jackkuo commited on
Commit
91ce519
·
verified ·
1 Parent(s): 2c15dc2

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E3T4oBgHgl3EQfrwpm/content/tmp_files/2301.04662v1.pdf.txt +1685 -0
  2. -9E3T4oBgHgl3EQfrwpm/content/tmp_files/load_file.txt +0 -0
  3. -NAzT4oBgHgl3EQfSvt8/content/tmp_files/2301.01237v1.pdf.txt +1928 -0
  4. -NAzT4oBgHgl3EQfSvt8/content/tmp_files/load_file.txt +0 -0
  5. .gitattributes +32 -0
  6. 0dE5T4oBgHgl3EQfOg4z/content/2301.05497v1.pdf +3 -0
  7. 0dE5T4oBgHgl3EQfOg4z/vector_store/index.faiss +3 -0
  8. 0tAzT4oBgHgl3EQfDPqY/vector_store/index.faiss +3 -0
  9. 0tFPT4oBgHgl3EQfTjTq/content/2301.13054v1.pdf +3 -0
  10. 0tFPT4oBgHgl3EQfTjTq/vector_store/index.faiss +3 -0
  11. 29E2T4oBgHgl3EQfjQdC/vector_store/index.faiss +3 -0
  12. 29E2T4oBgHgl3EQfjQdC/vector_store/index.pkl +3 -0
  13. 2tFKT4oBgHgl3EQf7y43/vector_store/index.pkl +3 -0
  14. 4NE1T4oBgHgl3EQfSgOT/vector_store/index.pkl +3 -0
  15. 4tE1T4oBgHgl3EQf6QWC/content/2301.03521v1.pdf +3 -0
  16. 4tE1T4oBgHgl3EQf6QWC/vector_store/index.faiss +3 -0
  17. 4tE1T4oBgHgl3EQf6QWC/vector_store/index.pkl +3 -0
  18. 6dAyT4oBgHgl3EQfcvcQ/vector_store/index.pkl +3 -0
  19. 6dAyT4oBgHgl3EQfpfjS/content/tmp_files/2301.00528v1.pdf.txt +505 -0
  20. 6dAyT4oBgHgl3EQfpfjS/content/tmp_files/load_file.txt +355 -0
  21. 7dAzT4oBgHgl3EQfgPzo/content/tmp_files/2301.01467v1.pdf.txt +1188 -0
  22. 7dE4T4oBgHgl3EQf2Q2c/content/2301.05297v1.pdf +3 -0
  23. 7dE4T4oBgHgl3EQf2Q2c/vector_store/index.faiss +3 -0
  24. 7tE2T4oBgHgl3EQf7whk/content/tmp_files/2301.04212v1.pdf.txt +934 -0
  25. 7tE2T4oBgHgl3EQf7whk/content/tmp_files/load_file.txt +0 -0
  26. 89FST4oBgHgl3EQfajh_/vector_store/index.pkl +3 -0
  27. 9tAyT4oBgHgl3EQfQ_bX/content/2301.00059v1.pdf +3 -0
  28. 9tAyT4oBgHgl3EQfQ_bX/vector_store/index.faiss +3 -0
  29. 9tAyT4oBgHgl3EQfQ_bX/vector_store/index.pkl +3 -0
  30. 9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf +3 -0
  31. 9tAyT4oBgHgl3EQfqPjX/vector_store/index.pkl +3 -0
  32. 9tFQT4oBgHgl3EQfJjU4/content/tmp_files/2301.13256v1.pdf.txt +2082 -0
  33. 9tFQT4oBgHgl3EQfJjU4/content/tmp_files/load_file.txt +0 -0
  34. AtAyT4oBgHgl3EQfRvdA/content/tmp_files/2301.00071v1.pdf.txt +1455 -0
  35. AtAyT4oBgHgl3EQfRvdA/content/tmp_files/load_file.txt +0 -0
  36. B9FQT4oBgHgl3EQfNza6/vector_store/index.faiss +3 -0
  37. BdE2T4oBgHgl3EQfRge6/content/2301.03782v1.pdf +3 -0
  38. BdE4T4oBgHgl3EQf5Q5A/vector_store/index.faiss +3 -0
  39. BtE4T4oBgHgl3EQfeA0g/vector_store/index.pkl +3 -0
  40. BtE5T4oBgHgl3EQfTQ-D/vector_store/index.pkl +3 -0
  41. BtFKT4oBgHgl3EQfXS78/vector_store/index.pkl +3 -0
  42. CtAyT4oBgHgl3EQfR_f1/content/tmp_files/2301.00079v1.pdf.txt +3171 -0
  43. DdAzT4oBgHgl3EQfif0c/content/tmp_files/2301.01499v1.pdf.txt +1739 -0
  44. DdAzT4oBgHgl3EQfif0c/content/tmp_files/load_file.txt +0 -0
  45. F9FKT4oBgHgl3EQfbS5P/content/2301.11811v1.pdf +3 -0
  46. FtE3T4oBgHgl3EQftQtg/content/tmp_files/load_file.txt +0 -0
  47. GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf +3 -0
  48. GdE1T4oBgHgl3EQfrAWz/vector_store/index.pkl +3 -0
  49. H9AyT4oBgHgl3EQfrvmy/vector_store/index.pkl +3 -0
  50. ItFJT4oBgHgl3EQfFyzw/content/tmp_files/2301.11445v1.pdf.txt +1817 -0
-9E3T4oBgHgl3EQfrwpm/content/tmp_files/2301.04662v1.pdf.txt ADDED
@@ -0,0 +1,1685 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 13, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ SN 2020bio: A Double-peaked Type IIb Supernova with Evidence of Early-time Circumstellar
4
+ Interaction
5
+ C. Pellegrino,1, 2 D. Hiramatsu,3, 4 I. Arcavi,5, 6 D. A. Howell,1, 2 K. A. Bostroem,7, ∗ P. J. Brown,8, 9 J. Burke,1, 2
6
+ N. Elias-Rosa,10, 11 K. Itagaki,12 H. Kaneda,13 C. McCully,1, 2 M. Modjaz,14 E. Padilla Gonzalez,1, 2 and
7
+ T. A. Pritchard15
8
+ 1Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575, USA
9
+ 2Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA
10
+ 3Center for Astrophysics |Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, USA
11
+ 4The NSF AI Institute for Artificial Intelligence and Fundamental Interactions
12
+ 5The School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
13
+ 6CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada
14
+ 7Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195-0002, USA
15
+ 8Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843, USA
16
+ 9George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, College Station, TX 77843, USA
17
+ 10INAF - Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy
18
+ 11Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Barcelona, Spain
19
+ 12Itagaki Astronomical Observatory, Yamagata, Yamagata 990-2492, Japan
20
+ 13Kaneda Astronomical Observatory, Sapporo, Hokkaido 005-0862, Japan
21
+ 14Department of Astronomy, University of Virginia, Charlottesville, VA 22904
22
+ 15Department of Physics, New York University, New York, NY 10003, USA
23
+ Submitted to ApJ
24
+ ABSTRACT
25
+ We present photometric and spectroscopic observations of SN 2020bio, a double-peaked Type IIb
26
+ supernova (SN) discovered within a day of explosion, primarily obtained by Las Cumbres Observatory
27
+ and Swift. SN 2020bio displays a rapid and long-lasting initial decline throughout the first week of its
28
+ light curve, similar to other well-studied Type IIb SNe. This early-time emission is thought to originate
29
+ from the cooling of the extended outer envelope of the progenitor star that is shock-heated by the SN
30
+ explosion. We compare SN 2020bio to a sample of other double-peaked Type IIb SNe to investigate its
31
+ progenitor properties. Analytical model fits to the early-time emission give progenitor radius (≈ 100–
32
+ 1500 R⊙) and H-rich envelope mass (≈ 0.01–0.5 M⊙) estimates that are consistent with other Type IIb
33
+ SNe. However, SN 2020bio displays several peculiarities, including: 1) weak H spectral features and
34
+ narrow emission lines indicative of pre-existing circumstellar material; 2) an underluminous secondary
35
+ light curve peak which implies a small amount of synthesized 56Ni (MNi ≈ 0.02 M⊙); and 3) low-
36
+ luminosity nebular [O I] features. These observations are more consistent with a lower-mass progenitor
37
+ (MZAMS ≈ 12 M⊙) that was stripped of most of its H envelope before exploding. This study adds to
38
+ the growing diversity in the observed properties of Type IIb SNe and their progenitors.
39
+ Keywords: Circumstellar matter(241) — Core-collapse supernovae(304) — Supernovae(1668)
40
+ 1. INTRODUCTION
41
+ Corresponding author: Craig Pellegrino
42
43
+ ∗ LSST Catalyst Fellow
44
+ While the majority of stars with initial masses ≳ 8 M⊙
45
+ end their lives as H-rich core-collapse supernovae (SNe;
46
+ e.g., Janka 2012), some massive stars lose their outer H
47
+ and even He envelopes and explode as stripped-envelope
48
+ SNe (SESNe; e.g., Filippenko 1997; Gal-Yam 2017). A
49
+ small but growing number of SNe have been observed
50
+ arXiv:2301.04662v1 [astro-ph.HE] 11 Jan 2023
51
+
52
+ 2
53
+ Pellegrino et al.
54
+ with spectra that show similarities to both these classes
55
+ (Smith et al. 2011). Classified as Type IIb SNe (SNe
56
+ IIb), their spectra have H features at early times that
57
+ gradually give way to He features, indicating that their
58
+ progenitors were partially stripped of their outer en-
59
+ velopes before exploding (Woosley et al. 1994).
60
+ It is unclear what mechanisms are responsible for this
61
+ mass loss. Common hypotheses include stellar winds,
62
+ binary interaction, or late-stage stellar instabilities (see
63
+ e.g., Smith 2014, for a review).
64
+ Recent studies have
65
+ shown that mass loss is common during the late stages
66
+ of massive star evolution, as inferred from early-time
67
+ observations of core-collapse SNe (e.g., Ofek et al. 2014;
68
+ Bruch et al. 2021; Strotjohann et al. 2021). A signif-
69
+ icant fraction of core-collapse SNe show signatures of
70
+ pre-existing circumstellar material (CSM) in their early-
71
+ time spectra, obtained days after their estimated explo-
72
+ sion epochs. This CSM is the material shed by the pro-
73
+ genitor star in the months to years before core-collapse.
74
+ As the SN shock breaks out of the expanding ejecta the
75
+ resulting X-ray and ultraviolet (UV) flash may ionize
76
+ the surrounding CSM, producing narrow spectral fea-
77
+ tures as the CSM cools and recombines (e.g., Fassia et
78
+ al. 2001; Yaron et al. 2017).
79
+ Interaction between the
80
+ SN ejecta and CSM can also influence the early-time
81
+ light-curve evolution (Morozova et al. 2018).
82
+ Some SNe IIb are observed to have double-peaked
83
+ light curves, with rapidly-fading luminosities during the
84
+ first several days after explosion before the radioactive
85
+ decay of 56Ni synthesized during the explosion causes a
86
+ re-brightening that lasts for several weeks. The early-
87
+ time emission is thought to be the cooling of the ex-
88
+ tended envelope of the progenitor star that is heated
89
+ by the SN shock (Soderberg et al. 2012). This shock-
90
+ cooling emission (SCE) has only been extensively ob-
91
+ served in a handful of cases, including SN 1993J (e.g.,
92
+ Woosley et al. 1994; Richmond et al. 1994), SN 2011dh
93
+ (e.g., Arcavi et al. 2011; Ergon et al. 2014), SN2013 df
94
+ (e.g., Morales-Garoffolo et al. 2014; Van Dyk et al. 2014),
95
+ SN 2016gkg (Arcavi et al. 2017), SN 2017jgh (Armstrong
96
+ et al. 2021), and ZTF18aalrxas (Fremling et al. 2019),
97
+ among others. Most of these objects are nearby and had
98
+ follow-up observations scheduled hours after explosion,
99
+ which proved crucial to observing the rapidly-evolving
100
+ SCE. These studies have found that SNe IIb are con-
101
+ sistent with the explosions of stars with extended outer
102
+ envelopes, with the duration of the SCE dependent on
103
+ the extent of this envelope (Soderberg et al. 2012).
104
+ Numerical and analytical models of SCE can comple-
105
+ ment pre-explosion imaging in determining the progen-
106
+ itors of these objects.
107
+ Several models have been suc-
108
+ cessful in reproducing the observed early-time evolution
109
+ across all wavelengths.
110
+ Piro (2015, hereafter P15) is
111
+ one of the first to present a one-zone analytical descrip-
112
+ tion of the cooling of an extended low-mass envelope
113
+ shock-heated by the explosion of a compact massive
114
+ core. Piro et al. (2021, hereafter P21) extend this to
115
+ a two-zone model in order to better capture the emis-
116
+ sion from the outermost material in extended envelopes.
117
+ Sapir & Waxman (2017, hereafter SW17) calibrate ear-
118
+ lier models by Rabinak & Waxman (2011)—that depend
119
+ on the precise density structure of the outer material—to
120
+ numerical simulations for several days after explosion.
121
+ Comparing observed SCE to analytical and numeri-
122
+ cal models is one of the only ways of directly measuring
123
+ the radii and stellar structure of core-collapse progen-
124
+ itors from SN observations. This has been done for a
125
+ handful of SNe IIb as well as SNe of other subtypes,
126
+ including stripped-envelope Type Ib SNe (e.g., Modjaz
127
+ et al. 2009; Yao et al. 2020), short-plateau Type II SNe
128
+ (Hiramatsu et al. 2021), and exotic Ca-rich transients
129
+ (e.g., Jacobson-Gal´an et al. 2020, 2022). Analytical and
130
+ numerical modeling of double-peaked SNe IIb generally
131
+ yield large radii progenitors (≈ 100–500 R⊙) with low-
132
+ mass (≈ 10−2–10−1 M⊙) extended envelopes (Piro et
133
+ al. 2021, and references therein). These properties are
134
+ usually in agreement with those of SNe IIb progeni-
135
+ tors from pre-explosion Hubble Space Telescope images,
136
+ which have revealed them to be supergiants (Aldering
137
+ et al. 1994; Maund et al. 2011; Van Dyk et al. 2014).
138
+ In some cases, however, the progenitor radii estimated
139
+ from SCE modeling are in tension with those measured
140
+ from direct imaging (e.g., Arcavi et al. 2017; Tartaglia
141
+ et al. 2017, in the case of SN 2016gkg;). Potential bi-
142
+ nary companions to the progenitor, which have been
143
+ observed or inferred in a handful of cases (e.g., Maund
144
+ et al. 2004; Benvenuto et al. 2013) can further compli-
145
+ cate direct imaging estimates when the individual binary
146
+ members are unresolvable.
147
+ Here we present photometric and spectroscopic ob-
148
+ servations of SN 2020bio, an SN IIb showing remark-
149
+ ably strong SCE, obtained by Las Cumbres Observatory
150
+ (LCO) through the Global Supernova Project (GSP).
151
+ LCO extensively observed SN 2020bio from hours to
152
+ ≈ 160 days after explosion, providing a detailed look
153
+ into the full evolution of a double-peaked SN IIb. In
154
+ this work, we analyze its light curve evolution, spectral
155
+ features, and fit analytic models to its full light-curve
156
+ evolution to estimate the radius, mass, and structure of
157
+ its progenitor star. We also compare its bolometric light
158
+ curve and spectra to numerical models in order to infer
159
+ its progenitor mass and the properties of its circumstel-
160
+ lar environment.
161
+
162
+ The Double-peaked Type IIb SN 2020bio
163
+ 3
164
+ This paper is organized as follows. In Section 2 we
165
+ describe the discovery and follow-up observations of
166
+ SN 2020bio.
167
+ We present its full light curve and spec-
168
+ tral time series in Section 3 and compare observations
169
+ to analytical and numerical models in Section 4.
170
+ Fi-
171
+ nally, in Section 5 we discuss the potential progenitor
172
+ properties of SN 2020bio given the presented evidence.
173
+ 2. DISCOVERY AND DATA DESCRIPTION
174
+ SN 2020bio was discovered by Koichi Itagaki on UT
175
+ 2020 January 29.77 at the Itagaki Astronomical Obser-
176
+ vatory at an unfiltered Vega magnitude of 16.7. Analy-
177
+ sis of an image of the same field by the ATLAS survey
178
+ on the previous night yields a nondetection at c-band
179
+ magnitude 18.7. Soon after discovery rapid photometric
180
+ and spectroscopic follow-up observations were requested
181
+ by the GSP through the Las Cumbres global network of
182
+ telescopes. The GSP also triggered its Swift Key Project
183
+ (1518618: PI Howell) to obtain daily UV and optical
184
+ photometry. A classification spectrum obtained on the
185
+ 2.0m Liverpool Telescope on 2020 January 31.19—ap-
186
+ proximately 1.5 days after the first detection—shows a
187
+ blue continuum superimposed with a narrow Hα emis-
188
+ sion feature and a broad possible He I λ 5876˚A feature,
189
+ consistent with a young core-collapse SN (Srivastav et
190
+ al. 2020).
191
+ SN 2020bio exploded at right ascension 13h55m37s.69
192
+ and declination +40°28′39′′.1 in the spiral galaxy NGC
193
+ 5371 at redshift z = 0.008533 (Springob et al. 2005).
194
+ The distance to NGC 5371 is uncertain due to its low
195
+ redshift. We adopt the mean of several distances mea-
196
+ sured using the method of Tully & Fisher (1977), which
197
+ gives d = 29.9 ± 5.1 Mpc (values from the NASA Ex-
198
+ tragalactic Database1). Using the Schlafly & Finkbeiner
199
+ (2011) dust map calibrations, we estimate a Galactic
200
+ line-of-sight extinction to SN 2020bio EMW (B − V ) =
201
+ 0.008 mag. Given the location of SN 2020bio with re-
202
+ spect to its host galaxy, we also estimate host extinc-
203
+ tion using the Na I D equivalent widths measured in a
204
+ high-resolution spectrum of the SN. From the conver-
205
+ sions presented in Poznanski et al. (2012), we estimate
206
+ Ehost(B −V ) = 0.068 ± 0.038 mag for a total extinction
207
+ E(B − V ) = 0.076 ± 0.038 mag. The photometry of
208
+ SN 2020bio presented throughout this work is corrected
209
+ for this mean total extinction.
210
+ LCO photometric follow-up commenced less than a
211
+ day after discovery. UBgVri-band images were obtained
212
+ by the Sinistro and Spectral cameras mounted on LCO
213
+ 1.0m and 2.0m telescopes, respectively, located at Mc-
214
+ 1 https://ned.ipac.caltech.edu/
215
+ Table 1. UV and Optical Photometry
216
+ JD
217
+ Filter
218
+ Magnitude
219
+ Uncertainty
220
+ Source
221
+ 2458878.27
222
+ Clear
223
+ 16.77
224
+ 0.15
225
+ Itagaki
226
+ 2458878.33
227
+ Clear
228
+ 16.55
229
+ 0.15
230
+ Itagaki
231
+ 2458878.39
232
+ Clear
233
+ 16.51
234
+ 0.15
235
+ Itagaki
236
+ 2458879.27
237
+ Clear
238
+ 16.22
239
+ 0.15
240
+ Itagaki
241
+ 2458880.26
242
+ Clear
243
+ 16.49
244
+ 0.15
245
+ Itagaki
246
+ 2458881.25
247
+ Clear
248
+ 16.68
249
+ 0.15
250
+ Itagaki
251
+ 2458882.18
252
+ Clear
253
+ 16.82
254
+ 0.15
255
+ Itagaki
256
+ 2458883.26
257
+ Clear
258
+ 16.85
259
+ 0.15
260
+ Itagaki
261
+ 2458878.85
262
+ UVW2
263
+ 13.56
264
+ 0.04
265
+ Swift
266
+ 2458879.89
267
+ UVW2
268
+ 14.59
269
+ 0.05
270
+ Swift
271
+ This table will be made available in its entirety in machine-
272
+ readable format.
273
+ Donald Observatory, Teide Observatory, and Haleakala
274
+ Observatory.
275
+ Data were reduced using lcogtsnpipe
276
+ (Valenti et al. 2016) which extracts point-spread func-
277
+ tion magnitudes after calculating zero-points and color
278
+ terms (Stetson 1987). UBV -band photometry was cali-
279
+ brated to Vega magnitudes using Landolt standard fields
280
+ (Landolt 1992) while gri-band photometry was cali-
281
+ brated to AB magnitudes (Smith et al. 2002) using Sloan
282
+ Digital Sky Survey (SDSS) catalogs. As SN 2020bio ex-
283
+ ploded coincident with its host galaxy, to remove host
284
+ galaxy light we performed template subtraction using
285
+ the HOTPANTS (Becker 2015) algorithm and template
286
+ images obtained after the SN had faded. Unfiltered im-
287
+ ages were obtained with the Itagaki Astronomical Ob-
288
+ servatory (Okayama and Kochi, Japan) 0.35 m tele-
289
+ scopes + KAF-1001E (CCD). Using our custom soft-
290
+ ware, the photometry was extracted after host subtrac-
291
+ tion and calibrated to the V-band magnitudes of
292
+ 45
293
+ field stars from the Fourth US Naval Observatory CCD
294
+ Astrograph Catalog (Zacharias et al. 2013).
295
+ UV and optical photometry were obtained with the
296
+ Ultraviolet and Optical Telescope (UVOT; Roming et
297
+ al. 2005) on the Neil Gehrels Swift observatory (Gehrels
298
+ et al. 2004). Swift data were reduced using a custom
299
+ adaptation of the Swift Optical/Ultraviolet Supernova
300
+ Archive (Brown et al. 2014) pipeline with the most re-
301
+ cent calibration files and the zeropoints of Breeveld et
302
+ al. (2011). Images from the final epoch, obtained after
303
+ the SN had sufficiently faded, were used as templates
304
+ to subtract the host galaxy light. All Swift photometry
305
+ is calibrated to Vega magnitudes. The entire UV and
306
+ optical data sets from LCO, Itagaki, and Swift UVOT
307
+ are given in Table 1.
308
+
309
+ 4
310
+ Pellegrino et al.
311
+ 58880
312
+ 58900
313
+ 58920
314
+ 58940
315
+ 58960
316
+ 58980
317
+ 59000
318
+ 59020
319
+ 59040
320
+ MJD
321
+ 10
322
+ 12
323
+ 14
324
+ 16
325
+ 18
326
+ 20
327
+ 22
328
+ 24
329
+ Apparent Magnitude + Offset
330
+ 58877.0
331
+ 58880.5
332
+ 58884.0
333
+ 10
334
+ 12
335
+ 14
336
+ 16
337
+ 18
338
+ 20
339
+ UVW2 - 4
340
+ UVM2 - 3
341
+ UVW1 - 2
342
+ U - 1
343
+ B
344
+ g + 1
345
+ V + 2
346
+ r + 3
347
+ i + 3.5
348
+ Clear + 2
349
+ 0
350
+ 20
351
+ 40
352
+ 60
353
+ 80
354
+ 100
355
+ 120
356
+ 140
357
+ 160
358
+ Days From Discovery
359
+ -22
360
+ -20
361
+ -18
362
+ -16
363
+ -14
364
+ -12
365
+ -10
366
+ -8
367
+ Absolute Magnitude + Offset
368
+ Figure 1. The full extinction-corrected light curves of SN 2020bio. Photometry in different filters have been offset for clarity.
369
+ Unfiltered photometry from the Itagaki Astronomical Observatory is included as clear points and calibrated to the V -band.
370
+ The inset focuses on the rapidly-evolving shock-cooling emission.
371
+ LCO spectra were obtained by the FLOYDS spectro-
372
+ graph on the 2.0m Faulkes Telescope North at Haleakala
373
+ Observatory.
374
+ Spectra cover a wavelength range of
375
+ 3500–10,000 ˚A at a resolution R ≈ 300-600.
376
+ Data
377
+ were reduced using the floydsspec pipeline2, a custom
378
+ pipeline which performs cosmic ray removal, spectrum
379
+ extraction, and wavelength and flux calibration.
380
+ We
381
+ also present one spectrum obtained by the B&C spectro-
382
+ graph on the 2.3m Bok Telescope at Steward Observa-
383
+ tory, two spectra obtained by the Blue Channel Spectro-
384
+ graph on the 6.5m MMT at the Fred Lawrence Whipple
385
+ Observatory, and one spectrum obtained by the Optical
386
+ System for Imaging and low-Intermediate-Resolution In-
387
+ 2 https://github.com/svalenti/FLOYDS pipeline/
388
+ tegrated Spectroscopy spectrograph on the 10.4m Gran
389
+ Telescopio Canarias. Details of all these spectra are pre-
390
+ sented in Table 2.
391
+ 3. PHOTOMETRIC AND SPECTRAL ANALYSIS
392
+ 3.1. Light Curve and Color Evolution
393
+ In Figure 1 we show the full LCO and Swift extinction-
394
+ corrected light curve of SN 2020bio, from detection to
395
+ ≈ 160 days after explosion. The discovery and subse-
396
+ quent follow-up photometry from Itagaki are included
397
+ as “Clear” data points. The inset shows in greater de-
398
+ tail the early-time evolution of the SCE, focusing on the
399
+ first week after discovery. The most distinctive feature
400
+ of the light curve is the luminous and rapidly-declining
401
+ SCE at early times. The peak SCE luminosity exceeds
402
+ that of the secondary peak ≈ 15 days later, but SCE
403
+ only dominates the light curve during the first several
404
+
405
+ The Double-peaked Type IIb SN 2020bio
406
+ 5
407
+ -2
408
+ 0
409
+ 2
410
+ UVW2 - B
411
+ -2
412
+ 0
413
+ 2
414
+ UVW2 - V
415
+ -2
416
+ 0
417
+ 2
418
+ UVM2 - B
419
+ -2
420
+ 0
421
+ 2
422
+ UVM2 - V
423
+ 0
424
+ 1
425
+ 2
426
+ 3
427
+ 4
428
+ 5
429
+ 6
430
+ 7
431
+ 8
432
+ Days Since Discovery
433
+ -2
434
+ 0
435
+ 2
436
+ UVW1 - B
437
+ 0
438
+ 1
439
+ 2
440
+ 3
441
+ 4
442
+ 5
443
+ 6
444
+ 7
445
+ 8
446
+ Days Since Discovery
447
+ -2
448
+ 0
449
+ 2
450
+ UVW1 - V
451
+ SW17 Model
452
+ SN 2010jr
453
+ SN 2011dh
454
+ SN 2013df
455
+ SN 2016gkg
456
+ SN 2020bio
457
+ Figure 2. Swift colors of SN 2020bio compared with those of other SNe IIb with early-time Swift observations. We also include
458
+ the best fit SW17 model from Section 4 for comparison. SN 2020bio was bluer at earlier phases than the other SNe IIb. Data
459
+ for these comparison SNe were obtained from the following sources: Arcavi et al. (2011) (SN 2011dh); Morales-Garoffolo et al.
460
+ (2014) (SN 2013df); Arcavi et al. (2017) (SN 2016gkg); this work (SNe 2010jr and 2020bio).
461
+ days. Over this time the light curve falls by ≈ 4 mag
462
+ in the first week, making this phase difficult to observe
463
+ without rapid multi-wavelength follow-up.
464
+ After ≈ 4 days from discovery the slope of the light
465
+ curve decline changes as the luminosity from 56Ni de-
466
+ cay begins to dominate the light curve.
467
+ After about
468
+ a week the light curve re-brightens and reaches a sec-
469
+ ondary maximum ≈ 15 days after discovery. From this
470
+ point the emission settles onto the radioactive decay tail,
471
+ powered by 56Co decay, for the remainder of the obser-
472
+ vations. The secondary peak and overall late-time light
473
+ curve is relatively dim, peaking at M ≈ -14 mag in the
474
+ V -band, hinting at a small amount of 56Ni synthesized
475
+ in the explosion.
476
+ In Figure 2 we compare the early-time Swift UV-
477
+ optical colors of SN 2020bio to those of other SNe IIb
478
+ with observed SCE in the UV. All dates are given with
479
+ respect to the time of discovery and corrected for extinc-
480
+ tion according to the published values for each object.
481
+ SN 2020bio has both the earliest observations relative to
482
+ discovery and the bluest colors throughout its evolution
483
+ compared to the other objects. While objects such as
484
+ SN 2010jr and SN 2016gkg have more densely-sampled
485
+ light curves, their observations began later and their col-
486
+ ors evolved redward faster compared to SN 2020bio.
487
+ Of the 6 colors plotted, SN 2020bio is exceptionally
488
+ blue in the UVM2-B and UVM2-V colors, particularly
489
+ in the earliest epochs.
490
+ We plot a representative SCE
491
+ model color curve from Section 4.2 in each panel for
492
+ comparison. SN 2020bio is bluer than the model, which
493
+ more accurately reproduces the color evolution of the
494
+ other SNe IIb up to several days after the discovery.
495
+ This may be evidence for another luminosity contribu-
496
+ tion besides SCE, as we discuss in Section 5.
497
+ 3.2. Spectral Comparison
498
+ Spectral coverage of SN 2020bio began fewer than 2
499
+ days after the first detection—approximately 3 days
500
+ since the estimated explosion time (Section 4.2)—and
501
+ continued for 201 days. We plot the full spectral series
502
+
503
+ 6
504
+ Pellegrino et al.
505
+ Table 2. Log of Spectroscopic Observations
506
+ Date of Observation
507
+ Days Since Discovery
508
+ Facility/Instrument
509
+ Exposure Time (s)
510
+ Wavelength Range (˚A)
511
+ 2020-01-31 04:27:31
512
+ 1
513
+ LT/SPRAT
514
+ 1200
515
+ 4000–7925
516
+ 2020-02-03 14:32:18
517
+ 4
518
+ LCO/FLOYDS-N
519
+ 1800
520
+ 3500–10,000
521
+ 2020-02-05 12:19:05
522
+ 6
523
+ LCO/FLOYDS-N
524
+ 1800
525
+ 3500–10,000
526
+ 2020-02-15 09:35:59
527
+ 16
528
+ Bok/B&C
529
+ 600
530
+ 3850–7500
531
+ 2020-02-18 12:32:26
532
+ 19
533
+ MMT/Blue Channel
534
+ 300
535
+ 5700–7000
536
+ 2020-02-24 13:00:37
537
+ 25
538
+ LCO/FLOYDS-N
539
+ 1800
540
+ 3500–10,000
541
+ 2020-03-03 10:49:44
542
+ 33
543
+ LCO/FLOYDS-N
544
+ 2700
545
+ 3500–10,000
546
+ 2020-03-22 14:22:56
547
+ 52
548
+ LCO/FLOYDS-N
549
+ 3600
550
+ 3500–10,000
551
+ 2020-03-30 14:20:34
552
+ 60
553
+ LCO/FLOYDS-N
554
+ 3600
555
+ 3500–10,000
556
+ 2020-04-16 11:12:12
557
+ 77
558
+ LCO/FLOYDS-N
559
+ 3600
560
+ 3500–10,000
561
+ 2020-04-27 12:09:24
562
+ 88
563
+ LCO/FLOYDS-N
564
+ 3600
565
+ 3500–10,000
566
+ 2020-08-18 22:02:01
567
+ 201
568
+ GTC/OSIRIS
569
+ 1500
570
+ 3600–7808
571
+ Note—All spectra will be made publicly-available on WiseRep (Yaron & Gal-Yam 2012).
572
+ in Figure 3. The earliest spectrum of SN 2020bio, re-
573
+ ported to the Transient Name Server (Srivastav et al.
574
+ 2020), shows a hot blue continuum superimposed with
575
+ emission lines.
576
+ We identify narrow features of H and
577
+ Mg I as well as a potential weak, broad feature of He I
578
+ λ5876 ˚A. These lines are consistent with flash-ionized
579
+ features observed in other core-collapse SNe, which is
580
+ evidence of nearby CSM lost by the progenitor star.
581
+ After about a week post explosion, absorption fea-
582
+ tures begin to develop in the spectra. We identify lines
583
+ of He, O, and Ca. We also note persistent narrow H
584
+ emission features that last for several weeks. To deter-
585
+ mine if these features are produced by interaction with
586
+ CSM or by host galaxy emission, we fit the narrow Hα
587
+ emission line with a Gaussian function to estimate its
588
+ full-width at half-maximum (FWHM). The results are
589
+ shown in Figure 4. In our earliest spectrum we estimate
590
+ a FWHM of the Hα line of 1500 km s−1, greater than
591
+ the average widths of host galaxy emission lines, while
592
+ our spectrum obtained roughly two weeks after discov-
593
+ ery has a FWHM of ≈ 350 km s−1, more consistent with
594
+ host-galaxy emission at this resolution. The latter value
595
+ is also consistent with the FWHMs we measure for the
596
+ nearby host-dominated [N II] λ 6583 line throughout the
597
+ first several weeks. Therefore, we conclude that circum-
598
+ stellar interaction likely contributes to the H emission
599
+ during the first ≈ 2 weeks after explosion.
600
+ An absorption feature blueward of the rest-frame Hα
601
+ line matches He I λ 6678˚A absorption blueshifted by ≈
602
+ 7500 km s−1, which is commonly noted to cause “flat-
603
+ topped” Hα emission profiles in other SNe IIb (e.g., Fil-
604
+ ippenko et al. 1993). In general, the absorption features
605
+ in the SN 2020bio spectra are shallower than those of the
606
+ other SNe IIb, particularly SN 2011dh. Interaction with
607
+ CSM can produce absorption features that are weaker
608
+ and shallower than expected, which has been noted in
609
+ the spectra of SN 1993J and SN 2013df (Fremling et al.
610
+ 2019).
611
+ To
612
+ further
613
+ investigate
614
+ the
615
+ differences
616
+ between
617
+ SN 2020bio and other SNe IIb, we plot comparison spec-
618
+ tra just after explosion (top), after two weeks (middle),
619
+ and three weeks (bottom) after explosion in Figure 5.
620
+ Among this sample, SN 2020bio is the only object to
621
+ show narrow features indicative of pre-existing CSM at
622
+ early times, despite similar phase coverage of the other
623
+ SNe IIb. This likely reflects differences in their circum-
624
+ stellar environments—if the narrow lines were formed
625
+ from the expanding outer envelopes of the progenitor,
626
+ they should be ubiquitous among SNe IIb at this phase.
627
+ Instead, the presence of narrow H and Mg lines in the
628
+ earliest spectrum of SN 2020bio more likely points to
629
+ confined CSM formed from material stripped from the
630
+ progenitor star.
631
+ Differences persist weeks after the estimated explo-
632
+ sion times.
633
+ While the other SNe IIb have developed
634
+ broad Hα and Hβ emission features, these same lines
635
+ are weaker in SN 2020bio. This could be partly caused
636
+ by He I λ 6678˚A absorption, which has an absorption
637
+ trough coincident with the Hα flux when blueshifted by
638
+ ≈ 7500 km s−1. Another possibility is that the H emis-
639
+ sion from SN 2020bio is inherently weaker than in other
640
+ SNe IIb, which may be the case if the progenitor lost
641
+ more of its outer H envelope than the progenitors of the
642
+ other SNe IIb did. Weak H emission, combined with the
643
+
644
+ The Double-peaked Type IIb SN 2020bio
645
+ 7
646
+ 4000
647
+ 5000
648
+ 6000
649
+ 7000
650
+ 8000
651
+ 9000
652
+ 10000
653
+ Rest-frame Wavelength (Å)
654
+ Normalized F + Constant
655
+ 1d
656
+ 4d
657
+ 6d
658
+ 16d
659
+ 19d
660
+ 25d
661
+ 33d
662
+ 52d
663
+ 60d
664
+ 77d
665
+ 88d
666
+ 201d
667
+ H
668
+ He I
669
+ Mg I
670
+ O III
671
+ Ca II
672
+ Figure 3.
673
+ The full spectral time series of SN 2020bio.
674
+ Phases with respect to the detection epoch are given above
675
+ each spectrum. Notable spectral features are identified with
676
+ dashed lines.
677
+ The first spectrum is the publicly-available
678
+ classification spectrum retrieved from the Transient Name
679
+ Server.
680
+ observed CSM features, point to a scenario in which the
681
+ progenitor of SN 2020bio underwent enhanced mass-loss,
682
+ shedding almost all of its outer H layer before explod-
683
+ ing. If this is the case, such a progenitor scenario to
684
+ SN 2020bio is unique among other well-studied SNe IIb.
685
+ 4. LIGHT-CURVE MODELING AND
686
+ PROGENITOR INFERENCE
687
+ 4.1. Shock-cooling Model Descriptions
688
+ A variety of analytical and numerical models of SCE
689
+ have been developed in recent years. Here we consider
690
+ 6400
691
+ 6500
692
+ 6600
693
+ 6700
694
+ Rest-frame Wavelength (Å)
695
+ Normalized F + Constant
696
+ 1d
697
+ 4d
698
+ 6d
699
+ 16d
700
+ Figure 4. Gaussian fits to the Hα emission line in the early-
701
+ time spectra of SN 2020bio. Phases relative to discovery are
702
+ given above each spectrum. The dashed line shows the rest-
703
+ frame Hα wavelength. The FWHMs decrease over time, evi-
704
+ dence that circumstellar interaction contributes to the emis-
705
+ sion profile.
706
+ 3 analytical models that are commonly used to fit the
707
+ early-time emission of core-collapse SNe. The P15 model
708
+ extends the formalism of Nakar & Piro (2014) to repro-
709
+ duce the full shock-cooling peak.
710
+ It assumes a lower
711
+ mass extended envelope without assuming its specific
712
+ density structure. On the other hand, SW17 calibrates
713
+ to the numerical models of Rabinak & Waxman (2011)
714
+ and assumes specific polytropic indices for the extended
715
+ envelope. The methodology used to fit these models to
716
+ the data and derive resulting blackbody properties are
717
+ presented in Arcavi et al. (2017).
718
+ More recently, Piro et al. (2021) developed another
719
+ analytical model to better reproduce the early SCE ob-
720
+ served in a variety of transients (e.g., Arcavi et al. 2017;
721
+ Yao et al. 2020). They assume a two-zone extended en-
722
+ velope in homologous expansion and calculate the emis-
723
+ sion from this shocked material. This method begins by
724
+ assuming extended material in homologous expansion
725
+ separated into two regions—an outer density profile de-
726
+ scribed by ρ ∝ r−n, where n ≈ 10, and an inner region
727
+
728
+ 8
729
+ Pellegrino et al.
730
+ Table 3. SCE Model Parameters
731
+ Model
732
+ Renv (R⊙)
733
+ Menv (10−2 M⊙)
734
+ va (104 km s−1)
735
+ t0 (days)
736
+ χ2 / d.o.f.
737
+ P15
738
+ 510+30
739
+ −30
740
+ 1.14+0.02
741
+ −0.02
742
+ 1.67+0.02
743
+ −0.01
744
+ 0.67+0.02
745
+ −0.02
746
+ 21.6
747
+ P21
748
+ 1700+85
749
+ −95
750
+ 1.60+0.03
751
+ −0.02
752
+ 1.36+0.01
753
+ −0.02
754
+ 0.98+0.01
755
+ −0.01
756
+ 21.1
757
+ SW17 (n=3/2)
758
+ 160+12
759
+ −10
760
+ 47.12+0.96
761
+ −0.92
762
+ 1.69+0.04
763
+ −0.04
764
+ 0.26+0.04
765
+ −0.04
766
+ 8.7
767
+ SW17 (n=3)
768
+ 220+19
769
+ −15
770
+ 322.60+6.10
771
+ −6.20
772
+ 1.60+0.04
773
+ −0.04
774
+ 0.25+0.04
775
+ −0.04
776
+ 8.7
777
+ aThe characteristic velocity for P15 and P21 and the shock velocity for SW17.
778
+ 1.5d
779
+ 2d
780
+ 3d
781
+ 2d
782
+ 2d
783
+ 17d
784
+ 16d
785
+ 17d
786
+ 13d
787
+ 17d
788
+ SN 2020bio
789
+ SN 1993J
790
+ SN 2013df
791
+ SN 2016gkg
792
+ SN 2011dh
793
+ 4000
794
+ 5000
795
+ 6000
796
+ 7000
797
+ 8000
798
+ 9000
799
+ Rest-frame Wavelength (Å)
800
+ 26d
801
+ 25d
802
+ 25d
803
+ 21d
804
+ 25d
805
+ Normalized F + Constant
806
+ Figure 5.
807
+ Spectra of SN 2020bio compared with spectra
808
+ of other SNe IIb at similar phases. Phases with respect to
809
+ the estimated explosion time are given above each spectrum
810
+ and notable spectral features are identified with red (H) and
811
+ blue (He) vertical lines at their rest-frame wavelengths. The
812
+ spectra of SN 2016gkg are unpublished spectra obtained by
813
+ LCO while the other comparison spectra were retrieved from
814
+ WiseRep (Yaron & Gal-Yam 2012).
815
+ with ρ ∝ r−d, where δ ≈ 1.1. Assuming a transitional
816
+ velocity vt between the inner and outer regions of the
817
+ extended material, the time for the diffusion front to
818
+ reach this transition is given by
819
+ td =
820
+ � 3κKMe
821
+ (n − 1)vtc
822
+ �1/2
823
+ (1)
824
+ where K = (n−3)(3−δ)
825
+ 4π(n−δ) , κ is the optical opacity, and Me
826
+ is the mass of the extended material. The luminosity
827
+ from the cooling of the extended material is then defined
828
+ piecewise for times before and after this diffusion time:
829
+ L(t) ≈ π(n − 1)
830
+ 3(n − 5)
831
+ cRev2
832
+ t
833
+ κ
834
+ �td
835
+ t
836
+ �4/(n−2)
837
+ , t ≤ td
838
+ (2)
839
+ and
840
+ L(t) ≈ π(n − 1)
841
+ 3(n − 5)
842
+ cRev2
843
+ t
844
+ κ
845
+ exp
846
+
847
+ −1
848
+ 2
849
+ �t2
850
+ t2
851
+ d
852
+ − 1
853
+ ��
854
+ , t ≥ td
855
+ (3)
856
+ To fit the photometry in each band, we assume that
857
+ the material radiates as a blackbody at some photo-
858
+ spheric radius rph. The photosphere reaches the transi-
859
+ tion between the two regions at a time
860
+ tph =
861
+ � 3κKMe
862
+ 2(n − 1)v2
863
+ t
864
+ �1/2
865
+ (4)
866
+ and the time evolution of the photospheric radius is
867
+ given relative to this characteristic time:
868
+ rph(t) =
869
+ �tph
870
+ t
871
+ �2/(n−1)
872
+ vtt, t ≤ tph
873
+ (5)
874
+ and
875
+ rph(t) =
876
+ � δ − 1
877
+ n − 1
878
+ � t2
879
+ t2
880
+ ph
881
+ − 1
882
+
883
+ + 1
884
+ �−1/(δ−1)
885
+ vtt, t ≥ tph (6)
886
+ In addition, we attempt to fit the analytical models
887
+ of Shussman et al. (2016), which are calibrated to nu-
888
+ merical simulations from shock breakout to recombina-
889
+ tion. However, these model fits are unable to reproduce
890
+ the rapidly-declining shock-cooling emission in all fil-
891
+ ters during the week after explosion. It is possible this
892
+
893
+ The Double-peaked Type IIb SN 2020bio
894
+ 9
895
+ 0
896
+ 2
897
+ 4
898
+ 6
899
+ 8
900
+ 10
901
+ Days from Discovery
902
+ 10
903
+ 12
904
+ 14
905
+ 16
906
+ 18
907
+ 20
908
+ 22
909
+ Apparent Magnitude + Offset
910
+ UVW2 - 3.5
911
+ UVM2 - 3
912
+ UVW1 - 2
913
+ U - 1
914
+ B
915
+ g + 1
916
+ V + 2
917
+ r + 3
918
+ i + 3.5
919
+ 0
920
+ 2
921
+ 4
922
+ 6
923
+ 8
924
+ 10
925
+ Days from Discovery
926
+ 10
927
+ 12
928
+ 14
929
+ 16
930
+ 18
931
+ 20
932
+ 22
933
+ SW17
934
+ (n=3/2)
935
+ SW17
936
+ (n=3)
937
+ Figure 6. Shock-cooling fits to the early-time photometry of SN 2020bio using the models of (left) P15 and P21; and (right)
938
+ SW17, assuming a constant optical opacity appropriate for solar-composition material. Photometry in each band has been offset
939
+ for clarity. Itagaki discovery photometry has been included in the V -band fits.
940
+ shortcoming is due to an unphysical application of the
941
+ model—which is calibrated to numerical simulations of
942
+ red supergiants—to the early light curve of SN 2020bio,
943
+ which likely had a different progenitor structure. De-
944
+ tailed comparisons between numerical models of SNe IIb
945
+ and the Shussman et al. (2016) models are beyond the
946
+ scope of this work.
947
+ 4.2. Best-fit Analytic Models
948
+ We fit each model to the early-time photometry of
949
+ SN 2020bio. For the SW17 model we consider two poly-
950
+ tropic indices (n = 3/2 and n = 3), appropriate for con-
951
+ vective and radiative envelopes, respectively. Only data
952
+ taken up to 3.5 days after discovery are fit, as this is the
953
+ time when SCE dominates the luminosity over radioac-
954
+ tive decay (see Section 4.3 for a quantitative treatment
955
+ of the 56Ni light curve). Additionally, we ensure that the
956
+ phases we fit fall within the validity range of each model.
957
+ In each case we fit for the progenitor extended envelope
958
+ radius, Renv, the envelope mass, Menv, either the char-
959
+ acteristic velocity or the shock velocity v of the outer
960
+ material, and the offset time since explosion t0. We use
961
+ the emcee package (Foreman-Mackey et al. 2013) to per-
962
+ form Markov Chain Monte Carlo fitting of each model,
963
+ initializing 100 walkers with 1000 burn-in steps and run-
964
+ ning for an additional 1000 steps after burn-in. For each
965
+ step, the total luminosity is computed using the analyt-
966
+ ical model formalism, and the luminosity within each
967
+ filter is compared to the observed photometry assuming
968
+ a blackbody spectral energy distribution (SED). We fit
969
+ each model assuming an optical opacity κ = 0.34 cm2
970
+ g−1, consistent with solar composition material.
971
+ The best-fit models to the multi-band SCE light
972
+ curves are shown in Figure 6, and best-fit parameters are
973
+ given in Table 3 with corner plots shown in Appendix
974
+ A. The Itagaki discovery data that capture the rise are
975
+ calibrated to the V -band. We find that all the mod-
976
+ els fit the early-time data well, reproducing the rapid
977
+ rise, luminous peak, and subsequent decline in all filters.
978
+ Quantitatively the SW17 model for convective envelopes
979
+ (n = 3/2) has the lowest reduced χ2 value, indicating
980
+ the model most closely matches the observations. On
981
+ the other hand, the best-fit envelope mass for the SW17
982
+ model with a radiative (n = 3) envelope is larger than
983
+ the total ejecta mass, estimated in Section 4.3. There-
984
+ fore, we do not consider this model representative of the
985
+ progenitor of SN 2020bio.
986
+ Based on the unusual properties of SN 2020bio com-
987
+ pared to other SNe IIb, including its weak H spectral
988
+ features and faint secondary light-curve peak, we test
989
+ whether a lower-opacity envelope better reproduces the
990
+ observed SCE. This could be the case if the progeni-
991
+ tor star was almost completely stripped of its outer H
992
+ envelope. We perform the same fitting routine but fix
993
+ the opacity κ = 0.20 cm2 g−1 for H-poor material. We
994
+ find no differences in goodness of fits for each model
995
+ between the two chosen opacities—both the H-rich and
996
+
997
+ 10
998
+ Pellegrino et al.
999
+ 0
1000
+ 20
1001
+ 40
1002
+ 60
1003
+ 80
1004
+ 100
1005
+ Days Since Discovery
1006
+ 1040
1007
+ 1041
1008
+ 1042
1009
+ Pseudo-Bolometric Luminosity (erg s−1)
1010
+ E = 0.9 × 1051 erg
1011
+ MNi = 0.015 M⊙
1012
+ MNi = 0.017 M⊙
1013
+ MNi = 0.019 M⊙
1014
+ MNi = 0.020 M⊙
1015
+ SN2020bio
1016
+ Figure 7. Numerical MESA and STELLA model light curves of
1017
+ SN 2020bio for varying MNi. Both the secondary light-curve
1018
+ peak and late-time light-curve slope are best reproduced with
1019
+ ≈ 0.02 M⊙ of 56Ni synthesized in the explosion.
1020
+ H-poor envelopes produce similarly good fits. However,
1021
+ there are differences in the fitted parameters between
1022
+ the best-fit models.
1023
+ In the H-rich case, the envelope
1024
+ radii and masses from the best-fit SW17 model are con-
1025
+ sistent with those estimated for other SNe IIb (i.e. radii
1026
+ of ≈ 1×1013 cm and masses of 10−3–10−2 M⊙). In the
1027
+ H-poor case, however, the radii are smaller (≈ 3×1012
1028
+ cm) and the envelope masses are larger (≈ 10−1 M⊙).
1029
+ These values are more consistent with those estimated
1030
+ for Type Ib and Ca-rich transients with observed SCE
1031
+ (e.g., Yao et al. 2020; Jacobson-Gal´an et al. 2022).
1032
+ 4.3. Bolometric Luminosities and Numerical Modeling
1033
+ SCE dominates the total luminosity only for several
1034
+ days after explosion. The rest of the light curve is pow-
1035
+ ered by the radioactive decay of 56Ni and its children
1036
+ isotopes. Using our multi-band coverage of SN 2020bio
1037
+ for ≈ 160 days after explosion, we construct a pseudo-
1038
+ bolometric light curve to fit for the amount of 56Ni pro-
1039
+ duced in the explosion. For epochs with observations
1040
+ in more than 3 filters, we extrapolate the SED out to
1041
+ the blue and red edges of the U - and i-band filters,
1042
+ respectively, using a univariate spline. We choose to ex-
1043
+ trapolate the (extinction-corrected) photometry rather
1044
+ than fit a blackbody SED because the spectra are not
1045
+ representative of a blackbody throughout the object’s
1046
+ evolution.
1047
+ To infer the properties of the pre-explosion progeni-
1048
+ tor as well as the explosion itself, we compare numerical
1049
+ MESA (Paxton et al. 2011, 2013, 2015, 2018, 2019) and
1050
+ STELLA (Blinnikov et al. 1998, 2000, 2006) model ex-
1051
+ plosions to our pseudo-bolometric light curve. We begin
1052
+ with a MESA progenitor with MZAMS = 15 M⊙ and evolve
1053
+ it to a final mass of 4.8 M⊙. At explosion the progenitor
1054
+ has a H-rich envelope radius of 280 R⊙ and mass of 0.10
1055
+ M⊙, in agreement with values we find from our best-
1056
+ fit SCE models. The explosion energy and ejecta mass
1057
+ are fixed at 0.9 × 1051 erg and 2.9 M⊙, respectively,
1058
+ and the mass of 56Ni (MNi) is varied between 0.015 and
1059
+ 0.020 M⊙. These explosion models are then run through
1060
+ STELLA in order to reproduce the bolometric luminosity
1061
+ evolution. For more information, see Hiramatsu et al.
1062
+ (2021).
1063
+ The resulting model light curves are shown in Fig-
1064
+ ure 7, compared with the pseudo-bolometric light curve
1065
+ of SN 2020bio. We find decent qualitative agreement be-
1066
+ tween the numerical models and the observed light-curve
1067
+ evolution, particularly at later times.
1068
+ The secondary
1069
+ light-curve peak and late-time light-curve slope are well
1070
+ reproduced by an explosion which synthesizes ≈ 0.02
1071
+ M⊙ of 56Ni.
1072
+ The secondary light-curve peak may be
1073
+ overproduced, but the exact peak luminosity and time
1074
+ of peak are uncertain given the gap in our observational
1075
+ coverage.
1076
+ Interestingly, however, the peak luminosity of the SCE
1077
+ is not reproduced by these models. It may be that the
1078
+ treatment of the SN shock and the subsequent cool-
1079
+ ing of the outer envelope is too complex to fully sim-
1080
+ ulate within these models.
1081
+ On the other hand, it is
1082
+ possible that an additional powering mechanism con-
1083
+ tributes to the early-time evolution.
1084
+ To test this, we
1085
+ explore how the addition of different mass-loss rates
1086
+ and timescales to the models affects the early-time light
1087
+ curve through short-lived circumstellar interaction. To
1088
+ the best-fit MESA model we attach a wind density profile
1089
+ ρCSM(r) = ˙Mwind/4πr2vwind, where vwind = 10 km s−1.
1090
+ These CSM models are shown in Figure 8. We find that
1091
+ the best-fit models have a confined CSM with masses of
1092
+ 1 × 10−3 – 1 × 10−2 M⊙ lost by the progenitor within
1093
+ the last several months before explosion. This hints that
1094
+ circumstellar interaction may contribute to the rapidly-
1095
+ fading early-time emission of SN 2020bio and possibly
1096
+ other SNe IIb. If this is the case, then the information
1097
+ estimated through SCE model fits may not be truly rep-
1098
+ resentative of the true nature of their progenitors.
1099
+ The values inferred from this numerical modelling,
1100
+ particularly the 56Ni mass, are on the low end of the
1101
+ distribution of values estimated for other well-studied
1102
+ SNe IIb. SNe IIb with double-peaked light curves typi-
1103
+ cally display secondary radioactive decay-powered peaks
1104
+ equally or more luminous than the peak of the SCE,
1105
+ implying a greater amount of 56Ni synthesized. Stud-
1106
+
1107
+ The Double-peaked Type IIb SN 2020bio
1108
+ 11
1109
+ 0
1110
+ 3
1111
+ 6
1112
+ 9
1113
+ 12
1114
+ Days Since Discovery
1115
+ 1041
1116
+ 1042
1117
+ Pseudo-Bolometric Luminosity (erg s−1)
1118
+ MNi = 0.019 M⊙
1119
+ vwind = 10 km s−1
1120
+ ˙Mwind = 0.1 M⊙ yr−1
1121
+ twind = 0.1 yr
1122
+ ˙Mwind = 0.1 M⊙ yr−1
1123
+ twind = 0.01 yr
1124
+ ˙Mwind = 0.1 M⊙ yr−1
1125
+ twind = 1.0 yr
1126
+ ˙Mwind = 0.01 M⊙ yr−1
1127
+ twind = 0.1 yr
1128
+ ˙Mwind = 1.0 M⊙ yr−1
1129
+ twind = 0.1 yr
1130
+ ˙Mwind = 1.0 M⊙ yr−1
1131
+ twind = 0.01 yr
1132
+ SN2020bio
1133
+ Figure
1134
+ 8.
1135
+ Numerical MESA and STELLA circumstellar
1136
+ interaction-powered model light curves of SN 2020bio at early
1137
+ times. Different color curves correspond to models with vary-
1138
+ ing mass-loss rates and timescales. The early-time emission
1139
+ excess is best reproduced with 0.001-0.01 M⊙ of CSM.
1140
+ ies using samples of these objects have found average
1141
+ 56Ni masses of ≈ 0.10 – 0.15 M⊙ and average ejecta
1142
+ masses of ≈ 2.2 – 4.5 M⊙ (Lyman et al. 2016; Pren-
1143
+ tice et al. 2016; Taddia et al. 2018), in better agreement
1144
+ with ejecta parameters of other stripped-envelope and
1145
+ H-rich core-collapse SNe.
1146
+ However, rare cases of un-
1147
+ derluminous SNe IIb with low inferred MNi have been
1148
+ discovered (e.g., Nakaoka et al. 2019; Maeda et al. 2023).
1149
+ These objects have light curves that appear transitional
1150
+ between standard SNe II-P and SNe IIb, which differ
1151
+ from the observed photometric evolution of SN 2020bio.
1152
+ On the other hand, in the case of SN 2018ivc, both a
1153
+ low 56Ni mass (MNi ≤ 0.015M⊙) and progenitor mass
1154
+ (MZAMS ≲ 12M⊙) are inferred (Maeda et al. 2023). It is
1155
+ possible that other SNe IIb with little synthesized 56Ni
1156
+ may be undercounted due to their rapidly-fading or un-
1157
+ derluminous light curves. Maeda et al. (2023) also con-
1158
+ cluded that the light curve of SN 2018ivc was powered at
1159
+ least in part by circumstellar interaction. Sustained cir-
1160
+ cumstellar interaction has been inferred for other SNe
1161
+ IIb, either through late-time spectral features (Maeda
1162
+ et al. 2015; Fremling et al. 2019) or through X-ray and
1163
+ radio observations (Fransson et al. 1996).
1164
+ It may be
1165
+ that the mechanism that produced the confined CSM
1166
+ inferred from our numerical models of SN 2020bio, and
1167
+ possibly that seen in the case of SN 2018ivc, points to
1168
+ more extreme mass-loss than found in other SNe IIb.
1169
+ 4.4. Comparison to Nebula Spectra Models
1170
+ A trend between an increasing amount of synthesized
1171
+ O and increasing core-collapse SN progenitor mass has
1172
+ been extensively studied (e.g., Woosley & Heger 2007).
1173
+ Jerkstrand et al. (2015) use this relationship to calibrate
1174
+ the [O I] λλ 6300,6364 luminosity, normalized by the
1175
+ radioactive decay luminosity at the same phase, with
1176
+ numerical models of SNe IIb progenitors (see Eq.
1177
+ 1
1178
+ of Jerkstrand et al. 2015). The authors consider mod-
1179
+ els with zero-age main-sequence masses between 12 M⊙
1180
+ and 17 M⊙. Comparing the observed normalized [O I]
1181
+ luminosity for a handful of SNe IIb, such as SN 1993J,
1182
+ SN 2008ax, and SN 2011dh, to these models allows for a
1183
+ direct estimate of their progenitor masses—all of which
1184
+ fall in the range of masses modeled.
1185
+ Here we reproduce this analysis using a nebular spec-
1186
+ trum of SN 2020bio, obtained 201 days after the esti-
1187
+ mated explosion, shown in Figure 3. We estimate the
1188
+ luminosity from the [O I] λλ 6300,6364 emission doublet
1189
+ in the same way as Jerkstrand et al. (2015)—assuming
1190
+ the width of the feature to be 5000 km s−1, we estimate
1191
+ the continuum by finding the minimum flux redward
1192
+ and blueward of this width and calculate the luminosity
1193
+ within the continuum-subtracted feature. We normal-
1194
+ ize this luminosity using the luminosity of 56Ni decay,
1195
+ assuming the best-fit MNi from Section 4.3.
1196
+ The
1197
+ normalized
1198
+ luminosity
1199
+ at
1200
+ 201
1201
+ days
1202
+ is
1203
+ Lnorm(t=201) = 9×10−4 ± 2×10−5. This value is lower
1204
+ than any of the numerical models analyzed by Jerk-
1205
+ strand et al. (2015), implying a progenitor mass ≤ 12
1206
+ M⊙.
1207
+ A low progenitor mass for SN 2020bio can also
1208
+ be inferred from the ratio of the [Ca II] λλ 7311, 7324
1209
+ to [O I] λλ 6300, 6364 fluxes.
1210
+ A higher ratio implies
1211
+ a lower-mass progenitor, with SNe IIb from literature
1212
+ having values ≲ 1 throughout their nebular phases (e.g.,
1213
+ Terreran et al. 2019; Hiramatsu et al. 2021). Using the
1214
+ same procedure as above, we estimate a [Ca II] to [O I]
1215
+ ratio of 1.34 ± 0.03—again pointing to a low-mass
1216
+ progenitor star.
1217
+ Based on its low synthesized 56Ni mass and nebular
1218
+ spectral features, we conclude that SN 2020bio was likely
1219
+ the core-collapse of a star with a lower mass than the
1220
+ progenitors of most other SNe IIb.
1221
+ 5. DISCUSSION AND CONCLUSIONS
1222
+ We have presented rapid multi-band photometric and
1223
+ spectroscopic observations of SN 2020bio, a Type IIb SN
1224
+ with luminous and rapidly-evolving SCE, beginning ≤ 1
1225
+ day after explosion. Compared with other well-observed
1226
+ SNe IIb, SN 2020bio has the bluest colors at early times
1227
+ as well as unique spectral features with signatures of
1228
+ pre-existing CSM. Fitting analytical models of SCE to
1229
+
1230
+ 12
1231
+ Pellegrino et al.
1232
+ the early-time light curve gives progenitor radii on the
1233
+ order of 100 R⊙ – 500 R⊙ and envelope masses of 0.01
1234
+ M⊙ – 0.5 M⊙ for our best-fit models, which are slightly
1235
+ greater than values derived for other SNe IIb progenitors
1236
+ using the same methods (e.g., SN 2016gkg; Arcavi et al.
1237
+ 2017). The weak secondary peak powered by radioac-
1238
+ tive decay is evidence of relatively little 56Ni synthe-
1239
+ sized, MNi ≈ 0.02 M⊙, which is in tension with average
1240
+ MNi estimates from samples of other SNe IIb. Numer-
1241
+ ical modeling of the progenitor explosion within con-
1242
+ fined circumstellar material is consistent with the ob-
1243
+ served light curve, showing that circumstellar interac-
1244
+ tion is likely needed to reproduce the complete pseudo-
1245
+ bolometric light curve. Finally, comparing the nebular
1246
+ spectra to numerical models implies a progenitor mass
1247
+ ≤ 12 M⊙.
1248
+ It is difficult to explain all these peculiar features of
1249
+ SN 2020bio in one consistent model. The combination of
1250
+ its blue colors, early-time spectral features, and numer-
1251
+ ical modeling points to interaction with confined H-rich
1252
+ CSM that was stripped from the progenitor’s outer enve-
1253
+ lope during the months prior to explosion. The best-fit
1254
+ progenitor parameters, particularly the large envelope
1255
+ radius and low envelope mass, may suggest an inflated
1256
+ progenitor undergoing enhanced mass-loss immediately
1257
+ before exploding. However, the very low 56Ni and ejecta
1258
+ masses inferred from the later-time light curve, as well as
1259
+ the nebular spectroscopy, point to a lower-mass progeni-
1260
+ tor. It is possible that SN 2020bio was the collapse of an
1261
+ unusually low-mass core within a dense CSM produced
1262
+ from its lost H layers. Such extensive mass-loss likely re-
1263
+ quires interaction with a binary companion, as inferred
1264
+ for other SNe IIb (e.g., Maund et al. 2004; Benvenuto
1265
+ et al. 2013). Interaction between the SN ejecta and this
1266
+ CSM explains the blue colors and narrow H spectral
1267
+ features at early times while the small 56Ni mass and
1268
+ nebular spectrum indicate a low zero-age main-sequence
1269
+ mass.
1270
+ This interaction can lead to an over-estimated
1271
+ progenitor radius—if the CSM was near enough to the
1272
+ progenitor, we may have observed the shock-cooling of
1273
+ this extended CSM instead of the outer envelope of the
1274
+ progenitor.
1275
+ In the future, more detailed models and
1276
+ multi-wavelength observations, particularly in the radio
1277
+ and X-rays, will be needed to infer SNe IIb progenitor
1278
+ mass-loss rates and CSM masses.
1279
+ Given the weak H spectral features when compared to
1280
+ spectra of other SNe IIb, SN 2020bio may be an inter-
1281
+ mediary object between the Type IIb and Ib subclasses,
1282
+ representing a progenitor that was recently stripped al-
1283
+ most entirely of its H-rich envelope.
1284
+ Transitional ob-
1285
+ jects between SNe IIb and SNe Ib have been observed
1286
+ (Prentice & Mazzali 2017) and can be explained by dif-
1287
+ ferent amounts of H remaining in the outer envelope at
1288
+ the time of explosion. More difficult to explain are the
1289
+ small 56Ni and ejecta masses, which are lower than those
1290
+ measured for both SNe IIb and SNe Ib (e.g., Taddia et
1291
+ al. 2018). Some objects that exist in the literature with
1292
+ both low ejecta and 56Ni masses and observed SCE are
1293
+ peculiar SNe Ib as well as Ca-rich transients. However,
1294
+ it is difficult to reconcile the photospheric-phase spec-
1295
+ tra of SN 2020bio, which are most similar to those of
1296
+ other SNe IIb, with the spectra of these objects, which
1297
+ are often used to argue for a degenerate or ultra-stripped
1298
+ progenitor (Yao et al. 2020; Jacobson-Gal´an et al. 2022).
1299
+ Instead, it is more likely that SN 2020bio had a massive
1300
+ star progenitor more similar to the progenitors of other
1301
+ SNe IIb based on their similar spectral features.
1302
+ This study contributes to the overall diversity in the
1303
+ progenitors of SNe IIb. More systematic studies of SNe
1304
+ with observed SCE will be needed to search for simi-
1305
+ larities and differences in their progenitor systems. In
1306
+ particular, this work shows the importance of rapid,
1307
+ multi-wavelength follow-up of these objects. It is par-
1308
+ ticularly important to better understand the number of
1309
+ SNe IIb with weak secondary light-curve peaks, such as
1310
+ SN 2020bio.
1311
+ These objects may have later-time (≥ 5
1312
+ days) luminosity below the detection threshold of cur-
1313
+ rent all-sky surveys as well as rapid early-time emis-
1314
+ sion which evolves too quickly to be extensively followed.
1315
+ Therefore we may be under-counting the rates of core-
1316
+ collapse, stripped-envelope SNe with low 56Ni and ejecta
1317
+ masses. A better understanding of their progenitors will
1318
+ be important for exploring the low-mass end of core-
1319
+ collapse SNe.
1320
+ This work made use of data from the Las Cumbres Ob-
1321
+ servatory network.
1322
+ The LCO group is supported by
1323
+ AST-1911151 and AST-1911225 and NASA Swift grant
1324
+ 80NSSC19k1639. I.A. is a CIFAR Azrieli Global Scholar
1325
+ in the Gravity and the Extreme Universe Program and
1326
+ acknowledges support from that program, from the Eu-
1327
+ ropean Research Council (ERC) under the European
1328
+ Union’s Horizon 2020 research and innovation program
1329
+ (grant agreement No. 852097), from the Israel Science
1330
+ Foundation (grant No. 2752/19), from the United States
1331
+ - Israel Binational Science Foundation (BSF), and from
1332
+ the Israeli Council for Higher Education Alon Fellow-
1333
+ ship.
1334
+ Software:
1335
+ Astropy
1336
+ (Astropy
1337
+ Collaboration
1338
+ et
1339
+ al.
1340
+ 2018),
1341
+ emcee
1342
+ (Foreman-Mackey
1343
+ et
1344
+ al.
1345
+ 2013),
1346
+ lcogtsnpipe (Valenti et al. 2016), Matplotlib (Hunter
1347
+ 2007), MESA (Paxton et al. 2011, 2013, 2015, 2018, 2019),
1348
+
1349
+ The Double-peaked Type IIb SN 2020bio
1350
+ 13
1351
+ Numpy (Harris et al. 2020), STELLA (Blinnikov et al.
1352
+ 1998, 2000, 2006)
1353
+ REFERENCES
1354
+ Aldering, G., Humphreys, R. M., & Richmond, M. 1994,
1355
+ AJ, 107, 662. doi:10.1086/116886
1356
+ Anderson, J. P. 2019, A&A, 628, A7.
1357
+ doi:10.1051/0004-6361/201935027
1358
+ Arcavi, I., Gal-Yam, A., Yaron, O., et al. 2011, ApJL, 742,
1359
+ L18. doi:10.1088/2041-8205/742/2/L18
1360
+ Arcavi, I., Hosseinzadeh, G., Brown, P. J., et al. 2017,
1361
+ ApJL, 837, L2. doi:10.3847/2041-8213/aa5be1
1362
+ Armstrong, P., Tucker, B. E., Rest, A., et al. 2021,
1363
+ MNRAS, 507, 3125. doi:10.1093/mnras/stab2138
1364
+ Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M.,
1365
+ et al. 2018, AJ, 156, 123. doi:10.3847/1538-3881/aabc4f
1366
+ Becker, A. 2015, Astrophysics Source Code Library.
1367
+ ascl:1504.004
1368
+ Benvenuto, O. G., Bersten, M. C., & Nomoto, K. 2013,
1369
+ ApJ, 762, 74. doi:10.1088/0004-637X/762/2/74
1370
+ Blinnikov, S. I., Eastman, R., Bartunov, O. S., et al. 1998,
1371
+ ApJ, 496, 454. doi:10.1086/305375
1372
+ Blinnikov, S., Lundqvist, P., Bartunov, O., et al. 2000, ApJ,
1373
+ 532, 1132. doi:10.1086/308588
1374
+ Blinnikov, S. I., R¨opke, F. K., Sorokina, E. I., et al. 2006,
1375
+ A&A, 453, 229. doi:10.1051/0004-6361:20054594
1376
+ Breeveld, A. A., Landsman, W., Holland, S. T., et al. 2011,
1377
+ Gamma Ray Bursts 2010, 1358, 373.
1378
+ doi:10.1063/1.3621807
1379
+ Brown, P. J., Breeveld, A. A., Holland, S., et al. 2014,
1380
+ Ap&SS, 354, 89. doi:10.1007/s10509-014-2059-8
1381
+ Bruch, R. J., Gal-Yam, A., Schulze, S., et al. 2021, ApJ,
1382
+ 912, 46. doi:10.3847/1538-4357/abef05
1383
+ Ergon, M., Sollerman, J., Fraser, M., et al. 2014, A&A, 562,
1384
+ A17. doi:10.1051/0004-6361/201321850
1385
+ Fassia, A., Meikle, W. P. S., Chugai, N., et al. 2001,
1386
+ MNRAS, 325, 907. doi:10.1046/j.1365-8711.2001.04282.x
1387
+ Filippenko, A. V. 1997, ARA&A, 35, 309.
1388
+ doi:10.1146/annurev.astro.35.1.309
1389
+ Filippenko, A. V., Matheson, T., & Ho, L. C. 1993, ApJL,
1390
+ 415, L103. doi:10.1086/187043
1391
+ Foreman-Mackey, D., Hogg, D. W., Lang, D., et al. 2013,
1392
+ PASP, 125, 306. doi:10.1086/670067
1393
+ Fransson, C., Lundqvist, P., & Chevalier, R. A. 1996, ApJ,
1394
+ 461, 993. doi:10.1086/177119
1395
+ Fremling, C., Ko, H., Dugas, A., et al. 2019, ApJL, 878, L5.
1396
+ doi:10.3847/2041-8213/ab218f
1397
+ Gal-Yam, A. 2017, Handbook of Supernovae, 195.
1398
+ doi:10.1007/978-3-319-21846-5 35
1399
+ Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ,
1400
+ 611, 1005. doi:10.1086/422091
1401
+ Harris, C. R., Millman, K. J., van der Walt, S. J., et al.
1402
+ 2020, Nature, 585, 357. doi:10.1038/s41586-020-2649-2
1403
+ Hiramatsu, D., Howell, D. A., Moriya, T. J., et al. 2021,
1404
+ ApJ, 913, 55. doi:10.3847/1538-4357/abf6d6
1405
+ Hunter, J. D. 2007, Computing in Science and Engineering,
1406
+ 9, 90. doi:10.1109/MCSE.2007.55
1407
+ Jacobson-Gal´an, W. V., Margutti, R., Kilpatrick, C. D., et
1408
+ al. 2020, ApJ, 898, 166. doi:10.3847/1538-4357/ab9e66
1409
+ Jacobson-Gal´an, W. V., Venkatraman, P., Margutti, R., et
1410
+ al. 2022, ApJ, 932, 58. doi:10.3847/1538-4357/ac67dc
1411
+ Janka, H.-T. 2012, Annual Review of Nuclear and Particle
1412
+ Science, 62, 407. doi:10.1146/annurev-nucl-102711-094901
1413
+ Jerkstrand, A., Ergon, M., Smartt, S. J., et al. 2015, A&A,
1414
+ 573, A12. doi:10.1051/0004-6361/201423983
1415
+ Landolt, A. U. 1992, AJ, 104, 340. doi:10.1086/116242
1416
+ Lyman, J. D., Bersier, D., James, P. A., et al. 2016,
1417
+ MNRAS, 457, 328. doi:10.1093/mnras/stv2983
1418
+ Maeda, K., Hattori, T., Milisavljevic, D., et al. 2015, ApJ,
1419
+ 807, 35. doi:10.1088/0004-637X/807/1/35
1420
+ Maeda, K., Chandra, P., Moriya, T. J., et al. 2023, ApJ,
1421
+ 942, 17. doi:10.3847/1538-4357/aca1b7
1422
+ Maund, J. R., Smartt, S. J., Kudritzki, R. P., et al. 2004,
1423
+ Nature, 427, 129. doi:10.1038/nature02161
1424
+ Maund, J. R., Fraser, M., Ergon, M., et al. 2011, ApJL,
1425
+ 739, L37. doi:10.1088/2041-8205/739/2/L37
1426
+ Modjaz, M., Li, W., Butler, N., et al. 2009, ApJ, 702, 226.
1427
+ doi:10.1088/0004-637X/702/1/226
1428
+ Morales-Garoffolo, A., Elias-Rosa, N., Benetti, S., et al.
1429
+ 2014, MNRAS, 445, 1647. doi:10.1093/mnras/stu1837
1430
+ Morozova, V., Piro, A. L., & Valenti, S. 2018, ApJ, 858, 15.
1431
+ doi:10.3847/1538-4357/aab9a6
1432
+ Nakaoka, T., Moriya, T. J., Tanaka, M., et al. 2019, ApJ,
1433
+ 875, 76. doi:10.3847/1538-4357/ab0dfe
1434
+ Nakar, E. & Piro, A. L. 2014, ApJ, 788, 193.
1435
+ doi:10.1088/0004-637X/788/2/193
1436
+ Ofek, E. O., Sullivan, M., Shaviv, N. J., et al. 2014, ApJ,
1437
+ 789, 104. doi:10.1088/0004-637X/789/2/104
1438
+ Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192,
1439
+ 3. doi:10.1088/0067-0049/192/1/3
1440
+ Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208,
1441
+ 4. doi:10.1088/0067-0049/208/1/4
1442
+ Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS,
1443
+ 220, 15. doi:10.1088/0067-0049/220/1/15
1444
+
1445
+ 14
1446
+ Pellegrino et al.
1447
+ Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS,
1448
+ 234, 34. doi:10.3847/1538-4365/aaa5a8
1449
+ Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243,
1450
+ 10. doi:10.3847/1538-4365/ab2241
1451
+ Piro, A. L. 2015, ApJL, 808, L51.
1452
+ doi:10.1088/2041-8205/808/2/L51
1453
+ Piro, A. L., Haynie, A., & Yao, Y. 2021, ApJ, 909, 209.
1454
+ doi:10.3847/1538-4357/abe2b1
1455
+ Poznanski, D., Prochaska, J. X., & Bloom, J. S. 2012,
1456
+ MNRAS, 426, 1465. doi:10.1111/j.1365-2966.2012.21796.x
1457
+ Prentice, S. J., Mazzali, P. A., Pian, E., et al. 2016,
1458
+ MNRAS, 458, 2973. doi:10.1093/mnras/stw299
1459
+ Prentice, S. J. & Mazzali, P. A. 2017, MNRAS, 469, 2672.
1460
+ doi:10.1093/mnras/stx980
1461
+ Rabinak, I. & Waxman, E. 2011, ApJ, 728, 63.
1462
+ doi:10.1088/0004-637X/728/1/63
1463
+ Richmond, M. W., Treffers, R. R., Filippenko, A. V., et al.
1464
+ 1994, AJ, 107, 1022. doi:10.1086/116915
1465
+ Roming, P. W. A., Kennedy, T. E., Mason, K. O., et al.
1466
+ 2005, SSRv, 120, 95. doi:10.1007/s11214-005-5095-4
1467
+ Sapir, N. & Waxman, E. 2017, ApJ, 838, 130.
1468
+ doi:10.3847/1538-4357/aa64df
1469
+ Schlafly, E. F. & Finkbeiner, D. P. 2011, ApJ, 737, 103.
1470
+ doi:10.1088/0004-637X/737/2/103
1471
+ Shussman, T., Waldman, R., & Nakar, E. 2016,
1472
+ arXiv:1610.05323
1473
+ Smith, J. A., Tucker, D. L., Kent, S., et al. 2002, AJ, 123,
1474
+ 2121. doi:10.1086/339311
1475
+ Smith, N., Li, W., Filippenko, A. V., et al. 2011, MNRAS,
1476
+ 412, 1522. doi:10.1111/j.1365-2966.2011.17229.x
1477
+ Smith, N. 2014, ARA&A, 52, 487.
1478
+ doi:10.1146/annurev-astro-081913-040025
1479
+ Soderberg, A. M., Margutti, R., Zauderer, B. A., et al.
1480
+ 2012, ApJ, 752, 78. doi:10.1088/0004-637X/752/2/78
1481
+ Springob, C. M., Haynes, M. P., Giovanelli, R., et al. 2005,
1482
+ ApJS, 160, 149. doi:10.1086/431550
1483
+ Srivastav, S., Smartt, S. J., McBrien, O., et al. 2020,
1484
+ Transient Name Server AstroNote, 32
1485
+ Stetson, P. B. 1987, PASP, 99, 191. doi:10.1086/131977
1486
+ Strotjohann, N. L., Ofek, E. O., Gal-Yam, A., et al. 2021,
1487
+ ApJ, 907, 99. doi:10.3847/1538-4357/abd032
1488
+ Taddia, F., Stritzinger, M. D., Bersten, M., et al. 2018,
1489
+ A&A, 609, A136. doi:10.1051/0004-6361/201730844
1490
+ Tartaglia, L., Fraser, M., Sand, D. J., et al. 2017, ApJL,
1491
+ 836, L12. doi:10.3847/2041-8213/aa5c7f
1492
+ Terreran, G., Margutti, R., Bersier, D., et al. 2019, ApJ,
1493
+ 883, 147. doi:10.3847/1538-4357/ab3e37
1494
+ Tully, R. B. & Fisher, J. R. 1977, A&A, 54, 661
1495
+ Valenti, S., Howell, D. A., Stritzinger, M. D., et al. 2016,
1496
+ MNRAS, 459, 3939. doi:10.1093/mnras/stw870
1497
+ Van Dyk, S. D., Zheng, W., Fox, O. D., et al. 2014, AJ,
1498
+ 147, 37. doi:10.1088/0004-6256/147/2/37
1499
+ Woosley, S. E., Eastman, R. G., Weaver, T. A., et al. 1994,
1500
+ ApJ, 429, 300. doi:10.1086/174319
1501
+ Woosley, S. E. & Heger, A. 2007, PhR, 442, 269.
1502
+ doi:10.1016/j.physrep.2007.02.009
1503
+ Yao, Y., De, K., Kasliwal, M. M., et al. 2020, ApJ, 900, 46.
1504
+ doi:10.3847/1538-4357/abaa3d
1505
+ Yaron, O. & Gal-Yam, A. 2012, PASP, 124, 668.
1506
+ doi:10.1086/666656
1507
+ Yaron, O., Perley, D. A., Gal-Yam, A., et al. 2017, Nature
1508
+ Physics, 13, 510. doi:10.1038/nphys4025
1509
+ Zacharias, N., Finch, C. T., Girard, T. M., et al. 2013, AJ,
1510
+ 145, 44. doi:10.1088/0004-6256/145/2/44
1511
+
1512
+ The Double-peaked Type IIb SN 2020bio
1513
+ 15
1514
+ APPENDIX
1515
+ A. CORNER PLOTS
1516
+ In Figures A1, A2, A3, and A4 we present distributions of the fitted parameters of the models detailed in Section
1517
+ 4.2.
1518
+ 1.05
1519
+ 1.10
1520
+ 1.15
1521
+ 1.20
1522
+ 1.25
1523
+ Menv (10−2 M ⊙ )
1524
+ 1.60
1525
+ 1.64
1526
+ 1.68
1527
+ 1.72
1528
+ 1.76
1529
+ v (104 km s−1)
1530
+ 400
1531
+ 480
1532
+ 560
1533
+ 640
1534
+ Renv (R ⊙ )
1535
+ 0.60
1536
+ 0.64
1537
+ 0.68
1538
+ 0.72
1539
+ 0.76
1540
+ t0 (days)
1541
+ 1.05
1542
+ 1.10
1543
+ 1.15
1544
+ 1.20
1545
+ 1.25
1546
+ Menv (10−2 M ⊙ )
1547
+ 1.60
1548
+ 1.64
1549
+ 1.68
1550
+ 1.72
1551
+ 1.76
1552
+ v (104 km s−1)
1553
+ 0.60
1554
+ 0.64
1555
+ 0.68
1556
+ 0.72
1557
+ 0.76
1558
+ t0 (days)
1559
+ Figure A1. Corner plots showing the fitted parameter distributions for the P15 model.
1560
+
1561
+ 16
1562
+ Pellegrino et al.
1563
+ 1.50
1564
+ 1.56
1565
+ 1.62
1566
+ 1.68
1567
+ 1.74
1568
+ Menv (10−2 M ⊙ )
1569
+ 1.300
1570
+ 1.325
1571
+ 1.350
1572
+ 1.375
1573
+ 1.400
1574
+ v (104 km s−1)
1575
+ 1400
1576
+ 1600
1577
+ 1800
1578
+ 2000
1579
+ Renv (R ⊙ )
1580
+ 0.9775
1581
+ 0.9790
1582
+ 0.9805
1583
+ 0.9820
1584
+ t0 (days)
1585
+ 1.50
1586
+ 1.56
1587
+ 1.62
1588
+ 1.68
1589
+ 1.74
1590
+ Menv (10−2 M ⊙ )
1591
+ 1.300
1592
+ 1.325
1593
+ 1.350
1594
+ 1.375
1595
+ 1.400
1596
+ v (104 km s−1)
1597
+ 0.9775
1598
+ 0.9790
1599
+ 0.9805
1600
+ 0.9820
1601
+ t0 (days)
1602
+ Figure A2. Same as Figure A1, but for the P21 model.
1603
+
1604
+ The Double-peaked Type IIb SN 2020bio
1605
+ 17
1606
+ 44
1607
+ 46
1608
+ 48
1609
+ 50
1610
+ Menv (10−2 M ⊙ )
1611
+ 1.5
1612
+ 1.6
1613
+ 1.7
1614
+ 1.8
1615
+ 1.9
1616
+ v (104 km s−1)
1617
+ 125
1618
+ 150
1619
+ 175
1620
+ 200
1621
+ Renv (R ⊙ )
1622
+ 0.08
1623
+ 0.16
1624
+ 0.24
1625
+ 0.32
1626
+ 0.40
1627
+ t0 (days)
1628
+ 44
1629
+ 46
1630
+ 48
1631
+ 50
1632
+ Menv (10−2 M ⊙ )
1633
+ 1.5
1634
+ 1.6
1635
+ 1.7
1636
+ 1.8
1637
+ 1.9
1638
+ v (104 km s−1)
1639
+ 0.08
1640
+ 0.16
1641
+ 0.24
1642
+ 0.32
1643
+ 0.40
1644
+ t0 (days)
1645
+ Figure A3. Same as Figure A1, but for the SW17 (n=3/2) model.
1646
+
1647
+ 18
1648
+ Pellegrino et al.
1649
+ 300
1650
+ 315
1651
+ 330
1652
+ 345
1653
+ Menv (10−2 M ⊙ )
1654
+ 1.4
1655
+ 1.5
1656
+ 1.6
1657
+ 1.7
1658
+ v (104 km s−1)
1659
+ 160
1660
+ 200
1661
+ 240
1662
+ 280
1663
+ Renv (R ⊙ )
1664
+ 0.1
1665
+ 0.2
1666
+ 0.3
1667
+ 0.4
1668
+ t0 (days)
1669
+ 300
1670
+ 315
1671
+ 330
1672
+ 345
1673
+ Menv (10−2 M ⊙ )
1674
+ 1.4
1675
+ 1.5
1676
+ 1.6
1677
+ 1.7
1678
+ v (104 km s−1)
1679
+ 0.1
1680
+ 0.2
1681
+ 0.3
1682
+ 0.4
1683
+ t0 (days)
1684
+ Figure A4. Same as Figure A1, but for the SW17 (n=3) model.
1685
+
-9E3T4oBgHgl3EQfrwpm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-NAzT4oBgHgl3EQfSvt8/content/tmp_files/2301.01237v1.pdf.txt ADDED
@@ -0,0 +1,1928 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Safe Path following for Middle Ear Surgery
2
+ Bassem Dahroug1, Brahim Tamadazte2, and Nicolas Andreff1
3
+ 1Bassem Dahroug and Nicolas Andreff are with FEMTO-ST, AS2M,
4
+ Univ. Bourgogne Franche-Comt´e,
5
+ CNRS/ENSMM, 25000 Besan¸con, France
6
+ 2Brahim Tamadazte is with Sorbonne Universit´e,
7
+ CNRS UMR 7222, INSERM U1150, ISIR, F-75005, Paris, France.
8
9
+ January 4, 2023
10
+ Abstract
11
+ This article formulates a generic representation of a path-following
12
+ controller operating under contained motion, which was developed in
13
+ the context of surgical robotics. It reports two types of constrained
14
+ motion: i) Bilateral Constrained Motion, also called Remote Center
15
+ Motion (RCM), and ii) Unilaterally Constrained Motion (UCM). In
16
+ the first case, the incision hole has almost the same diameter as the
17
+ robotic tool, while in the second state, the diameter of the incision
18
+ orifice is larger than the tool diameter. The second case offers more
19
+ space where the surgical instrument moves freely without constraints
20
+ before touching the incision wall.
21
+ The proposed method aims to combine two tasks that must oper-
22
+ ate hierarchically: i) respect the RCM or UCM constraints formulated
23
+ by equality or inequality, respectively, and ii) perform a surgical as-
24
+ signment, e.g., scanning or ablation expressed as a 3D path-following
25
+ task. The proposed methods and materials were successfully tested
26
+ first on our simulator that mimics realistic conditions of middle ear
27
+ surgery, then on an experimental platform. Different validation sce-
28
+ narios were carried out experimentally to assess quantitatively and
29
+ qualitatively each developed approach. Although ultimate precision
30
+ was not the goal of this work, our concept is validated with enough
31
+ accuracy (≤ 100µm) for the ear surgery.
32
+ keywords: Medical Robotics, Constrained motion, Path Follow-
33
+ ing, Visual Servoing.
34
+ 1
35
+ arXiv:2301.01237v1 [cs.RO] 3 Jan 2023
36
+
37
+ 1
38
+ INTRODUCTION
39
+ Surgical robots are gaining more popularity due to their advantages for both
40
+ the patient and the physician [11,37,40]. It is particularly valid for so-called
41
+ Minimally-Invasive Surgery (MIS) approaches. For instance, a laparoscopy
42
+ or keyhole surgery [23] performs incision around 10mm. It is tiny compared
43
+ to the larger incisions needed in laparotomy (open surgery). Another sit-
44
+ uation where the surgical instruments could be inserted through a natural
45
+ orifice (e.g., mouth, nasal clefts, urethra, anus) to reach the targeted organ.
46
+ In both cases, the entry space (i.e., the incision hole or the natural orifice)
47
+ restricts the surgical tool motion, consequently the surgeon’s hands and the
48
+ robot carrying the instrument [7].
49
+ This article mainly discusses two types of constrained motion that result
50
+ directly from MIS procedures:
51
+ 1. Remote Center Motion (RCM), also known as fulcrum effect, implies
52
+ the incision hole has almost the same diameter as that of the surgical
53
+ tool [2];
54
+ 2. Unilaterally Center Motion (UCM) implies the incision diameter size
55
+ is bigger than that of the tool, offering more freedom for the tool
56
+ motion [12].
57
+ The first type of motion was initially achieved by designing a particu-
58
+ lar robotic structure that imposes the constrained motion mechanically [2,
59
+ 21, 29]. The RCM dictates that the center-line of the surgical tool is al-
60
+ ways coincident with the center point of the incision orifice (trocar point).
61
+ Consequently, the linear movement of the tool is prohibited along two axes.
62
+ The main advantage of RCM mechanisms is to reduce the risk of damag-
63
+ ing the trocar wall because their kinematic structures ensure the pivoting
64
+ motion. Their modest controller is also easy to implement. However, this
65
+ kind of mechanism is restricted to a unique configuration and cannot provide
66
+ enough flexibility for shifting the location of the trocar point.
67
+ An alternative solution proposes a software RCM for overcoming the
68
+ previous problem by guiding a general-purpose robot with the advantage of
69
+ being flexible enough for achieving complex tasks [6]. This solution is con-
70
+ venient for diverse medical applications (e.g., laparoscopic [32] and eye [28]
71
+ surgeries). However, we claim that the RCM approach is not the best choice
72
+ for other surgery types (e.g., ear, nose, mouth, knee arthroscopy). In latter
73
+ cases, the orifice diameter is generally bigger than the tool diameter. Con-
74
+ sequently, the RCM controller imposes too strong limitations on the tool
75
+ 2
76
+
77
+ motion. Indeed, the RCM is a mathematical equality constraint (i.e., the
78
+ distance between the tool body and the center point of the incision orifice
79
+ must be equal to zero). As such, RCM motion can be named as a bilaterally
80
+ constrained motion. On the contrary, UCM is a weaker restriction since the
81
+ unilateral constraints are inequality equations (i.e., the latter distance could
82
+ be greater or less than zero) [19].
83
+ In the literature, the term forbidden-region virtual fixtures [1] are used
84
+ for collaboration tasks where the user can either manipulate a robotic de-
85
+ vice [5] or telemanipulate a master device [33].
86
+ These fixtures could be
87
+ defined as geometric forms [12,39] or vector field [26] around the tool. Then
88
+ a kinematic control [12] or dynamic one [26, 38, 39] is applied to guide the
89
+ robot during the desired task.
90
+ The theoretical contribution of this article lies in the improvement of the
91
+ generic formulation of constrained motion. It has the objective to achieve a
92
+ velocity controller that can maintain the RCM or UCM depending on the
93
+ configuration of the surgical procedure. Besides that, it reveals a new path-
94
+ following controller integrated with a task-hierarchy controller for imposing
95
+ a priority between the RCM/UCM and the path-following tasks.
96
+ Nevertheless, the technical contribution lies in the assessment of such
97
+ approaches. Therefore, we developed a simulator including surgical tools and
98
+ a numerical twin mimicking the middle ear cavity. Based on the auspicious
99
+ evaluation, we also carried out a pre-clinical setup that takes up the diverse
100
+ components of the simulator to assess the proposed methods experimentally.
101
+ Various scenarios are also implemented to accomplish these evaluations. The
102
+ obtained performances in terms of behavior and accuracy are promising.
103
+ The remainder of the article is organized as follows. Section 2 presents
104
+ the clinical needs and challenges. The methodology followed to design the
105
+ proposed controllers will be discussed in Section 3. After that, Section 4
106
+ focuses on both the numerical and experimental validations of the proposed
107
+ approaches. Ultimately, Section 5 presents the conclusion and perspectives.
108
+ 2
109
+ MEDICAL MOTIVATIONS
110
+ 2.1
111
+ Treated Disease
112
+ The work discussed in this article represents a part of a long-term project.
113
+ It deals with the development of a robotic system that is dedicated to
114
+ cholesteatoma surgery. The system will aim to achieve an MIS within the
115
+ middle ear cavity by passing through the external ear canal or an incision
116
+ orifice made on the mastoid portion.
117
+ 3
118
+
119
+ Cholesteatoma is a frequent disease that invades the middle ear. It in-
120
+ fects the middle ear by introducing abnormal skin (lesional tissue) in the
121
+ middle ear-cavity. The most common explanation [31] is due to the immi-
122
+ gration of the epidermal cells, which are the cells type in the external ear
123
+ canal, and cover up the mucosa of the middle ear cavity, as shown in Fig.1.
124
+ These cells gradually proliferate within the temporal bone and destroy the
125
+ adjacent bony structures.
126
+ Figure 1: Evolution of cholesteatoma disease within the middle ear, which
127
+ is located behind the tympanic membrane.
128
+ The evolution of cholesteatoma is life-threatening in the long run. The
129
+ complications can be classified as follows [3]: i) destruction of the ossicular
130
+ chain, ii) facial paralysis, iii) labyrinthitis, iv) extracranial complications,
131
+ and v) intracranial complications. It can notice the irreversible effects that
132
+ cholesteatoma can cause in a patient. Despite that, there is no drug therapy
133
+ for the treatment. The only solution is surgical intervention.
134
+ 2.2
135
+ Current Surgical Procedure
136
+ As claimed above, the only treatment for cholesteatoma is a surgical pro-
137
+ cedure. It aims to eradicate all cholesteatoma tissue and reconstruct the
138
+ anatomy of the middle ear [18].
139
+ For reaching the middle-ear cavity, the surgeon often drills the temporal
140
+ bone behind the auricular, as shown in Fig. 2. This surgical procedure is
141
+ called mastoidectomy where the surgeon maintains the wall of the exter-
142
+ nal ear canal. This technique creates an incision that forms a triangular
143
+ (around 40 × 40 × 30mm) with a depth of about 30mm. The latter pro-
144
+ 4
145
+
146
+ pdemni
147
+ Mucosa
148
+ Demis
149
+ Submucosa
150
+ Muscularis
151
+ Retraction and perforation of the tympanic
152
+ membrane
153
+ Normal tympanic
154
+ Cholestetoma
155
+ membraneFigure 2: Mastoidectomy procedure with canal-wall-up indicates that the
156
+ external ear canal is preserved. (a) side view of the mastoidectomy tunnel
157
+ and (b) top view of the mastoidectomy tunnel.
158
+ cedure can also become more invasive by sacrificing the posterior portion
159
+ of the external ear canal (i.e., canal-wall-down). Furthermore, even if the
160
+ surgical orifice is relatively large, the surgical procedure remains complex
161
+ and requires high expertise and dexterity from the surgeon. Also, even with
162
+ an experienced clinician in the cholesteatoma case, the clinical outcomes
163
+ remain unsatisfactory in terms of effectiveness. Indeed, there is a high risk
164
+ that the cholesteatoma could regrow a few months after the surgical inter-
165
+ vention. It occurs due to residual cholesteatoma cells. Consequently, 10 to
166
+ 40% of patients perform more than one surgery to get definitively over this
167
+ disease [4].
168
+ Due to the complexity of the temporal bone cavity, the surgeon mainly
169
+ faces numerous difficulties during the procedure (Fig.3): i) lack of ergonomy
170
+ of the tools; ii) limited field of view of the oto-microscope (the surgeon can-
171
+ not visualize the lateral regions hidden (blind spots) in the middle ear cavity)
172
+ and iii) access with the conventional rigid instruments requires considerable
173
+ expertise to handle.
174
+ Therefore, it is increasingly important to overcome the previous problems
175
+ and evolve this procedure towards less invasive.
176
+ It implies reducing the
177
+ incision orifice size, improving the cholesteatoma ablation efficiency, and
178
+ avoiding the current high surgical recurrence rate for this kind of surgery.
179
+ 3
180
+ METHODOLOGY
181
+ This section begins by presenting a brief summary of the new surgical pro-
182
+ tocol associated with the robotic system. After that, it discusses the hier-
183
+ archical controller for managing simultaneously the various tasks. It then
184
+ 5
185
+
186
+ Wall of external
187
+ Wallof
188
+ earcanal
189
+ external
190
+ earcanal
191
+ Removed
192
+ bone
193
+ Cholesteatoma
194
+ Cholesteatoma
195
+ (a)
196
+ (b)Figure 3: Conceptual scheme to demonstrate the ”blind spot” during the
197
+ cholesteatoma surgery.
198
+ explains separately the path-following, the RCM, and the UCM controllers.
199
+ 3.1
200
+ New Surgical Protocol
201
+ In collaboration with surgeons experts in middle ear surgery, especially
202
+ cholesteatoma treatment, we have attempted to set up a new and more
203
+ efficient surgical protocol reported in [11].
204
+ Firstly, the idea is to make
205
+ cholesteatoma surgery less invasive compared to the traditional one. Thus, a
206
+ macro-micro robotic system should pass through a millimetric incision made
207
+ behind the ear (in the mastoid portion) to access the middle ear cavity [35].
208
+ Secondly, cholesteatoma surgery needs to be more efficient by eliminating
209
+ the residual cases. This second objective can be accomplished by removing
210
+ a large part of the cholesteatoma tissue using rigid miniature mechanical
211
+ resection tools. After that, a bendable actuated tool [16,36] could be used
212
+ to guide a laser fiber. This fiber carbonizes the residual cholesteatoma (re-
213
+ sulting from the mechanical resection phase) [22].
214
+ Both mechanical resection and laser ablation should be performable ei-
215
+ ther in automatic or semi-automatic mode. While the mechanical resection
216
+ does not require high accuracy, the laser ablation requires higher precision
217
+ since the residual cholesteatoma cells can be a few tens of micrometers in
218
+ size. Therefore, the contributions of robotics and vision-based control are
219
+ essential to fundamental this kind of task. In this work, we investigated
220
+ 6
221
+
222
+ Microscope
223
+ Wall of the external
224
+ Incision of
225
+ the mastoidectomy
226
+ ear canal
227
+ Outside
228
+ blind spot
229
+ Within
230
+ blind spot
231
+ Suction tool
232
+ Cholesteatoma
233
+ Knifethe use of path-following control schemes under constrained motion (due to
234
+ the incision orifice) to carry out the notions requested by the cholesteatoma
235
+ removal (i.e., mechanical resection and laser ablation).
236
+ 3.2
237
+ Task Hierarchical Controller
238
+ A surgical procedure can be considered as a set of sequential or overlap-
239
+ ping sub-tasks. The hierarchical methods ensure the execution of several
240
+ tasks simultaneously. Consequently, the required tasks do not enter into
241
+ conflict [13,34]. In the case of cholesteatoma surgery, various sub-tasks can
242
+ be involved during the procedure, such as constraint enforcement (RCM
243
+ or UCM) and ablation tools for the pathological tissues. Therefore, these
244
+ sub-tasks must be carried out according to a defined hierarchical scheme.
245
+ To express a controller that manages simultaneous sub-tasks, let us start
246
+ by assuming that a generic sub-task (˙ei ∈ Rmi) given by
247
+ ˙ei = Li eve,
248
+ where i=1,2,...,j
249
+ (1)
250
+ where eve ∈ se(3) is the end-effector twist velocity to be computed in the
251
+ end-effector frame Fe, and Li ∈ Rmi×n is the interaction matrix which
252
+ relates the vector eve to the error ˙ei.
253
+ The inverse solution of the previous equation is not guaranteed since the
254
+ interaction matrix Li could be non-square, and the matrix rank is locally
255
+ deficient. Thanks to the least-square method, an approximate solution can
256
+ be found by minimizing ∥˙ei − Li eve∥ over eve, and using numerical proce-
257
+ dures (such as QR or SVD). The formal result of it can be simply written
258
+ as eve = L†
259
+ i ˙ei, where L†
260
+ i is the pseudo-inverse of Li. If Li does not have
261
+ full rank then it has at least one singular vector z1, located in its null-space
262
+ (Liz1 = 0).
263
+ The vector z1 is also described as the null space of ei, be-
264
+ cause any twist vector parallel to z1 will leave ei unchanged. Therefore, the
265
+ projection gradient general form [27] is given by
266
+ eve = L†
267
+ 1˙e1 + (I − L†
268
+ 1L1)z1
269
+ (2)
270
+ In order to define z1, let us first consider a secondary sub-task ˙e2 =
271
+ L2 eve. Since the control vector must include the first sub-task, equation
272
+ (2) is injected in the latter expression, resulting in
273
+ ˙e2 = L2
274
+
275
+ L†
276
+ 1˙e1 + (I − L†
277
+ 1L1)z1
278
+
279
+ = L2L†
280
+ 1˙e1 + L2(I − L†
281
+ 1L1)
282
+
283
+ ��
284
+
285
+ ˜L2
286
+ z1
287
+ (3)
288
+ 7
289
+
290
+ From the previous equation, the vector z1 is deduced as
291
+ z1 = ˜L†
292
+ 2(˙e2 − L2L†
293
+ 1˙e1) + (I − ˜L†
294
+ 2˜L2)z2
295
+ (4)
296
+ with another criteria vector z2 which is projected in the null-space of the
297
+ secondary sub-task. By introducing (4) in (2), a recursive form of the pro-
298
+ jection gradient is obtained as
299
+ eve = L†
300
+ 1 ˙e1 + (I − L†
301
+ 1L1)
302
+
303
+ ˜L†
304
+ 2(˙e2 − L2L†
305
+ 1 ˙e1) + (I − ˜L†
306
+ 2˜L2)z2
307
+
308
+ = L†
309
+ 1 ˙e1 + (I − L†
310
+ 1L1)˜L†
311
+ 2(˙e2 − L2L†
312
+ 1 ˙e1)
313
+ + (I − L†
314
+ 1L1)(I − ˜L†
315
+ 2˜L2)z2
316
+ (5)
317
+ The right-hand side of the previous equation can further be simplified as [24]
318
+ eve = L†
319
+ 1˙e1 + ˜L†
320
+ 2(˙e2 − L2L†
321
+ 1˙e1)
322
+ .
323
+ (6)
324
+ The latter equation finds a solution to satisfy both sub-tasks ˙e1 and ˙e2.
325
+ It also ensures a form of hierarchy/priority between them. The analytical
326
+ expression of each sub-task with its Li is presented in the coming sections.
