, v) =(u ∗ ud, v ∗ vd, hk, 1)
325
+ (4)
326
+ where (ud, vd) is the size of each BEV feature grid. To
327
+ simplify, we only sample one point along the height axis. It
328
+ is equivalent to the 2D coordinate encoding in BEV space.
329
+ The position embedding of point cloud can be obtained by:
330
+ Γpc(u, v) = ψpc({ppc
331
+ k (u, v),
332
+ k = 1, 2, ..., h})
333
+ (5)
334
+ 3.2. Position-guided Query Generator
335
+ Following Anchor-DETR [46] and PETR [26], we firstly
336
+ initialize the queries with n anchor points A = {ai =
337
+ (ax,i, ay,i, az,i), i = 1, 2, ..., n} sampled from uniform dis-
338
+ tribution between [0, 1]. Then these anchor points are trans-
339
+ formed into 3D world space by linear transformation:
340
+
341
+
342
+
343
+
344
+
345
+ ax,i =
346
+ ax,i∗(xmax − xmin) + xmin
347
+ ay,i =
348
+ ay,i∗(ymax − ymin) + ymin
349
+ az,i =
350
+ az,i∗(zmax − zmin) + zmin
351
+ (6)
352
+ box center
353
+ anchor point
354
+ add
355
+ noise
356
+ noisy query
357
+ decoder
358
+ box center
359
+ anchor point
360
+ add
361
+ noise
362
+ noisy query
363
+ decoder
364
+ None
365
+ positive
366
+ negative
367
+ Figure 4. Illustration of the proposed point-based query denoising.
368
+ The noise queries are generated from the box center of ground-
369
+ truths. The positive and negative queries are split by the noise
370
+ scale. Positive queries are used to reconstruct the ground-truths
371
+ boxes, while negative queries predict the “no object”.
372
+ where [xmin, ymin, zmin, xmax, ymax, zmax] is the region
373
+ of interest (RoI) of 3D world space. After that, we project
374
+ the 3D anchor points A to different modalities and encode
375
+ the corresponding point sets by CEM. Then the positional
376
+ embedding Γq of object queries can be generated by:
377
+ Γq = ψpc(Apc) + ψim(Aim)
378
+ (7)
379
+ where Apc and Aim are the point set projected on BEV
380
+ plane and image plane, respectively. The positional embed-
381
+ ding Γq are further added with the query content embedding
382
+ to generate the initial position-guided queries Q0.
383
+ 3.3. Point-based Query Denoising (PQD)
384
+ For fast convergence, we extend the query denoising
385
+ strategy in DN-DETR [19] to 3D object detection as shown
386
+ in Fig. 4. Different from DN-DETR [19], we generate the
387
+ noisy anchor points by center shifting since the box scale
388
+ is not that important in 3D object detection.
389
+ For each
390
+ 3D ground-truths box (x, y, z, w, l, h, θ), we first sample
391
+ the random ratio λ1, λ2, λ3 within (−λ, λ), where λ is the
392
+ hyper-parameter to control the noise scale. Since 3D space
393
+ is sparse and unobstructed, we adopt a larger tolerance (e.g.
394
+ λ = 1.0). Then the center noise (∆x, ∆y, ∆z) can be cal-
395
+ culated as:
396
+ ∆x = λ1w
397
+ 2 , ∆y = λ2l
398
+ 2 , ∆z = λ3h
399
+ 2 .
400
+ (8)
401
+ The center noise is added to the center of ground-truths
402
+ to obtain the noise anchor points.
403
+ Then each noise an-
404
+ chor point can be converted into noise query, as described
405
+ in the last section. Inspired by DINO [53], we also intro-
406
+ duce the negative noisy queries to predict the “no object”.
407
+ To simplify the pipeline, the positive and negative queries
408
+ are simply split by the random ratios λ1, λ2, λ3 and a given
409
+ threshold ξ. For each noise query, it is a positive query if
410
+
411
+ λ2
412
+ 1 + λ2
413
+ 2 + λ2
414
+ 3 < ξ, otherwise a negative query.
415
+
416
+ Table 1. Performance comparison on the nuScenes test set. “L” is LiDAR and “C” is camera.
417
+ Methods
418
+ Modality NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
419
+ BEVDet [15]
420
+ C
421
+ 0.488 0.424
422
+ 0.524
423
+ 0.242
424
+ 0.373
425
+ 0.950
426
+ 0.148
427
+ DETR3D [45]
428
+ C
429
+ 0.479 0.412
430
+ 0.641
431
+ 0.255
432
+ 0.394
433
+ 0.845
434
+ 0.133
435
+ PETR [26]
436
+ C
437
+ 0.504 0.441
438
+ 0.593
439
+ 0.249
440
+ 0.383
441
+ 0.808
442
+ 0.132
443
+ CenterPoint [50]
444
+ L
445
+ 0.673 0.603
446
+ 0.262
447
+ 0.239
448
+ 0.361
449
+ 0.288
450
+ 0.136
451
+ UVTR [20]
452
+ L
453
+ 0.697 0.639
454
+ 0.302
455
+ 0.246
456
+ 0.350
457
+ 0.207
458
+ 0.123
459
+ TransFusion [1]
460
+ L
461
+ 0.702 0.655
462
+ 0.256
463
+ 0.240
464
+ 0.351
465
+ 0.278
466
+ 0.129
467
+ PointPainting [39]
468
+ LC
469
+ 0.610 0.541
470
+ 0.380
471
+ 0.260
472
+ 0.541
473
+ 0.293
474
+ 0.131
475
+ PointAugmenting [40]
476
+ LC
477
+ 0.711 0.668
478
+ 0.253
479
+ 0.235
480
+ 0.354
481
+ 0.266
482
+ 0.123
483
+ MVP [7]
484
+ LC
485
+ 0.705 0.664
486
+ 0.263
487
+ 0.238
488
+ 0.321
489
+ 0.313
490
+ 0.134
491
+ FusionPainting [47]
492
+ LC
493
+ 0.716 0.681
494
+ 0.256
495
+ 0.236
496
+ 0.346
497
+ 0.274
498
+ 0.132
499
+ UVTR [20]
500
+ LC
501
+ 0.711 0.671
502
+ 0.306
503
+ 0.245
504
+ 0.351
505
+ 0.225
506
+ 0.124
507
+ TransFusion [1]
508
+ LC
509
+ 0.717 0.689
510
+ 0.259
511
+ 0.243
512
+ 0.359
513
+ 0.288
514
+ 0.127
515
+ BEVFusion [28]
516
+ LC
517
+ 0.729 0.702
518
+ 0.261
519
+ 0.239
520
+ 0.329
521
+ 0.260
522
+ 0.134
523
+ CMT-L
524
+ L
525
+ 0.701 0.646
526
+ 0.298
527
+ 0.242
528
+ 0.330
529
+ 0.222
530
+ 0.124
531
+ CMT
532
+ LC
533
+ 0.730 0.704
534
+ 0.299
535
+ 0.241
536
+ 0.323
537
+ 0.240
538
+ 0.112
539
+ Table 2. Performance comparison on the nuScenes val set. “L” is
540
+ LiDAR and “C” is camera.
541
+ Methods
542
+ modality
543
+ NDS↑
544
+ mAP↑
545
+ FUTR3D [8]
546
+ L
547
+ 0.655
548
+ 0.593
549
+ UVTR [20]
550
+ L
551
+ 0.676
552
+ 0.608
553
+ TransFusion [1]
554
+ L
555
+ 0.702
556
+ 0.655
557
+ FUTR3D [8]
558
+ LC
559
+ 0.683
560
+ 0.645
561
+ UVTR [20]
562
+ LC
563
+ 0.702
564
+ 0.654
565
+ TransFusion [1]
566
+ LC
567
+ 0.713
568
+ 0.675
569
+ BEVFusion [28]
570
+ LC
571
+ 0.714
572
+ 0.685
573
+ CMT-L
574
+ L
575
+ 0.686
576
+ 0.624
577
+ CMT
578
+ LC
579
+ 0.719
580
+ 0.694
581
+ 3.4. Decoder and Loss
582
+ As for the decoder, we follow the original transformer
583
+ decoder in DETR [46] and use L decoder layers. For each
584
+ decoder layer, the position-guided queries interact with the
585
+ multi-modal tokens and update their representations. Two
586
+ feed-forward networks (FFNs) are used to predict the 3D
587
+ bounding boxes and the classes using updated queries. We
588
+ formulate the prediction process of each decoder layer as
589
+ follows:
590
+ ˆbi = Ψreg(Qi), ˆci = Ψcls(Qi),
591
+ (9)
592
+ where Ψreg and Ψcls respectively represent the FFN for
593
+ regression and classification. Qi is the the updated object
594
+ queries of the i-th decoder layer.
595
+ For set prediction, the bipartite matching is applied for
596
+ one-to-one assignment between predictions and ground-
597
+ Figure 5. We analyze the system robustness of CMT at test period
598
+ under three simulated sensor errors: (a) single camera miss, (b) all
599
+ camera miss and (c) LiDAR miss.
600
+ truths. We adopt the focal loss for classification and L1
601
+ loss for 3D bounding box regression:
602
+ L(y, ˆy) = ω1Lcls(c, ˆc) + ω2Lreg(b,ˆb)
603
+ (10)
604
+ where ω1 and ω2 are the hyper-parameter to balance the two
605
+ loss terms. Note that for positive and negative queries in
606
+ query denoising, the loss is calculated in the same way.
607
+ 3.5. Masked-Modal Training for Robustness
608
+ Security is the most important concern for autonomous
609
+ driving systems.
610
+ An ideal system requires solid perfor-
611
+ mance even if part of them fails, as well as not relying on
612
+ any input of a specific modality. Recently, BEVFusion [24]
613
+ has explored the robustness of LiDAR sensor failure. How-
614
+ ever, the exploration is limited to restricted scan range and
615
+ model need be retrained. In this paper, we try more extreme
616
+ failures, including single camera miss, camera miss and Li-
617
+ DAR miss, as shown in Fig. 5. It is consistent with the
618
+ actual scene and ensures the safety of autonomous driving.
619
+
620
+ Table 3. Quantitative results on the nuScenes val with LiDAR or camera miss. With the masked-modal training, the efficacy and robustness
621
+ of our CMT is significantly improved, especially when the LiDAR camera is missed.
622
+ Metric
623
+ Vanilla training
624
+ Masked-modal training
625
+ CMT
626
+ only LiDAR
627
+ only Cams
628
+ CMT
629
+ only LiDAR
630
+ only Cams
631
+ NDS ↑
632
+ 0.716
633
+ 0.594
634
+ 0.067
635
+ 0.719 (↑0.3%)
636
+ 0.677 (↑8.3%)
637
+ 0.434 (↑36.7%)
638
+ mAP ↑
639
+ 0.685
640
+ 0.472
641
+ 0.000
642
+ 0.694 (↑0.9%)
643
+ 0.613 (↑14.1%)
644
+ 0.386 (↑38.6%)
645
+ To improve the robustness of the model, we propose a
646
+ training strategy, called masked-modal training. In training
647
+ process, we randomly use only a single modality for train-
648
+ ing, such as camera or LiDAR, with the ratio of η1 and η2.
649
+ This strategy ensures that the model are fully trained with
650
+ both single modal and multi-modal. Then the model can be
651
+ tested with single modal or multi-modal, without modify-
652
+ ing the model weight. The experimental results show that
653
+ masked-modal training will not affect the performance of
654
+ our fusion model. Even if LiDAR is damaged, it can still
655
+ achieve similar performance compared to SoTA range-view
656
+ 3D detectors [15,26].
657
+ 4. Experiments
658
+ 4.1. Datasets and Metrics
659
+ We evaluate our method on nuScenes [2]. nuScenes is a
660
+ large-scale multi-modal dataset, which is composed of data
661
+ from 6 cameras, 1 LiDAR and 5 radars. The dataset has
662
+ 1000 scenes totally and is divided into 700/150/150 scenes
663
+ as train/validation/test sets, respectively.
664
+ Cameras. Each scene has 20s video frames with 12
665
+ FPS. 3D bounding boxes are annotated every 0.5s. We only
666
+ use these key frames. In each frame, nuScenes provides
667
+ images from six cameras.
668
+ LiDAR. NuScenes provides a 32-beam LiDAR with 20
669
+ FPS. The key frames are also annotated every 0.5s, the same
670
+ as cameras. We follow the common practice to transform
671
+ the points from the past 9 frames to the current frame for
672
+ training and evaluation.
673
+ Metrics. We follow the nuScenes official metrics. We
674
+ report the nuScenes Detection Score (NDS), mean Average
675
+ Precision (mAP), mean Average Translation Error (mATE),
676
+ mean Average Scale Error (mASE), mean Average Orien-
677
+ tation Error(mAOE), mean Average Velocity Error (mAVE)
678
+ and mean Average Attribute Error (mAAE).
679
+ 4.2. Implementation Details
680
+ We use ResNet [13] or VoVNet [18] as image backbone
681
+ to extract the 2D image features. The C5 feature is up-
682
+ sampled and fused with C4 feature to produce P4 feature.
683
+ We use VoxelNet [54] or PointPillars [17] as the backbone
684
+ to extract the point-cloud features. We set the region-of-
685
+ interest (RoI) to [−54.0m, 54.0m] for X and Y axis, and
686
+ [−5.0m, 3.0m] for Z axis. The 3D coordinates in the world
687
+ space are normalized to [0, 1]. All the feature dimension
688
+ is set to 256, including the LiDAR feature, image feature
689
+ and query embedding. Six decoder layers are adopted in
690
+ transformer decoder. Voxel size of 0.075 and image size of
691
+ 1600 × 640 are adopted as default in our experiments.
692
+ Our model is trained with the batch size of 16 on 8 A100
693
+ GPUs. It is trained for total 20 epochs with CBGS [55]. We
694
+ adopt the AdamW [29] optimizer for optimization. The ini-
695
+ tial learning rate is 1.0×10−4 and we follow the cycle learn-
696
+ ing rate policy [37]. The mask ratios η1 and η2 are both set
697
+ to 0.25 for masked-modal training. The threshold ξ is set to
698
+ 0.75 to divide the noise queries into positives and negatives
699
+ for training. The tolerance λ that controls the noise scale is
700
+ set to 1. The GT sample augmentation is employed for the
701
+ first 15 epochs and closed for the rest epochs. As for the
702
+ loss weights, we follow the default setting in DETR3D [45]
703
+ and set the ω1 and ω2 to 2.0 and 0.25, respectively.
704
+ 4.3. State-of-the-Art Comparison
705
+ As shown in Tab. 1, CMT achieves comparable results
706
+ compared to several state-of-the-art methods on nuScenes
707
+ test set. Our LiDAR-only baseline, named CMT-L, achieves
708
+ the 70.1% NDS, which is a nearly SoTA performance
709
+ among all existing LiDAR-only methods. Our multi-modal
710
+ method CMT achieves 73.0% NDS and 70.4% mAP and
711
+ outperforms existing SoTA BEVFusion. Benefits from the
712
+ large receptive field, CMT gains better results on some met-
713
+ rics like mAVE. We also compare the performance with
714
+ other SoTA methods on nuScenes val set (see Tab. 2).
715
+ It shows that our proposed CMT with multi-modal fu-
716
+ sion outperforms the BEVFusion by 0.5% NDS and 0.9%
717
+ mAP. CMT introduces large performance improvements
718
+ compared to our LiDAR-only CMT-L by 2.9%/5.8% and
719
+ 3.3%/7.0% NDS/mAP on test and validation set, showing
720
+ that camera images bring complementary information.
721
+ 4.4. Strong Robustness
722
+ We evaluate the robustness of our framework under var-
723
+ ious harsh environments, including LiDAR miss and cam-
724
+ era miss. Tab. 3 shows the results when the sensor miss
725
+ occurs, by simulating the scenarios of any modality totally
726
+ broken. The performance is compared between the vanilla
727
+ training and masked-modal training. It validates the effect
728
+
729
+ Table 4. The ablation studies of different components in the proposed CMT.
730
+ Im
731
+ PC NDS mAP mATE mASE mAOE
732
+
733
+ 0.595 0.554 0.515 0.258
734
+ 0.429
735
+ ✓ 0.665 0.626 0.372 0.255
736
+ 0.347
737
+
738
+ ✓ 0.669 0.641 0.377 0.254
739
+ 0.375
740
+ (a) Position encoding for query.
741
+ PQD
742
+ NDS mAP mATE mASE mAOE
743
+ 0.626 0.584 0.429 0.259
744
+ 0.420
745
+
746
+ 0.669 0.641 0.377 0.254
747
+ 0.375
748
+ (b) Point-based Query Denoise (PQD)
749
+ NDS mAP mATE mASE mAOE
750
+ 0.075
751
+ 0.669 0.641 0.377 0.254
752
+ 0.375
753
+ 0.1
754
+ 0.671 0.638 0.378 0.252
755
+ 0.334
756
+ 0.125
757
+ 0.655 0.624 0.396 0.255
758
+ 0.397
759
+ (c) Voxel size of LiDAR backbone.
760
+ NDS mAP mATE mASE mAOE
761
+ ResNet-50
762
+ 0.658 0.623 0.376 0.253
763
+ 0.399
764
+ ResNet-101 0.664 0.629 0.383 0.254
765
+ 0.363
766
+ VoV-99
767
+ 0.669 0.641 0.377 0.254
768
+ 0.375
769
+ (d) Image backbone.
770
+ NDS mAP mATE mASE mAOE
771
+ 800 × 320 0.654 0.609 0.374 0.256
772
+ 0.389
773
+ 1600 × 640 0.669 0.641 0.377 0.254
774
+ 0.375
775
+ (e) Input size of image backbone.
776
+ NDS mAP mATE mASE mAOE
777
+ PointPillars 0.628 0.598 0.430 0.252
778
+ 0.455
779
+ VoxelNet
780
+ 0.669 0.641 0.377 0.254
781
+ 0.375
782
+ (f) Lidar backbone
783
+ of masked-modal training. Note that the model are only
784
+ trained with multi-modality and evaluated without any fine-
785
+ tune process. With vanilla training, the model fails to pre-
786
+ dict anything meaningful (only Cams with mAP=0) when
787
+ LiDAR is missing. With masked-modal training, the ab-
788
+ sence of LiDAR or camera modalities lead to 4.2% and
789
+ 28.5% NDS drop compared to CMT, respectively.
790
+ It is
791
+ observed that losing one modality still remains similar re-
792
+ sults compared to single-modal training settings. It over-
793
+ comes the drawback that multi-modal method usually rely
794
+ on one major modality and performance would degrade sig-
795
+ nificantly if losing the major modality. Especially, for the
796
+ case of LiDAR missing, the performance is still compara-
797
+ ble to the SoTA camera-only method PETR [26], validating
798
+ the strong robustness of our method.
799
+ Moreover, we also investigate the case when any one
800
+ of cameras fails. Experimental result shows slight perfor-
801
+ mance drop, indicating the tolerable to single camera miss
802
+ of our method. Six sensors brings an average decrease of
803
+ 0.7% NDS, no more than 1% performance of the oracle ver-
804
+ sion. The front and back sensor relatively play the important
805
+ role among camera sensors, with 1.1% and 0.8% decrease
806
+ respectively, due to their distant or large field of view. Com-
807
+ pared to the camera-only setting, our multi-modal frame-
808
+ work facilitate the compensation between LiDAR and im-
809
+ age domains, thus presenting a robust performance.
810
+ 4.5. Ablations
811
+ We present the ablation studies in Tab. 4. All the experi-
812
+ ments are conducted for 20 epochs without CBGS [31].
813
+ We first ablate the effect of Im PE and PC PE on the gen-
814
+ eration of position-guided queries (see Tab. 4 (a)). It shows
815
+ that removing PC PE introduces a 7.4%/8.70% NDS/mAP
816
+ performance drop, which is much larger than the drop of re-
817
+ moving Im PE 0.4%/1.5%. Next, we explore the effective-
818
+ ness of our proposed PQD, as shown in Tab. 4(b). We can
819
+ easily find that PQD can greatly improve the overall perfor-
820
+ mance by 4.3%/5.7% NDS/mAP. With PQD, the training
821
+ convergence can be boosted, which is similar to the practice
822
+ in DN-DETR [19]. Further, Tab. 4 (c-f) illustrates the effect
823
+ of scaling up the CMT model as well as the input size. Over-
824
+ all, CMT can benefit from the scaling model size. Interest-
825
+ ingly, we find increasing the voxel number (smaller voxel
826
+ size) and image size achieves similar improvements ≈ 1.5%
827
+ in NDS. While scaling the image size increases more mAP
828
+ than the voxel number(+3.2% vs. +1.7%). When increasing
829
+ the image size from 800 × 320 to 1600 × 640, we find the
830
+ performance improvements are mainly from these small ob-
831
+ jects, such as pedestrian and motorcycle. We also conduct
832
+ experiments on replacing image and LiDAR backbones,
833
+ we use VoV-99 [18] and ResNet [13] as our image back-
834
+ bones. Experiments show that our proposed CMT can ben-
835
+ efit from larger backbones. For image, VoV-99 backbone
836
+ achieves the best result and outperforms the ResNet-50 by
837
+ 1.1%/1.8% in NDS/mAP. While for LiDAR, VoxelNet out-
838
+ performs the PointPillar by 4.1%/4.3% in NDS/mAP.
839
+ 4.6. Analysis
840
+ CMT is a direct and easy pipeline for multi-modal fu-
841
+ sion and can be easily extended.
842
+ Moreover, benefiting
843
+ from DETR [3] framework and our training schedule, CMT
844
+ shows strong robustness under sensor miss conditions. We
845
+ present some attempted experiments in this section.
846
+ Data extension. Multi-frame is now a common setting in
847
+
848
+ Figure 6. Visualization of attention maps on multi-view images and BEV point clouds. The blue points (•) are the initialized anchor points
849
+ while red points (•) are the corresponding centers of box predictions. It can be easily found that the high response regions of attention
850
+ maps mainly focus on the foreground objects, closest to the anchor points.
851
+ camera-based 3D object detection [14,23,27]. Using multi
852
+ frames often outperforms the single frame by a clear margin
853
+ and can solve some typical occlusion problem. We follow
854
+ the multi-frame alignment in PETRv2 [27]. Considering
855
+ the high memory cost of multi-frames, we conduct our ex-
856
+ periment with a 800 × 320 image resolution. As shown in
857
+ Tab. 5, adding image frame only improves the NDS/mAP
858
+ by 0.2%/0.7%. More image frames rarely improve the per-
859
+ formance with multi-modal fusion.
860
+ Radar has advantages in long range detection and the ro-
861
+ bustness of extreme weather. Following FUTR3D [8], we
862
+ stack points from 5 radars together to generate the point
863
+ cloud. We use several MLP layers to perform coordinates
864
+ encoding on Radar features, the same as LiDAR. Tab. 5
865
+ shows that adding Radar data to our pipeline degrades the
866
+ performance by 0.9% NDS and 0.6% mAP.
867
+ Visualization. For better understanding on querying from
868
+ multi-modal tokens, we visualize the attention map of
869
+ cross-attention on different modalities (see Fig. 6). We can
870
+ clearly find that the attention maps have higher response on
871
+ images and point clouds. It shows that our method can im-
872
+ plicitly achieve the cross-modal interaction. We visualize
873
+ the initial anchor points and the center points of predictions.
874
+ Most anchor points focus on the closest foreground objects.
875
+ After the interaction with queries in decoder, anchor points
876
+ gradually access the accurate center points.
877
+ Table 5. Results with more image frames or with Radar points.
878
+ +Frame
879
+ + Radar
880
+ NDS
881
+ mAP
882
+ 0.698
883
+ 0.662
884
+
885
+ 0.700
886
+ 0.669
887
+
888
+ 0.689
889
+ 0.656
890
+ 5. Conclusions
891
+ In this paper, we propose a fully end-to-end framework
892
+ for multi-modal 3D object detection. It implicitly encodes
893
+ the 3D coordinates into the tokens of images and point
894
+ clouds. With the coordinates encoding, the simple yet effec-
895
+ tive DETR pipeline can be adopted for multi-modal fusion
896
+ and end-to-end learning. With masked-modal training, our
897
+ multi-modal detector can be learned with strong robustness,
898
+ even if one of multi-modalities are missed. We hope such
899
+ a simple pipeline design could provide more insights on the
900
+ end-to-end 3D object detection.
901
+ Limitation: Though our CMT brings some advantages
902
+ compared to those existing approaches, it also reveals some
903
+ limitations. The computation cost is relatively larger due
904
+ to the large number of multi-modal tokens and the global
905
+ attention employed in transformer decoder. To solve this
906
+ problem, some efforts in two directions maybe taken. The
907
+ first one is to reduce the redundancy of multi-modal tokens.
908
+ The foreground tokens can be roughly selected with another
909
+ individual network [43]. The foreground tokens are then in-
910
+ put to our network for high-speed inference. Another pos-
911
+ sible solution is to replace the global attention with other
912
+ efficient attentions, like deformable attention [56]. One can
913
+ also employ a small set of object queries since most queries
914
+ correspond to the empty objects.
915
+ References
916
+ [1] Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun
917
+ Chen, Hongbo Fu, and Chiew-Lan Tai. Transfusion: Robust
918
+ lidar-camera fusion for 3d object detection with transform-
919
+ ers. In Proceedings of the IEEE/CVF Conference on Com-
920
+ puter Vision and Pattern Recognition, pages 1090–1099,
921
+ 2022. 1, 3, 5
922
+
923
+ [2] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
924
+ Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
925
+ ancarlo Baldan, and Oscar Beijbom.
926
+ nuscenes: A multi-
927
+ modal dataset for autonomous driving. In Proceedings of
928
+ the IEEE/CVF conference on computer vision and pattern
929
+ recognition, pages 11621–11631, 2020. 6
930
+ [3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
931
+ Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
932
+ end object detection with transformers. In European confer-
933
+ ence on computer vision, pages 213–229. Springer, 2020. 1,
934
+ 3, 7
935
+ [4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
936
+ Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
937
+ end object detection with transformers. In European confer-
938
+ ence on computer vision, pages 213–229. Springer, 2020. 2
939
+ [5] Qiang Chen, Xiaokang Chen, Gang Zeng, and Jingdong
940
+ Wang.
941
+ Group detr: Fast training convergence with de-
942
+ coupled one-to-many label assignment.
943
+ arXiv preprint
944
+ arXiv:2207.13085, 2022. 3
945
+ [6] Qiang Chen, Jian Wang, Chuchu Han, Shangang Zhang,
946
+ Zexian Li, Xiaokang Chen, Jiahui Chen, Xiaodi Wang,
947
+ Shumin Han, Gang Zhang, Haocheng Feng, Kun Yao, Junyu
948
+ Han, Errui Ding, and Jingdong Wang. Group detr v2: Strong
949
+ object detector with encoder-decoder pretraining. 2022. 3
950
+ [7] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
951
+ Multi-view 3d object detection network for autonomous
952
+ driving. In Proceedings of the IEEE conference on Computer
953
+ Vision and Pattern Recognition, pages 1907–1915, 2017. 5
954
+ [8] Xuanyao Chen, Tianyuan Zhang, Yue Wang, Yilun Wang,
955
+ and Hang Zhao. Futr3d: A unified sensor fusion framework
956
+ for 3d detection. arXiv preprint arXiv:2203.10642, 2022. 1,
957
+ 3, 5, 8
958
+ [9] Simon Doll, Richard Schulz, Lukas Schneider, Viviane Ben-
959
+ zin, Markus Enzweiler, and Hendrik Lensch.
960
+ Spatialdetr:
961
+ Robust scalable transformer-based 3d object detection from
962
+ multi-view camera images with global cross-sensor atten-
963
+ tion. In European Conference on Computer Vision, pages
964
+ 230–245. Springer, 2022. 2
965
+ [10] Bin Dong, Fangao Zeng, Tiancai Wang, Xiangyu Zhang,
966
+ and Yichen Wei.
967
+ Solq: Segmenting objects by learning
968
+ queries.
969
+ Advances in Neural Information Processing Sys-
970
+ tems, 34, 2021. 1
971
+ [11] Lue Fan, Xuan Xiong, Feng Wang, Naiyan Wang, and
972
+ Zhaoxiang Zhang.
973
+ Rangedet: In defense of range view
974
+ for lidar-based 3d object detection. In Proceedings of the
975
+ IEEE/CVF International Conference on Computer Vision,
976
+ pages 2918–2927, 2021. 2
977
+ [12] Yuxin Fang, Shusheng Yang, Xinggang Wang, Yu Li, Chen
978
+ Fang, Ying Shan, Bin Feng, and Wenyu Liu. Instances as
979
+ queries. Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2021. 1
980
+ [13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
981
+ Deep residual learning for image recognition. In Proceed-
982
+ ings of the IEEE conference on computer vision and pattern
983
+ recognition, pages 770–778, 2016. 6, 7
984
+ [14] Junjie Huang and Guan Huang. Bevdet4d: Exploit tempo-
985
+ ral cues in multi-camera 3d object detection. arXiv preprint
986
+ arXiv:/2203.17054, 2021. 8
987
+ [15] Junjie Huang, Guan Huang, Zheng Zhu, and Dalong Du.
988
+ Bevdet: High-performance multi-camera 3d object detection
989
+ in bird-eye-view. arXiv preprint arXiv:2112.11790, 2021. 2,
990
+ 5, 6
991
+ [16] Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu,
992
+ Weihong Lin, Lei Sun, Chao Zhang, and Han Hu. Detrs with
993
+ hybrid matching. arXiv preprint arXiv:2207.13080, 2022. 3
994
+ [17] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
995
+ Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
996
+ for object detection from point clouds. In Proceedings of
997
+ the IEEE/CVF conference on computer vision and pattern
998
+ recognition, pages 12697–12705, 2019. 2, 4, 6
999
+ [18] Youngwan Lee and Jongyoul Park.
1000
+ Centermask:
1001
+ Real-
1002
+ time anchor-free instance segmentation. In Proceedings of
1003
+ the IEEE/CVF conference on computer vision and pattern
1004
+ recognition, pages 13906–13915, 2020. 6, 7
1005
+ [19] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni,
1006
+ and Lei Zhang. Dn-detr: Accelerate detr training by intro-
1007
+ ducing query denoising. In Proceedings of the IEEE/CVF
1008
+ Conference on Computer Vision and Pattern Recognition,
1009
+ pages 13619–13627, 2022. 2, 3, 4, 7
1010
+ [20] Yanwei Li, Yilun Chen, Xiaojuan Qi, Zeming Li, Jian
1011
+ Sun, and Jiaya Jia.
1012
+ Unifying voxel-based representation
1013
+ with transformer for 3d object detection.
1014
+ arXiv preprint
1015
+ arXiv:2206.00630, 2022. 1, 3, 5
1016
+ [21] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran
1017
+ Wang, Yukang Shi, Jianjian Sun, and Zeming Li. Bevdepth:
1018
+ Acquisition of reliable depth for multi-view 3d object detec-
1019
+ tion. arXiv preprint arXiv:2206.10092, 2022. 2
1020
+ [22] Zhichao Li, Feng Wang, and Naiyan Wang. Lidar r-cnn: An
1021
+ efficient and universal 3d object detector. In Proceedings of
1022
+ the IEEE/CVF Conference on Computer Vision and Pattern
1023
+ Recognition, pages 7546–7555, 2021. 2
1024
+ [23] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-
1025
+ hao Sima, Tong Lu, Qiao Yu, and Jifeng Dai. Bevformer:
1026
+ Learning bird’s-eye-view representation from multi-camera
1027
+ images via spatiotemporal transformers.
1028
+ arXiv preprint
1029
+ arXiv:2203.17270, 2022. 2, 3, 8
1030
+ [24] Tingting Liang, Hongwei Xie, Kaicheng Yu, Zhongyu Xia,
1031
+ Zhiwei Lin, Yongtao Wang, Tao Tang, Bing Wang, and Zhi
1032
+ Tang. Bevfusion: A simple and robust lidar-camera fusion
1033
+ framework. arXiv preprint arXiv:2205.13790, 2022. 1, 3, 5
1034
+ [25] Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi,
1035
+ Hang Su, Jun Zhu, and Lei Zhang.
1036
+ Dab-detr: Dynamic
1037
+ anchor boxes are better queries for detr.
1038
+ arXiv preprint
1039
+ arXiv:2201.12329, 2022. 3
1040
+ [26] Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun.
1041
+ Petr: Position embedding transformation for multi-view 3d
1042
+ object detection. arXiv preprint arXiv:2203.05625, 2022. 1,
1043
+ 2, 4, 5, 6, 7
1044
+ [27] Yingfei Liu, Junjie Yan, Fan Jia, Shuailin Li, Qi Gao, Tian-
1045
+ cai Wang, Xiangyu Zhang, and Jian Sun. Petrv2: A uni-
1046
+ fied framework for 3d perception from multi-camera images.
1047
+ arXiv preprint arXiv:2206.01256, 2022. 1, 2, 3, 8
1048
+ [28] Zhijian Liu, Haotian Tang, Alexander Amini, Xinyu Yang,
1049
+ Huizi Mao, Daniela Rus, and Song Han. Bevfusion: Multi-
1050
+ task multi-sensor fusion with unified bird’s-eye view repre-
1051
+ sentation. arXiv preprint arXiv2205.13542, 2022. 1, 3, 5
1052
+
1053
+ [29] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
1054
+ regularization. arXiv preprint arXiv:1711.05101, 2017. 6
1055
+ [30] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and
1056
+ Christoph Feichtenhofer. Trackformer: Multi-object track-
1057
+ ing with transformers.
1058
+ arXiv preprint arXiv:2101.02702,
1059
+ 2021. 1
1060
+ [31] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu
1061
+ Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large
1062
+ mini-batch object detector. In Proceedings of the IEEE con-
1063
+ ference on Computer Vision and Pattern Recognition, pages
1064
+ 6181–6189, 2018. 7
1065
+ [32] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding
1066
+ images from arbitrary camera rigs by implicitly unprojecting
1067
+ to 3d. In European Conference on Computer Vision, pages
1068
+ 194–210. Springer, 2020. 2
1069
+ [33] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
1070
+ Guibas. Frustum pointnets for 3d object detection from rgb-
1071
+ d data. In Proceedings of the IEEE conference on computer
1072
+ vision and pattern recognition, pages 918–927, 2018. 2
1073
+ [34] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
1074
+ Pointnet: Deep learning on point sets for 3d classification
1075
+ and segmentation. In Proceedings of the IEEE conference
1076
+ on computer vision and pattern recognition, pages 652–660,
1077
+ 2017. 2
1078
+ [35] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
1079
+ Guibas. Pointnet++: Deep hierarchical feature learning on
1080
+ point sets in a metric space. Advances in neural information
1081
+ processing systems, 30, 2017. 2
1082
+ [36] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
1083
+ cnn: 3d object proposal generation and detection from point
1084
+ cloud. In Proceedings of the IEEE/CVF conference on com-
1085
+ puter vision and pattern recognition, pages 770–779, 2019.
1086
+ 2
1087
+ [37] Leslie N Smith. Cyclical learning rates for training neural
1088
+ networks. In 2017 IEEE winter conference on applications
1089
+ of computer vision (WACV), pages 464–472. IEEE, 2017. 6
1090
+ [38] Pei Sun, Weiyue Wang, Yuning Chai, Gamaleldin El-
1091
+ sayed, Alex Bewley, Xiao Zhang, Cristian Sminchisescu,
1092
+ and Dragomir Anguelov.
1093
+ Rsn: Range sparse net for effi-
1094
+ cient, accurate lidar 3d object detection. In Proceedings of
1095
+ the IEEE/CVF Conference on Computer Vision and Pattern
1096
+ Recognition, pages 5725–5734, 2021. 2
1097
+ [39] Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Bei-
1098
+ jbom.
1099
+ Pointpainting: Sequential fusion for 3d object de-
1100
+ tection.
1101
+ In Proceedings of the IEEE/CVF conference on
1102
+ computer vision and pattern recognition, pages 4604–4612,
1103
+ 2020. 5
1104
+ [40] Chunwei Wang, Chao Ma, Ming Zhu, and Xiaokang Yang.
1105
+ Pointaugmenting: Cross-modal augmentation for 3d object
1106
+ detection. In Proceedings of the IEEE/CVF Conference on
1107
+ Computer Vision and Pattern Recognition, pages 11794–
1108
+ 11803, 2021. 5
1109
+ [41] Tai Wang, ZHU Xinge, Jiangmiao Pang, and Dahua Lin.
1110
+ Probabilistic and geometric depth: Detecting objects in per-
1111
+ spective. In Conference on Robot Learning, pages 1475–
1112
+ 1485. PMLR, 2022. 2
1113
+ [42] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.
1114
+ Fcos3d: Fully convolutional one-stage monocular 3d object
1115
+ detection.
1116
+ In Proceedings of the IEEE/CVF International
1117
+ Conference on Computer Vision, pages 913–922, 2021. 2
1118
+ [43] Yulin Wang, Zhaoxi Chen, Haojun Jiang, Shiji Song, Yizeng
1119
+ Han, and Gao Huang.
1120
+ Adaptive focus for efficient video
1121
+ recognition. In Proceedings of the IEEE/CVF International
1122
+ Conference on Computer Vision, pages 16249–16258, 2021.
1123
+ 8
1124
+ [44] Yue Wang, Alireza Fathi, Abhijit Kundu, David A Ross,
1125
+ Caroline Pantofaru, Tom Funkhouser, and Justin Solomon.
1126
+ Pillar-based object detection for autonomous driving.
1127
+ In
1128
+ European Conference on Computer Vision, pages 18–34.
1129
+ Springer, 2020. 2
1130
+ [45] Yue Wang, Guizilini Vitor Campagnolo, Tianyuan Zhang,
1131
+ Hang Zhao, and Justin Solomon. Detr3d: 3d object detection
1132
+ from multi-view images via 3d-to-2d queries. In In Confer-
1133
+ ence on Robot Learning, pages 180–191, 2022. 1, 2, 5, 6
1134
+ [46] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun.
1135
+ Anchor detr: Query design for transformer-based detector.
1136
+ arXiv preprint arXiv:2109.07107, 2021. 4, 5
1137
+ [47] Shaoqing Xu, Dingfu Zhou, Jin Fang, Junbo Yin, Zhou Bin,
1138
+ and Liangjun Zhang.
1139
+ Fusionpainting: Multimodal fusion
1140
+ with adaptive attention for 3d object detection. In 2021 IEEE
1141
+ International Intelligent Transportation Systems Conference
1142
+ (ITSC), pages 3047–3054. IEEE, 2021. 5
1143
+ [48] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
1144
+ ded convolutional detection. Sensors, 18(10):3337, 2018. 4
1145
+ [49] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia.
1146
+ 3dssd:
1147
+ Point-based 3d single stage object detector. In Proceedings
1148
+ of the IEEE/CVF conference on computer vision and pattern
1149
+ recognition, pages 11040–11048, 2020. 2
1150
+ [50] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
1151
+ based 3d object detection and tracking. In Proceedings of
1152
+ the IEEE/CVF conference on computer vision and pattern
1153
+ recognition, pages 11784–11793, 2021. 2, 5
1154
+ [51] Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang, Xi-
1155
+ angyu Zhang, and Yichen Wei. Motr: End-to-end multiple-
1156
+ object tracking with transformer. In European Conference
1157
+ on Computer Vision, pages 659–675. Springer, 2022. 1
1158
+ [52] Gongjie Zhang, Zhipeng Luo, Yingchen Yu, Kaiwen Cui,
1159
+ and Shijian Lu. Accelerating detr convergence via semantic-
1160
+ aligned matching. In Proceedings of the IEEE/CVF Confer-
1161
+ ence on Computer Vision and Pattern Recognition (CVPR),
1162
+ pages 949–958, June 2022. 3
1163
+ [53] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
1164
+ Zhu, Lionel M Ni, and Heung-Yeung Shum.
1165
+ Dino: Detr
1166
+ with improved denoising anchor boxes for end-to-end object
1167
+ detection. arXiv preprint arXiv:2203.03605, 2022. 3, 4
1168
+ [54] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
1169
+ for point cloud based 3d object detection. In Proceedings of
1170
+ the IEEE conference on computer vision and pattern recog-
1171
+ nition, pages 4490–4499, 2018. 2, 3, 4, 6
1172
+ [55] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and
1173
+ Gang Yu. Class-balanced grouping and sampling for point
1174
+ cloud 3d object detection. arXiv preprint arXiv:1908.09492,
1175
+ 2019. 6
1176
+ [56] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
1177
+ Wang, and Jifeng Dai. Deformable detr: Deformable trans-
1178
+
1179
+ formers for end-to-end object detection.
1180
+ arXiv preprint
1181
+ arXiv:2010.04159, 2020. 1, 3, 8
1182
+
KNE4T4oBgHgl3EQfiA0C/content/tmp_files/2301.05129v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
KNE4T4oBgHgl3EQfiA0C/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
M9E0T4oBgHgl3EQfTABv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21b99d99baf61ab8fc1f20bbb9b12cabed6f1df8e7a8ad4cc070c9950e8c5abb
3
+ size 57435
N9FJT4oBgHgl3EQfHSyb/content/tmp_files/2301.11451v1.pdf.txt ADDED
@@ -0,0 +1,892 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ Switchable anomalous Hall effects in polar-stacked 2D antiferromagnet MnBi2Te4
4
+ Tengfei Cao*, Ding-Fu Shao*,†, Kai Huang, Gautam Gurung‡, and Evgeny Y. Tsymbal*
5
+ Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience,
6
+ University of Nebraska, Lincoln, Nebraska 68588-0299, USA
7
+ Van der Waals (vdW) assembly allows controlling symmetry of two-dimensional (2D) materials that determines their
8
+ physical properties. Especially interesting is the recently demonstrated breaking inversion symmetry by polar layer stacking
9
+ to realize novel electronic, magnetic, and transport properties of 2D vdW materials switchable by induced electric
10
+ polarization. Here, based on symmetry analyses and density-functional calculations, we explore the emergence of the
11
+ anomalous Hall effect (AHE) in antiferromagnetic MnBi2Te4 films assembled by polar layer stacking. We demonstrate that
12
+ breaking 𝑃̂𝑇̂ symmetry in an MnBi2Te4 bilayer makes this 2D material magnetoelectric and produces a spontaneous AHE
13
+ switchable by electric polarization. We find that reversable polarization at one of the interfaces in a three-layer MnBi2Te4
14
+ film drives a metal-insulator transition, as well as switching between an AHE and quantum AHE (QAHE). Finally, we
15
+ predict that engineering an interlayer polarization in a three-layer MnBi2Te4 film allows converting MnBi2Te4 from a trivial
16
+ insulator to a Chern insulator. Overall, our work emphasizes the emergence of quantum-transport phenomena in 2D vdW
17
+ antiferromagnets by polar layer stacking, which do not exist in this material in the bulk or bulk-like thin-film forms.
18
+ Symmetry breaking plays an important role in generating
19
+ quantum states in condensed matter, and thus its control allows
20
+ manipulating these states and the associated transport properties,
21
+ promising new functionalities1. For example, time-reversal (𝑇̂)
22
+ symmetry breaking directly affects the spin density distribution
23
+ in material systems, producing spontaneous magnetic orders and
24
+ novel spin-dependent transport properties useful for electronic
25
+ applications2,3,4,5,6,7,8. The control of these states usually requires
26
+ an external magnetic field as the stimulus directly modulating
27
+ the 𝑇̂ symmetry breaking by reorienting the magnetic moments.
28
+ However, the use of an external magnetic field in electronic
29
+ devices is not efficient. On one hand, it requires substantial
30
+ electric currents and thus costs large energy dissipation. On the
31
+ other hand, an external magnetic field can hardly control the
32
+ magnetic order in antiferromagnets – materials that have
33
+ recently attracted increasing interest due to their potential
34
+ application for next generation spintronics9,10,11,12,13,14. It would
35
+ be desirable to have a method to directly control the spin-
36
+ dependent properties of a material without changing its
37
+ magnetic ground state, e.g., an applied electric field, although
38
+ such a “nonmagnetic” method does not directly influence 𝑇̂
39
+ symmetry 15,16,17.
40
+ In recent years, two-dimensional (2D) van der Waals (vdW)
41
+ materials have become an extensively studied model system for
42
+ exploring the new physics and potential applications at the
43
+ nanoscale18,19,20,21,22,23,24. A particular interest was stimulated by
44
+ the recent discoveries of unexpected phenomena driven by
45
+ interlayer stacking 25,26,27,28,29. Despite weak interlayer coupling,
46
+ minor interlayer sliding26,27,28 or small-angle interlayer
47
+ twisting25,30,31 can generate electronic and transport properties
48
+ which do not exist in the bulk-like phases. This is largely due to
49
+ the modification of the interlayer stacking pattern breaking
50
+ crystal symmetries. Specifically, a combination of interlayer
51
+ sliding and 180˚ twisting results in a non-centrosymmetric
52
+ stacking pattern accompanied by the emergence of an out-of-
53
+ plane electric polarization reversable by an external electric
54
+ field 26,27,28, 32 . This approach allows the design of 2D
55
+ ferroelectrics out of parent nonpolar compounds to uncover new
56
+ functionalities not existent in the bulk phase33.
57
+ Such vdW polar stacking can be employed to engineer
58
+ recently discovered 2D antiferromagnets 34 . Breaking space
59
+ inversion symmetry in these materials could potentially induce
60
+ novel spin-dependent properties controlled by the intrinsic
61
+ ferroelectric polarization. Especially interesting are 2D
62
+ materials derived from antiferromagnet MnBi2Te4 which
63
+ exhibits non-trivial transport properties in the thin-film
64
+ form4,5,35,36,37,38,39,40. Although 𝑇̂ symmetry is globally broken
65
+ by magnetism of these antiferromagnetic materials, the
66
+ magnetism is “hidden” by 𝑇̂𝑂̂ symmetry that combines 𝑇̂ and
67
+ crystal symmetry 𝑂̂ such as space inversion ( 𝑃̂ ) or mirror
68
+ reflection (𝑀̂ ). Since the polar layer stacking affects crystal
69
+ symmetry 𝑂̂, it allows an indirect control of the 𝑇̂ symmetry
70
+ breaking in 2D magnets and thus spin-dependent properties,
71
+ such as the anomalous Hall effect (AHE).
72
+ The intrinsic AHE is governed by the Berry curvature Ω, a
73
+ property arising from the spin-dependent band structure of
74
+ magnetic systems 41. The anomalous Hall conductance (AHC)
75
+ is quantized in 2D magnetic topological insulators due to
76
+ formation of the topologically protected edge channels resulting
77
+ in a dissipationless quantum AHE (QAHE) 2,4,35. Ferromagnetic
78
+ systems naturally support the AHE due to the intrinsic
79
+ 𝑇̂ symmetry breaking. Antiferromagnets also break 𝑇̂ symmetry,
80
+ but usually preserve 𝑇̂𝑂̂ symmetry that enforces the Berry
81
+ curvature to be antisymmetric in k-space, i.e. 𝑇̂𝑂̂𝜴(𝒌) =
82
+ −𝜴(𝑇̂𝑂̂𝒌), prohibiting the AHE. The AHE can emerge in
83
+ magnetically uncompensated antiferromagnets, where the
84
+ combined 𝑇̂𝑂̂ symmetry is broken either by noncollinear
85
+ magnetic configurations or non-magnetic atoms at low
86
+
87
+ 2
88
+
89
+ symmetry positions 6,41,42,43,44,45. In the former case, the AHE is
90
+ dependent on the orientation of the Néel vector, which can be
91
+ changed by an applied magnetic field. In the latter case, the
92
+ atomic structure of the non-magnetic sublattice can influence
93
+ the AHE; however, there are no straightforward means to
94
+ control this structure by external stimulus.
95
+ In this letter, based on symmetry analysis and first-
96
+ principles density functional calculations, we demonstrate that
97
+ the
98
+ AHE
99
+ can
100
+ be
101
+ effectively
102
+ induced
103
+ in 2D
104
+ vdW
105
+ antiferromagnets by polar layer stacking. Using recently
106
+ discovered antiferromagnetic topological insulator MnBi2Te4,
107
+ as a representative material, we show that polar layer stacking
108
+ breaks 𝑃̂𝑇̂ symmetry and induces a magnetoelectric effect, a
109
+ normal AHE, or QAHE, depending on the number of MnBi2Te4
110
+ layers and their stacking. These effects can be controlled by the
111
+ switchable electric polarization of the polar stacked MnBi2Te4,
112
+ thus providing a route to manipulate the spin-dependent and
113
+ quantum properties without an external magnetic field.
114
+ Results and discussion
115
+ Monolayer MnBi2Te4 represents a septuple layer, which can be
116
+ viewed as a MnTe bilayer intercalated into the center of a Bi2Te3
117
+ quintuple layer (Fig. 1(a)). Bulk MnBi2Te4 has 𝑃̂𝑇̂ symmetry
118
+ and an A-type antiferromagnetic order with colinear out-of-
119
+ plane magnetic moments. A MnBi2Te4 film in bulk-like stacking
120
+ inherits the bulk A-type antiferromagnetic order and exhibits
121
+ quantum phenomena dependent on the number of layers 2,4,36.
122
+ An MnBi2Te4 film with an even number of layers, e.g., a bilayer,
123
+ has intrinsic 𝑃̂𝑇̂ symmetry, which not only prevents the net
124
+ magnetic moment, but also impedes both the AHE and QAHE.
125
+ This can be seen from the expression for the Berry curvature:
126
+ 𝛺(𝒌) = −2Im ∑
127
+ ⟨𝑛|
128
+ 𝜕𝐻̂
129
+ 𝜕𝑘𝑥
130
+ |𝑚⟩⟨𝑚|
131
+ 𝜕𝐻̂
132
+ 𝜕𝑘𝑦
133
+ |𝑛⟩
134
+ (𝐸𝑛𝒌−𝐸𝑚𝒌)2
135
+ 𝑚≠𝑛
136
+ ,
137
+ (1)
138
+ where 𝐻̂ is the Hamiltonian of the system and 𝐸𝑛𝑘 is the energy
139
+ of the n-th band at wave vector k. The AHC determined by the
140
+ integration of 𝛺(𝒌) in the Brillouin zone (BZ) as follows:
141
+ 𝜎𝑥𝑦 = −
142
+ 𝑒2
143
+ ℎ ∫
144
+ 𝑑2𝒌
145
+ 2𝜋
146
+ 𝐵𝑍
147
+ 𝛺(𝒌).
148
+ (2)
149
+ According to Eq. (1), the Berry curvature is odd under the 𝑃̂𝑇̂
150
+ symmetry operation, i.e., 𝑃̂𝑇̂𝛺(𝒌) = −𝛺(𝒌), and thus is zero in
151
+ any 𝑃̂𝑇̂ -symmetric system enforcing 𝜎𝑥𝑦 to vanish. On the
152
+ contrary, due to the A-type antiferromagnetic order, an
153
+ MnBi2Te4 film with an odd number of layers does not have the
154
+ restriction of 𝑃̂𝑇̂ symmetry, due to an uncompensated net
155
+ magnetic moment. As a result, an intrinsic QAHE can occur in
156
+ such a film where the number of quantum states is determined
157
+ by the number of MnBi2Te4 layers, as was predicted
158
+ theoretically 4 and demonstrated experimentally 2,36,38. Here, we
159
+ show that a polar-stacked MnBi2Te4 provides even a broader
160
+ spectrum of quantum states and these states can be controlled by
161
+ electric polarization.
162
+ Using the vdW assembly approach demonstrated in refs. 26
163
+ and 27, a MnBi2Te4 bilayer can be engineered to be polar. This
164
+ requires top monolayer Ā to be deposited as mirror reflection
165
+ ( 𝑀̂𝑧 ) of the bottom monolayer. The resulting non-
166
+ centrosymmetric AĀ stacking (Fig. 1(b)) is unstable due to the
167
+
168
+ Fig. 1 (a) Atomic structure of monolayer MnBi2Te4 (top and side
169
+ views). (b) Unstable AĀ stacking of a MnBi2Te4 bilayer where the top
170
+ monolayer is vdW assembled as a mirror reflection (𝑀̂𝑧) of the bottom
171
+ monolayer. (c, d) A polar-stacked MnBi2Te4 bilayer with antiparallel
172
+ magnetic moments and electric polarization pointing down Pd (c) and
173
+ up Pu (d) due to the in-plane translation, −t∥ (c) or t∥ (d), of the top
174
+ monolayer from the AĀ stacking in (b). The bilayer structures with
175
+ opposite polarization are related by the 𝑀̂𝑧𝑇̂ symmetry operation or
176
+ equivalently by in-plane translation 2t∥.
177
+
178
+ Fig. 2 (a) Top: schematic of a polar-stacked MnBi2Te4 bilayer with
179
+ polarization pointing up (Pu) or down (Pd). Middle and bottom: an
180
+ AHE in a polar-stacked MnBi2Te4 bilayer switchable by ferroelectric
181
+ polarization. (b) Top: schematic of a MnBi2Te4 trilayer with a single
182
+ (top) polar interface. Bottom: switching between AHE and QAHE
183
+ with polarization reversal. (c) Top: schematic of a MnBi2Te4 trilayer
184
+ with two polar interfaces. Bottom: transition between trivial and Chern
185
+ insulators driven by polarization switching.
186
+
187
+
188
+
189
+
190
+
191
+ a
192
+ b
193
+ AA
194
+ C
195
+ AB
196
+ d
197
+ BA
198
+ t
199
+ M,T
200
+ Mn"-
201
+ ti
202
+ "- q
203
+ -t
204
+ c
205
+ ti
206
+ 4
207
+ 4..
208
+ 1.
209
+ Top
210
+ +M
211
+ +M
212
+ +M
213
+ Top
214
+ +M
215
+ +M
216
+ +M
217
+ Top
218
+
219
+ Pu.1
220
+ P.1
221
+ P.1
222
+ P
223
+ -M
224
+ Bottom
225
+ -M
226
+ Middle
227
+ -M
228
+ Middle
229
+ Td
230
+ Bulk-like stacking
231
+ xy1
232
+ Bottom
233
+ Bottom
234
+ W+
235
+ +M
236
+ Oxy
237
+ 0
238
+ 0
239
+ Pu Pd
240
+ Pu Pd
241
+ P3
242
+
243
+ proximity of the Te atoms across the interface. It spontaneously
244
+ relaxes to the lower-energy AB or BA stacking with antiparallel
245
+ magnetic moments (Figs. 1(c,d)). The latter is distinguished by
246
+ the lateral translation, −t∥ or t∥, along the [11̅0] direction of the
247
+ top MnBi2Te4 monolayer with respect to the bottom ( 𝒕|| =
248
+ ⅓(𝒂 − 𝒃) in Fig. 1(a)), placing the interfacial Bi atom atop the
249
+ Te atom. The resulting two structures, AB and BA, have
250
+ opposite polarizations pointing down Pd or up Pu depending on
251
+ the lateral translation, –t∥ or t∥, respectively (Figs. 1(c,d)). The
252
+ polarization can be switched by an applied electric field through
253
+ interlayer sliding.
254
+ Depending on the number of monolayers, the interlayer
255
+ polarization has different effects on quantum states of MnBi2Te4
256
+ films. In case of a bilayer (Fig. 2 (a)), polar staking breaks
257
+ inversion symmetry and hence 𝑃̂𝑇̂ symmetry. This lifts the
258
+ 𝑃̂𝑇̂𝛺(𝒌) = −𝛺(𝒌) constraint on the Berry curvature of the bulk
259
+ phase making AHC of a polar MnBi2Te4 bilayer nonzero. The
260
+ two polarization states are related by the 𝑀̂𝑧𝑇̂ symmetry
261
+ transformation (Fig. S2(a)), which changes sign of the Berry
262
+ curvature, 𝑀̂𝑧𝑇̂𝛺(𝒌) = −𝛺(−𝒌), and hence sign of the AHC
263
+ σxy in Eq. (2). Therefore, the switchable polarization of the polar
264
+ MnBi2Te4 bilayer can serve as a control parameter for the AHE.
265
+ For a polar-stacked MnBi2Te4 trilayer, the net magnetic
266
+ moment is non-zero and hence the AHE is always finite due to
267
+ broken 𝑃̂𝑇̂ symmetry. In case of a trilayer with a polar
268
+ MnBi2Te4 bilayer deposited on an MnBi2Te4 monolayer with
269
+ bulk-like interface (Fig. 2(b)), the interlayer polarization
270
+ controls band bending across the layer stack and can lead to the
271
+ AHE or QAHE depending on the polarization orientation. In
272
+ case of a trilayer with two polar interfaces (Fig 2(c)), the
273
+ polarization of the top interface can be switched to be parallel or
274
+ antiparallel to the polarization of the bottom interface resulting
275
+ in the topological phase transition from a trivial band insulator
276
+ to a non-trivial Chern insulator.
277
+ To explicitly demonstrate the anticipated properties, we
278
+ apply density functional calculations, as described in
279
+ Supplementary Material. Fig. 3 (a) shows the calculated energy
280
+ profile and corresponding polarization for a polar MnBi2Te4
281
+ bilayer when sliding the top layer with respect to the bottom
282
+ along the [11̅0] direction (see Fig. S1 for the sliding energy
283
+ profile along the [100] direction). Zero fractional shift matches
284
+ to the AĀ stacking which has the highest energy and thus
285
+ unstable. The energy drops down with the shift and exhibits two
286
+ local minima separated by an energy barrier of 0.09 eV/f.u.
287
+ These minima occur at a fractional shift of a third and two thirds
288
+ the in-plane unit cell vector in the [11̅0] direction (equivalent to
289
+ the lateral translation, t∥ and −t∥, respectively). The two local
290
+ energy minima correspond to the polar structures with
291
+ polarization pointing up and down (Fig. 3(a)). The interlayer
292
+ polarization is mainly contributed by the charge transfer and
293
+ associated displacements of the interfacial cation Bi and anion
294
+ Te atoms, creating a dipole pointing from Bi to Te. The
295
+ calculated out-of-plane polarization magnitude is 0.01 μC/cm2.
296
+ This polarization induces the electrostatic potential energy drop
297
+ across the MnBi2Te2 bilayer of 0.05 eV as shown in Fig. S2 (b)).
298
+ Thus, the interlayer sliding transforms the polar structure with
299
+ polarization pointing up to the structure with polarization
300
+ pointing down or vice versa. Such sliding and the associated
301
+ polarization reversal can be induced by an applied out-of-plane
302
+ electric field of less than 1 V/nm, which is feasible in
303
+ experimental conditions.
304
+ The 𝑃̂𝑇̂ symmetry broken by polar-layer stacking breaks
305
+ Kramers’ degeneracy of the energy bands for the bilayer. In the
306
+ absence of spin-orbit coupling (SOC), the bands are exchange
307
+ split into spin-up (𝜎 = ↑) and spin-down (𝜎 = ↓) states (Fig.
308
+ S3). The spin character of the bands 𝐸𝜎(𝒌) is reversed with
309
+ ferroelectric polarization, as follows from 𝑀̂𝑧𝑇̂𝐸↑(𝒌) =
310
+ 𝐸↓(−𝒌). Including SOC, changes the band structure of a polar
311
+ MnBi2Te4 bilayer. As seen from Fig. 3(b), similar to bulk
312
+ MnBi2Te4, the polar bilayer represents a direct band gap
313
+ semiconductor with the conduction band minimum (CBM) and
314
+ the valence band maximum (VBM) located at the Γ point. The
315
+ states around the Fermi level are mainly composed of the p
316
+ states of Bi and Te with the d states of Mn being relatively far
317
+ away from the Fermi energy. Due to the presence of ferroelectric
318
+ polarization, the band gap of the polar bilayer is reduced to about
319
+ 0.06 eV from 0.08 eV obtained for a non-polar bilayer and 0.16
320
+ eV known for bulk MnBi2Te4.
321
+
322
+ Fig. 3 (a) Total energy and out-of-plane electric polarization of a polar
323
+ MnBi2Te4 bilayer when sliding the top monolayer with respect to the
324
+ bottom along the [11̅0] direction. The two minima in energy profile
325
+ correspond to polarization pointing up (Pu) and down (Pd). (b)
326
+ Electronic band structure of a polar MnBi2Te4 bilayer along the high-
327
+ symmetry directions in the 2D Brillouin zone. (c) Berry curvature of a
328
+ polar MnBi2Te4 bilayer in the 2D Brillouin zone calculated at E – EF =
329
+ 0.07 eV for polarization pointing up (top) and down (bottom). (d)
330
+ Anomalous Hall conductance 𝜎𝑥𝑦 of a polar MnBi2Te4 bilayer as a
331
+ function of electron energy for polarization pointing up and down.
332
+
333
+ a
334
+ 0.00
335
+ 0.02
336
+ C
337
+ M
338
+ 100
339
+ /cm2)
340
+ 0.02
341
+ 0.01
342
+ K
343
+ 1
344
+ AE(eV/f.u.)
345
+ /on)
346
+ 0.04
347
+ 0.00
348
+ rization
349
+ 0.06
350
+ M
351
+ -0.01
352
+ Pola
353
+ -0.08
354
+ K
355
+ 0.000.170.330.500.670.841.00
356
+ -0.02
357
+ -100
358
+ FractionalShift
359
+ b
360
+ d
361
+ 0.6
362
+ 2.5
363
+ Pu
364
+ 0.4
365
+ 1.5
366
+ Pd
367
+ (eV)
368
+ 0.2
369
+ Te(p)
370
+ (e?/h)
371
+ 0.0
372
+ Bi(p)
373
+ 0.0
374
+ E
375
+ 0.2
376
+ Mn(d)
377
+ 0.4
378
+ 1.5
379
+ -0.6
380
+ -2.5
381
+ M
382
+ K
383
+ M
384
+ -0.30-0.15
385
+ 0.00
386
+ 0.15
387
+ 0.30
388
+ E-Er(eV)4
389
+
390
+ We note that a polar-stacked MnBi2Te4 bilayer represents a
391
+ magnetoelectric multiferroic. It has both a spontaneous electric
392
+ polarization and an antiferromagnetic order. The magnetic
393
+ moments of Mn atoms of about 4.47 μB are aligned antiparallel
394
+ on top and bottom MnBi2Te4 monolayers. Importantly, due to
395
+ broken 𝑃̂𝑇̂ symmetry, the antiferromagnetism of the polar
396
+ bilayer is not fully compensated. While the uncompensated net
397
+ magnetic moment is small, about 0.002 μB per formular unit, it
398
+ is non-vanishing and reversible by ferroelectric polarization, as
399
+ follows from 𝑀̂𝑧𝑇̂𝑴 = −𝑴, where 𝑴 is the net magnetization.
400
+ Potentially this functionality of the polar-stacked vdW
401
+ antiferromagnets may be useful for applications.
402
+ The broken 𝑃̂𝑇̂ symmetry causes the Berry curvature of a
403
+ polar-stacked MnBi2Te4 bilayer to be non-vanishing. Fig. 3(c)
404
+ shows the calculated Berry curvature 𝛺(𝒌) in the 2D Brillouin
405
+ zone for up and down polarization states at energy E – EF = 0.07
406
+ eV above the band gap. It is seen that 𝛺(𝒌) exhibits a flower-
407
+ like pattern with alternating red and blue color of the petals (i.e.
408
+ alternating sign of 𝛺(𝒌) ) reflecting the 3-fold rotational
409
+ symmetry of the trilayer around the z axis. This symmetry
410
+ combined with 𝑀̂𝑧𝑇̂𝛺(𝒌) = −𝛺(−𝒌), makes the color of the
411
+ petals (reflecting the sign of 𝛺(𝒌) ) independent of the
412
+ polarization orientation. On the contrary, a persistent color
413
+ around the Γ point is reversed from red to blue when polarization
414
+ is switched from pointing up to down.
415
+ The non-vanishing Berry curvature implies finite AHC.
416
+ Fig. 3(d) shows the calculated AHC as a function of electron
417
+ energy. It is evident that the AHC is zero within the band gap of
418
+ an MnBi2Te4 bilayer, indicating that the bilayer represents a
419
+ trivial insulator (semiconductor). However, with electron or
420
+ hole doping, AHC becomes non-zero and, as expected, has
421
+ opposite sign for ferroelectric polarization pointing up and down.
422
+ Thus, we observe the new functionality of a polar-stacked
423
+ MnBi2Te4 bilayer which does not exist in bulk-like MnBi2Te4.
424
+ The presence of a finite AHC in a polar-stacked MnBi2Te4
425
+ bilayer can be understood in terms of a layer-dependent Hall
426
+ effect39. While a bulk-like MnBi2Te4 bilayer represents an axion
427
+ insulator where the top and bottom MnBi2Te4 monolayers
428
+ spontaneously deflect electrons in opposite directions resulting
429
+ in zero net AHE, the presence of spontaneous polarization in a
430
+ polar MnBi2Te4 bilayer breaks the AHE-compensating
431
+ symmetry between the top and bottom monolayers producing a
432
+ finite AHC. This phenomenon is analogous to the effect of
433
+ electric field on a bulk-like MnBi2Te4 bilayer39. However, while
434
+ in the case of a bulk-like MnBi2Te4 bilayer, the electric field
435
+ needs to be maintained to have a non-zero AHC, the AHE in a
436
+ polar MnBi2Te4 bilayer is spontaneous and non-volatile with the
437
+ sign of AHC being linked to the direction of electric polarization.
438
+ The polarization controlled AHC emerges not only in a
439
+ MnBi2Te4 bilayer that is composed of two polar-stacked
440
+ MnBi2Te4 monolayers, but also in MnBi2Te4 films assembled by
441
+ polar stacking of two MnBi2Te4 layers formed of two or more
442
+ monolayers. Fig. S3 shows the results of calculations of the band
443
+ structure and AHC for polar stacked four- (Fig. S3(a)) and six-
444
+ (Fig. S3(d)) monolayer MnBi2Te4 films. It is seen that compared
445
+ to the MnBi2Te4 bilayer, the band gap is reduced in the four-
446
+ monolayer MnBi2Te4 (Fig. S3(b)) and almost vanishes in the
447
+ six-monolayer MnBi2Te4 (Fig. S3(e)). The AHC as a function
448
+ of energy (Figs. S3(c,f)) exhibits trends similar to those of the
449
+ bilayer. In particular, the AHC is reversed by switching the
450
+ interlayer polarization. Thus, in experimental conditions, vdW
451
+ assembly can be used to engineer polar MnBi2Te4 films with an
452
+ even number of monolayers to realize an AHE switchable by the
453
+ intrinsic ferroelectric polarization.
454
+ Next, we consider effects of polar stacking in three-
455
+ monolayer MnBi2Te4 films. Due A-type antiferromagnetism,
456
+ such films have a large uncompensated magnetic moment of
457
+ about 4.47 μB per supercell. The presence of this magnetic
458
+ moment breaks 𝑃̂𝑇̂ symmetry of the parent bulk phase
459
+ producing a nonzero Berry curvature and the associated AHE.
460
+ Following the schematic Fig. 2(b), we assume that a three-
461
+ monolayer MnBi2Te4 slab is composed of a polar-stacked
462
+ bilayer deposited on a MnBi2Te4 monolayer with the bulk-like
463
+ stacked bottom interface (Figs. 4(a,b) left panels)). We find a
464
+ small band offset (~ 0.05 eV) between the polar and non-polar
465
+ stacked interfaces resulting in a built-in electric field Eb across
466
+ the trilayer pointing down (indicated by blue arrows in Figs.
467
+
468
+ Fig. 4 (a,b) Three-monolayer MnBi2Te4 film with a polar top interface
469
+ with polarization pointing down (Pd) (a) or up (Pu) (b) and non-polar
470
+ bulk-like bottom interface (left panels), and corresponding layer-
471
+ resolved density of states (DOS) as a function of energy(right panels).
472
+ In the left panels, blue arrows indicate a built-in electric field due to
473
+ the band offset between top and bottom interfaces in the trilayer. The
474
+ real-space distributions of the charge density at the conduction band
475
+ minimum are shown by yellow colored isosurfaces of 10 % of their
476
+ maxima. (c) Anomalous Hall conductivity as a function of electron
477
+ energy for Pu and Pd. (d) Surface band structure of the three-monolayer
478
+ MnBi2Te4 film for Pu indicating the appearance of the topologically
479
+ protected edge state at the Fermi energy.
480
+
481
+ a
482
+ b
483
+ Pd
484
+ 0.03
485
+ 0.03
486
+ eV)
487
+ 0.00
488
+ e
489
+ 0.00
490
+ ites/
491
+ tes/
492
+ 0.03
493
+ 0.03
494
+ (Stat
495
+ (Stat
496
+ Eb
497
+ 0.000
498
+ 0.00
499
+ DOSO
500
+ 0.03
501
+ 0.03
502
+ 0.00
503
+ 0.00
504
+ 0.30.00.3
505
+ -0.30.00.3
506
+ E-Er(eV)
507
+ E-E (eV)
508
+ c
509
+ d
510
+ 0.15
511
+ 6
512
+ 0.1
513
+ 5
514
+ 1.0
515
+ 4
516
+ (eV)
517
+ 0.05
518
+ 0.0
519
+ 3
520
+
521
+ 2
522
+ -1.0
523
+ Pu
524
+ 山-0.05
525
+ 1
526
+ Pd
527
+ 0
528
+ -2.0
529
+ -0.1
530
+ 2.
531
+ -0.08
532
+ 3-0.040.00
533
+ 0.04
534
+ 0.08
535
+ -0.15
536
+ 2
537
+ E-Er(eV)
538
+ -M
539
+ M5
540
+
541
+ 4(a,b)). The presence of this bias field independent of
542
+ polarization orientation makes the transport behavior of the
543
+ polar MnBi2Te4 trilayer different from that of a polar bilayer.
544
+ When polarization is pointing down (Pd), the associated
545
+ depolarizing field is directed opposite to the bias field and
546
+ effectively compensates it, thus maintaining the band gap across
547
+ the whole polar trilayer (≈ 0.07 eV), as seen from the layer-
548
+ resolved density of states (DOS) in Fig. 4(a). Also, as evident
549
+ from the real space distribution of the charge density at the CBM
550
+ in this figure, the CBM lies away from the polar interface. It is
551
+ expected in this case that the transport behavior of the polar
552
+ trilayer in the Pd state to be reminiscent to that of the bulk-like
553
+ non-polar trilayer. The latter is known to represent a Chern
554
+ insulator exhibiting an QAHE5. Likewise, we find that the polar
555
+ MnBi2Te4 trilayer in the Pd state signifies a Chern insulator with
556
+ the Chern number equal to 1 and exhibits an QAHE with AHC
557
+ 𝜎𝑥𝑦 = 𝑒2/ℎ in the energy gap region (yellow curve in Fig. 4(c)).
558
+ The quantized AHC is associated with the non-trivial
559
+ topological character of the system which is reflected in the
560
+ topologically protected edge state shown in Fig. 4 (d).
561
+ On the contrary, when polarization is pointing up (Pu), the
562
+ associated depolarizing field is aligned in the direction of the
563
+ bias field which effectively doubles its effect producing strong
564
+ band bending across the trilayer, as seen from the layer-resolved
565
+ DOS in Fig. 4(b). As a result, the band gap is closed at the polar
566
+ interface of the trilayer, producing a non-zero charge density at
567
+ the Fermi energy. The metallic character of the polar MnBi2Te4
568
+ trilayer in the Pd state makes the Chen number equal to 0,
569
+ eliminates a topologically protected surface state, and changes
570
+ the AHC to a smaller value at the Fermi energy (red curve in Fig.
571
+ 4(c)). Thus, the switchable electric polarization of the polar
572
+ MnBi2Te4 trilayer can serve as a knob to control the transition
573
+ between the non-trivial (associated with QAHE) and trivial
574
+ (associated with AHE) electronic states in the MnBi2Te4 films.
575
+ A different type of stacking in a MnBi2Te4 trilayer occurs
576
+ when a polar MnBi2Te4 bilayer is placed on a monolayer in such
577
+ a way that the bottom interface is also polar and has polarization
578
+ pointing down (Fig. 2(c)). In this case the trilayer has two polar
579
+ interfaces and the polarization of the top interface can be
580
+ switched up (Pu) to be antiparallel (AP) or down (Pd) to be
581
+ parallel (P) to the polarization P of the bottom interface (Figs.
582
+ 5(a) and 5(d), respectively). Depending on the relative
583
+ polarization orientation (AP or P), we find different topology of
584
+ the trilayer. While in both cases, we observe the presence of a
585
+ band gap in the band structure of AP- (Fig. 5(b)) and P- (Fig.
586
+ 5(e)) aligned trilayers, the nature of this gap is different. By
587
+ comparing the band structures in Fig. 5(b) and Fig. 5(e), we see
588
+ for the former, that the bands exhibit conventional dispersions
589
+ typical for a normal semiconductor with the CBM and VBM
590
+ located at the Γ point. On the contrary, for the latter, the valence
591
+ bands reveal a “mexican-hat” shape placing the VBM away
592
+ from the Γ point and indicating a possible band inversion and
593
+ thus a non-trivial character of the band gap.
594
+ To elucidate these different behaviors, we explore the
595
+ evolution of the band gap for the AP- and P- aligned MnBi2Te4
596
+ trilayers as a function of SOC. Fig. 5(c) shows variation of the
597
+ band gap for AP- and P-aligned aligned MnBi2Te4 trilayers as a
598
+ function of SOC strength given in units of a fraction of the actual
599
+ SOC (see Figs. S5 and S6 for the associated bands structure
600
+ around the Γ point). It is seen that, with the increasing fraction
601
+ of SOC, the band gap of the AP-aligned trilayer continuously
602
+ reduces (yellow stars in Fig. 5(c) and Fig. S5), until it reaches
603
+ the smallest value of 0.06 eV at the actual value of SOC. On the
604
+ contrary, the band gap of the P-aligned trilayer first decreases
605
+ with increasing SOC, so that the band gap reduces to zero at
606
+ SOC = 0.93 (red circles in Fig. 5(c) and Fig. S6). A further
607
+ increase of SOC reopens and then enlarges the band gap. This
608
+ behavior indicates band inversion in the P-aligned MnBi2Te4
609
+ trilayer that is induced by SOC, reflecting the topologically non-
610
+ trivial origin of the band gap. This contrasts to the AP-aligned
611
+ MnBi2Te4 trilayer where there is no band inversion with
612
+ increasing SOC, thus signaling the trivial character of the
613
+ system. These conclusions are confirmed by the direct
614
+ calculation of the Chern number. While the Chern number is 0
615
+ for the AP-aligned trilayer, it is 1 for the P-aligned trilayer.
616
+ The non-trivial character of the AP-aligned MnBi2Te4
617
+ trilayer is reflected in the quantized AHC exhibiting a plateau of
618
+ 𝜎𝑥𝑦 = 𝑒2/ℎ within the energy gap (red curve in Fig. 5(f)),
619
+ indicating that the trilayer represents a Chern insulator
620
+ exhibiting an QAHE. On the contrary, 𝜎𝑥𝑦 = 0 in the band gap
621
+ region of the P-aligned MnBi2Te4 trilayer (yellow curve in Fig.
622
+ 5(f)), indicating that the trilayer represents a trivial insulator. In
623
+ both cases, for electron energies above and below the band gap
624
+
625
+ Fig. 5: (a,b,d,e) Atomic structure (a,d) and energy bands near the Γ
626
+ point (b,e) of a polar MnBi2Te4 trilayer with antiparallel (AP) (a,b) and
627
+ parallel (P) (d,e) interface polarization. (c) Variation of the band gap
628
+ for parallel (P) and antiparallel (AP) aligned MnBi2Te4 trilayer as a
629
+ function of SOC strength given in units of a fraction of the actual SOC.
630
+ (f) Anomalous Hall conductivity of the P and AP-aligned MnBi2Te4
631
+ trilayer as a function of electron energy.
632
+ P
633
+ AP
634
+ c
635
+ f
636
+ P
637
+ AP
638
+ M ← Γ
639
+ → K
640
+ M ← Γ
641
+ → K
642
+ b
643
+ a
644
+ e
645
+ d
646
+
647
+ AP-MBT
648
+ P-MBTP-MBT
649
+ AP-MBT0.2
650
+ 0.1
651
+ (eV)
652
+ -
653
+ 0.0
654
+ 0.1
655
+ 0.2·
656
+ (d)al
657
+ Bi(p)
658
+ Mn(d)6
659
+
660
+ the AHC is non-zero, reflecting the broken 𝑃̂𝑇̂ symmetry of the
661
+ system, and changes with reversal of ferroelectric polarization
662
+ of the top interface. Therefore, a polar MnBi2Te4 trilayer can be
663
+ switched between the trivial insulator and Chern insulator states
664
+ by reversing electric polarization of the top interface resulting
665
+ in the antiparallel or parallel polarization alignment.
666
+ Conclusions
667
+ Overall, our results demonstrate that utilizing polar stacking of
668
+ a 2D vdW antiferromagnet MnBi2Te4 with switchable interface
669
+ polarization allows achieving new functional properties that are
670
+ not available in the bulk form of this material. Specifically, due
671
+ to broken 𝑃̂𝑇̂ symmetry, a polar-stacked MnBi2Te4 bilayer
672
+ exhibits an AHE, whose sign is determined by ferroelectric
673
+ polarization orientation, as well as the magnetoelectric effect
674
+ with the net magnetic moment of the bilayer switchable by
675
+ polarization. The reversable polarization in a single-polar-
676
+ interface MnBi2Te4 trilayer controls the transition between
677
+ metallic and insulating phases associated with the AHE and
678
+ QAHE states, respectively. Switching between antiparallel and
679
+ parallel interlayer polarization states in a bi-polar MnBi2Te4
680
+ trilayer enforces the transition between a trivial insulator to a
681
+ Chern insulator carrying a topologically protected edge state and
682
+ exhibiting an QAHE.
683
+
684
+
685
+ 1 L. Du, T. Hasan, A. Castellanos-Gomez, G.-B. Liu, Y. Yao, C. N.
686
+ Lau, and Z. Sun, Engineering symmetry breaking in 2D layered
687
+ materials, Nature Reviews Physics 3, 193-206 (2021).
688
+ 2 C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li,
689
+ Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia,
690
+ X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and
691
+ Q.-K. Xue, Experimental observation of the quantum anomalous
692
+ Hall effect in a magnetic topological insulator. Science 340, 167-170
693
+ (2013).
694
+ 3 Y. Yang, Z. Luo, H. Wu, Y. Xu, R.-W. Li, S. J. Pennycook, S. Zhang,
695
+ and Y. Wu, Anomalous Hall magnetoresistance in a ferromagnet.
696
+ Nature Communications 9, 2255 (2018).
697
+ 4 J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan,
698
+ and Y. Xu, Intrinsic magnetic topological insulators in van der Waals
699
+ layered MnBi2Te4-family materials. Science Advances 5, eaaw5685
700
+ (2019).
701
+ 5 Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and
702
+ Y. Zhang, Quantum anomalous Hall effect in intrinsic magnetic
703
+ topological insulator MnBi2Te4. Science 367, 895-900 (2020).
704
+ 6 L. Šmejkal, R. González-Hernández, T. Jungwirth, and J. Sinova
705
+ Crystal time-reversal symmetry breaking and spontaneous Hall
706
+ effect in collinear antiferromagnets. Science Advances 6, eaaz8809
707
+ (2020).
708
+ 7 T. Nan, C. X. Quintela, J. Irwin, G. Gurung, D. F. Shao, J. Gibbons,
709
+ N. Campbell, K. Song, S. -Y. Choi, L. Guo, R. D. Johnson, P. Manuel,
710
+ R. V. Chopdekar, I. Hallsteinsen, T. Tybell, P. J. Ryan, J.-W. Kim,
711
+ Y. Choi, P. G. Radaelli, D. C. Ralph, E. Y. Tsymbal, M. S.
712
+ Rzchowski, and C. B. Eom, Controlling spin current polarization
713
+ through non-collinear antiferromagnetism. Nature Communications
714
+ 11, 4671 (2020).
715
+ Polar layer stacking can be employed not only for
716
+ MnBi2Te4 considered in this work, but also for other 2D vdW
717
+ antiferromagnets to propel their new functional properties. Due
718
+ to small vertical ion displacements, the out-of-plane electric
719
+ polarization can be switched by a small applied electric field via
720
+ in-plane interlayer sliding with an ultra-low barrier. These
721
+ characteristics are useful for potential applications of the polar-
722
+ stacked 2D vdW antiferromagnets in data storage. We hope
723
+ therefore that our theoretical results will stimulate experimental
724
+ efforts to verify our predictions.
725
+
726
+ Acknowledgments. The work was supported by the grant DE-
727
+ SC0023140 funded by the U.S. Department of Energy, Office
728
+ of Science. Computations were performed at the University of
729
+ Nebraska Holland Computing Center.
730
+
731
+ † Current affiliation: Key Laboratory of Materials Physics, Institute of
732
+ Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei
733
+ 230031, China
734
+
735
+ ‡ Current affiliation: Trinity College, University of Oxford, Oxford
736
+ OX1 3BH, UK
737
+
738
739
+ 8 G. Gurung, D.-F. Shao, and E. Y. Tsymbal, Transport spin
740
+ polarization of noncollinear antiferromagnetic antiperovskites.
741
+ Physical Review Materials 5, 124411 (2021).
742
+ 9 T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich,
743
+ Antiferromagnetic spintronics. Nature Nanotechnology 11, 231-241
744
+ (2016).
745
+ 10 V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y.
746
+ Tserkovnyak, Antiferromagnetic spintronics. Reviews of Modern
747
+ Physics 90, 015005 (2018).
748
+ 11 T. Jungwirth, J. Sinova, A. Manchon, X. Marti, J. Wunderlich, and
749
+ C. Felser, The multiple directions of antiferromagnetic spintronics.
750
+ Nature Physics 14, 200-203 (2018).
751
+ 12 D.-F. Shao, G. Gurung, S.-H. Zhang, and E. Y. Tsymbal, Dirac nodal
752
+ line metal for topological antiferromagnetic spintronics. Physical
753
+ Review Letters 122, 077203 (2019).
754
+ 13 D.-F. Shao, S.-H. Zhang, M. Li, C.-B. Eom, and E. Y. Tsymbal,
755
+ Spin-neutral currents for spintronics. Nature Communications 12,
756
+ 7061 (2021).
757
+ 14 L Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, and T.
758
+ Jungwirth, Anomalous Hall antiferromagnets. Nature Reviews
759
+ Materials 7, 482-496 (2022).
760
+ 15 F. Matsukura, Y. Tokura, and H. Ohno, Control of magnetism by
761
+ electric fields. Nature Nanotechnology 10, 209-220 (2015).
762
+ 16 Z. Wang, T. Zhang, M. Ding, B. Dong, Y. Li, M. Chen, X. Li, J.
763
+ Huang, H. Wang, X. Zhao, Y. Li, D. Li, C. Jia, L. Sun, H. Guo, Y.
764
+ Ye, D. Sun, Y. Chen, T. Yang, J. Zhang, S. Ono, Z. Han, and Z.
765
+ Zhang, Electric-field control of magnetism in a few-layered van der
766
+ Waals ferromagnetic semiconductor. Nature Nanotechnology 13,
767
+ 554-559 (2018).
768
+
769
+
770
+ 7
771
+
772
+
773
+ 17 J. Cai, D. Ovchinnikov, Z. Fei, M. He, T. Song, Z. Lin, C. Wang, D.
774
+ Cobden, J.-H. Chu, Y.-T. Cui, C.-Z. Chang, D. Xiao, J. Yan, and X.
775
+ Xu, Electric control of a canted-antiferromagnetic Chern insulator.
776
+ Nature Communications 13, 1668 (2022).
777
+ 18 K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y.
778
+ Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q.-K. Xue, X. Chen, and
779
+ S.-H. Ji, Discovery of robust in-plane ferroelectricity in atomic-thick
780
+ SnTe. Science 353, 274-278 (2016).
781
+ 19 F. Liu, L. You, K. L. Seyler, X. Li, P. Yu, J. Lin, X. Wang, J. Zhou,
782
+ H. Wang, H. He, S. T. Pantelides, W. Zhou, P. Sharma, X. Xu, P. M.
783
+ Ajayan, J. Wang, and Z. Liu, Room-temperature ferroelectricity in
784
+ CuInP2S6 ultrathin flakes. Nature Communications 7, 12357 (2016).
785
+ 20 B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K.
786
+ L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden,
787
+ W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent
788
+ ferromagnetism in a van der Waals crystal down to the monolayer
789
+ limit. Nature 546, 270-273 (2017).
790
+ 21 W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and
791
+ W. Zhu, Prediction of intrinsic two-dimensional ferroelectrics in
792
+ In2Se3 and other III2-VI3 van der Waals materials. Nature
793
+ Communications 8, 14956 (2017).
794
+ 22 J. Xu, S. Singh, J. Katoch, G. Wu, T. Zhu, I. Žutić, and R. K.
795
+ Kawakami, Spin inversion in graphene spin valves by gate-tunable
796
+ magnetic proximity effect at one-dimensional contacts. Nature
797
+ Communications 9, 2869 (2018).
798
+ 23 S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao,
799
+ Room-temperature ferroelectricity in MoTe2 down to the atomic
800
+ monolayer limit. Nature Communications 10, 1775 (2019).
801
+ 24 K. He, MnBi2Te4-family intrinsic magnetic topological materials.
802
+ npj Quantum Materials 5, 90 (2020).
803
+ 25 Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras,
804
+ and P. Jarillo-Herrero, Unconventional superconductivity in magic-
805
+ angle graphene superlattices. Nature 556, 43-50 (2018).
806
+ 26 M. Vizner Stern, Y. Waschitz, W. Cao, I. Nevo, K. Watanabe, T.
807
+ Taniguchi, E. Sela, M. Urbakh, O. Hod, and M. Ben Shalom
808
+ Interfacial ferroelectricity by van der Waals sliding. Science 372,
809
+ 1462-1466 (2021).
810
+ 27 K. Yasuda, X. Wang, K. Watanabe, T. Taniguchi, and P. Jarillo-
811
+ Herrero, Stacking-engineered ferroelectricity in bilayer boron nitride.
812
+ Science 372, 1458-1462 (2021).
813
+ 28 E. Y. Tsymbal, Two-dimensional ferroelectricity by design. Science
814
+ 372, 1389-1390 (2021).
815
+ 29 X. Wang, K. Yasuda, Y. Zhang, S. Liu, K. Watanabe, T. Taniguchi,
816
+ J. Hone, L. Fu, and P. Jarillo-Herrero, Interfacial ferroelectricity in
817
+ rhombohedral-stacked bilayer transition metal dichalcogenides.
818
+ Nature Nanotechnology 17, 367-371 (2022).
819
+ 30 Z. Zheng, Q. Ma, Z. Bi, S. de la Barrera, M.-H. Liu, N. Mao, Y.
820
+ Zhang, N. Kiper, K. Watanabe, T. Taniguchi, J. Kong, W. A. Tisdale,
821
+ R. Ashoori, N. Gedik, L. Fu, S.-Y. Xu, and P. Jarillo-Herrero,
822
+ Unconventional ferroelectricity in moiré heterostructures. Nature
823
+ 588, 71-76 (2020).
824
+ 31 Y. Xie, A. T. Pierce, J. M. Park, D. E. Parker, E. Khalaf, P. Ledwith,
825
+ Y. Cao, S. H. Lee, S. Chen, P. R. Forrester, K. Watanabe, T.
826
+ Taniguchi, A. Vishwanath, P. Jarillo-Herrero, and A. Yacoby,
827
+ Fractional Chern insulators in magic-angle twisted bilayer graphene.
828
+ Nature 600, 439-443 (2021).
829
+
830
+ 32 L. Li and M. Wu, Binary compound bilayer and multilayer with
831
+ vertical polarizations: Two-dimensional ferroelectrics, multiferroics,
832
+ and nanogenerators. ACS Nano 11, 6382-6388 (2017).
833
+ 33 M. Wu and L. Li, Sliding ferroelectricity in 2D van der Waals
834
+ materials: Related physics and future opportunities. PNAS 118,
835
+ e2115703118 (2021).
836
+ 34 S. Rahman, J. F. Torres, A. R. Khan, and Y. Lu, Recent
837
+ developments in van der Waals antiferromagnetic 2D materials:
838
+ synthesis, characterization, and device implementation. ACS Nano
839
+ 15, 17175-17213 (2021).
840
+ 35 M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A.
841
+ Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A.
842
+ M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Y.
843
+ Vyazovskaya, S. V. Eremeev, Y. M. Koroteev, V. M. Kuznetsov, F.
844
+ Freyse, J. Sánchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T.
845
+ Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev,
846
+ B. Büchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di
847
+ Santo, R. C. Vidal, S. Schatz, K. Kißner, M. Ünzelmann, C. H. Min,
848
+ S. Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A.
849
+ Isaeva, and E. V. Chulkov, Prediction and observation of an
850
+ antiferromagnetic topological insulator. Nature 576, 416-422 (2019).
851
+ 36 D. Zhang, M. Shi, T. Zhu, D. Xing, H. Zhang, and J. Wang,
852
+ Topological axion states in the magnetic insulator MnBi2Te4 with the
853
+ quantized magnetoelectric effect. Physical Review Letters 122,
854
+ 206401 (2019).
855
+ 37 N. H. Jo, L.-L. Wang, R.-J. Slager, J. Yan, Y. Wu, K. Lee, B.
856
+ Schrunk, A. Vishwanath, and A. Kaminski, Intrinsic axion
857
+ insulating behavior in antiferromagnetic MnBi6Te10. Physical
858
+ Review B 102, 045130 (2020)
859
+ 38 C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang,
860
+ and Y. Wang, Robust axion insulator and Chern insulator phases in
861
+ a two-dimensional antiferromagnetic topological insulator. Nature
862
+ Materials 19, 522-527 (2020).
863
+ 39 A. Gao, Y.-F. Liu, C. Hu, J.-X. Qiu, C. Tzschaschel, B. Ghosh, S.-C.
864
+ Ho, D. Bérubé, R. Chen, H. Sun, Z. Zhang, X.-Y. Zhang, Y.-X.
865
+ Wang, N. Wang, Z. Huang, C. Felser, A. Agarwal, T. Ding, H.-J.
866
+ Tien, A. Akey, J. Gardener, B. Singh, K. Watanabe, T. Taniguchi, K.
867
+ S. Burch, D. C. Bell, B. B. Zhou, W. Gao, H.-Z. Lu, A. Bansil, H.
868
+ Lin, T.-R. Chang, L. Fu, Q. Ma, N. Ni, and S.-Y. Xu, Layer Hall
869
+ effect in a 2D topological axion antiferromagnet, Nature 595, 521-
870
+ 525 (2021).
871
+ 40 M. M. Otrokov, I. P. Rusinov, M. Blanco-Rey, M. Hoffmann, A. Yu.
872
+ Vyazovskaya, S. V. Eremeev, A. Ernst, P. M. Echenique, A. Arnau,
873
+ and E. V. Chulkov, Unique thickness-dependent properties of the
874
+ van der Waals interlayer antiferromagnet MnBi2Te4 films. Physical
875
+ Review Letters 122, 107202 (2019).
876
+ 41 D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic
877
+ properties. Reviews of Modern Physics 82, 959-2007 (2010).
878
+ 42 H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall effect
879
+ arising from noncollinear antiferromagnetism. Physical Review
880
+ Letters 112, 017205 (2014).
881
+ 43 S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall effect
882
+ in a non-collinear antiferromagnet at room temperature. Nature 527,
883
+ 212-215 (2015).
884
+ 44 A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek,
885
+ C. Shekhar, N. Kumar, W. Schnelle, J. Kübler, C. Felser, and S. S.
886
+ P. Parkin, Large anomalous Hall effect driven by a nonvanishing
887
+ Berry curvature in the noncolinear antiferromagnet Mn3Ge. Science
888
+ Advances 2, e1501870 (2016).
889
+ 45 G. Gurung, D.-F. Shao, T. R. Paudel, and E. Y. Tsymbal, Anomalous
890
+ Hall conductivity of noncollinear magnetic antiperovskites. Physical
891
+ Review Materials 3, 044409 (2019).
892
+
N9FJT4oBgHgl3EQfHSyb/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
OtAzT4oBgHgl3EQfWfy0/content/tmp_files/2301.01303v1.pdf.txt ADDED
@@ -0,0 +1,2034 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Fermion pair radiation from accelerating classical systems
2
+ Margarita Gavrilova,1, ∗ Mitrajyoti Ghosh,1, † Yuval Grossman,1, ‡
3
+ Walter Tangarife,2, § and Tien-Hsueh Tsai3, ¶
4
+ 1Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USA
5
+ 2Department of Physics, Loyola University Chicago, Chicago, IL 60660, USA
6
+ 3Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan
7
+ Abstract
8
+ Accelerating classical systems that couple to a fermion-antifermion pair at the microscopic level can
9
+ radiate pairs of fermions and lose energy in the process. In this work, we derive the generalization of the
10
+ Larmor formula for fermion pair radiation. We focus on the case of a point-like classical source in an
11
+ elliptical orbit that emits fermions through vector and scalar mediators. Ultra-light fermion emission
12
+ from such systems becomes relevant when the mass of the mediator is larger than the frequency of the
13
+ periodic motion. This enables us to probe regions of the parameter space that are inaccessible in on-
14
+ shell bosonic radiation. We apply our results to pulsar binaries with mediators that couple to muons
15
+ and neutrinos. Using current data on binary period decays, we extract bounds on the parameters of
16
+ such models.
17
18
19
20
21
22
+ 1
23
+ arXiv:2301.01303v1 [hep-ph] 3 Jan 2023
24
+
25
+ CONTENTS
26
+ I. Introduction
27
+ 2
28
+ II. Fermion pair radiation by a point-like object
29
+ 4
30
+ A. General formalism
31
+ 4
32
+ B. Power loss formulae
33
+ 7
34
+ III. Discussion of the power-loss formula
35
+ 9
36
+ A. General features of the power-loss formula
37
+ 9
38
+ B. Asymptotic behavior for the case of circular orbits
39
+ 12
40
+ C. Fermion-pair radiation in the SM
41
+ 14
42
+ IV. Fermion pair radiation by pulsar binaries
43
+ 15
44
+ A. Pulsar binaries as a classical source
45
+ 16
46
+ B. Neutrino pair radiation by pulsar binaries in the SM
47
+ 18
48
+ C. New physics constraints from the neutrino pair radiation by pulsar binaries
49
+ 19
50
+ V. Conclusion
51
+ 24
52
+ Acknowledgements
53
+ 25
54
+ A. Derivation of the power loss formula
55
+ 25
56
+ 1. The case of a vector boson mediator
57
+ 25
58
+ 2. The case of the scalar mediator
59
+ 29
60
+ References
61
+ 31
62
+ I.
