jackkuo commited on
Commit
986c566
·
verified ·
1 Parent(s): 7f63a41

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +94 -0
  2. 09FQT4oBgHgl3EQf0jbn/content/tmp_files/2301.13417v1.pdf.txt +551 -0
  3. 09FQT4oBgHgl3EQf0jbn/content/tmp_files/load_file.txt +294 -0
  4. 1NFLT4oBgHgl3EQfpi-7/vector_store/index.faiss +3 -0
  5. 1tE1T4oBgHgl3EQfRwOf/content/tmp_files/2301.03057v1.pdf.txt +1928 -0
  6. 1tE1T4oBgHgl3EQfRwOf/content/tmp_files/load_file.txt +0 -0
  7. 2NAyT4oBgHgl3EQf1fm1/content/2301.00737v1.pdf +3 -0
  8. 2NAyT4oBgHgl3EQf1fm1/vector_store/index.faiss +3 -0
  9. 2NAyT4oBgHgl3EQf1fm1/vector_store/index.pkl +3 -0
  10. 2dA0T4oBgHgl3EQfM_90/content/tmp_files/2301.02140v1.pdf.txt +1163 -0
  11. 2dA0T4oBgHgl3EQfM_90/content/tmp_files/load_file.txt +0 -0
  12. 2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf +3 -0
  13. 2dAzT4oBgHgl3EQf8_7Q/vector_store/index.faiss +3 -0
  14. 2dAzT4oBgHgl3EQf8_7Q/vector_store/index.pkl +3 -0
  15. 2tE1T4oBgHgl3EQfAALp/content/tmp_files/2301.02835v1.pdf.txt +1500 -0
  16. 2tE1T4oBgHgl3EQfAALp/content/tmp_files/load_file.txt +0 -0
  17. 5dE1T4oBgHgl3EQf6gWk/content/2301.03524v1.pdf +3 -0
  18. 5dE1T4oBgHgl3EQf6gWk/vector_store/index.pkl +3 -0
  19. 5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf +3 -0
  20. 5dFKT4oBgHgl3EQf-S4-/vector_store/index.faiss +3 -0
  21. 5dFKT4oBgHgl3EQf-S4-/vector_store/index.pkl +3 -0
  22. 69E2T4oBgHgl3EQfPQYR/content/tmp_files/2301.03756v1.pdf.txt +1100 -0
  23. 69E2T4oBgHgl3EQfPQYR/content/tmp_files/load_file.txt +330 -0
  24. 7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf +3 -0
  25. 7dE4T4oBgHgl3EQfCQuc/vector_store/index.faiss +3 -0
  26. 7dE4T4oBgHgl3EQfCQuc/vector_store/index.pkl +3 -0
  27. 89AzT4oBgHgl3EQf-_4J/vector_store/index.faiss +3 -0
  28. 89AzT4oBgHgl3EQf-_4J/vector_store/index.pkl +3 -0
  29. 9dAyT4oBgHgl3EQfqPin/content/tmp_files/2301.00540v1.pdf.txt +1143 -0
  30. 9dAyT4oBgHgl3EQfqPin/content/tmp_files/load_file.txt +404 -0
  31. BdE4T4oBgHgl3EQfFAzo/content/tmp_files/2301.04883v1.pdf.txt +1887 -0
  32. BdE4T4oBgHgl3EQfFAzo/content/tmp_files/load_file.txt +0 -0
  33. BtAzT4oBgHgl3EQfGPuX/vector_store/index.faiss +3 -0
  34. CtE3T4oBgHgl3EQfUgpf/content/2301.04451v1.pdf +3 -0
  35. CtE3T4oBgHgl3EQfUgpf/vector_store/index.faiss +3 -0
  36. E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf +3 -0
  37. E9AyT4oBgHgl3EQf4_pw/vector_store/index.faiss +3 -0
  38. E9AyT4oBgHgl3EQf4_pw/vector_store/index.pkl +3 -0
  39. ENA0T4oBgHgl3EQfA_81/content/2301.01969v1.pdf +3 -0
  40. ENA0T4oBgHgl3EQfA_81/vector_store/index.faiss +3 -0
  41. EdAzT4oBgHgl3EQfG_ss/content/tmp_files/2301.01036v1.pdf.txt +1010 -0
  42. EdAzT4oBgHgl3EQfG_ss/content/tmp_files/load_file.txt +0 -0
  43. GdAyT4oBgHgl3EQfSvfs/content/2301.00094v1.pdf +3 -0
  44. GdAyT4oBgHgl3EQfSvfs/vector_store/index.pkl +3 -0
  45. IdE0T4oBgHgl3EQfiAEY/content/2301.02438v1.pdf +3 -0
  46. IdE0T4oBgHgl3EQfiAEY/vector_store/index.faiss +3 -0
  47. IdE0T4oBgHgl3EQfiAEY/vector_store/index.pkl +3 -0
  48. JtFIT4oBgHgl3EQfZit-/content/tmp_files/2301.11253v1.pdf.txt +0 -0
  49. JtFIT4oBgHgl3EQfZit-/content/tmp_files/load_file.txt +0 -0
  50. M9FQT4oBgHgl3EQfVza8/content/2301.13302v1.pdf +3 -0
.gitattributes CHANGED
@@ -984,3 +984,97 @@ BtAzT4oBgHgl3EQfGPuX/content/2301.01025v1.pdf filter=lfs diff=lfs merge=lfs -tex
984
  xtE3T4oBgHgl3EQf_gt3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
985
  uNAzT4oBgHgl3EQfsP0n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
986
  o9FPT4oBgHgl3EQfLTSh/content/2301.13022v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
984
  xtE3T4oBgHgl3EQf_gt3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
985
  uNAzT4oBgHgl3EQfsP0n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
986
  o9FPT4oBgHgl3EQfLTSh/content/2301.13022v1.pdf filter=lfs diff=lfs merge=lfs -text
987
+ PNE2T4oBgHgl3EQfVQfK/content/2301.03822v1.pdf filter=lfs diff=lfs merge=lfs -text
988
+ CtE3T4oBgHgl3EQfUgpf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
989
+ ldFST4oBgHgl3EQfJTg8/content/2301.13732v1.pdf filter=lfs diff=lfs merge=lfs -text
990
+ BtAzT4oBgHgl3EQfGPuX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
991
+ 1NFLT4oBgHgl3EQfpi-7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
992
+ ntE0T4oBgHgl3EQfqAHb/content/2301.02548v1.pdf filter=lfs diff=lfs merge=lfs -text
993
+ oNAzT4oBgHgl3EQf5P6V/content/2301.01857v1.pdf filter=lfs diff=lfs merge=lfs -text
994
+ iNE2T4oBgHgl3EQfcwcu/content/2301.03898v1.pdf filter=lfs diff=lfs merge=lfs -text
995
+ CtE3T4oBgHgl3EQfUgpf/content/2301.04451v1.pdf filter=lfs diff=lfs merge=lfs -text
996
+ IdE0T4oBgHgl3EQfiAEY/content/2301.02438v1.pdf filter=lfs diff=lfs merge=lfs -text
997
+ XNFJT4oBgHgl3EQf5S05/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
998
+ t9AyT4oBgHgl3EQfmvi8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
999
+ wNE3T4oBgHgl3EQf-wup/content/2301.04829v1.pdf filter=lfs diff=lfs merge=lfs -text
1000
+ oNAzT4oBgHgl3EQf5P6V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1001
+ vdAyT4oBgHgl3EQfOPYv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1002
+ fdE3T4oBgHgl3EQf3Qt-/content/2301.04762v1.pdf filter=lfs diff=lfs merge=lfs -text
1003
+ ZtFPT4oBgHgl3EQfuzVj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1004
+ IdE0T4oBgHgl3EQfiAEY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1005
+ E9AyT4oBgHgl3EQf4_pw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1006
+ M9FQT4oBgHgl3EQfVza8/content/2301.13302v1.pdf filter=lfs diff=lfs merge=lfs -text
1007
+ 2NAyT4oBgHgl3EQf1fm1/content/2301.00737v1.pdf filter=lfs diff=lfs merge=lfs -text
1008
+ ONAyT4oBgHgl3EQfgvjr/content/2301.00366v1.pdf filter=lfs diff=lfs merge=lfs -text
1009
+ a9FQT4oBgHgl3EQfgTbF/content/2301.13343v1.pdf filter=lfs diff=lfs merge=lfs -text
1010
+ XtE5T4oBgHgl3EQfdA-T/content/2301.05608v1.pdf filter=lfs diff=lfs merge=lfs -text
1011
+ W9E4T4oBgHgl3EQfNQwq/content/2301.04954v1.pdf filter=lfs diff=lfs merge=lfs -text
1012
+ XtE5T4oBgHgl3EQfdA-T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1013
+ iNE2T4oBgHgl3EQfcwcu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1014
+ 2NAyT4oBgHgl3EQf1fm1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1015
+ ENA0T4oBgHgl3EQfA_81/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1016
+ VNAyT4oBgHgl3EQfhfi9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1017
+ 7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf filter=lfs diff=lfs merge=lfs -text
1018
+ E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf filter=lfs diff=lfs merge=lfs -text
1019
+ vdAyT4oBgHgl3EQfOPYv/content/2301.00002v1.pdf filter=lfs diff=lfs merge=lfs -text
1020
+ W9E4T4oBgHgl3EQfNQwq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1021
+ 7dE4T4oBgHgl3EQfCQuc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1022
+ SdE3T4oBgHgl3EQfZwoa/content/2301.04499v1.pdf filter=lfs diff=lfs merge=lfs -text
1023
+ 5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf filter=lfs diff=lfs merge=lfs -text
1024
+ 5dE1T4oBgHgl3EQf6gWk/content/2301.03524v1.pdf filter=lfs diff=lfs merge=lfs -text
1025
+ OdFOT4oBgHgl3EQf3TT6/content/2301.12946v1.pdf filter=lfs diff=lfs merge=lfs -text
1026
+ 5dFKT4oBgHgl3EQf-S4-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1027
+ 2dAzT4oBgHgl3EQf8_7Q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1028
+ VdAzT4oBgHgl3EQfYPwk/content/2301.01330v1.pdf filter=lfs diff=lfs merge=lfs -text
1029
+ SdE3T4oBgHgl3EQfZwoa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1030
+ 2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf filter=lfs diff=lfs merge=lfs -text
1031
+ mdAzT4oBgHgl3EQfqP0Q/content/2301.01624v1.pdf filter=lfs diff=lfs merge=lfs -text
1032
+ pdFST4oBgHgl3EQfNjhG/content/2301.13748v1.pdf filter=lfs diff=lfs merge=lfs -text
1033
+ VdAzT4oBgHgl3EQfYPwk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1034
+ f9E1T4oBgHgl3EQfywWE/content/2301.03437v1.pdf filter=lfs diff=lfs merge=lfs -text
1035
+ u9E3T4oBgHgl3EQf-QtO/content/2301.04824v1.pdf filter=lfs diff=lfs merge=lfs -text
1036
+ ENA0T4oBgHgl3EQfA_81/content/2301.01969v1.pdf filter=lfs diff=lfs merge=lfs -text
1037
+ a9FQT4oBgHgl3EQfgTbF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1038
+ vtFKT4oBgHgl3EQf4S7l/content/2301.11933v1.pdf filter=lfs diff=lfs merge=lfs -text
1039
+ mdAzT4oBgHgl3EQfqP0Q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1040
+ pdFST4oBgHgl3EQfNjhG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1041
+ ONAyT4oBgHgl3EQfgvjr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1042
+ itE4T4oBgHgl3EQfsA2l/content/2301.05213v1.pdf filter=lfs diff=lfs merge=lfs -text
1043
+ idAzT4oBgHgl3EQfbPxy/content/2301.01382v1.pdf filter=lfs diff=lfs merge=lfs -text
1044
+ Z9A0T4oBgHgl3EQfF_-o/content/2301.02041v1.pdf filter=lfs diff=lfs merge=lfs -text
1045
+ wtFPT4oBgHgl3EQf_TXz/content/2301.13219v1.pdf filter=lfs diff=lfs merge=lfs -text
1046
+ Z9A0T4oBgHgl3EQfF_-o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1047
+ cNFAT4oBgHgl3EQfYB2G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1048
+ OdFOT4oBgHgl3EQf3TT6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1049
+ idAzT4oBgHgl3EQfbPxy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1050
+ cNFAT4oBgHgl3EQfYB2G/content/2301.08537v1.pdf filter=lfs diff=lfs merge=lfs -text
1051
+ UNE5T4oBgHgl3EQfAw5l/content/2301.05381v1.pdf filter=lfs diff=lfs merge=lfs -text
1052
+ ctAyT4oBgHgl3EQfjPgK/content/2301.00409v1.pdf filter=lfs diff=lfs merge=lfs -text
1053
+ ldAyT4oBgHgl3EQfYfc8/content/2301.00203v1.pdf filter=lfs diff=lfs merge=lfs -text
1054
+ M9FQT4oBgHgl3EQfVza8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1055
+ GdAyT4oBgHgl3EQfSvfs/content/2301.00094v1.pdf filter=lfs diff=lfs merge=lfs -text
1056
+ xtE3T4oBgHgl3EQf_gt3/content/2301.04835v1.pdf filter=lfs diff=lfs merge=lfs -text
1057
+ rNFRT4oBgHgl3EQffDdP/content/2301.13574v1.pdf filter=lfs diff=lfs merge=lfs -text
1058
+ vtFKT4oBgHgl3EQf4S7l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1059
+ UtAzT4oBgHgl3EQf0_7l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1060
+ itAzT4oBgHgl3EQfbPyr/content/2301.01383v1.pdf filter=lfs diff=lfs merge=lfs -text
1061
+ ldAyT4oBgHgl3EQfYfc8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1062
+ ctAyT4oBgHgl3EQfjPgK/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1063
+ itE4T4oBgHgl3EQfsA2l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1064
+ ndE0T4oBgHgl3EQfqAGQ/content/2301.02547v1.pdf filter=lfs diff=lfs merge=lfs -text
1065
+ dtAzT4oBgHgl3EQf3f5y/content/2301.01830v1.pdf filter=lfs diff=lfs merge=lfs -text
1066
+ XNE0T4oBgHgl3EQf3QLX/content/2301.02724v1.pdf filter=lfs diff=lfs merge=lfs -text
1067
+ ftAzT4oBgHgl3EQfof1Y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1068
+ uNAzT4oBgHgl3EQfsP0n/content/2301.01655v1.pdf filter=lfs diff=lfs merge=lfs -text
1069
+ vtAzT4oBgHgl3EQfdfwn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1070
+ f9E1T4oBgHgl3EQfywWE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1071
+ l9E_T4oBgHgl3EQf6hzY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1072
+ UNE5T4oBgHgl3EQfAw5l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1073
+ dtAzT4oBgHgl3EQf3f5y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1074
+ ftAzT4oBgHgl3EQfof1Y/content/2301.01597v1.pdf filter=lfs diff=lfs merge=lfs -text
1075
+ aNE4T4oBgHgl3EQfnw2m/content/2301.05179v1.pdf filter=lfs diff=lfs merge=lfs -text
1076
+ hdA0T4oBgHgl3EQfIP8h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1077
+ ndE0T4oBgHgl3EQfqAGQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1078
+ kb_37/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1079
+ 89AzT4oBgHgl3EQf-_4J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
1080
+ aNE4T4oBgHgl3EQfnw2m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
09FQT4oBgHgl3EQf0jbn/content/tmp_files/2301.13417v1.pdf.txt ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13417v1 [math.AG] 31 Jan 2023
2
+ TEN COMPATIBLE POISSON BRACKETS ON P5
3
+ VILLE NORDSTROM AND ALEXANDER POLISHCHUK
4
+ Abstract. We give explicit formulas for ten compatible Poisson brackets on P5 found
5
+ in [3].
6
+ 1. Introduction
7
+ The goal of this paper is to present explicit formulas for certain algebraic Poisson brackets
8
+ on P5.
9
+ Recall that two Poisson brackets {⋅,⋅}1, {⋅,⋅}2 are called compatible if any linear combi-
10
+ nation {⋅,⋅}1 +λ ⋅ {⋅,⋅}2 is still a Poisson bracket (i.e., satisfies the Jacobi identity). Pairs of
11
+ compatible Poisson bracket play an important role in the theory of integrable systems.
12
+ With every normal elliptic curve C in Pn one can associate naturally a Poisson bracket
13
+ on Pn, called Feigin-Odesskii bracket of type qn+1,1. The corresponding quadratic Poisson
14
+ brackets on An+1 arise as quasi-classical limit of Feigin-Odesskii elliptic algebras. On the
15
+ other hand, they can be constructed using the geometry of vector bundles on C (see [2], [7]).
16
+ It was discovered by Odesskii-Wolf [5] that for every n there exists a family of 9 linearly
17
+ independent mutually compatible Poisson brackets on Pn, such that their generic linear
18
+ combinations are Feigin-Odesskii brackets of type qn+1,1. In [3] this construction was ex-
19
+ plained and extended in terms of anticanonical line bundles on del Pezzo surfaces. It was
20
+ observed in [3, Ex. 4.6] that in this framework one also obtains 10 linearly independent mu-
21
+ tually compatible Poisson brackets on P5. In this paper we will produce explicit formulas
22
+ for these 10 brackets (see Theorem 3.2).
23
+ 2. Homological perturbation for Pn
24
+ 2.1. Formula for the homotopy. Let
25
+ H =
26
+
27
+ p≥0,q∈Z
28
+ Hp(Pn,O(q))
29
+ be the cohomology algebra of line bundles on Pn, and
30
+ A = ( ⊕
31
+ p≥0,q∈Z
32
+ Cp(Pn,O(q)),d)
33
+ the Cech complex with respect to the standard open covering Ui = (xi ≠ 0) of Pn. There is
34
+ a natural dg-algebra structure on A, such that the corresponding cohomology algebra is H.
35
+ A.P. is partially supported by the NSF grant DMS-2001224, and within the framework of the HSE
36
+ University Basic Research Program and by the Russian Academic Excellence Project ‘5-100’.
37
+ 1
38
+
39
+ 2
40
+ VILLE NORDSTROM AND ALEXANDER POLISHCHUK
41
+ The multiplication on A is defined as follows. For α ∈ Cp(Pn,O(q)) and β ∈ Cp′(Pn,O(q′))
42
+ we define αβ ∈ Cp+p′(Pn,O(q + q′)) by
43
+ (αβ)i0i1...ip+p′ ∶= αi0...ip∣Ui0...ip+p′ ⋅ βip...ip+p′∣Ui0...ip+p′
44
+ where on the right hand side we use the multiplication map O(q) ⊗ O(q′) → O(q + q′).
45
+ The homological perturbation lemma equips H with a minimal A∞-structure (mn),
46
+ where m2 is the usual product on H. We will use the form of this lemma due to Kontsevich-
47
+ Soibelman [4], which gives formulas for mn as sums over trees.
48
+ To apply homological
49
+ perturbation we need the following data:
50
+ ● a projection π ∶ A → H,
51
+ ● an inclusion ι ∶ H → A, and
52
+ ● a homotopy Q such that πι = idH and idA −ιπ = dQ + Qd.
53
+ Recall that H0 = C[x0,...,xn],
54
+ Hn ≃
55
+
56
+ e0,...,en<0
57
+ k ⋅ xe0
58
+ 0 xe1
59
+ 1 ⋯xen
60
+ n ⊂ An,
61
+ and Hi = 0 for i ≠ 0,n. We define ι in degree zero by ι(f)k = f for k = 0,1,...,n. We define
62
+ ι in degree n by ι(g)0...n = g. We define the projection in degree zero to be
63
+ π(γ) = {γn if γn ∈ C[x0,...,xn]
64
+ 0 else.
65
+ To define π in degree n we observe that
66
+ An =
67
+
68
+ e0,...,en∈Z
69
+ k ⋅ xe0
70
+ 0 xe1
71
+ 1 ⋯xen
72
+ n ,
73
+ and we let π be the natural projection to Hn.
74
+ To define the homotopy we use that A decomposes as a direct sum of chain complexes
75
+ A = ⊕⃗e∈Zn+1A(⃗e),
76
+ where A(⃗e) consists of all elements in A whose components are scalar multiples of x⃗e ∶=
77
+ xe0
78
+ 0 xe1
79
+ 1 ⋯xen
80
+ n . In other words, A(⃗e) is the ⃗e-isotypical summand with respect to the action
81
+ of the Gn+1
82
+ m .
83
+ Let us set for ⃗e ∈ Zn+1,
84
+ k(⃗e) ∶= max{i ∣ ei ≥ 0}
85
+ (which is equal to −∞ if all ei are negative). There is then a standard homotopy Q defined
86
+ on an element γ ∈ A(⃗e)p by Q(γ)i0i1...ip−1 = γk(⃗e)i0...ip−1 if k(⃗e) > −∞ and Q(γ)i0i1...ip−1 = 0
87
+ otherwise (i.e., if all ei are negative).
88
+ For a Laurent monomial x⃗e and a subset I = {i0,...,ip} ⊂ {0,1,...,n} such that I ⊃ {0 ≤
89
+ i ≤ n∣ei < 0}, let us denote by x⃗e
90
+ I the element of Ap given by
91
+ (x⃗e
92
+ I)j0...jp = {x⃗e
93
+ if {j0,...,jp} = I,
94
+ 0
95
+ otherwise
96
+ .
97
+
98
+ TEN COMPATIBLE POISSON BRACKETS ON P5
99
+ 3
100
+ Note that the condition I ⊃ {0 ≤ i ≤ n∣ei < 0} guarantees that x⃗e is a regular section of the
101
+ appropriate line bundle over Ui0,...,ip. Clearly, these elements form a basis for A and our
102
+ homotopy operator Q is given by
103
+ Q(x⃗e
104
+ I) =
105
+ ⎧⎪⎪⎨⎪⎪⎩
106
+ (−1)jx⃗e
107
+ I∖k(⃗e) if k(⃗e) = ij ∈ I
108
+ 0 otherwise.
109
+ With these data one can in principle calculate all the higher products on the cohomology
110
+ algebra H. Below we will get explicit formulas in the case we need.
111
+ 2.2. Calculation of m4 for P2. We now specialize to the case of the projective plane
112
+ P2. We will have no higher products of odd degree because H and H⊗n only live in even
113
+ degrees. Below we will explicitly compute the product m4. For degree reasons it will only
114
+ be non-zero on elements e ⊗ f ⊗ g ⊗ h ∈ H⊗4 where one or two of the arguments lie in H2
115
+ and the rest in H0. Hence, the following special case of the multiplication in A will be
116
+ relevant: for a monomial x⃗e and a Laurent monomial x⃗e′ we have
117
+ ι0(x⃗e) ⋅ x
118
+ ⃗e′
119
+ I = x
120
+ ⃗e′
121
+ I ⋅ ι0(x⃗e) = x⃗e+⃗e′
122
+ I
123
+ .
124
+ We use the formula
125
+ m4(e,f,g,h) = −∑
126
+ T
127
+ ǫ(T)mT (e,f,g,h)
128
+ where the sum runs over all rooted binary trees with 4 leaves labeled e,f,g and h (from left
129
+ to right). For each such tree T the expressions mT(e,f,g,h) is computed by moving the
130
+ inputs through that tree, applying ι at the leaves, applying the homotopy Q on each interior
131
+ edge, multiplying elements of A at each inner vertex and finally applying the projection π
132
+ at the bottom.
133
+ We have to sum over the following five trees, which we denote T1,...,T5 respectively:
134
+ Let us first consider the case e ∈ H2 and f,g,h ∈ H0 and let’s take them all to be basis
135
+ elements of H2 and H0:
136
+ e = (xα0
137
+ 0 xα1
138
+ 1 xα2
139
+ 2 ){0,1,2}, f = xa0
140
+ 0 xa1
141
+ 1 xa2
142
+ 2 , g = xb0
143
+ 0 xb1
144
+ 1 xb2
145
+ 2 , h = xc0
146
+ 0 xc1
147
+ 1 xc2
148
+ 2
149
+ where α0,α1,α2 < 0 and ai,bi,ci ≥ 0 for i = 0,1,2. In this case only one of the trees above
150
+ can be non-zero in the expression for m4(e,f,g,h), namely T5, because in all other trees
151
+ at some point the homotopy Q will be applied to an element of A0. Below is a picture of
152
+ the different summands in A● and the possible ways the homotopy Q can map a monomial
153
+
154
+ 4
155
+ VILLE NORDSTROM AND ALEXANDER POLISHCHUK
156
+ element in each summand
157
+ H2
158
+ A2 ∶
159
+ ●0,1,2
160
+ A1 ∶
161
+ ●0,1
162
+ ●0,2
163
+ ●1,2
164
+ A0 ∶
165
+ ●0
166
+ ●1
167
+ ●2
168
+ H0
169
+ ι2
170
+ (1)
171
+ (3)
172
+ (2)
173
+ (4)
174
+ π0
175
+ When computing mT5(e,f,g,h) we think of it as e moving through this diagram; at every
176
+ node it gets multiplied by one of the other arguments and then it moves downwards along
177
+ one of the arrows. We see that to be non-zero we have to go either (1) followed by (2) or (3)
178
+ followed by (4) (so that we land in ●2). We claim that only the second route is possible.
179
+ The reason is because at each node we multiply e by a monomial so the exponents of
180
+ x0,x1,x2 will not decrease at any time. By the definition of Q, if we go along (1) we must
181
+ have that the exponent of x1 was non-negative and the exponent of x2 was negative after
182
+ the multiplication at ●0,1,2. After performing the multiplication at ●0,2 the exponent of
183
+ x1 will still be non-negative and it follows then from the definition of Q that (2) is not
184
+ possible after (1).
185
+ Now comes the computation of mT5(e,f,g,h). Below, we denote by µ the multiplication
186
+ in A.
187
+ mT5(e,f,g,h) =
188
+ πµ(Qµ(Qµ(e,f),g),h) =
189
+ πµ(Qµ(Q(xα0+a0
190
+ 0
191
+ xα1+a1
192
+ 1
193
+ xα2+a2
194
+ 2
195
+ ){0,1,2},g),h)
196
+ (∗)=
197
+ πµ(Qµ((xα0+a0
198
+ 0
199
+ xα1+a1
200
+ 1
201
+ xα2+a2
202
+ 2
203
+ ){1,2},g),h) =
204
+ πµ(Q(xα0+a0+b0
205
+ 0
206
+ xα1+a1+b1
207
+ 1
208
+ xα2+a2+b2
209
+ 2
210
+ ){1,2},h)
211
+ (∗∗)
212
+ =
213
+ π(µ((xα0+a0+b0
214
+ 0
215
+ xα1+a1+b1
216
+ 1
217
+ xα2+a2+b2
218
+ 2
219
+ ){2},h)) =
220
+ π((xα0+a0+b0+c0
221
+ 0
222
+ xα1+a1+b1+c1
223
+ 1
224
+ xα2+a2+b2+c2
225
+ 2
226
+ ){2})
227
+ (∗∗∗)
228
+ =
229
+ xα0+a0+b0+c0
230
+ 0
231
+ xα1+a1+b1+c1
232
+ 1
233
+ xα2+a2+b2+c2
234
+ 2
235
+
236
+ TEN COMPATIBLE POISSON BRACKETS ON P5
237
+ 5
238
+ where (∗), (∗∗) are (∗ ∗ ∗) means we get zero unless the following conditions hold
239
+ (∗)
240
+ ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
241
+ α0 + a0 ≥ 0
242
+ α1 + a1 < 0
243
+ α2 + a2 < 0
244
+ (∗∗) {α1 + a1 + b1 ≥ 0
245
+ α2 + a2 + b2 < 0
246
+ (∗ ∗ ∗)
247
+ ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
248
+ α0 + a0 + b0 + c0 ≥ 0
249
+ α1 + a1 + b1 + c1 ≥ 0
250
+ α2 + a2 + b2 + c2 ≥ 0
251
+ .
252
+ In the end we have
253
+ m4(e,f,g,h) = −mT5(e,f,g,h) = −ρ(⃗α; ⃗a,⃗b, ⃗c) ⋅ x⃗α+⃗a+⃗b+⃗c,
254
+ where
255
+ ρ(⃗α; ⃗a,⃗b, ⃗c) ∶=
256
+ ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
257
+ 1 if
258
+ α0 + a0 ≥ 0
259
+ α1 + a1 < 0
260
+ α1 + a1 + b1 ≥ 0
261
+ α2 + a2 + b2 < 0
262
+ α2 + a2 + b2 + c2 ≥ 0
263
+ 0 else.
264
+ Similarly we compute m4 applied to e,f,g,h in any given order. We have
265
+ m4(e,f,g,h) = − ρ(⃗α; ⃗a,⃗b, ⃗c) ⋅ x⃗α+⃗a+⃗b+⃗c,
266
+ m4(f,e,g,h) =[−ρ(⃗α; ⃗a,⃗b, ⃗c) + ρ(⃗α;⃗b, ⃗a, ⃗c) − ρ(⃗α;⃗b, ⃗c, ⃗a)] ⋅ x⃗α+⃗a+⃗b+⃗c,
267
+ m4(f,g,e,h) =[ρ(⃗α;⃗b, ⃗a, ⃗c) − ρ(⃗α;⃗b, ⃗c, ⃗a) + ρ(⃗α; ⃗c,⃗b, ⃗a)] ⋅ x⃗α+⃗a+⃗b+⃗c,
268
+ m4(f,g,h,e) =ρ(⃗α; ⃗c,⃗b, ⃗a) ⋅ x⃗α+⃗a+⃗b+⃗c.
269
+ 3. Feigin-Odesskii brackets
270
+ 3.1. Bivectors on projective spaces. It is well known that every Gm-invariant bivector
271
+ on a vector space V leads to a bivector on the projective space PV . A bivector on V can be
272
+ thought of as a skew-symmetric bracket {⋅,⋅} on the polynomial algebra S(V ∗), which is a
273
+ biderivation. Such a bracket is Gm-invariant if and only if the bracket of two linear forms
274
+ is a quadratic form. In other words, such a bracket can be viewed as a skew-symmetric
275
+ pairing
276
+ b ∶ V ∗ × V ∗ → S2(V ∗).
277
+
278
+ 6
279
+ VILLE NORDSTROM AND ALEXANDER POLISHCHUK
280
+ The corresponding bivector Π on the projective space PV is determined by the skew-
281
+ symmetric forms Πv on T ∗
282
+ v PV for each point ⟨v⟩ ∈ PV . We have an identification
283
+ T ∗
284
+ v PV = ⟨v⟩∨ ⊂ V ∗.
285
+ It is easy to see that under this identification we have
286
+ Πv(s1 ∧ s2) = b(s1,s2)(v),
287
+ (3.1)
288
+ where s1,s2 ∈ ⟨v⟩∨. Here we take the value of the quadratic form b(s1 ∧ s2) at v.
289
+ We can use the above formula in reverse. Namely, suppose for some bivector Π on PV
290
+ we found a skew-symmetric pairing b such that (3.1) holds. Then the Gm-invariant bracket
291
+ {⋅,⋅} on S(V ) given by b induces the bivector Π on PV . Note that if Π is a Poisson bivector
292
+ on PV , it is not guaranteed that the Gm-invariant bracket {⋅,⋅} on S(V ) is also Poisson,
293
+ i.e., satisfies the Jacobi identity (but it is known that {⋅,⋅} can be chosen to be Poisson,
294
+ see [1], [6]).
295
+ 3.2. Recollections from [3]. Let ξ be a line bundle of degree n on an elliptic curve C.
296
+ We fix a trivialization ωC ≃ OC. Then the associated Feigin-Odesskii Poisson structure
297
+ Π (to which we will refer as FO bracket) on PH1(ξ−1) ≃ PH0(ξ)∗ is given by the formula
298
+ (see [3, Lem. 2.1])
299
+ Πφ(s1 ∧ s2) = ⟨φ,MP(s1,φ,s2)⟩,
300
+ (3.2)
301
+ where ⟨φ⟩ ∈ PExt1(ξ,O), and s1,s2 ∈ ⟨φ⟩⊥. Here we use the Serre duality pairing ⟨⋅,⋅⟩
302
+ between H0(ξ) and H1(ξ−1) and the triple Massey product
303
+ MP ∶ H0(ξ) ⊗ H1(ξ−1) ⊗ H0(ξ) → H0(ξ)
304
+ that also agrees with the triple product m3 obtained by homological perturbation from the
305
+ natural dg enhancement of the derived category of coherent sheaves on C. There is some
306
+ ambiguity in a choice of m3 but for s1,s2 ∈ ⟨φ⟩⊥, the expression in the right-hand side of
307
+ (3.2) is well defined.
308
+ Next, assume that S is a smooth projective surface, L is a line bundle on S such that
309
+ H∗(L ⊗ KS) = 0. Then for each smooth (connected) anticanonical divisor C ⊂ S (which is
310
+ an elliptic curve), we have a natural restriction map
311
+ H0(S,L) → H0(C,L∣C).
312
+ The exact sequence
313
+ 0 → LKS
314
+ F✲ L → LC → 0
315
+ shows that under our assumptions this restriction map is an isomorphism.
316
+ Thus, the FO bracket on PH0(L∣C)∗ associated with (C,L∣C) (defined up to rescaling)
317
+ can be viewed as a Poisson structure on a fixed projective space PV ∗, where
318
+ V ∶= H0(S,L).
319
+ By [3, Thm. 4.4], the Poisson brackets on PV ∗ associated with different anticanonical
320
+ divisors are compatible. More precisely, we get a linear map from H0(S,K−1
321
+ S ) to the space
322
+ of bivectors on PV ∗, whose image lies in the space of Poisson brackets.
323
+
324
+ TEN COMPATIBLE POISSON BRACKETS ON P5
325
+ 7
326
+ 3.3. Feigin-Odesskii bracket for an anticanonical divisor. We keep the data (S,L)
327
+ of the previous subsection. Let i ∶ C ↪ S be an anticanonical divisor in S, with the equation
328
+ F ∈ H0(S,K−1
329
+ S ). We want to write a formula for the FO bracket Π = ΠF on PV ∗ in terms
330
+ of higher products on the surface S and the equation F. For this we rewrite the right-hand
331
+ side of formula (3.2). Let us write the triple product in this formula as MP C to remember
332
+ that it is defined for the derived category of C.
333
+ Proposition 3.1. (i) In the above situation, given e ∈ V ∗ and s1,s2 ∈ ⟨e⟩⊥, one has
334
+ ⟨e,MP C(s1∣C,e,s2∣C)⟩ = ⟨m4(F,s1,e,s2) − m4(s1,F,e,s2),e⟩,
335
+ where we use the identification V ∗ ≃ H2(S,L−1KS) given by Serre duality and consider the
336
+ A∞-products on S,
337
+ m4 ∶ H0(K−1
338
+ S )H0(L)H2(L−1KS)H0(L) → H0(L), H0(L)H0(K−1
339
+ S )H2(L−1)H0(L) → H0(L),
340
+ obtained by the homological perturbation.
341
+ (ii) Assume that a generic anticanonical divisor is smooth (and connected). Then
342
+ ΠF∣e(s1 ∧ s2) ∶= ⟨m4(F,s1,e,s2) − m4(s1,F,e,s2),e⟩,
343
+ gives a collection of compatible Poisson brackets on PV depending linearly on F.
344
+ Proof. (i) By Serre duality, H∗(S,L−1) = 0, so the map
345
+ H1(C,L−1∣C) → H2(S,L−1KS),
346
+ induced by the exact sequence
347
+ 0 → L−1KS → L−1 → L−1∣C → 0,
348
+ is an isomorphism. It is a standard fact that this isomorphism is the dual to the isomor-
349
+ phism H0(S,L) → H0(C,L∣C) given by the restriction, via Serre dualities on S and C. Let
350
+ us denote by eC ∈ H1(C,L−1∣C) the element corresponding to e ∈ H2(S,L−1KS) under the
351
+ above isomorphism.
352
+ We claim that the triple Massey product MP C(s1∣C,eC,s2∣C) = m3(s1∣C,eC,s2∣C) corre-
353
+ sponding to the arrows
354
+ OC
355
+ s2∣C✲ L∣C
356
+ [1]✲ OC
357
+ s1∣C✲ L∣C
358
+ agrees with the corresponding triple Massey product on S,
359
+ OS → L
360
+ [1]✲ OC → L∣C.
361
+ Indeed, the relevant spaces are identified via the restriction maps.
362
+ Let r ∶ OS → OC,
363
+ rL ∶ L → L∣C be the natural maps. Then we have to check that for s1,s2 ∈ ⟨e⟩⊥ ⊂ H0(S,L),
364
+ one has
365
+ m3(s1∣C,eC,s2∣C)r ≡ m3(s1∣C,eCrL,s2)
366
+ mod ⟨s1∣Cr,s2∣Cr⟩,
367
+ where we view this as equality of cosets in Hom(OS,L∣C). The A∞-identities imply that
368
+ m3(s1∣C,eC,s2∣C)r ≡ m3(s1∣C,eC,s2∣Cr) ± s1∣Cm3(eC,s2∣C,r),
369
+ where s2∣Cr = rLs2, and
370
+ m3(s1∣C,eC,rLs2) = m3(s1∣C,eCrL,s2) ± s1∣Cm3(eC,rL,s2) ± m2(s1∣C,eC,rL)s2.
371
+
372
+ 8
373
+ VILLE NORDSTROM AND ALEXANDER POLISHCHUK
374
+ Combining these two identities we deduce our claim.
375
+ Thus, it is enough to calculate the Massey product MP(s1∣C,eCrL,s2). Using the exact
376
+ sequences above we can represent OC (resp., LC) by the twisted complex [KS[1] → OS]
377
+ (resp., [LKS[1] → L]).
378
+ In terms of these resolutions the elements of Ext1(L,OC) get represented by Ext2(L,KS) ⊂
379
+ hom●(L,[KS[1] → OS]), while the element of Hom(OC,L∣C) corresponding to s ∈ H0(S,L) ≃
380
+ H0(C,L∣C) is given by the natural map of twisted complexes induced by the multiplication
381
+ by s. The elements of Hom(OS,L∣C) are identified with Hom(OS,L) ≃ hom0(OS,[LKS[1] →
382
+ L]). Thus, the m3 product we are interested is given by the following triple product in the
383
+ category of twisted complexes over S:
384
+ OS
385
+ L
386
+ s2
387
+
388
+ KS[1]
389
+ e
390
+
391
+ F
392
+ ✲ OS
393
+ LKS[1]
394
+ s1
395
+
396
+ F
397
+ ✲ L
398
+ s1
399
+
400
+ where we view e as a morphism of degree 1 from L to KS[1]. Now the formula for m3 on
401
+ twisted complexes gives
402
+ m4(F,s1,e,s2) − m4(s1,F,e,s2).
403
+ (ii) It is clear that ΠF gives a linear map from H0(S,ω−1
404
+ S ) to the space of bivectors on PV .
405
+ By (i), for generic F we get a Poisson bracket. Hence, this is true for all F.
406
+
407
+ 3.4. The case leading to 10 compatible brackets on P5. We can apply Proposition
408
+ 3.1 to the case S = P2 and L = O(2). Note that the assumptions are satisfied in this case
409
+ since LKS = O(−1) has vanishing cohomology. Thus, for each F ∈ H0(P2,O(3)) giving a
410
+ smooth cubic, we get a formula for the FO-bracket ΠF on PH0(P2,O(2))∗ = P5. Hence,
411
+ we get a family of 10 (the dimension of H0(P2,O(3)) compatible brackets on P5 (we also
412
+ know this from [3, Prop. 4.7]). The fact that these 10 brackets are linearly independent
413
+ follows from the compatibility of this construction with the GL3-action and is explained
414
+ in [3, Prop. 4.7].
415
+
416
+ TEN COMPATIBLE POISSON BRACKETS ON P5
417
+ 9
418
+ Now we will derive formulas for the the brackets {,}F on the algebra of polynomials in
419
+ 6 variables which induce the above Poisson brackets on PV ≃ P5, where
420
+ V = H0(P2,O(2))∗.
421
+ They depend linearly on F, so we will just give formulas for {,}x⃗c, where x⃗c runs through
422
+ all 10 monomials of degree 3 in (x0,x1,x2).
423
+ Let us set
424
+ ∆(n) ∶= {{(a0,a1,a2) ∈ Z3 ∣a0 + a1 + a2 = n,ai ≥ 0 for i = 0,1,2} if n ≥ 0
425
+ {(α0,α1,α2) ∈ Z3 ∣α0 + α1 + α2 = n,αi < 0 for i = 0,1,2} if n < 0.
426
+ Note that {x⃗e ∣ ⃗e ∈ ∆(n)} forms a basis for H0(P2,O(n)) when n ≥ 0, while {x⃗e
427
+ {0,1,2} ∣ ⃗e ∈
428
+ ∆(n)} is a basis for H2(P2,O(n)) when n < 0. In particular, we use {x⃗a ∣ ⃗a ∈ ∆(2)} as
429
+ a basis in V ∗ = H0(P2,O(2)). Our brackets should associate to a pair of elements of this
430
+ basis a quadratic form in the same variables.
431
+ Theorem 3.2. One has for ⃗a,⃗b ∈ ∆(2), ⃗c ∈ ∆(3),
432
+ {x⃗a,x
433
+ ⃗b}x⃗c ∶=
434
+
435
+ ⃗a′,⃗b′∈∆(2)
436
+ [∑
437
+ σ
438
+ −sgn(σ)˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗a′, ⃗b′)]x
439
+ ⃗a′x
440
+ ⃗b′
441
+ (3.3)
442
+ where the second sum is over the symmetric group on the letters {a,b,c} and
443
+ ˜ρ(⃗a,⃗b, ⃗c, ⃗a′, ⃗b′) ∶=
444
+ ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
445
+ 1 if
446
+ a′
447
+ 0 ≤ a0 − 1
448
+ a′
449
+ 1 > a1 − 1
450
+ a′
451
+ 1 ≤ a1 + b1 − 1
452
+ a2 + b2 < a′
453
+ 2 + 1
454
+ c2 + a2 + b2 ≥ a′
455
+ 2 + 1
456
+ a′
457
+ 0 + b′
458
+ 0 = a0 + b0 + c0 − 1
459
+ a′
460
+ 1 + b′
461
+ 1 = a1 + b1 + c1 − 1
462
+ 0 else.
463
+ Proof. By Serre duality, we can identify V = H0(P2,O(2))∗ with H2(P2,O(−5)).
464
+ By
465
+ Proposition 3.1, the bracket {x⃗a,x⃗b}x⃗c is the quadratic form on V ≃ H2(P2,O(−5)) given
466
+ by
467
+ Q(e) ∶= ⟨e,m4(x⃗c,x⃗a,e,x
468
+ ⃗b) − m4(x⃗a,x⃗c,e,x
469
+ ⃗b)⟩.
470
+ We can write
471
+ e =
472
+
473
+ ⃗α∈∆(−5)
474
+ c⃗αx⃗α
475
+ {0,1,2} ∈ H2(P2,O(−5)).
476
+ Using the formulas for m4 from the end of section 2.2 we get
477
+ Q(e) =
478
+
479
+ ⃗α, ⃗β∈∆(−5)
480
+ [∑
481
+ σ
482
+ −sgn(σ)ρ(⃗α;σ⃗a,σ⃗b,σ⃗c)]δ(⃗α, ⃗β, ⃗a,⃗b, ⃗c)c⃗αc ⃗β,
483
+
484
+ 10
485
+ VILLE NORDSTROM AND ALEXANDER POLISHCHUK
486
+ where the second sum runs over the symmetric group on the letters {a,b,c} and
487
+ δ(⃗α, ⃗β, ⃗a,⃗b, ⃗c) = {1 if ⃗α + ⃗β + ⃗a + ⃗b + ⃗c = (−1,−1,−1)
488
+ 0 else.
489
+ We have to show that the element in S2(H0(P2,O(2))) given by the right-hand side of
490
+ (3.3) defines the same quadratic form Q on H2(P2,O(−5)). To see this we apply it to the
491
+ element e = ∑⃗α∈∆(−5) c⃗αx⃗α
492
+ {0,1,2} ∈ H2(P2,O(−5)). For ⃗α ∈ O(−5) we set ⃗α∗ ∶= (−1,−1,−1)− ⃗α
493
+ and then we compute
494
+ (
495
+
496
+ ⃗a′,⃗b′∈∆(2)
497
+ [∑
498
+ σ
499
+ −sgn(σ)˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗a′, ⃗b′)]x
500
+ ⃗a′x
501
+ ⃗b′)(e) =
502
+
503
+ ⃗α, ⃗β∈∆(−5)
504
+
505
+ ⃗a′,⃗b′∈∆(2)
506
+ [∑
507
+ σ
508
+ −sgn(σ)˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗a′, ⃗b′)]⟨x
509
+ ⃗a′,x⃗α
510
+ {0,1,2}⟩⟨x
511
+ ⃗b′,x
512
+ ⃗β
513
+ {0,1,2}⟩c⃗αc ⃗β =
514
+
515
+ ⃗α, ⃗β∈∆(−5)
516
+ [∑
517
+ σ
518
+ −sgn(σ)˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗α∗, ⃗β∗)]c⃗αc ⃗β.
519
+ Now it only remains to note that ˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗α∗, ⃗β∗) = ρ(⃗α;σ⃗a,σ⃗b,σ⃗c)δ(⃗α, ⃗β, ⃗a,⃗b, ⃗c) for
520
+ any permutation σ.
521
+
522
+ Remarks 3.3. 1. Note that when we take ⃗c = (0,0,3) only two permutations σ, namely,
523
+ σ = 1 and σ = (a b), can give non-zero terms in the formula of Theorem 3.2.
524
+ When
525
+ ⃗c = (1,2,0) all permutations except σ = 1 and σ = (a b) may give non-zero terms. When
526
+ ⃗c = (1,1,1) all permutations can give non-zero terms.
527
+ 2. We do not claim that formulas (3.3) define Poisson brackets and are compatible on the
528
+ algebra of polynomials in 6 variables, only that this holds for the induced brackets on P5.
529
+ References
530
+ [1] A. Bondal, Non-commutative deformations and Poisson brackets on projective spaces, preprint MPI
531
+ 93-67
532
+ [2] B. L. Feigin, A. V. Odesskii, Vector bundles on an elliptic curve and Sklyanin algebras, in Topics in
533
+ quantum groups and finite-type invariants, 65–84, Amer. Math. Soc., Providence, RI, 1998.
534
+ [3] Z. Hua, A. Polishchuk, Elliptic bihamiltonian structures from relative shifted Poisson structures,
535
+ arXiv:2007.12351.
536
+ [4] M. Kontsevich, Y. Soibelman, Homological mirror symmetry and torus fibrations, in Symplectic geom-
537
+ etry and mirror symmetry (Seoul, 2000), 203–263, World Sci. Publishing, River Edge, NJ, 2001.
538
+ [5] A. Odesskii, T. Wolf, Compatible quadratic Poisson brackets related to a family of elliptic curves,
539
+ arXiv:1204.1299
540
+ [6] A. Polishchuk, Algebraic geometry of Poisson brackets, Journal of Math. Sciences 84 (1997) 1413–1445.
541
+ [7] A. Polishchuk, Poisson structures and birational morphisms associated with bundles on elliptic curves,
542
+ IMRN 13 (1998), 683–703.
543
+ Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
544
+ Email address: [email protected]
545
+
546
+ TEN COMPATIBLE POISSON BRACKETS ON P5
547
+ 11
548
+ Department of Mathematics, University of Oregon, Eugene, OR 97403, USA; National
549
+ Research University Higher School of Economics
550
+ Email address: [email protected]
551
+
09FQT4oBgHgl3EQf0jbn/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf,len=293
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
3
+ page_content='13417v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
4
+ page_content='AG] 31 Jan 2023 TEN COMPATIBLE POISSON BRACKETS ON P5 VILLE NORDSTROM AND ALEXANDER POLISHCHUK Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
5
+ page_content=' We give explicit formulas for ten compatible Poisson brackets on P5 found in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
6
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
7
+ page_content=' Introduction The goal of this paper is to present explicit formulas for certain algebraic Poisson brackets on P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
8
+ page_content=' Recall that two Poisson brackets {⋅,⋅}1, {⋅,⋅}2 are called compatible if any linear combi- nation {⋅,⋅}1 +λ ⋅ {⋅,⋅}2 is still a Poisson bracket (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
9
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
10
+ page_content=', satisfies the Jacobi identity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
11
+ page_content=' Pairs of compatible Poisson bracket play an important role in the theory of integrable systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
12
+ page_content=' With every normal elliptic curve C in Pn one can associate naturally a Poisson bracket on Pn, called Feigin-Odesskii bracket of type qn+1,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
13
+ page_content=' The corresponding quadratic Poisson brackets on An+1 arise as quasi-classical limit of Feigin-Odesskii elliptic algebras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
14
+ page_content=' On the other hand, they can be constructed using the geometry of vector bundles on C (see [2], [7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
15
+ page_content=' It was discovered by Odesskii-Wolf [5] that for every n there exists a family of 9 linearly independent mutually compatible Poisson brackets on Pn, such that their generic linear combinations are Feigin-Odesskii brackets of type qn+1,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
16
+ page_content=' In [3] this construction was ex- plained and extended in terms of anticanonical line bundles on del Pezzo surfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
17
+ page_content=' It was observed in [3, Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
18
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
19
+ page_content='6] that in this framework one also obtains 10 linearly independent mu- tually compatible Poisson brackets on P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
20
+ page_content=' In this paper we will produce explicit formulas for these 10 brackets (see Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
21
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
22
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
23
+ page_content=' Homological perturbation for Pn 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
24
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
25
+ page_content=' Formula for the homotopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
26
+ page_content=' Let H = ⊕ p≥0,q∈Z Hp(Pn,O(q)) be the cohomology algebra of line bundles on Pn, and A = ( ⊕ p≥0,q∈Z Cp(Pn,O(q)),d) the Cech complex with respect to the standard open covering Ui = (xi ≠ 0) of Pn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
27
+ page_content=' There is a natural dg-algebra structure on A, such that the corresponding cohomology algebra is H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
28
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
29
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
30
+ page_content=' is partially supported by the NSF grant DMS-2001224, and within the framework of the HSE University Basic Research Program and by the Russian Academic Excellence Project ‘5-100’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
31
+ page_content=' 1 2 VILLE NORDSTROM AND ALEXANDER POLISHCHUK The multiplication on A is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
32
+ page_content=' For α ∈ Cp(Pn,O(q)) and β ∈ Cp′(Pn,O(q′)) we define αβ ∈ Cp+p′(Pn,O(q + q′)) by (αβ)i0i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
33
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
34
+ page_content='ip+p′ ∶= αi0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
35
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
36
+ page_content='ip∣Ui0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
37
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
38
+ page_content='ip+p′ ⋅ βip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
39
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
40
+ page_content='ip+p′∣Ui0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
41
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
42
+ page_content='ip+p′ where on the right hand side we use the multiplication map O(q) ⊗ O(q′) → O(q + q′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
43
+ page_content=' The homological perturbation lemma equips H with a minimal A∞-structure (mn), where m2 is the usual product on H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
44
+ page_content=' We will use the form of this lemma due to Kontsevich- Soibelman [4], which gives formulas for mn as sums over trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
45
+ page_content=' To apply homological perturbation we need the following data: a projection π ∶ A → H, an inclusion ι ∶ H → A, and a homotopy Q such that πι = idH and idA −ιπ = dQ + Qd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
46
+ page_content=' Recall that H0 = C[x0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
47
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
48
+ page_content=',xn], Hn ≃ ⊕ e0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
49
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
50
+ page_content=',en<0 k ⋅ xe0 0 xe1 1 ⋯xen n ⊂ An, and Hi = 0 for i ≠ 0,n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
51
+ page_content=' We define ι in degree zero by ι(f)k = f for k = 0,1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
52
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
53
+ page_content=',n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
54
+ page_content=' We define ι in degree n by ι(g)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
55
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
56
+ page_content='n = g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
57
+ page_content=' We define the projection in degree zero to be π(γ) = {γn if γn ∈ C[x0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
58
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
59
+ page_content=',xn] 0 else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
60
+ page_content=' To define π in degree n we observe that An = ⊕ e0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
61
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
62
+ page_content=',en∈Z k ⋅ xe0 0 xe1 1 ⋯xen n , and we let π be the natural projection to Hn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
63
+ page_content=' To define the homotopy we use that A decomposes as a direct sum of chain complexes A = ⊕⃗e∈Zn+1A(⃗e), where A(⃗e) consists of all elements in A whose components are scalar multiples of x⃗e ∶= xe0 0 xe1 1 ⋯xen n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
64
+ page_content=' In other words, A(⃗e) is the ⃗e-isotypical summand with respect to the action of the Gn+1 m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
65
+ page_content=' Let us set for ⃗e ∈ Zn+1, k(⃗e) ∶= max{i ∣ ei ≥ 0} (which is equal to −∞ if all ei are negative).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
66
+ page_content=' There is then a standard homotopy Q defined on an element γ ∈ A(⃗e)p by Q(γ)i0i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
67
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
68
+ page_content='ip−1 = γk(⃗e)i0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
69
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
70
+ page_content='ip−1 if k(⃗e) > −∞ and Q(γ)i0i1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
71
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
72
+ page_content='ip−1 = 0 otherwise (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
73
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
74
+ page_content=', if all ei are negative).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
75
+ page_content=' For a Laurent monomial x⃗e and a subset I = {i0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
76
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
77
+ page_content=',ip} ⊂ {0,1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
78
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
79
+ page_content=',n} such that I ⊃ {0 ≤ i ≤ n∣ei < 0}, let us denote by x⃗e I the element of Ap given by (x⃗e I)j0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
80
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
81
+ page_content='jp = {x⃗e if {j0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
82
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
83
+ page_content=',jp} = I, 0 otherwise .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
84
+ page_content=' TEN COMPATIBLE POISSON BRACKETS ON P5 3 Note that the condition I ⊃ {0 ≤ i ≤ n∣ei < 0} guarantees that x⃗e is a regular section of the appropriate line bundle over Ui0,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
85
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
86
+ page_content=',ip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
87
+ page_content=' Clearly, these elements form a basis for A and our homotopy operator Q is given by Q(x⃗e I) = ⎧⎪⎪⎨⎪⎪⎩ (−1)jx⃗e I∖k(⃗e) if k(⃗e) = ij ∈ I 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
88
+ page_content=' With these data one can in principle calculate all the higher products on the cohomology algebra H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
89
+ page_content=' Below we will get explicit formulas in the case we need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
90
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
91
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
92
+ page_content=' Calculation of m4 for P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
93
+ page_content=' We now specialize to the case of the projective plane P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
94
+ page_content=' We will have no higher products of odd degree because H and H⊗n only live in even degrees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
95
+ page_content=' Below we will explicitly compute the product m4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
96
+ page_content=' For degree reasons it will only be non-zero on elements e ⊗ f ⊗ g ⊗ h ∈ H⊗4 where one or two of the arguments lie in H2 and the rest in H0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
97
+ page_content=' Hence, the following special case of the multiplication in A will be relevant: for a monomial x⃗e and a Laurent monomial x⃗e′ we have ι0(x⃗e) ⋅ x ⃗e′ I = x ⃗e′ I ⋅ ι0(x⃗e) = x⃗e+⃗e′ I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
98
+ page_content=' We use the formula m4(e,f,g,h) = −∑ T ǫ(T)mT (e,f,g,h) where the sum runs over all rooted binary trees with 4 leaves labeled e,f,g and h (from left to right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
99
+ page_content=' For each such tree T the expressions mT(e,f,g,h) is computed by moving the inputs through that tree, applying ι at the leaves, applying the homotopy Q on each interior edge, multiplying elements of A at each inner vertex and finally applying the projection π at the bottom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
100
+ page_content=' We have to sum over the following five trees, which we denote T1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
101
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
102
+ page_content=',T5 respectively: Let us first consider the case e ∈ H2 and f,g,h ∈ H0 and let’s take them all to be basis elements of H2 and H0: e = (xα0 0 xα1 1 xα2 2 ){0,1,2}, f = xa0 0 xa1 1 xa2 2 , g = xb0 0 xb1 1 xb2 2 , h = xc0 0 xc1 1 xc2 2 where α0,α1,α2 < 0 and ai,bi,ci ≥ 0 for i = 0,1,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
103
+ page_content=' In this case only one of the trees above can be non-zero in the expression for m4(e,f,g,h), namely T5, because in all other trees at some point the homotopy Q will be applied to an element of A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
104
+ page_content=' Below is a picture of the different summands in A● and the possible ways the homotopy Q can map a monomial 4 VILLE NORDSTROM AND ALEXANDER POLISHCHUK element in each summand H2 A2 ∶ 0,1,2 A1 ∶ 0,1 0,2 1,2 A0 ∶ 0 1 2 H0 ι2 (1) (3) (2) (4) π0 When computing mT5(e,f,g,h) we think of it as e moving through this diagram;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
105
+ page_content=' at every node it gets multiplied by one of the other arguments and then it moves downwards along one of the arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
106
+ page_content=' We see that to be non-zero we have to go either (1) followed by (2) or (3) followed by (4) (so that we land in ●2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
107
+ page_content=' We claim that only the second route is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
108
+ page_content=' The reason is because at each node we multiply e by a monomial so the exponents of x0,x1,x2 will not decrease at any time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
109
+ page_content=' By the definition of Q, if we go along (1) we must have that the exponent of x1 was non-negative and the exponent of x2 was negative after the multiplication at ●0,1,2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
110
+ page_content=' After performing the multiplication at ●0,2 the exponent of x1 will still be non-negative and it follows then from the definition of Q that (2) is not possible after (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
111
+ page_content=' Now comes the computation of mT5(e,f,g,h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
112
+ page_content=' Below, we denote by µ the multiplication in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
113
+ page_content=' mT5(e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
114
+ page_content='f,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
115
+ page_content='g,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
116
+ page_content='h) = πµ(Qµ(Qµ(e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
117
+ page_content='f),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
118
+ page_content='g),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
119
+ page_content='h) = πµ(Qµ(Q(xα0+a0 0 xα1+a1 1 xα2+a2 2 ){0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
120
+ page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
121
+ page_content='2},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
122
+ page_content='g),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
123
+ page_content='h) (∗)= πµ(Qµ((xα0+a0 0 xα1+a1 1 xα2+a2 2 ){1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
124
+ page_content='2},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
125
+ page_content='g),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
126
+ page_content='h) = πµ(Q(xα0+a0+b0 0 xα1+a1+b1 1 xα2+a2+b2 2 ){1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
127
+ page_content='2},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
128
+ page_content='h) (∗∗) = π(µ((xα0+a0+b0 0 xα1+a1+b1 1 xα2+a2+b2 2 ){2},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
129
+ page_content='h)) = π((xα0+a0+b0+c0 0 xα1+a1+b1+c1 1 xα2+a2+b2+c2 2 ){2}) (∗∗∗) = xα0+a0+b0+c0 0 xα1+a1+b1+c1 1 xα2+a2+b2+c2 2 TEN COMPATIBLE POISSON BRACKETS ON P5 5 where (∗),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
130
+ page_content=' (∗∗) are (∗ ∗ ∗) means we get zero unless the following conditions hold (∗) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ α0 + a0 ≥ 0 α1 + a1 < 0 α2 + a2 < 0 (∗∗) {α1 + a1 + b1 ≥ 0 α2 + a2 + b2 < 0 (∗ ∗ ∗) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ α0 + a0 + b0 + c0 ≥ 0 α1 + a1 + b1 + c1 ≥ 0 α2 + a2 + b2 + c2 ≥ 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
131
+ page_content=' In the end we have m4(e,f,g,h) = −mT5(e,f,g,h) = −ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
132
+ page_content=' ⃗a,⃗b, ⃗c) ⋅ x⃗α+⃗a+⃗b+⃗c, where ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
133
+ page_content=' ⃗a,⃗b, ⃗c) ∶= ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 1 if α0 + a0 ≥ 0 α1 + a1 < 0 α1 + a1 + b1 ≥ 0 α2 + a2 + b2 < 0 α2 + a2 + b2 + c2 ≥ 0 0 else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
134
+ page_content=' Similarly we compute m4 applied to e,f,g,h in any given order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
135
+ page_content=' We have m4(e,f,g,h) = − ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
136
+ page_content=' ⃗a,⃗b, ⃗c) ⋅ x⃗α+⃗a+⃗b+⃗c, m4(f,e,g,h) =[−ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
137
+ page_content=' ⃗a,⃗b, ⃗c) + ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
138
+ page_content='⃗b, ⃗a, ⃗c) − ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
139
+ page_content='⃗b, ⃗c, ⃗a)] ⋅ x⃗α+⃗a+⃗b+⃗c, m4(f,g,e,h) =[ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
140
+ page_content='⃗b, ⃗a, ⃗c) − ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
141
+ page_content='⃗b, ⃗c, ⃗a) + ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
142
+ page_content=' ⃗c,⃗b, ⃗a)] ⋅ x⃗α+⃗a+⃗b+⃗c, m4(f,g,h,e) =ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
143
+ page_content=' ⃗c,⃗b, ⃗a) ⋅ x⃗α+⃗a+⃗b+⃗c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
144
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
145
+ page_content=' Feigin-Odesskii brackets 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
146
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
147
+ page_content=' Bivectors on projective spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
148
+ page_content=' It is well known that every Gm-invariant bivector on a vector space V leads to a bivector on the projective space PV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
149
+ page_content=' A bivector on V can be thought of as a skew-symmetric bracket {⋅,⋅} on the polynomial algebra S(V ∗), which is a biderivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
150
+ page_content=' Such a bracket is Gm-invariant if and only if the bracket of two linear forms is a quadratic form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
151
+ page_content=' In other words, such a bracket can be viewed as a skew-symmetric pairing b ∶ V ∗ × V ∗ → S2(V ∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
152
+ page_content=' 6 VILLE NORDSTROM AND ALEXANDER POLISHCHUK The corresponding bivector Π on the projective space PV is determined by the skew- symmetric forms Πv on T ∗ v PV for each point ⟨v⟩ ∈ PV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
153
+ page_content=' We have an identification T ∗ v PV = ⟨v⟩∨ ⊂ V ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
154
+ page_content=' It is easy to see that under this identification we have Πv(s1 ∧ s2) = b(s1,s2)(v), (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
155
+ page_content='1) where s1,s2 ∈ ⟨v⟩∨.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
156
+ page_content=' Here we take the value of the quadratic form b(s1 ∧ s2) at v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
157
+ page_content=' We can use the above formula in reverse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
158
+ page_content=' Namely, suppose for some bivector Π on PV we found a skew-symmetric pairing b such that (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
159
+ page_content='1) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
160
+ page_content=' Then the Gm-invariant bracket {⋅,⋅} on S(V ) given by b induces the bivector Π on PV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
161
+ page_content=' Note that if Π is a Poisson bivector on PV , it is not guaranteed that the Gm-invariant bracket {⋅,⋅} on S(V ) is also Poisson, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
162
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
163
+ page_content=', satisfies the Jacobi identity (but it is known that {⋅,⋅} can be chosen to be Poisson, see [1], [6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
164
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
165
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
166
+ page_content=' Recollections from [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
167
+ page_content=' Let ξ be a line bundle of degree n on an elliptic curve C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
168
+ page_content=' We fix a trivialization ωC ≃ OC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
169
+ page_content=' Then the associated Feigin-Odesskii Poisson structure Π (to which we will refer as FO bracket) on PH1(ξ−1) ≃ PH0(ξ)∗ is given by the formula (see [3, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
170
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
171
+ page_content='1]) Πφ(s1 ∧ s2) = ⟨φ,MP(s1,φ,s2)⟩, (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
172
+ page_content='2) where ⟨φ⟩ ∈ PExt1(ξ,O), and s1,s2 ∈ ⟨φ⟩⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
173
+ page_content=' Here we use the Serre duality pairing ⟨⋅,⋅⟩ between H0(ξ) and H1(ξ−1) and the triple Massey product MP ∶ H0(ξ) ⊗ H1(ξ−1) ⊗ H0(ξ) → H0(ξ) that also agrees with the triple product m3 obtained by homological perturbation from the natural dg enhancement of the derived category of coherent sheaves on C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
174
+ page_content=' There is some ambiguity in a choice of m3 but for s1,s2 ∈ ⟨φ⟩⊥, the expression in the right-hand side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
175
+ page_content='2) is well defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
176
+ page_content=' Next, assume that S is a smooth projective surface, L is a line bundle on S such that H∗(L ⊗ KS) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
177
+ page_content=' Then for each smooth (connected) anticanonical divisor C ⊂ S (which is an elliptic curve), we have a natural restriction map H0(S,L) → H0(C,L∣C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
178
+ page_content=' The exact sequence 0 → LKS F✲ L → LC → 0 shows that under our assumptions this restriction map is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
179
+ page_content=' Thus, the FO bracket on PH0(L∣C)∗ associated with (C,L∣C) (defined up to rescaling) can be viewed as a Poisson structure on a fixed projective space PV ∗, where V ∶= H0(S,L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
180
+ page_content=' By [3, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
181
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
182
+ page_content='4], the Poisson brackets on PV ∗ associated with different anticanonical divisors are compatible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
183
+ page_content=' More precisely, we get a linear map from H0(S,K−1 S ) to the space of bivectors on PV ∗, whose image lies in the space of Poisson brackets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
184
+ page_content=' TEN COMPATIBLE POISSON BRACKETS ON P5 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
185
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
186
+ page_content=' Feigin-Odesskii bracket for an anticanonical divisor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
187
+ page_content=' We keep the data (S,L) of the previous subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
188
+ page_content=' Let i ∶ C ↪ S be an anticanonical divisor in S, with the equation F ∈ H0(S,K−1 S ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
189
+ page_content=' We want to write a formula for the FO bracket Π = ΠF on PV ∗ in terms of higher products on the surface S and the equation F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
190
+ page_content=' For this we rewrite the right-hand side of formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
191
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
192
+ page_content=' Let us write the triple product in this formula as MP C to remember that it is defined for the derived category of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
193
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
194
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
195
+ page_content=' (i) In the above situation, given e ∈ V ∗ and s1,s2 ∈ ⟨e⟩⊥, one has ⟨e,MP C(s1∣C,e,s2∣C)⟩ = ⟨m4(F,s1,e,s2) − m4(s1,F,e,s2),e⟩, where we use the identification V ∗ ≃ H2(S,L−1KS) given by Serre duality and consider the A∞-products on S, m4 ∶ H0(K−1 S )H0(L)H2(L−1KS)H0(L) → H0(L), H0(L)H0(K−1 S )H2(L−1)H0(L) → H0(L), obtained by the homological perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
196
+ page_content=' (ii) Assume that a generic anticanonical divisor is smooth (and connected).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
197
+ page_content=' Then ΠF∣e(s1 ∧ s2) ∶= ⟨m4(F,s1,e,s2) − m4(s1,F,e,s2),e⟩, gives a collection of compatible Poisson brackets on PV depending linearly on F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
198
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
199
+ page_content=' (i) By Serre duality, H∗(S,L−1) = 0, so the map H1(C,L−1∣C) → H2(S,L−1KS), induced by the exact sequence 0 → L−1KS → L−1 → L−1∣C → 0, is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
200
+ page_content=' It is a standard fact that this isomorphism is the dual to the isomor- phism H0(S,L) → H0(C,L∣C) given by the restriction, via Serre dualities on S and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
201
+ page_content=' Let us denote by eC ∈ H1(C,L−1∣C) the element corresponding to e ∈ H2(S,L−1KS) under the above isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
202
+ page_content=' We claim that the triple Massey product MP C(s1∣C,eC,s2∣C) = m3(s1∣C,eC,s2∣C) corre- sponding to the arrows OC s2∣C✲ L∣C [1]✲ OC s1∣C✲ L∣C agrees with the corresponding triple Massey product on S, OS → L [1]✲ OC → L∣C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
203
+ page_content=' Indeed, the relevant spaces are identified via the restriction maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
204
+ page_content=' Let r ∶ OS → OC, rL ∶ L → L∣C be the natural maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
205
+ page_content=' Then we have to check that for s1,s2 ∈ ⟨e⟩⊥ ⊂ H0(S,L), one has m3(s1∣C,eC,s2∣C)r ≡ m3(s1∣C,eCrL,s2) mod ⟨s1∣Cr,s2∣Cr⟩, where we view this as equality of cosets in Hom(OS,L∣C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
206
+ page_content=' The A∞-identities imply that m3(s1∣C,eC,s2∣C)r ≡ m3(s1∣C,eC,s2∣Cr) ± s1∣Cm3(eC,s2∣C,r), where s2∣Cr = rLs2, and m3(s1∣C,eC,rLs2) = m3(s1∣C,eCrL,s2) ± s1∣Cm3(eC,rL,s2) ± m2(s1∣C,eC,rL)s2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
207
+ page_content=' 8 VILLE NORDSTROM AND ALEXANDER POLISHCHUK Combining these two identities we deduce our claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
208
+ page_content=' Thus, it is enough to calculate the Massey product MP(s1∣C,eCrL,s2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
209
+ page_content=' Using the exact sequences above we can represent OC (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
210
+ page_content=', LC) by the twisted complex [KS[1] → OS] (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
211
+ page_content=', [LKS[1] → L]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
212
+ page_content=' In terms of these resolutions the elements of Ext1(L,OC) get represented by Ext2(L,KS) ⊂ hom●(L,[KS[1] → OS]), while the element of Hom(OC,L∣C) corresponding to s ∈ H0(S,L) ≃ H0(C,L∣C) is given by the natural map of twisted complexes induced by the multiplication by s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
213
+ page_content=' The elements of Hom(OS,L∣C) are identified with Hom(OS,L) ≃ hom0(OS,[LKS[1] → L]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
214
+ page_content=' Thus, the m3 product we are interested is given by the following triple product in the category of twisted complexes over S: OS L s2 ❄ KS[1] e ❄ F ✲ OS LKS[1] s1 ❄ F ✲ L s1 ❄ where we view e as a morphism of degree 1 from L to KS[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
215
+ page_content=' Now the formula for m3 on twisted complexes gives m4(F,s1,e,s2) − m4(s1,F,e,s2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
216
+ page_content=' (ii) It is clear that ΠF gives a linear map from H0(S,ω−1 S ) to the space of bivectors on PV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
217
+ page_content=' By (i), for generic F we get a Poisson bracket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
218
+ page_content=' Hence, this is true for all F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
219
+ page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
220
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
221
+ page_content=' The case leading to 10 compatible brackets on P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
222
+ page_content=' We can apply Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
223
+ page_content='1 to the case S = P2 and L = O(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
224
+ page_content=' Note that the assumptions are satisfied in this case since LKS = O(−1) has vanishing cohomology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
225
+ page_content=' Thus, for each F ∈ H0(P2,O(3)) giving a smooth cubic, we get a formula for the FO-bracket ΠF on PH0(P2,O(2))∗ = P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
226
+ page_content=' Hence, we get a family of 10 (the dimension of H0(P2,O(3)) compatible brackets on P5 (we also know this from [3, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
227
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
228
+ page_content='7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
229
+ page_content=' The fact that these 10 brackets are linearly independent follows from the compatibility of this construction with the GL3-action and is explained in [3, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
230
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
231
+ page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
232
+ page_content=' TEN COMPATIBLE POISSON BRACKETS ON P5 9 Now we will derive formulas for the the brackets {,}F on the algebra of polynomials in 6 variables which induce the above Poisson brackets on PV ≃ P5, where V = H0(P2,O(2))∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
233
+ page_content=' They depend linearly on F, so we will just give formulas for {,}x⃗c, where x⃗c runs through all 10 monomials of degree 3 in (x0,x1,x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
234
+ page_content=' Let us set ∆(n) ∶= {{(a0,a1,a2) ∈ Z3 ∣a0 + a1 + a2 = n,ai ≥ 0 for i = 0,1,2} if n ≥ 0 {(α0,α1,α2) ∈ Z3 ∣α0 + α1 + α2 = n,αi < 0 for i = 0,1,2} if n < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
235
+ page_content=' Note that {x⃗e ∣ ⃗e ∈ ∆(n)} forms a basis for H0(P2,O(n)) when n ≥ 0, while {x⃗e {0,1,2} ∣ ⃗e ∈ ∆(n)} is a basis for H2(P2,O(n)) when n < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
236
+ page_content=' In particular, we use {x⃗a ∣ ⃗a ∈ ∆(2)} as a basis in V ∗ = H0(P2,O(2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
237
+ page_content=' Our brackets should associate to a pair of elements of this basis a quadratic form in the same variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
238
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
239
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
240
+ page_content=' One has for ⃗a,⃗b ∈ ∆(2), ⃗c ∈ ∆(3), {x⃗a,x ⃗b}x⃗c ∶= ∑ ⃗a′,⃗b′∈∆(2) [∑ σ −sgn(σ)˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗a′, ⃗b′)]x ⃗a′x ⃗b′ (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
241
+ page_content='3) where the second sum is over the symmetric group on the letters {a,b,c} and ˜ρ(⃗a,⃗b, ⃗c, ⃗a′, ⃗b′) ∶= ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 1 if a′ 0 ≤ a0 − 1 a′ 1 > a1 − 1 a′ 1 ≤ a1 + b1 − 1 a2 + b2 < a′ 2 + 1 c2 + a2 + b2 ≥ a′ 2 + 1 a′ 0 + b′ 0 = a0 + b0 + c0 − 1 a′ 1 + b′ 1 = a1 + b1 + c1 − 1 0 else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
242
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
243
+ page_content=' By Serre duality, we can identify V = H0(P2,O(2))∗ with H2(P2,O(−5)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
244
+ page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
245
+ page_content='1, the bracket {x⃗a,x⃗b}x⃗c is the quadratic form on V ≃ H2(P2,O(−5)) given by Q(e) ∶= ⟨e,m4(x⃗c,x⃗a,e,x ⃗b) − m4(x⃗a,x⃗c,e,x ⃗b)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
246
+ page_content=' We can write e = ∑ ⃗α∈∆(−5) c⃗αx⃗α {0,1,2} ∈ H2(P2,O(−5)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
247
+ page_content=' Using the formulas for m4 from the end of section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
248
+ page_content='2 we get Q(e) = ∑ ⃗α, ⃗β∈∆(−5) [∑ σ −sgn(σ)ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
249
+ page_content='σ⃗a,σ⃗b,σ⃗c)]δ(⃗α, ⃗β, ⃗a,⃗b, ⃗c)c⃗αc ⃗β, 10 VILLE NORDSTROM AND ALEXANDER POLISHCHUK where the second sum runs over the symmetric group on the letters {a,b,c} and δ(⃗α, ⃗β, ⃗a,⃗b, ⃗c) = {1 if ⃗α + ⃗β + ⃗a + ⃗b + ⃗c = (−1,−1,−1) 0 else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
250
+ page_content=' We have to show that the element in S2(H0(P2,O(2))) given by the right-hand side of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
251
+ page_content='3) defines the same quadratic form Q on H2(P2,O(−5)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
252
+ page_content=' To see this we apply it to the element e = ∑⃗α∈∆(−5) c⃗αx⃗α {0,1,2} ∈ H2(P2,O(−5)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
253
+ page_content=' For ⃗α ∈ O(−5) we set ⃗α∗ ∶= (−1,−1,−1)− ⃗α and then we compute ( ∑ ⃗a′,⃗b′∈∆(2) [∑ σ −sgn(σ)˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗a′, ⃗b′)]x ⃗a′x ⃗b′)(e) = ∑ ⃗α, ⃗β∈∆(−5) ∑ ⃗a′,⃗b′∈∆(2) [∑ σ −sgn(σ)˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗a′, ⃗b′)]⟨x ⃗a′,x⃗α {0,1,2}⟩⟨x ⃗b′,x ⃗β {0,1,2}⟩c⃗αc ⃗β = ∑ ⃗α, ⃗β∈∆(−5) [∑ σ −sgn(σ)˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗α∗, ⃗β∗)]c⃗αc ⃗β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
254
+ page_content=' Now it only remains to note that ˜ρ(σ⃗a,σ⃗b,σ⃗c, ⃗α∗, ⃗β∗) = ρ(⃗α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
255
+ page_content='σ⃗a,σ⃗b,σ⃗c)δ(⃗α, ⃗β, ⃗a,⃗b, ⃗c) for any permutation σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
256
+ page_content=' □ Remarks 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
257
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
258
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
259
+ page_content=' Note that when we take ⃗c = (0,0,3) only two permutations σ, namely, σ = 1 and σ = (a b), can give non-zero terms in the formula of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
260
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
261
+ page_content=' When ⃗c = (1,2,0) all permutations except σ = 1 and σ = (a b) may give non-zero terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
262
+ page_content=' When ⃗c = (1,1,1) all permutations can give non-zero terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
263
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
264
+ page_content=' We do not claim that formulas (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
265
+ page_content='3) define Poisson brackets and are compatible on the algebra of polynomials in 6 variables, only that this holds for the induced brackets on P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
266
+ page_content=' References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
267
+ page_content=' Bondal, Non-commutative deformations and Poisson brackets on projective spaces, preprint MPI 93-67 [2] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
268
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
269
+ page_content=' Feigin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
270
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
271
+ page_content=' Odesskii, Vector bundles on an elliptic curve and Sklyanin algebras, in Topics in quantum groups and finite-type invariants, 65–84, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
272
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
273
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
274
+ page_content=', Providence, RI, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
275
+ page_content=' [3] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
276
+ page_content=' Hua, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
277
+ page_content=' Polishchuk, Elliptic bihamiltonian structures from relative shifted Poisson structures, arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
278
+ page_content='12351.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
279
+ page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
280
+ page_content=' Kontsevich, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
281
+ page_content=' Soibelman, Homological mirror symmetry and torus fibrations, in Symplectic geom- etry and mirror symmetry (Seoul, 2000), 203–263, World Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
282
+ page_content=' Publishing, River Edge, NJ, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
283
+ page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
284
+ page_content=' Odesskii, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
285
+ page_content=' Wolf, Compatible quadratic Poisson brackets related to a family of elliptic curves, arXiv:1204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
286
+ page_content='1299 [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
287
+ page_content=' Polishchuk, Algebraic geometry of Poisson brackets, Journal of Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
288
+ page_content=' Sciences 84 (1997) 1413–1445.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
289
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
290
+ page_content=' Polishchuk, Poisson structures and birational morphisms associated with bundles on elliptic curves, IMRN 13 (1998), 683–703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
291
+ page_content=' Department of Mathematics, University of Oregon, Eugene, OR 97403, USA Email address: villen@uoregon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
292
+ page_content='edu TEN COMPATIBLE POISSON BRACKETS ON P5 11 Department of Mathematics, University of Oregon, Eugene, OR 97403, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
293
+ page_content=' National Research University Higher School of Economics Email address: apolish@uoregon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
294
+ page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FQT4oBgHgl3EQf0jbn/content/2301.13417v1.pdf'}
1NFLT4oBgHgl3EQfpi-7/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ae912277d1bc2c5ad0304060f0ec63358d1edac86bd61aabd183c294bc51614
3
+ size 5373997
1tE1T4oBgHgl3EQfRwOf/content/tmp_files/2301.03057v1.pdf.txt ADDED
@@ -0,0 +1,1928 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Characterizing Quantile-varying Covariate
2
+ Effects under the Accelerated Failure Time
3
+ Model
4
+ Harrison T. Reeder
5
+ Massachusetts General Hospital Biostatistics
6
+ Department of Medicine, Harvard Medical School
7
+ Kyu Ha Lee
8
+ Departments of Nutrition, Biostatistics, and Epidemiology,
9
+ Harvard T.H. Chan School of Public Health
10
+ Sebastien Haneuse
11
+ Department of Biostatistics, Harvard T.H. Chan School of Public Health
12
+ Abstract
13
+ An important task in survival analysis is choosing a structure for the relationship
14
+ between covariates of interest and the time-to-event outcome. For example, the accel-
15
+ erated failure time (AFT) model structures each covariate effect as a constant multi-
16
+ plicative shift in the outcome distribution across all survival quantiles. Though parsi-
17
+ monious, this structure cannot detect or capture effects that differ across quantiles of
18
+ the distribution, a limitation that is analogous to only permitting proportional hazards
19
+ in the Cox model. To address this, we propose a general framework for quantile-varying
20
+ multiplicative effects under the AFT model. Specifically, we embed flexible regression
21
+ structures within the AFT model, and derive a novel formula for interpretable effects
22
+ on the quantile scale. A regression standardization scheme based on the g-formula is
23
+ proposed to enable estimation of both covariate-conditional and marginal effects for an
24
+ exposure of interest. We implement a user-friendly Bayesian approach for estimation
25
+ and quantification of uncertainty, while accounting for left truncation and complex cen-
26
+ soring. We emphasize the intuitive interpretation of this model through numerical and
27
+ graphical tools, and illustrate its performance by application to a study of Alzheimer’s
28
+ disease and dementia.
29
+ Keywords: Accelerated failure time model; Bayesian survival analysis; Left-truncation; Time-
30
+ varying coefficients; Time-varying covariates
31
+ This is the pre-peer reviewed, “submitted” version of the following article which is published in Biostatistics by Oxford University Press:
32
+ Reeder HT, Lee KH, Haneuse S. Characterizing quantile-varying covariate effects under the accelerated failure time model. Biostatistics. kxac052.