327
+ 3.3
328
+ 6D Approach Controller
329
+ This section is dedicated to mathematically describing how to control the
330
+ tool-tip for regulating its position and orientation with respect to a reference
331
+ frame, e.g., the orifice frame Fr. This task is applied when the tool locates
332
+ outside the incision orifice, and its pose must be adjusted with respect to
333
+ the orifice before it starts another task inside the orifice.
334
+ To do this, a traditional 3D position-based visual servo [8] is applied.
335
+ The feature vector s
336
+ =
337
+ (rtt, θ rut) is defined as the pose vector which
338
+ describes the tool-tip frame Ft with respect to the orifice frame Fr. This
339
+ vector gathers the translation t of the tool-tip and its rotation θu in form
340
+ of angle/axis parameterization. The desired feature vector s∗ = (0, 0) is
341
+ set to a zero vector since it is required to make coincident the frame Ft with
342
+ Fr. Thus, the approach task error eapp is deduced as the difference between
343
+ the current features vector and the desired one, i.e.,
344
+ eapp = s − s∗
345
+ (7)
346
+ The time variation of the latter error is related to the spatial velocity of
347
+ the tool-tip tvt by the interaction matrix L3D ∈ R6×6 as
348
+ ˙eapp = L3D tvt
349
+ (8)
350
+ 8
351
+
352
+ where tvt = (tvt,t ω) gathers the instantaneous linear and angular velocities
353
+ of the tool-tip. Since the desired feature vector equals to 06×1, then the
354
+ interaction matrix L3D is determined by
355
+ L3D =
356
+ � −I3×3
357
+ 03×3
358
+ 03×3
359
+ Lθu
360
+
361
+ (9)
362
+ where I3×3 is a 3 × 3 identity matrix, 03×3 is a 3 × 3 zero matrix, and Lθu
363
+ is given by [25]
364
+ Lθu = I3×3 − θ
365
+ 2 [u]× +
366
+
367
+ 1 − sinc θ
368
+ sinc2 θ
369
+ 2
370
+
371
+ [u]2
372
+ ×
373
+ (10)
374
+ in which sinc x is the sinus cardinal.
375
+ Finally, the spatial velocity tvt is determined for ensuring an exponential
376
+ decoupled reduction of the error (i.e., ˙e = −λe) as
377
+ tvt = −γL−1
378
+ 3Deapp
379
+ (11)
380
+ where γ is a gain coefficient, and L−1
381
+ 3D is the inverse of the interaction matrix
382
+ since it is square and has a closed-form inverse [25].
383
+ The command velocity of the robot end-effector eve = eVt tvt is deduced
384
+ by the following twist matrix
385
+ eVt =
386
+
387
+ eRt
388
+ [ett]×
389
+ eRt
390
+ 03×3
391
+ eRt
392
+
393
+ (12)
394
+ since the tool body is rigid and the transformation between the end-effector
395
+ frame Fe and the tool-tip frame Ft is fixed. Finally, the controller stability
396
+ was demonstrated in [25] to be globally exponentially stable.
397
+ 3.4
398
+ 3D Path-Following Controller
399
+ This section will focus on a generic modelling of a 3D path-following scheme.
400
+ The advantage of using such as controller is the separation between i) the
401
+ geometric curve (desired path Sp) which is planned by the surgeon based on
402
+ pre-operative images, and ii) the advance speed (vtis) of the tool-tip along
403
+ the desired path which is controlled by the surgeon during the operation. In
404
+ this manner, the collaboration surgeon/robot ensures that the robot guides
405
+ the tool along the path while the surgeon controls the robot progression
406
+ without planning the robot velocity direction.
407
+ 9
408
+
409
+ Figure 4: Orthogonal projection of the tool-tip onto a geometric curve.
410
+ Fig. 4 depicts the surgical instrument and its reference frames with re-
411
+ spect to the desired path Sp. By projecting the tool-tip Ot onto the reference
412
+ path, the resultant orthogonal distance dpf is considered as the error (i.e.,
413
+ lateral deviation) which must be controlled to zero. Therefore, the 3D vec-
414
+ tor distance between the tool-tip Ot and the projection point pp′ calculated
415
+ as
416
+ dpf = Ot − pp′.
417
+ (13)
418
+ In order to express the command velocity, the time-derivative of (13)
419
+ provides the tool-tip velocity vt as discussed in [10]
420
+ ˙dpf =
421
+
422
+ �I3×3 −
423
+ kpk⊤
424
+ p
425
+ 1 − d⊤
426
+ pf
427
+
428
+ Cp(sp) × kp
429
+
430
+
431
+ � vt
432
+ (14)
433
+ where Cp(sp) is the path curvature in function of the path curve length, kp
434
+ is the unit-vector of the instantaneous tangential vector (Fig. 4).
435
+ At this stage, it requires to choose the adequate velocity of the tool-tip
436
+ vt in the latter equation to ensure that the lateral error dpf is regulated
437
+ to zero while progressing along the path. An intuitive solution consists of
438
+ decomposing the control velocity into two orthogonal components (Fig. 5): i)
439
+ the advance velocity (vadv) along the path, and ii) the return velocity (vret)
440
+ for regulating the tool deviation from the reference path.
441
+ The previous
442
+ 10
443
+
444
+ desired 3D path
445
+ mk-1
446
+ tool body
447
+ mk
448
+ mk+1
449
+ M
450
+ mk+2Figure 5: Representation of the different velocities involved in the path-
451
+ following controller.
452
+ concept is formulated as follows:
453
+ vt = αkp
454
+ ����
455
+ vadv
456
+ + βdpf
457
+ � �� �
458
+ vret
459
+ .
460
+ (15)
461
+ The tuning coefficients of the controller α and β allow adjusting the
462
+ priority between the advance and return velocities, respectively.
463
+ Besides
464
+ that, the controller stability demonstrated in [10] shows that α should be
465
+ a positive scalar while β must be a negative scalar to ensure the system
466
+ stability.
467
+ The choice of these gain factors can be imposed by a function of a con-
468
+ stant velocity vtis > 0 that depends on the interaction between the surgical
469
+ tool and the lesional tissue.
470
+ This velocity could be tuned easily by the
471
+ surgeon before or during the intervention. Therefore, (15) yields
472
+ v2
473
+ tis
474
+ ����
475
+ =∥vt∥2
476
+ = α2∥kp∥2
477
+ � �� �
478
+ =1
479
+ + β2∥dpf∥2
480
+
481
+ ��
482
+
483
+ =∥vret∥2
484
+ .
485
+ (16)
486
+ The gain factor α is thus determined as
487
+ α =
488
+ � �
489
+ v2
490
+ tis − ∥vret∥2
491
+ ∥vret∥2 < v2
492
+ tis
493
+ 0
494
+ ∥vret∥2 > v2
495
+ tis
496
+ .
497
+ (17)
498
+ If the tool is not far from the reference path, the first condition in (17) is
499
+ selected. Otherwise, the priority is returning the tool-tip to the reference
500
+ path, and the advance velocity is null (i.e., second condition in (17)).
501
+ 11
502
+
503
+ desired 3D path
504
+ tool body
505
+ mk
506
+ ret
507
+ adv
508
+ mk+1The latter strategy proposed in [10] applies a constant value for the gain
509
+ factor β. However, this section presents a new formulation of β to make
510
+ the controller sensitive to the path curvature. Thus, it is calculated by the
511
+ following equation
512
+ β = β′
513
+
514
+ 1 + sign
515
+
516
+ d⊤
517
+ pf (Cp(sp) × kp)
518
+ � �
519
+ 1 − eγc∥Cp(sp)∥� �
520
+ (18)
521
+ where β′ is a negative gain for returning to path, sign(•) is a sign function
522
+ to determine the direction along the reference path, and γc is a negative
523
+ gain for sensing the amount of path curvature.
524
+ The ratio between the gain factors (i.e., vtis and β′) forms an acceptable
525
+ error band around the reference path. For instance, if β′ is higher than vtis,
526
+ then the error band will be small. On the contrary, in the case where vtis
527
+ is bigger than β′, then the error band will be large since the priority is to
528
+ advance along the reference path. The effect of this ratio is presented in
529
+ section 4.
530
+ Furthermore, the control velocity of the tool-tip (15) could be repre-
531
+ sented with respect to any desired frame.
532
+ Note that if the end-effector
533
+ frame is selected, then the end-effector twist velocity eve is related to the
534
+ linear velocity of the tool-tip evt as
535
+ evt = [I3×3
536
+ − [eet]×]
537
+
538
+ ��
539
+
540
+ Lpf∈R3×6
541
+ � eve
542
+ eωe
543
+
544
+
545
+ ��
546
+
547
+ eve
548
+ (19)
549
+ whereby [eet]× is the skew-symmetric matrix associated to the vector eet,
550
+ and Lpf is the interaction matrix related to the path-following task.
551
+ Finally, the control velocity for the path-following task is deduced as
552
+ eve = L†
553
+ pf
554
+ evt
555
+ .
556
+ (20)
557
+ 3.5
558
+ Bilateral Constrained Motion Controller
559
+ As claimed above, the resection/ablation task is performed in a minimally
560
+ invasive procedure. Therefore, the robot should perform the surgical task
561
+ under the constraints of the incision point. This section begins with the
562
+ description of RCM (bilateral constraints), while the following section de-
563
+ scribes the UCM (unilateral constraints). The RCM imposes that the center-
564
+ line of tool body St should be coincident with the point Or. Simultaneously,
565
+ the tool-tip must follow the desired path inside the incision orifice.
566
+ 12
567
+
568
+ Figure 6: Geometric scheme of the bilateral linear error drcm.
569
+ Fig. 6 shows a straight tool which is located far from the center-point
570
+ of incision orifice Or. The previous works [10,12] built the controller based
571
+ on the angular error between the vectors et′ and er while the proposed
572
+ controller in this section is based on the linear error drcm. This new choice
573
+ offers the controller to become independent of the tool shape. Let us imagine
574
+ that the tool-tip position in Fig. 6 is fixed in space, but its length can change.
575
+ In the case of angular error, when the tool length increases, the error reduces
576
+ its value.
577
+ However, the linear error stays constant when the tool length
578
+ changes. Therefore, the new choice grants better numerical computing.
579
+ The error drcm is deduced by the orthogonal projection of the point Or
580
+ onto the tool body St. The point pt′ is resultant from the latter projection
581
+ that is calculated as follows
582
+ ept′ =
583
+ euet eu⊤
584
+ et
585
+ eer
586
+ (21)
587
+ whereby euet is the unit vector of et expressed in Fe, and eer represents the
588
+ vector between both points Oe and Or which is expressed in Fe.
589
+ In case the surgical tool is curved, the point pt′ is determined by dis-
590
+ cretizing the tool body. Then the closest point onto the tool body is located.
591
+ After that, the orthogonal projection is performed with respect to this point
592
+ and the previous one on the tool center-line. Thus, the error drcm is de-
593
+ duced as
594
+ drcm =
595
+ eOr − ept′
596
+ .
597
+ (22)
598
+ 13
599
+
600
+ center of the incision hole
601
+ er
602
+ et'
603
+ tool body
604
+ Pt
605
+ rcm
606
+ X
607
+ M
608
+ incision wallThe controller task is to find the spatial velocity of the robot end-effector
609
+ eve for eliminating the rate-of-change of the bilateral linear error drcm.
610
+ Thereby, the time-derivative of the latter equation results in
611
+ ˙drcm =
612
+ evr − evt′
613
+ (23)
614
+ where evt′ is the linear velocity of the projected point pt′ along the tool
615
+ body, and evr is the linear velocity of the trocar point described in Fe.
616
+ Indeed, the velocity of the projected point depends on the movement of the
617
+ tool body with respect to the trocar point. Hence, this velocity is computed
618
+ as [12]
619
+ evt′ =
620
+ ekt ekT
621
+ t
622
+ 1 + dTrcm(Ct(st) × ekt)
623
+ evr
624
+ (24)
625
+ whereby Ct(st) is the tool curvature in the function of its arc length, and
626
+ ekt is the instantaneous tangential unit-vector onto the tool curve/shape.
627
+ Since the calculation is done in the perspective of the end-effector frame
628
+ Fe, it implies that this frame is fixed, and the other ones are dynamic with
629
+ respect to it. Consequently, the incision orifice virtually moves, and its linear
630
+ velocity evr is related to the spatial velocity of the robot end-effector thanks
631
+ to the following formula
632
+ evr =
633
+
634
+ I3×3
635
+ − [eOr]×
636
+
637
+
638
+ ��
639
+
640
+ Lr∈R3×6
641
+ eve
642
+ .
643
+ (25)
644
+ By injecting the latter equation in (24) then the resultant in (23), the
645
+ time-derivative of the error drcm equals to
646
+ ˙drcm =
647
+
648
+ I3 −
649
+ ekt ekT
650
+ t
651
+ 1 + dTrcm(Ct(st) × ekt)
652
+ � �
653
+ I3×3
654
+ − [eOr]×
655
+
656
+
657
+ ��
658
+
659
+ Lrcm∈R3×6
660
+ eve
661
+ (26)
662
+ where Lrcm is the interaction matrix which relates between the end-effector
663
+ velocity eve and the rate-of-change of the error drcm.
664
+ Furthermore, a linearized proportional controller is applied to reduce
665
+ the bilateral linear error in an exponential decay form. It defines the control
666
+ velocity of the end-effector as
667
+ eve = −λ L†
668
+ rcm drcm.
669
+ (27)
670
+ whereby λ is a positive gain which allows tuning the rate of exponential
671
+ decay, and L†
672
+ rcm is the pseudo-inverse of the interaction matrix Lrcm.
673
+ 14
674
+
675
+ Finally, the RCM task can be combined as the highest priority with the
676
+ path-following task as the secondary criteria. The hierarchical controller
677
+ deduces the control velocity, by replacing the equations (27) and (20) in
678
+ equation (6), as
679
+ eve = −λL†
680
+ rcmdrcm + ˜L†
681
+ pf
682
+
683
+ evt + λLpfL†
684
+ rcmdrcm
685
+
686
+ ,
687
+ with
688
+ ˜Lpf = Lpf
689
+
690
+ I − L†
691
+ rcmLrcm
692
+
693
+ .
694
+ (28)
695
+ In the opposite case, the hierarchical controller sets the path-following task
696
+ (20) as the highest priority while the RCM task (27) as the secondary one.
697
+ The control velocity is deduced from equation (6) as
698
+ eve = L†
699
+ pf
700
+ evt − ˜L†
701
+ rcm
702
+
703
+ λdrcm + LrcmL†
704
+ pf
705
+ evt
706
+
707
+ ,
708
+ (29)
709
+ with
710
+ ˜Lrcm = Lrcm
711
+
712
+ I − L†
713
+ pfLpf
714
+
715
+ .
716
+ (30)
717
+ 3.6
718
+ Unilaterally Constrained Motion Controller
719
+ This section continues with the design of the path-following controller under
720
+ unilateral constraints. Notice that the UCM task assumes the incision orifice
721
+ is larger than the tool diameter. Consequently, it imposes on the tool-tip
722
+ to follow the incision/ablation path while the tool body is free to move
723
+ within the incision orifice as long as it does not damage the orifice wall.
724
+ Therefore, the formulation of the previous section needs to extend to satisfy
725
+ the unilateral constraints.
726
+ Fig. 7(left image 1) shows how the point pt′ is orthogonally projected
727
+ onto the orifice wall in order to determine the closest point ph′ on the orifice
728
+ wall Sh. The distance between the latter two points forms the vector error
729
+ ducm which can be defined as (left image 2 of Fig. 7)
730
+ ducm =
731
+ et′r
732
+ ����
733
+ =drcm
734
+ − eh′r
735
+ ����
736
+ =dwall
737
+ .
738
+ (31)
739
+ The question now is how to maintain the value of the error ducm greater
740
+ or equal to zero. For security issues, three regions are defined around the
741
+ projected point ph′, as shown in the left image of Fig. 7:
742
+ 1. critical zone (dark red circle) which its border is defined by a minimal
743
+ distance dmin;
744
+ 15
745
+
746
+ Figure 7: Geometric modelling of the unilateral linear error ducm.
747
+ 2. dangerous zone (light green circle) which its border is defined by a
748
+ maximal distance dmax; and
749
+ 3. safe zone which is the remain region outside the dangerous zone.
750
+ When the Euclidean norm ∥ducm∥ is larger than the ”dangerous” dis-
751
+ tance dmax, the tool can follow the reference path without any constraints
752
+ since its location is in the safe zone.
753
+ However, an admittance control is
754
+ activated, which is composed of a virtual damper µobs, when the tool body
755
+ passes the dangerous zone border. Indeed, the admittance control imposes
756
+ unilateral constraint towards the safe point ps by generating a compensation
757
+ velocity in the opposite direction to the orifice wall.
758
+ By differentiating equation (31) with respect to time for deducing the
759
+ velocity twist of the end-effector, it becomes equal to
760
+ ˙ducm = ( evr − evt′)
761
+
762
+ ��
763
+
764
+ ˙drcm
765
+ − ( evr − evh′)
766
+
767
+ ��
768
+
769
+ ˙dwall
770
+ =
771
+ evh′ − evt′
772
+ (32)
773
+ The velocity of the projected point ph′ is deduced in the same way as
774
+ equation (24)
775
+ evh′ =
776
+ ekh ekT
777
+ h
778
+ 1 + dTucm (Ch(sh) × ekh)
779
+ evt′
780
+ .
781
+ (33)
782
+ 16
783
+
784
+ Ph
785
+ tool body
786
+ (1)
787
+ centerofthe
788
+ dangerous zone
789
+ incision hole
790
+ et'
791
+ incision wall
792
+ ducm
793
+ d
794
+ rcm
795
+ d
796
+ 11DM,
797
+ 30
798
+ critical zone
799
+ 25mm
800
+ (2)where Ch(sh) is the orifice curvature in function of its arc length, and ekh is
801
+ the instantaneous tangential unit-vector onto the orifice curve. In another
802
+ perspective, the latter equation describes how the projection of the point
803
+ pt′ onto the geometric curve of the orifice wall Sh evolves with time.
804
+ The velocity evt′ is deduced by combining equations (24) and (25)
805
+ evt′ =
806
+ ekt ekT
807
+ t
808
+ 1 + dTrcm (Ct(st) × ekt)
809
+
810
+ I3×3
811
+ − [eOr]×
812
+
813
+
814
+ ��
815
+
816
+ Lvt′ ∈R3×6
817
+ eve
818
+ .
819
+ (34)
820
+ Replacing equations (33) and (34) in (32) yields
821
+ ˙ducm =
822
+
823
+ ekh ekT
824
+ h
825
+ 1 + dTucm (Ch(sh) × ekh) − I3×3
826
+
827
+ Lvt′
828
+
829
+ ��
830
+
831
+ Lucm∈R3×6
832
+ eve
833
+ (35)
834
+ whereas Lucm is the interaction matrix that relates the twist end-effector
835
+ with the rate of change of the error ducm.
836
+ Thereby, the control velocity of the UCM task is defined as
837
+ eve = −µobsλL†
838
+ ucmducm
839
+ .
840
+ (36)
841
+ The damping coefficient µobs changes following a sigmoid function that
842
+ depends on the vector ducm. It means that the gain µobs reaches its mini-
843
+ mal value when ducm is higher than the safe distance dmax, where the tool
844
+ location in the dangerous zone. However, µobs gradually increases until it
845
+ reaches its maximal value when ducm is smaller than the critical distance
846
+ dmin, where the tool location in the critical zone. This behaviour is modeled
847
+ as
848
+ µobs =
849
+ σmax
850
+ 1 + e
851
+
852
+ σstep
853
+
854
+ ∥ducm∥−σmin
855
+ ��
856
+ (37)
857
+ where σmax, σmin and σstep are tunable parameters for modifying the sigmoid
858
+ form.
859
+ Finally, the path-following task can be combined as the highest priority
860
+ with the UCM task as the secondary criteria. The hierarchical controller
861
+ deduces the control velocity, by replacing the equations (36) and (20) in
862
+ equation (6), as
863
+ eve = L†
864
+ pf
865
+ evt − ˜L†
866
+ ucm
867
+
868
+ µobsλducm + LucmL†
869
+ pf
870
+ evt
871
+
872
+ ,
873
+ with
874
+ ˜Lucm = Lucm
875
+
876
+ I − L†
877
+ pfLpf
878
+
879
+ .
880
+ (38)
881
+ 17
882
+
883
+ 4
884
+ VALIDATION
885
+ This section discusses several scenarios to evaluate qualitatively and quan-
886
+ titatively the proposed methods and materials. The developed controllers
887
+ were first tested using our simulator framework and then in an experimental
888
+ set-up that takes up the various components of the simulator.
889
+ 4.1
890
+ Implementation Issues
891
+ This part begins by converting the patient’s ear to its numerical-twin and
892
+ then its 3D printed-twin. The first step to accomplish this job is the scan of
893
+ the patient’s ear during the preoperative phase for getting DICOM (Digital
894
+ Imaging and Communications in Medicine) images, as depicted in Fig. 8.
895
+ The DICOM images are handled by the software 3D Slicer which converts
896
+ these images to a 3D surface model after a segmentation process.
897
+ Prior
898
+ works were done in relation to this subject for achieving an automated seg-
899
+ mentation process (e.g., [15, 30]). However, the segmentation process that
900
+ we have done manually is not automated since this is not the focus of this
901
+ article. In the future, we believe that our segmentation process needs to be
902
+ done again in an automated manner for efficiency.
903
+ The 3D Slicer software exports the segmentation results as STL files for
904
+ each anatomical structure. Afterward, the software MeshLab treats the STL
905
+ files for smoothing the surface and reducing the number of vertices and faces
906
+ to cut down the final STL file size. This step produces the numerical-twin
907
+ of the patient’s ear.
908
+ The next step creates the 3D printed-twin for conducting the experimen-
909
+ tal validation. Indeed, a simplified version of the numerical-twin is imported
910
+ in Solidworks for i) adding some thickness to the middle ear cavity and ii)
911
+ creating the incision orifice through the mastoid.
912
+ After that, the planning stage of the desired path within the middle
913
+ ear cavity begins. The path planning step can be optimized (e.g., [14,20]).
914
+ However, this step was done manually on Solidworks to generate text files
915
+ that contain the geometry of the reference path and the orifice wall as a
916
+ sequence of 3D points. These files are inputs for the controller. This step
917
+ should be investigated in the future and add to the adequate functions in
918
+ the simulator.
919
+ Fig. 9 presents the proposed control architect with the TCP/IP com-
920
+ munication. This architect allows easy interchangeability between the real-
921
+ system (robot) and its numerical-twin (simulator). The latter figure (the
922
+ red block at the left-hand side) also shows that the implemented controller
923
+ 18
924
+
925
+ Figure 8: The steps done to achieve a numerical and physical model of the
926
+ middle ear cavity.
927
+ is firstly initialized with the end-effector and the incision orifice poses, ⋆Te
928
+ and ⋆Tr respectively. These poses must be described in the same frame
929
+ (e.g., the world frame Fw or the camera Fc). Indeed, the tool geometry
930
+ 19
931
+
932
+ DICOM images of the patient's ear
933
+ Preoperative scanning for the patient
934
+ Surface structure (numerical ear twin) of the patient's ear
935
+ Ossicles
936
+ Inner ear
937
+ Temporal bone
938
+ Middle ear
939
+ External ear
940
+ Chorda
941
+ cavity
942
+ canal
943
+ External ear canal
944
+ tympani nerve
945
+ 3D printed ear twin version for
946
+ experimental validation
947
+ Preoperative planning phase
948
+ Red region
949
+ will be preserved
950
+ Mastoidectomy
951
+ Temporal bone
952
+ (Canal wall up)
953
+ Green region
954
+ External ear canal
955
+ will be removedFigure 9: Block diagram of the TCP/IP communication between the client
956
+ (proposed controller) and the server (simulator or robot) or vice-versa.
957
+ 20
958
+
959
+ Robot
960
+ Contro
961
+ connection
962
+ unit
963
+ Simulator
964
+ Robot control (case 2)
965
+ Control Unit
966
+ Robot control (case 1)
967
+ Simulator controlSt is defined with respect to the end-effector frame Fe while the reference
968
+ path Sp and the orifice wall Sh are described in the incision orifice frame
969
+ Fr. Furthermore, the controllers should be initialized by the different gain
970
+ coefficients before the control-loop starts.
971
+ The hierarchy controller arranges throughout the control-loop the prior-
972
+ ity between the different tasks (i.e., the approach task, the path-following
973
+ task, and the RCM/UCM constraints). Indeed, the control-loop is mainly
974
+ divided into three phases:
975
+ 1. the outside phase: the tool corrects its initial pose with respect to the
976
+ incision orifice. This stage applies the approach task for regulating: i)
977
+ the tool-tip position to the point located before the orifice center point,
978
+ and ii) the tool-tip rotation as the rotation of the orifice reference
979
+ frame. This manoeuvrer is performed to ensure some security for the
980
+ next phase;
981
+ 2. the transition phase: the tool-tip passes the center point of the inci-
982
+ sion orifice. The RCM controller could oscillate when the trocar point
983
+ is close to the tool-tip. These oscillations are generated because the
984
+ controller computes large rotation displacement, due to the lever phe-
985
+ nomena, for compensating the rotation error. Thus, the trocar point
986
+ is virtually moved to the first point on the reference path.
987
+ Conse-
988
+ quently, the tool body can rotate about this new point. This virtual
989
+ trocar point moves towards the orifice frame while the tool-tip ad-
990
+ vances along the reference path;
991
+ 3. the inside phase: the tool-tip follows the desired path while the tool
992
+ body is constrained by the orifice wall or the orifice center point.
993
+ Therefore, the output of this block is the spatial velocity of the end-effector
994
+ expressed in its frame (eve) while its inputs are the instantaneous poses of
995
+ the end-effector and the incision orifice (⋆Te and ⋆Tr). The question now
996
+ is: what is the observation frame?
997
+ In the simulator case (the blue block at the right-hand side of Fig. 9), it is
998
+ straightforward since the user initializes the poses with respect to the world
999
+ frame Fw of the virtual scene. Thus, the spatial velocity eve is transformed
1000
+ to wve then it is integrated over the sample time Te to deduce the new pose
1001
+ of the end-effector. Consequently, the tool pose is updated in the virtual
1002
+ scene, and this new pose is sent back to the control unit block for computing
1003
+ a new iteration.
1004
+ There are two options for designing the control architect in the exper-
1005
+ imental case. The first one consists of using an exteroceptive sensor (e.g.,
1006
+ 21
1007
+
1008
+ camera) for estimating the required poses. This option is depicted in the
1009
+ green block of Fig. 9 named Robot control (case 1). The input of this block
1010
+ is the spatial velocity eve that is transformed to deduce the angular velocity
1011
+ of each joint ˙q with the help of the inverse differential kinematic model to
1012
+ move mechanical structure of the robot. This motion is observed from the
1013
+ camera frame Fc in order to estimate the new pose of the end-effector and
1014
+ that of the orifice. These poses are the output of this block which are sent
1015
+ back to the control unit block for calculating a new iteration.
1016
+ However,
1017
+ this option is uneasy for implementation since it needs a particular setup to
1018
+ accurately track both the end-effector and the orifice [17].
1019
+ The second option is more fundamental than the first one. It is also
1020
+ presented in the green block of Fig. 9 named Robot control (case 2). It uses
1021
+ the proprioceptive sensors of the robot and its forward geometric model to
1022
+ estimate the end-effector pose. Despite that, this option requires performing
1023
+ a registration process [9, 17] between the robot and the orifice before the
1024
+ control-loop. After that, the robot works blindly, and the user assumes that
1025
+ the orifice does not move during the control-loop.
1026
+ The simulator is implemented in C++. It uses Eigen library for linear
1027
+ algebra (e.g., vectors, matrices, numerical solvers) and PCL (Point Cloud
1028
+ Library) for visualizing the STL parts and converting them to point clouds.
1029
+ This conversion is done to initialize the collision detection that is accom-
1030
+ plished by VCollide library. Finally, ViSP library is used for manipulating
1031
+ the camera images throughout the experimental work.
1032
+ 4.2
1033
+ Numerical Validation
1034
+ A numerical simulator was developed, as the first step, to validate the func-
1035
+ tioning of the diverse methods before physical implementation. It simulates
1036
+ the geometric motion of the surgical tool through the incision orifice and
1037
+ the middle ear cavity. The software interchangeability of the simulator and
1038
+ the physical set-up allowed us also to tune the controller parameters before
1039
+ the experimental validation. Therefore, this part presents three scenarios
1040
+ for the demonstration:
1041
+ • scenario 1 performs the path-following task without any constraint
1042
+ applied on the tool motion.
1043
+ It demonstrates the effect of the gain
1044
+ coefficients vtis and β in equations (16) and (18), respectively, on the
1045
+ performance of the path-following controller;
1046
+ • scenario 2 performs the path-following task with RCM constraints. It
1047
+ simulates the drilling of a minimal invasive tunnel (i.e., conical tunnel)
1048
+ 22
1049
+
1050
+ through the mastoid portion to reach the middle ear cavity;
1051
+ • scenario 3 assumes the surgeon performed a standard mastoidectomy.
1052
+ It simulates an inspection/resection task performed under the UCM
1053
+ constraints.
1054
+ 4.2.1
1055
+ Simulation of the path-following task without constraints
1056
+ Throughout this first trial, the value of vtis = 4mm/second in equation (16)
1057
+ remains constant during all tests. Besides that, the same reference path is
1058
+ tested during this trial, and it is defined as a spiral curve.
1059
+ Figure 10: The effect of the ratio between vdes and β′ on the path-following
1060
+ error dpf with a zoom and magnification on the orange region.
1061
+ The first group of tests keeps the value of γc in equation (18) constant
1062
+ while decreasing the value of β′ which its value varies from −4 to −16.
1063
+ Fig. 10 shows the influence of the gain coefficient β′ on the path-following
1064
+ error dpf. Indeed, this error computed as in equation (13). The ripples
1065
+ appearing in this figure represent the linear error between the projected
1066
+ point pt′ and the closest point on the reference path pp′. An orange rectangle
1067
+ appeared in this figure for zooming on one of these ripples. One can observe
1068
+ that the error reduced as designed exponentially.
1069
+ The latter figure also demonstrates that the best ratio between β′ and
1070
+ vtis should be greater than −2 (the saddle-brown line with star markers),
1071
+ and less than or equal −3 (the olive line with square markers). If the ratio is
1072
+ less than or equal to −1, the controller response is relatively slow, and there
1073
+ is a steady-state error (the maroon line with round markers in Fig. 10). On
1074
+ 23
1075
+
1076
+ 0.8
1077
+ 0.040
1078
+ Udes = 4.0, β = -4.0, %c = -1.0
1079
+ 0.7
1080
+ 0.035
1081
+ Udes = 4.0, β = -8.0, %c = -1.0
1082
+ Udes = 4.0, β =-12.0, %c = -1.0
1083
+ Udes = 4.0, β = -16.0, % = -1.0
1084
+ 0.6
1085
+ 0.030
1086
+ 0.025
1087
+ 0.5
1088
+ 0.020
1089
+ (mm)
1090
+ 0.4
1091
+ ldpfll
1092
+ 0.015
1093
+ 0.3
1094
+ 0.010
1095
+ 0.005
1096
+ 0.2
1097
+ 0.000
1098
+ 1200
1099
+ 1210
1100
+ 1220
1101
+ 1230
1102
+ 1240
1103
+ 1250
1104
+ 1260
1105
+ 1270
1106
+ 1280
1107
+ 1290
1108
+ 0.1
1109
+ -
1110
+ 1000
1111
+ 2000
1112
+ 3000
1113
+ 4000
1114
+ 5000
1115
+ Iterationsthe opposite, if the ratio is higher than or equal to −4, the system begins
1116
+ to oscillate (having over-shoots). However, the controller reduces the error
1117
+ faster than the previous cases (the sea-green line with triangular markers in
1118
+ Fig. 10).
1119
+ The second group of tests chose a constant ratio −2 while decreasing
1120
+ the value of γc from −2 to −16. This group shows that the best value of
1121
+ γc is to be near from β′. If γc is higher than β′, the system begins to have
1122
+ over-shoots, but it reduces faster the path-following error.
1123
+ 4.2.2
1124
+ Simulation of a robotic drilling task under RCM constraint
1125
+ The surgeon perforates manually until now the mastoid portion in the tem-
1126
+ poral bone for reaching the middle ear cavity. The resultant mastoidectomy
1127
+ orifice is invasive. Thereby, a less invasive tunnel is proposed in this trial.
1128
+ Besides that, the drilling procedure becomes automated so that the surgeon
1129
+ can concentrate on other essential tasks. Indeed, this drilling procedure is
1130
+ achieved by merging the approach task, the 3D path-following task, and the
1131
+ RCM task.
1132
+ (a)
1133
+ (b)
1134
+ Figure 11: Numerical validation of the 3D path-following under a RCM
1135
+ constraint (see Extension 2). (a) The tool pose with respect to the desired
1136
+ path. (b) Sequence of zoom images during the tool motion.
1137
+ 24
1138
+
1139
+ Tool body
1140
+ Incision center
1141
+ point
1142
+ 3D pathFig. 11 depicts the tool motion throughout the drilling procedure. The
1143
+ subplot (a) draws the tool geometry and its poses at different instances (or-
1144
+ ange straight-lines). It also shows the drilling path defined as a combination
1145
+ of spiral and linear portions (sea-green dotted-line). One can view that the
1146
+ tool body is always coincident with the orifice center point. The subplot
1147
+ (b1) shows the path done by the tool-tip (dodger-blue line) to accomplish
1148
+ the outside phase by i) approaching towards the point located before the
1149
+ orifice center point, and ii) regulating the rotation of the tool-tip frame to
1150
+ be as that of the orifice reference frame. The subplot (b2) depicts an in-
1151
+ stantaneous zoom on the tool pose during the inside phase to visualize the
1152
+ RCM effect.
1153
+ Figure 12: The approach task error eapp, where the left column is the linear
1154
+ error and the right column represents the angular error.
1155
+ The approach task error eapp computed in equation (11) is visualized in
1156
+ Fig. 12 which depicts the linear errors in the column and the angular errors
1157
+ in the right one. Over this period, the error is reduced in an exponential
1158
+ form as planned.
1159
+ At the end of the latter period, the transition phase starts.The task-
1160
+ hierarchical controller becomes active, and it arranges the path-following
1161
+ task as the highest priority while the RCM task is the second one. The
1162
+ errors of these tasks presented in the left columns of Fig. 14 and 13 which
1163
+ are obtained from equations (13) and (22) for the path-following and RCM
1164
+ errors, respectively. One can observe a peak appeared around 4 seconds in
1165
+ the path-following figure due to the initial error when the controller becomes
1166
+ activated. Then, it attenuates the error until it attains stability. Further-
1167
+ more, one can visualize in the RCM figure that three peaks appeared at the
1168
+ end of this phase. This behaviour happened due to the movement of the
1169
+ virtual trocar point.
1170
+ 25
1171
+
1172
+ 20
1173
+ 12
1174
+ Eappr
1175
+ Eappr
1176
+ 15
1177
+ Eappy
1178
+ Eappy
1179
+ 10
1180
+ Eapp:
1181
+ Eapp:
1182
+ 10
1183
+ 8
1184
+ eapp
1185
+ 5
1186
+ (mm)
1187
+ (deg)
1188
+ 6
1189
+ ddpa
1190
+ Eappe
1191
+ .5
1192
+ 4
1193
+ .10
1194
+ 2
1195
+ 0
1196
+ -20
1197
+ 0.5
1198
+ 1.0
1199
+ 1.52.02.5
1200
+ 3.0
1201
+ 3.5
1202
+ 4.0
1203
+ 0.0
1204
+ 0.5
1205
+ 1.0
1206
+ 1.5
1207
+ 2.0
1208
+ 2.5
1209
+ 3.0
1210
+ 3.5
1211
+ 4.0
1212
+ Time (second)
1213
+ Time (second)Figure 13: The RCM task error drcm, where the left column shows the error
1214
+ evolution during the transition phase while the right column presents the
1215
+ error during the inside phase.
1216
+ Figure 14: The path-following task error dpf, where the left column shows
1217
+ the error evolution during the transition phase while the right column
1218
+ presents the error during the inside phase.
1219
+ After the previous period, the inside phase starts where the hierarchical
1220
+ controller modifies the priority by setting the RCM task as the highest one
1221
+ while the path-following is the secondary one. The RCM task error drcm was
1222
+ 26
1223
+
1224
+ outside/transition phases
1225
+ inside phase
1226
+ 0.20
1227
+ 0.015
1228
+ drcms
1229
+ 0.15
1230
+ drcmy
1231
+ 0.010
1232
+ drcm
1233
+ drcm:
1234
+ 0.10
1235
+ drcm
1236
+ Idrcml
1237
+ 0.05
1238
+ (mm)
1239
+ 0.005
1240
+ 0.00
1241
+ 0.000
1242
+ d
1243
+ -0.05
1244
+ -0.10
1245
+ -0.005
1246
+ -0.15
1247
+ -0.20
1248
+ -0.010,
1249
+ 1
1250
+ 2
1251
+ 3
1252
+ 5
1253
+ 6
1254
+ 7
1255
+ 8
1256
+ 10
1257
+ 20
1258
+ 30
1259
+ 40
1260
+ 50
1261
+ 60
1262
+ Time (second)
1263
+ Time (second)outside/transition phases
1264
+ inside phase
1265
+ 0.25
1266
+ 0.08
1267
+ drcms
1268
+ 0.06
1269
+ 0.20
1270
+ drcm
1271
+ 0.04
1272
+ Idpf ll
1273
+ 0.15
1274
+ 0.02
1275
+ (mm)
1276
+ TAAAA
1277
+ 0.10
1278
+ 0.00
1279
+ dpf
1280
+ 0.02
1281
+ 0.05
1282
+ drcmr
1283
+ -0.04
1284
+ drcmy
1285
+ 0.00
1286
+ -0.06
1287
+ II dp ll
1288
+ -0.05
1289
+ -0.08
1290
+ 1
1291
+ 2
1292
+ 3
1293
+ 4
1294
+ 5
1295
+ 6
1296
+ 7
1297
+ 8
1298
+ 10
1299
+ 20
1300
+ 30
1301
+ 40
1302
+ 50
1303
+ 60
1304
+ Time (second)
1305
+ Time (second)computed as 0.002 ± 0.002 mm (mean error ± STD (STandard Deviation)
1306
+ error), as shown in the right column of Fig. 13, while the path-following error
1307
+ dpf was 0.008±0.009 mm, as shown in the right column of Fig. 14. The gain
1308
+ values used for this trail were equal to λ = 1, γ = 1, vtis = 4 mm/second,
1309
+ β′ = −10, γc = −10 and Te = 0.008 second.
1310
+ 4.2.3
1311
+ Simulation of an ablation/excision surgical task under UCM
1312
+ constraint
1313
+ In this trial, the incision orifice size is larger than the instrument diameter.
1314
+ The tool is consequently subject to the UCM for providing more freedom to
1315
+ the tool movements inside the incision orifice. This behaviour is shown in
1316
+ Fig. 15a where the orifice wall is represented by the red surface. The latter
1317
+ figure also presents the curved tool employed during this trial which performs
1318
+ an ablation or scanning process. The desired 3D path is thus composed of a
1319
+ linear portion to reach the middle ear cavity and a spiral curve to simulate
1320
+ the required surgical task. This selected path can reach some regions where
1321
+ a straight tool cannot attain (see Extension 4 to visualize the collision of
1322
+ the latter one with the orifice wall).
1323
+ The subplot (b1) of Fig. 15b indicates the path done by the tool during
1324
+ the outside phase. It also presents an instantaneous pose of the tool body
1325
+ throughout the transition phase.
1326
+ As explained in the previous trial, the
1327
+ proposed controller executes the same tasks over these two phases. Subplot
1328
+ (b2) presents the tool motion during the inside phase, where the dangerous
1329
+ and critical zones are represented by the green and red circles, respectively.
1330
+ The center point of these circles corresponds to the point ph′ obtained by
1331
+ projecting pt′ onto the orifice wall Sh.
1332
+ Throughout the inside phase, the hierarchical controller combines the
1333
+ UCM task with the path-following task as described in (38). Fig. 16 shows
1334
+ the UCM task error ducm which is deduced as in equation (31).
1335
+ It also
1336
+ presents the boundaries of the critical and dangerous zones. One can observe
1337
+ that the error ducm begins with a considerable value, compared to the error
1338
+ drcm, since the previous phase delivers the tool to the center point of the
1339
+ incision orifice. Then, the error ducm reduced, while the error drcm increased
1340
+ because the tool approached the incision wall to follow the reference path.
1341
+ However, the error ducm did not exceed the dmin, which implies the tool
1342
+ body did not enter the critical zone.
1343
+ Fig. 17 presents the path-following error dpf during the inside phase. It
1344
+ was measured was 0.005 ± 0.006 mm. The gain values used for this trail
1345
+ were equal to λ
1346
+ =
1347
+ 0.8, γ
1348
+ =
1349
+ 0.8, vtis
1350
+ =
1351
+ 4 mm/second, β′
1352
+ =
1353
+ − 10,
1354
+ 27
1355
+
1356
+ (a)
1357
+ (b)
1358
+ Figure 15: Numerical validation of the 3D path-following under a UCM
1359
+ constraint (see Extension 3). (a) The tool pose with respect to the desired
1360
+ path. (b) Sequence of zoom images during the tool motion.
1361
+ Figure 16: The UCM task error ducm during the inside phase along side the
1362
+ error drcm.
1363
+ 28
1364
+
1365
+ reference curve
1366
+ actual curve
1367
+ tool body
1368
+ orificewall5
1369
+ I drcm l
1370
+ Ild ucmll
1371
+ dmas
1372
+ 4
1373
+ dmin
1374
+ Safe zone
1375
+ 3
1376
+ dangerous
1377
+ zone
1378
+ Critical
1379
+ zone
1380
+ 0
1381
+ 10
1382
+ 15
1383
+ 20
1384
+ 25
1385
+ Time (second)Figure 17: The path-following task error dpf during the inside phase.
1386
+ γc =
1387
+ − 10 and Te = 0.008 second.
1388
+ 4.3
1389
+ Experimental Validation
1390
+ This part is devoted to the physical implementation of the blocks Robot
1391
+ control that is shown in Fig. 9. Its physical correspondence is presented in
1392
+ Fig. 18. The robotic work-cell in the latter figure consists of:
1393
+ • a serial robot from Universal Robot (UR3) with ±0.03 mm pose re-
1394
+ peatability. It communicates with the proposed controller via TCP/IP
1395
+ for receiving the command velocity of the end-effector. It also sends
1396
+ the end-effector pose to the controller if the block Robot control (case
1397
+ 1) is required to be executed;
1398
+ • a monocular camera from Guppy (with image size 640 × 420 pixels)
1399
+ and an optical objective lens from Computar with distortion (model
1400
+ MLM3X-MP) are used for the control purpose. This optical system
1401
+ tracks and estimates the poses of the end-effector and the incision
1402
+ orifice.
1403
+ It then sends these poses to the proposed controller if the
1404
+ block Robot control (case 2) is needed to be executed;
1405
+ 29
1406
+
1407
+ 0.06
1408
+ urcm
1409
+ 0.04
1410
+ dpf
1411
+ 0.02
1412
+ (mm)
1413
+ WAWWAAMWWM
1414
+ dpf
1415
+ 0.00
1416
+ -0.02
1417
+ -0.04
1418
+ 10
1419
+ 15
1420
+ 20
1421
+ 25
1422
+ Time (second)• two visualization cameras provide other views for recording the mul-
1423
+ timedia videos.
1424
+ Figure 18: Configuration of the experimental setup.
1425
+ The numerical twin of the ear model shown previously in Fig. 8 is mod-
1426
+ ified for implementing its 3D printed twin. This modification holds up the
1427
+ (a)
1428
+ (b)
1429
+ Figure 19: The printed ear model used during the different tests. (a) The
1430
+ different parts of the ear model and the rigid tools. (b) After assembling
1431
+ the different parts.
1432
+ 30
1433
+
1434
+ Robot
1435
+ controller
1436
+ End-effector
1437
+ Tool body
1438
+ Visualization
1439
+ Control
1440
+ cameras
1441
+ Incision orifice-
1442
+ cameramastoidectomy orifice with the middle ear cavity and a planar grid/marker.
1443
+ Fig. 19 presented the fabricated parts before and after the assembly, along-
1444
+ side the rigid tools used during the validation tests.
1445
+ The trials of this part have the objective to evaluate the performance
1446
+ of the path-following controller under constraints. Therefore, a curved tool
1447
+ follows the same planned path, one time under the RCM constraint and the
1448
+ second time under the UCM constraint.
1449
+ 4.3.1
1450
+ Path-Following under RCM Constraint
1451
+ (a)
1452
+ (b)
1453
+ Figure 20: Experimental validation of the 3D path-following under a RCM
1454
+ constraint (see Extension 5). (a) The tool pose with respect to the desired
1455
+ path. (b) Sequence of zoom images during the tool motion.
1456
+ Fig. 20 presents the desired path (sea-green dotted line), the resultant
1457
+ motion of the curved tool (orange line), and the path done by tool-tip
1458
+ (dodger-blue line). One can observe in Fig. 20b(1) that the tool approaches
1459
+ to the incision orifice by executing the controller given in equation (11). The
1460
+ approach task error eapp computed from equation (7). Fig. 21 presents the
1461
+ latter error and it converges toward zero by the end of this phase.
1462
+ Afterward, the transition phase starts so that the tool passes the center
1463
+ point of the incision orifice, as explained previously. The hierarchical con-
1464
+ troller (equation 29) arranges the path-following task as the highest priority
1465
+ while the RCM task is the second one. This behaviour is demonstrated in
1466
+ the left column of Fig. 22-23, where the hierarchical controller has been ac-
1467
+ tivated around 4 second. One can visualize that the RCM task error drcm
1468
+ 31
1469
+
1470
+ reference curve
1471
+ actualcurve
1472
+ tool bodyFigure 21: The approach task error eapp, where the left column is the linear
1473
+ error and the right column represents the angular error.
1474
+ has some steps due to the movements of the virtual trocar point while the
1475
+ path-following error dpf maintained its value around zero.
1476
+ Figure 22: The RCM task error drcm, where the left column shows the
1477
+ error evolution during the outside/transition phases while the right column
1478
+ presents the error during the inside phase.
1479
+ When the tool passes the center point of the incision orifice, the inside
1480
+ phase begins. The hierarchical controller (equation 28) modifies its priorities
1481
+ by setting the RCM task as the highest one and the path-following as the
1482
+ 32
1483
+
1484
+ 25
1485
+ 50
1486
+ linear
1487
+ angular
1488
+ 20
1489
+ 40
1490
+ (mm)
1491
+ 15
1492
+ 10
1493
+ 20
1494
+ 5
1495
+ 10
1496
+ 0.5
1497
+ 1.0
1498
+ 1.52.0
1499
+ 2.5
1500
+ 3.0
1501
+ 3.5
1502
+ 4.0
1503
+ 0.5
1504
+ 1.0
1505
+ 1.52.02.5
1506
+ 3.0
1507
+ 3.5
1508
+ 4.0
1509
+ Time (second)
1510
+ Time (second)outside/transition phases
1511
+ inside phase
1512
+ 3.0
1513
+ 0.7
1514
+ 0.6
1515
+ 2.5
1516
+ 0.5
1517
+ 2.0
1518
+ (u)
1519
+ 0.4
1520
+ 1.5
1521
+ 0.3
1522
+ 1.0
1523
+ 0.2
1524
+ 0.5
1525
+ 0.1
1526
+ 0.0.
1527
+ 0.0
1528
+ 0
1529
+ 2
1530
+ 4
1531
+ 6
1532
+ 8
1533
+ 10
1534
+ 12
1535
+ 14
1536
+ 16
1537
+ 5
1538
+ 20
1539
+ 25
1540
+ 30
1541
+ 40
1542
+ 45
1543
+ 50
1544
+ Time (second)
1545
+ Time (second)Figure 23: The path-following task error dpf, where the left column shows
1546
+ the error evolution during the outside/transition phases while the right col-
1547
+ umn presents the error during the inside phase.
1548
+ second one. The system performances during the inside phase are shown
1549
+ in the right columns of Fig. 22-23. During this phase, the RCM task error
1550
+ drcm measured as 0.06 ± 0.05mm (mean error ± standard deviation (STD)
1551
+ error) while the path-following error dpf was 0.05 ± 0.03mm.
1552
+ A exteroceptive sensor used to close the control loop, as presented in
1553
+ Fig. 9 by the block Robot control (case 2). Besides that, the gain values
1554
+ used in this experiment were equal to λ = 1, γ = 1, vtis = 0.5 mm/second,
1555
+ β′ = −1.25, γc = −10 and Te = 0.008 second.
1556
+ Another trial was conducted for testing the block Robot control (case 1)
1557
+ by using the proprioceptive sensor in the control loop. The system perfor-
1558
+ mances are better than the exteroceptive test (see test 2 in Table 1). The
1559
+ errors drcm and dpf are reduced to almost half. It implies that our vision
1560
+ system needed amelioration in terms of accuracy.
1561
+ From the surgeon’s perspective, it is required to target the residual cells
1562
+ of cholesteatoma. It implies that the robot should detect/remove a human
1563
+ cell whose size is around 0.1mm. The proposed controller reached the re-
1564
+ quirements since the error dpf is smaller than the human cell size. Besides
1565
+ that, the surgical tool does not damage the entry orifice (patient’s head).
1566
+ By increasing the tool velocity vtis = 2 mm/second and maintain the
1567
+ same ratio β′/vtis = −2, the system performances deteriorated as expected.
1568
+ The errors drcm and dpf are almost increase by half (see tests 2 and 4 in
1569
+ 33
1570
+
1571
+ outside/transition phases
1572
+ inside phase
1573
+ 0.30
1574
+ 0.20
1575
+ 0.25
1576
+ 0.15
1577
+ 0.20
1578
+ (mm)
1579
+ 0.15
1580
+ 0.10
1581
+ 0.10
1582
+ 0.05
1583
+ 0.05
1584
+ 0.00
1585
+ 0.00
1586
+ 0
1587
+ 2
1588
+ 4
1589
+ 6
1590
+ 8
1591
+ 10
1592
+ 12
1593
+ 14
1594
+ 16
1595
+ 15
1596
+ 20
1597
+ 30
1598
+ 3540
1599
+ 45
1600
+ 50
1601
+ Time (second)
1602
+ Time (second)Table 1). Therefore, the choice of the gain coefficients effects the system per-
1603
+ formances.
1604
+ 4.3.2
1605
+ Path Following under UCM Constraint
1606
+ This second trial assumes the same conditions as the previous one. It in-
1607
+ volves the same curved tool and the desired path. However, this trial im-
1608
+ posed a unilateral constraint on the tool motion. Consequently, the tool can
1609
+ leave the center point of the incision orifice and move near the orifice wall.
1610
+ This behaviour is demonstrated in Fig. 24. The sub-figure (b1) of the lat-
1611
+ ter figure shows the path done by the tool-tip during the outside/transition
1612
+ phases, while the sub-figure (b2) presents the tool-tip path during the inside
1613
+ phase. The dangerous and critical regions are presented by the green and
1614
+ red circles in the latter sub-figure.
1615
+ (a)
1616
+ (b)
1617
+ Figure 24: Experimental validation of the 3D path-following under a UCM
1618
+ constraint (see Extension 6). (a) The tool motion during the different phases.
1619
+ (b) Sequence of zoom images during the tool motion.
1620
+ Throughout the inside phase, the hierarchical controller arranges the
1621
+ different tasks as explained in section 3.6. The highest priority is the path-
1622
+ following task when the tool is located in the safe zone. However, the highest
1623
+ priority changes to the UCM task when the tool body passes the danger
1624
+ zone. The system performances are shown in Fig. 25-26. One can observe
1625
+ from the UCM task error ducm (Fig. 25) that the tool body is maintained in
1626
+ 34
1627
+
1628
+ referencecurve
1629
+ actualcurve
1630
+ tool body
1631
+ orificewallFigure 25: The UCM task error ducm during the inside phase.
1632
+ Figure 26: The path-following task error dpf during the inside phase.
1633
+ the dangerous zone since the error ducm changes its value between dmax and
1634
+ dmin. Besides that, the path-following error dpf (Fig. 26) was 0.05±0.03mm
1635
+ (mean error ± STD error) and its median error was 0.05mm.
1636
+ A exteroceptive sensor used as the feedback sensor. Additionally, the
1637
+ gain values used for this second trial were equal to λ = 1, γ = 1, vtis =
1638
+ 0.5 mm/second, β′ = −1.25, γc = −10 and Te = 0.008 second.
1639
+ The error dpf of this trial remains almost the same as the previous trial.
1640
+ It implies that the UCM constraint does not deteriorate the path-following
1641
+ error. Indeed, it provides the surgical tool to move with more liberty in
1642
+ order to take advantage of the large size of the entry orifice.
1643
+ 35
1644
+
1645
+ 5
1646
+ Idrcm
1647
+ I d ucm ll
1648
+ dmax
1649
+ 4
1650
+ dmin
1651
+ Safe zone
1652
+ (mm)
1653
+ 3
1654
+ dangerous
1655
+ zone
1656
+ Critical
1657
+ zone
1658
+ 0
1659
+ 15
1660
+ 20
1661
+ 25
1662
+ 30
1663
+ 35
1664
+ 40
1665
+ Time (second)inside phase
1666
+ 0.18
1667
+ 0.16
1668
+ 0.14
1669
+ 0.12
1670
+ (mm)
1671
+ 0.10
1672
+ 0.08
1673
+ d
1674
+ 0.06
1675
+ 0.04
1676
+ 0.02
1677
+ 0.0Q
1678
+ 10
1679
+ 15
1680
+ 20
1681
+ 25
1682
+ 30
1683
+ 35
1684
+ 40
1685
+ 45
1686
+ Time (second)N°
1687
+ constraint
1688
+ feedback
1689
+ type of
1690
+ error
1691
+ mean (∥e∥) ± STD
1692
+ 1
1693
+ RCM
1694
+ exteroceptive
1695
+ drcm
1696
+ dpf
1697
+ 0.06±0.05
1698
+ 0.05±0.02
1699
+ 2
1700
+ RCM
1701
+ exteroceptive
1702
+ drcm
1703
+ dpf
1704
+ 0.15±0.06
1705
+ 0.08±0.05
1706
+ 3
1707
+ RCM
1708
+ proprioceptive
1709
+ drcm
1710
+ dpf
1711
+ 0.02±0.05
1712
+ 0.02±0.01
1713
+ 4
1714
+ RCM
1715
+ proprioceptive
1716
+ drcm
1717
+ dpf
1718
+ 0.03±0.08
1719
+ 0.03±0.02
1720
+ 5
1721
+ UCM
1722
+ exteroceptive
1723
+ drcm
1724
+ dpf
1725
+ 3.30±0.93
1726
+ 0.05±0.03
1727
+ 6
1728
+ UCM
1729
+ exteroceptive
1730
+ drcm
1731
+ dpf
1732
+ 3.30±0.93
1733
+ 0.09±0.06
1734
+ 7
1735
+ UCM
1736
+ proprioceptive
1737
+ drcm
1738
+ dpf
1739
+ 2.74±0.77
1740
+ 0.02±0.01
1741
+ 8
1742
+ UCM
1743
+ proprioceptive
1744
+ drcm
1745
+ dpf
1746
+ 2.69±0.67
1747
+ 0.03±0.02
1748
+ Table 1: Summary of different trials achieved with the curved tool during
1749
+ the experimental tests.
1750
+ ∥e∥ (in mm) is the absolute average of the linear error along x − y − z axes,
1751
+ and STD is the related standard deviation (in mm).
1752
+ Results obtained with the following parameters: λ = 1, vtis = 0, 5 mm/s,
1753
+ and Te = 0, 008 second. The while trials applied β′ = −1.25, while the blue
1754
+ ones applied β′ = −5.
1755
+ 5
1756
+ CONCLUSION AND FUTURE WORK
1757
+ This article discussed the design of an original controller for guiding a rigid
1758
+ instrument under constrained motions such as RCM or UCM. The proposed
1759
+ methodology allows a generic formulation, in the same controller, two tasks:
1760
+ i) the constrained motion (RCM or UCM), and ii) a revisited 3D path-
1761
+ following scheme by increasing the sensitivity to the path complexity (e.g.,
1762
+ curvature radius) and then reducing the path-following error. To manage
1763
+ the achievement of two or more tasks without conflicts, we also implemented
1764
+ a task prioritizing paradigm. Consequently, the developed control scheme
1765
+ can be integrated easily with various robotic systems without an accurate
1766
+ knowledge of the robot inverse kinematics.
1767
+ 36
1768
+
1769
+ Experimental validation was also successfully conducted using a 6-DoF
1770
+ robotic system. The obtained results are promising in terms of behavior
1771
+ and precision. These performances, even if they meet the specifications of
1772
+ the targeted middle ear surgery, may be considered improvements.
1773
+ The
1774
+ positioning error depends directly on the registration process that is not
1775
+ treated optimally in this work. Furthermore, the pose estimation of the tool-
1776
+ tip was done based on a geometric model of the instrument. Its estimation
1777
+ could be another source of error. Thus, it would be interesting to find out
1778
+ another method for estimating the tool shape and the pose of its tip.
1779
+ The forthcoming work will implement the discussed methods in a clinical
1780
+ context using a realistic phantom and a human cadaver. Besides that, a force
1781
+ control could be added to increase the robot sensitivity to its environment
1782
+ and increase the level of security.
1783
+ ACKNOWLEDGMENTS
1784
+ This work was supported by the Inserm ROBOT Project: ITMO Cancer
1785
+ no 17CP068-00.
1786
+ References
1787
+ [1] Jake J Abbott, Panadda Marayong, and Allison M Okamura. Haptic virtual
1788
+ fixtures for robot-assisted manipulation. In Robotics research, pages 49–64.
1789
+ Springer Berlin Heidelberg, 2007.
1790
+ [2] Serhat Aksungur.
1791
+ Remote center of motion (rcm) mechanisms for surgical
1792
+ operations.
1793
+ International Journal of Applied Mathematics, Electronics and
1794
+ Computers, 3(2):119–126, 2015.
1795
+ [3] C.M. Alper and Charles D. Bluestone.
1796
+ Advanced Therapy of Otitis Media.
1797
+ Pmph USA Ltd Series. BC Decker, 2004.
1798
+ [4] Jose Evandro Andrade Prudente de Aquino, Nelson Alvares Cruz Filho, and
1799
+ Julia Negro Prudente de Aquino. Epidemiology of middle ear and mastoid
1800
+ cholesteatomas: study of 1146 cases. Brazilian journal of otorhinolaryngology,
1801
+ 77(3):341–347, 2011.
1802
+ [5] Brian C Becker, Robert A MacLachlan, Louis A Lobes, Gregory D Hager, and
1803
+ Cameron N Riviere. Vision-based control of a handheld surgical micromanip-
1804
+ ulator with virtual fixtures. IEEE Transactions on Robotics, 29(3):674–683,
1805
+ 2013.
1806
+ [6] Emad M Boctor, Robert J Webster III, Herve Mathieu, Allison M Okamura,
1807
+ and Gabor Fichtinger.
1808
+ Virtual remote center of motion control for needle
1809
+ placement robots. Computer Aided Surgery, 9(5):175–183, 2004.
1810
+ 37
1811
+
1812
+ [7] Stuart A Bowyer, Brian L Davies, and Ferdinando Rodriguez y Baena. Ac-
1813
+ tive constraints/virtual fixtures: A survey. IEEE Transactions on Robotics,
1814
+ 30(1):138–157, 2014.
1815
+ [8] Fran¸cois Chaumette and Seth Hutchinson. Visual servo control. i. basic ap-
1816
+ proaches. IEEE Robotics & Automation Magazine, 13(4):82–90, 2006.
1817
+ [9] K. Cleary and T. M. Peters. Image-guided interventions: technology review
1818
+ and clinical applications. Annual review of biomedical engineering, 12:119–142,
1819
+ 2010.
1820
+ [10] B. Dahroug, B. Tamadazte, and N. Andreff.
1821
+ Visual servoing controller for
1822
+ time-invariant 3d path following with remote centre of motion constraint. In
1823
+ IEEE International Conference on Robotics and Automation (ICRA), pages
1824
+ 3612–3618, 2017.
1825
+ [11] B. Dahroug, B. Tamadazte, L. Tavernier, and al. Review on otological robotic
1826
+ systems: Toward micro-robot assisted cholesteatoma surgery.
1827
+ IEEE R. in
1828
+ Biomed. Eng., 11:125–142, 2018.
1829
+ [12] Bassem Dahroug, Brahim Tamadazte, and Nicolas Andreff. Unilaterally con-
1830
+ strained motion of a curved surgical tool. Robotica, 38(11):1940 – 1962, 2020.
1831
+ [13] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber.
1832
+ Hierarchical
1833
+ quadratic programming: Fast online humanoid-robot motion generation. The
1834
+ International Journal of Robotics Research, 33(7):1006–1028, 2014.
1835
+ [14] Johannes Fauser, Georgios Sakas, and Anirban Mukhopadhyay. Planning non-
1836
+ linear access paths for temporal bone surgery. International journal of com-
1837
+ puter assisted radiology and surgery, 13(5):637–646, 2018.
1838
+ [15] Johannes Fauser, Igor Stenin, Markus Bauer, Wei-Hung Hsu, Julia Kristin,
1839
+ Thomas Klenzner, J¨org Schipper, and Anirban Mukhopadhyay. Toward an
1840
+ automatic preoperative pipeline for image-guided temporal bone surgery. In-
1841
+ ternational journal of computer assisted radiology and surgery, 14(6):967–976,
1842
+ 2019.
1843
+ [16] Joshua Gafford, Michael Freeman, Loris Fichera, Jack Noble, Robert Labadie,
1844
+ and Robert J Webster. Eyes in ears: a miniature steerable digital endoscope for
1845
+ trans-nasal diagnosis of middle ear disease. Annals of Biomedical Engineering,
1846
+ 49(1):219–232, 2021.
1847
+ [17] N. Gerber, B. Bell, K. Gavaghan, and al. Surgical planning tool for robotically
1848
+ assisted hearing aid implantation. Int. J. of Comp. Assis. Rad. and Surg.,
1849
+ 9:11–20, 2014.
1850
+ [18] H. Hildmann and H. Sudhoff. Middle Ear Surgery. Springer Berlin Heidelberg,
1851
+ 2006.
1852
+ [19] Oussama Kanoun, Florent Lamiraux, and Pierre-Brice Wieber.
1853
+ Kinematic
1854
+ control of redundant manipulators: Generalizing the task-priority framework
1855
+ to inequality task. IEEE Transactions on Robotics, 27(4):785–792, 2011.
1856
+ 38
1857
+
1858
+ [20] Moslem Kazemi, Kamal Gupta, and Mehran Mehrandezh. Path-planning for
1859
+ visual servoing: A review and issues. In Visual Servoing via Advanced Numer-
1860
+ ical Methods, pages 189–207. Springer, 2010.
1861
+ [21] C.-H. Kuo and J. S. Dai. Robotics for minimally invasive surgery: a historical
1862
+ review from the perspective of kinematics. In Int. Symp.on History of Machines
1863
+ and Mechanisms, pages 337–354, 2009.
1864
+ [22] K. Lau, M. Stavrakas, M. Yardley, and J. Ray. Lasers in cholesteatoma surgery:
1865
+ A systematic review. Ear, Nose & Throat Journal, 100:94S–99S, 2021.
1866
+ [23] Hyunyoung Lee, Byungsik Cheon, Minho Hwang, Donghoon Kang, and Dong-
1867
+ Soo Kwon. A master manipulator with a remote-center-of-motion kinematic
1868
+ structure for a minimally invasive robotic surgical system. The International
1869
+ Journal of Medical Robotics and Computer Assisted Surgery, 14(1):e1865, 2018.
1870
+ [24] Anthony A Maciejewski and Charles A Klein. Obstacle avoidance for kine-
1871
+ matically redundant manipulators in dynamically varying environments. The
1872
+ international journal of robotics research, 4(3):109–117, 1985.
1873
+ [25] Ezio Malis, Francois Chaumette, and Sylvie Boudet. 2 1/2 d visual servoing.
1874
+ IEEE Transactions on Robotics and Automation, 15(2):238–250, 1999.
1875
+ [26] Murilo M Marinho, Hisashi Ishida, Kanako Harada, Kyoichi Deie, and Mamoru
1876
+ Mitsuishi. Virtual fixture assistance for suturing in robot-aided pediatric en-
1877
+ doscopic surgery. IEEE Robotics and Automation Letters, 5(2):524–531, 2020.
1878
+ [27] Yoshihiko Nakamura, Hideo Hanafusa, and Tsuneo Yoshikawa. Task-priority
1879
+ based redundancy control of robot manipulators. The International Journal
1880
+ of Robotics Research, 6(2):3–15, 1987.
1881
+ [28] Mohammad Ali Nasseri, P Gschirr, Martin Eder, Suraj Nair, K Kobuch, Math-
1882
+ ias Maier, Daniel Zapp, C Lohmann, and Alois Knoll. Virtual fixture control of
1883
+ a hybrid parallel-serial robot for assisting ophthalmic surgery: An experimen-
1884
+ tal study. In 5th IEEE RAS/EMBS International Conference on Biomedical
1885
+ Robotics and Biomechatronics, pages 732–738, 2014.
1886
+ [29] Sajid Nisar, Asad Hameed, Nabeel Kamal, Osman Hasan, and Fumitoshi Mat-
1887
+ suno. Design and realization of a robotic manipulator for minimally invasive
1888
+ surgery with replaceable surgical tools. IEEE/ASME Transactions on Mecha-
1889
+ tronics, 25(6):2754–2764, 2020.
1890
+ [30] J. H. Noble, B. M. Dawant, Warren, and al. Automatic identification and 3-d
1891
+ rendering of temporal bone anatomy. Otology & neurotology, 30:436, 2009.
1892
+ [31] Ewa Olszewska, Mathias Wagner, Manuel Bernal-Sprekelsen, J¨org Ebmeyer,
1893
+ Stefan Dazert, Henning Hildmann, and Holger Sudhoff.
1894
+ Etiopathogenesis
1895
+ of cholesteatoma. European Archives of Oto-Rhino-Laryngology and Head &
1896
+ Neck, 261(1):6–24, 2004.
1897
+ 39
1898
+
1899
+ [32] Takayuki Osa, Christoph Staub, and Alois Knoll. Framework of automatic
1900
+ robot surgery system using visual servoing. In IEEE/RSJ International Con-
1901
+ ference on Intelligent Robots and Systems (IROS), pages 1837–1842, 2010.
1902
+ [33] Mario Selvaggio, Giuseppe Andrea Fontanelli, Fanny Ficuciello, Luigi Villani,
1903
+ and Bruno Siciliano. Passive virtual fixtures adaptation in minimally invasive
1904
+ robotic surgery. IEEE Robotics and Automation Letters, 3(4):3129–3136, 2018.
1905
+ [34] Bruno Siciliano. Kinematic control of redundant robot manipulators: A tuto-
1906
+ rial. Journal of intelligent and robotic systems, 3(3):201–212, 1990.
1907
+ [35] J.-H. So, B. Tamadazte, and J. Szewczyk. Micro/macro-scale robotic approach
1908
+ for middle ear surgery. IEEE T. on Med. Rob. and Bion., 2:533–536, 2020.
1909
+ [36] Arushri Swarup, Kyle W Eastwood, Peter Francis, Nichtima Chayaopas,
1910
+ Lueder A Kahrs, Colin G Leonard, James Drake, and Adrian James.
1911
+ De-
1912
+ sign, prototype development and pre-clinical validation of a novel instrument
1913
+ with a compliant steerable tip to facilitate endoscopic ear surgery. Journal of
1914
+ Medical Engineering & Technology, 45(1):22–34, 2021.
1915
+ [37] J. Troccaz, G. Dagnino, and G.-Z. Yang. Frontiers of medical robotics: From
1916
+ concept to systems to clinical translation. Ann. R. of Biomed. Eng., 21:193–
1917
+ 218, 2019.
1918
+ [38] Marie-Aude Vitrani, C´ecile Poquet, and Guillaume Morel. Applying virtual
1919
+ fixtures to the distal end of a minimally invasive surgery instrument. IEEE
1920
+ Transactions on Robotics, 33(1):114–123, 2016.
1921
+ [39] Qingwen Zheng, Yucheng He, Xiaozhi Qi, Peng Zhang, Ying Hu, and Bing
1922
+ Li. Safety tracking motion control based on forbidden virtual fixtures in robot
1923
+ assisted nasal surgery. IEEE Access, 6:44905–44916, 2018.
1924
+ [40] L. Zorn, F. Nageotte, Zanne, and al. A novel telemanipulated robotic assistant
1925
+ for surgical endoscopy: Preclinical application to esd. IEEE T. on Biomed.
1926
+ Eng., 65:797–808, 2018.
1927
+ 40
1928
+
-NAzT4oBgHgl3EQfSvt8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -210,3 +210,35 @@ c9E3T4oBgHgl3EQfeQoX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
210
  w9FJT4oBgHgl3EQfgiwX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
211
  X9FRT4oBgHgl3EQfODd9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
212
  AtAyT4oBgHgl3EQfRvdA/content/2301.00071v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
  w9FJT4oBgHgl3EQfgiwX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
211
  X9FRT4oBgHgl3EQfODd9/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
212
  AtAyT4oBgHgl3EQfRvdA/content/2301.00071v1.pdf filter=lfs diff=lfs merge=lfs -text
213
+ 0dE5T4oBgHgl3EQfOg4z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
214
+ 9tAyT4oBgHgl3EQfQ_bX/content/2301.00059v1.pdf filter=lfs diff=lfs merge=lfs -text
215
+ 0tAzT4oBgHgl3EQfDPqY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
216
+ z9E0T4oBgHgl3EQftwG-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
217
+ 4tE1T4oBgHgl3EQf6QWC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
218
+ B9FQT4oBgHgl3EQfNza6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
219
+ _dFLT4oBgHgl3EQfDy7e/content/2301.11981v1.pdf filter=lfs diff=lfs merge=lfs -text
220
+ 9tAyT4oBgHgl3EQfQ_bX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
221
+ VtFOT4oBgHgl3EQf6zSP/content/2301.12960v1.pdf filter=lfs diff=lfs merge=lfs -text
222
+ 4tE1T4oBgHgl3EQf6QWC/content/2301.03521v1.pdf filter=lfs diff=lfs merge=lfs -text
223
+ F9FKT4oBgHgl3EQfbS5P/content/2301.11811v1.pdf filter=lfs diff=lfs merge=lfs -text
224
+ qNE0T4oBgHgl3EQfaQBn/content/2301.02332v1.pdf filter=lfs diff=lfs merge=lfs -text
225
+ XtAzT4oBgHgl3EQfKfuP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
226
+ _dFLT4oBgHgl3EQfDy7e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
227
+ 0tFPT4oBgHgl3EQfTjTq/content/2301.13054v1.pdf filter=lfs diff=lfs merge=lfs -text
228
+ 7dE4T4oBgHgl3EQf2Q2c/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
229
+ z9E0T4oBgHgl3EQftwG-/content/2301.02597v1.pdf filter=lfs diff=lfs merge=lfs -text
230
+ htA0T4oBgHgl3EQfIP9i/content/2301.02072v1.pdf filter=lfs diff=lfs merge=lfs -text
231
+ jdE0T4oBgHgl3EQf7QI8/content/2301.02773v1.pdf filter=lfs diff=lfs merge=lfs -text
232
+ qNE0T4oBgHgl3EQfaQBn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
233
+ ytE1T4oBgHgl3EQf4AXn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
234
+ 7dE4T4oBgHgl3EQf2Q2c/content/2301.05297v1.pdf filter=lfs diff=lfs merge=lfs -text
235
+ BdE4T4oBgHgl3EQf5Q5A/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
236
+ 29E2T4oBgHgl3EQfjQdC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
237
+ wdE3T4oBgHgl3EQfOgk_/content/2301.04393v1.pdf filter=lfs diff=lfs merge=lfs -text
238
+ 0dE5T4oBgHgl3EQfOg4z/content/2301.05497v1.pdf filter=lfs diff=lfs merge=lfs -text
239
+ GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf filter=lfs diff=lfs merge=lfs -text
240
+ BdE2T4oBgHgl3EQfRge6/content/2301.03782v1.pdf filter=lfs diff=lfs merge=lfs -text
241
+ VtFOT4oBgHgl3EQf6zSP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
242
+ 0tFPT4oBgHgl3EQfTjTq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
243
+ 9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf filter=lfs diff=lfs merge=lfs -text
244
+ x9FJT4oBgHgl3EQfhSy6/content/2301.11565v1.pdf filter=lfs diff=lfs merge=lfs -text
0dE5T4oBgHgl3EQfOg4z/content/2301.05497v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1c5db43488fdce2a44eba94f2d37751f7c49cf2038c83d487ba7e07f5481002
3
+ size 746015
0dE5T4oBgHgl3EQfOg4z/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9aad57ee780ed22e8b4e1f3b146fee76bbed49270b1ef1b898b07396449426c
3
+ size 1114157
0tAzT4oBgHgl3EQfDPqY/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f36c8a3e98941ef37884da4ee60c4be0d76db65dbc1727ce93f077544cd5989
3
+ size 4522029
0tFPT4oBgHgl3EQfTjTq/content/2301.13054v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3befe2aaa2ac32e4e0859a3f418d920b15621b32f359ba6453dc18373c361681
3
+ size 308095
0tFPT4oBgHgl3EQfTjTq/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:939f1931eb597464ed0357ece468b9f942c377d83b89956269012520e2bfbf42
3
+ size 4390957
29E2T4oBgHgl3EQfjQdC/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59d30beb04d3903d4c95d4164264e82fb3f7c721e6f3113c723ad0538ecbdc77
3
+ size 5242925
29E2T4oBgHgl3EQfjQdC/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8b823ec5ac82801cbc2d54bf720d9a4d7fe9befb4dd70962abdcd688d6e782e
3
+ size 193207
2tFKT4oBgHgl3EQf7y43/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c49f10873f5e566acddaaa5797f9f1405ed6f745697380b4536337f683a284
3
+ size 115459
4NE1T4oBgHgl3EQfSgOT/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f067b38de44bd486a80f10ac22dfe5b1bb167c0fed4bdc1f0df0c6addeeeab55
3
+ size 99785
4tE1T4oBgHgl3EQf6QWC/content/2301.03521v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:810cee56052123f932475999c9959ec9eeb021a93ea1440772efbfb652bd9535
3
+ size 250161
4tE1T4oBgHgl3EQf6QWC/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e5b91ee67af6419b43c683b45077dc110aee1b85bb6a33416483eb4951a17a8
3
+ size 2883629
4tE1T4oBgHgl3EQf6QWC/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3a2fdaf23922132289c2ddca0bdd11b4606a47be3d41f0e82dcce2277fab048
3
+ size 115273
6dAyT4oBgHgl3EQfcvcQ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2205d28165bfc57414ce40bb9b70a94c096f698ef016cef41dcf660bf0cb7f1
3
+ size 68790
6dAyT4oBgHgl3EQfpfjS/content/tmp_files/2301.00528v1.pdf.txt ADDED
@@ -0,0 +1,505 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Adaptive Quantum Amplitude Estimation
2
+ Xi Lu1 and Hongwei Lin1, ∗
3
+ 1School of Mathematical Science, Zhejiang University, Hangzhou, 310027, China
4
+ The maximum likelihood amplitude estimation (MLAE) algorithm is a practical solution to the
5
+ quantum amplitude estimation problem, which has a theoretically quadratic speedup over classical
6
+ Monte Carlo method. However, we find that MLAE is not unbiased, which is one of the major causes
7
+ of its inaccuracy. We propose an adaptive quantum amplitude estimation (AQAE) algorithm by
8
+ choosing MLAE parameters adaptively to avoid critical points. We also do numerical experiments
9
+ to show that our algorithm is approximately unbiased and more efficient than MLAE.
10
+ I.
11
+ INTRODUCTION
12
+ Quantum computing is an emerging subject that studies faster solutions on quantum computers over clas-
13
+ sical ones. Early quantum algorithms have achieved astonishing speedups over known classical algorithms,
14
+ such as the quadratic speedup of Grover’s search [1], and the exponential speedup of Shor’s integer factor-
15
+ ization [2]. Later algorithms like quantum approximate optimization algorithms (QAOA) [3–5], variational
16
+ quantum eigen solver (VQE) [6, 7] and quantum neural networks (QNN) [8, 9] also shows great potentials in
17
+ quantum computing.
18
+ The amplitude estimation problem [10] is one of the most fundamental problems in quantum computing, a
19
+ quantum variant of the classical Monte Carlo problem. Let A be any quantum algorithm that performs the
20
+ following unitary transformation,
21
+ A |00 · · · 0⟩ =
22
+
23
+ 1 − a |ψ0⟩ |0⟩ + √a |ψ1⟩ |1⟩ = cos φ |ψ0⟩ |0⟩ + sin φ |ψ1⟩ |1⟩ .
24
+ (1)
25
+ The goal of amplitude estimation problem is to estimate a. It is derived from the well-known phase estimation
26
+ problem, and has been widely applied in quantum chemistry [11–13] and machine learning [14, 15] in recent
27
+ studies.
28
+ The earliest solution [10] is a combination of quantum phase estimation and Grover’s search. There are some
29
+ later researches [16–19] that improve the robustness of phase estimation. The modified Grover’s operator [20]
30
+ is an approach that is designed to perform robustly under depolarizing noise. However, most of the recent
31
+ researches study amplitude estimation algorithms without the use of phase estimation, since it is believed that
32
+ the controlled amplification operations required by phase estimation can be different to implement on noise
33
+ intermediate-scale quantum devices. The maximum likelihood amplitude estimation (MLAE) [21] algorithm is
34
+ an approach without phase estimation, which is proved to have an error convergence O(N −1) asymptotically
35
+ when using an exponential incremental sequence (EIS), which is quadratically faster than O(N −1/2) for
36
+ classical Monte Carlo algorithm. The error convergence O(N −1) is also known as the Heisenberg limit [22].
37
+ There is a variant of MLAE [23] that is built for noisy devices without estimating the noise parameters.
38
+ The iterative quantum amplitude estimation (IQPE) [24] is another approach without phase estimation,
39
+ which is proved rigorously to achieve a quadratic speedup up to a double-logarithmic factor compared to
40
+ classical Monte Carlo (MC) estimation. The variational amplitude estimation [25] is a variational quantum
41
+ algorithm based on constant-depth quantum circuits that also outperforms MC. There are also several other
42
+ approaches [26, 27].
43
+ In this paper, we dive further into MLAE. In more precise experiments we find that the MLAE algorithm
44
+ is not unbiased, and the bias behaves periodically with respect to the ground truth a, as shown in Fig. 1.
45
+ Moreover, statistics theories show that the variance of any estimation ˜a follows the Cram´er-Rao inequality [28],
46
+ E[(˜a − a)2] ≥ [1 + b′(a)]2
47
+ F(a)
48
+ + b(a)2,
49
+ (2)
50
51
+ arXiv:2301.00528v1 [quant-ph] 2 Jan 2023
52
+
53
+ 2
54
+ 0.0
55
+ 0.2
56
+ 0.4
57
+ 0.6
58
+ 0.8
59
+ 1.0
60
+ 0.002
61
+ 0.000
62
+ 0.002
63
+ 0.004
64
+ 0.006
65
+ 0.008
66
+ Bias
67
+ RMSE
68
+ CRLB
69
+ FIG. 1: The bias and root of mean squared error (RMSE) of MLAE, for different a. The unbiased
70
+ Cram´er-Rao lower bound (CRLB) is the ideal distribution of RMSE, which is equal to Eq. (2) where
71
+ b(a) = 0.
72
+ where b(a) = E[˜a − a] is the bias, and the Fisher information F is defined as,
73
+ F(a) = E
74
+ ��∂ ln L(a)
75
+ ∂a
76
+ �2�
77
+ ,
78
+ (3)
79
+ where L is the likelihood function of MLAE. An estimation is fully efficient [29] if it is unbiased and saturates
80
+ the Cram´er-Rao inequality. From Fig. 1, we can see that MLAE is approximately unbiased and close to the
81
+ unbiased Cram´er-Rao lower bound in most area, except some periodical small intervals. We improve MLAE
82
+ and propose the adaptive quantum amplitude estimation (AQAE) algorithm in this paper by introducing an
83
+ adaptive rule to avoid these small intervals, and show that our estimation algorithm is approximately efficient
84
+ with numerical experiments.
85
+ II.
86
+ PRELIMINARY
87
+ Most amplitude estimation algorithms are based on a general procedure called amplitude amplification [10],
88
+ which performs the transformation
89
+ QmA |00 · · · 0⟩ = cos[(2m + 1)φ] |ψ0⟩ |0⟩ + sin[(2m + 1)φ] |ψ1⟩ |1⟩ ,
90
+ (4)
91
+ where
92
+ Q = A(2 |00 · · · 0⟩⟨00 · · · 0| − I)A−1(I ⊗ Z).
93
+ (5)
94
+ By measuring the last qubit with respect to the computational basis we obtain one with probability
95
+ sin2[(2m + 1)φ], and zero with probability cos2[(2m + 1)φ]. Such amplitude amplification process requires
96
+ (2m + 1) calls to the oracle A.
97
+ The MLAE algorithm requires parameters {mk, Rk}K
98
+ k=1. For each k the state QmkA |00 · · · 0⟩ is measured
99
+ for Rk times. Let hk be the number of ones in all Rk measurement results. The final estimation ˜a is obtained
100
+ by maximizing the likelihood function
101
+ L(a) :=
102
+ K
103
+
104
+ k=1
105
+ ℓk(φ),
106
+ (6)
107
+ where a ≡ sin2 φ, and
108
+ ℓk(φ) :=
109
+
110
+ sin2(Mkφ)
111
+ �hk �
112
+ cos2(Mkφ)
113
+ �Rk−hk ,
114
+ (7)
115
+
116
+ 3
117
+ 1( )
118
+ 2( )
119
+ 3( )
120
+ 4( )
121
+ 5( )
122
+ FIG. 2: An illustration of how MLAE works. The curves illustrate the function ℓk(φ) for each k. Here
123
+ M1 = 1, Mk = 2k + 1(k = 2, 3, 4, 5).
124
+ where Mk ≡ 2mk + 1.
125
+ The Fig. 2 illustrates how MLAE works. Generally the function ℓk(φ) has Mk peaks. For M1 = 1, there is
126
+ a single smooth peak in the likelihood function ℓ1(φ). For bigger Mks, the peaks are sharper and thus have
127
+ better estimation ability, but there is more than one peak. So we cannot get more accurate estimation with
128
+ ℓk(φ) alone. The MLAE algorithm combines the information of ℓk(φ) for different Mks by multiplying all
129
+ those likelihood functions, thus obtaining a likelihood function L that has only one sharp peak.
130
+ By calculation the Fisher information of MLAE is [21],
131
+ F(a) =
132
+ 1
133
+ a(1 − a)
134
+
135
+ k
136
+ RkM 2
137
+ k.
138
+ (8)
139
+ In most application problems the major complexity lies in the oracle A itself. Therefore, the time cost of
140
+ MLAE is,
141
+ N =
142
+
143
+ k
144
+ RkMk.
145
+ (9)
146
+ The original article about MLAE algorithm [21] presents two strategies of choosing parameters,
147
+ • Linear Incremental Sequence (LIS): mk = k − 1 and Rk = R for k = 1, 2, · · · , K, which has error
148
+ convergence ε ∼ N −3/4;
149
+ • Exponential Incremental Sequence (EIS): m1 = 0, mk = 2k−2(k = 2, 3, · · · , K) and Rk = R(k =
150
+ 1, 2, · · · , K), which has error convergence ε ∼ N −1.
151
+ As MLAE is approximately unbiased and saturates the Cram´er-Rao inequality in most area, the RMSE
152
+ has the same error convergence as F−1/2. The MLAE algorithm with EIS fixes R1 = · · · = RK = R, and
153
+ chooses M1 = 1, Mk = 2k−1 + 1(k ≥ 2), then N = O(R · 2K) and F−1/2 = O(R−1/2 · 2−K) = O(N −1), which
154
+ is quadratically faster than MC and reaches the Heisenberg limit. But in reality, the existence of the bias
155
+ term in Eq. (2) has a significant impact and violates the quadratic speedup, as is shown by the numerical
156
+ experiments in the next section.
157
+ III.
158
+ THEORY AND ALGORITHM
159
+ In the beginning of this section, we set up a model for the bias of MLAE. We call,
160
+
161
+ sin2
162
+ � j
163
+ m
164
+ π
165
+ 2
166
+ �����j = 1, 2, · · · , m − 1
167
+
168
+ (10)
169
+
170
+ 4
171
+ 0.0
172
+ 0.2
173
+ 0.4
174
+ 0.6
175
+ 0.8
176
+ 1.0
177
+ 0.002
178
+ 0.000
179
+ 0.002
180
+ 0.004
181
+ 0.006
182
+ 0.008
183
+ Bias
184
+ RMSE
185
+ CRLB
186
+ FIG. 3: The bias and RMSE of MLAE with parameters K = 5, R = 32. The vertical black dashed lines are
187
+ the critical points of order M5 = 24 + 1 = 17.
188
+ the critical points of order m. In MLAE, consider two values on each side of some critical point sin2(jπ/2MK),
189
+ namely a± = sin2(φ±) = sin2(jπ/2MK ± ε). It is harder for the likelihood function Eq. (6) to tell apart
190
+ a± = sin2(φ±) = sin2(jπ/2MK ± ε) when ε is small, as ℓK(φ+) = ℓK(φ−), and thus they can only be told
191
+ apart by other terms {ℓk(φ)}K−1
192
+ k=1 that is less sharp than ℓK(φ). As a result, MLAE has a positive bias when
193
+ a− is the ground truth, and has a negative bias when a+ is the ground truth. It should be mentioned that
194
+ other smaller Mks can also bring bias around their critical points, which is anyway not so obvious as MK.
195
+ Our theory concludes that MLAE has obvious bias in the intervals centered at each critical point of order
196
+ MK, as shown in Fig. 3.
197
+ By this observation, it is hard to flatten the bias curve on the whole interval [0, 1] with a fixed parameter
198
+ set {Mk, Rk}K
199
+ k=1. The intuition of our AQAE algorithm is that we can adaptively and randomly choose the
200
+ next Mk with the hope of staying away from the critical points of order Mk, namely {sin2(jπ/2Mk) : j =
201
+ 1, 2, · · · , Mk − 1}.
202
+ Define the score function,
203
+ s(M; ˆa) = sin2(2M ˆφ),
204
+ (11)
205
+ where ˆa ≡ sin2(ˆφ), which is close to zero when ˆa is close to a critical point of order M.
206
+ Suppose we have already performed amplitude amplification procedures with parameters {Mk, Rk}K′
207
+ k=1,
208
+ and have got the results {hk}K′
209
+ k=1. The Bayes theory tells us the posterior probability density distributions
210
+ of a is,
211
+ ρ(ˆa) ∝
212
+ K′
213
+
214
+ k=1
215
+ ℓk(ˆφ).
216
+ (12)
217
+ Combining the score function Eq. (11), we define the weight function about M as the expectation of the
218
+ score function,
219
+ w(M) = Eˆa[s(M; ˆa)] ∝
220
+ � 1
221
+ 0
222
+ s(M; ˆa)
223
+
224
+
225
+ K′
226
+
227
+ k=1
228
+ ℓk(ˆφ)
229
+
230
+ � d ˆa.
231
+ (13)
232
+ Similar to the score function, if ˆa is distributed mostly around some critical point of M, then w(M) is
233
+ small. The weight function is our guidance for the adaptive choice of the subsequent parameters {Mk, Rk}.
234
+ To avoid critical points, the key idea of AQAE is that the smaller w(Mk) is, the smaller Rk will be.
235
+ The Eq. (4) enables us to generate a 0-1 distribution random variable with p(1) = sin2[Mφ] for any odd
236
+ number M. An important thing for AQAE is that we should generalize it to the even case. From Eq. (1) we
237
+
238
+ 5
239
+ have,
240
+ cos φA−1(|ψ0⟩ |0⟩) + sin φA−1(|ψ1⟩ |1⟩) = |00 · · · 0⟩ .
241
+ (14)
242
+ By the orthogonality of A−1 we know that,
243
+ |ψ′⟩ := sin φA−1(|ψ0⟩ |0⟩) − cos φA−1(|ψ1⟩ |1⟩),
244
+ (15)
245
+ is orthogonal to |00 · · · 0⟩. That is, if we measure all qubits of |ψ′⟩ under the computational basis, we will
246
+ certainly get results that contain one. Moreover,
247
+ A−1 |ψ0⟩ |0⟩ = cos φ |00 · · · 0⟩ + sin φ |ψ′⟩ ,
248
+ (16)
249
+ A−1 |ψ1⟩ |1⟩ = sin φ |00 · · · 0⟩ − cos φ |ψ′⟩ .
250
+ (17)
251
+ Define,
252
+ Q′ = A−1(I ⊗ Z)A(2 |00 · · · 0⟩⟨00 · · · 0| − I).
253
+ (18)
254
+ Then,
255
+ Q′ |00 · · · 0⟩ =A−1(I ⊗ Z)A |00 · · · 0⟩
256
+ =A−1(I ⊗ Z)(cos φ |ψ0⟩ |0⟩ + sin φ |ψ1⟩ |1⟩)
257
+ =A−1(cos φ |ψ0⟩ |0⟩ − sin φ |ψ1⟩ |1⟩)
258
+ = cos φ(cos φ |00 · · · 0⟩ + sin φ |ψ′⟩) − sin φ(sin φ |00 · · · 0⟩ − cos φ |ψ′⟩)
259
+ = cos(2φ) |00 · · · 0⟩ + sin(2φ) |ψ′⟩ ,
260
+ (19)
261
+ and,
262
+ Q′ |ψ′⟩ =A−1(I ⊗ Z)A(− |ψ′⟩)
263
+ =A−1(I ⊗ Z)(− sin φ |ψ0⟩ |0⟩ + cos φ |ψ1⟩ |1⟩)
264
+ =A−1(− sin φ |ψ0⟩ |0⟩ − cos φ |ψ1⟩ |1⟩)
265
+ = − sin φ(cos φ |00 · · · 0⟩ + sin φ |ψ′⟩) − cos φ(sin φ |00 · · · 0⟩ − cos φ |ψ′⟩)
266
+ = − sin(2φ) |00 · · · 0⟩ + cos(2φ) |ψ′⟩ .
267
+ (20)
268
+ Therefore, Q′ is a rotation by angle 2φ in the plane spanned by |00 · · · 0⟩ and |ψ′⟩. We can deduce that,
269
+ Q′m |00 · · · 0⟩ = cos(2mφ) |00 · · · 0⟩ + sin(2mφ) |ψ′⟩ .
270
+ (21)
271
+ By measuring all qubits under the computational basis we obtain all zero with probability cos2(2mφ), and
272
+ results containing one with probability sin2(2mφ). The extended amplitude amplification process requires
273
+ 2m calls to the oracle A.
274
+ In summary, no matter M is odd or even, we can obtain a random variable rM with 0-1 distribution where
275
+ p(1) = sin2(Mφ), with a cost of M oracle calls to the oracle A. When M is odd, we measure the last qubit
276
+ of the state Q(M−1)/2A |00 · · · 0⟩, and obtain one with probability sin2(Mφ). When M is even, we measure
277
+ all qubits of the state Q′M/2 |00 · · · 0⟩, and the probability that the results contain one is sin2(Mφ). For
278
+ convenience, we use the terminology measuring rM to mean that we use the procedure above to obtain a
279
+ random variable of 0-1 distribution with p(1) = sin2(Mφ). The extended amplitude amplification is crucial
280
+
281
+ 6
282
+ 0.0
283
+ 0.2
284
+ 0.4
285
+ 0.6
286
+ 0.8
287
+ 1.0
288
+ 0.0000
289
+ 0.0005
290
+ 0.0010
291
+ 0.0015
292
+ 0.0020
293
+ 0.0025
294
+ 0.0030
295
+ 0.0035
296
+ Bias
297
+ RMSE
298
+ CRLB
299
+ FIG. 4: The bias, RMSE and CRLB for AQAE, with parameters K = 5 and R = 32. The CRLB is
300
+ calculated as the average value of F−1/2 = [
301
+ 1
302
+ a(1−a)
303
+
304
+ k RkM 2
305
+ k]−1/2, according to Eq. (8).
306
+ to our proposed algorithm.
307
+ Algorithm 1: Adaptive Quantum Amplitude Estimation (AQAE)
308
+ Input
309
+ : K: Number of iterations; R: Number of measurements in each iteration;
310
+ Output: ˜a: Estimation of a;
311
+ 1 Set M1 = 1 and R1 = R;
312
+ 2 Measure r1 for R times and let h1 be the number of ones;
313
+ 3 for i = 2..K do
314
+ 4
315
+ Calculate the weights {w(m)}2i−1
316
+ m=2i−1;
317
+ 5
318
+ Set Mm = m and Rm = 0 for m = 2i−1, · · · , 2i − 1;
319
+ 6
320
+ for j = 1..R do
321
+ 7
322
+ Draw a random sample mj from {2i−1, · · · , 2i − 1}, with probabilities w(mj)/ �2i−1
323
+ m=2i−1 w(m);
324
+ 8
325
+ Increase Rmj by one;
326
+ 9
327
+ end
328
+ 10
329
+ Measure rk for Rk times and let hk be the number of ones;
330
+ 11 end
331
+ 12 Calculate ˜a using MLE.
332
+ Our algorithm is shown in Alg. 1. First we set M1 = 1 and R1 = R, and measure the state Eq. (1)
333
+ directly for R times to obtain h1. In the second iteration, we set M2 = 2 and M3 = 3, and compute w(2)
334
+ and w(3). We draw R samples from {2, 3} with probabilities
335
+
336
+ w(2)
337
+ w(2)+w(3),
338
+ w(3)
339
+ w(2)+w(3)
340
+
341
+ , and set R2, R3 to be
342
+ the number of 2 and 3 in the outcome, respectively. In the third iteration we run the same procedure for
343
+ M4 = 4, M5 = 5, M6 = 6, M7 = 7. After all K iterations, we apply the MLE to obtain the result ˜a.
344
+ We carry out several numerical experiments to show the efficiency of AQAE algorithm. All the quantum
345
+ outputs in the experiments are obtained by sampling the theoretic distribution functions. First, in comparison
346
+ to Fig. 1, the bias and RMSE curve for AQAE is shown in Fig. 4. We find that the bias intensity of AQAE
347
+ is much lower than MLAE. Besides, the RMSE curve is smooth and close to the average CRLB curve.
348
+ To illustrate how the parameters chosen by AQAE vary with different as, we make statistics for two typical
349
+ as, as shown in Fig. 5. In Fig. 5 (a) all even Mks are chosen less frequently then odd Mks, since a is a critical
350
+ point of order 2. In Fig. 5 (b) all Mks that are multiples of 3 are chosen less frequently since a is a critical
351
+ point of order 3. This set of experiments show that AQAE can effectively avoid critical points.
352
+ Finally, we compare different amplitude estimation algorithms and take the time cost into consideration.
353
+ In this experiment we uniformly randomly draw 216 samples in the interval [0, 1] as a, and compare the
354
+ error behavior with respect to the time cost. For Monte Carlo (MC) estimation, suppose the state Eq. (1) is
355
+ prepared for R times, and by measuring the last qubit the result 1 is obtained for h times, then the estimation
356
+ to a is given by ˆa = h/R. The time cost for MC is N = R, as each preparation of the state Eq. (1) requires
357
+
358
+ 7
359
+ 0
360
+ 5
361
+ 10
362
+ 15
363
+ 20
364
+ 25
365
+ 30
366
+ 0
367
+ 5
368
+ 10
369
+ 15
370
+ 20
371
+ 25
372
+ 30
373
+ (a) When a = sin2(π/4) = 0.5, a critical point of order 2.
374
+ 0
375
+ 5
376
+ 10
377
+ 15
378
+ 20
379
+ 25
380
+ 30
381
+ 0
382
+ 5
383
+ 10
384
+ 15
385
+ 20
386
+ 25
387
+ 30
388
+ (b) When a = sin2(π/6) = 0.25, a critical point of order 3.
389
+ FIG. 5: The average Rk (y-axis) for each Mk (x-axis) chosen by AQAE when K = 5 and R = 32. The Mks
390
+ that are multiples of 2 in (a) or multiples of 3 in (b) are labelled orange.
391
+ 102
392
+ 103
393
+ 104
394
+ Time Cost
395
+ 10
396
+ 3
397
+ 10
398
+ 2
399
+ RMSE
400
+ MC
401
+ QPE
402
+ UQPE
403
+ IQAE
404
+ MLAE
405
+ AQAE
406
+ FIG. 6: The error behavior (y-axis) with respect to the time cost N (x-axis).
407
+ one call to the oracle A. For MLAE and AQAE, both algorithms require two parameters K and R, which
408
+ is chosen by pre-calculation that has the minimal RMSE among several parameter pairs with approximate
409
+ time cost. The time cost of MLAE is N = �
410
+ k RkMk = R(2K + K − 2). Since the parameter set {Mk, Rk}
411
+ is not fixed in AQAE, we calculate the average value of �
412
+ k RkMk chosen in numerical experiments as its
413
+ time cost. The quantum phase estimation (QPE) based amplitude estimation requires a parameter t as the
414
+ number of controlled qubits [30], with time cost N = �t−1
415
+ j=0 2j = 2t − 1. An efficient way to reduce the
416
+ RMSE of QPE is to repeat for R times and use MLE to give the final estimation. The unbiased quantum
417
+ phase estimation (UQPE) [19] is an unbiased variant of QPE. The time cost for both QPE and UQPE in
418
+ our experiments is N = R(2t − 1). In our experiments we fix R = 4 and let t vary. For IQPE [24], we use
419
+ Clopper-Pearson confidence interval method, fix α = 0.05, Nshots = 100 and let ϵ vary. The results are shown
420
+ in Fig. 6. The MC algorithm have an error convergence of O(N −1/2), while all other algorithms have an
421
+
422
+ 8
423
+ asymptotic O(N −1) error convergence. The UQPE performs the best among those algorithms. If we limit
424
+ the comparison in algorithms without phase estimation, as they are more likely to be implemented widely in
425
+ recent years, then our AQAE algorithm outperforms other algorithms.
426
+ IV.
427
+ CONCLUSION
428
+ The maximum likelihood amplitude estimation (MLAE) algorithm is a practical solution to the quan-
429
+ tum amplitude estimation problem, which has a theoretically quadratic speedup over classical Monte Carlo
430
+ method. We find that MLAE behaves efficient, i.e. unbiased and saturates the Cram´er-Rao inequality in
431
+ most area except some periodical small intervals. We analyze how the bias occurs around the so-called crit-
432
+ ical points, and propose an adaptive quantum amplitude estimation (AQAE) algorithm by choosing MLAE
433
+ parameters adaptively to avoid critical points. In the end, we do numerical experiments among some ampli-
434
+ tude estimation algorithms, including Monte Carlo estimation, quantum phase estimation and its unbiased
435
+ variant, iterative quantum amplitude estimation, maximum likelihood amplitude estimation and our adaptive
436
+ amplitude estimation. We show that our algorithm outperforms the original MLAE obviously, and it behaves
437
+ the best among all algorithms without phase estimation.
438
+ [1] Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79:325, 7
439
+ 1997.
440
+ [2] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-
441
+ puter. SIAM Journal on Computing, 26:1484–1509, 10 1997.
442
+ [3] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann.
443
+ A quantum approximate optimization algorithm.
444
+ arXiv:1411.4028, 2014.
445
+ [4] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D Lukin.
446
+ Quantum approximate
447
+ optimization algorithm: Performance, mechanism, and implementation on near-term devices. Physical Review X,
448
+ 10(2):021067, 2020.
449
+ [5] Edward Farhi and Aram W Harrow.
450
+ Quantum supremacy through the quantum approximate optimization
451
+ algorithm. arXiv:1602.07674, 2016.
452
+ [6] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Al´an Aspuru-
453
+ Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quantum processor. Nature commu-
454
+ nications, 5(1):1–7, 2014.
455
+ [7] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Al´an Aspuru-Guzik. The theory of variational hybrid
456
+ quantum-classical algorithms. New Journal of Physics, 18(2):023023, 2016.
457
+ [8] Arthur Pesah, Marco Cerezo, Samson Wang, Tyler Volkoff, Andrew T Sornborger, and Patrick J Coles. Absence
458
+ of barren plateaus in quantum convolutional neural networks. Physical Review X, 11(4):041011, 2021.
459
+ [9] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. The quest for a quantum neural network. Quantum
460
+ Information Processing, 13(11):2567–2586, 2014.
461
+ [10] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation.
462
+ Contemporary Mathematics, 305:53–74, 2002.
463
+ [11] Al´an Aspuru-Guzik, Anthony D Dutoi, Peter J Love, and Martin Head-Gordon. Simulated quantum computation
464
+ of molecular energies. Science, 309(5741):1704–1707, 2005.
465
+ [12] Benjamin P Lanyon, James D Whitfield, Geoff G Gillett, Michael E Goggin, Marcelo P Almeida, Ivan Kassal,
466
+ Jacob D Biamonte, Masoud Mohseni, Ben J Powell, Marco Barbieri, et al. Towards quantum chemistry on a
467
+ quantum computer. Nat. Chem., 2(2):106–111, 2010.