63
+ INTRODUCTION
64
+ Radiation by a classical system is a well-known phenomenon. Probably the most familiar
65
+ example is the radiation of electromagnetic waves by an accelerating point-like particle. The
66
+ power loss, in this case, is calculated using the famous Larmor formula [1, 2], which, in natural
67
+ units, is given by
68
+ Ploss = 1
69
+ 6πq2a2,
70
+ (1.1)
71
+ where q is the electric charge of the particle and a is its acceleration. The Larmor formula in
72
+ Eq. (1.1) has been also generalized to other types of radiation by accelerating classical sources,
73
+ such as radiation of massive vector and scalar bosons [3–9].
74
+ 2
75
+
76
+ Generalizations of the Larmor formula to exotic types of radiation are motivated, among
77
+ other things, by their applications to new physics searches. The basic idea is that if a new
78
+ physics radiation accompanies an accelerating astrophysical object, the power loss effect can
79
+ be enhanced thanks to the large number density of an object, even if the coupling between the
80
+ new physics and the Standard Model (SM) is very small. This expected enhancement can be
81
+ used to obtain constraints on various new physics scenarios using astrophysical observations.
82
+ One example is the radiation of an ultra-light gauged Lµ − Lτ vector boson [10–13] by pulsar
83
+ binaries. The measurement of the orbital period decay, when compared to the prediction due
84
+ to the gravitational wave (GW) radiation, was used to constrain the mass of the Lµ −Lτ gauge
85
+ boson and its couplings to the SM [5, 6, 14–18].
86
+ In this paper, we extend the previous work and derive the generalization of the Larmor
87
+ formula to the case of fermion-antifermion pair radiation by classical systems. The interest in
88
+ this scenario is twofold. First, it is interesting theoretically since it is one more example of a
89
+ case where a fermion pair behaves like a boson (other cases are Cooper pairs in superconductors
90
+ and the mediation of forces between objects via 2-fermion forces [19–22]). Thus we can study
91
+ the coherent radiation of fermions. The key point is that single-fermion emission changes the
92
+ source and thus can not be treated classically. Fermion-pair emission, however, can take place
93
+ without changing any quantum degrees of freedom of the emitting system (such as spin). Thus,
94
+ fermion-pair emission (or emission of any even number of fermions) can be treated classically.
95
+ The second aspect is phenomenological. In particular, we consider radiation by astrophysical
96
+ systems. In the SM, as we show below, the effect of the fermion pair radiation is negligible.
97
+ In beyond the SM (BSM) theories, however, such processes can be enhanced, enabling us to
98
+ probe various new physics scenarios using astrophysical observations. In particular, fermion-
99
+ pair radiation can become significant in models with a new light mediator (a vector or scalar
100
+ boson) that couples to some light fermionic degrees of freedom. These fermionic degrees of
101
+ freedom can be the well-known neutrinos or some new BSM fermions.
102
+ The effects of this
103
+ radiation can become relevant when the mediator is too heavy to be produced on-shell, but
104
+ the fermions are much lighter and can be radiated out. Since fermion pairs can be produced
105
+ via off-shell mediators, the fermion pair radiation can be used to probe broader regions of the
106
+ parameter space of such models.
107
+ As a particular application of our result for the fermion-pair radiation, we consider two
108
+ models: (i) a model with a gauged Lµ − Lτ symmetry and (ii) a model with a muonophilic
109
+ scalar that couples to the muon and the muon neutrino. We study the implications of these
110
+ scenarios for the power loss by pulsar binaries and compare our results to the cases of on-shell
111
+ vector boson radiation [3, 5, 6] and on-shell scalar radiation [3]. A stark difference is that
112
+ 3
113
+
114
+ the emission of neutrino pairs in a particular harmonic mode of the periodic system is not
115
+ kinematically forbidden when the mediator mass becomes larger than the frequency of that
116
+ particular mode. In the case of on-shell bosonic radiation, radiation from a harmonic mode
117
+ is cut off once the boson mass exceeds the frequency of that particular mode due to energy
118
+ conservation. We use the available period decay data for pulsar binaries to demonstrate how
119
+ neutrino pair radiation, mediated by BSM bosons, can be used to probe a broader parameter
120
+ space than the on-shell boson emission. We, however, do not perform a comprehensive study
121
+ of other bounds on the models we consider.
122
+ This paper is organized as follows: In Sec. II, we discuss the general machinery required for
123
+ calculating fermion-pair radiation from a classical system. In Sec. III, we discuss the main fea-
124
+ tures of the power-loss formula. In Sec. IV, we perform the computation for the particular case
125
+ where the classical system is a binary system. We then use available data to place constraints
126
+ on the parameters of a few models. We conclude in Sec. V. The detailed calculations are shown
127
+ in the appendix.
128
+ II.
129
+ FERMION PAIR RADIATION BY A POINT-LIKE OBJECT
130
+ In this section, we outline the calculation of the power of fermion-pair radiation that accom-
131
+ panies a non-relativistic point-like object. We formulate a general approach to the derivation of
132
+ the power loss formula with a focus on the case of elliptical orbits. The fermion pair radiation
133
+ is realized in our analysis via the coupling of the classical object to a massive boson: a vector,
134
+ or a scalar, which is unstable and decays into a fermion pair. We consider the emission of Dirac
135
+ fermions and generalize our result to the case of Weyl fermions when we discuss the application
136
+ of our result to the SM in Section III C. While a point-like object is a purely theoretical entity,
137
+ it is worthwhile to perform this calculation since the approximation of a radiating extended
138
+ object as a point is valid in the limit of long-wavelength radiation.
139
+ A.
140
+ General formalism
141
+ We describe a point-like object as a classical source using classical current, Jµ
142
+ cl(x) and classical
143
+ density, ρcl(x), which are given by
144
+
145
+ cl(x) = Qδ3(x − x(t))uµ,
146
+ (2.1)
147
+ ρcl(x) = Nδ3(x − x(t)).
148
+ (2.2)
149
+ Here, Q is the total charge of the object under the symmetry of interest, N is the number of
150
+ the relevant microscopic constituents, x(t) is its position as a function of time, t, and uµ is its
151
+ 4
152
+
153
+ four-velocity.
154
+ Assuming motion in the x − y plane, in the non-relativistic limit, the four-velocity of the
155
+ object is given by
156
+ uµ = (1, ˙x, ˙y, 0) .
157
+ (2.3)
158
+ We focus on the case of the elliptical motion in the x − y plane, which can be parametrically
159
+ described by
160
+ x = a(cos ξ − e),
161
+ y = a
162
+
163
+ 1 − e2 sin ξ,
164
+ Ω t = ξ − e sin ξ,
165
+ (2.4)
166
+ where e is the eccentricity, a is the semi-major axis of the ellipse, and Ω is the fundamental
167
+ frequency of revolution. One full revolution around the ellipse corresponds to changing the
168
+ parameter ξ from 0 to 2π.
169
+ The power loss due to the fermion-pair radiation is calculated using
170
+ Ploss =
171
+
172
+ (ω1 + ω2) dΓ,
173
+ (2.5)
174
+ where ω1 and ω2 are the energies of the emitted fermion and anti-fermion, respectively, and dΓ
175
+ is the differential rate of the fermion-pair emission. The rate depends on the type of mediator,
176
+ i.e., a scalar or a vector, and the specific form of the classical current or density.
177
+ In general, the acceleration is not constant. In the case of periodic orbits, the motion can
178
+ be decomposed into harmonic modes with frequencies Ωn = nΩ, where Ω is the fundamental
179
+ frequency of revolution. The total emission rate can then be written as a sum of emission rates
180
+ at different harmonics n,
181
+ dΓ =
182
+
183
+ n
184
+ dΓn .
185
+ (2.6)
186
+ The sum goes over all kinematically allowed harmonics n > 2mψ/Ω, where mψ is the mass of
187
+ the emitted fermions. The emission rate at harmonic n is found using
188
+ dΓn =
189
+
190
+ s1,s2
191
+ |Mn(s1, s2)|2(2π)δ(Ωn − ω1 − ω2) d3k1
192
+ (2π)3ω1
193
+ d3k2
194
+ (2π)3ω2
195
+ .
196
+ (2.7)
197
+ Here, k1 = (ω1, k1) and k2 = (ω2, k2) are the four-momenta of the fermion and anti-fermion
198
+ respectively, and s1(s2) is the spin of the fermion (anti-fermion). The microscopic physics enters
199
+ via Mn (s1, s2), which is the matrix element of the fermion-pair emission at harmonic n. At
200
+ leading order, this matrix element is obtained from the diagram in Fig. 1. In the diagram, ⊗
201
+ denotes the classical source, which is given by the classical current, Jµ
202
+ cl(x), in the case of vector
203
+ mediator and by the density, ρcl(x), in the case of the scalar mediated radiation. The total
204
+ power loss via fermion-pair radiation is simply a sum of power losses over all harmonics
205
+ Ploss =
206
+
207
+ n
208
+ Pn,
209
+ Pn =
210
+
211
+ (ω1 + ω2) dΓn.
212
+ (2.8)
213
+ 5
214
+
215
+ ψ, k1
216
+ ψ, k2
217
+ mediator
218
+ FIG. 1. Feynman diagram for a fermion pair emission by a classical current.
219
+ Here, Pn is the power loss of the nth harmonic.
220
+ In what follows, we consider two types of mediators: a massive gauge boson and a massive
221
+ scalar. We only consider s-channel exchange and remark on t-channel exchange at the end of
222
+ this subsection.
223
+ First, we consider a vector mediator, Aµ, that corresponds to a broken U(1)′ and has mass
224
+ mA. This gauge boson couples to a classical current Jµ
225
+ cl(x), which has charge Q under U(1)′.
226
+ The gauge boson Aµ is unstable and decays into a fermion pair. The terms in the effective
227
+ Lagrangian, relevant for the fermion-pair radiation via Aµ, are
228
+ Leff ⊃ gAµJµ
229
+ cl + gqψ ¯ψγµAµψ ,
230
+ (2.9)
231
+ where qψ is the U(1)′ charge of the fermion ψ, g is a dimensionless coupling constant, and Jµ
232
+ cl(x)
233
+ is the classical current defined in Eq. (2.1). Both the vector boson and the fermions are assumed
234
+ to be massive with masses mA and mψ, respectively. The leading order matrix element for the
235
+ emission, at the n−th harmonic, is given by
236
+ Mn(s1, s2) = g2qψ ¯u(k1, s1)γµv(k2, s2) i(−ηµν + (k1 + k2)µ(k1 + k2)ν/m2
237
+ A)
238
+ (k1 + k2)2 − m2
239
+ A + imAΓA
240
+
241
+ cl(Ωn) ,
242
+ (2.10)
243
+ where Jν
244
+ cl(Ωn) is the Fourier transform of Jν
245
+ cl(x), given by
246
+
247
+ cl(Ωn) = Ω
248
+
249
+ � 2π/Ω
250
+ 0
251
+ dt
252
+
253
+ d3x ei(nΩt−p·x)Jν
254
+ cl(x)
255
+ (2.11)
256
+ with p = k1 + k2, ΓA is the decay width of the gauge boson, and 2π/Ω is the period. We
257
+ assume that the decay into a ¯ψψ pair is the only decay channel for the gauge boson Aµ, and
258
+ that the fermion mass mψ is negligible compared to the gauge boson mass mA. Under these
259
+ assumptions, the decay width of Aµ is given by
260
+ ΓA = g2q2
261
+ ψmA
262
+ 12π
263
+ .
264
+ (2.12)
265
+ The other case we consider is that of a scalar mediator, φ, for which the relevant terms in
266
+ the Lagrangian are
267
+ L ⊃ gφρcl + g′φ ¯ψψ,
268
+ (2.13)
269
+ 6
270
+
271
+ where g is the dimensionless coupling between the scalar φ and the classical source, g′ is the
272
+ Yukawa coupling of the fermion ψ to the scalar φ, and ρcl(x) is the number density of relevant
273
+ particles in the classical source. Both the scalar and the fermions are assumed to be massive
274
+ with masses mφ and mψ, respectively. The matrix element in this case is given by
275
+ Mn(s1, s2) = gg′¯u(k1, s1)v(k2, s2)
276
+ iρcl(Ωn)
277
+ (k1 + k2)2 − m2
278
+ φ + imφΓφ
279
+ ,
280
+ (2.14)
281
+ where ρcl(Ωn) is the Fourier transform of ρcl(x),
282
+ ρcl(Ωn) = Ω
283
+
284
+ � 2π/Ω
285
+ 0
286
+ dt
287
+
288
+ d3x ei(nΩt−p·x)ρcl(x),
289
+ (2.15)
290
+ and the decay width of the scalar is Γφ. As in the case of the vector mediator, we assume
291
+ that the fermionic decay mode is the only available mode, and the fermion mass mψ can be
292
+ neglected compared to the mass of a scalar mφ. Thus we have
293
+ Γφ = g′2mφ
294
+
295
+ .
296
+ (2.16)
297
+ So far, we have only considered the s-channel contribution to the fermion pair radiation.
298
+ Fermion pair radiation via t−channel process mediated by a vector or scalar is also a possibility.
299
+ Such contributions, however, are highly suppressed for mS ≫ Ω, mM, where mS is the mass
300
+ of the particles in the source that couple to the fermion pairs ¯ψψ at the microscopic level,
301
+ and mM is the mediator mass. Since the emitted fermions have energy of the order of Ω, the
302
+ fundamental frequency of the system, the t-channel contribution to the momentum entering
303
+ the propagator is of the order of mS − Ω. Thus the t-channel propagator is schematically given
304
+ by
305
+ Π ∼
306
+ 1
307
+ (mS − Ω)2 − m2
308
+ M
309
+ .
310
+ (2.17)
311
+ In the case where mS is much larger than both Ω and mM, the propagator is dominated by the
312
+ mass of the source particles, and the process is heavily suppressed. In this paper, we assume
313
+ that the mass hierarchy mS ≫ Ω, mM and neglect the t−channel contributions to the fermion
314
+ pair radiation everywhere.
315
+ B.
316
+ Power loss formulae
317
+ Using Eqs. (2.7)–(2.14), we can calculate the power loss via fermion-pair radiation from
318
+ a point-like object moving in an elliptical orbit. The detailed derivations are shown in Ap-
319
+ pendix A, and here we only quote the final result. The power loss due to fermion-pair emission
320
+ 7
321
+
322
+ in harmonic n > 2mψ/Ω, for the cases of the vector and scalar mediator, can be written as
323
+ P A
324
+ n = g4q2
325
+ ψQ2
326
+ 12π3
327
+ a2Ω4 BA
328
+ n (nA, nψ, nΓ),
329
+ (2.18)
330
+ P φ
331
+ n = g2g′2N 2
332
+ 12π3
333
+ a2Ω4 Bφ
334
+ n(nφ, nψ, nΓ).
335
+ (2.19)
336
+ The functions BM
337
+ n (nA, nψ, nΓ), where M = A, φ, are given by
338
+ BM
339
+ n (nM, nψ, nΓ) ≡
340
+
341
+ J′
342
+ n(ne)2 + 1 − e2
343
+ e2
344
+ Jn(ne)2
345
+ � � n−nψ
346
+
347
+ dx F M(x, n, nM, nψ, nΓ).
348
+ (2.20)
349
+ Here
350
+ nM ≡ mM/Ω,
351
+ nψ ≡ mψ/Ω,
352
+ nΓ ≡ ΓM/Ω,
353
+ (2.21)
354
+ and Jn(ne) is a Bessel function of order n with argument ne.
355
+ The integration variable in
356
+ Eq. (2.20) is defined by x ≡ ω1/Ω, where ω1 is the energy of one of the final-state fermion. In
357
+ what follows, for brevity, we use the notation
358
+ F M(x) ≡ F M(x, n, nM, nψ, nΓ),
359
+ BM
360
+ n ≡ BM
361
+ n (nM, nψ, nΓ).
362
+ (2.22)
363
+ The functions F M(x) have the general form
364
+ F M(x) = F M
365
+ 0 (x) + F M
366
+ 1 (x)
367
+ nMnΓ
368
+
369
+ tan−1
370
+ �a(x) + b(x)
371
+ nMnΓ
372
+
373
+ − tan−1
374
+ �a(x) − b(x)
375
+ nMnΓ
376
+ ��
377
+ + F M
378
+ 2 (x) tanh−1
379
+
380
+ 2a(x)b(x)
381
+ a(x)2 + b(x)2 + n2
382
+ Mn2
383
+ Γ
384
+
385
+ ,
386
+ (2.23)
387
+ with a(x) and b(x) being universal for both gauge boson and scalar mediators,
388
+ a(x) = 2n2
389
+ ψ − n2
390
+ M + 2nx − 2x2 ,
391
+ b(x) = 2
392
+
393
+ x2 − n2
394
+ ψ
395
+
396
+ (n − x)2 − n2
397
+ ψ .
398
+ (2.24)
399
+ The functions F M
400
+ 0 (x), F M
401
+ 1 (x), and F M
402
+ 2 (x) are different for the two cases. For a gauge boson
403
+ mediator, we obtain
404
+ F A
405
+ 0 (x) = b(x)/2n ,
406
+ F A
407
+ 1 (x) = 1
408
+ 4n
409
+
410
+ n4
411
+ A + 4n2n2
412
+ ψ − n2
413
+ An2
414
+ Γ + 2n2
415
+ An2 − 4nxn2
416
+ A + 4x2n2
417
+ A
418
+
419
+ ,
420
+ F A
421
+ 2 (x) = 1
422
+ 2n
423
+
424
+ n2
425
+ A + n2 − 2nx + 2x2�
426
+ ,
427
+ (2.25)
428
+ while for a scalar mediator,
429
+ F φ
430
+ 0 (x) = −b(x)/2n ,
431
+ F φ
432
+ 1 (x) = 1
433
+ 4n
434
+
435
+ n2
436
+ φn2
437
+ Γ + (n2 − n2
438
+ φ)(n2
439
+ φ − 4n2
440
+ ψ)
441
+
442
+ ,
443
+ F φ
444
+ 2 (x) = 1
445
+ 4n
446
+
447
+ n2 + 4n2
448
+ ψ − 2n2
449
+ φ
450
+
451
+ .
452
+ (2.26)
453
+ 8
454
+
455
+ Eqs. (2.18)–(2.26) are the main results of our work. Analytical integration of F A(x) and
456
+ F φ(x) is challenging, but it still can be performed in certain limits. In Sec. III B, we consider
457
+ two limiting cases: the case of nM ≪ 1, which reproduces the Larmor formula, and nM ≫ 1,
458
+ which is relevant for the fermion pair radiation in the SM. In general, however, calculating the
459
+ power loss requires numerical analysis. We perform such an analysis in Sec. IV when we discuss
460
+ a particular phenomenological application of our result.
461
+ III.
462
+ DISCUSSION OF THE POWER-LOSS FORMULA
463
+ The power loss due to fermion-pair emission by a classical source on an elliptical orbit is
464
+ given by Eqs. (2.18)-(2.26). Below we discuss the main features and the asymptotic behavior
465
+ of this result.
466
+ A.
467
+ General features of the power-loss formula
468
+ We start with the general features that hold for both the vector and scalar cases.
469
+ • The radiation rate is proportional to the charge-squared; that is, the functions P A
470
+ n and P φ
471
+ n
472
+ depend on Q2 and N 2, respectively. This is a manifestation of the fact that the fermion-pair
473
+ radiation that we are considering is coherent.
474
+ • The form of F M(x), with M = A, φ, in Eq. (2.23) is somewhat general. We show in
475
+ Appendix A that the overall form of F M(x), at the tree level, is the same for any renormalizable
476
+ theory that couples fermions to a classical source moving in an elliptical orbit. Note that the
477
+ functions a(x) and b(x) defined in Eq. (2.24) are purely kinematic and thus have the same form
478
+ for any theory of fermion pair emission, while the form of F M
479
+ 0 (x), F M
480
+ 1 (x), and F M
481
+ 2 (x) vary with
482
+ the theory considered. For instance, considering non-renormalizable interactions would lead to
483
+ a different momentum dependence of the matrix element that could, in principle, change the
484
+ form of F M(x).
485
+ • The power loss for both vector and scalar mediators behaves qualitatively the same way
486
+ despite the different functional forms of F A
487
+ i (x) vs. F φ
488
+ i (x), with i = 0, 1, 2. This is not surprising
489
+ since there is nothing fundamentally different between the matrix elements for the vector and
490
+ scalar cases.
491
+ • Energy conservation implies that the functions F M(x) are invariant under x → (n − x)
492
+ exchange. The reason is that the total energy radiated in fermion pairs in the n-th harmonic
493
+ is nΩ. The transformation x → (n − x) exchanges the energies of the emitted fermion and
494
+ anti-fermion, and the emission rate is the same regardless of the order in which the integrals
495
+ 9
496
+
497
+ are carried out. This invariance results from the fact that the fermion-antifermion emission
498
+ from a classical system is essentially a 2-body decay. Note that this has nothing to do with the
499
+ details of the considered model.
500
+ • For nA < n, the power loss has a very weak dependence on nA. This is true for the
501
+ particular models that we chose here but is not expected to be true in general. For an example
502
+ when this is not the case, see the discussion of Proca fields in Ref. [6], where dependence on nA
503
+ appears due to the absence of gauge symmetry.
504
+ • There is an interplay of three energy scales: The mass of the mediator, mM, the mass of
505
+ the fermion, mψ, and the frequency of the harmonics, nΩ. The fermions cannot be produced
506
+ when 2mψ > nΩ. In the opposite limit, when 2mψ < nΩ, the production rate depends strongly
507
+ on the mediator mass. For mM < 2mψ < nΩ, fermion production is strongly suppressed since
508
+ the on-shell boson is kinematically forbidden from decaying into fermions. (Note that strictly
509
+ speaking, our result cannot be straightforwardly applied in this case as everywhere we assume
510
+ ΓM > 0.) For 2mψ < mM < nΩ, the fermions are produced via decay of the on-shell mediator.
511
+ Thus the power loss in the fermion-pair radiation is equal to that of the on-shell boson radiation.
512
+ The region of the parameter space where mM > nΩ > 2mψ is of the most interest to us, as in
513
+ this region the fermions are kinematically allowed, the mediator is off-shell, and therefore the
514
+ fermion pair emission is most significant.
515
+ • As an example that illustrates the qualitative features of the power loss, consider Fig. 2.
516
+ It shows BA
517
+ n , defined in Eq. (2.20), as a function of nA for massless fermions for the first four
518
+ harmonics. The most striking feature of the plots is a sharp drop at nA ∼ n. This behavior
519
+ follows from the fact that at nA ∼ n, the radiation regime switches from the radiation dominated
520
+ by on-shell boson production (nA < n), which is proportional to g2 to the off-shell production
521
+ (nA > n) proportional to g4. The power loss in the regime dominated by fermion-pair radiation
522
+ is thus suppressed by g2 compared to the power loss in the regime dominated by the on-shell
523
+ boson radiation. The power loss in the case of the scalar mediator exhibits the same behavior.
524
+ • Comparing our results to the cases of vector [3, 5, 6] and scalar radiation [3], we note that
525
+ from kinematic considerations alone, boson radiation drops to zero as soon as nM = n. This
526
+ is not what we observe for the fermion-pair emission. In the case of fermion-pair radiation,
527
+ off-shell boson production is possible, even though there is an extra suppression by g2 for
528
+ a vector and g′2 for a scalar compared to on-shell boson radiation. As a result, the regime
529
+ nM > n opens up new regions of the parameter space for each harmonic n and is of particular
530
+ phenomenological interest to us.
531
+ • Next, we remark on the dependence of the power loss on the eccentricity in the case of
532
+ orbits close to circular.
533
+ For that, we note that the eccentricity only enters the power loss
534
+ 10
535
+
536
+ �����
537
+ �����
538
+ ��
539
+ ����
540
+ ��-��
541
+ ��-��
542
+ ��-��
543
+ ��
544
+ FIG. 2. BA
545
+ n vs nA for fixed eccentricity, e = 10−3, coupling constant g = 10−15, and massless final
546
+ state fermions, mψ = 0. See Eqs. (2.20)-(2.25) for the definition of BA
547
+ n .
548
+ through the Bessel function prefactor of BM
549
+ n in Eq. (2.20), which we denote as K(n, e),
550
+ K(n, e) = J′
551
+ n(ne)2 + 1 − e2
552
+ e2
553
+ Jn(ne)2 .
554
+ (3.1)
555
+ We recall that Jn(z) and J′
556
+ n(z) behave asymptotically, in the limit z ≪ 1, as
557
+ Jn(z) ≈ 1
558
+ n!
559
+ �z
560
+ 2
561
+ �n
562
+ ,
563
+ J′
564
+ n(z) ≈ n
565
+ n!
566
+ 1
567
+ 2
568
+ �z
569
+ 2
570
+ �n−1
571
+ ≈ n
572
+ z Jn(z),
573
+ z ≪ 1.
574
+ (3.2)
575
+ Using Eq. (3.2), we find for the eccentricity dependent prefactor K(n, e), in the limit ne ≪ 1,
576
+ that
577
+ K(n, e) = J′
578
+ n(ne)2 + n2 − (ne)2
579
+ (ne)2
580
+ Jn(z)2 ≈ J′
581
+ n(ne)2 +
582
+ n2
583
+ (ne)2Jn(z)2
584
+ = 2n2
585
+ z2 Jn(ne)2 = (ne)2n−2
586
+ 22n−1
587
+ n2
588
+ (n!)2 =
589
+ (ne)2n−2
590
+ 22n−1 ((n − 1)!)2.
591
+ (3.3)
592
+ Thus we learn that in the limit ne ≪ 1, prefactor K(n, e) scales with the eccentricity as
593
+ K(n, e) ∝ (ne)2n−2 .
594
+ (3.4)
595
+ This shows that for small eccentricities (and thus orbits close to circular ones), the contributions
596
+ from higher harmonics die away very fast as n increases. For n = 1 and e ≪ 1, we have K(1, e) ≈
597
+ 1/2. For each subsequent harmonic power drops by a factor of order e2, until the factorial in
598
+ the denominator of K(n, e) (see Eq. (3.3)) starts to dominate. Then the contributions from the
599
+ higher harmonics start to decay away even faster. Fig. 2 illustrates the behavior of the power
600
+ loss for the first four harmonics in the case of small eccentricity e = 10−3.
601
+ • The case of highly eccentric orbits e ∼ 1 is significantly more involved. First, the contri-
602
+ butions from different modes do not follow the simple hierarchy of the low eccentricity case.
603
+ 11
604
+
605
+
606
+
607
+ ��
608
+ ��
609
+ ��-��
610
+ ��-��
611
+ ��-�
612
+ ��-�
613
+ ���
614
+
615
+
616
+
617
+ ��
618
+ ��
619
+ ��-��
620
+ ��-��
621
+ ��-��
622
+ ��-��
623
+ ��-��
624
+ FIG. 3. Left: BA
625
+ n as a function of n in the regime where the radiation is dominated by on-shell boson
626
+ production. Different colors correspond to different values of eccentricity. The values of nψ, nA and g
627
+ are fixed. Right: BA
628
+ n as a function of n for a highly eccentric orbit with e = 0.6 in the regime where
629
+ the radiation is dominated by off-shell boson production.
630
+ The contributions from higher modes can be of the same order or even larger than the first
631
+ mode depending on the values of other parameters. See the left panel of Fig. 3 to compare
632
+ the n-dependence of BA
633
+ n for different eccentricity values. Second, as Fig. 3 demonstrates, the
634
+ hierarchy of modes in the on-shell dominated part of the parameter space does not carry into
635
+ the off-shell dominated region. Consider the green line corresponding to a highly eccentric orbit
636
+ with e = 0.6. For nA = 10−1 (left panel), the maximum contribution to the power loss comes
637
+ from the mode with n = 2 and the first 5 modes contribute at about the same order. The
638
+ situation is drastically different for nA = 50 (right panel). The maximum contribution to the
639
+ power loss comes from the n = 8 mode. We learn that for e ∼ 1, generally speaking, the power
640
+ loss per mode first increases as we increase n and then starts decreasing after reaching a certain
641
+ value of n. Where this maximum occurs depends on other parameters.
642
+ B.
643
+ Asymptotic behavior for the case of circular orbits
644
+ We now move to the discussion of the asymptotic behaviour of the power loss in two limiting
645
+ cases mM ≪ Ω and mM ≫ Ω, where mM is the mass of the mediator, M = A, φ. In this
646
+ subsection, for simplicity we consider the straightforward case of circular orbits (e = 0) and
647
+ massless fermions (mψ = 0). For the eccentricity dependent part of the power loss, K(n, e), we
648
+ have
649
+ lim
650
+ e → 0 K(n, e) = lim
651
+ e → 0
652
+
653
+ J′
654
+ n(ne)2 + 1 − e2
655
+ e2
656
+ Jn(ne)2
657
+
658
+ = 1
659
+ 2δn,1.
660
+ (3.5)
661
+ Thus the only mode that contributes to the power loss in the circular orbit limit is the mode
662
+ with n = 1.
663
+ 12
664
+
665
+ First, let us consider the regime of light mediators, mM ≪ Ω, or equivalently nM ≪ 1. In
666
+ this limit, F M(x) defined in Eq. (2.23) is dominated by the second term. We thus neglect the
667
+ first and the third terms of F M(x) and take the second term’s limit nM → 0. After that, the
668
+ integral in (2.20) can be performed analytically, yielding the following asymptotic expressions
669
+ for the power radiated via vector and scalar, respectively:
670
+ P A(mA ≪ Ω) ≈ g2
671
+ 6πQ2a2Ω4,
672
+ (3.6)
673
+ P φ(mφ ≪ Ω) ≈ g2
674
+ 12πN 2a2Ω4.
675
+ (3.7)
676
+ The asymptotic behavior that we find for P A and P φ reproduces the known results for the
677
+ on-shell vector [3, 5, 6] and scalar [3] radiation. This is expected as, in the regime mM ≪ Ω,
678
+ the fermion pair radiation is dominated by on-shell boson production. Additionally, Eq. (3.6)
679
+ also reproduces the Larmor formula for the power of the electromagnetic wave radiation given
680
+ in Eq. (1.1). To see this, recall that the acceleration on a circular orbit is equal to aΩ2, where
681
+ a is the radius of the orbit and Ω is the frequency of revolution.
682
+ Next, we study the regime when on-shell boson production is kinematically forbidden, and
683
+ the fermion pair radiation takes place through the off-shell mediator. This is the limit of heavy
684
+ mediators, mM ≫ Ω, or equivalently nM ≫ 1. As in the case of the light mediators, we take the
685
+ nM → ∞ limit of F M(x) and find that the resulting expression can be integrated analytically.
686
+ Upon performing the integration, we find that the vector and scalar-mediated radiation behave
687
+ as
688
+ P A(mA ≫ Ω) ≈ g4q2
689
+ ψQ2
690
+ 210π3
691
+ a2Ω8
692
+ m4
693
+ A
694
+ =
695
+ 1
696
+ 35π2
697
+ g2q2
698
+ ψΩ4
699
+ m4
700
+ A
701
+ × P A(mA ≪ Ω),
702
+ (3.8)
703
+ P φ(mφ ≫ Ω) ≈ g2g′2N 2
704
+ 840π3
705
+ a2Ω8
706
+ m4
707
+ φ
708
+ =
709
+ 1
710
+ 70π2
711
+ g′2Ω4
712
+ m4
713
+ φ
714
+ × P φ(mφ ≪ Ω).
715
+ (3.9)
716
+ We learn that in the limit of heavy mediators, the fermion pair radiation is suppressed compared
717
+ to on-shell boson radiation by the following factors:
718
+ 1. A factor of g2q2
719
+ ψ or g′2, which, at the amplitude level, comes from the coupling of the
720
+ mediator to the fermion pair.
721
+ 2. A factor of Ω4/m4
722
+ φ, which comes from the propagator of the mediator.
723
+ 3. A phase space factor of 1/35π2 or 1/70π2, which arises from the fact that there are more
724
+ particles in the final state in the case of the off-shell pair production than in the case of
725
+ the on-shell boson production.
726
+ Note that Eqs. (3.8) and (3.9) can be interpreted as integrating out the heavy mediator,
727
+ resulting in an effective 4-Fermi interaction with a coefficient proportional to g2/m2
728
+ A or gg′/m2
729
+ φ.
730
+ Thus, it is also valid for t-channel and u-channel interactions.
731
+ 13
732
+
733
+ Last, we compare the results of the vector to that of the scalar mediators. Consider mA = mφ,
734
+ Q2 = N 2 and g′ = gqψ. In this case, the power radiated via the vector mediator is greater than
735
+ the power radiated via the scalar mediator in both radiation regimes. In particular, we have
736
+ P A(mA ≪ Ω)
737
+ P φ(mφ ≪ Ω) ≈ 2,
738
+ P A(mA ≫ Ω)
739
+ P φ(mφ ≫ Ω) ≈ 4.
740
+ (3.10)
741
+ These factors are related to the different number of degrees of freedom between the vector and
742
+ scalar cases. There are two polarization states for an on-shell massless vector, while the scalar
743
+ has only one. For the deeply off-shell mediator, the correspondence is not so clear, but it seems
744
+ to us that it is related to the fact that off shell gauge boson, Aµ, has four degrees of freedom
745
+ C.
746
+ Fermion-pair radiation in the SM
747
+ The expression in Eq. (3.8) can be used to estimate the power loss due to fermion pair
748
+ radiation by classical sources within the SM. In this subsection, we consider neutrino pair
749
+ radiation mediated by Z-boson. The contribution due to W-boson mediated pair emission is
750
+ qualitatively the same as the Z-boson contribution and is expected to be of the same order.
751
+ The main difference between the two contributions is due to the fact that W-boson mediated
752
+ radiation is only relevant for leptons in the source while Z-boson contribution is present for all
753
+ types of fermions.
754
+ Consider a source made of NΨ fermions of type Ψ with the total weak charge Q = NΨqΨ.
755
+ To apply Eq. (3.8) to the neutrino pair radiation in the SM, we need to recall that Eq. (3.8)
756
+ was derived under the assumption of vectorial couplings, while the SM is a chiral theory. The
757
+ relevant parts of the SM Lagrangian are different from the Lagrangian in Eq. (2.9); in particular,
758
+ in the SM we have
759
+ LSM ⊃ −i
760
+ g
761
+ 2 cos θW
762
+
763
+ ¯Ψγµ(cΨ
764
+ V − cψ
765
+ A)Ψ + ¯νγµ(cν
766
+ V − cν
767
+ A)ν
768
+
769
+ Zµ.
770
+ (3.11)
771
+ Thus Eq. (3.8) yields the following expression for the Z-boson mediated power loss due to the
772
+ neutrino pair radiation in the SM
773
+ P Z(mZ ≫ Ω) ≈
774
+ 1
775
+ 210π3
776
+ g4q2
777
+ νq2
778
+ ΨN 2
779
+ Ψ
780
+ 16 cos4 θW
781
+ a2Ω8
782
+ m4
783
+ Z
784
+ ,
785
+ (3.12)
786
+ where we perform the replacement g → g/(2 cos θW) in Eq. (3.8) and define
787
+ q2
788
+ ψ = q2
789
+ ν = (cν
790
+ V )2 + (cν
791
+ A)2,
792
+ qΨ = cΨ
793
+ V ,
794
+ mA = mZ .
795
+ (3.13)
796
+ Note that, for the source, only vectorial coupling cΨ
797
+ V enters the power loss. This is because we
798
+ consider coherent radiation.
799
+ 14
800
+
801
+ The expression in Eq. (3.12) can be rewritten as
802
+ P Z(mZ ≫ Ω) ≈ G2
803
+ effq2
804
+ Ψq2
805
+ νN 2
806
+ Ψ
807
+ a2Ω8
808
+ 210π3 ,
809
+ (3.14)
810
+ where Geff =
811
+
812
+ 2GF and GF is the Fermi constant. When the power loss is written in the form
813
+ of Eq. (3.14), it becomes clear that it is the same as what one would obtain by performing the
814
+ calculation for the effective Fermi theory with the effective Lagrangian given by
815
+ LZ
816
+ eff ⊃ Geff[¯Ψγµ(cΨ
817
+ V − cΨ
818
+ Aγ5)Ψ][¯νγµ(cν
819
+ V − cν
820
+ Aγ5)ν].
821
+ (3.15)
822
+ This, of course, is not surprising as we consider radiation at the energy Ω, which is much less
823
+ than the electroweak scale, Ω ≪ mZ. In fact, the result in Eq. (3.14) applies to any effective
824
+ 4-Fermi interaction. While we derive our results for s-channel exchange, in the limit where the
825
+ mediator is much heavier than the orbit frequency, we do not need to distinguish between s-
826
+ channel and t-channel. Thus, Eqs. (3.12) and (3.14) can also be used for t-channel W-exchange
827
+ in the SM.
828
+ Finally, we discuss the situation when there are several different types of fermions in the
829
+ source. In this case, we need to first add all the amplitudes that correspond to the radiation
830
+ by different fermions Ψ (for leptons, we add both Z-boson and W-boson contributions). Then,
831
+ we square the sum of the relevant amplitudes to obtain the total emission rate.
832
+ We end this subsection with the following remark. The power loss due to neutrino pair
833
+ radiation in the SM was estimated in Ref. [4] to be P Z
834
+ SM ∼ G2
835
+ FΩ6. Using the explicit calculation,
836
+ however, we find that P Z
837
+ SM ∼ G2
838
+ Fa2Ω8. That is, there is an extra factor of a2Ω2 compared to
839
+ the estimation of Ref. [4]. In fact, our result includes the semi-major axis a as an additional
840
+ energy scale of the system.
841
+ IV.
842
+ FERMION PAIR RADIATION BY PULSAR BINARIES
843
+ We now move to discuss the phenomenological applications of our results to astrophysical
844
+ systems. We focus on the neutrino-pair emission from pulsar binaries [23–33]. A pulsar binary
845
+ is a binary system of a pulsar and companion. This choice is motivated by the availability of
846
+ extensive period decay data for such systems. In particular, we apply our results to two binaries:
847
+ Hulse-Taylor binary PSR B1913+16 [34–36] (a system of a pulsar and a neutron star) and PSR
848
+ J1738+0333 [29, 37] (a system of a pulsar and a white dwarf). The parameters characterizing
849
+ the two systems are summarized in Table I.
850
+ In what follows, we first discuss the applicability of our results of Section II B to pulsar
851
+ binaries in general. Then we estimate the contribution to the power loss due to neutrino pair
852
+ 15
853
+
854
+ Binary system
855
+ PSR B1913+16 [36]
856
+ PSR J1738+0333 [29]
857
+ Eccentricity e
858
+ 0.6171340(4)
859
+ 3.4(11) × 10−7
860
+ Pulsar mass m1 (M⊙)
861
+ 1.438(1)
862
+ 1.46(6)
863
+ Companion mass m2 (M⊙)
864
+ 1.390(1)
865
+ 0.181(8)
866
+ Binary period Tb (GeV−1)
867
+ 4.240 × 1028
868
+ 4.657 × 1028
869
+ Intrinsic period decay ˙Tb
870
+ −2.398(4) × 10−12
871
+ −2.59(32) × 10−14
872
+ Predicted period decay due to GW ˙TGW
873
+ −2.40263(5) × 10−12
874
+ −2.77(19) × 10−14
875
+ Ratio of period decays R = ˙Tb/ ˙TGW
876
+ 0.9983(16)
877
+ 0.94(13)
878
+ Orbital frequency Ω = 2π/Tb (GeV)
879
+ 1.482 × 10−28
880
+ 1.349 × 10−28
881
+ Semi-major axis a (GeV−1)
882
+ 9.878 × 1024
883
+ 8.77 × 1024
884
+ TABLE I. The relevant parameters for the PSR B1913+16 and PSR J1738+0333 binary systems.
885
+ Figures in parenthesis are the 1σ uncertainties in the last quoted digit, where all the uncertainties
886
+ are symmetrized. M⊙ is the mass of the sun. The relative experimental error of the binary period
887
+ Tb is ∼ 10−12 for PSR B1913+16, and ∼ 10−11 for PSR J1738+0333.
888
+ The double line separates
889
+ binary parameters quoted in Ref. [29, 36] and the ones we derive. Values of the semi-major axis a are
890
+ calculated using Eq. (4.5).
891
+ emission in the SM and show that it is negligible compared to the gravitational wave radiation.
892
+ We then consider neutrino pair radiation in two BSM scenarios via ultralight vector and scalar
893
+ mediators and apply our results to the pulsar binaries with the parameters in Table I.
894
+ A.
895
+ Pulsar binaries as a classical source
896
+ The results for the fermion pair radiation, summarized in Eqs. (2.18)-(2.26), were derived for
897
+ the case of classical current describing non-relativistic point-like object following an elliptical
898
+ orbit. To justify the application of our results to pulsar binaries, we note the following:
899
+ 1. A pulsar binary can be treated as a classical source. The typical size of a pulsar binary
900
+ can be estimated as the size of the semi-major axis which varies between 106 and 108 km,
901
+ that is, a ∼ 1024 − 1026 GeV−1. The wavelength of the radiation is determined by the
902
+ fundamental frequency of the orbit, and for a typical pulsar binary with periods in the
903
+ range of 10−1 − 103 days, the wavelength is λ ∼ 1028 − 1032 GeV−1. Thus, λ ≫ a and we
904
+ conclude that pulsar binaries can be treated as classical radiation sources.
905
+ 2. Stars of the pulsar binary can be treated as point-like objects. Typical sizes of stars
906
+ in a binary vary from r ∼ 10 km ∼ 1019 GeV−1, for neutron stars, and r ∼ 103 km ∼
907
+ 16
908
+
909
+ 1021 GeV−1, for white dwarfs. Thus r ≪ a, λ and both pulsar and its companion can be
910
+ treated as point-like objects. Moreover, r ≪ λ implies the coherence of the radiation.
911
+ 3. The motion of the pulsar and its companion in the binary system is non-relativistic. We
912
+ can roughly estimate the orbital velocity of the stars in a binary as v ∼ aΩ, which for
913
+ characteristic values quoted above implies v ≲ 10−2.
914
+ 4. For a wide range of pulsar binary systems, the observed power loss is such that it has no
915
+ significant effect on the eccentricity of the orbit. Thus we can treat the orbit as elliptical
916
+ over the time of observation.
917
+ For example, the Hulse-Taylor binary has e ∼ 1, with
918
+ Tb(de/dt) ≲ 10−11, where Tb is the binary period and de/dt is the time derivative of the
919
+ eccentricity [36].
920
+ Now that we have established that the results of Section II B can be applied to pulsar
921
+ binaries, we proceed in two steps. First, we modify our expressions for the classical current and
922
+ number density in Eqs. (2.1) and (2.2) to the case of two point-like objects on an elliptical orbit.
923
+ Second, we perform the standard reduction of the two-body problem to a one-body problem.
924
+ We write the classical current and number density as
925
+
926
+ cl(x) =
927
+
928
+ b=1,2
929
+ Qb δ3(x − xb(t))uµ
930
+ b ,
931
+ (4.1)
932
+ and
933
+ ρcl(x) =
934
+
935
+ b=1,2
936
+ Nb δ3(x − xb(t) ,
937
+ (4.2)
938
+ respectively. Here, b = 1, 2 is the index that labels the stars of the binary system, xb(t) is the
939
+ position of the b-th star at time t, and uµ
940
+ b is its four-velocity.
941
+ Next, we move to the binary system’s Center-of-Mass (CoM) frame. For that, we define R,
942
+ the coordinate of center of mass, and r, the distance between the two stars,
943
+ R =
944
+ m1
945
+ m1 + m2
946
+ x1 +
947
+ m2
948
+ m1 + m2
949
+ x2,
950
+ r = x1 − x2 ,
951
+ (4.3)
952
+ where m1 and m2 are the masses of the two stars.
953
+ As we are not concerned with the translational motion of the system as a whole, which is
954
+ described by R, we can solely focus on r. This is the standard two-body to one-body problem
955
+ reduction for central force motion. The non-relativistic classical trajectory of the stars in the
956
+ CoM frame can thus be described by the vector r = (x, y, 0) and is given by elliptical orbits as
957
+ in Eq. (2.3):
958
+ x = a(cos ξ − e),
959
+ y = a
960
+
961
+ 1 − e2 sin ξ,
962
+ Ωt = ξ − e sin ξ,
963
+ (4.4)
964
+ 17
965
+
966
+ where e is the eccentricity, a is the semi-major axis of the elliptical orbit, and the fundamental
967
+ frequency of revolution is given by
968
+ Ω =
969
+
970
+ GN(m1 + m2)
971
+ a3
972
+ .
973
+ (4.5)
974
+ The results of Eqs. (2.18)-(2.26) generalize to the case of binary systems via the following
975
+ replacements that follow from the 2-body to 1-body reduction procedure:
976
+ Q2 → M 2
977
+ �Q1
978
+ m1
979
+ − Q2
980
+ m2
981
+ �2
982
+ ,
983
+ N 2 → M 2
984
+ �N1
985
+ m1
986
+ − N2
987
+ m2
988
+ �2
989
+ ,
990
+ (4.6)
991
+ where
992
+ M =
993
+ m1m2
994
+ m1 + m2
995
+ (4.7)
996
+ is the reduced mass of the binary system. As a result we obtain the following expressions for
997
+ the power loss in n-th harmonic for a vector and scalar mediators respectively:
998
+ P A
999
+ n = g4q2
1000
+ ψ
1001
+ 12π3M 2
1002
+ �Q1
1003
+ m1
1004
+ − Q2
1005
+ m2
1006
+ �2
1007
+ a2Ω4 BA
1008
+ n (nA, nψ, nΓ),
1009
+ (4.8)
1010
+ P φ
1011
+ n = g2g′2
1012
+ 12π3 M 2
1013
+ �N1
1014
+ m1
1015
+ − N2
1016
+ m2
1017
+ �2
1018
+ a2Ω4 Bφ
1019
+ n(nφ, nψ, nΓ),
1020
+ (4.9)
1021
+ where the functions BA
1022
+ n and Bφ
1023
+ n are defined in Eqs. (2.20)-(2.26).
1024
+ B.
1025
+ Neutrino pair radiation by pulsar binaries in the SM
1026
+ In the SM, for the pulsar binary, the power loss via electroweak mediators is discussed in
1027
+ Sec. III C. Here, we simply generalize it to the case of 2-body motion using Eq. (4.6). We obtain
1028
+ the following expression for the power loss in neutrino pair radiation via Z-exchange in the SM
1029
+ PSM ≈ G2
1030
+ F
1031
+
1032
+
1033
+ V
1034
+ 2 + cν
1035
+ A
1036
+ 2�
1037
+ 105π3 cos2 θW
1038
+ M 2a2Ω8
1039
+
1040
+ 1
1041
+ m1
1042
+
1043
+ i=n,p,e,...
1044
+ ci
1045
+ V N1iQ1i − 1
1046
+ m2
1047
+
1048
+ i=n,p,e,...
1049
+ ci
1050
+ V N2iQ2i
1051
+ �2
1052
+ (4.10)
1053
+ where the sum goes over all microscopic constituents of binary stars, such as neutrons (n),
1054
+ protons (p), electrons (e), etc. To perform a numerical estimate, we consider a pulsar binary
1055
+ with a neutron star companion and assume that all of the neutron star mass is in the form of
1056
+ neutrons. We consider a typical pulsar-neutron star binary with
1057
+ m1,2 ∼ M⊙ ∼ 1057GeV,
1058
+ a ∼ 1025 GeV−1,
1059
+ Ω ∼ 10−28 GeV,
1060
+ (4.11)
1061
+ and non-zero dipole moment
1062
+ M 2
1063
+ �Q1
1064
+ m1
1065
+ − Q2
1066
+ m2
1067
+ �2
1068
+ ∼ Q2
1069
+ 1,2 ∼ 10114,
1070
+ (4.12)
1071
+ 18
1072
+
1073
+ where Qb = Nb(n)−Nb(¯n) ≈ Nb(n) ≈ M⊙/mn ≈ 1057, with b = 1, 2, are the neutron charges of
1074
+ the neutron stars, Nb(n) and Nb(¯n) are the numbers of neutrons and anti-neutrons respectively,
1075
+ mn is the neutron mass. Using cν
1076
+ V = cν
1077
+ A = 1/2, cn
1078
+ V = −1/2, and the measured values of mn,
1079
+ GF, and θW, we find the following numerical estimate for the radiated power
1080
+ PSM ∼ 10−56eV2.
1081
+ (4.13)
1082
+ To see if the above result is significant, we compare it to the power loss in the form of
1083
+ gravitational wave (GW) radiation. Using the quadrupole formula for the GW radiation [38]
1084
+ for the case of circular orbit (e = 0) we have
1085
+ PGW = 32
1086
+ 5 GNM 2a4Ω6 ∼ 108 GeV2
1087
+ (4.14)
1088
+ where GN is Newton’s gravitational constant. The rough estimates in Eqs. (4.13) and (4.14)
1089
+ show that, in the SM, the fermion-pair radiation by astrophysical objects is completely negligible
1090
+ compared to the gravitational wave radiation.
1091
+ We close the subsection with one remark. Within the SM, neutron stars also emit syn-
1092
+ chrotron radiation of fermion-antifermion pairs in their self-produced magnetic fields, as shown
1093
+ in Ref. [39]. This phenomenon is different from the one we consider here. Synchrotron radiation
1094
+ is an incoherent effect. Thus, the power loss, in this case, scales as N, the number of neutrons
1095
+ in the star. In the case we are considering, the radiation is coherent and comes from the star’s
1096
+ acceleration as a whole. Then, the net power that is radiated is proportional to N 2.
1097
+ C.
1098
+ New physics constraints from the neutrino pair radiation by pulsar binaries
1099
+ Since extra radiation in the SM is negligible, any observed deviation from the gravitational
1100
+ wave radiation would be strong evidence for the physics beyond the SM. In particular, fermion-
1101
+ pair radiation can be enhanced in BSM models with light vector or scalar mediators, with
1102
+ mA,φ ≪ mZ. To explain why such light bosonic states have evaded detection so far, we must
1103
+ require that they have small couplings, thus evading all the available constraints. The smallness
1104
+ of couplings, however, still can be compensated in cases where the object has a large charge
1105
+ under the new symmetries. This can be the case for astrophysical objects. Thus, such objects
1106
+ are our prime focus in the rest of this work.
1107
+ In particular, in this subsection, we demonstrate how our results can be used to derive new
1108
+ physics bounds from the neutrino pair radiation by pulsar binaries. As we mentioned above,
1109
+ we use two distinct pulsar binary systems, the Hulse-Taylor binary PSR B1913+16 and PSR
1110
+ J1738+0333.
1111
+ The relevant properties of the two systems are summarized in Table. I. The
1112
+ 19
1113
+
1114
+ Hulse-Taylor binary is a pulsar binary with a neutron star companion, it is highly eccentric,
1115
+ and the mass ratio of the two stars is close to 1. The PSR J1738+0333, on the other hand,
1116
+ is a pulsar-white dwarf binary with an almost circular orbit and a high pulsar-to-companion
1117
+ mass ratio. For both systems, the data on the orbital period decay is shown in Table I. Both
1118
+ binaries lie within 1σ of the general relativity prediction.
1119
+ In our analysis, we exploit the fact that typical neutron stars contain a very large number of
1120
+ muons, N(µ) ∼ 1055 [40–43]. Thus, the effects of muonophilic new physics can be significantly
1121
+ enhanced. The presence of the large muon number in neutron stars is attributed to the fact
1122
+ that when the electron chemical potential, µe, is larger than the muon mass µe > mµ, it
1123
+ becomes energetically favorable for relativistic electrons at the Fermi surface to decay into
1124
+ muons via e− → µ− + ¯νµ + νe. Moreover, the muonic beta-decay n → p + µ− + ¯νµ and inverse
1125
+ beta-decay p + µ− → n + νµ reactions become energetically favorable, while the muon decay
1126
+ µ− → e− + ¯νe + νµ is forbidden by Fermi statistics.
1127
+ Being motivated by the neutron star muonic content, we consider neutrino pair emission by
1128
+ pulsar binaries via the following two types of BSM mediators:
1129
+ • U(1)Lµ−Lτ massive gauge boson with
1130
+ L ⊃ gAα (¯µγαµ − ¯τγατ + ¯νµγανµ − ¯ντγαντ) ,
1131
+ (4.15)
1132
+ • Massive muonophilic scalar with
1133
+ L ⊃ gφ¯µµ + g′φ¯νµνµ .
1134
+ (4.16)
1135
+ It is known that at least two of the SM neutrinos are massive, while the third neutrino can
1136
+ be very light or massless. This means that only one neutrino mass eigenstate can be radiated
1137
+ in the two scenarios we consider here. A realistic treatment of neutrino emission would include
1138
+ insertions of the corresponding PMNS matrix elements [44], resulting in an additional factor of
1139
+ order one. Since we already neglecting an O(1) factor coming from the estimate of the muon
1140
+ number density in the neutron stars, we also ignore any PMNS factors in the rest of this section.
1141
+ Note also that in a theory with general couplings to the left and right-handed neutrinos,
1142
+ i.e., gAα¯νγα(cV − cAγ5)ν, the results for the power loss are qualitatively similar. Moreover, in
1143
+ the case of massless neutrinos, the power loss for the case of the general coupling is the same
1144
+ as the power loss for the case of purely vectorial coupling up to g2 → g2(c2
1145
+ A + c2
1146
+ V ) replacement.
1147
+ This is why in what follows, for simplicity, we consider the case of the vectorial coupling only.
1148
+ These two BSM models imply the possibility for the neutrino pair radiation at rates enhanced
1149
+ compared to the SM. Our results from Eqs. (4.8) and (4.9) thus can be used to set bounds on
1150
+ the coupling constants and masses of the new bosons.
1151
+ 20
1152
+
1153
+ The presence of the muonophilic new physics, however, not only alters the radiation patterns
1154
+ of pulsar binaries, but it also has important implications for the neutron star’s equation of state.
1155
+ In particular, the presence of a repulsive (vector) or attractive (scalar) interaction between
1156
+ muons could affect the muon number, which depends on the coupling g to the new physics. In
1157
+ the following, we write the muon number as N(µ, g) to keep the dependence on g explicit.
1158
+ The number of muons becomes g-dependent as the interactions change the muon chemical
1159
+ potential. The muon interaction due to the Lµ − Lτ vector boson is repulsive, and thus the
1160
+ chemical potential is increased compared to its SM value by ε ∼ g2N(µ, g)/R, where R is
1161
+ the radius of the neutron star the boson mass is neglected. When the coupling g is small,
1162
+ such that ε ≪ mµ, the effect of the new interaction is insignificant, and the number of muons
1163
+ is approximately given by its value in the limit of no interaction N(µ, g = 0).
1164
+ When the
1165
+ interaction is strong, such that ε ≫ mµ, it becomes energetically less favorable to have muons
1166
+ inside the neutron star and thus N(µ, g) < N(µ, g = 0).
1167
+ Similar reasoning applies to the case of the scalar mediator. The only difference is the sign
1168
+ of the interaction. In the scalar case, the interaction between muons is attractive. Thus the
1169
+ muon chemical potential is decreased by ε. This leads to the increase of the muon number
1170
+ for larger couplings N(µ, g) > N(µ, g = 0). In both cases, the change from the regime when
1171
+ N(µ, g) ≈ N(µ, g = 0) to the situation when the interaction starts to affect the muon number
1172
+ happens for couplings such that ε ∼ mµ, or numerically g ∼ 10−18 for a typical neutron star [5].
1173
+ However, in what follows, we ignore the effect of the new physics on the muon number.
1174
+ Everywhere in our analysis, we use the muon number in the limit of no new physics interaction,
1175
+ that is we set N(µ) = N(µ, g = 0) ∼ 1055 [40–43]. In principle, g-independence of muon
1176
+ number can be achieved in models with both vector and scalar mediators with fine-tuned
1177
+ coupling constants such that the repulsive and attractive interactions cancel each other.
1178
+ To apply Eqs. (4.8) and (4.9), we define Nb(µ) and Nb(¯µ) as the number of muons and
1179
+ antimuons respectively in neutron star labeled by b = 1, 2. Then, as there are almost no tau
1180
+ leptons in neutron stars, Qb = Nb(µ) − Nb(¯µ) is the total charge of the neutron star under the
1181
+ Lµ−Lτ gauge symmetry, and Nb = Nb(µ)+Nb(¯µ) is the total number of muons and anti-muons
1182
+ in the star. Additionally, since Nb(¯µ) ≈ 0, we have Qb ≈ Nb.
1183
+ The energy lost through radiation in a binary star system can be directly probed by measur-
1184
+ ing the decay of the orbital period. Assuming that the attractive gravitational force between
1185
+ the two stars is such that their orbits stay Keplerian, the decay rate of the period of revolution
1186
+ Tb is related directly to the energy lost via radiation [6]:
1187
+ ˙Tb = −6πa5/2G−3/2
1188
+ N
1189
+ (m1m2)−1(m1 + m2)−1/2 × Ploss,
1190
+ (4.17)
1191
+ 21
1192
+
1193
+ where ˙Tb is the time derivative of the binary period, GN is the gravitational constant, m1 and m2
1194
+ are the masses of the stars in the binary system, a is the semi-major axis of the elliptical orbit,
1195
+ and Ploss is the total power radiated. The decay of the period per unit of time is dimensionless
1196
+ and is measured experimentally.
1197
+ GW emission is the dominant source of power loss in a binary star system. Assuming that
1198
+ the GW emission and neutrino pair emission are the only sources of energy loss, we have
1199
+ Ploss = PGW + P¯νν,
1200
+ (4.18)
1201
+ where P¯νν is the power loss due to the neutrino pair radiation and PGW is the power loss
1202
+ due to GW emission, which, to the leading order, is given by the GW quadrupole radiation
1203
+ formula [38],
1204
+ P GW
1205
+ loss = 32
1206
+ 5 GΩ6M 2a4(1 − e2)−7/2
1207
+
1208
+ 1 + 73
1209
+ 24e2 + 37
1210
+ 96e4
1211
+
1212
+ ,
1213
+ (4.19)
1214
+ where M is the reduced mass of the system, as defined in Eq. (4.7). The binary period decay
1215
+ ˙Tb thus can be written as a sum of two contributions,
1216
+ ˙Tb = ˙TGW + ˙T¯νν .
1217
+ (4.20)
1218
+ We next introduce the period decay ratio R as the ratio of the measured period decay to
1219
+ the theoretical prediction of the period decay due to GW radiation,
1220
+ R =
1221
+ ˙Tb
1222
+ ˙TGW
1223
+ = 1 +
1224
+ ˙T¯νν
1225
+ ˙TGW
1226
+ .
1227
+ (4.21)
1228
+ We use the measured value of R to set 2σ limits on the masses and couplings of the BSM
1229
+ mediators of neutrino pair radiation as
1230
+ ˙T¯νν
1231
+ ˙TGW
1232
+ ≤ (R − 1) + 2σ .
1233
+ (4.22)
1234
+ The resulting constraints on the parameter space (g, mA) and (g, mφ) that we derive from
1235
+ the period decay data for the Hulse-Taylor binary and PSR J1738+033 are shown in Fig. 4.
1236
+ When deriving the constraints, we use Qb = Nb = 1055 with b = 1, 2 and qν = 1. For the gauge
1237
+ boson mediator (left panel), we calculate the period decay due to neutrino pair emission, ˙T¯νν,
1238
+ using Eqs. (4.8) and (4.17). As we take all three neutrinos to be massless, and as Lµ −Lτ boson
1239
+ couples to two neutrino types, there is an extra factor of 2 in Eq. (4.8). Similarly, for the case
1240
+ of the scalar mediator (right panel), we use Eqs. (4.9) and (4.17). As there is no symmetry
1241
+ that requires equality of g and g′ in the case of the scalar mediator, we present our results for
1242
+ the scalar case in the (g, mφ) plane for four different values of g′ that vary from 10−7 to 10−1.
1243
+ First, let us discuss the left panel of Fig. 4, which shows constraints on the mass and coupling
1244
+ of the gauge boson. For the PSR J1738+0333 (red line), whose orbit is very close to circular, the
1245
+ 22
1246
+
1247
+ ��� �����+��
1248
+ ��� �����+����
1249
+ ��-��
1250
+ ��-��
1251
+ ��-��
1252
+ ��-��
1253
+ ��-��
1254
+ ��-��
1255
+ ��-��
1256
+ ��-��
1257
+ ��-��
1258
+ ��-��
1259
+ ��-�
1260
+ ��-�
1261
+ PSR J1738+0333
1262
+ 10-22
1263
+ 10-20
1264
+ 10-18
1265
+ 10-16
1266
+ 10-20
1267
+ 10-18
1268
+ 10-16
1269
+ 10-14
1270
+ 10-12
1271
+ 10-10
1272
+ 10-8
1273
+ 10-6
1274
+ FIG. 4. Left: Constraints on g vs mA from the highly eccentric PSR B1913+16 (Hulse-Taylor) Bounds
1275
+ from the neutrino pair radiation (solid) and vector boson radiation (dashed) are shown such that the
1276
+ region above the curves is excluded by the measurements of the period decay. The system parameters
1277
+ are taken from Table I. Right: Constraints on g vs mφ from PSR J1738+033. The dashed gray line
1278
+ corresponds to the bound set by the emission of the scalar boson only, while the solid lines show the
1279
+ bounds from including a coupling g′ to the neutrinos.
1280
+ effect of neutrino pair radiation becomes significant for the mediator masses greater than the
1281
+ second harmonic frequency, mA > 2Ω. For the highly eccentric Hulse-Taylor binary, off-shell
1282
+ radiation dominates for mA > 85Ω. In the region mA > 2Ω (mA > 85Ω) for PSR J1738+0333
1283
+ (Hulse-Taylor binary), the boundary of the excluded region is approximately quadratic in the
1284
+ mediator mass. This is in stark contrast with the case of the on-shell boson emission discussed
1285
+ in Ref. [3, 5, 6], where the boundary of the excluded region jumps in steps at mA = nΩ, with
1286
+ n being an integer. For comparison, the dashed lines in Fig. 4 show the bounds due to the
1287
+ on-shell boson radiation.
1288
+ Finally, we comment on the right panel of Fig. 4, which shows the constraints on the mass
1289
+ mφ and coupling g for different values of g′ in the case of the scalar mediated radiation. We
1290
+ only demonstrate the constraints for PSR J1738+0333; the results for the Hulse-Taylor binary
1291
+ are qualitatively the same. Depending on the value of g′ the off-shell scalar radiation starts
1292
+ to dominate for mφ > Ω (g′ ≳ 10−4) or mφ > 2Ω (g′ ≲ 10−8). As one can see from the plot,
1293
+ g′ = 10−1 provides the strongest bound.
1294
+ We conclude this section by noting that we do not perform a detailed analysis of the bounds
1295
+ on muonophilic light states. We only remark that very strong bounds on light states are derived
1296
+ 23
1297
+
1298
+ from fifth force searches. Most of these bounds do not apply in our case as these experiments
1299
+ are done using materials made out of protons, neutrons, and electrons.
1300
+ V.
1301
+ CONCLUSION
1302
+ It is well known that fermion pairs can behave as bosons in several circumstances. In this
1303
+ work, we show that fermion pairs can also constitute classical radiation just like bosonic states
1304
+ do. We use this understanding to derive the generalization of the Larmor formula for the case
1305
+ of the fermion pair emission.
1306
+ Being motivated by the potential of applying fermion pair radiation to astrophysical objects,
1307
+ we consider the case of classical sources following elliptical orbits. The most interesting regime
1308
+ of fermion pair radiation is when the mediator is off-shell, which takes place when the mass of
1309
+ the mediator is much smaller than the frequency of the periodic motion of the source. In this
1310
+ regime, the fermion pair emission takes over from on-shell boson production. This opens up a
1311
+ window into a broader region of parameter space for various models that allow for the fermion
1312
+ pair radiation by classical sources.
1313
+ Subsequently, we apply our results to neutrino-antineutrino emission by two pulsar binary
1314
+ systems PSR B1913+16 and PSR J1738+0333. Neutrino pair emission by binary systems is
1315
+ highly suppressed in the SM compared to GW radiation, but can be significantly enhanced in
1316
+ various BSM scenarios. In particular, we consider two possibilities: light muonophilic vector
1317
+ and scalar mediators that couple to the SM neutrinos. Using period decay data for the two
1318
+ binary systems, we derive bounds on the parameters of the two models. While we did not
1319
+ perform a comprehensive study of the relevance of these bounds, the key point is that they
1320
+ provide a demonstration of the fact that fermion pair radiation can be used to enhance BSM
1321
+ probes using astrophysical data.
1322
+ There are several future directions to go from here. Here are a few that we find particularly
1323
+ interesting:
1324
+ • A thorough and detailed study of the bounds that we find on specific models is called for.
1325
+ This, however, is complicated by the large uncertainties that come from the estimates on
1326
+ the neutron star constituents. In particular, new physics interactions alter the equation
1327
+ of state of a neutron star and, currently, there is no precise quantitative understanding
1328
+ of how this affects its content.
1329
+ • It also would be interesting to see if we can find more systems to which our results can
1330
+ be applied. In particular, exotic astrophysical systems and exotic types of new physics
1331
+ models.
1332
+ 24
1333
+
1334
+ • In this work, we only consider fermion pair radiation; however, the results can be modified
1335
+ to also include bosonic pair radiation. All that needs to be done is to calculate the relevant
1336
+ matrix elements. It is expected to result in a different kinematic dependence.
1337
+ We conclude with the main message of our paper: If nature includes new light states, fermion
1338
+ pair radiation can be one more tool in our toolbox to probe them.
1339
+ ACKNOWLEDGEMENTS
1340
+ We are grateful to Kfir Blum, Jeff Dror, Toby Opferkuch, Nadav Outmezguine, Ira Rothstein,
1341
+ Ryosuke Sato, and Kohsaku Tobioka for useful discussions. The work of YG is supported in
1342
+ part by the NSF grant PHY1316222. The research of WT is supported by NSF Grant No.
1343
+ PHY-2013052.
1344
+ Appendix A: Derivation of the power loss formula
1345
+ We present below an explicit derivation of the power loss formula for the fermion pair
1346
+ radiation by a point-like classical object on an elliptical orbit. We perform the calculation
1347
+ separately for the case of vector and scalar mediators. In our calculation, we follow closely the
1348
+ analysis in Ref. [6].
1349
+ 1.
1350
+ The case of a vector boson mediator
1351
+ The power loss is a sum over different harmonics, as given by Eqs. (2.7) and (2.8). The matrix
1352
+ element, at leading order, for a vector boson mediator, is given by Eq. (2.10). It includes the
1353
+ Fourier Transform of the classical current Jµ
1354
+ cl(x) defined in Eq. (2.1). We rewrite it here for
1355
+ convenience:
1356
+ Mn(s1, s2) = g2Qψ ¯u(k1, s1)γµv(k2, s2) i(−ηµν + (k1 + k2)µ(k1 + k2)ν/m2
1357
+ A)
1358
+ (k1 + k2)2 − m2
1359
+ A + imAΓA
1360
+
1361
+ cl(Ωn) ,
1362
+ (A1)
1363
+ where ηµν is the Minkowski metric tensor. Note that the contribution from the (k1 + k2)µ(k1 +
1364
+ k2)ν term vanishes by means of the Dirac equation since the fermions are on-shell, that is,
1365
+ ¯u(/k1 + /k2)v = ¯u(mψ − mψ)v = 0.
1366
+ (A2)
1367
+ Squaring the amplitudes corresponding to different harmonics and summing over spins, we
1368
+ 25
1369
+
1370
+ find
1371
+ |Mn|2 =
1372
+
1373
+ s1,s2
1374
+ |Mn|2 =
1375
+ g4Q2
1376
+ ψ
1377
+ ((k1 + k2)2 − m2
1378
+ A)2 + m2
1379
+ AΓ2
1380
+ A
1381
+
1382
+ cl(Ωn)J∗ν
1383
+ cl (Ωn) Tr [(/k1 + mν)γµ(/k2 − mν)γν]
1384
+ =
1385
+ 4g4Q2
1386
+ ψ
1387
+ ((k1 + k2)2 − m2
1388
+ A)2 + m2
1389
+ AΓ2
1390
+ A
1391
+
1392
+ cl(Ωn)J∗ν
1393
+ cl (Ωn)
1394
+
1395
+ k1µk2ν + k1νk2µ − 1
1396
+ 2(k1 + k2)2ηµν
1397
+
1398
+ .(A3)
1399
+ Finally, we are ready to write the expression for the rate of energy loss due to ψ ¯ψ emission
1400
+ at harmonic n by the classical source as
1401
+ Pn =
1402
+ �dE
1403
+ dt
1404
+
1405
+ n
1406
+ =
1407
+
1408
+ Ωn dΓn
1409
+ = Ωn
1410
+
1411
+ d3k1
1412
+ (2π)3(2ω1)
1413
+ d3k2
1414
+ (2π)3(2ω2)(2π)δ(Ωn − ω1 − ω2)|Mn|2
1415
+ = Ωn
1416
+
1417
+ dΦ1dΦ2
1418
+ |k1|dω1
1419
+ 2(2π)3
1420
+ |k2|dω2
1421
+ 2(2π)3 (2π)δ(Ωn − ω1 − ω2)|Mn|2 ,
1422
+ (A4)
1423
+ where |k1,2| =
1424
+
1425
+ ω2
1426
+ 1,2 − m2
1427
+ ψ, we used Ωn = ω1 + ω2 for the total energy carried away by the
1428
+ fermion pair, dΦ1,2 are the differential elements of solid angles in the fermion’s direction of
1429
+ flight, and
1430
+ ��Mn
1431
+ ��2 is given in Eq. (A3). The total power radiated is found by summing over all
1432
+ kinematically allowed harmonics:
1433
+ P =
1434
+
1435
+ n
1436
+ Pn.
1437
+ (A5)
1438
+ To calculate the power radiated in fermion pairs by a point-like source in an elliptical orbit,
1439
+ we need to evaluate the integrals in Eq. (A4), after substituting in the explicit form of Jµ
1440
+ cl(Ωn)
1441
+ in Eq. (A3). Using Eqs. (2.1) and (2.4), we find the Fourier Transform Jµ
1442
+ cl(Ωn) as:
1443
+ Ji
1444
+ cl(Ωn) = aΩQji
1445
+ n,
1446
+ J0
1447
+ cl(Ωn) = aΩQ
1448
+ �jn · p
1449
+ nΩ
1450
+
1451
+ ,
1452
+ (A6)
1453
+ where the 3-vector jn is defined as
1454
+ jn =
1455
+
1456
+ −iJ′
1457
+ n(ne),
1458
+
1459
+ 1 − e2
1460
+ e
1461
+ Jn(ne), 0
1462
+
1463
+ ,
1464
+ (A7)
1465
+ with Jn(z) denoting a Bessel function, and p = k1 + k2.
1466
+ The terms in the numerator of |M|2 in Eq. (A3), are then given by
1467
+ (Jµ
1468
+ cl(Ωn)k1µ) (Jν∗
1469
+ cl (Ωn)k2ν) = a2Ω2Q2ji
1470
+ njj∗
1471
+ n
1472
+ � ω1ω2
1473
+ (nΩ)2pipj − ω1
1474
+ nΩpikj
1475
+ 2 − ω2
1476
+ nΩki
1477
+ 1pj + ki
1478
+ 1kj
1479
+ 2
1480
+
1481
+ ,
1482
+ (A8)
1483
+ and
1484
+ |Jµ
1485
+ cl(Ωn)|2 = |J0
1486
+ cl(Ωn)|2 − |Jcl(Ωn)|2 = a2Ω2Q2ji
1487
+ njj∗
1488
+ n
1489
+ � pipj
1490
+ (Ωn)2 − δij
1491
+
1492
+ ,
1493
+ (A9)
1494
+ where we used Ωn = nΩ.
1495
+ Note that all quantities above are 3-vectors with Latin indices
1496
+ i = 1, 2, 3, and a sum over i and j is implicit. The expression for (Jµ
1497
+ cl(Ωn)k2µ) (Jν∗
1498
+ cl (Ωn)k1ν) is
1499
+ obtained from Eq. (A8) via complex conjugation.
1500
+ 26
1501
+
1502
+ Next we note that the denominator of |Mn|2, see Eq. (A3), depends only on mA, ΓA, ω1,2, the
1503
+ magnitudes |k1,2| and the relative angle between the two momenta k1, and k2 that we denote
1504
+ as γ. Because of this, it is convenient to perform the change of coordinates in the integral in
1505
+ Eq. (A4) from the integration over the solid angles dΦ1dΦ2 to the integration over dΦ1dΦr
1506
+ 2
1507
+ where the solid angle of the second neutrino is measured relative to the direction of k1, hence
1508
+ the super index r. (Equivalently, one can also choose to integrate over dΦr
1509
+ 1dΦ2.) The Jacobian
1510
+ of this coordinate change is unity since the transformation is simply a coordinate rotation, and
1511
+ thus
1512
+ dΦ1dΦ2 = dΦ1dΦr
1513
+ 2.
1514
+ (A10)
1515
+ Defining
1516
+ dΦb = sin θbdθbdφb,
1517
+ dΦr
1518
+ 2 = sin γdγdδ,
1519
+ b = 1, 2 ,
1520
+ (A11)
1521
+ we find the following relations between the two sets of integration variables
1522
+ cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ2 − φ1) ,
1523
+ sin δ = sin θ2 sin (φ2 − φ1)
1524
+ sin γ
1525
+ .
1526
+ (A12)
1527
+ Since, out of all the angular variables, the denominator only depends on the relative angle γ,
1528
+ the integrals over θ1, φ1 and δ can be taken easily using the following relations
1529
+
1530
+ dΦ1dΦ2ki
1531
+ akj
1532
+ a =
1533
+
1534
+ dΦ1dΦr
1535
+ 2ki
1536
+ akj
1537
+ a = δij 8π2
1538
+ 3 k2
1539
+ a
1540
+
1541
+ sin γdγ,
1542
+
1543
+ dΦ1dΦ2ki
1544
+ 1kj
1545
+ 2 =
1546
+
1547
+ dΦ1dΦr
1548
+ 1ki
1549
+ 1kj
1550
+ 2 = δij 8π2
1551
+ 3 (k1 · k2)
1552
+
1553
+ sin γdγ,
1554
+
1555
+ dΦ1dΦ2 =
1556
+
1557
+ dΦ1dΦr
1558
+ 2 = 8π2
1559
+
1560
+ sin γdγ .
1561
+ (A13)
1562
+ Using this and the results of Eqs. (A8) and (A9), we perform the integration over θ1, φ1 and δ
1563
+ in Eq. (A4), and find the following expression for the power radiated in harmonic n,
1564
+ Pn = g4 (nΩ)
1565
+ 12π3 a2Ω2Q2
1566
+ ψQ2 |jn|2
1567
+
1568
+ δ(nΩ − ω1 − ω2)
1569
+ ((k1 + k2)2 − m2
1570
+ A)2 + m2
1571
+ AΓ2
1572
+ A
1573
+ ×
1574
+
1575
+ −1
1576
+ 2 (k1 + k2)2 �
1577
+ (k1 + k2)2 /
1578
+
1579
+ (nΩ)2 − 3
1580
+ ��
1581
+ + 2 ω1ω2
1582
+ (nΩ)2 (k1 + k2)2
1583
+ −2 ω1
1584
+ nΩ
1585
+
1586
+ k2
1587
+ 2 + k1 · k2
1588
+
1589
+ − 2 ω2
1590
+ nΩ
1591
+
1592
+ k2
1593
+ 1 + k1 · k2
1594
+
1595
+ + 2k1 · k2
1596
+
1597
+ ×
1598
+ ω1ω2
1599
+
1600
+ 1 − m2
1601
+ ψ
1602
+ ω2
1603
+ 1
1604
+ �1/2 �
1605
+ 1 − m2
1606
+ ψ
1607
+ ω2
1608
+ 2
1609
+ �1/2
1610
+ sin γ dγdω1dω2 ,
1611
+ (A14)
1612
+ where the only integrals left are the integrals over γ, ω1 and ω2.
1613
+ Next, we introduce the following dimensionless variables and parameters
1614
+ x1 = ω1
1615
+ Ω ,
1616
+ x2 = ω2
1617
+ Ω ,
1618
+ nψ = mψ
1619
+ Ω ,
1620
+ nA = mA
1621
+ Ω ,
1622
+ nΓ = ΓA
1623
+ Ω .
1624
+ (A15)
1625
+ 27
1626
+
1627
+ Performing the change of variables in Eq. (A14) from (ω1, ω2) to (x1, x2), we rewrite the ex-
1628
+ pression for the power radiated in harmonic n as follows:
1629
+ Pn =
1630
+ g4
1631
+ 12π3a2Ω4Q2
1632
+ ψ|jn|2
1633
+
1634
+ sin γ dγ dx1 dx2 δ(n − x1 − x2) F(cos γ, x1, x2) .
1635
+ (A16)
1636
+ Upon taking the integral over x2 and performing the replacement x1 → x, we obtain
1637
+ Pn =
1638
+ g4
1639
+ 12π3a2Ω4Q2
1640
+ ψQ2|jn|2
1641
+ � n−nψ
1642
+
1643
+ dx
1644
+ � 1
1645
+ −1
1646
+ d(cos γ) F(cos γ, x) ,
1647
+ (A17)
1648
+ where function F(cos γ, x) is given by
1649
+ F(cos γ, x) = b(x)
1650
+ 2n
1651
+ 1
1652
+ 2b2(x) cos2 γ + b(x)c(x) cos γ + d(x)
1653
+ (a(x) − b(x) cos γ)2 + g2
1654
+ ,
1655
+ (A18)
1656
+ with
1657
+ a(x) = 2n2
1658
+ ψ + 2x(n − x) − n2
1659
+ A ,
1660
+ b(x) = 2
1661
+
1662
+ x2 − n2
1663
+ ψ
1664
+
1665
+ (n − x)2 − n2
1666
+ ψ ,
1667
+ c(x) = −
1668
+
1669
+ n2 + 2n2
1670
+ ψ
1671
+
1672
+ ,
1673
+ d(x) = 2(x(n3 − 2n2x + 2nx2 − x3) + 2n2n2
1674
+ ψ + n4
1675
+ ψ),
1676
+ g2 = n2
1677
+ An2
1678
+ Γ .
1679
+ (A19)
1680
+ The variable x here is the ratio of the energy of one of the fermions to the fundamental oscillation
1681
+ frequency. It can be at least nψ or at most n − nψ, hence the limits on the integral. Also note
1682
+ that F also depends on the parameters of the problem namely nA, nψ, nΓ defined in Eq. (A15),
1683
+ but we do not write them explicitly for brevity. Lastly, note that the γ-dependence of the
1684
+ numerator of function F is through a term quadratic in cos γ and a term linear in cos γ. This
1685
+ behavior is attributed to the theory that we pick – renormalizable theories such as in the case
1686
+ considered here would only contribute at most two powers of momentum in the matrix element,
1687
+ leading to a cos γ dependence that is at most quadratic. However non-renormalizable theories
1688
+ have more momenta in the matrix element, and will give us a different cos γ dependence in the
1689
+ F.
1690
+ Now, we define
1691
+ F A(x) ≡ F A(n, x, nψ, nA, nΓ) =
1692
+ � 1
1693
+ −1
1694
+ d (cos γ) F (cos γ, x, n) ,
1695
+ (A20)
1696
+ where the superscript A denotes the vector boson mediator.
1697
+ The integral over cos γ can be taken analytically. Then, we find that the function F A(x),
1698
+ has the form:
1699
+ F A(x) = F A
1700
+ 0 (x) + F A
1701
+ 1 (x)
1702
+ nMnΓ
1703
+
1704
+ tan−1
1705
+ �a(x) + b(x)
1706
+ nMnΓ
1707
+
1708
+ − tan−1
1709
+ �a(x) − b(x)
1710
+ nMnΓ
1711
+ ��
1712
+ + F A
1713
+ 2 (x) tanh−1
1714
+
1715
+ 2a(x)b(x)
1716
+ a(x)2 + b(x)2 + n2
1717
+ Mn2
1718
+ Γ
1719
+
1720
+ ,
1721
+ (A21)
1722
+ 28
1723
+
1724
+ with:
1725
+ F A
1726
+ 0 (x) = b(x)/2n ,
1727
+ F A
1728
+ 1 (x) = 1
1729
+ 4n
1730
+
1731
+ n4
1732
+ A + 4n2n2
1733
+ ψ − n2
1734
+ An2
1735
+ Γ + 2n2
1736
+ An2 − 4nxn2
1737
+ A + 4x2n2
1738
+ A
1739
+
1740
+ ,
1741
+ F A
1742
+ 2 (x) = 1
1743
+ 2n
1744
+
1745
+ n2
1746
+ A + n2 − 2nx + 2x2�
1747
+ .
1748
+ (A22)
1749
+ Consequently, the power loss formula of each mode with n > 2nψ becomes
1750
+ Pn = 2g4Q2
1751
+ ψQ2
1752
+ 3(2π)3 a2Ω4
1753
+
1754
+ J′
1755
+ n(ne)2 + 1 − e2
1756
+ e2
1757
+ Jn(ne)2
1758
+ � � n−nψ
1759
+
1760
+ dxF A(x),
1761
+ (A23)
1762
+ which gives us Eq. (2.18) for the case M = A, where we define for mediator M
1763
+ BM
1764
+ n (nM, nν, nΓ) ≡
1765
+
1766
+ J′
1767
+ n(ne)2 + 1 − e2
1768
+ e2
1769
+ Jn(ne)2
1770
+ � � n−nψ
1771
+
1772
+ dx F M(x, n, nM, nν, nΓ),
1773
+ (A24)
1774
+ where Jn(z) is a Bessel function of order n in the variable z.
1775
+ 2.
1776
+ The case of the scalar mediator
1777
+ The derivation for the power loss in the scalar mediator is similar to the vector case, but the
1778
+ matrix element is different, as shown in Eq. (2.14). This matrix element contains the number
1779
+ density ρcl(x) of source particles, instead of a current. As such, the difference in the calculation
1780
+ in this case comes from the calculation of the squared matrix element, which in this case, is
1781
+ given by:
1782
+
1783
+ s1,s2
1784
+ |Mn(s1, s2)|2 =
1785
+ g2g′2
1786
+ ((k1 + k2)2 − m2
1787
+ φ)2 + m2
1788
+ φΓ2
1789
+ φ
1790
+ Tr(( /k1 + mψ)( /k2 − mψ))|ρcl(Ωn)|2
1791
+ =
1792
+ 4g2g′2
1793
+ ((k1 + k2)2 − m2
1794
+ φ)2 + m2
1795
+ φΓ2
1796
+ φ
1797
+ (k1 · k2 − m2
1798
+ ψ)|ρcl(Ωn)|2 ].
1799
+ (A25)
1800
+ The power loss is again given by Eq. (A4).
1801
+ Using Eqs. (2.2) and (2.4), we find the Fourier Transform ρµ
1802
+ cl(Ωn) as:
1803
+ ρ0
1804
+ cl(Ωn) = aΩN
1805
+ �jn · p
1806
+ nΩ
1807
+
1808
+ ,
1809
+ (A26)
1810
+ where, like in the vector case, we define the 3-vector ji
1811
+ n as follows:
1812
+ jn =
1813
+
1814
+ −iJ′
1815
+ n(ne),
1816
+
1817
+ 1 − e2
1818
+ e
1819
+ Jn(ne), 0
1820
+
1821
+ ,
1822
+ (A27)
1823
+ with Jn(z) denoting a Bessel function, amd p = k1 + k2.
1824
+ After performing all the steps analogous to Eqns. (A4)–(A20) in the previous section, i.e,
1825
+ after performing the angular integration, we get:
1826
+ Pn = g2g′2
1827
+ 12π3 a2Ω4N 2|jn|2
1828
+ � n−nψ
1829
+
1830
+ dx
1831
+ � 1
1832
+ −1
1833
+ d cos γ F(cos γ, x) ,
1834
+ (A28)
1835
+ 29
1836
+
1837
+ where function F(cos γ, x) is given by
1838
+ F(cos γ, x) = −b(x)
1839
+ 2n
1840
+ 1
1841
+ 2b2(x) cos2 γ + b(x)c(x) cos γ + d(x)
1842
+ (a(x) − b(x) cos γ)2 + g2
1843
+ ,
1844
+ (A29)
1845
+ with
1846
+ a(x) = 2n2
1847
+ ψ + 2x(n − x) − n2
1848
+ φ ,
1849
+ b(x) = 2
1850
+
1851
+ x2 − n2
1852
+ ψ
1853
+
1854
+ (n − x)2 − n2
1855
+ ψ ,
1856
+ c(x) = (n − 2x)2
1857
+ 2
1858
+ ,
1859
+ d(x) = (n2
1860
+ ψ − nx + x2)(n2 − 2n2
1861
+ ψ − 2nx + 2x2),
1862
+ g2 = n2
1863
+ φn2
1864
+ Γ .
1865
+ (A30)
1866
+ Like before, we define
1867
+ F φ(x) ≡ F φ(n, x, nψ, nφ, nΓ) =
1868
+ � 1
1869
+ −1
1870
+ d (cos γ) F (cos γ, x, n) ,
1871
+ (A31)
1872
+ where the superscript φ denotes the scalar mediator.
1873
+ The integral over cos γ can be taken analytically to find a form for F φ:
1874
+ F φ(x) = F φ
1875
+ 0 (x) + F φ
1876
+ 1 (x)
1877
+ nMnΓ
1878
+
1879
+ tan−1
1880
+ �a(x) + b(x)
1881
+ nMnΓ
1882
+
1883
+ − tan−1
1884
+ �a(x) − b(x)
1885
+ nMnΓ
1886
+ ��
1887
+ + F φ
1888
+ 2 (x) tanh−1
1889
+
1890
+ 2a(x)b(x)
1891
+ a(x)2 + b(x)2 + n2
1892
+ Mn2
1893
+ Γ
1894
+
1895
+ ,
1896
+ (A32)
1897
+ with:
1898
+ F φ
1899
+ 0 (x) = −b(x)/2n ,
1900
+ F φ
1901
+ 1 (x) = 1
1902
+ 4n
1903
+
1904
+ n2
1905
+ φn2
1906
+ Γ + (n2 − n2
1907
+ φ)(n2
1908
+ φ − 4n2
1909
+ ν)
1910
+
1911
+ ,
1912
+ F φ
1913
+ 2 (x) = 1
1914
+ 4n
1915
+
1916
+ n2 + 4n2
1917
+ ν − 2n2
1918
+ φ
1919
+
1920
+ .
1921
+ (A33)
1922
+ Consequently, the power loss formula of each mode with n > 2nψ becomes
1923
+ Pn = 2g2g′2
1924
+ 3(2π)3a2Ω4N 2
1925
+
1926
+ J′
1927
+ n(ne)2 + 1 − e2
1928
+ e2
1929
+ Jn(ne)2
1930
+ � � n−nψ
1931
+
1932
+ dxF φ(x),
1933
+ (A34)
1934
+ which gives us Eq. (2.19) for the case M = φ
1935
+ P φ
1936
+ n = g2g′2
1937
+ 12π3 a2Ω4
1938
+ �N1
1939
+ m1
1940
+ − N2
1941
+ m2
1942
+ �2
1943
+
1944
+ n(nA, nν, nΓ).
1945
+ (A35)
1946
+ We find that the form of the function F M is general for the two types of mediators, the
1947
+ difference lying in the explicit forms of the functions F M
1948
+ 0 , F M
1949
+ 1
1950
+ and F M
1951
+ 2 . This is due to the fact
1952
+ that the cos γ dependence of the function F is the same in both cases, as in both cases, the
1953
+ theory considered is a renormalizable one. As we explained in the previous sub-section, this
1954
+ 30
1955
+
1956
+ general form of F M is not what we will have when we consider non-renormalizable theories that
1957
+ give us higher powers of momenta in the numerator of F.
1958
+ [1] J. S. b. Larmor, Philosophical Magazine Series 1 44, 503 (1897).
1959
+ [2] J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
1960
+ [3] D. Krause, H. T. Kloor, and E. Fischbach, Phys. Rev. D 49, 6892 (1994).
1961
+ [4] S. Mohanty and P. Kumar Panda, Phys. Rev. D 53, 5723 (1996), arXiv:hep-ph/9403205.
1962
+ [5] J. A. Dror, R. Laha,
1963
+ and T. Opferkuch, Phys. Rev. D 102, 023005 (2020), arXiv:1909.12845
1964
+ [hep-ph].
1965
+ [6] T. Kumar Poddar, S. Mohanty, and S. Jana, Phys. Rev. D 100, 123023 (2019), arXiv:1908.09732
1966
+ [hep-ph].
1967
+ [7] J. Huang, M. C. Johnson, L. Sagunski, M. Sakellariadou, and J. Zhang, Phys. Rev. D 99, 063013
1968
+ (2019), arXiv:1807.02133 [hep-ph].
1969
+ [8] T. Kumar Poddar, S. Mohanty, and S. Jana, Phys. Rev. D 101, 083007 (2020), arXiv:1906.00666
1970
+ [hep-ph].
1971
+ [9] A. Hook and J. Huang, JHEP 06, 036 (2018), arXiv:1708.08464 [hep-ph].
1972
+ [10] R. Foot, Mod. Phys. Lett. A 6, 527 (1991).
1973
+ [11] X.-G. He, G. C. Joshi, H. Lew, and R. R. Volkas, Phys. Rev. D 44, 2118 (1991).
1974
+ [12] R. Foot, X. G. He, H. Lew,
1975
+ and R. R. Volkas, Phys. Rev. D 50, 4571 (1994), arXiv:hep-
1976
+ ph/9401250.
1977
+ [13] J. Heeck and W. Rodejohann, Phys. Rev. D 84, 075007 (2011), arXiv:1107.5238 [hep-ph].
1978
+ [14] J. Kopp, R. Laha, T. Opferkuch,
1979
+ and W. Shepherd, JHEP 11, 096 (2018), arXiv:1807.02527
1980
+ [hep-ph].
1981
+ [15] S. Alexander, E. McDonough, R. Sims, and N. Yunes, Class. Quant. Grav. 35, 235012 (2018),
1982
+ arXiv:1808.05286 [gr-qc].
1983
+ [16] H. G. Choi and S. Jung, Phys. Rev. D 99, 015013 (2019), arXiv:1810.01421 [hep-ph].
1984
+ [17] M. Fabbrichesi and A. Urbano, JCAP 06, 007 (2020), arXiv:1902.07914 [hep-ph].
1985
+ [18] B. C. Seymour and K. Yagi, Class. Quant. Grav. 37, 145008 (2020), arXiv:1908.03353 [gr-qc].
1986
+ [19] G. Feinberg and J. Sucher, Phys. Rev. 166, 1638 (1968).
1987
+ [20] S. D. H. Hsu and P. Sikivie, Phys. Rev. D 49, 4951 (1994), arXiv:hep-ph/9211301.
1988
+ [21] M. Ghosh, Y. Grossman, and W. Tangarife, Phys. Rev. D 101, 116006 (2020), arXiv:1912.09444
1989
+ [hep-ph].
1990
+ [22] M. Ghosh, Y. Grossman, W. Tangarife, X.-J. Xu, and B. Yu, (2022), arXiv:2209.07082 [hep-ph].
1991
+ 31
1992
+
1993
+ [23] W. van Straten, M. Bailes, M. C. Britton, S. R. Kulkarni, S. B. Anderson, R. N. Manchester,
1994
+ and J. Sarkissian, Nature 412, 158 (2001), arXiv:astro-ph/0108254.
1995
+ [24] M. Kramer et al., Science 314, 97 (2006), arXiv:astro-ph/0609417.
1996
+ [25] I. H. Stairs, S. E. Thorsett, J. H. Taylor,
1997
+ and A. Wolszczan, Astrophys. J. 581, 501 (2002),
1998
+ arXiv:astro-ph/0208357.
1999
+ [26] R. M. Shannon, S. Johnston,
2000
+ and R. N. Manchester, Mon. Not. Roy. Astron. Soc. 437, 3255
2001
+ (2014), arXiv:1311.0588 [astro-ph.SR].
2002
+ [27] J. Antoniadis et al., Science 340, 6131 (2013), arXiv:1304.6875 [astro-ph.HE].
2003
+ [28] N. D. R. Bhat, M. Bailes, and J. P. W. Verbiest, Phys. Rev. D 77, 124017 (2008), arXiv:0804.0956
2004
+ [astro-ph].
2005
+ [29] P. C. C. Freire, N. Wex, G. Esposito-Farese, J. P. W. Verbiest, M. Bailes, B. A. Jacoby,
2006
+ M. Kramer, I. H. Stairs, J. Antoniadis, and G. H. Janssen, Mon. Not. Roy. Astron. Soc. 423,
2007
+ 3328 (2012), arXiv:1205.1450 [astro-ph.GA].
2008
+ [30] R. D. Ferdman et al., Mon. Not. Roy. Astron. Soc. 443, 2183 (2014), arXiv:1406.5507 [astro-
2009
+ ph.SR].
2010
+ [31] J. van Leeuwen et al., Astrophys. J. 798, 118 (2015), arXiv:1411.1518 [astro-ph.SR].
2011
+ [32] B. A. Jacoby, P. B. Cameron, F. A. Jenet, S. B. Anderson, R. N. Murty, and S. R. Kulkarni,
2012
+ Astrophys. J. Lett. 644, L113 (2006), arXiv:astro-ph/0605375.
