jackkuo commited on
Commit
8eb9358
·
verified ·
1 Parent(s): e0a3ef8

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -dE1T4oBgHgl3EQfoQRv/content/2301.03318v1.pdf +3 -0
  2. -dE1T4oBgHgl3EQfoQRv/vector_store/index.faiss +3 -0
  3. -dE1T4oBgHgl3EQfoQRv/vector_store/index.pkl +3 -0
  4. -tE1T4oBgHgl3EQfoQTL/content/2301.03319v1.pdf +3 -0
  5. -tE1T4oBgHgl3EQfoQTL/vector_store/index.faiss +3 -0
  6. -tE1T4oBgHgl3EQfoQTL/vector_store/index.pkl +3 -0
  7. .gitattributes +63 -0
  8. 0NE2T4oBgHgl3EQfMwbp/vector_store/index.faiss +3 -0
  9. 0NE2T4oBgHgl3EQfMwbp/vector_store/index.pkl +3 -0
  10. 0NFLT4oBgHgl3EQfoi-S/content/tmp_files/2301.12132v1.pdf.txt +2062 -0
  11. 0NFLT4oBgHgl3EQfoi-S/content/tmp_files/load_file.txt +0 -0
  12. 19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf +3 -0
  13. 19E1T4oBgHgl3EQfRwPe/vector_store/index.faiss +3 -0
  14. 19E1T4oBgHgl3EQfRwPe/vector_store/index.pkl +3 -0
  15. 1tE1T4oBgHgl3EQflQSM/content/tmp_files/2301.03283v1.pdf.txt +2423 -0
  16. 1tE1T4oBgHgl3EQflQSM/content/tmp_files/load_file.txt +0 -0
  17. 39FQT4oBgHgl3EQfHTWW/vector_store/index.pkl +3 -0
  18. 49FIT4oBgHgl3EQf7St_/content/2301.11397v1.pdf +3 -0
  19. 4NFKT4oBgHgl3EQf9C5Z/content/tmp_files/2301.11952v1.pdf.txt +859 -0
  20. 4NFKT4oBgHgl3EQf9C5Z/content/tmp_files/load_file.txt +439 -0
  21. 4dFQT4oBgHgl3EQf4Ta7/content/2301.13431v1.pdf +3 -0
  22. 5tE1T4oBgHgl3EQfBAK1/content/tmp_files/2301.02847v1.pdf.txt +1976 -0
  23. 5tE1T4oBgHgl3EQfBAK1/content/tmp_files/load_file.txt +0 -0
  24. 6tFAT4oBgHgl3EQfnx0W/content/tmp_files/2301.08630v1.pdf.txt +1508 -0
  25. 6tFAT4oBgHgl3EQfnx0W/content/tmp_files/load_file.txt +0 -0
  26. 8NAzT4oBgHgl3EQfgfyv/vector_store/index.pkl +3 -0
  27. 8NFLT4oBgHgl3EQfsy_c/content/tmp_files/load_file.txt +0 -0
  28. 9dFRT4oBgHgl3EQfqjdh/content/2301.13617v1.pdf +3 -0
  29. 9dFRT4oBgHgl3EQfqjdh/vector_store/index.pkl +3 -0
  30. A9AzT4oBgHgl3EQfhv18/content/2301.01489v1.pdf +3 -0
  31. A9AzT4oBgHgl3EQfhv18/vector_store/index.pkl +3 -0
  32. A9E1T4oBgHgl3EQf9QZb/content/2301.03554v1.pdf +3 -0
  33. A9E1T4oBgHgl3EQf9QZb/vector_store/index.faiss +3 -0
  34. ANFQT4oBgHgl3EQf8jdP/content/tmp_files/2301.13447v1.pdf.txt +1150 -0
  35. ANFQT4oBgHgl3EQf8jdP/content/tmp_files/load_file.txt +0 -0
  36. AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf +3 -0
  37. AdAzT4oBgHgl3EQfF_tg/vector_store/index.faiss +3 -0
  38. AdAzT4oBgHgl3EQfF_tg/vector_store/index.pkl +3 -0
  39. AtE2T4oBgHgl3EQf8QmS/content/tmp_files/2301.04217v1.pdf.txt +418 -0
  40. AtE2T4oBgHgl3EQf8QmS/content/tmp_files/load_file.txt +385 -0
  41. BtE1T4oBgHgl3EQfpgUG/content/tmp_files/2301.03331v1.pdf.txt +890 -0
  42. BtE1T4oBgHgl3EQfpgUG/content/tmp_files/load_file.txt +0 -0
  43. DNFQT4oBgHgl3EQf_zdP/vector_store/index.faiss +3 -0
  44. DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf +3 -0
  45. DtE1T4oBgHgl3EQfEQNL/vector_store/index.faiss +3 -0
  46. DtE1T4oBgHgl3EQfEQNL/vector_store/index.pkl +3 -0
  47. E9E1T4oBgHgl3EQfEgPe/content/2301.02892v1.pdf +3 -0
  48. GNAzT4oBgHgl3EQfxP7V/content/2301.01736v1.pdf +3 -0
  49. GNAzT4oBgHgl3EQfxP7V/vector_store/index.pkl +3 -0
  50. HNE1T4oBgHgl3EQfrQW4/content/tmp_files/2301.03353v1.pdf.txt +1029 -0
-dE1T4oBgHgl3EQfoQRv/content/2301.03318v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa0b7d6e9789f62713c833ad82d7bbedd6058639e2d1e48b4344909391511670
3
+ size 195814
-dE1T4oBgHgl3EQfoQRv/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83e6914d4600ce14dcf984376c2a4e1abb818b589ed1079b3226e957cf92557b
3
+ size 2424877
-dE1T4oBgHgl3EQfoQRv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1ac21d8cdf5aacde3ec69b06dac11cb96028b1c5a59927998a2e6cc95531033
3
+ size 93415
-tE1T4oBgHgl3EQfoQTL/content/2301.03319v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea155fe4f886aab5e8c8661f3221460a8dac8e04f5a538673f6d4355067aa8cc
3
+ size 543706
-tE1T4oBgHgl3EQfoQTL/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a5ebdcbf23074e45cfcfed109a508e34f15a813fd64b1ea005e1d83a7703401
3
+ size 4587565
-tE1T4oBgHgl3EQfoQTL/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dcac91dca0e67fb83ab576394b489a8e769651454b44705039f61803f1c3c4a
3
+ size 159596
.gitattributes CHANGED
@@ -2193,3 +2193,66 @@ R9E4T4oBgHgl3EQf_g7i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
2193
  L9AyT4oBgHgl3EQf6voI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2194
  g9E0T4oBgHgl3EQf6gID/content/2301.02763v1.pdf filter=lfs diff=lfs merge=lfs -text
2195
  YNE2T4oBgHgl3EQfvAgF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2193
  L9AyT4oBgHgl3EQf6voI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2194
  g9E0T4oBgHgl3EQf6gID/content/2301.02763v1.pdf filter=lfs diff=lfs merge=lfs -text
2195
  YNE2T4oBgHgl3EQfvAgF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2196
+ i9E0T4oBgHgl3EQf7AKY/content/2301.02771v1.pdf filter=lfs diff=lfs merge=lfs -text
2197
+ 49FIT4oBgHgl3EQf7St_/content/2301.11397v1.pdf filter=lfs diff=lfs merge=lfs -text
2198
+ i9E0T4oBgHgl3EQf7AKY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2199
+ ldFLT4oBgHgl3EQfdy92/content/2301.12088v1.pdf filter=lfs diff=lfs merge=lfs -text
2200
+ -tE1T4oBgHgl3EQfoQTL/content/2301.03319v1.pdf filter=lfs diff=lfs merge=lfs -text
2201
+ U9E3T4oBgHgl3EQf0QsH/content/2301.04735v1.pdf filter=lfs diff=lfs merge=lfs -text
2202
+ E9E1T4oBgHgl3EQfEgPe/content/2301.02892v1.pdf filter=lfs diff=lfs merge=lfs -text
2203
+ itE2T4oBgHgl3EQfIAZX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2204
+ A9E1T4oBgHgl3EQf9QZb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2205
+ vNE1T4oBgHgl3EQfkQSg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2206
+ itE4T4oBgHgl3EQfSwxB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2207
+ itE4T4oBgHgl3EQfSwxB/content/2301.05001v1.pdf filter=lfs diff=lfs merge=lfs -text
2208
+ g9E0T4oBgHgl3EQf6gID/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2209
+ f9E3T4oBgHgl3EQfHwmY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2210
+ zNE4T4oBgHgl3EQfyQ1D/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2211
+ -dE1T4oBgHgl3EQfoQRv/content/2301.03318v1.pdf filter=lfs diff=lfs merge=lfs -text
2212
+ _NE1T4oBgHgl3EQfogR8/content/2301.03321v1.pdf filter=lfs diff=lfs merge=lfs -text
2213
+ RNFAT4oBgHgl3EQf0x4X/content/2301.08705v1.pdf filter=lfs diff=lfs merge=lfs -text
2214
+ ctAzT4oBgHgl3EQfZ_wC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2215
+ ldFLT4oBgHgl3EQfdy92/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2216
+ DNFQT4oBgHgl3EQf_zdP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2217
+ _NE1T4oBgHgl3EQfogR8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2218
+ zNE4T4oBgHgl3EQfyQ1D/content/2301.05264v1.pdf filter=lfs diff=lfs merge=lfs -text
2219
+ yNAyT4oBgHgl3EQfa_ed/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2220
+ -tE1T4oBgHgl3EQfoQTL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2221
+ xNAzT4oBgHgl3EQfdvyx/content/2301.01426v1.pdf filter=lfs diff=lfs merge=lfs -text
2222
+ YNE2T4oBgHgl3EQfvAgF/content/2301.04085v1.pdf filter=lfs diff=lfs merge=lfs -text
2223
+ 4dFQT4oBgHgl3EQf4Ta7/content/2301.13431v1.pdf filter=lfs diff=lfs merge=lfs -text
2224
+ U9E3T4oBgHgl3EQf0QsH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2225
+ hdE4T4oBgHgl3EQfrg0j/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2226
+ RNFAT4oBgHgl3EQf0x4X/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2227
+ TtFJT4oBgHgl3EQfMiyz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2228
+ W9FKT4oBgHgl3EQfoC5E/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2229
+ 0NE2T4oBgHgl3EQfMwbp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2230
+ WNFJT4oBgHgl3EQfOyzK/content/2301.11484v1.pdf filter=lfs diff=lfs merge=lfs -text
2231
+ DtE1T4oBgHgl3EQfEQNL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2232
+ AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf filter=lfs diff=lfs merge=lfs -text
2233
+ DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf filter=lfs diff=lfs merge=lfs -text
2234
+ MdFRT4oBgHgl3EQf2zi9/content/2301.13662v1.pdf filter=lfs diff=lfs merge=lfs -text
2235
+ 19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf filter=lfs diff=lfs merge=lfs -text
2236
+ 9dFRT4oBgHgl3EQfqjdh/content/2301.13617v1.pdf filter=lfs diff=lfs merge=lfs -text
2237
+ O9AzT4oBgHgl3EQflP2h/content/2301.01545v1.pdf filter=lfs diff=lfs merge=lfs -text
2238
+ A9AzT4oBgHgl3EQfhv18/content/2301.01489v1.pdf filter=lfs diff=lfs merge=lfs -text
2239
+ QNE2T4oBgHgl3EQfrwi3/content/2301.04053v1.pdf filter=lfs diff=lfs merge=lfs -text
2240
+ w9E5T4oBgHgl3EQfMw4O/content/2301.05483v1.pdf filter=lfs diff=lfs merge=lfs -text
2241
+ L9FQT4oBgHgl3EQfUzaG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2242
+ A9E1T4oBgHgl3EQf9QZb/content/2301.03554v1.pdf filter=lfs diff=lfs merge=lfs -text
2243
+ -dE1T4oBgHgl3EQfoQRv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2244
+ GNAzT4oBgHgl3EQfxP7V/content/2301.01736v1.pdf filter=lfs diff=lfs merge=lfs -text
2245
+ rdAzT4oBgHgl3EQfO_vG/content/2301.01177v1.pdf filter=lfs diff=lfs merge=lfs -text
2246
+ w9E5T4oBgHgl3EQfMw4O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2247
+ 19E1T4oBgHgl3EQfRwPe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2248
+ O9AzT4oBgHgl3EQflP2h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2249
+ m9E5T4oBgHgl3EQfjQ9S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2250
+ yNAyT4oBgHgl3EQfa_ed/content/2301.00254v1.pdf filter=lfs diff=lfs merge=lfs -text
2251
+ m9E5T4oBgHgl3EQfjQ9S/content/2301.05654v1.pdf filter=lfs diff=lfs merge=lfs -text
2252
+ PtFRT4oBgHgl3EQf6Djm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2253
+ PtFRT4oBgHgl3EQf6Djm/content/2301.13675v1.pdf filter=lfs diff=lfs merge=lfs -text
2254
+ I9E2T4oBgHgl3EQfpAhk/content/2301.04024v1.pdf filter=lfs diff=lfs merge=lfs -text
2255
+ AdAzT4oBgHgl3EQfF_tg/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2256
+ QNE2T4oBgHgl3EQfrwi3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2257
+ StAzT4oBgHgl3EQf0f7W/content/2301.01786v1.pdf filter=lfs diff=lfs merge=lfs -text
2258
+ L9FQT4oBgHgl3EQfUzaG/content/2301.13298v1.pdf filter=lfs diff=lfs merge=lfs -text
0NE2T4oBgHgl3EQfMwbp/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16e5b7c04649be627c60a247b6fde521c89c2d7271ec230268d1f0ccd8c2b1bd
3
+ size 3080237
0NE2T4oBgHgl3EQfMwbp/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2a3e8033704efc8a814bfed52f49336fa7c42e44a3a7a51d7c641d533401603
3
+ size 123655
0NFLT4oBgHgl3EQfoi-S/content/tmp_files/2301.12132v1.pdf.txt ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AUTOPEFT: Automatic Configuration Search for
2
+ Parameter-Efficient Fine-Tuning
3
+ Han Zhou1,*
4
+ Xingchen Wan2,*
5
+ Ivan Vuli´c1
6
+ Anna Korhonen1
7
+ 1Language Technology Lab, University of Cambridge
8
+ 2Machine Learning Research Group, University of Oxford
9
+ {hz416, iv250, alk23}@cam.ac.uk
10
11
+ Abstract
12
+ Large pretrained language models have been
13
+ widely used in downstream NLP tasks via task-
14
+ specific fine-tuning.
15
+ Recently, an array of
16
+ Parameter-Efficient Fine-Tuning (PEFT) meth-
17
+ ods have also achieved strong task perfor-
18
+ mance while updating a much smaller num-
19
+ ber of parameters compared to full model tun-
20
+ ing.
21
+ However, it is non-trivial to make in-
22
+ formed per-task design choices (i.e., to create
23
+ PEFT configurations) concerning the selection
24
+ of PEFT architectures and modules, the num-
25
+ ber of tunable parameters, and even the lay-
26
+ ers in which the PEFT modules are inserted.
27
+ Consequently, it is highly likely that the cur-
28
+ rent, manually set PEFT configurations might
29
+ be suboptimal for many tasks from the perspec-
30
+ tive of the performance-to-efficiency trade-off.
31
+ To address the core question of the PEFT con-
32
+ figuration selection that aims to control and
33
+ maximise the balance between performance
34
+ and parameter efficiency, we first define a rich
35
+ configuration search space spanning multiple
36
+ representative PEFT modules along with finer-
37
+ grained configuration decisions over the mod-
38
+ ules (e.g., parameter budget, insertion layer).
39
+ We then propose AUTOPEFT, a novel frame-
40
+ work to traverse this configuration space: it
41
+ automatically configures multiple PEFT mod-
42
+ ules via high-dimensional Bayesian optimisa-
43
+ tion. We show the resource scalability and task
44
+ transferability of AUTOPEFT-found configu-
45
+ rations, outperforming existing PEFT methods
46
+ on average on the standard GLUE benchmark
47
+ while conducting the configuration search on
48
+ a single task. The per-task AUTOPEFT-based
49
+ configuration search even outperforms full-
50
+ model tuning.
51
+ 1
52
+ Introduction and Motivation
53
+ Pretrained language models (PLM) are used in
54
+ downstream tasks via the standard transfer learning
55
+ *Equal contribution.
56
+ Code is available at https://
57
+ github.com/cambridgeltl/autopeft
58
+ 100
59
+ 101
60
+ Fine-tuned Parameters (%)
61
+ 80
62
+ 81
63
+ 82
64
+ 83
65
+ 84
66
+ Average Score
67
+ Pfeiffer
68
+ UniPELT
69
+ MAM
70
+ AdaMix
71
+ Prefix
72
+ LoRA
73
+ Parallel
74
+ AutoPEFT
75
+ Full Model FT
76
+ Figure 1:
77
+ The performance of
78
+ AUTOPEFT-found
79
+ PEFT configurations compared to other standard PEFT
80
+ methods and full model FT on the GLUE bench-
81
+ mark (Wang et al., 2018). We report the average score
82
+ for each method by taking the mean of metrics for 8
83
+ GLUE tasks. The dashed horizontal bar (Full Model
84
+ FT) indicates the full-model FT that updates 100% of
85
+ parameters, and our approach aims to learn the best
86
+ trade-off configuration between task performance and
87
+ parameter efficiency.
88
+ paradigm, where they get fine-tuned for particu-
89
+ lar tasks (Devlin et al., 2019; Liu et al., 2019b).
90
+ This achieves state-of-the-art results in a wide spec-
91
+ trum of NLP tasks, becoming a prevalent modelling
92
+ paradigm in NLP (Raffel et al., 2020). Fine-tuning
93
+ the PLMs typically requires a full update of their
94
+ original parameters (i.e., the so-called full-model
95
+ fine-tuning (FT)); however, this is (i) computation-
96
+ ally expensive and also (ii) storage-wise expensive
97
+ as it requires saving a separate full model copy
98
+ for each task-tuned model. With the ever-growing
99
+ size of the PLMs (Brown et al., 2020; Sanh et al.,
100
+ 2022), the cost of full model FT becomes a major
101
+ bottleneck, due to its increasing demands as well
102
+ as computational (time and space) non-efficiency.
103
+ Parameter-Efficient Fine-Tuning (PEFT) deliv-
104
+ ers a solution for alleviating the issues with full-
105
+ model FT (Houlsby et al., 2019). By freezing the
106
+ majority of pretrained weights of PLMs, PEFT ap-
107
+ proaches only update a small portion of parameters
108
+ arXiv:2301.12132v1 [cs.CL] 28 Jan 2023
109
+
110
+ for efficiently adapting the PLM to a new down-
111
+ stream task. Recent studies have shown that PEFT
112
+ can achieve competitive task performance while be-
113
+ ing modular, adaptable, and preventing catastrophic
114
+ forgetting in comparison to traditional FT (Wang
115
+ et al., 2022).
116
+ Recent developments have created diverse PEFT
117
+ modules with distinctive characteristics (Pfeiffer
118
+ et al., 2020b; Li and Liang, 2021), with one of
119
+ the two main aims in focus: 1) improve task perfor-
120
+ mance over other PEFT approaches while maintain-
121
+ ing the same parameter budget as the competitor
122
+ PEFT methods; or 2) maintain task performance
123
+ while reducing the parameter budget needed. Exist-
124
+ ing PEFT modules, optimising for one of the two
125
+ aims, have been successfully applied to transfer
126
+ learning tasks (Chen et al., 2022b; Pfeiffer et al.,
127
+ 2022). However, different tasks, with different
128
+ complexity, show distinct sensitivity to the allo-
129
+ cated parameter budget and even to the chosen
130
+ PEFT approach (He et al., 2022). At the same
131
+ time, most PEFT applications are limited to a sin-
132
+ gle PEFT architecture (e.g., serial adapters, prefix-
133
+ tuning) with fixed decisions on its components (e.g.,
134
+ hidden size dimensionality, insertion layers) result-
135
+ ing in potentially suboptimal PEFT configurations
136
+ across many tasks. Therefore, in this work, we
137
+ propose a new, versatile and unified framework
138
+ that automatically searches for improved and task-
139
+ adapted PEFT configurations, aiming to effectively
140
+ balance between the two (often colliding goals)
141
+ of (i) improving performance and (ii) keeping the
142
+ desired low parameter budget for PEFT.
143
+ While recent research has started exploring more
144
+ dynamic PEFT configurations, the prior studies
145
+ remain limited across several dimensions, includ-
146
+ ing how they define the configuration search space.
147
+ Namely, they typically focus only on a single PEFT
148
+ architecture (e.g., adapters) or their simple combi-
149
+ nations, or a single property (e.g., insertion layers –
150
+ where to insert the module); see a short overview
151
+ later in §2. Here, we propose a unified and more
152
+ comprehensive framework for improved configu-
153
+ ration search. It covers multiple standard PEFT
154
+ modules (1. serial adapters, 2. parallel adapters,
155
+ 3. prefix-tuning), combined with the critical pa-
156
+ rameter budget-related decisions: the size of each
157
+ constituent module and the insertion layers for the
158
+ modules.
159
+ Our defined comprehensive search space is huge;
160
+ as a consequence, traversing it effectively and effi-
161
+ ciently is extremely challenging. To enable search
162
+ over the large configuration space, we thus propose
163
+ the AUTOPEFT framework. It automatically con-
164
+ figures multiple PEFT modules along with their
165
+ efficiency-oriented design decisions, relying on a
166
+ high-dimensional Bayesian optimisation (BO) ap-
167
+ proach. Crucially, within the search space, we pro-
168
+ pose a multi-objective optimisation which learns
169
+ to simultaneously balance between maximising the
170
+ searched configurations’ task performance and pa-
171
+ rameter efficiency.
172
+ We conduct extensive experiments on the stan-
173
+ dard GLUE benchmark (Wang et al., 2018). We
174
+ first study the transferability of the AUTOPEFT-
175
+ searched architecture by running AUTOPEFT on a
176
+ single task, followed by transferring the found ar-
177
+ chitecture to other tasks. Experimental results show
178
+ that this architecture can outperform existing PEFT
179
+ baselines while achieving on-par performance to
180
+ the standard full-model FT, relying only on 1.4%
181
+ of the original trainable parameters. Further slight
182
+ gains can be achieved via a computationally more
183
+ expensive approach, where we run AUTOPEFT per
184
+ each single task to find a task-adapted PEFT config-
185
+ uration. As demonstrated in Figure 1, AUTOPEFT
186
+ is able to find configurations that offer a solid trade-
187
+ off between task performance and parameter effi-
188
+ ciency, even outperforming full-model FT. We also
189
+ provide ablation studies over the search space, vali-
190
+ dating that the AUTOPEFT framework is versatile
191
+ and portable to different search spaces.
192
+ Contributions. 1) We propose a large and com-
193
+ prehensive search space of PEFT configurations,
194
+ which integrates three representative PEFT mod-
195
+ ules, the tunable number of parameters of each
196
+ module, and the binary decisions concerning Trans-
197
+ former layers for inserting these modules. 2) We
198
+ propose a novel AUTOPEFT framework with high-
199
+ dimensional Bayesian optimisation that can auto-
200
+ matically and feasibly search for the effective PEFT
201
+ configuration in terms of both task performance
202
+ and parameter efficiency. 3) We demonstrate that
203
+ the AUTOPEFT-found configurations can not only
204
+ reduce the parameter budget but also outperform
205
+ existing PEFT modules while being transferable
206
+ across tasks. The AUTOPEFT framework can also
207
+ be easily extended to other and new PEFT modules.
208
+ 2
209
+ Related Work
210
+ Parameter-Efficient Fine-Tuning.
211
+ Standard
212
+ PEFT methods can be divided into two main
213
+
214
+ groups. 1) Some methods fine-tune a small por-
215
+ tion of pretrained parameters (Zhao et al., 2020;
216
+ Guo et al., 2021). For instance, Ben Zaken et al.
217
+ (2022) propose to fine-tune the PLM’s bias terms,
218
+ while Sung et al. (2021) and Ansell et al. (2022)
219
+ fine-tune sparse subnetworks withing the original
220
+ PLM for a particular task. 2) Other methods fine-
221
+ tune an additional set of parameters (Liu et al.,
222
+ 2022). Since there is no interference with the pre-
223
+ trained parameters, this class of PEFT modules, be-
224
+ sides offering strong task performance, is arguably
225
+ more modular; we thus focus on this class of PEFT
226
+ methods in this work. The original adapter mod-
227
+ ules (Houlsby et al., 2019; Pfeiffer et al., 2020b)
228
+ have a bottleneck serial architecture which can be
229
+ inserted into every Transformer layer, see Figure 2.
230
+ LoRA (Hu et al., 2022a) assumes the low-rank
231
+ intrinsic dimensionality of the target task and per-
232
+ forms low-rank updates (Mahabadi et al., 2021).
233
+ Li and Liang (2021) propose the Prefix-Tuning
234
+ method that appends a learnable vector to the at-
235
+ tention heads at each Transformer layer. Similarly,
236
+ prompt-tuning (Lester et al., 2021) only appends
237
+ this vector to the input embedding. UniPELT (Mao
238
+ et al., 2022) integrates multiple PEFT modules with
239
+ a dynamic gating mechanism. He et al. (2022)
240
+ provide a unified formulation of existing PEFT
241
+ modules and propose a parallel adapter module,
242
+ along with a combined ‘Mix-and-Match Adapter
243
+ (MAM)’ architecture that blends parallel adapters
244
+ and prefix-tuning. Wang et al. (2022) propose the
245
+ mixture-of-adaptations (AdaMix) combined archi-
246
+ tecture that leverages weight averaging for a mix-
247
+ ture of adapters.
248
+ Optimising Parameter Efficiency in PEFT. Re-
249
+ cent work further aims to optimise the parameter
250
+ efficiency of existing PEFT modules while main-
251
+ taining task performance. The standard approach
252
+ is to insert (typically serial) adapters into all Trans-
253
+ former layers, which still requires a sizeable pa-
254
+ rameter budget. Rücklé et al. (2021) address this
255
+ question by performing random dropout of adapters
256
+ from lower-level layers, displaying only a small de-
257
+ crease in task performance. Adaptable Adapters
258
+ (AA) (Moosavi et al., 2022) generalise this idea
259
+ by learning gates that switch on or off adapters
260
+ in particular Transformer layers. Neural Architec-
261
+ ture Search (NAS) methods aim to automate the
262
+ design of neural net architectures themselves, and
263
+ NAS has seen great advances recently, with per-
264
+ formance often surpassing human expert-designed
265
+ architectures in various tasks (Zoph and Le, 2017;
266
+ Ren et al., 2021; Elsken et al., 2019). Concerning
267
+ NLP tasks and PEFT, Hu et al. (2022b) propose
268
+ S3PET, which adapts Differentiable Architecture
269
+ Search (DARTS) (Liu et al., 2019a) to learn the po-
270
+ sitions for inserting the PEFT modules. This work
271
+ is closest in spirit to ours.
272
+ Our method, discussed in detail in §3, offers
273
+ a spectrum of advantages over S3PET and other
274
+ related PEFT work. Relying on multi-objective
275
+ optimisation, unlike S3PET, we can automatically
276
+ discover a family of configurations at different pa-
277
+ rameter efficiency levels in a single search run, ef-
278
+ fectively balancing between task performance and
279
+ parameter efficiency, without the need to set the
280
+ ‘parameter budget’ in advance; similarly, we en-
281
+ able an automatic search over multiple constituent
282
+ modules over the desirable range of parameter bud-
283
+ get and effective layers, whereas previous work
284
+ can only support one architecture per each search
285
+ run. Further, previous work indicated that weight-
286
+ sharing NAS such as DARTS may suffer with the
287
+ reliability of prediction (White et al., 2021b), and
288
+ its success often hinges heavily on the design of
289
+ the actual search space (Li and Talwalkar, 2019;
290
+ Ru et al., 2020; Dong and Yang, 2020; Yang et al.,
291
+ 2020). We mitigate those issues with our design of
292
+ AUTOPEFT. Finally, while weight-sharing NAS is
293
+ arguably more computationally efficient, through
294
+ combining the use of low-fidelity performance pre-
295
+ dictors and the strong transferability of the configu-
296
+ rations found across tasks, AUTOPEFT can also be
297
+ made very computationally efficient in discovering
298
+ effective PEFT configurations. We further discuss
299
+ this in §3 and demonstrate empirically in §5.
300
+ 3
301
+ AUTOPEFT Framework
302
+ We start by designing a large configuration space,
303
+ providing the motivation behind each decision to
304
+ include a particular module and its components
305
+ into the configuration space, along with a mathe-
306
+ matical formulation. We then propose AUTOPEFT,
307
+ a novel framework to search over this challenging
308
+ configuration space. It automatically configures
309
+ (components of) multiple PEFT modules via high-
310
+ dimensional Bayesian optimisation.
311
+ PEFT Configuration Search Space. The search
312
+ space is an influential factor in the performance
313
+ of any search algorithm. In order to simultane-
314
+ ously maximise task performance along with pa-
315
+ rameter efficiency, it is necessary to first define a
316
+
317
+ ‘parameter-reducible’ search space, where each di-
318
+ mension within the space potentially contributes
319
+ to reducing the parameter budget. Similarly, each
320
+ dimension might potentially bring positive impact
321
+ to the task performance without introducing redun-
322
+ dancy in the space (Wan et al., 2022). Therefore,
323
+ we propose the search space with representative
324
+ PEFT modules, as follows, spanning a plethora of
325
+ (non-redundant) configurations, as also shown in
326
+ Figure 2.
327
+ PEFT Modules. We include three distinctive PEFT
328
+ designs to efficiently adapt different forwarding
329
+ stages of hidden states in the PLM layers. We
330
+ combine Serial Adapters (SA), Parallel Adapters
331
+ (PA), and Prefix-Tuning (PT) as the three represen-
332
+ tative modules in the search space, where the PT
333
+ module adapts the multi-head attention layer, and
334
+ SA and PA interact with the FFN layer (Figure 2).
335
+ Each configuration makes a decision on the PEFT
336
+ modules in the insertion layer: all of them can be
337
+ ‘turned’ on or off. We combine this binary decision
338
+ with the actual non-binary decision on the module
339
+ size (see next), so that the value of 0 in fact denotes
340
+ the absence of the modules in the layer(s).
341
+ Size. Previous studies show that PEFT methods
342
+ are highly sensitive to the number of tunable pa-
343
+ rameters: adaptively setting their capacity in ac-
344
+ cordance with the target task is then essential for
345
+ achieving good performance (Chen et al., 2022a).
346
+ The number of tunable parameters is dependent on
347
+ each particular module. The additional parameters
348
+ introduced by both SA and PA are dominated by
349
+ their bottleneck dimension D. Similarly, the size
350
+ of the PT module is defined by its prefix length
351
+ LPT. Thus, we define a binary logarithmic search
352
+ scale for the respective discrete sets DSA, DPA,
353
+ and LPT, spanning the values from 0 (absence of
354
+ the module) to Dh where Dh is the dimensionality
355
+ of the PLM (e.g., Dh=768 for BERTbase).
356
+ Insertion Layers. Prior work has also shown that
357
+ different layers in the PLMs store different se-
358
+ mantic information (Vuli´c et al., 2020), where the
359
+ higher layers produce more task-specific and con-
360
+ textualized representations (Tenney et al., 2019).
361
+ Therefore, as another configuration dimension, we
362
+ aim to search for the minimal number and the ac-
363
+ tual position of layers in which to insert the PEFT
364
+ modules. We define a binary ‘insertion’ decision at
365
+ each layer li.
366
+ Combining PEFT Modules. The SA module and
367
+ the PA module share a bottleneck architecture. The
368
+ Feed Forward
369
+ LayerNorm
370
+ Multi-Head Attention
371
+ LayerNorm
372
+ Prefix-Tuning
373
+ Serial
374
+ Parallel
375
+ PEFT Layer
376
+ PEFT Layer
377
+ Layer
378
+ PEFT Layer
379
+ Layer
380
+ PEFT Layer
381
+ Trainable
382
+ Search
383
+ Frozen
384
+ Figure 2: Illustration of the main components of our
385
+ configuration search space, traversed via AUTOPEFT.
386
+ AUTOPEFT configures the selected Transformer layers
387
+ with PEFT modules, where the activation of each sub-
388
+ module is controlled by the learned size of each sub-
389
+ module. See also Table 4 in the appendix.
390
+ SA receives hidden states from the FFN output as
391
+ its inputs, adapting it with a down-projection ma-
392
+ trix W down
393
+ SA
394
+ ∈ RDh×DSA, followed by a non-linear
395
+ activation function, and then an up-projection ma-
396
+ trix W up
397
+ SA ∈ RDSA×Dh:
398
+ fSA(h) = ReLU(hW down
399
+ SA
400
+ )W up
401
+ SA.
402
+ (1)
403
+ PA, on the other hand, receives its inputs from
404
+ hidden states before the FFN layer with the same
405
+ formulation:
406
+ fPA(x) = ReLU(xW down
407
+ PA
408
+ )W up
409
+ PA.
410
+ (2)
411
+ Therefore, it is able to act in parallel with the SA
412
+ without interference. Note that the FFN hidden
413
+ states h = F(x) contain the task-specific bias
414
+ learned in its pretrained weights. Therefore, by
415
+ combining SA with PA, the following composition
416
+ of functions is achieved:
417
+ fSAPA(x) =ReLU(F(x)W down
418
+ SA
419
+ )W up
420
+ SA
421
+ +ReLU(xW down
422
+ PA
423
+ )W up
424
+ PA.
425
+ (3)
426
+ The final composition should provide an effective
427
+ adaptation to both bias-influence hidden states and
428
+ the original inputs before the pretrained FFN layer.1
429
+ Further, applying PEFT modules to interact both
430
+ with FFNs and multi-head attention should have a
431
+ positive impact on task performance (Mao et al.,
432
+ 1The PA module also acts as the low-rank reparametriza-
433
+ tion of the learned SA together with the frozen FFN layer to
434
+ further match the intrinsic dimensionality of the target task.
435
+
436
+ Query new configuration by
437
+ Suggested
438
+ config in
439
+ AutoPEFT
440
+ search
441
+ space
442
+ Performance &
443
+ Parameter Efficiency
444
+ Evaluate
445
+ Parameter-Efficient Fine-Tuning
446
+
447
+
448
+ Multi-Objective Bayesian Optimisation
449
+ Serial
450
+ Parallel
451
+ Prefix
452
+ Config
453
+ Layer Configuration
454
+ maximising the acquisition function
455
+ GP Surrogate
456
+ Figure 3: Illustration of the AUTOPEFT framework: to search for optimal architectures in the defined configu-
457
+ ration space, AUTOPEFT uses a multi-objective BO agent, which trains on previous observations of the PEFT
458
+ configuration vector and its performance (e.g., accuracy – obtained by fine-tuning the language model with the
459
+ PEFT configuration) and cost (e.g., number of parameters). The BO agent then suggests new configurations, and
460
+ the algorithm continues iteratively until convergence.
461
+ 2022; He et al., 2022). PT learns two prefix vectors,
462
+ Pk and Pv ∈ RLPT×Dh, that are concatenated with
463
+ the original multi-head attention’s key and value
464
+ vectors, which efficiently adapts the multi-head
465
+ attention layer to fit the target task. We thus finally
466
+ combine the SA and the PA (i.e., SAPA from above)
467
+ with PT.
468
+ In sum, the overview of the dimensions spanning
469
+ the final configuration space is provided in Figure 2
470
+ and Table 4. The combination of the different ‘con-
471
+ figuration dimensions’ outlined above gives rise to
472
+ a total of e.g., 5,451,776 possible configurations
473
+ with BERTbase and ∼ 3×1010 configurations with
474
+ RoBERTalarge (i.e., the number of configurations is
475
+ 2|l|×|DSA|×|DPA|×|LPT|). While a large search
476
+ space is crucial for expressiveness and to ensure
477
+ that good-performing configurations are contained,
478
+ it also increases the difficulty for search strategies
479
+ to both navigate the search space well while re-
480
+ maining sample- and thus computationally efficient.
481
+ Furthermore, in the PEFT setting, we are also often
482
+ interested in discovering a family of configurations
483
+ that trade off between performance and efficiency
484
+ for general application in various scenarios with
485
+ different resource constraints, thus giving rise to a
486
+ multi-objective optimisation problem where we si-
487
+ multaneously aim to maximise performance while
488
+ minimising costs. In what follows, we propose a
489
+ search framework that satisfies all those criteria.
490
+ AUTOPEFT via Multi-Objective Bayesian Opti-
491
+ misation. Formally, denoting the full AUTOPEFT
492
+ search space as A and a single configuration a ∈ A
493
+ with trainable weights W, without loss of gener-
494
+ ality, assuming our objective is to maximise (i) a
495
+ performance metric f(a, W) (e.g., the accuracy
496
+ on the dev set) and to (ii) minimise a cost metric
497
+ g(a) (e.g., the number of parameters in a), a search
498
+ method aims to solve the bi-level, bi-objective op-
499
+ timisation problem:
500
+ max
501
+ a∈A
502
+
503
+ f(a, W ∗), −g(a)
504
+
505
+ ;
506
+ s.t.W ∗ = arg min
507
+ W Ltrain(a, W),
508
+ (4)
509
+ where the inner loop optimisation problem is the op-
510
+ timisation of the configuration weights achieved by
511
+ fine-tuning the configuration a itself over the train
512
+ loss Ltrain. Given the bi-objective nature of the
513
+ problem, there is in general no single maximiser of
514
+ Eq. (4) but a set of non-dominated Pareto-optimal
515
+ configurations A∗ = {a∗
516
+ 1, ..., a∗
517
+ |A∗|}.
518
+ To address these challenges in this work, we
519
+ adopt a Bayesian optimisation (BO) approach, il-
520
+ lustrated in Figure 3. BO is a sample-efficient,
521
+ zeroth-order model-based sequential optimisation
522
+ algorithm (Garnett, 2023) with proven successes
523
+ in NAS and automated machine learning in gen-
524
+ eral (Snoek et al., 2012; White et al., 2021a; Ru
525
+ et al., 2021; Kandasamy et al., 2018). BO is partic-
526
+ ularly popular in the multi-objective setups where
527
+ one is interested in recovering a Pareto front where
528
+ it is less straightforward to apply methods such as
529
+ differentiable / one-shot architecture search meth-
530
+ ods that are typically used to discover a single best-
531
+ performing configuration (Eriksson et al., 2021;
532
+ Izquierdo et al., 2021). BO consists of a surro-
533
+ gate model, usually a Gaussian Process (GP) that
534
+ sequentially approximates the objective function
535
+ based on the observations so far, and an acquisition
536
+ function, which balances between exploitation (i.e.,
537
+ regions in the search space with high perceived
538
+
539
+ Mateérn kernel
540
+ Samplesfrompriordistribution
541
+ 3
542
+ 1
543
+ 0
544
+ -1
545
+ -2
546
+ Sampled function #1
547
+ Sampled function #2
548
+ Sampled function #3
549
+ Sampled function #4
550
+ Samplesfromposteriordistribution
551
+ Sampled function #5
552
+ 3
553
+ Mean
554
+ ± 1 std. dev.
555
+ 2
556
+ Observations
557
+ 1
558
+ -1
559
+ -2
560
+ -3
561
+ 0
562
+ 2
563
+ 3
564
+ 5value) and exploration (i.e., regions that have not
565
+ been visited before). It is optimised at each iter-
566
+ ation to actively select the next configuration to
567
+ evaluate. For a detailed overview of BO, we refer
568
+ the readers to Frazier (2018).
569
+ While vanilla BO methods are better-suited
570
+ in modestly-dimensioned and continuous prob-
571
+ lems, our current setup instead features a high-
572
+ dimensional and combinatorial search space. Here,
573
+ performance of non-parametric methods such as
574
+ GP-based BO tend to suffer due to the exponen-
575
+ tially exploding volume of space the surrogate
576
+ needs to model as dimensionality increases. For-
577
+ tunately, recent advances in search methods have
578
+ allowed us to address these challenges effectively.
579
+ Specifically, we adopt the SAAS-GP (Eriksson and
580
+ Jankowiak, 2021) model as the surrogate function:
581
+ on a high level, SAAS-GP (1) places a relatively
582
+ strong regularising half-Cauchy prior on the model
583
+ lengthscales (which dictate the perceived impor-
584
+ tance of search dimensions to the objective func-
585
+ tion value) to induce sparsity and (2) approximately
586
+ marginalises over model hyperparameters via a
587
+ No-U-Turn Monte Carlo sampler (Hoffman et al.,
588
+ 2014) to reduce overfitting in high dimensions. We
589
+ argue that both are appealing in our setup, while the
590
+ benefit of (2) in our setup is self-evident, (1) also ef-
591
+ fectively places a prior to encode our belief that in
592
+ spite of the high nominal complexity search space,
593
+ the effective dimensionality of the problem should
594
+ be much lower – this is appropriate in our setup,
595
+ as although we have a nominally high dimensions,
596
+ consistent to previous findings in NAS (Wan et al.,
597
+ 2022), we do expect a few disproportionately in-
598
+ fluential key dimensions (although we do not have
599
+ information on which a priori – this is meant to be
600
+ discovered by the BO algorithm).
601
+ For the acquisition function,
602
+ we use the
603
+ noisy expected hypervolume improvement (NE-
604
+ HVI) (Daulton et al., 2021), which is suitable for
605
+ the setup described in Eq. 4. Lastly, while BO is
606
+ sample-efficient, it may still require 100-200 eval-
607
+ uations of different configurations in the search
608
+ space to sufficiently explore the search space; to
609
+ make sure the search remains cost-efficient, during
610
+ search we also adopt low-fidelity approximations
611
+ commonly employed in NAS: at the search stage,
612
+ for a configuration a, instead of evaluating the ob-
613
+ jective f(a, W) defined in Eq. 4 in full, we only
614
+ fine-tune the a using a smaller computational bud-
615
+ get – for example, if a complete fine-tuning takes
616
+ 100% of training data, at search time we are able
617
+ to only fine-tune with 1% of training data and use
618
+ the accuracy after that as a lower-cost proxy to the
619
+ accuracy after full-length FT, the latter of which is
620
+ significantly more expensive to obtain. Therefore,
621
+ when we are facing high-resource tasks, fine-tuning
622
+ the full training resources is only performed once
623
+ at evaluation time after the Pareto-optimal configu-
624
+ rations are finalised. Other low-cost proxies such
625
+ as training for fewer number of epochs than full
626
+ FT are also compatible but not used in the present
627
+ work.
628
+ 4
629
+ Experimental Setup
630
+ Evaluation Data. We follow prior PEFT research
631
+ and base our evaluation on the standard GLUE
632
+ benchmark.
633
+ We include 4 types of text classi-
634
+ fication tasks, including linguistic acceptability:
635
+ CoLA; similarity and paraphrase: STS-B, MRPC,
636
+ QQP; sentiment analysis: SST-2; natural language
637
+ inference: RTE, QNLI, MNLI. We exclude WNLI
638
+ following previous work (Houlsby et al., 2019;
639
+ Mao et al., 2022).
640
+ Baselines. We compare the performance of the
641
+ AUTOPEFT-found configurations to the standard
642
+ full model FT and each individual PEFT module
643
+ (SA, PA, PT) from the search space used in their
644
+ default setup from respective original work. We
645
+ also compare with the LoRA module, to provide
646
+ a comparison to low-rank decomposition methods.
647
+ In order to provide comparisons with recently pro-
648
+ posed methods that also integrate multiple PEFT
649
+ modules (see §2), we further include the UniPELT
650
+ and the MAM adapter in their default settings. We
651
+ reproduce AdaMix for a comparison to a mixture
652
+ of homogeneous adaptations. In ablations on inser-
653
+ tion layers, we also include the Adaptable Adapter
654
+ (AA) as a baseline that proposes a differentiable
655
+ gate learning method to select the insertion layer
656
+ for PEFT modules (i.e., serial adapters originally).
657
+ Implementation Details.
658
+ Following previous
659
+ work on the GLUE benchmark, we report the best
660
+ GLUE dev set performance (Ben Zaken et al.,
661
+ 2022) and use 20 training epochs with an early
662
+ stopping scheme of 10 epochs for all tasks. We
663
+ use AdapterHub (Pfeiffer et al., 2020a) as the code-
664
+ base and conduct extensive experiments with the
665
+ uncased BERTbase (Devlin et al., 2019) as the main
666
+ backbone model.
667
+ We report main experiments
668
+ with the mean and standard deviation over 5 dif-
669
+ ferent random seeds. Experimental results using
670
+
671
+ Method
672
+ #Param.
673
+ RTE
674
+ MRPC
675
+ STS-B
676
+ CoLA
677
+ SST-2
678
+ QNLI
679
+ QQP
680
+ MNLI
681
+ Avg.
682
+ Fine-tune
683
+ 100%
684
+ 71.121.46
685
+ 85.741.75
686
+ 89.000.45
687
+ 59.320.62
688
+ 92.570.24
689
+ 91.500.08
690
+ 91.520.04
691
+ 84.430.22
692
+ 83.15
693
+ Prefix
694
+ 0.17%
695
+ 70.540.49
696
+ 85.930.89
697
+ 88.760.15
698
+ 58.881.15
699
+ 91.930.45
700
+ 90.760.14
701
+ 89.120.07
702
+ 82.780.16
703
+ 82.33
704
+ LoRA
705
+ 0.27%
706
+ 65.851.49
707
+ 84.461.04
708
+ 88.730.08
709
+ 57.580.78
710
+ 92.060.38
711
+ 90.620.22
712
+ 89.41 0.04
713
+ 83.000.07
714
+ 81.46
715
+ Serial
716
+ 0.81%
717
+ 68.011.34
718
+ 84.750.45
719
+ 88.610.11
720
+ 59.730.62
721
+ 91.930.33
722
+ 91.060.12
723
+ 90.520.05
724
+ 84.180.22
725
+ 82.35
726
+ AdaMix
727
+ 0.81%
728
+ 70.110.62
729
+ 86.861.12
730
+ 89.120.11
731
+ 59.111.00
732
+ 92.060.22
733
+ 91.520.15
734
+ 90.220.04
735
+ 84.250.14
736
+ 82.91
737
+ UniPELT
738
+ 1.25%
739
+ 67.071.82
740
+ 84.220.78
741
+ 88.840.11
742
+ 60.130.46
743
+ 92.520.24
744
+ 91.090.13
745
+ 90.690.11
746
+ 84.280.18
747
+ 82.35
748
+ Parallel
749
+ 6.46%
750
+ 68.523.44
751
+ 86.520.96
752
+ 88.900.28
753
+ 58.721.69
754
+ 92.130.35
755
+ 90.830.22
756
+ 90.740.08
757
+ 73.9319.24
758
+ 81.29
759
+ MAM
760
+ 6.97%
761
+ 69.101.76
762
+ 87.160.74
763
+ 89.010.48
764
+ 47.8723.97
765
+ 83.9416.52
766
+ 90.850.22
767
+ 90.760.05
768
+ 83.310.17
769
+ 80.25
770
+ AUTOPEFTRTE
771
+ S
772
+ 0.06%
773
+ 69.680.76
774
+ 85.540.78
775
+ 88.780.18
776
+ 56.830.54
777
+ 91.930.34
778
+ 90.810.18
779
+ 88.510.05
780
+ 82.260.11
781
+ 81.79
782
+ AUTOPEFTMNLI
783
+ S
784
+ 0.30%
785
+ 69.770.47
786
+ 85.730.61
787
+ 88.780.17
788
+ 57.501.79
789
+ 91.880.32
790
+ 91.120.13
791
+ 89.900.05
792
+ 83.920.10
793
+ 82.32
794
+ AUTOPEFTRTE
795
+ M
796
+ 1.42%
797
+ 72.350.84
798
+ 86.130.62
799
+ 89.060.09
800
+ 60.231.00
801
+ 92.110.23
802
+ 91.000.09
803
+ 90.640.07
804
+ 84.010.21
805
+ 83.19
806
+ AUTOPEFTRTE
807
+ L
808
+ 6.60%
809
+ 71.701.18
810
+ 86.620.65
811
+ 89.190.13
812
+ 59.440.75
813
+ 92.410.28
814
+ 91.090.12
815
+ 90.790.06
816
+ 83.910.14
817
+ 83.14
818
+ AUTOPEFTtask
819
+ Avg.
820
+ 1.40%
821
+ 72.350.94
822
+ 87.450.87
823
+ 89.170.00
824
+ 60.921.47
825
+ 92.110.25
826
+ 91.120.13
827
+ 90.640.05
828
+ 84.010.10
829
+ 83.47
830
+ Table 1: Results on the GLUE benchmark with BERTbase, where tasks are ordered in ascending order of the
831
+ training resources. We conduct three groups of task transferability experiments on RTE and one resource scalability
832
+ experiment on MNLI. We report the average fine-tuned parameters of per-task AUTOPEFT, where we conduct
833
+ additional per-task searches on MRPC, STS-B, and CoLA, and take best-found configurations for the remaining
834
+ tasks. We report Spearman’s Correlation for STS-B, Matthew’s Correlation for CoLA, and accuracy for all other
835
+ tasks, where we report the matched accuracy for MNLI. The percentage of parameters is computed as a ratio of
836
+ the number of additional parameters to the pretrained parameters. We reproduce all baselines and report the mean
837
+ and standard deviation of all results for 5 random seeds. The best, second-best, and third-best results are marked
838
+ in bold fonts and ranked by colour.
839
+ RoBERTalarge (Liu et al., 2019b) show findings
840
+ that are consistent to the ones BERTbase, and are
841
+ included in Table 3 in the appendix. We report
842
+ the setup for each PEFT module and the detailed
843
+ training scheme in §A.
844
+ 5
845
+ Results and Discussion
846
+ Transferability of Configurations across Tasks.
847
+ The main results are summarized in Table 1. First,
848
+ we analyze task transferability of AUTOPEFT-
849
+ found configurations by running AUTOPEFT on
850
+ the most low-resource and challenging task, RTE,
851
+ followed by transferring the three best AUTOPEFT-
852
+ found configurations to other tasks.
853
+ First, we
854
+ note that the parameter budget of the configura-
855
+ tion AUTOPEFTRTE
856
+ M
857
+ is only 1.42%, while it shows
858
+ considerable average gains over all the PEFT base-
859
+ lines on the RTE task, by a margin of at least 2%.
860
+ The AUTOPEFT-found configuration also outper-
861
+ forms the full-model FT baseline on the RTE task
862
+ by more than 1%. These results indicate the ef-
863
+ fectiveness of the AUTOPEFT framework in opti-
864
+ mising both task performance and parameter effi-
865
+ ciency. Transferring the RTE-based configurations
866
+ to other tasks, we find that strong performance is
867
+ maintained across the target tasks, with more bene-
868
+ fits on the medium-resource tasks (MRPC, STS-B,
869
+ CoLA), but the configuration remains competitive
870
+ also for higher-resource tasks (e.g., QQP, MNLI).
871
+ 10
872
+ 2
873
+ 10
874
+ 1
875
+ 100
876
+ Fine-tuned Parameters (%)
877
+ 62.5
878
+ 65.0
879
+ 67.5
880
+ 70.0
881
+ 72.5
882
+ 75.0
883
+ Task Score
884
+ RTE
885
+ 10
886
+ 2
887
+ 10
888
+ 1
889
+ 100
890
+ Fine-tuned Parameters (%)
891
+ 75
892
+ 80
893
+ 85
894
+
895
+ MRPC
896
+ Serial
897
+ Parallel
898
+ Prefix
899
+ LoRA
900
+ AutoPEFT
901
+ Figure 4: The Pareto front of the AUTOPEFT on tasks
902
+ RTE and MRPC compared to baselines with BERTbase
903
+ in various settings of parameter budgets.
904
+ We report
905
+ the single-seed task score for each task following the
906
+ settings in Table 1. The plots for STS-B, and CoLA,
907
+ showing the same trends, are in Appendix §B.
908
+ When we assign a large parameter budget to
909
+ the potential configurations, AUTOPEFTRTE
910
+ L
911
+ also
912
+ shows a stronger transfer performance in high-
913
+ resource tasks. This indicates that, as expected,
914
+ the parameter capacity of the configuration is an
915
+ important factor in transfer learning (Chen et al.,
916
+ 2022a). On average, the AUTOPEFTRTE
917
+ M
918
+ configura-
919
+ tion shows a comparable fine-tuning performance,
920
+ 83.19, to the full model FT, 83.15, by only updating
921
+ 1.42% of parameters. With strong transferability
922
+ across similar tasks, AUTOPEFT provides distinct
923
+ advantages in parameter efficiency; the search al-
924
+ gorithm itself coupled with transfer becomes more
925
+
926
+ sample-efficient within limited training resources.
927
+ Resource Scalability and Efficiency.
928
+ We next
929
+ ‘stress-test’ the ability of AUTOPEFT in a more
930
+ challenging scenario with limited task training
931
+ data, carrying out an experiment on the most high-
932
+ resource MNLI task using only a small set of its
933
+ training data. We randomly sample 1% of the orig-
934
+ inal MNLI training data to train AUTOPEFT, and
935
+ retain using the original dev set for evaluation.2
936
+ We report AUTOPEFTMNLI
937
+ S
938
+ in Table 1 as the best-
939
+ found configuration in this low-resource setting. It
940
+ requires only 0.30% of fine-tuned parameters and
941
+ shows the strong MNLI performance of 83.92%.
942
+ In another efficiency-oriented test, we conduct con-
943
+ figuration transfer in a radically parameter-efficient
944
+ setup (training on the full RTE training set but with
945
+ reduced parameter budget, and then transferring to
946
+ other tasks; AUTOPEFTRTE
947
+ S
948
+ in Table 1). The main
949
+ finding is that, while performance does decrease
950
+ slightly as expected, strong task performance can
951
+ still be achieved even with the parameter budget of
952
+ 0.06% within this very efficient setup.
953
+ Per-Task Configuration Search. Finally, we con-
954
+ duct full-resource per-task AUTOPEFT searches,
955
+ which naturally come with increased computational
956
+ costs, for RTE, MRPC, STS-B, and CoLA, and
957
+ then, for efficiency reasons, port the small set of
958
+ best configurations to the remaining high-resource
959
+ tasks: SST-2, QNLI, QQP, MNLI. In addition
960
+ to the peak score on RTE, we observe gains on
961
+ MRPC (87.16% to 87.45%) and CoLA (60.13%
962
+ to 60.92%) over the best-performing PEFT base-
963
+ lines. We also observe gains over the transferred
964
+ configuration AUTOPEFTRTE
965
+ M . One interpretation
966
+ of the results is that AUTOPEFT is strong at match-
967
+ ing the intrinsic dimensionality of the low-resource
968
+ downstream task to the capacity (i.e., parameter
969
+ budget) of the PEFT modules, whereas full model
970
+ FT performs better in high-resource scenarios, giv-
971
+ ing the largest capacity to capture the informa-
972
+ tion in high-resource tasks.3 However, the per-
973
+ task AUTOPEFTtask variant outperforms even full
974
+ model FT by 0.3% while its parameter budget is
975
+ only 1.4% of the full model per task.
976
+ Analysing the ‘Behaviour’ of Bayesian Optimi-
977
+ 2With this setup, we effectively save 99% of training re-
978
+ sources and the search framework becomes extremely fast
979
+ even for high-resource datasets.
980
+ 3Due to the richness of training resources in high-resource
981
+ datasets, the results in these tasks are mostly saturated. Pre-
982
+ vious work shows that PEFT methods can only reach on-par
983
+ performance to full model FT on those tasks.
984
+ 10
985
+ 2
986
+ 10
987
+ 1
988
+ 100
989
+ 101
990
+ Fine-tuned Parameters (%)
991
+ 60
992
+ 65
993
+ 70
994
+ 75
995
+ Accuracy (%)
996
+ Initialisation
997
+ Random Search
998
+ AutoPEFT
999
+ Figure 5: The distribution of AUTOPEFT-found config-
1000
+ urations compared to the random search on RTE with
1001
+ a single random seed. We initialise the AUTOPEFT
1002
+ search with 100 runs of random sampling for initial ex-
1003
+ plorations in the search space. We then conduct 100
1004
+ runs of the AUTOPEFT with Bayesian optimisation.
1005
+ sation. Figure 5 shows the distribution of AU-
1006
+ TOPEFT-found configurations when we conduct
1007
+ its search experiment on RTE. Due to the greedy
1008
+ nature of our predefined acquisition function, we
1009
+ enforce the initialisation of our algorithm with a
1010
+ wide exploration of potential configurations. In
1011
+ the subsequent AUTOPEFT runs, it starts exploit-
1012
+ ing the best-found configurations while optimising
1013
+ towards the region with improved parameter effi-
1014
+ ciency, whereas the random search baseline keeps
1015
+ obtaining inefficient configurations in a lottery-
1016
+ ticket manner in the expensive region of param-
1017
+ eters. It is observable that AUTOPEFT exploits the
1018
+ region with roughly 1.4% of parameters and finds
1019
+ configurations with further enhanced task perfor-
1020
+ mance from 74.4% to 75.1% of accuracy, which
1021
+ is also the architecture AUTOPEFTRTE
1022
+ M
1023
+ with the
1024
+ strongest transferability across tasks. We also in-
1025
+ clude the best-found architecture within the initiali-
1026
+ sation stage as the AUTOPEFTRTE
1027
+ L
1028
+ , and our trans-
1029
+ ferability experiments show that the AUTOPEFT-
1030
+ found architecture is more robust to the random
1031
+ initialisation of the neural network, outperforming
1032
+ the best random search baseline in the searched
1033
+ task by 0.7% with 5.2% less parameter cost.
1034
+ Ablation of the Configuration Space. To pro-
1035
+ vide a finer-grained analysis of factors that bring
1036
+ positive impact to AUTOPEFT, we ablate the AU-
1037
+ TOPEFT search space from the full configuration
1038
+ space: 1) to the basic enumeration of the bottleneck
1039
+ size DSA of the SA only (the ‘SA’ space). We then
1040
+ include the Transformer layer and the SA size to-
1041
+ gether into the search space (the ‘SA-Layer’ space)
1042
+ to validate the usefulness of using layer selection
1043
+ as one configuration dimension. We can then also
1044
+
1045
+ Method
1046
+ #Layers
1047
+ Size DSA
1048
+ RTE Accu-
1049
+ racy (%)
1050
+ Serial Adapter
1051
+ 24
1052
+ 64
1053
+ 72.560.76
1054
+ Adaptable Adapter
1055
+ 13
1056
+ 128
1057
+ 73.360.80
1058
+ AdapterDrop
1059
+ 13
1060
+ 128
1061
+ 73.501.40
1062
+ AUTOPEFTSA
1063
+ Layer
1064
+ 10
1065
+ 128
1066
+ 73.860.94
1067
+ Table 2: The results of AUTOPEFT to layer selection
1068
+ baselines with the same parameter budget on BERTlarge.
1069
+ We report the Pfeiffer adapter for all 24 layers. We in-
1070
+ clude the specialised AdapterDrop (Rücklé et al., 2021)
1071
+ that inserts SA for the last 13 layers. We report the
1072
+ AAuni architecture (Moosavi et al., 2022) without its ra-
1073
+ tional activation function with 13 selected layers. We
1074
+ run our AUTOPEFT with the comparable search space
1075
+ of 24 layers and the size of the Pfeiffer adapter.
1076
+ expand the search space by adding another module
1077
+ (e.g., PA yields the ‘SA-PA-Layer’ space). Figure 6
1078
+ plots the performance over the ‘ablated’ configura-
1079
+ tion spaces and over different parameter budgets.
1080
+ Several key findings emerge. First, combining mul-
1081
+ tiple single PEFT modules has a positive impact
1082
+ on AUTOPEFT in general (cf., full AUTOPEFT
1083
+ versus ’SA-PA-Layer’ versus ’SA-Layer’). Rely-
1084
+ ing on layer selection also brings benefits (cf., ’SA’
1085
+ versus ’SA-Layer’). The comparison also indicates
1086
+ that leaving out some Transformer layers while
1087
+ increasing the capacity of the PEFT module is a
1088
+ straightforward method to improve the parameter
1089
+ efficiency and task performance of the PEFT mod-
1090
+ ule within a fixed parameter budget. Figure 6 sug-
1091
+ gests that AUTOPEFT can effectively operate over
1092
+ configuration spaces of different ‘granularity’.
1093
+ We analyse the impact of each single PEFT mod-
1094
+ ule in more detail in Appendix §B.
1095
+ Layer Selection.
1096
+ To further compare different
1097
+ layer selection approaches, we conduct a controlled
1098
+ experiment with the SA module on BERTlarge (24
1099
+ Transformer layers) under a predefined parameter
1100
+ budget. In Table 2, the simple AdapterDrop ap-
1101
+ proach simply drops the adapters for the first 11
1102
+ layers while doubling their bottleneck sizes, im-
1103
+ proving the RTE result by roughly 1%. Within
1104
+ the same architecture, we include the Adaptable
1105
+ Adapter with selected layers from switch learning,
1106
+ which has 3 and 10 layers from the first 12 and
1107
+ the other 12 layers, respectively. We show that AU-
1108
+ TOPEFT outperforms all existing layer selection
1109
+ baselines by learning less activated adapter layers,
1110
+ leading to better parameter efficiency (12.5% fewer
1111
+ parameters in relative terms) and higher task perfor-
1112
+ mance. It indicates that selecting the best insertion
1113
+ 0
1114
+ 2
1115
+ 4
1116
+ 6
1117
+ Fine-tuned Parameters (%)
1118
+ 65.0
1119
+ 67.5
1120
+ 70.0
1121
+ 72.5
1122
+ 75.0
1123
+ Accuracy (%)
1124
+ SA
1125
+ SA-Layer
1126
+ SA-PA-Layer
1127
+ PA-PT-Layer
1128
+ AutoPEFT
1129
+ Figure 6: The performance of AUTOPEFT with ab-
1130
+ lation of search space on RTE with a single random
1131
+ seed on BERTbase. The SA results refer to the Pfeiffer
1132
+ adapter (Pfeiffer et al., 2020b) with an enumeration of
1133
+ its bottleneck size. For other search spaces, we report
1134
+ the Pareto front of AUTOPEFT-found configurations,
1135
+ where SA-PA-PT-Layer forms the search space of AU-
1136
+ TOPEFT.
1137
+ layer is non-trivial, and AUTOPEFT can learn the
1138
+ correlation between layers.
1139
+ 6
1140
+ Conclusion
1141
+ We proposed AUTOPEFT, a novel search frame-
1142
+ work for automatically configuring various PEFT
1143
+ modules in selective layers of pretrained language
1144
+ models. AUTOPEFT searches the optimal architec-
1145
+ ture via Bayesian optimisation with iterative evalu-
1146
+ ation and predicting the desired architecture given
1147
+ the configuration search space. The proposed multi-
1148
+ objective optimisation can produce a Pareto front
1149
+ of candidate architectures by simultaneously max-
1150
+ imising the model performance and parameter effi-
1151
+ ciency. We demonstrated that AUTOPEFT-found
1152
+ architectures offer an effective trade-off between
1153
+ task performance and parameter efficiency, outper-
1154
+ forming a variety of PEFT baselines.
1155
+ Limitations
1156
+ The proposed AUTOPEFT method is relatively
1157
+ expensive since it requires iterative optimisation
1158
+ by learning to optimise each explored configura-
1159
+ tion. While all intermediate configurations can
1160
+ be skipped without laying a burden on the final
1161
+ storage space, the intermediate computation cost
1162
+ becomes the main bottleneck of this approach. In
1163
+ this work, we alleviated this problem by (i) con-
1164
+ ducting the search with 1% of training resources
1165
+ for large datasets, and (ii) configuration transfer
1166
+ from low-resource tasks. The search itself can be
1167
+ seen as a one-time cost yielding a ‘permanent’ well-
1168
+ performing and shareable configuration for particu-
1169
+
1170
+ lar tasks. We plan to delve deeper into the related
1171
+ efficiency and computational tractability aspects in
1172
+ future work.
1173
+ We have conducted extensive experiments on
1174
+ the search space that contains three representative
1175
+ PEFT modules. The AUTOPEFT framework is
1176
+ decoupled from the actual single PEFT modules:
1177
+ with further PEFT developments and new PEFT
1178
+ approaches, those may also get integrated into the
1179
+ AUTOPEFT framework in future work.
1180
+ Acknowledgements
1181
+ Xingchen Wan is supported by the Clarendon
1182
+ Scholarship at University of Oxford. The work
1183
+ has been supported in part by a personal Royal So-
1184
+ ciety University Research Fellowship (no 221137;
1185
+ 2022-) awarded to Ivan Vuli´c.
1186
+ References
1187
+ Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan
1188
+ Vuli´c. 2022.
1189
+ Composable sparse fine-tuning for
1190
+ cross-lingual transfer.
1191
+ In Proceedings of the 60th
1192
+ Annual Meeting of the Association for Computa-
1193
+ tional Linguistics (Volume 1: Long Papers), pages
1194
+ 1778–1796, Dublin, Ireland. Association for Com-
1195
+ putational Linguistics.
1196
+ Maximilian Balandat, Brian Karrer, Daniel Jiang,
1197
+ Samuel Daulton, Ben Letham, Andrew G Wilson,
1198
+ and Eytan Bakshy. 2020.
1199
+ Botorch: A framework
1200
+ for efficient monte-carlo bayesian optimization. Ad-
1201
+ vances in neural information processing systems,
1202
+ 33:21524–21538.
1203
+ Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
1204
+ 2022. BitFit: Simple parameter-efficient fine-tuning
1205
+ for transformer-based masked language-models. In
1206
+ Proceedings of the 60th Annual Meeting of the As-
1207
+ sociation for Computational Linguistics (Volume 2:
1208
+ Short Papers), pages 1–9, Dublin, Ireland. Associa-
1209
+ tion for Computational Linguistics.
1210
+ Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
1211
+ Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
1212
+ Neelakantan, Pranav Shyam, Girish Sastry, Amanda
1213
+ Askell,
1214
+ Sandhini Agarwal,
1215
+ Ariel Herbert-Voss,
1216
+ Gretchen Krueger, Tom Henighan, Rewon Child,
1217
+ Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
1218
+ Clemens Winter, Christopher Hesse, Mark Chen,
1219
+ Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
1220
+ Chess, Jack Clark, Christopher Berner, Sam Mc-
1221
+ Candlish, Alec Radford, Ilya Sutskever, and Dario
1222
+ Amodei. 2020. Language models are few-shot learn-
1223
+ ers. In Advances in Neural Information Processing
1224
+ Systems 33: Annual Conference on Neural Informa-
1225
+ tion Processing Systems 2020, NeurIPS 2020, De-
1226
+ cember 6-12, 2020, virtual.
1227
+ Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and
1228
+ Shangsong Liang. 2022a.
1229
+ Revisiting parameter-
1230
+ efficient tuning: Are we really there yet?
1231
+ In Pro-
1232
+ ceedings of the 2022 Conference on Empirical Meth-
1233
+ ods in Natural Language Processing, pages 2612–
1234
+ 2626, Abu Dhabi, United Arab Emirates. Associa-
1235
+ tion for Computational Linguistics.
1236
+ Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu
1237
+ Wang, Yibing Song, Jue Wang, and Ping Luo. 2022b.
1238
+ Adaptformer: Adapting vision transformers for scal-
1239
+ able visual recognition. In Advances in Neural In-
1240
+ formation Processing Systems.
1241
+ Samuel Daulton, Maximilian Balandat, and Eytan Bak-
1242
+ shy. 2021.
1243
+ Parallel bayesian optimization of mul-
1244
+ tiple noisy objectives with expected hypervolume
1245
+ improvement. In Advances in Neural Information
1246
+ Processing Systems 34: Annual Conference on Neu-
1247
+ ral Information Processing Systems 2021, NeurIPS
1248
+ 2021, December 6-14, 2021, virtual, pages 2187–
1249
+ 2200.
1250
+ Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
1251
+ Kristina Toutanova. 2019.
1252
+ BERT: Pre-training of
1253
+ deep bidirectional transformers for language under-
1254
+ standing.
1255
+ In Proceedings of the 2019 Conference
1256
+ of the North American Chapter of the Association
1257
+ for Computational Linguistics: Human Language
1258
+ Technologies, Volume 1 (Long and Short Papers),
1259
+ pages 4171–4186, Minneapolis, Minnesota. Associ-
1260
+ ation for Computational Linguistics.
1261
+ Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: Ex-
1262
+ tending the scope of reproducible neural architecture
1263
+ search. In 8th International Conference on Learning
1264
+ Representations, ICLR 2020, Addis Ababa, Ethiopia,
1265
+ April 26-30, 2020.
1266
+ Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
1267
+ 2019. Neural architecture search: A survey. The
1268
+ Journal of Machine Learning Research, 20(1):1997–
1269
+ 2017.
1270
+ David Eriksson, Pierce I-Jen Chuang, Samuel Daulton,
1271
+ Peng Xia, Akshat Shrivastava, Arun Babu, Shicong
1272
+ Zhao, Ahmed A Aly, Ganesh Venkatesh, and Max-
1273
+ imilian Balandat. 2021.
1274
+ Latency-aware neural ar-
1275
+ chitecture search with multi-objective bayesian op-
1276
+ timization. In 8th ICML Workshop on Automated
1277
+ Machine Learning (AutoML).
1278
+ David Eriksson and Martin Jankowiak. 2021.
1279
+ High-
1280
+ dimensional bayesian optimization with sparse axis-
1281
+ aligned subspaces. In Uncertainty in Artificial Intel-
1282
+ ligence, pages 493–503. PMLR.
1283
+ Peter I. Frazier. 2018. A tutorial on bayesian optimiza-
1284
+ tion. CoRR, abs/1807.02811.
1285
+ Roman Garnett. 2023. Bayesian Optimization. Cam-
1286
+ bridge University Press.
1287
+ Demi Guo, Alexander Rush, and Yoon Kim. 2021.
1288
+ Parameter-efficient transfer learning with diff prun-
1289
+ ing. In Proceedings of the 59th Annual Meeting of
1290
+
1291
+ the Association for Computational Linguistics and
1292
+ the 11th International Joint Conference on Natu-
1293
+ ral Language Processing (Volume 1: Long Papers),
1294
+ pages 4884–4896, Online. Association for Computa-
1295
+ tional Linguistics.