468
+ [13] Emanuel Knill, Gerardo Ortiz, and Rolando D Somma. Optimal quantum measurements of expectation values
469
+ of observables. Phys. Rev. A, 75(1):012328, 2007.
470
+ [14] Nathan Wiebe, Ashish Kapoor, and Krysta M. Svore. Quantum algorithms for nearest-neighbor methods for
471
+ supervised and unsupervised learning. Quantum Info. Comput., 15(3–4):316–356, mar 2015.
472
+ [15] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum deep learning. arxiv:1412.3489, 2014.
473
+ [16] Krysta M. Svore, Matthew B. Hastings, and Michael Freedman. Faster phase estimation. Quantum Inf. Comput.,
474
+ 14:306–328, 4 2013.
475
+ [17] Shelby Kimmel, Guang Hao Low, and Theodore J Yoder. Robust calibration of a universal single-qubit gate set
476
+ via robust phase estimation. Phys. Rev. A, 92(6):062315, 2015.
477
+ [18] Nathan Wiebe and Chris Granade. Efficient bayesian phase estimation. Phys. Rev. Lett., 117:010503, 6 2016.
478
+ [19] Xi Lu and Hongwei Lin. Unbiased quantum phase estimation. arXiv:2210.00231, Quantum Info. Comput.(in
479
+ press), 2023.
480
+
481
+ 9
482
+ [20] Shumpei Uno, Yohichi Suzuki, Keigo Hisanaga, Rudy Raymond, Tomoki Tanaka, Tamiya Onodera, and Naoki
483
+ Yamamoto. Modified grover operator for quantum amplitude estimation. New Journal of Physics, 23(8):083031,
484
+ 2021.
485
+ [21] Yohichi Suzuki, Shumpei Uno, Rudy Raymond, Tomoki Tanaka, Tamiya Onodera, and Naoki Yamamoto. Am-
486
+ plitude estimation without phase estimation. Quantum Inf. Process., 19(2):1–17, 2020.
487
+ [22] Alicja Dutkiewicz, Barbara M Terhal, and Thomas E O’Brien. Heisenberg-limited quantum phase estimation of
488
+ multiple eigenvalues with few control qubits. Quantum, 6:830, 2022.
489
+ [23] Tomoki Tanaka, Shumpei Uno, Tamiya Onodera, Naoki Yamamoto, and Yohichi Suzuki. Noisy quantum ampli-
490
+ tude estimation without noise estimation. Phys. Rev. A, 105:012411, Jan 2022.
491
+ [24] Dmitry Grinko, Julien Gacon, Christa Zoufal, and Stefan Woerner. Iterative quantum amplitude estimation.
492
+ NPJ Quantum Inf., 7:1–6, 3 2021.
493
+ [25] Kirill Plekhanov, Matthias Rosenkranz, Mattia Fiorentini, and Michael Lubasch. Variational quantum amplitude
494
+ estimation. Quantum, 6:670, March 2022.
495
+ [26] Scott Aaronson and Patrick Rall. Quantum approximate counting, simplified. In Symposium on Simplicity in
496
+ Algorithms, pages 24–32. SIAM, 2020.
497
+ [27] Kouhei Nakaji. Faster amplitude estimation. arXiv:2003.02417, 2020.
498
+ [28] S. Kullback. Certain inequalities in information theory and the cramer-rao inequality. The Annals of Mathematical
499
+ Statistics, 25(4):745–751, 1954.
500
+ [29] Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical transactions of the
501
+ Royal Society of London. Series A, containing papers of a mathematical or physical character, 222(594-604):309–
502
+ 368, 1922.
503
+ [30] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge University
504
+ Press, 2010.
505
+
6dAyT4oBgHgl3EQfpfjS/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,355 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf,len=354
2
+ page_content='Adaptive Quantum Amplitude Estimation Xi Lu1 and Hongwei Lin1, ∗ 1School of Mathematical Science, Zhejiang University, Hangzhou, 310027, China The maximum likelihood amplitude estimation (MLAE) algorithm is a practical solution to the quantum amplitude estimation problem, which has a theoretically quadratic speedup over classical Monte Carlo method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
3
+ page_content=' However, we find that MLAE is not unbiased, which is one of the major causes of its inaccuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
4
+ page_content=' We propose an adaptive quantum amplitude estimation (AQAE) algorithm by choosing MLAE parameters adaptively to avoid critical points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
5
+ page_content=' We also do numerical experiments to show that our algorithm is approximately unbiased and more efficient than MLAE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
6
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
7
+ page_content=' INTRODUCTION Quantum computing is an emerging subject that studies faster solutions on quantum computers over clas- sical ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
8
+ page_content=' Early quantum algorithms have achieved astonishing speedups over known classical algorithms, such as the quadratic speedup of Grover’s search [1], and the exponential speedup of Shor’s integer factor- ization [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
9
+ page_content=' Later algorithms like quantum approximate optimization algorithms (QAOA) [3–5], variational quantum eigen solver (VQE) [6, 7] and quantum neural networks (QNN) [8, 9] also shows great potentials in quantum computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
10
+ page_content=' The amplitude estimation problem [10] is one of the most fundamental problems in quantum computing, a quantum variant of the classical Monte Carlo problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
11
+ page_content=' Let A be any quantum algorithm that performs the following unitary transformation, A |00 · · · 0⟩ = √ 1 − a |ψ0⟩ |0⟩ + √a |ψ1⟩ |1⟩ = cos φ |ψ0⟩ |0⟩ + sin φ |ψ1⟩ |1⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
12
+ page_content=' (1) The goal of amplitude estimation problem is to estimate a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
13
+ page_content=' It is derived from the well-known phase estimation problem, and has been widely applied in quantum chemistry [11–13] and machine learning [14, 15] in recent studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
14
+ page_content=' The earliest solution [10] is a combination of quantum phase estimation and Grover’s search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
15
+ page_content=' There are some later researches [16–19] that improve the robustness of phase estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
16
+ page_content=' The modified Grover’s operator [20] is an approach that is designed to perform robustly under depolarizing noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
17
+ page_content=' However, most of the recent researches study amplitude estimation algorithms without the use of phase estimation, since it is believed that the controlled amplification operations required by phase estimation can be different to implement on noise intermediate-scale quantum devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
18
+ page_content=' The maximum likelihood amplitude estimation (MLAE) [21] algorithm is an approach without phase estimation, which is proved to have an error convergence O(N −1) asymptotically when using an exponential incremental sequence (EIS), which is quadratically faster than O(N −1/2) for classical Monte Carlo algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
19
+ page_content=' The error convergence O(N −1) is also known as the Heisenberg limit [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
20
+ page_content=' There is a variant of MLAE [23] that is built for noisy devices without estimating the noise parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
21
+ page_content=' The iterative quantum amplitude estimation (IQPE) [24] is another approach without phase estimation, which is proved rigorously to achieve a quadratic speedup up to a double-logarithmic factor compared to classical Monte Carlo (MC) estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
22
+ page_content=' The variational amplitude estimation [25] is a variational quantum algorithm based on constant-depth quantum circuits that also outperforms MC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
23
+ page_content=' There are also several other approaches [26, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
24
+ page_content=' In this paper, we dive further into MLAE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
25
+ page_content=' In more precise experiments we find that the MLAE algorithm is not unbiased, and the bias behaves periodically with respect to the ground truth a, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
26
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
27
+ page_content=' Moreover, statistics theories show that the variance of any estimation ˜a follows the Cram´er-Rao inequality [28], E[(˜a − a)2] ≥ [1 + b′(a)]2 F(a) + b(a)2, (2) ∗ hwlin@zju.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
28
+ page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
29
+ page_content='cn arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
30
+ page_content='00528v1 [quant-ph] 2 Jan 2023 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
31
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
32
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
33
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
34
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
35
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
36
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
37
+ page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
38
+ page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
39
+ page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
40
+ page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
41
+ page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
42
+ page_content='008 Bias RMSE CRLB FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
43
+ page_content=' 1: The bias and root of mean squared error (RMSE) of MLAE, for different a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
44
+ page_content=' The unbiased Cram´er-Rao lower bound (CRLB) is the ideal distribution of RMSE, which is equal to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
45
+ page_content=' (2) where b(a) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
46
+ page_content=' where b(a) = E[˜a − a] is the bias, and the Fisher information F is defined as, F(a) = E ��∂ ln L(a) ∂a �2� , (3) where L is the likelihood function of MLAE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
47
+ page_content=' An estimation is fully efficient [29] if it is unbiased and saturates the Cram´er-Rao inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
48
+ page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
49
+ page_content=' 1, we can see that MLAE is approximately unbiased and close to the unbiased Cram´er-Rao lower bound in most area, except some periodical small intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
50
+ page_content=' We improve MLAE and propose the adaptive quantum amplitude estimation (AQAE) algorithm in this paper by introducing an adaptive rule to avoid these small intervals, and show that our estimation algorithm is approximately efficient with numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
51
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
52
+ page_content=' PRELIMINARY Most amplitude estimation algorithms are based on a general procedure called amplitude amplification [10], which performs the transformation QmA |00 · · · 0⟩ = cos[(2m + 1)φ] |ψ0⟩ |0⟩ + sin[(2m + 1)φ] |ψ1⟩ |1⟩ , (4) where Q = A(2 |00 · · · 0⟩⟨00 · · · 0| − I)A−1(I ⊗ Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
53
+ page_content=' (5) By measuring the last qubit with respect to the computational basis we obtain one with probability sin2[(2m + 1)φ], and zero with probability cos2[(2m + 1)φ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
54
+ page_content=' Such amplitude amplification process requires (2m + 1) calls to the oracle A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
55
+ page_content=' The MLAE algorithm requires parameters {mk, Rk}K k=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
56
+ page_content=' For each k the state QmkA |00 · · · 0⟩ is measured for Rk times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
57
+ page_content=' Let hk be the number of ones in all Rk measurement results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
58
+ page_content=' The final estimation ˜a is obtained by maximizing the likelihood function L(a) := K � k=1 ℓk(φ), (6) where a ≡ sin2 φ, and ℓk(φ) := � sin2(Mkφ) �hk � cos2(Mkφ) �Rk−hk , (7) 3 1( ) 2( ) 3( ) 4( ) 5( ) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
59
+ page_content=' 2: An illustration of how MLAE works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
60
+ page_content=' The curves illustrate the function ℓk(φ) for each k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
61
+ page_content=' Here M1 = 1, Mk = 2k + 1(k = 2, 3, 4, 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
62
+ page_content=' where Mk ≡ 2mk + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
63
+ page_content=' The Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
64
+ page_content=' 2 illustrates how MLAE works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
65
+ page_content=' Generally the function ℓk(φ) has Mk peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
66
+ page_content=' For M1 = 1, there is a single smooth peak in the likelihood function ℓ1(φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
67
+ page_content=' For bigger Mks, the peaks are sharper and thus have better estimation ability, but there is more than one peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
68
+ page_content=' So we cannot get more accurate estimation with ℓk(φ) alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
69
+ page_content=' The MLAE algorithm combines the information of ℓk(φ) for different Mks by multiplying all those likelihood functions, thus obtaining a likelihood function L that has only one sharp peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
70
+ page_content=' By calculation the Fisher information of MLAE is [21], F(a) = 1 a(1 − a) � k RkM 2 k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
71
+ page_content=' (8) In most application problems the major complexity lies in the oracle A itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
72
+ page_content=' Therefore, the time cost of MLAE is, N = � k RkMk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
73
+ page_content=' (9) The original article about MLAE algorithm [21] presents two strategies of choosing parameters, Linear Incremental Sequence (LIS): mk = k − 1 and Rk = R for k = 1, 2, · · · , K, which has error convergence ε ∼ N −3/4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
74
+ page_content=' Exponential Incremental Sequence (EIS): m1 = 0, mk = 2k−2(k = 2, 3, · · · , K) and Rk = R(k = 1, 2, · · · , K), which has error convergence ε ∼ N −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
75
+ page_content=' As MLAE is approximately unbiased and saturates the Cram´er-Rao inequality in most area, the RMSE has the same error convergence as F−1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
76
+ page_content=' The MLAE algorithm with EIS fixes R1 = · · · = RK = R, and chooses M1 = 1, Mk = 2k−1 + 1(k ≥ 2), then N = O(R · 2K) and F−1/2 = O(R−1/2 · 2−K) = O(N −1), which is quadratically faster than MC and reaches the Heisenberg limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
77
+ page_content=' But in reality, the existence of the bias term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
78
+ page_content=' (2) has a significant impact and violates the quadratic speedup, as is shown by the numerical experiments in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
79
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
80
+ page_content=' THEORY AND ALGORITHM In the beginning of this section, we set up a model for the bias of MLAE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
81
+ page_content=' We call, � sin2 � j m π 2 �����j = 1, 2, · · · , m − 1 � (10) 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
82
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
83
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
84
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
85
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
86
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
87
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
88
+ page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
89
+ page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
90
+ page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
91
+ page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
92
+ page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
93
+ page_content='008 Bias RMSE CRLB FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
94
+ page_content=' 3: The bias and RMSE of MLAE with parameters K = 5, R = 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
95
+ page_content=' The vertical black dashed lines are the critical points of order M5 = 24 + 1 = 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
96
+ page_content=' the critical points of order m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
97
+ page_content=' In MLAE, consider two values on each side of some critical point sin2(jπ/2MK), namely a± = sin2(φ±) = sin2(jπ/2MK ± ε).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
98
+ page_content=' It is harder for the likelihood function Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
99
+ page_content=' (6) to tell apart a± = sin2(φ±) = sin2(jπ/2MK ± ε) when ε is small, as ℓK(φ+) = ℓK(φ−), and thus they can only be told apart by other terms {ℓk(φ)}K−1 k=1 that is less sharp than ℓK(φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
100
+ page_content=' As a result, MLAE has a positive bias when a− is the ground truth, and has a negative bias when a+ is the ground truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
101
+ page_content=' It should be mentioned that other smaller Mks can also bring bias around their critical points, which is anyway not so obvious as MK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
102
+ page_content=' Our theory concludes that MLAE has obvious bias in the intervals centered at each critical point of order MK, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
103
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
104
+ page_content=' By this observation, it is hard to flatten the bias curve on the whole interval [0, 1] with a fixed parameter set {Mk, Rk}K k=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
105
+ page_content=' The intuition of our AQAE algorithm is that we can adaptively and randomly choose the next Mk with the hope of staying away from the critical points of order Mk, namely {sin2(jπ/2Mk) : j = 1, 2, · · · , Mk − 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
106
+ page_content=' Define the score function, s(M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
107
+ page_content=' ˆa) = sin2(2M ˆφ), (11) where ˆa ≡ sin2(ˆφ), which is close to zero when ˆa is close to a critical point of order M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
108
+ page_content=' Suppose we have already performed amplitude amplification procedures with parameters {Mk, Rk}K′ k=1, and have got the results {hk}K′ k=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
109
+ page_content=' The Bayes theory tells us the posterior probability density distributions of a is, ρ(ˆa) ∝ K′ � k=1 ℓk(ˆφ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
110
+ page_content=' (12) Combining the score function Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
111
+ page_content=' (11), we define the weight function about M as the expectation of the score function, w(M) = Eˆa[s(M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
112
+ page_content=' ˆa)] ∝ � 1 0 s(M;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
113
+ page_content=' ˆa) � � K′ � k=1 ℓk(ˆφ) � � d ˆa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
114
+ page_content=' (13) Similar to the score function, if ˆa is distributed mostly around some critical point of M, then w(M) is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
115
+ page_content=' The weight function is our guidance for the adaptive choice of the subsequent parameters {Mk, Rk}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
116
+ page_content=' To avoid critical points, the key idea of AQAE is that the smaller w(Mk) is, the smaller Rk will be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
117
+ page_content=' The Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
118
+ page_content=' (4) enables us to generate a 0-1 distribution random variable with p(1) = sin2[Mφ] for any odd number M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
119
+ page_content=' An important thing for AQAE is that we should generalize it to the even case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
120
+ page_content=' From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
121
+ page_content=' (1) we 5 have, cos φA−1(|ψ0⟩ |0⟩) + sin φA−1(|ψ1⟩ |1⟩) = |00 · · · 0⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
122
+ page_content=' (14) By the orthogonality of A−1 we know that, |ψ′⟩ := sin φA−1(|ψ0⟩ |0⟩) − cos φA−1(|ψ1⟩ |1⟩), (15) is orthogonal to |00 · · · 0⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
123
+ page_content=' That is, if we measure all qubits of |ψ′⟩ under the computational basis, we will certainly get results that contain one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
124
+ page_content=' Moreover, A−1 |ψ0⟩ |0⟩ = cos φ |00 · · · 0⟩ + sin φ |ψ′⟩ , (16) A−1 |ψ1⟩ |1⟩ = sin φ |00 · · · 0⟩ − cos φ |ψ′⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
125
+ page_content=' (17) Define, Q′ = A−1(I ⊗ Z)A(2 |00 · · · 0⟩⟨00 · · · 0| − I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
126
+ page_content=' (18) Then,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
127
+ page_content=' Q′ |00 · · · 0⟩ =A−1(I ⊗ Z)A |00 · · · 0⟩ =A−1(I ⊗ Z)(cos φ |ψ0⟩ |0⟩ + sin φ |ψ1⟩ |1⟩) =A−1(cos φ |ψ0⟩ |0⟩ − sin φ |ψ1⟩ |1⟩) = cos φ(cos φ |00 · · · 0⟩ + sin φ |ψ′⟩) − sin φ(sin φ |00 · · · 0⟩ − cos φ |ψ′⟩) = cos(2φ) |00 · · · 0⟩ + sin(2φ) |ψ′⟩ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
128
+ page_content=' (19) and,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
129
+ page_content=' Q′ |ψ′⟩ =A−1(I ⊗ Z)A(− |ψ′⟩) =A−1(I ⊗ Z)(− sin φ |ψ0⟩ |0⟩ + cos φ |ψ1⟩ |1⟩) =A−1(− sin φ |ψ0⟩ |0⟩ − cos φ |ψ1⟩ |1⟩) = − sin φ(cos φ |00 · · · 0⟩ + sin φ |ψ′⟩) − cos φ(sin φ |00 · · · 0⟩ − cos φ |ψ′⟩) = − sin(2φ) |00 · · · 0⟩ + cos(2φ) |ψ′⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
130
+ page_content=' (20) Therefore, Q′ is a rotation by angle 2φ in the plane spanned by |00 · · · 0⟩ and |ψ′⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
131
+ page_content=' We can deduce that, Q′m |00 · · · 0⟩ = cos(2mφ) |00 · · · 0⟩ + sin(2mφ) |ψ′⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
132
+ page_content=' (21) By measuring all qubits under the computational basis we obtain all zero with probability cos2(2mφ), and results containing one with probability sin2(2mφ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
133
+ page_content=' The extended amplitude amplification process requires 2m calls to the oracle A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
134
+ page_content=' In summary, no matter M is odd or even, we can obtain a random variable rM with 0-1 distribution where p(1) = sin2(Mφ), with a cost of M oracle calls to the oracle A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
135
+ page_content=' When M is odd, we measure the last qubit of the state Q(M−1)/2A |00 · · · 0⟩, and obtain one with probability sin2(Mφ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
136
+ page_content=' When M is even, we measure all qubits of the state Q′M/2 |00 · · · 0⟩, and the probability that the results contain one is sin2(Mφ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
137
+ page_content=' For convenience, we use the terminology measuring rM to mean that we use the procedure above to obtain a random variable of 0-1 distribution with p(1) = sin2(Mφ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
138
+ page_content=' The extended amplitude amplification is crucial 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
139
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
140
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
141
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
142
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
143
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
144
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
145
+ page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
146
+ page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
147
+ page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
148
+ page_content='0015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
149
+ page_content='0020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
150
+ page_content='0025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
151
+ page_content='0030 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
152
+ page_content='0035 Bias RMSE CRLB FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
153
+ page_content=' 4: The bias, RMSE and CRLB for AQAE, with parameters K = 5 and R = 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
154
+ page_content=' The CRLB is calculated as the average value of F−1/2 = [ 1 a(1−a) � k RkM 2 k]−1/2, according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
155
+ page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
156
+ page_content=' to our proposed algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
157
+ page_content=' Algorithm 1: Adaptive Quantum Amplitude Estimation (AQAE) Input : K: Number of iterations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
158
+ page_content=' R: Number of measurements in each iteration;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
159
+ page_content=' Output: ˜a: Estimation of a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
160
+ page_content=' 1 Set M1 = 1 and R1 = R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
161
+ page_content=' 2 Measure r1 for R times and let h1 be the number of ones;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
162
+ page_content=' 3 for i = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
163
+ page_content='.K do 4 Calculate the weights {w(m)}2i−1 m=2i−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
164
+ page_content=' 5 Set Mm = m and Rm = 0 for m = 2i−1, · · · , 2i − 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
165
+ page_content=' 6 for j = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
166
+ page_content='.R do 7 Draw a random sample mj from {2i−1, · · · , 2i − 1}, with probabilities w(mj)/ �2i−1 m=2i−1 w(m);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
167
+ page_content=' 8 Increase Rmj by one;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
168
+ page_content=' 9 end 10 Measure rk for Rk times and let hk be the number of ones;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
169
+ page_content=' 11 end 12 Calculate ˜a using MLE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
170
+ page_content=' Our algorithm is shown in Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
171
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
172
+ page_content=' First we set M1 = 1 and R1 = R, and measure the state Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
173
+ page_content=' (1) directly for R times to obtain h1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
174
+ page_content=' In the second iteration, we set M2 = 2 and M3 = 3, and compute w(2) and w(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
175
+ page_content=' We draw R samples from {2, 3} with probabilities � w(2) w(2)+w(3), w(3) w(2)+w(3) � , and set R2, R3 to be the number of 2 and 3 in the outcome, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
176
+ page_content=' In the third iteration we run the same procedure for M4 = 4, M5 = 5, M6 = 6, M7 = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
177
+ page_content=' After all K iterations, we apply the MLE to obtain the result ˜a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
178
+ page_content=' We carry out several numerical experiments to show the efficiency of AQAE algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
179
+ page_content=' All the quantum outputs in the experiments are obtained by sampling the theoretic distribution functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
180
+ page_content=' First, in comparison to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
181
+ page_content=' 1, the bias and RMSE curve for AQAE is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
182
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
183
+ page_content=' We find that the bias intensity of AQAE is much lower than MLAE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
184
+ page_content=' Besides, the RMSE curve is smooth and close to the average CRLB curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
185
+ page_content=' To illustrate how the parameters chosen by AQAE vary with different as, we make statistics for two typical as, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
186
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
187
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
188
+ page_content=' 5 (a) all even Mks are chosen less frequently then odd Mks, since a is a critical point of order 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
189
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
190
+ page_content=' 5 (b) all Mks that are multiples of 3 are chosen less frequently since a is a critical point of order 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
191
+ page_content=' This set of experiments show that AQAE can effectively avoid critical points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
192
+ page_content=' Finally, we compare different amplitude estimation algorithms and take the time cost into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
193
+ page_content=' In this experiment we uniformly randomly draw 216 samples in the interval [0, 1] as a, and compare the error behavior with respect to the time cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
194
+ page_content=' For Monte Carlo (MC) estimation, suppose the state Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
195
+ page_content=' (1) is prepared for R times, and by measuring the last qubit the result 1 is obtained for h times, then the estimation to a is given by ˆa = h/R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
196
+ page_content=' The time cost for MC is N = R, as each preparation of the state Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
197
+ page_content=' (1) requires 7 0 5 10 15 20 25 30 0 5 10 15 20 25 30 (a) When a = sin2(π/4) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
198
+ page_content='5, a critical point of order 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
199
+ page_content=' 0 5 10 15 20 25 30 0 5 10 15 20 25 30 (b) When a = sin2(π/6) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
200
+ page_content='25, a critical point of order 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
201
+ page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
202
+ page_content=' 5: The average Rk (y-axis) for each Mk (x-axis) chosen by AQAE when K = 5 and R = 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
203
+ page_content=' The Mks that are multiples of 2 in (a) or multiples of 3 in (b) are labelled orange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
204
+ page_content=' 102 103 104 Time Cost 10 3 10 2 RMSE MC QPE UQPE IQAE MLAE AQAE FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
205
+ page_content=' 6: The error behavior (y-axis) with respect to the time cost N (x-axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
206
+ page_content=' one call to the oracle A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
207
+ page_content=' For MLAE and AQAE, both algorithms require two parameters K and R, which is chosen by pre-calculation that has the minimal RMSE among several parameter pairs with approximate time cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
208
+ page_content=' The time cost of MLAE is N = � k RkMk = R(2K + K − 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
209
+ page_content=' Since the parameter set {Mk, Rk} is not fixed in AQAE, we calculate the average value of � k RkMk chosen in numerical experiments as its time cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
210
+ page_content=' The quantum phase estimation (QPE) based amplitude estimation requires a parameter t as the number of controlled qubits [30], with time cost N = �t−1 j=0 2j = 2t − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
211
+ page_content=' An efficient way to reduce the RMSE of QPE is to repeat for R times and use MLE to give the final estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
212
+ page_content=' The unbiased quantum phase estimation (UQPE) [19] is an unbiased variant of QPE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
213
+ page_content=' The time cost for both QPE and UQPE in our experiments is N = R(2t − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
214
+ page_content=' In our experiments we fix R = 4 and let t vary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
215
+ page_content=' For IQPE [24], we use Clopper-Pearson confidence interval method, fix α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
216
+ page_content='05, Nshots = 100 and let ϵ vary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
217
+ page_content=' The results are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
218
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
219
+ page_content=' The MC algorithm have an error convergence of O(N −1/2), while all other algorithms have an 8 asymptotic O(N −1) error convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
220
+ page_content=' The UQPE performs the best among those algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
221
+ page_content=' If we limit the comparison in algorithms without phase estimation, as they are more likely to be implemented widely in recent years, then our AQAE algorithm outperforms other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
222
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
223
+ page_content=' CONCLUSION The maximum likelihood amplitude estimation (MLAE) algorithm is a practical solution to the quan- tum amplitude estimation problem, which has a theoretically quadratic speedup over classical Monte Carlo method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
224
+ page_content=' We find that MLAE behaves efficient, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
225
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
226
+ page_content=' unbiased and saturates the Cram´er-Rao inequality in most area except some periodical small intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
227
+ page_content=' We analyze how the bias occurs around the so-called crit- ical points, and propose an adaptive quantum amplitude estimation (AQAE) algorithm by choosing MLAE parameters adaptively to avoid critical points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
228
+ page_content=' In the end, we do numerical experiments among some ampli- tude estimation algorithms, including Monte Carlo estimation, quantum phase estimation and its unbiased variant, iterative quantum amplitude estimation, maximum likelihood amplitude estimation and our adaptive amplitude estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
229
+ page_content=' We show that our algorithm outperforms the original MLAE obviously, and it behaves the best among all algorithms without phase estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
230
+ page_content=' [1] Lov K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
231
+ page_content=' Grover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
232
+ page_content=' Quantum mechanics helps in searching for a needle in a haystack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
233
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
234
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
235
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
236
+ page_content=', 79:325, 7 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
237
+ page_content=' [2] Peter W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
238
+ page_content=' Shor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
239
+ page_content=' Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com- puter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
240
+ page_content=' SIAM Journal on Computing, 26:1484–1509, 10 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
241
+ page_content=' [3] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
242
+ page_content=' A quantum approximate optimization algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
243
+ page_content=' arXiv:1411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
244
+ page_content='4028, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
245
+ page_content=' [4] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D Lukin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
246
+ page_content=' Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
247
+ page_content=' Physical Review X, 10(2):021067, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
248
+ page_content=' [5] Edward Farhi and Aram W Harrow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
249
+ page_content=' Quantum supremacy through the quantum approximate optimization algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
250
+ page_content=' arXiv:1602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
251
+ page_content='07674, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
252
+ page_content=' [6] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Al´an Aspuru- Guzik, and Jeremy L O’brien.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
253
+ page_content=' A variational eigenvalue solver on a photonic quantum processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
254
+ page_content=' Nature commu- nications, 5(1):1–7, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
255
+ page_content=' [7] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Al´an Aspuru-Guzik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
256
+ page_content=' The theory of variational hybrid quantum-classical algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
257
+ page_content=' New Journal of Physics, 18(2):023023, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
258
+ page_content=' [8] Arthur Pesah, Marco Cerezo, Samson Wang, Tyler Volkoff, Andrew T Sornborger, and Patrick J Coles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
259
+ page_content=' Absence of barren plateaus in quantum convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
260
+ page_content=' Physical Review X, 11(4):041011, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
261
+ page_content=' [9] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
262
+ page_content=' The quest for a quantum neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
263
+ page_content=' Quantum Information Processing, 13(11):2567–2586, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
264
+ page_content=' [10] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
265
+ page_content=' Quantum amplitude amplification and estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
266
+ page_content=' Contemporary Mathematics, 305:53–74, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
267
+ page_content=' [11] Al´an Aspuru-Guzik, Anthony D Dutoi, Peter J Love, and Martin Head-Gordon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
268
+ page_content=' Simulated quantum computation of molecular energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
269
+ page_content=' Science, 309(5741):1704–1707, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
270
+ page_content=' [12] Benjamin P Lanyon, James D Whitfield, Geoff G Gillett, Michael E Goggin, Marcelo P Almeida, Ivan Kassal, Jacob D Biamonte, Masoud Mohseni, Ben J Powell, Marco Barbieri, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
271
+ page_content=' Towards quantum chemistry on a quantum computer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
272
+ page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
273
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
274
+ page_content=', 2(2):106–111, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
275
+ page_content=' [13] Emanuel Knill, Gerardo Ortiz, and Rolando D Somma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
276
+ page_content=' Optimal quantum measurements of expectation values of observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
277
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
278
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
279
+ page_content=' A, 75(1):012328, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
280
+ page_content=' [14] Nathan Wiebe, Ashish Kapoor, and Krysta M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
281
+ page_content=' Svore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
282
+ page_content=' Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
283
+ page_content=' Quantum Info.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
284
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
285
+ page_content=', 15(3–4):316–356, mar 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
286
+ page_content=' [15] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
287
+ page_content=' Quantum deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
288
+ page_content=' arxiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
289
+ page_content='3489, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
290
+ page_content=' [16] Krysta M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
291
+ page_content=' Svore, Matthew B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
292
+ page_content=' Hastings, and Michael Freedman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
293
+ page_content=' Faster phase estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
294
+ page_content=' Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
295
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
296
+ page_content=', 14:306–328, 4 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
297
+ page_content=' [17] Shelby Kimmel, Guang Hao Low, and Theodore J Yoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
298
+ page_content=' Robust calibration of a universal single-qubit gate set via robust phase estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
299
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
300
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
301
+ page_content=' A, 92(6):062315, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
302
+ page_content=' [18] Nathan Wiebe and Chris Granade.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
303
+ page_content=' Efficient bayesian phase estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
304
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
305
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
306
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
307
+ page_content=', 117:010503, 6 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
308
+ page_content=' [19] Xi Lu and Hongwei Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
309
+ page_content=' Unbiased quantum phase estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
310
+ page_content=' arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
311
+ page_content='00231, Quantum Info.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
312
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
313
+ page_content=' (in press), 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
314
+ page_content=' 9 [20] Shumpei Uno, Yohichi Suzuki, Keigo Hisanaga, Rudy Raymond, Tomoki Tanaka, Tamiya Onodera, and Naoki Yamamoto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
315
+ page_content=' Modified grover operator for quantum amplitude estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
316
+ page_content=' New Journal of Physics, 23(8):083031, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
317
+ page_content=' [21] Yohichi Suzuki, Shumpei Uno, Rudy Raymond, Tomoki Tanaka, Tamiya Onodera, and Naoki Yamamoto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
318
+ page_content=' Am- plitude estimation without phase estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
319
+ page_content=' Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
320
+ page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
321
+ page_content=', 19(2):1–17, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
322
+ page_content=' [22] Alicja Dutkiewicz, Barbara M Terhal, and Thomas E O’Brien.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
323
+ page_content=' Heisenberg-limited quantum phase estimation of multiple eigenvalues with few control qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
324
+ page_content=' Quantum, 6:830, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
325
+ page_content=' [23] Tomoki Tanaka, Shumpei Uno, Tamiya Onodera, Naoki Yamamoto, and Yohichi Suzuki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
326
+ page_content=' Noisy quantum ampli- tude estimation without noise estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
327
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
328
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
329
+ page_content=' A, 105:012411, Jan 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
330
+ page_content=' [24] Dmitry Grinko, Julien Gacon, Christa Zoufal, and Stefan Woerner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
331
+ page_content=' Iterative quantum amplitude estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
332
+ page_content=' NPJ Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
333
+ page_content=', 7:1–6, 3 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
334
+ page_content=' [25] Kirill Plekhanov, Matthias Rosenkranz, Mattia Fiorentini, and Michael Lubasch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
335
+ page_content=' Variational quantum amplitude estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
336
+ page_content=' Quantum, 6:670, March 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
337
+ page_content=' [26] Scott Aaronson and Patrick Rall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
338
+ page_content=' Quantum approximate counting, simplified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
339
+ page_content=' In Symposium on Simplicity in Algorithms, pages 24–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
340
+ page_content=' SIAM, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
341
+ page_content=' [27] Kouhei Nakaji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
342
+ page_content=' Faster amplitude estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
343
+ page_content=' arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
344
+ page_content='02417, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
345
+ page_content=' [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
346
+ page_content=' Kullback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
347
+ page_content=' Certain inequalities in information theory and the cramer-rao inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
348
+ page_content=' The Annals of Mathematical Statistics, 25(4):745–751, 1954.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
349
+ page_content=' [29] Ronald A Fisher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
350
+ page_content=' On the mathematical foundations of theoretical statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
351
+ page_content=' Philosophical transactions of the Royal Society of London.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
352
+ page_content=' Series A, containing papers of a mathematical or physical character, 222(594-604):309– 368, 1922.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
353
+ page_content=' [30] Michael A Nielsen and Isaac L Chuang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
354
+ page_content=' Quantum computation and quantum information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
355
+ page_content=' Cambridge University Press, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6dAyT4oBgHgl3EQfpfjS/content/2301.00528v1.pdf'}
7dAzT4oBgHgl3EQfgPzo/content/tmp_files/2301.01467v1.pdf.txt ADDED
@@ -0,0 +1,1188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01467v1 [cond-mat.supr-con] 4 Jan 2023
2
+ Nodeless superconductivity in noncentrosymmetric LaRhSn
3
+ Z. Y. Nie,1, 2 J. W. Shu,1, 2 A. Wang,1, 2 H. Su,1, 2 W. Y. Duan,1, 2 A. D. Hillier,3 D. T.
4
+ Adroja,3, 4 P. K. Biswas,3 T. Takabatake,1, 5 M. Smidman,1, 2, ∗ and H. Q. Yuan1, 2, 6, †
5
+ 1Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou 310058, China
6
+ 2Zhejiang Province Key Laboratory of Quantum Technology and Device,
7
+ Department of Physics, Zhejiang University, Hangzhou 310058, China
8
+ 3ISIS Facility, STFC Rutherford Appleton Laboratory,
9
+ Harwell Science and Innovation Campus, Oxfordshire, OX11 0QX, United Kingdom
10
+ 4Highly Correlated Matter Research Group, Physics Department,
11
+ University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
12
+ 5Department of Quantum Matter, AdSE, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
13
+ 6State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310058, China
14
+ (Dated: January 5, 2023)
15
+ The superconducting order parameter of the noncentrosymmetric superconductor LaRhSn is
16
+ investigated by means of low temperature measurements of the specific heat, muon-spin relax-
17
+ ation/rotation (µSR) and the tunnel-diode oscillator (TDO) based method.
18
+ The specific heat
19
+ and magnetic penetration depth [λ(T )] show an exponentially activated temperature dependence,
20
+ demonstrating fully gapped superconductivity in LaRhSn. The temperature dependence of λ−2(T )
21
+ deduced from the TDO based method and µSR show nearly identical behavior, which can be well
22
+ described by a single-gap s-wave model, with a zero temperature gap value of ∆(0) = 1.77(4)kBTc.
23
+ The zero-field µSR spectra do not show detectable changes upon cooling below Tc, and therefore
24
+ there is no evidence for time-reversal-symmetry breaking in the superconducting state.
25
+ PACS number(s):
26
+ I.
27
+ INTRODUCTION
28
+ Noncentrosymmetric superconductors (NCS) have at-
29
+ tracted considerable interest, since in the absence of
30
+ inversion symmetry, an antisymmetric potential gradi-
31
+ ent gives rise to an antisymmetric spin-orbit coupling
32
+ (ASOC). The ASOC lifts the two-fold spin degeneracy
33
+ of the electronic bands, potentially allowing for uncon-
34
+ ventional superconducting properties such as the admix-
35
+ ture of spin-singlet and spin-triplet pairing states [1, 2].
36
+ In the noncentrosymmetric heavy fermion superconduc-
37
+ tor CePt3Si, measurements of the magnetic penetration
38
+ depth, thermal conductivity and specific heat showed
39
+ the presence of line nodes in the energy gap [3–5], and
40
+ nodal superconductivity was subsequently found in other
41
+ NCS, such as Li2Pt3B [6, 7], Y2C3 [8], K2Cr3As3 [9, 10],
42
+ and ThCoC2 [11]. However, many NCS are found to be
43
+ fully gapped superconductors, such as Mo3Al2C [12, 13],
44
+ RT Si3 (R = La, Sr, Ba, Ca; T = transition metal) [14–
45
+ 18], BiPd [19, 20], Re6T [21–23], La7T3 [24, 25], BeAu
46
+ [26] and PbTaSe2 [27–29]. Even though some of these
47
+ systems have been found to have multiple superconduct-
48
+ ing gaps, many NCS show evidence for single gap s-
49
+ wave superconductivity, indicating negligible contribu-
50
+ tions from a spin-triplet pairing component.
51
+ The pre-
52
+ dominance of such s-wave superconductivity even in sys-
53
+ tems with strong ASOC has posed the question as to
54
+ what conditions are required to give rise to mixed parity
55
+ pairing. In addition, even in NCS exhibiting unconven-
56
+ tional properties, unambiguosly demonstrating the pres-
57
+ ence of singlet-triplet mixing remains challenging, and
58
+ obtaining direct evidence may require probing associated
59
+ topological superconducting phenomena such as gapless
60
+ edge modes and Majorana modes [30, 31].
61
+ Time reversal symmetry breaking (TRSB) has been
62
+ observed in the superconducting states of some weakly
63
+ correlated NCS, such as LaNiC2 [32], La7T3 [24, 25], and
64
+ several Re-based superconductors [21, 33, 34]. TRSB has
65
+ primarily been revealed by muon-spin relaxation mea-
66
+ surements, which detect the spontaneous appearance of
67
+ small magnetic fields in the superconducting state, even
68
+ in the absence of external applied fields [35].
69
+ In most
70
+ cases, such systems have been found to have nodeless
71
+ superconducting gaps, which has often been difficult to
72
+ reconcile with the unconventional nature of the pairing
73
+ state implied by TRSB. On the other hand, different be-
74
+ havior was recently found in the weakly correlated NCS
75
+ CaPtAs, where there is evidence for both nodal supercon-
76
+ ductivity and TRSB [36, 37]. Consequently, it is impor-
77
+ tant to survey a wide range of different classes of NCS,
78
+ so as to look for novel behaviors arising from ASOC, as
79
+ well as to reveal the origin of any time reversal symmetry
80
+ breaking and to understand its relationship to the broken
81
+ inversion symmetry.
82
+ LaRhSn crystallizes in the noncentrosymmetric hexag-
83
+ onal ZrNiAl-type structure (space group P¯62m) dis-
84
+ played in the inset of Fig. 1, where the rare-earth atoms
85
+ form a distorted kagome lattice.
86
+ Compounds in this
87
+ family with a magnetic rare-earth atom have been ex-
88
+ tensively studied due to the interplay of strong elec-
89
+ tronic correlations and frustrated magnetism [38–40],
90
+ while several other systems with nonmagnetic rare-earth
91
+ elements are superconductors. For example, Sc(Ir,Rh)P,
92
+ LaRhSn, LaPdIn are superconductors with relatively low
93
+ transition temperatures Tc [41–44], while (Zr,Hf)RuP,
94
+
95
+ 2
96
+ μ
97
+ FIG. 1. (Color online) Temperature dependence of the electri-
98
+ cal resistivity ρ(T ) of LaRhSn from room temperature down
99
+ to 0.5 K. The insets show ρ(T ) near the superconducting tran-
100
+ sition, and the crystal structure of LaRhSn.
101
+ ZrRu(As,Si) and Mo(Ni,Ru)P have Tc’s over 10 K [45–
102
+ 49], where the higher Tc values may be a consequence
103
+ of the phonon spectra and electron-phonon coupling
104
+ strengths [47, 50, 51]. In this article, we study the order
105
+ parameter of LaRhSn via measurements of the electronic
106
+ specific heat and magnetic penetration depth, where the
107
+ latter is probed using both the tunnel-diode oscillator
108
+ (TDO) based method and muon-spin rotation (µSR).
109
+ The experimental results obtained by various techniques
110
+ can be consistently described by a single-gap s-wave
111
+ model corresponding to weak electron-phonon coupling.
112
+ In addition, zero-field µSR measurements do not exhibit
113
+ detectable changes below Tc, and therefore there is no
114
+ evidence for TRSB in the superconducting state.
115
+ II.
116
+ EXPERIMENTAL DETAILS
117
+ Single crystals of LaRhSn were synthesized using the
118
+ Czochralski method, as described in Ref 52. The specific
119
+ heat was measured in a Quantum Design Physical Prop-
120
+ erty Measurement System (PPMS) with a 3He insert.
121
+ The resistivity ρ(T ) was measured in a 3He cryostat from
122
+ room temperature down to 0.5 K, using a standard four-
123
+ probe method. µSR measurements were performed using
124
+ the MuSR spectrometer at the ISIS pulsed muon source
125
+ of the Rutherford Appleton Laboratory, UK [53, 54]. The
126
+ µSR experiments were conducted in transverse-field (TF)
127
+ and zero-field (ZF) configurations, so as to probe the flux
128
+ line lattice (FLL) and the presence or absence of time-
129
+ reversal symmetry breaking, respectively. Powdered sin-
130
+ gle crystals of LaRhSn were mounted on a high-purity
131
+ silver sample holder, which was mounted on a dilution
132
+ refrigerator, with a temperature range from 0.05 K to
133
+ 2.5 K. With an active compensation system, the stray
134
+ 0.0
135
+ 0.5
136
+ 1.0
137
+ 1.5
138
+ 2.0
139
+ 0.0
140
+ 0.5
141
+ 1.0
142
+ 1.5
143
+ 2.0
144
+ 2.5
145
+
146
+
147
+ s-wave
148
+
149
+ (0) = 1.76 k
150
+ B
151
+ T
152
+ c
153
+ C
154
+ el
155
+ /
156
+ n
157
+ T (K)
158
+ 0
159
+ 2
160
+ 4
161
+ 6
162
+ 8
163
+ 0
164
+ 20
165
+ 40
166
+ C/T (mJ mole
167
+ -1
168
+ K
169
+ -2
170
+ )
171
+ T (K)
172
+ C/T=
173
+ n
174
+ +
175
+ T
176
+ 2
177
+ +
178
+ T
179
+ 4
180
+ FIG. 2. (Color online) Temperature dependence of the elec-
181
+ tronic specific heat as Cel(T )/γnT of LaRhSn, where the solid
182
+ line represents fitting with a single-gap s-wave model. The in-
183
+ set displays the total specific heat C(T )/T , where the dashed
184
+ line represents the fitting to the normal state contribution.
185
+ magnetic field at the sample position can be canceled to
186
+ within 1 µT. TF-µSR experiments were carried out in
187
+ several fields up to 60 mT.
188
+ The shift of the magnetic penetration depth from the
189
+ zero-temperature value ∆λ(T ) = λ(T ) − λ(0) was mea-
190
+ sured down to 0.3 K in a 3He cryostat, using a tunnel-
191
+ diode oscillator (TDO) based method [55–57], with an
192
+ operating frequency of 7 MHz and a noise level of 0.1 Hz.
193
+ Samples with typical dimensions of 550 × 450 × 300 µm3,
194
+ were mounted on a sapphire rod. The generated ac field is
195
+ about 2 µT, which is much smaller than the lower critical
196
+ field Hc1, ensuring that the sample remains in the Meiss-
197
+ ner state. ∆λ(T ) is proportional to the frequency shift
198
+ from zero temperature ∆f(T ), i.e., ∆λ(T ) = G∆f(T ),
199
+ where G is the calibration factor determined from the
200
+ geometry of the coil and sample [56].
201
+ III.
202
+ RESULTS
203
+ A.
204
+ Electrical resistivity and specific heat
205
+ The single crystals of LaRhSn were characterized by
206
+ measurements of the electrical resistivity and specific
207
+ heat. Figure 1 displays the electrical resistivity ρ(T ) from
208
+ room temperature down to 0.5 K, which exhibits metallic
209
+ behavior in the normal state. The inset shows ρ(T ) at
210
+ low temperatures, where there is a sharp superconduct-
211
+ ing transition at around 2.0 K.
212
+ The inset of Figure. 2 displays the total specific heat
213
+ C(T )/T of LaRhSn in zero field, where there is a clear
214
+ superconducting transition with a midpoint Tc = 1.9 K,
215
+ in line with the behavior of ρ(T ). In the normal state, the
216
+ specific heat data are fitted by C(T )/T = γn+βT 2+δT 4,
217
+
218
+ BP3
219
+ 0.5
220
+ 1.0
221
+ 1.5
222
+ 2.0
223
+ 2.5
224
+ 0.0
225
+ 0.5
226
+ 1.0
227
+ 1.5
228
+ 2.0
229
+
230
+
231
+ 0.25 T
232
+ 0.20 T
233
+ 0.17 T
234
+ 0.15 T
235
+ 0.13 T
236
+ 0.10 T
237
+ 0.08 T
238
+ 0.05 T
239
+ 0.02 T
240
+ 0.00 T
241
+ C
242
+ el
243
+ /
244
+ n
245
+ T
246
+ T (K)
247
+ (a)
248
+ 0.0
249
+ 0.5
250
+ 1.0
251
+ 1.5
252
+ 0.0
253
+ 0.1
254
+ 0.2
255
+ B
256
+ c2
257
+ (T)
258
+ T (K)
259
+ 0.0
260
+ 0.5
261
+ 1.0
262
+ 0.0
263
+ 0.5
264
+ 1.0
265
+ (b)
266
+ This work
267
+ (0.38K)
268
+ MgB
269
+ 2
270
+ LaNiC
271
+ 2
272
+ Re
273
+ 24
274
+ Nb
275
+ 5
276
+
277
+
278
+ 0.38K
279
+ (B) /
280
+ n
281
+ B/B
282
+ c2
283
+ (0)
284
+ FIG. 3. (Color online) (a) Temperature dependence of the
285
+ electronic specific heat as Cel/γnT of LaRhSn under vari-
286
+ ous applied fields.
287
+ The inset displays the temperature de-
288
+ pendence of the upper critical field Bc2(T ), derived from the
289
+ specific heat measurements, where the solid line represents
290
+ fitting with the WHH model where Bc2(0) = 0.219(2) T. (b)
291
+ Field dependence of the residual Sommerfeld coefficient plot-
292
+ ted as γ0.38K(B)/γn versus B/Bc2(0) for LaRhSn, Re24Nb5
293
+ [34], MgB2 [58] and LaNiC2 [59]. The dashed and dashed-
294
+ dotted lines correspond to the expected behaviors of nodal
295
+ and single-gap s-wave superconductivity, respectively.
296
+ with γn = 11.15(4) mJ mole−1 K−2, β = 0.410(6) mJ
297
+ mole−1 K−4 and δ = 0.87(1) µJ mole−1 K−6. Here γn is
298
+ the normal state Sommerfeld coefficient, and the latter
299
+ two terms represent the phonon contribution. The De-
300
+ bye temperature θD is estimated to be 241(1) K using
301
+ θD = (12π4Rn/5β)1/3, where R = 8.31 J mole−1 K−1
302
+ is the molar gas constant and n = 3 is the number of
303
+ atoms per formula unit. The electron-phonon coupling
304
+ constant λel-ph can be approximated via
305
+ λel-ph =
306
+ 1.04 + µ∗ln(
307
+ θD
308
+ 1.45Tc )
309
+ (1 − 0.62µ∗)ln(
310
+ θD
311
+ 1.45Tc ) − 1.04.
312
+ (1)
313
+ Using the typical values for µ∗ of 0.1 – 0.15, λel-ph = 0.47
314
+ – 0.57 are obtained, close to the derived values for
315
+ isostructural LaPdIn [44], indicating weakly coupled su-
316
+ perconductivity in LaRhSn. In addition, the value of γn
317
+ is very similar to that of LaPdIn, but larger than the
318
+ values for LuPdIn and LaPtIn which are not supercon-
319
+ ducting down to at least 0.5 K [44]. This is consistent
320
+ with the magnitude of the density of states at the Fermi
321
+ level playing an important role in giving rise to super-
322
+ conductivity in this family of compounds.
323
+ The main panel of Fig. 2 shows the low tempera-
324
+ ture electronic specific heat Cel(T )/γnT , from which the
325
+ phonon contribution has been subtracted. In the super-
326
+ conducting state, the entropy S can be calculated by [60]
327
+ S = − 3γn
328
+ π3
329
+ � 2π
330
+ 0
331
+ � ∞
332
+ 0
333
+ [flnf + (1 − f)ln(1 − f)]dεdφ, (2)
334
+ where the f(E, T ) = [1+exp(E/kBT )]−1 is the Fermi-
335
+ Dirac distribution function. Here, E =
336
+
337
+ ε2 + ∆2
338
+ k, where
339
+ ∆k(T ) = ∆(T )gk is the superconducting gap function.
340
+ Therefore, the electronic specific heat of superconducting
341
+ state can be obtained by Cel = T dS/dT . In the case of
342
+ a single-gap s-wave model, there is no angle dependent
343
+ component (gk = 1), and ∆(T ) was approximated by [61]
344
+ ∆(T ) = ∆(0)tanh
345
+
346
+ 1.82 [1.018 (Tc/T − 1)]0.51�
347
+ ,
348
+ (3)
349
+ where ∆(0) is the zero-temperature superconducting gap
350
+ magnitude. As shown by the solid line in Fig. 2, the zero
351
+ field Cel/γnT can be well described by this single-gap
352
+ s-wave model, with ∆(0) = 1.76(1)kBTc.
353
+ Upon applying a magnetic field, the bulk supercon-
354
+ ducting transition is shifted to lower temperatures and
355
+ is completely suppressed at about 0.25 T (see Fig.
356
+ 3 (a)).
357
+ The inset displays the extracted upper crit-
358
+ ical field Bc2(T ) and the corresponding fitting using
359
+ the Werthamer-Helfand-Hohenberg (WHH) model [62],
360
+ with a zero temperature upper critical field Bc2(0) =
361
+ 0.219(2) T. Using λ(0) =
362
+
363
+ Φ0Bc2(0)/√24γn∆(0) [63],
364
+ where the units of Bc2(0) and γn
365
+ are gauss and
366
+ ergs cm−3 K−2, respectively, a penetration depth at zero
367
+ temperature λ(0) = 244(1) nm is estimated using ∆(0) =
368
+ 1.76(1)kBTc. Combined with a Ginzburg-Landau (GL)
369
+ coherence length of ξGL =
370
+
371
+ Φ/2πBc2(0) = 38.7(2) nm,
372
+ the GL parameter κ is estimated to be 6.30(4), indicating
373
+ that LaRhSn is a type-II superconductor. Using the val-
374
+ ues of λ(0)=244(1) nm, a residual normal state resistivity
375
+ ρ0 = 25 µΩ cm and γn = 11.15(4) mJ mole−1K−2, the
376
+ mean free path ℓ and BCS coherence length ξBCS are es-
377
+ timated to be ℓ=17.91(8) nm and ξBCS=43.8(2) nm [64].
378
+ The mean free path ℓ is smaller than ξBCS, indicating
379
+ that the sample is in the dirty limit.
380
+
381
+ 4
382
+ 0
383
+ 2
384
+ 4
385
+ 6
386
+ 8
387
+ 10
388
+ 12
389
+ 0.0
390
+ 0.1
391
+ 0.2
392
+
393
+
394
+ 2.5 K
395
+ 0.1K
396
+ 2.5 K fit
397
+ 0.1 K fit
398
+ Asymmetry
399
+ Time (
400
+ s)
401
+ FIG. 4. (Color online) ZF-µSR spectra of LaRhSn at 2.5 K
402
+ (T > Tc) and 0.1 K (T < Tc). The solid lines show the results
403
+ from fitting using Eq. 4.
404
+ Figure 3 (b) displays the field dependence of the Som-
405
+ merfeld coefficient value at 0.38 K, normalized by its
406
+ value in the normal-state, i.e., γ0.38K(B)/γn. It can be
407
+ seen that γ0.38K(B)/γn shows a nearly linear field depen-
408
+ dence, being similar to the fully gapped superconductor
409
+ Re24Nb5 [34]. On the other hand, γ0.38K(B)/γn clearly
410
+ deviates from the square-root field dependence (dashed
411
+ line) expected for line nodal superconductors, as well as
412
+ the typical behaviors of the multiband superconductors
413
+ MgB2 [58] and LaNiC2 [59]. Note that γ0.38K(B)/γn of
414
+ LaRhSn are determined from the specific heat at the low-
415
+ est measured temperature, and therefore even in zero-
416
+ field the data have a finite value.
417
+ B.
418
+ µSR measurements
419
+ Figure 4 displays the zero-field (ZF) µSR spectra col-
420
+ lected at 2.5 K (T > Tc) and 0.1 K (T < Tc). These
421
+ are fitted with a damped Gaussian Kubo-Toyabe (KT)
422
+ function
423
+ GZF(t) = A
424
+ �1
425
+ 3 + 2
426
+ 3(1 − δ2t2)exp
427
+
428
+ −δ2t2
429
+ 2
430
+ ��
431
+ exp(−Λt)+Abg,
432
+ (4)
433
+ where A is the initial asymmetry, and Abg corresponds
434
+ to the time independent background term from muons
435
+ stopping in the silver sample holder.
436
+ δ and Λ are
437
+ the Gaussian and Lorentzian relaxation rates, respec-
438
+ tively.
439
+ Upon fitting with Eq.
440
+ 4, δ = 0.086(3) µs−1
441
+ and Λ = 0.0134(11) µs−1 were obtained at 2.5 K, while
442
+ δ = 0.082(3) µs−1 and Λ = 0.0157(10) µs−1 at 0.1 K.
443
+ Therefore, we find no evidence for TRSB in the super-
444
+ conducting state of LaRhSn, and these results suggest
445
+ that any spontaneous internal fields should be no larger
446
+ than 6.6 µT, which is smaller than the corresponding
447
+ fields in other reported TRSB superconductors [35].
448
+ Transverse-field µSR (TF-µSR) measurements were
449
+ carried out in the mixed state with applied fields in the
450
+ range 40 mT to 60 mT, where the data were collected
451
+ 0
452
+ 2
453
+ 4
454
+ 6
455
+ 8
456
+ -0.2
457
+ 0.0
458
+ 0.2
459
+
460
+
461
+ Time (
462
+ s)
463
+ Asymmetry
464
+ (b) 0.05 K
465
+ -0.2
466
+ 0.0
467
+ 0.2
468
+
469
+
470
+
471
+ (a) 2.5 K
472
+ FIG. 5.
473
+ (Color online) Transverse field µSR spectra of
474
+ LaRhSn at (a) 2.5 K (T > Tc) and (b) 0.05 K (T < Tc)
475
+ in an applied field of 40 mT. The solid lines show the results
476
+ of fitting with Eq. 5
477
+ upon field-cooling in order to probe a well-ordered flux-
478
+ line lattice (FLL). The results at 2.5 K and 0.05 K in a
479
+ field of 40 mT are displayed in Fig. 5. The significant
480
+ increase of the depolarization rate corresponds to the in-
481
+ homogeneous field distribution in the sample, character-
482
+ istic of the formation of a FLL. The TF-µSR asymmetry
483
+ were fitted to the sum of oscillations damped by Gaussian
484
+ decaying functions
485
+ GTF(t) =
486
+ n
487
+
488
+ i=1
489
+ Aicos(γµBit + φ)e−(σit)2/2 + ABG, (5)
490
+ where Ai is the amplitude of the oscillating compo-
491
+ nent, which precesses about a local field Bi with a com-
492
+ mon phase offset φ and a Gaussian decay rate σi, while
493
+ γµ/2π = 135.5 MHz/T and ABG are the muon gyromag-
494
+ netic ratio and background term, respectively. The asym-
495
+ metry can be well fitted with three oscillatory compo-
496
+ nents (n = 3), where σ3 was fixed to zero, corresponding
497
+ to muons stopping in the silver sample holder. Figure
498
+ 6(a) displays the temperature dependence of σ(T ) ob-
499
+ tained following the multiple-Gaussian method described
500
+ in Ref 65. Here, the first and second moment of the field
501
+ distribution are calculated as
502
+ ⟨B⟩ =
503
+ n−1
504
+
505
+ i=1
506
+ Ai Bi
507
+ A1 + · · ·An−1
508
+ ,
509
+ (6)
510
+ ⟨B2⟩ =
511
+ n−1
512
+
513
+ i=1
514
+ Ai
515
+ A1 + · · ·An−1
516
+ [(σi/γµ)2 +[Bi −⟨B⟩]2], (7)
517
+ and σ = γµ
518
+
519
+ ⟨B2⟩. The relaxation rate in the normal
520
+ state is ascribed to a temperature independent contri-
521
+ bution arising from quasistatic nuclear moments, with a
522
+ nuclear dipolar relaxation rate σN
523
+ = 0.0851(27) µs−1.
524
+
525
+ 5
526
+ 40
527
+ 50
528
+ 60
529
+ 70
530
+ 0.0
531
+ 0.2
532
+ 0.4
533
+ 0.6
534
+ 0.8
535
+ 1.0
536
+
537
+
538
+ sc
539
+ (
540
+ s
541
+ -1
542
+ )
543
+ Field (mT)
544
+ 0.1 K
545
+ 0.3 K
546
+ 0.5 K
547
+ 0.7 K
548
+ 0.9 K
549
+ 1.0 K
550
+ 1.1 K
551
+ 1.2 K
552
+ 1.3 K
553
+ 1.4 K
554
+ 1.5 K
555
+ (b)
556
+ 0
557
+ 1
558
+ 2
559
+ 0.0
560
+ 0.2
561
+ 0.4
562
+ 0.6
563
+ 0.8
564
+ 1.0
565
+ 40 mT
566
+ 45 mT
567
+ 50 mT
568
+ 60 mT
569
+
570
+
571
+ (
572
+ s
573
+ -1
574
+ )
575
+ T (K)
576
+ N
577
+ = 0.0851
578
+ s
579
+ -1
580
+ (a)
581
+ FIG. 6. (Color online) (a) Temperature dependence of the
582
+ Gaussian relaxation rate of the TF-µSR spectra in different
583
+ applied fields between 40 mT and 60 mT. (b) Field depen-
584
+ dence of the superconducting contribution to the TF-µSR re-
585
+ laxation rate σsc at various temperatures, where the solid lines
586
+ correspond to fitting using Eq. 8.
587
+ The superconducting component of the variance σsc is
588
+ calculated as σsc =
589
+
590
+ σ2 − σ2
591
+ N, and its field dependence
592
+ is displayed in Fig. 6(b) for several temperatures.
593
+ For small applied fields and large κ, σsc is field inde-
594
+ pendent and proportional to λ−2, which is not applicable
595
+ for the current measurements of LaRhSn. On the other
596
+ hand, for κ ≥ 5 and 0.25/κ1.3 ≤ b ≤ 1, σsc may be ap-
597
+ proximated by [66]
598
+ σsc = 4.854 × 104 1
599
+ λ2 (1 − b)[1 + 1.21(1 −
600
+
601
+ b)3],
602
+ (8)
603
+ where b = B/Bc2 is the applied field normalized by the
604
+ upper critical field. Since the κ of LaRhSn was deter-
605
+ mined to be about 6.30(4), the measurements of LaRhSn
606
+ are within the applicability of Eq. 8. Therefore by fixing
607
+ Bc2(T ) to the bulk values derived from the specific heat
608
+ 0.4
609
+ 0.6
610
+ 0.8
611
+ 1.0
612
+ 0
613
+ 10
614
+ 20
615
+
616
+
617
+ s-wave
618
+ ~T
619
+ 4.4
620
+ ~T
621
+ 2
622
+ (nm)
623
+ T (K)
624
+ 1
625
+ 2
626
+ 0
627
+ 2
628
+ 4
629
+ 6
630
+ 8
631
+ f (kHz)
632
+ T (K)
633
+ FIG. 7. (Color online) The change of magnetic penetration
634
+ depth ∆λ(T ) of LaRhSn at low temperatures. The solid red,
635
+ dashed blue and dashed-dotted magenta lines represent fitting
636
+ to an s-wave model, and power-law dependences ∼ T 4.4 and
637
+ ∼ T 2, respectively.
638
+ The inset displays the frequency shift
639
+ ∆f(T ) from 2.5 K down to 0.3 K, where there is a sharp
640
+ superconducting transition at around Tc = 2 K.
641
+ in Fig. 3, the temperature dependence of λ−2(T ) can be
642
+ obtained from fitting with Eq. 8 [Fig. 6(b)], and the re-
643
+ sults are shown in Fig. 8, together with the TDO results
644
+ described in following section.
645
+ C.
646
+ TDO measurements and superfluid density
647
+ analysis
648
+ Figure 7 shows the penetration depth shift ∆λ(T ) of
649
+ LaRhSn at low temperatures, with a calibration factor
650
+ G = 14.2 ˚A/Hz. The inset displays the frequency shift
651
+ ∆f(T ) from 2.5 K down to the base temperature of 0.3 K,
652
+ where a sharp superconducting transition is observed at
653
+ Tc = 2 K, in accordance with other measurements. Upon
654
+ further cooling, ∆λ(T ) flattens at the lowest measured
655
+ temperatures, indicating fully gapped superconductivity
656
+ in LaRhSn. For an s-wave superconductor, the temper-
657
+ ature dependence of ∆λ(T ) for T ≪ Tc can be approxi-
658
+ mated by
659
+ ∆λ(T ) = λ(0)
660
+
661
+ π∆(0)
662
+ 2kBT exp
663
+
664
+ −∆(0)
665
+ kBT
666
+
667
+ .
668
+ (9)
669
+ As shown by the solid line, the experimental data be-
670
+ low Tc/3 can be well described by the s-wave model with
671
+ ∆(0) = 1.80(1)kBTc, where λ(0) = 227.9 nm was fixed
672
+ to the value derived from TF-µSR. The data were also
673
+ fitted by a power law dependence ∆λ(T ) ∝ T n, from
674
+ 0.3 K up to 0.75 K. A large exponent of n = 4.4 is ob-
675
+ tained, which is much larger than two, excluding nodal
676
+ superconductivity in LaRhSn.
677
+
678
+ 6
679
+ 0.0
680
+ 0.2
681
+ 0.4
682
+ 0.6
683
+ 0.8
684
+ 1.0
685
+ 0
686
+ 5
687
+ 10
688
+ 15
689
+ 20
690
+
691
+
692
+ TDO
693
+
694
+ SR
695
+ s-wave (clean)
696
+ s-wave (dirty)
697
+ d-wave
698
+ p-wave
699
+ -2
700
+ (
701
+ m
702
+ -2
703
+ )
704
+ T/T
705
+ c
706
+ FIG. 8. (Color online) Temperature dependence of λ−2(T ) as
707
+ a function of the normalized temperature T/Tc. The data are
708
+ derived from measurements using the TDO based method and
709
+ TF-µSR measurements, which correspond to the empty circle
710
+ and solid symbols, respectively. The lines show the results
711
+ from fitting with different models for the gap structure.
712
+ To further characterize the superconducting pairing
713
+ state of LaRhSn, the temperature dependence of λ−2(T )
714
+ was analyzed, which is proportional to the superfluid den-
715
+ sity ρs(T ) as ρs(T ) = [λ(0)/λ(T )]2. Figure 8 displays
716
+ λ−2(T ) as a function of the reduced temperature T/Tc,
717
+ where the data are derived from both the TDO and TF-
718
+ µSR measurements, which show nearly identical behav-
719
+ ior. Since the previous analysis suggested that the sample
720
+ is in the dirty limit, the results from TF-µSR were fitted
721
+ with the following expression for a dirty s-wave model
722
+ [67]
723
+ ρs(T ) = ∆(T )
724
+ ∆(0) tanh
725
+ � ∆(T )
726
+ 2kBT
727
+
728
+ .
729
+ (10)
730
+ As shown by the dashed line in Fig.
731
+ 8, the dirty s-
732
+ wave model can well describe the experimental data, with
733
+ λ(0) = 227.9(9) nm and ∆(0) = 1.77(4)kBTc. The data
734
+ were also analyzed using the clean limit expression
735
+ ρs(T ) = λ−2(T )
736
+ λ−2(0) = 1 + 2
737
+ �� ∞
738
+ ∆k
739
+ EdE
740
+
741
+ E2 − ∆2
742
+ k
743
+ ∂f
744
+ ∂E
745
+
746
+ FS
747
+ ,
748
+ (11)
749
+ where a clean single gap s-wave model can also fit
750
+ the data well, yielding a larger gap value of ∆(0) =
751
+ 2.05(3)kBTc. Here the gap value obtained from the dirty
752
+ s-wave model is in very good agreement to those derived
753
+ from the analysis of specific heat and low temperature
754
+ ∆λ(T ), while the clean limit value is considerably larger,
755
+ which is in-line with the previous dirty limit calculation.
756
+ We note that due to the samples being in the dirty limit,
757
+ TABLE I. Superconducting parameters of LaRhSn, where the
758
+ parentheses with C and µSR denote the results from the spe-
759
+ cific heat and µSR, respectively.
760
+ Property
761
+ Unit
762
+ Value
763
+ Tc
764
+ K
765
+ 1.9
766
+ Bc2(0)
767
+ T
768
+ 0.219(2)
769
+ γn
770
+ mJ mole−1K−2
771
+ 11.15(4)
772
+ ΘD
773
+ K
774
+ 241(1)
775
+ λel−ph
776
+ 0.47-0.57
777
+ ξGL
778
+ nm
779
+ 38.7(2)
780
+
781
+ nm
782
+ 17.91(8)
783
+ ξBCS
784
+ nm
785
+ 43.8(2)
786
+ λ0(C)
787
+ nm
788
+ 244(1)
789
+ λ0(µSR)dirty
790
+ nm
791
+ 227.9(9)
792
+ κ(C)
793
+ 6.30(4)
794
+ κ(µSR)dirty
795
+ 5.89(4)
796
+ ∆(0)(C)
797
+ kBTc
798
+ 1.76(1)
799
+ ∆(0)(µSR)dirty
800
+ kBTc
801
+ 1.77(4)
802
+ we cannot exclude an anisotropic superconducting gap
803
+ in LaRhSn, since impurity scattering can suppress any
804
+ gap anisotropy.
805
+ On the other hand, as also shown in
806
+ Fig. 8, a d-wave model with gk = cos 2φ and p-wave
807
+ model with gk = sin θ (φ= azimuthal angle, θ= polar
808
+ angle) cannot account for the data, further indicating a
809
+ lack of nodal superconductivity in LaRhSn. Meanwhile,
810
+ the value of λ(0) obtained from µSR experiments is very
811
+ close to that from specific heat results. Using this value of
812
+ λ(0) = 227.9(9)nm, κ = 5.89(4) is estimated, which cor-
813
+ responds well to the value from the specific heat analysis.
814
+ The obtained superconducting parameters of LaRhSn are
815
+ displayed in Table I. Therefore, the results of specific
816
+ heat, TDO-based measurements and µSR can all be con-
817
+ sistently described by a single-gap s-wave model with a
818
+ gap magnitude very close to that of weak-coupling BCS
819
+ theory, and there is no evidence for time-reversal sym-
820
+ metry breaking below Tc.
821
+ IV.
822
+ SUMMARY
823
+ In summary, we have studied the order parameter of
824
+ the noncentrosymmetric superconductor LaRhSn. Both
825
+ the specific heat and magnetic penetration depth show
826
+ exponentially activated behavior at low temperatures,
827
+ providing strong evidence for fully gapped superconduc-
828
+ tivity. λ−2(T ) derived from the TDO based method and
829
+ TF-µSR, as well as the specific heat can be consistently
830
+ well described by a single-gap s-wave model, with a gap
831
+ magnitude very close to that of weak coupling BCS the-
832
+ ory. Together with findings for LaPdIn [44] and ZrRuAs
833
+ [47], our results suggest that fully gapped s-wave super-
834
+ conductivity, together with a lack of evidence for time
835
+
836
+ 7
837
+ reversal symmetry breaking, are consistent common fea-
838
+ tures of weakly correlated NCS with the ZrNiAl-type
839
+ structure and there is a lack of significant singlet-triplet
840
+ mixing.
841
+ ACKNOWLEDGMENTS
842
+ This work was supported by the National Key R&D
843
+ Program of China (Grant No. 2017YFA0303100), the
844
+ Key R&D Program of Zhejiang Province, China (Grant
845
+ No. 2021C01002), the National Natural Science Foun-
846
+ dation of China (Grant No. 11874320, No. 11974306
847
+ and No. 12034017), and the Zhejiang Provincial Natu-
848
+ ral Science Foundation of China (R22A0410240). D.T.A.
849
+ would like to thank the Royal Society of London for Ad-
850
+ vanced Newton Fellowship founding between UK and
851
+ China.
852
+ Experiments at the ISIS Pulsed Neutron and
853
+ Muon Source were supported by a beamtime alloca-
854
+ tion from the Science and Technology Facilities Council
855
+ (Grant No. RB2010190 [54])
856
+ ∗ Corresponding author: [email protected]
857
+ † Corresponding author: [email protected]
858
+ [1] L. P. Gor’kov and E. I. Rashba, Superconducting 2D
859
+ System with Lifted Spin Degeneracy:
860
+ Mixed Singlet-
861
+ Triplet State, Phys. Rev. Lett. 87, 037004 (2001).
862
+ [2] M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F.
863
+ Agterberg, Superconductivity and spin–orbit coupling in
864
+ non-centrosymmetric materials:
865
+ a review, Rep. Prog.
866
+ Phys. 80, 036501 (2017).
867
+ [3] I. Bonalde, W. Br¨amer-Escamilla, and E. Bauer, Evi-
868
+ dence for line nodes in the superconducting energy gap
869
+ of noncentrosymmetric CePt3Si from magnetic penetra-
870
+ tion depth measurements, Phys. Rev. Lett. 94, 207002
871
+ (2005).
872
+ [4] K. Izawa, Y. Kasahara, Y. Matsuda, K. Behnia, T. Ya-
873
+ suda, R. Settai, and Y. Onuki, Line Nodes in the
874
+ Superconducting Gap Function of Noncentrosymmetric
875
+ CePt3Si, Phys. Rev. Lett. 94, 197002 (2005).
876
+ [5] T. Takeuchi, T. Yasuda, M. Tsujino, H. Shishido, R. Set-
877
+ tai, H. Harima, and Y. ¯onuki, Specific heat and de
878
+ Haas-an Alphen Experiments on the Heavy-Fermion
879
+ Superconductor CePt3Si, J. Phys. Soc. Jpn. 76, 014702
880
+ (2007).
881
+ [6] H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Bad-
882
+ ica, D. Vandervelde, K. Togano, M. Sigrist, and M. B.
883
+ Salamon, S-Wave Spin-Triplet Order in Superconductors
884
+ without Inversion Symmetry:
885
+ Li2Pd3B and Li2Pt3B,
886
+ Phys. Rev. Lett. 97, 017006 (2006).
887
+ [7] M. Nishiyama,
888
+ Y. Inada, and G. Q. Zheng, Spin
889
+ Triplet Superconducting State due to Broken Inversion
890
+ Symmetry in Li2Pt3B, Phys. Rev. Lett. 98, 047002
891
+ (2007).
892
+ [8] J. Chen, M. B. Salamon, S. Akutagawa, J. Akimitsu,
893
+ J. Singleton, J. L. Zhang, L. Jiao, and H. Q. Yuan, Evi-
894
+ dence of nodal gap structure in the noncentrosymmetric
895
+ superconductor Y2C3, Phys. Rev. B 83, 144529 (2011).
896
+ [9] J. K. Bao, J. Y. Liu, C. W. Ma, Z. H. Meng, Z. T. Tang,
897
+ Y. L. Sun, H. F. Zhai, H. Jiang, H. Bai, C. M. Feng,
898
+ Z. A. Xu, and G. H. Cao, Superconductivity in quasi-
899
+ one-dimensional K2Cr3As3 with significant electron cor-
900
+ relations, Phys. Rev. X 5, 011013 (2015).
901
+ [10] G. M. Pang, M. Smidman, W. B. Jiang, J. K. Bao, Z. F.
902
+ Weng, Y. F. Wang, L. Jiao, J. L. Zhang, G. H. Cao,
903
+ and H. Q. Yuan, Evidence for nodal superconductivity
904
+ in quasi-one-dimensional K2Cr3As3, Phys. Rev. B 91,
905
+ 220502(R) (2015).
906
+ [11] A. Bhattacharyya, D. T. Adroja, K. Panda, S. Saha,
907
+ T. Das, A. J. S. Machado, O. V. Cigarroa, T. W. Grant,
908
+ Z. Fisk, A. D. Hillier, and P. Manfrinetti, Evidence of a
909
+ nodal line in the superconducting gap symmetry of non-
910
+ centrosymmetric ThCoC2, Phys. Rev. Lett. 122, 147001
911
+ (2019).
912
+ [12] I. Bonalde, H. Kim, R. Prozorov, C. Rojas, P. Rogl, and
913
+ E. Bauer, Evidence for conventional superconducting be-
914
+ havior in noncentrosymmetric Mo3Al2C, Phys. Rev. B
915
+ 84, 134506 (2011).
916
+ [13] E. Bauer, C. Sekine, U. Sai, P. Rogl, P. K. Biswas, and
917
+ A. Amato, Absence of time-reversal symmetry break-
918
+ ing in the noncentrosymmetric superconductor Mo3Al2C,
919
+ Phys. Rev. B 90, 054522 (2014).
920
+ [14] E. Bauer, R. T. Khan, H. Michor, E. Royanian, A. Gryt-
921
+ siv, N. Melnychenko-Koblyuk, P. Rogl, D. Reith, R. Pod-
922
+ loucky, E.-W. Scheidt, W. Wolf, and M. Marsman,
923
+ BaPtSi3: A noncentrosymmetric BCS-like superconduc-
924
+ tor, Phys. Rev. B 80, 064504 (2009).
925
+ [15] V. K. Anand, A. D. Hillier, D. T. Adroja, A. M. Stry-
926
+ dom, H. Michor, K. A. McEwen, and B. D. Rainford,
927
+ Specific heat and µSR study on the noncentrosymmet-
928
+ ric superconductor LaRhSi3, Phys. Rev. B 83, 064522
929
+ (2011).
930
+ [16] M. Smidman, A. D. Hillier, D. T. Adroja, M. R. Lees,
931
+ V. K. Anand, R. P. Singh, R. I. Smith, D. M. Paul,
932
+ and G. Balakrishnan, Investigations of the superconduct-
933
+ ing states of noncentrosymmetric LaPdSi3 and LaPtSi3,
934
+ Phys. Rev. B 89, 094509 (2014).
935
+ [17] F. Kneidinger, L. Salamakha, E. Bauer, I. Zeiringer,
936
+ P. Rogl, C. Blaas-Schenner, D. Reith, and R. Podloucky,
937
+ Superconductivity in noncentrosymmetric BaAl4 derived
938
+ structures, Phys. Rev. B 90, 024504 (2014).
939
+ [18] G. Eguchi, D. C. Peets, M. Kriener, Y. Maeno, E. Nishi-
940
+ bori, Y. Kumazawa, K. Banno, S. Maki, and H. Sawa,
941
+ Crystallographic and superconducting properties of the
942
+ fully gapped noncentrosymmetric 5d-electron supercon-
943
+ ductors CaMSi3 (M = Ir, Pt), Phys. Rev. B 83, 024512
944
+ (2011).
945
+ [19] L. Jiao, J. L. Zhang, Y. Chen, Z. F. Weng, Y. M. Shao,
946
+ J. Y. Feng, X. Lu, B. Joshi, A. Thamizhavel, S. Ramakr-
947
+ ishnan, and H. Q. Yuan, Anisotropic superconductivity in
948
+ noncentrosymmetric BiPd, Phys. Rev. B 89, 060507(R)
949
+ (2014).
950
+ [20] Z. Sun, M. Enayat, A. Maldonado, C. Lithgow, E. Yel-
951
+ land, D. C. Peets, A. Yaresko, A. P. Schnyder, and
952
+ P. Wahl, Dirac surface states and nature of supercon-
953
+ ductivity in Noncentrosymmetric BiPd, Nat. Commun.
954
+ 6, 6633 (2015).
955
+
956
+ 8
957
+ [21] R. P. Singh, A. D. Hillier, B. Mazidian, J. Quintanilla,
958
+ J. F. Annett, D. M. Paul, G. Balakrishnan, and M. R.
959
+ Lees, Detection of Time-Reversal Symmetry Breaking
960
+ in the Noncentrosymmetric Superconductor Re6Zr Using
961
+ Muon-Spin Spectroscopy, Phys. Rev. Lett. 112, 107002
962
+ (2014).
963
+ [22] G. M. Pang, Z. Y. Nie, A. Wang, D. Singh, W. Xie, W. B.
964
+ Jiang, Y. Chen, R. P. Singh, M. Smidman, and H. Q.
965
+ Yuan, Fully gapped superconductivity in single crystals
966
+ of noncentrosymmetric Re6Zr with broken time-reversal
967
+ symmetry, Phys. Rev. B 97, 224506 (2018).
968
+ [23] D. Singh, A. D. Hillier, A. Thamizhavel, and R. P. Singh,
969
+ Superconducting properties of the noncentrosymmetric
970
+ superconductor Re6Hf, Phys. Rev. B 94, 054515 (2016).
971
+ [24] J. A. T. Barker, D. Singh, A. Thamizhavel, A. D.
972
+ Hillier, M. R. Lees, G. Balakrishnan, D. M. Paul, and
973
+ R. P. Singh, Unconventional Superconductivity in La7Ir3
974
+ Revealed by Muon Spin Relaxation: Introducing a New
975
+ Family of Noncentrosymmetric Superconductor That
976
+ Breaks Time-Reversal Symmetry, Phys. Rev. Lett. 115,
977
+ 267001 (2015).
978
+ [25] D. Singh, M. S. Scheurer, A. D. Hillier, D. T. Adroja,
979
+ and R. P. Singh, Time-reversal-symmetry breaking and
980
+ unconventional pairing in the noncentrosymmetric super-
981
+ conductor La7Rh3, Phys. Rev. B 102, 134511 (2020).
982
+ [26] A. Amon, E. Svanidze, R. Cardoso-Gil, M. N. Wilson,
983
+ H. Rosner, M. Bobnar, W. Schnelle, J. W. Lynn, R. Gu-
984
+ meniuk, C. Hennig, G. M. Luke, H. Borrmann, A. Leithe-
985
+ Jasper, and Y. Grin, Noncentrosymmetric superconduc-
986
+ tor BeAu, Phys. Rev. B 97, 014501 (2018).
987
+ [27] C.-L. Zhang, Z. Yuan, G. Bian, S.-Y. Xu, X. Zhang, M. Z.
988
+ Hasan, and S. Jia, Superconducting properties in sin-
989
+ gle crystals of the topological nodal semimetal PbTaSe2,
990
+ Phys. Rev. B 93, 054520 (2016).
991
+ [28] G. M. Pang, M. Smidman, L. X. Zhao, Y. F. Wang, Z. F.
992
+ Weng, L. Q. Che, Y. Chen, X. Lu, G. F. Chen, and H. Q.
993
+ Yuan, Nodeless superconductivity in noncentrosymmet-
994
+ ric PbTaSe2 single crystals, Phys. Rev. B 93, 060506(R)
995
+ (2016).
996
+ [29] M. N. Wilson, A. M. Hallas, Y. Cai, S. Guo, Z. Gong,
997
+ R. Sankar, F. C. Chou, Y. J. Uemura, and G. M. Luke,
998
+ µSR study of the noncentrosymmetric superconductor
999
+ PbTaSe2, Phys. Rev. B 95, 224506 (2017).
1000
+ [30] M. Sato and S. Fujimoto, Topological phases of noncen-
1001
+ trosymmetric superconductors: Edge states, Majorana
1002
+ fermions, and non-Abelian statistics, Phys. Rev. B 79,
1003
+ 094504 (2009).
1004
+ [31] M. Sato, Y. Takahashi, and S. Fujimoto, Non-Abelian
1005
+ topological orders and Majorana fermions in spin-singlet
1006
+ superconductors, Phys. Rev. B 82, 134521 (2010).
1007
+ [32] A. D. Hillier, J. Quintanilla, and R. Cywinski, Ev-
1008
+ idence for Time-Reversal Symmetry Breaking in the
1009
+ Noncentrosymmetric
1010
+ Superconductor
1011
+ LaNiC2,
1012
+ Phys.
1013
+ Rev. Lett. 102, 117007 (2009).
1014
+ [33] T. Shang, G. M. Pang, C. Baines, W. B. Jiang, W. Xie,
1015
+ A. Wang,
1016
+ M. Medarde,
1017
+ E. Pomjakushina,
1018
+ M. Shi,
1019
+ J. Mesot, H. Q. Yuan, and T. Shiroka, Nodeless super-
1020
+ conductivity and time-reversal symmetry breaking in the
1021
+ noncentrosymmetric superconductor Re24Ti5, Phys. Rev.
1022
+ B 97, 020502(R) (2018).
1023
+ [34] T. Shang, M. Smidman, S. K. Ghosh, C. Baines, L. J.
1024
+ Chang, D. J. Gawryluk, J. A. T. Barker, R. P. Singh,
1025
+ D. M. Paul, G. Balakrishnan, E. Pomjakushina, M. Shi,
1026
+ M. Medarde, A. D. Hillier, H. Q. Yuan, J. Quintanilla,
1027
+ J. Mesot, and T. Shiroka, Time-Reversal Symmetry
1028
+ Breaking in Re-Based Superconductors, Phys. Rev. Lett.
1029
+ 121, 257002 (2018).
1030
+ [35] S. K. Ghosh, M. Smidman, T. Shang, J. F. Annett, A. D.
1031
+ Hillier, J. Quintanilla, and H. Yuan, Recent progress on
1032
+ superconductors with time-reversal symmetry breaking,
1033
+ J. Phys.: Condens. Matter 33, 033001 (2020).
1034
+ [36] W. Xie, P. R. Zhang, B. Shen, W. B. Jiang, G. M.
1035
+ Pang, T. Shang, C. Cao, M. Smidman, and H. Q. Yuan,
1036
+ CaPtAs:
1037
+ A new noncentrosymmetric superconductor,
1038
+ Sci. China Phys. Mech. Astron. 63, 237412 (2020).
1039
+ [37] T.
1040
+ Shang,
1041
+ M.
1042
+ Smidman,
1043
+ A.
1044
+ Wang,
1045
+ L.-J.
1046
+ Chang,
1047
+ C. Baines, M. K. Lee, Z. Y. Nie, G. M. Pang, W. Xie,
1048
+ W. B. Jiang, M. Shi, M. Medarde, T. Shiroka, and H. Q.
1049
+ Yuan, Simultaneous Nodal Superconductivity and Time-
1050
+ Reversal Symmetry Breaking in the Noncentrosymmetric
1051
+ Superconductor CaPtAs, Phys. Rev. Lett. 124, 207001
1052
+ (2020).
1053
+ [38] H. Zhao, J. Zhang, M. Lyu, S. Bachus, Y. Tokiwa,
1054
+ P. Gegenwart, S. Zhang, J. Cheng, Y.-f. Yang, G. Chen,
1055
+ et al., Quantum-critical phase from frustrated magnetism
1056
+ in a strongly correlated metal, Nat. Phys. 15, 1261
1057
+ (2019).
1058
+ [39] Y. Tokiwa, C. Stingl, M.-S. Kim, T. Takabatake, and
1059
+ P. Gegenwart, Characteristic signatures of quantum crit-
1060
+ icality driven by geometrical frustration, Sci. Adv. 1,
1061
+ e1500001 (2015).
1062
+ [40] Y. Shimura, A. W¨orl, M. Sundermann, S. Tsuda, D. T.
1063
+ Adroja, A. Bhattacharyya, A. M. Strydom, A. D. Hillier,
1064
+ F. L. Pratt, A. Gloskovskii, A. Severing, T. Onimaru,
1065
+ P. Gegenwart, and T. Takabatake, Antiferromagnetic
1066
+ Correlations in Strongly Valence Fluctuating CeIrSn,
1067
+ Phys. Rev. Lett. 126, 217202 (2021).
1068
+ [41] F.
1069
+ Canepa
1070
+ and
1071
+ S.
1072
+ Cirafici,
1073
+ Equiatomic
1074
+ ternary
1075
+ lanthanum-transition metal-tin phases:
1076
+ structural and
1077
+ electrical results, J. Alloys Compd. 232, 71 (1996).
1078
+ [42] Y. Okamoto, T. Inohara, Y. Yamakawa, A. Yamakage,
1079
+ and K. Takenaka, Superconductivity in the Hexagonal
1080
+ Ternary Phosphide ScIrP, J. Phys. Soc. Jpn. 85, 013704
1081
+ (2016).
1082
+ [43] T. Inohara, Y. Okamoto, Y. Yamakawa, and K. Tak-
1083
+ enaka, Synthesis and Superconducting Properties of a
1084
+ Hexagonal Phosphide ScRhP, J. Phys. Soc. Jpn. 85,
1085
+ 094706 (2016).
1086
+ [44] H. Su, Z. Y. Nie, F. Du, S. S. Luo, A. Wang, Y. J. Zhang,
1087
+ Y. Chen, P. K. Biswas, D. T. Adroja, C. Cao, M. Smid-
1088
+ man, and H. Q. Yuan, Fully gapped superconductivity
1089
+ with preserved time-reversal symmetry in noncentrosym-
1090
+ metric LaPdIn, Phys. Rev. B 104, 024505 (2021).
1091
+ [45] H. Barz, H. C. Ku, G. P. Meisner, Z. Fisk, and B. T.
1092
+ Matthias, Ternary transition metal phosphides: High-
1093
+ temperature superconductors, Proc. Natl. Acad. Sci.
1094
+ U.S.A. 77, 3132 (1980).
1095
+ [46] G. Meisner,
1096
+ H. Ku, and H. Barz, Superconducting
1097
+ equiatomic ternary transition metal arsenides, Mater.
1098
+ Res. Bull. 18, 983 (1983).
1099
+ [47] D. Das, D. T. Adroja, M. R. Lees, R. W. Taylor, Z. S.
1100
+ Bishnoi, V. K. Anand, A. Bhattacharyya, Z. Guguchia,
1101
+ C. Baines, H. Luetkens, G. B. G. Stenning, L. Duan,
1102
+ X. Wang, and C. Jin, Probing the superconducting gap
1103
+ structure in the noncentrosymmetric topological super-
1104
+ conductor ZrRuAs, Phys. Rev. B 103, 144516 (2021).
1105
+ [48] I. Shirotani, K. Tachi, Y. Konno, S. Todo, and T. Yagi,
1106
+ Superconductivity of the ternary ruthenium compounds
1107
+
1108
+ 9
1109
+ HfRuP and ZrRuX (X = P, As, Si or Ge) prepared at a
1110
+ high pressure, Philos. Mag. B. 79, 767 (1999).
1111
+ [49] I. Shirotani, M. Tajaya, I. Kaneko, C. Sekine, and
1112
+ T. Yagi, Superconductivity of MRuP and MNiP (M =
1113
+ Mo or W) prepared at high pressure, Solid State Com-
1114
+ mun. 116, 683 (2000).
1115
+ [50] A. Bhattacharyya, K. Panda, D. T. Adroja, N. Kase,
1116
+ P. K. Biswas, S. Saha, T. Das, M. R. Lees, and A. D.
1117
+ Hillier, Investigation of superconducting gap structure
1118
+ in HfIrSi using muon spin relaxation/rotation, J. Phys.:
1119
+ Condens. Matter 32, 085601 (2019).
1120
+ [51] S. Ba˘gc ı, M. Cin, H. Y. Uzunok, E. c. v. Karaca, H. M.
1121
+ T¨ut¨unc¨u, and G. P. Srivastava, Investigating the normal
1122
+ state and superconducting state properties of orthorhom-
1123
+ bic and hexagonal ZrRuP: A first-principles study, Phys.
1124
+ Rev. B 100, 184507 (2019).
1125
+ [52] H. Higaki, I. Ishii, D. Hirata, M. S. Kim, T. Taka-
1126
+ batake, and T. Suzuki, Elastic, Thermal, Magnetic and
1127
+ Transport Properties of Kondo Compounds CeRhIn and
1128
+ CeRhSn, J. Phys. Soc. Jpn 75, 024709 (2006).
1129
+ [53] S. L. Lee, S. H. Kilcoyne, and R. Cywinski, eds., Muon
1130
+ Science:
1131
+ Muons in Physics, Chemistry and Materials
1132
+ (SUSSP Publications and IOP Publishing, Bristol, UK,
1133
+ 1999).
1134
+ [54] M. Smidman, D. T. Adroja, Z. Y. Nie, A. D. Hillier, and
1135
+ P. Biswas (2020): STFC ISIS Neutron and Muon Source,
1136
+ 10.5286/ISIS.E.RB2010190.
1137
+ [55] C. T. Van Degrift, Tunnel diode oscillator for 0.001 ppm
1138
+ measurements at low temperatures, Rev. Sci. Instrum.
1139
+ 46, 599 (1975).
1140
+ [56] R. Prozorov, R. W. Giannetta, A. Carrington, and F. M.
1141
+ Araujo-Moreira, Meissner-London state in superconduc-
1142
+ tors of rectangular cross section in a perpendicular mag-
1143
+ netic field, Phys. Rev. B 62, 115 (2000).
1144
+ [57] E. M. E. Chia, Penetration depth studies of unconven-
1145
+ tional superconductors, Ph.D. thesis, University of Illinois
1146
+ at Urbana Champaign (2004).
1147
+ [58] F. Bouquet, R. A. Fisher, N. E. Phillips, D. G. Hinks,
1148
+ and J. D. Jorgensen, Specific Heat of Mg11B2: Evidence
1149
+ for a Second Energy Gap, Phys. Rev. Lett. 87, 047001
1150
+ (2001).
1151
+ [59] J. Chen, L. Jiao, J. L. Zhang, Y. Chen, L. Yang, M. Nick-
1152
+ las, F. Steglich, and H. Q. Yuan, Evidence for two-gap
1153
+ superconductivity in the non-centrosymmetric compound
1154
+ LaNiC2, New J. Phys. 15, 053005 (2013).
1155
+ [60] F. Bouquet, Y. Wang, R. A. Fisher, D. G. Hinks, J. D.
1156
+ Jorgensen, A. Junod, and N. E. Phillips, Phenomenolog-
1157
+ ical two-gap model for the specific heat of MgB2, Euro-
1158
+ phys. Lett. 56, 856 (2001).
1159
+ [61] A. Carrington and F. Manzano, Magnetic penetration
1160
+ depth of MgB2, Physica C 385, 205 (2003).
1161
+ [62] N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Tem-
1162
+ perature and Purity Dependence of the Superconducting
1163
+ Critical Field, Hc2. III. Electron Spin and Spin-Orbit
1164
+ Effects, Phys. Rev. 147, 295 (1966).
1165
+ [63] F. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres,
1166
+ P. J. Hirschfeld, H. R. Ott, J. Beuers, Z. Fisk, and J. L.
1167
+ Smoth, Anomalous temperature dependence of the mag-
1168
+ netic field penetration depth in superconducting UBe13,
1169
+ Z. Phys. B: Condens. Matter 64, 175 (1986).
1170
+ [64] T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley,
1171
+ Critical fields, Pauli paramagnetic limiting, and material
1172
+ parameters of Nb3Sn and V3Si, Phys. Rev. B 19, 4545
1173
+ (1979).
1174
+ [65] A.
1175
+ Maisuradze,
1176
+ R.
1177
+ Khasanov,
1178
+ A.
1179
+ Shengelaya,
1180
+ and
1181
+ H. Keller, Comparison of different methods for analyzing
1182
+ µSR line shapes in the vortex state of type-II supercon-
1183
+ ductors, J. Phys.: Condens. Matter 21, 075701 (2009).
1184
+ [66] E. H. Brandt, Properties of the ideal Ginzburg-Landau
1185
+ vortex lattice, Phys. Rev. B 68, 054506 (2003).
1186
+ [67] M. Tinkham, Introduction to Superconductivity (Courier
1187
+ Corporation, North Chelmsford, MA, 2004).
1188
+
7dE4T4oBgHgl3EQf2Q2c/content/2301.05297v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cadfce4eb7cc1141eda21e2e2c5ab84220a616ffae7ff50568c41671f0d0173
3
+ size 1544777
7dE4T4oBgHgl3EQf2Q2c/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f0e796f813dff3147f30dcf7b1a2a215c861cf939a3ea5e8c3454d462feb851
3
+ size 2949165
7tE2T4oBgHgl3EQf7whk/content/tmp_files/2301.04212v1.pdf.txt ADDED
@@ -0,0 +1,934 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DEEP LEARNING BASED MULTI-LABEL IMAGE CLASSIFICATION OF PROTEST
2
+ ACTIVITIES
3
+ Yingzhou Lu, Kosaku Sato, Jialu Wang
4
+ Electrical and Computer Engineering Department
5
+ Virginia Tech
6
+ Arlington,VA 22203, USA
7
+ George Washington University
8
+ Washington, DC 20052, USA
9
10
+ ABSTRACT
11
+ With the rise of internet technology amidst increasing ur-
12
+ banization rates, sharing information has never been easier,
13
+ thanks to globally-adopted platforms for digital communi-
14
+ cation.
15
+ The resulting output of massive amounts of user-
16
+ generated data can be used to enhance our understanding
17
+ of significant societal issues, particularly for urbanizing ar-
18
+ eas. In order to better analyze protest behavior, we enhanced
19
+ the GSR dataset and manually labeled all the images. We
20
+ used deep learning techniques to analyze social media data
21
+ to detect social unrest through image classification, which
22
+ performed well in predicting multi-attributes. Then, we used
23
+ map visualization to display protest behaviors across the
24
+ country.
25
+ Index Terms— Machine Learning, Deep Learning, Im-
26
+ age Classification, Multi-Label Classification, Social Media
27
+ 1. INTRODUCTION
28
+ The study of protest activities plays a profound role in so-
29
+ ciologists and scholars’ studying citizens’ political behavior.
30
+ With the advancement of social media networks, people now
31
+ share an unprecedented amount of user-generated content in
32
+ the form of text, images, and videos on the web. Classifi-
33
+ cation of social media data not only helps in understanding
34
+ online behavior, but also elucidates significant priorities of
35
+ urban populations that carry real-life consequences. Using
36
+ social media data, we focuses on social unrest in the form of
37
+ public protest images, specifically for Latin American coun-
38
+ tries.
39
+ The traditional approach to the study of social media
40
+ dataset focused on using natural language processing to mon-
41
+ itor how hashtags and links are used by the user and the
42
+ propagation of those items to other users. However, these ap-
43
+ proaches may not effectively capture some important features
44
+ or details of protest activities. For instance, we may be in-
45
+ terested in knowing details such as whether there was a large
46
+ crowd involved in the protest, if polices were present, or what
47
+ the demographics (young or adults) of protesters carrying a
48
+ sign. Our approach uses image processing to capture those
49
+ features of the protest activitiesFu et al. (2021).
50
+ We took several approaches in image classification of
51
+ social media data: our initial approach is to utilize traditional
52
+ machine learning methods such as Support Vector Machine
53
+ (SVM)Weston et al. (1999) and a deep learning method like
54
+ Convolutional Neural Networks (CNNs)Krizhevsky et al.
55
+ (2012) which have shown some advantages in large-scale im-
56
+ age and video analysis. Traditional machine learning method,
57
+ such as SVM, can be used to classify images with good accu-
58
+ racy; however, as the volume of data and number of classes
59
+ for recognition increases, the deep learning approaches be-
60
+ comes the more advanced approach for object recognition.
61
+ 2. LITERATURE REVIEW
62
+ As our objective of our model is to detect protest activi-
63
+ ties using the image, the preliminary work relevant to our
64
+ study is the EMBERS system by Naren, Patrick and et
65
+ elRamakrishnan et al. (2014). The EMBERS system con-
66
+ tinuously monitor the social media dataset such as Twitter,
67
+ Facebook, news pages, and use data mining to process the
68
+ trend to predict the protest activities in South America re-
69
+ gions. Their planned protest model based on custom multi-
70
+ lingual lexicon matching predicted the protest activities with
71
+ precision and recall rate of 0.69 and 0.82 respectively. How-
72
+ ever, their approach does not capture the additional features
73
+ of the protests such as demography.
74
+ Moreover, image classification is classical topic in com-
75
+ puter vision area which aims to predict and assign each given
76
+ image a specific label from several categories.
77
+ However,
78
+ background clutter, occlusion and variation in image scale
79
+ make the computer vision tasks more challenging. The tra-
80
+ ditional approaches to perform image classification includes
81
+ k-nearest neighbor and SVM algorithmsYi et al. (2018).
82
+ k-nearest neighbor is one of the simplest classification al-
83
+ gorithm that aims at labeling an image based on the best fit
84
+ result, but the model is usually not robust to noise or im-
85
+ balanced class datasetZhang et al. (2006). Similarly, SVM,
86
+ which is originally proposed as a binary classification by
87
+ Cortes and VapnikCortes and Vapnik (1995) is another clas-
88
+ sical approach to perform classification and it has shown a
89
+ better performance than the k-nearest neighbor in some ap-
90
+ arXiv:2301.04212v1 [cs.CV] 10 Jan 2023
91
+
92
+ Fig. 1. Labeled GSR images in GSR dataset
93
+ plicationsBoiman et al. (2008). Furthermore, our approach
94
+ adopts a deep learning based on CNNs based on the study
95
+ of the visual cortex of the human brain which have shown
96
+ a great success recently in many computer vision applica-
97
+ tionsAghdam and Heravi.
98
+ 3. OSI DATASET
99
+ The OSI (Open Source Indicators) dataset, provided by com-
100
+ puter science department from Virginia Tech, is MITRE’s
101
+ gold standard report (GSR) of protests organized by survey-
102
+ ing newspapers for civil unrest reports.
103
+ The dataset also
104
+ contains large samples of non-protest images that were col-
105
+ lected in the process. There are 48,713 images in GSR and
106
+ 40,647 non-protest images.
107
+ High-confidence images indi-
108
+ cate a top image among multiple images embedded in the
109
+ articles.
110
+ High-confidence images within datasets indicate
111
+ a top image among multiple images embedded in the arti-
112
+ clesJayachandra et al. (2020). High-confidence GSR images
113
+ relevant to GSR articles based on social protest total 7,884,
114
+ and low-confidence GSR images total 40,829.
115
+ 3.1. Details of the Image Labels
116
+ Table 1 shows the visual attributes that characterize the
117
+ protests which we used to label each image from the GSR
118
+ dataset. Out of 40,647, a total of 9,504 images were hand-
119
+ picked to train and test our prediction models by excluding
120
+ bad data points that are obviously irrelevant to the social ac-
121
+ tivities that we are interested in detectingYang et al. (2020).
122
+ The Annotated images consist of 327 fire, 1,943 flag, 7,347
123
+ large crowd, 248 other, 2,159 police, 4,462 sign, and 1,233
124
+ student images. Fig. 1 contains sample images with their
125
+ class labels. Each image has a label with vector of length
126
+ 7 that has ”0”s and ”1”s corresponding to the index number
127
+ of visual attributes. The ”Other” label was inferred from the
128
+ absence of positive class labels across categories.
129
+ 3.2. Challenges of the Dataset
130
+ There are a few inherent challenges in our training dataset.
131
+ First, some attributes of protest are commonly shared with
132
+ Fig. 2. Sample protest images from training set
133
+ Fig. 3. Sample non-protest images from training set
134
+ Table 1. Visual attributes of protest images
135
+ Class label
136
+ Description
137
+ Sample size
138
+ 0
139
+ Fire
140
+ Presence of active fire
141
+ 327
142
+ 1
143
+ Flag
144
+ Presence of flag
145
+ 1943
146
+ 2
147
+ Large Crowd
148
+ Presence of roughly more than 20 people
149
+ 7347
150
+ 3
151
+ Other
152
+ None of the above or the below
153
+ 248
154
+ 4
155
+ Police
156
+ Presence of police
157
+ 2159
158
+ 5
159
+ Sign
160
+ Presence of a protest sign
161
+ 4462
162
+ 6
163
+ Student
164
+ Presence of young students
165
+ 1233
166
+ non-protest images. For instance, Figure 2 shows a sample
167
+ of protest images used to train the machine learning and deep
168
+ learning models. Images with a protest class label often de-
169
+ picted fire, police, handwritten signs, and large crowds. How-
170
+ ever, Figure 3 shows a sample of non-protest images in which
171
+ large crowds are also frequently seen attribute while it also
172
+ comprised of a variety of other objects (such as animals or
173
+ soccer players). Second, we have imbalanced dataset where
174
+ it does not have exactly equal number of instances in each
175
+ class. This issue is mainly defined by the specific subject or
176
+ attribute we set up in our problem. The training of the classi-
177
+ fiers in imbalanced dataset can cause the trained model clas-
178
+ sifying images as images of majority class most of the times
179
+ and under-represent the minority class.