2013
+ [33] H. Davoudiasl and P. B. Denton, Phys. Rev. Lett. 123, 021102 (2019), arXiv:1904.09242 [astro-
2014
+ ph.CO].
2015
+ [34] R. A. Hulse and J. H. Taylor, Astrophys. J. Lett. 195, L51 (1975).
2016
+ [35] J. H. Taylor and J. M. Weisberg, Astrophys. J. 253, 908 (1982).
2017
+ [36] J. M. Weisberg and Y. Huang, The Astrophysical Journal 829, 55 (2016).
2018
+ [37] M. Kilic, J. Hermes, A. Gianninas, and W. R. Brown, Monthly Notices of the Royal Astronomical
2019
+ Society: Letters 446, L26 (2015).
2020
+ [38] P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
2021
+ [39] D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin,
2022
+ and P. Haensel, Phys. Rept. 354, 1 (2001),
2023
+ arXiv:astro-ph/0012122.
2024
+ [40] R. Garani and J. Heeck, Phys. Rev. D 100, 035039 (2019), arXiv:1906.10145 [hep-ph].
2025
+ [41] J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C. Ducoin, A. K. Dutta, and S. Goriely,
2026
+ Mon. Not. Roy. Astron. Soc. 481, 2994 (2018), [Erratum: Mon.Not.Roy.Astron.Soc. 486, 768
2027
+ (2019)], arXiv:1903.04981 [astro-ph.HE].
2028
+ [42] I. Harry and T. Hinderer, Class. Quant. Grav. 35, 145010 (2018), arXiv:1801.09972 [gr-qc].
2029
+ [43] F. Zhang and L. Chen, Chin. Phys. Lett. 18, 142 (2001), arXiv:nucl-th/0011017.
2030
+ 32
2031
+
2032
+ [44] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
2033
+ 33
2034
+
OtAzT4oBgHgl3EQfWfy0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UNA0T4oBgHgl3EQfEf9Z/content/tmp_files/2301.02018v1.pdf.txt ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Trajectory Optimization on Matrix Lie Groups
2
+ with Differential Dynamic Programming and
3
+ Nonlinear Constraints
4
+ Gokhan Alcana, Fares J. Abu-Dakkab and Ville Kyrkia
5
+ Abstract— Matrix Lie groups are an important class of
6
+ manifolds commonly used in control and robotics, and the
7
+ optimization of control policies on these manifolds is a
8
+ fundamental problem. In this work, we propose a novel
9
+ approach for trajectory optimization on matrix Lie groups
10
+ using an augmented Lagrangian based constrained dis-
11
+ crete Differential Dynamic Programming (DDP) algorithm.
12
+ Our method involves lifting the optimization problem to the
13
+ Lie algebra in the backward pass and retracting back to
14
+ the manifold in the forward pass. In contrast to previous
15
+ approaches which only addressed constraint handling for
16
+ specific classes of matrix Lie groups, our method provides
17
+ a general approach for nonlinear constraint handling for a
18
+ generic matrix Lie groups. We also demonstrate the effec-
19
+ tiveness of our method in handling external disturbances
20
+ through its application as a Lie-algebraic feedback control
21
+ policy on SE(3). The results show that our approach is able
22
+ to effectively handle configuration, velocity and input con-
23
+ straints and maintain stability in the presence of external
24
+ disturbances.
25
+ I. INTRODUCTION AND RELATED WORK
26
+ T
27
+ HE configuration space of a physical system represents
28
+ the set of all possible configurations. Modeling this space
29
+ using local coordinates may lead to several potential problems.
30
+ One issue is that these coordinate systems may suffer from
31
+ singularities or degeneracies, where the coordinates become
32
+ ill-defined or degenerate. For example, Euler angles can
33
+ experience gimbal lock, where two of the angles become
34
+ degenerate, leading to a loss of degree of freedom and making
35
+ it difficult to represent certain configurations of the system
36
+ [1], [2]. Similarly, quaternions can experience a similar loss
37
+ of degree of freedom when their magnitude becomes close to
38
+ zero and multiple different representations can describe the
39
+ same configuration [3], although it has global representation.
40
+ These types of singularities can make it difficult to accurately
41
+ represent the transition between certain configurations of the
42
+ system, and may require the use of additional techniques to
43
+ avoid or mitigate these issues.
44
+ This work was supported by the Academy of Finland B-REAL Project
45
+ under Grant 328399.
46
+ Corresponding author: Gokhan Alcan ([email protected])
47
+ a The authors are with the Intelligent Robotics Group, Department of
48
+ Electrical Engineering and Automation (EEA), Aalto University, 02150
49
+ Espoo, Finland
50
+ b Munich Institute of Robotics and Machine Intelligence, Technische
51
+ Universit¨at M¨unchen, 80992 M¨unchen, Germany. Part of the research
52
+ presented in this work has been conducted when Abu-Dakka, F. was at
53
+ Intelligent Robotics Group, EEA, Aalto University, 02150 Espoo, Finland
54
+ On the other hand, a natural way to model the geometry
55
+ of the configuration space is through the use of matrix Lie
56
+ groups, which offer a continuous and structured framework
57
+ for understanding the structure and motion of the underlying
58
+ system [4], [5]. However, it brings the difficulties to deal with
59
+ non-flatness of manifolds in a coordinate-free manner [6].
60
+ The use of geometric control techniques, which seamlessly
61
+ combine differential geometry and control theory, has become
62
+ increasingly prevalent in the field of robotics and control
63
+ systems [7]–[9]. Optimality conditions for geometric control
64
+ techniques are often simplified and numerical ill-conditioning
65
+ is avoided through the use of specific details about the control
66
+ problem.
67
+ Differential dynamic programming (DDP) is a numerical
68
+ method for solving optimal control problems that has gained
69
+ widespread use in various engineering fields. Originally pro-
70
+ posed by Mayne and Jacobson [10], DDP has been applied to
71
+ a wide range of complex, high-dimensional systems [11]. One
72
+ of the key advantages of DDP is its scalability, which allows
73
+ it to handle large and complex systems with many degrees
74
+ of freedom. In addition, DDP has a fast convergence rate,
75
+ which allows it to quickly find near-optimal solutions to the
76
+ control problem. Another important attribute of DDP is its
77
+ ability to generate feedback control policies, which can be
78
+ used to implement the optimal control solution in real-time.
79
+ Several early works have investigated the use of DDP for
80
+ geometric control [9], [12]. These studies focused on specific
81
+ matrix Lie groups, including SE(3), in order to derive the
82
+ final form of the DDP algorithm for applications in geo-
83
+ metric control. Boutselis and Theodorou [13] extended the
84
+ original DDP method by using quadratic expansion schemes
85
+ for cost functions and dynamics defined on Lie groups. They
86
+ demonstrated that DDP has significantly better convergence
87
+ rates compared to sequential quadratic programming (SQP)
88
+ methods. Teng et al. [18] further improved the convergence
89
+ performance of DDP for matrix groups by designing the
90
+ control objective in its Lie algebra. Both of these approaches
91
+ [13], [18] formulate the trajectory optimization on matrix Lie
92
+ groups in an unconstrained framework. In order to address
93
+ this limitation, Liu et al. [14] extended the work [13] by
94
+ imposing SO(3) pose constraints. However, this method is not
95
+ generalizable to nonlinear constraints for generic matrix Lie
96
+ groups. Table I provides a comparison of those methods in
97
+ terms of their cost definitions and constraints.
98
+ arXiv:2301.02018v1 [eess.SY] 5 Jan 2023
99
+
100
+ TABLE I
101
+ COMPARISON OF DDP METHODS FOR MATRIX LIE GROUPS
102
+ Cost
103
+ SO(3)
104
+ Any Group
105
+ Described in
106
+ Constraints
107
+ Constraints
108
+ Boutselis et al. [13]
109
+ manifold
110
+ 
111
+ 
112
+ Liu et al. [14]
113
+ manifold
114
+ 
115
+ 
116
+ Teng et al. [18]
117
+ tangent space
118
+ 
119
+ 
120
+ Our method
121
+ tangent space
122
+ 
123
+ 
124
+ The present paper aims to solve the problem of generic
125
+ constraints by extending the idea of Lie algebric cost definition
126
+ [18] and developing a DDP method for matrix Lie groups
127
+ under nonlinear constraints. The main contributions of our
128
+ work are:
129
+ 1) Development of an augmented Lagrangian based con-
130
+ strained DDP algorithm for trajectory optimization on
131
+ matrix Lie groups.
132
+ 2) A principled approach for nonlinear constraint handling
133
+ for generic matrix Lie groups unlike [14], which only ad-
134
+ dressed constraint handling for SO(3) pose constraints.
135
+ 3) Evaluating the effectiveness of the proposed DDP
136
+ method in handling external disturbances through its
137
+ application in a numerical simulation as a Lie-algebraic
138
+ feedback control policy on SE(3).
139
+ The rest of this paper is organized as follows. In Section II,
140
+ we provide preliminaries regarding matrix Lie groups. Section
141
+ III defines the trajectory optimization problem for matrix
142
+ Lie groups. We detail our proposed method in Section IV.
143
+ In Section V, we provide numerical simulation experiments
144
+ for SE(3) to demonstrate the effectiveness of our approach.
145
+ Finally, the paper is concluded with potential directions for
146
+ future work in Section VI.
147
+ II. PRELIMINARIES
148
+ Consider G is an n-dimensional matrix Lie group, and its
149
+ associated Lie algebra, i.e., tangent space at the identity, is
150
+ denoted as g, where dim g = n. Isomorphism between the
151
+ vector space Rn and g can be defined through the following
152
+ operators:
153
+ (.)∧ : Rn �→ g
154
+ (.)∨ : g �→ Rn
155
+ (1)
156
+ Mapping between Rn and G can be defined using the
157
+ functions Exp(.) : Rn �→ G and Log(.) : G �→ Rn for any
158
+ φ ∈ Rn and X ∈ G as follows:
159
+ Exp(φ) = expm(φ∧) = X
160
+ Log(X) = logm(X)∨ = φ
161
+ (2)
162
+ where expm and logm are the exponential and logarithm of
163
+ square matrices, respectively.
164
+ The adjoint action, denoted as AdX : g �→ g for any X ∈ G,
165
+ is a Lie algebra isomorphism that allows change of frames.
166
+ Given φ, η ∈ Rn and φ∧, η∧ ∈ g, the adjoint action can be
167
+ expressed in the function form as
168
+ AdX (φ) = Xφ∧X −1
169
+ (3)
170
+ or in the matrix form as
171
+ (AdX φ)∧ = Xφ∧X −1
172
+ (4)
173
+ The adjoint map is the derivative of the adjoint action with
174
+ respect to X at the identity element and is defined as
175
+ adφ η = [φ∧, η∧]
176
+ (5)
177
+ where [φ∧, η∧] is the Lie bracket, calculated as
178
+ [φ∧, η∧] = φ∧η∧ − η∧φ∧
179
+ (6)
180
+ III. PROBLEM DEFINITION
181
+ We consider the systems whose states reside in the tangent
182
+ bundle of a matrix Lie group. This encompasses a diverse
183
+ array of systems [15] whose states can be represented as pairs
184
+ {X, ξ∧} ∈ G × g, where X represents the configuration and
185
+ ξ∧ represents the velocity. The continuous equations of motion
186
+ for such systems can be written as:
187
+ ˙Xt = Xtξ∧
188
+ t
189
+ ˙ξt = f
190
+
191
+ ξt, ut
192
+
193
+ (7)
194
+ where ut ∈ Rm is the generalized control input and f(.) is
195
+ the function of velocity dynamics. For a given initial state
196
+ {X0, ξ0}, a goal state {Xg, ξg} and a time horizon N, we
197
+ define the discrete-time constrained optimal control problem
198
+ as
199
+ min
200
+ u0,...,uN−1
201
+ ℓf(XN, ξN) +
202
+ N−1
203
+
204
+ k=0
205
+ ℓ(Xk, ξk, uk)
206
+ subject to
207
+ Xk+1 = FX (Xk, ξk),
208
+ k = 0, ..., N − 1
209
+ ξk+1 = Fξ(ξk, uk),
210
+ k = 0, ..., N − 1
211
+ umin ≤ uk ≤ umax,
212
+ ∀k,
213
+ g(Xk, ξk, uk) ≤ 0,
214
+ ∀k,
215
+ given
216
+ X0, ξ0,
217
+ (8)
218
+ where ℓf : G × Rn �→ R and ℓ : G × Rn × Rm �→ R
219
+ are the final cost and the running cost, respectively. FX and
220
+ Fξ are the discretized form of the configuration and velocity
221
+ dynamics, which can be obtained by using either a zero-
222
+ order hold or Euler first-order integration method with a fixed
223
+ time step of ∆t. Lastly, g is a vector of p constraints in
224
+ the form of differentiable nonlinear functions representing the
225
+ state constraints.
226
+ IV. PROPOSED METHOD
227
+ It is often difficult to solve the general problem outlined
228
+ in Section III analytically. Additionally, finding the global
229
+ minimum numerically can be time-consuming, particularly for
230
+ systems with high dimensions. Therefore, we aim to propose a
231
+ method that provides feasible solutions, even if they may not
232
+ be globally optimal. As such, we aim to propose a method
233
+ that yields feasible solutions, even if they may not be globally
234
+ optimal. To accomplish this, we utilize the Differential Dy-
235
+ namic Programming (DDP) framework [20], which iteratively
236
+ solves sub-optimization problems in the backward pass and
237
+ generates a new trajectory in the forward pass based on the
238
+ found optimal policy, in order to approach a local optimum.
239
+
240
+ In this work, we propose augmenting the cost function with
241
+ multiplier and penalty terms from the augmented Lagrangian
242
+ in order to account for constraints imposed on the system,
243
+ whose states lie in the tangent bundle of a matrix Lie group.
244
+ Our approach involves lifting the problem to the Lie algebra
245
+ in the backward pass by computing the gradient of the cost
246
+ function within the corresponding Lie algebra, and retracting
247
+ back to the manifold in the forward pass by integrating the
248
+ dynamics using the optimal policy obtained in the backward
249
+ pass.
250
+ A. Dynamics on Tangent Space
251
+ The central concept of DDP is that, at each iteration, all
252
+ nonlinear constraints and objectives are approximated using
253
+ first or second order Taylor series expansions. This allows the
254
+ approximate functions, which now operate on deviations from
255
+ the nominal trajectory, to be solved using discrete Linear-
256
+ Quadratic Regulator (LQR) techniques. In order to define
257
+ the cost and constraint functions in Lie algebra, we need
258
+ to determine the error dynamics for the configuration. To
259
+ obtain the perturbed state dynamics, we followed the approach
260
+ proposed by Teng et al. [17]. For completeness, we outline the
261
+ necessary steps here. Interested readers may refer to [17], [18]
262
+ for more information.
263
+ Consider a perturbed state {Xp, ξ∧
264
+ p } that is in the vicinity
265
+ of a nominal state {X, ξ∧}. Then, the configuration error can
266
+ be defined as
267
+ Ψ = X −1Xp ∈ G
268
+ (9)
269
+ Differentiating both sides of (9) yields the configuration error
270
+ dynamics as
271
+ ˙Ψ = X −1 d
272
+ dt
273
+
274
+ Xp
275
+
276
+ + d
277
+ dt
278
+
279
+ X −1�
280
+ Xp
281
+ = X −1 ˙Xp − X −1 ˙XX −1Xp
282
+ = X −1Xpξ∧
283
+ p − X −1Xξ∧X −1Xp
284
+ = Ψξ∧
285
+ p − ξ∧Ψ
286
+ (10)
287
+ Here, we can define a vector ψ in Rn such that the matrix ex-
288
+ ponential of ψ∧ corresponds to Ψ, denoted as Ψ = expm(ψ∧).
289
+ Using the first-order approximation of the matrix exponential,
290
+ which states that expm(ψ∧) ≈ In + ψ∧, the dynamics of the
291
+ configuration error in (10) can be linearized as follows:
292
+ ˙Ψ = Ψξ∧
293
+ p − ξ∧Ψ
294
+ = (In + ψ∧)ξ∧
295
+ p − ξ∧(In + ψ∧)
296
+ = ξ∧
297
+ p + ψ∧ξ∧
298
+ p − ξ∧ − ξ∧ψ∧
299
+ = ξ∧
300
+ p − ξ∧ + ψ∧ξ∧
301
+ p − ξ∧ψ∧
302
+ = ξ∧
303
+ p − ξ∧ + ψ∧(ξ∧ − ξ∧ + ξ∧
304
+ p ) − ξ∧ψ∧
305
+ = ξ∧
306
+ p − ξ∧ + ψ∧ξ∧ − ξ∧ψ∧ + ψ∧(ξ∧
307
+ p − ξ∧)
308
+ = ξ∧
309
+ p − ξ∧ + ψ∧ξ∧ − ξ∧ψ∧
310
+ = ξ∧
311
+ p − ξ∧ + adψ ξ
312
+ ˙ψ = ξ∧
313
+ p − ξ∧ − adξ ψ
314
+ (11)
315
+ Note that the second order term of ψ∧(ξ∧
316
+ p − ξ∧) is also
317
+ discarded to obtain the linear dynamics of the configuration
318
+ error. ψ in (11) is the perturbed configuration represented in
319
+ Lie algebra. The perturbed velocity and control input are also
320
+ defined as
321
+ δξ = ξp − ξ,
322
+ and
323
+ δu = up − u
324
+ (12)
325
+ The perturbed velocity dynamics then become:
326
+ δ ˙ξt = Γtδξt + Λtδut
327
+ (13)
328
+ where Γt and Λt are the Jacobians of f(ξt, ut) defined in (7)
329
+ around the nominal trajectory about ξt and ut.
330
+ Defining the perturbed states as concatenation
331
+ x =
332
+ �ψ
333
+ δξ
334
+
335
+ ,
336
+ ¯u = δu
337
+ (14)
338
+ the perturbed state dynamics are expressed as
339
+ ˙x = h(x, u)
340
+ ˙x =
341
+ �− adξ
342
+ In
343
+ 0n×n
344
+ Γt
345
+
346
+
347
+ ��
348
+
349
+ ≜At
350
+ x +
351
+ �0n×m
352
+ Λt
353
+
354
+
355
+ ��
356
+
357
+ ≜Bt
358
+ ¯u
359
+ (15)
360
+ The discretized versions of the matrices At and Bt can be
361
+ simply obtained by applying a zero-order hold or a first-order
362
+ Euler integration method with a fixed time step of ∆t.
363
+ B. Constraint Handling
364
+ By decomposing the state into configuration and velocity,
365
+ we can also decompose the constraints in vector g(Xk, ξk, uk)
366
+ in equation (8) into two types: those that constrain the velocity
367
+ and those that specify configurations to be avoided. This allows
368
+ us to separately handle the constraints on velocity (cξ) and on
369
+ configuration (cX ) as
370
+ cξ(ξk, uk) ≤ 0
371
+ cX (Xk, ξk) ≤ 0
372
+ (16)
373
+ The velocity component of the state (ξ) resides in Rn, and
374
+ as a result, constraints involving any metric in Euler space
375
+ produce a distance vector in Rn. Therefore, any boundary
376
+ velocity constraint can be written as
377
+ δξb = ξb − ξ,
378
+ ¯cξ(βδξb) ≤ 0
379
+ (17)
380
+ where
381
+ β =
382
+
383
+ −1
384
+ if ξb is upper bound,
385
+ +1
386
+ if ξb is lower bound
387
+ (18)
388
+ On the other hand, the difference between two group
389
+ elements in the configuration state produces a geodesic in
390
+ the group. To handle this, we propose mapping the distance
391
+ geodesic to the tangent space of the configuration at the current
392
+ time step and addressing the constraint in that vector space.
393
+ Configuration avoidance constraints can typically be formu-
394
+ lated as inequality constraints using an n-spherical function,
395
+ with the center of the n-sphere located at the configuration
396
+ to be avoided (Xc) and the radius (rc) defining the restricted
397
+ region. This allows us to specify a region of configurations
398
+ that should be avoided. The distance between the nominal and
399
+ restricted configurations in the tangent space of the nominal
400
+ trajectory, ψc, is given by:
401
+ ψc = logm(X −1Xc)
402
+ (19)
403
+
404
+ Then, the configuration avoidance constraint can be written as
405
+ ¯cX (ψc) = (r2
406
+ c − ∥ψc∥2) ≤ 0
407
+ (20)
408
+ In this approach, we consider the same restricted region
409
+ for each axis in the n-dimensional sphere. However, it is
410
+ also possible to specify different radius values for each axis,
411
+ resulting in an n-dimensional ellipsoid as the restricted region.
412
+ Our method can accommodate these types of configuration
413
+ constraints as well.
414
+ In order to handle the constraints in DDP framework,
415
+ we need the first-order approximations of them around the
416
+ perturbed state dynamics introduced in (15) as follows:
417
+ ¯c(x + δx, u + δu) ≈ ¯c(x, u)
418
+ + ¯cx(x, u)δx + ¯cu(x, u)δu
419
+ (21)
420
+ where
421
+ ¯c(x) =
422
+ �¯cX (ψc)
423
+ ¯cξ(δξb)
424
+
425
+ (22)
426
+ ¯cx and ¯cu are the derivative of ¯c with respect to x and
427
+ u, respectively. If the constraints are designed according to
428
+ equations (18) and (20), the derivatives can be calculated as
429
+ follows:
430
+ ¯cx(x, u) =
431
+ �−2(adξ ψc)⊤
432
+ 2ψc⊤
433
+ 01×n
434
+ β(Γδξb)⊤
435
+
436
+ ¯cu(x, u) =
437
+
438
+ 01×m
439
+ β(Λ⊤δξb)⊤
440
+
441
+ (23)
442
+ C. Constrained Differential Dynamic Programming
443
+ Using the perturbed state dynamics defined in (15), the
444
+ backward pass of differential dynamic programming (DDP) is
445
+ lifted to the tangent space. The backward pass of DDP involves
446
+ computing the cost-to-go function at each time step in a given
447
+ trajectory. Unlike [18], our algorithm not only considers the
448
+ objective function when calculating the cost-to-go function,
449
+ but also takes into account any constraints on the state and
450
+ control variables.
451
+ An effective method for solving constrained optimization
452
+ problems is to transform the constraints into the objective
453
+ function and iteratively increase the penalty for violating or
454
+ approaching them. This technique, known as penalty method,
455
+ guarantees convergence to the optimal solution as the penalty
456
+ terms increase indefinitely. However, this may not be prac-
457
+ tical to implement in numerical optimization routines due
458
+ to the limitations of finite precision arithmetic. Augmented
459
+ Lagrangian methods [19] offer an alternative solution by
460
+ maintaining estimates of the Lagrange multipliers associated
461
+ with the constraints, allowing for convergence to the optimal
462
+ solution without requiring the penalty terms to increase indef-
463
+ initely.
464
+ Here we obtain the augmented Lagrangian as
465
+ LA = LN(xN) +
466
+ N−1
467
+
468
+ k=0
469
+ Lk(xk, uk)
470
+ LN(xN) = ¯ℓf(xN) + (λ + 1
471
+ 2 ¯g(xN)Iµ)⊤¯g(xN)
472
+ Lk(xk, uk) = ¯ℓ(xk, uk) + (λ + 1
473
+ 2 ¯g(xk, uk)Iµ)⊤¯g(xk, uk)
474
+ (24)
475
+ where ¯ℓf : R2n �→ R and ¯ℓ : R2n ×Rm �→ R are the final cost
476
+ and the running cost functions for perturbed system dynamics,
477
+ respectively. A typical design of such functions are
478
+ ¯ℓf(x) = 1
479
+ 2∥δx∥SV
480
+ ¯ℓ(x, u) = 1
481
+ 2∥δx∥SQ + 1
482
+ 2∥δu∥SU
483
+ (25)
484
+ where SV ∈ R2n×2n, SQ ∈ R2n×2n and SU ∈ Rm×m are
485
+ the cost matrices that are specified by the user and remain
486
+ constant throughout all iterations.
487
+ In (24), ¯g is a vector of p constraints for perturbed state
488
+ dynamics as introduced in (21). λ ∈ Rp is a Lagrange
489
+ multiplier, µ ∈ Rp is a penalty weight and Iµ ∈ Rp×p is
490
+ the penalty matrix defined as
491
+ Iµ =
492
+
493
+ 0
494
+ if gi(.) < 0 and λi = 0,
495
+ µi
496
+ otherwise
497
+ (26)
498
+ In general, one can define time varying Lagrange multiplier
499
+ and penalty weight, but we kept them constant for each time
500
+ step during the same iteration for simplicity.
501
+ We define the cost-to-go and action-value functions as
502
+ Vk(xk) = min
503
+ uk {Lk(xk, uk)} + Vk+1(Akxk + Bkuk)
504
+ = min
505
+ uk Q(xk, uk))
506
+ (27)
507
+ The matrices Ak and Bk represent the discretized versions
508
+ of At and Bt in equation (15). Second order Taylor series
509
+ expansion of cost-to-go function can be written as
510
+ δVk(x) ≈ 1
511
+ 2δx⊤
512
+ k Vxx,kδxk + V ⊤
513
+ x,kδxk
514
+ (28)
515
+ where Vxx,k and Vx,k are the Hessian and gradient of the
516
+ cost-to-go at time step k, respectively. Action-value function
517
+ defined in (27) can be also approximated as a quadratic
518
+ function as
519
+ Q(x + δx, u + δu) ≈ Q(x, u) + Q⊤
520
+ x δx + Q⊤
521
+ uδu
522
+ + 1
523
+ 2(δx⊤Qxxδx + δx⊤Qxxδx)
524
+ + δx⊤Qxuδu
525
+ (29)
526
+ To compute the derivative matrices in (29):
527
+ Qx = ¯ℓx + A⊤V ′
528
+ x + ¯g⊤
529
+ x (λ + Iµ¯g)
530
+ Qu = ¯ℓu + B⊤V ′
531
+ x + ¯g⊤
532
+ u (λ + Iµ¯g)
533
+ Qxx = ¯ℓxx + A⊤V ′
534
+ xxA + ¯g⊤
535
+ x Iµ¯gx + (V ′
536
+ xhxx)
537
+ Quu = ¯ℓuu + B⊤V ′
538
+ xxB + ¯g⊤
539
+ u Iµ¯gu + (V ′
540
+ xhuu)
541
+ Qux = ¯ℓux + B⊤V ′
542
+ xxA + ¯g⊤
543
+ u Iµ¯gx + (V ′
544
+ xhux)
545
+ (30)
546
+ To simplify the notation, we have omitted the time indices
547
+ on all variables. All variables in this expression are evaluated
548
+ at time step k, except for those marked with ′, which are
549
+ evaluated at time step k + 1.
550
+ Calculating the full second-order expansion of the state
551
+ dynamics (hxx, huu, hux), can be computationally expensive,
552
+ particularly for systems with complex dynamics and high-
553
+ dimensional states. DDP refers to iterative LQR by discarding
554
+ the second-order dynamics and computing only the first-order
555
+
556
+ expansion. This results in a Gauss-Newton approximation of
557
+ the true Hessian, which reduces the local fidelity and requires
558
+ more iterations. However, these iterations are less expensive
559
+ to compute and often lead to a faster overall convergence
560
+ rate. Therefore, in this work, we eliminated the second order
561
+ dynamics as approximating the perturbed state dynamics as
562
+ described in (11).
563
+ Minimizing (29) with respect to δu results in an affine
564
+ controller
565
+ δu∗ = −Q−1
566
+ uu(Quxδx + Qu) ≜ Kδx + d
567
+ (31)
568
+ Substituting δu∗ into (29) yields the derivatives of the cost-
569
+ to-go at time step k in terms of the derivatives of the action
570
+ value function as:
571
+ Vx = Qx + KQu + K⊤Quud + Q⊤
572
+ uxd,
573
+ Vxx = Qxx + K⊤QuuK + K⊤Qux + Q⊤
574
+ uxK
575
+ (32)
576
+ At the final step, Vx and Vxx can be easily computed as the
577
+ first and second derivatives of the final cost function (¯ℓf). This
578
+ way, the derivatives of the action-value function (30) and in
579
+ turn the local optimal control policy (31) at each step can be
580
+ calculated backwards starting from the final step.
581
+ After determining the optimal control policy for each time
582
+ step, we update the nominal trajectories by simulating the
583
+ dynamics forward on the manifold itself starting from the
584
+ initial state as:
585
+ δxk =
586
+ �logm(Xk−1 ¯
587
+ Xk)
588
+ ¯ξk − ξk
589
+
590
+ δuk = Kkδxk + αdk
591
+ ¯uk = uk + δuk
592
+ ¯ξk = ξ + f(ξ, ¯uk)∆t
593
+ ¯
594
+ Xk = X expm(¯ξk∆t)
595
+ (33)
596
+ where {Xk, ξk, uk} and { ¯
597
+ Xk, ¯ξk, ¯uk} represent the nominal
598
+ state-actions and the updated state-actions at time step k,
599
+ respectively. In the above expression, 0 ≤ α ≤ 1 is a
600
+ scaling term for simple linear search on the feedforward term.
601
+ Practically, the parameter α is initially set to 1, but if the
602
+ cost of the updated trajectory does not decrease, it will be
603
+ decreased. Once the cost of the updated trajectory is decreased,
604
+ the forward pass is succesfully completed, the new trajectory
605
+ is accepted as nominal trajectory and the backward pass is
606
+ triggered.
607
+ To optimize the performance of DDP-based algorithms,
608
+ there are a few implementation practices to consider. In the
609
+ backward pass, Quu may need to be regularized as Quu +ρI
610
+ if it is invertible or the former forward pass is unsuccesful, i.e.,
611
+ the cost is not decreased. After the DDP iterations converge,
612
+ the parameters λ and µ can be updated as:
613
+ λ+ = max(0, λi + µi¯gi(x∗, u∗))
614
+ µ+ = γµ,
615
+ γ > 0
616
+ (34)
617
+ The DDP iterations can then be restarted until convergence is
618
+ achieved. For more information, see reference [19].
619
+ V. EXPERIMENTS
620
+ The goal of this section is to devise a trajectory on SE(3)
621
+ that satisfies both position and orientation constraints while
622
+ avoiding unsafe configurations and obstacles.
623
+ A. Dynamics on SE(3)
624
+ We consider a 3D rigid body in SE(3) where the states of
625
+ the system can be represented by a rotation matrix
626
+ R ∈ SO(3) = {R ∈ R3×3|R⊤R = I3, det(R) = 1}
627
+ (35)
628
+ and position p ∈ R3. The homogeneous representation of a
629
+ typical group element in SE(3) is
630
+ X =
631
+ �R
632
+ p
633
+ 0
634
+ 1
635
+
636
+ ∈ SE(3)
637
+ (36)
638
+ The velocity vector ξ in SE(3) is known as a “twist” and is
639
+ composed of both angular (ω) and linear (v) velocities in body
640
+ frame as
641
+ ξ =
642
+
643
+ ω
644
+ v
645
+
646
+ ∈ R6,
647
+ ξ∧ =
648
+
649
+ ω∧
650
+ v
651
+ 0
652
+ 0
653
+
654
+ ∈ se(3)
655
+ (37)
656
+ The forced Euler-Poincar´e equations [16] define the twist
657
+ dynamics as
658
+ Jb ˙ξ = ad∗
659
+ ξ Jbξ + u
660
+ (38)
661
+ In this expression, Jb represents the generalized inertia matrix
662
+ in the body fixed principal axes, while u ∈ g∗ represents
663
+ the generalized control input forces applied to these axes.
664
+ g∗ denotes the cotangent space and the coadjoint map is
665
+ represented by ad∗
666
+ ξ. The matrix representations of the adjoint
667
+ action in the Lie algebra (adξ) and the coadjoint map (ad∗
668
+ ξ)
669
+ are as follows:
670
+ adξ =
671
+ �ω∧
672
+ 0
673
+ v∧
674
+ ω∧
675
+
676
+ ,
677
+ ad∗
678
+ ξ = ad⊤
679
+ ξ = −
680
+ �ω∧
681
+ v∧
682
+ 0
683
+ ω∧
684
+
685
+ .
686
+ (39)
687
+ The continuous equations of motion described in (7) can be
688
+ written for SE(3) group as
689
+ ˙X = Xξ∧,
690
+ ˙ξ = Jb
691
+ −1�
692
+ ad∗
693
+ ξ Jbξ + u
694
+
695
+ (40)
696
+ The linearized twist dynamics as given in [17]:
697
+ ˙ξ = Γtξ + Λtu + bt
698
+ (41)
699
+ where Γt, Λt and bt are:
700
+ Γt := J−1
701
+ b
702
+ ad∗
703
+ ξ Jb + J−1
704
+ b
705
+ �(Ibω)∧
706
+ mv∧
707
+ mv∧
708
+ 0
709
+
710
+ Λt := Jb
711
+ −1
712
+ bt := −Jb
713
+ −1
714
+ �(Ibω)∧
715
+ mv∧
716
+ mv∧
717
+ 0
718
+
719
+ ξ
720
+ (42)
721
+ assuming the inertia matrix Jb is defined as
722
+ Jb :=
723
+ �Ib
724
+ 0
725
+ 0
726
+ mI3
727
+
728
+ (43)
729
+ where Ib and m are the moment of inertia in the body frame
730
+ and the body mass, respectively.
731
+
732
+ Fig. 1. Constrained (red) and unconstrained (blue) trajectories generated by proposed DDP method.
733
+ Fig. 2.
734
+ Control input signals of the planned trajectories. Torques refers
735
+ to inputs acting on angular velocity and Forces refers to inputs acting on
736
+ linear velocity. Left column: unconstrained, Right column: constrained
737
+ B. Simulations
738
+ We now test the proposed algorithm for planning a safe path
739
+ for a SE(3) rigid body. The task we have defined involves
740
+ rotating the body to the configuration Rz(180) from the
741
+ identity and translating it to the position {2, 2, 2} from the
742
+ initial position {1, 1, 1} in 3 seconds with a fixed time step
743
+ of ∆t = 0.01. To denote the rotation around the x, y, and z
744
+ axes of the body-fixed frame, we use Rx(.), Ry(.), and Rz(.),
745
+ respectively. During the motion, the configuration Rz(90) is
746
+ considered to be unsafe and must be avoided. Additionally, it is
747
+ assumed that there is a spherical obstacle at {1.25, 1.25, 1.25}
748
+ with a radius of r = 0.5 that must be avoided as well.
749
+ We only penalized the final state and control inputs, so we
750
+ set the controller parameters as SV = 1000I12, SU = 0.001I6,
751
+ and SQ = 0. In order to assess the performance of the
752
+ proposed DDP in terms of constraint handling, we conducted
753
+ an experiment with the same trajectory optimization task in
754
+ both constrained and unconstrained cases, and the resulting
755
+ trajectories are depicted in Fig. 1.
756
+ The
757
+ configuration
758
+ trajectories
759
+ were
760
+ converted
761
+ to
762
+ Eu-
763
+ ler angles (φ, θ, ψ in degrees) using the rotation order
764
+ Rx(.)Ry(.)Rz(.). In the unconstrained case (shown in blue), it
765
+ is shown that the ψ angle goes directly from 0 to 180 degrees
766
+ while the φ and θ angles remain constant (Fig. 1), as the
767
+ task only involves rotating around the z-axis. This can also be
768
+ observed in the upper left part of Fig. 2, where only a single
769
+ input is non-zero to achieve the desired motion, while the
770
+ others remain zero. However, in the constrained case (shown
771
+ in red), rotations around x and y axes (changes in φ and θ
772
+ angles) were also observed to avoid the unsafe configuration
773
+ of Rx(90) (Fig. 1).
774
+ As shown in the last row of Fig. 1, the shortest paths for
775
+ the positional states were obtained in the unconstrained case.
776
+ However, the presence of a sphere at {1.25, 1.25, 1.25} with
777
+ a radius of r = 0.5 forced the positional trajectories to take
778
+ a circuitous route around obstacle by deviating along y and x
779
+ axes.
780
+ To evaluate the effectiveness of the proposed DDP method
781
+ in handling external disturbances, we extend the analysis done
782
+ in [13] to SE(3) and employ the proposed DDP method as a
783
+ Lie-algebraic feedback control:
784
+ ufb
785
+ k := u∗
786
+ k + Kk logm((X ∗
787
+ k )−1X ϵ
788
+ k)
789
+ (44)
790
+ where u∗
791
+ k and Kk represent the (sub)optimal control sequence
792
+ and time-varying feedback gains, respectively, which are ob-
793
+ tained through DDP. The feed-forward term dk in (31) is
794
+ not explicitly shown in the feedback policy (44) because it
795
+ is already included in u∗
796
+ k. The variables X ∗
797
+ k and X ϵ
798
+ k represent
799
+ the (sub)optimal states obtained through DDP convergence and
800
+ the perturbed states due to disturbance, respectively.
801
+ We test the policy (44) on the following stochastic version
802
+ of the SE(3) dynamics:
803
+ X ϵ
804
+ k+1 = X ϵ
805
+ k expmSE(3)(ξϵ
806
+ k∆t)
807
+ ξϵ
808
+ k+1 = ξϵ
809
+ k + f(ξϵ
810
+ k, uk)∆t + σωω
811
+ (45)
812
+ where ω is assumed to be spatially uncorrelated independent
813
+ and identically distributed noise, drawn from a zero mean
814
+ Gaussian distribution, ω ∼ N(06×1, I6), σω = 0.001. The
815
+ performance of the proposed DDP method under stochas-
816
+ tic conditions was evaluated by allowing the optimizer to
817
+ converge on the deterministic system and then testing its
818
+ performance on the stochastic system. Fig. 3 shows the results
819
+ of this comparison, using 1000 sampled trajectories under
820
+ noisy dynamics to compare the open-loop policy u∗
821
+ k with the
822
+ feedback policy ufb
823
+ k
824
+ (44). The results demonstrate that the
825
+ use of the obtained feedback gains significantly reduces state
826
+ variance, particularly in the vicinity of the the goal points, as
827
+ expected.
828
+
829
+ 50
830
+ 0
831
+ [6ap]
832
+ [deg]
833
+ [deg]
834
+ 100
835
+ 0
836
+ -50
837
+ 0
838
+ -50
839
+ 0
840
+ 2.0
841
+ 2.0
842
+ 2.0
843
+ 1.5
844
+ × 1.5
845
+ y
846
+ N 1.5
847
+ 1.0
848
+ 1.0
849
+ 1.0
850
+ 0
851
+ 1
852
+ 2
853
+ 3
854
+ 0
855
+ 1
856
+ 2
857
+ 3
858
+ 0
859
+ 1
860
+ 2
861
+ 3
862
+ Time [sec]
863
+ Time [sec]
864
+ Time [sec]20
865
+ Torques
866
+ 25
867
+ 0
868
+ 0
869
+ -25
870
+ -20
871
+ 0.5
872
+ Forces
873
+ 0
874
+ 0.0
875
+ -10
876
+ -0.5
877
+ 0
878
+ 2
879
+ 0
880
+ 2
881
+ Time [sec]
882
+ Time [sec]Fig. 3. Evaluation of DDP’s control sequence under random disturbances. Left Column: Open-loop control, Right column: Closed-loop control
883
+ VI. CONCLUSION
884
+ In conclusion, the optimization of control policies on matrix
885
+ Lie groups is an important problem in robotics and control
886
+ with numerous applications. In this work, we have proposed a
887
+ novel approach for tackling this problem using an augmented
888
+ Lagrangian based constrained discrete DDP algorithm. Our
889
+ method involves lifting the optimization problem to the Lie
890
+ algebra in the backward pass, allowing us to compute the
891
+ gradient of the objective and constraint functions within the
892
+ corresponding tangent space. In the forward pass, we retract
893
+ back to the manifold by integrating the dynamics using the
894
+ optimal policy obtained in the backward pass.
895
+ One of the key contributions of our work is the development
896
+ of a general approach for nonlinear constraint handling for
897
+ a wide range of matrix Lie groups. Previous methods were
898
+ only able to handle constraints for specific classes of matrix
899
+ Lie groups, such as SO(3) pose constraints. Our method, on
900
+ the other hand, is able to handle a wide range of nonlinear
901
+ constraints, making it a more widely applicable and flexible
902
+ solution.
903
+ In addition, we have demonstrated the effectiveness of our
904
+ method in handling external disturbances through its applica-
905
+ tion as a Lie-algebraic feedback control policy on SE(3). The
906
+ results show that our approach is able to effectively handle
907
+ constraints and maintain its stability in the presence of external
908
+ disturbances.
909
+ Overall, our proposed DDP algorithm represents a signif-
910
+ icant step forward in the field of optimization on matrix
911
+ Lie groups. It provides a flexible and general approach for
912
+ nonlinear constraint handling and has the potential to be
913
+ applied to a wide range of problems in robotics and control.
914
+ As a future direction, it would be interesting to investigate
915
+ the closed loop uncertainty propagation through the prediction
916
+ horizon, as has been done for Euclidean models [11], in order
917
+ to design a robust Model Predictive Control (MPC) framework
918
+ for matrix Lie groups. This would allow the proposed method
919
+ to be used in more challenging and dynamic environments.
920
+ Additionally, further experimentation with different types of
921
+ matrix groups and constraints would provide valuable insights
922
+ into the capabilities and limitations of the proposed DDP
923
+ algorithm.
924
+ REFERENCES
925
+ [1] E. G. Hemingway and O. M. O‘Reilly, “Perspectives on Euler angle
926
+ singularities, gimbal lock, and the orthogonality of applied forces and
927
+ applied moments,” Multibody Syst. Dyn., 44, 31–56, 2018.
928
+ [2] M. D. Shuster, “A survey of attitude representations.” Navigation, 8(9),
929
+ 439-517, 1993
930
+ [3] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and
931
+ rotation vectors.” Matrix, 58(15-16), 1-35, 2006.
932
+ [4] A. M. Bloch, Nonholonomic Mechanics and Control, P. S. Krishnaprasad
933
+ and R. M. Murray, Eds. Springer, New York, NY, 2015.
934
+ [5] K. M. Lynch and F. C. Park, Modern robotics. Cambridge University
935
+ Press, 2017
936
+ [6] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems:
937
+ Modeling, Analysis, and Design for Simple Mechanical Control Systems,
938
+ 49, Springer, 2019.
939
+ [7] M. Kobilarov, M. Desbrun, J. E. Marsden, and G. S. Sukhatme, “A dis-
940
+ crete geometric optimal control framework for systems with symmetries,”
941
+ in Proc. Robot., Sci. Syst.,1–8, 2008.
942
+ [8] A. Saccon, J. Hauser, and A. P. Aguiar, “Optimal control on Lie groups:
943
+ The projection operator approach,” IEEE Trans. Autom. Control, 58, 9,
944
+ 2230-–2245, 2013.
945
+ [9] M. Kobilarov, “Discrete optimal control on lie groups and applications to
946
+ robotic vehicles,” in Proc. IEEE Int. Conf. Robot. Autom., 5523–5529,
947
+ 2014.
948
+ [10] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
949
+ New York, NY, USA: Elsevier, 1970.
950
+ [11] G. Alcan and V. Kyrki, “Differential Dynamic Programming With
951
+ Nonlinear Safety Constraints Under System Uncertainties,” in IEEE
952
+ Robotics and Automation Letters, vol. 7, no. 2, pp. 1760-1767, 2022
953
+
954
+ 150
955
+ 150
956
+ Φ,e, [deg]
957
+ 100
958
+ ,e,w [deg]
959
+ 100
960
+ 50
961
+ 50
962
+ 0
963
+ 0
964
+ -50
965
+ -50
966
+ 0.0
967
+ 0.5
968
+ 1.0
969
+ 1.5
970
+ 2.0
971
+ 2.5
972
+ 3.0
973
+ 0.0
974
+ 0.5
975
+ 1.0
976
+ 1.5
977
+ 2.0
978
+ 2.5
979
+ 3.0
980
+ Time [sec]
981
+ Time [sec]
982
+ 1.0
983
+ 1.0
984
+ 0.8
985
+ 0.8
986
+ 0.6
987
+ 0.6
988
+ X,y,z
989
+ z'Kx
990
+ 0.4
991
+ 0.4
992
+ 0.2
993
+ 0.2
994
+ 0.0
995
+ 0.0
996
+ 0.2
997
+ 0.2
998
+ 0.0
999
+ 0.5
1000
+ 1.0
1001
+ 1.5
1002
+ 2.0
1003
+ 2.5
1004
+ 3.0
1005
+ 0.0
1006
+ 0.5
1007
+ 1.0
1008
+ 1.5
1009
+ 2.0
1010
+ 2.5
1011
+ 3.0
1012
+ Time [sec]
1013
+ Time [sec][12] M. Kobilarov, D.N. Ta, and F. Dellaert, “Differential dynamic program-
1014
+ ming for optimal estimation,” in Proc. IEEE Int. Conf. Robot. Autom.,
1015
+ 863-–869,2015
1016
+ [13] G.I. Boutselis, E. Theodorou, “Discrete-time differential dynamic pro-
1017
+ gramming on lie groups: Derivation, convergence analysis, and numerical
1018
+ results.” IEEE Transactions on Automatic Control, 66(10), 4636–4651,
1019
+ 2020.
1020
+ [14] S. Liu, and D. Liu, “Discrete-Time Differential Dynamic Programming
1021
+ on SO(3) With Pose Constraints.” IEEE Access, 10, 112921-112933, 2022
1022
+ [15] T. Lee, “Computational geometric mechanics and control of rigid
1023
+ bodies,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, MI, USA, 2008.
1024
+ [16] A. Bloch, P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu, “The
1025
+ Euler-Poincar´e equations and double bracket dissipation,” Communica-
1026
+ tions in Mathematical Physics, 175(1), 1–42, 1996.
1027
+ [17] S. Teng, D. Chen, W. Clark and M. Ghaffari, “An Error-State Model
1028
+ Predictive Control on Connected Matrix Lie Groups for Legged Robot
1029
+ Control,” IEEE/RSJ International Conference on Intelligent Robots and
1030
+ Systems, 8850-8857, 2022.
1031
+ [18] S. Teng, W. Clark, A. Bloch, R. Vasudevan and M. Ghaffari,
1032
+ “Lie Algebraic Cost Function Design for Control on Lie Groups.”
1033
+ arXiv:2204.09177, 2022
1034
+ [19] T. A. Howell, B. E. Jackson and Z. Manchester, “ALTRO: A Fast
1035
+ Solver for Constrained Trajectory Optimization,” IEEE/RSJ International
1036
+ Conference on Intelligent Robots and Systems, pp. 7674-7679,2019.
1037
+
UNA0T4oBgHgl3EQfEf9Z/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf,len=397
2
+ page_content='Trajectory Optimization on Matrix Lie Groups with Differential Dynamic Programming and Nonlinear Constraints Gokhan Alcana, Fares J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
3
+ page_content=' Abu-Dakkab and Ville Kyrkia Abstract— Matrix Lie groups are an important class of manifolds commonly used in control and robotics, and the optimization of control policies on these manifolds is a fundamental problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
4
+ page_content=' In this work, we propose a novel approach for trajectory optimization on matrix Lie groups using an augmented Lagrangian based constrained dis- crete Differential Dynamic Programming (DDP) algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
5
+ page_content=' Our method involves lifting the optimization problem to the Lie algebra in the backward pass and retracting back to the manifold in the forward pass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
6
+ page_content=' In contrast to previous approaches which only addressed constraint handling for specific classes of matrix Lie groups, our method provides a general approach for nonlinear constraint handling for a generic matrix Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
7
+ page_content=' We also demonstrate the effec- tiveness of our method in handling external disturbances through its application as a Lie-algebraic feedback control policy on SE(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
8
+ page_content=' The results show that our approach is able to effectively handle configuration, velocity and input con- straints and maintain stability in the presence of external disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
9
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
10
+ page_content=' INTRODUCTION AND RELATED WORK T HE configuration space of a physical system represents the set of all possible configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
11
+ page_content=' Modeling this space using local coordinates may lead to several potential problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
12
+ page_content=' One issue is that these coordinate systems may suffer from singularities or degeneracies, where the coordinates become ill-defined or degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
13
+ page_content=' For example, Euler angles can experience gimbal lock, where two of the angles become degenerate, leading to a loss of degree of freedom and making it difficult to represent certain configurations of the system [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
14
+ page_content=' Similarly, quaternions can experience a similar loss of degree of freedom when their magnitude becomes close to zero and multiple different representations can describe the same configuration [3], although it has global representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
15
+ page_content=' These types of singularities can make it difficult to accurately represent the transition between certain configurations of the system, and may require the use of additional techniques to avoid or mitigate these issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
16
+ page_content=' This work was supported by the Academy of Finland B-REAL Project under Grant 328399.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
17
+ page_content=' Corresponding author: Gokhan Alcan (gokhan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
18
+ page_content='alcan@aalto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
19
+ page_content='fi) a The authors are with the Intelligent Robotics Group, Department of Electrical Engineering and Automation (EEA), Aalto University, 02150 Espoo, Finland b Munich Institute of Robotics and Machine Intelligence, Technische Universit¨at M¨unchen, 80992 M¨unchen, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
20
+ page_content=' Part of the research presented in this work has been conducted when Abu-Dakka, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
21
+ page_content=' was at Intelligent Robotics Group, EEA, Aalto University, 02150 Espoo, Finland On the other hand, a natural way to model the geometry of the configuration space is through the use of matrix Lie groups, which offer a continuous and structured framework for understanding the structure and motion of the underlying system [4], [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
22
+ page_content=' However, it brings the difficulties to deal with non-flatness of manifolds in a coordinate-free manner [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
23
+ page_content=' The use of geometric control techniques, which seamlessly combine differential geometry and control theory, has become increasingly prevalent in the field of robotics and control systems [7]–[9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
24
+ page_content=' Optimality conditions for geometric control techniques are often simplified and numerical ill-conditioning is avoided through the use of specific details about the control problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
25
+ page_content=' Differential dynamic programming (DDP) is a numerical method for solving optimal control problems that has gained widespread use in various engineering fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
26
+ page_content=' Originally pro- posed by Mayne and Jacobson [10], DDP has been applied to a wide range of complex, high-dimensional systems [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
27
+ page_content=' One of the key advantages of DDP is its scalability, which allows it to handle large and complex systems with many degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
28
+ page_content=' In addition, DDP has a fast convergence rate, which allows it to quickly find near-optimal solutions to the control problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
29
+ page_content=' Another important attribute of DDP is its ability to generate feedback control policies, which can be used to implement the optimal control solution in real-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
30
+ page_content=' Several early works have investigated the use of DDP for geometric control [9], [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
31
+ page_content=' These studies focused on specific matrix Lie groups, including SE(3), in order to derive the final form of the DDP algorithm for applications in geo- metric control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
32
+ page_content=' Boutselis and Theodorou [13] extended the original DDP method by using quadratic expansion schemes for cost functions and dynamics defined on Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
33
+ page_content=' They demonstrated that DDP has significantly better convergence rates compared to sequential quadratic programming (SQP) methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
34
+ page_content=' Teng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
35
+ page_content=' [18] further improved the convergence performance of DDP for matrix groups by designing the control objective in its Lie algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
36
+ page_content=' Both of these approaches [13], [18] formulate the trajectory optimization on matrix Lie groups in an unconstrained framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
37
+ page_content=' In order to address this limitation, Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
38
+ page_content=' [14] extended the work [13] by imposing SO(3) pose constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
39
+ page_content=' However, this method is not generalizable to nonlinear constraints for generic matrix Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
40
+ page_content=' Table I provides a comparison of those methods in terms of their cost definitions and constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
41
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
42
+ page_content='02018v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
43
+ page_content='SY] 5 Jan 2023 TABLE I COMPARISON OF DDP METHODS FOR MATRIX LIE GROUPS Cost SO(3) Any Group Described in Constraints Constraints Boutselis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
44
+ page_content=' [13] manifold \x17 \x17 Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
45
+ page_content=' [14] manifold \x13 \x17 Teng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
46
+ page_content=' [18] tangent space \x17 \x17 Our method tangent space \x13 \x13 The present paper aims to solve the problem of generic constraints by extending the idea of Lie algebric cost definition [18] and developing a DDP method for matrix Lie groups under nonlinear constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
47
+ page_content=' The main contributions of our work are: 1) Development of an augmented Lagrangian based con- strained DDP algorithm for trajectory optimization on matrix Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
48
+ page_content=' 2) A principled approach for nonlinear constraint handling for generic matrix Lie groups unlike [14], which only ad- dressed constraint handling for SO(3) pose constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
49
+ page_content=' 3) Evaluating the effectiveness of the proposed DDP method in handling external disturbances through its application in a numerical simulation as a Lie-algebraic feedback control policy on SE(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
50
+ page_content=' The rest of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
51
+ page_content=' In Section II, we provide preliminaries regarding matrix Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
52
+ page_content=' Section III defines the trajectory optimization problem for matrix Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
53
+ page_content=' We detail our proposed method in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
54
+ page_content=' In Section V, we provide numerical simulation experiments for SE(3) to demonstrate the effectiveness of our approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
55
+ page_content=' Finally, the paper is concluded with potential directions for future work in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
56
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
57
+ page_content=' PRELIMINARIES Consider G is an n-dimensional matrix Lie group, and its associated Lie algebra, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
58
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
59
+ page_content=', tangent space at the identity, is denoted as g, where dim g = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
60
+ page_content=' Isomorphism between the vector space Rn and g can be defined through the following operators: (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
61
+ page_content=' )∧ : Rn �→ g (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
62
+ page_content=' )∨ : g �→ Rn (1) Mapping between Rn and G can be defined using the functions Exp(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
63
+ page_content=') : Rn �→ G and Log(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
64
+ page_content=') : G �→ Rn for any φ ∈ Rn and X ∈ G as follows: Exp(φ) = expm(φ∧) = X Log(X) = logm(X)∨ = φ (2) where expm and logm are the exponential and logarithm of square matrices, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
65
+ page_content=' The adjoint action, denoted as AdX : g �→ g for any X ∈ G, is a Lie algebra isomorphism that allows change of frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
66
+ page_content=' Given φ, η ∈ Rn and φ∧, η∧ ∈ g, the adjoint action can be expressed in the function form as AdX (φ) = Xφ∧X −1 (3) or in the matrix form as (AdX φ)∧ = Xφ∧X −1 (4) The adjoint map is the derivative of the adjoint action with respect to X at the identity element and is defined as adφ η = [φ∧, η∧] (5) where [φ∧, η∧] is the Lie bracket, calculated as [φ∧, η∧] = φ∧η∧ − η∧φ∧ (6) III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
67
+ page_content=' PROBLEM DEFINITION We consider the systems whose states reside in the tangent bundle of a matrix Lie group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
68
+ page_content=' This encompasses a diverse array of systems [15] whose states can be represented as pairs {X, ξ∧} ∈ G × g, where X represents the configuration and ξ∧ represents the velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
69
+ page_content=' The continuous equations of motion for such systems can be written as: ˙Xt = Xtξ∧ t ˙ξt = f � ξt, ut � (7) where ut ∈ Rm is the generalized control input and f(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
70
+ page_content=') is the function of velocity dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
71
+ page_content=' For a given initial state {X0, ξ0}, a goal state {Xg, ξg} and a time horizon N, we define the discrete-time constrained optimal control problem as min u0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
72
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
73
+ page_content=',uN−1 ℓf(XN, ξN) + N−1 � k=0 ℓ(Xk, ξk, uk) subject to Xk+1 = FX (Xk, ξk), k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
74
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
75
+ page_content=', N − 1 ξk+1 = Fξ(ξk, uk), k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
76
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
77
+ page_content=', N − 1 umin ≤ uk ≤ umax, ∀k, g(Xk, ξk, uk) ≤ 0, ∀k, given X0, ξ0, (8) where ℓf : G × Rn �→ R and ℓ : G × Rn × Rm �→ R are the final cost and the running cost, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
78
+ page_content=' FX and Fξ are the discretized form of the configuration and velocity dynamics, which can be obtained by using either a zero- order hold or Euler first-order integration method with a fixed time step of ∆t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
79
+ page_content=' Lastly, g is a vector of p constraints in the form of differentiable nonlinear functions representing the state constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
80
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
81
+ page_content=' PROPOSED METHOD It is often difficult to solve the general problem outlined in Section III analytically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
82
+ page_content=' Additionally, finding the global minimum numerically can be time-consuming, particularly for systems with high dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
83
+ page_content=' Therefore, we aim to propose a method that provides feasible solutions, even if they may not be globally optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
84
+ page_content=' As such, we aim to propose a method that yields feasible solutions, even if they may not be globally optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
85
+ page_content=' To accomplish this, we utilize the Differential Dy- namic Programming (DDP) framework [20], which iteratively solves sub-optimization problems in the backward pass and generates a new trajectory in the forward pass based on the found optimal policy, in order to approach a local optimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
86
+ page_content=' In this work, we propose augmenting the cost function with multiplier and penalty terms from the augmented Lagrangian in order to account for constraints imposed on the system, whose states lie in the tangent bundle of a matrix Lie group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
87
+ page_content=' Our approach involves lifting the problem to the Lie algebra in the backward pass by computing the gradient of the cost function within the corresponding Lie algebra, and retracting back to the manifold in the forward pass by integrating the dynamics using the optimal policy obtained in the backward pass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
88
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
89
+ page_content=' Dynamics on Tangent Space The central concept of DDP is that, at each iteration, all nonlinear constraints and objectives are approximated using first or second order Taylor series expansions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
90
+ page_content=' This allows the approximate functions, which now operate on deviations from the nominal trajectory, to be solved using discrete Linear- Quadratic Regulator (LQR) techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
91
+ page_content=' In order to define the cost and constraint functions in Lie algebra, we need to determine the error dynamics for the configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
92
+ page_content=' To obtain the perturbed state dynamics, we followed the approach proposed by Teng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
93
+ page_content=' [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
94
+ page_content=' For completeness, we outline the necessary steps here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
95
+ page_content=' Interested readers may refer to [17], [18] for more information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
96
+ page_content=' Consider a perturbed state {Xp, ξ∧ p } that is in the vicinity of a nominal state {X, ξ∧}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
97
+ page_content=' Then, the configuration error can be defined as Ψ = X −1Xp ∈ G (9) Differentiating both sides of (9) yields the configuration error dynamics as ˙Ψ = X −1 d dt � Xp � + d dt � X −1� Xp = X −1 ˙Xp − X −1 ˙XX −1Xp = X −1Xpξ∧ p − X −1Xξ∧X −1Xp = Ψξ∧ p − ξ∧Ψ (10) Here, we can define a vector ψ in Rn such that the matrix ex- ponential of ψ∧ corresponds to Ψ, denoted as Ψ = expm(ψ∧).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
98
+ page_content=' Using the first-order approximation of the matrix exponential,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
99
+ page_content=' which states that expm(ψ∧) ≈ In + ψ∧,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
100
+ page_content=' the dynamics of the configuration error in (10) can be linearized as follows: ˙Ψ = Ψξ∧ p − ξ∧Ψ = (In + ψ∧)ξ∧ p − ξ∧(In + ψ∧) = ξ∧ p + ψ∧ξ∧ p − ξ∧ − ξ∧ψ∧ = ξ∧ p − ξ∧ + ψ∧ξ∧ p − ξ∧ψ∧ = ξ∧ p − ξ∧ + ψ∧(ξ∧ − ξ∧ + ξ∧ p ) − ξ∧ψ∧ = ξ∧ p − ξ∧ + ψ∧ξ∧ − ξ∧ψ∧ + ψ∧(ξ∧ p − ξ∧) = ξ∧ p − ξ∧ + ψ∧ξ∧ − ξ∧ψ∧ = ξ∧ p − ξ∧ + adψ ξ ˙ψ = ξ∧ p − ξ∧ − adξ ψ (11) Note that the second order term of ψ∧(ξ∧ p − ξ∧) is also discarded to obtain the linear dynamics of the configuration error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
101
+ page_content=' ψ in (11) is the perturbed configuration represented in Lie algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
102
+ page_content=' The perturbed velocity and control input are also defined as δξ = ξp − ξ, and δu = up − u (12) The perturbed velocity dynamics then become: δ ˙ξt = Γtδξt + Λtδut (13) where Γt and Λt are the Jacobians of f(ξt, ut) defined in (7) around the nominal trajectory about ξt and ut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
103
+ page_content=' Defining the perturbed states as concatenation x = �ψ δξ � , ¯u = δu (14) the perturbed state dynamics are expressed as ˙x = h(x, u) ˙x = �− adξ In 0n×n Γt � � �� � ≜At x + �0n×m Λt � � �� � ≜Bt ¯u (15) The discretized versions of the matrices At and Bt can be simply obtained by applying a zero-order hold or a first-order Euler integration method with a fixed time step of ∆t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
104
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
105
+ page_content=' Constraint Handling By decomposing the state into configuration and velocity, we can also decompose the constraints in vector g(Xk, ξk, uk) in equation (8) into two types: those that constrain the velocity and those that specify configurations to be avoided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
106
+ page_content=' This allows us to separately handle the constraints on velocity (cξ) and on configuration (cX ) as cξ(ξk, uk) ≤ 0 cX (Xk, ξk) ≤ 0 (16) The velocity component of the state (ξ) resides in Rn, and as a result, constraints involving any metric in Euler space produce a distance vector in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
107
+ page_content=' Therefore, any boundary velocity constraint can be written as δξb = ξb − ξ, ¯cξ(βδξb) ≤ 0 (17) where β = � −1 if ξb is upper bound, +1 if ξb is lower bound (18) On the other hand, the difference between two group elements in the configuration state produces a geodesic in the group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
108
+ page_content=' To handle this, we propose mapping the distance geodesic to the tangent space of the configuration at the current time step and addressing the constraint in that vector space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
109
+ page_content=' Configuration avoidance constraints can typically be formu- lated as inequality constraints using an n-spherical function, with the center of the n-sphere located at the configuration to be avoided (Xc) and the radius (rc) defining the restricted region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
110
+ page_content=' This allows us to specify a region of configurations that should be avoided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
111
+ page_content=' The distance between the nominal and restricted configurations in the tangent space of the nominal trajectory, ψc, is given by: ψc = logm(X −1Xc) (19) Then, the configuration avoidance constraint can be written as ¯cX (ψc) = (r2 c − ∥ψc∥2) ≤ 0 (20) In this approach, we consider the same restricted region for each axis in the n-dimensional sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
112
+ page_content=' However, it is also possible to specify different radius values for each axis, resulting in an n-dimensional ellipsoid as the restricted region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
113
+ page_content=' Our method can accommodate these types of configuration constraints as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
114
+ page_content=' In order to handle the constraints in DDP framework, we need the first-order approximations of them around the perturbed state dynamics introduced in (15) as follows: ¯c(x + δx, u + δu) ≈ ¯c(x, u) + ¯cx(x, u)δx + ¯cu(x, u)δu (21) where ¯c(x) = �¯cX (ψc) ¯cξ(δξb) � (22) ¯cx and ¯cu are the derivative of ¯c with respect to x and u, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
115
+ page_content=' If the constraints are designed according to equations (18) and (20), the derivatives can be calculated as follows: ¯cx(x, u) = �−2(adξ ψc)⊤ 2ψc⊤ 01×n β(Γδξb)⊤ � ¯cu(x, u) = � 01×m β(Λ⊤δξb)⊤ � (23) C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
116
+ page_content=' Constrained Differential Dynamic Programming Using the perturbed state dynamics defined in (15), the backward pass of differential dynamic programming (DDP) is lifted to the tangent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
117
+ page_content=' The backward pass of DDP involves computing the cost-to-go function at each time step in a given trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
118
+ page_content=' Unlike [18], our algorithm not only considers the objective function when calculating the cost-to-go function, but also takes into account any constraints on the state and control variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
119
+ page_content=' An effective method for solving constrained optimization problems is to transform the constraints into the objective function and iteratively increase the penalty for violating or approaching them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
120
+ page_content=' This technique, known as penalty method, guarantees convergence to the optimal solution as the penalty terms increase indefinitely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
121
+ page_content=' However, this may not be prac- tical to implement in numerical optimization routines due to the limitations of finite precision arithmetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
122
+ page_content=' Augmented Lagrangian methods [19] offer an alternative solution by maintaining estimates of the Lagrange multipliers associated with the constraints, allowing for convergence to the optimal solution without requiring the penalty terms to increase indef- initely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
123
+ page_content=' Here we obtain the augmented Lagrangian as LA = LN(xN) + N−1 � k=0 Lk(xk, uk) LN(xN) = ¯ℓf(xN) + (λ + 1 2 ¯g(xN)Iµ)⊤¯g(xN) Lk(xk, uk) = ¯ℓ(xk, uk) + (λ + 1 2 ¯g(xk, uk)Iµ)⊤¯g(xk, uk) (24) where ¯ℓf : R2n �→ R and ¯ℓ : R2n ×Rm �→ R are the final cost and the running cost functions for perturbed system dynamics, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
124
+ page_content=' A typical design of such functions are ¯ℓf(x) = 1 2∥δx∥SV ¯ℓ(x, u) = 1 2∥δx∥SQ + 1 2∥δu∥SU (25) where SV ∈ R2n×2n, SQ ∈ R2n×2n and SU ∈ Rm×m are the cost matrices that are specified by the user and remain constant throughout all iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
125
+ page_content=' In (24), ¯g is a vector of p constraints for perturbed state dynamics as introduced in (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
126
+ page_content=' λ ∈ Rp is a Lagrange multiplier, µ ∈ Rp is a penalty weight and Iµ ∈ Rp×p is the penalty matrix defined as Iµ = � 0 if gi(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
127
+ page_content=') < 0 and λi = 0, µi otherwise (26) In general, one can define time varying Lagrange multiplier and penalty weight, but we kept them constant for each time step during the same iteration for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
128
+ page_content=' We define the cost-to-go and action-value functions as Vk(xk) = min uk {Lk(xk, uk)} + Vk+1(Akxk + Bkuk) = min uk Q(xk, uk)) (27) The matrices Ak and Bk represent the discretized versions of At and Bt in equation (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
129
+ page_content=' Second order Taylor series expansion of cost-to-go function can be written as δVk(x) ≈ 1 2δx⊤ k Vxx,kδxk + V ⊤ x,kδxk (28) where Vxx,k and Vx,k are the Hessian and gradient of the cost-to-go at time step k, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
130
+ page_content=' Action-value function defined in (27) can be also approximated as a quadratic function as Q(x + δx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
131
+ page_content=' u + δu) ≈ Q(x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
132
+ page_content=' u) + Q⊤ x δx + Q⊤ uδu + 1 2(δx⊤Qxxδx + δx⊤Qxxδx) + δx⊤Qxuδu (29) To compute the derivative matrices in (29): Qx = ¯ℓx + A⊤V ′ x + ¯g⊤ x (λ + Iµ¯g) Qu = ¯ℓu + B⊤V ′ x + ¯g⊤ u (λ + Iµ¯g) Qxx = ¯ℓxx + A⊤V ′ xxA + ¯g⊤ x Iµ¯gx + (V ′ xhxx) Quu = ¯ℓuu + B⊤V ′ xxB + ¯g⊤ u Iµ¯gu + (V ′ xhuu) Qux = ¯ℓux + B⊤V ′ xxA + ¯g⊤ u Iµ¯gx + (V ′ xhux) (30) To simplify the notation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
133
+ page_content=' we have omitted the time indices on all variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
134
+ page_content=' All variables in this expression are evaluated at time step k, except for those marked with ′, which are evaluated at time step k + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
135
+ page_content=' Calculating the full second-order expansion of the state dynamics (hxx, huu, hux), can be computationally expensive, particularly for systems with complex dynamics and high- dimensional states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
136
+ page_content=' DDP refers to iterative LQR by discarding the second-order dynamics and computing only the first-order expansion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
137
+ page_content=' This results in a Gauss-Newton approximation of the true Hessian, which reduces the local fidelity and requires more iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
138
+ page_content=' However, these iterations are less expensive to compute and often lead to a faster overall convergence rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
139
+ page_content=' Therefore, in this work, we eliminated the second order dynamics as approximating the perturbed state dynamics as described in (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
140
+ page_content=' Minimizing (29) with respect to δu results in an affine controller δu∗ = −Q−1 uu(Quxδx + Qu) ≜ Kδx + d (31) Substituting δu∗ into (29) yields the derivatives of the cost- to-go at time step k in terms of the derivatives of the action value function as: Vx = Qx + KQu + K⊤Quud + Q⊤ uxd, Vxx = Qxx + K⊤QuuK + K⊤Qux + Q⊤ uxK (32) At the final step, Vx and Vxx can be easily computed as the first and second derivatives of the final cost function (¯ℓf).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
141
+ page_content=' This way, the derivatives of the action-value function (30) and in turn the local optimal control policy (31) at each step can be calculated backwards starting from the final step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
142
+ page_content=' After determining the optimal control policy for each time step, we update the nominal trajectories by simulating the dynamics forward on the manifold itself starting from the initial state as: δxk = �logm(Xk−1 ¯ Xk) ¯ξk − ξk � δuk = Kkδxk + αdk ¯uk = uk + δuk ¯ξk = ξ + f(ξ, ¯uk)∆t ¯ Xk = X expm(¯ξk∆t) (33) where {Xk, ξk, uk} and { ¯ Xk, ¯ξk, ¯uk} represent the nominal state-actions and the updated state-actions at time step k, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
143
+ page_content=' In the above expression, 0 ≤ α ≤ 1 is a scaling term for simple linear search on the feedforward term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
144
+ page_content=' Practically, the parameter α is initially set to 1, but if the cost of the updated trajectory does not decrease, it will be decreased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
145
+ page_content=' Once the cost of the updated trajectory is decreased, the forward pass is succesfully completed, the new trajectory is accepted as nominal trajectory and the backward pass is triggered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
146
+ page_content=' To optimize the performance of DDP-based algorithms, there are a few implementation practices to consider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
147
+ page_content=' In the backward pass, Quu may need to be regularized as Quu +ρI if it is invertible or the former forward pass is unsuccesful, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
148
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
149
+ page_content=', the cost is not decreased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
150
+ page_content=' After the DDP iterations converge, the parameters λ and µ can be updated as: λ+ = max(0, λi + µi¯gi(x∗, u∗)) µ+ = γµ, γ > 0 (34) The DDP iterations can then be restarted until convergence is achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
151
+ page_content=' For more information, see reference [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
152
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
153
+ page_content=' EXPERIMENTS The goal of this section is to devise a trajectory on SE(3) that satisfies both position and orientation constraints while avoiding unsafe configurations and obstacles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
154
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
155
+ page_content=' Dynamics on SE(3) We consider a 3D rigid body in SE(3) where the states of the system can be represented by a rotation matrix R ∈ SO(3) = {R ∈ R3×3|R⊤R = I3, det(R) = 1} (35) and position p ∈ R3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
156
+ page_content=' The homogeneous representation of a typical group element in SE(3) is X = �R p 0 1 � ∈ SE(3) (36) The velocity vector ξ in SE(3) is known as a “twist” and is composed of both angular (ω) and linear (v) velocities in body frame as ξ = � ω v � ∈ R6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
157
+ page_content=' ξ∧ = � ω∧ v 0 0 � ∈ se(3) (37) The forced Euler-Poincar´e equations [16] define the twist dynamics as Jb ˙ξ = ad∗ ξ Jbξ + u (38) In this expression,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
158
+ page_content=' Jb represents the generalized inertia matrix in the body fixed principal axes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
159
+ page_content=' while u ∈ g∗ represents the generalized control input forces applied to these axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
160
+ page_content=' g∗ denotes the cotangent space and the coadjoint map is represented by ad∗ ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
161
+ page_content=' The matrix representations of the adjoint action in the Lie algebra (adξ) and the coadjoint map (ad∗ ξ) are as follows: adξ = �ω∧ 0 v∧ ω∧ � , ad∗ ξ = ad⊤ ξ = − �ω∧ v∧ 0 ω∧ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
162
+ page_content=' (39) The continuous equations of motion described in (7) can be written for SE(3) group as ˙X = Xξ∧,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
163
+ page_content=' ˙ξ = Jb −1� ad∗ ξ Jbξ + u � (40) The linearized twist dynamics as given in [17]: ˙ξ = Γtξ + Λtu + bt (41) where Γt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
164
+ page_content=' Λt and bt are: Γt := J−1 b ad∗ ξ Jb + J−1 b �(Ibω)∧ mv∧ mv∧ 0 � Λt := Jb −1 bt := −Jb −1 �(Ibω)∧ mv∧ mv∧ 0 � ξ (42) assuming the inertia matrix Jb is defined as Jb := �Ib 0 0 mI3 � (43) where Ib and m are the moment of inertia in the body frame and the body mass,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
165
+ page_content=' respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
166
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
167
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
168
+ page_content=' Constrained (red) and unconstrained (blue) trajectories generated by proposed DDP method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
169
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
170
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
171
+ page_content=' Control input signals of the planned trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
172
+ page_content=' Torques refers to inputs acting on angular velocity and Forces refers to inputs acting on linear velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
173
+ page_content=' Left column: unconstrained, Right column: constrained B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
174
+ page_content=' Simulations We now test the proposed algorithm for planning a safe path for a SE(3) rigid body.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
175
+ page_content=' The task we have defined involves rotating the body to the configuration Rz(180) from the identity and translating it to the position {2, 2, 2} from the initial position {1, 1, 1} in 3 seconds with a fixed time step of ∆t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
176
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
177
+ page_content=' To denote the rotation around the x, y, and z axes of the body-fixed frame, we use Rx(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
178
+ page_content=' ), Ry(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
179
+ page_content=' ), and Rz(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
180
+ page_content=' ), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
181
+ page_content=' During the motion, the configuration Rz(90) is considered to be unsafe and must be avoided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
182
+ page_content=' Additionally, it is assumed that there is a spherical obstacle at {1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
183
+ page_content='25, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
184
+ page_content='25, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
185
+ page_content='25} with a radius of r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
186
+ page_content='5 that must be avoided as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
187
+ page_content=' We only penalized the final state and control inputs, so we set the controller parameters as SV = 1000I12, SU = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
188
+ page_content='001I6, and SQ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
189
+ page_content=' In order to assess the performance of the proposed DDP in terms of constraint handling, we conducted an experiment with the same trajectory optimization task in both constrained and unconstrained cases, and the resulting trajectories are depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
190
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
191
+ page_content=' The configuration trajectories were converted to Eu- ler angles (φ, θ, ψ in degrees) using the rotation order Rx(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
192
+ page_content=')Ry(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
193
+ page_content=')Rz(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
194
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
195
+ page_content=' In the unconstrained case (shown in blue), it is shown that the ψ angle goes directly from 0 to 180 degrees while the φ and θ angles remain constant (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
196
+ page_content=' 1), as the task only involves rotating around the z-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
197
+ page_content=' This can also be observed in the upper left part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
198
+ page_content=' 2, where only a single input is non-zero to achieve the desired motion, while the others remain zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
199
+ page_content=' However, in the constrained case (shown in red), rotations around x and y axes (changes in φ and θ angles) were also observed to avoid the unsafe configuration of Rx(90) (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
200
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
201
+ page_content=' As shown in the last row of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
202
+ page_content=' 1, the shortest paths for the positional states were obtained in the unconstrained case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
203
+ page_content=' However, the presence of a sphere at {1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
204
+ page_content='25, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
205
+ page_content='25, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
206
+ page_content='25} with a radius of r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
207
+ page_content='5 forced the positional trajectories to take a circuitous route around obstacle by deviating along y and x axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
208
+ page_content=' To evaluate the effectiveness of the proposed DDP method in handling external disturbances, we extend the analysis done in [13] to SE(3) and employ the proposed DDP method as a Lie-algebraic feedback control: ufb k := u∗ k + Kk logm((X ∗ k )−1X ϵ k) (44) where u∗ k and Kk represent the (sub)optimal control sequence and time-varying feedback gains, respectively, which are ob- tained through DDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
209
+ page_content=' The feed-forward term dk in (31) is not explicitly shown in the feedback policy (44) because it is already included in u∗ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
210
+ page_content=' The variables X ∗ k and X ϵ k represent the (sub)optimal states obtained through DDP convergence and the perturbed states due to disturbance, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
211
+ page_content=' We test the policy (44) on the following stochastic version of the SE(3) dynamics: X ϵ k+1 = X ϵ k expmSE(3)(ξϵ k∆t) ξϵ k+1 = ξϵ k + f(ξϵ k, uk)∆t + σωω (45) where ω is assumed to be spatially uncorrelated independent and identically distributed noise, drawn from a zero mean Gaussian distribution, ω ∼ N(06×1, I6), σω = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
212
+ page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
213
+ page_content=' The performance of the proposed DDP method under stochas- tic conditions was evaluated by allowing the optimizer to converge on the deterministic system and then testing its performance on the stochastic system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
214
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
215
+ page_content=' 3 shows the results of this comparison, using 1000 sampled trajectories under noisy dynamics to compare the open-loop policy u∗ k with the feedback policy ufb k (44).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
216
+ page_content=' The results demonstrate that the use of the obtained feedback gains significantly reduces state variance, particularly in the vicinity of the the goal points, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
217
+ page_content=' 50 0 [6ap] [deg] [deg] 100 0 50 0 50 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
218
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
219
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
220
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
221
+ page_content='5 × 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
222
+ page_content='5 y N 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
223
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
224
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
225
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
226
+ page_content='0 0 1 2 3 0 1 2 3 0 1 2 3 Time [sec] Time [sec] Time [sec]20 Torques 25 0 0 25 20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
227
+ page_content='5 Forces 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
228
+ page_content='0 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
229
+ page_content='5 0 2 0 2 Time [sec] Time [sec]Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
230
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
231
+ page_content=' Evaluation of DDP’s control sequence under random disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
232
+ page_content=' Left Column: Open-loop control, Right column: Closed-loop control VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
233
+ page_content=' CONCLUSION In conclusion, the optimization of control policies on matrix Lie groups is an important problem in robotics and control with numerous applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
234
+ page_content=' In this work, we have proposed a novel approach for tackling this problem using an augmented Lagrangian based constrained discrete DDP algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
235
+ page_content=' Our method involves lifting the optimization problem to the Lie algebra in the backward pass, allowing us to compute the gradient of the objective and constraint functions within the corresponding tangent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
236
+ page_content=' In the forward pass, we retract back to the manifold by integrating the dynamics using the optimal policy obtained in the backward pass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
237
+ page_content=' One of the key contributions of our work is the development of a general approach for nonlinear constraint handling for a wide range of matrix Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
238
+ page_content=' Previous methods were only able to handle constraints for specific classes of matrix Lie groups, such as SO(3) pose constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
239
+ page_content=' Our method, on the other hand, is able to handle a wide range of nonlinear constraints, making it a more widely applicable and flexible solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
240
+ page_content=' In addition, we have demonstrated the effectiveness of our method in handling external disturbances through its applica- tion as a Lie-algebraic feedback control policy on SE(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
241
+ page_content=' The results show that our approach is able to effectively handle constraints and maintain its stability in the presence of external disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
242
+ page_content=' Overall, our proposed DDP algorithm represents a signif- icant step forward in the field of optimization on matrix Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
243
+ page_content=' It provides a flexible and general approach for nonlinear constraint handling and has the potential to be applied to a wide range of problems in robotics and control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
244
+ page_content=' As a future direction, it would be interesting to investigate the closed loop uncertainty propagation through the prediction horizon, as has been done for Euclidean models [11], in order to design a robust Model Predictive Control (MPC) framework for matrix Lie groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
245
+ page_content=' This would allow the proposed method to be used in more challenging and dynamic environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
246
+ page_content=' Additionally, further experimentation with different types of matrix groups and constraints would provide valuable insights into the capabilities and limitations of the proposed DDP algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
247
+ page_content=' REFERENCES [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
248
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
249
+ page_content=' Hemingway and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
250
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
251
+ page_content=' O‘Reilly, “Perspectives on Euler angle singularities, gimbal lock, and the orthogonality of applied forces and applied moments,” Multibody Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
252
+ page_content=' Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
253
+ page_content=', 44, 31–56, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
254
+ page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
255
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
256
+ page_content=' Shuster, “A survey of attitude representations.” Navigation, 8(9), 439-517, 1993 [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
257
+ page_content=' Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors.” Matrix, 58(15-16), 1-35, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
258
+ page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
259
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
260
+ page_content=' Bloch, Nonholonomic Mechanics and Control, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
261
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
262
+ page_content=' Krishnaprasad and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
263
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
264
+ page_content=' Murray, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
265
+ page_content=' Springer, New York, NY, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
266
+ page_content=' [5] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
267
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
268
+ page_content=' Lynch and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
269
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
270
+ page_content=' Park, Modern robotics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
271
+ page_content=' Cambridge University Press, 2017 [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
272
+ page_content=' Bullo and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
273
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
274
+ page_content=' Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, 49, Springer, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
275
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
276
+ page_content=' Kobilarov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
277
+ page_content=' Desbrun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
278
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
279
+ page_content=' Marsden, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
280
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
281
+ page_content=' Sukhatme, “A dis- crete geometric optimal control framework for systems with symmetries,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
282
+ page_content=' Robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
283
+ page_content=', Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
284
+ page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
285
+ page_content=',1–8, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
286
+ page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
287
+ page_content=' Saccon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
288
+ page_content=' Hauser, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
289
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
290
+ page_content=' Aguiar, ��Optimal control on Lie groups: The projection operator approach,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
291
+ page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
292
+ page_content=' Control, 58, 9, 2230-–2245, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
293
+ page_content=' [9] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
294
+ page_content=' Kobilarov, “Discrete optimal control on lie groups and applications to robotic vehicles,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
295
+ page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
296
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
297
+ page_content=' Robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
298
+ page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
299
+ page_content=', 5523–5529, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
300
+ page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
301
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
302
+ page_content=' Jacobson and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
303
+ page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
304
+ page_content=' Mayne, Differential Dynamic Programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
305
+ page_content=' New York, NY, USA: Elsevier, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
306
+ page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
307
+ page_content=' Alcan and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
308
+ page_content=' Kyrki, “Differential Dynamic Programming With Nonlinear Safety Constraints Under System Uncertainties,” in IEEE Robotics and Automation Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
309
+ page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
310
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
311
+ page_content=' 1760-1767, 2022 150 150 Φ,e, [deg] 100 ,e,w [deg] 100 50 50 0 0 50 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
312
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
313
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
314
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
315
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
316
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
317
+ page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
318
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
319
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
320
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
321
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
322
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
323
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
324
+ page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
325
+ page_content='0 Time [sec] Time [sec] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
326
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
327
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
328
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
329
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
330
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
331
+ page_content="6 X,y,z z'Kx 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
332
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
333
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
334
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
335
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
336
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
337
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
338
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
339
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
340
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
341
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
342
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
343
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
344
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
345
+ page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
346
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
347
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
348
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
349
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
350
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
351
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
352
+ page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
353
+ page_content='0 Time [sec] Time [sec][12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
354
+ page_content=' Kobilarov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
355
+ page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
356
+ page_content=' Ta, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
357
+ page_content=' Dellaert, “Differential dynamic program- ming for optimal estimation,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
358
+ page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
359
+ page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
360
+ page_content=' Robot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
361
+ page_content=' Autom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
362
+ page_content=', 863-–869,2015 [13] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
363
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
364
+ page_content=' Boutselis, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
365
+ page_content=' Theodorou, “Discrete-time differential dynamic pro- gramming on lie groups: Derivation, convergence analysis, and numerical results.” IEEE Transactions on Automatic Control, 66(10), 4636–4651, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
366
+ page_content=' [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
367
+ page_content=' Liu, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
368
+ page_content=' Liu, “Discrete-Time Differential Dynamic Programming on SO(3) With Pose Constraints.” IEEE Access, 10, 112921-112933, 2022 [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
369
+ page_content=' Lee, “Computational geometric mechanics and control of rigid bodies,” Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
370
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
371
+ page_content=' dissertation, Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
372
+ page_content=' Michigan, Ann Arbor, MI, USA, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
373
+ page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
374
+ page_content=' Bloch, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
375
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
376
+ page_content=' Krishnaprasad, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
377
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
378
+ page_content=' Marsden, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
379
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
380
+ page_content=' Ratiu, “The Euler-Poincar´e equations and double bracket dissipation,” Communica- tions in Mathematical Physics, 175(1), 1–42, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
381
+ page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
382
+ page_content=' Teng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
383
+ page_content=' Chen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
384
+ page_content=' Clark and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
385
+ page_content=' Ghaffari, “An Error-State Model Predictive Control on Connected Matrix Lie Groups for Legged Robot Control,” IEEE/RSJ International Conference on Intelligent Robots and Systems, 8850-8857, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
386
+ page_content=' [18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
387
+ page_content=' Teng, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
388
+ page_content=' Clark, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
389
+ page_content=' Bloch, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
390
+ page_content=' Vasudevan and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
391
+ page_content=' Ghaffari, “Lie Algebraic Cost Function Design for Control on Lie Groups.” arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
392
+ page_content='09177, 2022 [19] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
393
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
394
+ page_content=' Howell, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
395
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
396
+ page_content=' Jackson and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
397
+ page_content=' Manchester, “ALTRO: A Fast Solver for Constrained Trajectory Optimization,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
398
+ page_content=' 7674-7679,2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/UNA0T4oBgHgl3EQfEf9Z/content/2301.02018v1.pdf'}
UdAyT4oBgHgl3EQfuvkh/content/tmp_files/2301.00617v1.pdf.txt ADDED
@@ -0,0 +1,1834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00617v1 [math.FA] 2 Jan 2023
2
+ SOME REMARKS ON CONVEX BODY DOMINATION
3
+ TUOMAS P. HYTÖNEN
4
+ Dedicated, with admiration, to the Ukrainian people.
5
+ Abstract. Convex body domination is an important elaboration of the tech-
6
+ nique of sparse domination that has seen significant development and applica-
7
+ tions over the past ten years. In this paper, we present an abstract framework
8
+ for convex body domination, which also applies to Banach space -valued func-
9
+ tions, and yields matrix-weighted norm inequalities in this setting. We explore
10
+ applications to “generalised commutators”, obtaining new examples of bounded
11
+ operators among linear combinations of compositions of the form aiTbi, where
12
+ ai, bi are pointwise multipliers and T is a singular integral operator.
13
+ 1. Introduction
14
+ The technique of sparse domination was developed to provide a simpler approach,
15
+ achieved by Lerner [23], to the “A2 conjecture” on sharp weighted norm inequalities
16
+ for Calderón–Zygmund operators, which was first proved with a different machinery
17
+ by the author [16]. However, beyond this original aim, sparse domination imme-
18
+ diately led to significant further consequences and has by now been applied to a
19
+ variety of new questions, of which [1, 2, 3, 7, 11] is only a sample. The method
20
+ consists of two main steps that are largely independent of each other and essentially
21
+ decouple the operator from the space or norm in which it should be estimated:
22
+ (1) Dominating an operator of interest by a suitable sparse operator/form.
23
+ (2) Estimating the sparse form with respect to relevant norms of interest.
24
+ While sparse domination very efficiently captures the local size of an object un-
25
+ der consideration, and this is precisely what is needed in many applications, it
26
+ loses information about directions, which is sometimes relevant when dealing with
27
+ vector-valued functions, and especially so, matrix-valued weights are involved. To
28
+ extend the method to such questions, Nazarov et al. [27] developed the so-called
29
+ convex body domination, where the numerical averages featuring in sparse dom-
30
+ ination are replaced by convex subsets of Rn, thus containing information about
31
+ different behaviour in different directions. Since its introduction in the context of
32
+ Calderón–Zygmund operators and matrix A2 weights by [27] (see also [10] for an-
33
+ other approach but based on the same key idea), convex body domination has been
34
+ applied to matrix Ap-weight and two-weight bounds by Cruz-Uribe et al. [8], and ex-
35
+ tended to commutators of Calderón–Zygmund operators by Isralowitz et al. [20, 21]
36
+ and rough singular integral operators by Di Plinio et al. [13] and Muller and Rivera-
37
+ Ríos [26]. In a recent breakthrough, Bownik and Cruz-Uribe [6] extended the Rubio
38
+ Date: January 3, 2023.
39
+ 2010 Mathematics Subject Classification. 42B20, 46E40.
40
+ The author is supported the Academy of Finland via the Finnish Centre of Excellence in
41
+ Randomness and Structures “FiRST” (grant no. 346314).
42
+ 1
43
+
44
+ 2
45
+ T. P. HYTÖNEN
46
+ de Francia algorithm, and its key application to weighted extrapolation, to matrix-
47
+ valued weights, by further development of the convex body philosophy.
48
+ The aim of this paper is to further explore this technique, providing extensions,
49
+ new applications and—hopefully—some additional insight into the abstract under-
50
+ lying mechanisms. We begin by developing a somewhat general framework, but
51
+ our claims for originality in this regard are relatively mild, as most of the ideas
52
+ are at least implicit in the previous works in the existing literature.
53
+ A certain
54
+ justification for this framework comes from the observation that it applies almost
55
+ verbatim to the case of Banach space -valued functions. To be precise, given a Ba-
56
+ nach space E, we consider functions taking values in En, and develop a version of
57
+ convex body domination applicable to weighted norm inequalities involving matrix
58
+ weights W : Rd → Rn×n, acting on En in the natural way. That is, we make no
59
+ attempt towards a fully operator-valued theory of weighted norm inequalities in
60
+ infinite dimensions, yet the results that we obtain are still new even in this more
61
+ modest generality. In particular, if E is a Banach space with the UMD property,
62
+ the classical Hilbert transform extends boundedly to the matrix-weighted space
63
+ L2(W; En) of En-valued functions; see Corollary 6.3 for the result, and Section 6
64
+ for the relevant definitions and background. A key to this extension is the observa-
65
+ tion that the convex bodies arising from our framework are still Rn-valued in this
66
+ generality—and not, for instance, En-valued, as one might have (and this author
67
+ certainly had) initially expected. Thus the powerful Euclidean machinery, most
68
+ notably the John ellipsoid theorem, is still available in this setting.
69
+ As for new applications of the theory, we build on a recent observation from
70
+ Isralowitz et al. [20, 21] that convex body domination of an operator T bootstraps
71
+ to a domination of its commutators [b, T ] = bT − T b with pointwise multipliers. As
72
+ we will explore in Section 7, this phenomenon is far more general, and can be used
73
+ to estimate any operators of the form
74
+ f �→
75
+ n
76
+
77
+ i=1
78
+ aiT (bif),
79
+ where an operator T satisfying convex body domination is pre- and post-composed
80
+ with pointwise multipliers ai, bi. From this general principle, we can in particular
81
+ recover and sharpen a recent sufficient condition [17] for the boundedness of iterated
82
+ mixed commutators [b1, [b2, T ]] in terms of joint conditions on the pair of functions
83
+ (b1, b2), but also obtain new examples.
84
+ In contrast to the development of the abstract framework in the first part of the
85
+ paper, we have not strived for the greatest generality in terms of the applications
86
+ in the later sections. In many cases, it will be clear to an experienced reader that
87
+ several variants and extensions could be obtained, and some of them will most likely
88
+ be pursued in forthcoming works, by this author and others. Besides the concrete
89
+ results contained in this paper, our aim is to hint at the many rich directions for
90
+ the further development of the theory.
91
+ 2. Norms and convex bodies
92
+ Let X be a real normed space. We denote by
93
+ ¯BX := {x ∈ X : ∥x∥X ≤ 1}
94
+
95
+ SOME REMARKS ON CONVEX BODY DOMINATION
96
+ 3
97
+ its closed unit ball, and by X∗ the normed dual, which is a Banach space. For
98
+ x∗ ∈ X∗, we define, as usual,
99
+ ∥x∗∥X∗ := sup{|⟨x, x∗⟩| : x ∈ ¯BX}.
100
+ As a consequence of the Hahn–Banach theorem, we have
101
+ ∥x∥X = sup{|⟨x, x∗⟩| : x∗ ∈ ¯BX∗} = max{⟨x, x∗⟩ : x∗ ∈ ¯BX∗};
102
+ (2.1)
103
+ in particular, the supremum is reached as a maximum, and we have ∥x∥X = ⟨x, x∗⟩
104
+ for some x∗ ∈ ¯BX∗.
105
+ For ⃗x = (xi)n
106
+ i=1 ∈ Xn and x∗ ∈ X∗, we define the Rn-valued pairing ⟨⃗x, x∗⟩ :=
107
+ (⟨xi, x∗⟩)n
108
+ i=1 ∈ Rn and the set-valued “norm”
109
+ ⟨⟨⃗x⟩⟩X := {⟨⃗x, x∗⟩ : x∗ ∈ ¯BX∗} ⊂ Rn.
110
+ 2.2. Remark. The notation is adapted from Nazarov et al. [27], who introduced
111
+ the version with X = Ł1(Q), the space L1(Q) with the normalised norm
112
+ 1
113
+ |Q|∥ ∥1).
114
+ The extension to X = Łp(Q) (i.e., Lp(Q) with the normalised norm
115
+ 1
116
+ |Q|1/p ∥ ∥p)
117
+ is due to Di Plinio et al. [13]. Although our main applications will be concerned
118
+ with spaces of functions (living on a cube Q), we find it illuminating to develop the
119
+ basics of the theory on a completely abstract level. Among other things, this point
120
+ of view will make it clear that there will be essentially no difference in treating a
121
+ space X = Lp(Q; E) of E-valued functions for an arbitrary Banach space E; for
122
+ ⃗f ∈ Xn, the corresponding ⟨⟨⃗f⟩⟩X will still be subsets of Rn and not, say, of En.
123
+ This will allow us to make effortless use of the powerful John ellipsoid theorem from
124
+ Euclidean geometry, even when working with functions taking values in an infinite-
125
+ dimensional Banach space! In other applications, a choice like X = L log L(Q)
126
+ might also be relevant.
127
+ For ⃗a ∈ Rn and ⃗x ∈ Xn, we define the X-valued dot product
128
+ ⃗a · ⃗x := ⃗x · ⃗a :=
129
+ n
130
+
131
+ i=1
132
+ aixi.