1296
+ Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
1297
+ Kirkpatrick, and Graham Neubig. 2022. Towards a
1298
+ unified view of parameter-efficient transfer learning.
1299
+ In The Tenth International Conference on Learning
1300
+ Representations, ICLR 2022, Virtual Event, April 25-
1301
+ 29, 2022.
1302
+ Matthew D Hoffman, Andrew Gelman, et al. 2014.
1303
+ The no-u-turn sampler:
1304
+ adaptively setting path
1305
+ lengths in hamiltonian monte carlo. J. Mach. Learn.
1306
+ Res., 15(1):1593–1623.
1307
+ Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
1308
+ Bruna Morrone, Quentin de Laroussilhe, Andrea
1309
+ Gesmundo, Mona Attariyan, and Sylvain Gelly.
1310
+ 2019. Parameter-efficient transfer learning for NLP.
1311
+ In Proceedings of the 36th International Conference
1312
+ on Machine Learning, ICML 2019, 9-15 June 2019,
1313
+ Long Beach, California, USA, pages 2790–2799.
1314
+ Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
1315
+ Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
1316
+ and Weizhu Chen. 2022a. Lora: Low-rank adapta-
1317
+ tion of large language models. In The Tenth Inter-
1318
+ national Conference on Learning Representations,
1319
+ ICLR 2022, Virtual Event, April 25-29, 2022.
1320
+ Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,
1321
+ Yasheng Wang, Zhiyuan Liu, and Maosong Sun.
1322
+ 2022b.
1323
+ Sparse structure search for delta tuning.
1324
+ In Advances in Neural Information Processing Sys-
1325
+ tems.
1326
+ Sergio Izquierdo, Julia Guerrero-Viu, Sven Hauns,
1327
+ Guilherme
1328
+ Miotto,
1329
+ Simon
1330
+ Schrodi,
1331
+ André
1332
+ Biedenkapp, Thomas Elsken, Difan Deng, Marius
1333
+ Lindauer, and Frank Hutter. 2021.
1334
+ Bag of base-
1335
+ lines for multi-objective joint neural architecture
1336
+ search and hyperparameter optimization.
1337
+ In 8th
1338
+ ICML Workshop on Automated Machine Learning
1339
+ (AutoML).
1340
+ Kirthevasan Kandasamy,
1341
+ Willie Neiswanger,
1342
+ Jeff
1343
+ Schneider, Barnabás Póczos, and Eric P. Xing. 2018.
1344
+ Neural architecture search with bayesian optimisa-
1345
+ tion and optimal transport. In Advances in Neural
1346
+ Information Processing Systems 31: Annual Con-
1347
+ ference on Neural Information Processing Systems
1348
+ 2018, NeurIPS 2018, December 3-8, 2018, Mon-
1349
+ tréal, Canada, pages 2020–2029.
1350
+ Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
1351
+ The power of scale for parameter-efficient prompt
1352
+ tuning. In Proceedings of the 2021 Conference on
1353
+ Empirical Methods in Natural Language Processing,
1354
+ pages 3045–3059, Online and Punta Cana, Domini-
1355
+ can Republic. Association for Computational Lin-
1356
+ guistics.
1357
+ Liam Li and Ameet Talwalkar. 2019. Random search
1358
+ and reproducibility for neural architecture search. In
1359
+ Proceedings of the Thirty-Fifth Conference on Un-
1360
+ certainty in Artificial Intelligence, UAI 2019, Tel
1361
+ Aviv, Israel, July 22-25, 2019, pages 367–377.
1362
+ Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
1363
+ Optimizing continuous prompts for generation. In
1364
+ Proceedings of the 59th Annual Meeting of the
1365
+ Association for Computational Linguistics and the
1366
+ 11th International Joint Conference on Natural Lan-
1367
+ guage Processing (Volume 1: Long Papers), pages
1368
+ 4582–4597, Online. Association for Computational
1369
+ Linguistics.
1370
+ Hanxiao Liu, Karen Simonyan, and Yiming Yang.
1371
+ 2019a. DARTS: differentiable architecture search.
1372
+ In 7th International Conference on Learning Repre-
1373
+ sentations, ICLR 2019, New Orleans, LA, USA, May
1374
+ 6-9, 2019.
1375
+ Haokun Liu, Derek Tam, Muqeeth Mohammed, Jay
1376
+ Mohta, Tenghao Huang, Mohit Bansal, and Colin
1377
+ Raffel. 2022.
1378
+ Few-shot parameter-efficient fine-
1379
+ tuning is better and cheaper than in-context learning.
1380
+ In Advances in Neural Information Processing Sys-
1381
+ tems.
1382
+ Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
1383
+ dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
1384
+ Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
1385
+ Roberta: A robustly optimized BERT pretraining ap-
1386
+ proach. CoRR, abs/1907.11692.
1387
+ Rabeeh Karimi Mahabadi, James Henderson, and Se-
1388
+ bastian Ruder. 2021. Compacter: Efficient low-rank
1389
+ hypercomplex adapter layers. In Advances in Neu-
1390
+ ral Information Processing Systems 34: Annual Con-
1391
+ ference on Neural Information Processing Systems
1392
+ 2021, NeurIPS 2021, December 6-14, 2021, virtual,
1393
+ pages 1022–1035.
1394
+ Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
1395
+ hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian
1396
+ Khabsa. 2022. UniPELT: A unified framework for
1397
+ parameter-efficient language model tuning. In Pro-
1398
+ ceedings of the 60th Annual Meeting of the Associa-
1399
+ tion for Computational Linguistics (Volume 1: Long
1400
+ Papers), pages 6253–6264, Dublin, Ireland. Associ-
1401
+ ation for Computational Linguistics.
1402
+ Nafise Moosavi, Quentin Delfosse, Kristian Kersting,
1403
+ and Iryna Gurevych. 2022. Adaptable adapters. In
1404
+ Proceedings of the 2022 Conference of the North
1405
+ American Chapter of the Association for Computa-
1406
+ tional Linguistics: Human Language Technologies,
1407
+ pages 3742–3753, Seattle, United States. Associa-
1408
+ tion for Computational Linguistics.
1409
+ Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
1410
+ Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
1411
+ Lifting the curse of multilinguality by pre-training
1412
+ modular transformers. In Proceedings of the 2022
1413
+ Conference of the North American Chapter of the
1414
+ Association for Computational Linguistics: Human
1415
+
1416
+ Language Technologies, pages 3479–3495, Seattle,
1417
+ United States. Association for Computational Lin-
1418
+ guistics.
1419
+ Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish-
1420
+ warya
1421
+ Kamath,
1422
+ Ivan
1423
+ Vuli´c,
1424
+ Sebastian
1425
+ Ruder,
1426
+ Kyunghyun Cho,
1427
+ and Iryna Gurevych. 2020a.
1428
+ AdapterHub: A framework for adapting transform-
1429
+ ers. In Proceedings of the 2020 Conference on Em-
1430
+ pirical Methods in Natural Language Processing:
1431
+ System Demonstrations, pages 46–54, Online. Asso-
1432
+ ciation for Computational Linguistics.
1433
+ Jonas Pfeiffer, Ivan Vuli´c, Iryna Gurevych, and Se-
1434
+ bastian Ruder. 2020b. MAD-X: An Adapter-Based
1435
+ Framework for Multi-Task Cross-Lingual Transfer.
1436
+ In Proceedings of the 2020 Conference on Empirical
1437
+ Methods in Natural Language Processing (EMNLP),
1438
+ pages 7654–7673, Online. Association for Computa-
1439
+ tional Linguistics.
1440
+ Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
1441
+ Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
1442
+ Wei Li, and Peter J. Liu. 2020. Exploring the limits
1443
+ of transfer learning with a unified text-to-text trans-
1444
+ former. J. Mach. Learn. Res., 21:140:1–140:67.
1445
+ Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao
1446
+ Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang.
1447
+ 2021. A comprehensive survey of neural architec-
1448
+ ture search: Challenges and solutions. ACM Com-
1449
+ puting Surveys (CSUR), 54(4):1–34.
1450
+ Bin Xin Ru, Xingchen Wan, Xiaowen Dong, and
1451
+ Michael A. Osborne. 2021.
1452
+ Interpretable neural
1453
+ architecture search via bayesian optimisation with
1454
+ weisfeiler-lehman kernels. In 9th International Con-
1455
+ ference on Learning Representations, ICLR 2021,
1456
+ Virtual Event, Austria, May 3-7, 2021.
1457
+ Robin Ru, Pedro M. Esperança, and Fabio Maria Car-
1458
+ lucci. 2020. Neural architecture generator optimiza-
1459
+ tion. In Advances in Neural Information Processing
1460
+ Systems 33: Annual Conference on Neural Informa-
1461
+ tion Processing Systems 2020, NeurIPS 2020, De-
1462
+ cember 6-12, 2020, virtual.
1463
+ Andreas Rücklé,
1464
+ Gregor Geigle,
1465
+ Max Glockner,
1466
+ Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
1467
+ Gurevych. 2021. AdapterDrop: On the efficiency
1468
+ of adapters in transformers. In Proceedings of the
1469
+ 2021 Conference on Empirical Methods in Natural
1470
+ Language Processing, pages 7930–7946, Online and
1471
+ Punta Cana, Dominican Republic. Association for
1472
+ Computational Linguistics.
1473
+ Victor Sanh, Albert Webson, Colin Raffel, Stephen
1474
+ Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
1475
+ Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
1476
+ M Saiful Bari,
1477
+ Canwen Xu,
1478
+ Urmish Thakker,
1479
+ Shanya Sharma Sharma, Eliza Szczechla, Taewoon
1480
+ Kim, Gunjan Chhablani, Nihal V. Nayak, De-
1481
+ bajyoti Datta, Jonathan Chang, Mike Tian-Jian
1482
+ Jiang, Han Wang, Matteo Manica, Sheng Shen,
1483
+ Zheng Xin Yong, Harshit Pandey, Rachel Bawden,
1484
+ Thomas Wang, Trishala Neeraj, Jos Rozen, Ab-
1485
+ heesht Sharma, Andrea Santilli, Thibault Févry, Ja-
1486
+ son Alan Fries, Ryan Teehan, Teven Le Scao, Stella
1487
+ Biderman, Leo Gao, Thomas Wolf, and Alexan-
1488
+ der M. Rush. 2022.
1489
+ Multitask prompted training
1490
+ enables zero-shot task generalization. In The Tenth
1491
+ International Conference on Learning Representa-
1492
+ tions, ICLR 2022, Virtual Event, April 25-29, 2022.
1493
+ Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
1494
+ 2012. Practical bayesian optimization of machine
1495
+ learning algorithms. In Advances in Neural Infor-
1496
+ mation Processing Systems 25: 26th Annual Con-
1497
+ ference on Neural Information Processing Systems
1498
+ 2012. Proceedings of a meeting held December 3-
1499
+ 6, 2012, Lake Tahoe, Nevada, United States, pages
1500
+ 2960–2968.
1501
+ Yi-Lin Sung, Varun Nair, and Colin Raffel. 2021.
1502
+ Training neural networks with fixed sparse masks.
1503
+ In Advances in Neural Information Processing Sys-
1504
+ tems 34: Annual Conference on Neural Information
1505
+ Processing Systems 2021, NeurIPS 2021, December
1506
+ 6-14, 2021, virtual, pages 24193–24205.
1507
+ Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
1508
+ BERT rediscovers the classical NLP pipeline.
1509
+ In
1510
+ Proceedings of the 57th Annual Meeting of the Asso-
1511
+ ciation for Computational Linguistics, pages 4593–
1512
+ 4601, Florence, Italy. Association for Computational
1513
+ Linguistics.
1514
+ Ivan Vuli´c, Edoardo Maria Ponti, Robert Litschko,
1515
+ Goran Glavaš, and Anna Korhonen. 2020. Probing
1516
+ pretrained language models for lexical semantics. In
1517
+ Proceedings of the 2020 Conference on Empirical
1518
+ Methods in Natural Language Processing (EMNLP),
1519
+ pages 7222–7240, Online. Association for Computa-
1520
+ tional Linguistics.
1521
+ Xingchen Wan,
1522
+ Vu Nguyen,
1523
+ Huong Ha,
1524
+ Binxin
1525
+ Ru, Cong Lu, and Michael A Osborne. 2021.
1526
+ Think global and act local: Bayesian optimisation
1527
+ over high-dimensional categorical and mixed search
1528
+ spaces.
1529
+ In International Conference on Machine
1530
+ Learning, pages 10663–10674. PMLR.
1531
+ Xingchen Wan, Binxin Ru, Pedro M. Esperança, and
1532
+ Zhenguo Li. 2022. On redundancy and diversity in
1533
+ cell-based neural architecture search. In The Tenth
1534
+ International Conference on Learning Representa-
1535
+ tions, ICLR 2022, Virtual Event, April 25-29, 2022.
1536
+ OpenReview.net.
1537
+ Alex Wang, Amanpreet Singh, Julian Michael, Fe-
1538
+ lix Hill, Omer Levy, and Samuel Bowman. 2018.
1539
+ GLUE: A multi-task benchmark and analysis plat-
1540
+ form for natural language understanding.
1541
+ In Pro-
1542
+ ceedings of the 2018 EMNLP Workshop Black-
1543
+ boxNLP: Analyzing and Interpreting Neural Net-
1544
+ works for NLP, pages 353–355, Brussels, Belgium.
1545
+ Association for Computational Linguistics.
1546
+ Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
1547
+ Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
1548
+
1549
+ lah, and Jianfeng Gao. 2022.
1550
+ Adamix: Mixture-
1551
+ of-adaptations for parameter-efficient model tuning.
1552
+ In Proceedings of the 2022 Conference on Empiri-
1553
+ cal Methods in Natural Language Processing, pages
1554
+ 5744–5760, Abu Dhabi, United Arab Emirates. As-
1555
+ sociation for Computational Linguistics.
1556
+ Colin White, Willie Neiswanger, and Yash Savani.
1557
+ 2021a. BANANAS: bayesian optimization with neu-
1558
+ ral architectures for neural architecture search. In
1559
+ Thirty-Fifth AAAI Conference on Artificial Intelli-
1560
+ gence, AAAI 2021, Thirty-Third Conference on In-
1561
+ novative Applications of Artificial Intelligence, IAAI
1562
+ 2021, The Eleventh Symposium on Educational Ad-
1563
+ vances in Artificial Intelligence, EAAI 2021, Virtual
1564
+ Event, February 2-9, 2021, pages 10293–10301.
1565
+ Colin White, Arber Zela, Robin Ru, Yang Liu, and
1566
+ Frank Hutter. 2021b.
1567
+ How powerful are perfor-
1568
+ mance predictors in neural architecture search? In
1569
+ Advances in Neural Information Processing Systems
1570
+ 34: Annual Conference on Neural Information Pro-
1571
+ cessing Systems 2021, NeurIPS 2021, December 6-
1572
+ 14, 2021, virtual, pages 28454–28469.
1573
+ Antoine Yang, Pedro M. Esperança, and Fabio Maria
1574
+ Carlucci. 2020. NAS evaluation is frustratingly hard.
1575
+ In 8th International Conference on Learning Repre-
1576
+ sentations, ICLR 2020, Addis Ababa, Ethiopia, April
1577
+ 26-30, 2020.
1578
+ Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
1579
+ rich Schütze. 2020.
1580
+ Masking as an efficient alter-
1581
+ native to finetuning for pretrained language models.
1582
+ In Proceedings of the 2020 Conference on Empirical
1583
+ Methods in Natural Language Processing (EMNLP),
1584
+ pages 2226–2241, Online. Association for Computa-
1585
+ tional Linguistics.
1586
+ Barret Zoph and Quoc V. Le. 2017. Neural architec-
1587
+ ture search with reinforcement learning. In 5th Inter-
1588
+ national Conference on Learning Representations,
1589
+ ICLR 2017, Toulon, France, April 24-26, 2017, Con-
1590
+ ference Track Proceedings.
1591
+ A
1592
+ Supplemental Material: Technical
1593
+ Details
1594
+ PEFT Modules: Architectures and Setup.
1595
+ We
1596
+ implement the serial adapter architecture (SA) fol-
1597
+ lowing the setup of Pfeiffer et al. (2020b). The
1598
+ parallel adapter (PA) architecture is the same as the
1599
+ one proposed by He et al. (2022), where a scaling
1600
+ factor of 4 is implemented in all PA experiments.
1601
+ The prefix-tuning (PT) architecture has an interme-
1602
+ diate MLP with a bottleneck size of 800, which is
1603
+ trained the same way as in the original wor (Li and
1604
+ Liang, 2021). We also use the default setting for
1605
+ LoRA with a scaling of 8 and a rank of 8. We re-
1606
+ produce the experimental results with the reported
1607
+ setup of the MAM adapter He et al. (2022) and
1608
+ UniPELT (Mao et al., 2022). We reproduce the
1609
+ AdaMix results with the reported hyperparameter
1610
+ setup from the original work (Wang et al., 2022)
1611
+ in 20 epochs. In the experiments of Figure 4, we
1612
+ control the bottleneck size DSA and DPA for SA
1613
+ and PA baselines, respectively, while keeping other
1614
+ setups unchanged to discover their performance
1615
+ across the parameter budget. Similarly, we control
1616
+ the prefix length LPT for prefix-tuning and the rank
1617
+ r of LoRA without changing other setups.
1618
+ Training
1619
+ Details.
1620
+ Following previous work
1621
+ (Pfeiffer et al., 2020b), we use a recommended
1622
+ learning rate of 1e-4 for all PEFT experiments.
1623
+ In RoBERTalarge experiments, we report the
1624
+ RTE results with a learning rate of 2e-5 for
1625
+ AUTOPEFTMRPC and AUTOPEFTCoLA; 1e-4 for
1626
+ AUTOPEFTRTE. We use the learning rate of 2e-
1627
+ 5 for full model FT according to Mao et al. (2022).
1628
+ We use the batch size of 32 and 16 for all BERT and
1629
+ RoBERTa experiments, respectively. The optimiser
1630
+ settings for each PEFT module follow the default
1631
+ settings in AdapterHub (Pfeiffer et al., 2020a).
1632
+ AUTOPEFT Search Setup.
1633
+ We implement the
1634
+ BO algorithm in BoTorch (Balandat et al., 2020).
1635
+ We use the Matern 5/2 kernel as the covariance
1636
+ function, and for the Monte Carlo sampling settings
1637
+ of SAAS-BO (Eriksson and Jankowiak, 2021), we
1638
+ use a warm-up step of 256, the number of samples
1639
+ to retain as 128, and thinning as 16. For the opti-
1640
+ misation of the acquisition function, to adapt to the
1641
+ discrete setup, we use a local search method sim-
1642
+ ilar to previous literature involving similar setup
1643
+ (Wan et al., 2021; Eriksson et al., 2021): at each
1644
+ search iteration (after the initial randomly sampled
1645
+ points), we collect the Pareto-optimal architectures
1646
+ up to this point. From this collection of Pareto-
1647
+ optimal architectures, we perform a local search by
1648
+ evaluating the acquisition function values of their
1649
+ neighbours, and move the current point to a neigh-
1650
+ bour with a higher acquisition function value and
1651
+ this process is repeated until convergence (which is
1652
+ a local minimum in terms of acquisition function),
1653
+ or 100 evaluations in acquisition function value are
1654
+ reached. At each search iteration, we restart this
1655
+ process 10 times and select the top candidate for
1656
+ the query (in this case, fine-tuning) for the next
1657
+ iteration. For all BO experiments, we use 200 total
1658
+ evaluations; given the noisy nature of the problem,
1659
+ we use a relatively large number of random initiali-
1660
+ sation points (100) to ensure that the search results
1661
+
1662
+ 10
1663
+ 2
1664
+ 10
1665
+ 1
1666
+ 100
1667
+ Fine-tuned Parameters (%)
1668
+ 87.0
1669
+ 87.5
1670
+ 88.0
1671
+ 88.5
1672
+ 89.0
1673
+ 89.5
1674
+ Task Score
1675
+ STS-B
1676
+ 10
1677
+ 2
1678
+ 10
1679
+ 1
1680
+ 100
1681
+ Fine-tuned Parameters (%)
1682
+ 50.0
1683
+ 52.5
1684
+ 55.0
1685
+ 57.5
1686
+ 60.0
1687
+ 62.5
1688
+
1689
+ CoLA
1690
+ Serial
1691
+ Parallel
1692
+ Prefix
1693
+ LoRA
1694
+ AutoPEFT
1695
+ Figure 7: The Pareto front of the AUTOPEFT frame-
1696
+ work on tasks STS-B and CoLA compared to baselines
1697
+ with BERTbase in various settings of parameter budgets.
1698
+ We report the single-seed task score for each task fol-
1699
+ lowing the settings in Table 1.
1700
+ are not overly sensitive to initialisation. We use the
1701
+ same hyperparameter settings as described for all
1702
+ experiments conducted in this paper.
1703
+ Calculation of Fine-tuned Parameters.
1704
+ The
1705
+ uncased BERTbase model (109M) has 12 Trans-
1706
+ former layers with a hidden dimension size of
1707
+ 768. The uncased BERTlarge model (335M) and
1708
+ RoBERTalarge (355M) both have 24 layers with a
1709
+ hidden dimension size of 1, 024. For both SA and
1710
+ PA, their fine-tuned parameters are computed by
1711
+ 2 × Dadapter × Dh × |l|, where Dh represents the
1712
+ corresponding hidden dimension of the selected
1713
+ model, and |l| refers to the total selected number
1714
+ of insertion layers. Similarly, we calculate the fine-
1715
+ tuned parameters of PT by 2 × LPT × Dh × |l|.
1716
+ Thus, the number of fine-tuned parameters of the
1717
+ AUTOPEFT-found configurations is a summation
1718
+ of individual PEFT modules’ parameters. We re-
1719
+ port the default fine-tuned parameters for the re-
1720
+ maining PEFT modules as defined in their original
1721
+ papers.
1722
+ B
1723
+ Search Space and Discovered
1724
+ Architectures
1725
+ Impact of Single PEFT Modules within AU-
1726
+ TOPEFT and Other Side Analyses.
1727
+ We pro-
1728
+ vide a more detailed analysis of the behaviour
1729
+ of AUTOPEFT by inspecting the Pareto front of
1730
+ AUTOPEFT-found configurations when we ablate
1731
+ each PEFT module into the search space, as plot-
1732
+ ted in Figure 6. After combining the serial adapter
1733
+ with the parallel adapter, the upper bound of perfor-
1734
+ mance is improved by more than 1%. We consider
1735
+ the gain here leverages the capacity of multiple het-
1736
+ erogeneous PEFT modules as a mixture-of-experts
1737
+ while providing a more efficient adaptation by up-
1738
+ dating both bias-influenced hidden states and the
1739
+ original states according to Eq. 3. We recall that
1740
+ prefix-tuning stabilises its learning with an interme-
1741
+ diate reparametrization network, which is dropped
1742
+ in the inference stage. Therefore, at the cost of
1743
+ the increased training parameters, prefix-tuning
1744
+ is one of the most parameter-efficient approaches.
1745
+ Consequently, we notice that incorporating prefix-
1746
+ tuning into the search space further improves the
1747
+ overall parameter efficiency (4% to 1.4%) of the
1748
+ AUTOPEFT-found configuration. Due to the pa-
1749
+ rameter efficiency of each single PEFT module,
1750
+ it also explains the distribution of the parameter
1751
+ budget for each PEFT module in the learned con-
1752
+ figurations. We also analyse the learned config-
1753
+ urations in terms of the selected layers over dif-
1754
+ ferent parameter scales in Table 5. They show a
1755
+ common trend in selecting the higher Transformer
1756
+ layers to insert the PEFT modules, which coincides
1757
+ with previous findings that the higher layer con-
1758
+ tains richer task-specific representations, and intro-
1759
+ ducing PEFT modules to these layers is more effi-
1760
+ cient than other layers. With the AUTOPEFT-found
1761
+ configurations reported in Table 5, we hope future
1762
+ PEFT research and applications can benefit from
1763
+ the architecture design similar to AUTOPEFTRTE
1764
+ M
1765
+ that we find the most transferable across tasks.
1766
+
1767
+ Method
1768
+ #Param.
1769
+ RTE
1770
+ MRPC
1771
+ STS-B
1772
+ CoLA
1773
+ SST-2
1774
+ QNLI
1775
+ Avg.
1776
+ Fine-tune†
1777
+ 100%
1778
+ 86.6
1779
+ 90.9
1780
+ 92.4
1781
+ 68.0
1782
+ 96.4
1783
+ 94.7
1784
+ 88.2
1785
+ LoRA‡
1786
+ 0.22%
1787
+ 85.2
1788
+ 90.2
1789
+ 92.3
1790
+ 68.2
1791
+ 96.2
1792
+ 94.8
1793
+ 87.8
1794
+ Serial
1795
+ 0.89%
1796
+ 84.8
1797
+ 90.2
1798
+ 92.0
1799
+ 66.8
1800
+ 96.3
1801
+ 94.7
1802
+ 87.5
1803
+ AUTOPEFTRTE
1804
+ S
1805
+ 0.03%
1806
+ 88.1
1807
+ 89.5
1808
+ 92.3
1809
+ 62.7
1810
+ 96.0
1811
+ 94.6
1812
+ 87.2
1813
+ AUTOPEFTMRPC
1814
+ S
1815
+ 0.25%
1816
+ 86.6
1817
+ 92.2
1818
+ 92.2
1819
+ 66.6
1820
+ 96.2
1821
+ 94.6
1822
+ 88.1
1823
+ AUTOPEFTCoLA
1824
+ M
1825
+ 2.36%
1826
+ 85.9
1827
+ 90.0
1828
+ 91.8
1829
+ 70.6
1830
+ 96.8
1831
+ 94.6
1832
+ 88.3
1833
+ AUTOPEFTRTE
1834
+ L
1835
+ 9.41%
1836
+ 89.5
1837
+ 88.5
1838
+ 91.6
1839
+ 65.6
1840
+ 95.9
1841
+ 94.6
1842
+ 87.6
1843
+ AUTOPEFTtask
1844
+ Avg.
1845
+ 0.88%
1846
+ 88.1
1847
+ 92.2
1848
+ 92.4
1849
+ 70.6
1850
+ 96.8
1851
+ 94.6
1852
+ 89.1
1853
+ Table 3: Experimental results on the GLUE benchmark with RoBERTalarge. We report the full model fine-tuning†
1854
+ results from Liu et al. (2019b) with Pearson correlation for STS-B and Matthew’s correlation for CoLA. We
1855
+ include the LoRA‡ module performance from Hu et al. (2022a). We report single-seed results for the experiments
1856
+ and exclude QQP and MNLI tasks due to the large computation cost of RoBERTalarge. Similar to Table 1, we
1857
+ conduct per-task search experiments on RTE, MRPC, STS-B, and CoLA, transferring best-found configurations
1858
+ to the remaining tasks. In addition to the transfer experiment from RTE, we also report transfer performance
1859
+ from MRPC and CoLA tasks with significantly different parameter budgets. All reported results are from the
1860
+ configurations listed in Table 7. The best, second-best, and third-best results are marked in bold fonts and ranked
1861
+ by colour.
1862
+ Model
1863
+ Insertion Layer {li}
1864
+ Module
1865
+ Size
1866
+ BERTbase
1867
+ 1, 2, 3, 4, 5, 6,
1868
+ 7, 8, 9, 10, 11, 12
1869
+ Serial Adapter DSA
1870
+ 0, 1, 3, 6, 12, 24, 48, 96, 192, 384, 768
1871
+ Parallel Adapter DPA
1872
+ 0, 1, 3, 6, 12, 24, 48, 96, 192, 384, 768
1873
+ Prefix-Tuning LPT
1874
+ 0, 1, 3, 6, 12, 24, 48, 96, 192, 384, 768
1875
+ BERT/RoBERTalarge
1876
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
1877
+ 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
1878
+ Serial Adapter DSA
1879
+ 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
1880
+ Parallel Adapter DPA
1881
+ 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
1882
+ Prefix-Tuning LPT
1883
+ 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
1884
+ Table 4: The search space of the AUTOPEFT. Each insertion layer has a Boolean decision for inserting the PEFT
1885
+ modules. The 0 size of submodules indicates that we exclude the corresponding submodule from the configuration.
1886
+ The total number of configurations for BERTbase: 212 × 11 × 11 × 11 ≈ 5 × 106 and for BERT/RoBERTalarge:
1887
+ 224 × 12 × 12 × 12 ≈ 3 × 1010.
1888
+
1889
+ Task
1890
+ #Param.
1891
+ Search Space
1892
+ Configuration
1893
+ Submodule
1894
+ Configuration
1895
+ RTE
1896
+ 0.06%
1897
+ Layer li
1898
+ 3, 4, 6,
1899
+ 8, 9, 11
1900
+ Serial Adapter DSA
1901
+ 3
1902
+ Parallel Adapter DPA
1903
+ 1
1904
+ Prefix-Tuning LPT
1905
+ 3
1906
+ RTE
1907
+ 1.42%
1908
+ Layer li
1909
+ 2, 5, 6,
1910
+ 7, 8, 9, 10
1911
+ Serial Adapter DSA
1912
+ 96
1913
+ Parallel Adapter DPA
1914
+ 48
1915
+ Prefix-Tuning LPT
1916
+ 1
1917
+ RTE
1918
+ 6.60%
1919
+ Layer li
1920
+ 3, 4, 6,
1921
+ 7, 8, 9, 10
1922
+ Serial Adapter DSA
1923
+ 384
1924
+ Parallel Adapter DPA
1925
+ 192
1926
+ Prefix-Tuning LPT
1927
+ 96
1928
+ MRPC
1929
+ 3.86%
1930
+ Layer li
1931
+ 2, 3, 6,
1932
+ 7, 9, 10, 11
1933
+ Serial Adapter DSA
1934
+ 6
1935
+ Parallel Adapter DPA
1936
+ 384
1937
+ Prefix-Tuning LPT
1938
+ 3
1939
+ STS-B
1940
+ 1.06%
1941
+ Layer li
1942
+ 2, 5,
1943
+ 7, 8, 9, 11
1944
+ Serial Adapter DSA
1945
+ 96
1946
+ Parallel Adapter DPA
1947
+ 6
1948
+ Prefix-Tuning LPT
1949
+ 24
1950
+ CoLA
1951
+ 0.29%
1952
+ Layer li
1953
+ 3, 4,
1954
+ 8, 9, 10
1955
+ Serial Adapter DSA
1956
+ 12
1957
+ Parallel Adapter DPA
1958
+ 24
1959
+ Prefix-Tuning LPT
1960
+ 6
1961
+ MNLI
1962
+ 0.30%
1963
+ Layer li
1964
+ 3, 6,
1965
+ 7, 8, 9, 11, 12
1966
+ Serial Adapter DSA
1967
+ 24
1968
+ Parallel Adapter DPA
1969
+ 6
1970
+ Prefix-Tuning LPT
1971
+ 1
1972
+ Table 5: The AUTOPEFT-found configurations reported in Table 1 using BERTbase. The average of fine-tuned
1973
+ parameters (%) of AUTOPEFTtask
1974
+ Avg. is calculated by (1.42+3.86+1.06+0.29+1.42+0.30+1.42+1.42)/8 = 1.40,
1975
+ where we transfer the best-found AUTOPEFTRTE
1976
+ M
1977
+ to SST-2, QQP, and MNLI as their best per-task configurations
1978
+ for achieving the best trade-off between task performance and efficiency.
1979
+ Task
1980
+ #Param.
1981
+ Search Space
1982
+ Configuration
1983
+ Submodule
1984
+ Configuration
1985
+ RTE
1986
+ 0.78%
1987
+ Layer li
1988
+ 2, 6, 8, 11, 14, 15, 16, 17, 21, 23
1989
+ Serial Adapter DSA
1990
+ 128
1991
+ Table 6: The AUTOPEFT-found configurations reported in Table 2 using BERTlarge.
1992
+ Task
1993
+ #Param.
1994
+ Search Space
1995
+ Configuration
1996
+ Submodule
1997
+ Configuration
1998
+ RTE
1999
+ 0.03%
2000
+ Layer li
2001
+ 6, 10,
2002
+ 14, 15, 18, 19, 21, 23
2003
+ Serial Adapter DSA
2004
+ 2
2005
+ Parallel Adapter DPA
2006
+ 4
2007
+ Prefix-Tuning LPT
2008
+ 1
2009
+ RTE
2010
+ 9.41%
2011
+ Layer li
2012
+ 1, 2, 3, 4, 5, 7, 11, 12,
2013
+ 14, 15, 17, 19, 20, 21, 23
2014
+ Serial Adapter DSA
2015
+ 64
2016
+ Parallel Adapter DPA
2017
+ 1
2018
+ Prefix-Tuning LPT
2019
+ 1024
2020
+ MRPC
2021
+ 0.25%
2022
+ Layer li
2023
+ 1, 2, 4, 5, 6, 8, 9, 10, 11,
2024
+ 13, 14, 16, 17, 21, 22, 23, 24
2025
+ Serial Adapter DSA
2026
+ 8
2027
+ Parallel Adapter DPA
2028
+ 2
2029
+ Prefix-Tuning LPT
2030
+ 16
2031
+ STS-B
2032
+ 0.25%
2033
+ Layer li
2034
+ 1, 2, 4, 5, 6, 7, 8, 9, 10, 11,
2035
+ 13, 14, 16, 17, 21, 22, 24
2036
+ Serial Adapter DSA
2037
+ 8
2038
+ Parallel Adapter DPA
2039
+ 2
2040
+ Prefix-Tuning LPT
2041
+ 16
2042
+ CoLA
2043
+ 2.36%
2044
+ Layer li
2045
+ 1, 5, 6, 8, 9, 10,
2046
+ 13, 14, 15, 19, 21, 22, 23, 24
2047
+ Serial Adapter DSA
2048
+ 256
2049
+ Parallel Adapter DPA
2050
+ 32
2051
+ Prefix-Tuning LPT
2052
+ 4
2053
+ Table 7: The AUTOPEFT-found configurations reported in Table 3 using RoBERTalarge. The average of fine-tuned
2054
+ parameters (%) of AUTOPEFTtask
2055
+ Avg. is calculated by (0.03 + 0.25 + 0.25 + 2.36 + 2.36 + 0.03)/6 = 0.88, where we
2056
+ transfer the best-found AUTOPEFTCoLA
2057
+ M
2058
+ to SST-2 and AUTOPEFTRTE
2059
+ S
2060
+ to QNLI as their best per-task configurations
2061
+ for achieving the best trade-off between performance and efficiency.
2062
+
0NFLT4oBgHgl3EQfoi-S/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4a67dc0b7b6da109d7cabb57e01f43669ec51fd94053b277c996996c48aa462
3
+ size 129277
19E1T4oBgHgl3EQfRwPe/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a94e790231c933cfc1ba463097fa7936b581e6865b45780040e661b578ea2df2
3
+ size 1441837
19E1T4oBgHgl3EQfRwPe/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63482b8823368ef198499bd3c1b9fbc137bf3ad92b3bef59ef292d15018f10bb
3
+ size 47488
1tE1T4oBgHgl3EQflQSM/content/tmp_files/2301.03283v1.pdf.txt ADDED
@@ -0,0 +1,2423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Abstract—Model transparency, label correlation learning and
2
+ the robustness to label noise are crucial for multilabel learning.
3
+ However, few existing methods study these three characteristics
4
+ simultaneously. To address this challenge, we propose the robust
5
+ multilabel Takagi-Sugeno-Kang fuzzy system (R-MLTSK-FS)
6
+ with three mechanisms. First, we design a soft label learning mech-
7
+ anism to reduce the effect of label noise by explicitly measuring the
8
+ interactions between labels, which is also the basis of the other two
9
+ mechanisms. Second, the rule-based TSK FS is used as the base
10
+ model to efficiently model the inference relationship between fea-
11
+ tures and soft labels in a more transparent way than many existing
12
+ multilabel models. Third, to further improve the performance of
13
+ multilabel learning, we build a correlation enhancement learning
14
+ mechanism based on the soft label space and the fuzzy feature
15
+ space.1Extensive experiments are conducted to demonstrate the
16
+ superiority of the proposed method.
17
+
18
+ Index Terms—Multilabel classification, label correlation, model
19
+ transparency, label noise.
20
+ I. INTRODUCTION
21
+ ULTILABEL learning concerns instances that can be asso-
22
+ ciated with more than one labels. For example, an article
23
+ can be labeled as being related to “politics”, “culture” and “re-
24
+ ligion” at the same time; and a travel photo can be given the
25
+ labels “beach”, “sunrise”, “sail” and “tourist” simultaneously
26
+ because of the presence of the corresponding objects. For mul-
27
+ tilabel learning, label correlation learning, model transparency
28
+ and robustness against label noise are essential. Constructing
29
+ the correlation between labels is the basic work to improve the
30
+ performance of multilabel learning [1, 2]. A transparent struc-
31
+ ture is important to enhance the interpretability of multilabel
32
+ learning [3]. And robustness against label noise enhances the
33
+ effectiveness in practical applications under noisy environment
34
+ [4].
35
+ For label correlation learning, existing multilabel methods
36
+ are mainly based on first-order [5], second-order [6] and high-
37
+ order [7] strategies to consider the correlation between labels.
38
+
39
+ This work was supported in part by the National key R & D plan under Grant
40
+ (2022YFE0112400), the NSFC under Grant 62176105, the Six Talent Peaks
41
+ Project in Jiangsu Province under Grant XYDXX-056, the Hong Kong Re-
42
+ search Grants Council (PolyU 152006/19E), the Project of Strategic Importance
43
+ of the Hong Kong Polytechnic University (1-ZE1V) and the Postgraduate Re-
44
+ search & Practice innovation Program of Jiangsu Province under Grant
45
+ KYCX22_2313. (Corresponding author: Zhaohong Deng).
46
+ Q. Lou, S. Wang are with the School of Artificial Intelligence and Computer
47
+ Science, Jiangnan University and Jiangsu Key Laboratory of Digital Design and
48
+ Software Technology, Wuxi 214122, China, and Q. Lou is with the Centre for
49
+ First-order methods ignore label correlation and adopt label-
50
+ by-label approach for multilabel learning. For example, sparse
51
+ weighted instance-based multilabel (SWIM) realizes the mul-
52
+ tilabel learning only based on the association between instances
53
+ [8]. Second-order methods build the pairwise relationship be-
54
+ tween labels. For example, labels related to the sample are
55
+ ranked before labels unrelated to the sample [9]. Multilabel
56
+ learning with global and local label correlation (GLOCAL) de-
57
+ composes the Laplacian matrix to indirectly learn the correla-
58
+ tion between any two labels [10]. High-order methods construct
59
+ the correlation between multiple labels simultaneously. For ex-
60
+ ample, cross-coupling aggregation (COCOA) first models the
61
+ correlation between random label pairs and then aggregates
62
+ their learning effects [11]. Multilabel classification with label-
63
+ specific features and label-specific classifiers (MLC-LFLC) in-
64
+ troduces the sparse learning to analyze the dependency between
65
+ a single label and other labels [12].
66
+ For model transparency in multilabel learning, existing work
67
+ is mainly based on rules or logical inference to achieve trans-
68
+ parency [13]. For example, hierarchical multilabel classifica-
69
+ tion with a genetic algorithm (HMC-GA) [14] utilizes the ge-
70
+ netic algorithm to induce classification rules for protein func-
71
+ tion prediction which belongs to hierarchical multilabel learn-
72
+ ing. The gradient-weighted class activation mapping (Grad-
73
+ CAM) is used in [15] to realize the inferential interpretation for
74
+ predicted label results. The causal discovery is exploited in [16]
75
+ to analyze the specific features of a label. The multilabel Tak-
76
+ agi-Sugeno-Kang fuzzy system (TSK FS), i.e., ML-TSK FS [17]
77
+ offers good transparency through fuzzy rule-based structure and
78
+ fuzzy inference. Among the above existing multilabel methods,
79
+ ML-TSK FS has shown more promising performance because
80
+ it realizes the complete inference process from feature to label.
81
+ For robustness against label noise, much work has been stud-
82
+ ied because of the urgent need of practical application [18, 19].
83
+ For example, class-conditional multilabel noise (CCMN) [20]
84
+ designs two unbiased estimators with error bounds to reduce the
85
+ influence of label noise. Multilabel noise robust collaborative
86
+ learning (RCML) [21] employs the group lasso to detect noisy
87
+ Smart Health, and the School of Nursing, the Hong Kong Polytechnic Univer-
88
+ sity, Hong Kong. (e-mail: [email protected]; wxwangst@ali-
89
+ yun.com).
90
+ Z. Deng is with the School of Artificial Intelligence and Computer Science,
91
+ Jiangnan University, Wuxi 214122, China, and Key Laboratory of Computa-
92
+ tional Neuroscience and Brain-Inspired Intelligence (LCNBI) and ZJLab,
93
+ Shanghai 200433, China. (e-mail: [email protected]).
94
+ K.S. Choi is with the Centre for Smart Health, Hong Kong Polytechnic Uni-
95
+ versity. (e-mail: [email protected]).
96
+ A Robust Multilabel Method Integrating Rule-based
97
+ Transparent Model, Soft Label Correlation Learning
98
+ and Label Noise Resistance
99
+ Qiongdan Lou, Zhaohong Deng, Senior Member, IEEE, Kup-Sze Choi, Shitong Wang
100
+ M
101
+
102
+ labels. Partial multilabel learning with noisy label identification
103
+ (PML-NI) [22] builds the feature-induce noise term to identify
104
+ noisy labels. Multilabel iterated learning (MILe) [23] strength-
105
+ ens learning bottleneck for successive generations of teacher
106
+ and student networks to improve the robustness against label
107
+ noise. Different from removing noisy labels directly, noisy la-
108
+ bel tolerated partial multilabel learning (NATAL) [24] reduces
109
+ the impact of noisy labels by assuming that the label infor-
110
+ mation is precise and feature information is inadequate.
111
+ The above related work indicates that the importance of label
112
+ correlation, model transparency and robustness against noisy
113
+ labels has received extensive attention. However, such desira-
114
+ ble characteristics are still rarely studied simultaneously in mul-
115
+ tilabel learning. Therefore, it is necessary to further study the
116
+ multilabel method with transparency, label correlation learning
117
+ ability and robustness to noise labels.
118
+ Based on the above analysis, we aim to develop a multilabel
119
+ learning method with strong fuzzy inference ability and label
120
+ correlation learning ability, even under the influence of noisy
121
+ labels. To achieve the goal need, a robust multilabel learning
122
+ classifier, called robust multilabel Takagi-Sugeno-Kang fuzzy
123
+ system (R-MLTSK-FS), is proposed by developing three ena-
124
+ bling mechanisms. The first mechanism concerns soft label
125
+ learning. The R-MLTSK-FS maps the original label matrix to
126
+ the soft label space where each soft label is affected by all the
127
+ original labels. The mechanism thus reduces the influence of
128
+ label noise in the original label space, and is the basis of the
129
+ other two mechanisms. The second mechanism concerns the
130
+ construction of soft multilabel loss function. In R-MLTSK-FS,
131
+ the “IF-THEN” rule-based TSK FS is used to model the infer-
132
+ ence between the inputs and outputs. Specifically, multi-output
133
+ TSK FS is employed in this paper. The IF-part of a multi-output
134
+ TSK FS is leveraged to transform the original feature matrix
135
+ into the fuzzy feature space; the THEN-part is used to imple-
136
+ ment the inference between inputs and outputs; and the regres-
137
+ sion loss is constructed based on the TSK FS and soft label
138
+ learning. The adoption of TSK FS is advantageous in that the
139
+ rule-based TSK FS makes the proposed R-MLTSK-FS more
140
+ transparent than traditional models. The third mechanism con-
141
+ cerns correlation enhancement learning. The mechanism estab-
142
+ lishes associations between any two soft labels and their corre-
143
+ sponding fuzzy discriminative features, which can effectively
144
+ improve the performance of R-MLTSK-FS.
145
+ The main contributions of this paper are summarized as fol-
146
+ lows:
147
+ (1) A soft label learning mechanism is constructed to explic-
148
+ itly measure the interaction between the labels and reduce the
149
+ influence of label noise.
150
+ (2) A soft multilabel loss function is constructed based on
151
+ soft labels and TSK FS to improve the efficiency and transpar-
152
+ ency of the learning process of R-MLTSK-FS.
153
+ (3) A correlation enhancement learning mechanism based on
154
+ soft label space and fuzzy feature space is built to further en-
155
+ hance the learning ability of R-MLTSK-FS.
156
+ (4) Extensive experiments are conducted using 10 bench-
157
+ mark multilabel datasets and 3 synthetic multilabel datasets to
158
+ compare with 8 methods. Comprehensive evaluations are
159
+ carried out by conducting classification performance evaluation,
160
+ robustness analysis, effectiveness analysis of soft label learning
161
+ and correlation enhancement learning, parameter analysis, con-
162
+ vergence analysis, and statistical analysis.
163
+ The rest of this paper is organized as follows. Section II re-
164
+ views the concepts of multilabel learning, and the traditional
165
+ TSK FS. Section III gives details of the proposed method. Ex-
166
+ tensive experimental analyses are presented and discussed in
167
+ Section IV. Finally, Section V summarizes the paper.
168
+ II. BACKGROUND KNOWLEDGE
169
+ In this section, the problem statement of the multilabel learn-
170
+ ing research concerned in the study is given, followed by the
171
+ review of traditional TSK FS.
172
+ A. Problem Statement
173
+ Let 𝒳 ∈ ℛ𝐷 and 𝒴 ∈ ℛ𝐿 be a D-dimensional feature
174
+ space and an L-dimensional label space respectively. 𝒟 =
175
+ {(𝒙𝑖, 𝒚𝑖)}𝑖=1
176
+ 𝑁
177
+ is the training set with N samples. 𝑿 =
178
+ [𝒙1, 𝒙2, … , 𝒙𝑁] ∈ ℛ𝐷×𝑁 is the input matrix, and
179
+ 𝒀 =
180
+ [𝒚1, 𝒚2, … , 𝒚𝑁] ∈ ℛ𝐿×𝑁 is the output matrix. In multilabel
181
+ learning, the label of an instance 𝒙𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷]T is
182
+ given by a vector 𝒚𝑖 = [𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝐿]T. If 𝒙𝑖 is related to
183
+ the jth label, then 𝑦𝑖𝑗 = 1, otherwise, 𝑦𝑖𝑗 = 0. The aim of this
184
+ study is to find a robust mapping function 𝑓: 𝒳 → 𝒴 that can
185
+ reduce the influence of label noise and effectively predict the
186
+ label vector for a new instance on the basis of transparent infer-
187
+ ence rules.
188
+ B. TSK Fuzzy System
189
+ TSK FS is a classical inference model based on fuzzy rules
190
+ with superior interpretability (transparency) and learning ability.
191
+ It has been successfully applied in different areas, e.g., transfer
192
+ learning [25, 26], multiview learning [27], multitask learning
193
+ [28] and others [29, 30, 31, 32]. For a classical TSK FS with K
194
+ rules, the kth rule can be expressed as follows:
195
+ IF: 𝑥1 𝑖𝑠 𝐴1
196
+ 𝑘 ∧ 𝑥2 𝑖𝑠 𝐴2
197
+ 𝑘 ∧ … ∧ 𝑥𝐷 𝑖𝑠 𝐴𝐷
198
+ 𝑘,
199
+ THEN: 𝑓𝑘(𝒙) = 𝑐0
200
+ 𝑘 + 𝑐1
201
+ 𝑘𝑥1 + ⋯ + 𝑐𝐷
202
+ 𝑘𝑥𝐷,
203
+ 𝑘 = 1, 2, … , 𝐾
204
+ (1)
205
+ where D is the feature dimension, and 𝑓𝑘(𝒙) is the output of
206
+ instance 𝒙 on the kth rule. 𝐴𝑑
207
+ 𝑘 (𝑑 = 1, 2, … , 𝐷) in IF-part
208
+ represents the antecedent fuzzy set, which can be described by
209
+ membership functions. 𝑐𝑑
210
+ 𝑘 in THEN-part is the consequent pa-
211
+ rameter.
212
+ Depending on application scenarios, different membership
213
+ functions can be chosen for the antecedent fuzzy sets. Gaussian
214
+ function, which is commonly used, is adopted in this paper and
215
+ the corresponding membership function associated with 𝐴𝑑
216
+ 𝑘
217
+ can be expressed as follows:
218
+ 𝜇𝐴𝑑
219
+ 𝑘(𝑥𝑑) = exp {−
220
+ 1
221
+ 2 (
222
+ 𝑥𝑑−𝑚𝑑
223
+ 𝑘
224
+ 𝛿𝑑
225
+ 𝑘
226
+ )2}
227
+ (2)
228
+ where 𝑚𝑑
229
+ 𝑘 and 𝛿𝑑
230
+ 𝑘 can be obtained using different methods.
231
+ In the absence of domain knowledge, data-driven methods are
232
+ usually utilized to estimate 𝑚𝑑
233
+ 𝑘 and 𝛿𝑑
234
+ 𝑘. For example, the Var-
235
+ Part clustering has been used for this purpose [33]. It is insen-
236
+ sitive to the parameters and is therefore beneficial in terms of
237
+
238
+ stability and practicability. Hence, the Var-Part clustering is
239
+ used in this study.
240
+ For TSK FS, the firing strength of instance 𝒙 on the kth rule
241
+ can be computed as follows:
242
+ 𝜇𝑘(𝒙) = ∏
243
+ 𝜇𝐴𝑑
244
+ 𝑘(𝑥𝑑)
245
+ 𝐷
246
+ 𝑑=1
247
+
248
+ (3)
249
+ 𝜇̃𝑘(𝒙) = 𝜇𝑘(𝒙) ∑
250
+ 𝜇𝑘′(𝒙)
251
+ 𝐾
252
+ 𝑘′=1
253
+
254
+
255
+ (4)
256
+ where Eq. (4) is the normalized form of Eq. (3).
257
+ Finally, the output of TSK FS for instance 𝒙 can be ex-
258
+ pressed as
259
+ 𝑦 = 𝑓(𝒙) = ∑
260
+ 𝜇̃𝑘(𝒙)𝑓𝑘(𝒙)
261
+ 𝐾
262
+ 𝑘=1
263
+
264
+ (5)
265
+ In fact, Eq. (5) can also be expressed as a linear model in a new
266
+ fuzzy feature space, that is,
267
+ 𝑦 = 𝑓(𝒙) = 𝒄T𝒙𝑔
268
+ (6)
269
+ where
270
+ 𝒙𝑒 = [1, 𝒙T]T ∈ ℛ(𝐷+1)×1
271
+ (7)
272
+ 𝒙̃𝑘 = 𝜇̃𝑘(𝒙)𝒙𝑒 ∈ ℛ(𝐷+1)×1
273
+ (8)
274
+ 𝒙𝑔 = [(𝒙̃1)T, (𝒙̃2)T, … , (𝒙̃𝐾)T]T ∈ ℛ𝐾(𝐷+1)×1
275
+ (9)
276
+ 𝒄𝑘 = [𝑐0
277
+ 𝑘, 𝑐1
278
+ 𝑘, … , 𝑐𝐷
279
+ 𝑘]T ∈ ℛ(𝐷+1)×1
280
+ (10)
281
+ 𝒄 = [(𝒄1)T, (𝒄2)T, … , (𝒄𝐾)T]T ∈ ℛ𝐾(𝐷+1)×1
282
+ (11)
283
+ Here, 𝒙𝑔 is the fuzzy representation of instance 𝒙 in a new
284
+ feature space generated by fuzzy rules. 𝒄 is the consequent pa-
285
+ rameter vector of all the rules, which can be optimized by solv-
286
+ ing the linear model in Eq. (6).
287
+ III. PROPOSED METHOD: R-MLTSK-FS
288
+ A. System Architecture
289
+ The architecture of the R-MLTSK-FS proposed in this study
290
+ is shown in Fig. 1. It aims to provide a robust multilabel model
291
+ with fuzzy inference ability, label correlation learning ability
292
+ and resistance against noisy labels. R-MLTSK-FS contains
293
+ three mechanisms for soft label learning, soft multilabel loss
294
+ function construction and correlation enhancement learning, re-
295
+ spectively.
296
+
297
+
298
+
299
+ Fig. 1 The architecture of the proposed R-MLTSK-FS.
300
+
301
+ The first mechanism, soft label learning, maps the original
302
+ labels to soft label space by linear transformation. Each soft la-
303
+ bel in the soft label space is associated with all the original la-
304
+ bels, which reduces the influence of label noise in the original
305
+ label space. It is the basis of the other two mechanisms. The
306
+ second mechanism, i.e., soft multilabel loss function construc-
307
+ tion, leverages the IF-part of the TSK FS to transform the orig-
308
+ inal features into the fuzzy feature space, uses the THEN-part
309
+ of the TSK FS to complete the inference between inputs and
310
+ outputs, and then constructs the regression function between the
311
+ fuzzy feature space and the soft label space. Rule-based TSK
312
+ FS makes R-MLTSK-FS transparent in modeling inference re-
313
+ lationship between features and labels. The third mechanism,
314
+ correlation enhancement learning, implements label correlation
315
+ learning by establishing associations between any two soft la-
316
+ bels and their corresponding fuzzy discriminative features. This
317
+ mechanism further enhances the learning ability of R-MLTSK-
318
+ FS.
319
+ The details of R-MLTSK-FS are expanded in the following
320
+ three sections. The learning criteria of R-MLTSK-FS is intro-
321
+ duced in Section III-B. The optimization process and the algo-
322
+ rithm description are given in Section III-C, and the computa-
323
+ tional complexity is analyzed in Section III-D.
324
+ B. Learning Criteria of R-MLTSK-FS
325
+ According to the analysis in Section III-A, the multilabel
326
+ learning problem in this paper can be expressed as the following
327
+ optimization objective criteria:
328
+ min
329
+ 𝜙1,𝜙2 𝛽 ∙ 𝑆𝑜𝑓_𝑙𝑎𝑏(𝒀|𝜙1) + 𝑆𝑜𝑓_𝑙𝑜𝑠(𝒀, 𝑿|𝜙1, 𝜙2) +
330
+ 𝛾 ∙ 𝐶𝑜𝑟_𝑒𝑛ℎ(𝒀, 𝑿|𝜙1, 𝜙2)
331
+ (12)
332
+ The first term represents soft label learning, where 𝜙1 trans-
333
+ forms the original labels to the soft labels. The second term rep-
334
+ resents soft multilabel loss function construction, where 𝜙2 is
335
+ used to predict the labels from the original feature space to the
336
+ soft label space. The third term represents correlation enhance-
337
+ ment learning, which is used to measure the association be-
338
+ tween any two soft labels and their corresponding fuzzy dis-
339
+ criminative features. The hyperparameters β and γ are used to
340
+ balance the influences of different terms in Eq. (12). The solu-
341
+ tions of 𝜙1 and 𝜙2 can be obtained by optimizing Eq. (12).
342
+ The implementation of three terms is described below.
343
+ 1) Soft Label Learning based on Original Label Space and
344
+ Soft Label Space
345
+ For the lth label 𝒀𝑙 ∈ ℛ1×𝑁 (1 ≤ 𝑙 ≤ 𝐿) (i.e., the lth row in
346
+ 𝒀), the interference of its label noise can be reduced by consid-
347
+ ering the influence of all labels on 𝒀𝑙 comprehensively. Based
348
+ on this, for soft label learning, we assume that each label is as-
349
+ sociated with all the other original labels to some extent. The
350
+ learning process involves two steps. First, we construct the label
351
+ transformation 𝜙1 to effectively measure the interaction be-
352
+ tween the labels. 𝜙1 maps the output matrix 𝒀 explicitly
353
+ from the original label space to the soft label space. In the soft
354
+ label space, each soft label is associated with all the original
355
+ labels. The transformation function of 𝜙1 is defined as:
356
+ 𝜙1(𝒀) = 𝑺𝒀
357
+ (13)
358
+ where 𝑺 = [𝒔1, 𝒔2, … , 𝒔𝐿]T ∈ ℛ𝐿×𝐿 , and 𝒔𝑙 ∈ ℛ𝐿×1 (1 ≤ 𝑙 ≤
359
+ 𝐿) represents the influence weights of all the original labels on
360
+ the lth soft label.
361
+ Second, we preserve the expression consistency between the
362
+ soft labels and original labels to ensure the classification per-
363
+ formance. Therefore, the overall soft label learning is defined
364
+ as:
365
+ min
366
+ 𝜙1 𝑆𝑜𝑓_𝑙𝑎𝑏(𝒀|𝜙1) = min
367
+ 𝑺 ‖(𝒀 − 𝑺𝒀)T‖2,1
368
+ (14)
369
+
370
+ TSKFuzzy System
371
+ Soft Label Space
372
+ SoftLabel
373
+ Soft Multilabel Loss
374
+ Learning
375
+ Function Construction
376
+ Correlation
377
+ EnhancementLearningAlthough different regularization norms can be used in Eq.
378
+ (14), we choose the L2,1 norm for two reasons: (1) since L2,1
379
+ norm has the characteristic of row sparsity, we can screen out
380
+ the original label subsets which have significant impact on the
381
+ corresponding soft label, (2) L2,1 norm is well-known for its
382
+ ability in robust group selection [34, 35, 36], which is helpful
383
+ to reduce the impact of label noise on soft label learning.
384
+ 2) Soft Multilabel Loss Function Construction based on TSK
385
+ FS
386
+ Multilabel loss function can be constructed by employing an
387
+ evaluation metric as the multilabel objective function [37, 38],
388
+ or by using linear regression to derive the multilabel loss func-
389
+ tion [39, 40, 41]. Unlike these methods, we construct the loss
390
+ function using soft label learning and TSK FS, which essen-
391
+ tially constructs a rule-based transparent model that maps the
392
+ original feature space to the soft label space. The construction
393
+ of the soft multilabel loss function is divided into three steps.
394
+ First, the original feature matrix is transformed into the fuzzy
395
+ feature space through the IF-part of the fuzzy rules. Second, the
396
+ inference between inputs and outputs is completed through the
397
+ THEN-part of fuzzy rules. Third, the regression loss function is
398
+ constructed based on the fuzzy rules and soft labels. These de-
399
+ tails are as follows.
400
+
401
+ IF-part implementation of fuzzy rules. In the multi-out-
402
+ put TSK FS with K rules, the fuzzy feature matrix obtained
403
+ by 𝑿 using fuzzy rules is given by
404
+ 𝑿�� = [𝒙𝑔,1, 𝒙𝑔,2, … , 𝒙𝑔,𝑁] ∈ ℛ𝐾(𝐷+1)×𝑁
405
+ (15)
406
+ where 𝒙𝑔,𝑖 (1 ≤ 𝑖 ≤ 𝑁) is mapped by the instance 𝒙𝑖
407
+ through the IF-part of fuzzy rules, and it can be obtained
408
+ by Eqs. (2)-(4) and (7)-(9).
409
+ Compared with the original features, the rule-based
410
+ fuzzy features can empower R-MLTSK-FS to analyze the
411
+ implicit inference relationship between features and labels
412
+ [42], thereby strengthening the learning ability.
413
+
414
+ THEN-part adaptation of fuzzy rules. Based on Eq. (6),
415
+ the THEN-part of multi-output TSK FS is used to complete
416
+ the inference, i.e.,
417
+ 𝜙2(𝑿) = 𝑪𝑿𝑔
418
+ (16)
419
+ where
420
+ 𝑪 = [𝒄1, 𝒄2, … , 𝒄𝐿]T ∈ ℛ𝐿×𝐾(𝐷+1)
421
+ (17)
422
+ is composed of L consequent parameter vectors in THEN-
423
+ part. As defined in Eq. (11), 𝒄𝑙 ∈ ℛ𝐾(𝐷+1)×1 (1 ≤ 𝑙 ≤ 𝐿)
424
+ is the consequent parameter vector corresponding to the
425
+ lth-output in multi-output TSK FS and the lth soft label.
426
+ The main difference between multi-output TSK FS and sin-
427
+ gle-output TSK FS is that the consequent parameters of sin-
428
+ gle-output TSK FS are represented with a vector, whereas
429
+ the consequent parameters of multi-output TSK FS are rep-
430
+ resented by a matrix composed of multiple vectors.
431
+
432
+ Construction of regression loss. The loss function is a
433
+ fundamental part of the optimization objective for multila-
434
+ bel classification. In this paper, it is built based on soft label
435
+ learning and TSK FS. Combining Eqs. (13) and (16), we
436
+ construct the soft multilabel loss function as follows:
437
+ min
438
+ 𝜙1,𝜙2 𝑆𝑜𝑓_𝑙𝑜𝑠(𝒀, 𝑿|𝜙1, 𝜙2)
439
+ = min
440
+ 𝑺,𝑪 ‖(𝑺𝒀 − 𝑪𝑿𝑔)T‖2,1 + 𝛼‖𝑪‖𝐹
441
+ 2
442
+ (18)
443
+ where α is a hyperparameter to balance the influence of the
444
+ soft multilabel loss function and the regularization term.
445
+ Taking the Frobenius norm ‖∙‖𝐹 as the regularization
446
+ term can not only reduce the risk of overfitting, but also
447
+ facilitate the solution of consequent parameter matrix 𝑪.
448
+ 3) Correlation Enhancement Learning based on Soft Label
449
+ Space and Fuzzy Feature Space
450
+ Section I has clarified that mining the correlation information
451
+ between labels can effectively improve the performance of the
452
+ model. In this paper, we analyze the label correlation based on
453
+ the fact that the correlation between two labels is consistent
454
+ with the correlation between their discriminative features. For
455
+ example, there is an intersection between the labels “Cat” and
456
+ “Animal”, and then their discriminative features should par-
457
+ tially overlap.
458
+ Based on the above analysis, we utilize the correlation infor-
459
+ mation on the basis of soft label learning and fuzzy features as
460
+ follows:
461
+ min
462
+ 𝜙1,𝜙2 𝐶𝑜𝑟_𝑒𝑛ℎ(𝒀, 𝑿|𝜙1, 𝜙2)
463
+ = min
464
+ 𝑺,𝑪 ∑
465
+
466
+ ‖(𝒔𝑖
467
+ T𝒀 − 𝒔𝑗
468
+ T𝒀)T‖
469
+ 2𝒄𝑖
470
+ T𝒄𝑗
471
+ 𝐿
472
+ 𝑗=1
473
+ 𝐿
474
+ 𝑖=1
475
+
476
+ (19)
477
+ where 𝒔𝑙
478
+ T𝒀 ∈ ℛ1×𝑁 (1 ≤ 𝑙 ≤ 𝐿) represents the lth soft label
479
+ vector corresponding to N samples. 𝒔𝑙 ∈ ℛ𝐿×1 represents the
480
+ influence weights of all original labels on the lth soft label. 𝒄𝑙 ∈
481
+ ℛ𝐾(𝐷+1)×1 (1 ≤ 𝑙 ≤ 𝐿) is used to learn the discriminative fea-
482
+ tures from fuzzy feature space for the lth soft label. The larger
483
+ the difference between the ith and jth soft labels, the more sig-
484
+ nificant the difference between their fuzzy discriminative fea-
485
+ tures, and further, the smaller the value of 𝒄𝑖
486
+ T𝒄𝑗. Further, Eq.
487
+ (19) can be expressed as:
488
+ min
489
+ 𝜙1,𝜙2 𝐶𝑜𝑟_𝑒𝑛ℎ(𝒀, 𝑿|𝜙1, 𝜙2)
490
+ = min
491
+ 𝑺,𝑪 ∑
492
+
493
+ ‖(𝒔𝑖
494
+ T𝒀 − 𝒔𝑗
495
+ T𝒀)T‖
496
+ 2𝒄𝑖
497
+ T𝒄𝑗
498
+ 𝐿
499
+ 𝑗=1
500
+ 𝐿
501
+ 𝑖=1
502
+
503
+ = min
504
+ 𝑺,𝑪 2Tr(𝒀T𝑺T𝑳𝑺𝒀)
505
+ (20)
506
+ where 𝑳 = 𝑫 − 𝑹, 𝑹 = 𝑪𝑪𝑇 ∈ ℛ𝐿×𝐿, 𝑫 ∈ ℛ𝐿×𝐿 is a diago-
507
+ nal matrix, and 𝐷𝑖𝑖 = ∑
508
+ 𝑅𝑖𝑗
509
+ 𝐿
510
+ 𝑗=1
511
+ .
512
+ C. Complete Objective Function and its Optimization
513
+ By integrating Eqs. (14), (18) and (20), the multilabel learn-
514
+ ing problem in Eq. (12) is defined and the complete objective
515
+ function of R-MLTSK-FS is expressed as:
516
+ min
517
+ 𝜙1,𝜙2 𝛽 ∙ 𝑆𝑜𝑓_𝑙𝑎𝑏(𝒀|𝜙1) + 𝑆𝑜𝑓_𝑙𝑜𝑠(𝒀, 𝑿|𝜙1, 𝜙2) +
518
+ 𝛾 ∙ 𝐶𝑜𝑟_𝑒𝑛ℎ(𝒀, 𝑿|𝜙1, 𝜙2)
519
+ = min
520
+ 𝑺,𝑪 𝛽‖(𝒀 − 𝑺𝒀)T‖2,1 + ‖(𝑺𝒀 − 𝑪𝑿𝑔)
521
+ T‖
522
+ 2,1 +
523
+ 𝛼‖𝑪‖𝐹
524
+ 2 + 2𝛾Tr(𝒀T𝑺T𝑳𝑺𝒀)
525
+ = min
526
+ 𝑺,𝑪 ‖(𝑺𝒀 − 𝑪𝑿𝑔)
527
+ T‖
528
+ 2,1 + 𝛼‖𝑪‖𝐹
529
+ 2 + 𝛽‖(𝒀 − 𝑺𝒀)T‖2,1 +
530
+ 2𝛾Tr(𝒀T𝑺T𝑳𝑺𝒀)
531
+
532
+ (21)
533
+
534
+ To optimize 𝑺 and 𝑪, we adopt the alternating direction
535
+ minimization strategy, where Eq. (21) is divided into two sub-
536
+ problems, namely, the 𝑺-subproblem and the 𝑪-subproblem.
537
+ The optimization processes are as follows.
538
+ 1) 𝑺-Subproblem
539
+ By fixing 𝑪, the 𝑺-subproblem can be expressed as:
540
+ 𝑺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑺 ‖(𝑺𝒀 − 𝑪𝑿𝑔)T‖2,1 + 𝛽‖(𝒀 − 𝑺𝒀)T‖2,1 +
541
+ 2𝛾Tr(𝒀T𝑺T𝑳𝑺𝒀)
542
+ (22)
543
+ In Eq. (22), the Lagrange function for 𝑺 is
544
+ 𝐿(𝑺) = ‖(𝑺𝒀 − 𝑪𝑿𝑔)T‖2,1 + 𝛽‖(𝒀 − 𝑺𝒀)T‖2,1 +
545
+ 2𝛾Tr(𝒀T𝑺T𝑳𝑺𝒀)
546
+ (23)
547
+ Set the derivative of Eq. (23) with respect to 𝑺 to 0, i.e.,
548
+ 𝜕𝐿(𝑺) 𝜕𝑺
549
+
550
+ = 2𝑺𝒀𝑫𝑆1𝒀T − 2𝑪𝑿𝑔𝑫𝑆1𝒀T + 2𝛽𝑺𝒀𝑫𝑆2𝒀T
551
+ −2𝛽𝒀𝑫𝑆2𝒀T + 4𝛾𝑳𝑺𝒀𝒀T = 0
552
+ (24)
553
+ where 𝑫𝑆1 ∈ ℛ𝑁×𝑁 and 𝑫𝑆2 ∈ ℛ𝑁×𝑁 are diagonal matrices,
554
+ and
555
+ 𝐷𝑆1,𝑖𝑖 = 1 (2‖(𝑺𝒀 − 𝑪𝑿𝑔)𝑖
556
+ T‖)
557
+
558
+ ,
559
+ 𝐷𝑆2,𝑖𝑖 =
560
+ 1 (2‖(𝒀 − 𝑺𝒀)𝑖
561
+ T‖)
562
+
563
+ . (𝑨𝑖
564
+ T represents the ith row in 𝑨T.)
565
+ Then, Eq. (24) can be re-expressed as
566
+ (2𝛾𝑳)𝑺 + 𝑺(𝒀𝑫𝑆1𝒀T(𝒀𝒀T)−1 + 𝛽𝒀𝑫𝑆2𝒀T(𝒀𝒀T)−1)
567
+ = 𝑪𝑿𝑔𝑫𝑆1𝒀T(𝒀𝒀T)−1 + 𝛽𝒀𝑫𝑆2𝒀T(𝒀𝒀T)−1
568
+ (25)
569
+ Eq. (25) is a classical optimization problem, i.e., the Sylvester
570
+ equation, which has been thoroughly studied [43, 44, 45].
571
+ In general, for the Sylvester equation 𝑨𝑾 + 𝑾𝑩 = 𝒁 (𝑨 ∈
572
+ ℛ𝑚×𝑚, 𝑩 ∈ ℛ𝑛×𝑛, 𝒁 ∈ ℛ𝑚×𝑛, 𝑾 ∈ ℛ𝑚×𝑛), the matrix 𝑾
573
+ is the variable to be solved. The specific solution formula of 𝑾
574
+ is as follows:
575
+ 𝑾(: ) = (𝑰1⨂𝑨 + 𝑩T⨂𝑰2)−𝟏𝒁(: )
576
+ (26)
577
+ where 𝑰1 ∈ ℛ𝑛×𝑛 and 𝑰2 ∈ ℛ𝑚×𝑚 are identity matrices, ⨂
578
+ is the Kronecker tensor product, 𝒁(: ) ∈ ℛ𝑚𝑛×1 and 𝑾(: ) ∈
579
+ ℛ𝑚𝑛×1 denote that the matrices 𝒁 and 𝑾 are single column
580
+ vectors. 𝑾(: ) can be reshaped to 𝑾∗ ∈ ℛ𝑚×𝑛, which is the
581
+ solution of 𝑨𝑾 + 𝑾𝑩 = 𝒁. For simplicity, the solution 𝑾∗
582
+ is denoted as 𝑾∗ = 𝑠𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟(𝑨, 𝑩, 𝒁).