180
+ 3.3. Image Augmentation for Imbalanced Dataset
181
+ One way to balance the imbalanced classes is to use image
182
+ augmentation. Data augmentation is a method to artificially
183
+ increase sample size of the training images through various
184
+ pre-processing or combinations of multiple pre-processing of
185
+ the image such as adding noise, flipping and re-scaling. Ta-
186
+ ble 2 summarizes the different techniques we adopted to per-
187
+ form image augmentation for minority classes. Image aug-
188
+ mentation has been considered as a promising method to im-
189
+ prove the performance of prediction model.
190
+ For instance,
191
+ adding noise to our observation can help make the prediction
192
+ Table 2. Increased sample size after image augmentation
193
+ Class label
194
+ Image transformation used
195
+ New sample size
196
+ Fire
197
+ Flipping, Scaling, Translation, Noise,
198
+ Affine Transform, Perspective Transform,
199
+ Intensity, Contrast, Filters, Crop, Shear
200
+ 4,578
201
+ Flag
202
+ Flipping, Noise, Affine Transform
203
+ 5,829
204
+ Large Crowd
205
+
206
+ 7347
207
+ Other
208
+ Flipping, Scaling, Translation, Noise,
209
+ Affine Transform, Perspective Transform,
210
+ Intensity, Contrast, Filters, Crop, Shear
211
+ 3,472
212
+ Police
213
+ Affine Transform, Noise
214
+ 6,477
215
+ Sign
216
+
217
+ 4462
218
+ Student
219
+ Flipping, Noise, Affine Transform, Crop
220
+ 6,165
221
+
222
+ GSR Image with Labels
223
+ ['0", "1', '1', "0", '0', "1', "0'
224
+ ["0", "1', '1', '0', 0', '1',"1']
225
+ ["0",'0', "1', "0", "','0", "0]
226
+ ["0", "0', "0', "1', 0', '0", "0"Fig. 4. Example images from the dataset after transformation
227
+ model more robust in the face of social media dataset and pre-
228
+ vents it from overfitting Perez and Wang (2017). Moreover,
229
+ Python’s scikit-image library has the full list of the avail-
230
+ able image transformation but we have adopted the thirteen
231
+ of them. Those are horizontal and vertical flipping, affine
232
+ transfomration, perspective transformation, rescaling, crop-
233
+ ping, blurring, changing contrast and intensity, gaussian and
234
+ exposure filter, translation, and shearing. Fig. 4 shows the
235
+ example of such transformations of the images. As a result
236
+ of implementing image augmentation, we were able to signif-
237
+ icantly improve the sample size of the minority classes; for
238
+ instance, the sample size of ’fire’ class increased from 327 to
239
+ 4,578 as seen in Table 2. Also, as an alternative approach,
240
+ we considered oversampling using Synthetic Minority Over-
241
+ sampling Technique (SMOTE) Chawla et al. (2002). How-
242
+ ever, we believe that image augmentation can create more
243
+ variation in training images to prevent over fitting, and hence
244
+ we did not utilize SMOTE in this paper.
245
+ 4. MULTI-LABEL IMAGE CLASSIFICATION
246
+ Multi-label learning is a form of supervised learning where
247
+ the classification algorithm learns from a set of images in
248
+ which an image can belong to one or more classes. The goal
249
+ of multi-label image classification is to predict a set of class
250
+ labels for the input image.
251
+ A more generalized approach
252
+ is multi-class learning where each image is limited to one
253
+ correct class label. Multi-label classification and prediction
254
+ is more practical since the many real world problems involve
255
+ multiple objects belonging to different categories.
256
+ Multi-
257
+ label classification is also applicable various domains such
258
+ as text, video, and scene classification. For a typical multi-
259
+ label image, objects of different categories in each image are
260
+ located at varying positions with differing scale, zoom, size,
261
+ and poseWon et al. (2017). For example, two images labeled
262
+ as ’police’ and ’fire’ may have different spatial arrangements
263
+ of identified objects. Although factors such as differing ar-
264
+ rangements or occlusion can contribute to the inaccuracy of
265
+ multi-label classification, we expect reasonable results with a
266
+ sufficiently large dataset. Details of implementation of multi-
267
+ label classification for SVM and CNNs will be discussed in
268
+ the following sections.
269
+ 5. APPROACH OF IMAGE CLASSIFICATION
270
+ In our approach, we utilized multi-label SVM and CNNs to
271
+ detect protest attributes in image classification. First, multi-
272
+ label SVM will be explained in details. In our proposal, SVM
273
+ is a baseline model to evaluate the performance of the pre-
274
+ diction model using CNNs. As the problem requires a large
275
+ dataset for training and good accuracy of classifying many
276
+ protest attributes, we believe that CNNs will perform better
277
+ than SVM.
278
+ 5.1. Support Vector Machine
279
+ SVM is originally proposed as a binary classification by
280
+ Cortes and VapnikCortes and Vapnik (1995), but the model
281
+ has been extended to apply to multi-label classification prob-
282
+ lemsWeston and Watkins (1998).
283
+ One-vs.-All: One-vs.-All is a classical approach to solve
284
+ k-class pattern recognition problem. It involves training a sin-
285
+ gle binary classifier per class, with the samples of one class
286
+ as positive samples while other samples are set as negative.
287
+ More specifically, using this method, n-th classifier finds a
288
+ hyperplane between class n and the rest of the classesWeston
289
+ and Watkins (1998). A point where the distance from the
290
+ margin is maximal is assigned to the class. We aim at de-
291
+ tecting seven classes so that this strategy requires the training
292
+ of seven different SVMs. During testing the models, all clas-
293
+ sifiers would vote ’true’ by predicting that a testing sample
294
+ belongs to their class. In the end of testing, a sample is classi-
295
+ fied by the ensemble as the class that has the highest number
296
+ of votes. One-vs.-All is widely used in multi-label classifica-
297
+ tion.
298
+ Weighting Hyper-Parameter for SVM: Imbalanced
299
+ dataset causes misclassification of images that belonging to
300
+ the minority class impacted more heavily than that of the ma-
301
+ jority class because the frequency of the minority class is rare
302
+ compared to that of the majority class. In order to mitigate
303
+ over fitting of training classifier resulted from the imbalanced
304
+ data, we propose the modification of hyperparameter C in
305
+ SVM’s objective function which determines the penalty for
306
+ misclassifying the objects. Instead of defaulting C to be one,
307
+ Ck belonging to class k will have different values as shown
308
+ in (4).
309
+ Ck = C ·
310
+ n
311
+ knj
312
+ (1)
313
+ As you can see, the updated Ck value will be inversely propor-
314
+ tional to instances of j class in order to increase Ck value for
315
+ the minority class in order to mitigate under-representation
316
+ issue. k is the number of class and j is the sample size be-
317
+ longing to the class.
318
+ 5.2. Convolutional Neural Networks
319
+ 5.2.1. Architecture
320
+ CNNs consist of input, convolution, activation function, pool-
321
+ ing, deep layers, and output layers. Throughout the training
322
+ of the network, the parameters are updated except for the ones
323
+ between convolution and pooling. There are some important
324
+ properties of the convolution layer. Some patterns are smaller
325
+
326
+ Original Image
327
+ Contrast Adjusted
328
+ Noise Added
329
+ ELPAQUETE
330
+ ELPAOUETE
331
+ Cropped
332
+ Horizontal Flip
333
+ Vertical Flip
334
+ ESEKKON
335
+ PAQUETE
336
+ ETBHOREIE
337
+ CIEN
338
+ NOAENERKOthan the entire image so that the image can be subsampled to
339
+ reduce the image size; this is to train fewer parameters in the
340
+ neural network. The same patterns can appear in different re-
341
+ gions so that the same set of parameters can be used to reduce
342
+ computation.
343
+ Convolutional Layers: Convolution of a filter on an input
344
+ image is a point-wise multiplication operation. The activation
345
+ function, which in our case is Rectified Linear Unit (ReLU)
346
+ activation, is applied on each image separately in an element-
347
+ wise fashion to create activation maps based on outputs of the
348
+ convolution Aghdam and Heravi.
349
+ Activation Function: Nair and Hinton introduced the
350
+ non-saturating nonlinearity f(x) = max(0, x), also known as
351
+ the ReLU, which has gained popularity in the deep-learning
352
+ community because of its fast computing time Krizhevsky
353
+ et al. (2012).Hence, our model applied the ReLU nonlinear-
354
+ ity function to the output of every convolutional and fully-
355
+ connectedKrizhevsky et al. (2012).
356
+ Pooling Layer: In our model, we applied a 2x2 filter size
357
+ with a 2-length stride after each layer with the option of max-
358
+ pooling. Max-pooling applies the filters and the stride to the
359
+ input and returns the maximum value, dropping the non-max
360
+ values in each sub-region that convolution is applied.
361
+ Fully Connected Layers: The fully connected layer uses
362
+ those inputs to produce N-dimensional vectors, where N is
363
+ the number of classes needed for prediction.
364
+ Loss Function: In our model, we used sigmoid cross-
365
+ entropy for multi-label classification. Cross-entropy is used
366
+ to define the loss function in training the network in which
367
+ the model is penalized if it estimates a low probability for the
368
+ target class Nielsen (2015).
369
+ J(θ) = − 1
370
+ m
371
+ m
372
+
373
+ i=1
374
+ K
375
+
376
+ k=1
377
+ [yi
378
+ k log(ˆpi
379
+ k)]
380
+ (2)
381
+ For the loss function, we used Adaptive Moment Estima-
382
+ tion (ADAM) Kingma and Ba (2014). ADAM keeps track of
383
+ a learning rate for each network weight and computes indi-
384
+ vidual adaptive learning rates for different parameters based
385
+ on estimates of first and second moments of the gradients
386
+ Kingma and Ba (2014). Since ADAM is an adaptive rate
387
+ learning algorithm, it requires less tuning. The default learn-
388
+ ing rate 0.001 is often used to support usability of the algo-
389
+ rithm.
390
+ Table 3 shows our CNNs architecture. There are three
391
+ convolutional layers with ReLU, and max-pooling is used to
392
+ down-sample the image after each convolutional layer. The
393
+ filter size for max-pooling is 2 × 2 so that output image of the
394
+ max-pooling is half the size of the input. The convolutional
395
+ layers uses the filter size of 3 × 3 while length of stride equal
396
+ to 2. The first fully connected layer (FC1) is a vector with a
397
+ length of 1024, and the second fully connected layer (FC2)
398
+ is a vector of length 7 which is the number of class labels to
399
+ predict visual attributes of protest images.
400
+ 5.2.2. Evaluation Method of Multi-label Classification
401
+ Evaluation of multi-label classification has a notion of being
402
+ partially correct. One way to evaluate the classification is
403
+ label-set based accuracy or exact match that considers par-
404
+ tially correct as incorrect. On the other hand, evaluation of
405
+ label-based accuracy is carried out on a per label basisChen
406
+ Table 3. Architecture of Multi-Label Classification CNN
407
+ Layer
408
+ Feature Map
409
+ Feature Size
410
+ Filter Size
411
+ Stride
412
+ Pad
413
+ Activation
414
+ FC2
415
+ -
416
+ 7
417
+ -
418
+ -
419
+ -
420
+ Sigmoid
421
+ FC1
422
+ -
423
+ 1024
424
+ -
425
+ -
426
+ -
427
+ ReLU
428
+ Max-Pooling
429
+ 128
430
+ 4x4
431
+ 2x2
432
+ 2
433
+ Same
434
+ -
435
+ Conv3
436
+ 128
437
+ 7x7
438
+ 3x3
439
+ 2
440
+ Same
441
+ ReLU
442
+ Max-Pooling
443
+ 64
444
+ 14x14
445
+ 2x2
446
+ 2
447
+ Same
448
+ -
449
+ Conv2
450
+ 64
451
+ 28x28
452
+ 3x3
453
+ 2
454
+ Same
455
+ ReLU
456
+ Max-Pooling
457
+ 32
458
+ 56x56
459
+ 2x2
460
+ 2
461
+ Same
462
+ -
463
+ Conv1
464
+ 32
465
+ 112x112
466
+ 3x3
467
+ 2
468
+ Same
469
+ ReLU
470
+ Input
471
+ 3(RGB)
472
+ 224x224
473
+ -
474
+ -
475
+ -
476
+ -
477
+ et al. (2021). The calculation method of label-set accuracy,
478
+ where a predicted set of labels ˆy must exactly match the
479
+ ground truth y, is shown in equation (3) Read et al. (2011);
480
+ 0/1 loss dictates that any label vector not predicted perfectly
481
+ will be given a zero score.
482
+ 0/1
483
+ loss = 1 − 1
484
+ N
485
+ N
486
+
487
+ i=1
488
+ 1yi= ˆ
489
+ yi
490
+ (3)
491
+ Label-based accuracy is more lenient approach to evaluate the
492
+ performance since it does not consider multi-label problem as
493
+ a whole. When each label has a separate binary evaluation, we
494
+ have hamming loss which is shown in the following equation:
495
+ Hamming
496
+ Loss = 1 −
497
+ 1
498
+ NL
499
+ N
500
+
501
+ i=l
502
+ L
503
+
504
+ j=l
505
+ 1yi= ˆ
506
+ yi
507
+ (4)
508
+ We adapted both approaches to evaluate the performance of
509
+ our multi-label classifier.
510
+ 5.2.3. Threshold Selection
511
+ The fully connected layer represents a vector containing prob-
512
+ ability for each class. The threshold function can be used to
513
+ obtain a multi-label prediction ˆy. Specifically, we used the
514
+ Matthews Correlation Coefficient (MCC) which is an evalu-
515
+ ation metric of binary classification. The MCC is a correla-
516
+ tion coefficient for ground truth versus predictions and varies
517
+ between -1 and 1, where 1 represents a perfect prediction
518
+ Gorodkin (2004). The MCC is given by the following equa-
519
+ tion (5).
520
+ MCC =
521
+ Tp × Tn − Fp × Fn
522
+
523
+ (Tp + Fp)(Tp + Fn)(Tn + Fp)(Tn + Fn)
524
+ (5)
525
+ For multi-label classification, the MCC is defined in terms
526
+ of a confusion Matrix C for K classes in the equation (6) .
527
+ MCC =
528
+ c × s − �K
529
+ k pkxtk
530
+
531
+ (s2 − �K
532
+ k p2
533
+ k)(s2 − �K
534
+ k t2
535
+ k)
536
+ (6)
537
+ The values tk = �K
538
+ i Cik is the number of times class k
539
+ truly happened. pk = �K
540
+ i Cki is the number of times class
541
+ k was predictedTian et al. (2021). c = �K
542
+ i Ckk is the total
543
+ number of samples correctly predicted. s = �K
544
+ i
545
+ �K
546
+ j Cij is
547
+ the total number of samples.
548
+
549
+ 5.3. Advantages and Disadvantages of SVM and CNN
550
+ In image classification, there are advantages and disadvan-
551
+ tages for both SVM and CNNs. Theoretically, SVM is very
552
+ good at finding the margin and hyperplane for classification,
553
+ and it is very robust for high dimensional dataZhang et al.
554
+ (2006). However, SVM model is sensitive to noise, for exam-
555
+ ple, if there is a noise in background or a visible object in one
556
+ image is occluded or partially blocked by scenes in other, it
557
+ will have a negative impact on the performance of the clas-
558
+ sification model Cortes and Vapnik (1995). Moreover, since
559
+ one-vs-all involves training a binary classifier for all classes,
560
+ computation time can be very expensive.
561
+ On the other hand, the main advantage of CNNs is that
562
+ it can be used to extract important image features with a suf-
563
+ ficiently large datasetLeCun et al. (2015). The performance
564
+ of CNNs classifier largely depend on the size of the dataset.
565
+ The bottle necks in training the CNNs model are computa-
566
+ tional time and memory used to retain activation from for-
567
+ ward pass and error gradients computation when dataset is
568
+ very largeSun et al. (2008). However, an efficient parallel
569
+ computation with a help of GPU or training a model in mini
570
+ batches can be used to mitigate those issues to some degrees.
571
+ Also, there are many parameters for CNNs that need to be
572
+ set by the users in order to train a robust and good prediction
573
+ model.
574
+ 6. EXPERIMENT
575
+ We implemented K-class SVM and CNNs using scikit-learn
576
+ and TensorFlow libraries in Python 3.5. In the experiment,
577
+ we used our personal server desktop which runs on Windows
578
+ with 2 Intel Xeon E5-2630 V3 CPU 2.4 GHz and 8 small
579
+ cores with RAM size of 64GB. First, we split the sample im-
580
+ ages via image augmentation from Table 2 into training and
581
+ testing (the ration of 80% and 20% respectively) and then
582
+ we re-sized each image to 224x224 with 3 color channels.
583
+ However, the implementation of SVM in scikit-learn does not
584
+ adopt online learning so that we had to down-sample the sam-
585
+ ple images from 31,472 to 12,000 to avoid memory limit er-
586
+ ror. On the other hand, with a help of mini-batches, we used
587
+ all of the data points without any down-sampling for CNNs
588
+ model.
589
+ We trained a baseline SVM using One-vs.-All method.
590
+ Our final setting of SVM consisted of max iterations to be
591
+ ran as 4000 to ensure it converges. Also, we experimented
592
+ weighting of hyperparameter in equation (1) but it did not im-
593
+ prove the result so our final setting of the weight parameters
594
+ for each classes are set to 1. For CNNs, we used the learning
595
+ rate of 0.001 which is a standard rate and mini batch size of
596
+ 202 images with numbers of batches as 125.
597
+ 7. RESULTS AND DISCUSSION
598
+ 7.1. Evaluation
599
+ Evaluation was conducted on each class. Since we have the
600
+ manual label as ground truth, we calculated accuracy, the pre-
601
+ cision rate, recall rate, and F1 score for each class respec-
602
+ tively. Specifically, the following is the equations we used to
603
+ calculate each evaluation criteria: Precision rate=
604
+ T P
605
+ T P +F P ,
606
+ Recall rate=
607
+ T P
608
+ T P +F N , Accuracy=
609
+ T P +T N
610
+ T P +T N+F P +F N .
611
+ F1
612
+ score is the harmonic mean of precision rate and recall rate.
613
+ Table 4. Evaluation of SVM Model Prediction
614
+ Fire
615
+ Flag
616
+ Large Crowd
617
+ Other
618
+ Police
619
+ Sign
620
+ Student
621
+ Accuracy (%)
622
+ 88
623
+ 74
624
+ 60
625
+ 89
626
+ 77
627
+ 63
628
+ 79
629
+ Precision (%)
630
+ 53
631
+ 53
632
+ 63
633
+ 53
634
+ 52
635
+ 55
636
+ 50
637
+ Recall (%)
638
+ 35
639
+ 22
640
+ 60
641
+ 24
642
+ 30
643
+ 39
644
+ 19
645
+ F1 Score (%)
646
+ 42
647
+ 31
648
+ 61
649
+ 33
650
+ 38
651
+ 45
652
+ 27
653
+ Fig. 5. SVM vs CNN Precision Rate
654
+ Fig. 6. SVM vs CNN Recall Rate
655
+ 7.2. Result
656
+ Training SVM model with one-vs.-all method took longer
657
+ than 12 hours and consistently consumed 70-90% of avail-
658
+ able memory on our machine whereas the CNNs model only
659
+ took less than half of the training time with much less con-
660
+ sumption of memory with a help of mini-batch. Therefore,
661
+ we were able to obtain the results by CNNs easier and faster
662
+ than the SVM. Table 4 and 5 shows the accuracy, precison,
663
+ recall, and F1 score of each predicted lables for SVM and
664
+ CNNs respectively. We also plotted the precision and recall
665
+ of the two models side by side in histogram in Fig. 5 and 6
666
+ to compare the performance of the two models. As you can
667
+ see, their overall performance is comparable to each other but
668
+ recall using CNNs is slightly better than that of SVM.
669
+ For the evaluation of CNNs prediction, We calculated
670
+ the best threshold using MCC to transform the probability of
671
+ each label from the fully connected layer into the 7 predicted
672
+ class labels: the calculated thresholds are 0.2, 0.4, 0.7, 0.6,
673
+ 0.5, 0.4, 0.5 for ’fire’, ’flag’, ’large crowd’, ’other’, ’police’,
674
+ ’sign’, and ’student’ respectively.
675
+ Prediction accuracy per
676
+ Table 5. Evaluation of CNNs Model Prediction
677
+ Fire
678
+ Flag
679
+ Large Crowd
680
+ Other
681
+ Police
682
+ Sign
683
+ Student
684
+ Accuracy (%)
685
+ 91
686
+ 72
687
+ 71
688
+ 89
689
+ 76
690
+ 61
691
+ 76
692
+ Precision (%)
693
+ 76
694
+ 48
695
+ 74
696
+ 52
697
+ 45
698
+ 51
699
+ 32
700
+ Recall (%)
701
+ 67
702
+ 36
703
+ 73
704
+ 37
705
+ 32
706
+ 46
707
+ 23
708
+ F1 Score (%)
709
+ 71
710
+ 41
711
+ 73
712
+ 43
713
+ 38
714
+ 49
715
+ 27
716
+
717
+ SVM
718
+ ■CNNs
719
+ 76
720
+ 74
721
+ 63
722
+ 53
723
+ 55
724
+ 53
725
+ 53
726
+ 52
727
+ 52
728
+ 48
729
+ 5051
730
+ 45
731
+ 32
732
+ FIRE
733
+ FLAG
734
+ LARGE
735
+ OTHER
736
+ POLICE
737
+ SIGN
738
+ STUDENT
739
+ CROWDSVMCNNs
740
+ 73
741
+ 67
742
+ 60
743
+ 46
744
+ 37
745
+ 39
746
+ 35
747
+ 36
748
+ 30 32
749
+ 22
750
+ 24
751
+ 23
752
+ 19
753
+ FIRE
754
+ FLAG
755
+ LARGE
756
+ OTHER
757
+ POLICE
758
+ SIGN
759
+ STUDENT
760
+ CROWDFig. 7. Image of a burning vehicle with police in background
761
+ (top); image of bikers and a flag (bottom)
762
+ label reached almost 77% on average. Fig. 7 shows sample
763
+ test images of ’fire’ and ’police’ on the left and ’large crowd’
764
+ and ’police’ on the right. Our CNNs model predicted them
765
+ correctly but when we evaluated our classifier model with a
766
+ large dataset, we found that our label-set accuracy was very
767
+ low around 20% due to the challenges of exact matching on a
768
+ multi-label classifier.
769
+ 7.3. Future work
770
+ From the experiment, we learnt that we were able to get rea-
771
+ sonable performance using both SVM and CNNs model to
772
+ predict each class label separately but the bottom line perfor-
773
+ mance of our prediction model is still not desirable: our goal
774
+ is to increase the accuracy of exact matching. Therefore, Fu-
775
+ ture work can be done in following aspects. First, we can
776
+ apply state-of-the-art algorithm like Generative Adversarial
777
+ Network to generate more training samples, which would be
778
+ helpful to prevent over fitting. Second, we modify the equa-
779
+ tion for SVM to enhance the classifier, and improve the deep
780
+ learning modelYan et al. (2018). Moreover, The main limi-
781
+ tation of our image classification approach is that it does not
782
+ consider the credibility of the source in decision making, and
783
+ hence requires assessment of the social media source or of
784
+ each image posted on the web. Also, there are privacy protec-
785
+ tion concern in using both social media and image dataChai
786
+ and Nayak (2018). In other further research, we will merge
787
+ image and text data like article headlines and descriptions
788
+ associated with each image which should help improve the
789
+ performance of prediction model. We will conduct privacy
790
+ protection procedure such as Randomized Response Chai and
791
+ Nayak (2019) to the data. Then, we can evaluate our model
792
+ using the OSI database as well as social media such as Twit-
793
+ ter to determine the level of generalization our model may be
794
+ able to achieve.
795
+ 8. CONCLUSION
796
+ Our paper demonstrates a rapid means of image augmenta-
797
+ tion and identifying key aspects of protest activity from pub-
798
+ licly available image streams, using open source software.
799
+ Although there are additional work that need to be done to
800
+ improve our classifier models, our approach creates greater
801
+ opportunities for the collection of such data to enable work
802
+ for public good. While traditional efforts to monitor violence
803
+ and protests may largely be hampered by linguistic barriers
804
+ and reporting delays, images streams from social media pro-
805
+ vide a language-agnostic means of assessing such threats. By
806
+ demonstrating that we were able to get reasonable prediction
807
+ accuracy of key aspects of protest images using SVM and
808
+ CNNs, we hope to enable its application to improve moni-
809
+ toring of social unrest activities within unstable regionsSun
810
+ et al. (2021).
811
+ ACKNOWLEDGMENT
812
+ We thank Virginia Tech CS department for providing us with
813
+ the OSI dataset.
814
+ References
815
+ Tianfan Fu, Cao Xiao, Cheng Qian, Lucas M Glass, and Ji-
816
+ meng Sun. Probabilistic and dynamic molecule-disease in-
817
+ teraction modeling for drug discovery. In Proceedings of
818
+ the 27th ACM SIGKDD Conference on Knowledge Discov-
819
+ ery & Data Mining, pages 404–414, 2021.
820
+ Jason Weston, Chris Watkins, et al. Support vector machines
821
+ for multi-class pattern recognition. In Esann, volume 99,
822
+ pages 219–224, 1999.
823
+ Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
824
+ agenet classification with deep convolutional neural net-
825
+ works. In Advances in neural information processing sys-
826
+ tems, pages 1097–1105, 2012.
827
+ Naren Ramakrishnan, Patrick Butler, Sathappan Muthiah,
828
+ Nathan Self, Rupinder Khandpur, Parang Saraf, Wei Wang,
829
+ Jose Cadena, Anil Vullikanti, Gizem Korkmaz, et al. ’beat-
830
+ ing the news’ with embers: forecasting civil unrest using
831
+ open source indicators. In Proceedings of the 20th ACM
832
+ SIGKDD international conference on Knowledge discov-
833
+ ery and data mining, pages 1799–1808. ACM, 2014.
834
+ Steven Yi, Minta Lu, Adam Yee, John Harmon, Frank Meng,
835
+ and Saurabh Hinduja. Enhance wound healing monitoring
836
+ through a thermal imaging based smartphone app. In Med-
837
+ ical Imaging 2018: Imaging Informatics for Healthcare,
838
+ Research, and Applications, volume 10579, page 105791P.
839
+ International Society for Optics and Photonics, 2018.
840
+ Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra
841
+ Malik.
842
+ Svm-knn: Discriminative nearest neighbor clas-
843
+ sification for visual category recognition. In 2006 IEEE
844
+ Computer Society Conference on Computer Vision and Pat-
845
+ tern Recognition (CVPR’06), volume 2, pages 2126–2136.
846
+ IEEE, 2006.
847
+ Corinna Cortes and Vladimir Vapnik.
848
+ Support-vector net-
849
+ works. Machine learning, 20(3):273–297, 1995.
850
+ Oren Boiman, Eli Shechtman, and Michal Irani. In defense of
851
+ nearest-neighbor based image classification. In 2008 IEEE
852
+ Conference on Computer Vision and Pattern Recognition,
853
+ pages 1–8. IEEE, 2008.
854
+
855
+ ["1',"0'",'0',"0","1','0',"0"['0',"1',"1','0',"0",'','']Hamed Habibi Aghdam and Elnaz Jahani Heravi. Guide to
856
+ convolutional neural networks.
857
+ Vinay Jayachandra, Rashmi Kesidi, Zhou Yang, Chen Zhang,
858
+ Zhenhe Pan, Victor Sheng, and Fang Jin. Besober: Assist-
859
+ ing relapse prevention in alcohol addiction using a novel
860
+ mobile app-based intervention. In 2020 IEEE/ACM Inter-
861
+ national Conference on Advances in Social Networks Anal-
862
+ ysis and Mining (ASONAM), pages 944–947. IEEE, 2020.
863
+ Zhou Yang, Long Nguyen, Jiazhen Zhu, Zhenhe Pan, Jia Li,
864
+ and Fang Jin. Coordinating disaster emergency response
865
+ with heuristic reinforcement learning. In 2020 IEEE/ACM
866
+ International Conference on Advances in Social Networks
867
+ Analysis and Mining (ASONAM), pages 565–572. IEEE,
868
+ 2020.
869
+ Luis Perez and Jason Wang.
870
+ The effectiveness of data
871
+ augmentation in image classification using deep learning.
872
+ arXiv preprint arXiv:1712.04621, 2017.
873
+ Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
874
+ W Philip Kegelmeyer.
875
+ Smote: synthetic minority over-
876
+ sampling technique. Journal of artificial intelligence re-
877
+ search, 16:321–357, 2002.
878
+ Donghyeon
879
+ Won,
880
+ Zachary
881
+ C
882
+ Steinert-Threlkeld,
883
+ and
884
+ Jungseock Joo. Protest activity detection and perceived vi-
885
+ olence estimation from social media images. In Proceed-
886
+ ings of the 25th ACM international conference on Multime-
887
+ dia, pages 786–794, 2017.
888
+ Jason Weston and Chris Watkins. Multi-class support vector
889
+ machines. Technical report, Citeseer, 1998.
890
+ Michael A Nielsen. Neural networks and deep learning, 2015.
891
+ Diederik Kingma and Jimmy Ba.
892
+ Adam: A method for
893
+ stochastic optimization. arXiv preprint arXiv:1412.6980,
894
+ 2014.
895
+ Yunmei Chen, Hongcheng Liu, Xiaojing Ye, and Qingchao
896
+ Zhang. Learnable descent algorithm for nonsmooth non-
897
+ convex image reconstruction. SIAM Journal on Imaging
898
+ Sciences, 14(4):1532–1564, 2021.
899
+ Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe
900
+ Frank. Classifier chains for multi-label classification. Ma-
901
+ chine learning, 85(3):333–359, 2011.
902
+ Jan Gorodkin. Comparing two k-category assignments by a
903
+ k-category correlation coefficient. Computational biology
904
+ and chemistry, 28(5):367–374, 2004.
905
+ Hao Tian, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C Lar-
906
+ son, and Peng Tao. Explore protein conformational space
907
+ with variational autoencoder. Frontiers in Molecular Bio-
908
+ sciences, 8, 2021.
909
+ Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
910
+ Deep
911
+ learning. nature, 521(7553):436, 2015.
912
+ Ning Sun, Hai-xian Wang, Zhen-hai Ji, Cai-rong Zou, and
913
+ Li Zhao. An efficient algorithm for kernel two-dimensional
914
+ principal component analysis. Neural Computing and Ap-
915
+ plications, 17(1):59–64, 2008.
916
+ Jingwei Yan, Wenming Zheng, Zhen Cui, Chuangao Tang,
917
+ Tong Zhang, and Yuan Zong. Multi-cue fusion for emo-
918
+ tion recognition in the wild. Neurocomputing, 309:27–35,
919
+ 2018.
920
+ Jichong Chai and Tapan K. Nayak. A criterion for privacy
921
+ protection in data collection and its attainment via random-
922
+ ized response procedures. Electronic Journal of Statistics,
923
+ 12(2):4264–4287, 2018.
924
+ Jichong Chai and Tapan K. Nayak.
925
+ Minimax randomized
926
+ response methods for providing local differential privacy.
927
+ Statistics, 04, 2019.
928
+ Ning Sun, Ling Leng, Jixin Liu, and Guang Han.
929
+ Multi-
930
+ stream slowfast graph convolutional networks for skeleton-
931
+ based action recognition.
932
+ Image and Vision Computing,
933
+ 109:104141, 2021.
934
+
7tE2T4oBgHgl3EQf7whk/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
89FST4oBgHgl3EQfajh_/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b05156530bc905aa560f3ec60ed48301d436b1a007e7b2dd42113c514d4b51d
3
+ size 123820
9tAyT4oBgHgl3EQfQ_bX/content/2301.00059v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82602c2890bcfbdfcfb55514090756f9afa436c88ceca408e5d03bab71f225cd
3
+ size 695070
9tAyT4oBgHgl3EQfQ_bX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7eb7a72a58bafbd924635995474970de10c91cc57e9d9efa045a7368cbd67f5
3
+ size 2162733
9tAyT4oBgHgl3EQfQ_bX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82f23c8799553b97c5d6764899c1e1e3bcb66525bb6ae55026b5574a82c95580
3
+ size 88227
9tAyT4oBgHgl3EQfqPjX/content/2301.00541v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:819fe14338cdd7bddaade896257ccb51f0bde0ee61728ed99b561b33b60cf0b7
3
+ size 134413
9tAyT4oBgHgl3EQfqPjX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:693143737bbae8e6fa84c5d99544f67dcf3b7895e3b01e42e3165dd51fbbc741
3
+ size 38994
9tFQT4oBgHgl3EQfJjU4/content/tmp_files/2301.13256v1.pdf.txt ADDED
@@ -0,0 +1,2082 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Spatial scales of COVID-19 transmission in Mexico
2
+ Brennan Klein∗1,2, Harrison Hartle1, Munik Shrestha1, Ana Cecilia Zenteno3,
3
+ David Barros Sierra Cordera4, José R. Nicolas-Carlock5, Ana I. Bento6,
4
+ Benjamin M. Althouse7,8, Bernardo Gutierrez9,10,11,
5
+ Marina Escalera-Zamudio9,11, Arturo Reyes-Sandoval12,13,
6
+ Oliver G. Pybus9,14,18, Alessandro Vespignani1,2,
7
+ Jose Alberto Diaz-Quiñonez*†15, Samuel V. Scarpino*‡1,16,17, and
8
+ Moritz U.G. Kraemer*§9,18
9
+ 1Network Science Institute, Northeastern University, Boston, Massachusetts, USA
10
+ 2Laboratory for the Modeling of Biological & Socio-technical Systems,
11
+ Northeastern University, Boston, Massachusetts, USA
12
+ 3Massachusetts General Hospital, Boston, Massachusetts, USA
13
+ 4Instituto Mexicano del Seguro Social, Ciudad de México, México
14
+ 5Instituto de Investigaciones Jurídicas, Universidad Nacional Autónoma de México,
15
+ Ciudad de México, México
16
+ 6Department of Epidemiology and Biostatistics, School of Public Health,
17
+ Indiana University, Bloomington, Indiana, USA
18
+ 7Information School, University of Washington, Seattle, Washington, USA
19
+ 8Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
20
+ 9Department of Biology, University of Oxford, Oxford, UK
21
+ 10School of Biological & Environmental Sciences,
22
+ Universidad San Francisco de Quito, Quito, Ecuador
23
+ 11Consorcio Mexicano de Vigilancia Genómica
24
+ 12The Jenner Institute, University of Oxford, Oxford, UK
25
+ 13Instituto Politécnico Nacional, IPN, Ciudad de México, México
26
+ 14Department of Pathobiology and Population Science, Royal Veterinary College, London, UK
27
+ 15Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo,
28
+ Pachuca, Hidalgo, México
29
+ 16Institute for Experiential AI, Northeastern University, Boston, Massachusetts, USA
30
+ 17Santa Fe Institute, Santa Fe, New Mexico, USA
31
+ 18Pandemic Sciences Institute, University of Oxford, UK
32
+ February 1, 2023
33
34
35
36
37
+ 1
38
+ arXiv:2301.13256v1 [physics.soc-ph] 30 Jan 2023
39
+
40
+ Abstract
41
+ During outbreaks of emerging infectious diseases, internationally connected cities
42
+ often experience large and early outbreaks, while rural regions follow after some delay
43
+ [1–6]. This hierarchical structure of disease spread is influenced primarily by the mul-
44
+ tiscale structure of human mobility [7–9]. However, during the COVID-19 epidemic,
45
+ public health responses typically did not take into consideration the explicit spatial
46
+ structure of human mobility when designing non-pharmaceutical interventions (NPIs).
47
+ NPIs were applied primarily at national or regional scales [10]. Here we use weekly
48
+ anonymized and aggregated human mobility data and spatially highly resolved data
49
+ on COVID-19 cases, deaths and hospitalizations at the municipality level in Mexico
50
+ to investigate how behavioural changes in response to the pandemic have altered the
51
+ spatial scales of transmission and interventions during its first wave (March - June
52
+ 2020). We find that the epidemic dynamics in Mexico were initially driven by SARS-
53
+ CoV-2 exports from Mexico State and Mexico City, where early outbreaks occurred.
54
+ The mobility network shifted after the implementation of interventions in late March
55
+ 2020, and the mobility network communities became more disjointed while epidemics
56
+ in these communities became increasingly synchronised. Our results provide actionable
57
+ and dynamic insights into how to use network science and epidemiological modelling
58
+ to inform the spatial scale at which interventions are most impactful in mitigating the
59
+ spread of COVID-19 and infectious diseases in general.
60
+ Table 1: Policy summary
61
+ Background
62
+ The establishment, persistence and growth rates of COVID-19 mainly depend
63
+ on human mobility and mixing. However, current approaches attempting to
64
+ limit transmission have been primarily based on administrative boundaries
65
+ instead of the natural scales of human mobility.
66
+ Main findings
67
+ & limitations
68
+ Using aggregated and anonymized human mobility and detailed COVID-19
69
+ case data, we find that the scales of human mixing shift during the pandemic
70
+ and that transmission is highly clustered amongst mobility communities.
71
+ Policy
72
+ implications
73
+ Structuring interventions based on spatial mobility may be more effective com-
74
+ pared to interventions based on administrative boundaries. Future pandemic
75
+ control interventions should consider empirical human mobility networks when
76
+ designing interventions.
77
+ 2
78
+
79
+ 1
80
+ Introduction
81
+ The transmission of infectious diseases is highly heterogeneous. Differences in population
82
+ structure, the landscape of prior immunity, and environmental factors, result in differences
83
+ in the timing of outbreaks, their magnitude, and duration [2, 3, 9, 11–20].
84
+ For infec-
85
+ tious diseases, one principal component determining the spatial structure of outbreaks is
86
+ the frequency of interactions between susceptible and infectious individuals within and be-
87
+ tween regions. In most geographies, public health decision-making authority follows political
88
+ boundaries. However, from an epidemiological perspective, the relevant spatial units may
89
+ not strictly follow political boundaries but rather human mixing [8, 14, 21]. Evaluating
90
+ the spatial structure of COVID-19 transmission remains important in determining optimal
91
+ interventions (non-pharmaceutical and/or vaccination) to reduce transmission and limit the
92
+ risk of resurgence of cases [22–25].
93
+ During the first half of 2020, Mexico experienced one of the largest SARS-CoV-2 epi-
94
+ demics worldwide, with more than 600,000 cases and 65,000 confirmed deaths reported be-
95
+ tween February and September 2020 [26] (Fig. 1a). The epidemic wave peaked in May in
96
+ the largest metropolitan areas of Mexico City and the State of Mexico and later ignited
97
+ epidemics in all other states [27], peaking between June and July 2020 (Fig. 1b). Here we
98
+ combine municipality level epidemiological data with weekly anonymized aggregated human
99
+ mobility data at the same scale, to characterise the spatial scales of the Mexican COVID-19
100
+ pandemic and their implications for the implementation of spatially targeted interventions.
101
+ 2
102
+ Results
103
+ 2.1
104
+ Spatial expansion of COVID-19 in Mexico
105
+ In Mexico, the spatial range of transmission expanded rapidly after reports of the earliest
106
+ cases in March 2020, with over 700 municipalities reporting transmission by July 2020 (out of
107
+ 2,448, Fig. 1c). During April and May the risk of positive RTq-PCR confirmed cases amongst
108
+ men aged 30-69 was 1.4 times higher than between July 1 and September 1 (Fig. 1d,e),
109
+ indicating that the epidemic spread initially within and through these age groups (Extended
110
+ Data Figure A.1).
111
+ This dynamic trend in the demographics of cases is similar to that
112
+ observed in other countries during the early stages of the pandemic [28, 29].
113
+ States that experienced early transmission were the state of Mexico and Mexico City
114
+ (Fig. 1b) [27]. Due to the centrality of Mexico City connecting people from abroad (in-
115
+ ternational arrivals) and within Mexico we hypothesise that human mobility from these
116
+ states was a key driver of the spread of COVID-19 in Mexico. Using anonymized, opt-in
117
+ and aggregated human movement data from mobile phones (Materials and Methods) we
118
+ find that case growth rates across Mexican states were well predicted by a lagged model
119
+ of human movements from the State of Mexico and Mexico City between March and May
120
+ 2020 (Fig. 2c, conditional R2 = 0.62; see Materials & Methods). Further, we observe that
121
+ the share of overall relative human mobility to and from Mexico and Mexico City increased
122
+ 3
123
+
124
+ Apr.
125
+ May
126
+ Jun.
127
+ Jul.
128
+ Aug.
129
+ Sep.
130
+ 0
131
+ 2
132
+ 4
133
+ 6
134
+ 8
135
+ 10
136
+ 12
137
+ 14
138
+ Total reported cases as of Sept. 1, 2020:
139
+ (b) Daily new cases per 100,000, state level (7-day rolling avg.)
140
+ Apr.
141
+ May
142
+ Jun.
143
+ Jul.
144
+ Aug.
145
+ Sep.
146
+ 0
147
+ 200
148
+ 400
149
+ 600
150
+ 800
151
+ (c)
152
+ Municipalities reporting cases (2,448 total)
153
+ Apr.
154
+ May
155
+ Jun.
156
+ Jul.
157
+ Aug.
158
+ Sep.
159
+ 0%
160
+ 10%
161
+ 20%
162
+ 30%
163
+ 40%
164
+ (d)
165
+ "early"
166
+ "late"
167
+ Percent of new cases (7-day rolling avg.)
168
+ 0.6
169
+ 0.7
170
+ 0.8
171
+ 0.9
172
+ 1.0
173
+ 1.1
174
+ 1.2
175
+ 1.3
176
+ 1.4
177
+ Early: April 1 - May 1
178
+ Late: June 30 - Aug. 30
179
+ F: under 30
180
+ F: under 30
181
+ F: 30-49
182
+ F: 30-49
183
+ F: 50-69
184
+ F: 50-69
185
+ F: over 70
186
+ F: over 70
187
+ M: under 30
188
+ M: under 30
189
+ M: 30-49
190
+ M: 30-49
191
+ M: 50-69
192
+ M: 50-69
193
+ M: over 70
194
+ M: over 70
195
+ (e)
196
+ Relative risk ("early" vs. "late" periods)
197
+ 10
198
+ 100
199
+ 1000
200
+ 10000
201
+ Cases per 100,000
202
+ (as of September 1)
203
+ Figure 1: Epidemiological situation of COVID-19 in Mexico. (a) Map of cumulative
204
+ cases per 100,000 people, as of September 1, 2020. (b) Timeline of new cases per 100,000
205
+ population at the state level (7-day rolling average), highlighting the 15 states with the most
206
+ severe cumulative outbreaks. (c) Number of municipalities that reported confirmed cases of
207
+ COVID-19 through time. (d) Age and sex distributions of confirmed COVID-19 cases across
208
+ Mexico, highlighting “early” and “late” periods during which the relative risk of infections
209
+ were calculated. (e) Age and sex relative risk ratios of infection, comparing the early vs.
210
+ late periods from panel (d).
211
+ markedly during that period (Fig. 2b) when overall human mobility between states declined
212
+ (Fig. 2b, Extended Data Figure A.2 showing state level data on change in human mobility).
213
+ This points towards a change in the network structure of human mobility in Mexico, as
214
+ documented in some other countries [30, 31]. Overall transmission, and the importance of
215
+ Mexico City driving the epidemic, declined after the implementation of NPIs through May
216
+ 2020. However, after the lifting of physical distancing measures on June 1st (see table of
217
+ documented changes in NPIs, Table A.1), case growth rates in the country increased again as
218
+ 4
219
+
220
+ a function of mobility from Mexico City, in line with models predicting that lifting lockdowns
221
+ can lead to reseeding of transmission chains from larger to smaller cities where epidemics
222
+ were successfully controlled (Fig. 2b, Table A.1, [7]).
223
+ Variation in weekly new cases within each state in Mexico are generally well predicted
224
+ by cases in Mexico City weighted by human mobility except for Baja California, More-
225
+ los, Chihuahua, Oaxaca, and Chiapas (Extended Data Figure A.3). We hypothesise that
226
+ epidemics there were possibly seeded from other countries (USA and Guatemala); further
227
+ SARS-CoV-2 genomic analyses of unbiased collections of samples will be needed to confirm
228
+ the SARS-CoV-2 lineage dynamics in these states [27, 32–36]. Human mobility data showing
229
+ cross border (US to Mexico) movements indicate higher overall mobility to bordering states
230
+ in Mexico and growth rates in US-Mexico border states appear higher in the period between
231
+ 24 May - 28 June 2020 (Extended Data Figures A.4, A.5, A.6). The high mobility during
232
+ that phase resulted in larger case numbers in states bordering the US when compared to
233
+ other states in Mexico (Extended Data Figure A.5).
234
+ 2.2
235
+ The scales of COVID-19 transmission
236
+ It is well known that reductions in mobility (a proxy for reductions in population mixing)
237
+ have reduced the transmission of COVID-19 within a location [38]. However, it remains un-
238
+ clear how structural changes to the mobility network (shifts in the frequency and intensity
239
+ of mobility within and among regions) have impacted COVID-19 dynamics empirically [30,
240
+ 31, 39–41]. Our underlying hypothesis is that more tightly connected communities exhibit
241
+ more synchronised epidemic dynamics and, conversely, that more disjointed individual com-
242
+ munities have less synchronised epidemics and their epidemics are more likely to fade out
243
+ [4–6] (here, communities are equivalent to municipalities and synchrony is defined as the
244
+ similarity among communities in weekly case growth rates [42]). Both processes have critical
245
+ implications for disease mitigation and eliminations locally, and at a country level [7, 43–47].
246
+ The Mexican government announced stringent physical distancing policies on March 30th,
247
+ 2020 which resulted in marked changes in the mobility network (Fig. 2a, Table A.1).
248
+ To quantify the degree to which mobility patterns are structured by geopolitical bound-
249
+ aries, we use a community detection algorithm that groups municipalities based on their
250
+ movement patterns [48]. Specifically, we aim to identify groups of municipalities such that
251
+ movements between municipalities within the same group, i.e., community, are more fre-
252
+ quent than movements to other municipalities in other communities. Community detection
253
+ is often accomplished via modularity maximization [49]; however, these approaches neglect
254
+ information about the flow of mobility through the network. Instead, we leverage the map
255
+ equation via an algorithm called InfoMap [48]. The InfoMap algorithm utilises an informa-
256
+ tion theoretic approach to derive expected connectivity patterns if the observed flows were
257
+ entirely determined by a random walk process. For this study, InfoMap is ideal because
258
+ it is conceptually related to infectious disease transmission models, which often also utilise
259
+ stochastic processes [50].
260
+ The aim is to identify municipalities where frequent interactions between individuals
261
+ occur, such that the detected communities approximate the spatial scales of disease trans-
262
+ 5
263
+
264
+ 03-01
265
+ 04-12
266
+ 05-24
267
+ 07-05
268
+ 08-16
269
+ 20%
270
+ 40%
271
+ 60%
272
+ 80%
273
+ 100%
274
+ (b)
275
+ Percent of typical mobility
276
+ (total across all of Mexico)
277
+ 03-01
278
+ 04-12
279
+ 05-24
280
+ 07-05
281
+ 08-16
282
+ 0.004
283
+ 0.002
284
+ 0.000
285
+ 0.002
286
+ 0.004
287
+ 0.006
288
+ (c)
289
+ Coefficients of case growth rate
290
+ and mobility from Mexico City
291
+ 03-01
292
+ 04-12
293
+ 05-24
294
+ 07-05
295
+ 08-16
296
+ 18%
297
+ 19%
298
+ 20%
299
+ 21%
300
+ 22%
301
+ 23%
302
+ 24%
303
+ (d)
304
+ Dynamics of states' outgoing
305
+ mobility to Mexico City
306
+ Community size distribution
307
+ (n = 16, using Infomap)
308
+ 0.7
309
+ 0.8
310
+ 0.9
311
+ 1.0
312
+ 1.1
313
+ 1.2
314
+ 1.3
315
+ Figure 2: Human mobility and transmission of COVID-19 in Mexico. (a) Pre-
316
+ pandemic average of the inter-municipality mobility network, coloured by network commu-
317
+ nity (detected using the Infomap algorithm). Mobility flow data is based on the aggregated
318
+ Google Mobility Research dataset (see Materials & Methods). (b) Percent of typical weekly
319
+ mobility nationwide (typical refers to mobility between January 12 and February 29, 2020).
320
+ (c) Evolution of the coefficients of mobility flow from Mexico City in (lagged) correlations
321
+ with state-level case rates across the country, highlighting the key role that mobility from
322
+ Mexico City played in the early stage of the epidemic. (d) Average fraction of total outgoing
323
+ mobility from each state that is to Mexico City (black) and the median entropy of states’
324
+ distributions of outgoing mobility. Error bands correspond to 95% confidence intervals.
325
+ mission (i.e., communities in which it is assumed that infection spreads via contacts within
326
+ a relatively homogeneously mixing population [51]). Accounting for spatial heterogeneity is
327
+ 6
328
+
329
+ Network of average mobility flow:
330
+ (a)
331
+ 2020-01-12 t0 2020-02-23
332
+ Administrative
333
+ (state) boundary
334
+ Example:
335
+ Chiapas
336
+ Network community03-01
337
+ 03-29
338
+ 04-26
339
+ 05-24
340
+ 06-21
341
+ 07-19
342
+ 08-16
343
+ 0.1
344
+ 0.2
345
+ 0.3
346
+ 0.4
347
+ 0.5
348
+ 0.6
349
+ 0.7
350
+ 0.8
351
+ (c)
352
+ Standard deviation of municipality growth rates
353
+ within grouping (lower values: higher synchrony)
354
+ 0.5
355
+ 0.0
356
+ 0.5
357
+ 1.0
358
+ 1.5
359
+ 2.0
360
+ Growth rate (reported cases)
361
+ 0.11
362
+ Nayarit
363
+ Morelos
364
+ Michoacán de Ocampo
365
+ México
366
+ Jalisco
367
+ Hidalgo
368
+ Guerrero
369
+ Guanajuato
370
+ Durango
371
+ Distrito Federal
372
+ Chihuahua
373
+ Chiapas
374
+ Colima
375
+ Coahuila de Zaragoza
376
+ Campeche
377
+ Baja California Sur
378
+ Baja California
379
+ Aguascalientes
380
+ 0.36
381
+ 0.26
382
+ 0.69
383
+ 0.43
384
+ 0.29
385
+ 0.30
386
+ 0.44
387
+ 0.31
388
+ 0.83
389
+ 0.42
390
+ 0.57
391
+ 0.47
392
+ 0.44
393
+ 0.37
394
+ 0.39
395
+ 0.48
396
+ 0.47
397
+ ...
398
+ ...
399
+ ...
400
+ ...
401
+ 0.465
402
+ (mean)
403
+ Std. dev. of growth rates
404
+ (d)
405
+ Example: Variance in growth rates (2020-04-19)
406
+ municipalities grouped by administrative boundaries
407
+ 0.5
408
+ 0.0
409
+ 0.5
410
+ 1.0
411
+ 1.5
412
+ 2.0
413
+ Growth rate (reported cases)
414
+ 0.38
415
+ Comm. 01
416
+ 0.54
417
+ Comm. 02
418
+ 0.35
419
+ Comm. 03
420
+ 0.45
421
+ Comm. 04
422
+ 0.50
423
+ Comm. 05
424
+ 0.43
425
+ Comm. 06
426
+ 0.30
427
+ Comm. 07
428
+ 0.49
429
+ Comm. 08
430
+ 0.37
431
+ Comm. 09
432
+ 0.31
433
+ Comm. 10
434
+ 0.59
435
+ Comm. 11
436
+ 0.00
437
+ Comm. 12
438
+ 0.00
439
+ Comm. 13
440
+ 0.00
441
+ Comm. 14
442
+ 0.00
443
+ Comm. 15
444
+ 0.00
445
+ Comm. 16
446
+ 0.00
447
+ Comm. 17
448
+ 0.00
449
+ Comm. 18
450
+ ...
451
+ ...
452
+ ...
453
+ ...
454
+ 0.223
455
+ (mean)
456
+ Std. dev. of growth rates
457
+ (e)
458
+ Example: Variance in growth rates (2020-04-19)
459
+ municipalities grouped by network communities
460
+ Figure 3: Network structure determines the synchrony of epidemics. (a) Grouping
461
+ of municipalities based on the state administrative boundaries. Shaded municipalities are re-
462
+ moved from downstream analyses as they could not be assigned a movement community (see
463
+ Materials & Methods). (b) Example grouping of municipalities based on human movement
464
+ data and a community detection algorithm [37] (Materials and Methods). Colours indicate
465
+ movement communities. Grey municipalities have limited recorded movements and could not
466
+ be assigned to a community and were consequently excluded from analysis. (c) Synchrony of
467
+ weekly growth rates of epidemics across municipalities as measured by the pairwise standard
468
+ error between growth rates. The lower the error, the more synchronised epidemics are. Blue
469
+ line shows grouping by network communities, and orange shows groupings by state admin-
470
+ istrative boundaries. The green dashed line shows the nationwide trend in reported cases
471
+ during this period. For a visual intuition of the differences in within-community standard
472
+ deviations of growth rates, see Extended Data Figure A.9.
473
+ known to be important for assessing strategies for interventions [2], especially in areas that
474
+ have marked differences in urban and rural areas [52]. Using this algorithm, we identify 16
475
+ communities before the first cases of COVID-19 were detected in Mexico (Fig. 3b). Com-
476
+ munity size and organisation changed following the announcement of the lockdown (March
477
+ 23 and 30, 2020) in Mexico and communities generally became smaller (fewer municipalities
478
+ within each community (Extended Data Figures A.7 and A.8 show the communities for each
479
+ week during the study period). At the peak of the lockdown, we identified approximately 60
480
+ movement communities (a 4-fold increase from the baseline period).
481
+ More specifically, there are two notable shifts in the network following the introduction of
482
+ NPIs. First, more communities are identified but importantly the size of these communities
483
+ shrinks disproportionately so that one community expands (Mexico City) and many very
484
+ 7
485
+
486
+ b
487
+ Example network grouping
488
+ (infomap)a)
489
+ Administrative grouping
490
+ (states)small ones emerge (Fig. 2d). Further, as a result of the lockdown human movements across
491
+ municipalities decline more rapidly than movements within a community with one important
492
+ exception: Mexico City. There we observe that the ratio of within municipality movements
493
+ declines at a similar rate than movements across municipalities (Extended Data Figure A.2)
494
+ further proving its central importance in the mobility network in Mexico.
495
+ We then compared the weekly infection incidence growth rates within each community
496
+ and contrasted them to growth rates under a scenario in which municipalities are grouped
497
+ based on state boundaries (black lines, Fig. 3a,b). As expected, we find that epidemics in
498
+ municipalities that are grouped by human mobility were more synchronised compared to
499
+ those grouped by state (Fig. 3c; see Extended Data Figure A.9 for an illustration of the
500
+ variance in municipality epidemic growth rates for several example groups of municipalities
501
+ defined by administrative or network boundaries).
502
+ The synchrony among municipalities
503
+ within each community were maximised in April and May 2020, a period when cases were
504
+ rapidly rising across the country. After June, epidemics that are grouped by movement are
505
+ still more synchronised, but the differences with groupings by state appear to be smaller
506
+ (Fig. 3c). This later period (June to October 2020) is a time when Mexico City appears
507
+ to also lose importance in seeding the epidemic across the country, and local factors (e.g.,
508
+ population size) become more important in determining the epidemic trajectory [53]. These
509
+ results are expected as local factors become more influential in determining disease dynamics
510
+ (population size, local mixing) and that the importance of continued virus re-importations
511
+ wanes through time [33].
512
+ 3
513
+ Discussion & Limitations
514
+ We present a generalisable approach for understanding the spatial structure of transmission
515
+ of COVID-19 and other emerging infectious diseases by accounting for the variations of
516
+ the human mobility network. We aimed to differentiate the transmission dynamics at a
517
+ level defined by administrative boundaries from that defined by simple community detection
518
+ algorithms that are applied to aggregated anonymized weekly human mobility data. We
519
+ find that as human mobility network structures change, so does to spatial transmission.
520
+ Incorporating these findings into real-world public health decision-making may result in
521
+ more effective strategies to control an epidemic [54–57].
522
+ The European Commission for
523
+ example published a report on Mobility Functional Areas (MFAs) which were informed by
524
+ mobile phone data but the adoption of these recommendations remained sparse [55].
525
+ Our model and results are only as accurate as the data that go into them. The Mexican
526
+ COVID-19 database may suffer from underreporting due to testing shortages, changing case
527
+ definitions and spatial heterogeneity in reporting [58, 59]. For example, relatively few cases
528
+ were reported from Oaxaca (Fig. 1a) which may be due to barriers to access to testing [60].
529
+ Future extensions of the model and as the pandemic continues will need to take into account
530
+ high-resolution SARS-CoV-2 cross-immunity. Further, our model is based on higher level
531
+ descriptions of the population (raw case data and population level human movement data)
532
+ and these do not capture the high contact heterogeneity within each municipality (e.g., de-
533
+ 8
534
+
535
+ mographic heterogeneity and assortative mixing) shown to be important in the transmission
536
+ of COVID-19 [61]. Contact patterns may differ significantly by age group, employment sta-
537
+ tus and other factors not accounted for in this work. We did however observe heterogeneity
538
+ in the demographic makeup of cases during the earlier phases of the Mexican COVID-19
539
+ pandemic.
540
+ Further, results should be interpreted in light of important limitations related to the
541
+ human mobility data. First, the Google mobility data is limited to smartphone users who
542
+ have opted into Google’s Location History feature, which is off by default. These data may
543
+ not be representative of the population as whole, and furthermore their representativeness
544
+ may vary by municipality.
545
+ Importantly, these limited data are only viewed through the
546
+ lens of differential privacy algorithms, specifically designed to protect user anonymity and
547
+ obscure fine detail.
548
+ Mexico is composed of 31 free and sovereign states and Mexico City, united under a
549
+ federation.
550
+ This means that each administrative region or state is governed by its own
551
+ constitution, although they are not completely independent of the federal jurisdiction. Fur-
552
+ thermore, each state is divided into municipalities, the nation’s basic administrative unit,
553
+ which possesses limited autonomy (discretionary power on how best to respond to, or apply
554
+ a public policy). Under a serious nationwide health threat or emergency, such as a pandemic,
555
+ the federal Ministry of Health (MoH) acquires full authority over the health policies to be
556
+ implemented nationwide. Nevertheless, Mexican law establishes that the General Health
557
+ Council (GHC), a collegial body that reports to the president of the republic has the char-
558
+ acter of health authority, and can emit obligatory norms to be abided by the MoH. The
559
+ GHC is presided by the Minister of Health, and is conformed by federal institutions (e.g.h,
560
+ Economy, Communication & Transport) as well as academic institutions, representatives
561
+ from pharmaceutical industry, and other health system actors [62]. Given its mandate and
562
+ position in the Mexican health system, the GHC constitutes a promising agent to drive pub-
563
+ lic policy outside of the margins or across geo-administrative units. Furthermore, there are
564
+ examples of inter-state and inter-municipality coordination to resolve problems that extend
565
+ beyond their borders such as waste management, tax, policing, and perhaps most relevant,
566
+ health provision. It is in these contexts where evidence-based interventions on innovative
567
+ approaches, such as the ones presented here become not only an option but a possibility,
568
+ with greater impact in reducing transmission as compared to approaches where interven-
569
+ tions are based on administrative boundaries. However, theory often differs from practice
570
+ and reality brings along additional and expected factors into play (e.g., economic [63] and
571
+ political interests) many of which are not accounted for in this work. Some state governors
572
+ for example refused to comply with federal health policies in the early relaxation phase in
573
+ May 2020 [64].
574
+ Mexico has suffered a large and devastating epidemic, and we hope that our findings
575
+ contribute to a more rational implementation of interventions in the future that can account
576
+ for the substantial and changing spatial heterogeneity in transmission. Such analyses can
577
+ be updated and translated to any other country in the world for which aggregated human
578
+ mobility data is available. Future work should also focus on validating the inferred spatial
579
+ 9
580
+
581
+ scales with genomic data [32, 33, 65] or other coarse-graining techniques [66, 67]. Developing
582
+ interventions using patterns observed in empirical mobility networks must be added to the
583
+ list of priorities for pandemic response and preparedness in the 21st century.
584
+ 4
585
+ Materials & Methods
586
+ Epidemiological data:
587
+ Epidemiological data include individual level information on pa-
588
+ tients with confirmed RTq-PCR COVID-19 infection between March - September 30th, 2020.
589
+ Data were downloaded from http://datosabiertos.salud.gob.mx/gobmx/salud/datos_
590
+ abiertos/datos_abiertos_covid19.zip (last accessed October 24, 2020). Data include
591
+ information about patients demographics (age and sex) and municipality of residence. In all
592
+ analyses we used the date of onset of symptoms.
593
+ Population and travel data:
594
+ Human mobility and population data were extracted at the
595
+ municipality level based on the 2016 boundaries (INEGI 2016: https://www.inegi.org.
596
+ mx/app/mapa/espacioydatos/default.aspx). Population data were downloaded from the
597
+ COVID-19 indicator dataset, which was provided by INEGI (https://www.inegi.org.mx/
598
+ investigacion/covid/).
599
+ Aggregated and anonymised human mobility data:
600
+ We used the Google COVID-
601
+ 19 Aggregated Mobility Research Dataset described in detail in [68, 69], which contains
602
+ anonymized relative mobility flows aggregated over users who have turned on the Location
603
+ History setting, which is turned off by default. This is similar to the data used to show
604
+ how busy certain types of places are in Google Maps—helping identify when a local business
605
+ tends to be the most crowded. The mobility flux is aggregated per week, between pairs of
606
+ approximately 5km2 cells worldwide, and for the purpose of this study further aggregated
607
+ for municipalities in Mexico.
608
+ To produce this dataset, machine learning is applied to log data to automatically segment
609
+ it into semantic trips. To provide strong privacy guarantees [70], all trips were anonymized
610
+ and aggregated using a differentially private mechanism to aggregate flows over time (see
611
+ https://policies.google.com/technologies/anonymization). This research is done on
612
+ the resulting heavily aggregated and differentially private data. No individual user data was
613
+ ever manually inspected, only heavily aggregated flows of large populations were handled. All
614
+ anonymized trips are processed in aggregate to extract their origin and destination location
615
+ and time. For example, if n users travelled from location a to location b within time interval
616
+ t, the corresponding cell (a, b, t) in the tensor would be n±err, where err is Laplacian noise.
617
+ The automated Laplace mechanism adds random noise drawn from a zero mean Laplacian
618
+ distribution and yields (ϵ, δ)-differential privacy guarantee of ϵ = 0.66 and δ = 2.1 × 1029
619
+ per metric. Specifically, for each week W and each location pair (A, B), we compute the
620
+ number of unique users who took a trip from location A to location B during week W. To
621
+ each of these metrics, we add Laplace noise from a zero-mean distribution of scale 1/0.66.
622
+ We then remove all metrics for which the noisy number of users is lower than 100, following
623
+ 10
624
+
625
+ the process described in [70], and publish the rest. This yields that each metric we publish
626
+ satisfies (ϵ, δ)-differential privacy with values defined above. The parameter ϵ controls the
627
+ noise intensity in terms of its variance, while δ represents the deviation from pure ϵ-privacy.
628
+ The closer they are to zero, the stronger the privacy guarantees.
629
+ These results should be interpreted in light of several important limitations. First, the
630
+ Google mobility data is limited to smartphone users who have opted into Google’s Loca-
631
+ tion History feature, which is off by default. These data may not be representative of the
632
+ population as whole, and furthermore their representativeness may vary by location. Impor-
633
+ tantly, these limited data are only viewed through the lens of differential privacy algorithms,
634
+ specifically designed to protect user anonymity and obscure fine detail. Moreover, compar-
635
+ isons across rather than within locations are only descriptive since these regions can differ
636
+ in substantial ways.
637
+ Timeline of interventions:
638
+ The Mexican government has outlined four principle objec-
639
+ tives for the control of COVID-19: a) Reduce risk of acquiring infection, b) Reduce risk of
640
+ severe morbidity and mortality, c) Reduce risk and impact on society and d) Reduce risk
641
+ of transmission between infectious and susceptible individuals. We collated a full list of
642
+ interventions between February and September 2020 and details are provided in Table A.1,
643
+ including references.
644
+ Relative risk model:
645
+ Following Goldstein and Lipsitch [71] we used age stratified epi-
646
+ demiological data to assess the temporal shifts in the share of a given age group among all
647
+ cases of infection. To do so we use the relative risk (RR) [72, 73] statistic that estimates the
648
+ ratio of the proportion of a given age group among all detected cases of COVID-19 for a later
649
+ time period vs. an early time period. We selected the early time period to be the month of
650
+ April (the period right after the implementation of the lockdown) and the late period to be
651
+ June to September. We adopted the code and model from Goldstein and Lipsitch described
652
+ in detail [71].
653
+ Community detection algorithm:
654
+ Human mobility networks, based on data from mo-
655
+ bile devices, can be used to capture important population-level trends. Microscopic descrip-
656
+ tions often remain too complex to extract meaningful information to describe the transmis-
657
+ sion process accurately [61]. We here use a community detection algorithm following [48] to
658
+ identify human movement communities (basins) where within-community mobility among
659
+ municipalities is higher than across-community mobility. We chose this community detec-
660
+ tion algorithm as it is conceptually related to infectious disease transmission models—both
661
+ utilising random walks.
662
+ Municipality level case growth rates:
663
+ To estimate the daily epidemic growth rates in
664
+ each municipality, we fit a mixed effects GLM of log new daily case counts in sliding 7-day
665
+ windows (fixed effect; approximately the generation time of COVID-19 in the earliest wave)
666
+ 11
667
+
668
+ and a random effect for each municipality on the slope and intercept, using the R package
669
+ lme4 v.1.1-21 [74]. Daily case counts were determined using the date of symptom onset.
670
+ Relationship between case growth rates and mobility:
671
+ To test for an effect of mo-
672
+ bility from Mexico City on municipality growth rates, we fit a mixed effect GLM with log
673
+ mobility as a fixed effect, a random effect on the intercept for each municipality and a random
674
+ effect on the slope and intercept for log mobility each week. The conditional and marginal
675
+ coefficient of determination, i.e., R2, were calculated using the R package MuMIn v1.471.
676
+ [75] which implements the method developed by Nakagawa et al. 2017 [76]. Model selection
677
+ was performed using analysis of variance for mixed effects models as implemented in the R
678
+ package lmerTest v.3.1-3 [77].
679
+ Additional information
680
+ Acknowledgments:
681
+ We thank all health care workers and those involved in the collection,
682
+ processing and publishing COVID-19 epidemiological data from Mexico.
683
+ Funding:
684
+ M.U.G.K., O.G.P., B.G. acknowledge funding from the Oxford Martin School
685
+ Pandemic Genomics programme. M.U.G.K. acknowledges funding from the European Hori-
686
+ zon 2020 programme MOOD (grant no. #874850), the Wellcome Trust, a Branco Weiss
687
+ Fellowship, The Rockefeller Foundation and Google.org. The contents of this publication
688
+ are the sole responsibility of the authors and do not necessarily reflect the views of the Euro-
689
+ pean Commission or the other funders. B.K., H.H., S.V.S., & A.V. acknowledge the support
690
+ of a grant from the John Templeton Foundation (61780). The opinions expressed in this
691
+ publication are those of the author(s) and do not necessarily reflect the views of the John
692
+ Templeton Foundation.
693
+ Author contributions:
694
+ S.V.S., M.U.G.K. and B.K. developed the idea, planned the re-
695
+ search and conducted analyses. A.C.Z. and D.B.S.C. collected government intervention data.
696
+ S.V.S., M.U.G.K. and B.K. wrote the first draft of the manuscript. All authors interpreted
697
+ the data, contributed to writing and approved the manuscript.
698
+ Competing interests:
699
+ We declare no conflicts of interest.
700
+ Data and materials availability:
701
+ Code, spatial, and epidemiological data are available
702
+ upon publication. The Google COVID-19 Aggregated Mobility Research Dataset used for
703
+ this study is available with permission from Google LLC. Correspondence and requests for
704
+ materials should be addressed to B.K., J.A.D-Q., S.V.S., or M.U.G.K.
705
+ 12
706
+
707
+ References
708
+ [1]
709
+ Dirk Brockmann and Dirk Helbing. “The Hidden Geometry of Complex, Network-
710
+ Driven Contagion Phenomena”. In: Science 342.6164 (2013), pp. 1337–1342. doi: 10.
711
+ 1126/science.1245200.
712
+ [2]
713
+ Robert M. May and Roy M. Anderson. “Spatial heterogeneity and the design of im-
714
+ munization programs”. In: Mathematical Biosciences 72.1 (1984), pp. 83–111. doi:
715
+ 10.1016/0025-5564(84)90063-4.
716
+ [3]
717
+ Benjamin L. Rice et al. “Variation in SARS-CoV-2 outbreaks across sub-Saharan
718
+ Africa”. In: Nature Medicine 27.3 (2021), pp. 447–453. doi: 10.1038/s41591-021-
719
+ 01234-8.
720
+ [4]
721
+ Cécile Viboud, Ottar N. Bjørnstad, David L. Smith, Lone Simonsen, Mark A. Miller,
722
+ and Bryan T. Grenfell. “Synchrony, Waves, and Spatial Hierarchies in the Spread of
723
+ Influenza”. In: Science 312.5772 (2006), pp. 447–451. doi: 10.1126/science.1125237.
724
+ [5]
725
+ Jessica T. Davis et al. “Cryptic transmission of SARS-CoV-2 and the first COVID-19
726
+ wave”. In: Nature 600.7887 (2021), pp. 127–132. doi: 10.1038/s41586-021-04130-w.
727
+ [6]
728
+ Duygu Balcan, Vittoria Colizza, Bruno Gonçalves, Hao Hu, José J. Ramasco, and
729
+ Alessandro Vespignani. “Multiscale mobility networks and the spatial spreading of
730
+ infectious diseases”. In: Proceedings of the National Academy of Sciences 106.51 (2009),
731
+ pp. 21484–21489. doi: 10.1073/pnas.0906910106.
732
+ [7]
733
+ Duncan J. Watts, Roby Muhamad, Daniel C. Medina, and Peter S. Dodds. “Multiscale,
734
+ resurgent epidemics in a hierarchical metapopulation model”. In: Proceedings of the
735
+ National Academy of Sciences 102.32 (2005), pp. 11157–11162. doi: 10.1073/pnas.
736
+ 0501226102.
737
+ [8]
738
+ Laura Alessandretti, Ulf Aslak, and Sune Lehmann. “The scales of human mobility”.
739
+ In: Nature 587.7834 (2020), pp. 402–407. doi: 10.1038/s41586-020-2909-1.
740
+ [9]
741
+ Zachary Susswein, Eugenio Valdano, Tobias Brett, Pejman Rohani, Vittoria Colizza,
742
+ and Shweta Bansal. “Ignoring spatial heterogeneity in drivers of SARS-CoV-2 trans-
743
+ mission in the US will impede sustained elimination”. In: medRxiv (2021). doi: 10.
744
+ 1101/2021.08.09.21261807.
745
+ [10]
746
+ Miquel Oliu-Barton and Bary S. R. Pradelski. “Green zoning: An effective policy tool
747
+ to tackle the Covid-19 pandemic”. In: Health Policy 125.8 (2021), pp. 981–986. doi:
748
+ 10.1016/j.healthpol.2021.06.001.
749
+ [11]
750
+ Simon A. Levin. “The Problem of Pattern and Scale in Ecology: The Robert H.
751
+ MacArthur Award Lecture”. In: Ecology 73.6 (1992), pp. 1943–1967. issn: 1939-9170.
752
+ doi: 10.2307/1941447.
753
+ 13
754
+
755
+ [12]
756
+ Nina B. Masters, Marisa C. Eisenberg, Paul L. Delamater, Matthew Kay, Matthew L.
757
+ Boulton, and Jon Zelner. “Fine-scale spatial clustering of measles nonvaccination that
758
+ increases outbreak potential is obscured by aggregated reporting data”. In: Proceedings
759
+ of the National Academy of Sciences 117.45 (2020), pp. 28506–28514. doi: 10.1073/
760
+ pnas.2011529117.
761
+ [13]
762
+ Benjamin Rader, Samuel V. Scarpino, Anjalika Nande, Alison L. Hill, Ben Adlam,
763
+ Robert C. Reiner, David M. Pigott, Bernardo Gutierrez, Alexander E. Zarebski, Mu-
764
+ nik Shrestha, John S. Brownstein, Marcia C. Castro, Christopher Dye, Huaiyu Tian,
765
+ Oliver G. Pybus, and Moritz U.G. Kraemer. “Crowding and the shape of COVID-19
766
+ epidemics”. In: Nature Medicine 26.12 (2020), pp. 1829–1834. doi: 10.1038/s41591-
767
+ 020-1104-0.
768
+ [14]
769
+ Elizabeth C. Lee, Ali Arab, Vittoria Colizza, and Shweta Bansal. “Spatial aggregation
770
+ choice in the era of digital and administrative surveillance data”. In: PLOS Digital
771
+ Health 1.6 (2022), e0000039. doi: 10.1371/journal.pdig.0000039.
772
+ [15]
773
+ David L. Smith. “Spatial Heterogeneity in Infectious Disease Epidemics”. In: Ecosystem
774
+ Function in Heterogeneous Landscapes. Ed. by Gary M. Lovett, Monica G. Turner,
775
+ Clive G. Jones, and Kathleen C. Weathers. New York, NY: Springer, 2005, pp. 137–
776
+ 164. isbn: 978-0-387-24091-6. doi: 10.1007/0-387-24091-8_8.
777
+ [16]
778
+ Wan Yang, Sasikiran Kandula, Mary Huynh, Sharon K Greene, Gretchen Van Wye,
779
+ Wenhui Li, Hiu Tai Chan, Emily McGibbon, Alice Yeung, Don Olson, Anne Fine, and
780
+ Jeffrey Shaman. “Estimating the infection-fatality risk of SARS-CoV-2 in New York
781
+ City during the spring 2020 pandemic wave: a model-based analysis”. In: The Lancet
782
+ Infectious Diseases 21.2 (2021), pp. 203–212. doi: 10.1016/S1473-3099(20)30769-6.
783
+ [17]
784
+ Grant E. Rosensteel, Elizabeth C. Lee, Vittoria Colizza, and Shweta Bansal. “Charac-
785
+ terizing an epidemiological geography of the United States: influenza as a case study”.
786
+ In: medRxiv (2021). doi: 10.1101/2021.02.24.21252361.
787
+ [18]
788
+ T. Alex Perkins, Thomas W. Scott, Arnaud Le Menach, and David L. Smith. “Hetero-
789
+ geneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission”. In:
790
+ PLOS Computational Biology 9.12 (2013), e1003327. doi: 10.1371/journal.pcbi.
791
+ 1003327.
792
+ [19]
793
+ Keith Burghardt, Siyi Guo, and Kristina Lerman. “Unequal impact and spatial aggre-
794
+ gation distort COVID-19 growth rates”. In: Philosophical Transactions of the Royal
795
+ Society A 380.2214 (2022), p. 20210122. doi: 10.1098/rsta.2021.0122.
796
+ [20]
797
+ Sean L. Wu, John M. Henry, Daniel T. Citron, Doreen Mbabazi Ssebuliba, Juliet
798
+ Nakakawa Nsumba, Héctor M. Sánchez C, Oliver J. Brady, Carlos A. Guerra, Guillermo
799
+ A. García, Austin R. Carter, Heather M. Ferguson, Bakare Emmanuel Afolabi, Simon
800
+ I. Hay, Robert C. Reiner, Samson Kiware, and David L. Smith. “Spatial Dynamics of
801
+ Malaria Transmission”. In: medRxiv (2022). doi: 10.1101/2022.11.07.22282044.
802
+ 14
803
+
804
+ [21]
805
+ Garrett Dash Nelson and Alasdair Rae. “An Economic Geography of the United States:
806
+ From Commutes to Megaregions”. In: PLOS ONE 11.11 (2016), e0166083. doi: 10.
807
+ 1371/journal.pone.0166083.
808
+ [22]
809
+ Matthew Graham, Amy K. Winter, Matthew Ferrari, Bryan Grenfell, William J. Moss,
810
+ Andrew S. Azman, C. Jessica E. Metcalf, and Justin Lessler. “Measles and the canonical
811
+ path to elimination”. In: Science 364.6440 (2019), pp. 584–587. doi: 10.1126/science.
812
+ aau6299.
813
+ [23]
814
+ Elizabeth C. Lee, Nikolas I. Wada, M. Kate Grabowski, Emily S. Gurley, and Justin
815
+ Lessler. “The engines of SARS-CoV-2 spread”. In: Science 370.6515 (2020), pp. 406–
816
+ 407. doi: 10.1126/science.abd8755.
817
+ [24]
818
+ Peter Edsberg Møllgaard, Sune Lehmann, and Laura Alessandretti. “Understanding
819
+ components of mobility during the COVID-19 pandemic”. In: Philosophical Trans-
820
+ actions of the Royal Society A: Mathematical, Physical and Engineering Sciences
821
+ 380.2214 (2022), p. 20210118. doi: 10.1098/rsta.2021.0118.
822
+ [25]
823
+ Laura Di Domenico, Giulia Pullano, Chiara E. Sabbatini, Pierre-Yves Boëlle, and Vit-
824
+ toria Colizza. “Impact of lockdown on COVID-19 epidemic in Île-de-France and possible
825
+ exit strategies”. In: BMC Medicine 18.1 (2020), p. 240. doi: 10.1186/s12916-020-
826
+ 01698-4.
827
+ [26]
828
+ GOB.MX. Coronavirus. url: https://coronavirus.gob.mx/.
829
+ [27]
830
+ Blanca Taboada et al. “Genomic Analysis of Early SARS-CoV-2 Variants Introduced in
831
+ Mexico”. In: Journal of Virology 94.18 (2020), e01056–20. doi: 10.1128/JVI.01056-
832
+ 20.
833
+ [28]
834
+ Moritz U.G. Kraemer et al. “The effect of human mobility and control measures on
835
+ the COVID-19 epidemic in China”. In: Science 368.6490 (2020), pp. 493–497. doi:
836
+ 10.1126/science.abb4218.
837
+ [29]
838
+ Mélodie Monod et al. “Age groups that sustain resurging COVID-19 epidemics in
839
+ the United States”. In: Science 371.6536 (2021), eabe8372. doi: 10.1126/science.
840
+ abe8372.
841
+ [30]
842
+ Frank Schlosser, Benjamin F. Maier, Olivia Jack, David Hinrichs, Adrian Zachariae,
843
+ and Dirk Brockmann. “COVID-19 lockdown induces disease-mitigating structural
844
+ changes in mobility networks”. In: Proceedings of the National Academy of Sciences
845
+ 117.52 (2020), pp. 32883–32890. doi: 10.1073/pnas.2012326117.
846
+ [31]
847
+ Tyler S. Brown, Kenth Engø-Monsen, Mathew V. Kiang, Ayesha S. Mahmud, Richard
848
+ J. Maude, and Caroline O. Buckee. “The impact of mobility network properties on pre-
849
+ dicted epidemic dynamics in Dhaka and Bangkok”. In: Epidemics 35 (2021), p. 100441.
850
+ doi: 10.1016/j.epidem.2021.100441.
851
+ [32]
852
+ Verity Hill, Christopher Ruis, Sumali Bajaj, Oliver G. Pybus, and Moritz U.G. Krae-
853
+ mer. “Progress and challenges in virus genomic epidemiology”. In: Trends in Parasitol-
854
+ ogy 37.12 (2021), pp. 1038–1049. doi: 10.1016/j.pt.2021.08.007.
855
+ 15
856
+
857
+ [33]
858
+ Moritz U.G. Kraemer et al. “Spatiotemporal invasion dynamics of SARS-CoV-2 lineage
859
+ B.1.1.7 emergence”. In: Science 373.6557 (2021), pp. 889–895. doi: 10.1126/science.
860
+ abj0113.
861
+ [34]
862
+ Louis du Plessis et al. “Establishment and lineage dynamics of the SARS-CoV-2 epi-
863
+ demic in the UK”. In: Science 371.6530 (2021), pp. 708–712. doi: 10.1126/science.
864
+ abf2946.
865
+ [35]
866
+ Bernardo Gutierrez, Hugo G. Castelán Sánchez, Darlan da Silva Candido, Ben Jack-
867
+ son, Shay Fleishon, Renaud Houzet, Christopher Ruis, Luis Delaye, Nuno R. Faria,
868
+ Andrew Rambaut, Oliver G. Pybus, and Marina Escalera-Zamudio. “Emergence and
869
+ widespread circulation of a recombinant SARS-CoV-2 lineage in North America”. In:
870
+ Cell Host & Microbe 30.8 (2022), 1112–1123.e3. doi: 10.1016/j.chom.2022.06.010.
871
+ [36]
872
+ Hugo G. Castelán-Sánchez et al. Comparing the evolutionary dynamics of predominant
873
+ SARS-CoV-2 virus lineages co-circulating in Mexico. 2022. doi: 10.1101/2022.07.
874
+ 05.498834.
875
+ [37]
876
+ Lianqing Zheng, Mengen Chen, and Wei Yang. “Random walk in orthogonal space
877
+ to achieve efficient free-energy simulation of complex systems”. In: Proceedings of the
878
+ National Academy of Sciences 105.51 (2008), pp. 20227–20232. doi: 10.1073/pnas.
879
+ 0810631106.
880
+ [38]
881
+ Pierre Nouvellet et al. “Reduction in mobility and COVID-19 transmission”. In: Nature
882
+ Communications 12.1 (2021), p. 1090. doi: 10.1038/s41467-021-21358-2.
883
+ [39]
884
+ Oscar Fontanelli, Plinio Guzmán, Amílcar Meneses, Alfredo Hernández, Marisol Flores-
885
+ Garrido, Maribel Hernández-Rosales, and Guillermo de Anda-Jáuregui. “Intermunici-
886
+ pal Travel Networks of Mexico (2020-2021)”. In: arXiv (2022). doi: 10.48550/arXiv.
887
+ 2203.13916.
888
+ [40]
889
+ Brennan Klein, Tim LaRock, Stefan McCabe, Leo Torres, Lisa Friedland, Maciej Kos,
890
+ Filippo Privitera, Brennan Lake, Moritz U.G. Kraemer, John S. Brownstein, Richard
891
+ Gonzalez, David Lazer, Tina Eliassi-Rad, Samuel V. Scarpino, Alessandro Vespignani,
892
+ and Matteo Chinazzi. “Characterizing collective physical distancing in the U.S. during
893
+ the first nine months of the COVID-19 pandemic”. In: arXiv (2022). doi: 10.48550/
894
+ arXiv.2212.08873.
895
+ [41]
896
+ Jean-François Mas and Azucena Pérez-Vega. “Spatiotemporal patterns of the COVID-
897
+ 19 epidemic in Mexico at the municipality level”. In: PeerJ 9 (2021), e12685. doi:
898
+ 10.7717/peerj.12685.
899
+ [42]
900
+ Willem G. van Panhuis et al. “Region-wide synchrony and traveling waves of dengue
901
+ across eight countries in Southeast Asia”. In: Proceedings of the National Academy of
902
+ Sciences 112.42 (2015), pp. 13069–13074. doi: 10.1073/pnas.1501375112.
903
+ [43]
904
+ C.J.E. Metcalf, C.V. Munayco, G. Chowell, B.T. Grenfell, and O.N. Bjørnstad.
905
+ “Rubella metapopulation dynamics and importance of spatial coupling to the risk
906
+ of congenital rubella syndrome in Peru”. In: Journal of The Royal Society Interface
907
+ 8.56 (2011), pp. 369–376. doi: 10.1098/rsif.2010.0320.
908
+ 16
909
+
910
+ [44]
911
+ Matt J. Keeling, Ottar N. Bjørnstad, and Bryan T. Grenfell. “Metapopulation Dy-
912
+ namics of Infectious Diseases”. In: Ecology, Genetics and Evolution of Metapopula-
913
+ tions. Elsevier Inc., 2004, pp. 415–445. isbn: 978-0-12-323448-3. doi: 10.1016/B978-
914
+ 012323448-3/50019-2.
915
+ [45]
916
+ Eugenio Valdano, Justin T. Okano, Vittoria Colizza, Honore K. Mitonga, and Sally
917
+ Blower. “Use of mobile phone data in HIV epidemic control”. In: The Lancet HIV 9.12
918
+ (2022), e820–e821. doi: 10.1016/S2352-3018(22)00332-0.
919
+ [46]
920
+ Serina Chang, Damir Vrabac, Jure Leskovec, and Johan Ugander. “Estimating Geo-
921
+ graphic Spillover Effects of COVID-19 Policies From Large-Scale Mobility Networks”.
922
+ In: arXiv (2022). doi: 10.48550/ARXIV.2212.06224.
923
+ [47]
924
+ Pedro G. Nicolau, Rolf A. Ims, Sigrunn H. Sørbye, and Nigel G. Yoccoz. “Seasonality,
925
+ density dependence, and spatial population synchrony”. In: Proceedings of the National
926
+ Academy of Sciences 119.51 (2022), e2210144119. doi: 10.1073/pnas.2210144119.
927
+ [48]
928
+ Martin Rosvall and Carl T. Bergstrom. “Maps of random walks on complex networks
929
+ reveal community structure”. In: Proceedings of the National Academy of Sciences 105.4
930
+ (2008), pp. 1118–1123. doi: 10.1073/pnas.0706851105.
931
+ [49]
932
+ M.E.J. Newman. “Modularity and community structure in networks”. In: Proceedings
933
+ of the National Academy of Sciences 103.23 (2006), pp. 8577–8582. doi: 10.1073/
934
+ pnas.0601602103.
935
+ [50]
936
+ Sen Pei, Teresa K. Yamana, Sasikiran Kandula, Marta Galanti, and Jeffrey Shaman.
937
+ “Burden and characteristics of COVID-19 in the United States during 2020”. en. In:
938
+ Nature 598.7880 (2021), pp. 338–341. doi: 10.1038/s41586-021-03914-4.
939
+ [51]
940
+ Aaron Clauset, Cristopher Moore, and M. E. J. Newman. “Hierarchical structure and
941
+ the prediction of missing links in networks”. In: Nature 453.7191 (2008), pp. 98–101.
942
+ doi: 10.1038/nature06830.
943
+ [52]
944
+ Mateo Carlos Galindo-Pérez, Manuel Suárez, Ana Rosa Rosales-Tapia, José Sifuentes-
945
+ Osornio, Ofelia Angulo-Guerrero, Héctor Benítez-Pérez, Guillermo de Anda-Jauregui,
946
+ Juan Luis Díaz-de-León-Santiago, Enrique Hernández-Lemus, Luis Alonso Herrera,
947
+ Oliva López-Arellano, Arturo Revuelta-Herrera, Rosaura Ruiz-Gutiérrez, Claudia
948
+ Sheinbaum-Pardo, and David Kershenobich-Stalnikowitz. “Territorial Strategy of Med-
949
+ ical Units for Addressing the First Wave of the COVID-19 Pandemic in the Metropoli-
950
+ tan Area of Mexico City: Analysis of Mobility, Accessibility and Marginalization”. In:
951
+ International Journal of Environmental Research and Public Health 19.2 (2022), p. 665.
952
+ doi: 10.3390/ijerph19020665.
953
+ [53]
954
+ Nishant Kishore, Aimee R Taylor, Pierre E Jacob, Navin Vembar, Ted Cohen, Caroline
955
+ O Buckee, and Nicolas A Menzies. “Evaluating the reliability of mobility metrics from
956
+ aggregated mobile phone data as proxies for SARS-CoV-2 transmission in the USA:
957
+ a population-based study”. In: The Lancet Digital Health 4.1 (2022), e27–e36. doi:
958
+ 10.1016/S2589-7500(21)00214-4.
959
+ 17
960
+
961
+ [54]
962
+ N. W. Ruktanonchai, J. R. Floyd, S. Lai, C. W. Ruktanonchai, A. Sadilek, P. Rente-
963
+ Lourenco, X. Ben, A. Carioli, J. Gwinn, J. E. Steele, O. Prosper, A. Schneider, A.
964
+ Oplinger, P. Eastham, and A. J. Tatem. “Assessing the impact of coordinated COVID-
965
+ 19 exit strategies across Europe”. In: Science 369.6510 (2020), pp. 1465–1470. doi:
966
+ 10.1126/science.abc5096.
967
+ [55]
968
+ De Groeve T, Annunziato A, Galbusera L, Giannopoulos G, Iacus S, Vespe M, Rueda
969
+ Cantuche J, Conte A, Sudre B, and Johnson H. Scenarios and tools for locally targeted
970
+ COVID-19 Non Pharmaceutical Intervention Measures. Tech. rep. KJ-NA-30523-EN-N
971
+ (online). Luxembourg (Luxembourg), 2020. doi: 10.2760/893842.
972
+ [56]
973
+ Joint Research Centre (European Commission), S. Iacus, C. Santamaria, F. Sermi, S.
974
+ Spyratos, D. Tarchi, and M. Vespe. Mapping Mobility Functional Areas (MFA) using
975
+ mobile positioning data to inform COVID-19 policies: a European regional analysis.
976
+ LU: Publications Office of the European Union, 2020. isbn: 978-92-76-20429-9. url:
977
+ https://data.europa.eu/doi/10.2760/076318.
978
+ [57]
979
+ Guillermo de Anda-Jáuregui, Lourdes García-García, and Enrique Hernández-Lemus.
980
+ “Modular reactivation of Mexico City after COVID-19 lockdown”. In: BMC Public
981
+ Health 22.1 (2022), p. 961. doi: 10.1186/s12889-022-13183-z.
982
+ [58]
983
+ David Agren. “Mexico flying blind as lack of Covid-19 testing mystifies experts”. In:
984
+ The Guardian (2020). url: https://www.theguardian.com/global-development/
985
+ 2020/jul/24/mexico-covid-19-testing-coronavirus.
986
+ [59]
987
+ GOB.MX. Exceso de Mortalidad en México. url: https://coronavirus.gob.mx/
988
+ exceso-de-mortalidad-en-mexico/.
989
+ [60]
990
+ Thomson Reuters Foundation. Mexico’s indigenous towns impose their own coron-
991
+ avirus lockdowns. url: https://news.trust.org/item/20200417171219-xdsy2/.
992
+ [61]
993
+ Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David
994
+ Grusky, and Jure Leskovec. “Mobility network models of COVID-19 explain inequities
995
+ and inform reopening”. In: Nature 589.7840 (2021), pp. 82–87. doi: 10.1038/s41586-
996
+ 020-2923-3.
997
+ [62]
998
+ Consejo de Salubridad General. url: http : / / www . csg . gob . mx / consejo /
999
+ integrantes.html.
1000
+ [63]
1001
+ Miquel Oliu-Barton, Bary S. R. Pradelski, Nicolas Woloszko, Lionel Guetta-
1002
+ Jeanrenaud, Philippe Aghion, Patrick Artus, Arnaud Fontanet, Philippe Martin, and
1003
+ Guntram B. Wolff. “The effect of COVID certificates on vaccine uptake, health out-
1004
+ comes, and the economy”. In: Nature Communications 13.1 (2022), p. 3942. doi: 10.
1005
+ 1038/s41467-022-31394-1.
1006
+ [64]
1007
+ López-Gatell y gobernadores chocan por responsabilidades ante COVID-19. 2020. url:
1008
+ https : / / politica . expansion . mx / mexico / 2020 / 07 / 30 / lopez - gatell - y -
1009
+ gobernadores-chocan-por-responsabilidades-ante-covid-19.
1010
+ 18
1011
+
1012
+ [65]
1013
+ John T. McCrone et al. “Context-specific emergence and growth of the SARS-CoV-2
1014
+ Delta variant”. In: Nature 610.7930 (2022), pp. 154–160. doi: 10.1038/s41586-022-
1015
+ 05200-3.
1016
+ [66]
1017
+ Brennan Klein and Erik Hoel. “The Emergence of Informative Higher Scales in Com-
1018
+ plex Networks”. In: Complexity 2020 (2020), p. 8932526. doi: 10.1155/2020/8932526.
1019
+ [67]
1020
+ Tiago P. Peixoto. “Bayesian Stochastic Blockmodeling”. In: Advances in Network Clus-
1021
+ tering and Blockmodeling. John Wiley & Sons, Ltd, 2019, pp. 289–332. isbn: 978-1-
1022
+ 119-48329-8. doi: 10.1002/9781119483298.ch11.
1023
+ [68]
1024
+ Moritz U.G. Kraemer, Adam Sadilek, Qian Zhang, Nahema A. Marchal, Gaurav Tuli,
1025
+ Emily L. Cohn, Yulin Hswen, T. Alex Perkins, David L. Smith, Robert C. Reiner, and
1026
+ John S. Brownstein. “Mapping global variation in human mobility”. In: Nature Human
1027
+ Behaviour 4.8 (Aug. 2020), pp. 800–810. doi: 10.1038/s41562-020-0875-0.
1028
+ [69]
1029
+ Philippe Lemey et al. “Untangling introductions and persistence in COVID-19 resur-
1030
+ gence in Europe”. In: Nature 595.7869 (2021), pp. 713–717. doi: 10.1038/s41586-
1031
+ 021-03754-2.
1032
+ [70]
1033
+ Royce J. Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel
1034
+ Simmons-Marengo, and Bryant Gipson. “Differentially Private SQL with Bounded User
1035
+ Contribution”. In: arXiv (2019). doi: 10.48550/arXiv.1909.01917.
1036
+ [71]
1037
+ Edward Goldstein and Marc Lipsitch. “Temporal rise in the proportion of younger
1038
+ adults and older adolescents among coronavirus disease (COVID-19) cases following
1039
+ the introduction of physical distancing measures, Germany, March to April 2020”. In:
1040
+ Eurosurveillance 25.17 (2020), p. 2000596. doi: 10.2807/1560-7917.ES.2020.25.
1041
+ 17.2000596.
1042
+ [72]
1043
+ Edward Goldstein, Hieu H Nguyen, Patrick Liu, Cecile Viboud, Claudia A Steiner,
1044
+ Colin J Worby, and Marc Lipsitch. “On the Relative Role of Different Age Groups
1045
+ During Epidemics Associated With Respiratory Syncytial Virus”. In: The Journal of
1046
+ Infectious Diseases 217.2 (2018), pp. 238–244. doi: 10.1093/infdis/jix575.
1047
+ [73]
1048
+ Edward Goldstein, Virginia E. Pitzer, Justin J. O’Hagan, and Marc Lipsitch. “Tem-
1049
+ porally Varying Relative Risks for Infectious Diseases: Implications for Infectious
1050
+ Disease Control”. In: Epidemiology 28.1 (2017), pp. 136–144. doi: 10.1097/EDE.
1051
+ 0000000000000571.
1052
+ [74]
1053
+ Brian Ripley, Bill Venables, Douglas M. Bates, Albrecht Gebhardt Kurt Hornik, and
1054
+ David Firth. MASS: Support Functions and Datasets for Venables and Ripley’s MASS.
1055
+ 2022. url: https://CRAN.R-project.org/package=MASS.
1056
+ [75]
1057
+ Kamil Bartoń. MuMIn: Multi-Model Inference. R package version 1.47.1. 2022. url:
1058
+ https://CRAN.R-project.org/package=MuMIn.
1059
+ 19
1060
+
1061
+ [76]
1062
+ Shinichi Nakagawa, Paul C.D. Johnson, and Holger Schielzeth. “The coefficient of deter-
1063
+ mination R2 and intra-class correlation coefficient from generalized linear mixed-effects
1064
+ models revisited and expanded”. In: Journal of the Royal Society Interface 14.134
1065
+ (2017), p. 20170213. doi: 10.1098/rsif.2017.0213.
1066
+ [77]
1067
+ Alexandra Kuznetsova, Per B. Brockhoff, and Rune H. B. Christensen. “lmerTest Pack-
1068
+ age: Tests in Linear Mixed Effects Models”. In: Journal of Statistical Software 82.13
1069
+ (2017), pp. 1–26. doi: 10.18637/jss.v082.i13.
1070
+ 20
1071
+
1072
+ A
1073
+ Extended Data Figures
1074
+ Figure A.1: Number of new cases per state and sex (7-day average).
1075
+ 21
1076
+
1077
+ Veracruz de Ignacio
1078
+ Ciudad de México
1079
+ Nuevo Leon
1080
+ México
1081
+ Tabasco
1082
+ de la Llave
1083
+ Puebla
1084
+ Guanajuato
1085
+ Sonora
1086
+ Female
1087
+ Female
1088
+ Female
1089
+ Female
1090
+ emale
1091
+ Female
1092
+ 400
1093
+ Male
1094
+ Male
1095
+ Male
1096
+ Male
1097
+ 9300
1098
+ 100
1099
+ 0
1100
+ Coahuila de Zaragoza
1101
+ Michoacan de Ocampo
1102
+ Baja California
1103
+ sedineel
1104
+ Sinaloa
1105
+ Jalisco
1106
+ Guerrero
1107
+ Oaxaca
1108
+ Female
1109
+ Female
1110
+ — Female
1111
+ — Female
1112
+ — Female
1113
+ Female
1114
+ Female
1115
+ 400
1116
+ Male
1117
+ Male
1118
+ Male
1119
+ Male
1120
+ 300
1121
+ 100-
1122
+ Yucatan
1123
+ Quintana Roo
1124
+ San Luis Potosi
1125
+ Hidalgo
1126
+ Chiapas
1127
+ Chihuahua
1128
+ Tlaxcala
1129
+ Morelos
1130
+ emale
1131
+ Female
1132
+ Female
1133
+ Female
1134
+ Female
1135
+ emale
1136
+ Female
1137
+ 400 -
1138
+ Male
1139
+ Male
1140
+ Male
1141
+ Male
1142
+ Male
1143
+ Male
1144
+ Male
1145
+ 00m
1146
+ 200
1147
+ 100 -
1148
+ - 0
1149
+ Campeche
1150
+ Durango
1151
+ Zacatecas
1152
+ Aguascalientes
1153
+ Baja California Sur
1154
+ Querétaro
1155
+ Nayarit
1156
+ Colima
1157
+ Female
1158
+ Female
1159
+ Female
1160
+ Female
1161
+ Female
1162
+ Female
1163
+ Female
1164
+ Female
1165
+ 400
1166
+ Male
1167
+ Male
1168
+ Male
1169
+ Male
1170
+ Male
1171
+ Male
1172
+ 100
1173
+ 1 0
1174
+ 04-01 05-01 06-01 07-01
1175
+ 04-01 05-01 06-01 07-01
1176
+ 04-01 05-01 06-01 07-01
1177
+ 04-01 05-01 06-01 07-01
1178
+ 04-01 05-01 06-01 07-01
1179
+ 04-01 05-01 06-01 07-01
1180
+ 04-01 05-01 06-01 07-01
1181
+ 04-01 05-01 06-01 07-0150%
1182
+ 100%
1183
+ 150%
1184
+ Percent typical
1185
+ mobility
1186
+ Distrito Federal
1187
+ within-state
1188
+ outgoing movement
1189
+ incoming movement
1190
+ México
1191
+ within-state
1192
+ outgoing movement
1193
+ incoming movement
1194
+ 50%
1195
+ 100%
1196
+ 150%
1197
+ Percent typical
1198
+ mobility
1199
+ Guanajuato
1200
+ within-state
1201
+ outgoing movement
1202
+ incoming movement
1203
+ Nuevo León
1204
+ within-state
1205
+ outgoing movement
1206
+ incoming movement
1207
+ Veracruz
1208
+ within-state
1209
+ outgoing movement
1210
+ incoming movement
1211
+ Tabasco
1212
+ within-state
1213
+ outgoing movement
1214
+ incoming movement
1215
+ Puebla
1216
+ within-state
1217
+ outgoing movement
1218
+ incoming movement
1219
+ Tamaulipas
1220
+ within-state
1221
+ outgoing movement
1222
+ incoming movement
1223
+ 50%
1224
+ 100%
1225
+ 150%
1226
+ Percent typical
1227
+ mobility
1228
+ Coahuila
1229
+ within-state
1230
+ outgoing movement
1231
+ incoming movement
1232
+ Sonora
1233
+ within-state
1234
+ outgoing movement
1235
+ incoming movement
1236
+ Jalisco
1237
+ within-state
1238
+ outgoing movement
1239
+ incoming movement
1240
+ San Luis Potosí
1241
+ within-state
1242
+ outgoing movement
1243
+ incoming movement
1244
+ Baja California
1245
+ within-state
1246
+ outgoing movement
1247
+ incoming movement
1248
+ Michoacán
1249
+ within-state
1250
+ outgoing movement
1251
+ incoming movement
1252
+ 50%
1253
+ 100%
1254
+ 150%
1255
+ Percent typical
1256
+ mobility
1257
+ Sinaloa
1258
+ within-state
1259
+ outgoing movement
1260
+ incoming movement
1261
+ Guerrero
1262
+ within-state
1263
+ outgoing movement
1264
+ incoming movement
1265
+ Yucatán
1266
+ within-state
1267
+ outgoing movement
1268
+ incoming movement
1269
+ Oaxaca
1270
+ within-state
1271
+ outgoing movement
1272
+ incoming movement
1273
+ Hidalgo
1274
+ within-state
1275
+ outgoing movement
1276
+ incoming movement
1277
+ Quintana Roo
1278
+ within-state
1279
+ outgoing movement
1280
+ incoming movement
1281
+ 50%
1282
+ 100%
1283
+ 150%
1284
+ Percent typical
1285
+ mobility
1286
+ Chihuahua
1287
+ within-state
1288
+ outgoing movement
1289
+ incoming movement
1290
+ Baja California Sur
1291
+ within-state
1292
+ outgoing movement
1293
+ incoming movement
1294
+ Querétaro de Arteaga
1295
+ within-state
1296
+ outgoing movement
1297
+ incoming movement
1298
+ Durango
1299
+ within-state
1300
+ outgoing movement
1301
+ incoming movement
1302
+ Tlaxcala
1303
+ within-state
1304
+ outgoing movement
1305
+ incoming movement
1306
+ Chiapas
1307
+ within-state
1308
+ outgoing movement
1309
+ incoming movement
1310
+ 12-01
1311
+ 01-26
1312
+ 03-22
1313
+ 05-17
1314
+ 07-12
1315
+ 50%
1316
+ 100%
1317
+ 150%
1318
+ Percent typical
1319
+ mobility
1320
+ Aguascalientes
1321
+ within-state
1322
+ outgoing movement
1323
+ incoming movement
1324
+ 12-01
1325
+ 01-26
1326
+ 03-22
1327
+ 05-17
1328
+ 07-12
1329
+ Zacatecas
1330
+ within-state
1331
+ outgoing movement
1332
+ incoming movement
1333
+ 12-01
1334
+ 01-26
1335
+ 03-22
1336
+ 05-17
1337
+ 07-12
1338
+ Campeche
1339
+ within-state
1340
+ outgoing movement
1341
+ incoming movement
1342
+ 12-01
1343
+ 01-26
1344
+ 03-22
1345
+ 05-17
1346
+ 07-12
1347
+ Morelos
1348
+ within-state
1349
+ outgoing movement
1350
+ incoming movement
1351
+ 12-01
1352
+ 01-26
1353
+ 03-22
1354
+ 05-17
1355
+ 07-12
1356
+ Nayarit
1357
+ within-state
1358
+ outgoing movement
1359
+ incoming movement
1360
+ 12-01
1361
+ 01-26
1362
+ 03-22
1363
+ 05-17
1364
+ 07-12
1365
+ Colima
1366
+ within-state
1367
+ outgoing movement
1368
+ incoming movement
1369
+ Figure A.2: Weekly relative change in human mobility within each state and between
1370
+ states (incoming and outgoing) as compared to baseline.