133
+ We observe the easy identities
134
+ ⃗a · ⟨⃗x, x∗⟩ = ⟨⃗a · ⃗x, x∗⟩,
135
+ ∀⃗a ∈ Rn, ⃗x ∈ Xn, x∗ ∈ X∗,
136
+ and
137
+ spanX(⃗x) := span{xi}n
138
+ i=1 = {⃗a · ⃗x : a ∈ Rn} ⊂ X.
139
+ 2.3. Lemma. For each ⃗x ∈ Xn, the set ⟨⟨⃗x⟩⟩X ⊂ Rn is convex, compact, and
140
+ symmetric about the origin.
141
+ Proof. Symmetry, convexity and boundedness are immediate from the fact that
142
+ ¯BX∗ has these properties. For compactness in Rn, it remains to show closedness,
143
+ so suppose that ⟨⃗x, x∗
144
+ k⟩ → ⃗e ∈ Rn as k → ∞, where each x∗
145
+ k ∈ ¯BX∗; we need to
146
+ show that ⃗e ∈ ⟨⟨x⟩⟩X. For each ⃗a ∈ Rn, it follows that
147
+ |⃗a · ⃗e| = lim
148
+ k→∞ |⃗a · ⟨⃗x, x∗
149
+ k⟩| = lim
150
+ k→∞ |⟨⃗a · ⃗x, x∗
151
+ k⟩| ≤ ∥⃗a · ⃗x∥X.
152
+ This in turn implies that
153
+ Λ(⃗a · ⃗x) := ⃗a · ⃗e,
154
+ ∀⃗a · ⃗x ∈ spanX(⃗x),
155
+
156
+ 4
157
+ T. P. HYTÖNEN
158
+ gives a well-defined linear functional of norm 1 on the subspace spanX(⃗x) ⊂ X. By
159
+ the Hahn–Banach theorem, Λ is the restriction of some x∗ ∈ ¯BX∗. Hence
160
+ ⃗a · ⃗e = Λ(⃗a · ⃗x) = ⟨⃗a · ⃗x, x∗⟩ = ⃗a · ⟨⃗x, x∗⟩
161
+ ∀⃗a ∈ Rn,
162
+ and thus limk→∞⟨⃗x, xk⟩ = ⃗e = ⟨⃗x, x∗⟩ ∈ ⟨⟨⃗x⟩⟩X, as we wanted to show.
163
+
164
+ For A, B ⊂ Rn, we define the Minkowski dot product
165
+ A · B := {⃗a ·⃗b : ⃗a ∈ A,⃗b ∈ B} ⊂ R.
166
+ If A, B ⊂ Rn are convex, compact and symmetric, so is A · B ⊂ R. On R, such
167
+ sets are precisely intervals of the form [−c, c]. Hence we can, and sometimes will,
168
+ identify A · B = [−c, c] ⊂ R with its right end-point c ∈ [0, ∞). In particular, for
169
+ ⃗x ∈ Xn and ⃗y ∈ Y n, we will use this identification when dealing with
170
+ ⟨⟨⃗x⟩⟩X · ⟨⟨⃗y⟩⟩Y = {⟨⃗x, x∗⟩ · ⟨⃗y, y∗⟩ : x∗ ∈ ¯BX∗, y∗ ∈ ¯BY ∗}
171
+ =
172
+
173
+ n
174
+
175
+ i=1
176
+ ⟨xi, x∗⟩⟨yi, y∗⟩ : x∗ ∈ ¯BX∗, y∗ ∈ ¯BY ∗
177
+
178
+ .
179
+ 3. Bi-linear forms
180
+ Let X, Y be real normed spaces, and suppose that we have a bilinear from
181
+ t : X × Y → R. We define its extension acting on pairs of vectors (⃗x, ⃗y) ∈ Xn × Y n
182
+ as follows. If ⃗e ∈ Rn and x ∈ Xn, we have ⃗x · ⃗e ∈ F by our previous convention
183
+ about the X-valued dot product. If (ei)n
184
+ i=1 is a fixed orthonormal basis of Rn, we
185
+ then define
186
+ t(⃗f,⃗g) :=
187
+ n
188
+
189
+ i=1
190
+ t(⃗f · ⃗ei,⃗g · ⃗ei),
191
+ For x ∈ X, y ∈ Y , and ⃗e, ⃗u ∈ Rn, it follows that
192
+ t(x⃗e, y⃗u) :=
193
+ n
194
+
195
+ i=1
196
+ t(x⃗e · ⃗ei, y⃗u · ⃗ei) = t(x, y)
197
+ n
198
+
199
+ i=1
200
+ (⃗e · ⃗ei)(⃗u · ⃗ei) = t(x, y)⃗e · ⃗u.
201
+ If (⃗ui)n
202
+ i=1 is another orthonormal basis, then
203
+ n
204
+
205
+ i=1
206
+ t(⃗x · ⃗ui, ⃗y · ⃗ui) =
207
+ n
208
+
209
+ i,j,k=1
210
+ t(⃗x · ⃗ej, ⃗y · ⃗ek)(⃗ej · ⃗ui)(⃗ek · ⃗ui)
211
+ =
212
+ n
213
+
214
+ j,k=1
215
+ t(⃗x · ⃗ej, ⃗y · ⃗ek)(⃗ej · ⃗ek) =
216
+ n
217
+
218
+ j=1
219
+ t(⃗x · ⃗ej, ⃗y · ⃗ej) =: t(⃗x, ⃗y),
220
+ so the definition of t(⃗f,⃗g) is independent of the chosen orthonormal basis.
221
+ If A ∈ Rn×n is a linear transformation of Rn, acting in a natural way on F n,
222
+ then
223
+ t(A⃗x, ⃗y) =
224
+ n
225
+
226
+ i=1
227
+ t(A⃗f · ⃗ei,⃗g · ⃗ei) =
228
+ n
229
+
230
+ i=1
231
+ t(⃗f · At⃗ei,⃗g · ⃗ei)
232
+ =
233
+ n
234
+
235
+ i,j=1
236
+ t(⃗f · ⃗ej,⃗g · ⃗ei)(⃗ej · At⃗ei)
237
+ =
238
+ n
239
+
240
+ i,j=1
241
+ t(⃗f · ⃗ej,⃗g · ⃗ei)(A⃗ej · ⃗ei) =
242
+ n
243
+
244
+ j=1
245
+ t(⃗f · ⃗ej,⃗g · A⃗ej) = t(⃗f, At⃗g).
246
+
247
+ SOME REMARKS ON CONVEX BODY DOMINATION
248
+ 5
249
+ 4. From norm bounds to convex body bounds
250
+ The idea of the following lemma lies behind many of the existing convex body
251
+ domination results. To isolate the key point, we state it here in an operator-free
252
+ version, involving functions and therir norms only.
253
+ 4.1. Lemma. Let X, Y be normed spaces, and ⃗f ∈ Xn,⃗g ∈ Y n.
254
+ Let EK be the John ellipsoid of K := ⟨⟨⃗f⟩⟩X such that
255
+ EK ⊂ K ⊂ √nEK,
256
+ and suppose that EK is non-degenerate (i.e., of full dimension). Let RK be a linear
257
+ transformation such that RKEK = ¯BRn, the closed unit ball of Rn, and let (⃗ei)n
258
+ i=1
259
+ be an orthonormal basis of Rn. If
260
+ fi := RK ⃗f · ⃗ei,
261
+ gi := R−t
262
+ K ⃗g · ei,
263
+ i = 1, . . . , n,
264
+ then
265
+ n
266
+
267
+ i=1
268
+ ∥fi∥X∥gi∥Y ≤ n3/2⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y .
269
+ Proof. If φ ∈ ¯BX∗, then
270
+ ⟨φ, RK ⃗f · ⃗ei⟩ = RK⟨φ, ⃗f⟩ · ⃗ei
271
+ ∈ RK⟨⟨⃗f⟩⟩X · ⃗ei ⊂ RK
272
+ √nEK · ⃗ei = √n ¯BRn · ⃗ei = √n[−1, 1],
273
+ and hence
274
+ ∥fi∥X = ∥RK ⃗f · ⃗ei∥X ≤ √n.
275
+ If ψ ∈ ¯BY ∗, then
276
+ ⟨ψ, R−t
277
+ K ⃗g · ⃗ei⟩ = R−t
278
+ K ⟨ψ,⃗g⟩ · ⃗ei
279
+ ∈ R−t
280
+ K ⟨⟨⃗g⟩⟩Y · ⃗ei ⊂ [−M, M],
281
+ M := max{|⃗y| : ⃗y ∈ R−t
282
+ K ⟨⟨⃗g⟩⟩Y }.
283
+ It follows that |⟨ψ, R−t
284
+ K ⃗g · ⃗ei⟩| ≤ M, and hence
285
+ ∥gi∥Y = ∥R−t
286
+ K ⃗g · ⃗ei∥Y ≤ M.
287
+ Combining the estimates, we have
288
+ n
289
+
290
+ i=1
291
+ ∥fi∥X∥gi∥Y ≤
292
+ n
293
+
294
+ i=1
295
+ √nM = n3/2M.
296
+ On the other hand,
297
+ ⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y ⊃ EK · ⟨⟨⃗g⟩⟩Y = RKEK · R−t
298
+ K ⟨⟨⃗g⟩⟩Y = ¯BRn · R−t
299
+ K ⟨⟨⃗g⟩⟩Y = [−M, M],
300
+ and hence
301
+ M ≤ ⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y ,
302
+ using the identification of the symmetric interval ⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y with its right end-
303
+ point in the last step. Substituting back, this completes the proof.
304
+
305
+ The following proposition contains the basic idea of bootstrapping norm bounds
306
+ to convex body bounds.
307
+ Unfortunately, it is a bit too simple for most actual
308
+ applications, but we include it as an illustrative toy model for the more serious
309
+ result to be presented after it.
310
+ 4.2. Proposition. Let X, Y be normed spaces with subspaces F ⊂ X and G ⊂ Y ,
311
+ and let t : F × G → R be a bilinear form. Consider the following conditions:
312
+
313
+ 6
314
+ T. P. HYTÖNEN
315
+ (1) For all (f, g) ∈ F × G, we have
316
+ |t(f, g)| ≤ C∥f∥X∥g∥Y .
317
+ (2) For all (⃗f,⃗g) ∈ F n × Gn, we have
318
+ |t(⃗f,⃗g)| ≤ Cn⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y .
319
+ For each n ∈ Z+, condition (1) implies condition (2) with Cn = Cn3/2.
320
+ Proof. Given ⃗f, consider the compact, convex, symmetric set
321
+ K := ⟨⟨⃗f⟩⟩X,
322
+ and denote by EK its John ellipsoid such that
323
+ EK ⊂ K ⊂ √nEK.
324
+ Case: EK is non-degenerate. Let RK be a linear transformation such that RKEK =
325
+ ¯BRn, the closed unit ball of Rn. Let (⃗ei)n
326
+ i=1 be some orthonormal basis of Rn. We
327
+ then write
328
+ t(⃗f,⃗g) = t(R−1
329
+ K RK ⃗f,⃗g) = t(RK ⃗f, R−t
330
+ K ⃗g)
331
+ =
332
+ n
333
+
334
+ i=1
335
+ t(RK ⃗f · ⃗ei, R−t
336
+ K ⃗g · ⃗ei) =:
337
+ n
338
+
339
+ i=1
340
+ t(fi, gi),
341
+ (4.3)
342
+ where fi and gi are as in Lemma 4.1.
343
+ By assumption (1) and Lemma 4.1, it follows that
344
+ |t(⃗f,⃗g)| ≤
345
+ n
346
+
347
+ i=1
348
+ |t(fi, gi)| ≤
349
+ n
350
+
351
+ i=1
352
+ C∥fi∥X∥gi∥Y ≤ Cn3/2⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y,
353
+ and this completes the proof in the case that EK is non-degenerate.
354
+ Case: EK is degenerate. Suppose then that EK is degenerate; hence H := span K
355
+ is a strict subspace of Rn. Let P denote the orthogonal projection of Rn onto H.
356
+ For each x∗ ∈ ¯BX∗, we have ⟨⃗f, x∗⟩ ∈ K ⊂ H, hence
357
+ ⟨⃗f, x∗⟩ = P⟨⃗f, x∗�� = ⟨P ⃗f, x∗⟩,
358
+ and thus ⃗f = P ⃗f. It follows that
359
+ t(⃗f,⃗g) = t(P ⃗f,⃗g) = t(⃗f, P t⃗g) = t(⃗f, P⃗g),
360
+ (4.4)
361
+ and similarly
362
+ ⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y = P⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y = ⟨⟨⃗f⟩⟩X · P t⟨⟨⃗g⟩⟩Y = ⟨⟨⃗f⟩⟩X · ⟨⟨P⃗g⟩⟩Y .
363
+ (4.5)
364
+ So it is enough to prove the claim with P⃗g in place of ⃗g, and hence we may assume
365
+ without loss of generality that also ⃗g = P⃗g. But then we can repeat the argument
366
+ in the non-degenerate case, but with Rn replaced by its subspace H throughout;
367
+ within this subspace, EK ⊂ H is non-degenerate, and the previous case applies to
368
+ give the desired result.
369
+
370
+ In the following proposition, condition (1) is a typical intermediate step that
371
+ is established in the course of proving a sparse domination result for an operator,
372
+ while condition (2) is its convex body analogue.
373
+ The proposition says that (1)
374
+ in fact implies (2). It is essentially an abstraction (from L1 averages to general
375
+ dominating norms) of an idea already present in [27, Lemma 3.2].
376
+
377
+ SOME REMARKS ON CONVEX BODY DOMINATION
378
+ 7
379
+ 4.6. Proposition. Let X, Y be normed spaces with subspaces F ⊂ X and G ⊂ Y .
380
+ Let Q0 ∈ D, and suppose that there are bilinear forms tQ : F × G → R indexed by
381
+ all Q ∈ D(Q0). Consider the following conditions:
382
+ (1) For all (f, g) ∈ F × G, there exist disjoint ˆQk ⊂ Q0 with �
383
+ k | ˆQk| ≤ ε|Q0|
384
+ and such that: whenever Qj ⊂ Q0 are disjoint, not strictly contained in
385
+ any ˆQk, and cover all ˆQk, then
386
+ |tQ0(f, g) −
387
+
388
+ j
389
+ tQj(f, g)| ≤ C∥f∥X∥g∥Y .
390
+ (2) For all (⃗f,⃗g) ∈ F n × Gn, there exist disjoint Qk ⊂ Q0 with �
391
+ k |Qk| ≤
392
+ εn|Q0| and such that
393
+ |tQ0(⃗f,⃗g) −
394
+
395
+ k
396
+ tQk(⃗f,⃗g)| ≤ Cn⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y .
397
+ For each n ∈ Z+, condition (1) implies condition (2) with εn = nε and Cn = Cn3/2.
398
+ Of course, the condition �
399
+ k |Qk| ≤ εn|Q0| is only useful for εn < 1. For a fixed
400
+ ε and εn = nε, this would only allow us to conclude (2) for boundedly many values
401
+ of n; so in order to obtain (2) for all n ∈ N, we need (1) for arbitrarily small ε > 0.
402
+ This is seldom a problem in concrete situations.
403
+ Proof. As in the proof of Proposition 4.2, given ⃗f, we consider the compact, convex,
404
+ symmetric set
405
+ K := ⟨⟨⃗f⟩⟩X,
406
+ and denote by EK its John ellipsoid such that
407
+ EK ⊂ K ⊂ √nEK.
408
+ Case: EK is non-degenerate. Let RK be a linear transformation such that RKEK =
409
+ ¯BRn, the closed unit ball of Rn. Let (⃗ei)n
410
+ i=1 be some orthonormal basis of Rn. As
411
+ in (4.3), we then write
412
+ tQ0(⃗f,⃗g) = tQ0(R−1
413
+ K RK ⃗f,⃗g) = tQ0(RK ⃗f, R−t
414
+ K ⃗g)
415
+ =
416
+ n
417
+
418
+ i=1
419
+ tQ0(RK ⃗f · ⃗ei, R−t
420
+ K ⃗g · ⃗ei) =:
421
+ n
422
+
423
+ i=1
424
+ tQ0(fi, gi),
425
+ (4.7)
426
+ where fi and gi are as in Lemma 4.1.
427
+ It is from this point on that the present proof requires some elaboration compared
428
+ to the proof of Proposition 4.2. According to assumption (1), for each of the pairs
429
+ of functions fi := RK ⃗f · ⃗ei and gi := R−t
430
+ K ⃗g · ⃗ei, we can find disjoint ˆQi,k ⊂ Q0
431
+ with �
432
+ k | ˆQi,k| ≤ ε|Q0| and such that: whenever Qj ⊂ Q0 are disjoint, not strictly
433
+ contained in any ˆQi,k, and cover all ˆQi,k, then
434
+ |tQ0(fi, gi) −
435
+
436
+ j
437
+ tQj(fi, gi)| ≤ C∥fi∥X∥gi∥Y .
438
+ (4.8)
439
+ We make the following specific choice of the cubes Qj: Let {Qj}∞
440
+ j=1 be the maximal
441
+ cubes among { ˆQi,k}1≤k<∞
442
+ 1≤i≤n . Then
443
+
444
+ j
445
+ |Qj| ≤
446
+ n
447
+
448
+ i=1
449
+
450
+
451
+ k=1
452
+ | ˆQi,k| ≤
453
+ n
454
+
455
+ k=1
456
+ ε|Q0| = nε|Q0|,
457
+
458
+ 8
459
+ T. P. HYTÖNEN
460
+ and (4.8) holds with these Qj for each i = 1, . . . , n. Using (4.7), and observing that
461
+ it also holds with Q0 replaced by Qj, it follows that
462
+ |tQ0(⃗f,⃗g) −
463
+
464
+ j
465
+ tQj(⃗f,⃗g)| ≤
466
+ n
467
+
468
+ i=1
469
+ |tQ0(fi, gi) −
470
+
471
+ j
472
+ tQj(fi, gi)|
473
+ ≤ C
474
+ n
475
+
476
+ i=1
477
+ ∥fi∥X∥gi∥Y ≤ Cn3/2⟨⟨⃗f⟩⟩X · ⟨⟨⃗g⟩⟩Y ,
478
+ using Lemma 4.1 in the last step. This completes the proof under the assumption
479
+ that EK is non-degenerate.
480
+ Case: EK is degenerate. This follows the corresponding case in the proof of Propo-
481
+ sition 4.2 almost verbatim. Like there, let H := span K, and let P denote the
482
+ orthogonal projection of Rn onto H. We then have (4.4) for each t = tQ, as well as
483
+ (4.5). So it is again enough to prove the claim with P⃗g in place of ⃗g, and hence we
484
+ may assume without loss of generality that also ⃗g = P⃗g. But then we can repeat
485
+ the argument in the non-degenerate case, but with Rn replaced by its subspace H
486
+ throughout; within this subspace, EK ⊂ H is non-degenerate, and the previous case
487
+ applies to give the desired result.
488
+
489
+ 5. From single-scale bounds to global bounds
490
+ This passage is by now a relatively routine part of the theory, but we include some
491
+ details for completeness. The following lemma is again stated in an operator-free,
492
+ and even function-free way, simply as a criterion for dominating a real number by
493
+ sum over a sparse collection. A more concrete situation for applying this criterion
494
+ is presented afterwards.
495
+ 5.1. Lemma. Consider numbers a ∈ R and aQ, cQ ∈ R indexed by dyadic cubes
496
+ Q ∈ D, with the following properties:
497
+ (1) There is a family Q of disjoint dyadic cubes such that
498
+ a =
499
+
500
+ Q∈Q
501
+ aQ.
502
+ (2) For some δ ∈ (0, 1) and each Q ∈ D that is contained in some P ∈ Q,
503
+ there is a family of disjoint Qk ∈ D(Q) such that
504
+
505
+ k
506
+ |Qk| ≤ δ|Q|,
507
+ ���aQ −
508
+
509
+ k
510
+ aQk
511
+ ��� ≤ cQ.
512
+ (3) For some α, C ∈ [1, ∞) and each Q ∈ D that is contained in some P ∈ Q,
513
+ we have |aQ| ≤ C|Q|α.
514
+ Then there is a (1 − δ)-sparse family of dyadic cubes S such that
515
+ S ⊂
516
+
517
+ Q∈Q
518
+ D(Q),
519
+ |a| ≤
520
+
521
+ S∈S
522
+ cS.
523
+ 5.2. Remark. If Q = {Q0} consists of a single cube only, then condition (1) is
524
+ automatic with a = aQ0.
525
+
526
+ SOME REMARKS ON CONVEX BODY DOMINATION
527
+ 9
528
+ Proof. Let Q ⊂ D be a disjoint collection provided by assumption (1). For each
529
+ P ∈ Q, denote S0(P) := {P}.
530
+ Assuming that a disjoint Sj(P) ⊂ D(P) has
531
+ already been constructed, for each Q ∈ Sj(P), let S ′(Q) := {Qk}∞
532
+ k=1 be the
533
+ collection provided by assumption (2), and let Sj+1(P) := �
534
+ Q∈Sj(P ) S ′(Q). Let
535
+ also S (P) := �∞
536
+ j=0 Sj(P), and S := �
537
+ P ∈Q S (P).
538
+ For Q ∈ S , let E(Q) := Q \ �
539
+ R∈S ′(Q) R. From the construction it is clear that
540
+ these sets E(Q) are pairwise disjoint, and by assumption (2) we have |E(Q)| ≥
541
+ (1 − δ)|Q|.
542
+ By telescoping, for each P ∈ Q, we have
543
+ aP =
544
+ k−1
545
+
546
+ j=0
547
+
548
+ Q∈Sj(P )
549
+
550
+ aQ −
551
+
552
+ R∈S ′(Q)
553
+ aR
554
+
555
+ +
556
+
557
+ S∈Sk(P )
558
+ aS.
559
+ and hence, using assumptions (2) and (3),
560
+ |aP | ≤
561
+ k−1
562
+
563
+ j=1
564
+
565
+ Q∈Sj(P )
566
+ cQ +
567
+
568
+ S∈Sk(P )
569
+ C|S|α
570
+ By an elementary inequality and induction, we have
571
+
572
+ S∈Sk(P )
573
+ |S|α ≤
574
+
575
+
576
+ S∈Sk(P )
577
+ |S|
578
+ �α
579
+ ≤ (δk|P|)α,
580
+ and hence
581
+ |aP | ≤ lim
582
+ k→∞
583
+ k−1
584
+
585
+ j=1
586
+
587
+ Q∈Sj(P )
588
+ cQ =
589
+
590
+ Q∈S (P )
591
+ cQ.
592
+ Substituting this into assumption (1), we obtain the claim.
593
+
594
+ 5.3. Lemma. Suppose that t is a bilinear form on L∞
595
+ c (Rd; E) × L∞
596
+ c (Rd; H), and
597
+ moreover bounded with respect to the norm of Lp(Rd; E) × Lq(Rd; H) for some
598
+ exponents with 1/p+1/q ≥ 1. For (⃗f,⃗g) ∈ L∞
599
+ c (Rd; E)n ×L∞
600
+ c (Rd; H)n, the numbers
601
+ a = t(⃗f,⃗g),
602
+ aQ = t(13Q ⃗f, 1Q⃗g)
603
+ satisfy assumptions (1) and (3) of Lemma 5.1, provided that D is a dyadic system
604
+ without quadrants.
605
+ Proof. Since D is without quadrants, each Q ∈ D is contained in some (large
606
+ enough) R ∈ D that contains supp ⃗f. Thus the collection Q of maximal cubes
607
+ that do not contain supp ⃗f form a cover of Rd.
608
+ By maximality, it follows that
609
+ supp ⃗f ⊂ 3Q, and hence ⃗f = 13Q ⃗f for every Q ∈ Q. On the other hand, any
610
+ Q with ℓ(Q) < diam(supp ⃗f) cannot contain supp ⃗f; hence any Q with ℓ(Q) <
611
+ 1
612
+ 2 diam(supp ⃗f) cannot be among the maximal cubes Q, and thus every Q ∈ Q
613
+ will have to satisfy ℓ(Q) ≥ 1
614
+ 2 diam ⃗f. Since ⃗g ∈ L∞
615
+ c (Rd; F)n, there are only finitely
616
+ many Q ∈ Q with 1Q⃗g ̸= 0. Hence, without any issues of convergence, we can write
617
+ t(⃗f,⃗g) = t
618
+
619
+ ⃗f,
620
+
621
+ Q∈Q
622
+ 1Q⃗g
623
+
624
+ =
625
+
626
+ Q∈Q
627
+ t(⃗f, 1Q⃗g) =
628
+
629
+ Q∈Q
630
+ t(13Q ⃗f, 1Q⃗g),
631
+ which is condition (1).
632
+ If n = 1, the assumed boundedness directly implies that
633
+ |t(13Qf, 1Qg)| ≤ C∥13Qf∥Lp(Rd;E)∥1Qg∥Lq(Rd;F ) ≤ C3d/p∥f∥∞∥g∥∞|Q|1/p+1/q,
634
+
635
+ 10
636
+ T. P. HYTÖNEN
637
+ where α := 1/p + 1/q ≥ 1, as required for condition (3). In general, if (⃗ei)n
638
+ i=1 is an
639
+ orthonormal basis of Rn and ⃗f = �n
640
+ i=1 fi⃗ei and similarly for ⃗g, we have
641
+ |t(13Q ⃗f, 1Q⃗g)| ≤
642
+ n
643
+
644
+ i=1
645
+ |t(13Qfi, 1Qgi)| ≤ Cn3d/p∥⃗f∥∞∥⃗g∥∞|Q|1/p+1/q,
646
+ using the previous bound in each component and trivial bounds like ∥fi∥∞ ≤ ∥⃗f∥∞.
647
+
648
+ We are finally ready to state a semi-generic convex body domination principle.
649
+ Condition (1) below is a typical intermediate estimate in a number of sparse dom-
650
+ ination proofs for different operators. The conclusion is that it is already good
651
+ enough to conclude convex body domination as well.
652
+ 5.4. Corollary. Let E and H be Banach spaces, and suppose that t is a bilinear
653
+ form defined on F × G := L∞
654
+ c (Rd; E) × L∞
655
+ c (Rd; H) and bounded with respect to
656
+ the norm of Lp(Rd; E) × Lq(Rd; H) for some exponents with 1/p + 1/q ≥ 1, and
657
+ suppose that
658
+ (1) for all (f, g) ∈ F × G and all Q ∈ D, there are disjoint ˆQk ⊂ Q with
659
+
660
+ k | ˆQk| ≤ ε|Q| and such that: whenever Qj ⊂ Q are disjoint, not strictly
661
+ contained in any ˆQk, and cover all ˆQk, then
662
+ |t(13Qf, 1Qg) −
663
+
664
+ j
665
+ t(13Qjf, 1Qjg)| ≤ c∥f∥X(Q)∥g∥Y (Q)|Q|
666
+ (5.5)
667
+ for some norms ∥ ∥X(Q) on L∞
668
+ c (Rd; E) and ∥ ∥Y (Q) on L∞
669
+ c (Rd; H).
670
+ Then for all (⃗f,⃗g) ∈ F n × Gn, there is a (1 − εn)-sparse collection S ⊂ D such
671
+ that
672
+ |t(⃗f,⃗g)| ≤ cn
673
+
674
+ S∈S
675
+ ⟨⟨⃗f⟩⟩X(S) · ⟨⟨⃗g⟩⟩Y (S)|S|,
676
+ where εn = nε and cn = cn3/2.
677
+ Proof. Let us begin by considering a fixed cube Q = Q0 ∈ D. We observe that
678
+ assumption (1) of the present corollary coincides with condition (1) of Proposition
679
+ 4.6 with
680
+ tQ(f, g) := t(13Qf, 1Qg),
681
+ C = c|Q|,
682
+ X = X(Q),
683
+ Y = Y (Q).
684
+ Hence the said proposition, applied to each fixed Q = Q0 ∈ D at a time, implies:
685
+ (2) For all (⃗f,⃗g) ∈ L∞
686
+ c (Rd; E)n ×L∞
687
+ c (Rd; H)n and all Q ∈ D, there are disjoint
688
+ Qk ⊂ Q with �
689
+ k |Qk| ≤ εn|Q| and such that
690
+ |t(13Q ⃗f, 1Q⃗g) −
691
+
692
+ j
693
+ t(13Qj ⃗f, 1Qj⃗g)| ≤ cn⟨⟨⃗f⟩⟩X(Q) · ⟨⟨g⟩⟩Y (Q)|Q|,
694
+ where εn = nε and cn = cn3/2.
695
+ Let us then consider a fixed pair (⃗f,⃗g) ∈ L∞
696
+ c (Rd; E)n×L∞
697
+ c (Rd; H)n. We observe
698
+ that condition (2) above coincides with condition (2) of Lemma 5.1 with the choices
699
+ aQ = t(13Q ⃗f, 1Q⃗g),
700
+ cQ = cn⟨⟨⃗f⟩⟩X(Q) · ⟨⟨g⟩⟩Y (Q)|Q|,
701
+ δ = εn.
702
+ On the other hand, Lemma 5.3 shows that these same aQ, together with a :=
703
+ t(⃗f,⃗g), also satisfy conditions (1) and (3) of Lemma 5.1. Thus, all assumptions,
704
+ and hence the conclusions, of Lemma 5.1 are valid for the said quantities, and these
705
+
706
+ SOME REMARKS ON CONVEX BODY DOMINATION
707
+ 11
708
+ conclusions agree with the claims of the result that we are proving. The proof is
709
+ thus complete.
710
+
711
+ To facilitate the discussion of consequences of Corollary 5.4, we give
712
+ 5.6. Definition. Suppose that a pair of normed spaces (X(Q), Y (Q)) is associated
713
+ to every dyadic cube Q ∈ D. We say that a bilinear form t : F ×G → R satisfies the
714
+ (X(Q), Y (Q)) convex body domination of order n ∈ N if F ⊆ X(Q) and G ⊆ Y (Q)
715
+ for every Q ∈ D, and if for every (f, g) ∈ F n×Gn, there exists a δn-sparse collection
716
+ S ⊂ D such that
717
+ |t(⃗f,⃗g)| ≤ Cn
718
+
719
+ Q∈S
720
+ |Q|⟨⟨⃗f⟩⟩X(Q) · ⟨⟨⃗g⟩⟩Y (Q).
721
+ We say that t : F × G → R satisfies the (X(Q), Y (Q)) convex body domination if
722
+ it satisfies this for every n ∈ N. We say that an operator T : F → G∗ satisfies these
723
+ properties if its associated bilinear form t(f, g) := ⟨T f, g⟩ does.
724
+ Let us now consider some examples:
725
+ 5.7. Example (Calderón–Zygmund operators). Let T be a Dini–Calderón–Zygmund
726
+ operator, i.e., T is L2(Rd) bounded and has the representation
727
+ T f(x) =
728
+ ˆ
729
+ Rd K(x, y)f(y) dy,
730
+ x /∈ supp f,
731
+ where |K(x, y)| ≤ c|x − y|−d and, for |x − x′| ≤ 1
732
+ 2|x − y|,
733
+ |K(x, y) − K(x′, y)| + |K(y, x) − K(y, x′)| ≤ ω
734
+ �|x − x′|
735
+ |x − y|
736
+
737
+ 1
738
+ |x − y|d ,
739
+ (5.8)
740
+ where ω : [0, 1
741
+ 2] → [0, ∞) is increasing, subadditive, and satisfies the Dini condition
742
+ ˆ 1/2
743
+ 0
744
+ ω(t) dt
745
+ t < ∞.
746
+ Then (1) of Corollary 5.4 holds for t(f, g) = ⟨T f, g⟩ and E = H = R and X(Q) =
747
+ Ł1(3Q), Y (Q) = Ł1(Q), even in a stronger form. Namely, on the left oif (5.5), we
748
+ have
749
+ ���
750
+
751
+ T (13Qf), 1Qg
752
+
753
+
754
+
755
+ j
756
+ ⟨T (13Qjf), 1Qjg⟩
757
+ ���
758
+
759
+ ���1QT (13Qf) −
760
+
761
+ j
762
+ 1QjT (13Qjf)
763
+ ���
764
+ L∞(Q)∥g∥L1(Q),
765
+ (5.9)
766
+ and even the L∞ norm here is dominated by ∥f∥Ł1(3Q), as essentially shown in [24,
767
+ (3.4)]. (Strictly speaking, [24, (3.4)] is formally slightly weaker, but a straightfor-
768
+ ward modification of the argument gives the desired version, as observed in [27,
769
+ Proof of Theorem 3.4].) Thus Corollary 5.4 says that a Dini–Calderón–Zygmund
770
+ operator satisfies (Ł1(3Q), Ł1(Q)) convex body domination, but this was of course
771
+ already known from [27] by essentially the same argument.
772
+ 5.10. Example (Banach space -valued Calderón–Zygmund operators). Let T be as
773
+ in Example 5.7 but now acting on the Bochner space L2(Rd; E) of Banach space E
774
+ -valued functions, and with an operator-valued kernel K(x, y) ∈ L (E) satisfying
775
+ the same estimates as above but for the operator norm in place of the absolute value,
776
+ e.g., ∥K(x, y)∥L (E) ≤ c|x − y|−d. It is in general a difficult problem to check the
777
+
778
+ 12
779
+ T. P. HYTÖNEN
780
+ L2(Rd; E)-boundedness of such an operator, but we now take this as an assumption.
781
+ For g ∈ L2(Rd; E∗), we have (5.9) with L∞(Q; E) and L1(Q; E∗) in place of L∞(Q)
782
+ and L1(Q), and the same proof of [24, (3.4)] (with same modifications pointed
783
+ out in [27, Proof of Theorem 3.4]) shows that the L∞(Q; E) norm is dominated
784
+ by ∥f∥Ł1(3Q;E). Thus we find that (1) of Corollary 5.4 also holds with X(Q) =
785
+ Ł1(3Q; E) and Y (Q) = Ł1(Q; E∗).
786
+ The resulting sparse domination (i.e., case
787
+ n = 1 of the conclusion of Corollary 5.4) was known before, first in [15] for a
788
+ slightly smaller class of kernels, and since [22, discussion on page 193] in the present
789
+ generality. However, the convex body domination in this Banach space -valued
790
+ setting is completely new.
791
+ 5.11. Example (Operators with grand maximal function control). Let 1 ≤ q ≤ r
792
+ and s ≥ 1. Suppose that T is a linear operator
793
+ T : L∞
794
+ c (Rd) → L1
795
+ loc(Rd),
796
+ (5.12)
797
+ that T has weak type (q, q), and that the bi-sublinear maximal operator
798
+ MT (f, g)(x) := sup
799
+ Q∋x
800
+
801
+ Q
802
+ |T (1(3Q)cf)| · |g|
803
+ maps boundedly MT : Lr ×Ls → Lν,∞, where 1/ν = 1/r+1/s. Then condition (1)
804
+ of Corollary 5.4 holds for t(f, g) = ⟨T f, g⟩ and E = H = R and X(Q) = Łr(3Q),
805
+ Y (Q) = Łs(Q). This result is essentially contained in the proof of [25, Theorem
806
+ 3.1], where it appears as an intermediate step towards the sparse domination (i.e.,
807
+ case n = 1 of the conclusion of Corollary 5.4) for such operators. The extension
808
+ to convex body domination was recently achieved in [26], so Corollary 5.4 only
809
+ reproduces a known result here. A key example of concrete operators satisfying
810
+ these assumptions consists of rough homogeneous singular integrals
811
+ T f(x) =
812
+ ˆ
813
+ Rd
814
+ Ω(y)
815
+ |y|d f(x − y) dy,
816
+ where Ω(y) = Ω(y/|y|) is a bounded function with vanishing average over the unit
817
+ sphere.
818
+ As in Example 5.10, the abstract result above, involving a priori bounds of T
819
+ and MT , extends straightforwardly to the Banach space -valued setting; however,
820
+ verifying these bounds for concrete operators such as the rough homogeneous sin-
821
+ gular integrals may present a problem in this generality, since the scalar-valued
822
+ versions depend on deep results of Seeger [30], which so far lack a Banach space
823
+ -valued extension.
824
+ 6. Matrix-weighted inequalities for Banach space -valued operators
825
+ A matrix weight is a locally integrable function W : Rd → Rn×n that is a.e.
826
+ positive definite -valued. The space Lp(W) consists of all measurable ⃗f : Rd → Rn
827
+ such that W 1/p ⃗f ∈ Lp(Rd; Rn), and ∥⃗f∥Lp(W) := ∥W 1/p ⃗f∥Lp(Rd;Rn).
828
+ For a Banach space E, we extend this definition in a natural way: The space
829
+ Lp(W; En) consists of all measurable ⃗f : Rd → En such that W 1/p ⃗f ∈ Lp(Rd; En),
830
+ and ∥⃗f∥Lp(W;En) := ∥W 1/p ⃗f∥Lp(Rd;En). Here, at each x ∈ Rd, we define (W 1/p ⃗f)(x) ∈
831
+ En as the vector with components (W 1/p ⃗f)i(x) := �n
832
+ j=1(W 1/p(x))ijfj(x), i.e., the
833
+ matrix multiplication on Rn is extended to En in the natural way.
834
+
835
+ SOME REMARKS ON CONVEX BODY DOMINATION
836
+ 13
837
+ We now concentrate on p = 2. For two matrix weights W, V : Rd → Rn×n, we
838
+ define
839
+ [W, V ]A2 := sup
840
+ Q
841
+ |⟨W⟩1/2
842
+ Q ⟨V ⟩1/2
843
+ Q |2,
844
+ [W]A2 := [W, W −1]A2,
845
+ where we denote the operator norm in Rn×n ≃ L (Rn) simply by | |. We denote by
846
+ A2(Rd; Rn) the class of matrix weights W : Rd → Rn×n for which [W]A2 < ∞. We
847
+ also define
848
+ [W]A∞ := sup
849
+ ⃗e∈Rn[x �→ ⃗e · W(x)⃗e]A∞,
850
+ where on the right we have A∞ “norms” of some scalar weights, defined as usual by
851
+ [w]A∞ := sup
852
+ Q
853
+ 1
854
+ w(Q)
855
+ ˆ
856
+ Q
857
+ M(1Qw).
858
+ According to [27, Remark 4.4], we have
859
+ [W]A∞ ≤ 4[W]A2.
860
+ (6.1)
861
+ As a consequence of the Banach space -valued convex body domination from
862
+ Example 5.10, we obtain:
863
+ 6.2. Theorem. Let E be a Banach space, and T ∈ L (L2(Rd; E)) be a Dini–
864
+ Calderón–Zygmund operator with L (E)-valued kernel. For any W ∈ A2(Rd; Rn),
865
+ the operator T extends boundedly to L2(W; En) and satisfies
866
+ ∥T ∥L(L2(W;En)) ≤ cn,T ([W]A2[W]A∞[W −1]A∞)1/2 ≤ cn,T [W]3/2
867
+ A2 .
868
+ Note that Theorem 6.2 applies to a general Banach space E, but contains the
869
+ (difficult) a priori boundedness hypothesis that T ∈ L (L2(Rd; E)). Concrete ex-
870
+ amples are available in the class of UMD spaces, treated in detail in [18].
871
+ 6.3. Corollary. Let E be a UMD space, and T ∈ L (L2(Rd)) be a scalar-valued
872
+ Calderón–Zygmund operator with a Hölder-type modulus of continuity ω(t) = ctδ,
873
+ δ ∈ (0, 1] in (5.8). For any W ∈ A2(Rd; Rn), the operator T extends boundedly to
874
+ L2(W; En) and satisfies
875
+ ∥T ∥L(L2(W;En)) ≤ cn,E,T ([W]A2[W]A∞[W −1]A∞)1/2 ≤ cn,E,T [W]3/2
876
+ A2 .
877
+ In particular, this estimate holds when T is the classical Hilbert transform.
878
+ Proof. We reduce Corollary 6.3 to Theorem 6.2 with the help of the T (1) theorem of
879
+ David and Journé [12], and its extension to UMD spaces by Figiel [14]. By the (easy
880
+ half of) the David–Journé theorem, the assumptions on T imply that that T satisfies
881
+ the so-called weak boundedness property as well as T (1), T ∗(1) ∈ BMO(Rd). Then,
882
+ by Figiel’s theorem, an operator satisfying these conditions and the Calderón–
883
+ Zygmund kernel assumptions extends boundedly to L2(Rd; E), for any UMD space
884
+ E. Thus T satisfies the assumptions, and hence the conclusions, of Theorem 6.2,
885
+ and we are done.
886
+
887
+ These results, even just for the Hilbert transform, and even in their qualitative
888
+ form (i.e., just concluding the boundedness of T , without specifying any concrete
889
+ bound for the norm), are completely new in the combined setting of matrix weights
890
+ and Banach spaces. For E = R and the Hilbert transform T , the qualitative form
891
+ of Corollary 6.3 is due to Treil and Volberg [31]. The quantitative form for E = R
892
+ was obtained by Nazarov et al. [27], and this is the best that is known at the time
893
+ of writing. For scalar-weights, the power 3/2 can be replaced by 1 [16], and the
894
+
895
+ 14
896
+ T. P. HYTÖNEN
897
+ product of [W]A∞ and [W −1]A∞ by their sum [19], but extending these to the
898
+ general matrix case consists of the outstanding open “matrix A2 conjecture”.
899
+ Turning to the proof of Theorem 6.2, we begin with:
900
+ 6.4. Remark (Without loss of generality, we assume that E is reflexive). Since
901
+ Theorem 6.2 is about the bounded extension of an operator, it suffices to prove an a
902
+ priori estimate on a dense subspace of functions ⃗f. In particular, we can assume that
903
+ each component fi takes its values in a finite-dimensional subspace of E. Since any
904
+ finite-dimensional space is reflexive, we make the standing assumption, without loss
905
+ of generality, that E is reflexive. (Note that this is automatic in Corollary 6.3 in any
906
+ case, since UMD spaces are reflexive [18, Theorem 4.3.3].) Under this assumption,
907
+ we have L1(Q; E)∗ = L∞(Q; E∗) (see [18, Theorems 1.3.10 and 1.3.21]), which is
908
+ convenient in view of calculations involving the convex bodies ⟨⟨ ⟩⟩Ł1(Q;E).
909
+ 6.5. Lemma.
910
+ |Q|⟨⟨W 1/2 ⃗f⟩⟩Ł1(3Q;E) · ⟨⟨V 1/2⃗g⟩⟩Ł1(Q;E∗)
911
+
912
+ ˆ �
913
+ 1Q(x)
914
+
915
+ 3Q
916
+ |V 1/2(x)W 1/2(y)|∥⃗f(y)∥En dy
917
+
918
+ ∥⃗g(x)∥ ⃗E∗n dx
919
+ Proof. Under the standing assumption from Remark 6.4, we evaluate consider a
920
+ generic element of the convex body on the left with φ ∈ ¯BL∞(Q;E∗) and ψ ∈
921
+ ¯BL∞(Q;E):
922
+ |Q|
923
+ ���
924
+
925
+ 3Q
926
+ W 1/2(y)⟨⃗f(y), φ(y)⟩ dy ·
927
+
928
+ Q
929
+ V 1/2(x)⟨⃗g(x), ψ(x)⟩ dx
930
+ ���
931
+ = |Q|
932
+ ���
933
+
934
+ Q
935
+
936
+ 3Q
937
+ V 1/2(x)W 1/2(y)⟨⃗f(y), φ(y)⟩ · ⟨⃗g(x), ψ(x)⟩ dy dx
938
+ ���
939
+
940
+ ˆ
941
+ Q
942
+
943
+ 3Q
944
+ |V 1/2(x)W 1/2(y)|∥⃗f(y)∥En∥⃗g(x)∥ ⃗E∗n dy dx.
945
+
946
+ Summing over a sparse collection, we obtain
947
+
948
+ Q∈S
949
+ |Q|⟨⟨W 1/2 ⃗f⟩⟩Ł1(3Q;E) · ⟨⟨V 1/2⃗g⟩⟩Ł1(Q;E∗)
950
+
951
+ ˆ � �
952
+ Q∈S
953
+ 1Q(x)
954
+
955
+ 3Q
956
+ |V 1/2(x)W 1/2(y)|∥⃗f(y)∥En dy
957
+
958
+ ∥⃗g(x)∥ ⃗E∗n dx
959
+ =:
960
+ ˆ
961
+ ˜L(∥⃗f∥En)(x)∥⃗g(x)∥ ⃗E∗n dx,
962
+ (6.6)
963
+ where ˜L, here acting on the scalar-valued function y �→ ∥⃗f(y)∥En, is an operator
964
+ denoted by the same symbol in [27, (5.8)]. By [27, Lemma 5.6], we have
965
+ ∥˜L∥L (L2) ≤ C([W, V ]A2[W]A∞[V ]A∞)1/2.
966
+ (6.7)
967
+ By duality and standard changes of variables, which present no essential differ-
968
+ ence in the Banach space -valued setting, an estimate of the form
969
+ ∥T ⃗f∥L2(V ;En) ≤ N∥⃗f∥L2(V ;En)
970
+ is equivalent to
971
+ ⟨T (W 1/2 ⃗f), V 1/2⃗g⟩ ≤ N∥⃗f∥L2(Rd;En)∥⃗g∥L2(Rd;E∗n).
972
+ (6.8)
973
+
974
+ SOME REMARKS ON CONVEX BODY DOMINATION
975
+ 15
976
+ If T is an in Theorem 6.2, it satisfies the (Ł1(3Q; E), Ł1(Q; E∗)) convex body dom-
977
+ ination by Example 5.10, which means that the left-hand side of (6.8) is dominated
978
+ by the left-hand side of (6.6), and hence, by (6.6) and (6.7), we have
979
+ N ≤ cn,T ([W, V ]A2[W]A∞[V ]A∞)1/2.
980
+ This is the desired bound, and concludes the proof of Theorem 6.2.
981
+ 7. Convex domination and generalised commutators
982
+ For an operator T and two vector functions ⃗a = (a1, . . . , an) and ⃗b = (b1, . . . , bn),
983
+ let us consider the operator
984
+ ⃗a · T⃗b : f �→ ⃗a · T (⃗bf) =
985
+ n
986
+
987
+ i=1
988
+ aiT (bif).
989
+ We are mainly interested in the boundedness on Lp(Rd), or a weighted Lp(w),
990
+ or between two such spaces, and the case when T is a singular integral operator
991
+ bounded on the space. However, we do not require that ai, bi ∈ L∞(Rd), and hence
992
+ the pointwise multipliers f �→ bif and g �→ aig, and the compositions f �→ aiT (bif),
993
+ may be unbounded operators. Nevertheless, their sum ⃗a · T⃗b may still be bounded,
994
+ thanks to cancellation between different terms.
995
+ A case that has been much studied in the literature consists of ⃗b = (1, b) and
996
+ ⃗a = (b, −1), in which case
997
+ ⃗a · T (⃗bf) = bT f − T (bf) = [b, T ]f
998
+ is the commutator of b and T , whose Lp(Rd)-boundedness is characterised by b ∈
999
+ BMO(Rd), the space of functions of bounded mean oscillation, which is strictly
1000
+ larger than L∞(Rd), and contains in particular functions like b(x) = log |x|.
1001
+ By dualising with a function g, and denoting by t(f, g) = ⟨T f, g⟩ the bilinear
1002
+ form of T , we arrive at
1003
+ ⟨⃗a · T (⃗bf), g⟩ =
1004
+ n
1005
+
1006
+ i=1
1007
+ ⟨T (bif), aig⟩ = t(⃗bf,⃗ag),
1008
+ where the action of the bilinear form is extended to vector-valued functions as
1009
+ before. To be precise, if t in defined on F × G, we should now require that
1010
+ f ∈ F⃗b := {f ∈ F : bif ∈ F for all i = 1, . . . , n},
1011
+ and g ∈ G⃗a, defined similarly. If F ⊇ L∞
1012
+ c (Rd), then clearly F⃗b contains in particular
1013
+ all f ∈ L∞
1014
+ c (Rd) with supp f ⊆ EN := {|⃗b| ≤ N} for any N ∈ N. For a.e. finite-
1015
+ valued bi, the union �
1016
+ N∈N EN covers Rd up to a null set, it is immediate that F⃗b
1017
+ is dense in any Lp(w) with finite p.
1018
+ 7.1. Lemma. Suppose that T satisfies the (X(Q), Y (Q)) convex body domination.
1019
+ Then for all relevant functions, we have
1020
+ |⟨⃗a · T (⃗bf), g⟩| ≤ C
1021
+
1022
+ Q∈S
1023
+ |Q|⟨⟨⃗bf⟩⟩X(Q) · ⟨⟨⃗ag⟩⟩Y (Q).
1024
+ (7.2)
1025
+ Proof. This is immediate by applying definition to ⃗f = ⃗bf and ⃗g = ⃗ag.
1026
+
1027
+ We take a closer look at the case when X(Q) = Y (Q) = Ł1(γQ).
1028
+
1029
+ 16
1030
+ T. P. HYTÖNEN
1031
+ 7.3. Lemma. For all s, t ∈ (1, ∞) and all functions in the relevant spaces, we have
1032
+ ⟨⟨⃗bf⟩⟩Ł1(Q) · ⟨⟨⃗ag⟩⟩Ł1(Q) ≤ ∥(x, y) �→ ⃗a(x) ·⃗b(y)∥Ł(s,t)
1033
+ min (Q×Q)∥f∥Łt′ (Q)∥g∥Łs′(Q),
1034
+ where
1035
+ ∥F∥Ł(s,t)
1036
+ min (Q×Q) :=
1037
+
1038
+
1039
+
1040
+
1041
+
1042
+ � ffl
1043
+ Q
1044
+ � ffl
1045
+ Q |F(x, y)|s dx
1046
+ �t/s
1047
+ dy
1048
+ �1/t
1049
+ ,
1050
+ if s ≤ t,
1051
+ � ffl
1052
+ Q
1053
+ � ffl
1054
+ Q |F(x, y)|t dy
1055
+ �s/t
1056
+ dx
1057
+ �1/s
1058
+ ,
1059
+ if t ≤ s.
1060
+ Proof. The generic element of ⟨⟨⃗bf⟩⟩X(Q) · ⟨⟨⃗ag⟩⟩Y (Q) has the following form, where
1061
+ φ, ψ ∈ ¯BL∞(Q):
1062
+
1063
+ Q
1064
+ ⃗b(y)f(y)φ(y) dy ·
1065
+
1066
+ Q
1067
+ ⃗a(x)g(x)ψ(x) dx
1068
+ =
1069
+
1070
+ Q
1071
+
1072
+ Q
1073
+ (⃗a(x) ·⃗b(y))f(y)g(x)φ(y)ψ(x) dx dy,
1074
+ and hence
1075
+ ⟨⟨⃗bf⟩⟩X(Q) · ⟨⟨⃗ag⟩⟩Y (Q) ≤
1076
+
1077
+ Q
1078
+
1079
+ Q
1080
+ |⃗a(x) ·⃗b(y)||f(y)||g(x)| dx dy
1081
+ ≤ ∥(x, y) �→ a(x) · b(y)∥Z∥(x, y) �→ f(y)g(x)∥Z∗,
1082
+ for either choice of
1083
+ (Z, Z∗) ∈ {(Łs
1084
+ x(Q; Łt
1085
+ y(Q)), Łs′
1086
+ x (Q; Łt′
1087
+ y (Q))), (Łt
1088
+ y(Q; Łs
1089
+ x(Q)), Łt′
1090
+ y (Q; Łs′
1091
+ x (Q)))},
1092
+ by Hölder’s inequality for mixed-norm Lp spaces. By Fubini’s theorem, we have
1093
+ ∥(x, y) �→ f(x)g(y)∥Z∗ = ∥f∥Łt′ (Q)∥g∥Łs′(Q)
1094
+ in either case, and hence, taking the minimum over the two choices of Z, we arrive
1095
+ at the factor
1096
+ min
1097
+ Z ∥(x, y) �→ b(x) · a(y)∥Z = ∥(x, y) �→ ⃗b(x) · ⃗a(y)∥Ł(s,t)
1098
+ min (Q×Q).
1099
+
1100
+ 7.4. Proposition. Let T be an operator that satisfies the (Ł1(γQ), Ł1(γQ)) convex
1101
+ body domination. Let ⃗a,⃗b ∈ L1
1102
+ loc(Rd)n be functions such that
1103
+ As,t := sup
1104
+ Q
1105
+ ∥(x, y) �→ ⃗a(x) ·⃗b(y)∥Ł(s,t)
1106
+ min (Q×Q) < ∞.
1107
+ Then ⃗a·T⃗b extends to a bounded operator on Lp(Rd) for all p ∈ (t′, s). In particular,
1108
+ if As := As,s < ∞ for some s ∈ (2, ∞), then ⃗a · T⃗b extends boundedly to L2(Rd).
1109
+
1110
+ SOME REMARKS ON CONVEX BODY DOMINATION
1111
+ 17
1112
+ Proof. Combining Lemmas 7.1 and 7.3, we find that
1113
+ |⟨⃗aT (⃗bf), g⟩| ≤ C
1114
+
1115
+ Q∈S
1116
+ |Q|⟨⟨⃗bf⟩⟩Ł1(γQ) · ⟨⟨⃗ag⟩⟩Ł1(γQ)
1117
+ ≤ C
1118
+
1119
+ Q∈S
1120
+ |Q|∥(x, y) �→ a(x) · b(y)∥Ł(s,t)
1121
+ min (Q×Q)∥f∥Łt′ (Q)∥g∥Łs′(Q)
1122
+ ≤ C
1123
+
1124
+ Q∈S
1125
+ |E(Q)|
1126
+ δ
1127
+ As,t inf
1128
+ Q Mt′f inf
1129
+ Q Ms′g
1130
+ ≤ CAs,t
1131
+ δ
1132
+
1133
+ Q∈S
1134
+ ˆ
1135
+ E(Q)
1136
+ Mt′fMs′g ≤ CAs,t
1137
+ δ
1138
+ ˆ
1139
+ Rd Mt′fMs′g
1140
+ ≤ CAs,t
1141
+ δ
1142
+ ∥Mt′f∥Lp(Rd)∥Ms′g∥Lp′(Rd),
1143
+ where
1144
+ ∥Mt′f∥Lp(Rd) ≲t,p ∥f∥Lp(Rd),
1145
+ ∥Ms′g∥Lp′(Rd) ≲s,p ∥g∥Lp′(Rd)
1146
+ for p > t′ and p′ > s′, where the latter is equivalent to p < s.
1147
+
1148
+ Let us consider some examples:
1149
+ 7.5. Example (Classical commutators). As we already observed, ⃗a = (b, −1) and
1150
+ ⃗b = (1, b) gives rise to the usual commutator [b, T ]. In this case
1151
+ ⃗a(x) ·⃗b(y) = b(x) − b(y)
1152
+ and each As,t is equivalent to ∥b∥BMO(Rd) by elementary considerations and the
1153
+ John–Nirenberg inequality. Thus Proposition 7.4 reproduces the well-known suffi-
1154
+ cient condition for the boundedness of commutators.
1155
+ 7.6. Example (Iterated commutators). More generally, choosing ⃗a,⃗b so that
1156
+ ⃗a(x) ·⃗b(y) = (b(x) − b(y))k =
1157
+ k
1158
+
1159
+ i=0
1160
+ �k
1161
+ i
1162
+
1163
+ b(x)k−i(−b(y))i,
1164
+ thus e.g. ai(x) =
1165
+ �k
1166
+ i
1167
+
1168
+ b(x)k−i and bi(y) = (−b(y))i, we reproduce the kth order
1169
+ commutator
1170
+ ⃗a · T⃗b = Tk,b := [b, Tk−1,b],
1171
+ T0,b := T,
1172
+ and As,t is equivalent to ∥b∥k
1173
+ BMO(Rd) by the John–Nirenberg inequality.
1174
+ 7.7. Example (Iterated commutators with different multipliers). Let us then choose
1175
+ ⃗a,⃗b so that
1176
+ ⃗a(x) ·⃗b(y) = (b1(x) − b1(y))(b2(x) − b2(y));
1177
+ without specifying the precise choice of ai(x) and bi(y), it is evident that such
1178
+ a choice can be easily written down, if desired. (We deliberately use superscript
1179
+ indices for bi above, since these not be the same as the components bi of ⃗b.) This
1180
+ reproduces the second order iterated commutator with two different functions,
1181
+ ⃗a · T⃗b = [b1, [b2, T ]].
1182
+ It is well-known and classical that bi ∈ BMO(Rd) for both i = 1, 2 is sufficient for
1183
+ the L2(Rd) boundedness of [b1, [b2, T ]]; however, as recently observed in [17], much
1184
+
1185
+ 18
1186
+ T. P. HYTÖNEN
1187
+ weaker sufficient conditions can be given for the pair (b1, b2). Namely, in [17, (1.1)],
1188
+ it shown that the pair of conditions
1189
+ Ss := sup
1190
+ Q
1191
+
1192
+ Q
1193
+ |b1(x) − ⟨b1⟩Q|s dx
1194
+ �1/s�
1195
+ Q
1196
+ |b2(y) − ⟨b2⟩Q|s dy
1197
+ �1/s
1198
+ < ∞,
1199
+ Ts := sup
1200
+ Q
1201
+
1202
+ Q
1203
+ |b1(x) − ⟨b1⟩Q|s|b2(x) − ⟨b2⟩Q|s dx
1204
+ �1/s
1205
+ < ∞,
1206
+ is sufficient for the L2(Rd) boundedness of [b1, [b2, T ]] for s > 2. On the other hand,
1207
+ by Proposition 7.4, another sufficient condition for the same conclusion is As < ∞.
1208
+ Let us compare the two. Adding and subtracting terms and multiplying out, we
1209
+ find that
1210
+ (b1(x) − b1(y))(b2(x) − b2(y))
1211
+ = [(b1(x) − ⟨b1⟩Q) − (b1(y) − ⟨b1⟩Q)][(b2(x) − ⟨b2⟩Q) − (b2(y) − ⟨b2⟩Q)]
1212
+ = (b1(x) − ⟨b1⟩Q)(b2(x) − ⟨b2⟩Q) + (b1(y) − ⟨b1⟩Q)(b2(y) − ⟨b2⟩Q)
1213
+ − (b1(x) − ⟨b1⟩Q)(b2(y) − ⟨b2⟩Q) − (b1(y) − ⟨b1⟩Q)(b2(x) − ⟨b2⟩Q).
1214
+ Taking Łs(Q × Q) and then supremum over Q on both sides, we deduce that
1215
+ As ≤ 2(Ts + Ss),
1216
+ so that the new criterion provided by Proposition 7.4 is at least as sharp as that of
1217
+ [17, (1.1)], and it seems less obvious to make any estimate in the other direction.
1218
+ Perhaps more importantly, the new condition As < ∞ arises more “naturally” as
1219
+ an instance of a general principle.
1220
+ (Let us note that there is a more general criterion [17, Theorem 3.10], where the
1221
+ Łs norms in Ss and Tt are replaced by more general Orlicz norms. On the other
1222
+ hand, it is apparent that similar generalisations could be achieved in Proposition
1223
+ 7.4: what we used was the boundedness of the rescaled maximal operators Mt′ on
1224
+ Lp(Rd) for p > t′, and this could be replaced having an Orlicz maximal operator
1225
+ MA with the same mapping property. A characterisation of this property in terms
1226
+ of the so-called Bp condition on the Orlicz function A is a classical result of Pérez
1227
+ [29]; this very result is used in [17]; see [17, Proposition 3.8].)
1228
+ Let us finally consider an “exotic” example with no obvious predecessor in the
1229
+ existing literature. We begin with a lemma:
1230
+ 7.8. Lemma. Suppose that 0 ≤ b ∈ BMO(Rd). If 0 ≤ α, β and α + β ≤ 1, then
1231
+ B(x, y) := b(x)αb(y)β − b(x)βb(y)α
1232
+ satisfies
1233
+
1234
+ Q
1235
+
1236
+ Q
1237
+ |B(x, y)|p dx dy
1238
+ �1/p
1239
+ ≤ (2∥b∥BMOp(Rd))α+β.
1240
+ Proof. Let γ := min(α, β) ∈ [0, 1
1241
+ 2] and δ := max(α, β) − γ ∈ [0, 1]. Then
1242
+ |B(x, y)| = b(x)γb(y)γ|b(x)δ − b(y)δ|.
1243
+ We observe the following elementary inequality:
1244
+ |uδ − vδ| ≤
1245
+ |u − v|
1246
+ max(u, v)1−δ ,
1247
+ ∀u, v ≥ 0, δ ∈ [0, 1].
1248
+ (7.9)
1249
+
1250
+ SOME REMARKS ON CONVEX BODY DOMINATION
1251
+ 19
1252
+ Indeed, by symmetry and homogeneity, it is enough to consider u = 1 and v ∈ [0, 1],
1253
+ in which case we are reduced to proving that
1254
+ 1 − vδ ≤ 1 − v,
1255
+ which is immediate from the fact that v ≤ vδ for v, δ ∈ [0, 1].
1256
+ Using (7.9), and noting that δ + 2γ = α + β ∈ [0, 1], it follows that
1257
+ |B(x, y)| ≤ b(x)γb(y)γ
1258
+ |b(x) − b(y)|
1259
+ max(b(x), b(y))1−δ ≤
1260
+ |b(x) − b(y)|
1261
+ max(b(x), b(y))1−δ−2γ
1262
+ =
1263
+ � |b(x) − b(y)|
1264
+ max(b(x), b(y))
1265
+ �1−δ−2γ
1266
+ |b(x) − b(y)|δ+2γ ≤ |b(x) − b(y)|α+β,
1267
+ and hence
1268
+
1269
+ Q
1270
+
1271
+ Q
1272
+ |B(x, y)|p dx dy
1273
+ �1/p
1274
+
1275
+
1276
+ Q
1277
+
1278
+ Q
1279
+ |b(x) − b(y)|p dx dy
1280
+ �(α+β)/p
1281
+
1282
+ ��
1283
+ Q
1284
+ |b(x) − c|p dx
1285
+ �1/p
1286
+ +
1287
+
1288
+ Q
1289
+ |b(y) − c|p dy
1290
+ �1/p�α+β
1291
+ for all constants c.
1292
+
1293
+ 7.10. Corollary. Let T be an operator satisfying (Ł1(γQ), Ł1(γQ)) convex body
1294
+ domination, let 0 ≤ b ∈ BMO(Rd) and 0 ≤ α, β with α + β ≤ 1. Then
1295
+ ∥bαT (bβf) − bβT (bαf)∥Lp(Rd) ≲p ∥b∥α+β
1296
+ BMO(Rd)∥f∥Lp(Rd).
1297
+ Proof. By Proposition 7.4 with s = t, the Lp(Rd) operator norm of f �→ bαT (bβf)−
1298
+ bβT (bαf) is dominated by
1299
+ As := sup
1300
+ Q
1301
+ ∥(x.y) �→ b(x)αb(y)β − b(x)βb(y)α∥Łs(Q×Q)
1302
+ if p ∈ (s′, s), i.e., if s > max(p, p′). By Lemma 7.8 and the John–Nirenberg inequal-
1303
+ ity, we have
1304
+ As ≤ (2∥b∥BMOs(Rd))α+β ≲s ∥b∥α+β
1305
+ BMO(Rd),
1306
+ and fixing (say) s = 2 max(p, p′), we obtain a dependence on p only.
1307
+
1308
+ 7.11. Remark. Aside from the examples already discussed, the generalised commu-
1309
+ tators ⃗a · T⃗b also arise in the following question studied by Bloom [4, 5]. Suppose
1310
+ that a matrix weight W is given in the diagonalised form W = U ∗ΛU, where U is
1311
+ unitary, Λ is diagonal, and the diagonal entries λk of Λ are scalar A2 weights. What
1312
+ does one need to know about U in order to conclude that W ∈ A2? (According to
1313
+ [5, Theorem 4.2], the condition that λk ∈ A2 is necessary for W ∈ A2, if in addition
1314
+ U is assumed to be continuous.)
1315
+ Let T be the Hilbert transform, or another operator whose boundedness on
1316
+ the matrix-weighted L2(W) characterises W ∈ A2.
1317
+ By connecting the L2(W)
1318
+ boundedness of T to the boundedness of the classical commutators [T, ¯uij] between
1319
+ the weighted spaces L2(λi) and L2(λk) (sic: the condition involves triplets of indices
1320
+ (i, j, k)), [4, Theorem 5.1] shows that uij ∈ BMO√
1321
+ λi/λk (a weighted BMO space,
1322
+ nowadays commonly referred to as Bloom-type BMO) is a sufficient condition. In
1323
+ the special case of 2 × 2 matrices, it is also necessary by [5, Theorem 4.3] but, over
1324
+ 30 years since these contributions, the general case seems to remain open. (The
1325
+ author is grateful to Amalia Culiuc for bringing this question to his attention [9].)
1326
+
1327
+ 20
1328
+ T. P. HYTÖNEN
1329
+ Here is a possible approach to the problem. As is well known, the L2(W) bound-
1330
+ edness of T is equivalent to the (unweighted) L2 boundedness of
1331
+ W 1/2T W −1/2 = U ∗Λ1/2UT U ∗Λ−1/2U.
1332
+ Multiplication by U and U ∗ is isometric on L2, and the L2 boundedness of a matrix
1333
+ of operators is equivalent to the L2 boundedness of each of the components
1334
+ (Λ1/2UT U ∗Λ−1/2)ij =
1335
+ n
1336
+
1337
+ k=1
1338
+ λ1/2
1339
+ i
1340
+ uikT ¯ujkλ−1/2
1341
+ j
1342
+ = λ1/2
1343
+ i
1344
+ ⃗ui · T ¯⃗ujλ−1/2
1345
+ j
1346
+ ,
1347
+ where i, j = 1, . . . , n and ⃗ui = (uik)n
1348
+ k=1. These are operators of the form ⃗a · T⃗b that
1349
+ we have studied here and, up to this point, we kept an exact equivalence with the
1350
+ original question; the question then would be, whether we can give useful conditions
1351
+ on the boundedness of these operators. A further equivalent condition is of course
1352
+ the two-weight boundedness
1353
+ ⃗ui · T ¯⃗uj : L2(λj) → L2(λi),
1354
+ i, j = 1, . . . , n,
1355
+ where the spaces are more complicated, but the multipliers are simply rows of the
1356
+ unitary matrix U.
1357
+ 7.12. Remark. We have concentrated in this section on the application of convex
1358
+ body domination—an inherently vector-valued theory—to questions of generalised
1359
+ commutators acting on scalar-valued functions. We have made this choice for two
1360
+ reasons: to make the case that this vector-valued theory is useful even for such
1361
+ scalar-valued applications, and not to obscure the relatively simple basic philoso-
1362
+ phy behind too many technicalities of notation. This said, it is quite plain that
1363
+ the presented ideas can be immediately generalised to the case of vector-valued
1364
+ functions ⃗f and ⃗g (in place of scalar f and g) and matrix-valued multipliers A and
1365
+ B (in place of the vectors ⃗a and ⃗b). In the particular case of the classical-style
1366
+ commutator [T, B] with a matrix-valued function, this idea has been developed in
1367
+ [21].
1368
+ 8. Stopping times and maximal functions involving convex bodies
1369
+ The aims of this final section are two-fold. Concretely, we establish a convex-
1370
+ body analogue of a result of Nieraeth [28], which shows that the estimation of
1371
+ sums over sparse collection that arise in the usual sparse domination is equivalent
1372
+ to the estimation of certain maximal functions. On the way of achieving this, we
1373
+ develop some convex-body versions of the typical stopping time arguments involving
1374
+ averages of scalar-valued functions; these might have some independent interest
1375
+ elsewhere.
1376
+ We begin with an estimate of a sum of convex-body “norms” over disjoint subsets.
1377
+ 8.1. Lemma. Let p, q ∈ [1, ∞) and 1
1378
+ r := 1
1379
+ p + 1
1380
+ q . Let Qi ∈ D(Q0) be disjoint cubes.
1381
+ Then
1382
+
1383
+
1384
+ i=1
1385
+
1386
+ ⟨⟨⃗f⟩⟩Lp(Qi) · ⟨⟨⃗g⟩⟩Lq(Qi)
1387
+ �r ≤ nmax(r,1)+r/2�
1388
+ ⟨⟨f⟩⟩Lp(Q) · ⟨⟨g⟩⟩Lq(Q)
1389
+ �r.
1390
+ Note that for p, q ∈ [1, ∞), we have 1
1391
+ r = 1
1392
+ p + 1
1393
+ q ≤ 1 + 1 = 2, and hence
1394
+ nmax(r,1)+r/2 =
1395
+
1396
+ nmax(1,1/r)+1/2�r ≤
1397
+
1398
+ n5/2�r.
1399
+
1400
+ SOME REMARKS ON CONVEX BODY DOMINATION
1401
+ 21
1402
+ Proof. For orientation, let us begin with the proof in the case n = 1, i.e., with ∥ ∥
1403
+ in place of ⟨⟨ ⟩⟩ throughout. By Hölder’s inequality with 1 = r
1404
+ p + r
1405
+ q, we have
1406
+
1407
+
1408
+ i=1
1409
+
1410
+ ∥f∥Lp(Qi)∥g∥Lq(Qi)
1411
+ �r =
1412
+
1413
+
1414
+ i=1
1415
+
1416
+ ∥f∥p
1417
+ Lp(Qi)
1418
+ �r/p�
1419
+ ∥g∥q
1420
+ Lq(Qi)
1421
+ �r/q
1422
+
1423
+ � ∞
1424
+
1425
+ i=1
1426
+ ∥f∥p
1427
+ Lp(Qi)
1428
+ �r/p� ∞
1429
+
1430
+ i=1
1431
+ ∥g∥q
1432
+ Lq(Qi)
1433
+ �r/q
1434
+
1435
+
1436
+ ∥f∥p
1437
+ Lp(Q0)
1438
+ �r/p�
1439
+ ∥g∥q
1440
+ Lq(Q0)
1441
+ �r/q
1442
+ =
1443
+
1444
+ ∥f∥Lp(Q0)∥g∥Lq(Q0)
1445
+ �r
1446
+ .
1447
+ In the general case of the lemma, let
1448
+ Ai := ⟨⟨⃗f⟩⟩Lp(Qi) =
1449
+ � ˆ
1450
+ Qi
1451
+ φi ⃗f : ∥φi∥Lp′(Qi) ≤ 1
1452
+
1453
+ ,
1454
+ Bi := ⟨⟨⃗g⟩⟩Lq(Qi).
1455
+ Then we observe that
1456
+ ⟨⟨⃗f⟩⟩Lp(Q) =
1457
+ � ˆ
1458
+ Q
1459
+ φ⃗f : ∥φ∥Lp′(Q) ≤ 1
1460
+
1461
+
1462
+ � ∞
1463
+
1464
+ i=1
1465
+ ai
1466
+ ˆ
1467
+ Qi
1468
+ φi ⃗f : ∥φi∥Lp′(Qi) ≤ 1, ∥(ai)∥ℓp′ ≤ 1
1469
+
1470
+ =
1471
+ � ∞
1472
+
1473
+ i=1
1474
+ aiAi : ∥(ai)∥ℓp′ ≤ 1
1475
+
1476
+ =:
1477
+
1478
+ ℓp
1479
+ Ai =: A,
1480
+ and similarly
1481
+ ⟨⟨⃗g⟩⟩Lq(Q) ⊇
1482
+
1483
+ ℓq
1484
+ Bi =: B.
1485
+ Hence, the lemma is reduced to proving that
1486
+
1487
+
1488
+ i=1
1489
+
1490
+ Ai · Bi
1491
+ �r ≤ nmax(r,1)+r/2�
1492
+ A · B
1493
+ �r,
1494
+ A :=
1495
+
1496
+ ℓp
1497
+ Ai,
1498
+ B :=
1499
+
1500
+ ℓq
1501
+ Bi.
1502
+ Let EA be the John ellipsoid of A, and let RAEA = ¯BRn.
1503
+ Since Ai · Bi =
1504
+ RAAi · R−t
1505
+ A Bi, The claim above is equivalent to a version where each Ai is replaced
1506
+ by RAAi and each Bi by R−t
1507
+ A Bi. Hence, without loss of generality, we assume that
1508
+ EA = ¯BRn to begin with, hence ¯BRn ⊆ A ⊆ √n ¯BRn. Thus
1509
+ A · B ⊃ ¯BRn · B = [−M, M],
1510
+ where
1511
+ M := max{|⃗b| : ⃗b ∈ B}.
1512
+ On the other hand, if (⃗ej)n
1513
+ j=1 is some orthonormal basis of Rn, then
1514
+ Ai · Bi = {⃗a ·⃗b : ⃗a ∈ Ai,⃗b ∈ Bi}
1515
+ =
1516
+
1517
+ n
1518
+
1519
+ j=1
1520
+ (⃗a · ⃗ej)(⃗b · ⃗ej) : ⃗a ∈ Ai,⃗b ∈ Bi} ⊆
1521
+ n
1522
+
1523
+ j=1
1524
+ (Ai · ⃗ej)(Bi · ⃗ej),
1525
+ or, using the identification of [−s, s] with s,
1526
+ Ai · Bi ≤
1527
+ n
1528
+
1529
+ j=1
1530
+ (Ai · ⃗ej)(Bi · ⃗ej).
1531
+
1532
+ 22
1533
+ T. P. HYTÖNEN
1534
+ Thus
1535
+ (Ai · Bi)r ≤
1536
+ n
1537
+
1538
+ j=1
1539
+
1540
+ (Ai · ⃗ej)(Bi · ⃗ej)
1541
+ �r,
1542
+ r ∈ (0, 1],
1543
+ and
1544
+ � ∞
1545
+
1546
+ i=1
1547
+ (Ai · Bi)r�1/r
1548
+
1549
+ n
1550
+
1551
+ j=1
1552
+ � ∞
1553
+
1554
+ i=1
1555
+
1556
+ (Ai · ⃗ej)(Bi · ⃗ej)
1557
+ �r�1/r
1558
+ ,
1559
+ r ∈ [1, ∞).
1560
+ In the sum over i, we use Hölder’s inequality as in the toy model in the beginning:
1561
+
1562
+
1563
+ i=1
1564
+
1565
+ (Ai · ⃗ej)(Bi · ⃗ej)
1566
+ �r =
1567
+
1568
+
1569
+ i=1
1570
+
1571
+ (Ai · ⃗ej)p�r/p�
1572
+ (Bi · ⃗ej)q�r/q
1573
+
1574
+ � ∞
1575
+
1576
+ i=1
1577
+ (Ai · ⃗ej)p�r/p� ∞
1578
+
1579
+ i=1
1580
+ (Bi · ⃗ej)q�r/q
1581
+ = sup
1582
+ �� ∞
1583
+
1584
+ i=1
1585
+ aiAi · ⃗ej
1586
+ �1/r� ∞
1587
+
1588
+ i=1
1589
+ biBi · ⃗ej
1590
+ �1/r
1591
+ : ∥(ai)∥ℓp′ ≤ 1, ∥(bi)∥ℓq′ ≤ 1
1592
+
1593
+ = (A · ⃗ej)r(B · ⃗ej)r
1594
+ Here
1595
+ A · ⃗ej ⊆ √n ¯BRn · ⃗ej = [−√n, √n],
1596
+ A · ⃗ej ≤ √n,
1597
+ and clearly
1598
+ B · ⃗ej ≤ M.
1599
+ Altogether, writing s := max(r, 1), we have
1600
+ � ∞
1601
+
1602
+ i=1
1603
+ (Ai · Bi)r�1/s
1604
+
1605
+ n
1606
+
1607
+ j=1
1608
+ � ∞
1609
+
1610
+ i=1
1611
+ (Ai · ⃗ej)r(Bi · ⃗ej)r�1/s
1612
+
1613
+ n
1614
+
1615
+ j=1
1616
+
1617
+ (A · ⃗ej)r(B · ⃗ej)r�1/s
1618
+ ≤ n[nr/2M r]1/s,
1619
+ and hence
1620
+
1621
+
1622
+ i=1
1623
+ (Ai · Bi)r ≤ nsnr/2M r = nmax(1,r)+r/2(A · B)r,
1624
+ which remained to be proved.
1625
+
1626
+ The following lemma is a convex-body analogue of the basic principle underlying
1627
+ the simplest stopping time constructions: for a function on a cube Q0, the total
1628
+ measure of the subcubes, where the average of a function is much bigger than on
1629
+ the whole Q0, can be at most a fraction of the measure of Q0.
1630
+ 8.2. Lemma. Let A, p, q ∈ [1, ∞) and let Qi ∈ D(Q0) be disjoint cubes such that
1631
+ ⟨⟨⃗f⟩⟩Łp(Qi) · ⟨⟨⃗g⟩⟩Łq(Qi) ≥ A⟨⟨⃗f⟩⟩Łp(Q0) · ⟨⟨⃗g⟩⟩Łq(Q0).
1632
+ Then
1633
+
1634
+
1635
+ i=1
1636
+ |Qi| ≤ nmax(r,1)+r/2
1637
+ Ar
1638
+ |Q0|,
1639
+ 1
1640
+ r := 1
1641
+ p + 1
1642
+ q .
1643
+
1644
+ SOME REMARKS ON CONVEX BODY DOMINATION
1645
+ 23
1646
+ Proof. Directly from the definition, it is easy to extend the basic identity ∥f∥Łp(Q) =
1647
+ |Q|−1/p∥f∥Lp(Q) to convex bodies as
1648
+ ⟨⟨⃗f⟩⟩Łp(Q) = |Q|−1/p⟨⟨⃗f⟩⟩Lp(Q).
1649
+ (8.3)
1650
+ From this, the assumption of the lemma can be rewritten as
1651
+ |Qi|−1/p−1/q⟨⟨⃗f⟩⟩Lp(Qi) · ⟨⟨⃗g⟩⟩Lq(Qi) ≥ A|Q0|−1/p−1/q⟨⟨⃗f⟩⟩p(Q0) · ⟨⟨⃗g⟩⟩q(Q0),
1652
+ or, rearranging,
1653
+ |Qi| ≤
1654
+ A−r|Q0|
1655
+
1656
+ ⟨⟨⃗f⟩⟩p(Q0) · ⟨⟨⃗g⟩⟩q(Q0)
1657
+ �r
1658
+
1659
+ ⟨⟨⃗f⟩⟩Lp(Qi) · ⟨⟨⃗g⟩⟩Lq(Qi)
1660
+ �r.
1661
+ Summing over i and using Lemma 8.1, we obtain the claim.
1662
+
1663
+ We now obtain the following proposition, which is a convex body analogue of
1664
+ a result of Nieraeth [28, Prop. 2.7; especially Eq. (2.7) for m = 1]. It says that
1665
+ estimating the sums over sparse collections, like those that arise from convex body
1666
+ domination, is equivalent to estimating related bi-sublinear maximal operators. In
1667
+ [28, Prop. 2.7], the result is formulated as a set of equivalent conditions for a tuple
1668
+ of weights. The formulation below has no reference to weights as such, but as soon
1669
+ as one starts asking questions about the boundedness of either side on spaces like
1670
+ Ls(W) × Ls′(W ′), the proposition guarantees that one can equally well study this
1671
+ boundedness for the other side of the equivalence.
1672
+ 8.4. Proposition. For all δ ∈ (0, 1), all dimensions d, n ≥ 1, exponents p, q ∈
1673
+ [1, ∞), and functions ⃗f ∈ Lp
1674
+ loc(Rd)n, ⃗g ∈ Lq
1675
+ loc(Rd)n, we have the two-sided estimate
1676
+ sup
1677
+ S
1678
+
1679
+ Q∈S
1680
+ ⟨⟨⃗f⟩⟩Łp(Q) · ⟨⟨⃗g⟩⟩Łq(Q)|Q| ≂
1681
+ ��� sup
1682
+ Q∈D
1683
+ 1Q⟨⟨⃗f⟩⟩Łp(Q) · ⟨⟨⃗g⟩⟩Łq(Q)
1684
+ ���
1685
+ L1(Rd),
1686
+ where the supremum is taken over all δ-sparse collections of dyadic cubes in Rn,
1687
+ and the implied constants depend only on n, p, q, and δ.
1688
+ Proof. With ⃗f ∈ Lp
1689
+ loc(Rd)n and ⃗g ∈ Lq
1690
+ loc(Rd)n fixed, let us denote
1691
+ aQ := ⟨⟨⃗f⟩⟩Łp(Q) · ⟨⟨⃗g⟩⟩Łq(Q).
1692
+ The estimate ≲ is immediate: From δ-sparseness, we have |Q| ≤ δ−1|E(Q)| for
1693
+ some disjoint sets E(Q), and hence
1694
+
1695
+ Q∈S
1696
+ aQ|Q| ≤ 1
1697
+ δ
1698
+
1699
+ Q∈S
1700
+ aQ|E(Q)| = 1
1701
+ δ
1702
+ ˆ
1703
+ Rd
1704
+
1705
+ Q∈S
1706
+ aQ1E(Q) ≤ 1
1707
+ δ
1708
+ ˆ
1709
+ Rd sup
1710
+ Q∈D
1711
+ aQ1Q.
1712
+ The estimate ≳ needs a bit more. By monotone convergence, it is enough to
1713
+ consider D(Q0) in place of D. Let S0 := {Q0}. For some A > 1 to be chosen and
1714
+ Q ∈ D(Q0), let S ′(Q) consist of all maximal Q′ ∈ D(Q) such that aQ′ > AaQ. By
1715
+ maximality, the cubes Q′ ∈ S ′(Q) are disjoint. By Lemma 8.2, we have
1716
+
1717
+ Q′∈S ′(Q)
1718
+ |Q′| ≤ nmax(1,r)+r/2
1719
+ Ar
1720
+ |Q| ≤ (1 − δ)|Q|,
1721
+ 1
1722
+ r := 1
1723
+ p + 1
1724
+ q ,
1725
+ provided that A is chosen large enough, depending on n, p, q, and δ. Hence, defining
1726
+ inductively Sj+1 := �
1727
+ Q∈Sj S ′(Q) and S := �∞
1728
+ j=0 Sj, we find that S is δ-sparse.
1729
+
1730
+ 24
1731
+ T. P. HYTÖNEN
1732
+ If Q ∈ D(Q0) and S ∈ S is the minimal stopping cube that contains Q, then
1733
+ aQ ≤ AaS by the way that the cubes S ∈ S were chosen, hence
1734
+ sup
1735
+ Q∈D(Q0)
1736
+ 1QaQ ≤ sup
1737
+ S∈S
1738
+ 1SAaS ≤ A
1739
+
1740
+ S∈S
1741
+ 1SaS,
1742
+ and thus ���
1743
+ sup
1744
+ Q∈D(Q0)
1745
+ 1QaQ
1746
+ ���
1747
+ L1(Rd) ≤ A
1748
+ ���
1749
+
1750
+ S∈S
1751
+ 1SaS
1752
+ ���
1753
+ L1(Rd) = A
1754
+
1755
+ S∈S
1756
+ aS|S|.
1757
+
1758
+ References
1759
+ [1] S. Bagchi, S. Hait, L. Roncal, and S. Thangavelu. On the maximal function associated to the
1760
+ spherical means on the Heisenberg group. New York J. Math., 27:631–675, 2021.
1761
+ [2] D. Beltran,
1762
+ J. Roos,
1763
+ and A. Seeger. Multi-scale sparse domination,
1764
+ 2020. Preprint,
1765
+ arXiv:2009.00227.
1766
+ [3] F. Bernicot, D. Frey, and S. Petermichl. Sharp weighted norm estimates beyond Calderón-
1767
+ Zygmund theory. Anal. PDE, 9(5):1079–1113, 2016.
1768
+ [4] S. Bloom. A commutator theorem and weighted BMO. Trans. Amer. Math. Soc., 292(1):103–
1769
+ 122, 1985.
1770
+ [5] S. Bloom. Applications of commutator theory to weighted BMO and matrix analogs of A2.
1771
+ Illinois J. Math., 33(3):464–487, 1989.
1772
+ [6] M. Bownik and D. Cruz-Uribe. Extrapolation and factorization of matrix weights, 2022.
1773
+ Preprint, arXiv:2210.09443.
1774
+ [7] J. M. Conde-Alonso, A. Culiuc, F. Di Plinio, and Y. Ou. A sparse domination principle for
1775
+ rough singular integrals. Anal. PDE, 10(5):1255–1284, 2017.
1776
+ [8] D. Cruz-Uribe, J. Isralowitz, and K. Moen. Two weight bump conditions for matrix weights.
1777
+ Integral Equations Operator Theory, 90(3):Paper No. 36, 31, 2018.
1778
+ [9] A. Culiuc. Personal communication, 2022. 11th International Conference on Harmonic Anal-
1779
+ ysis and Partial Differential Equations, El Escorial, Spain.
1780
+ [10] A. Culiuc, F. Di Plinio, and Y. Ou. Uniform sparse domination of singular integrals via dyadic
1781
+ shifts. Math. Res. Lett., 25(1):21–42, 2018.
1782
+ [11] A. Culiuc, R. Kesler, and M. T. Lacey. Sparse bounds for the discrete cubic Hilbert transform.
1783
+ Anal. PDE, 12(5):1259–1272, 2019.
1784
+ [12] G. David and J.-L. Journé. A boundedness criterion for generalized Calderón-Zygmund op-
1785
+ erators. Ann. of Math. (2), 120(2):371–397, 1984.
1786
+ [13] F. Di Plinio, T. Hytönen, and K. Li. Sparse bounds for maximal rough singular integrals via
1787
+ the Fourier transform. Ann. Inst. Fourier (Grenoble), 70(5):1871–1902, 2020.
1788
+ [14] T. Figiel. Singular integral operators: a martingale approach. In Geometry of Banach spaces
1789
+ (Strobl, 1989), volume 158 of London Math. Soc. Lecture Note Ser., pages 95–110. Cambridge
1790
+ Univ. Press, Cambridge, 1990.
1791
+ [15] T. S. Hänninen and T. Hytönen. The A2 theorem and the local oscillation decomposition for
1792
+ Banach space valued functions. J. Operator Theory, 72(1):193–218, 2014.
1793
+ [16] T. Hytönen. The sharp weighted bound for general Calderón-Zygmund operators. Ann. of
1794
+ Math. (2), 175(3):1473–1506, 2012.
1795
+ [17] T. Hytönen, K. Li, and T. Oikari. Iterated commutators under a joint condition on the tuple
1796
+ of multiplying functions. Proc. Amer. Math. Soc., 148(11):4797–4815, 2020.
1797
+ [18] T. Hytönen, J. v. Neerven, M. Veraar, and L. Weis. Analysis in Banach spaces. Vol. I.
1798
+ Martingales and Littlewood-Paley theory, volume 63 of Ergebnisse der Mathematik und ihrer
1799
+ Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
1800
+ and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham,
1801
+ 2016.
1802
+ [19] T. Hytönen and C. Pérez. Sharp weighted bounds involving A∞. Anal. PDE, 6(4):777–818,
1803
+ 2013.
1804
+ [20] J. Isralowitz, S. Pott, and I. P. Rivera-Ríos. Sharp A1 weighted estimates for vector-valued
1805
+ operators. J. Geom. Anal., 31(3):3085–3116, 2021.
1806
+ [21] J. Isralowitz, S. Pott, and S. Treil. Commutators in the two scalar and matrix weighted
1807
+ setting. J. Lond. Math. Soc. (2), 106(1):1–26, 2022.
1808
+
1809
+ SOME REMARKS ON CONVEX BODY DOMINATION
1810
+ 25
1811
+ [22] M. T. Lacey. An elementary proof of the A2 bound. Israel J. Math., 217(1):181–195, 2017.
1812
+ [23] A. K. Lerner. A simple proof of the A2 conjecture. Int. Math. Res. Not. IMRN, (14):3159–
1813
+ 3170, 2013.
1814
+ [24] A. K. Lerner. On pointwise estimates involving sparse operators. New York J. Math., 22:341–
1815
+ 349, 2016.
1816
+ [25] A. K. Lerner. A weak type estimate for rough singular integrals. Rev. Mat. Iberoam.,
1817
+ 35(5):1583–1602, 2019.
1818
+ [26] P. A. Muller and I. P. Rivera-Ríos. Quantitative matrix weighted estimates for certain singular
1819
+ integral operators. J. Math. Anal. Appl., 509(1):Paper No. 125939, 38, 2022.
1820
+ [27] F. Nazarov, S. Petermichl, S. Treil, and A. Volberg. Convex body domination and weighted
1821
+ estimates with matrix weights. Adv. Math., 318:279–306, 2017.
1822
+ [28] Z. Nieraeth. Quantitative estimates and extrapolation for multilinear weight classes. Math.
1823
+ Ann., 375(1-2):453–507, 2019.
1824
+ [29] C. Pérez. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal
1825
+ operator between weighted Lp-spaces with different weights. Proc. London Math. Soc. (3),
1826
+ 71(1):135–157, 1995.
1827
+ [30] A. Seeger. Singular integral operators with rough convolution kernels. J. Amer. Math. Soc.,
1828
+ 9(1):95–105, 1996.
1829
+ [31] S. Treil and A. Volberg. Wavelets and the angle between past and future. J. Funct. Anal.,
1830
+ 143(2):269–308, 1997.
1831
+ Department of Mathematics and Statistics, P.O.B. 68 (Pietari Kalmin katu 5),
1832
+ FI-00014 University of Helsinki, Finland
1833
+ Email address: [email protected]
1834
+
UdAyT4oBgHgl3EQfuvkh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UdE1T4oBgHgl3EQfIgMu/content/tmp_files/2301.02939v1.pdf.txt ADDED
@@ -0,0 +1,1334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Study of the long-range transverse field Ising model with fermionic Gaussian states
2
+ Michael P. Kaicher,1, ∗ Davide Vodola,2, † and Simon B. J¨ager3
3
+ 1Departamento de F´ısica Te´orica, Universidad Complutense, 28040 Madrid, Spain
4
+ 2Dipartimento di Fisica e Astronomia, Universit`a di Bologna, I-40129, Bologna, Italy
5
+ 3Department of Physics and Research Center OPTIMAS,
6
+ University of Kaiserslautern-Landau, D-67663 Kaiserslautern, Germany
7
+ (Dated: January 10, 2023)
8
+ We numerically study the one-dimensional long-range Transverse Field Ising Model (TFIM) in the
9
+ antiferromagnetic (AFM) regime at zero temperature using Generalized Hartree-Fock (GHF) theory.
10
+ The spin-spin interaction extends to all spins in the lattice and decays as 1/rα, where r denotes the
11
+ distance between two spins and α is a tunable exponent. We map the spin operators to Majorana
12
+ operators and approximate the ground state of the Hamiltonian with a Fermionic Gaussian State
13
+ (FGS). Using this approximation, we calculate the ground state energy and the entanglement entropy
14
+ which allows us to map the phase diagram for different values of α. In addition, we compute the
15
+ scaling behavior of the entanglement entropy with the system size to determine the central charge
16
+ at criticality for the case of α > 1. For α < 1 we find a logarithmic divergence of the entanglement
17
+ entropy even far away from the critical point, a feature of systems with long-range interactions.
18
+ We provide a detailed comparison of our results to outcomes of Density Matrix Renormalization
19
+ Group (DMRG) and the Linked Cluster Expansion (LCE) methods. In particular, we find excellent
20
+ agreement of GHF with DMRG and LCE in the weak long-range regime α ≥ 1, and qualitative
21
+ agreement with DMRG in the strong-long range regime α ≤ 1. Our results highlight the power of
22
+ the computationally efficient GHF method in simulating interacting quantum systems.
23
+ I.
24
+ INTRODUCTION
25
+ Quantum phase transitions describe the behavior of
26
+ quantum many-body systems at zero temperature when
27
+ tuning a non-thermal control parameter, such as an ap-
28
+ plied magnetic field.
29
+ The phase transition appears as
30
+ a result of competing phases that describe the ground
31
+ state at the corresponding parameter and typically lead
32
+ to a fundamental change in the nature of the correlation
33
+ present in the ground state. Quantum many-body sys-
34
+ tems can undergo a quantum phase transition and their
35
+ study has lead to the discovery of many exotic collective
36
+ phenomena such as superconducting ground states [1],
37
+ long-range topological order [2], and anyonic statistics[3].
38
+ Close to the critical point, the properties of many differ-
39
+ ent physical systems can be classified by a universality
40
+ class which is independent of the system size and only
41
+ depends on the underlying dimensions and symmetries of
42
+ the problem. In this situation, one can in many instances
43
+ describe the many-body problem by an interacting spin
44
+ system [4].
45
+ One of the paradigmatic microscopic models display-
46
+ ing a quantum phase transition is the Transverse Field
47
+ Ising Model (TFIM) at zero temperature [5]. This model
48
+ is exactly solvable in the limit of short-range, nearest-
49
+ neighbour interactions.
50
+ However, the solution of this
51
+ problem is much harder if one considers beyond nearest-
52
+ ∗ Correspondence to:
53
+ michael.p.kaicher(at)gmail.com; Now at:
54
+ BASF Digital Solutions, Next Generation Computing, Pfalz-
55
+ grafenstr. 1, D-67056, Ludwigshafen, Germany
56
+ † Now at: BASF Digital Solutions, Next Generation Computing,
57
+ Pfalzgrafenstr. 1, D-67056, Ludwigshafen, Germany
58
+ neighbour or even long-range interactions [6–10]. Long-
59
+ range interacting systems can host exotic states of quan-
60
+ tum matter and are therefore of large scientific interest.
61
+ Recent advances have made effective long-range spin-
62
+ interactions experimentally accessible [11–15].
63
+ In such
64
+ systems, the effective interaction extends to all spins in
65
+ the lattice and decays as a power law 1/rα, where r is
66
+ the distance of the spins in the lattice and α is a tunable
67
+ algebraic exponent. In the experiments one can realize
68
+ 0 ≤ α ≤ 3 which allows one to experimentally probe the
69
+ regime of long-range interactions in spin systems [11].