33
+ 2022 Jan 04. doi: 10.1093/biostatistics/kxac052. PMID: 36610077.
34
+ Arxiv will be updated with the final peer-reviewed “accepted” version of the manuscript after a 24 month embargo period.
35
+ 1
36
+ arXiv:2301.03057v1 [stat.ME] 8 Jan 2023
37
+
38
+ 1
39
+ Introduction
40
+ Modeling the relationship between a time-to-event outcome T and a vector of covariates X
41
+ requires choosing a structure for the covariate effects. The proportional hazards model is
42
+ by far the most commonly used model, specifying a constant multiplicative effect on the
43
+ hazard of the outcome, yielding a ‘hazard ratio.’ Though ubiquitous, hazard ratios can be
44
+ difficult to interpret, and the constant effect across time—that is, the ‘proportionality’ of
45
+ the hazards—is not always plausible (Hern´an, 2010; Uno et al., 2015). As an alternative, the
46
+ accelerated failure time (AFT) model directly describes shifts in the outcome distribution
47
+ between populations having different characteristics, via multiplicative effects on event time
48
+ quantiles (Wei, 1992). Specifically, every survival quantile is multiplied by a constant ‘accel-
49
+ eration factor,’ equivalent to a horizontal stretching or compressing of the survivor function.
50
+ In other words, the times by which 10 percent of events occur, or 90 percent, or 50 percent
51
+ (i.e., the median survival time), or any other quantile, are shifted by the same multiplicative
52
+ (or relative) constant. This common effect across quantiles is the central feature of the AFT
53
+ model, making it highly interpretable because contrasts of survival quantiles are tangible
54
+ and often clinically meaningful. Despite the parsimony of a constant multiplicative effect,
55
+ in some settings it may be important to allow for more flexible effects across quantiles. For
56
+ example, consider the study of Alzheimer’s disease (AD) and dementia among older adults.
57
+ Prospective cohort studies of incident AD and dementia typically enroll subjects and follow
58
+ them over decades, often subject to left truncation and sometimes complex censoring. Age
59
+ at AD onset among those with a particular risk factor, for example, may skew earlier than
60
+ among those without the risk factor. However, because AD is a complex disease that can
61
+ arise over a long time scale, baseline risk factors may not affect the entire distribution uni-
62
+ formly. This could occur if, for example, a risk factor did not affect the timing of ‘early-onset’
63
+ cases, but made ‘late-onset’ cases occur sooner.
64
+ Modeling hazard ratios flexibly across time is a well-known and commonly used tool un-
65
+ der the Cox model, but analogous extensions of the AFT model are not well-studied. Very
66
+ recently, a paper by Crowther et al. (2022) suggests a frequentist spline-based AFT model
67
+ and discusses potential for time-varying effects. However, their work considers a less common
68
+ interpretation of the acceleration factor on the scale of log time, rather than investigating the
69
+ potential for flexibility on the quantile scale. Moreover, their paper does not present any nu-
70
+ merical results for the use of flexible effects. Separately, a recent paper by Pang et al. (2021)
71
+ considers a Frequentist spline-based AFT model using a completely different formulation
72
+ derived from Prentice and Kalbfleisch (1979), requiring a specialized estimation algorithm
73
+ and bootstrapping for inference. However, these papers do not incorporate left truncation
74
+ or complex censoring, or consider effects of time-dependent covariates that commonly arise
75
+ in longitudinal studies, for which the resulting relationship varies both over the trajectory
76
+ of the covariate, and over the survival quantiles.
77
+ 2
78
+
79
+ In this paper, we extend the AFT model to allow flexible acceleration factors that vary
80
+ across quantiles, while simultaneously accommodating left-truncation, complex censoring,
81
+ and time-varying covariates. Our approach builds on a time-varying AFT model first in-
82
+ troduced in Cox and Oakes (1984) but seemingly largely overlooked in the literature, and a
83
+ general framework for flexible covariate effect specification. We illustrate how AFT regres-
84
+ sion coefficients specified to vary over time can be inverted into quantile-varying acceleration
85
+ factors, and we develop a regression standardization scheme based on the g-formula to allow
86
+ estimation of both covariate-conditional and marginal acceleration factors for an exposure of
87
+ interest. We propose a Bayesian estimation approach for this modeling framework using the
88
+ Stan language, which allows rigorous quantification of uncertainty and increased modeling
89
+ flexibility. Through this investigation, we also uncover new insights into the use of binary
90
+ time-varying covariates under the AFT model, and present novel tools for modeling and
91
+ visualizing such effects. This further expands the AFT modeling toolkit to cover many ex-
92
+ tensions commonly used under the Cox model. We motivate these methods with an in-depth
93
+ analysis of the Religious Orders Study and Memory and Aging Project prospective cohort
94
+ studies of AD and dementia (Bennett et al., 2018).
95
+ 2
96
+ The Accelerated Failure Time Model
97
+ The standard AFT model with time-invariant effects can be written as a log-linear model of
98
+ time:
99
+ log(T) = X
100
+ Tβ + ϵ,
101
+ where ϵ is a random error term and β is a vector of regression coefficients corresponding
102
+ with covariates X. We denote the exponentiated error T0 = exp(ϵ), which represents a hy-
103
+ pothetical random variable drawn from the “baseline distribution” having survivor function
104
+ S0. It is straightforward to show that this model structures covariate effects such that the
105
+ distribution of event times among subjects having covariate pattern x, denoted Tx, is directly
106
+ shifted from the baseline distribution by the transformation
107
+ Tx × exp(−x
108
+ Tβ) ∼ S0.
109
+ Based on this connection, an equivalent representation of the standard AFT model is given
110
+ directly via the baseline survivor function S0 as
111
+ S(t | X) = S0(t × exp(−X
112
+ Tβ)).
113
+ (1)
114
+ The AFT model admits a direct interpretation of covariate effects as multiplicative shifts
115
+ of the survival quantiles. For any particular quantile p, define t(p)
116
+ x
117
+ and t(p)
118
+ 0
119
+ to be the pth
120
+ quantile times under x and baseline respectively. Then
121
+ p = S(t(p)
122
+ x | x) = S0(t(p)
123
+ x × exp(−x
124
+ Tβ)) = S0(t(p)
125
+ 0 ).
126
+ 3
127
+
128
+ Solving for the pth quantile survival time under x yields
129
+ t(p)
130
+ x = S−1(p | x) = S−1
131
+ 0 (p) exp(x
132
+ Tβ).
133
+ The acceleration factor between two arbitrary covariate patterns x and x′ is then defined as
134
+ the ratio of pth quantiles,
135
+ t(p)
136
+ x /t(p)
137
+ x′ =
138
+ S−1
139
+ 0 (p) exp(xTβ)
140
+ S−1
141
+ 0 (p) exp((x′)Tβ) = exp((x − x′)
142
+ Tβ).
143
+ Under the standard AFT model, the acceleration factor does not depend on the form of S0
144
+ or the value of p, and thus characterizes a constant multiplicative covariate effect across the
145
+ entire distribution.
146
+ 2.1
147
+ AFT model with time-varying components
148
+ In the standard AFT model (2), the covariate-adjusted survivor function is directly charac-
149
+ terized by the time shift defined by t × exp(−XTβ). Towards a more flexible AFT model,
150
+ we replace this time shift with a general increasing function V (t | X), yielding the covariate-
151
+ adjusted survivor function
152
+ S(t | X) = S0 (V (t | X)) .
153
+ (2)
154
+ This formulation, first discussed by Cox and Oakes (1984) in the context of time-varying
155
+ covariates, reduces to the standard AFT when V (t | X) = t × exp(−XTβ), while also admit-
156
+ ting other temporal specifications of the relationship between covariates and the outcome
157
+ distribution. In fact, one interpretation of this V function is as a transformation linking the
158
+ distribution of Tx under covariates x, and the baseline distribution of T0,
159
+ V (Tx | x) ∼ S0.
160
+ Under this extended AFT model (2.1), the pth quantile survival time for subjects under
161
+ covariate pattern x is
162
+ t(p)
163
+ x = S−1(p | x) = V −1(S−1
164
+ 0 (p) | x).
165
+ Now it may no longer be the case that the ratio of pth quantile survival times between
166
+ covariate patterns x and x′ is a constant factor. Instead, the more general quantile-varying
167
+ acceleration factor is
168
+ ξ(p | x, x′, S0) = t(p)
169
+ x /t(p)
170
+ x′ = S−1(p | x)
171
+ S−1(p | x′) = V −1(S−1
172
+ 0 (p) | x)
173
+ V −1(S−1
174
+ 0 (p) | x′),
175
+ (3)
176
+ with notation explicitly capturing the additional potential for dependence on p and S0.
177
+ 4
178
+
179
+ 2.1.1
180
+ Examples and Interpretation
181
+ To emphasize both the flexibility and interpretability of this new quantity, Figure 1 shows
182
+ sample survivor curves and corresponding acceleration factors under simple forms of quantile-
183
+ varying effect for a single contrast between exposure levels X = 1 and X = 0, with baseline
184
+ S0(t) = exp(−0.3t). For simplicity we will interpret the effects at p = 0.75 and p = 0.25,
185
+ which represent the time by which 25% and 75% of people experience the event, respectively.
186
+ As a reference point, the blue curve (second row of the legend) in each figure shows a
187
+ constant acceleration factor of exp(0.5) ≈ 1.65, constant across quantiles. The green curve
188
+ (fourth row of the legend) shows a protective effect that is increasingly pronounced among
189
+ later-onset cases, with ξ(0.75 | 1, 0) = 1.25 and ξ(0.25 | 1, 0) = 2. In words, the estimated
190
+ time by which 25% of the exposed die is 1.25 times as great as that among the unexposed,
191
+ but the estimated time by which 75% of the exposed die is 2 times greater than unexposed.
192
+ Conceptually, this form of protective effect corresponds with delayed onset of all cases among
193
+ the exposed, but specifically a much longer tail of late-onset cases compared to a standard
194
+ AFT protective effect.
195
+ The orange curve (third row of the legend) shows a more nuanced effect that delays the
196
+ earliest cases, while also accelerating later onset cases. Numerically, ξ(0.75 | 1, 0) = 1.65
197
+ and ξ(0.25 | 1, 0) = 0.9, meaning the estimated time by which 25% of the exposed die is
198
+ 1.65 times as great as that among the unexposed, but the estimated time by which 75% of
199
+ the exposed die is only 0.9 times as great as among the unexposed. Conceptually, this form
200
+ of effect is a ‘compressing’ of the outcome distribution, with earlier events being delayed
201
+ and later events being accelerated. This is visible in the relative steepness of the survivor
202
+ curve, with more than 50% of all events occurring between times 2 and 4. Furthermore,
203
+ this represents an effect with ‘crossing survivor curves’, which despite being common in
204
+ certain health research domains cannot be modeled by standard proportional hazards or
205
+ AFT models. In summary, we see that this approach to conceptualizing covariate effects for
206
+ time-to-event outcomes yields nuanced and interpretable insights beyond what is available
207
+ from standard proportional hazards or AFT models.
208
+ 3
209
+ Model Definition
210
+ The proposed quantile-varying AFT model is purposefully general with respect to the base-
211
+ line survivor distribution S0 and the time-varying covariate process V . In this section we
212
+ outline several choices for specifying these model components, weighing tradeoffs between
213
+ flexibility, stability, and computation. While this modeling framework in principle admits
214
+ estimation under both frequentist and Bayesian paradigms, we focus on the latter approach
215
+ and employ a Markov Chain Monte Carlo (MCMC) estimation routine via the No-U-Turn
216
+ sampler implemented in the Stan language (Carpenter et al., 2017).
217
+ 5
218
+
219
+ 3.1
220
+ Specification of the covariate process V
221
+ For ease of exposition, we will consider a d length vector of baseline covariates X, of which
222
+ an exposure of interest X1 is specified with a flexible regression effect. However, this can
223
+ easily be expanded to allow multiple such exposures of interest.
224
+ The form of the covariate process V dictates the potential shapes the quantile-varying
225
+ acceleration factor for X1 can take, and requires a balance of flexibility and stability. We
226
+ focus on spline-based methods, which require a vector of knots τ characterizing a set of J
227
+ basis functions B1, . . . , BJ, and corresponding coefficients α = (α1, . . . , αJ)T. This results in
228
+ the specification
229
+ V (t | X) = t × exp
230
+
231
+ −X
232
+ Tβ − X1
233
+ J
234
+
235
+ j=1
236
+ αjBj(t | τ)
237
+
238
+ ,
239
+ (4)
240
+ Note that when α = 0, then this reduces to the standard AFT model, allowing straight-
241
+ forward model comparison to assess the flexible effect specification. Furthermore, letting
242
+ B′
243
+ j(t | τ) = dBj(t | τ)/dt, then the derivative of the covariate process, which is used in
244
+ likelihood computation, has the simple form
245
+ v(t | X) = d
246
+ dtV (t | τ) = V (t | τ)
247
+
248
+ 1
249
+ t − X1
250
+ J
251
+
252
+ j=1
253
+ αjB′
254
+ j(t | τ)
255
+
256
+ .
257
+ One specification inspired by the parametric proportional hazards spline model of Roys-
258
+ ton and Parmar (2002) and discussed by Crowther et al. (2022) is the natural cubic spline
259
+ basis, which combines cubic polynomial basis functions with a restriction that the ends be-
260
+ yond the lower and upper boundary knots be linear.
261
+ Numerically stable forms for each
262
+ natural cubic spline basis function Bk and B′
263
+ k are readily available in statistical software,
264
+ and the resulting V combines flexibility and stability, with the added advantage of being
265
+ a smooth function of time. However, the inverse V −1(t | X) used in the quantile-varying
266
+ acceleration factor (2.1) does not have a closed form, and must be computed numerically.
267
+ A computationally simpler alternative is to specify V as a piecewise linear function, which
268
+ yields a simplified analytical form and closed form inverse. Define J + 2 knots 0 = τ0 < τ1 <
269
+ · · · < τJ < τJ+1 = ∞, with basis functions defined Bj(t | τ) = t−1(min{t, τj+1} − τj)+ where
270
+ (z)+ = min{0, z}. Then the final specification for V simplifies to
271
+ V (t | X) = t × exp (−X
272
+ Tβ)
273
+ � J
274
+
275
+ j=1
276
+ exp (−X1αj) Bj(t | τ)
277
+
278
+ ,
279
+ with the straightforward derivative v(t | X) = exp
280
+
281
+ −XTβ − �J
282
+ j=1 X1αjI(τj ≤ t < τj+1)
283
+
284
+ .
285
+ Computation of the inverse is also straightward, and left to Appendix B of the Supplementary
286
+ Materials. As above, this reduces to the standard AFT model when α = 0.
287
+ 6
288
+
289
+ 3.2
290
+ Specification of the baseline distribution S0
291
+ As with the specification of V , there are numerous possible choices of baseline distribution
292
+ characterizing S0, both fully parametric and semi-parametric. Parametric specifications have
293
+ several advantages in this setting: they are computationally efficient, well-defined across all
294
+ quantiles, have tractible inverse survivor functions, and can lead to improved efficiency in
295
+ smaller samples. Two such parametric specifications are the log-Normal baseline distribution
296
+ with survivor function defined by S0(t | µ, σ) = 1 − Φ(log t − µ)/σ2 where Φ(·) is the
297
+ standard normal distribution function, and the Weibull baseline distribution defined by
298
+ S0(t | µ, σ) = exp {[t × exp(−µ)]σ}. Let φ = (µ, σ)T denote the collection of parameters
299
+ corresponding to the baseline distribution.
300
+ Nevertheless, an important benefit of the Bayesian paradigm is the well-established liter-
301
+ ature on semi-parametric AFT survival models with flexible baseline distributions, such as
302
+ Dirichlet process mixture (DPM) models (Lee et al., 2017) and Polya tree priors (Hanson
303
+ et al., 2009). Here we propose a transformed Bernstein polynomial (TBP) prior for S0 fol-
304
+ lowing (Zhou and Hanson, 2018), which defines a parametric centering distribution having
305
+ survivor function S∗
306
+ 0(t | φ) (such as the Weibull or log-Normal defined above), then applies
307
+ a transformation using Bernstein polynomial functions to can flexibly capture a wide array
308
+ of distributions. Formally, define the Beta(a, b) distribution function
309
+ G(p | a, b) = Γ(a + b)
310
+ Γ(a)Γ(b)pa−1(1 − p)b−1,
311
+ 0 ≤ x ≤ 1,
312
+ and a vector w of length K such that �K
313
+ k=1 wk = 1. Then the baseline survivor function is
314
+ the linear combination
315
+ S0(t | φ, w) =
316
+ K
317
+
318
+ k=1
319
+ wkG(S∗
320
+ 0(t | φ) | k, K − k + 1).
321
+ Because the domain of G and the range of S∗
322
+ 0 are both [0,1], this represents a flexible spline
323
+ transformation of the centering parametric distribution on the scale of survival quantiles. In
324
+ particular, if w = (J−1, J−1, . . . , J−1)T, then S0 = S∗
325
+ 0, so the TBP specification contains the
326
+ centering parametric model, but can also characterize a wide array of survival distribution
327
+ shapes. An illustration is provided in Appendix D of the Supplementary Materials. To
328
+ complete the Bayesian specification, we place a Dirichlet(θ) prior on w with θ > 0, where
329
+ larger values of θ correspond to tighter concentration of the elements of w around J−1 and
330
+ therefore tighter concentration of S0 around S∗
331
+ 0.
332
+ This specification offers several advantages over other flexible baseline specifications men-
333
+ tioned previously.
334
+ Importantly, each G function can be computed recursively, so overall
335
+ computation of S0 is efficient. Moreover, the TBP prior can be straightforwardly sampled
336
+ using the No-U-Turn algorithm implemented in the Stan language, as described below. By
337
+ contrast, many other Bayesian non-parametric specifications such as Polya trees and DPM
338
+ 7
339
+
340
+ models require specialized computational methods such as custom MCMC samplers and data
341
+ augmentation (Hanson et al., 2009; Lee et al., 2017). The main tradeoff with any flexible
342
+ form for S0 compared to a fully parametric specification is the increased computational cost,
343
+ both for the sampler as well as the numerical computation of the inverse function S−1
344
+ 0
345
+ and
346
+ associated acceleration factors.
347
+ 3.3
348
+ Likelihood
349
+ Another important benefit of the Bayesian approach is the ability to seamlessly handle
350
+ arbitrary censoring and left truncation. Let (Y l, Y u) the left and right observed endpoints
351
+ of a censoring interval around a true event time T, such that Y l ≤ T ≤ Y u. Right-censoring
352
+ simply corresponds with Y u = ∞.
353
+ Define the binary indicator ∆ = I(Y l = Y u) to be
354
+ a subject observed to experience the event exactly at time Y l. Finally, let L represent the
355
+ possible left-truncation time. Along with the baseline covariates X, denote the corresponding
356
+ observed data for the ith subject Di = {yl
357
+ i, yu
358
+ i , δi, li, xi}.
359
+ After specifying V and S0, let ψ = (β
360
+ T, αT, φ
361
+ T, wT)T denote the full set of parameters.
362
+ Then assuming that censoring is non-informative of the outcome, the resulting likelihood
363
+ contribution for subject i is then
364
+ Li(ψ | Di) = [f0(V (yl
365
+ i | xi))v(yl
366
+ i | xi)]δi[S0(V (yl
367
+ i | xi)) − S0(V (yu
368
+ i | xi))](1−δi)
369
+ S0(V (li | xi))
370
+ where f0 is the density function corresponding to the baseline distribution. By convention,
371
+ S0(∞) = 0, so under right-censoring this reduces to the standard censored data likelihood.
372
+ 3.4
373
+ Bayesian Computation and Prior Specification
374
+ To implement this modeling framework, we propose Bayesian estimation via the No-U-Turn
375
+ sampler implemented by the Stan language (Carpenter et al., 2017). In brief, this MCMC
376
+ algorithm uses gradient information on the log-posterior to generate Markov transitions that
377
+ efficiently explore the posterior distribution. This choice reflects our goal of developing a
378
+ practical and accessible methodology, as our implementation can be easily called from R via
379
+ the rstan package with minimal algorithmic tuning (Stan Development Team, 2020).
380
+ To complete our model specification, we consider priors on the parameters β, α, and φ.
381
+ The No-U-Turn sampler does not require or leverage conjugacy between prior and posterior,
382
+ so prior distributions can be chosen or adjusted without changing the implementation of
383
+ the sampler.
384
+ In the application below, we adopt flat priors for regression parameters β
385
+ and α. For the parametric (centering) distribution, we also adopt a flat prior for the log
386
+ location parameter log µ, and for the scale parameter a σ ∼ Gamma(aσ, bσ) prior.
387
+ The
388
+ TBP prior is defined by a w ∼ Dirichlet(θ) prior for the weights, and we adopt a θ ∼
389
+ 8
390
+
391
+ Gamma(aθ, bθ) hyperprior on θ, regulating the level of flexibility around the parametric
392
+ centering distribution.
393
+ 3.5
394
+ Model Evaluation and Comparison
395
+ A conceptual benefit of our proposed modeling framework is that the flexible structures
396
+ naturally encompass simpler models: the standard AFT model is nested within the flexible
397
+ effect specification of covariate process V , and a fully parametric baseline is nested within the
398
+ TBP prior for S0. In this section, we propose a model evaluation metric to inform decisions
399
+ regarding the necessary level of model complexity, facilitated by the Stan language and the
400
+ loo package in R (Vehtari et al., 2017).
401
+ The expected log pointwise predictive density (ELPD) is a metric that evaluates how well
402
+ a fitted model can predict future out-of-sample data, with larger values indicating better
403
+ predictive ability. For n future observations �y1, . . . , �yn, the ELPD is defined via the posterior
404
+ predictive density p(�y | D) as
405
+ ELPD =
406
+ n
407
+
408
+ i=1
409
+
410
+ log p(�yi | D)d�yi.
411
+ While typically future out-of-sample data is not available, the ELPD can be estimated by
412
+ leave-one-out cross validation by averaging the log posterior predictive distribution for each
413
+ observed data point of a model fit excluding that data point. This quantity can in turn
414
+ be estimated efficiently from a single Bayesian model fit via Pareto smoothed importance
415
+ sampling, which we denote �
416
+ ELPDpsis-loo (Vehtari et al., 2017), and has been shown to exhibit
417
+ improved performance relative to other common Bayesian model criteria, such as Deviance
418
+ Information Criterion (DIC).
419
+ 3.6
420
+ Computation of Regression Standardized Acceleration Factors
421
+ Importantly, under the covariate process V defined by (3.1), the quantile-varying accelera-
422
+ tion factor (2.1) depends on the specified values of all covariates x and x′, not just those
423
+ that differ. This conditionality on the values of all covariates may be insightful if interest
424
+ is in assessing effect heterogeneity in particular subpopulations defined by specific covari-
425
+ ate patterns. However, practical interest is often in assessing the effect of an exposure in
426
+ a population standardized with respect to the other covariates. Therefore, in this section
427
+ we propose a regression standardization approach to estimating the quantile-varying accel-
428
+ eration factor for a particular covariate of interest, averaged over the distribution of other
429
+ covariates. Conceptually, the goal is to first estimate the survivor curves we would observe
430
+ in the population if everyone was alternately exposed or unexposed, and then back out the
431
+ quantile-varying acceleration factor that relates the two curves.
432
+ 9
433
+
434
+ For clarity, consider a single binary exposure of interest X, and vector of additional
435
+ covariates Z. Then the marginal ratio of interest is
436
+ ξ(p | X = 1, X′ = 0) = S−1(p | X = 1)
437
+ S−1(p | X = 0).
438
+ Following Rothman et al. (2021) and Sj¨olander (2016), define the survivor function for
439
+ X = x, standardized to the distribution of Z, as
440
+ SZ(t | x) = EZ[P(T > t | X = x, Z)].
441
+ Using standardized survivor functions, we define the standardized quantile-varying acceler-
442
+ ation factor as
443
+ ξZ(p | X = 1, X′ = 0) = [SZ]−1(p | X = 1)
444
+ [SZ]−1(p | X = 0).
445
+ where [SZ]−1(p | X = x) is the function solving SZ(t | X = x) − p = 0 for t.
446
+ This
447
+ contrast represents the magnitude of the horizontal shift in the standardized survivor curve
448
+ SZ between X = 1 and X = 0, at each quantile p.
449
+ To estimate and quantify uncertainty for these contrasts, we develop a novel approach
450
+ based on the Bayesian g-formula (Keil et al., 2018). In brief, for each MCMC draw m =
451
+ 1, . . . , M, for each X = x we compute the standardized survivor function
452
+ S(m)
453
+ Z (t | X = x) = n−1
454
+ n
455
+
456
+ i=1
457
+ S(t | X = x, Z = zi; ψ(m)),
458
+ and then form contrast of interest
459
+ ξ(m)
460
+ Z (p | X = 1, X′ = 0) = [S(m)
461
+ Z ]−1(p | X = 1)
462
+ [S(m)
463
+ Z ]−1(p | X = 0)
464
+ .
465
+ This may require numerical evaluation of the inverse standardized survivor functions. Esti-
466
+ mating the posterior mean and credible intervals of ξZ proceeds using the mean and suitable
467
+ quantiles of ξ(1)
468
+ Z , . . . , ξ(M)
469
+ Z
470
+ .
471
+ 4
472
+ Application: Cohort Study of Incident AD and De-
473
+ mentia
474
+ Motivating the proposed AFT model is the study of adverse cognitive outcomes among older
475
+ adults, for which long timescales and complex disease etiology naturally lend themselves to
476
+ consideration of flexible covariate effects on the quantile scale. In this section we investigate
477
+ 10
478
+
479
+ risk factors for AD and dementia in older adults using data collected by the Religious Orders
480
+ Study and Memory and Aging Project (ROSMAP) prospective cohort studies ongoing since
481
+ 1994 and 1997 respectively (Bennett et al., 2018). Our analysis focuses on flexible estima-
482
+ tion of the association of the genetic marker APOE-ϵ4 with the timing of AD or dementia
483
+ onset. Previous analyses of similar cohorts have simply compared incidence rates within
484
+ age categories to examine whether this marker had differential effects through time (Kukull
485
+ et al., 2002). So, estimating a quantile-varying acceleration factor for APOE-ϵ4 is of clinical
486
+ relevance, while also accounting for other risk factors.
487
+ 2694 subjects were enrolled without AD or dementia between ages 65 and 86, and followed
488
+ until withdrawal or death. Subjects underwent cognitive screening annually to diagnose onset
489
+ of AD or dementia, and death status was monitored continuously. Table 1 summarizes a
490
+ set of baseline binary risk factors collected on the subjects: marital status at baseline, sex,
491
+ education level, race/ethnicity, and presence of the APOE-ϵ4 genetic variant.
492
+ The final
493
+ analysis dataset includes 2335 subjects with complete baseline information. The outcome
494
+ is defined by the time of diagnosis of AD or dementia, with death treated as a censoring
495
+ mechanism, yielding a cause-specific analysis. Because we only include subjects with age at
496
+ least 65, the time scale of analysis is “years since age 65.” Importantly, our analysis accounts
497
+ for the presence of left truncation (or “delayed entry”) by subjects who enroll after age 65.
498
+ Though this framework admits interval censoring, given the short visit intervals relative to
499
+ the timescale, for this analysis we defined the timing of AD onset at the midpoint of the
500
+ corresponding visit interval.
501
+ We compare the fits of standard AFT models with those having piecewise and spline
502
+ forms for V , under Weibull and log-Normal baseline specifications as well as a TBP prior
503
+ baseline with K = 5, centering around the Weibull distribution. We set 4 break points for
504
+ the piecewise linear effect at 7.5 year intervals across the follow up period, and for the spline
505
+ effect we set 2 internal knots at quantiles on the log scale. The difference between these
506
+ specifications is due to the spline being naturally more flexible, allowing it to smooth across
507
+ knots with irregular spacing, while the piecewise linear model requires break points that span
508
+ the entire timespan in order to achieve flexibility. For the scale parameter we set the prior
509
+ σ ∼ Gamma(0.3, 0.05), having prior median 1.46 and 95% central mass between 6e-5 and
510
+ 38. Finally, we fit a standard Frequentist Cox proportional hazards model for comparison.
511
+ For the TBP concentration parameter we set a hyperprior of θ ∼ Gamma(1, 1). For each
512
+ model we ran three chains each for 2000 adaptation iterations and 10000 samples, totalling
513
+ 30000 samples. After sampling, all potential scale reduction factors were below 1.01 and
514
+ trace plots indicated good mixing.
515
+ Table 3 reports the estimates of regression parameters across all AFT specifications, as
516
+ well as frequentist results from a Cox proportional hazards model. For the AFT models,
517
+ positive estimates of β correspond with delayed onset of AD or dementia, as do negative
518
+ estimates for the Cox model. The coefficients estimated for white race/ethnicity, marital
519
+ 11
520
+
521
+ status, female sex, and education are stable across all model specifications. Interpreting the
522
+ Weibull AFT with constant effect of APOE-ϵ4, for example, indicates that being married is
523
+ associated with a exp(0.09) = 1.09 times greater median time to onset of AD or dementia,
524
+ with 95% credible interval of (1.02,1.19). Flexible effect coefficients of APOE-ϵ4 cannot be
525
+ directly interpreted on the quantile scale, therefore we present graphical tools below.
526
+ The top panel of Table 2 compares estimates of ELPD model criterion for each AFT
527
+ model. In each case, the spline and piecewise-linear effect specifications outperformed the
528
+ standard AFT specification. The log-Normal models uniformly underperformed, while the
529
+ Weibull and TBP models performed comparably. To graphically assess the effect of APOE-ϵ4
530
+ we report the TBP model, and present results for other specifications in Appendix A of the
531
+ Supplementary Materials. Results were qualitatively similar for all baseline distributions,
532
+ with the largest differences in acceleration factor only occurring in the lowest quantiles
533
+ extrapolated beyond the observed data.
534
+ Figure 2 shows the estimated survivor functions and corresponding quantile-varying ac-
535
+ celeration factors for the APOE-ϵ4 genetic variant, after regression standardization over
536
+ the distribution of the other baseline covariates. These figures confirm other findings that
537
+ APOE-ϵ4 is associated with earlier onset of AD and dementia. However, quantile-varying
538
+ effects also indicate that the acceleration is strongest among the earliest cases and subse-
539
+ quently diminishes. Both piecewise and spline models estimate that the time by which the
540
+ first 10% of those living with APOE-ϵ4 develop AD or dementia is earlier than those with-
541
+ out the variant by a factor of about 0.5; the median times by which people develop AD
542
+ or dementia differ by a factor of about 0.75, and the times by which 75% develop AD or
543
+ dementia differ by a factor of about 0.85. Due to censoring of those with advanced age, the
544
+ acceleration factor at lower quantiles reflects parametric extrapolation beyond the observed
545
+ distribution, represented in the figure by grey shading. Nevertheless, this finding has clear
546
+ clinical significance, indicating the particular need to monitor for early onset AD at younger
547
+ ages among those with APOE-ϵ4.
548
+ 5
549
+ Effects of Time-varying Covariates on the Quantile
550
+ Scale
551
+ In this section, we extend the proposed AFT model to incorporate binary time-varying covari-
552
+ ates, and provide intuition and graphical tools for effectively interpreting and communicating
553
+ corresponding effects on the quantile scale.
554
+ To focus on intuition, consider a single time-varying covariate denoted X1(t) with con-
555
+ stant regression effect β1. In particular, let X1(t) be a binary-valued step function, such
556
+ as an indicator for whether a non-terminal event has occurred by time t. Formally, define
557
+ X1(t) = I(t > tX), where tX is the time at which X1 changes. To simplify notation, consider
558
+ 12
559
+
560
+ a single additional covariate time-invariant covariate X2, though inclusion of multiple addi-
561
+ tional covariates is straightforward. Embedding these covariates directly in the structure for
562
+ V given by (3.1) and setting α = 0 to denote a constant effect yields
563
+ V (t | X(t)) = t × exp (−X1(t)β1 − X2β2)
564
+ = exp (−X2β2) [min{t, tX} + (t − tX)+ exp (−β1)] .
565
+ (5)
566
+ With complete derivation given in Appendix C of the Supplementary Materials, the accel-
567
+ eration factor at quantile p between two subjects depends on each person’s value of X2, the
568
+ change time tX for X1, and the baseline distribution S0. In particular, for those with X2 = x2,
569
+ the acceleration factor at quantile p for experiencing X1 at tX versus not experiencing X1 is
570
+ tX
571
+ S−1
572
+ 0 (p) exp(x2β2) + exp(β1)
573
+
574
+ 1 −
575
+ tX
576
+ S−1
577
+ 0 (p) exp(x2β2)
578
+
579
+ .
580
+ (6)
581
+ This is a weighted average between 1 and exp(β1), with weight inversely proportional to the
582
+ duration from tX to the pth quantile survival time in the comparison group, S−1
583
+ 0 (p) exp(x2β2).
584
+ Intuitively, before tX there is no difference between the individuals, so the acceleration factor
585
+ is 1, and then after tX the effect of X1 starts accumulating, and the acceleration factor
586
+ gradually shifts towards exp(β1), becoming more pronounced as p extends towards 0. This
587
+ dynamic is illustrated by example in Figure 3 below.
588
+ Finally, a flexible effect for X1(t) can also be specified by adapting the form of (5),
589
+ yielding
590
+ V (t | X(t)) = e−X2β2
591
+
592
+ min{t, tX} + (t − tX)+ exp
593
+
594
+ −β1 −
595
+ K
596
+
597
+ k=1
598
+ αkBk(t − tX | τ)
599
+ ��
600
+ .
601
+ Following Haneuse et al. (2008), this specification characterizes flexibility in the effect of
602
+ X1 over the time scale t − tX denoting time since the non-terminal event, rather than on
603
+ the overall time scale of t, enabling evaluation of the temporal effect of X1 on its own
604
+ timescale. Practically, this means that basis functions and knots τ must be specified on the
605
+ corresponding time scale.
606
+ 5.1
607
+ Effect of Incident AD and Dementia on Mortality
608
+ To illustrate the use of the AFT framework with a time-varying binary covariate, we per-
609
+ form a secondary analysis of the cohort study to evaluate the association between onset of
610
+ AD/dementia and subsequent time to death. We fit models specifying onset of AD/dementia
611
+ as a binary time-varying covariate, adjusting for the same time-invariant baseline covariates
612
+ as in the above analysis (including a constant effect for APOE-ϵ4).
613
+ For the piecewise linear effect, we set break points at 1, 2, 3, 5, and 10 years after time of
614
+ AD onset, and for the spline effect we set 2 internal knots at observed quantiles of time from
615
+ 13
616
+
617
+ AD onset to death on the log scale. Other settings and the sampling setup were as above,
618
+ though for computation of the acceleration surface described below, we thinned the samples
619
+ by a factor of 10 to facilitate computation. Table A.1 in Appendix A of the Supplementary
620
+ Materials reports estimated model parameters varying baseline survival distribution and
621
+ effect specification, along with frequentist results from an extended Cox proportional hazards
622
+ model with AD/dementia onset as a time-varying covariate.
623
+ As before, the coefficients
624
+ estimated for all baseline covariates are stable across specifications for the flexible effect.
625
+ The lefthand panels of Figure 3 show estimated regression standardized survivor curves
626
+ comparing those without AD/dementia onset, and and those with onset at age 70 and
627
+ 85, respectively, under the TBP prior baseline specification. In each case, the curves are
628
+ identical up until the time of onset, and then once AD/dementia onset occurs mortality
629
+ increases substantially. The plots indicate similarity between models fit with piecewise and
630
+ spline effects of AD/dementia onset relative to a constant effect, though the flexible models
631
+ indicate a small delay in the mortality increase from the time of AD/dementia onset. The
632
+ corresponding acceleration factors are given on the righthand panels of Figure 3, illustrating
633
+ the trajectory derived in (5), where no association exists before the quantile of AD/dementia
634
+ onset, followed by an increasingly pronounced association after AD/dementia onset.
635
+ Selecting and plotting acceleration factors for a few AD/dementia onset times of interest
636
+ may be sufficient in some settings, but fully communicating the results requires visualizing
637
+ the quantile-varying effect across the entire range of the time-varying covariate. Figure 4
638
+ reports this acceleration factor surface as a contour plot, with the time of AD/dementia onset
639
+ on the y-axis, the survival quantile on the x-axis, and the color representing the magnitude
640
+ of the acceleration factor. The two acceleration factor plots in Figure 3 correspond with
641
+ cross-sections of this surface, by drawing horizontal lines at times 5 and 20 on the y-axis.
642
+ More generally, looking horizontally across this plot shows the quantile varying acceleration
643
+ factor corresponding with different times of AD/dementia onset. However, this plot can
644
+ also be read vertically, to show how the acceleration factor for a particular quantile changes
645
+ depending on the timing of the time-varying covariate. For example, drawing a vertical line
646
+ from 0.5 on the x-axis shows the acceleration factor for median survival, varying across times
647
+ of AD/dementia onset. Therefore, this single plot allows us to read off complex regression
648
+ effects both as a function of the survival quantile, as well as of the timing of the time-varying
649
+ covariate.
650
+ 6
651
+ Discussion
652
+ The AFT model’s specification of multiplicative covariate effects on the quantile scale pro-
653
+ vides an interpretable and attractive alternative to the standard proportional hazards model.
654
+ Our proposed extensions to the AFT model enabling quantile-varying acceleration factors,
655
+ and admitting binary time-varying covariates represent important additions to the standard
656
+ 14
657
+
658
+ toolbox for survival analysis. Just as the Cox proportional hazards model benefits from
659
+ straightforward incorporation of time-varying hazard ratios, the ability to add flexibility to
660
+ the AFT model regression effects expands the scope of scientific inquiry. Motivated by the
661
+ study of AD in older adults, we found that the association of the APOE-ϵ4 gene with AD
662
+ onset varied substantially across quantiles, with earlier-onset cases accelerated the most and
663
+ later-onset cases the least.
664
+ Moreover, the ability to model, summarize, and communicate the effects of binary time-
665
+ varying covariates creates new opportunities to capture nuanced associations between lon-
666
+ gitudinal health trajectories. Our proposed visualization of these effects as a surface across
667
+ both the covariate timescale and the survival quantiles is particularly valuable, as previous
668
+ work to incorporate time-varying covariates into AFT models has not focused on commu-
669
+ nication of effects of time-varying components on the quantile scale (Hanson et al., 2009;
670
+ Zhou and Hanson, 2018). In our application, this approach illustrated that the associa-
671
+ tion between AD/dementia onset and subsequent mortality varies substantially both across
672
+ survival quantiles, and depending on the time of AD/dementia onset.
673
+ Estimation within the Bayesian paradigm also contributes important benefits for our
674
+ proposed methodology. In particular, the Bayesian paradigm enables flexible estimation of
675
+ the baseline distribution using the TBP prior, and allows for seamless uncertainty quan-
676
+ tification even after regression standardization (Keil et al., 2018). To our knowledge, ours
677
+ is the first implementation of the TBP prior in Stan, and software in R is available at
678
+ https://github.com/harrisonreeder/aftquantile.
679
+ Finally, this work complements the related literature on censored quantile regression
680
+ (Portnoy, 2003; Reich and Smith, 2013). Censored quantile regression specifies an additive
681
+ model for the effects of covariates on the quantile scale, while our model specifies multiplica-
682
+ tive effects on the quantile scale. The biological plausibility or clinical relevance of additive
683
+ versus multiplicative changes to the survival quantiles depends on the application, so our
684
+ proposed methodology yields a valuable alternative to available quantile-based methods.
685
+ Funding
686
+ This project was supported by the Eunice Kennedy Shriver National Institute of Child
687
+ Health and Human Development [grant number F31HD102159 to HTR]. The National In-
688
+ stitutes on Aging supported the Religious Orders Study [grant numbers P30AG010161 and
689
+ R01AG015819] and the Rush Memory and Aging Project [grant number R01AG017917].
690
+ 15
691
+
692
+ Acknowledgments
693
+ We thank the study participants and staff of the Rush Alzheimer’s Disease Center. ROSMAP
694
+ resources can be requested at https://www.radc.rush.edu.
695
+ References
696
+ Bennett, D. A., Buchman, A. S., Boyle, P. A., Barnes, L. L., Wilson, R. S., and Schneider,
697
+ J. A. (2018). Religious Orders Study and Rush Memory and Aging Project. Journal of
698
+ Alzheimer’s Disease, 64(s1):S161–S189.
699
+ Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
700
+ Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A Probabilistic Programming
701
+ Language. Journal of Statistical Software, 76(1).
702
+ Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Monographs on Statistics and
703
+ Applied Probability. Chapman and Hall, London ; New York.
704
+ Crowther, M. J., Royston, P., and Clements, M. (2022). A flexible parametric accelerated
705
+ failure time model and the extension to time-dependent acceleration factors. Biostatistics,
706
+ page kxac009.
707
+ Haneuse, S. J.-P. A., Rudser, K. D., and Gillen, D. L. (2008). The separation of timescales
708
+ in Bayesian survival modeling of the time-varying effect of a time-dependent exposure.
709
+ Biostatistics, 9(3):400–410.
710
+ Hanson, T., Johnson, W., and Laud, P. (2009). Semiparametric inference for survival models
711
+ with step process covariates. Canadian Journal of Statistics, 37(1):60–79.
712
+ Hern´an, M. A. (2010). The hazards of hazard ratios. Epidemiology, 21(1):13–15.
713
+ Keil, A. P., Daza, E. J., Engel, S. M., Buckley, J. P., and Edwards, J. K. (2018). A Bayesian
714
+ approach to the g-formula. Statistical Methods in Medical Research, 27(10):3183–3204.
715
+ Kukull, W. A., Higdon, R., Bowen, J. D., McCormick, W. C., Teri, L., Schellenberg, G. D.,
716
+ van Belle, G., Jolley, L., and Larson, E. B. (2002).
717
+ Dementia and Alzheimer disease
718
+ incidence: A prospective cohort study. Archives of Neurology, 59(11):1737.
719
+ Lee, K. H., Rondeau, V., and Haneuse, S. (2017). Accelerated failure time models for semi-
720
+ competing risks data in the presence of complex censoring. Biometrics, 73(4):1401–1412.
721
+ Pang, M., Platt, R. W., Schuster, T., and Abrahamowicz, M. (2021). Flexible extension of
722
+ the accelerated failure time model to account for nonlinear and time-dependent effects of
723
+ covariates on the hazard. Statistical Methods in Medical Research, 30(11):2526–2542.
724
+ 16
725
+
726
+ Portnoy, S. (2003). Censored regression quantiles. Journal of the American Statistical As-
727
+ sociation, 98(464):1001–1012.
728
+ Prentice, R. L. and Kalbfleisch, J. D. (1979). Hazard rate models with covariates. Biometrics,
729
+ 35(1):25.
730
+ Reich, B. J. and Smith, L. B. (2013). Bayesian quantile regression for censored data. Bio-
731
+ metrics, 69(3):651–660.
732
+ Rothman, K. J., Lash, T. L., VanderWeele, T. J., and Haneuse, S. (2021). Modern Epidemi-
733
+ ology. Wolters Kluwer, Philadelphia, fourth edition edition.
734
+ Royston, P. and Parmar, M. K. B. (2002). Flexible parametric proportional-hazards and
735
+ proportional-odds models for censored survival data, with application to prognostic mod-
736
+ elling and estimation of treatment effects. Statistics in Medicine, 21(15):2175–2197.
737
+ Sj¨olander, A. (2016). Regression standardization with the R package stdReg. European
738
+ Journal of Epidemiology, 31(6):563–574.
739
+ Stan Development Team (2020). RStan: The R interface to Stan.
740
+ Uno, H., Wittes, J., Fu, H., Solomon, S. D., Claggett, B., Tian, L., Cai, T., Pfeffer, M. A.,
741
+ Evans, S. R., and Wei, L.-J. (2015). Alternatives to hazard ratios for comparing the efficacy
742
+ or safety of therapies in noninferiority studies. Annals of Internal Medicine, 163(2):127–
743
+ 134.
744
+ Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using
745
+ leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5):1413–1432.
746
+ Wei, L. J. (1992).
747
+ The accelerated failure time model: A useful alternative to the cox
748
+ regression model in survival analysis. Statistics in Medicine, 11(14-15):1871–1879.
749
+ Zhou, H. and Hanson, T. (2018). A unified framework for fitting bayesian semiparametric
750
+ models to arbitrarily censored survival data, including spatially referenced data. Journal
751
+ of the American Statistical Association, 113(522):571–581.
752
+ 17
753
+
754
+ 0
755
+ 2
756
+ 4
757
+ 6
758
+ 8
759
+ 10
760
+ 0.00
761
+ 0.25
762
+ 0.50
763
+ 0.75
764
+ 1.00
765
+ Time (t)
766
+ Survivor Function
767
+ V(t)
768
+ t
769
+ t × exp(−0.5X)
770
+ t × exp((−0.5 + 0.6I(t > 2.5))X)
771
+ (t1−0.5X − 1) (1 − 0.5X)
772
+ 1.00
773
+ 0.75
774
+ 0.50
775
+ 0.25
776
+ 0.00
777
+ 0.0
778
+ 0.5
779
+ 1.0
780
+ 1.5
781
+ 2.0
782
+ 2.5
783
+ 3.0
784
+ Survival Quantile (p)
785
+ Acceleration Factor
786
+ Figure 1: Sample survivor curves (left panel) and corresponding, possibly quantile-varying,
787
+ acceleration factors (right panel). Baseline survivor function shown is S0(t) = exp(−0.3t).
788
+ Table 1: Baseline covariates by observed AD/dementia and death outcome status.
789
+ All
790
+ covariates are binary, with 1 indicating the presence of the status and 0 indicating absence.
791
+ Censored prior
792
+ AD/dementia
793
+ Death
794
+ AD/dementia
795
+ to AD/dementia
796
+ and censored
797
+ without
798
+ diagnosis
799
+ Total (%)
800
+ or death (%)
801
+ prior to death (%)
802
+ AD/dementia (%)
803
+ and death (%)
804
+ Total
805
+ 2335 (100%)
806
+ 750 (100%)
807
+ 123 (100%)
808
+ 891 (100%)
809
+ 571 (100%)
810
+ White Race/Ethnicity
811
+ 2178 (93.3%)
812
+ 687 (91.6%)
813
+ 100 (81.3%)
814
+ 849 (95.3%)
815
+ 542 (94.9%)
816
+ Male Sex
817
+ 648 (27.8%)
818
+ 147 (19.6%)
819
+ 24 (19.5%)
820
+ 316 (35.5%)
821
+ 161 (28.2%)
822
+ Married at Study Entry
823
+ 462 (19.8%)
824
+ 216 (28.8%)
825
+ 29 (23.6%)
826
+ 145 (16.3%)
827
+ 72 (12.6%)
828
+ 15+ Years of Education
829
+ 1621 (69.4%)
830
+ 532 (70.9%)
831
+ 80 (65%)
832
+ 609 (68.4%)
833
+ 400 (70.1%)
834
+ APOE-ϵ4 Genetic Variant
835
+ 575 (24.6%)
836
+ 156 (20.8%)
837
+ 53 (43.1%)
838
+ 173 (19.4%)
839
+ 193 (33.8%)
840
+ 18
841
+
842
+ Table 2: Estimated expected log predictive density (ELPD), multiplied by -2 to replicate
843
+ scale of information criteria. Smaller values indicate better model fit.
844
+ AFT Model
845
+ log-Normal
846
+ Weibull
847
+ TBP (Weibull Centered)
848
+ AD/Dementia Onset (Death as a Censoring Mechanism)
849
+ Constant
850
+ 5862.0
851
+ 5806.3
852
+ 5804.4
853
+ Piecewise Linear
854
+ 5841.5
855
+ 5788.4
856
+ 5786.5
857
+ Restricted Cubic Spline
858
+ 5814.9
859
+ 5780.9
860
+ 5781.4
861
+ Death (AD/Dementia as a Time-Varying Covariate)
862
+ Constant
863
+ 9997.2
864
+ 9666.7
865
+ 9628.2
866
+ Piecewise Linear
867
+ 9919.8
868
+ 9636.7
869
+ 9600.1
870
+ Restricted Cubic Spline
871
+ 9884.5
872
+ 9600.9
873
+ 9564.9
874
+ 19
875
+
876
+ Table 3: Regression estimates for time to onset of AD or dementia in the absence of death.
877
+ AFT results are posterior medians and 95% credible intervals for regression parameters. Cox
878
+ model results are log-hazard ratio estimates and 95% confidence intervals.
879
+ AFT Model
880
+ Cox PH
881
+ log-Normal
882
+ Weibull
883
+ TBP (Weibull Centered)
884
+ White Race/Ethnicity, β1
885
+ Constant
886
+ -0.28 (-0.57, 0.01)
887
+ 0.18 (0.03, 0.31)
888
+ 0.08 (-0.03, 0.19)
889
+ 0.08 (-0.03, 0.19)
890
+ Piecewise Linear
891
+ 0.18 (0.05, 0.3)
892
+ 0.08 (-0.02, 0.17)
893
+ 0.07 (-0.03, 0.17)
894
+ Restricted Cubic Spline
895
+ 0.15 (0.03, 0.28)
896
+ 0.07 (-0.02, 0.16)
897
+ 0.07 (-0.03, 0.17)
898
+ Male Sex, β2
899
+ Constant
900
+ 0.06 (-0.11, 0.23)
901
+ -0.04 (-0.13, 0.04)
902
+ -0.02 (-0.08, 0.05)
903
+ -0.02 (-0.08, 0.05)
904
+ Piecewise Linear
905
+ -0.05 (-0.12, 0.03)
906
+ -0.02 (-0.08, 0.04)
907
+ -0.02 (-0.07, 0.04)
908
+ Restricted Cubic Spline
909
+ -0.04 (-0.11, 0.03)
910
+ -0.02 (-0.07, 0.03)
911
+ -0.02 (-0.07, 0.04)
912
+ Married at Study Entry, β3
913
+ Constant
914
+ -0.26 (-0.48, -0.04)
915
+ 0.13 (0.03, 0.23)
916
+ 0.1 (0.02, 0.19)
917
+ 0.1 (0.03, 0.19)
918
+ Piecewise Linear
919
+ 0.13 (0.04, 0.22)
920
+ 0.09 (0.02, 0.16)
921
+ 0.08 (0.02, 0.16)
922
+ Restricted Cubic Spline
923
+ 0.13 (0.04, 0.22)
924
+ 0.09 (0.02, 0.16)
925
+ 0.08 (0.02, 0.16)
926
+ ≥15 Years of Education, β4
927
+ Constant
928
+ -0.1 (-0.26, 0.07)
929
+ 0.07 (-0.01, 0.16)
930
+ 0.04 (-0.02, 0.1)
931
+ 0.03 (-0.03, 0.09)
932
+ Piecewise Linear
933
+ 0.07 (0, 0.15)
934
+ 0.03 (-0.02, 0.09)
935
+ 0.03 (-0.02, 0.08)
936
+ Restricted Cubic Spline
937
+ 0.06 (-0.01, 0.14)
938
+ 0.03 (-0.02, 0.09)
939
+ 0.03 (-0.02, 0.08)
940
+ APOE-ϵ4 Genetic Variant, β5
941
+ Constant
942
+ 0.76 (0.61, 0.92)
943
+ -0.42 (-0.51, -0.34)
944
+ -0.28 (-0.35, -0.22)
945
+ -0.28 (-0.35, -0.21)
946
+ Piecewise Linear
947
+ -0.79 (-0.95, -0.62)
948
+ -0.75 (-0.92, -0.55)
949
+ -0.76 (-0.93, -0.52)
950
+ Restricted Cubic Spline
951
+ -2.54 (-2.98, -1.95)
952
+ -2.38 (-3.08, -1.23)
953
+ -2.34 (-3.09, -0.92)
954
+ APOE-ϵ4 Genetic Variant, α1
955
+ Constant
956
+ Piecewise Linear
957
+ 0.86 (0.49, 1.23)
958
+ 0.78 (0.35, 1.20)
959
+ 0.78 (0.28, 1.23)
960
+ Restricted Cubic Spline
961
+ 1.51 (1.12, 1.85)
962
+ 1.51 (0.77, 2.01)
963
+ 1.5 (0.61, 2.03)
964
+ APOE-ϵ4 Genetic Variant, α2
965
+ Constant
966
+ Piecewise Linear
967
+ 0.52 (0.23, 0.80)
968
+ 0.74 (0.39, 1.06)
969
+ 0.79 (0.41, 1.14)
970
+ Restricted Cubic Spline
971
+ 3.83 (2.73, 4.47)
972
+ 3.63 (1.45, 4.76)
973
+ 3.52 (0.87, 4.78)
974
+ APOE-ϵ4 Genetic Variant, α3
975
+ Constant
976
+ Piecewise Linear
977
+ 0.46 (0.11, 0.81)
978
+ 0.97 (0.59, 1.34)
979
+ 0.99 (0.58, 1.39)
980
+ Restricted Cubic Spline
981
+ 1.07 (0.71, 1.4)
982
+ 1.34 (0.77, 1.77)
983
+ 1.32 (0.65, 1.79)
984
+ APOE-ϵ4 Genetic Variant, α4
985
+ Constant
986
+ Piecewise Linear
987
+ -0.38 (-1.06, 0.45)
988
+ 0.41 (-0.23, 1.20)
989
+ 0.37 (-0.35, 1.20)
990
+ Restricted Cubic Spline
991
+ 20
992
+
993
+ 0
994
+ 10
995
+ 20
996
+ 30
997
+ 0.0
998
+ 0.2
999
+ 0.4
1000
+ 0.6
1001
+ 0.8
1002
+ 1.0
1003
+ Time to AD/Dementia without Death, Years from Age 65
1004
+ Survivor Function
1005
+ No APOE-e4
1006
+ PH, Constant
1007
+ AFT, Constant
1008
+ AFT, Piecewise Linear
1009
+ AFT, Spline
1010
+ APOE-e4
1011
+ PH, Constant
1012
+ AFT, Constant
1013
+ AFT, Piecewise Linear
1014
+ AFT, Spline
1015
+ 1.0
1016
+ 0.8
1017
+ 0.6
1018
+ 0.4
1019
+ 0.2
1020
+ 0.0
1021
+ 0.2
1022
+ 0.4
1023
+ 0.6
1024
+ 0.8
1025
+ 1.0
1026
+ 1.2
1027
+ Quantile (p)
1028
+ Acceleration Factor
1029
+ Constant
1030
+ Piecewise Linear
1031
+ Spline
1032
+ Figure 2: Under a Weibull-centered TBP baseline specification: (left panel) regression stan-
1033
+ dardized survivor function estimates for onset of AD or dementia without death, averaged
1034
+ over other covariates.
1035
+ Regression standardized estimate from Cox proportional hazards
1036
+ model shown for comparison; (right panel) regression standardized quantile-varying accel-
1037
+ eration factor estimates for onset of AD or dementia without death, averaged over other
1038
+ covariates. 95% credible intervals represented with dashed lines. Grey shaded region repre-
1039
+ sents area of parametric extrapolation beyond quantiles observed in both groups.
1040
+ 21
1041
+
1042
+ 0
1043
+ 10
1044
+ 20
1045
+ 30
1046
+ 40
1047
+ 0.0
1048
+ 0.4
1049
+ 0.8
1050
+ Survivor Function
1051
+ AD/Dementia Onset
1052
+ Constant
1053
+ Piecewise Linear
1054
+ Spline
1055
+ No AD/Dementia Onset
1056
+ Constant
1057
+ Piecewise Linear
1058
+ Spline
1059
+ 0
1060
+ 10
1061
+ 20
1062
+ 30
1063
+ 40
1064
+ 0.0
1065
+ 0.4
1066
+ 0.8
1067
+ Time to Death, Years from Age 65
1068
+ Survivor Function
1069
+ AD/Dementia Onset
1070
+ Constant
1071
+ Piecewise Linear
1072
+ Spline
1073
+ No AD/Dementia Onset
1074
+ Constant
1075
+ Piecewise Linear
1076
+ Spline
1077
+ 1.0
1078
+ 0.8
1079
+ 0.6
1080
+ 0.4
1081
+ 0.2
1082
+ 0.0
1083
+ 0.2
1084
+ 0.6
1085
+ 1.0
1086
+ Survival Quantile (p)
1087
+ Acceleration Factor
1088
+ Constant
1089
+ Piecewise Linear
1090
+ Spline
1091
+ 1.0
1092
+ 0.8
1093
+ 0.6
1094
+ 0.4
1095
+ 0.2
1096
+ 0.0
1097
+ 0.2
1098
+ 0.6
1099
+ 1.0
1100
+ Survival Quantile (p)
1101
+ Acceleration Factor
1102
+ Constant
1103
+ Piecewise Linear
1104
+ Spline
1105
+ Figure 3: Under a Weibull-centered TBP baseline specification: (left panel) regression stan-
1106
+ dardized survivor function estimates for mortality following onset of AD or dementia, aver-
1107
+ aged over other covariates; (Right panel) regression standardized survivor function estimates
1108
+ for mortality following onset of AD or dementia, averaged over other covariates. 95% credible
1109
+ intervals represented with dashed lines. Grey shaded region represents area of parametric
1110
+ extrapolation beyond quantiles observed in both groups.
1111
+ 22
1112
+
1113
+ 0
1114
+ 10
1115
+ 20
1116
+ 30
1117
+ 40
1118
+ 0.00
1119
+ 0.25
1120
+ 0.50
1121
+ 0.75
1122
+ 1.00
1123
+ Survival Quantile (p)
1124
+ Years since 65 at AD Onset
1125
+ AF
1126
+ (0.95, 1.00]
1127
+ (0.90, 0.95]
1128
+ (0.85, 0.90]
1129
+ (0.80, 0.85]
1130
+ (0.75, 0.80]
1131
+ (0.70, 0.75]
1132
+ (0.65, 0.70]
1133
+ (0.60, 0.65]
1134
+ (0.55, 0.60]
1135
+ (0.50, 0.55]
1136
+ 0
1137
+ 10
1138
+ 20
1139
+ 30
1140
+ 40
1141
+ 0.00
1142
+ 0.25
1143
+ 0.50
1144
+ 0.75
1145
+ 1.00
1146
+ Survival Quantile (p)
1147
+ Years since 65 at AD Onset
1148
+ AF
1149
+ (0.95, 1.00]
1150
+ (0.90, 0.95]
1151
+ (0.85, 0.90]
1152
+ (0.80, 0.85]
1153
+ (0.75, 0.80]
1154
+ (0.70, 0.75]
1155
+ (0.65, 0.70]
1156
+ (0.60, 0.65]
1157
+ (0.55, 0.60]
1158
+ (0.50, 0.55]
1159
+ (0.45, 0.50]
1160
+ 0
1161
+ 10
1162
+ 20
1163
+ 30
1164
+ 40
1165
+ 0.00
1166
+ 0.25
1167
+ 0.50
1168
+ 0.75
1169
+ 1.00
1170
+ Survival Quantile (p)
1171
+ Years since 65 at AD Onset
1172
+ AF
1173
+ (1.20, 1.25]
1174
+ (1.15, 1.20]
1175
+ (1.10, 1.15]
1176
+ (1.05, 1.10]
1177
+ (1.00, 1.05]
1178
+ (0.95, 1.00]
1179
+ (0.90, 0.95]
1180
+ (0.85, 0.90]
1181
+ (0.80, 0.85]
1182
+ (0.75, 0.80]
1183
+ (0.70, 0.75]
1184
+ (0.65, 0.70]
1185
+ (0.60, 0.65]
1186
+ (0.55, 0.60]
1187
+ (0.50, 0.55]
1188
+ Figure 4: Under a Weibull-centered TBP baseline specification, contour plots of regression
1189
+ standardized acceleration factor surface estimates for death following onset of AD/dementia,
1190
+ standardized to other covariates. Time of AD/dementia onset is shown on y-axis, and sub-
1191
+ sequent survival quantile is shown on x-axis.
1192
+ Color indicates acceleration factor at the
1193
+ given survival quantile, comparing those with AD/dementia onset at the specified time and
1194
+ those without AD/dementia. Horizontal cross-sections illustrate quantile-varying accelera-
1195
+ tion factor for AD/dementia onset at a particular time, while vertical cross-sections illustrate
1196
+ acceleration factor at a particular quantile across times of AD/dementia onset. (Left panel)
1197
+ constant effect specification; (center panel) piecewise linear effect specification; (right panel)
1198
+ spline effect specification.
1199
+ 23
1200
+
1201
+ Appendix Introduction
1202
+ In this appendix we present additional details and results beyond what could be presented
1203
+ in the main manuscript. To distinguish the two documents, alpha-numeric labels are used in
1204
+ this document while numeric labels are used in the main paper. Section A provides additional
1205
+ results from the data application. Section B provides derivation of the form of V −1 when V
1206
+ is specified as a piecewise linear function of time. Section C provides derivation of the form of
1207
+ the acceleration factor associated with a binary time-varying covariate. Section D provides
1208
+ additional detail on the transformed Bernstein polynomial (TBP) prior specification.
1209
+ 24
1210
+
1211
+ A
1212
+ Additional Data Application Results
1213
+ A.1
1214
+ AD/Dementia Onset
1215
+ In this section we report additional regression-standardized survival curves and acceleration
1216
+ factors for the onset of AD or dementia by APOE-ϵ4 genetic variant status, for alternative
1217
+ specifications for the baseline distribution. We note that the most substantial difference be-
1218
+ tween specifications occurs in the lowest quantiles, which represent parametric extrapolation
1219
+ beyond the observed data quantiles.
1220
+ 0
1221
+ 10
1222
+ 20
1223
+ 30
1224
+ 0.0
1225
+ 0.2
1226
+ 0.4
1227
+ 0.6
1228
+ 0.8
1229
+ 1.0
1230
+ Time to AD/Dementia without Death, Years from Age 65
1231
+ Survivor Function
1232
+ No APOE-e4
1233
+ PH, Constant
1234
+ AFT, Constant
1235
+ AFT, Piecewise Linear
1236
+ AFT, Spline
1237
+ APOE-e4
1238
+ PH, Constant
1239
+ AFT, Constant
1240
+ AFT, Piecewise Linear
1241
+ AFT, Spline
1242
+ 1.0
1243
+ 0.8
1244
+ 0.6
1245
+ 0.4
1246
+ 0.2
1247
+ 0.0
1248
+ 0.2
1249
+ 0.4
1250
+ 0.6
1251
+ 0.8
1252
+ 1.0
1253
+ 1.2
1254
+ Quantile (p)
1255
+ Acceleration Factor
1256
+ Constant
1257
+ Piecewise Linear
1258
+ Spline
1259
+ Figure A.1: Under a Weibull baseline specification: (left panel) regression standardized
1260
+ survivor function estimates for onset of AD or dementia without death, averaged over other
1261
+ covariates. Regression standardized estimate from Cox proportional hazards model shown
1262
+ for comparison; (right panel) regression standardized quantile-varying acceleration factor
1263
+ estimates for onset of AD or dementia without death, averaged over other covariates. 95%
1264
+ credible intervals represented with dashed lines.
1265
+ Grey shaded region represents area of
1266
+ parametric extrapolation beyond quantiles observed in both groups.
1267
+ 25
1268
+
1269
+ 0
1270
+ 10
1271
+ 20
1272
+ 30
1273
+ 0.0
1274
+ 0.2
1275
+ 0.4
1276
+ 0.6
1277
+ 0.8
1278
+ 1.0
1279
+ Time to AD/Dementia without Death, Years from Age 65
1280
+ Survivor Function
1281
+ No APOE-e4
1282
+ PH, Constant
1283
+ AFT, Constant
1284
+ AFT, Piecewise Linear
1285
+ AFT, Spline
1286
+ APOE-e4
1287
+ PH, Constant
1288
+ AFT, Constant
1289
+ AFT, Piecewise Linear
1290
+ AFT, Spline
1291
+ 1.0
1292
+ 0.8
1293
+ 0.6
1294
+ 0.4
1295
+ 0.2
1296
+ 0.0
1297
+ 0.2
1298
+ 0.4
1299
+ 0.6
1300
+ 0.8
1301
+ 1.0
1302
+ 1.2
1303
+ Quantile (p)
1304
+ Acceleration Factor
1305
+ Constant
1306
+ Piecewise Linear
1307
+ Spline
1308
+ Figure A.2: Under a log-Normal baseline specification: (left panel) regression standardized
1309
+ survivor function estimates for onset of AD or dementia without death, averaged over other
1310
+ covariates. Regression standardized estimate from Cox proportional hazards model shown
1311
+ for comparison; (right panel) regression standardized quantile-varying acceleration factor
1312
+ estimates for onset of AD or dementia without death, averaged over other covariates. 95%
1313
+ credible intervals represented with dashed lines.
1314
+ Grey shaded region represents area of
1315
+ parametric extrapolation beyond quantiles observed in both groups.
1316
+ 26
1317
+
1318
+ A.2
1319
+ Mortality following AD/Dementia Onset
1320
+ Below we report regression parameter estimates, and additional regression-standardized sur-
1321
+ vival curves and acceleration factors for mortality by AD/dementia status, across alternative
1322
+ specifications for the baseline distribution.
1323
+ 0
1324
+ 10
1325
+ 20
1326
+ 30
1327
+ 40
1328
+ 0.0
1329
+ 0.4
1330
+ 0.8
1331
+ Survivor Function
1332
+ AD/Dementia Onset
1333
+ Constant
1334
+ Piecewise Linear
1335
+ Spline
1336
+ No AD/Dementia Onset
1337
+ Constant
1338
+ Piecewise Linear
1339
+ Spline
1340
+ 0
1341
+ 10
1342
+ 20
1343
+ 30
1344
+ 40
1345
+ 0.0
1346
+ 0.4
1347
+ 0.8
1348
+ Time to Death, Years from Age 65
1349
+ Survivor Function
1350
+ AD/Dementia Onset
1351
+ Constant
1352
+ Piecewise Linear
1353
+ Spline
1354
+ No AD/Dementia Onset
1355
+ Constant
1356
+ Piecewise Linear
1357
+ Spline
1358
+ 1.0
1359
+ 0.8
1360
+ 0.6
1361
+ 0.4
1362
+ 0.2
1363
+ 0.0
1364
+ 0.2
1365
+ 0.6
1366
+ 1.0
1367
+ Survival Quantile (p)
1368
+ Acceleration Factor
1369
+ Constant
1370
+ Piecewise Linear
1371
+ Spline
1372
+ 1.0
1373
+ 0.8
1374
+ 0.6
1375
+ 0.4
1376
+ 0.2
1377
+ 0.0
1378
+ 0.2
1379
+ 0.6
1380
+ 1.0
1381
+ Survival Quantile (p)
1382
+ Acceleration Factor
1383
+ Constant
1384
+ Piecewise Linear
1385
+ Spline
1386
+ Figure A.3: Under a Weibull baseline specification: (left panel) regression standardized sur-
1387
+ vivor function estimates for mortality following onset of AD or dementia, averaged over other
1388
+ covariates; (Right panel) regression standardized survivor function estimates for mortality
1389
+ following onset of AD or dementia, averaged over other covariates. 95% credible intervals
1390
+ represented with dashed lines. Grey shaded region represents area of parametric extrapola-
1391
+ tion beyond quantiles observed in both groups.
1392
+ 27
1393
+
1394
+ 0
1395
+ 10
1396
+ 20
1397
+ 30
1398
+ 40
1399
+ 0.0
1400
+ 0.4
1401
+ 0.8
1402
+ Survivor Function
1403
+ AD/Dementia Onset
1404
+ Constant
1405
+ Piecewise Linear
1406
+ Spline
1407
+ No AD/Dementia Onset
1408
+ Constant
1409
+ Piecewise Linear
1410
+ Spline
1411
+ 0
1412
+ 10
1413
+ 20
1414
+ 30
1415
+ 40
1416
+ 0.0
1417
+ 0.4
1418
+ 0.8
1419
+ Time to Death, Years from Age 65
1420
+ Survivor Function
1421
+ AD/Dementia Onset
1422
+ Constant
1423
+ Piecewise Linear
1424
+ Spline
1425
+ No AD/Dementia Onset
1426
+ Constant
1427
+ Piecewise Linear
1428
+ Spline
1429
+ 1.0
1430
+ 0.8
1431
+ 0.6
1432
+ 0.4
1433
+ 0.2
1434
+ 0.0
1435
+ 0.2
1436
+ 0.6
1437
+ 1.0
1438
+ Survival Quantile (p)
1439
+ Acceleration Factor
1440
+ Constant
1441
+ Piecewise Linear
1442
+ Spline
1443
+ 1.0
1444
+ 0.8
1445
+ 0.6
1446
+ 0.4
1447
+ 0.2
1448
+ 0.0
1449
+ 0.2
1450
+ 0.6
1451
+ 1.0
1452
+ Survival Quantile (p)
1453
+ Acceleration Factor
1454
+ Constant
1455
+ Piecewise Linear
1456
+ Spline
1457
+ Figure A.4: Under a log-Normal baseline specification: (left panel) regression standard-
1458
+ ized survivor function estimates for mortality following onset of AD or dementia, averaged
1459
+ over other covariates; (Right panel) regression standardized survivor function estimates for
1460
+ mortality following onset of AD or dementia, averaged over other covariates. 95% credible
1461
+ intervals represented with dashed lines. Grey shaded region represents area of parametric
1462
+ extrapolation beyond quantiles observed in both groups.
1463
+ 28
1464
+
1465
+ 0
1466
+ 10
1467
+ 20
1468
+ 30
1469
+ 40
1470
+ 0.00
1471
+ 0.25
1472
+ 0.50
1473
+ 0.75
1474
+ 1.00
1475
+ Survival Quantile (p)
1476
+ Years since 65 at AD Onset
1477
+ AF
1478
+ (0.95, 1.00]
1479
+ (0.90, 0.95]
1480
+ (0.85, 0.90]
1481
+ (0.80, 0.85]
1482
+ (0.75, 0.80]
1483
+ (0.70, 0.75]
1484
+ (0.65, 0.70]
1485
+ (0.60, 0.65]
1486
+ (0.55, 0.60]
1487
+ (0.50, 0.55]
1488
+ (0.45, 0.50]
1489
+ 0
1490
+ 10
1491
+ 20
1492
+ 30
1493
+ 40
1494
+ 0.00
1495
+ 0.25
1496
+ 0.50
1497
+ 0.75
1498
+ 1.00
1499
+ Survival Quantile (p)
1500
+ Years since 65 at AD Onset
1501
+ AF
1502
+ (0.95, 1.00]
1503
+ (0.90, 0.95]
1504
+ (0.85, 0.90]
1505
+ (0.80, 0.85]
1506
+ (0.75, 0.80]
1507
+ (0.70, 0.75]
1508
+ (0.65, 0.70]
1509
+ (0.60, 0.65]
1510
+ (0.55, 0.60]
1511
+ (0.50, 0.55]
1512
+ (0.45, 0.50]
1513
+ 0
1514
+ 10
1515
+ 20
1516
+ 30
1517
+ 40
1518
+ 0.00
1519
+ 0.25
1520
+ 0.50
1521
+ 0.75
1522
+ 1.00
1523
+ Survival Quantile (p)
1524
+ Years since 65 at AD Onset
1525
+ AF
1526
+ (1.05, 1.10]
1527
+ (1.00, 1.05]
1528
+ (0.95, 1.00]
1529
+ (0.90, 0.95]
1530
+ (0.85, 0.90]
1531
+ (0.80, 0.85]
1532
+ (0.75, 0.80]
1533
+ (0.70, 0.75]
1534
+ (0.65, 0.70]
1535
+ (0.60, 0.65]
1536
+ (0.55, 0.60]
1537
+ (0.50, 0.55]
1538
+ (0.45, 0.50]
1539
+ Figure A.5: Under a Weibull baseline specification, contour plots of regression standardized
1540
+ acceleration factor surface estimates for death following onset of AD/dementia, standard-
1541
+ ized to other covariates. Time of AD/dementia onset is shown on y-axis, and subsequent
1542
+ survival quantile is shown on x-axis. Color indicates acceleration factor at the given survival
1543
+ quantile, comparing those with AD/dementia onset at the specified time and those without
1544
+ AD/dementia. Horizontal cross-sections illustrate quantile-varying acceleration factor for
1545
+ AD/dementia onset at a particular time, while vertical cross-sections illustrate acceleration
1546
+ factor at a particular quantile across times of AD/dementia onset. (Left panel) constant
1547
+ effect specification; (center panel) piecewise linear effect specification; (right panel) spline
1548
+ effect specification.
1549
+ 29
1550
+
1551
+ 0
1552
+ 10
1553
+ 20
1554
+ 30
1555
+ 40
1556
+ 0.00
1557
+ 0.25
1558
+ 0.50
1559
+ 0.75
1560
+ 1.00
1561
+ Survival Quantile (p)
1562
+ Years since 65 at AD Onset
1563
+ AF
1564
+ (0.95, 1.00]
1565
+ (0.90, 0.95]
1566
+ (0.85, 0.90]
1567
+ (0.80, 0.85]
1568
+ (0.75, 0.80]
1569
+ (0.70, 0.75]
1570
+ (0.65, 0.70]
1571
+ (0.60, 0.65]
1572
+ (0.55, 0.60]
1573
+ (0.50, 0.55]
1574
+ (0.45, 0.50]
1575
+ (0.40, 0.45]
1576
+ (0.35, 0.40]
1577
+ 0
1578
+ 10
1579
+ 20
1580
+ 30
1581
+ 40
1582
+ 0.00
1583
+ 0.25
1584
+ 0.50
1585
+ 0.75
1586
+ 1.00
1587
+ Survival Quantile (p)
1588
+ Years since 65 at AD Onset
1589
+ AF
1590
+ (0.95, 1.00]
1591
+ (0.90, 0.95]
1592
+ (0.85, 0.90]
1593
+ (0.80, 0.85]
1594
+ (0.75, 0.80]
1595
+ (0.70, 0.75]
1596
+ (0.65, 0.70]
1597
+ (0.60, 0.65]
1598
+ (0.55, 0.60]
1599
+ (0.50, 0.55]
1600
+ (0.45, 0.50]
1601
+ (0.40, 0.45]
1602
+ (0.35, 0.40]
1603
+ (0.30, 0.35]
1604
+ (0.25, 0.30]
1605
+ (0.20, 0.25]
1606
+ 0
1607
+ 10
1608
+ 20
1609
+ 30
1610
+ 0.00
1611
+ 0.25
1612
+ 0.50
1613
+ 0.75
1614
+ 1.00
1615
+ Survival Quantile (p)
1616
+ Years since 65 at AD Onset
1617
+ AF
1618
+ (1.05, 1.10]
1619
+ (1.00, 1.05]
1620
+ (0.95, 1.00]
1621
+ (0.90, 0.95]
1622
+ (0.85, 0.90]
1623
+ (0.80, 0.85]
1624
+ (0.75, 0.80]
1625
+ (0.70, 0.75]
1626
+ (0.65, 0.70]
1627
+ (0.60, 0.65]
1628
+ (0.55, 0.60]
1629
+ (0.50, 0.55]
1630
+ (0.45, 0.50]
1631
+ (0.40, 0.45]
1632
+ (0.35, 0.40]
1633
+ (0.30, 0.35]
1634
+ (0.25, 0.30]
1635
+ (0.20, 0.25]
1636
+ Figure A.6: Under a log-Normal baseline specification, contour plots of regression standard-
1637
+ ized acceleration factor surface estimates for death following onset of AD/dementia, stan-
1638
+ dardized to other covariates. Time of AD/dementia onset is shown on y-axis, and subsequent
1639
+ survival quantile is shown on x-axis. Color indicates acceleration factor at the given survival
1640
+ quantile, comparing those with AD/dementia onset at the specified time and those without
1641
+ AD/dementia. Horizontal cross-sections illustrate quantile-varying acceleration factor for
1642
+ AD/dementia onset at a particular time, while vertical cross-sections illustrate acceleration
1643
+ factor at a particular quantile across times of AD/dementia onset. (Left panel) constant
1644
+ effect specification; (center panel) piecewise linear effect specification; (right panel) spline
1645
+ effect specification.
1646
+ 30
1647
+
1648
+ Table A.1: Regression estimates for time to death. AFT results are posterior medians and
1649
+ 95% credible intervals for regression parameters. Cox model results are log-hazard ratio
1650
+ estimates and 95% confidence intervals.
1651
+ AFT Model
1652
+ Cox PH
1653
+ log-Normal
1654
+ Weibull
1655
+ TBP (Weibull Centered)
1656
+ White Race/Ethnicity, β1
1657
+ Constant
1658
+ 0.17 (-0.07, 0.41)
1659
+ -0.07 (-0.17, 0.03)
1660
+ -0.08 (-0.16, 0)
1661
+ -0.07 (-0.14, 0)
1662
+ Piecewise Linear
1663
+ -0.1 (-0.21, 0.01)
1664
+ -0.08 (-0.16, 0)
1665
+ -0.07 (-0.15, 0.01)
1666
+ Restricted Cubic Spline
1667
+ -0.1 (-0.21, 0)
1668
+ -0.08 (-0.16, 0)
1669
+ -0.07 (-0.15, 0)
1670
+ Male Sex, β2
1671
+ Constant
1672
+ 0.52 (0.41, 0.64)
1673
+ -0.25 (-0.31, -0.2)
1674
+ -0.16 (-0.2, -0.12)
1675
+ -0.14 (-0.17, -0.11)
1676
+ Piecewise Linear
1677
+ -0.27 (-0.33, -0.21)
1678
+ -0.16 (-0.2, -0.13)
1679
+ -0.14 (-0.18, -0.11)
1680
+ Restricted Cubic Spline
1681
+ -0.27 (-0.33, -0.21)
1682
+ -0.16 (-0.2, -0.13)
1683
+ -0.14 (-0.18, -0.11)
1684
+ Married at Study Entry, β3
1685
+ Constant
1686
+ -0.16 (-0.3, -0.01)
1687
+ 0.12 (0.05, 0.19)
1688
+ 0.05 (0.01, 0.1)
1689
+ 0.04 (0, 0.08)
1690
+ Piecewise Linear
1691
+ 0.12 (0.05, 0.19)
1692
+ 0.05 (0.01, 0.1)
1693
+ 0.04 (0, 0.08)
1694
+ Restricted Cubic Spline
1695
+ 0.12 (0.05, 0.19)
1696
+ 0.05 (0.01, 0.1)
1697
+ 0.04 (0, 0.08)
1698
+ ≥15 Years of Education, β4
1699
+ Constant
1700
+ -0.1 (-0.21, 0.01)
1701
+ 0.07 (0.02, 0.13)
1702
+ 0.03 (-0.01, 0.06)
1703
+ 0.02 (-0.01, 0.05)
1704
+ Piecewise Linear
1705
+ 0.09 (0.03, 0.15)
1706
+ 0.03 (-0.01, 0.07)
1707
+ 0.02 (-0.01, 0.06)
1708
+ Restricted Cubic Spline
1709
+ 0.09 (0.03, 0.15)
1710
+ 0.03 (0, 0.07)
1711
+ 0.02 (-0.01, 0.06)
1712
+ APOE-ϵ4 Genetic Variant, β5
1713
+ Constant
1714
+ 0.01 (-0.11, 0.13)
1715
+ 0.06 (0, 0.11)
1716
+ 0.01 (-0.03, 0.05)
1717
+ 0 (-0.03, 0.04)
1718
+ Piecewise Linear
1719
+ 0.06 (0, 0.12)
1720
+ 0.01 (-0.03, 0.05)
1721
+ 0 (-0.03, 0.04)
1722
+ Restricted Cubic Spline
1723
+ 0.06 (0, 0.12)
1724
+ 0.01 (-0.03, 0.05)
1725
+ 0 (-0.03, 0.04)
1726
+ AD/Dementia Onset, β6
1727
+ Constant
1728
+ 1.14 (1.02, 1.26)
1729
+ -1.06 (-1.16, -0.97)
1730
+ -0.73 (-0.81, -0.65)
1731
+ -0.68 (-0.76, -0.61)
1732
+ Piecewise Linear
1733
+ -0.14 (-0.42, 0.17)
1734
+ -0.02 (-0.3, 0.29)
1735
+ 0.01 (-0.27, 0.32)
1736
+ Restricted Cubic Spline
1737
+ 1.59 (0.90, 2.35)
1738
+ 1.63 (0.95, 2.38)
1739
+ 1.68 (1, 2.42)
1740
+ AD/Dementia Onset, α1
1741
+ Constant
1742
+ Piecewise Linear
1743
+ -0.95 (-1.29, -0.63)
1744
+ -0.86 (-1.21, -0.53)
1745
+ -0.84 (-1.18, -0.53)
1746
+ Restricted Cubic Spline
1747
+ -1.77 (-2.25, -1.33)
1748
+ -1.60 (-2.08, -1.17)
1749
+ -1.57 (-2.05, -1.14)
1750
+ AD/Dementia Onset, α2
1751
+ Constant
1752
+ Piecewise Linear
1753
+ -1.15 (-1.49, -0.82)
1754
+ -0.90 (-1.25, -0.57)
1755
+ -0.86 (-1.21, -0.54)
1756
+ Restricted Cubic Spline
1757
+ -5.07 (-6.56, -3.73)
1758
+ -4.40 (-5.86, -3.10)
1759
+ -4.43 (-5.87, -3.11)
1760
+ AD/Dementia Onset, α3
1761
+ Constant
1762
+ Piecewise Linear
1763
+ -1.15 (-1.49, -0.82)
1764
+ -0.65 (-0.99, -0.33)
1765
+ -0.62 (-0.96, -0.31)
1766
+ Restricted Cubic Spline
1767
+ -1.78 (-2.18, -1.41)
1768
+ -1.08 (-1.45, -0.75)
1769
+ -1.08 (-1.44, -0.74)
1770
+ AD/Dementia Onset, α4
1771
+ Constant
1772
+ Piecewise Linear
1773
+ -1.68 (-2.11, -1.26)
1774
+ -0.71 (-1.10, -0.32)
1775
+ -0.74 (-1.15, -0.34)
1776
+ Restricted Cubic Spline
1777
+ 31
1778
+
1779
+ B
1780
+ Derivation of V −1(t | X) under Piecewise Linearity
1781
+ Under piecewise linear specification of V (t | X), define J + 2 knots 0 = τ0 < τ1 < · · · < τJ <
1782
+ τJ+1 = ∞, with piecewise linear basis functions defined Bj(t | τ) = t−1(min{t, τj+1} − τj)+
1783
+ where (z)+ = min{0, z}. Assuming a flexible effect for X1, the resulting specification becomes
1784
+ V (t | X) = t × exp (−X
1785
+ Tβ)
1786
+ � J
1787
+
1788
+ j=1
1789
+ exp (−X1αj) Bj(t | τ)
1790
+
1791
+ .