1371
+ 22
1372
+
1373
+ Figure A.3: State-specific correlations of new reported cases (weekly) vs. mobility from
1374
+ Mexico City times new reported cases in Mexico City (weekly). States with low mobility
1375
+ and case count data coverage are included but not plotted in this figure.
1376
+ 23
1377
+
1378
+ Distrito Federal
1379
+ México
1380
+ Between 2020-03-29 and 2020-07-19
1381
+ 6000
1382
+ (yellow dots = later)
1383
+ 8
1384
+ O
1385
+ .
1386
+ 4000 -
1387
+ ·
1388
+ 2000
1389
+ .
1390
+ 50
1391
+ 100
1392
+ 5
1393
+ 10
1394
+ 15
1395
+ Tabasco
1396
+ Veracruz de Ignacio
1397
+ Guanajuato
1398
+ Pueblal
1399
+ Nuevo Leon
1400
+ Sonora
1401
+ 4000 -
1402
+ de la Llavel 4000 -
1403
+ 3000 -
1404
+ 3000
1405
+ 3000
1406
+ .
1407
+ 8
1408
+ 3000
1409
+ ●2000
1410
+ 2000
1411
+ 2000 -
1412
+ ··
1413
+ 8
1414
+ 2000 -
1415
+ 2000
1416
+ .
1417
+ .
1418
+ .
1419
+ .
1420
+ :
1421
+ 1000
1422
+ ·
1423
+ 1000
1424
+ 1000 -
1425
+ 1000 -
1426
+ 8
1427
+ 1000
1428
+ New
1429
+ ·
1430
+ o
1431
+ 0.001
1432
+ 0.002
1433
+ 0.005
1434
+ 0.010
1435
+ 0.002
1436
+ 0.004
1437
+ 0.01
1438
+ 0.02
1439
+ 0.03
1440
+ 0.005
1441
+ 0.010
1442
+ 0.001
1443
+ 0.002
1444
+ 0.003
1445
+ 1400
1446
+ sed!inee
1447
+ Baja California
1448
+ Jalisco
1449
+ Coahuila de Zaragoza
1450
+ Sinaloa
1451
+ Guerrero
1452
+ 2000 -
1453
+ 1200
1454
+ 1500
1455
+ 1500
1456
+ .
1457
+ 2000
1458
+ ·1000
1459
+ 9
1460
+ 1000
1461
+ .
1462
+ .
1463
+ 1000
1464
+ .
1465
+ 1000 -
1466
+ ·!
1467
+ 800
1468
+ .
1469
+ 1000 -
1470
+ .
1471
+ 500 -
1472
+ .
1473
+ 500
1474
+ 600 :
1475
+ ob
1476
+ 0.0006
1477
+ 0.0007
1478
+ 0.005
1479
+ 0.010
1480
+ 0.005 0.010 0.015
1481
+ 0.0005
1482
+ 0.0010
1483
+ 0.001 0.002
1484
+ 0.003
1485
+ 0.002
1486
+ 0.004
1487
+ 0.006
1488
+ San Luis Potosi
1489
+ Oaxaca| 1500
1490
+ Michoacan de Ocampo
1491
+ Yucatan
1492
+ Quintana Roo
1493
+ Hidalgo
1494
+ 2000 :
1495
+ 1000
1496
+ 1500
1497
+ :
1498
+ ·1000-
1499
+ ·
1500
+ 1500 -
1501
+ 750
1502
+ 1000
1503
+ .o.
1504
+ 1000
1505
+ oo
1506
+ 0
1507
+ 0
1508
+ 1000 -
1509
+ 500
1510
+ .0.
1511
+ 8
1512
+ 500 -
1513
+ 500 -
1514
+ 500 -
1515
+ 500 -
1516
+ New
1517
+ .
1518
+ 250
1519
+ 0
1520
+ 0.0005 0.0010 0.0015
1521
+ 0.000
1522
+ 0.002
1523
+ 0.004
1524
+ 0.002
1525
+ 0.004
1526
+ 0.0025 0.0050 0.0075
1527
+ 0.00
1528
+ 0.01
1529
+ 0.02
1530
+ 0.02
1531
+ 0.04
1532
+ Chihuahua
1533
+ Chiapas
1534
+ Tlaxcala
1535
+ Campeche
1536
+ Baja California Sur
1537
+ Durango
1538
+ 009
1539
+ 1000
1540
+ 1000
1541
+ 600 -
1542
+ 575 -
1543
+ 00.05
1544
+ 750
1545
+ 750 -
1546
+ .
1547
+ 8
1548
+ 400 -
1549
+ 550 -
1550
+ 500
1551
+ .
1552
+ 500 -
1553
+ 0.00 -
1554
+ 200
1555
+ 525
1556
+ 250
1557
+ 250
1558
+ .o
1559
+ 500
1560
+ -0.05
1561
+ 0.0000.002 0.004 0.006
1562
+ 0.002
1563
+ 0.004
1564
+ 0.002
1565
+ 0.004
1566
+ 0.006
1567
+ 0.00050
1568
+ 0.00055
1569
+ 0.00060
1570
+ 0.000
1571
+ 0.002
1572
+ 0.004
1573
+ 0.006
1574
+ 0.05
1575
+ 0.00
1576
+ 0.05
1577
+ 500
1578
+ Morelos
1579
+ Querétaro de Arteaga
1580
+ Nayarit
1581
+ Zacatecas
1582
+ Aguascalientes
1583
+ Colimal
1584
+ 600
1585
+ 400 -
1586
+ 0.05
1587
+ 0.05 -
1588
+ 0.05
1589
+ ·
1590
+ 400 -
1591
+ 300 -
1592
+ 8
1593
+ 200
1594
+ 0.00
1595
+ 0.00
1596
+ 0.00
1597
+ 200
1598
+ New
1599
+ 100
1600
+ -0.05
1601
+ .
1602
+ ←0.05
1603
+ 0.05 -
1604
+ oh
1605
+ 0.0005
1606
+ 0.0010
1607
+ 0.02
1608
+ 0.04
1609
+ 0.005
1610
+ 0.010
1611
+ -0.05
1612
+ 0.00
1613
+ 0.05
1614
+ -0.05
1615
+ 0.00
1616
+ -0.05
1617
+ 0.00
1618
+ 0.05
1619
+ 0.06
1620
+ 0.05
1621
+ Movement from Mexico D.F.
1622
+ Movement from Mexico D.F.
1623
+ Movement from Mexico D.F.
1624
+ Movement from Mexico D.F.
1625
+ Movement from Mexico D.F.
1626
+ Movement from Mexico D.F.
1627
+ times Mexico D.F. new cases
1628
+ times Mexico D.F. new cases
1629
+ times Mexico D.F. new cases
1630
+ times Mexico D.F. new cases
1631
+ times Mexico D.F. new cases
1632
+ times Mexico D.F. new casesFigure A.4: Weekly relative human mobility where the origin is the USA and the destina-
1633
+ tion are states in Mexico divided into states that share a land border, Mexico and Mexico
1634
+ City and all other states.
1635
+ 24
1636
+
1637
+ USA
1638
+ States with
1639
+ 140%
1640
+ USA border
1641
+ States without
1642
+ from
1643
+ 120%
1644
+ USA border
1645
+ Mexico and
1646
+ Mexico City
1647
+ mobility
1648
+ 100%
1649
+ 80%
1650
+ typical
1651
+ 60%
1652
+ 40%
1653
+ Percent of i
1654
+ 20%
1655
+ 0%
1656
+ 12-01
1657
+ 02-09
1658
+ 04-19
1659
+ 06-28Figure A.5: Weekly new cases per 100,000 divided into cases in Mexico City and the state
1660
+ of Mexico, states that share a land border with the USA, and all other states.
1661
+ 25
1662
+
1663
+ rate per 100,000
1664
+ 100,000
1665
+ 40
1666
+ 65
1667
+ States with
1668
+ USA border
1669
+ States without
1670
+ 4
1671
+ USA border
1672
+ 30
1673
+ new cases per
1674
+ Mexico and
1675
+ Mexico City
1676
+ 20
1677
+ Weekly growth I
1678
+ Z
1679
+ 10
1680
+ Weekly
1681
+ L
1682
+ 0
1683
+ 04-19
1684
+ 06-28
1685
+ 03-15
1686
+ 03-15
1687
+ 05-24
1688
+ 04-19
1689
+ 05-24
1690
+ 06-28Figure A.6: Weekly number of cases among municipalities in Mexico coloured by their
1691
+ geographic position to the USA (bordering vs. not bordering) and the sum of in-municipality
1692
+ mobility × weekly new cases among origin nodes (both on the log scale).
1693
+ 26
1694
+
1695
+ 8
1696
+ Municipalities without
1697
+ U.S. connections
1698
+ Sum of weekly new cases among
1699
+ (log-scaled)
1700
+ 6
1701
+ Municipalities with
1702
+ U.S. connections
1703
+ 4
1704
+ destination nodes (
1705
+ 2
1706
+ 0
1707
+ -4
1708
+ -2
1709
+ 0
1710
+ 2
1711
+ 4
1712
+ 6
1713
+ 8
1714
+ 10
1715
+ 12
1716
+ Sum of in-municipality mobility x sum of
1717
+ weekly new cases among origin nodes (log-scaled)Community size distribution
1718
+ Community size distribution
1719
+ Community size distribution
1720
+ Community size distribution
1721
+ Community size distribution
1722
+ Community size distribution
1723
+ Community size distribution
1724
+ Community size distribution
1725
+ Community size distribution
1726
+ Figure A.7: Four-week snapshots of mobility in Mexico. Weekly human mobility in
1727
+ Mexico at the municipality level. Thickness of lines represents intensity of relative mobility
1728
+ flow. Colours represent the membership to movement communities as estimated using the
1729
+ map equation (Materials & Methods).
1730
+ 27
1731
+
1732
+ Fr0m 2019-11-24
1733
+ (four-week total)
1734
+ 15 communitiesFrom 2019-12-29
1735
+ (four-week total)
1736
+ 15 communitiesFr0m 2020-01-26
1737
+ (four-week total)
1738
+ 18 communitiesFr0m 2020-02-23
1739
+ (four-week total)
1740
+ 18 communitiesFrom 2020-03-22
1741
+ (four-week total)
1742
+ 33 communitiesFr0m 2020-04-19
1743
+ (four-week total)
1744
+ 26 communitiesFr0m 2020-05-17
1745
+ (four-week total)
1746
+ 22 communitiesFr0m 2020-06-14
1747
+ (four-week total)
1748
+ 33 communitiesFr0m 2020-07-12
1749
+ (four-week total)
1750
+ 32 communities03-01
1751
+ 03-29
1752
+ 04-26
1753
+ 05-24
1754
+ 06-21
1755
+ 07-19
1756
+ 08-16
1757
+ 20
1758
+ 30
1759
+ 40
1760
+ 50
1761
+ 60
1762
+ Number of communities detected over time
1763
+ Figure A.8:
1764
+ Number of communities detected each week during the first wave of the
1765
+ COVID-19 epidemic in Mexico.
1766
+ 28
1767
+
1768
+ 03-0103-29
1769
+ 04-26
1770
+ 05-24
1771
+ 06-21
1772
+ 07-19
1773
+ 08-16
1774
+ 0.1
1775
+ 0.2
1776
+ 0.3
1777
+ 0.4
1778
+ 0.5
1779
+ 0.6
1780
+ 0.7
1781
+ 0.8
1782
+ (c)
1783
+ Standard deviation of municipality growth rates
1784
+ within grouping (lower values: higher synchrony)
1785
+ 0.5
1786
+ 0.0
1787
+ 0.5
1788
+ 1.0
1789
+ 1.5
1790
+ 2.0
1791
+ Growth rate (reported cases)
1792
+ 0.11
1793
+ Nayarit
1794
+ Morelos
1795
+ Michoacán de Ocampo
1796
+ México
1797
+ Jalisco
1798
+ Hidalgo
1799
+ Guerrero
1800
+ Guanajuato
1801
+ Durango
1802
+ Distrito Federal
1803
+ Chihuahua
1804
+ Chiapas
1805
+ Colima
1806
+ Coahuila de Zaragoza
1807
+ Campeche
1808
+ Baja California Sur
1809
+ Baja California
1810
+ Aguascalientes
1811
+ 0.36
1812
+ 0.26
1813
+ 0.69
1814
+ 0.43
1815
+ 0.29
1816
+ 0.30
1817
+ 0.44
1818
+ 0.31
1819
+ 0.83
1820
+ 0.42
1821
+ 0.57
1822
+ 0.47
1823
+ 0.44
1824
+ 0.37
1825
+ 0.39
1826
+ 0.48
1827
+ 0.47
1828
+ ...
1829
+ ...
1830
+ ...
1831
+ ...
1832
+ 0.465
1833
+ (mean)
1834
+ Std. dev. of growth rates
1835
+ Example: Variance in growth rates (2020-04-19)
1836
+ municipalities grouped by administrative boundaries
1837
+ 0.5
1838
+ 0.0
1839
+ 0.5
1840
+ 1.0
1841
+ 1.5
1842
+ 2.0
1843
+ Growth rate (reported cases)
1844
+ 0.38
1845
+ Comm. 01
1846
+ 0.54
1847
+ Comm. 02
1848
+ 0.35
1849
+ Comm. 03
1850
+ 0.45
1851
+ Comm. 04
1852
+ 0.50
1853
+ Comm. 05
1854
+ 0.43
1855
+ Comm. 06
1856
+ 0.30
1857
+ Comm. 07
1858
+ 0.49
1859
+ Comm. 08
1860
+ 0.37
1861
+ Comm. 09
1862
+ 0.31
1863
+ Comm. 10
1864
+ 0.59
1865
+ Comm. 11
1866
+ 0.00
1867
+ Comm. 12
1868
+ 0.00
1869
+ Comm. 13
1870
+ 0.00
1871
+ Comm. 14
1872
+ 0.00
1873
+ Comm. 15
1874
+ 0.00
1875
+ Comm. 16
1876
+ 0.00
1877
+ Comm. 17
1878
+ 0.00
1879
+ Comm. 18
1880
+ ...
1881
+ ...
1882
+ ...
1883
+ ...
1884
+ 0.223
1885
+ (mean)
1886
+ Std. dev. of growth rates
1887
+ Example: Variance in growth rates (2020-04-19)
1888
+ municipalities grouped by network communities
1889
+ o
1890
+ .
1891
+ (e)
1892
+ (d)
1893
+ o
1894
+ .
1895
+ Figure A.9: For one example week (April 19, 2020), comparison of the mean standard
1896
+ deviations in municipality growth rates within either (left) administrative (states) boundaries
1897
+ or (right) network communities. In each panel, the standard deviations of municipalities’
1898
+ infection growth rates within each grouping (state vs. network community) is shown on the
1899
+ right. Figure 3c shows the average of these values over time.
1900
+ 29
1901
+
1902
+ b
1903
+ Example network grouping
1904
+ (infomap)a)
1905
+ Administrative grouping
1906
+ (states)Date
1907
+ Intervention
1908
+ March 16, 2020
1909
+ Mexican Secretariat of Public Education (SEP) suspend classes in
1910
+ schools of preschool, primary, secondary education, as well as those
1911
+ of the upper middle and higher types dependent on the SEP [1].
1912
+ March 17, 2020
1913
+ Universities begin to suspend classes and social events [2].
1914
+ March 20, 2020
1915
+ Mexican Secretariat of Public Education (SEP) cancels all civic and
1916
+ sports events [3].
1917
+ March 21, 2020
1918
+ United States - Mexico border was closed to non-essential travel but
1919
+ remained open for commerce. Closure extended until November 21,
1920
+ 2020 [4].
1921
+ March 23/24, 2020
1922
+ National period of social distancing begins. Schools closed and all
1923
+ non-essential operations were closed including gatherings of 100+
1924
+ people [5].
1925
+ March 30, 2020
1926
+ National health emergency declared. Policies included: (1.) Non-
1927
+ essential services suspended. (2.) Private sector is asked to require
1928
+ employees to work from home. (3.) Sectors that kept operating nor-
1929
+ mally: government, health (public and private), public safety, social
1930
+ programs, critical infrastructure, and essential services. A full list
1931
+ of essential services can be viewed here: https://www.dof.gob.
1932
+ mx/nota_detalle.php?codigo=5590914&fecha=31/03/2020. (4.)
1933
+ People over 60 years old are urged to stay home. (5.) Public gath-
1934
+ erings of over 50 people are banned. (6.) There was no enforced
1935
+ curfew. Expiration date: April 30, 2020.
1936
+ April 5, 2020
1937
+ Hospital reconversion strategy guidelines published in order to con-
1938
+ tain nosocomial transmission [6]
1939
+ April 16, 2020
1940
+ The Federal Government announces the extension of the health
1941
+ emergency and emphasizes the need to restrict movement to and
1942
+ from areas of high transmissibility until May 30th [7].
1943
+ May 14, 2020
1944
+ Ministry of Health announces epidemiologic color-coded system to
1945
+ re-open social, educational, economic activities at state level [8].
1946
+ May 18, 2020
1947
+ First phase of the “new normality” 324 municipalities with no
1948
+ recorded COVID-19 cases are given green light to reopen businesses
1949
+ and schools [9]. Car factories were meant to reopen on June 1st,
1950
+ but began reopening on May 18th under US pressure (Factories
1951
+ remained closed from March 23rd, to May 18th).
1952
+ 30
1953
+
1954
+ June 1, 2020
1955
+ Mexico’s national period of social distancing concludes.
1956
+ A new
1957
+ color-coded system was enacted across the country to assess how
1958
+ quickly states can reopen their economies and schools: red, orange,
1959
+ yellow, and green [10].
1960
+ July 20, 2020
1961
+ Daycare centers run by the country’s social security system re-
1962
+ opened in coordination with local authority and based on color-
1963
+ coded indicators. Currently, all but 4 states have daycare centers
1964
+ open. [11]
1965
+ October 18, 2020
1966
+ The Health Ministry announced that 17 states—Mexico City
1967
+ included—were at alert level orange and 14 were at yellow. Only
1968
+ one state, Campeche, was at green [12]. In states at the orange
1969
+ level, businesses such as hotels and restaurants can reopen while
1970
+ following health protocols such as enforcing limited capacity. Yel-
1971
+ low allows for most economic activities to return to normal with
1972
+ some occupancy limits.
1973
+ October 22, 2020
1974
+ Some local governments have chosen to enact more stringent re-
1975
+ strictions than the federal government guidelines, e.g., Jalisco and
1976
+ Chihuahua [13].
1977
+ Table A.1: Timeline of government interventions in Mexico.
1978
+ 31
1979
+
1980
+ A.1
1981
+ Citation diversity statement
1982
+ Recent work has quantified bias in citation practices across various scientific fields; namely,
1983
+ women and other minority scientists are often cited at a rate that is not proportional to
1984
+ their contributions to the field [14–21]. In this work, we aim to be proactive about the
1985
+ research we reference in a way that corresponds to the diversity of scholarship in this field.
1986
+ To evaluate gender bias in the references used here, we obtained the gender of the first/last
1987
+ authors of the papers cited here through either 1) the gender pronouns used to refer to them
1988
+ in articles or biographies or 2) if none were available, we used a database of common name-
1989
+ gender combinations across a variety of languages and ethnicities. By this measure (excluding
1990
+ citations to datasets/organizations, citations included in this section, and self-citations to the
1991
+ first/last authors of this manuscript), our references contain 3% woman(first)-woman(last),
1992
+ 22% woman-man, 20% man-woman, 47% man-man, 0% nonbinary, 8% man solo-author, and
1993
+ 0% woman solo-author. This method is limited in that an author’s pronouns may not be
1994
+ consistent across time or environment, and no database of common name-gender pairings is
1995
+ complete or fully accurate.
1996
+ Supplemental References
1997
+ [1]
1998
+ DOF - Diario Oficial de la Federación. url: https://www.dof.gob.mx/nota_
1999
+ detalle.php?codigo=5589479&fecha=16/03/2020.
2000
+ [2]
2001
+ Coronavirus en México: universidades suspenden clases y se intensifican las acciones
2002
+ preventivas. 2020. url: https : / / www . infobae . com / america / mexico / 2020 /
2003
+ 03 / 13 / coronavirus - en - mexico - universidades - suspenden - clases - y - se -
2004
+ intensifican-las-acciones-preventivas/.
2005
+ [3]
2006
+ Gobierno de México suspenderá todas las actividades escolares por coronavirus. 2020.
2007
+ url: https : / / www . latimes . com / espanol / mexico / articulo / 2020 - 03 - 14 /
2008
+ gobierno- de- mexico- suspendera- todas- las- actividades- escolares- por-
2009
+ coronavirus.
2010
+ [4]
2011
+ U.S. Embassy & Consulates in Mexico. Mexico, U.S.M. to. Travel restrictions - Fact
2012
+ sheet. 2021. url: https://mx.usembassy.gov/travel-restrictions-fact-sheet/.
2013
+ [5]
2014
+ Inicia fase 2 por coronavirus COVID-19 – Coronavirus. url: https://coronavirus.
2015
+ gob.mx/2020/03/24/inicia-fase-2-por-coronavirus-covid-19/.
2016
+ [6]
2017
+ Gobierno de México and Secretaría de Salud COVID-19. Lineamiento de Reconversión
2018
+ Hospitalaria. url: https://coronavirus.gob.mx/wp-content/uploads/2020/04/
2019
+ Documentos-Lineamientos-Reconversion-Hospitalaria.pdf.
2020
+ [7]
2021
+ Coronavirus en México: guía para entender las cuatro nuevas medidas de control y
2022
+ prevención del COVID-19 cercanas a la Fase 3. url: https://www.infobae.com/
2023
+ america/mexico/2020/04/16/coronavirus-en-mexico-guia-para-entender-
2024
+ las - cuatro - nuevas - medidas - de - control - y - prevencion - del - covid - 19 -
2025
+ cercanas-a-la-fase-3/.
2026
+ 32
2027
+
2028
+ [8]
2029
+ DOF - Diario Oficial de la Federación. url: https://dof.gob.mx/nota_detalle.
2030
+ php?codigo=5593313&fecha=14/05/2020#gsc.tab=0.
2031
+ [9]
2032
+ Conferencia 16 de mayo – Coronavirus. url: https://coronavirus.gob.mx/2020/
2033
+ 05/16/conferencia-16-de-mayo-2/.
2034
+ [10]
2035
+ Subsecretaría de Prevención y Promoción de la Salud. Semáforo de riesgo epidemi-
2036
+ ológico: COVID-19: indicadores y metodología. url: https://coronavirus.gob.mx/
2037
+ wp-content/uploads/2020/06/Lineamiento_Semaforo_COVID_05Jun2020_1600.
2038
+ pdf.
2039
+ [11]
2040
+ IMSS nurseries open on July 20, after supervision of health protocols. url: http:
2041
+ //www.imss.gob.mx/prensa/archivo/202007/463.
2042
+ [12]
2043
+ COVID-19 MÉXICO Comunicado Técnico Diario - 18 Octubre 2022. url: http :
2044
+ / / saludsinaloa . gob . mx / wp - content / uploads / 2020 / reportescovid /
2045
+ Covid19ReporteDiario18Noviembre2020.pdf.
2046
+ [13]
2047
+ State Government publishes new agreement on Red Light measures. url: https://
2048
+ chihuahua.gob.mx/contenidos/publica-gobierno-del-estado-nuevo-acuerdo-
2049
+ de-medidas-del-semaforo-rojo.
2050
+ [14]
2051
+ Perry Zurn, Danielle S. Bassett, and Nicole C. Rust. “The citation diversity statement:
2052
+ A practice of transparency, a way of life”. In: Trends in Cognitive Sciences 24.9 (2020),
2053
+ pp. 669–672. doi: 10.1016/j.tics.2020.06.009.
2054
+ [15]
2055
+ Jordan D. Dworkin, Kristin A. Linn, Erin G. Teich, Perry Zurn, Russell T. Shinohara,
2056
+ and Danielle S. Bassett. “The extent and drivers of gender imbalance in neuroscience
2057
+ reference lists”. In: Nature Neuroscience 23.8 (2020), pp. 918–926. doi: 10.1038/
2058
+ s41593-020-0658-y.
2059
+ [16]
2060
+ Paula Chakravartty, Rachel Kuo, Victoria Grubbs, and Charlton McIlwain. “#Com-
2061
+ municationSoWhite”. In: Journal of Communication 68.2 (2018), pp. 254–266. doi:
2062
+ 10.1093/joc/jqy003.
2063
+ [17]
2064
+ Daniel Maliniak, Ryan Powers, and Barbara F. Walter. The gender citation gap in in-
2065
+ ternational relations. Vol. 67. 4. 2013, pp. 889–922. doi: 10.1017/S0020818313000209.
2066
+ [18]
2067
+ Michelle L. Dion, Jane Lawrence Sumner, and Sara Mc Laughlin Mitchell. “Gendered
2068
+ citation patterns across political science and social science methodology fields”. In:
2069
+ Political Analysis 26.3 (2018), pp. 312–327. doi: 10.1017/pan.2018.12.
2070
+ [19]
2071
+ Neven Caplar, Sandro Tacchella, and Simon Birrer. “Quantitative evaluation of gender
2072
+ bias in astronomical publications from citation counts”. In: Nature Astronomy 1 (2017).
2073
+ doi: 10.1038/s41550-017-0141.
2074
+ [20]
2075
+ Pierre Azoulay and Freda Lynn. “Self-citation, cumulative advantage, and gender in-
2076
+ equality in science”. In: Sociological Science 7 (2020). doi: 10.15195/v7.a7.
2077
+ [21]
2078
+ Gita Ghiasi, Philippe Mongeon, Cassidy R. Sugimoto, and Vincent Larivière. “Gender
2079
+ homophily in citations”. In: 23rd International Conference on Science and Technology
2080
+ Indicators (2018), pp. 1519–1525. url: https://hdl.handle.net/1887/65291.
2081
+ 33
2082
+
9tFQT4oBgHgl3EQfJjU4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AtAyT4oBgHgl3EQfRvdA/content/tmp_files/2301.00071v1.pdf.txt ADDED
@@ -0,0 +1,1455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00071v1 [math.CO] 30 Dec 2022
2
+ SPHERICAL FUNCTIONS AND STOLARSKY’S INVARIANCE
3
+ PRINCIPLE
4
+ M.M. SKRIGANOV
5
+ Abstract. Stolarsky’s invariance principle, known for point distributions on
6
+ the Euclidean spheres Sd [25], has been extended to the real RP n, complex
7
+ CP n, and quaternionic HP n projective spaces and the octonionic OP 2 pro-
8
+ jective plane in our previous paper [23]. Geometric features of such spaces as
9
+ well as their models in terms of Jordan algebras have been used very essen-
10
+ tially in the proof. In the present paper, we give a new pure analytic proof of
11
+ Stolarsky’s invariance principle relying on the theory of spherical functions on
12
+ compact symmetric Riemannian manifolds of rank one.
13
+ 1. Introduction and main results
14
+ 1.1 Introduction. In 1973 Kenneth B. Stolarsky [25] established the following
15
+ remarkable formula for point distributions on the Euclidean spheres. Let Sd =
16
+ {x ∈ Rd+1 : ∥x∥ = 1} be the standard d-dimensional unit sphere in Rd+1 with
17
+ the geodesic (great circle) metric θ and the Lebesgue measure µ normalized by
18
+ µ(Sd) = 1. We write C(y, t) = {x ∈ Sd : (x, y) > t} for the spherical cap of height
19
+ t ∈ [−1, 1] centered at y ∈ Sd. Here we write (·, ·) and ∥ · ∥ for the inner product
20
+ and the Euclidean norm in Rd+1.
21
+ For an N-point subset DN ⊂ Sd, the spherical cap quadratic discrepancy is
22
+ defined by
23
+ λcap[DN] =
24
+ � 1
25
+ −1
26
+
27
+ Sd ( #{|C(y, t) ∩ DN} − Nµ(C(y, t)) )2 dµ(y) dt.
28
+ (1.1)
29
+ We introduce the sum of pairwise Euclidean distances between points of DN
30
+ τ[DN] = 1
31
+ 2
32
+
33
+ x1,x2∈DN ∥x1 − x2∥ =
34
+
35
+ x1,x2∈DN sin 1
36
+ 2θ(x1, x2),
37
+ (1.2)
38
+ and write ⟨τ⟩ for the average value of the Euclidean distance on Sd,
39
+ ⟨τ⟩ = 1
40
+ 2
41
+ ��
42
+ Sd×Sd ∥y1 − y2∥ dµ(y1) dµ(y2).
43
+ (1.3)
44
+ The study of the quantities (1.1) and (1.2) falls within the subjects of discrepancy
45
+ theory and geometry of distances, see [1,6] and references therein. It turns out that
46
+ the quantities (1.1) and (1.2) are not independent and are intimately related by the
47
+ following remarkable identity
48
+ γ(Sd)λcap[DN] + τ[DN] = ⟨τ⟩N 2,
49
+ (1.4)
50
+ 2010 Mathematics Subject Classification. 11K38, 22F30, 52C99.
51
+ Key words and phrases. Geometry of distances, discrepancies, spherical functions, projective
52
+ spaces, Jacobi polynomials.
53
+
54
+ 2
55
+ M.M. SKRIGANOV
56
+ for an arbitrary N-point subset DN ⊂ Sd. Here γ(Sd) is a positive constant inde-
57
+ pendent of DN,
58
+ γ(Sd) = d √π Γ(d/2)
59
+ 2 Γ((d + 1)/2) .
60
+ (1.5)
61
+ The identity (1.4) is known in the literature as Stolarsky’s invariance principle.
62
+ Its original proof given in [25] has been simplified in [7,10]. simplified in [7,10].
63
+ In our previous paper [23] Stolarsky’s invariance principle (1.4) has been ex-
64
+ tended to the real RP n, the complex CP n, the quaternionic HP n projective spaces,
65
+ and the octonionic OP 2 projective plane. Geometric features of such spaces as well
66
+ as their models in terms of Jordan algebras have been used very essentially in the
67
+ proof. The aim of the present paper is to give an alternative pure analytic proof
68
+ relying on the theory of spherical functions.
69
+ 1.2 Discrepancies and metrics. L1-invariance principles. Let us consider Sto-
70
+ larsky’s invariance principle in a broader context. Let M be a compact metric
71
+ measure space with a fixed metric θ and a finite Borel measure µ, normalized, for
72
+ convenience, by
73
+ diam(M, θ) = π,
74
+ µ(M) = 1,
75
+ (1.6)
76
+ where diam(E, ρ) = sup{ρ(x1, x2) : x1, x2 ∈ E} denotes the diameter of a subset
77
+ E ⊆ M with respect to a metric ρ.
78
+ We write B(y, r) = {x ∈ M : θ(x, y) < r} for the ball of radius r ∈ I centered at
79
+ y ∈ M and of volume v(y, r) = µ(B(y, r)). Here I = {r = θ(x1, x2) : x1, x2 ∈ M}
80
+ denotes the set of all possible radii. If the space M is connected, we have I = [ 0, π ].
81
+ We consider distance-invariant metric spaces. Recall that a metric space M is
82
+ called distance-invariant, if the volume of any ball v(r) = v(y, r) is independent of
83
+ y ∈ M. The typical examples of distance-invariant spaces are homogeneous spaces
84
+ M = G/H with G-invariant metrics θ and measures µ.
85
+ For an N-point subset DN ⊂ M, the ball quadratic discrepancy is defined by
86
+ λ[ξ, DN] =
87
+
88
+ I
89
+
90
+ M
91
+ ( #{B(y, r) ∩ DN} − Nv(r)) )2 dµ(y) dξ(r),
92
+ (1.7)
93
+ where ξ is a finite measure on the set of radii I.
94
+ Notice that for Sd spherical caps and balls are related by C(y, t) = B(y, r),
95
+ t = cos r, and the discrepancies (1.1) and (1.7) are related by λcap[DN] = λ[ξ♮, DN],
96
+ where dξ♮(r) = sin r dr, r ∈ I = [0, π].
97
+ The ball quadratic discrepancy (1.7) can be written in the form
98
+ λ[ξ, DN] =
99
+
100
+ x1,x2∈DN λ(ξ, x1, x2)
101
+ (1.8)
102
+ with the kernel
103
+ λ(ξ, x1, x2) =
104
+
105
+ I
106
+
107
+ M
108
+ Λ(B(y, r), x1) Λ(B(y, r), x2) dµ(y) dξ(r) ,
109
+ (1.9)
110
+ where
111
+ Λ(B(y, r), x) = χ(B(y, r), x) − v(r),
112
+ (1.10)
113
+ and χ(E, ·) denotes the characteristic function of a subset E ⊆ M.
114
+ For an arbitrary metric ρ on M we introduce the sum of pairwise distances
115
+ ρ[DN] =
116
+
117
+ x1,x2∈DN ρ(x1, x2).
118
+ (1.11)
119
+
120
+ SPHERICAL FUNCTIONS AND STOLARSKY’S INVARIANCE PRINCIPLE
121
+ 3
122
+ and the average value
123
+ ⟨ρ⟩ =
124
+
125
+ M×M
126
+ ρ(y1, y2) dµ(y1) dµ(y2).
127
+ (1.12)
128
+ We introduce the following symmetric difference metrics on the space M
129
+ θ∆(ξ, y1, y2) = 1
130
+ 2
131
+
132
+ I
133
+ µ(B(y1, r)∆B(y2, r)) dξ(r)
134
+ = 1
135
+ 2
136
+
137
+ I
138
+
139
+ M
140
+ χ(B(y1, r)∆B(y2, r), y) dµ(y) dξ(r),
141
+ (1.13)
142
+ where
143
+ B(y1, r)∆B(y2, r) = B(y1, r) ∪ B(y2, r) \ B(y1, r) ∩ B(y2, r)
144
+ is the symmetric difference of the balls B(y1, r) and B(y2, r).
145
+ In line with the definitions (1.11) and (1.12), we put
146
+ θ∆[ξ, DN] =
147
+
148
+ x1,x2∈DN θ∆(ξ, x1, x2).
149
+ and
150
+ ⟨θ∆(ξ)⟩ =
151
+
152
+ M×M
153
+ θ∆(ξ, y1, y2) dµ(y1) dµ(y2) .
154
+ A direct calculation leads to the following result.
155
+ Proposition 1.1. Let a compact metric measure space M be distance-invariant,
156
+ then we have
157
+ λ(ξ, y1, y2) + θ∆(ξ, y1, y2) = ⟨θ∆(ξ)⟩.
158
+ (1.14)
159
+ In particular, we have the following invariance principle
160
+ λ[ ξ, DN ] + θ∆[ ξ, DN ] = ⟨θ∆(ξ)⟩ N 2
161
+ (1.15)
162
+ for an arbitrary N-point subset DN ⊂ M.
163
+ Proof. In view of the symmetry of the metric θ, we have
164
+ χ(B(x, r), y) = χ(B(y, r), x) = χ0(r − θ(y, x)) ,
165
+ (1.16)
166
+ where χ0(·) is the characteristic function of the half-axis (0, ∞). Therefore
167
+ χ(B(y1, r)∆B(y2, r), y) = χ(B(y1, r), y) + χ(B(y2, r), y)
168
+ −2χ(B(y1, r) ∩ B(y2, r), y) ,
169
+ and
170
+
171
+ M χ(B(x, r), y)dµ(x) =
172
+
173
+ M χ(B(x, r), y)dµ(y) = v(r).
174
+ Using these relations, we obtain
175
+ λ(ξ, x1, x2) =
176
+
177
+ I
178
+
179
+ µ(B(x1, r) ∩ B(x2, r)) − v(r)2�
180
+ dξ(r) ,
181
+ θ∆(ξ, y1, y2) =
182
+
183
+ I
184
+
185
+ v(r) − µ(B(y1, r) ∩ B(y2, r))
186
+
187
+ dξ(r) ,
188
+ ⟨θ∆(ξ)⟩ =
189
+
190
+ I
191
+
192
+ v(r) − v(r)2�
193
+ dξ(r) .
194
+
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+ (1.17)
210
+ These relations imply (1.14).
211
+
212
+
213
+ 4
214
+ M.M. SKRIGANOV
215
+ In the case of spheres Sd, relations of the type (1.14) and (1.15) were given
216
+ in [25]. Their extensions to more general metric measure spaces were given in [21,
217
+ Theorem 2.1], [22, Eq. (1.30)] and [23, Proposition 1.1].
218
+ Notice that
219
+ χ(B(y1, r)∆B(y2, r), y) = |χ(B(y1, r), y) − χ(B(y2, r), y)| ,
220
+ (1.18)
221
+ and hence
222
+ θ∆(ξ, y1, y2) = 1
223
+ 2
224
+
225
+ I
226
+
227
+ M
228
+ |χ(B(y1, r), y) − χ(B(y2, r), y)| dµ(y) dξ(r)
229
+ (1.19)
230
+ is an L1-metric.
231
+ Recall that a metric space M with a metric ρ is called isometrically Lq-embeddable
232
+ (q = 1 or 2), if there exists a mapping ϕ : M ∋ x → ϕ(x) ∈ Lq, such that
233
+ ρ(x1, x2) = ∥ϕ(x1)−ϕ(x2)∥Lq for all x1, x2 ∈ M. Notice that the L2-embeddability
234
+ is stronger and implies the L1-embeddability, see [13, Sec. 6.3].
235
+ It follows from (1.19) that the space M with the symmetric difference metrics
236
+ θ∆(ξ) is isometrically L1-embeddable by the formula
237
+ M ∋ x → χ(B(x, r), y) ∈ L1(M × I) ,
238
+ (1.20)
239
+ The identity (1.15) can be called the L1-invariance principle, while Stolarsky’s
240
+ invariance principle (1.4) should be called the L2-invariance principle, because it
241
+ involves the Euclidean metric. The identities of such a type including correspond-
242
+ ingly L1 and L2 metrics could be also called weak and strong invariance principles.
243
+ 1.3 L2-invariance principles. Recall the definition and necessary facts on two-
244
+ point homogeneous spaces. Let G = G(M) be the group of isometries of a metric
245
+ space M with a metric θ, i.e. θ(gx1, gx2) = θ(x1, x2) for all x1, x2 ∈ M and g ∈ G.
246
+ The space M is called two-point homogeneous, if for any two pairs of points x1,
247
+ x2 and y1, y2 with θ(x1, x2) = θ(y1, y2) there exists an isometry g ∈ G, such that
248
+ y1 = gx1, y2 = gx2. In this case, the group G is obviously transitive on M and
249
+ M = G/H is a homogeneous space, where the subgroup K ⊂ G is the stabilizer of
250
+ a point x0 ∈ M. Furthermore, the homogeneous space M is symmetric, i.e. for
251
+ any two points y1, y2 ∈ M there exists an isometry g ∈ G, such that gy1 = y2,
252
+ gy2 = y1.
253
+ There is a very large number of two-point homogeneous spaces. For example, all
254
+ Hamming spaces, known in the coding theory, are two-point homogeneous. We will
255
+ consider compact connected two-point homogeneous spaces. The assumption that
256
+ the space is connected turns out to be a strong restriction. All compact connected
257
+ two-point homogeneous spaces Q = G/H are known, and by Wang’s classifications
258
+ they are the following, see [16,17,20,29,30]:
259
+ (i) The d-dimensional Euclidean spheres Sd = SO(d + 1)/SO(d) × {1}, d ⩾ 2,
260
+ and S1 = O(2)/O(1) × {1}.
261
+ (ii) The real projective spaces RP n = O(n + 1)/O(n) × O(1).
262
+ (iii) The complex projective spaces CP n = U(n + 1)/U(n) × U(1).
263
+ (iv) The quaternionic projective spaces HP n = Sp(n + 1)/Sp(n) × Sp(1),
264
+ (v) The octonionic projective plane OP 2 = F4/ Spin(9).
265
+ Here we use the standard notation from the theory of Lie groups; in particular,
266
+ F4 is one of the exceptional Lie groups in Cartan’s classification.
267
+ All these spaces are Riemannian symmetric manifolds of rank one.
268
+ Geomet-
269
+ rically, this means that all geodesic sub-manifolds in Q are one-dimensional and
270
+
271
+ SPHERICAL FUNCTIONS AND STOLARSKY’S INVARIANCE PRINCIPLE
272
+ 5
273
+ coincide with geodesics. From the spectral stand point, this also means that all
274
+ operators on Q commuting with the action of the group G are functions of the
275
+ Laplace–Beltrami operator on Q, see [16,17,29,30] for more details.
276
+ The spaces FP n as Riemannian manifolds have dimensions d,
277
+ d = dimR FP n = nd0,
278
+ d0 = dimR F,
279
+ (1.21)
280
+ where d0 = 1, 2, 4, 8 for F = R, C, H, O, correspondingly.
281
+ For the spheres Sd we put d0 = d by definition. Projective spaces of dimension
282
+ d0 (n = 1) are homeomorphic to the spheres Sd0: RP 1 ≈ S1, CP 1 ≈ S2, HP 1 ≈
283
+ S4, OP 1 ≈ S8. We can conveniently agree that d > d0 (n ⩾ 2) for projective spaces,
284
+ while the equality d = d0 holds only for spheres. Under this convention, the dimen-
285
+ sions d = nd0 and d0 define uniquely (up to homeomorphism) the corresponding
286
+ homogeneous space which we denote by Q = Q(d, d0).
287
+ We consider Q(d, d0) as a metric measure space with the metric θ and measure
288
+ µ proportional to the invariant Riemannian distance and measure on Q(d, d0). The
289
+ coefficients of proportionality are defined to satisfy (1.6). In what follows we always
290
+ assume that n = 2 if F = O, since projective spaces OP n do not exist for n > 2.
291
+ Any space Q(d, d0) is distance-invariant and the volume of balls in the space is
292
+ given by
293
+ v(r) = κ
294
+ � r
295
+ 0
296
+ (sin 1
297
+ 2u)d−1(cos 1
298
+ 2u)d0−1 du
299
+ r ∈ [ 0, π ]
300
+ = κ 21−d/2−d0/2
301
+ � 1
302
+ cos r
303
+ (1 − z)
304
+ d
305
+ 2 −1 (1 + z)
306
+ d0
307
+ 2 −1 dz,
308
+ (1.22)
309
+ where κ = κ(d, d0) = B(d/2, d0/2)−1; B(a, b) = Γ(a)Γ(b)/Γ(a + b) and Γ(a) are
310
+ the beta and gamma functions. Equivalent forms of (1.22) can be found in the
311
+ literature, see, for example, [15, pp. 177–178], [17, pp. 165–168], [18, pp. 508–510].
312
+ For even d0, the integrals (1.22) can be calculated explicitly that gives convenient
313
+ expressions for v(r) in the case of CP n, HP n and OP 2, see, for example, [20].
314
+ The chordal metric on the spaces Q(d, d0) is defined by
315
+ τ(x1, x2) = sin 1
316
+ 2θ(x1, x2) =
317
+
318
+ 1 − cos(x1, x2)
319
+ 2
320
+ ,
321
+ x1, x2 ∈ Q(d, d0).
322
+ (1.23)
323
+ The formula (1.23) defines a metric because the function ϕ(θ) = sin θ/2, 0 ⩽ θ ⩽ π,
324
+ is concave, increasing, and ϕ(0) = 0, that implies the triangle inequality. For the
325
+ sphere Sd we have
326
+ τ(x1, x2) = sin 1
327
+ 2θ(x1, x2) = 1
328
+ 2 ∥x1 − x2∥,
329
+ x1, x2 ∈ Sd.
330
+ (1.24)
331
+ Lemma 1.1. The space Q(d, d0), d = nd0, can be embedded into the unit sphere
332
+ Π : Q(d, d0) ∋ x → Π(x) ∈ Sm−1 ⊂ Rm,
333
+ m = 1
334
+ 2(n + 1)(d + 2) − 1,
335
+ (1.25)
336
+ such that
337
+ τ(x1, x2) =
338
+
339
+ d
340
+ 2(d + d0)
341
+ �1/2
342
+ ∥Π(x1) − Π(x2)∥,
343
+ x1, x2 ∈ Q(d, d0),
344
+ (1.26)
345
+ where ∥ · ∥ is the Euclidean norm in Rm.
346
+
347
+ 6
348
+ M.M. SKRIGANOV
349
+ Hence, the metric τ(x1, x2) is proportional to the Euclidean length of a segment
350
+ joining the corresponding points Π(x1) and Π(x2) on the unit sphere. The chordal
351
+ metric τ on the complex projective space CP n is known as the Fubini–Study metric.
352
+ Lemma 1.1 will be proved in Section 2, and the embedding (1.25) will be de-
353
+ scribed explicitly in terms of spherical functions on the space Q(d, d0). Note that
354
+ the embedding (1.25) can be described in different ways, see, for example, [23,27].
355
+ The following general result has been established in [23, Theorems 1.1 and 1.2].
356
+ Theorem 1.1. For each space Q = Q(d, d0), we have the equality
357
+ τ(x1, x2) = γ(Q) θ∆(ξ♮, x1, x2).
358
+ (1.27)
359
+ where dξ♮(r) = sin r dr, r ∈ [0, π] and
360
+ γ(Q) =
361
+ √π
362
+ 4 (d + d0)
363
+ Γ(d0/2)
364
+ Γ((d0 + 1)/2) = d + d0
365
+ 2d0
366
+ γ(Sd0) ,
367
+ (1.28)
368
+ where γ(Sd0) is defined by (1.5).
369
+ Comparing Theorem 1.1 with Proposition 1.1, we arrive to the following.
370
+ Corollary 1.1. We have the following L2-invariance principle
371
+ γ(Q) λ[ξ♮, DN] + τ[DN] = ⟨τ⟩N 2
372
+ (1.29)
373
+ for an arbitrary N-point subset DN ⊂ Q.
374
+ The constant γ(Q) has the following geometric interpretation
375
+ γ(Q) =
376
+ ⟨τ⟩
377
+ ⟨θ∆(ξ♮)⟩ =
378
+ diam(Q, τ)
379
+ diam(Q, θ∆(ξ♮)) .
380
+ (1.30)
381
+ Indeed, it suffices to calculate the average values (1.12) of both metrics in (1.27) to
382
+ obtain the first equality in (1.30). Similarly, writing (1.27) for any pair of antipodal
383
+ points x1, x2, θ(x1, x2) = π, we obtain the second equality in (1.30). The average
384
+ value ⟨τ⟩ of the chordal metric τ can be easily calculated with the help of the
385
+ formulas (1.12) and (1.22):
386
+ ⟨τ⟩ = B(d/2, d0/2)−1 B((d + 1)/2, d0/2) .
387
+ (1.31)
388
+ In the case of spheres Sd, the identity (1.29) coincides with (1.4). The identity
389
+ (1.29) can be thought of as an extension of Stolarsky’s invariance principle to all
390
+ projective spaces.
391
+ Applications of L1- and L2-invariance principles and similar identities to the
392
+ discrepancy theory, geometry of distances, and information theory have been given
393
+ in many papers, see, for example, [1,3–10,21–23,25].
394
+ It is worth noting that the equality (1.27) is of interest by itself.
395
+ Since the
396
+ integrand in (1.19) takes the values 0 and 1 only, we can write
397
+ θ∆(ξ, y1, y2) =
398
+
399
+ θ∆
400
+ p (ξ, y1, y2)
401
+ �p
402
+ , p > 0,
403
+ (1.32)
404
+ where
405
+ θ∆
406
+ p (ξ, y1, y2) =
407
+ �1
408
+ 2
409
+ � π
410
+ 0
411
+
412
+ Q
413
+ |χ(B(y1, r), y) − χ(B(y2, r), y)|p) dµ(y) dξ(r)
414
+ �1/p
415
+ , (1.33)
416
+ is an Lp-metric for p ⩾ 1.
417
+
418
+ SPHERICAL FUNCTIONS AND STOLARSKY’S INVARIANCE PRINCIPLE
419
+ 7
420
+ Comparing (1.27) and (1.32), we see that the chordal metric τ is proportional
421
+ to the p-th power of the metric θ∆
422
+ p (ξ♮) for all p ⩾ 1. This is a nontrivial fact. For
423
+ example, we have for p = 2
424
+ τ(x1, x2) = γ(Q)
425
+ 2
426
+ � π
427
+ 0
428
+
429
+ Q
430
+ |χ(B(x1, r), y) − χ(B(x2, r), y)|2 dµ(y) dξ♮(r),
431
+ (1.34)
432
+ and the equality (1.34) implies the existence of Gaussian random fields on the
433
+ spaces Q(d, d0), see [12,15]. However, a detailed considerations of these questions
434
+ is beyond the scope of the present paper.
435
+ In the context of our discussion, the following open problems are of interest:
436
+ - Do there exist measures ξ on the set of radii for spaces Q(d, d0) (for spheres Sd,
437
+ say) other than the measure ξ♮ such that the corresponding symmetric difference
438
+ metrics θ∆(ξ) are the L2-metrics?
439
+ - Do there exist compact measure metric spaces other than spheres Sd and pro-
440
+ jective spaces FP n for which the L2-invariance principle is also true?
441
+ 1.4 Proof of Theorem 1.2. In the present paper we use the theory of spherical
442
+ functions to prove the following result.
443
+ Theorem 1.2. The equality (1.27) is equivalent to the following series of formulas
444
+ for Jacobi polynomials
445
+ � 1
446
+ −1
447
+
448
+ P (d/2,d0/2)
449
+ l−1
450
+ (t)
451
+ �2
452
+ (1 − t)d (1 + t)d0 dt
453
+ = 2d+d0+1 (1/2)l−1
454
+ ((l − 1)!)2
455
+ B(d + 1, d0 + 1) Tl−1(d/2, d0/2)
456
+ (1.35)
457
+ for all l ⩾ 1, where
458
+ Tl−1(d/2, d0/2) ==
459
+ Γ(d/2 + l) Γ(d0/2 + l) Γ(d/2 + d0/2 + 3/2))
460
+ Γ(d/2 + 1) Γ(d0/2 + 1) Γ(d/2 + d0/2 + 1/2 + l) .
461
+ (1.36)
462
+ Here P (α,β)
463
+ n
464
+ (t), t ∈ [−1, 1], α > −1, β > −1, are the standard Jacobi polynomials
465
+ of degree n normalized by
466
+ P (α,β)
467
+ n
468
+ (1) =
469
+ �α + n
470
+ n
471
+
472
+ =
473
+ Γ(α + n + 1)
474
+ Γ(n + 1)Γ(α + 1) ,
475
+ (1.37)
476
+ and P (α,β)
477
+ n
478
+ can be given by Rodrigues’ formula
479
+ P (α,β)
480
+ n
481
+ (t) = (−1)n
482
+ 2nn! (1 − t)−α(1 + t)−β dn
483
+ dtn
484
+
485
+ (1 − t)n+α(1 + t)n+β�
486
+ .
487
+ (1.38)
488
+ Notice that |P (α,β)
489
+ n
490
+ (t)| ⩽ P (α,β)
491
+ n
492
+ (1) for t ∈ [−1, 1]. Recall also that P (α,β)
493
+ n
494
+ are
495
+ orthogonal polynomials with the following orthogonality relations
496
+ π
497
+
498
+ 0
499
+ P (α,β)
500
+ l
501
+ (cos u)P (α,β)
502
+ l′
503
+ (cos u)(sin 1
504
+ 2u)2α+1(cos 1
505
+ 2u)2β+1 du
506
+ = 2−α−β−1
507
+ 1
508
+
509
+ −1
510
+ P (α,β)
511
+ l
512
+ (z)P (α,β)
513
+ l′
514
+ (z)(1 − z)α(1 + z)β dz = M −1
515
+ l
516
+ δll′,
517
+ (1.39)
518
+
519
+ 8
520
+ M.M. SKRIGANOV
521
+ where M0 = B(α + 1, β + 1)−1 and
522
+ Ml = Ml(α, β) = (2l + α + β + 1)Γ(l + 1)Γ(l + α + β + 1)
523
+ Γ(l + α + 1)Γ(l + β + 1),
524
+ l ⩾ 1.
525
+ (1.40)
526
+ All necessary facts about Jacobi polynomials can be found in [2, 26]. We also
527
+ use the notation
528
+ (a)0 = 1,
529
+ (a)k = a(a + 1) . . . (a + k − 1) = Γ(a + k)
530
+ Γ(a)
531
+ (1.41)
532
+ for the rising factorial powers (Pochhammer’s symbol).
533
+ Theorem 1.2 reduces the proof of Theorem 1.1 to the proof of the formulas (1.35).
534
+ Perhaps such formulas are known but I could not find them in the literature. For
535
+ spheres Jacobi polynomials P (d/2,d/2)
536
+ n
537
+ with equal parameters coincide (up to con-
538
+ stant factors) with Gegenbauer polynomials, and in this case very general formulas
539
+ for weighted L2-norms of Gegenbauer polynomials are given in the paper [11].
540
+ In the present paper we will prove the following statement.
541
+ Lemma 1.2. For all n ⩾ 0, Re α > −1/2 and Re β > −1/2, we have
542
+ � 1
543
+ −1
544
+
545
+ P (α,β)
546
+ n
547
+ (t)
548
+ �2
549
+ (1 − t)2α(1 + t)2β dt
550
+ = 22α+2β+1 (1/2)n
551
+ (n!)2
552
+ B(2α + 1, 2β + 1) Tn(α, β),
553
+ (1.42)
554
+ where
555
+ Tn(α, β) = (α + 1)n (β + 1)n
556
+ (α + β + 3/2)n
557
+ = Γ(α + n + 1) Γ(β + n + 1) Γ(α + β + 3/2))
558
+ Γ(α + 1) Γ(β + 1) Γ(α + β + 3/2 + n)
559
+ (1.43)
560
+ is a rational function of α and β.
561
+ The integral (1.42) converges for Re α > −1/2 and Re β > −1/2, and represents
562
+ in this region a holomorphic function of two complex variables. The equality (1.42)
563
+ defines an analytic continuation of the integral (1.42) to α ∈ C and β ∈ C.
564
+ For α = d/2, β = d0/2 and n = l − 1 the equality (1.42) coincides with (1.35).
565
+ This proves Theorem 1.1.
566
+ Lemma 1.2 will be proved in Section 3. The crucial point in the proof is Watson’s
567
+ theorem on the value of hypergeometric series 3F2(1).
568
+ 2. Spherical functions. Proofs of Lemma 1.1 and Theorem 1.2
569
+ 2.1. Invariant kernels and spherical functions. The general theory of spherical
570
+ functions on homogeneous spaces can be found in [16,17,28,30]. The homogeneous
571
+ spaces Q(d, d0) of interest to us belong to the class of so-called commutative spaces
572
+ or symmetric Gelfand pairs. In this case the theory becomes significantly simpler.
573
+ For Euclidean spheres Sd this theory is well known, see, for example, [14, 19].
574
+ However, the theory of spherical functions on general spaces Q(d, d0) is probably
575
+ not commonly known. In this section we describe the basic facts about spherical
576
+ functions on spaces Q(d, d0) in a form convenient for us.
577
+
578
+ SPHERICAL FUNCTIONS AND STOLARSKY’S INVARIANCE PRINCIPLE
579
+ 9
580
+ Let us consider the quasi-regular representation U(g)f(x) = f(g−1x), f ∈ L2(Q),
581
+ x ∈ Q, g ∈ G, and its decomposition into the orthogonal sum
582
+ U(g) = �
583
+
584
+ l⩾0 Ul(g),
585
+ L2(Q) = �
586
+
587
+ l⩾0 Vl ,
588
+ (2.1)
589
+ of irreducible representations Ul(g) in mutually orthogonal subspaces Vl of dimen-
590
+ sions ml < ∞.
591
+ Let A denote the algebra of Hilbert–Schmidt operators in L2(Q) commuting
592
+ with the representation U. Each K ∈ A is an integral operator
593
+ Kf(x) =
594
+
595
+ Q
596
+ K(x, y) f(y) dµ(y),
597
+ with the invariant kernel:
598
+ K(gx1, gx2) = K(x1, x2), x1, x2 ∈ Q, g ∈ G,
599
+ (2.2)
600
+ which satisfies the condition
601
+ ||K||2
602
+ HS = Tr KK∗
603
+ =
604
+
605
+ Q×Q
606
+ |K(x, y)|2 dµ(x)dµ(y) =
607
+
608
+ Q
609
+ |K(x, y)|2 dµ(x) < ∞,
610
+ (2.3)
611
+ where Tr denotes the trace of an operator, and the second integral is independent
612
+ of y in view of (2.2).
613
+ Since the space Q is two-point homogeneous, the condition (2.2) implies that the
614
+ kernel K(x1, x2) depends only on the distance θ(x1, x2), and can be written as
615
+ K(x1, x2) = K(θ(x1, x2)) = k(cos θ(x1, x2)), x1, x2 ∈ Q,
616
+ (2.4)
617
+ with function K(z), z ∈ [0, π] and k(z), z ∈ [−1, 1]. The cosine is presented here for
618
+ convenience in further calculations. The formula (2.4) can be also written as
619
+ K(x1, x2) = K(θ(x, x0)) = k(cos θ(x, x0)),
620
+ (2.5)
621
+ where x1 = g1x0, x2 = g2x0, x = g−1
622
+ 2 g1x0, g1, g2 ∈ G and x0 ∈ Q is the fixed point
623
+ of the subgroup H. Moreover, K(hx, x0) = K(x, x0), h ∈ H. Therefore, invariant
624
+ kernels can be thought of as functions on the double co-sets H \ G/H.
625
+ In terms of the function K(·) and k(·), the Hilbert-Schmidt norm (2.3) takes the
626
+ form
627
+ ||K||2
628
+ HS =
629
+ � π
630
+ 0
631
+ |K(u)|2 dv(u)
632
+
633
+ � π
634
+ 0
635
+ |k(cos u)|2(sin 1
636
+ 2u)d−1(cos 1
637
+ 2u)d0−1 du
638
+ =κ 21−d/2−d0/2
639
+ � 1
640
+ −1
641
+ |k(z)|2 (1 − z)
642
+ d
643
+ 2 −1 (1 + z)
644
+ d0
645
+ 2 −1 dz,
646
+ (2.6)
647
+ where v(·) is the volume function (1.22).
648
+ We conclude from (2.2) and (2.4) that for K ∈ A its kernel K(x1, x2) =
649
+ K(x2, x1), the value K(x, x) = k(1) is independent of x ∈ Q, and if an opera-
650
+ tor K is self-adjoint, then its kernel is real-valued.
651
+
652
+ 10
653
+ M.M. SKRIGANOV
654
+ It follows from (2.2) and (2.4) that the algebra A is commutative. Indeed,
655
+ (K1K2)(x1, x2) =
656
+
657
+ Q
658
+ K1(x1, x)K2(x, x2)dµ(x)
659
+ =
660
+
661
+ Q
662
+ K2(x2, x)K1(x, x1)dµ(x) = (K2K1)(x2, x1) = (K2K1)(x1, x2).
663
+ Therefore, the decomposition (2.1) is multiplicity-free, that is any two representa-
664
+ tions Ul and Ul′, l ̸= l′, are non-equivalent, because otherwise the algebras A could
665
+ not be commutative.
666
+ Let Pl denote orthogonal projectors in L2(Q) onto the subspaces Vl in (2.1),
667
+ P ∗
668
+ l = Pl ,
669
+ Pl Pl′ = δl,l′ Pl ,
670
+
671
+ l⩾0 Pl = I ,
672
+ (2.7)
673
+ where δl,l′ is Kronecker’s symbol and I is the identity operator in L2(Q). By Schur’s
674
+ lemma, we have for K ∈ A
675
+ Pl K Pl′ = δl,l′ cl(K) Pl, ,
676
+ (2.8)
677
+ where cl(K) is a constant. Calculating the trace of both sides of the equality (2.8),
678
+ we find cl(K) = m−1
679
+ l
680
+ Tr KPl. Therefore, we have the expansions
681
+ K =
682
+
683
+ l,l′⩾0 Pl K Pl′ =
684
+
685
+ l⩾0 cl(K) Pl,
686
+ (2.9)
687
+ with Parseval’s identity
688
+ ||K||2
689
+ HS =
690
+
691
+ l⩾0 ml |cl(K)|2 ,
692
+ (2.10)
693
+ and for K1, K2 ∈ A, we have
694
+ K1 K2 =
695
+
696
+ l⩾0 cl(K1) cl(K2) Pl,
697
+ (2.11)
698
+ The equality (2.10) implies that the series (2.11) converges in the Hilbert-Schmidt
699
+ norm (2.3), while the series (2.11) converges in the norm (2.3) for the subclass of
700
+ nuclear operators.
701
+ Since Vl are invariant subspaces, Pl ∈ A, their kernels Pl(·, ·) are symmetric and
702
+ real-valued, and can be written as follows
703
+ Pl(x1, x2) = pl(cos θ(x1, x2)) =
704
+ �ml
705
+ 1
706
+ ψl,j(x1) ψl,j(x2),
707
+ (2.12)
708
+ where {ψl,j(·)}ml
709
+ 1
710
+ is an orthonormal and real-valued basis in Vl. Hence, subspace
711
+ Vl and irreducible representations Ul in (2.1) can be thought of as defined over the
712
+ field of reals, this means that all representations Ul in (2.1) are of the real type.
713
+ Using (2.12), we obtain the formulas
714
+ ||Pl||2
715
+ HS = ml,
716
+ Tr Pl = pl(1) = ml > 0.
717
+ (2.13)
718
+ Furthermore,
719
+ Pl(x, x) = pl(1) =
720
+ �ml
721
+ 1
722
+ ψl,j(x)2.
723
+ (2.14)
724
+ is independent of x ∈ Q. Applying Cauchy-Schwartz inequality to (2.12) and taking
725
+ (2.14) into account, we obtain the bound
726
+ |Pl(x1, x2)| = |pl(cos θ(x1, x2))| ⩽ pl(1).
727
+ (2.15)
728
+ It follows from (2.14) and (2.13) that the mapping
729
+ Πl : Q ∋ x → (m−1/2
730
+ l
731
+ ψl,1(x) . . . m−1/2
732
+ l
733
+ ψl,ml(x)) ∈ Sml−1 ⊂ Rml
734
+ (2.16)
735
+
736
+ SPHERICAL FUNCTIONS AND STOLARSKY’S INVARIANCE PRINCIPLE
737
+ 11
738
+ defines an embedding of the space Q into the unite sphere in Rml.
739
+ By definition the (zonal) spherical function are kernels of the operators Φl =
740
+ m−1
741
+ l
742
+ Pl:
743
+ Φl(x1, x2) = φl(cos θ(x1, x2)) = pl(cos θ(x1, x2))
744
+ pl(1)
745
+ .
746
+ (2.17)
747
+ From (2.14) and (2.17) we conclude that |φl(cos θ(x1, x2))| ⩽ φl(1) = 1. Comparing
748
+ (2.13), (2.14) and (2.17), we find the formulas for dimensions
749
+ ml = ||Φl||−2
750
+ HS =
751
+
752
+ κ
753
+ � π
754
+ 0
755
+ |φl(cos u)|2(sin 1
756
+ 2u)d−1(cos 1
757
+ 2u)d0−1 du
758
+ �−1
759
+ =
760
+
761
+ κ 21−d/2−d0/2
762
+ � 1
763
+ −1
764
+ |φl(z)|2 (1 − z)
765
+ d
766
+ 2 −1 (1 + z)
767
+ d0
768
+ 2 −1 dz
769
+ �−1
770
+ .
771
+ (2.18)
772
+ In terms of spherical functions the formulas (2.9) and (2.11) take the form
773
+ k(cos θ(x1, x2)) =
774
+
775
+ l⩾0 cl(K) ml φl(cos θ(x1, x2)),
776
+ (2.19)
777
+ where
778
+ cl(K) = Tr KΦl =
779
+
780
+ Q
781
+ K(x1, x2) Φ(x1, x2) dµ(x1)dµ(x2)
782
+ = κ
783
+ � π
784
+ 0
785
+ k(cos u) φl(cos u) (sin 1
786
+ 2u)d−1(cos 1
787
+ 2u)d0−1 du
788
+ = κ 21−d/2−d0/2
789
+ � 1
790
+ −1
791
+ k(z) φl(z) (1 − z)
792
+ d
793
+ 2 −1 (1 + z)
794
+ d0
795
+ 2 −1 dz.
796
+ (2.20)
797
+ and
798
+
799
+ Q
800
+ k1(cos θ(x1, y)) k2( cos θ(y, x2)) dµ(y)
801
+ =
802
+
803
+ l⩾0 cl(K1) cl(K2) ml φl(cos θ(x1, x2)),
804
+ (2.21)
805
+ for K1, K2 ∈ A. It follows from (2.11) with K1 = K and K2 = K∗ that
806
+ ||K||2
807
+ HS =
808
+
809
+ l⩾0 ml |cl(K)|2 ,
810
+ (2.22)
811
+ The above facts are valid for all compact two-point homogeneous spaces. Since
812
+ spaces Q are also symmetric Riemannian manifolds of rank one, the invariant ker-
813
+ nels pl(cos θ(x, x0)) are eigenfunctions of the radial part of the Laplace–Beltrami
814
+ operator on Q (in the spherical coordinates centered at x0).
815
+ This leads to the
816
+ following explicit formula for spherical functions
817
+ Φ(x1, x2) = φl(cos θ(x1, x2)) = P
818
+ ( d
819
+ 2 −1, d0
820
+ 2 −1)
821
+ l
822
+ (cos θ(x1, x2))
823
+ P
824
+ ( d
825
+ 2 −1, d0
826
+ 2 −1)
827
+ l
828
+ (1)
829
+ ,
830
+ l ⩾ 0.
831
+ (2.23)
832
+ where P (α,β)
833
+ n
834
+ (t), t ∈ [−1, 1], are Jacobi polynomials (1.38). We refer to [15, p. 178],
835
+ [17, Chap. V, Theorem 4.5], [18, pp. 514–512, 543–544], [28, Chapters 2 and 17]: [30,
836
+ Theorem 11.4.21] for more details.
837
+ From (1.37) and (1.40) we obtain
838
+ P
839
+ ( d
840
+ 2 −1, d0
841
+ 2 −1)
842
+ n
843
+ (1) =
844
+ Γ(n + d/2)
845
+ Γ(n + 1)Γ(1 + d/2) ,
846
+ (2.24)
847
+
848
+ 12
849
+ M.M. SKRIGANOV
850
+ and Ml = Ml(d/2 − 1, d0/2 − 1), where M0 = B(d/2, d0/2)−1 and
851
+ Ml = (2l − 1 + (d + d0)/2)Γ(l + 1)Γ(l − 1 + (d + d0)/2)
852
+ Γ(l + d/2)Γ(l + d0/2)
853
+ , l ⩾ 1,
854
+ (2.25)
855
+ Substituting (2.23), into (2.18) and using (2.24) and (2.25), we obtain the following
856
+ explicit formulas for dimensions of irreducible representations (2.1) : m0 = 1 and
857
+ ml =Ml B(d/2, d0/2)
858
+
859
+ P ( d
860
+ 2 −1, d0
861
+ 2 −1)(1)
862
+ �2
863
+ =(2l − 1 + (d + d0)/2) Γ(l − 1 + (d + d0)/2)Γ(l + d/2)Γ(d0/2)
864
+ Γ((d + d0)/2)Γ(l + d0/2)Γ(d/2)Γ(l + 1)
865
+ l ⩾ 1. (2.26)
866
+ The formulas (2.19) for invariant kernels coincide with Fourier-Jacobi expansions.
867
+ Suppose that a function k(t), t ∈ [−1, 1], has the expansion
868
+ k(cos r) =
869
+
870
+ l⩾0
871
+ Ml Cl(F) P
872
+ ( d
873
+ 2 −1, d0
874
+ 2 −1)
875
+ l
876
+ (cos r),
877
+ (2.27)
878
+ with Fourier-Jacobi coefficients
879
+ Cl(k) =
880
+ � π
881
+ 0
882
+ k(cos u) P
883
+ ( d
884
+ 2 −1, d0
885
+ 2 −1)
886
+ l
887
+ (cos u) (sin 1
888
+ 2u)d−1 (cos 1
889
+ 2u)d0−1 du,
890
+ (2.28)
891
+ then the corresponding invariant kernel k(cos θ(x1, x2)) has the expansion (2.19)
892
+ with coefficients
893
+ cl(k) = Cl(k)
894
+ κ(d, d0)
895
+ P
896
+ ( d
897
+ 2 −1, d0
898
+ 2 −1)
899
+ l
900
+ (1)
901
+ ,
902
+ l ⩾ 0.
903
+ (2.29)
904
+ Lemma 2.1. (i) For the chordal metric (1.23), we have
905
+ τ(x1, x2) = 1
906
+ 2
907
+
908
+ l⩾1 Ml Cl [ 1 − φl(x1, x2) ] ,
909
+ (2.30)
910
+ where
911
+ Cl = B((d + 1)/2, l + d0/2) Γ(l + 1)−1 (1/2)l−1 P
912
+ (( d
913
+ 2 −1, d0
914
+ 2 −1))
915
+ l
916
+ (1) .
917
+ (2.31)
918
+ (ii) For the symmetric difference metrics (1.13), we have
919
+ θ∆(ξ, x1, x2) = κ(d, d0)
920
+
921
+ l⩾1 l−2MlAl(ξ) [ 1 − φl(x1, x2) ] ,
922
+ (2.32)
923
+ where
924
+ Al(ξ) =
925
+ � π
926
+ 0
927
+
928
+ P
929
+ ( d
930
+ 2 , d0
931
+ 2 )
932
+ l−1
933
+ (cos r)
934
+ �2
935
+ (sin 1
936
+ 2r)2d(cos 1
937
+ 2r)2d0 dξ(r).
938
+ (2.33)
939
+ The series (2.30) and (2.32) converge absolutely and uniformly.
940
+ The expansions (2.30) and (2.32) have been established in [23, Lemma 4.1] and
941
+ [22, Theorema 4.1(ii)], correspondingly.
942
+ 2.3 Proof of Lemma 1.1. Let us consider the embedding (2.16) for l = 1. From the
943
+ formula (2.26) we find
944
+ m1 = d(d + d0 + 2)
945
+ 2d0
946
+ = (n + 1)(d + 2)
947
+ 2
948
+ − 1,
949
+ d = nd0,
950
+ (2.34)
951
+ and for x1, x2 ∈ Q, we have
952
+ ∥Π1(x1) − Π1(x2)∥2 = 2 − 2(Π1(x1), Π1(x2)) = 2(1 − φ1(cos θ(x1, x2)),
953
+ (2.35)
954
+ where ∥ · ∥ and (·, ·) are the Euclidean norm and inner product in Rm1.
955
+
956
+ SPHERICAL FUNCTIONS AND STOLARSKY’S INVARIANCE PRINCIPLE
957
+ 13
958
+ On the other hand, from Rodrigues’ formula (1.38) we obtain
959
+ P
960
+ ( d
961
+ 2 −1, d0
962
+ 2 −1)
963
+ 1
964
+ (t) = ((d + d0)t + d − d0)/4,
965
+ P
966
+ ( d
967
+ 2 −1, d0
968
+ 2 −1)
969
+ 1
970
+ (1) = d/2, and
971
+ 1 − t
972
+ 2
973
+ =
974
+ d
975
+ d + d0
976
+
977
+ 1 − P
978
+ ( d
979
+ 2 −1, d0
980
+ 2 −1)
981
+ 1
982
+ (t)
983
+ P
984
+ ( d
985
+ 2 −1, d0
986
+ 2 −1)
987
+ 1
988
+ (1)
989
+
990
+  .
991
+ Therefore,
992
+ 1 − cos θ(x1, x2)
993
+ 2
994
+ =
995
+ d
996
+ d + d0
997
+
998
+ 1 − φ1(cos θ(x1, x2))
999
+
1000
+ .
1001
+ (2.36)
1002
+ Comparing (1.23), (2.35) and (2.36), we complete the proof.
1003
+
1004
+ 2.3 Proof of Theorem 1.2. Since zonal spherical functions are mutually orthogonal,
1005
+ we conclude from the expansions (2.30) and (2.32) that the equality (1.27) is equiv-
1006
+ alent to the formulas
1007
+ γ(Q) l−2 B(d/2, d0/2)−1 Al(ξ♮) = Cl/2 ,
1008
+ l ⩾ 1 .
1009
+ (2.37)
1010
+ The integral (2.33) with the special measure dξ♮(r) = sin r dr takes the form
1011
+ Al(ξ♮) =
1012
+ � π
1013
+ 0
1014
+
1015
+ P
1016
+ ( d
1017
+ 2 , d0
1018
+ 2 )
1019
+ l−1
1020
+ (cos r)
1021
+ �2
1022
+ (sin 1
1023
+ 2r)2d(cos 1
1024
+ 2r)2d0 sin r dr
1025
+ = 2−d−d0
1026
+ � 1
1027
+ −1
1028
+
1029
+ P (d/2,d0/2)
1030
+ l−1
1031
+ (t)
1032
+ �2
1033
+ (1 − t)d (1 + t)d0 dt .
1034
+ (2.38)
1035
+ Hence, the formulas (2.37) can be written as follows
1036
+ � 1
1037
+ −1
1038
+
1039
+ P (d/2,d0/2)
1040
+ l−1
1041
+ (t)
1042
+ �2
1043
+ (1 − t)d (1 + t)d0 dt
1044
+ = 2d+d0+1 (1/2)l−1
1045
+ ((l − 1)!)2
1046
+ B(d + 1, d0 + 1) T ∗,
1047
+ (2.39)
1048
+ where
1049
+ T ∗ =
1050
+ (l!)2 B(d/2, d0/2) Cl
1051
+ 4 (1/2)l−1 B(d + 1, d0 + 1) γ(Q) .
1052
+ (2.40)
1053
+ On the other hand, using (1.37) and (??), we find
1054
+ Cl = (l!)−1 (1/2)l−1
1055
+ Γ(d/2 + 1/2) Γ(l + d/2) Γ(l + d0/2)
1056
+ Γ(l + 1/2 + d/2 + d0/2) Γ(d/2)
1057
+ .
1058
+ (2.41)
1059
+ Substituting (2.41) and (1.28) into (2.40), we obtain
1060
+ T ∗ =π−1/2 (d + d0)−1
1061
+ Γ(d + d0 + 2)
1062
+ Γ(d + 1) Γ(d0 + 1) ×
1063
+ × Γ(d/2 + 1/2) Γ(l + d/2) Γ(d0/2 + 1/2) Γ(l + d0/2)
1064
+ Γ(d/2 + d0/2) Γ(l + d/2 + d0/2 + 1/2)
1065
+ .
1066
+ (2.42)
1067
+ Applying the duplication formula for gamma function
1068
+ Γ(2z) = π−1/2 22z−1 Γ(z) Γ(z + 1/2)
1069
+ (2.43)
1070
+
1071
+ 14
1072
+ M.M. SKRIGANOV
1073
+ to the first co-factor in (2.42), we find
1074
+ π−1/2 (d + d0)−1
1075
+ Γ(d + d0 + 2)
1076
+ Γ(d + 1) Γ(d0 + 1)
1077
+ =
1078
+ Γ(d/2 + d0/2) Γ(d/2 + d0/2 + 3/2)
1079
+ Γ(d/2 + 1/2) Γ(d0/2 + 1) Γ(d0/2 + 1/2) Γ(d0/2 + 1) ,
1080
+ (2.44)
1081
+ where the relation Γ(z + 1) = zΓ(z) with z = d/2 + d0/2 has been also used.
1082
+ Substituting (2.44) into (2.42), we find that T ∗ = Tl−1(d/2, d0/2).
1083
+
1084
+ 3. Proof of Lemma 1.2
1085
+ Lemma 1.2 follows from Lemma 3.1 and Lemma 3.2 given below.
1086
+ Lemma 3.1. For all n ⩾ 0, Re α > −1/2 and Re β > −1/2, we have
1087
+ � 1
1088
+ −1
1089
+
1090
+ P (α,β)
1091
+ n
1092
+ (t)
1093
+ �2
1094
+ (1 − t)2α(1 + t)2β dt
1095
+ = 22α+2β+1
1096
+ (n!)2
1097
+ B(2α + 1, 2β + 1)
1098
+ Wn(α, β)
1099
+ (2α + 2β + 2)2n
1100
+ ,
1101
+ (3.1)
1102
+ where
1103
+ Wn(α, β)
1104
+ =
1105
+ �2n
1106
+ k=0
1107
+ (−1)n+k
1108
+ k!
1109
+ ⟨2n⟩k ⟨α + n⟩k ⟨β + n⟩2n−k (2α + 1)2n−k (2β + 1)k (3.2)
1110
+ is a polynomial of α and β.
1111
+ Proof. Using Rodrigues’ formula (1.38), we can write
1112
+ � 1
1113
+ −1
1114
+
1115
+ P (α,β)
1116
+ n
1117
+ (t)
1118
+ �2
1119
+ (1 − t)2α(1 + t)2β dt =
1120
+
1121
+ 1
1122
+ 2n n!
1123
+ �2
1124
+ In(α, β) .
1125
+ (3.3)
1126
+ where
1127
+ In(α, β) =
1128
+ � 1
1129
+ −1
1130
+ � dn
1131
+ dtn
1132
+
1133
+ (1 − t)n+α(1 + t)n+β� �2
1134
+ dt .
1135
+ (3.4)
1136
+ Integrating in (3.4) n times by part, we obtain
1137
+ In(α, β)
1138
+ = (−1)n
1139
+ � 1
1140
+ −1
1141
+
1142
+ (1 − t)n+α(1 + t)n+β� d2n
1143
+ dt2n
1144
+
1145
+ (1 − t)n+α(1 + t)n+β�
1146
+ dt ,
1147
+ (3.5)
1148
+ since all terms outside the integral vanish. By Leibniz’s rule,
1149
+ d2n
1150
+ dt2n
1151
+
1152
+ (1 − t)n+α (1 + t)n+β�
1153
+ =
1154
+ �2n
1155
+ k=0
1156
+ �2n
1157
+ k
1158
+ � dk
1159
+ dtk (1 − t)n+α d2n−k
1160
+ dt2n−k (1 + t)n+β ,
1161
+
1162
+ SPHERICAL FUNCTIONS AND STOLARSKY’S INVARIANCE PRINCIPLE
1163
+ 15
1164
+ where
1165
+ �2n
1166
+ k
1167
+
1168
+ = ⟨2n⟩k/k! and
1169
+ dk
1170
+ dtk (1 − t)n+α = (−1)k ⟨α + n⟩k (1 − t)n−k+α ,
1171
+ d2n−k
1172
+ dt2n−k (1 + t)n+β = ⟨β + n⟩2n−k (1 + t)−n+k+β .
1173
+ Substituting these formulas into (3.5), we obtain
1174
+ In(α, β)
1175
+ = 22α+2β+2n+1 �2n
1176
+ k=0
1177
+ (−1)n+k
1178
+ k!
1179
+ ⟨2n⟩k ⟨α + n⟩k ⟨β + n⟩2n−k I(k)
1180
+ n (α, β) , (3.6)
1181
+ where
1182
+ I(k)
1183
+ n (α, β) = B(2α + 2n − k + 1, 2β + k + 1).
1184
+ (3.7)
1185
+ Here we have used the following Euler’s integral
1186
+ 21−a−b
1187
+ � 1
1188
+ −1
1189
+ (1 − t)a−1 (1 + t)b−1 dt = B(a, b) = Γ(a)Γ(b)
1190
+ Γ(a + b)
1191
+ (3.8)
1192
+ with Re a > 0, Re b > 0.
1193
+ The formula (3.7) can be written as follows
1194
+ I(k)
1195
+ n (α, β) = Γ(2α + 2n − k + 1) Γ(2β + k + 1)
1196
+ Γ(2α + 2β + 2n + 2)
1197
+ =Γ(2α + 2n − k + 1)
1198
+ Γ(2α + 1)
1199
+ Γ(2β + k + 1)
1200
+ Γ(2β + 1)
1201
+ Γ(2α + 1) Γ(2β + 1)
1202
+ Γ(2α + 2β + 2)
1203
+ Γ(2α + 2β + 2)
1204
+ Γ(2α + 2β + 2n + 2)
1205
+ =(2α + 1)2n−k (2β + 1)k
1206
+ (2α + 2β + 2)2n
1207
+ B(2α + 1, 2β + 1) .
1208
+ (3.9)
1209
+ Combining the formulas (3.9), (3.6) and (3.3), we obtain (3.1).
1210
+
1211
+ The next Lemma 3.2 is more specific, it relies on Watson’s theorem for general-
1212
+ ized hypergeometric series, see [2,24]. We consider the series of the form
1213
+ 3F2(a, b, c; d, e; z) =
1214
+
1215
+ k⩾0
1216
+ (a)k (b)k (c)k
1217
+ (d)k (e)k k! z ,
1218
+ (3.10)
1219
+ where neither d nor e are negative integers. The series absolutely converges for
1220
+ |z| ⩽ 1, if Re(d + e) > Re(a + b + c). The series (3.10) terminates, if one of the
1221
+ numbers a, b, c is a negative integer.
1222
+ Watson’s theorem.We have
1223
+ 3F2(a,b, c; (a + b + 1)/2, 2c; 1)
1224
+ =
1225
+ Γ(1/2) Γ(c + 1/2) Γ((a + b + 1)/2) Γ(c − (a + b − 1)/2)
1226
+ Γ((a + 1)/2) Γ((b + 1)/2) Γ(c − (a − 1)/2) Γ(c − (b − 1)/2) .
1227
+ (3.11)
1228
+ provided that
1229
+ Re (2c − a − b + 1) > 0.
1230
+ (3.12)
1231
+ The condition (3.12) ensures the convergence of hypergeometric series in (3.11).
1232
+ Furthermore, this condition is necessary for the truth of equality (3.11) even in
1233
+ the case of terminated series. The proof of Watson’s theorem can be found in [2,
1234
+ Therem 3.5.5], [24, p.54, Eq.(2.3.3.13)].
1235
+
1236
+ 16
1237
+ M.M. SKRIGANOV
1238
+ Lemma 3.2. For all n ⩾ 0, α ∈ C and β ∈ C, the polynomial (3.2) is equal to
1239
+ Wn(α, β) =22n (α + 1)n (β + 1)n (α + β + 1)n
1240
+ =22n Γ(α + 1 + n) Γ(β + 1 + n) Γ(α + β + 1 + n)
1241
+ Γ(α + 1) Γ(β + 1) Γ(α + β + 1)
1242
+ .
1243
+ (3.13)
1244
+ In particular,
1245
+ Wn(α, β)
1246
+ (2α + 2β + 2)2n
1247
+ = (α + 1)n (β + 1)n
1248
+ (α + β + 3/2)n
1249
+ .
1250
+ (3.14)
1251
+ Proof. Since Wn(α, β) is a polynomial, it suffers to check the equality (3.13) for α
1252
+ and β in an open subset in C2. As such a subset we shall take the following region
1253
+ O = { α, β : Re α < 0, Re β < 0, Im α > 0, Im β > 0 }.
1254
+ (3.15)
1255
+ For α and β in O, the co-factors in terms in (3.2) may be rearranged as follows:
1256
+ ⟨2n⟩k = (−1)k (−2n)k ,
1257
+ ⟨α + n⟩k = (−1)k (−α − n)k ,
1258
+ ⟨β + n⟩2n−k = (−1)k (−β − n)2n−k = (−β − n)2n
1259
+ (β + 1 − n)k
1260
+ ,
1261
+ (2α + 1)2n−k = (−1)k(2α + 1)2n
1262
+ (−2α − 2n)k
1263
+ ,
1264
+
1265
+
1266
+
1267
+
1268
+
1269
+
1270
+
1271
+
1272
+
1273
+
1274
+
1275
+
1276
+
1277
+ (3.16)
1278
+ Here we have used the following elementary relation for the rising factorial powers
1279
+ (a)m−k =
1280
+ (−1)k (a)m
1281
+ (1 − a − m)k
1282
+ ,
1283
+ m ⩾ 0 , 0 ⩽ k ⩽ m .
1284
+ (3.17)
1285
+ Substituting (3.16) into (3.2), we find that
1286
+ Wn(α, β) = (−1)n (2α + 1)2n (−β − n)2n Fn(α, β)
1287
+ = (−1)n Γ(2α + 1 + 2n) Γ(−β + n)
1288
+ Γ(2α + 1) Γ(−β − n)
1289
+ Fn(α, β) ,
1290
+ (3.18)
1291
+ where
1292
+ Fn(α, β) =
1293
+ �2n
1294
+ k=0
1295
+ (−2n)k (2β + 1)k (−α − n)k
1296
+ (β + 1 − n)k (−2α − 2n)k k!
1297
+ (3.19)
1298
+ In view of the definition (3.10), we have
1299
+ Fn(α, β) = 3F2 (−2n, 2β + 1, −α − 1; β + 1 − n, −2α − 2n; 1) .
1300
+ (3.20)
1301
+ The parameters in hypergeometric series (3.20) are identical with those in (3.11)
1302
+ for a = −2n, b = 2β + 1, c = −α − n, and in this case, (a + b + 1)/2 = 2β + 1 + n,
1303
+ 2c = −2α − 2n. The condition (3.12) also holds for α and β in the region O, since
1304
+ Re (2c − a − b + 1) = Re (−2α − 2β) > 0. Therefore, Watson’s theorem (3.11) can
1305
+ be applied to obtain
1306
+ Fn(α, β) =
1307
+ Γ(1/2) Γ(−α − n − 1/2) Γ(β + 1 − n) Γ(−α − β)
1308
+ Γ(−n + 1/2) Γ(β + 1) Γ(−α + 1/2) Γ(−α − β − n) .
1309
+ (3.21)
1310
+ Substituting the expression (3.21) into (3.18) , we may write
1311
+ Wn(α, β) = c0 c1(α) c2(β) c3(α + β) ,
1312
+ (3.22)
1313
+
1314
+ SPHERICAL FUNCTIONS AND STOLARSKY’S INVARIANCE PRINCIPLE
1315
+ 17
1316
+ where
1317
+ c0 = (−1)n Γ(1/2)
1318
+ Γ(−n + 1/2) ,
1319
+ c1(α) = Γ(2α + 2n + 1) Γ(−α − n + 1/2)
1320
+ Γ(2α + 1) Γ(−α + 1/2)
1321
+ ,
1322
+ c2(β) = Γ(β + 1 − n) Γ(−β + n)
1323
+ Γ(β + 1) Γ(−β − n)
1324
+ ,
1325
+ c3(α + β) =
1326
+ Γ(−α − β)
1327
+ Γ(−α − β − n) .
1328
+
1329
+
1330
+
1331
+
1332
+
1333
+
1334
+
1335
+
1336
+
1337
+
1338
+
1339
+
1340
+
1341
+
1342
+
1343
+
1344
+
1345
+
1346
+
1347
+
1348
+
1349
+
1350
+
1351
+
1352
+
1353
+ (3.23)
1354
+ Using the duplication formula (2.43) and reflection formulas, see [2, Sec. 1.2],
1355
+ Γ(1 − z)Γ(z) =
1356
+ π
1357
+ sin πz ,
1358
+ Γ(1/2 − z)Γ(1/2 + z) =
1359
+ π
1360
+ cos πz ,
1361
+ (3.24)
1362
+ we may rearrange the expressions in (3.23) as follows. For c0, we have
1363
+ c0 =
1364
+ (−1)n Γ(1/2)2
1365
+ Γ(−n + 1/2) Γ(n + 1/2)
1366
+ Γ(n + 1/2)
1367
+ Γ(1/2)
1368
+ = (1/2)n ,
1369
+ since Γ(1/2) = √π. For c1(α) and c2(β), we have
1370
+ c1(α) =22n Γ(α + n + 1) Γ(α + n + 1/2) Γ(−α − n + 1/2)
1371
+ Γ(α + 1) Γ(α + 1/2) Γ(−α + 1/2)
1372
+ =22n cos πα Γ(α + n + 1)
1373
+ cos π(α + n) Γ(α + 1) = 22n (−1)n (α + 1)n
1374
+ and
1375
+ c2(β) = Γ(β + 1 − n) Γ(−β + n)
1376
+ Γ(β + 1) Γ(−β − n)
1377
+ = sin π(β + n) Γ(β + 1 + n)
1378
+ sin π(β − n) Γ(β + 1)
1379
+ = (β + 1)n .
1380
+ Finally,
1381
+ c3(α + β) = sin π(α + β) Γ(α + β + 1 + n)
1382
+ sin π(α + β + n) Γ(α + β + 1) = (−1)n (α + β + 1)n .
1383
+ Substituting these expressions into (3.22), we obtain (3.13).
1384
+ It follows from (2.31) and the duplication formula (2.43) that
1385
+ (2α + 2β + 2)2n = 22n (α + β + 1)n (α + β + 3/2)n .
1386
+ (3.25)
1387
+ Using (3.13) together with (3.25), we obtain (3.14).
1388
+
1389
+ Now it suffers to substitute (3.14) into (3.1) to obtain the formulas (1.42). The
1390
+ proof of Lemma 1.2 is complete.
1391
+ References
1392
+ [1] J. R. Alexander, J. Beck, W. W. L. Chen, Geometric discrepancy theory and uniform dis-
1393
+ tributions, in Handbook of Discrete and Computational Geometry (J. E. Goodman and
1394
+ J. O’Rourke eds.), Chapter 10, pages 185–207, CRC Press LLC, Boca Raton, FL, 1997.
1395
+ [2] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge Univ. Press, 2000.
1396
+ [3] A. Barg, Stolarsky’s invariance principle for finite metric spaces, Mathematika, 67(1),
1397
+ (2021), 158–186.
1398
+ [4] A. Barg, M.M. Skriganov, Bounds for discrepancies in the Hemming space, J. of Complexity,
1399
+ 65, (2021), 101552.
1400
+ [5] J. Beck, Sums of distances between points on a sphere: An application of the theory of
1401
+ irregularities of distributions to distance geometry, Mathematika, 31, (1984), 33–41.
1402
+
1403
+ 18
1404
+ M.M. SKRIGANOV
1405
+ [6] J. Beck, W. W. L. Chen, Irregularities of Distribution, Cambridge Tracts in Math., vol. 89,
1406
+ Cambridge Univ. Press, 1987.
1407
+ [7] D. Bilyk, M. Lacey, One bit sensing, discrepancy, and Stolarsky principle, Sbornik Math.,
1408
+ 208(6), (2017), 744–763.
1409
+ [8] D. Bilyk, F. Dai, R. Matzke,
1410
+ Stolarsky principle and energy optimization on the sphere,
1411
+ Constr. Approx., 48(1), (2018), 31–60.
1412
+ [9] D. Bilyk, R. Matzke, O. Vlasiuk, Positive definiteness and the Stolarsky principle, J. of Math.
1413
+ Analysis, 513(1), (2022), 126220.
1414
+ [10] J. S. Brauchart, J. Dick, A simple proof of Stolarsky’s invariance principle, Proc. Amer.
1415
+ Math. Soc., 141, (2013), 2085–2096.
1416
+ [11] J. S. Brauchart, P. J. Grabner, Weighted L2-norms of Gegenbauer polynomials, Aequat.
1417
+ Math., 96, (2022), 741–762.
1418
+ [12] P. Cartier, Introduction `a l’´etude des mouvements browniens `a plusieurs param`etres,
1419
+ S´eminaire de Probabilit´es V, Lectures Notes in Math., 191, Springer—Verlag, 1971.
1420
+ [13] M. M. Deza, M. Laurent, Geometry of cuts and metrics, Springer, 1997.
1421
+ [14] F. Dai, Y. Xu, Approximation theory and harmonic analysis on spheres and balls, Springer,
1422
+ 2013.
1423
+ [15] R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes
1424
+ related to L´evy’s Brownian motion of several parameters, Ann. Inst. Henri Poincar´e, vol. III,
1425
+ No. 2, (1967), 121–325.
1426
+ [16] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press,
1427
+ 1978.
1428
+ [17] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential opera-
1429
+ tors, and spherical functions, Academic Press, 1984.
1430
+ [18] V. I. Levenshtein, Universal bounds for codes and designs, in Handbook of Coding Theory
1431
+ (V. S. Pless and W. C. Huffman eds.), Chapter 6, pages 499–648, Elsevier, 1998.
1432
+ [19] C. M¨uller. Spherical Harmonics, Lecture Notes in Math., 17. Springer, 1966.
1433
+ [20] A. V. Shchepetilov, Calculus and Mechanics on two-point homogeneous spaces, Springer,
1434
+ 2006.
1435
+ [21] M. M. Skriganov, Point distributions in compact metric spaces, Mathematika, 63, (2017),
1436
+ 1152–1171.
1437
+ [22] M. M. Skriganov, Point distributions in two-point homogeneous spaces, Mathematika, 65,
1438
+ (2019), 557–587.
1439
+ [23] M. M. Skriganov, Stolarsky’s invariance principle for projective spaces, J. of Complexity, 56,
1440
+ (2020), 101428.
1441
+ [24] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, 1966.
1442
+ [25] K. B. Stolarsky, Sums of distances between points on a sphere, II, Proc. Amer. Math. Soc.,
1443
+ 41, (1973), 575–582.
1444
+ [26] G. Szeg˝o , Orthogonal polynomials, Amer. Math. Soc., 1950.
1445
+ [27] S. S. Tai, Minimum embeddings of compact symmetric spaces of rank one, J.Differential
1446
+ Geometry, 2, (1968), 55–66.
1447
+ [28] N. Ja. Vilenkin, A. U. Klimyk, Representation of Lie groups and special functions, vols. 1–3,
1448
+ Kluwer Acad. Pub., Dordrecht, 1991–1992.
1449
+ [29] J. A. Wolf, Spaces of constant curvature, Univ. Califormia, Berkley, 1972.
1450
+ [30] J. A. Wolf, Harmonic analysis on commutative spaces, Math. Surveys and Monographs,
1451
+ vol. 142, Amer. Math. Soc., 2007.
1452
+ St. Petersburg Department of the Steklov Mathematical Institute of the Russian
1453
+ Academy of Sciences, 27, Fontanka, St.Petersburg 191023, Russia
1454
+ Email address: [email protected]
1455
+
AtAyT4oBgHgl3EQfRvdA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
B9FQT4oBgHgl3EQfNza6/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08f73147ed1bb8763476fb27a22e1d56dd37919c72c072e09e1cc8d9b84eef60
3
+ size 8323117
BdE2T4oBgHgl3EQfRge6/content/2301.03782v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4639a5b13564004063eea0d925b0087fedc4c3c5e5d6f0fec950722266e5d78b
3
+ size 840351
BdE4T4oBgHgl3EQf5Q5A/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6121d6bbb380f46d0246ce1a0bc996af565a8ceb5d78a6de64d1c6724fe5d64
3
+ size 4587565
BtE4T4oBgHgl3EQfeA0g/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51b6f428a83fc5f39f45d59544d77e9d66485b9a30ee5c81b4f1cc7a4607dd66
3
+ size 162895
BtE5T4oBgHgl3EQfTQ-D/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fff712107cbd98ea468a1b4c22611ab8df4e05b940a7cc0c66cef6b0e331ae5
3
+ size 81321
BtFKT4oBgHgl3EQfXS78/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fcfa3cad98401883b27b0ed92017e648488eeb4b250805cd31161d4b701a547
3
+ size 114105
CtAyT4oBgHgl3EQfR_f1/content/tmp_files/2301.00079v1.pdf.txt ADDED
@@ -0,0 +1,3171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Semileptonic D Meson Decays D → P/V/Sℓ+νℓ with the SU(3) Flavor
2
+ Symmetry/Breaking
3
+ Ru-Min Wang1,†,
4
+ Yue-Xin Liu1,
5
+ Chong Hua1,
6
+ Jin-Huan Sheng2,§,
7
+ Yuan-Guo Xu1,♯
8
+ 1College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
9
+ 2School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
10
11
12
13
+ Many exclusive c → d/sℓ+νℓ (ℓ = e, µ, τ) transitions have been well measured, and they can be
14
+ used to test the theoretical calculations. Motivated by this, we study the D → P/V/Sℓ+νℓ decays
15
+ induced by the c → d/sℓ+νℓ transitions with the SU(3) flavor symmetry approach, where P denotes
16
+ the pseudoscalar meson, V denotes the vector meson, and S denotes the scalar meson with a mass
17
+ below 1 GeV . The different decay amplitudes of the D → Pℓ+νℓ, D → V ℓ+νℓ or D → Sℓ+νℓ
18
+ decays can be related by using the SU(3) flavor symmetry and by considering the SU(3) flavor
19
+ breaking. Using the present data of D → P/V/Sℓ+νℓ, we predict the not yet measured or not yet
20
+ well measured processes in the D → P/V/Sℓ+νℓ decays. We find that the SU(3) flavor symmetry
21
+ approach works well in the semileptonic D → P/V ℓ+νℓ decays. For the D → Sℓ+νℓ decays, only
22
+ the decay D+
23
+ s → f0(980)e+νe has been measured, the branching ratios of the D+
24
+ s → f0(980)e+νe
25
+ and D → S(S → P1P2)ℓ+νℓ decays are used to constrain the nonperturbative parameters and then
26
+ predict not yet measured D → Sℓ+νℓ decays, in addition, the two quark and the four quark scenarios
27
+ for the light scalar mesons are analyzed. The SU(3) flavor symmetry predictions of the D → Sℓ+νℓ
28
+ decays need to be further tested, and our predictions of the D → Sℓ+νℓ decays are useful for probing
29
+ the structure of light scalar mesons. Our results in this work could be used to test the SU(3) flavor
30
+ symmetry approach in the semileptonic D decays by the future experiments at BESIII, LHCb and
31
+ BelleII.
32
+ I.
33
+ Introduction
34
+ Semileptonic heavy meson decays dominated by tree-level exchange of W-bosons in the standard model have
35
+ attracted a lot of attention in testing the stand model and in searching for the new physics beyond the stand model.
36
+ Many semileptonic D → P/V ℓ+νℓ decays and one D → Sℓ+νℓ decay have been observed [1], and present experimental
37
+ measurements give us an opportunity to additionally test theoretical approaches.