70
+ In order to analyze the properties of a quantum many-
71
+ body system, it is important to study large system sizes,
72
+ which is in our case the number of spins N. The exponen-
73
+ tial scaling of the Hilbert space dimension with N makes
74
+ the ad-hoc diagonalization of such many-body problems
75
+ illusive. Consequently, one demands numerical methods
76
+ which are able to capture the qualitative behavior of the
77
+ many-body system with a computational cost that dis-
78
+ plays a low scaling with N. A range of many-body meth-
79
+ ods of varying computational complexity have been ap-
80
+ plied to study finite size long-range quantum many-body
81
+ systems, including Quantum Monte Carlo (QMC) [16],
82
+ stochastic series expansion QMC [17], a combination of
83
+ QMC and renormalization group methods [18], Lanczos
84
+ exact diagonalization [19], and Density Matrix Renor-
85
+ malization Group (DRMG) [6, 8]. Recently, a method
86
+ to study short-range quantum-lattice models in the ther-
87
+ modynamic limit, the Linked-Cluster Expansion (LCE),
88
+ has been extended to allow for the study of long-range
89
+ systems for α > 1 [9, 10].
90
+ In this work, we add Generalized Hartree-Fock (GHF)
91
+ theory to this mix of methods.
92
+ GHF is a mean-field
93
+ method which aims to approximate the ground state of
94
+ arXiv:2301.02939v1 [quant-ph] 7 Jan 2023
95
+
96
+ 2
97
+ an interacting quantum system as a free electron gas [20],
98
+ where the latter describes a class of variational func-
99
+ tions known as Fermionic Gaussian States (FGS). Due
100
+ to its mean-field nature, GHF is a method with very
101
+ low computational cost, where the most-demanding com-
102
+ pute operation—the evaluation of the Pfaffian Pf(A) of
103
+ a M × M matrix A—scales at most as O(M 3) [21].
104
+ Even though FGS describe ground or thermal states of
105
+ quadratic fermionic Hamiltonians [22], they have been
106
+ applied to various areas of quantum many-body physics
107
+ with great success, most notably as ab-initio methods to
108
+ obtain approximate ground states in electronic structure
109
+ problems and to condensed matter systems [20, 23, 24].
110
+ In this paper, in order to find the FGS which best ap-
111
+ proximates the ground state of the long-range TFIM,
112
+ we employ two physically-motivated methods which have
113
+ been described in Ref. [23]. The first one (ITE) derives
114
+ the ground state using Imaginary Time Evolution. The
115
+ second one (ZT) uses a self-consistent equation for the
116
+ FGS ground state covariance matrix. Using these two
117
+ methods we calculate the ground state energy and the
118
+ entanglement entropy.
119
+ By comparison of these results
120
+ with the ones obtained from DMRG and ZT we will show
121
+ that GHF is able to capture the qualitative and quantita-
122
+ tive behavior of the long-range TFIM. This highlights the
123
+ ability of GHF in predicting physically relevant material
124
+ properties at computationally low cost.
125
+ This work is structured as follows. In Section II we
126
+ discuss the GHF theory which we then apply to the
127
+ TFIM model described in
128
+ II A. The introduced meth-
129
+ ods are used in Section III where we numerically study
130
+ the ground state energy and the entanglement entropy.
131
+ We conclude by summarizing our findings in Section IV
132
+ and providing an outlook for future work.
133
+ II.
134
+ THEORY
135
+ A.
136
+ Long-range transverse field Ising model
137
+ In this work we consider the TFIM Hamiltonian de-
138
+ scribing a system of N spins with open boundary condi-
139
+ tions
140
+ ˆH =
141
+ N
142
+
143
+ p=1
144
+ hpˆσz
145
+ p +
146
+ N
147
+
148
+ p<q
149
+ Jpqˆσx
150
+ p ˆσx
151
+ q ,
152
+ (1)
153
+ where we introduced the transversal magnetic field
154
+ strength hp = cos(θ), the interaction strength Jpq =
155
+ sin(θ)/|p − q|α and the Pauli matrices ˆσa
156
+ p (a ∈ {x, y, z})
157
+ for each spin indexed by p, q.
158
+ The magnetic field and
159
+ interactions strengths are parameterized by the angle
160
+ θ and the algebraic scaling of the interaction range is
161
+ given by α. In this work we furthermore focus on an-
162
+ tiferromagnetic (AFM) couplings which implies Jpq > 0
163
+ or θ ∈ (0, π).
164
+ Because the Hamiltonian is symmetric
165
+ under the simultaneous transformations ˆσz
166
+ p �→ −ˆσz
167
+ p and
168
+ θ → π − θ we can restrict our study to θ ∈ (0, π/2].
169
+ In a next step, we map the TFIM Hamiltonian onto a
170
+ fermionic Hamiltonian. To this end, we use the Jordan-
171
+ Wigner transformation ˆσ+
172
+ p = ˆc†
173
+ peiπ �p−1
174
+ q=1 ˆc†
175
+ qˆcq and ˆσ−
176
+ p =
177
+ ˆcpe−iπ �p−1
178
+ q=1 ˆc†
179
+ qˆcq [25]. Here, we used ˆσ±
180
+ p = [ˆσx
181
+ p ± iˆσy
182
+ p]/2
183
+ and introduced the fermionic raising and lowering opera-
184
+ tors ˆc†
185
+ p, ˆcp, respectively. The latter obey the canonical an-
186
+ ticommutation relations {ˆcp, ˆcq} = 0 and {ˆcp, ˆc†
187
+ q} = δp,q,
188
+ where δp,q is the Kronecker delta and { ˆA, ˆB} = ˆA ˆB+ ˆB ˆA
189
+ denotes the anticommutator of two operators ˆA, ˆB. In-
190
+ stead of analyzing the problem in the basis of the 2 × N
191
+ fermionic operators ˆcp, ˆc†
192
+ p we represent the Hamiltonian
193
+ in 2N Majorana operators ˆa2p−1 = ˆc†
194
+ p + ˆcp and ˆa2p =
195
+ i(ˆc†
196
+ p−ˆcp). The latter posses the anticommutation relation
197
+ {ˆal, ˆam} = 2δl,m (l, m = 1, 2, . . . , 2N) and the Hamilto-
198
+ nian (1) in the Majorana representation is given by
199
+ ˆH = − i
200
+ N
201
+
202
+ p=1
203
+ hpˆa2p−1ˆa2p +
204
+ N
205
+
206
+ p<q
207
+ (−i)q−pJpqˆa2p ˆSpqˆa2q−1.
208
+ (2)
209
+ Here,
210
+ we
211
+ introduced
212
+ the
213
+ string
214
+ operator
215
+ ˆSpq
216
+ =
217
+ �q−1
218
+ k=p+1 (ˆa2k−1ˆa2k) which is the product of 2×(q −p+1)
219
+ Majorana operators. For nearest-neighbour interactions,
220
+ α = ∞ and Jpq = δp,q±1, this string operator becomes
221
+ the identity, ˆSpq = 1 and ˆH becomes quadratic in the
222
+ Majorana operators. Consequently, the model can be de-
223
+ scribed by free fermions and is therefore exactly solved by
224
+ a FGS [22]. In general, however, for the long-range TFIM
225
+ we will need to include the contribution of the operator
226
+ ˆSpq. To avoid ambiguity, we use the term long-range in
227
+ this work for all systems with α < ∞, since the spin in-
228
+ teraction breaks up into a sum of terms proportional to
229
+ 1/|p−q|α, where all lattice sites p, q give non-zero contri-
230
+ butions, and not just nearest-neighbour sites p, p + 1 (as
231
+ in the special case α → ∞). Often times, the term long-
232
+ range is reserved in literature for an algebraic exponent
233
+ α = σ + d in a d-dimensional system for σ < 0 (which
234
+ in a one-dimensional system refers to the regime α < 1)
235
+ [26, 27]. Thus, to avoid confusion, in our work we will
236
+ refer to α < 1 as the strong long-range, and to α > 1 as
237
+ the weak long-range regime, while the special case α = 1
238
+ is marginal.
239
+ B.
240
+ Fermionic Gaussian States
241
+ The formal definition of a FGS is given by [22],
242
+ ˆρGS =tr
243
+
244
+ e−β ˆ
245
+ HGS�−1
246
+ e−β ˆ
247
+ HGS,
248
+ (3)
249
+ where ˆHGS =
250
+ i
251
+ 4ˆaT Gˆa is a Hermitian operator, β ∈ R,
252
+ ˆa = (ˆa1, ˆa2, . . . , ˆa2N)T is a column vector of Majorana
253
+ operators, and G is a (2N × 2N) real-valued and anti-
254
+ symmetric matrix. FGS are fully described by the real
255
+
256
+ 3
257
+ and anti-symmetric covariance matrix Γ with entries
258
+ Γlm = i
259
+ 2tr (ˆρGS[ˆal, ˆam]) ,
260
+ (4)
261
+ l, m ∈ {1, 2, . . . , 2N}, and where [ ˆA, ˆB] =
262
+ ˆA ˆB − ˆB ˆA
263
+ denotes the commutator of two operators ˆA, ˆB. While
264
+ Eqs. (3)-(4) describe both pure and mixed FGS, we only
265
+ focus on pure FGS in this work, since we are interested
266
+ in the ground state.
267
+ Pure FGS are characterized by
268
+ Γ2 = −12N (1k denotes the (k × k)-identity matrix),
269
+ and eigenvalues of the covariance matrix are given by
270
+ λ ∈ {−1, 1}. All information contained in the density
271
+ matrix (3) of a FGS is also contained in its covariance
272
+ matrix (4). The expectation value of a single tensor prod-
273
+ uct of Majorana or fermionic operators can be computed
274
+ efficiently through Wick’s theorem [22, 28],
275
+ tr (ˆρGSˆai1ˆai2 · · · ˆai2m) =(−i)mPf
276
+
277
+ Γ|i1i2...i2m
278
+
279
+ ,
280
+ (5)
281
+ where i1 ̸= i2 ̸= . . . ̸= i2m for ik ∈ {1, . . . , 2N} and k =
282
+ 1, . . . , 2N. The matrix Γ|i1i2...i2m denotes a (2m × 2m)-
283
+ submatrix of Γ with the corresponding rows and columns
284
+ i1, i2, . . . , i2m, and Pf(A) denotes the Pfaffian of a skew-
285
+ symmetric matrix A.
286
+ C.
287
+ Approximating the ground state with a
288
+ fermionic Gaussian State
289
+ Using Wick’s theorem (5), we are able to compute the
290
+ energy expectation value
291
+ E(Γ) =tr
292
+
293
+ ˆρGS ˆH
294
+
295
+ ,
296
+ (6)
297
+ which results in
298
+ E(Γ) = −
299
+ N
300
+
301
+ p=1
302
+ hp
303
+ 2 (Γ2p−1,2p − Γ2p,2p−1)
304
+ +
305
+ N
306
+
307
+ p<q
308
+ Jpq(−1)q−pPf
309
+
310
+ Γ|2p,2p+1,...,2q−1
311
+
312
+ ,
313
+ (7)
314
+ for the Hamiltonian given by Eq. (1). In order to ap-
315
+ proximate the ground state of the Hamiltonian within
316
+ the family of FGS, one has to find a covariance matrix
317
+ Γ which minimizes E(Γ). While one can apply any con-
318
+ strained optimization method, in the following, we will
319
+ discuss two particular algorithms for finding the optimal
320
+ Γ, which we will use in Section III.
321
+ a.
322
+ Imaginary Time Evolution (ITE)
323
+ The first algo-
324
+ rithm performs an Imaginary Time Evolution (ITE) un-
325
+ der the constraint that Wick’s theorem holds through-
326
+ out the evolution. This constraint guarantees that the
327
+ evolved state remains a FGS, and leads to an equation
328
+ of motion for the corresponding covariance matrix,
329
+
330
+ dτ = 1
331
+ 2[Γ, [Γ, H(mf)]],
332
+ (8)
333
+ where τ ∈ R denotes the imaginary time.
334
+ We derive
335
+ Eq. (8) in Appendix A. The central quantity is hereby the
336
+ mean-field Hamiltonian H(mf)(Γ) which is the gradient of
337
+ the energy with respect to the covariance matrix,
338
+ H(mf)
339
+ lm
340
+ = 4dE(Γ)
341
+ dΓlm
342
+ .
343
+ (9)
344
+ This term can be computed explicitly by using identities
345
+ for the matrix derivative of a Pfaffian, which we have also
346
+ employed in Appendix B.
347
+ We solve Eq. (8) iteratively, by discretizing the ITE
348
+ into small time steps ∆τ. Starting from a random ini-
349
+ tial covariance matrix, we evolve the covariance ma-
350
+ trix through Γ(τ + ∆τ) ≈ O(∆τ)Γ(τ)O(∆τ)T , where
351
+ O(∆τ) = e
352
+ 1
353
+ 2[H(mf),Γ]∆τ is an orthogonal matrix. As ex-
354
+ plicitly shown in Ref. [23], this approach preserves the
355
+ purity of the FGS, while ensuring a monotonic decrease
356
+ of the energy in each iteration.
357
+ b.
358
+ Zero Temperature (ZT)
359
+ The second algorithm
360
+ uses a self-consistent equation for the steady-state so-
361
+ lution of Eq. (8). In this algorithm, for a given Γ, we
362
+ diagonalize the mean-field matrix iH(mf) = UDU† and
363
+ recalculate
364
+ Γ = iUsgn(D)U†.
365
+ (10)
366
+ Here, U is a unitary matrix, D is a diagonal matrix con-
367
+ taining the real eigenvalues of iH(mf), and sgn(D) is the
368
+ sign function applied to the diagonal entries of D. From
369
+ this Γ we recalculate iH(mf) and repeat the procedure
370
+ until the covariance matrix is converged. One can check
371
+ that the solution of this algorithm is also a stationary
372
+ state of Eq. (8) with Γ2 = −1.
373
+ In both algorithms we choose several random initial
374
+ covariance matrices Γinit to ensure unbiased results. A
375
+ random Γinit is generated through Γinit = OT ΩO, where
376
+ O is a random orthogonal matrix and we defined the
377
+ block diagonal matrix Ω = �N
378
+ k=1(−1)rk � 0
379
+ 1
380
+ −1 0
381
+
382
+ , where
383
+ rk ∈ {0, 1} is chosen randomly and � denotes the direct
384
+ sum. After convergence of the corresponding algorithm
385
+ we achieve a stationary solution Γst. With the help of
386
+ this solution we can then find the GHF approximation
387
+ to the ground state energy given by E(Γst). Besides the
388
+ energy and entanglement entropy introduced in the fol-
389
+ lowing section, the covariance matrix also allow us direct
390
+ access to quantum correlations.
391
+ D.
392
+ Entanglement entropy and central charge
393
+ Entanglement entropy is a well-studied measure for
394
+ the amount of quantum correlations in a pure quantum
395
+ state [29, 30]. It is defined as SNA = −tr(ˆρA log(ˆρA)),
396
+ where A describes a subsystem containing NA spins. The
397
+ reduced density matrix ˆρA = trB(ˆρ) is obtained by per-
398
+ forming a partial trace over the disjoint subsystem B,
399
+ with NB = N − NA spins. For the spins numbered as
400
+
401
+ 4
402
+ A = {1, 2, . . . , N/2} we define the corresponding Majo-
403
+ rana operators by MA = {1, 2, . . . , N−1, N}. The entan-
404
+ glement entropy is then fully determined by the matrix
405
+ ΓA = Γ|MA and can be calculated with [23, 31, 32]
406
+ SN/2 =N
407
+ 2 log(2) − 1
408
+ 2tr [(1N + iΓA) log (1N + iΓA)] .
409
+ (11)
410
+ For short-range 1D systems, the entanglement en-
411
+ tropy typically follows two different scalings: for gapped
412
+ phases, SN/2 saturates to a constant value independent of
413
+ N and thus obeys the so-called area law [33]. For gapless
414
+ phases, the entanglement entropy exhibits the following
415
+ behavior [34]
416
+ SN/2 = c
417
+ 6 log(N) + B,
418
+ (12)
419
+ where c is the central charge characterizing the universal-
420
+ ity class of the system and B is a non-universal constant.
421
+ For the nearest-neighbour TFIM at α = ∞ the value of
422
+ c = 1/2 can be found exactly.
423
+ For long-range systems we need to differentiate be-
424
+ tween weak long-range interactions, α > d = 1, and the
425
+ strong long-range interactions, α < d = 1.
426
+ For weak long-range interactions and a non-vanishing
427
+ energy gap we expect also an area law scaling, implying
428
+ that SN/2 is independent of N. For the case of a vanish-
429
+ ing gap one also finds a logarithmic divergence [33, 35–37]
430
+ following Eq. (12).
431
+ For strong long-range interactions in the AFM-TFIM
432
+ we expect instead a logarithmic divergence of the entan-
433
+ glement entropy, where SN/2 obeys Eq. (12) and one can
434
+ find c ̸= 0 even in presence of a non-vanishing gap [38–
435
+ 41]. In this regime c is strictly speaking not a central
436
+ charge but because of the same functional dependence of
437
+ SN/2 in Eq. (12), we also denote c as the effective central
438
+ charge.
439
+ III.
440
+ RESULTS
441
+ A.
442
+ Phase diagram
443
+ In this section, we show that a computationally in-
444
+ expensive GHF mean-field approach can reproduce the
445
+ phase diagram of the AFM-TFIM for a wide range of
446
+ values α, both in the weak and strong long-range regime,
447
+ and is able to locate the point of the phase transition
448
+ for α ≥ 1 in excellent agreement with state-of-the-art
449
+ numerical methods.
450
+ As a first benchmark and in the same spirit of Ref. [6]
451
+ we map the phase diagram by calculating the entangle-
452
+ ment entropy for a wide range of values of α, from weak to
453
+ strong long-range interactions, and for θ ∈ (0, π/2). The
454
+ values of SN/2 [Eq. (11)] computed with the ZT GHF
455
+ method are visible in Fig. 1 for N = 100. For θ = 0 the
456
+ interactions vanish and SN/2 = 0 for all values of α. This
457
+ FIG. 1.
458
+ We plot the entanglement entropy SN/2 from the
459
+ covariance matrix obtained through the ZT algorithm for a
460
+ system size N = 100, α ∈ {0.30, 0.50, 0.75, 1.00, . . . , 3.00},
461
+ and θ ∈ (0, π/2). Black squares represent the quantum critical
462
+ points θ∞
463
+ c /π in the thermodynamic limit, which are listed in
464
+ Tab. I, while the dashed line serves as a guide to the eye.
465
+ represents the phase where all spins are uncorrelated and
466
+ align with the external magnetic field. However, when
467
+ θ and therefore the AFM interactions are increased, the
468
+ minimization of the interaction energy competes with the
469
+ external magnetic field. This is accompanied by an in-
470
+ crease of SN/2. Dependent on α, there is a critical value
471
+ θc(α) beyond which the spins favor an AFM order. This
472
+ transition is highlighted in Fig. 1 by a sharp rise of SN/2.
473
+ Our findings are in qualitative agreement with the ones
474
+ obtained in Ref. [6] from DMRG calculations. To com-
475
+ pare our results also quantitatively, we will now focus on
476
+ the weak and strong long-range interactions cases sepa-
477
+ rately.
478
+ B.
479
+ Weak long-range interactions
480
+ 1.
481
+ Comparison of GHF and DMRG
482
+ For weak long-range interactions, α ≥ 1, we show the
483
+ ground state energy and the entanglement entropy in
484
+ Fig. 2(a) and Fig. 2(b), respectively.
485
+ The solid lines represent the results obtained from
486
+ the GHF theory while hollow markers represent the re-
487
+ sults obtained from DMRG simulations. Both simulation
488
+ methods predict a rather smooth behavior of the energy
489
+ in Fig. 2(a). For larger values of α ≥ 1.5 we find a max-
490
+ imum and a decrease beyond the maximum point. The
491
+ GHF and DMRG simulations agree perfectly.
492
+ The entanglement entropy, visible in Fig. 2(b), shows
493
+ for all values and both simulations methods a very quick
494
+ increase and a pronounced singularity. The latter is an
495
+ indicator for the phase transition point.
496
+ Beyond this
497
+
498
+ 1.4
499
+ 3.0
500
+ 1.2
501
+ 2.5
502
+ 1.0
503
+ 2.0 -
504
+ 0.8
505
+ SN/2
506
+ a
507
+ 1.5
508
+ 0.6
509
+ 1.0
510
+ 0.4
511
+ 0.2
512
+ 0.5
513
+ 0.1
514
+ 0.2
515
+ 0.3
516
+ 0.4
517
+ 0/ π5
518
+ (a)
519
+ 0.0
520
+ 0.1
521
+ 0.2
522
+ 0.3
523
+ 0.4
524
+ 0.5
525
+ θ/π
526
+ −100
527
+ −95
528
+ −90
529
+ −85
530
+ −80
531
+ −75
532
+ −70
533
+ Energy
534
+ ZT, α=1.0
535
+ ZT, α=1.25
536
+ ZT, α=1.5
537
+ ZT, α=1.75
538
+ ZT, α=2.0
539
+ ZT, α=2.25
540
+ ZT, α=2.5
541
+ ZT, α=2.75
542
+ ZT, α=3.0
543
+ DMRG
544
+ (b)
545
+ 0.0
546
+ 0.1
547
+ 0.2
548
+ 0.3
549
+ 0.4
550
+ 0.5
551
+ θ/π
552
+ 0.0
553
+ 0.2
554
+ 0.4
555
+ 0.6
556
+ 0.8
557
+ 1.0
558
+ 1.2
559
+ SN/2
560
+ ZT, α=1.0
561
+ ZT, α=1.25
562
+ ZT, α=1.5
563
+ ZT, α=1.75
564
+ ZT, α=2.0
565
+ ZT, α=2.25
566
+ ZT, α=2.5
567
+ ZT, α=2.75
568
+ ZT, α=3.0
569
+ DMRG
570
+ FIG. 2.
571
+ For a system of size N = 100 and exponents
572
+ α ∈ [1, 3], we plot (a) the energy E and (b) the entanglement
573
+ entropy SN/2 (bottom), as defined in Eqs. (6) and (11), ob-
574
+ tained from the covariance matrix of the ZT algorithm (solid
575
+ lines) and compare it to DMRG (hollow markers).
576
+ point we find again a decrease of the entanglement en-
577
+ tropy. Both methods, GHF and DMRG, are in very good
578
+ agreement.
579
+ 2.
580
+ Threshold and central charge
581
+ In order to find a value for the threshold at N → ∞,
582
+ we are performing a finite-size scaling.
583
+ For this we
584
+ carry out analogue simulations for a range of smaller
585
+ system sizes N ∈ {20, 30, . . . , 100}.
586
+ Then we find nu-
587
+ merically the maximum of the entanglement entropy
588
+ of the half chain Smax = SN/2(θmax) and the corre-
589
+ sponding value θmax.
590
+ The latter is found using the
591
+ 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
592
+ 1/N
593
+ 0.26
594
+ 0.28
595
+ 0.30
596
+ 0.32
597
+ 0.34
598
+ 0.36
599
+ 0.38
600
+ θmax/π
601
+ α =1.0, θ∞
602
+ c /π =0.3534(4)
603
+ α =2.0, θ∞
604
+ c /π =0.3013(2)
605
+ α =3.0, θ∞
606
+ c /π =0.2760(2)
607
+ FIG. 3.
608
+ Example for the fit of Eq. (13) to the value of θmax
609
+ obtained by maximization of the entanglement entropy S with
610
+ FGS. The thresholds θ∞
611
+ c /π are shown for the respective cases
612
+ α ∈ {1, 2, 3}, see Tab. I for more details.
613
+ optimizer scipy.optimize.fminbound() which is pre-
614
+ implemented in python.
615
+ For every value θ examined
616
+ by the optimizer we find the optimal FGS for the cor-
617
+ responding Hamiltonian. Optimizing SN/2 over θ can be
618
+ achieved as FGS provide a way for calculating SN/2 poly-
619
+ nomially in N, see Eq. (11). We then use the following
620
+ finite-size scaling law [42]
621
+ θmax(N) = θ∞
622
+ c + a
623
+ N ,
624
+ (13)
625
+ where θ∞
626
+ c
627
+ is the threshold at N → ∞ and a is a fitting
628
+ parameter which determines the finite-size scaling. Fit-
629
+ ting Eq. (13) to the numerically obtained data of θmax
630
+ reveals the θ∞
631
+ c
632
+ in the thermodynamic limit. In Fig. 3 we
633
+ provide examples for the fits that are used to calculate
634
+ θ∞
635
+ c . We perform these fits for various values of α and the
636
+ results for the threshold are collected in Tab. I. In addi-
637
+ tion, we have plotted the results of θmax
638
+ c
639
+ in Fig 1 as black
640
+ squares which mark the sudden spike of the entanglement
641
+ entropy. In Tab. I we compare the results obtained from
642
+ the GHF theory with the ones obtained from LCE calcu-
643
+ lations [10], DMRG data of Ref. [6] (labeled DMRG) and
644
+ Ref. [8] (labeled DMRG*). We find in general very good
645
+ agreement of the thresholds obtained from the different
646
+ methods.
647
+ Besides the threshold θ∞
648
+ c
649
+ we can also extract the scal-
650
+ ing of the maximum entropy Smax = S(θmax). At the
651
+ critical point we use the scaling law [34] given by Eq. (12).
652
+ We fit Eq. (12) to the maximum values Smax as displayed
653
+ in Fig. 4(a). From these fits we extract the central charge
654
+ c, which is shown in Fig. 4(b) as function of α. The cen-
655
+ tral charge is always above the result c = 1/2 expected
656
+ from the short-range TFIM. We also compare our results
657
+ to different DMRG results of Ref. [6, 8]. We find that
658
+ the central charges obtained from FGS are systematically
659
+ smaller than the values provided by Ref. [6] and larger
660
+
661
+ 6
662
+ than the DMRG results of Ref. [8]. The central charge c is
663
+ monotonically decreasing in the weak long-range regime,
664
+ but drops at the onset of the strong long-range regime
665
+ at α = 1. In conclusion, we found that the results of
666
+ the GHF method are in good qualitative and quantita-
667
+ tive agreement with state-of-the-art numerical methods
668
+ for weak long-range interactions.
669
+ C.
670
+ Strong long-range interactions
671
+ 1.
672
+ Comparison of GHF and DMRG
673
+ We will now shift our focus to the regime of strong
674
+ long-range interactions, α < 1. We first plot the ground
675
+ state energy and the entanglement entropy in Fig. 5(a)
676
+ and Fig. 5(b) for three different values of α < 1 of size
677
+ N = 100.
678
+ In Fig. 5(a) we obtain for all three values
679
+ of α a monotonously increasing energy with θ. This is
680
+ different to the case of weak long-range interactions (see
681
+ Fig. 2(a)) where we have observed a maximum close to
682
+ the threshold at least for sufficiently large α ≥ 1.5. We
683
+ compare our results obtained from FGS also with the
684
+ ones obtained from DMRG results. Here, we find that
685
+ DMRG always predicts a lower ground state energy. The
686
+ discrepancy of the two methods is even more striking
687
+ in the entanglement entropy visible in Fig. 5(b). Here,
688
+ while we still observe very good agreement for α = 0.75
689
+ we found clear deviations for α = 0.3. The DMRG results
690
+ predict tendentially a larger entanglement entropy than
691
+ the FGS. This is an indicator that FGS are less well-
692
+ suited for the description of the TFIM for very small α,
693
+ i.e. very strong long-range interactions.
694
+ α
695
+ θ∞
696
+ c /π FGS
697
+ LCE
698
+ DMRG DMRG*
699
+ 1.00
700
+ 0.3534(4) -
701
+ 0.3509
702
+ -
703
+ 1.25
704
+ 0.3357(1) 0.35(5)
705
+ -
706
+ -
707
+ 1.50
708
+ 0.3218(1) 0.3213(5)
709
+ 0.3226
710
+ -
711
+ 1.75
712
+ 0.3106(1) -
713
+ -
714
+ -
715
+ 2.00
716
+ 0.3013(2) 0.3026(8)
717
+ 0.3027
718
+ 0.3021
719
+ 2.25
720
+ 0.2932(2) 0.294(4)
721
+ -
722
+ -
723
+ 2.50
724
+ 0.2865(1) 0.2871(11)
725
+ -
726
+ -
727
+ 2.75
728
+ 0.2807(2) -
729
+ -
730
+ -
731
+ 3.00
732
+ 0.2760(2) 0.27722(25) 0.2782
733
+ -
734
+ TABLE I. The critical points θ∞
735
+ c /π obtained from Eq. (13)
736
+ with FGS and ZT, in comparison to LCE [10], and DMRG
737
+ [6], DMRG*[8] results. The values are obtained for various
738
+ exponents α and for simulations up to N = 100 spins. The
739
+ error indicated in the FGS column in round brackets is the
740
+ standard deviation for the intersect of a linear regression fit
741
+ of θmax/π as a function of 1/N.
742
+ (a)
743
+ 3.0
744
+ 3.2
745
+ 3.4
746
+ 3.6
747
+ 3.8
748
+ 4.0
749
+ 4.2
750
+ 4.4
751
+ 4.6
752
+ log(N)
753
+ 0.72
754
+ 0.74
755
+ 0.76
756
+ 0.78
757
+ 0.80
758
+ SN/2
759
+ α =1.0, c =0.5455(40)
760
+ α =2.0, c =0.5428(72)
761
+ α =3.0, c =0.5269(73)
762
+ (b)
763
+ 1.00
764
+ 1.25
765
+ 1.50
766
+ 1.75
767
+ 2.00
768
+ 2.25
769
+ 2.50
770
+ 2.75
771
+ 3.00
772
+ α
773
+ 0.50
774
+ 0.52
775
+ 0.54
776
+ 0.56
777
+ 0.58
778
+ 0.60
779
+ c
780
+ ZT
781
+ FGS
782
+ DMRG
783
+ DMRG*
784
+ FIG. 4.
785
+ (a) Extracting the central charge. Using the ZT
786
+ algorithm for various α, here exemplified by α ∈ {1, 2, 3}, we
787
+ plot the entanglement entropy SN/2 against log(N). For each
788
+ α we perform a linear regression fit, neglecting the system
789
+ sizes N ∈ {20, 30, 40} to mitigate finite size effects. (b) Cen-
790
+ tral charge c obtained from finite-size scaling up to system
791
+ size N = 100 of FGS evolutions through the ZT algorithm
792
+ (blue squares) for the AFM long-range TFIM. For compari-
793
+ son, DMRG results from finite-size scaling of system sizes of
794
+ up to N = 100 from Ref. [6] (’DMRG’, orange square) and
795
+ [8] (’DMRG*’, green triangles) are included. The red hori-
796
+ zontal line represents the value c = 1/2 which describes the
797
+ Ising universality class.
798
+ Error bars represent the standard
799
+ deviation from the linear regression fit.
800
+ 2.
801
+ Violations to the area law
802
+ We will now analyze the scaling of the entanglement
803
+ entropy with the system size. For this we calculate the
804
+ entanglement entropy for various parameters θ and α and
805
+ for different numbers of spins N ∈ {40, 50, . . . , 100}. We
806
+
807
+ 7
808
+ (a)
809
+ 0.0
810
+ 0.1
811
+ 0.2
812
+ 0.3
813
+ 0.4
814
+ 0.5
815
+ θ/π
816
+ −100
817
+ −90
818
+ −80
819
+ −70
820
+ −60
821
+ Energy
822
+ ITE, α=0.3
823
+ ITE, α=0.5
824
+ ITE, α=0.75
825
+ DMRG
826
+ (b)
827
+ 0.0
828
+ 0.1
829
+ 0.2
830
+ 0.3
831
+ 0.4
832
+ 0.5
833
+ θ/π
834
+ 0.0
835
+ 0.2
836
+ 0.4
837
+ 0.6
838
+ 0.8
839
+ 1.0
840
+ 1.2
841
+ 1.4
842
+ SN/2
843
+ ITE, α=0.3
844
+ ITE, α=0.5
845
+ ITE, α=0.75
846
+ DMRG
847
+ FIG. 5.
848
+ (a) Energy and (b) entanglement entropy obtained
849
+ from the covariance matrix of the ITE algorithm (solid lines)
850
+ and DMRG (empty markers) simulations for N = 100 and
851
+ α ∈ {0.3, 0.5, 0.75}.
852
+ then fit the coefficients c and B using Eq. (12) to the
853
+ obtained values of the entanglement entropy.
854
+ The ob-
855
+ tained values of c are shown in Fig. 6. At this point we
856
+ remark that the effective central charge c is calculated far
857
+ away from the threshold in a phase with a non-vanishing
858
+ energy gap [6].
859
+ For the values α < 1, we find c = 0 only at θ = 0. For
860
+ increasing θ we find a sharp increase of c. For α = 0.3
861
+ and α = 0.5 we find a maximum and then a decrease
862
+ again for larger values of θ. A qualitatively similar be-
863
+ havior has also been observed in Ref. [6]. This has been
864
+ seen as a violation to the area law since this logarithmic
865
+ divergence does not originate from a closing gap in the
866
+ spectrum of the system [6]. We therefore conclude that
867
+ the FGS are able to predict this feature, although the
868
+ 0.00
869
+ 0.05
870
+ 0.10
871
+ 0.15
872
+ 0.20
873
+ 0.25
874
+ θ/π
875
+ 0.000
876
+ 0.005
877
+ 0.010
878
+ 0.015
879
+ 0.020
880
+ 0.025
881
+ 0.030
882
+ 0.035
883
+ 0.040
884
+ 0.045
885
+ c/6
886
+ α =0.3
887
+ α =0.5
888
+ α =0.75
889
+ α =1
890
+ FIG. 6.
891
+ Violations to the area law: The effective central
892
+ charge c [Eq. (12)] calculated from finite scaling of system
893
+ sizes N ∈ {40, 50, . . . , 100} for 50 different values deep in the
894
+ gapped region θ ∈ (0, π/4) for the GHF ITE algorithm. Error
895
+ bars for the standard deviation are also included, but too
896
+ small to be visible.
897
+ quantitative values deviate from the ones obtained from
898
+ DMRG results.
899
+ IV.
900
+ SUMMARY AND OUTLOOK
901
+ This work presents an extensive study of the AFM
902
+ long-range TFIM in both the weak and strong long-range
903
+ regime using generalized Hartree Fock theory, a mean-
904
+ field method with low computational cost. We validate
905
+ our results by comparing the computed energy and entan-
906
+ glement entropy to DMRG. We plot the phase diagram
907
+ and provide estimates for the location of the critical point
908
+ of the second order phase transition through finite-size
909
+ scaling for α ∈ [1, 3] and find that they are in excel-
910
+ lent agreement with both LCE calculations of Ref. [10]
911
+ and DMRG simulations of Refs. [6, 8]. At the critical
912
+ point, we compute the central charge c of the underly-
913
+ ing conformal field theory for α ∈ {0.3, 0.5, 1}, and find
914
+ c > 1/2 for all values of α.
915
+ In the strong long-range
916
+ regime we still found qualitative agreement between FGS
917
+ and DMRG calculations. Hereby we found larger quan-
918
+ titative deviations for smaller values of α. Remarkably,
919
+ GHF can predict the logarithmic violations to the area
920
+ law in the AFM-TFIM which has previously been stud-
921
+ ied with DRMG. Based on these findings, we conclude
922
+ that FGS provide a numerically inexpensive alternative
923
+ to study the AFM long-range TFIM and that our results
924
+ are in good agreement with DMRG, the current state-
925
+ of-the-art numerical method for one-dimensional lattice
926
+ systems.
927
+ All simulations were carried out using a standard lap-
928
+ top computer.
929
+ Since the dimensionality of the system
930
+ only appears in the Hamiltonian elements hpq and Jpq,
931
+
932
+ 8
933
+ it is straightforward to apply FGS to the two- and
934
+ three-dimensional TFIM. Therefore, it would be inter-
935
+ esting to compare FGS simulations with methods that
936
+ can be applied to the two-dimensional AFM-TFIM [10].
937
+ Moreover, while we have focused on the AFM regime,
938
+ FGS can readily be applied to the ferromagnetic regime
939
+ θ ∈ (−π, 0). In this work we have focused on the en-
940
+ tanglement entropy, however, pair correlation functions
941
+ and the entanglement spectrum can be extracted from
942
+ the covariance matrix as well.
943
+ FGS can also be used
944
+ to study dynamics under the evolution of the TFIM,
945
+ with equations of motion similar to Eq. (8) [23, 24]. In
946
+ particular, studying the dynamics of the entropy after a
947
+ quench would offer the possibility to verify the breaking
948
+ of conformal symmetry in the regime α < 1 [43]. From
949
+ a numerical standpoint, more efficient calculations of the
950
+ central quantities such as Eqs. (7) could lead to dramatic
951
+ computational speedups. As a possible pathway, it would
952
+ be interesting to see if sum-identities for Pfaffians such as
953
+ provided in Refs. [44–46] could be applied to the TFIM
954
+ Hamiltonian. Finally, one could study if different spin-
955
+ to-fermion mappings [47–49], each resulting in a different
956
+ form of H when expressed in fermionic operators, have
957
+ an effect on the FGS simulations.
958
+ ACKNOWLEDGMENTS
959
+ The authors thank Kai Phillip Schmidt for providing
960
+ the data for the LCE calculations from Ref.[10] and Luca
961
+ Tagliacozzo for providing the DMRG data from Ref. [6].
962
+ The authors also thank Giovanna Morigi for insightful
963
+ discussions. M.K. thanks Miguel ´Angel Mart´ın-Delgado
964
+ and Frank Wilhelm-Mauch for helpful discussions and
965
+ support. S.B.J. acknowledges support from the Research
966
+ Centers of the Deutsche Forschungsgemeinschaft (DFG):
967
+ Projects A4 and A5 in SFB/Transregio 185: “OSCAR.”
968
+ [1] M. Tinkham, Introduction to Superconductivity, 2nd ed.
969
+ (Dover Publications, 2004).
970
+ [2] F. D. M. Haldane, Rev. Mod. Phys. 89, 040502 (2017).
971
+ [3] A. Stern, Annals of Physics 323, 204 (2008), january Spe-
972
+ cial Issue 2008.
973
+ [4] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cam-
974
+ bridge University Press, 2011).
975
+ [5] R. J. Elliott, P. Pfeuty, and C. Wood, Phys. Rev. Lett.
976
+ 25, 443 (1970).
977
+ [6] T. Koffel, M. Lewenstein, and L. Tagliacozzo, Phys. Rev.
978
+ Lett. 109, 267203 (2012).
979
+ [7] M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M. D.
980
+ Lukin, and E. Demler, Phys. Rev. Lett. 111, 147205
981
+ (2013).
982
+ [8] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New
983
+ Journal of Physics 18, 015001 (2015).
984
+ [9] S. Fey and K. P. Schmidt, Phys. Rev. B 94, 075156
985
+ (2016).
986
+ [10] S. Fey, S. C. Kapfer, and K. P. Schmidt, Phys. Rev. Lett.
987
+ 122, 017203 (2019).
988
+ [11] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang,
989
+ J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger,
990
+ Nature 484, 489 (2012).
991
+ [12] C. Schneider, D. Porras, and T. Schaetz, Reports on
992
+ Progress in Physics 75, 024401 (2012).
993
+ [13] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras,
994
+ and T. Schaetz, Nature Physics 4, 757 (2008).
995
+ [14] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller,
996
+ R. Blatt, and C. F. Roos, Nature 511, 202 (2014).
997
+ [15] A. Bermudez, T. Schaetz, and M. B. Plenio, Phys. Rev.
998
+ Lett. 110, 110502 (2013).
999
+ [16] S. Humeniuk, Phys. Rev. B 93, 104412 (2016).
1000
+ [17] J. A. Koziol, A. Langheld, S. C. Kapfer, and K. P.
1001
+ Schmidt, Phys. Rev. B 103, 245135 (2021).
1002
+ [18] N. Laflorencie, I. Affleck, and M. Berciu, Journal of
1003
+ Statistical Mechanics:
1004
+ Theory and Experiment 2005,
1005
+ P12001 (2005).
1006
+ [19] A. W. Sandvik, Phys. Rev. Lett. 104, 137204 (2010).
1007
+ [20] V. Bach, E. H. Lieb, and J. P. Solovej, Journal of Statis-
1008
+ tical Physics 76, 3 (1994).
1009
+ [21] M. Wimmer, ACM Trans. Math. Softw. 38, 1 (2012).
1010
+ [22] S. Bravyi, Quantum Info. Comput. 5, 216–238 (2005).
1011
+ [23] C. V. Kraus and J. I. Cirac, New Journal of Physics 12,
1012
+ 113004 (2010).
1013
+ [24] T. Shi, E. Demler, and J. Ignacio Cirac, Annals of Physics
1014
+ 390, 245 (2018).
1015
+ [25] P. Jordan and E. Wigner, Zeitschrift f¨ur Physik 47, 631
1016
+ (1928).
1017
+ [26] M. E. Fisher, S.-k. Ma, and B. G. Nickel, Phys. Rev. Lett.
1018
+ 29, 917 (1972).
1019
+ [27] N. Defenu, A. Trombettoni, and A. Codello, Phys. Rev.
1020
+ E 92, 052113 (2015).
1021
+ [28] G. C. Wick, Phys. Rev. 80, 268 (1950).
1022
+ [29] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev.
1023
+ Mod. Phys. 80, 517 (2008).
1024
+ [30] R.
1025
+ Horodecki,
1026
+ P.
1027
+ Horodecki,
1028
+ M.
1029
+ Horodecki,
1030
+ and
1031
+ K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
1032
+ [31] I. Peschel, Journal of Physics A: Mathematical and Gen-
1033
+ eral 36, L205 (2003).
1034
+ [32] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys.
1035
+ Rev. Lett. 90, 227902 (2003).
1036
+ [33] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys.
1037
+ 82, 277 (2010).
1038
+ [34] P. Calabrese and J. Cardy, Journal of Statistical Mechan-
1039
+ ics: Theory and Experiment 2004, P06002 (2004).
1040
+ [35] B.-Q. Jin and V. E. Korepin, Journal of Statistical
1041
+ Physics 116, 79 (2004).
1042
+ [36] A. R. Its, B.-Q. Jin, and V. E. Korepin, Journal of
1043
+ Physics A: Mathematical and General 38, 2975 (2005).
1044
+ [37] J. P. Keating and F. Mezzadri, Phys. Rev. Lett. 94,
1045
+ 050501 (2005).
1046
+ [38] J. Eisert and T. J. Osborne, Phys. Rev. Lett. 97, 150404
1047
+ (2006).
1048
+ [39] D. Peter, S. M¨uller, S. Wessel, and H. P. B¨uchler, Phys.
1049
+ Rev. Lett. 109, 025303 (2012).
1050
+ [40] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and
1051
+ G. Pupillo, Phys. Rev. Lett. 113, 156402 (2014).
1052
+ [41] F. Ares, J. G. Esteve, F. Falceto, and A. R. de Queiroz,
1053
+
1054
+ 9
1055
+ Phys. Rev. A 92, 042334 (2015).
1056
+ [42] S. Nishimoto, Phys. Rev. B 84, 195108 (2011).
1057
+ [43] J. Schachenmayer, B. P. Lanyon, C. F. Roos, and A. J.
1058
+ Daley, Phys. Rev. X 3, 031015 (2013).
1059
+ [44] M. Ishikawa and M. Wakayama, Linear and Multilinear
1060
+ Algebra 39, 285 (1995).
1061
+ [45] M. Ishikawa, M. Wakayama, et al., in Combinatorial
1062
+ Methods in Representation Theory (Mathematical Soci-
1063
+ ety of Japan, 2000) pp. 133–142.
1064
+ [46] M. Ishikawa and M. Wakayama, Journal of Combinato-
1065
+ rial Theory, Series A 113, 113 (2006).
1066
+ [47] S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298,
1067
+ 210 (2002).
1068
+ [48] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean,
1069
+ R. Babbush, P. V. Coveney, F. Mintert, F. Wilhelm, and
1070
+ P. J. Love, International Journal of Quantum Chemistry
1071
+ 115, 1431 (2015).
1072
+ [49] Z. Jiang, A. Kalev, W. Mruczkiewicz, and H. Neven,
1073
+ Quantum 4, 276 (2020).
1074
+ [50] R. M. Wilcox, Journal of Mathematical Physics 8, 962
1075
+ (1967).
1076
+ Appendix A: Derivation of the equations of motion for the ITE algorithm
1077
+ In this section, we will derive Eq. (8) which describes the imaginary-time evolution of a FGS. Eq. (8) was also
1078
+ shown in Ref. [23] for fourth-order polynomials of fermionic opertors and for an even more general case in Ref. [24].
1079
+ We start by writing down the imaginary-time time evolution for the pure FGS ˆρGS = |ΨGS⟩ ⟨ΨGS| determined by
1080
+ d
1081
+ dτ |ΨGS⟩ = −
1082
+
1083
+ ˆH − ⟨ΨGS| ˆH|ΨGS⟩
1084
+
1085
+ |ΨGS⟩ .
1086
+ (A1)
1087
+ The pure FGS can be generated by a Gaussian transformation
1088
+ |ΨGS⟩ = ˆUGS |vac⟩ ,
1089
+ (A2)
1090
+ where |vac⟩ denotes the fermionic vacuum and
1091
+ ˆUGS(ξ) =e
1092
+ i
1093
+ 4 ˆaT ξˆa
1094
+ (A3)
1095
+ describes the generator of a pure FGS [22]. Here, ξ denotes a (2n × 2n) anti-symmetric and Hermitian matrix (the
1096
+ matrix elements ξkl = −ξlk are purely imaginary). To calculate the covariance matrix Γ we use
1097
+ Γ = −UξΥUT
1098
+ ξ ,
1099
+ (A4)
1100
+ where
1101
+ Υ =
1102
+ N
1103
+
1104
+ p=1
1105
+
1106
+ 0
1107
+ 1
1108
+ −1 0
1109
+
1110
+ .
1111
+ (A5)
1112
+ is the covariance of the vacuum state and where we employed the transformation
1113
+ ˆU †
1114
+ GS(ξ)ˆa ˆUGS(ξ) = Uξˆa,
1115
+ (A6)
1116
+ with
1117
+ Uξ = eiξ.
1118
+ (A7)
1119
+ Now, the idea is that we derive from Eq. (A1) a differential equation for Uξ which can then be used to calculate Γ
1120
+ using Eq. (A4). For this we treat the left- and right-hand side of Eq. (A1) separately and rewrite it as
1121
+ ˆUGS ˆL |vac⟩ = ˆUGS ˆR |vac⟩ .
1122
+ (A8)
1123
+ We then expand the operators ˆL and ˆR up to second order in terms of normal-ordered monomials of the Majorana
1124
+ operators and apply them to the vacuum state.
1125
+ a.
1126
+ Left-hand side of Eq. (A1):
1127
+ The operator ˆL is defined as
1128
+ ˆL = ˆU †
1129
+ GS
1130
+
1131
+ d ˆUGS(ξ)
1132
+
1133
+
1134
+ .
1135
+ (A9)
1136
+
1137
+ 10
1138
+ The derivative of the unitary transformation is given by
1139
+ d ˆUGS(ξ)
1140
+
1141
+ =UGS(ξ)
1142
+ � i
1143
+ 4ˆaT UT
1144
+ ξ
1145
+ dUξ
1146
+ dτ ˆa
1147
+
1148
+ .
1149
+ (A10)
1150
+ Here, we have used Eq. (A3), the identity [50]
1151
+ de ˆ
1152
+ J(τ)
1153
+
1154
+ =
1155
+ � 1
1156
+ 0
1157
+ due(1−u) ˆ
1158
+ J(τ) �
1159
+ dτ ˆJ(τ)
1160
+
1161
+ eu ˆ
1162
+ J(τ),
1163
+ (A11)
1164
+ and the orthogonality property UξUT
1165
+ ξ = 1. For the normal-ordered expression we therefore find
1166
+ ˆL = ˆL0 + ˆL2,
1167
+ (A12)
1168
+ with
1169
+ ˆL0 = i
1170
+ 4tr
1171
+ �dUξ
1172
+ dτ UT
1173
+ ξ Γ
1174
+
1175
+ ,
1176
+ (A13)
1177
+ ˆL2 =1
1178
+ 4 : ˆaT UT
1179
+ ξ
1180
+ dUξ
1181
+ dτ ˆa :,
1182
+ (A14)
1183
+ where : ˆA : denotes the elementwise normal-ordering of ˆA.
1184
+ b.
1185
+ Right-hand side of Eq. (A4):
1186
+ The definition of ˆR is
1187
+ ˆR = − ˆU †
1188
+ GS
1189
+
1190
+ ˆH − ⟨ΨGS| ˆH |ΨGS⟩
1191
+
1192
+ ˆUGS.
1193
+ (A15)
1194
+ We can now use a modification of Wicks theorem to calculate
1195
+ ˆU †
1196
+ GS ˆH ˆUGS = ⟨ΨGS| ˆH |ΨGS⟩ + i
1197
+ 4 : ˆaT UT
1198
+ ξ H(mf)Uξa : + ˜Q,
1199
+ (A16)
1200
+ where ˜Q collects all normally ordered monomials of quartic order or higher. We derive this expression in Appendix B.
1201
+ Inserting Eq. (A16) into Eq. (A15), we find for ˆR the following expression
1202
+ ˆR = ˆR2 − ˜Q,
1203
+ (A17)
1204
+ with
1205
+ ˆR2 = − i
1206
+ 4 : ˆaT UT
1207
+ ξ H(mf)Uξa : .
1208
+ (A18)
1209
+ c.
1210
+ Comparing left- and right-hand side:
1211
+ We now require to match ˆL |vac⟩ and ˆR |vac⟩ up to second order. This
1212
+ is a consequence of our restriction to FGS. Therefore, we find two equations
1213
+ ˆL0 |vac⟩ =0,
1214
+ (A19)
1215
+ ˆL2 |vac⟩ = ˆR2 |vac⟩ ,
1216
+ (A20)
1217
+ from which we wish to derive the equations of motion of the ITE. We first consider Eq. (A20),
1218
+ : ˆaT UT
1219
+ ξ
1220
+ dUξ
1221
+ dτ ˆa : |vac⟩ = − i : ˆaT UT
1222
+ ξ H(mf)Uξˆa : |vac⟩ .
1223
+ (A21)
1224
+ For any normal-ordered polynomial of fermionic operators applied to the vacuum state, the only terms that do not
1225
+ vanish are polynomials which exclusively contain fermionic creation operators. Therefore, we define the vector
1226
+ r = ˆc† ⊗
1227
+
1228
+ 1
1229
+ i
1230
+
1231
+ ,
1232
+ (A22)
1233
+ where ˆc† = (ˆc†
1234
+ 1, . . . , ˆc†
1235
+ N), and rewrite Eq. (A21) in terms of fermionic creation and annihilation operators, which leads
1236
+ to
1237
+ ˆrT UT
1238
+ ξ
1239
+ dUξ
1240
+ dτ ˆr |vac⟩ = − iˆrT UT
1241
+ ξ H(mf)Uξˆr |vac⟩ ,
1242
+ (A23)
1243
+
1244
+ 11
1245
+ where the normal-ordering “: :” may now be dropped. We would now like to compare the matrices of Eq. (A23).
1246
+ However, before doing so, we need to take into account the symmetry operations which leave the operator ˆr invariant.
1247
+ For this, we first rewrite Υ defined in Eq. (A5) as Υ = 1N ⊗
1248
+ � 0
1249
+ 1
1250
+ −1 0
1251
+
1252
+ . Thus, the symmetry operations on the operators
1253
+ are given by −iΥˆr = ˆr and iˆrT Υ = ˆrT . The real-valued skew-symmetric solution for dUξ
1254
+
1255
+ which satisfies Eq. (A19)
1256
+ is then given by
1257
+ dUξ
1258
+
1259
+ = −1
1260
+ 2ΓH(mf)Uξ − 1
1261
+ 2H(mf)UξΥ.
1262
+ (A24)
1263
+ For the derivative of the covariance matrix Γ we find then
1264
+
1265
+ dτ = − dUξ
1266
+ dτ ΥUT
1267
+ ξ − UξΥ
1268
+ dUT
1269
+ ξ
1270
+
1271
+ = −H(mf) − ΓH(mf)Γ,
1272
+ (A25)
1273
+ which is identical to Eq. (8) using Γ2 = −1.
1274
+ Appendix B: Best quadratic approximation
1275
+ In this section we will show Eq. (A16), which can be derived using Wick’s theorem. In particular, we will derive
1276
+ this formula for an arbitrary Hamiltonian which is a sum of even products of Majorana operators. By the application
1277
+ of normal-ordering onto a polynomial ˆp(k) of order k we understand the sum of normal-ordered monomials ˆm(l) of
1278
+ order l ≤ k, in other words : ˆp(k) := �k
1279
+ l=0 : ˆm(l) :. Therefore, it is sufficient to show the relation (A16) for arbitrary
1280
+ even products of Majorana operators. Without loss of generality we number the Majorana operators from 1, ..., 2n
1281
+ with n ∈ N. Using normal-ordering and Wicks theorem we can write the product ˆA = ˆa1ˆa2 . . . ˆa2n (a monomial of
1282
+ Majorana operators) in the following way
1283
+ ˆA = ⟨vac| ˆA |vac⟩ +
1284
+
1285
+ i<j
1286
+ (−1)i+j+1 ⟨vac| ˆAˆi,ˆj |vac⟩ : ˆaiˆaj : + ˆQ,
1287
+ (B1)
1288
+ where ˆQ collects all normal-ordered monomials which are at least quartic in the Majorana operators. We furthermore
1289
+ introduced the reduced product ˆAˆi,ˆj which emerges from ˆA by removing the operators ˆai and ˆaj. If we transform the
1290
+ vacuum state using Eq. (A2), this expansion needs to be modified according to
1291
+ ˆUGS ˆA ˆU †
1292
+ GS = ⟨ΨGS| ˆA |ΨGS⟩ +
1293
+
1294
+ i<j
1295
+ (−1)i+j+1 ⟨ΨGS| ˆAˆi,ˆj |ΨGS⟩ : ˆUGSˆaiˆaj ˆU †
1296
+ GS : + ˜Q,
1297
+ (B2)
1298
+ where ˜Q collects terms of order four and higher. Denoting A = Γ|1,2,...,2n and using Eq. (5), we can rewrite the above
1299
+ equation and find
1300
+ ˆa1ˆa2 . . . ˆa2n = (−i)nPf(A) +
1301
+
1302
+ i<j
1303
+ (−i)n−1(−1)i+j+1Pf(Aˆiˆj) : ˆUGSˆaiˆaj ˆU †
1304
+ GS : + ˜Q.
1305
+ (B3)
1306
+ Here, we have introduced the submatrices Aˆiˆj which emerge from A by canceling the ith and jth rows and columns.
1307
+ Using
1308
+ ∂Pf(A)
1309
+ ∂Γij
1310
+ = (−1)i+j+1
1311
+ 2
1312
+ Pf(Aˆiˆj),
1313
+ (B4)
1314
+ we obtain the expression
1315
+ ˆA =(−i)nPf(A) + i
1316
+
1317
+ i,j
1318
+ (−i)n ∂Pf(A)
1319
+ ∂Γij
1320
+ : ˆUGSˆaiˆaj ˆU †
1321
+ GS : + ˜Q
1322
+ = ⟨ΨGS| ˆA |ΨGS⟩ + i
1323
+ 4 : ˆaT UT
1324
+ ξ A(mf)Uξa : + ˜Q,
1325
+ (B5)
1326
+ with matrix entries
1327
+ A(mf)
1328
+ ij
1329
+ = 4∂ ⟨ΨGS| ˆA |ΨGS⟩
1330
+ ∂Γij
1331
+ .
1332
+ (B6)
1333
+ We want to remark that Eq. (B4) can also be used to efficiently calculate the derivative Eq. (9) of Eq. (7).
1334
+
UdE1T4oBgHgl3EQfIgMu/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UtE0T4oBgHgl3EQf2gK9/content/tmp_files/2301.02714v1.pdf.txt ADDED
@@ -0,0 +1,1228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ A Deep Reinforcement Learning-Based Controller for
4
+ Magnetorheological-Damped Vehicle Suspension
5
+ AmirReza BabaAhmadi1 , Masoud ShariatPanahi2 , Moosa Ayati3
6
+ 1,2,3 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
7
+ Abstract
8
+ This paper proposes a novel approach to controller design for an MR-damped vehicle suspension
9
+ system. This approach is predicated on the premise that the optimal control strategy can be
10
+ “learned” through real-world or simulated experiments utilizing a reinforcement learning
11
+ algorithm with continuous states/actions. The sensor data is fed into a Twin Delayed Deep
12
+ Deterministic Policy Gradient (TD3) algorithm, which generates the actuation voltage required for
13
+ the MR damper. The resulting suspension working space (displacement), sprung mass
14
+ acceleration, and dynamic tire load are calculated using a quarter vehicle model incorporating the
15
+ modified Bouc-Wen MR damper model. Deep RL’s reward function is based on sprung mass
16
+ acceleration. The proposed approach outperforms traditional suspension control strategies
17
+ regarding ride comfort and stability, as demonstrated by multiple simulated experiments.
18
+ Keywords: Magnetorheological-damped suspension, ride comfort, deep reinforcement learning
19
+
20
+ 1. Introduction
21
+ As one of the most critical components of the vehicle, the suspension system significantly
22
+ improves ride comfort and road holding, preventing damage and reducing passenger fatigue.
23
+ Suspension systems are classified as passive, active, or semi-active. Due to the fixed and
24
+ unchanging nature of passive suspension parameters, passive suspension cannot guarantee ride
25
+ comfort and stability when the environment or suspension parameters vary. Thus, active and semi-
26
+ active suspension systems with tunable parameters can compensate for the limitations mentioned
27
+ above of passive suspension systems. The uncertainty inherent in the suspension system’s road
28
+ roughness and parameter variation in real applications is unavoidable.
29
+ MR fluid dampers are adaptive controllable devices that have garnered significant interest due to
30
+ their simplicity, low power consumption, and high capacity force, among other characteristics.
31
+ MR dampers have found widespread application in a variety of industries, including the
32
+ automotive industry [1][2], civil structures [3][4], and railway vehicles [5]. MR dampers are semi-
33
+ active devices because we can simply apply voltage to their coils rather than using a mechanism
34
+ for the damper to produce damping force directly. As a result, two distinct controller types are
35
+ required to regulate semi-active suspensions. First, the system controller calculates the required
36
+
37
+ damping force to ensure ride comfort and road holding simultaneously. The system controller
38
+ inputs are derived from the suspension system’s state feedback. Second, the damper controller
39
+ determines the voltage that should be applied to the MR-damper for its current force to track the
40
+ force specified by the system controller.
41
+ Numerous control techniques for semi-active suspension systems have been developed. 𝐻∞
42
+ control [6], [7], [8], skyhook control [9], [10], [11], adaptive control based on neural networks
43
+ [12], robust control [13], LQG control [14], [15], and optimal PID control [16][17] are some of
44
+ the studies that have been conducted to develop an efficient controlling system for improving ride
45
+ comfort and stability. According to previous research, PID controllers have a simple structure but
46
+ are ineffective in semi-active suspension systems with uncertain parameters. Skyhook suspension
47
+ control is a classic semi-active suspension control method described in [18]. It features simple
48
+ structures, straightforward implementation, and acceptable performance. On the other hand, the
49
+ time delay significantly affects suspension performance, resulting in instability and wheel jump.
50
+ The authors of [19] designed an optimal LQG controller, but the control parameters were
51
+ calculated by ignoring uncertain factors in the system modeling.
52
+ When the system’s parameters change sufficiently, the system becomes unstable. The authors of
53
+ [20] aimed to address the issue of the blind design of the fuzzy controller, where this was, in fact,
54
+ a PID controller, and a PID was designed using rule description. Indeed, developing a proper fuzzy
55
+ control system necessitates extensive knowledge of the system. The sliding mode controller in [21]
56
+ shows good performance and robust behavior. On the other hand, chattering is a fatal flaw in
57
+ sliding mode control. Chattering may result in instability due to the controlled system’s activated
58
+ high-frequency modes. Although the adaptive controller in [12] improves ride comfort, it performs
59
+ poorly in road holding. Reference [22] proposed a fast model prediction controller (FMPC). The
60
+ authors of [23] proposed a robust model prediction controller (RMPC).
61
+ Both of the aforementioned predictive controllers utilized road models in advance of designing
62
+ controllers. The primary goal of developing a predictive controller is to provide highly accurate
63
+ information from the system, which is impossible when driving on various roads with high
64
+ uncertainty. In [24], it is demonstrated that neural-networked-based controllers can solve complex
65
+ and nonlinear problems. However, like many other supervised learning algorithms, neural
66
+ networks require a large number of labeled samples. When developing the control effort, only the
67
+ current state is considered; future states are not considered. These critical issues impose constraints
68
+ on the use of neural network controllers. Reference [25] proposes a novel nonlinear adaptive smart
69
+ controller based on the classification of road profiles. The primary disadvantage of this method is
70
+ that a new classifier must be constructed when the control strategy changes.
71
+ With the advent of Deep Learning (DL) techniques that overcome several of the significant
72
+ limitations of classical machine learning algorithms, some researchers attempted to apply DL
73
+ algorithms to the suspension control problem. The authors of [26] propose a DDPG-based
74
+ algorithm for a particular type of suspension system. The primary drawback of this algorithm is
75
+ its inability to locate the globally optimal solution to a problem.
76
+
77
+ Two types of controllers are required to control a semi-active suspension system. A system
78
+ controller analyzes the system’s feedback samples and predicts the desired damping force. The
79
+ damper controller receives the system controller’s predicted force and suspension system
80
+ displacement; it then predicts the applied voltage exerted on damper coils.
81
+ The paper proposes an improved DRL controller that combines a system controller and a damper
82
+ controller to provide the best ride comfort and stability possible. Notably, MR-based suspension
83
+ systems operate in two modes: open-loop mode (without the use of a controller) operates with a
84
+ constant damping coefficient, similar to passive suspension systems. Both the system and damper
85
+ controllers work in a closed-loop system to adjust the damping force in response to road conditions
86
+ by tuning the required damper’s voltage input.
87
+
88
+ 2. MR-damped suspension model
89
+ A simplified quarter-vehicle model with a semi-active suspension is shown in Fig. 1, where mb
90
+ represents the vehicle’s body mass, mw represents the wheel mass, and xb and xw denote body
91
+ displacement and wheel displacement, respectively. The road profile is denoted by xr. The spring
92
+ stiffness of the suspension system is ks, and the tire spring stiffness is denoted by kt. We exclude
93
+ tire damping from this study due to its negligible value. Table 1 contains parameters taken from
94
+ [27]. Newton’s second law is applied to the quarter-model of the vehicle to derive the following
95
+ equations:
96
+
97
+
98
+
99
+
100
+
101
+
102
+ 𝑚𝑏𝑋̈𝑏 + 𝐾𝑠(𝑋𝑏 − 𝑋𝑤) + 𝑓 = 0
103
+
104
+ (1)
105
+
106
+
107
+ 𝑚𝑤𝑋̈𝑤 − 𝐾𝑠(𝑋𝑏 − 𝑋𝑤) + 𝐾𝑡(𝑋𝑤 − 𝑋𝑟) − 𝑓 = 0
108
+ (2)
109
+
110
+
111
+
112
+ m,
113
+ oassive
114
+ m.w
115
+ semi-activeFig. 1. A quarter-car model with two operational modes for a semi-active suspension system
116
+ (passive and semi-active)
117
+
118
+ Where the following equation gives the damping force generated by the MR device:
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+ 𝑓 = {𝐶𝑠(𝑋̇𝑏 − 𝑋̇𝑤)
135
+ for passive suspension
136
+ 𝑓 𝑀𝑅
137
+ for semi − active suspension
138
+
139
+ (3)
140
+
141
+ Cs is a coefficient describing the MR passive suspension mode of operation in an MR-damper.
142
+
143
+ The state-space representation of the semi-active suspension system is prepared as follows [17]:
144
+
145
+
146
+ 𝑤̇ = 𝐴𝑤 + 𝐵𝑓𝑀𝑅 + 𝐷𝑥𝑟
147
+
148
+ (4)
149
+
150
+
151
+ 𝑤 = [𝑥𝑏
152
+ 𝑥𝑤
153
+ 𝑥̇𝑏
154
+ 𝑥̇𝑤]𝑇
155
+
156
+ (5)
157
+
158
+
159
+ 𝐴=
160
+ [
161
+
162
+
163
+
164
+
165
+ 0
166
+ 0
167
+ 0
168
+ 0
169
+ 1
170
+ 0
171
+ 0
172
+ 1
173
+
174
+ 𝐾𝑠
175
+ 𝑚𝑠
176
+ 𝐾𝑠
177
+ 𝑚𝑠
178
+ 𝐾𝑠
179
+ 𝑚𝑤
180
+
181
+ 𝐾𝑠+𝐾𝑡
182
+ 𝑚𝑤
183
+ 0
184
+ 0
185
+ 0
186
+ 0]
187
+
188
+
189
+
190
+
191
+
192
+ (6)
193
+
194
+
195
+
196
+ 𝐵 = [0
197
+ 0
198
+
199
+ 1
200
+ 𝑚𝑠
201
+ 1
202
+ 𝑚𝑤]
203
+ 𝑇
204
+
205
+ (7)
206
+
207
+
208
+ 𝐷 =[0
209
+ 0
210
+ 0
211
+ 𝐾𝑡
212
+ 𝑚𝑤]
213
+ 𝑇
214
+
215
+
216
+ (8)
217
+
218
+
219
+
220
+
221
+
222
+ Table 1. Semi-active suspension parameters [27]
223
+ Value (Unit)
224
+
225
+ Symbol
226
+
227
+ Parameter
228
+
229
+ 375(kg)
230
+ 𝑚𝑏
231
+ Vehicle body mass
232
+ 29.5 (kg)
233
+ 𝑚𝑤
234
+ Vehicle wheel mass
235
+ 20.58 (KN/m)
236
+ 𝑘𝑠
237
+ Suspension stiffness
238
+ 772 (Ns/m)
239
+ 𝐶𝑠
240
+ Damping coefficient
241
+ 200 (KN/m)
242
+ 𝑘𝑡
243
+ Tire stiffness
244
+
245
+ Magnetorheological damper force is denoted by fmr depending on the time series of the external
246
+ voltage to its magnetic coil V and relative displacement x=xb-xw, which is known as suspension
247
+ working space (SWS). fmr is computed from Eq. 9, the modified Bouc-Wen model, derived from
248
+ [28] and incorporated into the suspension system shown in Fig. 1.
249
+
250
+
251
+
252
+
253
+ 𝐹(𝑡) = 𝑐1𝑦̇ + 𝑘1(𝑥 − 𝑥0)
254
+ (9)
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+ 𝑧̇ = −𝛾|𝑥̇ − 𝑦̇||𝑧||𝑧|𝑛−1 − 𝛽(𝑥̇ − 𝑦̇)|𝑧|𝑛 +
265
+ 𝐴(𝑥̇ − 𝑦̇)
266
+
267
+ (10)
268
+
269
+
270
+
271
+ 𝑦̇ =
272
+ 1
273
+ 𝑐1+𝑐0 {𝛼𝑧 + 𝑘0(𝑥 − 𝑦) + 𝑐0𝑥̇}
274
+ (11)
275
+
276
+
277
+
278
+ 𝛼 = 𝑎𝑎 + 𝑎𝑏𝑢
279
+ (12)
280
+
281
+
282
+
283
+ 𝑐1 = 𝑐1𝑎 + 𝑐1𝑏𝑢
284
+
285
+ (13)
286
+
287
+
288
+
289
+ 𝑐0 = 𝑐0𝑎 + 𝑐0𝑏𝑢
290
+
291
+ (14)
292
+
293
+
294
+
295
+ 𝑢̇ = −𝜂(𝑢 − 𝑣)
296
+ (15)
297
+
298
+
299
+ The internal movement of the MR-damper is denoted as y. u is the output signal from a first-order
300
+ filter, and 𝑧 is a parameter that guarantees the hysteretic behavior of MR fluid. Accumulator
301
+ stiffness is denoted by kt. C0 and C1 represent viscous damping at high and low velocity for the
302
+
303
+ MR-damper, respectively. The stiffness regulator at high damper velocity is denoted by K0. MR
304
+ damper accumulator simulation is performed via X0. The scale and shape of the hysteresis behavior
305
+ of the MR-damper parameters for the simulation are 𝛾, 𝛽, 𝛿 and 𝜂, respectively.
306
+
307
+
308
+ Fig. 2. Modified Bouc-Wen model for the MR-damper
309
+
310
+ Parameters for the modified Bouc-Wen MR-damper model are presented in Table 2 (adapted from
311
+ [28].)
312
+
313
+ Table 2. Modified Bouc-Wen parameters for the MR-damper [28]
314
+ Parameter
315
+ Value
316
+ Parameter Value
317
+ 𝑐0𝑎
318
+ 784
319
+ ( 1)
320
+ Nsm −
321
+ 𝛼𝑏
322
+ 38430
323
+ ( 1)
324
+ ( 1)
325
+ NsV
326
+ m
327
+
328
+
329
+ 𝑐0𝑏
330
+ 1803
331
+ ( 1)
332
+ ( 1)
333
+ NsV
334
+ m
335
+
336
+
337
+ 𝛽
338
+ 2059020
339
+ 2
340
+ m−
341
+ 𝑐1𝑎
342
+ 14649
343
+ ( 1)
344
+ Nsm
345
+
346
+ 𝛾
347
+ 136320
348
+ 2
349
+ m−
350
+ 𝑐1𝑏
351
+ 34622
352
+ ( 1)
353
+ ( 1)
354
+ NsV
355
+ m
356
+
357
+
358
+ 𝜂
359
+ 190
360
+ 1
361
+ s−
362
+ 𝑘1
363
+ 840
364
+ ( 1)
365
+ Nm −
366
+ A
367
+ 58
368
+ 𝑘0
369
+ 3610
370
+ ( 1)
371
+ Nm −
372
+ n
373
+ 2
374
+ 𝛼𝑎
375
+ 12441
376
+ ( 1)
377
+ Nm −
378
+ 𝑥0
379
+ 0.245
380
+
381
+
382
+
383
+ 2.1. Control Strategy based on DRL-TD3
384
+ As previously stated, the Twin Delayed Deep Deterministic Policy Gradient (TD3) was used as
385
+ the universal controller for the MR-damped suspension system. TD3 is identical to DDPG but
386
+ incorporates three additional features to address DDPG issues.
387
+ • Clipped double Q learning: In TD3, we compute the Q value using two critic networks
388
+ and the target value using two target networks. We used only one critic and one target
389
+ network in DDPG. In TD3, we use two target critic networks to compute two target Q
390
+
391
+ Bouc-Wen
392
+ ko
393
+ >F
394
+ Co
395
+ WWvalues. Then, when computing the loss function, we choose the smaller of the two. This
396
+ will ensure that we do not overestimate the target Q value.
397
+ • Delayed policy update: Unlike DDPG, we added a delay to the actor-network parameter
398
+ update in TD3. While the parameters of the critic networks are updated at each step of the
399
+ episode, the actor-network (policy network) is delayed and updated after every two steps.
400
+ • Target policy smoothing: In DDPG, the algorithm generates distinct target values for
401
+ identical actions. As a result, the target’s variance would be high. Thus, we reduce variance
402
+ by adding noise to the target action.
403
+
404
+ This section provides additional information about Twin Delayed Deep Deterministic Policy
405
+ Gradients (TD3). In TD3, we employ six artificial neural networks, four of which are critic
406
+ networks and two of which are two-actor networks.
407
+ • The main critic neural network parameters are denoted by 𝜃1 and 𝜃2
408
+ • The two target critic neural network parameters are represented by 𝜃1′and 𝜃2′
409
+ • The main actor-network parameter is denoted by 𝜙
410
+ • The target actor-network parameter is denoted by 𝜙′
411
+
412
+ Initially, we must initialize the two main critic network parameters, 𝜃1 and 𝜃2, and the main critic
413
+ network parameter 𝜙 with random values. Since the target network parameter is only a copy of the
414
+ main network parameter, the two target critic network parameter 𝜃1′ and 𝜃2′ by copying 𝜃1 and
415
+ 𝜃2, are simply initialized, respectively. Similarly, we initialize the target actor parameter 𝜙′, by
416
+ just copying the main actor-network parameter 𝜙 . Also, the replay buffer is initialized too. Now,
417
+ we select action a using the actor-network:
418
+ ( )
419
+ a
420
+ s
421
+
422
+
423
+ =
424
+ . Rather than selecting the action directly,
425
+ some noise  is added to ensure exploration when ~
426
+ (0,
427
+ )
428
+ N
429
+
430
+
431
+ . Accordingly, the output action is
432
+ expressed as follows:
433
+ ( )
434
+ a
435
+ s
436
+
437
+
438
+ =
439
+ + (16).
440
+ Then, after performing action a, we move to the next state s and obtain reward r . This transition
441
+ information is stored in the replay buffer. During the next step, we randomly sample a minibatch
442
+ of K transition ( , , , )
443
+ s a r s from the replay buffer. The K transition will be used for updating both
444
+ the critic and actor network.
445
+ The loss function of the critic network is expressed as follows:
446
+
447
+ 2
448
+ 1
449
+ (
450
+ )
451
+ (
452
+ ( ,
453
+ ))
454
+ 1,2
455
+ j
456
+ j
457
+ i
458
+ i
459
+ i
460
+ J
461
+ y
462
+ Q
463
+ s a
464
+ for j
465
+ k
466
+
467
+
468
+ =
469
+
470
+
471
+ =
472
+
473
+ (17)
474
+
475
+ In the preceding equation, the following applies:
476
+ The action
477
+ ia is the action produced by the actor-network as follows:
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+ ( )
492
+ ia
493
+ s
494
+
495
+
496
+ =
497
+
498
+ (18)
499
+
500
+ 𝑦𝑖 is the target value of the critic, that is
501
+ 1,2
502
+ min
503
+ ( , )
504
+ j
505
+ i
506
+ i
507
+ j
508
+ y
509
+ r
510
+ Q
511
+ s a
512
+
513
+
514
+ =
515
+
516
+
517
+ =
518
+ +
519
+
520
+ (19)
521
+
522
+ , and the action a is the action produced by the target critic network:
523
+ ( )
524
+ ~ (
525
+ (0,
526
+ ),
527
+ ,
528
+ )
529
+ i
530
+ a
531
+ s
532
+ where
533
+ N
534
+ c
535
+ c
536
+
537
+
538
+
539
+
540
+
541
+ =
542
+ +
543
+
544
+
545
+ +
546
+
547
+ (20)
548
+
549
+ After computing the loss of the critic network, the gradients
550
+ (
551
+ )
552
+ j
553
+ j
554
+ J
555
+
556
+
557
+
558
+ is computed, and then the
559
+ critic network parameters will be updated using the gradient descent method.
560
+
561
+
562
+
563
+
564
+
565
+
566
+
567
+
568
+
569
+ (
570
+ )
571
+ 1,2
572
+ j
573
+ j
574
+ j
575
+ j
576
+ J
577
+ for j
578
+
579
+
580
+
581
+
582
+
583
+ =
584
+ − 
585
+ =
586
+
587
+ (21)
588
+
589
+ Now, the actor network must be updated. The objective function of the actor-network is as follows:
590
+
591
+
592
+
593
+
594
+
595
+
596
+
597
+
598
+
599
+
600
+ 1
601
+ ( )
602
+ ( , )
603
+ i
604
+ i
605
+ i
606
+ J
607
+ Q
608
+ s a
609
+ k
610
+
611
+  = 
612
+
613
+ (22)
614
+
615
+ It must be noted that in Eq. 22, we only use state (si) from the sampled K transitions ( , , , )
616
+ s a r s .
617
+ The action a is selected by the actor-network.
618
+ ( )
619
+ ia
620
+ s
621
+
622
+
623
+ =
624
+
625
+ (23)
626
+
627
+ In order to maximize the objective function, the gradient of the objective function
628
+ ( )
629
+ J
630
+
631
+
632
+
633
+ is
634
+ computed, and the parameters of the network are updated using the gradient ascent:
635
+
636
+
637
+
638
+
639
+
640
+
641
+
642
+
643
+
644
+
645
+
646
+ ( )
647
+ J
648
+
649
+
650
+
651
+
652
+
653
+ =
654
+ + 
655
+
656
+ (24)
657
+
658
+ We delay the update rather than updating the actor-parameters networks at each time step of the
659
+ episode. If the time step of the episode is denoted by t and d denotes the number of time steps
660
+ which we want to delay the update, it can be described as follows:
661
+
662
+ 1- If t mod d=0, then:
663
+ 1. Compute the gradient of the objective function
664
+ ( )
665
+ J
666
+
667
+
668
+
669
+
670
+ 2. Update the actor-network parameter using the gradient ascent method (24).
671
+ Finally, the parameters of the target critic network 𝜃1′ and 𝜃2′and the parameters of the target
672
+ actor-network 𝜙′ will be updated via soft replacement:
673
+
674
+
675
+
676
+
677
+
678
+
679
+
680
+
681
+ {𝜃𝑗
682
+ ′ = 𝜏𝜃𝑗 + (1 − 𝜏)𝜃𝑗
683
+ ′ 𝑓𝑜𝑟 𝑗 = 1,2
684
+ 𝜙′ = 𝜏𝜙𝑗 + (1 − 𝜏)𝜙′
685
+
686
+ (25)
687
+
688
+ There is a small change in updating the parameters of the target networks. As with the actor-
689
+ network parameter, we delay updating it for d steps; similarly, we update the target network
690
+ parameters for every d step; in this case, we can say:
691
+
692
+ 1- If t mod d=0, then:
693
+ 1. Compute the gradient of the objective function 𝛻𝜙𝐽(𝜙) and update the actor-
694
+ network parameter using gradient ascent.
695
+ 𝜙 = 𝜙 + 𝛼𝛻𝜙𝐽(𝜙)
696
+ (26)
697
+
698
+
699
+ 2. Update the target critic network parameter and target actor-network parameter as
700
+ (1
701
+ )
702
+ 1,2
703
+ j
704
+ j
705
+ j for j
706
+
707
+ 
708
+  
709
+
710
+
711
+ =
712
+ +
713
+
714
+ =
715
+
716
+ (27)
717
+ and
718
+ (1
719
+ )
720
+
721
+ 
722
+  
723
+
724
+
725
+ =
726
+ +
727
+
728
+
729
+ (28)
730
+ , respectively.
731
+
732
+ The previous steps for several episodes must be repeated to improve the policy. The following
733
+ pseudocode is prepared to understand better how TD3 works:
734
+
735
+
736
+
737
+
738
+ Fig. 3. TD3 Algorithm pseudocode
739
+
740
+ 2.2. TD3 application in closed-loop vibration control for a semi-active suspension system
741
+ The main inputs for vehicle dynamics are road disturbance profile and damping force produced by
742
+ the MR device. The outputs are body (sprung mass) acceleration and suspension working space
743
+ (SWS). The RL-Agent inputs for implementing a controller for a one-quarter suspension system
744
+ are body acceleration, denoted by 𝑞, and a reward function, which is as follows:
745
+
746
+
747
+
748
+
749
+
750
+
751
+
752
+
753
+
754
+ 𝑟 = {0 𝑖𝑓 𝑞 = 𝑞𝑔𝑜𝑎𝑙 = 0
755
+ −𝑘𝑞2 𝑖𝑓 𝑞 ≠ 0
756
+
757
+
758
+ (29)
759
+
760
+ Where k is a hyperparameter that specifies the intensity coefficient for agent punishment, the agent
761
+ punishments experienced in the replay buffer are also exerted in the RL-agent. The damper’s input
762
+ voltage must be applied to the coil via the RL-agent output (action). TD3 analyzes its performance
763
+ by measuring body acceleration and fine-tuning its action to road profile disturbances. The
764
+
765
+ Twin Delayed Deep Deterministic Policy Gradient Algorithm:
766
+ Initialize critic networks Qe1, Qe2, and actor network Ts
767
+ withrandomparameters01.02.Φ
768
+ Initializetargetnetworks←1%←2,'←Φ
769
+ 2
770
+ InitializereplaybufferB
771
+ for t=1 toTdo
772
+ 3
773
+ Selectactionwithexplorationnoisea~π(s)+E
774
+ e~N(O,o)and observe reward r and new states
775
+ 4
776
+ Store transition tuple (s, a,r,s in B
777
+ Samplemini-batchofNtransitions(s,a,r,sfromB
778
+ a ← π(s) + E, E ~ clip(N(O,), -C,c)
779
+ 5
780
+ y ← r +mini=1.2Qe(s',a)
781
+ Update critics i ← argming. N-1 (y-Qe, (s, a))2
782
+ iftmoddthen
783
+ 7
784
+ Update by the deterministic policy gradient:
785
+ VJ(d) = N-i VaQe (s,a)lg
786
+ 元(s)V(s)
787
+ Updatetargetnetworks:
788
+ 8
789
+ , ← T+ (1 - T)O
790
+ Φ← +(1-)
791
+ end if
792
+ end forsurrounding environment consists of a vehicle suspension system equipped with an MR-damper
793
+ and a road profile. The agent is a neural network that constructs the controller part. The
794
+ hyperparameters listed in Table 3 pertain to TD3 agents used in closed-loop suspension control.
795
+ Figures 5 and 6 detail the neural networks used in the TD3 algorithm.
796
+ The hidden size is 400 and 300 neurons in each layer for the actor and critic network, respectively.
797
+ The optimization method is Adam for both actor and critic networks. The discount factor 𝛾 is 0.8.
798
+ The input voltage varies from 0 to 3 V, and the damping force varies from -1.5 to 1.5 KN.
799
+ Table 3. Neural Networks Parameters in TD3
800
+ Network
801
+ Learning Rate
802
+ Optimizer
803
+ Delay for update
804
+ Actor
805
+ 0.002
806
+ Adam
807
+ 2
808
+ Critic
809
+ 0.002
810
+ Adam
811
+ 1
812
+ Actor Target
813
+ 0.006
814
+ -
815
+ 2
816
+ Critic Target
817
+ 0.006
818
+ -
819
+ 2
820
+
821
+
822
+
823
+ Fig. 4. Closed-loop semi-active suspension system block diagram with DRL Agent
824
+
825
+
826
+
827
+ Road
828
+ Profile
829
+ qt
830
+ F
831
+ Vehicle
832
+ MR Damper
833
+ Model
834
+ Deep
835
+ Reinforcement
836
+ Learning
837
+ action by policy μ,voltage
838
+ Suspension Working Space(SWws)
839
+ Agent (TD3)
840
+ Reward Function: r, = -kq
841
+ 3+(IB II'D))+= +
842
+ Replay Buffer
843
+ Fig. 5. Actor-critic architecture in TD3 Agent
844
+
845
+
846
+ Agent
847
+ Critic Network
848
+ Actor Network
849
+ Qe (stat)
850
+ Random
851
+ △Js TD error update
852
+ △Jμ DPG update
853
+ noise
854
+ εE N(O,o)
855
+ at
856
+ Vehicle
857
+ 0
858
+ Critic 2
859
+ Critic 1
860
+ at
861
+ Model
862
+ ' Target
863
+ target2
864
+ target1
865
+ Behavior
866
+ target
867
+ policy
868
+ Compared target y +
869
+ Mini batch
870
+ qt llqgoal , at, qt+1 lqgoal , rt
871
+ ReplayBuffer
872
+ Parameter
873
+ update
874
+ Data flow
875
+ neural network
876
+ Global Memory
877
+ HER
878
+ Fig. 6. The details of actor-critic networks in semi-active suspension control
879
+
880
+ 3. Results and Discussion
881
+ Vertical body acceleration (BA), Dynamic Tire Load (DTL), and Suspension Working space are
882
+ three primary performance criteria used in the suspension design of a vehicle to improve ride
883
+ comfort and road holding, preventing the suspension system from bottoming out excessively. To
884
+ achieve the objectives mentioned above, we should reduce BA or SWS to improve ride comfort
885
+ and DTL to improve road holding and minimize suspension space distance. The BA has been
886
+ chosen as the objective function in this article.
887
+ Two types of controllers for semi-active suspension are investigated in this section: the RL-based
888
+ TD3 and the PID controller; their gains are tuned using the Particle Swarm Optimization (PSO)
889
+ algorithm from [17], as well as an uncontrolled system (MR-Passive) with no applied voltage to
890
+ the damper’s coil.
891
+ A particular type of bump-road excitation was chosen due to its resemblance to actual road profiles.
892
+ Additionally, the bump-road profile demonstrates the characteristics of transient response. The
893
+ road-bump profile has been proposed in [27] as:
894
+
895
+
896
+ Critic
897
+ 0;=1,2
898
+ Ao VeQe,(quHe(qt Il qgoal)
899
+ Actor Φ
900
+ qt,at
901
+ Qe i-1, (qt, at)
902
+ + μp (qt+1 Il qgoal)
903
+ a, = μp(qt+1 Il qgoat) +
904
+ qt Il qgoal
905
+ A; (t - Qe: (qt.at)?
906
+ Replay Buffer
907
+ Yt = r + ymini=12Qe(qt+1, at)
908
+ (qt Il qgoal , t, qt+1, Il qgoal , rt)qt+:
909
+ Qg i=12 (q+1 +at)
910
+ Hp(qt+1 Il qgoal )
911
+ qt+1 I qgoal
912
+ at
913
+ Critic target e't=1,2
914
+ Actor target $'
915
+ at = μs'(qt+1 I qgoat) + s
916
+
917
+
918
+
919
+
920
+ 𝑋𝑟 = {𝑎 {1 − 𝑐𝑜𝑠( 𝜔𝑟(𝑡 − 0.5))}, 𝑓𝑜𝑟0.5 ≤ 𝑡 ≤ 0.5 +
921
+ 𝑑𝑏
922
+ 𝑉𝑐
923
+ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
924
+
925
+ (1)
926
+
927
+
928
+ Where a denotes half of the bump amplitude,
929
+ 2
930
+ c
931
+ r
932
+ b
933
+ V
934
+ d
935
+
936
+
937
+ =
938
+ , db is the bump width, and Vc denotes
939
+ the vehicle velocity. In this research, 𝑎 = 0.035𝑚, 𝑑𝑏 = 0.8𝑚, 𝑉𝑐 = 0.856
940
+ 𝑚
941
+ 𝑠 , derived from [27].
942
+
943
+
944
+ Fig. 7. Road-bump profile
945
+
946
+ Table 4 compares the results from the TD3 controller to an uncontrolled system (applied zero
947
+ voltage), and Table 5 compares the results from the PSO PID controller to the TD3.
948
+ The results demonstrate unequivocally that the DRL-based controller (TD3) algorithm
949
+ outperforms PSO-tuned PID. TD3 is excellent at dissipating vibrations caused by bump excitation.
950
+ Additionally, it reduces settling time and enhances road holding and ride comfort.
951
+ DRL TD3 significantly reduces body acceleration, suspension working space, and Dynamic Tire
952
+ Load compared to an uncontrolled suspension system by 35.8%, 68.5%, and 33.6%, respectively.
953
+ Simultaneously, PSO-PID reduces those criteria by 32.2%, 50%, and 12.4%, respectively,
954
+ compared to MR passive (uncontrolled suspension).
955
+
956
+
957
+ 0.07
958
+ 0.06
959
+ 0.05
960
+ (m)
961
+ 0.04
962
+ Road
963
+ 0.03
964
+ 0.02
965
+ 0.01
966
+ 0
967
+ 0
968
+ 0.5
969
+ 1
970
+ 1.5
971
+ 2
972
+ 2.5
973
+ 3
974
+ 3.5
975
+ 4
976
+ 4.5
977
+ 5
978
+ Time (sec)
979
+ Fig. 7. Body Acceleration (BA)
980
+
981
+
982
+
983
+ Fig. 8. Dynamic Tire Load (DTL)
984
+
985
+ ..Uncontrolled
986
+ 3
987
+ -PSO-PID
988
+ DRL-TD3
989
+ Acceleration(m/s)
990
+ Body,
991
+ -2
992
+ -3
993
+ 4
994
+ Q
995
+ 0.5
996
+ 1
997
+ 1.5
998
+ 2
999
+ 2.5
1000
+ 3
1001
+ 3.5
1002
+ 4
1003
+ 4.5
1004
+ 5
1005
+ Time (sec)1500
1006
+ uncontrolled
1007
+ -PSO-PID
1008
+ 1000
1009
+ DRL-TD3
1010
+ Dynamic Tyre Load (N)
1011
+ 500
1012
+ -500
1013
+ -1000
1014
+ -1500
1015
+ -
1016
+ 0
1017
+ 0.5
1018
+ 1
1019
+ 1.5
1020
+ 2
1021
+ 2.5
1022
+ 3
1023
+ 3.5
1024
+ 4
1025
+ 4.5
1026
+ 5
1027
+ Time (sec)
1028
+ Fig. 9. Suspension Working Space (SWS)
1029
+
1030
+ Table 4. RMS Values for the suspension system criteria with TD3 algorithm and Uncontrolled
1031
+ Suspension System
1032
+ RMS-values
1033
+ Body
1034
+ Acceleration(𝒎/𝒔𝟐)
1035
+ Suspension Working
1036
+ Space(𝒎)
1037
+ Dynamic Tire Load (𝑵)
1038
+ DRL-TD3
1039
+
1040
+ 0.97
1041
+
1042
+ 0.0084
1043
+
1044
+ 381.32
1045
+
1046
+ Uncontrolled
1047
+
1048
+ 1.5179
1049
+
1050
+ 0.0267
1051
+
1052
+ 537.7
1053
+
1054
+
1055
+ Table 5. Comparison of DRL-TD3 with PSO-PID
1056
+ Controller Type
1057
+ Body
1058
+ Acceleration(𝒎/𝒔𝟐)
1059
+ Suspension
1060
+ Working
1061
+ Space(𝒎)
1062
+ Dynamic Tire Load (𝑵)
1063
+ DRL-TD3
1064
+ 35.8 %
1065
+ 68.53 %
1066
+ 33.6%
1067
+ PSO-PID
1068
+ 22.4%
1069
+ 46.1%
1070
+ 11.9%
1071
+ Improvement
1072
+ 13.4%
1073
+ 22.43%
1074
+ 21.7%
1075
+
1076
+ 4. Conclusion
1077
+ The paper proposes the DRL-based TD3 algorithm for vibration mitigation in a semi-active
1078
+ suspension system equipped with an MR damper. Three major criteria, BA, SWS, and DTL,
1079
+ were considered and investigated when evaluating the proposed controller. Instead of using two
1080
+ distinct controllers for damper control and force estimation, a single universal controller based on
1081
+ real-time learning was used. The time-domain results were analyzed, and the effectiveness of the
1082
+
1083
+ 0.06
1084
+ uncontrolled
1085
+ PSO-PID
1086
+ DRL-TD3
1087
+ 0.04
1088
+ 0.02
1089
+ (w) s
1090
+ swS
1091
+ -0.02
1092
+ -0.04
1093
+ -0.06
1094
+ 1
1095
+ 0
1096
+ 0.5
1097
+ 1
1098
+ 1.5
1099
+ 2
1100
+ 2.5
1101
+ 3
1102
+ 3.5
1103
+ 4
1104
+ 4.5
1105
+ 5
1106
+ Time (sec)DRL-based controller was compared to the optimal PSO-PID controller. Finally, the results
1107
+ demonstrate that the TD3 algorithm outperforms the PSO-tuned PID controller.
1108
+ Declaration of competing interest
1109
+ The authors declare that they have no known competing financial interests or personal
1110
+ relationships that could have appeared to influence the work reported in this paper.
1111
+
1112
+ References
1113
+ [1]
1114
+ A. H. F. Lam and W. H. Liao, “Semi-active control of automotive suspension systems with
1115
+ magnetorheological dampers,” Int. J. Veh. Des., vol. 33, no. 1–3, pp. 50–75, 2003, doi:
1116
+ 10.1504/ijvd.2003.003652.
1117
+ [2]
1118
+ M. A. Karkoub and M. Zribi, “Active/semi-active suspension control using magnetorheological
1119
+ actuators,” Int. J. Syst. Sci., vol. 37, no. 1, pp. 35–44, Jan. 2006, doi: 10.1080/00207720500436344.
1120
+ [3]
1121
+ S. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, “Modeling and control of
1122
+ magnetorheological dampers for seismic response reduction,” Smart Mater. Struct., vol. 5, no. 5,
1123
+ pp. 565–575, Oct. 1996, doi: 10.1088/0964-1726/5/5/006.
1124
+ [4]
1125
+ K. A. Bani-Hani and M. A. Sheban, “Semi-active neuro-control for base-isolation system using
1126
+ magnetorheological (MR) dampers,” Earthq. Eng. Struct. Dyn., vol. 35, no. 9, pp. 1119–1144, Jul.
1127
+ 2006, doi: 10.1002/eqe.574.
1128
+ [5]
1129
+ W. H. Liao and D. H. Wang, “Semiactive Vibration Control of Train Suspension Systems via
1130
+ Magnetorheological Dampers,” J. Intell. Mater. Syst. Struct., vol. 14, no. 3, pp. 161–172, Mar. 2003,
1131
+ doi: 10.1177/1045389X03014003004.
1132
+ [6]
1133
+ H. Du, K. Yim Sze, and J. Lam, “Semi-active H∞ control of vehicle suspension with
1134
+ magnetorheological dampers,” J. Sound Vib., vol. 283, no. 3–5, pp. 981–996, May 2005, doi:
1135
+ 10.1016/j.jsv.2004.05.030.
1136
+ [7]
1137
+ S. B. Choi, H. S. Lee, and Y. P. Park, “H∞ control performance of a full-vehicle suspension featuring
1138
+ magnetorheological dampers,” Veh. Syst. Dyn., vol. 38, no. 5, pp. 341–360, Nov. 2002.
1139
+ [8]
1140
+ S. B. Choi and K. G. Sung, “Vibration control of magnetorheological damper system subjected to
1141
+ parameter variations,” Int. J. Veh. Des., vol. 46, no. 1, pp. 94–110, 2008, doi:
1142
+ 10.1504/IJVD.2008.017071.