1792
+ The inverse function V −1 can be derived by inspection, noting that the inverse of an increas-
1793
+ ing piecewise linear function is also an increasing piecewise linear function, with changepoints
1794
+ shifted according to the values of X, β, and α. Specifically, define τ ∗ such that τ ∗
1795
+ 0 = τ0 = 0,
1796
+ τ ∗
1797
+ 1 = τ1 × exp(−XTβ), and for j > 1,
1798
+ τ ∗
1799
+ j = τ ∗
1800
+ 1 +
1801
+ j
1802
+
1803
+ l=2
1804
+ exp(−X
1805
+ Tβ − X1αl−1)(τl − τl−1).
1806
+ The lines on each interval of V −1 have the inverse slope of the line in the corresponding
1807
+ interval of V , so the final inverse function is succinctly written
1808
+ V −1(t | X) = t × exp (X
1809
+ Tβ)
1810
+ � J
1811
+
1812
+ j=1
1813
+ exp (X1αj) Bj(t | τ ∗)
1814
+
1815
+ .
1816
+ C
1817
+ Derivation of Acceleration Factor for a Binary Time-
1818
+ Varying Covariate
1819
+ Let X1(t) be a binary-valued step function, such as an indicator for whether a non-terminal
1820
+ event has occurred by time t. Formally, define X1(t) = I(t > tX), where tX is the time at
1821
+ which X1 changes. Consider a single additional covariate time-invariant covariate X2.
1822
+ Notating t∗
1823
+ X = tX exp(−X2β2), the inverse function for V as defined in (5) is derived
1824
+ following Appendix B as
1825
+ V −1(t | X(t)) = exp (X2β2) [min{t, t∗
1826
+ X} + (t − t∗
1827
+ X)+ exp (β1)] .
1828
+ The resulting acceleration factor at quantile p between a person with X2 = x2 who experi-
1829
+ ences the non-terminal event at time tX, and a person with X2 = x′
1830
+ 2 who experiences the
1831
+ non-terminal event at time t′
1832
+ X, is
1833
+ ξ(p | tX, t′
1834
+ X, x2, x′
1835
+ 2, S0) = e(x2−x′
1836
+ 2)β2 min{S−1
1837
+ 0 (p), tXe−x2β2} + eβ1(S−1
1838
+ 0 (p) − tXe−x2β2)+
1839
+ min{S−1
1840
+ 0 (p), t′
1841
+ Xe−x′
1842
+ 2β2} + eβ1(S−1
1843
+ 0 (p) − t′
1844
+ Xe−x′
1845
+ 2β2)+
1846
+ .
1847
+ Finally, note that when a general flexible effect for X1(t) is specified, in general no closed
1848
+ form exists, but acceleration factors can still be computed numerically.
1849
+ 32
1850
+
1851
+ D
1852
+ Transformed Bernstein Polynomial Prior
1853
+ To illustrate the flexibility of the transformed Bernstein polynomial prior, Figure D.1 shows
1854
+ the basis functions when K = 5,
1855
+ G(p | k, K − k + 1) =
1856
+ Γ(K + 1)
1857
+ Γ(k)Γ(K − k + 1)pk−1(1 − p)K−k.
1858
+ Moreover, Figure D.2 shows a sample of different shapes that the resulting baseline survivor
1859
+ function S0(t | φ, w) = �K
1860
+ k=1 wkG(S∗
1861
+ 0(t | φ) | k, K − k + 1) can take, for selected weight
1862
+ vectors w and setting S∗
1863
+ 0(t) = exp(−t).
1864
+ 0.0
1865
+ 0.2
1866
+ 0.4
1867
+ 0.6
1868
+ 0.8
1869
+ 1.0
1870
+ 0.0
1871
+ 0.4
1872
+ 0.8
1873
+ p
1874
+ G(p)
1875
+ Figure D.1: Basis functions G for j = 1, . . . , 5.
1876
+ 33
1877
+
1878
+ 0
1879
+ 1
1880
+ 2
1881
+ 3
1882
+ 4
1883
+ 0.0
1884
+ 0.2
1885
+ 0.4
1886
+ 0.6
1887
+ 0.8
1888
+ 1.0
1889
+ t
1890
+ S0(t)
1891
+ 1
1892
+ 2
1893
+ 3
1894
+ 4
1895
+ 1
1896
+ 2
1897
+ 3
1898
+ 4
1899
+ w1
1900
+ 0.01
1901
+ 0.64
1902
+ 0.07
1903
+ 0.41
1904
+ w2
1905
+ 0.03
1906
+ 0.23
1907
+ 0.18
1908
+ 0.02
1909
+ w3
1910
+ 0.09
1911
+ 0.09
1912
+ 0.50
1913
+ 0.01
1914
+ w4
1915
+ 0.23
1916
+ 0.03
1917
+ 0.18
1918
+ 0.15
1919
+ w5
1920
+ 0.64
1921
+ 0.01
1922
+ 0.07
1923
+ 0.41
1924
+ Figure D.2: Sample survivor functions corresponding to varying transformed bernstein poly-
1925
+ nomial prior weight vectors. Bold black line shows centering distribution S∗
1926
+ 0(t) = exp(−t).
1927
+ 34
1928
+
1tE1T4oBgHgl3EQfRwOf/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2NAyT4oBgHgl3EQf1fm1/content/2301.00737v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67e93fd60764bb297053d54a8dd42396aa1a2ec6c4aafad1619795886b9d2ecc
3
+ size 572786
2NAyT4oBgHgl3EQf1fm1/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68a3df9893194cbbb8e3f832fc7c9cf574b664efa9be25b11cc1340ddcfbb875
3
+ size 2949165
2NAyT4oBgHgl3EQf1fm1/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d51a6f77d3a1a575298b299df69a05e9b7feb0fae768b8c3a6562267511b5e0
3
+ size 103711
2dA0T4oBgHgl3EQfM_90/content/tmp_files/2301.02140v1.pdf.txt ADDED
@@ -0,0 +1,1163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The average degree of edge chromatic critical graphs with
2
+ maximum degree seven
3
+ Yan Cao
4
+ Scdool of Mathematical Sciences, Dalian University of Technology
5
+ Dalian, Liaoning, 116024, China
6
7
+ Rong Luo∗
8
+ Department of Mathematics, West Virginia University
9
+ Morgantown, WV 26505
10
11
+ Zhengke Miao†
12
+ School of Mathematics and Statistics, Jiangsu Normal University
13
+ Xuzhou, Jiangsu, 221116, China
14
15
+ Yue Zhao
16
+ Department of Mathematics, University of Central Florida
17
+ Orlando, FL 32816-1364
18
19
+ Abstract
20
+ In this paper, by developing several new adjacency lemmas about a path on 4 or 5 ver-
21
+ tices, we show that the average degree of 7-critical graphs is at least 6. It implies Vizing’s
22
+ planar graph conjecture for planar graphs with maximum degree 7 and its extension to
23
+ graphs embeddable in a surface with nonnegative Euler characteristic due to Sanders and
24
+ Zhao (J. Combin. Theory Ser. B 83 (2001) 201-212 and J. Combin. Theory Ser. B 87
25
+ (2003) 254-263) and Zhang (Graphs and Combinatorics 16 (2000) 467-495).
26
+ Keywords:. Edge coloring, critical graphs, Euler’s formula, planar graphs
27
+ 1
28
+ Introduction
29
+ An edge coloring of a graph is a function assigning values (colors) to the edges of the graph in
30
+ such a way that any two adjacent edges receive different colors. A graph is edge k-colorable if
31
+ there is an edge coloring of the graph with colors from C = {1, . . . , k}. A finite simple graph
32
+ ∗Partially supported by a grant from Simons Foundation (No. 839830)
33
+ †Partially supported by NSFC under grant numbers 12031018 and 11971205.
34
+ 1
35
+ arXiv:2301.02140v1 [math.CO] 5 Jan 2023
36
+
37
+ G of maximum degree ∆ is class one if it is edge ∆-colorable. Otherwise, G is said to be
38
+ class two, in which case Vizing’s Theorem [20] guarantees that it is edge (∆ + 1)-colorable.
39
+ G is said to be edge chromatic critical (or critical for short) if it is connected, class two and
40
+ χ′(G − e) < χ′(G) for every edge e ∈ G. A critical graph G of maximum degree ∆ is called a
41
+ ∆-critical graph. Vizing proposed the following conjecture in 1968 [21] on the average degree
42
+ of ∆-critical graphs.
43
+ Conjecture 1.1 Let G be a ∆-critical graph. Then d(G) ≥ ∆ − 1 +
44
+ 3
45
+ |V (G)|, where d(G) is the
46
+ average degree of G.
47
+ There are direct consequences of a progress towards solving this conjecture. For example,
48
+ if there is a better bound for the size of ∆-critical graphs, then one can obtain better bounds
49
+ for ∆(S), where S is a surface and ∆(S) = max{∆(G)|G is a class two connected graph that
50
+ can be embedded in S}. It is well known that if Vizing’s conjecture is true for ∆ = 7, then
51
+ ∆(S) ≤ 6 where S is a surface of Euler characteristic at least 1, which was proved in [17] by
52
+ other means in 2003. If this average degree conjecture is true, for a ∆-critical graph G, by
53
+ applying the inequality α ≤ n− m
54
+ ∆, where n = |V (G)|, m = |E(G)|, and α is the independence
55
+ number of G, one can easily obtain α ≤ n
56
+ 2 as ∆ → ∞. This provides a strong evidence for the
57
+ independence number conjecture proposed by Vizing in 1968 [21], which claims that if G is a
58
+ critical graph, then α ≤ n
59
+ 2 .
60
+ Conjecture 1.1 was verified for ∆ = 3 by Jakobsen [12], for ∆ = 4 by Fiorini and Wilson
61
+ [10], for ∆ = 5 by Kayathri [13], and for ∆ = 6 by Luo, Miao and Zhao [14]. As for the lower
62
+ bound of d(G), Woodall [22] proved that if G is a ∆-critical graph, then d(G) ≥ 2(∆+1)
63
+ 3
64
+ . Cao
65
+ and Chen [5] further improved to 3∆
66
+ 4 − 8 and they [5, 6] also showed that Conjecture 1.1 is
67
+ asymptotically true.
68
+ In this paper, we will prove that if G is a 7-critical graph, then d(G) ≥ 6. This result implies
69
+ Vizing’s planar graph conjecture for ∆ = 7 claiming that every planar graph with maximum
70
+ degree at least 7 is class one, which was verified independently by Sanders and Zhao [17]
71
+ and Zhang [23] and its extension to graphs embeddable in a surface with nonnegative Euler
72
+ characteristic due to Sanders and Zhao in [17] and [18].
73
+ Before proceeding, we introduce some notations. Throughout this paper, let G = (V, E)
74
+ be a simple graph with n vertices, m edges, and maximum degree ∆(G) (or ∆). A k-vertex,
75
+ k+-vertex, or k−-vertex is a vertex of degree k, at least k, or at most k, respectively. We
76
+ use d(x), dk(x), dk+(x), dk−(x) to denote the degree of a vertex x, the number of k-vertices
77
+ adjacent to x, the number of k+-vertices adjacent to x, and the number of k−-vertices adjacent
78
+ to x, respectively. For a vertex v ∈ V , let N(x) = {v|xv ∈ E} be the neighborhood of v in
79
+ G. A k-neighbor of a vertex v is a neighbor of v that is a k-vertex in G, a k+-neighbor or
80
+ k−-neighbor of a vertex v is a neighbor of v that is a k+-vertex or k−-vertex in G. For two
81
+ disjoint vertex sets U and U ′, denote by [U, U′] the set of edges with one end in U and the
82
+ other in U ′. For a vertex set A of V (G), denote by N(A) = ∪x∈AN(x).
83
+ 2
84
+
85
+ 2
86
+ Lemmas
87
+ In this section, we present some old lemmas and develop some new lemmas needed in the
88
+ proofs of our main result.
89
+ 2.1
90
+ Old lemmas
91
+ Lemma 2.1 (Vizing’s Adjacency Lemma [20]) Let G be a ∆-critical graph. Then d(u) +
92
+ d(v) ≥ ∆ + 2 for any two adjacent vertices u and v, and d∆(x) ≥ max{2, ∆ − k + 1} if x has
93
+ a k-neighbor.
94
+ Lemma 2.2 (Luo, Miao, and Zhao [14]) Let G be a ∆-critical graph with ∆ ≥ 5 and x be a
95
+ 3-vertex. Then x has at least two ∆-neighbors which are not adjacent to any (∆−2)−-vertices
96
+ except x.
97
+ Lemma 2.3 (Luo, Miao, and Zhao [16]) Let G be a ∆-critical graph with ∆ ≥ 6 and x be a
98
+ 3-vertex. Then x has a ∆-neighbor which is adjacent to at least ∆ − 4 − ⌊ ∆−1
99
+ 3 ⌋ vertices z with
100
+ d(z) = ∆ and d(∆−3)−(z) = 0.
101
+ Lemma 2.4 (Sanders and Zhao [17] and Zhang [23]) Let G be ∆-critical graph and xyrs be a
102
+ path with d(x) + d(y) = ∆ + 2. Then d(r) = ∆ and d(s) ≥ ∆ − 1. Moreover if d(x), d(y) < ∆,
103
+ then d(s) = ∆.
104
+ Lemma 2.5 (Luo, Miao, and Zhao [14]) Let G be a ∆-critical graph with ∆ ≥ 6 and x be a
105
+ 4-vertex.
106
+ (1) If x is adjacent to a (∆ − 2)-vertex, say y, then N(N(x)) \ {x, y} ⊆ V∆;
107
+ (2) If x is not adjacent to any (∆ − 2)-vertex and if one of the neighbors y of x is adjacent to
108
+ d(y) − (∆ − 3) vertices of degree at most ∆ − 2, then each of the other three neighbors of x is
109
+ adjacent to only one (∆ − 2)−-vertex, which is x;
110
+ (3) If x is adjacent to two (∆ − 1)-vertices, then each of the neighbors of x is adjacent to
111
+ exactly one (∆ − 2)−-vertex, which is x.
112
+ The following lemma is a special case of Lemma 2.4 in [17] due to Sanders and Zhao.
113
+ Lemma 2.6 Let G be a 7-critical graph and xyz be a path in G. If 3 ≤ d(x) ≤ 4, d(y) = 7
114
+ and d(x) + d(z) ≤ 8, then y and z have at most d(x) − 3 common neighbors.
115
+ 2.2
116
+ New lemmas
117
+ The following lemmas will be proved in Section 5.
118
+ Let G be a ∆-critical graph. For each vertex v, denote
119
+ N∆∼2(v) = {z ∈ N(v) : z has a neighbor of degree 2}
120
+ Lemma 2.7 Let G be a ∆-critical graph with ∆ ≥ 7. Then |N∆∼2(v)| ≤ 5 for every v ∈ V (G).
121
+ Lemma 2.8 Let G be a ∆-critical graph and xyrst be a path with d(x) + d(y) = ∆ + 2 and
122
+ max{d(x), d(y)} < ∆. Then d(t) ≥ ∆ − 2.
123
+ Lemma 2.9 Let G be a ∆-critical graph and xyrst be a path with d(x) = 3 and d(y) = ∆.
124
+ Suppose that y has a neighbor z ̸∈ {x, r, s} with d(z) ≤ ∆ − 2. Then d(s) ≥ ∆ − 1; and
125
+ d(z) + d(t) ≥ ∆ + 1 if d(t) ≤ ∆ − 4.
126
+ 3
127
+
128
+ So far all adjacency lemmas are about a path on at most four vertices. Lemma 2.9 is the
129
+ first lemma that deals with a path with five vertices.
130
+ By Lemmas 2.4, 2.8, and 2.9, we have the following corollary.
131
+ Corollary 2.10 Let G be a 7-critical graph and xyrst be a path with d(x) = 3. Then we have
132
+ the following:
133
+ (1) if d(y) = 6, then d(r) = d(s) = 7 and d(t) ≥ 5.
134
+ (2) if d(y) = 7 and y has another 4−-neighbor other than x, then d(s) ≥ 6 and d(t) ≥ 4.
135
+ (3) if d(y) = 7 and y has a 5-neighbor, then either d(s) = 6 and d(t) ≥ 4 or d(s) = 7 and
136
+ d(t) ≥ 3.
137
+ Lemma 2.11 Let G be a ∆-critical graph and xy be an edge with d(x) + d(y) = ∆ + 3 and
138
+ max{d(x), d(y)} < ∆. Then x has d(x)−2 neighbors of degree ∆ having no (∆−2)−-neighbors
139
+ other than x, y.
140
+ Lemma 2.12 Let G be a 7-critical graph and x be a 5-vertex.
141
+ (1) if x has three 6-neighbors, then each 7-neighbor of x has exactly one 5−-neighbor.
142
+ (2) if x has two 6-neighbors, then x has two 7-neighbors, each of which has at most two
143
+ 5−-neighbors.
144
+ (3) if x has exactly four 7-neighbors, then x has two 7-neighbors, each of which has at most
145
+ three 5−-neighbors.
146
+ 3
147
+ The average degree of 7-critical graphs
148
+ 3.1
149
+ Main result
150
+ In this section we will prove our main result.
151
+ Theorem 3.1 d(G) ≥ 6 for every 7-critical graph G.
152
+ Proof. Let G be a 7-critical graph. We define the following subsets of vertices.
153
+ A = {u|d(u) = 7 and u is adjacent to a 2-vertex},
154
+ B = {u|d(u) = 6 and u is adjacent to a 3-vertex},
155
+ C = {u|d(u) = 7 and u is adjacent to a 3-vertex and a 5−-vertex}.
156
+ The following proposition is straightforward from Lemma 2.7 and Corollary 2.10.
157
+ Proposition 3.2 Let x be a 7-vertex which is not adjacent to a 5−-vertex. Then at most one
158
+ of the three sets N(x)∩A, N(x)∩B, and N(x)∩C is a nonempty set. Moreover |N(x)∩A| ≤ 5
159
+ and |N(x) ∩ B| ≤ 1.
160
+ For each vertex x, denote by M(x) = d(x) − 6 to be the initial charge of x.
161
+ R1 Let u be a 7-vertex not adjacent to a 5−-vertex but adjacent to a vertex in A ∪ B ∪ C.
162
+ Then u sends
163
+ 1
164
+ |N(x)∩A|+|N(x)∩B|+|N(x)∩C| to each neighbor in A ∪ B ∪ C.
165
+ R2 Let u be a 7-vertex adjacent to a 5−-vertex. Then u sends
166
+ 1
167
+ d5−(u) to each neighbor with
168
+ degree 4 or 5, 1 to each 3-neighbor, and 2 to each 2-neighbor.
169
+ R3 Every 6-vertex sends 1 to each 3-neighbor.
170
+ 4
171
+
172
+ R4 If a 5-vertex u is adjacent to a 7-vertex v ∈ C, then u sends 1
173
+ 8 to v.
174
+ R5 If a 4-vertex is adjacent to a 5-vertex, then the 4-vertex receives 1
175
+ 2 from its 5-neighbor.
176
+ Denote by M′(x) to be the new charge of the vertex x. We have the following estimation
177
+ for M′(x).
178
+ (I) Let u be a vertex with degree 2 or 3. Then M′(u) = 0.
179
+ By (R2), each 2-vertex receives 2 from each neighbor. By Lemma 2.1, each 3-vertex is
180
+ not adjacent to a 5−-vertex. Thus by (R2) and (R3), each 3-vertex receives 1 from each
181
+ neighbor. Therefore M′(u) = 0 if d(u) = 2 or 3.
182
+ (II) Let uv be an edge with d(u) + d(v) = ∆ + 2 = 9 and 3 ≤ d(u) ≤ d(v) < 7. Then
183
+ M′(u) ≥ 0 and M′(v) ≥ 1.
184
+ Let w ∈ N(u)∪N(v) and w ̸∈ {u, v}. If w ∈ N(u)∩N(v), then by Lemma 2.4, d(w) = 7,
185
+ and w has only two 6−-neighbors. Thus by (R2), w sends 1
186
+ 2 to each of u and v if d(u) = 4
187
+ and d(v) = 5 and sends 1 to u, 0 to v if d(u) = 3 and d(v) = 6.
188
+ If w ̸∈ N(v) ∩ N(u), then by Lemma 2.4, d(w) = 7 and w has only one 6−-neighbor,
189
+ which is either u or v. If w ∈ N(u), then by (R2), w sends 1 to u. Assume w ∈ N(v).
190
+ If d(v) = 6, then v ∈ B, and by Proposition 3.2, w sends 1 to v. If d(v) = 5, then
191
+ N(w) ∩ (A ∪ B ∪ C) = ∅ by Lemma 2.8 and thus w sends 1 to v by (R2). Therefore in
192
+ any case w sends 1 to either u or v if w ̸∈ N(v) ∩ N(u).
193
+ If d(u) = 4 and d(v) = 5, then u receives 1
194
+ 2 from v by (R2). Thus M′(u) ≥ 4−6+4× 1
195
+ 2 = 0
196
+ and M′(v) = 5 − 6 + 1
197
+ 2|N(u) ∩ N(v)| + |N(v) \ N(u)| − 1
198
+ 2 ≥ 5 − 6 + 3
199
+ 2 + 1 − 1
200
+ 2 ≥ 1.
201
+ If d(u) = 3 and d(v) = 6, then M′(u) = 0 by (I) and v sends 1 to u by (R3). Thus
202
+ M′(v) = 6 − 6 + |N(v) \ N(u)| − 1 ≥ 6 − 6 + 3 − 1 > 1.
203
+ (III) Let u be a 4-vertex with four 6+-neighbors. Then M′(u) > 0 unless u has either four
204
+ 7-neighbors or has two 6-neighbors and two 7-neighbors, in which case M′(u) ≥ 0.
205
+ By Lemma 2.1, u is adjacent to at least two 7-vertices and each 7-neighbor of u is
206
+ adjacent to at most three 5−-vertices.
207
+ If u has a 7-neighbor v adjacent to three 5−-vertices, then by Lemma 2.5, u is adjacent to
208
+ four 7-vertices and except v, each 7-neighbor is adjacent to only one 5−-vertex. Therefore
209
+ by (R2), M′(u) ≥ 4 − 6 + 3 × 1 + 1
210
+ 3 = 4
211
+ 3.
212
+ Now assume that each 7-neighbor is adjacent to at most two 5−-vertices. Then u receives
213
+ at least 1
214
+ 2 from each 7-neighbor.
215
+ If u has four 7-neighbors, then M′(u) ≥ 4 − 6 + 4 × 1
216
+ 2 = 0.
217
+ If u has a 6-neighbor, then by Lemma 2.11, there are two 7-neighbors of u having only
218
+ one 5−-neighbor. Thus M′(u) ≥ −2 + 2 + 1
219
+ 2(d7(u) − 2) ≥ 0 with equality when u has
220
+ exactly two 6-neighbors and two 7-neighbors.
221
+ 5
222
+
223
+ (IV) M′(u) > 0 for each 5-vertex u with five 5+-neighbors.
224
+ By Lemma 2.1, u is adjacent to at least two 7-vertices and each 7-neighbor of u is
225
+ adjacent to at most four 6−-vertices.
226
+ If v is a 7-neighbor of u and v is adjacent to a 3-vertex, then v sends 1
227
+ 2 to u by (R2)
228
+ and u sends 1
229
+ 8 to v by (R4). Therefore the total net charge u receives from v is 3
230
+ 8.
231
+ Thus in general, u receives at least min{ 3
232
+ 8, 1
233
+ 4} from each 7-neighbor.
234
+ If u has at least four 7-neighbors, then by Lemma 2.12(3), M′(u) ≥ −1+2× 1
235
+ 4 +2× 1
236
+ 3 > 0.
237
+ Now assume that u is adjacent to at most three 7-vertices.
238
+ If u is adjacent to a 5-vertex, then by Lemma 2.11, u has three 7-neighbors, each of
239
+ which could be adjacent to at most two 5−-vertex (u and the 5-neighbor of u). Thus
240
+ M′(u) ≥ −1 + 3 × 1
241
+ 2 = 1
242
+ 2 > 0.
243
+ Finally, we may assume that u is adjacent to at least two 6-vertices and at most three
244
+ 7-vertices. By Lemma 2.12(1) and (2), M′(u) ≥ −1 + min{1
245
+ 4 + 2 × 1
246
+ 2, 1 + 1} > 0.
247
+ (V) Let u be a 6-vertex adjacent to six 4+-vertices. Then by the discharging rules, M′(u) =
248
+ M(u) = 0.
249
+ (VI) M′(u) ≥ 0 if d(u) = 7.
250
+ Let u be a 7-vertex. Then u ̸∈ B. By (R1) and (R2), we have M′(u) ≥ 0 if u ̸∈ A ∪ C.
251
+ (a) Assume u ∈ A (that is u has a 2-neighbor v).
252
+ Let w be the other neighbor of v and x ∈ N(u) \ {v, w}. Then by Lemma 2.4, d(x) = 7
253
+ and x is not adjacent to a 5−-vertex. Since u ∈ A, by Proposition 3.2, x is adjacent to at
254
+ most five vertices in A∪C. Thus by (R1), x sends at least 1
255
+ 5 to u. Since |N(u)\{v, w}| ≥
256
+ 5, we have M′(u) ≥ 7 − 6 − 2 + 5 × 1
257
+ 5 = 0.
258
+ (b) Assume u ∈ C (that is u is adjacent to a 3-vertex x and another 5−-vertex z).
259
+ By Lemma 2.1, x and z are not adjacent and u has five 7-neighbors. By Lemma 2.6, u
260
+ and z have no common neighbor. Thus u has at least three 7-neighbors which are not
261
+ adjacent to x or z. Let w be such a 7-neighbor of u. By Proposition 3.2, N(w)∩(A∪B) =
262
+ ∅.
263
+ If d(z) ≤ 4, then 3 ≤ d(z) ≤ 4 by Lemma 2.1, and thus u sends at most 1 to each of x
264
+ and z. By Corollary 2.10(2), u is the only vertex in C adjacent to w. So w sends 1 to u
265
+ by (R1). Thus M′(u) ≥ 7 − 6 − 1 − 1 + 3 = 1.
266
+ If d(z) = 5, then w is adjacent to at most seven vertices in C and thus sends at least 1
267
+ 7
268
+ to u by (R1). By (R2), u sends 1 to x and 1
269
+ 2 to z and by (R4), z sends 1
270
+ 8 to u. Therefore
271
+ M′(u) ≥ 7 − 6 − 1 − 1
272
+ 2 + 1
273
+ 8 + 3
274
+ 7 > 0. This completes the proof of (VI).
275
+ By (I)-(VI), M′(x) ≥ 0 for each vertex x and thus 0 ≤ �
276
+ x∈V M′(x) = �
277
+ x∈V M(x) =
278
+ (d(G) − 6)|V |. Therefore d(G) ≥ 6. This completes the proof of the theorem.
279
+ 6
280
+
281
+ 3.2
282
+ Concluding remarks
283
+ One may wonder why our result does not include the term
284
+ 3
285
+ |V | in the lower bound for the
286
+ average degree as Conjecture 1.1 states. The reason is that we can construct some infinite
287
+ families of graphs with maximum degree 7 and average degree 6 which satisfy all currently
288
+ known adjacency lemmas. For example, for any positive integer t, consider a graph G with
289
+ degree sequence (4t, 72t) such that each 4-vertex is adjacent to four 7-vertices and each 7-vertex
290
+ is adjacent two 4-vertices. One can easily check that G satisfies all adjacent lemmas that we
291
+ currently have and d(G) = 7 − 1 = 6. The above example can be generalized for arbitrary
292
+ maximum degree ∆ = 2k + 1 ≥ 7. For each t ≥ 1, let G be a graph with degree sequence
293
+ (kt, ∆kt) such that each k-vertex is adjacent to k vertices of degree ∆ and each ∆-vertex is
294
+ adjacent to exactly one k-vertex. Then d(G) = ∆ − 1 = 2k and G satisfies all adjacency
295
+ lemmas that we know.
296
+ The above examples and several other examples not only present a challenge but also
297
+ indicate the necessity to develop new adjacency lemmas to attack Conjecture 1.1 and other
298
+ edge coloring problems. In particular, so far all adjacency lemmas are about a path on at
299
+ most four vertices. Lemma 2.9 is indeed a lemma that deals with a path with five vertices
300
+ and it is the key lemma in the proof of our main result, but it is only for degree 3-vertices.
301
+ To completely solve the case of 7-critical graphs and beyond, more general adjacency lemmas
302
+ concerning paths on five vertices are needed although it is very challenging to develop such
303
+ lemmas. It would be practical and very useful to use computer program to complete the
304
+ remaining cases for 7-critical graphs and to develop some forbidden structures for critical
305
+ graphs in general.
306
+ 4
307
+ Applications to graphs embedded on surfaces with nonneg-
308
+ ative Euler characteristics
309
+ Theorem 3.1 clearly implies that every planar graph with maximum degree 7 is class one
310
+ which was conjectured by Vizing and independently proved by Sanders and Zhao [17], and
311
+ Zhang [23] and its extension to projective planar graphs [18] since every graph which can be
312
+ embedded in a plane or a projective plane has average degree strictly less than 6. Our result
313
+ also implies the following result due to Sanders and Zhao [18].
314
+ Theorem 4.1 (Sanders and Zhao [18]) Let G be a graph with maximum degree 7. If G can
315
+ be embedded in the torus or Klein bottle, then G is class one.
316
+ Proof.
317
+ Prove by contradiction.
318
+ Suppose that G is not class one.
319
+ Then we may assume
320
+ that G is 7-critical. By Euler’s formula, d(G) ≤ 6. By Theorem 3.1, we have d(G) = 6
321
+ and d(f) = 3 for each face f. Since G is simple, we further have δ ≥ 3. Denote by M′(x)
322
+ the new charge of the vertex x and A, B, C the sets defined in the previous section. Then
323
+
324
+ x∈V (G) M′(x) = �
325
+ x∈V (G)(d(G) − 6) = 0. Thus M′(x) = 0 for every vertex x in G.
326
+ Since δ(G) ≥ 3, we have A = ∅. By (II) and (IV) in the proof of Theorem 3.1, d(u)+d(v) ≥
327
+ ∆ + 3 and there are no 5-vertices in G. Thus B = ∅. Since every face is a 3-face and G is
328
+ 2-connected, every two adjacent vertices share at least two common neighbors.
329
+ 7
330
+
331
+ Claim 4.1.1 δ(G) = 4 and every 4-vertex is adjacent to exactly two 7-vertices and two 6-
332
+ vertices.
333
+ Proof. Let y be a 7-vertex with a neighbor x where 3 ≤ d(x) ≤ 4. Since any two adjacent
334
+ vertices share at least two neighbors, by Lemma 2.6, y is adjacent to only one 4−-vertex.
335
+ Since there are no 5-vertices in G, y is adjacent to exactly one 5−-vertex. This implies C = ∅.
336
+ Therefore A = B = C = ∅.
337
+ Hence every 7-vertex is adjacent to a 4−-vertex otherwise
338
+ M′(x) = M(x) = 1 > 0 if x is a 7-vertex without a 4−-neighbor. Therefore every 7-vertex has
339
+ exactly one 4−-neighbor.
340
+ If there is a 3-vertex, by Lemma 2.3, there is one 7-vertex x that has no 4−-neighbors,
341
+ a contradiction. Therefore δ = 4 and every 7-vertex is adjacent to exactly one 4-vertex. By
342
+ (III), every 4-vertex is adjacent to exactly two 7-vertices and two 6-vertices.
343
+ Denote by Vi the set of i-vertices and ni = |Vi|. Then by Claim 4.1.1, n4 = 2n7 and
344
+ n4 ≤ 2n6.
345
+ Since every 7-vertex is adjacent to a 4-vertex, every 7-vertex is adjacent to at least 4 vertices
346
+ in V7 and every vertex has at least two neighbors in V7 by Lemma 2.1. Thus 2n6 + 2n4 ≤
347
+ |[V7, V6 ∪ V4]| ≤ 3n7. This implies 6n7 = 3n4 ≤ 3n7. This contradiction completes the proof
348
+ of the theorem.
349
+ 5
350
+ Proofs of new lemmas
351
+ Before giving the proofs, we first introduce some notations and lemmas that are needed in
352
+ this section.
353
+ The set of all k-edge-colorings of a graph G is denoted by Ck(G). Let ϕ ∈ Ck(G). For any
354
+ color α, let Eα = {e ∈ E : ϕ(e) = α}. For any two distinct colors α and β, denote by Gϕ(α, β)
355
+ the subgraph of G induced by Eα ∪ Eβ. The components of Gϕ(α, β) are called (α, β)-chains.
356
+ Clearly, each (α, β)-chain is either a path or a cycle of edges alternately colored with α and β.
357
+ For each (α, β)-chain P, let ϕ/P denote the k-edge-coloring obtained from ϕ by exchanging
358
+ colors α and β on P.
359
+ For any v ∈ V , let Pv(α, β, ϕ) denote the unique (α, β)-chain containing v. Notice that,
360
+ for any two vertices u, v ∈ V , either Pu(α, β, ϕ) = Pv(α, β, ϕ) or Pu(α, β, ϕ) is vertex-disjoint
361
+ from Pv(α, β, ϕ). This fact will be used very often without mentioning. For convenience, we
362
+ define Pv(α, β, ϕ) = v and ϕ/Pv(α, β, ϕ) = ϕ when α = β.
363
+ For any v ∈ V , let ϕ(v) = {ϕ(e) : e ∈ E(v)} denote the set of colors presented at v and
364
+ ¯ϕ(v) = C \ ϕ(v) the set of colors not assigned to any edge incident to v, which are called
365
+ missing colors at v. For a vertex set X ⊆ V (G), we call X elementary (with respect to ϕ) if
366
+ all missing color sets ¯ϕ(x) (x ∈ X) are mutually disjoint.
367
+ A multi-fan at x with respect to the edge e = xy ∈ E(G) and the coloring ϕ ∈ C∆(G − e)
368
+ is a sequence F = (x, e1, y1, . . . , ep, yp) with p ≥ 1 consisting of edges e1, e2, . . . , ep and vertices
369
+ x, y1, y2, . . . , yp satisfying the following two conditions:
370
+ • The edges e1, e2, . . . , ep are distinct, e1 = e and ei = xyi for i = 1, . . . , p.
371
+ 8
372
+
373
+ • For every edge ei with 2 ≤ i ≤ p, there is a vertex yj with 1 ≤ j < i such that
374
+ ϕ(ei) ∈ ¯ϕ(yj).
375
+ Note that a multi-fan is slightly more general than a Vizing-fan which requires j = i − 1
376
+ in the second condition.
377
+ Lemma 5.1 (Stiebitz, Scheide, Toft and Favrholdt [19]) Let G be a ∆-critical graph, xy1 =
378
+ e ∈ E(G) and ϕ ∈ C∆(G − e). If F = (x, e1, y1, . . . , ep, yp) is a multi-fan at x with respect to
379
+ e and ϕ. Then the following statements hold:
380
+ (a) {x, y1, y2, . . . , yp} is elementary.
381
+ (b) If α ∈ ¯ϕ(x) and β ∈ ¯ϕ(yi) for some i, then Px(α, β, ϕ) = Pyi(α, β, ϕ).
382
+ The following lemma is a direct corollary of Lemma 5.1.
383
+ Lemma 5.2 Let G be a ∆-critical graph, xy = e ∈ E(G) and ϕ ∈ C∆(G − e). Let xyz be a
384
+ path.
385
+ (1) If d(z) ≤ 2∆ − (d(x) + d(y)) + 1, then α = ϕ(yz) ∈ ϕ(x) ∩ ϕ(y) and for any color
386
+ β ∈ ¯ϕ(z) ∩ ( ¯ϕ(x) ∪ ¯ϕ(y)), Pz(α, β, ϕ) ends at x or y.
387
+ (2) If ϕ(yz) ∈ ¯ϕ(x), then ¯ϕ(x) ∪ ¯ϕ(y) ⊆ ϕ(z) and thus d(z) ≥ 2∆ − (d(x) + d(y)) + 2.
388
+ A Kierstead path with respect to e = y0y1 and ϕ ∈ C∆(G − e) is a path K = y0y1 · · · yp
389
+ with p ≥ 1 such that for every edge yiyi+1 with 1 ≤ i ≤ p − 1, there is a vertex yj with
390
+ 0 ≤ j < i such that ϕ(yiyi+1) ∈ ¯ϕ(yj).
391
+ Clearly a Kierstead path with 3 vertices is a multi-fan with center y1.
392
+ The next two
393
+ lemmas are elementary properties of a Kierstead path with 4 vertices.
394
+ Lemma 5.3 (Kostochka and Stiebitz [19], Luo and Zhao [15]) Let G be a ∆-critical graph,
395
+ y0y1 = e ∈ E(G) and ϕ ∈ C∆(G − e). Let K = y0y1y2y3 be a Kierstead path with respect
396
+ to e and ϕ.
397
+ Then V (K) is elementary unless d(y1) = d(y2) = ∆(G), in which case, all
398
+ colors in ¯ϕ(y0), ¯ϕ(y1), ¯ϕ(y2) and ¯ϕ(y3) are distinct except one possible common missing color
399
+ in ¯ϕ(y3) ∩ ( ¯ϕ(y0) ∪ ¯ϕ(y1)).
400
+ Lemma 5.4 Let G be a ∆-critical graph, y0y1 = e ∈ E(G) and ϕ ∈ C∆(G − e). Suppose that
401
+ K = y0y1y2y3 is a Kierstead path with respect to e and ϕ, min{d(y1), d(y2)} < ∆, α ∈ ¯ϕ(y3)
402
+ and β ∈ ¯ϕ(yi) for some i ∈ {0, 1, 2}. If β /∈ {ϕ(y1y2), ϕ(y2y3)}, then Py3(α, β, ϕ) ends at yi.
403
+ Proof. Since K is a Kierstead path and {y0, y1, y2, y3} is elementary by Lemma 5.3, we have
404
+ α /∈ {ϕ(y1y2), ϕ(y2y3)}. Suppose to the contrary that Py3(α, β, ϕ) does not end at yi. Then
405
+ after interchanging α, β on this path, K is still a Kierstead path, but β is missing at both yi
406
+ and y3, a contradiction to Lemma 5.3. This completes the proof.
407
+ A ϕ-broom (Figure 1 (a)) with respect to y0y1 and ϕ ∈ C∆(G − y0y1) is a sequence
408
+ B = (y0, e1, y1, . . . , ep, yp) with p ≥ 3 such that e1 = y0y1, e2 = y1y2, ϕ(e2) ∈ ¯ϕ(y0) and for
409
+ all i ≥ 3, ei = y2yi and ϕ(ei) ∈ ¯ϕ(yj) for some j < i.
410
+ Lemma 5.5 (Cao, Chen, Jing, Stiebitz and Toft [7]) Let G be a ∆-critical graph, y0y1 = e1 ∈
411
+ E(G) and ϕ ∈ C∆(G−e1). If B = (y0, e1, y1, . . . , ep, yp) is a ϕ-broom and min{d(y1), d(y2)} <
412
+ ∆, then the vertex set of B is elementary.
413
+ 9
414
+
415
+
416
+ 0
417
+ y
418
+ 1
419
+ y
420
+ 2
421
+ y
422
+ 3
423
+ y
424
+ 4
425
+ y
426
+ p
427
+ y
428
+
429
+
430
+ .
431
+
432
+ some
433
+ for
434
+ )
435
+ (
436
+ )
437
+ (
438
+
439
+ Broom.
440
+ )
441
+ (
442
+ 2
443
+ i
444
+ j
445
+ y
446
+ y
447
+ y
448
+ a
449
+ j
450
+ i
451
+
452
+ 
453
+
454
+ 2
455
+
456
+ u
457
+ b
458
+ a
459
+ 1t
460
+ 2t
461
+ 1s
462
+ 2s
463
+ c
464
+
465
+ Kite.
466
+ )
467
+ (b
468
+
469
+
470
+ 1
471
+
472
+ 2
473
+
474
+ 2
475
+
476
+ u
477
+ b
478
+ a
479
+ 1t
480
+ 2t
481
+ 1s
482
+ 2s
483
+ 1
484
+
485
+ 1
486
+
487
+ .)
488
+ (
489
+ )
490
+ (
491
+ ,
492
+ ,
493
+ ,
494
+
495
+ Fork.
496
+ )
497
+ (
498
+ 2
499
+ 1
500
+ 2
501
+ 1
502
+ b
503
+ a
504
+ c
505
+
506
+
507
+
508
+
509
+
510
+
511
+
512
+
513
+ Figure 1: Brooms, kites and forks.
514
+ A kite H (Figure 1 (b)) is a graph with
515
+ V (H) = {a, b, c, u, s1, s2, t1, t2} and E(H) = {ab, ac, bu, cu, us1, us2, s1t1, s2t2}.
516
+ The lemma below reveals some properties of a kite with specified colors on its edges.
517
+ Lemma 5.6 (Cao, Chen and Shan [8]) Let G be a ∆-critical graph, H ⊆ G be a kite with
518
+ V (H) = {a, b, c, u, s1, s2, t1, t2}, and let ϕ ∈ C∆(G − ab). Suppose that both K = abus1t1
519
+ and K∗ = bacus2t2 are Kierstead paths with respect to ab and ϕ. If ϕ(s1t1) = ϕ(s2t2), then
520
+ | ¯ϕ(t1) ∩ ¯ϕ(t2) ∩ ( ¯ϕ(a) ∪ ¯ϕ(b))| ≤ 4.
521
+ Let G be a ∆-critical graph, ab ∈ E(G), and ϕ ∈ C∆(G−ab). A fork H (Figure 1 (c)) with
522
+ respect to ϕ is a graph with V (H) = {a, b, u, s1, s2, t1, t2} and E(H) = {ab, bu, us1, us2, s1t1, s2t2}
523
+ such that ϕ(bu) ∈ ¯ϕ(a), ϕ(us1), ϕ(us2) ∈ ¯ϕ(a) ∪ ¯ϕ(b), and ϕ(s1t1) ∈ ( ¯ϕ(a) ∪ ¯ϕ(b)) ∩ ¯ϕ(t2) and
524
+ ϕ(s2t2) ∈ ( ¯ϕ(a) ∪ ¯ϕ(b)) ∩ ¯ϕ(t1). Forks may not exist in a ∆-critical graph if the degree sum
525
+ of a, t1 and t2 is small.
526
+ Lemma 5.7 (Cao and Chen [6]) Let G be a ∆-critical graph, ab ∈ E(G), and {u, s1, s2, t1, t2} ⊆
527
+ V (G). If ∆ ≥ dG(a) + dG(t1) + dG(t2) + 1, then for any ϕ ∈ C∆(G − ab), G does not contain
528
+ a fork on {a, b, u, s1, s2, t1, t2} with respect to ϕ.
529
+ 5.1
530
+ Proof of Lemma 2.7
531
+ Lemma 2.7 Let G be a ∆-critical graph with ∆ ≥ 7. Then |N∆∼2(v)| ≤ 5 for every v ∈ V (G).
532
+ 10
533
+
534
+ Proof. Suppose to the contrary that there is a ∆-vertex v with |N∆∼2(v)| ≥ 6. By Lemma 2.4,
535
+ v has no 2-neighbors and by Lemma 2.1, each vertex z ∈ N∆∼2(v) has exactly one 2-neighbor.
536
+ Let N2(v) = N(N(v))\N[v]. Since |N∆∼2(v)| ≥ 6, there are at least three 2-vertices in N2(v).
537
+ Let x be a 2-vertex in N2(v) and y be a vertex in N(x) ∩ N(v). Clearly y ∈ N∆∼2(v). Let
538
+ ϕ ∈ C∆(G − xy). Then ¯ϕ(x) ∪ ¯ϕ(y) = C. We first point out one fact that will be used very
539
+ often.
540
+ Fact 1. Let t1, t2 be two 2-vertices in N2(v)\{x}, s1 ∈ N(v) ∩ N(t1) and s2 ∈ N(v) ∩ N(t2).
541
+ (a) If |N(x) ∩ N(v)| = 2 and ϕ(s1t1) = ϕ(s2t2), then ϕ(t1) ̸= ϕ(t2).
542
+ (b) If ϕ(s1t1) ̸= ϕ(s2t2), then either ϕ(s1t1) ∈ ϕ(t2) or ϕ(s2t2) ∈ ϕ(t1).
543
+ Proof. (a) Denote N(x) ∩ N(v) = {y, z}. Suppose to the contrary that ϕ(t1) = ϕ(t2). Then
544
+ | ¯ϕ(t1)∩ ¯ϕ(t2)| ≥ 5 since ∆ ≥ 7, and {x, y, z, v, s1, s2, t1, t2} form a kite with ϕ(s1t1) = ϕ(s2t2),
545
+ a contradiction to Lemma 5.6.
546
+ (b) Suppose to the contrary that ϕ(s1t1) ∈ ¯ϕ(t2) and ϕ(s2t2) ∈ ¯ϕ(t1). Then {x, y, v, s1, s2, t1, t2}
547
+ form a fork with ∆ ≥ 7 = d(x) + d(t1) + d(t2) + 1, a contradiction to Lemma 5.7.
548
+ We consider two cases in the following: there are three 2-vertices in N2(v), or there are at
549
+ least four 2-vertices in N2(v).
550
+ Case 1: There are exactly three 2-vertices in N2(v).
551
+ Let t1, t2 be the two 2-vertices in N2(v)\{x}. Since N∆∼2(v) ≥ 6, we have |N(ti)∩N(v)| =
552
+ 2 for each i = 1, 2 and |N(x) ∩ N(v)| = 2. Let N(ti) ∩ N(v) = {si, s′
553
+ i} for each i = 1, 2. By
554
+ the symmetry between si and s′
555
+ i, we may assume that ϕ(s1t1) ̸= ϕ(s2t2). By Fact 1(b), we
556
+ may assume ϕ(s′
557
+ 1t1) = ϕ(s2t2). Applying Fact 1(a) on s′
558
+ 1, t1, s2, t2, we have ϕ(t1) ̸= ϕ(t2).
559
+ Thus ϕ(s′
560
+ 2t2) ̸= ϕ(s1t1), ϕ(s′
561
+ 2t2) ̸∈ ϕ(t1) and ϕ(s1t1) /∈ ϕ(t2). This gives a contradiction to
562
+ Fact 1(b) on s1, t1, s′
563
+ 2, t2.
564
+ Case 2: There are at least four 2-vertices in N2(v).
565
+ Let t1, t2, t3 be three 2-vertices in N2(v)\{x}, si be a vertex in N(ti) ∩ N(v), and s′
566
+ i be
567
+ the other neighbor of ti for each i = 1, 2, 3.
568
+ Claim A. ϕ(siti) ̸= ϕ(sjtj) for any 1 ≤ i < j ≤ 3.
569
+ Proof. Prove by contradiction. Since ∆ ≥ 7 > d(t1)+d(t2)+d(t3), let η ∈ ¯ϕ(t1)∩ ¯ϕ(t2)∩ ¯ϕ(t3).
570
+ By symmetry, we only need to consider the following two cases: ϕ(s1t1) = ϕ(s2t2) = ϕ(s3t3) =
571
+ α, or ϕ(s1t1) = ϕ(s2t2) = α and ϕ(s3t3) = β ̸= α.
572
+ Suppose that ϕ(s1t1) = ϕ(s2t2) = ϕ(s3t3) = α. Then by symmetry, we may assume that
573
+ Pt1(α, η, ϕ) does not pass through t2, t3. Let ϕ′ = ϕ/Pt1(α, η, ϕ). Then s1, t1, s2, t2 give a
574
+ contradiction to Fact 1(b) under ϕ′.
575
+ Suppose that ϕ(s1t1) = ϕ(s2t2) = α and ϕ(s3t3) = β ̸= α. If Pt1(α, η, ϕ) does not end
576
+ at t2, let ϕ′ = ϕ/Pt1(α, η, ϕ).
577
+ Then s1, t1, s2, t2 give a contradiction to Fact 1 (b) under
578
+ ϕ′.
579
+ Thus Pt1(α, η, ϕ) ends at t2, so Pt3(α, η, ϕ) does not pass through t1, t2.
580
+ Let ϕ1 =
581
+ ϕ/Pt3(α, η, ϕ). Now α ∈ ¯ϕ1(t3). Then by Fact 1(b), we have ϕ1(t1) = ϕ1(t2) = {α, β}. Let
582
+ η′ ∈ ¯ϕ1(t1) ∩ ¯ϕ1(t2) ∩ ¯ϕ(t3). By symmetry, we may assume that Pt3(β, η′, ϕ1) does not pass
583
+ 11
584
+
585
+ through t1. Let ϕ2 = ϕ1/Pt3(β, η′, ϕ1). Then s1, t1, s3, t3 give a contradiction to Fact 1(b)
586
+ under ϕ2. This proves Claim A.
587
+ Let ϕ(s1t1) = α, ϕ(s2t2) = β, ϕ(s3t3) = γ.
588
+ Claim B. {ϕ(s′
589
+ 1t1), ϕ(s′
590
+ 2t2), ϕ(s′
591
+ 3t3)} = {ϕ(s1t1), ϕ(s2t2), ϕ(s3t3)}.
592
+ Proof. By Claim A, α, β, γ are distinct. Suppose that ϕ(t1) = {α, η} where η /∈ {β, γ}. By
593
+ Fact 1(b), we have ϕ(t2) = {β, α} and ϕ(t3) = {γ, α}. Then s2, t2, s3, t3 give a contradiction
594
+ to Fact 1(b). Thus by symmetry, we may assume that ϕ(t1) = {α, β}. Now by applying Fact
595
+ 1(b) on s1, t1, s3, t3, we have ϕ(t3) = {α, γ}; By applying Fact 1(b) on s2, t2, s3, t3, we have
596
+ ϕ(t2) = {β, γ}. This proves Claim B.
597
+ The final step. Without loss of generality, assume ϕ(t1) = {α, β}. Since |N∆∼2| ≥ 6, let
598
+ s4 ∈ N∆∼2\{s1, s2, s3} and t4 be the 2-neighbor of s4. If t4 ∈ {t1, t2, t3}, then by symmetry,
599
+ we may assume that t4 = t1.
600
+ Then ϕ(s4t1) = β and s4, t1, s3, t3 give a contradiction to
601
+ Fact 1(b). If t4 ̸∈ {t1, t2, t3}, then by Claim A, ϕ(s4t4) ̸= ϕ(siti) for each i = 1, 2, 3. Thus
602
+ {s1, s2, s4, t1, t2, t4} does not satisfy Claim B. This completes the proof of Case 2 and thus of
603
+ Lemma 2.7.
604
+ 5.2
605
+ Proof of Lemma 2.8
606
+ Lemma 2.8 Let G be a ∆-critical graph and xyrst be a path with d(x) + d(y) = ∆ + 2 and
607
+ max{d(x), d(y)} < ∆. Then d(t) ≥ ∆ − 2.
608
+ Proof. Let ϕ ∈ C∆(G − xy). Since d(x) + d(y) = ∆ + 2, we have ¯ϕ(x) ∪ ¯ϕ(y) = C. Let
609
+ ϕ(yr) = α, ϕ(rs) = β, ϕ(st) = γ. Then α ∈ ¯ϕ(x) and β, γ ∈ ¯ϕ(x) ∪ ¯ϕ(y). Since d(x) < ∆ and
610
+ d(y) < ∆, we have | ¯ϕ(x)| ≥ 2 and | ¯ϕ(y)| ≥ 2. Suppose to the contrary that d(t) ≤ ∆ − 3.
611
+ Then | ¯ϕ(t)| ≥ 3.
612
+ Claim A. There is a coloring in C∆(G − xy) such that yr and st are colored differently, i.e.,
613
+ we may assume α ̸= γ.
614
+ Proof. Suppose to the contrary that α = γ. Since d(t) ≤ ∆ − 3, let η ∈ ¯ϕ(t) \ {α, β}.
615
+ If η ∈ ¯ϕ(y), then Px(α, η, ϕ) = Py(α, η, ϕ) by Lemma 5.1 and thus is disjoint from
616
+ Pt(α, η, ϕ). Let ϕ1 = ϕ/Pt(α, η, ϕ). Then ϕ1(yr) ̸= ϕ1(st), as desired.
617
+ Suppose η ∈ ¯ϕ(x). Since | ¯ϕ(y)| ≥ 2, let δ ∈ ¯ϕ(y) \ {β}. Clearly δ ̸∈ {ϕ(yr), ϕ(rs), ϕ(st)}.
618
+ Let ϕ1 = ϕ/Px(δ, η, ϕ) and we are back to the case when η ∈ ¯ϕ(y). This proves Claim A.
619
+ From now on, we assume that α ̸= γ in the following proof.
620
+ Claim B. We may further assume that α, β ∈ ¯ϕ(t).
621
+ Proof. We consider two cases: β ∈ ¯ϕ(t) and β /∈ ¯ϕ(t).
622
+ Case B.1: β ∈ ¯ϕ(t).
623
+ We may assume α ∈ ϕ(t) otherwise we are done. Let η ∈ ¯ϕ(t) \ {α, β}. Clearly η ̸= γ
624
+ since ϕ(st) = γ.
625
+ If η ∈ ¯ϕ(y), let ϕ1 = ϕ/Pt(α, η, ϕ). Then we have α, β ∈ ¯ϕ1(t), as desired.
626
+ 12
627
+
628
+ If η ∈ ¯ϕ(x), let δ ∈ ¯ϕ(y) \ {β}. By Lemma 5.1, regardless of whether δ = γ or not,
629
+ Px(δ, η, ϕ) does not contain yr, rs or st since η ∈ ¯ϕ(t). Let ϕ1 = ϕ/Px(δ, η, ϕ) and we are
630
+ back to the case when η ∈ ¯ϕ(y). This completes the proof of Case B.1.
631
+ Case B.2: β /∈ ¯ϕ(t).
632
+ Case B.2.1: α ∈ ¯ϕ(t).
633
+ If β ∈ ¯ϕ(y), then by Lemma 5.1, Px(α, β, ϕ) is disjoint from Pt(α, β, ϕ). Thus Pt(α, β, ϕ)
634
+ does not contain yr or rs. Let ϕ1 = ϕ/Pt(α, β, ϕ). Then β ∈ ¯ϕ1(t) and we are back to Case
635
+ B.1.
636
+ Now assume β ∈ ¯ϕ(x). If there is a color δ ∈ ¯ϕ(y) ∩ ¯ϕ(t), let ϕ1 = ϕ. Otherwise, let δ ∈
637
+ ¯ϕ(y) and η ∈ ¯ϕ(t)\{α}. Then Pt(η, δ, ϕ) does not pass through x or y. Let ϕ1 = ϕ/Pt(η, δ, ϕ).
638
+ Then δ ∈ ¯ϕ1(y) ∩ ¯ϕ1(t) and β ∈ ¯ϕ1(x). Note that Px(δ, β, ϕ1) and Pt(δ, β, ϕ1) are disjoint. If
639
+ Pt(δ, β, ϕ1) does not contain rs, let φ2 = ϕ1/Pt(δ, β, ϕ1) and then ϕ2 is a desired coloring. If
640
+ Px(δ, β, ϕ1) does not contain rs, let φ2 = ϕ1/Px(δ, β, ϕ1). Then β ∈ ¯ϕ2(y) and we are back to
641
+ the case when β ∈ ¯ϕ(y). This proves Case B.2.1.
642
+ Case B.2.2: α /∈ ¯ϕ(t).
643
+ If there is a color δ ∈ ¯ϕ(y) ∩ ¯ϕ(t), let ϕ1 = ϕ/Pt(α, δ, ϕ). Then α ∈ ¯ϕ1(t) and we are
644
+ back to Case B.2.1.
645
+ Suppose ¯ϕ(y)∩ ¯ϕ(t) = ∅. Let η ∈ ¯ϕ(t) and δ ∈ ¯ϕ(y)\{β}. Then δ ∈ ϕ(t). By Lemma 5.1,
646
+ regardless of whether δ = γ or not, Px(δ, η, ϕ) does not contain yr, rs or st since η ∈ ¯ϕ(t). Let
647
+ ϕ1 = ϕ/Px(δ, η, ϕ), we are back to the case when ¯ϕ(y) ∩ ¯ϕ(t) ̸= ∅. This completes the proof
648
+ of Case B.2 and thus the proof of Claim B.
649
+ By Claim B, we assume that α, β ∈ ¯ϕ(t) in the following proof.
650
+ Claim C. We may further assume that β, γ ∈ ¯ϕ(y).
651
+ Proof. We consider two cases: β ∈ ¯ϕ(y) and β /∈ ¯ϕ(y).
652
+ Case C.1: β ∈ ¯ϕ(y).
653
+ We may assume γ ∈ ϕ(y) otherwise we are done. Let η ∈ ¯ϕ(t) \ {α, β}.
654
+ Similar to the argument in Case B.2, we may assume that there is a color δ ∈ ¯ϕ(y) ∩ ¯ϕ(t)
655
+ and δ ̸= β. Then Pt(δ, γ, ϕ) and Px(δ, γ, ϕ) are disjoint. Let ϕ1 = ϕ/Px(δ, γ, ϕ). Then we
656
+ have β, γ ∈ ¯ϕ1(y), as desired. This completes the proof of Case C.1.
657
+ Case C.2: β /∈ ¯ϕ(y).
658
+ If γ ∈ ¯ϕ(y), then Pt(γ, β, ϕ) and Px(γ, β, ϕ) are disjoint by Lemma 5.1. Note that rs and
659
+ st are contained in Pt(γ, β, ϕ). Let ϕ1 = ϕ/Px(γ, β, ϕ). Then β ∈ ¯ϕ1(y) and we are back to
660
+ Case C.1.
661
+ Suppose γ ∈ ¯ϕ(x). Similar to the argument in Case B.2, we can assume that there is a
662
+ color δ ∈ ¯ϕ(y) ∩ ¯ϕ(t). Then δ ̸∈ {α, β}. Thus Px(η, γ, ϕ) is disjoint from Pt(η, γ, ϕ), so it
663
+ does not contain st since η ∈ ¯ϕ(t). Let ϕ1 = ϕ/Px(η, γ, ϕ) and we are back to the case when
664
+ γ ∈ ¯ϕ(y). This completes the proof of Case C.2, and thus Claim C holds.
665
+ Now by Claims A, B and C, we assume that ϕ ∈ C∆(G − xy) satisfies the following
666
+ properties:
667
+ 13
668
+
669
+ • ϕ(yr) = α, ϕ(rs) = β, ϕ(st) = γ,
670
+ • α ̸= γ,
671
+ • α, β ∈ ¯ϕ(t) and β, γ ∈ ¯ϕ(y).
672
+ Let ϕ1 = ϕ/Pt(α, γ, ϕ). Under the coloring ϕ1, Py(β, α, ϕ1) = yrst ends at t but not x, a
673
+ contradiction to Lemma 5.1. This completes the proof of Lemma 2.8.
674
+ 5.3
675
+ Proof of Lemma 2.9
676
+ Lemma 2.9 Let G be a ∆-critical graph and xyrst be a path with d(x) = 3 and d(y) = ∆.
677
+ Suppose that y has a neighbor z ̸∈ {x, r, s} with d(z) ≤ ∆ − 2. Then d(s) ≥ ∆ − 1; and
678
+ d(z) + d(t) ≥ ∆ + 1 if d(t) ≤ ∆ − 4.
679
+ Proof. Let ϕ be a coloring in C∆(G − xy). Since d(z) ≤ ∆ − 2, d(x) = 3 and d(y) = ∆,
680
+ we have |ϕ(x) ∩ ϕ(y)| = 1. By Lemma 5.2, without loss of generality, assume ϕ(x) = {1, 2},
681
+ ϕ(yz) = 2, ϕ(yr) = 3. Denote ϕ(rs) = β and ϕ(st) = γ. Note that ¯ϕ(y) = {1}.
682
+ (1) We first show d(s) ≥ ∆ − 1.
683
+ Suppose to the contrary d(s) ≤ ∆ − 2.
684
+ We first consider the case when ϕ(rs) = β ̸= 2 = ϕ(yz). Then K = xyrs is a Kierstead
685
+ path. By Lemma 5.3, | ¯ϕ(s) ∩ ( ¯ϕ(x) ∪ ¯ϕ(y)| ≤ 1. Thus d(s) ≥ 2∆ − (d(x) + d(y) + 1 = ∆ − 2.
686
+ Since d(s) ≤ ∆ − 2, we have d(s) = ∆ − 2. Note that d(s) = ∆ − 2 only if 2 ∈ ¯ϕ(s) and
687
+ | ¯ϕ(s) ∩ ( ¯ϕ(x) ∪ ¯ϕ(y))| = 1. Denote ¯ϕ(s) = {2, α}.
688
+ If ¯ϕ(z) \ {α, β} ̸= ∅, then η ∈ ¯ϕ(z) \ {α, β}. By Lemma 5.2, Pz(η, 2, ϕ) ends at x or y
689
+ and thus it does not pass through s. Let ϕ1 = ϕ/Pz(η, 2, ϕ). Then xyrs remains a Kierstead
690
+ path with respect to ϕ1 and xy. However, ¯ϕ1(s) = {2, α} ⊆ ¯ϕ(x) ∪ ¯ϕ(y), a contradiction to
691
+ Lemma 5.3. Therefore ¯ϕ(z) \ {α, β} = ∅. Since d(z) ≤ ∆ − 2, we have ¯ϕ(z) = {α, β}.
692
+ If β ̸= 1, then we may assume α = 1. Otherwise both Pz(1, α, ϕ) and Ps(1, α, ϕ) are disjoint
693
+ from Px(1, α, ϕ). Let ϕ2 = ϕ/(Pz(1, α, ϕ) ∪ Ps(1, α, ϕ)). Then 1 is missing at both z and s
694
+ and 3, β ∈ ¯ϕ1(x) ∪ ¯ϕ1(y). Since 1 ∈ ¯ϕ(z) ∩ ¯ϕ(s), both Pz(1, 3, ϕ) and Ps(1, 3, ϕ) are disjoint
695
+ from Px(1, 3, ϕ) and thus neither passes through x, y. Let ϕ2 = ϕ/(Pz(1, 3, ϕ) ∪ Ps(1, 3, ϕ)).
696
+ Then 3 ∈ ¯ϕ2(z) ∩ ¯ϕ2(s) and 2 ∈ ϕ2(x) ∩ ϕ2(y). By Lemma 5.2, Pz(2, β, ϕ2) ends at either x or
697
+ y and thus is disjoint from Ps(2, β, ϕ2). Let ϕ3 = ϕ2/Ps(2, β, ϕ2). Then Pz(2, β, ϕ3) = zyrs
698
+ which does not end at x or y, a contradiction to Lemma 5.2.
699
+ Now assume β = 1. Then ¯ϕ(z) = {1, α} and thus Ps(1, α, ϕ) does not pass through x, y, z.
700
+ Interchange colors on Ps(1, α, ϕ) and we are back to the case when β ̸= 1. Therefore this
701
+ completes the proof when β ̸= ϕ(yz).
702
+ Now we consider the case when β = ϕ(yz) = 2. Let η be a color in ¯ϕ(z). Clearly η ̸= 2.
703
+ If η = 1, then by recoloring yz with 1, we are back to the case when β ̸= ϕ(yz).
704
+ Thus
705
+ η ∈ ¯ϕ(x). Then Px(η, 1, ϕ) = Py(η, 1, ϕ). Thus by interchanging η and 1 on Px(η, 1, ϕ) and
706
+ then recoloring yz with η, we are back to the case when β ̸= ϕ(yz). This completes the proof
707
+ that d(s) ≥ ∆ − 1.
708
+ (2) Now we assume d(t) ≤ ∆ − 4 and show d(z) + d(t) ≥ ∆ + 1.
709
+ 14
710
+
711
+ Suppose to the contrary that d(z) + d(t) ≤ ∆.
712
+ Claim A. There is a coloring in C∆(G − xy) such that yr and st receive distinct colors,
713
+ i.e., we may assume that γ ̸= 3.
714
+ Proof. Suppose to the contrary that γ = 3. Let η ∈ ¯ϕ(t) \ {2, 3, β}. Then η ∈ ¯ϕ(x) ∩ ¯ϕ(y).
715
+ If η = 1, then Px(3, η, ϕ) = Py(3, η, ϕ) by Lemma 5.1, so Pt(3, η, ϕ) is disjoint from
716
+ Px(3, η, ϕ). Let ϕ1 = ϕ/Pt(3, η, ϕ). We have that ϕ1(yr) ̸= ϕ1(st) now.
717
+ If η ̸= 1, then Pt(1, η, ϕ) does not contain x or y. Let ϕ1 = ϕ/Pt(1, η, ϕ) and we are back
718
+ to the previous case. This proves Claim A.
719
+ From now on, we assume that ϕ(yr) ̸= ϕ(st) (i.e. γ ̸= 3) in the following proof.
720
+ Claim B. We may further assume that 3, β ∈ ¯ϕ(t).
721
+ Proof. We split the proof into two cases: β ∈ ¯ϕ(t) and β /∈ ¯ϕ(t).
722
+ Case B.1: ϕ(rs) = β ∈ ¯ϕ(t).
723
+ Case B.1.1: β ̸∈ ¯ϕ(y). Then β ̸= 1.
724
+ If 1 ∈ ¯ϕ(t), then Pt(1, 3, ϕ) is disjoint from Px(1, 3, ϕ) = Py(1, 3, ϕ) and yr, rs ̸∈
725
+ Pt(1, 3, ϕ). Let ϕ1 = ϕ/Pt(1, 3, ϕ). Then ϕ1(yr) = 3, ϕ1(rs) = β, ϕ1(st) = γ and 3, β ∈ ¯ϕ1(t),
726
+ as desired.
727
+ Now assume 1 ̸∈ ¯ϕ(t). Since d(t) ≤ ∆ − 4, let η ∈ ¯ϕ(t) \ {2, 3, β}. Then η ∈ ¯ϕ(x).
728
+ Thus Pt(1, η, ϕ) does not pass through x or y and does not contain yr, rs, or st. Let ϕ1 =
729
+ ϕ/Pt(1, η, ϕ) and we are back to the case when 1 ∈ ¯ϕ(t).
730
+ Case B.1.2: β ∈ ¯ϕ(y). Then β = 1.
731
+ If γ ̸= 2, then γ ∈ ¯ϕ(x).
732
+ Thus, Pt(1, γ, ϕ) is disjoint from Px(1, γ, ϕ).
733
+ Let ϕ1 =
734
+ ϕ/Pt(1, γ, ϕ). Then ϕ1(rs) = γ ∈ ¯ϕ1(x) ∩ ¯ϕ1(t) and γ ̸= 1. We are back to Case B.1.1.
735
+ Now assume ϕ(st) = γ = 2. Since d(z) + d(t) ≤ ∆ and 2 ∈ ϕ(z) ∩ ϕ(t), there is a color
736
+ η ∈ ¯ϕ(z) ∩ ¯ϕ(t). Since η ̸= γ, we have η ∈ ¯ϕ(x) ∪ ¯ϕ(y).
737
+ If η ̸= 1, by Lemma 5.2, Pz(2, η, ϕ) ends at x. Thus Pt(2, η, ϕ) does not pass through x or
738
+ y and does not contain the edge rs. Let ϕ1 = ϕ/Pt(2, η, ϕ). Then ϕ1(st) = η ∈ ¯ϕ1(x) ∪ ¯ϕ1(y)
739
+ and we are back to the previous case
740
+ If η = 1, then Pz(1, 2, ϕ) = yz. Let ϕ1 = ϕ/Pz(1, 2, ϕ) and we are back to Case B.1.1.
741
+ This completes the proof of Case B.1.
742
+ Case B.2: ϕ(rs) = β /∈ ¯ϕ(t).
743
+ Case B.2.1: ϕ(yr) = 3 ∈ ¯ϕ(t).
744
+ Case B.2.1.1: β ∈ ¯ϕ(y). That is β = 1.
745
+ Then Px(3, β, ϕ) ends at y by Lemma 5.1 and it contains both yr and rs.
746
+ Thus
747
+ Px(3, β, ϕ) and Pt(3, β, ϕ) are disjoint. Let ϕ1 = ϕ/Pt(3, β, ϕ). Then β ∈ ¯ϕ1(t) and we are
748
+ back to Case B.1.
749
+ Case B.2.1.2: β = ϕ(yz) = 2.
750
+ If 1 ∈ ¯ϕ(z), recolor yz with 1. We are back to Case B.2.1.1.
751
+ Assume 1 ̸∈ ¯ϕ(z). Since d(z) ≤ ∆ − 2 and 2 ∈ ϕ(z), let η ∈ ¯ϕ(z)\{3}. Clearly η ̸= 1, 2
752
+ and η ∈ ¯ϕ(x). Then Pz(1, η, ϕ) does not pass through x or y and does not contain the edge
753
+ 15
754
+
755
+ rs. Let ϕ1 = ϕ/Pz(1, η, ϕ). Then 1 ∈ ¯ϕ1(z) and we are back to the previous case.
756
+ Case B.2.1.3: β ∈ ¯ϕ(x).
757
+ We may further assume 1 ∈ ¯ϕ(t). Otherwise, since d(t) ≤ ∆ − 4, let η ∈ ¯ϕ(t) \ {2, 3}.
758
+ Then η ̸∈ {1, 2, 3, β}, and Px(1, η, ϕ) and Pt(1, η, ϕ) are disjoint. Let ϕ1 = ϕ/Pt(1, η, ϕ). Then
759
+ 1 ∈ ¯ϕ1(t).
760
+ Note Px(β, 1, ϕ1) and Pt(β, 1, ϕ1) are disjoint. If Px(β, 1, ϕ1) does not contain the edge
761
+ rs, let ϕ2 = ϕ1/Px(β, 1, ϕ1) and we are back to Case B.2.1.1. If Pt(β, 1, ϕ1) does not contain
762
+ the edge rs, let ϕ2 = ϕ1/Pt(β, 1, ϕ1) and we are back to Case B.1. This completes the proof
763
+ of Case B.2.1.
764
+ Case B.2.2: 3 /∈ ¯ϕ(t).
765
+ Since d(t) ≤ ∆ − 4, let η ∈ ¯ϕ(t) \ {2, 3, β}.
766
+ If η = 1, then Px(3, 1, ϕ) and Pt(3, 1, ϕ) are disjoint. Let ϕ1 = ϕ/Pt(1, 3, ϕ). Then
767
+ ϕ1(yr) = 3 ∈ ¯ϕ1(t) and we are back to Case B.2.1.
768
+ Therefore η ̸= 1. If β ̸= 1, then Px(1, η, ϕ) does not contain yr, rs or st since η ∈ ¯ϕ(t).
769
+ Let ϕ1 = ϕ/Px(1, η, ϕ) and we are back to the case when η = 1.
770
+ If β = 1, then Px(η, 1, ϕ) and Pt(η, 1, ϕ) are disjoint. If Px(η, 1, ϕ) does not pass through
771
+ rs, let ϕ1 = ϕ/Px(η, 1, ϕ). Then η is missing at y1 now and we are back to the case when
772
+ η = 1. If Pt(η, 1, ϕ) does not contain rs, let ϕ1 = ϕ/Pt(η, 1, ϕ). Then β ∈ ¯ϕ1(t) and we are
773
+ back to Case B.1. This completes the proof of Case B.2, and so Claim B holds.
774
+ By Claims A and B, we assume that ϕ satisfies the following properties:
775
+ • ϕ(yr) = 3 ∈ ¯ϕ(t), ϕ(rs) = β ∈ ¯ϕ(t).
776
+ • ϕ(st) = γ ̸= 3
777
+ Claim C. We may further assume β = ϕ(yz) = 2.
778
+ Proof. Suppose to the contrary β ̸= 2.
779
+ Case C.1: γ ̸= ϕ(yz) (i.e. γ ̸= 2).
780
+ Case C.1.1: 1 ∈ {γ, β}.
781
+ If β = 1, then Pt(γ, 1, ϕ) does not pass through x or y. Let ϕ1 = ϕ/Pt(γ, 1, ϕ). Then
782
+ ϕ1(st) = 1. Thus we assume γ = 1.
783
+ If β ∈ ¯ϕ(z), let ϕ1 = ϕ/Px(β, 1, ϕ) and then recolor yz with β. Then ϕ1 is a desired
784
+ coloring.
785
+ If 3 ∈ ¯ϕ(z), let ϕ1 = ϕ/Px(β, 1, ϕ) and ϕ2 = ϕ1/Pz(3, β, ϕ1). Notice that the second
786
+ Kempe exchange will not effect yr or rs since they are on Px(3, β, ϕ1) = Py(3, β, ϕ1) by
787
+ Lemma 5.1. Thus we obtain a desired coloring by recoloring yz with β under ϕ2.
788
+ Now we assume 3, β ̸∈ ¯ϕ(z).
789
+ If ¯ϕ(z) ∩ ¯ϕ(t) ̸= ∅, let η ∈ ¯ϕ(z) ∩ ¯ϕ(t).
790
+ Then η ̸∈ {1, 2, 3, β} and η ∈ ¯ϕ(x).
791
+ Note
792
+ that Px(1, η, ϕ) = Py(1, η, ϕ) does not contain st since η ∈ ¯ϕ(t). Let ϕ1 = ϕ/Px(1, η, ϕ) and
793
+ then η ∈ ¯ϕ1(y). Let ϕ2 = ϕ1/Pz(η, 3, ϕ1) and then 3 ∈ ¯ϕ2(z). Note that Pz(η, 3, ϕ1) does
794
+ not contain yr or t since yr is on Px(η, 3, ϕ1) = Py(η, 3, ϕ1) and 3, η ∈ ¯ϕ1(t). Finally let
795
+ ϕ3 = ϕ2/Px(η, 1, ϕ2). We are back to the case when ϕ(yr) ∈ ¯ϕ(z).
796
+ 16
797
+
798
+ Now assume ¯ϕ(z)∩ ¯ϕ(t) = ∅. Since d(z)+d(t) ≤ ∆, ϕ(z) and ϕ(t) form a partition of C.
799
+ Consequently, we have 1 ∈ ¯ϕ(z) and 2 ∈ ¯ϕ(t). Since d(z) ≤ ∆ − 2, let η ∈ ¯ϕ(z) \ {1}. Clearly
800
+ η ∈ ¯ϕ(x) and η /∈ {1, 2, 3, β}. Let ϕ1 be the coloring obtained from ϕ by recoloring yz with 1.
801
+ Then 2 ∈ ¯ϕ1(y)∩ ¯ϕ1(z) and Px(2, η, ϕ1) = Py(2, η, ϕ1) by Lemma 5.1. Let ϕ2 = ϕ1/Px(2, η, ϕ1)
802
+ and ϕ3 be the coloring obtained from ϕ2 by recoloring yz with η. Now we have γ = 1 ∈ ¯ϕ3(y),
803
+ ϕ3(yz) = η ̸= β and 2 ∈ ¯ϕ3(z) ∩ ¯ϕ3(t). Thus we are back to the case when ¯ϕ(z) ∩ ¯ϕ(t) ̸= ∅.
804
+ This completes the proof of Case C.1.1.
805
+ Case C.1.2: 1 /∈ {γ, β}.
806
+ Since d(t) ≤ ∆ − 4, let η ∈ ¯ϕ(t)\{2, 3, β}. We may assume η = 1. Otherwise, η ∈ ¯ϕ(x)
807
+ since ¯ϕ(x) = C\{1, 2}. Thus by interchanging colors on Pt(1, η, ϕ), 1 is missing at t. Since
808
+ γ ∈ ¯ϕ(x), we have Px(γ, 1, ϕ) = Py(γ, 1, ϕ). Since 1 ∈ ¯ϕ(t), Px(γ, 1, ϕ) does not contain st.
809
+ Therefore, by interchanging γ and 1 on Px(γ, 1, ϕ), we are back to Case C.1.1. This completes
810
+ the proof of Case C.1.
811
+ Case C.2: γ = ϕ(yz) = 2.
812
+ In this case, ϕ(yz) = ϕ(st) = 2 ∈ ϕ(z) ∩ ϕ(t). If 1 ∈ ¯ϕ(z), recolor yz with 1. Then we are
813
+ back to Case C.1 if β ̸= 1. Otherwise, we have a desired coloring. Thus in the following we
814
+ assume 1 ∈ ϕ(z).
815
+ Case C.2.1: {3, β} ∩ ¯ϕ(z) ̸= ∅.
816
+ If β ∈ ¯ϕ(z), then by Lemma 5.2, Pz(2, β, ϕ) ends at x since β ∈ ¯ϕ(x) and it is disjoint
817
+ from Pt(2, β, ϕ). Thus ϕ1 = ϕ/Pz(2, β, ϕ) is a desired coloring.
818
+ Assume 3 ∈ ¯ϕ(z) and β ∈ ϕ(z).
819
+ If β = 1, then Py(1, 3, ϕ) contains the edges yr and rs and is disjoint from Pz(1, 3, ϕ).
820
+ Note that 1, β ∈ ¯ϕ(t). Let ϕ1 = ϕ/Pz(1, 3, ϕ) and we are back to the case when 1 ∈ ¯ϕ(z).
821
+ Assume β ̸= 1. Since d(z) ≤ ∆ − 2, let η ∈ ¯ϕ(z) \ {3}. Then η ̸∈ {1, 2, 3, β}. Thus
822
+ Pz(1, η, ϕ) does not contain the vertices x, y or the edges rs, st. Let ϕ1 = ϕ/Pz(1, η, ϕ) and
823
+ we are back to the case when 1 ∈ ¯ϕ(z). This completes the proof of Case C.2.1.
824
+ Case C.2.2: {3, β} ∩ ¯ϕ(z) = ∅.
825
+ Since 2 ∈ ϕ(z) ∩ ϕ(t) and d(z) + d(t) ≤ ∆, let η ∈ ¯ϕ(t) ∩ ¯ϕ(z). Then η ∈ ¯ϕ(x). If
826
+ β ̸= 1, by interchanging colors on Px(η, 1, ϕ) and then recoloring yz with η, we are back to
827
+ Case C.1. Suppose β = 1. Then Px(η, 1, ϕ) and Pz(η, 1, ϕ) are disjoint and either Px(η, 1, ϕ)
828
+ or Pz(η, 1, ϕ) does not contain rs. In the former case, by interchanging η and 1 on Px(η, 1, ϕ)
829
+ and then recoloring yz with η, we are back to Case C.1. In the later case by interchanging η
830
+ and 1 on Pz(η, 1, ϕ) and then recoloring yz with 1, we have a desired coloring. This completes
831
+ the proof of Case C.2.2, and so Claim C holds.
832
+ By Claim C, we further assume ϕ(yz) = ϕ(rs) = 2. Note that ϕ(x) ∩ ϕ(y) = {2} and
833
+ ¯ϕ(x) ∪ ¯ϕ(y) = C\{2}.
834
+ Claim D. We may further assume that ¯ϕ(y) ∩ ¯ϕ(z) ̸= ∅ and γ ∈ ¯ϕ(y) ∩ ¯ϕ(z).
835
+ That is
836
+ γ = 1 ∈ ¯ϕ(z).
837
+ Proof. We split the proof into the following cases.