38
+ In theory, the description of semileptonic decays are relatively simple, and the weak and strong dynamics can be
39
+ separated in these processes since leptons do not participate in the strong interaction. All the strong dynamics in
40
+ the initial and final hadrons is included in the hadronic form factors, which are important for testing the theoretical
41
+ calculations of the involved strong interaction. The form factors of the D decays have been calculated, for examples,
42
+ by quark model [2–7], QCD sum rules [8], light-cone sum rules [9–11], covariant light-front quark models [12–14], and
43
+ lattice QCD [15, 16].
44
+ The SU(3) flavor symmetry approach is independent of the detailed dynamics offering us an opportunity to relate
45
+ different decay modes, nevertheless, it cannot determine the sizes of the amplitudes or the form factors by itself.
46
+ arXiv:2301.00079v1 [hep-ph] 31 Dec 2022
47
+
48
+ 2
49
+ However, if experimental data are enough, one may use the data to extract the amplitudes or the form factors, which
50
+ can be viewed as predictions based on symmetry, has a smaller dependency on estimated form factors, and can provide
51
+ some very useful information about the decays. The SU(3) flavor symmetry works well in the b-hadron decays [17–30],
52
+ and the c-hadron decays [29–45].
53
+ Semileptonic decays of D mesons have been studied extensively in the standard model and its various extensions, for
54
+ instance, in Refs. [3, 46–56]. In this work, we will systematically study the D → P/V/Sℓ+νℓ decays with the SU(3)
55
+ flavor symmetry. We will firstly construct the amplitude relations between different decay modes of D → Pℓ+νℓ,
56
+ D → V ℓ+νℓ or D → Sℓ+νℓ decays by the SU(3) flavor symmetry and the SU(3) flavor breaking. We use the available
57
+ data to extract the SU(3) flavor symmetry/breaking amplitudes and the form factors, and then predict the not yet
58
+ measured modes for further tests in experiments. The forward-backward asymmetries Aℓ
59
+ F B, the lepton-side convexity
60
+ parameters Cℓ
61
+ F , the longitudinal polarizations of the final charged lepton P ℓ
62
+ L, the transverse polarizations of the final
63
+ charged lepton P ℓ
64
+ T , the lepton spin asymmetries Aλ and the longitudinal polarization fractions FL of the final vector
65
+ mesons with two ways of integration have also been predicted in the D → P/V ℓ+νℓ decays. In addition, the q2
66
+ dependence of some differential observables for the D → P/V ℓ+νℓ decays are shown in figures.
67
+ This paper will be organized as follows. In Sec. II, the theoretical framework in this work is presented, including the
68
+ effective hamiltonian, the hadronic helicity amplitude relations, the observables and the form factors. The numerical
69
+ results of the D → P/V/Sℓ+νℓ semileptonic decays will be given in Sec. III. Finally, we give the summary and
70
+ conclusion in Sec. IV.
71
+ II.
72
+ Theoretical Frame
73
+ A.
74
+ The effective Hamiltonian
75
+ In the standard model, the four-fermion charged-current effective Hamiltonian below the electroweak scale for the
76
+ decays D → Mℓ+νℓ (M = P, V, S) can be written as
77
+ Heff(c → qℓ+νℓ) = GF
78
+
79
+ 2 V ∗
80
+ cq¯qγµ(1 − γ5)c ¯νℓγµ(1 − γ5)ℓ,
81
+ (1)
82
+ with q = s, d.
83
+ The helicity amplitudes of the decays D → Mℓ+νℓ can be written as
84
+ M(D → Mℓ+νℓ) = GF
85
+
86
+ 2 Vcb
87
+
88
+ mm′
89
+ gmm′Lλℓλν
90
+ m
91
+ HλM
92
+ m′ ,
93
+ (2)
94
+ with
95
+ Lλℓλν
96
+ m
97
+ = ϵα(m) ¯νℓγα(1 − γ5)ℓ,
98
+ (3)
99
+ HλM
100
+ m′
101
+ =
102
+
103
+
104
+
105
+ ϵ∗
106
+ β(m′)⟨P/S(pP/S)|¯qγβ(1 − γ5)c|D(pD)⟩
107
+ ϵ∗
108
+ β(m′)⟨V (pV , ϵ∗)|¯qγβ(1 − γ5)c|D(pD)⟩
109
+ ,
110
+ (4)
111
+ where the particle helicities λM = 0 for M = P/S, λM = 0, ±1 for M = V, λℓ = ± 1
112
+ 2 and λν = + 1
113
+ 2, as well as ϵµ(m)
114
+ is the polarization vectors of the virtual W with m = 0, t, ±1.
115
+
116
+ 3
117
+ The form factors of the D → P, D → S and D → V transitions are given by [2, 3, 13]
118
+
119
+ P(p)
120
+ �� ¯dkγµc
121
+ �� D(pD)
122
+
123
+ = f P
124
+ + (q2)(p + pD)µ +
125
+
126
+ f P
127
+ 0 (q2) − f P
128
+ + (q2)
129
+ � m2
130
+ D − m2
131
+ P
132
+ q2
133
+ qµ,
134
+ (5)
135
+
136
+ S(p)
137
+ �� ¯dkγµγ5c
138
+ �� D(pD)
139
+
140
+ = −i
141
+
142
+ f S
143
+ +(q2)(p + pD)µ +
144
+
145
+ f S
146
+ 0 (q2) − f S
147
+ +(q2)
148
+ � m2
149
+ D − m2
150
+ S
151
+ q2
152
+
153
+
154
+ ,
155
+ (6)
156
+
157
+ V (p, ε∗)
158
+ �� ¯dkγµ(1 − γ5)c
159
+ �� D(pD)
160
+
161
+ =
162
+ 2V V (q2)
163
+ mD + mV
164
+ ϵµναβε∗νpα
165
+ Dpβ
166
+ −i
167
+
168
+ ε∗
169
+ µ(mD + mV )AV
170
+ 1 (q2) − (pD + p)µ(ε∗.pD) AV
171
+ 2 (q2)
172
+ mD + mV
173
+
174
+ +iqµ(ε∗.pD)2mV
175
+ q2 [AV
176
+ 3 (q2) − AV
177
+ 0 (q2)],
178
+ (7)
179
+ where s = q2 (q = pD − pM), and ε∗ is the polarization of vector meson. The hadronic helicity amplitudes can be
180
+ written as
181
+ H± = 0,
182
+ (8)
183
+ H0 = 2mDq|⃗pP |
184
+
185
+ q2
186
+ f P
187
+ + (q2),
188
+ (9)
189
+ Ht =
190
+ m2
191
+ Dq − m2
192
+ P
193
+
194
+ q2
195
+ f P
196
+ 0 (q2),
197
+ (10)
198
+ for D → Pℓ+νℓ decays,
199
+ H± = 0,
200
+ (11)
201
+ H0 = i2mDq|⃗pS|
202
+
203
+ q2
204
+ f S
205
+ +(q2),
206
+ (12)
207
+ Ht =
208
+ im2
209
+ Dq − m2
210
+ S
211
+
212
+ q2
213
+ f S
214
+ 0 (q2),
215
+ (13)
216
+ for D → Sℓ+νℓ decays, and
217
+ H± = (mDq + mV )A1(q2) ∓
218
+ 2mDq|⃗pV |
219
+ (mDq + mV )V (q2),
220
+ (14)
221
+ H0 =
222
+ 1
223
+ 2mV
224
+
225
+ q2
226
+
227
+ (m2
228
+ Dq − m2
229
+ V − q2)(mDq + mV )A1(q2) −
230
+ 4m2
231
+ Dq|⃗pV |2
232
+ mDq + mV
233
+ A2(q2)
234
+
235
+ ,
236
+ (15)
237
+ Ht = 2mDq|⃗pV |
238
+
239
+ q2
240
+ A0(q2),
241
+ (16)
242
+ for D → V ℓ+νℓ decays, where |⃗pM| ≡
243
+
244
+ λ(m2
245
+ Dq, m2
246
+ M, q2)/2mDq with λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc.
247
+ B.
248
+ Hadronic helicity amplitude relations by the SU(3) flavor symmetry
249
+ Charmed mesons containing one heavy c quark are flavor SU(3) anti-triplets
250
+ Di =
251
+
252
+ D0(c¯u), D+(c ¯d), D+
253
+ s (c¯s)
254
+
255
+ .
256
+ (17)
257
+
258
+ 4
259
+ Light pseudoscalar P and vector V meson octets and singlets under the SU(3) flavor symmetry of u, d, s quarks are
260
+ [57]
261
+ P =
262
+
263
+
264
+
265
+
266
+ π0
267
+
268
+ 2 + η8
269
+
270
+ 6 + η1
271
+
272
+ 3
273
+ π+
274
+ K+
275
+ π−
276
+ − π0
277
+
278
+ 2 + η8
279
+
280
+ 6 + η1
281
+
282
+ 3
283
+ K0
284
+ K−
285
+ K
286
+ 0
287
+ − 2η8
288
+
289
+ 6 + η1
290
+
291
+ 3
292
+
293
+
294
+
295
+ � ,
296
+ (18)
297
+ V
298
+ =
299
+
300
+
301
+
302
+
303
+ ρ0
304
+
305
+ 2 + ω8
306
+
307
+ 6 + ω1
308
+
309
+ 3
310
+ ρ+
311
+ K∗+
312
+ ρ−
313
+ − ρ0
314
+
315
+ 2 + ω8
316
+
317
+ 6 + ω1
318
+
319
+ 3
320
+ K∗0
321
+ K∗−
322
+ K
323
+ ∗0
324
+ − 2ω8
325
+
326
+ 6 + ω1
327
+
328
+ 3
329
+
330
+
331
+
332
+ � ,
333
+ (19)
334
+ where ω and φ mix in an ideal form, and the η and η′ ( ω and φ) are mixtures of η1(ω1) = u¯u+d ¯d+s¯s
335
+
336
+ 3
337
+ and η8(ω8) =
338
+ u¯u+d ¯d−2s¯s
339
+
340
+ 6
341
+ with the mixing angle θP (θV ). η and η′ (ω and φ) are given by
342
+
343
+ � η
344
+ η′
345
+
346
+ � =
347
+
348
+ � cosθP −sinθP
349
+ sinθP
350
+ cosθP
351
+
352
+
353
+
354
+ � η8
355
+ η1
356
+
357
+ � ,
358
+
359
+ � φ
360
+ ω
361
+
362
+ � =
363
+
364
+ � cosθV
365
+ −sinθV
366
+ sinθV
367
+ cosθV
368
+
369
+
370
+
371
+ � ω8
372
+ ω1
373
+
374
+ � ,
375
+ (20)
376
+ where θP = [−20◦, −10◦] and θV = 36.4◦ from Particle Data Group (PDG) [1] will be used in our numerical analysis.
377
+ The structures of the light scalar mesons are not fully understood yet. Many suggestions are discussed, such as
378
+ ordinary two quark states, four quark states, meson-meson bound states, molecular states, glueball states or hybrid
379
+ states, for examples, in Refs. [58–66]. In this work, we will consider the two quark and the four quark scenarios for
380
+ the scalar mesons below or near 1 GeV . In the two quark picture, the light scalar mesons can be written as [67]
381
+ S =
382
+
383
+
384
+
385
+
386
+ a0
387
+ 0
388
+
389
+ 2 +
390
+ σ
391
+
392
+ 2
393
+ a+
394
+ 0
395
+ K+
396
+ 0
397
+ a−
398
+ 0
399
+ − a0
400
+ 0
401
+
402
+ 2 +
403
+ σ
404
+
405
+ 2
406
+ K0
407
+ 0
408
+ K−
409
+ 0
410
+ K
411
+ 0
412
+ 0
413
+ f0
414
+
415
+
416
+
417
+ � .
418
+ (21)
419
+ The two isoscalars f0(980) and f0(500) are obtained by the mixing of σ = u¯u+d ¯d
420
+
421
+ 2
422
+ and f0 = s¯s
423
+
424
+ � f0(980)
425
+ f0(500)
426
+
427
+ � =
428
+
429
+ � cosθS
430
+ sinθS
431
+ −sinθS cosθS
432
+
433
+
434
+
435
+ � f0
436
+ σ
437
+
438
+ � ,
439
+ (22)
440
+ where the three possible ranges of the mixing angle, 25◦ < θS < 40◦, 140◦ < θS < 165◦ and
441
+ − 30◦ < θS < 30◦
442
+ [58, 68] will be analyzed in our numerical results. In the four quark picture, the light scalar mesons are given as [1, 69]
443
+ σ = u¯ud ¯d,
444
+ f0 = (u¯u + d ¯d)s¯s/
445
+
446
+ 2,
447
+ a0
448
+ 0 = (u¯u − d ¯d)s¯s/
449
+
450
+ 2,
451
+ a+
452
+ 0 = u ¯ds¯s,
453
+ a−
454
+ 0 = d¯us¯s,
455
+ K+
456
+ 0 = u¯sd ¯d,
457
+ K0
458
+ 0 = d¯su¯u,
459
+ ¯K0
460
+ 0 = s ¯du¯u,
461
+ K+
462
+ 0 = s¯ud ¯d,
463
+ (23)
464
+ and the two isoscalars are expressed as
465
+
466
+ � f0(980)
467
+ f0(500)
468
+
469
+ � =
470
+
471
+ � cosφS
472
+ sinφS
473
+ −sinφS cosφS
474
+
475
+
476
+
477
+ � f0
478
+ σ
479
+
480
+ � ,
481
+ (24)
482
+ where the constrained mixing angle φS = (174.6+3.4
483
+ −3.2)◦ [59].
484
+
485
+ 5
486
+ In terms of the SU(3) flavor symmetry, meson states and quark operators can be parameterized into SU(3) tensor
487
+ forms, while the leptonic helicity amplitudes Lλℓ,λν
488
+ m
489
+ are invariant under the SU(3) flavor symmetry. And the hadronic
490
+ helicity amplitude relations of the D → Mℓ+νℓ(M = P, V, S) decays can be parameterized as
491
+ H(D → Mℓ+νℓ) = cM
492
+ 0 DiM i
493
+ jHj,
494
+ (25)
495
+ where H2 ≡ V ∗
496
+ cd and H3 ≡ V ∗
497
+ cs are the CKM matrix elements, and cM
498
+ 0
499
+ are the nonperturbative coefficients of the
500
+ D → Mℓ+νℓ decays under the SU(3) flavor symmetry. Noted that the hadronic helicity amplitudes for the D → Sℓ+νℓ
501
+ decays in Eq. (25) are given in the two quark picture of the light scalar mesons, and ones in the four quark picture
502
+ of the light scalar mesons will be given later.
503
+ The SU(3) flavor breaking effects mainly come from different masses of u, d and s quarks. Following Ref. [70], the
504
+ SU(3) breaking amplitudes of the D → Mℓ+νℓ decays can be give as
505
+ ∆H(D → Mℓ+νℓ) = cM
506
+ 1 DaW a
507
+ i M i
508
+ jHj + cM
509
+ 2 DiM i
510
+ aW a
511
+ j Hj,
512
+ (26)
513
+ with
514
+ W =
515
+
516
+ W i
517
+ j
518
+
519
+ =
520
+
521
+
522
+
523
+
524
+ 1 0
525
+ 0
526
+ 0 1
527
+ 0
528
+ 0 0 −2
529
+
530
+
531
+
532
+ � ,
533
+ (27)
534
+ where cM
535
+ 1,2 are the nonperturbative SU(3) flavor breaking coefficients.
536
+ In the four quark picture of the light scalar mesons, the hadronic helicity amplitudes of the D → Sℓ+νℓ decays
537
+ under the SU(3) flavor symmetry are
538
+ H(D → Sℓ+νℓ)4q = c′S
539
+ 0 DiSim
540
+ jmHj.
541
+ (28)
542
+ And the corresponding SU(3) flavor breaking amplitudes of the D → Sℓ+νℓ decays are
543
+ ∆H(D → Sℓ+νℓ)4q = c′S
544
+ 1 DaW a
545
+ i Sim
546
+ jmHj + c′S
547
+ 2 DiSim
548
+ amW a
549
+ j Hj + c′S
550
+ 1 DiSim
551
+ ja W a
552
+ mHj.
553
+ (29)
554
+ In terms of the SU(3) flavor symmetry, the hadronic helicity amplitude relations for the D → Pℓ+νℓ, D → V ℓ+νℓ
555
+ and D → Sℓ+νℓ decays are summarized in later Tab. I, Tab. IV and Tab. VIII, respectively.
556
+ C.
557
+ Observables for the D → Mℓ+νℓ decays
558
+ The double differential branching ratios of the D → Mℓ+νℓ decays are [56]
559
+ dB(D → Mℓ+νℓ)
560
+ dq2d(cos θ)
561
+ = τDG2
562
+ F |Vcq|2λ1/2(q2 − m2
563
+ ℓ)2
564
+ 64(2π)3M 3
565
+ D(s)q2
566
+
567
+ (1 + cos2 θ)HU + 2 sin2 θHL + 2 cos θHP
568
+ +m2
569
+
570
+ q2 (sin2 θHU + 2 cos2 θHL + 2HS − 4 cos θHSL)
571
+
572
+ ,
573
+ (30)
574
+ where λ ≡ λ(m2
575
+ Dq, m2
576
+ M, q2), m2
577
+ ℓ ≤ q2 ≤ (mDq − mM)2, and
578
+ HU = |H+|2 + |H−|2,
579
+ HL = |H0|2,
580
+ HP = |H+|2 − |H−|2,
581
+ HS = |Ht|2,
582
+ HSL = ℜ(H0H†
583
+ t ).
584
+ (31)
585
+
586
+ 6
587
+ The differential branching ratios integrated over cos θ are [56]
588
+ dB(D(s) → Mℓ+νℓ)
589
+ dq2
590
+ = τDG2
591
+ F |Vcq|2λ1/2(q2 − m2
592
+ ℓ)2
593
+ 24(2π)3M 3
594
+ D(s)q2
595
+ Htotal,
596
+ (32)
597
+ with
598
+ Htotal ≡ (HU + HL)
599
+
600
+ 1 + m2
601
+
602
+ 2q2
603
+
604
+ + 3m2
605
+
606
+ 2q2 HS.
607
+ (33)
608
+ The lepton flavor universality in D(s) → Mℓ+νℓ is defined in a manner identical Rµ/e as
609
+ Rµ/e =
610
+ � qmax
611
+ qmin dB(D(s) → Mµ+νµ)/dq2
612
+ � qmax
613
+ qmin dB(D(s) → Me+νe)/dq2 .
614
+ (34)
615
+ The forward-backward asymmetries are defined as [56]
616
+ Aℓ
617
+ F B(q2) =
618
+ � 0
619
+ −1 dcosθℓ
620
+ dB(D→Mℓν)
621
+ dq2dcosθℓ
622
+
623
+ � 1
624
+ 0 dcosθℓ
625
+ dB(D→Mℓν)
626
+ dq2dcosθℓ
627
+ � 0
628
+ −1 dcosθℓ
629
+ dB(D→Mℓν)
630
+ dq2dcosθℓ
631
+ +
632
+ � 1
633
+ 0 dcosθℓ
634
+ dB(D→Mℓν)
635
+ dq2dcosθℓ
636
+ (35)
637
+ = 3
638
+ 4
639
+ HP − 2m2
640
+
641
+ q2 HSL
642
+ Htotal
643
+ .
644
+ (36)
645
+ The lepton-side convexity parameters are given by [56]
646
+ Cℓ
647
+ F (q2) = 3
648
+ 4
649
+
650
+ 1 − m2
651
+
652
+ q2
653
+ � HU − 2HL
654
+ Htotal
655
+ .
656
+ (37)
657
+ The longitudinal polarizations of the final charged lepton ℓ are defined by [56]
658
+ P ℓ
659
+ L(q2) =
660
+ (HU + HL)
661
+
662
+ 1 − m2
663
+
664
+ 2q2
665
+
666
+ − 3m2
667
+
668
+ 2q2 HS
669
+ Htotal
670
+ ,
671
+ (38)
672
+ and its transverse polarizations are
673
+ P ℓ
674
+ T (q2) = − 3πmℓ
675
+ 8
676
+
677
+ q2
678
+ HP + 2HSL
679
+ Htotal
680
+ .
681
+ (39)
682
+ The lepton spin asymmetry in the ℓ − ¯νℓ center of mass frame is defined by [71–74]
683
+ Aλ(q2) = dB(D → Mℓ+νℓ)[λℓ = − 1
684
+ 2]/dq2 − dB(D → Mℓ+νℓ)[λℓ = + 1
685
+ 2]/dq2
686
+ dB(D → Mℓ+νℓ)[λℓ = − 1
687
+ 2]/dq2 + dB(D → Mℓ+νℓ)[λℓ = + 1
688
+ 2]/dq2
689
+ (40)
690
+ =
691
+ Htotal − 6m2
692
+
693
+ 2q2 HS
694
+ Htotal
695
+ .
696
+ (41)
697
+ For the D → V ℓ+νℓ decays, the longitudinal polarization fractions of the final vector mesons are given by [56]
698
+ FL(q2) =
699
+ HL
700
+
701
+ 1 + m2
702
+
703
+ 2q2
704
+
705
+ + 3m2
706
+
707
+ 2q2 HS
708
+ Htotal
709
+ ,
710
+ (42)
711
+ then its transverse polarization fraction FT (q2) = 1 − FL(q2).
712
+ Noted that, for q2-integration of X(q2) = Aℓ
713
+ F B, Cℓ
714
+ F , P ℓ
715
+ L, P ℓ
716
+ T , Aλ and FL, following Ref. [75], two ways of integration
717
+ are considered. The normalized q2-integrated observables ⟨X⟩ are calculated by separately integrating the numerators
718
+ and denominators with the same q2 bins. The “naively integrated” observables are obtained by
719
+ X =
720
+ 1
721
+ q2max − q2
722
+ min
723
+ � q2
724
+ max
725
+ q2
726
+ min
727
+ dq2X(q2).
728
+ (43)
729
+
730
+ 7
731
+ D.
732
+ Form factors
733
+ In order to obtain more precise observables, one also need considering the q2 dependence of the form factors for
734
+ the D → Pℓ+νℓ, D → V ℓ+νℓ and D → Sℓ+νℓ decays. The following cases will be considered in our analysis of
735
+ D → P/V ℓ+νℓ decays.
736
+ C1: All form factors are treated as constants without the hadronic momentum-transfer q2 dependence, and different
737
+ form factors are related by the SU(3) flavor symmetry, i.e., the SU(3) flavor breaking terms such as cM
738
+ 1,2 and
739
+ c′S
740
+ 1,2,3 in later Tabs. I, IV and VIII are ignored.
741
+ C2: With the SU(3) flavor symmetry, the modified pole model for the q2-dependence of Fi(q2) is used [76]
742
+ Fi(q2) =
743
+ Fi(0)
744
+
745
+ 1 −
746
+ q2
747
+ m2
748
+ pole
749
+ � �
750
+ 1 − αi
751
+ q4
752
+ m4
753
+ pole
754
+ �,
755
+ (44)
756
+ where mpole = mD∗+ for c → dℓ+νℓ transitions and mpole = mD∗+
757
+ s
758
+ for c → sℓ+νℓ transitions, and αi are free
759
+ parameters and are different for f P
760
+ + (q2), f P
761
+ 0 (q2), V (q2), A1(q2) and A2(q2), we will take αi ∈ [−1, 1] in our
762
+ analysis.
763
+ C3: With the SU(3) flavor symmetry, following Ref. [2]
764
+ Fi(q2) =
765
+ Fi(0)
766
+
767
+ 1 −
768
+ q2
769
+ m2
770
+ pole
771
+ � �
772
+ 1 − σ1i
773
+ q2
774
+ m2
775
+ pole + σ2i
776
+ q4
777
+ m4
778
+ pole
779
+
780
+ for f P
781
+ + (q2) and V (q2),
782
+ (45)
783
+ Fi(q2) =
784
+ Fi(0)
785
+
786
+ 1 − σ1i
787
+ q2
788
+ m2
789
+ pole + σ2i
790
+ q4
791
+ m4
792
+ pole
793
+
794
+ for f P
795
+ 0 (q2), A1(q2) and A2(q2),
796
+ (46)
797
+ where σ1,2 for the D → π and D → K∗ transitions from Ref. [2] will be used in our results.
798
+ C4: Considering the SU(3) flavor breaking terms such as cM
799
+ 1,2 and c′S
800
+ 1,2,3 in later Tabs. I, IV and VIII, the form factors
801
+ in C3 case are used.
802
+ As for the form factors of the D → Sℓ+νℓ decays, we find that the vector dominance model [77] and the double
803
+ pole model [78] give the similar SU(3) flavor symmetry predictions for the branching ratios of the D → Sℓ+νℓ decays.
804
+ The following form factors from the vector dominance model will be used in the numerical results,
805
+ Fi(q2) =
806
+ Fi(0)
807
+
808
+ 1 − q2/m2
809
+ pole
810
+
811
+ for f S
812
+ +(q2) and f S
813
+ 0 (q2).
814
+ (47)
815
+ After considering above q2 dependence, we only need to focus on the Fi(0). Since these form factors Fi(0) also
816
+ preserve the SU(3) flavor symmetry, the same relations in Tabs. I, IV and VIII will be used for Fi(0). If considering
817
+ the form factors ratios f+(0)/f0(0) = 1 for D → P/Sℓ+νℓ decays, rV ≡ V (0)/A1(0) = 1.46±0.07, r2 ≡ A2(0)/A1(0) =
818
+ 0.68 ± 0.06 in D0 → K∗−ℓ+νℓ decays from PDG [1] and the SU(3) flavor symmetry, there is only one free form factor
819
+ f P,S
820
+ +
821
+ (0) and A1(0) for the D → P/Sℓ+νℓ and D → V ℓ+νℓ decays, respectively. As a result, the branching ratios only
822
+ depend on one form factor f P
823
+ + (0), f S
824
+ +(0) or A1(0) and the CKM matrix element Vcq.
825
+
826
+ 8
827
+ III.
828
+ Numerical results
829
+ The theoretical input parameters and the experimental data within the 2σ errors from PDG [1] will be used in our
830
+ numerical results.
831
+ A.
832
+ D → Pℓ+νℓ decays
833
+ Considering both the SU(3) flavor symmetry and the SU(3) flavor breaking contributions, the hadronic helicity
834
+ amplitudes for the D → Pℓ+νℓ decays are given in Tab. I, in which we keep the CKM matrix element Vcs and Vcd
835
+ information for comparing conveniently. In addition, H(D+
836
+ s → π0ℓ+νℓ) are obtained by neutral meson mixing with
837
+ δ2 = (5.18 ± 0.71) × 10−4 in Ref. [76]. From Tab. I, we can easily see the hadronic helicity amplitude relations
838
+ of the D → Pℓ+νℓ decays.
839
+ There are four nonperturbative parameters A1,2,3,4 in the D → Pℓ+νℓ decays with
840
+ A1 ≡ cP
841
+ 0 + cP
842
+ 1 − 2cP
843
+ 2 , A2 ≡ cP
844
+ 0 − 2cP
845
+ 1 − 2cP
846
+ 2 , A3 ≡ cP
847
+ 0 + cP
848
+ 1 + cP
849
+ 2 and A4 ≡ cP
850
+ 0 − 2cP
851
+ 1 + cP
852
+ 2 . If neglecting the SU(3) flavor
853
+ breaking cP
854
+ 1 and cP
855
+ 2 terms, A1 = A2 = A3 = A4 = cP
856
+ 0 , and then all hadronic helicity amplitudes are related by only
857
+ one parameter cP
858
+ 0 .
859
+ Many decay modes of the D → Pe+νe, Pµ+νµ decays have been measured, and the experimental data with 2σ
860
+ errors are listed in the second column of Tab. II. One can constrain the parameters Ai by the present experimental
861
+ data within 2σ errors and then predict other not yet measured branching ratios. Four cases C1,2,3,4 will be considered
862
+ in our analysis. The numerical results of B(D → Pℓ+νℓ) in the C1, C2, C3 and C4 cases are given in the third, forth,
863
+ fifth and sixth columns of Tab. II, respectively. And our comments on the results are as follows.
864
+ • Results in C1 case:
865
+ From the third column of Tab. II, one can see that the SU(3) flavor symmetry predictions
866
+ of B(D → Pℓ+νℓ) in the C1 case are entirely consistent with all present experiential data. The not yet measured
867
+ branching ratios of the D+
868
+ s → π0e+νe, D+
869
+ s → π0µ+νµ, D+ → η′µ+νµ and D+
870
+ s → K0µ+νµ decays are predicted
871
+ TABLE I: The hadronic helicity amplitudes for the D → Pℓ+ν decays including both the SU(3) flavor symmetry and the
872
+ SU(3) flavor breaking contributions. A1 ≡ cP
873
+ 0 + cP
874
+ 1 − 2cP
875
+ 2 , A2 ≡ cP
876
+ 0 − 2cP
877
+ 1 − 2cP
878
+ 2 , A3 ≡ cP
879
+ 0 + cP
880
+ 1 + cP
881
+ 2 , A4 ≡ cP
882
+ 0 − 2cP
883
+ 1 + cP
884
+ 2 .
885
+ A1 = A2 = A3 = A4 = cP
886
+ 0 if neglecting the SU(3) flavor breaking cP
887
+ 1 and cP
888
+ 2 terms.
889
+ Hadronic helicity amplitudes
890
+ SU(3) flavor amplitudes
891
+ H(D0 → K−ℓ+νℓ)
892
+ A1V ∗
893
+ cs
894
+ H(D+ → K
895
+ 0ℓ+νℓ)
896
+ A1V ∗
897
+ cs
898
+ H(D+
899
+ s → ηℓ+νℓ)
900
+
901
+ − cosθP
902
+
903
+ 2/3 − sinθP /
904
+
905
+ 3�
906
+ A2V ∗
907
+ cs
908
+ H(D+
909
+ s → η′ℓ+νℓ)
910
+
911
+ − sinθP
912
+
913
+ 2/3 + cosθP /
914
+
915
+ 3�
916
+ A2V ∗
917
+ cs
918
+ H(D+
919
+ s → π0ℓ+νℓ)
920
+ −δ�
921
+ − cosθP
922
+
923
+ 2/3 − sinθP /
924
+
925
+ 3�
926
+ A2V ∗
927
+ cs
928
+ H(D0 → π−ℓ+νℓ)
929
+ A3V ∗
930
+ cd
931
+ H(D+ → π0ℓ+νℓ)
932
+ − 1
933
+
934
+ 2 A3V ∗
935
+ cd
936
+ H(D+ → ηℓ+νℓ)
937
+
938
+ cosθP /
939
+
940
+ 6 − sinθP /
941
+
942
+ 3�
943
+ A3V ∗
944
+ cd
945
+ H(D+ → η′ℓ+νℓ)
946
+
947
+ sinθP /
948
+
949
+ 6 + cosθP /
950
+
951
+ 3�
952
+ A3V ∗
953
+ cd
954
+ H(D+
955
+ s → K0ℓ+νℓ)
956
+ A4V ∗
957
+ cd
958
+
959
+ 9
960
+ TABLE II: Branching ratios of the D → Pℓ+ν decays. †Denotes that the corresponding experimental data from PDG [1] are
961
+ not used to constrain Ai in this case.
962
+ Branching ratios
963
+ Exp. data
964
+ Ones in C1
965
+ Ones in C2
966
+ Ones in C3
967
+ Ones in C4
968
+ Previous ones
969
+ B(D+ → K
970
+ 0e+νe)(×10−2)
971
+ 8.72 ± 0.18
972
+ 8.84 ± 0.06
973
+ 8.83 ± 0.07
974
+ 8.84 ± 0.06
975
+ 8.83 ± 0.07
976
+ B(D+ → π0e+νe)(×10−3)
977
+ 3.72 ± 0.34
978
+ 3.75 ± 0.05
979
+ 5.40 ± 1.33†
980
+ 5.04 ± 0.12†
981
+ 3.70 ± 0.11
982
+ B(D+ → ηe+νe)(×10−3)
983
+ 1.11 ± 0.14
984
+ 1.15 ± 0.05
985
+ 1.20 ± 0.05
986
+ 1.20 ± 0.05
987
+ 0.92 ± 0.08
988
+ B(D+ → η′e+νe)(×10−4)
989
+ 2.0 ± 0.8
990
+ 2.59 ± 0.14
991
+ 2.22 ± 0.34
992
+ 2.09 ± 0.14
993
+ 1.50 ± 0.20
994
+ B(D0 → K−e+νe)(×10−2)
995
+ 3.549 ± 0.052
996
+ 3.52 ± 0.02
997
+ 3.52 ± 0.03
998
+ 3.52 ± 0.03
999
+ 3.52 ± 0.02
1000
+ B(D0 → π−e+νe)(×10−3)
1001
+ 2.91 ± 0.08
1002
+ 2.95 ± 0.03
1003
+ 4.23 ± 1.03†
1004
+ 3.97 ± 0.09†
1005
+ 2.89 ± 0.06
1006
+ B(D+
1007
+ s → ηe+νe)(×10−2)
1008
+ 2.32 ± 0.16
1009
+ 2.37 ± 0.11
1010
+ 2.34 ± 0.14
1011
+ 2.36 ± 0.12
1012
+ 2.32 ± 0.16
1013
+ B(D+
1014
+ s → η′e+νe)(×10−3)
1015
+ 8.0 ± 1.4
1016
+ 9.05 ± 0.04
1017
+ 8.25 ± 1.13
1018
+ 8.04 ± 0.43
1019
+ 8.02 ± 1.38
1020
+ B(D+
1021
+ s → K0e+νe)(×10−3)
1022
+ 3.4 ± 0.8
1023
+ 3.10 ± 0.08
1024
+ 3.56 ± 0.39
1025
+ 3.54 ± 0.12
1026
+ 3.40 ± 0.80
1027
+ B(D+
1028
+ s → π0e+νe)(×10−5)
1029
+ · · ·
1030
+ 1.51 ± 0.07
1031
+ 2.10 ± 0.56
1032
+ 1.96 ± 0.10
1033
+ 1.92 ± 0.13
1034
+ 2.65 ± 0.38 [76]
1035
+ B(D+ → K
1036
+ 0µ+νµ)(×10−2)
1037
+ 8.76 ± 0.38
1038
+ 8.56 ± 0.06
1039
+ 8.69 ± 0.15
1040
+ 8.61 ± 0.06
1041
+ 8.61 ± 0.06
1042
+ B(D+ → π0µ+νµ)(×10−3)
1043
+ 3.50 ± 0.30
1044
+ 3.67 ± 0.05
1045
+ 5.32 ± 1.31†
1046
+ 4.96 ± 0.12†
1047
+ 3.64 ± 0.10
1048
+ B(D+ → ηµ+νµ)(×10−3)
1049
+ 1.04 ± 0.22
1050
+ 1.11 ± 0.05
1051
+ 1.18 ± 0.07
1052
+ 1.17 ± 0.05
1053
+ 0.90 ± 0.08
1054
+ 1.21 [7]
1055
+ 0.75±0.15 [79]
1056
+ B(D+ → η′µ+νµ)(×10−4)
1057
+ · · ·
1058
+ 2.42 ± 0.13
1059
+ 2.10 ± 0.33
1060
+ 1.96 ± 0.13
1061
+ 1.41 ± 0.19
1062
+ 2.11 [7]
1063
+ 1.06±0.20 [79]
1064
+ B(D0 → K−µ+νµ)(×10−2)
1065
+ 3.41 ± 0.08
1066
+ 3.41 ± 0.02
1067
+ 3.44 ± 0.05
1068
+ 3.43 ± 0.02
1069
+ 3.43 ± 0.02
1070
+ B(D0 → π−µ+νµ)(×10−3)
1071
+ 2.67 ± 0.24
1072
+ 2.89 ± 0.02
1073
+ 4.17 ± 1.01†
1074
+ 3.90 ± 0.09†
1075
+ 2.85 ± 0.06
1076
+ B(D+
1077
+ s → ηµ+νµ)(×10−2)
1078
+ 2.4 ± 1.0
1079
+ 2.30 ± 0.10
1080
+ 2.30 ± 0.17
1081
+ 2.31 ± 0.12
1082
+ 2.26 ± 0.16
1083
+ B(D+
1084
+ s → η′µ+νµ)(×10−2)
1085
+ 1.1 ± 1.0
1086
+ 0.86 ± 0.03
1087
+ 0.79 ± 0.11
1088
+ 0.77 ± 0.04
1089
+ 0.76 ± 0.13
1090
+ B(D+
1091
+ s → K0µ+νµ)(×10−3)
1092
+ · · ·
1093
+ 3.01 ± 0.08
1094
+ 3.51 ± 0.38
1095
+ 3.46 ± 0.11
1096
+ 3.33 ± 0.78
1097
+ 3.9 [7]
1098
+ 3.85±0.76 [79]
1099
+ B(D+
1100
+ s → π0µ+νµ)(×10−5)
1101
+ · · ·
1102
+ 1.48 ± 0.07
1103
+ 2.09 ± 0.53
1104
+ 1.93 ± 0.10
1105
+ 1.89 ± 0.13
1106
+ B(D+
1107
+ s → π0τ +ντ)(×10−10)
1108
+ · · ·
1109
+ 3.45 ± 0.21
1110
+ 160.34 ± 149.53
1111
+ 4.20 ± 0.26
1112
+ 4.08 ± 0.34
1113
+ (27 ∼ 36) [76]
1114
+ Rµ/e(D+ → K
1115
+ 0ℓ+νℓ)
1116
+ 0.969
1117
+ 0.984 ± 0.013
1118
+ 0.974
1119
+ 0.974
1120
+ Rµ/e(D+ → π0ℓ+νℓ)
1121
+ 0.977
1122
+ 1.009 ± 0.026
1123
+ 0.984
1124
+ 0.984
1125
+ Rµ/e(D+ → ηℓ+νℓ)
1126
+ 0.967
1127
+ 0.984 ± 0.014
1128
+ 0.973
1129
+ 0.973
1130
+ Rµ/e(D+ → η′ℓ+νℓ)
1131
+ 0.935
1132
+ 0.948 ± 0.012
1133
+ 0.940
1134
+ 0.940
1135
+ Rµ/e(D0 → K−ℓ+νℓ)
1136
+ 0.969
1137
+ 0.984 ± 0.013
1138
+ 0.974
1139
+ 0.974
1140
+ Rµ/e(D0 → π−ℓ+νℓ)
1141
+ 0.977
1142
+ 1.008 ± 0.026
1143
+ 0.984
1144
+ 0.984
1145
+ Rµ/e(D+
1146
+ s → ηℓ+νℓ)
1147
+ 0.971
1148
+ 0.987 ± 0.013
1149
+ 0.976
1150
+ 0.976
1151
+ Rµ/e(D+
1152
+ s → η′ℓ+νℓ)
1153
+ 0.946
1154
+ 0.958 ± 0.011
1155
+ 0.952
1156
+ 0.952
1157
+ Rµ/e(D+
1158
+ s → K0ℓ+νℓ)
1159
+ 0.973
1160
+ 0.992 ± 0.016
1161
+ 0.978
1162
+ 0.978
1163
+ Rµ/e(D+
1164
+ s → π0ℓ+νℓ)
1165
+ 0.980
1166
+ 1.010 ± 0.025
1167
+ 0.985
1168
+ 0.985
1169
+
1170
+ 10
1171
+ on the order of O(10−3 − 10−5), nevertheless, B(D+
1172
+ s → π0τ +ντ) is predicted on the order of O(10−10) due to
1173
+ its narrow phase space and (q2 − m2
1174
+ τ)2 suppression of the differential branching ratios in Eq. (32).
1175
+ • Results in C2,3 cases:
1176
+ The numerical results in C2,3 cases are similar. The experimental upper limits of
1177
+ B(D+ → π0ℓ+νℓ) and B(D0 → π−ℓ+νℓ) have not been used to constrain the predictions of B(D → Pℓ+νℓ), since
1178
+ the upper limits of the predictions of B(D+ → π0ℓ+νℓ) and B(D0 → π−ℓ+νℓ) by the SU(3) flavor symmetry
1179
+ in C2,3 cases are slightly larger than their experimental data. Other SU(3) flavor symmetry predictions are
1180
+ consistent with their experimental data within 2σ errors.
1181
+ • Results in C4 case:
1182
+ As given in the sixth column of Tab. II, if considering both the hadronic momentum-
1183
+ transfer q2 dependence of the form factors and the SU(3) flavor breaking contributions, all SU(3) flavor symmetry
1184
+ predictions are consistent with their experimental data within 2σ errors. For some decays, the errors of the
1185
+ theoretical predictions are much smaller than ones of their experimental data.
1186
+ • The previous predictions for the not yet measured branching ratios are listed in the last column of Tab. II, our
1187
+ predictions are in the same order of magnitude as previous ones for the D → Pe+νe, Pµ+νµ decays. And our
1188
+ prediction of B(D+
1189
+ s → π0τ +ντ) is one order smaller than previous one in Ref. [76].
1190
+ • In addition, the lepton flavor universality parameters Rµ/e(D → Pℓ+νℓ) are also given in Tab. II, since many
1191
+ terms are canceled in the ratios, these predictions are quite accurate, and all processes have similar results.
1192
+ For the q2 dependence of the differential branching ratios of the D → Pℓ+νℓ decays with present experimental
1193
+ bounds, we only show the not yet measured processes D+ → η′µ+νµ, D+
1194
+ s → K0µ+νµ, D+
1195
+ s → π0µ+νµ and D+
1196
+ s →
1197
+ π0τ +ντ in Fig. 1. We do not show dB(D+
1198
+ s → π0e+νe)/dq2, since it is similar to dB(D+
1199
+ s → π0µ+νµ)/dq2 in Fig. 1
1200
+ C
1201
+ 1
1202
+ C
1203
+ 2
1204
+ C
1205
+ 3
1206
+ C
1207
+ 4
1208
+ dB(D
1209
+ +
1210
+ s
1211
+ 0
1212
+ +
1213
+ )/dq
1214
+ 2
1215
+ ( x10
1216
+ -10
1217
+ )
1218
+ q
1219
+ 2
1220
+
1221
+
1222
+
1223
+
1224
+ FIG. 1: The q2 dependence of the differential branching ratios for some D → Pℓ+νℓ with present experimental bounds.
1225
+
1226
+ qB(D
1227
+ 0.0
1228
+ S.0
1229
+ .0
1230
+ 0
1231
+
1232
+ →>,")qd
1233
+ Se
1234
+ 8(C)
1235
+ d.
1236
+ S
1237
+ 3
1238
+ 4
1239
+ Q
1240
+ 00
1241
+ 0C
1242
+ Sc
1243
+ c
1244
+ (ε)
1245
+ d.4
1246
+ a.0
1247
+ 8.0
1248
+ 0.10.8
1249
+ 1.8
1250
+ 0S.8
1251
+ 3'
1252
+ 001
1253
+ 5
1254
+ 3
1255
+ 4qB(D→>K^")/qd
1256
+ 0.0
1257
+ 2.0
1258
+ 0
1259
+ xXoX
1260
+ S3(q)
1261
+ 3'S
1262
+ 3'3
1263
+ 3
1264
+ 003
1265
+ 3'4
1266
+ 0
1267
+ +ix
1268
+ Q
1269
+ 0
1270
+ (p)
1271
+ d.0.1
1272
+ 2.1
1273
+ s'o
1274
+ 20
1275
+ 0
1276
+ 0'42.0
1277
+ 1
1278
+ gB
1279
+ 0.0
1280
+ 2
1281
+ 个←
1282
+ 2.00.1
1283
+ 3
1284
+ 2.1
1285
+ s'o11
1286
+ 0.0
1287
+ 0.5
1288
+ 1.0
1289
+ 1.5
1290
+ 2.0
1291
+ 2.5
1292
+ -20
1293
+ -15
1294
+ -10
1295
+ -5
1296
+ 0
1297
+ 0.0
1298
+ 0.5
1299
+ 1.0
1300
+ 1.5
1301
+ 2.0
1302
+ 2.5
1303
+ -1.6
1304
+ -1.2
1305
+ -0.8
1306
+ -0.4
1307
+ 0.0
1308
+ 0.0
1309
+ 0.5
1310
+ 1.0
1311
+ 1.5
1312
+ 2.0
1313
+ 2.5
1314
+ 0.0
1315
+ 0.3
1316
+ 0.6
1317
+ 0.9
1318
+ 1.2
1319
+ 0.0
1320
+ 0.5
1321
+ 1.0
1322
+ 1.5
1323
+ 2.0
1324
+ 2.5
1325
+ -1.0
1326
+ -0.8
1327
+ -0.6
1328
+ -0.4
1329
+ -0.2
1330
+ 0.0
1331
+ ( d )
1332
+ ( c )
1333
+ ( b )
1334
+ ( a )
1335
+
1336
+
1337
+ e
1338
+ in unit of 10
1339
+ -6
1340
+
1341
+ in unit of 10
1342
+ -2
1343
+ dA
1344
+ FB
1345
+ (D
1346
+ +
1347
+ s
1348
+ K
1349
+ 0
1350
+ l
1351
+ +
1352
+ l
1353
+ )/dq
1354
+ 2
1355
+ q
1356
+ 2
1357
+
1358
+
1359
+ e
1360
+
1361
+ dC
1362
+ l
1363
+ F
1364
+ (D
1365
+ +
1366
+ s
1367
+ K
1368
+ 0
1369
+ l
1370
+ +
1371
+ l
1372
+ )/dq
1373
+ 2
1374
+ q
1375
+ 2
1376
+
1377
+
1378
+ e
1379
+
1380
+ dP
1381
+ l
1382
+ L
1383
+ (D
1384
+ +
1385
+ s
1386
+ K
1387
+ 0
1388
+ l
1389
+ +
1390
+ l
1391
+ )/dq
1392
+ 2
1393
+ q
1394
+ 2
1395
+
1396
+
1397
+ e
1398
+
1399
+ dP
1400
+ l
1401
+ T
1402
+ (D
1403
+ +
1404
+ s
1405
+ K
1406
+ 0
1407
+ l
1408
+ +
1409
+ l
1410
+ )/dq
1411
+ 2
1412
+ q
1413
+ 2
1414
+ FIG. 2:
1415
+ The differential forward-backward asymmetries, differential lepton-side convexity parameters, differential longitudinal
1416
+ lepton polarizations and differential transverse lepton polarizations for the D+
1417
+ s → K0ℓ+νℓ decays in the C3 case.
1418
+ (c). From Fig. 1, one can see that present experimental measurements give quite strong bounds on the differential
1419
+ branching ratios of D+ → η′µ+νµ, D+
1420
+ s → π0µ+νµ and D+
1421
+ s → π0τ +ντ decays in the C1, C3 and C4 cases as well as
1422
+ D+
1423
+ s → K0µ+νµ decays in the C1 and C3 cases, and all predictions of the four differential branching ratios in the C2
1424
+ case have large error due to the form factor choice. Comparing with dB(D+
1425
+ s → π0µ+νµ)/dq2 in Fig. 1 (c), as shown
1426
+ in Fig. 1 (d), dB(D+
1427
+ s → π0τ +ντ)/dq2 is suppressed about the order of O(10−4) by mτ.
1428
+ The forward-backward asymmetries Aℓ
1429
+ F B, the lepton-side convexity parameters Cℓ
1430
+ F , the longitudinal polarizations
1431
+ of the final charged leptons P ℓ
1432
+ L and the transverse polarizations of the final charged leptons P ℓ
1433
+ T with two ways of
1434
+ integration for the D → Pℓ+νℓ decays could also be obtained. These predictions are very accurate, and they are
1435
+ similar to each other in the four C1,2,3,4 cases. So we only give the predictions within the C3 case in Tab. III for
1436
+ examples. From Tab. III, one can see that the predictions are obviously different between two ways of q2 integration,
1437
+ and the slight difference in the same way of q2 integration is due to the different decay phase spaces. For displaying
1438
+ the differences between the D → Pe+νe and D → Pµ+νµ decays, we take D+
1439
+ s → K0e+νe and D+
1440
+ s → K0µ+νµ
1441
+ as examples. The differential forward-backward asymmetries, the differential lepton-side convexity parameters, the
1442
+ differential longitudinal lepton polarizations and the differential transverse lepton polarizations of D+
1443
+ s → K0e+νe and
1444
+ D+
1445
+ s → K0µ+νµ decays within the C3 case are displayed in Fig. 2. And one can see that differential observables
1446
+ between ℓ = e and ℓ = µ are obviously different, specially in the low and high q2 ranges.
1447
+
1448
+ 12
1449
+ TABLE III: Quantities ⟨X⟩ and X of the D → Pℓ+ν in C3 case.
1450
+ Decay modes
1451
+ ⟨Aℓ
1452
+ F B⟩
1453
+ Ae
1454
+ F B(×10−6)
1455
+ Aµ,τ
1456
+ F B(×10−2)
1457
+ ⟨Cℓ
1458
+ F ⟩
1459
+ Cℓ
1460
+ F
1461
+ ⟨P ℓ
1462
+ L⟩
1463
+ P ℓ
1464
+ L
1465
+ ⟨P ℓ
1466
+ T ⟩
1467
+ P e
1468
+ T (×10−3)
1469
+ P µ,τ
1470
+ T
1471
+ D+ → K
1472
+ 0e+νe
1473
+ −0.087
1474
+ −3.254 ± 0.001
1475
+ −1.239
1476
+ −1.500
1477
+ 0.768
1478
+ 1.000
1479
+ −0.273
1480
+ −2.442 ± 0.001
1481
+ D+ → π0e+νe
1482
+ −0.083
1483
+ −2.054 ± 0.000
1484
+ −1.252
1485
+ −1.500
1486
+ 0.780
1487
+ 1.000
1488
+ −0.260
1489
+ −1.730 ± 0.000
1490
+ D+ → ηe+νe
1491
+ −0.087
1492
+ −3.476 ± 0.001
1493
+ −1.239
1494
+ −1.500
1495
+ 0.768
1496
+ 1.000
1497
+ −0.273
1498
+ −2.490 ± 0.000
1499
+ D+ → η′e+νe
1500
+ −0.093
1501
+ −7.075 ± 0.003
1502
+ −1.222
1503
+ −1.500
1504
+ 0.753
1505
+ 1.000
1506
+ −0.290
1507
+ −3.890 ± 0.001
1508
+ D0 → K−e+νe
1509
+ −0.087
1510
+ −3.259 ± 0.001
1511
+ ��1.239
1512
+ −1.500
1513
+ 0.768
1514
+ 1.000
1515
+ −0.273
1516
+ −2.446 ± 0.001
1517
+ D0 → π−e+νe
1518
+ −0.083
1519
+ −2.077 ± 0.000
1520
+ −1.252
1521
+ −1.500
1522
+ 0.779
1523
+ 1.000
1524
+ −0.260
1525
+ −1.751 ± 0.000
1526
+ D+
1527
+ s → ηe+νe
1528
+ −0.086
1529
+ −3.033 ± 0.001
1530
+ −1.242
1531
+ −1.500
1532
+ 0.770
1533
+ 1.000
1534
+ −0.270
1535
+ −2.300 ± 0.001
1536
+ D+
1537
+ s → η′e+νe
1538
+ −0.091
1539
+ −5.829 ± 0.003
1540
+ −1.226
1541
+ −1.500
1542
+ 0.757
1543
+ 1.000
1544
+ −0.286
1545
+ −3.484 ± 0.001
1546
+ D+
1547
+ s → K0e+νe
1548
+ −0.085
1549
+ −2.814 ± 0.001
1550
+ −1.245
1551
+ −1.500
1552
+ 0.773
1553
+ 1.000
1554
+ −0.267
1555
+ −2.118 ± 0.000
1556
+ D+
1557
+ s → π0e+νe
1558
+ −0.082
1559
+ −1.850 ± 0.001
1560
+ −1.254
1561
+ −1.500
1562
+ 0.781
1563
+ 1.000
1564
+ −0.258
1565
+ −1.634 ± 0.001
1566
+ D+ → K
1567
+ 0µ+νµ
1568
+ −0.226
1569
+ −4.278 ± 0.001
1570
+ −0.822
1571
+ −1.352
1572
+ 0.394
1573
+ 0.851
1574
+ −0.655
1575
+ −0.414
1576
+ D+ → π0µ+νµ
1577
+ −0.201
1578
+ −2.810 ± 0.000
1579
+ −0.897
1580
+ −1.405
1581
+ 0.462
1582
+ 0.907
1583
+ −0.602
1584
+ −0.310
1585
+ D+ → ηµ+νµ
1586
+ −0.227
1587
+ −4.490 ± 0.001
1588
+ −0.819
1589
+ −1.347
1590
+ 0.391
1591
+ 0.846
1592
+ −0.657
1593
+ −0.419
1594
+ D+ → η′µ+νµ
1595
+ −0.263
1596
+ −8.097 ± 0.003
1597
+ −0.708
1598
+ −1.213
1599
+ 0.287
1600
+ 0.703
1601
+ −0.725
1602
+ −0.581
1603
+ D0 → K−µ+νµ
1604
+ −0.226
1605
+ −4.285 ± 0.001
1606
+ −0.822
1607
+ −1.352
1608
+ 0.393
1609
+ 0.850
1610
+ −0.656
1611
+ −0.414
1612
+ D0 → π−µ+νµ
1613
+ −0.201
1614
+ −2.844 ± 0.001
1615
+ −0.895
1616
+ −1.407
1617
+ 0.461
1618
+ 0.910
1619
+ −0.603
1620
+ −0.313
1621
+ D+
1622
+ s → ηµ+νµ
1623
+ −0.221
1624
+ −4.001 ± 0.001
1625
+ −0.836
1626
+ −1.364
1627
+ 0.406
1628
+ 0.864
1629
+ −0.646
1630
+ −0.394
1631
+ D+
1632
+ s → η′µ+νµ
1633
+ −0.254
1634
+ −6.952 ± 0.003
1635
+ −0.736
1636
+ −1.254
1637
+ 0.314
1638
+ 0.747
1639
+ −0.709
1640
+ −0.540
1641
+ D+
1642
+ s → K0µ+νµ
1643
+ −0.215
1644
+ −3.701 ± 0.001
1645
+ −0.856
1646
+ −1.377
1647
+ 0.425
1648
+ 0.879
1649
+ −0.632
1650
+ −0.367
1651
+ D+
1652
+ s → π0µ+νµ
1653
+ −0.197
1654
+ −2.571 ± 0.001
1655
+ −0.907
1656
+ −1.417
1657
+ 0.472
1658
+ 0.920
1659
+ −0.594
1660
+ −0.295
1661
+ D+
1662
+ s → π0τ +ντ
1663
+ −0.281
1664
+ −27.429 ± 0.105−0.211 ± 0.003−0.212 ± 0.003−0.868 ± 0.001−0.873 ± 0.001−0.447 ± 0.002−0.437 ± 0.002
1665
+ B.
1666
+ D → V ℓ+νℓ decays
1667
+ The hadronic helicity amplitudes for the D → V ℓ+νℓ decays are given in Tab. IV. There are four nonperturbative
1668
+ parameters B1,2,3,4 in the D → V ℓ+νℓ decay modes.
1669
+ If neglecting the SU(3) flavor breaking cV
1670
+ 1 and cV
1671
+ 2 terms,
1672
+ B1 = B2 = B3 = B4 = cV
1673
+ 0 , and then all hadronic helicity amplitudes of D → V ℓ+νℓ are related by only one parameter
1674
+ cV
1675
+ 0 .
1676
+ Among the D → V ℓ+νℓ decay modes, 13 branching ratios have been measured, and 2 branching ratios have been
1677
+ upper limited by the experiments. The experimental data with 2σ errors are listed in the second column of Tab. V.
1678
+ Now we use the listed experimental data to constrain the parameters Bi and then predict other not yet measured and
1679
+ not yet well measured branching ratios. The numerical results of B(D → V ℓ+νℓ) in the C1, C2, C3 and C4 cases are
1680
+ given in the third, forth, fifth and sixth columns of Tab. V, respectively.
1681
+ The results in the C1, C2 and C3 cases are very similar. Since the SU(3) flavor symmetry predictions of B(D+ →
1682
+ ωe+νe) and B(D0 → ρ−µ+νµ) are slightly larger than their experimental data within 2σ errors in the three cases, we
1683
+
1684
+ 13
1685
+ TABLE IV: The hadronic helicity amplitudes for D → V ℓ+ν decays including both the SU(3) flavor symmetry and the SU(3)
1686
+ flavor breaking contributions. B1 = cV
1687
+ 0 +cV
1688
+ 1 −2cV
1689
+ 2 , B2 = cV
1690
+ 0 −2cV
1691
+ 1 −2cV
1692
+ 2 , B3 = cV
1693
+ 0 +cV
1694
+ 1 +cV
1695
+ 2 , B4 = cV
1696
+ 0 −2cV
1697
+ 1 +cV
1698
+ 2 . If neglecting
1699
+ the SU(3) flavor breaking cV
1700
+ 1 and cV
1701
+ 2 terms, B1 = B2 = B3 = B4 = cV
1702
+ 0 .
1703
+ Hadronic helicity amplitudes
1704
+ SU(3) IRA amplitudes
1705
+ H(D0 → K∗−ℓ+νℓ)
1706
+ B1V ∗
1707
+ cs
1708
+ H(D+ → K
1709
+ ∗0ℓ+νℓ)
1710
+ B1V ∗
1711
+ cs
1712
+ H(D+
1713
+ s → φℓ+νℓ)
1714
+
1715
+ − cosθV
1716
+
1717
+ 2/3 − sinθV /
1718
+
1719
+ 3�
1720
+ B2V ∗
1721
+ cs
1722
+ H(D+
1723
+ s → ωℓ+νℓ)
1724
+
1725
+ − sinθV
1726
+
1727
+ 2/3 + cosθV /
1728
+
1729
+ 3�
1730
+ B2V ∗
1731
+ cs
1732
+ H(D0 → ρ−ℓ+νℓ)
1733
+ B3V ∗
1734
+ cd
1735
+ H(D+ → ρ0ℓ+νℓ)
1736
+ − 1
1737
+
1738
+ 2 B3V ∗
1739
+ cd
1740
+ H(D+ → φℓ+νℓ)
1741
+
1742
+ cosθV /
1743
+
1744
+ 6 − sinθV /
1745
+
1746
+ 3�
1747
+ B3V ∗
1748
+ cd
1749
+ H(D+ → ωℓ+νℓ)
1750
+
1751
+ sinθV /
1752
+
1753
+ 6 + cosθV /
1754
+
1755
+ 3�
1756
+ B3V ∗
1757
+ cd
1758
+ H(D+
1759
+ s → K∗0ℓ+νℓ)
1760
+ B4V ∗
1761
+ cd
1762
+ do not use them to constrain the nonperturbative parameter cV
1763
+ 0 . One can see that the prediction of B(D0 → ρ−µ+νµ)
1764
+ is agree with its experimental data within 3σ errors, nevertheless, the prediction of B(D+ → ωe+νe) still slightly
1765
+ larger than experimental data within 3σ errors. B(D+
1766
+ s → K∗0µ+νµ) and B(D+
1767
+ s → ωe+νe, ωµ+νµ) are predicted
1768
+ on the order of O(10−3) and O(10−5), respectively.
1769
+ And they could be measured in BESIII, LHCb and BelleII
1770
+ experiments. In the C4 case, as given in the sixth column of Tab. V, after considering both the hadronic momentum-
1771
+ transfer q2 dependence of the form factors and the SU(3) flavor breaking contributions, all SU(3) flavor symmetry
1772
+ predictions are consistent with their experimental data within 2σ errors. Among relevant not yet measured decays,
1773
+ B(D+
1774
+ s → K∗0µ+νµ) is calculated in the SM using light-cone sum rules [79] and in the relativistic quark model [7],
1775
+ B(D+
1776
+ s → K∗0µ+νµ) = (2.23 ± 0.32) × 10−3 [79] and 2.0 × 10−3 [7], and our predictions of B(D+
1777
+ s → K∗0µ+νµ) in the
1778
+ C1, C2, C3 and C4 cases are coincident with previous ones in Refs. [7, 79]. In addition, the lepton flavor universality
1779
+ parameters Rµ/e(D → V ℓ+νℓ) are also given in Tab. V. Since many terms are canceled in the ratios, these predictions
1780
+ of the lepton flavor universality parameters are quite accurate, and our predictions in all four cases are similar to each
1781
+ other.
1782
+ For the q2 dependence of the differential branching ratios of the D → V ℓ+νℓ decays with present experimental
1783
+ bounds, we only show the not yet measured processes D+ → φµ+νµ, D+
1784
+ s → ωµ+νµ and D+
1785
+ s → K∗0µ+νµ in Fig. 3.
1786
+ The differential branching ratios of D+ → φe+νe (D+
1787
+ s → ωe+νe) is similar to D+ → φµ+νµ (D+
1788
+ s → ωµ+νµ), so we
1789
+ do not shown them in Fig. 3. From Fig. 3, one can see that present experiment data give quite strong bounds on all
1790
+ differential branching ratios of D+ → φµ+νµ, D+
1791
+ s → ωµ+νµ and D+
1792
+ s → K∗0µ+νµ decays in the C1, C2 and C3 cases.
1793
+ The prediction of dB(D+ → φµ+νµ)/dq2 in the C4 case could be distinguished from ones in the C1,2,3 cases within
1794
+ the middle range of q2. And the error of dB(D+
1795
+ s → K∗0µ+νµ)/dq2 in the C4 case is obviously larger than ones in
1796
+ C1,2,3 cases.
1797
+ The forward-backward asymmetries Aℓ
1798
+ F B, the lepton-side convexity parameters Cℓ
1799
+ F , the longitudinal polarizations
1800
+ P ℓ
1801
+ L, the transverse polarizations P ℓ
1802
+ T , the lepton spin asymmetries Aλ and the longitudinal polarization fractions of the
1803
+ final vector mesons FL with two ways of integration have also been predicted in the four cases. Since many theoretical
1804
+
1805
+ 14
1806
+ TABLE V: Branching ratios of the D → V ℓ+ν within 2σ errors.
1807
+ †The experimental data of B(D+ → ωe+νe) and B(D0 →
1808
+ ρ−µ+νµ) from PDG [1] are not used in the C1,2,3 cases.
1809
+ Branching ratios
1810
+ Exp. data
1811
+ Ones in C1
1812
+ Ones in C2
1813
+ Ones in C3
1814
+ Ones in C4
1815
+ B(D+ → K
1816
+ ∗0e+νe)(×10−2)
1817
+ 5.40 ± 0.20
1818
+ 5.44 ± 0.15
1819
+ 5.42 ± 0.18
1820
+ 5.36 ± 0.08
1821
+ 5.44 ± 0.16
1822
+ B(D+ → ρ0e+νe)(×10−3)
1823
+ 2.18+0.34
1824
+ −0.50
1825
+ 2.31 ± 0.07
1826
+ 2.39 ± 0.13
1827
+ 2.33 ± 0.05
1828
+ 1.83 ± 0.15
1829
+ B(D+ → ωe+νe)(×10−3)
1830
+ 1.69 ± 0.22
1831
+ 2.24 ± 0.07†
1832
+ 2.33 ± 0.12†
1833
+ 2.26 ± 0.04†
1834
+ 1.77 ± 0.14
1835
+ B(D+ → φe+νe)(×10−7)
1836
+ < 130
1837
+ 3.13 ± 0.12
1838
+ 3.11 ± 0.19
1839
+ 3.07 ± 0.07
1840
+ 2.38 ± 0.23
1841
+ B(D0 → K∗−e+νe)(×10−2)
1842
+ 2.15 ± 0.32
1843
+ 2.12 ± 0.09
1844
+ 2.13 ± 0.10
1845
+ 2.08 ± 0.06
1846
+ 2.13 ± 0.10
1847
+ B(D0 → ρ−e+νe)(×10−3)
1848
+ 1.50 ± 0.24
1849
+ 1.79 ± 0.08
1850
+ 1.86 ± 0.11
1851
+ 1.80 ± 0.06
1852
+ 1.41 ± 0.13
1853
+ B(D+
1854
+ s → φe+νe)(×10−2)
1855
+ 2.39 ± 0.32
1856
+ 2.46 ± 0.12
1857
+ 2.43 ± 0.14
1858
+ 2.40 ± 0.10
1859
+ 2.39 ± 0.32
1860
+ B(D+
1861
+ s → ωe+νe)(×10−5)
1862
+ < 200
1863
+ 2.45 ± 0.13
1864
+ 2.56 ± 0.20
1865
+ 2.47 ± 0.10
1866
+ 2.49 ± 0.38
1867
+ B(D+
1868
+ s → K∗0e+νe)(×10−3)
1869
+ 2.15 ± 0.56
1870
+ 2.17 ± 0.10
1871
+ 2.25 ± 0.13
1872
+ 2.17 ± 0.08
1873
+ 2.15 ± 0.56
1874
+ B(D+ → K
1875
+ ∗0µ+νµ)(×10−2)
1876
+ 5.27 ± 0.30
1877
+ 5.12 ± 0.15
1878
+ 5.13 ± 0.16
1879
+ 5.05 ± 0.08
1880
+ 5.12 ± 0.15
1881
+ B(D+ → ρ0µ+νµ)(×10−3)
1882
+ 2.4 ± 0.8
1883
+ 2.19 ± 0.07
1884
+ 2.29 ± 0.13
1885
+ 2.22 ± 0.04
1886
+ 1.74 ± 0.14
1887
+ B(D+ → ωµ+νµ)(×10−3)
1888
+ 1.77 ± 0.42
1889
+ 2.13 ± 0.06
1890
+ 2.23 ± 0.12
1891
+ 2.15 ± 0.04
1892
+ 1.68 ± 0.13
1893
+ B(D+ → φµ+νµ)(×10−7)
1894
+ · · ·
1895
+ 2.89 ± 0.11
1896
+ 2.89 ± 0.17
1897
+ 2.84 ± 0.07
1898
+ 2.20 ± 0.21
1899
+ B(D0 → K∗−µ+νµ)(×10−2)
1900
+ 1.89 ± 0.48
1901
+ 1.99 ± 0.09
1902
+ 2.01 ± 0.09
1903
+ 1.96 ± 0.06
1904
+ 2.01 ± 0.10
1905
+ B(D0 → ρ−µ+νµ)(×10−3)
1906
+ 1.35 ± 0.26
1907
+ 1.70 ± 0.07†
1908
+ 1.78 ± 0.11†
1909
+ 1.72 ± 0.06†
1910
+ 1.34 ± 0.13
1911
+ B(D+
1912
+ s → φµ+νµ)(×10−2)
1913
+ 1.9 ± 1.0
1914
+ 2.30 ± 0.12
1915
+ 2.29 ± 0.12
1916
+ 2.25 ± 0.09
1917
+ 2.24 ± 0.30
1918
+ B(D+
1919
+ s → ωµ+νµ)(×10−5)
1920
+ · · ·
1921
+ 2.34 ± 0.12
1922
+ 2.47 ± 0.19
1923
+ 2.37 ± 0.09
1924
+ 2.38 ± 0.36
1925
+ B(D+
1926
+ s → K∗0µ+νµ)(×10−3)
1927
+ · · ·
1928
+ 2.06 ± 0.10
1929
+ 2.15 ± 0.13
1930
+ 2.07 ± 0.08
1931
+ 2.05 ± 0.53
1932
+ Rµ/e(D+ → K
1933
+ ∗0ℓ+νℓ)
1934
+ 0.939 ± 0.001
1935
+ 0.944 ± 0.004
1936
+ 0.941 ± 0.001
1937
+ 0.941 ± 0.001
1938
+ Rµ/e(D+ → ρ0ℓ+νℓ)
1939
+ 0.950 ± 0.001
1940
+ 0.956 ± 0.005
1941
+ 0.952 ± 0.001
1942
+ 0.952 ± 0.001
1943
+ Rµ/e(D+ → ωℓ+νℓ)
1944
+ 0.950 ± 0.001
1945
+ 0.956 ± 0.005
1946
+ 0.952 ± 0.001
1947
+ 0.952 ± 0.001
1948
+ Rµ/e(D+ → φℓ+νℓ)
1949
+ 0.923 ± 0.001
1950
+ 0.928 ± 0.005
1951
+ 0.925 ± 0.001
1952
+ 0.925 ± 0.001
1953
+ Rµ/e(D0 → K∗−ℓ+νℓ)
1954
+ 0.939 ± 0.001
1955
+ 0.944 ± 0.004
1956
+ 0.941 ± 0.001
1957
+ 0.941 ± 0.001
1958
+ Rµ/e(D0 → ρ−ℓ+νℓ)
1959
+ 0.950 ± 0.001
1960
+ 0.956 ± 0.005
1961
+ 0.952 ± 0.001
1962
+ 0.952 ± 0.001
1963
+ Rµ/e(D+
1964
+ s → φℓ+νℓ)
1965
+ 0.937 ± 0.001
1966
+ 0.942 ± 0.004
1967
+ 0.939 ± 0.001
1968
+ 0.939 ± 0.001
1969
+ Rµ/e(D+
1970
+ s → ωℓ+νℓ)
1971
+ 0.957 ± 0.001
1972
+ 0.963 ± 0.004
1973
+ 0.959 ± 0.001
1974
+ 0.959 ± 0.001
1975
+ Rµ/e(D+
1976
+ s → K∗0ℓ+νℓ)
1977
+ 0.949 ± 0.001
1978
+ 0.955 ± 0.005
1979
+ 0.951 ± 0.001
1980
+ 0.951 ± 0.001
1981
+ uncertainties are canceled in the ratios, these predictions are very accurate. These predictions are similar to each
1982
+ other in the four cases, and we only list the results in the C3 case in Tabs. VI-VII for examples. One can see that
1983
+ the predictions are obviously different between two ways of q2 integration, and they are also quite different between
1984
+ D → V e+νe and D → V µ+νµ decays.
1985
+ The differential observables of D+
1986
+ s → K∗0ℓ+νℓ decays in the C3 case are displayed in Fig. 4. One can see that,
1987
+ in the low q2 ranges, the differential observables expect dFL(D+
1988
+ s → K∗0ℓ+νℓ)/dq2 are obviously different between
1989
+ decays with ℓ = e and ℓ = µ.
1990
+
1991
+ 15
1992
+ C
1993
+ 3
1994
+ C
1995
+ 4
1996
+ dB(D
1997
+ +
1998
+ s
1999
+ K
2000
+ *0
2001
+ +
2002
+ )/dq
2003
+ 2
2004
+ ( x10
2005
+ -3
2006
+ )
2007
+ q
2008
+ 2
2009
+ FIG. 3: The q2 dependence of the differential branching ratios for some not yet measured D → V µ+νµ decays with present
2010
+ experimental bounds.
2011
+ 0.0
2012
+ 0.4
2013
+ 0.8
2014
+ 1.2
2015
+ -0.5
2016
+ -0.4
2017
+ -0.3
2018
+ -0.2
2019
+ -0.1
2020
+ 0.0
2021
+ 0.0
2022
+ 0.4
2023
+ 0.8
2024
+ 1.2
2025
+ -2.0
2026
+ -1.5
2027
+ -1.0
2028
+ -0.5
2029
+ 0.0
2030
+ 0.5
2031
+ 0.0
2032
+ 0.4
2033
+ 0.8
2034
+ 1.2
2035
+ 0.0
2036
+ 0.4
2037
+ 0.8
2038
+ 1.2
2039
+ 0.0
2040
+ 0.4
2041
+ 0.8
2042
+ 1.2
2043
+ -6
2044
+ -4
2045
+ -2
2046
+ 0
2047
+ 0.0
2048
+ 0.4
2049
+ 0.8
2050
+ 1.2
2051
+ 0.0
2052
+ 0.4
2053
+ 0.8
2054
+ 1.2
2055
+ 0.0
2056
+ 0.4
2057
+ 0.8
2058
+ 1.2
2059
+ 0.0
2060
+ 0.4
2061
+ 0.8
2062
+ 1.2
2063
+ ( f )
2064
+ ( e )
2065
+ ( d )
2066
+ ( c )
2067
+ ( b )
2068
+ ( a )
2069
+
2070
+
2071
+ e
2072
+
2073
+ dA
2074
+ FB
2075
+ (D
2076
+ +
2077
+ s
2078
+ K
2079
+ *0
2080
+ l
2081
+ +
2082
+ l
2083
+ )/dq
2084
+ 2
2085
+ q
2086
+ 2
2087
+
2088
+
2089
+ e
2090
+
2091
+ dC
2092
+ l
2093
+ F
2094
+ (D
2095
+ +
2096
+ s
2097
+ K
2098
+ *0
2099
+ l
2100
+ +
2101
+ l
2102
+ )/dq
2103
+ 2
2104
+ q
2105
+ 2
2106
+
2107
+
2108
+ e
2109
+
2110
+ dP
2111
+ l
2112
+ L
2113
+ (D
2114
+ +
2115
+ s
2116
+ K
2117
+ *0
2118
+ l
2119
+ +
2120
+ l
2121
+ )/dq
2122
+ 2
2123
+ q
2124
+ 2
2125
+
2126
+
2127
+ e: in unit of 10
2128
+ -3
2129
+
2130
+ dP
2131
+ l
2132
+ T
2133
+ (D
2134
+ +
2135
+ s
2136
+ K
2137
+ *0
2138
+ l
2139
+ +
2140
+ l
2141
+ )/dq
2142
+ 2
2143
+ q
2144
+ 2
2145
+
2146
+
2147
+ e
2148
+
2149
+ dA
2150
+ (D
2151
+ +
2152
+ s
2153
+ K
2154
+ *0
2155
+ l
2156
+ +
2157
+ l
2158
+ )/dq
2159
+ 2
2160
+ q
2161
+ 2
2162
+
2163
+
2164
+ e
2165
+
2166
+ dF
2167
+ L
2168
+ (D
2169
+ +
2170
+ s
2171
+ K
2172
+ *0
2173
+ l
2174
+ +
2175
+ l
2176
+ )/dq
2177
+ 2
2178
+ q
2179
+ 2
2180
+ FIG. 4: The differential forward-backward asymmetries, differential lepton-side convexity parameters, differential longitudinal
2181
+ lepton polarizations and differential transverse lepton polarizations for the D+
2182
+ s → K0ℓ+νℓ decays in the C3 case.
2183
+
2184
+ d.
2185
+ S
2186
+ 0'4
2187
+ a.0
2188
+ 8.0cqB(D)
2189
+ 0.0
2190
+ 8.0
2191
+ 0
2192
+ 0
2193
+ 2
2194
+ 8←S
2195
+ 3(p)
2196
+ d
2197
+ S
2198
+ a.
2199
+ e.0
2200
+ S.1C2.
2201
+ 0.0
2202
+ 8.0
2203
+ 0
2204
+ H
2205
+ 0
2206
+ X
2207
+ x"S
2208
+ 3(c)
2209
+ a.0
2210
+ e.000
2211
+ S.0
2212
+ qB(D)
2213
+ S(0rx) "pbl(
2214
+ 7
2215
+ e16
2216
+ TABLE VI: The forward-backward asymmetries Aℓ
2217
+ F B, the lepton-side convexity parameters Cℓ
2218
+ F , the longitudinal polarizations
2219
+ P ℓ
2220
+ L of the D → V ℓ+ν decays in the C3 case.
2221
+ Decay modes
2222
+ ⟨Aℓ
2223
+ F B⟩
2224
+ Aℓ
2225
+ F B
2226
+ ⟨Cℓ
2227
+ F ⟩
2228
+ Cℓ
2229
+ F
2230
+ ⟨P ℓ
2231
+ L⟩
2232
+ P ℓ
2233
+ L
2234
+ D+ → K
2235
+ ∗0e+νe
2236
+ −0.125 ± 0.006
2237
+ −0.190 ± 0.020
2238
+ −1.046 ± 0.019
2239
+ −0.500 ± 0.032
2240
+ 0.786 ± 0.004
2241
+ 1.000
2242
+ D+ → ρ0e+νe
2243
+ −0.130 ± 0.008
2244
+ −0.222 ± 0.024
2245
+ −1.052 ± 0.023
2246
+ −0.496 ± 0.041
2247
+ 0.789 ± 0.004
2248
+ 1.000
2249
+ D+ → ωe+νe
2250
+ −0.130 ± 0.008
2251
+ −0.220 ± 0.024
2252
+ −1.052 ± 0.023
2253
+ −0.497 ± 0.041
2254
+ 0.789 ± 0.004
2255
+ 1.000
2256
+ D+ → φe+νe
2257
+ −0.121 ± 0.005
2258
+ −0.164 ± 0.017
2259
+ −1.037 ± 0.015
2260
+ −0.500 ± 0.025
2261
+ 0.784 ± 0.003
2262
+ 1.000
2263
+ D0 → K∗−e+νe
2264
+ −0.125 ± 0.006
2265
+ −0.191 ± 0.020
2266
+ −1.046 ± 0.019
2267
+ −0.500 ± 0.032
2268
+ 0.786 ± 0.004
2269
+ 1.000
2270
+ D0 → ρ−e+νe
2271
+ −0.130 ± 0.008
2272
+ −0.221 ± 0.024
2273
+ −1.052 ± 0.023
2274
+ −0.497 ± 0.041
2275
+ 0.789 ± 0.004
2276
+ 1.000
2277
+ D+
2278
+ s → φe+νe
2279
+ −0.122 ± 0.006
2280
+ −0.176 ± 0.018
2281
+ −1.043 ± 0.016
2282
+ −0.500 ± 0.028
2283
+ 0.786 ± 0.003
2284
+ 1.000
2285
+ D+
2286
+ s → ωe+νe
2287
+ −0.130 ± 0.008
2288
+ −0.229 ± 0.025
2289
+ −1.057 ± 0.025
2290
+ −0.496 ± 0.044
2291
+ 0.790 ± 0.004
2292
+ 1.000
2293
+ D+
2294
+ s → K∗0e+νe
2295
+ −0.128 ± 0.007
2296
+ −0.207 ± 0.022
2297
+ −1.049 ± 0.021
2298
+ −0.495 ± 0.036
2299
+ 0.789 ± 0.004
2300
+ 1.000
2301
+ D+ → K
2302
+ ∗0µ+νµ
2303
+ −0.284 ± 0.009
2304
+ −0.226 ± 0.019
2305
+ −0.466 ± 0.021
2306
+ −0.395 ± 0.028
2307
+ 0.514 ± 0.017
2308
+ 0.886 ± 0.002
2309
+ D+ → ρ0µ+νµ
2310
+ −0.292 ± 0.011
2311
+ −0.252 ± 0.023
2312
+ −0.491 ± 0.027
2313
+ −0.405 ± 0.037
2314
+ 0.524 ± 0.020
2315
+ 0.903 ± 0.002
2316
+ D+ → ωµ+νµ
2317
+ −0.292 ± 0.011
2318
+ −0.251 ± 0.022
2319
+ −0.490 ± 0.027
2320
+ −0.405 ± 0.037
2321
+ 0.524 ± 0.020
2322
+ 0.902 ± 0.002
2323
+ D+ → φµ+νµ
2324
+ −0.277 ± 0.008
2325
+ −0.206 ± 0.016
2326
+ −0.433 ± 0.016
2327
+ −0.376 ± 0.021
2328
+ 0.503 ± 0.014
2329
+ 0.864 ± 0.002
2330
+ D0 → K∗−µ+νµ
2331
+ −0.284 ± 0.009
2332
+ −0.226 ± 0.019
2333
+ −0.466 ± 0.021
2334
+ −0.395 ± 0.029
2335
+ 0.514 ± 0.017
2336
+ 0.886 ± 0.002
2337
+ D0 → ρ−µ+νµ
2338
+ −0.292 ± 0.011
2339
+ −0.252 ± 0.023
2340
+ −0.490 ± 0.027
2341
+ −0.405 ± 0.037
2342
+ 0.524 ± 0.020
2343
+ 0.902 ± 0.002
2344
+ D+
2345
+ s → φµ+νµ
2346
+ −0.277 ± 0.008
2347
+ −0.213 ± 0.017
2348
+ −0.459 ± 0.018
2349
+ −0.391 ± 0.024
2350
+ 0.514 ± 0.015
2351
+ 0.882 ± 0.002
2352
+ D+
2353
+ s → ωµ+νµ
2354
+ −0.291 ± 0.012
2355
+ −0.257 ± 0.024
2356
+ −0.509 ± 0.029
2357
+ −0.414 ± 0.041
2358
+ 0.531 ± 0.021
2359
+ 0.913 ± 0.002
2360
+ D+
2361
+ s → K∗0µ+νµ
2362
+ −0.286 ± 0.010
2363
+ −0.239 ± 0.021
2364
+ −0.485 ± 0.024
2365
+ −0.402 ± 0.033
2366
+ 0.525 ± 0.018
2367
+ 0.900 ± 0.002
2368
+ TABLE VII: The transverse polarizations P ℓ
2369
+ T , the lepton spin asymmetries Aλ and the longitudinal polarization fractions of
2370
+ the final vector mesons FL of the D → V ℓ+ν decays in the C3 case.
2371
+ Decay modes
2372
+ ⟨P ℓ
2373
+ T ⟩
2374
+ P e
2375
+ T (×10−3)
2376
+ P µ
2377
+ T
2378
+ ⟨Aλ⟩
2379
+
2380
+ ⟨FL⟩
2381
+ FL
2382
+ D+ → K
2383
+ ∗0e+νe
2384
+ −0.251 ± 0.004
2385
+ −1.205 ± 0.066
2386
+ 1.000
2387
+ 1.000
2388
+ 0.905 ± 0.010
2389
+ 0.556 ± 0.014
2390
+ D+ → ρ0e+νe
2391
+ −0.249 ± 0.005
2392
+ −1.040 ± 0.072
2393
+ 1.000
2394
+ 1.000
2395
+ 0.907 ± 0.012
2396
+ 0.554 ± 0.018
2397
+ D+ → ωe+νe
2398
+ −0.249 ± 0.005
2399
+ −1.049 ± 0.073
2400
+ 1.000
2401
+ 1.000
2402
+ 0.907 ± 0.012
2403
+ 0.554 ± 0.018
2404
+ D+ → φe+νe
2405
+ −0.254 ± 0.003
2406
+ −1.417 ± 0.061
2407
+ 1.000
2408
+ 1.000
2409
+ 0.902 ± 0.008
2410
+ 0.556 ± 0.011
2411
+ D0 → K∗−e+νe
2412
+ −0.251 ± 0.004
2413
+ −1.206 ± 0.067
2414
+ 1.000
2415
+ 1.000
2416
+ 0.905 ± 0.010
2417
+ 0.556 ± 0.014
2418
+ D0 → ρ−e+νe
2419
+ −0.249 ± 0.005
2420
+ −1.045 ± 0.073
2421
+ 1.000
2422
+ 1.000
2423
+ 0.907 ± 0.012
2424
+ 0.554 ± 0.018
2425
+ D+
2426
+ s → φe+νe
2427
+ −0.251 ± 0.004
2428
+ −1.255 ± 0.060
2429
+ 1.000
2430
+ 1.000
2431
+ 0.904 ± 0.009
2432
+ 0.555 ± 0.012
2433
+ D+
2434
+ s → ωe+νe
2435
+ −0.247 ± 0.005
2436
+ −0.953 ± 0.071
2437
+ 1.000
2438
+ 1.000
2439
+ 0.908 ± 0.013
2440
+ 0.554 ± 0.020
2441
+ D+
2442
+ s → K∗0e+νe
2443
+ −0.248 ± 0.004
2444
+ −1.075 ± 0.066
2445
+ 1.000
2446
+ 1.000
2447
+ 0.905 ± 0.011
2448
+ 0.553 ± 0.016
2449
+ D+ → K
2450
+ ∗0µ+νµ
2451
+ −0.454 ± 0.022
2452
+ −0.156 ± 0.012
2453
+ 0.935 ± 0.005
2454
+ 0.928 ± 0.002
2455
+ 0.775 ± 0.019
2456
+ 0.557 ± 0.014
2457
+ D+ → ρ0µ+νµ
2458
+ −0.452 ± 0.026
2459
+ −0.139 ± 0.014
2460
+ 0.944 ± 0.006
2461
+ 0.937 ± 0.002
2462
+ 0.782 ± 0.023
2463
+ 0.555 ± 0.018
2464
+ D+ → ωµ+νµ
2465
+ −0.452 ± 0.026
2466
+ −0.140 ± 0.014
2467
+ 0.944 ± 0.006
2468
+ 0.937 ± 0.002
2469
+ 0.782 ± 0.023
2470
+ 0.555 ± 0.018
2471
+ D+ → φµ+νµ
2472
+ −0.455 ± 0.018
2473
+ −0.175 ± 0.011
2474
+ 0.924 ± 0.005
2475
+ 0.915 ± 0.002
2476
+ 0.763 ± 0.015
2477
+ 0.557 ± 0.011
2478
+ D0 → K∗−µ+νµ
2479
+ −0.454 ± 0.022
2480
+ −0.156 ± 0.012
2481
+ 0.935 ± 0.005
2482
+ 0.927 ± 0.002
2483
+ 0.775 ± 0.019
2484
+ 0.557 ± 0.014
2485
+ D0 → ρ−µ+νµ
2486
+ −0.452 ± 0.026
2487
+ −0.140 ± 0.014
2488
+ 0.944 ± 0.006
2489
+ 0.937 ± 0.002
2490
+ 0.782 ± 0.023
2491
+ 0.555 ± 0.018
2492
+ D+
2493
+ s → φµ+νµ
2494
+ −0.454 ± 0.019
2495
+ −0.162 ± 0.011
2496
+ 0.934 ± 0.005
2497
+ 0.925 ± 0.002
2498
+ 0.771 ± 0.016
2499
+ 0.557 ± 0.012
2500
+ D+
2501
+ s → ωµ+νµ
2502
+ −0.452 ± 0.027
2503
+ −0.131 ± 0.014
2504
+ 0.950 ± 0.005
2505
+ 0.943 ± 0.002
2506
+ 0.788 ± 0.024
2507
+ 0.555 ± 0.019
2508
+ D+
2509
+ s → K∗0µ+νµ
2510
+ −0.451 ± 0.023
2511
+ −0.143 ± 0.012
2512
+ 0.943 ± 0.005
2513
+ 0.936 ± 0.002
2514
+ 0.779 ± 0.021
2515
+ 0.555 ± 0.016
2516
+
2517
+ 17
2518
+ C.
2519
+ D → Sℓ+νℓ decays
2520
+ For D → Sℓ+νℓ decays, the two quark and the four quark scenarios for the scalar mesons below or near 1 GeV are
2521
+ considered. The hadronic helicity amplitudes for the D → Sℓ+νℓ decays are given in Tab. VIII, in which the CKM
2522
+ matrix element Vcs and Vcd information are kept for comparing conveniently. There are four (five) nonperturbative
2523
+ parameters E1,2,3,4 (E′
2524
+ 1,2,3,4,5) in the two quark (four quark) picture.
2525
+ After ignoring the SU(3) flavor breaking
2526
+ contributions, only one nonperturbative parameter E1 = E2 = E3 = E4 = cS
2527
+ 0 or E′
2528
+ 1 = E′
2529
+ 2 = E′
2530
+ 3 = E′
2531
+ 4 = E′
2532
+ 5 = c′S
2533
+ 0
2534
+ relates all decay amplitudes in the two quark or the four quark picture, respectively.
2535
+ Unlike many measured decay modes in the D → Pℓ+νℓ and D → V ℓ+νℓ decays, among these D → Sℓ+νℓ decays,
2536
+ only D+
2537
+ s → f0(980)e+νe decay has been measured, and its branching ratio with 2σ errors is [1]
2538
+ B(D+
2539
+ s → f0(980)e+νe) = (2.3 ± 0.8) × 10−3.
2540
+ (48)
2541
+ In addition, the branching ratios of the D → P1P2ℓ+νℓ decays with the light scalar resonances can be obtained by
2542
+ using B(D → Sℓ+νℓ) and B(S → P1P2), and the detail analysis can been found in Ref. [80]. Five branching ratios
2543
+ TABLE VIII: The hadronic helicity amplitudes for D → Sℓ+ν decays including both the SU(3) flavor symmetry and the SU(3)
2544
+ flavor breaking contributions. In the two quark picture of the scalar mesons, E1 ≡ cS
2545
+ 0 + cS
2546
+ 1 − 2cS
2547
+ 2 , E2 ≡ cS
2548
+ 0 − 2cS
2549
+ 1 − 2cS
2550
+ 2 ,
2551
+ E3 ≡ cS
2552
+ 0 + cS
2553
+ 1 + cS
2554
+ 2 , E4 ≡ cS
2555
+ 0 − 2cS
2556
+ 1 + cS
2557
+ 2 . E1 = E2 = E3 = E4 = cS
2558
+ 0 if neglecting the SU(3) flavor breaking cS
2559
+ 1 and cS
2560
+ 2 terms. In
2561
+ the four quark picture of the scalar mesons, E′
2562
+ 1 ≡ c′S
2563
+ 0 + c′S
2564
+ 1 − 2c′S
2565
+ 2 + c′S
2566
+ 3 , E′
2567
+ 2 ≡ c′S
2568
+ 0 − 2c′S
2569
+ 1 − 2c′S
2570
+ 2 + c′S
2571
+ 3 , E′
2572
+ 3 ≡ c′S
2573
+ 0 + c′S
2574
+ 1 + c′S
2575
+ 2 − 2c′S
2576
+ 3 ,
2577
+ E′
2578
+ 4 ≡ c′S
2579
+ 0 + c′S
2580
+ 1 + c′S
2581
+ 2 + c′S
2582
+ 3 , E′
2583
+ 5 ≡ c′S
2584
+ 0 − 2c′S
2585
+ 1 + c′S
2586
+ 2 + c′S
2587
+ 3 , E′
2588
+ 1 = E′
2589
+ 2 = E′
2590
+ 3 = E′
2591
+ 4 = E′
2592
+ 5 = c′S
2593
+ 0 if neglecting the SU(3) flavor breaking
2594
+ c′S
2595
+ 1 , c′S
2596
+ 2 and c′S
2597
+ 3 terms.
2598
+ Hadronic helicity amplitudes
2599
+ ones for two-quark scenario
2600
+ ones for four-quark scenario
2601
+ H(D0 → K−
2602
+ 0 ℓ+νℓ)
2603
+ E1V ∗
2604
+ cs
2605
+ E′
2606
+ 1V ∗
2607
+ cs
2608
+ H(D+ → K
2609
+ 0
2610
+ 0ℓ+νℓ)
2611
+ E1V ∗
2612
+ cs
2613
+ E′
2614
+ 1V ∗
2615
+ cs
2616
+ H(D+
2617
+ s → f0ℓ+νℓ)
2618
+ E2V ∗
2619
+ cs
2620
+
2621
+ 2E′
2622
+ 2V ∗
2623
+ cs
2624
+ H(D+
2625
+ s → f0(980)ℓ+νℓ)
2626
+ cosθS E2V ∗
2627
+ cs
2628
+
2629
+ 2cosφS E′
2630
+ 2V ∗
2631
+ cs
2632
+ H(D+
2633
+ s → f0(500)ℓ+νℓ)
2634
+ −sinθS E2V ∗
2635
+ cs
2636
+
2637
+
2638
+ 2sinφS E′
2639
+ 2V ∗
2640
+ cs
2641
+ H(D0 → a−
2642
+ 0 ℓ+νℓ)
2643
+ E3V ∗
2644
+ cd
2645
+ E′
2646
+ 3V ∗
2647
+ cd
2648
+ H(D+ → a0
2649
+ 0ℓ+νℓ)
2650
+ − 1
2651
+
2652
+ 2E3V ∗
2653
+ cd
2654
+ − 1
2655
+
2656
+ 2E′
2657
+ 3V ∗
2658
+ cd
2659
+ H(D+ → f0ℓ+νℓ)
2660
+ 0
2661
+ 1
2662
+
2663
+ 2E′
2664
+ 3V ∗
2665
+ cd
2666
+ H(D+ → σℓ+νℓ)
2667
+ 1
2668
+
2669
+ 2E3V ∗
2670
+ cd
2671
+ E′
2672
+ 4V ∗
2673
+ cd
2674
+ H(D+ → f0(980)ℓ+νℓ)
2675
+ 1
2676
+
2677
+ 2sinθS E3V ∗
2678
+ cd
2679
+ ( 1
2680
+
2681
+ 2E′
2682
+ 3cosφS + E′
2683
+ 4sinφS)V ∗
2684
+ cd
2685
+ H(D+ → f0(500)ℓ+νℓ)
2686
+ 1
2687
+
2688
+ 2cosθS E3V ∗
2689
+ cd
2690
+ (− 1
2691
+
2692
+ 2E′
2693
+ 3sinφS + E′
2694
+ 4cosφS)V ∗
2695
+ cd
2696
+ H(D+
2697
+ s → K0
2698
+ 0ℓ+νℓ)
2699
+ E4V ∗
2700
+ cd
2701
+ E′
2702
+ 5V ∗
2703
+ cd
2704
+
2705
+ 18
2706
+ and two upper limits of B(D → Sℓ+νℓ, S → P1P2) have been measured, and the data within 2σ errors are
2707
+ B(D+
2708
+ s → f0(980)e+νe, f0(980) → π+π−) = (1.30 ± 0.63) × 10−3 [81],
2709
+ B(D+
2710
+ s → f0(980)e+νe, f0(980) → π0π0) = (7.9 ± 2.9) × 10−4 [82],
2711
+ B(D0 → a0(980)−e+νe, a0(980)− → ηπ−) = (1.33+0.68
2712
+ −0.60) × 10−4
2713
+ [1],
2714
+ B(D+ → a0(980)0e+νe, a0(980)0 → ηπ0) = (1.7+1.6
2715
+ −1.4) × 10−4
2716
+ [1],
2717
+ B(D+ → f0(500)e+νe, f0(500) → π+π−) = (6.3 ± 1.0) × 10−4
2718
+ [1],
2719
+ B(D+ → f0(980)e+νe, f0(980) → π+π−) < 2.8 × 10−5
2720
+ [83],
2721
+ B(D+
2722
+ s → f0(500)e+νe, f0(500) → π0π0) < 6.4 × 10−4 [82].
2723
+ (49)
2724
+ Two cases S1 and S2 will be considered in the D → Sℓ+νℓ decays.
2725
+ In S1 case, only experimental datum of
2726
+ B(D+
2727
+ s → f0(980)e+νe) is used to constrain one parameter cS
2728
+ 0 or c′S
2729
+ 0 and then predict other not yet measured branching
2730
+ ratios. The numerical results of B(D → Sℓ+ν) in S1 case are given in the 2-4th and 8th columns of Tab. IX. In the
2731
+ S2 case, the experimental data of both B(D+
2732
+ s → f0(980)e+νe) in Eq. (48) and B(D → Sℓ+νℓ, S → P1P2) in Eq. (49)
2733
+ will be used to constrain the parameter cS
2734
+ 0 or c′S
2735
+ 0 . The predictions of B(D → Sℓ+ν) in S2 case are listed in the 5-7th
2736
+ and 9th columns of Tab. IX. Our comments on the results in the S1,2 cases are as follows.
2737
+ • Results in the two quark picture: In the two quark picture, the three possible ranges of the mixing angle,
2738
+ 25◦ < θS < 40◦, 140◦ < θS < 165◦ and −30◦ < θS < 30◦ [58, 68] have been analyzed. In S1 case, using the
2739
+ data of B(D+
2740
+ s → f0(980)e+νe), many predictions of B(D → Sℓ+ν) are obtained. As given in the 2-4th columns
2741
+ of Tab. IX, one can see that the predictions with 25◦ < θS < 40◦ are similar to ones with 140◦ < θS < 165◦,
2742
+ the predictions with −30◦ < θS < 30◦ are slightly different from the first two, and the errors of predictions are
2743
+ quite large. After adding the experimental bounds of B(D → Sℓ+νℓ, S → P1P2), as given in the 5-7th columns
2744
+ of Tab. IX, the three possible ranges of the mixing angle θS are obviously constrained, and they reduce to
2745
+ 25◦ < θS < 35◦, 144◦ < θS < 158◦ and 22◦ ≤ |θS| ≤ 30◦, respectively. In addition, the error of every prediction
2746
+ become smaller by adding the experimental bounds of B(D → Sℓ+νℓ, S → P1P2).
2747
+ • Results in the four quark picture: The predictions in the four quark picture are listed in the 8-9th columns
2748
+ of Tab. IX. The majority of predictions in four quark picture are smaller than corresponding ones in two quark
2749
+ picture. Strong coupling constants g′
2750
+ 4 and g4 are appeared in S → P1P2 decays with the four quark picture
2751
+ of light scalar mesons. At present, we only can determine
2752
+ �� g′
2753
+ 4
2754
+ g4
2755
+ �� from the S → P1P2 decays. The results of
2756
+ involved decays with both g′
2757
+ 4
2758
+ g4 > 0 and g′
2759
+ 4
2760
+ g4 < 0 are given in the 9th column of Tab. IX, and one can see that,
2761
+ except B(D+
2762
+ s → f0(500)e+νe) and B(D+
2763
+ s → f0(980)µ+νµ), the other involved branching ratios are not obviously
2764
+ affected by the choice of g′
2765
+ 4
2766
+ g4 > 0 or g′
2767
+ 4
2768
+ g4 < 0. The errors of the branching ratio predictions are obviously reduced
2769
+ by the experimental bounds of B(D → Sℓ+νℓ, S → P1P2).
2770
+ • Comparing with previous predictions: Previous predictions are listed in the last column of Tab.
2771
+ IX.
2772
+ B(D+
2773
+ s → f0(500)e+νe), B(D+
2774
+ s → f0(500)µ+νµ) and B(D+ → f0(500)µ+νµ) are predicted for the first time. Our
2775
+ predictions of B(D+
2776
+ s → f0(980)µ+νµ), B(D+ → a0
2777
+ 0e+νe), B(D+ → f0(980)e+νe), B(D+ → f0(500)e+νe) and
2778
+ B(D+ → a0
2779
+ 0µ+νµ) are consistent with previous predictions in Refs. [78, 84, 85]. Our other predictions are about
2780
+ one order smaller or one order larger than previous ones in Refs. [67, 86].
2781
+
2782
+ 19
2783
+ TABLE IX:
2784
+ Branching ratios of D → Sℓ+ν decays within 2σ errors. As given in Ref. [80], g′
2785
+ 4 and g4 are strong coupling constants obtained by the SU(3) flavor
2786
+ symmetry in S → P1P2 decays, adenotes the results with
2787
+ g′
2788
+ 4
2789
+ g4 > 0, and bdenotes ones with
2790
+ g′
2791
+ 4
2792
+ g4 < 0, †denotes the results with two quark picture, and ‡denotes the results
2793
+ with four quark picture.