1143
+ [9]
1144
+ H.-S. Lee and S.-B. Choi, “Control and Response Characteristics of a Magnetorheological Fluid
1145
+ Damper for Passenger Vehicles,” J. Intell. Mater. Syst. Struct., vol. 11, no. 1, pp. 80–87, Jan. 2000,
1146
+ doi: 10.1106/412A-2GMA-BTUL-MALT.
1147
+ [10]
1148
+ M. Ahmadian and C. A. Pare, “A Quarter-Car Experimental Analysis of Alternative Semiactive
1149
+ Control Methods,” J. Intell. Mater. Syst. Struct., vol. 11, no. 8, pp. 604–612, Aug. 2000, doi:
1150
+ 10.1106/MR3W-5D8W-0LPL-WGUQ.
1151
+ [11]
1152
+ Y. Shen, M. F. Golnaraghi, and G. R. Heppler, “Semi-active Vibration Control Schemes for
1153
+ Suspension Systems Using Magnetorheological Dampers,” J. Vib. Control, vol. 12, no. 1, pp. 3–24,
1154
+ Jan. 2006, doi: 10.1177/1077546306059853.
1155
+ [12]
1156
+ D. L. Guo, H. Y. Hu, and J. Q. Yi, “Neural Network Control for a Semi-Active Vehicle Suspension
1157
+
1158
+ with a Magnetorheological Damper,” J. Vib. Control, vol. 10, no. 3, pp. 461–471, Mar. 2004, doi:
1159
+ 10.1177/1077546304038968.
1160
+ [13]
1161
+ M. Zribi and M. Karkoub, “Robust Control of a Car Suspension System Using Magnetorheological
1162
+ Dampers,” J. Vib. Control, vol. 10, no. 4, pp. 507–524, Apr. 2004, doi: 10.1177/1077546303039697.
1163
+ [14]
1164
+ A. Elsawaf, F. Ashida, and S. I. Sakata, “Optimum structure design of a multilayer piezo-composite
1165
+ disk for control of thermal stress,” J. Therm. Stress., vol. 35, no. 9, pp. 805–819, Sep. 2012, doi:
1166
+ 10.1080/01495739.2012.689233.
1167
+ [15]
1168
+ H. A. Metered, “Application of Nonparametric Magnetorheological Damper Model in Vehicle
1169
+ Semi-active Suspension System,” SAE Int. J. Passeng. Cars - Mech. Syst., vol. 5, no. 1, pp. 715–
1170
+ 726, Apr. 2012, doi: 10.4271/2012-01-0977.
1171
+ [16]
1172
+ S. Gad, H. Metered, A. Bassuiny, and A. M. Abdel Ghany, “Vibration control of semi-active MR
1173
+ seat suspension for commercial vehicles using genetic PID controller,” in Mechanisms and Machine
1174
+ Science, 2015, vol. 23, pp. 721–732, doi: 10.1007/978-3-319-09918-7_64.
1175
+ [17]
1176
+ H. Metered, A. Elsawaf, T. Vampola, and Z. Sika, “Vibration Control of MR-Damped Vehicle
1177
+ Suspension System Using PID Controller Tuned by Particle Swarm Optimization,” SAE Int. J.
1178
+ Passeng. Cars - Mech. Syst., vol. 8, no. 2, pp. 426–435, Jul. 2015, doi: 10.4271/2015-01-0622.
1179
+ [18]
1180
+ J. Yao, S. Taheri, S. Tian, Z. Zhang, and L. Shen, “A novel semi-active suspension design based on
1181
+ decoupling skyhook control,” J. Vibroengineering, vol. 16, no. 3, 2014.
1182
+ [19]
1183
+ Y. YU, C. ZHOU, L. ZHAO, Y. XING, … P. S.-J. of S., and undefined 2017, “Design of LQG
1184
+ controller for vehicle active suspension system based on alternate iteration,” en.cnki.com.cn,
1185
+ Accessed: Apr. 18, 2021. [Online]. Available: https://en.cnki.com.cn/Article_en/CJFDTotal-
1186
+ SDGY201704009.htm.
1187
+ [20]
1188
+ D. Wang, H. W.-C. M. Engineering, and undefined 2017, “Control method of vehicle semi active
1189
+ suspensions based on variable universe fuzzy control,” en.cnki.com.cn, Accessed: Apr. 18, 2021.
1190
+ [Online]. Available: https://en.cnki.com.cn/Article_en/CJFDTotal-ZGJX201703019.htm.
1191
+ [21]
1192
+ J. L. Yao, W. K. Shi, J. Q. Zheng, and H. P. Zhou, “Development of a sliding mode controller for
1193
+ semi-active vehicle suspensions,” JVC/Journal Vib. Control, vol. 19, no. 8, pp. 1152–1160, Jun.
1194
+ 2013, doi: 10.1177/1077546312441045.
1195
+ [22]
1196
+ M. Canale, M. Milanese, and C. Novara, “Semi-active suspension control using ‘fast’ model-
1197
+ predictive techniques,” IEEE Trans. Control Syst. Technol., vol. 14, no. 6, pp. 1034–1046, Nov.
1198
+ 2006, doi: 10.1109/TCST.2006.880196.
1199
+ [23]
1200
+ D. Wang, D. Zhao, M. Gong, and B. Yang, “Research on Robust Model Predictive Control for
1201
+ Electro-Hydraulic Servo Active Suspension Systems,” IEEE Access, vol. 6, pp. 3231–3240, Dec.
1202
+ 2017, doi: 10.1109/ACCESS.2017.2787663.
1203
+ [24]
1204
+ “Neural network control method of automotive semi-active air suspension--《Journal of Traffic and
1205
+ Transportation
1206
+ Engineering》2006年04期.”
1207
+ https://en.cnki.com.cn/Article_en/CJFDTotal-
1208
+ JYGC200604014.htm (accessed Apr. 18, 2021).
1209
+ [25]
1210
+ Y. Qin, J. J. Rath, C. Hu, C. Sentouh, and R. Wang, “Adaptive nonlinear active suspension control
1211
+ based on a robust road classifier with a modified super-twisting algorithm,” Nonlinear Dyn., vol.
1212
+ 97, no. 4, pp. 2425–2442, Sep. 2019, doi: 10.1007/s11071-019-05138-8.
1213
+ [26]
1214
+ L. Ming, L. Yibin, R. Xuewen, Z. Shuaishuai, and Y. Yanfang, “Semi-active suspension control
1215
+ based on deep reinforcement learning,” IEEE Access, vol. 8, pp. 9978–9986, 2020, doi:
1216
+
1217
+ 10.1109/ACCESS.2020.2964116.
1218
+ [27]
1219
+ S. B. Choi, Y. T. Choi, and D. W. Park, “A sliding mode control of a full-car electrorheological
1220
+ suspension system via hardware in-the-loop simulation,” J. Dyn. Syst. Meas. Control. Trans. ASME,
1221
+ vol. 122, no. 1, pp. 114–121, Mar. 2000, doi: 10.1115/1.482435.
1222
+ [28]
1223
+ C. Y. Lai and W. H. Liao, “Vibration Control of a Suspension System via a Magnetorheological
1224
+ Fluid Damper,” J. Vib. Control, vol. 8, no. 4, pp. 527–547, Apr. 2002, doi:
1225
+ 10.1177/107754602023712.
1226
+
1227
+
1228
+
UtE0T4oBgHgl3EQf2gK9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
VdE0T4oBgHgl3EQfVgAw/content/tmp_files/2301.02264v1.pdf.txt ADDED
@@ -0,0 +1,2200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02264v1 [hep-th] 5 Jan 2023
2
+ MITP/23-001
3
+ On ε-factorised bases and pure Feynman integrals
4
+ Hjalte Frellesvig a and Stefan Weinzierl b
5
+ a Niels Bohr International Academy, University of Copenhagen,
6
+ Blegdamsvej 17, 2100 København, Denmark
7
+ b PRISMA Cluster of Excellence, Institut für Physik,
8
+ Johannes Gutenberg-Universität Mainz,
9
+ D - 55099 Mainz, Germany
10
+ Abstract
11
+ We investigate ε-factorised differential equations and purity for Feynman integrals. We are
12
+ in particular interested in Feynman integrals beyond the ones which evaluate to multiple
13
+ polylogarithms. We show that a ε-factorised differential equation does not necessarily lead
14
+ to pure Feynman integrals. We also point out that a proposed definition of purity works
15
+ locally, but not globally.
16
+
17
+ 1
18
+ Introduction
19
+ The concepts of ε-factorised differential equations [1], purity and uniform transcendental weight,
20
+ simple poles and constant leading singularities [2–4] play a crucial role in modern techniques for
21
+ computing Feynman integrals. These concepts are well understood for Feynman integrals which
22
+ evaluate to multiple polylogarithms.
23
+ However, as soon as we leave this class of function not everything is as clear as we want
24
+ it. This is already the case for the simplest Feynman integrals beyond the class of multiple
25
+ polylogarithms, the ones which are associated to an elliptic curve. It is therefore timely and
26
+ appropriate to clarify several issues. The points which we discuss can be exemplified by the
27
+ simplest elliptic Feynman integral, the two-loop sunrise integral with equal non-zero masses.
28
+ We start with ε-factorised differential equations. A ε-factorised differential equation together
29
+ with boundary values at a given point allows for a systematic solution in terms of iterated inte-
30
+ grals to any order in the dimensional regularisation parameter ε. But do these iterated integrals
31
+ have additional nice properties like a definition of transcendental weight or integrands with sim-
32
+ ple poles only? In this paper we show that the general answer is no, but there might be bases of
33
+ master integrals which have more of the nice properties than others.
34
+ This occurs already for the sunrise integral: We know two bases of master integrals, which
35
+ put the the associated differential equation into an ε-factorised form. The construction of either
36
+ basis generalises to more complicated integrals, so it is worth examining the two bases in detail.
37
+ The first basis is constructed along the lines of an analysis of the maximal cut [5, 6] and/or
38
+ along the lines of prescriptive unitarity [7, 8]. Concretely this basis is constructed by the re-
39
+ quirement that the period matrix on the maximal cut is proportional to the unit matrix [9]. For
40
+ the sunrise integral we present a cleaned-up basis along these lines. Throughout this paper we
41
+ denote this basis by ⃗K.
42
+ The second basis is constructed from Picard-Fuchs operators and leads to a differential equa-
43
+ tion with modular forms [10]. For the sunrise integral we consider the basis given in [11]. This
44
+ approach generalises nicely to more complicated Feynman integrals [12–17]. Throughout this
45
+ paper we denote this basis by ⃗J.
46
+ In this paper we work out the relation between the two bases. The first question we address
47
+ is the following: Do these bases define master integrals of uniform weight? In principle, this
48
+ requires a definition of transcendental weight for elliptic Feynman integrals. Let us first be
49
+ agnostic to a full and complete definition of transcendental weight. We only make the minimal
50
+ assumption that the definition of transcendental weight in the elliptic case should be compatible
51
+ with the restriction of the kinematic space to a sub-space. With this assumption we may restrict
52
+ to a point in kinematic space where the elliptic curve degenerates. The master integrals reduce
53
+ to multiple polylogarithms, for which the definition of transcendental weight is unambiguous.
54
+ Choosing this point as the boundary point for the integration of the differential equation forces
55
+ the boundary constants (given by special values of multiple polylogarithms) to be of uniform
56
+ weight (in the classical sense for multiple polylogarithms). In this way we may detect master
57
+ integrals of non-uniform weight.
58
+ It turns out that basis ⃗K (constructed by the requirement that the period matrix on the maximal
59
+ cut is proportional to the unit matrix) has boundary constants of non-uniform weight. Hence it is
60
+ 2
61
+
62
+ not a basis of uniform weight if we require that the notion of uniform weight is compatible with
63
+ restrictions in the kinematic space.
64
+ The second question which we address in this paper is the relation between functions of
65
+ uniform weight and logarithmic singularities. Functions of uniform weight are also called pure
66
+ functions. In order to answer this question we have to adopt a definition of transcendental weight
67
+ for elliptic Feynman integrals. A generalisation of weight, which can be applied to the elliptic
68
+ case, has been defined in ref. [18]: Functions which satisfy a differential equation without any
69
+ homogeneous term are called unipotent. Unipotent functions, whose total differential involves
70
+ only pure functions and one-forms with at most simple poles are called pure. Adopting this
71
+ definition, we investigate if basis ⃗J (i.e. the modular form basis) for the sunrise integral is of
72
+ uniform weight in this sense. We find that this is the case locally, but not globally. The argument
73
+ which we present applies not only to the specific example of the equal mass sunrise integral, but
74
+ to a wide range of elliptic Feynman integrals expressible in terms of the elliptic polylogarithms
75
+ �Γ [19].
76
+ This paper is organised as follows: In section 2 we start with a toy example, showing that
77
+ an ε-factorised differential equation alone does not guarantee a solution of uniform weight. The
78
+ boundary values need to be of uniform weight as well. The toy example is entirely within the
79
+ class of multiple polylogarithms. In section 3 we introduce the standard example of an elliptic
80
+ Feynman integral: the two-loop sunrise integral with equal non-zero masses. We introduce the
81
+ notation which we will use in later sections of this paper.
82
+ In section 4 we investigate the first question: Are the known bases, which put the differential
83
+ equation into an ε-factorised form also of uniform weight? In sub-section 4.1 we introduce three
84
+ bases⃗I, ⃗J and ⃗K for the sunrise integral. The first one⃗I is a pre-canonical basis and serves only
85
+ in intermediate steps. The basis ⃗J is the one appearing in [11], while the basis ⃗K is the one
86
+ appearing in [9]. The associated differential equations are given in sub-section 4.2. For the bases
87
+ ⃗J and ⃗K, the differential equations are in ε-factorised form. In sub-section 4.3 we discuss the
88
+ period matrix on the maximal cut for the bases ⃗J and ⃗K. By construction, the period matrix for
89
+ the basis ⃗K is proportional to the unit matrix. In sub-section 4.4 we present the solutions for
90
+ the master integrals for the bases ⃗J and ⃗K. We then look at the values at p2 = 0. At this point
91
+ the elliptic curve degenerates and both solutions are given in terms of special values of multiple
92
+ polylogarithms. We find that the basis ⃗K is not of uniform weight.
93
+ In section 5 we investigate the second question: What is the relation between purity and
94
+ simple poles? We start in sub-section 5.1 with recapitulating the definition of purity from the
95
+ literature. We then show in sub-section 5.2 that this definition does fit the modular form basis
96
+ locally, but not globally. In sub-section 5.3 we demonstrate that our argument extends to Feyn-
97
+ man integrals expressible in terms of elliptic polylogarithms �Γ. The problem is the behaviour at
98
+ the finite cusps. However, modular transformations, which we discuss in sub-section 5.4, allow
99
+ us to cover the kinematic space with coordinate charts such that in each coordinate chart the
100
+ requirement from the definition of purity holds locally. Our conclusions are given in section 6.
101
+ In appendix A we present the q-expansions of the modular forms and Eisenstein series appearing
102
+ in the main text. In appendix B we give the boundary constants for the sunrise integral.
103
+ 3
104
+
105
+ 2
106
+ A toy example
107
+ We start with a simple toy example, showing that an ε-factorised differential equation alone does
108
+ not guarantee a solution of uniform weight. The boundary values need to be of uniform weight
109
+ as well.
110
+ Consider the two functions F1(x) and F2(x)
111
+ F1 (x)
112
+ =
113
+ eεln(x)
114
+ =
115
+ 1+εln(x)+ 1
116
+ 2ε2(ln(x))2 +O
117
+
118
+ ε3�
119
+ ,
120
+ F2 (x)
121
+ =
122
+ (1+2ε)eεln(x)
123
+ =
124
+ 1+ε[2+ln(x)]+ε2
125
+
126
+ 2ln(x)+ 1
127
+ 2 (ln(x))2
128
+
129
+ +O
130
+
131
+ ε3�
132
+ .
133
+ (1)
134
+ F1(x) is of uniform weight (where we count algebraic numbers to be of weight zero, ln(x) to be
135
+ of weight one, and ε to be of weight minus one), while F2(x) is not. However, both function
136
+ satisfy the ε-factorised differential equation
137
+ d
138
+ dxFi (x)
139
+ =
140
+ ε
141
+ xFi (x),
142
+ i ∈ {1,2}.
143
+ (2)
144
+ The general solution of eq. (2) as a power series in ε reads
145
+ Fi (x) = C(0)
146
+ i
147
+ +
148
+
149
+ C(1)
150
+ i
151
+ +C(0)
152
+ i
153
+ ln(x)
154
+
155
+ ε+
156
+
157
+ C(2)
158
+ i
159
+ +C(1)
160
+ i
161
+ ln(x)+ 1
162
+ 2C(0)
163
+ i
164
+ (ln(x))2
165
+
166
+ ε2 +O
167
+
168
+ ε3�
169
+ ,
170
+ (3)
171
+ with boundary values C(j)
172
+ i
173
+ . For F1(x) the boundary values are
174
+ C(0)
175
+ 1
176
+ = 1,
177
+ C(j)
178
+ 1
179
+ = 0 for j ≥ 1.
180
+ (4)
181
+ For F2(x) the boundary values are
182
+ C(0)
183
+ 2
184
+ = 1,
185
+ C(1)
186
+ 2
187
+ = 2,
188
+ C(j)
189
+ 2
190
+ = 0 for j ≥ 2.
191
+ (5)
192
+ For a solution of uniform weight we must have that any non-zero boundary valueC(j)
193
+ i
194
+ is of weight
195
+ j. This is the case for F1(x), but not for F2(x): The boundary value C(1)
196
+ 2
197
+ is of weight zero, for a
198
+ solution of uniform weight it is supposed to be of weight one.
199
+ From this simple example we see that a ε-factorised differential equation alone does not
200
+ guarantee a solution of uniform weight, we must in addition require that the boundary values
201
+ C(j)
202
+ i
203
+ ε j are of uniform weight as well.
204
+ 3
205
+ Feynman integrals and elliptic curves
206
+ In this section we introduce the standard example of an elliptic Feynman integral: the two-loop
207
+ sunrise integral with equal non-zero masses. This section also serves to set up the notation.
208
+ 4
209
+
210
+ We consider the family of Feynman integrals
211
+ Iν1ν2ν3 (D,x)
212
+ =
213
+ e2εγE �
214
+ m2�ν123−D � dDk1
215
+
216
+ D
217
+ 2
218
+ dDk2
219
+
220
+ D
221
+ 2
222
+ 1
223
+
224
+ −q2
225
+ 1 +m2�ν1 �
226
+ −q2
227
+ 2 +m2�ν2 �
228
+ −q2
229
+ 3 +m2�ν3 ,
230
+ (6)
231
+ with x = p2/m2, ν123 = ν1 +ν2 +ν3 and q1 = k1, q2 = k2 −k1, q3 = −k2 − p. Below we will set
232
+ D = 2−2ε.
233
+ The elliptic curve associated to this Feynman integral can be obtained from the maximal cut
234
+ and is given by a quartic polynomial P(u,v) = 0:
235
+ E
236
+ :
237
+ v2 −u(u+4)
238
+
239
+ u2 +2(1+x)u+(1−x)2�
240
+ = 0.
241
+ (7)
242
+ We denote the roots of the quartic polynomial by
243
+ u1 = −4,
244
+ u2 = −
245
+
246
+ 1+√x
247
+ �2 ,
248
+ u3 = −
249
+
250
+ 1−√x
251
+ �2 ,
252
+ u4 = 0.
253
+ (8)
254
+ For 0 < x < 1 the roots are real and ordered as
255
+ u1 < u2 < u3 < u4.
256
+ (9)
257
+ We set
258
+ U1 = (u3 −u2)(u4 −u1) = 16√x,
259
+ U2 = (u2 −u1)(u4 −u3) =
260
+
261
+ 1−√x
262
+ �3�
263
+ 3+√x
264
+
265
+ ,
266
+ U3 = (u3 −u1)(u4 −u2) =
267
+
268
+ 1+√x
269
+ �3�
270
+ 3−√x
271
+
272
+ .
273
+ (10)
274
+ We define the modulus and the complementary modulus of the elliptic curve E by
275
+ k2 = U1
276
+ U3
277
+ =
278
+ 16√x
279
+ (1+√x)3 (3−√x)
280
+ ,
281
+ ¯k2 = 1−k2 = U2
282
+ U3
283
+ = (1−√x)3(3+√x)
284
+ (1+√x)3(3−√x)
285
+ .
286
+ (11)
287
+ Our standard choice for the periods and quasi-periods is
288
+ ψ1 = 4K (k)
289
+ U
290
+ 1
291
+ 2
292
+ 3
293
+ ,
294
+ ψ2 = 4iK
295
+ �¯k
296
+
297
+ U
298
+ 1
299
+ 2
300
+ 3
301
+ ,
302
+ φ1 = 4[K (k)−E (k)]
303
+ U
304
+ 1
305
+ 2
306
+ 3
307
+ ,
308
+ φ2 = 4iE
309
+ �¯k
310
+
311
+ U
312
+ 1
313
+ 2
314
+ 3
315
+ .
316
+ (12)
317
+ The geometric interpretation is as follows: For simplicity we assume that the roots u1-u4 are
318
+ real and ordered as in eq. (9). The square root v can be taken as a single-valued and continuous
319
+ function on C\([u1,u2]∪[u3,u4])
320
+ v
321
+ =
322
+ √u−u1
323
+ √u−u2
324
+ √u3 −u√u4 −u,
325
+ (13)
326
+ 5
327
+
328
+ u1
329
+ u2
330
+ u3
331
+ u4
332
+ γ1
333
+ γ2
334
+ Figure 1: Branch cuts and cycles for the computation of the periods of an elliptic curve.
335
+ where √x denotes the standard square root with a branch cut along the negative real axis. For the
336
+ ordering as in eq. (9) v is positive for u ∈]u2,u3[. It is purely imaginary with positive imaginary
337
+ part just below the branch cut [u3,u4]. Let γ1 and γ2 be two cycles which generate the homology
338
+ group H1(E,Z). This is shown in fig. 1. We choose γ1 and γ2 such that their intersection number
339
+ is (γ1,γ2) = +1. Note that the intersection number is anti-symmetric: (γ2,γ1) = −1. The periods
340
+ are alternatively given by
341
+ ψ1 =
342
+
343
+ γ1
344
+ du
345
+ v
346
+ = 2
347
+ u3
348
+
349
+ u2
350
+ du
351
+ v ,
352
+ ψ2 =
353
+
354
+ γ2
355
+ du
356
+ v
357
+ = 2
358
+ u3
359
+
360
+ u4
361
+ du
362
+ v .
363
+ (14)
364
+ In the last expression the square root is evaluated below the cut [u3,u4]. Similar formulae can be
365
+ given for the quasi-periods.
366
+ The derivatives of the periods and quasi-periods are given for i ∈ {1,2} by
367
+ d
368
+ dxψi
369
+ =
370
+ −1
371
+ 2ψi
372
+ d
373
+ dx (lnU2)+ 1
374
+ 2φi
375
+ d
376
+ dx
377
+
378
+ ln U2
379
+ U1
380
+
381
+ ,
382
+ d
383
+ dxφi
384
+ =
385
+ −1
386
+ 2ψi
387
+ d
388
+ dx
389
+
390
+ ln U2
391
+ U3
392
+
393
+ + 1
394
+ 2φi
395
+ d
396
+ dx
397
+
398
+ ln U2
399
+ U2
400
+ 3
401
+
402
+ .
403
+ (15)
404
+ In particular we may use these relations to replace φi by dψi
405
+ dx or vice versa. Explicitly we have
406
+ 3
407
+
408
+ 1+√x
409
+ �2 φi
410
+ =
411
+ 4√x
412
+
413
+ 2+√x
414
+
415
+ ψi −4x
416
+
417
+ 1−√x
418
+ ��
419
+ 3+√x
420
+ � d
421
+ dxψi.
422
+ (16)
423
+ Replacing φi by dψi
424
+ dx is often advantageous to eliminate the square root √x. In the following we
425
+ will often write ∂x for d
426
+ dx. The Legendre relation reads
427
+ ψ1φ2 −φ1ψ2
428
+ =
429
+ 8πi
430
+ (1+√x)3 (3−√x)
431
+ .
432
+ (17)
433
+ We denote the Wronskian by
434
+ W
435
+ =
436
+ ψ1∂xψ2 −ψ2∂xψ1 = −
437
+ 6πi
438
+ x(1−x)(9−x).
439
+ (18)
440
+ 6
441
+
442
+ Finally, we set
443
+ τ = ψ2
444
+ ψ1
445
+ ,
446
+ q = e2πiτ.
447
+ (19)
448
+ We have
449
+
450
+ =
451
+ W
452
+ ψ2
453
+ 1
454
+ dx
455
+ (20)
456
+ and
457
+ x
458
+ =
459
+ 9 η(τ)4η(6τ)8
460
+ η(3τ)4η(2τ)8,
461
+ (21)
462
+ where η denotes Dedekind’s eta-function. The first few terms read
463
+ x
464
+ =
465
+ 9q−36q2 +90q3 +O
466
+
467
+ q4�
468
+ .
469
+ (22)
470
+ 4
471
+ Uniform weight and ε-factorised differential equations
472
+ In this section we investigate the question of uniform weight for bases of master integrals,
473
+ which have ε-factorised differential equations. The two-loop sunrise integral with equal non-
474
+ zero masses serves as an example.
475
+ 4.1
476
+ Bases of master integrals
477
+ We consider three bases ⃗I, ⃗J and ⃗K for the family of the sunrise integral. The first one, ⃗I, is a
478
+ basis without any additional properties and given by
479
+ ⃗I
480
+ =
481
+
482
+
483
+ I110
484
+ I111
485
+ I211
486
+
487
+ .
488
+ (23)
489
+ The latter two, ⃗J and ⃗K, put the differential equation into an ε-form:
490
+ d⃗J = εB⃗J,
491
+ d⃗K = εC⃗K,
492
+ (24)
493
+ where the (3×3)-matrices B and C are independent of the dimensional regularisation parameter
494
+ ε. The basis ⃗J, appearing in [11,20–22], is defined by
495
+ J1
496
+ =
497
+ ε2 I110,
498
+ J2
499
+ =
500
+ ε2 π
501
+ ψ1
502
+ I111,
503
+ J3
504
+ =
505
+ ψ2
506
+ 1
507
+ 2πiεW
508
+ d
509
+ dxJ2 + 1
510
+ 24
511
+
512
+ 3x2 −10x−9
513
+ ��ψ1
514
+ π
515
+ �2
516
+ J2.
517
+ (25)
518
+ 7
519
+
520
+ In terms of I111 and I211 the master integral J3 is given by
521
+ J3
522
+ =
523
+
524
+ − ε2
525
+ 24
526
+
527
+ x2 −30x+45
528
+ � ψ1
529
+ π − ε
530
+ 4
531
+
532
+ 1+√x
533
+ ��
534
+ 3−√x
535
+ � ψ1
536
+ π + ε
537
+ 16
538
+
539
+ 1+√x
540
+ �3�
541
+ 3−√x
542
+ � φ1
543
+ π
544
+
545
+ I111
546
+
547
+ 4 (1−x)(9−x) ψ1
548
+ π I211.
549
+ (26)
550
+ Note that the definition of the master integrals ⃗J involves only ψ1 and φ1 (through d
551
+ dxψ1), but not
552
+ ψ2 nor φ2.
553
+ The basis ⃗K, appearing in [9], is defined by
554
+ K1
555
+ =
556
+ ε2 I110,
557
+ (27)
558
+ K2
559
+ =
560
+ −ε(1+2ε)
561
+
562
+
563
+ 1+√x
564
+ ��
565
+ 3−√x
566
+ ��
567
+ ψ2 − 1
568
+ 4
569
+
570
+ 1+√x
571
+ �2 φ2
572
+
573
+ I111 + ε
574
+ 4π (1−x)(9−x)ψ2I211,
575
+ K3
576
+ =
577
+ +ε(1+2ε)
578
+
579
+
580
+ 1+√x
581
+ ��
582
+ 3−√x
583
+ ��
584
+ ψ1 − 1
585
+ 4
586
+
587
+ 1+√x
588
+ �2 φ1
589
+
590
+ I111 − ε
591
+ 4π (1−x)(9−x)ψ1I211.
592
+ In the definition of the master integrals ⃗K all periods ψ1,ψ2 and all quasi-periods φ1,φ2 appear.
593
+ The master integrals K2 and K3 are related by ψ2 ↔ ψ1, φ2 ↔ φ1 and an overall minus sign.
594
+ 4.2
595
+ The differential equations
596
+ The differential equation in the basis⃗I reads
597
+ d⃗I
598
+ =
599
+ A⃗I,
600
+ (28)
601
+ with
602
+ A
603
+ =
604
+
605
+
606
+ 0
607
+ 0
608
+ 0
609
+ 0
610
+ −(1+2ε)
611
+ 3
612
+ 0
613
+ −1
614
+ 3 (1+2ε)(1+3ε)
615
+ 1+3ε
616
+
617
+  dx
618
+ x
619
+ +
620
+
621
+
622
+ 0
623
+ 0
624
+ 0
625
+ 0
626
+ 0
627
+ 0
628
+ ε2
629
+ 4
630
+ 1
631
+ 4 (1+2ε)(1+3ε)
632
+ −(1+2ε)
633
+
634
+  dx
635
+ x−1
636
+ +
637
+
638
+
639
+ 0
640
+ 0
641
+ 0
642
+ 0
643
+ 0
644
+ 0
645
+ −ε2
646
+ 4
647
+ 1
648
+ 12 (1+2ε)(1+3ε)
649
+ −(1+2ε)
650
+
651
+  dx
652
+ x−9.
653
+ (29)
654
+ In this basis, the entries are rational dlog-forms. However, the differential equation is not in
655
+ ε-form.
656
+ The differential equation in the basis ⃗J reads
657
+ d⃗J
658
+ =
659
+ εB⃗J,
660
+ (30)
661
+ 8
662
+
663
+ with
664
+ B
665
+ =
666
+
667
+
668
+ 0
669
+ 0
670
+ 0
671
+ 0
672
+ ω2
673
+ ω0
674
+ ω3
675
+ ω4
676
+ ω2
677
+
678
+
679
+ (31)
680
+ and
681
+ ω0 = 2πi dτ
682
+ = 2πiW
683
+ ψ2
684
+ 1
685
+ dx,
686
+ ω2 = − f2(τ) (2πi)dτ = dx
687
+ 2x − dx
688
+ x−1 − dx
689
+ x−9,
690
+ ω3 = f3(τ) (2πi)dτ
691
+ = − 1
692
+ 2
693
+ ψ1
694
+ π dx,
695
+ ω4 = f4(τ) (2πi)dτ
696
+ =
697
+ (x+3)4
698
+ 48x(x−1)(x−9)
699
+ �ψ1
700
+ π
701
+ �2
702
+ dx.
703
+ (32)
704
+ f2, f3 and f4 are modular forms of Γ1(6). The minus sign in front of f2 is convention. In terms
705
+ of the variable x they are given by
706
+ f2
707
+ =
708
+ 1
709
+ 24
710
+
711
+ 3x2 −10x−9
712
+ ��ψ1
713
+ π
714
+ �2
715
+ ,
716
+ f3
717
+ =
718
+ − 1
719
+ 24x(x−1)(x−9)
720
+ �ψ1
721
+ π
722
+ �3
723
+ ,
724
+ f4
725
+ =
726
+ 1
727
+ 576 (3+x)4�ψ1
728
+ π
729
+ �4
730
+ .
731
+ (33)
732
+ Their q-expansions are given in appendix A.
733
+ The differential equation in the basis ⃗K reads
734
+ d⃗K
735
+ =
736
+ εC⃗K,
737
+ (34)
738
+ with
739
+ C
740
+ =
741
+
742
+
743
+ 0
744
+ 0
745
+ 0
746
+ C2,1
747
+ C2,2
748
+ C2,3
749
+ C3,1
750
+ C3,2
751
+ C3,3
752
+
753
+
754
+ (35)
755
+ and
756
+ C2,1
757
+ =
758
+ −1
759
+ 2
760
+ ψ2
761
+ π dx,
762
+ (36)
763
+ C2,2
764
+ =
765
+
766
+ 6
767
+
768
+ (1+x) ψ1
769
+ π
770
+ ψ2
771
+ π +
772
+
773
+ 3x2 −10x−9
774
+ � ψ2
775
+ π
776
+ ∂xψ1
777
+ π
778
+ +2x(x−1)(x−9) ∂xψ1
779
+ π
780
+ ∂xψ2
781
+ π
782
+
783
+ dx,
784
+ C2,3
785
+ =
786
+
787
+ 6
788
+
789
+ (1+x)
790
+ �ψ2
791
+ π
792
+ �2
793
+ +
794
+
795
+ 3x2 −10x−9
796
+ � ψ2
797
+ π
798
+ ∂xψ2
799
+ π
800
+ +2x(x−1)(x−9)
801
+ �∂xψ2
802
+ π
803
+ �2�
804
+ dx,
805
+ 9
806
+
807
+ C3,1
808
+ =
809
+ 1
810
+ 2
811
+ ψ1
812
+ π dx,
813
+ C3,2
814
+ =
815
+ −iπ
816
+ 6
817
+
818
+ (1+x)
819
+ �ψ1
820
+ π
821
+ �2
822
+ +
823
+
824
+ 3x2 −10x−9
825
+ � ψ1
826
+ π
827
+ ∂xψ1
828
+ π
829
+ +2x(x−1)(x−9)
830
+ �∂xψ1
831
+ π
832
+ �2�
833
+ dx,
834
+ C3,3
835
+ =
836
+ −iπ
837
+ 6
838
+
839
+ (1+x) ψ1
840
+ π
841
+ ψ2
842
+ π +
843
+
844
+ 3x2 −10x−9
845
+ � ψ1
846
+ π
847
+ ∂xψ2
848
+ π
849
+ +2x(x−1)(x−9) ∂xψ1
850
+ π
851
+ ∂xψ2
852
+ π
853
+
854
+ dx.
855
+ 4.3
856
+ Periods on the maximal cut
857
+ In this section we investigate the period matrices on the maximal cut of the sunrise integral. On
858
+ the maximal cut of the sunrise integral only the last two master integrals are relevant (either I2,I3
859
+ or J2,J3 or K2,K3). The defining property for basis ⃗K is that the period matrix on the maximal
860
+ cut is diagonal and constant.
861
+ We denote by
862
+ ϕX
863
+ i ,
864
+ X ∈ {I,J,K}, i ∈ {1,2,3},
865
+ (37)
866
+ the integrand of the master integral Xi in the loop-by-loop Baikov representation [23]. In the
867
+ loop-by-loop Baikov representations we have four integration variables z1 − z4, where z1 − z3
868
+ correspond to the three propagators and z4 to an irreducible scalar product. Let C MaxCut be
869
+ the integration domain selecting the maximal cut, i.e. a small counter-clockwise circle around
870
+ z1 = 0, a small counter-clockwise circle around z2 = 0 and a small counter-clockwise circle
871
+ around z3 = 0. We set z4 = u in accordance with the notation used in eq. (7). We denote by γ1
872
+ and γ2 the two cycles of the elliptic curve. They define the integration domain in the variable u.
873
+ We define
874
+ C2 = C MaxCut ∪γ1,
875
+ C3 = C MaxCut ∪γ2.
876
+ (38)
877
+ We consider the period matrix
878
+ PX
879
+ =
880
+ � �
881
+ ϕX
882
+ 2 |C2
883
+
884
+
885
+ ϕX
886
+ 2 |C3
887
+
888
+
889
+ ϕX
890
+ 3 |C2
891
+
892
+
893
+ ϕX
894
+ 3 |C3
895
+
896
+
897
+ .
898
+ (39)
899
+ In the i-th row of this matrix we then look at the leading term in the expansion in the dimensionsal
900
+ regularisation parameter ε for this row. We denote the order of the leading term of row i by
901
+ jmin(i). This defines a matrix PX,leading with entries
902
+ PX,leading
903
+ i j
904
+ =
905
+ coeff
906
+ ��
907
+ ϕX
908
+ i |Cj
909
+
910
+ ,ε jmin(i)�
911
+ ·ε jmin(i).
912
+ (40)
913
+ One finds
914
+ PI,leading
915
+ =
916
+ −8iπ
917
+
918
+ ψ1
919
+ ψ2
920
+ ψ1− 1
921
+ 4(1+√x)2φ1
922
+ (1−√x)(3+√x)
923
+ ψ2− 1
924
+ 4(1+√x)2φ2
925
+ (1−√x)(3+√x)
926
+
927
+ ,
928
+ 10
929
+
930
+ PJ,leading
931
+ =
932
+ 2i
933
+
934
+ (2πiε)2
935
+ (2πiε)2τ
936
+ 0
937
+ −(2πiε)
938
+
939
+ ,
940
+ PK,leading
941
+ =
942
+ 4πε
943
+ � 1
944
+ 0
945
+ 0
946
+ 1
947
+
948
+ .
949
+ (41)
950
+ As advertised, we see that PK,leading is proportional to the unit matrix. Note that PJ,leading can be
951
+ written as
952
+ PJ,leading
953
+ =
954
+ 2i
955
+
956
+ (2πiε)2
957
+ 0
958
+ 0
959
+ −(2πiε)
960
+ ��
961
+ 1
962
+ τ
963
+ 0
964
+ 1
965
+
966
+ .
967
+ (42)
968
+ This is the decomposition of the period matrix PJ,leading into a semi-simple matrix and an unipo-
969
+ tent matrix [24].
970
+ 4.4
971
+ Solutions
972
+ In the basis ⃗J we may give a solution for the master integrals in terms of iterated integrals of
973
+ modular forms.
974
+ Let f1(τ), f2(τ), ..., fn(τ) be a set of modular forms. We define the n-fold iterated integral of
975
+ these modular forms by
976
+ I (f1, f2,..., fn;τ,τ0)
977
+ =
978
+ (2πi)n
979
+ τ
980
+
981
+ τ0
982
+ dτ1
983
+ τ1
984
+
985
+ τ0
986
+ dτ2···
987
+ τn−1
988
+
989
+ τ0
990
+ dτn f1 (τ1) f2 (τ2)... fn(τn).
991
+ (43)
992
+ With q = exp(2πiτ) we may equally well write
993
+ I (f1, f2,..., fn;τ,τ0) =
994
+ q
995
+
996
+ q0
997
+ dq1
998
+ q1
999
+ q1
1000
+
1001
+ q0
1002
+ dq2
1003
+ q2
1004
+ ...
1005
+ qn−1
1006
+
1007
+ q0
1008
+ dqn
1009
+ qn
1010
+ f1 (τ1) f2(τ2)... fn(τn),
1011
+ τ j = 1
1012
+ 2πi lnqj.
1013
+ (44)
1014
+ It will be convenient to introduce a short-hand notation for repeated letters. We use the notation
1015
+ { fi}j
1016
+ =
1017
+ fi, fi,..., fi
1018
+
1019
+ ��
1020
+
1021
+ j
1022
+ (45)
1023
+ to denote a sequence of j letters fi and more generally
1024
+ {fi1, fi2,..., fin}j
1025
+ =
1026
+ fi1, fi2,..., fin,......, fi1, fi2,..., fin
1027
+
1028
+ ��
1029
+
1030
+ j copies of fi1, fi2,..., fin
1031
+ (46)
1032
+ to denote a sequence of ( j ·n) letters, consisting of j copies of fi1, fi2,..., fin. For example
1033
+ { f1, f2}3
1034
+ =
1035
+ f1, f2, f1, f2, f1, f2.
1036
+ (47)
1037
+ 11
1038
+
1039
+ Our standard choice for the base point τ0 will be τ0 = i∞, corresponding to q0 = 0. This is
1040
+ unproblematic for modular forms which vanish at the cusp τ = i∞. In this case we have for a
1041
+ single integration
1042
+ f =
1043
+
1044
+
1045
+ j=1
1046
+ ajqj
1047
+
1048
+ q
1049
+
1050
+ 0
1051
+ dq1
1052
+ q1
1053
+ f =
1054
+
1055
+
1056
+ j=1
1057
+ aj
1058
+ j qj.
1059
+ (48)
1060
+ For modular forms which attain a finite value at the cusp τ = i∞ we employ the standard “trailing
1061
+ zero” or “tangential base point” regularisation [10,25,26]: We first take q0 to have a small non-
1062
+ zero value. The integration will produce terms with ln(q0). Let Rln(q0) be the operator, which
1063
+ removes all ln(q0)-terms. After these terms have been removed, we may take the limit q0 → 0.
1064
+ With a slight abuse of notation we set
1065
+ I ( f1, f2,..., fn;q) = lim
1066
+ q0→0Rln(q0)
1067
+
1068
+
1069
+ q
1070
+
1071
+ q0
1072
+ dq1
1073
+ q1
1074
+ q1
1075
+
1076
+ q0
1077
+ dq2
1078
+ q2
1079
+ ...
1080
+ qn−1
1081
+
1082
+ q0
1083
+ dqn
1084
+ qn
1085
+ f1 (τ1) f2(τ2)... fn (τn)
1086
+
1087
+ .
1088
+ (49)
1089
+ We define the boundary constants Bk for the sunrise integral J2 by
1090
+ lim
1091
+ q→0Rln(q)J2
1092
+ =
1093
+ e
1094
+ 2
1095
+
1096
+
1097
+ n=2
1098
+ (−1)n
1099
+ n
1100
+ ζnεn ∞
1101
+
1102
+ k=2
1103
+ εkBk.
1104
+ (50)
1105
+ The left-hand side corresponds to setting all iterated integrals to zero, including the ones which
1106
+ are proportional to powers of ln(q). The boundary values Bk are collected in appendix B. Let us
1107
+ mention that the boundary values Bk are of weight k. The right-hand side of eq. (50) is therefore
1108
+ of uniform weight.
1109
+ We may express the master integrals in the basis ⃗J to all orders in the dimensional regulari-
1110
+ sation parameter in terms of iterated integrals of modular forms. We have
1111
+ J1 = e
1112
+ 2
1113
+
1114
+
1115
+ n=2
1116
+ (−1)n
1117
+ n
1118
+ ζnεn
1119
+ ,
1120
+ J2 = e
1121
+ −εI(f2;q)+2
1122
+
1123
+
1124
+ n=2
1125
+ (−1)n
1126
+ n
1127
+ ζnεn
1128
+
1129
+
1130
+
1131
+
1132
+
1133
+
1134
+ j=0
1135
+
1136
+ ε2jI
1137
+
1138
+ {1, f4}j ;q
1139
+
1140
+ − 1
1141
+ 2ε2j+1I
1142
+
1143
+ {1, f4}j ,1;q
1144
+ ���
1145
+
1146
+
1147
+ k=2
1148
+ εkBk
1149
+ +
1150
+
1151
+
1152
+ j=0
1153
+ ε j+2
1154
+ ⌊ j
1155
+ 2⌋
1156
+
1157
+ k=0
1158
+ I
1159
+
1160
+ {1, f4}k ,1, f3,{f2}j−2k ;q
1161
+
1162
+
1163
+
1164
+ ,
1165
+ J3 = e
1166
+ −εI(f2;q)+2
1167
+
1168
+
1169
+ n=2
1170
+ (−1)n
1171
+ n
1172
+ ζnεn
1173
+
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+ j=0
1180
+
1181
+ ε2j+1I
1182
+
1183
+ { f4,1}j , f4;q
1184
+
1185
+ − 1
1186
+ 2ε2jI
1187
+
1188
+ { f4,1}j ;q
1189
+ ���
1190
+
1191
+
1192
+ k=2
1193
+ εkBk
1194
+ 12
1195
+
1196
+ +
1197
+
1198
+
1199
+ j=0
1200
+ ε j+1
1201
+ ⌊ j
1202
+ 2⌋
1203
+
1204
+ k=0
1205
+ I
1206
+
1207
+ {f4,1}k , f3,{ f2}j−2k ;q
1208
+
1209
+
1210
+
1211
+ .
1212
+ (51)
1213
+ The expression for J2 appeared already in [10], the expression for J3 follows from (see eq. (25))
1214
+ J3
1215
+ =
1216
+ 1
1217
+ ε
1218
+ 1
1219
+ 2πi
1220
+ d
1221
+ dτJ2 + f2J2.
1222
+ (52)
1223
+ For the first few terms of ε-expansion we have
1224
+ J1
1225
+ =
1226
+ 1+ζ2ε2 − 2
1227
+ 3ζ3ε3 + 7
1228
+ 10ζ2
1229
+ 2ε4 +O
1230
+
1231
+ ε5�
1232
+ ,
1233
+ J2
1234
+ =
1235
+ [B2 +I (1, f3;q)]ε2
1236
+ +
1237
+
1238
+ B3 − 1
1239
+ 2B2I (1;q)−B2I ( f2;q)−I (1, f2, f3;q)−I ( f2,1, f3;q)
1240
+
1241
+ ε3
1242
+ +
1243
+
1244
+ B4 +ζ2B2 − 1
1245
+ 2B3I (1;q)−B3I ( f2;q)+ 1
1246
+ 2B2I (1, f2;q)+ 1
1247
+ 2B2I ( f2,1;q)
1248
+ +B2I (1, f4;q)+B2I (f2, f2;q)+ζ2I (1, f3;q)+I (1, f2, f2, f3;q)+I ( f2, f2,1, f3;q)
1249
+ +I (1, f4,1, f3;q)+I (f2,1, f2, f3;q)
1250
+
1251
+ ε4 +O
1252
+
1253
+ ε5�
1254
+ ,
1255
+ J3
1256
+ =
1257
+ εI ( f3;q)+
1258
+
1259
+ −1
1260
+ 2B2 −I ( f2, f3;q)
1261
+
1262
+ ε2 +
1263
+
1264
+ −1
1265
+ 2B3 + 1
1266
+ 2B2I ( f2;q)+B2I (f4;q)
1267
+ +ζ2I ( f3;q)+I ( f2, f2, f3;q)+I (f4,1, f3;q)
1268
+
1269
+ ε3 +
1270
+
1271
+ −1
1272
+ 2B4 − 1
1273
+ 2ζ2B2 + 1
1274
+ 2B3I (f2;q)
1275
+ +B3I ( f4;q)− 2
1276
+ 3ζ3I ( f3;q)−B2I (f4, f2;q)−B2I ( f2, f4;q)− 1
1277
+ 2B2I (f2, f2;q)
1278
+ −1
1279
+ 2B2I (f4,1;q)−ζ2I ( f2, f3;q)−I ( f2, f2, f2, f3;q)−I ( f4, f2,1, f3;q)
1280
+ −I (f2, f4,1, f3;q)−I (f4,1, f2, f3;q)
1281
+
1282
+ ε4 +O
1283
+
1284
+ ε5�
1285
+ .
1286
+ (53)
1287
+ Let us also summarise the boundary values: From eq. (50) and eq. (51) we obtain
1288
+ lim
1289
+ q→0Rln(q)J1
1290
+ =
1291
+ e
1292
+ 2
1293
+
1294
+
1295
+ n=2
1296
+ (−1)n
1297
+ n
1298
+ ζnεn
1299
+ ,
1300
+ lim
1301
+ q→0Rln(q)J2
1302
+ =
1303
+ e
1304
+ 2
1305
+
1306
+
1307
+ n=2
1308
+ (−1)n
1309
+ n
1310
+ ζnεn ∞
1311
+
1312
+ k=2
1313
+ εkBk,
1314
+ lim
1315
+ q→0Rln(q)J3
1316
+ =
1317
+ −1
1318
+ 2e
1319
+ 2
1320
+
1321
+
1322
+ n=2
1323
+ (−1)n
1324
+ n
1325
+ ζnεn ∞
1326
+
1327
+ k=2
1328
+ εkBk.
1329
+ (54)
1330
+ In all three cases the right-hand sides are of uniform weight.
1331
+ 13
1332
+
1333
+ Given a solution in the basis ⃗J, we easily obtain a solution in the basis ⃗K. The two bases are
1334
+ related by
1335
+ ⃗K
1336
+ = U⃗J,
1337
+ (55)
1338
+ with
1339
+ U
1340
+ =
1341
+
1342
+
1343
+ 1
1344
+ 0
1345
+ 0
1346
+ 0
1347
+ −(1+2ε)
1348
+ 2πiε −g2 ·τ
1349
+ τ
1350
+ 0
1351
+ g2
1352
+ −1
1353
+
1354
+
1355
+ (56)
1356
+ and
1357
+ g2
1358
+ =
1359
+ 1
1360
+ 24
1361
+ ��
1362
+ 3x2 −10x−9
1363
+ � ψ1
1364
+ π +4x(1−x)(9−x) ∂xψ1
1365
+ π
1366
+ � ψ1
1367
+ π .
1368
+ (57)
1369
+ In the modular variable τ the quantity g2 is given by
1370
+ g2
1371
+ =
1372
+ f2 +2 π
1373
+ ψ1
1374
+ 1
1375
+ 2πi
1376
+ d
1377
+
1378
+ ψ1
1379
+ π
1380
+ =
1381
+ 4
1382
+
1383
+ 3b2
1384
+ 1 −3b1b2 −6b2
1385
+ 2 −e2
1386
+
1387
+ .
1388
+ (58)
1389
+ The modular forms b1 and b2 and the quasi-modular form e2 are defined in appendix A. The
1390
+ quantity g2 is a quasi-modular form of modular weight 2 and depth 1. For γ ∈ Γ1(6) the quantity
1391
+ g2 transforms as
1392
+ (g2|2γ)(τ)
1393
+ =
1394
+ g2(τ)+ 2
1395
+ 2πi
1396
+ c
1397
+ cτ+d ,
1398
+ γ =
1399
+
1400
+ a
1401
+ b
1402
+ c
1403
+ d
1404
+
1405
+ ,
1406
+ (59)
1407
+ where the operator |kγ is defined by
1408
+ ( f|kγ)(τ)
1409
+ =
1410
+ (cτ+d)−k · f(γ(τ)),
1411
+ γ(τ) = aτ+b
1412
+ cτ+d .
1413
+ (60)
1414
+ For the first few terms of ε-expansion we have
1415
+ K2
1416
+ =
1417
+ 1
1418
+ 2πi [−B2 +I ( f3,1;q)]ε+ 1
1419
+ 2πi [−B3 −2B2 +B2I ( f2;q)−I ( f2, f3,1;q)−2I (1, f3;q)
1420
+ −2g2I (1,1, f3;q)−g2I (1, f3,1;q)−g2B2I (1;q)]ε2 +O
1421
+
1422
+ ε3�
1423
+ ,
1424
+ K3
1425
+ =
1426
+ −I ( f3;q)ε+
1427
+ �1
1428
+ 2B2 +I ( f2, f3;q)+g2B2 +g2I (1, f3;q)
1429
+
1430
+ ε2 +O
1431
+
1432
+ ε3�
1433
+ .
1434
+ (61)
1435
+ Let us look at the boundary values of K2
1436
+ lim
1437
+ q→0Rln(q)K2
1438
+ =
1439
+ − B2
1440
+ 2πiε− (B3 +2B2)
1441
+ 2πi
1442
+ ε2 +O
1443
+
1444
+ ε3�
1445
+ .
1446
+ (62)
1447
+ The term
1448
+ −2B2
1449
+ 2πi ε2
1450
+ (63)
1451
+ is of weight minus one and spoils the uniform weight property. Hence we conclude that the basis
1452
+ ⃗K is not of uniform weight if we require that the notion of uniform weight is compatible with
1453
+ restrictions in the kinematic space.
1454
+ 14
1455
+
1456
+ 5
1457
+ Purity and simple poles
1458
+ In this section we address the second main question of this paper: The relation between uniform
1459
+ weight and simple poles in the elliptic case.
1460
+ 5.1
1461
+ Definition of pure functions in the literature
1462
+ We recapitulate the definitions of unipotent and pure function as given in ref. [18]:
1463
+ Definition 1. A function is called unipotent, if it satisfies a differential equation without a homo-
1464
+ geneous term.
1465
+ To give an example, the functions ln(x) and Li2(x) are unipotent
1466
+ d
1467
+ dx ln(x) = 1
1468
+ x,
1469
+ d
1470
+ dxLi2 (x) = −1
1471
+ x ln(1−x),
1472
+ (64)
1473
+ while ex is not
1474
+ d
1475
+ dxex
1476
+ =
1477
+ ex.
1478
+ (65)
1479
+ Definition 2. Unipotent functions, whose total differential involves only pure functions and one-
1480
+ forms with at most simple poles are called pure.
1481
+ The standard example are multiple polylogarithms, whose total differential is given by
1482
+ dG(z1,...,zr;y)
1483
+ =
1484
+ r
1485
+
1486
+ j=1
1487
+ G(z1,..., ˆz j,...,zr;y)
1488
+
1489
+ d ln
1490
+
1491
+ z j−1 −z j
1492
+
1493
+ −d ln
1494
+
1495
+ z j+1 −z j
1496
+ ��
1497
+ ,
1498
+ (66)
1499
+ where we set z0 = y and zr+1 = 0. A hat indicates that the corresponding variable is omitted.
1500
+ In addition one uses the convention that for z j+1 = z j the one-form d ln(z j+1 −z j) equals zero.
1501
+ Clearly, the one forms
1502
+ d ln
1503
+
1504
+ z j+1 −z j
1505
+
1506
+ =
1507
+ dz j+1 −dz j
1508
+ z j+1 −z j
1509
+ (67)
1510
+ have only simple poles.
1511
+ 5.2
1512
+ Iterated integrals of modular forms
1513
+ Let us now look at iterated integrals of modular forms, as defined in eq. (43). It is clear that
1514
+ these iterated integrals are unipotent functions, as differentiation removes one integration. We
1515
+ investigate the order of the poles of the total differential.
1516
+ We denote by
1517
+ H
1518
+ =
1519
+ { τ ∈ C | Im(τ) > 0 }
1520
+ (68)
1521
+ 15
1522
+
1523
+ the complex upper half-plane and by
1524
+ H
1525
+ =
1526
+ H∪{i∞}∪Q
1527
+ (69)
1528
+ the extended complex upper half-plane. Under the map q = exp(2πiτ) the complex upper half-
1529
+ plane H is mapped to the punctured open disk
1530
+ D
1531
+ =
1532
+ { q ∈ C | 0 < |q| < 1 }
1533
+ (70)
1534
+ and H is mapped to
1535
+ D
1536
+ =
1537
+ D∪{0}∪
1538
+
1539
+ e2πir | r ∈ Q
1540
+
1541
+ .
1542
+ (71)
1543
+ Let fk(τ) be a modular form of weight k for a congruence subgroup Γ and
1544
+ ωmodular
1545
+ k
1546
+ =
1547
+ 2πi fk (τ)dτ.
1548
+ (72)
1549
+ For simplicity we assume that
1550
+ � 1
1551
+ 1
1552
+ 0
1553
+ 1
1554
+
1555
+ ∈ Γ. In this case fk has the q-expansion [27]
1556
+ fk
1557
+ =
1558
+
1559
+
1560
+ n=0
1561
+ anqn.
1562
+ (73)
1563
+ (In the general case fk will have an expansion in q
1564
+ 1
1565
+ N′ , where N′ is the smallest positive inte-
1566
+ ger such that fk(τ + N′) = fk(τ). The general case is only from a notational perspective more
1567
+ elaborate.) In addition we will always assume that modular forms are normalised such that the
1568
+ coefficients of their q-expansion are algebraic numbers. We view ωmodular
1569
+ k
1570
+ as a differential one-
1571
+ form on D. In the variable q we have
1572
+ ωmodular
1573
+ k
1574
+ =
1575
+
1576
+
1577
+ n=0
1578
+ anqn−1dq.
1579
+ (74)
1580
+ This shows immediately that ωmodular
1581
+ k
1582
+ is holomorphic on D and has a simple pole at q = 0 if
1583
+ a0 ̸= 0. Thus, in a neighbourhood of q = 0 the differential one-form ωmodular
1584
+ k
1585
+ has at most simple
1586
+ poles.
1587
+ Let us now discuss if this extends globally to D. The answer will be no. We have to look at
1588
+ the other cusps. We investigate the behaviour at
1589
+ q0
1590
+ =
1591
+ e2πi(− d
1592
+ c),
1593
+ c,d ∈ Z, c ̸= 0.
1594
+ (75)
1595
+ We may derive the behaviour of ωmodular
1596
+ k
1597
+ at q0 from the modular properties of fk. We consider
1598
+ the modular transformation
1599
+ γ =
1600
+ � a
1601
+ b
1602
+ c
1603
+ d
1604
+
1605
+ ∈ SL2(Z),
1606
+ γ−1 =
1607
+
1608
+ d
1609
+ −b
1610
+ −c
1611
+ a
1612
+
1613
+ (76)
1614
+ 16
1615
+
1616
+ and set
1617
+ τ′ = γ(τ) = aτ+b
1618
+ cτ+d ,
1619
+ q′ = e2πiτ′.
1620
+ (77)
1621
+ This maps τ = −d
1622
+ c to τ′ = i∞ and q0 to q′
1623
+ 0 = 0. For the automorphic factor we have
1624
+ cτ+d
1625
+ =
1626
+ c
1627
+ 2πi
1628
+ (q−q0)
1629
+ q0
1630
+ +O
1631
+
1632
+ (q−q0)2�
1633
+ .
1634
+ (78)
1635
+ ( fk|kγ−1)(τ′) has again a q′-expansion as in eq. (73)
1636
+
1637
+ fk|kγ−1��
1638
+ τ′�
1639
+ =
1640
+
1641
+
1642
+ n=0
1643
+ a′
1644
+ n
1645
+
1646
+ q′�n .
1647
+ (79)
1648
+ If fk is a modular form for the congruence subgroup Γ and γ ∈ Γ we have a′
1649
+ n = an, otherwise
1650
+ the coefficients need not be the same. Usually we are interested in the cusps not equivalent to
1651
+ τ = i∞, this implies γ ∈ SL2 (Z)\Γ. For a′
1652
+ 0 ̸= 0 we have
1653
+ ωmodular
1654
+ k
1655
+ =
1656
+ a′
1657
+ 0
1658
+ � c
1659
+ 2πi
1660
+ �−k
1661
+ qk−1
1662
+ 0
1663
+ dq
1664
+ (q−q0)k +O
1665
+
1666
+ (q−q0)−k+1�
1667
+ .
1668
+ (80)
1669
+ Thus we see that whenever fk is non-vanishing at the cusp τ0 = −d
1670
+ c, the differential one-form
1671
+ ωmodular
1672
+ k
1673
+ has a pole of order k in the variable q at q = q0. Globally, ωmodular
1674
+ k
1675
+ has poles up to order
1676
+ k on D.
1677
+ 5.3
1678
+ Elliptic polylogarithms
1679
+ The discussion of the previous sub-section is not restricted to iterated integrals of modular forms
1680
+ and carries over to elliptic polylogarithms �Γ.
1681
+ Let g(k)(z,τ) denote the coefficients of the Kronecker function and set
1682
+ ωKronecker
1683
+ k
1684
+ (z,τ)
1685
+ =
1686
+ (2πi)2−k
1687
+
1688
+ g(k−1) (z,τ)dz+(k −1)g(k) (z,τ) dτ
1689
+ 2πi
1690
+
1691
+ .
1692
+ (81)
1693
+ We may view ωKronecker
1694
+ k
1695
+ as a differential one-form on the two-dimensional moduli space M1,2.
1696
+ Coordinates on this moduli space are (z,τ). The elliptic polylogarithms �Γ are iterated integrals
1697
+ of ωKronecker
1698
+ k
1699
+ (z−cj,τ) along z at constant τ. It is known that the functions g(k)(z,τ) have at most
1700
+ simple poles in z and when restricted to τ = const the elliptic polylogarithms �Γ are pure functions
1701
+ in the sense of definition 2. However in the applications towards Feynman integrals it is usually
1702
+ the case that the assumption τ = const is not justified. A variation of the kinematic variables of
1703
+ the Feynman integral will imply a variation of τ and we have to consider the τ-dependence as
1704
+ well. For the argument we want to make it is sufficient to restrict to z = a + bτ with a,b ∈ Q
1705
+ and k ≥ 2. In this case the differential one-forms ωKronecker
1706
+ k
1707
+ reduce to the form of ωmodular
1708
+ k
1709
+ [24]
1710
+ and the argument from the previous sub-section applies: In this case the differential one-forms
1711
+ ωKronecker
1712
+ k
1713
+ may have poles up to order k in the variable q (or τ).
1714
+ 17
1715
+
1716
+ 5.4
1717
+ Modular transformations
1718
+ We have seen that locally in the coordinate chart D ∪ {0} the basis ⃗J satisfies the criteria of
1719
+ definition 2. This coordinate chart includes the point x = 0. Let us now investigate the global
1720
+ picture. For the sunrise integral we have four singular points x ∈ {0,1,9,∞} and we may cover
1721
+ the kinematic space with four charts, such that each chart includes exactly one singular point.
1722
+ In each chart we may construct a basis, which satisfies the criteria of definition 2 locally. In
1723
+ different charts we will have different coordinates τ and τ′, but also different bases of master
1724
+ integrals ⃗J and ⃗J′. The coordinates τ and τ′ will be related by a modular transformation. The
1725
+ modular transformation induces also the transformation between ⃗J and ⃗J′.
1726
+ Let us discuss the behaviour near the cusp τ0 = −d
1727
+ c. The modular transformation γ defined
1728
+ in eq. (76) maps τ0 = −d
1729
+ c to τ′
1730
+ 0 = i∞. Let fk be a modular form for a congruence subgroup Γ.
1731
+ Then by definition fk(τ) is holomorphic on H and ( fk|kγ−1)(τ′) has a q′-expansion as in eq. (79)
1732
+ for any γ ∈ SL2(Z). This suggest to change in a neighbourhood of τ = −d
1733
+ c coordinates from q to
1734
+ q′. The differential one-form
1735
+ 2πi
1736
+
1737
+ fk|kγ−1��
1738
+ τ′�
1739
+ dτ′
1740
+ (82)
1741
+ has then a simple pole at q′ = 0 (corresponding to τ = −d
1742
+ c). However, ωmodular
1743
+ k
1744
+ as defined in
1745
+ eq. (72) does not transform under this coordinate change into eq. (82). Instead we find
1746
+ ωmodular
1747
+ k
1748
+ =
1749
+
1750
+ −cτ′ +a
1751
+ �k−2 ·2πi
1752
+
1753
+ fk|kγ−1��
1754
+ τ′�
1755
+ dτ′.
1756
+ (83)
1757
+ (−cτ′ + a) is the automorphic factor for γ−1. For k ̸= 2 this factor spoils that iterated integrals
1758
+ of modular forms transform under modular transformations into iterated integrals of modular
1759
+ forms. However, elliptic Feynman integrals transform nicely: Let us consider for
1760
+ γ(τ)
1761
+ =
1762
+ aτ+b
1763
+ cτ+d ,
1764
+ γ ∈ SL2(Z)
1765
+ (84)
1766
+ the combined transformation [21]
1767
+ ⃗J′
1768
+ =
1769
+
1770
+
1771
+ 1
1772
+ 0
1773
+ 0
1774
+ 0
1775
+ 1
1776
+ cτ+d
1777
+ 0
1778
+ 0
1779
+ − c
1780
+ 2πiε
1781
+ cτ+d
1782
+
1783
+ ⃗J,
1784
+ τ′
1785
+ =
1786
+ aτ+b
1787
+ cτ+d .
1788
+ (85)
1789
+ One obtains
1790
+ d⃗J′
1791
+ =
1792
+ εB′⃗J′
1793
+ (86)
1794
+ with
1795
+ B′
1796
+ =
1797
+ 2πi
1798
+
1799
+
1800
+ 0
1801
+ 0
1802
+ 0
1803
+ 0
1804
+ −( f2|2γ−1)(τ′)
1805
+ 1
1806
+ ( f3|3γ−1)(τ′)
1807
+ ( f4|4γ−1)(τ′)
1808
+ −( f2|2γ−1)(τ′)
1809
+
1810
+ dτ′.
1811
+ (87)
1812
+ 18
1813
+
1814
+ As Γ(6) is a subgroup of Γ1(6) we have Mk(Γ1(6)) ⊂Mk(Γ(6)) and as Γ(6) is a normal subgroup
1815
+ of SL2(Z) it follows that
1816
+ fk|kγ−1
1817
+ ∈ Mk(Γ(6)).
1818
+ (88)
1819
+ We see that the entries of B′ are again differential one-forms of the form as in eq. (72). We may
1820
+ express ⃗J′ again in terms of iterated integrals of modular forms, this time in the variable q′. It can
1821
+ be shown that the boundary constants are again of uniform weight. Hence it follows that in the
1822
+ coordinate chart with coordinate q′ (or τ′) the basis ⃗J′ satisfies the criteria of definition 2 locally.
1823
+ 6
1824
+ Conclusions
1825
+ For Feynman integrals which evaluate to multiple polylogarithms we have a clear understanding
1826
+ of purity: These are Feynman integrals, whose term of order j in the ε-expansion is pure of
1827
+ transcendental weight j. We are interested in extending this concept to Feynman integrals beyond
1828
+ the ones which evaluate to multiple polylogarithms.
1829
+ This is non-trivial and in this paper we discussed some subtleties: We showed that an ε-
1830
+ factorised differential equation alone does not lead necessarily lead to a solution which is pure.
1831
+ The boundary values have to be pure as well. This applies in particular to a basis constructed by
1832
+ the requirement that the period matrix on the maximal cut is proportional to the unit matrix. The
1833
+ argument we presented is agnostic to the exact definition of purity beyond the case of multiple
1834
+ polylogarithms, we only assumed that the definition of transcendental weight in the general case
1835
+ is compatible with the restriction of the kinematic space to a sub-space.
1836
+ In the second part of the paper we adopted a particular definition of purity from the literature.
1837
+ We showed that this definition works only locally – but not globally – for a particular basis of
1838
+ the two-loop equal mass sunrise integral. Of course, it might well be that this particular basis is
1839
+ not the optimal one, but another possibility is that the definition of purity needs a more refined
1840
+ definition. The modular transformation properties, which we discussed in section 5.4, point
1841
+ towards a possible modification.
1842
+ We believe that the detailed analysis we carried out in this paper will be helpful for a defi-
1843
+ nition of purity which not only includes the elliptic case, but also Feynman integrals related to
1844
+ Calabi-Yau geometries.
1845
+ Acknowledgements
1846
+ S.W. thanks the Niels Bohr Institute for hospitality and H.F. thanks the Mainz Institute of Theo-
1847
+ retical Physics for hospitality.
1848
+ H.F. is partially supported by a Carlsberg Foundation Reintegration Fellowship, and has re-
1849
+ ceived funding from the European Union’s Horizon 2020 research and innovation program under
1850
+ the Marie Sklodowska-Curie grant agreement No. 847523 “INTERACTIONS”.
1851
+ 19
1852
+
1853
+ A
1854
+ Modular forms
1855
+ In this appendix we give the q-expansions of the modular forms f2, f3 and f4, appearing in
1856
+ eq. (32) and the q-expansions of ψ1 (which is a modular form of modular weight 1). In addition,
1857
+ we define the Eisenstein series e2, which appears in eq. (58).
1858
+ We start by introducing a basis {b1,b2} for the modular forms of modular weight 1 for the
1859
+ Eisenstein subspace E1(Γ1(6)):
1860
+ b1 = E1(τ;χ1,χ−3),
1861
+ b2 = E1(2τ;χ1,χ−3),
1862
+ (89)
1863
+ where χ1 and χ−3 denote primitive Dirichlet characters with conductors 1 and 3, respectively. In
1864
+ terms of the coefficients g(k)(z,τ) of the Kronecker function we have
1865
+ b1 =
1866
+
1867
+ 3
1868
+ 6π g(1)(1
1869
+ 3,τ),
1870
+ b2 = −
1871
+
1872
+ 3
1873
+ 12π
1874
+
1875
+ g(1)(1
1876
+ 3,τ)−g(1)(1
1877
+ 6,τ)
1878
+
1879
+ .
1880
+ (90)
1881
+ Then
1882
+ f2
1883
+ =
1884
+ −6
1885
+
1886
+ b2
1887
+ 1 +6b1b2 −4b2
1888
+ 2
1889
+
1890
+ ,
1891
+ f3
1892
+ =
1893
+ 36
1894
+
1895
+ 3
1896
+
1897
+ b3
1898
+ 1 −b2
1899
+ 1b2 −4b1b2
1900
+ 2 +4b3
1901
+ 2
1902
+
1903
+ ,
1904
+ f4
1905
+ =
1906
+ 324b4
1907
+ 1.
1908
+ (91)
1909
+ In terms of the coefficients g(k)(z,τ) of the Kronecker function we have
1910
+ f2
1911
+ =
1912
+ 1
1913
+ 2π2
1914
+
1915
+ 3g(2)(1
1916
+ 2,τ)−g(2)(1
1917
+ 3,τ)+g(2)(1
1918
+ 6,τ)
1919
+
1920
+ ,
1921
+ f3
1922
+ =
1923
+ 1
1924
+ 4π3
1925
+
1926
+ 15g(3)(1
1927
+ 3,τ)−12g(3)(1
1928
+ 6,τ)
1929
+
1930
+ ,
1931
+ f4
1932
+ =
1933
+ 1
1934
+ 4π4
1935
+
1936
+ −18g(4)(0,τ)−27g(4)(1
1937
+ 3,τ)
1938
+
1939
+ .
1940
+ (92)
1941
+ The q-expansions are
1942
+ f2
1943
+ =
1944
+ −1
1945
+ 2 −8q−4q2 −44q3 +4q4 −48q5 −40q6 +O
1946
+
1947
+ q7�
1948
+ ,
1949
+ f3
1950
+ =
1951
+ −3
1952
+
1953
+ 3
1954
+
1955
+ q−5q2 +9q3 −11q4 +24q5 −45q6�
1956
+ +O
1957
+
1958
+ q7�
1959
+ ,
1960
+ f4
1961
+ =
1962
+ 1
1963
+ 4 +6q+54q2 +222q3 +438q4 +756q5 +1998q6 +O
1964
+
1965
+ q7�
1966
+ .
1967
+ (93)
1968
+ In addition we have
1969
+ ψ1
1970
+ π
1971
+ =
1972
+ 2
1973
+
1974
+ 3(b1 +b2)
1975
+ =
1976
+ 2
1977
+ 3
1978
+
1979
+ 3
1980
+
1981
+ 1+3q+3q2 +3q3 +3q4 +3q6�
1982
+ +O
1983
+
1984
+ q7�
1985
+ .
1986
+ (94)
1987
+ 20
1988
+
1989
+ We define the Eisenstein series e2 by
1990
+ e2 (τ)
1991
+ =
1992
+ 1
1993
+ 2(2πi)2
1994
+
1995
+
1996
+ (n1,n2)∈Z2\(0,0)
1997
+ 1
1998
+ (n1 +n2τ)2.
1999
+ (95)
2000
+ The prime at the summation sign denotes the Eisenstein summation prescription defined by
2001
+
2002
+
2003
+ (n1,n2)∈Z2
2004
+ f (z+n1 +n2τ)
2005
+ =
2006
+ lim
2007
+ N2→∞
2008
+ N2
2009
+
2010
+ n2=−N2
2011
+
2012
+ lim
2013
+ N1→∞
2014
+ N1
2015
+
2016
+ n1=−N1
2017
+ f (z+n1 +n2τ)
2018
+
2019
+ .
2020
+ (96)
2021
+ The q-expansion of e2 starts with
2022
+ e2 (τ)
2023
+ =
2024
+ − 1
2025
+ 24 +q+3q2 +4q3 +7q4 +6q5 +12q6 +O
2026
+
2027
+ q7�
2028
+ .
2029
+ (97)
2030
+ The Eisenstein series e2 is a quasi-modular form.
2031
+ B
2032
+ Boundary values
2033
+ In this appendix we give the boundary values Bk. These are easily obtained from [10, 28]. We
2034
+ have
2035
+
2036
+
2037
+ k=0
2038
+ εkBk
2039
+ =
2040
+ 3
2041
+ 43−ε
2042
+
2043
+ h− 2πε
2044
+ 3
2045
+ Γ(1+2ε)
2046
+ Γ(1+ε)2
2047
+
2048
+ ,
2049
+ (98)
2050
+ where
2051
+ h = 1
2052
+ i
2053
+
2054
+ (−r3)−ε
2055
+ 2F1 (−2ε,−ε;1−ε;r3)−
2056
+
2057
+ −r−1
2058
+ 3
2059
+ �−ε
2060
+ 2F1
2061
+
2062
+ −2ε,−ε;1−ε;r−1
2063
+ 3
2064
+ ��
2065
+ (99)
2066
+ and r3 = exp(2πi/3). The hypergeometric function can be expanded systematically in ε with the
2067
+ methods of [29–32]. The first few terms are given by
2068
+ 2F1 (−2ε,−ε;1−ε;x) = 1+2ε2Li2 (x)+ε3 [2Li3(x)−4Li21 (x,1)]
2069
+ +ε4[2Li4 (x)−4Li31 (x,1)+8Li211 (x,1,1)]+O
2070
+
2071
+ ε5�
2072
+ .
2073
+ (100)
2074
+ The first few boundary values are given by
2075
+ B0
2076
+ =
2077
+ 0,
2078
+ B1
2079
+ =
2080
+ 0,
2081
+ B2
2082
+ =
2083
+ 3
2084
+ 2i
2085
+
2086
+ Li2 (r3)−Li2
2087
+
2088
+ r−1
2089
+ 3
2090
+ ��
2091
+ ,
2092
+ B3
2093
+ =
2094
+ 3
2095
+ 2i
2096
+
2097
+ −2Li21 (r3,1)−Li3(r3)+2Li21
2098
+
2099
+ r−1
2100
+ 3 ,1
2101
+
2102
+ +Li3
2103
+
2104
+ r−1
2105
+ 3
2106
+ ��
2107
+ 21
2108
+
2109
+ −ln(3)B2,
2110
+ B4
2111
+ =
2112
+ 3
2113
+ 2i
2114
+
2115
+ 4Li211 (r3,1,1)−2Li31 (r3,1)+Li4 (r3)−4Li211
2116
+
2117
+ r−1
2118
+ 3 ,1,1
2119
+
2120
+ +2Li31
2121
+
2122
+ r−1
2123
+ 3 ,1
2124
+
2125
+ −Li4
2126
+
2127
+ r−1
2128
+ 3
2129
+ ��
2130
+ −ln(3)B3 − 1
2131
+ 2 ln2(3)B2 + 1
2132
+ 3ζ2B2.
2133
+ (101)
2134
+ These can be reduced to polylogarithms of depth 1 as follows [33,34]:
2135
+ B2
2136
+ =
2137
+ 3 Im Li2 (r3),
2138
+ B3
2139
+ =
2140
+ 24
2141
+ 5 Im Li3
2142
+ � i√
2143
+ 3
2144
+
2145
+ − 17
2146
+ 90π3 − 1
2147
+ 10π(ln(3))2 ,
2148
+ B4
2149
+ =
2150
+ −63
2151
+ 10Im Li4 (r3)+ 48
2152
+ 5 Im Li4
2153
+ � i√
2154
+ 3
2155
+
2156
+ + 17
2157
+ 90π3 ln(3)+ 1
2158
+ 30π(ln(3))3.
2159
+ (102)
2160
+ References
2161
+ [1] J. M. Henn, Phys. Rev. Lett. 110, 251601 (2013), arXiv:1304.1806.
2162
+ [2] F. Cachazo, (2008), arXiv:0803.1988.
2163
+ [3] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, and J. Trnka, JHEP 06, 125 (2012), arXiv:1012.6032.
2164
+ [4] N. Arkani-Hamed, Y. Bai, and T. Lam, JHEP 11, 039 (2017), arXiv:1703.04541.
2165
+ [5] A. Primo and L. Tancredi, Nucl. Phys. B916, 94 (2017), arXiv:1610.08397.
2166
+ [6] A. Primo and L. Tancredi, Nucl. Phys. B921, 316 (2017), arXiv:1704.05465.
2167
+ [7] J. L. Bourjaily, E. Herrmann, and J. Trnka, JHEP 06, 059 (2017), arXiv:1704.05460.
2168
+ [8] J. L. Bourjaily, N. Kalyanapuram, C. Langer, and K. Patatoukos,
2169
+ Phys. Rev. D 104, 125009 (2021),
2170
+ arXiv:2102.02210.
2171
+ [9] H. Frellesvig, JHEP 03, 079 (2022), arXiv:2110.07968.
2172
+ [10] L. Adams and S. Weinzierl, Commun. Num. Theor. Phys. 12, 193 (2018), arXiv:1704.08895.
2173
+ [11] L. Adams and S. Weinzierl, Phys. Lett. B781, 270 (2018), arXiv:1802.05020.
2174
+ [12] C. Bogner, S. Müller-Stach, and S. Weinzierl, Nucl. Phys. B 954, 114991 (2020), arXiv:1907.01251.
2175
+ [13] H. Müller and S. Weinzierl, JHEP 07, 101 (2022), arXiv:2205.04818.
2176
+ [14] S. Pögel, X. Wang, and S. Weinzierl, JHEP 09, 062 (2022), arXiv:2207.12893.
2177
+ [15] S. Pögel, X. Wang, and S. Weinzierl, (2022), arXiv:2211.04292.
2178
+ [16] S. Pögel, X. Wang, and S. Weinzierl, (2022), arXiv:2212.08908.
2179
+ [17] C. Duhr, A. Klemm, C. Nega, and L. Tancredi, (2022), arXiv:2212.09550.
2180
+ [18] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, JHEP 01, 023 (2019), arXiv:1809.10698.
2181
+ [19] J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, JHEP 05, 093 (2018), arXiv:1712.07089.
2182
+ [20] I. Hönemann, K. Tempest, and S. Weinzierl, Phys. Rev. D98, 113008 (2018), arXiv:1811.09308.
2183
+ [21] S. Weinzierl, Nucl. Phys. B 964, 115309 (2021), arXiv:2011.07311.
2184
+ [22] S. Weinzierl, Feynman Integrals (Springer, 2022), arXiv:2201.03593.
2185
+ 22
2186
+
2187
+ [23] H. Frellesvig and C. G. Papadopoulos, JHEP 04, 083 (2017), arXiv:1701.07356.
2188
+ [24] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, JHEP 08, 014 (2018), arXiv:1803.10256.
2189
+ [25] F. Brown, (2014), arXiv:1407.5167.
2190
+ [26] M. Walden and S. Weinzierl, Comput. Phys. Commun. 265, 108020 (2021), arXiv:2010.05271.
2191
+ [27] T. Miyake, Modular Forms (Springer, 1989).
2192
+ [28] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 57, 032304 (2016), arXiv:1512.05630.
2193
+ [29] S. Moch, P. Uwer, and S. Weinzierl, J. Math. Phys. 43, 3363 (2002), hep-ph/0110083.
2194
+ [30] S. Weinzierl, Comput. Phys. Commun. 145, 357 (2002), math-ph/0201011.
2195
+ [31] S. Moch and P. Uwer, Comput. Phys. Commun. 174, 759 (2006), math-ph/0508008.
2196
+ [32] T. Huber and D. Maitre, Comput. Phys. Commun. 175, 122 (2006), hep-ph/0507094.
2197
+ [33] H. Frellesvig, D. Tommasini, and C. Wever, JHEP 03, 189 (2016), arXiv:1601.02649.
2198
+ [34] H. Frellesvig, K. Kudashkin, and C. Wever, JHEP 05, 038 (2020), arXiv:2002.07776.
2199
+ 23
2200
+
VdE0T4oBgHgl3EQfVgAw/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
X9FRT4oBgHgl3EQfODd9/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86ac101c34a2df9fe7e78b2387bf21be550e529a2375ff8846cd0c96b4025ac5
3
+ size 3145773
XtAyT4oBgHgl3EQfWfc6/content/tmp_files/2301.00163v1.pdf.txt ADDED
@@ -0,0 +1,555 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Survey about Acquisition System Design for Myoelectric
2
+ Prosthesis
3
+ Dina Reda Eldamak
4
+ December 2022
5
+ 1
6
+ Introduction
7
+ According to the World Health Organization (WHO), 30 million people are in need of prosthetic
8
+ and orthotic devices [1]. Some people are born with this limb loss, while others lose limbs due to
9
+ diseases such as Cancer, diabetes, and work accidents. Additionally, limb amputation is among
10
+ the most severe and heavily reported injuries among veterans during war [2, 3]. Example of
11
+ female with hand amputation is shown in Figure 1.
12
+ Figure 1: Female with Prosthetic limb [4]
13
+ The medical applications of integrated circuit technology have recently made significant ad-
14
+ vances, thus improving human quality of life. Moreover, the use of microelectronics integration
15
+ 1
16
+ arXiv:2301.00163v1 [eess.SP] 31 Dec 2022
17
+
18
+ dominates a lot of medical applications, especially portable and wearable battery-operated de-
19
+ vices. Bio-signals mostly arise from natural physiological processes, such as cardiac potentials
20
+ (ECG -electro-cardiogram), potentials of the ocular tissue (EOG - electro-oculogram), potentials
21
+ of the muscular tissues (electro-myogram -EMG), brain potential (electro-encephalogram -EEG),
22
+ and respiratory signals , etc. Electro-myogram - EMG is an important factor for muscle disease
23
+ diagnosis. Furthermore, it’s the key factor in connecting any amputee to a prosthetic limb. This
24
+ can be done through extracting the EMG signal from the body using a readout electronics that
25
+ can detect the muscles electrical activity. Consequently, the extracted signal is processed and
26
+ used to control the prosthetic limb. Thus, the objective of this report is to provide the reader
27
+ with the basic understanding of integrated solutions for controlling prosthetic limbs either arms
28
+ or legs.
29
+ The top level block diagram of a smart EMG acquisition system is shown in Fig. 2. The
30
+ system includes a self-powered readout portable acquisition device for measuring the patient’s
31
+ EMG signal in order to send it to a controller that can be used to emulate the right action
32
+ to the prosthetic limb similar to the same action in a normal person. It should be noted that
33
+ miniaturized EMG acquisition system idea, which continuously monitor muscles activity, can be
34
+ extended to different applications such as physical rehabilitation and prosthesis.
35
+ Figure 2: Block diagram of a general smart sEMG recorder [5]
36
+ 2
37
+
38
+ Tissue Interface
39
+ ProcessingUnit
40
+ Sensor Interface2
41
+ System Architecture
42
+ An electronic system can control a prosethetic device by monitoring the EMG signals of the arm,
43
+ and use those signals to control the prothetic arm. Moreover, the devices can be battery-free by
44
+ being powered solely using energy harvesting from the ambient.
45
+ Since these prosthetic devices requires precise fitting to the residual limb, pressure and tem-
46
+ perature sensor at the skin-prosthetic interface are added to the system. Pressure sensors are
47
+ needed for monitoring the prosthetic limb to avoid the development of regions of high pressure
48
+ as the limb moves during walking or grasping objects. Temperature sensor are necessary as high
49
+ temperature can accelerate tissue damage [6]. The signals from the sensor at the skin-prosthetic
50
+ can be transmitted to the outer surface of the prosthetic socket using Near Field Communication
51
+ (NFC) or to a smart phone using Bluetooth Low Energy (BLE) as shown in Figure 3.
52
+ Figure 3: Illustration of sensors mounted at the skin-prosthetic interface transmitting data to
53
+ the device at the outer surface of the prosthetic leg using NFC and to smart phone using BLE
54
+ [6].
55
+ 3
56
+ Block Diagram
57
+ Three major research directions are available when designing an EMG acquisition system. The
58
+ first is to acquire the signal from the surrounding noisy environment using a sensor interface
59
+ 3
60
+
61
+ Residual
62
+ limb
63
+ NFC/BLE
64
+ modules
65
+ Multimodal
66
+ battery-free
67
+ sensors
68
+ Prosthetic leg
69
+ Prosthetic
70
+ Portable
71
+ socket
72
+ NFC/BLE
73
+ electronicdevice
74
+ modulesFigure 4: Block diagram of the proposed smart sEMG recorder including sensors, AFE, and RF
75
+ integrated system [5]
76
+ circuit that’s designed in CMOS technology. The second involves reducing the form factor and
77
+ power consumption of the acquisition system. The third is the signal conversion to the digital
78
+ world and the interface with the digital controller. At this point, the extracted EMG signal
79
+ is in a digital form and can be processed through FPGA or any other processor to control a
80
+ Pprosthetic limb.
81
+ A typical block diagram of the proposed EMG acquisition system is shown in Fig.
82
+ 4.
83
+ The system consists of an EMG sensor, analog front end (AFE), and radio frequency (RF)
84
+ transmission unit. The AFE is typically composed of an analog amplification, filtration, analog
85
+ to digital converter (ADC), and controller to process the digital signal and send it to a prosthetic
86
+ limb. The acquisition system design can be integrated on a single chip, then the digital data is
87
+ fed to FPGA or a controller.
88
+ In addition, because the integrated solution takes a considerable time during design, fabrica-
89
+ tion, and testing phases, a discrete solution in parallel with the integrated one can be used as a
90
+ proof of concept to validate the proposed methodology.
91
+ Figure 5 shows a detailed system block diagram of the proposed smart sEMG acquisition
92
+ system. An analog multiplexer is inserted to choose between different EMG electrodes in the
93
+ smart sEMG recorder shown in the figure. The design of each of the building blocks involves
94
+ 4
95
+
96
+ AFE+RF
97
+ NSPU
98
+ FlexBandFigure 5: Detailed block diagram of the proposed smart sEMG acquisition system [5]
99
+ several design challenges requiring some research. The following section includes a list of major
100
+ research directions that can be pursued.
101
+ 4
102
+ Circuit Implementation
103
+ In the following subsections, the basic system building blocks are introduced. First, the EMG
104
+ sensor specifications are explored.
105
+ Second, the low noise amplifier LNA design is presented.
106
+ Third, the filter design and bandwidth are provided. Fourth, the signal conversion from analog
107
+ to digital is presented through an ADC. Last, digital signal processing through FPGA is explored.
108
+ 4.1
109
+ Sensor Specifications
110
+ EMG sensor placement plays an important role in signal acquisition. According to its orientation
111
+ and position, the EMG signal strength varies significantly. This effect is shown in Fig 6. As
112
+ seen, by placing the sensor in the middle of muscle fiber, the maximum signal strength can be
113
+ easily obtained. Otherwise, the signal degrades significantly when placing the sensor far away
114
+ from the middle.
115
+ EMG sensor can be represented in different forms. It can be in either needle that is inserted
116
+ into the muscle or surface electrode that picks the signal from the skin. An example of surface
117
+ 5
118
+
119
+ Smart sEMG Recorder
120
+ FPGA
121
+ 16-Channel Recorder
122
+ GBDT based NSPU
123
+ Flexible
124
+ 16x
125
+ GBDT Core
126
+ Feature
127
+ Band
128
+ LNA
129
+ Extractors
130
+ 00
131
+ MUX
132
+ PGA
133
+ ADC
134
+ 16:1
135
+ LNA
136
+ Pre-
137
+ Processing
138
+ Result
139
+ Model
140
+ Digital Logic
141
+ Data Ready| CLK_ADC
142
+ Generator
143
+ Loader
144
+ nRF52
145
+ Ping Pong Buffer
146
+ Recorder
147
+ TF Card
148
+ BLE
149
+ CIC Filter
150
+ Interface
151
+ Buffer A
152
+ Buffer B
153
+ Interface i
154
+ X
155
+ :=
156
+ TF Card
157
+ Mobile Devices
158
+ Possible Applications
159
+ Offline trainingFigure 6: Effect of EMG sensor position [7]
160
+ EMG sensor specifications that have to be met through out the design are as follow shown in
161
+ Fig. 7.
162
+ 4.2
163
+ Low Noise Amplifier Design
164
+ It’s the first and the major block in the EMG chain that comes after the sensor. The measurement
165
+ sensitivity and accuracy is determined in this stage. This complicates the design and requires a
166
+ large amount of adaptability to accommodate the input signal. The previous stage, which is the
167
+ EMG sensor, adds large parasitic capacitance at the input of this stage, and thus reduces gain,
168
+ bandwidth, noise performance and the sensitivity of the amplifier.
169
+ Sources of noise and interference like flicker noise, electrodes offset, and 60 Hz power line
170
+ noise can affect the whole acquisition procedure. The bandwidth of the EMG signal is up to
171
+ 6
172
+
173
+ Raw EMG output
174
+ Innervation Zone
175
+ Correct Placement
176
+ Midline of the muscle belly
177
+ between an innervation zone
178
+ and a myotendon junction
179
+ Midline Offset
180
+ Myotendon JunctionFigure 7: sensor specifications [8]
181
+ 500 Hz with amplitude that ranges from 0.1 to 5 mV and the high-frequency noise can be easily
182
+ removed using a low pass filter. However, low-frequency noise and DC offset fall within the
183
+ EMG bandwidth and hence require different rejection techniques. Chopping technique is one
184
+ of the best candidates to modulate the offset and flicker noise to a higher spectrum which in
185
+ turn enable the acquisition system to effectively suppress the interference from ambient and 1/f
186
+ noise. Different architectures with different requirements in terms of input signal levels, BW and
187
+ amplitudes are proposed in literature [9, 10]. Figure 8 shows the block diagram of implemented
188
+ analog front-end for acquiring of EEG, ECG, and EMG signals [9]. The shown diagram consists
189
+ of a chopper instrumentation amplifer in addition to capacitive coupling, filter stage to remove
190
+ the chopping spikes, a digitally controlled variable gain amplifier.
191
+ 4.3
192
+ Filter Design
193
+ A Gm-C filter cab be used in the design. A standard architecture is shown in Figure 9. Offset
194
+ from the electrodes can be canceled using current-mode DAC [11]. Power Consumption of this
195
+ 7
196
+
197
+ DataLITE Wireless EMG Amplifier
198
+ Wired EMG Amplifier
199
+ Product Ref
200
+ LE230FW
201
+ SX230FW
202
+ 42 × 24 × 14 mm
203
+ 38 x 20
204
+ Dimensions
205
+ Two 4 mm snap connectors on 100 mm wires
206
+ Two 4 mm snap connectors on 100 mm wires
207
+ Mass
208
+ 17 g (excluding cable and plug)
209
+ 8g (excluding cable and plug)
210
+ Bandwidth
211
+ 10 - 250,470, 950, 5000Hz
212
+ 20 - 460Hz
213
+ 5Hz - 480Hz
214
+ Additional Bandwidths
215
+ N/A
216
+ 5Hz - 1000Hz
217
+ Contact Diameter
218
+ Dependant on electrode size
219
+ Contact Center Spacing
220
+ Variable
221
+ Electrodes
222
+ Disposable
223
+ CMRR @ 60 Hz (dB)
224
+ > 96 dB (typically 110 dB)
225
+ Full Scale
226
+ +/- 6 mV Peak to Peak
227
+ +/- 3 mV Peak to Peak
228
+ Gain
229
+ +/- 60 microvolts to +/- 6 millivolts
230
+ Standard unit x1000 (100 als0 available)
231
+ Input Impedance
232
+ >100 Mohms
233
+ Accuracy
234
+ +/- 1.0%
235
+ +/- 2% full scale
236
+ Noise
237
+ <5μv
238
+ Supply Voltage
239
+ N/A
240
+ +3.50 to +5.5 Vdc
241
+ Battery Life
242
+ Up to 8 hours
243
+ N/A
244
+ Battery Type
245
+ Rechargeable Li-lon Polymer
246
+ N/A
247
+ Wireless Transmission
248
+ Tolerant for 100 mS
249
+ N/A
250
+ Data Loss
251
+ 1.25m cable
252
+ Range from Interface
253
+ Wireless range up to 30m
254
+ (custom lengths available on request)
255
+ Compatible Interfaces
256
+ DataLITE PIONEER, ADVANCE, EXPLORE
257
+ DataLOG, DataLINK, Amplifier or 3rd partyFigure 8: Architecture of the bio-potential readout front-end for the acquisition of EEG, ECG,
258
+ and EMG signals [9]
259
+ topology can also be reduced by low-voltage supply operation [10].
260
+ Figure 9: Transistor level implementation of Gm-C filter. DDA: Differential Difference Amplifier
261
+ [11].
262
+ 4.4
263
+ ADC Design
264
+ Non-uniform sampling can minimize the power consumption of ADC while digitizing activity-
265
+ dependent biological signals. For example, a continous-time (CT) charge-based ADC that ac-
266
+ 8
267
+
268
+ DC Level
269
+ Select BW Select Gain
270
+ Programmable
271
+ 1pF
272
+ Gain Stage
273
+ BW Select
274
+ Cext2
275
+ OTA2
276
+ ■out
277
+ Buffer
278
+ vin+
279
+ IA
280
+ C12
281
+ OTA
282
+ vin-
283
+ BW Select
284
+ Cs
285
+ C12= 20pF
286
+ AC
287
+ 23
288
+ 21
289
+ Coupled
290
+ Chopping
291
+ C22
292
+ Chopped
293
+ Spike
294
+ C11
295
+ IA
296
+ Filter
297
+ BIOPOTENTIAL
298
+ Bias Current
299
+ I=
300
+ clk
301
+ CLK Generator
302
+ ASIC
303
+ GeneratorVDDA
304
+ Velectrode
305
+ VBIAS
306
+ on
307
+ Vt
308
+ IIN
309
+ TIN
310
+ VBODY
311
+ rst
312
+ Voutp
313
+ Cint
314
+ H
315
+ Vref
316
+ TcN
317
+ VBN
318
+ TcN
319
+ IFBP
320
+ IFBN
321
+ DDA
322
+ TL
323
+ LT
324
+ Hquires samples when the input crosses a specific threshold is shown in Figure 10. The ADC
325
+ works by storing the analog equivalent of the last digitized input as a voltage across the across
326
+ the capacitor 𝐶𝑏. Once the input signal crosses this voltage, a pulse with length 𝑇𝑃 is generated
327
+ to charge or discharge the capacitor 𝐶𝑏 by 𝑉𝐿𝑆𝐵 using one of the current sources connected to
328
+ the supply and ground [12]. Non-uniform sampling adapts to the instantaneous bandwidth of
329
+ the signal, consequently the dynamic power consumption scales with the activity of the input
330
+ signal. The FOM of the CT charge-based ADC can be improved by reducing the power supply
331
+ further [10].