838
+ 17
839
+
840
+ Case D.1: ϕ(yr) = 3 ∈ ¯ϕ(z).
841
+ Case D.1.1: γ = 1.
842
+ In this case Px(1, 3, ϕ) is disjoint from Pz(1, 3, ϕ). Let ϕ1 = ϕ/Pz(1, 3, ϕ). If Pz(1, 3, ϕ)
843
+ does not end at t, then ϕ1 is a desired coloring. If Pz(1, 3, ϕ) ends at t, let ϕ2 be the coloring
844
+ obtained from ϕ1 by recoloring yz with 1. In the coloring ϕ2, 2 is missing at y, 3 is missing
845
+ at x, and Py(3, 2, ϕ2) = yrst, a contradiction to Lemma 5.1. This proves Case D.1.1.
846
+ Case D.1.2: γ ̸= 1. Then γ ̸∈ {1, 2, 3} and γ ∈ ¯ϕ(x).
847
+ If 1 ∈ ¯ϕ(t), then Px(1, γ, ϕ) ends at y and thus does not contain the edge st. Thus by
848
+ interchanging 1 and γ on Px(1, γ, ϕ), we are back to Case D.1.1.
849
+ Assume 1 ̸∈ ¯ϕ(t). Since d(t) ≤ ∆ − 4, let η ∈ ¯ϕ(t)\{2, 3}. Then η ̸∈ {1, 2, 3, γ} and
850
+ η ∈ ¯ϕ(x). By interchanging the colors on Pt(η, 1, ϕ), we are back to the case when 1 ∈ ¯ϕ(t).
851
+ This proves Case D.1.
852
+ Case D.2: ϕ(yr) = 3 /∈ ¯ϕ(z).
853
+ Since d(z) + d(t) ≤ ∆, either ϕ(z) and ϕ(t) form a partition of C or there exists a color
854
+ η ∈ ¯ϕ(z) ∩ ¯ϕ(t).
855
+ Case D.2.1: There exists a color η ∈ ¯ϕ(z) ∩ ¯ϕ(t).
856
+ In this case we have η /∈ {2, 3, γ} and η ∈ ¯ϕ(x) ∪ ¯ϕ(y).
857
+ If η = 1, then Pz(1, 3, ϕ) does not pass through x, y or t since both α and η are missing
858
+ at t. We are back to Case D.1 by interchanging 1 and 3 on Pz(1, 3, ϕ).
859
+ If η ̸= 1, then η ∈ ¯ϕ(x) and Px(η, 1, ϕ) does not pass through t since η ∈ ¯ϕ(t) ∩ ¯ϕ(z).
860
+ Thus by interchanging η and 1 on Px(η, 1, ϕ), we are back to the case when η = 1. This
861
+ completes the proof of Case D.2.1.
862
+ Case D.2.2: ϕ(z) and ϕ(t) form a partition of C.
863
+ In this case γ ∈ ¯ϕ(z). If γ = 1, then ϕ is a desired coloring. Therefore we assume
864
+ γ ̸= 1.
865
+ Thus γ ∈ ¯ϕ(x).
866
+ Let η ∈ ¯ϕ(t)\{2, 3}.
867
+ By Lemma 5.1, Px(1, η, ϕ) does not pass
868
+ through z or t. Note that if 1 = η, then Px(1, η, ϕ) = x. Let ϕ1 = ϕ/Px(1, η, ϕ). Then
869
+ Px(η, γ, ϕ1) = Py(η, γ, ϕ1). Note that Px(η, γ, ϕ1) does not contain t since η ∈ ¯ϕ1(t). Let
870
+ ϕ2 = ϕ1/Px(η, γ, ϕ1). Then we have γ ∈ ¯ϕ2(y) ∩ ¯ϕ2(z) and thus ϕ1 is a desired coloring. This
871
+ completes the proof of Case D.2, and so Claim D holds.
872
+ In summary, by Claims A, B, C, and D, we assume that ϕ satisfies the following properties:
873
+ • ϕ(x) = {1, 2} and 1 ∈ ¯ϕ(y) ∩ ¯ϕ(z)
874
+ • ϕ(yr) = 3, ϕ(yz) = ϕ(rs) = 2, and ϕ(st) = 1
875
+ • 2, 3 ∈ ¯ϕ(t).
876
+ Note that Px(1, 3, ϕ) ends at y and is disjoint from Pt(1, 3, ϕ).
877
+ If Pt(1, 3, ϕ) does not
878
+ end at z, let ϕ1 be the coloring obtained from ϕ by interchanging colors on Pt(1, 3, ϕ) and
879
+ recoloring yz with 1. Then 3 ∈ ¯ϕ1(x), 2 ∈ ¯ϕ1(y) and Py(3, 2, ϕ1) = yrst not ending at x,
880
+ a contradiction to Lemma 5.1. Thus Pt(1, 3, ϕ) ends at z. Let ϕ2 = ϕ/Pt(1, 3, ϕ). Then
881
+ Pz(2, 3, ϕ2) = zyrst which does not end at x, a contradiction to Lemma 5.2. This completes
882
+ the proof of Lemma 2.9.
883
+ 18
884
+
885
+ 5.4
886
+ Proof of Lemma 2.11
887
+ Lemma 2.11 Let G be a ∆-critical graph and xy be an edge with d(x) + d(y) = ∆ + 3 and
888
+ max{d(x), d(y)} < ∆. Then x has d(x)−2 neighbors of degree ∆ having no (∆−2)−-neighbors
889
+ other than x, y.
890
+ Proof.
891
+ Let ϕ ∈ C∆(G − xy).
892
+ Since G is ∆-critical and d(x) + d(y) = ∆ + 3, we have
893
+ |ϕ(x) ∩ ϕ(y)| = 1.
894
+ Let δ be the color in ϕ(x) ∩ ϕ(y).
895
+ Then ¯ϕ(x) ∪ ¯ϕ(y) = C\{δ}.
896
+ By
897
+ Lemma 2.1, x has at least d(x) − 2 neighbors of degree ∆. Thus including y, x has at most
898
+ two neighbors of degree less than ∆. By Lemmas 5.3 and 5.2, we have the following fact which
899
+ will be applied frequently.
900
+ Fact 1. Let yxzt be a path with ϕ(xz) ∈ ¯ϕ(y).
901
+ (1) ¯ϕ(z) ⊆ {δ} and thus d(z) ≥ ∆ − 1. If δ ∈ ¯ϕ(z), then for any color η ∈ ϕ(z) \ {ϕ(xz)},
902
+ Pz(δ, η, ϕ) ends at x or y.
903
+ (2) If yxzt is a Kierstead path, then ¯ϕ(t) ⊆ {δ} and thus d(t) ≥ ∆ − 1.
904
+ We consider two cases in the following according to the number of ∆-neighbors of x.
905
+ Case 1. x has a neighbor z0 ̸= y with d(z0) < ∆.
906
+ It is sufficient to show that for any path yxzt with z ̸= z0, we have d(t) ≥ ∆ − 1.
907
+ Suppose to the contrary that there is a path yxzt such that z ̸= z0 but d(t) ≤ ∆ − 2. We
908
+ consider two cases according to ϕ(xz0) = δ or not.
909
+ Case 1.1: α = ϕ(xz0) ̸= δ.
910
+ By Fact 1(1), ¯ϕ(z0) = {δ}.
911
+ First assume ϕ(xz) ∈ ¯ϕ(y). Then by Fact 1(2), ϕ(zt) = δ otherwise yxzt is a Kierstead
912
+ path. Since d(t) ≤ ∆ − 2 and δ ∈ ϕ(t), let η ∈ ¯ϕ(t) \ {α}. By Fact 1(1), Pz0(δ, η, ϕ) ends at
913
+ x or y and thus is disjoint from Pt(δ, η, ϕ). Let ϕ1 = ϕ/Pt(δ, η, ϕ). Then yxzt is a Kierstead
914
+ path in ϕ1 and thus d(t) ≥ ∆ − 1 by Fact 1(2), a contradiction.
915
+ Now assume ϕ(xz) = δ. Denote β = ϕ(zt). Then β ∈ ¯ϕ(x) ∪ ¯ϕ(y). We may assume
916
+ that β ∈ ¯ϕ(x). Otherwise if there is a color η ∈ ¯ϕ(t) ∩ ¯ϕ(x), interchange colors on the path
917
+ Pt(η, β, ϕ) which does not contain x or y. If no such η exists, let η ∈ ¯ϕ(x) and γ ∈ ¯ϕ(t) \ {δ}.
918
+ Let ϕ1 = ϕ/Pt(η, γ, ϕ) and then let ϕ2 = ϕ1/Pt(η, β, ϕ1).
919
+ By Fact 1(1), Pz0(δ, β, ϕ) ends at x and thus contains xzt. This implies δ ∈ ϕ(t). Thus
920
+ | ¯ϕ(t) ∩ ( ¯ϕ(x) ∪ ¯ϕ(y))| ≥ 2 since d(t) ≤ ∆ − 2. Let η ∈ ¯ϕ(t) \ {α}. By Fact 1(1) again,
921
+ Pz0(δ, η, ϕ) ends at x or y and thus is disjoint from Pt(δ, η, ϕ). Let ϕ1 = ϕ/Pt(δ, η, ϕ). Then
922
+ in ϕ1, Px(δ, β, ϕ1) = xzt which is disjoint from Pz0(δ, β, ϕ1), a contradiction to Fact 1(1). This
923
+ completes the proof of Case 1.1.
924
+ Case 1.2: ϕ(xz0) = δ.
925
+ Then ϕ(xz) ∈ ¯ϕ(y). Since d(t) ≤ ∆−2, by Fact 1(2), ϕ(zt) = δ. Let η ∈ ¯ϕ(z0). Similar to
926
+ the argument in Case 1.1, we assume η ∈ ¯ϕ(x). Recolor xz0 with η. Then yxzt is a Kierstead
927
+ path. By Fact 1(2), d(t) ≥ ∆ − 1, a contradiction. This completes the proof of Case 1.
928
+ Case 2. All vertices in N(x)\{y} are ∆-vertices.
929
+ 19
930
+
931
+ Since | ¯ϕ(y)∩ϕ(x)| = d(x)−2, we are done if d(t) ≥ ∆−1 for every path yxzt with ϕ(xz) ∈
932
+ ¯ϕ(y). Thus assume that there is a path yxz0t0 such that ϕ(xz0) ∈ ¯ϕ(y) and d(t) ≤ ∆ − 2.
933
+ By Fact 1(2), ϕ(z0t0) = δ. Denote α = ϕ(xz0). Then α ∈ ¯ϕ(y). With a similar argument as
934
+ before, we may assume α ∈ ¯ϕ(t0) and there is a color η ∈ ¯ϕ(t0) ∩ ¯ϕ(x). Then η ̸= α. Now it
935
+ is sufficient to show that for any path yxzt with z ̸= z0, we have d(t) ≥ ∆ − 1. We consider
936
+ the following two cases.
937
+ Case 2.1. ϕ(xz) = β ∈ ¯ϕ(y).
938
+ Then by Fact 1(2), ϕ(zt) = δ, so t ̸= t0. Since d(t) ≤ ∆ − 2, there is a color η1 ∈ ¯ϕ(t).
939
+ Then η1 ∈ ¯ϕ(x) ∪ ¯ϕ(y). Similarly we may assume η, η1 ∈ ¯ϕ(x). Note that d(t) ≤ ∆ − 2 and
940
+ d(t0) ≤ ∆ − 2. Thus η ̸= η1 since otherwise both Pt0(δ, η, ϕ) and Pt(δ, η, ϕ) end at x by Fact
941
+ 1(2), a contradiction.
942
+ Now let ϕ1 be the coloring obtained from ϕ by coloring xy with α, leaving xz0 uncolored
943
+ and recoloring z0t0 with α.
944
+ Then Px(η1, δ, ϕ1) = Pz0(η1, δ, ϕ1) by Lemma 5.1.
945
+ Let ϕ2 =
946
+ ϕ1/Pt(η1, δ, ϕ1). Then ϕ2(zt) = η1 ∈ ¯ϕ2(x). Note that the last Kempe exchange may affect
947
+ the colors of the edges incident to t0, so δ may not be missing at t0 under ϕ2. But we still
948
+ have η ∈ ¯ϕ2(x) ∩ ¯ϕ2(t0). If δ ∈ ϕ2(t0), let ϕ3 = ϕ2/Pt0(η, δ, ϕ2). Otherwise let ϕ3 = ϕ2. Then
949
+ we have δ ∈ ¯ϕ3(z0)∩ ¯ϕ3(t0). Finally let ϕ4 be the coloring obtained from ϕ3 by recoloring z0t0
950
+ with δ, coloring xz0 with α and leaving xy uncolored. Then yxzt is a Kierstead path under
951
+ ϕ4. However d(t) ≤ ∆ − 2, a contradiction to Fact 1(2).
952
+ Case 2.2 ϕ(xz) = δ.
953
+ Denote ϕ(zt) = β. With similar arguments as before we may assume that there is a color
954
+ η′ ∈ ¯ϕ(t) ∩ ¯ϕ(x). We may then assume that β ∈ ¯ϕ(x) since otherwise we can interchange β
955
+ and η′ on Px(β, η′, ϕ) to get a desired coloring.
956
+ Since d(t) ≤ ∆−2, let η1 ∈ ¯ϕ(t)\{α}. We then show that we may assume η1 ∈ ¯ϕ(x)∪{δ}.
957
+ Suppose otherwise η1 ∈ ¯ϕ(y)\{α}. Since d(x) ≤ ∆ − 1, we have | ¯ϕ(x)| ≥ 2. Let α′ be a color
958
+ in ¯ϕ(x)\{ϕ(zt)}. By interchanging η1 and α′ on Px(η1, α′, ϕ), we obtain a coloring as desired.
959
+ Let ϕ1 be the coloring obtained from ϕ by coloring xy with α, leaving xz0 uncolored and
960
+ recoloring z0t0 with α. Then under ϕ1, z0xzt is a Kierstead path with η1 ∈ ( ¯ϕ1(x) ∪ ¯ϕ1(z0)) ∩
961
+ ¯ϕ1(t), a contradiction to Lemma 5.3. This completes the proof of the lemma.
962
+ 5.5
963
+ Proof of Lemma 2.12
964
+ Lemma 2.12 Let G be a 7-critical graph and x be a 5-vertex.
965
+ (1) if x has three 6-neighbors, then each 7-neighbor of x has exactly one 5−-neighbor.
966
+ (2) if x has two 6-neighbors, then x has two 7-neighbors, each of which has at most two
967
+ 5−-neighbors.
968
+ (3) if x has exactly four 7-neighbors, then x has two 7-neighbors, each of which has at most
969
+ three 5−-neighbors.
970
+ Proof. If x has a 5-neighbor, then by Lemma 2.1, x has at least three 7-neighbors and thus
971
+ has at most one 6-neighbor. To show the lemma in this case, we only need to consider the case
972
+ 20
973
+
974
+ when x has four 7-neighbors and one 5-neighbor which is (3), and it follows from Lemma 2.11.
975
+ In the rest of the proof, we assume that x has no 5-neighbors. By the assumption of the
976
+ lemma, x has a 6-neighbor. Let y be a 6-neighbor of x, ϕ ∈ C∆(G − xy). Without loss of
977
+ generality we assume that ¯ϕ(y) = {1, 2}, ¯ϕ(x) = {3, 4, 5}, and ϕ(x) ∩ ϕ(y) = {6, 7}. By
978
+ Lemma 2.1, x has at least two 7-neighbors.
979
+ (1) Denote the two 6-vertices in N(x)\{y} by z1, z2, the two 7-vertices in N(x) by v1, v2. We
980
+ need to show that for any path yxvt with v ∈ {v1, v2}, d(t) ≤ 5. We consider three cases.
981
+ Case 1.1 x, y, z1, z2 form the vertex set of a multi-fan with respect to xy and ϕ.
982
+ In this case, by Lemma 5.1, we have ¯ϕ(z1) ∪ ¯ϕ(z2) = {6, 7}.
983
+ Assume without loss of
984
+ generality that ¯ϕ(z1) = {6} and ¯ϕ(z2) = {7}. Then for each α ∈ ¯ϕ(x)∪ ¯ϕ(y), both Pz1(6, α, ϕ)
985
+ and Pz2(7, α, ϕ) end at x if α ∈ ¯ϕ(x).
986
+ Let yxvt be a path where d(v) = 7. Let η be a color in ¯ϕ(t) and β = ϕ(vt). We may
987
+ assume that η ∈ ¯ϕ(x) since otherwise η ∈ {1, 2, 6, 7}, and we can interchange η and 3 on
988
+ Pt(η, 3, ϕ), which doesn’t pass through x or y by Lemma 5.1, to obtain a desired coloring.
989
+ Thus we assume η ∈ ¯ϕ(x).
990
+ We may further assume that β = ϕ(v1t) ∈ ¯ϕ(x). Otherwise β ∈ {1, 2, 6, 7}. Note that
991
+ Pt(β, η, ϕ) does not end at x or y. Let α ∈ ¯ϕ(x) \ {η}. Interchange η and ϕ(vt) = β on
992
+ Pt(β, η, ϕ) first and then interchange β, α on the (β, α)-chain starting at t.
993
+ We obtain a
994
+ desired coloring. Thus we assume that β ∈ ¯ϕ(x).
995
+ Now let ϕ1 = ϕ/Pt(η, ϕ(xv), ϕ). Then ϕ(xv) ∈ ¯ϕ1(t) and Px(ϕ(xv), ϕ(vt), ϕ1) = xvt does
996
+ not end at y, z1, or z2, a contradiction to Lemma 5.1. This completes the proof of Case 1.1.
997
+ Case 1.2 x, y, z1, z2 do not form the vertex set of a multi-fan with respect to xy and ϕ,
998
+ and |{ϕ(xz1), ϕ(xz2)} ∩ {1, 2}| = 1.
999
+ By symmetry, assume that ϕ(xz1) = 1, ¯ϕ(z1) = {6}, ϕ(xz2) = 7, ϕ(xv1) = 2, and
1000
+ ϕ(xv2) = 6. Then for each color η ∈ {2, 3, 4, 5}, Pz1(η, 6, ϕ) ends at x or y depending on
1001
+ whether η ∈ ¯ϕ(x) or η ∈ ¯ϕ(y) by Lemma 5.1. Similar to the argument in Case 1.1, we may
1002
+ further assume 3 ∈ ¯ϕ(z2).
1003
+ Let yxvt be a path where d(v) = 7. Then ϕ(xv) ∈ {2, 6}. We first assume ϕ(xv) = 2.
1004
+ If ϕ(vt) ∈ ¯ϕ(x) ∪ ¯ϕ(y), then yxvt is a Kierstead path with d(x) < ∆. Thus ¯ϕ(t1) = {6, 7}
1005
+ by Lemma 5.3. Let η be a color in ¯ϕ(x) \ {ϕ(vt)}. Then by Lemma 5.4, Pt(η, 6, ϕ) ends at x.
1006
+ However, by Lemma 5.1, Pz1(η, 6, ϕ) ends at x, a contradiction.
1007
+ If ϕ(vt) = 7, recolor xz2 with 3 and we are back to the case when ϕ(vt) ∈ ¯ϕ(x) ∪ ¯ϕ(y).
1008
+ If ϕ(vt) = 6, let η ∈ ¯ϕ(t) ∩ ( ¯ϕ(x) ∪ ¯ϕ(y)). We may assume η ∈ ¯ϕ(x) since otherwise we
1009
+ can pick a color β ∈ ¯ϕ(x) and interchange colors on Pt(η, β, ϕ). Since Pz1(η, 6, ϕ) ends at x,
1010
+ Pt(η, 6, ϕ) and Pz1(η, 6, ϕ) are disjoint. Interchange colors on Pt(η, 6, ϕ) and we are back to
1011
+ the case when ϕ(vt) ∈ ¯ϕ(x) ∪ ¯ϕ(y) again.
1012
+ Now we assume ϕ(xv) = 6. Denote ϕ(vt) = β. If β = 7, then recolor the edge xz2 with 3
1013
+ and then 7 is missing at x. Thus we may assume β ∈ ¯ϕ(x) ∪ ¯ϕ(y).
1014
+ If ϕ(vt) = β ∈ ¯ϕ(x), then Px(6, β, ϕ) ends at z1 and thus 6 ∈ ϕ(t). Since d(t) ≤ 5, let
1015
+ 21
1016
+
1017
+ α ∈ ¯ϕ(t) ∩ ( ¯ϕ(x) ∪ ¯ϕ(y)). Similarly as before we may further assume that α ∈ ¯ϕ(x). Note
1018
+ that Pz1(α, 6, ϕ) and Pt(α, 6, ϕ) are disjoint. Let ϕ1 = ϕ/Pt(α, 6, ϕ). Then 6 is missing at t
1019
+ and thus Px(6, β, ϕ1) = xvt does not end at z1, a contradiction.
1020
+ Suppose ϕ(vt) = β ∈ ¯ϕ(y). Let α′ be a color in ¯ϕ(t)\{7}. Then similarly, we can assume
1021
+ that α′ ∈ ¯ϕ(x). By interchanging α′ and β on Pt(α′, β, ϕ), we are back to the case when
1022
+ ϕ(vt) ∈ ¯ϕ(x). This completes the proof of Case 1.2.
1023
+ Case 1.3 {ϕ(xz1), ϕ(xz2)} = {6, 7}.
1024
+ Let yxvt be a path where d(v) = 7.
1025
+ Without loss of generality, assume ϕ(xz1) = 6,
1026
+ ϕ(xz2) = 7, and ϕ(xv) = 1. Denote ϕ(vt) = β.
1027
+ We first assume β ∈ ¯ϕ(x) ∪ ¯ϕ(y). Then yxvt is a Kierstead path with d(x) < ∆. Thus
1028
+ ¯ϕ(t) = {6, 7} by Lemma 5.3. Let α be a color in ¯ϕ(x)\{β} and η be a color in ¯ϕ(z1). Note
1029
+ that Px(α, 7, ϕ) ends at t by Lemma 5.4. Thus we may assume that η ∈ ¯ϕ(x) since otherwise
1030
+ η ∈ {1, 2, 7} and we can interchange η, α on Pz1(η, α, ϕ). So we assume η ∈ ¯ϕ(x). We then
1031
+ claim that we may further assume that η ∈ ¯ϕ(x)\{ϕ(vt)}. Otherwise η = ϕ(vt) ∈ ¯ϕ(x).
1032
+ Interchange η, 1 on Pz1(η, 1, ϕ) first and then interchange 1, α on the (1, α)-chain starting
1033
+ at z1.
1034
+ Thus we assume that η ∈ ¯ϕ(x)\{ϕ(vt)}.
1035
+ Now Px(η, 6, ϕ) ends at z1 but not t, a
1036
+ contradiction to Lemma 5.4.
1037
+ Now we further assume β ∈ {6, 7}. Without loss of generality assume ϕ(vt) = 6. Let
1038
+ η′ ∈ ¯ϕ(t)\{7}. With a similar argument as before, we assume η′ ∈ ¯ϕ(x). Let η1 be the color
1039
+ missing at z1 and η2 be the color missing at z2.
1040
+ We first claim η1 = 7. Since otherwise, we have η1 ∈ {1, 2, 3, 4, 5} and by interchanging
1041
+ η1, 3 on Pz1(η1, 3, ϕ) if necessary, we may assume that η1 ∈ ¯ϕ(x). Then by recoloring xz1 with
1042
+ η1, we are back to the case when ϕ(vt) ∈ ¯ϕ(x) ∪ ¯ϕ(y).
1043
+ We then claim η2 = 6.
1044
+ Since otherwise, η2 ∈ {1, 2, 3, 4, 5} and by interchanging η2, 3
1045
+ on Pz2(η2, 3, ϕ) if necessary, we may assume that η2 ∈ ¯ϕ(x).
1046
+ By recoloring xz2 with η2
1047
+ and then recoloring xz1 with 7, we are back to the case when ϕ(vt) ∈ ¯ϕ(x) ∪ ¯ϕ(y). Thus
1048
+ η2 = 6. Note that the above argument also implies that Pz2(6, η′, ϕ) ends at x, since otherwise
1049
+ by interchanging 6, η′ on this path, we are back to the case when η2 ̸= 6. Now let ϕ1 =
1050
+ ϕ/Pt(η′, 6, ϕ), we have ϕ1(vt) = η′ ∈ ¯ϕ1(x), and thus we are back to the case when ϕ(vt) ∈
1051
+ ¯ϕ(x) ∪ ¯ϕ(y). This completes the proof of (1).
1052
+
1053
+ (2) Since x has no 5−-neighbors, by (1) x has two 6-neighbors and three 7-neighbors. Denote
1054
+ by v1, v2, v3 the three 7-vertices and z the 6-neighbor of x distinct from y. Then ϕ(xz) ∈ {1, 2}
1055
+ or ϕ(xz) ∈ {6, 7}.
1056
+ Case 2.1 ϕ(xz) ∈ {1, 2}.
1057
+ In this case, x, y, z form the vertex set of a multi-fan with respect to xy and ϕ.
1058
+ By
1059
+ Lemma 5.1, we have ¯ϕ(z) ∈ {6, 7}.
1060
+ Assume without loss of generality that ϕ(xz) = 1,
1061
+ ¯ϕ(z) = {6}, ϕ(xv1) = 2 and ϕ(xv2) = 6. Note that if each of v1 and v2 has at most two
1062
+ 5−-neighbors, then we are done. Thus we consider the following two cases.
1063
+ If v1 has three 5−-neighbors, then there exists t1 ∈ N(v1)\{x} such that d(t1) ≤ 5 and
1064
+ 22
1065
+
1066
+ ϕ(v1t1) ̸= 7. Let η1 be a color in ¯ϕ(t1)\{7}. With similar arguments as before we may assume
1067
+ that η1 ∈ ¯ϕ(x) and ϕ(v1t1) ∈ ¯ϕ(x). Now yxv1t1 is a Kierstead path with respect to xy and
1068
+ ϕ. But η1 ∈ ¯ϕ(x) ∩ ¯ϕ(t1), a contradiction to Lemma 5.3.
1069
+ If v2 has three 5−-neighbors, then there exists t2 ∈ N(v2)\{x} such that d(t1) ≤ 5 and
1070
+ ϕ(v2t2) ̸= 7. Let η2 be a color in ¯ϕ(t2)\{7}. Similar to the argument before, we may assume
1071
+ that η2 and ϕ(v2t2) are in ¯ϕ(x). Let ϕ′ = ϕ/Pt2(η2, 6, ϕ). Then we have 6 ∈ ¯ϕ′(t2). Thus
1072
+ Px(6, ϕ′(v2t2), ϕ′) = xv2t2 does not end at z, a contradiction to Lemma 5.1. This completes
1073
+ the proof of Case 2.1.
1074
+ Case 2.2 ϕ(xz) ∈ {6, 7}.
1075
+ In this case, we may assume without loss of generality that ϕ(xz) = 6, ϕ(xv1) = 1 and
1076
+ ϕ(xv2) = 2. Note that if each of v1 and v2 has at most two 5−-neighbors, then we are done.
1077
+ Thus by the symmetry, assume that v1 has three 5−-neighbors. Then there exist two vertices
1078
+ t, t′ ∈ N(v1)\{x} such that d(t) ≤ 5 and d(t′) ≤ 5.
1079
+ Claim 1 {ϕ(v1t), ϕ(v1t′)} = {6, 7}.
1080
+ Otherwise, without loss of generality, assume ϕ(v1t) ∈ ¯ϕ(x) ∪ ¯ϕ(y). Then y, x, v1, t form
1081
+ the vertex set of a Kierstead path with d(x) < ∆. Thus ¯ϕ(t) = {6, 7} by Lemma 5.3. Let
1082
+ α be a color in ¯ϕ(x)\{ϕ(v1t)} and η be the color in ¯ϕ(z). Note that Px(α, 7, ϕ) ends at t
1083
+ by Lemma 5.4. Thus we may assume that η ∈ ¯ϕ(x) since otherwise η ∈ {1, 2, 7} and we
1084
+ can interchange η, α on Pz1(η, α, ϕ). Furthermore, we may assume that η ∈ ¯ϕ(x)\{ϕ(v1t)}.
1085
+ Otherwise η = ϕ(v1t) ∈ ¯ϕ(x), and we can interchange η, 1 on Pz(η, 1, ϕ) first and then
1086
+ interchange 1, α on the (1, α)-chain starting at z. Now the (6, η)-chain starting at x ends at
1087
+ z but not t, a contradiction to Lemma 5.4. Therefore {ϕ(v1t), ϕ(v1t′)} = {6, 7} and without
1088
+ loss of generality, we assume that ϕ(v1t) = 6 and ϕ(v1t′) = 7. This completes the proof of
1089
+ Claim 1.
1090
+ Claim 2 ¯ϕ1(z) ̸= {7}.
1091
+ Let η be the color missing at z. . Otherwise η ∈ ¯ϕ(x) ∪ ¯ϕ(y). We may assume that
1092
+ η ∈ ¯ϕ(x) since otherwise we can interchange η and 3 on Pz(η, 3, ϕ) to get the desired coloring.
1093
+ Now by recoloring xz with η, we have {ϕ(v1t), ϕ(v1t′)} ̸= {6, 7}, a contradiction to Claim 1.
1094
+ Thus ¯ϕ(z) = {7}.
1095
+ Now let η′ be a color in ¯ϕ(t′)\{6}. Similarly as before, we may assume that η′ ∈ ¯ϕ(x). If
1096
+ Pt′(η′, 7, ϕ) does not end at x, let ϕ1 = ϕ/Pt′(η′, 7, ϕ). Then we have {ϕ1(v1t), ϕ2(v1t′)} ̸=
1097
+ {6, 7}, a contradiction to Claim 1. If Pt′(η′, 7, ϕ) ends at x, let ϕ1 = ϕ/Pz(η′, 7, ϕ). Then we
1098
+ have ¯ϕ1(z) ̸= {7}, a contradiction to Claim 2. This completes the proof of (2).
1099
+
1100
+ (3) Since y is the only 6-neighbor of x and |ϕ(x) ∩ ϕ(y)| = 2, there are two 7-neighbors of x,
1101
+ say v1, v2, such that {ϕ(xv1), ϕ(xv2)} ⊆ ¯ϕ(y). It is sufficient to show that each v1 and v2 has
1102
+ at most three 5−-neighbors.
1103
+ Suppose to the contrary that v1 has three 5���-neighbors other than x, say t1, t2, t3. Since
1104
+ | ¯ϕ(x)| = 3, | ¯ϕ(y)| ≥ 2 and | ¯ϕ(ti)| ≥ 2 for each i = 1, 2, 3, by Lemma 5.5, at most one
1105
+ of ϕ(v1t1), ϕ(v1t2), ϕ(v1t3) is in ¯ϕ(x) ∪ ¯ϕ(y). Without loss of generality, assume ϕ(v1t1) ∈
1106
+ 23
1107
+
1108
+ ¯ϕ(x)∪ ¯ϕ(y). Then {ϕ(v1t2), ϕ(v1t3)} = {6, 7}. By Lemma 5.3, we have ¯ϕ(t1) = ϕ(x)∩ϕ(y) =
1109
+ {6, 7}. Thus {y, x, v1, t1, t2, t3} is the vertex set of a ϕ-broom. But {y, x, v1, t1, t2, t3} is not
1110
+ elementary, a contradiction to Lemma 5.5. This completes the proof of (3) and thus completes
1111
+ the proof of the lemma.
1112
+ References
1113
+ [1] L.W. Beineke, S. Fiorini, On small graphs critical with respect to edge-colourings, Dis-
1114
+ crete Math., 16(1976), 109-121.
1115
+ [2] D. Bokal, G. Brinkmann and S. Gr¨unewald, Chromatic-Index-Critical Graphs of Orders
1116
+ 13 and 14, Discrete Math., 300(2005), 16-29.
1117
+ [3] G. Brinkmann and E. Steffen, 3- and 4- critical graphs of small even order, Discrete
1118
+ Math., 169 (1997), 193-197.
1119
+ [4] G. Brinkmann and E. Steffen, Chromatic-index-critical graphs of orders 11 and 12, Europ.
1120
+ J. Combinatorics, 19(1998), 889-900.
1121
+ [5] Y. Cao and G. Chen, On the average degree of edge chromatic critical graphs, J. Combin.
1122
+ Theory Ser. B., 147 (2021), 299-338.
1123
+ [6] Y. Cao and G. Chen, On the average degree of edge chromatic critical graphs II, J.
1124
+ Combin. Theory Ser. B., 145 (2020), 470-486.
1125
+ [7] Y. Cao, G. Chen, G. Jing, M. Stiebitz and B. Toft, Graph Edge Coloring: A Survey,
1126
+ Graph Theory and Combinatorics, 35 (2019), 33-66.
1127
+ [8] Y. Cao,
1128
+ G. Chen and S. Shan,
1129
+ ∆-critical graphs with a vertex of degree 2,
1130
+ arXiv:2005.12909
1131
+ [9] A. G. Chetwynd and H. P. Yap, Chromatic index critical graphs of order 9, Discrete
1132
+ Math., 47(1983), 23-33.
1133
+ [10] S. Fiorini and R.J. Wilson, Edge colorings of graphs, Pitman, San Francisco (1977).
1134
+ [11] K. Horacek, R. Luo, Z. Miao, and Y. Zhao, Finding ∆(Σ) for a surface Σ of characteristic
1135
+ −6 and −7, Graph Theory and Combinatorics, 33 (2017) 929-944.
1136
+ [12] I.T. Jakobsen, On critical graphs with chromatic index 4, Discrete Math., 9(1974), 265-
1137
+ 276.
1138
+ [13] K. Kayathri, On the size of edge-chromatic critical graphs, Graph Theory and Combina-
1139
+ torics, 10 (1994) 139-144.
1140
+ [14] R. Luo, L.Y. Miao and Y. Zhao, The size of edge chromatic critical graphs with maximum
1141
+ degree 6, J. Graph Theory, 60 (2009) 149-171.
1142
+ [15] R. Luo and Y. Zhao, Finding ∆(Σ) for a surface Σ of characteristic χ(Σ) = −5, J. Graph
1143
+ Theory, 68 (2011) 148-168.
1144
+ [16] R. Luo, Z.K. Miao and Y. Zhao, Finding ∆(Σ) for a surface Σ of characteristic χ(Σ) = −4,
1145
+ J. Graph Theory, 83 (2016) 277-302.
1146
+ [17] D. Sanders and Y. Zhao, Planar graphs of maximum degree seven are class I, J. Combin.
1147
+ Theory Ser. B., 83 (2001) 201-212.
1148
+ 24
1149
+
1150
+ [18] D. Sanders and Y. Zhao, Coloring edges of graphs embedded in a surface of characteristic
1151
+ zero, J. Combin. Theory Ser. B., 87 (2003) 254-263.
1152
+ [19] M. Stiebitz, D. Scheide, B. Toft, L. Favrholdt, Graph Edge Coloring: Vizing’s Theorem
1153
+ and Goldberg’s Conjecture, Vol. 75, Wiley, 2012.
1154
+ [20] V.G. Vizing, Critical graphs with a given chromatic class (Russian), Diskret. Analiz. 5
1155
+ (1965) 9-17.
1156
+ [21] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968)
1157
+ 117-134, Russian Math. Surveys 23 (1968) 125-142.
1158
+ [22] D.R. Woodall, The average degree of an edge-chromatic critical graph II, J. Graph Theory,
1159
+ 42 (2007) 194-218.
1160
+ [23] L. Zhang, Every planar graph with maximum degree 7 is of class 1, Graph Theory and
1161
+ Combinatorics, 16 (2000) 467-495.
1162
+ 25
1163
+
2dA0T4oBgHgl3EQfM_90/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dAzT4oBgHgl3EQf8_7Q/content/2301.01914v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7c36873e358805ffc52243d102b4197d8e01285a1b927c5d197135947a9e5c2
3
+ size 342440
2dAzT4oBgHgl3EQf8_7Q/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:731aca278e2db6f8485a42634bace68c4cffb870d1e60c224cebe79ecae07f0b
3
+ size 1376301
2dAzT4oBgHgl3EQf8_7Q/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef5c1f54ca9216eff31b78b712e737f856902f50b40d647b08efd928db9f56b0
3
+ size 56640
2tE1T4oBgHgl3EQfAALp/content/tmp_files/2301.02835v1.pdf.txt ADDED
@@ -0,0 +1,1500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Dark matter freeze-in via a light thermal fermion
2
+ mediator
3
+ Shao-Ping Lia
4
+ aInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
5
+ E-mail: [email protected]
6
+ Abstract: The connection between a hidden nonthermal sector and a thermal plasma
7
+ can be established by a light fermion mediator, which was once thermalized in the early
8
+ universe. When the mediator is much lighter than the lowest scale in the hidden sector,
9
+ both the kinematically forbidden decay and the scattering can coexist to produce the
10
+ hidden species at the same order of coupling constants. This work serves to present a
11
+ dedicated investigation into the freeze-in dark matter production via a thermalized fermion
12
+ mediator, taking into account consistently the forbidden decay and scattering channels. We
13
+ demonstrate that the plasma-induced decay rate generically differs from that calculated
14
+ via the tree-level amplitude, but the former can be simply estimated from the latter with
15
+ constant rescaling. While the contribution to the dark matter relic density is dominated by
16
+ the scattering channel, the portion from the forbidden decay can reach 40% in the weak-
17
+ coupling regime and hence cannot be ignored for a precise prediction of the relic density.
18
+ This work also provides a simple method to estimate the relative effect of the scattering
19
+ and the forbidden decay.
20
+ arXiv:2301.02835v1 [hep-ph] 7 Jan 2023
21
+
22
+ Contents
23
+ 1
24
+ Introduction
25
+ 1
26
+ 2
27
+ The simplified scenario
28
+ 3
29
+ 3
30
+ Forbidden decay
31
+ 4
32
+ 3.1
33
+ Boltzmann equation
34
+ 4
35
+ 3.2
36
+ Spectral density of the fermion mediator
37
+ 5
38
+ 3.3
39
+ Collision rate
40
+ 7
41
+ 3.3.1
42
+ One-loop retarded amplitude
43
+ 7
44
+ 3.3.2
45
+ Tree-level amplitude
46
+ 9
47
+ 4
48
+ Scattering
49
+ 11
50
+ 4.1
51
+ Double counting and resonant enhancement
52
+ 11
53
+ 4.2
54
+ Tree-level scattering amplitude without thermal correction
55
+ 12
56
+ 5
57
+ DM relic density
58
+ 14
59
+ 6
60
+ Realistic scenarios and possible signals
61
+ 16
62
+ 7
63
+ Conclusions
64
+ 18
65
+ A Thermal one-loop amplitudes
66
+ 19
67
+ A.1 The DM part
68
+ 19
69
+ A.2 The fermion mediator part
70
+ 19
71
+ 1
72
+ Introduction
73
+ A hidden nonthermal species can be created in the early universe from the thermal plasma
74
+ via a light mediator [1]. If the hidden sector consists of feebly interacting dark matter (DM),
75
+ the direct DM detection could be very challenging. However, a light mediator connecting
76
+ the DM with the standard model (SM) can provide an indirect avenue to test the feeble
77
+ DM scenarios if the connection between the mediator and the SM is relatively strong.
78
+ The phenomenology of DM production from a light mediator is fruitful, e.g., the mil-
79
+ licharged DM production from a vector mediator [2–5] and the sterile neutrino DM pro-
80
+ duction via a scalar mediator [6–10]. There are also many interesting DM scenarios via a
81
+ fermion mediator. A typical example is that the sterile neutrino itself can be the mediator
82
+ to connect a stable dark sector with the SM particles [11–21].
83
+ In general, the DM production in the early universe depends on the relative mass of
84
+ the mediator and the dark sector. For a light mediator, however, when the mediator has
85
+ – 1 –
86
+
87
+ a vacuum mass larger than the dark sector, the mediator decay plays the dominant role
88
+ in generating the DM relic density, while the scattering effect is usually subdominant or
89
+ negligible due to the suppression of higher-order weak couplings and additional phase-space
90
+ factors. If the mediator is much lighter than the dark sector, the decay channel is kine-
91
+ matically forbidden in vacuum and the scattering/annihilation from the thermal particles
92
+ takes over. In the light regime, however, when the mediator has a strong connection with
93
+ the SM particles, the mediator reaches thermal equilibrium and acquires non-negligible
94
+ corrections from the SM plasma. The thermal corrections modify the dispersion relation
95
+ of the mediator, resulting in temperature-dependent mass effects.
96
+ If the mediator is heavier than the dark sector, such a temperature-dependent mass ef-
97
+ fect is expected to give a subdominant correction to the zero-temperature decay rate. How-
98
+ ever, when the mediator is much lighter than the dark sector, the temperature-dependent
99
+ mass enables a purely plasma-induced decay which is kinematically forbidden in vacuum.
100
+ In this case, it is found that the rates from the scattering/annihilation of thermal parti-
101
+ cles and the forbidden mediator decay are at the same order of coupling constants [22].
102
+ Therefore, a consistent treatment from both scattering and the forbidden decay channels
103
+ is needed to obtain a precise DM relic density.
104
+ In the freeze-in paradigm [6, 7, 23–25] of nonthermal DM production, the contribution
105
+ of the forbidden decay channel was considered by several studies [4, 10, 22, 26]. For the
106
+ scalar mediator, the spectral density that encapsulates the thermal corrections at finite
107
+ temperatures is usually a scalar function [27] in the Hard-Thermal-Loop approximation [28–
108
+ 32].
109
+ For fermion mediators, however, the spectral density is more involved due to the
110
+ helicity structure [33–35]. In computing the forbidden decay rate, the nontrivial helicity
111
+ structure can cause significant difference between the vacuum tree-level amplitude and the
112
+ thermal one-loop amplitude, as previously noticed in the applications to leptogenesis [36].
113
+ The work aims to provide a dedicated study of freeze-in DM production via a thermal
114
+ fermion mediator, where the mediator decay to DM is kinematically forbidden at zero
115
+ temperature.
116
+ We concentrate on the determination of the DM relic density from the
117
+ forbidden decay and the scattering. We calculate the forbidden decay rates from a thermal
118
+ one-loop amplitude and a vacuum tree-level amplitude, respectively, and find that the rate
119
+ can be simply obtained from the latter with some constant rescaling. The comparison
120
+ between the forbidden decay and the scattering shows a rather simple dependence on the
121
+ thermal coupling constant, which enables us to include the plasma-induced decay in the
122
+ scattering channel in an efficient way. This work complements the studies of nonthermal
123
+ DM production through a light fermion mediator and provides a simple and comprehensive
124
+ method to treat the forbidden decay for a wide range of fermion mediator scenarios.
125
+ The remainder of this paper is outlined as follows. In Sec. 2, we present a simplified but
126
+ general scenario to illustrate the freeze-in DM production via a light and thermal fermion
127
+ mediator. Within the simplified scenario, we calculate the forbidden decay rate in Sec. 3
128
+ and make a comparison with the rate derived from the vacuum tree-level amplitude. In
129
+ Sec. 4, we first point out some subtleties concerning the double-counting issue and the
130
+ s-channel resonant enhancement, and then evaluate the scattering rate without thermal
131
+ corrections. In Sec. 5, we determine the DM relic density from the forbidden decay and
132
+ – 2 –
133
+
134
+ scattering channels respectively. More realistic scenarios based on Sec. 2 with potential
135
+ observations will be discussed in Sec. 6. Conclusions are made in Sec. 7 and some technical
136
+ details are relegated to the appendix.
137
+ 2
138
+ The simplified scenario
139
+ We first consider a simplified scenario in which the nonthermal dark sector consists of a
140
+ Dirac fermion χ and a scalar φ.
141
+ The connection between the dark sector and a Dirac
142
+ fermion mediator ψ is realized by the following Yukawa interaction:
143
+ LDM = yχ ¯ψRχLφ + h.c.
144
+ (2.1)
145
+ To ensure a thermal history of ψ, we consider a typical Yukawa interaction between the
146
+ mediator and the thermal plasma, i.e.,
147
+ Lψ = yψ ¯ψRηLϕ + h.c. ,
148
+ (2.2)
149
+ where both the fermion η and the scalar ϕ live in the thermal plasma. For clarity, we
150
+ assume that the fermion mediator is right-handed in (2.1), but it should be mentioned that
151
+ a left-handed fermion mediator is also possible. In Sec. 6, we shall discuss some realistic
152
+ models for both right- and left-handed fermion mediators.
153
+ Note that the fermion mediator can also have gauge interactions, e.g.,
154
+ Vµ ¯ψRγµψR ,
155
+ (2.3)
156
+ with Vµ a U(1) gauge boson.
157
+ Nevertheless, when the mediator is thermalized via the
158
+ gauge interaction, gauge invariance requires that either χ or φ should be also charged
159
+ under the gauge U(1) symmetry. In this case, either χ or φ will reach thermal equilibrium
160
+ in the early universe, which can lead to significant difference from the situation where
161
+ both χ and φ are far from equilibrium. For instance, when φ is in thermal equilibrium,
162
+ the decay φ → χ + ψ and the scattering φ + ψ → χ + Vµ can dominate the production
163
+ of χ, both of which are suppressed instead when φ is far from equilibrium. Besides, the
164
+ Landau-Pomeranchuk-Migdal effect induced by soft vector boson exchange would also be of
165
+ leading-order contribution [37] and should be taken into account consistently. Throughout
166
+ this work, we will consider for simplicity a dark sector consisting of nonthermal χ and φ,
167
+ leaving a thermal χ or φ for future studies.
168
+ We will consider the situation where all the relevant thermal particles, i.e., ψ, η, and ϕ
169
+ have vacuum masses much lighter than the dark sector, which is readily applicable to super-
170
+ heavy DM [38, 39]. In this light regime, the freeze-in temperature of the DM is determined
171
+ by the highest scale in the dark sector. Besides, the nonrelativistic annihilation of ψ, η, and
172
+ ϕ to the dark sector is kinematically forbidden. Consequently, the DM relic density would
173
+ basically be independent of the vacuum masses of the thermal particles. In the following
174
+ discussions, we assume mχ < mφ for clarity. In this mass regime, either χ can be the only
175
+ – 3 –
176
+
177
+ χ
178
+ χ
179
+ ψ
180
+ ϕ
181
+ +
182
+ +
183
+ ϕ
184
+ ψ
185
+ χ
186
+ χ
187
+
188
+
189
+ Σχ
190
+ −+
191
+ Σχ
192
+ +−
193
+ Figure 1. The one-loop self-energy diagrams of χ that contribute to the imaginary part of the
194
+ retarded amplitude ImΣχ
195
+ R in the forbidden decay. Here ± in the vertices denote the thermal indices
196
+ in the doubled space of real-time formalism and the red blod denotes the resummed ψ propagator
197
+ at finite temperatures.
198
+ DM candidate or both χ and φ contribute to the observed DM relic density, though the
199
+ later case is ruled out if mφ ≫ 1 GeV.
200
+ 3
201
+ Forbidden decay
202
+ 3.1
203
+ Boltzmann equation
204
+ The decay process ψ → χ + φ is kinematically forbidden in vacuum but opened at finite
205
+ temperatures.
206
+ The forbidden decay rate that determines the density evolution in the
207
+ dark sector can be calculated in the finite-temperature field theory [32]. Concerning the
208
+ production of χ, the Boltzmann equation can be written as
209
+ ∂nχ
210
+ ∂t + 3Hnχ =
211
+
212
+ d3pχ
213
+ (2π)3 (feq
214
+ χ − fχ)Γχ ,
215
+ (3.1)
216
+ where feq
217
+ χ (Eχ) = (eEχ/T + 1)−1 is the Fermi-Dirac distribution function of χ and H ≈
218
+ 1.66√gρT 2/MPl is the Hubble parameter with the effective number of relativistic degrees
219
+ of freedom gρ for energy density and the Planck mass MPl ≈ 1.22 × 1019 GeV.
220
+ The production rate Γχ at finite temperatures is related to the one-loop retarded self-
221
+ energy of χ via [40]
222
+ Γχ(P) = −gχ
223
+ Tr[(/P + mχ)ImΣχ
224
+ R(P)]
225
+ 2Ep
226
+ ,
227
+ (3.2)
228
+ with Pµ = (Ep, ⃗p) the 4-momentum of χ and ImΣχ
229
+ R the imaginary part of the one-loop
230
+ retarded amplitude. It should be mentioned that the factor of 2 in the denominator of
231
+ Eq. (3.2) results from the spin sum and average over the Dirac spinor χ. Therefore, the
232
+ collision rate in the Boltzmann Eq. (3.1) should be further multiplied by the spin degrees of
233
+ freedom gχ = 2 [41] so as to obtain a collision term without spin average. For a nonthermal
234
+ DM in the freeze-in paradigm, we expect fχ ≪ feq
235
+ χ
236
+ so that fχ can be neglected in the
237
+ determination of the DM relic density. In the end, the relic density should be multiplied
238
+ by a factor of 2 to take into account the antiparticle (¯χ) contribution.
239
+ In the real-time formalism, the imaginary part of the retarded amplitude Σχ
240
+ R can be
241
+ – 4 –
242
+
243
+ computed from the one-loop self-energy diagrams shown in Fig. 1, with
244
+ ImΣχ
245
+ R(P) = i
246
+ 2
247
+
248
+ Σχ
249
+ +−(P) − Σχ
250
+ −+(P)
251
+
252
+ .
253
+ (3.3)
254
+ Using the expressions of Σχ
255
+ +−, Σχ
256
+ −+ from Appendix A.1, we obtain
257
+ ImΣχ
258
+ R(P) =
259
+ y2
260
+ χ
261
+ 2(2π)2
262
+
263
+ d4Ksign(k0 − p0)fψ(k0)δ[(K − P)2 − m2
264
+ φ]ρψ(K) ,
265
+ (3.4)
266
+ where sign(k0 − p0) denotes the sign function and fψ(k0) = (ek0/T + 1)−1. In the above
267
+ equation, we have neglected the scalar distribution function fφ since φ is sparse during
268
+ the freeze-in production.
269
+ ρψ(K) is the spectral density that encapsulates the thermal
270
+ corrections to ψ, as we shall derive below.
271
+ 3.2
272
+ Spectral density of the fermion mediator
273
+ The spectral density is defined via the resummed ψ propagators,
274
+ S+− = −fψ( ˜GR − ˜GA) ≡ −2πifψ(k0)ρψ(K) ,
275
+ (3.5)
276
+ S−+ = [1 − fψ(k0)]( ˜GR − ˜GA) ≡ 2πi[1 − fψ(k0)]ρψ(K) ,
277
+ (3.6)
278
+ where ˜GR/ ˜GA are the resummed retarded/advanced propagators. Since the spectral den-
279
+ sity defined above encapsulates the thermal corrections in the form of ˜GR − ˜GA, we should
280
+ first be aware of how the thermal corrections appear in the resummed retarded and ad-
281
+ vanced propagators.
282
+ In general, the retarded amplitude for fermion self-energy can be parameterized as1 [33]
283
+ −Σψ
284
+ R(K) ≡ (aLPL + aRPR) /K + (bLPL + bRPR)/U ,
285
+ (3.7)
286
+ where PL,R are the chirality projection operators and Uµ is the four-velocity of the plasma
287
+ with UµU µ = 1.
288
+ In the rest frame, Uµ = (1, 0, 0, 0).
289
+ Since the parity of the fermion
290
+ mediator from the interactions given in Sec. 2 is explicitly broken, and at sufficiently high
291
+ temperatures ψ is effectively massless2, we are essentially working in a chirality-symmetric
292
+ and parity-broken theory, where aL, bL are nonzero while aR, bR = 0.
293
+ The coefficients
294
+ aL, bL can be calculated by left-multiplying Σψ
295
+ R(K) with /K and /U, and then evaluating the
296
+ trace. The general expressions read:
297
+ aL =
298
+ 1
299
+ 2k2
300
+
301
+ Tr[ /KΣψ
302
+ R(K)] − k0Tr[/UΣψ
303
+ R(K)]
304
+
305
+ ,
306
+ (3.8)
307
+ bL = − 1
308
+ 2k2
309
+
310
+ k0Tr[ /KΣψ
311
+ R(K)] − K2Tr[/UΣψ
312
+ R(K)]
313
+
314
+ ,
315
+ (3.9)
316
+ with K2 = k2
317
+ 0 − k2.
318
+ 1The minus sign is defined for convenience, which results in 1 + a in the denominator of propagators.
319
+ 2If ψ acquires its vacuum mass via the Higgs or Higgs-like mechanism, then ψ is exactly massless above
320
+ the cross-over or phase-transition temperature.
321
+ – 5 –
322
+
323
+ Given Eq. (3.7), the resummed retarded propagator in the chirality-symmetric and
324
+ parity-broken regime can be written as
325
+ ˜GR = PR
326
+ (1 + aL) /K + bL /U
327
+ [(1 + aL)k0 + bL]2 − [(1 + aL)k]2 + isign(k0)ϵPL ,
328
+ (3.10)
329
+ and the advanced propagator can be similarly obtained by using Σψ
330
+ A = Σψ∗
331
+ R . The difference
332
+ ˜GR − ˜GA can be conveniently written in terms of the helicity eigenstates [34, 35],
333
+ ˜GR − ˜GA =
334
+
335
+ ±
336
+ −2i(Im∆+ ∓ sign(k0)ϵ)
337
+ [Re∆±]2 + [Im∆± + ϵ]2 ˆP± ,
338
+ (3.11)
339
+ where ∆±(K) ≡ (1 + aL)k0 + bL ± (1 + aL)k, and the helicity operators are defined by
340
+ ˆP± ≡ PR
341
+ γ0 ± ⃗ek · ⃗γ
342
+ 2
343
+ PL ,
344
+ (3.12)
345
+ with ⃗ek ≡ ⃗k/k.
346
+ The spectral density ρψ can be decomposed into the on-shell and off-shell parts,
347
+ ρψ(K) ≡ ρψ,on(K) + ρψ,off(K) .
348
+ (3.13)
349
+ The kinematically forbidden decay stems from the on-shell part ρψ,on(K), as will be derived
350
+ in this section, while the off-shell part ρψ,off(K) arises from nonzero Im∆± and corresponds
351
+ to the scattering channels. Note that the on-shell propagation of the fermion mediator
352
+ could also result from the scattering channel. To avoid potential double counting, ρψ,on(K)
353
+ defined above corresponds to Im∆± = 0. Then, from Eq. (3.11) the on-shell part is given
354
+ by
355
+ ρψ,on(K) =
356
+
357
+ ±
358
+ ±sign(k0)
359
+ ���∂Re∆±
360
+ ∂k0
361
+ ���
362
+ −1�
363
+ δ(k0 − ω±
364
+ 1 ) + δ(k0 − ω±
365
+ 2 )
366
+
367
+ ˆP± .
368
+ (3.14)
369
+ In general, there are two solutions ω1,2 to Re∆i = 0 for each helicity operator ˆPi. In the
370
+ free limit, aL = bL = 0 and ∆± = k0 ± k. It can be verified that S+−, S−+ given in
371
+ Eqs. (3.5) and (3.6) reduce to the known forms [32]:
372
+ S+−(K) = 2πisign(k0)fψ(k0)δ(K2) /K ,
373
+ (3.15)
374
+ S−+(K) = −2πisign(k0)[1 − fψ(k0)]δ(K2) /K .
375
+ (3.16)
376
+ To proceed with Eq. (3.4), the remaining task is to evaluate the real part of the resummed
377
+ amplitude Σψ
378
+ R, which depends on the thermal interaction specified in Sec. 2.
379
+ The one-loop retarded self-energy diagram of ψ from (2.2) is similar to Fig. 1, with the
380
+ resummed fermion propagators replaced by the free ones given in Eqs. (3.15) and (3.16).
381
+ The inclusion of resummed propagators for the thermal η and ϕ in Fig. 1 is of higher order
382
+ under the perturbative HTL technique. Substituting Eqs. (A.7) and (A.8) into Eqs. (3.8)
383
+ – 6 –
384
+
385
+ and (3.9), we obtain the real part of the coefficients aL, bL as
386
+ ReaL =
387
+ m2
388
+ ψ(T)
389
+ k2
390
+
391
+ 1 + k0
392
+ 2k ln
393
+ ����
394
+ k0 − k
395
+ k0 + k
396
+ ����
397
+
398
+ ,
399
+ (3.17)
400
+ RebL = −
401
+ m2
402
+ ψ(T)
403
+ k
404
+ �k0
405
+ k − 1
406
+ 2
407
+
408
+ 1 − k2
409
+ 0
410
+ k2
411
+
412
+ ln
413
+ ����
414
+ k0 − k
415
+ k0 + k
416
+ ����
417
+
418
+ ,
419
+ (3.18)
420
+ where the thermal mass is defined by
421
+ m2
422
+ ψ(T) =
423
+ y2
424
+ ψ
425
+ 16T 2 ≡ κ2T 2 .
426
+ (3.19)
427
+ Note that the scalar ϕ and fermion η can be gauge multiplets. For instance, if they are gauge
428
+ SU(2) doublets, then an additional factor of 2 arises in m2
429
+ ψ(T). We will not distinguish
430
+ such difference but use κ as a free thermal parameter in later analyses.
431
+ The results given in Eqs. (3.17) and (3.18) are consistent with Ref. [33] except that
432
+ the logarithmic function is expressed by the modulus of momentum. The modulus arises
433
+ when we integrate cos θ in Eq. (A.8) without restricting ourselves to the timelike regime
434
+ K2 = k2
435
+ 0 −k2 > 0. Nevertheless, we will see below that an on-shell fermion with Eqs. (3.17)
436
+ and (3.18) cannot propagate in the spacelike region. The modified dispersion relation is
437
+ given by
438
+ [(1 + ReaL)k0 + RebL]2 − [(1 + ReaL)k]2 = 0 .
439
+ (3.20)
440
+ For a weak-coupling theory yψ ≲ 1, we expect ReaL < 1. Neglecting the higher-order
441
+ terms Rea2
442
+ L and Reb2
443
+ L, we obtain the approximate dispersion relation:
444
+ k2
445
+ 0 − k2 ≈ − 2k0RebL
446
+ 1 + 2ReaL
447
+ .
448
+ (3.21)
449
+ Then given Eqs. (3.17) and (3.18), it is straightforward to verify that there is no solution
450
+ to the above equation for k2
451
+ 0 − k2 < 0. Therefore, the absolute symbol in Eqs. (3.17) and
452
+ (3.18) should be removed.
453
+ 3.3
454
+ Collision rate
455
+ 3.3.1
456
+ One-loop retarded amplitude
457
+ Given the expressions of ReaL, RebL in Eqs. (3.17) and (3.18), the on-shell spectral density
458
+ from Eq. (3.14) can be simplified as
459
+ ρψ,on(K) =
460
+
461
+ ±
462
+ ± k2
463
+ 0 − k2
464
+ 2m2
465
+ ψ(T)sign(k0) [δ(k0 ∓ ω1) + δ(k0 ± ω2)] ˆP± ,
466
+ (3.22)
467
+ – 7 –
468
+
469
+ 0.001
470
+ 0.005
471
+ 0.010
472
+ 0.050
473
+ 0.100
474
+ 0.005
475
+ 0.010
476
+ 0.020
477
+ 0.050
478
+ 0.01
479
+ 0.02
480
+ 0.03
481
+ 0.04
482
+ 0.05
483
+ 0.01
484
+ 0.02
485
+ 0.03
486
+ 0.04
487
+ 0.05
488
+ Figure 2. The behavior of dispersion relation (3.20) for k/T ≪ 1, where the thermal parameter is
489
+ set by κ = 0.01.
490
+ where ω1,2 are the solutions to the modified dispersion relation (3.20) and can be analyti-
491
+ cally expressed in terms of the Lambert W-function [36]:
492
+ ω1 = −kW0(−e−2k2/m2
493
+ ψ−1) − 1
494
+ W0(−e−2k2/m2
495
+ ψ−1) + 1
496
+ ,
497
+ ω2 = kW−1(−e−2k2/m2
498
+ ψ−1) − 1
499
+ W−1(−e−2k2/m2
500
+ ψ−1) + 1
501
+ ,
502
+ (3.23)
503
+ with ω1,2 > k.
504
+ Substituting Eqs. (3.4) and (3.2) into the collision term in Eq. (3.1), we arrive at the
505
+ decay rate
506
+ Cχ,dec =
507
+ y2
508
+ χ
509
+ 32π3m2
510
+ ψ(T)
511
+ � ∞
512
+
513
+ dp0feq
514
+ χ (p0)
515
+ ×
516
+ � ∞
517
+ 0
518
+ dk
519
+
520
+ i=1,2
521
+ ∓Θi(ω2
522
+ i − k2)fψ(ωi)(±k2 ∓ ω2
523
+ i + 2p0(k ± ωi) ∓ δm2) ,
524
+ (3.24)
525
+ where δm2 ≡ m2
526
+ χ − m2
527
+ φ < 0 and the symbol Θi imposes a restriction on the momentum
528
+ integration from Eq. (3.4). Integrating the angle via the Dirac δ-function δ[(K −P)2 −m2
529
+ φ]
530
+ in Eq. (3.4), we find that in the timelike region K2 > 0 the restriction turns out to be
531
+ K2 + δm2
532
+ 2(k0 + k) < p0 < K2 + δm2
533
+ 2(k0 − k) ,
534
+ k0 − p0 > 0 .
535
+ (3.25)
536
+ Therefore, Θi is given by the Heaviside θ-function with
537
+ Θi = θ
538
+
539
+ (2p0k)2 − (ω2
540
+ i − k2 + δm2 − 2p0ωi)2�
541
+ .
542
+ (3.26)
543
+ The solutions ω1,2 from the modified dispersion relation are shown in Figs. 2 and 3
544
+ for k/T ≪ 1 and k/T > 1, respectively. It can been seen that when k becomes larger,
545
+ the ω1-mode approaches a dispersion relation ω1 ≈ k while the ω2-mode approaches a
546
+ – 8 –
547
+
548
+ 1.0000
549
+ 1.0002
550
+ 1.0004
551
+ 1.0006
552
+ 1.0008
553
+ 1.0010
554
+ 1.0000
555
+ 1.0002
556
+ 1.0005
557
+ 1.0008
558
+ 1.0010
559
+ Figure 3. The behavior of dispersion relation (3.20) for k/T > 1.
560
+ vacuum-like dispersion relation with an asymptotic mass
561
+
562
+ 2mψ(T) [36, 42–44]. It allows
563
+ us to compute Eq. (3.24) with the following approximations:
564
+ ω2
565
+ 1 − k2 ≈ 0 ,
566
+ ω2
567
+ 2 − k2 ≈ 2m2
568
+ ψ(T) ,
569
+ (3.27)
570
+ which gives rise to Cχ,dec as
571
+ Cχ,dec ≈
572
+ y2
573
+ χ
574
+ 16π3
575
+ � ∞
576
+
577
+ dp0feq
578
+ χ (p0)
579
+ � ∞
580
+ 0
581
+ dkΘ2fψ(ω2)
582
+
583
+ 2m2
584
+ ψ(T) + 2p0(k − ω2) + δm2�
585
+ ,
586
+ (3.28)
587
+ 3.3.2
588
+ Tree-level amplitude
589
+ To see whether we can directly use the vacuum tree-level amplitude to compute the collision
590
+ rate with the fermion thermal mass put in by hand, let us now calculate the relevant tree-
591
+ level amplitude. As can be seen from Figs. 2 and 3, the ω1-mode quickly turns massless
592
+ while the ω2-mode has an asymptotic mass
593
+
594
+ 2mψ(T) so that sufficient momentum space
595
+ is opened in this mode for the forbidden decay. In the following, we will use the dispersion
596
+ relation ω2 − k2 = 2m2
597
+ ψ(T) to calculate the decay rate from the tree-level amplitude.
598
+ The squared amplitude of ψ → χ + φ is given by
599
+
600
+ s
601
+ |M|2 ≈ y2
602
+ χ(2κ2T 2 − m2
603
+ φ) ,
604
+ (3.29)
605
+ where the approximation is obtained in the limit mχ ≪ mφ.
606
+ Note that the squared
607
+ amplitude for the dispersion relation ω2 −k2 = m2
608
+ ψ(T) can be simply obtained by replacing
609
+
610
+ 2κ with κ.
611
+ – 9 –
612
+
613
+ 0.001
614
+ 0.010
615
+ 0.100
616
+ 1
617
+ 10-10
618
+ 10-9
619
+ 10-8
620
+ 10-7
621
+ 10-6
622
+ 10-5
623
+ 10-4
624
+ 10-3
625
+ 0.001
626
+ 0.010
627
+ 0.100
628
+ 1
629
+ 1
630
+ 2
631
+ 3
632
+ 4
633
+ 5
634
+ 6
635
+ Figure 4. The comparison of forbidden decay rates from the one-loop retarded and vacuum tree-
636
+ level amplitudes. Here ˜Cχ,dec ≡ y−2
637
+ χ T −4Cχ,dec. In the weak-coupling regime κ < 1, the rates from
638
+ the tree-level amplitude are overestimated by a factor of 1–4.
639
+ The collision rate is given by
640
+ Cχ,dec =
641
+
642
+ d3pψ
643
+ (2π)32Eψ
644
+ feq
645
+ ψ
646
+
647
+ d3pχ
648
+ (2π)32Eχ
649
+ d3pφ
650
+ (2π)32Eφ
651
+ (2π)4δ4(Pψ − Pχ − Pφ)
652
+
653
+ s
654
+ |M|2
655
+ ψ→χφ
656
+ ≈ y2
657
+ χκ3K1(
658
+
659
+ 2κ)
660
+ 8
661
+
662
+ 2π3
663
+
664
+ 1 −
665
+ m2
666
+ φ
667
+ 2κ2T 2
668
+ �2
669
+ T 4 ,
670
+ (3.30)
671
+ where K1 is the modified Bessel function with K1(x) ≈ 1/x for x ≪ 1.
672
+ In the last
673
+ approximation we have used the Boltzmann distribution fψ(Eψ) = e−Eψ/T and kept the
674
+ highest scale mφ from the dark sector.
675
+ In the left panel of Fig. 4, we compare the decay rates obtained from Eq. (3.28) and
676
+ Eq. (3.30) with different thermal parameter κ. Note that the rates from the two approaches
677
+ share the same critical temperature
678
+ Tc ≈ mφ
679
+
680
+ 2κ,
681
+ (3.31)
682
+ after which the decay is kinematically closed. We can see that the rate from the tree-level
683
+ amplitude with an effective mass
684
+
685
+ 2mψ(T) is overestimated with respect to that from the
686
+ one-loop retarded amplitude.
687
+ In the right panel of Fig. 4, we also show the ratios of various decay rates by evaluating
688
+ the vacuum tree-level amplitude with an effective mass mψ(T) and taking the full Fermi-
689
+ Dirac statistics for feq
690
+ ψ . Noticeably, a larger discrepancy between the retarded rate CR
691
+ χ,dec
692
+ and the vacuum one appears when the tree-level amplitude is evaluated with the asymptotic
693
+ mass
694
+
695
+ 2mψ(T), as seen from the C
696
+
697
+ 2FD
698
+ χ,dec /CR
699
+ χ,dec and C
700
+
701
+ 2MB
702
+ χ,dec /CR
703
+ χ,dec curves. Instead, the
704
+ vacuum rates with the dispersion relation ω2 − k2 = m2
705
+ ψ(T) are more compatible with the
706
+ – 10 –
707
+
708
+ retarded one. We found that for κ ≪ 1 the ratios reach
709
+ CFD
710
+ χ,dec
711
+ CR
712
+ χ,dec
713
+ ≈ 1.44 ,
714
+ CMB
715
+ χ,dec
716
+ CR
717
+ χ,dec
718
+ ≈ 1.75 ,
719
+ (3.32)
720
+ in which CFD
721
+ χ,dec and CMB
722
+ χ,dec denote the vacuum rates with the Fermi-Dirac and Maxwell-
723
+ Boltzman statistics, respectively, together with the dispersion relation ω2−k2 = m2
724
+ ψ(T). In
725
+ particular, a smaller discrepancy can be seen between CFD
726
+ χ,dec and CR
727
+ χ,dec, since the latter is
728
+ also derived from the full Fermi-Dirac statistics. It points out that the decay rate from the
729
+ tree-level amplitude can coincide with that from the one-loop retarded amplitude within a
730
+ factor of 2 in the generically weak-coupling regime κ < 1, if ω2 − k2 = m2
731
+ ψ(T) is put in by
732
+ hand in the tree-level amplitude.
733
+ Since the ratios shown in the right panel of Fig. 4 are predicted via a common thermal
734
+ parameter κ, and the ratios become nearly constant when κ ≲ 0.13 , the forbidden fermion
735
+ decay rate can then be simply obtained from the tree-level amplitude with the approximate
736
+ dispersion relation ω2−k2 ≈ m2
737
+ ψ(T) and rescaling the latter by a factor of 0.69 if the Fermi-
738
+ Dirac statistics is used or a factor of 0.57 if the Boltzmann distribution is used. It enables
739
+ us to obtain a precise forbidden fermion decay rate within the simple tree-level approach
740
+ by some constant rescaling.
741
+ 4
742
+ Scattering
743
+ 4.1
744
+ Double counting and resonant enhancement
745
+ The scattering rate directly calculated from Fig. 1 is much more involved. The imaginary
746
+ parts Im∆± appear both in the numerator and denominator of the off-shell spectral den-
747
+ sity ρψ,off, making the final three-dimensional integration (dpdk0dk) difficult even with a
748
+ numerical approach. For most situations, the thermal corrections to the scattering pro-
749
+ cesses are significant only when there are IR singularities or resonance. For example, the
750
+ IR singularity is known in neutrino and electron chirality-flipping processes at finite tem-
751
+ peratures [41, 45–47], and the resonant effect from thermal corrections is also known in
752
+ neutrino oscillations at finite temperature and density [48, 49].
753
+ In dealing with the IR singularity or resonance, we can also use a more convenient
754
+ approach in which the cross section is calculated from a tree-level diagram with a resummed
755
+ mediator propagator [37, 50, 51]. When applying the effective approach, however, we should
756
+ take care of the double-counting issue. There are in general two methods to remove the
757
+ double counting. When the full thermal width of the mediator propagator is unknown,
758
+ it is convenient to subtract the on-shell point directly from the cross section, and then
759
+ calculate the forbidden decay rate separately. On the other hand, if the thermal width is
760
+ known in a given model, a modified Breit-Wigner approximation can be applied to do the
761
+ subtraction [52, 53], where the decay is automatically included in the cross section.
762
+ Nevertheless, the double-counting issue depends on the existence of the resonance,
763
+ which requires a careful inspection under the perturbative HTL resummation.
764
+ In the
765
+ 3This corresponds to a generically weak-coupling regime yψ < 1.
766
+ – 11 –
767
+
768
+ following, let us concentrate on the s-channel double counting and on the hard particle
769
+ scattering with incoming momenta phard ∼ O(T).
770
+ Generically, hard scattering suffices
771
+ to be responsible for the nonthermal DM production from thermal particles, since the
772
+ thermally averaged collision rate ⟨σv⟩n is proportional to the particle-number densities of
773
+ incoming thermal particles, which are expected to be dominated in the hard-momentum
774
+ regime:
775
+ nsoft ∝
776
+ � psoft
777
+ 0
778
+ d3pfeq(p) ∼ p3
779
+ soft,
780
+ nhard ∝
781
+ � ∞
782
+ psoft
783
+ d3pfeq(p) ∼ T 3 ≫ p3
784
+ soft ,
785
+ (4.1)
786
+ with psoft ∼ O(κT).
787
+ At leading order, the mediator is resummed while the external particles are treated
788
+ effectively massless. At this order, it is usually expected to have an s-channel resonance
789
+ when the momentum transfer is near the scale of the effective mediator mass. However,
790
+ when we go beyond the leading order, the external particles are resummed, which also carry
791
+ effective masses from the plasma. If the thermal masses from the external particles are
792
+ larger than from the mediator, the resonance expected at leading order would be erased.
793
+ This is interpreted as the fact that the inverse decay X + Y → Z is always kinematically
794
+ forbidden at all temperatures. This is particularly the case when the mediator is a fermion
795
+ and the incoming particles contain a scalar boson. For instance, the resummed scalar ϕ
796
+ has a thermal correction parameter κ = yψ/
797
+
798
+ 12 [22] from the ψ − η loop, which is larger
799
+ than the value given in Eq. (3.19).
800
+ The above conclusion differs from two fermion scattering mediated by a thermal scalar.
801
+ As seen from Figs. 2 and 3, there is a nearly massless state for a resummed fermion so
802
+ that the initial fermions can have an approximate dispersion relation ω2
803
+ i − k2 ≈ 0 while
804
+ the resummed scalar mediator carries a large thermal mass. When s = k2
805
+ 0 − k2 ∼ κ2T 2,
806
+ there is in principle an on-shell crossing and including the resummed scalar mediator in
807
+ the fermion-pair scattering can enhance the scattering rate by a factor of O(1) [22].
808
+ Since in current scenario the initial particles contain a fermion and a scalar boson,
809
+ it is not necessary to use the resummed fermion mediator and the scattering rate from a
810
+ vacuum computation suffices to describe the DM production to a good approximation.
811
+ 4.2
812
+ Tree-level scattering amplitude without thermal correction
813
+ The general 2 → 2 scattering rate for the DM production is given by
814
+ C12→χφ =
815
+
816
+ d3p1
817
+ (2π)32E1
818
+ d3p2
819
+ (2π)32E2
820
+ d3pχ
821
+ (2π)32Eχ
822
+ d3pφ
823
+ (2π)32Eφ
824
+ f1f2|M|2
825
+ 12→χφ(2π)4δ4 ,
826
+ (4.2)
827
+ where δ4 ≡ δ4(P1 + P2 − Pχ − Pφ) and |M|2
828
+ 12→χφ is the squared amplitude with spin sum
829
+ but without spin average. The Pauli blocking and Bose enhancement from the nonthermal
830
+ DM sector are neglected.
831
+ For Yukawa interaction, the scattering is η + ϕ → χ + φ. The squared amplitude is
832
+ – 12 –
833
+
834
+ 0.001
835
+ 0.010
836
+ 0.100
837
+ 1
838
+ 10-10
839
+ 10-9
840
+ 10-8
841
+ 10-7
842
+ 10-6
843
+ 10-5
844
+ 10-4
845
+ 10-3
846
+ Figure 5. A comparison between the forbidden decay and scattering rates for different thermal
847
+ parameter κ. Here ˜Cχ ≡ y−2
848
+ χ T −4Cχ.
849
+ given by
850
+
851
+ s
852
+ |M|2
853
+ ϕη→χφ ≈
854
+ y2
855
+ χy2
856
+ ψ
857
+ 2
858
+ (1 −
859
+ m2
860
+ φ
861
+ s )(1 + cos θ) ,
862
+ (4.3)
863
+ where we have only kept the highest mass scale from mφ and θ is the angle between
864
+ the spatial momenta of the incoming and outgoing particles in the center-of-mass frame.
865
+ Following the conventional phase-space reduction [54], we obtain the collision rate
866
+ Cϕη→χφ =
867
+ T
868
+ 32π4
869
+ � ∞
870
+ m2
871
+ φ
872
+ dsσϕη→χφs3/2K1(√s/T) ,
873
+ (4.4)
874
+ where the cross section without spin average is given by
875
+ σϕη→χφ =
876
+ y2
877
+ χy2
878
+ ψ
879
+ 32πs
880
+
881
+ 1 −
882
+ m2
883
+ φ
884
+ s
885
+ �2
886
+ .
887
+ (4.5)
888
+ In the high-temperature limit T ≫ mφ, the collision rate reduces to
889
+ Cϕη→χφ ≈
890
+ y2
891
+ χy2
892
+ ψ
893
+ 256π5 T 4 .
894
+ (4.6)
895
+ In Fig. 5, we show the rates from the forbidden decay and scattering channels. In
896
+ general, Cχ,dec is larger than Cχ,scat when T > Tc.
897
+ Nevertheless, the duration of the
898
+ forbidden decay is determined by the critical temperature Tc, while the scattering η + ϕ →
899
+ χ + φ is sufficiently closed only after the freeze-in temperature T ∼ mφ > Tc for κ < 1. It
900
+ makes the scattering contribution to the final DM relic density generically larger than the
901
+ forbidden decay, as we shall discuss below.
902
+ – 13 –
903
+
904
+ 5
905
+ DM relic density
906
+ There are in principle two possibilities for DM relic density. If the scalar φ is unstable, it
907
+ can decay to χ at late times after the dark sector freezes in. Consider first the situation
908
+ where φ has been depleted away. χ is the DM candidate and the relic density is given by
909
+ ΩDMh2 = (Y I
910
+ χ + Y II
911
+ χ )s0mχ
912
+ ρc/h2
913
+ .
914
+ (5.1)
915
+ where Y I
916
+ χ ≡ nI
917
+ χ/sSM is the yield produced by forbidden decay and scattering while Y II
918
+ χ is
919
+ the yield produced by scalar decay φ → ψ + χ at late times. sSM = 2π2gsT 3/45 is the
920
+ SM entropy density with gs the effective number of relativistic degrees of freedom. The
921
+ current value of entropy density is given by s0 = 2891.2 cm−3 and the current critical
922
+ energy density ρc is given by ρc = 1.05 × 10−5 h2 · GeV · cm−3 [55].
923
+ The Boltzmann equation for Y I
924
+ χ is given by
925
+ Y I
926
+ χ =
927
+ � ∞
928
+ Tc
929
+ 2Cχ,dec
930
+ sSMHT dT +
931
+ � ∞
932
+ 0
933
+ 2Cχ,scat
934
+ sSMHT dT ,
935
+ (5.2)
936
+ where the factor of 2 accounts for the CP-conjugated production so that Yχ is the sum
937
+ of χ + ¯χ.
938
+ The forbidden decay ends at T = Tc while the scattering basically ends at
939
+ T = O(mφ) as the freeze-in temperature is determined by the highest scale in the dark
940
+ sector. In the second term of Eq. (5.2), we use T = 0 as the lower integration limit, which
941
+ does not cause significant difference after T drops below mφ/5. Since both χ + ¯χ and φ
942
+ are produced with the same amount from the forbidden decay and scattering, we have
943
+ Y I
944
+ χ = Y I
945
+ φ. Further given that the amount of χ + ¯χ in late-time production is inherited from
946
+ Y I
947
+ φ, we have Y II
948
+ χ = Y I
949
+ φ.
950
+ Consider the second possibility where φ is sufficiently long-lived so that it has a lifetime
951
+ comparable with or longer than the age of the observed universe. The DM relic density in
952
+ this case consists of φ and χ, which is given by
953
+ ΩDMh2 =
954
+ s0
955
+ ρc/h2 (Y I
956
+ χmχ + Y I
957
+ φmφ) .
958
+ (5.3)
959
+ To see the relative effect of the forbidden decay and the scattering channel, we estimate
960
+ the ratio Yχ,scat/Yχ,dec, which reads:
961
+ Yχ,scat
962
+ Yχ,dec
963
+
964
+ � xφ,fi
965
+ 0
966
+ ˜Cχ,scatdxφ
967
+ � √
968
+
969
+ 0
970
+ ˜Cχ,decdxφ
971
+ ,
972
+ (5.4)
973
+ where xφ ≡ mφ/T with xφ,fi corresponding to the freeze-in temperature. The evolution of
974
+ ˜Cχ,dec and ˜Cχ,scat can be found in Fig. 5. Simply taking ˜Cχ,dec and ˜Cχ,scat as constants,
975
+ we obtain Yχ,scat/Yχ,dec ∝ 1/κ. It points out that the DM relic density from the forbidden
976
+ decay basically carries an additional power of κ higher than from the scattering channel,
977
+ even though both the decay and scattering rates share the same order of κ (see Eqs. (3.30)
978
+ and (4.4)), as also found in Refs. [22, 26] in the case of forbidden scalar decay. The behavior
979
+ – 14 –
980
+
981
+ 0.01
982
+ 0.05
983
+ 0.10
984
+ 0.50
985
+ 1
986
+ 1
987
+ 5
988
+ 10
989
+ 50
990
+ 0.01
991
+ 0.05
992
+ 0.10
993
+ 0.50
994
+ 1
995
+ 10-11
996
+ 10-10
997
+ 10-9
998
+ 10-8
999
+ Figure 6.
1000
+ Left: A comparison of DM relic densities from the forbidden decay and scattering
1001
+ channels. Right: The correlation between the DM coupling yχ and the thermal parameter κ for the
1002
+ observed DM relic density. Here xD ≡ mχ/mφ.
1003
+ of Eq. (5.4) is shown in the left panel of Fig. 6 as a function of the thermal parameter κ.
1004
+ Note that only the highest scale mφ is kept in the yield so that both Yχ,dec and Yχ,scat are
1005
+ proportional to the inverse scalar mass, as expected from the IR freeze-in mechanism. We
1006
+ can see from the left panel of Fig. 6 that for the fermion mediator the forbidden decay can
1007
+ only be neglected for a very small κ. For a generically weak coupling 0.1 < yψ < 1, κ can
1008
+ reach O(0.1). For instance, about 41% of the DM relic density from Eq. (5.1) comes from
1009
+ the forbidden decay if κ = 0.5, while about 8% of the DM relic density is obtained from
1010
+ the forbidden decay if κ = 0.05.