2794
+ Branching ratios
2795
+ ones for 2q state in S1
2796
+ ones for 2q state in S2
2797
+ ones for 4q
2798
+ ones for 4q
2799
+ Previous ones
2800
+ [25◦, 40◦]
2801
+ [140◦, 165◦]
2802
+ [−30◦, 30◦]
2803
+ [25◦, 35◦]
2804
+ [144◦, 158◦]
2805
+ 22◦ ≤ |θS| ≤ 30◦
2806
+ state in S1
2807
+ state in S2
2808
+ B(D0 → K−
2809
+ 0 e+νe)(×10−3)
2810
+ 3.38 ± 2.12
2811
+ 3.18 ± 2.05
2812
+ 2.57 ± 1.58
2813
+ 3.02 ± 1.11
2814
+ 3.00 ± 1.10
2815
+ 2.98 ± 1.05
2816
+ 1.11 ± 0.63
2817
+ 1.25 ± 0.45
2818
+ 0.103 ± 0.115† [67]
2819
+ B(D+ → K
2820
+ 0
2821
+ 0e+νe)(×10−3)
2822
+ 8.66 ± 5.55
2823
+ 7.99 ± 5.02
2824
+ 7.02 ± 4.48
2825
+ 7.74 ± 2.88
2826
+ 7.78 ± 2.77
2827
+ 7.68 ± 2.78
2828
+ 2.85 ± 1.65
2829
+ 3.36 ± 1.25
2830
+ 38.8 ± 5.6† [67]
2831
+ B(D+
2832
+ s → f0(980)e+νe)(×10−3)
2833
+ 2.30 ± 0.80
2834
+ 2.30 ± 0.80
2835
+ 2.30 ± 0.80
2836
+ 2.58 ± 0.52
2837
+ 2.57 ± 0.53
2838
+ 2.71 ± 0.39
2839
+ 2.30 ± 0.80
2840
+ 2.49±0.61a
2841
+ 2.54±0.56b
2842
+ 2.1 ± 0.2† [78], 2+0.5†
2843
+ −0.4
2844
+ [84]
2845
+ B(D+
2846
+ s → f0(500)e+νe)(×10−3)
2847
+ 6.73 ± 6.11
2848
+ 5.98 ± 5.75
2849
+ 3.25 ± 3.25
2850
+ 1.49 ± 0.43
2851
+ 1.45 ± 0.46
2852
+ 1.42 ± 0.50
2853
+ 0.37 ± 0.37
2854
+ 0.31±0.31a
2855
+ 0.17±0.17b
2856
+ B(D0 → K−
2857
+ 0 µ+νµ)(×10−3)
2858
+ 2.90 ± 1.84
2859
+ 2.73 ± 1.77
2860
+ 2.20 ± 1.36
2861
+ 2.59 ± 0.97
2862
+ 2.57 ± 0.96
2863
+ 2.56 ± 0.92
2864
+ 0.95 ± 0.54
2865
+ 1.09 ± 0.39
2866
+ 0.103 ± 0.115† [67]
2867
+ B(D+ → K
2868
+ 0
2869
+ 0µ+νµ)(×10−3)
2870
+ 7.46 ± 4.81
2871
+ 6.87 ± 4.33
2872
+ 6.04 ± 3.88
2873
+ 6.65 ± 2.52
2874
+ 6.69 ± 2.43
2875
+ 6.59 ± 2.43
2876
+ 2.45 ± 1.43
2877
+ 2.89 ± 1.09
2878
+ 38.8 ± 5.6† [67]
2879
+ B(D+
2880
+ s → f0(980)µ+νµ)(×10−3)
2881
+ 1.95 ± 0.70
2882
+ 1.95 ± 0.70
2883
+ 1.95 ± 0.69
2884
+ 2.20 ± 0.45
2885
+ 2.20 ± 0.45
2886
+ 2.32 ± 0.33
2887
+ 1.95 ± 0.70
2888
+ 2.12±0.54a
2889
+ 2.16±0.49b
2890
+ 2.1 ± 0.2† [78]
2891
+ B(D+
2892
+ s → f0(500)µ+νµ)(×10−3)
2893
+ 6.21 ± 5.66
2894
+ 5.53 ± 5.32
2895
+ 3.01 ± 3.01
2896
+ 1.33 ± 0.39
2897
+ 1.31 ± 0.43
2898
+ 1.28 ± 0.46
2899
+ 0.34 ± 0.34
2900
+ 0.29±0.29a
2901
+ 0.16±0.16b
2902
+ B(D0 → a−
2903
+ 0 e+νe)(×10−5)
2904
+ 9.99 ± 6.54
2905
+ 9.56 ± 6.50
2906
+ 8.34 ± 5.67
2907
+ 9.22 ± 3.98
2908
+ 9.09 ± 3.65
2909
+ 9.17 ± 3.58
2910
+ 3.42 ± 2.06
2911
+ 4.32 ± 1.17
2912
+ 16.8±1.5† [78], 40.8+13.7†
2913
+ −12.2 [86],
2914
+ 24.4±3.0† [67]
2915
+ B(D+ → a0
2916
+ 0e+νe)(×10−5)
2917
+ 13.09 ± 8.62
2918
+ 12.62 ± 8.67
2919
+ 10.89 ± 7.35
2920
+ 12.09 ± 5.19
2921
+ 11.81 ± 4.71
2922
+ 11.97 ± 4.66
2923
+ 4.49 ± 2.71
2924
+ 5.68 ± 1.52
2925
+ 21.8±3.8† [78], 54.0+17.8†
2926
+ −15.9 [86]
2927
+ 6∼8†[85], 5∼5.4‡[85]
2928
+ B(D+ → f0(980)e+νe)(×10−5)
2929
+ 3.92 ± 2.92
2930
+ 3.48 ± 3.13
2931
+ 1.59 ± 1.59
2932
+ 2.62 ± 0.82
2933
+ 2.52 ± 0.94
2934
+ 2.40 ± 0.80
2935
+ 3.14 ± 1.98
2936
+ 3.35±1.80a
2937
+ 3.89±1.35b
2938
+ 7.78±0.68† [78], 5.7±1.3† [87]
2939
+ 0.4∼3.5†[85], 1.9∼6.3‡[85]
2940
+ B(D+ → f0(500)e+νe)(×10−4)
2941
+ 4.05 ± 3.20
2942
+ 4.08 ± 3.10
2943
+ 4.21 ± 3.28
2944
+ 2.16 ± 0.96
2945
+ 2.59 ± 1.38
2946
+ 2.70 ± 1.28
2947
+ 4.97 ± 4.13
2948
+ 4.97±3.34a
2949
+ 4.95±3.36b
2950
+ 0.4 ∼ 0.6†[85], 0.88 ∼ 1.4‡[85]
2951
+ B(D+
2952
+ s → K0
2953
+ 0e+νe)(×10−4)
2954
+ 3.73 ± 2.37
2955
+ 3.41 ± 2.13
2956
+ 2.99 ± 1.88
2957
+ 3.35 ± 1.21
2958
+ 3.32 ± 1.20
2959
+ 3.35 ± 1.15
2960
+ 1.25 ± 0.71
2961
+ 1.43 ± 0.51
2962
+ 26.5 ± 2.8† [67]
2963
+ B(D0 → a−
2964
+ 0 µ+νµ)(×10−5)
2965
+ 8.25 ± 5.45
2966
+ 7.89 ± 5.42
2967
+ 6.91 ± 4.75
2968
+ 7.61 ± 3.37
2969
+ 7.51 ± 3.10
2970
+ 7.57 ± 3.04
2971
+ 2.83 ± 1.72
2972
+ 3.57 ± 0.99
2973
+ 16.3 ± 1.4† [78], 24.4 ± 3.0† [67]
2974
+ B(D+ → a0
2975
+ 0µ+νµ)(×10−5)
2976
+ 10.83 ± 7.19
2977
+ 10.44 ± 7.23
2978
+ 9.04 ± 6.16
2979
+ 10.00 ± 4.41
2980
+ 9.76 ± 4.00
2981
+ 9.89 ± 3.97
2982
+ 3.73 ± 2.28
2983
+ 4.69 ± 1.30
2984
+ 21.2 ± 3.7† [78]
2985
+ B(D+ → f0(980)µ+νµ)(×10−5)
2986
+ 3.23 ± 2.41
2987
+ 2.88 ± 2.60
2988
+ 1.32 ± 1.32
2989
+ 2.15 ± 0.70
2990
+ 2.09 ± 0.78
2991
+ 1.99 ± 0.66
2992
+ 2.56 ± 1.62
2993
+ 2.74±1.49a
2994
+ 3.20±1.14b
2995
+ 7.87 ± 0.67† [78]
2996
+ B(D+ → f0(500)µ+νµ)(×10−4)
2997
+ 3.69 ± 2.96
2998
+ 3.71 ± 2.86
2999
+ 3.84 ± 3.04
3000
+ 1.92 ± 0.88
3001
+ 2.32 ± 1.27
3002
+ 2.42 ± 1.19
3003
+ 4.54 ± 3.81
3004
+ 4.52±3.10a
3005
+ 4.49±3.12b
3006
+ B(D+
3007
+ s → K0
3008
+ 0µ+νµ)(×10−4)
3009
+ 3.28 ± 2.10
3010
+ 3.00 ± 1.88
3011
+ 2.62 ± 1.66
3012
+ 2.94 ± 1.08
3013
+ 2.91 ± 1.06
3014
+ 2.94 ± 1.02
3015
+ 1.10 ± 0.63
3016
+ 1.26 ± 0.45
3017
+ 26.5 ± 2.8† [67]
3018
+
3019
+ 20
3020
+ IV.
3021
+ Summary
3022
+ Many semileptonic D → P/V/Sℓ+νℓ decays have been measured, and these processes could be used to test the
3023
+ SU(3) flavor symmetry approach. In terms of the SU(3) flavor symmetry and the SU(3) flavor breaking, the amplitude
3024
+ relations have been obtained. Then using the present data of B(D → P/V/Sℓ+νℓ), we have presented a theoretical
3025
+ analysis of the D → P/V/Sℓ+νℓ decays. Our main results can be summarized as follows.
3026
+ • D → Pℓ+νℓ decays: Our predictions with the SU(3) flavor symmetry in the C1 case and the predictions after
3027
+ adding SU(3) flavor breaking contributions in the C4 case are quite consistent with all present experimental data
3028
+ of B(D → Pℓ+νℓ) within 2σ errors. In the C2 and C3 cases, our SU(3) flavor symmetry predictions are consistent
3029
+ with all present experimental data except B(D+ → π0ℓ+νℓ) and B(D0 → π−ℓ+νℓ), which are slight larger
3030
+ than their experiential upper limits. The not yet measured B(D+
3031
+ s → π0e+νe), B(D+ → η′µ+νµ), B(D+
3032
+ s →
3033
+ K0µ+νµ), B(D+
3034
+ s
3035
+ → π0µ+νµ), B(D+
3036
+ s
3037
+ → π0τ +ντ) and the lepton flavor universality parameters have been
3038
+ obtained. Moreover, the forward-backward asymmetries, the lepton-side convexity parameters, the longitudinal
3039
+ (transverse) polarizations of the final charged leptons with two ways of integration for the D → Pℓ+νℓ decays
3040
+ have been predicted. The q2 dependence of corresponding differential quantities of the D → Pℓ+νℓ decays in
3041
+ the C3 case have been displayed.
3042
+ • D → V ℓ+νℓ decays: As given in the C1, C2 and C3 cases, our SU(3) flavor symmetry predictions of B(D+ →
3043
+ ωe+νe) and B(D0 → ρ−µ+νµ) are slightly larger than its experimental upper limits, and other SU(3) flavor
3044
+ symmetry predictions are consistent with present data. After considering the SU(3) flavor breaking effects, as
3045
+ given in the C4 case, all predictions are consistent with present data. The not yet measured or not yet well
3046
+ measured branching ratios of D+ → φe+νe, D+
3047
+ s → ωe+νe, D+ → φµ+νµ, D+
3048
+ s → ωµ+νµ, and D+
3049
+ s → K∗0µ+νµ
3050
+ have been predicted. The q2 dependence of corresponding differential quantities of the D → V ℓ+νℓ decays in
3051
+ the C3 case have also been displayed.
3052
+ • D → Sℓ+νℓ decays:
3053
+ Among 18 D → Sℓ+νℓ decay modes, only B(D+
3054
+ s → f0(980)e+νe) has been measured, and
3055
+ this experimental datum has been used to constrain the SU(3) flavor symmetry parameter and then predict other
3056
+ not yet measured branching ratios. Furthermore, the relevant experimental bounds of B(D → Sℓ+νℓ, S → P1P2)
3057
+ have also been added. The two quark and the four quark scenarios for the light scalar mesons are considered,
3058
+ and the three possible ranges of the mixing angle θS in the two quark picture have been analyzed.
3059
+ The SU(3) flavor symmetry is approximate approach, and it can still provide very useful information. We have
3060
+ found that the SU(3) flavor symmetry approach works well in the semileptonic D → P/V ℓ+νℓ decays, and the SU(3)
3061
+ flavor symmetry predictions of the D → Sℓ+νℓ decays need to be further tested, and our predictions of the D → Sℓ+νℓ
3062
+ decays are useful for probing the structure of light scalar mesons. According to our predictions, some decay modes
3063
+ could be observed at BESIII, LHCb or BelleII in near future experiments.
3064
+ ACKNOWLEDGEMENTS
3065
+ The work was supported by the National Natural Science Foundation of China (12175088).
3066
+
3067
+ 21
3068
+ References
3069
+ [1] R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
3070
+ [2] D. Melikhov and B. Stech, Phys. Rev. D 62 (2000), 014006 [arXiv:hep-ph/0001113 [hep-ph]].
3071
+ [3] H. Y. Cheng and X. W. Kang, Eur. Phys. J. C 77 (2017) no.9, 587 [erratum: Eur. Phys. J. C 77 (2017) no.12, 863]
3072
+ [arXiv:1707.02851 [hep-ph]].
3073
+ [4] N. R. Soni, M. A. Ivanov, J. G. K¨orner, J. N. Pandya, P. Santorelli and C. T. Tran, Phys. Rev. D 98 (2018) no.11, 114031
3074
+ [arXiv:1810.11907 [hep-ph]].
3075
+ [5] Q. Chang, X. N. Li, X. Q. Li, F. Su and Y. D. Yang, Phys. Rev. D 98 (2018) no.11, 114018 [arXiv:1810.00296 [hep-ph]].
3076
+ [6] Q. Chang, X. L. Wang and L. T. Wang, Chin. Phys. C 44 (2020) no.8, 083105 [arXiv:2003.10833 [hep-ph]].
3077
+ [7] R. N. Faustov, V. O. Galkin and X. W. Kang, Phys. Rev. D 101 (2020) no.1, 013004 [arXiv:1911.08209 [hep-ph]].
3078
+ [8] P. Ball, Phys. Rev. D 48 (1993), 3190-3203 [arXiv:hep-ph/9305267 [hep-ph]].
3079
+ [9] S. Bhattacharyya, M. Haiduc, A. Tania Neagu and E. Firu, Eur. Phys. J. Plus 134 (2019) no.1, 37 [arXiv:1709.00882
3080
+ [nucl-ex]].
3081
+ [10] H. B. Fu, L. Zeng, R. L¨u, W. Cheng and X. G. Wu, Eur. Phys. J. C 80 (2020) no.3, 194 [arXiv:1808.06412 [hep-ph]].
3082
+ [11] H. B. Fu, W. Cheng, L. Zeng, D. D. Hu and T. Zhong, Phys. Rev. Res. 2 (2020) no.4, 043129 [arXiv:2003.07626 [hep-ph]].
3083
+ [12] I. L. Grach, I. M. Narodetsky and S. Simula, Phys. Lett. B 385 (1996), 317-323 [arXiv:hep-ph/9605349 [hep-ph]].
3084
+ [13] H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69 (2004), 074025 [arXiv:hep-ph/0310359 [hep-ph]].
3085
+ [14] Q. Chang, X. N. Li and L. T. Wang, Eur. Phys. J. C 79 (2019) no.5, 422 [arXiv:1905.05098 [hep-ph]].
3086
+ [15] V. Lubicz et al. [ETM], Phys. Rev. D 98 (2018) no.1, 014516 [arXiv:1803.04807 [hep-lat]].
3087
+ [16] V. Lubicz et al. [ETM], Phys. Rev. D 96 (2017) no.5, 054514 [erratum: Phys. Rev. D 99 (2019) no.9, 099902; erratum:
3088
+ Phys. Rev. D 100 (2019) no.7, 079901] [arXiv:1706.03017 [hep-lat]].
3089
+ [17] X. G. He, Eur. Phys. J. C 9, 443 (1999) [hep-ph/9810397].
3090
+ [18] X. G. He, Y. K. Hsiao, J. Q. Shi, Y. L. Wu and Y. F. Zhou, Phys. Rev. D 64, 034002 (2001) [hep-ph/0011337].
3091
+ [19] H. K. Fu, X. G. He and Y. K. Hsiao, Phys. Rev. D 69, 074002 (2004) [hep-ph/0304242].
3092
+ [20] Y. K. Hsiao, C. F. Chang and X. G. He, Phys. Rev. D 93, no. 11, 114002 (2016) [arXiv:1512.09223 [hep-ph]].
3093
+ [21] X. G. He and G. N. Li, Phys. Lett. B 750, 82 (2015) [arXiv:1501.00646 [hep-ph]].
3094
+ [22] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 50, 4529 (1994) [hep-ph/9404283].
3095
+ [23] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 52, 6356 (1995) [hep-ph/9504326].
3096
+ [24] S. H. Zhou, Q. A. Zhang, W. R. Lyu and C. D. L¨u, Eur. Phys. J. C 77, no. 2, 125 (2017) [arXiv:1608.02819 [hep-ph]].
3097
+ [25] H. Y. Cheng, C. W. Chiang and A. L. Kuo, Phys. Rev. D 91, no. 1, 014011 (2015) [arXiv:1409.5026 [hep-ph]].
3098
+ [26] M. He, X. G. He and G. N. Li, Phys. Rev. D 92, no. 3, 036010 (2015) [arXiv:1507.07990 [hep-ph]].
3099
+ [27] N. G. Deshpande and X. G. He, Phys. Rev. Lett. 75, 1703 (1995) [hep-ph/9412393].
3100
+ [28] S. Shivashankara, W. Wu and A. Datta, Phys. Rev. D 91, 115003 (2015) [arXiv:1502.07230 [hep-ph]].
3101
+ [29] R. M. Wang, Y. G. Xu, C. Hua and X. D. Cheng, Phys. Rev. D 103 (2021) no.1, 013007 [arXiv:2101.02421 [hep-ph]].
3102
+ [30] R. M. Wang, X. D. Cheng, Y. Y. Fan, J. L. Zhang and Y. G. Xu, J. Phys. G 48 (2021) no.8, 085001 [arXiv:2008.06624
3103
+ [hep-ph]].
3104
+ [31] Y. Grossman and D. J. Robinson, JHEP 1304, 067 (2013) [arXiv:1211.3361 [hep-ph]].
3105
+ [32] D. Pirtskhalava and P. Uttayarat, Phys. Lett. B 712, 81 (2012) [arXiv:1112.5451 [hep-ph]].
3106
+ [33] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 86, 014014 (2012) [arXiv:1205.0580 [hep-ph]].
3107
+
3108
+ 22
3109
+ [34] M. J. Savage and R. P. Springer, Phys. Rev. D 42, 1527 (1990).
3110
+ [35] M. J. Savage, Phys. Lett. B 257, 414 (1991).
3111
+ [36] G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett. 57B, 277 (1975).
3112
+ [37] C. D. L¨u, W. Wang and F. S. Yu, Phys. Rev. D 93, no. 5, 056008 (2016) [arXiv:1601.04241 [hep-ph]].
3113
+ [38] C. Q. Geng, Y. K. Hsiao, Y. H. Lin and L. L. Liu, Phys. Lett. B 776, 265 (2018) [arXiv:1708.02460 [hep-ph]].
3114
+ [39] C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Phys. Rev. D 97, no. 7, 073006 (2018) [arXiv:1801.03276 [hep-ph]].
3115
+ [40] C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, JHEP 1711, 147 (2017) [arXiv:1709.00808 [hep-ph]].
3116
+ [41] C. Q. Geng, C. W. Liu, T. H. Tsai and S. W. Yeh, arXiv:1901.05610 [hep-ph].
3117
+ [42] W. Wang, Z. P. Xing and J. Xu, Eur. Phys. J. C 77, no. 11, 800 (2017) [arXiv:1707.06570 [hep-ph]].
3118
+ [43] D. Wang, arXiv:1901.01776 [hep-ph].
3119
+ [44] D. Wang, P. F. Guo, W. H. Long and F. S. Yu, JHEP 1803, 066 (2018) [arXiv:1709.09873 [hep-ph]].
3120
+ [45] S. M¨uller, U. Nierste and S. Schacht, Phys. Rev. D 92, no. 1, 014004 (2015) [arXiv:1503.06759 [hep-ph]].
3121
+ [46] J. Barranco, D. Delepine, V. Gonzalez Macias and L. Lopez-Lozano, arXiv:1404.0454 [hep-ph].
3122
+ [47] J. Barranco, D. Delepine, V. Gonzalez Macias and L. Lopez-Lozano, Phys. Lett. B 731, 36 (2014) [arXiv:1303.3896
3123
+ [hep-ph]].
3124
+ [48] A. G. Akeroyd and F. Mahmoudi, JHEP 0904, 121 (2009) [arXiv:0902.2393 [hep-ph]].
3125
+ [49] B. A. Dobrescu and A. S. Kronfeld, Phys. Rev. Lett. 100, 241802 (2008) [arXiv:0803.0512 [hep-ph]].
3126
+ [50] A. G. Akeroyd and C. H. Chen, Phys. Rev. D 75, 075004 (2007) [hep-ph/0701078].
3127
+ [51] S. Fajfer and J. F. Kamenik, Phys. Rev. D 73, 057503 (2006) [hep-ph/0601028].
3128
+ [52] S. Fajfer and J. F. Kamenik, Phys. Rev. D 72, 034029 (2005) [hep-ph/0506051].
3129
+ [53] S. Fajfer and J. F. Kamenik, Phys. Rev. D 71, 014020 (2005) [hep-ph/0412140].
3130
+ [54] A. G. Akeroyd, Prog. Theor. Phys. 111, 295 (2004) [hep-ph/0308260].
3131
+ [55] A. G. Akeroyd and S. Recksiegel, Phys. Lett. B 554, 38 (2003) [hep-ph/0210376].
3132
+ [56] M. A. Ivanov, J. G. K¨orner, J. N. Pandya, P. Santorelli, N. R. Soni and C. T. Tran, Front. Phys. (Beijing) 14 (2019) no.6,
3133
+ 64401 [arXiv:1904.07740 [hep-ph]].
3134
+ [57] X. G. He, Y. J. Shi and W. Wang, Eur. Phys. J. C 80, no.5, 359 (2020) [arXiv:1811.03480 [hep-ph]].
3135
+ [58] H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73 (2006), 014017 [arXiv:hep-ph/0508104 [hep-ph]].
3136
+ [59] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 93 (2004), 212002 [arXiv:hep-ph/0407017 [hep-ph]].
3137
+ [60] L. Y. Dai, X. W. Kang and U. G. Meißner, Phys. Rev. D 98 (2018) no.7, 074033 [arXiv:1808.05057 [hep-ph]].
3138
+ [61] G. ’t Hooft, G. Isidori, L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B 662 (2008), 424-430 [arXiv:0801.2288
3139
+ [hep-ph]].
3140
+ [62] J. R. Pelaez, Phys. Rev. Lett. 92 (2004), 102001 [arXiv:hep-ph/0309292 [hep-ph]].
3141
+ [63] Y. J. Sun, Z. H. Li and T. Huang, Phys. Rev. D 83 (2011), 025024 [arXiv:1011.3901 [hep-ph]].
3142
+ [64] J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997), 438-456 [erratum: Nucl. Phys. A 652 (1999), 407-409] [arXiv:hep-
3143
+ ph/9702314 [hep-ph]].
3144
+ [65] V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova and A. E. Kudryavtsev, Phys. Lett. B 586 (2004), 53-61 [arXiv:hep-
3145
+ ph/0308129 [hep-ph]].
3146
+ [66] N. N. Achasov, V. V. Gubin and V. I. Shevchenko, Phys. Rev. D 56 (1997), 203-211 [arXiv:hep-ph/9605245 [hep-ph]].
3147
+ [67] S. Momeni and M. Saghebfar, Eur. Phys. J. C 82 (2022) no.5, 473
3148
+ [68] R. Aaij et al. [LHCb], Phys. Rev. D 87 (2013) no.5, 052001 [arXiv:1301.5347 [hep-ex]].
3149
+ [69] R. L. Jaffe, Phys. Rev. D 15 (1977), 267
3150
+ [70] D. Xu, G. N. Li and X. G. He, Int. J. Mod. Phys. A 29 (2014), 1450011 [arXiv:1307.7186 [hep-ph]].
3151
+ [71] M. Tanaka and R. Watanabe, Phys. Rev. D 82, 034027 (2010) [arXiv:1005.4306 [hep-ph]].
3152
+
3153
+ 23
3154
+ [72] M. Tanaka, Z. Phys. C 67, 321 (1995) [hep-ph/9411405].
3155
+ [73] S. Fajfer, J. F. Kamenik and I. Nisandzic, Phys. Rev. D 85, 094025 (2012) [arXiv:1203.2654 [hep-ph]].
3156
+ [74] A. Celis, M. Jung, X. Q. Li and A. Pich, JHEP 1301, 054 (2013) [arXiv:1210.8443 [hep-ph]].
3157
+ [75] C. Bobeth, G. Hiller and D. van Dyk, JHEP 1007, 098 (2010) [arXiv:1006.5013 [hep-ph]].
3158
+ [76] H. B. Li and M. Z. Yang, Phys. Lett. B 811 (2020), 135879 [arXiv:2006.15798 [hep-ph]].
3159
+ [77] N. N. Achasov and A. V. Kiselev, Phys. Rev. D 86 (2012), 114010 [arXiv:1206.5500 [hep-ph]].
3160
+ [78] N. R. Soni, A. N. Gadaria, J. J. Patel and J. N. Pandya, Phys. Rev. D 102 (2020) no.1, 016013 [arXiv:2001.10195 [hep-ph]].
3161
+ [79] X. Leng, X. L. Mu, Z. T. Zou and Y. Li, Chin. Phys. C 45 (2021) no.6, 063107 [arXiv:2011.01061 [hep-ph]].
3162
+ [80] Ru-Min Wang, Yi-Jie Zhang, Yi Qiao, Xiao-Dong Cheng and Yuan-Guo Xu, Four-body Semileptonic Charm Decays
3163
+ D → P1P2ℓ+νℓ with the SU(3) Flavor Symmetry, in preparation.
3164
+ [81] J. Hietala, D. Cronin-Hennessy, T. Pedlar and I. Shipsey, Phys. Rev. D 92 (2015) no.1, 012009 [arXiv:1505.04205 [hep-ex]].
3165
+ [82] M. Ablikim et al. [BESIII], [arXiv:2110.13994 [hep-ex]].
3166
+ [83] M. Ablikim et al. [BESIII], Phys. Rev. Lett. 122 (2019) no.6, 062001 [arXiv:1809.06496 [hep-ex]].
3167
+ [84] P. Colangelo, F. De Fazio and W. Wang, Phys. Rev. D 81 (2010), 074001 [arXiv:1002.2880 [hep-ph]].
3168
+ [85] W. Wang and C. D. L¨u, Phys. Rev. D 82 (2010), 034016 [arXiv:0910.0613 [hep-ph]].
3169
+ [86] X. D. Cheng, H. B. Li, B. Wei, Y. G. Xu and M. Z. Yang, Phys. Rev. D 96 (2017) no.3, 033002 [arXiv:1706.01019 [hep-ph]].
3170
+ [87] H. W. Ke, X. Q. Li and Z. T. Wei, Phys. Rev. D 80 (2009), 074030 [arXiv:0907.5465 [hep-ph]].
3171
+
DdAzT4oBgHgl3EQfif0c/content/tmp_files/2301.01499v1.pdf.txt ADDED
@@ -0,0 +1,1739 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Received: Added at production
2
+ Revised: Added at production
3
+ Accepted: Added at production
4
+ DOI: xxx/xxxx
5
+ ARTICLE TYPE
6
+ Thermodynamic and transport properties of plasmas: low-density
7
+ benchmarks
8
+ G. Röpke
9
+ Institut für Physik, Universität Rostock,
10
+ 18051 Rostock, Germany
11
+ Correspondence
12
13
+ Abstract
14
+ Physical properties of plasmas such as equations of state and transport coefficients
15
+ are expressed in terms of correlation functions, which can be calculated using various
16
+ approaches (analytical theory, numerical simulations). The method of Green’s func-
17
+ tions provides benchmark values for these properties in the low-density limit. For
18
+ the equation of state and electrical conductivity, expansions with respect to density
19
+ (virial expansions) are considered. Comparison of analytical results with numerical
20
+ simulations is used to verify theory, to prove the accuracy of simulations, and to
21
+ establish interpolation formulas.
22
+ KEYWORDS:
23
+ plasma equation of state, electrical conductivity, virial expansion, DFT-MD simulations, PIMC simula-
24
+ tions
25
+ 1
26
+ PLASMA PROPERTIES AND CORRELATION FUNCTIONS
27
+ Plasmas consist of charged particles, number 푁푖 of species 푖 in the volume Ω, which interact via the Coulomb law. If we denote
28
+ the charge of the component 푖 by 푍푖푒, we obtain (휖0 is the permittivity of the vacuum)
29
+ 푉 Coul
30
+ 푖푗
31
+ (푟) =
32
+ 푍푖푍푗푒2
33
+ 4휋휖0푟 .
34
+ (1)
35
+ In general, an additional short-range interaction may occur. Examples are the homogeneous electron gas (uniform electron
36
+ gas UEG), where the electrons move over a positively charged background to realize charge neutrality, or the two-component
37
+ Hydrogen plasma, consisting of electrons and protons, where the particle density is 푛푒 = 푛푝 to maintain charge neutrality. In
38
+ thermodynamic equilibrium, the state of the plasma is determined by the temperature 푇 in addition to the densities 푛푖 = 푁푖∕Ω
39
+ of the components or the corresponding chemical potentials 휇푖. The relationships between the various state variables such as
40
+ internal energy 푈, free energy 퐹, entropy 푆, pressure 푃 , etc. are called equations of state (EoS). All thermodynamic properties
41
+ can be derived from a thermodynamic potential, for example is 퐹(Ω, 푁푖, 푇 ) as function of Ω, 푁푖, 푇 a thermodynamic potential.
42
+ Statistical physics allows to calculate the thermodynamic properties from the microscopic properties, i.e. from the Hamiltonian
43
+ 퐻 = 퐻kin + 푉 , with kinetic energy 퐻kin = ∑
44
+
45
+ ∑푁푖
46
+ 푘 푝2
47
+ 푖,푘∕2푚푖 and potential energy 푉 = (1∕2) ∑
48
+ 푖,푘≠푗,푙 푉 (퐫푖,푘 − 퐫푗,푙). To calculate
49
+ physical quantities, various expressions can be used. For example, for classical systems we can start from the well-known
50
+ partition function 푍can(Ω, 푁푖, 푇 ) with 퐹(Ω, 푁푖, 푇 ) = −푘퐵푇 ln 푍can(Ω, 푁푖, 푇 ). For quantum systems, it is convenient to work
51
+ with the grand canonical ensemble defined by 훽 = 1∕푘퐵푇 and the chemical potentials 휇푖. Then the single-particle distribution
52
+ functions for the ideal quantum system (푉 = 0) have a simple form, the Fermi or Bose distribution. In second quantization,
53
+ we introduce 푎+
54
+ 푖,푘, 푎푖,푘 as a creation or annihilation operator for particles of species 푖 in the quantum state 푘 = {ℏ퐤, 휎}, which
55
+ arXiv:2301.01499v1 [physics.plasm-ph] 4 Jan 2023
56
+
57
+ 2
58
+ denotes momentum vector and spin. The occupation number of this quantum state is given as
59
+ 푓푖,푘 = ⟨푎+
60
+ 푖,푘푎푖,푘⟩ =
61
+ 1
62
+ 푍gr.can
63
+ Tr
64
+ {
65
+ 푒−훽(퐻−∑
66
+ 푖 휇푖푁푖)푎+
67
+ 푖,푘푎푖,푘
68
+ }
69
+ ,
70
+ 푍gr.can = Tr푒−훽(퐻−∑
71
+ 푖 휇푖푁푖)
72
+ (2)
73
+ with 퐻 as the Hamiltonian in second quantization and 푁푖 = ∑
74
+ 푘 푎+
75
+ 푖,푘푎푖,푘. The relation between the densities and the chemical
76
+ potentials is given as follows.
77
+ 푛푖(푇 , {휇푗}) = 1
78
+ Ω⟨푁푖⟩ = 1
79
+ Ω
80
+
81
+
82
+ 푓푖,푘.
83
+ (3)
84
+ It is convenient to introduce a 휏-dependent correlation function as a generalization of (2) that contains dynamic information,
85
+ ⟨푎+
86
+ 푗,푙푒휏(퐻−∑
87
+ 푖 휇푖푁푖)푎푖,푘푒−휏(퐻−∑
88
+ 푖 휇푖푁푖)⟩ =
89
+
90
+
91
+ −∞
92
+ 푑휔
93
+ 2휋 푒−휔휏퐼푖푘,푗푙(휔).
94
+ (4)
95
+ The spectral density 퐼푖푘,푗푙(휔) is related to the spectral function 퐴푖푘,푗푙(휔) = (1+푒훽휔)퐼푖푘,푗푙(휔) (Fermi statistics). An exact expression
96
+ for the EoS is found if the spectral function is known,
97
+ 푛푖(푇 , {휇푗}) = 1
98
+ Ω
99
+
100
+
101
+
102
+
103
+ −∞
104
+ 푑휔
105
+ 2휋
106
+ 1
107
+ 푒훽휔 + 1퐴푖푘,푖푘(휔).
108
+ (5)
109
+ The spectral function which is diagonal with respect to {푖, 푘} for a homogeneous system, is related to the self-energy Σ푖,푘(푧) for
110
+ which a systematic evaluation applying diagram techniques is possible, see1,2:
111
+ 퐴푖푘(휔) =
112
+ 2ImΣ푖,푘(휔 − 푖0)
113
+ [휔 − 휖푖,푘 − ReΣ푖,푘(휔)]2 + [ImΣ푖,푘(휔 − 푖0)]2 ,
114
+ (6)
115
+ 휖푖,푘 = ℏ2푘2∕2푚푖 − 휇푖 is the kinetic energy shifted by the chemical potential.
116
+ The electrical conductivity 휎(푇 , 푛) of low-density plasmas was first calculated in the framework of kinetic theory. In a seminal
117
+ work3, Spitzer and Härm determined 휎 of the fully ionized Hydrogen plasma by solving a Fokker-Planck equation. To calculate
118
+ 휎(푇 , 푛) in a wide range of temperature 푇 and particle density 푛, a quantum statistical many-particle theory is needed that
119
+ describes screening, correlations, and degeneracy effects in a systematic way. A generalized linear response theory4,5,6 has been
120
+ elaborated that expresses transport coefficients in terms of equilibrium correlation functions (fluctuation-dissipation theorems).
121
+ An example is the Kubo formula7 which relates the transport coefficient 휎 to the electron current-current correlation function,
122
+ 휎(푇 , 푛) =
123
+ 푒2
124
+ 푚2
125
+ 푒푘퐵푇 Ω⟨푃 ; 푃 ⟩푖휖
126
+ (7)
127
+ with the total momentum of the electrons 푃 = ∑
128
+ 푘 ℏ푘푥푎+
129
+ 푒,푘푎푒,푘 in 푥 direction (the small ion contribution to the electrical current
130
+ may be added). The thermodynamic correlation function is the Laplace transform of the Kubo scalar product (the particle number
131
+ is assumed to commute with the observables),
132
+ ⟨퐴; 퐵⟩푧 =
133
+
134
+
135
+ 0
136
+ 푑푡 푒푖푧푡 1
137
+
138
+
139
+
140
+ 0
141
+ 푑휏⟨푒(푖∕ℏ)(푡−푖ℏ휏)퐻퐴푒−(푖∕ℏ)(푡−푖ℏ휏)퐻퐵⟩ .
142
+ (8)
143
+ For more details on generalized linear response theory and the evaluation of correlation functions using the method of thermo-
144
+ dynamic Green’s functions, see2. For the relationship between generalized linear response theory and kinetic theory, see8 and
145
+ references therein.
146
+ 2
147
+ EVALUATION OF CORRELATION FUNCTIONS
148
+ The properties of plasmas are expressed in terms of correlation functions in thermodynamic equilibrium. Examples are thermo-
149
+ dynamic properties (2) and transport properties (7). There are several methods to calculate these correlation functions. Exact
150
+ solutions are known only for ideal quantum gases where there is no interaction potential 푉 . The equations of state are known,
151
+ e.g., the pressure 푃 is expressed by Fermi integrals. At fixed temperature, the equation of state for ideal classical gases 푃 = 푛푘퐵푇
152
+ is approximated by considering the limiting case of low density. For electrical conductivity, 휎 = ∞ is obtained because of
153
+ conservation of total momentum. The resistivity follows as 휌 = 1∕휎 = 0 for charged ideal Fermi gases.
154
+
155
+ 3
156
+ Correlations appear for the plasma Hamiltonian with complete interaction 푉 . No closed-form solutions are known, and we
157
+ must perform approximations to solve this many-body problem. Here we discuss three possibilities:
158
+ 1. Perturbation expansion with respect to 푉 . We obtain analytic expressions for arbitrary orders of 푉 in terms of nonin-
159
+ teracting equilibrium correlation functions, which can be easily evaluated using Wick’s theorem. However, we have no
160
+ proof of the convergence of this series expansion and no error estimate. In order to make this analytical approach more
161
+ efficient, the method of thermodynamic Green’s functions and Feynman diagram technique were elaborated1,2,9. Conver-
162
+ gence is improved by performing partial summations corresponding to special concepts such as the introduction of the
163
+ quasiparticle picture (self-energy Σ), screening of the potential (polarization function Π), or formation of bound states
164
+ (Bethe-Salpeter equation). This leads to useful results for the properties of the plasma in a wide range of 푇 and 푛. However,
165
+ as characteristic for perturbative approaches, exact results can be found only in some limiting cases.
166
+ 2. This drawback is eliminated by numerical simulations of the correlation functions that apply to arbitrary interaction
167
+ strength. In Born-Oppenheimer approximation, density functional theory (DFT) for the electron system with given ion
168
+ configuration and molecular dynamics (MD) for the ion system are applied to evaluate the correlation functions. Single-
169
+ electron states are calculated by solving the Kohn-Sham equations. The total energy is obtained from the kinetic energy
170
+ of a non-interacting reference system, the classical electron-electron interaction, and an exchange-correlation energy that
171
+ includes, to a certain approximation, all unknown contributions.
172
+ The DFT-MD approach has been successfully applied to calculate the thermodynamic properties of complex materials in
173
+ a wide range of 푇 and 푛, which will not be reported here, see, e.g.,10,11,12,13 and the references given there. For electrical
174
+ conductivity (7), the Kubo-Greenwood formula7,14
175
+ Re [휎(휔)] =
176
+ 2휋푒2
177
+ 3푚2
178
+ 푒휔Ω
179
+
180
+
181
+ 푤푘
182
+
183
+
184
+ 푗=1
185
+
186
+
187
+ 푖=1
188
+ 3
189
+
190
+ 훼=1
191
+ [푓(휖푗,푘) − 푓(휖푖,푘)]|⟨Ψ푗,푘| ̂푝훼|Ψ푖,푘⟩|2훿(휖푖,푘 − 휖푗,푘 − ℏ휔)
192
+ (9)
193
+ was used to calculate the frequency-dependent dynamic electrical conductivity 휎(휔) in the long-wavelength
194
+ limit16,17,18,19,20,15. Kohn-Sham wave functions Ψ푖,푘 from density functional theory calculations are used to calculate the
195
+ transition matrix elements of the momentum operator ̂푝훼. The Fermi-Dirac distribution 푓(휖) accounts for the average
196
+ occupation at energy 휖, and the summation over momentum space 푘 contains the 푘-point weights 푤푘.
197
+ Due to the finite size of the simulation box, the delta function in equation (9) must be approximated by a finite-width
198
+ Gaussian, which also prevents the direct calculation of the dc conductivity at 휔 = 0. Therefore, the dynamic conductivity
199
+ is extrapolated to the limit 휔 → 0 by a Drude fit,
200
+ Re [휎(휔)] =
201
+ 푛푒2휈
202
+ 휈2 + 휔2 ,
203
+ (10)
204
+ where 휈 is the collision frequency. Thus, the calculated direct current conductivity depends on choosing the appropriate
205
+ width for the Gaussian and finding a suitable range for the Drude-fitting to 휎(휔) calculated from equation (9). The last
206
+ point can be improved by using a frequency-dependent collision frequency21.
207
+ One of the main shortcomings of the DFT-MD approach is that the many-particle interaction is replaced by a mean-field
208
+ potential. When using product wave functions for the many-electron system, correlations are excluded. The exchange-
209
+ correlation energy density functional reflects the Coulomb interaction to some approximation, e.g., as it exists in the
210
+ homogeneous electron gas, but becomes problematic in the low-density limit where correlations are important.
211
+ 3. In principle, an accurate evaluation of equilibrium correlation functions is possible using path-integral Monte Carlo
212
+ (PIMC) simulations, see22,23,24 and references therein. The shortcomings of this approach at present are the relatively
213
+ small number of particles (a few dozen), the sign problem for fermions, and the computational challenges in accurately
214
+ computing path integrals. Instead of using an exchange-correlation energy density functional, 푒 − 푒 collisions are treated
215
+ accurately. However, at present accurate calculations have only been performed for the uniform electron gas model in
216
+ which the charge-compensating ion subsystem is replaced by a homogeneously charged jellium. The results presented
217
+ in25 are shown below in sec. 5. High-precision calculations for the two-component Hydrogen plasma would be of interest
218
+ for both thermodynamics and transport properties.
219
+
220
+ 4
221
+ 3
222
+ GREEN’S FUNCTIONS AND FEYNMAN DIAGRAMS
223
+ In quantum statistics, the method of thermodynamic Green’s functions has been worked out to evaluate correlation functions in
224
+ thermodynamic equilibrium. For the ideal quantum gas, in which there is no interaction, all equilibrium correlation functions
225
+ can be calculated using Wick’s theorem. For plasmas, we can perform a power series expansion with respect to the interaction
226
+ strength according to the Dyson series. The terms of this perturbation expansion are represented by Feynman diagrams.
227
+ The problem of the perturbation expansion is that the convergence property remains open, and we cannot anticipate that for
228
+ the correlation functions a power series expansion with respect to the interaction strength is possible. A predetermined wrong
229
+ analytical behavior near the singular case of ideal gases leads to divergencies which are avoided performing partial summations
230
+ that can modify the analytic behavior. The most important partial summations are the quasiparticle concept associated with the
231
+ introduction of the self-energy, the screening associated with the introduction of the polarization function, and the introduction
232
+ of bound states performing partial summation of ladder diagrams. For instance, the Bethe-Salpeter equation for the two-particle
233
+ Green function in ladder approximation corresponds to the solution of the two-body problem.
234
+ From classical statistics, the Mayer cluster expansion is well known for short-range potentials is well known for the partition
235
+ function, and the virial expansion in powers in 푛 is obtained. Because of the long-range nature of the Coulomb potential, this
236
+ expansion in powers in 푛 is not possible for plasmas, the virial coefficients are divergent. Screening, i.e. partial summation of the
237
+ so-called ring diagrams in quantum statistics, solves this convergence problem, and the expansion in powers of 푛1∕2 is possible.
238
+ When considering the spectral function, the contribution of the free particles is replaced by the contribution of the quasiparticles,
239
+ with the energies containing the Debye shift. To obtain the thermodynamic potentials 퐹 or 푃 Ω from the equation of state (5)
240
+ we must perform integration over 휇 or 푛, respectively, and logarithmic terms may appear. In particular, for the free energy of
241
+ the Hydrogen plasma, the virial expansion reads
242
+ 퐹(푇 , Ω, 푁) = Ω푘퐵푇 {푛 ln 푛 + [3∕2 ln(2휋ℏ2∕(푚푘퐵푇 )) − 1]푛
243
+ −퐹0(푇 )푛3∕2 − 퐹1(푇 )푛2 ln 푛 − 퐹2(푇 )푛2 − 퐹3(푇 )푛5∕2 ln 푛 − 퐹4(푇 )푛5∕2 + (푛3 ln 푛)} .
244
+ (11)
245
+ see9,25 where expressions for the lowest virial coefficients 퐹푖 are also given. Details on the calculation of the EoS for Coulomb
246
+ systems can be found in Ref.9 and will not be repeated here. The virial expansion for the uniform electron gas is discussed below
247
+ in Sec. 5.
248
+ Perturbation expansion and partial summations also apply to the evaluation of the correlation function (7) which is related to
249
+ the electrical conductivity. In the lowest order of perturbation theory, where interactions are neglected, the total momentum of
250
+ the electrons is conserved. As a consequence, the expression (7) becomes divergent, the ideal plasma shows no finite value for the
251
+ conductivity. Partial summations, in particular the self-energy and vertex corrections, lead to finite values for the conductivity,
252
+ see26. Analytical evaluation of the Kubo formula remains difficult and cumbersome.
253
+ In contrast, it is possible to perform a virial expansion for the inverse conductivity 푅 = 1∕휎, expressed as a correlation function
254
+ of the stochastic forces26. A generalized linear response theory was worked out that takes into account correlation functions
255
+ of higher moments of the occupation number distribution4. In this way the relation to the kinetic theory was shown21. These
256
+ correlation functions are also treated by the methods of Green functions, Feynman diagram techniques and partial summations,
257
+ so that virial expansions can be carried out.
258
+ The dc conductivity 휎(푛, 푇 ) is usually associated with a dimensionless function 휎∗(푛, 푇 ) according to
259
+ 휎(푛, 푇 ) = (푘퐵푇 )3∕2(4휋휖0)2
260
+ 푚1∕2
261
+
262
+ 푒2
263
+ 휎∗(푛, 푇 ).
264
+ (12)
265
+ We consider both 휎 and 휎∗ as a function of density 푛 at fixed temperature 푇 . In the limiting case of low density, the following
266
+ virial expansion for the inverse conductivity 휌∗(푛, 푇 ) = 1∕휎∗(푛, 푇 ) was obtained from kinetic theory and generalized linear
267
+ response theory4,5,6:
268
+ 휌∗(푛, 푇 ) = 휌1(푇 ) ln 1
269
+ 푛 + 휌2(푇 ) + 휌3(푇 ) 푛1∕2 ln 1
270
+ 푛 + (푛1∕2),
271
+ (13)
272
+ which begins with a logarithmic term. Values for the virial coefficients 휌푖(푇 ) are given below in Sec. 6.
273
+
274
+ 5
275
+ 4
276
+ VIRIAL PLOTS
277
+ Equilibrium properties, such as the correlation functions considered here, depend on a limited number of state variables. For
278
+ the Hydrogen plasma, this are the temperature 푇 and the electron number density 푛 (for charge neutral plasmas, the ion (proton)
279
+ number density is also 푛). For the uniform electron gas, we have the same variables. Instead of the ion subsystem a homo-
280
+ geneously charged background (jellium model) is considered to establish charge neutrality. In the case of a many-component
281
+ plasma, the independent partial densities 푛푖 (not connected by chemical reactions and charge neutrality) of the components are
282
+ the state variables in addition to 푇 . We focus here on the two simple cases where the state variables are 푇 , 푛, and we study
283
+ the correlation energy ̄푉 (푇 , 푛) of the uniform electron gas and the electrical conductivity 휎(푇 , 푛) of the Hydrogen plasma, in
284
+ particular the resistivity 푅(푇 , 푛) = 1∕휎(푇 , 푛).
285
+ It is convenient to introduce dimensionless variables instead of 푇 , 푛. We use atomic units with the Hartree energy
286
+ 퐸Ha =
287
+ (
288
+ 푒2
289
+ 4휋휖0
290
+ )2 푚
291
+ ℏ2 = 27, 21137 eV = 2 Ry
292
+ (14)
293
+ and the Bohr radius
294
+ 푎퐵 = 4휋휖0
295
+ 푒2
296
+ ℏ2
297
+ 푚 = 5.2918 × 10−11 m.
298
+ (15)
299
+ The density in atomic units is usually represented by the radius of a sphere containing an electron,
300
+ 푟푠 =
301
+ ( 3
302
+ 4휋푛
303
+ )1∕3 1
304
+ 푎퐵
305
+ .
306
+ (16)
307
+ The temperature is related to the energy 푘퐵푇 , so that 1 eV corresponds to 11604.6 K. We denote 푇eV as 푘퐵푇 measured in units
308
+ of eV, 푇Ha in units of 퐸Ha, and 푇Ry in units of Ry so that
309
+ 푇Ha = 푘퐵푇
310
+ 퐸Ha
311
+ = 2푇Ry = 27, 21137 푇eV.
312
+ (17)
313
+ Another well-known choice of dimensionless parameters is
314
+ Γ =
315
+ 푒2
316
+ 4휋휖0푘퐵푇
317
+ (4휋
318
+ 3 푛
319
+ )1∕3
320
+ ,
321
+ Θ = 2푚푘퐵푇
322
+ ℏ2
323
+ (3휋2푛)−2∕3.
324
+ (18)
325
+ The plasma parameter Γ characterises the ratio of potential to kinetic energy in the non-degenerate case, and the electron degen-
326
+ eracy parameter Θ characterises the range in which the electrons are degenerate. Different sets of dimensionless parameters are
327
+ related. Thus, PIMC calculations for specific parameter values of 푟푠, Θ are discussed in the following section, the corresponding
328
+ plasma parameters 푛, 푇 are determined as follows,
329
+ 푛 = 3
330
+ 4휋
331
+ 1
332
+ (푟푠푎퐵)3 ,
333
+ 푘퐵푇 = 퐸Ha
334
+ 1
335
+ 2
336
+ (9휋
337
+ 4
338
+ )2∕3 Θ
339
+ 푟2
340
+
341
+ (19)
342
+ with 퐸Ha∕푘퐵 = 315777.1 K.
343
+ The dc conductivity 휎(푛, 푇 ) is also associated with a dimensionless function 휎∗(푛, 푇 ) according to
344
+ 휎(푛, 푇 ) = (푘퐵푇 )3∕2(4휋휖0)2
345
+ 푚1∕2
346
+
347
+ 푒2
348
+ 휎∗ = 0.0258883 푇 3∕2 휎∗(Ωm K3∕2)−1 = 32405.4 푇 3∕2
349
+ eV 휎∗(Ωm)−1 .
350
+ (20)
351
+ As with thermodynamic relations, the dimensionless conductivity 휎∗ can be expressed as a function of dimensionless variables
352
+ 푟푠, 푇Ha or Γ, Θ. These functions are now to be specified. Exact results are currently known only for limiting cases, in particular
353
+ virial expansions.
354
+ The analysis of a virial expansion is sometimes not easy because trivial terms dominate in limiting cases so that interesting
355
+ terms remain hidden. In the example of the thermodynamic EoS considered in Sec. 5, one dominant term is the Debye shift,
356
+ which covers the contribution of higher virial coefficients. We introduce reduced virial expansions where these exactly known
357
+ contributions are suppressed, and quantities are introduced that anticipate a linear relationship in special cases. The virial plot
358
+ is the representation of this asymptotic linear relationship and allows us to extrapolate virial coefficients from simulations. We
359
+ demonstrate this procedure for two cases, the mean potential energy of the uniform electron gas in Sec. 5 and the electrical
360
+ conductivity of the Hydrogen plasma in Sec. 6.
361
+
362
+ 6
363
+ If we express 휎∗(푛, 푇 ) in terms of dimensionless parameters Γ, Θ and use the Born parameter Γ∕Θ, which is of interest in the
364
+ range 푘퐵푇 ≫ 1 Ry, from Eq. (13) we obtain a modified virial expansion where the argument of the logarithm is dimensionless,
365
+ 1
366
+ 휎∗(Γ, Θ) = 휌∗(Γ, Θ) = ̃휌1(Γ2Θ) ln
367
+
368
+ Γ
369
+ )
370
+ + ̃휌2(Γ2Θ) + … ,
371
+ Γ2Θ =
372
+ 27∕3
373
+ 34∕3휋3∕3
374
+ 1
375
+ 푇Ha
376
+ ,
377
+ Θ
378
+ Γ =
379
+ 21∕3
380
+ 31∕3휋5∕3
381
+ 푇 2
382
+ Ha
383
+ 푛푎3
384
+
385
+ (21)
386
+ We define the reduced effective virial coefficient ̃휌eff
387
+ 2 (푇 ) according to
388
+ ̃휌eff
389
+ 2 (푛, 푇 ) =
390
+ 32405.4
391
+ 휎(푛, 푇 )[Ωm]푇 3∕2
392
+ eV − ̃휌1(푇 ) ln
393
+
394
+ Γ
395
+ )
396
+ ,
397
+ (22)
398
+ with lim푛→0 ̃휌eff
399
+ 2 (푛, 푇 ) = ̃휌2(푇 ), see also Eq. (45) below. The plot of 휌∗∕ ln(Θ∕Γ) as a function of 푥 = 1∕ ln(Θ∕Γ) at given 푇 is
400
+ called a virial plot. It directly allows the determination the virial coefficients 휌1(푇 ), 휌2(푇 ), as it is shown in Sec. 6.
401
+ As will be demonstrated in this work, virial plots are very sensitive to diverse approaches, including the results of numerical
402
+ simulations, in the low density domain. Since trivial dominant terms, which are known exactly, are suppressed, they have no
403
+ effects due to possible approximations, and the extrapolation of numerical simulations into the low-density domain becomes
404
+ immediately possible.
405
+ 5
406
+ VIRIAL EXPANSION OF THE EOS OF THE UEG, COMPARISON WITH PIMC
407
+ SIMULATIONS
408
+ The problem of the second virial coefficient for the mean correlation energy ̄푉 was considered in a recent work25. There was
409
+ a controversy about the high-temperature limit of the second virial coefficient, i.e. the term ∝ 1∕
410
+
411
+ 푇 27. This controversy dis-
412
+ appears in charge-neutral two-component plasmas, but not in the uniform electron gas (UEG), where interacting electrons are
413
+ moving in front of a positively charged jellium-like background to neutralize the Coulomb field at large distances. Accurate
414
+ PIMC simulations have been available at low densities and high temperatures25, so that it was possible to confirm the correct
415
+ limiting behavior. In this section, we not only show the virial plot method to confirm the correct limiting law, but consider the
416
+ full second virial coefficient and discuss deviations from this expansion.
417
+ The virial expansion of the free energy 퐹(푇 , Ω, 푁) of the UEG is obtained from the general formula for a multi-component
418
+ plasma given in9,25. The mean potential energy 푉 is determined by
419
+ 푉 (푇 , Ω, 푁) = 푒2
420
+
421
+ 휕(푒2)퐹(푇 , Ω, 푁)
422
+ (23)
423
+ (for the relation to the internal energy see28).
424
+ From the virial expansion of 퐹(푇 , Ω, 푁), we get the following virial expansion of 푉
425
+
426
+ 푁푘퐵푇 = − 휅3
427
+ 8휋푛 − 휋푛휆3휏3 ln(휅휆)
428
+ −휋푛휆3
429
+ [
430
+
431
+ 2 −
432
+
433
+
434
+ 2 (1 + ln(2))휏2 +
435
+ (
436
+
437
+ 2 + ln(3) − 1
438
+ 3 + 휋2
439
+ 24
440
+ )
441
+ 휏3
442
+ +
443
+
444
+
445
+
446
+
447
+ 푚=4
448
+ (−1)푚푚
449
+ 2푚Γ(푚∕2 + 1)
450
+ [2휁(푚 − 2) − (1 − 4∕2푚)휁(푚 − 1)] 휏푚
451
+ ]
452
+ −휋푛휆4휏4휅 ln(휅휆) + 푉4(푇 )
453
+ 푁푘퐵푇 푛3∕2 + (푛2 ln(푛))
454
+ (24)
455
+ with the variables
456
+ 휅2 =
457
+ 푛푒2
458
+ 휖0푘퐵푇 ,
459
+ 휆2 =
460
+ ℏ2
461
+ 푚푘퐵푇 ,
462
+ 휏 =
463
+ 푒2√
464
+
465
+ 4휋휖0
466
+
467
+ 푘퐵푇 ℏ
468
+ .
469
+ (25)
470
+ 휁(푥) denotes the Riemann zeta function, and 퐶 = 0.57721 … is Euler’s constant. We express this expansion in terms of 푇 , 푛
471
+ and introduce atomic units ℏ = 푚 = 푒2∕4휋휖0 = 1 so that 푘퐵푇 is measured in Hartree (Ha) and 푛 in electrons per 푎3
472
+ 퐵.
473
+ The virial expansion of the specific mean potential energy 푣 = 푉 ∕푁 is as follows
474
+ 푣(푇 , 푛) = 푣0(푇 )푛1∕2 + 푣1(푇 )푛 ln (휅2휆2) + 푣2(푇 )푛 + 푣3(푇 )푛3∕2 ln (휅2휆2) + 푣4(푇 )푛3∕2 + (푛2 ln(푛)).
475
+ (26)
476
+
477
+ 7
478
+ If atomic units are used, this results in (휅2휆2 = 4휋푛∕푇 2)
479
+ 푣0(푇 ) = −
480
+
481
+
482
+ 푇 1∕2 ,
483
+ 푣1(푇 ) = − 휋
484
+ 2푇 2 ,
485
+ 푣2(푇 ) = − 휋
486
+
487
+ [
488
+ 1
489
+ 2 −
490
+
491
+
492
+ 2 (1 + ln(2)) 1
493
+ 푇 1∕2 +
494
+ (
495
+
496
+ 2 + ln(3) − 1
497
+ 3 + 휋2
498
+ 24
499
+ )
500
+ 1
501
+
502
+
503
+
504
+
505
+
506
+
507
+ 푚=4
508
+
509
+ 2푚Γ(푚∕2 + 1)
510
+ ( −1
511
+ 푇 1∕2
512
+ )푚−1
513
+ [2휁(푚 − 2) − (1 − 4∕2푚)휁(푚 − 1)]
514
+ ]
515
+ ,
516
+ 푣3(푇 ) = − 3휋3∕2
517
+ 2푇 7∕2 .
518
+ (27)
519
+ In ref.25, a virial plot was presented to study the behavior of the second virial coefficient. We consider the lowest orders of
520
+ the virial expansion,
521
+ 푣(1)(푇 , 푛) = −
522
+
523
+
524
+ 푇 1∕2 푛1∕2 −
525
+
526
+ 2푇 2 푛 ln
527
+ (4휋푛
528
+ 푇 2
529
+ )
530
+ ,
531
+ (28)
532
+ as exactly known and subtract them from the data obtained from the PIMC simulations, 푣PIMC = 푉 PIMC∕푁. These exactly
533
+ known terms may become very large, hiding the higher virial coefficients. (Note that the logarithmic term contains a factor to
534
+ become dimensionless. This factor can be moved to the next virial coefficient.)
535
+ In25 we introduced the reduced potential energy (휏 = 푇 −1∕2, atomic units)
536
+ 푣red
537
+ 2 (푇 , 푛) = [푣PIMC − 푣(1)(푇 , 푛)] −푇
538
+ 휋푛 = −푇
539
+ 휋 푣2(푇 ) + (푛1∕2 ln(푛))
540
+ = 1
541
+ 2 −
542
+
543
+
544
+ 2 (1 + ln(2))휏 +
545
+ (
546
+
547
+ 2 + ln(3) − 1
548
+ 3 + 휋2
549
+ 24
550
+ )
551
+ 휏2 + (휏3) + (푛1∕2 ln(푛)).
552
+ (29)
553
+ Table 1 PIMC calculations for the uniform electron gas: 푣PIMC and 푣red
554
+ 2 , eq. (29), for special parameter values 푟푠, Θ and the
555
+ corresponding values of 푇 , 휏, 푛.
556
+ 푟푠
557
+ Θ
558
+ 푣PIMC [Ha]
559
+ 푇Ha
560
+
561
+ 푣red
562
+ 2
563
+ 푇 [K]
564
+ 푛 [cm−3]
565
+ 0.5
566
+ 128
567
+ -0.0826214
568
+ 942.891
569
+ 0.0325664
570
+ 0.453524
571
+ 2.97742e8
572
+ 1.28882e25
573
+ 64
574
+ -0.1180456
575
+ 471.446
576
+ 0.0460558
577
+ 0.420822
578
+ 1.48871e8
579
+ 1.28882e25
580
+ 32
581
+ -0.169272
582
+ 235.723
583
+ 0.0651327
584
+ 0.398701
585
+ 7.44354e7
586
+ 1.28882e25
587
+ 16
588
+ -0.2423993
589
+ 117.861
590
+ 0.0921116
591
+ 0.356465
592
+ 3.72177e7
593
+ 1.28882e25
594
+ 8
595
+ -0.3447641
596
+ 58.9307
597
+ 0.130265
598
+ 0.294433
599
+ 1.86089e7
600
+ 1.28882e25
601
+ 2
602
+ 128
603
+ -0.0402248
604
+ 58.9307
605
+ 0.130265
606
+ 0.290766
607
+ 1.8609e7
608
+ 2.01378e23
609
+ 64
610
+ -0.0568062
611
+ 29.4653
612
+ 0.184223
613
+ 0.257047
614
+ 9.30448e6
615
+ 2.01378e23
616
+ 32
617
+ -0.0797147
618
+ 14.7327
619
+ 0.260531
620
+ 0.207038
621
+ 4.65224e6
622
+ 2.01378e23
623
+ 16
624
+ -0.1101257
625
+ 7.36634
626
+ 0.368446
627
+ 0.126496
628
+ 2.32612e6
629
+ 2.01378e23
630
+ 8
631
+ -0.1486611
632
+ 3.68317
633
+ 0.521062
634
+ 0.0596564
635
+ 1.16306e6
636
+ 2.01378e23
637
+ 20
638
+ 128
639
+ -0.0119299
640
+ 0.589307
641
+ 1.30265
642
+ 1.50247
643
+ 186090.
644
+ 2.01378e20
645
+ 64
646
+ -0.0160051
647
+ 0.294653
648
+ 1.84223
649
+ 3.48031
650
+ 93044.8
651
+ 2.01378e20
652
+ 32
653
+ -0.0207112
654
+ 0.147327
655
+ 2.60531
656
+ 6.67878
657
+ 46522.4
658
+ 2.01378e20
659
+ 16
660
+ -0.0256337
661
+ 0.0736634
662
+ 3.68446
663
+ 10.2475
664
+ 23261.2
665
+ 2.01378e20
666
+ 8
667
+ -0.0302098
668
+ 0.0368317
669
+ 5.21062
670
+ 9.50255
671
+ 11630.6
672
+ 2.01378e20
673
+ In Tab. 1, the parameter values of the uniform electron gas are given for which PIMC calculations were presented in Ref.25,
674
+ together with the values for 푣red
675
+ 2
676
+ (29). The results for 푣red
677
+ 2
678
+ are also shown in Figs. 1, 2.
679
+ In Fig. 1 all calculated PIMC data of25 are considered and the corresponding value of 푣red
680
+ 2
681
+ is shown as function of 휏, see Tab.
682
+ 1. In addition, three expressions for (29) are shown: up to order 휏, i.e., 1∕2 −
683
+
684
+ 휋(1 + ln(2))휏∕2, up to order 휏2, and the full 휏
685
+ dependence. This Fig. 1 shows in which interval of 휏 the linear or quadratic approximation is applicable. The PIMC data are
686
+
687
+ 8
688
+ 0
689
+ 1
690
+ 2
691
+ 3
692
+ 4
693
+ 5
694
+ 6
695
+ T
696
+ -1/2 [Ha]
697
+ 0
698
+ 5
699
+ 10
700
+ 15
701
+ 20
702
+ v
703
+ red
704
+ rs = 0.5
705
+ rs = 2
706
+ rs = 20
707
+ T
708
+ -1/2
709
+ T
710
+ -1
711
+ 2
712
+ nd virial
713
+ 3
714
+ rd virial, rs=20
715
+ Figure 1 Reduced potential energy 푣red
716
+ 2 (푇 , 푛), Eq. (29), as function of 휏 = 1∕
717
+
718
+ 푇 for different densities, 푟푠 = 0, 5; 2; 20. For
719
+ comparison, the reduced second virial coefficient 푣red
720
+ 2 (푇 ) = −(푇 ∕휋)푣2(푇 ) [2nd virial, according Eq. (27)] as well as the lowest
721
+ orders in 1∕푇 are shown. In addition, the curve 3rd virial given by Eq. (30) is also shown. (Atomic units are used.)
722
+ very different. The lowest density, 푟푠 = 20, should be most relevant to the low-density limit, where higher virial coefficients are
723
+ less important. However, the inverse temperature 휏 = 푇 −1∕2
724
+ Ha
725
+ is too large to reach the limit 휏 → 0. Close to this limit are PIMC
726
+ simulation data for 푟푠 = 0.5. The relatively large density is compensated by the very high temperature, see Tab. 1.
727
+ A part of Fig. 1 is shown enlarged in Fig. 2. It was a main result of Ref.25 to show that the PIMC simulation data confirm the
728
+ limit 푣red
729
+ 2 (휏 = 0) = 1∕2. Linear fit to the data for 푟푠 = 0.5 is possible, and extrapolation to 푣red
730
+ 2 (휏 = 0) gives 1/2. At the same
731
+ time, one gets an idea of the accuracy of the simulation, which shows up as scatter around the analytical behavior. The PIMC
732
+ data for 푟푠 = 2 are not described by the linear approximation but almost well by the quadratic approximation. Finally, we have
733
+ to make a comparison with the full second virial coefficient and will find that good agreement is obtained in all three density
734
+ cases, given by the parameter 푟푠, only for the lowest values of 휏 (an exception is the lowest 휏 parameter calculation for 푟푠 = 2,
735
+ which needs to be checked). As 휏 increases, the PIMC data are systematically below the second virial curve. We assume that
736
+ the PIMC simulations are very accurate, so this deviation indicates the contribution of higher virial coefficients.
737
+ Deviations from the second virial coefficient −(푇 ∕휋)푣2(푇 ) indicate the contribution of higher orders to the virial expansion.
738
+ We expect a significant next order contribution from the low-density calculations, i.e., 푟푠 = 20. We consider the expression
739
+ 푣red
740
+ 2+3(푇 , 푛) = −푇
741
+
742
+ [
743
+ 푣2(푇 ) + 푣3(푇 )푛1∕2 ln
744
+ (4휋푛
745
+ 푇 2
746
+ )]
747
+ ,
748
+ (30)
749
+ which accounts for the contribution of the third virial coefficient. For 푟푠 = 20, the data are well reproduced for the lowest values
750
+ of 휏, see also Fig. 1. Deviations for larger 휏 indicate the contributions of higher virial coefficients.
751
+ The deviation
752
+ Δ푣red
753
+ 2 (푇 , 푛) = [푣PIMC − 푣(1)(푇 , 푛) − 푣2(푇 )푛] 푇
754
+ 휋푛
755
+ (31)
756
+ is shown in Tab. 2, together with the deviation
757
+ Δ푣red
758
+ 3 (푇 , 푛) =
759
+ [
760
+ 푣PIMC − 푣(1)(푇 , 푛) − 푣2(푇 )푛 − 푣3(푇 )푛3∕2 ln
761
+ (4휋푛
762
+ 푇 2
763
+ )] 푇
764
+ 휋푛.
765
+ (32)
766
+ As mentioned before, the inclusion of the third virial coefficient 푣3(푇 ) improves the agreement of the PIMC simulations with
767
+ the virial expansion, as also shown in Fig. 1. The remaining difference Δ푣red
768
+ 3 (푇 , 푛) is related to the fourth-order and higher-order
769
+ virial coefficient,
770
+ 푣eff
771
+ 4 (푇 , 푛) = Δ푣red
772
+ 3 (푇 , 푛)
773
+
774
+ 푇 푛1∕2 = 푣4(푇 ) + (푛1∕2 ln(푛)).
775
+ (33)
776
+
777
+ 9
778
+ 0
779
+ 0.1
780
+ 0.2
781
+ 0.3
782
+ 0.4
783
+ 0.5
784
+ 0.6
785
+ T
786
+ -1/2 [Ha]
787
+ 0
788
+ 0.1
789
+ 0.2
790
+ 0.3
791
+ 0.4
792
+ 0.5
793
+ 0.6
794
+ v
795
+ red
796
+ rs = 0.5
797
+ rs = 2
798
+ T
799
+ -1/2
800
+ T
801
+ -1
802
+ 2
803
+ nd virial
804
+ Figure 2 Detail of Fig. 1.
805
+ The fourth virial coefficient results when higher-order virial coefficients are neglected, lim푛→0 푣eff
806
+ 4 (푇 , 푛) = 푣4(푇 ). This should
807
+ be possible in the low-density limit, where the contributions of higher orders of the density expansion become small. However,
808
+ high-precision calculations are required to extract the higher-order coefficients, and the accuracy of the present calculations25
809
+ is not sufficient to determine precisely the fourth- and higher-order virial coefficients. We give here only a discussion of the
810
+ present data.
811
+ From the virial expansion of the free energy9, the fourth virial coefficient 푣4(푇 ) contains contributions with temperature
812
+ dependence ∝ 푇 −2 = 휏4 and higher orders in 휏, as well as contributions ∝ 푇 −7∕2. The coefficient of the 휏4 term follows as
813
+ 3휋
814
+
815
+ 4휋. We expect a high-temperature limit behavior ∝ 푇 −2, and we show in Fig. 3 the quantity 푣eff
816
+ 4 (푇 , 푛) × 푇 2.
817
+ We see that the lowest value of density, 푟푠 = 20, exhibits behavior at small 휏 values that can be compared to a curve 3휋
818
+
819
+ 4휋 −
820
+ 6 × 휏3. However, the exact determination of the fourth virial coefficient 푣4(푇 ) is not possible from the available data. At the
821
+ higher densities corresponding to smaller 푟푠, the accuracy of the numerical PIMC simulations may not be sufficient to extract
822
+ higher-order virial coefficients. In the context of our analysis, in addition to the dependence on 푇 , the dependence on 푛 would be
823
+ of interest to perform the virial plot as a function of 푛. Further calculations for density parameter values in the range of 푟푠 = 20
824
+ would be required. Since we are investigating the differences between large numbers, high accuracy is necessary.
825
+ The study of the uniform electron gas is not only of interest for the discussion of the exchange-correlation term of the energy-
826
+ density functional in DFT calculations, for which Dornheim, Groth, and Bonitz derived analytical formulas29,30. It is also a
827
+ prerequisite to treat the more interesting case of a two-component plasma, e.g., the Hydrogen plasma. The equation of state at
828
+ low densities is of interest, for example, in helioseismology31, where the fourth virial coefficient 푣4(푇 ) is important32. In this
829
+ context, the high-temperature limit of 푣red
830
+ 2 (휏 = 0) was discussed in27,25. For a discussion of the fourth virial coefficient 푣4(푇 ) of
831
+ Hydrogen plasma, see also Alastuey and Ballenegger33,34.
832
+ 6
833
+ VIRIAL EXPANSION OF THE INVERSE CONDUCTIVITY OF H PLASMAS,
834
+ COMPARISON TO DFT-MD SIMULATIONS
835
+ Numerous studies have been performed to calculate the electrical conductivity 휎(푛, 푇 ) of Hydrogen plasma in a wide range of
836
+ parameters, a recent review can be found in Ref.35. A comparative study36 was also recently published that considered different
837
+ approaches and showed large differences in the calculated conductivities. Analytical calculations in the framework of generalized
838
+
839
+ 10
840
+ 0
841
+ 0.5
842
+ 1
843
+ 1.5
844
+ 2
845
+ 2.5
846
+ 3
847
+ 3.5
848
+ 4
849
+ 4.5
850
+ 5
851
+ 5.5
852
+ τ = (THa)
853
+ -1/2
854
+ -300
855
+ -250
856
+ -200
857
+ -150
858
+ -100
859
+ -50
860
+ 0
861
+ 50
862
+ v4
863
+ eff(T,n)* (THa)
864
+ 2
865
+
866
+ 3/2− 6τ
867
+ 3
868
+ rs=0.5
869
+ rs=2
870
+ rs=20
871
+ Figure 3 Effective reduced fourth virial coefficient 푣eff
872
+ 4 (푇 , 푛) × 푇 2, Eq. (33), plotted as function of 휏 = 1∕
873
+
874
+ 푇Ha for different
875
+ densities, 푟푠 = 0, 5; 2; 20. For comparison, a curve 3휋
876
+
877
+ 4휋 − 6휏3 is seen. (Atomic units used.)
878
+ Table 2 PIMC calculations for the UEG: 푣 and 푣red. The calculation with the second virial coefficient, Eq. (32), is denoted by
879
+ 푣vir and 푣red
880
+ vir .
881
+ 푟푠
882
+ Θ
883
+ 푣 [Ha]
884
+ 푇Ha
885
+ 푛 푎3
886
+
887
+
888
+ 푣red
889
+ 2
890
+ Δ푣red
891
+ 2
892
+ Δ푣red
893
+ 3
894
+ 0.5
895
+ 128
896
+ -0.082621
897
+ 942.891
898
+ 1.90986
899
+ 0.0325664
900
+ 0.453524
901
+ -0.000818266
902
+ -0.000819682
903
+ 64
904
+ -0.118045
905
+ 471.446
906
+ 1.90986
907
+ 0.0460558
908
+ 0.420822
909
+ 0.0132298
910
+ 0.0132228
911
+ 32
912
+ -0.169272
913
+ 235.723
914
+ 1.90986
915
+ 0.0651327
916
+ 0.398701
917
+ 0.00992642
918
+ 0.00989306
919
+ 16
920
+ -0.242399
921
+ 117.861
922
+ 1.90986
923
+ 0.0921116
924
+ 0.356465
925
+ 0.0181564
926
+ 0.0180015
927
+ 8
928
+ -0.344764
929
+ 58.9307
930
+ 1.90986
931
+ 0.130265
932
+ 0.294433
933
+ 0.0360992
934
+ 0.0354136
935
+ 2
936
+ 128
937
+ -0.040224
938
+ 58.9307
939
+ 0.0298416
940
+ 0.130265
941
+ 0.290766
942
+ 0.039767
943
+ 0.0396097
944
+ 64
945
+ -0.056806
946
+ 29.4653
947
+ 0.0298416
948
+ 0.184223
949
+ 0.257047
950
+ 0.0194226
951
+ 0.0186676
952
+ 32
953
+ -0.079714
954
+ 14.7327
955
+ 0.0298416
956
+ 0.260531
957
+ 0.207038
958
+ 0.0103138
959
+ 0.00680714
960
+ 16
961
+ -0.110125
962
+ 7.36634
963
+ 0.0298416
964
+ 0.368446
965
+ 0.126496
966
+ 0.043972
967
+ 0.0284584
968
+ 8
969
+ -0.148661
970
+ 3.68317
971
+ 0.0298416
972
+ 0.521062
973
+ 0.0596564
974
+ 0.12329
975
+ 0.0599871
976
+ 20
977
+ 128
978
+ -0.011929
979
+ 0.589307
980
+ 0.0000298416
981
+ 1.30265
982
+ 1.50247
983
+ 0.440148
984
+ 0.0680086
985
+ 64
986
+ -0.016005
987
+ 0.294653
988
+ 0.0000298416
989
+ 1.84223
990
+ 3.48031
991
+ 1.60138
992
+ -0.0765312
993
+ 32
994
+ -0.020711
995
+ 0.147327
996
+ 0.0000298416
997
+ 2.60531
998
+ 6.67878
999
+ 5.91999
1000
+ -1.155
1001
+ 16
1002
+ -0.025633
1003
+ 0.0736634
1004
+ 0.0000298416
1005
+ 3.68446
1006
+ 10.2475
1007
+ 19.7824
1008
+ -6.56867
1009
+ 8
1010
+ -0.030209
1011
+ 0.0368317
1012
+ 0.0000298416
1013
+ 5.21062
1014
+ 9.50255
1015
+ 60.1201
1016
+ -11.6087
1017
+ linear response theory were performed for simple systems such as the Hydrogen plasma. For more complex plasmas, the DFT-
1018
+ MD approach16,37,38,19 was elaborated to evaluate the Kubo-Greenwood formula. However, as discussed in21, electron-electron
1019
+ collisions are not correctly described in this approach. In a recent study15, the low-density limit of the electrical conductivity
1020
+ 휎(푛, 푇 ) of Hydrogen as the simplest ionic plasma is presented as a function of temperature 푇 and particle density 푛 in terms
1021
+
1022
+ 11
1023
+ 0
1024
+ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1025
+ 1
1026
+ 1.1
1027
+ 1/ln[Θ/Γ]
1028
+ 0
1029
+ 0.2
1030
+ 0.4
1031
+ 0.6
1032
+ 0.8
1033
+ 1
1034
+ 1.2
1035
+ 1.4
1036
+ 1.6
1037
+ 1.8
1038
+ 2
1039
+ 32405.4 (T/eV)
1040
+ 3/2/σ[S/m] / ln(Θ/Γ]
1041
+ tilde ρ1Spitzer
1042
+ tilde ρ1Lorentz
1043
+ Karakhtanov
1044
+ QLB, Ronald
1045
+ 64
1046
+ 125
1047
+ 216
1048
+ 95
1049
+ T = 2000 eV
1050
+ T = 200 eV
1051
+ n = 40 g/ccm
1052
+ n = 2 g/ccm
1053
+ Figure 4 Reduced resistivity ̃휌(푥, 푇 ) (42) for hydrogen plasma as a function of 푥 = 1∕ ln(Θ∕Γ): DFT-MD simulations from
1054
+ Ref.15, and Lenard-Balescu results (QLB, Ronald) of Desjarlais et al.37 and Karakhtanov40. 휌Spitzer
1055
+ 1
1056
+ = 0.846 and 휌Lorentz
1057
+ 1
1058
+ = 0.492
1059
+ are defined in the text. The green line represents a linear extrapolation of the converged DFT-MD results. Data are given in the
1060
+ Supplemental material of15.
1061
+ of a virial expansion of resistivity. The non-consideration of the contribution of electron-electron collisions in other transport
1062
+ coefficients such as thermopower and thermal conductivity has also been discussed recently37,39.
1063
+ The virial expansion of the dimensionless resistivity 휌∗, Eq. (13), contains the logarithmic term ln(1∕푛). To make its argument
1064
+ dimensionless we use the Born parameter, see Ref.15,
1065
+ Θ
1066
+ Γ =
1067
+ 푇 2
1068
+ Ry
1069
+ 푛Bohr
1070
+ (96휋5)−1∕3 ,
1071
+ (34)
1072
+ where the temperature is measured in Rydberg units, 푇Ry = 2푇Ha = 푘퐵푇 ∕13.6 eV. As discussed in Sec. 4 in connection with
1073
+ the logarithmic term, we use a modified virial expansion and rewrite (13)
1074
+ 휌∗(푛, 푇 ) = ̃휌1(푇 ) ln
1075
+
1076
+ Γ
1077
+ )
1078
+ + ̃휌2(푇 ) + … .
1079
+ (35)
1080
+ The modified virial coefficients ̃휌푖 are related to 휌푖 replacing in Eq. (35) the variables Θ, Γ by 푛, 푇 according to Eq. (34).
1081
+ Comparing with Eq. (13), ̃휌1 = 휌1 is obtained and
1082
+ ̃휌2 = 휌2 + 휌1 ln[(96휋5)1∕3∕푇 2
1083
+ Ry] .
1084
+ (36)
1085
+ A highlight of plasma transport theory is that the exact value of the first virial coefficient for Coulomb systems is known from
1086
+ the seminal paper of Spitzer and Härm3,
1087
+ 휌1 = ̃휌1 = 휌Spitzer
1088
+ 1
1089
+ = 0.846024,
1090
+ (37)
1091
+ which does not depend on 푇 . Note that Eq. (37) accounts for the contribution of the electron-electron (푒 − 푒) interaction. In
1092
+ contrast, for the Lorentz plasma model where the 푒 − 푒 collisions are neglected so that only the electron-ion interaction is
1093
+ considered, the first virial coefficient is4
1094
+ 휌Lorentz
1095
+ 1
1096
+ = 1
1097
+ 16(2휋3)1∕2 = 0.492126 .
1098
+ (38)
1099
+ Although 푒−푒 collisions do not contribute to a change of the total momentum of the electrons due to conservation of momentum,
1100
+ the distribution in momentum space is changed by 푒−푒 collisions ("reshaping"), and higher moments of the electron distribution
1101
+
1102
+ 12
1103
+ are not conserved by 푒−푒 collisions. The indirect influence of 푒−푒 collisions on the dc conductivity becomes clear in generalized
1104
+ linear response theory where these higher moments are considered, see4,6.
1105
+ No exact value is known for the second virial coefficient 휌2(푇 ) or ̃휌2(푇 ). It depends on the treatment of the many-body effects,
1106
+ in particular on the screening of the Coulomb potential. In a quantum statistical approach, the static (Debye) screening by
1107
+ electrons and ions should be replaced by dynamical screening. For the Hydrogen plasma considered here, the Born approximation
1108
+ for the collision integral at high temperatures 푇Ry ≫ 1 is justified. Consideration of screening in the random phase approximation
1109
+ (RPA), leads to the quantum Lenard-Balescu (QLB) expression. Thus, at very high temperatures, where the dynamically screened
1110
+ Born approximation becomes valid, we obtain the QLB result, see37,40,
1111
+ lim
1112
+ 푇 →∞ ̃휌2(푇 ) = ̃휌QLB
1113
+ 2
1114
+ = 0.4917 .
1115
+ (39)
1116
+ As 푇 decreases, strong binary collisions (represented by ladder diagrams) become important and must be treated in the
1117
+ calculation of the second virial coefficient ̃휌2(푇 ) beyond the Born approximation. According to Spitzer and Härm3, the classical
1118
+ treatment of strong collisions with a statically screened potential gives for 휌∗ = 1∕휎∗ the result
1119
+ 휌∗
1120
+ Sp = 0.846 ln
1121
+ [3
1122
+ 2Γ−3]
1123
+ .
1124
+ (40)
1125
+ Interpolation formulas have been proposed that link the high-temperature limit ̃휌QLB
1126
+ 2
1127
+ with the low-temperature Spitzer
1128
+ limit45,41,42,5,43,6,4,44. Based on a T-matrix calculation in quasiclassical (Wentzel-Kramers-Brillouin, WKB) approximation45,46,
1129
+ the expression (푇eV = 푘퐵푇 ∕eV)
1130
+ ̃휌2(푇eV) ≈ 0.4917 + 0.846 ln
1131
+ [
1132
+ 1 + 8.492∕푇eV
1133
+ 1 + 25.83∕푇eV + 167.2∕푇 2
1134
+ eV
1135
+ ]
1136
+ (41)
1137
+ is a simple interpolation that combines the QLB result with the Spitzer limit in WKB approximation. However, the exact
1138
+ analytical form of the temperature dependence of the second virial coefficient ̃휌2(푇 ) remains an open problem.
1139
+ Thus, the available exact results for the virial expansion (35) of the inverse conductivity of fully ionized Hydrogen plasma are:
1140
+ (i) the value of the first virial coefficient is ̃휌1 = 0.846;
1141
+ (ii) the second virial coefficient has the high-temperature limit lim푇 →∞ ̃휌2(푇 ) = 0.4917;
1142
+ (iii) the second virial coefficient is temperature dependent, an approximation is given by Eq. (41).
1143
+ To extract the first and second virial coefficient from calculated or measured dc conductivities, we plot the expression
1144
+ ̃휌(푥, 푇 ) =
1145
+ 휌∗
1146
+ ln(Θ∕Γ) =
1147
+ 32405.4
1148
+ 휎(푛, 푇 )(Ωm)푇 3∕2
1149
+ eV
1150
+ 1
1151
+ ln(Θ∕Γ)
1152
+ (42)
1153
+ as a function of 푥 = 1∕ ln(Θ∕Γ) and 푇 in Fig. 4 which is called virial plot. According to Eqs. (13), (35), the behavior of any
1154
+ isotherm (fixed 푇 ) is linear near 푛 → 0,
1155
+ ̃휌(푥, 푇 ) = ̃휌1(푇 ) + ̃휌2(푇 )푥 + … ,
1156
+ (43)
1157
+ with ̃휌1(푇 ) as the value at 푥 = 0 and ̃휌2(푇 ) as the slope of the isotherm. In this way, the extraction of virial coefficients becomes
1158
+ immediately possible. For 푥 > 1∕ ln(100) = 0.217, the contributions of higher order virial coefficients have to be taken into
1159
+ account15. For fixed 푇 and low density, where 휃 ≫ 1, a classical plasma is present and the effects of degeneracy contribute to
1160
+ the higher order virial coefficients.
1161
+ In Fig. 4 two cases for the first virial coefficient 휌1 on the ordinate axis are shown, see also4,5,6:
1162
+ (i) 휌Spitzer
1163
+ 1
1164
+ from kinetic theory when 푒 − 푒 collisions are taken into account,
1165
+ (ii) when 푒 − 푒-collisions are neglected, 휌Lorentz
1166
+ 1
1167
+ is obtained for the Lorentz plasma model.
1168
+ Moreover, the second virial coefficient ̃휌QLB
1169
+ 2
1170
+ of the Lenard-Balescu approximation. (39) is shown, which is correct in the high
1171
+ temperature limit. The QLB calculations of Desjarlais et al.37 are shown in Fig. 4. The 푒 − 푒 collisions are taken into account,
1172
+ yielding the same asymptote (푥 → 0) as in Karakhtanov40. With increasing 푥 = 1∕ ln(Θ∕Γ) small deviations from linear
1173
+ behavior are observed. When isotherms are presented, this deviation indicates the contribution of higher virial coefficients.
1174
+ Virial plots are presented in15 to investigate two problems: Which of the various approaches that give us analytical expressions
1175
+ for the electrical conductivity of Hydrogen plasmas are accurate in the low density limit? The virial expansion of the inverse
1176
+ conductivity serves as an exact benchmark for theoretical approaches, so that the accuracy and consistency of semi-empirical
1177
+ results for conductivity, such as those collected in Ref.36, can be checked. A more fundamental problem is whether numerical
1178
+ results from molecular dynamics simulations based on density functional theory (DFT-MD) correctly contain the contribution
1179
+ of electron-electron collisions. The virial plot confirms the position that DFT-MD simulations in the low-density limit describe
1180
+ a Lorentz plasma with only electron-ion collisions, the contribution of electron-electron collisions to 휌1 is missing15.
1181
+
1182
+ 13
1183
+ Here we discuss some details of the virial expansion for the inverse conductivity and the corresponding virial plots, see Fig.
1184
+ 4. DFT-MD simulations are given in Ref.15, see the tables of data in the supplementary material. These data have sufficiently
1185
+ high accuracy, as can be seen from the small deviations from the fit line in Fig. 4. In addition to the precise solution of the Kubo-
1186
+ Greenwood formula, this is achieved by good control of convergence with increasing particle number, as shown by comparison
1187
+ of calculations with different numbers of particles. The number of particles must be sufficiently large to ensure convergence.
1188
+ In the parameter range considered in the figure, about 100 particles in the box are necessary to achieve convergence. Further
1189
+ calculations with 216 electrons were not possible due to limited computer capacity. For 푇 = 150 eV, even 125 electrons exceed
1190
+ the currently available computer capacity. This point was also discussed in a recent work39, where earlier calculations37 were
1191
+ improved to achieve convergence. Another problem is the determination of the value of the dc conductivity 휎(0) from the calcu-
1192
+ lation of the optical conductivity 휎(휔) at finite frequencies. Because of the discretisation in a finite box, the energy eigenvalues
1193
+ have a minimum spacing and the energy-conserving 훿 function must be smeared by a parameter 휖 to allow for transitions, see
1194
+ also section 3 above. To reach the limit 휔 → 0, an extrapolation is performed according to the Drude formula (10). This was
1195
+ discussed also in Ref.39. Instead, one can use the dynamic collision frequency to perform this extrapolation.
1196
+ The results shown in Fig. 4 allow the extraction of virial coefficients 휌1(푇 ), ̃휌2(푇 ). Compared to other approaches, including
1197
+ interpolation formulas, see15, as well as the QLB calculation, we assume that we are in the linear region of the virial curve.
1198
+ Deviations from linearity can be observed for QLB already at 푥 = 0.2, since the density is high (40 g/cm3). For DFT-MD
1199
+ simulations with density about 2 g/cm3, the deviation from linearity for the last point is observed at 푥 ≈ 1.
1200
+ As pointed out in15, the extrapolated value of 휌1 in the virial plot at 푥 = 0 points to the Lorentz value (38) but misses the
1201
+ Spitzer value (37). This means that electron-electron collisions are not considered in the DFT-MD calculations for the electrical
1202
+ conductivity. Also of interest is the value of ̃휌2(푇 ) given by the slope in the virial plot near 푥 = 0. Fitting it to the data gives a slope
1203
+ of 0.9886 for the DFT-MD calculations. This is about twice the slope ̃휌QLB
1204
+ 2
1205
+ given above. From analytical approaches, it appears
1206
+ that the slope is determined by various effects such as dynamical screening and strong collisions. In the limiting case of high
1207
+ temperatures, the Born approximation should be possible, but the Coulomb potential must be replaced by a screened potential.
1208
+ Static screening of the proton scatterer with both electrons and protons would lead to the following result (퐶 = 0.57721 … is
1209
+ Euler’s constant).
1210
+ lim
1211
+ 푇 →∞ ̃휌2(푇 ) = 휋3∕2
1212
+ 24
1213
+
1214
+ 2
1215
+ [11
1216
+ 2 − 3퐶 + ln
1217
+ (3
1218
+ 2휋2)]
1219
+ = 1.06036
1220
+ (44)
1221
+ which is close to the observed slope of the DFT-MD simulations. However, it remains unclear to what extent the screening is
1222
+ included in the simulations. We assume that the ionic structure factor, which is the ionic contribution to the screening, is well
1223
+ described, and that the electron screening is also captured by the exchange-correlation functional. However, we need to consider
1224
+ dynamical screening, a problem that has been discussed in previous work5 on virial expansion.
1225
+ We return to the long-debated question of whether or not 푒 − 푒 collisions are accounted for in the DFT-MD formalism. For
1226
+ example, it was pointed out in Ref.21 that a mean-field approach is not able to describe two-particle correlations, in particular
1227
+ 푒 − 푒 collisions. However, to some approximation, the 푒 − 푒 interaction is accounted for by the exchange-correlation energy.
1228
+ DFT-MD simulations, which are mean-field theories that account for the 푒−푒 interaction only through the exchange-correlation
1229
+ part of the energy density, cannot account for the effect of 푒 − 푒 collisions on the conductivity, so that 휌1(푇 ) corresponds to the
1230
+ Lorentz plasma, but ̃휌2(푇 ) is determined by screening. The question arises to what extent dynamical screening, as implemented
1231
+ in the QLB calculations, is also described by the exchange-correlation part of the energy density functional. We would like to
1232
+ mention that in the case of thermal conductivity it has been shown that the contribution of 푒 − 푒 collisions is not taken into
1233
+ account in DFT-MD simulations37,35,39 and yields an additional term. Other approaches such as generalized linear response
1234
+ theory may be considered to indicate appropriate approaches.
1235
+ Our analysis has shown that the simulation results with virial evolution are extrapolated to the low-density region, where
1236
+ DFT-MD simulations are no longer feasible. The current simulations, while computationally expensive, are still not very close
1237
+ to 푥 = 0, so extrapolation to the 푥 = 0 limit is not very accurate. Better data for DFT-MD simulations would be of interest to
1238
+ confirm our results. Conversely, the benchmark capability of virial expansion discussed in this work can also serve as a criterion
1239
+ to verify the accuracy of numerical approaches such as DFT-MD simulations to evaluate conductivity.
1240
+ Another application of the virial plot is experiments to measure electrical conductivity. Assuming that the value 0.846024,
1241
+ Eq. (37), for 휌1 is exact, an effective second virial coefficient
1242
+ ̃휌eff
1243
+ 2 (푛, 푇 ) =
1244
+ 32405.4
1245
+ 휎(푛, 푇 )[Ωm]
1246
+ ( 푇
1247
+ eV
1248
+ )3∕2
1249
+ − 0.846024 ln
1250
+
1251
+ Γ
1252
+ )
1253
+ (45)
1254
+
1255
+ 14
1256
+ 0
1257
+ 0.1
1258
+ 0.2
1259
+ 0.3
1260
+ 0.4
1261
+ 0.5
1262
+ 0.6
1263
+ 0.7
1264
+ 0.8
1265
+ 0.9
1266
+ 1
1267
+ 1/T [eV]
1268
+ -3
1269
+ -2
1270
+ -1
1271
+ 0
1272
+ 1
1273
+ 2
1274
+ 3
1275
+ second virial coefficient tilde ρ2(T)
1276
+ H: Guenther, Radtke
1277
+ Ar, Xe, Ne: Ivanov
1278
+ Ar, Xe: Popovic
1279
+ Lenard-Balescu value
1280
+ ERR interpolation
1281
+ QLB/Desjarlais
1282
+ interpolation (7)
1283
+ Figure 5 Second virial coefficients ̃휌2(푇 ) and ̃휌eff
1284
+ 2 (푛, 푇 ) for the dc conductivity of Hydrogen plasmas. Analytical interpolation
1285
+ formulas (41) and Ref.45 are compared with experiments of Günther and Radtke47 for H plasmas as well as of Ivanov et al.48
1286
+ and Popovic et al.49 for rare gas plasmas. The black dashed line corresponds to the high temperature limit that is given by
1287
+ the quantum Lenard-Balescu value. The broken blue line is the interpolation formula of Ref.45, the red full line represents the
1288
+ interpolation formula (41) for the second virial coefficient.
1289
+ has been introduced which gives the second virial coefficient in the low-density limit, lim푛→0 ̃휌eff
1290
+ 2 (푛, 푇 ) = ̃휌2(푇 ). A dependence
1291
+ of ̃휌eff
1292
+ 2 (푥, 푇 ) on density shows that higher orders of the virial expansion are relevant. We anticipate that at very high 푇 , i.e.,
1293
+ 1∕푇 → 0, the Lenard-Balescu value is approximated. The deviations at increasing 1∕푇 , shown in the interpolation formula and
1294
+ the DFT-MD simulations, indicate that already below temperatures of the order of 100 eV, the effect of strong collisions beyond
1295
+ the Born approximation should be taken into account.
1296
+ Ultimately, the virial expansion (35) must be verified experimentally, but accurate data for the conductivity of Hydrogen
1297
+ plasma in the low-density limit and/or at high temperatures are scarce. Accurate conductivity data for dense Hydrogen plasma
1298
+ were derived by Günther and Radtke47. They are close to the benchmark data of the virial expansion. It should be noted that there
1299
+ are systematic errors associated with the analysis of such experiments. For example, the appearance of bound states requires
1300
+ a realistic treatment of the plasma composition and the influence of neutrals on electron mobility. Alternatively, conductivity
1301
+ measurements in highly compressed noble gas plasmas were carried out by Ivanov et al.48 and Popovic et al.49,45, but the
1302
+ interaction of the electrons with the ions deviates from the pure Coulomb potential due to the core of bound electrons. The
1303
+ corresponding virial plot is close to the data of Hydrogen plasma, see15, but requires a more detailed discussion on the role of
1304
+ bound electrons.
1305
+ It should also be mentioned that the densities are quite high, and extrapolation to zero density must be performed to obtain the
1306
+ second virial coefficient. This tendency can be seen in Fig. 5, especially for the experiments with Ar, Xe49, where low-density
1307
+ data point to ̃휌2(푇 ).
1308
+ Quantum statistical methods provide accurate values for the lowest virial coefficients, which serve as benchmarks for an-
1309
+ alytical approaches to electrical conductivity as well as for numerical results from molecular dynamics simulations based on
1310
+ density functional theory (DFT-MD) or path integral Monte Carlo (PIMC) simulations. While these simulations are well suited
1311
+ to compute 휎(푛, 푇 ) in a wide range of densities and temperatures, especially for the warm dense matter region, they become com-
1312
+ putationally expensive in the low density limit, and virial expansions can be used to compensate for this drawback. Interpolation
1313
+ formulas that take both approaches into account would be very useful for calculating the conductivity of plasmas.
1314
+
1315
+ 15
1316
+ Table 3 Experimental data for the electrical conductivity. Günther and Radtke: H47; Ivanov et al.: Ar, Xe, Ne48; Popovic et al.:
1317
+ Ar, Xe49.
1318
+ Plasma
1319
+ ̂푛푒 × 1025
1320
+ 푛 × 10−6
1321
+ 푇 × 104
1322
+
1323
+ Γ
1324
+ Θ
1325
+ 1∕ ln(Θ∕Γ)
1326
+ 휎 × 103
1327
+ ̃휌(푥, 푇 )
1328
+ ̃휌eff
1329
+ 2
1330
+ [m3]
1331
+ [g/cm3]
1332
+ [K]
1333
+ [eV]
1334
+ [(Ωm)−1]
1335
+ H
1336
+ 0.1
1337
+ 1.67262
1338
+ 1.54
1339
+ 1.32706
1340
+ 0.174914
1341
+ 363.932
1342
+ 0.130883
1343
+ 6.2
1344
+ 1.04579
1345
+ 1.52647
1346
+ H
1347
+ 0.15
1348
+ 2.50893
1349
+ 1.87
1350
+ 1.61143
1351
+ 0.164892
1352
+ 337.249
1353
+ 0.131177
1354
+ 9.1
1355
+ 0.955544
1356
+ 0.835097
1357
+ H
1358
+ 0.25
1359
+ 4.18155
1360
+ 2.15
1361
+ 1.85271
1362
+ 0.170041
1363
+ 275.832
1364
+ 0.13529
1365
+ 11.4
1366
+ 0.969821
1367
+ 0.915228
1368
+ Ar
1369
+ 2.8
1370
+ 46.8334
1371
+ 2.22
1372
+ 1.91303
1373
+ 0.36845
1374
+ 56.8959
1375
+ 0.198426
1376
+ 19.0
1377
+ 0.895459
1378
+ 0.249255
1379
+ Ar
1380
+ 5.5
1381
+ 91.9942
1382
+ 2.03
1383
+ 1.74931
1384
+ 0.504626
1385
+ 33.1707
1386
+ 0.238914
1387
+ 15.5
1388
+ 1.15565
1389
+ 1.29607
1390
+ Ar
1391
+ 8.1
1392
+ 135.482
1393
+ 1.93
1394
+ 1.66313
1395
+ 0.603878
1396
+ 24.3632
1397
+ 0.270456
1398
+ 17.0
1399
+ 1.10575
1400
+ 0.960407
1401
+ Ar
1402
+ 14
1403
+ 234.167
1404
+ 1.9
1405
+ 1.63728
1406
+ 0.736152
1407
+ 16.6533
1408
+ 0.320623
1409
+ 25.5
1410
+ 0.853604
1411
+ 0.0237179
1412
+ Ar
1413
+ 17
1414
+ 284.346
1415
+ 1.78
1416
+ 1.53387
1417
+ 0.838316
1418
+ 13.7074
1419
+ 0.357872
1420
+ 24.5
1421
+ 0.899216
1422
+ 0.148701
1423
+ Xe
1424
+ 25
1425
+ 418.155
1426
+ 3.01
1427
+ 2.5938
1428
+ 0.563757
1429
+ 17.9242
1430
+ 0.289077
1431
+ 45
1432
+ 0.869607
1433
+ 0.081664
1434
+ Ne
1435
+ 1.1
1436
+ 18.3988
1437
+ 1.98
1438
+ 1.70622
1439
+ 0.302559
1440
+ 94.6027
1441
+ 0.174059
1442
+ 13
1443
+ 0.966995
1444
+ 0.695135
1445
+ Ne
1446
+ 1.9
1447
+ 31.7798
1448
+ 1.96
1449
+ 1.68899
1450
+ 0.366725
1451
+ 65.0509
1452
+ 0.193113
1453
+ 16.5
1454
+ 0.832499
1455
+ -0.0699113
1456
+ air
1457
+ 0.13
1458
+ 2.17441
1459
+ 1.1
1460
+ 0.9479
1461
+ 0.26726
1462
+ 218.238
1463
+ 0.14914
1464
+ 6
1465
+ 0.743367
1466
+ -0.688167
1467
+ Ar
1468
+ 0.06
1469
+ 1.00357
1470
+ 1.64
1471
+ 1.41323
1472
+ 0.138532
1473
+ 544.807
1474
+ 0.120816
1475
+ 8.3
1476
+ 0.792469
1477
+ -0.443077
1478
+ Ar
1479
+ 0.1
1480
+ 1.67262
1481
+ 1.64
1482
+ 1.41323
1483
+ 0.164248
1484
+ 387.564
1485
+ 0.128762
1486
+ 7.9
1487
+ 0.887358
1488
+ 0.321199
1489
+ Ar
1490
+ 0.13
1491
+ 2.17441
1492
+ 1.64
1493
+ 1.41323
1494
+ 0.17926
1495
+ 325.373
1496
+ 0.133264
1497
+ 7.6
1498
+ 0.954636
1499
+ 0.815191
1500
+ Ar
1501
+ 0.15
1502
+ 2.50893
1503
+ 1.64
1504
+ 1.41323
1505
+ 0.188017
1506
+ 295.767
1507
+ 0.135855
1508
+ 6.4
1509
+ 1.15567
1510
+ 2.27941
1511
+ Xe
1512
+ 0.06
1513
+ 1.00357
1514
+ 1.24
1515
+ 1.06854
1516
+ 0.18322
1517
+ 411.928
1518
+ 0.129569
1519
+ 4.6
1520
+ 1.0082
1521
+ 1.25185
1522
+ Xe
1523
+ 0.12
1524
+ 2.00715
1525
+ 1.24
1526
+ 1.06854
1527
+ 0.18322
1528
+ 411.928
1529
+ 0.13529
1530
+ 4.1
1531
+ 1.0082
1532
+ 2.20078
1533
+ Xe
1534
+ 0.07
1535
+ 1.17083
1536
+ 1.26
1537
+ 1.08578
1538
+ 0.189819
1539
+ 377.693
1540
+ 0.131652
1541
+ 4.8
1542
+ 1.00558
1543
+ 1.21211
1544
+ Xe
1545
+ 0.14
1546
+ 2.34167
1547
+ 1.26
1548
+ 1.08578
1549
+ 0.239157
1550
+ 237.931
1551
+ 0.144873
1552
+ 4.4
1553
+ 1.20715
1554
+ 2.49289
1555
+ To obtain the correct values for the thermoelectric transport coefficients of Hydrogen plasma in the low-density limit, where
1556
+ the inclusion of 푒 − 푒 collisions is essential, different solutions can be considered. PIMC simulations, as successfully performed
1557
+ for the uniform electron gas25, should also be performed for the two-component plasmas. First steps of this ambitious project are
1558
+ recently in progress12,50. The study of such PIMC calculations with the virial plot would be of great interest. From generalized
1559
+ linear response theory, we also learn that higher order correlation functions, such as force-force correlation functions associated
1560
+ with the dynamic collision frequency, may be a suitable approach to include the contribution of 푒 − 푒 collisions in the transport
1561
+ coefficients4,5,6.
1562
+ 7
1563
+ CONCLUSIONS
1564
+ We have from quantum statistics exact expressions for thermodynamic and transport properties of plasmas by equilibrium cor-
1565
+ relation functions, but the evaluation is a complex problem in many-particle physics. Numerical simulations are becoming more
1566
+ accurate as computer capacity increases. However, they need to be controlled with respect to their limits such as size effects,
1567
+ but also fundamental problems such as the correct description of electron-electron collisions in the context of DFT or the sign
1568
+ problem in PIMC. It is expected that PIMC simulations will provide an adequate description of electron-electron interactions,
1569
+ but they are currently unable to solve complex plasmas such as multiply charged ions in the low-temperature range.