583
+ Therefore, the solution of Eq. (25) is
584
+ 𝑺∗ = 𝑠𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟(2𝛾𝑳, 𝒀(𝑫𝑆1 + 𝛽𝑫𝑆2)𝒀T(𝒀𝒀T)−1,
585
+ (𝑪𝑿𝑔𝑫𝑆1 + 𝛽𝒀𝑫𝑆2)𝒀T(𝒀𝒀T)−1)
586
+ (27)
587
+ 2) 𝑪-Subproblem
588
+ By fixing 𝑺, the 𝑪-subproblem can be expressed as:
589
+ 𝑪∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑪 ‖(𝑺𝒀 − 𝑪𝑿𝑔)T‖2,1 + 𝛼‖𝑪‖𝐹
590
+ 2 +
591
+ 2𝛾Tr(𝒀T𝑺T𝑳𝑺𝒀)
592
+ (28)
593
+ In Eq. (28), the Lagrange function for 𝑪 is
594
+ 𝐿(𝑪) = ‖(𝑺𝒀 − 𝑪𝑿𝑔)T‖2,1 + 𝛼‖𝑪‖𝐹
595
+ 2 + 2𝛾Tr(𝒀T𝑺T𝑳𝑺𝒀)
596
+ = ‖(𝑺𝒀 − 𝑪𝑿𝑔)T‖2,1 + 𝛼‖𝑪‖𝐹
597
+ 2 + 2𝛾Tr(𝒀T𝑺T(𝑫 − 𝑹)𝑺𝒀)
598
+ = ‖(𝑺𝒀 − 𝑪𝑿𝑔)T‖2,1 + 𝛼‖𝑪‖𝐹
599
+ 2 + 2𝛾Tr(𝒀T𝑺T(𝑪𝑪T𝟏𝟏T ∘
600
+ 𝑰3 − 𝑪𝑪T)𝑺𝒀)
601
+
602
+ (29)
603
+ where 𝟏 ∈ ℛ𝐿×1 is a column vector with all elements equal to
604
+ one. The symbol (∘) represents the Hadamard product. 𝑰3 ∈
605
+ ℛ𝐿×𝐿 is the identity matrix.
606
+ Set the derivative of Eq. (29) with respect to 𝑪 to 0, i.e.,
607
+ 𝜕𝐿(𝑪) 𝜕𝑪
608
+
609
+ = 2𝑪𝑿𝑔𝑫𝐶𝑿𝑔
610
+ T − 2𝑺𝒀𝑫𝐶𝑿𝑔
611
+ T + 2𝛼𝑪 +
612
+ 2𝛾(((𝑺𝒀𝒀T𝑺T) ∘ 𝑰3)T𝟏𝟏T𝑪 + 𝟏𝟏T((𝑺𝒀𝒀T𝑺T) ∘ 𝑰3)𝑪 −
613
+ 2𝑺𝒀𝒀T𝑺T𝑪) = 0
614
+
615
+ (30)
616
+ where 𝑫𝐶 ∈ ℛ𝑁×𝑁 is a diagonal matrix, and 𝐷𝐶,𝑖𝑖 =
617
+ 1 (2‖(𝑺𝒀 − 𝑪𝑿𝑔)𝑖
618
+ 𝑇‖)
619
+
620
+ . (𝑨𝑖
621
+ T is the ith row of 𝑨T.)
622
+ Eq. (30) is also a Sylvester equation. Therefore, we can solve
623
+ 𝑪 as follows:
624
+ 𝑪∗ = 𝑠𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟(𝛼𝑰3 + 𝛾((𝑺𝒀𝒀T𝑺T) ∘ 𝑰3)
625
+ T𝟏𝟏T +
626
+ 𝛾𝟏𝟏T((𝑺𝒀𝒀T𝑺T) ∘ 𝑰3) − 2𝛾𝑺𝒀𝒀T𝑺T, 𝑿𝑔𝑫𝐶𝑿𝑔
627
+ T, 𝑺𝒀𝑫𝐶𝑿𝑔
628
+ T)
629
+
630
+ (31)
631
+ When the optimal 𝑺∗ and 𝑪∗ are obtained, the prediction
632
+ output of the test instance 𝒙′ (i.e., 𝒚′ = [𝑦1
633
+ ′, … , 𝑦𝐿
634
+ ′]𝑇) can be
635
+ formulated as follows:
636
+ 𝒚′ = 𝜑𝜏(𝑪∗𝒙𝑔
637
+ ′ )
638
+ (32)
639
+ where 𝒙𝑔
640
+ ′ is the fuzzy feature representation of 𝒙′ through
641
+ fuzzy rules. It can be obtained from Eqs. (2)-(4) and (7)-(9).
642
+ 𝜑𝜏(∙) is a threshold function to convert the continuous output
643
+ to the discrete output, and 𝜏 is the threshold. Therefore, for the
644
+ lth label 𝑦𝑙
645
+ ′ (1 ≤ 𝑙 ≤ 𝐿) in 𝒚′, its definition is
646
+ 𝑦𝑙
647
+ ′ = {1, 𝑖𝑓 (𝑪∗𝒙𝑔
648
+ ′ )𝑙 > 𝜏
649
+ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
650
+ (33)
651
+ where (𝑪∗𝒙𝑔
652
+ ′ )𝑙 is the lth element in (𝑪∗𝒙𝑔
653
+ ′ ). The value of 𝜏
654
+ can be optimized by cross-validation. In this paper, we set it to
655
+ the fixed value of 0.5.
656
+ Based on the above analysis, the procedure of the proposed
657
+ R-MLTSK-FS is described in Algorithm I.
658
+ D. Computational Complexity Analysis
659
+ The computational complexity of R-MLTSK-FS is analyzed
660
+ according to the steps in Algorithm I, which is expressed using
661
+ the big-O notation. For step 1, the complexity of initialization
662
+ is 𝑂(1). For step 2, the computational complexity of trans-
663
+ forming 𝑿 into 𝑿𝑔 is 𝑂(2𝑁𝐾𝐷 + 2𝑁𝐾) . The computa-
664
+ tional complexity of step 4 is 𝑂(𝐿2𝑁 + 𝐿𝑁𝐾(𝐷 + 1)). For the
665
+ step 5, the computational complexity of 𝑻1 is 𝑂(2𝐿2𝑁 +
666
+ 𝐿3 + 2𝐿2). For step 6, the computational complexity of 𝑻2 is
667
+ 𝑂(𝑁2𝐾(𝐷 + 1) + 𝑁𝐾2(𝐷 + 1)2). For step 7, the computa-
668
+ tional complexity of calculating 𝑻3 is 𝑂(𝐿2𝑁 + 𝐿𝑁2 +
669
+ Algorithm I R-MLTSK-FS
670
+ Input: Input matrix 𝑿 ∈ ℛ𝐷×𝑁, output matrix 𝒀 ∈ ℛ𝐿×𝑁, rule number K,
671
+ trade-off parameters α, β and γ.
672
+ Procedure:
673
+ 1: Initialize:
674
+ 𝑺 = 𝟏𝐿×𝐿, 𝑪 = (1 𝐿
675
+ ⁄ )𝟏𝐿×𝐾(𝐷+1), 𝑫 = 𝟎𝐿×𝐿, 𝑫𝐶 = 𝟎𝑁×𝑁, 𝑫𝑆1 =
676
+ 𝟎𝑁×𝑁, 𝑫𝑆2 = 𝟎𝑁×𝑁.
677
+ 2: Transform 𝑿 into 𝑿𝑔 using Eqs. (2)-(4) and (7)-(9).
678
+ 3: While not converged do
679
+ 4: 𝐷𝐶,𝑖𝑖 = 1 (2‖(𝑺𝒀 − 𝑪𝑿𝑔)𝑖
680
+ 𝑇‖)
681
+
682
+ ;
683
+ 5: 𝑻1 ← 𝛼𝑰3 + 𝛾((𝑺𝒀𝒀T𝑺T) ∘ 𝑰3)T𝟏𝟏T + 𝛾𝟏𝟏T((𝑺𝒀𝒀T𝑺T) ∘ 𝑰3) −
684
+ 2𝛾𝑺𝒀𝒀T𝑺T;
685
+ 6: 𝑻2 ← 𝑿𝑔𝑫𝐶𝑿𝑔
686
+ T;
687
+ 7: 𝑻3 ← 𝑺𝒀𝑫𝐶𝑿𝑔
688
+ T;
689
+
690
+ 8: 𝑪 ← 𝑠𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟(𝑻1, 𝑻2, 𝑻3);
691
+ 9: 𝐷𝑆1,𝑖𝑖 = 1 (2‖(𝑺𝒀 − 𝑪𝑿𝑔)𝑖
692
+ T‖)
693
+
694
+ ;
695
+ 10: 𝐷𝑆2,𝑖𝑖 = 1 (2‖(𝒀 − 𝑺𝒀)𝑖
696
+ T‖)
697
+
698
+ ;
699
+ 11: 𝑹 ← 𝑪𝑪T;
700
+ 12: 𝐷𝑖𝑖 ← ∑
701
+ 𝑅𝑖𝑗
702
+ 𝐿
703
+ 𝑗=1
704
+ ;
705
+ 13: 𝑳 = 𝑫 − 𝑹;
706
+ 14: 𝑻4 ← 2γ𝑳;
707
+ 15: 𝑻5 ← 𝒀(𝑫𝑆1 + 𝛽𝑫𝑆2)𝒀T(𝒀𝒀T)−1;
708
+ 16: 𝑻6 ← (𝑪𝑿𝑔𝑫𝑆1 + 𝛽𝒀𝑫𝑆2)𝒀T(𝒀𝒀T)−1;
709
+ 17: 𝑺 ← 𝑠𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟(𝑻4, 𝑻5, 𝑻6);
710
+ 18: Check the convergence conditions;
711
+ 19: End
712
+ Output: 𝑺, 𝑪.
713
+
714
+ TABLE I
715
+ STATISTICS OF DATASETS
716
+
717
+ Dataset
718
+ #Instance
719
+ #Feature
720
+ #Label
721
+ Arts
722
+ 5000
723
+ 462
724
+ 26
725
+ Birds
726
+ 645
727
+ 260
728
+ 19
729
+ CAL500
730
+ 502
731
+ 68
732
+ 174
733
+ Corel5k
734
+ 5000
735
+ 499
736
+ 374
737
+ Flags
738
+ 194
739
+ 19
740
+ 7
741
+ Genbase
742
+ 662
743
+ 1185
744
+ 27
745
+ Medical
746
+ 978
747
+ 1449
748
+ 45
749
+ Mirflickr
750
+ 25000
751
+ 150
752
+ 24
753
+ Recreation
754
+ 5000
755
+ 606
756
+ 22
757
+ Science
758
+ 5000
759
+ 743
760
+ 40
761
+
762
+ 𝐿𝑁𝐾(𝐷 + 1)) . The computational complexity of step 8 is
763
+ 𝑂(3𝐿4) . For step 9, the complexity of calculating 𝑫𝑆1 is
764
+ 𝑂(𝐿2𝑁 + 𝐿𝑁𝐾(𝐷 + 1)). For step 10, the complexity of 𝑫𝑆2 is
765
+ 𝑂(𝐿2𝑁). The complexity of step 11 is 𝑂(𝐿2𝐾(𝐷 + 1)). The
766
+ complexity of steps 12-14 is 𝑂(1). For step 15, the complexity
767
+ of 𝑻5 is 𝑂(𝐿𝑁2 + 𝐿2𝑁 + 𝐿3). The complexity of step 16 is
768
+ 𝑂(𝐿𝑁𝐾(𝐷 + 1) + 𝐿𝑁2 + 𝐿2𝑁 + 𝐿3) . For step 17, the com-
769
+ plexity is 𝑂(3𝐿2𝐾2(𝐷 + 1)2). Hence, the overall complexity
770
+ of the whole algorithm is dominated by steps 6 and 16. Let 𝑎 =
771
+ max (𝐿, 𝐷, 𝐾) , 𝑏 = max (𝑁, 𝐾(𝐷 + 1)) . In general, 𝑎 ≪ 𝑏 .
772
+ Therefore, the maximum computational complexity of R-
773
+ MLTSK-FS is 𝑂(𝑎3 + 𝑏(2𝑎𝑏 + 𝑎2 + 2𝑏2)).
774
+ IV. EXPERIMENTAL ANALYSIS
775
+ Extensive experiments are conducted to fully assess the ef-
776
+ fectiveness of R-MLTSK-FS, including classification perfor-
777
+ mance evaluation, robustness analysis, effectiveness analysis of
778
+ soft label learning and correlation enhancement learning, pa-
779
+ rameter analysis, convergence analysis, and statistical analysis.
780
+ The datasets, evaluation metrics and the settings used in the ex-
781
+ periments are described below.
782
+ A. Datasets
783
+ We adopt 10 benchmark multilabel datasets to evaluate the
784
+ performance of R-MLTSK-FS. Table I shows the details of
785
+ these datasets, where #Instance, #Feature, and #Label denote
786
+ the instance number, the feature dimension, and the label space
787
+ dimension respectively. These datasets are available from the
788
+ Github1.
789
+ B. Evaluation Metrics
790
+ Let {(𝒙̃𝑖, 𝒚̃𝑖)|1 ≤ 𝑖 ≤ 𝑁𝑡} be a test set with 𝑁𝑡 samples,
791
+ 𝒚̂𝑖 be the predicted labels of 𝒙̃𝑖, 𝑓(𝒙̃𝑖, 𝑙) be the continuous
792
+ output predicted by the multilabel method for the instance 𝒙̃𝑖
793
+ on the lth label. The ranking function 𝑟𝑎𝑛𝑘(𝒙̃𝑖, 𝑙) is obtained
794
+ according
795
+ to
796
+ 𝑓(𝒙̃𝑖, 𝑙) .
797
+ If
798
+ 𝑓(𝒙̃𝑖, 𝑙) > 𝑓(𝒙̃𝑖, 𝑙′) ,
799
+ then
800
+ 𝑟𝑎𝑛𝑘(𝒙̃𝑖, 𝑙) < 𝑟𝑎𝑛𝑘(𝒙̃𝑖, 𝑙′). Let 𝐿𝒙𝑖 be the label set related to
801
+ 𝒙̃𝑖, and 𝐿𝒙𝑖 is the complement of 𝐿𝒙𝑖. Based on the settings,
802
+ the four metrics below, commonly used in multilabel learning,
803
+ are employed in the experiments [46].
804
+ (1) Average Precision (AP): It is the average proportion of
805
+ the related labels of an instance that are ranked lower than a
806
+ given label l. The larger the value of AP, the better the classifi-
807
+ cation performance.
808
+ AP =
809
+ 1
810
+ 𝑁𝑡 ∑
811
+ 1
812
+ |𝐿𝒙𝑖| ∑
813
+ |{𝑙′ ∈ 𝐿𝒙𝑖|𝑓(𝒙̃𝑖, 𝑙′) ≥ 𝑓(𝒙̃𝑖, 𝑙)}|
814
+ 𝑟𝑎𝑛𝑘(𝒙̃𝑖,𝑙)
815
+ 𝑙∈𝐿𝒙𝑖
816
+ 𝑁𝑡
817
+ 𝑖=1
818
+ (34)
819
+ (2) Hamming Loss (HL): It is the average proportion of an
820
+ instance that is predicted incorrectly. The smaller the value of
821
+ HL, the better the classification performance.
822
+ HL =
823
+ 1
824
+ 𝑁𝑡 ∑
825
+ |𝒚̃𝑖⨁𝒚̂𝑖|
826
+ 𝐿
827
+ 𝑁𝑡
828
+ 𝑖=1
829
+
830
+ (35)
831
+ where ⨁ is the XOR operation.
832
+ (3) Ranking Loss (RL): It is the proportion of the related la-
833
+ bels that are ranked higher than the unrelated labels. The
834
+ smaller the value of RL, the better the classification perfor-
835
+ mance.
836
+ RL =
837
+ 1
838
+ 𝑁𝑡 ∑
839
+ |{(𝑙, 𝑙′)|𝑓(𝒙̃𝑖, 𝑙) ≤ 𝑓(𝒙̃𝑖, 𝑙′), (𝑙, 𝑙′) ∈ 𝐿𝒙𝑖 × 𝐿𝒙𝑖}|
840
+ |𝐿𝒙𝑖||𝐿𝒙𝑖|
841
+ 𝑁𝑡
842
+ 𝑖=1
843
+
844
+
845
+ (36)
846
+ (4) Coverage (CV): It is the average number of times that all
847
+ related labels of an instance are found. The smaller the value of
848
+ CV, the better the classification performance.
849
+ CV =
850
+ 1
851
+ 𝑁𝑡 ∑
852
+ max
853
+ 𝑙∈𝐿𝒙𝑖
854
+ 𝑟𝑎𝑛𝑘(𝒙̃𝑖, 𝑙) − 1
855
+ 𝑁𝑡
856
+ 𝑖=1
857
+
858
+ (37)
859
+ C. Experimental Settings
860
+ In this paper, we employ eight methods for comparison, in-
861
+ cluding binary relevance (BR) [47], multilabel k-nearest neigh-
862
+ bor (MLkNN) [48], meta-label-specific features (MLSF) [49],
863
+ ML-TSK FS [17], classifier chains (CC) [50], random k-label-
864
+ sets (RAkEL) [51], correlated logistic models (CorrLog) [52]
865
+ and hybrid noise-oriented multilabel learning (HNOML) [53].
866
+ These methods and the settings of the parameters for grid search
867
+ are described in Table II. We adopt the 5-fold cross-validation
868
+ strategy to evaluate the performance.
869
+
870
+
871
+
872
+ 1https://github.com/ZesenChen/multi-label-dataset and https://github.com/
873
+ KKimura360/MLC_toolbox/tree/master/dataset/matfile
874
+
875
+ TABLE II
876
+ DESCRIPTION OF METHODS
877
+
878
+ Methods
879
+ Description
880
+ Parameter Setting
881
+ BR
882
+ This method is a first-order method. To improve the robustness, it introduces -in-
883
+ sensitive learning (a fuzzy method) by solving a system of linear inequalities
884
+ (LSSLI) [54] as the binary classifier.
885
+
886
+ 𝐶 = 2. ^(−5: 1: 5),
887
+ 𝑀 = {2, 3, 4, 5, 6, 7, 8, 9}.
888
+ MLkNN
889
+ This method is a first-order method that predicts a new instance by maximizing the
890
+ posterior probability of each label. The number of nearest neighbors affects the ro-
891
+ bustness of the model to some extent.
892
+
893
+ 𝐾 = {1, 3, 5, 7, 9, 11, 13},
894
+ 𝑠 = {0.01, 0.03, 0.05, 0.07, 0.09}.
895
+ MLSF
896
+ This method is a second-order method. It improves the performance through meta-
897
+ label learning and specific feature selection.
898
+
899
+ 𝑘 = {2,4,6,8}, 𝜀 = {0.1,1,10},
900
+ 𝛼 = {0.1,0.5,0.9}, 𝛾 = {0.1,1,10}.
901
+ ML-TSK FS
902
+ This method is a second-order method that uses the correlation between any two la-
903
+ bels to improve performance. To realize the transparency, it uses fuzzy rules to
904
+ model the inference relationship between features and labels. This method does not
905
+ consider the influence of label noise.
906
+
907
+ 𝐾 = {2,3,4,5},
908
+ 𝛼 = {0.01,0.1,1,10,100},
909
+ 𝛽 = {0.01,0.1,1,10,100}.
910
+ CC
911
+ This method is a high-order method which adds the prediction result of the previous
912
+ label to the feature space to participate in the prediction of the next label. The -in-
913
+ sensitive learning (a fuzzy method) by solving a system of linear inequalities
914
+ (LSSLI) [54] is used as the binary classifier to improve the robustness.
915
+
916
+ 𝐶 = 2. ^(−5: 1: 5),
917
+ 𝑀 = {2, 3, 4, 5, 6, 7, 8, 9}.
918
+ RAkEL
919
+ This method is a high-order method. In this method, the label space is randomly di-
920
+ vided into multiple label subspaces, and the prediction result of a label is associated
921
+ with other labels in the subspace.
922
+
923
+ 𝑘 = 𝑁./(12: −2: 2) (N is the instance number),
924
+ 𝛼 = {0.1, 0.3, 0.5, 0.7, 0.9}.
925
+ CorrLog
926
+ This method is a high-order method. It achieves robustness by constructing the asso-
927
+ ciation between a label and all other labels.
928
+
929
+ 𝑟ℎ𝑜1 = {0.001, 0.003,0.005,0.007, 0.009, 0.01,
930
+ 0.03,0.05,0.07,0.09,0.1,0.3,0.5,0.7,0.9},
931
+ 𝑟ℎ𝑜2 = {0.001, 0.005, 0.01, 0.05,0.1,0.5}.
932
+
933
+ HNOML
934
+ This method is a high-order method. It designs a label enrichment matrix to improve
935
+ the robustness.
936
+
937
+ 𝛼 = {0.01,0.1,1,10},
938
+ 𝛽 = {0.01,0.1,1,10,100},
939
+ 𝛾 = {0.01,0.1,1,10}.
940
+
941
+ R-MLTSK-FS
942
+ (ours)
943
+ The method proposed in this paper. It is a second-order method and achieves the
944
+ transparency and robustness against label noise through fuzzy rules, correlation en-
945
+ hancement learning, soft multilabel loss function construction, and soft label learn-
946
+ ing.
947
+ 𝛼 = {0.001,0.005,0.01,0.05,0.1,0.5,1,5,10,50,100},
948
+ 𝛽 = {0.001,0.005,0.01,0.05,0.1,0.5,1,5,10,50,100},
949
+ 𝛾 = {0.001,0.005,0.01,0.05,0.1,0.5,1,5,10,50,100},
950
+ 𝑘 = {2,3}.
951
+
952
+ D. Performance Analysis
953
+ 1) Classification Performance Evaluation
954
+ To verify the effectiveness of R-MLTSK-FS, we compare the
955
+ R-MLTSK-FS with eight methods on 10 datasets. The experi-
956
+ mental results, expressed in terms of the mean and standard de-
957
+ viation (inside brackets) of the four metrics, are shown in Table
958
+ III. For each dataset, the best value of each metric is bold-faced.
959
+ We can see that compared to the eight methods, the overall per-
960
+ formance of R-MLTSK-FS is the best on all the metrics. This
961
+ is attributable to the three mechanisms introduced.
962
+
963
+ 2) Robustness Analysis
964
+ In order to verify the robustness of R-MLTSK-FS against la-
965
+ bel noise, we introduce label noise to the data and evaluate the
966
+ performance. Specifically, we randomly select 0%, 10%, 20%,
967
+ 30% and 40% samples from the training set, and then create
968
+ noise by changing their related (unrelated) labels to unrelated
969
+ (related) ones. The 5-fold cross-validation strategy is adopted
970
+ in the experiment. Fig. 2 shows the experimental results, from
971
+ which the following findings are obtained:
972
+ (1) Despite the increase in the amount of noise in the experi-
973
+ ments, the proposed R-MLTSK-FS maintains outstanding clas-
974
+ sification performance, indicating the effectiveness of the three
975
+ mechanisms introduced in reducing the influence of label noise.
976
+ (2) Label noise has different effect on the comparison meth-
977
+ ods. For example, the performance of MLkNN in the presence
978
+ of label noise is unstable because the robustness of MLkNN
979
+ against noisy labels is affected by the number of nearest neigh-
980
+ bors. For RAkEL and CorrLog, their performance is unsatisfac-
981
+ tory since they ignore label noise in modeling the correlation
982
+ between labels. For ML-TSK FS, its overall robustness is infe-
983
+ rior to the proposed method as it also ignores the influence of
984
+ label noise in model training.
985
+
986
+ 3) Effectiveness Analysis of Soft Label Learning
987
+ To evaluate the effectiveness of R-MLTSK-FS in soft label
988
+ learning, we study the influence weights 𝑺 with three synthetic
989
+ multilabel datasets, namely Independence dataset, Equality da-
990
+ taset and Union dataset [55], each containing 1000 samples.
991
+ For each sample, the feature dimension is 20 and the label di-
992
+ mension is 5. Each feature in the synthetic datasets is normal-
993
+ ized in [0, 1].
994
+ Each synthetic dataset has five labels, 𝒴1, …, 𝒴5. For the
995
+ first four labels, their logical relationships are designed as fol-
996
+ lows:
997
+ Independence dataset: The first four labels 𝒴1 , 𝒴2 , 𝒴3
998
+ and 𝒴4 are independent of each other.
999
+ Equality dataset: 𝒴1 = 𝒴2 and 𝒴3 = 𝒴4 . That is, for a
1000
+ sample (𝒙𝑖, 𝒚𝑖) (1 ≤ 𝑖 ≤ 1000), 𝑦𝑖1 = 𝑦𝑖2 and 𝑦𝑖3 = 𝑦𝑖4.
1001
+ Union dataset: 𝒴1 = 𝒴2 ∨ 𝒴3 ∨ 𝒴4. That is, for a sample
1002
+ (𝒙𝑖, 𝒚𝑖) (1 ≤ 𝑖 ≤ 1000), if 𝑦𝑖2 = 1 or 𝑦𝑖3 = 1 or 𝑦𝑖4 = 1,
1003
+ then 𝑦𝑖1 = 1, otherwise, 𝑦𝑖1 = 0.
1004
+
1005
+ TABLE III
1006
+
1007
+ MEAN (SD) OF THE METRICS OF THE MULTILABEL CLASSIFICATION METHODS
1008
+
1009
+ Datasets
1010
+
1011
+ Methods
1012
+
1013
+
1014
+ Met-
1015
+ rics
1016
+ BR
1017
+ MLkNN
1018
+ MLSF
1019
+ ML-TSK FS
1020
+ CC
1021
+ RAkEL
1022
+ CorrLog
1023
+ HNOML
1024
+ R-MLTSK-FS
1025
+ Arts
1026
+ AP
1027
+ 0.6270
1028
+ (0.0076)
1029
+ 0.5454
1030
+ (0.0082)
1031
+ 0.4977
1032
+ (0.0859)
1033
+ 0.6207
1034
+ (0.0141)
1035
+ 0.6164
1036
+ (0.0084)
1037
+ 0.2682
1038
+ (0.0285)
1039
+ 0.3646
1040
+ (0.0482)
1041
+ 0.6090
1042
+ (0.0082)
1043
+ 0.6289
1044
+ (0.0130)
1045
+ HL
1046
+ 0.0902
1047
+ (0.0050)
1048
+ 0.0629
1049
+ (0.0007)
1050
+ 0.0604
1051
+ (0.0022)
1052
+ 0.0529
1053
+ (0.0019)
1054
+ 0.1025
1055
+ (0.0011)
1056
+ 0.1950
1057
+ (0.0092)
1058
+ 0.0597
1059
+ (0.0018)
1060
+ 0.0573
1061
+ (0.0009)
1062
+ 0.0546
1063
+ (0.0017)
1064
+ RL
1065
+ 0.1266
1066
+ (0.0042)
1067
+ 0.1396
1068
+ (0.0028)
1069
+ 0.1257
1070
+ (0.0309)
1071
+ 0.1161
1072
+ (0.0039)
1073
+ 0.1300
1074
+ (0.0069)
1075
+ 0.4123
1076
+ (0.0325)
1077
+ 0.3865
1078
+ (0.0878)
1079
+ 0.1509
1080
+ (0.0052)
1081
+ 0.1118
1082
+ (0.0075)
1083
+ CV
1084
+ 0.1965
1085
+ (0.0053)
1086
+ 0.1981
1087
+ (0.0036)
1088
+ 0.3047
1089
+ (0.0663)
1090
+ 0.1807
1091
+ (0.0083)
1092
+ 0.2054
1093
+ (0.0082)
1094
+ 0.8363
1095
+ (0.0369)
1096
+ 0.4724
1097
+ (0.0694)
1098
+ 0.2371
1099
+ (0.0045)
1100
+ 0.1720
1101
+ (0.0073)
1102
+ Birds
1103
+ AP
1104
+ 0.3422
1105
+ (0.0340)
1106
+ 0.2303
1107
+ (0.0185)
1108
+ 0.2712
1109
+ (0.0203)
1110
+ 0.3438
1111
+ (0.0347)
1112
+ 0.3360
1113
+ (0.0174)
1114
+ 0.3591
1115
+ (0.0319)
1116
+ 0.2124
1117
+ (0.0230)
1118
+ 0.3352
1119
+ (0.0325)
1120
+ 0.3694
1121
+ (0.0354)
1122
+ HL
1123
+ 0.0556
1124
+ (0.0022)
1125
+ 0.0551
1126
+ (0.0058)
1127
+ 0.0648
1128
+ (0.0027)
1129
+ 0.0514
1130
+ (0.0038)
1131
+ 0.0545
1132
+ (0.0033)
1133
+ 0.0446
1134
+ (0.0032)
1135
+ 0.0451
1136
+ (0.0027)
1137
+ 0.0515
1138
+ (0.0065)
1139
+ 0.0430
1140
+ (0.0063)
1141
+ RL
1142
+ 0.0983
1143
+ (0.0230)
1144
+ 0.1565
1145
+ (0.0127)
1146
+ 0.0807
1147
+ (0.0205)
1148
+ 0.0863
1149
+ (0.0221)
1150
+ 0.1097
1151
+ (0.0055)
1152
+ 0.6509
1153
+ (0.0634)
1154
+ 0.1611
1155
+ (0.0067)
1156
+ 0.0968
1157
+ (0.0215)
1158
+ 0.0710
1159
+ (0.0124)
1160
+ CV
1161
+ 0.1311
1162
+ (0.0151)
1163
+ 0.1887
1164
+ (0.0203)
1165
+ 0.1699
1166
+ (0.0495)
1167
+ 0.1132
1168
+ (0.0315)
1169
+ 0.1445
1170
+ (0.0094)
1171
+ 0.7032
1172
+ (0.0364)
1173
+ 0.1939
1174
+ (0.0141)
1175
+ 0.1179
1176
+ (0.0188)
1177
+ 0.0957
1178
+ (0.0193)
1179
+ CAL500
1180
+ AP
1181
+ 0.5048
1182
+ (0.0055)
1183
+ 0.4965
1184
+ (0.0037)
1185
+ 0.4906
1186
+ (0.0119)
1187
+ 0.5075
1188
+ (0.0104)
1189
+ 0.4541
1190
+ (0.0088)
1191
+ 0.2150
1192
+ (0.0047)
1193
+ 0.3108
1194
+ (0.0171)
1195
+ 0.4314
1196
+ (0.1844)
1197
+ 0.5153
1198
+ (0.0152)
1199
+ HL
1200
+ 0.1447
1201
+ (0.0034)
1202
+ 0.1371
1203
+ (0.0031)
1204
+ 0.1368
1205
+ (0.0027)
1206
+ 0.1368
1207
+ (0.0027)
1208
+ 0.1442
1209
+ (0.0026)
1210
+ 0.1363
1211
+ (0.0036)
1212
+ 0.1371
1213
+ (0.0046)
1214
+ 0.1411
1215
+ (0.0072)
1216
+ 0.1358
1217
+ (0.0034)
1218
+ RL
1219
+ 0.1879
1220
+ (0.0058)
1221
+ 0.1822
1222
+ (0.0043)
1223
+ 0.1780
1224
+ (0.0053)
1225
+ 0.1763
1226
+ (0.0035)
1227
+ 0.2515
1228
+ (0.0085)
1229
+ 0.6145
1230
+ (0.0161)
1231
+ 0.6750
1232
+ (0.1145)
1233
+ 0.1423
1234
+ (0.0797)
1235
+ 0.1744
1236
+ (0.0012)
1237
+ CV
1238
+ 0.7656
1239
+ (0.0132)
1240
+ 0.7583
1241
+ (0.0122)
1242
+ 0.7600
1243
+ (0.0132)
1244
+ 0.7380
1245
+ (0.0091)
1246
+ 0.9085
1247
+ (0.0105)
1248
+ 0.7835
1249
+ (0.0264)
1250
+ 0.8722
1251
+ (0.0119)
1252
+ 0.7669
1253
+ (0.0579)
1254
+ 0.7348
1255
+ (0.0278)
1256
+ Corel5k
1257
+ AP
1258
+ 0.3044
1259
+ (0.0068)
1260
+ 0.2561
1261
+ (0.0077)
1262
+ 0.2134
1263
+ (0.0178)
1264
+ 0.3064
1265
+ (0.0003)
1266
+ 0.2639
1267
+ (0.0061)
1268
+ 0.0652
1269
+ (0.0032)
1270
+ 0.2079
1271
+ (0.0085)
1272
+ 0.2884
1273
+ (0.0105)
1274
+ 0.3070
1275
+ (0.0070)
1276
+ HL
1277
+ 0.0094
1278
+ (0.0001)
1279
+ 0.0094
1280
+ (0.0001)
1281
+ 0.0094
1282
+ (0.0001)
1283
+ 0.0094
1284
+ (0.0003)
1285
+ 0.0094
1286
+ (0.0001)
1287
+ 0.0197
1288
+ (0.0002)
1289
+ 0.0094
1290
+ (0.0003)
1291
+ 0.0111
1292
+ (0.0006)
1293
+ 0.0094
1294
+ (0.0001)
1295
+ RL
1296
+ 0.1649
1297
+ (0.0044)
1298
+ 0.1313
1299
+ (0.0040)
1300
+ 0.2591
1301
+ (0.0290)
1302
+ 0.1294
1303
+ (0.0047)
1304
+ 0.1784
1305
+ (0.0068)
1306
+ 0.5564
1307
+ (0.0279)
1308
+ 0.1432
1309
+ (0.0032)
1310
+ 0.1119
1311
+ (0.2279)
1312
+ 0.1092
1313
+ (0.0028)
1314
+ CV
1315
+ 0.3852
1316
+ (0.0045)
1317
+ 0.3023
1318
+ (0.0059)
1319
+ 0.6994
1320
+ (0.0983)
1321
+ 0.3018
1322
+ (0.0108)
1323
+ 0.4288
1324
+ (0.0108)
1325
+ 0.5552
1326
+ (0.0167)
1327
+ 0.3207
1328
+ (0.0101)
1329
+ 0.3678
1330
+ (0.0092)
1331
+ 0.2600
1332
+ (0.0090)
1333
+ Flags
1334
+ AP
1335
+ 0.8101
1336
+ (0.0316)
1337
+ 0.8020
1338
+ (0.0415)
1339
+ 0.8163
1340
+ (0.0226)
1341
+ 0.8176
1342
+ (0.0118)
1343
+ 0.8076
1344
+ (0.0413)
1345
+ 0.6581
1346
+ (0.0544)
1347
+ 0.7704
1348
+ (0.0180)
1349
+ 0.8080
1350
+ (0.0110)
1351
+ 0.8209
1352
+ (0.0391)
1353
+ HL
1354
+ 0.2796
1355
+ (0.0216)
1356
+ 0.3275
1357
+ (0.0272)
1358
+ 0.2768
1359
+ (0.0155)
1360
+ 0.2649
1361
+ (0.0254)
1362
+ 0.2711
1363
+ (0.0307)
1364
+ 0.2755
1365
+ (0.0323)
1366
+ 0.2856
1367
+ (0.0258)
1368
+ 0.2711
1369
+ (0.0124)
1370
+ 0.2647
1371
+ (0.0438)
1372
+ RL
1373
+ 0.2155
1374
+ (0.0341)
1375
+ 0.2443
1376
+ (0.0374)
1377
+ 0.1374
1378
+ (0.0066)
1379
+ 0.2132
1380
+ (0.0173)
1381
+ 0.2340
1382
+ (0.0495)
1383
+ 0.6030
1384
+ (0.0419)
1385
+ 0.3566
1386
+ (0.0408)
1387
+ 0.2178
1388
+ (0.0159)
1389
+ 0.2054
1390
+ (0.0345)
1391
+ CV
1392
+ 0.5523
1393
+ (0.0159)
1394
+ 0.5626
1395
+ (0.0198)
1396
+ 0.5524
1397
+ (0.0206)
1398
+ 0.5232
1399
+ (0.0127)
1400
+ 0.5553
1401
+ (0.0123)
1402
+ 0.8903
1403
+ (0.0252)
1404
+ 0.5486
1405
+ (0.0150)
1406
+ 0.5431
1407
+ (0.0341)
1408
+ 0.5318
1409
+ (0.0276)
1410
+ Genbase
1411
+ AP
1412
+ 0.9922
1413
+ (0.0067)
1414
+ 0.9910
1415
+ (0.0043)
1416
+ 0.9913
1417
+ (0.0051)
1418
+ 0.9968
1419
+ (0.0027)
1420
+ 0.9802
1421
+ (0.0181)
1422
+ 0.7784
1423
+ (0.0697)
1424
+ 0.9717
1425
+ (0.0097)
1426
+ 0.9941
1427
+ (0.0050)
1428
+ 0.9977
1429
+ (0.0031)
1430
+ HL
1431
+ 0.0011
1432
+ (0.0006)
1433
+ 0.0016
1434
+ (0.0005)
1435
+ 0.0044
1436
+ (0.0016)
1437
+ 0.0015
1438
+ (0.0017)
1439
+ 0.0095
1440
+ (0.0033)
1441
+ 0.0022
1442
+ (0.0012)
1443
+ 0.0022
1444
+ (0.0007)
1445
+ 0.0020
1446
+ (0.0015)
1447
+ 0.0010
1448
+ (0.0012)
1449
+ RL
1450
+ 0.0035
1451
+ (0.0049)
1452
+ 0.0061
1453
+ (0.0040)
1454
+ 0.0038
1455
+ (0.0026)
1456
+ 0.0011
1457
+ (0.0009)
1458
+ 0.0087
1459
+ (0.0081)
1460
+ 0.0242
1461
+ (0.0184)
1462
+ 0.0355
1463
+ (0.0095)
1464
+ 0.0006
1465
+ (0.0007)
1466
+ 0.0006
1467
+ (0.0005)
1468
+ CV
1469
+ 0.0150
1470
+ (0.0061)
1471
+ 0.0192
1472
+ (0.0073)
1473
+ 0.0195
1474
+ (0.0073)
1475
+ 0.0105
1476
+ (0.0042)
1477
+ 0.0244
1478
+ (0.0154)
1479
+ 0.0588
1480
+ (0.0159)
1481
+ 0.0407
1482
+ (0.0063)
1483
+ 0.0126
1484
+ (0.0046)
1485
+ 0.0102
1486
+ (0.0021)
1487
+ Medical
1488
+ AP
1489
+ 0.8755
1490
+ (0.0266)
1491
+ 0.8067
1492
+ (0.0128)
1493
+ 0.8272
1494
+ (0.0250)
1495
+ 0.8959
1496
+ (0.0143)
1497
+ 0.8765
1498
+ (0.0307)
1499
+ 0.4443
1500
+ (0.0219)
1501
+ 0.7562
1502
+ (0.0181)
1503
+ 0.8761
1504
+ (0.0495)
1505
+ 0.8822
1506
+ (0.0150)
1507
+ HL
1508
+ 0.0142
1509
+ (0.0018)
1510
+ 0.0156
1511
+ (0.0004)
1512
+ 0.0131
1513
+ (0.0012)
1514
+ 0.0107
1515
+ (0.0006)
1516
+ 0.0125
1517
+ (0.0014)
1518
+ 0.0109
1519
+ (0.0008)
1520
+ 0.0113
1521
+ (0.0007)
1522
+ 0.0213
1523
+ (0.0085)
1524
+ 0.0105
1525
+ (0.0019)
1526
+ RL
1527
+ 0.0274
1528
+ (0.0147)
1529
+ 0.0430
1530
+ (0.0061)
1531
+ 0.0273
1532
+ (0.0038)
1533
+ 0.0371
1534
+ (0.0136)
1535
+ 0.0311
1536
+ (0.0175)
1537
+ 0.1079
1538
+ (0.0250)
1539
+ 0.2742
1540
+ (0.0258)
1541
+ 0.0232
1542
+ (0.0320)
1543
+ 0.0197
1544
+ (0.0039)
1545
+ CV
1546
+ 0.0415
1547
+ (0.0186)
1548
+ 0.0629
1549
+ (0.0056)
1550
+ 0.0717
1551
+ (0.0082)
1552
+ 0.0363
1553
+ (0.0068)
1554
+ 0.0453
1555
+ (0.0226)
1556
+ 0.1394
1557
+ (0.0304)
1558
+ 0.1969
1559
+ (0.0280)
1560
+ 0.0357
1561
+ (0.0217)
1562
+ 0.0308
1563
+ (0.0105)
1564
+ Mirflickr
1565
+ AP
1566
+ 0.4540
1567
+ (0.0421)
1568
+ 0.5096
1569
+ (0.0028)
1570
+ 0.2906
1571
+ (0.0156)
1572
+ 0.5239
1573
+ (0.0045)
1574
+ 0.4703
1575
+ (0.0019)
1576
+ 0.2216
1577
+ (0.0030)
1578
+ 0.4779
1579
+ (0.0085)
1580
+ 0.5121
1581
+ (0.0084)
1582
+ 0.5246
1583
+ (0.0015)
1584
+ HL
1585
+ 0.1528
1586
+ (0.0122)
1587
+ 0.1533
1588
+ (0.0006)
1589
+ 0.1543
1590
+ (0.0010)
1591
+ 0.1521
1592
+ (0.0005)
1593
+ 0.1588
1594
+ (0.0010)
1595
+ 0.2122
1596
+ (0.0030)
1597
+ 0.1548
1598
+ (0.0005)
1599
+ 0.1523
1600
+ (0.0022)
1601
+ 0.1521
1602
+ (0.0004)
1603
+ RL
1604
+ 0.3218
1605
+ (0.0419)
1606
+ 0.2050
1607
+ (0.0027)
1608
+ 0.2616
1609
+ (0.0012)
1610
+ 0.1946
1611
+ (0.0015)
1612
+ 0.2444
1613
+ (0.0015)
1614
+ 0.5694
1615
+ (0.0087)
1616
+ 0.2146
1617
+ (0.0028)
1618
+ 0.2106
1619
+ (0.0097)
1620
+ 0.1929
1621
+ (0.0012)
1622
+ CV
1623
+ 0.6120
1624
+ (0.0327)
1625
+ 0.4395
1626
+ (0.0045)
1627
+ 0.4703
1628
+ (0.0082)
1629
+ 0.4190
1630
+ (0.0031)
1631
+ 0.5314
1632
+ (0.0037)
1633
+ 0.9937
1634
+ (0.0021)
1635
+ 0.4495
1636
+ (0.0041)
1637
+ 0.4434
1638
+ (0.0043)
1639
+ 0.4182
1640
+ (0.0051)
1641
+ Recreation
1642
+ AP
1643
+ 0.6363
1644
+ (0.0151)
1645
+ 0.5333
1646
+ (0.0092)
1647
+ 0.4817
1648
+ (0.0426)
1649
+ 0.6362
1650
+ (0.0061)
1651
+ 0.6286
1652
+ (0.0152)
1653
+ 0.2922
1654
+ (0.0193)
1655
+ 0.2104
1656
+ (0.0247)
1657
+ 0.6062
1658
+ (0.0076)
1659
+ 0.6366
1660
+ (0.0058)
1661
+ HL
1662
+ 0.0905
1663
+ (0.0014)
1664
+ 0.0647
1665
+ (0.0012)
1666
+ 0.0637
1667
+ (0.0014)
1668
+ 0.0592
1669
+ (0.0012)
1670
+ 0.0998
1671
+ (0.0019)
1672
+ 0.2923
1673
+ (0.0148)
1674
+ 0.0583
1675
+ (0.0010)
1676
+ 0.0563
1677
+ (0.0021)
1678
+ 0.0553
1679
+ (0.0017)
1680
+ RL
1681
+ 0.1391
1682
+ (0.0082)
1683
+ 0.1640
1684
+ (0.0011)
1685
+ 0.1408
1686
+ (0.0410)
1687
+ 0.1297
1688
+ (0.0020)
1689
+ 0.1400
1690
+ (0.0083)
1691
+ 0.4073
1692
+ (0.0155)
1693
+ 0.4839
1694
+ (0.0119)
1695
+ 0.1989
1696
+ (0.0061)
1697
+ 0.1246
1698
+ (0.0058)
1699
+ CV
1700
+ 0.1877
1701
+ (0.0117)
1702
+ 0.2035
1703
+ (0.0040)
1704
+ 0.3076
1705
+ (0.0867)
1706
+ 0.1697
1707
+ (0.0043)
1708
+ 0.1906
1709
+ (0.0125)
1710
+ 0.8912
1711
+ (0.0206)
1712
+ 0.4554
1713
+ (0.0240)
1714
+ 0.2545
1715
+ (0.0113)
1716
+ 0.1675
1717
+ (0.0054)
1718
+ Science
1719
+ AP
1720
+ 0.5983
1721
+ (0.0132)
1722
+ 0.5134
1723
+ (0.0119)
1724
+ 0.4461
1725
+ (0.0063)
1726
+ 0.5978
1727
+ (0.0217)
1728
+ 0.5861
1729
+ (0.0125)
1730
+ 0.2333
1731
+ (0.0115)
1732
+ 0.2492
1733
+ (0.0106)
1734
+ 0.5737
1735
+ (0.0144)
1736
+ 0.5984
1737
+ (0.0051)
1738
+ HL
1739
+ 0.0526
1740
+ (0.0007)
1741
+ 0.0363
1742
+ (0.0006)
1743
+ 0.0343
1744
+ (0.0011)
1745
+ 0.0329
1746
+ (0.0004)
1747
+ 0.0603
1748
+ (0.0009)
1749
+ 0.1288
1750
+ (0.0087)
1751
+ 0.0370
1752
+ (0.0036)
1753
+ 0.0333
1754
+ (0.0004)
1755
+ 0.0324
1756
+ (0.0009)
1757
+ RL
1758
+ 0.1140
1759
+ (0.0068)
1760
+ 0.1211
1761
+ (0.0046)
1762
+ 0.0990
1763
+ (0.0143)
1764
+ 0.0996
1765
+ (0.0072)
1766
+ 0.1128
1767
+ (0.0071)
1768
+ 0.3794
1769
+ (0.0352)
1770
+ 0.4989
1771
+ (0.1339)
1772
+ 0.1867
1773
+ (0.0086)
1774
+ 0.0976
1775
+ (0.0050)
1776
+ CV
1777
+ 0.1596
1778
+ (0.0089)
1779
+ 0.1574
1780
+ (0.0050)
1781
+ 0.1823
1782
+ (0.0269)
1783
+ 0.1357
1784
+ (0.0088)
1785
+ 0.1620
1786
+ (0.0093)
1787
+ 0.7443
1788
+ (0.0366)
1789
+ 0.3614
1790
+ (0.0219)
1791
+ 0.2434
1792
+ (0.0061)
1793
+ 0.1321
1794
+ (0.0058)
1795
+
1796
+
1797
+
1798
+
1799
+
1800
+
1801
+
1802
+ (a) Arts
1803
+ (b) Birds
1804
+ (c) CAL500
1805
+ (d) Corel5k
1806
+ (e) Flags
1807
+
1808
+
1809
+
1810
+
1811
+
1812
+ (f) Genbase
1813
+ (g) Medical
1814
+ (h) Mirflickr
1815
+ (i) Recreation
1816
+ (j) Science
1817
+ Fig. 2 Performance in terms of AP on datasets with label noise. (Noise ratio is defined as the proportion of samples that are randomly selected from the training set
1818
+ and their related (unrelated) labels are changed to unrelated (related) ones. The larger the value of AP, the better the classification performance.)
1819
+
1820
+ TABLE IV
1821
+ INFLUENCE WEIGHTS (S) OF ORIGINAL LABELS ON A SOFT LABEL IN INDEPENDENCE DATASET
1822
+
1823
+
1824
+ original label 1 (𝒴1)
1825
+ original label 2 (𝒴2)
1826
+ original label 3 (𝒴3)
1827
+ original label 4 (𝒴4)
1828
+ original label 5 (𝒴5)
1829
+ soft label 1 (𝒴1
1830
+ ′)
1831
+ 0.2016
1832
+ 0.0510
1833
+ 0.0697
1834
+ 0.0462
1835
+ 0.0797
1836
+ soft label 2 (𝒴2
1837
+ ′)
1838
+ 0.1409
1839
+ 0.3149
1840
+ 0.1921
1841
+ 0.1552
1842
+ 0.2182
1843
+ soft label 3 (𝒴3
1844
+ ′)
1845
+ 0.2447
1846
+ 0.2523
1847
+ 0.4662
1848
+ 0.2628
1849
+ 0.3666
1850
+ soft label 4 (𝒴4
1851
+ ′)
1852
+ 0.0031
1853
+ 0.0051
1854
+ 0.0053
1855
+ 0.1191
1856
+ 0.0061
1857
+ soft label 5 (𝒴5
1858
+ ′)
1859
+ 0.1179
1860
+ 0.1046
1861
+ 0.1068
1862
+ 0.1281
1863
+ 0.2832
1864
+ N.B. 𝒴1, 𝒴2, 𝒴3 and 𝒴4 are independent. 𝒴5 = (¬𝒴1) ∧ (¬𝒴2) ∧ (¬𝒴3) ∧ (¬𝒴4).
1865
+
1866
+ TABLE V
1867
+ INFLUENCE WEIGHTS (S) OF ORIGINAL LABELS ON A SOFT LABEL IN EQUALITY DATASET
1868
+
1869
+
1870
+ original label 1 (𝒴1)
1871
+ original label 2 (𝒴2)
1872
+ original label 3 (𝒴3)
1873
+ original label 4 (𝒴4)
1874
+ original label 5 (𝒴5)
1875
+ soft label 1 (𝒴1
1876
+ ′)
1877
+ 0.3645
1878
+ 0.3645
1879
+ 0.2252
1880
+ 0.2252
1881
+ 0.6172
1882
+ soft label 2 (𝒴2
1883
+ ′)
1884
+ 0.3645
1885
+ 0.3645
1886
+ 0.2252
1887
+ 0.2252
1888
+ 0.6172
1889
+ soft label 3 (𝒴3
1890
+ ′)
1891
+ 0.1900
1892
+ 0.1900
1893
+ 0.2456
1894
+ 0.2456
1895
+ 0.4350
1896
+ soft label 4 (𝒴4
1897
+ ′)
1898
+ 0.1900
1899
+ 0.1900
1900
+ 0.2456
1901
+ 0.2456
1902
+ 0.4350
1903
+ soft label 5 (𝒴5
1904
+ ′)
1905
+ 0.1252
1906
+ 0.1252
1907
+ 0.1260
1908
+ 0.1260
1909
+ 0.4480
1910
+ N.B. 𝒴1 = 𝒴2 and 𝒴3 = 𝒴4. 𝒴5 = (¬𝒴1) ∧ (¬𝒴2) ∧ (¬𝒴3) ∧ (¬𝒴4).
1911
+
1912
+ TABLE VI
1913
+ INFLUENCE WEIGHTS (S) OF ORIGINAL LABELS ON A SOFT LABEL IN UNION DATASET
1914
+
1915
+
1916
+ original label 1 (𝒴1)
1917
+ original label 2 (𝒴2)
1918
+ original label 3 (𝒴3)
1919
+ original label 4 (𝒴4)
1920
+ original label 5 (𝒴5)
1921
+ soft label 1 (𝒴1
1922
+ ′)
1923
+ 0.2295
1924
+ 0.0798
1925
+ 0.0981
1926
+ 0.1206
1927
+ 0.2654
1928
+ soft label 2 (𝒴2
1929
+ ′)
1930
+ 0.0791
1931
+ 0.1529
1932
+ 0.0363
1933
+ 0.0551
1934
+ 0.1327
1935
+ soft label 3 (𝒴3
1936
+ ′)
1937
+ 0.1378
1938
+ 0.0520
1939
+ 0.1694
1940
+ 0.1017
1941
+ 0.2151
1942
+ soft label 4 (𝒴4
1943
+ ′)
1944
+ 0.0077
1945
+ -0.0002
1946
+ 0.0005
1947
+ 0.0668
1948
+ 0.0106
1949
+ soft label 5 (𝒴5
1950
+ ′)
1951
+ 0.0649
1952
+ -0.0107
1953
+ -0.0264
1954
+ 0.0351
1955
+ 0.1057
1956
+ N.B. 𝒴1 = 𝒴2 ∨ 𝒴3 ∨ 𝒴4. 𝒴5 = (¬𝒴1) ∧ (¬𝒴2) ∧ (¬𝒴3) ∧ (¬𝒴4).
1957
+
1958
+ The fifth label is mutually exclusive with the first four labels
1959
+ (i.e., 𝒴5 = (¬𝒴1) ∧ (¬𝒴2) ∧ (¬𝒴3) ∧ (¬𝒴4) ). Specifically,
1960
+ for a sample (𝒙𝑖, 𝒚𝑖) (1 ≤ 𝑖 ≤ 1000), if 𝑦𝑖1 = 0 and 𝑦𝑖2 =
1961
+ 0 and 𝑦𝑖3 = 0 and 𝑦𝑖4 = 0, then 𝑦𝑖5 = 1, otherwise, 𝑦𝑖5 =
1962
+ 0.
1963
+ The learned influence weights 𝑺 for each of the three syn-
1964
+ thetic datasets are shown in Tables IV-VI respectively. The fol-
1965
+ lowing findings can be obtained from the tables:
1966
+ (1) In Tables IV-VI, since the fifth label is mutually exclusive
1967
+ with the first four labels (i.e., 𝒴5 = (¬𝒴1) ∧ (¬𝒴2) ∧
1968
+ (¬𝒴3) ∧ (¬𝒴4)), reconstruction cannot be achieved with the
1969
+ first four labels. From the results of influence weights in Tables
1970
+ IV-VI, we can find that the influence of 𝒴5 on the soft label
1971
+ 𝒴5
1972
+ ′ is most significant, whereas the influence of 𝒴1 ∼ 𝒴4 on
1973
+ 𝒴5
1974
+ ′ is relatively small.
1975
+ (2) In Table IV, the first four labels 𝒴1, 𝒴2, 𝒴3 and 𝒴4
1976
+ are independent of each other, and 𝒴5 = (¬𝒴1) ∧ (¬𝒴2) ∧
1977
+
1978
+ (¬𝒴3) ∧ (¬𝒴4). The results of influence weights in Table IV
1979
+ show that the effect of 𝒴1, 𝒴2, 𝒴3 and 𝒴4 on the soft labels
1980
+ 𝒴1
1981
+ ′, 𝒴2
1982
+ ′, 𝒴3
1983
+ ′ and 𝒴4
1984
+ ′, respectively, are significant. In addition,
1985
+ the contribution of 𝒴5 to 𝒴1
1986
+ ′, 𝒴2
1987
+ ′, 𝒴3
1988
+ ′ and 𝒴4
1989
+ ′ is also obvi-
1990
+ ous.
1991
+ (3) In Table V, 𝒴1 = 𝒴2 , 𝒴3 = 𝒴4, and 𝒴5 = (¬𝒴1) ∧
1992
+ (¬𝒴2) ∧ (¬𝒴3) ∧ (¬𝒴4). The results of influence weights in
1993
+ Table V reveal that 𝒴5 has a greater influence on the soft la-
1994
+ bels 𝒴1
1995
+ ′, 𝒴2
1996
+ ′, 𝒴3
1997
+ ′ and 𝒴4
1998
+ ′. Meanwhile, it is obvious that 𝒴1
1999
+ and 𝒴2 have the same influence on 𝒴1
2000
+ ′ (𝒴2
2001
+ ′ ), and 𝒴3 and
2002
+ 𝒴4 have the same influence on 𝒴3
2003
+ ′ (𝒴4
2004
+ ′).
2005
+ (4) In Table VI, 𝒴1 = 𝒴2 ∨ 𝒴3 ∨ 𝒴4 and 𝒴5 = (¬𝒴1) ∧
2006
+ (¬𝒴2) ∧ (¬𝒴3) ∧ (¬𝒴4) . From the results of influence
2007
+ weights in Table VI, we can see that it is 𝒴1 and 𝒴5 that af-
2008
+ fect the soft label 𝒴1
2009
+ ′ significantly, and that the effect of 𝒴2 ∼
2010
+ 𝒴4 on the soft label 𝒴1
2011
+ ′ are similar.
2012
+ The above findings are consistent with the logical relation-
2013
+ ship we designed for the labels, which validates that the soft
2014
+ label learning in R-MLTSK-FS is effective.
2015
+
2016
+ 4) Effectiveness Analysis of Correlation Enhancement Learn-
2017
+ ing
2018
+ In order to verify the effectiveness of the correlation en-
2019
+ hancement learning mechanism in guiding the consequent vec-
2020
+ tor optimization, we conduct correlation visualization experi-
2021
+ ment on the Science dataset, where the dimension of label space
2022
+ is 40. Specifically, the Pearson correlation coefficient is used to
2023
+ measure the correlation between two vectors. The higher the
2024
+ value of Pearson correlation coefficient, the stronger the corre-
2025
+ lation between two vectors. Experimental results are shown in
2026
+ Fig. 3, where Fig. 3(a) visualizes the correlation between any
2027
+ two original labels, and Fig. 3(b) visualizes the correlation be-
2028
+ tween any two optimized consequent vectors associated with
2029
+ the corresponding labels. For an effective correlation enhance-
2030
+ ment learning mechanism, the correlation coefficient between
2031
+ two consequent vectors should be kept close to that between
2032
+ their corresponding labels.
2033
+
2034
+
2035
+
2036
+ (a)
2037
+ (b)
2038
+ Fig. 3 Visualization of label correlation learning on the Science dataset: (a)
2039
+ visualization of the correlation coefficient between any two original label
2040
+ vectors, and (b) visualization of the correlation coefficient between any two
2041
+ consequent vectors associated with the corresponding labels. The higher the
2042
+ value of correlation coefficient, the stronger the correlation between two
2043
+ vectors.
2044
+
2045
+ It is clear that there is little difference between Fig. 3(a) and
2046
+ Fig. 3(b), indicating that the correlation between the labels can
2047
+ closely guide the learning of the corresponding consequent vec-
2048
+ tors, and demonstrating the effectiveness of the correlation en-
2049
+ hancement learning mechanism.
2050
+ 5) Parameter Analysis
2051
+ In this section, we analyze the influence of the hyperparam-
2052
+ eters α, β, γ and K on the classification performance of R-
2053
+ MLTSK-FS in terms of AP. In the analysis, we study the sensi-
2054
+ tivity of the classification performance to a specific hyperpa-
2055
+ rameter by keeping the other three fixed. For example, we fix
2056
+ the values of β, γ and K, and adjust the value of α to analyze the
2057
+ effect of α. The hyperparameters α, β and γ are varied within
2058
+ {10-3, 10-2, 10-1, 100, 101, 102} and K is varied within {2, 3, 4,
2059
+ 5, 6, 7, 8, 9, 10}. The AP values of R-MLTSK-FS are obtained
2060
+ with the 5-fold cross-validation strategy.
2061
+
2062
+
2063
+
2064
+ (a) α
2065
+ (b) β
2066
+
2067
+
2068
+ (c) γ
2069
+ (d) K
2070
+
2071
+ Fig. 4 The influence of the hyperparameters (a) α, (b) β, (c) γ,
2072
+ and (d) K on AP of the R-MLTSK-FS.
2073
+
2074
+
2075
+ The experimental results are shown in Fig. 4, from which the
2076
+ following observations are obtained:
2077
+ (1) When α is in the range of (10-3, 100), the performance of
2078
+ R-MLTSK-FS in terms of AP is stable for most datasets. In ad-
2079
+ dition, AP decreases with increasing α for most datasets when
2080
+ α is within (101, 102). For the CAL500 dataset, AP increases
2081
+ with α. In general, R-MLTSK-FS is stable and can achieve op-
2082
+ timal performance when α is in the range of (10-2, 100).
2083
+ (2) In general, R-MLTSK-FS is sensitive to β when it is in
2084
+ the range of (10-3, 100). It is stable and can reach an optimal AP
2085
+ value for the 10 datasets when β is within (101, 102).
2086
+ (3) For the hyperparameter γ, AP fluctuates in a similar way
2087
+ for all the 10 datasets. In general, the performance of R-
2088
+ MLTSK-FS is stable when γ is within (10-3, 10-1). The AP value
2089
+ fluctuates significantly when γ is in the range of (10-1, 102),
2090
+ while exhibiting a decreasing trend with increasing γ. In general,
2091
+ optimal AP can be achieved for all the 10 datasets when γ is in
2092
+ the range of (10-3, 10-1).
2093
+ (4) The AP value for the 10 datasets fluctuates slightly with
2094
+ increasing K. Optimal values of AP can be obtained when K is
2095
+ within (4, 9).
2096
+ According to the above analysis, it is necessary for R-
2097
+ MLTSK-FS to adopt the grid search strategy and the cross-val-
2098
+ idation strategy to get the optimal hyperparameters for different
2099
+ datasets.
2100
+
2101
+ 6) Convergence Analysis
2102
+ The Birds and Flags datasets are adopted in this part to inves-
2103
+ tigate the convergence of the proposed method. The results are
2104
+ shown in Fig. 5, where the vertical axis represents the absolute
2105
+ value of the difference between the previous and the current
2106
+ value of the objective function (denoted by df), and the hori-
2107
+ zontal axis represents the number of iterations. It can be seen
2108
+ from Fig. 5 that for the Birds and Flags datasets, R-MLTSK-FS
2109
+ is convergent within 10 iterations.
2110
+
2111
+
2112
+
2113
+
2114
+ (a)
2115
+ (b)
2116
+ Fig. 5 Convergence analysis for datasets (a) Birds and (b) Flags.
2117
+
2118
+ 7) Statistical Analysis
2119
+ We employ the Friedman test and the Bonferroni-Dunn test
2120
+ to evaluate the statistical significance of the difference observed
2121
+ between the proposed R-MLTSK-FS and the eight comparison
2122
+ methods [56]. The details are as follows.
2123
+ (1) Friedman Test: Based on the experimental results in Ta-
2124
+ ble III, we perform the Friedman test on the four metrics, i.e.,
2125
+ AP, HL, RL and CV. The null hypothesis is that there is no sig-
2126
+ nificant difference between all the methods in terms of the four
2127
+ metrics. For each metric, if the Friedman statistic FF is greater
2128
+ than a critical value (i.e., 2.0698), the null hypothesis for that
2129
+ metric is rejected, which means the difference is statistically
2130
+ significant. The results of the Friedman test, corresponding to
2131
+ the results in Table III, are shown in Table VII. It can be seen
2132
+ from Table VII that the null hypotheses on AP, HL, RL and CV
2133
+ are all rejected. This means that the differences in classification
2134
+ performance of the nine methods are significant in terms of the
2135
+ four metrics. Next, we conduct the post-hoc Bonferroni-Dunn
2136
+ test to evaluate whether the difference in performance between
2137
+ R-MLTSK-FS and the comparison methods is statistically sig-
2138
+ nificant.
2139
+
2140
+ TABLE VII
2141
+ FRIEDMAN STATISTICS
2142
+
2143
+ Evaluation met-
2144
+ ric
2145
+ FF
2146
+ Critical value (α = 0.05)
2147
+ AP
2148
+ 28.6045
2149
+ 2.0698
2150
+ HL
2151
+ 6.6863
2152
+ RL
2153
+ 20.3718
2154
+ CV
2155
+ 26.6201
2156
+
2157
+ (2) Bonferroni-Dunn Test: According to the results in Fried-
2158
+ man test, we conduct the post-hoc test based on the results of
2159
+ AP, HL, RL and CV respectively, where R-MLTSK-FS is set
2160
+ as the control method. First, we calculate the average rank of
2161
+ the nine methods for each metric respectively. We also calcu-
2162
+ late the critical difference (CD), which is a standard used for
2163
+ evaluating the difference in average rank between the methods,
2164
+ using the equation below:
2165
+
2166
+
2167
+ (a) AP
2168
+ (b) HL
2169
+
2170
+
2171
+ (c) RL
2172
+ (d) CV
2173
+ Fig. 6 Comparison of R-MLTSK-FS (as control) with the other meth-
2174
+ ods using the Bonferroni-Dunn test. The letter A refers to R-MLTSK-
2175
+ FS, B to BR, C to MLkNN, D to MLSF, E to ML-TSK FS, F to CC,
2176
+ G to RAkEL, H to CorrLog, and I to HNOML, respectively.
2177
+
2178
+ CD = 𝑞𝛼√𝑛(𝑛 + 1) 6𝑀
2179
+
2180
+
2181
+ (38)
2182
+ where n and M are the number of methods (n = 9) and the num-
2183
+ ber of datasets (M = 10), respectively. With confidence level α
2184
+ = 0.05 and 𝑞𝛼 = 2.724, we have CD = 3.3362.
2185
+ Fig. 6 gives the average rank of the nine methods, which are
2186
+ shown on the horizontal line with ticks marking 1 to 9. The
2187
+ smaller the average rank (i.e., closer to the right), the better the
2188
+ method. As R-MLTSK-FS is at the rightmost position on the
2189
+ horizontal line, for all the four metrics, it is the best among the
2190
+ nine methods. A red line of length one CD is drawn from R-
2191
+ MLTSK-FS to the left. For a method located within the span of
2192
+ the red line, the difference in average rank between the method
2193
+ and R-MLTSK-FS is less than one CD, indicating that the per-
2194
+ formance difference between them is small. Otherwise, the dif-
2195
+ ference is significant. The following conclusions can be drawn
2196
+ from Fig. 6. Firstly, R-MLTSK-FS is superior to other methods
2197
+ on the four metrics. Secondly, in general, the performance of
2198
+ ML-TSK FS is the second best. Thirdly, the performance of
2199
+ MLkNN, CC, RAkEL and CorrLog are significantly lower than
2200
+ that of R-MLTSK-FS in terms of the four metrics. Fourthly, for
2201
+ BR, MLSF and HNOML, their performance is mediocre.
2202
+ V. CONCLUSION
2203
+ The robust multilabel learning method R-MLTSK-FS with
2204
+ strong fuzzy inference ability, label correlation learning ability
2205
+ and robustness against noisy labels is proposed in this paper.
2206
+ From the aspect of soft label learning, R-MLTSK-FS constructs
2207
+ the soft label space to reduce the influence of label noise. From
2208
+ the aspect of soft multilabel loss function construction, R-
2209
+ MLTSK-FS utilizes the fuzzy rule-based TSK FS as a transpar-
2210
+ ent model to build the inference relationship between input fea-
2211
+ tures and soft labels, and then the loss function is constructed
2212
+ based on TSK FS and soft labels to enhance model training.
2213
+ From the aspect of correlation enhancement learning, R-
2214
+ MLTSK-FS utilizes the correlation information between soft la-
2215
+ bels to constrain the learning of model parameters and enhance
2216
+ the learning ability. Experimental analyses on ten benchmark
2217
+ multilabel datasets and three synthetic multilabel datasets show
2218
+ the promising performance of R-MLTSK-FS.
2219
+ Further research on R-MLTSK-FS will proceed along two
2220
+ directions. First, we will reduce the complexity of soft label
2221
+
2222
+ learning. Since R-MLTSK-FS considers all the original labels
2223
+ for a soft label, which is computationally intensive, research
2224
+ will be conducted to model with random label subsets for a soft
2225
+ label to reduce the complexity. Second, we will simplify the
2226
+ rule base of TSK FS. In R-MLTSK-FS, the fuzzy system trans-
2227
+ forms all the original features into the fuzzy feature space. If the
2228
+ dimension of the original feature space is large, the learning
2229
+ speed of R-MLTSK-FS will be slow. Hence, a screening mech-
2230
+ anism will be developed to identify representative subsets of the
2231
+ original features to improve the learning efficiency.
2232
+ REFERENCE
2233
+ [1] W. W. Liu, H. B. Wang, X. B. Shen, and I. W. Tsang, "The emerging
2234
+ trends of multi-label learning," IEEE Transactions on Pattern Analysis
2235
+ and Machine Intelligence, vol. 44, no. 11, pp. 7955-7974, 2021.
2236
+ [2] M. L. Zhang and Z. H. Zhou, "A review on multi-label learning
2237
+ algorithms," IEEE Transactions on Knowledge and Data Engineering, vol.
2238
+ 26, no. 8, pp. 1819-1837, 2014.
2239
+ [3] M. Monfort, B. Pan, K. Ramakrishnan, A. Andonian, B. A. McNamara, A.
2240
+ Lascelles, Q. Fan, D. Gutfreund, R. Feris, and A. Oliva, "Multi-moments
2241
+ in time: learning and interpreting models for multi-action video
2242
+ understanding," IEEE Transactions on Pattern Analysis and Machine
2243
+ Intelligence, vol. 44, no. 12, pp. 9434-9445, 2022.
2244
+ [4] J. Speth and E. M. Hand, "Automated label noise identification for facial
2245
+ attribute recognition," in Proc. the IEEE/CVF Conference on Computer
2246
+ Vision and Pattern Recognition, 2019, pp. 25-28.
2247
+ [5] Q. W. Zhang, Y. Zhong, and M. L. Zhang, "Feature-induced labeling
2248
+ information enrichment for multi-label learning," in Proc. the 32th AAAI
2249
+ Conference on Artificial Intelligence, 2018, pp. 4446-4453.
2250
+ [6] S. J. Huang, G. X. Li, W. Y. Huang, and S. Y. Li, "Incremental multi-label
2251
+ learning with active queries," Journal of Computer Science and
2252
+ Technology, vol. 35, no. 2, pp. 234-246, 2020.
2253
+ [7] Q. Tan, G. Yu, J. Wang, C. Domeniconi, and X. Zhang, "Individuality-and
2254
+ commonality-based multiview multilabel learning," IEEE Transactions on
2255
+ Cybernetics, vol. 51, no. 3, pp. 1716-1727, 2019.
2256
+ [8] H. Liu, X. Li, and S. Zhang, "Learning instance correlation functions for
2257
+ multilabel classification," IEEE Transactions on Cybernetics, vol. 47, no.
2258
+ 2, pp. 499-510, 2017.