1011
+ An interesting feature from such a comparison is that we can estimate the effect of the
1012
+ forbidden decay by rescaling the scattering rate, since the ratio given in Eq. (5.4) basically
1013
+ depends on the thermal coupling κ, or the interaction coupling yψ.
1014
+ Once the thermal
1015
+ interaction of the fermion mediator is known, we can calculate the scattering rate and
1016
+ simply rescale it by a κ- or yψ-dependent factor to obtain the forbidden decay. As shown
1017
+ in the left panel of Fig. 6, when κ ≲ 0.2, the ratio is approximately given by 0.56/κ and
1018
+ the total DM relic density given in Eq. (5.1) can then be estimated by
1019
+ ΩDMh2 ≈ 2 s0mχ
1020
+ ρc/h2 (1 + 1.79κ)Yχ,scat ,
1021
+ (5.5)
1022
+ where Yχ,scat comes from the second term in Eq. (5.2).
1023
+ In the right panel of Fig. 6, we plot the correlation between the DM coupling yχ and
1024
+ the thermal parameter κ by ��tting the observed DM relic density ΩDMh2 = 0.12 [56].
1025
+ The long-lived line corresponds to the second possibility from Eq. (5.3), where we have
1026
+ neglected the contribution from the light χ. In this approximation, the DM relic density
1027
+ is independent of mφ since Y I
1028
+ φ ∝ m−1
1029
+ φ .
1030
+ However, the DM relic density from Eq. (5.3)
1031
+ requires that the scalar should have a lifetime longer than the age of the universe, which is
1032
+ translated into an upper limit of the DM coupling yχ ≲ 10−20(mφ/GeV)−1/2. Therefore,
1033
+ we can conclude from the right panel of Fig. 6 that for a dark scalar heavier than 1 GeV,
1034
+ – 15 –
1035
+
1036
+ the DM relic density from Eq. (5.3) is ruled out and the DM candidate can only be the
1037
+ lighter fermion χ. For instance, with yχ ≃ 10−11 and mφ ≃ 10 GeV, the scalar lifetime is
1038
+ around τφ ≃ 0.03 s. Thus the unstable heavy scalar has decayed away well before the BBN
1039
+ epoch.
1040
+ For the short-lived case from Eq. (5.1), the DM relic density depends on yχ, κ and
1041
+ the mass ratio in the dark sector xD ≡ mχ/mφ. We show in the right panel of Fig. 6 for
1042
+ three representative values xD = 0.1, 0.01, 0.001. We can see that when the mass ratio xD
1043
+ and the thermal parameter κ decrease, a larger DM coupling yχ is required to match the
1044
+ relic density. However, a large DM coupling could make the dark sector thermalized. To
1045
+ check this, recall that the nonthermal condition, which requires that the thermally averaged
1046
+ scattering rate should be smaller than the Hubble parameter at the freeze-in temperature,
1047
+ is given by
1048
+ Cχ,scat
1049
+ neq
1050
+ χ
1051
+ < H ,
1052
+ (5.6)
1053
+ where neq
1054
+ χ ≈ 0.09T 3 denotes the thermal particle-number density of χ. The above condition
1055
+ can be translated into an upper limit of the DM coupling yχ ≲ O(10−4). Therefore, for the
1056
+ thermal parameter κ and the mass ratio xD shown in the right panel of Fig. 6, the dark
1057
+ sector is indeed far from thermal equilibrium.
1058
+ When κ is much smaller but still able to keep the fermion mediator in thermal equi-
1059
+ librium, the scattering channel for the DM production can also come from the mediator
1060
+ scattering/annihilation, e.g., ψ + ¯ψ → χ + ¯χ mediated by the scalar φ and ψ + ¯ψ → φ + φ
1061
+ mediated by χ, both of which are not included in previous calculations since we are con-
1062
+ cerned with a relatively large κ. These scattering channels have rates at O(y4
1063
+ χ) and could
1064
+ be comparable with the thermal particle scattering ∼ O(y2
1065
+ χκ2) if yχ ∼ κ. For example,
1066
+ when the fermion mediator ψ is a GeV-scale right-handed neutrino in the type-I seesaw
1067
+ framework, the scattering ψ + ¯ψ → χ + ¯χ that can generate the observed DM relic den-
1068
+ sity predicts a nonthermal DM coupling yχ ∼ O(10−6) while the coupling for a GeV-scale
1069
+ right-handed neutrino to keep in thermal equilibrium via neutrino oscillation is required
1070
+ to be yψ > O(10−8) [21, 57]. Therefore, for a much smaller thermal parameter κ, the DM
1071
+ production from the mediator scattering/annihilation could be significant. A large thermal
1072
+ parameter κ, on the other hand, is usually more favorable as the strong connection between
1073
+ the SM and the fermion mediator enables us to have more opportunities of DM detection
1074
+ via the very fermion messenger.
1075
+ 6
1076
+ Realistic scenarios and possible signals
1077
+ We have considered a simplified scenario in Sec. 2 where the nonthermal dark sector couples
1078
+ to the fermion mediator via the Yukawa interaction, and the thermal interaction for the
1079
+ mediator comes from chiral Yukawa interaction.
1080
+ In this section, we shall discuss some
1081
+ realistic models to which previous calculations can be applied.
1082
+ Right-handed Majorana/Dirac neutrino mediator.— Presumably, the most known
1083
+ example is the Majorana neutrino portal DM [11–21]. The left-handed fermion and the
1084
+ – 16 –
1085
+
1086
+ scalar in Yukawa interaction (2.2) are specified as the SM lepton L and Higgs H doublets,
1087
+ respectively. Note that in this case, a light right-handed Majorana neutrino below the
1088
+ electroweak scale can readily be in thermal equilibrium via neutrino oscillation [21, 57].
1089
+ However, if the active-sterile neutrino mixing is small, the thermal corrections to the Ma-
1090
+ jorana neutrino would be suppressed. Consequently, the duration of the forbidden decay
1091
+ channel would be quite short and the scattering becomes the dominant channel to generate
1092
+ the DM relic density.
1093
+ ψR can also be specified as the right-handed Dirac counterpart of the SM left-handed
1094
+ neutrinos.
1095
+ The right-handed Dirac neutrinos can establish thermal equilibrium in the
1096
+ early universe via strong Yukawa interaction [58–60]. A noticeable difference between the
1097
+ Majorana and Dirac portals is that the later naturally predicts a very light fermion mediator
1098
+ with mass readily well below the dark scale.
1099
+ Both the Majorana and Dirac neutrino mediators naturally allow a dark sector to be
1100
+ produced via the freeze-in mechanism, as long as ψR does not have strong gauge inter-
1101
+ actions.
1102
+ In essence, the portal is realized by adding a SM gauge singlet to the super-
1103
+ renormalizable term ¯LH.
1104
+ When H is the SM Higgs doublet, the right-handed Majo-
1105
+ rana/Dirac neutrino portals naturally arise. It is also feasible that H is a non-SM scalar
1106
+ doublet and develops a vanishing vacuum expectation value. In this case, ψR is a more gen-
1107
+ eral neutral lepton singlet if there is no mass mixing between ψR and the SM left-handed
1108
+ neutrinos.
1109
+ Left-handed fermion mediator.— A left-handed fermion mediator can also couple to
1110
+ χR via chiral Yukawa interaction. For a nonthermal dark sector via the Yukawa interaction
1111
+ ¯ψLχRφ, the left-handed mediator cannot have strong gauge interaction. There are some
1112
+ possibilities. For instance, ψL can couple to the SM charged-lepton singlet ℓR via
1113
+ yψ,i ¯ψLℓi,Rϕ + h.c. ,
1114
+ (6.1)
1115
+ where yψ,i in general have three couplings to the charged-lepton flavors, ψL is a neutral
1116
+ lepton and ϕ is electrically charged. Here ψ is a SM singlet so that the dark sector does
1117
+ not carry SM gauge charges. The thermalization of ψL can be easily realized if the above
1118
+ interaction is strong. Another possibility is that the charged-lepton singlet ℓR is replaced by
1119
+ the quark singlet. For instance, the down-quark singlet dR couples to ψL with a leptoquark
1120
+ scalar ϕ [61–65]
1121
+ ¯dRψLϕ + h.c. ,
1122
+ (6.2)
1123
+ where the scalar ϕ is now an SU(3)c triplet and SU(2)L singlet, carrying the hypercharge
1124
+ Y = −1/3 so that ψ is a SM singlet.
1125
+ In all these cases, the fermion mediator can readily be thermalized in the SM thermal
1126
+ plasma. As seen from the right panel of Fig. 6, the connection between the thermal plasma
1127
+ and the fermion mediator will be enhanced if the coupling between the mediator and the
1128
+ dark sector is sufficiently small, and vice versa. In general, a smaller DM coupling makes
1129
+ the direct DM detection much more challenging but meanwhile the indirect signals from
1130
+ – 17 –
1131
+
1132
+ the mediator may be boosted. On the other hand, the direct freeze-in DM direction may
1133
+ also be possible if the production cross section is enhanced e.g.
1134
+ by a sufficiently light
1135
+ mediator [66]. In the following, we shall discuss some possible signals that may be probed
1136
+ in current and future experiments.
1137
+ Cosmic flux from DM annihilation.— If the fermion mediator has a vacuum mass at
1138
+ GeV scale or above, the annihilation from DM to the mediator 2χ → 2ψ can potentially
1139
+ generate secondary fluxes consisting of SM particles via decay ψ → SM. For instance, the
1140
+ DM annihilation from the galactic center to right-handed Majorana neutrinos 2χ → 2νR
1141
+ can generate a secondary left-handed neutrino flux via active-sterile neutrino mixing [67,
1142
+ 68]. For right-handed Dirac neutrino portal, it may also be interesting to consider the
1143
+ active neutrino flux from the DM annihilation 2χ → 2νR followed by a chirality-flipping
1144
+ process νR → νL caused e.g. by magnetic fields in the universe [69–71].
1145
+ Extra radiation in the early universe.— If the fermion mediator is sufficiently light,
1146
+ e.g., in the right-handed Dirac neutrino portal scnearios, the light mediator itself can
1147
+ significantly contribute to the energy density of the early universe, thereby leaving potential
1148
+ imprints in the BBN/CMB regimes. In particular, the light mediator may produce an Neff
1149
+ excess which can be probed in future experiments [72–74].
1150
+ LHC detection.— If the light fermion mediator is sufficiently long-lived, it can generate
1151
+ displaced vertices at the LHC [75–77], such as a long-lived right-handed neutrino [78] or
1152
+ a neutral ψL produced by the electron-positron pair in the t channel via Eq. (6.1). In the
1153
+ later case, if mψ > mµ + mϕ, the fermion mediator can decay into a charged scalar and
1154
+ a muon, leaving displaced vertices in a remote muon chamber if the decay length cτψ is
1155
+ sufficiently long. If mψ < mϕ, the opposite-sign dilepton can be produced with missing
1156
+ energy from the charged scalar decay ϕ± → ℓ± + ψ [79].
1157
+ 7
1158
+ Conclusions
1159
+ In this work we have concentrated on the freeze-in DM production via a light fermion
1160
+ mediator once thermalized in the early universe. We have used a simplified scenario to
1161
+ capture the basic properties of such a class of DM models, which can be applied in the
1162
+ scenarios of right-handed Majarona/Dirac neutrino portals and the left-handed fermion
1163
+ mediator coupling to charged leptons and quarks.
1164
+ When the fermion mediator is much lighter than the dark sector, both the forbidden
1165
+ decay and the scattering should be taken into account consistently. The full forbidden
1166
+ decay rate is calculated from the one-loop retarded amplitude under the HTL approxi-
1167
+ mation at finite temperatures, which is always overestimated from a tree-level amplitude.
1168
+ Nevertheless, we found that the full forbidden decay can still be simply obtained from the
1169
+ tree-level amplitude after being rescaled by proper constants.
1170
+ While both the scattering and forbidden decay rates carry the same order of coupling
1171
+ constants, the scattering generically dominates the production as its duration in the pro-
1172
+ duction history is longer than in the forbidden decay. Nevertheless, the contribution from
1173
+ the forbidden decay is significant when the thermal interaction between the fermion medi-
1174
+ ator and the thermal plasma is strong. For a generically weak interaction that thermalizes
1175
+ – 18 –
1176
+
1177
+ the light fermion mediator, the forbidden decay can contribute to the total DM relic den-
1178
+ sity at about 40%, and hence cannot be neglected in the precise calculation of DM relic
1179
+ density.
1180
+ Acknowledgments
1181
+ The author thanks Xun-Jie Xu for valuable discussions. This work is supported in part by
1182
+ the National Natural Science Foundation of China under grant No. 12141501.
1183
+ A
1184
+ Thermal one-loop amplitudes
1185
+ A.1
1186
+ The DM part
1187
+ The amplitudes from Fig. 1 are given by
1188
+ Σχ
1189
+ +−(P) = −iy2
1190
+ χ
1191
+
1192
+ d4K
1193
+ (2π)4 G−+(K − P)S+−(K)
1194
+ =
1195
+ iy2
1196
+ χ
1197
+ (2π)2
1198
+
1199
+ d4Ksign(k0 − p0)[1 + fφ(k0 − p0)]fψ(k0)δK−P ρψ(K) ,
1200
+ (A.1)
1201
+ Σχ
1202
+ −+(P) = −iy2
1203
+ χ
1204
+
1205
+ d4K
1206
+ (2π)4 G+−(K − P)S−+(K)
1207
+ = −iy2
1208
+ χ
1209
+ (2π)2
1210
+
1211
+ d4Ksign(k0 − p0)fφ(k0)[1 − fψ(k0 − p0)]δK−P ρψ(K) ,
1212
+ (A.2)
1213
+ where δK−P ≡ δ[(K − P)2 − m2
1214
+ φ] and the free scalar propagators G−+, G+− are given by
1215
+ G+−(K) = −2πisign(k0)fφ(k0)δ(K2 − m2
1216
+ φ) ,
1217
+ (A.3)
1218
+ G−+(K) = −2πisign(k0)[1 + fφ(k0)]δ(K2 − m2
1219
+ φ) ,
1220
+ (A.4)
1221
+ while the resummed fermion propagators S+−, S−+ are given by Eqs. (3.5) and (3.6).
1222
+ A.2
1223
+ The fermion mediator part
1224
+ The real part of the retarded amplitude Σψ
1225
+ R(K) is equivalent to the time-ordered one
1226
+ Σψ
1227
+ ++(K), which in the massless limit is given by
1228
+ Σψ
1229
+ ++(K) = iy2
1230
+ ψ
1231
+
1232
+ d4Q
1233
+ (2π)4 G++(Q − K)PLS++(Q)PR
1234
+ = iy2
1235
+ ψ
1236
+
1237
+ d4Q
1238
+ (2π)4
1239
+
1240
+ 1
1241
+ Q2 + iϵ + 2πifη(|q0|)δ(Q2)
1242
+
1243
+ PL /QPR
1244
+ ×
1245
+
1246
+ 1
1247
+ (Q − K)2 + iϵ − 2πifϕ(|q0 − k0|)δ[(Q − K)2]
1248
+
1249
+ ,
1250
+ (A.5)
1251
+ – 19 –
1252
+
1253
+ The zero-temperature part is UV divergent, which can be renormalized as usual in zero-
1254
+ temperature QFT. For the finite-temperature part, it reads
1255
+ ReΣψ
1256
+ R(K) =
1257
+ y2
1258
+ ψ
1259
+ (2π)3
1260
+
1261
+ d4Q
1262
+ �δ[(Q − K)2]
1263
+ Q2
1264
+ fϕ(|q0 − k0|) −
1265
+ δ(Q2)
1266
+ (Q − K)2 fη(|q0|)
1267
+
1268
+ PL /QPR
1269
+ =
1270
+ y2
1271
+ ψ
1272
+ (2π)3
1273
+
1274
+ d4Q
1275
+ δ(Q2)
1276
+ (Q − K)2
1277
+
1278
+ fϕ(q)PL(−/Q + /K)PR − fη(q)PL /QPR
1279
+
1280
+ ,
1281
+ (A.6)
1282
+ where (Q − K)2 ̸= 0 and the second equation is obtained by replacing Q → −Q + K in the
1283
+ first term of the first equation. The above integration can be done as follows. Integrate
1284
+ q0 first via δ(Q2), then expand the denominator (Q − K)2 = K2 − 2K.Q in the HTL
1285
+ approximation: K2 ≪ q24, after that integrate the angle cos θ, and finally integrate the
1286
+ momentum q.
1287
+ In the HTL approximation, the trace given in Eqs. (3.8) and (3.9) are evaluated to be
1288
+ tr[ /KReΣψ
1289
+ R(K)] =
1290
+ 2y2
1291
+ ψ
1292
+ (2π)2
1293
+
1294
+ q[fϕ(q) + fη(q)]dq + O(K2/q2)
1295
+
1296
+ y2
1297
+ ψ
1298
+ 8 T 2 ,
1299
+ (A.7)
1300
+ tr[/UReΣψ
1301
+ R(K)] =
1302
+ y2
1303
+ ψ
1304
+ (2π)2
1305
+
1306
+ q[fϕ(q) + fη(q)]dq
1307
+
1308
+ d cos θ
1309
+ k0
1310
+ k2
1311
+ 0 − k2 cos θ2 + O(K2/q2)
1312
+
1313
+ y2
1314
+ ψ
1315
+ 16k ln
1316
+ ����
1317
+ k0 + k
1318
+ k0 − k
1319
+ ���� T 2 .
1320
+ (A.8)
1321
+ References
1322
+ [1] X. Chu, T. Hambye, and M. H. G. Tytgat, The Four Basic Ways of Creating Dark Matter
1323
+ Through a Portal, JCAP 05 (2012) 034, [arXiv:1112.0493].
1324
+ [2] S. Davidson, S. Hannestad, and G. Raffelt, Updated bounds on millicharged particles, JHEP
1325
+ 05 (2000) 003, [hep-ph/0001179].
1326
+ [3] J. H. Chang, R. Essig, and S. D. McDermott, Supernova 1987A Constraints on Sub-GeV
1327
+ Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle, JHEP 09
1328
+ (2018) 051, [arXiv:1803.00993].
1329
+ [4] C. Dvorkin, T. Lin, and K. Schutz, Making dark matter out of light: freeze-in from plasma
1330
+ effects, Phys. Rev. D 99 (2019), no. 11 115009, [arXiv:1902.08623]. [Erratum: Phys.Rev.D
1331
+ 105, 119901 (2022)].
1332
+ [5] C. Dvorkin, T. Lin, and K. Schutz, Cosmology of Sub-MeV Dark Matter Freeze-In, Phys.
1333
+ Rev. Lett. 127 (2021), no. 11 111301, [arXiv:2011.08186].
1334
+ 4The forbidden decay primarily stems from a hard ψ propagating near the lightcone. It implies that
1335
+ when using the HTL approximation, the terms from K2/q2 have a higher-order yψ but k0/q and k/q are
1336
+ at leading order.
1337
+ – 20 –
1338
+
1339
+ [6] A. Kusenko, Sterile neutrinos, dark matter, and the pulsar velocities in models with a Higgs
1340
+ singlet, Phys. Rev. Lett. 97 (2006) 241301, [hep-ph/0609081].
1341
+ [7] K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in
1342
+ the Higgs sector, Phys. Rev. D 77 (2008) 065014, [arXiv:0711.4646].
1343
+ [8] A. Merle, V. Niro, and D. Schmidt, New Production Mechanism for keV Sterile Neutrino
1344
+ Dark Matter by Decays of Frozen-In Scalars, JCAP 03 (2014) 028, [arXiv:1306.3996].
1345
+ [9] A. Adulpravitchai and M. A. Schmidt, A Fresh Look at keV Sterile Neutrino Dark Matter
1346
+ from Frozen-In Scalars, JHEP 01 (2015) 006, [arXiv:1409.4330].
1347
+ [10] M. Drewes and J. U. Kang, Sterile neutrino Dark Matter production from scalar decay in a
1348
+ thermal bath, JHEP 05 (2016) 051, [arXiv:1510.05646].
1349
+ [11] A. Falkowski, J. Juknevich, and J. Shelton, Dark matter through the neutrino portal,
1350
+ arXiv:0908.1790.
1351
+ [12] V. Gonz´alez-Mac´ıas, J. I. Illana, and J. Wudka, A realistic model for Dark Matter
1352
+ interactions in the neutrino portal paradigm, JHEP 05 (2016) 171, [arXiv:1601.05051].
1353
+ [13] B. Batell, T. Han, and B. Shams Es Haghi, Indirect Detection of Neutrino Portal Dark
1354
+ Matter, Phys. Rev. D 97 (2018), no. 9 095020, [arXiv:1704.08708].
1355
+ [14] P. Bandyopadhyay, E. J. Chun, R. Mandal, and F. S. Queiroz, Scrutinizing Right-Handed
1356
+ Neutrino Portal Dark Matter With Yukawa Effect, Phys. Lett. B 788 (2019) 530–534,
1357
+ [arXiv:1807.05122].
1358
+ [15] M. Becker, Dark Matter from Freeze-In via the Neutrino Portal, Eur. Phys. J. C 79 (2019),
1359
+ no. 7 611, [arXiv:1806.08579].
1360
+ [16] M. G. Folgado, G. A. G´omez-Vargas, N. Rius, and R. Ruiz De Austri, Probing the sterile
1361
+ neutrino portal to Dark Matter with γ rays, JCAP 08 (2018) 002, [arXiv:1803.08934].
1362
+ [17] P. Bandyopadhyay, E. J. Chun, and R. Mandal, Feeble neutrino portal dark matter at
1363
+ neutrino detectors, JCAP 08 (2020) 019, [arXiv:2005.13933].
1364
+ [18] A. Biswas, D. Borah, and D. Nanda, Light Dirac neutrino portal dark matter with observable
1365
+ ∆Neff, JCAP 10 (2021) 002, [arXiv:2103.05648].
1366
+ [19] R. Coy, A. Gupta, and T. Hambye, Seesaw neutrino determination of the dark matter relic
1367
+ density, Phys. Rev. D 104 (2021), no. 8 083024, [arXiv:2104.00042].
1368
+ [20] B. Barman, P. S. Bhupal Dev, and A. Ghoshal, Probing Freeze-in Dark Matter via Heavy
1369
+ Neutrino Portal, arXiv:2210.07739.
1370
+ [21] S.-P. Li and X.-J. Xu, Dark matter produced from right-handed neutrinos,
1371
+ arXiv:2212.09109.
1372
+ [22] S.-P. Li, Strong scattering from decay for dark matter freeze-in, arXiv:2211.16802.
1373
+ [23] J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys.
1374
+ Rev. Lett. 88 (2002) 091304, [hep-ph/0106249].
1375
+ [24] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, Freeze-In Production of FIMP
1376
+ Dark Matter, JHEP 03 (2010) 080, [arXiv:0911.1120].
1377
+ [25] N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, and V. Vaskonen, The Dawn of
1378
+ FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017),
1379
+ no. 27 1730023, [arXiv:1706.07442].
1380
+ – 21 –
1381
+
1382
+ [26] L. Darm´e, A. Hryczuk, D. Karamitros, and L. Roszkowski, Forbidden frozen-in dark matter,
1383
+ JHEP 11 (2019) 159, [arXiv:1908.05685].
1384
+ [27] D. Comelli and J. R. Espinosa, Bosonic thermal masses in supersymmetry, Phys. Rev. D 55
1385
+ (1997) 6253–6263, [hep-ph/9606438].
1386
+ [28] E. Braaten and R. D. Pisarski, Soft Amplitudes in Hot Gauge Theories: A General Analysis,
1387
+ Nucl. Phys. B 337 (1990) 569–634.
1388
+ [29] J. Frenkel and J. C. Taylor, High Temperature Limit of Thermal QCD, Nucl. Phys. B 334
1389
+ (1990) 199–216.
1390
+ [30] E. Braaten and R. D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys.
1391
+ Rev. D 45 (1992), no. 6 R1827.
1392
+ [31] M. E. Carrington, D.-f. Hou, and M. H. Thoma, Equilibrium and nonequilibrium hard
1393
+ thermal loop resummation in the real time formalism, Eur. Phys. J. C 7 (1999) 347–354,
1394
+ [hep-ph/9708363].
1395
+ [32] M. Bellac, Thermal Field Theory. Cambridge University Press, 2000.
1396
+ [33] H. A. Weldon, Effective Fermion Masses of Order gT in High Temperature Gauge Theories
1397
+ with Exact Chiral Invariance, Phys. Rev. D 26 (1982) 2789.
1398
+ [34] E. Braaten, R. D. Pisarski, and T.-C. Yuan, Production of Soft Dileptons in the Quark -
1399
+ Gluon Plasma, Phys. Rev. Lett. 64 (1990) 2242.
1400
+ [35] A. Peshier and M. H. Thoma, Quark dispersion relation and dilepton production in the quark
1401
+ gluon plasma, Phys. Rev. Lett. 84 (2000) 841–844, [hep-ph/9907268].
1402
+ [36] C. P. Kiessig, M. Plumacher, and M. H. Thoma, Decay of a Yukawa fermion at finite
1403
+ temperature and applications to leptogenesis, Phys. Rev. D 82 (2010) 036007,
1404
+ [arXiv:1003.3016].
1405
+ [37] P. B. Arnold, G. D. Moore, and L. G. Yaffe, Effective kinetic theory for high temperature
1406
+ gauge theories, JHEP 01 (2003) 030, [hep-ph/0209353].
1407
+ [38] D. J. H. Chung, E. W. Kolb, and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1998)
1408
+ 023501, [hep-ph/9802238].
1409
+ [39] D. J. H. Chung, P. Crotty, E. W. Kolb, and A. Riotto, On the Gravitational Production of
1410
+ Superheavy Dark Matter, Phys. Rev. D 64 (2001) 043503, [hep-ph/0104100].
1411
+ [40] H. A. Weldon, Simple Rules for Discontinuities in Finite Temperature Field Theory, Phys.
1412
+ Rev. D 28 (1983) 2007.
1413
+ [41] S.-P. Li and X.-J. Xu, Neutrino Magnetic Moments Meet Precision Neff Measurements,
1414
+ arXiv:2211.04669.
1415
+ [42] C. Kiessig and M. Plumacher, Hard-Thermal-Loop Corrections in Leptogenesis I:
1416
+ CP-Asymmetries, JCAP 07 (2012) 014, [arXiv:1111.1231].
1417
+ [43] C. Kiessig and M. Plumacher, Hard-Thermal-Loop Corrections in Leptogenesis II: Solving
1418
+ the Boltzmann Equations, JCAP 09 (2012) 012, [arXiv:1111.1235].
1419
+ [44] M. Drewes and J. U. Kang, The Kinematics of Cosmic Reheating, Nucl. Phys. B 875 (2013)
1420
+ 315–350, [arXiv:1305.0267]. [Erratum: Nucl.Phys.B 888, 284–286 (2014)].
1421
+ [45] P. Elmfors, K. Enqvist, G. Raffelt, and G. Sigl, Neutrinos with magnetic moment:
1422
+ Depolarization rate in plasma, Nucl. Phys. B 503 (1997) 3–23, [hep-ph/9703214].
1423
+ – 22 –
1424
+
1425
+ [46] A. Ayala, J. C. D’Olivo, and M. Torres, Right-handed neutrino production in dense and hot
1426
+ plasmas, Nucl. Phys. B 564 (2000) 204–222, [hep-ph/9907398].
1427
+ [47] A. Boyarsky, V. Cheianov, O. Ruchayskiy, and O. Sobol, Evolution of the Primordial Axial
1428
+ Charge across Cosmic Times, Phys. Rev. Lett. 126 (2021), no. 2 021801,
1429
+ [arXiv:2007.13691].
1430
+ [48] L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369–2374.
1431
+ [49] D. Notzold and G. Raffelt, Neutrino Dispersion at Finite Temperature and Density, Nucl.
1432
+ Phys. B 307 (1988) 924–936.
1433
+ [50] J.-P. Blaizot and E. Iancu, A Boltzmann equation for the QCD plasma, Nucl. Phys. B 557
1434
+ (1999) 183–236, [hep-ph/9903389].
1435
+ [51] J.-P. Blaizot and E. Iancu, The Quark gluon plasma: Collective dynamics and hard thermal
1436
+ loops, Phys. Rept. 359 (2002) 355–528, [hep-ph/0101103].
1437
+ [52] G. B´elanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, micrOMEGAs5.0 :
1438
+ Freeze-in, Comput. Phys. Commun. 231 (2018) 173–186, [arXiv:1801.03509].
1439
+ [53] T. Bringmann, S. Heeba, F. Kahlhoefer, and K. Vangsnes, Freezing-in a hot bath:
1440
+ resonances, medium effects and phase transitions, JHEP 02 (2022) 110, [arXiv:2111.14871].
1441
+ [54] P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl.
1442
+ Phys. B 360 (1991) 145–179.
1443
+ [55] Particle Data Group Collaboration, R. L. Workman et al., Review of Particle Physics,
1444
+ PTEP 2022 (2022) 083C01.
1445
+ [56] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters,
1446
+ Astron. Astrophys. 641 (2020) A6, [arXiv:1807.06209]. [Erratum: Astron.Astrophys. 652,
1447
+ C4 (2021)].
1448
+ [57] A. D. Dolgov and F. L. Villante, BBN bounds on active sterile neutrino mixing, Nucl. Phys.
1449
+ B 679 (2004) 261–298, [hep-ph/0308083].
1450
+ [58] S. Gabriel and S. Nandi, A New two Higgs doublet model, Phys. Lett. B 655 (2007) 141–147,
1451
+ [hep-ph/0610253].
1452
+ [59] S. M. Davidson and H. E. Logan, Dirac neutrinos from a second Higgs doublet, Phys. Rev. D
1453
+ 80 (2009) 095008, [arXiv:0906.3335].
1454
+ [60] S.-P. Li, X.-Q. Li, X.-S. Yan, and Y.-D. Yang, Effective neutrino number shift from
1455
+ keV-vacuum neutrinophilic 2HDM, arXiv:2202.10250.
1456
+ [61] M. J. Baker et al., The Coannihilation Codex, JHEP 12 (2015) 120, [arXiv:1510.03434].
1457
+ [62] R. Mandal, Fermionic dark matter in leptoquark portal, Eur. Phys. J. C 78 (2018), no. 9
1458
+ 726, [arXiv:1808.07844].
1459
+ [63] M. J. Baker, D. A. Faroughy, and S. Trifinopoulos, Collider signatures of coannihilating dark
1460
+ matter in light of the B-physics anomalies, JHEP 11 (2021) 084, [arXiv:2109.08689].
1461
+ [64] G. Belanger et al., Leptoquark manoeuvres in the dark: a simultaneous solution of the dark
1462
+ matter problem and the RD(∗) anomalies, JHEP 02 (2022) 042, [arXiv:2111.08027].
1463
+ [65] B. Belfatto, D. Buttazzo, C. Gross, P. Panci, A. Strumia, N. Vignaroli, L. Vittorio, and
1464
+ R. Watanabe, Dark Matter abundance via thermal decays and leptoquark mediators, JHEP
1465
+ 06 (2022) 084, [arXiv:2111.14808].
1466
+ – 23 –
1467
+
1468
+ [66] T. Hambye, M. H. G. Tytgat, J. Vandecasteele, and L. Vanderheyden, Dark matter direct
1469
+ detection is testing freeze-in, Phys. Rev. D 98 (2018), no. 7 075017, [arXiv:1807.05022].
1470
+ [67] C. A. Arg¨uelles, A. Diaz, A. Kheirandish, A. Olivares-Del-Campo, I. Safa, and A. C.
1471
+ Vincent, Dark matter annihilation to neutrinos, Rev. Mod. Phys. 93 (2021), no. 3 035007,
1472
+ [arXiv:1912.09486].
1473
+ [68] L. S. Miranda, S. Basegmez du Pree, K. C. Y. Ng, A. Cheek, and C. Arina, Towards
1474
+ detecting super-GeV dark matter via annihilation to neutrinos, arXiv:2211.12235.
1475
+ [69] D. Grasso and H. R. Rubinstein, Magnetic fields in the early universe, Phys. Rept. 348
1476
+ (2001) 163–266, [astro-ph/0009061].
1477
+ [70] R. Durrer and A. Neronov, Cosmological Magnetic Fields: Their Generation, Evolution and
1478
+ Observation, Astron. Astrophys. Rev. 21 (2013) 62, [arXiv:1303.7121].
1479
+ [71] C. Giunti and A. Studenikin, Neutrino electromagnetic interactions: a window to new
1480
+ physics, Rev. Mod. Phys. 87 (2015) 531, [arXiv:1403.6344].
1481
+ [72] SPT-3G Collaboration, B. A. Benson et al., SPT-3G: A Next-Generation Cosmic
1482
+ Microwave Background Polarization Experiment on the South Pole Telescope, Proc. SPIE
1483
+ Int. Soc. Opt. Eng. 9153 (2014) 91531P, [arXiv:1407.2973].
1484
+ [73] CMB-S4 Collaboration, K. N. Abazajian et al., CMB-S4 Science Book, First Edition,
1485
+ arXiv:1610.02743.
1486
+ [74] Simons Observatory Collaboration, M. H. Abitbol et al., The Simons Observatory:
1487
+ Astro2020 Decadal Project Whitepaper, Bull. Am. Astron. Soc. 51 (2019) 147,
1488
+ [arXiv:1907.08284].
1489
+ [75] D. Curtin et al., Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics
1490
+ Case, Rept. Prog. Phys. 82 (2019), no. 11 116201, [arXiv:1806.07396].
1491
+ [76] G. B´elanger et al., LHC-friendly minimal freeze-in models, JHEP 02 (2019) 186,
1492
+ [arXiv:1811.05478].
1493
+ [77] J. Alimena et al., Searching for long-lived particles beyond the Standard Model at the Large
1494
+ Hadron Collider, J. Phys. G 47 (2020), no. 9 090501, [arXiv:1903.04497].
1495
+ [78] J. C. Helo, M. Hirsch, and S. Kovalenko, Heavy neutrino searches at the LHC with displaced
1496
+ vertices, Phys. Rev. D 89 (2014) 073005, [arXiv:1312.2900]. [Erratum: Phys.Rev.D 93,
1497
+ 099902 (2016)].
1498
+ [79] Y. Bai and J. Berger, Lepton Portal Dark Matter, JHEP 08 (2014) 153, [arXiv:1402.6696].
1499
+ – 24 –
1500
+
2tE1T4oBgHgl3EQfAALp/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dE1T4oBgHgl3EQf6gWk/content/2301.03524v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:063e23abac5a6d88f72e04705382f37bd0b03f0f86a38d3c40ad86ed834139cb
3
+ size 6367334
5dE1T4oBgHgl3EQf6gWk/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68b6e3b8f152b38c8555ca872781c203e325a4a4a7294d46fc4632fe78807686
3
+ size 207732
5dFKT4oBgHgl3EQf-S4-/content/2301.11957v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b845ced447aeefe24dbc9040bd283f65cb86633dd21c0a3c22f9d797b0139f8
3
+ size 151011
5dFKT4oBgHgl3EQf-S4-/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15590b91ebdc27cdf8d9d9e7023438ce79b21ffc7d46c468426496920094ca42
3
+ size 1114157
5dFKT4oBgHgl3EQf-S4-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0adaa626cf12eac50f18dc971e782770cb957c35415d37ce16de97c88b69656
3
+ size 48113
69E2T4oBgHgl3EQfPQYR/content/tmp_files/2301.03756v1.pdf.txt ADDED
@@ -0,0 +1,1100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03756v1 [math.PR] 10 Jan 2023
2
+ Brownian Hitting to Spheres
3
+ Yuji Hamana and Hiroyuki Matsumoto
4
+ Abstract
5
+ Let Sd−1
6
+ r
7
+ be the sphere in Rd whose center is the origin and the radius
8
+ is r, and σr be the first hitting time to it of the standard Brownian motion
9
+ {Bt}t≧0, possibly with constant drift. The aim of this article is to show
10
+ explicit formulae by means of spherical harmonics for the density of the
11
+ joint distribution of (σr, Bσr) and to study the asymptotic behavior of the
12
+ distribution function. 1
13
+ 1.
14
+ Introduction and main results
15
+ For d ≧ 2, we consier a standard d-dimensional Brownian motion B = {Bt}t≧0
16
+ starting from a fixed point (a, 0, ..., 0), where we assume a > 0, defined on a
17
+ probability space (Ω, F, Pa). Letting Sd−1
18
+ r
19
+ be the sphere in Rd with radius r and
20
+ centered at the origin, we are concerned with the joint distribution of the first
21
+ hitting time σr of B to Sd−1
22
+ r
23
+ and the hitting place Bσr.
24
+ The aim of this article is to show an explicit expression for the density of the
25
+ joint distribution by means of the spherical harmonics, that is, the Gegenbauer
26
+ and the Chebyshev polynomials. As an application, we study the asymptotic
27
+ behavior of the tail probability Pa(t < σr < ∞, Bσr ∈ A), A ⊂ Sd−1
28
+ b
29
+ when a > r.
30
+ The joint density for the Brownian motion with constsnt drift is also investigated.
31
+ Several authors have studied the joint distribution. It should be first noted
32
+ that in the exit problem, that is the case of a < r, the joint density is given
33
+ by a solution for a heat equation with the Dirichlet boundary condition. See
34
+ Aizenman-Simon [1] for general discussion and Hsu [9] for an explicit expression
35
+ in the case of spheres. Wendel [19] has shown a nice result on the expectations
36
+ of functions of (σb, Bσb) by using the spherical harmonics.
37
+ See Gzyl [4] and
38
+ references therein for a recent study on this direction and Uchiyama [17, 18] on
39
+ the asymptotic behavior of the distribution functions and its application to the
40
+ Wiener sausage. A similar problem for a Brownian motion with drift has been
41
+ discussed in Yin-Wang [20].
42
+ We proceed to a different way. Starting from the skew-product representation
43
+ of Brownian motion, we use the fact due to Mijatovic-Mramor-Uribe Bravo [13]
44
+ that the projections of the Brownian motion on the sphere Sd−1 = Sd−1
45
+ 1
46
+ define
47
+ diffusion processes. We see that, for one-dimensional projections, the eigenvalues
48
+ 12020 Mathematics Subject Classification: 60J65
49
+ keywords : Brownian motion, hitting times and places, spherical harmonics, one-dimensional
50
+ diffusion,
51
+ 1
52
+
53
+ and the eigenfunctions for the generators are explicitly given by the spherical
54
+ harmonics.
55
+ Combining these facts with the rotation invariance of the probability law of
56
+ Brownian motion, we show the following. As usual we denote by Iν and Kν the
57
+ modified Bessel functions. We also denote by Cν
58
+ n and Tn the Gegenbauer and the
59
+ Chebyshev polynomials, respectively.
60
+ Theorem 1.1. Denote by Ea the expectation with respect to Pa. Then, for λ > 0
61
+ and u ∈ Rd, we have
62
+ Ea[e−λσre⟨u,Bσr ⟩] =L0(a
63
+
64
+ 2λ)
65
+ L0(r
66
+
67
+ 2λ)
68
+
69
+ S1 er⟨u,z⟩ds(z)
70
+ + 2
71
+
72
+
73
+ n=1
74
+ Ln(a
75
+
76
+ 2λ)
77
+ Ln(r
78
+
79
+ 2λ)
80
+
81
+ S1 er⟨u,z⟩Tn(z1)ds(z)
82
+ when d = 2 and
83
+ Ea
84
+
85
+ e−λσre⟨u,Bσr ⟩I{σr<∞}
86
+
87
+ = 1
88
+ ν
89
+
90
+
91
+ n=0
92
+ (n + ν)a−νLn+ν(a
93
+
94
+ 2λ)
95
+ r−νLn+ν(r
96
+
97
+ 2λ)
98
+
99
+ Sd−1 er⟨u,z⟩Cν
100
+ n(z1)ds(z)
101
+ when d ≧ 3, where ds is the uniform probability measure on Sd−1, and L = I for
102
+ a < r and L = K for a > r.
103
+ Setting u = 0 and noting that the surface integrals of Tn(z1) and Cν
104
+ n(z1) vanish
105
+ for n ≧ 1, we recover the well known formula for Ea[e−λσr] (cf. [2]).
106
+ We can invert the joint Laplace transform and obtain the following. We denote
107
+ by ρ(ν)
108
+ a,r(t) the probability density of the first hitting time to r of a Bessel process
109
+ with index ν starting from a.
110
+ Theorem 1.2. For t > 0 and z ∈ Rd with |z| = r, we have
111
+ Pa(σr ∈ dt, Bσr ∈ dz) = ρ(0)
112
+ a,r(t)dtdsr(z) + 2
113
+
114
+
115
+ n=1
116
+ �a
117
+ r
118
+ �nρ(n)
119
+ a,r(t)Tn
120
+ �z1
121
+ r
122
+
123
+ dtdsr(z)
124
+ when d = 2 and
125
+ Pa(σr ∈ dt,Bσr ∈ dz)
126
+ = 1
127
+ ν
128
+
129
+
130
+ n=0
131
+
132
+ n + ν
133
+ ��a
134
+ r
135
+ �nρ(n+ν)
136
+ a,r
137
+ (t)Cν
138
+ n
139
+ �z1
140
+ r
141
+
142
+ dtdsr(z)
143
+ when d ≧ 3, where ν = d−2
144
+ 2
145
+ and dsr is the uniform probability measire on Sd−1
146
+ r
147
+ .
148
+ The authors [8] have shown another expression for the joint Laplace transform,
149
+ from which we can prove Theorem 1.2.
150
+ The rest of this article is organized as follows. In the next Section 2 we study
151
+ the first coordinate or the one-dimensional projection of the Brownian motion
152
+ on Sd−1.
153
+ We give proofs of the theorems mentioned above in Section 3 and,
154
+ the asymptotic behavior of Pa(t < σr < ∞, Bσr ∈ A), A ⊂ Sd−1
155
+ r
156
+ , as t → ∞
157
+ is investigated in Section 4. In the final Section 5, we deal with the Brownian
158
+ motion with constant drift.
159
+ 2
160
+
161
+ 2.
162
+ Projection of Brownian motion on sphere
163
+ Let θ = {θ(t)}t≧0 be a Brownian motion on Sd−1, which corresponds to the
164
+ Laplace-Beltrami operator on Sd��1, endowed with the usual Euclidean metric.
165
+ Mijatovic-Mramor-Uribe Bravo [13] has shown that the projections of θ are dif-
166
+ fusion processes which are realized as unique solutions of stochastic differential
167
+ equations. This fact, especially on the one-dimensional projections, is fundamen-
168
+ tal in our argument and we recall the result in this special case.
169
+ Proposition 2.1. The first coordinate {θ1(t)}t≧0 of θ is a diffusion process on
170
+ (−1, 1) whose generator is
171
+ Gd = 1
172
+ 2(1 − x2) d2
173
+ dx2 − d − 1
174
+ 2
175
+ x d
176
+ dx.
177
+ We see easily that the boundaries ±1 are regular and reflecting when d = 2
178
+ and they are entrance ones when d ≧ 3. The eigenvalues and the eigenfunctions of
179
+ Gd are explicitly given and we have the eigenfunction expansion for the transition
180
+ densities.
181
+ Since these play important roles in the following sections, we now
182
+ recall some fundamental facts. For details of the Chebyshev and the Gegenbauer
183
+ polynomials below, we refer to [3, 12, 14].
184
+ Write
185
+ Gd =
186
+ 1
187
+ 2(1 − x2)
188
+ d−3
189
+ 2
190
+ d
191
+ dx
192
+
193
+ 1
194
+ (1 − x2)− d−1
195
+ 2
196
+ d
197
+ dx
198
+
199
+ and let dm(x) = 2(1 − x2)
200
+ d−3
201
+ 2 dx be the canonical (speed) measure. Note that m
202
+ is a finite measure on (−1, 1). Moreover, we take
203
+ s(x) =
204
+ � x
205
+ 0
206
+ (1 − y2)− d−1
207
+ 2 dy
208
+ as the scale function.
209
+ When d = 2, s(±1) are both finite and the boundaries are regular.
210
+ The
211
+ Chebyshev polynomial Tn(x) = cos(n arccos x) satisfies
212
+ G2Tn = −n2
213
+ 2 Tn
214
+ and
215
+ d
216
+ dsTn(±1) = 0.
217
+ Moreover the orthogonality relation is given by
218
+ � 1
219
+ −1
220
+ Tm(x)Tn(x)
221
+ dx
222
+
223
+ 1 − x2 =
224
+
225
+
226
+
227
+
228
+
229
+ 0
230
+ m ̸= n
231
+ π
232
+ 2
233
+ m = n ̸= 0
234
+ π
235
+ m = n = 0.
236
+ Hence, setting
237
+ φ0
238
+ 0(x) =
239
+ 1
240
+
241
+ 2π,
242
+ φ0
243
+ n(x) =
244
+ 1
245
+ √πTn(x)
246
+ (n ≧ 1),
247
+ 3
248
+
249
+ we see that {φ0
250
+ n}∞
251
+ n=0 gives rise to an orthonormal basis of L2(dm) and that the
252
+ transition density p2(t, x, y) of {θ1(t)} with respect to dm is given by
253
+ p2(t, x, y) = 1
254
+ 2π + 1
255
+ π
256
+
257
+
258
+ n=1
259
+ e− 1
260
+ 2n2tTn(x)Tn(y).
261
+ (2.1)
262
+ For d ≧ 3, the eigenfunctions are given by the Gegenbauer polynomials Cν
263
+ n
264
+ defined by
265
+
266
+
267
+ n=0
268
+ snCν
269
+ n(x) =
270
+ 1
271
+ (1 + s2 − 2sx)ν ,
272
+ |s| < 1,
273
+ where ν = (d − 2)/2. In fact, we have
274
+ GdCν
275
+ n = −1
276
+ 2n(n + 2ν)Cν
277
+ n
278
+ and
279
+ d
280
+ dsCν
281
+ n(±1) = 0
282
+ and the orthogonality relation
283
+ � 1
284
+ −1
285
+
286
+ m(x)Cν
287
+ n(x)(1 − x2)ν− 1
288
+ 2dx = δm,n
289
+ πΓ(n + 2ν)
290
+ 22ν−1(n + ν)n!(Γ(ν))2.
291
+ Hence, setting
292
+ φν
293
+ n(x) =
294
+ � (n + ν)n!
295
+ πΓ(n + 2ν)
296
+ � 1
297
+ 22ν−1Γ(ν)Cν
298
+ n(x),
299
+ we obtain an orthonormal basis {φν
300
+ n}∞
301
+ n=0 of L2(dm) and an eigenfunction expsn-
302
+ sion for the transition density pd(t, x, y) of {θ1(t)} with respect to dm,
303
+ pd(t, x, y) =
304
+
305
+
306
+ n=0
307
+ e− 1
308
+ 2n(n+2ν)tφν
309
+ n(x)φν
310
+ n(y).
311
+ (2.2)
312
+ 3.
313
+ Proof of Theorems 1.1 and 1.2
314
+ We use the same notation as those in Section 1 and start the argument from
315
+ the skew-product representation of the standard Brownian motion B = {Bt}t≧0:
316
+ there exists a d-dimensional Bessel process R = {Rt}t≧0 (with index ν = (d−2)/2)
317
+ and a Brownian motion θ = {θ(t)}t≧0 on Sd−1, independent of R, such that
318
+ Bt = Rtθ(Ξt),
319
+ Ξt =
320
+ � t
321
+ 0
322
+ ds
323
+ R2s
324
+ .
325
+ B0 = (a, 0, ..., 0) means R0 = a and θ(0) = (1, 0, ..., 0). By the independence of
326
+ R and θ, we have
327
+ Ea[e−λσre⟨u,Bσr ⟩] = E(ν)
328
+ a [e−λτrEa[er⟨u,θ(t)⟩]
329
+ ���
330
+ t=Ξτr
331
+ ],
332
+ where E(ν)
333
+ a [ · ] denotes the expectation with respect to the probability law of R
334
+ and τr is the first hitting time of R to r.
335
+ 4
336
+
337
+ First we prove the theorems when d = 2. Writing θ(t) = (θ1(t), θ2(t)) and
338
+ u = (u1, u2), we have by the rotation invariance of the law of standard Brownian
339
+ motion
340
+ Ea[er⟨u,θ(t)⟩] = Ea[eru1θ1(t)Ea[eru2θ2(t)|θ1(t)]]
341
+ =
342
+ � 1
343
+ −1
344
+ eru1y 1
345
+ 2
346
+
347
+ eru2√
348
+ 1−y2 + e−ru2√
349
+ 1−y2�
350
+ P(θ1(t) ∈ dy).
351
+ Hence formula (2.1) implies
352
+ Ea[er⟨u,θ(t)⟩]
353
+ = 1
354
+
355
+ � 1
356
+ −1
357
+ eru1y 1
358
+ 2
359
+
360
+ eru2√
361
+ 1−y2 + e−ru2√
362
+ 1−y2�
363
+ 2dy
364
+
365
+ 1 − y2
366
+ + 1
367
+ π
368
+
369
+
370
+ n=1
371
+ e− 1
372
+ 2n2t
373
+ � 1
374
+ −1
375
+ eru1y 1
376
+ 2
377
+
378
+ eru2√
379
+ 1−y2 + e−ru2√
380
+ 1−y2�
381
+ Tn(y)
382
+ 2dy
383
+
384
+ 1 − y2
385
+ since Tn(1) = 1. The change of order of the intengal and the sum is easily justified
386
+ because |Tn(y)| ≦ 1. We can write the integrals on the right hand side as surface
387
+ integrals and obtain
388
+ Ea[er⟨u,θ(t)⟩] =
389
+
390
+ S1 er⟨u,z⟩ds(z) + 2
391
+
392
+
393
+ n=1
394
+ e− 1
395
+ 2n2t
396
+
397
+ S1 er⟨u,z⟩Tn(z1)ds(z).
398
+ Now, recalling the formula ([2, p.407])
399
+ E(0)
400
+ a [e−λτr− 1
401
+ 2 n2Ξτr] = Ln(a
402
+
403
+ 2λ)
404
+ Ln(r
405
+
406
+ 2λ)
407
+ ,
408
+ (3.1)
409
+ we obtain the assertion of Theorem 1.1 when d = 2.
410
+ Next note another formula ([2, p.398])
411
+ E(µ)
412
+ a [e−λτr] =
413
+ � ∞
414
+ 0
415
+ e−λtρ(µ)
416
+ a,r(t)dt = a−µLµ(a
417
+
418
+ 2λ)
419
+ r−µLµ(r
420
+
421
+ 2λ)
422
+ .
423
+ Then we obtain Theorem 1.2 when d = 2. Again we can easily show the absolute
424
+ convergence and justify the change of the sum and the integrals in t.
425
+ Next we prove the theorems in the case of d ≧ 3, when, for the spherical
426
+ Brownian motion θ, the conditional distribution of (θ2(t), ..., θd(t)) given θ1(t) =
427
+ ξ1 is the uniform distribution on the sphere Sd−2
428
+
429
+ 1−ξ2
430
+ 1 with raduis
431
+
432
+ 1 − ξ2
433
+ 1. Hence,
434
+ writing u = (u1, u′), θ = (θ1, θ′) ∈ R × Rd−1, we have
435
+ Ea[e⟨u,rθ(t)⟩] = Ea
436
+
437
+ eru1θ1(t)
438
+
439
+ Sd−2 er√
440
+ 1−θ1(t)2⟨u′,ξ′⟩ ds(ξ′)
441
+
442
+ .
443
+ 5
444
+
445
+ By using the facts on the Gegenbauer polynomials given in the previous section
446
+ and writing the double integral as a surface integral, we obtain, from (2.2)
447
+ Ea[e⟨u,rθ(t)⟩]
448
+ =
449
+
450
+
451
+ n=0
452
+ e− 1
453
+ 2n(n+2ν)tφν
454
+ n(1)
455
+ � 1
456
+ −1
457
+ φν
458
+ n(ξ1)eru1ξ12(1 − ξ2
459
+ 1)
460
+ d−3
461
+ 2 dξ1
462
+ ×
463
+
464
+ Sd−2 er√
465
+ 1−ξ2
466
+ 1⟨u′,ξ′⟩ vol(dξ′)
467
+ vol(Sd−2)
468
+ =
469
+
470
+
471
+ n=0
472
+ (n + ν)22ν−1Γ(ν)2 vol(Sd−1)
473
+ πΓ(2ν) vol(Sd−2)
474
+ e− 1
475
+ 2 n(n+2ν)t
476
+
477
+ Sd−1 Cν
478
+ n(w1)er⟨u,w⟩ds(w).
479
+ We have used the formula Cν
480
+ n(1) =
481
+ �2ν+n−1
482
+ n
483
+
484
+ = Γ(n + 2ν)/(n!Γ(2ν)), and also the
485
+ estimate
486
+ max
487
+ |y|≦1 |Cν
488
+ n(y)| = Cν
489
+ n(1) ≦ Cn2ν−1
490
+ (3.2)
491
+ for some constant C (see, e.g., [12, pp.218, 225]) to justify the change of the order
492
+ of the sum and the integration.
493
+ Moreover, recalling the foumulae
494
+ vol(Sd−1) = 2π
495
+ d
496
+ 2
497
+ Γ( d
498
+ 2)
499
+ and
500
+ Γ(2ν) = 22ν
501
+ 2√πΓ(ν)Γ(ν + 1
502
+ 2),
503
+ we obtain
504
+ Ea[e⟨u,rθ(t)⟩] = 1
505
+ ν
506
+
507
+
508
+ n=0
509
+ (n + ν)e− 1
510
+ 2n(n+2ν)t
511
+
512
+ Sd−1 Cν
513
+ n(w1)er⟨u,w⟩ds(w).
514
+ Now, using (3.1), we obtain the assertion of Theorem 1.1. Theorem 1.2 is proven
515
+ in the same way as in the case of d = 2.
516
+ 4.
517
+ Asymptotic behavior of distribution function
518
+ In this section, assuming a > r and applying Theorem 1.2, we study the asymp-
519
+ totic behavior of the distribution function Pa(t < σr < ∞, Bσr ∈ A) as t → ∞
520
+ for a fixed Borel subset A of the sphere Sd−1
521
+ r
522
+ . We use the same notation as in the
523
+ previous sections.
524
+ In a course of study on the first hitting times of Bessel processes, the authors
525
+ [6, 7] have shown the following.
526
+ Consider a Bessel process with index ν and
527
+ starting from a defined on some probability space (Ω′, F ′, Q(ν)
528
+ a ) and let τr be its
529
+ hitting time to r. Then the asymptotic behavior of Q(ν)
530
+ a (t < τr < ∞) when a > r
531
+ is given by
532
+ Q(0)
533
+ a (t < τr < ∞) = 2 log(a/r)
534
+ log t
535
+ (1 + o(1))
536
+ (4.1)
537
+ when d = 2 and
538
+ Q(ν)
539
+ a (t < τr < ∞) = κ(ν)t−ν(1 + o(1)),
540
+ (4.2)
541
+ 6
542
+
543
+ when d ≧ 3, where the constant κ(ν) is given by
544
+ κ(ν) =
545
+ 1
546
+ Γ(ν + 1)
547
+ � r3
548
+ 2a
549
+ ��a
550
+ r
551
+ �ν
552
+
553
+ �a
554
+ r
555
+ �−ν�
556
+ .
557
+ Applying these results with some estimates for the remainder terms, we show
558
+ the following.
559
+ Theorem 4.1. For any Borel subset A of Sd−1
560
+ r
561
+ ,
562
+ Pa(t < σr < ∞, Bσr ∈ A) = 2 log(a/r)
563
+ log t
564
+ sr(A)(1 + o(1))
565
+ holds as t → ∞ when d = 2 and
566
+ Pa(t < σr < ∞, Bσr ∈ A) = κ(ν)sr(A)t−ν(1 + o(1))
567
+ holds when d ≧ 3.
568
+ Remark 4.2. For the distribition function Q(ν)
569
+ a (t < τr < ∞) of the first hitting
570
+ time of the Bessel process, Hamana et al. [5] has shown a precise asymptotic
571
+ expansion and, using the results, we can show asymptotic expansions for our
572
+ joint distribution functions. The details will be published elsewhere.
573
+ For a proof of Theorem 4.1, we show the following estimate for the tail prob-
574
+ ability of σr.
575
+ Lemma 4.3. Assume d ≧ 3. Then, for t > 0, we have
576
+ Pa(t < σr < ∞) ≦
577
+ r2ν
578
+ 2νΓ(ν + 1)tν .
579
+ Proof. Let Lr be the last hitting time of the Brownian motion B to the spehere
580
+ Sd−1
581
+ r
582
+ :
583
+ Lr = sup{s > 0 : |Bs| = r}.
584
+ As usual we set Lr = 0 when B does not hit Sd−1
585
+ r
586
+ . Then we have
587
+ Pa(t < σr < ∞) ≦ Pa(t < Lr < ∞).
588
+ Denote by µr the equilibrium measure of the ball Br with radius r and centered
589
+ at the origin. Then it is well known ([16]) that
590
+ Pa(t < Lr < ∞) =
591
+ � ∞
592
+ t
593
+ ds
594
+
595
+ Rd
596
+ 1
597
+ (2πs)d/2e− |x−a|2
598
+ 2s dµr(x).
599
+ Recalling now that the capacity of Br is µr(Rd) = 2π
600
+ d
601
+ 2rd−2/Γ( d
602
+ 2 − 1), we see
603
+ Pa(t < Lr < ∞) ≦
604
+ � ∞
605
+ t
606
+ ds
607
+
608
+ Rd
609
+ 1
610
+ (2πs)d/2dµr(x) =
611
+ r2ν
612
+ 2νΓ(ν + 1)tν .
613
+ 7
614
+
615
+ Remark 4.4. For transient one-dimensional diffusion processes, the densities of
616
+ the last hitting times are written by means of the transition densities. This is
617
+ the case of the Bessel processes with dimensions d ≧ 3 and, moreover, we have
618
+ explicit expressions for the transition densities We can give another proof for
619
+ Lemma 4.3 by using these facts.
620
+ We can now give a proof of Theorem 4.1. Note that the infinite sum below
621
+ for the expression for the joint distribution is absoletely convergent.
622
+ For d = 2, we have by Theorem 1.2
623
+ Pa(t < σr < ∞, Bσr ∈ A) = Q(0)
624
+ a (τr > t)sb(A) + It,
625
+ where
626
+ It = 2
627
+
628
+
629
+ n=1
630
+ �a
631
+ r
632
+ �nQ(n)
633
+ a (t < τr < ∞)
634
+
635
+ A
636
+ Tn(z1
637
+ r )dsr(z).
638
+ Assume t > 1 and note |Tn(x)| = | cos(n arccos x)| ≦ 1. Then, by Lemma 4.3, we
639
+ get
640
+ |It| ≦ 2
641
+
642
+
643
+ n=1
644
+ �a
645
+ r
646
+ �n
647
+ r2n
648
+ 2nΓ(n + 1)tn ≦ 2
649
+ t
650
+
651
+
652
+ n=1
653
+ �ar
654
+ 2
655
+ �n 1
656
+ n! ≦ 2
657
+ t e
658
+ ar
659
+ 2
660
+ and, by (4.1), the assertion of Theorem 4.1.
661
+ For d ≧ 3, we have
662
+ Pa(t < σr < ∞, Bσr ∈ A) = Q(ν)
663
+ a (t < τr < ∞)sr(A) + Jt,
664
+ where
665
+ Jt = 1
666
+ ν
667
+
668
+
669
+ n=1
670
+ (n + ν)
671
+ �a
672
+ r
673
+ �nQ(n+ν)
674
+ a
675
+ (t < τr < ∞)
676
+
677
+ A
678
+
679
+ n(z1
680
+ r )dsr(z).
681
+ Hence, combining (3.2) with Lemma 4.3 and (4.2), we see Jt = O(t−1−ν) and the
682
+ assertion of Theorem 4.1.
683
+ 5.
684
+ Brownian motion with drift
685
+ Let B = {Bt}t≧0 be a standard d-dimensional Brownian motion starting from
686
+ x = (a, 0, ..., 0) as before and, for a constant vector v ∈ Rd, B(v) = {B(v)(t)}t≧0
687
+ be a Brownian motion with drift v defined by B(v)(t) = Bt + tv. We denote by
688
+ σ(v)
689
+ r
690
+ the first hitting time of B(v) to the sphere Sd−1
691
+ r
692
+ .
693
+ The Cameron-Martin theorem and the strong Markov property of Brownian
694
+ motion imply
695
+ Ea
696
+
697
+ e−λσ(v)
698
+ r e⟨u,B(v)(σ(v)
699
+ r
700
+ )⟩I{σ(v)
701
+ r
702
+ <∞}
703
+
704
+ = e−av1Ea
705
+
706
+ e−(λ+ |v|2
707
+ 2 )σre⟨u+v,Bσr ⟩I{σr<∞}
708
+
709
+ .
710
+ Hence we can apply Theorem 1.1 to the right hand side and obtain the following:
711
+ 8
712
+
713
+ Theorem 5.1. For λ > 0 and u ∈ Rd, we have
714
+ Ea
715
+
716
+ e−λσ(v)
717
+ r e⟨u,B(v)(σ(v)
718
+ r
719
+ )⟩I{σr<∞}
720
+
721
+ = e−av1
722
+
723
+ L0(a
724
+
725
+ 2λ + |v|2)
726
+ L0(r
727
+
728
+ 2λ + |v|2)
729
+
730
+ S1 er⟨u+v,z⟩ds(z)
731
+ + 2
732
+
733
+
734
+ n=1
735
+ Ln(a
736
+
737
+ 2λ + |v|2)
738
+ Ln(r
739
+
740
+ 2λ + |v|2)
741
+
742
+ S1 er⟨u+v,z⟩Tn(z1)ds(z)
743
+
744
+ when d = 2 and, when d ≧ 3,
745
+ Ea
746
+
747
+ e−λσ(v)
748
+ r e⟨u,B(v)(σ(v)
749
+ r
750
+ )⟩I{σr<∞}
751
+
752
+ = 1
753
+ ν e−av1
754
+
755
+
756
+ n=0
757
+ (n + ν)a−νLn+ν(a
758
+
759
+ 2λ + |v|2)
760
+ r−νLn+ν(r
761
+
762
+ 2λ + |v|2)
763
+
764
+ Sd−1 er⟨u+v,z⟩Cν
765
+ n(z1)ds(z).
766
+ We can invert the Laplace transform as before and show the following:
767
+ Theorem 5.2. For t > 0 and z ∈ Rd with |z| = r, we have
768
+ Pa(σ(v)
769
+ r
770
+ ∈ dt, B(v)(σ(v)
771
+ r ) ∈ dz) = e−av1+⟨v,z⟩e− |v|2
772
+ 2 tρ(0)
773
+ a,r(t)dtdsr(z)
774
+ + 2e−av1+⟨v,z⟩e− |v|2
775
+ 2 t
776
+
777
+
778
+ n=1
779
+ �a
780
+ r
781
+ �nρ(n)
782
+ a,r(t)Tn
783
+ �z1
784
+ r
785
+
786
+ dtdsr(z)
787
+ when d = 2 and, when d ≧ 3
788
+ Pa(σ(v)
789
+ r
790
+ ∈ dt, B(v)
791
+ σr ∈ dz)
792
+ = 1
793
+ ν e−av1+⟨v,z⟩e− |v|2
794
+ 2 t
795
+
796
+
797
+ n=0
798
+
799
+ n + ν
800
+ ��a
801
+ r
802
+ �nρ(n+ν)
803
+ a,r
804
+ (t)Cν
805
+ n
806
+ �z1
807
+ r
808
+
809
+ dtdsr(z).
810
+ Next, assuming a > r, we consider the asymptotic behavior of the distribution
811
+ function P(t < σ(v)
812
+ r
813
+ < ∞, B(v)(σ(v)
814
+ r ) ∈ A) as t → ∞ for a fixed A ⊂ Sd−1
815
+ r
816
+ . As is
817
+ easily guessed as earlier, the leading term is given by the first terms of the right
818
+ hand sides in Theorem 5.2.
819
+ Theorem 5.3. For any Borel subset A of Sd−1
820
+ r
821
+ , we have
822
+ Pa(t <σ(v)
823
+ r
824
+ < ∞, B(v)(σ(v)
825
+ r ) ∈ A)
826
+ = 2 log
827
+ �a
828
+ r
829
+
830
+ e−av1
831
+
832
+ A
833
+ e⟨v,z⟩dsr(z)
834
+ 1
835
+ t(log t)2e− |v|2
836
+ 2 t(1 + o(1))
837
+ when d = 2 and
838
+ Pa(t <σ(v)
839
+ r
840
+ < ∞, B(v)(σ(v)
841
+ r ) ∈ A)
842
+ = 2L(ν)
843
+ |v|2 e−av1
844
+
845
+ A
846
+ e⟨v,z⟩dsr(z)t−ν−1e− |v|2
847
+ 2 t(1 + o(1))
848
+ when d ≧ 3, where
849
+ L(ν) =
850
+ r2ν
851
+ 2νΓ(ν)
852
+
853
+ 1 −
854
+ �r
855
+ a
856
+ �2ν�
857
+ .
858
+ 9
859
+
860
+ In order to estimate the higher order terms, we recall from [8] the asymptotic
861
+ result for
862
+ H(ν)(t) :=
863
+ � ∞
864
+ t
865
+ e− |v|2
866
+ 2 sρ(ν)
867
+ a,r(s)ds,
868
+ where ρ(ν)
869
+ a,r is the density of the first hitting time τr to r of the Bessel process with
870
+ index ν starting from a: when d = 2,
871
+ H(ν)(t) = 2 log(a/r)
872
+ t(log t)2 e− |v|2
873
+ 2 t(1 + o(1))
874
+ and, when d ≧ 3
875
+ H(ν)(t) = 2L(ν)
876
+ |v|2tν+1e− |v|2
877
+ 2 t(1 + o(1)).
878
+ (5.1)
879
+ The assertion of Theorem 5.3 follows from the following lemma:
880
+ Lemma 5.4. There exists a constant C, depending on |v| and r, such that
881
+ H(ν)(t) ≦ Cr2ν
882
+ Γ(ν)
883
+ 1
884
+ (2t)ν+1e− |v|2
885
+ 2 t
886
+ holds for all d ≧ 3.
887
+ Proof. We use (5.1) when d = 3 and d = 4, and assume d ≧ 5 in the following.
888
+ Denote by Py the d-dimensional Wiener measure with starting point y and
889
+ use the same notation σr for the first hitting time to Sd−1
890
+ r
891
+ of the corresponding
892
+ Brownian motion. Moreover, let p(t, x, y) = (2πt)−d/2 exp(−|y − x|2/2t) be the
893
+ Gaussian kernel and set α = |v|2/2 for simplicity. Then we have
894
+ H(ν)(t) = α
895
+ � ∞
896
+ t
897
+ e−αsPa(t < σr ≦ s)ds
898
+ and, setting e = (1, 0, ..., 0),
899
+ Pa(t < σr ≦ s) ≦
900
+
901
+ Rd p(t, ae, y)Py(σr ≦ s − t)dy
902
+
903
+ 1
904
+ (2πt)d/2
905
+
906
+ Rd Py(σr ≦ s − t)dy
907
+ by the Markov property of Brownian motion. Hence we get, after a simple change
908
+ of variables,
909
+ H(ν)(t) ≦
910
+ αe−αt
911
+ (2πt)d/2
912
+ � ∞
913
+ 0
914
+ e−αsds
915
+
916
+ Rd Py(σr ≦ s)dy.
917
+ Now let Lr be the last hitting time of the Brownian motion to Sd−1
918
+ r
919
+ . Then we
920
+ have
921
+
922
+ Rd Py(σr ≦ s) =
923
+
924
+ Rd Py(0 < Lr ≦ s)dy +
925
+
926
+ Rd Py(σr ≦ s < Lr)dy.
927
+ (5.2)
928
+ 10
929
+
930
+ For the second term of the right hand side, Le Gall [11] has shown
931
+
932
+ Rd Py(σr ≦ s < Lr)dy =
933
+
934
+ Rd Py(σr ≦ s)Py(σr < ∞)dy,
935
+ (5.3)
936
+ which implies
937
+
938
+ Rd Py(σr ≦ s < Lr)dy ≦
939
+
940
+ Rd Py(σr < ∞)2dy.
941
+ (5.4)
942
+ This estimate is sufficient for our purpose. We give another elementary proof of
943
+ (5.3) after completing the proof of Lemma 5.4.
944
+ As in the previous section, we denote by µr the equilibrium measure of the
945
+ ball Br. Then we have, for the first term of (5.2),
946
+ � ∞
947
+ 0
948
+ e−αsds
949
+
950
+ Rd Py(0 < Lr ≦ s)dy =
951
+ � ∞
952
+ 0
953
+ e−αsds
954
+
955
+ Rd dy
956
+ � s
957
+ 0
958
+
959
+
960
+ Rd p(τ, y, z)dµr(z)
961
+ =
962
+ � ∞
963
+ 0
964
+ e−αsds
965
+ � s
966
+ 0
967
+
968
+
969
+ Rd dµr(z)
970
+ = 2πd/2rd−2
971
+ α2Γ( d
972
+ 2 − 1).
973
+ For the second term, we recall
974
+ Py(σr < ∞) = 1 ∧
975
+ � r
976
+ |y|
977
+ �d−2
978
+ .
979
+ Then, by (5.4), we get
980
+ � ∞
981
+ 0
982
+ e−αsds
983
+
984
+ Rd Py(σr < ∞)2dy = 1
985
+ α
986
+ � �
987
+ |y|≦r
988
+ dy +
989
+
990
+ |y|≧r
991
+ � r
992
+ |y|
993
+ �2(d−2)dy
994
+
995
+ = 2π
996
+ d
997
+ 2rd
998
+ αΓ( d
999
+ 2)
1000
+ �1
1001
+ d +
1002
+ 1
1003
+ d − 4
1004
+
1005
+ .
1006
+ Combining the above inequalities, we obtain the assertion of the lemma.
1007
+ Proof of (5.3). By the Markov property of Brownian motion, we have
1008
+
1009
+ Rd Py(σr ≦ s < Lr)dy =
1010
+
1011
+ Rd Ey[1{σr≦s}1{Lr>s}]dy
1012
+ =
1013
+
1014
+ Rd Ey[1{σr≦s}EBs[1{Lr>0}]]dy
1015
+ =
1016
+
1017
+ Rd dy
1018
+
1019
+ Rd Ey[1{σr≦s}PBs(Lr > 0)|Bs = x]p(s, y, x)dx
1020
+ =
1021
+
1022
+ Rd dx
1023
+
1024
+ Rd Px(Lr > 0)Py(σr ≦ s|Bs = x)p(s, y, x)dy.
1025
+ Note here that Px(Lr > 0) = Px(σr < ∞) and that the time reversal of a pinned
1026
+ Brownian motion is again a pinned Brownian motion. Then we obtain
1027
+
1028
+ Rd Py(σr ≦ s < Lr)dy =
1029
+
1030
+ Rd Px(σr < ∞)dx
1031
+
1032
+ Rd Px(σr ≦ s|Bs = y)p(s, x, y)dy
1033
+ =
1034
+
1035
+ Rd Px(σr < ∞)Px(σr ≦ s)dx.
1036
+ 11
1037
+
1038
+ Acknowledgment
1039
+ The authors were partially supported by JSPS KAKENHI Grant Numbers
1040
+ 20K03634 and 21K03298.
1041
+ References
1042
+ [1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for
1043
+ Schr¨odinger operators, Comm. Pure Appl. Math., XXXV (1982), 209–273.
1044
+ [2] A. N. Borodin and P. Salminen, Handbook of Brownian Motion – Facts and
1045
+ Formulae, 2nd Ed., Birkh¨user, 2002.
1046
+ [3] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,
1047
+ 8th Ed., Academic Press, 2015.
1048
+ [4] H. Gzyl, Hitting spheres with Brownian motion revisited, Statist. Probaba.
1049
+ Lett., 155 (2019) 108565.
1050
+ [5] Y. Hamana, R. Kaikura and K. Shinozaki, Asymptotic expansions for the
1051
+ first hitting times of Bessel processes, Opuscula Math., 41 (2021), 509–537.
1052
+ [6] Y. Hamana and H. Matsumoto, The probability distributions of the first
1053
+ hitting times of Bessel processes, Trans Amer. Math. Soc., 365 (2013), 5237–
1054
+ 5257.
1055
+ [7] Y. Hamana and H. Matsumoto, Asymptotics of the probability distributions
1056
+ of the first hitting times of Bessel processes, Electron. Commun. Probab. 19
1057
+ (2014), no. 5, 1–5.
1058
+ [8] Y. Hamana and H. Matsumoto, Hitting times to spheres of Brownian motions
1059
+ with and without drifts, Proc. Amer. Math. Soc., 144 no. 12 (2016), 5385–
1060
+ 5396.
1061
+ [9] P. Hsu, Brownian exit distribution from a ball, in Seminar on Stochastic
1062
+ Processes, 1985, Birkh¨aser, 1986.
1063
+ [10] K. Itˆo and H. P. McKean, Jr., Diffusion Processes and Their Sample Paths,
1064
+ Springer, 1974.
1065
+ [11] J.-F. Le Gall, Sur une conjecture de M.Kac, Probab. Theory Related Fields,
1066
+ 78 (1988), 389–402.
1067
+ [12] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for
1068
+ the Special Functions of Mathematical Physics, Springer, 1966.
1069
+ [13] A. Mijatovic, V. Mramor and G. Uribe Bravo, Projections of spherical Brow-
1070
+ nian motion, Electron. Commun. Probab. 23 (2018), no.52, 1–12.
1071
+ [14] C. M¨uller, Analysis of Spherical Symmetries in Euclidean Spaces, Springer,
1072
+ 1998.
1073
+ 12
1074
+
1075
+ [15] J. W. Pitman and M. Yor, Bessel processes and infinitely divisible laws, In
1076
+ D.Williams (ed.) Stochastic integrals, Lecture Notes in Math., 851, Springer,
1077
+ 1981.
1078
+ [16] S. C. Port and C. J. Stone, Brownian Motion and Classical Potential Theory,
1079
+ Academic Press, 1978.
1080
+ [17] K. Uchiyama, Density of space-time distribution of Brownian first hitting of
1081
+ a disc and a ball, Potential Anal., 44 (2016), 497–541.
1082
+ [18] K. Uchiyama, The Brownian hitting distributions in space-time of bounded
1083
+ sets and the expected volume of the Wiener sausage for a Brownian bridge,
1084
+ Proc. London Math. Soc. (3), 116 (2018), 575–628.
1085
+ [19] J. G. Wendel, Hitting spheres with Brownian motion, Ann. Probab., 8
1086
+ (1980), 164–169.
1087
+ [20] C. Yin and C. Wang, Hitting time and place of Brownian motion with drift,
1088
+ The Open Statistics and Probability Journal, 1 2009, 38–42.