332
+ Figure 10: Top level architecture of Continous-time (CT) charge based ADC with non-uniform
333
+ sampling rate [12].
334
+ 4.5
335
+ FPGA Processing
336
+ Machine learning algorithms such as Support Vector Machine (SVM) have allowed for on-chip
337
+ feature extraction and classification of biomedical signals [13]. Machine learning can also be
338
+ deployed in the domain of prosthetic devices for precise control.
339
+ Figure 11 depicts the con-
340
+ troller of prosthetic device which can be implemented using Field Programmable Gate Array
341
+ (FPGA). Figure 12 depicts the experimental setup for analyzing the data from high density
342
+ EMG acquisition system using Xilinix Zedboard [14].
343
+ 9
344
+
345
+ Biasing
346
+ Pulse
347
+ +OPulseUp
348
+ Generator
349
+ Comparator
350
+ Vin O
351
+ UP
352
+ Vb
353
+ DOWN
354
+ OUT
355
+ +00UT<7:0>
356
+ Cb
357
+ RESET
358
+ ORESET
359
+ Pulse
360
+ +OPulseDown
361
+ Generator
362
+ Conf guration
363
+ Register
364
+ aLkT
365
+ OCLK
366
+ DO
367
+ SI
368
+ ISO
369
+ VFigure 11: Top level architecture of controller of prosthetic hand including feature extraction
370
+ and classification [14].
371
+ Figure 12: Experimental Setup of EMG acquisition and processing using Xilinix ZedBoard [14].
372
+ 4.6
373
+ Energy Harvesting
374
+ The electrical power harvested from the environment (specially, thermal energy) can power
375
+ the ultra-low-power EMG Sensor.
376
+ We have previously developed energy harvesting systems
377
+ from various sources and high-efficiency DC-DC converters [15, 16]. For example, the system
378
+ architecture of power management IC for solar energy harvesting applications , designed by the
379
+ author, and chip micrograph are shown in Figure 13.
380
+ 10
381
+
382
+ class
383
+ 192 HD EMG
384
+ decision
385
+ channels
386
+ Data
387
+ Feature
388
+ Classification
389
+ Acquisition
390
+ Extraction
391
+ Embedded Prosthesis Controller
392
+ prosthesis
393
+ movementI92 ch. HD EMG
394
+ ZedBoard for EMG
395
+ electrode array
396
+ signal processing
397
+ Michelangelo
398
+ HD EMG
399
+ PC for
400
+ hand prosthesis
401
+ DAQ
402
+ comm.Figure 13: System architecture of power management IC for solar energy harvesting applications,
403
+ designed by one of the team members, and chip micrograph [15]
404
+ 5
405
+ Conclusion
406
+ This paper provided a survey about EMG acquisition systems for prostehtics and orthotic de-
407
+ vices.
408
+ References
409
+ [1] Shirley Ryan AbilityLab. Facts about limb loss. [Online]. Available: https://www.sralab.
410
+ org/research/labs/bionic-medicine/news/facts-about-limb-loss
411
+ [2] UK
412
+ Ministry
413
+ of
414
+ Defence.
415
+ Uk
416
+ service
417
+ personnel
418
+ amputations:
419
+ fi-
420
+ nancial
421
+ year
422
+ 2019/2020.
423
+ [Online].
424
+ Available:
425
+ https://www.gov.uk/
426
+ government/statistics/uk-service-personnel-amputations-financial-year-20192020/
427
+ afghanistan-and-iraq-amputation-statistics-1-april-2015-to-31-march-2020
428
+ [3] L. G. Stansbury, S. J. Lalliss, J. G. Branstetter, M. R. Bagg, and J. B. Holcomb,
429
+ “Amputations in U.S. military personnel in the current conflicts in Afghanistan and Iraq,”
430
+ Journal of Orthopaedic Trauma, vol. 22, no. 1, pp. 43–46, 2008. [Online]. Available:
431
+ https://journals.lww.com/00005131-200801000-00009
432
+ [4] iStock
433
+ .
434
+ Image
435
+ of
436
+ a
437
+ female
438
+ with
439
+ a
440
+ prosthetic
441
+ limb.
442
+ [Online].
443
+ Available:
444
+ https:
445
+ //www.istockphoto.com/
446
+ [5] W. Song, Q. Han, Z. Lin, N. Yan, D. Luo, Y. Liao, M. Zhang, Z. Wang, X. Xie, A. Wang
447
+ 11
448
+
449
+ 3 mirr
450
+ VON
451
+ VLOAD
452
+ 2.2mm
453
+ Startup
454
+ VcBUF
455
+ smtehe
456
+ Switch Matrix
457
+ Gapetsi
458
+ S2
459
+ Switch
460
+ DXADE
461
+ Current
462
+ VBA
463
+ VINDN市
464
+ Matrix
465
+ Ref.
466
+ Startup
467
+ and
468
+ Drivers
469
+ Dnivers
470
+ Mp1
471
+ Configuration Block
472
+ Modell
473
+ MIPP
474
+ lectior
475
+ VIN
476
+ VLOAD
477
+ S
478
+ DA
479
+ Pulse Generation Block
480
+ Test Block
481
+ Φ1
482
+ Φ2
483
+ En
484
+ A
485
+ PTrig
486
+ Dvlee
487
+ VINDN
488
+ VBA
489
+ AE
490
+ Test Block
491
+ 险电
492
+ Voltase:
493
+ Curont
494
+ Boost2et al., “Design of a flexible wearable smart sEMG recorder integrated gradient boosting
495
+ decision tree based hand gesture recognition,” IEEE transactions on biomedical circuits
496
+ and systems, vol. 13, no. 6, pp. 1563–1574, 2019.
497
+ [6] J. W. Kwak, M. Han, Z. Xie, H. U. Chung, J. Y. Lee, R. Avila, J. Yohay, X. Chen,
498
+ C. Liang, M. Patel, I. Jung, J. Kim, M. Namkoong, K. Kwon, X. Guo, C. Ogle,
499
+ D. Grande, D. Ryu, D. H. Kim, S. Madhvapathy, C. Liu, D. S. Yang, Y. Park,
500
+ R. Caldwell, A. Banks, S. Xu, Y. Huang, S. Fatone, and J. A. Rogers, “Wireless sensors for
501
+ continuous, multimodal measurements at the skin interface with lower limb prostheses,”
502
+ Science Translational Medicine, vol. 12, no. 574, p. eabc4327, 2020. [Online]. Available:
503
+ https://www.science.org/doi/abs/10.1126/scitranslmed.abc4327
504
+ [7] MyoWare,
505
+ “3-lead
506
+ muscle
507
+ /
508
+ electromyography
509
+ sensor
510
+ for
511
+ microcontroller
512
+ applications.”
513
+ [Online].
514
+ Available:
515
+ https://www.mouser.com/datasheet/2/813/
516
+ MyowareUserManualAT-04-001-1223951.pdf
517
+ [8] B. Ltd, “Surface emg amplifier.” [Online]. Available:
518
+ https://www.biometricsltd.com/
519
+ surface-emg-sensor.htm#popupSpecAmplifier
520
+ [9] R. F. Yazicioglu, “A 60𝜇w 60 nV/
521
+
522
+ 𝐻𝑧 readout front-end for portablebiopotential acqui-
523
+ sition systems,” in IEEE International Solid-State Circuits Conference Digest of Technical
524
+ Papers, Feb. 2006, 2006.
525
+ [10] S. Orguc, H. S. Khurana, H.-S. Lee, and A. P. Chandrakasan, “0.3 v ultra-low power sensor
526
+ interface for emg,” in ESSCIRC 2017-43rd IEEE European Solid State Circuits Conference.
527
+ IEEE, 2017, pp. 219–222.
528
+ [11] D. Wendler, D. D. Dorigo, M. Amayreh, A. Bleitner, M. Marx, and Y. Manoli, “A
529
+ 0.00378mm2 scalable neural recording front-end for fully immersible neural probes based on
530
+ a two-step incremental delta-sigma converter with extended counting and hardware reuse,”
531
+ in 2021 IEEE International Solid- State Circuits Conference (ISSCC), vol. 64, 2021, pp.
532
+ 398–400.
533
+ [12] M. Maslik, Y. Liu, T. S. Lande, and T. G. Constandinou, “Continuous-time acquisition of
534
+ biosignals using a charge-based ADC topology,” IEEE Transactions on Biomedical Circuits
535
+ and Systems, vol. 12, no. 3, pp. 471–482, 2018.
536
+ 12
537
+
538
+ [13] J. Yoo, L. Yan, D. El-Damak, M. A. B. Altaf, A. H. Shoeb, and A. P. Chandrakasan,
539
+ “An 8-channel scalable EEG acquisition soc with patient-specific seizure classification and
540
+ recording processor,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 214–228,
541
+ 2013.
542
+ [14] A. Boschmann, G. Thombansen, L. Witschen, A. Wiens, and M. Platzner, “A zynq-based
543
+ dynamically reconfigurable high density myoelectric prosthesis controller,” in Design,
544
+ Automation & Test in Europe Conference & Exhibition (DATE), 2017.
545
+ IEEE, 2017, pp.
546
+ 1002–1007. [Online]. Available: http://ieeexplore.ieee.org/document/7927137/
547
+ [15] D. El-Damak and A. P. Chandrakasan, “A 10 nw-1 𝜇w power management ic with integrated
548
+ battery management and self-startup for energy harvesting applications,” IEEE Journal of
549
+ Solid-State Circuits, vol. 51, no. 4, pp. 943–954, 2016.
550
+ [16] P. Garcha, D. El-Damak, N. Desai, J. Troncoso, E. Mazotti, J. Mullenix, S. Tang, D. Tromb-
551
+ ley, D. Buss, J. Lang, and A. Chandrakasan, “A 25 mV-startup cold start system with on-
552
+ chip magnetics for thermal energy harvesting,” in ESSCIRC 2017 - 43rd IEEE European
553
+ Solid State Circuits Conference, 2017, pp. 127–130.
554
+ 13
555
+
XtAyT4oBgHgl3EQfWfc6/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf,len=394
2
+ page_content='A Survey about Acquisition System Design for Myoelectric Prosthesis Dina Reda Eldamak December 2022 1 Introduction According to the World Health Organization (WHO), 30 million people are in need of prosthetic and orthotic devices [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
3
+ page_content=' Some people are born with this limb loss, while others lose limbs due to diseases such as Cancer, diabetes, and work accidents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
4
+ page_content=' Additionally, limb amputation is among the most severe and heavily reported injuries among veterans during war [2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
5
+ page_content=' Example of female with hand amputation is shown in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
6
+ page_content=' Figure 1: Female with Prosthetic limb [4] The medical applications of integrated circuit technology have recently made significant ad- vances, thus improving human quality of life.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
7
+ page_content=' Moreover, the use of microelectronics integration 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
8
+ page_content='00163v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
9
+ page_content='SP] 31 Dec 2022 dominates a lot of medical applications, especially portable and wearable battery-operated de- vices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
10
+ page_content=' Bio-signals mostly arise from natural physiological processes, such as cardiac potentials (ECG -electro-cardiogram), potentials of the ocular tissue (EOG - electro-oculogram), potentials of the muscular tissues (electro-myogram -EMG), brain potential (electro-encephalogram -EEG), and respiratory signals , etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
11
+ page_content=' Electro-myogram - EMG is an important factor for muscle disease diagnosis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
12
+ page_content=' Furthermore, it’s the key factor in connecting any amputee to a prosthetic limb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
13
+ page_content=' This can be done through extracting the EMG signal from the body using a readout electronics that can detect the muscles electrical activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
14
+ page_content=' Consequently, the extracted signal is processed and used to control the prosthetic limb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
15
+ page_content=' Thus, the objective of this report is to provide the reader with the basic understanding of integrated solutions for controlling prosthetic limbs either arms or legs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
16
+ page_content=' The top level block diagram of a smart EMG acquisition system is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
17
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
18
+ page_content=' The system includes a self-powered readout portable acquisition device for measuring the patient’s EMG signal in order to send it to a controller that can be used to emulate the right action to the prosthetic limb similar to the same action in a normal person.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
19
+ page_content=' It should be noted that miniaturized EMG acquisition system idea, which continuously monitor muscles activity, can be extended to different applications such as physical rehabilitation and prosthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
20
+ page_content=' Figure 2: Block diagram of a general smart sEMG recorder [5] 2 Tissue Interface ProcessingUnit Sensor Interface2 System Architecture An electronic system can control a prosethetic device by monitoring the EMG signals of the arm, and use those signals to control the prothetic arm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
21
+ page_content=' Moreover, the devices can be battery-free by being powered solely using energy harvesting from the ambient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
22
+ page_content=' Since these prosthetic devices requires precise fitting to the residual limb, pressure and tem- perature sensor at the skin-prosthetic interface are added to the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
23
+ page_content=' Pressure sensors are needed for monitoring the prosthetic limb to avoid the development of regions of high pressure as the limb moves during walking or grasping objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
24
+ page_content=' Temperature sensor are necessary as high temperature can accelerate tissue damage [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
25
+ page_content=' The signals from the sensor at the skin-prosthetic can be transmitted to the outer surface of the prosthetic socket using Near Field Communication (NFC) or to a smart phone using Bluetooth Low Energy (BLE) as shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
26
+ page_content=' Figure 3: Illustration of sensors mounted at the skin-prosthetic interface transmitting data to the device at the outer surface of the prosthetic leg using NFC and to smart phone using BLE [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
27
+ page_content=' 3 Block Diagram Three major research directions are available when designing an EMG acquisition system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
28
+ page_content=' The first is to acquire the signal from the surrounding noisy environment using a sensor interface 3 Residual limb NFC/BLE modules Multimodal battery-free sensors Prosthetic leg Prosthetic Portable socket NFC/BLE electronicdevice modulesFigure 4: Block diagram of the proposed smart sEMG recorder including sensors, AFE, and RF integrated system [5] circuit that’s designed in CMOS technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
29
+ page_content=' The second involves reducing the form factor and power consumption of the acquisition system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
30
+ page_content=' The third is the signal conversion to the digital world and the interface with the digital controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
31
+ page_content=' At this point, the extracted EMG signal is in a digital form and can be processed through FPGA or any other processor to control a Pprosthetic limb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
32
+ page_content=' A typical block diagram of the proposed EMG acquisition system is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
33
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
34
+ page_content=' The system consists of an EMG sensor, analog front end (AFE), and radio frequency (RF) transmission unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
35
+ page_content=' The AFE is typically composed of an analog amplification, filtration, analog to digital converter (ADC), and controller to process the digital signal and send it to a prosthetic limb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
36
+ page_content=' The acquisition system design can be integrated on a single chip, then the digital data is fed to FPGA or a controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
37
+ page_content=' In addition, because the integrated solution takes a considerable time during design, fabrica- tion, and testing phases, a discrete solution in parallel with the integrated one can be used as a proof of concept to validate the proposed methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
38
+ page_content=' Figure 5 shows a detailed system block diagram of the proposed smart sEMG acquisition system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
39
+ page_content=' An analog multiplexer is inserted to choose between different EMG electrodes in the smart sEMG recorder shown in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
40
+ page_content=' The design of each of the building blocks involves 4 AFE+RF NSPU FlexBandFigure 5: Detailed block diagram of the proposed smart sEMG acquisition system [5] several design challenges requiring some research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
41
+ page_content=' The following section includes a list of major research directions that can be pursued.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
42
+ page_content=' 4 Circuit Implementation In the following subsections, the basic system building blocks are introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
43
+ page_content=' First, the EMG sensor specifications are explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
44
+ page_content=' Second, the low noise amplifier LNA design is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
45
+ page_content=' Third, the filter design and bandwidth are provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
46
+ page_content=' Fourth, the signal conversion from analog to digital is presented through an ADC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
47
+ page_content=' Last, digital signal processing through FPGA is explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
48
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
49
+ page_content='1 Sensor Specifications EMG sensor placement plays an important role in signal acquisition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
50
+ page_content=' According to its orientation and position, the EMG signal strength varies significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
51
+ page_content=' This effect is shown in Fig 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
52
+ page_content=' As seen, by placing the sensor in the middle of muscle fiber, the maximum signal strength can be easily obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
53
+ page_content=' Otherwise, the signal degrades significantly when placing the sensor far away from the middle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
54
+ page_content=' EMG sensor can be represented in different forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
55
+ page_content=' It can be in either needle that is inserted into the muscle or surface electrode that picks the signal from the skin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
56
+ page_content=' An example of surface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
57
+ page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
58
+ page_content='Smart sEMG Recorder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
59
+ page_content='FPGA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
60
+ page_content='16-Channel Recorder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
61
+ page_content='GBDT based NSPU ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
62
+ page_content='Flexible ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
63
+ page_content='16x ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
64
+ page_content='GBDT Core ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
65
+ page_content='Feature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
66
+ page_content='Band ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
67
+ page_content='LNA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
68
+ page_content='Extractors ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
69
+ page_content='00 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
70
+ page_content='MUX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
71
+ page_content='PGA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
72
+ page_content='ADC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
73
+ page_content='16:1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
74
+ page_content='LNA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
75
+ page_content='Pre- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
76
+ page_content='Processing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
77
+ page_content='Result ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
78
+ page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
79
+ page_content='Digital Logic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
80
+ page_content='Data Ready| CLK_ADC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
81
+ page_content='Generator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
82
+ page_content='Loader ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
83
+ page_content='nRF52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
84
+ page_content='Ping Pong Buffer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
85
+ page_content='Recorder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
86
+ page_content='TF Card ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
87
+ page_content='BLE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
88
+ page_content='CIC Filter ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
89
+ page_content='Interface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
90
+ page_content='Buffer A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
91
+ page_content='Buffer B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
92
+ page_content='Interface i ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
93
+ page_content='X ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
94
+ page_content=':= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
95
+ page_content='TF Card ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
96
+ page_content='Mobile Devices ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
97
+ page_content='Possible Applications ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
98
+ page_content='Offline trainingFigure 6: Effect of EMG sensor position [7] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
99
+ page_content='EMG sensor specifications that have to be met through out the design are as follow shown in ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
100
+ page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
101
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
102
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
103
+ page_content='2 Low Noise Amplifier Design It’s the first and the major block in the EMG chain that comes after the sensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
104
+ page_content=' The measurement sensitivity and accuracy is determined in this stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
105
+ page_content=' This complicates the design and requires a large amount of adaptability to accommodate the input signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
106
+ page_content=' The previous stage, which is the EMG sensor, adds large parasitic capacitance at the input of this stage, and thus reduces gain, bandwidth, noise performance and the sensitivity of the amplifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
107
+ page_content=' Sources of noise and interference like flicker noise, electrodes offset, and 60 Hz power line noise can affect the whole acquisition procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
108
+ page_content=' The bandwidth of the EMG signal is up to 6 Raw EMG output Innervation Zone Correct Placement Midline of the muscle belly between an innervation zone and a myotendon junction Midline Offset Myotendon JunctionFigure 7: sensor specifications [8] 500 Hz with amplitude that ranges from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
109
+ page_content='1 to 5 mV and the high-frequency noise can be easily removed using a low pass filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
110
+ page_content=' However, low-frequency noise and DC offset fall within the EMG bandwidth and hence require different rejection techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
111
+ page_content=' Chopping technique is one of the best candidates to modulate the offset and flicker noise to a higher spectrum which in turn enable the acquisition system to effectively suppress the interference from ambient and 1/f noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
112
+ page_content=' Different architectures with different requirements in terms of input signal levels, BW and amplitudes are proposed in literature [9, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
113
+ page_content=' Figure 8 shows the block diagram of implemented analog front-end for acquiring of EEG, ECG, and EMG signals [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
114
+ page_content=' The shown diagram consists of a chopper instrumentation amplifer in addition to capacitive coupling, filter stage to remove the chopping spikes, a digitally controlled variable gain amplifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
115
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
116
+ page_content='3 Filter Design A Gm-C filter cab be used in the design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
117
+ page_content=' A standard architecture is shown in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
118
+ page_content=' Offset from the electrodes can be canceled using current-mode DAC [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
119
+ page_content=' Power Consumption of this 7 DataLITE Wireless EMG Amplifier Wired EMG Amplifier Product Ref LE230FW SX230FW 42 × 24 × 14 mm 38 x 20 Dimensions Two 4 mm snap connectors on 100 mm wires Two 4 mm snap connectors on 100 mm wires Mass 17 g (excluding cable and plug) 8g (excluding cable and plug) Bandwidth 10 - 250,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
120
+ page_content='470,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
121
+ page_content=' 950,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
122
+ page_content=' 5000Hz 20 - 460Hz 5Hz - 480Hz Additional Bandwidths N/A 5Hz - 1000Hz Contact Diameter Dependant on electrode size Contact Center Spacing Variable Electrodes Disposable CMRR @ 60 Hz (dB) > 96 dB (typically 110 dB) Full Scale +/- 6 mV Peak to Peak +/- 3 mV Peak to Peak Gain +/- 60 microvolts to +/- 6 millivolts Standard unit x1000 (100 als0 available) Input Impedance >100 Mohms Accuracy +/- 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
123
+ page_content='0% +/- 2% full scale Noise <5μv Supply Voltage N/A +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
124
+ page_content='50 to +5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
125
+ page_content='5 Vdc Battery Life Up to 8 hours N/A Battery Type Rechargeable Li-lon Polymer N/A Wireless Transmission Tolerant for 100 mS N/A Data Loss 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
126
+ page_content='25m cable Range from Interface Wireless range up to 30m (custom lengths available on request) Compatible Interfaces DataLITE PIONEER, ADVANCE, EXPLORE DataLOG, DataLINK, Amplifier or 3rd partyFigure 8: Architecture of the bio-potential readout front-end for the acquisition of EEG, ECG, and EMG signals [9] topology can also be reduced by low-voltage supply operation [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
127
+ page_content=' Figure 9: Transistor level implementation of Gm-C filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
128
+ page_content=' DDA: Differential Difference Amplifier [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
129
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
130
+ page_content='4 ADC Design Non-uniform sampling can minimize the power consumption of ADC while digitizing activity- dependent biological signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
131
+ page_content=' For example,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
132
+ page_content=' a continous-time (CT) charge-based ADC that ac- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
133
+ page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
134
+ page_content='DC Level ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
135
+ page_content='Select BW Select Gain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
136
+ page_content='Programmable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
137
+ page_content='1pF ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
138
+ page_content='Gain Stage ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
139
+ page_content='BW Select ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
140
+ page_content='Cext2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
141
+ page_content='OTA2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
142
+ page_content='■out ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
143
+ page_content='Buffer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
144
+ page_content='vin+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
145
+ page_content='IA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
146
+ page_content='C12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
147
+ page_content='OTA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
148
+ page_content='vin- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
149
+ page_content='BW Select ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
150
+ page_content='Cs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
151
+ page_content='C12= 20pF ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
152
+ page_content='AC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
153
+ page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
154
+ page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
155
+ page_content='Coupled ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
156
+ page_content='Chopping ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
157
+ page_content='C22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
158
+ page_content='Chopped ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
159
+ page_content='Spike ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
160
+ page_content='C11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
161
+ page_content='IA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
162
+ page_content='Filter ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
163
+ page_content='BIOPOTENTIAL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
164
+ page_content='Bias Current ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
165
+ page_content='I= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
166
+ page_content='clk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
167
+ page_content='CLK Generator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
168
+ page_content='ASIC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
169
+ page_content='GeneratorVDDA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
170
+ page_content='Velectrode ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
171
+ page_content='VBIAS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
172
+ page_content='on ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
173
+ page_content='Vt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
174
+ page_content='IIN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
175
+ page_content='TIN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
176
+ page_content='VBODY ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
177
+ page_content='rst ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
178
+ page_content='Voutp ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
179
+ page_content='Cint ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
180
+ page_content='H ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
181
+ page_content='Vref ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
182
+ page_content='TcN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
183
+ page_content='VBN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
184
+ page_content='TcN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
185
+ page_content='IFBP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
186
+ page_content='IFBN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
187
+ page_content='DDA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
188
+ page_content='TL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
189
+ page_content='LT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
190
+ page_content='Hquires samples when the input crosses a specific threshold is shown in Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
191
+ page_content=' The ADC works by storing the analog equivalent of the last digitized input as a voltage across the across the capacitor 𝐶𝑏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
192
+ page_content=' Once the input signal crosses this voltage, a pulse with length 𝑇𝑃 is generated to charge or discharge the capacitor 𝐶𝑏 by 𝑉𝐿𝑆𝐵 using one of the current sources connected to the supply and ground [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
193
+ page_content=' Non-uniform sampling adapts to the instantaneous bandwidth of the signal, consequently the dynamic power consumption scales with the activity of the input signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
194
+ page_content=' The FOM of the CT charge-based ADC can be improved by reducing the power supply further [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
195
+ page_content=' Figure 10: Top level architecture of Continous-time (CT) charge based ADC with non-uniform sampling rate [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
196
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
197
+ page_content='5 FPGA Processing Machine learning algorithms such as Support Vector Machine (SVM) have allowed for on-chip feature extraction and classification of biomedical signals [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
198
+ page_content=' Machine learning can also be deployed in the domain of prosthetic devices for precise control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
199
+ page_content=' Figure 11 depicts the con- troller of prosthetic device which can be implemented using Field Programmable Gate Array (FPGA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
200
+ page_content=' Figure 12 depicts the experimental setup for analyzing the data from high density EMG acquisition system using Xilinix Zedboard [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
201
+ page_content=' 9 Biasing Pulse +OPulseUp Generator Comparator Vin O UP Vb DOWN OUT +00UT<7:0> Cb RESET ORESET Pulse +OPulseDown Generator Conf guration Register aLkT OCLK DO SI ISO VFigure 11: Top level architecture of controller of prosthetic hand including feature extraction and classification [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
202
+ page_content=' Figure 12: Experimental Setup of EMG acquisition and processing using Xilinix ZedBoard [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
203
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
204
+ page_content='6 Energy Harvesting The electrical power harvested from the environment (specially, thermal energy) can power the ultra-low-power EMG Sensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
205
+ page_content=' We have previously developed energy harvesting systems from various sources and high-efficiency DC-DC converters [15, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
206
+ page_content=' For example, the system architecture of power management IC for solar energy harvesting applications , designed by the author, and chip micrograph are shown in Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
207
+ page_content=' 10 class 192 HD EMG decision channels Data Feature Classification Acquisition Extraction Embedded Prosthesis Controller prosthesis movementI92 ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
208
+ page_content=' HD EMG ZedBoard for EMG electrode array signal processing Michelangelo HD EMG PC for hand prosthesis DAQ comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
209
+ page_content='Figure 13: System architecture of power management IC for solar energy harvesting applications, designed by one of the team members, and chip micrograph [15] 5 Conclusion This paper provided a survey about EMG acquisition systems for prostehtics and orthotic de- vices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
210
+ page_content=' References [1] Shirley Ryan AbilityLab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
211
+ page_content=' Facts about limb loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
212
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
213
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
214
+ page_content='sralab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
215
+ page_content=' org/research/labs/bionic-medicine/news/facts-about-limb-loss [2] UK Ministry of Defence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
216
+ page_content=' Uk service personnel amputations: fi- nancial year 2019/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
217
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
218
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
219
+ page_content='gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
220
+ page_content='uk/ government/statistics/uk-service-personnel-amputations-financial-year-20192020/ afghanistan-and-iraq-amputation-statistics-1-april-2015-to-31-march-2020 [3] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
221
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
222
+ page_content=' Stansbury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
223
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
224
+ page_content=' Lalliss, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
225
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
226
+ page_content=' Branstetter, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
227
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
228
+ page_content=' Bagg, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
229
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
230
+ page_content=' Holcomb, “Amputations in U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
231
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
232
+ page_content=' military personnel in the current conflicts in Afghanistan and Iraq,” Journal of Orthopaedic Trauma, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
233
+ page_content=' 22, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
234
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
235
+ page_content=' 43–46, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
236
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
237
+ page_content=' Available: https://journals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
238
+ page_content='lww.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
239
+ page_content='com/00005131-200801000-00009 [4] iStock .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
240
+ page_content=' Image of a female with a prosthetic limb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
241
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
242
+ page_content=' Available: https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
243
+ page_content='istockphoto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
244
+ page_content='com/ [5] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
245
+ page_content=' Song, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
246
+ page_content=' Han, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
247
+ page_content=' Lin, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
248
+ page_content=' Yan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
249
+ page_content=' Luo, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
250
+ page_content=' Liao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
251
+ page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
252
+ page_content=' Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
253
+ page_content=' Xie, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
254
+ page_content=' Wang 11 3 mirr VON VLOAD 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
255
+ page_content='2mm Startup VcBUF smtehe Switch Matrix Gapetsi S2 Switch DXADE Current VBA VINDN市 Matrix Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
256
+ page_content=' Startup and Drivers Dnivers Mp1 Configuration Block Modell MIPP lectior VIN VLOAD S DA Pulse Generation Block Test Block Φ1 Φ2 En A PTrig Dvlee VINDN VBA AE Test Block 险电 Voltase: Curont Boost2et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
257
+ page_content=', “Design of a flexible wearable smart sEMG recorder integrated gradient boosting decision tree based hand gesture recognition,” IEEE transactions on biomedical circuits and systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
258
+ page_content=' 13, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
259
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
260
+ page_content=' 1563–1574, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
261
+ page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
262
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
263
+ page_content=' Kwak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
264
+ page_content=' Han, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
265
+ page_content=' Xie, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
266
+ page_content=' U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
267
+ page_content=' Chung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
268
+ page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
269
+ page_content=' Lee, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
270
+ page_content=' Avila, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
271
+ page_content=' Yohay, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
272
+ page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
273
+ page_content=' Liang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
274
+ page_content=' Patel, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
275
+ page_content=' Jung, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
276
+ page_content=' Kim, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
277
+ page_content=' Namkoong, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
278
+ page_content=' Kwon, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
279
+ page_content=' Guo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
280
+ page_content=' Ogle, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
281
+ page_content=' Grande, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
282
+ page_content=' Ryu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
283
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
284
+ page_content=' Kim, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
285
+ page_content=' Madhvapathy, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
286
+ page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
287
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
288
+ page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
289
+ page_content=' Park, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
290
+ page_content=' Caldwell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
291
+ page_content=' Banks, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
292
+ page_content=' Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
293
+ page_content=' Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
294
+ page_content=' Fatone, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
295
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
296
+ page_content=' Rogers, “Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses,” Science Translational Medicine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
297
+ page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
298
+ page_content=' 574, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
299
+ page_content=' eabc4327, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
300
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
301
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
302
+ page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
303
+ page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
304
+ page_content='1126/scitranslmed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
305
+ page_content='abc4327 [7] MyoWare, “3-lead muscle / electromyography sensor for microcontroller applications.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
306
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
307
+ page_content='mouser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
308
+ page_content='com/datasheet/2/813/ MyowareUserManualAT-04-001-1223951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
309
+ page_content='pdf [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
310
+ page_content=' Ltd, “Surface emg amplifier.” [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
311
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
312
+ page_content='biometricsltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
313
+ page_content='com/ surface-emg-sensor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
314
+ page_content='htm#popupSpecAmplifier [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
315
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
316
+ page_content=' Yazicioglu, “A 60𝜇w 60 nV/ √ 𝐻𝑧 readout front-end for portablebiopotential acqui- sition systems,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
317
+ page_content=' 2006, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
318
+ page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
319
+ page_content=' Orguc, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
320
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
321
+ page_content=' Khurana, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
322
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
323
+ page_content=' Lee, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
324
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
325
+ page_content=' Chandrakasan, “0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
326
+ page_content='3 v ultra-low power sensor interface for emg,” in ESSCIRC 2017-43rd IEEE European Solid State Circuits Conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
327
+ page_content=' IEEE, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
328
+ page_content=' 219–222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
329
+ page_content=' [11] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
330
+ page_content=' Wendler, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
331
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
332
+ page_content=' Dorigo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
333
+ page_content=' Amayreh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
334
+ page_content=' Bleitner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
335
+ page_content=' Marx, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
336
+ page_content=' Manoli, “A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
337
+ page_content='00378mm2 scalable neural recording front-end for fully immersible neural probes based on a two-step incremental delta-sigma converter with extended counting and hardware reuse,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
338
+ page_content=' 64, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
339
+ page_content=' 398–400.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
340
+ page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
341
+ page_content=' Maslik, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
342
+ page_content=' Liu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
343
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
344
+ page_content=' Lande, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
345
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
346
+ page_content=' Constandinou, “Continuous-time acquisition of biosignals using a charge-based ADC topology,” IEEE Transactions on Biomedical Circuits and Systems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
347
+ page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
348
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
349
+ page_content=' 471–482, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
350
+ page_content=' 12 [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
351
+ page_content=' Yoo, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
352
+ page_content=' Yan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
353
+ page_content=' El-Damak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
354
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
355
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
356
+ page_content=' Altaf, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
357
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
358
+ page_content=' Shoeb, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
359
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
360
+ page_content=' Chandrakasan, “An 8-channel scalable EEG acquisition soc with patient-specific seizure classification and recording processor,” IEEE Journal of Solid-State Circuits, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
361
+ page_content=' 48, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
362
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
363
+ page_content=' 214–228, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
364
+ page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
365
+ page_content=' Boschmann, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
366
+ page_content=' Thombansen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
367
+ page_content=' Witschen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
368
+ page_content=' Wiens, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
369
+ page_content=' Platzner, “A zynq-based dynamically reconfigurable high density myoelectric prosthesis controller,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
370
+ page_content=' IEEE, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
371
+ page_content=' 1002–1007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
372
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
373
+ page_content=' Available: http://ieeexplore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
374
+ page_content='ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
375
+ page_content='org/document/7927137/ [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
376
+ page_content=' El-Damak and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
377
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
378
+ page_content=' Chandrakasan, “A 10 nw-1 𝜇w power management ic with integrated battery management and self-startup for energy harvesting applications,” IEEE Journal of Solid-State Circuits, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
379
+ page_content=' 51, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
380
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
381
+ page_content=' 943–954, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
382
+ page_content=' [16] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
383
+ page_content=' Garcha, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
384
+ page_content=' El-Damak, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
385
+ page_content=' Desai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
386
+ page_content=' Troncoso, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
387
+ page_content=' Mazotti, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
388
+ page_content=' Mullenix, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
389
+ page_content=' Tang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
390
+ page_content=' Tromb- ley, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
391
+ page_content=' Buss, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
392
+ page_content=' Lang, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
393
+ page_content=' Chandrakasan, “A 25 mV-startup cold start system with on- chip magnetics for thermal energy harvesting,” in ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
394
+ page_content=' 127–130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
395
+ page_content=' 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/XtAyT4oBgHgl3EQfWfc6/content/2301.00163v1.pdf'}
Y9FST4oBgHgl3EQfADiR/content/tmp_files/2301.13697v1.pdf.txt ADDED
@@ -0,0 +1,883 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Scalability of non-adiabatic effects in lithium-decorated graphene superconductor
2
+ Dominik Szcz¸e´sniak
3
+ Department of Theoretical Physics, Faculty of Science and Technology,
4
+ Jan D�lugosz University in Cz¸estochowa, 13/15 Armii Krajowej Ave., 42200 Cz¸estochowa, Poland
5
+ (Dated: February 1, 2023)
6
+ The analysis is conducted to unveil how the non-adiabatic effects scale within the superconducting
7
+ phase of lithium-decorated graphene (LiC6). Based on the Eliashberg formalism it is shown that
8
+ the non-adiabatic effects notably reduce essential superconducting parameters in LiC6 and arise as
9
+ a significant oppressor of the discussed phase. Moreover, nonadiabaticity is found to scale with
10
+ the strength of superconductivity, proportionally to the phonon energy scale and inversely with
11
+ respect to the electron-phonon coupling. These findings are partially in contrast to other theoretical
12
+ studies and show that superconductivity in LiC6 is more peculiar than previously anticipated. In
13
+ this context, the guidelines for enhancing superconducting phase in LiC6 and sibling materials are
14
+ also proposed.
15
+ I.
16
+ INTRODUCTION
17
+ In the literature, a number of scenarios exist on how
18
+ to potentially induce conventional superconductivity in
19
+ graphene, promising novel applications of this intrigu-
20
+ ing carbon allotrope [1–12]. These strategies are mainly
21
+ aimed at the structural modifications of graphene to
22
+ enhance number of charge carriers at the Fermi level
23
+ and alter intrinsic semimetallic character of this mate-
24
+ rial. Among the resulting structures, lithium-decorated
25
+ graphene (LiC6) is here of particular interest since it
26
+ is suggested to host phonon-mediated superconducting
27
+ state generated via process analogous to the intercalation
28
+ of graphite [10]. This approach relies on the introduction
29
+ of adatoms that break chiral symmetry of graphene and
30
+ lifts Fermi level to the van Hove singularity [10, 13–15].
31
+ However, superconductivity in LiC6 not only derives from
32
+ the well-established method of synthesis but also appears
33
+ to be actually feasible, as partially confirmed within the
34
+ experiment [16].
35
+ According to the above, LiC6 may be considered as a
36
+ proving ground for the phonon-mediated superconduc-
37
+ tivity at low-dimensions.
38
+ Indeed, in recent years the
39
+ superconducting phase in LiC6 received notable atten-
40
+ tion in terms of its fundamental properties.
41
+ The re-
42
+ lated studies were devoted, but not limited to, the role of
43
+ strong electron-phonon coupling [17], character of super-
44
+ conducting gap [5], symmetry-breaking effects [13], ways
45
+ of enhancing superconducting state [7], or the substrate
46
+ ievmpact on superconductivity [9]. Beside listed direc-
47
+ tions of research, LiC6 appears also to be a perfect exam-
48
+ ple of superconducting material for studying the influence
49
+ of non-adiabatic pairing [18]. This aspect is particularly
50
+ intriguing since non-adiabatic effects tend to manifest
51
+ themselves relatively rarely in conventional superconduc-
52
+ tors. The reason for that relates to the non-comparable
53
+ electronic and phononic energy scales in most supercon-
54
+ ducting materials with the electron-phonon pairing mech-
55
+ anism [19–21]. In other words, it can be often assumed
56
+ that electrons follow adiabatically ionic oscillations and
57
+ that the corresponding superconducting state can be de-
58
+ scribed in a self-consistent manner [22, 23].
59
+ However,
60
+ this is not the case when superconducting materials ex-
61
+ hibit shallow conduction band such as the fullerenes [24],
62
+ fullerides [23], bismuthates [25], transition-metal-oxides
63
+ [26] or the discussed LiC6 [18] (see [27] for the review of
64
+ nonadiabatic superconductors).
65
+ So far, the characteristic energy scales are one of
66
+ the few signatures of non-adiabatic superconductivity in
67
+ LiC6. Other than that recent theoretical studies show
68
+ non-adiabatic effects to notably reduce magnitude of de-
69
+ pairing interaction in the discussed material, in compar-
70
+ ison to the adiabatic regime [18]. These findings are also
71
+ supplemented by the considerations suggesting that non-
72
+ adiabaticity contributes to the electron-phonon coupling
73
+ (λ) and modulates the transition temperature (TC) in
74
+ doped graphene [22] or two-dimensional superconductors
75
+ in general [28]. Still, little is known about the scalability
76
+ of non-adiabatic effects in LiC6. In the first approxima-
77
+ tion, it can be only qualitatively argued that their impact
78
+ changes according to the Migdal’s ratio (known also as
79
+ the expansion ratio) given by m = λωD/EF , where EF
80
+ is the Fermi energy and ωD denotes Debye’s frequency
81
+ [19–21]. In fact, although m-ratio can provide some in-
82
+ formation on the scalability problem it is mostly used to
83
+ determine whether or not given material can be described
84
+ within the Migdal’s theorem [29] i.e. within adiabatic or
85
+ non-adiabatic regime. Hence, the measurable and direct
86
+ role of the above parameters and their variations in shap-
87
+ ing non-adiabatic superconductivity in LiC6 is somewhat
88
+ hindered. In details, it is unknown how changes in the m-
89
+ ratio components modify experimentally observable ther-
90
+ modynamic properties such as the superconducting gap
91
+ or the transition temperature. This is to say, what trends
92
+ in thermodynamics can be expected due to the strength
93
+ of the non-adiabatic effects. As a result, the relevancy
94
+ of the energy scales and the electron-phonon coupling
95
+ in the non-adiabatic limit is also not well-estimated yet.
96
+ Therefore, addressing these aspects would be of great im-
97
+ portance to the better understanding of superconductiv-
98
+ ity in LiC6 and potentially other sibling low-dimensional
99
+ materials. Moreover, it should also help in assessing im-
100
+ pact of the external factors that can be applied to mod-
101
+ ify the aforementioned properties and ultimately enhance
102
+ arXiv:2301.13697v1 [cond-mat.supr-con] 31 Jan 2023
103
+
104
+ 2
105
+ the superconducting state even further.
106
+ To provide deeper insight into the scalability of non-
107
+ adiabatic effects in LiC6, the present study analyzes be-
108
+ havior of the discussed material in the adiabatic and
109
+ non-adiabatic limit when the expansion ratio parame-
110
+ ters vary. This is done within the Eliashberg formalism
111
+ that generalizes conventional Bardeen-Cooper-Schrieffer
112
+ (BCS) theory of superconductivity [30, 31] by incorporat-
113
+ ing the strong-coupling, retardation and non-adiabatic
114
+ effects [19–21, 32, 33]. As a result it allows to consider
115
+ both regimes of interest and relate predictions on the piv-
116
+ otal thermodynamics to the potential factors responsible
117
+ for the m-ratio variations. Here the latter is modeled in
118
+ reference to [7], by recalling the fact that the deforma-
119
+ tion potential is able to simultaneously influence energy
120
+ scales and the electron-phonon coupling in a given su-
121
+ perconducting material. This effect is captured via the
122
+ percentage change in graphene lattice constant given as
123
+ δ = |a − a0| /a0 × 100%, where a0(a) is the unmodified
124
+ (modified) lattice constant value. In what follows, sev-
125
+ eral levels of δ are considered allowing for tracing changes
126
+ in the m-ratio components on the same footing and in
127
+ the direct relation to the experimentally observable case
128
+ (δ = 0%). Based on that it is possible to unveiled how the
129
+ non-adiabatic effects scale in LiC6 and what can be done
130
+ to eliminate their potentially negative consequences.
131
+ II.
132
+ METODOLOGY
133
+ The theoretical formalism of choice is provided here
134
+ by following the study of Freericks et al. [34], where con-
135
+ venient form of the generalized Eliashberg equations for
136
+ considering the non-adiabatic superconductivity is pre-
137
+ sented. This theoretical approach is based on the per-
138
+ turbative theory introduced originally by Pietronero et
139
+ al. in [19–21], which incorporates non-adiabatic effects
140
+ via vertex corrections to the electron-phonon interac-
141
+ tion. However, the theoretical scenario given in [34] in-
142
+ cludes specific computational techniques for better ac-
143
+ curacy and efficiency, such as the perturbative theory
144
+ on the imaginary-axis and the high-frequency resum-
145
+ mation schemes.
146
+ In this manner, the resulting equa-
147
+ tions provide compromise between predictive capabili-
148
+ ties and computational requirements. Note that such ap-
149
+ proach was already proved successful in describing non-
150
+ adiabatic superconductivity not only in LiC6 but also
151
+ other phonon-mediated superconductors such as lead [34]
152
+ or bismuthates [35].
153
+ In respect to the above, inital approximations are as-
154
+ sumed in accordance to [34] and the character of the
155
+ superconducting phase in LiC6.
156
+ In particular, (i) the
157
+ direct dependence on momentum is neglected for the
158
+ electron-phonon matrix elements, in correspondence to
159
+ the isotropic nature of superconducting gap in LiC6,
160
+ (ii) the depairing correlations are modeled only by
161
+ the first-order Coulomb pseudopotential terms, due to
162
+ the fact that higher-order contributions are negligibly
163
+ small for phonon-mediated superconductors, (iii) sim-
164
+ ilarly only the lowest-order vertex corrections to the
165
+ electron-phonon interaction are considered to describe
166
+ the non-adiabatic effects, since the Fermi liquid picture
167
+ in LiC6 appears to be conserved. As a results, it is possi-
168
+ ble to derive self-consistent Eliashberg equations beyond
169
+ Midal’s theorem within perturbation scheme. In details,
170
+ their form on the imaginary axis for the order parameter
171
+ function (φn = φ (iωn)) and the wave function renormal-
172
+ ization factor (Zn = Z (iωn)) is following:
173
+ φn = πkBT
174
+ M
175
+
176
+ m=−M
177
+ Kn,m − µ⋆
178
+ m
179
+
180
+ ω2mZ2m + φ2m
181
+ φm − Vφ,
182
+ (1)
183
+ Zn = 1 + πkBT
184
+ ωn
185
+ M
186
+
187
+ m=−M
188
+ Kn,m
189
+
190
+ ω2mZ2m + φ2m
191
+ ωmZm − VZ, (2)
192
+ where, kBT is the inverse temperature, with kB denot-
193
+ ing the Boltzmann constant.
194
+ In what follows, ωn =
195
+ πkBT (2n + 1) is the n-th Matsubara frequency with the
196
+ cutoff M = 1100 for numerical stability above T = 2 K.
197
+ Moreover, Kn,m stands for the electron-phonon pairing
198
+ kernel given as:
199
+ Kn,m = 2
200
+ � ωD
201
+ 0
202
+
203
+ ω
204
+ ω2 + 4π2 (kBT)2 (n − m)2 α2F (ω) ,
205
+ (3)
206
+ with ω being the phonon frequency, α describing the av-
207
+ erage electron-phonon coupling and F (ω) denoting the
208
+ phonon density of states. Note that the product of the
209
+ two latter is known as the electron-phonon spectral func-
210
+ tion which provides most important information about
211
+ a physical system within the Eliashberg formalism [33].
212
+ Here, several α2F (ω) functions are considered, each of
213
+ them corresponding to the different δ-value in order to
214
+ analyze behavior of LiC6 when the Migdal’s parameter
215
+ and its components very.
216
+ For this purpose, the exact
217
+ forms of the α2F (ω) functions are assumed after [7] for
218
+ δ ∈ ⟨0, 3, 5, 7, 10⟩ %, where the first case corresponds to
219
+ the experimentally observed superconducting phase of
220
+ LiC6 whereas the remaining functions describe poten-
221
+ tial variations from its pristine form.
222
+ The remaining
223
+ information is given via the Coulomb pseudopotential
224
+ µ⋆
225
+ n = µ⋆θ (ωc − |ωn|), with θ standing for the the Heavi-
226
+ side function and ωc for the cut-off frequency. To consider
227
+ all the δ cases on equal footing the conventional value of
228
+ µ⋆ = 0.1 [36] which is close to the magnitude of Coulomb
229
+ depairing interaction predicted for LiC6 at δ = 0% [18].
230
+ Finally, Vφ and VZ are the lowest-order vertex correc-
231
+
232
+ 3
233
+ tion terms of the following form:
234
+ Vφ = π3 (kBT)2
235
+ 4EF
236
+ M
237
+
238
+ m=−M
239
+ M
240
+
241
+ m′=−M
242
+ Kn,mKn,m′
243
+ ×
244
+ 1
245
+
246
+ (ω2mZ2m + φ2m) (ω2
247
+ m′Z2
248
+ m′ + φ2
249
+ m′)
250
+ ×
251
+ 1
252
+
253
+ (ω2
254
+ m′′Z2
255
+ m′′ + φ2
256
+ m′′)
257
+ × (φmφm′φm′′ + 2φmωm′Zm′ωm′′Zm′′
258
+ − ωmZmωm′Zm′φm′′) ,
259
+ (4)
260
+ and
261
+ VZ = π3 (kBT)2
262
+ 4EF ωn
263
+ M
264
+
265
+ m=−M
266
+ M
267
+
268
+ m′=−M
269
+ Kn,mKn,m′
270
+ ×
271
+ 1
272
+
273
+ (ω2mZ2m + φ2m) (ω2
274
+ m′Z2
275
+ m′ + φ2
276
+ m′)
277
+ ×
278
+ 1
279
+
280
+ (ω2
281
+ m′′Z2
282
+ m′′ + φ2
283
+ m′′)
284
+ × (ωmZmωm′Zm′ωm′′Zm′′ + 2ωmZmφm′φm′′
285
+ − φmφm′ωm′′Zm′′) .
286
+ (5)
287
+ Based on the above, when vertex corrections are consid-
288
+ ered within the Eqs. (1) and (2) they are refereed here to
289
+ as the non-adiabatic Eliashberg equations (N-E), other-
290
+ wise, when the corrections are neglected, the formalism
291
+ is reduced to the adiabatic Eliashberg equations (A-E).
292
+ In what follows, by solving Eqs. (1) and (2) it is pos-
293
+ sible to obtain estimates on the most important ther-
294
+ modynamic properties of superconducting state in LiC6.
295
+ Specifically, the central role in such analysis is played
296
+ by the order parameter function that is obtained from
297
+ Eqs. (1) and (2) as: ∆n(T) = φn/Zn. Here of special
298
+ interest is the maximum value (m = 1) of ∆n(T) which
299
+ contains information on the transition temperature and
300
+ the superconducting gap half-width. The former is de-
301
+ termined based on the relation ∆m=1(TC) = 0, whereas
302
+ the latter is given by ∆m=1(T0), with T0 = 2 K being
303
+ the lowest temperature assumed for calculations. Since
304
+ the aforementioned α2F (ω) function is dependent on the
305
+ characteristic energy scales and the electron-phonon cou-
306
+ pling constant, the described solutions of the Eliashberg
307
+ equations also inherit such dependence, allowing for the
308
+ analysis of interest.
309
+ III.
310
+ THE RESULTS AND DISCUSSION
311
+ In Fig.
312
+ 1, the main numerical results are presented
313
+ as obtained by solving Eqs. (1) and (2) iteratively with
314
+ respect to the temperature (see [25] and [34] for more
315
+ details on the computational methods used here). In de-
316
+ tails, Fig. 1 depicts the behavior of ∆m=1(T) function
317
+ for T ∈ ⟨T0, TC⟩ at the assumed levels of lattice constant
318
+ 5
319
+ 10
320
+ 15
321
+ 20
322
+ 25
323
+ 30
324
+ 35
325
+ 40
326
+ 45
327
+ 50
328
+ 0
329
+ 1
330
+ 2
331
+ 3
332
+ 4
333
+ 5
334
+ 6
335
+
336
+
337
+ ∆m=1 (mev)
338
+ T (K)
339
+ A-E:
340
+ δ=0%
341
+ δ=3%
342
+ δ=5%
343
+ δ=7%
344
+ δ=10%
345
+ N-E:
346
+ δ=0%
347
+ δ=3%
348
+ δ=5%
349
+ δ=7%
350
+ δ=10%
351
+ FIG. 1: The maximum value of order parameter (∆m=1(T))
352
+ as a function of temperature in LiC6.
353
+ The results are de-
354
+ picted for the selected values of lattice constant deviation in
355
+ graphene (δ) as obtained within the adiabatic (closed sym-
356
+ bols) and non-adiabatic (open symbols) regime of the Eliash-
357
+ berg equations. Solid lines constitute the guides for an eye.
358
+ deviation denoted by δ. Note that the 0% case corre-
359
+ sponds to the unaltered LiC6 material, hosting the ex-
360
+ perimentally observable superconducting phase. On the
361
+ other hand, the remaining cases describe situation when
362
+ crystal lattice of graphene changes according to the al-
363
+ ready mentioned expression: δ = |a − a0| /a0 × 100%,
364
+ with a0(a) standing for the unmodified (modified) lattice
365
+ constant. Moreover, as allowed by the employed formal-
366
+ ism, the discussed thermal behavior of ∆m=1(T) func-
367
+ tion is plotted for the adiabatic (open symbols) and non-
368
+ adiabatic (closed symbols) regime. In all figures, symbols
369
+ relate to the exact numerical results of the Eliashberg
370
+ equations and solid lines constitute guides for an eye.
371
+ The result depicted in Fig. 1 reveal several general as-
372
+ pects of the superconducting state in LiC6. In particular,
373
+ it can be observed that for δ > 3% the increase of the
374
+ δ value causes notable increase of the ∆m=1(T) in the
375
+ entire temperature range for both considered regimes.
376
+ This trend is not conserved only when comparing re-
377
+ sult obtained at the two lowest levels of δ, as caused
378
+ by the δ-driven increase of charge transfer that emp-
379
+ ties interlayer states and notably reduces the electron-
380
+ phonon coupling constant at δ = 3% with respect to
381
+ the 0% case [7]. Nonetheless, the observed effect means
382
+ that above some level of δ the superconducting state
383
+ in LiC6 is clearly enhanced.
384
+ This observation can be
385
+ quantified by deducing the transition temperature values
386
+ from the obtained results. In particular, TC = 8.78 K
387
+ at δ = 0% and TC ∈ ⟨8.48, 34.61⟩ K for δ ∈ ⟨3, 10⟩ %
388
+ within the A-E limit, whereas TC = 7.29 K at δ = 0%
389
+ and TC ∈ ⟨6.59, 28.46⟩ K for δ ∈ ⟨3, 10⟩ % when consid-
390
+ ering the N-E equations. Note that these observations
391
+ are in qualitative agreement with the previous studies
392
+ conducted within the adiabatic limit by using the Allen-
393
+
394
+ 4
395
+ Dynes formula in [7]. The difference between these data
396
+ sets and results given in [7] is due to the fact that the as-
397
+ sumed Eliashberg equations incorporate strong-coupling,
398
+ retardation, and non-adiabatic effects which are missing
399
+ in the Allen-Dynes formula. At this point, it is also in-
400
+ structive to note that the TC value estimated at δ = 0%
401
+ is slightly higher in comparison to the predictions made
402
+ within the Eliashberg formalism for the experimentally
403
+ derived electron-phonon spectral function, as presented
404
+ in [18]. This discrepancy is obviously caused by the as-
405
+ sumed value of µ⋆, smaller than the one suggested in
406
+ [18]. The reason to make such assumption is to allow
407
+ for better comparison not only with the BCS-derived re-
408
+ sults given in [7] but also other two-dimensional super-
409
+ conductors, which are often still hypothetical structures
410
+ and their superconducting state is described by µ⋆ ∼ 0.1
411
+ (see e.g. [37, 38]). Note that even if µ⋆ would be as-
412
+ sumed here after [18], the main outcomes and findings of
413
+ the present analysis would not change. This includes es-
414
+ timates on the superconducting gap half-width that can
415
+ be made based on the results plotted in Fig. 1. This is to
416
+ say, the general behavior of ∆m=1(T0) parameter is the
417
+ same as in the case of TC and it will not change qualita-
418
+ tively when assuming other µ⋆ value. Specifically, in the
419
+ present study ∆m=1(T0) = 1.39 meV at δ = 0% whereas
420
+ ∆m=1(T0) ∈ ⟨1.30, 5.55⟩ meV for δ ∈ ⟨3, 10⟩ % in the A-E
421
+ regime, while the N-E equations yield ∆m=1(T0) = 1.22
422
+ meV at δ = 0% and ∆m=1(T0) ∈ ⟨1.11, 4.84⟩ meV for
423
+ δ ∈ ⟨3, 10⟩ %. Note that results on TC and ∆m=1(T0)
424
+ can be supplemented by introducing their characteristic
425
+ ratio, familiar in the BCS theory and given by [30, 31, 33]:
426
+ R = 2∆m=1(T0)
427
+ kBTC
428
+ .
429
+ (6)
430
+ The Eq. (6) not only allows for additional insight into
431
+ the considered problem but also provides yet another ob-
432
+ servable for future comparisons with the experiment. As
433
+ it can be expected, the obtained values of R follow the
434
+ same trends like the TC and ∆m=1(T0) parameters. The
435
+ values of R base on the A-E equations are R = 3.67 at
436
+ δ = 0% and R ∈ ⟨3.55, 3.72⟩ for δ ∈ ⟨3, 10⟩ %. On the
437
+ other hand, the N-E equations give R = 3.89 at δ = 0%
438
+ and R ∈ ⟨3.92, 3.98⟩ for δ ∈ ⟨3, 10⟩ %. Still, both sets
439
+ present values higher than the level suggested within the
440
+ BCS theory and equal to 3.53. It means that the strong-
441
+ coupling and retardation effects play relatively impor-
442
+ tant role in shaping the superconducting state in LiC6.
443
+ This observation is in agreement with the strength of
444
+ the electron-phonon coupling reported in [7] and previ-
445
+ ous findings given in [18].
446
+ Beside the above observations, it is also crucial to note
447
+ that the reported results suggest simultaneous changes
448
+ in the energy scales and the electron-phonon coupling
449
+ constant due to the variations of δ parameter. Indeed,
450
+ all of these characteristic parameters exhibit increasing
451
+ or decreasing trends along with the growing δ value (see
452
+ Fig. 2 (A)). For convenience, their cumulative behavior
453
+ is depicted in Fig. 2 (B) in terms of already introduced
454
+ 120
455
+ 140
456
+ 160
457
+ 180
458
+ 1000
459
+ 1200
460
+ 1400
461
+ 1600
462
+ 1800
463
+ 0.1
464
+ 0.2
465
+ 0.3
466
+ 0.4
467
+ 0.5
468
+ 0.6
469
+ 0.7
470
+ 0.8
471
+ 0.9
472
+ 1.0
473
+ 1.1
474
+ 0.04
475
+ 0.06
476
+ 0.08
477
+ 0.10
478
+ 0.12
479
+ 0.14
480
+ 0
481
+ 2
482
+ 4
483
+ 6
484
+ 8
485
+ 10
486
+ 4
487
+ 8
488
+ 12
489
+ 16
490
+ 20
491
+ 24
492
+ 28
493
+
494
+ ωD (meV) EF (meV)
495
+ (A)
496
+ λ
497
+
498
+ m
499
+ m=ωD/EF
500
+ m=λωD/EF
501
+ (B)
502
+ Dx (%)
503
+ x=1
504
+ x=2
505
+ x=3
506
+ δ (%)
507
+ (C)
508
+ FIG. 2: The behavior of (A) the Fermi energy (EF ), Debye’s
509
+ frequency (ωD) and electron-phonon coupling constant (λ),
510
+ (B) the dressed (m = λωD/EF ) and bare (m = ωD/EF )
511
+ Migdal’s ratio as well as (C) the percentage differences be-
512
+ tween adiabatic and non-adiabatic estimates for the critical
513
+ temperature (D1), superconducting gap half-width (D2) and
514
+ their cumulative ratio (D3) at the selected values of the lat-
515
+ tice deviation in graphene (δ) in the LiC6 superconductor.
516
+ The closed symbols depicts exact results, the solid lines are
517
+ the guides for an eye and the color arrows points to the cor-
518
+ responding axes.
519
+ dressed Migdal’s ratio (m = λωD/EF ) but also its bare
520
+
521
+ 5
522
+ TABLE I: The parameters of superconducting state in LiC6 for the selected values of the lattice deviation in graphene (δ).
523
+ In a consecutive order, the parameters are: the electron-phonon coupling constant (λ), the Debye’s frequency (ωd), the Fermi
524
+ energy (EF ), the bare (ωd/EF ) and dressed (λωd/EF ) Migdal’s ratio, the transition temperature (TC), the superconducting
525
+ gap half-width (∆m=1(T0)) as well as the thermodynamic ratio for the two last ones (R). Note that, where necessary, the
526
+ results are presented for the in terms of the adiabatic (A − E) and non-adiabatic (N − E) regime. Moreover, the percentage
527
+ differences between estimates in these two limits for TC (D1), ∆m=1(T0) (D2) and R (D3) are also given.
528
+ A-E
529
+ N-E
530
+ δ
531
+ λ
532
+ ωd
533
+ EF
534
+ ωd/EF
535
+ λωd/EF
536
+ TC
537
+ ∆m=1(T0)
538
+ R
539
+ TC
540
+ ∆m=1(T0)
541
+ R
542
+ D1
543
+ D2
544
+ D3
545
+ (%)
546
+ (meV)
547
+ (meV)
548
+ (K)
549
+ (meV)
550
+ (K)
551
+ (meV)
552
+ (%)
553
+ (%)
554
+ (%)
555
+ 0
556
+ 0.61
557
+ 141.21
558
+ 1100
559
+ 0.128
560
+ 0.078
561
+ 8.78
562
+ 1.39
563
+ 3.67
564
+ 7.29
565
+ 1.22
566
+ 3.89
567
+ 18.54
568
+ 13.03
569
+ 6.37
570
+ 3
571
+ 0.47
572
+ 171.34
573
+ 1300
574
+ 0.132
575
+ 0.062
576
+ 8.48
577
+ 1.30
578
+ 3.55
579
+ 6.59
580
+ 1.11
581
+ 3.92
582
+ 25.08
583
+ 15.77
584
+ 9.91
585
+ 5
586
+ 0.49
587
+ 158.82
588
+ 1624
589
+ 0.098
590
+ 0.048
591
+ 12.61
592
+ 1.94
593
+ 3.58
594
+ 9.90
595
+ 1.68
596
+ 3.93
597
+ 24.08
598
+ 14.36
599
+ 9.32
600
+ 7
601
+ 0.55
602
+ 148.16
603
+ 1726
604
+ 0.086
605
+ 0.047
606
+ 18.86
607
+ 2.95
608
+ 3.63
609
+ 14.98
610
+ 2.56
611
+ 3.97
612
+ 22.93
613
+ 14.16
614
+ 8.95
615
+ 10
616
+ 0.73
617
+ 132.79
618
+ 1800
619
+ 0.074
620
+ 0.054
621
+ 34.61
622
+ 5.55
623
+ 3.72
624
+ 28.26
625
+ 4.84
626
+ 3.98
627
+ 20.20
628
+ 13.67
629
+ 6.75
630
+ counterpart (m = ωD/EF ). In what follows, it is argued
631
+ here that the scalability of non-adiabatic effects in LiC6
632
+ can be traced with respect to the pivotal parameters en-
633
+ tering Migdal’s ratio. In this context, first it should be
634
+ noted that for each considered δ value the non-adiabatic
635
+ equations yield lower ∆m=1(T) values than their adia-
636
+ batic counterparts (see Fig. 1). This directly relates to
637
+ the fact that the transition temperature values as well as
638
+ the estimates of the superconducting gap are lower in the
639
+ non-adiabatic regime when comparing to the adiabatic
640
+ one. As a results, the percentage difference between esti-
641
+ mates made in two considered regimes can be introduced
642
+ as a measure of non-adiabatic effects impact on super-
643
+ conducting phase in LiC6. This new measure is depicted
644
+ for all considered thermodynamic parameters in Fig. 2
645
+ (C). In details, the percentage difference between TC val-
646
+ ues determined in the adiabatic and non-adiabatic limits
647
+ is D1 = 18.54% at δ = 0% and D1 = ⟨25.08, 20.20⟩%
648
+ for δ ∈ ⟨3, 10⟩ %. Similarly, the same percentage mea-
649
+ sure but for the ∆m=1(T0) parameter is D2 = 13.03%
650
+ for δ = 0% and D2 = ⟨15.77, 13.67⟩% when δ ∈ ⟨3, 10⟩ %.
651
+ Finally, the cumulative ratio gives the corresponding per-
652
+ centage D3 = 6.37% for δ = 0% and D3 = ⟨9.91, 6.75⟩%
653
+ when again δ ∈ ⟨3, 10⟩ %. Based on these results, it is
654
+ clear that the critical temperature is the most influenced
655
+ by the non-adiabatic effects from all three considered pa-
656
+ rameters. It also presents the most visible signature of
657
+ the charge transfer from interlayer states at δ ∈ 3%. On
658
+ the contrary, the cumulative ratio shows the smallest dis-
659
+ crepancies. Still all three parameters exhibit the same
660
+ qualitative behavior i.e.
661
+ the percentage difference be-
662
+ tween adiabatic and non-adiabatic results increases up
663
+ to δ ∈ 3% and then starts to almost linearly decrease as
664
+ the δ takes higher values.
665
+ The final observations can be made when comparing
666
+ results presented in Fig. 2 (C) with the estimates de-
667
+ picted in Figs. 2 (A) and (B). In particular, it can quali-
668
+ tatively argued that the behavior of percentage measures
669
+ does not fully resemble the Migdal’s ratio dependence on
670
+ the δ value, although the latter is considered to be the
671
+ first approximation approach to provide information on
672
+ the scalability of non-adiabatic effects in a superconduc-
673
+ tors. Precisely speaking, only the bare ratio can be con-
674
+ sidered somewhat similar in behavior to the percentage
675
+ measures, whereas its dressed value presents almost in-
676
+ verse character with respect to the parameters given in
677
+ Fig. 2 (C). To inspect these discrepancies even further it
678
+ is instructive to compare the percentage difference mea-
679
+ sures with the characteristic component parameters of
680
+ the Migdal’s ratio, as plotted in Figs. 2 (A). The out-
681
+ come is that only the Debye’s energy scales qualitatively
682
+ the same as the percentage difference measures, while the
683
+ electron-phonon coupling gives inverse characteristic and
684
+ the electronic energy scale is practically nowhere similar
685
+ to the results given in Figs. 2 (C).
686
+ IV.
687
+ SUMMARY AND CONCLUSIONS
688
+ In summary, the presented analysis provides new in-
689
+ sight into the superconducting properties of LiC6 in
690
+ terms of its non-adiabatic characteristic. It shows how
691
+ the non-adiabatic effects scale in LiC6 with respect to the
692
+ deviation of lattice constant in graphene, which can be
693
+ considered as an exemplary factor that modifies strength
694
+ of the superconducting state. In details, the discussed
695
+ scalability is expressed here in terms of the percentage
696
+ difference between estimates of pivotal thermodynamic
697
+ parameters (the transition temperature, superconduct-
698
+ ing gap and their ratio) obtained within the adiabatic
699
+ and non-adiabatic regime, allowing for further compari-
700
+ son with the Migdal’s expansion ratio that characterizes
701
+ nonadiabaticity in the first approximation. For conve-
702
+ nience, all the obtained numerical results are summarized
703
+ in Tab. I.
704
+ Based on the above findings it is possible to draw sev-
705
+ eral conclusions related, but no limited to, the scalability
706
+ of non-adiabatic effects in LiC6. In details:
707
+ (i) The introduction of vertex corrections to the
708
+ electron-phonon interaction causes notable changes
709
+ in the pivotal thermodynamic parameters of the su-
710
+ perconducting state in LiC6, in particular their de-
711
+ crease in comparison to the adiabatic limit (see Fig.
712
+
713
+ 6
714
+ 2 (C)). This is to say, the superconducting state
715
+ appears to have strongly non-adiabatic character,
716
+ where non-adiabatic effects act as an important op-
717
+ pressor of superconductivity in LiC6. Notably the
718
+ superconducting state sustains its non-adiabatic
719
+ character even when superconductivity in LiC6 is
720
+ strongly enhanced. Still the non-adiabatic effects
721
+ are observed to visibly vary with the strength of
722
+ superconducting phase. Moreover, it is found that
723
+ nonadiabaticity is supplemented by the strong-
724
+ coupling and retardation effects, meaning that LiC6
725
+ is a somewhat unorthodox phonon-mediated super-
726
+ conductor.
727
+ (ii) The considered thermodynamic parameters present
728
+ the same qualitative behavior under the influence
729
+ of non-adiabatic effects when the strength of super-
730
+ conductivity is varied (see Fig. 2 (C)). Nonetheless,
731
+ the critical temperature is suggested to be partic-
732
+ ularly sensitive to nonadiabaticity, while supercon-
733
+ ducting gap is showing much smaller dependence
734
+ on the variation of the discussed effects. As a re-
735
+ sult, this opens new prospect for increasing tran-
736
+ sition temperature value in LiC6 according to the
737
+ presented here findings, saying that smaller mag-
738
+ nitude of non-adiabatic effects leads to the higher
739
+ transition temperature (see Tab. I). Note that this
740
+ trend is not conserved when including results for
741
+ the unaltered LiC6, due to the decreased charge
742
+ transfer from the interlayer states in comparison
743
+ to other considered cases. It can be additionally
744
+ argued that such trend may be considered general
745
+ for other graphene-based superconductor which ex-
746
+ hibit similar dependence on nonadiabaticity (see
747
+ e.g. recent study on the electron-doped graphene
748
+ [39]).
749
+ (iii) The deeper inspection of the obtained results
750
+ shows that the non-adiabatic effects scale with
751
+ the strength of superconductivity, proportionally
752
+ to the phonon energy scale and inversely to the
753
+ electron-phonon coupling magnitude (see Figs. 2
754
+ (A) and (C)). Note that, while the former observa-
755
+ tion agrees with the predictions of both considered
756
+ forms of the Migdal’s ratio, the latter is in contrast
757
+ to what can be expected based on the dressed pa-
758
+ rameter and previous theoretical studies consider-
759
+ ing superconductivity in two-dimensional systems
760
+ [22, 28]. However, the mentioned trends does not
761
+ take into account existing interplay between all
762
+ components of the Migdal’s ratio and the fact that
763
+ the electron-phonon coupling constant increases al-
764
+ most linearly with the electronic energy scale (see
765
+ Tab. I). As a results, strong electron-phonon cor-
766
+ relations correspond to the relatively wide conduc-
767
+ tion band that causes suppression of nonadiabatic-
768
+ ity. This argument is confirmed qualitatively by the
769
+ observed here cumulative behavior of the Migdal’s
770
+ ratio (see Figs. 2 (B)). This is to say the electron-
771
+ phonon coupling cannot be always considered to
772
+ be improved in graphene-based superconductors by
773
+ the non-adiabatic effects as previously suggested in
774
+ [22, 28].
775
+ To sum up, the perspectives for future research can be
776
+ given. In details, to provide better understating of the su-
777
+ perconducting state in LiC6 the discussed non-adiabatic
778
+ effects should be considered beyond the isotropic ap-
779
+ proximation.
780
+ Note that such preliminary analysis can
781
+ be already found in [28], while the adiabatic anisotropic
782
+ investigations are available in [5].
783
+ The present study
784
+ can be also extended further toward other experimen-
785
+ tally observable thermodynamic parameters such as the
786
+ free energy or the critical thermodynamic field, accord-
787
+ ing to their importance in discussing the non-adiabatic
788
+ effects [40]. Finally, recent discussion given in [27] sug-
789
+ gest strongly metallic behavior of LiC6 despite its high
790
+ value of the Migdal’s ratio. In other words, the super-
791
+ conducting state in LiC6 may appear to be more peculiar
792
+ than previously anticipated and additional investigations
793
+ in this directions should be of great interest.
794
+ [1] H. Y. Lu, Y. Yang, L. Hao, W. S. Wang, L. Geng,
795
+ M. Zheng, Y. Li, N. Jiao, P. Zhang, and C. S. Ting,
796
+ Phys. Rev. 101, 214514 (2020).
797
+ [2] E. Thingstad, A. Kamra, J. W. Wells, and A. Sudbø,
798
+ Phys. Rev. B 101, 214513 (2020).
799
+ [3] A. P. Durajski, K. M. Skoczylas, and R. Szcz¸e´sniak, Su-
800
+ percond. Sci. Technol. 32, 125005 (2019).
801
+ [4] T. Uchihashi,
802
+ Supercond. Sci. Technol. 30,
803
+ 013002
804
+ (2017).
805
+ [5] J. J. Zheng and E. R. Margine, Phys. Rev. B 94, 064509
806
+ (2016).
807
+ [6] J. Zhou, Q. Sun, Q. Wang, and P. Jena, Phys. Rev. B
808
+ 92, 064505 (2015).
809
+ [7] J. Peˇsi´c, R. Gaji´c, K. Hingerl, and M. Beli´c, EPL 108,
810
+ 67005 (2014).
811
+ [8] D. M. Guzman, H. M. Alyahyaei, and R. A. Jishi, 2D
812
+ Mater. 1, 021005 (2014).
813
+ [9] T. P. Kaloni, A. V. Balatsky, and U. Schwingenschl¨ogl,
814
+ EPL 104, 47013 (2013).
815
+ [10] G. Profeta, M. Calandra, and F. Mauri, Nat. Phys. 8,
816
+ 131 (2012).
817
+ [11] M. Einenkel and K. B. Efetov, Phys. Rev. B 84, 214508
818
+ (2011).
819
+ [12] G. Savini, A. C. Ferrari, and F. Giustino, Phys. Rev.
820
+ Lett. 105, 037002 (2010).
821
+ [13] R. Gholami, R. Moradian, S. Moradian, and W. E. Pick-
822
+ ett, Sci. Rep. 8, 13795 (2018).
823
+ [14] C. Bao, H. Zhang, T. Zhang, X. Wu, L. Luo, S. Zhou,
824
+ Q. Li, Y. Hou, W. Yao, L. Liu, et al., Phys. Rev. Lett.
825
+ 126, 206804 (2021).
826
+
827
+ 7
828
+ [15] C. Guti´errez, C. J. Kim, L. Brown, T. Schiros, D. Nord-
829
+ lund, E. B. Lochocki, K. M. Shen, J. Park, and A. N.
830
+ Pasupathy, Nat. Phys. 12, 950 (2016).
831
+ [16] B. M. Ludbrook, G. Levy, P. Nigge, M. Zonno, M. Schnei-
832
+ der, D. J. Dvorak, C. N. Veenstra, S. Zhdanovich,
833
+ D. Wong, P. Dosanjh, et al., PNAS 112, 11795 (2015).
834
+ [17] D. Szcz¸e´sniak, A. P. Durajski, and R. Szcz¸e´sniak, J.
835
+ Phys.: Condens. Matter 26, 255701 (2014).
836
+ [18] D. Szcz¸e´sniak and R. Szcz¸e´sniak, Phys. Rev. B 99,
837
+ 224512 (2019).
838
+ [19] L. Pietronero, S. Str¨assler, and C. Grimaldi, Phys. Rev.
839
+ B 52, 10516 (1995).
840
+ [20] C. Grimaldi, L. Pietronero, and S. Str¨assler, Phys. Rev.
841
+ B 52, 10530 (1995).
842
+ [21] C. Grimaldi, L. Pietronero, and S. Str¨assler, Phys. Rev.
843
+ B 75, 1158 (1995).
844
+ [22] S. Q. Hu, X. B. Liu, D. Q. Chen, C. Lian, E. G. Wang,
845
+ and S. Meng, Phys. Rev. B 105, 224311 (2022).
846
+ [23] E. Cappelluti and L. Pietronero, J. Phys. Chem. Solids
847
+ 67, 1941–1947 (2006).
848
+ [24] P. Paci, E. Cappelluti, C. Grimaldi, L. Pietronero, and
849
+ S. Str¨assler, Phys. Rev. B 69, 024507 (2004).
850
+ [25] R. Szcz¸e´sniak, Acta Phys. Pol. A 179-186, 509 (2006).
851
+ [26] L. P. Gor’kov, PNAS 113, 4646 (2016).
852
+ [27] E. F. Talantsev, Nanomaterials 13, 71 (2023).
853
+ [28] F. Schrodi, P. M. Oppeneer, and A. Aperis, Phys. Rev.
854
+ B 102, 024503 (2020).
855
+ [29] A. B. Migdal, Sov. Phys. JETP 34 (7), 996 (1958).
856
+ [30] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
857
+ Rev. 106, 162 (1957).
858
+ [31] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.
859
+ Rev. 108, 1175 (1957).
860
+ [32] G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960).
861
+ [33] J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
862
+ [34] J. K. Freericks, E. J. Nicol, A. Y. Liu, and A. A. Quong,
863
+ Phys. Rev. B 55, 11651 (1997).
864
+ [35] D.
865
+ Szcz¸e´sniak,
866
+ A.
867
+ Z.
868
+ Kaczmarek,
869
+ E.
870
+ A.
871
+ Drzazga-
872
+ Szcz¸e´sniak, and R. Szcz¸e´sniak, Phys. Rev. B 104, 094501
873
+ (2021).
874
+ [36] J. Bauer, J. E. Han, and O. Gunnarsson, Phys. Rev. B
875
+ 87, 054507 (2013).
876
+ [37] W. Wan, Y. Ge, F. Yang, and Y. Yao, EPL 104, 36001
877
+ (2013).
878
+ [38] Y. Ge, W. Wan, F. Yang, and Y. Yao, New J. Phys. 17,
879
+ 035008 (2015).
880
+ [39] D. Szcz¸e´sniak and E. Drzazga, EPL 135, 67002 (2021).
881
+ [40] P. Miller, J. K. Freericks, and E. J. Nicol, Phys. Rev. B
882
+ 58, 14498 (1998).
883
+
Y9FST4oBgHgl3EQfADiR/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
YdFAT4oBgHgl3EQf3R5S/content/tmp_files/2301.08719v1.pdf.txt ADDED
@@ -0,0 +1,2120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The stochastic digital human is now enrolling for in
2
+ silico imaging trials – Methods and tools for
3
+ generating digital cohorts
4
+ A Badano1, M Lago1, E Sizikova1, JG Delfino1, S Guan1
5
+ and MA Anastasio2 and B Sahiner1
6
+ 1Division of Imaging, Diagnostics, and Software Reliability, Office of Science and
7
+ Engineering Laboratories, Center for Devices and Radiological Health,
8
+ U. S. Food and Drug Administration, Silver Spring, MD 20993
9
+ 2Department of Bioengineering, The Grainger College of Engineering, University
10
+ of Illinois, Urbana, IL 61801
11
+ E-mail: [email protected]
12
+ 23 January 2023
13
+ Abstract.
14
+ Randomized clinical trials,
15
+ while often viewed as the highest
16
+ evidentiary bar by which to judge the quality of a medical intervention, are
17
+ far from perfect.
18
+ In silico imaging trials are computational studies that seek
19
+ to ascertain the performance of a medical device by collecting this information
20
+ entirely via computer simulations. The benefits of in silico trials for evaluating new
21
+ technology include significant resource and time savings, minimization of subject
22
+ risk, the ability to study devices that are not achievable in the physical world,
23
+ allow for the rapid and effective investigation of new technologies and ensure
24
+ representation from all relevant subgroups.
25
+ To conduct in silico trials, digital
26
+ representations of humans are needed.
27
+ We review the latest developments in
28
+ methods and tools for obtaining digital humans for in silico imaging studies. First,
29
+ we introduce terminology and a classification of digital human models. Second,
30
+ we survey available methodologies for generating digital humans with healthy and
31
+ diseased status, and examine briefly the role of augmentation methods. Finally,
32
+ we discuss the trade-offs of four approaches for sampling digital cohorts and the
33
+ associated potential for study bias with selecting specific patient distributions.
34
+ Social media blur (100-w): From digital twins to other digital humans for
35
+ in silico trials: we review methods and tools for obtaining stochastic humans for
36
+ digital cohorts [LINK]
37
+ Submitted to: PRGB
38
+ arXiv:2301.08719v1 [cs.AI] 20 Jan 2023
39
+
40
+ CONTENTS
41
+ 2
42
+ Contents
43
+ 1
44
+ Introduction
45
+ 3
46
+ 2
47
+ Terminology
48
+ 4
49
+ 3
50
+ Representations
51
+ 4
52
+ 4
53
+ Individual models
54
+ 5
55
+ 4.1
56
+ Personalized models
57
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
+ 5
59
+ 4.2
60
+ Family models
61
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
+ 5
63
+ 5
64
+ Population models
65
+ 6
66
+ 5.1
67
+ Image-based models
68
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
+ 6
70
+ 5.1.1
71
+ Image-based parametric models . . . . . . . . . . . . . . . . . .
72
+ 6
73
+ 5.1.2
74
+ Image-based generative models . . . . . . . . . . . . . . . . . .
75
+ 7
76
+ 5.2
77
+ Knowledge-based models . . . . . . . . . . . . . . . . . . . . . . . . . .
78
+ 8
79
+ 6
80
+ Modeling disease
81
+ 9
82
+ 6.1
83
+ Image-based models of disease . . . . . . . . . . . . . . . . . . . . . . .
84
+ 9
85
+ 6.2
86
+ Knowledge-based models of disease . . . . . . . . . . . . . . . . . . . .
87
+ 10
88
+ 7
89
+ Role of augmentation methods
90
+ 10
91
+ 8
92
+ Considerations for sampling digital cohorts
93
+ 11
94
+ 9
95
+ Summary and conclusions
96
+ 12
97
+
98
+ CONTENTS
99
+ 3
100
+ 1. Introduction
101
+ Two decades ago, in the epilogue of their seminal
102
+ textbook on image science [1], Barrett and Myers
103
+ pointed out that in the future, sport games might be
104
+ played with simulated athletes. The advancement of
105
+ computer graphics and simulation technologies sparked
106
+ the notion that perhaps the excitement of a real-life
107
+ sports event could be conducted in the simulation
108
+ space with digital models of athletes.
109
+ Since then,
110
+ continuous advances in computer processing power and
111
+ modeling techniques have taken place, driven primarily
112
+ by entertainment applications [2] and quickly becoming
113
+ a significant component of research and development
114
+ (R&D) efforts in a variety of industries‡.
115
+ Industries
116
+ that have widely adopted computational modeling and
117
+ in silico methods throughout the product life-cycle
118
+ include automotive [3] and manufacturing [4] among
119
+ others [5]. Medicine lags considerably behind [6] due,
120
+ in part, to model complexity, challenging validation,
121
+ associated potential risks for new devices and drugs,
122
+ and lack of consensus and regulatory standards.
123
+ Randomized clinical trials, while often viewed
124
+ as the highest evidentiary bar by which to judge
125
+ the quality of a medical intervention, are far from
126
+ perfect. Common causes of failure include safety issues,
127
+ difficulties with patient recruitment, enrollment, and
128
+ retention [7]. In addition, clinical trials can suffer from
129
+ under-representation of rare subpopulations [8]. These
130
+ limitations represent a unique opportunity to develop
131
+ in silico trials that are completed as planned, safely,
132
+ and that include digital cohorts with a representative
133
+ distribution of subject characteristics and numbers
134
+ large enough for appropriate statistical power.
135
+ As
136
+ pointed out in [9], in silico data has the potential to
137
+ address lack of data availability, sharing mechanisms
138
+ and privacy challenges associated with the use of
139
+ medical information.
140
+ In silico imaging trials are computational studies
141
+ that seek to ascertain the performance of a medical
142
+ device for the intended population, collecting this
143
+ information entirely in the digital world via computer
144
+ simulations. The benefits of in silico imaging trials for
145
+ evaluating new technology include significant resource
146
+ and time savings, minimization of subject risk, and
147
+ ethical considerations [10, 11].
148
+ Moreover, in silico
149
+ trials can be used to study devices that do not
150
+ yet exist or are not practically attainable in the
151
+ (limited) physical world, allow for the rapid and
152
+ effective investigation of new technologies [11, 12,
153
+ 13], and facilitate representation from all relevant
154
+ subpopulations.
155
+ Each one of these benefits is an
156
+ ‡ To date, Superbowl games are played with physical-world
157
+ athletes, in part due to the difficulty of conveying real-life
158
+ personal struggle, an essential component of the entertainment
159
+ context for sport players and teams (see, for instance, here).
160
+ essential consideration within the context of the
161
+ regulatory evaluation of medical technology [11].
162
+ The realization that computational models of
163
+ humans would take center stage in medical imaging
164
+ system assessment is not new.
165
+ Full optimization of
166
+ imaging systems for specific medical tasks requires
167
+ objects
168
+ (physical
169
+ or
170
+ digital)
171
+ that
172
+ represent
173
+ the
174
+ variability seen in patients.
175
+ For many decades,
176
+ scientists have relied on practical and simpler versions
177
+ of patients [14]. However, recent advances in computer
178
+ processing power and simulation methods are now
179
+ facilitating the development of more detailed and
180
+ realistic patient models that are based on digital
181
+ stochastic descriptions of the model components. For
182
+ instance, a recent report demonstrated the feasibility of
183
+ an in silico trial, the Virtual Imaging Clinical Trial for
184
+ Regulatory Evaluation (VICTRE), as an alternative
185
+ approach to establish regulatory evidence in support
186
+ of medical imaging products [15].
187
+ There are numerous parallels between digital-
188
+ and physical-world trials.
189
+ Fundamentally, in silico
190
+ trials must include the same essential elements of
191
+ well-designed physical-world clinical trials.
192
+ Firstly,
193
+ the population of subjects for whom the new device
194
+ or technology is intended must be defined.
195
+ The
196
+ study design must contain clear rules for selection and
197
+ rejection of subjects from a distribution of healthy and
198
+ diseased subjects.
199
+ However, in silico trials are not
200
+ subject to effects from covariates in patient selection.
201
+ For
202
+ instance,
203
+ a
204
+ common
205
+ problem
206
+ in
207
+ evaluating
208
+ screening tests meant for asymptomatic subjects is
209
+ that a portion of the enrolled population might be
210
+ symptomatic [16] with the potential for verification
211
+ bias [17]. Secondly, when there are two technologies
212
+ that are being compared, i.e., a new, yet unproven
213
+ technology and a comparator technology currently in
214
+ clinical use, both must be unambiguously defined.
215
+ A good choice for comparator technology should be
216
+ associated with accurate representations of the device
217
+ characteristics as supported by validation studies [18].
218
+ Thirdly, the study requires a definition of the users
219
+ of the device’s outcome (i.e., images in the case of an
220
+ imaging device trial).
221
+ These first three components
222
+ reflect the physical intended use of the device under
223
+ investigation, i.e., the intended populations of subjects,
224
+ the intended device comparison, and the intended
225
+ image interpreters that will be using the device in the
226
+ physical world. Finally, whether physical or digital, the
227
+ trial design must provide a definition of the primary
228
+ outcome to be evaluated, a protocol and statistical
229
+ analysis associated with the trial, and an analysis of
230
+ the risk and benefits introduced by the device under
231
+ investigation.
232
+ Both
233
+ physical
234
+ and
235
+ in
236
+ silico
237
+ studies
238
+ require
239
+ enrollment
240
+ of
241
+ representative
242
+ subjects.
243
+ In
244
+ this
245
+
246
+ CONTENTS
247
+ 4
248
+ review, we survey the latest developments in methods
249
+ and
250
+ tools
251
+ for
252
+ generating
253
+ the
254
+ cohorts
255
+ of
256
+ digital
257
+ humans
258
+ for
259
+ imaging
260
+ studies
261
+ that
262
+ represent
263
+ the
264
+ variability of physical-world subject populations. We
265
+ refer to the digital cohorts consisting of digital
266
+ humans (realizations of the digital human models) as
267
+ “stochastic humans”. Assessment of new technology
268
+ and the regulatory evaluation of that technology
269
+ requires establishing performance levels for intended
270
+ populations and, therefore, necessitates computational
271
+ models that allow sampling of the parameter space
272
+ defining the subject population in the physical world.
273
+ We propose to name these models digital humans as
274
+ opposed to digital replicas or twins to avoid confusion.
275
+ The review is organized as follows.
276
+ First,
277
+ we introduce terminology and representation models
278
+ regarding
279
+ the
280
+ different
281
+ types
282
+ of
283
+ digital
284
+ humans
285
+ described throughout the article. Second, we survey
286
+ available methodologies for generating digital humans
287
+ with healthy status and for generating diseased cases.
288
+ Then, we briefly discuss the role of augmentation
289
+ methods and conclude with an analysis of sampling
290
+ techniques that may be used to generate the digital
291
+ cohorts for evaluating the performance of imaging
292
+ devices.
293
+ 2. Terminology
294
+ A variety of terminologies are being used or proposed
295
+ for describing digital representations of humans in
296
+ medicine and other fields.
297
+ In the literature, some
298
+ of these are often used without the benefit of a
299
+ clear definition and,
300
+ in some instances,
301
+ wrongly
302
+ interchangeably.
303
+ We propose to use the term stochastic digital
304
+ human to denote digital representations of humans (or
305
+ human body parts) generated from multiple random
306
+ outputs by sampling known distributions for the
307
+ model characteristics matching the variability observed
308
+ in human populations.
309
+ In contrast, non-stochastic
310
+ representations are deterministic digital versions of a
311
+ single physical exemplar (e.g., a model of a human
312
+ body at a given time) or a group (or family) of
313
+ physical exemplars which are differentiated by varying
314
+ physical parameters.
315
+ Contrary to other terms and
316
+ concepts currently being discussed including digital
317
+ families, avatars, chimeras, and digital twins, the
318
+ concept of a stochastic digital human represents an
319
+ approach for in silico trials and regulatory evaluation
320
+ that estimates the performance of an imaging device for
321
+ a population of subjects rather than for an individual
322
+ patient, thus incorporating the variability observed in
323
+ the population.
324
+ We propose to classify all digital humans as
325
+ either individual or population models (see Figure 1).
326
+ Individual models are necessarily image-based while
327
+ population models can be derived either from images
328
+ or from knowledge of the fundamental characteristics
329
+ that define the relevant features of a human.
330
+ Note
331
+ that we will use the term digital human to refer to the
332
+ models even if the represented object is a part of the
333
+ body or the whole body of a subject.
334
+ 3. Representations
335
+ Physical objects (including humans) can be repre-
336
+ sented using continuous variables.
337
+ We consider the
338
+ models of humans as continuous in space (r) and time
339
+ (t) and described by a coefficient vector affecting a set
340
+ of model characteristics:
341
+ fm(r, t) ≈
342
+ N
343
+
344
+ n=1
345
+ θnφn(r, t).
346
+ (1)
347
+ Here, N is the dimension of the approximate finite-
348
+ dimensional representation of the object, and the
349
+ subscript m indicates the modeling approximation to
350
+ differentiate from the actual object f(r, t).
351
+ The collection of expansion functions {φn(r, t)}N
352
+ n=1
353
+ is employed to form fm(r, t), and θn denotes the n-th
354
+ component of the N-dimensional expansion coefficient
355
+ vector θ. The quantity fm(r, t) constitutes a discrete
356
+ representation of a digital human that can be readily
357
+ displayed on a computer or digitally processed. For the
358
+ case where the expansion functions are defined as in-
359
+ dicator functions that describe non-overlapping space-
360
+ time voxels, θ can sometimes be interpreted as a digital
361
+ image whose components θn represent the integrated
362
+ value of the object over the support of the voxel.
363
+ More generally, a digital human model can be es-
364
+ tablished by integrating the continuous representation
365
+ fm(r, t) over a collection of N voxels as
366
+ fn =
367
+
368
+ vn
369
+ fm(r, t) d3r dt,
370
+ n = 1, · · · , N,
371
+ (2)
372
+ where vn denotes the support of the n-th spatial-
373
+ temporal voxel and fn denotes the n-th component of
374
+ a N-dimensional vector f that represents the digital
375
+ human.
376
+ As discussed below, the choice of the expansion
377
+ functions and associated expansion coefficients can be
378
+ specified in different ways, with the general goal of
379
+ making fm(r, t) an accurate approximation of f(r, t).
380
+ The expansion functions can depict geometry (e.g.,
381
+ size, morphology), material properties (e.g., x-ray
382
+ interaction cross-sections, elasticity) or other relevant
383
+ features (e.g., radioactivity, blood oxygenation levels).
384
+ For simplicity, we will consider that the stochastic
385
+ human does not vary with time and proceed only with
386
+
387
+ CONTENTS
388
+ 5
389
+ the spatial dimension r. However, the concepts that
390
+ follow can readily be generalized to model time-varying
391
+ descriptions.[19]
392
+ In practice, the coefficient vector θ can be modeled
393
+ as a random vector and the expansion functions
394
+ {φn(r)}N
395
+ n=1 as random processes.
396
+ Methodologies for
397
+ generating large cohorts of digital stochastic models of
398
+ humans for in silico imaging trials, including models
399
+ for organs and tissues with appropriate variability, can
400
+ rely on either sampling θ, φn or both from appropriate
401
+ distributions representing the intended population. We
402
+ can denote the cohort of digital stochastic humans as
403
+ follows,
404
+ {fs}S
405
+ s=1 =
406
+
407
+ n
408
+ θs
409
+ nφn(r),
410
+ (3)
411
+ where
412
+ s
413
+ denotes
414
+ a
415
+ particular
416
+ state
417
+ or
418
+ random
419
+ realization of a digital human in a cohort of size S.
420
+ When φn are known, analytically or numerically,
421
+ the stochastic models are referred to as procedural.
422
+ In this case, the modeler is left with choosing the
423
+ coefficient vector defining the object (θ). In cases for
424
+ which the defining characteristics are unknown, θn and
425
+ φn can be estimated from imaging data.
426
+ In the following sections, we review available
427
+ methods and tools for generating digital human models
428
+ and digital cohorts.
429
+ We present a classification of
430
+ available approaches in Figure 1.
431
+ 4. Individual models
432
+ Individual models attempt to create a digital replica
433
+ of a specific physical object. Individual models can be
434
+ categorized as personalized and family models. These
435
+ models are not stochastic since they are meant to
436
+ represent individual subjects with as much detail and
437
+ accuracy as achievable from the image data. In this
438
+ respect, the representation introduced in Section 3
439
+ applies only with S = 1 resulting in a single coefficient
440
+ vector (θn) defining the individual.
441
+ The
442
+ digital
443
+ representation
444
+ in
445
+ these
446
+ cases
447
+ is
448
+ typically a multidimensional voxelized array that
449
+ can be segmented into structures such as tissues
450
+ and organs.
451
+ Early attempts relied on geometrical
452
+ volumes represented by analytical expressions altered
453
+ to generate a wide variety of sizes and shapes. In other
454
+ words, φn are described by quadrics and θn represent
455
+ properties of the volumes defined by the surfaces (e.g.,
456
+ x-ray attenuation and scattering properties).
457
+ These
458
+ computational models have proved useful in areas of
459
+ quality control of imaging systems [20, 21] and in
460
+ radiation dosimetry [22]. Even with more sophisticated
461
+ geometrical structures [23, 24, 25] and more spatial
462
+ detail, these approaches lack the ability to accurately
463
+ represent the statistical variability found in humans,
464
+ organs and tissues. While these simpler models remain
465
+ practical and useful for some tasks, the lack of realism
466
+ and variability makes them unsuitable for generating
467
+ digital humans for in silico imaging trials.