2259
+ [9] J. Du and C. M. Vong, "Robust online multilabel learning under dynamic
2260
+ changes in data distribution with labels," IEEE Transactions on
2261
+ Cybernetics, vol. 50, no. 1, pp. 374-385, 2019.
2262
+ [10] Y. Zhu, J. T. Kwok, and Z. H. Zhou, "Multi-label learning with global and
2263
+ local label correlation," IEEE Transactions on Knowledge and Data
2264
+ Engineering, vol. 30, no. 6, pp. 1081-1094, 2018.
2265
+ [11] M. L. Zhang, Y. K. Li, H. Yang, and X. Y. Liu, "Towards class-imbalance
2266
+ aware multi-label learning," IEEE Transactions on Cybernetics, vol. 52,
2267
+ no. 6, pp. 4459-4471, 2020.
2268
+ [12] J. Ma, H. Zhang, and T. W. Chow, "Multilabel classification with label-
2269
+ specific features and classifiers: a coarse-and fine-tuned framework,"
2270
+ IEEE Transactions on Cybernetics, vol. 51, no. 2, pp. 1028-1042, 2019.
2271
+ [13] E. Lughofer, "Evolving multi-label fuzzy classifier," Information Sciences,
2272
+ vol. 597, pp. 1-23, 2022.
2273
+ [14] R. Cerri, M. P. Basgalupp, R. C. Barros, and A. C.P.L.F Carvalho,
2274
+ "Inducing hierarchical multi-label classification rules with genetic
2275
+ algorithms," Applied Soft Computing Journal, vol. 77, pp. 584-604, 2019.
2276
+ [15] H. Y. Jiang, J. Xu, R. J. Shi, K. Yang, D. D. Zhang, M. D. Gao, H. Ma,
2277
+ and W. Qian, "A multi-label deep learning model with interpretable Grad-
2278
+ CAM for diabetic retinopathy classification," in Proc. IEEE Engineering
2279
+ in Medicine and Biology Society, 2020, pp. 1560-1563.
2280
+ [16] J. Wang, Y. J. Lin, L. Z. Li, Y. A. Wang, M. Y. Xu, and J. K. Chen, "Multi-
2281
+ label cause feature selection based on neighbourhood mutual information,"
2282
+ International Journal of Machine Learning and Cybernetics, vol. 13, no.
2283
+ 11, pp. 3509-3522, 2022.
2284
+ [17] Q. Lou, Z. Deng, Z. Xiao, K. S. Choi, and S. Wang, "Multi-label Takagi-
2285
+ Sugeno-Kang fuzzy system," IEEE Transactions on Fuzzy Systems, vol.
2286
+ 30, no. 9, pp. 3410-3425, 2021.
2287
+ [18] E. Cole, O. M. Aodha, T. Lorieul, P. Perona, D. Morris, and N. Jojic,
2288
+ "Multi-label learning from single positive labels," in Proc. the IEEE/CVF
2289
+ Conference on Computer Vision and Pattern Recognition, 2021, pp. 933-
2290
+ 942.
2291
+ [19] M. Hu, H. Han, S. Shan, and X. Chen, "Weakly supervised image
2292
+ classifiaction through noise regularization," in Proc. the IEEE/CVF
2293
+ Conference on Computer Vision and Pattern Recognition, 2019, pp.
2294
+ 11517-11525.
2295
+ [20] M. K. Xie and S. J. Huang, "CCMN: a general framework for learning
2296
+ with class-conditional multi-label noise," IEEE Transactions on Pattern
2297
+ Analysis
2298
+ and
2299
+ Machine
2300
+ Intelligence,
2301
+ 2022.
2302
+ Doi:
2303
+ 10.1109/TPAMI.2022.3141240
2304
+ [21] A. K. Aksoy, M. Ravanbakhsh, and B. Demir, "Multi-label noise robust
2305
+ collaborative learning for remote sensing image classification," IEEE
2306
+ Transactions on Neural Networks and Learning Systems, 2022. Doi:
2307
+ 10.1109/TNNLS.2022.3209992
2308
+ [22] M. K. Xie and S. J. Huang, "Partial multi-label learning with noisy label
2309
+ identification," IEEE Transactions on Pattern Analysis and Machine
2310
+ Intelligence, vol. 44, no. 7, pp. 3676-3687, 2022.
2311
+ [23] S. Rajeswar, P. Rodriguez, S. Singhal, D. Vazquez, and A. Courville,
2312
+ "Multi-label iterated learning for image classification with label
2313
+ ambiguity," in Proc. the IEEE/CVF Conference on Computer Vision and
2314
+ Pattern Recognition, 2022, pp. 4783-4793.
2315
+ [24] G. Lyu, S. Feng, and Y. Li, "Noisy label tolerance: a new perspective of
2316
+ partial multi-label learning," Information Sciences, vol. 543, pp. 454-466,
2317
+ 2021.
2318
+ [25] Z. Deng, P. Xu, L. Xie, K. S. Choi, and S. Wang, "Transductive joint-
2319
+ knowledge-transfer TSK FS for recognition of epileptic EEG signals,"
2320
+ IEEE Transactions on Neural Systems and Rehabilitation Engineering,
2321
+ vol. 26, no. 8, pp. 1481-1494, 2018.
2322
+ [26] C. Yang, Z. Deng, K. S. Choi, and S. Wang, "Takagi-Sugeno-Kang
2323
+ transfer learning fuzzy logic system for the adaptive recognition of
2324
+ epileptic electroencephalogram signals," IEEE Transactions on Fuzzy
2325
+ Systems, vol. 24, no. 5, pp. 1079-1094, 2016.
2326
+ [27] T. Zhang, Z. Deng, D. Wu, and S. Wang, "Multiview fuzzy logic system
2327
+ with the cooperation between visible and hidden views," IEEE
2328
+ Transactions on Fuzzy Systems, vol. 27, no. 6, pp. 1162-1173, 2019.
2329
+ [28] Y. Jiang, Z. Deng, K. S. Choi, F. L. Chung, and S. Wang, "A novel multi-
2330
+ task TSK fuzzy classifier and its enhanced version for labeling-risk-aware
2331
+ multi-task classification," Information Sciences, vol. 357, no. C, pp. 39-60,
2332
+ 2016.
2333
+ [29] Y. Jiang, Z. Deng, F. L. Chung, G. Wang, P. Qian, K. S. Choi, et al.,
2334
+ "Recognition of epileptic EEG signals using a novel multiview TSK fuzzy
2335
+ system," IEEE Transactions on Fuzzy Systems, vol. 25, no. 1, pp. 3-20,
2336
+ 2017.
2337
+ [30] L. Kong, W. He, W. Yang, Q. Li, and O. Kaynak, "Fuzzy approximation-
2338
+ based finite-time control for a robot with actuator saturation under time-
2339
+ varying constraints of work space," IEEE Transactions on Cybernetics,
2340
+ vol. 51, no. 10, pp. 4873-4884, 2020.
2341
+ [31] Q. Liao and D. Sun, "Sparse and decoupling control strategies based on
2342
+ Takagi–Sugeno fuzzy models," IEEE Transactions on Cybernetics, vol.
2343
+ 51, no. 2, pp. 947-960, 2019.
2344
+ [32] S. C. Tong, Y. M. Li, G. Feng, and T. S. Li, "Observer-based adaptive
2345
+ fuzzy backstepping dynamic surface control for a class of MIMO
2346
+ nonlinear systems," IEEE Transactions on Systems, Man, and Cybernetics,
2347
+ Part B (Cybernetics), vol. 41, no. 4, pp. 1124-1135, 2011.
2348
+ [33] P. Xu, Z. Deng, J. Wang, Q. Zhang, K. S. Choi, and S. Wang, "Transfer
2349
+ representation learning with TSK fuzzy system," IEEE Transactions on
2350
+ Fuzzy Systems, vol. 29, no. 3, pp. 649-663, 2019.
2351
+ [34] Y. Guo and W. Xue, "Probabilistic multi-label classification with sparse
2352
+ feature learning," in Proc. the 23rd International Joint Conference on
2353
+ Artificial Intelligence, 2013, pp. 1373-1379.
2354
+ [35] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, "L2,1-norm
2355
+ regularized discriminative feature selection for unsupervised learning," in
2356
+ Proc. the 22nd International Joint Conference on Artificial Intelligence,
2357
+ 2011, pp. 1589-1594.
2358
+ [36] F. Nie, H. Huang, X. Cai, and C. H. Q. Ding, "Efficient and robust feature
2359
+ selection via joint ℓ2, 1-norms minimization," in Proc. the 23rd
2360
+ International Conference on Neural Information Processing Systems,
2361
+ 2010, pp. 1813-1821.
2362
+ [37] M. L. Zhang and Z. H. Zhou, "Multilabel neural networks with
2363
+ applications to functional genomics and text categorization," IEEE
2364
+ Transactions on Knowledge and Data Engineering, vol. 18, no. 10, pp.
2365
+ 1338-1351, 2006.
2366
+ [38] N. Li and Z. H. Zhou, "Selective ensemble of classifier chains," in
2367
+ International Workshop on Multiple Classifier Systems, 2013, pp. 146-156.
2368
+ [39] J. Huang, G. Li, Q. Huang, and X. Wu, "Learning label specific features
2369
+ for multi-label classification," in Proc. IEEE International Conference on
2370
+ Data Mining, 2015, pp. 181-190.
2371
+
2372
+ [40] S. J. Huang, W. Gao, and Z. H. Zhou, "Fast multi-instance multi-label
2373
+ learning," IEEE Transactions on Pattern Analysis and Machine
2374
+ Intelligence, vol. 41, no. 11, pp. 2614-2627, 2018.
2375
+ [41] S. Ji, L. Tang, S. Yu, and J. Ye, "Extracting shared subspace for multi-
2376
+ label classification," in Proc. the 14th ACM SIGKDD International
2377
+ Conference on Knowledge Discovery and Data Mining, 2008, pp. 381-389.
2378
+ [42] S. Wang, F. L. Chung, H. B. Shen, and D. Hu, "Cascaded centralized TSK
2379
+ fuzzy system: universal approximator and high interpretation," Applied
2380
+ Soft Computing, vol. 5, no. 2, pp. 131-145, 2005.
2381
+ [43] D. Y. Hu and L. Reichel, "Krylov-subspace methods for the sylvester
2382
+ equation," Linear Algebra and its Applications, vol. 172, no. 15, pp. 283-
2383
+ 313, 1992.
2384
+ [44] G. Chen, Y. Song, F. Wang, and C. Zhang, "Semi-supervised multi-label
2385
+ learning by solving a sylvester equation," in Proc. the Siam International
2386
+ Conference on Data Mining, 2008, pp. 410-419.
2387
+ [45] D. C. Sorensen and A. C. Antoulas, "The sylvester equation and
2388
+ approximate balanced reduction," in Proc. Linear Algebra and its
2389
+ Applications, 2002, pp. 351-352.
2390
+ [46] S. Sun and D. Zong, "LCBM: a multi-view probabilistic model for multi-
2391
+ label classification," IEEE Transactions on Pattern Analysis and Machine
2392
+ Intelligence, vol. 43, no. 8, pp. 2682-2696, 2020.
2393
+ [47] O. Luaces, J. Díez, J. Barranquero, J. J. Coz, and A. Bahamonde, "Binary
2394
+ relevance efficacy for multilabel classification," Progress in Artificial
2395
+ Intelligence, vol. 1, no. 4, pp. 303-313, 2012.
2396
+ [48] M. L. Zhang and Z. H. Zhou, "ML-KNN: a lazy learning approach to
2397
+ multi-label learning," Pattern Recognition, vol. 40, no. 7, pp. 2038-2048,
2398
+ 2007.
2399
+ [49] L. Sun, M. Kudo, and K. Kimura, "Multi-label classification with meta-
2400
+ label-specific features," in Proc. the 23rd International Conference on
2401
+ Pattern Recognition, 2016, pp. 1613-1618.
2402
+ [50] J. Read, B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for
2403
+ multi-label classification," Machine Learning, vol. 85, no. 3, pp. 333-359,
2404
+ 2011.
2405
+ [51] Tsoumakas, Grigorios, Katakis, Ioannis, and Vlahavas, "Random k-
2406
+ labelsets for multilabel classification," IEEE Transactions on Knowledge
2407
+ and Data Engineering, vol. 23, no. 7, pp. 1079-1089, 2011.
2408
+ [52] W. Bian, B. Xie, and D. Tao, "Corrlog: correlated logistic models for joint
2409
+ prediction of multiple labels," in Proc. the 15th International Conference
2410
+ on Artificial Intelligence and Statistics, 2012, pp. 109-117.
2411
+ [53] C. Zhang, Z. Yu, H. Fu, P. Zhu, L. Chen, and Q. Hu, "Hybrid noise-
2412
+ oriented multilabel learning," IEEE Transactions on Cybermetics, vol. 50,
2413
+ no. 6, pp. 2837-2850, 2019.
2414
+ [54] J. Łȩski, "Improving the generalization ability of neuro-fuzzy systems by
2415
+ ε-insensitive learning," International Journal of Applied Mathematics and
2416
+ Computer Science, vol. 12, no. 3, pp. 437-447, 2002.
2417
+ [55] S. J. Huang, Y. Yu, and Z. H. Zhou, "Multi-label hypothesis reuse," in
2418
+ Proc. the 18th ACM SIGKDD International Conference on Knowledge
2419
+ Discovery and Data Mining, 2012, pp. 525-533.
2420
+ [56] J. Demšar, "Statistical comparisons of classifiers over multiple data sets,"
2421
+ Journal of Machine Learning Research, vol. 7, no. 1, pp. 1-30, 2006.
2422
+
2423
+
1tE1T4oBgHgl3EQflQSM/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
39FQT4oBgHgl3EQfHTWW/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa4e8503d3e85b4b50b7f8952a19afa331aa89da598983d15467a8d2711ac495
3
+ size 123336
49FIT4oBgHgl3EQf7St_/content/2301.11397v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17ee208b39c82caf31c6ec0f89f81088089808bab46f2d3796152cd1e77336f6
3
+ size 2509023
4NFKT4oBgHgl3EQf9C5Z/content/tmp_files/2301.11952v1.pdf.txt ADDED
@@ -0,0 +1,859 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Optimization of External Stimuli for Populations of Theta Neurons
2
+ via Mean-Field Feedback Control*
3
+ Roman Chertovskih1, Nikolay Pogodaev2, Maxim Staritsyn1, Joaquim Da Silva Sewane3
4
+ and Ant´onio Pedro Aguiar1
5
+ Abstract— We study a problem of designing “robust” external
6
+ excitations for control and synchronization of an assembly
7
+ of homotypic harmonic oscillators representing so-called theta
8
+ neurons. The model of theta neurons (Theta model) captures,
9
+ in main, the bursting behavior of spiking cells in the brain of
10
+ biological beings, enduring periodic oscillations of the electric
11
+ potential in their membrane.
12
+ We study the following optimization problem: to design an
13
+ external stimulus (control), which steers all neurons of a given
14
+ population to their desired phases (i.e., excites/slows down its
15
+ spiking activity) with the highest probability.
16
+ This task is formulated as an optimal mean-field control
17
+ problem for the local continuity equation in the space of
18
+ probability measures. To solve this problem numerically, we
19
+ propose an indirect deterministic descent method based on an
20
+ exact representation of the increment (infinite-order variation)
21
+ of the objective functional. We discuss some aspects of practical
22
+ realization of the proposed method, and provide results of
23
+ numerical experiments.
24
+ I. INTRODUCTION
25
+ The phenomenon of synchronization of oscillatory pro-
26
+ cesses arise in many physical and natural systems involving
27
+ (relatively large) collections of structurally similar interacting
28
+ objects. This type of behavior — typically manifested in
29
+ practice by a formation of (desired or pathological) time-
30
+ periodic patterns — is demonstrated, e.g., by semiconductors
31
+ in laser physics [1], vibrating processes in mechanics [2],
32
+ biochemical reactions [3], [4], as well as in cardiac and
33
+ neural activity [5]–[7].
34
+ In connection with oscillatory processes, there naturally
35
+ arise problems of designing artificial signals that can drive
36
+ open systems towards (or away from) synchronous oscil-
37
+ lations and frequency entrainment; important examples are
38
+ clinical treatment of neurological and cardiac deceases (such
39
+ *The authors acknowledge the financial support of the Foundation for
40
+ Science and Technology (FCT, Portugal) in the framework of the Associated
41
+ Laboratory “Advanced Production and Intelligent Systems” (AL ARISE,
42
+ ref. LA/P/0112/2020), R&D Unit SYSTEC (base UIDB/00147/2020 and
43
+ programmatic UIDP/00147/2020 funds), and projects SNAP (ref. NORTE-
44
+ 01-0145-FEDER-000085) and MLDLCOV (ref. DSAIPA/CS/0086/2020).
45
+ 1Roman Chertovskih, Maxim Staritsyn and Ant´onio Pedro Aguiar are
46
+ with Research Center for Systems and Technologies (SYSTEC), Faculty
47
+ of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n 4200-465,
48
49
50
+ 2Nikolay Pogodaev is with Department of Mathematics “Tullio Levi-
51
+ Civita”, School of Sciences, University of Padova, Via Trieste, 63 - 35121
52
+ Padova, Italy [email protected]
53
+ 3
54
+ Joaquim
55
+ Da
56
+ Silva
57
+ Sewane
58
+ is
59
+ with
60
+ Department
61
+ of
62
+ Mathe-
63
+ matics
64
+ and
65
+ Informatics,
66
+ Faculty
67
+ of
68
+ Sciences,
69
+ University
70
+ of
71
+ Ed-
72
+ uardo Mondlane, Av. Julius Nyerere, nr. 3453 Maputo, Mozambique
73
74
+ as Parkinson’s disease, epilepsy, and cardiac arrhythmias),
75
+ control of circadian rhythms [8], organization/destruction of
76
+ patterns in complex dynamic structures [9], and in neuro-
77
+ computing [10], [11].
78
+ Starting from the pioneer works of Y. Kuramoto and
79
+ H. Araki, the mathematical imperative in the study of
80
+ oscillatory ensembles is the mean field dynamics, which
81
+ describes the behavior of an “averaged” representative of
82
+ the population instead of tracking all individuals in person.
83
+ This approach leads to a treatable (and elegant) mathematical
84
+ representation of the ensemble dynamics even in the case
85
+ when the cardinality of the population becomes very large,
86
+ and is naturally translated to the control-theoretical context:
87
+ in the most of applications, it is technically difficult (or even
88
+ impossible) to “isolate” the control influence for a particular
89
+ oscillatory unit; on the contrary, admissible signals usually
90
+ affect a significant part of the system, or the system as a
91
+ whole. The topic of control engineering which is focused on
92
+ designing “simultaneous” control signals for multi-agent sys-
93
+ tems is familiar under the name ensemble control. “Adaptive”
94
+ (distributed in the phase space) signals are called mean-field
95
+ type controls.
96
+ In this paper, we address a particular optimal control
97
+ problem of the type [12] based on a classical oscillatory
98
+ model [13] from the mathematical neuroscience. Namely, we
99
+ study the problem of in-phase synchronization of the mean
100
+ field of so-called theta neurons: to steer a given probability
101
+ distribution of harmonic phases towards a target one by a
102
+ simultaneous (ensemble) or individual (mean-field) control.
103
+ To solve our problem numerically, we propose a determin-
104
+ istic iterative method of sequential “control improvement”,
105
+ entailed by an an exact formula for the variation of the
106
+ objective functional. The proposed approach is based on the
107
+ optimal mean-field control theory (the dynamic optimization
108
+ in the space of probability measures) and is quite flexible:
109
+ it admits one to treat arbitrary statistical ensembles, and can
110
+ be applied to any problem of a “state-linear” structure, far
111
+ beyond the considered specific model.
112
+ II. PROBLEM STATEMENT.
113
+ MEAN-FIELD CONTROL SETUP
114
+ Consider a population of homotypic oscillatory systems
115
+ represented by the canonical Ermentrout-Kopell model [13],
116
+ [14]. This model describes the time-evolution of excitable
117
+ neurons (customary named “theta neurons”) which endure
118
+ periodic oscillations of their membrane potential. Each theta
119
+ arXiv:2301.11952v1 [math.OC] 27 Jan 2023
120
+
121
+ neuron in the population is characterized by its phase
122
+ θ(t) ∈ S1 .= R/2πZ
123
+ which satisfies the ODEs
124
+ d
125
+ dtθ .= ˙θ = vu(θ, η) .= (1 − cos θ) + (1 + cos θ) (u + η) .
126
+ Here, η is the baseline current in the neuron membrane,
127
+ which varies in a given interval I .= [a, b], and u is an external
128
+ stimulus.
129
+ Theta model provides a simple mathematical description
130
+ of the so-called spiking behavior. By convention, we say that
131
+ a neuron produces a spike at time t if θ(t) = π. If η > 0 (and
132
+ u ≡ 0) the neuron spikes periodically with the frequency
133
+ 2√η. If η < 0, the neuron is excitable and can produce
134
+ spikes after a sufficiently intensive stimulus u.
135
+ In what follows, η is viewed as a parameter of the model
136
+ fluctuation. In the simplest case, this parameter runs through
137
+ a finite set {ηk, k = 1, N}, which corresponds to a finite
138
+ ensemble {θk, k = 1, N} of theta neurons,
139
+ ˙θk = vu(θk, ηk),
140
+ k = 1, N.
141
+ (1)
142
+ In a more general setup to be discussed below, η can be
143
+ drawn from a given probability distribution.
144
+ Remark that (1) falls into the well-recognized Watanabe-
145
+ Strogatz class of phase oscillators driven by complex func-
146
+ tions t �→ Hk(t) ∈ C,
147
+ ˙θk = ωk + Im
148
+
149
+ Hk(t) e−i θk�
150
+ ,
151
+ k = 1, N,
152
+ where ωk is the natural (intrinsic) frequency of the kth
153
+ oscillator in the population, and Hk is the associated input,
154
+ modulated by a sinusoidal function (sometimes, this model is
155
+ called “sinusoidally coupled”); in general, both the natural
156
+ frequencies and the inputs can be effected by an external
157
+ driving parameter, furthermore, Hk can model interactions
158
+ between oscillators inside the population. Note that model
159
+ (1) fits the general statement with
160
+ ωk = ωk(u) .= u + ηk + 1,
161
+ Hk = Hk(u) .= i(u + ηk − 1),
162
+ which does not involve interaction terms (formally, equations
163
+ (1) are paired only by the common term u). In the context
164
+ of applications, this non-interacting model can be viewed
165
+ as a “first-order approximation” of a sufficiently sparsely
166
+ connected neural network (such are real biological ones),
167
+ especially, if the neurons’ activity is studied over relatively
168
+ short time periods. The case of interacting neurons will be
169
+ briefly discussed in section V.
170
+ A. Mean-Field Limit
171
+ We are interested in the behavior of system (1) for the case
172
+ when N → ∞. Introduce extra, “fictitious” states t �→ ηk(t)
173
+ as solutions to
174
+ ˙ηk = 0,
175
+ (2)
176
+ accompanying (1), and consider the empirical probability
177
+ measure
178
+ µN
179
+ t = 1
180
+ N
181
+ N
182
+
183
+ k=1
184
+ δ(θk(t),ηk(t)),
185
+ (3)
186
+ (δx stands for the Dirac probability measure concentrated at
187
+ at a point x).
188
+ The measure-valued function t �→ µN
189
+ t
190
+ designates the
191
+ statistical behavior of the ensemble {(θk, ηk), k = 1, N}:
192
+ for any Borel set A ⊂ S1 × I, the value µN
193
+ t (A) shows the
194
+ number of neurons whose phase belongs to A.
195
+ It is well-known that the curve t �→ µN
196
+ t
197
+ satisfies, in the
198
+ weak sense, the local continuity equation [15]
199
+ ∂tµt(θ, η) + ∂θ
200
+
201
+ vu(θ, η) µt(θ, η)
202
+
203
+ = 0.
204
+ (4)
205
+ Recall that the map t �→ µt is said to be a weak (distribu-
206
+ tional) solution of (4) iff
207
+ 0 =
208
+ � T
209
+ 0
210
+ dt
211
+
212
+ S1×I
213
+
214
+ ∂tϕ + ∇xϕ · vu
215
+
216
+ dµt
217
+ ∀ ϕ ∈ C1
218
+ c ((0, T) × S1 × I).
219
+ (C1
220
+ c ((0, T)×S1×I) denotes the space of continuously differ-
221
+ entiable functions (0, T)×S1 ×I �→ R with compact support
222
+ in (0, T) × S1 × I.) Under standard regularity assumptions,
223
+ the weak solution exists, it is unique, and it is absolutely
224
+ continuous as a function [0, T] �→ P(S1 ×I); here P(S1 ×I)
225
+ denotes the space of probability measures on S1×I endowed
226
+ with any Wasserstein distance Wp, p ≥ 1 [15].
227
+ Equation (4) provides the macroscopic description of the
228
+ population of microscopic dynamical units (1) called the
229
+ mean field. This representation remains valid in the limit
230
+ N → ∞, when µN converges to some µ ∈ P(S1 × I) in
231
+ C([0, T]; P(S1 × I)). Moreover, (4) makes sense if phases
232
+ θ and currents η are drawn from an abstract probability
233
+ distribution on the cylinder S1 × I,
234
+ µ0 = ϑ ∈ P(S1 × I).
235
+ (5)
236
+ Indeed, one can immerse the system of ODEs (1) in a
237
+ deterministic (S1 × I)-valued random process
238
+ (t, ω) �→ Θt(ω),
239
+ defined on a probability space (Ω, F, P) of an arbitrary
240
+ nature (Ω is an abstract set, F is a sigma-algebra on Ω,
241
+ and P is a probability measure F �→ [0, 1]), and satisfying
242
+ the ODE
243
+ d
244
+ dtΘt(ω) =
245
+
246
+ vu
247
+
248
+ Θt(ω)
249
+
250
+ 0
251
+
252
+ .
253
+ It is a simple technical exercise to check that the function
254
+ t �→ µt .= (Θt)♯P
255
+ solves the Cauchy problem (4), (5) with ϑ .= (Θ0)♯P, where
256
+ the symbol ♯ denotes the operation of pushforward of a
257
+ measure by a (Borel) function Ω �→ S1 × I. Note that
258
+ empirical ensembles (3) fit this setup if Ω = {1, . . . , N}
259
+ and P is the normalized counting measure.
260
+
261
+ Finally, observe that the variable η enters PDE (4) as a
262
+ parameter rather than state variable. This means that (4) can
263
+ be regarded as an η-parametric family of continuity equations
264
+ on the 1D space S1 rather than a PDE on the 2D space S1×I.
265
+ This observation is essential for the numerical treatment of
266
+ the problem (4) (see section IV).
267
+ B. Control Signals
268
+ Now, we shall fix the class of admissible control signal u.
269
+ Consider two options:
270
+ • u = u(t), i.e., the control effects all neurons of the
271
+ ensemble in the same way. We call this type of ex-
272
+ ternal influences the ensemble (simultaneous, common)
273
+ control. Such a control is statistical in its spirit as
274
+ it influences the whole ensemble “in average”. As a
275
+ natural space of such controls we choose
276
+ u ∈ U .= L2([0, T]; R).
277
+ (6)
278
+ • u = wt(θ, η), i.e., the stimulus is adopted to the
279
+ neuron’s individual characteristics and phase-dependent.
280
+ The use of such a distributed, mean-field type control
281
+ w ∈ W .= L2([0, T]; C(S1 × I; R)),
282
+ (7)
283
+ assumes some technical option to variate control signals
284
+ over the spatial domain.
285
+ It is natural to expect that the second-type control should
286
+ perform better. However, let us stress again that the practical
287
+ implementation of “personalized” control signals is hardly
288
+ realistic as soon as the number of driven objects is large
289
+ enough (for experiments that pretend to mimic the biological
290
+ neural tissue, this number should be astronomic!). In reality,
291
+ a meaningful class of control signals is U, or something “in
292
+ the middle” between the mentioned two options.
293
+ C. Performance Criterion
294
+ We study a generalization of the optimization problem
295
+ [12]: to steer the neural population to a target phase dis-
296
+ tribution at a prescribed (finite) time moment T > 0 with
297
+ care about the total energy of the control action. Assuming
298
+ that the target distribution is given by a (bounded continuous)
299
+ function η �→ ˇθ(η), our optimization problem reads:
300
+ (P1)
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+ min I[u] =
317
+
318
+ F
319
+
320
+ θ, ˇθ(η)
321
+
322
+ dµT (θ, η)
323
+
324
+ 2
325
+ � T
326
+ 0
327
+ u2(t) dt,
328
+ α > 0,
329
+ subject to (4), (6),
330
+ where
331
+ F(θ, ω) = 1
332
+ 2(sin θ − sin ω)2 + 1
333
+ 2(cos θ − cos ω)2
334
+ =1 − cos(θ − ω),
335
+ and
336
+
337
+ .=
338
+
339
+ S1×I
340
+ .
341
+ In this problem, the part of state variable is played by the
342
+ probability measure µt.
343
+ Note that the functional I and the dynamics (4) are linear
344
+ in µ (despite the non-linearity of the map (θ, η) �→ vu(θ, η)).
345
+ At the same time, (4) contains a product of µ and u, which
346
+ means that (P1) is, in fact, a bi-linear (non-convex) problem.
347
+ Standard arguments from the theory of transport equations
348
+ in the Wasserstein space [15] together with the classical
349
+ Weierstrass theorem ensure that problem (P1) is well posed,
350
+ i.e., it does have a minimizer within the admissible class U
351
+ of control signals (refer, e.g., to [16]).
352
+ An alternative version of problem (P1) is formulated in
353
+ terms of the mean-field type control:
354
+ (P2)
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+ min J[w] =
371
+
372
+ F
373
+
374
+ θ, ˇθ(η)
375
+
376
+ dµT
377
+
378
+ 2
379
+ � T
380
+ 0
381
+ dt
382
+
383
+ w2
384
+ t dµt,
385
+ subject to (4), (7).
386
+ In what follows, we shall focus on the “more realistic”
387
+ statement (P1), though all the forthcoming results can be
388
+ extended, at least formally, to problem (P2).
389
+ III. COST INCREMENT FORMULA.
390
+ NUMERICAL ALGORITHM
391
+ As it was remarked above, problem (P1) is linear in state-
392
+ measure. This fact allows us to represent the variation of
393
+ the cost functional I with respect to any variation of con-
394
+ trol u exactly (without any residual terms). The announced
395
+ representation follows from the duality with the co-state
396
+ from Pontryagin’s maximum principle [17], and generalizes
397
+ the classical exact increment formula for conventional state-
398
+ linear optimal control problems [18].
399
+ Consider two arbitrary controls
400
+ ¯u, u ∈ U,
401
+ u ̸= ¯u,
402
+ and let
403
+ t �→ ¯µt .= µt[¯u] and t �→ µt .= µt[u]
404
+ be the respective weak solutions to the continuity equation
405
+ (4). Let also
406
+ ¯p .= p[¯u] : (t, θ, η) �→ ¯pt(θ, η)
407
+ be a classical solution to the following (non-conservative
408
+ transport) equation:
409
+ ∂tpt(θ, η)+ ∂θpt(θ, η) · v¯u(t)(θ, η) = 0.
410
+ (8)
411
+ PDE (8) is known to be dual to the (conservative transport
412
+ equation) (4); the duality is formally established by the
413
+ observation that the map
414
+ t �→
415
+
416
+ ¯pt d¯µt
417
+ is constant on [0, T]. One can check that, under the common
418
+ regularity of the problem data, this map is an absolutely
419
+ continuous function [0, T] �→ R (refer to [15] for further
420
+ details).
421
+
422
+ As soon as ¯p is chosen as a solution to (8) with the terminal
423
+ condition
424
+ pT (θ, η) = − F
425
+
426
+ θ, ˇθ(η)
427
+
428
+ ,
429
+ (9)
430
+ the discussed duality makes it possible to represent the
431
+ increment (variation)
432
+ ∆I .= I[u] − I[¯u]
433
+ of the functional I as follows:
434
+ −∆I =
435
+ � T
436
+ 0
437
+
438
+ H (µt, ∂θ ¯pt, u(t)) − H (µt, ∂θ ¯pt, ¯u(t))
439
+
440
+ dt,
441
+ (10)
442
+ where
443
+ H(µ, ζ, u) .= u
444
+
445
+ ζ(θ, η) · (1 + cos θ) dµ(θ, η) − α
446
+ 2 u2.
447
+ The derivation of this formula is dropped, since it is com-
448
+ pletely similar to [18].
449
+ Based on representation (10), we can treat problem (P1)
450
+ in the following iterative way: given a reference control ¯u,
451
+ one looks for a new “target” signal u that “improves” the
452
+ functional value, i.e such that ∆I < 0. The best choice of
453
+ the target control is provided by the maximization of the
454
+ integrand of (10) in the variable u:
455
+ H (µt, ∂θ ¯pt, u) → max,
456
+ u ∈ R.
457
+ The unique solution of the latter problem is obtain in the
458
+ analytic form as
459
+ ut[µ] = 1
460
+ α
461
+
462
+ ∂θ ¯pt(θ, η) (1 + cos θ) dµ(θ, η).
463
+ (11)
464
+ Here, it is worthwhile to mention that the reference dual
465
+ state ¯p enters formula (11) only in the form of the partial
466
+ derivative
467
+ ¯ξt(θ, η) .= ∂θ ¯pt(θ, η).
468
+ Differentiating (8) and (9) in θ one can easily check that
469
+ ¯ξ solves the η-parametric family of the same continuity
470
+ equations (4) backward in time, starting from the terminal
471
+ condition
472
+ ξT = −∂θF
473
+
474
+ θ, ˇθ(η)
475
+ � .= sin
476
+ �ˇθ(η) − θ
477
+
478
+ .
479
+ (12)
480
+ Now, (11) can be reformulated in terms of the variable ¯ξ:
481
+ ut[µ] = 1
482
+ α
483
+
484
+ ¯ξt(θ, η) (1 + cos θ) dµ(θ, η).
485
+ (13)
486
+ Note that the map (t, µ) �→ ut[µ] can be used as a feedback
487
+ control
488
+ [0, T] × P(S1 × I) �→ R
489
+ of system (4) in the space of probability measures. Injecting
490
+ this control into (4), we obtain a nonlocal continuity equation
491
+ ∂tµt + ∂θ
492
+
493
+ vu[µt] µt
494
+
495
+ = 0,
496
+ µ0 = ϑ,
497
+ (14)
498
+ which is well-posed (thanks to the fact that function (θ, η) �→
499
+ vu(θ, η) is smooth and bounded). Solving the last equation
500
+ Algorithm 1: Numerical algorithm for optimal en-
501
+ semble control
502
+ Data: ¯u ∈ U (initial guess), ε > 0 (tolerance)
503
+ Result: {uk}k≥0 ⊂ U such that I[uk+1] < I[uk]
504
+ k ← 0;
505
+ u0 ← ¯u;
506
+ repeat
507
+ µk ← ˆµ[uk];
508
+ uk+1 ← u[µk];
509
+ k ← k + 1;
510
+ until I[uk−1] − I[uk] < ε;
511
+ numerically, and substituting its solution t �→ ˆµt .= ˆµt[¯u]
512
+ into (11), we construct the “improved” signal:
513
+ u(t) = ut[ˆµt].
514
+ This idea gives rise to the following Algorithm 1.
515
+ By construction, Algorithm 1 generates a sequence
516
+ {uk}k≥0 ⊂ U of controls with the property:
517
+ Ik+1 .= I[uk+1] < I[uk] .= Ik.
518
+ Since the sequence of numbers (Ik)k≥0 is bounded from
519
+ below by min(P) it converges.
520
+ Finally, remark that the same line of arguments can be
521
+ formally applied to problem (P2). The respective mean-field
522
+ type control takes the form
523
+ wt(θ, η) = 1
524
+ α
525
+ ¯ξt(θ, η) (1 + cos θ).
526
+ This construction gives rise to an iterative method, similar
527
+ to Algorithm 1.
528
+ IV. NUMERICAL RESULTS
529
+ Let us discuss several aspects of the numerical implemen-
530
+ tation of Algorithm 1.
531
+ First, note that the method proposed here does not involve
532
+ any intrinsic parametric optimization: the most of indirect
533
+ algorithms for optimal control require the dynamic adjust-
534
+ ment of some internal computational parameters; such are
535
+ standard methods based on Pontryagin’s maximum principle
536
+ [19], [20] that imply the internal such as line search for the
537
+ specification of the “depth” of the needle-shaped (or weak)
538
+ control variations.
539
+ Each iteration of Algorithm 1 requires numerical solution
540
+ of two problems: one is the linear problem (4), (12) (inte-
541
+ grated backward in time), and one for the nonlocal continuity
542
+ equation (14) (solved numerically forward in time). Since
543
+ both (4) and (14) have no terms involving partial derivatives
544
+ in η, one can think of η as a parameter and solve the corre-
545
+ sponding parametric families of one-dimensional continuity
546
+ equations.
547
+ Consider the problem (P) with initial distribution of
548
+ neurons µ0 given by the density function
549
+ ρ0(θ, η) =
550
+
551
+ 2 + 3 cos(2θ) − 2 sin(2θ)
552
+
553
+ η,
554
+
555
+ and with constant target function ˇθ(η) ≡ π. In other words,
556
+ our goal is to bring neurons’ states as close as possible to
557
+ the segment 0 × I by the time moment T with the aid of
558
+ sufficiently small controls.
559
+ Parameters for the computation:
560
+ T = 6,
561
+ I = [0.0, 1.0],
562
+ α = 1;
563
+ we used 512 Fourier harmonics in θ and grid steps
564
+ ∆η = 0.002,
565
+ ∆t = 0.002.
566
+ Equations (4) and (14) are integrated by the standard spectral
567
+ method [21] using the trigonometric Fourier expansion in θ
568
+ for each η from the grid. Parameters of the algorithm: ¯u ≡ 0,
569
+ ε = 0.01.
570
+ 0
571
+ 1
572
+ 2
573
+ 3
574
+ 4
575
+ 5
576
+ 6
577
+ t
578
+ −3
579
+ −2
580
+ −1
581
+ 0
582
+ 1
583
+ u(t)
584
+ Fig. 1.
585
+ Control input computed by the Algorithm 1
586
+ V. CONCLUSION
587
+ The goal of this paper is to present an approach based
588
+ on the mean-field control paradigm to solve problems of
589
+ optimization and synchronization of oscillatory processes
590
+ (here, the addressed Theta model is among the simplest
591
+ but prominent examples). The proposed technique can be
592
+ applied to any state-linear optimal control problem involving
593
+ (finite or infinite) non-interacting statistical ensembles of an
594
+ arbitrary nature. In particular, Algorithm 1 can be easily
595
+ adapted to some other neural model such as SNIPER model,
596
+ sinusoidal model etc. [12].
597
+ We plan to continue this study in the way of natural
598
+ generalization of model (1) by admitting the interaction
599
+ between theta neurons,
600
+ ˙θk = vu(θk, ηk) + 1
601
+ N
602
+ N
603
+
604
+ j=1
605
+ K(θk, θj),
606
+ k = 1, N,
607
+ where K is certain interaction potential formalizing the
608
+ spatial connectivity of neurons in the tissue. This will result
609
+ in control problems of the sort (P1,2) stated over the nonlocal
610
+ continuity equation
611
+ ∂tµt + ∂θ
612
+
613
+ [vu + K ⋆ µt] µt
614
+
615
+ = 0
616
+ involving the term
617
+ (K ⋆ µ)(θ) .=
618
+
619
+ K(θ, ζ) dµ(ζ).
620
+ 0
621
+ π
622
+
623
+ θ
624
+ 0.0
625
+ 0.2
626
+ 0.4
627
+ 0.6
628
+ 0.8
629
+ 1.0
630
+ η
631
+ 0
632
+ π
633
+
634
+ θ
635
+ 0.0
636
+ 0.2
637
+ 0.4
638
+ 0.6
639
+ 0.8
640
+ 1.0
641
+ η
642
+ 0
643
+ π
644
+
645
+ θ
646
+ 0.0
647
+ 0.2
648
+ 0.4
649
+ 0.6
650
+ 0.8
651
+ 1.0
652
+ η
653
+ Fig. 2.
654
+ Trajectory µt(θ, µ) of (4) at time moments t = 0, 3 and 6 (from
655
+ top to bottom) computed for the optimal control input shown in Fig. 1. The
656
+ standard “rainbow” color table was used to code the isovalues: from black
657
+ (minimal values), violet, . . . , to red (maximal values).
658
+
659
+ Such problems are not state-linear anymore, and the exact
660
+ formula (10) becomes inapplicable. For this case, a promis-
661
+ ing alternative could be an approach based on Pontryagin’s
662
+ maximum principle [16].
663
+ REFERENCES
664
+ [1] I.
665
+ Fischer,
666
+ Y.
667
+ Liu,
668
+ and
669
+ P.
670
+ Davis,
671
+ “Synchronization
672
+ of
673
+ chaotic
674
+ semiconductor
675
+ laser
676
+ dynamics
677
+ on
678
+ subnanosecond
679
+ time
680
+ scales
681
+ and
682
+ its
683
+ potential
684
+ for
685
+ chaos
686
+ communication,”
687
+ Phys.
688
+ Rev.
689
+ A,
690
+ vol.
691
+ 62,
692
+ p.
693
+ 011801,
694
+ Jun
695
+ 2000.
696
+ [Online].
697
+ Available:
698
+ https://link.aps.org/doi/10.1103/PhysRevA.62.011801
699
+ [2] I.
700
+ Blekhman,
701
+ I.
702
+ Blekhman,
703
+ and
704
+ E.
705
+ Rivin,
706
+ Synchro-
707
+ nization
708
+ in
709
+ Science
710
+ and
711
+ Technology,
712
+ ser.
713
+ ASME
714
+ press
715
+ translations.
716
+ ASME
717
+ Press,
718
+ 1988.
719
+ [Online].
720
+ Available:
721
+ https://books.google.ru/books?id=ao1QAAAAMAAJ
722
+ [3] T. Nishikawa, N. Gulbahce, and A. E. Motter, “Spontaneous
723
+ reaction silencing in metabolic optimization,” PLOS Computational
724
+ Biology, vol. 4, no. 12, pp. 1–12, 12 2008. [Online]. Available:
725
+ https://doi.org/10.1371/journal.pcbi.1000236
726
+ [4] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, ser.
727
+ Dover books on chemistry.
728
+ Dover Publications, 2003. [Online].
729
+ Available: https://books.google.ru/books?id=4ADt7smO5Q8C
730
+ [5] P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders:
731
+ Relevance
732
+ for
733
+ cognitive
734
+ dysfunctions
735
+ and
736
+ pathophysiology,”
737
+ Neuron, vol. 52, no. 1, pp. 155–168, 2006. [Online]. Available:
738
+ https://www.sciencedirect.com/science/article/pii/S0896627306007276
739
+ [6] S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano,
740
+ and W. L. Ditto, “Controlling chaos in the brain,” Nature, vol.
741
+ 370,
742
+ no.
743
+ 6491,
744
+ pp.
745
+ 615–620,
746
+ Aug
747
+ 1994.
748
+ [Online].
749
+ Available:
750
+ https://doi.org/10.1038/370615a0
751
+ [7] L.
752
+ Glass,
753
+ “Cardiac
754
+ arrhythmias
755
+ and
756
+ circle
757
+ maps-a
758
+ classical
759
+ problem,”
760
+ Chaos:
761
+ An
762
+ Interdisciplinary
763
+ Journal
764
+ of
765
+ Nonlinear
766
+ Science, vol. 1, no. 1, pp. 13–19, 1991. [Online]. Available:
767
+ https://doi.org/10.1063/1.165810
768
+ [8] A. Winfree, The Geometry of Biological Time, ser. Interdisciplinary
769
+ Applied Mathematics. Springer New York, 2013. [Online]. Available:
770
+ https://books.google.ru/books?id=7qjTBwAAQBAJ
771
+ [9] I. Z. Kiss, C. G. Rusin, H. Kori, and J. L. Hudson, “Engineering
772
+ complex dynamical structures: Sequential patterns and desynchro-
773
+ nization,” Science, vol. 316, no. 5833, pp. 1886–1889, 2007. [Online].
774
+ Available: https://www.science.org/doi/abs/10.1126/science.1140858
775
+ [10] F. C. Hoppensteadt and E. M. Izhikevich, “Synchronization of laser
776
+ oscillators, associative memory, and optical neurocomputing,” Phys.
777
+ Rev. E, vol. 62, pp. 4010–4013, Sep 2000. [Online]. Available:
778
+ https://link.aps.org/doi/10.1103/PhysRevE.62.4010
779
+ [11] F. Hoppensteadt and E. Izhikevich, “Synchronization of mems res-
780
+ onators and mechanical neurocomputing,” IEEE Transactions on Cir-
781
+ cuits and Systems I: Fundamental Theory and Applications, vol. 48,
782
+ no. 2, pp. 133–138, 2001.
783
+ [12] J.-S. Li, I. Dasanayake, and J. Ruths, “Control and synchronization of
784
+ neuron ensembles,” IEEE Transactions on Automatic Control, vol. 58,
785
+ no. 8, pp. 1919–1930, 2013.
786
+ [13] G. B. Ermentrout and N. Kopell, “Parabolic bursting in an excitable
787
+ system coupled with a slow oscillation,” SIAM Journal on Applied
788
+ Mathematics, vol. 46, no. 2, pp. 233–253, 1986. [Online]. Available:
789
+ http://www.jstor.org/stable/2101582
790
+ [14] S. H. Strogatz, Nonlinear dynamics and chaos : with applications to
791
+ physics, biology, chemistry, and engineering. Second edition. Boulder,
792
+ CO : Westview Press, a member of the Perseus Books Group, [2015],
793
+ [2015], includes bibliographical references and index. [Online].
794
+ Available: https://search.library.wisc.edu/catalog/9910223127702121
795
+ [15] L. Ambrosio and G. Savar´e, “Gradient flows of probability measures,”
796
+ in Handbook of differential equations: evolutionary equations. Vol. III,
797
+ ser. Handb. Differ. Equ.
798
+ Elsevier/North-Holland, Amsterdam, 2007,
799
+ pp. 1–136.
800
+ [16] N. Pogodaev and M. Staritsyn, “Impulsive control of nonlocal
801
+ transport
802
+ equations,”
803
+ Journal
804
+ of
805
+ Differential
806
+ Equations,
807
+ vol.
808
+ 269,
809
+ no.
810
+ 4,
811
+ pp.
812
+ 3585–3623,
813
+ 2020.
814
+ [Online].
815
+ Available:
816
+ https://www.sciencedirect.com/science/article/pii/S002203962030108X
817
+ [17] N. Pogodaev, “Optimal control of continuity equations,” NoDEA
818
+ Nonlinear Differential Equations Appl., vol. 23, no. 2, pp. Art. 21,
819
+ 24, 2016.
820
+ [18] M. Staritsyn, N. Pogodaev, R. Chertovskih, and F. L. Pereira, “Feed-
821
+ back maximum principle for ensemble control of local continuity
822
+ equations: An application to supervised machine learning,” IEEE
823
+ Control Systems Letters, vol. 6, pp. 1046–1051, 2022.
824
+ [19] A.
825
+ V.
826
+ Arguchintsev,
827
+ V.
828
+ A.
829
+ Dykhta,
830
+ and
831
+ V.
832
+ A.
833
+ Srochko,
834
+ “Optimal
835
+ control:
836
+ Nonlocal
837
+ conditions,
838
+ computational
839
+ methods,
840
+ and the variational principle of maximum,” Russian Mathematics,
841
+ vol.
842
+ 53,
843
+ no.
844
+ 1,
845
+ pp.
846
+ 1–35,
847
+ Jan
848
+ 2009.
849
+ [Online].
850
+ Available:
851
+ https://doi.org/10.3103/S1066369X09010010
852
+ [20] P. Drag, K. Styczen, M. Kwiatkowska, and A. Szczurek, “A review
853
+ on the direct and indirect methods for solving optimal control prob-
854
+ lems with differential-algebraic constraints,” Studies in Computational
855
+ Intelligence, vol. 610, pp. 91–105, 07 2016.
856
+ [21] J. P. Boyd, Chebyshev and Fourier spectral methods., 2nd ed.
857
+ Mi-
858
+ neola, NY: Dover Publications, 2001.
859
+
4NFKT4oBgHgl3EQf9C5Z/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf,len=438
2
+ page_content='Optimization of External Stimuli for Populations of Theta Neurons via Mean-Field Feedback Control* Roman Chertovskih1, Nikolay Pogodaev2, Maxim Staritsyn1, Joaquim Da Silva Sewane3 and Ant´onio Pedro Aguiar1 Abstract— We study a problem of designing “robust” external excitations for control and synchronization of an assembly of homotypic harmonic oscillators representing so-called theta neurons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
3
+ page_content=' The model of theta neurons (Theta model) captures, in main, the bursting behavior of spiking cells in the brain of biological beings, enduring periodic oscillations of the electric potential in their membrane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
4
+ page_content=' We study the following optimization problem: to design an external stimulus (control), which steers all neurons of a given population to their desired phases (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
5
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
6
+ page_content=', excites/slows down its spiking activity) with the highest probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
7
+ page_content=' This task is formulated as an optimal mean-field control problem for the local continuity equation in the space of probability measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
8
+ page_content=' To solve this problem numerically, we propose an indirect deterministic descent method based on an exact representation of the increment (infinite-order variation) of the objective functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
9
+ page_content=' We discuss some aspects of practical realization of the proposed method, and provide results of numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
10
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
11
+ page_content=' INTRODUCTION The phenomenon of synchronization of oscillatory pro- cesses arise in many physical and natural systems involving (relatively large) collections of structurally similar interacting objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
12
+ page_content=' This type of behavior — typically manifested in practice by a formation of (desired or pathological) time- periodic patterns — is demonstrated, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
13
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
14
+ page_content=', by semiconductors in laser physics [1], vibrating processes in mechanics [2], biochemical reactions [3], [4], as well as in cardiac and neural activity [5]–[7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
15
+ page_content=' In connection with oscillatory processes, there naturally arise problems of designing artificial signals that can drive open systems towards (or away from) synchronous oscil- lations and frequency entrainment;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
16
+ page_content=' important examples are clinical treatment of neurological and cardiac deceases (such The authors acknowledge the financial support of the Foundation for Science and Technology (FCT, Portugal) in the framework of the Associated Laboratory “Advanced Production and Intelligent Systems” (AL ARISE, ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
17
+ page_content=' LA/P/0112/2020), R&D Unit SYSTEC (base UIDB/00147/2020 and programmatic UIDP/00147/2020 funds), and projects SNAP (ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
18
+ page_content=' NORTE- 01-0145-FEDER-000085) and MLDLCOV (ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
19
+ page_content=' DSAIPA/CS/0086/2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
20
+ page_content=' 1Roman Chertovskih, Maxim Staritsyn and Ant´onio Pedro Aguiar are with Research Center for Systems and Technologies (SYSTEC), Faculty of Engineering, University of Porto, Rua Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
21
+ page_content=' Roberto Frias, s/n 4200-465, Porto, Portugal roman@fe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
22
+ page_content='up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
23
+ page_content='pt, staritsyn@fe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
24
+ page_content='up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
25
+ page_content='pt, pedro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
26
+ page_content='aguiar@fe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
27
+ page_content='up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
28
+ page_content='pt 2Nikolay Pogodaev is with Department of Mathematics “Tullio Levi- Civita”, School of Sciences, University of Padova, Via Trieste, 63 - 35121 Padova, Italy nickpogo@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
29
+ page_content='com 3 Joaquim Da Silva Sewane is with Department of Mathe- matics and Informatics, Faculty of Sciences, University of Ed- uardo Mondlane, Av.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
30
+ page_content=' Julius Nyerere, nr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
31
+ page_content=' 3453 Maputo, Mozambique joaquimdasilvasewane@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
32
+ page_content='com as Parkinson’s disease, epilepsy, and cardiac arrhythmias), control of circadian rhythms [8], organization/destruction of patterns in complex dynamic structures [9], and in neuro- computing [10], [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
33
+ page_content=' Starting from the pioneer works of Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
34
+ page_content=' Kuramoto and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
35
+ page_content=' Araki, the mathematical imperative in the study of oscillatory ensembles is the mean field dynamics, which describes the behavior of an “averaged” representative of the population instead of tracking all individuals in person.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
36
+ page_content=' This approach leads to a treatable (and elegant) mathematical representation of the ensemble dynamics even in the case when the cardinality of the population becomes very large, and is naturally translated to the control-theoretical context: in the most of applications, it is technically difficult (or even impossible) to “isolate” the control influence for a particular oscillatory unit;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
37
+ page_content=' on the contrary, admissible signals usually affect a significant part of the system, or the system as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
38
+ page_content=' The topic of control engineering which is focused on designing “simultaneous” control signals for multi-agent sys- tems is familiar under the name ensemble control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
39
+ page_content=' “Adaptive” (distributed in the phase space) signals are called mean-field type controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
40
+ page_content=' In this paper, we address a particular optimal control problem of the type [12] based on a classical oscillatory model [13] from the mathematical neuroscience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
41
+ page_content=' Namely, we study the problem of in-phase synchronization of the mean field of so-called theta neurons: to steer a given probability distribution of harmonic phases towards a target one by a simultaneous (ensemble) or individual (mean-field) control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
42
+ page_content=' To solve our problem numerically, we propose a determin- istic iterative method of sequential “control improvement”, entailed by an an exact formula for the variation of the objective functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
43
+ page_content=' The proposed approach is based on the optimal mean-field control theory (the dynamic optimization in the space of probability measures) and is quite flexible: it admits one to treat arbitrary statistical ensembles, and can be applied to any problem of a “state-linear” structure, far beyond the considered specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
44
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
45
+ page_content=' PROBLEM STATEMENT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
46
+ page_content=' MEAN-FIELD CONTROL SETUP Consider a population of homotypic oscillatory systems represented by the canonical Ermentrout-Kopell model [13], [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
47
+ page_content=' This model describes the time-evolution of excitable neurons (customary named “theta neurons”) which endure periodic oscillations of their membrane potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
48
+ page_content=' Each theta arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
49
+ page_content='11952v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
50
+ page_content='OC] 27 Jan 2023 neuron in the population is characterized by its phase θ(t) ∈ S1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
51
+ page_content='= R/2πZ which satisfies the ODEs d dtθ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
52
+ page_content='= ˙θ = vu(θ, η) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
53
+ page_content='= (1 − cos θ) + (1 + cos θ) (u + η) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
54
+ page_content=' Here, η is the baseline current in the neuron membrane, which varies in a given interval I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
55
+ page_content='= [a, b], and u is an external stimulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
56
+ page_content=' Theta model provides a simple mathematical description of the so-called spiking behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
57
+ page_content=' By convention, we say that a neuron produces a spike at time t if θ(t) = π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
58
+ page_content=' If η > 0 (and u ≡ 0) the neuron spikes periodically with the frequency 2√η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
59
+ page_content=' If η < 0, the neuron is excitable and can produce spikes after a sufficiently intensive stimulus u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
60
+ page_content=' In what follows, η is viewed as a parameter of the model fluctuation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
61
+ page_content=' In the simplest case, this parameter runs through a finite set {ηk, k = 1, N}, which corresponds to a finite ensemble {θk, k = 1, N} of theta neurons, ˙θk = vu(θk, ηk), k = 1, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
62
+ page_content=' (1) In a more general setup to be discussed below, η can be drawn from a given probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
63
+ page_content=' Remark that (1) falls into the well-recognized Watanabe- Strogatz class of phase oscillators driven by complex func- tions t �→ Hk(t) ∈ C, ˙θk = ωk + Im � Hk(t) e−i θk� , k = 1, N, where ωk is the natural (intrinsic) frequency of the kth oscillator in the population, and Hk is the associated input, modulated by a sinusoidal function (sometimes, this model is called “sinusoidally coupled”);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
64
+ page_content=' in general, both the natural frequencies and the inputs can be effected by an external driving parameter, furthermore, Hk can model interactions between oscillators inside the population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
65
+ page_content=' Note that model (1) fits the general statement with ωk = ωk(u) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
66
+ page_content='= u + ηk + 1, Hk = Hk(u) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
67
+ page_content='= i(u + ηk − 1), which does not involve interaction terms (formally, equations (1) are paired only by the common term u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
68
+ page_content=' In the context of applications, this non-interacting model can be viewed as a “first-order approximation” of a sufficiently sparsely connected neural network (such are real biological ones), especially, if the neurons’ activity is studied over relatively short time periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
69
+ page_content=' The case of interacting neurons will be briefly discussed in section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
70
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
71
+ page_content=' Mean-Field Limit We are interested in the behavior of system (1) for the case when N → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
72
+ page_content=' Introduce extra, “fictitious” states t �→ ηk(t) as solutions to ˙ηk = 0, (2) accompanying (1), and consider the empirical probability measure µN t = 1 N N � k=1 δ(θk(t),ηk(t)), (3) (δx stands for the Dirac probability measure concentrated at at a point x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
73
+ page_content=' The measure-valued function t �→ µN t designates the statistical behavior of the ensemble {(θk, ηk), k = 1, N}: for any Borel set A ⊂ S1 × I, the value µN t (A) shows the number of neurons whose phase belongs to A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
74
+ page_content=' It is well-known that the curve t �→ µN t satisfies, in the weak sense, the local continuity equation [15] ∂tµt(θ, η) + ∂θ � vu(θ, η) µt(θ, η) � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
75
+ page_content=' (4) Recall that the map t �→ µt is said to be a weak (distribu- tional) solution of (4) iff 0 = � T 0 dt � S1×I � ∂tϕ + ∇xϕ · vu � dµt ∀ ϕ ∈ C1 c ((0, T) × S1 × I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
76
+ page_content=' (C1 c ((0, T)×S1×I) denotes the space of continuously differ- entiable functions (0, T)×S1 ×I �→ R with compact support in (0, T) × S1 × I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
77
+ page_content=') Under standard regularity assumptions, the weak solution exists, it is unique, and it is absolutely continuous as a function [0, T] �→ P(S1 ×I);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
78
+ page_content=' here P(S1 ×I) denotes the space of probability measures on S1×I endowed with any Wasserstein distance Wp, p ≥ 1 [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
79
+ page_content=' Equation (4) provides the macroscopic description of the population of microscopic dynamical units (1) called the mean field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
80
+ page_content=' This representation remains valid in the limit N → ∞, when µN converges to some µ ∈ P(S1 × I) in C([0, T];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
81
+ page_content=' P(S1 × I)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
82
+ page_content=' Moreover, (4) makes sense if phases θ and currents η are drawn from an abstract probability distribution on the cylinder S1 × I, µ0 = ϑ ∈ P(S1 × I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
83
+ page_content=' (5) Indeed, one can immerse the system of ODEs (1) in a deterministic (S1 × I)-valued random process (t, ω) �→ Θt(ω), defined on a probability space (Ω, F, P) of an arbitrary nature (Ω is an abstract set, F is a sigma-algebra on Ω, and P is a probability measure F �→ [0, 1]), and satisfying the ODE d dtΘt(ω) = � vu � Θt(ω) � 0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
84
+ page_content=' It is a simple technical exercise to check that the function t �→ µt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
85
+ page_content='= (Θt)♯P solves the Cauchy problem (4), (5) with ϑ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
86
+ page_content='= (Θ0)♯P, where the symbol ♯ denotes the operation of pushforward of a measure by a (Borel) function Ω �→ S1 × I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
87
+ page_content=' Note that empirical ensembles (3) fit this setup if Ω = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
88
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
89
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
90
+ page_content=' , N} and P is the normalized counting measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
91
+ page_content=' Finally, observe that the variable η enters PDE (4) as a parameter rather than state variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
92
+ page_content=' This means that (4) can be regarded as an η-parametric family of continuity equations on the 1D space S1 rather than a PDE on the 2D space S1×I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
93
+ page_content=' This observation is essential for the numerical treatment of the problem (4) (see section IV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
94
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
95
+ page_content=' Control Signals Now, we shall fix the class of admissible control signal u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
96
+ page_content=' Consider two options: u = u(t), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
97
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
98
+ page_content=', the control effects all neurons of the ensemble in the same way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
99
+ page_content=' We call this type of ex- ternal influences the ensemble (simultaneous, common) control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
100
+ page_content=' Such a control is statistical in its spirit as it influences the whole ensemble “in average”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
101
+ page_content=' As a natural space of such controls we choose u ∈ U .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
102
+ page_content='= L2([0, T];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
103
+ page_content=' R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
104
+ page_content=' (6) u = wt(θ, η), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
105
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
106
+ page_content=', the stimulus is adopted to the neuron’s individual characteristics and phase-dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
107
+ page_content=' The use of such a distributed, mean-field type control w ∈ W .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
108
+ page_content='= L2([0, T];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
109
+ page_content=' C(S1 × I;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
110
+ page_content=' R)), (7) assumes some technical option to variate control signals over the spatial domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
111
+ page_content=' It is natural to expect that the second-type control should perform better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
112
+ page_content=' However, let us stress again that the practical implementation of “personalized” control signals is hardly realistic as soon as the number of driven objects is large enough (for experiments that pretend to mimic the biological neural tissue, this number should be astronomic!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
113
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
114
+ page_content=' In reality, a meaningful class of control signals is U, or something “in the middle” between the mentioned two options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
115
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
116
+ page_content=' Performance Criterion We study a generalization of the optimization problem [12]: to steer the neural population to a target phase dis- tribution at a prescribed (finite) time moment T > 0 with care about the total energy of the control action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
117
+ page_content=' Assuming that the target distribution is given by a (bounded continuous) function η �→ ˇθ(η), our optimization problem reads: (P1) � � � � � � � � � � � � � � � min I[u] = � F � θ, ˇθ(η) � dµT (θ, η) +α 2 � T 0 u2(t) dt, α > 0, subject to (4), (6), where F(θ, ω) = 1 2(sin θ − sin ω)2 + 1 2(cos θ − cos ω)2 =1 − cos(θ − ω), and � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
118
+ page_content='= � S1×I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
119
+ page_content=' In this problem, the part of state variable is played by the probability measure µt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
120
+ page_content=' Note that the functional I and the dynamics (4) are linear in µ (despite the non-linearity of the map (θ, η) �→ vu(θ, η)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
121
+ page_content=' At the same time, (4) contains a product of µ and u, which means that (P1) is, in fact, a bi-linear (non-convex) problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
122
+ page_content=' Standard arguments from the theory of transport equations in the Wasserstein space [15] together with the classical Weierstrass theorem ensure that problem (P1) is well posed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
123
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
124
+ page_content=', it does have a minimizer within the admissible class U of control signals (refer, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
125
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
126
+ page_content=', to [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
127
+ page_content=' An alternative version of problem (P1) is formulated in terms of the mean-field type control: (P2) � � � � � � � � � � � � � � � min J[w] = � F � θ, ˇθ(η) � dµT +α 2 � T 0 dt � w2 t dµt, subject to (4), (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
128
+ page_content=' In what follows, we shall focus on the “more realistic” statement (P1), though all the forthcoming results can be extended, at least formally, to problem (P2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
129
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
130
+ page_content=' COST INCREMENT FORMULA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
131
+ page_content=' NUMERICAL ALGORITHM As it was remarked above, problem (P1) is linear in state- measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
132
+ page_content=' This fact allows us to represent the variation of the cost functional I with respect to any variation of con- trol u exactly (without any residual terms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
133
+ page_content=' The announced representation follows from the duality with the co-state from Pontryagin’s maximum principle [17], and generalizes the classical exact increment formula for conventional state- linear optimal control problems [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
134
+ page_content=' Consider two arbitrary controls ¯u, u ∈ U, u ̸= ¯u, and let t �→ ¯µt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
135
+ page_content='= µt[¯u] and t �→ µt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
136
+ page_content='= µt[u] be the respective weak solutions to the continuity equation (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
137
+ page_content=' Let also ¯p .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
138
+ page_content='= p[¯u] : (t, θ, η) �→ ¯pt(θ, η) be a classical solution to the following (non-conservative transport) equation: ∂tpt(θ, η)+ ∂θpt(θ, η) · v¯u(t)(θ, η) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
139
+ page_content=' (8) PDE (8) is known to be dual to the (conservative transport equation) (4);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
140
+ page_content=' the duality is formally established by the observation that the map t �→ � ¯pt d¯µt is constant on [0, T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
141
+ page_content=' One can check that, under the common regularity of the problem data, this map is an absolutely continuous function [0, T] �→ R (refer to [15] for further details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
142
+ page_content=' As soon as ¯p is chosen as a solution to (8) with the terminal condition pT (θ, η) = − F � θ, ˇθ(η) � , (9) the discussed duality makes it possible to represent the increment (variation) ∆I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
143
+ page_content='= I[u] − I[¯u] of the functional I as follows: −∆I = � T 0 � H (µt, ∂θ ¯pt, u(t)) − H (µt, ∂θ ¯pt, ¯u(t)) � dt, (10) where H(µ, ζ, u) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
144
+ page_content='= u � ζ(θ, η) · (1 + cos θ) dµ(θ, η) − α 2 u2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
145
+ page_content=' The derivation of this formula is dropped, since it is com- pletely similar to [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
146
+ page_content=' Based on representation (10), we can treat problem (P1) in the following iterative way: given a reference control ¯u, one looks for a new “target” signal u that “improves” the functional value, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
147
+ page_content='e such that ∆I < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
148
+ page_content=' The best choice of the target control is provided by the maximization of the integrand of (10) in the variable u: H (µt, ∂θ ¯pt, u) → max, u ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
149
+ page_content=' The unique solution of the latter problem is obtain in the analytic form as ut[µ] = 1 α � ∂θ ¯pt(θ, η) (1 + cos θ) dµ(θ, η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
150
+ page_content=' (11) Here, it is worthwhile to mention that the reference dual state ¯p enters formula (11) only in the form of the partial derivative ¯ξt(θ, η) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
151
+ page_content='= ∂θ ¯pt(θ, η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
152
+ page_content=' Differentiating (8) and (9) in θ one can easily check that ¯ξ solves the η-parametric family of the same continuity equations (4) backward in time, starting from the terminal condition ξT = −∂θF � θ, ˇθ(η) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
153
+ page_content='= sin �ˇθ(η) − θ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
154
+ page_content=' (12) Now, (11) can be reformulated in terms of the variable ¯ξ: ut[µ] = 1 α � ¯ξt(θ, η) (1 + cos θ) dµ(θ, η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
155
+ page_content=' (13) Note that the map (t, µ) �→ ut[µ] can be used as a feedback control [0, T] × P(S1 × I) �→ R of system (4) in the space of probability measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
156
+ page_content=' Injecting this control into (4), we obtain a nonlocal continuity equation ∂tµt + ∂θ � vu[µt] µt � = 0, µ0 = ϑ, (14) which is well-posed (thanks to the fact that function (θ, η) �→ vu(θ, η) is smooth and bounded).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
157
+ page_content=' Solving the last equation Algorithm 1: Numerical algorithm for optimal en- semble control Data: ¯u ∈ U (initial guess), ε > 0 (tolerance) Result: {uk}k≥0 ⊂ U such that I[uk+1] < I[uk] k ← 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
158
+ page_content=' u0 ← ¯u;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
159
+ page_content=' repeat µk ← ˆµ[uk];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
160
+ page_content=' uk+1 ← u[µk];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
161
+ page_content=' k ← k + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
162
+ page_content=' until I[uk−1] − I[uk] < ε;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
163
+ page_content=' numerically, and substituting its solution t �→ ˆµt .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
164
+ page_content='= ˆµt[¯u] into (11), we construct the “improved” signal: u(t) = ut[ˆµt].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
165
+ page_content=' This idea gives rise to the following Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
166
+ page_content=' By construction, Algorithm 1 generates a sequence {uk}k≥0 ⊂ U of controls with the property: Ik+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
167
+ page_content='= I[uk+1] < I[uk] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
168
+ page_content='= Ik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
169
+ page_content=' Since the sequence of numbers (Ik)k≥0 is bounded from below by min(P) it converges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
170
+ page_content=' Finally, remark that the same line of arguments can be formally applied to problem (P2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
171
+ page_content=' The respective mean-field type control takes the form wt(θ, η) = 1 α ¯ξt(θ, η) (1 + cos θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
172
+ page_content=' This construction gives rise to an iterative method, similar to Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
173
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
174
+ page_content=' NUMERICAL RESULTS Let us discuss several aspects of the numerical implemen- tation of Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
175
+ page_content=' First, note that the method proposed here does not involve any intrinsic parametric optimization: the most of indirect algorithms for optimal control require the dynamic adjust- ment of some internal computational parameters;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
176
+ page_content=' such are standard methods based on Pontryagin’s maximum principle [19], [20] that imply the internal such as line search for the specification of the “depth” of the needle-shaped (or weak) control variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
177
+ page_content=' Each iteration of Algorithm 1 requires numerical solution of two problems: one is the linear problem (4), (12) (inte- grated backward in time), and one for the nonlocal continuity equation (14) (solved numerically forward in time).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
178
+ page_content=' Since both (4) and (14) have no terms involving partial derivatives in η, one can think of η as a parameter and solve the corre- sponding parametric families of one-dimensional continuity equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
179
+ page_content=' Consider the problem (P) with initial distribution of neurons µ0 given by the density function ρ0(θ, η) = � 2 + 3 cos(2θ) − 2 sin(2θ) � η, and with constant target function ˇθ(η) ≡ π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
180
+ page_content=' In other words, our goal is to bring neurons’ states as close as possible to the segment 0 × I by the time moment T with the aid of sufficiently small controls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
181
+ page_content=' Parameters for the computation: T = 6, I = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
182
+ page_content='0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
183
+ page_content='0], α = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
184
+ page_content=' we used 512 Fourier harmonics in θ and grid steps ∆η = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
185
+ page_content='002, ∆t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
186
+ page_content='002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
187
+ page_content=' Equations (4) and (14) are integrated by the standard spectral method [21] using the trigonometric Fourier expansion in θ for each η from the grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
188
+ page_content=' Parameters of the algorithm: ¯u ≡ 0, ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
189
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
190
+ page_content=' 0 1 2 3 4 5 6 t −3 −2 −1 0 1 u(t) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
191
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
192
+ page_content=' Control input computed by the Algorithm 1 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
193
+ page_content=' CONCLUSION The goal of this paper is to present an approach based on the mean-field control paradigm to solve problems of optimization and synchronization of oscillatory processes (here, the addressed Theta model is among the simplest but prominent examples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
194
+ page_content=' The proposed technique can be applied to any state-linear optimal control problem involving (finite or infinite) non-interacting statistical ensembles of an arbitrary nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
195
+ page_content=' In particular, Algorithm 1 can be easily adapted to some other neural model such as SNIPER model, sinusoidal model etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
196
+ page_content=' [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
197
+ page_content=' We plan to continue this study in the way of natural generalization of model (1) by admitting the interaction between theta neurons, ˙θk = vu(θk, ηk) + 1 N N � j=1 K(θk, θj), k = 1, N, where K is certain interaction potential formalizing the spatial connectivity of neurons in the tissue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
198
+ page_content=' This will result in control problems of the sort (P1,2) stated over the nonlocal continuity equation ∂tµt + ∂θ � [vu + K ⋆ µt] µt � = 0 involving the term (K ⋆ µ)(θ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
199
+ page_content='= � K(θ, ζ) dµ(ζ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
200
+ page_content=' 0 π 2π θ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
201
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
202
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
203
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
204
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
205
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
206
+ page_content='0 η 0 π 2π θ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
207
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
208
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
209
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
210
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
211
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
212
+ page_content='0 η 0 π 2π θ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
213
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
214
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
215
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
216
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
217
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
218
+ page_content='0 η Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
219
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
220
+ page_content=' Trajectory µt(θ, µ) of (4) at time moments t = 0, 3 and 6 (from top to bottom) computed for the optimal control input shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
221
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
222
+ page_content=' The standard “rainbow” color table was used to code the isovalues: from black (minimal values), violet, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
223
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
224
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
225
+ page_content=' , to red (maximal values).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
226
+ page_content=' Such problems are not state-linear anymore, and the exact formula (10) becomes inapplicable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
227
+ page_content=' For this case, a promis- ing alternative could be an approach based on Pontryagin’s maximum principle [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
228
+ page_content=' REFERENCES [1] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
229
+ page_content=' Fischer, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
230
+ page_content=' Liu, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
231
+ page_content=' Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
232
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
233
+ page_content=' A, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
234
+ page_content=' 62, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
235
+ page_content=' 011801, Jun 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
236
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
237
+ page_content=' Available: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
238
+ page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
239
+ page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
240
+ page_content='1103/PhysRevA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
241
+ page_content='62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
242
+ page_content='011801 [2] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
243
+ page_content=' Blekhman, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
244
+ page_content=' Blekhman, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
245
+ page_content=' Rivin, Synchro- nization in Science and Technology, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
246
+ page_content=' ASME press translations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
247
+ page_content=' ASME Press, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
248
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
249
+ page_content=' Available: https://books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
250
+ page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
251
+ page_content='ru/books?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
252
+ page_content='id=ao1QAAAAMAAJ [3] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
253
+ page_content=' Nishikawa, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
254
+ page_content=' Gulbahce, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
255
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
256
+ page_content=' Motter, “Spontaneous reaction silencing in metabolic optimization,” PLOS Computational Biology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
257
+ page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
258
+ page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
259
+ page_content=' 1–12, 12 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
260
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
261
+ page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
262
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
263
+ page_content='1371/journal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
264
+ page_content='pcbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
265
+ page_content='1000236 [4] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
266
+ page_content=' Kuramoto, Chemical Oscillations, Waves, and Turbulence, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
267
+ page_content=' Dover books on chemistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
268
+ page_content=' Dover Publications, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
269
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
270
+ page_content=' Available: https://books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
271
+ page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
272
+ page_content='ru/books?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
273
+ page_content='id=4ADt7smO5Q8C [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
274
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
275
+ page_content=' Uhlhaas and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
276
+ page_content=' Singer, “Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology,” Neuron, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
277
+ page_content=' 52, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
278
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
279
+ page_content=' 155–168, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
280
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
281
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
282
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
283
+ page_content='com/science/article/pii/S0896627306007276 [6] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
284
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
285
+ page_content=' Schiff, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
286
+ page_content=' Jerger, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
287
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
288
+ page_content=' Duong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
289
+ page_content=' Chang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
290
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
291
+ page_content=' Spano, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
292
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
293
+ page_content=' Ditto, “Controlling chaos in the brain,” Nature, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
294
+ page_content=' 370, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
295
+ page_content=' 6491, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
296
+ page_content=' 615–620, Aug 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
297
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
298
+ page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
299
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
300
+ page_content='1038/370615a0 [7] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
301
+ page_content=' Glass, “Cardiac arrhythmias and circle maps-a classical problem,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
302
+ page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
303
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
304
+ page_content=' 13–19, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
305
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
306
+ page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
307
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
308
+ page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
309
+ page_content='165810 [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
310
+ page_content=' Winfree, The Geometry of Biological Time, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
311
+ page_content=' Interdisciplinary Applied Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
312
+ page_content=' Springer New York, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
313
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
314
+ page_content=' Available: https://books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
315
+ page_content='google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
316
+ page_content='ru/books?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
317
+ page_content='id=7qjTBwAAQBAJ [9] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
318
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
319
+ page_content=' Kiss, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
320
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
321
+ page_content=' Rusin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
322
+ page_content=' Kori, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
323
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
324
+ page_content=' Hudson, “Engineering complex dynamical structures: Sequential patterns and desynchro- nization,” Science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
325
+ page_content=' 316, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
326
+ page_content=' 5833, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
327
+ page_content=' 1886–1889, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
328
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
329
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
330
+ page_content='science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
331
+ page_content='org/doi/abs/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
332
+ page_content='1126/science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
333
+ page_content='1140858 [10] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
334
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
335
+ page_content=' Hoppensteadt and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
336
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
337
+ page_content=' Izhikevich, “Synchronization of laser oscillators, associative memory, and optical neurocomputing,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
338
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
339
+ page_content=' E, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
340
+ page_content=' 62, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
341
+ page_content=' 4010–4013, Sep 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
342
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
343
+ page_content=' Available: https://link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
344
+ page_content='aps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
345
+ page_content='org/doi/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
346
+ page_content='1103/PhysRevE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
347
+ page_content='62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
348
+ page_content='4010 [11] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
349
+ page_content=' Hoppensteadt and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
350
+ page_content=' Izhikevich, “Synchronization of mems res- onators and mechanical neurocomputing,” IEEE Transactions on Cir- cuits and Systems I: Fundamental Theory and Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
351
+ page_content=' 48, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
352
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
353
+ page_content=' 133–138, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
354
+ page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
355
+ page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
356
+ page_content=' Li, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
357
+ page_content=' Dasanayake, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
358
+ page_content=' Ruths, “Control and synchronization of neuron ensembles,” IEEE Transactions on Automatic Control, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
359
+ page_content=' 58, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
360
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
361
+ page_content=' 1919–1930, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
362
+ page_content=' [13] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
363
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
364
+ page_content=' Ermentrout and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
365
+ page_content=' Kopell, “Parabolic bursting in an excitable system coupled with a slow oscillation,” SIAM Journal on Applied Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
366
+ page_content=' 46, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
367
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
368
+ page_content=' 233–253, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
369
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
370
+ page_content=' Available: http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
371
+ page_content='jstor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
372
+ page_content='org/stable/2101582 [14] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
373
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
374
+ page_content=' Strogatz, Nonlinear dynamics and chaos : with applications to physics, biology, chemistry, and engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
375
+ page_content=' Second edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
376
+ page_content=' Boulder, CO : Westview Press, a member of the Perseus Books Group, [2015], [2015], includes bibliographical references and index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
377
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
378
+ page_content=' Available: https://search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
379
+ page_content='library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
380
+ page_content='wisc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
381
+ page_content='edu/catalog/9910223127702121 [15] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
382
+ page_content=' Ambrosio and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
383
+ page_content=' Savar´e, “Gradient flows of probability measures,” in Handbook of differential equations: evolutionary equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
384
+ page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
385
+ page_content=' III, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
386
+ page_content=' Handb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
387
+ page_content=' Differ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
388
+ page_content=' Equ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
389
+ page_content=' Elsevier/North-Holland, Amsterdam, 2007, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
390
+ page_content=' 1–136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
391
+ page_content=' [16] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
392
+ page_content=' Pogodaev and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
393
+ page_content=' Staritsyn, “Impulsive control of nonlocal transport equations,” Journal of Differential Equations, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
394
+ page_content=' 269, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
395
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
396
+ page_content=' 3585–3623, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
397
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
398
+ page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
399
+ page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
400
+ page_content='com/science/article/pii/S002203962030108X [17] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
401
+ page_content=' Pogodaev, “Optimal control of continuity equations,” NoDEA Nonlinear Differential Equations Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
402
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
403
+ page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
404
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
405
+ page_content=' Art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
406
+ page_content=' 21, 24, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
407
+ page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
408
+ page_content=' Staritsyn, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
409
+ page_content=' Pogodaev, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
410
+ page_content=' Chertovskih, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
411
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
412
+ page_content=' Pereira, “Feed- back maximum principle for ensemble control of local continuity equations: An application to supervised machine learning,” IEEE Control Systems Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
413
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
414
+ page_content=' 1046–1051, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
415
+ page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
416
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
417
+ page_content=' Arguchintsev, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
418
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
419
+ page_content=' Dykhta, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
420
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
421
+ page_content=' Srochko, “Optimal control: Nonlocal conditions, computational methods, and the variational principle of maximum,” Russian Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
422
+ page_content=' 53, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
423
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
424
+ page_content=' 1–35, Jan 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
425
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
426
+ page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
427
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
428
+ page_content='3103/S1066369X09010010 [20] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
429
+ page_content=' Drag, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
430
+ page_content=' Styczen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
431
+ page_content=' Kwiatkowska, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
432
+ page_content=' Szczurek, “A review on the direct and indirect methods for solving optimal control prob- lems with differential-algebraic constraints,” Studies in Computational Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
433
+ page_content=' 610, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
434
+ page_content=' 91–105, 07 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
435
+ page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
436
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
437
+ page_content=' Boyd, Chebyshev and Fourier spectral methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
438
+ page_content=', 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
439
+ page_content=' Mi- neola, NY: Dover Publications, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NFKT4oBgHgl3EQf9C5Z/content/2301.11952v1.pdf'}
4dFQT4oBgHgl3EQf4Ta7/content/2301.13431v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edc86a0dc45fa279c8c37480a4838925e0a80c8e0691d035ae2e121a7830243d
3
+ size 7678259
5tE1T4oBgHgl3EQfBAK1/content/tmp_files/2301.02847v1.pdf.txt ADDED
@@ -0,0 +1,1976 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ USTC-ICTS/PCFT-22-27
2
+ Irregular universe in the Nieh-Yan modified teleparallel gravity
3
+ Mingzhe Li
4
+ Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China and
5
+ Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China
6
+ Haomin Rao
7
+ School of Fundamental Physics and Mathematical Sciences,
8
+ Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China and
9
+ University of Chinese Academy of Sciences, 100190 Beijing, China
10
+ The Nieh-Yan modified teleparallel gravity is a model which modifies the general relativity equiv-
11
+ alent teleparallel gravity by a coupling between the Nieh-Yan density and an axion-like field. This
12
+ model predicts parity violations in the gravitational waves if the axion-like field has a non-trivial
13
+ background, and more importantly it is ghost free and avoids the pathologies presented in other
14
+ parity-violating gravity models.