1089
+ Yuji Hamana
1090
1091
+ Department of Mathematics
1092
+ University of Tsukuba
1093
+ 1-1-1 Tennodai, Tsukuba 305-8571, Japan
1094
+ Hiroyuki Matsumoto
1095
1096
+ Department of Mathematics
1097
+ Aoyama Gakuin University
1098
+ Fuchinobe 5-10-1, Sagamihara 252-5258, Japan
1099
+ 13
1100
+
69E2T4oBgHgl3EQfPQYR/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf,len=329
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
3
+ page_content='03756v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
4
+ page_content='PR] 10 Jan 2023 Brownian Hitting to Spheres Yuji Hamana and Hiroyuki Matsumoto Abstract Let Sd−1 r be the sphere in Rd whose center is the origin and the radius is r, and σr be the first hitting time to it of the standard Brownian motion {Bt}t≧0, possibly with constant drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
5
+ page_content=' The aim of this article is to show explicit formulae by means of spherical harmonics for the density of the joint distribution of (σr, Bσr) and to study the asymptotic behavior of the distribution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
6
+ page_content=' 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
7
+ page_content=' Introduction and main results For d ≧ 2, we consier a standard d-dimensional Brownian motion B = {Bt}t≧0 starting from a fixed point (a, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
8
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
9
+ page_content=', 0), where we assume a > 0, defined on a probability space (Ω, F, Pa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
10
+ page_content=' Letting Sd−1 r be the sphere in Rd with radius r and centered at the origin, we are concerned with the joint distribution of the first hitting time σr of B to Sd−1 r and the hitting place Bσr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
11
+ page_content=' The aim of this article is to show an explicit expression for the density of the joint distribution by means of the spherical harmonics, that is, the Gegenbauer and the Chebyshev polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
12
+ page_content=' As an application, we study the asymptotic behavior of the tail probability Pa(t < σr < ∞, Bσr ∈ A), A ⊂ Sd−1 b when a > r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
13
+ page_content=' The joint density for the Brownian motion with constsnt drift is also investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
14
+ page_content=' Several authors have studied the joint distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
15
+ page_content=' It should be first noted that in the exit problem, that is the case of a < r, the joint density is given by a solution for a heat equation with the Dirichlet boundary condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
16
+ page_content=' See Aizenman-Simon [1] for general discussion and Hsu [9] for an explicit expression in the case of spheres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
17
+ page_content=' Wendel [19] has shown a nice result on the expectations of functions of (σb, Bσb) by using the spherical harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
18
+ page_content=' See Gzyl [4] and references therein for a recent study on this direction and Uchiyama [17, 18] on the asymptotic behavior of the distribution functions and its application to the Wiener sausage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
19
+ page_content=' A similar problem for a Brownian motion with drift has been discussed in Yin-Wang [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
20
+ page_content=' We proceed to a different way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
21
+ page_content=' Starting from the skew-product representation of Brownian motion, we use the fact due to Mijatovic-Mramor-Uribe Bravo [13] that the projections of the Brownian motion on the sphere Sd−1 = Sd−1 1 define diffusion processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
22
+ page_content=' We see that, for one-dimensional projections, the eigenvalues 12020 Mathematics Subject Classification: 60J65 keywords : Brownian motion, hitting times and places, spherical harmonics, one-dimensional diffusion, 1 and the eigenfunctions for the generators are explicitly given by the spherical harmonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
23
+ page_content=' Combining these facts with the rotation invariance of the probability law of Brownian motion, we show the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
24
+ page_content=' As usual we denote by Iν and Kν the modified Bessel functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
25
+ page_content=' We also denote by Cν n and Tn the Gegenbauer and the Chebyshev polynomials, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
26
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
27
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
28
+ page_content=' Denote by Ea the expectation with respect to Pa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
29
+ page_content=' Then, for λ > 0 and u ∈ Rd, we have Ea[e−λσre⟨u,Bσr ⟩] =L0(a √ 2λ) L0(r √ 2λ) � S1 er⟨u,z⟩ds(z) + 2 ∞ � n=1 Ln(a √ 2λ) Ln(r √ 2λ) � S1 er⟨u,z⟩Tn(z1)ds(z) when d = 2 and Ea � e−λσre⟨u,Bσr ⟩I{σr<∞} � = 1 ν ∞ � n=0 (n + ν)a−νLn+ν(a √ 2λ) r−νLn+ν(r √ 2λ) � Sd−1 er⟨u,z⟩Cν n(z1)ds(z) when d ≧ 3, where ds is the uniform probability measure on Sd−1, and L = I for a < r and L = K for a > r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
30
+ page_content=' Setting u = 0 and noting that the surface integrals of Tn(z1) and Cν n(z1) vanish for n ≧ 1, we recover the well known formula for Ea[e−λσr] (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
31
+ page_content=' [2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
32
+ page_content=' We can invert the joint Laplace transform and obtain the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
33
+ page_content=' We denote by ρ(ν) a,r(t) the probability density of the first hitting time to r of a Bessel process with index ν starting from a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
34
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
35
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
36
+ page_content=' For t > 0 and z ∈ Rd with |z| = r, we have Pa(σr ∈ dt, Bσr ∈ dz) = ρ(0) a,r(t)dtdsr(z) + 2 ∞ � n=1 �a r �nρ(n) a,r(t)Tn �z1 r � dtdsr(z) when d = 2 and Pa(σr ∈ dt,Bσr ∈ dz) = 1 ν ∞ � n=0 � n + ν ��a r �nρ(n+ν) a,r (t)Cν n �z1 r � dtdsr(z) when d ≧ 3, where ν = d−2 2 and dsr is the uniform probability measire on Sd−1 r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
37
+ page_content=' The authors [8] have shown another expression for the joint Laplace transform, from which we can prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
38
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
39
+ page_content=' The rest of this article is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
40
+ page_content=' In the next Section 2 we study the first coordinate or the one-dimensional projection of the Brownian motion on Sd−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
41
+ page_content=' We give proofs of the theorems mentioned above in Section 3 and, the asymptotic behavior of Pa(t < σr < ∞, Bσr ∈ A), A ⊂ Sd−1 r , as t → ∞ is investigated in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
42
+ page_content=' In the final Section 5, we deal with the Brownian motion with constant drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
43
+ page_content=' 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
44
+ page_content=' Projection of Brownian motion on sphere Let θ = {θ(t)}t≧0 be a Brownian motion on Sd−1, which corresponds to the Laplace-Beltrami operator on Sd−1, endowed with the usual Euclidean metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
45
+ page_content=' Mijatovic-Mramor-Uribe Bravo [13] has shown that the projections of θ are dif- fusion processes which are realized as unique solutions of stochastic differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
46
+ page_content=' This fact, especially on the one-dimensional projections, is fundamen- tal in our argument and we recall the result in this special case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
47
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
48
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
49
+ page_content=' The first coordinate {θ1(t)}t≧0 of θ is a diffusion process on (−1, 1) whose generator is Gd = 1 2(1 − x2) d2 dx2 − d − 1 2 x d dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
50
+ page_content=' We see easily that the boundaries ±1 are regular and reflecting when d = 2 and they are entrance ones when d ≧ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
51
+ page_content=' The eigenvalues and the eigenfunctions of Gd are explicitly given and we have the eigenfunction expansion for the transition densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
52
+ page_content=' Since these play important roles in the following sections, we now recall some fundamental facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
53
+ page_content=' For details of the Chebyshev and the Gegenbauer polynomials below, we refer to [3, 12, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
54
+ page_content=' Write Gd = 1 2(1 − x2) d−3 2 d dx � 1 (1 − x2)− d−1 2 d dx � and let dm(x) = 2(1 − x2) d−3 2 dx be the canonical (speed) measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
55
+ page_content=' Note that m is a finite measure on (−1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
56
+ page_content=' Moreover, we take s(x) = � x 0 (1 − y2)− d−1 2 dy as the scale function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
57
+ page_content=' When d = 2, s(±1) are both finite and the boundaries are regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
58
+ page_content=' The Chebyshev polynomial Tn(x) = cos(n arccos x) satisfies G2Tn = −n2 2 Tn and d dsTn(±1) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
59
+ page_content=' Moreover the orthogonality relation is given by � 1 −1 Tm(x)Tn(x) dx √ 1 − x2 = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 0 m ̸= n π 2 m = n ̸= 0 π m = n = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
60
+ page_content=' Hence, setting φ0 0(x) = 1 √ 2π, φ0 n(x) = 1 √πTn(x) (n ≧ 1), 3 we see that {φ0 n}∞ n=0 gives rise to an orthonormal basis of L2(dm) and that the transition density p2(t, x, y) of {θ1(t)} with respect to dm is given by p2(t, x, y) = 1 2π + 1 π ∞ � n=1 e− 1 2n2tTn(x)Tn(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
61
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
62
+ page_content='1) For d ≧ 3, the eigenfunctions are given by the Gegenbauer polynomials Cν n defined by ∞ � n=0 snCν n(x) = 1 (1 + s2 − 2sx)ν , |s| < 1, where ν = (d − 2)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
63
+ page_content=' In fact, we have GdCν n = −1 2n(n + 2ν)Cν n and d dsCν n(±1) = 0 and the orthogonality relation � 1 −1 Cν m(x)Cν n(x)(1 − x2)ν− 1 2dx = δm,n πΓ(n + 2ν) 22ν−1(n + ν)n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
64
+ page_content=' (Γ(ν))2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
65
+ page_content=' Hence, setting φν n(x) = � (n + ν)n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
66
+ page_content=' πΓ(n + 2ν) � 1 22ν−1Γ(ν)Cν n(x), we obtain an orthonormal basis {φν n}∞ n=0 of L2(dm) and an eigenfunction expsn- sion for the transition density pd(t, x, y) of {θ1(t)} with respect to dm, pd(t, x, y) = ∞ � n=0 e− 1 2n(n+2ν)tφν n(x)φν n(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
67
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
68
+ page_content='2) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
69
+ page_content=' Proof of Theorems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
70
+ page_content='1 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
71
+ page_content='2 We use the same notation as those in Section 1 and start the argument from the skew-product representation of the standard Brownian motion B = {Bt}t≧0: there exists a d-dimensional Bessel process R = {Rt}t≧0 (with index ν = (d−2)/2) and a Brownian motion θ = {θ(t)}t≧0 on Sd−1, independent of R, such that Bt = Rtθ(Ξt), Ξt = � t 0 ds R2s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
72
+ page_content=' B0 = (a, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
73
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
74
+ page_content=', 0) means R0 = a and θ(0) = (1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
75
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
76
+ page_content=', 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
77
+ page_content=' By the independence of R and θ, we have Ea[e−λσre⟨u,Bσr ⟩] = E(ν) a [e−λτrEa[er⟨u,θ(t)⟩] ��� t=Ξτr ], where E(ν) a [ · ] denotes the expectation with respect to the probability law of R and τr is the first hitting time of R to r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
78
+ page_content=' 4 First we prove the theorems when d = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
79
+ page_content=' Writing θ(t) = (θ1(t), θ2(t)) and u = (u1, u2), we have by the rotation invariance of the law of standard Brownian motion Ea[er⟨u,θ(t)⟩] = Ea[eru1θ1(t)Ea[eru2θ2(t)|θ1(t)]] = � 1 −1 eru1y 1 2 � eru2√ 1−y2 + e−ru2√ 1−y2� P(θ1(t) ∈ dy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
80
+ page_content=' Hence formula (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
81
+ page_content='1) implies Ea[er⟨u,θ(t)⟩] = 1 2π � 1 −1 eru1y 1 2 � eru2√ 1−y2 + e−ru2√ 1−y2� 2dy � 1 − y2 + 1 π ∞ � n=1 e− 1 2n2t � 1 −1 eru1y 1 2 � eru2√ 1−y2 + e−ru2√ 1−y2� Tn(y) 2dy � 1 − y2 since Tn(1) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
82
+ page_content=' The change of order of the intengal and the sum is easily justified because |Tn(y)| ≦ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
83
+ page_content=' We can write the integrals on the right hand side as surface integrals and obtain Ea[er⟨u,θ(t)⟩] = � S1 er⟨u,z⟩ds(z) + 2 ∞ � n=1 e− 1 2n2t � S1 er⟨u,z⟩Tn(z1)ds(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
84
+ page_content=' Now, recalling the formula ([2, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
85
+ page_content='407]) E(0) a [e−λτr− 1 2 n2Ξτr] = Ln(a √ 2λ) Ln(r √ 2λ) , (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
86
+ page_content='1) we obtain the assertion of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
87
+ page_content='1 when d = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
88
+ page_content=' Next note another formula ([2, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
89
+ page_content='398]) E(µ) a [e−λτr] = � ∞ 0 e−λtρ(µ) a,r(t)dt = a−µLµ(a √ 2λ) r−µLµ(r √ 2λ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
90
+ page_content=' Then we obtain Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
91
+ page_content='2 when d = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
92
+ page_content=' Again we can easily show the absolute convergence and justify the change of the sum and the integrals in t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
93
+ page_content=' Next we prove the theorems in the case of d ≧ 3, when, for the spherical Brownian motion θ, the conditional distribution of (θ2(t), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
94
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
95
+ page_content=', θd(t)) given θ1(t) = ξ1 is the uniform distribution on the sphere Sd−2 √ 1−ξ2 1 with raduis � 1 − ξ2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
96
+ page_content=' Hence, writing u = (u1, u′), θ = (θ1, θ′) ∈ R × Rd−1, we have Ea[e⟨u,rθ(t)⟩] = Ea � eru1θ1(t) � Sd−2 er√ 1−θ1(t)2⟨u′,ξ′⟩ ds(ξ′) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
97
+ page_content=' 5 By using the facts on the Gegenbauer polynomials given in the previous section and writing the double integral as a surface integral, we obtain, from (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
98
+ page_content='2) Ea[e⟨u,rθ(t)⟩] = ∞ � n=0 e− 1 2n(n+2ν)tφν n(1) � 1 −1 φν n(ξ1)eru1ξ12(1 − ξ2 1) d−3 2 dξ1 × � Sd−2 er√ 1−ξ2 1⟨u′,ξ′⟩ vol(dξ′) vol(Sd−2) = ∞ � n=0 (n + ν)22ν−1Γ(ν)2 vol(Sd−1) πΓ(2ν) vol(Sd−2) e− 1 2 n(n+2ν)t � Sd−1 Cν n(w1)er⟨u,w⟩ds(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
99
+ page_content=' We have used the formula Cν n(1) = �2ν+n−1 n � = Γ(n + 2ν)/(n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
100
+ page_content='Γ(2ν)), and also the estimate max |y|≦1 |Cν n(y)| = Cν n(1) ≦ Cn2ν−1 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
101
+ page_content='2) for some constant C (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
102
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
103
+ page_content=', [12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
104
+ page_content='218, 225]) to justify the change of the order of the sum and the integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
105
+ page_content=' Moreover, recalling the foumulae vol(Sd−1) = 2π d 2 Γ( d 2) and Γ(2ν) = 22ν 2√πΓ(ν)Γ(ν + 1 2), we obtain Ea[e⟨u,rθ(t)⟩] = 1 ν ∞ � n=0 (n + ν)e− 1 2n(n+2ν)t � Sd−1 Cν n(w1)er⟨u,w⟩ds(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
106
+ page_content=' Now, using (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
107
+ page_content='1), we obtain the assertion of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
108
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
109
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
110
+ page_content='2 is proven in the same way as in the case of d = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
111
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
112
+ page_content=' Asymptotic behavior of distribution function In this section, assuming a > r and applying Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
113
+ page_content='2, we study the asymp- totic behavior of the distribution function Pa(t < σr < ∞, Bσr ∈ A) as t → ∞ for a fixed Borel subset A of the sphere Sd−1 r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
114
+ page_content=' We use the same notation as in the previous sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
115
+ page_content=' In a course of study on the first hitting times of Bessel processes, the authors [6, 7] have shown the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
116
+ page_content=' Consider a Bessel process with index ν and starting from a defined on some probability space (Ω′, F ′, Q(ν) a ) and let τr be its hitting time to r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
117
+ page_content=' Then the asymptotic behavior of Q(ν) a (t < τr < ∞) when a > r is given by Q(0) a (t < τr < ∞) = 2 log(a/r) log t (1 + o(1)) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
118
+ page_content='1) when d = 2 and Q(ν) a (t < τr < ∞) = κ(ν)t−ν(1 + o(1)), (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
119
+ page_content='2) 6 when d ≧ 3, where the constant κ(ν) is given by κ(ν) = 1 Γ(ν + 1) � r3 2a �ν��a r �ν − �a r �−ν� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
120
+ page_content=' Applying these results with some estimates for the remainder terms, we show the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
121
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
122
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
123
+ page_content=' For any Borel subset A of Sd−1 r , Pa(t < σr < ∞, Bσr ∈ A) = 2 log(a/r) log t sr(A)(1 + o(1)) holds as t → ∞ when d = 2 and Pa(t < σr < ∞, Bσr ∈ A) = κ(ν)sr(A)t−ν(1 + o(1)) holds when d ≧ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
124
+ page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
125
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
126
+ page_content=' For the distribition function Q(ν) a (t < τr < ∞) of the first hitting time of the Bessel process, Hamana et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
127
+ page_content=' [5] has shown a precise asymptotic expansion and, using the results, we can show asymptotic expansions for our joint distribution functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
128
+ page_content=' The details will be published elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
129
+ page_content=' For a proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
130
+ page_content='1, we show the following estimate for the tail prob- ability of σr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
131
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
132
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
133
+ page_content=' Assume d ≧ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
134
+ page_content=' Then, for t > 0, we have Pa(t < σr < ∞) ≦ r2ν 2νΓ(ν + 1)tν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
135
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
136
+ page_content=' Let Lr be the last hitting time of the Brownian motion B to the spehere Sd−1 r : Lr = sup{s > 0 : |Bs| = r}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
137
+ page_content=' As usual we set Lr = 0 when B does not hit Sd−1 r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
138
+ page_content=' Then we have Pa(t < σr < ∞) ≦ Pa(t < Lr < ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
139
+ page_content=' Denote by µr the equilibrium measure of the ball Br with radius r and centered at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
140
+ page_content=' Then it is well known ([16]) that Pa(t < Lr < ∞) = � ∞ t ds � Rd 1 (2πs)d/2e− |x−a|2 2s dµr(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
141
+ page_content=' Recalling now that the capacity of Br is µr(Rd) = 2π d 2rd−2/Γ( d 2 − 1), we see Pa(t < Lr < ∞) ≦ � ∞ t ds � Rd 1 (2πs)d/2dµr(x) = r2ν 2νΓ(ν + 1)tν .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
142
+ page_content=' 7 Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
143
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
144
+ page_content=' For transient one-dimensional diffusion processes, the densities of the last hitting times are written by means of the transition densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
145
+ page_content=' This is the case of the Bessel processes with dimensions d ≧ 3 and, moreover, we have explicit expressions for the transition densities We can give another proof for Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
146
+ page_content='3 by using these facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
147
+ page_content=' We can now give a proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
148
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
149
+ page_content=' Note that the infinite sum below for the expression for the joint distribution is absoletely convergent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
150
+ page_content=' For d = 2, we have by Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
151
+ page_content='2 Pa(t < σr < ∞, Bσr ∈ A) = Q(0) a (τr > t)sb(A) + It, where It = 2 ∞ � n=1 �a r �nQ(n) a (t < τr < ∞) � A Tn(z1 r )dsr(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
152
+ page_content=' Assume t > 1 and note |Tn(x)| = | cos(n arccos x)| ≦ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
153
+ page_content=' Then, by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
154
+ page_content='3, we get |It| ≦ 2 ∞ � n=1 �a r �n r2n 2nΓ(n + 1)tn ≦ 2 t ∞ � n=1 �ar 2 �n 1 n!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
155
+ page_content=' ≦ 2 t e ar 2 and, by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
156
+ page_content='1), the assertion of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
157
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
158
+ page_content=' For d ≧ 3, we have Pa(t < σr < ∞, Bσr ∈ A) = Q(ν) a (t < τr < ∞)sr(A) + Jt, where Jt = 1 ν ∞ � n=1 (n + ν) �a r �nQ(n+ν) a (t < τr < ∞) � A Cν n(z1 r )dsr(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
159
+ page_content=' Hence, combining (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
160
+ page_content='2) with Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
161
+ page_content='3 and (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
162
+ page_content='2), we see Jt = O(t−1−ν) and the assertion of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
163
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
164
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
165
+ page_content=' Brownian motion with drift Let B = {Bt}t≧0 be a standard d-dimensional Brownian motion starting from x = (a, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
166
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
167
+ page_content=', 0) as before and, for a constant vector v ∈ Rd, B(v) = {B(v)(t)}t≧0 be a Brownian motion with drift v defined by B(v)(t) = Bt + tv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
168
+ page_content=' We denote by σ(v) r the first hitting time of B(v) to the sphere Sd−1 r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
169
+ page_content=' The Cameron-Martin theorem and the strong Markov property of Brownian motion imply Ea � e−λσ(v) r e⟨u,B(v)(σ(v) r )⟩I{σ(v) r <∞} � = e−av1Ea � e−(λ+ |v|2 2 )σre⟨u+v,Bσr ⟩I{σr<∞} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
170
+ page_content=' Hence we can apply Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
171
+ page_content='1 to the right hand side and obtain the following: 8 Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
172
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
173
+ page_content=' For λ > 0 and u ∈ Rd, we have Ea � e−λσ(v) r e⟨u,B(v)(σ(v) r )⟩I{σr<∞} � = e−av1 � L0(a � 2λ + |v|2) L0(r � 2λ + |v|2) � S1 er⟨u+v,z⟩ds(z) + 2 ∞ � n=1 Ln(a � 2λ + |v|2) Ln(r � 2λ + |v|2) � S1 er⟨u+v,z⟩Tn(z1)ds(z) � when d = 2 and, when d ≧ 3, Ea � e−λσ(v) r e⟨u,B(v)(σ(v) r )⟩I{σr<∞} � = 1 ν e−av1 ∞ � n=0 (n + ν)a−νLn+ν(a � 2λ + |v|2) r−νLn+ν(r � 2λ + |v|2) � Sd−1 er⟨u+v,z⟩Cν n(z1)ds(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
174
+ page_content=' We can invert the Laplace transform as before and show the following: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
175
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
176
+ page_content=' For t > 0 and z ∈ Rd with |z| = r, we have Pa(σ(v) r ∈ dt, B(v)(σ(v) r ) ∈ dz) = e−av1+⟨v,z⟩e− |v|2 2 tρ(0) a,r(t)dtdsr(z) + 2e−av1+⟨v,z⟩e− |v|2 2 t ∞ � n=1 �a r �nρ(n) a,r(t)Tn �z1 r � dtdsr(z) when d = 2 and, when d ≧ 3 Pa(σ(v) r ∈ dt, B(v) σr ∈ dz) = 1 ν e−av1+⟨v,z⟩e− |v|2 2 t ∞ � n=0 � n + ν ��a r �nρ(n+ν) a,r (t)Cν n �z1 r � dtdsr(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
177
+ page_content=' Next, assuming a > r, we consider the asymptotic behavior of the distribution function P(t < σ(v) r < ∞, B(v)(σ(v) r ) ∈ A) as t → ∞ for a fixed A ⊂ Sd−1 r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
178
+ page_content=' As is easily guessed as earlier, the leading term is given by the first terms of the right hand sides in Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
179
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
180
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
181
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
182
+ page_content=' For any Borel subset A of Sd−1 r , we have Pa(t <σ(v) r < ∞, B(v)(σ(v) r ) ∈ A) = 2 log �a r � e−av1 � A e⟨v,z⟩dsr(z) 1 t(log t)2e− |v|2 2 t(1 + o(1)) when d = 2 and Pa(t <σ(v) r < ∞, B(v)(σ(v) r ) ∈ A) = 2L(ν) |v|2 e−av1 � A e⟨v,z⟩dsr(z)t−ν−1e− |v|2 2 t(1 + o(1)) when d ≧ 3, where L(ν) = r2ν 2νΓ(ν) � 1 − �r a �2ν� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
183
+ page_content=' 9 In order to estimate the higher order terms, we recall from [8] the asymptotic result for H(ν)(t) := � ∞ t e− |v|2 2 sρ(ν) a,r(s)ds, where ρ(ν) a,r is the density of the first hitting time τr to r of the Bessel process with index ν starting from a: when d = 2, H(ν)(t) = 2 log(a/r) t(log t)2 e− |v|2 2 t(1 + o(1)) and, when d ≧ 3 H(ν)(t) = 2L(ν) |v|2tν+1e− |v|2 2 t(1 + o(1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
184
+ page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
185
+ page_content='1) The assertion of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
186
+ page_content='3 follows from the following lemma: Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
187
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
188
+ page_content=' There exists a constant C, depending on |v| and r, such that H(ν)(t) ≦ Cr2ν Γ(ν) 1 (2t)ν+1e− |v|2 2 t holds for all d ≧ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
189
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
190
+ page_content=' We use (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
191
+ page_content='1) when d = 3 and d = 4, and assume d ≧ 5 in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
192
+ page_content=' Denote by Py the d-dimensional Wiener measure with starting point y and use the same notation σr for the first hitting time to Sd−1 r of the corresponding Brownian motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
193
+ page_content=' Moreover, let p(t, x, y) = (2πt)−d/2 exp(−|y − x|2/2t) be the Gaussian kernel and set α = |v|2/2 for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
194
+ page_content=' Then we have H(ν)(t) = α � ∞ t e−αsPa(t < σr ≦ s)ds and, setting e = (1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
195
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
196
+ page_content=', 0), Pa(t < σr ≦ s) ≦ � Rd p(t, ae, y)Py(σr ≦ s − t)dy ≦ 1 (2πt)d/2 � Rd Py(σr ≦ s − t)dy by the Markov property of Brownian motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
197
+ page_content=' Hence we get, after a simple change of variables, H(ν)(t) ≦ αe−αt (2πt)d/2 � ∞ 0 e−αsds � Rd Py(σr ≦ s)dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
198
+ page_content=' Now let Lr be the last hitting time of the Brownian motion to Sd−1 r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
199
+ page_content=' Then we have � Rd Py(σr ≦ s) = � Rd Py(0 < Lr ≦ s)dy + � Rd Py(σr ≦ s < Lr)dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
200
+ page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
201
+ page_content='2) 10 For the second term of the right hand side, Le Gall [11] has shown � Rd Py(σr ≦ s < Lr)dy = � Rd Py(σr ≦ s)Py(σr < ∞)dy, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
202
+ page_content='3) which implies � Rd Py(σr ≦ s < Lr)dy ≦ � Rd Py(σr < ∞)2dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
203
+ page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
204
+ page_content='4) This estimate is sufficient for our purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
205
+ page_content=' We give another elementary proof of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
206
+ page_content='3) after completing the proof of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
207
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
208
+ page_content=' As in the previous section, we denote by µr the equilibrium measure of the ball Br.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
209
+ page_content=' Then we have, for the first term of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
210
+ page_content='2), � ∞ 0 e−αsds � Rd Py(0 < Lr ≦ s)dy = � ∞ 0 e−αsds � Rd dy � s 0 dτ � Rd p(τ, y, z)dµr(z) = � ∞ 0 e−αsds � s 0 dτ � Rd dµr(z) = 2πd/2rd−2 α2Γ( d 2 − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
211
+ page_content=' For the second term, we recall Py(σr < ∞) = 1 ∧ � r |y| �d−2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
212
+ page_content=' Then, by (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
213
+ page_content='4), we get � ∞ 0 e−αsds � Rd Py(σr < ∞)2dy = 1 α � � |y|≦r dy + � |y|≧r � r |y| �2(d−2)dy � = 2π d 2rd αΓ( d 2) �1 d + 1 d − 4 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
214
+ page_content=' Combining the above inequalities, we obtain the assertion of the lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
215
+ page_content=' Proof of (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
216
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
217
+ page_content=' By the Markov property of Brownian motion, we have � Rd Py(σr ≦ s < Lr)dy = � Rd Ey[1{σr≦s}1{Lr>s}]dy = � Rd Ey[1{σr≦s}EBs[1{Lr>0}]]dy = � Rd dy � Rd Ey[1{σr≦s}PBs(Lr > 0)|Bs = x]p(s, y, x)dx = � Rd dx � Rd Px(Lr > 0)Py(σr ≦ s|Bs = x)p(s, y, x)dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
218
+ page_content=' Note here that Px(Lr > 0) = Px(σr < ∞) and that the time reversal of a pinned Brownian motion is again a pinned Brownian motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
219
+ page_content=' Then we obtain � Rd Py(σr ≦ s < Lr)dy = � Rd Px(σr < ∞)dx � Rd Px(σr ≦ s|Bs = y)p(s, x, y)dy = � Rd Px(σr < ∞)Px(σr ≦ s)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
220
+ page_content=' 11 Acknowledgment The authors were partially supported by JSPS KAKENHI Grant Numbers 20K03634 and 21K03298.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
221
+ page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
222
+ page_content=' Aizenman and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
223
+ page_content=' Simon, Brownian motion and Harnack inequality for Schr¨odinger operators, Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
224
+ page_content=' Pure Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
225
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
226
+ page_content=', XXXV (1982), 209–273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
227
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
228
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
229
+ page_content=' Borodin and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
230
+ page_content=' Salminen, Handbook of Brownian Motion – Facts and Formulae, 2nd Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
231
+ page_content=', Birkh¨user, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
232
+ page_content=' [3] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
233
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
234
+ page_content=' Gradshteyn and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
235
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
236
+ page_content=' Ryzhik, Table of Integrals, Series, and Products, 8th Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
237
+ page_content=', Academic Press, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
238
+ page_content=' [4] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
239
+ page_content=' Gzyl, Hitting spheres with Brownian motion revisited, Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
240
+ page_content=' Probaba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
241
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
242
+ page_content=', 155 (2019) 108565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
243
+ page_content=' [5] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
244
+ page_content=' Hamana, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
245
+ page_content=' Kaikura and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
246
+ page_content=' Shinozaki, Asymptotic expansions for the first hitting times of Bessel processes, Opuscula Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
247
+ page_content=', 41 (2021), 509–537.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
248
+ page_content=' [6] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
249
+ page_content=' Hamana and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
250
+ page_content=' Matsumoto, The probability distributions of the first hitting times of Bessel processes, Trans Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
251
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
252
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
253
+ page_content=', 365 (2013), 5237– 5257.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
254
+ page_content=' [7] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
255
+ page_content=' Hamana and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
256
+ page_content=' Matsumoto, Asymptotics of the probability distributions of the first hitting times of Bessel processes, Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
257
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
258
+ page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
259
+ page_content=' 19 (2014), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
260
+ page_content=' 5, 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
261
+ page_content=' [8] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
262
+ page_content=' Hamana and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
263
+ page_content=' Matsumoto, Hitting times to spheres of Brownian motions with and without drifts, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
264
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
265
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
266
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
267
+ page_content=', 144 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
268
+ page_content=' 12 (2016), 5385– 5396.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
269
+ page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
270
+ page_content=' Hsu, Brownian exit distribution from a ball, in Seminar on Stochastic Processes, 1985, Birkh¨aser, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
271
+ page_content=' [10] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
272
+ page_content=' Itˆo and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
273
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
274
+ page_content=' McKean, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
275
+ page_content=', Diffusion Processes and Their Sample Paths, Springer, 1974.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
276
+ page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
277
+ page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
278
+ page_content=' Le Gall, Sur une conjecture de M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
279
+ page_content='Kac, Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
280
+ page_content=' Theory Related Fields, 78 (1988), 389–402.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
281
+ page_content=' [12] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
282
+ page_content=' Magnus, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
283
+ page_content=' Oberhettinger and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
284
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
285
+ page_content=' Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, 1966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
286
+ page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
287
+ page_content=' Mijatovic, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
288
+ page_content=' Mramor and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
289
+ page_content=' Uribe Bravo, Projections of spherical Brow- nian motion, Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
290
+ page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
291
+ page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
292
+ page_content=' 23 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
293
+ page_content='52, 1–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
294
+ page_content=' [14] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
295
+ page_content=' M¨uller, Analysis of Spherical Symmetries in Euclidean Spaces, Springer, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
296
+ page_content=' 12 [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
297
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
298
+ page_content=' Pitman and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
299
+ page_content=' Yor, Bessel processes and infinitely divisible laws, In D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
300
+ page_content='Williams (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
301
+ page_content=') Stochastic integrals, Lecture Notes in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
302
+ page_content=', 851, Springer, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
303
+ page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
304
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
305
+ page_content=' Port and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
306
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
307
+ page_content=' Stone, Brownian Motion and Classical Potential Theory, Academic Press, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
308
+ page_content=' [17] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
309
+ page_content=' Uchiyama, Density of space-time distribution of Brownian first hitting of a disc and a ball, Potential Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
310
+ page_content=', 44 (2016), 497–541.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
311
+ page_content=' [18] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
312
+ page_content=' Uchiyama, The Brownian hitting distributions in space-time of bounded sets and the expected volume of the Wiener sausage for a Brownian bridge, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
313
+ page_content=' London Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
314
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
315
+ page_content=' (3), 116 (2018), 575–628.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
316
+ page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
317
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
318
+ page_content=' Wendel, Hitting spheres with Brownian motion, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
319
+ page_content=' Probab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
320
+ page_content=', 8 (1980), 164–169.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
321
+ page_content=' [20] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
322
+ page_content=' Yin and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
323
+ page_content=' Wang, Hitting time and place of Brownian motion with drift, The Open Statistics and Probability Journal, 1 2009, 38–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
324
+ page_content=' Yuji Hamana hamana@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
325
+ page_content='tsukuba.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
326
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
327
+ page_content='jp Department of Mathematics University of Tsukuba 1-1-1 Tennodai, Tsukuba 305-8571, Japan Hiroyuki Matsumoto matsu@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
328
+ page_content='aoyama.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
329
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
330
+ page_content='jp Department of Mathematics Aoyama Gakuin University Fuchinobe 5-10-1, Sagamihara 252-5258, Japan 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69E2T4oBgHgl3EQfPQYR/content/2301.03756v1.pdf'}
7dE4T4oBgHgl3EQfCQuc/content/2301.04859v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ed62d5acbd1bb90da3db65c2ef74f2813d6825f2c5a78d8a591536b02cef495
3
+ size 466006
7dE4T4oBgHgl3EQfCQuc/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6fca4e1d72421c7b02212e361c57d45f689363bff3ab1755a322237582e79b2
3
+ size 1703981
7dE4T4oBgHgl3EQfCQuc/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:747e33949c396e8336b07d576bab8094e67d5bd8e1677a3e23a4c73c06abc5aa
3
+ size 63167
89AzT4oBgHgl3EQf-_4J/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96cca23139e3439f42fd1c3aa639e5fe4fedc01a58ecdf7189f7476ff3736cd8
3
+ size 2359341
89AzT4oBgHgl3EQf-_4J/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87e6248fa0ddd3933c54a80cbc5019ccc9f7fe52e40ce358f0fddd3d6232457b
3
+ size 99521
9dAyT4oBgHgl3EQfqPin/content/tmp_files/2301.00540v1.pdf.txt ADDED
@@ -0,0 +1,1143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00540v1 [math.CA] 2 Jan 2023
2
+ Coefficient characterization of linear differential equations
3
+ with maximal symmetries
4
+ J.C. Ndogmo
5
+ School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050,
6
+ South Africa
7
+ Abstract
8
+ A characterization of the general linear equation in standard form admit-
9
+ ting a maximal symmetry algebra is obtained in terms of a simple set of
10
+ conditions relating the coefficients of the equation. As a consequence, it is
11
+ shown that in its general form such an equation can be expressed in terms of
12
+ only two arbitrary functions, and its connection with the Laguerre-Forsyth
13
+ form is clarified. The characterizing conditions are also used to derive an
14
+ infinite family of semi-invariants, each corresponding to an arbitrary order
15
+ of the linear equation. Finally a simplifying ansatz is established, which
16
+ allows an easier determination of the infinitesimal generators of the induced
17
+ pseudo group of equivalence transformations, for all the three most general
18
+ canonical forms of the equation.
19
+ Keywords:
20
+ Coefficient characterization, maximal symmetry algebra,
21
+ canonical form, induced equivalence group, infinitesimal generators
22
+ 2010 MSC: 70G65, 34C20
23
+ 1. Introduction
24
+ By a result of Lie [1], a linear ordinary differential equation (ode) of a
25
+ general order n is known to have a symmetry algebra of maximal dimension
26
+ dn if it is reducible by a point transformation to the equation y(n) = 0, which
27
+ will henceforth be referred to as the canonical form of the linear equation.
28
+ In a much recent paper Krause and Michel [2] proved the converse of this
29
+ result and also showed that a linear equation is iterative if and only if its
30
+ symmetry algebra has the maximal dimension dn. (By the cited result of Lie
31
+ Email address: [email protected] (J.C. Ndogmo)
32
+
33
+ [1], dn = n+4 for n ≥ 3). Characterizing linear equations having a symmetry
34
+ algebra of maximal dimension is therefore the same as characterizing linear
35
+ equations that are reducible by a point transformation to the canonical form.
36
+ The latter characterization for the third-order equation y(3) + c2 y′′ + c1 y′ +
37
+ c0 y = 0 is due to Lie [3] and Laguerre [4] who showed independently that
38
+ this equation is reducible to the canonical form if and only if its coefficients
39
+ satisfy the equation
40
+ 54c0 − 18c1c2 + 4c3
41
+ 2 − 27c′
42
+ 1 + 18c2c′
43
+ 2 + 9c′′
44
+ 2 = 0.
45
+ (1)
46
+ This characterization also clearly applies to all nonlinear odes which are
47
+ linearizable by point transformations [5, 6], as the latter transformations do
48
+ not alter the dimension of the symmetry algebra.
49
+ In this paper, we extend this characterization to equations of higher or-
50
+ ders. It turns out that for each equation of order n there will be n − 2
51
+ characterizing equations, and the limitation of our presentation of the char-
52
+ acterizing equations only up to the order five is simpy due to their very
53
+ large size. However, we give a description of the method for deriving this
54
+ characterization for equations of any order. The derivation of these char-
55
+ acterizing equations is also based on the canonical normal form of linear
56
+ equations admitting a maximal symmetry algebra that was obtained in [5]
57
+ from a symmetry approach, and in [7] from an iterative approach. These
58
+ characterizing equations therefore also represent a generalization of the re-
59
+ sults of [5] and [7]. We then deduce that the most general form of a linear
60
+ equation admitting a maximal symmetry algebra can be expressed in stan-
61
+ dard form in terms of only two arbitrary functions. We also deduce that the
62
+ Laguerre-Forsyth form of a linear equation reduces to the canonical form if
63
+ and only if the equation has maximal symmetries.
64
+ Although we do not give the characterizing equations for each linear
65
+ equation of order n, we note however that among the n − 2 characterizing
66
+ equations exactly one of them represents a semi-invariant of the equation,
67
+ that is a function of the coefficients of the equation whose expression does
68
+ not change when the dependent variable is transformed.
69
+ We obtain an
70
+ expression for these semi-invariants for equations of all orders and describe
71
+ some of their properties.
72
+ Finally, using some simplifying assumptions and the method of [8], we
73
+ give expressions for both the symmetry generator Xn of GS and X0
74
+ n of the
75
+ induced pseudo group of transformations Gc, and for all three most general
76
+ canonical forms of linear equations of a general order n. Here, GS denotes
77
+ the symmetry group of the general linear equation in which the arbitrary
78
+ 2
79
+
80
+ functions are considered as additional dependent variables.
81
+ 2. Coefficient characterization
82
+ A method based on a symmetry approach has been proposed in [5] for
83
+ characterizing the coefficients of linear ordinary differential equations (odes)
84
+ that admit a maximal symmetry algebra, but only for equations in reduced
85
+ normal form (in which the term of second highest order vanishes). In a more
86
+ recent paper [7] a similar characterization based on an iterative approach was
87
+ proposed, in which according to a result of Krause and Michel [2] a linear
88
+ equation admitting a maximal symmetry is simply viewed as an iterative
89
+ equation. By iterative equation, we mean an equation of the form
90
+ Ψn[y] = 0,
91
+ y = y(x),
92
+ n ≥ 1
93
+ (2a)
94
+ where
95
+ Ψ1[y] = ry′ + sy,
96
+ Ψn[y] = Ψn−1 [Ψ[y]] ,
97
+ (2b)
98
+ and where r = r(x) and s = s(x) are the parameters of the source equation
99
+ Ψ1[y] = 0. This characterization shows that in its reduced normal form, a
100
+ general linear equation depends solely on one arbitrary function a = a(x).
101
+ For equations of orders three to five, the corresponding equations are given
102
+ as follows:
103
+ y(3) + ay′ + a′
104
+ 2 y = 0
105
+ (3a)
106
+ y(4) + ay′′ + a′y′ +
107
+ � 3
108
+ 10a′′ +
109
+ 9
110
+ 100a2
111
+
112
+ y = 0
113
+ (3b)
114
+ y(5) + ay(3) + 3
115
+ 2a′y′′ +
116
+ � 9
117
+ 10a′′ + 16
118
+ 100a2
119
+
120
+ y′ +
121
+ �1
122
+ 5a(3) + 16
123
+ 100aa′
124
+
125
+ y = 0.
126
+ (3c)
127
+ However, as a linear equation need not occur in its reduced normal form,
128
+ but rather in the most general standard form, it is thus useful to obtain the
129
+ corresponding characterization for equations in standard form. We let the
130
+ general linear equation be given in standard form as
131
+ ∆(x, y(n); C) ≡ y(n) + cn−1 y(n−1) + cn−2 y(n−2) + · · · + c0 y = 0.
132
+ (4)
133
+ 3
134
+
135
+ where C = (c0, . . . , cn−1). Suppose that such an equation has a symmetry
136
+ algebra of maximal dimension and let its corresponding reduced normal form
137
+ be given by
138
+ y(n) + Bn−2 y(n−2) + Bn−3 y(n−3) + · · · + B0 y = 0,
139
+ (5)
140
+ where the Bj for j = 0, . . . , n−2 are its coefficients and depend as already
141
+ noted above on a single arbitrary function a = Bn−2 and its derivatives. Let
142
+ y(n) + An−1 y(n−1) + An−2 y(n−2) + · · · + A0 y = 0
143
+ (6)
144
+ be the corresponding standard form of (5), which may be obtained by a
145
+ transformation of the form
146
+ y �→ ye− 1
147
+ n
148
+ � x
149
+ x0 An−1dx.
150
+ (7)
151
+ Then (4) and (6) must be identical, and in particular the nonzero coef-
152
+ ficient An−1 introduced by the transformation (7) satisfies An−1 = cn−1,
153
+ and more generally we have
154
+ cj = Aj,
155
+ for j = 0, . . . , n − 1.
156
+ (8)
157
+ Note that the coefficients cj in (4) are mere symbols and we wish to find a
158
+ relationship among them. Given that in (5) the function Bn−2 is precisely
159
+ the arbitrary function a(x) labeling the equation, it can be shown by a
160
+ recursive procedure, or even by induction on n that
161
+ An−2 = a + n − 1
162
+ 2n
163
+ c2
164
+ n−1 + n − 2
165
+ 2
166
+ c′
167
+ n−1.
168
+ Therefore, solving the equation cn−2 = An−2 for a gives
169
+ a = cn−2 −
170
+ �n − 1
171
+ 2n
172
+ c2
173
+ n−1 + n − 2
174
+ 2
175
+ c′
176
+ n−1
177
+
178
+ .
179
+ (9)
180
+ Consequently, the characterizing equations for linear equations in standard
181
+ form with maximal symmetry algebra are given by the remaining n − 2
182
+ equations
183
+ cj = Aj,
184
+ j = 0, . . . , n − 3,
185
+ (10)
186
+ in which the function a and its derivatives are substituted with the corre-
187
+ sponding expressions given by (9).
188
+ Proposition 1. If a linear equation in standard form (4) has maximal sym-
189
+ metry, then in its general form it may be expressed in terms of only two ar-
190
+ bitrary functions, namely the functions cn−1 and cn−2, and their derivatives.
191
+ 4
192
+
193
+ Proof. The result readily follows from the fact that the functions Aj in (10)
194
+ then depend only on a and its derivatives, while (9) shows that the function
195
+ a depends precisely on cn−1, cn−2, and their derivatives.
196
+ Corollary 1. A linear equation in standard form (4) with cn−1 = cn−2 = 0
197
+ has maximal symmetry algebra if and only if cj = 0 for all j.
198
+ In other
199
+ words a linear equation has maximal symmetry algebra if and only if its
200
+ Laguerre-Forsyth form corresponds to the canonical equation y(n) = 0.
201
+ Proof. After all a Laguerre transformation is also a point transformation
202
+ although it cannot always be explicitly constructed for a given equation.
203
+ Since equations equivalent under point transformation have similar Lie al-
204
+ gebras, it readily follows that if the Laguerre-Forsyth form of an equation is
205
+ y(n) = 0, then the equation has maximal symmetry algebra. The converse
206
+ of the corollary is a direct application of proposition 1, and the fact that in
207
+ (10) the cj turn out to be polynomial functions with no constant terms of
208
+ cn−1, cn−2, and their derivatives.
209
+ As an immediate consequence of the corollary, linear equations such as
210
+ y(3) +f(x)y = 0 or y(4)+f(x)y′ = 0 have maximal symmetry algebras if and
211
+ only if the function f(x) vanishes identically. We now make use of (10) and
212
+ (9) to explicitly derive the characterizing equations for maximal symmetry
213
+ algebras for equations of orders three to five.
214
+ For n = 3, it is readily found that in (6) we have
215
+ A0 = 1
216
+ 54
217
+
218
+ 18ac2 + 2c3
219
+ 2 + 27a′ + 18c2c′
220
+ 2 + 18c′′
221
+ 2
222
+
223
+ ,
224
+ (11)
225
+ while the corresponding expression for a in (9) reduces to
226
+ a = c1 −
227
+ �c2
228
+ 2
229
+ 3 + c′
230
+ 2
231
+ 2
232
+
233
+ .
234
+ (12)
235
+ Applying (12) into (11) and substituting the resulting expression for A0
236
+ into (10) gives exactly the already cited equation (1) found by Lie [3] and
237
+ Laguerre [4] and given by
238
+ 54c0 − 18c1c2 + 4c3
239
+ 2 − 27c′
240
+ 1 + 18c2c′
241
+ 2 + 9c′′
242
+ 2 = 0.
243
+ The most general form of a linear third-order equation admitting a maximal
244
+ symmetry algebra can thus be expressed in terms of only two arbitrary
245
+ functions c1(x) and c2(x) in the form of
246
+ y(3) + c2 y′′ + c1 y′ + 1
247
+ 54
248
+
249
+ 18c1c2 − 4c3
250
+ 2 + 27c′
251
+ 1 − 18c2c′
252
+ 2 − 9c′′
253
+ 2
254
+
255
+ y = 0.
256
+ (13)
257
+ 5
258
+
259
+ Equation (13) naturally reduces to (3a) for c2 = 0.
260
+ For n = 4, we successively get
261
+ a = 1
262
+ 8
263
+
264
+ 8c2 − 3c2
265
+ 3 − 12c′
266
+ 3
267
+
268
+ (14a)
269
+ A1 = 1
270
+ 2
271
+
272
+ ac3 + c3
273
+ 3
274
+ 16 + a′ + 3
275
+ 4c3c′
276
+ 3 + c′′
277
+ 3
278
+
279
+ (14b)
280
+ 6400A0 = 576a2 + 400a(c2
281
+ 3 + 4c′
282
+ 3)
283
+ + 5
284
+
285
+ 5c4
286
+ 3 + 120c2
287
+ 3c′
288
+ 3 + 320c3(a′ + c′′
289
+ 3)
290
+
291
+ + 80
292
+
293
+ 15c′2
294
+ 3 + 24a′′ + 20c(3)
295
+ 3
296
+
297
+ .
298
+ (14c)
299
+ Substituting (14a) into (14b) and (14c) gives the two equations
300
+ 8c1+ = 4c2c3 − c3
301
+ 3 + 8c′
302
+ 2 − 6c3c′
303
+ 3 − 4c′′
304
+ 3
305
+ (15a)
306
+ 1600c0 = 144c2
307
+ 2 − 11c4
308
+ 3 + 400c3c′
309
+ 2 − 288c2
310
+ 3c′
311
+ 3 − 336c′2
312
+ 3
313
+ − 8c2(c2
314
+ 3 + 4c′
315
+ 3) + 480c′′
316
+ 2 − 560c3c′′
317
+ 3 − 320c(3)
318
+ 3
319
+ (15b)
320
+ which represent the characterizing equations for maximal symmetry algebra
321
+ for equations of order 4. Note that conversely any linear fourth order equa-
322
+ tion whose coefficients satisfy (15) must be iterative, which is why conditions
323
+ such as (15) are termed characterizing equations. Indeed, if the coefficients
324
+ of a fourth order equation of the form (4) satisfy (5), then its reduced nor-
325
+ mal form has, after the substitution of the expressions for c0 and c1 given
326
+ by (5) in terms of c2, c3, and their derivatives, the form
327
+ w(4) + Q2w′′ + Q1w′ + Q0w = 0
328
+ (16a)
329
+ where
330
+ Q2 = c2 − 3
331
+ 8(c2
332
+ 3 + 4c′
333
+ 3)
334
+ (16b)
335
+ Q1 = c′
336
+ 2 − 3
337
+ 4(c3c′
338
+ 3 + 2c′′
339
+ 3)
340
+ (16c)
341
+ Q0 =
342
+ 3
343
+ 6400(192c2
344
+ 2 + 27c4
345
+ 3 − 48c′2
346
+ 3 − 144c2(c2
347
+ 3 + 4c′
348
+ 3))
349
+ +
350
+ 3
351
+ 6400(27c4
352
+ 3 + 216c2
353
+ 3c′
354
+ 3 + 640c′′
355
+ 2 − 480c3c′′
356
+ 3 − 960c′′′
357
+ 3 ).
358
+ (16d)
359
+ The coefficients Qj thus obtained clearly satisfy the conditions
360
+ Q1 = Q′
361
+ 2
362
+ and
363
+ Q0 = ( 3
364
+ 10Q′′
365
+ 2 +
366
+ 9
367
+ 100Q2
368
+ 2)
369
+ 6
370
+
371
+ prescribed by (3b) for iterative equations, as required.
372
+ For equations of order n = 5, by proceeding as above for the orders three
373
+ and four, we obtain the following n − 2 = 3 characterizing equations
374
+ c2 = (30c3c4 − 8c3
375
+ 4 + 75c′
376
+ 3 − 60c4c′
377
+ 4 + 50c′′
378
+ 4)/50
379
+ (17a)
380
+ 1250 c1 = +200c2
381
+ 3 − 18c4
382
+ 4 + 750c4c′
383
+ 3 − 580c2
384
+ 4c′
385
+ 4 − 850c′2
386
+ 4
387
+ − 10c3(c2
388
+ 4 + 5c′
389
+ 4) + 1125c′′
390
+ 3 − 1400c4c′′
391
+ 4 − 1000c(3)
392
+ 4
393
+ (17b)
394
+ 6250 c0 = 200c2
395
+ 3c4 + 14c5
396
+ 4 − 25c2
397
+ 4c′
398
+ 3 + 40c3
399
+ 4c′
400
+ 4
401
+ − 125c′
402
+ 3c′
403
+ 4 − 750c4c′2
404
+ 4 + 1125c4c′′
405
+ 3 − 850c2
406
+ 4c′′
407
+ 4
408
+ − 2750c′
409
+ 4c′′
410
+ 4 + 1250c(3)
411
+ 3
412
+ − 2000c4c(3)
413
+ 4
414
+ − 1250c(4)
415
+ 4
416
+ − 10c3(11c3
417
+ 4 + 100c′
418
+ 3 − 85c4c′
419
+ 4 − 75c′′
420
+ 4).
421
+ (17c)
422
+ 3. Semi-invariants of linear equations
423
+ The group of equivalence transformations of the general linear equation
424
+ (4) is given by invertible point transformations of the form
425
+ x = f(z),
426
+ y = g(z)w(z),
427
+ (18)
428
+ and they preserve the linearity and the homogeneity of the equation. Let
429
+ w(n) + Qn−1 w(n−1) + Qn−2 w(n−2) + · · · + Q0 w = 0
430
+ (19)
431
+ be the transformed version of (4) under (18). By a semi-invariant of (4)
432
+ we shall mean a function F = F(c0, c1, . . . , cn−1) of the coefficients of the
433
+ equation which have the same expression for the transformed equation when
434
+ the dependent variable (alone) changes. It is well known that under (18)
435
+ the expression of the semi-invariant for the transformed equation is related
436
+ to that for the original equation [9, 10] by the equality
437
+ F(Q0, Q1, . . . , Qn−1) =
438
+ �dx
439
+ dz
440
+ �µ
441
+ F(c0, c1, . . . , cn−1),
442
+ (20)
443
+ where µ is an integer.
444
+ In this case we say that the semi-variant F has
445
+ index µ. To each expression of the form dkcj/dxk, let us assign the weight
446
+ (n − j) + k, and we let this weight function be multiplicative so that the
447
+ product cpcq has weight (n − p) + (n − q). It is well known that for a given
448
+ semi-invariant all terms have the same weight and that this weight coincides
449
+ with the index of the semi-invariant [9, 10] .
450
+ 7
451
+
452
+ A closer look at the set of characterizing equations (10) shows that pre-
453
+ cisely one of them corresponds to a semi-invariant of the equation, namely
454
+ the relation cn−3 = An−3, which gives rise to the semi-invariant F =
455
+ An−3 − cn−3.
456
+ First of all, using the method of either [7] or [5], it can be proved that
457
+ the coefficient Bn−3 in (5) satisfies Bn−3 = n−2
458
+ 2 a′. Consequently, using the
459
+ expression of the function a in (9) it follows by induction on n that the
460
+ coefficient An−3 in (6) is given by
461
+ An−3 =n − 2
462
+ n
463
+ cn−1cn−2 − (n − 1)(n − 2)
464
+ 3n2
465
+ c3
466
+ n−1 + n − 2
467
+ 2
468
+ c′
469
+ n−2
470
+ − (n − 1)(n − 2)
471
+ 2n
472
+ cn−1c′
473
+ n−1 − (n − 1)(n − 2)
474
+ 12
475
+ c′′
476
+ n−1,
477
+ (21)
478
+ so that the corresponding invariant function In has expression
479
+ In =n − 2
480
+ n
481
+ cn−1cn−2 − (n − 1)(n − 2)
482
+ 3n2
483
+ c3
484
+ n−1 + n − 2
485
+ 2
486
+ c′
487
+ n−2
488
+ − (n − 1)(n − 2)
489
+ 2n
490
+ cn−1c′
491
+ n−1 − (n − 1)(n − 2)
492
+ 12
493
+ c′′
494
+ n−1 − cn−3.
495
+ (22)
496
+ The fact that the function In = In(c0, c1, . . . , cn−1) in (22) is a semi-invariant
497
+ can readily be verified. First each term in this expression has weight three,
498
+ and we readily see that
499
+ In(Q0, Q1, . . . , Qn−1) = f ′(z)3In(c0, c1, . . . , cn−1),
500
+ which proves the assertion.
501
+ Although the invariant functions In in (22) are originally defined only for
502
+ n ≥ 3, their expression shows that they vanish identically for n = 1 or n = 2,
503
+ by letting cj = 0 for j < 0. This vanishing can be interpreted by the fact that
504
+ all first order and all second order linear equations are all equivalent through
505
+ a point transformation to the equations y′ = 0 and y′′ = 0, respectively, and
506
+ therefore they do not have nontrivial invariant functions.
507
+ On the other hand it should be noted that the other equations in the
508
+ characterizing system (10) do not give rise to invariant functions except for
509
+ the value j = n − 3 in that system of equations. Indeed, denote collectively
510
+ by C and Q the coefficients in equations (4) and (19), respectively, and for
511
+ n = 4 denote by J(C) = 1600(c0 − A0) the normalized function obtained
512
+ from 2.9 with j = 0. Then it can be seen that although each term in the
513
+ expression of J(C) has weight four, we have
514
+ J(Q) = f ′(z)4J(C) − 200h′(z)
515
+ h(z) f ′(z)3I4(C),
516
+ clearly showing that the function J is not a semi-invariant.
517
+ 8
518
+
519
+ 4. Infinitesimal generators of the induced group action
520
+ The equivalence group G in (18) of the general linear equation (4) induces
521
+ another Lie pseudo group Gc acting on the coefficients of (4) [3]. For linear
522
+ equations with maximal symmetries, their most general form depends as
523
+ already noted on only two arbitrary functions, instead of n. For instance,
524
+ the most general form of linear equations of order four admitting a maximal
525
+ symmetry algebra is given on account of (15) by
526
+ y(4) + c3y(3) + c2y′′ + 1
527
+ 8
528
+
529
+ 4c2c3 − c3
530
+ 3 + 8c′
531
+ 2 − 6c3c′
532
+ 3 − 4c′′
533
+ 3
534
+
535
+ y′
536
+ +
537
+ 1
538
+ 1600
539
+
540
+ 144c2
541
+ 2 − 11c4
542
+ 3 + 400c3c′
543
+ 2 − 288c2
544
+ 3c′
545
+ 3 − 336c′2
546
+ 3
547
+ − 8c2
548
+
549
+ c2
550
+ 3 + 4c′
551
+ 3
552
+
553
+ + 480c′′
554
+ 2 − 560c3c′′
555
+ 3 − 320c(3)
556
+ 3
557
+
558
+ y = 0
559
+ (23)
560
+ and it is expressible solely in terms of the coefficients cn−1 and cn−2, here
561
+ c3 and c2.
562
+ Although Eq.
563
+ (23) is a very special case of the general Eq.
564
+ (4), its
565
+ equivalence group is the same group G in (18) because equivalent equations
566
+ have similar symmetry groups. Consequently the infinitesimal generators
567
+ X0 of the group Gc for (4) will also be valid for equations with maximal
568
+ symmetries. In particular to obtain the specific infinitesimal generators for
569
+ equations with maximal symmetries expressed only in terms of the two arbi-
570
+ trary functions, it will be sufficient to substitute the characterizing equations
571
+ (10) into the expression for X0.
572
+ A method for finding the infinitesimal generator X0 has been proposed
573
+ in [8]. If we denote by
574
+ X = ξ ∂x + η ∂y + φn−1 ∂cn−1 + · · · + φ0 ∂c0
575
+ (24)
576
+ the infinitesimal generator of (4) in which the coefficients
577
+ C = (c0, c1, . . . , cn−1)
578
+ are also considered as dependent variables, then the method of [8] consists of
579
+ finding a set of minimum conditions for which the projection V = ξ ∂x +η ∂y
580
+ of X on the (x, y)-space reduces to the infinitesimal generator V 0 =
581
+
582
+ ξ0, η0�
583
+ of the equivalence group G.
584
+ This set of minimal conditions imposed to
585
+ φ = (φ0, φ1, . . . , φn−1) yields a function φ0 = (φ0
586
+ 0, φ0
587
+ 1, . . . , φ0
588
+ n−1) so that the
589
+ expression for X0 takes the form
590
+ X0 = ξ0 ∂x + φ0
591
+ n−1 ∂cn−1 + · · · + φ0
592
+ 0 ∂c0.
593
+ (25)
594
+ 9
595
+
596
+ In practice, the determination of the symmetry generator X for the general
597
+ linear equation (4) is computationally exhaustive, and a popular Lie sym-
598
+ metry software such as MathLie (See [11]) computes X only for n ≤ 4 due to
599
+ computer memory problems (on an Intel Core2 Quad CPU machine) while
600
+ another well-known similar Lie symmetry software such as SYM [12] does
601
+ not compute symmetries such as X that involve several dependent variables
602
+ for a single independent variable.
603
+ We therefore need an efficient simplifying ansatz for the manual compu-
604
+ tation of X0 at orders higher than the fourth. For this, we note that as the
605
+ full symmetry group of (4) with C considered also as dependent variable
606
+ should leave the equation invariant, the transformation of the dependent
607
+ and the independent variables should preserve the form of the equation, ex-
608
+ cept for the introduction of a constant term independent of y which should
609
+ be offset by the subsequent transformations of the coefficient C. This means
610
+ that in (24), we must have
611
+ ξ = f(x),
612
+ η = g(x)y + h(x).
613
+ (26)
614
+ A verification of (26) is possible by direct calculation for equations of order
615
+ not higher than the fourth using the MathLie software, while for orders
616
+ higher than four, the validity of the generators X and X0 found can be
617
+ tested through the satisfaction of the infinitesimal condition of invariance
618
+ applied to the general linear equation (4), and to the semi-invariants In found
619
+ in (22), respectively. Recall that the infinitesimal criterion of invariance for
620
+ the infinitesimal generator X of (4) is given by
621
+ X[n] �
622
+ ∆(x, y(n); C)
623
+
624
+ = 0,
625
+ whenever ∆(x, y(n); C) = 0,
626
+ (27)
627
+ where X[n] represents the n-th prolongation of X. Regarding the verification
628
+ of the infinitesimal condition of invariance for semi-invariants, we note that
629
+ if for some group element α ∈ Gc we set Q = α·C, then every semi-invariant
630
+ of Gc satisfies F(α · C) = w(α) · F(C) for some weight function w, and X0
631
+ is an infinitesimal generator of Gc if and only if
632
+ X0 · F = −dw(e)F,
633
+ for all such functions F, where w(e) is the differential of w at the identity
634
+ element e of Gc. In the actual case of (4) and Gc (which is the same as G
635
+ except that it acts on the space of coefficients), for α ≡ (f, g) specified in
636
+ (18) we have w(α) = f ′(z)3, and for each generator X0 ≡ X0(n) found, it
637
+ is readily verified that
638
+ X0 · In = −3f ′(x)In,
639
+ (28)
640
+ 10
641
+
642
+ as required.
643
+ To our knowledge the infinitesimal generators X0 of the induced pseudo
644
+ group Gc has been computed only for third order equations, or for the nor-
645
+ mal or the Laguerre-Forsyth forms of equations of low orders not exceeding
646
+ five [13, 14, 9]. This is due in part as already mentioned to the intensive
647
+ computational requirements for the calculation of these generators, but also
648
+ because the more systematic method for finding them proposed in [8] is
649
+ relatively recent.
650
+ We list in the next three theorems the general expressions for the in-
651
+ finitesimal generators Xn of GS and X0
652
+ n of Gc and for the three most general
653
+ canonical forms of linear equations, where the subscript n denotes the order
654
+ of the equation.
655
+ Theorem 1. For the general linear equation of order n in standard form
656
+ (4), the infinitesimal generators Xn of GS and X0
657
+ n of Gc have the following
658
+ expressions, where f, g and h are arbitrary functions of x, and δk
659
+ 0 denotes
660
+ the Kronecker delta.
661
+ a)
662
+ Xn = f∂x + (yg + h) ∂y +
663
+ n−1
664
+
665
+ k=0
666
+ Φn
667
+ k∂ck,
668
+ (29a)
669
+ where
670
+ Φn
671
+ k = −(n − k)ckf ′ +
672
+ n−k
673
+
674
+ j=1
675
+ ck+j
676
+ ��k + j
677
+ j + 1
678
+
679
+ f (j+1) −
680
+ �k + j
681
+ j
682
+
683
+ g(j)
684
+
685
+ + δk
686
+ 0
687
+
688
+ −ck
689
+ h
690
+ y +
691
+ n−k
692
+
693
+ j=1
694
+ ck+j
695
+ �k + j
696
+ j
697
+ �h(j)
698
+ y
699
+
700
+  ,
701
+ for k = 0, . . . , n − 1.
702
+ (29b)
703
+ b)
704
+ X0
705
+ n = f∂x +
706
+ n−1
707
+
708
+ k=0
709
+ Φn
710
+ k∂ck,
711
+ (30a)
712
+ 11
713
+
714
+ where
715
+ Φn
716
+ k = −(n − k)ckf ′ +
717
+ n−k
718
+
719
+ j=1
720
+
721
+
722
+ �k + j
723
+ j
724
+
725
+ g(j) +
726
+ �k + j
727
+ j + 1
728
+
729
+ f (j+1)
730
+
731
+ ck+j,
732
+ for k = 0, . . . , n − 1.
733
+ (30b)
734
+ Proof. We let the generator Xn be in the form
735
+ Xn =ξ∂x + η∂y +
736
+ n−1
737
+
738
+ k=0
739
+ Φn
740
+ k∂ck,
741
+ (31)
742
+ where the functions ξ, η, and Φn
743
+ k are to be specified. We know from the
744
+ ansatz (26) that ξ = f(x) and η = g(x)y + h(x) for some arbitrary func-
745
+ tions f, g and h of x. The prolongation formula for X[n]
746
+ n
747
+ is well-known [15].
748
+ Writing down this expression and applying the infinitesimal condition of in-
749
+ variance (27) gives the usual determining equations for the coefficients ξ, η
750
+ and Φn
751
+ k. Although the procedure is a lengthy one, thanks to the ansatz (26)
752
+ these determining equations are easily solved and lead to the expressions in
753
+ (29).
754
+ For the second part of the theorem, the result follows by noting that
755
+ according to the algorithm of [8] already described for finding X0
756
+ n, one es-
757
+ sentially only need to find the minimum set of conditions which reduce the
758
+ projection {f(x), g(x)y + h(x)} of Xn onto the (x, y)-space to the infinitesi-
759
+ mal generator of the equivalence group. From the expressions of the equiv-
760
+ alence transformations given in (18), it follows that the required minimal
761
+ set of condition reduces to {h = 0}. Applying these conditions to (29) and
762
+ dropping the term in ∂y gives the required expression (30).
763
+ Theorem 2. For the general linear equation in reduced normal form, i.e.
764
+ in the form (4) with cn−1 = 0, the generators Xn of GS and X0
765
+ n of Gc have
766
+ the following expressions, in terms of the arbitrary functions f and h of x.
767
+ a)
768
+ Xn = f∂x +
769
+
770
+ y
771
+ ��n − 1
772
+ 2
773
+
774
+ f ′ + K1
775
+
776
+ + h
777
+
778
+ ∂y +
779
+ n−2
780
+
781
+ k−0
782
+ Φn
783
+ k∂ck,
784
+ (32a)
785
+ 12
786
+
787
+ where
788
+ Φn
789
+ k = −(n − k)f ′ck +
790
+ n−k
791
+
792
+ j=1
793
+ ck+j
794
+ ��k + j
795
+ j + 1
796
+
797
+
798
+ �k + j
799
+ j
800
+ �n − 1
801
+ 2
802
+
803
+ f (j+1)
804
+ + δk
805
+ 0
806
+
807
+ −ck
808
+ h
809
+ y +
810
+ n−k
811
+
812
+ j=1
813
+ ck+j
814
+ �k + j
815
+ j
816
+ �h(j)
817
+ y
818
+
819
+  ,
820
+ for k = 0, . . . , n − 2.
821
+ (32b)
822
+ b)
823
+ X0
824
+ n = f∂x +
825
+ n−2
826
+
827
+ k=0
828
+ Φn
829
+ k∂ck,
830
+ (33a)
831
+ where
832
+ Φn
833
+ k = −(n − k)ckf ′ +
834
+ n−k
835
+
836
+ j=1
837
+ ak+j
838
+ ��k + j
839
+ j + 1
840
+
841
+
842
+ �k + j
843
+ j
844
+ �n − 1
845
+ 2
846
+
847
+ f (j+1),
848
+ for k = 0, . . . , n − 2.
849
+ (33b)
850
+ Proof. The expressions for Xn and X0
851
+ n are to be sought in the form (29)
852
+ and (30), respectively, as the normal form of (4) is a special case of that
853
+ equation. The main difference is that the equivalence transformations for
854
+ the normal form are no longer given by (18) but by the much restricted
855
+ version
856
+ x =T(z),
857
+ y = λ
858
+
859
+ T ′(z)
860
+ � n−1
861
+ 2 w(z)
862
+ (34)
863
+ where T is an arbitrary function and λ an arbitrary constant.
864
+ This has
865
+ infinitesimal generator
866
+ V =f(x)∂x + y
867
+ �n − 1
868
+ 2
869
+ f ′(x) + k1
870
+
871
+ ∂y,
872
+ (35)
873
+ where f is an arbitrary function and k1 an arbitrary constant. Since the func-
874
+ tions f and g in (29) and (30) are precisely the parameters of the infinitesimal
875
+ generator of the equivalence group, to obtain (32) and (33), we only need to
876
+ replace g in the latter expressions by the substitution g = n−1
877
+ 2 f ′ + k1 and
878
+ to drop the term in cn−1. This yields (32) and (33).
879
+ 13
880
+
881
+ The Laguerre-Forsyth form of the general linear equation is the equation
882
+ of the form (4) in which the coefficients cn−1 and cn−2 of terms of second
883
+ and third highest orders have vanished. In principle, such a transformation
884
+ can be realized by means of the change of variables of the form
885
+ {z, x} =
886
+ 12
887
+ n(n − 1)(n + 1)cn−2,
888
+ y = w exp
889
+
890
+ − 1
891
+ n
892
+ � z
893
+ z0
894
+ cn−1dx
895
+
896
+ ,
897
+ (36a)
898
+ where
899
+ {z, x} =
900
+
901
+ z′z(3) − (3/2)z′′2�
902
+ z′ −2
903
+ (36b)
904
+ is the Schwarzian derivative, and z′ = dz/dx. The Laguerre-Forsyth form of
905
+ (4) is therefore of an implicit nature in the sense that (36) can not always
906
+ be solved explicitly for z. Nevertheless, such a form is still of interest, in
907
+ particular because linear equations often occur in this form.
908
+ Theorem 3. For the general linear equation (4) in Laguerre-Forsyth form,
909
+ the infinitesimal generators Xn of GS and X0
910
+ n of Gc have the following ex-
911
+ pressions, where a0, a1, a2, and k1 are arbitrary constants, and h an arbitrary
912
+ function.
913
+ a)
914
+ Xn = (a2x2 + a1x + a0)∂x +
915
+
916
+ y
917
+
918
+ k1 + n − 1
919
+ 2
920
+
921
+ 2a2x + a1
922
+ ��
923
+ + h
924
+
925
+ ∂y
926
+ +
927
+ n−3
928
+
929
+ k=0
930
+
931
+ − (n − k)(2a2x + a1)ck + a2(k + 1)(k + 1 − n)ck+1
932
+ + δk
933
+ 0
934
+
935
+ − ck
936
+ h
937
+ y +
938
+ n−k
939
+
940
+ j=1
941
+ �k + j
942
+ j
943
+ �h(j)
944
+ y
945
+ ��
946
+ ∂ck
947
+ (37)
948
+ b)
949
+ X0
950
+ n =
951
+
952
+ a2x2 + a1x + a0
953
+
954
+ ∂x
955
+ +
956
+ n−3
957
+
958
+ k=0
959
+ [−(n − k)(2a2x + a1)ck + a2(k + 1)(k + 1 − n)ck+1] ∂ck.
960
+ (38)
961
+ 14
962
+
963
+ Proof. As in the proof of Theorem 2, we only need to note that as the
964
+ Laguerre-Forsyth form is a special case of the normal form, its generators
965
+ Xn and X0
966
+ n should be sought in the form (32) and (33), respectively. More
967
+ exactly, we only need to find the specific expression for the parameter f of the
968
+ equivalence transformation corresponding to the Laguerre-Forsyth form and
969
+ substitute this into (32) and (33), and to drop the term involving cn−2 in the
970
+ resulting expressions. It is well-known that the equivalence transformations
971
+ of the Laguerre-Forsyth form of (4) are invertible transformations of the form
972
+ (34) in which T(z) is a linear fractional transformation. The corresponding
973
+ infinitesimal generator is thus of the form (35), in which f(x) = a2x2+a1x+
974
+ a0, for some arbitrary constants a2, a1, and a0. This is the expression for f
975
+ which was to be found, and this completes the proof.
976
+ Thanks to the ansatz (26) a direct computation of Xn and X0
977
+ n for equa-
978
+ tions of low orders up to seven has been performed and confirms the validity
979
+ of the expressions given in the three preceding theorems. It should also be
980
+ noted that unlike the case of equations in standard or in normal forms, the
981
+ generator X0
982
+ n of Gc in the case of the Laguerre-Forsyth form involves only a
983
+ finite number of constant parameters. This means that the invariant func-
984
+ tions for this form of the general linear equation are much easier to compute,
985
+ as already noted by Forsyth [10] who obtained an expression for them by a
986
+ direct analysis.
987
+ As noted earlier, for equations with a maximal symmetry algebra which
988
+ are already expressed solely in terms of the two coefficients cn−1 and cn−2, to
989
+ obtain the corresponding infinitesimal generator X0, it suffices to substitute
990
+ in the expression for X0
991
+ n corresponding to the general linear equation (4)
992
+ the corresponding characterizing equations which give an expression for the
993
+ other coefficients solely in terms of cn−1 and cn−2 alone. For instance, for
994
+ n = 4, the expression for X0
995
+ n corresponding to the normalized equation (23)
996
+ 15
997
+
998
+ has, on account of (15) and (29), an expression given by
999
+ ξ = f
1000
+ φ0
1001
+ 3 = −c3f ′ − 4g′ + 6f ′′
1002
+ φ0
1003
+ 2 = −2c2f ′ − 3c3g′ + 3c3f ′′ − 6g′′ + 4f (3)
1004
+ φ0
1005
+ 1 = 3
1006
+ 8f ′(c3
1007
+ 3 − 8c′
1008
+ 2 + 6c3c′
1009
+ 3 + 4c′′
1010
+ 3) − 3c3g′′ + c3f (3)
1011
+ + c2
1012
+
1013
+ −3
1014
+ 2c3f ′ − 2g′ + f ′′
1015
+
1016
+ − 4g(3) + f (4)
1017
+ φ0
1018
+ 0 = −1
1019
+ 8g′(8c′
1020
+ 2 − c3(−4c2 + c2
1021
+ 3 + 6c′
1022
+ 3) − 4c′′
1023
+ 3) − c2g′′ − c3g(3)
1024
+ − g(4) −
1025
+ 1
1026
+ 400f ′�
1027
+ 144c2
1028
+ 2 − 11c4
1029
+ 3 − 288c2
1030
+ 3c′
1031
+ 3 − 8c2(c2
1032
+ 3 + 4c′
1033
+ 3)
1034
+ − 80c3(5c′
1035
+ 2 − 7c′′
1036
+ 3) + 16(21c′2
1037
+ 3 − 30c′′
1038
+ 2 + 20c(3)
1039
+ 3 )
1040
+
1041
+ .
1042
+ (39)
1043
+ 5. Concluding remarks
1044
+ We reiterate the fact already mentioned that the symmetry properties
1045
+ obtained in this paper for linear equations also apply to the infinite dimen-
1046
+ sional class of nonlinear equations which are equivalent to a given linear
1047
+ equation admitting a maximal symmetry algebra. For instance, in the sim-
1048
+ plest case of the free fall equation y′′ = 0, an invertible point transformation
1049
+ of the form x = f(z, w), y = g(z, w) shows that the most general class of
1050
+ second order (linear or nonlinear) equations admitting a maximal symmetry
1051
+ algebra has the form
1052
+ fzgz,z − gzfz,z + w3
1053
+ z (−gwfw,w + fwgw,w)
1054
+ + w2
1055
+ z (−gzfw,w − 2gwfz,w + fzgw,w + 2fwgz,w)
1056
+ + wz (−2gzfz,w − gwfz,z + 2fzgz,w + fwgz,z) + (fzgw − fwgz) wz,z = 0.
1057
+ Moreover, linearization methods under point transformations are available
1058
+ for odes of order up to three [5, 6], and this is very meaningful as for practical
1059
+ considerations most odes of physical relevance fall within this range.
1060
+ One of the most interesting properties of linear equations with maximal
1061
+ symmetries is that their solution can be obtained by a very simple super-
1062
+ position formula from that of the second order source equation [2]. More
1063
+ specifically, thanks to (7), any such equation can always be assumed to be in
1064
+ the normal reduced form (5). In particular, the corresponding second order
1065
+ source equation has the form y′′ + by = 0, for a certain function b = b(x). If
1066
+ 16
1067
+
1068
+ we let u and v be two linearly independent solutions of this source equation,
1069
+ then n linearly independent solutions of an equation of the form (5) with
1070
+ the same source equation are given by
1071
+ yk = ukvn−1−k,
1072
+ k = 0, . . . , n − 1.
1073
+ The latter fact can be used not only for finding analytic solutions of nonlinear
1074
+ equations, but also in the test of numerical schemes. Indeed, when testing
1075
+ a numerical scheme, it is always helpful to have an appropriate collection
1076
+ of nonlinear problems for which one or more explicit analytic solutions are
1077
+ available [16, 17].
1078
+ The infinitesimal generators X0
1079
+ n of the induced pseudo group of transfor-
1080
+ mations Gc found in Section 4 are of a more general interest. One of their
1081
+ main role is in the determination of the invariants (and semi-invariants) of
1082
+ the family of equations, and these functions can in turn be used for a com-
1083
+ plete classification of the given family of equations [18, 19], thus reducing
1084
+ the study in each equivalence class to that of the canonical equation. For a
1085
+ much practical and immediate use, they are very efficient in testing whether
1086
+ a given function is an invariant of the related family of equation, and any
1087
+ given invariant of the family can also easily be used to test some necessary
1088
+ conditions of equivalence between two given equations.
1089
+ References
1090
+ [1] S. Lie, Klassification und Integration von gew¨ohnlichen Differentialgle-
1091
+ ichungen zwischen x, y, die eine Gruppe von Transformationen gestet-
1092
+ ten. I, Math. Ann. 22 (1888) 213–253.
1093
+ [2] J. Krause, L. Michel, Equations diff´erentielles lin´eaires d’ordre n > 2
1094
+ ayant une alg`ebre de Lie de sym´etrie de dimension n + 4, C.R. Acad.
1095
+ Sci. Paris 307 (1988) 905–910.
1096
+ [3] S.
1097
+ Lie,
1098
+ Theorie der Transformationsgruppen,
1099
+ Dritter
1100
+ Abschnitt,
1101
+ Abteilun. I. Unter Mitwirkung von Pr. F. Engel, Teubner, Leipzig, 1893.
1102
+ [4] E. Laguerre, Sur les ´equations diff´erentielles lin´eaires du troisi`eme ordre,
1103
+ C.R. Acad. Sci. Paris 88 (1879) 116–119.
1104
+ [5] F.M. Mahomed, P.G.L. Leach, Symmetry Lie Algebras of nth Order
1105
+ Ordinary Differential Equations, J. Math. Anal. Appl. 151 (1990) 80–
1106
+ 107.
1107
+ 17
1108
+
1109
+ [6] N.H. Ibragimov, F. Magri, Geometric proof of Lie’s linearization theo-
1110
+ rem, Nonlinear Dynam. 36 (2004) 41–46.
1111
+ [7] J.C. Ndogmo, F.M. Mahomed, On certain properties of linear it-
1112
+ erative equations, Cent. Eur. J. Math. 12 no. 4, (2014) 648–657,
1113
+ arXiv:1207.6851.
1114
+ [8] J.C. Ndogmo, A method for the equivalence group and its infinitesimal
1115
+ generators, J. Phys. A: Math. Theor. 41 (2008) 102001.
1116
+ [9] J.C. Ndogmo, Generating Relative and Absolute Invariants of Linear
1117
+ Differential Equations, Int. Math. Forum 4 (2009) 873–886.
1118
+ [10] A.R. Forsyth, Invariants, covariants, and quotient-derivatives associ-
1119
+ ated with linear differential equations, Philos. Trans. R. Soc. Lond. 179
1120
+ (1888) 377–489.
1121
+ [11] G. Baumann, Symmetry Analysis of Differential Equations with Math-
1122
+ ematica, Springer, New York, 2000.
1123
+ [12] S. Dimas D. Tsoubelis, SYM: A new symmetry–finding package for
1124
+ Mathematica, in: N.H. Ibragimov, C. Sophocleous, P.A. Damianou
1125
+ (Eds.), Proceedings of 10th International Conference in Modern Group
1126
+ Analysis, Larnaca, Cyprus, 2004, pp 64–70.
1127
+ [13] N.H. Ibragimov, Infinitesimal method in the theory of invariants of
1128
+ algebraic and differential equations, Not. S. Afr. Math. Soc. 29 (1997)
1129
+ 61–70.
1130
+ [14] J.C. Ndogmo, On structure-preserving point transformations of differ-
1131
+ ential equations, Phys. Lett. A 373 (2009) 1226–1232.
1132
+ [15] P.J. Olver, Applications of Lie Groups to Differential Equations,
1133
+ Springer, New York, 1986.
1134
+ [16] B. Bradie, A Friendly Introduction to Numerical Analysis, Prentice-
1135
+ Hall, Upper Saddle River, 2006.
1136
+ [17] N.J. Higham, Accuracy and Stability of Numerical Algorithms, Second
1137
+ Edition, SIAM, Philadelphia, 2002.
1138
+ [18] M. Fels, P.J. Olver, Moving coframes. II. Regularization and theoretical
1139
+ foundations, Acta. Appl. Math. 55 (1999) 127–208.
1140
+ [19] O.I. Morozov, Contact-equivalence problem for linear hyperbolic equa-
1141
+ tions, J. Math Sci. (N.Y.) 135 (2006) 2680–2694.