1570
+ The comparison of analytical results for the virial expansion of thermodynamic properties with PIMC calculations for the
1571
+ uniform electron gas has been performed. In particular, we show that high-precission PIMC simulations confirm the correct
1572
+ form of the virial expansion, which has been debated recently. It seems to be possible to give also numerical values for higher
1573
+ virial coefficients, in particular the interesting 푛5∕2 coefficient. These values can be considered as exact results in plasma physics.
1574
+ Numerical values for higher virial coefficients would also be of great interest for transport properties.
1575
+
1576
+ 16
1577
+ Analytical theory gives us exact results in limiting cases. This can be used to obtain results for parameter ranges where
1578
+ numerical simulations are not efficient, e.g. in the low density range. Virial expansions are used to control theories and numerical
1579
+ simulations. They are of interest to construct interpolation formulas.
1580
+ It was indicated that the evaluation of the Kubo-Greenwood formula using DFT-MS simulations does not take into account
1581
+ the effects of electron-electron scattering and cannot reproduce the low-density limit of the electrical conductivity of Hydrogen
1582
+ plasmas. Similar results were recently reported by French et al.39 for other thermoelectric transport coefficients. It would be of
1583
+ interest to perform PIMC simulations that can accurately describe electron-electron collisions.
1584
+ The theory of virial expansion must be extended if the formation of bound states is of importance, i.e. for 푇 ∕푇Ha ≤ 1, see
1585
+ appendix. New approaches are needed. The approach described here is also applicable to other correlation functions such as
1586
+ the dynamic structure factor or to other transport properties such as thermal conductivity, thermopower, viscosity, and diffusion
1587
+ coefficients. Also of interest is the extension of virial expansion to elements other than Hydrogen, where different ions can be
1588
+ formed and the electron-ion interaction is no longer purely Coulombic.
1589
+ ACKNOWLEDGMENTS
1590
+ Thanks to M. Schörner, R. Redmer, M. Bethkenhagen, M. French, H. Reinholz, T. Dornheim, J. Vorberger, Z. Moldabekov, and
1591
+ W.-D. Kraeft for collaboration and discussions. This work was supported by the German Research Foundation (DFG), Grant #
1592
+ RO 905/37-1 AOBJ 655625.
1593
+ Author contributions
1594
+ This is an author contribution text. It is based on a contribution to the SCCS22 conference.
1595
+ Financial disclosure
1596
+ None reported.
1597
+ Conflict of interest
1598
+ The author declares no potential conflict of interests.
1599
+ APPENDIX
1600
+ A BOUND STATE FORMATION
1601
+ A special problem of plasmas is the formation of bound states (atoms, charged ions: clusters with a certain number of elemen-
1602
+ tary particles, i.e., nuclei and electrons) which can dominate the properties in the low-density and low-temperature region. A
1603
+ simple approach is the chemical picture9, where the bound states are considered as new constituents. The interaction between
1604
+ the different constituents is neglected except for reactive collisions. Thus, a chemical equilibrium is achieved in which the com-
1605
+ position of the plasma is described by the law of mass action. For a systematic approach including bound state formation see
1606
+ Refs.33,34 and references given there. We will not present here an exhaustive discussion of the chemical picture, but only discuss
1607
+ some aspects in the context of our work. For a recent review, see51,52, where further references can be found.
1608
+ Within the chemical picture, several issues arise that need to be discussed in order to improve this simple approximation,
1609
+ using the concept of virial expansions.
1610
+ (i) In addition to the ground state, excited states (푠) with excitation energy 퐸훼,푠 can occur, which can also be treated as new
1611
+ species. It is more convenient to introduce the intrinsic partition function of the cluster 훼, which is summed over all excited
1612
+ bound states by the statistical factor exp[−훽퐸훼,푠].
1613
+
1614
+ 17
1615
+ (ii) In addition to bound states, there are also scattering states that must be included in the calculation of virial coefficients.
1616
+ This leads to the Beth-Uhlenbeck formula, in which the scattering phase shifts appear. Sometimes resonances can appear in
1617
+ the spectrum of excited states. In the resonance gas approximation, the intrinsic partition function is improved by extending
1618
+ the summation over all excitations 푠 to the resonances in the continuum. Moreover, the contribution of scattering phase shifts
1619
+ should be included.
1620
+ iii) We arrive at higher virial coefficients and need to include density effects. In the framework of a quasiparticle approach, the
1621
+ intrinsic partition functions are calculated with shifted energies due to screening, mean-field effects, Pauli blocking and other
1622
+ effects.
1623
+ As example, let us consider the H plasma and give the intrinsic partition function in the simplest approximation
1624
+ 푧H =
1625
+
1626
+
1627
+ 2푠2푒−퐸H,푠∕푘퐵푇
1628
+ (A1)
1629
+ with the known energy levels 퐸H,푠 = −퐸Ha∕(2푠2) (퐸Ha = 27.2 eV is the Hartree energy). The factor 2푠2 denotes the degeneracy
1630
+ of the excitation 푠 including the spin factor. As specific for the Coulomb interaction, we have infinitely many bound states
1631
+ near the continuum edge for 푠 → ∞. Expression (A1) is not applicable because it is divergent. A convergent expression is the
1632
+ Planck-Brillouin-Larkin partition function, see9,
1633
+ 푧H =
1634
+
1635
+
1636
+ 2푠2
1637
+ [
1638
+ 푒−퐸H,푠∕푘퐵푇 − 1 +
1639
+ 퐸H,푠
1640
+ 푘퐵푇
1641
+ ]
1642
+ .
1643
+ (A2)
1644
+ The subtraction of 1 is explained as follows: We need to include the contribution of the scattering states which compensate for
1645
+ the most divergent term of the contribution of the bound states. For the short-range interaction, this has been discussed in detail,
1646
+ and generalized phase shifts have been introduced to avoid separating the bound and scattering parts of the intrinsic partition
1647
+ function53,54.
1648
+ More complex is the explanation of the subtraction of 퐸Ha∕(2푠2푘퐵푇 ). Because of the long-range character of the Coulomb
1649
+ interaction, phase shifts cannot be defined in the usual form, and the contribution of the scattering states is not well defined
1650
+ when scattering phase shifts are used. This fundamental problem of the Coulomb interaction is solved introducing the concept
1651
+ of screening. In the framework of a quantum statistical approach, we have to perform the partial sum of so-called ring diagrams
1652
+ and introduce quasiparticles. We must, however, avoid double counting. This has already been discussed in detail for the Hartree-
1653
+ Fock approximation55,56. Of interest is the generalization to partially ionized plasmas with multiply charged ions52.
1654
+ A systematic approach arises from consideration of the spectral function. We can identify a quasiparticle contribution and
1655
+ perform a cluster decomposition of the self-energy. For the cluster decomposition of the self-energy, we can introduce different
1656
+ channels. To avoid double counting, diagrams used for the single-particle self-energy must be subtracted from the ladder sums
1657
+ defining the cluster states.
1658
+ A related problem is the definition of the ionization degree in dense plasmas, since the separation of the bound state contri-
1659
+ bution from the intrinsic partition function is arbitrary, see57,58,59 and references given there. A possible solution would be the
1660
+ definition of the single-quasiparticle contribution which is extracted from the spectral function. Thus it can be performed by
1661
+ considering the compressibility or the dynamical conductivity.
1662
+ The inclusion of bound states and the corresponding generalization of the chemical picture, involving quasiparticle concepts
1663
+ for the free and bound states, is a difficult problem in plasma theory. Of course, at fixed temperature there is always a low-
1664
+ density limit at which bound states are dissolved (because of entropy) but this regime can be very limited, for instance it is not
1665
+ applicable to gases under normal conditions. A realistic description is often based on the chemical picture where bound states
1666
+ are considered, i.e. for temperatures below the binding energies. A generalized quasiparticle approach is well defined at low
1667
+ densities, but has to be generalized considering the spectral function (6) if densities are increasing. The formation of bound states
1668
+ is not only important for the thermodynamic properties, as discussed above for the second virial coefficient of the Hydrogen
1669
+ plasma. It also determines the transport properties, and the consideration of bound states as additional scatterers remains a
1670
+ complex problem if we want to go beyond the simple chemical picture.
1671
+ References
1672
+ 1. A. L. Fetter and J. D. Walecka, Quantum theory of Many-Particle Systems (McGraw-Hill, 1971).
1673
+ 2. G. Röpke, Nonequilibrium Statistical Physics (Wiley-VCH, Weinheim, 2013).
1674
+
1675
+ 18
1676
+ 3. J. L. Spitzer and R. Härm, Phys. Rev. 89, 977 (1953).
1677
+ 4. G. Röpke, Phys. Rev. A 38, 3001 (1988).
1678
+ 5. G. Röpke and R. Redmer, Phys. Rev. A 39, 907 (1989).
1679
+ 6. R. Redmer, Physics Reports 282, 35 (1997).
1680
+ 7. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957); Rep. Prog. Phys. 29, 255 (1966).
1681
+ 8. H. Reinholz and G. Röpke, Phys. Rev. E 85, 036401 (2012).
1682
+ 9. W.-D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum Statistics of Charged Particle Systems ( Plenum Press, New
1683
+ York and London, 1986).
1684
+ 10. W. Lorenzen, B. Holst, and R. Redmer, Phys. Rev. B 82, 195107 (2010).
1685
+ 11. C. Wang and P. Zhang, Phys. Plasmas 20, 092703 (2013).
1686
+ 12. M. Bonitz et al., Phys. Plasmas 27, 042710 (2020).
1687
+ 13. A. Tirelli, G. Tenti, K. Nakano, and S. Sorella, Phys. Rev. B 106, L041105 (2022).
1688
+ 14. D. A. Greenwood, Proc. Phys. Soc. London 71, 585 (1958).
1689
+ 15. G. Röpke, M. Schörner, R. Redmer, and M. Bethkenhagen, Phys. Rev. E 104, 045204 (2021).
1690
+ 16. M. P. Desjarlais, J. D. Kress, and L. A. Collins, Phys. Rev. E 66, 025401(R) (2002).
1691
+ 17. S. Mazevet, M. P. Desjarlais, L. A. Collins, J. D. Kress, and N. H. Magee, Phys. Rev. E 71, 016409 (2005).
1692
+ 18. B. Holst, M. French, and R. Redmer, Phys. Rev. B 83, 235120 (2011).
1693
+ 19. M. French and R. Redmer, Phys. Plasmas 24, 092306 (2017).
1694
+ 20. M. Gajdos, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).
1695
+ 21. H. Reinholz, G. Röpke, S. Rosmej, and R. Redmer, Phys. Rev. E 91, 043105 (2015).
1696
+ 22. T. Dornheim, S. Groth, and M. Bonitz, Physics Reports 744, 1 (2018).
1697
+ 23. T. Dornheim and J. Vorberger, Phys. Rev. E 102, 063301 (2020).
1698
+ 24. M. Bonitz, T. Dornheim, Zh. A. Moldabekov, S. Zhang, P. Hamann, H. Kählert, A. Filinov, K. Ramakrishna, and J.
1699
+ Vorberger, Phys. Plasmas 27, 042710 (2020).
1700
+ 25. T. Dornheim et al., High Energy Density Physics 45, 101015 (2022).
1701
+ 26. G. Röpke, TMF 194, 90 (2018); Engl. transl.: Theoret. and Math. Phys. 194, 74 (2018).
1702
+ 27. W.-D. Kraeft et al., Phys. Rev. E 91, 013108 (2015).
1703
+ 28. W.-D. Kraeft et al., Phys. Rev. E 66, 046405 (2002).
1704
+ 29. T. Dornheim, S. Groth, and M. Bonitz, Phys. Reports 744 (2018).
1705
+ 30. S. Groth, T. Dornheim, and M. Bonitz, Contr. Plasma Phys. 57,137 (2017).
1706
+ 31. J. Chrristensen-Daalsgard and W. Daeppen, Nature 336, 634 (1988).
1707
+ 32. W. D. Kraeft, M. Schlanges, D. Kremp, J. Riemann, and H. E. DeWitt, Z. Phys. Chem., 204, 199 (1998).
1708
+ 33. A. Alastuey and V. Ballenegger, Contr. Plasma Phys. 50, 46 (2010).
1709
+
1710
+ 19
1711
+ 34. A. Alastuey and V. Ballenegger, Phys. Rev. E 86, 066402 (2012).
1712
+ 35. N. R. Shaffer and C. E. Starrett Phys. Rev. E 101, 053204 (2020); 102, 043211 (2020).
1713
+ 36. P. E. Grabowski et al., High Energy Dens. Phys. 37, 100905 (2020).
1714
+ 37. M. P. Desjarlais, C. R. Scullard, L. X. Benedict, H. D. Whitley, and R. Redmer, Phys. Rev. E 95, 033203 (2017).
1715
+ 38. B. Holst, M. French, and R. Redmer, Phys. Rev. B 83, 235120 (2011).
1716
+ 39. M. French, G. Röpke, M. Schörner, M. Bethkenhagen, M. P. Desjarlais, and R. Redmer Phys. Rev. E 105, 065204 (2022).
1717
+ 40. V. S. Karakhtanov, Contrib. Plasma Phys. 56, 343 (2016).
1718
+ 41. H. A. Gould and H. E. DeWitt, Phys. Rev. 155, 68 1967.
1719
+ 42. R. H. Williams and H. E. DeWitt, Phys. Fluids 12, 2326 1969.
1720
+ 43. R. Redmer, G. Röpke, F. Morales, and K. Kilimann, Phys. Fluids B 2, 390 (1990).
1721
+ 44. A. Esser and G. Röpke, Phys. Rev. E 58, 2446 (1998).
1722
+ 45. A. Esser, R. Redmer, and G. Röpke, Contrib. Plasma Phys. 43, 33 (2003).
1723
+ 46. H. Reinholz, R. Redmer, and D. Tamme, Contrib. Plasma Phys. 29, 395 (1989).
1724
+ 47. K. Günther and R. Radtke, Electrical properties of Nonideal Plasmas, (Birkhäuser, Basel 1984).
1725
+ 48. Y. V. Ivanov et al., Sov. Phys. JETP 44, 112 (1976).
1726
+ 49. M. M. Popovic, Y. Vitel, and A. A. Mihajlov, in Strongly Coupled Plasmas, edited by S. Ichimaru (Elsevier, Yamada 1990),
1727
+ p.561.
1728
+ 50. M. Böhme et al., Phys. Rev. Lett. 129, 066402 (2022).
1729
+ 51. W. Ebeling, H. Reinholz, G. Röpke, Eur. Phys. J. Special Topics 229, 3403 (2020);
1730
+ Contrib. Plasma Phys. 61, e202100085 (2021); https://doi.org/10.1002/ctpp.202100085.
1731
+ 52. W. Ebeling and G. Röpke, Plasma , 6, 1 (2023); https://doi.org/10.3390/plasma6010001
1732
+ 53. G. Röpke, J. Phys.: Conf. Ser. 569, 012031 (2014).
1733
+ 54. G. Röpke, Phys. Rev. C 92, 054001 (2015).
1734
+ 55. M. Schmidt et al., Ann. Phys. 202, 57 (1990).
1735
+ 56. G. Röpke et al., Nucl. Phys. A 897, 70 (2013).
1736
+ 57. C. Lin et al., Phys. Rev. E 96, 013202 (2017).
1737
+ 58. G. Röpke et al., Phys. Rev. E 99, 038201 (2019).
1738
+ 59. M. Bethkenhagen et al., Phys. Rev. Research 2, 023260 (2020).
1739
+
DdAzT4oBgHgl3EQfif0c/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
F9FKT4oBgHgl3EQfbS5P/content/2301.11811v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d92740ea1e5892ae00330447020bd3748a63fd73a8817e45706f4e0b8dd6622a
3
+ size 552666
FtE3T4oBgHgl3EQftQtg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GdE1T4oBgHgl3EQfrAWz/content/2301.03350v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a23bb5cffbc687e08198dab54d93ca8c947d51f8ff4d2d90a52a05173450880
3
+ size 289034
GdE1T4oBgHgl3EQfrAWz/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fb88e1f4c7bc520b7fc92bf5d885b8a8f90230a819ce0a8d8618d1c90e6c905
3
+ size 65031
H9AyT4oBgHgl3EQfrvmy/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a18208be2c66510da30a4c953d7e0e7ec4d04c47aa59147b39f7071c889fce9a
3
+ size 166192
ItFJT4oBgHgl3EQfFyzw/content/tmp_files/2301.11445v1.pdf.txt ADDED
@@ -0,0 +1,1817 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 3DShape2VecSet: A 3D Shape Representation for Neural Fields and
2
+ Generative Diffusion Models
3
+ BIAO ZHANG, KAUST, Saudi Arabia
4
+ JIAPENG TANG, TU Munich, Germany
5
+ MATTHIAS NIESSNER, TU Munich, Germany
6
+ PETER WONKA, KAUST, Saudi Arabia
7
+ Input
8
+ Reconstruction
9
+ Input
10
+ Reconstruction
11
+ Condition
12
+ Generation
13
+ “the tallest chair”
14
+ car
15
+ Fig. 1. Left: Shape autoencoding results (surface reconstruction from point clouds) Right: the various down-stream applications of 3DShape2VecSet (from
16
+ top to down): (a) category-conditioned generation; (b) point clouds conditioned generation (shape completion from partial point clouds); (c) image conditioned
17
+ generation (shape reconstruction from single-view images); (d) text-conditioned generation.
18
+ We introduce 3DShape2VecSet, a novel shape representation for neural fields
19
+ designed for generative diffusion models. Our shape representation can en-
20
+ code 3D shapes given as surface models or point clouds, and represents them
21
+ as neural fields. The concept of neural fields has previously been combined
22
+ with a global latent vector, a regular grid of latent vectors, or an irregu-
23
+ lar grid of latent vectors. Our new representation encodes neural fields on
24
+ top of a set of vectors. We draw from multiple concepts, such as the ra-
25
+ dial basis function representation and the cross attention and self-attention
26
+ function, to design a learnable representation that is especially suitable for
27
+ processing with transformers. Our results show improved performance in
28
+ 3D shape encoding and 3D shape generative modeling tasks. We demon-
29
+ strate a wide variety of generative applications: unconditioned generation,
30
+ category-conditioned generation, text-conditioned generation, point-cloud
31
+ completion, and image-conditioned generation.
32
+ Additional Key Words and Phrases: 3D Shape Generation, 3D Shape Repre-
33
+ sentation, Diffusion Models, Shape Reconstruction, Generative models
34
+ Authors’ addresses: Biao Zhang, KAUST, Saudi Arabia, [email protected]; Jia-
35
+ peng Tang, TU Munich, Germany, [email protected]; Matthias Nießner, TU Munich,
36
+ Germany, [email protected]; Peter Wonka, KAUST, Saudi Arabia, peter.wonka@kaust.
37
+ edu.sa.
38
+ 1
39
+ INTRODUCTION
40
+ The ability to generate realistic and diverse 3D content has many
41
+ potential applications, including computer graphics, gaming, and vir-
42
+ tual reality. To this end, many generative models have been explored,
43
+ e.g., generative adversarial networks, variational autoencoders, nor-
44
+ malizing flows, and autoregressive models. Recently, diffusion mod-
45
+ els have emerged as one of the most popular method with fantastic
46
+ results in the 2D image domain [Ho et al. 2020; Rombach et al. 2022]
47
+ and have shown their superiority over other generative methods. For
48
+ instance, it is possible to do unconditional generation [Karras et al.
49
+ 2022; Rombach et al. 2022], text conditioned generation [Rombach
50
+ et al. 2022; Saharia et al. 2022], and generative image inpainting [Lug-
51
+ mayr et al. 2022]. However, the success in the 2D domain has not
52
+ yet been matched in the 3D domain.
53
+ In this work, we will study diffusion models for 3D shape genera-
54
+ tion. One major challenge in adapting 2D diffusion models to 3D is
55
+ the design of a suitable shape representation. The design of such a
56
+ shape representation is the major focus of our work, and we will
57
+ discuss several design choices that lead to the development of our
58
+ proposed representation.
59
+ , Vol. 1, No. 1, Article . Publication date: January 2023.
60
+ arXiv:2301.11445v1 [cs.CV] 26 Jan 2023
61
+
62
+ Different from 2D images, there are several predominant ways
63
+ to represent 3D data, e.g., voxels, point clouds, meshes, and neu-
64
+ ral fields. In general, we believe that surface-based representations
65
+ are more suitable for downstream applications than point clouds.
66
+ Among the available choices, we choose to build on neural fields as
67
+ they have many advantages: they are continuous, represent com-
68
+ plete surfaces and not only point samples, and they enable many
69
+ interesting combinations of traditional data structure design and
70
+ representation learning using neural networks.
71
+ Two major approaches for 2D diffusion models are to either use a
72
+ compressed latent space, e.g., latent diffusion [Rombach et al. 2022],
73
+ or to use a sequence of diffusion models of increasing resolution,
74
+ e.g., [Ramesh 2022; Saharia et al. 2022]. While both of these ap-
75
+ proaches seem viable in 3D, our initial experiments indicated that it
76
+ is much easier to work with a compressed latent space. We therefore
77
+ follow the latent diffusion approach.
78
+ A subsequent design choice for a latent diffusion approach is to de-
79
+ cide between a learned representation or a manually designed repre-
80
+ sentation. A manually designed representation such as wavelets [Hui
81
+ et al. 2022] is easier to design and more lightweight, but in many con-
82
+ texts learned representations have shown to outperform manually
83
+ designed ones. We therefore opt to explore learned representations.
84
+ This requires a two-stage training strategy. The first stage is an
85
+ autoencoder (variational autoencoder) to encode 3D shapes into a
86
+ latent space. The second stage is training a diffusion model in the
87
+ learned latent space.
88
+ In the case of training diffusion models for 3D neural fields, it
89
+ is even more necessary to generate in latent space. First, diffusion
90
+ models often work with data of fixed size (e.g., images of a given
91
+ fixed resolution). Second, a neural field is a continuous real-valued
92
+ function that can be seen as an infinite-dimensional vector. For both
93
+ reasons, we decide to find a way to encode shapes into latent space
94
+ before all else (as well as a decoding method for reverting latents
95
+ back to shapes).
96
+ Finally, we have to design a suitable learned neural field rep-
97
+ resentation that provides a good trade-off between compression
98
+ and reconstruction quality. Such a design typically requires three
99
+ components: a spatial data structure to store the latent information,
100
+ a spatial interpolation method, and a neural network architecture.
101
+ There are multiple options proposed in the literature shown in Fig. 2.
102
+ Early methods used a single global latent vector in combination
103
+ with an MLP network [Mescheder et al. 2019; Park et al. 2019]. This
104
+ concept is simple and fast but generally struggles to reconstruct
105
+ high-quality shapes. Better shape details can be achieved by using a
106
+ 3D regular grid of latents [Peng et al. 2020] together with tri-linear
107
+ interpolation and an MLP. However, such a representation is too
108
+ large for generative models and it is only possible to use grids of
109
+ very low resolution (e.g., 8×8×8). By introducing sparsity, e.g., [Yan
110
+ et al. 2022; Zhang et al. 2022], latents are arranged in an irregular
111
+ grid. The latent size is largely reduced, but there is still a lot of
112
+ room for improvement which we capitalize on in the design of
113
+ 3DShape2VecSet.
114
+ The design of 3DShape2VecSet combines ideas from neural fields,
115
+ radial basis functions, and the network architecture of attention
116
+ layers. Similar to radial basis function representation for continuous
117
+ functions, we can also re-write existing methods in a similar form
118
+ (linear combination). Inspired by cross attention in the transformer
119
+ network [Vaswani et al. 2017], we derived the proposed latent rep-
120
+ resentation which is a fixed-size set of latent vectors. There are
121
+ two main reasons that we believe contribute to the success of the
122
+ representations. First, the representation is well-suited for the use
123
+ with transformer-based networks. As transformer-based networks
124
+ tend to outperform current alternatives, we can better benefit from
125
+ this network architecture. Instead of only using MLPs to process
126
+ latent information, we use a linear layer and cross-attention. Sec-
127
+ ond, the representation no longer uses explicitly designed positional
128
+ features, but only gives the network the option to encode positional
129
+ information in any form it considers suitable. This is in line with our
130
+ design principle of favoring learned representations over manually
131
+ designed ones. See Fig. 2 e) for the proposed latent representation.
132
+ Using our novel shape representation, we can train diffusion mod-
133
+ els in the learned 3D shape latent space. Our results demonstrate an
134
+ improved shape encoding quality and generation quality compared
135
+ to the current state of the art. While pioneering work in 3D shape
136
+ generation using diffusion models already showed unconditional
137
+ 3D shape generation, we show multiple novel applications of 3D dif-
138
+ fusion models: category-conditioned generation, text-conditioned
139
+ shape generation, shape reconstruction from single-view image, and
140
+ shape reconstruction from partial point clouds.
141
+ To sum up, our contributions are as follows:
142
+ (1) We propose a new representation for 3D shapes. Any shape
143
+ can be represented by a fixed-length array of latents and
144
+ processed with cross-attention and linear layers to yield a
145
+ neural field.
146
+ (2) We propose a new network architecture to process shapes
147
+ in the proposed representation, including a building block to
148
+ aggregate information from a large point cloud using cross-
149
+ attention.
150
+ (3) We improve the state of the art in 3D shape autoencoding to
151
+ yield a high fidelity reconstruction including local details.
152
+ (4) We propose a latent set diffusion. We improve the state of
153
+ the art in 3D shape generation as measured by FID, KID, FPD,
154
+ and KPD.
155
+ (5) We show 3D shape diffusion for category-conditioned gener-
156
+ ation, text-conditioned generation, point-cloud completion,
157
+ and image-conditioned generation.
158
+ 2
159
+ RELATED WORK
160
+ In this section, we briefly review the literature of 3D shape learning
161
+ with various data representations and 3D shape generative models.
162
+ 2.1
163
+ 3D Shape Representations
164
+ We mainly discuss the following representations for 3D shapes,
165
+ including voxels, point clouds, and neural fields.
166
+ Voxels. Voxel grids, extended from 2D pixel grids, simply repre-
167
+ sent a 3D shape as a discrete volumetric grid. Due to their regular
168
+ structure, early works take advantage of 3D transposed convolution
169
+ operators for shape prediction [Brock et al. 2016; Choy et al. 2016;
170
+ Dai et al. 2017; Girdhar et al. 2016; Wu et al. 2016, 2015]. A draw-
171
+ back of the voxels-based decoders is that the computational and
172
+ memory costs of neural networks cubicly increases with respect to
173
+ 2
174
+
175
+ (x𝑖, 𝜆𝑖 )
176
+ x
177
+ 𝜙 (x, x𝑖 )
178
+ (a) RBF
179
+ (b) Global Latent
180
+ x
181
+ (x𝑖, f𝑖 )
182
+ (c) Latent Grid
183
+ (x𝑖, f𝑖 )
184
+ x
185
+ 𝜙 (x, x𝑖 )
186
+ (d) Irregular Latent Grid
187
+ x
188
+ f𝑖
189
+ 𝜙 (x, f𝑖 ) = exp
190
+
191
+ q(x)⊺k(f𝑖 )/
192
+
193
+ 𝑑
194
+
195
+ (e) Latent Set (Ours)
196
+ Fig. 2. Continuous function representation. Scalars are represented with spheres while vectors are cubes. The arrows show how spatial interpolation is
197
+ computed. x𝑖 and x are the coordinates of an anchor and a querying point respectively. 𝜆𝑖 is the SDF value of the anchor point x𝑖 in (a). f𝑖 is the associate
198
+ feature vector located in x𝑖 in (c)(d). The queried SDF/feature of x is based on the distance function 𝜙 (x, x𝑖) in (a)(c)(d), while our proposed latent set
199
+ representation (e) utilizes the similarity 𝜙 (x, f𝑖) between querying coordinate and anchored features via cross attention mechanism.
200
+ # Latents
201
+ Latent Position
202
+ Methods
203
+ OccNet [Mescheder et al. 2019]
204
+ DeepSDF [Park et al. 2019]
205
+ Single
206
+ Global
207
+ IM-Net [Chen and Zhang 2019]
208
+ ConvOccNet [Peng et al. 2020]
209
+ IF-Net [Chibane et al. 2020]
210
+ LIG [Jiang et al. 2020]
211
+ DeepLS [Chabra et al. 2020]
212
+ SA-ConvOccNet [Tang et al. 2021]
213
+ Multiple
214
+ Regular Grid
215
+ NKF [Williams et al. 2022]
216
+ LDIF [Genova et al. 2020]
217
+ Point2Surf [Erler et al. 2020]
218
+ DCC-DIF [Li et al. 2022]
219
+ 3DILG [Zhang et al. 2022]
220
+ Multiple
221
+ Irregular Grid
222
+ POCO [Boulch and Marlet 2022]
223
+ Multiple
224
+ Global
225
+ Ours
226
+ Table 1. Neural Fields for 3D Shapes. We show different types how la-
227
+ tents are positioned.
228
+ the grid resolution. Thus, most voxel-based methods are limited to
229
+ low-resolution. Octree-based decoders [Häne et al. 2017; Meagher
230
+ 1980; Riegler et al. 2017b,a; Tatarchenko et al. 2017; Wang et al.
231
+ 2017, 2018] and sparse hash-based decoders [Dai et al. 2020] take
232
+ 3D space sparsity into account, alleviating the efficiency issues and
233
+ supporting high-resolution outputs.
234
+ Point Clouds. Early works on neural-network-based point cloud
235
+ processing include PointNet [Qi et al. 2017a,b] and DGCNN [Wang
236
+ et al. 2019]. These works are built upon per-point fully connected
237
+ layers. More recently, transformers [Vaswani et al. 2017] were pro-
238
+ posed for point cloud processing, e.g., [Guo et al. 2021; Zhang et al.
239
+ 2022; Zhao et al. 2021]. These works are inspired by Vision Trans-
240
+ formers (ViT) [Dosovitskiy et al. 2021] in the image domain. Points
241
+ are firstly grouped into patches to form tokens and then fed into
242
+ a transformer with self-attention. In this work, we also introduce
243
+ a network for processing point clouds. Improving upon previous
244
+ works, we compress a given point cloud to a small representation
245
+ that is more suitable for generative modeling.
246
+ Neural Fields. A recent trend is to use neural fields as a 3d data
247
+ representation. The key building block is a neural network which
248
+ accepts a 3D coordinate as input, and outputs a scalar [Chen and
249
+ Generative
250
+ 3D
251
+ Models
252
+ Representation
253
+ 3D-GAN [Wu et al. 2016]
254
+ GAN
255
+ Voxels
256
+ l-GAN [Achlioptas et al. 2018]
257
+ GAN★
258
+ Point Clouds
259
+ IM-GAN [Chen and Zhang 2019]
260
+ GAN★
261
+ Fields
262
+ PointFlow [Yang et al. 2019]
263
+ NF
264
+ Point Clouds
265
+ GenVoxelNet [Xie et al. 2020]
266
+ EBM
267
+ Voxels
268
+ PointGrow [Sun et al. 2020]
269
+ AR
270
+ Point Clouds
271
+ PolyGen [Nash et al. 2020]
272
+ AR
273
+ Meshes
274
+ GenPointNet [Xie et al. 2021]
275
+ EBM
276
+ Point Clouds
277
+ 3DShapeGen [Ibing et al. 2021]
278
+ GAN★
279
+ Fields
280
+ DPM [Luo and Hu 2021]
281
+ DM
282
+ Point Clouds
283
+ PVD [Zhou et al. 2021]
284
+ DM
285
+ Point Clouds
286
+ AutoSDF[Mittal et al. 2022]
287
+ AR★
288
+ Voxels
289
+ CanMap [Cheng et al. 2022]
290
+ AR★
291
+ Point Clouds
292
+ ShapeFormer[Yan et al. 2022]
293
+ AR★
294
+ Fields
295
+ 3DILG [Zhang et al. 2022]
296
+ AR★
297
+ Fields
298
+ LION [Zeng et al. 2022]
299
+ DM★
300
+ Point Clouds
301
+ SDF-StyleGAN [Zheng et al. 2022]
302
+ GAN
303
+ Fields
304
+ NeuralWavelet [Hui et al. 2022]
305
+ DM★
306
+ Fields
307
+ TriplaneDiffusion [Shue et al. 2022]⋄
308
+ DM★
309
+ Fields
310
+ DiffusionSDF [Chou et al. 2022]⋄
311
+ DM★
312
+ Fields
313
+ Ours
314
+ DM★
315
+ Fields
316
+ ★ Generative models in latent space.
317
+ ⋄ Works in submission.
318
+ Table 2. Generative models for 3d shapes.
319
+ Zhang 2019; Mescheder et al. 2019; Michalkiewicz et al. 2019; Park
320
+ et al. 2019] or a vector [Mildenhall et al. 2020]. A 3D object is then
321
+ implicitly defined by this neural network. Neural fields have gained
322
+ lots of popularity as they can generate objects with arbitrary topolo-
323
+ gies and infinite resolution. The methods are also called neural
324
+ implicit representations or coordinate-based networks. For neural
325
+ fields for 3d shape modeling, we can categorize methods into global
326
+ methods and local methods. 1) The global methods encode a shape
327
+ with a single global latent vector [Mescheder et al. 2019; Park et al.
328
+ 2019]. Usually the capacity of these kind of methods is limited and
329
+ 3
330
+
331
+ they are unable to encode shape details. 2) The local methods use
332
+ localized latent vectors which are defined for 3D positions defined
333
+ on either a regular [Chibane et al. 2020; Jiang et al. 2020; Peng et al.
334
+ 2020; Tang et al. 2021] or irregular grid [Boulch and Marlet 2022;
335
+ Genova et al. 2020; Li et al. 2022; Zhang et al. 2022]. In contrast, we
336
+ propose a latent representation where latent vectors do not have
337
+ associated 3D positions. Instead, we learn to represent a shape as a
338
+ list of latent vectors. See Tab. 1.
339
+ 2.2
340
+ Generative models.
341
+ We have seen great success in different 2D image generative mod-
342
+ els in the past decade. Popular deep generative methods include
343
+ generative adversarial networks (GANs) [Goodfellow et al. 2014],
344
+ variational autoencoers (VAEs) [Kingma and Welling 2014], nor-
345
+ malizing flows (NFs) [Rezende and Mohamed 2015], energy-based
346
+ models [LeCun et al. 2006; Xie et al. 2016], autoregressive models
347
+ (ARs) [Esser et al. 2021; Van Den Oord et al. 2017] and more re-
348
+ cently, diffusion models (DMs) [Ho et al. 2020] which are the chosen
349
+ generative model in our work.
350
+ In 3D domain, GANs have been popular for 3D generation [Achliop-
351
+ tas et al. 2018; Chen and Zhang 2019; Ibing et al. 2021; Wu et al.
352
+ 2016; Zheng et al. 2022], while only a few works are using NFs [Yang
353
+ et al. 2019] and VAEs [Mo et al. 2019]. A lot of recent work employs
354
+ ARs [Cheng et al. 2022; Mittal et al. 2022; Nash et al. 2020; Sun et al.
355
+ 2020; Yan et al. 2022; Zhang et al. 2022]. DMs for 3D shapes are
356
+ relatively unexplored compared to other generative methods.
357
+ There are several DMs dealing with point cloud data [Luo and Hu
358
+ 2021; Zeng et al. 2022; Zhou et al. 2021]. Due to the high freedom
359
+ degree of regressed coordinates, it is always difficult to obtain clean
360
+ manifold surfaces via post-processing. As mentioned before, we
361
+ believe that neural fields are generally more suitable than point
362
+ clouds for 3D shape generation. The area of combining DMs and
363
+ neural fields is still underexplored.
364
+ The recent NeuralWavelet [Hui et al. 2022] first encodes shapes
365
+ (represented as signed distance fields) into the frequency domain
366
+ with the wavelet transform, and then train DMs on the frequency
367
+ coefficients. While this formulation is elegant, generative models
368
+ generally work better on learned representations. Some concurrent
369
+ works [Chou et al. 2022; Shue et al. 2022] in submission also utilize
370
+ DMs in a latent space for neural field generation. The TriplaneDif-
371
+ fusion [Shue et al. 2022] trains an autodecoder first for each shape.
372
+ DiffusionSDF [Chou et al. 2022] runs a shape autoencoder based on
373
+ triplane features [Peng et al. 2020].
374
+ Summary of 3D generation methods. We list several 3d generation
375
+ methods in Tab. 2, highlighting the choice of generative model (GAN,
376
+ DM, EBM, NF, or AR) and the choice of data structure to represent
377
+ 3D shapes (point clouds, meshes, voxels or fields).
378
+ 3
379
+ PRELIMINARIES
380
+ An attention layer [Vaswani et al. 2017] has three types of inputs:
381
+ queries, keys, and values. Queries Q = [q1, q2, . . . , q𝑁𝑞] ∈ R𝑑×𝑁𝑞
382
+ and keys K = [k1, k2, . . . , k𝑁𝑘 ] ∈ R𝑑×𝑁𝑘 are first compared to
383
+ produce coefficients q⊺
384
+ 𝑗 k𝑖/
385
+
386
+ 𝑑 (they need to be normalized with the
387
+ softmax function),
388
+ 𝐴𝑖,𝑗 =
389
+ q⊺
390
+ 𝑗 k𝑖/
391
+
392
+ 𝑑
393
+ �𝑁𝑘
394
+ 𝑖=1 exp
395
+
396
+ q⊺
397
+ 𝑗 k𝑖/
398
+
399
+ 𝑑.
400
+
401
+ (1)
402
+ The coefficients are then used to (linearly) combine values V =
403
+ [v1, v2, . . . , v𝑁𝑘 ] ∈ R𝑑𝑣×𝑁𝑘 . We can write the output of an attention
404
+ layer as follows,
405
+ Attention(Q, K, V)
406
+ =
407
+ �o1
408
+ o2
409
+ · · ·
410
+ o𝑁𝑞
411
+
412
+ ∈ R𝑑𝑣×𝑁𝑞
413
+ =
414
+ � 𝑁𝑘
415
+ ∑︁
416
+ 𝑖=1
417
+ 𝐴𝑖,1v𝑖
418
+ 𝑁𝑘
419
+ ∑︁
420
+ 𝑖=1
421
+ 𝐴𝑖,2v𝑖
422
+ · · ·
423
+ 𝑁𝑘
424
+ ∑︁
425
+ 𝑖=1
426
+ 𝐴𝑖,𝑁𝑞v𝑖
427
+
428
+ (2)
429
+ Cross Attention. Given two sets A =
430
+
431
+ a1, a2, . . . , a𝑁𝑎
432
+
433
+ ∈ R𝑑𝑎×𝑁𝑎
434
+ and B =
435
+
436
+ b1, b2, . . . , b𝑁𝑏
437
+
438
+ ∈ R𝑑𝑏×𝑁𝑏 , the query vectors Q are con-
439
+ structed with a linear function q(·) : R𝑑𝑎 → R𝑑 by taking elements
440
+ of A as input. Similarly, we construct K and V with k(·) : R𝑑𝑏 → R𝑑
441
+ and v(·) : R𝑑𝑏 → R𝑑, respectively. The inputs of both k(·) and v(·)
442
+ are from B. Each column in the output of Eq. (2) can be written as,
443
+ o(a𝑗, B) =
444
+ 𝑁𝑏
445
+ ∑︁
446
+ 𝑖=1
447
+ v(b𝑖) ·
448
+ 1
449
+ 𝑍 (a𝑗, B) exp
450
+
451
+ q(a𝑗)⊺k(b𝑖)/
452
+
453
+ 𝑑
454
+
455
+ ,
456
+ (3)
457
+ where 𝑍 (a𝑗, B) = �𝑁𝑏
458
+ 𝑖=1 exp
459
+
460
+ q(a𝑗)⊺k(b𝑖)/
461
+
462
+ 𝑑
463
+
464
+ is a normalizing fac-
465
+ tor. The cross attention operator between two sets is,
466
+ CrossAttn(A, B) =
467
+ �o(a1, B)
468
+ o(a2, B)
469
+ · · ·
470
+ o(a𝑁𝑎, B)�
471
+ ∈ R𝑑×𝑁𝑎
472
+ (4)
473
+ Self Attention. In the case of self attention, we let the two sets be
474
+ the same A = B,
475
+ SelfAttn(A) = CrossAttn(A, A).
476
+ (5)
477
+ 4
478
+ LATENT REPRESENTATION FOR NEURAL FIELDS
479
+ Our representation is inspired by radial basis functions (RBFs). We
480
+ will therefore describe our surface representation design using RBFs
481
+ as a starting point, and how we extended them using concepts
482
+ from neural fields and the transformer architecture. A continuous
483
+ function can be represented with a set of weighted points in 3D
484
+ using RBFs:
485
+ ˆORBF(x) =
486
+ 𝑀
487
+ ∑︁
488
+ 𝑖=1
489
+ 𝜆𝑖 · 𝜙(x, x𝑖)
490
+ (6)
491
+ where 𝜙(x, x𝑖) is a radial basis function (RBF) and typically repre-
492
+ sents the similarity (or dissimilarity) between two inputs,
493
+ 𝜙(x, x𝑖) = 𝜙(∥x − x𝑖 ∥).
494
+ (7)
495
+ Given ground-truth occupancies of x𝑖, the values of 𝜆𝑖 can be ob-
496
+ tained by solving a system of linear equations. In this way, we
497
+ can represent the continuous function O(·) as a set of 𝑀 points
498
+ including their corresponding weights,
499
+
500
+ 𝜆𝑖 ∈ R, x𝑖 ∈ R3�𝑀
501
+ 𝑖=1 .
502
+ (8)
503
+ However, in order to retain the details of a 3d shape, we often need
504
+ a very large number of points (e.g., 𝑀 = 80, 000 in [Carr et al. 2001]).
505
+ 4
506
+
507
+ Shape Encoding (Sec. 5.1)
508
+ Shape Decoding (Sec. 5.3)
509
+ KL (Sec. 5.2)
510
+ latent queries
511
+ Point Cloud
512
+ Position Embeddings
513
+ Surface Sampling
514
+ Cross Attention
515
+ K, V
516
+ Q
517
+ ...
518
+ ...
519
+ latents
520
+ KL Regularization
521
+ Self Attention
522
+ ...
523
+ Self Attention
524
+ ...
525
+ · · ·
526
+ ...
527
+ Self Attention
528
+ Query Points
529
+ Position Embeddings
530
+ Cross Attention
531
+ K, V
532
+ Q
533
+ Target
534
+ · · ·
535
+ Isosurface
536
+ Fig. 3. Shape autoencoding pipeline. Given a 3D ground-truth surface mesh as the input, we first sample a point cloud that is mapped to positional
537
+ embeddings and encode them into a set of latent codes through a cross-attention module (Sec. 5.1). Next, we perform (optional) compression and KL-
538
+ regularization in the latent space to obtain structured and compact latent shape representations (Sec. 5.2). Finally, the self-attention is carried out to aggregate
539
+ and exchange the information within the latent set. And a cross-attention module is designed to calculate the interpolation weights of query points. The
540
+ interpolated feature vectors are fed into a fully connected layer for occupancy prediction (Sec. 5.3).
541
+ This representation does not benefit from recent advances in repre-
542
+ sentation learning and cannot compete with more compact learned
543
+ representations. We therefore want to modify the representation to
544
+ change it into a neural field.
545
+ One approach to neural fields is to represent each shape as a
546
+ separate neural network (making the network weights of a fixed
547
+ size network the representation of a shape) and train a diffusion
548
+ process as hypernetwork. A second approach is to have a shared
549
+ encoder-decoder network for all shapes and represent each shape as
550
+ a latent computed by the encoder. We opt for the second approach,
551
+ as it leads to more compact representations because it is jointly
552
+ learned from all shapes in the data set and the network weights
553
+ themselves do not count towards the latent representation. Such a
554
+ neural field takes a tuple of coordinates x and 𝐶-dimensional latent
555
+ f as input and outputs occupancy,
556
+ ˆONN(x) = NN(x, f),
557
+ (9)
558
+ where NN : R3 × R𝐶 → [0, 1] is a neural network. A first approach
559
+ was to use a single global latent f, but a major limitation is the ability
560
+ to encode shape details [Mescheder et al. 2019]. Some follow-up
561
+ works study coordinate-dependent latents [Chibane et al. 2020; Peng
562
+ et al. 2020] that combine traditional data structures such as regular
563
+ grids with the neural field concept. Latent vectors are arranged in a
564
+ spatial data structure and then interpolated (trilinearly) to obtain
565
+ the coordinate-dependent latent fx. A recent work 3DILG [Zhang
566
+ et al. 2022] proposed a sparse representation for 3D shapes, using
567
+ latents f𝑖 arranged in an irregular grid at point locations x𝑖. The
568
+ final coordinate-dependent latent fx is then estimated by kernel
569
+ regression,
570
+ fx = ˆFKN(x) =
571
+ 𝑀
572
+ ∑︁
573
+ 𝑖=1
574
+ f𝑖 ·
575
+ 1
576
+ 𝑍
577
+
578
+ x, {x𝑖}𝑀
579
+ 𝑖=1
580
+ � 𝜙(x, x𝑖),
581
+ (10)
582
+ where 𝑍
583
+
584
+ x, {x𝑖}𝑀
585
+ 𝑖=1
586
+
587
+ = �𝑀
588
+ 𝑖=1 𝜙(x, x𝑖) is a normalizing factor. Thus
589
+ the representation for a 3D shape can be written as
590
+
591
+ f𝑖 ∈ R𝐶, x𝑖 ∈ R3�𝑀
592
+ 𝑖=1 .
593
+ (11)
594
+ After that, an MLP : R𝐶 → [0, 1] is applied to project the approxi-
595
+ mated feature ˆFKN(x) to occupancy,
596
+ ˆO3DILG(x) = MLP
597
+
598
+ ˆFKN(x)
599
+
600
+ .
601
+ (12)
602
+ Neural networks with latent sets (proposed). We initially explored
603
+ many variations for 3D shape representation based on irregular
604
+ and regular grids as well as tri-planes, frequency compositions, and
605
+ other factored representations. Ultimately, we could not improve
606
+ on existing irregular grids. However, we were able to achieve a
607
+ significant improvement with the following chance. We aim to keep
608
+ the structure of an irregular grid and the interpolation, but without
609
+ representing the actual spatial position explicitly. We let the net-
610
+ work encode spatial information. Both the representations (RBF in
611
+ Eq. (6) and 3DILG in Eq. (10)) are composed by two parts, values and
612
+ similarities. We keep the structure of the interpolation, but elmini-
613
+ tate explicit point coordinates and integrate cross attention from
614
+ Eq. (3). The result is the following learnable function approximator,
615
+ ˆF (x) =
616
+ 𝑀
617
+ ∑︁
618
+ 𝑖=1
619
+ v(f𝑖) ·
620
+ 1
621
+ 𝑍
622
+
623
+ x, {f𝑖}𝑀
624
+ 𝑖=1
625
+ � 𝑒q(x)⊺k(f𝑖)/
626
+
627
+ 𝑑,
628
+ (13)
629
+ where 𝑍
630
+
631
+ x, {f𝑖}𝑀
632
+ 𝑖=1
633
+
634
+ = �𝑀
635
+ 𝑖=1 𝑒q(x)⊺k(f𝑖)/
636
+
637
+ 𝑑 is a normalizing factor.
638
+ Similar to the MLP in Eq. 12, we apply a single fully connected layer
639
+ to get desired occupancy values,
640
+ ˆO(x) = FC
641
+
642
+ ˆF (x)
643
+
644
+ .
645
+ (14)
646
+ Compared to 3DILG and all other coordinate-latent-based methods,
647
+ we dropped the dependency of the coordinate set {x𝑖}𝑀
648
+ 𝑖=1, the new
649
+ 5
650
+
651
+ Cross Attention
652
+ K, V
653
+ Q
654
+ Learnable
655
+ (a) Learnable Queries
656
+ Cross Attention
657
+ K, V
658
+ Q
659
+ Subsample and Copy
660
+ (b) Point Queries
661
+ Fig. 4. Two ways to encode a point cloud. (a) uses a learnable query set;
662
+ (b) uses a downsampled version of input point embeddings as the query set.
663
+ representation only contains a set of latents,
664
+
665
+ f𝑖 ∈ R𝐶�𝑀
666
+ 𝑖=1 .
667
+ (15)
668
+ An alternative view of our proposed function approximator is to
669
+ see it as cross attention between query points x and a set of latents.
670
+ 5
671
+ NETWORK ARCHITECTURE FOR SHAPE
672
+ REPRESENTATION LEARNING
673
+ In this section, we will discuss how we design a variational autoen-
674
+ coder based on the latent representation proposed in Sec. 4. The
675
+ architecture has three components discussed in the following: a 3D
676
+ shape encoder, KL regularization block, and a 3D shape decoder.
677
+ 5.1
678
+ Shape encoding
679
+ We sample the surfaces of 3D input shapes in a 3D shape dataset.
680
+ This results in a point clouds of size 𝑁 for each shape, {x𝑖 ∈ R3}𝑁
681
+ 𝑖=1
682
+ or in matrix form X ∈ R3×𝑁 . While the dataset used in the paper
683
+ originally represents shapes as triangle meshes, our framework
684
+ is directly compatible with other surface representations, such as
685
+ scanned point clouds, spline surfaces, or implicit surfaces.
686
+ In order to learn representations in the form of Eq. (15), the first
687
+ challenge is to aggregate the information contained in a possibly
688
+ large point cloud {x𝑖}𝑁
689
+ 𝑖=1 into a smaller set of latent vectors {f𝑖}𝑀
690
+ 𝑖=1.
691
+ We design a set-to-set network to this effect.
692
+ A popular solution to this problem in previous work is to divide
693
+ the large point cloud into a smaller set of patches and to learn one
694
+ latent vector per patch. Although this is a very well researched
695
+ and standard component in many networks, we discovered a more
696
+ successful way to aggregate features from a large point cloud that is
697
+ better compatible with the transformer architecture. We considered
698
+ two options.
699
+ One way is to define a learnable query set. Inspired by DETR [Car-
700
+ ion et al. 2020] and Perceiver [Jaegle et al. 2021], we use the cross
701
+ attention to encode X,
702
+ Enclearnable(X) = CrossAttn(L, PosEmb(X)) ∈ R𝐶×𝑀,
703
+ (16)
704
+ where L ∈ R𝐶×𝑀 is a learnable query set where each entry is 𝐶-
705
+ dimensional, and PosEmb : R3 → R𝐶 is a column-wise positional
706
+ embedding function.
707
+ Another way is to utilize the point cloud itself. We first subsample
708
+ the point cloud X to a smaller one with furthest point sampling,
709
+ X0 = FPS(X) ∈ R3×𝑀. The cross attention is applied to X0 and X,
710
+ Encpoints(X) = CrossAttn(PosEmb(X0), PosEmb(X)),
711
+ (17)
712
+ which can also be seen as a “partial” self attention. See Fig. 4 for
713
+ an illustration of both design choices. Intuitively, the number 𝑀
714
+ affects the reconstruction performance: the larger the 𝑀, the better
715
+ reconstruction. However, 𝑀 strongly affects the training time due
716
+ to the transformer architecture, so it should not be too large. In our
717
+ final model, the number of latents 𝑀 is set as 512, and the number
718
+ of channels 𝐶 is 512 to provide a trade off between reconstruction
719
+ quality and training time.
720
+ 5.2
721
+ KL regularization block
722
+ Latent diffusion [Rombach et al. 2022] proposed to use a variational
723
+ autoencoder (VAE) [Kingma and Welling 2014] to compress images.
724
+ We adapt this design idea for our 3D shape representation and
725
+ also regularize the latents with KL-divergence. We should note
726
+ that the KL regularization is optional and only necessary for the
727
+ second-stage diffusion model training. If we just want a method for
728
+ surface reconstruction from point clouds, we do not need the KL
729
+ regularization.
730
+ We first linear project latents to mean and variance by two net-
731
+ work branches, respectively,
732
+ FC𝜇 (f𝑖) = �𝜇𝑖,𝑗
733
+
734
+ 𝑗 ∈[1,2,···,𝐶0]
735
+ FC𝜎 (f𝑖) =
736
+
737
+ log𝜎2
738
+ 𝑖,𝑗
739
+
740
+ 𝑗 ∈[1,2,···,𝐶0]
741
+ (18)
742
+ where FC𝜇 : R𝐶 → R𝐶0 and FC𝜎 : R𝐶 → R𝐶0 are two linear
743
+ projection layers. We use a different size of output channels 𝐶0,
744
+ where 𝐶0 ≪ 𝐶. This compression enables us to train diffusion
745
+ models on smaller latents of total size 𝑀 · 𝐶0 ≪ 𝑀 · 𝐶. We can
746
+ write the bottleneck of the VAE formally, ∀𝑖 ∈ [1, 2, · · · , 𝑀], 𝑗 ∈
747
+ [1, 2, · · · ,𝐶0],
748
+ 𝑧𝑖,𝑗 = 𝜇𝑖,𝑗 + 𝜎𝑖,𝑗 · 𝜖,
749
+ (19)
750
+ where 𝜖 ∼ N (0, 1). The KL regularization can be written as,
751
+ Lreg
752
+
753
+ {f𝑖}𝑀
754
+ 𝑖=1
755
+
756
+ =
757
+ 1
758
+ 𝑀 · 𝐶0
759
+ 𝑀
760
+ ∑︁
761
+ 𝑖=1
762
+ 𝐶0
763
+ ∑︁
764
+ 𝑗=1
765
+ 1
766
+ 2
767
+
768
+ 𝜇2
769
+ 𝑖,𝑗 + 𝜎2
770
+ 𝑖,𝑗 − log𝜎2
771
+ 𝑖,𝑗
772
+
773
+ .
774
+ (20)
775
+ In practice, we set the weight for KL loss as 0.001 and report the
776
+ performance for different values of𝐶0 in Sec. 8.1. Our recommended
777
+ setting is 𝐶0 = 32.
778
+ 5.3
779
+ Shape decoding
780
+ To increase the expressivity of the network, we add a latent learning
781
+ network between the two parts. Because our latents are a set of
782
+ vectors, it is natural to use transformer networks here. Thus, the
783
+ proposed network here is a series of self attention blocks,
784
+ {f𝑖}𝑀
785
+ 𝑖=1 ← SelfAttn(𝑙) �
786
+ {f𝑖}𝑀
787
+ 𝑖=1
788
+
789
+ ,
790
+ for 𝑖 = 1, · · · , 𝐿.
791
+ (21)
792
+ The SelfAttn(·) with a superscript (𝑙) here means 𝑙-th block. The
793
+ latents {f𝑖}𝑀
794
+ 𝑖=1 obtained using either Eq. (16) or Eq. (17) are fed into
795
+ the self attention blocks. Given a query x, the corresponding latent
796
+ is interpolated using Eq. (13), and the occupancy is obtained with a
797
+ fully connected layer as shown in Eq. (14).
798
+ 6
799
+
800
+ Fig. 5. KL regularization. Given a set of latents {f𝑖 ∈ R𝐶 }𝑀
801
+ 𝑖=1 obtained
802
+ from the shape encoding in Sec. 5.1, we employ two linear projection layers
803
+ FC𝜇, FC𝜎 to predict the mean and variance of a low-dimensional latent
804
+ space, where a KL regularization commonly used in VAE training is applied
805
+ to constrain the feature diversity. Then, we obtain smaller latents {z𝑖 ∈
806
+ R𝐶0 } of size 𝑀 · 𝐶0 ≪ 𝑀 · 𝐶 via reparametrization sampling. Finally, the
807
+ compressed latents are mapped back to the original space by FCup to obtain
808
+ a higher dimensionality for the shape decoding in Sec. 5.3.
809
+ Forward Diffusion Process
810
+ Reverse Diffusion Process
811
+ Add Noise
812
+ Add Noise
813
+ Add Noise
814
+ Denoise
815
+ Denoise
816
+ Denoise
817
+ Condition
818
+ Fig. 6. Latent set diffusion models. The diffusion model operates on
819
+ compressed 3D shapes in the form of a regularized set of latent vectors
820
+ {z𝑖 }𝑀
821
+ 𝑖=1.
822
+ Self Attention
823
+ Self Attention
824
+ · · ·
825
+ (a) Unconditional Denoising Network
826
+ Self Attention
827
+ Cross Attention
828
+ K V
829
+ Q
830
+ · · ·
831
+ Condition
832
+ (b) Conditional Denoising Network
833
+ Fig. 7. Denoising network. Our denoising network is composed of several
834
+ denoising layers (a box in the figure denotes a layer). The denoising layer
835
+ for unconditional generation contains two sequential self attention blocks.
836
+ The denoising layer for conditional generation contains a self attention
837
+ and a cross attention block. The cross attention is for injecting condition
838
+ information such as categories, images or partial point clouds.
839
+ Loss. We optimize the binary cross entropy loss between our
840
+ approximated function and the ground-truth indicator function as
841
+ in prior works [Mescheder et al. 2019].
842
+ Lrecon
843
+
844
+ {f𝑖}𝑀
845
+ 𝑖=1, O
846
+
847
+ = Ex∈R3
848
+
849
+ BCE
850
+
851
+ ˆO(x), O(x)
852
+ ��
853
+ .
854
+ (22)
855
+ Surface reconstruction. We sample query points in a grid of res-
856
+ olution 1283. The final surface is reconstructed with Marching
857
+ Cubes [Lorensen and Cline 1987].
858
+ 6
859
+ SHAPE GENERATION
860
+ Our proposed diffusion model combines design decisions from latent
861
+ diffusion (the idea of the compressed latent space), EDM [Karras et al.
862
+ 2022] (most of the training details), and our shape representation
863
+ design (the architecture is based on attention and self-attention
864
+ instead of convolution).
865
+ We train diffusion models in the latent space, i.e., the bottleneck
866
+ in Eq. (19). Following the diffusion formulation in EDM [Karras et al.
867
+ 2022], our denoising objective is
868
+ En𝑖∼N(0,𝜎2I)
869
+ 1
870
+ 𝑀
871
+ 𝑀
872
+ ∑︁
873
+ 𝑖=1
874
+ ���Denoiser
875
+
876
+ {z𝑖 + n𝑖}𝑀
877
+ 𝑖=1, 𝜎, C
878
+
879
+ 𝑖 − z𝑖
880
+ ���
881
+ 2
882
+ 2 ,
883
+ (23)
884
+ where Denoiser(·, ·, ·) is our denoising neural network, 𝜎 is the noise
885
+ level, and C is the optional conditional information (e.g., categories,
886
+ images, partial point clouds and texts). We denote the corresponding
887
+ output of z𝑖 +n𝑖 with the subscript 𝑖, i.e. Denoiser(·, ·, ·)𝑖. We should
888
+ minimize the loss for every noise level 𝜎. The sampling is done by
889
+ solving ordinary/stochastic differential equations (ODE/SDE). See
890
+ Fig. 6 for an illustration and EDM [Karras et al. 2022] for a detailed
891
+ description for both the forward (training) and reverse (sampling)
892
+ process.
893
+ The function Denoiser(·, ·, ·) is a set denoising network (set-to-set
894
+ function). The network can be easily modeled by a self-attention
895
+ transformer. Each layer consists of two attention blocks. The first
896
+ one is a self attention for attentive learning of the latent set. The
897
+ second one is for injecting the condition information C (Fig. 7 (b))
898
+ as in prior works [Rombach et al. 2022]. For simple information
899
+ like categories, C is a learnable embedding vector (e.g., 55 different
900
+ embedding vectors for 55 categories). For a single-view image , we
901
+ use ResNet-18 [He et al. 2016] as the context encoder to extract
902
+ a global feature vector as condition C. For text conditioning, we
903
+ use BERT [Devlin et al. 2018] to learn a global feature vector as
904
+ C. For partial point clouds, we use the shape encoder introduced
905
+ in Sec. 5.1 to obtain a set of latent embeddings as C. In the case
906
+ of unconditional generation, the cross attention degrades to self
907
+ attention (Fig. 7 (a)).
908
+ 7
909
+ EXPERIMENTAL SETUP
910
+ We use the dataset of ShapeNet-v2 [Chang et al. 2015] as a bench-
911
+ mark, containing 55 categories of man-made objects. We use the
912
+ training/val splits in [Zhang et al. 2022]. We preprocess shapes as
913
+ in [Mescheder et al. 2019]. Each shape is first converted to a water-
914
+ tight mesh, and then normalized to its bounding box, from which we
915
+ further sample a dense surface point cloud of size 50,000. To learn
916
+ the neural fields, we randomly sample 50,000 points with occupan-
917
+ cies in the 3D space, and 50,000 points with occupancies in the near
918
+ surface region. For the single-view object reconstruction, we use
919
+ the 2D rendering dataset provided by 3D-R2N2 [Choy et al. 2016],
920
+ where each shape is rendered into RGB images of size of 224 × 224
921
+ from 24 random viewpoints. For text-driven shape generation, we
922
+ use the text prompts of ShapeGlot [Achlioptas et al. 2019]. For data
923
+ preprocess of shape completion training, we create partial point
924
+ clouds by sampling point cloud patches.
925
+ 7.1
926
+ Baselines
927
+ For shape auto-encoding, we conduct experiments against state-
928
+ of-the-art methods for implicit surface reconstruction from point
929
+ clouds. We use OccNet [Mescheder et al. 2019], ConvOccNet [Peng
930
+ et al. 2020], IF-Net [Chibane et al. 2020], and 3DILG [Zhang et al.
931
+ 2022] as baselines. The OccNet is the first work of learning neural
932
+ fields from a single global latent vector. ConvOccNet and IF-Net
933
+ 7
934
+
935
+ OccNet
936
+ ConvOccNet
937
+ IF-Net
938
+ 3DILG
939
+ Ours
940
+ Learned Queries
941
+ Point Queries
942
+ table
943
+ 0.823
944
+ 0.847
945
+ 0.901
946
+ 0.963
947
+ 0.965
948
+ 0.971
949
+ car
950
+ 0.911
951
+ 0.921
952
+ 0.952
953
+ 0.961
954
+ 0.966
955
+ 0.969
956
+ chair
957
+ 0.803
958
+ 0.856
959
+ 0.927
960
+ 0.950
961
+ 0.957
962
+ 0.964
963
+ airplane
964
+ 0.835
965
+ 0.881
966
+ 0.937
967
+ 0.952
968
+ 0.962
969
+ 0.969
970
+ sofa
971
+ 0.894
972
+ 0.930
973
+ 0.960
974
+ 0.975
975
+ 0.975
976
+ 0.982
977
+ rifle
978
+ 0.755
979
+ 0.871
980
+ 0.914
981
+ 0.938
982
+ 0.947
983
+ 0.960
984
+ lamp
985
+ 0.735
986
+ 0.859
987
+ 0.914
988
+ 0.926
989
+ 0.931
990
+ 0.956
991
+ mean (selected)
992
+ 0.822
993
+ 0.881
994
+ 0.929
995
+ 0.952
996
+ 0.957
997
+ 0.967
998
+ IoU ↑
999
+ mean (all)
1000
+ 0.825
1001
+ 0.888
1002
+ 0.934
1003
+ 0.953
1004
+ 0.955
1005
+ 0.965
1006
+ table
1007
+ 0.041
1008
+ 0.036
1009
+ 0.029
1010
+ 0.026
1011
+ 0.026
1012
+ 0.026
1013
+ car
1014
+ 0.082
1015
+ 0.083
1016
+ 0.067
1017
+ 0.066
1018
+ 0.062
1019
+ 0.062
1020
+ chair
1021
+ 0.058
1022
+ 0.044
1023
+ 0.031
1024
+ 0.029
1025
+ 0.028
1026
+ 0.027
1027
+ airplane
1028
+ 0.037
1029
+ 0.028
1030
+ 0.020
1031
+ 0.019
1032
+ 0.018
1033
+ 0.017
1034
+ sofa
1035
+ 0.051
1036
+ 0.042
1037
+ 0.032
1038
+ 0.030
1039
+ 0.030
1040
+ 0.029
1041
+ rifle
1042
+ 0.046
1043
+ 0.025
1044
+ 0.018
1045
+ 0.017
1046
+ 0.016
1047
+ 0.014
1048
+ lamp
1049
+ 0.090
1050
+ 0.050
1051
+ 0.038
1052
+ 0.036
1053
+ 0.035
1054
+ 0.032
1055
+ mean (selected)
1056
+ 0.058
1057
+ 0.040
1058
+ 0.034
1059
+ 0.032
1060
+ 0.031
1061
+ 0.030
1062
+ Chamfer ↓
1063
+ mean (all)
1064
+ 0.072
1065
+ 0.052
1066
+ 0.041
1067
+ 0.040
1068
+ 0.039
1069
+ 0.038
1070
+ table
1071
+ 0.961
1072
+ 0.982
1073
+ 0.998
1074
+ 0.999
1075
+ 0.999
1076
+ 0.999
1077
+ car
1078
+ 0.830
1079
+ 0.852
1080
+ 0.888
1081
+ 0.892
1082
+ 0.898
1083
+ 0.899
1084
+ chair
1085
+ 0.890
1086
+ 0.943
1087
+ 0.990
1088
+ 0.992
1089
+ 0.994
1090
+ 0.997
1091
+ airplane
1092
+ 0.948
1093
+ 0.982
1094
+ 0.994
1095
+ 0.993
1096
+ 0.994
1097
+ 0.995
1098
+ sofa
1099
+ 0.918
1100
+ 0.967
1101
+ 0.988
1102
+ 0.986
1103
+ 0.986
1104
+ 0.990
1105
+ rifle
1106
+ 0.922
1107
+ 0.987
1108
+ 0.998
1109
+ 0.997
1110
+ 0.998
1111
+ 0.999
1112
+ lamp
1113
+ 0.820
1114
+ 0.945
1115
+ 0.970
1116
+ 0.971
1117
+ 0.970
1118
+ 0.975
1119
+ mean (selected)
1120
+ 0.898
1121
+ 0.951
1122
+ 0.975
1123
+ 0.976
1124
+ 0.977
1125
+ 0.979
1126
+ F-Score ↑
1127
+ mean (all)
1128
+ 0.858
1129
+ 0.933
1130
+ 0.967
1131
+ 0.966
1132
+ 0.966
1133
+ 0.970
1134
+ Table 3. Shape autoencoding (surface reconstruction from point clouds) on ShapeNet. We show averaged metrics on all 55 categories and individual
1135
+ metrics for the 7 largest categories.
1136
+ 𝑀 = 512 𝑀 = 256 𝑀 = 128 𝑀 = 64
1137
+ IoU ↑
1138
+ 0.965
1139
+ 0.956
1140
+ 0.940
1141
+ 0.916
1142
+ Chamfer ↓
1143
+ 0.038
1144
+ 0.039
1145
+ 0.043
1146
+ 0.049
1147
+ F-Score ↑
1148
+ 0.970
1149
+ 0.965
1150
+ 0.953
1151
+ 0.929
1152
+ Table 4. Results for different number of latents 𝑀 for
1153
+ shape autoencoding
1154
+ 𝐶0 = 1 𝐶0 = 2 𝐶0 = 4 𝐶0 = 8 𝐶0 = 16 𝐶0 = 32 𝐶0 = 64
1155
+ IoU ↑
1156
+ 0.727
1157
+ 0.816
1158
+ 0.957
1159
+ 0.960
1160
+ 0.962
1161
+ 0.963
1162
+ 0.964
1163
+ Chamfer ↓
1164
+ 0.133
1165
+ 0.087
1166
+ 0.038
1167
+ 0.038
1168
+ 0.038
1169
+ 0.038
1170
+ 0.038
1171
+ F-Score ↑
1172
+ 0.703
1173
+ 0.815
1174
+ 0.967
1175
+ 0.967
1176
+ 0.970
1177
+ 0.969
1178
+ 0.970
1179
+ Table 5. Ablation study of compression via the number of channels𝐶0 for shape
1180
+ (variational) autoencoding.
1181
+ Grid-83
1182
+ 3DILG
1183
+ Ours
1184
+ 𝐶0 = 8 𝐶0 = 16 𝐶0 = 32 𝐶0 = 64
1185
+ Surface-FPD ↓
1186
+ 4.03
1187
+ 1.89
1188
+ 2.71
1189
+ 1.87
1190
+ 0.76
1191
+ 0.97
1192
+ Surface-KPD (×103) ↓
1193
+ 6.15
1194
+ 2.17
1195
+ 3.48
1196
+ 2.42
1197
+ 0.66
1198
+ 1.11
1199
+ Rendering-FID ↓
1200
+ 32.78
1201
+ 24.83
1202
+ 28.25
1203
+ 27.26
1204
+ 17.08
1205
+ 24.24
1206
+ Rendering-KID (×103) ↓
1207
+ 14.12
1208
+ 10.51
1209
+ 14.60
1210
+ 19.37
1211
+ 6.75
1212
+ 11.76
1213
+ Table 6. Unconditional generation on full ShapeNet.
1214
+ PVD
1215
+ Ours
1216
+ Surface-FPD ↓
1217
+ 2.33
1218
+ 0.63
1219
+ Surface-KPD (×103) ↓
1220
+ 2.65
1221
+ 0.53
1222
+ Rendering-FID ↓
1223
+ 270.64
1224
+ 17.08
1225
+ Rendering-KID (×103) ↓
1226
+ 281.54
1227
+ 6.75
1228
+ Table 7. Unconditional generation on full ShapeNet.
1229
+ learn local neural fields based on latent vectors arranged in a regular
1230
+ grid, while 3DILG uses latent vectors on an irregular grid.
1231
+ For 3D shape generation, we compare against recent state-of-the-
1232
+ art generative models, including PVD [Zhou et al. 2021], 3DILG [Zhang
1233
+ 8
1234
+
1235
+ Input
1236
+ GT
1237
+ OccNet
1238
+ ConvONet
1239
+ IF-Net
1240
+ 3DILG
1241
+ Proposed
1242
+ Learnable Queries
1243
+ Point Queries
1244
+ Fig. 8. Visualization of shape autoencoding results (surface reconstruction from point clouds from ShapeNet).
1245
+ et al. 2022], and NeuralWavelet [Hui et al. 2022]. PVD is a diffusion
1246
+ model for 3D point cloud generation, and 3DILG utilizes autore-
1247
+ gressive models. NeuralWavelet utilized diffusion models in the
1248
+ frequency domain of shapes.
1249
+ 9
1250
+
1251
+ Ours
1252
+ 3DILG
1253
+ Grid-83
1254
+ PVD
1255
+ Fig. 9. Unconditional generation. All models are trained on full ShapeNet.
1256
+ airplane
1257
+ chair
1258
+ table
1259
+ car
1260
+ sofa
1261
+ 3DILG
1262
+ NW
1263
+ Ours
1264
+ 3DILG
1265
+ NW
1266
+ Ours
1267
+ 3DILG
1268
+ NW
1269
+ Ours
1270
+ 3DILG
1271
+ NW
1272
+ Ours
1273
+ 3DILG
1274
+ NW
1275
+ Ours
1276
+ Surface-FID
1277
+ 0.71
1278
+ 0.38
1279
+ 0.62
1280
+ 0.96
1281
+ 1.14
1282
+ 0.76
1283
+ 2.10
1284
+ 1.12
1285
+ 1.19
1286
+ 2.93
1287
+ -
1288
+ 2.04
1289
+ 1.83
1290
+ -
1291
+ 0.77
1292
+ Surface-KID (×103)
1293
+ 0.81
1294
+ 0.53
1295
+ 0.83
1296
+ 1.21
1297
+ 1.50
1298
+ 0.70
1299
+ 3.84
1300
+ 1.55
1301
+ 1.87
1302
+ 7.35
1303
+ -
1304
+ 3.90
1305
+ 3.36
1306
+ -
1307
+ 0.70
1308
+ Table 8. Category conditioned generation. NW is short for NeuralWavelet. The dash sign “-” means the method NeuralWavelet does not release models
1309
+ trained on these categories.
1310
+ 7.2
1311
+ Evaluation metrics
1312
+ To evaluate the reconstruction accuracy of shape auto-encoding
1313
+ from point clouds, we adopt Chamfer distance, volumetric Intersection-
1314
+ over-Union (IoU), and F-score as primary evaluation metrics. IoU
1315
+ is computed based on the occupancy predictions of 50𝑘 querying
1316
+ points sampled in 3D space. Chamfer distance and F-score are cal-
1317
+ culated between two sampled point clouds with the size of 50𝑘
1318
+ respectively from reconstructed and ground-truth surfaces. For IoU
1319
+ and F-score, higher is better, while for Chamfer, lower is better.
1320
+ To measure the mesh quality of unconditional and conditional
1321
+ shape generation, we follow [Ibing et al. 2021; Shue et al. 2022; Zhang
1322
+ et al. 2022] to adapt the Fréchet Inception Distance (FID) and Kernel
1323
+ Inception Distance (KID) commonly used to assess the image gener-
1324
+ ative models to rendered images of 3d shapes. To calculate FID and
1325
+ KID of rendered images, we render each shape from 10 viewpoints.
1326
+ The metrics are named as Rendering-FID and Rendering-KID.
1327
+ The Rendering-FID is defined as,
1328
+ Rendering-FID = ∥𝜇g − 𝜇r∥ +𝑇𝑟
1329
+
1330
+ Σ𝑔 + Σ𝑟 − 2(Σ𝑔Σ𝑟)1/2�
1331
+ (24)
1332
+ where 𝑔 and 𝑟 denotes the generated and training datasets respec-
1333
+ tively. 𝜇 and Σ are the statistical mean and covariance matrix of the
1334
+ feature distribution extracted by the Inception network.
1335
+ The Rendering-KID is defined as,
1336
+ Rendering-KID = MMD
1337
+
1338
+ 1
1339
+ |R|
1340
+ ∑︁
1341
+ x∈R
1342
+ max
1343
+ y∈G 𝐷(x, y)
1344
+ �2
1345
+ (25)
1346
+ where 𝐷(x, y) is a polynomial kernel function to evaluate the simi-
1347
+ larity of two samples, G and R are feature distributions of generated
1348
+ set and reference set, respectively. The function MMD(·) is Maxi-
1349
+ mum Mean Discrepancy. However, the rendering-based FID and KID
1350
+ are essentially designed to understand 3D shapes from 2D images.
1351
+ Thus, they have the inherent issue of not accurately understanding
1352
+ shape compositions in the 3D world. To compensate their draw-
1353
+ backs, we also adapt the FID and KID to 3D shapes directly. For each
1354
+ generated or groud-truth shape, we sample 4096 points (with nor-
1355
+ mals) from the surface mesh and then feed them into a pre-trained
1356
+ PointNet++ [Qi et al. 2017b] to extract a global latent vector, repre-
1357
+ senting the global structure of the 3D shape. The PointNet++ is first
1358
+ pretrained on shape classification on ShapeNet-55. As we use point
1359
+ clouds, we call the FID and KID for 3D shapes as Fréchet PointNet++
1360
+ Distance (FPD) and Kernel PointNet++ Distance (KPD). The two
1361
+ metrics are defined similarly as in Eq. (24) and Eq. (25), except that
1362
+ the features are extracted from a PointNet++ network.
1363
+ 10
1364
+
1365
+ Ours
1366
+ NW
1367
+ 3DILG
1368
+ Grid-83
1369
+ Ours
1370
+ NW
1371
+ 3DILG
1372
+ Grid-83
1373
+ Ours
1374
+ NW
1375
+ 3DILG
1376
+ Grid-83
1377
+ Fig. 10. Category-conditional generation. From top to bottom, we show category (airplane, chair, table) conditioned generation results.
1378
+ 7.3
1379
+ Implementation
1380
+ For the shape auto-encoder, we use the point cloud of size 2048 as
1381
+ input. At each iteration, we individually sample 1024 query points
1382
+ from the bounding volume ([−1, 1]3) and the other 1024 points
1383
+ from near surface region for the occupancy values prediction. The
1384
+ shape auto-encoder is trained on 8 A100, with batch size of 512
1385
+ for 𝑇 = 1, 600 epochs. The learning rate is linearly increased to
1386
+ 𝑙𝑟max = 5𝑒 − 5 in the first 𝑡0 = 80 epochs, and then gradually
1387
+ decreased using the cosine decay schedule 𝑙𝑟max ∗ 0.51+𝑐𝑜𝑠 ( 𝑡−𝑡0
1388
+ 𝑇 −𝑡0 )
1389
+ until reaching the minimum value of 1𝑒 − 6. The diffusion models
1390
+ are trained on 4 A100 with batch size of 256 for 𝑇 = 8, 000 epochs.
1391
+ The learning rate is linearly increased to 𝑙𝑟𝑚𝑎𝑥 = 1𝑒 − 4 in the first
1392
+ 𝑡0 = 800 epochs, and then gradually decreased using the above
1393
+ mentioned decay schedule until reaching 1𝑒 − 6. We use the default
1394
+ settings for the hyperparameters of EDM [Karras et al. 2022]. During
1395
+ sampling, we obtain the final latent set via only 18 denoising steps.
1396
+ 8
1397
+ RESULTS
1398
+ We present our results for multiple applications: 1) shape auto-
1399
+ encoding, 2) unconditional generation, 3) category-conditioned
1400
+ generation, 4) text-conditioned generation, 5) shape completion,
1401
+ 11
1402
+
1403
+ 6) image-conditioned generation. Finally, we perform a shape nov-
1404
+ elty analysis to validate that we are not overfitting to the dataset.
1405
+ 8.1
1406
+ Shape Auto-Encoding
1407
+ We show the quantitative results in Tab. 3 for a deterministic au-
1408
+ toencoder without the KL block described in Sec. 5.2. In particular,
1409
+ we show results for the largest 7 categories as well as averaged re-
1410
+ sults over the categories. The two design choices of shape encoding
1411
+ described in Sec. 5.1 are also investigated. The case of using the
1412
+ subsampled point cloud as queries is better than learnable queries in
1413
+ all categories. Thus we use subsampled point clouds in our later ex-
1414
+ periments. The visualization of reconstruction results can be found
1415
+ in Fig. 8. We visualize some extremely difficult shapes from the
1416
+ datasets (test split). These shapes often contain some thin structures.
1417
+ However, our method still performs well.
1418
+ Ablation study of the number of latents. The number 𝑀 is the
1419
+ number of latent vectors used in the network. Intuitively, a larger
1420
+ 𝑀 leads to a better reconstruction. We show results of 𝑀 in Tab. 4.
1421
+ Thus, in all of our experiments, 𝑀 is set to 512. We are limited by
1422
+ computation time to work with larger 𝑀.
1423
+ Ablation study of the KL block. We described the KL block in Sec. 5.2
1424
+ that leads to additional compression. In addition, this block changes
1425
+ the deterministic shape encoding into a variational autoencoder.
1426
+ The introduced hyperparameter is 𝐶0. A smaller 𝐶0 leads to a higher
1427
+ compression rate. The choice of𝐶0 is ablated in Tab. 5. Clearly, larger
1428
+ 𝐶0 gives better results. The reconstruction results of𝐶0 = 8, 16, 32, 64
1429
+ are very close. However, they differ significantly in the second stage,
1430
+ because a larger latent size could make the training of diffusion
1431
+ models more difficult. This result is very encouraging for our model,
1432
+ because it indicates that aggressively increasing the compression
1433
+ in the KL block does not decrease reconstruction performance too
1434
+ much. We can also see that compressing with the KL block by de-
1435
+ creasing 𝐶0 is much better than compressing using fewer latent
1436
+ vectors 𝑀.
1437
+ 8.2
1438
+ Unconditional Shape Generation
1439
+ Comparison with surface generation. We evaluate the task of un-
1440
+ conditional shape generation with the proposed metrics in Tab. 6.
1441
+ We also compared our method with a baseline method proposed
1442
+ in [Zhang et al. 2022]. The method is called Grid-83 because the
1443
+ latent grid size is 83, which is exactly the same as in AutoSDF [Mittal
1444
+ et al. 2022]. The table also shows the results of different 𝐶0. Our
1445
+ results are best when 𝐶0 = 32 in all metrics. When 𝐶0 = 64 the
1446
+ results become worse. This also aligns with our conjecture that a
1447
+ larger latent size makes the training more difficult.
1448
+ Comparison with point cloud generation. Additionally, we compare
1449
+ our method with PVD [Zhou et al. 2021] which is a point cloud
1450
+ diffusion method. We re-train PVD using the official released code
1451
+ on our preprocessed dataset and splits. We use the same evaluation
1452
+ protocol as before but with one major difference. Since PVD can only
1453
+ generate point clouds without normals, we use another pretrained
1454
+ PointNet++ (without normals) as the feature extractor to calculate
1455
+ Surface-FPD and Surface-KPD. The Tab. 7 shows we can beat PVD
1456
+ by a large margin. Additionally, we also show the metrics calculated
1457
+ AutoSDF
1458
+ Ours
1459
+ “horizontal slats on top of back”
1460
+ “one big hole between back and seat”
1461
+ “this chair has wheels”
1462
+ “vertical back ribs”
1463
+ Fig. 11. Text conditioned generation. For each text prompt, we generate
1464
+ 3 shapes. Our results (Right) are compared with AutoSDF (Left).
1465
+ on rendered images. Visualization of generated results can be found
1466
+ in Fig. 9.
1467
+ 8.3
1468
+ Category-conditioned generation
1469
+ We train a category-conditioned generation model using our method.
1470
+ We evaluate our models in Tab. 8. We should note that the competitor
1471
+ method NeuralWavelet [Hui et al. 2022] trains models for categories
1472
+ separately; thus, NeuralWavelet is not a true category-conditioned
1473
+ model. We also visualize some results (airplane, chair, and table)
1474
+ in Fig. 10. Our training is more challenging, as we train on a dataset
1475
+ that is an order of magnitude larger and we train for all classes
1476
+ jointly. While NeuralWavelet already has good results, the joint
1477
+ training is necessary / beneficial for many subsequent applications.
1478
+ 8.4
1479
+ Text-conditioned generation
1480
+ The results of our text-conditioned generation model can be found
1481
+ in Fig. 11. Since the model is a probabilistic model, we can sample
1482
+ shapes given a text prompt. The results are very encouraging and
1483
+ they constitute the first demonstration of text-conditioned 3D shape
1484
+ generation using diffusion models. To the best of our knowledge,
1485
+ there are no published competing methods at the point of submitting
1486
+ this work.
1487
+ 8.5
1488
+ Probabilistic shape completion
1489
+ We also extend our diffusion model for probablistic shape comple-
1490
+ tion by using a partial point cloud as conditioning input. The compar-
1491
+ ison against ShapeFormer [Yan et al. 2022] is depicted in Fig. 12. As
1492
+ seen, our latent set diffusion can predict more accurate completion,
1493
+ and we also have the ability to achieve more diverse generations.
1494
+ 12
1495
+
1496
+ GT
1497
+ Condition
1498
+ ShapeFormer
1499
+ Ours
1500
+ Fig. 12. Point cloud conditioned generation. We show three generated
1501
+ results given a partial cloud. The ground-truth point cloud and the partial
1502
+ point cloud used as condition are shown in Left. We compare our results
1503
+ (Right) with ShapeFormer (Middle).
1504
+ Condition
1505
+ IM-Net
1506
+ OccNet
1507
+ Ours
1508
+ Fig. 13. Image conditioned generation. In the left column we show the
1509
+ condition image. In the middle we show results obtained by the method
1510
+ IM-Net and OccNet. Our generated results are shown on the right.
1511
+ 8.6
1512
+ Image-conditioned shape generation.
1513
+ We also provide comparisons on the task of single-view 3D object
1514
+ reconstruction in Fig. 13. Compared to other deterministic methods
1515
+ including OccNet [Mescheder et al. 2019] and IM-Net [Chen and
1516
+ Zhang 2019], our latent set diffusion can not only reconstruct more
1517
+ accurate surface details, (e.g. long rods and tiny holes in the back),
1518
+ but also support multi-modal prediction, which is a desired property
1519
+ to deal with severe occlusions.
1520
+ Ref
1521
+ Gen
1522
+ Ref
1523
+ Gen
1524
+ Ref
1525
+ Gen
1526
+ Ref
1527
+ Gen
1528
+ Fig. 14. Shape generation novelty. For a generated shape, we retrieve
1529
+ the top-1 similar shape in the training set. The similarity is measured using
1530
+ Chamfer distance of sampled surface point clouds. In each pair, we show
1531
+ the retrieved shape (left) and the generated shape (right). The generated
1532
+ shapes are from our category-conditioned generation results.
1533
+ 8.7
1534
+ Shape novelty analysis
1535
+ We use shape retrieval to demonstrate that we are not simply over-
1536
+ fitting to the training set. Given a generated shape, we measure the
1537
+ Chamfer distance between it and training shapes. The visualization
1538
+ of retrieved shapes can be found in Fig. 14. Clearly, the model can
1539
+ synthesize new shapes with realistic structures.
1540
+ 8.8
1541
+ Limitations
1542
+ While our method shows convincing results on a variety of tasks,
1543
+ our design choices also have drawbacks that we would like to dis-
1544
+ cuss. For instance, we require a two stage training strategy. While
1545
+ this leads to improved performance in terms of generation quality,
1546
+ training the first stage is more time consuming than relying on
1547
+ manually-designed features such as wavelets [Hui et al. 2022]. In
1548
+ addition, the first stage might require retraining if the shape data in
1549
+ consideration changes, and for the second stage – the core of our
1550
+ diffusion architecture – training time is also relatively high. Overall,
1551
+ we believe that there is significant potential for future research av-
1552
+ enues to speed up training, in particular, in the context of diffusion
1553
+ models.
1554
+ 9
1555
+ CONCLUSION
1556
+ We have introduced 3DShape2VecSet, a novel shape representation
1557
+ for neural fields that is tailored to generative diffusion models. To
1558
+ this end, we combine ideas from radial basis functions, previous
1559
+ neural field architectures, variational autoencoding, as well as cross
1560
+ attention and self-attention to design a learnable representation.
1561
+ Our shape representation can take a variety of inputs including
1562
+ triangle meshes and point clouds and encode 3D shapes as neu-
1563
+ ral fields on top of a set of latent vectors. As a result, our method
1564
+ demonstrates improved performance in 3D shape encoding and 3D
1565
+ shape generative modeling tasks, including unconditioned genera-
1566
+ tion, category-conditioned generation, text-conditioned generation,
1567
+ point-cloud completion, and image-conditioned generation.
1568
+ In future work, we see many exciting possibilities. Most impor-
1569
+ tantly, we believe that our model further advances the state of the
1570
+ art in point cloud and shape processing on a large variety of tasks.
1571
+ In particular, we would like to employ the network architecture of
1572
+ 3DShape2VecSet to tackle the problem of surface reconstruction
1573
+ from scanned point clouds. In addition, we can see many applica-
1574
+ tions for content-creation tasks, for example 3D shape generation
1575
+ of textured models along with their material properties. Finally, we
1576
+ 13
1577
+
1578
+ would like to explore editing and manipulation tasks leveraging
1579
+ pretrained diffusion models for prompt to prompt shape editing,
1580
+ leveraging the recent advances in image diffusion models.
1581
+ REFERENCES
1582
+ Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. 2018. Learn-
1583
+ ing representations and generative models for 3d point clouds. In International
1584
+ conference on machine learning. PMLR, 40–49.
1585
+ Panos Achlioptas, Judy Fan, Robert Hawkins, Noah Goodman, and Leonidas J Guibas.
1586
+ 2019. ShapeGlot: Learning language for shape differentiation. In Proceedings of the
1587
+ IEEE/CVF International Conference on Computer Vision. 8938–8947.
1588
+ Alexandre Boulch and Renaud Marlet. 2022. Poco: Point convolution for surface
1589
+ reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and
1590
+ Pattern Recognition. 6302–6314.
1591
+ Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2016. Generative and
1592
+ discriminative voxel modeling with convolutional neural networks. arXiv preprint
1593
+ arXiv:1608.04236 (2016).
1594
+ Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
1595
+ and Sergey Zagoruyko. 2020. End-to-end object detection with transformers. In
1596
+ European conference on computer vision. Springer, 213–229.
1597
+ Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell, W Richard Fright,
1598
+ Bruce C McCallum, and Tim R Evans. 2001. Reconstruction and representation of
1599
+ 3D objects with radial basis functions. In Proceedings of the 28th annual conference
1600
+ on Computer graphics and interactive techniques. 67–76.
1601
+ Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove,
1602
+ and Richard Newcombe. 2020. Deep local shapes: Learning local sdf priors for
1603
+ detailed 3d reconstruction. In European Conference on Computer Vision. Springer,
1604
+ 608–625.
1605
+ Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
1606
+ Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. Shapenet:
1607
+ An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015).
1608
+ Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape
1609
+ modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
1610
+ Recognition. 5939–5948.
1611
+ An-Chieh Cheng, Xueting Li, Sifei Liu, Min Sun, and Ming-Hsuan Yang. 2022. Autore-
1612
+ gressive 3d shape generation via canonical mapping. arXiv preprint arXiv:2204.01955
1613
+ (2022).
1614
+ Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. 2020. Implicit functions in
1615
+ feature space for 3d shape reconstruction and completion. In Proceedings of the
1616
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6970–6981.
1617
+ Gene Chou, Yuval Bahat, and Felix Heide. 2022. DiffusionSDF: Conditional Generative
1618
+ Modeling of Signed Distance Functions. arXiv preprint arXiv:2211.13757 (2022).
1619
+ Christopher Bongsoo Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio
1620
+ Savarese. 2016. 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object
1621
+ Reconstruction. european conference on computer vision (2016), 628–644.
1622
+ Angela Dai, Christian Diller, and Matthias Nießner. 2020. Sg-nn: Sparse generative
1623
+ neural networks for self-supervised scene completion of rgb-d scans. In Proceedings
1624
+ of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 849–858.
1625
+ Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. 2017. Shape completion
1626
+ using 3d-encoder-predictor cnns and shape synthesis. In Proceedings of the IEEE
1627
+ conference on computer vision and pattern recognition. 5868–5877.
1628
+ Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-
1629
+ training of deep bidirectional transformers for language understanding. arXiv
1630
+ preprint arXiv:1810.04805 (2018).
1631
+ Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
1632
+ Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
1633
+ Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is Worth 16x16
1634
+ Words: Transformers for Image Recognition at Scale. ICLR (2021).
1635
+ Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J Mitra, and Michael Wim-
1636
+ mer. 2020. Points2surf learning implicit surfaces from point clouds. In European
1637
+ Conference on Computer Vision. Springer, 108–124.
1638
+ Patrick Esser, Robin Rombach, and Bjorn Ommer. 2021. Taming transformers for high-
1639
+ resolution image synthesis. In Proceedings of the IEEE/CVF Conference on Computer
1640
+ Vision and Pattern Recognition. 12873–12883.
1641
+ Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. 2020.
1642
+ Local deep implicit functions for 3d shape. In Proceedings of the IEEE/CVF Conference
1643
+ on Computer Vision and Pattern Recognition. 4857–4866.
1644
+ Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. 2016. Learning a
1645
+ predictable and generative vector representation for objects. In European Conference
1646
+ on Computer Vision. Springer, 484–499.
1647
+ Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
1648
+ Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets.
1649
+ Advances in Neural Information Processing Systems 27 (2014), 2672–2680.
1650
+ Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and
1651
+ Shi-Min Hu. 2021. Pct: Point cloud transformer. Computational Visual Media 7, 2
1652
+ (2021), 187–199.
1653
+ Christian Häne, Shubham Tulsiani, and Jitendra Malik. 2017. Hierarchical surface
1654
+ prediction for 3d object reconstruction. In 2017 International Conference on 3D Vision
1655
+ (3DV). IEEE, 412–420.
1656
+ Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning
1657
+ for image recognition. In Proceedings of the IEEE conference on computer vision and
1658
+ pattern recognition. 770–778.
1659
+ Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
1660
+ models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.
1661
+ Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. 2022. Neural wavelet-domain
1662
+ diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers. 1–9.
1663
+ Moritz Ibing, Isaak Lim, and Leif Kobbelt. 2021. 3d shape generation with grid-based
1664
+ implicit functions. In Proceedings of the IEEE/CVF Conference on Computer Vision
1665
+ and Pattern Recognition. 13559–13568.
1666
+ Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and
1667
+ Joao Carreira. 2021. Perceiver: General perception with iterative attention. In
1668
+ International conference on machine learning. PMLR, 4651–4664.
1669
+ Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, Thomas
1670
+ Funkhouser, et al. 2020. Local implicit grid representations for 3d scenes. In Pro-
1671
+ ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
1672
+ 6001–6010.
1673
+ Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. 2022. Elucidating the Design
1674
+ Space of Diffusion-Based Generative Models. In Proc. NeurIPS.
1675
+ Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
1676
+ International Conference on Learning Representations (ICLR), Yoshua Bengio and
1677
+ Yann LeCun (Eds.).
1678
+ Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. 2006. A tutorial on
1679
+ energy-based learning. Predicting structured data 1, 0 (2006).
1680
+ Tianyang Li, Xin Wen, Yu-Shen Liu, Hua Su, and Zhizhong Han. 2022. Learning deep
1681
+ implicit functions for 3D shapes with dynamic code clouds. In Proceedings of the
1682
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12840–12850.
1683
+ William E Lorensen and Harvey E Cline. 1987. Marching cubes: A high resolution
1684
+ 3D surface construction algorithm. ACM siggraph computer graphics 21, 4 (1987),
1685
+ 163–169.
1686
+ Andreas Lugmayr, Martin Danelljan, Andrés Romero, Fisher Yu, Radu Timofte, and
1687
+ Luc Van Gool. 2022. RePaint: Inpainting using Denoising Diffusion Probabilistic
1688
+ Models. ArXiv abs/2201.09865 (2022).
1689
+ Shitong Luo and Wei Hu. 2021. Diffusion probabilistic models for 3d point cloud
1690
+ generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
1691
+ Pattern Recognition. 2837–2845.
1692
+ Donald JR Meagher. 1980. Octree encoding: A new technique for the representation,
1693
+ manipulation and display of arbitrary 3-d objects by computer. Electrical and Systems
1694
+ Engineering Department Rensseiaer Polytechnic ....
1695
+ Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
1696
+ Geiger. 2019. Occupancy networks: Learning 3d reconstruction in function space.
1697
+ In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
1698
+ 4460–4470.
1699
+ Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and
1700
+ Anders Eriksson. 2019. Deep level sets: Implicit surface representations for 3d shape
1701
+ inference. arXiv preprint arXiv:1901.06802 (2019).
1702
+ Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
1703
+ mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
1704
+ for View Synthesis. In ECCV.
1705
+ Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shubham Tulsiani. 2022. Autosdf:
1706
+ Shape priors for 3d completion, reconstruction and generation. In Proceedings of the
1707
+ IEEE/CVF Conference on Computer Vision and Pattern Recognition. 306–315.
1708
+ Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas
1709
+ Guibas. 2019. StructureNet: Hierarchical Graph Networks for 3D Shape Generation.
1710
+ ACM Transactions on Graphics (TOG), Siggraph Asia 2019 38, 6 (2019), Article 242.
1711
+ Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. 2020. Polygen: An
1712
+ autoregressive generative model of 3d meshes. In International conference on machine
1713
+ learning. PMLR, 7220–7229.
1714
+ Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
1715
+ grove. 2019. Deepsdf: Learning continuous signed distance functions for shape
1716
+ representation. In Proceedings of the IEEE/CVF conference on computer vision and
1717
+ pattern recognition. 165–174.
1718
+ Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger.
1719
+ 2020. Convolutional occupancy networks. In European Conference on Computer
1720
+ Vision. Springer, 523–540.
1721
+ Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. Pointnet: Deep
1722
+ learning on point sets for 3d classification and segmentation. In Proceedings of the
1723
+ IEEE conference on computer vision and pattern recognition. 652–660.
1724
+ Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. Pointnet++: Deep
1725
+ hierarchical feature learning on point sets in a metric space. Advances in neural
1726
+ information processing systems 30 (2017).
1727
+ 14
1728
+
1729
+ Aditya Ramesh. 2022. Hierarchical Text-Conditional Image Generation with CLIP
1730
+ Latents.
1731
+ Danilo Rezende and Shakir Mohamed. 2015. Variational Inference with Normalizing
1732
+ Flows. In International Conference on Machine Learning. 1530–1538.
1733
+ Gernot Riegler, Ali Osman Ulusoy, Horst Bischof, and Andreas Geiger. 2017b. Octnetfu-
1734
+ sion: Learning depth fusion from data. In 2017 International Conference on 3D Vision
1735
+ (3DV). IEEE, 57–66.
1736
+ Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017a. Octnet: Learning deep
1737
+ 3d representations at high resolutions. In Proceedings of the IEEE Conference on
1738
+ Computer Vision and Pattern Recognition, Vol. 3.
1739
+ Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
1740
+ 2022. High-resolution image synthesis with latent diffusion models. In Proceedings of
1741
+ the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10684–10695.
1742
+ Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton,
1743
+ Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gon-
1744
+ tijo Lopes, et al. 2022. Photorealistic Text-to-Image Diffusion Models with Deep
1745
+ Language Understanding. arXiv preprint arXiv:2205.11487 (2022).
1746
+ J Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary Ankner, Jiajun Wu, and Gordon
1747
+ Wetzstein. 2022. 3D Neural Field Generation using Triplane Diffusion. arXiv
1748
+ preprint arXiv:2211.16677 (2022).
1749
+ Yongbin Sun, Yue Wang, Ziwei Liu, Joshua Siegel, and Sanjay Sarma. 2020. Pointgrow:
1750
+ Autoregressively learned point cloud generation with self-attention. In Proceedings
1751
+ of the IEEE/CVF Winter Conference on Applications of Computer Vision. 61–70.
1752
+ Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, and Lei Zhang. 2021. Sa-convonet:
1753
+ Sign-agnostic optimization of convolutional occupancy networks. In Proceedings of
1754
+ the IEEE/CVF International Conference on Computer Vision. 6504–6513.
1755
+ Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017. Octree Generating
1756
+ Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs.
1757
+ In 2017 IEEE International Conference on Computer Vision (ICCV). 2107–2115.
1758
+ Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural discrete representation learning.
1759
+ Advances in neural information processing systems 30 (2017).
1760
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jon es, Aidan N
1761
+ Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances
1762
+ in neural information processing systems 30 (2017).
1763
+ Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-cnn:
1764
+ Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions
1765
+ on Graphics (TOG) 36, 4 (2017), 72.
1766
+ Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. 2018. Adaptive O-CNN: a
1767
+ patch-based deep representation of 3D shapes. In SIGGRAPH Asia 2018 Technical
1768
+ Papers. ACM, 217.
1769
+ Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
1770
+ Solomon. 2019. Dynamic graph cnn for learning on point clouds. Acm Transactions
1771
+ On Graphics (tog) 38, 5 (2019), 1–12.
1772
+ Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin, Joan Bruna, Sanja Fidler,
1773
+ and Or Litany. 2022. Neural fields as learnable kernels for 3d reconstruction. In
1774
+ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
1775
+ 18500–18510.
1776
+ Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016.
1777
+ Learning a probabilistic latent space of object shapes via 3d generative-adversarial
1778
+ modeling. In Advances in Neural Information Processing Systems. 82–90.
1779
+ Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
1780
+ Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric shapes.
1781
+ In Proceedings of the IEEE conference on computer vision and pattern recognition.
1782
+ 1912–1920.
1783
+ Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. 2016. A theory of generative
1784
+ convnet. In International Conference on Machine Learning. PMLR, 2635–2644.
1785
+ Jianwen Xie, Yifei Xu, Zilong Zheng, Song-Chun Zhu, and Ying Nian Wu. 2021. Genera-
1786
+ tive pointnet: Deep energy-based learning on unordered point sets for 3d generation,
1787
+ reconstruction and classification. In Proceedings of the IEEE/CVF Conference on Com-
1788
+ puter Vision and Pattern Recognition. 14976–14985.
1789
+ Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang, Song-Chun Zhu, and Ying Nian
1790
+ Wu. 2020. Generative VoxelNet: learning energy-based models for 3D shape syn-
1791
+ thesis and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence
1792
+ (2020).
1793
+ Xingguang Yan, Liqiang Lin, Niloy J Mitra, Dani Lischinski, Daniel Cohen-Or, and
1794
+ Hui Huang. 2022. Shapeformer: Transformer-based shape completion via sparse
1795
+ representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
1796
+ Pattern Recognition. 6239–6249.
1797
+ Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath
1798
+ Hariharan. 2019. Pointflow: 3d point cloud generation with continuous normalizing
1799
+ flows. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
1800
+ 4541–4550.
1801
+ Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and
1802
+ Karsten Kreis. 2022. LION: Latent Point Diffusion Models for 3D Shape Generation.
1803
+ arXiv preprint arXiv:2210.06978 (2022).
1804
+ Biao Zhang, Matthias Nießner, and Peter Wonka. 2022. 3DILG: Irregular Latent Grids
1805
+ for 3D Generative Modeling. In Advances in Neural Information Processing Systems.
1806
+ https://openreview.net/forum?id=RO0wSr3R7y-
1807
+ Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. 2021. Point
1808
+ transformer. In Proceedings of the IEEE/CVF International Conference on Computer
1809
+ Vision. 16259–16268.
1810
+ Xin-Yang Zheng, Yang Liu, Peng-Shuai Wang, and Xin Tong. 2022. SDF-StyleGAN:
1811
+ Implicit SDF-Based StyleGAN for 3D Shape Generation. In Comput. Graph. Forum
1812
+ (SGP).
1813
+ Linqi Zhou, Yilun Du, and Jiajun Wu. 2021. 3d shape generation and completion through
1814
+ point-voxel diffusion. In Proceedings of the IEEE/CVF International Conference on
1815
+ Computer Vision. 5826–5835.
1816
+ 15
1817
+