15
+ The cosmological dynamics and perturbations of the Nieh-Yan
16
+ modified teleparallel gravity have been investigated in detail, but all these previous investigations
17
+ rely on the symmetry requirement that in the background universe both the metric and affine con-
18
+ nection are homogeneous and isotropic. In this paper we relax the symmetry constraint on the
19
+ connection and leave it arbitrary at the beginning, after all the cosmological principle only needs
20
+ the metric of the background spacetime to meet the symmetry requirement. We find a new flat
21
+ universe solution for the Nieh-Yan modified teleparallel gravity, for which the background dynamics
22
+ itself is unchanged but the perturbations around it present a new feature that the scalar and tensor
23
+ perturbations are coupled together at the linear level. The implications of this peculiar feature in
24
+ primordial perturbations from inflation are also discussed.
25
+ I.
26
+ INTRODUCTION
27
+ Stimulated by the experimental detections of gravitational waves (GWs) [1, 2] and the developments in the cosmic
28
+ microwave background radiation (CMB) experiments [3, 4], parity violating gravities attracted lots of interests in
29
+ recent years. A famous and frequently studied parity violating gravity model is the so-called Chern-Simons modified
30
+ gravity [5, 6] which within the framework of Riemannian geometry modifies general relativity (GR) by a gravitational
31
+ Chern-Simons term. The Chern-Simons modified gravity predicts the difference between the amplitudes of the left-
32
+ and right-handed polarized components of gravitational waves, i.e., the so-called amplitude birefringence phenomenon.
33
+ However, this model was found to suffer from the problem of vacuum instability because one of the circularly polarized
34
+ components of GWs becomes a ghost at high frequencies [7]. Further extensions [8–10] to this model did not circumvent
35
+ this difficulty because in these extended models the pathological behavior still appear at high energy scales, as shown
36
+ in Ref. [11]. It is very difficult to have a ghost-free parity violating gravity model within the framework of Riemannian
37
+ geometry.
38
+ Successful parity violating gravity models are available if we go beyond the Riemannian geometry. For example,
39
+ the Nieh-Yan modified teleparallel gravity (NYTG) [12, 13] is constructed within the framework of the teleparallel
40
+ gravity (TG) [14, 15], where the gravity is identified with the spacetime torsion in stead of the curvature. One may
41
+ have a GR equivalent TG model [16] (we may call it TGR). The NYTG model [12, 13] modifies TGR slightly by the
42
+ anomalous coupling θT �T between an axion-like field θ(x) and the Nieh-Yan density [17]: T �T ≡ (1/2)εµνρσT λ
43
+ µνTλρσ,
44
+ where T λ
45
+ µν is the torsion tensor, εµνρσ is Levi-Civita tensor which relates the totally antisymmetric symbol ϵµνρσ
46
+ and the determinant of the metric g through the equation εµνρσ = ϵµνρσ/√−g. The Nieh-Yan density is parity-odd,
47
+ so at the background with ∂µθ ̸= 0, the Nieh-Yan coupling term θT �T violates the parity symmetry spontaneously.
48
+ The NYTG model has been applied to cosmology in Refs. [12, 13], where it was found that this model predicts a
49
+ arXiv:2301.02847v1 [gr-qc] 7 Jan 2023
50
+
51
+ 2
52
+ difference between the propagating velocities of the left- and right-handed polarized components of GWs, i.e., the
53
+ so-called velocity birefringence phenomenon. More importantly, through detailed investigations on the cosmological
54
+ perturbations, it was shown in Refs. [12, 13] that the NYTG model is ghost-free. Recently, this model was found
55
+ to be compatible with the results of most local tests in the Solar System at the post-Newtonian order [18, 19], the
56
+ upper limit on its model parameters by the GWs data of LIGO/Virgo Collaboration was obtained in Ref. [20], and the
57
+ enhancement of primordial GWs during inflation due to the velocity birefringence of NYTG model and its implications
58
+ in the air-based GWs experiments were studied in Ref. [21]. Other recent studies on parity violating gravities can be
59
+ found in Refs. [22–33].
60
+ In all the previous studies of the cosmological applications of the NYTG model, both the metric and the affine
61
+ connection of the background universe are required to be homogeneous and isotropic at the beginning. The spacetime
62
+ under this strong symmetry constraint is called the regular universe in this paper. The background solutions of the
63
+ regular universe have been well studied within the TG framework [34–36], and are universally applicable to almost
64
+ all TG models. In fact these solutions have been frequently adopted by different authors, e.g., [24, 37–39] 1.
65
+ However, the cosmological principle only needs the metric of the background universe to meet the high symmetry
66
+ requirement. In the Riemannian geometry, once we impose this symmetry requirement on the metric, the connection
67
+ (i.e., the Christoffel symbol) satisfies the same symmetry requirement automatically. In TG models, the symmetry
68
+ constraint on the affine connection is independent of the one on the metric.
69
+ If one drops this extra constraint
70
+ on the connection and leaves it arbitrary at the beginning, there will be final solutions for which the connection
71
+ is neither homogeneous nor isotropic. We call the universe which has a homogeneous and isotropic metric and a
72
+ non-homogeneous and non-isotropic affine connection the irregular universe. So far the irregular universe has rarely
73
+ aroused research interest, one example is the flat irregular universe solution found in Ref. [40] for the f(T) gravity.
74
+ The irregular universe does not violate the cosmological principle, but questions are in coming: What features and
75
+ new physical phenomena could exist in the irregular universe? Or might the irregular universe have properties that
76
+ are clearly contradictory to experiments so that only the regular universe is physically feasible? These questions
77
+ deserve detailed studies for any TG models.
78
+ In this paper, we will study the irregular universe in the NYTG model. Firstly, we will obtain a more general
79
+ flat universe solution than those in Refs. [12, 13] by solving the equations of motion of the NYTG model directly
80
+ under the condition that only the metric is required to be homogeneous and isotropic. By analyzing the symmetry
81
+ of the connection, we will show that the flat universe we obtain is generally an irregular flat universe, and in special
82
+ cases it reduces back to a regular universe. We will also show that even in the irregular flat universe, the background
83
+ equations in the NYTG model are exactly the same as those in GR. Secondly, we will study the linear cosmological
84
+ perturbations around the irregular flat universe. We will find that tensor perturbations and scalar perturbations are
85
+ coupled at the linear perturbation level. This is a peculiar feature that distinguishes the irregular universe from the
86
+ regular universe in the NYTG model. We speculate that this peculiar feature is caused by the fact that the interior
87
+ space does not satisfy the homogeneity and isotropy in the irregular universe. Finally, we will study the primordial
88
+ fluctuations generated by slow-roll inflation in the regular and irregular flat universes. We will show that the primordial
89
+ fluctuations of left- and right-handed GWs are different whether in the regular universe or in the irregular universe.
90
+ We will also show that there is a strong statistical correlation between primordial scalar fluctuations and primordial
91
+ tensor fluctuations generated by slow-roll inflation in the irregular universe.
92
+ This paper is organized as follows. In Sec. II, we briefly introduce the TG theory and the NYTG model. In Sec. III,
93
+ we study spatially flat cosmological background solutions that only requires the metric to be homogeneous and
94
+ isotropic in the NYTG model. In Sec. IV, through the quadratic actions for scalar, vector, and tensor perturbations,
95
+ we investigate linear perturbations around the regular and irregular flat universes. In Sec. V, we apply our result to
96
+ the early universe and discuss briefly the primordial perturbations generated by slow-roll inflation.
97
+ 1 Actually, the cosmological background solution whose tetrad is eA
98
+ µ = diag(1, a, a, a) or eA
99
+ µ = diag(a, a, a, a) under the Weitzenb¨ock
100
+ gauge is the regular flat universe. However, most of the earlier literature did not clearly point out that the selection of such a tetrad
101
+ under the Weitzenb¨ock gauge actually requires the connection to satisfy the same symmetry of the metric.
102
+
103
+ 3
104
+ In this paper, we adopt the unit 8πG = 1, and use the signature (+, −, −, −) for the metric. The tensor indices of
105
+ the interior space are denoted by A, B, C, ... = 0, 1, 2, 3 and by a, b, c, ... = 1, 2, 3 when limiting to spatial components.
106
+ They are lowered and raised by the Minkowski metric ηAB and its inverse ηAB. The spacetime tensor indices are
107
+ denoted by Greek µ, ν, ρ, ... = 0, 1, 2, 3 and by Latin i, j, k, ... = 1, 2, 3 when limiting to spatial components. They
108
+ are lowered and raised by the spacetime metric gµν and its inverse gµν. The antisymmetric symbol ϵµνρσ has the
109
+ properties: ϵ0ijk = ϵijk ≡ ϵijk, and ϵ123 = 1. In addition, we distinguish the spacetime affine connection ˆΓρ
110
+ µν and
111
+ its associated covariant derivative ˆ∇ from the Levi-Civita connection Γρ
112
+ µν and its associated covariant derivative ∇
113
+ respectively.
114
+ II.
115
+ TG THEORY AND THE NYTG MODEL
116
+ The TG theory can be considered as a constrained metric-affine theory. It is formulated in a spacetime endowed
117
+ with a metric gµν and an affine connection ˆΓρ
118
+ µν, which is curvature free and metric compatible,
119
+ ˆRσ
120
+ ρµν = ∂µˆΓσ
121
+ νρ − ∂ν ˆΓσ
122
+ µρ + ˆΓσ
123
+ µλˆΓλ
124
+ νρ − ˆΓσ
125
+ νλˆΓλ
126
+ µρ = 0 , ˆ∇ρgµν = ∂ρgµν − ˆΓλ
127
+ ρµgλν − ˆΓλ
128
+ ρνgµλ = 0 .
129
+ (1)
130
+ Without curvature and nonmetricity, in the TG theory the gravity is identified with spacetime torsion T ρ
131
+ µν = 2ˆΓρ
132
+ [µν].
133
+ One can also describe the TG theory using the language of the tetrad eA
134
+ µ and the spin connection ωA
135
+ Bµ. They relates
136
+ the metric gµν and the affine connection ˆΓρ
137
+ µν through the following relations
138
+ gµν = ηABeA
139
+ µeB
140
+ ν ,
141
+ ˆΓρ
142
+ µν = e ρ
143
+ A (∂µeA
144
+ ν + ωA
145
+ BµeB
146
+ ν) .
147
+ (2)
148
+ The torsion tensor is written as
149
+ T ρ
150
+ µν = 2e ρ
151
+ A (∂[µeA
152
+ ν] + ωA
153
+ B[µeB
154
+ ν]) .
155
+ (3)
156
+ The teleparallel constraints (1) dictate that the spin connection can be in general expressed as
157
+ ωA
158
+ Bµ = (Λ−1)A
159
+ C∂µΛC
160
+ B ,
161
+ (4)
162
+ where ΛA
163
+ B is arbitrary element of Lorentz transformation matrix which is position dependent and satisfies the relation
164
+ ηABΛA
165
+ CΛB
166
+ D = ηCD at any spacetime point. Therefore, the tetrad eA
167
+ µ and the Lorentz matrix ΛA
168
+ B can be regarded
169
+ as the basic variables of the TG theory. In this way, the teleparallel constraints (1) are automatically satisfied.
170
+ The TGR model, as the GR equivalent TG model, has the following action,
171
+ ST GR = 1
172
+ 2
173
+
174
+ d4x |e| T ≡
175
+
176
+ d4x |e|
177
+
178
+ −1
179
+ 2TµT µ + 1
180
+ 8TαβµT αβµ + 1
181
+ 4TαβµT βαµ
182
+
183
+ ,
184
+ (5)
185
+ where |e| = √−g is the determinant of the tetrad, T is the torsion scalar, and Tµ = T α
186
+ µα is the torsion vector.
187
+ Since we have the identity −R(e) = T + 2∇µT µ, the action (5) is identical to the Einstein-Hilbert action up to a
188
+ surface term, where the curvature scalar R(e) is defined by the Levi-Civita connection and considered as being fully
189
+ constructed from the metric, and in turn from the tetrad. Since the surface term in the action does not affect the
190
+ equations of motion, we say that the TGR is equivalent to GR at the level of the equations of motion.
191
+ The NYTG model [12, 13] modifies the TGR model by introducing the coupling
192
+ SNY = c
193
+ 4
194
+
195
+ d4x |e| θ T �T ,
196
+ (6)
197
+ between an axion-like field θ and the Nieh-Yan density T �T . The coupling constant c is dimensionless. Generally we
198
+ should also consider its own dynamics of the axion-like field and take other matter into account, so the full action of
199
+ the NYTG model is
200
+ SNY T G =
201
+
202
+ d4x |e|
203
+ �1
204
+ 2T + c
205
+ 4 θ T �T + 1
206
+ 2∇µθ∇µθ − V (θ)
207
+
208
+ + Sm .
209
+ (7)
210
+
211
+ 4
212
+ Other matter with the action Sm is assumed to be coupled to spacetime minimally through the tetrad.
213
+ At the
214
+ background in which the axion-like field has non-zero spacetime derivatives, the Nieh-Yan coupling term breaks
215
+ parity spontaneously. Because only the first-order derivatives of the basic variables appears in the action, the NYTG
216
+ model can avoid the Ostrogradski ghost mode, which is expected to be originated from higher-order derivatives in the
217
+ action [41].
218
+ As with most modified TG theories, the NYTG model apparently has two kinds of gauge symmetries: diffeomor-
219
+ phism invariance and local Lorentz invariance. The latter transformation makes the following change:
220
+ eA
221
+ µ → (L−1)A
222
+ BeB
223
+ µ , ΛA
224
+ B → ΛA
225
+ CLC
226
+ B ,
227
+ (8)
228
+ where LA
229
+ B(x) are the element of Lorentz matrix. We would like to use different notations to distinguish two kinds
230
+ of Lorentz matrices: ΛA
231
+ B(x) is used to express the spin connection as in Eq. (4), but LA
232
+ B(x) represents the local
233
+ transformation that makes a shift from one local frame to another. Transformation (8) can be expressed in terms of
234
+ tetrad and spin connections as
235
+ eA
236
+ µ → (L−1)A
237
+ BeB
238
+ µ , ωA
239
+ Bµ → (L−1)A
240
+ CωC
241
+ DµLD
242
+ B + (L−1)A
243
+ C∂µLC
244
+ B .
245
+ (9)
246
+ It is easy to prove that the metric gµν and torsion tensor T ρ
247
+ µν are invariant under the local Lorentz transformation
248
+ (8), as is the action (7). Due to the local Lorentz invariance, one can choose the gauge ΛA
249
+ B = δA
250
+ B, i.e., ωA
251
+ Bµ = 0.
252
+ This is the Weitzenb¨ock connection, which has been frequently adopted in the literature. In addition, there is another
253
+ symmetry hidden in the NYTG model. The Nieh-Yan term (6) can be integrated by parts as
254
+ SNY = − c
255
+ 2
256
+
257
+ d4x ηABϵµνρσ(∂µθ)(ΛA
258
+ CeC
259
+ ν)∂ρ(ΛB
260
+ DeD
261
+ σ) .
262
+ (10)
263
+ It can be seen that the Nieh-Yan term (6) is invariant under the following transformation
264
+ (ΛA
265
+ CeC
266
+ µ) → LA
267
+ B(θ)(ΛB
268
+ CeC
269
+ µ) ,
270
+ (11)
271
+ where LA
272
+ B(θ) is Lorentz matrix that depends only on axion-like field θ. Note that ΛA
273
+ CeC
274
+ µ is invariant under trans-
275
+ formation (8). Due to the Lorentz symmetry (8), the transformation (11) can always be attributed to the fact that
276
+ the tetrad eA
277
+ µ remains unchanged while the Lorentz matrix ΛA
278
+ B undergoes a Lorentz transformation. Obviously the
279
+ metric and the action of TGR model are invariant under such a transformation. So the total action of the NYTG
280
+ model is invariant under the transformation (11).
281
+ The equations of motion follow from the variation of the action (7) with respect to eA
282
+ µ and ΛA
283
+ B separately
284
+ Gµν + N µν = T µν + T µν
285
+ θ
286
+ ,
287
+ (12)
288
+ N [µν] = 0 ,
289
+ (13)
290
+ where N µν = (c/2)εµλρσ∂λθ T ν
291
+ ρσ, Gµν is the Einstein tensor, T µν = −(2/√−g)(δSm/δgµν) and T µν
292
+ θ
293
+ = [V (θ) −
294
+ ∇αθ∇αθ/2]gµν + ∇µθ∇νθ are the energy-momentum tensors for the matter and the axion-like field θ respectively.
295
+ Similar to most modified TG models, the equation of motion (13) from the variation of ΛA
296
+ B is not independent of
297
+ Eq. (12), it is just the antisymmetric part of the latter. As explained in Ref. [13], this is due to the local Lorentz
298
+ invariance of the action, any change caused by δΛA
299
+ B can always be equivalent to the change caused by δeA
300
+ µ, so
301
+ requiring the action to take the extremum under δeA
302
+ µ already includes the case where the action takes the extremum
303
+ under δΛA
304
+ B. There is another equation following from the variation of the action (7) with respect to θ,
305
+ □θ + V (1) − c
306
+ 4T �T = 0 ,
307
+ (14)
308
+ where □ = gµν∇µ∇ν and V (n) = dnV (θ)/dθn. All of these equations of motion are consistent with the Bianchi
309
+ identity ∇µGµν = 0 and the covariant conservation law ∇µT µν = 0.
310
+ Also in Refs. [12, 13], the cosmological perturbations of the NYTG model were analyzed in detail. It was found
311
+ that the NYTG model makes a difference between the propagating velocities of the left- and right-handed polarized
312
+
313
+ 5
314
+ components of GWs, but makes no difference between their amplitudes. This phenomenon is called velocity birefrin-
315
+ gence, which is a clear physical signal of parity violation. More importantly, the NYTG model was confirmed to be
316
+ ghost free through the quadratic action of cosmological perturbations.
317
+ It is worth mentioning that the Nieh-Yan density T �T is not the only parity-odd term within the TG framework.
318
+ A more general model including all the parity-odd terms which are quadratic in the torsion tensor was considered in
319
+ Ref. [42]. But then it was found in Ref. [43] that this more general model suffers from the problem of ghost instability
320
+ again, unless it completely reduces to the NYTG model. Therefore, within the TG framework, for all parity-odd
321
+ terms which are quadratic in the torsion tensor, only the Nieh-Yan density T �T can avoid the ghost instability. This
322
+ means the NYTG model is robust to some extent.
323
+ III.
324
+ IRREGULAR FLAT UNIVERSE IN THE NYTG MODEL
325
+ So far all the studies on the cosmological applications of the NYTG model only considered the regular universe
326
+ as the background, that means both the metric and the affine connection are constrained to be homogeneous and
327
+ isotropic.
328
+ This constraint may be too strong, after all the cosmological principle which is supported by current
329
+ observations only needs the metric of the background spacetime to meet the high symmetry requirement. In this
330
+ paper, we will drop the symmetry requirement on the connection and leave it arbitrary at the beginning. After this
331
+ relaxation, it is expected that the NYTG model will have more interesting cosmological background solutions. We
332
+ are interested in the irregular universe solutions in which the metric homogeneous and isotropic but the connection
333
+ is neither homogeneous nor isotropic. For simplicity, we will only consider the spatially flat universe.
334
+ In flat universe, the metric can be expressed in rectangular coordinate as
335
+ ds2 = gµνdxµdxν = a2 �
336
+ dη2 − δijdxidxj�
337
+ ,
338
+ (15)
339
+ where a = a(η) is the scale factor of the universe, η is the conformal time. This is the Friedmann-Robertson-Walker
340
+ (FRW) metric. There are 6 Killing vector fields {ξµ
341
+ I , I = 1, 2...6} in flat universe, which can be expressed as
342
+ ξµ
343
+ I = δ µ
344
+ I , ξµ
345
+ I+3 = ϵIijδµ
346
+ ixj ,
347
+ I = 1, 2, 3
348
+ (16)
349
+ where ξµ
350
+ 1 , ξµ
351
+ 2 , ξµ
352
+ 3 are Killing vector fields representing the symmetry of spatial translation, and ξµ
353
+ 4 , ξµ
354
+ 5 , ξµ
355
+ 6 are Killing
356
+ vector fields representing the symmetry of spatial rotation. One can prove that the FRW metric satisfies the condition:
357
+ LξIgµν = 0, where LξI is the Lie derivative along the Killing vector field ξµ
358
+ I . This reflects the result that the metric
359
+ is homogeneous and isotropic. One can also prove that LξIΓρ
360
+ µν = 0 for the Levi-Civita connection Γρ
361
+ µν, which is
362
+ automatically homogeneous and isotropic. This is why we do not need to pay extra attention to the symmetry of the
363
+ connection within the framework of Riemannian geometry.
364
+ A.
365
+ Regular flat universe
366
+ For TG models, even the metric is determined, the affine connection is still arbitrary to some extent. Usually, as
367
+ suggested in Refs [34–36], a further constraint was imposed that requires the connection is also homogeneous and
368
+ isotropic, that is,
369
+ LξI ˆΓρ
370
+ µν = ˆ∇µ ˆ∇ν ξρ
371
+ I − ˆ∇µ(T ρ
372
+ νσξσ
373
+ I ) = 0 .
374
+ (17)
375
+ Although ˆΓρ
376
+ µν is coordinate dependent, the Lie derivative of ˆΓρ
377
+ µν does not depend on the coordinate. Hence the
378
+ condition (17) is unambiguous. Combining Eqs. (15) and (17) selected the regular flat universe solution in which the
379
+ tetrad eA
380
+ µ and Lorentz matrix ΛA
381
+ B have the following forms:
382
+ eA
383
+ µ = aδA
384
+ µ , ΛA
385
+ B = ˚ΛA
386
+ B ,
387
+ (18)
388
+
389
+ 6
390
+ where ˚ΛA
391
+ B is a global Lorentz matrix, which does not depend on spacetime. All other solutions satisfying Eqs. (15)
392
+ and (17) differ from the solution (18) only by Lorentz transformation (8), so they are physically equivalent to the
393
+ solution (18). The above process does not depend on a specific TG theory, so the solution (18) is generally applicable
394
+ to most TG theories.
395
+ For the NYTG model, the solution (18) can automatically satisfy the constraint N [µν] = 0, so the solution (18)
396
+ is compatible with the NYTG model. Furthermore, solution (18) leads to N µν = 0 and T �T = 0, which means that
397
+ the Nieh-Yan term has no effect on the regular flat universe background. Therefore, the background equations of the
398
+ regular flat universe are exactly the same as those of GR [12, 13].
399
+ B.
400
+ Irregular flat universe
401
+ To look for the irregular universe solution, we should give up the constraint (17) on the connection. After this
402
+ relaxation, the connection is left to be determined by the equation of motion.
403
+ In a flat universe, we can always simply find the non-zero components of Gµν, T µν and T µν
404
+ θ
405
+ as
406
+ G00 = 3H2
407
+ a4
408
+ , T 00 = ρ
409
+ a2 , T 00
410
+ θ
411
+ = ρθ
412
+ a2 , Gij = −2H′ + H2
413
+ a4
414
+ δij , T ij = p
415
+ a2 δij , T ij
416
+ θ = pθ
417
+ a2 δij ,
418
+ (19)
419
+ where H = a′/a is the conformal Hubble rate, prime represents the derivative with respect to the conformal time η,
420
+ ρθ = θ′2/
421
+
422
+ 2a2�
423
+ +V and pθ = θ′2/
424
+
425
+ 2a2�
426
+ −V are the energy density and pressure of the θ field, and ρ and p denote the
427
+ energy density and pressure of other matter. Thanks to the Lorentz symmetry (8), we can always reduce the tetrad
428
+ to the simple form eA
429
+ µ = aδA
430
+ µ in flat universe. In order to facilitate further analysis, we decompose the independent
431
+ non-zero components of spin connections ωA
432
+ Bµ as follows
433
+ δa
434
+ iω0
435
+ a0 = Ui ,
436
+ δi
437
+ aδb
438
+ jωa
439
+ bk = Σϵijk + ϵijlΣkl + Σiδjk − Σjδik ,
440
+ δi
441
+ aδb
442
+ jωa
443
+ b0 = ϵijkVk ,
444
+ δa
445
+ iω0
446
+ aj = σδij + σij + ϵijkσk ,
447
+ (20)
448
+ where Σij and σij are symmetric and traceless spatial tensors. In the above decomposition we have exploited the
449
+ property ωABµ = −ωBAµ due to ˆ∇ρgµν = 0. Note that the variables σ, Σ, Ui, Vi, σi, Σi, σij, Σij are not completely
450
+ independent because we have not yet imposed ˆRσ
451
+ ρµν = 0 on the spin connection. Combining eA
452
+ µ = aδA
453
+ µ and Eq. (20),
454
+ N µν can be obtained as
455
+ N 00 = 0 ,
456
+ N 0i = 0 ,
457
+ N i0 = 2cθ′
458
+ a4 σi ,
459
+ N ij = cθ′
460
+ a4 (2Σδij − Σij + ϵijkΣk) .
461
+ (21)
462
+ In order for Eqs. (12) and (13) to hold, there must be
463
+ σi = 0 ,
464
+ Σi = 0 ,
465
+ Σij = 0 ,
466
+ Σ = Σ(η) .
467
+ (22)
468
+ Combining eA
469
+ µ = aδA
470
+ µ, Eqs. (20) and (22), Nieh-Yan density can be obtained as
471
+ T �T = 24Σ
472
+ a2 (H − σ) .
473
+ (23)
474
+ In order for Eq. (14) to hold, the Nieh-Yan density T �T can only be a function of time η, so σ = σ(η) when Σ ̸= 0.
475
+ Combining Eqs. (20) and (22), ˆRσ
476
+ ρµν = 0 gives
477
+ S′
478
+ ij − Ui,j + ϵijkΣ Uk + ϵiklSjkVl = 0 ,
479
+ (24)
480
+ Σ′δij − Vi,j + ϵijkΣ Uk − ϵiklSjkUl = 0 ,
481
+ (25)
482
+ ϵiklSlj,k + Σ(Sij − Skkδij) = 0 ,
483
+ (26)
484
+ ϵinmSjnSkm − Σ2ϵijk = 0 ,
485
+ (27)
486
+ where Sij = σδij + σij and the subscript “, i” represents a derivative with respect to xi. The trace of Eq. (26) gives
487
+ σΣ = 0 .
488
+ (28)
489
+
490
+ 7
491
+ This means that at least one of σ and Σ is zero. If σ = 0, the equation after the Hodge duality of the ”j, k” index in
492
+ Eq. (27) can be decomposed as follows according to the trace part and the traceless part:
493
+ 6 Σ2 + σijσij = 0 ,
494
+ σikσjk − 1
495
+ 3(σklσkl)δij = 0 .
496
+ (29)
497
+ The solution of Eq. (29) is Σ = 0, σij = 0. This means that Eqs. (27) and (28) must give
498
+ Σ = 0 .
499
+ (30)
500
+ Combining Eqs. (22) and (30) gives N µν = 0 and T �T = 0, which means that the Nieh-Yan term has no effect
501
+ even on the irregular flat universe background. Therefore, the background equations of the irregular flat universe are
502
+ exactly the same as those of GR. This is a somewhat unexpected result. But the fact that Nieh-Yan term has no effect
503
+ on the background does not mean that it has no effect on the perturbations. In order to analyze the perturbations,
504
+ we need to first find the background solution of the irregular flat universe.
505
+ Substituting Eq. (30) into Eqs. (24), (25), (26) and (27), we get
506
+ S′
507
+ ij − Ui,j + ϵiklSjkVl = 0 ,
508
+ (31)
509
+ Vi,j + ϵiklSjkUl = 0 ,
510
+ (32)
511
+ ϵiklSlj,k = 0 ,
512
+ (33)
513
+ ϵinmSjnSkm = 0 ,
514
+ (34)
515
+ Although there are more equations than variables, this does not mean that Eqs. (31), (32), (33) and (34) have no
516
+ solution. It can be verified that the following are the solution of Eqs. (31), (32), (33) and (34)
517
+ Sij = vivjf(η)F (1)(⃗v · ⃗x) ,
518
+ Vi = ga(η)αa
519
+ i (η, ⃗x) − ha(η)βa
520
+ i (η, ⃗x) ,
521
+ Ui = ha(η)αa
522
+ i (η, ⃗x) + ga(η)βa
523
+ i (η, ⃗x) + vif (1)(η)F(⃗v · ⃗x) ,
524
+ (35)
525
+ where
526
+ αa
527
+ i (η, ⃗x) = cosh [vf(η)F(⃗v · ⃗x)] δai + vavi
528
+ v2
529
+
530
+ 1 − cosh [vf(η)F(⃗v · ⃗x)]
531
+
532
+ ,
533
+ βa
534
+ i (η, ⃗x) = ϵaij
535
+ vj
536
+ v sinh [vf(η)F(⃗v · ⃗x)] ,
537
+ where v1, v2, v3 are constant parameters, v =
538
+
539
+ δijvivj, ⃗v · ⃗x = vixi, f(η), ga(η), ha(η) are arbitrary smooth function
540
+ of conformal time η, F(⃗v · ⃗x) is arbitrary smooth function of ⃗v · ⃗x, f (n)(η) is the n derivative of f(η) with respect to
541
+ conformal time η, and F (n)(⃗v · ⃗x) is the n derivative of F(⃗v · ⃗x) with respect to ⃗v · ⃗x.
542
+ Putting solutions (22), (30) and (35) into the decomposition (20), the spin connection ωA
543
+ Bµ when the tetrad is
544
+ eA
545
+ µ = aδA
546
+ µ can be obtained as
547
+ ωa
548
+ 00 = ω0
549
+ a0 = hc(η)αc
550
+ a(η, ⃗x) + gc(η)βc
551
+ a(η, ⃗x) + vaf (1)(η)F(⃗v · ⃗x) ,
552
+ ωa
553
+ b0 = ϵabi [gc(η)αc
554
+ i(η, ⃗x) − hc(η)βc
555
+ i (η, ⃗x)] ,
556
+ ω0
557
+ ai = ωa
558
+ 0i = vavif(η)F (1)(⃗v · ⃗x) ,
559
+ ωa
560
+ bi = 0 .
561
+ (36)
562
+ It can be verified that the spin connection (36) does satisfy the teleparallel constraints (1). Due to the symmetry
563
+ (11), not every hI(η) and gI(η) represent a physically inequivalent solution. In order to see this better, we perform a
564
+ Lorentz transformation (9) on the above solution. The transformation matrix LA
565
+ B is
566
+ L0
567
+ 0 = cosh [vf(η)F(⃗v · ⃗x)] , L0
568
+ a = La
569
+ 0 = va
570
+ v sinh [vf(η)F(⃗v · ⃗x)] ,
571
+ La
572
+ b = δab + vavb
573
+ v2
574
+
575
+ cosh [vf(η)F(⃗v · ⃗x)] − 1
576
+
577
+ ,
578
+ (37)
579
+
580
+ 8
581
+ Then, the tetrad ˜eA
582
+ µ = LA
583
+ BeB
584
+ µ and the corresponding spin connection ˜ωA
585
+ Bµ are
586
+ ˜e0
587
+ 0 = a cosh [vf(η)F(⃗v · ⃗x)] , ˜ea
588
+ 0 = δai˜e0
589
+ i = ava
590
+ v sinh [vf(η)F(⃗v · ⃗x)] ,
591
+ ˜ea
592
+ i = a
593
+
594
+ δai + vavi
595
+ v2
596
+
597
+ cosh [vf(η)F(⃗v · ⃗x)] − 1
598
+ ��
599
+ ,
600
+ ˜ωa
601
+ 00 = ˜ω0
602
+ a0 = ha(η) , ˜ωa
603
+ b0 = ϵabcgb(η) , ˜ωA
604
+ Bi = 0 .
605
+ (38)
606
+ It can be verified that the metric gµν and connection ˆΓρ
607
+ µν given by solution (38) are the same as those given by
608
+ the tetrad eA
609
+ µ = aδA
610
+ µ and the spin connection (36). Since the solution (38) satisfies the teleparallel constraints (1),
611
+ the spin connection ˜ωA
612
+ Bµ in the solution (38) can be expressed by a Lorentz matrix ˜ΛA
613
+ B(η, ⃗x). And ˜ωA
614
+ Bi = 0 means
615
+ that ˜ΛA
616
+ B(η, ⃗x) = ˜ΛA
617
+ B(η). So taking different ha(η) and ga(η) is actually taking different ˜ΛA
618
+ B(η). Since θ = θ(η) in
619
+ the cosmological background, different ˜ΛA
620
+ B(η) can be converted to each other through the Lorentz transformation
621
+ ˜ΛA
622
+ B(η) → LA
623
+ C(θ)˜ΛC
624
+ B(η). Therefore, the solutions with different ha(η) and ga(η) can be transformed into each other
625
+ by transformation (11), so they are physically equivalent. In this case, we only need to consider the simplest case
626
+ below, that is, the case where ha(η) = ga(η) = 0, so that the solution (36) can be simplified to
627
+ eA
628
+ µ = aδA
629
+ µ ,
630
+ ωa
631
+ 00 = ω0
632
+ a0 = vaf (1)(η)F(⃗v · ⃗x) , ωa
633
+ b0 = 0 ,
634
+ ωa
635
+ 0i = ω0
636
+ ai = vavif(η)F (1)(⃗v · ⃗x) , ωa
637
+ bi = 0 .
638
+ (39)
639
+ The solution (39) can be expressed by the tetrad eA
640
+ µ and the Lorentz matrix ΛA
641
+ B as
642
+ eA
643
+ µ = aδA
644
+ µ ,
645
+ Λ = ˚Λ · exp
646
+
647
+ f(η)F(⃗v · ⃗x) vaKa�
648
+ ,
649
+ (40)
650
+ where ˚Λ is a spacetime independent Lorentz matrix, and K1, K2, K3 are the boost matrices whose expression are
651
+ K1 =
652
+
653
+
654
+
655
+
656
+
657
+ 0 1 0 0
658
+ 1 0 0 0
659
+ 0 0 0 0
660
+ 0 0 0 0
661
+
662
+
663
+
664
+
665
+ � ,
666
+ K2 =
667
+
668
+
669
+
670
+
671
+
672
+ 0 0 1 0
673
+ 0 0 0 0
674
+ 1 0 0 0
675
+ 0 0 0 0
676
+
677
+
678
+
679
+
680
+ � ,
681
+ K3 =
682
+
683
+
684
+
685
+
686
+
687
+ 0 0 0 1
688
+ 0 0 0 0
689
+ 0 0 0 0
690
+ 1 0 0 0
691
+
692
+
693
+
694
+
695
+ � .
696
+ Regardless of the functional form of f(η) and F(⃗v · ⃗x), it can be verified that the solution (40) always satisfies the
697
+ teleparallel constraints (1) and makes Eqs. (12) and (14) self-consistent. Putting solution (40) into Eqs. (12) and (14),
698
+ we can get
699
+ 3H2 = a2 (ρθ + ρ) ,
700
+ 2H′ + H2 = −a2 (pθ + p) ,
701
+ θ′′ + 2Hθ′ + a2V (1) = 0 .
702
+ (41)
703
+ The background equations are exactly the same as those of GR. This means that the Nieh-Yan term has no effect
704
+ even on the irregular flat universe background. This is consistent with our analysis above.
705
+ Finally, let’s focus on the symmetry of the connection given by the solution (40). The non-zero components of
706
+ LξI ˆΓρ
707
+ µν given by the solution (40) are
708
+ LξI ˆΓ0
709
+ 0i = LξI ˆΓi
710
+ 00 = vIvif (1)(η)F (1)(⃗v · ⃗x) ,
711
+ LξI ˆΓ0
712
+ ij = LξI ˆΓi
713
+ j0 = vIvivjf(η)F (2)(⃗v · ⃗x) ,
714
+ LξI+3 ˆΓ0
715
+ 0i = LξI+3 ˆΓi
716
+ 00 = −ϵIijvjf (1)(η)F(⃗v · ⃗x) + viϵIjkvjxkf (1)(η)F (1)(⃗v · ⃗x) ,
717
+ LξI+3 ˆΓ0
718
+ ij = LξI+3 ˆΓi
719
+ j0 = 2v(iϵj)Ikvkf(η)F (1)(⃗v · ⃗x) + vivjϵIklvkxlf(η)F (2)(⃗v · ⃗x) ,
720
+ (42)
721
+ where I = 1, 2, 3 in Eq. (42), and the subscript parentheses denotes the symmetrization. The fact that LξI ˆΓρ
722
+ µν ̸= 0
723
+ indicates that the spacetime connection given by the solution (40) is neither homogeneous nor isotropic.
724
+ So the
725
+ solution (40) does represent a irregular flat universe. When vi = 0 or f(η) = 0 or F(⃗v · ⃗x) = 0, there is LξI ˆΓρ
726
+ µν = 0,
727
+ and the solution (40) dose reduce to the regular flat universe solution (18).
728
+
729
+ 9
730
+ IV.
731
+ PERTURBATIONS AROUND THE IRREGULAR FLAT UNIVERSE
732
+ In the previous section we studied the flat universe solution of the NYTG model that only requires the metric to
733
+ be homogeneous and isotropic. We found that the Nieh-Yan term has no effect even on the irregular flat universe
734
+ background. In order to explore the effect of the Nieh-Yan term on the irregular flat universe, we study the linear
735
+ cosmological perturbations around the irregular flat universe (40) in this section. For simplicity, we only consider the
736
+ case of F(⃗v · ⃗x) = ⃗v · ⃗x, which is equivalent to requiring that the coefficients of the equations of linear perturbations
737
+ do not depend on the spatial coordinates ⃗x (see below for details). And we also ignore other matter so that Sm = 0.
738
+ We use the following parametrization for perturbed tetrad [44]:
739
+ e0
740
+ 0 = a(1 + A) , e0
741
+ i = a(β,i + βV
742
+ i ) , ec
743
+ 0 = aδci(χ,i + χV
744
+ i ) ,
745
+ ec
746
+ i = aδcj[(1 − ψ)δij + α,ij + αV
747
+ j,i − ϵijk(λ,k + λV
748
+ k ) + 1
749
+ 2hT
750
+ ij] ,
751
+ (43)
752
+ So the perturbed metric components have the familiar forms:
753
+ g00 = a2(1 + 2A) , g0i = −a2(B,i + BV
754
+ i ) ,
755
+ gij = −a2[(1 − 2ψ)δij + 2α,ij + αV
756
+ i,j + αV
757
+ j,i + hT
758
+ ij] ,
759
+ (44)
760
+ where B = χ − β and BV
761
+ i
762
+ = χV
763
+ i − βV
764
+ i . Besides the familiar scalar perturbations (A, B, ψ, α), vector perturbations
765
+ (BV
766
+ i , αV
767
+ i ), and tensor perturbations hT
768
+ ij in the metric, the parametrization of tetrad brings six extra variables, which
769
+ are scalar perturbation λ, χ + β and vector perturbation λV
770
+ i , χV
771
+ i + βV
772
+ i . All the vector perturbations are transverse
773
+ and denoted by the superscript V , both the tensor perturbations are transverse and traceless and denoted by the
774
+ superscript T. In addition, the scalar field θ is decomposed as θ(η, ⃗x) = ¯θ(η) + δθ(η, ⃗x).
775
+ Although we can perform a similar decomposition on the Lorentz matrix ΛA
776
+ B following the parametrization in
777
+ Ref. [13], we do not need to do so in this paper. Because we can always transform the perturbed Lorentz matrix into
778
+ the background Lorentz matrix in Eq. (40) through the infinitesimal Lorentz transformation (8). In other words, we
779
+ can always absorb the perturbations of the Lorentz matrix ΛA
780
+ B into the perturbations of the tetrad eA
781
+ µ through the
782
+ infinitesimal Lorentz transformation (8), so that we only need to deal with the perturbations of the the tetrad.
783
+ Due to the diffeomorphism invariance, it is safe to take the unitary gauge δθ = 0, α = 0, αV
784
+ i = 0. This simplifies
785
+ the calculations, for example, the gauge invariant scalar perturbation ζ = −(ψ + Hδθ/θ′) representing the curvature
786
+ perturbation of the hypersurfaces of constant θ reduces to −ψ under the unitary gauge. Since both α and αV
787
+ i
788
+ are
789
+ perturbations which enter the metric, the perturbations α, αV
790
+ i and δθ are invariant under the infinitesimal Lorentz
791
+ transformation (8). Therefore, the unitary gauge is compatible with the operation of absorbing the perturbations of
792
+ the Lorentz matrix into the perturbations of the tetrad.
793
+ The non-isotropic nature of the background connection may lead to coupling of scalar, vector and tensor perturba-
794
+ tions. Therefore, when studying linear perturbations around the irregular flat universe (40), we should not deal with
795
+ scalar, vector, or tensor perturbations individually, but should deal with all perturbation variables simultaneously. In
796
+ the following we choose A, ζ, B, BV
797
+ i , βi = β,i + βV
798
+ i , λi = λ,i + λV
799
+ i and hT
800
+ ij as independent variables, and we study
801
+ the linear perturbations around the irregular flat universe by means of quadratic action.
802
+ For the NYTG model (7) with Sm = 0, one can directly obtain the quadratic action as
803
+ S(2) =
804
+
805
+ d4x a2
806
+
807
+ 6Hζ′A − 3ζ′2 − (2A + ζ)ζ,ii − a2V A2 + 2(ζ′ − HA)B,ii + 1
808
+ 8
809
+
810
+ hT ′
811
+ ij hT ′
812
+ ij − hT
813
+ ij,khT
814
+ ij,k
815
+
816
+ −1
817
+ 4BV
818
+ i BV
819
+ i,jj + cθ′�
820
+ 2λiζ,i + 1
821
+ 2ϵijk(βiβj,k − λiλj,k) + ˆSijλiβj − 1
822
+ 2ϵijkSilhT
823
+ jlβk − 1
824
+ 8ϵijkhT
825
+ ilhT
826
+ jl,k
827
+ ��
828
+ . (45)
829
+ where Sij = vivjf(η)F (1)(⃗v · ⃗x) and ˆSij = (vivj − v2δij)f(η)F (1)(⃗v · ⃗x). In general, the coefficients Sij and ˆSij are
830
+ dependent on the spatial coordinate ⃗x. The coefficients of the equations for the linear perturbations are thus also
831
+ dependent on the spatial coordinate ⃗x. It means that the evolution equations for the linear perturbations are not
832
+
833
+ 10
834
+ homogeneous. For simplicity, in the following we only consider the case of F(⃗v · ⃗x) = ⃗v · ⃗x 2. In this way, Sij and ˆSij
835
+ are constant coefficients. So the evolution equations for the linear perturbations are homogeneous. But it should be
836
+ noted that even in this case, the action (45) appears to be only homogeneous rather than homogeneous and isotropic,
837
+ because the constant coefficients Sij and ˆSij are not spatial rotation invariants. In addition, the terms ˆSijλiβj and
838
+ ϵijkSilhT
839
+ jlβk in the action (45) show that there is a coupling of scalar, vector and tensor perturbations. But such
840
+ coupling may be eliminated by the constraints imposed by the action (45) itself. Therefore, only after the constraints
841
+ are lifted can we know whether there is really a coupling of scalar, vector and tensor perturbations.
842
+ To further simplify the quadratic action, we change to the momentum space in terms of Fourier transformations,
843
+ ζ(η, ⃗x) =
844
+
845
+ d3k
846
+ (2π)
847
+ 3
848
+ 2 ζ(η,⃗k) ei⃗k·⃗x ,
849
+ (46)
850
+ and we also expand the variables A, B, λi, βi and hT
851
+ ij in the same way. The tensor perturbation hT
852
+ ij can be further
853
+ expanded as
854
+ hT
855
+ ij(η,⃗k) =
856
+
857
+ A
858
+ hA(η,⃗k) ˆeA
859
+ ij(⃗k) ,
860
+ (47)
861
+ where {ˆeA
862
+ ij(⃗k), A = L, R} are circular polarization bases 3 satisfying ˆklϵlikˆeA
863
+ jk(⃗k) = ipAˆeA
864
+ ij(⃗k), where ˆk is the unit
865
+ vector of ⃗k, pL = −1 and pR = 1. Note that we use the normal letter A for the left- and right- hand indices to
866
+ distinguish it from the italic letter A used to represent the tetrad indices. The quadratic action in the momentum
867
+ space can be expressed as
868
+ S(2) =
869
+
870
+
871
+
872
+ d3k a2
873
+
874
+ 6Hζ′A∗ − 3ζ∗′ζ′ + k2(2A + ζ)ζ∗ + 2k2(HA − ζ′)B∗
875
+ −a2V A∗A + 1
876
+ 4k2BV ∗
877
+ i
878
+ BV
879
+ i + 1
880
+ 4
881
+
882
+ A
883
+
884
+ h∗′
885
+ Ah′
886
+ A − (k2 − cθ′pAk)h∗
887
+ AhA
888
+
889
+ +cθ′�
890
+ 2ikiλ∗
891
+ i ζ + i
892
+ 2ϵijkki(β∗
893
+ j βk − λ∗
894
+ jλk) + ˆSijλ∗
895
+ i βj − 1
896
+ 2β∗
897
+ i
898
+ � �
899
+ A
900
+ SA
901
+ i hA
902
+ ���
903
+ ,
904
+ (48)
905
+ where SA
906
+ i (⃗k) = ϵijkSjlˆeA
907
+ kl(⃗k). It can be seen that A, B, BV
908
+ i , λi and βi are all non-dynamical fields and the variations
909
+ of the action (48) with them lead to the following constraints:
910
+ BV
911
+ i = 0 ,
912
+ (49)
913
+ HA − ζ′ = 0 ,
914
+ (50)
915
+ 3Hζ′ + k2ζ − a2V A + Hk2B = 0 ,
916
+ (51)
917
+ ϵijkkjλk − i ˆSijβj + 2kiζ = 0 ,
918
+ (52)
919
+ − ˆSijλj + iϵijkkjβk + 1
920
+ 2
921
+
922
+ A
923
+ SA
924
+ i hA = 0 .
925
+ (53)
926
+ For the regular flat universe case with vi = 0 or f(η) = 0, there are ˆSij = 0 and SA
927
+ i = 0, so the solution of Eqs.
928
+ (49), (50), (51), (52) and (53) is
929
+ ζ = 0 , A = 0 , B = 0 , BV
930
+ i = 0 , λi = ikiλ , βi = ikiβ ,
931
+ (54)
932
+ 2 The expression of F(⃗v · ⃗x) can differ by a constant term, which does not change the coefficients Sij and ˆSij. And a constant factor of
933
+ the difference of F(⃗v · ⃗x) can be absorbed into f(η).
934
+ 3 Note that the choice of circular polarization bases is not unique, ˆeA
935
+ ij(⃗k) can be rotated along the ⃗k-axis while maintaining all the properties
936
+ of the circular polarization bases. For the case where there is a constant vector ⃗v ̸= 0 on the background, we can always choose the
937
+ circular polarization bases to satisfy vivjˆeA
938
+ ij(⃗k) = (v2/
939
+
940
+ 2) sin2 ϑ, where ϑ is the angle between ⃗k and ⃗v. This choice maximally simplifies
941
+ the quadratic action (57), so we adopt this choice in this paper.
942
+
943
+ 11
944
+ where λ and β are arbitrary scalar perturbations. Substituting the Eq. (54) back into the action (48), the action (48)
945
+ can be simplified as
946
+ S(2) =
947
+
948
+
949
+
950
+ d3k a2
951
+ 4
952
+
953
+ A
954
+
955
+ |h′
956
+ A|2 − ω2
957
+ A|hA|2�
958
+ ,
959
+ (55)
960
+ where ω2
961
+ A = k2 −cθ′pAk. It can be seen that there is no scalar dynamical degree of freedom at the linear perturbation
962
+ level. This is a bit strange because the action (7) clearly shows that there is a scalar dynamical degree of freedom.
963
+ Further research in Ref. [13] shows that the missing scalar dynamical degree of freedom reappears in the regular curved
964
+ universe. The phenomenon of degrees of freedom being hidden under special background also appears in f(T) gravity
965
+ [45] and massive gravity [46]. This implies that such a special background is likely to suffer from strong coupling
966
+ issue [47]. It can also be seen that the modified dispersion relation ω2
967
+ A is helicity dependent. This means that GWs
968
+ with different helicities will have different propagation velocities. This phenomenon is called velocity birefringence,
969
+ which is a direct reflection of the parity violation in the NYTG model. These results are consistent with the results
970
+ in Refs. [12, 13] 4.
971
+ For the irregular flat universe case with vi ̸= 0 and f(η) ̸= 0, the solution of Eqs. (49), (50), (51), (52) and (53) is
972
+ A = ζ′/H , B = −
973
+
974
+ θ′2ζ′ + 2k2Hζ
975
+
976
+ /2k2H2 , BV
977
+ i = 0 ,
978
+ λi =
979
+ � 2 cos ϑ
980
+ kv sin2 ϑϵijkkjvk
981
+
982
+ ζ −
983
+ i
984
+ 2
985
+
986
+ 2k ki� �
987
+ A
988
+ pAhA
989
+
990
+ ,
991
+ βi =
992
+
993
+ 2i
994
+ v2f(η) sin2 ϑki + 2ivf(η) cos ϑ
995
+ k sin2 ϑ
996
+ vi
997
+
998
+ ζ + ivf(η) cos ϑ
999
+ 2
1000
+
1001
+ 2k
1002
+ vi
1003
+ � �
1004
+ A
1005
+ hA
1006
+
1007
+ ,
1008
+ (56)
1009
+ where ϑ is the angle between ⃗k and ⃗v. Substituting the above results back into the action (48), the action (48) can
1010
+ be simplified as
1011
+ S(2) =
1012
+
1013
+
1014
+
1015
+ d3k
1016
+ �z2
1017
+ 2
1018
+
1019
+ |ζ′|2 − k2|ζ|2�
1020
+ + a2
1021
+ 4
1022
+
1023
+ A
1024
+
1025
+ |h′
1026
+ A|2 − ω2
1027
+ A|hA|2�
1028
+ − ca2θ′k
1029
+
1030
+ 2
1031
+ ζ∗� �
1032
+ A
1033
+ pAhA
1034
+ ��
1035
+ ,
1036
+ (57)
1037
+ where z2 = a2θ′2/H2. For the action (57), the following points need to be emphasized. Firstly, it can be seen that there
1038
+ is indeed a scalar dynamical degree of freedom, which again verifies that there is a scalar dynamical degree of freedom
1039
+ hidden under the regular flat universe at the linear perturbation level. Secondly, there are two tensor dynamics degrees
1040
+ of freedom and the dispersion relation ω2
1041
+ A is helicity dependent, as is the case for the regular universe. This means
1042
+ that the velocity birefringence phenomenon of GWs also exists in the irregular universe. Thirdly, it is surprising that
1043
+ vi and f(η) are completely cancelled in the step of lifting the constraints, so that the action (57) no longer depends on
1044
+ vi and f(η). This makes the case of vi = 0, f(η) = 0 not the limit of the case of vi → 0, f(η) → 0. This is somewhat
1045
+ analogous to the case where a massless photon is not the limit of a photon with mass tends to zero. Fourth, it can be
1046
+ seen that the coefficients in the action (57) are homogeneous and isotropic. This means that the evolution equations of
1047
+ the scalar perturbation ζ and the tensor perturbations hA are homogeneous and isotropic. Finally, it can be seen that
1048
+ even after the constraints are lifted, there is still a coupling of scalar and tensor degrees of freedom. This is a feature
1049
+ that neither in the regular flat universe nor in the regular curved universe. This means that scalar perturbations and
1050
+ tensor perturbations can influence each other at the linear perturbation level. This can be seen more clearly from the
1051
+ perspective of the equations of motion. From the action (57), the linear equations of ζ and hA can be obtained as
1052
+ ζ′′ + 2z′
1053
+ z ζ′ + k2ζ + ca2θ′k
1054
+
1055
+ 2z2
1056
+ � �
1057
+ A
1058
+ pAhA
1059
+
1060
+ = 0 ,
1061
+ (58)
1062
+ h′′
1063
+ A + 2Hh′
1064
+ A + ω2
1065
+ AhA +
1066
+
1067
+ 2cθ′pAkζ = 0 .
1068
+ (59)
1069
+ 4 The subtle difference in the dispersion relation ω2
1070
+ A is due to the difference between expanding by ei⃗k·⃗x and expanding by e−i⃗k·⃗x in the
1071
+ Fourier transformation.
1072
+
1073
+ 12
1074
+ Eq. (58) shows that the tensor perturbations hA can be used as a source of the scalar perturbation ζ. The scalar
1075
+ perturbation ζ can be excited when left- and right- handed GWs have different amplitudes or phases. And Eq. (59)
1076
+ shows that the scalar perturbation ζ can be used as a source of the tensor perturbations hA. It is worth noting that
1077
+ the source of the tensor perturbations hA caused by ζ is helicity-dependent, that is, the excitation effects caused by
1078
+ ζ on the left- and right-handed GWs are different.
1079
+ V.
1080
+ PRIMORDIAL FLUCTUATIONS GENERATED BY INFLATION
1081
+ In the previous section, we preliminarily studied the the linear perturbations around the regular and irregular flat
1082
+ universe, and obtained the quadratic action after the constraints was lifted. In this section, we will preliminarily
1083
+ study the primordial fluctuations generated by slow-roll inflation in the regular and irregular flat universe.
1084
+ A.
1085
+ The case of the regular universe
1086
+ For the case of regular universe, the quadratic action (55) can be expressed as
1087
+ S(2) =
1088
+
1089
+
1090
+
1091
+ d3k a2
1092
+ 2
1093
+
1094
+ A
1095
+ ���� 1
1096
+
1097
+ 2h′
1098
+ A
1099
+ ���
1100
+ 2
1101
+
1102
+
1103
+ k2 − cθ′pAk
1104
+ � ��� 1
1105
+
1106
+ 2hA
1107
+ ���
1108
+ 2�
1109
+ .
1110
+ (60)
1111
+ Note that since there are only tensor degrees of freedom in the regular flat universe at the linear perturbation
1112
+ level, a scalar field other than θ needs to be introduced to generate the primordial scalar perturbation [12, 21]. In
1113
+ this subsection we do not consider the case of introducing additional scalar fields, and we only focus on the tensor
1114
+ perturbations.
1115
+ Next we consider the case of slow-roll inflation dominated by the axion-like field θ. Since the background equations
1116
+ of the regular flat universe are exactly the same as those in GR, the background evolution during inflation will be
1117
+ exactly the same as the case of slow-roll inflation in GR [48, 49]. So we don’t need to repeat the analysis of the details
1118
+ of single scalar field inflation. We introduce two commonly used slow-roll parameters
1119
+ ε ≡ −
1120
+ ˙H
1121
+ H2 , δ ≡
1122
+ ¨θ
1123
+ H ˙θ
1124
+ ,
1125
+ (61)
1126
+ where H = ˙a/a = H/a is the Hubble rate, the upper dot represents the derivative with respect to the physical time
1127
+ t. We assume ε ∼ |δ| ≪ 1, | ˙ε/H| ≪ |ε| and | ˙δ/H| ≪ |δ| during inflation. Under the slow-roll approximation,
1128
+ H ≈ −1 + ε
1129
+ η
1130
+ ,
1131
+ θ′ ≈
1132
+
1133
+
1134
+ η
1135
+ .
1136
+ (62)
1137
+ Without loss of generality, in Eq. (62) we have assumed that the value of θ decreases during inflation.
1138
+ Next, by combining Eqs (60) and (62), the correlation function of hA can be obtained through the process in
1139
+ Appendix C:
1140
+ ⟨h†
1141
+ AhA⟩ ≈ H2e−pA√
1142
+ ε/2cπk−(3+2ε) ,
1143
+ (63)
1144
+ and ⟨h†
1145
+ LhR⟩ = 0. Through the correlation functions (63), the power spectrum of the left- and right-handed GWs can
1146
+ be obtained as
1147
+ PA(k) = k3
1148
+ π2 ⟨h†
1149
+ AhA⟩ ≈ H2
1150
+ π2 e−pA√
1151
+ ε/2cπk−2ε .
1152
+ (64)
1153
+ The power spectrum of the tensor perturbations can be obtained as
1154
+ PT (k) = PL(k) + PR(k) ≈ H2
1155
+ π2
1156
+
1157
+ 1 + cosh
1158
+ ��ε
1159
+ 2cπ
1160
+ ��
1161
+ k−2ε .
1162
+ (65)
1163
+
1164
+ 13
1165
+ The relative different between the power spectrum of the left- and right-handed GWs can be obtained as
1166
+ Π ��� PR − PL
1167
+ PR + PL
1168
+ ≈ − tanh
1169
+ ��ε
1170
+ 2cπ
1171
+
1172
+ ≈ −
1173
+ �ε
1174
+ 2cπ .
1175
+ (66)
1176
+ Π ̸= 0 means that the magnitudes of the primordial fluctuations of left- and right-handed GWs are different. This is
1177
+ a clear physical signal of parity violation. But this seems to contradict the conclusion in Refs. [12, 13] that there is
1178
+ only velocity birefringence of GWs but no amplitude birefringence of GWs in the NYTG model. The reason for this
1179
+ contradiction is that θ′ is approximated as a constant in the analysis of the evolution of GWs in Refs. [12, 13]. Of
1180
+ course, this approximation is valid when studying the propagation of GWs in a slowly expanding universe. However,
1181
+ θ′ = a ˙θ ∝ 1/η cannot be approximated as a constant during the slow-roll inflation dominated by θ. We know that for
1182
+ a harmonic oscillator (the equation of motion is ¨x+ω2x = 0), the amplitude of the harmonic oscillator can be changed
1183
+ when the frequency ω is time-dependent. And when the time dependence of θ′ is not negligible, the time dependence
1184
+ of ωL and ωR will be different, resulting in different effects on the amplitudes of left- and right-hand GWs. This is
1185
+ why the magnitudes of the primordial fluctuations of left- and right-handed GWs generated by slow-roll inflation in
1186
+ the regular flat universe are different. If ε → 0, it can be seen from Eq. (62) that θ′ ≈ 0 can be approximated as a
1187
+ constant, and from Eq. (66), it can be seen that Π → 0 too, that is, the magnitudes of the primordial fluctuation of
1188
+ the left- and right-handed GWs are the same.
1189
+ Finally, let’s look at the case when the coupling constant c → 0, then
1190
+ PT (k) ≈ 2H2
1191
+ π2 k−2ε ,
1192
+ Π ≈ 0 .
1193
+ (67)
1194
+ This is exactly the result of the slow-roll inflation of single scalar field in GR.
1195
+ B.