1142
+ 18
1143
+
9dAyT4oBgHgl3EQfqPin/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,404 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf,len=403
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
3
+ page_content='00540v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
4
+ page_content='CA] 2 Jan 2023 Coefficient characterization of linear differential equations with maximal symmetries J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
5
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
6
+ page_content=' Ndogmo School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa Abstract A characterization of the general linear equation in standard form admit- ting a maximal symmetry algebra is obtained in terms of a simple set of conditions relating the coefficients of the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
7
+ page_content=' As a consequence, it is shown that in its general form such an equation can be expressed in terms of only two arbitrary functions, and its connection with the Laguerre-Forsyth form is clarified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
8
+ page_content=' The characterizing conditions are also used to derive an infinite family of semi-invariants, each corresponding to an arbitrary order of the linear equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
9
+ page_content=' Finally a simplifying ansatz is established, which allows an easier determination of the infinitesimal generators of the induced pseudo group of equivalence transformations, for all the three most general canonical forms of the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
10
+ page_content=' Keywords: Coefficient characterization, maximal symmetry algebra, canonical form, induced equivalence group, infinitesimal generators 2010 MSC: 70G65, 34C20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
11
+ page_content=' Introduction By a result of Lie [1], a linear ordinary differential equation (ode) of a general order n is known to have a symmetry algebra of maximal dimension dn if it is reducible by a point transformation to the equation y(n) = 0, which will henceforth be referred to as the canonical form of the linear equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
12
+ page_content=' In a much recent paper Krause and Michel [2] proved the converse of this result and also showed that a linear equation is iterative if and only if its symmetry algebra has the maximal dimension dn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
13
+ page_content=' (By the cited result of Lie Email address: jean-claude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
14
+ page_content='ndogmo@wits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
15
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
16
+ page_content='za (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
17
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
18
+ page_content=' Ndogmo) [1], dn = n+4 for n ≥ 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
19
+ page_content=' Characterizing linear equations having a symmetry algebra of maximal dimension is therefore the same as characterizing linear equations that are reducible by a point transformation to the canonical form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
20
+ page_content=' The latter characterization for the third-order equation y(3) + c2 y′′ + c1 y′ + c0 y = 0 is due to Lie [3] and Laguerre [4] who showed independently that this equation is reducible to the canonical form if and only if its coefficients satisfy the equation 54c0 − 18c1c2 + 4c3 2 − 27c′ 1 + 18c2c′ 2 + 9c′′ 2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
21
+ page_content=' (1) This characterization also clearly applies to all nonlinear odes which are linearizable by point transformations [5, 6], as the latter transformations do not alter the dimension of the symmetry algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
22
+ page_content=' In this paper, we extend this characterization to equations of higher or- ders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
23
+ page_content=' It turns out that for each equation of order n there will be n − 2 characterizing equations, and the limitation of our presentation of the char- acterizing equations only up to the order five is simpy due to their very large size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
24
+ page_content=' However, we give a description of the method for deriving this characterization for equations of any order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
25
+ page_content=' The derivation of these char- acterizing equations is also based on the canonical normal form of linear equations admitting a maximal symmetry algebra that was obtained in [5] from a symmetry approach, and in [7] from an iterative approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
26
+ page_content=' These characterizing equations therefore also represent a generalization of the re- sults of [5] and [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
27
+ page_content=' We then deduce that the most general form of a linear equation admitting a maximal symmetry algebra can be expressed in stan- dard form in terms of only two arbitrary functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
28
+ page_content=' We also deduce that the Laguerre-Forsyth form of a linear equation reduces to the canonical form if and only if the equation has maximal symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
29
+ page_content=' Although we do not give the characterizing equations for each linear equation of order n, we note however that among the n − 2 characterizing equations exactly one of them represents a semi-invariant of the equation, that is a function of the coefficients of the equation whose expression does not change when the dependent variable is transformed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
30
+ page_content=' We obtain an expression for these semi-invariants for equations of all orders and describe some of their properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
31
+ page_content=' Finally, using some simplifying assumptions and the method of [8], we give expressions for both the symmetry generator Xn of GS and X0 n of the induced pseudo group of transformations Gc, and for all three most general canonical forms of linear equations of a general order n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
32
+ page_content=' Here, GS denotes the symmetry group of the general linear equation in which the arbitrary 2 functions are considered as additional dependent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
33
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
34
+ page_content=' Coefficient characterization A method based on a symmetry approach has been proposed in [5] for characterizing the coefficients of linear ordinary differential equations (odes) that admit a maximal symmetry algebra, but only for equations in reduced normal form (in which the term of second highest order vanishes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
35
+ page_content=' In a more recent paper [7] a similar characterization based on an iterative approach was proposed, in which according to a result of Krause and Michel [2] a linear equation admitting a maximal symmetry is simply viewed as an iterative equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
36
+ page_content=' By iterative equation, we mean an equation of the form Ψn[y] = 0, y = y(x), n ≥ 1 (2a) where Ψ1[y] = ry′ + sy, Ψn[y] = Ψn−1 [Ψ[y]] , (2b) and where r = r(x) and s = s(x) are the parameters of the source equation Ψ1[y] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
37
+ page_content=' This characterization shows that in its reduced normal form, a general linear equation depends solely on one arbitrary function a = a(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
38
+ page_content=' For equations of orders three to five, the corresponding equations are given as follows: y(3) + ay′ + a′ 2 y = 0 (3a) y(4) + ay′′ + a′y′ + � 3 10a′′ + 9 100a2 � y = 0 (3b) y(5) + ay(3) + 3 2a′y′′ + � 9 10a′′ + 16 100a2 � y′ + �1 5a(3) + 16 100aa′ � y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
39
+ page_content=' (3c) However, as a linear equation need not occur in its reduced normal form, but rather in the most general standard form, it is thus useful to obtain the corresponding characterization for equations in standard form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
40
+ page_content=' We let the general linear equation be given in standard form as ∆(x, y(n);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
41
+ page_content=' C) ≡ y(n) + cn−1 y(n−1) + cn−2 y(n−2) + · · · + c0 y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
42
+ page_content=' (4) 3 where C = (c0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
43
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
44
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
45
+ page_content=' , cn−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
46
+ page_content=' Suppose that such an equation has a symmetry algebra of maximal dimension and let its corresponding reduced normal form be given by y(n) + Bn−2 y(n−2) + Bn−3 y(n−3) + · · · + B0 y = 0, (5) where the Bj for j = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
47
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
48
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
49
+ page_content=' , n−2 are its coefficients and depend as already noted above on a single arbitrary function a = Bn−2 and its derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
50
+ page_content=' Let y(n) + An−1 y(n−1) + An−2 y(n−2) + · · · + A0 y = 0 (6) be the corresponding standard form of (5), which may be obtained by a transformation of the form y �→ ye− 1 n � x x0 An−1dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
51
+ page_content=' (7) Then (4) and (6) must be identical, and in particular the nonzero coef- ficient An−1 introduced by the transformation (7) satisfies An−1 = cn−1, and more generally we have cj = Aj, for j = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
52
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
53
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
54
+ page_content=' , n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
55
+ page_content=' (8) Note that the coefficients cj in (4) are mere symbols and we wish to find a relationship among them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
56
+ page_content=' Given that in (5) the function Bn−2 is precisely the arbitrary function a(x) labeling the equation, it can be shown by a recursive procedure, or even by induction on n that An−2 = a + n − 1 2n c2 n−1 + n − 2 2 c′ n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
57
+ page_content=' Therefore, solving the equation cn−2 = An−2 for a gives a = cn−2 − �n − 1 2n c2 n−1 + n − 2 2 c′ n−1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
58
+ page_content=' (9) Consequently, the characterizing equations for linear equations in standard form with maximal symmetry algebra are given by the remaining n − 2 equations cj = Aj, j = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
59
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
60
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
61
+ page_content=' , n − 3, (10) in which the function a and its derivatives are substituted with the corre- sponding expressions given by (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
62
+ page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
63
+ page_content=' If a linear equation in standard form (4) has maximal sym- metry, then in its general form it may be expressed in terms of only two ar- bitrary functions, namely the functions cn−1 and cn−2, and their derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
64
+ page_content=' 4 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
65
+ page_content=' The result readily follows from the fact that the functions Aj in (10) then depend only on a and its derivatives, while (9) shows that the function a depends precisely on cn−1, cn−2, and their derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
66
+ page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
67
+ page_content=' A linear equation in standard form (4) with cn−1 = cn−2 = 0 has maximal symmetry algebra if and only if cj = 0 for all j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
68
+ page_content=' In other words a linear equation has maximal symmetry algebra if and only if its Laguerre-Forsyth form corresponds to the canonical equation y(n) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
69
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
70
+ page_content=' After all a Laguerre transformation is also a point transformation although it cannot always be explicitly constructed for a given equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
71
+ page_content=' Since equations equivalent under point transformation have similar Lie al- gebras, it readily follows that if the Laguerre-Forsyth form of an equation is y(n) = 0, then the equation has maximal symmetry algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
72
+ page_content=' The converse of the corollary is a direct application of proposition 1, and the fact that in (10) the cj turn out to be polynomial functions with no constant terms of cn−1, cn−2, and their derivatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
73
+ page_content=' As an immediate consequence of the corollary, linear equations such as y(3) +f(x)y = 0 or y(4)+f(x)y′ = 0 have maximal symmetry algebras if and only if the function f(x) vanishes identically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
74
+ page_content=' We now make use of (10) and (9) to explicitly derive the characterizing equations for maximal symmetry algebras for equations of orders three to five.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
75
+ page_content=' For n = 3, it is readily found that in (6) we have A0 = 1 54 � 18ac2 + 2c3 2 + 27a′ + 18c2c′ 2 + 18c′′ 2 � , (11) while the corresponding expression for a in (9) reduces to a = c1 − �c2 2 3 + c′ 2 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
76
+ page_content=' (12) Applying (12) into (11) and substituting the resulting expression for A0 into (10) gives exactly the already cited equation (1) found by Lie [3] and Laguerre [4] and given by 54c0 − 18c1c2 + 4c3 2 − 27c′ 1 + 18c2c′ 2 + 9c′′ 2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
77
+ page_content=' The most general form of a linear third-order equation admitting a maximal symmetry algebra can thus be expressed in terms of only two arbitrary functions c1(x) and c2(x) in the form of y(3) + c2 y′′ + c1 y′ + 1 54 � 18c1c2 − 4c3 2 + 27c′ 1 − 18c2c′ 2 − 9c′′ 2 � y = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
78
+ page_content=' (13) 5 Equation (13) naturally reduces to (3a) for c2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
79
+ page_content=' For n = 4, we successively get a = 1 8 � 8c2 − 3c2 3 − 12c′ 3 � (14a) A1 = 1 2 � ac3 + c3 3 16 + a′ + 3 4c3c′ 3 + c′′ 3 � (14b) 6400A0 = 576a2 + 400a(c2 3 + 4c′ 3) + 5 � 5c4 3 + 120c2 3c′ 3 + 320c3(a′ + c′′ 3) � + 80 � 15c′2 3 + 24a′′ + 20c(3) 3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
80
+ page_content=' (14c) Substituting (14a) into (14b) and (14c) gives the two equations 8c1+ = 4c2c3 − c3 3 + 8c′ 2 − 6c3c′ 3 − 4c′′ 3 (15a) 1600c0 = 144c2 2 − 11c4 3 + 400c3c′ 2 − 288c2 3c′ 3 − 336c′2 3 − 8c2(c2 3 + 4c′ 3) + 480c′′ 2 − 560c3c′′ 3 − 320c(3) 3 (15b) which represent the characterizing equations for maximal symmetry algebra for equations of order 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
81
+ page_content=' Note that conversely any linear fourth order equa- tion whose coefficients satisfy (15) must be iterative, which is why conditions such as (15) are termed characterizing equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
82
+ page_content=' Indeed,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
83
+ page_content=' if the coefficients of a fourth order equation of the form (4) satisfy (5),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
84
+ page_content=' then its reduced nor- mal form has,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
85
+ page_content=' after the substitution of the expressions for c0 and c1 given by (5) in terms of c2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
86
+ page_content=' c3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
87
+ page_content=' and their derivatives,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
88
+ page_content=' the form w(4) + Q2w′′ + Q1w′ + Q0w = 0 (16a) where Q2 = c2 − 3 8(c2 3 + 4c′ 3) (16b) Q1 = c′ 2 − 3 4(c3c′ 3 + 2c′′ 3) (16c) Q0 = 3 6400(192c2 2 + 27c4 3 − 48c′2 3 − 144c2(c2 3 + 4c′ 3)) + 3 6400(27c4 3 + 216c2 3c′ 3 + 640c′′ 2 − 480c3c′′ 3 − 960c′′′ 3 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
89
+ page_content=' (16d) The coefficients Qj thus obtained clearly satisfy the conditions Q1 = Q′ 2 and Q0 = ( 3 10Q′′ 2 + 9 100Q2 2) 6 prescribed by (3b) for iterative equations, as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
90
+ page_content=' For equations of order n = 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
91
+ page_content=' by proceeding as above for the orders three and four,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
92
+ page_content=' we obtain the following n − 2 = 3 characterizing equations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
93
+ page_content='c2 = (30c3c4 − 8c3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
94
+ page_content='4 + 75c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
95
+ page_content='3 − 60c4c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
96
+ page_content='4 + 50c′′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
97
+ page_content='4)/50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
98
+ page_content='(17a) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
99
+ page_content='1250 c1 = +200c2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
100
+ page_content='3 − 18c4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
101
+ page_content='4 + 750c4c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
102
+ page_content='3 − 580c2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
103
+ page_content='4c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
104
+ page_content='4 − 850c′2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
105
+ page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
106
+ page_content='− 10c3(c2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
107
+ page_content='4 + 5c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
108
+ page_content='4) + 1125c′′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
109
+ page_content='3 − 1400c4c′′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
110
+ page_content='4 − 1000c(3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
111
+ page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
112
+ page_content='(17b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
113
+ page_content='6250 c0 = 200c2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
114
+ page_content='3c4 + 14c5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
115
+ page_content='4 − 25c2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
116
+ page_content='4c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
117
+ page_content='3 + 40c3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
118
+ page_content='4c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
119
+ page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
120
+ page_content='− 125c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
121
+ page_content='3c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
122
+ page_content='4 − 750c4c′2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
123
+ page_content='4 + 1125c4c′′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
124
+ page_content='3 − 850c2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
125
+ page_content='4c′′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
126
+ page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
127
+ page_content='− 2750c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
128
+ page_content='4c′′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
129
+ page_content='4 + 1250c(3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
130
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
131
+ page_content='− 2000c4c(3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
132
+ page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
133
+ page_content='− 1250c(4) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
134
+ page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
135
+ page_content='− 10c3(11c3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
136
+ page_content='4 + 100c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
137
+ page_content='3 − 85c4c′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
138
+ page_content='4 − 75c′′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
139
+ page_content='4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
140
+ page_content=' (17c) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
141
+ page_content=' Semi-invariants of linear equations The group of equivalence transformations of the general linear equation (4) is given by invertible point transformations of the form x = f(z), y = g(z)w(z), (18) and they preserve the linearity and the homogeneity of the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
142
+ page_content=' Let w(n) + Qn−1 w(n−1) + Qn−2 w(n−2) + · · · + Q0 w = 0 (19) be the transformed version of (4) under (18).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
143
+ page_content=' By a semi-invariant of (4) we shall mean a function F = F(c0, c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
144
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
145
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
146
+ page_content=' , cn−1) of the coefficients of the equation which have the same expression for the transformed equation when the dependent variable (alone) changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
147
+ page_content=' It is well known that under (18) the expression of the semi-invariant for the transformed equation is related to that for the original equation [9, 10] by the equality F(Q0, Q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
148
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
149
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
150
+ page_content=' , Qn−1) = �dx dz �µ F(c0, c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
151
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
152
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
153
+ page_content=' , cn−1), (20) where µ is an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
154
+ page_content=' In this case we say that the semi-variant F has index µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
155
+ page_content=' To each expression of the form dkcj/dxk, let us assign the weight (n − j) + k, and we let this weight function be multiplicative so that the product cpcq has weight (n − p) + (n − q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
156
+ page_content=' It is well known that for a given semi-invariant all terms have the same weight and that this weight coincides with the index of the semi-invariant [9, 10] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
157
+ page_content=' 7 A closer look at the set of characterizing equations (10) shows that pre- cisely one of them corresponds to a semi-invariant of the equation, namely the relation cn−3 = An−3, which gives rise to the semi-invariant F = An−3 − cn−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
158
+ page_content=' First of all, using the method of either [7] or [5], it can be proved that the coefficient Bn−3 in (5) satisfies Bn−3 = n−2 2 a′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
159
+ page_content=' Consequently, using the expression of the function a in (9) it follows by induction on n that the coefficient An−3 in (6) is given by An−3 =n − 2 n cn−1cn−2 − (n − 1)(n − 2) 3n2 c3 n−1 + n − 2 2 c′ n−2 − (n − 1)(n − 2) 2n cn−1c′ n−1 − (n − 1)(n − 2) 12 c′′ n−1, (21) so that the corresponding invariant function In has expression In =n − 2 n cn−1cn−2 − (n − 1)(n − 2) 3n2 c3 n−1 + n − 2 2 c′ n−2 − (n − 1)(n − 2) 2n cn−1c′ n−1 − (n − 1)(n − 2) 12 c′′ n−1 − cn−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
160
+ page_content=' (22) The fact that the function In = In(c0, c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
161
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
162
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
163
+ page_content=' , cn−1) in (22) is a semi-invariant can readily be verified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
164
+ page_content=' First each term in this expression has weight three, and we readily see that In(Q0, Q1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
165
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
166
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
167
+ page_content=' , Qn−1) = f ′(z)3In(c0, c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
168
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
169
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
170
+ page_content=' , cn−1), which proves the assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
171
+ page_content=' Although the invariant functions In in (22) are originally defined only for n ≥ 3, their expression shows that they vanish identically for n = 1 or n = 2, by letting cj = 0 for j < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
172
+ page_content=' This vanishing can be interpreted by the fact that all first order and all second order linear equations are all equivalent through a point transformation to the equations y′ = 0 and y′′ = 0, respectively, and therefore they do not have nontrivial invariant functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
173
+ page_content=' On the other hand it should be noted that the other equations in the characterizing system (10) do not give rise to invariant functions except for the value j = n − 3 in that system of equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
174
+ page_content=' Indeed, denote collectively by C and Q the coefficients in equations (4) and (19), respectively, and for n = 4 denote by J(C) = 1600(c0 − A0) the normalized function obtained from 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
175
+ page_content='9 with j = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
176
+ page_content=' Then it can be seen that although each term in the expression of J(C) has weight four, we have J(Q) = f ′(z)4J(C) − 200h′(z) h(z) f ′(z)3I4(C), clearly showing that the function J is not a semi-invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
177
+ page_content=' 8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
178
+ page_content=' Infinitesimal generators of the induced group action The equivalence group G in (18) of the general linear equation (4) induces another Lie pseudo group Gc acting on the coefficients of (4) [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
179
+ page_content=' For linear equations with maximal symmetries, their most general form depends as already noted on only two arbitrary functions, instead of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
180
+ page_content=' For instance, the most general form of linear equations of order four admitting a maximal symmetry algebra is given on account of (15) by y(4) + c3y(3) + c2y′′ + 1 8 � 4c2c3 − c3 3 + 8c′ 2 − 6c3c′ 3 − 4c′′ 3 � y′ + 1 1600 � 144c2 2 − 11c4 3 + 400c3c′ 2 − 288c2 3c′ 3 − 336c′2 3 − 8c2 � c2 3 + 4c′ 3 � + 480c′′ 2 − 560c3c′′ 3 − 320c(3) 3 � y = 0 (23) and it is expressible solely in terms of the coefficients cn−1 and cn−2, here c3 and c2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
181
+ page_content=' Although Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
182
+ page_content=' (23) is a very special case of the general Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
183
+ page_content=' (4), its equivalence group is the same group G in (18) because equivalent equations have similar symmetry groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
184
+ page_content=' Consequently the infinitesimal generators X0 of the group Gc for (4) will also be valid for equations with maximal symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
185
+ page_content=' In particular to obtain the specific infinitesimal generators for equations with maximal symmetries expressed only in terms of the two arbi- trary functions, it will be sufficient to substitute the characterizing equations (10) into the expression for X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
186
+ page_content=' A method for finding the infinitesimal generator X0 has been proposed in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
187
+ page_content=' If we denote by X = ξ ∂x + η ∂y + φn−1 ∂cn−1 + · · · + φ0 ∂c0 (24) the infinitesimal generator of (4) in which the coefficients C = (c0, c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
188
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
189
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
190
+ page_content=' , cn−1) are also considered as dependent variables, then the method of [8] consists of finding a set of minimum conditions for which the projection V = ξ ∂x +η ∂y of X on the (x, y)-space reduces to the infinitesimal generator V 0 = � ξ0, η0� of the equivalence group G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
191
+ page_content=' This set of minimal conditions imposed to φ = (φ0, φ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
192
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
193
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
194
+ page_content=' , φn−1) yields a function φ0 = (φ0 0, φ0 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
195
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
196
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
197
+ page_content=' , φ0 n−1) so that the expression for X0 takes the form X0 = ξ0 ∂x + φ0 n−1 ∂cn−1 + · · · + φ0 0 ∂c0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
198
+ page_content=' (25) 9 In practice, the determination of the symmetry generator X for the general linear equation (4) is computationally exhaustive, and a popular Lie sym- metry software such as MathLie (See [11]) computes X only for n ≤ 4 due to computer memory problems (on an Intel Core2 Quad CPU machine) while another well-known similar Lie symmetry software such as SYM [12] does not compute symmetries such as X that involve several dependent variables for a single independent variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
199
+ page_content=' We therefore need an efficient simplifying ansatz for the manual compu- tation of X0 at orders higher than the fourth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
200
+ page_content=' For this, we note that as the full symmetry group of (4) with C considered also as dependent variable should leave the equation invariant, the transformation of the dependent and the independent variables should preserve the form of the equation, ex- cept for the introduction of a constant term independent of y which should be offset by the subsequent transformations of the coefficient C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
201
+ page_content=' This means that in (24), we must have ξ = f(x), η = g(x)y + h(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
202
+ page_content=' (26) A verification of (26) is possible by direct calculation for equations of order not higher than the fourth using the MathLie software, while for orders higher than four, the validity of the generators X and X0 found can be tested through the satisfaction of the infinitesimal condition of invariance applied to the general linear equation (4), and to the semi-invariants In found in (22), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
203
+ page_content=' Recall that the infinitesimal criterion of invariance for the infinitesimal generator X of (4) is given by X[n] � ∆(x, y(n);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
204
+ page_content=' C) � = 0, whenever ∆(x, y(n);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
205
+ page_content=' C) = 0, (27) where X[n] represents the n-th prolongation of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
206
+ page_content=' Regarding the verification of the infinitesimal condition of invariance for semi-invariants, we note that if for some group element α ∈ Gc we set Q = α·C, then every semi-invariant of Gc satisfies F(α · C) = w(α) · F(C) for some weight function w, and X0 is an infinitesimal generator of Gc if and only if X0 · F = −dw(e)F, for all such functions F, where w(e) is the differential of w at the identity element e of Gc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
207
+ page_content=' In the actual case of (4) and Gc (which is the same as G except that it acts on the space of coefficients), for α ≡ (f, g) specified in (18) we have w(α) = f ′(z)3, and for each generator X0 ≡ X0(n) found, it is readily verified that X0 · In = −3f ′(x)In, (28) 10 as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
208
+ page_content=' To our knowledge the infinitesimal generators X0 of the induced pseudo group Gc has been computed only for third order equations, or for the nor- mal or the Laguerre-Forsyth forms of equations of low orders not exceeding five [13, 14, 9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
209
+ page_content=' This is due in part as already mentioned to the intensive computational requirements for the calculation of these generators, but also because the more systematic method for finding them proposed in [8] is relatively recent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
210
+ page_content=' We list in the next three theorems the general expressions for the in- finitesimal generators Xn of GS and X0 n of Gc and for the three most general canonical forms of linear equations, where the subscript n denotes the order of the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
211
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
212
+ page_content=' For the general linear equation of order n in standard form (4), the infinitesimal generators Xn of GS and X0 n of Gc have the following expressions, where f, g and h are arbitrary functions of x, and δk 0 denotes the Kronecker delta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
213
+ page_content=' a) Xn = f∂x + (yg + h) ∂y + n−1 � k=0 Φn k∂ck, (29a) where Φn k = −(n − k)ckf ′ + n−k � j=1 ck+j ��k + j j + 1 � f (j+1) − �k + j j � g(j) � + δk 0 \uf8ee \uf8f0−ck h y + n−k � j=1 ck+j �k + j j �h(j) y \uf8f9 \uf8fb , for k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
214
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
215
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
216
+ page_content=' , n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
217
+ page_content=' (29b) b) X0 n = f∂x + n−1 � k=0 Φn k∂ck, (30a) 11 where Φn k = −(n − k)ckf ′ + n−k � j=1 � − �k + j j � g(j) + �k + j j + 1 � f (j+1) � ck+j, for k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
218
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
219
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
220
+ page_content=' , n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
221
+ page_content=' (30b) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
222
+ page_content=' We let the generator Xn be in the form Xn =ξ∂x + η∂y + n−1 � k=0 Φn k∂ck, (31) where the functions ξ, η, and Φn k are to be specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
223
+ page_content=' We know from the ansatz (26) that ξ = f(x) and η = g(x)y + h(x) for some arbitrary func- tions f, g and h of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
224
+ page_content=' The prolongation formula for X[n] n is well-known [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
225
+ page_content=' Writing down this expression and applying the infinitesimal condition of in- variance (27) gives the usual determining equations for the coefficients ξ, η and Φn k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
226
+ page_content=' Although the procedure is a lengthy one, thanks to the ansatz (26) these determining equations are easily solved and lead to the expressions in (29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
227
+ page_content=' For the second part of the theorem, the result follows by noting that according to the algorithm of [8] already described for finding X0 n, one es- sentially only need to find the minimum set of conditions which reduce the projection {f(x), g(x)y + h(x)} of Xn onto the (x, y)-space to the infinitesi- mal generator of the equivalence group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
228
+ page_content=' From the expressions of the equiv- alence transformations given in (18), it follows that the required minimal set of condition reduces to {h = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
229
+ page_content=' Applying these conditions to (29) and dropping the term in ∂y gives the required expression (30).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
230
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
231
+ page_content=' For the general linear equation in reduced normal form, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
232
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
233
+ page_content=' in the form (4) with cn−1 = 0, the generators Xn of GS and X0 n of Gc have the following expressions, in terms of the arbitrary functions f and h of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
234
+ page_content=' a) Xn = f∂x + � y ��n − 1 2 � f ′ + K1 � + h � ∂y + n−2 � k−0 Φn k∂ck, (32a) 12 where Φn k = −(n − k)f ′ck + n−k � j=1 ck+j ��k + j j + 1 � − �k + j j �n − 1 2 � f (j+1) + δk 0 \uf8ee \uf8f0−ck h y + n−k � j=1 ck+j �k + j j �h(j) y \uf8f9 \uf8fb , for k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
235
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
236
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
237
+ page_content=' , n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
238
+ page_content=' (32b) b) X0 n = f∂x + n−2 � k=0 Φn k∂ck, (33a) where Φn k = −(n − k)ckf ′ + n−k � j=1 ak+j ��k + j j + 1 � − �k + j j �n − 1 2 � f (j+1), for k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
239
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
240
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
241
+ page_content=' , n − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
242
+ page_content=' (33b) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
243
+ page_content=' The expressions for Xn and X0 n are to be sought in the form (29) and (30), respectively, as the normal form of (4) is a special case of that equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
244
+ page_content=' The main difference is that the equivalence transformations for the normal form are no longer given by (18) but by the much restricted version x =T(z), y = λ � T ′(z) � n−1 2 w(z) (34) where T is an arbitrary function and λ an arbitrary constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
245
+ page_content=' This has infinitesimal generator V =f(x)∂x + y �n − 1 2 f ′(x) + k1 � ∂y, (35) where f is an arbitrary function and k1 an arbitrary constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
246
+ page_content=' Since the func- tions f and g in (29) and (30) are precisely the parameters of the infinitesimal generator of the equivalence group, to obtain (32) and (33), we only need to replace g in the latter expressions by the substitution g = n−1 2 f ′ + k1 and to drop the term in cn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
247
+ page_content=' This yields (32) and (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
248
+ page_content=' 13 The Laguerre-Forsyth form of the general linear equation is the equation of the form (4) in which the coefficients cn−1 and cn−2 of terms of second and third highest orders have vanished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
249
+ page_content=' In principle, such a transformation can be realized by means of the change of variables of the form {z, x} = 12 n(n − 1)(n + 1)cn−2, y = w exp � − 1 n � z z0 cn−1dx � , (36a) where {z, x} = � z′z(3) − (3/2)z′′2� z′ −2 (36b) is the Schwarzian derivative, and z′ = dz/dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
250
+ page_content=' The Laguerre-Forsyth form of (4) is therefore of an implicit nature in the sense that (36) can not always be solved explicitly for z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
251
+ page_content=' Nevertheless, such a form is still of interest, in particular because linear equations often occur in this form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
252
+ page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
253
+ page_content=' For the general linear equation (4) in Laguerre-Forsyth form, the infinitesimal generators Xn of GS and X0 n of Gc have the following ex- pressions, where a0, a1, a2, and k1 are arbitrary constants, and h an arbitrary function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
254
+ page_content=' a) Xn = (a2x2 + a1x + a0)∂x + � y � k1 + n − 1 2 � 2a2x + a1 �� + h � ∂y + n−3 � k=0 � − (n − k)(2a2x + a1)ck + a2(k + 1)(k + 1 − n)ck+1 + δk 0 � − ck h y + n−k � j=1 �k + j j �h(j) y �� ∂ck (37) b) X0 n = � a2x2 + a1x + a0 � ∂x + n−3 � k=0 [−(n − k)(2a2x + a1)ck + a2(k + 1)(k + 1 − n)ck+1] ∂ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
255
+ page_content=' (38) 14 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
256
+ page_content=' As in the proof of Theorem 2, we only need to note that as the Laguerre-Forsyth form is a special case of the normal form, its generators Xn and X0 n should be sought in the form (32) and (33), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
257
+ page_content=' More exactly, we only need to find the specific expression for the parameter f of the equivalence transformation corresponding to the Laguerre-Forsyth form and substitute this into (32) and (33), and to drop the term involving cn−2 in the resulting expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
258
+ page_content=' It is well-known that the equivalence transformations of the Laguerre-Forsyth form of (4) are invertible transformations of the form (34) in which T(z) is a linear fractional transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
259
+ page_content=' The corresponding infinitesimal generator is thus of the form (35), in which f(x) = a2x2+a1x+ a0, for some arbitrary constants a2, a1, and a0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
260
+ page_content=' This is the expression for f which was to be found, and this completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
261
+ page_content=' Thanks to the ansatz (26) a direct computation of Xn and X0 n for equa- tions of low orders up to seven has been performed and confirms the validity of the expressions given in the three preceding theorems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
262
+ page_content=' It should also be noted that unlike the case of equations in standard or in normal forms, the generator X0 n of Gc in the case of the Laguerre-Forsyth form involves only a finite number of constant parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
263
+ page_content=' This means that the invariant func- tions for this form of the general linear equation are much easier to compute, as already noted by Forsyth [10] who obtained an expression for them by a direct analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
264
+ page_content=' As noted earlier, for equations with a maximal symmetry algebra which are already expressed solely in terms of the two coefficients cn−1 and cn−2, to obtain the corresponding infinitesimal generator X0, it suffices to substitute in the expression for X0 n corresponding to the general linear equation (4) the corresponding characterizing equations which give an expression for the other coefficients solely in terms of cn−1 and cn−2 alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
265
+ page_content=' For instance,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
266
+ page_content=' for n = 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
267
+ page_content=' the expression for X0 n corresponding to the normalized equation (23) 15 has,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
268
+ page_content=' on account of (15) and (29),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
269
+ page_content=' an expression given by ξ = f φ0 3 = −c3f ′ − 4g′ + 6f ′′ φ0 2 = −2c2f ′ − 3c3g′ + 3c3f ′′ − 6g′′ + 4f (3) φ0 1 = 3 8f ′(c3 3 − 8c′ 2 + 6c3c′ 3 + 4c′′ 3) − 3c3g′′ + c3f (3) + c2 � −3 2c3f ′ − 2g′ + f ′′ � − 4g(3) + f (4) φ0 0 = −1 8g′(8c′ 2 − c3(−4c2 + c2 3 + 6c′ 3) − 4c′′ 3) − c2g′′ − c3g(3) − g(4) − 1 400f ′� 144c2 2 − 11c4 3 − 288c2 3c′ 3 − 8c2(c2 3 + 4c′ 3) − 80c3(5c′ 2 − 7c′′ 3) + 16(21c′2 3 − 30c′′ 2 + 20c(3) 3 ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
270
+ page_content=' (39) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
271
+ page_content=' Concluding remarks We reiterate the fact already mentioned that the symmetry properties obtained in this paper for linear equations also apply to the infinite dimen- sional class of nonlinear equations which are equivalent to a given linear equation admitting a maximal symmetry algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
272
+ page_content=' For instance, in the sim- plest case of the free fall equation y′′ = 0, an invertible point transformation of the form x = f(z, w), y = g(z, w) shows that the most general class of second order (linear or nonlinear) equations admitting a maximal symmetry algebra has the form fzgz,z − gzfz,z + w3 z (−gwfw,w + fwgw,w) + w2 z (−gzfw,w − 2gwfz,w + fzgw,w + 2fwgz,w) + wz (−2gzfz,w − gwfz,z + 2fzgz,w + fwgz,z) + (fzgw − fwgz) wz,z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
273
+ page_content=' Moreover, linearization methods under point transformations are available for odes of order up to three [5, 6], and this is very meaningful as for practical considerations most odes of physical relevance fall within this range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
274
+ page_content=' One of the most interesting properties of linear equations with maximal symmetries is that their solution can be obtained by a very simple super- position formula from that of the second order source equation [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
275
+ page_content=' More specifically, thanks to (7), any such equation can always be assumed to be in the normal reduced form (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
276
+ page_content=' In particular, the corresponding second order source equation has the form y′′ + by = 0, for a certain function b = b(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
277
+ page_content=' If 16 we let u and v be two linearly independent solutions of this source equation, then n linearly independent solutions of an equation of the form (5) with the same source equation are given by yk = ukvn−1−k, k = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
278
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
279
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
280
+ page_content=' , n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
281
+ page_content=' The latter fact can be used not only for finding analytic solutions of nonlinear equations, but also in the test of numerical schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
282
+ page_content=' Indeed, when testing a numerical scheme, it is always helpful to have an appropriate collection of nonlinear problems for which one or more explicit analytic solutions are available [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
283
+ page_content=' The infinitesimal generators X0 n of the induced pseudo group of transfor- mations Gc found in Section 4 are of a more general interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
284
+ page_content=' One of their main role is in the determination of the invariants (and semi-invariants) of the family of equations, and these functions can in turn be used for a com- plete classification of the given family of equations [18, 19], thus reducing the study in each equivalence class to that of the canonical equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
285
+ page_content=' For a much practical and immediate use, they are very efficient in testing whether a given function is an invariant of the related family of equation, and any given invariant of the family can also easily be used to test some necessary conditions of equivalence between two given equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
286
+ page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
287
+ page_content=' Lie, Klassification und Integration von gew¨ohnlichen Differentialgle- ichungen zwischen x, y, die eine Gruppe von Transformationen gestet- ten.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
288
+ page_content=' I, Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
289
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
290
+ page_content=' 22 (1888) 213–253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
291
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
292
+ page_content=' Krause, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
293
+ page_content=' Michel, Equations diff´erentielles lin´eaires d’ordre n > 2 ayant une alg`ebre de Lie de sym´etrie de dimension n + 4, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
294
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
295
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
296
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
297
+ page_content=' Paris 307 (1988) 905–910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
298
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
299
+ page_content=' Lie, Theorie der Transformationsgruppen, Dritter Abschnitt, Abteilun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
300
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
301
+ page_content=' Unter Mitwirkung von Pr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
302
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
303
+ page_content=' Engel, Teubner, Leipzig, 1893.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
304
+ page_content=' [4] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
305
+ page_content=' Laguerre, Sur les ´equations diff´erentielles lin´eaires du troisi`eme ordre, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
306
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
307
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
308
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
309
+ page_content=' Paris 88 (1879) 116–119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
310
+ page_content=' [5] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
311
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
312
+ page_content=' Mahomed, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
313
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
314
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
315
+ page_content=' Leach, Symmetry Lie Algebras of nth Order Ordinary Differential Equations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
316
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
317
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
318
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
319
+ page_content=' 151 (1990) 80– 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
320
+ page_content=' 17 [6] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
321
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
322
+ page_content=' Ibragimov, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
323
+ page_content=' Magri, Geometric proof of Lie’s linearization theo- rem, Nonlinear Dynam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
324
+ page_content=' 36 (2004) 41–46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
325
+ page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
326
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
327
+ page_content=' Ndogmo, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
328
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
329
+ page_content=' Mahomed, On certain properties of linear it- erative equations, Cent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
330
+ page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
331
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
332
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
333
+ page_content=' 12 no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
334
+ page_content=' 4, (2014) 648–657, arXiv:1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
335
+ page_content='6851.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
336
+ page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
337
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
338
+ page_content=' Ndogmo, A method for the equivalence group and its infinitesimal generators, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
339
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
340
+ page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
341
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
342
+ page_content=' 41 (2008) 102001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
343
+ page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
344
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
345
+ page_content=' Ndogmo, Generating Relative and Absolute Invariants of Linear Differential Equations, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
346
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
347
+ page_content=' Forum 4 (2009) 873–886.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
348
+ page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
349
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
350
+ page_content=' Forsyth, Invariants, covariants, and quotient-derivatives associ- ated with linear differential equations, Philos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
351
+ page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
352
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
353
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
354
+ page_content=' Lond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
355
+ page_content=' 179 (1888) 377–489.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
356
+ page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
357
+ page_content=' Baumann, Symmetry Analysis of Differential Equations with Math- ematica, Springer, New York, 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
358
+ page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
359
+ page_content=' Dimas D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
360
+ page_content=' Tsoubelis, SYM: A new symmetry–finding package for Mathematica, in: N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
361
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
362
+ page_content=' Ibragimov, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
363
+ page_content=' Sophocleous, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
364
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
365
+ page_content=' Damianou (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
366
+ page_content=' ), Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004, pp 64–70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
367
+ page_content=' [13] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
368
+ page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
369
+ page_content=' Ibragimov, Infinitesimal method in the theory of invariants of algebraic and differential equations, Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
370
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
371
+ page_content=' Afr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
372
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
373
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
374
+ page_content=' 29 (1997) 61–70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
375
+ page_content=' [14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
376
+ page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
377
+ page_content=' Ndogmo, On structure-preserving point transformations of differ- ential equations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
378
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
379
+ page_content=' A 373 (2009) 1226–1232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
380
+ page_content=' [15] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
381
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
382
+ page_content=' Olver, Applications of Lie Groups to Differential Equations, Springer, New York, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
383
+ page_content=' [16] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
384
+ page_content=' Bradie, A Friendly Introduction to Numerical Analysis, Prentice- Hall, Upper Saddle River, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
385
+ page_content=' [17] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
386
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
387
+ page_content=' Higham, Accuracy and Stability of Numerical Algorithms, Second Edition, SIAM, Philadelphia, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
388
+ page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
389
+ page_content=' Fels, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
390
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
391
+ page_content=' Olver, Moving coframes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
392
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
393
+ page_content=' Regularization and theoretical foundations, Acta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
394
+ page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
395
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
396
+ page_content=' 55 (1999) 127–208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
397
+ page_content=' [19] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
398
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
399
+ page_content=' Morozov, Contact-equivalence problem for linear hyperbolic equa- tions, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
400
+ page_content=' Math Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
401
+ page_content=' (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
402
+ page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
403
+ page_content=') 135 (2006) 2680–2694.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
404
+ page_content=' 18' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dAyT4oBgHgl3EQfqPin/content/2301.00540v1.pdf'}
BdE4T4oBgHgl3EQfFAzo/content/tmp_files/2301.04883v1.pdf.txt ADDED
@@ -0,0 +1,1887 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SlideVQA: A Dataset for Document Visual Question Answering on Multiple
2
+ Images
3
+ Ryota Tanaka, Kyosuke Nishida, Kosuke Nishida, Taku Hasegawa, Itsumi Saito, Kuniko Saito
4
+ NTT Human Informatics Laboratories, NTT Corporation
5
+ {ryouta.tanaka.rg, kyosuke.nishida.rx, kosuke.nishida.ap, taku.hasegawa.ps, itsumi.saito.df, kuniko.saito.ku}@hco.ntt.co.jp
6
+ Abstract
7
+ Visual question answering on document images that con-
8
+ tain textual, visual, and layout information, called document
9
+ VQA, has received much attention recently. Although many
10
+ datasets have been proposed for developing document VQA
11
+ systems, most of the existing datasets focus on understand-
12
+ ing the content relationships within a single image and not
13
+ across multiple images. In this study, we propose a new multi-
14
+ image document VQA dataset, SlideVQA, containing 2.6k+
15
+ slide decks composed of 52k+ slide images and 14.5k ques-
16
+ tions about a slide deck. SlideVQA requires complex rea-
17
+ soning, including single-hop, multi-hop, and numerical rea-
18
+ soning, and also provides annotated arithmetic expressions
19
+ of numerical answers for enhancing the ability of numerical
20
+ reasoning. Moreover, we developed a new end-to-end docu-
21
+ ment VQA model that treats evidence selection and question
22
+ answering in a unified sequence-to-sequence format. Exper-
23
+ iments on SlideVQA show that our model outperformed ex-
24
+ isting state-of-the-art QA models, but that it still has a large
25
+ gap behind human performance. We believe that our dataset
26
+ will facilitate research on document VQA.
27
+ Introduction
28
+ Building intelligent agents that can read and comprehend
29
+ real-world documents, such as webpages, office documents,
30
+ lecture slides, etc., has been a long-standing goal of artificial
31
+ intelligence. To achieve this goal, machine reading compre-
32
+ hension (MRC), a central task in natural language under-
33
+ standing, has been intensively studied. The typical defini-
34
+ tion of the MRC task is quite simple, wherein given a short
35
+ natural language text as a context and a question about it,
36
+ a machine reads the text and then answers the question by
37
+ extracting a span from the text (Rajpurkar et al. 2016; Ra-
38
+ jpurkar, Jia, and Liang 2018). However, this definition is far
39
+ from real-world applications, such as customer service chat-
40
+ bots on e-commerce websites (Cui et al. 2017) and assis-
41
+ tant systems for reading professional literature (Hong et al.
42
+ 2019), in that the context is composed entirely of text, with
43
+ no graphical elements.
44
+ To this end, visual question answering on document im-
45
+ ages (document VQA) has received much attention. It is a
46
+ challenging vision and language task that requires methods
47
+ Copyright © 2023, Association for the Advancement of Artificial
48
+ Intelligence (www.aaai.org). All rights reserved.
49
+ to reason about document layout, textual content, and visual
50
+ elements (Mathew, Karatzas, and Jawahar 2021; Tanaka,
51
+ Nishida, and Yoshida 2021; Mathew et al. 2022). When
52
+ the primary content in a document is text (e.g., e-mails
53
+ and forms) and the task is to understand it on the basis of
54
+ its layout information, state-of-the-art models have already
55
+ achieved nearly human-level performance (Xu et al. 2021;
56
+ Powalski et al. 2021). On the other hand, challenges remain
57
+ when it comes to handling diverse real-world documents.
58
+ First and foremost is that current models are not capable of
59
+ performing reasoning across multiple images since the ex-
60
+ isting datasets focus on testing reasoning ability on a single
61
+ image. Moreover, compared with humans, document VQA
62
+ models still have trouble understanding documents that con-
63
+ tain visual elements and understanding questions that re-
64
+ quire numerical reasoning (Mathew et al. 2022).
65
+ To address the above challenges, we introduce a new doc-
66
+ ument VQA dataset1, SlideVQA, for tasks wherein given a
67
+ slide deck composed of multiple slide images and a corre-
68
+ sponding question, a system selects a set of evidence im-
69
+ ages and answers the question. Slide decks are one of the
70
+ most efficient document types that arrange visual and textual
71
+ elements for communication. As shown in Figure 1, Slide-
72
+ VQA requires complex reasoning over slide images, includ-
73
+ ing single-hop, multi-hop, and numerical reasoning. These
74
+ reasoning skills play essential roles in MRC tasks (Yang
75
+ et al. 2018; Dua et al. 2019).
76
+ Our main contributions are summarized as follows:
77
+ • We introduce a novel task and dataset, SlideVQA,
78
+ wherein to answer its questions, a machine has to read
79
+ and comprehend a slide deck. It is the largest multi-
80
+ image document VQA dataset containing 2.6k+ slide
81
+ decks (each consisting of 20 slides) and 14.5k questions.
82
+ It also provides bounding boxes around textual and visual
83
+ elements for understanding document layout and arith-
84
+ metic expressions for numerical reasoning.
85
+ • We developed a Multi-Modal Multi-image Document
86
+ VQA model, M3D, to jointly perform evidence selection
87
+ and question answering tasks and to enhance numerical
88
+ reasoning by generating arithmetic expressions.
89
+ 1Our dataset and codes are publicly available at https://github.
90
+ com/nttmdlab-nlp/SlideVQA
91
+ arXiv:2301.04883v1 [cs.CL] 12 Jan 2023
92
+
93
+
94
+ p.4
95
+ p.11
96
+ p.12
97
+ Q: What is the difference in the competition media percent
98
+ age between East and the region with 12% of journalists?
99
+ A: 5% (11% – 6% )
100
+ Evidence pages: 4, 12
101
+ Answer type: Non-Span Reasoning type: Multi-hop, Numerical
102
+ Q: What is the percentage of the internal meeting decision?
103
+ Q: What is the tip-off media percentage in the region with
104
+ 70% of journalists and South?
105
+ A: 13%, 16% Evidence pages: 4, 12
106
+ Answer type: Multi-Span Reasoning type: Multi-hop
107
+ A: 21%
108
+ Evidence pages: 11
109
+ Answer type: Single-Span Reasoning type: Sing-hop
110
+ 10
111
+ THE FIRST STEP TO THE BIG STORY
112
+ The research sheds light on how journalists conceive story ideas. Internal
113
+ meetings, tip-offs, events and primary research were the most popular
114
+ sources with 63 percent of journalists relying on these activities for story
115
+ ideas. Internal brainstorm sessions and editorial meetings were found to be
116
+ the most preferred sources for generating fresh content-related ideas. Online
117
+ content and social networks seem to be triggers for the same pie of journalists
118
+ across all experience levels.
119
+ In an informal interview chat, one of the journalists said that reading and
120
+ surfing could provide some cues, but that it was sheer hard work when one
121
+ finally wrote a story. There was no way “one could do desktop stories’’, said
122
+ another journalist. Yet, another journalist felt that the Net could provide a
123
+ trigger. Seasoned journalists, more often than not, develop sustainable
124
+ relationships with their sources, consult experts and interview key people to
125
+ get the flavour for the subjects they are reporting on.
126
+ Looking specifically at regional variations in story conceptualization, more
127
+ journalists from the South look for story triggers in competitive media vis-à-
128
+ vis other regions. The regional analysis also indicated that most journalists
129
+ from East draw on events to evolve fresh story ideas. The popularity of
130
+ interactive formats provides an immense opportunity for corporates to reach
131
+ out to media in the East through press events.
132
+ SECTION 1
133
+ Internal brainstorming
134
+ meetings are the
135
+ biggest source of story
136
+ ideas #mediainsights
137
+ In terms of getting story
138
+ ideas, age is no bar as
139
+ far as reliance on online
140
+ media is concerned
141
+ #mediainsights
142
+ News hooks across
143
+ competitive media
144
+ serve as story idea
145
+ triggers for 16% of
146
+ journalists in the South,
147
+ versus 9% in the North
148
+ #mediainsights
149
+ Events are more
150
+ favored by journalists
151
+ in the East, followed
152
+ by the North, West and
153
+ South #mediainsights
154
+ Communications agencies
155
+ are most preferred by
156
+ journalists covering sports,
157
+ followed by those covering
158
+ Business & Corporate and
159
+ Science & Technology
160
+ #mediainsights
161
+ Women reporters have a
162
+ greater affinity for
163
+ communications agencies
164
+ versus their male
165
+ counterparts
166
+ #mediainsights
167
+ 11
168
+ Competition media/
169
+ channel/newspaper
170
+ 10%
171
+ Tip-off
172
+ 14%
173
+ An event
174
+ 15%
175
+ Social Network
176
+ 07%
177
+ Online content/news
178
+ 08%
179
+ 09%
180
+ Primary research
181
+ 13%
182
+ Others
183
+ 03%
184
+ Communication
185
+ agencies
186
+ THE FIRST STEP TO THE BIG STORY
187
+ Internal meeting
188
+ decision
189
+ 21%
190
+ SECTION 1
191
+ 1 2
192
+ THE FIRST STEP TO THE BIG STORY
193
+ Internal meeting decision
194
+ Competition media
195
+ Tip-off
196
+ Communication agencies
197
+ Primary research
198
+ Others
199
+ An event
200
+ Social Network
201
+ Online content
202
+ North
203
+ South
204
+ East
205
+ West
206
+ 20%
207
+ 9%
208
+ 13%
209
+ 16%
210
+ 8%
211
+ 8%
212
+ 9%
213
+ 13%
214
+ 4%
215
+ 26%
216
+ 16%
217
+ 16%
218
+ 7%
219
+ 2%
220
+ 10%
221
+ 10%
222
+ 10%
223
+ 3%
224
+ 29%
225
+ 6%
226
+ 15%
227
+ 20%
228
+ 3%
229
+ 3%
230
+ 6%
231
+ 18%
232
+ 0%
233
+ 20%
234
+ 11%
235
+ 14%
236
+ 14%
237
+ 5%
238
+ 6%
239
+ 8%
240
+ 19%
241
+ 3%
242
+ SECTION 1
243
+ 1 3
244
+ THE FIRST STEP TO THE BIG STORY
245
+ Business &
246
+ Corporate
247
+ Lifestyle &
248
+ Entertainment
249
+ Science &
250
+ Tech
251
+ Sports
252
+ 21%
253
+ 10%
254
+ 13%
255
+ 12%
256
+ 5%
257
+ 13%
258
+ 10%
259
+ 13%
260
+ 3%
261
+ 25%
262
+ 7%
263
+ 14%
264
+ 16%
265
+ 8%
266
+ 6%
267
+ 10%
268
+ 13%
269
+ 1%
270
+ 19%
271
+ 11%
272
+ 10%
273
+ 17%
274
+ 11%
275
+ 11%
276
+ 8%
277
+ 9%
278
+ 4%
279
+ 19%
280
+ 9%
281
+ 13%
282
+ 19%
283
+ 8%
284
+ 3%
285
+ 13%
286
+ 14%
287
+ 2%
288
+ Internal meeting decision
289
+ Competition media
290
+ Tip-off
291
+ Communication agencies
292
+ Primary research
293
+ Others
294
+ An event
295
+ Social Network
296
+ Online content
297
+ SECTION 1
298
+ Figure 1: Examples from our SlideVQA dataset. Some questions can be answered through single-hop, multi-hop, and numerical
299
+ reasoning. The colors of the words match the image borders with the same colors. (·) of the right example in the answer denotes
300
+ an annotated arithmetic expression to derive the final answer. The slide deck can be viewed at https://www.slideshare.net/
301
+ mslgroup/mediainsights-evolving-sources-of-news-for-media.
302
+ • Our model outperformed existing state-of-the-art QA
303
+ models on SlideVQA, but its performance is still below
304
+ that of humans by a large margin.
305
+ Related Work
306
+ Datasets for VQA on document images.
307
+ Document
308
+ VQA is the task of answering questions about document
309
+ images, and some useful datasets have been published,
310
+ such as DocVQA (Mathew, Karatzas, and Jawahar 2021),
311
+ VisualMRC (Tanaka, Nishida, and Yoshida 2021), Web-
312
+ SRC (Chen et al. 2021), and InfographicVQA (Mathew et al.
313
+ 2022). The task assumes that the datasets have a single rele-
314
+ vant image, containing all the facts required to answer.
315
+ The work most related to ours is DocCVQA (Tito,
316
+ Karatzas, and Valveny 2021), wherein a large collection of
317
+ document images is used to answer a given question. Our
318
+ dataset differs from DocCVQA, as follows. First, Slide-
319
+ VQA consists of 14.5k questions, wheres DocCVQA pro-
320
+ vides only 20 questions. Second, SlideVQA requires multi-
321
+ hop reasoning over multiple slides to find the answer, while
322
+ DocCVQA requires only single-hop reasoning on individual
323
+ images to find the answer. Besides these differences, Slide-
324
+ VQA provides questions that require numerical reasoning
325
+ and arithmetic expression annotations to answer numerical
326
+ questions (e.g., “30 - 28” for the answer “2”): no other VQA
327
+ dataset, including InfographicVQA that requires numerical
328
+ reasoning, provides such annotations. Furthermore, Slide-
329
+ VQA provides the largest number of bounding boxes on all
330
+ of the collected images among the related datasets.
331
+ Document VQA Models.
332
+ In parallel with the develop-
333
+ ment of datasets, Transformer (Vaswani et al. 2017) has
334
+ come to be used for understanding unstructured text in docu-
335
+ ment images. LayoutLM (Xu et al. 2020), LayoutLMv2 (Xu
336
+ et al. 2021), LayoutT5 (Tanaka, Nishida, and Yoshida 2021),
337
+ and TILT (Powalski et al. 2021) have achieved impressive
338
+ results in single-image document VQA tasks by combining
339
+ textual, layout, and visual features. By contrast, we focus on
340
+ endowing models with the ability to reason and comprehend
341
+ multiple images. Moreover, while Tito, Karatzas, and Val-
342
+ veny (2021) used a pipeline of retrieval and reading models
343
+ for DocCVQA, we use multi-task learning that jointly per-
344
+ forms evidence selection and question answering.
345
+ Multi-modal question answering.
346
+ This type takes textual
347
+ and visual information as input contexts, which is different
348
+ from document VQA that takes only a document image as
349
+ the input context. TQA (Kembhavi et al. 2017) is comprised
350
+ of middle-school science lessons containing diagrams and
351
+ text. MultiModalQA (Talmor et al. 2021) requires joint rea-
352
+ soning over text, tables, and images in Wikipedia.
353
+ VQA on videos or image sets.
354
+ VideoQA focuses on an-
355
+ swering questions about video frames of TV shows (Lei
356
+ et al. 2018, 2020) and movies (Tapaswi et al. 2016). A simi-
357
+ lar task is VQA on image sets (ISVQA), which involves han-
358
+ dling photos taken from different viewpoint indoors (Bansal,
359
+ Zhang, and Chellappa 2020). By contrast, our dataset also
360
+ requires a model to understand the text in images.
361
+ Slide
362
+ images
363
+ understanding.
364
+ Monica
365
+ Haurilet
366
+ and
367
+ Stiefelhagen (2019); Haurilet et al. (2019) introduced a
368
+ benchmark for object segmentation on slide-pages. Sun
369
+ et al. (2021); Fu et al. (2022) tackled the task of generating
370
+ slides from research papers. Our work is the first to focus
371
+ on answering questions on sets of slide images.
372
+ Reasoning over textual documents.
373
+ Numerical reason-
374
+ ing plays an important role in NLP tasks (Dua et al. 2019;
375
+ Zhang et al. 2020, 2021). Moreover, multi-hop reasoning has
376
+ taken the spotlight as it aligns with the multi-hop nature of
377
+ how humans reason to acquire knowledge, and has led to a
378
+
379
+ 20:20MSLROREWORD
380
+ CETMOE
381
+ XOOTTHEFRSTSTEPTOTHEBOSTORY
382
+ GEXPERTSPEAKTotal=309
383
+ vrs.
384
+ 10
385
+ 5-20
386
+ BATI
387
+ responden
388
+ %ZE
389
+ 215
390
+ North
391
+ 70
392
+ South
393
+ REGIONDataset
394
+ Document
395
+ Multi-images Multi-hop Numerical
396
+ Answer
397
+ Document images #QAs #Images #BBoxes #Arithmetic #Evidence
398
+ source
399
+ input
400
+ reasoning
401
+ reasoning
402
+ type
403
+ modal type
404
+ annotations candidates
405
+ DocVQA
406
+ industry
407
+ SS
408
+ TL
409
+ 50k
410
+ 12k
411
+
412
+
413
+ 1
414
+ VisualMRC
415
+ web-pages
416
+ Ab
417
+ TLV
418
+ 30k
419
+ 10k
420
+ 64k
421
+
422
+ 1
423
+ WebSRC
424
+ web-pages
425
+ SS
426
+ TLV
427
+ 400k
428
+ 6.4k
429
+
430
+
431
+ 1
432
+ InfographicVQA infographics
433
+
434
+ SS, MS, NS
435
+ TLV
436
+ 30k
437
+ 5k
438
+
439
+
440
+ 1
441
+ DocCVQA
442
+ industry
443
+
444
+ MS
445
+ TL
446
+ 0.02k
447
+ 14k
448
+
449
+
450
+ 14k
451
+ SlideVQA (Ours)
452
+ slide decks
453
+
454
+
455
+
456
+ SS, MS, NS
457
+ TLV
458
+ 14.5k
459
+ 52k
460
+ 890k
461
+ 1.7k
462
+ 20
463
+ Table 1: Comparison of question answering datasets on document images. Answer types can be broken down into abstractive
464
+ (Ab), single-span (SS), multi-span (MS), and non-span (NS). “T/L/V” denotes the “text/layout/visual” modality of images.
465
+ proliferation of benchmarks (Talmor and Berant 2018; Yang
466
+ et al. 2018). However, there is as yet no dataset for devel-
467
+ oping models to perform both multi-hop and numerical rea-
468
+ soning on document images.
469
+ The SlideVQA Task and Dataset
470
+ Task Overview and Formulation
471
+ The SlideVQA task, requires a system to answer a question
472
+ about a slide deck, which is composed of an ordered set of
473
+ slide images and to select evidence slide images. We formu-
474
+ late the end-to-end SlideVQA task as follows:
475
+ MAINTASK (SlideVQA). Given a question q and a slide
476
+ deck I = {I1, . . . , IK} (K = 20), a model outputs an an-
477
+ swer y and selects relevant slides ˆI = {ˆI1, . . . , ˆIK′}.
478
+ The task can be decomposed into two subtasks:
479
+ SUBTASK 1 (Evidence Selection). Given a question q and a
480
+ slide deck I, a model identifies the images ˆI from which to
481
+ derive the answer y.
482
+ SUBTASK 2 (Question Answering). Given a question q and
483
+ the slide images (I or ˆI), a model outputs an answer y.
484
+ SlideVQA has three answer types (see the examples in
485
+ Figure 1). A single-span answer is a contiguous sequence of
486
+ tokens in the reading order extracted from the image, and a
487
+ multi-span answer is formed from multiple spans from the
488
+ image. A non-span answer is not extracted and is composed
489
+ of numerical values and visual appearances.
490
+ We can also use annotations of bounding boxes around
491
+ the objects (and their categories) to understand the seman-
492
+ tic structure of images and annotations of arithmetic expres-
493
+ sions to understand numerical reasoning as additional input
494
+ at training. These annotations are not given at inference.
495
+ Dataset Collection
496
+ In this section, we describe the collection process of the
497
+ SlideVQA dataset. To control the annotation quality, we re-
498
+ cruited crowd workers located in English-speaking countries
499
+ and who had passed a rigorous qualification procedure. Ad-
500
+ ditionally, we asked other workers to assess the quality of
501
+ the annotated samples after each collection step.
502
+ Slide decks collection.
503
+ First, we selected and downloaded
504
+ 25,327 slide decks composed of more than 20 slides from
505
+ slideshare2 and covering 39 topics. We kept the first 20 slides
506
+ 2https://www.slideshare.net/
507
+ Figure 2: Example of collected bounding boxes. Colored
508
+ boxes and words were annotated by workers. The image can
509
+ be viewed at https://www.slideshare.net/andrybrewok/big-
510
+ data-analytics-a-social-network-approach.
511
+ and truncated the rest of the pages. Then, the workers filtered
512
+ the collected decks that did not meet the following criteria:
513
+ (i) the main language is English; (ii) the content is easy for
514
+ workers to understand; (iii) the decks must contain one or
515
+ more graphs, tables, figures, or numerical data to avoid cre-
516
+ ating questions requiring only text-level understanding.
517
+ Bounding boxes and categories annotation.
518
+ To facilitate
519
+ understanding of the semantic components of images, we
520
+ annotated all images with bounding boxes and their cate-
521
+ gories. The workers indicated specific objects in each image
522
+ by annotating bounding boxes around the objects and classi-
523
+ fying them into nine classes that were based on SPaSe (Mon-
524
+ ica Haurilet and Stiefelhagen 2019) as follows:
525
+ • Title: presentation title, slide title
526
+ • Page-text: text in slide, bullet-point text list, text list
527
+ • Obj-text: text in a figure, image, diagram or table
528
+ • Caption: description of figure, image, diagram, or table
529
+ • Other-text: footnote, date, affiliation, code, URL
530
+ • Diagram: a graphical representation of data, a process
531
+ • Table: data arranged in rows and columns
532
+ • Image: drawing, logo, map, screenshot, realistic image
533
+ • Figure: graph with data points and coordinates
534
+ As shown in Figure 2, SlideVQA provides densely anno-
535
+ tated bounding boxes in images.
536
+
537
+ Title
538
+ RESEARCHROADMAP
539
+ Diagram
540
+ Obj-text
541
+ Online Data
542
+ Obi-text
543
+ SocialNetwork
544
+ Obi-text
545
+ Obi-text
546
+ SCBDResearch
547
+ Obi-text
548
+ StructtiredData
549
+ DataMliningandPatternRecognition
550
+ Obi-text
551
+ Obi-text
552
+ ConversationalData
553
+ Sentirrent.Analysis
554
+ Caption
555
+ GOAL descriptions,predictions,optimisation and simulation
556
+ Captian
557
+ arta.marketing,communications,knowiedge
558
+ management,operations,finance,etcTitle
559
+ Page-text
560
+ Obj-text
561
+ Caption
562
+ Other-text
563
+ Diagram
564
+ Table
565
+ Image
566
+ Figure
567
+ 0
568
+ 10
569
+ 20
570
+ 30
571
+ 40
572
+ 50
573
+ 60
574
+ 70
575
+ 80
576
+ Percentage of images (%)
577
+ Text
578
+ Layout
579
+ Visual
580
+ (a) Bounding box categories.
581
+ Single-Hop
582
+ Multi-Hop
583
+ Single-Hop
584
+ & Numerical
585
+ Multi-Hop
586
+ & Numerical
587
+ 0
588
+ 10
589
+ 20
590
+ 30
591
+ 40
592
+ 50
593
+ Percentage of questions (%)
594
+ (b) Reasoning types.
595
+ Arithmetic
596
+ Count
597
+ Comparison
598
+ 0
599
+ 10
600
+ 20
601
+ 30
602
+ 40
603
+ 50
604
+ Percentage of numerical reasoning questions (%)
605
+ (c) Numerical operation types.
606
+ Single-Span
607
+ Multi-Span
608
+ Non-Span
609
+ 0
610
+ 10
611
+ 20
612
+ 30
613
+ 40
614
+ 50
615
+ 60
616
+ 70
617
+ Percentage of answers (%)
618
+ (d) Answer types.
619
+ Figure 3: Distribution of bounding box categories, reasoning
620
+ types, numerical operations, and answer types in the test set.
621
+ Single-hop QA creation.
622
+ We asked the workers to create
623
+ 12,466 QA pairs by selecting a single slide image from a
624
+ slide deck. The selected slide can be used as evidence to
625
+ tell whether a system arrived at the right answer for the
626
+ right reasons. We encouraged questions that needed numeri-
627
+ cal reasoning, including operations of arithmetic expressions
628
+ with {+, −, /, ∗}, counting, and comparisons. Additionally,
629
+ the workers avoided creating questions that (i) contained se-
630
+ lected page numbers; (ii) required external knowledge; (iii)
631
+ were common to all of the slides (e.g., “What is the title?”).
632
+ Multi-hop questions creation.
633
+ We created 2,018 QA
634
+ pairs for multi-hop reasoning by editing the single-hop ques-
635
+ tions created in the previous step. For example at the left
636
+ of Figure 1, “North” is replaced by the phrase “the re-
637
+ gion with 70% of journals”. To this end, we first identified
638
+ one or two bridge entities in the created questions, and the
639
+ workers selected related slides as evidence that mentioned
640
+ the identified ones. Then, the content of the selected slides
641
+ was utilized to replace the entities in the created questions.
642
+ The process of creating multi-hop questions by editing may
643
+ produce unnatural questions, as mentioned in the “Limita-
644
+ tions” section, but is easily scalable. A similar approach was
645
+ taken with MultiModalQA (Talmor et al. 2021), which re-
646
+ quires multi-hop reasoning over text, tables, and images in
647
+ Wikipedia.
648
+ Arithmetic expression annotation.
649
+ We provided arith-
650
+ metic expressions like “30 - 28” in which the final numerical
651
+ answer can be arrived at with the four arithmetic operations.
652
+ The interpretation of the answer generation process is im-
653
+ portant for creating explainable QA models.
654
+ what
655
+ which
656
+ how
657
+ in
658
+ regarding
659
+ on
660
+ who
661
+ is
662
+ when
663
+ according
664
+ where
665
+ are
666
+ was
667
+ the
668
+ were
669
+ did
670
+ do
671
+ by
672
+ looking
673
+ approximately
674
+ at
675
+ over
676
+ for
677
+ between
678
+ does
679
+ if
680
+ as
681
+ during
682
+ have
683
+ is
684
+ are
685
+ percentage
686
+ was
687
+ does
688
+ type
689
+ comes
690
+ two
691
+ kind
692
+ three
693
+ percent
694
+ do
695
+ year
696
+ follows
697
+ did
698
+ four
699
+ were
700
+ city
701
+ country
702
+ position
703
+ happens
704
+ category
705
+ level
706
+ makes
707
+ step
708
+ the
709
+ has
710
+ should
711
+ age
712
+ android
713
+ animal
714
+ apparatus
715
+ binds
716
+ car
717
+ color
718
+ contains
719
+ directly
720
+ languages
721
+ new
722
+ part
723
+ particle
724
+ share
725
+ smartphone
726
+ types
727
+ country
728
+ is
729
+ has
730
+ was
731
+ type
732
+ are
733
+ company
734
+ region
735
+ of
736
+ year
737
+ age
738
+ passenger
739
+ team
740
+ two
741
+ requires
742
+ brand
743
+ category
744
+ day
745
+ group
746
+ position
747
+ state
748
+ achieved
749
+ animated
750
+ app
751
+ area
752
+ bank
753
+ coffee
754
+ frp
755
+ geographic
756
+ market
757
+ part
758
+ performs
759
+ political
760
+ reason
761
+ renewable
762
+ republic
763
+ route
764
+ segment
765
+ seven
766
+ store
767
+ three
768
+ vehicle
769
+ website
770
+ many
771
+ much
772
+ does
773
+ is
774
+ large
775
+ what
776
+ the
777
+ which
778
+ how
779
+ was
780
+ gaap
781
+ oceania
782
+ the
783
+ mhealth
784
+ google
785
+ ccd
786
+ customers
787
+ denmark
788
+ top
789
+ buy
790
+ europe
791
+ the
792
+ which
793
+ what
794
+ is
795
+ wrote
796
+ are
797
+ invented
798
+ investigated
799
+ the
800
+ there
801
+ that
802
+ a
803
+ an
804
+ breaking
805
+ differentiation
806
+ was
807
+ did
808
+ is
809
+ this
810
+ to
811
+ is
812
+ does
813
+ there
814
+ the
815
+ more
816
+ most
817
+ there
818
+ the
819
+ a
820
+ employee
821
+ percentage
822
+ presentation
823
+ there
824
+ more
825
+ truck
826
+ brazil
827
+ more
828
+ profit
829
+ the
830
+ more
831
+ people
832
+ updates
833
+ what
834
+ at
835
+ what
836
+ how
837
+ how
838
+ which
839
+ the
840
+ time
841
+ which
842
+ and
843
+ an
844
+ you
845
+ of
846
+ wine
847
+ how
848
+ belongs
849
+ is
850
+ created
851
+ core
852
+ than
853
+ is
854
+ the
855
+ a
856
+ another
857
+ an
858
+ growth
859
+ on
860
+ the
861
+ two
862
+ three
863
+ four
864
+ examples
865
+ five
866
+ six
867
+ some
868
+ of
869
+ is
870
+ was
871
+ responded
872
+ very
873
+ the
874
+ basf
875
+ the
876
+ a
877
+ of
878
+ between
879
+ after
880
+ items
881
+ of
882
+ types
883
+ of
884
+ is
885
+ the
886
+ the
887
+ is
888
+ does
889
+ comes
890
+ difference
891
+ has
892
+ had
893
+ the
894
+ higher
895
+ greater
896
+ more
897
+ a
898
+ more
899
+ of
900
+ the
901
+ accounts
902
+ the
903
+ group
904
+ vehicle
905
+ more
906
+ people
907
+ types
908
+ billions
909
+ steps
910
+ total
911
+ employees
912
+ points
913
+ reasons
914
+ stages
915
+ years
916
+ did
917
+ greater
918
+ has
919
+ is
920
+ more
921
+ does
922
+ was
923
+ the
924
+ year
925
+ was
926
+ percentage
927
+ year
928
+ country
929
+ year
930
+ many
931
+ global
932
+ installed
933
+ example
934
+ key
935
+ smartphone
936
+ u.s.
937
+ app
938
+ market
939
+ customers
940
+ of
941
+ what
942
+ search
943
+ slide
944
+ day
945
+ the
946
+ the
947
+ the
948
+ more
949
+ which
950
+ the
951
+ the
952
+ the
953
+ the
954
+ the
955
+ more
956
+ more
957
+ percentage
958
+ the
959
+ Figure 4: Distribution of the first three words of the ques-
960
+ tions.
961
+ Statistics and Analysis
962
+ SlideVQA contains 14,484 QA pairs from 2,619 slide decks,
963
+ consisting of 52,480 slide images annotated with 890,945
964
+ bounding boxes. We split the dataset into 10,617 questions
965
+ for training, 1,652 (2,215) questions for development (test),
966
+ making sure that each deck appears in the same split.
967
+ Images.
968
+ SlideVQA provides the largest number of images
969
+ covering broad range of topics among the datasets shown
970
+ in Table 1. Moreover, SlideVQA provides the largest num-
971
+ ber of bounding box annotations, where the number of the
972
+ annotations in SlideVQA is 14.7 times that of VisualMRC.
973
+ Figure 3a shows the distribution of bounding boxes broken
974
+ down into nine categories, which cover all classes, including
975
+ visually related ones (Image and Figure), unlike DocVQA
976
+ and DocCVQA. To analyze the OCR tokens, we extracted
977
+ the text shown in the images by using the Google Cloud Vi-
978
+ sion API3. As a result, the number of OCR tokens the sys-
979
+ tem should consider simultaneously is larger (1488.88 to-
980
+ kens) than those of single-image document VQA datasets;
981
+ the largest dataset (InfographicVQA) has 217.89 tokens.
982
+ Questions and answers.
983
+ As shown in Table 1, SlideVQA
984
+ requires complex reasoning including single/multi-hop, and
985
+ numerical reasoning. Figure 3b shows the diverse distribu-
986
+ tion of questions related to reasoning types. 49.3% of the
987
+ questions require multi-hop or numerical reasoning. More-
988
+ over, SlideVQA provides annotations of arithmetic expres-
989
+ sions to improve numerical reasoning. Figure 3c shows the
990
+ distribution of numerical operations. 25.5% of the numerical
991
+ questions require arithmetic operations, which current sys-
992
+ tems have particular difficulty answering. Figure 3d shows
993
+ that multi-span and non-span account for 32.4% of the an-
994
+ swers, indicating systems also need to generate answers as
995
+ well as extract multiple spans.
996
+ Figure 4 shows the sunburst pattern of the first three words
997
+ of the questions. “In” and “Regarding” are frequent first
998
+ 3https://cloud.google.com/vision
999
+
1000
+ Task prefix (𝒕):
1001
+ {“Evidence Selection”,
1002
+ “Question Answering”}
1003
+ Question (𝒒)
1004
+ Slide-1
1005
+ Slide-2
1006
+ Slide-𝐾
1007
+ Slide deck (𝑰):
1008
+ Input features
1009
+ extraction
1010
+ Input sequence 𝑥!
1011
+ Input sequence 𝑥"
1012
+ Input sequence 𝑥#
1013
+ Multi-modal
1014
+ Encoder
1015
+ Evidence
1016
+ Selector
1017
+ Answer/Arithmetic-
1018
+ expression Decoder
1019
+ Answer: Steve Jobs
1020
+ Expression: 30 - 28
1021
+ or
1022
+ Evidence pages: 2, 4
1023
+ Calculator
1024
+ 2
1025
+ Token
1026
+ Segment
1027
+ Layout
1028
+ Visual
1029
+ Task prefix + Question
1030
+ + Page number
1031
+ Slide image
1032
+ +
1033
+ +
1034
+ +
1035
+ Object detection & OCR
1036
+ Q
1037
+ Q
1038
+ Q
1039
+ Title
1040
+ Title
1041
+ Image
1042
+ [Title]
1043
+ THE
1044
+
1045
+
1046
+
1047
+
1048
+ [Image]
1049
+ task
1050
+ :
1051
+
1052
+ (b) Input sequence and embeddings
1053
+ (a) Our M3D modules
1054
+ Figure 5: (a) Our encoder-decoder model architecture and (b) input representations. Given a question with a task prefix and
1055
+ a slide deck, the model outputs a corresponding answer/arithmetic-expression and evidence pages. The calculator outputs the
1056
+ final answer to calculate the generated arithmetic expression.
1057
+ words because SlideVQA needs to search for evidence im-
1058
+ ages from a slide deck, which is a special pattern in multi-
1059
+ text document QA (Yang et al. 2018).
1060
+ Our Model
1061
+ Figure 5 shows an overview of our model, called M3D
1062
+ (Multi-Modal Multi-image Document VQA model). We use
1063
+ Fusion-in-Decoder (FiD) (Izacard and Grave 2021), which is
1064
+ a state-of-the-art multi-text encoder-decoder model, as our
1065
+ base model and initialize FiD with a pre-trained T5 (Raf-
1066
+ fel et al. 2020). We extend FiD to perform the end-to-end
1067
+ SlideVQA task (defined in MAINTASK) by (i) performing
1068
+ evidence selection and question answering tasks as a unified
1069
+ sequence-to-sequence format using multi-task learning, (ii)
1070
+ predicting arithmetic expressions as intermediate reasoning
1071
+ steps instead of generating answers directly to enhance nu-
1072
+ merical reasoning, and (iii) modifying the input sequence to
1073
+ learn the visual layout and content of the image.
1074
+ Multi-modal Task-Specific Input
1075
+ Input token sequence.
1076
+ For each image Ik, we first use
1077
+ Faster-RCNN (Ren et al. 2015), which was trained on Slide-
1078
+ VQA, to extract N semantic regions (bounding boxes) and
1079
+ their labels (e.g., Title and Image). We parse the slide im-
1080
+ age for each extracted region r by using an OCR engine and
1081
+ apply a sub-word tokenizer to obtain OCR tokens Wr
1082
+ k =
1083
+ {wr
1084
+ k,1, . . . , wr
1085
+ k,n} and corresponding OCR bounding boxes.
1086
+ To jointly train the evidence selection and question answer-
1087
+ ing tasks, we add different task prefixes t ∈ {Evidence
1088
+ Selection, Question Answering} to the encoder
1089
+ input. Specifically, the input sequence is as follows:
1090
+ xk = (task:t question:q page:ek context:ck),
1091
+ where the sequence concatenates each slide and page num-
1092
+ ber pair (ck, ek) with the question q and task prefix t. To tell
1093
+ the role of each region, we insert region labels [Rri
1094
+ k ], cor-
1095
+ responding to the region label of the i-th region ri in k-th
1096
+ page, before the OCR tokens Wri
1097
+ k extracted in ri:
1098
+ ck = ([Rr1
1099
+ k ], Wr1
1100
+ k , [Rr2
1101
+ k ], Wr2
1102
+ k , . . . , [RrN
1103
+ k ], WrN
1104
+ k )
1105
+ Input embedding.
1106
+ Following LayoutT5 (Tanaka, Nishida,
1107
+ and Yoshida 2021), the input embeddings z of the encoder
1108
+ are defined by utilizing multi-modal information, including
1109
+ token ztoken, segment zseg, layout zlay, and visual embed-
1110
+ dings zvis as follows:
1111
+ z = LN(ztoken + zseg + zlay + zvis) ∈ RL×d,
1112
+ where LN is a layer normalization (Ba, Kiros, and Hinton
1113
+ 2016), and L and d are the length of the input sequence and
1114
+ a hidden vector size, respectively. The segment embedding
1115
+ indicates which regions are included in the input sequence.
1116
+ The layout embedding denotes the encoded bounding box
1117
+ coordinates of the token within the image. We normalize all
1118
+ coordinates by the size of images and use embedding lay-
1119
+ ers to embed x-axis and y-axis features separately. The vi-
1120
+ sual embedding is the appearance feature of each region and
1121
+ the OCR bounding boxes, which were obtained from Faster-
1122
+ RCNN. Note that the layout and visual embeddings are set to
1123
+ zero vectors for the task prefix, question, and page number.
1124
+ Multi-modal Encoder-Decoder
1125
+ Multi-modal encoder.
1126
+ Our encoder is a stack of m Trans-
1127
+ former blocks, consisting of a self-attention layer and a
1128
+ fully-connected layer with residual connections. Following
1129
+ FiD (Izacard and Grave 2021), all K input sequences are
1130
+ encoded independently and then concatenated to form a uni-
1131
+ fied input representation. Formally, we transform each input
1132
+ sequence xk into xk ∈ RL×d and concatenate them into
1133
+ X ∈ RK×L×d.
1134
+ Answer/Arithmetic-expression decoder.
1135
+ Our decoder is
1136
+ another stack of m Transformer blocks similar to the multi-
1137
+ modal encoder, where each block has an additional layer
1138
+ of cross-attention between the output sequence and X. The
1139
+ answer decoder is modeled as a conditional generation
1140
+ pθ(y|X), where θ represents the set of all model parame-
1141
+ ters. To allow the model to perform numerical reasoning, we
1142
+ train the system to predict annotated arithmetic expressions
1143
+ y′ (e.g., “30 − 28”) instead of numeric values y (e.g., “2”)
1144
+
1145
+ R
1146
+ HIBIGSORby modeling pθ(y′|X). During inference, the model itself
1147
+ decides whether numerical reasoning is required or not for
1148
+ each question by predicting an indicator token Answer: or
1149
+ Expression: at the beginning of the output sequence.
1150
+ Evidence selector.
1151
+ The selector shares the weights and the
1152
+ architecture of the answer/arithmetic-expression decoder.
1153
+ Instead of only modeling answer generation, we devise a
1154
+ simple method to train evidence selection in a unified se-
1155
+ quence. Specifically, we define the output sequence as ˆIpages
1156
+ = (Evidence pages: ˆe1, . . ., ˆeK′), where each ˆe is the
1157
+ page number of the selected slide.
1158
+ Training and inference.
1159
+ Our model is trained by mini-
1160
+ mizing the weighted sum of two losses L = Ldec + Lsel,
1161
+ where Ldec and Lsel are the negative log-likelihood between
1162
+ the ground-truth and the prediction regarding the decoder
1163
+ and selector, respectively. During inference, we obtain the
1164
+ final prediction to post-process the decoded sequence by re-
1165
+ moving the task indicator. If an arithmetic expression is gen-
1166
+ erated (i.e., Expression: is generated), we use a calcula-
1167
+ tor to obtain the final results.
1168
+ Experiments
1169
+ Experimental Setup
1170
+ We conducted experiments on the SlideVQA task, evidence
1171
+ selection task, and question answering task respectively de-
1172
+ fined in MAINTASK, SUBTASKS 1 and 2.
1173
+ Main task baselines.
1174
+ We mainly evaluated pipeline mod-
1175
+ els as baselines, consisting of evidence selection that pro-
1176
+ duces top-3 evidences and question answering that takes the
1177
+ selection results as input. Here, we introduced a hierarchical
1178
+ LayoutLMv2 (H-LayoutLMv2) inspired by (Tu et al. 2020;
1179
+ Xu et al. 2021), which encodes all slides simultaneously by
1180
+ using another Transformer layer, as the evidence selector. It
1181
+ achieved 96.0% on Recall@3 on the test set. We used three
1182
+ generative QA models: a textual model T5 (Raffel et al.
1183
+ 2020), a numerical and multi-hop model PreasM (Yoran,
1184
+ Talmor, and Berant 2022), and a document VQA model
1185
+ LayoutT5 (Tanaka, Nishida, and Yoshida 2021). We also
1186
+ used an extractive document VQA model LayoutLMv2 to
1187
+ predict the single span.
1188
+ Evidence selection baselines.
1189
+ We also evaluated the ev-
1190
+ idence selection task alone. BM25 (Robertson, Zaragoza
1191
+ et al. 2009) is a non-neural retrieval framework to estimate
1192
+ the relevance of texts to a search query. For the neural mod-
1193
+ els, CLIP (Radford et al. 2021) encodes the question and
1194
+ each image to predict the highest similar pair. BM25 and
1195
+ CLIP used the top-1 slide as the prediction. BERT (Devlin
1196
+ et al. 2019) is a pre-trained language model which only uses
1197
+ text information with the Transformer architecture. Lay-
1198
+ outLM (Xu et al. 2020) incorporates layout information into
1199
+ the input embeddings of BERT. LayoutLMv2 includes im-
1200
+ age features produced by a CNN backbone in input embed-
1201
+ dings. To model the interactions between the slides, we used
1202
+ H-LayoutLMv2 described in the previous section. For neu-
1203
+ ral evidence selection baselines (except for CLIP), we use a
1204
+ hidden state of [CLS] in the last layer to feed into an MLP
1205
+ classifier with a sigmoid activation. Evidence is selected if
1206
+ its confidence of binary classification is above the optimal
1207
+ value on the development set.
1208
+ To evaluate the effectiveness of our generative evidence
1209
+ selection module, we introduced BinaryClass as a classifi-
1210
+ cation baseline, which uses a two-layer MLP classifier with
1211
+ a sigmoid activation on top of each encoder representation
1212
+ at the start-of-sequence. We also introduced a generative
1213
+ baseline, ChainGen, which generates a sequence of selected
1214
+ slide page numbers before the answer (Wei et al. 2022).
1215
+ Question answering baselines.
1216
+ In addition to the pipeline
1217
+ models, we developed Q-only, which takes only the ques-
1218
+ tion into T5. We also used a VideoQA model UniVL (Luo
1219
+ et al. 2020) that can take all of the slide images as input.
1220
+ Furthermore, we evaluated our base model FiD (Izacard and
1221
+ Grave 2021).
1222
+ Human performance.
1223
+ We asked six crowdworkers (not
1224
+ among those recruited to collect our dataset) to select slide
1225
+ images relevant to the question and answer the question.
1226
+ Evaluation metrics.
1227
+ Following HotpotQA (Yang et al.
1228
+ 2018), we used exact match (EM) and F1 on each question
1229
+ answering and evidence selection task and also used Joint
1230
+ EM (JEM) and Joint F1 (JF1) to evaluate both tasks. These
1231
+ joint metrics penalize models that perform poorly on either
1232
+ task and assess the accuracy and explainability of the ques-
1233
+ tion answering models.
1234
+ Implementation Details
1235
+ We implemented all of the models in PyTorch and experi-
1236
+ mented on eight Tesla V100 32GB GPUs. The size of CLIP
1237
+ was Large and the size of the other models was Base. We
1238
+ fine-tuned the models using AdamW (Loshchilov and Hutter
1239
+ 2017) with a learning rate of 5e-5 and a dropout rate of 10%,
1240
+ and we linearly warmed up the learning rate over 1000 steps.
1241
+ The batch size was set to 32. We evaluated models every 500
1242
+ steps and selected the best one on the development set on the
1243
+ basis of the loss. We used a maximum length of 200 tokens
1244
+ for each input sequence of M3D, and set the maximum target
1245
+ sequence length to 50. We trained Faster-RCNN (Ren et al.
1246
+ 2015) with a ResNet-101 (He et al. 2016) backbone by us-
1247
+ ing stochastic gradient descent (SGD) (Ruder 2016) with a
1248
+ learning rate of 1e-3 and batch size of one. Standard anchor
1249
+ scales of [8, 16, 32] and anchor ratios of [0.5, 1.0, 2.0] were
1250
+ used. For the VideoQA baseline, we created a new video at
1251
+ a rate of five frames per second. We used the Google Cloud
1252
+ Vision API to extract text and bounding boxes from images.
1253
+ When the OCR word is tokenized into sub-word tokens, the
1254
+ bounding box coordinates of a sub-word token are the same
1255
+ as those of its whole word.
1256
+ Experimental Results and Analysis
1257
+ Does our model outperform the baselines?
1258
+ Table 2 sum-
1259
+ marizes the results of the main tasks. As shown in Table 2a,
1260
+ M3D outperformed the baselines on joint EM/F1, where
1261
+ the metrics evaluate the consistency between the predicted
1262
+ evidence and answers. For the evidence selection task, Ta-
1263
+ ble 2b shows that H-LayoutLMv2 and M3D performed bet-
1264
+
1265
+ Dev
1266
+ Test
1267
+ Model
1268
+ Modal JEM
1269
+ JF1
1270
+ JEM
1271
+ JF1
1272
+ PreasM
1273
+ T
1274
+ 30.2 38.2 23.4 34.7
1275
+ T5
1276
+ T
1277
+ 30.0 38.0 22.6 34.2
1278
+ T5 + zlay
1279
+ TL
1280
+ 30.9 39.5 23.6 35.7
1281
+ LayoutT5
1282
+ TLV
1283
+ 31.7 39.9 24.3 36.1
1284
+ LayoutLMv2†
1285
+ TLV
1286
+ 22.8 30.8 16.5 26.5
1287
+ M3D
1288
+ TLV
1289
+ 36.2 42.8 28.0 37.3
1290
+ M3DGT
1291
+ TLV
1292
+ 44.6 50.4 35.4 44.7
1293
+ Human
1294
+
1295
+
1296
+
1297
+ 88.6 91.9
1298
+ (a) Performance of main task.