468
+ 4.1. Personalized models
469
+ Personalized models aim to capture patient-specific
470
+ information in a digital representation [26]. Medical
471
+ digital
472
+ replicas
473
+ of
474
+ human
475
+ subjects
476
+ are
477
+ in
478
+ silico
479
+ representations of an individual in terms of anatomy
480
+ and physiology.
481
+ Sometimes referred to as digital
482
+ twins [27], these replicas are designed to simulate
483
+ parts or the whole body of a subject for prognostic
484
+ or predictive assessments.
485
+ These models including digital twins can be
486
+ continuously updated from multimodal medical if
487
+ the data characteristics change over time§.
488
+ Digital
489
+ twins are of interest in the context of evaluating and
490
+ selecting optimal medical treatments [28] or imaging
491
+ procedures [29] within clinical practice, and can also
492
+ be incorporated into other in silico applications [30].
493
+ For instance, Wang [31] suggested three applications
494
+ in the areas of medical imaging: optimal selection of
495
+ scanning techniques (so called “virtual comparative
496
+ scanning”), data sharing from in silico scanning of
497
+ the digital replica to the open source community,
498
+ and improvement of the regulatory process of image
499
+ reconstruction algorithms. Patient image datasets can
500
+ also be used to generate models of specific tissues and
501
+ organs. For instance, the Visible Human project [32]
502
+ was first made available in 1994 by the National
503
+ Library of Medicine (NIH) to facilitate anatomy
504
+ visualization applications and includes a detailed data
505
+ set of cross-sectional photographs of the human body.
506
+ 4.2. Family models
507
+ Personalized models of a small number of subjects can
508
+ be assembled into families to generate a collection of
509
+ a small number of digital humans spanning a common
510
+ set of parameters, such as subjects’ body size and age.
511
+ These models are based on image acquisitions using
512
+ different modalities including computed tomography
513
+ (CT), magnetic resonance imaging (MRI) and chest
514
+ radiographs (CXR).
515
+ An example of a family model is the Virtual
516
+ Family [33], released by FDA ∥ in 2012. The Virtual
517
+ Family consists of a set of detailed, anatomically
518
+ correct whole-body models of an adult male, an adult
519
+ female, and two children based on high-resolution
520
+ MRI data of healthy volunteers. Organs and tissues
521
+ § A related concept is an avatar, an artistic and sometimes
522
+ aspirational digital representation of the human in the digital
523
+ world for interactivity purposes.
524
+ ∥ https://www.fda.gov/about-fda/cdrh-offices/
525
+ virtual-family
526
+
527
+ CONTENTS
528
+ 6
529
+ Digital
530
+ humans for
531
+ in silico trials
532
+ Population
533
+ models
534
+ (stochastic)
535
+ Knowledge-
536
+ based
537
+ Image-based
538
+ Generative
539
+ Parametric
540
+ Individual
541
+ models (non-
542
+ stochastic)
543
+ Family
544
+ Personalized
545
+ Figure 1. Classification of ethods to generate digital humans for in silico clinical trials.
546
+ are represented using computer-aided design (CAD)
547
+ techniques where each component is a high-resolution,
548
+ non self-intersecting mesh.
549
+ In this case, the models
550
+ are used for electromagnetic, thermal and acoustic
551
+ simulations in the safety assessment of active and
552
+ passive medical implants [34].
553
+ Safety evaluations do
554
+ not require full sampling of the intended population
555
+ and can be performed with a small number of
556
+ exemplars, provided the exemplars adequately cover
557
+ the needed parameter space.
558
+ Similar approaches are utilized in efforts to
559
+ provide models of patient anatomy using patient
560
+ images
561
+ as
562
+ the
563
+ basis
564
+ for
565
+ development
566
+ of
567
+ cohorts
568
+ including using MRI and CT images for modeling
569
+ lungs [35] and torso [14]. More recently, image-derived
570
+ digital and physical models of the breast have been
571
+ proposed by Kiarashi [36] and Bliznakova [37].
572
+ In
573
+ this approach, a voxelized breast model is derived
574
+ from patient images through image segmentation for
575
+ determining the composition of each voxel [38, 39, 40,
576
+ 41, 42, 43, 44]. Patient-derived models are limited to
577
+ the imaging characteristics of the acquisition system
578
+ and are also affected by the imperfections of the
579
+ segmentation methods. The resulting models can also
580
+ be augmented with physiological features to facilitate
581
+ imaging studies involving contrast agents [45].
582
+ 5. Population models
583
+ Testing new imaging devices, however, requires the
584
+ availability of large digital cohorts of stochastic digital
585
+ humans that can be assembled to properly power
586
+ a study not only on the aggregate (i.e., for the
587
+ entire population), but also to analyze for specific
588
+ subgroups
589
+ with
590
+ notable
591
+ characteristics,
592
+ including
593
+ under-represented populations.
594
+ In this section, we
595
+ focus our attention on models suited for the generation
596
+ of large cohorts of digital humans to be enrolled within
597
+ in silico imaging trials.
598
+ 5.1. Image-based models
599
+ Image-based
600
+ models
601
+ estimate
602
+ and
603
+ sample
604
+ model
605
+ components from relevant characteristics within the
606
+ acquired
607
+ medical
608
+ images.
609
+ Image-based
610
+ models
611
+ estimate model components φn and θn in Eq. 3
612
+ from within the acquired medical images.
613
+ Whether
614
+ parametric or generative,
615
+ all image-based models
616
+ are
617
+ limited
618
+ by
619
+ the
620
+ quality
621
+ of
622
+ the
623
+ source
624
+ data
625
+ (i.e.
626
+ medical images),
627
+ including noise,
628
+ artifacts,
629
+ and contrast constraints,
630
+ and do not provide an
631
+ unequivocal mapping to the underlying tissues.
632
+ In
633
+ practice, the use of image-based models should also
634
+ acknowledge the limitation arising from the existence
635
+ of a null space of the imaging system [46].
636
+ The
637
+ null space, which typically arises from the mapping
638
+ of a continuous object to discrete data with an
639
+ imperfect image acquisition system, results in an
640
+ unavoidable loss of information regarding the object.
641
+ Given that the imaging system operator is only
642
+ partially known for most imaging systems and cannot
643
+ represent information obscured by the null space of
644
+ the imaging transformation, image-based models are
645
+ limited even when imaging system models include noise
646
+ measurement.
647
+ 5.1.1.
648
+ Image-based parametric models
649
+ In image-
650
+ based parametric models, the generation of cohorts is
651
+ achieved by creating models based on available sets
652
+ of patient imaging data and model modification tech-
653
+ niques including parametric deformation, morphing,
654
+ and registration.
655
+ Parametric models (also known as
656
+ stylized phantoms [47]) capture a population cohort by
657
+ a set of mathematical equations representing a series
658
+ of surfaces (e.g., splines) defining organs that are later
659
+
660
+ CONTENTS
661
+ 7
662
+ voxelized into a volumetric model. The popular 4D ex-
663
+ tended cardiac-torso (XCAT) phantom [48] is an exam-
664
+ ple of an image-based parametric model, and a survey
665
+ of other representations can be found in Kainz [49].
666
+ One limitation of this approach is that model
667
+ development is typically performed on a small number
668
+ of available patient images. For instance, Erickson [39]
669
+ presented a methodology to create a database of
670
+ anatomically variable 3D digital breast models from
671
+ dedicated breast CT images using a tissue classification
672
+ and segmentation algorithm and a fuzzy C-means
673
+ segmentation algorithm.
674
+ The study provided a
675
+ population of 224 breast phantoms incorporating
676
+ a range of breast types,
677
+ volumes,
678
+ densities,
679
+ and
680
+ parenchymal patterns.
681
+ However, using hundreds of
682
+ images might be insufficient to properly characterize
683
+ a population for statistically powered in silico imaging
684
+ trials across patient variability.
685
+ Some recently released image datasets include
686
+ a
687
+ larger
688
+ number
689
+ of
690
+ cases.
691
+ For
692
+ example,
693
+ the
694
+ Medical Information Mart for Intensive Care (MIMIC)
695
+ CXR dataset [50] contains 227,835 imaging studies
696
+ from 65,379 patients presenting to the Beth Israel
697
+ Deaconess Medical Center Emergency Department
698
+ between 2011–2016.
699
+ Similarly, the Medical Imaging
700
+ and Data Resource Center (MIDRC) effort [51] is
701
+ undertaking a large, multi-year, systematic effort to
702
+ collect high-quality COVID data, and over 100,000
703
+ imaging studies have been made public after 2 years
704
+ of work and with significant funding from the NIH.
705
+ However, data sets collected in these well-defined
706
+ areas are likely still insufficient to capture the total
707
+ variability in patient images and the large number of
708
+ subgroups one may find interesting to study ¶. This
709
+ limitation precludes the use of image-based parametric
710
+ models for accurately creating digital cohorts for large
711
+ scale in silico trials.
712
+ Generation of multiple realizations of humans to
713
+ constitute a cohort can be obtained by extending
714
+ image-derived models to create populations in a
715
+ statistical manner.
716
+ For instance,
717
+ Sturgeon [52]
718
+ developed synthetic breast models using principal
719
+ component analysis (PCA) to describe a small training
720
+ set of patient images.
721
+ In this approach,
722
+ each
723
+ existing patient breast CT volume was compactly
724
+ represented by the mean image plus a weighted sum of
725
+ eigenbreasts. The distribution of weights was sampled
726
+ to create synthesized breast phantoms that matched
727
+ fibroglandular density and noise power law exponent
728
+ distributions in real images. Hence, the distribution
729
+ of the synthetic model is determined by that of the
730
+ training data, and, therefore, might suffer from a lack
731
+ ¶ “I cannot breed them. So help me, I have tried. We need more
732
+ . . . than can ever be assembled. Millions, so we can be trillions
733
+ more,” Niander Wallace in Blade Runner 2049 (see https:
734
+ //www.imdb.com/title/tt1856101/characters/nm0001467).
735
+ of appropriate representations of cases at the tails of
736
+ the distribution (e.g., very large or very small, very
737
+ dense or very glandular breasts).
738
+ A related concept
739
+ from the computer vision and graphics community is
740
+ the statistical human body model, in which a vertex-
741
+ based model of the body surface is learned, typically
742
+ via PCA, from subjects’ input. The techniques rely on
743
+ linear blend skinning (LBS) to constrain the surface
744
+ vertex deformation with respect to a template bone
745
+ skeleton [53]. Created for non-medical purposes, these
746
+ parametric models are typically learned from training
747
+ examples of lower resolution than what is common in
748
+ medical imaging.
749
+ One alternative approach is to add deformation
750
+ morphing using an anatomic template [26]. Lee [47]
751
+ introduce a hybrid,
752
+ non-uniform rational B-spline
753
+ surface (NURBS) based phantom of an infant by
754
+ combining the expressiveness of a voxel phantom
755
+ with the flexibility of geometric manipulation and
756
+ organ positioning in a parametric phantom. Another
757
+ example is the XCAT Warp [54], where AI-assisted
758
+ unsupervised registration is used to warp XCAT to
759
+ patient CT images to capture a more broad set
760
+ of variations, compared to the existing organ and
761
+ model scaling offered by XCAT. These methods are
762
+ suitable for investigating digital-twin approaches where
763
+ individual models reflecting the characteristics of a
764
+ single individual are needed.
765
+ 5.1.2. Image-based generative models
766
+ Image-based
767
+ generative models attempt to synthesize a population
768
+ of stochastic digital humans from information con-
769
+ tained in medical images. Ideally this population cap-
770
+ tures the variability in the anatomy and tissue prop-
771
+ erties within a specified cohort of to-be-imaged sub-
772
+ jects. Consider a collection of N-dimensional digital
773
+ humans {fs}S
774
+ s=1 that represents the cohort of interest
775
+ as described by Eq. 3. This setting corresponds to a
776
+ practical situation in which an in silico study employs
777
+ a fully discrete representation of an imaging system in
778
+ which a finite-dimensional approximation of an object
779
+ is mapped to discrete image data.
780
+ As mentioned in
781
+ Section 3, each digital human fs can be interpreted as
782
+ a realization of a random vector f that is characterized
783
+ by an unknown probability density function pr(f). The
784
+ ability to sample from pr(f) to generate large ensem-
785
+ bles of objects for use in in silico imaging trials is, at
786
+ least conceptually, the ultimate objective of a stochas-
787
+ tic digital human model. Emerging generative methods
788
+ that utilize neural networks are being actively devel-
789
+ oped for this purpose [55]. We refer to these methods
790
+ as generative models.
791
+ A generative adversarial net-
792
+ work (GAN) is a type of generative model that has
793
+ recently been very popular for high-resolution image
794
+ synthesis [56], image translation [57, 58] and a number
795
+
796
+ CONTENTS
797
+ 8
798
+ of generative image applications [59]. Instead of explic-
799
+ itly modelling pr(f), which is difficult due to the high
800
+ dimensionality of f, GANs seek to define a stochas-
801
+ tic process for drawing samples. As such, GANs are
802
+ categorized as implicit generative models. Specifically,
803
+ GANs operate by mapping samples from an analyti-
804
+ cally tractable, low-dimensional distribution pr(z) to
805
+ the sought after samples of the high-dimensional dis-
806
+ tribution pr(f). Typically, pr(z) is specified as an in-
807
+ dependent and identically distributed (i.i.d.) standard
808
+ normal distribution, and therefore, samples of the ran-
809
+ dom vector z can be readily generated. The mapping
810
+ is usually implemented via a deep neural network re-
811
+ ferred to as the generator. Simultaneously with gen-
812
+ erator training, a discriminator network is trained to
813
+ discriminate between the real and generated examples.
814
+ Therefore, the training process is adversarial and is
815
+ approximately solving a min-max optimization prob-
816
+ lem [60]. In this case, a collection of training data (typ-
817
+ ically images) are utilized to learn how to sample from
818
+ an empirical distribution that approximates pr(f). An
819
+ excellent review of GAN applications for medical im-
820
+ age generation can be found in [61]. The adversarial
821
+ training process for GANs is inherently unstable and
822
+ can result in a phenomenon known as mode collapse,
823
+ in which the model fails to sample from certain re-
824
+ gions of probability space. In addition, the generated
825
+ samples are often of low resolution. A number of alter-
826
+ native generative models [62, 63] have been developed
827
+ to address these challenges in applications to medical
828
+ imaging [64]. For example, generative latent optimiza-
829
+ tion (GLO) [62] trains deep convolutional generators
830
+ by minimizing a simple reconstruction loss, improving
831
+ on GAN training instabilities. Diffusion models [63, 65]
832
+ learn a Markov chain of diffusion steps incrementally
833
+ adding and subtracting noise from data, significantly
834
+ outperforming GANs in output image quality [66]. To
835
+ date, almost all studies of deep generative models have
836
+ focused on synthesizing images rather than object rep-
837
+ resentations.
838
+ Limitations
839
+ There are several significant challenges to
840
+ employing GANs or other types of deep generative
841
+ models to establish stochastic human models.
842
+ A
843
+ fundamental and potentially limiting issue is the fact
844
+ that a collection of objects {fs}S
845
+ s=1 is generally not
846
+ available. Medical images are degraded by the presence
847
+ of measurement noise and/or reconstruction artifacts
848
+ which are a limitation of the imaging system and
849
+ not representative of the true underlying objects. As
850
+ such, conventional GANs that are directly trained
851
+ on degraded images will not learn how to sample
852
+ from the true distribution of objects.
853
+ In essence,
854
+ there is a “chicken and egg problem” when seeking to
855
+ establish stochastic human models via deep generative
856
+ models. There are two possible ways to circumvent this
857
+ limitation. First, one can utilize high-quality medical
858
+ images as surrogates of the objects.
859
+ For example,
860
+ in certain tomographic imaging modalities and under
861
+ specific conditions, images of object properties can
862
+ be reconstructed and accurately approximate the true
863
+ object properties.
864
+ In this case, GANs are trained
865
+ in the conventional manner, with images representing
866
+ the training data. If these images are representative
867
+ of the desired subject cohort, the GAN has the
868
+ opportunity to accurately capture object variability.
869
+ Second, one can modify the GAN training process
870
+ to incorporate the image degradation process in
871
+ training.
872
+ This approach, referred to as an ambient
873
+ GAN (AmGAN) [67], utilizes a generator network
874
+ that is augmented with a measurement operator.
875
+ Objects produced by the generator are mapped to
876
+ degraded image data, which are then compared with
877
+ experimental images by the discriminator network.
878
+ This permits establishment of an implicit generative
879
+ model that describes object randomness to be learned
880
+ from indirect and noisy measurements of the objects
881
+ themselves. In a preliminary study, the AmGAN was
882
+ explored for establishing stochastic object models from
883
+ imaging measurements for use in optimizing imaging
884
+ systems [67].
885
+ While promising,
886
+ the use of deep generative
887
+ models for in silico clinical trials is nascent and
888
+ there remain important topics for future investigation.
889
+ The objective assessment of these technologies is
890
+ largely lacking, and there is no consensus regarding
891
+ what statistical information can be reliably learned.
892
+ Additionally, current models have largely been applied
893
+ on 2D images and their extension to three-dimensions
894
+ is an ongoing topic of research.
895
+ Finally, as with
896
+ any data-driven method for establishing stochastic
897
+ human models, the presence of an imaging system null
898
+ space will fundamentally limit the ability of GANs
899
+ to describe certain components of the to-be-imaged
900
+ objects.
901
+ The extent to which the null space can be
902
+ mitigated also remains a topic of ongoing research [67].
903
+ 5.2. Knowledge-based models
904
+ Knowledge-based (also known as procedural) models
905
+ are constructed by sampling a set of φn and θn in
906
+ Eq. 3 from distributions representing the relevant
907
+ characteristics of the models.
908
+ The characteristics of
909
+ the distributions are often derived from physical or
910
+ biological measurements.
911
+ Procedural models allow
912
+ for an unlimited number of random realizations of
913
+ the object, leading to the possibility of creating large
914
+ cohorts of digital humans including the representation
915
+ of
916
+ rare
917
+ cases,
918
+ and
919
+ at
920
+ varying
921
+ spatial
922
+ resolution
923
+ which can properly account for small structures
924
+ that
925
+ might
926
+ be
927
+ relevant
928
+ for
929
+ the
930
+ specific
931
+ imaging
932
+
933
+ CONTENTS
934
+ 9
935
+ task being studied.
936
+ However,
937
+ they are usually
938
+ computationally intensive and require a large number
939
+ of parameters to be defined and estimated based
940
+ on prior knowledge.
941
+ Their accuracy and realism
942
+ depend on the parameter combinations and they can
943
+ sometimes generate completely unrealistic outputs.
944
+ Knowledge-based, procedural models are common
945
+ in modeling breast anatomy for imaging studies.
946
+ Graff [68] proposed a detailed model that begins
947
+ with defining an outside surface using a quadratic
948
+ hemisphere
949
+ shell
950
+ with
951
+ a
952
+ skin
953
+ layer
954
+ and
955
+ nipple
956
+ area overlaid.
957
+ The shape of the shell is then
958
+ adjusted for the overall breast volume and surface
959
+ curvature.
960
+ Using a Voronoi segmentation approach,
961
+ the interior is randomly divided into regions of
962
+ fat or glandular components, with each glandular
963
+ component containing a ductal network with terminal
964
+ duct
965
+ lobular
966
+ units.
967
+ The
968
+ volume
969
+ is
970
+ then
971
+ filled
972
+ with Cooper’s ligaments, chest muscle, and blood
973
+ vessels.
974
+ For the VICTRE trial [15],
975
+ the breast
976
+ model was sampled with a 50-µm voxel size.
977
+ The
978
+ implementation is initiated with a set of random seeds
979
+ and creates random voxelized breast anatomy objects
980
+ segmented into nine different tissue types.
981
+ Several
982
+ different modeling techniques are employed including
983
+ a non-isotropic Voronoi segmentation, recursive tree
984
+ branching algorithms to generate a ductal tree and
985
+ vascular network, and Perlin-noise perturbed random
986
+ spheroids to create fat lobules.
987
+ A similar effort by Bliznakova [37] describes a 3D
988
+ breast software model for x-ray breast imaging simula-
989
+ tions based on a breast external shape, ductal lobular
990
+ system, Cooper’s ligaments and pectoralis muscle. In
991
+ this approach, a mammographic background texture
992
+ is added to the tissue regions. Blood vessels, nerves
993
+ and lymphatics were not modeled explicitly. A simi-
994
+ lar, more simplistic approach, was developed by Bakic
995
+ [69] based on two ellipsoidal regions of large scale tissue
996
+ elements: predominantly adipose tissue and predomi-
997
+ nantly fibro-glandular tissue. Internal tissue structures
998
+ within these regions are approximated by a distribution
999
+ of elements including shells, blobs, and a ductal tree.
1000
+ Similar approaches have been reported for full-body
1001
+ models [47].
1002
+ 6. Modeling disease
1003
+ Disease states can be incorporated into digital cohorts
1004
+ using image-based methods or object-space models of
1005
+ the condition.
1006
+ The analogy between digital human
1007
+ models and disease models can be established if we
1008
+ consider lesions as continuous variables in space (r)
1009
+ and time (t), described by a coefficient vector affecting
1010
+ a set of lesion model characteristics. For simplicity, we
1011
+ will consider the disease independent (of the underlying
1012
+ anatomy where the disease is located) and additive.
1013
+ This assumption allows us to represent the disease
1014
+ cases as a sum of the stochastic human model and
1015
+ the disease component, an addition that is typically
1016
+ performed in the voxelized object model or directly
1017
+ within the model images. We recognize this approach
1018
+ is a known simplification, as disease processes often
1019
+ have significant impact on underlying tissues.
1020
+ Analogously to the description provided by Eq. 3,
1021
+ we can generate a set of disease models {ds} defined
1022
+ by:
1023
+ {ds}S
1024
+ s=1 =
1025
+
1026
+ n
1027
+ λs
1028
+ nψn(r, t),
1029
+ (4)
1030
+ where λs
1031
+ n is a disease characteristics coefficient vec-
1032
+ tor described by the function ψn over N parameters.
1033
+ Characteristics that define lesions can include geomet-
1034
+ ric functions (e.g., size, morphology), material proper-
1035
+ ties (e.g., x-ray interaction cross-sections, elasticity) or
1036
+ other relevant features (e.g., radioactivity, blood oxy-
1037
+ genation levels).
1038
+ Methodologies for generating and incorporating
1039
+ disease into cohorts of digital stochastic models rely
1040
+ on sampling λn and ψn from appropriate distributions
1041
+ representing the intended population. In some cases,
1042
+ disease models are specific to a given anatomical
1043
+ location or physiology corresponding to a digital
1044
+ human exemplar. In other cases, disease models are
1045
+ independent of the digital healthy human and are
1046
+ simply added or inserted multiple times into models
1047
+ of healthy anatomy. In both cases, diseased subjects
1048
+ are denoted by a cohort of digital stochastic humans
1049
+ with added disease components:
1050
+ {fs}S
1051
+ s=1 =
1052
+
1053
+ n
1054
+ θs
1055
+ nφn(r) +
1056
+
1057
+ n
1058
+ λs
1059
+ nψn(r),
1060
+ (5)
1061
+ where {fs}S
1062
+ s=1 is a cohort of diseased digital humans
1063
+ (for simplicity,
1064
+ and similarly as in the previous
1065
+ section,
1066
+ we choose to omit the time dimension).
1067
+ Similarly to normal models, when ψn are unknown,
1068
+ models of disease can be obtained relying on imaging.
1069
+ Alternatively, when ψn are known, analytically or
1070
+ numerically, the stochastic disease models are referred
1071
+ to as knowledge-based (also known as procedural).
1072
+ 6.1. Image-based models of disease
1073
+ Similar to image-based models of the human body,
1074
+ image-based models of disease rely on imaging data
1075
+ for extracting lesion information. Various techniques
1076
+ for capturing disease characteristics, particularly for
1077
+ breast
1078
+ lesions,
1079
+ have
1080
+ recently
1081
+ been
1082
+ explored
1083
+ [70,
1084
+ 71].
1085
+ Image-based neural network models for disease
1086
+ modelling have also been explored.
1087
+ For instance,
1088
+ Kadia [72] proposed a method to generate synthetic,
1089
+ infection-like patterns in the lung to create large
1090
+
1091
+ CONTENTS
1092
+ 10
1093
+ collections of 2D and 3D training examples for deep
1094
+ segmentation models.
1095
+ While image-based models
1096
+ contain features from actual patient data and thus
1097
+ may look more realistic at first glance, they suffer
1098
+ from limited resolution of the tumor model, largely
1099
+ determined by the imaging acquisition characteristics
1100
+ and limited number of available lesion morphologies,
1101
+ shapes, and sizes. In addition, image-based methods
1102
+ require an institutional review board (IRB) approval
1103
+ for obtaining and utilizing the diseased case data
1104
+ for research and development, which could delay or
1105
+ disadvantage some analysis efforts.
1106
+ 6.2. Knowledge-based models of disease
1107
+ Knowledge-based models of disease are constructed
1108
+ by sampling a set of known (or assumed known)
1109
+ ψn and λn in Eq. 4 from distributions representing
1110
+ the relevant characteristics of the disease,
1111
+ where
1112
+ distributions
1113
+ are
1114
+ often
1115
+ derived
1116
+ from
1117
+ physical
1118
+ or
1119
+ biological measurements. In contrast to image-based
1120
+ models, knowledge-based models enable the generation
1121
+ of unlimited numbers of lesion shapes with variable
1122
+ resolution.
1123
+ Examples of knowledge-based models
1124
+ include de Sisternes [73] spiculated breast cancer mass
1125
+ model and Sengupta [74] growing breast mass models.
1126
+ In [74], a breast lesion growth method based on
1127
+ biological and physiological phenomena accounting for
1128
+ the stiffness of surrounding anatomical structures was
1129
+ introduced. Breast ligaments were considered as rigid
1130
+ structures with elastic moduli in the range of 8x104-
1131
+ 4x105 kPa, while fat (elastic modulus varying from
1132
+ 0.5 to 25 kPa) and glandular tissues (elastic modulus
1133
+ varying from 7.5 to 66 kPa) constituting the more
1134
+ elastic regions of the breast. In this approach, tumor
1135
+ cells are less likely to grow through stiffer structures
1136
+ and instead, preferentially proliferate through the more
1137
+ elastic regions of the breast. Depending on the breast
1138
+ local anatomical structures, a range of unique lesion
1139
+ morphologies can be realized, allowing lesions to blend
1140
+ naturally into the anatomical regions.
1141
+ A common simplifying assumption is to define the
1142
+ disease model independent from other human model
1143
+ components.
1144
+ For example, in VICTRE [15] and in
1145
+ Sengupta [75], breast cancer mass lesions are added
1146
+ to the normal breast models by replacing voxels in
1147
+ the breast with voxels of the lesion model, without
1148
+ modification to adjacent voxels. This approach, while
1149
+ practical, does not account for the significant effect
1150
+ of the growing tumors on its surrounding tissues,
1151
+ typically visible in x-ray images as architectural
1152
+ distortions suggestive of abnormalities.
1153
+ To consider
1154
+ these effects, Eq. 5 needs to be modified to account for
1155
+ the interaction between normal and disease models.
1156
+ 7. Role of augmentation methods
1157
+ Augmentation methods start with an already-defined
1158
+ object, image or a set of defined objects, and generate
1159
+ new examples based on properties of inputs,
1160
+ as
1161
+ well as pre-defined or data-driven transformations (in
1162
+ contrast, digital human models start with only an
1163
+ object description, such as that given in Eq.
1164
+ 1).
1165
+ GAN-based models (see Section 5.1.2) are similar to
1166
+ augmentation methods in that they employ complex
1167
+ transformations derived with the help of training
1168
+ data sets.
1169
+ Augmentation methods typically employ
1170
+ analytically-defined or stochastic operators that do
1171
+ not require the use of neural networks, and can be
1172
+ applied both in the object domain and in the acquired
1173
+ image domain. Techniques in the latter group generate
1174
+ examples that could be obtained through an imaging
1175
+ system applied to an object with an accompanying
1176
+ degradation (e.g., smoothing, noise, reconstruction
1177
+ artifacts).
1178
+ Geometric transformations, intensity operations,
1179
+ and spatial filtering are among the most basic types
1180
+ of augmentation methods. Geometric transformations
1181
+ redefine the spatial relationships among voxels or
1182
+ geometrical locations in an object, and include affine
1183
+ (scaling, rotation, translation, reflection and shearing),
1184
+ as well as non-affine transformations, such as non-
1185
+ linear warping and morphing [76]. Intensity operations
1186
+ modify intensity values in a grayscale image or
1187
+ channel values (e.g., RGB or CMYK) in a color
1188
+ image. Examples include operations such as a family
1189
+ of gamma corrections, linear contrast adjustments,
1190
+ and remapping voxel values using a pre-defined or
1191
+ pseudo-random remapping curve [77, 78].
1192
+ Spatial
1193
+ filtering (using a filter mask) is another possibility for
1194
+ generating a new image or object based on an existing
1195
+ one. Spatial filtering can be linear (in which case it can
1196
+ be implemented by a convolution operation) or non-
1197
+ linear (e.g., median filtering), and can be implemented
1198
+ to smooth or sharpen to emphasize certain features.
1199
+ Finally,
1200
+ all three types of augmentations can be
1201
+ combined
1202
+ using
1203
+ a
1204
+ continuous
1205
+ mapping
1206
+ from
1207
+ the
1208
+ parameter space of transformations to the image or
1209
+ object space [79].
1210
+ Noise injection is an image augmentation method
1211
+ that enhances robustness of machine learning models
1212
+ and belongs to the family of domain randomization
1213
+ (DR) methods [80].
1214
+ Although noise injection after
1215
+ data acquisition does not generate a new member
1216
+ of a patient population, it can generate a different
1217
+ representation of an object in the image domain, and
1218
+ can be useful for augmenting patient cohorts obtained
1219
+ with in silico modeling. Some earlier and non-medical
1220
+ applications of noise injection in machine learning
1221
+ sought to augment the image data sets without
1222
+ regard to the physics of image acquisition [81, 82].
1223
+
1224
+ CONTENTS
1225
+ 11
1226
+ Other works used physics-based techniques for noise
1227
+ modeling and addition, improving realism of the noise
1228
+ appearance in the augmented images [83, 84].
1229
+ The
1230
+ main benefit of noise injection in the image domain
1231
+ for in silico trials is that it may allow for the rapid
1232
+ generation of different representations of the same
1233
+ object at different noise levels, leading to comparisons
1234
+ that may require less computational power compared
1235
+ to a full implementation of image acquisition physics
1236
+ applied to a digital stochastic object model. Addition
1237
+ of texture to a model in the object domain has
1238
+ similarities to noise injection in the image domain
1239
+ in that both techniques aim at producing noise-like
1240
+ properties (e.g., using a noise power spectrum in
1241
+ modeling), but are different in that addition of texture
1242
+ in the object domain does not attempt to model the
1243
+ noise from data acquisition [85].
1244
+ Combination of objects or images is another
1245
+ popular augmentation technique.
1246
+ In the object
1247
+ domain,
1248
+ combination
1249
+ of
1250
+ an
1251
+ object
1252
+ model
1253
+ for
1254
+ a
1255
+ normal (non-diseased) patient with a lesion model
1256
+ (as described in Section 6) can be thought of as an
1257
+ example of this type of augmentation.
1258
+ Generating
1259
+ new members of a patient population based on an
1260
+ eigenspace analysis of existing patient objects, as was
1261
+ done in [52] and described in Section 5.1.1 is another
1262
+ example of augmentation in the object domain.
1263
+ In
1264
+ the image domain, researchers investigated tools for
1265
+ the extraction of image parts from one clinical image
1266
+ and then their insertion into a new location on the
1267
+ same or different image. Pezeshk [86] used an image
1268
+ blending technique based on Poisson image editing to
1269
+ insert pulmonary nodules extracted from one chest CT
1270
+ exam into another.
1271
+ Augmenting a training data set
1272
+ for a machine learning model using this technique can
1273
+ improve the model performance on independent, real
1274
+ test datasets [87]. Likewise, Ghanian [88] used a similar
1275
+ technique to insert microcalcification clusters extracted
1276
+ from one mammogram into another mammogram,
1277
+ and showed that experienced observers cannot reliably
1278
+ distinguish
1279
+ between
1280
+ computationally
1281
+ inserted
1282
+ and
1283
+ native clusters. Besides the ability to convince experts,
1284
+ desirable properties for such combination techniques
1285
+ include acceptable noise properties in the combined
1286
+ image, plausible lesion-background combinations (that
1287
+ might require the intervention of an operator during
1288
+ the augmentation process), and a sufficient range
1289
+ of
1290
+ variation
1291
+ in
1292
+ the
1293
+ combined
1294
+ images
1295
+ that
1296
+ can
1297
+ be generated,
1298
+ which are often difficult to satisfy
1299
+ simultaneously.
1300
+ The
1301
+ main
1302
+ advantage
1303
+ of
1304
+ data
1305
+ augmentation
1306
+ methods is their practicality.
1307
+ For example, existing
1308
+ images or models both for normal and diseased
1309
+ patients can be manipulated (with relative ease) with
1310
+ geometric transformations leading to expanded patient
1311
+ representations.
1312
+ When implemented in the image
1313
+ domain, augmentation methods are fast, bypassing the
1314
+ stage where a model for the imaging system is applied
1315
+ to the object to yield an image. However, important
1316
+ shortcomings accompany these advantages.
1317
+ Unless
1318
+ deliberate attention is paid, augmentation methods
1319
+ may yield objects or images that are biologically or
1320
+ physically implausible. An extreme example may be
1321
+ an intensity transformation that results in bones with
1322
+ lower Hounsfield units than soft tissue.
1323
+ Although
1324
+ this can be avoided easily by using an intensity
1325
+ transformation that is monotonically increasing, most
1326
+ augmentation
1327
+ methods
1328
+ and
1329
+ transformations
1330
+ need
1331
+ careful planning to avoid such inconsistencies, and it
1332
+ may not be possible to avoid all inconsistencies. The
1333
+ consequences of such implausible images or objects
1334
+ on the results of an in silico imaging trial should be
1335
+ carefully considered. In addition, many augmentation
1336
+ techniques do not result in an independent, new
1337
+ representation from the population, but rather in
1338
+ representations that are highly dependent on the
1339
+ original objects or images used as inputs to the
1340
+ augmentation method. For example, lesion insertion
1341
+ methods described in the previous paragraph do not
1342
+ increase the number of lesions in the augmented
1343
+ data set, but only the lesion-background combinations
1344
+ that are generated.
1345
+ Again, the consequences of this
1346
+ limitation in the range of variation of generated images
1347
+ should be an important consideration in an in silico
1348
+ imaging trial that uses augmentation.
1349
+ 8. Considerations for sampling digital cohorts
1350
+ In silico studies require careful study planning and
1351
+ good
1352
+ clinical
1353
+ trial
1354
+ design.
1355
+ Even
1356
+ if
1357
+ and
1358
+ when
1359
+ methodologies for developing digital stochastic models
1360
+ of humans for imaging studies become widely available,
1361
+ generating digital cohorts needs an understanding of
1362
+ the trade-offs and potential for bias associated with
1363
+ selecting a specific distribution of study subjects. At
1364
+ the start of the design of an in silico imaging trial
1365
+ is the challenging task of scoping the population
1366
+ of the digital humans to be included in the study.
1367
+ For instance, a number of previous computational
1368
+ studies in breast imaging using procedural models used
1369
+ a uniform sampling with a desired average of 50%
1370
+ adipose and 50% fibroglandular voxels [89] with an
1371
+ uncompressed breast size of 14 cm. Another example
1372
+ of enrollment strategy can be found in the OpenVCT
1373
+ platform, where a range of size and glandularity is
1374
+ specified and then uniformly randomly sampled [90].
1375
+ A more recent in silico imaging study used sampling
1376
+ from a multi-class distribution identifying 4 different
1377
+ breast densities resulting in the characteristics of the
1378
+ intended population [15].
1379
+
1380
+ CONTENTS
1381
+ 12
1382
+ ������������������������ = 0.79
1383
+ ������������������������ = 0.89
1384
+ ∆������������ = 0.10
1385
+ ������������������������ = 0.84
1386
+ ������������������������ = 0.90
1387
+ ∆������������ = 0.06
1388
+ ������������������������ = 0.77
1389
+ ������������������������ = 0.88
1390
+ ∆������������ = 0.11
1391
+ ������������������������ = 0.99
1392
+ ������������������������ = 1.00
1393
+ ∆������������ = 0.01
1394
+ Figure 2. Effect of sampling strategies on performance assessment. Sampling is from a bimodal distribution of subjects (seen in
1395
+ 3D insert in the second panel from the left) described by 2 random parameters: (from left to right) uniform, matched, simpler, and
1396
+ narrow. Only 20 samples are shown here for ease of visualization. The gray shading depicts the distribution from which samples
1397
+ are taken in each of the 4 cases. AM, AT , and ∆A refer to the lesion detection average AUC for mammography, average AUC for
1398
+ digital breast tomosynthesis, and the average AUC difference, respectively. .
1399
+ Through in silico enrollment,
1400
+ digital cohorts
1401
+ {fs}S
1402
+ s=1 are generated.
1403
+ We denote the distribution
1404
+ of the population of digital humans as fd, where d
1405
+ represents the digital world, and the distribution of
1406
+ subjects in the intended population as fi.
1407
+ In this
1408
+ context, the goal of the in silico enrollment is to
1409
+ minimize the difference ∆f = |fd − fi| between the
1410
+ digital (d) and physical-world intended distributions,
1411
+ where
1412
+ |.|
1413
+ denotes
1414
+ a
1415
+ statistical
1416
+ distance
1417
+ measure.
1418
+ Clinical trial enrollment programs in the physical world
1419
+ require strategies to ensure a reasonable ∆f given
1420
+ available sampling resources. At first approximation,
1421
+ the
1422
+ in
1423
+ silico
1424
+ enrollment
1425
+ should
1426
+ approximate
1427
+ the
1428
+ intended distribution to a greater extent than the
1429
+ corresponding physical clinical trial enrollment.
1430
+ Analysis of ∆f corresponding to a given in silico
1431
+ enrollment strategy may be needed to understand how
1432
+ the difference across study subject distributions could
1433
+ affect the outcome of the trial. Here, we discuss a test
1434
+ case (see Figure 2) that compares different enrollment
1435
+ strategies for an in silico trial comparing digital
1436
+ mammography (DM) and digital breast tomosynthesis
1437
+ (DBT) derived from the VICTRE [15] project.
1438
+ We
1439
+ assume the populations (digital and physical) consist
1440
+ of normal and diseased subjects with a prevalence
1441
+ of 0.5.
1442
+ These two classes of patients are therefore
1443
+ sampled with equal probability.
1444
+ We calculate the
1445
+ difference of performance (measured using the area
1446
+ under the receiver operating characteristic curve, or
1447
+ AUC, in the task of differentiating between normal
1448
+ and disease subjects) between mammography and
1449
+ digital breast tomosynthesis. We consider the following
1450
+ four sampling approaches.
1451
+ In the first approach
1452
+ (uniform), fi is unknown and subjects are sampled
1453
+ uniformly within a range of interest, from all possible
1454
+ combinations of the input parameters that define
1455
+ f.
1456
+ In the second approach (matched), fi is known
1457
+ and subjects are sampled from the true underlying
1458
+ distribution.
1459
+ In the third approach (simpler), fi
1460
+ is unknown, but can be approximated by another,
1461
+ simpler distribution from which samples are obtained.
1462
+ Finally, in the fourth approach (narrow), fi is known
1463
+ to be a narrow, well-defined subset of the general
1464
+ population of subjects of particular interest (e.g., rare
1465
+ diseases or very obese subjects).
1466
+ For this simplified example, let fi be a bimodal
1467
+ distribution defined by two parameters (e.g., breast
1468
+ size and glandularity).
1469
+ Using Eq. 3, we can express
1470
+ the model through two expansion functions φ1,2, each
1471
+ associated with one of the two random variables
1472
+ affected by a random parameter set given by θ1,2. As
1473
+ seen in Figure 2, one of the modes of the distribution
1474
+ has twice the amplitude and half the variance of the
1475
+ other.
1476
+ The four density plots illustrate a top view
1477
+ of the distribution contour plot with the individual
1478
+ samples drawn using the four different sampling
1479
+ strategies. The results demonstrate that the choice of
1480
+ sampling strategy can have a significant effect on the
1481
+ difference in AUC, which for this example case, ranges
1482
+ from a difference of 0.01 (almost zero) to 0.11 in terms
1483
+ of device performance.
1484
+ 9. Summary and conclusions
1485
+ In silico trials are an emerging area of regulatory
1486
+ research that offer the ability to capture highly
1487
+ diverse patient distributions at a significant time and
1488
+ cost savings, compared to traditional physical clinical
1489
+ trials.
1490
+ To conduct in silico trials, realistic digital
1491
+ representations of humans are needed. In this paper,
1492
+ we reviewed and discussed existing techniques for
1493
+ generating digital humans, including disease models,
1494
+ for in silico imaging trials.
1495
+ Digital humans can
1496
+ be created using image-based or knowledge-based
1497
+ techniques.
1498
+ In summary, we favor techniques with
1499
+ object-based representations (rather than images of
1500
+
1501
+ 80
1502
+ 60■CONTENTS
1503
+ 13
1504
+ objects) in order to decouple the characteristics of the
1505
+ image acquisition system from the characteristics of
1506
+ the object (true representation of the physical-world
1507
+ human).
1508
+ In generating digital humans for in silico
1509
+ trials, one should consider the quality and quantity of
1510
+ the source data or knowledge used, and whether the
1511
+ models represent a single patient, a small cohort, or a
1512
+ sizable population with realistic patient variability.
1513
+ It remains a crucial next step to evaluate the
1514
+ quality of the digital human models and the images
1515
+ that can be generated with them. In particular, it is
1516
+ essential to carefully identify the patient distribution
1517
+ that the particular digital human model can and
1518
+ cannot capture, in order to prevent misuse and ensure
1519
+ patient safety.
1520
+ We need to study to what extent
1521
+ model-derived data contributes to our understanding of
1522
+ performance levels for populations with rare diseases or
1523
+ for populations underrepresented in traditional clinical
1524
+ trials.
1525
+ Future work should examine the ethical and
1526
+ safety considerations of relying on digital humans for
1527
+ clinical trials. Overall, the use of in silico imaging trials
1528
+ and in silico trials in medicine is a rapidly developing
1529
+ field and has the potential to address many of the
1530
+ emerging challenges in the regulatory evaluation of
1531
+ medical devices.
1532
+ References
1533
+ [1] H. H. Barrett and K. J. Myers, Foundations of image
1534
+ science. John Wiley & Sons, 2013.
1535
+ [2] N. Magnenat-Thalmann and D. Thalmann, Handbook of
1536
+ virtual humans. John Wiley & Sons, 2005.
1537
+ [3] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and
1538
+ V. Koltun, “Carla: An open urban driving simulator,”
1539
+ in Conference on robot learning, pp. 1–16, PMLR, 2017.
1540
+ [4] C. Cimino,
1541
+ E. Negri,
1542
+ and L. Fumagalli,
1543
+ “Review of
1544
+ digital twin applications in manufacturing,” Computers
1545
+ in Industry, vol. 113, p. 103130, 2019.
1546
+ [5] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin
1547
+ in industry:
1548
+ State-of-the-art,” IEEE Transactions on
1549
+ industrial informatics, vol. 15, no. 4, pp. 2405–2415,
1550
+ 2018.
1551
+ [6] A. Thelen, X. Zhang, O. Fink, and et al., “A comprehensive
1552
+ review of digital twin - part 1: modeling and twinning
1553
+ enabling technologies,” Struct Multidisc Optim, 2022.
1554
+ [7] J. Fan, X. Liu, Y. Li, H. Xia, R. Yang, J. Li, and Y. Zhang,
1555
+ “Quality problems of clinical trials in china: evidence
1556
+ from quality related studies,” Trials, vol. 23, no. 1, pp. 1–
1557
+ 11, 2022.
1558
+ [8] U. Food, D. Administration, et al., “Diversity plans to im-
1559
+ prove enrollment of participants from underrepresented
1560
+ racial and ethnic populations in clinical trials; draft guid-
1561
+ ance for industry; availability,” 2022.
1562
+ [9] J.-F. Rajotte, R. Bergen, D. L. Buckeridge, K. El Emam,
1563
+ R. Ng, and E. Strome, “Synthetic data as an enabler
1564
+ for machine learning applications in medicine,” Iscience,
1565
+ vol. 25, no. 11, 2022.
1566
+ [10] E. Abadi, W. P. Segars, B. M. Tsui, P. E. Kinahan,
1567
+ N. Bottenus, A. F. Frangi, A. Maidment, J. Lo, and
1568
+ E. Samei, “Virtual clinical trials in medical imaging:
1569
+ a review,” Journal of Medical Imaging, vol. 7, no. 4,
1570
+ p. 042805, 2020.
1571
+ [11] A. Badano, “In silico imaging clinical trials: cheaper, faster,
1572
+ better, safer, and more scalable,” Trials, vol. 22, no. 1,
1573
+ pp. 1–7, 2021.
1574
+ [12] E. Abadi, W. P. Segars, G. M. Sturgeon, J. E. Roos, C. E.
1575
+ Ravin, and E. Samei, “Modeling lung architecture in the
1576
+ XCAT series of phantoms: Physiologically based airways,
1577
+ arteries and veins,” IEEE Trans. Med. Imaging, vol. 37,
1578
+ pp. 693–702, Mar. 2018.
1579
+ [13] L. Wedlund and J. Kvedar, “Simulated trials:
1580
+ in silico
1581
+ approach adds depth and nuance to the rct gold-
1582
+ standard,” NPJ digital medicine, vol. 4, no. 1, 2021.
1583
+ [14] W. P. Segars and B. M. Tsui, “Mcat to xcat: The evolution
1584
+ of 4-d computerized phantoms for imaging research,”
1585
+ Proceedings of the IEEE, vol. 97, no. 12, pp. 1954–1968,
1586
+ 2009.
1587
+ [15] A.
1588
+ Badano,
1589
+ C.
1590
+ G.
1591
+ Graff,
1592
+ A.
1593
+ Badal,
1594
+ D.
1595
+ Sharma,
1596
+ R. Zeng, F. W. Samuelson, S. J. Glick, and K. J.
1597
+ Myers, “Evaluation of digital breast tomosynthesis as
1598
+ replacement of full-field digital mammography using an
1599
+ in silico imaging trial,” JAMA network open, vol. 1,
1600
+ pp. e185474–e185474, 11 2018.
1601
+ [16] M. Pepe, “Evaluating technologies for classification and
1602
+ prediction in medicine,” Statistics in medicine, vol. 24,
1603
+ no. 24, pp. 3687–3696, 2005.
1604
+ [17] W. N. Arifin and U. K. Yusof, “Correcting for partial
1605
+ verification bias in diagnostic accuracy studies:
1606
+ A
1607
+ tutorial using r,” Statistics in Medicine, vol. 41, no. 9,
1608
+ pp. 1709–1727, 2022.
1609
+ [18] F. Berti, L. Antonini, G. Poletti, C. Fiuza, T. J. Vaughan,
1610
+ F. Migliavacca,
1611
+ L. Petrini,
1612
+ and G. Pennati,
1613
+ “How
1614
+ to validate in silico deployment of coronary stents:
1615
+ strategies and limitations in the choice of comparator,”
1616
+ Frontiers in Medical Technology, p. 37, 2021.
1617
+ [19] H. H. Barrett and L. Caucci,
1618
+ “Stochastic models for
1619
+ objects and images in oncology and virology: application
1620
+ to PI3K-Akt-mTOR signaling and COVID-19 disease,”
1621
+ Journal of Medical Imaging, vol. 8, no. S1, p. S16001,
1622
+ 2020.
1623
+ [20] L. A. Shepp and B. F. Logan, “The fourier reconstruction of
1624
+ a head section,” IEEE Transactions on Nuclear Science,
1625
+ vol. 21, no. 3, pp. 21–43, 1974.
1626
+ [21] J. Martin, M. Ruthven, R. Boubertakh, and M. E. Miquel,
1627
+ “Realistic dynamic numerical phantom for mri of the
1628
+ upper vocal tract,” Journal of Imaging, vol. 6, no. 9,
1629
+ 2020.
1630
+ [22] W. S. Snyder, M. R. Ford, G. G. Warner, and H. Fisher Jr,
1631
+ “Estimates of absorbed fractions for monoenergetic
1632
+ photon sources uniformly distributed in various organs
1633
+ of a heterogeneous phantom.,” tech. rep., Oak Ridge
1634
+ National Lab., Tenn., 1969.
1635
+ [23] M. Caon, “Voxel-based computational models of real human
1636
+ anatomy:
1637
+ a review,”
1638
+ Radiation and environmental
1639
+ biophysics, vol. 42, no. 4, pp. 229–235, 2004.
1640
+ [24] X. G. Zu, “The vip-man model-a digital human testbed for
1641
+ radiation siimulations,” SAE transactions, pp. 779–787,
1642
+ 2005.
1643
+ [25] X. George Xu, “Computational phantoms for organ dose
1644
+ calculations in radiation protection and imaging,” The
1645
+ Phantoms of Medical and Health Physics, pp. 225–262,
1646
+ 2014.
1647
+ [26] W. Fu, S. Sharma, E. Abadi, A.-S. Iliopoulos, Q. Wang,
1648
+ J. Y. Lo, X. Sun, W. P. Segars, and E. Samei, “iphantom:
1649
+ a framework for automated creation of individualized
1650
+ computational phantoms and its application to ct organ
1651
+ dosimetry,” IEEE Journal of Biomedical and Health
1652
+ Informatics, vol. 25, no. 8, pp. 3061–3072, 2021.
1653
+ [27] M.
1654
+ N.
1655
+ Kamel
1656
+ Boulos
1657
+ and
1658
+ P.
1659
+ Zhang,
1660
+ “Digital
1661
+ twins:
1662
+ from personalised medicine to precision public health,”
1663
+ Journal of Personalized Medicine, vol. 11, no. 8, p. 745,
1664
+ 2021.
1665
+ [28] M.
1666
+ Kamel
1667
+ Boulos
1668
+ and
1669
+ Z.
1670
+ P.,
1671
+ “Digital
1672
+ twins:
1673
+ From
1674
+
1675
+ CONTENTS
1676
+ 14
1677
+ personalised medicine to precision public health,” J Pers
1678
+ Med, vol. 11, no. 8, p. 745, 2021.
1679
+ [29] F.
1680
+ Pesapane,
1681
+ A.
1682
+ Rotili,
1683
+ S.
1684
+ Penco,
1685
+ L.
1686
+ Nicosia,
1687
+ and
1688
+ E. Cassano, “Digital twins in radiology,” Journal of
1689
+ Clinical Medicine, vol. 11, no. 21, p. 6553, 2022.
1690
+ [30] T. Erol, A. F. Mendi, and D. Do˘gan, “The digital twin
1691
+ revolution in healthcare,” in 2020 4th International
1692
+ Symposium on Multidisciplinary Studies and Innovative
1693
+ Technologies (ISMSIT), pp. 1–7, IEEE, 2020.
1694
+ [31] G. Wang, A. Badal, X. Jia, J. S. Maltz, J. Mueller, K. J.
1695
+ Myers, C. Niu, M. Vannier, P. Yan, Z. Yu, and R. Zeng,
1696
+ “Development of metaverse for intelligent healthcare,”
1697
+ Nature Machine Intelligence, vol. 4, p. 9220929, 2022.
1698
+ [32] V. Spitzer,
1699
+ M. J. Ackerman,
1700
+ A. L. Scherzinger,
1701
+ and
1702
+ D. Whitlock, “The visible human male:
1703
+ a technical
1704
+ report,” Journal of the American Medical Informatics
1705
+ Association, vol. 3, no. 2, pp. 118–130, 1996.
1706
+ [33] A. Christ, W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer,
1707
+ E. Neufeld, W. Rascher, R. Janka, W. Bautz, J. Chen,
1708
+ et al., “The virtual family, development of surface-
1709
+ based anatomical models of two adults and two children
1710
+ for dosimetric simulations,” Physics in Medicine and
1711
+ Biology, vol. 55, no. 2, p. N23, 2009.
1712
+ [34] K. Fujimoto, T. A. Zaidi, D. Lampman, J. W. Guag,
1713
+ S. Etheridge, H. Habara, and S. S. Rajan, “Comparison
1714
+ of sar distribution of hip and knee implantable devices
1715
+ in 1.5t conventional cylindrical-bore and 1.2t open-bore
1716
+ vertical mri systems,” Magnetic Resonance in Medicine,
1717
+ vol. 87, no. 3, pp. 1515–1528, 2022.
1718
+ [35] A.
1719
+ Duetschler,
1720
+ G.
1721
+ Bauman,
1722
+ O.
1723
+ Bieri,
1724
+ P.
1725
+ C.
1726
+ Cattin,
1727
+ S. Ehrbar, G. Engin-Deniz, A. Giger, M. Josipovic,
1728
+ C. Jud, M. Krieger, et al., “Synthetic 4dct (mri) lung
1729
+ phantom generation for 4d radiotherapy and image
1730
+ guidance investigations,” Medical physics, vol. 49, no. 5,
1731
+ pp. 2890–2903, 2022.
1732
+ [36] N. Kiarashi, A. Nolte, G. M. Sturgeon, W. P. Segars,
1733
+ S. V. Ghate, L. W. Nolte, E. Samei, and J. Y. Lo,
1734
+ “Development and application of a suite of 4-d virtual
1735
+ breast phantoms for optimization and evaluation of
1736
+ breast imaging systems,” IEEE Trans Med Imaging,
1737
+ vol. 33, no. 7, pp. 1401–9, 2014.
1738
+ [37] K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and
1739
+ N. Pallikarakis, “A three-dimensional breast software
1740
+ phantom for mammography simulation,”
1741
+ Physics in
1742
+ Medicine & Biology, vol. 48, no. 22, p. 3699, 2003.
1743
+ [38] C. M. Li, W. P. Segars, G. D. Tourassi, J. M. Boone,
1744
+ and J. T. Dobbins III, “Methodology for generating a
1745
+ 3d computerized breast phantom from empirical data,”
1746
+ Medical physics, vol. 36, no. 7, pp. 3122–3131, 2009.
1747
+ [39] D. W. Erickson, J. R. Wells, G. M. Sturgeon, E. Samei,
1748
+ J. T. Dobbins, W. P. Segars, and J. Y. Lo, “Population of
1749
+ 224 realistic human subject-based computational breast
1750
+ phantoms,” Medical physics, vol. 43, no. 1, pp. 23–32,
1751
+ 2016.
1752
+ [40] C. M. Hsu, M. L. Palmeri, W. P. Segars, A. I. Veress, and
1753
+ J. T. Dobbins III, “Generation of a suite of 3d computer-
1754
+ generated breast phantoms from a limited set of human
1755
+ subject data,” Medical physics, vol. 40, no. 4, p. 043703,
1756
+ 2013.
1757
+ [41] P. Elangovan, A. Mackenzie, D. R. Dance, K. C. Young,
1758
+ V. Cooke, L. Wilkinson, R. M. Given-Wilson, M. G.
1759
+ Wallis, and K. Wells, “Design and validation of realistic
1760
+ breast models for use in multiple alternative forced choice
1761
+ virtual clinical trials,” Physics in Medicine & Biology,
1762
+ vol. 62, no. 7, p. 2778, 2017.
1763
+ [42] E. Garc´ıa, C. Fedon, M. Caballo, R. Mart´ı, I. Sechopoulos,
1764
+ and O. Diaz, “Realistic compressed breast phantoms
1765
+ for medical physics applications,” in 15th International
1766
+ Workshop on Breast Imaging (IWBI2020), vol. 11513,
1767
+ pp. 30–37, SPIE, 2020.
1768
+ [43] A.
1769
+ Sarno,
1770
+ G.
1771
+ Mettivier,
1772
+ F.
1773
+ di
1774
+ Franco,
1775
+ A.
1776
+ Varallo,
1777
+ K. Bliznakova, A. M. Hernandez, J. M. Boone, and
1778
+ P. Russo, “Dataset of patient-derived digital breast
1779
+ phantoms
1780
+ for in silico studies in
1781
+ breast computed
1782
+ tomography, digital breast tomosynthesis, and digital
1783
+ mammography,”
1784
+ Medical
1785
+ Physics,
1786
+ vol.
1787
+ 48,
1788
+ no.
1789
+ 5,
1790
+ pp. 2682–2693, 2021.
1791
+ [44] M. Caballo,
1792
+ C. Rabin,
1793
+ C. Fedon,
1794
+ A. Rodr´ıguez-Ruiz,
1795
+ O. Diaz, J. M. Boone, D. R. Dance, and I. Sechopou-
1796
+ los, “Patient-derived heterogeneous breast phantoms for
1797
+ advanced dosimetry in mammography and tomosynthe-
1798
+ sis,” Medical physics, vol. 49, no. 8, pp. 5423–5438, 2022.
1799
+ [45] T. J. Sauer, E. Abadi, P. Segars, and E. Samei, “Anatomi-
1800
+ cally and physiologically informed computational model
1801
+ of hepatic contrast perfusion for virtual imaging trials,”
1802
+ Medical Physics, vol. 49, no. 5, pp. 2938–2951, 2022.
1803
+ [46] L. K. Tam, J. P. Stockmann, G. Galiana, and R. T.
1804
+ Constable, “Null space imaging:
1805
+ nonlinear magnetic
1806
+ encoding
1807
+ fields
1808
+ designed
1809
+ complementary
1810
+ to
1811
+ receiver
1812
+ coil sensitivities for improved acceleration in parallel
1813
+ imaging,” Magnetic resonance in medicine, vol. 68, no. 4,
1814
+ pp. 1166–1175, 2012.
1815
+ [47] C. Lee, D. Lodwick, D. Hasenauer, J. L. Williams, C. Lee,
1816
+ and W. E. Bolch, “Hybrid computational phantoms of
1817
+ the male and female newborn patient:
1818
+ Nurbs-based
1819
+ whole-body models,” Physics in Medicine & Biology,
1820
+ vol. 52, no. 12, p. 3309, 2007.
1821
+ [48] W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and
1822
+ B. M. Tsui, “4d xcat phantom for multimodality imaging
1823
+ research,” Medical physics, vol. 37, no. 9, pp. 4902–4915,
1824
+ 2010.
1825
+ [49] W. Kainz, E. Neufeld, W. E. Bolch, C. G. Graff, C. H. Kim,
1826
+ N. Kuster, B. Lloyd, T. Morrison, P. Segars, Y. S. Yeom,
1827
+ et al., “Advances in computational human phantoms and
1828
+ their applications in biomedical engineering—a topical
1829
+ review,” IEEE transactions on radiation and plasma
1830
+ medical sciences, vol. 3, no. 1, pp. 1–23, 2018.
1831
+ [50] A. E. Johnson, T. J. Pollard, S. J. Berkowitz, N. R.
1832
+ Greenbaum, M. P. Lungren, C.-y. Deng, R. G. Mark, and
1833
+ S. Horng, “Mimic-cxr, a de-identified publicly available
1834
+ database of chest radiographs with free-text reports,”
1835
+ Scientific data, vol. 6, no. 1, pp. 1–8, 2019.
1836
+ [51] “Medical
1837
+ imaging
1838
+ and
1839
+ data
1840
+ resource
1841
+ center
1842
+ (midrc).”
1843
+ https://www.midrc.org/. Accessed: 2023-01-10.
1844
+ [52] G. M. Sturgeon,
1845
+ S. Park,
1846
+ W. P. Segars,
1847
+ and J. Y.
1848
+ Lo, “Synthetic breast phantoms from patient based
1849
+ eigenbreasts,” Med Phys, vol. 44, no. 12, p. 6270–6279,
1850
+ 2017.
1851
+ [53] J. P. Lewis,
1852
+ M. Cordner,
1853
+ and N. Fong,
1854
+ “Pose space
1855
+ deformation: a unified approach to shape interpolation
1856
+ and skeleton-driven deformation,”
1857
+ in Proceedings of
1858
+ the 27th annual conference on Computer graphics and
1859
+ interactive techniques, pp. 165–172, 2000.
1860
+ [54] J. Chen, Y. Li, Y. Du, and E. C. Frey, “Generating
1861
+ anthropomorphic phantoms using fully unsupervised
1862
+ deformable image registration with convolutional neural
1863
+ networks,” Medical physics, vol. 47, no. 12, pp. 6366–
1864
+ 6380, 2020.
1865
+ [55] F. Galbusera,
1866
+ F. Niemeyer,
1867
+ M. Seyfried,
1868
+ T. Bassani,
1869
+ G. Casaroli, A. Kienle, and H.-J. Wilke, “Exploring
1870
+ the potential of generative adversarial networks for
1871
+ synthesizing radiological images of the spine to be used
1872
+ in in silico trials,”
1873
+ Frontiers in bioengineering and
1874
+ biotechnology, vol. 6, p. 53, 2018.
1875
+ [56] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan
1876
+ training for high fidelity natural image synthesis,” arXiv
1877
+ preprint arXiv:1809.11096, 2018.
1878
+ [57] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
1879
+ image-to-image translation using cycle-consistent adver-
1880
+ sarial networks,” in Proceedings of the IEEE interna-
1881
+
1882
+ CONTENTS
1883
+ 15
1884
+ tional conference on computer vision, pp. 2223–2232,
1885
+ 2017.
1886
+ [58] P.
1887
+ Isola,
1888
+ J.-Y.
1889
+ Zhu,
1890
+ T.
1891
+ Zhou,
1892
+ and
1893
+ A.
1894
+ A.
1895
+ Efros,
1896
+ “Image-to-image translation with conditional adversarial
1897
+ networks,” in Proceedings of the IEEE conference on
1898
+ computer vision and pattern recognition, pp. 1125–1134,
1899
+ 2017.
1900
+ [59] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial
1901
+ networks in computer vision: A survey and taxonomy,”
1902
+ ACM Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–
1903
+ 38, 2021.
1904
+ [60] I.
1905
+ Goodfellow,
1906
+ J.
1907
+ Pouget-Abadie,
1908
+ M.
1909
+ Mirza,
1910
+ B.
1911
+ Xu,
1912
+ D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
1913
+ “Generative adversarial networks,�� Communications of
1914
+ the ACM, vol. 63, no. 11, pp. 139–144, 2020.
1915
+ [61] N. K. Singh and K. Raza, “Medical image generation
1916
+ using generative adversarial networks: A review,” Health
1917
+ informatics: A computational perspective in healthcare,
1918
+ pp. 77–96, 2021.
1919
+ [62] P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam,
1920
+ “Optimizing the latent space of generative networks,”
1921
+ arXiv preprint arXiv:1707.05776, 2017.
1922
+ [63] J. Ho,
1923
+ A. Jain,
1924
+ and P. Abbeel,
1925
+ “Denoising diffusion
1926
+ probabilistic models,” Advances in Neural Information
1927
+ Processing Systems, vol. 33, pp. 6840–6851, 2020.
1928
+ [64] D.
1929
+ Li,
1930
+ A.
1931
+ Kar,
1932
+ N.
1933
+ Ravikumar,
1934
+ A.
1935
+ F.
1936
+ Frangi,
1937
+ and
1938
+ S. Fidler, “Federated simulation for medical imaging,” in
1939
+ International Conference on Medical Image Computing
1940
+ and
1941
+ Computer-Assisted
1942
+ Intervention,
1943
+ pp.
1944
+ 159–168,
1945
+ Springer, 2020.
1946
+ [65] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah,
1947
+ “Diffusion models in vision: A survey,” arXiv preprint
1948
+ arXiv:2209.04747, 2022.
1949
+ [66] P. Dhariwal and A. Nichol, “Diffusion models beat gans
1950
+ on image synthesis,” Advances in Neural Information
1951
+ Processing Systems, vol. 34, pp. 8780–8794, 2021.
1952
+ [67] W. Zhou, S. Bhadra, F. J. Brooks, H. Li, and M. A.
1953
+ Anastasio,
1954
+ “Learning stochastic object models from
1955
+ medical imaging measurements by use of advanced
1956
+ ambient generative adversarial networks,” Journal of
1957
+ Medical Imaging, vol. 9, no. 1, p. 015503, 2022.
1958
+ [68] C. G. Graff, “A new, open-source, multi-modality digital
1959
+ breast phantom,” in Medical Imaging 2016: Physics of
1960
+ Medical Imaging, vol. 9783, pp. 72–81, SPIE, 2016.
1961
+ [69] P. R. Bakic, K. J. Myers, S. J. Glick, and A. D. Maidment,
1962
+ “Virtual tools for the evaluation of breast imaging:
1963
+ state-of-the science and future directions,” pp. 518–524,
1964
+ Springer, Cham, 6 2016.
1965
+ [70] N.
1966
+ Dukov,
1967
+ K.
1968
+ Bliznakova,
1969
+ F.
1970
+ Feradov,
1971
+ I.
1972
+ Buliev,
1973
+ H. Bosmans, G. Mettivier, P. Russo, L. Cockmartin,
1974
+ and Z. Bliznakov, “Models of breast lesions based on
1975
+ three-dimensional x-ray breast images,” Physica Medica,
1976
+ vol. 57, pp. 80–87, 2019.
1977
+ [71] K. Bliznakova, N. Dukov, F. Feradov, G. Gospodinova,
1978
+ Z. Bliznakov, P. Russo, G. Mettivier, H. Bosmans,
1979
+ L. Cockmartin,
1980
+ A. Sarno,
1981
+ et al.,
1982
+ “Development of
1983
+ breast lesions models database,” Physica Medica, vol. 64,
1984
+ pp. 293–303, 2019.
1985
+ [72] D. Kadia, T. V. Nguyen, and V. Asari, “Synthesis for
1986
+ robust segmentation of infected lung region on small-
1987
+ scale data,” SSRM, 2022.
1988
+ [73] L. de Sisternes, J. G. Brankov, A. M. Zysk, R. A. Schmidt,
1989
+ R. M. Nishikawa, and M. N. Wernick, “A computational
1990
+ model to generate simulated three-dimensional breast
1991
+ masses,” Medical physics, vol. 42, no. 2, pp. 1098–1118,
1992
+ 2015.
1993
+ [74] A. Sengupta, D. Sharma, and A. Badano, “Computational
1994
+ model of tumor growth for in silico trials,” in Medical
1995
+ Imaging 2021: Physics of Medical Imaging, vol. 11595,
1996
+ pp. 1262–1270, SPIE, 2021.
1997
+ [75] A. Sengupta, D. Sharma, and A. Badano, “Computational
1998
+ model of tumor growth for in silico trials,” 2021.
1999
+ [76] G. Wolberg,
2000
+ “Geometric transformation techniques for
2001
+ digital images: A survey,” 1988.
2002
+ [77] P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway,
2003
+ and A. Haworth, “A review of medical image data
2004
+ augmentation techniques for deep learning applications,”
2005
+ J. Med. Imaging Radiat. Oncol., vol. 65, pp. 545–563,
2006
+ Aug. 2021.
2007
+ [78] L. S. Hesse, G. Kuling, M. Veta, and A. L. Martel,
2008
+ “Intensity
2009
+ augmentation
2010
+ to
2011
+ improve
2012
+ generalizability
2013
+ of
2014
+ breast
2015
+ segmentation
2016
+ across
2017
+ different
2018
+ MRI
2019
+ scan
2020
+ protocols,” IEEE Trans. Biomed. Eng., vol. 68, pp. 759–
2021
+ 770, Mar. 2021.
2022
+ [79] K. Tian, C. Lin, S. N. Lim, W. Ouyang, P. Dokania,
2023
+ and P. Torr, “A continuous mapping for augmentation
2024
+ design,” in Advances in Neural Information Processing
2025
+ Systems (M. Ranzato, A. Beygelzimer, Y. Dauphin,
2026
+ P. Liang, and J. W. Vaughan, eds.), vol. 34, pp. 13732–
2027
+ 13743, Curran Associates, Inc., 2021.
2028
+ [80] H. Noh, T. You, J. Mun, and B. Han, “Regularizing
2029
+ deep neural networks by noise: Its interpretation and
2030
+ optimization,” ArXiv, vol. abs/1710.05179, 2017.
2031
+ [81] F. J. Moreno-Barea, F. Strazzera, J. M. Jerez, D. Urda,
2032
+ and L. Franco, “Forward noise adjustment scheme for
2033
+ data augmentation,” in 2018 IEEE Symposium Series on
2034
+ Computational Intelligence (SSCI), pp. 728–734, 2018.
2035
+ [82] H.-J. Bae, C.-W. Kim, N. Kim, B. Park, N. Kim, J. B.
2036
+ Seo, and S. M. Lee, “A perlin noise-based augmentation
2037
+ strategy for deep learning with small data samples of
2038
+ HRCT images,” Sci. Rep., vol. 8, p. 17687, Dec. 2018.
2039
+ [83] A. O. Omigbodun, F. Noo, M. McNitt-Gray, W. Hsu,
2040
+ and S. S. Hsieh, “The effects of physics-based data
2041
+ augmentation on the generalizability of deep neural
2042
+ networks:
2043
+ Demonstration
2044
+ on
2045
+ nodule
2046
+ false-positive
2047
+ reduction,” Med Phys, vol. 46, pp. 4563–4574, Oct 2019.
2048
+ [84] Z. Fabian,
2049
+ R. Heckel,
2050
+ and M. Soltanolkotabi,
2051
+ “Data
2052
+ augmentation for deep learning based accelerated mri
2053
+ reconstruction with limited data,” in Proceedings of
2054
+ the 38th International Conference on Machine Learning
2055
+ (M. Meila and T. Zhang, eds.), vol. 139 of Proceedings
2056
+ of Machine Learning Research, pp. 3057–3067, PMLR,
2057
+ 18–24 Jul 2021.
2058
+ [85] E. Abadi, W. P. Segars, G. M. Sturgeon, B. Harrawood,
2059
+ A. Kapadia, and E. Samei, “Modeling “textured” bones
2060
+ in virtual human phantoms,” IEEE Transactions on
2061
+ Radiation and Plasma Medical Sciences, vol. 3, no. 1,
2062
+ pp. 47–53, 2019.
2063
+ [86] A. Pezeshk, B. Sahiner, R. Zeng, A. Wunderlich, W. Chen,
2064
+ and
2065
+ N.
2066
+ Petrick,
2067
+ “Seamless
2068
+ insertion
2069
+ of
2070
+ pulmonary
2071
+ nodules in chest ct images,” IEEE Transactions on
2072
+ Biomedical Engineering, vol. 62, no. 12, pp. 2812–2827,
2073
+ 2015.
2074
+ [87] A. Pezeshk, N. Petrick, W. Chen, and B. Sahiner, “Seamless
2075
+ lesion insertion for data augmentation in cad training,”
2076
+ IEEE Transactions on Medical Imaging, vol. 36, no. 4,
2077
+ pp. 1005–1015, 2017.
2078
+ [88] Z. Ghanian, A. Pezeshk, N. Petrick, and B. Sahiner,
2079
+ “Computational insertion of microcalcification clusters
2080
+ on mammograms:
2081
+ reader differentiation from native
2082
+ clusters
2083
+ and
2084
+ computer-aided
2085
+ detection
2086
+ comparison,”
2087
+ Journal of Medical Imaging, vol. 5, p. 1, nov 2018.
2088
+ [89] X.
2089
+ Gong,
2090
+ S.
2091
+ J.
2092
+ Glick,
2093
+ B.
2094
+ Liu,
2095
+ A.
2096
+ A.
2097
+ Vedula,
2098
+ and
2099
+ S. Thacker, “A computer simulation study comparing
2100
+ lesion detection accuracy with digital mammography,
2101
+ breast tomosynthesis, and cone-beam ct breast imaging,”
2102
+ Medical physics, vol. 33, no. 4, pp. 1041–1052, 2006.
2103
+ [90] B.
2104
+ Barufaldi,
2105
+ D.
2106
+ Higginbotham,
2107
+ P.
2108
+ R.
2109
+ Bakic,
2110
+ and
2111
+ A. D. A. Maidment, “OpenVCT: a GPU-accelerated
2112
+ virtual clinical trial pipeline for mammography and
2113
+
2114
+ CONTENTS
2115
+ 16
2116
+ digital breast tomosynthesis,” in Medical Imaging 2018:
2117
+ Physics of Medical Imaging (J. Y. Lo, T. G. Schmidt, and
2118
+ G.-H. Chen, eds.), vol. 10573, p. 1057358, International
2119
+ Society for Optics and Photonics, SPIE, 2018.
2120
+
YdFAT4oBgHgl3EQf3R5S/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
_9FQT4oBgHgl3EQf8TZV/content/tmp_files/2301.13446v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
_9FQT4oBgHgl3EQf8TZV/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
_NE1T4oBgHgl3EQf8gXW/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf,len=226
2
+ page_content='ON PERTURBATIONS RETAINING CONSERVATION LAWS OF DIFFTRENTIAL EQUATIONS ALEXEY SAMOKHIN Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
3
+ page_content=' The paper deals with perturbations of the equation that have a number of conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
4
+ page_content=' When a small term is added to the equation its conserved quantities usually decay at in- dividual rates, a phenomenon known as a selective decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
5
+ page_content=' These rates are described by the simple law using the conservation laws’ generating functions and the added term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
6
+ page_content=' Yet some perturbation may retain a specific quantity(s), such as energy, momentum and other physically important characteristics of solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
7
+ page_content=' We intro- duce a procedure for finding such perturbations and demonstrate it by examples including the KdV-Burgers equation and a system from magnetodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
8
+ page_content=' Some interesting properties of solutions of such perturbed equations are revealed and discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
9
+ page_content=' Keywords: conservation laws, perturbed equations, selective de- cay, traveling waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
10
+ page_content=' MSC[2010]: 35Q53, 35B36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
11
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
12
+ page_content=' Introduction Many physical systems are modeled using equations that have a sig- nificant number of conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
13
+ page_content=' Yet when an additional (usually dissipative) term is added to the equation its conserved quantities decay at individual rates, which are connected to their generating functions [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
14
+ page_content=' The famous example is the KdV equation (it has infinitely many conservation laws) and the KdV-Burgers equation (with additional, with respect to KdV, dissipative term and only one conservation law).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
15
+ page_content=' To be precise let E(u) = 0 be a system of equations describing an ideal (unperturbed) media state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
16
+ page_content=' A scalar H depending on u and its derivatives is a conservation law if for ⟨H⟩, the integral of H over some fixed spatial domain, ∂⟨H⟩ ∂t ���� E = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
17
+ page_content=' For the perturbed equation the quantity H is constant no more and ∂⟨H⟩ ∂t ̸= 0 is called the decay rate of H, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
18
+ page_content=' [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
19
+ page_content=' A perturbed state usually satisfies the equation E(u) + LF(u) = 0, where L is a small parameter diagonal matrix diag(λi);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
20
+ page_content=' for L = 0 we get the ideal state equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
21
+ page_content=' The decay rate depends on the additional term L F(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
22
+ page_content=' The connection between decay rate and LF(u) was called a ’balance law’ in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
23
+ page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
24
+ page_content='03547v1 [nlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
25
+ page_content='PS] 9 Jan 2023 2 ALEXEY SAMOKHIN This law expresses ∂t⟨H⟩ in terms of scalar product of LF(u) and the generating function g of the conserved quantity H, [1]: ∂⟨H⟩ ∂t = ⟨g · LF⟩ (1) Remarks The right-hand side of (1) is not unique: e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
26
+ page_content='g, one can get a different but equivalent form integrating by parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
27
+ page_content=' In the case of the integrand in the right-hand side of (1) is null or an exact form we get the situation when the conserved quantity ⟨H⟩ is conserved as well for the correspondent perturbed state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
28
+ page_content=' Let us restrict considerations to R[u], the ring of differential polynoms of u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
29
+ page_content=' Then all perturbations F retaining the conser- vation law with the generating function g must satisfy g · LFdx1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
30
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
31
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
32
+ page_content=' dxn ∈ Im(d), where d : Λn−1 → Λn and Λk are k-forms of spatial variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
33
+ page_content=' Of course, the intersection of the principal ideal g · R[u] with Im(d) is huge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
34
+ page_content=' A considerable difference in decay rates leads to a simple method, first discovered by Taylor, [4], for finding quasi-stationary states of plasma which are of great practical importance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
35
+ page_content=' He studied the model where the decay of energy E is monotonic but those of momentum M and helicity are not necessarily so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
36
+ page_content=' Such an inequality in decay rates leads to a distinct physical phenomenon of ’self–organization’ or quasi–stable states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
37
+ page_content=' There exist a very simple procedure for finding solutions of the above described behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
38
+ page_content=' It was suggested in [4], and is known as ’Taylor trick’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
39
+ page_content=' The procedure is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
40
+ page_content=' Taking into consideration their comparative decay rates, minimize E with M as constrain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
41
+ page_content=' Put δ(E + λM = 0), M and presumed con- stant, λ being Lagrange multiplier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
42
+ page_content=' This Euler–Lagrange equation is not necessarily compatible with the initial equation but nevertheless it gives a way for good approximations of self-organization phenomena.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
43
+ page_content=' There is a considerable number of publication in the field, see a recent paper [5] for recent developments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
44
+ page_content=' Another application of selective decay is given in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
45
+ page_content=' The problem is the behavior of the soliton which, while moving in non-dissipative and dispersion-constant medium encounters a finite-width barrier with varying dissipation and/or dispersion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
46
+ page_content=' beyond the layer dispersion is constant (but not necessarily of the same value) and dissipation is null.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
47
+ page_content=' The transmitted wave either retains the form of a soliton (though of different parameters) or scatters a into a number of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
48
+ page_content=' Using the relative decay of the KdV conserved quantities a simple algorithm to predict the number and amplitudes of resulting solitons was obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
49
+ page_content=' ON PERTURBATIONS RETAINING CONSERVATION LAWS 3 In [7] the selective decay approach was applied to some well-known equations of mathematical physics (KdV and KdV-Burgers equation, BBM and its dissipative generalization, two-dimensional generalized shallow water wave equation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
50
+ page_content=' It have showed that the Taylor trick extremals are associated with first-order PDEs and travelling wave so- lutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
51
+ page_content=' In this paper we search, for some popular equations, their low-order perturbations which retain a chosen conservation law (in a sense that the perturbed equation has the same conserved quantity as initial one).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
52
+ page_content=' Examples include KdV and its conserved energy or momentum and the Kadomtsev-Pogutse system of equation from magnetohydrodynamics with its three known conserved quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
53
+ page_content=' Some interesting properties of solutions of such perturbed equations are revealed and discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
54
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
55
+ page_content=' KdV and KdV-Burgers The generalized KdV equation (KdV-Burgers equation) considered here is of the form ut = 2uux + uxxx + λuxx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
56
+ page_content=' (2) The classical KdV equation corresponds to λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
57
+ page_content=' The first three conserved quantities for KdV are m = � +∞ −∞ u(x, t) dx — mass, M = � +∞ −∞ u2(x, t) dx — momentum, E = � +∞ −∞ � 2u3(x, t) − 3(ux(x, t))2� dx — energy, and there are infinite number of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
58
+ page_content=' The generating functions for the above conservation laws of the KdV are, up to multiplication constants, 1, u and u2 + uxx correspondingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
59
+ page_content=' As for the equation (2), it has a form of a conservation law, ut = Fx, the ”mass” � +∞ −∞ u dx is a conserved quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
60
+ page_content=' For a soliton this mass is equal to 12aγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
61
+ page_content=' But the impulse ⟨u2⟩ = � +∞ −∞ u2 dx declines monotonically: Mt = 1 2⟨u2⟩t = ⟨uut⟩ = ⟨u(u2 + uxx + λux)x⟩ = 2 3u3��+∞ −∞ − u2 x|+∞ −∞ − λ⟨u2 x⟩ = (3) By analogy, for the energy 4 ALEXEY SAMOKHIN Et = ⟨ � 2u3(x, t) − 3(ux(x, t))2� ⟩t = 6λ⟨uxx(u2 + uxx)⟩ (4) Thus the energy does not necessary declines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
62
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
63
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
64
+ page_content=' Transformations of KdV that retain momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
65
+ page_content=' Now let us find perturbations of the form F(u, ux, uxx) that retain momen- tum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
66
+ page_content=' Accordingly to the remark 2 above, the differential form λu · F(u, ux, uxx)dx must be exact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
67
+ page_content=' Thus u · F(u, ux, uxx) = Dx(A(u, ux)) (5) for some A(u, ux).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
68
+ page_content=' Here Dx = ∂ ∂x + ∞ � n=0 uxn+1 ∂ ∂uxn is the operator of the full differentiation with respect to x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
69
+ page_content=' Below we restrict the search to polynomials of u and its derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
70
+ page_content=' Then in (5) the polynomial Dx(A(u, ux)) is divisible by u, so A(u, ux) = u2B(u, ux).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
71
+ page_content=' On the other hand Dx(u2B(u, ux)) = 2uuxB(u, ux) + u2(ux ∂B ∂u + uxx ∂B ∂ux ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
72
+ page_content=' Hence the second order retaining momentum perturbation is defined by F(u, ux, uxx) = 2uxB(u, ux) + u(ux ∂B ∂u + uxx ∂B ∂ux ) for an arbitrary B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
73
+ page_content=' Note that F is linear in uxx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
74
+ page_content=' For instance, if B = ux the λ transformation of the KdV equation ut = 2uux + uxxx + λ(2u2 x + uuxx) (6) retains ⟨u2⟩ as its conserved quantity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
75
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
76
+ page_content=' This construction can be generalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
77
+ page_content=' If g is the gen- erating function for some conserved quantity Cl of an one-spational equation E, then F = g−1Dx(g2Φ) is the addendum to E which re- tains Cl, Φ being a arbitrary function of u and its derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
78
+ page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
79
+ page_content=' The equation (6) has travelling wave solutions, in par- ticular shock waves of the form 3 2λ � a tanh �a3λ2 + 3a λ2 t + ax � + 1 λ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
80
+ page_content=' (7) This shock moves to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
81
+ page_content=' If require u|−∞ = 0 then (7) becomes the shock wave 3 2λ2 � 1 + tanh � 4 λ2t + 1 λx �� ON PERTURBATIONS RETAINING CONSERVATION LAWS 5 with the velocity 4/λ, see figure 1, left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
82
+ page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
83
+ page_content=' The travelling wave solution Left: for the equation (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
84
+ page_content=' Right: For the equation (9), a = 1/2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
85
+ page_content=' λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
86
+ page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
87
+ page_content=' The perturbed equation has only translations in x and t as its point symmetries, but a lot of conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
88
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
89
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
90
+ page_content=' Transformations of KdV that retain energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
91
+ page_content=' Now for energy saving transformations of KdV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
92
+ page_content=' Since the generating function of energy is, up to a constant multiplier, u2 + uxx, one must solve (u2 + uxx) · F(u, ux, uxx, uxxx) = Dx(A(u, ux, uxx)) (8) for some A(u, ux, uxx), to find an low-order F(u, ux, uxx), the suitable transformation term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
93
+ page_content=' By analogy to the momentum case, the one pos- sibility is A = (u2 + uxx)2B F(u, ux, uxx) = 2Dx(u2+uxx)B+(u2+uxx)(ux ∂B ∂u +uxx ∂B ∂ux +uxxx ∂B ∂uxx ), for an arbitrary B = B(u, ux, uxx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
94
+ page_content=' If B = u then F = 5u2ux+2uuxxx+ uxuxx The corresponding transformed equation is ut = 2uux + uxxx + λ(5u2ux + 2uuxxx + uxuxx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
95
+ page_content=' (9) Its point symmetries are only translations in x and t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
96
+ page_content=' Remark 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
97
+ page_content=' The equation (9) has travelling wave solutions, in par- ticular — solutons of the form of a vertically shifted soliton u(x, t) = −6a2 tanh2(a(4a4·λt+x))+4a2 = 6a2 sech2(a(4a4·λt+x))−2a2 (10) found by Maple, with the velocity V = 4a4λ, see figure 1, right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
98
+ page_content=' 6 ALEXEY SAMOKHIN Yet it is not the whole answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
99
+ page_content=' Computer experiments demonstrate that an arbitrary initial datum for this equation scatters into a number of solitary peaks of different but constant height and velocity and a ’tail’ (see figures 2 and 3) — in a manner of the KdV itself, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
100
+ page_content=' [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
101
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
102
+ page_content=' Left: Initial profile 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
103
+ page_content='5 sech2(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
104
+ page_content='5x) for the equation (9), λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
105
+ page_content=' Right: Resulting profile at t = 6: single soliton-like peak of a constant form and velocity and an oscillating tail moving in opposite direction Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
106
+ page_content=' Left: Initial profile sech2(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
107
+ page_content='1x) for the equa- tion (9), λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
108
+ page_content=' Right: Resulting profile at t = 40: multiple soliton-like peaks of a constant form and velocity and (seemingly) no tail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
109
+ page_content=' The analytical description of these peaks is so far unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
110
+ page_content=' The reason is that the equation on travelling waves, u = u(x + V t), here V u′ = 2uu′ + u′′ + λ(5u2u′ + 2uu′′′ + u′u′′ can be readily integrated introducing the new dependent variable u′ = p(u) which leads to a linear first order ordinary differential equation on z(u) = p(u)p′(u), (2uλ + 1)z′ + λz = V − 5λu2 − 2u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
111
+ page_content=' ON PERTURBATIONS RETAINING CONSERVATION LAWS 7 But the resulting general solution looks hopelessly implicit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
112
+ page_content=' The likes of (10) arise in the case of a very special combination of the arbitrary constants entering this general solution, and such combinations are hard to discover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
113
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
114
+ page_content=' Two-dimensional MHD System Consider the Kadomtsev-Pogutse sysnem of equations � ∆ut + ux∆uy − uy∆ux + vy∆vx − vx∆vy = 0 vt + uxvy − uyvx = 0 (11) which describes quasi-stationary states of plasma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
115
+ page_content=' It has three conser- vation laws,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
116
+ page_content=' that is there are three non–trivial conserved densities (two of them depending on arbitrary functions): the total energy E (mag- netic plus kinetic energy),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
117
+ page_content=' generalized ’cross helicity’ Hc and mean magnetic potential A,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
118
+ page_content=' E = 1 2⟨u2 x + u2 y + v2 x + v2 y⟩ H = ⟨f ′(v) · (uxvx + uyvy)⟩ A = ⟨Φ(v)⟩ (12) Their generating functions are,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
119
+ page_content=' respective order,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
120
+ page_content=' � u ∆v � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
121
+ page_content=' � f(v) f ′(v)∆u � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
122
+ page_content=' � 0 Φ′(v) � (13) where f and Φ are arbitrary functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
123
+ page_content=' Let us seek transformations of (11) of the form � ∆ut + ux∆uy − uy∆ux + vy∆vx − vx∆vy = νF(u, v) vt + uxvy − uyvx = ηG(u, v) (14) Here F, G are functions of u(x, y, t), v(x, y, t) and their derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
124
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
125
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
126
+ page_content=' Energy-retaining transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
127
+ page_content=' In this instance ∂⟨E⟩/∂t = 0 implies (−νu · F − η∆v · G)dx ∧ dy = d(A(u, v)dy − B(u, v)dx) = (DxA(u, v) + DyB(u, v))dx ∧ dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
128
+ page_content=' (15) There are a lot of solutions to (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
129
+ page_content=' We restrict ourselves to some low-order examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
130
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
131
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
132
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
133
+ page_content=' Ortogonal transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
134
+ page_content=' One can always get zero right hand side in equation (15): just put F = η∆ and G = −νu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
135
+ page_content=' The vector (F, G) is orthogonal to the generating function so ∂⟨E⟩/∂t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
136
+ page_content=' It works if the number of any system of equations is greater than one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
137
+ page_content=' 8 ALEXEY SAMOKHIN 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
138
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
139
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
140
+ page_content=' Splitted sum transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
141
+ page_content=' Another solution may be obtained assuming − νu · F(u, v) = DxA(u, v), η∆v · G(u, v) = DyB(u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
142
+ page_content=' (16) Here again A, B are functions of u(x, y, t), v(x, y, t) and their deriva- tives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
143
+ page_content=' This equations may be solved by analogy to the KdV case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
144
+ page_content=' One of numerous solutions here is A = νun, B = η(∆v)2, so F = −νnun−2ux, G = 2η∆vy 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
145
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
146
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
147
+ page_content=' {ν = η}—case transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
148
+ page_content=' Take A = Gvx, B = Gvy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
149
+ page_content=' Then uF = vxDxG + vyDyG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
150
+ page_content=' For instance, choose G = u2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
151
+ page_content=' it fol- lows that F = 2(uxvx + uyvy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
152
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
153
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
154
+ page_content=' Mean magnetic potential retaining transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
155
+ page_content=' Here ∂⟨A⟩/∂t = 0 implies (−ν0 · F − ηΦ′(v) · G)dx ∧ dy = d(A(u, v)dy − B(u, v)dx) = (DxA(u, v) + DyB(u, v))dx ∧ dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
156
+ page_content=' (17) Thus F is an arbitrary function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
157
+ page_content=' Then one possible solution is −ηΦ′(v) · Φ(v)(αvx + βvy) = DxαΦ2 + DyβΦ2, α, β ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
158
+ page_content=' That is, to retain the mean magnetic potential of (11), its first equation may be transformed in arbitrary way and the second one by ηG = −ηΦ(v)(αvx + βvy) for all α, β ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
159
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
160
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
161
+ page_content=' Cross helicity retaining transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
162
+ page_content=' Here ∂⟨Hc⟩/∂t = 0 implies −νf(v)·F(u, v)−ηf ′(v)∆(u)·G(u, v) = DxA(u, v)+DyB(u, v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
163
+ page_content=' (18) In the case ηη = ν it is not hard to find some suitable transformations (F, G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
164
+ page_content=' Namely, take A = −ηf 2(v)f ′(v)ux, B = −ηf 2(v)f ′(v)uy;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
165
+ page_content=' It follows F = [2f ′2(v) + f(v)f ′′(v)](vxux + uyvy), G = f ′(v)f(v)∆u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
166
+ page_content=' For f(v) = v it comes to F = −2η(vxux + uyvy) G = −ηv∆u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
167
+ page_content=' ON PERTURBATIONS RETAINING CONSERVATION LAWS 9 Conclusion The paper deals with perturbations of the equation that have a num- ber of conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
168
+ page_content=' When a small term is added to the equation its conserved quantities usually decay at individual rates, a phenome- non known as a selective decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
169
+ page_content=' These rates are described by the simple law using the conservation laws’ generating functions and the added term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
170
+ page_content=' Yet some perturbation may retain a specific quantity(s), such as energy, momentum and other physically important characteristics of solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
171
+ page_content=' We introduced a procedure for finding such perturbations and demonstrated it by examples including the KdV-Burgers equation and a system from magnetodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
172
+ page_content=' Our worked out examples show that the perturbed equations retain- ing a specific conservation law frequently also retain additional alge- braic properties such as travelling wave solutions or a presence of other conservation laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
173
+ page_content=' Thus the present paper as well as [5] and our previous research of the KdV solitons in nonhomogeneous media, [6], persuades that the selective decay approach is a valid and effective instrument to obtain qualitative approximations and estimates for behavior of solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
174
+ page_content=' The figures in this paper were generated numerically using Maple PDETools package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
175
+ page_content=' The mode of operation uses the default Euler method, which is a centered implicit scheme, and can be used to find solutions to PDEs that are first order in time, and arbitrary order in space, with no mixed partial derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
176
+ page_content=' References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
177
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
178
+ page_content=' Samokhin, Decay velocity of conservation laws for nonevolution equa- tions,Acta Applicanda Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
179
+ page_content=', v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
180
+ page_content=' 41 n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
181
+ page_content=' 1, 1–11 (1995) [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
182
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
183
+ page_content=' Ting, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
184
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
185
+ page_content=' Matthaeus, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
186
+ page_content=' Montgomery, Turbulent relaxation processes in magnetohydrodynamics Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
187
+ page_content=' Fluids, v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
188
+ page_content='29, 3261–3274 (1986) [3] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
189
+ page_content=' van Groesen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
190
+ page_content=' Mainardi, Balance laws and centro velocity in dissipative systems, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
191
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
192
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
193
+ page_content='v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
194
+ page_content=' 31 (11), 2136–2140 (1990) [4] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
195
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
196
+ page_content=' Taylor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
197
+ page_content=' Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
198
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
199
+ page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
200
+ page_content=', v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
201
+ page_content=' 33, 1139–1141 (1974) [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
202
+ page_content=' Brecht1, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
203
+ page_content=' Bauer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
204
+ page_content=' Bihlo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
205
+ page_content=' Gay-Balmaz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
206
+ page_content=' MacLachlan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
207
+ page_content=' Selective decay for the rotating shallow-water equations with a structure-preserving discretiza- tion Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
208
+ page_content=' Fluids, v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
209
+ page_content='33, 116604 (2021);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
210
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
211
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
212
+ page_content='1063/5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
213
+ page_content='0062573 [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
214
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
215
+ page_content=' Samokhin, The KdV soliton crosses a dissipative and dispersive border, Journal of Differential Geometry and its Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
216
+ page_content='75, Part A, 11 pages(April 2021) https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
217
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
218
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
219
+ page_content='difgeo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
220
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
221
+ page_content='101723 [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
222
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
223
+ page_content=' Samokhin, Taylor Trick and Travelling Wave Solutions, Lobachevskii Journal of Mathematics, 2022, 43, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
224
+ page_content=' 10, 2808—2815, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
225
+ page_content=' DOI: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
226
+ page_content='1134/S1995080222130406 Institute of Control Sciences of Russian Academy of Sciences 65 Profsoyuznaya street, Moscow 117997, Russia Email address: samohinalexey@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}
227
+ page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_NE1T4oBgHgl3EQf8gXW/content/2301.03547v1.pdf'}