1196
+ The case of the irregular universe
1197
+ For the case of irregular universe, since the coupling of ζ and hA in the action (57) makes it difficult to analyze the
1198
+ quantum fluctuations, we first diagonalize the variables ζ and hA below. Firstly, for the convenience of analysis, we
1199
+ introduce new variables ξ1 = (z/a)ζ, ξ2 = (1/
1200
+
1201
+ 2)hL and ξ3 = (1/
1202
+
1203
+ 2)hR, so that the action (57) can be simplified as
1204
+ S(2) =
1205
+
1206
+
1207
+
1208
+ d3k a2
1209
+ 2
1210
+
1211
+ 3
1212
+
1213
+ s=1
1214
+ ξ∗′
1215
+ s ξs −
1216
+ 3
1217
+
1218
+ s1=1
1219
+ 3
1220
+
1221
+ s2=1
1222
+ Ms1s2ξ∗
1223
+ s1ξs2
1224
+
1225
+ ,
1226
+ with M =
1227
+
1228
+
1229
+
1230
+ k2 − Ω
1231
+ −κ
1232
+ κ
1233
+ −κ
1234
+ k2 − σ
1235
+ 0
1236
+ κ
1237
+ 0
1238
+ k2 + σ
1239
+
1240
+
1241
+ � ,
1242
+ (68)
1243
+ where Ω = z′′/z − a′′/a, σ = −cθ′k and κ = cHk are background quantities. Secondly, we introduce an orthogonal
1244
+ matrix T that can diagonalize the matrix M, and its expression is
1245
+ T =
1246
+
1247
+
1248
+
1249
+ tT
1250
+ 1
1251
+ tT
1252
+ 2
1253
+ tT
1254
+ 3
1255
+
1256
+
1257
+ � , with ts =
1258
+ −s2 + 5s − 5
1259
+
1260
+ 1 + (τs−σ)2
1261
+ κ2
1262
+ +
1263
+
1264
+ 1 − (τs−σ)(τs+Ω)
1265
+ κ2
1266
+ �2
1267
+
1268
+
1269
+
1270
+ (τs − σ)/κ
1271
+ 1 − (τs − σ)(τs + Ω)/κ2
1272
+ 1
1273
+
1274
+
1275
+ � ,
1276
+ (69)
1277
+ where the superscript T means transpose, and {τs, s = 1, 2, 3} are the solutions of the cubic equation
1278
+ τ 3 + Ωτ 2 − (2κ2 + σ2)τ − σ2Ω = 0 .
1279
+ (70)
1280
+ The specific expressions of {τs, s = 1, 2, 3} are in Appendix A. Finally, we introduce new variables {qs, s = 1, 2, 3},
1281
+ which are defined as
1282
+
1283
+
1284
+
1285
+ q1
1286
+ q2
1287
+ q3
1288
+
1289
+
1290
+ � = T
1291
+
1292
+
1293
+
1294
+ ξ1
1295
+ ξ2
1296
+ ξ3
1297
+
1298
+
1299
+ � .
1300
+ (71)
1301
+
1302
+ 14
1303
+ Thus, the action (68) can be further simplified as
1304
+ S(2) =
1305
+ 3
1306
+
1307
+ s=1
1308
+
1309
+
1310
+
1311
+ d3k a2
1312
+ 2
1313
+
1314
+ |q′
1315
+ s|2 − (k2 + τs)|qs|2�
1316
+ .
1317
+ (72)
1318
+ So far, we have simplified the action (57) with coupling between variables to the action (72) without coupling between
1319
+ variables. The latter form makes it easier to calculate the primordial fluctuations generated by inflation.
1320
+ Next we consider the case of slow-roll inflation dominated by the axion-like field θ. Since in Sec. III we proved that
1321
+ the background equations of the irregular flat universe are exactly the same as those in GR, the background evolution
1322
+ during inflation will be exactly the same as the case of slow-roll inflation in GR. Under the slow-roll approximation,
1323
+ the background quantities Ω, σ and κ can be approximately expressed as
1324
+ Ω ≈ 3(ε + δ)
1325
+ 2η2
1326
+ , σ ≈ −
1327
+
1328
+ 2εck
1329
+ η
1330
+ , κ ≈ −(1 + ε)ck
1331
+ η
1332
+ .
1333
+ (73)
1334
+ In this section, we also assume that the coupling constant c ∼ 1 (it can also be seen as a requirement of naturalness),
1335
+ so that c ≫ √ε. Ignoring high-order small quantities such as ε2, {τs, s = 1, 2, 3} in Eq. (A3) can be approximated as
1336
+ τ1 ≈ (2 + 3ε)ck
1337
+
1338
+
1339
+ − 3(ε + δ)
1340
+ 2η2
1341
+ , τ2 ≈ 0 , τ3 ≈ −(2 + 3ε)ck
1342
+
1343
+
1344
+ − 3(ε + δ)
1345
+ 2η2
1346
+ .
1347
+ (74)
1348
+ If only up to the order of √ε is retained, the orthogonal matrix T can be approximated as
1349
+ T ≈
1350
+
1351
+
1352
+
1353
+
1354
+ 1
1355
+
1356
+ 2
1357
+ 1+√ε
1358
+ 2
1359
+ − 1−√ε
1360
+ 2
1361
+ −√ε
1362
+ 1
1363
+
1364
+ 2
1365
+ 1
1366
+
1367
+ 2
1368
+ 1
1369
+
1370
+ 2
1371
+ − 1−√ε
1372
+ 2
1373
+ 1+√ε
1374
+ 2
1375
+
1376
+
1377
+
1378
+
1379
+ (75)
1380
+ Regarding the approximate expression (75), there are two points that need additional explanation. First, the order √ε
1381
+ is the lowest order approximation required to preserve the difference in the power spectrum of left- and right-handed
1382
+ GWs. If we further ignore the contribution of √ε in T, the difference in the power spectrum of left- and right-handed
1383
+ GWs disappears. And if we keep the higher-order terms, it brings only more complex but less important corrections
1384
+ in the power spectrum. Second, it can be seen that the matrix T does not tend to the identity matrix as c → 0
1385
+ in the approximate expression (75). This is confusing because the three variables are all decoupled as c → 0 in the
1386
+ action (68). The reason for this confusing phenomenon is that we have used the approximation c ≫ √ε in Eqs. (74)
1387
+ and (75). If c is too small, neither the Eq. (74) nor Eq. (75) hold. See Appendix B for the approximate behavior of
1388
+ orthogonal matrix T when c → 0.
1389
+ Next, by combining Eqs (72) and (74), the correlation function between variables qs can be obtained through the
1390
+ process in Appendix C:
1391
+ ⟨q†
1392
+ 1q1⟩ ≈ H2
1393
+ 2 e
1394
+
1395
+
1396
+ 2 k−(3+3ε+δ) , ⟨q†
1397
+ 2q2⟩ ≈ H2
1398
+ 2 k−(3+2ε) , ⟨q†
1399
+ 3q3⟩ ≈ H2
1400
+ 2 e− cπ
1401
+
1402
+ 2 k−(3+3ε+δ) ,
1403
+ (76)
1404
+ and ⟨q†
1405
+ s1qs2⟩ = 0 when s1 ̸= s2. Then, using the approximation techniques in Appendix D and combining Eqs (71),
1406
+ (75) and (76), the correlation functions for the variables ζ and hA can be obtained as
1407
+ ⟨ζ†ζ⟩ ≈ 1
1408
+ 2ε cosh
1409
+ � cπ
1410
+
1411
+ 2
1412
+
1413
+ H2knS−4 ,
1414
+ ⟨h†
1415
+ AhA⟩ ≈
1416
+ �1
1417
+ 2 + 1
1418
+ 2 cosh
1419
+ � cπ
1420
+
1421
+ 2
1422
+
1423
+ − pA
1424
+ √ε sinh
1425
+ � cπ
1426
+
1427
+ 2
1428
+ ��
1429
+ H2knT −3 ,
1430
+ ⟨ζ†hA⟩ ≈ − pA
1431
+ 2
1432
+
1433
+ 2ε sinh
1434
+ � cπ
1435
+
1436
+ 2
1437
+
1438
+ H2k−(3+3ε+δ) ,
1439
+ ⟨h†
1440
+ LhR⟩ ≈ 1
1441
+ 2
1442
+
1443
+ 1 − cosh
1444
+ � cπ
1445
+
1446
+ 2
1447
+ ��
1448
+ H2k
1449
+ −(3+3ε+δ)− 1
1450
+ 2 csch2�
1451
+
1452
+ 2
1453
+
1454
+ 2
1455
+
1456
+ (ε+δ) ,
1457
+ (77)
1458
+
1459
+ 15
1460
+ where
1461
+ nS ≈ 1 − (δ + 3ε) ,
1462
+ nT ≈ −(3ε + δ) + 1
1463
+ 2 sech2
1464
+ � cπ
1465
+ 2
1466
+
1467
+ 2
1468
+
1469
+ (ε + δ) .
1470
+ (78)
1471
+ It should be noted that since Eqs. (74) and (75) are approximately true only when c ≫ √ε, Eqs. (77) and (78) are
1472
+ also approximately true only when c ≫ √ε.
1473
+ Through the correlation functions (77), the power spectrum of the scalar perturbation ζ can be obtained as
1474
+ PS(k) = k3
1475
+ 2π2 ⟨ζ†ζ⟩ ≈ H2
1476
+ 8π2ε cosh
1477
+ � cπ
1478
+
1479
+ 2
1480
+
1481
+ knS−1 .
1482
+ (79)
1483
+ The power spectrum of the left- and right-handed GWs can be obtained as
1484
+ PA(k) = k3
1485
+ π2 ⟨h†
1486
+ AhA⟩ ≈ H2
1487
+ 2π2
1488
+
1489
+ 1 + cosh
1490
+ � cπ
1491
+
1492
+ 2
1493
+
1494
+ − 2pA
1495
+ √ε sinh
1496
+ � cπ
1497
+
1498
+ 2
1499
+ ��
1500
+ knT .
1501
+ (80)
1502
+ The power spectrum of the tensor perturbations can be obtained as
1503
+ PT (k) = PL(k) + PR(k) ≈ H2
1504
+ π2
1505
+
1506
+ 1 + cosh
1507
+ � cπ
1508
+
1509
+ 2
1510
+ ��
1511
+ knT .
1512
+ (81)
1513
+ The tensor-to-scalar ratio r can be obtained as
1514
+ r ≡ PT
1515
+ PS
1516
+ = 8
1517
+
1518
+ 1 + sech
1519
+ � cπ
1520
+
1521
+ 2
1522
+ ��
1523
+ ε .
1524
+ (82)
1525
+ The relative different between the power spectrum of the left- and right-handed GWs can be obtained as
1526
+ Π ≡ PR − PL
1527
+ PR + PL
1528
+ ≈ −2√ε tanh
1529
+ � cπ
1530
+
1531
+ 2
1532
+
1533
+ .
1534
+ (83)
1535
+ Strictly speaking, since Eqs. (77) and (78) are only approximately true when c ≫ √ε, Eqs. (79)-(83) are also approx-
1536
+ imately true only when c ≫ √ε. But If we ignore this fact and force c → 0, then
1537
+ PS ≈ H2
1538
+ 8π2εknS−1 , PT ≈ 2H2
1539
+ π2 knT , r ≈ 16ε , Π ≈ 0 .
1540
+ (84)
1541
+ It can be seen that except for the spectral indices nS and nT , Eq. (84) is the result of the slow-roll inflation in GR.
1542
+ From the Planck 2018 [50], we know that the scalar spectral index nS ≈ 0.966 and the tensor-to-scalar ratio
1543
+ r < 0.101. This means that the allowable value range of the slow-roll parameters ε and δ is
1544
+ 0 < ε <
1545
+ 0.101
1546
+ 8
1547
+
1548
+ 1 + sech
1549
+
1550
+ cπ/
1551
+
1552
+ 2
1553
+ �� < 0.012625 ,
1554
+ δ ≈ 0.034 − 3ε .
1555
+ (85)
1556
+ It can be seen that the maximum value of ε depends on the coupling constant c, but will not exceed 0.012625 (the
1557
+ upper limit of ε when c → ∞). The allowable value of δ is determined by ε. FIG. 1 shows the allowable value range
1558
+ of slow-roll parameters ε and δ when c = 1.
1559
+ Although by comparing the results in subsections V A and V B, we can find that the power spectrum of the left-
1560
+ and right-handed GWs given by the irregular universe is different from that of the regular universe. But this is not
1561
+ the main difference between irregular and regular universes for primordial fluctuations. For primordial fluctuations,
1562
+ the most important feature of the irregular universe compared to the regular universe is that the correlation function
1563
+ of scalar perturbation and tensor perturbations ⟨ζ†hA⟩ ̸= 0 at the linear perturbation level. This means that there
1564
+ is a strong statistical correlation between primordial scalar fluctuations and primordial tensor fluctuations generated
1565
+ by slow-roll inflation in the irregular universe. The apparent reason for this phenomenon is that the quadratic action
1566
+ contains the coupling of scalar perturbations and tensor perturbations in the irregular universe, as exhibited by the
1567
+ action (57). The deeper reason may be that the condition LξI ˆΓρ
1568
+ µν ̸= 0 destroys the homogeneity and isotropy of the
1569
+ interior space, so that the scalar fluctuations and the tensor fluctuations can interact with each other in the irregular
1570
+ universe.
1571
+
1572
+ 16
1573
+ 0.002
1574
+ 0.004
1575
+ 0.006
1576
+ 0.008
1577
+ 0.010 ε
1578
+ 0.005
1579
+ 0.010
1580
+ 0.015
1581
+ 0.020
1582
+ 0.025
1583
+ 0.030
1584
+ 0.035
1585
+ δ
1586
+ FIG. 1: In the ε-δ plane, the blue line is the allowable value range when c = 1.
1587
+ VI.
1588
+ CONCLUSION
1589
+ As a step towards exploring the irregular universe within the TG framework, in this paper, we studied the irregular
1590
+ flat universe of the NYTG model. Firstly, we obtained the irregular flat universe solution of the NYTG model under
1591
+ the condition that only the symmetry of the metric is required. We found that the cosmological background equations
1592
+ of the NYTG model are exactly the same as those of GR in both the regular flat universe and the irregular flat
1593
+ universe. Secondly, we studied the linear cosmological perturbations around the irregular flat universes. We found a
1594
+ peculiar feature of the irregular flat universe: the tensor and scalar perturbations are coupled together at the linear
1595
+ perturbation level. We speculate that this peculiar feature is caused by the fact that the interior space does not satisfy
1596
+ the homogeneity and isotropy in the irregular universe. Finally, we applied the NYTG model to the early universe
1597
+ and studied the primordial perturbations generated by slow-roll inflation in the regular and irregular flat universes.
1598
+ We found that the left- and right-handed primordial GWs are different in both the regular flat universe and the
1599
+ irregular flat universe. We also found that there is a strong statistical correlation between the primordial scalar and
1600
+ tensor perturbations generated by slow-roll inflation in the case of irregular universe, this is a direct consequence of
1601
+ the direct coupling between the scalar and tensor perturbations at linear order.
1602
+ Acknowledgement:
1603
+ This work is supported in part by National Key R&D Program of China Grant No.
1604
+ 2021YFC2203102, and by NSFC under Grant No. 12075231 and 12047502.
1605
+ Appendix A: Solutions of the cubic equation
1606
+ Consider a cubic equation with respect to the variable τ as
1607
+ aτ 3 + bτ 2 + cτ + d = 0 ,
1608
+ (A1)
1609
+ where a, b, c and d are real coefficients. In order to express the solution of Eq. (A1) conveniently, we introduce the
1610
+ following parameters
1611
+ A = b2 − 3ac , B = bc − 9ad , C = c2 − 3bd , ∆ = B2 − 4AC , Θ = 1
1612
+ 3 arccos
1613
+ �2Ab − 3Ba
1614
+ 2A3/2
1615
+
1616
+ .
1617
+ (A2)
1618
+
1619
+ 17
1620
+ When ∆ < 0, Eq. (A1) has three real solutions, which are
1621
+ τ1 = − 1
1622
+ 3a
1623
+
1624
+ b + 2
1625
+
1626
+ A cos Θ
1627
+
1628
+ ,
1629
+ τ2 = 1
1630
+ 3a
1631
+
1632
+ −b +
1633
+
1634
+ A
1635
+
1636
+ cos Θ −
1637
+
1638
+ 3 sin Θ
1639
+ ��
1640
+ ,
1641
+ τ3 = 1
1642
+ 3a
1643
+
1644
+ −b +
1645
+
1646
+ A
1647
+
1648
+ cos Θ +
1649
+
1650
+ 3 sin Θ
1651
+ ��
1652
+ ,
1653
+ (A3)
1654
+ The Eq. (70) in the main text is the result of taking a = 1, b = Ω, c = −(2κ2 + σ2) and d = −σ2Ω in Eq. (A1).
1655
+ In this case, there are always A ≥ 0 and ∆ ≤ 0, where the equal sign holds if and only if κ = σ = Ω = 0. And when
1656
+ κ = σ = Ω = 0, obviously the three solutions of Eq. (70) are τ1 = τ2 = τ3 = 0, and the orthogonal matrix T is the
1657
+ identity matrix.
1658
+ Appendix B: The orthogonal matrix T when c → 0
1659
+ In this appendix, we discuss the approximate behavior of the orthogonal matrix T in Eq. (69) as c → 0 in a more
1660
+ general background (not only during inflation). Since σ ∝ c and κ ∝ c, then
1661
+ κ
1662
+ Ω ∝ c , σ
1663
+ Ω ∝ c ,
1664
+ κ2
1665
+ 2σΩ ∝ c .
1666
+ (B1)
1667
+ When c is much smaller than any other background quantities such as √ε, ˙θ and H−1, ignoring the quadratic and
1668
+ higher terms of c, the solutions of Eq. (70) can be approximately expressed as
1669
+ τ1 ≈ Ω , τ2 ≈ σ , τ3 ≈ σ .
1670
+ (B2)
1671
+ So the orthogonal matrix T in Eq. (69) can be approximately expressed as
1672
+ T =
1673
+
1674
+
1675
+
1676
+ 1
1677
+ κ
1678
+
1679
+ − κ
1680
+
1681
+ − κ
1682
+
1683
+ 1
1684
+ κ2
1685
+ 2σΩ
1686
+ κ
1687
+
1688
+ − κ2
1689
+ 2σΩ
1690
+ 1
1691
+
1692
+
1693
+
1694
+ when c→0
1695
+ −−−−−−−→
1696
+
1697
+
1698
+
1699
+ 1 0 0
1700
+ 0 1 0
1701
+ 0 0 1
1702
+
1703
+
1704
+
1705
+ (B3)
1706
+ It can be easily seen from Eqs. (B1) and (B3) that when c → 0, the orthogonal matrix T does tend to the identity
1707
+ matrix. This is consistent with the fact that all variables in the action (68) tend to be decoupled when c → 0.
1708
+ Appendix C: Correlation function generated by inflation
1709
+ The purpose of this appendix is to show how to calculate the correlation function generated by inflation. Consider
1710
+ a univariate system whose effective action during inflation is
1711
+ S = 1
1712
+ 2
1713
+
1714
+ dη d3k a2
1715
+
1716
+ |q′
1717
+ ⃗k|2 −
1718
+
1719
+ k2 − 2ak
1720
+ η
1721
+ − 3b
1722
+ η2
1723
+
1724
+ |q⃗k|2
1725
+
1726
+ ,
1727
+ (C1)
1728
+ where a and b are real parameters, and b has the same order of magnitude as the slow-roll parameter ε. Here q(η, ⃗x) is
1729
+ the variable and we have changed to the Fourier space q⃗k(η). After quantization, the variable q⃗k(η) can be expanded
1730
+ as
1731
+ q⃗k(η) =
1732
+ 1
1733
+ a(η)
1734
+
1735
+ vk(η)ˆa⃗k + v∗
1736
+ k(η)ˆa†
1737
+ ⃗k
1738
+
1739
+ ,
1740
+ (C2)
1741
+ where ˆa†
1742
+ ⃗k and ˆa⃗k are the generation and annihilation operators that satisfy the following commutation relations
1743
+ [ˆa⃗k ˆa†
1744
+ ⃗k′] = δ(3)(⃗k − ⃗k′) ,
1745
+ [ˆa⃗k ˆa⃗k′] = [ˆa†
1746
+ ⃗k ˆa†
1747
+ ⃗k′] = 0 ,
1748
+ (C3)
1749
+
1750
+ 18
1751
+ and vk(η) satisfies the following equation
1752
+ v′′
1753
+ k +
1754
+
1755
+ k2 − 2ak
1756
+ η
1757
+ − µ2 − 1/4
1758
+ η2
1759
+
1760
+ vk = 0 ,
1761
+ (C4)
1762
+ where µ ≈ 3/2+ε+b. Note that in Eq. (C4), we used the approximation a′′/a ≈ [(3/2+ε)2 −1/4]/η, and we ignored
1763
+ the higher-order terms of ε and b. Next we choose the Bunch-Davies vacuum at η → −∞, that is,
1764
+ lim
1765
+ η→−∞ vk =
1766
+ 1
1767
+
1768
+ 2k
1769
+ e−ikη .
1770
+ (C5)
1771
+ Under this condition, the solution for Eq. (C4) is (for more detail, see [51])
1772
+ vk(η) = e−ikη(−2kη)µ(−η)
1773
+ 1
1774
+ 2 e−iπ( 1
1775
+ 4 + µ
1776
+ 2 )U (1/2 + µ − ia, 1 + 2µ; 2ikη) e− aπ
1777
+ 2 ,
1778
+ (C6)
1779
+ where U(c1, c2; z) is the confluent hypergeometric function. The |vk| has the following asymptotic form when kη → 0−
1780
+ (super-horizon scale)
1781
+ |vk| ≈ 2µ−1π− 1
1782
+ 2 Γ(µ)k−µ(−η)
1783
+ 1
1784
+ 2 −µe− aπ
1785
+ 2 ≈ 2− 1
1786
+ 2 e− aπ
1787
+ 2 aHk−µ
1788
+ (C7)
1789
+ where Γ(z) is the Gamma function. In the last approximately equal sign in Eq. (C7), we used the approximations
1790
+ µ ≈ 3/2 and (−η)−1 ≈ aH. Combining Eqs. (C2), (C3) and (C7), we can obtain the correlation function on the
1791
+ super-horizon scale as
1792
+ ⟨0|q†
1793
+ ⃗kq⃗k′|0⟩ ≈ H2
1794
+ 2 e−aπk−(3+2ε+2b)δ(3)(⃗k + ⃗k′) .
1795
+ (C8)
1796
+ where |0⟩ is the vacuum state, which satisfies ˆa⃗k|0⟩ = 0. For the sake of convenience, we can omit the subscript ⃗k and
1797
+ throw away the annoying delta function δ(3)(⃗k + ⃗k′), so that the correlation function (C8) can be abbreviated as
1798
+ ⟨q†q⟩ ≈ H2
1799
+ 2 e−aπk−(3+2ε+2b) .
1800
+ (C9)
1801
+ Appendix D: Summation of nearly scale-invariant functions
1802
+ Consider there are N nearly scale-invariant functions {fi(k) = Cikni, i = 1, 2, ..., N}, where |ni| ≪ 1. Then the
1803
+ sum of these functions should also be a nearly scale-invariant function, so it can be approximated as
1804
+ f(k) =
1805
+ N
1806
+
1807
+ i=1
1808
+ fi(k) =
1809
+ N
1810
+
1811
+ i=1
1812
+ Cikni ≈ Ckn , with |n| ≪ 1 .
1813
+ (D1)
1814
+ Next we need to find the coefficient C and the exponent n in Eq. (D1). Since ni ≈ 0 and n ≈ 0, we can approximately
1815
+ let ni = n = 0 in Eq. (D1), so that Eq. (D1) becomes
1816
+ C ≈
1817
+ N
1818
+
1819
+ i=1
1820
+ Ci .
1821
+ (D2)
1822
+ Next, let Eq. (D1) take the derivative of k and then let ni = n = 0 on the exponent of k. Then the approximate
1823
+ expression of n can be obtained as
1824
+ n ≈ 1
1825
+ C
1826
+ N
1827
+
1828
+ i=1
1829
+ Cini .
1830
+ (D3)
1831
+ [1] B.
1832
+ P.
1833
+ Abbott
1834
+ et
1835
+ al.
1836
+ [LIGO
1837
+ Scientific
1838
+ and
1839
+ Virgo],
1840
+ Phys.
1841
+ Rev.
1842
+ Lett.
1843
+ 116,
1844
+ no.6,
1845
+ 061102
1846
+ (2016)
1847
+ doi:10.1103/PhysRevLett.116.061102 [arXiv:1602.03837 [gr-qc]].
1848
+
1849
+ 19
1850
+ [2] B.
1851
+ P.
1852
+ Abbott
1853
+ et
1854
+ al.
1855
+ [LIGO
1856
+ Scientific
1857
+ and
1858
+ Virgo],
1859
+ Phys.
1860
+ Rev.
1861
+ Lett.
1862
+ 119,
1863
+ no.16,
1864
+ 161101
1865
+ (2017)
1866
+ doi:10.1103/PhysRevLett.119.161101 [arXiv:1710.05832 [gr-qc]].
1867
+ [3] H. Li, S. Y. Li, Y. Liu, Y. P. Li, Y. Cai, M. Li, G. B. Zhao, C. Z. Liu, Z. W. Li and H. Xu, et al. “Probing Primordial
1868
+ Gravitational Waves: Ali CMB Polarization Telescope,” Natl. Sci. Rev. 6, no.1, 145-154 (2019) doi:10.1093/nsr/nwy019
1869
+ [arXiv:1710.03047 [astro-ph.CO]].
1870
+ [4] K. Abazajian et al. [CMB-S4], Astrophys. J. 926, no.1, 54 (2022) doi:10.3847/1538-4357/ac1596 [arXiv:2008.12619 [astro-
1871
+ ph.CO]].
1872
+ [5] R. Jackiw and S. Y. Pi, Phys. Rev. D 68, 104012 (2003) doi:10.1103/PhysRevD.68.104012 [arXiv:gr-qc/0308071 [gr-qc]].
1873
+ [6] S. Alexander and N. Yunes, Phys. Rept. 480, 1-55 (2009) doi:10.1016/j.physrep.2009.07.002 [arXiv:0907.2562 [hep-th]].
1874
+ [7] S. Dyda, E. E. Flanagan and M. Kamionkowski, Phys. Rev. D 86, 124031 (2012) doi:10.1103/PhysRevD.86.124031
1875
+ [arXiv:1208.4871 [gr-qc]].
1876
+ [8] M.
1877
+ Crisostomi,
1878
+ K.
1879
+ Noui,
1880
+ C.
1881
+ Charmousis
1882
+ and
1883
+ D.
1884
+ Langlois,
1885
+ Phys.
1886
+ Rev.
1887
+ D
1888
+ 97,
1889
+ no.4,
1890
+ 044034
1891
+ (2018)
1892
+ doi:10.1103/PhysRevD.97.044034 [arXiv:1710.04531 [hep-th]].
1893
+ [9] X. Gao and X. Y. Hong, Phys. Rev. D 101, no.6, 064057 (2020) doi:10.1103/PhysRevD.101.064057 [arXiv:1906.07131
1894
+ [gr-qc]].
1895
+ [10] W. Zhao, T. Zhu, J. Qiao and A. Wang, “Waveform of gravitational waves in the general parity-violating gravities,” Phys.
1896
+ Rev. D 101, no.2, 024002 (2020) doi:10.1103/PhysRevD.101.024002 [arXiv:1909.10887 [gr-qc]].
1897
+ [11] N. Bartolo, L. Caloni, G. Orlando and A. Ricciardone, JCAP 03, 073 (2021) doi:10.1088/1475-7516/2021/03/073
1898
+ [arXiv:2008.01715 [astro-ph.CO]].
1899
+ [12] M. Li, H. Rao and D. Zhao, JCAP 11, 023 (2020) doi:10.1088/1475-7516/2020/11/023 [arXiv:2007.08038 [gr-qc]].
1900
+ [13] M. Li, H. Rao and Y. Tong, Phys. Rev. D 104, no.8, 084077 (2021) doi:10.1103/PhysRevD.104.084077 [arXiv:2104.05917
1901
+ [gr-qc]].
1902
+ [14] R. Aldrovandi and J. G. Pereira, Teleparallel Gravity, Vol. 173. Springer, 23 Dordrecht, (2013).
1903
+ [15] S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. L. Said,
1904
+ J. Mifsud and E. Di Valentino, [arXiv:2106.13793 [gr-qc]].
1905
+ [16] J. W. Maluf, Annalen Phys. 525, 339-357 (2013) doi:10.1002/andp.201200272 [arXiv:1303.3897 [gr-qc]].
1906
+ [17] H. T. Nieh and M. L. Yan, J. Math. Phys. 23, 373 (1982) doi:10.1063/1.525379
1907
+ [18] H. Rao, Phys. Rev. D 104, no.12, 124084 (2021) doi:10.1103/PhysRevD.104.124084 [arXiv:2107.08597 [gr-qc]].
1908
+ [19] J. Qiao, T. Zhu, G. Li and W. Zhao, JCAP 04, no.04, 054 (2022) doi:10.1088/1475-7516/2022/04/054 [arXiv:2110.09033
1909
+ [gr-qc]].
1910
+ [20] Q. Wu, T. Zhu, R. Niu, W. Zhao and A. Wang, Phys. Rev. D 105, no.2, 024035 (2022) doi:10.1103/PhysRevD.105.024035
1911
+ [arXiv:2110.13870 [gr-qc]].
1912
+ [21] R. G. Cai, C. Fu and W. W. Yu, Phys. Rev. D 105, no.10, 103520 (2022) doi:10.1103/PhysRevD.105.103520
1913
+ [arXiv:2112.04794 [astro-ph.CO]].
1914
+ [22] M. Li and D. Zhao, Phys. Lett. B 827 (2022), 136968 doi:10.1016/j.physletb.2022.136968 [arXiv:2108.01337 [gr-qc]].
1915
+ [23] C. Gong, T. Zhu, R. Niu, Q. Wu, J. L. Cui, X. Zhang, W. Zhao and A. Wang, Phys. Rev. D 105 (2022) no.4, 044034
1916
+ doi:10.1103/PhysRevD.105.044034 [arXiv:2112.06446 [gr-qc]].
1917
+ [24] M. Hohmann and C. Pfeifer, Phys. Lett. B 834 (2022), 137437 doi:10.1016/j.physletb.2022.137437 [arXiv:2203.01856 [gr-
1918
+ qc]].
1919
+ [25] X. Tong and Z. Z. Xianyu, JHEP 10 (2022), 194 doi:10.1007/JHEP10(2022)194 [arXiv:2203.06349 [hep-ph]].
1920
+ [26] M. Li, Y. Tong and D. Zhao, Phys. Rev. D 105 (2022) no.10, 104002 doi:10.1103/PhysRevD.105.104002 [arXiv:2203.06912
1921
+ [gr-qc]].
1922
+ [27] F. Zhang, J. X. Feng and X. Gao, JCAP 10 (2022), 054 doi:10.1088/1475-7516/2022/10/054 [arXiv:2205.12045 [gr-qc]].
1923
+ [28] T. Zhu, W. Zhao and A. Wang, [arXiv:2210.05259 [gr-qc]].
1924
+ [29] T. Zhu, W. Zhao and A. Wang, [arXiv:2211.04711 [gr-qc]].
1925
+ [30] A. A. A. Filho, J. R. Nascimento, A. Y. Petrov and P. J. Porf´ırio, [arXiv:2211.11821 [gr-qc]].
1926
+ [31] J. Qiao, Z. Li, T. Zhu, R. Ji, G. Li and W. Zhao, [arXiv:2211.16825 [gr-qc]].
1927
+ [32] Y. Cai, [arXiv:2212.10893 [gr-qc]].
1928
+ [33] Z. Chen, Y. Yu and X. Gao, [arXiv:2212.14362 [gr-qc]].
1929
+ [34] M. Hohmann, L. J¨arv, M. Krˇsˇs´ak and C. Pfeifer, Phys. Rev. D 100, no.8, 084002 (2019) doi:10.1103/PhysRevD.100.084002
1930
+ [arXiv:1901.05472 [gr-qc]].
1931
+ [35] M. Hohmann,
1932
+ Int. J. Geom. Meth. Mod. Phys. 18,
1933
+ no.supp01,
1934
+ 2140005 (2021) doi:10.1142/S0219887821400053
1935
+ [arXiv:2008.12186 [gr-qc]].
1936
+
1937
+ 20
1938
+ [36] A. A. Coley, R. J. v. Hoogen and D. D. McNutt, [arXiv:2205.10719 [gr-qc]].
1939
+ [37] R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011) doi:10.1140/epjc/s10052-011-1752-9 [arXiv:1006.1120 [gr-qc]].
1940
+ [38] Y. F. Cai, S. H. Chen, J. B. Dent, S. Dutta and E. N. Saridakis, Class. Quant. Grav. 28, 215011 (2011) doi:10.1088/0264-
1941
+ 9381/28/21/215011 [arXiv:1104.4349 [astro-ph.CO]].
1942
+ [39] Y. F. Cai, S. Capozziello, M. De Laurentis and E. N. Saridakis, Rept. Prog. Phys. 79, no.10, 106901 (2016)
1943
+ doi:10.1088/0034-4885/79/10/106901 [arXiv:1511.07586 [gr-qc]].
1944
+ [40] C. Bejarano, R. Ferraro and M. J. Guzm´an, Eur. Phys. J. C 77, no.12, 825 (2017) doi:10.1140/epjc/s10052-017-5394-4
1945
+ [arXiv:1707.06637 [gr-qc]].
1946
+ [41] R. P. Woodard, Lect. Notes Phys. 720, 403-433 (2007) doi:10.1007/978-3-540-71013-4 14 [arXiv:astro-ph/0601672 [astro-
1947
+ ph]].
1948
+ [42] M. Hohmann and C. Pfeifer, Eur. Phys. J. C 81, no.4, 376 (2021) doi:10.1140/epjc/s10052-021-09165-x [arXiv:2012.14423
1949
+ [gr-qc]].
1950
+ [43] M. Li, Z. Li and H. Rao, Phys. Lett. B 834, 137395 (2022) doi:10.1016/j.physletb.2022.137395 [arXiv:2201.02357 [gr-qc]].
1951
+ [44] K. Izumi and Y. C. Ong, JCAP 06, 029 (2013) doi:10.1088/1475-7516/2013/06/029 [arXiv:1212.5774 [gr-qc]].
1952
+ [45] Y. C. Ong, K. Izumi, J. M. Nester and P. Chen, Phys. Rev. D 88, 024019 (2013) doi:10.1103/PhysRevD.88.024019
1953
+ [arXiv:1303.0993 [gr-qc]].
1954
+ [46] A.
1955
+ De
1956
+ Felice,
1957
+ A.
1958
+ E.
1959
+ Gumrukcuoglu
1960
+ and
1961
+ S.
1962
+ Mukohyama,
1963
+ Phys.
1964
+ Rev.
1965
+ Lett.
1966
+ 109,
1967
+ 171101
1968
+ (2012)
1969
+ doi:10.1103/PhysRevLett.109.171101 [arXiv:1206.2080 [hep-th]].
1970
+ [47] A. Delhom, A. Jim´enez-Cano and F. J. Maldonado Torralba, [arXiv:2207.13431 [gr-qc]].
1971
+ [48] D. Baumann, doi:10.1142/9789814327183 0010 [arXiv:0907.5424 [hep-th]].
1972
+ [49] Y. Wang, Commun. Theor. Phys. 62, 109-166 (2014) doi:10.1088/0253-6102/62/1/19 [arXiv:1303.1523 [hep-th]].
1973
+ [50] N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A1 doi:10.1051/0004-6361/201833880 [arXiv:1807.06205 [astro-
1974
+ ph.CO]].
1975
+ [51] M. Satoh, JCAP 11, 024 (2010) doi:10.1088/1475-7516/2010/11/024 [arXiv:1008.2724 [astro-ph.CO]].
1976
+
5tE1T4oBgHgl3EQfBAK1/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tFAT4oBgHgl3EQfnx0W/content/tmp_files/2301.08630v1.pdf.txt ADDED
@@ -0,0 +1,1508 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Evaluating approaches for on-the-fly machine learning interatomic potential for
2
+ activated mechanisms sampling with the activation-relaxation technique nouveau
3
+ Eugène Sanscartier,1 Félix Saint-Denis,1 Karl-Étienne Bolduc,1 and Normand Mousseau1
4
+ 1Département de physique and Regroupement québécois sur les matériaux de pointe,
5
+ Université de Montréal, Case Postale 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
6
+ (Dated: January 23, 2023)
7
+ In the last few years, much efforts have gone into developing universal machine-learning potentials
8
+ able to describe interactions for a wide range of structures and phases. Yet, as attention turns to
9
+ more complex materials including alloys, disordered and heterogeneous systems, the challenge of
10
+ providing reliable description for all possible environment become ever more costly. In this work, we
11
+ evaluate the benefits of using specific versus general potentials for the study of activated mechanisms
12
+ in solid-state materials. More specifically, we tests three machine-learning fitting approaches using
13
+ the moment-tensor potential to reproduce a reference potential when exploring the energy landscape
14
+ around a vacancy in Stillinger-Weber silicon crystal and silicon-germanium zincblende structure
15
+ using the activation-relaxation technique nouveau (ARTn). We find that a a targeted on-the-fly
16
+ approach specific and integrated to ARTn generates the highest precision on the energetic and
17
+ geometry of activated barriers, while remaining cost-effective. This approach expands the type of
18
+ problems that can be addressed with high-accuracy ML potentials.
19
+ I.
20
+ INTRODUCTION
21
+ As computational materials scientists turn to atten-
22
+ tion to ever more complex systems, they are faced with
23
+ two major challenges : (i) how to describe correctly their
24
+ physics and (ii) how to reach the appropriate size and
25
+ time scale to capture the properties of interest.
26
+ The
27
+ first challenge is generally solved by turning to ab ini-
28
+ tio methods,1 that allow the solution Heisenberg’s equa-
29
+ tion with reasonably controlled approximations. Theses
30
+ approaches, however, suffer from N 4 scaling which lim-
31
+ its their application to small system sizes and short time
32
+ scales. The second challenge is met by a variety of meth-
33
+ ods that cover different scales. Molecular dynamics2, for
34
+ example, which directly solves Newton’s equation, ac-
35
+ cesses typical time scales between picoseconds and mi-
36
+ croseconds, at the very best.
37
+ Other approaches, such
38
+ as lattice3,4 and off-lattices kinetic Monte-Carlo5,6, by
39
+ focusing on physically relevant mechanisms, can extend
40
+ this time scale to seconds and more, as long the diffusion
41
+ takes place through activated processes.
42
+ Even though
43
+ these methods are efficient, each trajectory can require
44
+ hundreds of thousands to millions of forces evaluations,
45
+ which becomes too costly with ab initio approaches, forc-
46
+ ing modellers to use empirical potentials in spite of their
47
+ incapacity at describing correctly complex environments.
48
+ Building on ab initio energy and forces, machine-
49
+ learned potentials7–10 open the door to lifting some of
50
+ this difficulties, by offering much more reliable physics as
51
+ a small fraction of the cost of ab initio evaluations.
52
+ Since their introduction, ML potentials have been
53
+ largely coupled with MD and focusing on the search for
54
+ universal potentials, able to describe a full range of struc-
55
+ tures and phases for a given material11–13. As we turn
56
+ to more complex systems such as alloys and disordered
57
+ and heterogeneous systems, it becomes more and more
58
+ difficult to generate such universal potentials, since the
59
+ number of possible environments grows rapidly with this
60
+ complexity. In this context, the development of specific
61
+ potentials, with on-the-fly learning that makes it possible
62
+ to adapt to new environments, becomes a strategy worth
63
+ exploring.
64
+ In this work, we focus on the construction of machine-
65
+ learned potentials adapted to the sampling of energy
66
+ landscape dominated by activated mechanisms,
67
+ i.e.,
68
+ solid-state systems with local activated diffusion and evo-
69
+ lution. A correct computational sampling, using methods
70
+ such as the activation-relaxation technique (ART)14 and
71
+ its revised version (ART nouveau or ARTn)15,16, requires
72
+ a precise description of local minima and of the land-
73
+ scape surrounding the first-order saddle points that char-
74
+ acterize diffusion according to the transition-state theory
75
+ (TST)17. These barriers can be high — reaching many
76
+ electron-volts — and involve strained configurations that
77
+ can be visited only very rarely with standard molecular
78
+ dynamics.
79
+ More specifically, we compare three machine learning
80
+ procedures in which we change the context where lean-
81
+ ing on-the-fly occur to train a Moment Tensor Poten-
82
+ tial (MTP)10,18 that describes the diffusion of vacancy
83
+ in Stillinger-Weber silicon19 and silicon-germanium20 as
84
+ sampled with ARTn. The first one uses a pure MD learn-
85
+ ing procedure, fitted at various temperatures, in a proce-
86
+ dure that echoes the work of Novoselov et al.21, a second-
87
+ one adds an on-the-fly adjustment during an ARTn run
88
+ and the third one focuses on purely OTF-ARTn potential
89
+ adjustment.
90
+ Results underline the efficiency gain in developing tar-
91
+ geted ML potentials for specific applications, comparing
92
+ the cost of fitting Si with SiGe, it also shows the rapid
93
+ increase in computation complexity associated with mov-
94
+ ing from element to alloy systems, which emphasizes the
95
+ usefulness of a specific approach such as the one applied
96
+ here to activated processes.
97
+ arXiv:2301.08630v1 [cond-mat.mtrl-sci] 20 Jan 2023
98
+
99
+ 2
100
+ II.
101
+ METHODOLOGY
102
+ A.
103
+ ML Potential
104
+ The Moment Tensor Potential (MTP)10,18 is a linear
105
+ model of functions Bα(ri) built from contractions of mo-
106
+ ment tensor descriptors defined by the local neighbor-
107
+ hood relative position ri of atom i within a sphere of
108
+ influence of radius rc respecting a set invariances. This
109
+ model has been shown to be fast while giving accuracy
110
+ on the order of ∼meV/atom and requiring few hundreds
111
+ to thousands of reference potential calls22 on-the-fly.
112
+ MTP have been used on a wide variety of problems in-
113
+ cluding on-the-fly MD simulation18,21,23, search and min-
114
+ imization of new alloys24,25 and diffusion processes21 on
115
+ systems counting one or multiple species.
116
+ MTP approximates atomic configuration energy as
117
+ sum of local contributions. A local contribution is ob-
118
+ tained through a sum over the included basis {Bα(ri)}
119
+ as a linear combination of B(ri) and ξα,
120
+ V (ri) =
121
+ m
122
+
123
+ α=1
124
+ ξαBα(ri)
125
+ (1)
126
+ The “level” of a potential gives the number of different
127
+ possible tensor Mµ,ν (ri) descriptors. The {Bα(ri)} func-
128
+ tions of Eq. 1 are constructed by a tensorial contraction
129
+ of different Mµ,ν (ri) and the number of different tenso-
130
+ rial contraction sets m in Eq. 1. More information on
131
+ MTP is available in Ref. 18.
132
+ The total energy of a N-atom configuration (R) is then
133
+ given by the sum of N local contributions
134
+ E(R) =
135
+ N
136
+
137
+ i=1
138
+ V (ri) =
139
+ N
140
+
141
+ i=1
142
+ m
143
+
144
+ α=1
145
+ ξαBα(ri)
146
+ (2)
147
+ and the forces are obtained by taking the gradient of this
148
+ quantity
149
+ F(R) = −∇
150
+ N
151
+
152
+ i=1
153
+ m
154
+
155
+ α=1
156
+ ξαBα(ri)
157
+ (3)
158
+ The parameters ξα are obtained by minimizing the loss
159
+ function:
160
+
161
+ R∈A
162
+
163
+ we
164
+ ���E(R) − ˆE(R)
165
+ ���
166
+ 2
167
+ 2 + wf
168
+ N
169
+
170
+ i
171
+ ���fi(R) −ˆfi(R)
172
+ ���
173
+ 2
174
+ 2
175
+
176
+ → min
177
+ ξ
178
+ (4)
179
+ Here A is the training set made of configurations with
180
+ known energy and forces. The goal is to minimize the
181
+ difference between E(R), fi(R)(real value) and ˆE(R),
182
+ ˆfi(R)(predicted by model), respectively, for all element
183
+ in A. Weights on contribution from energy and forces
184
+ (we and wf) are set to one.
185
+ B.
186
+ Learning On-The-Fly Tools
187
+ On-the-fly atomic machine learning potential (OTF)
188
+ involves the repeated training of the model potential as
189
+ new atomic environments are generated through various
190
+ procedures.
191
+ Following the work of Shapeev and collaborators18, the
192
+ reliability of the potential to describe a given configura-
193
+ tion is evaluated using the D-optimality criterion to grade
194
+ to which extend a configuration extrapolate. This grade
195
+ is used along with a selection algorithm (MaxVol) to as-
196
+ sess whether the new configuration should be added to
197
+ the training set or replace a configuration already in it.
198
+ While a detailed description can be found in Ref.23, we
199
+ provide here a brief summary of the retained approach.
200
+ The selection and extrapolation-grade algorithm can
201
+ be applied using either a local-energy or a global-energy
202
+ descriptor.
203
+ The local-energy descriptor is presented as a rectangu-
204
+ lar matrix Gm×N formed by the basis elements {Bα(ri)}
205
+ associated with the neighborhood ri of all N atoms:
206
+ G =
207
+
208
+
209
+
210
+ B1(r1) . . . Bm(r1)
211
+ ...
212
+ ...
213
+ ...
214
+ B1(rN) . . . Bm(rN)
215
+
216
+
217
+
218
+ T
219
+ For a given configuration, the global-energy description
220
+ reduces this information to a vector g
221
+ g =
222
+ � b1(R) . . . bm(R) �
223
+ where each term, {bα(R)} is a sum over all neighborhoods
224
+ for a specific basis element {Bα(ri)}:
225
+ {bα(R)} =
226
+ N
227
+
228
+ i=0
229
+ {Bα(ri)}
230
+ For the global-energy descriptor, evaluating the over-
231
+ lap of a new configuration with the training set A is done
232
+ by solving for cj, in
233
+ A
234
+ � c1 . . . cm
235
+
236
+ = g,
237
+ (5)
238
+ The coefficients {cj} can be understood as expressing g
239
+ through A. The extrapolation grade, γ, is then defined
240
+ as the largest component of {cj},
241
+ γ(R) = max |cj| .
242
+ (6)
243
+ The same approach is used for the local-energy descrip-
244
+ tion, applying Eq. 5 with the rows of matrix G rather
245
+ than the vector g and solve for a matrix of cj,k and Eq. 6
246
+ becomes γ(R) = max |cj,k|.
247
+ For γ(R) below a certain threshold γ0, the new con-
248
+ figuration is considered to overlap sufficiently with the
249
+ training set to allow the model to interpolate with confi-
250
+ dence. For γ0 < γ(R) < γmax, the model cannot be ap-
251
+ plied with confidence, but can be adapted by adding this
252
+
253
+ 3
254
+ configuration to the training set. When γ(R) > γmax,
255
+ the configuration is too far from the training set and it
256
+ is rejected as the model cannot be adapted with confi-
257
+ dence. In this work, we set γ0 = 1.1 and γmax = 2.2,
258
+ unless specified otherwise.
259
+ C.
260
+ On-The-Fly Learning Cycle Workflow
261
+ Our workflow is similar to that of Ref.18, with main
262
+ differences discussed in Section II F. We follow the same
263
+ general machine-learning on-the-fly workflow for all sam-
264
+ pling approaches tested here.
265
+ We split each simulation in one or multiple sequences
266
+ of atomic configurations generated using either MD or
267
+ ARTn. Each run unrolls as follows (see fig. 1):
268
+ 1. Launch a sequence during which configurations are
269
+ generated according to a sampling algorithm (MD
270
+ or ARTn).
271
+ At each iteration step the extrapolation-grade γ is
272
+ evaluated.
273
+ (a) If 0 < γ < γmax, the energy and forces of the
274
+ configuration are evaluated with MTP;
275
+ (b) if γ0 < γ < γmax, the configuration is set aside
276
+ for an update of MTP parameters;
277
+ (c) else if γ > γmax, energy and forces of the con-
278
+ figuration are not evaluated with MTP and
279
+ the configuration is not kept for update. The
280
+ sequence is stopped and we go directly to the
281
+ update step (step 3).
282
+ 2. Move on next to the iteration in the sequence (step
283
+ 1).
284
+ 3. The model is updated, if at at least one configura-
285
+ tion as been set aside for an update of MPT (i) at
286
+ the end of a sequence or (ii) at any moment during
287
+ the sequence if γ > γmax.
288
+ 4. If there is an update, restart a new sequence (go to
289
+ step 1), else stop if no configurations with γ > γ0
290
+ have been set aside during the predefined maximum
291
+ length of the sequence.
292
+ The moment tensor potential model update is defined
293
+ as follows (see Fig. 1, right-hand side):
294
+ 1. A selection is made from the set aside configura-
295
+ tions (with γ > γ0) using MaxVol23.
296
+ 2. Each selected configuration is evaluated by the ref-
297
+ erence model
298
+ 3. The training set is updated with the new evaluated
299
+ configurations
300
+ 4. The moment tensor potential is fitted on the new
301
+ training set accordingly to Eq. 4
302
+ More details of this procedure can be found in Ref.23.
303
+ Simulation
304
+ Configuration
305
+ < <
306
+ Evaluate
307
+ < <
308
+ it+1
309
+ Evaluate
310
+ Configuration
311
+ Configuration
312
+ Set for MTP
313
+ Update
314
+ >
315
+ itmax
316
+ it=0
317
+ Update MTP
318
+ No
319
+ Next Sequence
320
+ Yes
321
+ it=0
322
+ Update MTP
323
+ Update MTP
324
+ Selection
325
+ Selected
326
+ New Configuration
327
+ Evaluated by
328
+ Reference Model
329
+ Update New TS
330
+ Retrain MTP
331
+ Figure 1.
332
+ On-the-fly machine learning workflow used with
333
+ MD and ARTn (on the left).
334
+ A potential update can take
335
+ place at two points: when the sequence ends or when γ >
336
+ γmax. The updating procedures are given in the box on the
337
+ right.
338
+ D.
339
+ MD and ARTn
340
+ Two sampling approaches are used to generate a
341
+ sequence of configurations:
342
+ (1) molecular dynamics
343
+ (MD) as implemented within LAMMPS26 and (2) the
344
+ activation-relaxation technique nouveau (ARTn) algo-
345
+ rithm developed by Mousseau and collaborators14,15,27.
346
+ Since MD is well known, we only give below a brief sum-
347
+ mary of ARTn.
348
+ ARTn is designed to explore the potential energy land-
349
+ scape of atomic systems through the identification of lo-
350
+ cal transition states connecting nearby local minima. Its
351
+ workflow can be summarized in three main steps (see, for
352
+ a recent in depth discussion of the ARTn version used in
353
+ this work, see Ref.27):
354
+ 1. Leaving the harmonic well: starting from an energy
355
+ minimum, an atom and its neighbours are moved
356
+ iteratively in a direction selected at random un-
357
+ til a direction of negative curvature on the poten-
358
+ tial energy surfaces, d(λmin) with λmin, the lowest
359
+ eigenvalue of the Hessian matrix, smaller than zero,
360
+ emerges; this indicates the presence of a nearby
361
+ first-order saddle point;
362
+ 2. Converging to a first-order saddle point: the system
363
+ is then pushed in the direction of negative curvature
364
+ d(λmin) while the force is minimized in the perpen-
365
+ dicular plane, until the total force F passes below a
366
+ threshold near F0, which indicates the saddle point
367
+ have been reached;
368
+ 3. Relaxing into a new minimum: the system is then
369
+ pushed over the saddle point and relaxed into a
370
+ connected new minimum.
371
+
372
+ 4
373
+ At each step λmin and d(λmin) are found using an it-
374
+ erative Lanczos method16,28,29. Perpendicular relaxation
375
+ during activation and global minimization are done using
376
+ the Fast Inertial Relaxation Engine (FIRE) algorithm30.
377
+ Generated events are accepted or rejected according to
378
+ the Metropolis algorithm, where the acceptation proba-
379
+ bility p is given by
380
+ p = min
381
+
382
+ 1, e−β∆E�
383
+ (7)
384
+ with ∆E = Esaddle − Eminimum, the energy difference
385
+ between the saddle and a connected minima and β =
386
+ 1/kBT where kB is the Boltzmann factor and T is a fic-
387
+ titious temperature, since thermal deformations are not
388
+ taken into account.
389
+ Potential energy landscape explo-
390
+ ration consist of generating a number of event.
391
+ E.
392
+ Systems studied
393
+ The fitting approaches are tested on two physical sys-
394
+ tems: (i) a Si diamond structure with Stillinger-Weber as
395
+ a reference potential19; and (ii) a SiGe zincblende struc-
396
+ ture using the Stillinger-Weber potential with parame-
397
+ ters from Ref.20. Both models count 215 atoms and a
398
+ vacancy.
399
+ The Si system is fitted with a ML potential set at level
400
+ 16, with 92 moment tensor functions (B(R), Eq.
401
+ 1).
402
+ For SiGe, a potential at this level (16) generates errors
403
+ on the barrier of the order of 0.5 eV, which indicates
404
+ that a richer set of parameters is needed to describe the
405
+ chemical diversity and a level 20 is chosen for this system,
406
+ with 288 moment tensor functions. The relation between
407
+ the number of moment tensor functions for Si and energy
408
+ error is presented in Supplemental Fig. 1.
409
+ F.
410
+ Fitting approaches
411
+ To evaluate the reliability of the various on-the-fly ap-
412
+ proaches to reproduce the reference potential on config-
413
+ urations of interest for complex materials, the training
414
+ set is limited to structures visited during MD or ARTn
415
+ simulations within the conditions described below. No
416
+ additional information regarding alternative crystalline
417
+ structures, defects, surfaces, pressure, etc. is provided.
418
+ For each of these two systems, we compare the follow-
419
+ ing approaches:
420
+ 1. ML-MD: The MTP potential is train OTF on MD
421
+ simulations. The potential is then evaluated, with-
422
+ out further update, in ARTn simulation.
423
+ 2. OTF-MDART: Starting from the ML-MD gener-
424
+ ated potential, the MTP is re-trained following the
425
+ OTF procedure during ARTn simulations.
426
+ 3. OTF-ART: Training of the potential is done
427
+ uniquely during ARTn runs with OTF.
428
+ The ML-MD approach is in line with21 where a po-
429
+ tential is trained OTF during MD. However, while the
430
+ potential is trained with MD, its accuracy is evaluated
431
+ during ARTn activated process search.
432
+ 1.
433
+ ML-MD: simulations details
434
+ Nine sets of MTP ML-MD potentials are developed
435
+ and trained independently during NVT MD simulations.
436
+ Each set is trained at one specific simulation temperature
437
+ ranging from 300 K to 2700 K by step of 300 K and
438
+ starting from the same 215 atom crystalline structure
439
+ with a vacancy. Each set consists of ten independently
440
+ constructed MTP potentials for statistical purpose.
441
+ Training takes place on a series of sequences, each run
442
+ for a maximum of 100 ps, with steps of 1 fs, with an
443
+ average of 75 ps per cycle. MTP potentials require about
444
+ 34 ± 14 and 93 ± 43 learning cycles for Si and SiGe to
445
+ be converged: the MTP potential is considered having
446
+ learned the potential when no configuration generated
447
+ during a 100 ps second is found in the extrapolating zone
448
+ of the potential (with γ > γmax).
449
+ As long as this is not the case, the sequence is restarted
450
+ from the same initial structure with different initial ve-
451
+ locities. To facilitate convergence, ML-MD potentials are
452
+ fitted over three sets of progressively more restricted re-
453
+ liability extrapolation parameter γ0. Moreover because
454
+ MD leads to global deformation, the extrapolation is
455
+ computed using global descriptors (see tab. I).
456
+ The final potential is then evaluated, in a fixed form,
457
+ in ARTn simulations.
458
+ Table I. Extrapolation and selection hyper-parameter values
459
+ used for the three on-the-fly approaches used in this work.
460
+ approach:
461
+ γ0
462
+ γmax
463
+ grade-
464
+ mode
465
+ ML-MD
466
+ 5.5/3.3/1.1 60/10/2.2 global
467
+ OTF-MDART
468
+ 1.1
469
+ 2.2
470
+ local
471
+ OTF-ART
472
+ 1.1
473
+ 2.2
474
+ local
475
+ 2.
476
+ OTF ARTn simulations details
477
+ Each ARTn simulation is launched for 1500 events,
478
+ with 24 parallel independent searches, for a total of
479
+ 36 000 generated events.
480
+ For ARTn, a sequence is ei-
481
+ ther a search for a saddle point (successful or failed) or
482
+ a minimization from the saddle to minimum.
483
+ At each point, 24 sequences are generated in parallel,
484
+ and the configuration selected for an update of the po-
485
+ tential is made on the combined set of configurations to
486
+ generate one training set. Sequence are restarted from
487
+ the last accepted position or, in the case of the vacancy
488
+ in Si, the ground state. When an activation step gener-
489
+ ates a configuration with γ(R) > γmax, it is relaunched
490
+
491
+ 5
492
+ with the same initial deformation. As with MD, ten in-
493
+ dependent ARTn runs are launched for statistics.
494
+ In the bulk, diffusion of the vacancy in Si takes place
495
+ through a symmetric mechanism bringing the vacancy
496
+ from one state to an identical one so all ARTn event
497
+ searches are effectively started from the same state.
498
+ Starting from a zincblende structure, SiGe evolves ac-
499
+ cording to an accept-reject Metropolis with a fictitious
500
+ temperature of 0.5 eV31.
501
+ Since the configurations ex-
502
+ plored by ARTn are locally deformed; the extrapolation
503
+ grade for ARTn generated configurations used for the
504
+ OTF-MDART and OTF-ART approaches are evaluated
505
+ with the local descriptors.
506
+ G.
507
+ Analysis
508
+ Following the standard approach, the error is com-
509
+ puted on the energy and force differences between the
510
+ MLP and reference potentials computed on the same
511
+ structures. Here, however, this error is only measured
512
+ on configurations generated during the ARTn procedure.
513
+ For the energy:
514
+ ∆E = |EMLP (XMLP ) − Eref(XMLP )|,
515
+ (8)
516
+ For the forces:
517
+ ∆F = 1
518
+ N
519
+ N
520
+
521
+ i=0
522
+
523
+ ∥f (i)
524
+ MLP (XMLP ) − f (i)
525
+ ref(Xref)∥2,
526
+ (9)
527
+ where the positions XMLP are obtained from a simu-
528
+ lation run with the machine-learned potential and the
529
+ energy on this exact configuration is computed with the
530
+ reference and the machine-learned potentials. The same
531
+ is done for the error on forces.
532
+ Since this work is focused on the correct description of
533
+ first-order transition states, we also compute the mini-
534
+ mum and saddle barrier positions and energy convergence
535
+ errors(∆Xconv, ∆Econv) as
536
+ ∆Xconv
537
+ =
538
+ ��N
539
+ i=0 ∥x(i)
540
+ MLP − x(i)
541
+ ref∥2,
542
+ (10)
543
+ ∆Econv = |EMLP (XMLP ) − Eref(Xref)|,
544
+ (11)
545
+ where XMLP and Xref are the positions corresponding
546
+ to minimum or saddle point as defined by the MLP and
547
+ the reference potentials respectively, with EMLP (XMLP )
548
+ and Eref(Xref) the corresponding energies; by definition,
549
+ forces are zero at these points defined by the respective
550
+ potentials.
551
+ While XMLP and EMLP (XMLP ) are obtained on the
552
+ ARTn trajectories, Xref and Eref(Xref) are obtained af-
553
+ ter reconverging the minima or the saddle point using the
554
+ reference potential starting from XMLP and following the
555
+ ARTn procedure.
556
+ From an energy barrier δE(X), the energy barrier error
557
+ ∆δEbarrier is given by,
558
+ ∆δEbarrier = |δEMLP (XMLP ) − δEref(Xref)|
559
+ (12)
560
+ If no trend is observed between the different temper-
561
+ atures where potentials are trained, we calculate their
562
+ average and deviation in order to to effectively compare
563
+ them with other approach.
564
+ III.
565
+ RESULTS
566
+ 0
567
+ 500
568
+ 1000
569
+ 1500
570
+ 2000
571
+ 2500
572
+ T(K)
573
+ 200
574
+ 400
575
+ 600
576
+ 800
577
+ 1000
578
+ 1200
579
+ 1400
580
+ Number of reference potential calls
581
+ 253±60
582
+ 369±85
583
+ 1232±177
584
+ 505±109
585
+ 628±283
586
+ ml-md
587
+ new: otf-mdart
588
+ total: otf-mdart+md
589
+ otf-art
590
+ Figure 2.
591
+ Number of calls to the reference potential for
592
+ each of the machine-learned potentials developed for Si as
593
+ function of the temperature referring to the one used during
594
+ MD training. Since configurations are relaxed to zero K in
595
+ ARTn simulations, there is no associated temperature for this
596
+ procedure.
597
+ In this section, we first examine results for a vacancy
598
+ in c-Si to establish the methods then consider the same
599
+ approaches on the more complex SiGe alloy.
600
+ A.
601
+ ML-MD
602
+ The ML-MD approach serves as a benchmark to assess
603
+ the efficiency of the various approaches in sampling en-
604
+ ergy barriers and diffusion mechanisms. Here, ten inde-
605
+ pendent ML potentials are generated through on-the-fly
606
+ MD simulations at 9 different target temperatures rang-
607
+ ing from 300 to 2700 K by step of 300 K and require
608
+ between 253 ± 60, at 300 K, and 369 ± 85 evaluations of
609
+ the reference potential, at 2700 K, to complete learning
610
+ cycles (see Fig. 2).
611
+ For the purpose of this work, the quality of the ML-MD
612
+ potential is evaluated on configurations generated with
613
+ ARTn as local activated events associated with vacancy
614
+ in a crystalline environment are generated. To avoid non-
615
+ physical results, when a ARTn-generated configuration
616
+ shows a γ > 200, the configuration is rejected, the event
617
+ search is stopped and a new event search is launched from
618
+ the same initial minimum.
619
+
620
+ 6
621
+ 0
622
+ 1
623
+ 2
624
+ 3
625
+ 4
626
+ 5
627
+ 6
628
+ 7
629
+ Energy error per atom (meV/atom)
630
+ 1500
631
+ 2000
632
+ 0.2
633
+ 0.3
634
+ 0.4
635
+ 0.5
636
+ 0.6
637
+ ml-md
638
+ otf-mdart
639
+ otf-art
640
+ 0
641
+ 500
642
+ 1000
643
+ 1500
644
+ 2000
645
+ 2500
646
+ T(K)
647
+ 0.0100
648
+ 0.0125
649
+ 0.0150
650
+ 0.0175
651
+ 0.0200
652
+ 0.0225
653
+ 0.0250
654
+ 0.0275
655
+ 0.0300
656
+ Force error (eV/Å)
657
+ Figure 3.
658
+ Average energy (top) and mean absolute forces
659
+ (bottom) errors per atom for Si measured over all configu-
660
+ rations generated along pathways in ARTn for the three ap-
661
+ proaches.
662
+ Temperature refers to the one used during MD
663
+ training.
664
+ Fig. 3 shows the standard validation error on en-
665
+ ergy and forces calculated over all configurations gen-
666
+ erated along pathways for the 36 000 successful events
667
+ and 10 080 failed saddle searches (a success rate of
668
+ 78 %).
669
+ The error on energy increases almost expo-
670
+ nentially with the sampling temperature, ranging from
671
+ 0.44 ± 0.36 meV/atom at 300 K to 5.1 ± 1.7 meV/atom
672
+ at 2700K. The error on forces is essentially constant
673
+ at 0.0123 eV/Å, on average, between 300 and 1800 K,
674
+ and increases rapidly at high temperature, to reach
675
+ 0.0256 eV/Å at 2700 K.
676
+ Since, the focus of this work is on transition states,
677
+ Fig. 4 displays the error on the energy barriers as a func-
678
+ tion of MD-fitting temperature, computed with Eq. 10
679
+ and averaged over all generated barriers. This error is
680
+ relatively uncorrelated of the MD temperature simula-
681
+ tion with an average of 0.056 ± 0.022 eV, with minimum
682
+ error of 0.024 ± 0.01 eV at 2400 K and maximum of
683
+ 0
684
+ 500
685
+ 1000
686
+ 1500
687
+ 2000
688
+ 2500
689
+ T(K)
690
+ 0.02
691
+ 0.04
692
+ 0.06
693
+ 0.08
694
+ 0.10
695
+ 0.12
696
+ Energy barrier error (eV)
697
+ ml-md
698
+ otf-mdart
699
+ otf-art
700
+ Figure 4.
701
+ Average energy barrier error for Si as defined
702
+ by Eq. 12 for all events generated in ARTn for the three ap-
703
+ proaches.
704
+ Temperature refers to the one used during MD
705
+ training.
706
+ 0
707
+ 500
708
+ 1000
709
+ 1500
710
+ 2000
711
+ 2500
712
+ T(K)
713
+ 0.050
714
+ 0.075
715
+ 0.100
716
+ 0.125
717
+ 0.150
718
+ 0.175
719
+ 0.200
720
+ Saddle position error (Å)
721
+ ml-md
722
+ otf-mdart
723
+ otf-art
724
+ Figure 5.
725
+ Mean position error on all saddle point for Si.
726
+ Temperature refers to the one used during MD training.
727
+ 0.08±0.03 eV at 1200 K. This error is lower than that for
728
+ a general point on the energy landscape (Fig. 3) in part
729
+ because it is computed as a di���erence between saddle and
730
+ initial minimum.
731
+ Errors on the position of the saddle point, associated
732
+ with the capacity to reproduce correctly their geome-
733
+ try, are given in Fig. 5.
734
+ The top panel indicates the
735
+ average distance between saddle points converged with
736
+ the reference and the ML potentials: it decreases from
737
+ 0.16 ± 0.05 Å at 300 K to a minimum of 0.09 ± 0.02 Å
738
+ between 1500 and 2100 K, going up at the two highest
739
+ temperatures (2400 and 2700 K).
740
+ Overall, this straightforward fitting approach based on
741
+ constant-temperature MD runs provides accurate diffu-
742
+ sion barriers, ranging from 0.51 to more than 4 eV, for
743
+
744
+ 7
745
+ a vacancy in crystalline silicon at a low computational
746
+ costs (263 to 369 evaluations of the reference potential).
747
+ B.
748
+ Revisiting ML-MD potential in ARTn: the
749
+ OTF-MDART adjusting approach
750
+ To evaluate the possibility of improving on ML-MD
751
+ potentials for activated events, potentials are on-the-fly
752
+ re-trained during ARTn learning cycles (OTF-MDART).
753
+ Fig. 2 gives the number of calls to the reference poten-
754
+ tial for this procedure during the ARTn runs (dashed
755
+ orange line) as well as the total number of calls, includ-
756
+ ing those made during ML-MD fitting (solid orange line).
757
+ The number of calls during ARTn learning cycles ranges
758
+ from 979±153 at 300 K to to 136±38 at 2700 K for a to-
759
+ tal of 1232±177 to 505±109 respectively, when including
760
+ ML-MD calls.
761
+ The error on energy and forces remains correlated with
762
+ the ML-MD temperature: it is higher when the error is
763
+ higher at ML-MD trained temperature. This correlation
764
+ is particularly strong when retraining MD potentials fit-
765
+ ted between 1500 and 2700 K (Fig. 3, solid orange line).
766
+ Error on energy for OTF-MDART is almost constant
767
+ between 300 and 2400 K, at 0.22 meV/atom, rising to
768
+ 1.9 meV/atom at 2700 K, lower by 50 to 63 % than ML-
769
+ MD. As similar improvement is observed on the forces,
770
+ which range from 0.0103 eV/Å, on average, between 300
771
+ and 1800 K, increasing to 0.0173 eV/Å at 2700 K, repre-
772
+ senting a 16 % to 32 % decrease in error.
773
+ Table II. Average energy barrier error and mean position error
774
+ on all saddle point for Si. The average error for ML-MD and
775
+ OTF-MDART training is taken over all temperature sets.
776
+ Errors
777
+ ML-MD
778
+ OTF-MDART
779
+ OTF-ART
780
+ Energy (eV)
781
+ 0.056±0.022
782
+ 0.039±0.008
783
+ 0.040±0.012
784
+ Position (Å)
785
+ 0.114±0.029
786
+ 0.072±0.006
787
+ 0.072±0.010
788
+ Between 300 and 1500 K, retrained potentials with
789
+ OTF-MDART show more constant energy barrier errors
790
+ than pure ML-MD models (Fig. 4), with an error of about
791
+ 0.036 eV (OTF-MDART) vs average of 0.064 eV (ML-
792
+ MD) a 44 % improvement. At the highest temperature —
793
+ 1800 to 2700 K, however, as OTF-MDART calls for less
794
+ learning cycles, errors and fluctuations are not reduced
795
+ with respect to ML-MD. Interestingly, though, improve-
796
+ ments on the saddle position is observed at all tempera-
797
+ tures for OTF-MDART (Fig. 5) with an average error of
798
+ 0.072 ± 0.010 Å.
799
+ Overall, by retraining ML-MD potential in ARTn, er-
800
+ rors are reduced and results are more consistent, i.e., er-
801
+ ror distributions are narrower, irrespective of the tem-
802
+ perature used in the initial MD training. This additional
803
+ retraining leads to a 50 % to 96 % decrease in energy
804
+ error (Fig. 3), a 29 % improvement for average energy
805
+ barrier errors (Tab. II) and a 37 % reduction on mean
806
+ saddle positions errors but with an additional number of
807
+ calls to the reference potential increasing between 37 to
808
+ 490 %.
809
+ 500
810
+ 1000
811
+ 1500
812
+ 2000
813
+ 2500
814
+ T (K)
815
+ 0
816
+ 10
817
+ 20
818
+ 30
819
+ 40
820
+ 50
821
+ Proportion of MD configuration in training set (%)
822
+
823
+ 0.0
824
+ 2.5
825
+ 5.0
826
+ 7.5
827
+ 10.0
828
+ 12.5
829
+ 15.0
830
+ 17.5
831
+ Kept MD configuration in training set (%)
832
+
833
+ Figure 6.