1299
+ Dev
1300
+ Test
1301
+ Model
1302
+ Modal EM
1303
+ F1
1304
+ EM
1305
+ F1
1306
+ BM25
1307
+ T
1308
+ 40.1 46.0 35.9 47.5
1309
+ CLIPzero
1310
+ V
1311
+ 33.0 34.8 30.6 34.4
1312
+ CLIP
1313
+ V
1314
+ 40.6 43.0 39.3 43.5
1315
+ BERT
1316
+ T
1317
+ 60.9 74.4 50.3 69.2
1318
+ BERT + zlay
1319
+ TL
1320
+ 61.4 75.2 52.7 71.0
1321
+ LayoutLM
1322
+ TL
1323
+ 51.0 63.7 42.0 59.9
1324
+ LayoutLMv2
1325
+ TLV
1326
+ 63.3 77.1 51.7 71.5
1327
+ H-LayoutLMv2
1328
+ TLV
1329
+ 81.1 89.5 69.8 85.6
1330
+ M3D
1331
+ TLV
1332
+ 83.1 87.7 75.0 83.8
1333
+ Human
1334
+
1335
+
1336
+
1337
+ 97.7 98.0
1338
+ (b) Performance of evidence selection task.
1339
+ Dev
1340
+ Test
1341
+ Model
1342
+ Modal EM
1343
+ F1
1344
+ EM
1345
+ F1
1346
+ Q-only
1347
+
1348
+ 9.4
1349
+ 11.4 10.7 13.5
1350
+ UniVL
1351
+ V
1352
+ 8.8
1353
+ 12.1 10.6 14.1
1354
+ PreasM
1355
+ T
1356
+ 36.3 41.9 30.7 38.2
1357
+ T5
1358
+ T
1359
+ 35.2 41.3 29.3 37.9
1360
+ T5 + zlay
1361
+ TL
1362
+ 36.9 43.2 31.0 39.7
1363
+ LayoutT5
1364
+ TLV
1365
+ 38.9 44.8 31.7 39.9
1366
+ LayoutLMv2†
1367
+ TLV
1368
+ 26.5 33.4 21.4 29.3
1369
+ FiD
1370
+ T
1371
+ 37.6 42.9 30.4 38.9
1372
+ FiD + zlay
1373
+ TL
1374
+ 38.1 43.3 30.6 38.9
1375
+ M3D
1376
+ TLV
1377
+ 41.3 47.1 33.5 41.7
1378
+ Human
1379
+
1380
+
1381
+
1382
+ 89.8 93.0
1383
+ (c) Performance of question answering task.
1384
+ Table 2: Performance of SlideVQA tasks. “T/L/V” denotes the “text/layout/visual” modality of images. †denotes the extractive
1385
+ approach. The pipeline models answer the question based on the top-3 evidences obtained by H-LayoutLMv2. M3DGT knows
1386
+ the ground-truth evidence. + zlay denotes addition of the layout embedding to the input embeddings. LayoutLM was not pre-
1387
+ trained in any matching task (e.g., text-image matching). CLIPzero denotes CLIP without fine-tuning.
1388
+ Single-Hop
1389
+ Multi-Hop
1390
+ Single-Hop &
1391
+ Numeric
1392
+ Multi-Hop &
1393
+ Numeric
1394
+ Arithmetic
1395
+ Count
1396
+ Comparison
1397
+ Single-Span
1398
+ Multi-Span
1399
+ Non-Span
1400
+ 0
1401
+ 20
1402
+ 40
1403
+ 60
1404
+ 80
1405
+ 100
1406
+ F1
1407
+ FiD
1408
+ M3D w/o AE generation
1409
+ M3D
1410
+ Human
1411
+ Figure 6: Performance of models and humans on the answer
1412
+ types, reasoning types and numerical operation types in the
1413
+ test set. AE stands for “arithmetic expression”.
1414
+ ter than the baselines. This indicates that modeling the in-
1415
+ teraction between multiple slides simultaneously is needed
1416
+ to improve performance. For the QA task, Table 2c shows
1417
+ that M3D outperformed the pipeline methods in all met-
1418
+ rics. Our end-to-end M3D model is better at ignoring the
1419
+ slides irrelevant to the question than the answer generator
1420
+ in the pipeline methods that strongly depend on the slides
1421
+ narrowed down by the evidence selector. However, M3DGT
1422
+ in Table 2a achieved a significant improvement by know-
1423
+ ing the ground-truth slides. There is room for improving the
1424
+ correctness of evidence selection.
1425
+ What are the characteristics of our dataset?
1426
+ Table 2
1427
+ shows that adding modality information tended to improve
1428
+ performance in all tasks. This demonstrates that SlideVQA
1429
+ requires methods to have the ability to jointly understand the
1430
+ text, layout, and visual modalities of documents. As shown
1431
+ in Table 2c, Q-only had the lowest performance, show-
1432
+ ing that the systems could not answer the question with-
1433
+ out reading documents in the SlideVQA task. Additionally,
1434
+ UniVL has a comparative result to Q-only, indicating that
1435
+ SlideVQA requires different abilities from VideoQA (Le
1436
+ Main
1437
+ Select
1438
+ QA
1439
+ Model
1440
+ JEM
1441
+ JF1
1442
+ EM
1443
+ F1
1444
+ EM
1445
+ F1
1446
+ M3D
1447
+ 36.2
1448
+ 42.8
1449
+ 83.1
1450
+ 87.7
1451
+ 41.3
1452
+ 47.1
1453
+ w/o AE generation
1454
+ 35.7
1455
+ 42.3
1456
+ 82.9
1457
+ 87.7
1458
+ 40.5
1459
+ 46.3
1460
+ w/o Evidence selection
1461
+
1462
+
1463
+
1464
+
1465
+ 40.6
1466
+ 46.4
1467
+ w/o Layout features
1468
+ 35.1
1469
+ 42.0
1470
+ 82.4
1471
+ 87.1
1472
+ 40.3
1473
+ 46.3
1474
+ w/o Visual features
1475
+ 34.2
1476
+ 40.9
1477
+ 81.5
1478
+ 86.3
1479
+ 39.0
1480
+ 44.9
1481
+ w/o Text features
1482
+ 1.0
1483
+ 1.5
1484
+ 8.4
1485
+ 9.8
1486
+ 9.8
1487
+ 12.0
1488
+ Table 3: Ablation study of M3D on dev set.
1489
+ Main
1490
+ Select
1491
+ QA
1492
+ Model
1493
+ JEM
1494
+ JF1
1495
+ EM
1496
+ F1
1497
+ EM
1498
+ F1
1499
+ M3D backbone
1500
+
1501
+
1502
+
1503
+
1504
+ 39.0
1505
+ 44.8
1506
+ + BinaryClass
1507
+ 24.7
1508
+ 34.8
1509
+ 54.5
1510
+ 68.5
1511
+ 38.8
1512
+ 44.8
1513
+ + ChainGen
1514
+ 34.0
1515
+ 40.8
1516
+ 81.1
1517
+ 86.1
1518
+ 39.8
1519
+ 45.4
1520
+ + MultiGen (Ours)
1521
+ 35.7
1522
+ 42.3
1523
+ 82.9
1524
+ 87.7
1525
+ 40.5
1526
+ 46.3
1527
+ Table 4: Performance comparison of different evidence se-
1528
+ lection methods on dev set.
1529
+ and Hoi 2020), especially the ability to read texts in im-
1530
+ ages. Tables 2a and 2c show that LayoutT5, a generative
1531
+ model, significantly outperformed LayoutLMv2, an extrac-
1532
+ tive approach. This result is inline with observations on the
1533
+ DROP dataset (Dua et al. 2019), which also has non-span
1534
+ answers (Geva, Gupta, and Berant 2020). Additionally, all
1535
+ of the models performed all of the tasks significantly worse
1536
+ than humans. To be specific, Figure 6 illustrates that (i) bet-
1537
+ ter multi-hop reasoning over multiple images is needed and
1538
+ (ii) non-span answers to questions involving arithmetic op-
1539
+ erations have to be improved.
1540
+ Do our sub-modules improve performance?
1541
+ Table 3
1542
+ lists the results of an ablation study. Here, performance
1543
+ consistently decreased as individual modules were removed
1544
+ from M3D. This indicates that each of the modules is ef-
1545
+
1546
+ Class
1547
+ Dev AP
1548
+ Test AP
1549
+ Title
1550
+ 86.8
1551
+ 87.5
1552
+ Page-text
1553
+ 76.9
1554
+ 76.9
1555
+ Obj-text
1556
+ 29.5
1557
+ 33.4
1558
+ Caption
1559
+ 25.6
1560
+ 24.9
1561
+ Other-text
1562
+ 40.5
1563
+ 39.4
1564
+ Image
1565
+ 60.4
1566
+ 62.2
1567
+ Diagram
1568
+ 65.4
1569
+ 64.0
1570
+ Figure
1571
+ 74.1
1572
+ 68.8
1573
+ Table
1574
+ 67.0
1575
+ 65.6
1576
+ Table 5: Object detection performance of Faster-RCNN
1577
+ broken down by bounding box categories. We set an
1578
+ intersection-over union (IoU) threshold to 0.5.
1579
+ fective. More precisely, the arithmetic expression (AE) gen-
1580
+ eration was influential on the QA and Joint performance,
1581
+ meaning that predicting the arithmetic expression instead of
1582
+ the numerical value enhances the ability to generate answers
1583
+ with numerical reasoning. As shown in Figure 6, applying
1584
+ AE prediction increased F1 by a large margin (+10.4%) in
1585
+ the arithmetic type.
1586
+ What are the effective evidence selection methods?
1587
+ Ta-
1588
+ ble 4 shows that our method, which generates the evidence
1589
+ selection and question answering results separately, obtained
1590
+ the highest performance. It seems that the generative meth-
1591
+ ods (MultiGen and ChainGen) benefited from the text-to-
1592
+ text pre-training of T5 more than the classification-based
1593
+ method (BinaryClass). Our MultiGen decoder that sepa-
1594
+ rately trains evidence selection and question answering had
1595
+ the advantage of being easier to train than the ChainGen
1596
+ baseline decoder that trains the two tasks as a single se-
1597
+ quence generation task.
1598
+ On which categories does the object detection model not
1599
+ work well?
1600
+ Table 5 lists the object detection performance
1601
+ of Faster-RCNN broken down by bounding box categories.
1602
+ These results show that detecting randomly placed and small
1603
+ boxes, such as Obj-text, is more difficult than mostly fixed
1604
+ and large boxes, such as Title.
1605
+ Qualitative examples.
1606
+ Figure 7 demonstrates our model’s
1607
+ performance by visualizing a qualitative example. This ex-
1608
+ ample needs multi-hop reasoning and an answer involving
1609
+ an arithmetic operation. FiD gave an incorrect answer be-
1610
+ cause it did not consider the visual layout of the slides.
1611
+ Moreover, while LayoutT5 could not understand the process
1612
+ of getting numerical answers, M3D successfully extracted
1613
+ information (“11%” and “12%”) and generated the same an-
1614
+ swer as the ground-truth.
1615
+ Discussion and Limitations
1616
+ SlideVQA is the largest document VQA benchmark that
1617
+ uses multiple images as input and requires multi-hop rea-
1618
+ soning; its limitation is that the multi-hop questions created
1619
+ by editing are different from the questions humans might ac-
1620
+ tually ask the system. We argue that developing models that
1621
+ can reason over multiple images is an important research
1622
+ direction, and therefore, we employed an editing method
1623
+ Copyright ©2014 The Nielsen Company. Confidential and proprietary.
1624
+ 8
1625
+ ROCK IS THE BIGGEST GENRE, BUT R&B/HIP-HOP
1626
+ AND POP ARE ALSO STRONG IN 2015
1627
+ 30%
1628
+ 21%
1629
+ 17%
1630
+ 9%
1631
+ 5%
1632
+ 4%
1633
+ 3%
1634
+ Rock
1635
+ R&B/Hip-Hop
1636
+ Pop
1637
+ Country
1638
+ Latin
1639
+ Dance/Elec
1640
+ Christian/Gosp
1641
+ Share of Total Activity
1642
+ TEA Ratio - 10:1
1643
+ SEA Ratio � 1500:1
1644
+ Copyright ©2014 The Nielsen Company. Confidential and proprietary.
1645
+ 9
1646
+ ROCK DOMINATES ALBUMS, POP DRIVES SONG
1647
+ SALES AND R&B/HIP-HOP LEADS STREAMING
1648
+ 37%
1649
+ 18%
1650
+ 12%
1651
+ 11%
1652
+ 3%
1653
+ 2%
1654
+ 4%
1655
+ 24%
1656
+ 23%
1657
+ 26%
1658
+ 12%
1659
+ 2%
1660
+ 5%
1661
+ 3%
1662
+ 23%
1663
+ 26%
1664
+ 19%
1665
+ 5%
1666
+ 10%
1667
+ 6%
1668
+ 3%
1669
+ Rock
1670
+ R&B/Hip-Hop
1671
+ Pop
1672
+ Country
1673
+ Latin
1674
+ Dance/Elec
1675
+ Christian/Gosp
1676
+ GENRE SHARE OF TOTAL
1677
+ Album Sales %
1678
+ Song Sales %
1679
+ Streams %
1680
+ Q: What is the combined percentage of Album Sales % and Song Sales %
1681
+ for the genre with a 9% Share of Total Activity?
1682
+ GT
1683
+ answer: 23%
1684
+ evidence pages: 8, 9
1685
+ FiD
1686
+ answer: 57%
1687
+ evidence pages: None
1688
+ LayoutT5 answer: 68%
1689
+ evidence pages: 8, 9
1690
+ M3D
1691
+ answer: 23% (11% + 12%)
1692
+ evidence pages: 8, 9
1693
+ p.8
1694
+
1695
+ p.9
1696
+
1697
+ Figure 7: Qualitative example. GT denotes the ground-
1698
+ truth. (·) means the generated arithmetic expression. The
1699
+ slide deck can be viewed at https://www.slideshare.net/
1700
+ musicbizassoc/nielsen-2015-music-biz-presentation-final.
1701
+ that guarantees multi-hop questions and easily extends the
1702
+ dataset size. Also, our model uses cross-attention on all ev-
1703
+ idence candidates, which may cause a computational prob-
1704
+ lem when there are a lot of input images (e.g., as in the open-
1705
+ domain QA setting like DocCVQA). To remedy this prob-
1706
+ lem, we consider that models that train a two-stage selec-
1707
+ tor that roughly narrows down candidates to a small number
1708
+ of images and then accurately selects evidence images and
1709
+ an answer generator in an end-to-end manner are promis-
1710
+ ing (Sachan et al. 2021a,b).
1711
+ Conclusion
1712
+ We introduced a new document VQA dataset, SlideVQA,
1713
+ focused on the task of understanding slide decks composed
1714
+ of multiple images. We also introduced a unified end-to-
1715
+ end model, M3D, that can perform evidence selection and
1716
+ question answering tasks and enhance numerical reasoning
1717
+ by generating arithmetic expressions. While our evaluation
1718
+ highlighted the promise of this approach, it also revealed a
1719
+ huge gap compared with human performance, and several
1720
+ challenges emerge from multi-hop reasoning on multiple
1721
+ images and generating answers with arithmetic operations.
1722
+ We believe that our dataset will contribute to the develop-
1723
+ ment of intelligent assistant agents that can comprehend di-
1724
+ verse real-world documents.
1725
+
1726
+ nOEMUS
1727
+ MPLETEVIEWAC-NCReferences
1728
+ Ba, L. J.; Kiros, R.; and Hinton, G. E. 2016. Layer Normal-
1729
+ ization. arXiv:1607.06450.
1730
+ Bansal, A.; Zhang, Y.; and Chellappa, R. 2020. Visual ques-
1731
+ tion answering on image sets. In ECCV, 51–67.
1732
+ Chen, X.; Zhao, Z.; Chen, L.; Ji, J.; Zhang, D.; Luo, A.;
1733
+ Xiong, Y.; and Yu, K. 2021.
1734
+ WebSRC: A Dataset for
1735
+ Web-Based Structural Reading Comprehension. In EMNLP,
1736
+ 4173–4185.
1737
+ Cui, L.; Huang, S.; Wei, F.; Tan, C.; Duan, C.; and Zhou,
1738
+ M. 2017. SuperAgent: A Customer Service Chatbot for E-
1739
+ commerce Websites. In ACL, 97–102.
1740
+ Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
1741
+ BERT: Pre-training of Deep Bidirectional Transformers for
1742
+ Language Understanding. In NAACL-HLT, 4171–4186.
1743
+ Dua, D.; Wang, Y.; Dasigi, P.; Stanovsky, G.; Singh, S.;
1744
+ and Gardner, M. 2019. DROP: A Reading Comprehension
1745
+ Benchmark Requiring Discrete Reasoning Over Paragraphs.
1746
+ In ACL, 2368–2378.
1747
+ Fu, T.; Wang, W. Y.; McDuff, D.; and Song, Y. 2022.
1748
+ DOC2PPT: Automatic Presentation Slides Generation from
1749
+ Scientific Documents. In AAAI, 634–642.
1750
+ Geva, M.; Gupta, A.; and Berant, J. 2020.
1751
+ Injecting Nu-
1752
+ merical Reasoning Skills into Language Models. In ACL,
1753
+ 946–958.
1754
+ Haurilet, M.; Roitberg, A.; Martinez, M.; and Stiefelhagen,
1755
+ R. 2019. Wise—slide segmentation in the wild. In ICDAR,
1756
+ 343–348.
1757
+ He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
1758
+ Learning for Image Recognition. In CVPR, 770–778.
1759
+ Hong, Y.; Wang, J.; Jia, Y.; Zhang, W.; and Wang, X. 2019.
1760
+ Academic Reader: An Interactive Question Answering Sys-
1761
+ tem on Academic Literatures. In AAAI, 9855–9856.
1762
+ Izacard, G.; and Grave, E. 2021. Leveraging Passage Re-
1763
+ trieval with Generative Models for Open Domain Question
1764
+ Answering. In EACL, 874–880.
1765
+ Kembhavi, A.; Seo, M. J.; Schwenk, D.; Choi, J.; Farhadi,
1766
+ A.; and Hajishirzi, H. 2017. Are You Smarter Than a Sixth
1767
+ Grader? Textbook Question Answering for Multimodal Ma-
1768
+ chine Comprehension. In CVPR, 5376–5384.
1769
+ Le, H.; and Hoi, S. C. H. 2020.
1770
+ Video-Grounded Dia-
1771
+ logues with Pretrained Generation Language Models.
1772
+ In
1773
+ ACL, 5842–5848.
1774
+ Lei, J.; Yu, L.; Bansal, M.; and Berg, T. 2018.
1775
+ TVQA:
1776
+ Localized, Compositional Video Question Answering.
1777
+ In
1778
+ EMNLP, 1369–1379.
1779
+ Lei, J.; Yu, L.; Berg, T.; and Bansal, M. 2020. TVQA+:
1780
+ Spatio-Temporal Grounding for Video Question Answering.
1781
+ In ACL, 8211–8225.
1782
+ Loshchilov, I.; and Hutter, F. 2017. Decoupled weight decay
1783
+ regularization. arXiv:1711.05101.
1784
+ Luo, H.; Ji, L.; Shi, B.; Huang, H.; Duan, N.; Li, T.; Li, J.;
1785
+ Bharti, T.; and Zhou, M. 2020. UniVL: A Unified Video and
1786
+ Language Pre-Training Model for Multimodal Understand-
1787
+ ing and Generation. arXiv:2002.06353.
1788
+ Mathew, M.; Bagal, V.; Tito, R.; Karatzas, D.; Valveny, E.;
1789
+ and Jawahar, C. 2022. InfographicVQA. In WACV, 1697–
1790
+ 1706.
1791
+ Mathew, M.; Karatzas, D.; and Jawahar, C. V. 2021.
1792
+ DocVQA: A Dataset for VQA on Document Images.
1793
+ In
1794
+ WACV, 2200–2209.
1795
+ Monica Haurilet, Z. A.-H.; and Stiefelhagen, R. 2019.
1796
+ SPaSe - Multi-Label Page Segmentation for Presentation
1797
+ Slides. In WACV, 726–734.
1798
+ Powalski, R.; Borchmann, Ł.; Jurkiewicz, D.; Dwojak, T.;
1799
+ Pietruszka, M.; and Pałka, G. 2021. Going full-tilt boogie
1800
+ on document understanding with text-image-layout trans-
1801
+ former. In ICDAR, 732–747.
1802
+ Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
1803
+ Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
1804
+ et al. 2021. Learning transferable visual models from natural
1805
+ language supervision. In ICML, 8748–8763.
1806
+ Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
1807
+ Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Exploring
1808
+ the Limits of Transfer Learning with a Unified Text-to-Text
1809
+ Transformer. JMLR, 21(140): 1–67.
1810
+ Rajpurkar, P.; Jia, R.; and Liang, P. 2018. Know What You
1811
+ Don’t Know: Unanswerable Questions for SQuAD. In ACL,
1812
+ 784–789.
1813
+ Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016.
1814
+ SQuAD: 100,000+ Questions for Machine Comprehension
1815
+ of Text. In EMNLP, 2383–2392.
1816
+ Ren; Shaoqing; He; Kaiming; Girshicka; Ross; Sun; and
1817
+ Jian. 2015. Faster r-cnn: Towards real-time object detection
1818
+ with region proposal networks. In NIPS, 91–99.
1819
+ Robertson, S.; Zaragoza, H.; et al. 2009. The probabilistic
1820
+ relevance framework: BM25 and beyond. Foundations and
1821
+ Trends® in Information Retrieval, 3(4): 333–389.
1822
+ Ruder, S. 2016. An overview of gradient descent optimiza-
1823
+ tion algorithms. arXiv:1609.04747.
1824
+ Sachan, D.; Patwary, M.; Shoeybi, M.; Kant, N.; Ping, W.;
1825
+ Hamilton, W. L.; and Catanzaro, B. 2021a.
1826
+ End-to-End
1827
+ Training of Neural Retrievers for Open-Domain Question
1828
+ Answering. In ACL, 6648–6662.
1829
+ Sachan, D. S.; Reddy, S.; Hamilton, W. L.; Dyer, C.; and Yo-
1830
+ gatama, D. 2021b. End-to-End Training of Multi-Document
1831
+ Reader and Retriever for Open-Domain Question Answer-
1832
+ ing. In NeurIPS, 25968–25981.
1833
+ Sun, E.; Hou, Y.; Wang, D.; Zhang, Y.; and Wang, N.
1834
+ X. R. 2021. D2S: Document-to-Slide Generation Via Query-
1835
+ Based Text Summarization. In NAACL-HLT, 1405–1418.
1836
+ Talmor, A.; and Berant, J. 2018. The Web as a Knowledge-
1837
+ Base for Answering Complex Questions. In NAACL-HLT,
1838
+ 641–651.
1839
+ Talmor, A.; Yoran, O.; Catav, A.; Lahav, D.; Wang, Y.; Asai,
1840
+ A.; Ilharco, G.; Hajishirzi, H.; and Berant, J. 2021. Multi-
1841
+ ModalQA: complex question answering over text, tables and
1842
+ images. In ICLR.
1843
+ Tanaka, R.; Nishida, K.; and Yoshida, S. 2021. VisualMRC:
1844
+ Machine Reading Comprehension on Document Images. In
1845
+ AAAI, 13878–13888.
1846
+
1847
+ Tapaswi, M.; Zhu, Y.; Stiefelhagen, R.; Torralba, A.; Urta-
1848
+ sun, R.; and Fidler, S. 2016. Movieqa: Understanding sto-
1849
+ ries in movies through question-answering. In CVPR, 4631–
1850
+ 4640.
1851
+ Tito, R.; Karatzas, D.; and Valveny, E. 2021. Document Col-
1852
+ lection Visual Question Answering. In ICADR, 778–792.
1853
+ Tu, M.; Huang, K.; Wang, G.; Huang, J.; He, X.; and Zhou,
1854
+ B. 2020. Select, answer and explain: Interpretable multi-hop
1855
+ reading comprehension over multiple documents. In AAAI,
1856
+ 9073–9080.
1857
+ Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
1858
+ L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
1859
+ tention is All you Need. In NIPS, 6000–6010.
1860
+ Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Chi, E.; Le,
1861
+ Q.; and Zhou, D. 2022. Chain of thought prompting elicits
1862
+ reasoning in large language models. arXiv:2201.11903.
1863
+ Xu, Y.; Li, M.; Cui, L.; Huang, S.; Wei, F.; and Zhou, M.
1864
+ 2020. LayoutLM: Pre-training of Text and Layout for Doc-
1865
+ ument Image Understanding. In KDD, 1192–1200.
1866
+ Xu, Y.; Xu, Y.; Lv, T.; Cui, L.; Wei, F.; Wang, G.; Lu, Y.;
1867
+ Florˆencio, D. A. F.; Zhang, C.; Che, W.; Zhang, M.; and
1868
+ Zhou, L. 2021. LayoutLMv2: Multi-modal Pre-training for
1869
+ Visually-rich Document Understanding.
1870
+ In ACL/IJCNLP,
1871
+ 2579–2591.
1872
+ Yang, Z.; Qi, P.; Zhang, S.; Bengio, Y.; Cohen, W. W.;
1873
+ Salakhutdinov, R.; and Manning, C. D. 2018. HotpotQA:
1874
+ A Dataset for Diverse, Explainable Multi-hop Question An-
1875
+ swering. In EMNLP, 2369–2380.
1876
+ Yoran, O.; Talmor, A.; and Berant, J. 2022. Turning Tables:
1877
+ Generating Examples from Semi-structured Tables for En-
1878
+ dowing Language Models with Reasoning Skills. In ACL,
1879
+ 6016–6031.
1880
+ Zhang, Q.; Wang, L.; Yu, S.; Wang, S.; Wang, Y.; Jiang, J.;
1881
+ and Lim, E.-P. 2021. NOAHQA: Numerical Reasoning with
1882
+ Interpretable Graph Question Answering Dataset. In Find-
1883
+ ings of EMNLP, 4147–4161.
1884
+ Zhang, X.; Ramachandran, D.; Tenney, I.; Elazar, Y.; and
1885
+ Roth, D. 2020. Do Language Embeddings capture Scales?
1886
+ In BlackboxNLP Workshop.
1887
+
BdE4T4oBgHgl3EQfFAzo/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtAzT4oBgHgl3EQfGPuX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e767619402cb3556f0b0b8a8cd87559cb90c0856e336c826671ae37a8caf3768
3
+ size 7536685
CtE3T4oBgHgl3EQfUgpf/content/2301.04451v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a671acc948cd704a4ae0c40708176cded395f89a5b12a7f40a8ef6ca3c482e4f
3
+ size 1491855
CtE3T4oBgHgl3EQfUgpf/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6912a1d80bafc342737f1b93399e4bbb93da4c42b83f529d722b75ed32a8564
3
+ size 3538989
E9AyT4oBgHgl3EQf4_pw/content/2301.00796v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:618232803e01a7e081b4c1bac52f692770ba41599cd9ecf54d5d831c1b4ab905
3
+ size 581025
E9AyT4oBgHgl3EQf4_pw/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d94b795733ec75d6459576e8a23c4f7db2ca99c3d85b39515480606c4c943cb5
3
+ size 1703981
E9AyT4oBgHgl3EQf4_pw/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6059952a15e6303122ae0ac96df22c54e448f4b402f91f873502286b34683c1
3
+ size 66900
ENA0T4oBgHgl3EQfA_81/content/2301.01969v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e98ed55bf7c11f52e18edd0bb1206a5676e1bd4faa964c5966884ae74ee2e82e
3
+ size 3980101
ENA0T4oBgHgl3EQfA_81/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0769333255c8143d27b4e94362140fe20af205937f787e7815ab8ce355100c4e
3
+ size 5767213
EdAzT4oBgHgl3EQfG_ss/content/tmp_files/2301.01036v1.pdf.txt ADDED
@@ -0,0 +1,1010 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ High-Quality Supersampling via Mask-reinforced Deep
2
+ Learning for Real-time Rendering
3
+ Hongliang Yuan1, Boyu Zhang1,2, Mingyan Zhu1,3, Ligang Liu4, Jue Wang1
4
+ 1Tencent AI Lab, 2Southeast University, 3Tsinghua University,
5
+ 4University of Science and Technology of China
6
7
+ (a) 0.25-spp input
8
+ (b) NSRR
9
+ (c) RAE
10
+ (d) Ours
11
+ (e) Ground truth
12
+ Figure 1: Left to right: (a) noisy image generated using hybrid path-tracer at 0.25 sample per pixel; (b) Neural supersampling
13
+ network [Xiao et al. 2020] (10.3ms at 1024 × 2048, SSIM: 0.7737); (c) RAE [Chaitanya et al. 2017] (6.5ms, SSIM: 0.7556); (d) our
14
+ sparse sampling reconstruction (7.8ms, SSIM: 0.9036); (e) reference path-traced image with 32768 samples per pixel.
15
+ ABSTRACT
16
+ To generate high quality rendering images for real time applications,
17
+ it is often to trace only a few samples-per-pixel (spp) at a lower res-
18
+ olution and then supersample to the high resolution. Based on the
19
+ observation that the rendered pixels at a low resolution are typically
20
+ highly aliased, we present a novel method for neural supersampling
21
+ based on ray tracing 1/4-spp samples at the high resolution. Our
22
+ key insight is that the ray-traced samples at the target resolution
23
+ are accurate and reliable, which makes the supersampling an inter-
24
+ polation problem. We present a mask-reinforced neural network
25
+ to reconstruct and interpolate high-quality image sequences. First,
26
+ a novel temporal accumulation network is introduced to compute
27
+ the correlation between current and previous features to signifi-
28
+ cantly improve their temporal stability. Then a reconstruct network
29
+ based on a multi-scale U-Net with skip connections is adopted for
30
+ reconstruction and generation of the desired high-resolution image.
31
+ Permission to make digital or hard copies of all or part of this work for personal or
32
+ classroom use is granted without fee provided that copies are not made or distributed
33
+ for profit or commercial advantage and that copies bear this notice and the full citation
34
+ on the first page. Copyrights for components of this work owned by others than ACM
35
+ must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
36
+ to post on servers or to redistribute to lists, requires prior specific permission and/or a
37
+ fee. Request permissions from [email protected].
38
+ Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
39
+ © 2018 Association for Computing Machinery.
40
+ ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
41
+ https://doi.org/XXXXXXX.XXXXXXX
42
+ Experimental results and comparisons have shown that our pro-
43
+ posed method can generate higher quality results of supersampling,
44
+ without increasing the total number of ray-tracing samples, over
45
+ current state-of-the-art methods.
46
+ KEYWORDS
47
+ Monte Carlo denoising, neural networks, path tracing
48
+ 1
49
+ INTRODUCTION
50
+ Rendering noise-free Monte Carlo (MC) ray-traced images at real-time
51
+ frame rates is still challenging. Despite the widely used of modern RTX
52
+ GPU accelerators, only a few rays per pixel can be traced at target resolution
53
+ for real-time applications, resulting in severe noise in renderings. The most
54
+ efficient strategy is to denoise and reconstruct the rendering results in
55
+ image-space, usually as a post-process pass of a physically-based renderer.
56
+ Until recently, most MC denoisers were proposed based on convolutional
57
+ neural networks (CNN). Chaitanya et al. [Chaitanya et al. 2017] proposed
58
+ a recurrent model for interactive applications that are targeted at images
59
+ rendered with low sample per pixel (1~4 spp). In addition, the NVIDIA
60
+ OptiX ray-tracing engine introduces an AI-accelerated denoiser based on
61
+ this work. We also developed a hybrid ray tracer based on Vulkan and we
62
+ use it to export training datasets. The source code of our ray tracer and
63
+ paper will be available soon. Mustafa et al. [Işık et al. 2021] adopt dilated
64
+ arXiv:2301.01036v1 [cs.CV] 3 Jan 2023
65
+
66
+ Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
67
+ spatial kernels to filter the noisy image-guided by pairwise affinity over
68
+ the features and target in the low-sample count regime (2~8 spp). Meng et
69
+ al. [Meng et al. 2020] also denoise 1-spp noisy input images with a neural
70
+ bilateral grid at real-time frame rates. Hasselgren et al. [Hasselgren et al.
71
+ 2020] proposed a neural temporal adaptive sampling method for denoising
72
+ image sequences rendered at 4-spp. Fan et al. [Fan et al. 2021] expands the
73
+ kernel-prediction method to remove noise at low spp (more than one) in
74
+ a strict time budget. All the state-of-the-art denoising and reconstruction
75
+ methods aim at removing noise of images rendered with more than 1-spp.
76
+ In this paper, we propose a novel approach to reconstruct less than 1-spp
77
+ renderings at real-time frame rates. Following traditional temporal anti-
78
+ aliasing [Karis 2014] (TAA), our method uses renderer generated motion
79
+ vector to warp previous frames and accumulate sparse samples from the pre-
80
+ vious frame based on the temporal accumulation factor computed according
81
+ to the correlation of current and previous frame, effectively increasing the
82
+ number of samples per pixel. The module can also detect ghosting arti-
83
+ facts at disocclusion regions and remove mismatched pixels at inconsistent
84
+ shading regions. Mustafa et al. [Işık et al. 2021] also compute temporal
85
+ accumulation factor for a pixel using neural network, but they concatenate
86
+ features of current and previous frames and feed them into network to-
87
+ gether. Compared to this method, our method can produce better temporal
88
+ stable and high-quality results.
89
+ After accumulating sparse samples, we use a residual block [He et al. 2015]
90
+ to fusion the accumulated features. Then we implement a multi-scale U-Net
91
+ [Ronneberger et al. 2015a] with skip connections for the reconstruction
92
+ subnetwork. The multi-scale predicting network is similar to the method
93
+ suggested by Vogels et al. [Vogels et al. 2018] which uses kernel prediction.
94
+ We directly predict denoised images for the current frame and two additional
95
+ channels as blending factors. We also predict a 2 × downscaled image from
96
+ the layer of the last but one. We composite the final denoised image from the
97
+ current denoised image, the previous warped image, and 2 × downscaled
98
+ images. Comprehensive experiment results show that our approach is good
99
+ at reconstructing 0.25-spp images at a real-time frame rate. To summarize,
100
+ our contributions are the following:
101
+ • We introduce a temporally-stable neural network to reconstruct image
102
+ sequences rendered at 0.25-spp at real-time frame rates. To the best of
103
+ our knowledge, we are the first that utilize 0.25-spp images as input
104
+ for the neural network.
105
+ • A novel temporal accumulation network which computes the correla-
106
+ tion between current and previous features to significantly improve
107
+ the temporal stability of Monte Carlo denoising.
108
+ • Extensive experiments demonstrate that our method outperforms state-
109
+ of-the-art methods both quantitatively and qualitatively.
110
+ 2
111
+ RELATED WORK
112
+ Traditional best-performing MC denoisers were mainly based on local neigh-
113
+ borhood regression models [Zwicker et al. 2015]. With the advent of power-
114
+ ful modern GPUs, lots of researchers utilize CNN to build their MC denoisers.
115
+ In this section, we will mainly discuss CNN-based real-time denoising tech-
116
+ niques, which are most related to our approach. For a comprehensive study
117
+ of deep learning-based MC denoising and reconstruction techniques, please
118
+ refer to the recent survey of Huo et al. [Huo and Yoon 2021].
119
+ 2.1
120
+ Image-space Methods
121
+ Traditional MC denoisers are based on zero-order regression [Delbracio et al.
122
+ 2014; Kalantari et al. 2015; Li et al. 2012; Moon et al. 2013; Rousselle et al.
123
+ 2012, 2013], first-order regression [Bauszat et al. 2011; Bitterli et al. 2016;
124
+ Moon et al. 2014] and even higher-order regression models [Moon et al.
125
+ 2016].The filtering-based methods are based on using the auxiliary feature
126
+ buffers to guide the construction of image-space filters. Most of the above
127
+ methods run in offline rendering. To increase the effective sample count,
128
+ real-time denoisers leverage temporal accumulation between frames over
129
+ time to amortize supersampling [Yang et al. 2009], i.e. temporal anti-aliasing
130
+ (TAA). The previous frame is reprojected according to the motion vector
131
+ and blended with the current frame using a temporal accumulation factor 𝛼.
132
+ The 𝛼 can be constant [Mara et al. 2017; Meng et al. 2020; Schied et al. 2017]
133
+ and changed [Schied et al. 2018] per frame and per pixel. The fixed temporal
134
+ accumulation factor inevitably leads to ghosting and temporal lag. By setting
135
+ the parameter adaptively, the temporal filter can fastly respond to times
136
+ in case of sudden changes between frames. Yang et al. [Yang et al. 2020]
137
+ survey recent TAA techniques and provide an in-depth analysis of the image
138
+ quality trade-offs with these heuristics. Koskela et al. [Koskela et al. 2019]
139
+ propose a blockwise regression for real-time path tracing reconstruction
140
+ and also do accumulation to improve temporal stability.
141
+ 2.2
142
+ CNN-based Monte Carlo Denoising
143
+ Recent deep learning denoisers [Bako et al. 2017; Vogels et al. 2018] use
144
+ deep CNN to estimate the local per-pixel filtering kernels used to compute
145
+ each denoised pixel from its neighbors. Dahlberg et al. [Dahlberg et al. 2019]
146
+ implement the approach of [Vogels et al. 2018] as a practical production
147
+ tool used on the animated feature film. Layer-based denoiser [Munkberg
148
+ and Hasselgren 2020] designs a hierarchical kernel prediction for multi-
149
+ resolution denoising and reconstruction. Since the high computational cost
150
+ of predicting large filtering kernels, these methods mostly target offline
151
+ renderings. There are also other methods [Gharbi et al. 2019; Kuznetsov
152
+ et al. 2018; Xu et al. 2019; Yu et al. 2021] that target denoising rendering
153
+ results at more than 4 spp.
154
+ To reduce the kernel prediction methods’ overhead, Fan et al. [Fan et al.
155
+ 2021] predict an encoding of the kernel map, followed by a high-efficiency
156
+ decoder to construct the complete kernel map. Chaitanya et al. [Chaitanya
157
+ et al. 2017] proposed a recurrent connection based on U-Net [Ronneberger
158
+ et al. 2015b] to improve temporal stability for sequences of sparsely sampled
159
+ input images. Hasselgren et al. [Hasselgren et al. 2020] proposed a neural
160
+ spatio-temporal joint optimization of adaptive sampling and denoising with
161
+ a recurrent feedback loop. Hofmann et al. [Hofmann et al. 2021] also utilized
162
+ the neural temporal adaptive sampling architecture to denoise rendering
163
+ results with participating media. Xiao et al. [Xiao et al. 2020] presented a
164
+ neural supersampling method for TAA, which is similar to deep-learned
165
+ supersampling (DLSS) [Edelsten et al. 2019]. Meng et al. [Meng et al. 2020]
166
+ denoised 1-spp noisy input images with a neural bilateral grid at real-time
167
+ frame rates. Mustafa et al. [Işık et al. 2021] adopted dilated spatial kernels
168
+ to filter the noisy image guiding by pairwise affinity over the features.
169
+ Compare with these real-time denoising framework targeting for more than
170
+ 1-spp renderings, our method is designed to work with 0.25-spp.
171
+ 3
172
+ SPARSE SAMPLING DENOISING
173
+ 3.1
174
+ Problem Statement
175
+ Our goal is to reconstruct temporally stable video from 0.25-spp hybrid path
176
+ traced image sequences in real-time frame rates, and we achieve this with a
177
+ supervised deep learning method. We use our hybrid path traced renderer to
178
+ generate a set of data D={(c1,f1,r1), ... ,(c𝑁 ,f𝑁 ,r𝑁 )} where c stands for noisy
179
+ image rendered by sparse sampling, f is the auxiliary features (e.g. albedo,
180
+ normal, depth, metallic, roughness, shadow and transparent) obtained in the
181
+ rendering process, r is the reference image with high spp. We train a deep
182
+ neural function Φ with parameters Θ to reconstruct the noisy-free image.
183
+ The loss function ℓ is measured as the difference between the denoised
184
+ image and its reference image. We then minimize the loss function with
185
+ gradient descent algorithm across the dataset D with 𝑁 samples to get the
186
+
187
+ High-Quality Supersampling via Mask-reinforced Deep Learning for Real-time Rendering
188
+ Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
189
+ optimal parameters ˆ𝜃:
190
+ ˆ𝜃 = arg min
191
+ 𝜃
192
+ 𝑁
193
+ ∑︁
194
+ 𝑖=1
195
+ ℓ (Φ(𝑐𝑖, f𝑖),𝑟𝑖)
196
+ (1)
197
+ The loss function combines four-loss items, including spatial, temporal,
198
+ relative edge, and albedo loss, see section 3.4 for details.
199
+ 3.2
200
+ Sparse Sampling
201
+ We developed a hybrid ray tracer to generate our dataset. To accelerate ray
202
+ tracing, we leverage a rasterization pipeline to get the first hit position from
203
+ the camera and store its associated shading attributes including albedo, nor-
204
+ mal, depth, motion vector, metallic, and roughness. After this rasterization
205
+ pass, we trace a shadow ray to record the soft shadow attribute. If there are
206
+ transparent materials in the scene, we also save the transparent attribute
207
+ at the first hit position. We divide the full resolution into non-overlapping
208
+ blocks with spatial size 4 × 4. We use the MC method to solve the rendering
209
+ equation [Kajiya 1986] for one pixel in the block at each frame and other
210
+ pixels remain zero, see Figure 2. If the camera is static, the radiance of all
211
+ pixels will be computed once at every four frames. For image sequences,
212
+ we use two-layer CNNs to accumulate history frames, see section 3.3.1.
213
+ t
214
+ t+1
215
+ t+2
216
+ t+3
217
+ Figure 2: Sampling pattern. In t and t+1 frame, we compute
218
+ radiance for the top left and top right pixel, respectively. In
219
+ t+2 and t+3 frame, bottom left and right pixel is estimated,
220
+ respectively.
221
+ The input for our network is 18-channels features, including a 3D vector
222
+ (noised image, albedo, normal, shadow, and transparent) and a 1D vector
223
+ (depth, metallic, and roughness). Following prior method [Chaitanya et al.
224
+ 2017], we demodulate the noisy RGB image by the albedo of the directly
225
+ visible material, and the untextured irradiance 𝑥 is transformed to log space,
226
+ ln(1 + 𝑥). Different from the prior method [Chaitanya et al. 2017], after
227
+ the untextured irradiance has been reconstructed, we re-modulate by the
228
+ accumulated albedo predicted by our temporal accumulator network which
229
+ is our key module for producing temporally stable results.
230
+ 3.3
231
+ Network Pipeline
232
+ In this section, we describe our method in details with Figure 3.
233
+ 3.3.1
234
+ Temporal Accumulator. The temporal accumulator module contains
235
+ two neural networks each with 2-layer CNNs. One network accepts normal
236
+ and depth of current frame as input and outputs reference embedding.
237
+ Another network computes embeddings for the current frame and warped
238
+ the previous frame. These two embeddings are then multiplied in a pixel-
239
+ wise manner to the reference embedding and then call softmax(·) to get 𝛼
240
+ and 𝛽 (𝛼 +𝛽 = 1) blending factors for current features and previous features,
241
+ respectively. We only accumulate noisy images, shadow and albedo (see
242
+ Figure 4). Take shadow as an example,we use the following equation to
243
+ accumulate shadow over the frame:
244
+ f𝑠
245
+ 𝑡 = 𝛼 W(f𝑠
246
+ 𝑡−1) + 𝛽f𝑠
247
+ (2)
248
+ where f𝑠
249
+ 𝑡 is accumulated shadow until 𝑡 frame, f𝑠 is shadow buffer for 𝑡
250
+ frame. W(·) is a warping operator that reprojects previous frame to current
251
+ one using motion vector. For the first frame, we set f𝑠
252
+ 𝑡−1 to f𝑠.
253
+ 3.3.2
254
+ Feature Fusion. After accumulating images, shadow, and albedo, we
255
+ concatenate accumulated features, normal, depth, transparent, metallic, and
256
+ roughness. Then we feed them into a feature fusion network. Since our
257
+ image is sparse, we use this network to fusion the features and spread
258
+ signals across spatial space.
259
+ 3.3.3
260
+ Reconstruction Network. Finally, fused features and warped denoised
261
+ images of the previous frame are concatenated and fed into a reconstruc-
262
+ tion network, which outputs the high-quality image for the current frame.
263
+ The reconstruction network details are given in Figure 3. Our network di-
264
+ rectly predict denoised fine image d𝑓 for current frame and two additional
265
+ channels as blending factor, i.e., 𝛼𝑠 and 𝛼𝑡. We also directly predict a 2 ×
266
+ downscaled coarse image d𝑐 from the layer of the last but one. We use scale
267
+ composition suggested by Vogels et al [Vogels et al. 2018] to combine fine
268
+ and coarse images:
269
+ O𝑝 = d𝑓
270
+ 𝑝 − 𝛼𝑠
271
+ 𝑝 [UDd𝑓 ]𝑝 + 𝛼𝑠
272
+ 𝑝 [Ud𝑐 ]𝑝
273
+ (3)
274
+ where D and U are 2 × 2-downsampling and nearest-neighbor upsampling
275
+ operators. The filtered history O𝑡−1 is linearly blended with the result of
276
+ the scale composition O using 𝛼𝑡:
277
+ O𝑡 = 𝛼𝑡O + (1.0 − 𝛼𝑡)O𝑡−1
278
+ (4)
279
+ 3.4
280
+ Losses
281
+ We use the symmetric mean absolute percentage error (SMAPE):
282
+ ℓ (r, d) =
283
+ 1
284
+ 3𝑁
285
+ 𝑝=𝑁
286
+ ∑︁
287
+ 𝑝=1
288
+ 𝑐=3
289
+ ∑︁
290
+ 𝑐=1
291
+ ��d𝑝,𝑐 − r𝑝,𝑐
292
+ ��
293
+ ��d𝑝,𝑐
294
+ �� +
295
+ ��r𝑝,𝑐
296
+ �� + 𝜀
297
+ (5)
298
+ Here, 𝑁 is the number of pixels in image and 𝜀 is 10−2. d and r are the
299
+ denoised frame and the corresponding reference frame.
300
+ Our loss combines two parts, the first one is computed on a sequence of
301
+ 5 images, including spatial loss ℓ𝑠 = ℓ (r, d), temporal loss ℓ𝑡 = ℓ (Δr, Δd)
302
+ where Δ is temporal gradient computed between two consecutive frames,
303
+ relative edge loss ℓ𝑒 = 𝐿1( ∇d
304
+ r+𝜀 , ∇r
305
+ r+𝜀 ), where gradient ∇ is computed using
306
+ a High Frequency Error Norm (HFEN), an image comparison metric from
307
+ medical imaging [Ravishankar and Bresler 2011]. As suggested by Chaitanya
308
+ et al. [Chaitanya et al. 2017], we assign higher weight to three loss functions
309
+ (ℓ𝑠, ℓ𝑡 and ℓ𝑒) of frames later in the sequence to amplify temporal gradients.
310
+ For our training sequence of 5 images, we use (0.05, 0.25, 0.5, 0.75, 1).
311
+ The second part is warped temporal loss ℓ𝑤𝑡 = ℓ (𝜔r,𝜔d) where 𝜔r =
312
+ 𝑟4 − W(𝑟3), W(·) is a warping operator that reprojects previous frame
313
+ to current one. We also include albedo loss ℓ𝑎 = ℓ (a𝑎𝑐𝑐, a𝑟 ) where a𝑎𝑐𝑐 is
314
+ accumulated albedo computed by our feature accumulator network. We
315
+ only compute albedo loss on last frame and warped temporal loss on last
316
+ two frames.
317
+ We use a weighted combination of these losses as the final training loss:
318
+ ℓ = 0.7ℓ𝑠 + 0.1ℓ𝑡 + 0.2ℓ𝑒 + 0.4ℓ𝑤𝑡 + 5.0ℓ𝑎
319
+ (6)
320
+ 4
321
+ DATESET AND TRAINING PROCEDURE
322
+ Since our method is designed for 3A game and virtual character rendering,
323
+ we train a separate network for each 3D scene same as [Xiao et al. 2020].
324
+ Due to the input image being generated at 0.25-spp, training robust denoiser
325
+ requires a large number of images. We train our method on 6 scenes, see
326
+ Figure 5). BistroInterior and BistroExterior [Lumberyard 2017] have more
327
+ than one million triangles and support transparency, diffuse, specular, and
328
+ soft shadow features. Sponza, Diningroom, Angel, and Warmroom are
329
+
330
+ Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
331
+ Reconstruction Network
332
+ Reconstruction Network
333
+ Feature Fusion
334
+ Feature Accumulator
335
+ ReLu
336
+ Conv+ReLu
337
+ Current Features
338
+
339
+
340
+ 32
341
+ 32
342
+ 32
343
+ 32
344
+ Conv+ReLu
345
+ Conv+ReLu
346
+ Reconstructed
347
+ Image
348
+ Conv+ReLu
349
+ ·
350
+ ·
351
+ Reference
352
+ Warp
353
+ 43
354
+ C
355
+ Conv+ReLu
356
+ Conv
357
+ Conv+ReLu
358
+ Conv
359
+ 43
360
+ 43
361
+ 32
362
+ Downsample
363
+ Conv+ReLu
364
+ Conv+ReLu
365
+ 48
366
+ 48
367
+ Downscale
368
+ Conv+ReLu
369
+ Conv+ReLu
370
+ 64
371
+ 64
372
+ Downscale
373
+ Conv+ReLu
374
+ Conv+ReLu
375
+ 64
376
+ 64
377
+ Downscale
378
+ Conv+ReLu
379
+ Conv+ReLu
380
+ 80
381
+ 80
382
+ Downscale
383
+ Conv+ReLu
384
+ Conv+ReLu
385
+ 80
386
+ 80
387
+ Downscale
388
+ Conv+ReLu
389
+ Conv+ReLu
390
+ 96
391
+ 96
392
+ Downscale
393
+ Conv+ReLu
394
+ Conv+ReLu
395
+ 96
396
+ 96
397
+ Conv
398
+ ReLu
399
+ Conv
400
+ ReLu
401
+ 128
402
+ 128
403
+ Conv
404
+ ReLu
405
+ Conv
406
+ ReLu
407
+ 128
408
+ 128
409
+ Upsample
410
+ Conv+ReLu
411
+ Conv+ReLu
412
+ 96
413
+ 80
414
+ Upsample
415
+ Conv+ReLu
416
+ Conv+ReLu
417
+ 96
418
+ 80
419
+ Upsample
420
+ Conv+ReLu
421
+ Conv+ReLu
422
+ Upsample
423
+ Conv+ReLu
424
+ Conv+ReLu
425
+ 96
426
+ 64
427
+ Upsample
428
+ Conv+ReLu
429
+ Conv+ReLu
430
+ 96
431
+ 64
432
+ Upsample
433
+ Conv+ReLu
434
+ Conv+ReLu
435
+ 64
436
+ 48
437
+ Upsample
438
+ Conv+ReLu
439
+ Conv+ReLu
440
+ 48
441
+ 32
442
+ Upsample
443
+ Conv+ReLu
444
+ Conv+ReLu
445
+ 48
446
+ 32
447
+ Conv+ReLu
448
+ Upsample
449
+ Conv+ReLu
450
+ 64
451
+ 5
452
+ Softmax
453
+ 64
454
+ 32
455
+ Conv+ReLu
456
+ Downsample
457
+ Conv+ReLu
458
+ Conv+ReLu
459
+ Downsample
460
+ Conv+ReLu
461
+ Conv
462
+ 3
463
+ Previous out
464
+ Warp
465
+ Coarse
466
+ ReLu
467
+ Composition
468
+ ReLu
469
+ Upsample
470
+ 2x
471
+ 2x
472
+ Upsample
473
+ 2x
474
+ Downscale
475
+ 2x
476
+ 2x
477
+ Downscale
478
+ 2x
479
+ Normal&Depth
480
+ Normal&Depth
481
+ f tf t
482
+ f
483
+ 1
484
+ -
485
+ tf
486
+ 1
487
+ -
488
+ t
489
+ Previous Features
490
+ Previous Features
491
+ O
492
+ 1
493
+ -
494
+ t
495
+ O
496
+ 1
497
+ -
498
+ t
499
+ Ot
500
+ Ot
501
+ Figure 3: Network pipeline of our sparse sampling reconstruction (SSR) method. The pipeline includes feature accumulator,
502
+ feature fusion, and reconstruction networks. The numbers under each network layer represent the output channels at cor-
503
+ responding layers. The kernel size is 3 × 3 at all layers. The operator ⊙ denotes dot product between features. c○ indicates
504
+ concatenation operation. ⊕ and ⊗ represent element-wise addition and multiplication, respectively.
505
+ (a) warped albedo
506
+ (b) current albedo
507
+ (c) accumulated albedo
508
+ Figure 4: The history albedo (a) is first wared and then is
509
+ blended with the current frame albedo (b). Our temporal ac-
510
+ cumulator not only fills missing pixels but also smooths ar-
511
+ tifacts at the edge.
512
+ simple scenes. Each scene in the training set contains 100 to 1000 frames
513
+ with resolution 1024 × 2048 depending on its complexity. We also rendered
514
+ a validation set with 10 frames and a test set with 50 frames for each scene.
515
+ For each frame, we rendered the reference image at 32768 spp which is the
516
+ target of our denoiser.
517
+ (a) BistroInterior
518
+ (b) BistroExterior
519
+ (c) Sponza
520
+ (d) Diningroom
521
+ (e) Angel
522
+ (f) Warmroom
523
+ Figure 5: An overview of reference images in our generated
524
+ dataset
525
+ When we train the denoiser, we randomly select 5 consecutive frames for
526
+ training in consecutive clips of each scene. The inputs, including the noisy
527
+ image and the auxiliary features, of each frame, are randomly cropped with
528
+ resolution 256 × 256 to make full use of GPU.
529
+ We optimize our denoiser network with ADAM optimizer [Kingma and Ba
530
+ 2015]. We set the initial learning rate to 1 × 10−4 and half it at one-third
531
+ and two-thirds of the total number of iterations. The batch size is 7 and
532
+ the epoch is 200 for each scene. Our denoiser is implemented by PyTorch
533
+ [Paszke et al. 2019] and all the models we presented were trained and tested
534
+ parallel on four GPUs of NVIDIA Tesla A100. Each network takes around 9
535
+ hours.
536
+ 5
537
+ RESULTS
538
+ In this section, we evaluate the performance of our method. We describe the
539
+ implementation of compared baseline and metrics in Section 5.1, analyze
540
+ the algorithm with various ablation experiments in Section 5.2, and describe
541
+ its limitations and future work in Section 5.3.
542
+ 5.1
543
+ Baseline and metrics
544
+ We compare our method with several state-of-the-art denoising and recon-
545
+ struction work, including real-time methods RAE [Chaitanya et al. 2017],
546
+ ANF [Işık et al. 2021], offline method MCD [Yu et al. 2021], and super-
547
+ resolution model NSRR [Xiao et al. 2020]. Although NSRR is a method for
548
+ the super-resolution task, it can also reconstruct images from zero-padding
549
+ inputs which means it fits the sparse sampling task well. So we choose it
550
+ as one of our competitors. We removed the zero-sampling modules so that
551
+ it can apply to our dataset. We follow all these papers and use PyTorch to
552
+ re-implement them. We train all the methods on the same datasets as in our
553
+ method with the same training procedure.
554
+ To evaluate quality, we use three quality metrics: peak signal to noise ratio
555
+ (PSNR), structural similarity index (SSIM) [Wang et al. 2004], and root mean
556
+ squared error (RMSE). The higher the better in both PSNR and SSIM, while
557
+ the lower the better in RMSE.
558
+ Quantitative comparison results are shown in Table1. Average results are
559
+ reported on the 50 test videos of six scenes. We only show the results of
560
+ SSIM due to space limit, and please refer to our supplemental material for
561
+ more comparison results. As shown in Table 1, our method achieves the
562
+ best performance with all six scenes.
563
+ At inference time, all methods are applied to a single frame at a time, Table
564
+ 2 shows inference time at 1024 × 2048 resolution. We tested all the models
565
+ using a GPU, NVIDIA Tesla A100. All network models are not optimized
566
+ with Nvidia TensorRT at 16-bit precision, so inference time still has room
567
+ for improvement.
568
+
569
+ ERCESTTTHigh-Quality Supersampling via Mask-reinforced Deep Learning for Real-time Rendering
570
+ Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
571
+ Scene
572
+ MCD
573
+ ANF
574
+ NSRR
575
+ RAE
576
+ SSR
577
+ BistroInterior
578
+ 0.7650
579
+ 0.7583
580
+ 0.7405
581
+ 0.7751
582
+ 0.8921
583
+ BistroExterior
584
+ 0.8071
585
+ 0.7201
586
+ 0.8538
587
+ 0.8006
588
+ 0.8962
589
+ Sponza
590
+ 0.8119
591
+ 0.8219
592
+ 0.8113
593
+ 0.8898
594
+ 0.9410
595
+ Diningroom
596
+ 0.8637
597
+ 0.7226
598
+ 0.8843
599
+ 0.9007
600
+ 0.9375
601
+ Warmroom
602
+ 0.8021
603
+ 0.8774
604
+ 0.9740
605
+ 0.9675
606
+ 0.9758
607
+ Angel
608
+ 0.8601
609
+ 0.8813
610
+ 0.9804
611
+ 0.9161
612
+ 0.9763
613
+ Table 1: Quantitative comparison results on six scenes. We
614
+ choose four baseline methods to compare with our SSR
615
+ method.
616
+ Method
617
+ MCD
618
+ ANF
619
+ NSRR
620
+ RAE
621
+ SSR
622
+ Time(ms)
623
+ 13.5
624
+ 32
625
+ 33.5
626
+ 6.5
627
+ 7.8
628
+ Table 2: Comparison results of inference time.
629
+ In Figure 6, we compare reconstructed images visually. Our method out-
630
+ performs all other methods on all scenes by a large margin. Previous state-
631
+ of-the-art methods are not good at denoising renderings at 0.25-spp. MCD
632
+ originally targets offline rendering and transformer needs large memory to
633
+ train and inference. RAE, NSRR, and ANF feed previous and current features
634
+ into the network directly. The difference between our approach and the
635
+ previous ones is that we compute the correlation for each pixel between
636
+ normal and depth features of current and previous frame. Please refer to
637
+ the supplementary material and videos, our method produces significantly
638
+ more temporally stable video results than existing methods.
639
+ 5.2
640
+ Analysis
641
+ 5.2.1
642
+ Rendering Efficiency. We test rendering time of each stage in NVIDIA
643
+ RTX 3060 GPU at resolution 1024 × 2048, see Table 3. With our sparse
644
+ sampling, the total rendering time of scene BistroInterior is 8.75 ms. Without
645
+ sparse sampling, the total rendering time is 18.19 ms. This leads to an about
646
+ 3× rendering performance improvement. After applying our SSR model,
647
+ high-fidelity results are produced.
648
+ Rasterization
649
+ Transparent and Shadow
650
+ W-SS
651
+ Wo-SS
652
+ 1.08 ms
653
+ 2.32 ms
654
+ 5.35 ms
655
+ 14.79 ms
656
+ Table 3: Rendering time of scene BistroInterior. W-SS means
657
+ rendering with our sparse sampling, Wo-SS means without
658
+ sparse sampling.
659
+ 5.2.2
660
+ Quality Gain with Shadow and Transparent. Our training images are
661
+ produced by MC path tracer at 0.25-spp average. Due to light occlusion,
662
+ more than three-fourths of pixels remain zero, so we need more features to
663
+ train our model. We add direct noisy shadow as input of our model. Our
664
+ feature accumulator will accumulate noisy shadows between the current
665
+ frame and the history shadow buffer. The accumulated shadow can help
666
+ our model to detect the continuous edge of shadow and improve temporal
667
+ stability. The synthesis video of test sequences can show that the edge of
668
+ Figure 7 without shadow feature will jitter over frames. If noisy features
669
+ feed into regression-based method [Rousselle et al. 2013], the quality of the
670
+ denoised image will decrease. These methods need another filter to prefilter
671
+ noisy features, but CNN-based methods can accept more than one noisy
672
+ buffer except noisy images.
673
+ We also add the transparent feature into our model for training, but we
674
+ did not accumulate it before feeding it into the feature fusion module. The
675
+ reason is that the transparent feature includes less noise than the shadow, see
676
+ Figure 8. If the scene didn’t have a transparent object, such as BistroExterior,
677
+ we also feed transparent features with zero.
678
+ Our model without shadow and transparent only gets 27.98 dB on testing
679
+ BistroInterior. With shadow and transparent, our model not only gets higher
680
+ PSNR (28.78 dB) but also generates high-quality image.
681
+ 5.2.3
682
+ Quality Gain with Feature Accumulator. We demodulate the image
683
+ with the albedo at a primary hit position. After our network reconstructs
684
+ the untextured illumination, we re-modulate by the albedo to include the
685
+ texture detail in the final rendering. If the albedo in the corresponding frame
686
+ has an artifact, the artifact will transfer to the final rendering. Chaitanya et.
687
+ al [Chaitanya et al. 2017] apply TAA as a supplemental post-process pass to
688
+ fix the artifact. We re-modulate by the accumulated albedo generated by the
689
+ temporal accumulator module to achieve some efficiency as multisampling
690
+ antialiasing (MSAA). [Akeley 1993].
691
+ In summary, from Figure 4, Figure 7 and Figure 9, we can see that our feature
692
+ accumulator plays a key role in reconstructing sparse sampling renderings
693
+ at less than 1-spp.
694
+ 5.2.4
695
+ Network Modules. In Table 4, we report the ablation experiments
696
+ for analyzing the quality improvements from the temporal accumulator
697
+ (Section 3.3.1) and feature fusion (Section 3.3.2) modules. Average results
698
+ are reported on the 50 test image sequences of the BistroInterior scene. If
699
+ without the temporal accumulator and feature fusion, the PSNR decreases
700
+ about 0.58dB, but temporal stability will decrease dramatically in the video
701
+ results. See our supplemental materials for more detailed information.
702
+ Feature Accumulator
703
+ Feature Fusion
704
+ SSIM
705
+ PSNR (dB)
706
+
707
+
708
+ 0.8600
709
+ 28.20
710
+
711
+
712
+ 0.8617
713
+ 28.15
714
+
715
+
716
+ 0.8866
717
+ 28.56
718
+
719
+
720
+ 0.8911
721
+ 28.78
722
+ Table 4: Ablation experiment for the feature accumulator
723
+ and feature fusion modules. The network is trained with
724
+ each (and both) of these subnetworks removed, and results
725
+ on the BistroInterior scene are reported.
726
+ 5.3
727
+ Limitations and Future Work
728
+ While our method provides a significant improvement for neural sparse
729
+ sampling reconstruction, the inference time still has room for improvement.
730
+ We will adopt TensorRT for acceleration and deploy our model on our game
731
+ engine and virtual character rendering platform in the future. In addition,
732
+ there is still little jitter for small objects on the temporal domain. Modern
733
+ game engine all has a TAA pass, applying TAA post-processing can get more
734
+ temporally stable results. We also try to add a layer of Swin Transformer
735
+ [Liu et al. 2021] to the first layer of our reconstruction network. It can truely
736
+ improve quantitative number about 0.23 dB, but inference time will increase
737
+ 1.1 ms at 1024 × 2048 resolution on NVIDIA Tesla A100.
738
+ 6
739
+ CONCLUSION
740
+ We have presented the first CNN-based method for reconstructing Monte
741
+ Carlo renderings at 0.25-spp and experiments show that our method recon-
742
+ structs high-quality results compared with current state-of-the-art methods.
743
+
744
+ Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
745
+ (a) Ours
746
+ (b) Input
747
+ (c) MCD
748
+ (d) ANF
749
+ (e) NSRR
750
+ (f) RAE
751
+ (g) Ours
752
+ (h) Reference
753
+ Figure 6: Visual results on BistroInterior, BistroExterior, Sponza, Diningroom, Warmroom, and Angel scenes.
754
+
755
+ ALLLAHigh-Quality Supersampling via Mask-reinforced Deep Learning for Real-time Rendering
756
+ Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
757
+ (a) Wo-shadow
758
+ (b) Ours
759
+ (c) Noisy shadow
760
+ (d) Ground truth
761
+ Figure 7: The result (a) is generated by training model with-
762
+ out shadow feature, our result (b) is trained with shadow fea-
763
+ ture. (c) and (d) is noisy shadow feature and ground truth,
764
+ respectively.
765
+ (a) Wo-transparent (b) W-transparent
766
+ (c) Transparent
767
+ (d) Ground truth
768
+ Figure 8: The result (a) is generated by training our model
769
+ without the transparent feature, our result (b) is trained with
770
+ the transparent feature. (c) and (d) is the transparent feature
771
+ and ground truth, respectively.
772
+ (a) SSIM: 0.8626
773
+ (b) SSIM: 0.8972
774
+ (c) Ground truth
775
+ Figure 9: (a) Artifact is transferred to the final result, SSIM
776
+ is 0.8626 (b) Re-modulating by the accumulated albedo leads
777
+ to high-quality image, SSIM is 0.8927.
778
+ We propose an efficient feature accumulator network to compute the blend-
779
+ ing factor for each pixel between current and previous frames. Then the
780
+ accumulated features are fused and fed into a multi-scale U-Net to recon-
781
+ struct final results. We evaluated our method by comparing its performance
782
+ to previous works demonstrating better results across all test scenes.
783
+ 7
784
+ ACKNOWLEDGMENTS
785
+ We thank Open Research Content Archive (ORCA) of NVIDIA for provid-
786
+ ing BistroInterior and BistroExterior scenes for training and testing. We
787
+ also thank all students who participate in the development of our hybrid
788
+ renderer.
789
+ REFERENCES
790
+ Kurt Akeley. 1993. Reality Engine Graphics. In Proceedings of the 20th Annual Conference
791
+ on Computer Graphics and Interactive Techniques (Anaheim, CA) (SIGGRAPH ’93).
792
+ Association for Computing Machinery, New York, NY, USA, 109–116. https://doi.
793
+ org/10.1145/166117.166131
794
+ Steve Bako, Thijs Vogels, Brian Mcwilliams, Mark Meyer, Jan NováK, Alex Harvill,
795
+ Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-
796
+ lutional Networks for Denoising Monte Carlo Renderings. ACM Trans. Graph. 36,
797
+ 4, Article 97 (jul 2017), 14 pages. https://doi.org/10.1145/3072959.3073708
798
+ Pablo Bauszat, Martin Eisemann, and Marcus Magnor. 2011. Guided Image Filtering
799
+ for Interactive High-Quality Global Illumination. In Proceedings of the Twenty-
800
+ Second Eurographics Conference on Rendering (Prague, Czech Republic) (EGSR ’11).
801
+ Eurographics Association, Goslar, DEU, 1361–1368. https://doi.org/10.1111/j.1467-
802
+ 8659.2011.01996.x
803
+ Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián, David
804
+ Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted
805
+ First-Order Regression for Denoising Monte Carlo Renderings. Comput. Graph.
806
+ Forum 35, 4 (jul 2016), 107–117.
807
+ Chakravarty Chaitanya, Anton Kaplanyan, Christoph Schied, Marco Salvi, Aaron
808
+ Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruction of
809
+ Monte Carlo image sequences using a recurrent denoising autoencoder. ACM Trans-
810
+ actions on Graphics 36 (07 2017), 1–12. https://doi.org/10.1145/3072959.3073601
811
+ Henrik Dahlberg, David Adler, and Jeremy Newlin. 2019. Machine-Learning Denoising
812
+ in Feature Film Production. In ACM SIGGRAPH 2019 Talks (Los Angeles, California)
813
+ (SIGGRAPH ’19). Association for Computing Machinery, New York, NY, USA, Article
814
+ 21, 2 pages. https://doi.org/10.1145/3306307.3328150
815
+ Mauricio Delbracio, Pablo Musé, Julien Chauvier, Nicholas Phelps, and Jean-Michel
816
+ Morel. 2014. Boosting Monte Carlo Rendering by Ray Histogram Fusion. ACM
817
+ Transactions on Graphics (TOG) 33 (02 2014). https://doi.org/10.1145/2532708
818
+ Andrew Edelsten, Paula Jukarainen, and Anjul Patney. 2019. Truly next-gen: Adding
819
+ deep learning to games and graphics. In NVIDIA Sponsored Sessions (Game Develop-
820
+ ers Conference) (2019).
821
+ Hangming Fan, Rui Wang, Yuchi Huo, and Hujun Bao. 2021.
822
+ Real-time Monte
823
+ Carlo Denoising with Weight Sharing Kernel Prediction Network.
824
+ Com-
825
+ puter Graphics Forum 40, 4 (2021), 15–27.
826
+ https://doi.org/10.1111/cgf.14338
827
+ arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14338
828
+ Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
829
+ Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM
830
+ Trans. Graph. 38, 4, Article 125 (jul 2019), 12 pages. https://doi.org/10.1145/3306346.
831
+ 3322954
832
+ Jon Hasselgren, Jacob Munkberg, Marco Salvi, Anjul Patney, and Aaron Lefohn. 2020.
833
+ Neural temporal adaptive sampling and denoising. In Computer Graphics Forum,
834
+ Vol. 39. Wiley Online Library, 147–155.
835
+ Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015.
836
+ Deep Residual
837
+ Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385
838
+ http://arxiv.org/abs/1512.03385
839
+ Nikolai Hofmann, Jon Hasselgren, Petrik Clarberg, and Jacob Munkberg. 2021. Interac-
840
+ tive Path Tracing and Reconstruction of Sparse Volumes. 4, 1, Article 5 (apr 2021),
841
+ 19 pages. https://doi.org/10.1145/3451256
842
+ Yuchi Huo and Sung-eui Yoon. 2021. A survey on deep learning-based Monte Carlo
843
+ denoising. Computational Visual Media 7 (03 2021). https://doi.org/10.1007/s41095-
844
+ 021-0209-9
845
+ Mustafa Işık, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaël
846
+ Gharbi. 2021. Interactive Monte Carlo Denoising Using Affinity of Neural Features.
847
+ ACM Trans. Graph. 40, 4, Article 37 (jul 2021), 13 pages. https://doi.org/10.1145/
848
+ 3450626.3459793
849
+ James T. Kajiya. 1986.
850
+ The Rendering Equation. In Proceedings of the 13th An-
851
+ nual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
852
+ ’86). Association for Computing Machinery, New York, NY, USA, 143–150. https:
853
+ //doi.org/10.1145/15922.15902
854
+ Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A Machine Learning
855
+ Approach for Filtering Monte Carlo Noise. ACM Trans. Graph. 34, 4, Article 122
856
+ (jul 2015), 12 pages. https://doi.org/10.1145/2766977
857
+ Brian Karis. 2014. High-Quality Temporal Supersampling. In ACM SIGGRAPH 2014
858
+ Courses: Advances in Real-time Rendering in Games, Part I (SIGGRAPH ’14) (2014).
859
+ https://doi.org/10.1145/2614028.2615455
860
+ Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
861
+ In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
862
+ CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann
863
+ LeCun (Eds.). http://arxiv.org/abs/1412.6980
864
+ Matias Koskela, Kalle Immonen, Markku Mäkitalo, Alessandro Foi, Timo Viitanen,
865
+ Pekka Jääskeläinen, Heikki Kultala, and Jarmo Takala. 2019. Blockwise Multi-Order
866
+ Feature Regression for Real-Time Path-Tracing Reconstruction. 38, 5, Article 138
867
+ (jun 2019), 14 pages. https://doi.org/10.1145/3269978
868
+ Alexandr Kuznetsov, Nima Khademi Kalantari, and Ravi Ramamoorthi. 2018. Deep
869
+ Adaptive Sampling for Low Sample Count Rendering. Computer Graphics Forum
870
+ 37 (07 2018), 35–44. https://doi.org/10.1111/cgf.13473
871
+ Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-Based Optimization for
872
+ Adaptive Sampling and Reconstruction. ACM Trans. Graph. 31, 6, Article 194 (nov
873
+ 2012), 9 pages. https://doi.org/10.1145/2366145.2366213
874
+ Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
875
+ Baining Guo. 2021. Swin Transformer: Hierarchical Vision Transformer using
876
+ Shifted Windows. CoRR abs/2103.14030 (2021). arXiv:2103.14030 https://arxiv.org/
877
+
878
+ Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
879
+ abs/2103.14030
880
+ Amazon Lumberyard. 2017. Amazon Lumberyard Bistro, Open Research Content
881
+ Archive (ORCA).
882
+ http://developer.nvidia.com/orca/amazon-lumberyard-bistro
883
+ http://developer.nvidia.com/orca/amazon-lumberyard-bistro.
884
+ Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz.
885
+ 2017. An Efficient Denoising Algorithm for Global Illumination. In
886
+ Proceedings of High Performance Graphics (Los Angeles, California) (HPG
887
+ ’17). Association for Computing Machinery, New York, NY, USA, Article
888
+ 3, 7 pages. https://doi.org/10.1145/3105762.3105774
889
+ Xiaoxu Meng, Quan Zheng, Amitabh Varshney, Gurprit Singh, and Matthias
890
+ Zwicker. 2020. Real-time Monte Carlo Denoising with the Neural Bilateral
891
+ Grid. In Eurographics Symposium on Rendering - DL-only Track, Carsten
892
+ Dachsbacher and Matt Pharr (Eds.). The Eurographics Association. https:
893
+ //doi.org/10.2312/sr.20201133
894
+ Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering
895
+ Based on Weighted Local Regression. ACM Trans. Graph. 33, 5, Article
896
+ 170 (sep 2014), 14 pages. https://doi.org/10.1145/2641762
897
+ Bochang Moon, Jong Yun Jun, JongHyeob Lee, Kunho Kim, Toshiya
898
+ Hachisuka, and Sung-Eui Yoon. 2013.
899
+ Robust Image Denoising Us-
900
+ ing a Virtual Flash Image for Monte Carlo Ray Tracing.
901
+ Computer
902
+ Graphics Forum 32, 1 (2013), 139–151. https://doi.org/10.1111/cgf.12004
903
+ arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12004
904
+ Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016.
905
+ Adaptive Polynomial Rendering. ACM Trans. Graph. 35, 4, Article 40 (jul
906
+ 2016), 10 pages. https://doi.org/10.1145/2897824.2925936
907
+ Jacob
908
+ Munkberg
909
+ and
910
+ Jon
911
+ Hasselgren.
912
+ 2020.
913
+ Neural
914
+ De-
915
+ noising
916
+ with
917
+ Layer
918
+ Embeddings.
919
+ Computer
920
+ Graphics
921
+ Fo-
922
+ rum
923
+ 39,
924
+ 4
925
+ (2020),
926
+ 1–12.
927
+ https://doi.org/10.1111/cgf.14049
928
+ arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14049
929
+ Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
930
+ Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
931
+ Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zach DeVito,
932
+ Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
933
+ Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative
934
+ Style, High-Performance Deep Learning Library. CoRR abs/1912.01703
935
+ (2019). arXiv:1912.01703 http://arxiv.org/abs/1912.01703
936
+ Saiprasad Ravishankar and Yoram Bresler. 2011. MR Image Reconstruction
937
+ From Highly Undersampled k-Space Data by Dictionary Learning. IEEE
938
+ Transactions on Medical Imaging 30, 5 (2011), 1028–1041. https://doi.org/
939
+ 10.1109/TMI.2010.2090538
940
+ Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015a.
941
+ U-Net:
942
+ Convolutional Networks for Biomedical Image Segmentation. CoRR
943
+ abs/1505.04597 (2015). arXiv:1505.04597 http://arxiv.org/abs/1505.04597
944
+ Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015b.
945
+ U-Net:
946
+ Convolutional Networks for Biomedical Image Segmentation. CoRR
947
+ abs/1505.04597 (2015). arXiv:1505.04597 http://arxiv.org/abs/1505.04597
948
+ Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive
949
+ Rendering with Non-Local Means Filtering. ACM Trans. Graph. 31, 6,
950
+ Article 195 (nov 2012), 11 pages. https://doi.org/10.1145/2366145.2366214
951
+ Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013.
952
+ Robust
953
+ Denoising using Feature and Color Information.
954
+ Computer Graph-
955
+ ics Forum 32, 7 (2013), 121–130.
956
+ https://doi.org/10.1111/cgf.12219
957
+ arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12219
958
+ Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney,
959
+ Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachs-
960
+ bacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-
961
+ Guided Filtering: Real-Time Reconstruction for Path-Traced Global Il-
962
+ lumination. In Proceedings of High Performance Graphics (Los Angeles,
963
+ California) (HPG ’17). Association for Computing Machinery, New York,
964
+ NY, USA, Article 2, 12 pages. https://doi.org/10.1145/3105762.3105770
965
+ Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradi-
966
+ ent Estimation for Real-Time Adaptive Temporal Filtering. Proc. ACM
967
+ Comput. Graph. Interact. Tech. 1, 2, Article 24 (aug 2018), 16 pages.
968
+ https://doi.org/10.1145/3233301
969
+ Thijs Vogels, Fabrice Rousselle, Brian Mcwilliams, Gerhard Röthlin, Alex
970
+ Harvill, David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with
971
+ Kernel Prediction and Asymmetric Loss Functions. ACM Trans. Graph.
972
+ 37, 4, Article 124 (jul 2018), 15 pages. https://doi.org/10.1145/3197517.
973
+ 3201388
974
+ Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image
975
+ quality assessment: from error visibility to structural similarity. IEEE
976
+ Transactions on Image Processing 13, 4 (2004), 600–612. https://doi.org/
977
+ 10.1109/TIP.2003.819861
978
+ Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and
979
+ Anton Kaplanyan. 2020. Neural Supersampling for Real-Time Rendering.
980
+ ACM Trans. Graph. 39, 4, Article 142 (jul 2020), 12 pages. https://doi.org/
981
+ 10.1145/3386569.3392376
982
+ Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and
983
+ Rui Tang. 2019. Adversarial Monte Carlo Denoising with Conditioned
984
+ Auxiliary Feature Modulation. ACM Trans. Graph. 38, 6, Article 224 (nov
985
+ 2019), 12 pages. https://doi.org/10.1145/3355089.3356547
986
+ Lei Yang, Shiqiu Liu, and Marco Salvi. 2020.
987
+ A Survey of
988
+ Temporal
989
+ Antialiasing
990
+ Techniques.
991
+ Computer
992
+ Graphics
993
+ Fo-
994
+ rum 39, 2 (2020), 607–621.
995
+ https://doi.org/10.1111/cgf.14018
996
+ arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14018
997
+ Lei Yang, Diego Nehab, Pedro V. Sander, Pitchaya Sitthi-amorn, Jason
998
+ Lawrence, and Hugues Hoppe. 2009. Amortized Supersampling. ACM
999
+ Trans. Graph. 28, 5 (dec 2009), 1–12.
1000
+ https://doi.org/10.1145/1618452.
1001
+ 1618481
1002
+ Jiaqi Yu, Yongwei Nie, Chengjiang Long, Wenju Xu, Qing Zhang, and
1003
+ Guiqing Li. 2021. Monte Carlo Denoising via Auxiliary Feature Guided
1004
+ Self-Attention. ACM Trans. Graph. 40, 6, Article 273 (dec 2021), 13 pages.
1005
+ https://doi.org/10.1145/3478513.3480565
1006
+ M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rousselle, P.
1007
+ Sen, C. Soler, and S.-E. Yoon. 2015. Recent Advances in Adaptive Sampling
1008
+ and Reconstruction for Monte Carlo Rendering. Comput. Graph. Forum
1009
+ 34, 2 (may 2015), 667–681.
1010
+
EdAzT4oBgHgl3EQfG_ss/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GdAyT4oBgHgl3EQfSvfs/content/2301.00094v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:414458377796f7a7eb00a272dc682a2d70c091c783a3145e5a80f493dc077d87
3
+ size 210154
GdAyT4oBgHgl3EQfSvfs/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dedd53643114933db104ff179e727c6e0ff6047b8887f2407626f23e8a108662
3
+ size 121065
IdE0T4oBgHgl3EQfiAEY/content/2301.02438v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:167702084810c2a59c4aa5120e18b92272af7bf63dbb869b307f5ec04d57bdf2
3
+ size 1247992
IdE0T4oBgHgl3EQfiAEY/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c932e98a46d2e03b6082058d27a0119e4498ea1a3f87b0764f16436d8fe204b7
3
+ size 3080237
IdE0T4oBgHgl3EQfiAEY/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3853146eb329c41e12bb2fc325dda5174f43a9aa1afaba2a6809ba9f331b2a8b
3
+ size 100012
JtFIT4oBgHgl3EQfZit-/content/tmp_files/2301.11253v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
JtFIT4oBgHgl3EQfZit-/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
M9FQT4oBgHgl3EQfVza8/content/2301.13302v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:917ec587310954744d48504e89b7ba5e49be995a90c3a083420a1cf0825b56a3
3
+ size 10851775