834
+ Fraction of original MD configurations (left scale)
835
+ and total number of MD configurations (right scale) remain-
836
+ ing in the final training set (TS) for Si. Temperature refers
837
+ to the one used during MD training.
838
+ These results can be understood by looking at the frac-
839
+ tion of MD-generated configurations that remain in the
840
+ training set at the end of the simulation (Fig. 6): at
841
+ temperatures between 300 and 1200 K, none of the ML-
842
+ MD configurations remain in the final training set for
843
+ training temperatures between 300 and 1200 K; this pro-
844
+ portions goes from from 1.3 to 38 % between 1500 and
845
+ 2700 K (left-hand axis, blue line).
846
+ At these tempera-
847
+ tures, the system melts and generates a wider range of
848
+ configurations. Since these configurations are far from
849
+ ARTn-generated configurations, the selection algorithm
850
+ keeps them in the set even though they do not help re-
851
+ duce errors for the configurational space of interest with
852
+ ARTn.
853
+ C.
854
+ The OTF-ART adjusting approach
855
+ Given the results for OTF-MDART, we now turn to
856
+ an OTF approach entirely integrated in ARTn, in an at-
857
+ tempt to increase accuracy, and reduce the cost and waste
858
+ of evaluations of the reference potential.
859
+ Ten independents on-the-fly ML potential are gener-
860
+ ated entirely in ARTn for a total of 36 000 events start-
861
+ ing from the same initial minimum.
862
+ Each potential is
863
+ trained initially from the same one con���guration (the ini-
864
+ tial minimum), in the training set. Each parallel event
865
+ search goes trow a learning cycle if needed and as the
866
+ simulation progresses learning cycle become rarer. The
867
+ values are averaged over the ten simulation and as the
868
+ simulation go through learning.
869
+ With an average total of 628 ± 283 reference po-
870
+ tential evaluations, the cost of the OTF-ART is be-
871
+
872
+ 8
873
+ tween that of ML-MD and OTF-MDART. Along path-
874
+ ways, the average energy error for these potentials is of
875
+ 0.22 ± 0.03 meV/atom, on par with OTF-MDART po-
876
+ tential based on low-temperature ML-MD fitting, and
877
+ 49 % lower than the 300 K ML-MD potential. Errors
878
+ on forces, at 0.011±0.001 eV/Å, are in between ML-
879
+ MD (0.012 eV/Å) and OTF-MDART (0.010 eV/Å) at
880
+ low training temperature. Comparing with the 2700 K
881
+ potential fitting in MD, OFT-ART error is 57 % lower
882
+ than ML-MD (0.026 eV/Å) and 36 % lower than OTF-
883
+ MDART (0.017 eV/Å).
884
+ Focusing on barrier energy, the average error is 0.039±
885
+ 0.008 eV (see Fig. 4), about 2.5 % lower than OTF-
886
+ MDART and 30.3 % better than ML-MD. The error of
887
+ 0.072 ± 0.006 Å on the converged saddle position is sim-
888
+ ilar to the 0.072 ± 0.010 Å obtained with OTF-MDART
889
+ and 37 % lower than with ML-MD (0.114 Å).
890
+ D.
891
+ Reproducing the dominant diffusion mechanism
892
+ 0
893
+ 1
894
+ 2
895
+ 3
896
+ 4
897
+ 5
898
+ Energy barrier (eV)
899
+ 0.0
900
+ 2.5
901
+ 5.0
902
+ 7.5
903
+ 10.0
904
+ 12.5
905
+ 15.0
906
+ 17.5
907
+ Probability
908
+ MTP
909
+ Refined
910
+ Figure 7.
911
+ ARTn-generated energy barrier distributions for
912
+ vacancy-diffusion events in Si, including direct barrier (from
913
+ ground state) and inverse barriers (from excited states), as
914
+ generated with the MTP model (orange) and re-converged
915
+ using the reference model (blue) from saddles and minima
916
+ position originally found with the MTP model.
917
+ The exploration of the energy landscape around the
918
+ vacancy leads to a generation of wide range of activated
919
+ mechanisms and associated barriers (both forward, as-
920
+ sociated with the diffusion of the vacancy, and back-
921
+ ward, from the final minima back to the saddle point).
922
+ Fig. 7 presents the complete distribution of generated di-
923
+ rect and inverse barriers connected to the ground state.
924
+ The peak near 0 eV (around 10−2 to 10−1 eV) is associ-
925
+ ated with the inverse barrier to to direct saddle at 2.38,
926
+ 2.70 eV and higher (up to 5.5 eV), except for the in-
927
+ verse 0.45 eV barrier which is linked to the 2.87 eV direct
928
+ barrier. Direct barriers at 0.51 eV represent symmetric
929
+ first neighbor vacancy diffusion while barriers at 2.38 and
930
+ 2.70 eV are associated with more complex vacancy diffu-
931
+ sion mechanism32. Events with barriers at 2.38, 2.70 eV,
932
+ for example, involve a vacancy diffusion through com-
933
+ plex bond-exchanges. Spectator events33 where the dia-
934
+ mond network around the vacancy is transformed by a
935
+ bond switching are also generated. This mechanism was
936
+ proposed by Wooten, Winer, and Weaire (WWW) to de-
937
+ scribe the amorphization of silicon34. The main spectator
938
+ event occurs as two neighbors of the vacancy are pushed
939
+ together allowing the creation of a bound associated with
940
+ the 2.87 eV barrier. Other mechanisms involve strong lat-
941
+ tice distortion and bond formation not involving direct
942
+ neighbors of the vacancy with very high energy barriers32
943
+ of in between 3.2 and 4.0 eV.
944
+ Table III.
945
+ Average energy barrier errors and mean saddle
946
+ position error on the 0.51 eV vacancy diffusion for Si. The
947
+ average error for ML-MD and OTF-MDART training is taken
948
+ over all temperature sets.
949
+ Errors
950
+ ML-MD
951
+ OTF-MDART
952
+ OTF-ART
953
+ Energy (eV)
954
+ 0.026±0.015
955
+ 0.022±0.011
956
+ 0.019±0.005
957
+ Position (Å)
958
+ 0.088±0.036
959
+ 0.040±0.017
960
+ 0.047±0.018
961
+ Since vacancy diffusion for this system is dominated
962
+ by a 0.51 eV single barrier mechanism, with the next
963
+ barrier at 2.35 eV, an accurate description of the dom-
964
+ inant mechanism is essential to correctly capture defect
965
+ kinetics in Si. Tab. III presents the error on this barrier
966
+ for the three approaches described above. With an error
967
+ of 0.019±0.005 eV, a relative error of 3.7 %, OTF-ART
968
+ offers the closest reproduction of the reference barrier,
969
+ followed by OTF-MDART and ML-MD, with a respec-
970
+ tive error of 0.022±0.011 (relative error of 4.3 %) and
971
+ 0.026±0.015 (5.1 %). Overall, the error on energy bar-
972
+ rier is lower than that on the total energy presented above
973
+ (0.046±0.006 eV for OTF-ART, for example), due to a
974
+ partial error cancellation associated with energy differ-
975
+ ence taken to measure the barrier.
976
+ The validity of the barrier is also measured by the
977
+ precision on the saddle geometry.
978
+ For the e 0.51 eV
979
+ barrier, ML-MD converges with an error on the posi-
980
+ tion of 0.088±0.036Å, with OTF-MDART and OTF-
981
+ ART giving error almost 50 % lower, at 0.040±0.017Å
982
+ and 0.047±0.018Å respectively.
983
+ E.
984
+ SiGe system
985
+ Having shown the interest of developing a specific po-
986
+ tential by applying on-the-fly learning directly to acti-
987
+ vated events on a simple system such as c-Si with a va-
988
+ cancy, we test this approach with a more complex al-
989
+ loy with the same overall reference potential to facilitate
990
+ comparison. Starting from a ordered zincblende struc-
991
+ ture, the diffusion of a vacancy creates chemical disorder
992
+ that complexifies the landscape visited as shown by the
993
+
994
+ 9
995
+ 0
996
+ 1
997
+ 2
998
+ 3
999
+ 4
1000
+ 5
1001
+ Energy barrier (eV)
1002
+ 0.0
1003
+ 0.5
1004
+ 1.0
1005
+ 1.5
1006
+ 2.0
1007
+ 2.5
1008
+ 3.0
1009
+ 3.5
1010
+ Probability
1011
+ MTP
1012
+ Refined
1013
+ Figure 8.
1014
+ SiGe barrier histogram, including direct bar-
1015
+ rier (from ground state) and inverse barriers (from excited
1016
+ states), as found on-the-fly by the MTP model(orange) and
1017
+ re-converge by the reference model(blue) from saddles and
1018
+ minimums position originally given by MTP.
1019
+ 0
1020
+ 500
1021
+ 1000
1022
+ 1500
1023
+ 2000
1024
+ 2500
1025
+ T(K)
1026
+ 1000
1027
+ 2000
1028
+ 3000
1029
+ 4000
1030
+ Number of reference potential calls
1031
+ 380±125
1032
+ 1549±705
1033
+ 3465±844
1034
+ 3329±265
1035
+ ml-md
1036
+ new: otf-mdart
1037
+ total: otf-mdart+md
1038
+ mean: otf-mdart+md
1039
+ otf-art
1040
+ Figure 9.
1041
+ Number of calls to the reference potential for each
1042
+ of the OTF machine-learned potentials developed for SiGe
1043
+ as a function of the temperature referring to the one used
1044
+ during MD training. Since configurations are relaxed to zero
1045
+ K in ARTn simulations, there is no associated temperature
1046
+ for this procedure.
1047
+ continuous distribution of activated barriers, including
1048
+ both direct and inverse barriers, found as the vacancy
1049
+ diffuses (Fig. 8); we note that the lowest barrier for a
1050
+ vacancy diffusing is around 0.6 eV, with lower barriers
1051
+ associated, as for Si, with reverse jumps from metastable
1052
+ states. The energy barrier distribution for a vacancy dif-
1053
+ fusing in SiGe (Fig. 8) is much more complex than for Si
1054
+ due to the chemical disorder that builds as the vacancy
1055
+ diffuses.
1056
+ As stated in the methodology, the additional complex-
1057
+ ity of the system imposes a richer machined-learning po-
1058
+ 0.25
1059
+ 0.50
1060
+ 0.75
1061
+ 1.00
1062
+ 1.25
1063
+ 1.50
1064
+ 1.75
1065
+ Energy error per atom (meV/atom)
1066
+ ml-md
1067
+ otf-mdart
1068
+ otf-art
1069
+ 0
1070
+ 500
1071
+ 1000
1072
+ 1500
1073
+ 2000
1074
+ 2500
1075
+ T(K)
1076
+ 0.015
1077
+ 0.020
1078
+ 0.025
1079
+ 0.030
1080
+ Force error (eV/Å)
1081
+ Figure 10.
1082
+ Average energy (top) and mean absolute forces
1083
+ (bottom) errors for SiGe measured over all configurations gen-
1084
+ erated along pathways in ARTn for the three approaches.
1085
+ Temperature refers to the one used during MD training.
1086
+ Table IV. Average energy barrier errors and mean saddle po-
1087
+ sition error on all barriers for SiGe.
1088
+ The average error for
1089
+ ML-MD and OTF-MDART training is taken over all temper-
1090
+ ature sets.
1091
+ Errors
1092
+ ML-MD
1093
+ OTF-MDART
1094
+ OTF-ART
1095
+ Energy (eV)
1096
+ 0.082±0.024
1097
+ 0.072±0.014
1098
+ 0.066±0.015
1099
+ Position (Å)
1100
+ 0.091±0.020
1101
+ 0.076±0.013
1102
+ 0.070±0.014
1103
+ tential, with a larger set of parameters to encompass the
1104
+ greater diversity in the components and the configura-
1105
+ tions, due to chemical disorder.
1106
+ Combined, these two
1107
+ levels of complexity (set of parameters and configura-
1108
+ tional) result in an overall higher numbers of calls to the
1109
+ reference potential as compared to Si, irrespective of the
1110
+ approach used (see Fig. 9 (SiGe) vs. Fig. 2(Si)): while
1111
+ ML-MD requires between 380 evaluations of the reference
1112
+ potential at 300 K and 1549 at 2700 K, OTF-MDART
1113
+ needs a total of around 3465 calculations of the reference
1114
+
1115
+ 10
1116
+ potential, irrespective of the temperature as original ML-
1117
+ MD configurations are progressively removed from the
1118
+ training set.
1119
+ This efforts results in a number of calls
1120
+ to the reference potential for OTF-MDART 4 % higher
1121
+ than with OTF-ART (3329 on average). To reduce com-
1122
+ putational costs, we omit the 1500 K run, as statistical
1123
+ behavior is smooth in this temperature region.
1124
+ 500
1125
+ 1000
1126
+ 1500
1127
+ 2000
1128
+ 2500
1129
+ T(K)
1130
+ 0
1131
+ 20
1132
+ 40
1133
+ 60
1134
+ 80
1135
+ Percent interruption ( > 200) per event search (%)
1136
+ Si
1137
+ SiGe
1138
+ Figure 11.
1139
+ Percentage of search interruptions during ML-
1140
+ MD potential evaluation in ARTn (γ > 200) for Si and SiGe
1141
+ as function of ML-MD training temperature.
1142
+ To disentangle the two contributions, we compare with
1143
+ the cost of fitting a Si potential with the same level 20
1144
+ potential as used for SiGe. Following the full OTF-ART
1145
+ procedure, creating a Si MLP requires 2926 calls to the
1146
+ reference potential. The intrinsic complexity of the land-
1147
+ scape contributes therefore to about a 14 % increase of
1148
+ the Si baseline calls count.
1149
+ In terms of accuracy, the
1150
+ Si MLP level 20 leads to an average error on energy of
1151
+ 0.1 meV/atom, about 50 % lower than with the level 16
1152
+ potential described above (0.22 meV/atom). For SiGe,
1153
+ this error is (0.42 meV/atom), two times higher than for
1154
+ Si MLP level 16 and four times that of Si MLP level 20.
1155
+ This can be understood by the number of different con-
1156
+ figurations visited: as opposed to the Si system where
1157
+ each initial minimum is identical (as the vacancy moves
1158
+ in an otherwise perfect elemental crystal), the binary sys-
1159
+ tem is transformed as the vacancy diffuses, as the chemi-
1160
+ cal order is slowly destroyed: each of the 24 ARTn parallel
1161
+ trajectories used to define the potential over 1500 events
1162
+ evolves independently according to a probability given
1163
+ by the Metropolis algorithm with a fictitious tempera-
1164
+ ture (since network itself is structurally at 0K) of 0.5 eV
1165
+ (Eq. 7), providing a rich range of local environments.
1166
+ Fitting a potential is clearly harder: with the param-
1167
+ eters used — when a configuration graded at γ > 200 is
1168
+ encountered, the ARTn event search is stopped —, not
1169
+ significantly enough event could be generated using the
1170
+ ML-MD potential at 300 K and 600 K, which explains the
1171
+ absence of data for this temperatures in Fig. 10 and IV.
1172
+ For SiGe, the error on energy (see Fig. 10) with the ML-
1173
+ MD at 900 K and above ranges from 0.5 meV/atom to
1174
+ 1.4 meV/atom, as a function of temperature. On aver-
1175
+ age, these errors are between 14 % and 69 % lower with
1176
+ OTF-MDART or OTF-ART at around 0.43 meV/atom.
1177
+ The OTF-ART approach gives an error in energy bar-
1178
+ rier of 0.066 ± 0.015 eV which represent a 19.5 % and
1179
+ 8.3 % lower error from the ML-MD (0.082±0.024 eV) and
1180
+ OTF-MDART (0.072 ± 0.014 eV) respectively (Tab. IV).
1181
+ The errors on the converged saddle position for OTF-
1182
+ ART and OTF-MDART are similar at 0.070 ± 0.014 Å
1183
+ and 0.076 ± 0.013 Å, respectively, and represent a 23 %
1184
+ lower error than with ML-MD (0.092 Å). This accuracy
1185
+ is similar to that obtained with Si, in contrast to total
1186
+ energy and energy barrier errors.
1187
+ We note that the advantage of ML-MD for SiGe is
1188
+ overstated as shown by the proportion of events gener-
1189
+ ated with ML-MD potential that are interrupted due to
1190
+ a too large extrapolation grade, γ > 200 for both SiGe
1191
+ and Si (Fig. 11): for SiGe between 85 % and 30 % of
1192
+ events are aborted between 300 K and 1200 K, respec-
1193
+ tively.
1194
+ This proportion falls to zero percent failure at
1195
+ 1800 K.
1196
+ IV.
1197
+ DISCUSSION
1198
+ We compare three approaches aimed at the construc-
1199
+ tion of potentials with machine learning on-the-fly for
1200
+ the exploration of activated mechanism of the potential
1201
+ energy landscape. We evaluate these by computing their
1202
+ efficiency at reproducing the energy landscape around a
1203
+ vacancy in two systems, a relatively simple Si diamond
1204
+ system (Fig. 7) and a more complex SiGe zincblende sys-
1205
+ tem that disorders under vacancy diffusion (Fig. 8).
1206
+ The first approach, which sets the comparison level,
1207
+ constructs a more general machine learning potential
1208
+ with molecular dynamics (ML-MD), the second on-the-
1209
+ fly adjusts this this generated potential, during the search
1210
+ for activated events using ARTn, while the third ap-
1211
+ proaches constructs a specifically on-the-fly trained a po-
1212
+ tential during search of activated events (OTF-ART).
1213
+ The efficiency of these three procedures is measured on
1214
+ the quality of the reproduction of the reference potential
1215
+ during the search for activated event.
1216
+ The baseline, defined by the ML-MD, is competitive
1217
+ with previously published work. Energy errors for the
1218
+ more standard ML MD approach with a level 16 po-
1219
+ tential range from 0.44 ± 0.36 meV/atom at 300 K to
1220
+ 5.1 ± 1.7 meV/atom at 2700 K (Fig. 3), an order of mag-
1221
+ nitude lower or similar than the 4 meV/atom on an MTP
1222
+ potential of level 24 for Si obtained by Zuo et al.22, with
1223
+ the difference explained by the fact that activated events
1224
+ involve local deformations from a zero-temperature crys-
1225
+ tal with a vacancy and that DFT potentials are more
1226
+ difficult to fit than empirical ones18.
1227
+ Similarly, the relative energy error on the dominant
1228
+ 0.51 eV diffusion barrier for SW Si is of 5.1 % (0.026 eV)
1229
+
1230
+ 11
1231
+ with the ML-MD approach and 3.7 % (0.019 eV) with
1232
+ the OTF-ART. Using the same MTP potential trained
1233
+ using an OTF MD with an ab initio reference potential,
1234
+ Novoselov et al. find a 0.20 eV barrier for vacancy dif-
1235
+ fusion in Si as compared with 0.18 eV with the reference
1236
+ potential, an error of 0.02 eV or a 10.0 % relative error.
1237
+ Overall, the ML-MD approach, especially when run at
1238
+ temperatures between 900 and 1800 K, can generate a
1239
+ generic ML potential with reasonable precision for de-
1240
+ scribing activated mechanisms in Si and SiGe.
1241
+ Devel-
1242
+ oping a more specific OTF potential, generated directly
1243
+ with ARTn on activated trajectories, however, offers a
1244
+ more accurate description of both the energy and geom-
1245
+ etry at the barriers.
1246
+ It is possible to recover this precision by adjusting the
1247
+ original MD potential during ARTn runs, however, this
1248
+ increases the number of calls to the reference potential,
1249
+ raising the total costs beyond that of OTF-ART while
1250
+ largely erasing work made during ML-MD training phase:
1251
+ for Si, between 300 and 1200 K, none of the ML-MD
1252
+ configurations are retained while around 1.3 to 12.5 %
1253
+ are retained for the potential trained in range of 1500
1254
+ and 2700 K (Fig. 6, right-hand axis, orange line), but at
1255
+ the cost of lowering the precision on barriers.
1256
+ Moving to a more complex system, such a binary al-
1257
+ loy, increases the overall cost of the procedure in terms of
1258
+ calls to the reference potential, as more parameters need
1259
+ to be fit. Here also, the gain on using a specific poten-
1260
+ tial constructed with from ARTn trajectories is notable,
1261
+ both in the average errors and their fluctuations. Indeed,
1262
+ the ML-MD potential presents considerable instabilities
1263
+ when generated activated trajectories as can be seen by
1264
+ the number of configurations considered out-side of the
1265
+ potential’s scope (γ > 200), see Fig. 11.
1266
+ CONCLUSION
1267
+ We compare the advantage of using a more general vs
1268
+ specific machine-learned potential (MLP) to describe ac-
1269
+ tivated mechanisms in solid. To do so, we generate first
1270
+ an MLP constructed with the Moment Tensor Potential
1271
+ formalism10,18 to replicate Stillinger-Weber potential for
1272
+ Si and SiGe crystals with a single vacancy using a stan-
1273
+ dard molecular dynamics procedure (MD-ML).
1274
+ Comparing the quality of the reproduction of activated
1275
+ mechanisms with a ML potential further refined during
1276
+ an activation-relaxation technique nouveau sampling of
1277
+ the energy landscape and a potential unique constructed
1278
+ on-the-fly within ARTn, we show that while a general
1279
+ potential can deliver high accuracy for both the barrier
1280
+ geometries and their related energies, error and fluctua-
1281
+ tions around the average value are significantly lowered
1282
+ by constructing a specific potential, with a number of
1283
+ calls to the reference potential that is lower than a com-
1284
+ bined approach (MD + ARTn) for a similar precision.
1285
+ The advantage of using a specific potential remains
1286
+ when looking at more complex materials, such the SiGe
1287
+ alloys considered here, even though the advantage in
1288
+ terms of calls to the reference is strongly reduced.
1289
+ Having demonstrated that a specific machine-learned
1290
+ potential developed with methods such as MTP and
1291
+ ARTn can reproduce with high precision the activated
1292
+ mechanisms at the origin of kinetic for complex mate-
1293
+ rials, the next steps will involve applying this strategy
1294
+ to attack problems that have long been out of reach of
1295
+ computational materials sciences, allowing a much closer
1296
+ connection between modeling and experience.
1297
+ V.
1298
+ CODE AND DATA AVAILABILITY
1299
+ The ARTn packages as well as the data reported here
1300
+ are distributed freely. Please contact Normand Mousseau
1301
1302
+ ACKNOWLEDGMENTS
1303
+ This project is supported through a Discovery grant
1304
+ from the Natural Science and Engineering Research
1305
+ Council of Canada (NSERC). Karl-Étienne Bolduc is
1306
+ grateful to NSERC and IVADO for summer scholarchips.
1307
+ We are grateful to Calcul Québec and Compute Canada
1308
+ for generous allocation of computational resources.
1309
+ 1 W. Kohn and L. J. Sham.
1310
+ Self-consistent equations in-
1311
+ cluding exchange and correlation effects.
1312
+ Phys. Rev.,
1313
+ 140:A1133–A1138, Nov 1965.
1314
+ 2 Erik R Lindahl. Molecular dynamics simulations. In Molec-
1315
+ ular modeling of proteins, pages 3–23. Springer, 2008.
1316
+ 3 Arthur F Voter and Jimmie D Doll. Transition state theory
1317
+ description of surface self-diffusion: Comparison with clas-
1318
+ sical trajectory results. The Journal of chemical physics,
1319
+ 80(11):5832–5838, 1984.
1320
+ 4 Arthur F Voter. Introduction to the kinetic monte carlo
1321
+ method.
1322
+ In Radiation effects in solids, pages 1–23.
1323
+ Springer, 2007.
1324
+ 5 Graeme Henkelman and Hannes Jónsson. Long time scale
1325
+ kinetic monte carlo simulations without lattice approxima-
1326
+ tion and predefined event table. The Journal of Chemical
1327
+ Physics, 115(21):9657–9666, 2001.
1328
+ 6 Fedwa El-Mellouhi, Normand Mousseau, and Laurent J.
1329
+ Lewis.
1330
+ Kinetic activation-relaxation technique:
1331
+ An off-
1332
+ lattice self-learning kinetic Monte Carlo algorithm. Physi-
1333
+ cal Review B, 78(15):153202, October 2008.
1334
+ 7 Jörg Behler and Michele Parrinello. Generalized Neural-
1335
+ Network Representation of High-Dimensional Potential-
1336
+ Energy Surfaces.
1337
+ Phys. Rev. Lett., 98(14):146401, April
1338
+ 2007.
1339
+
1340
+ 12
1341
+ 8 Albert P Bartók, Risi Kondor, and Gábor Csányi.
1342
+ On
1343
+ representing chemical environments. Physical Review B,
1344
+ 87(18):184115, 2013.
1345
+ 9 Aidan P Thompson, Laura P Swiler, Christian R Trott,
1346
+ Stephen M Foiles, and Garritt J Tucker. Spectral neigh-
1347
+ bor analysis method for automated generation of quantum-
1348
+ accurate interatomic potentials. Journal of Computational
1349
+ Physics, 285:316–330, 2015.
1350
+ 10 Alexander V Shapeev. Moment tensor potentials: A class
1351
+ of systematically improvable interatomic potentials. Mul-
1352
+ tiscale Modeling & Simulation, 14(3):1153–1173, 2016.
1353
+ 11 Ganesh Sivaraman, Jicheng Guo, Logan Ward, Nathaniel
1354
+ Hoyt, Mark Williamson, Ian Foster, Chris Benmore, and
1355
+ Nicholas Jackson. Automated development of molten salt
1356
+ machine learning potentials: application to licl. The Jour-
1357
+ nal of Physical Chemistry Letters, 12(17):4278–4285, 2021.
1358
+ 12 Pei-Lin Kang, Cheng Shang, and Zhi-Pan Liu.
1359
+ Large-
1360
+ scale atomic simulation via machine learning potentials
1361
+ constructed by global potential energy surface exploration.
1362
+ Accounts of Chemical Research, 53(10):2119–2129, 2020.
1363
+ 13 Ganesh Sivaraman, Anand Narayanan Krishnamoorthy,
1364
+ Matthias Baur, Christian Holm, Marius Stan, Gábor
1365
+ Csányi, Chris Benmore, and Álvaro Vázquez-Mayagoitia.
1366
+ Machine-learned interatomic potentials by active learning:
1367
+ amorphous and liquid hafnium dioxide. npj Computational
1368
+ Materials, 6(1):1–8, 2020.
1369
+ 14 G. T. Barkema and Normand Mousseau. Event-Based Re-
1370
+ laxation of Continuous Disordered Systems. Physical Re-
1371
+ view Letters, 77(21):4358–4361, November 1996.
1372
+ 15 Rachid
1373
+ Malek
1374
+ and
1375
+ Normand
1376
+ Mousseau.
1377
+ Dynamics
1378
+ of Lennard-Jones clusters:
1379
+ A characterization of the
1380
+ activation-relaxation
1381
+ technique.
1382
+ Physical
1383
+ Review
1384
+ E,
1385
+ 62(6):7723–7728, December 2000.
1386
+ 16 Antoine Jay, Miha Gunde, Nicolas Salles, Matic Poberžnik,
1387
+ Layla Martin-Samos, Nicolas Richard, Stefano de Giron-
1388
+ coli, Normand Mousseau, and Anne Hémeryck.
1389
+ Activa-
1390
+ tion–Relaxation Technique: An efficient way to find min-
1391
+ ima and saddle points of potential energy surfaces. Com-
1392
+ putational Materials Science, 209:111363, June 2022.
1393
+ 17 Donald G Truhlar, Bruce C Garrett, and Stephen J Klip-
1394
+ penstein. Current status of transition-state theory. The
1395
+ Journal of physical chemistry, 100(31):12771–12800, 1996.
1396
+ 18 Ivan
1397
+ S
1398
+ Novikov,
1399
+ Konstantin
1400
+ Gubaev,
1401
+ Evgeny
1402
+ V
1403
+ Podryabinkin, and Alexander V Shapeev.
1404
+ The mlip
1405
+ package: moment tensor potentials with mpi and active
1406
+ learning.
1407
+ Machine Learning:
1408
+ Science and Technology,
1409
+ 2(2):025002, 2020.
1410
+ 19 Frank H Stillinger and Thomas A Weber. Computer simu-
1411
+ lation of local order in condensed phases of silicon. Physical
1412
+ review B, 31(8):5262, 1985.
1413
+ 20 Stéphane Ethier and Laurent J Lewis. Epitaxial growth of
1414
+ si1- xgex on si (100) 2× 1: A molecular-dynamics study.
1415
+ Journal of materials research, 7(10):2817–2827, 1992.
1416
+ 21 II
1417
+ Novoselov,
1418
+ AV
1419
+ Yanilkin,
1420
+ AV
1421
+ Shapeev,
1422
+ and
1423
+ EV
1424
+ Podryabinkin.
1425
+ Moment
1426
+ tensor
1427
+ potentials
1428
+ as
1429
+ a
1430
+ promising tool to study diffusion processes.
1431
+ Computa-
1432
+ tional Materials Science, 164:46–56, 2019.
1433
+ 22 Yunxing Zuo, Chi Chen, Xiangguo Li, Zhi Deng, Yiming
1434
+ Chen, Jorg Behler, Gábor Csányi, Alexander V Shapeev,
1435
+ Aidan P Thompson, Mitchell A Wood, et al. Performance
1436
+ and cost assessment of machine learning interatomic po-
1437
+ tentials. The Journal of Physical Chemistry A, 124(4):731–
1438
+ 745, 2020.
1439
+ 23 Evgeny V Podryabinkin and Alexander V Shapeev. Active
1440
+ learning of linearly parametrized interatomic potentials.
1441
+ Computational Materials Science, 140:171–180, 2017.
1442
+ 24 Evgeny V Podryabinkin, Evgeny V Tikhonov, Alexander V
1443
+ Shapeev, and Artem R Oganov. Accelerating crystal struc-
1444
+ ture prediction by machine-learning interatomic potentials
1445
+ with active learning.
1446
+ Physical Review B, 99(6):064114,
1447
+ 2019.
1448
+ 25 Konstantin Gubaev, Evgeny V Podryabinkin, Gus LW
1449
+ Hart, and Alexander V Shapeev.
1450
+ Accelerating high-
1451
+ throughput searches for new alloys with active learning of
1452
+ interatomic potentials. Computational Materials Science,
1453
+ 156:148–156, 2019.
1454
+ 26 A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolin-
1455
+ tineanu, W. M. Brown, P. S. Crozier, P. J. in ’t Veld,
1456
+ A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
1457
+ M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton.
1458
+ LAMMPS - a flexible simulation tool for particle-based
1459
+ materials modeling at the atomic, meso, and continuum
1460
+ scales. Comp. Phys. Comm., 271:108171, 2022.
1461
+ 27 Antoine
1462
+ Jay,
1463
+ Miha
1464
+ Gunde,
1465
+ Nicolas
1466
+ Salles,
1467
+ Matic
1468
+ Poberžnik, Layla Martin-Samos, Nicolas Richard, Stefano
1469
+ de Gironcoli, Normand Mousseau, and Anne Hémeryck.
1470
+ Activation–relaxation technique: An efficient way to find
1471
+ minima and saddle points of potential energy surfaces.
1472
+ Computational Materials Science, 209:111363, 2022.
1473
+ 28 Cornelius Lanczos. An iteration method for the solution
1474
+ of the eigenvalue problem of linear differential and integral
1475
+ operators. 1950.
1476
+ 29 Rachid
1477
+ Malek
1478
+ and
1479
+ Normand
1480
+ Mousseau.
1481
+ Dynamics
1482
+ of lennard-jones clusters:
1483
+ A characterization of the
1484
+ activation-relaxation
1485
+ technique.
1486
+ Physical
1487
+ Review
1488
+ E,
1489
+ 62(6):7723, 2000.
1490
+ 30 Erik Bitzek, Pekka Koskinen, Franz Gähler, Michael
1491
+ Moseler, and Peter Gumbsch. Structural relaxation made
1492
+ simple. Physical review letters, 97(17):170201, 2006.
1493
+ 31 Normand Mousseau and Gerard T. Barkema. Exploring
1494
+ High-Dimensional Energy Landscapes. Computing in Sci-
1495
+ ence & Engineering, 1(2):74–82, March 1999.
1496
+ 32 Fedwa El-Mellouhi, Normand Mousseau, and Pablo Orde-
1497
+ jón. Sampling the diffusion paths of a neutral vacancy in
1498
+ silicon with quantum mechanical calculations. Phys. Rev.
1499
+ B, 70:205202, Nov 2004.
1500
+ 33 Yuko Kumeda, David J Wales, and Lindsey J Munro.
1501
+ Transition states and rearrangement mechanisms from hy-
1502
+ brid eigenvector-following and density functional theory.:
1503
+ application to c10h10 and defect migration in crystalline
1504
+ silicon. Chemical physics letters, 341(1-2):185–194, 2001.
1505
+ 34 F. Wooten, K. Winer, and D. Weaire. Computer genera-
1506
+ tion of structural models of amorphous si and ge. Phys.
1507
+ Rev. Lett., 54:1392–1395, Apr 1985.
1508
+
6tFAT4oBgHgl3EQfnx0W/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NAzT4oBgHgl3EQfgfyv/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0590c851e63d05837b8558354c9ecaf46ba41cfc875d209bae9adf119dcf934a
3
+ size 72483
8NFLT4oBgHgl3EQfsy_c/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dFRT4oBgHgl3EQfqjdh/content/2301.13617v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a74517c25d0ac22b61a1de92622aae50fb772eea528d30d6e16ffcf73a1a8fb4
3
+ size 2040715
9dFRT4oBgHgl3EQfqjdh/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed8de90c79b609b8fe991814990c5103d34d7e18e36b0eeb08e7ce83e5968c00
3
+ size 608034
A9AzT4oBgHgl3EQfhv18/content/2301.01489v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:262d5ea3b5123cd1009dea4f0410bb6eb48b3154f8365f9cedb528c53481c7a9
3
+ size 1968081
A9AzT4oBgHgl3EQfhv18/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f7f75bb86b285f6c6f7b3afd1c30a13c0721b657db7c2954547227a1b500c58
3
+ size 168330
A9E1T4oBgHgl3EQf9QZb/content/2301.03554v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49e5afd853a41b01a4f0691572effed653e936b5cb664f5243b4775aead4e862
3
+ size 833905
A9E1T4oBgHgl3EQf9QZb/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c22d0e3afd598e32505914cec4b3e1b3ed1634180ba86493b14ffb69b8ab7e97
3
+ size 10551341
ANFQT4oBgHgl3EQf8jdP/content/tmp_files/2301.13447v1.pdf.txt ADDED
@@ -0,0 +1,1150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Data-Driven Modeling and Control
2
+ Framework for Physics-Based Building
3
+ Emulators
4
+ Chihyeon Song ⋆ Aayushman Sharma ⋆ Raman Goyal
5
+ Alejandro Brito Saman Mostafavi ⋆
6
+ ∗ Palo Alto Research Center, Inc. (PARC), Palo Alto, CA 94304 USA
7
+ (e-mail: {csong, asharma, rgoyal, abrito, smostafa}@parc.com).
8
+ Abstract: We present a data-driven modeling and control framework for physics-based building
9
+ emulators. Our approach comprises: (a) Offline training of differentiable surrogate models that
10
+ speed up model evaluations, provide cheap gradients, and have good predictive accuracy for the
11
+ receding horizon in Model Predictive Control (MPC) and (b) Formulating and solving nonlinear
12
+ building HVAC MPC problems. We extensively verify the modeling and control performance
13
+ using multiple surrogate models and optimization frameworks for different available test cases
14
+ in the Building Optimization Testing Framework (BOPTEST). The framework is compatible
15
+ with other modeling techniques and customizable with different control formulations. The
16
+ modularity makes the approach future-proof for test cases currently in development for physics-
17
+ based building emulators and provides a path toward prototyping predictive controllers in large
18
+ buildings.
19
+ Keywords: Data-driven control, Nonlinear model predictive control, Building emulator,
20
+ Surrogate modeling.
21
+ 1. INTRODUCTION
22
+ According to recent estimates by United States Energy
23
+ Information Administration (2021), residential and com-
24
+ mercial buildings account for nearly 40% of energy usage
25
+ in the United States. A significant amount of this energy
26
+ consumption can be eliminated by improving the build-
27
+ ing’s HVAC control system, for example using predictive
28
+ control methods as has been shown in Drgoˇna et al. (2020).
29
+ Among these methods, model predictive control (MPC) is
30
+ a particularly powerful approach for handling constraints
31
+ for state and control inputs in nonlinear multivariable
32
+ control systems. While the gains are evident, the challenge
33
+ is to show that MPC can be implemented at scale in
34
+ a cost-friendly manner (O’Dwyer et al., 2022). It is well
35
+ understood that the main obstacle to this is the modeling
36
+ cost and according to one study (Atam and Helsen, 2016),
37
+ this can be as much as 70% of the total effort of setting
38
+ up an MPC-based building controller, mainly due to the
39
+ effort and expertise required to create realistically cali-
40
+ brated models. Recently, Building Optimization Testing
41
+ Framework (BOPTEST) (Blum et al., 2021) is developed
42
+ to facilitate simulation-based benchmarking of building
43
+ HVAC control algorithms. The emulator uses calibrated
44
+ Modelica models to emulate building physical dynamics
45
+ based on first principles. Models also output Key Perfor-
46
+ mance Indices (KPI) that represent occupant satisfaction,
47
+ energy cost and consumption, and carbon footprint. What
48
+ makes this platform even more impressive is the fact that
49
+ it is set up to replicate a real building control system with
50
+ ⋆ Chihyeon Song and Aayushman Sharma contributed equally to
51
+ this paper. Saman Mostafavi is the corresponding author.
52
+ all its control limitations, e.g., there are realistic low-level
53
+ feedback control laws, box constraints on control inputs,
54
+ weather, occupancy profiles, economizer schedules, etc.
55
+ MOTIVATION While the value of BOPTEST, and
56
+ other physics-based emulators in creating a unified testing
57
+ platform for control is unquestionable, there are several
58
+ intrinsic obstacles to the implementation of predictive
59
+ control and its adoption by a broader audience 1 : (1) In
60
+ BOPTEST, and most other physic-based emulators, the
61
+ numerical solvers for scaled-up models will not be compu-
62
+ tationally efficient to run in iterative optimization loops.
63
+ (2) Solving the optimization problem requires gradient
64
+ calculations which, derived through perturbations, only
65
+ compounds the computational intensity. (3) Furthermore,
66
+ some optimal control methods, such as iterative Linear
67
+ Quadratic Regulator method (iLQR) (Todorov and Li,
68
+ 2005), derive optimal solutions by exploring trajectories
69
+ that might be infeasible for the emulator to evaluate (due
70
+ to control input and state constraints), which can lead to
71
+ crashing the iterative algorithm prematurely.
72
+ While acknowledging the significant progress in deep
73
+ neural networks-based reinforcement learning (RL) ap-
74
+ proaches for controlling unknown dynamical systems, with
75
+ applications expanding from playing games (Silver et al.,
76
+ 2016), locomotion (Lillicrap et al., 2015) and robotic hand
77
+ manipulation (Levine et al., 2016), RL is still highly data
78
+ intensive. The training time for such algorithms is typically
79
+ 1 It is worth mentioning that we consider these challenges to be
80
+ almost identical for a real building HVAC control system and,
81
+ therefore, addressing and solving them is a first step to deploying
82
+ such control algorithms in the field.
83
+ arXiv:2301.13447v1 [eess.SY] 31 Jan 2023
84
+
85
+ very large, and high variance and reproducibility issues
86
+ mar the performance Henderson et al. (2018). At the mo-
87
+ ment, RL algorithms remain intractable for adjustable and
88
+ reproducible implementations at scale. On the other hand,
89
+ most of the the building MPC work (Sturzenegger et al.,
90
+ 2015; Mostafavi et al., 2022; Oei et al., 2020; Walker et al.,
91
+ 2017) consider either simple low-fidelity RC-based models,
92
+ bilinear models with low accuracy, Machine Learning (ML)
93
+ approaches that cannot be directly used for fast MPC
94
+ implementation, or directly use Modelica-based models
95
+ with hand-tuned cost functions for nonlinear optimiza-
96
+ tion of energy consumption. Such modeling and control
97
+ approaches require a lot of customization for high-fidelity
98
+ models with complex, hybrid, and constrained systems
99
+ that use external inputs and therefore, are not suited to a
100
+ robust control framework.
101
+ CONTRIBUTIONS The main contribution of this pa-
102
+ per is the development of a modeling and control frame-
103
+ work for building HVAC control based on identifying dif-
104
+ ferentiable models that are compatible with optimization-
105
+ based nonlinear optimal control methods. We address
106
+ these limitations by the following two-fold approach: first,
107
+ in an off-line round, we identify a differentiable surrogate
108
+ model for the following nonlinear mapping:
109
+ xt+1 = f(xt, ut, dt)
110
+ (1)
111
+ where x represent the state of the model, u the control
112
+ inputs, and d the external time-varying disturbances, asso-
113
+ ciated with the weather and occupancy conditions. Second,
114
+ we use automatic differentiation (AD) (Paszke et al., 2017)
115
+ to compute gradients for solving nonlinear model predic-
116
+ tive control (NMPC) with box constraints for state and
117
+ inputs. The details for modeling and control approaches
118
+ are discussed in Section 2 and Section 3. The individual
119
+ contributions of the paper are as follows: we demonstrate
120
+ how to identify a suitable Neural Network (NN) to capture
121
+ the dynamics of building envelope and HVAC control sys-
122
+ tem. We investigate several choices of lags for states, con-
123
+ trols, and disturbances and provide insight into best prac-
124
+ tices. We also present different MPC formulations, assisted
125
+ by using AD, to maintain occupants’ comfort constraints
126
+ while minimizing KPIs for HVAC energy consumption. We
127
+ show the customizability of the framework through the
128
+ ease of using two different control approaches to solve the
129
+ MPC problem. We show that the proposed approach can
130
+ be used to warm-start the receding horizon replanning for
131
+ the MPC problem. In the result section, we also provide a
132
+ performance comparison between different approaches for
133
+ modeling and solving NMPC when operating on compu-
134
+ tationally intensive hybrid system models. We also discuss
135
+ potential best practices based on desired control criteria
136
+ (speed, optimality, etc.). Finally, to the best of our knowl-
137
+ edge, the NMPC control of the BOPTEST five-zone model
138
+ is the first of its kind. We believe this framework is scalable
139
+ for data-driven NMPC control of the BOPTEST, and
140
+ potentially other physics-based building emulators, that
141
+ are being developed for prototyping controllers in large
142
+ building HVAC systems.
143
+ 2. SURROGATE MODELING FOR BUILDING
144
+ EMULATOR
145
+ Our aim is to replace the computationally expensive non-
146
+ linear numerical simulations with alternative, fast repre-
147
+ sentations for model-based control. In the context of using
148
+ NNs for MPC, we believe that one should include the
149
+ following criteria in their surrogate modeling process:
150
+ • Computing cost: Small computing cost for fast
151
+ iterative evaluations.
152
+ • Predictive accuracy: Good prediction accuracy for
153
+ MPC’s horizon.
154
+ • Differentiability: Fast and accurate gradient infor-
155
+ mation for successive linearization, nonlinear solvers,
156
+ etc., for different MPC formulations.
157
+ We leverage Pytorch (Paszke et al., 2019) modeling li-
158
+ brary to meet these goals. In this study, we consider
159
+ the following cases: Linear, MLP, and Long short-term
160
+ memory (LSTM). MLP has a fast forward computation
161
+ and good expressivity to approximate complex functions
162
+ Hornik et al. (1989). On the other, since BOPTEST is
163
+ Partially Observable MDP (POMDP), it requires lag infor-
164
+ mation from states, actions, and time-varying disturbance
165
+ for model fitting. This can be curtailed by using LSTM
166
+ which has proven to work well for nonlinear mappings with
167
+ autoregressive features Siami-Namini et al. (2018). While
168
+ fairly simple, the linear model has the advantage of fastest
169
+ model evaluations and plug-and-play viability for fast QP
170
+ solvers.
171
+ 2.1 Linear
172
+ The surrogate model takes its input as the states x, control
173
+ inputs u, time-varying disturbances d, and their lags of
174
+ past time-steps. The output of the surrogate model is the
175
+ future state prediction {xt+1}, i.e.,:
176
+ xt+1 = f(xt−Mx:t, ut−Mu:t, dt−Md:t)
177
+ (2)
178
+ where Mx, Mu, Md are state, input and disturbance lags,
179
+ respectively. Since the choices of lags are application
180
+ dependent, we discuss this further in the result section.
181
+ Here, f is linearized as follows:
182
+ xt+1 =
183
+ Mx
184
+
185
+ k=0
186
+ Akxt−k +
187
+ Mu
188
+
189
+ k=0
190
+ Bkut−k +
191
+ Md
192
+
193
+ k=0
194
+ Ckdt−k
195
+ (3)
196
+ where Ak = ∇xf ∈ RNx×Nx, Bk = ∇uf ∈ RNx×Nu and
197
+ Ck = ∇df ∈ RNx×Nd are learnable parameter matrices for
198
+ state, control input and disturbance, respectively.
199
+ 2.2 MLP
200
+ The linearized model given by Equation 3 also applies
201
+ here. The forward computation in MLP is written as the
202
+ following:
203
+ h0 = [xt−Mx, ut−Mu, dt−Md]
204
+ hk+1 = tanh(Wkhk + bk),
205
+ k = {0, ..., K − 1}
206
+ xt+1 = ot+1 = WKhK + bK
207
+ (4)
208
+ where hk ∈ Rl is a hidden unit of the layer k, Wk and bk
209
+ are weight parameters of the layer k.
210
+ 2.3 LSTM
211
+ The forward computation of LSTM is written as the
212
+ following:
213
+
214
+ ht, ct = MLPenc(xt−Mx:t, ut−Mu:t−1, dt−Mu:t)
215
+ it = σ(Wiiut + bii + Whiht−1 + bhi)
216
+ ft = σ(Wifut + bif + Wwhfht−1 + bhf)
217
+ gt = tanh(Wigut + big + Whght + bhg)
218
+ ot+1 = σ(Wiout + bio + Whoht + bho)
219
+ ct+1 = ft ⊙ ct + it ⊙ gt
220
+ ht+1 = ot ⊙ tanh(ct+1)
221
+ xt+1 = MLPdec(ht+1)
222
+ (5)
223
+ where ht is the hidden state, ct is the cell state, it, ft, gt and
224
+ ot are the input, forget, cell, and output gates, respectively.
225
+ σ(·) is the sigmoid function, ⊙ is the Hadamard product,
226
+ and MLPenc and MLPdec are a MLP encoder and decoder,
227
+ respectively.
228
+ 3. CONTROL PROBLEM FORMULATION
229
+ Consider the discrete-time nonlinear dynamical system:
230
+ xt+1 = f(xt, ut, dt),
231
+ (6)
232
+ where xt ∈ Rnx and ut ∈ Rnu correspond to the state
233
+ and control vectors at time t and dt
234
+ ∈ Rnd is the
235
+ set of contextual variables/external inputs. The optimal
236
+ control problem is to find the optimal control policy that
237
+ minimizes the cumulative cost:
238
+ min
239
+ ut
240
+ T
241
+
242
+ t=0
243
+ ct(xt, ut, dt)
244
+ (7)
245
+ Subject to : xt+1 = f(xt, ut, dt),
246
+ (8)
247
+ Subject to : ul
248
+ t ≤ ut ≤ uu
249
+ t ,
250
+ (9)
251
+ for given x0, and where ct(·) is the instantaneous cost
252
+ function given as:
253
+ ct(·) = Pc + Ph + Lk + γPx,
254
+ (10)
255
+ where Pc and Ph are total cooling and heating cost,
256
+ Lk = ∥˜ut+1 − ˜ut∥2
257
+ R is a regularizer term, which penalizes
258
+ large changes in the control inputs to avoid undesirable
259
+ oscillations, and Px = max(xl
260
+ t − xt, 0) + max(xt − xu
261
+ t , 0)
262
+ enforces the occupant comfort constraints implemented
263
+ with ReLU function with a penalty coefficient γ. The
264
+ problem also considers input box constraints with lower
265
+ and upper bound given as [ul
266
+ t, uu
267
+ t ].
268
+ 3.1 Gradient Descent Method
269
+ The gradient descent method is one of the widely-used
270
+ algorithms to optimize a differentiable objective function.
271
+ At each iteration, the gradient of the objective function
272
+ is computed and the decision variables are updated in
273
+ direction of the computed gradient. Gradient descent al-
274
+ gorithms have a precedent across domains such as training
275
+ neural networks Schmidhuber (2015) and solving optimal
276
+ control problems (Lin et al., 2014). In this paper, we use
277
+ Adam (Kingma and Ba, 2014), which has shown promising
278
+ results in deep learning applications. For input constraint
279
+ (9), we use projected gradient descent, a common method
280
+ in solving constrained optimization: after each gradient
281
+ update, we project the control vector ut into a feasible
282
+ region [ul
283
+ t, uu
284
+ t ]. Since the feasible region is a box constraint,
285
+ the projected control vector is easily computed by using a
286
+ clamp function after each update of the algorithm.
287
+ 3.2 Sequential Quadratic Programming
288
+ There have been numerous tools and methods developed
289
+ to solve specific nonlinear optimization problems with par-
290
+ ticular structures of cost functions, equality, and inequal-
291
+ ity constraint functions. However, Sequential Quadratic
292
+ Programming (SQP) remains one of the most efficient
293
+ approaches to solving any general constrained-nonlinear
294
+ optimization problem. For the SQP approach, we utilize
295
+ the optimization subroutine originally proposed by Dieter
296
+ Kraft Kraft (1988) and as implemented in SciPy Virtanen
297
+ et al. (2020) to solve the control optimization problem
298
+ described in Eqns. (7-9). The algorithm is a quasi-Newton
299
+ method (using BFGS) applied to a Lagrange function
300
+ consisting of a loss function and equality and inequality
301
+ constraints. In our implementation, we provide the func-
302
+ tion evaluations, which are calculated using Equation 10,
303
+ and it’s Jacobian using automatic differentiation. Instead
304
+ of clamping, we pass bounds for control inputs directly to
305
+ the solver.
306
+ 4. RESULTS
307
+ We demonstrate the effectiveness of our control framework
308
+ for controlling building models in BOPTEST (Blum et al.,
309
+ 2021), a software for simulation-based benchmarking of
310
+ building HVAC control algorithms. The rest of this sec-
311
+ tion details two test cases that demonstrate the results of
312
+ deriving different surrogate models and discusses the sub-
313
+ sequent control results for the control algorithms described
314
+ in Section 3.
315
+ 4.1 Model Description
316
+ BOPTEST emulators use Modelica (Wetter et al., 2014)
317
+ to represent realistic physical dynamics. Embedded in
318
+ these models are baseline control algorithms that can
319
+ be overwritten using supervisory and local-loop control
320
+ signals. BOPTEST uses a containerized run-time environ-
321
+ ment (RTE) which enables rapid, repeatable deployment
322
+ of models. Using this feature, we stand up several instances
323
+ of models on servers and query these models to speed-up
324
+ data generation at scale for surrogate modeling. We also
325
+ test controls on the same containers, representing digital-
326
+ twins of real buildings. We consider the following case
327
+ studies:
328
+ BESTEST Case 900 model
329
+ This test case is a single
330
+ room with floor dimensions of 6m x 8m and a floor-to-
331
+ ceiling height of 2.7m. The building is assumed to be oc-
332
+ cupied by two people from 8 am to 6 pm each day. Heating
333
+ and cooling are provided to the office using an idealized
334
+ four-pipe fan coil unit (FCU), presented in Figure 1. The
335
+ FCU contains a fan, cooling coil, and heating coil. The
336
+ fan draws room air into the HVAC unit and supplies the
337
+ conditioned air back to the room. No outside air is mixed
338
+ during this process. The fan has a variable speed drive
339
+ serving the fan motor. The cooling coil is served by chilled
340
+ water produced by a chiller and the heating coil is served
341
+ by hot water produced by a gas boiler. Two different PI
342
+ controllers for heating and cooling modulate the supply
343
+ air temperature and fan speed to provide cooling and
344
+ heating load to the room. The schematics and control
345
+
346
+ (a)
347
+ (b)
348
+ Fig.
349
+ 1.
350
+ Control
351
+ schematics
352
+ of
353
+ the
354
+ BESTEST
355
+ Case
356
+ 900
357
+ model.
358
+ Source:
359
+ https://ibpsa.github.io/
360
+ project1-boptest/
361
+ mapping are shown in Figure 1. For our supervisory MPC
362
+ controller, we manipulate supply air temperature and fan
363
+ speed as control inputs to minimize the combined cooling,
364
+ heating, and fan power consumption while maintaining the
365
+ occupant comfort bounds. Assuming the building to be in
366
+ a climate close to Denver, CO, USA, the state and input
367
+ box constraints are as follows:
368
+ 21oC ≤ xTzone,occ ≤ 24oC
369
+ (11)
370
+ 15oC ≤ xTzone,unocc ≤ 30oC
371
+ (12)
372
+ 0.0 ≤ ufan ≤ 1.0
373
+ (13)
374
+ 12oC ≤ uTsupp ≤ 40oC
375
+ (14)
376
+ Multi-zone office (ASHRAE 2006 VAVReaheat)
377
+ The
378
+ test case represents the middle floor of an office build-
379
+ ing located in Chicago, IL, as described in the set of
380
+ DOE Commercial Building Benchmarks for new construc-
381
+ tion (Deru et al., 2011) with weather data from TMY3
382
+ for Chicago O’Hare International Airport. The represented
383
+ floor has five zones, with four perimeter zones and one
384
+ core zone. The occupied time for the HVAC system is
385
+ between 6 AM and 7 PM each day. The HVAC system is a
386
+ multi-zone single-duct Variable Air Volume (VAV) system
387
+ with pressure-independent terminal boxes with reheat. A
388
+ schematic of the system is shown in Figure 2. The cooling
389
+ and heating coils are water-based, served by an air-cooled
390
+ chiller and air-to-water heat pump respectively. A number
391
+ of low-level, local-loop controllers are used to maintain the
392
+ desired setpoints using the available actuators. The pri-
393
+ mary local-loop controllers are specified on the diagrams
394
+ of Figure 3 as C1 to C3. C1 is responsible for maintaining
395
+ the zone temperature setpoints as determined by the oper-
396
+ ating mode of the system and implements dual-maximum
397
+ logic. C2 is responsible for maintaining the duct static
398
+ pressure setpoint and implements a duct static pressure
399
+ reset strategy. C3 is responsible for maintaining the supply
400
+ air temperature setpoint as well as the minimum outside
401
+ air flow rate as determined by the operating mode of
402
+ the system. In this case, we assume the fan speed to be
403
+ constant and our supervisory MPC controller manipulates
404
+ the damper position and reheat control signal to control
405
+ the airflow and zone supply air temperature respectively
406
+ (at each zone). In addition, the central HVAC cooling and
407
+ heating units are manipulated to control the central supply
408
+ air temperature. The optimization objective is to minimize
409
+ the overall cooling and heating loads while maintaining the
410
+ occupant comfort bounds and central supply air tempera-
411
+ ture. The state and input box constraints are as follows:
412
+ 21oC ≤ xTzonei,occ ≤ 24oC
413
+ (15)
414
+ 15oC ≤ xTzonei,unocc ≤ 30oC
415
+ (16)
416
+ 0.0 ≤ udami ≤ 1.0
417
+ (17)
418
+ 0.0 ≤ uyReaHeai ≤ 1.0
419
+ (18)
420
+ ∀i ∈ {1, 2, 3, 4, 5}
421
+ 5oC ≤ xTsupp ≤ 20oC
422
+ (19)
423
+ 0.0 ≤ uyHea ≤ 1.0
424
+ (20)
425
+ 0.0 ≤ uyCoo ≤ 1.0
426
+ (21)
427
+ 4.2 System Identification
428
+ We consider the three choices of models as described
429
+ in Section 2 for the single zone and multi-zone case.
430
+ We describe how we sufficiently excite the system to
431
+ generate data and report the training and out-of-training
432
+ performance of each model.
433
+ Data generation
434
+ For each time-step t = 0, ..., T − 1,
435
+ we sample a random control input ut from a uniform
436
+ distribution of the feasible input space and pass the
437
+ sampled control input to BOPTEST simulation to get
438
+ the next observation and disturbance. We collect the data
439
+ up to time-step T, and repeat this procedure K times
440
+ using different initial conditions. In the BESTEST case, we
441
+ choose K = 120, T = 500, and use 100 distinct trajectories
442
+ as training data, 10 for validation and 10 for test. In the
443
+ (a)
444
+ (b)
445
+ Fig.
446
+ 2.
447
+ Envelope,
448
+ Floorplan
449
+ and
450
+ control
451
+ schematics
452
+ of multi zone office air simple emulator model
453
+ of BOPTEST. Source: https://ibpsa.github.io/
454
+ project1-boptest/
455
+
456
+ C1
457
+ C2
458
+ Zone
459
+ 0PI
460
+ Map
461
+ PI50.0 m
462
+ 4.57 m
463
+ North
464
+ 33.25 m
465
+ West
466
+ East
467
+ Core
468
+ Middle Floor
469
+ Southcorezone
470
+ southzone
471
+ eastzone
472
+ northzone
473
+ west zone
474
+ heating cooling
475
+ coil
476
+ coil
477
+ Motor
478
+ Sensor
479
+ Point
480
+ Ccontrol
481
+ Point
482
+ Sensor
483
+ Point
484
+ Airflow Rate
485
+ Sensor
486
+ Point
487
+ Differentia
488
+ Pressure
489
+ SensorTable 1.
490
+ MSE (×10−5)
491
+ for
492
+ dif-
493
+ fer-
494
+ ent
495
+ model
496
+ choices
497
+ in
498
+ BESTEST
499
+ case
500
+ Model
501
+ Train MSE
502
+ Val MSE
503
+ Test MSE
504
+ Linear
505
+ 699.5
506
+ 566.8
507
+ 780.3
508
+ MLP
509
+ 8.846
510
+ 12.70
511
+ 17.56
512
+ LSTM
513
+ 1.418
514
+ 1.726
515
+ 2.145
516
+ multi-zone office case, we choose K = 600, T = 1000, and
517
+ use 500 trajectories as the training dataset, and keep 50
518
+ for validation and 50 for test purposes. It is evident that
519
+ test data, which all results are reported on, is the data
520
+ that the model has never been trained on.
521
+ Hyperparameters
522
+ The MLP framework consists of 4
523
+ layers with 256 nodes in each layer, and tanh(·) activation
524
+ layers in-between the MLP layers. For the LSTM model,
525
+ we implement 2 layers with 256 nodes for MLPenc and
526
+ MLPdec and choose the dimension of hidden and cell state
527
+ as 256. Mean squared error (MSE) is used for computing
528
+ training loss. For all surrogate models, we choose Adam
529
+ to optimize the parameters with learning rate=0.001, and
530
+ epoch=1000.
531
+ Predictive performance
532
+ Table 1 and Table 2 show the
533
+ results of test performance for single-zone and five-zone
534
+ (a)
535
+ (b)
536
+ (c)
537
+ Fig.
538
+ 3.
539
+ Lower-level
540
+ control
541
+ schematics
542
+ for
543
+ five-zone
544
+ model.
545
+ Source:
546
+ https://ibpsa.github.io/
547
+ project1-boptest/
548
+ Table 2.
549
+ MSE (×10−5)
550
+ for
551
+ dif-
552
+ fer-
553
+ ent
554
+ MLP
555
+ hy-
556
+ per-
557
+ pa-
558
+ ram-
559
+ e-
560
+ ter
561
+ choices
562
+ in
563
+ multi-
564
+ zone
565
+ of-
566
+ fice
567
+ case
568
+ (Mx, Mu, Md)
569
+ Train MSE
570
+ Val MSE
571
+ Test MSE
572
+ (1, 1, 1)
573
+ 511.6
574
+ 623.9
575
+ 618.6
576
+ (1, 1, 5)
577
+ 476.0
578
+ 623.8
579
+ 624.3
580
+ (1, 5, 1)
581
+ 20.46
582
+ 21.74
583
+ 24.35
584
+ (5, 1, 1)
585
+ 82.43
586
+ 98.92
587
+ 103.8
588
+ (1, 5, 5)
589
+ 14.71
590
+ 17.76
591
+ 18.47
592
+ (5, 1, 5)
593
+ 78.38
594
+ 98.17
595
+ 100.06
596
+ (5, 5, 1)
597
+ 21.20
598
+ 23.67
599
+ 26.87
600
+ (5, 5, 5)
601
+ 10.37
602
+ 14.80
603
+ 14.82
604
+ models respectively. Losses are calculated using average
605
+ prediction error for 40 steps.For multi-step ahead predic-
606
+ tion, a for-loop is implemented in the forward propaga-
607
+ tion of the ML models. The results for single-zone and
608
+ multi-zone models demonstrate the superiority of LSTM
609
+ in prediction accuracy, although, MLP performance is
610
+ comparable in the five-zone case as depicted in Figure 4.
611
+ In Table 2, we compare the performance of different MLP
612
+ model choices with different lag values of the state, input,
613
+ and time-varying disturbances. (5,5,5) is the best model
614
+ among all choices but (1,5,5) model comes very close
615
+ with fewer model inputs. This model depends on lags
616
+ of weather data and control inputs, which we speculate
617
+ is not unrelated to the lags associated with lower-level
618
+ controllers in this system. We chose (1,5,5) as a more
619
+ simple, equally accurate choice. Figure 5 is a visual de-
620
+ piction of the predictive accuracy of the chosen MLP for
621
+ surrogate modeling of the five-zone model during three
622
+ distinct weather events (January, May, and August) for
623
+ the core zone. Each orange trajectory is a 50-step ahead
624
+ prediction (12.5 hours) starting from the leftmost point of
625
+ the trajectory. These results appear to be conclusive for
626
+ deploying the model in MPC.
627
+ 4.3 Control Results
628
+ For all control algorithms, we deploy a receding-horizon
629
+ controller, wherein a 10-step ”look-ahead” trajectory is
630
+ generated using the optimization algorithm, and only
631
+ the first step of the optimization solution is passed to
632
+ BOPTEST model to obtain new measurements. The new
633
+ data point is then used as the initial condition for the
634
+ next iteration of the control optimization. In addition, to
635
+
636
+ +
637
+ PI
638
+ Map
639
+ PIScale
640
+ PI
641
+ &
642
+ PI
643
+ Limit
644
+ max> yHea
645
+ TSupSet
646
+ Map
647
+ yOA1
648
+ > yCoo
649
+ TSup
650
+ Max
651
+ yOA
652
+ supFanSpe
653
+ Map
654
+ yOA2speed up convergence, the previously optimized control
655
+ trajectory is used as the initial trajectory for warm-
656
+ starting the receding horizon replanning for the MPC
657
+ problem.
658
+ The control results for single-zone and multi-zone cases are
659
+ reported in Table 3 and Table 4, respectively. In the single-
660
+ zone case, LSTM model performs best for control. This
661
+ is expected from the superior predictive accuracy of the
662
+ model. fIt also has the best average computation time. As
663
+ or the control algorithm, Gradient-based approach finds a
664
+ better local minima for the problem. In the multi-zone
665
+ case, LSTM performs poorly (unexpectedly) and MLP
666
+ outperforms all models. Here, in contrast to the previous
667
+ case, SLSQP finds a better local minima. Next, we discuss
668
+ the significance of these results.
669
+ 4.4 Discussion
670
+ The modeling results indicate that it is possible to derive
671
+ accurate ML models from the building emulators. It is
672
+ worth mentioning that the bottleneck in this process is
673
+ data generation which is not always trivial for hybrid
674
+ systems with many if-else conditions, low-level control
675
+ loops and system constraints, and finely-tuned numerical
676
+ solvers.
677
+ On the control side, we have run extensive tests using
678
+ SLSQP and Gradient-based approaches from different ini-
679
+ tial conditions. In the one-zone case, the gradient-based
680
+ approach with the LSTM model shows the lowest power
681
+ consumption with an acceptable discomfort level. How-
682
+ ever, in the multi-zone case, SLSQP with MLP model
683
+ reaches the lowest power consumption, even though LSTM
684
+ model shows better predictive performance. This can hap-
685
+ pen when the optimization problem in the control for-
686
+ mulation is highly non-convex. The complexity of the
687
+ surrogate model likely creates many additional local min-
688
+ ima, which in turn, depreciates the control performance.
689
+ This, somewhat contradictory, implies that better predic-
690
+ tive performance does not always guarantee better control
691
+ performance. We believe that based on this experiment, a
692
+ middle-ground between model complexity and predictive
693
+ performance should be considered for these types of MPC
694
+ problems. Alternatively, better control formulations might
695
+ help to curb this issue. Since we have found little precedent
696
+ in the literature, we are running more tests to find better
697
+ Fig. 4. Test MSE for different choices of surrogate models
698
+ in multi-zone test case. LSTM and MLP have compa-
699
+ rable performance and outperform the Linear model.
700
+ Table 3.
701
+ Av-
702
+ er-
703
+ age
704
+ of
705
+ to-
706
+ tal
707
+ power(kWh/m2),
708
+ ther-
709
+ mal
710
+ dis-
711
+ com-
712
+ fort
713
+ (kh/zone)
714
+ and
715
+ com-
716
+ pu-
717
+ ta-
718
+ tion
719
+ time
720
+ (sec)
721
+ on
722
+ BESTEST
723
+ case
724
+ Model
725
+ Solver
726
+ Power
727
+ Discomfort
728
+ Time
729
+ Linear
730
+ GDM
731
+ 0.0189
732
+ 1556
733
+ 1.607
734
+ Linear
735
+ SLSQP
736
+ 0.2551
737
+ 1528
738
+ 0.933
739
+ MLP
740
+ GDM
741
+ 4.804
742
+ 2.935
743
+ 1.694
744
+ MLP
745
+ SLSQP
746
+ 5.059
747
+ 5.207
748
+ 1.684
749
+ LSTM
750
+ GDM
751
+ 4.818
752
+ 2.081
753
+ 0.620
754
+ LSTM
755
+ SLSQP
756
+ 4.943
757
+ 4.415
758
+ 0.661
759
+ and more definitive answers. It is also worth pointing out
760
+ that the framework is working as designed, helping to
761
+ frame new hypotheses based on experimentation.
762
+ Computation Time
763
+ By comparing the average compu-
764
+ tation time between several methods, we make the fol-
765
+ lowing interesting observations: First, both the gradient-
766
+ based approach and SLSQP show comparable computa-
767
+ tion time, though the computation time of both solvers
768
+ depends on their stopping criteria. For example, after
769
+ running extensive tests, we decided that 100 iterations was
770
+ a good stopping criteria for the gradient-based approach.
771
+ We expect this hyperparameter tuning to be problem
772
+ specific. Second, for the surrogate model, it is obvious to
773
+ us that MLP should take longer than the Linear model to
774
+ run. Surprisingly, the LSTM model, which has the most
775
+ complex structure among the three candidates, shows the
776
+ fastest computation time. We think that this computation
777
+ time gap most likely comes from a difference in the imple-
778
+ mentation language. Each surrogate model has a for-loop
779
+ to predict the multi-steps. Although all surrogate models
780
+ are implemented in Pytorch, the linear and MLP model
781
+ conduct their for-loops in python, while LSTM model uses
782
+ C++.
783
+ 5. CONCLUSION AND FUTURE WORK
784
+ We presented a modeling and control framework for con-
785
+ trolling physics-based building emulators. We have shown
786
+ that our approach is successful in reducing cooling and
787
+ heating loads in the BOPTEST emulator while satisfying
788
+
789
+ 1e-3
790
+ Linear
791
+ 4
792
+ MLP
793
+ Prediction MSE
794
+ LSTM
795
+ m
796
+ 0
797
+ 0
798
+ 10
799
+ 20
800
+ 30
801
+ 40
802
+ Prediction StepsFig. 5. The set of figures show the results of out-of-training predictive performance for five zone model during three
803
+ distinct weather events (January, May, and August) for core zone (top). The ambient temperature trajectories is
804
+ depicted in red (bottom). The orange lines represent the 50-step ahead predictions (12.5 hours) starting from the
805
+ left most point of the trajectory. The full MSEs are reported in Table 2.
806
+ (a)
807
+ (b)
808
+ Fig. 6. Result comparison for different choices of models and control algorithms. The top figure represents the temperate.
809
+ The bottom figure is the relevant weather data, and the middle figures are the corresponding control inputs.
810
+ The results are divided into a cold (Jan) and hot (Aug) weather events. (a) Result for control of core-zone in
811
+ the multi-zone test case using SLSQP with Linear, MLP, and LSTM models. Using MLP model, the control
812
+ outperforms LSTM and Linear model-based implementation. (b) MLP-based control results with SLSQP solver
813
+ slightly outperform the Gradient-based approach.
814
+ occupant comfort and adhering to control system con-
815
+ straints. The approach is modular, meaning that it will
816
+ be compatible with various other choices of models and
817
+ control algorithms. For example, while we did not succeed
818
+ in training a good LSTM model for the five-zone case, we
819
+ anticipate that the right hyperparameter tuning should
820
+ address this issue and we are actively working on it.
821
+ The same is true for control. For example, we tested the
822
+ framework with an iLQR controller which failed to satisfy
823
+ constraints. While we did not manage to get the results
824
+ we expected, we anticipate that significantly better control
825
+ results are possible with iLQR and we are currently fixing
826
+ our implementation of the algorithm. This is especially
827
+ important since iLQR has shown superior performance
828
+ for nonlinear optimal control problems (Li and Todorov,
829
+ 2007). We are also exploring other fast first-order solvers
830
+ with alternative control formulations. For example, we
831
+ are considering OSQP (Stellato et al., 2020), which will
832
+ significantly speed up the optimization while producing
833
+ high-quality solutions, or distributed ADMM (Boyd et al.,
834
+
835
+ Linear, SLSQP
836
+ MLP, SLSQP
837
+ LSTM, SLSOP
838
+ 30
839
+ Room Temp.(° C)
840
+ NNAN
841
+ 25
842
+ 20
843
+ 15
844
+ Heater Valve
845
+ 1.0
846
+ 0.5
847
+ 0.0
848
+ Cooler Valve
849
+ 1.0
850
+ 0.5
851
+ 0.0
852
+ Reheat Signal
853
+ 1.0
854
+ 0.5
855
+ ..AA
856
+ 0.0
857
+ 30
858
+ Solar Irradiation (kW/m2)
859
+ Ambient
860
+ Irradiation
861
+ Ambient Temp.(° C)
862
+ 10
863
+ 2
864
+ 10
865
+ 1
866
+ -30
867
+ 0
868
+ Jan 4
869
+ Jan 7
870
+ Jan 10
871
+ Aug 8
872
+ Aug 11
873
+ Aug 14MLP,
874
+ GDM
875
+ MLP, SLSQP
876
+ 30
877
+ Room Temp.(° C)
878
+ 25
879
+ 20
880
+ 15
881
+ Heater Valve
882
+ 1.0
883
+ 0.5
884
+ 0.0
885
+ Cooler Valve
886
+ 1.0
887
+ 0.5
888
+ 0.0
889
+ Reheat Signal
890
+ 1.0
891
+ 0.5
892
+ 0.0
893
+ 30
894
+ Solar Irradiation (kW/m2)
895
+ Ambient
896
+ Irradiation
897
+ Ambient Temp.(° C)
898
+ 10
899
+ 2
900
+ 10
901
+ 1
902
+ -30
903
+ 0
904
+ Jan 4
905
+ Jan 7
906
+ Jan 10
907
+ Aug 8
908
+ Aug 11
909
+ Aug 1435
910
+ (。)
911
+ 30
912
+ (0。)
913
+ Jan 29th
914
+ May 2nd
915
+ Aug 3rd
916
+ Ground Truth
917
+ Surrogate ModelTable 4.
918
+ Av-
919
+ er-
920
+ age
921
+ of
922
+ to-
923
+ tal
924
+ power(kWh/m2),
925
+ ther-
926
+ mal
927
+ dis-
928
+ com-
929
+ fort
930
+ (kh/zone)
931
+ and
932
+ com-
933
+ pu-
934
+ ta-
935
+ tion
936
+ time
937
+ (sec)
938
+ on
939
+ multi-
940
+ zone
941
+ of-
942
+ fice
943
+ case
944
+ Model
945
+ Solver
946
+ Power
947
+ Discomfort
948
+ Time
949
+ Linear
950
+ GDM
951
+ 2.807
952
+ 10.44
953
+ 1.504
954
+ Linear
955
+ SLSQP
956
+ 2.487
957
+ 11.40
958
+ 1.600
959
+ MLP
960
+ GDM
961
+ 3.458
962
+ 4.054
963
+ 1.782
964
+ MLP
965
+ SLSQP
966
+ 2.778
967
+ 3.154
968
+ 2.144
969
+ LSTM
970
+ GDM
971
+ 2.222
972
+ 124.7
973
+ 0.570
974
+ LSTM
975
+ SLSQP
976
+ 2.880
977
+ 35.48
978
+ 0.818
979
+ 2011) for district-level problems. In addition, We are ac-
980
+ tively working with the developers of BOPTEST to control
981
+ scaled-up models, including multiple coupled buildings,
982
+ with the framework.
983
+ The main bottleneck for scaling the current approach is
984
+ the customized nature of the data generation process. In
985
+ the current process, many trials and errors are required to
986
+ find a feasible input space that does not break the emu-
987
+ lator in forward simulations. Latest studies(Chakrabarty
988
+ et al., 2022) provide some promising insight into more
989
+ robust sampling procedures. We are currently working on
990
+ incorporating similar approaches into our process.
991
+ Last but not least, while in this paper we focused on con-
992
+ trol as an application, we firmly believe that system design,
993
+ fault diagnosis, and reliability are other applications that
994
+ will benefit from the proposed modeling approach, and we
995
+ are actively investigating problems in these domains.
996
+ REFERENCES
997
+ Atam, E. and Helsen, L. (2016). Control-oriented thermal
998
+ modeling of multizone buildings: Methods and issues:
999
+ Intelligent control of a building system. IEEE Control
1000
+ systems magazine, 36(3), 86–111.
1001
+ Blum, D., Arroyo, J., Huang, S., Drgoˇna, J., Jorissen,
1002
+ F., Walnum, H.T., Chen, Y., Benne, K., Vrabie, D.,
1003
+ Wetter, M., et al. (2021). Building optimization testing
1004
+ framework (boptest) for simulation-based benchmarking
1005
+ of control strategies in buildings. Journal of Building
1006
+ Performance Simulation, 14(5), 586–610.
1007
+ Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.,
1008
+ et al. (2011). Distributed optimization and statistical
1009
+ learning via the alternating direction method of multi-
1010
+ pliers. Foundations and Trends® in Machine learning,
1011
+ 3(1), 1–122.
1012
+ Chakrabarty, A., Bortoff, S.A., and Laughman, C.R.
1013
+ (2022). Simulation failure-robust bayesian optimization
1014
+ for data-driven parameter estimation. IEEE Transac-
1015
+ tions on Systems, Man, and Cybernetics: Systems.
1016
+ Deru, M., Field, K., Studer, D., Benne, K., Griffith, B.,
1017
+ Torcellini, P., Liu, B., Halverson, M., Winiarski, D.,
1018
+ Rosenberg, M., et al. (2011). Us department of energy
1019
+ commercial reference building models of the national
1020
+ building stock. National Renewable Energy Laboratory.
1021
+ Drgoˇna, J., Arroyo, J., Figueroa, I.C., Blum, D., Arendt,
1022
+ K., Kim, D., Oll´e, E.P., Oravec, J., Wetter, M., Vrabie,
1023
+ D.L., et al. (2020). All you need to know about model
1024
+ predictive control for buildings.
1025
+ Annual Reviews in
1026
+ Control.
1027
+ Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
1028
+ D., and Meger, D. (2018). Deep reinforcement learning
1029
+ that matters.
1030
+ In Thirty-Second AAAI Conference on
1031
+ Artificial Intelligence.
1032
+ Hornik, K., Stinchcombe, M., and White, H. (1989). Multi-
1033
+ layer feedforward networks are universal approximators.
1034
+ Neural networks, 2(5), 359–366.
1035
+ Kingma,
1036
+ D.P.
1037
+ and
1038
+ Ba,
1039
+ J.
1040
+ (2014).
1041
+ Adam:
1042
+ A
1043
+ method for stochastic optimization.
1044
+ arXiv preprint
1045
+ arXiv:1412.6980.
1046
+ Kraft, D. (1988).
1047
+ A software package for sequential
1048
+ quadratic programming.
1049
+ Forschungsbericht- Deutsche
1050
+ Forschungs- und Versuchsanstalt fur Luft- und Raum-
1051
+ fahrt.
1052
+ Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016).
1053
+ End-to-end training of deep visuomotor policies. The
1054
+ Journal of Machine Learning Research, 17(1), 1334–
1055
+ 1373.
1056
+ Li, W. and Todorov, E. (2007).
1057
+ Iterative linearization
1058
+ methods for approximately optimal control and esti-
1059
+ mation of non-linear stochastic system.
1060
+ International
1061
+ Journal of Control, 80(9), 1439–1453.
1062
+ Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez,
1063
+ T., Tassa, Y., Silver, D., and Wierstra, D. (2015).
1064
+ Continuous control with deep reinforcement learning.
1065
+ arXiv preprint arXiv:1509.02971.
1066
+ Lin, Q., Loxton, R., and Teo, K.L. (2014). The control
1067
+ parameterization method for nonlinear optimal control:
1068
+ a survey. Journal of Industrial and management opti-
1069
+ mization, 10(1), 275–309.
1070
+ Mostafavi, S., Doddi, H., Kalyanam, K., and Schwartz,
1071
+ D. (2022).
1072
+ Nonlinear moving horizon estimation and
1073
+ model predictive control for buildings with unknown
1074
+ hvac dynamics. Ifac-Papersonline, Accepted.
1075
+ Oei, M., Guenther, J., B¨ohm, M., Park, S., and Sawodny,
1076
+ O. (2020).
1077
+ A bilinear approach to model predictive
1078
+ control for thermal conditioning of adaptive buildings.
1079
+ IFAC-PapersOnLine, 53(2), 8383–8388.
1080
+ O’Dwyer,
1081
+ E.,
1082
+ Atam,
1083
+ E.,
1084
+ Falugi,
1085
+ P.,
1086
+ Kerrigan,
1087
+ E.,
1088
+ Zagorowska, M., and Shah, N. (2022).
1089
+ A modelling
1090
+ workflow for predictive control in residential buildings.
1091
+
1092
+ In Active Building Energy Systems, 99–128. Springer.
1093
+ Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang,
1094
+ E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
1095
+ Lerer, A. (2017). Automatic differentiation in pytorch.
1096
+ 31st Conference on Neural Information Processing Sys-
1097
+ tems (NIPS 2017), Long Beach, CA, USA.
1098
+ Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
1099
+ Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
1100
+ L., et al. (2019). Pytorch: An imperative style, high-
1101
+ performance deep learning library. Advances in neural
1102
+ information processing systems, 32.
1103
+ Schmidhuber, J. (2015). Deep learning in neural networks:
1104
+ An overview. Neural networks, 61, 85–117.
1105
+ Siami-Namini, S., Tavakoli, N., and Namin, A.S. (2018). A
1106
+ comparison of arima and lstm in forecasting time series.
1107
+ In 2018 17th IEEE international conference on machine
1108
+ learning and applications (ICMLA), 1394–1401. IEEE.
1109
+ Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L.,
1110
+ Van Den Driessche, G., Schrittwieser, J., Antonoglou,
1111
+ I., Panneershelvam, V., Lanctot, M., et al. (2016).
1112
+ Mastering the game of go with deep neural networks
1113
+ and tree search. nature, 529(7587), 484.
1114
+ Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and
1115
+ Boyd, S. (2020).
1116
+ Osqp: An operator splitting solver
1117
+ for quadratic programs.
1118
+ Mathematical Programming
1119
+ Computation, 12(4), 637–672.
1120
+ Sturzenegger, D., Gyalistras, D., Morari, M., and Smith,
1121
+ R.S. (2015).
1122
+ Model predictive climate control of a
1123
+ swiss office building: Implementation, results, and cost–
1124
+ benefit analysis. IEEE Transactions on Control Systems
1125
+ Technology, 24(1), 1–12.
1126
+ Todorov, E. and Li, W. (2005).
1127
+ A generalized iterative
1128
+ LQG method for locally-optimal feedback control of
1129
+ constrained nonlinear stochastic systems. In Proceedings
1130
+ of American Control Conference, 300 – 306.
1131
+ United States Energy Information Administration (2021).
1132
+ Total energy monthly data.
1133
+ URL https://www.eia.
1134
+ gov/totalenergy/data/monthly/.
1135
+ Virtanen, P., Gommers, R., Oliphant, T.E., Haberland,
1136
+ M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,
1137
+ P., Weckesser, W., Bright, J., et al. (2020).
1138
+ Scipy
1139
+ 1.0: fundamental algorithms for scientific computing in
1140
+ python. Nature methods, 17(3), 261–272.
1141
+ Walker, S.S., Lombardi, W., Lesecq, S., and Roshany-
1142
+ Yamchi, S. (2017).
1143
+ Application of distributed model
1144
+ predictive approaches to temperature and co2 concen-
1145
+ tration control in buildings. IFAC-PapersOnLine, 50(1),
1146
+ 2589–2594.
1147
+ Wetter, M., Zuo, W., Nouidui, T.S., and Pang, X. (2014).
1148
+ Modelica buildings library. Journal of Building Perfor-
1149
+ mance Simulation, 7(4), 253–270.
1150
+
ANFQT4oBgHgl3EQf8jdP/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fd13189bc5602af2662f53db8efafa8bfccb215962a33654c754674721c063e
3
+ size 161342
AdAzT4oBgHgl3EQfF_tg/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4810fc435aae5e92939b2252b99134cd439f88790629be794d166646680d8d81
3
+ size 1900589
AdAzT4oBgHgl3EQfF_tg/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc6a8a6ff0563992dfbff9560ee14bc6c53dc9131edb9e658bf7e00d18126502
3
+ size 71888
AtE2T4oBgHgl3EQf8QmS/content/tmp_files/2301.04217v1.pdf.txt ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04217v1 [math.CO] 10 Jan 2023
2
+ Neighbourhood complexity of graphs of bounded twin-width∗
3
+ ´Edouard Bonnet†
4
+ Florent Foucaud‡ §
5
+ Tuomo Lehtil¨a¶ ‖
6
+ Aline Parreau∗∗
7
+ January 12, 2023
8
+ Abstract
9
+ We give essentially tight bounds for, ν(d, k), the maximum number of distinct neighbourhoods
10
+ on a set X of k vertices in a graph with twin-width at most d. Using the celebrated Marcus-Tardos
11
+ theorem, two independent works [Bonnet et al., Algorithmica ’22; Przybyszewski ’22] have shown the
12
+ upper bound ν(d, k) ⩽ exp(exp(O(d)))k, with a double-exponential dependence in the twin-width.
13
+ We give a short self-contained proof that for every d and k,
14
+ ν(d, k) ⩽ (d + 2)2d+1k = 2d+O(log d)k,
15
+ and build a bipartite graph implying ν(d, k) ⩾ 2d+log d+O(1)k, in the regime when k is large enough
16
+ compared to d.
17
+ 1
18
+ Introduction
19
+ The aim of this paper is to refine our understanding of how complex the neighbourhoods of graphs of
20
+ bounded twin-width can be. We provide an improved bound on the neighbourhood complexity of such
21
+ graphs, complemented by a construction showing that our bound is essentially tight. The improvements in
22
+ the bounds for neighbourhood complexities translate directly to better structural bounds and algorithms,
23
+ in some contexts which are explained below.
24
+ Twin-width.
25
+ Twin-width is a recently introduced graph invariant [10]; see Section 2 for a definition.
26
+ It can be naturally extended to matrices over finite alphabets and binary structures [10, 7, 12]. Although
27
+ classes of bounded twin-width are broad and diverse, they allow (most of the time, provided a witness
28
+ is given as an input) improved algorithms, compared to what is possible on general graphs or binary
29
+ structures.
30
+ Most prominently, it was shown [10] that, on n-vertex graphs given with a d-sequence (a witness that
31
+ their twin-width is at most d), deciding if a first-order sentence ϕ holds can be solved in time f(d, ϕ)n, for
32
+ some computable function f. In some special cases, such as for k-Independent Set or k-Dominating
33
+ Set1, single-exponential parameterised algorithms running in time 2Od(k)n are possible [5]. In the same
34
+ setting, the triangles of an n-vertex m-edge graph can be counted in time O(d2n+m) [19]. See [8, 18, 25]
35
+ for more applications of twin-width with an algorithmic flavour.
36
+ Classes of binary structures with bounded twin-width include bounded treewidth, and more gener-
37
+ ally, bounded clique-width classes, proper minor-closed classes, posets of bounded width (that is, whose
38
+ antichains are of bounded size), hereditary subclasses of permutations, as well as Ω(log n)-subdivisions of
39
+ ∗Florent Foucaud was financed by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25) and by
40
+ the ANR project GRALMECO (ANR-21-CE48-0004). Tuomo Lehtil¨a’s research was supported by the Finnish Cultural
41
+ Foundation and by the Academy of Finland grant 338797.
42
+ †Univ Lyon, CNRS, ENS de Lyon, Universit´e Claude Bernard Lyon 1, LIP UMR5668, France.
43
+ ‡Universit´e Clermont-Auvergne, CNRS, Mines de Saint-´Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-
44
+ Ferrand, France.
45
+ §Univ. Orl´eans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orl´eans Cedex 2, France.
46
+ ¶Univ Lyon, UCBL, CNRS, LIRIS - UMR 5205, F69622, France
47
+ ‖University of Turku, Department of Mathematics and Statistics, Turku, Finland
48
+ ∗∗Univ Lyon, CNRS, INSA Lyon, UCBL, Centrale Lyon, Univ Lyon 2, LIRIS, UMR5205, F-69622 Villeurbanne, France
49
+ 1That is, the problems of deciding whether in an input graph, there are k vertices that are pairwise non-adjacent or
50
+ whose closed neighbourhood is the entire vertex set, respectively.
51
+ 1
52
+
53
+ n-vertex graphs [10], and particular classes of (bounded-degree) expanders [6]. A rich range of geometric
54
+ graph classes have bounded twin-width such as map graphs, bounded-degree string graphs [10], classes
55
+ with bounded queue number or bounded stack number [6], segment graphs with no Kt,t subgraph, and
56
+ visibility graphs of simple polygons without large independent sets [4], to give a few examples.
57
+ If efficiently approximating the twin-width is a challenging open question in general, this is known
58
+ to be possible for the above-mentioned classes (albeit a representation may be needed for the geometric
59
+ classes) and for ordered graphs [7]. By that, we mean that there are two computable functions f, g and
60
+ an algorithm that, for an input n-vertex graph G from the class and an integer k, and in time g(k)nO(1),
61
+ either outputs an f(k)-sequence (again, witnessing that the twin-width is at most f(k)) or correctly
62
+ reports that the twin-width of G is larger than k.
63
+ Structural properties of graph classes of bounded twin-width include χ-boundedness [5], even with
64
+ a quasipolynomial binding function [24], smallness (i.e., containing up to isomorphism 2O(n) n-vertex
65
+ graphs) [6, 12], and Vapnik-Chervonenkis (VC) density at most 1 [9, 26]. The latter property is the topic
66
+ of the current article.
67
+ VC density and neighbourhood complexity.
68
+ VC density is related to the celebrated VC dimen-
69
+ sion [29]. Given a set-system (or hypergraph) S on a domain X, the shatter function πS : N → N is
70
+ defined as
71
+ πS(n) = max
72
+ A∈(X
73
+ n)
74
+ |{Y ⊆ A | ∃S ∈ S, Y = A ∩ S}|.
75
+ The Perles-Sauer-Shelah lemma states that πS(n) = O(nd) if the VC dimension of S (i.e., the supremum of
76
+ {n | πS(n) = 2n}) is a finite integer d. Then the VC density of S is defined as inf{c ∈ R | πS(n) = O(nc)},
77
+ and as +∞ if the VC dimension is unbounded.
78
+ We define the VC density of an infinite class C of finite graphs as the VC density of the infinite
79
+ set-system formed by the neighbourhood hypergraph of the disjoint union of the graphs of C, that is,
80
+ {NG(v) | v ∈ V (⊎G∈CG)}, where NG(v) denotes the set of neighbours of v in G.
81
+ The VC density
82
+ is an important measure in finite model theory, often more tractable than the VC dimension (see for
83
+ instance [1, 2]). Tight bounds have been obtained for the VC density of (logically) definable hypergraphs
84
+ from graph classes of bounded clique-width [23] (with monadic second-order logic), and more recently, of
85
+ bounded twin-width [18] (with first-order logic).
86
+ In structural graph theory and kernelisation [16] (a subarea of parameterised complexity [14]) the
87
+ function πN(G), where N(G) is the neighbourhood hypergraph of G, is often1 called neighbourhood com-
88
+ plexity. (See [3] for an algorithmic study of the computation of this notion.) In these contexts, obtaining
89
+ the best possible upper bound for πN(G) (and not just the exponent matching the VC density) translates
90
+ to qualitatively better structural bounds and algorithms; see for instance [9, 11, 15, 28].
91
+ The r-neighbourhood complexity of G is the neighbourhood complexity of Gr, with same vertex set
92
+ as G, and an edge between two vertices at distance at most r in G. Reidl et al. [28] showed that among
93
+ subgraph-closed classes, bounded expansion2 is equivalent to linear r-neighbourhood complexity. Indeed,
94
+ the more general nowhere dense classes [21] (another invention of the Sparsity program [22]) have almost
95
+ linear r-neighbourhood complexity [15]: there is a function f : N × N → N such that for every ε > 0,
96
+ πN(Gr)(n) ⩽ f(r, ε)n1+ε for all n. On hereditary classes, i.e., closed under taking induced subgraphs,
97
+ there is no known characterisation of linear neighbourhood complexity.
98
+ As we already mentioned in a different language, bounded twin-width classes have been proven to have
99
+ linear neighbourhood complexity. See [9, Lemma 3] or [26, Section 3] for two independent proofs, both
100
+ using the Marcus-Tardos theorem [20]. However, the dependence in the twin-width is doubly exponential
101
+ in both papers. Setting ν(d, k) as the maximum number of distinct neighbourhoods on a set of size k
102
+ within a graph of twin-width at most d, i.e., max{πN(G)(k) | G has twin-width at most d}, they show
103
+ that ν(d, k) ⩽ exp(exp(O(d)))k.
104
+ Our results.
105
+ In this note, we give in Section 3 a self-contained proof (not using the Marcus-Tardos
106
+ theorem) that ν(d, k) ⩽ 2d+O(log d)k. In Section 4, we complement that proof with a construction of a
107
+ 1Some authors define the neighbourhood complexity as n �→
108
+ πN (G)(n)
109
+ n
110
+ .
111
+ 2A notion from the Sparsity theory of Neˇsetˇril and Ossona de Mendez [22] extending bounded degree and proper minor-
112
+ free classes.
113
+ 2
114
+
115
+ bipartite graph witnessing that ν(d, k) ⩾ 2d+log d+O(1)k, which makes our single-exponential upper bound
116
+ in twin-width essentially tight.
117
+ 2
118
+ Preliminaries
119
+ We use the standard graph-theoretic notations: V (G), E(G), G[S], G − S respectively denote the vertex
120
+ set, edge set, subgraph of G induced by S, and subgraph of G induced by V (G) \ S. If v ∈ V (G), then
121
+ NG(v) (or N(v) if G is clear from the context) denotes the set of neighbours of v in G. If X ⊆ V (G),
122
+ then an X-neighbourhood is a set N(v) ∩ X for some v ∈ V (G).
123
+ We now define the twin-width of a graph, following the definition of [10].
124
+ A trigraph is a triple G = (V (G), E(G), R(G)) where E(G) and R(G) are two disjoint sets of edges
125
+ on V (G): the usual edges (also called black edges) and the red edges. Informally, a red edge between two
126
+ vertices u and v means that some errors have been made between u and v. The red degree of a trigraph
127
+ is the maximum degree of the graph (V (G), R(G)).
128
+ Any graph G can be interepreted as a trigraph
129
+ G = (V (G), E(G), ∅). Given a trigraph and two vertices u, v ∈ V (G) (not necessarily adjacent), the
130
+ trigraph G/u, v = G′ is obtained by contracting u and v in a new vertex w such that:
131
+ • V (G′) = {w} ∪ V (G) \ {u, v};
132
+ • the edges between vertices of V (G) \ {u, v} are the same in G′;
133
+ • the following edges are incident to w:
134
+ – wx ∈ E(G′) if xu ∈ E(G) and xv ∈ E(G);
135
+ – wx /∈ E(G′) ∪ R(G′) if xu /∈ E(G) ∪ R(G) and xv /∈ E(G) ∪ R(G);
136
+ – wx ∈ R(G′) otherwise.
137
+ In other words, the common black neighbours of u and v are black neighbours of w. All the other
138
+ neighbours of u or v are red neighbours of w. Red edges stay red, black edges stay black, red and black
139
+ edges become red. We say that G/u, v is a contraction of G. A d-sequence of an n-vertex graph G is
140
+ a sequence of n trigraphs Gn = G, Gn−1, ...., G1 such that each trigraph Gi is obtained from Gi+1 by a
141
+ contraction and has red degree at most d. The twin-width of G, denoted by tww(G), is the minimum
142
+ integer d such that G admits a d-sequence. Note that an induced subgraph of G has a twin-width smaller
143
+ or equal to the twin-width of G [10].
144
+ If u ∈ Gi, then u(G) denotes the set of vertices of G eventually contracted to u in Gi. Instead of
145
+ considering the trigraphs Gi, we might prefer to deal with the partitions induced by the sets u(G) for u
146
+ in Gi: Pi = {u(G) | u ∈ V (Gi)}. We say that there is a red edge between two parts u(G) and v(G) of Pi
147
+ if uv is red in Gi.
148
+ 3
149
+ Upper bound on the number of distinct neighbourhoods
150
+ We state and prove our upper bound on the maximum number of distinct X-neighbourhoods in bounded
151
+ twin-width graphs.
152
+ Theorem 1. Let G be an n-vertex graph of twin-width d, and X ⊆ V (G). Then the number of distinct
153
+ X-neighbourhoods in G is at most (d + 2)2d+1|X| = 2d+O(log d)|X|.
154
+ Proof. Fix X ⊆ V (G). First of all, for all vertices of V (G) \ X with the same X-neighbourhood, we keep
155
+ only one representative. Note that the new graph G′′ is an induced subgraph of G, thus its twin-width
156
+ is at most d. We further modify graph G′′ by adding for each v ∈ X a new vertex u to G′′ so that
157
+ N(u) = N(v) if such vertex does not exist in V (G′′) \ X. The new graph is called G′ and it has the same
158
+ twin-width as G′′.
159
+ Let M = (d + 2)2d+1 + 1. We prove by induction on n that an n-vertex graph of twin-width at
160
+ most d with a set X of k vertices, where all vertices outside X have a distinct X-neighbourhood, satisfies
161
+ n ⩽ kM. This will prove that G′ has at most kM vertices, and thus that in G, there are at most (M −1)k
162
+ distinct X-neighbourhoods.
163
+ The statement is trivially true for n ⩽ 5 since M ⩾ 5, for all d ⩾ 0.
164
+ 3
165
+
166
+ Thus, assume n ⩾ 6. In particular, we have k > 1. Let x ∈ X. Let X′ = X \ {x} and let Tx be the
167
+ set of pairs of vertices outside X that are twins with respect to X′, i.e.
168
+ Tx =
169
+
170
+ {u, v} ∈
171
+ �V (G′) \ X
172
+ 2
173
+
174
+ | N(u) ∩ X′ = N(v) ∩ X′
175
+
176
+ .
177
+ Since every vertex of V (G′) \ X has a distinct neighbourhood in X, there are at most two vertices of
178
+ V (G′) \ X with the same (possibly empty) neighbourhood N in X′; namely the vertices u, v ∈ V (G′) \ X
179
+ with N(u) ∩ X = N and N(v) ∩ X = N ∪ {x} (if they exist). Hence, Tx consists of pairwise-disjoint pairs
180
+ of vertices.
181
+ We prove the following claim.
182
+ Claim A. There exists a vertex x of X such that Tx comprises at most M − 1 pairs, in G′.
183
+ Proof of claim. By contradiction, assume this is not the case: for every x in X, Tx has size at least M.
184
+ Consider a d-sequence of contractions G′
185
+ n, . . . , G′
186
+ 1 of G′. Consider the last step G′
187
+ i of the sequence where
188
+ all the parts of Pi contain at most one vertex of X (that is, contrary to Pi, some part of Pi−1 contains
189
+ two vertices of X).
190
+ Let P be a part of Pi. Let x be the unique (if there exists one) element of P ∩X. Then we claim that
191
+ |P \ X| ⩽ 2d+1. Indeed, any two vertices of P \ X have some vertex in the symmetric difference of their
192
+ X-neighbourhoods, either it is x, or some vertex x′ of X outside P. If that distinguishing vertex is some
193
+ x′ that is not in P, then there has to be a red edge between P and the part that contains x′. There are
194
+ at most d red edges with P as an extremity. Since all the elements of X are in distinct parts in G′
195
+ i, it
196
+ means that d + 1 vertices of X are enough to distinguish all the X-neighbourhoods of vertices of P \ X,
197
+ and thus |P \ X| ⩽ 2d+1.
198
+ We now consider the next contraction in the sequence, which leads to G′
199
+ i−1. By definition of G′
200
+ i, it
201
+ must contract two vertices corresponding to two parts of Pi that both contain an element of X. Let
202
+ x1 and x2 be these two elements of X. Let Q be the part of Pi−1 that contains both x1 and x2. By
203
+ our assumption, Tx1 has size at least M. Let {u, v} be a pair of Tx1. Since u and v have the same
204
+ neighbourhood in X \ {x1}, it means that they are either both adjacent or both non-adjacent to x2, and
205
+ exactly one of them is adjacent to x1. Thus, necessarily, one vertex among the pair {u, v} is adjacent
206
+ to exactly one vertex among {x1, x2}. In particular, if this vertex is not in Q, then there has to be a
207
+ red edge between the part containing this vertex and the part Q in G′
208
+ i−1. Since Tx1 contains at least M
209
+ pairs (which are disjoint) and Q has at most 2d+2 vertices not in X, there are at least M − 2d+2 vertices
210
+ not in X whose part in G′
211
+ i−1 has a red edge to Q. Since each other part has at most 2d+1 vertices not
212
+ in X, it makes at least M−2d+2
213
+ 2d+1
214
+ red edges incident to Q. Thus, we must have M−2d+2
215
+ 2d+1
216
+ ⩽ d, leading to
217
+ M ⩽ 2d+1(d + 2), a contradiction that proves the claim. (□)
218
+ By Claim A, there exists a vertex x ∈ X such that |Tx| ⩽ M − 1. Let Y be a set of |Tx| vertices that
219
+ intersects each pair of Tx exactly once. Let GY = G′ − (Y ∪ {x}). Then, X′ = X \ {x} is a vertex set
220
+ of size k − 1 such that all X′-neighbourhoods of vertices outside X′ are distinct. The graph GY has at
221
+ least n − M vertices, and twin-width at most d. By induction, we have n − M ⩽ |V (GY )| ⩽ (k − 1)M
222
+ and thus, n ⩽ kM. Hence, once we recall that no vertex in X has unique X-neighbourhood, there are at
223
+ most (M − 1)k distinct X-neighbourhoods, which completes the proof.
224
+ 4
225
+ Lower bound on the number of distinct neighbourhoods
226
+ Notice that when |X| and tww(G) are roughly the same, the bound from Theorem 1 cannot be sharp,
227
+ since G′ has at most 2|X| + |X| vertices. However, when |X| is large enough compared to tww(G), we
228
+ next show that the bound is sharp up to a constant factor.
229
+ Proposition 2. There is a positive constant c, such that for any integer d, there is a bipartite graph G of
230
+ twin-width at most d, and a large enough set X ⊆ V (G), with at least c·d2d|X| distinct X-neighbourhoods
231
+ in G.
232
+ Proof. Observe that the claim is clearly true for any small d. Thus, we do not need to consider separately
233
+ graphs with small twin-width upper bounded by a constant. Hence, we assume from now on that d ≥ d′
234
+ where d′ is some positive constant.
235
+ 4
236
+
237
+ We construct the graph G as follows. Let A, B, C ∈ Z be three constants that will be given later
238
+ (A and B will be roughly equal to
239
+
240
+ d and C will be roughly equal to d). Let X = {x1, ..., xk} be an
241
+ independent set of k vertices. Our goal is that each vertex in V (G) \ X has a unique X-neighbourhood.
242
+ For any integers i, j, t with 1 ⩽ i ⩽ j ⩽ i + A − 1, j + 2 ⩽ t ⩽ j + 1 + B and t ⩽ k − C, we create
243
+ a set Vi,j,t of vertices as follows. Consider the set Xt = {xt+1, ..., xt+C}. For every subset Y of Xt, let
244
+ Y ′ = {xi, ..., xj, xt} ∪ Y and add a vertex vY ′ to Vi,j,t, making it adjacent to the vertices of Y ′. Each set
245
+ Vi,j,t has size 2C and there are Θ(kAB) (for fixed A and B and growing k) such sets. Thus there are
246
+ Θ(kAB2C) vertices in the graph.
247
+ Any two vertices not in X have distinct X-neighbourhoods.
248
+ Indeed, by considering the natural
249
+ ordering of X induced by the indices, any vertex not in X is first adjacent to a consecutive interval
250
+ of vertices from xi to xj, then is not adjacent to vertices from xj+1 to xt−1 (which is not empty since
251
+ t ⩾ j + 2), and then adjacent to xt. Thus, if two vertices have the same X-neighbourhood, they must be
252
+ in the same set Vi,j,t. But then, they have a distinct neighbourhood in {xt+1, ..., xt+C}.
253
+ We now prove that the twin-width of G is at most M = max{AB, C}+2. For that, we give a sequence
254
+ of contractions with red degree at most M.
255
+ The contraction sequence is split into k − C steps, for each vertex of X. Let 0 ≤ i ≤ k − C − 1. Step 0
256
+ corresponds to the starting point, where each vertex is alone. Let i ⩾ 1. After Step i, there will be the
257
+ following parts in the corresponding partition (vertices not in any part have not yet been contracted):
258
+ • For each j, t such that i ⩽ j ⩽ i + A − 1 and j + 2 ⩽ t ⩽ j + 1 + B, there is a part Bj,t. The parts
259
+ Bi,t (parts with j = i), contain all the vertices of the sets Vi′,j′,t such that j′ ≤ i. The parts Bj,t
260
+ with j > i contain all the vertices of the sets Vi′,j′,t such that i′ ⩽ i and j′ = j. Note that there
261
+ are AB non-empty Bj,t parts in total.
262
+ • There is a part X0 that contains vertices from x1 to xi of X.
263
+ • There is a part T (for “trash”) that contains all the vertices of the sets Vi′,j,t with t ⩽ i + 1.
264
+ All the other vertices are not yet contracted. This corresponds to the vertices from xi+1 to xk of X
265
+ and to the vertices of the sets Vi′,j,t with i′ > i. Indeed, if i′ ⩽ i and t ⩽ i + 1, then the vertices of Vi′,j,t
266
+ are in T . If t ⩾ i + 2 but j ⩽ i, then they are in the part Bi,t. If j > i, then they are in the part Bj,t.
267
+ We first prove that the red degree after Step i is at most M. Then, we explain how to get from Step
268
+ i to Step i + 1 by keeping the red degree at most M.
269
+ Consider the part Bj,t at the end of Step i. A vertex in this part belongs to some set Vi′,j′,t with
270
+ i′ ⩽ i and j′ = j if j > i or j′ ⩽ i otherwise. In particular, two vertices of Bj,t are adjacent to all the
271
+ vertices between xi+1 and xj, to no vertex between xj+1 and xt−1, to xt, and to no vertex after xt+C.
272
+ Thus, there is a red edge between the parts Bj,t and X0, and C red edges between the part Bj,t and the
273
+ vertices {xt+1, ..., xt+C}. Therefore, the number of red edges incident with Bj,t is at most C + 1.
274
+ Consider now the part T . Vertices in T are adjacent only to vertices of X up to xi+C+1. Since vertices
275
+ x1 to xi are all in the part X0, the red degree of T is at most C + 2.
276
+ Single vertices not in X have no incident red edges: indeed, they are all in some sets Vi′,j,t for i′ > i
277
+ and thus are not adjacent to any vertex of X0. For the same reason, there are red edges incident to X0
278
+ only to T and to the parts Bj,t. Hence, the red degree of X0 is at most AB + 1. Similarly, the red degree
279
+ of xi′, i′ > i + 1 is at most AB + 1. Moreover, the red degree of xi+1 is at most one. Indeed, the only
280
+ red edge is between xi+1 and T .
281
+ Finally, the red degree after step i is at most max{AB + 1, C + 2} ⩽ M.
282
+ Let i ≥ 0. We now explain how we perform the contractions to go from step i to step i + 1.
283
+ 1. (only if i ≥ 1) For any i + 3 ⩽ t ⩽ i + 2 + B, merge the part Bi,t with the part Bi+1,t. The only
284
+ new red edge this merging may lead to, when Bi,t is non-empty, is between Bi+1,t and xi+1. Thus,
285
+ we add only one red edge between xi+1 and Bi+1,t. Thus, the red degree of Bi+1,t is at most C + 2
286
+ and the red degree of xi+1 is at most 2.
287
+ 2. Add all the vertices of Vi+1,j,t for some j, t to the part (that might be empty at this point) Bj,t.
288
+ The red degree of Bj,t is at most C + 2 since we might have a red edge between Bj,t and xi+1. The
289
+ number of nonempty parts Bj,t at this point is AB + 1 (there is still the part Bi,i+2). Adding T ,
290
+ this gives AB + 2 red edges incident to a vertex in X (or from part X0).
291
+ 5
292
+
293
+ 3. Add xi+1 to X0. The part X0 has red edges only to parts Bi+1,t, to Bi,i+2 and to T , but no edges
294
+ to the single vertices. Thus, it has red degree at most AB + 2.
295
+ 4. Put the part Bi,i+2 into T . This part is only adjacent to vertices up to xi+2+C, and thus has C + 2
296
+ red edges.
297
+ Thus, at each point, the red degree is always at most M = max{AB, C} + 2.
298
+ The process ends at step i = k − C − 1. Then, all the vertices not in X are in some parts, and there
299
+ are at most AB + 1 such parts. On the other side of bipartition, we have part X0 and C + 1 single
300
+ vertices. Thus, the graph is bipartite with both sides of size at most M. One can contract each part
301
+ independently to finish the contraction sequence.
302
+ To conclude, taking C = d − 2 and A = B = ⌊
303
+
304
+ d − 2⌋, we have M ⩽ d and kAB2C = Θ(kd2d).
305
+ Notice that we may assume that A, B and C are positive since d ≥ d′ where d′ was some well chosen
306
+ positive constant. This concludes the proof.
307
+ 5
308
+ Conclusion
309
+ We have given an improved and tight upper bound for the neighbourhood complexity of graphs of bounded
310
+ twin-width. Unlike the previously known (weaker) bounds, our method is simple and avoids the use of
311
+ the Marcus-Tardos theorem. We hope that it can inspire future works in the area.
312
+ It is known that the twin-width of Gr can be upper-bounded by a function of the twin-width of G
313
+ and r [10]. Thus, graphs of twin-width at most d have linear r-neighbourhood complexity. We leave as an
314
+ interesting open problem to obtain an essentially tight twin-width dependence for the r-neighbourhood
315
+ complexity.
316
+ We remark that the neighbourhood complexity is also related to identification problems on graphs
317
+ such as identifying codes or locating-dominating sets, where one seeks a (small) set A of vertices of a graph
318
+ such that all other vertices have a distinct neighbourhood in A [17]. Some works in this area about specific
319
+ graph classes, are equivalent to the study of the neighbourhood complexity of these graph classes: see for
320
+ example [13, 17, 27]. Moreover, we note that for graph classes with VC density 1, since any solution has
321
+ linear size, the natural minimisation versions of the above identification problems have a polynomial-time
322
+ constant-factor approximation algorithm (trivially select the whole vertex set), while such an algorithm
323
+ is unlikely to exist in the general case [13]. Thus, our work implies a better approximation ratio for these
324
+ problems, when restricted to input graph classes of bounded twin-width.
325
+ References
326
+ [1] Matthias Aschenbrenner, Alf Dolich, Deirdre Haskell, Dugald Macpherson, and Sergei Starchenko.
327
+ Vapnik–chervonenkis density in some theories without the independence property, II. Notre Dame
328
+ Journal of Formal Logic, 54(3-4):311–363, 2013.
329
+ [2] Matthias Aschenbrenner, Alf Dolich, Deirdre Haskell, Dugald Macpherson, and Sergei Starchenko.
330
+ Vapnik-chervonenkis density in some theories without the independence property, I. Transactions
331
+ of the American Mathematical Society, 368(8):5889–5949, 2016.
332
+ [3] Cristina Bazgan, Florent Foucaud, and Florian Sikora. Parameterized and approximation complexity
333
+ of partial VC dimension. Theor. Comput. Sci., 766:1–15, 2019.
334
+ [4] ´Edouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen K¨ohler, Raul Lopes, and St´ephan
335
+ Thomass´e. Twin-width VIII: delineation and win-wins. In Holger Dell and Jesper Nederlof, editors,
336
+ 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September
337
+ 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 9:1–9:18. Schloss Dagstuhl - Leibniz-
338
+ Zentrum f¨ur Informatik, 2022.
339
+ [5] ´Edouard Bonnet, Colin Geniet, Eun Jung Kim, St´ephan Thomass´e, and R´emi Watrigant. Twin-
340
+ width III: max independent set, min dominating set, and coloring. In Nikhil Bansal, Emanuela
341
+ Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
342
+ Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198
343
+ of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, 2021.
344
+ 6
345
+
346
+ [6] ´Edouard Bonnet, Colin Geniet, Eun Jung Kim, St´ephan Thomass´e, and R´emi Watrigant. Twin-
347
+ width II: small classes. Combinatorial Theory, 2 (2), 2022.
348
+ [7] ´Edouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, St´ephan Thomass´e, and
349
+ Szymon Toru´nczyk. Twin-width IV: ordered graphs and matrices. In Stefano Leonardi and Anupam
350
+ Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome,
351
+ Italy, June 20 - 24, 2022, pages 924–937. ACM, 2022.
352
+ [8] ´Edouard Bonnet, Eun Jung Kim, Amadeus Reinald, and St´ephan Thomass´e. Twin-width VI: the
353
+ lens of contraction sequences. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
354
+ Algorithms (SODA), pages 1036–1056. SIAM, 2022.
355
+ [9] ´Edouard Bonnet, Eun Jung Kim, Amadeus Reinald, St´ephan Thomass´e, and R´emi Watrigant. Twin-
356
+ width and polynomial kernels. Algorithmica, 84:3300–3337, 2022.
357
+ [10] ´Edouard Bonnet, Eun Jung Kim, St´ephan Thomass´e, and R´emi Watrigant. Twin-width I: tractable
358
+ FO model checking. J. ACM, 69(1):3:1–3:46, 2022.
359
+ [11] ´Edouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative strength-
360
+ ening of twin-width in minor-closed classes (and beyond). CoRR, abs/2202.11858, 2022.
361
+ [12] ´Edouard Bonnet, Jaroslav Neˇsetˇril, Patrice Ossona de Mendez, Sebastian Siebertz, and St´ephan
362
+ Thomass´e. Twin-width and permutations. CoRR, abs/2102.06880, 2021.
363
+ [13] Nicolas Bousquet, Aur´elie Lagoutte, Zhentao Li, Aline Parreau, and St´ephan Thomass´e. Identifying
364
+ codes in hereditary classes of graphs and VC-dimension. SIAM J. Discret. Math., 29(4):2047–2064,
365
+ 2015.
366
+ [14] Marek Cygan, Fedor V Fomin, �Lukasz Kowalik, Daniel Lokshtanov, D´aniel Marx, Marcin Pilipczuk,
367
+ Micha�l Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4. Springer, 2015.
368
+ [15] Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Micha�l Pilipczuk,
369
+ Roman Rabinovich, and Sebastian Siebertz. Neighborhood complexity and kernelization for nowhere
370
+ dense classes of graphs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
371
+ editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
372
+ July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 63:1–63:14. Schloss Dagstuhl -
373
+ Leibniz-Zentrum f¨ur Informatik, 2017.
374
+ [16] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of
375
+ parameterized preprocessing. Cambridge University Press, 2019.
376
+ [17] Florent Foucaud, George B. Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov. Identifi-
377
+ cation, location-domination and metric dimension on interval and permutation graphs. I. bounds.
378
+ Theor. Comput. Sci., 668:43–58, 2017.
379
+ [18] Jakub Gajarsk´y, Micha�l Pilipczuk, Wojciech Przybyszewski, and Szymon Toru´nczyk. Twin-width
380
+ and types.
381
+ In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th In-
382
+ ternational Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022,
383
+ Paris, France, volume 229 of LIPIcs, pages 123:1–123:21. Schloss Dagstuhl - Leibniz-Zentrum f¨ur
384
+ Informatik, 2022.
385
+ [19] Stefan Kratsch, Florian Nelles, and Alexandre Simon. On triangle counting parameterized by twin-
386
+ width. CoRR, abs/2202.06708, 2022.
387
+ [20] Adam Marcus and G´abor Tardos. Excluded permutation matrices and the Stanley-Wilf conjecture.
388
+ J. Comb. Theory, Ser. A, 107(1):153–160, 2004.
389
+ [21] Jaroslav Neˇsetˇril and Patrice Ossona de Mendez.
390
+ On nowhere dense graphs.
391
+ Eur. J. Comb.,
392
+ 32(4):600–617, 2011.
393
+ [22] Jaroslav Neˇsetˇril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms,
394
+ volume 28 of Algorithms and combinatorics. Springer, 2012.
395
+ 7
396
+
397
+ [23] Adam Paszke and Micha�l Pilipczuk. VC density of set systems definable in tree-like graphs. In Javier
398
+ Esparza and Daniel Kr´al’, editors, 45th International Symposium on Mathematical Foundations of
399
+ Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs,
400
+ pages 78:1–78:13. Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, 2020.
401
+ [24] Micha�l Pilipczuk and Marek Soko�lowski.
402
+ Graphs of bounded twin-width are quasi-polynomially
403
+ χ-bounded. CoRR, abs/2202.07608, 2022.
404
+ [25] Micha�l Pilipczuk, Marek Soko�lowski, and Anna Zych-Pawlewicz. Compact representation for matri-
405
+ ces of bounded twin-width. In Petra Berenbrink and Benjamin Monmege, editors, 39th International
406
+ Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Mar-
407
+ seille, France (Virtual Conference), volume 219 of LIPIcs, pages 52:1–52:14. Schloss Dagstuhl -
408
+ Leibniz-Zentrum f¨ur Informatik, 2022.
409
+ [26] Wojciech Przybyszewski. VC-density and abstract cell decomposition for edge relation in graphs of
410
+ bounded twin-width. CoRR, abs/2202.04006, 2022.
411
+ [27] Douglas Rall and Peter J. Slater. On location-domination numbers for certain classes of graphs.
412
+ Congressus Numerantium, 45:97–106, 1984.
413
+ [28] Felix Reidl, Fernando S´anchez Villaamil, and Konstantinos S. Stavropoulos. Characterising bounded
414
+ expansion by neighbourhood complexity. Eur. J. Comb., 75:152–168, 2019.
415
+ [29] Vladimir N. Vapnik and Alexey Y. Chervonenkis. On the uniform convergence of relative frequencies
416
+ of events to their probabilities. In Measures of complexity, pages 11–30. Springer, 2015.
417
+ 8
418
+
AtE2T4oBgHgl3EQf8QmS/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf,len=384
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
3
+ page_content='04217v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
4
+ page_content='CO] 10 Jan 2023 Neighbourhood complexity of graphs of bounded twin-width∗ ´Edouard Bonnet† Florent Foucaud‡ § Tuomo Lehtil¨a¶ ‖ Aline Parreau∗∗ January 12, 2023 Abstract We give essentially tight bounds for, ν(d, k), the maximum number of distinct neighbourhoods on a set X of k vertices in a graph with twin-width at most d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
5
+ page_content=' Using the celebrated Marcus-Tardos theorem, two independent works [Bonnet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
6
+ page_content=', Algorithmica ’22;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
7
+ page_content=' Przybyszewski ’22] have shown the upper bound ν(d, k) ⩽ exp(exp(O(d)))k, with a double-exponential dependence in the twin-width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
8
+ page_content=' We give a short self-contained proof that for every d and k, ν(d, k) ⩽ (d + 2)2d+1k = 2d+O(log d)k, and build a bipartite graph implying ν(d, k) ⩾ 2d+log d+O(1)k, in the regime when k is large enough compared to d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
9
+ page_content=' 1 Introduction The aim of this paper is to refine our understanding of how complex the neighbourhoods of graphs of bounded twin-width can be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
10
+ page_content=' We provide an improved bound on the neighbourhood complexity of such graphs, complemented by a construction showing that our bound is essentially tight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
11
+ page_content=' The improvements in the bounds for neighbourhood complexities translate directly to better structural bounds and algorithms, in some contexts which are explained below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
12
+ page_content=' Twin-width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
13
+ page_content=' Twin-width is a recently introduced graph invariant [10];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
14
+ page_content=' see Section 2 for a definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
15
+ page_content=' It can be naturally extended to matrices over finite alphabets and binary structures [10, 7, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
16
+ page_content=' Although classes of bounded twin-width are broad and diverse, they allow (most of the time, provided a witness is given as an input) improved algorithms, compared to what is possible on general graphs or binary structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
17
+ page_content=' Most prominently, it was shown [10] that, on n-vertex graphs given with a d-sequence (a witness that their twin-width is at most d), deciding if a first-order sentence ϕ holds can be solved in time f(d, ϕ)n, for some computable function f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
18
+ page_content=' In some special cases, such as for k-Independent Set or k-Dominating Set1, single-exponential parameterised algorithms running in time 2Od(k)n are possible [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
19
+ page_content=' In the same setting, the triangles of an n-vertex m-edge graph can be counted in time O(d2n+m) [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
20
+ page_content=' See [8, 18, 25] for more applications of twin-width with an algorithmic flavour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
21
+ page_content=' Classes of binary structures with bounded twin-width include bounded treewidth, and more gener- ally, bounded clique-width classes, proper minor-closed classes, posets of bounded width (that is, whose antichains are of bounded size), hereditary subclasses of permutations, as well as Ω(log n)-subdivisions of ∗Florent Foucaud was financed by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25) and by the ANR project GRALMECO (ANR-21-CE48-0004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
22
+ page_content=' Tuomo Lehtil¨a’s research was supported by the Finnish Cultural Foundation and by the Academy of Finland grant 338797.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
23
+ page_content=' †Univ Lyon, CNRS, ENS de Lyon, Universit´e Claude Bernard Lyon 1, LIP UMR5668, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
24
+ page_content=' ‡Universit´e Clermont-Auvergne, CNRS, Mines de Saint-´Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont- Ferrand, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
25
+ page_content=' §Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
26
+ page_content=' Orl´eans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orl´eans Cedex 2, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
27
+ page_content=' ¶Univ Lyon, UCBL, CNRS, LIRIS - UMR 5205, F69622, France ‖University of Turku, Department of Mathematics and Statistics, Turku, Finland ∗∗Univ Lyon, CNRS, INSA Lyon, UCBL, Centrale Lyon, Univ Lyon 2, LIRIS, UMR5205, F-69622 Villeurbanne, France 1That is, the problems of deciding whether in an input graph, there are k vertices that are pairwise non-adjacent or whose closed neighbourhood is the entire vertex set, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
28
+ page_content=' 1 n-vertex graphs [10], and particular classes of (bounded-degree) expanders [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
29
+ page_content=' A rich range of geometric graph classes have bounded twin-width such as map graphs, bounded-degree string graphs [10], classes with bounded queue number or bounded stack number [6], segment graphs with no Kt,t subgraph, and visibility graphs of simple polygons without large independent sets [4], to give a few examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
30
+ page_content=' If efficiently approximating the twin-width is a challenging open question in general, this is known to be possible for the above-mentioned classes (albeit a representation may be needed for the geometric classes) and for ordered graphs [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
31
+ page_content=' By that, we mean that there are two computable functions f, g and an algorithm that, for an input n-vertex graph G from the class and an integer k, and in time g(k)nO(1), either outputs an f(k)-sequence (again, witnessing that the twin-width is at most f(k)) or correctly reports that the twin-width of G is larger than k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
32
+ page_content=' Structural properties of graph classes of bounded twin-width include χ-boundedness [5], even with a quasipolynomial binding function [24], smallness (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
33
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
34
+ page_content=', containing up to isomorphism 2O(n) n-vertex graphs) [6, 12], and Vapnik-Chervonenkis (VC) density at most 1 [9, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
35
+ page_content=' The latter property is the topic of the current article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
36
+ page_content=' VC density and neighbourhood complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
37
+ page_content=' VC density is related to the celebrated VC dimen- sion [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
38
+ page_content=' Given a set-system (or hypergraph) S on a domain X, the shatter function πS : N → N is defined as πS(n) = max A∈(X n) |{Y ⊆ A | ∃S ∈ S, Y = A ∩ S}|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
39
+ page_content=' The Perles-Sauer-Shelah lemma states that πS(n) = O(nd) if the VC dimension of S (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
40
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
41
+ page_content=', the supremum of {n | πS(n) = 2n}) is a finite integer d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
42
+ page_content=' Then the VC density of S is defined as inf{c ∈ R | πS(n) = O(nc)}, and as +∞ if the VC dimension is unbounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
43
+ page_content=' We define the VC density of an infinite class C of finite graphs as the VC density of the infinite set-system formed by the neighbourhood hypergraph of the disjoint union of the graphs of C, that is, {NG(v) | v ∈ V (⊎G∈CG)}, where NG(v) denotes the set of neighbours of v in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
44
+ page_content=' The VC density is an important measure in finite model theory, often more tractable than the VC dimension (see for instance [1, 2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
45
+ page_content=' Tight bounds have been obtained for the VC density of (logically) definable hypergraphs from graph classes of bounded clique-width [23] (with monadic second-order logic), and more recently, of bounded twin-width [18] (with first-order logic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
46
+ page_content=' In structural graph theory and kernelisation [16] (a subarea of parameterised complexity [14]) the function πN(G), where N(G) is the neighbourhood hypergraph of G, is often1 called neighbourhood com- plexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
47
+ page_content=' (See [3] for an algorithmic study of the computation of this notion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
48
+ page_content=') In these contexts, obtaining the best possible upper bound for πN(G) (and not just the exponent matching the VC density) translates to qualitatively better structural bounds and algorithms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
49
+ page_content=' see for instance [9, 11, 15, 28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
50
+ page_content=' The r-neighbourhood complexity of G is the neighbourhood complexity of Gr, with same vertex set as G, and an edge between two vertices at distance at most r in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
51
+ page_content=' Reidl et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
52
+ page_content=' [28] showed that among subgraph-closed classes, bounded expansion2 is equivalent to linear r-neighbourhood complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
53
+ page_content=' Indeed, the more general nowhere dense classes [21] (another invention of the Sparsity program [22]) have almost linear r-neighbourhood complexity [15]: there is a function f : N × N → N such that for every ε > 0, πN(Gr)(n) ⩽ f(r, ε)n1+ε for all n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
54
+ page_content=' On hereditary classes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
55
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
56
+ page_content=', closed under taking induced subgraphs, there is no known characterisation of linear neighbourhood complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
57
+ page_content=' As we already mentioned in a different language, bounded twin-width classes have been proven to have linear neighbourhood complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
58
+ page_content=' See [9, Lemma 3] or [26, Section 3] for two independent proofs, both using the Marcus-Tardos theorem [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
59
+ page_content=' However, the dependence in the twin-width is doubly exponential in both papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
60
+ page_content=' Setting ν(d, k) as the maximum number of distinct neighbourhoods on a set of size k within a graph of twin-width at most d, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
61
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
62
+ page_content=', max{πN(G)(k) | G has twin-width at most d}, they show that ν(d, k) ⩽ exp(exp(O(d)))k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
63
+ page_content=' Our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
64
+ page_content=' In this note, we give in Section 3 a self-contained proof (not using the Marcus-Tardos theorem) that ν(d, k) ⩽ 2d+O(log d)k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
65
+ page_content=' In Section 4, we complement that proof with a construction of a 1Some authors define the neighbourhood complexity as n �→ πN (G)(n) n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
66
+ page_content=' 2A notion from the Sparsity theory of Neˇsetˇril and Ossona de Mendez [22] extending bounded degree and proper minor- free classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
67
+ page_content=' 2 bipartite graph witnessing that ν(d, k) ⩾ 2d+log d+O(1)k, which makes our single-exponential upper bound in twin-width essentially tight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
68
+ page_content=' 2 Preliminaries We use the standard graph-theoretic notations: V (G), E(G), G[S], G − S respectively denote the vertex set, edge set, subgraph of G induced by S, and subgraph of G induced by V (G) \\ S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
69
+ page_content=' If v ∈ V (G), then NG(v) (or N(v) if G is clear from the context) denotes the set of neighbours of v in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
70
+ page_content=' If X ⊆ V (G), then an X-neighbourhood is a set N(v) ∩ X for some v ∈ V (G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
71
+ page_content=' We now define the twin-width of a graph, following the definition of [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
72
+ page_content=' A trigraph is a triple G = (V (G), E(G), R(G)) where E(G) and R(G) are two disjoint sets of edges on V (G): the usual edges (also called black edges) and the red edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
73
+ page_content=' Informally, a red edge between two vertices u and v means that some errors have been made between u and v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
74
+ page_content=' The red degree of a trigraph is the maximum degree of the graph (V (G), R(G)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
75
+ page_content=' Any graph G can be interepreted as a trigraph G = (V (G), E(G), ∅).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
76
+ page_content=' Given a trigraph and two vertices u, v ∈ V (G) (not necessarily adjacent), the trigraph G/u, v = G′ is obtained by contracting u and v in a new vertex w such that: V (G′) = {w} ∪ V (G) \\ {u, v};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
77
+ page_content=' the edges between vertices of V (G) \\ {u, v} are the same in G′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
78
+ page_content=' the following edges are incident to w: – wx ∈ E(G′) if xu ∈ E(G) and xv ∈ E(G);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
79
+ page_content=' – wx /∈ E(G′) ∪ R(G′) if xu /∈ E(G) ∪ R(G) and xv /∈ E(G) ∪ R(G);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
80
+ page_content=' – wx ∈ R(G′) otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
81
+ page_content=' In other words, the common black neighbours of u and v are black neighbours of w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
82
+ page_content=' All the other neighbours of u or v are red neighbours of w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
83
+ page_content=' Red edges stay red, black edges stay black, red and black edges become red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
84
+ page_content=' We say that G/u, v is a contraction of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
85
+ page_content=' A d-sequence of an n-vertex graph G is a sequence of n trigraphs Gn = G, Gn−1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
86
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
87
+ page_content='., G1 such that each trigraph Gi is obtained from Gi+1 by a contraction and has red degree at most d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
88
+ page_content=' The twin-width of G, denoted by tww(G), is the minimum integer d such that G admits a d-sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
89
+ page_content=' Note that an induced subgraph of G has a twin-width smaller or equal to the twin-width of G [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
90
+ page_content=' If u ∈ Gi, then u(G) denotes the set of vertices of G eventually contracted to u in Gi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
91
+ page_content=' Instead of considering the trigraphs Gi, we might prefer to deal with the partitions induced by the sets u(G) for u in Gi: Pi = {u(G) | u ∈ V (Gi)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
92
+ page_content=' We say that there is a red edge between two parts u(G) and v(G) of Pi if uv is red in Gi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
93
+ page_content=' 3 Upper bound on the number of distinct neighbourhoods We state and prove our upper bound on the maximum number of distinct X-neighbourhoods in bounded twin-width graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
94
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
95
+ page_content=' Let G be an n-vertex graph of twin-width d, and X ⊆ V (G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
96
+ page_content=' Then the number of distinct X-neighbourhoods in G is at most (d + 2)2d+1|X| = 2d+O(log d)|X|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
97
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
98
+ page_content=' Fix X ⊆ V (G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
99
+ page_content=' First of all, for all vertices of V (G) \\ X with the same X-neighbourhood, we keep only one representative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
100
+ page_content=' Note that the new graph G′′ is an induced subgraph of G, thus its twin-width is at most d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
101
+ page_content=' We further modify graph G′′ by adding for each v ∈ X a new vertex u to G′′ so that N(u) = N(v) if such vertex does not exist in V (G′′) \\ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
102
+ page_content=' The new graph is called G′ and it has the same twin-width as G′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
103
+ page_content=' Let M = (d + 2)2d+1 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
104
+ page_content=' We prove by induction on n that an n-vertex graph of twin-width at most d with a set X of k vertices, where all vertices outside X have a distinct X-neighbourhood, satisfies n ⩽ kM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
105
+ page_content=' This will prove that G′ has at most kM vertices, and thus that in G, there are at most (M −1)k distinct X-neighbourhoods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
106
+ page_content=' The statement is trivially true for n ⩽ 5 since M ⩾ 5, for all d ⩾ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
107
+ page_content=' 3 Thus, assume n ⩾ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
108
+ page_content=' In particular, we have k > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
109
+ page_content=' Let x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
110
+ page_content=' Let X′ = X \\ {x} and let Tx be the set of pairs of vertices outside X that are twins with respect to X′, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
111
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
112
+ page_content=' Tx = � {u, v} ∈ �V (G′) \\ X 2 � | N(u) ∩ X′ = N(v) ∩ X′ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
113
+ page_content=' Since every vertex of V (G′) \\ X has a distinct neighbourhood in X, there are at most two vertices of V (G′) \\ X with the same (possibly empty) neighbourhood N in X′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
114
+ page_content=' namely the vertices u, v ∈ V (G′) \\ X with N(u) ∩ X = N and N(v) ∩ X = N ∪ {x} (if they exist).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
115
+ page_content=' Hence, Tx consists of pairwise-disjoint pairs of vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
116
+ page_content=' We prove the following claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
117
+ page_content=' Claim A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
118
+ page_content=' There exists a vertex x of X such that Tx comprises at most M − 1 pairs, in G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
119
+ page_content=' Proof of claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
120
+ page_content=' By contradiction, assume this is not the case: for every x in X, Tx has size at least M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
121
+ page_content=' Consider a d-sequence of contractions G′ n, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
122
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
123
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
124
+ page_content=' , G′ 1 of G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
125
+ page_content=' Consider the last step G′ i of the sequence where all the parts of Pi contain at most one vertex of X (that is, contrary to Pi, some part of Pi−1 contains two vertices of X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
126
+ page_content=' Let P be a part of Pi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
127
+ page_content=' Let x be the unique (if there exists one) element of P ∩X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
128
+ page_content=' Then we claim that |P \\ X| ⩽ 2d+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
129
+ page_content=' Indeed, any two vertices of P \\ X have some vertex in the symmetric difference of their X-neighbourhoods, either it is x, or some vertex x′ of X outside P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
130
+ page_content=' If that distinguishing vertex is some x′ that is not in P, then there has to be a red edge between P and the part that contains x′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
131
+ page_content=' There are at most d red edges with P as an extremity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
132
+ page_content=' Since all the elements of X are in distinct parts in G′ i, it means that d + 1 vertices of X are enough to distinguish all the X-neighbourhoods of vertices of P \\ X, and thus |P \\ X| ⩽ 2d+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
133
+ page_content=' We now consider the next contraction in the sequence, which leads to G′ i−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
134
+ page_content=' By definition of G′ i, it must contract two vertices corresponding to two parts of Pi that both contain an element of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
135
+ page_content=' Let x1 and x2 be these two elements of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
136
+ page_content=' Let Q be the part of Pi−1 that contains both x1 and x2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
137
+ page_content=' By our assumption, Tx1 has size at least M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
138
+ page_content=' Let {u, v} be a pair of Tx1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
139
+ page_content=' Since u and v have the same neighbourhood in X \\ {x1}, it means that they are either both adjacent or both non-adjacent to x2, and exactly one of them is adjacent to x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
140
+ page_content=' Thus, necessarily, one vertex among the pair {u, v} is adjacent to exactly one vertex among {x1, x2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
141
+ page_content=' In particular, if this vertex is not in Q, then there has to be a red edge between the part containing this vertex and the part Q in G′ i−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
142
+ page_content=' Since Tx1 contains at least M pairs (which are disjoint) and Q has at most 2d+2 vertices not in X, there are at least M − 2d+2 vertices not in X whose part in G′ i−1 has a red edge to Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
143
+ page_content=' Since each other part has at most 2d+1 vertices not in X, it makes at least M−2d+2 2d+1 red edges incident to Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
144
+ page_content=' Thus, we must have M−2d+2 2d+1 ⩽ d, leading to M ⩽ 2d+1(d + 2), a contradiction that proves the claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
145
+ page_content=' (□) By Claim A, there exists a vertex x ∈ X such that |Tx| ⩽ M − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
146
+ page_content=' Let Y be a set of |Tx| vertices that intersects each pair of Tx exactly once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
147
+ page_content=' Let GY = G′ − (Y ∪ {x}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
148
+ page_content=' Then, X′ = X \\ {x} is a vertex set of size k − 1 such that all X′-neighbourhoods of vertices outside X′ are distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
149
+ page_content=' The graph GY has at least n − M vertices, and twin-width at most d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
150
+ page_content=' By induction, we have n − M ⩽ |V (GY )| ⩽ (k − 1)M and thus, n ⩽ kM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
151
+ page_content=' Hence, once we recall that no vertex in X has unique X-neighbourhood, there are at most (M �� 1)k distinct X-neighbourhoods, which completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
152
+ page_content=' 4 Lower bound on the number of distinct neighbourhoods Notice that when |X| and tww(G) are roughly the same, the bound from Theorem 1 cannot be sharp, since G′ has at most 2|X| + |X| vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
153
+ page_content=' However, when |X| is large enough compared to tww(G), we next show that the bound is sharp up to a constant factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
154
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
155
+ page_content=' There is a positive constant c, such that for any integer d, there is a bipartite graph G of twin-width at most d, and a large enough set X ⊆ V (G), with at least c·d2d|X| distinct X-neighbourhoods in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
156
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
157
+ page_content=' Observe that the claim is clearly true for any small d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
158
+ page_content=' Thus, we do not need to consider separately graphs with small twin-width upper bounded by a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
159
+ page_content=' Hence, we assume from now on that d ≥ d′ where d′ is some positive constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
160
+ page_content=' 4 We construct the graph G as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
161
+ page_content=' Let A, B, C ∈ Z be three constants that will be given later (A and B will be roughly equal to √ d and C will be roughly equal to d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
162
+ page_content=' Let X = {x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
163
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
164
+ page_content=', xk} be an independent set of k vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
165
+ page_content=' Our goal is that each vertex in V (G) \\ X has a unique X-neighbourhood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
166
+ page_content=' For any integers i, j, t with 1 ⩽ i ⩽ j ⩽ i + A − 1, j + 2 ⩽ t ⩽ j + 1 + B and t ⩽ k − C, we create a set Vi,j,t of vertices as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
167
+ page_content=' Consider the set Xt = {xt+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
168
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
169
+ page_content=', xt+C}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
170
+ page_content=' For every subset Y of Xt, let Y ′ = {xi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
171
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
172
+ page_content=', xj, xt} ∪ Y and add a vertex vY ′ to Vi,j,t, making it adjacent to the vertices of Y ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
173
+ page_content=' Each set Vi,j,t has size 2C and there are Θ(kAB) (for fixed A and B and growing k) such sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
174
+ page_content=' Thus there are Θ(kAB2C) vertices in the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
175
+ page_content=' Any two vertices not in X have distinct X-neighbourhoods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
176
+ page_content=' Indeed, by considering the natural ordering of X induced by the indices, any vertex not in X is first adjacent to a consecutive interval of vertices from xi to xj, then is not adjacent to vertices from xj+1 to xt−1 (which is not empty since t ⩾ j + 2), and then adjacent to xt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
177
+ page_content=' Thus, if two vertices have the same X-neighbourhood, they must be in the same set Vi,j,t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
178
+ page_content=' But then, they have a distinct neighbourhood in {xt+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
179
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
180
+ page_content=', xt+C}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
181
+ page_content=' We now prove that the twin-width of G is at most M = max{AB, C}+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
182
+ page_content=' For that, we give a sequence of contractions with red degree at most M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
183
+ page_content=' The contraction sequence is split into k − C steps, for each vertex of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
184
+ page_content=' Let 0 ≤ i ≤ k − C − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
185
+ page_content=' Step 0 corresponds to the starting point, where each vertex is alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
186
+ page_content=' Let i ⩾ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
187
+ page_content=' After Step i, there will be the following parts in the corresponding partition (vertices not in any part have not yet been contracted): For each j, t such that i ⩽ j ⩽ i + A − 1 and j + 2 ⩽ t ⩽ j + 1 + B, there is a part Bj,t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
188
+ page_content=' The parts Bi,t (parts with j = i), contain all the vertices of the sets Vi′,j′,t such that j′ ≤ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
189
+ page_content=' The parts Bj,t with j > i contain all the vertices of the sets Vi′,j′,t such that i′ ⩽ i and j′ = j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
190
+ page_content=' Note that there are AB non-empty Bj,t parts in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
191
+ page_content=' There is a part X0 that contains vertices from x1 to xi of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
192
+ page_content=' There is a part T (for “trash”) that contains all the vertices of the sets Vi′,j,t with t ⩽ i + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
193
+ page_content=' All the other vertices are not yet contracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
194
+ page_content=' This corresponds to the vertices from xi+1 to xk of X and to the vertices of the sets Vi′,j,t with i′ > i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
195
+ page_content=' Indeed, if i′ ⩽ i and t ⩽ i + 1, then the vertices of Vi′,j,t are in T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
196
+ page_content=' If t ⩾ i + 2 but j ⩽ i, then they are in the part Bi,t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
197
+ page_content=' If j > i, then they are in the part Bj,t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
198
+ page_content=' We first prove that the red degree after Step i is at most M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
199
+ page_content=' Then, we explain how to get from Step i to Step i + 1 by keeping the red degree at most M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
200
+ page_content=' Consider the part Bj,t at the end of Step i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
201
+ page_content=' A vertex in this part belongs to some set Vi′,j′,t with i′ ⩽ i and j′ = j if j > i or j′ ⩽ i otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
202
+ page_content=' In particular, two vertices of Bj,t are adjacent to all the vertices between xi+1 and xj, to no vertex between xj+1 and xt−1, to xt, and to no vertex after xt+C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
203
+ page_content=' Thus, there is a red edge between the parts Bj,t and X0, and C red edges between the part Bj,t and the vertices {xt+1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
204
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
205
+ page_content=', xt+C}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
206
+ page_content=' Therefore, the number of red edges incident with Bj,t is at most C + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
207
+ page_content=' Consider now the part T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
208
+ page_content=' Vertices in T are adjacent only to vertices of X up to xi+C+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
209
+ page_content=' Since vertices x1 to xi are all in the part X0, the red degree of T is at most C + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
210
+ page_content=' Single vertices not in X have no incident red edges: indeed, they are all in some sets Vi′,j,t for i′ > i and thus are not adjacent to any vertex of X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
211
+ page_content=' For the same reason, there are red edges incident to X0 only to T and to the parts Bj,t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
212
+ page_content=' Hence, the red degree of X0 is at most AB + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
213
+ page_content=' Similarly, the red degree of xi′, i′ > i + 1 is at most AB + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
214
+ page_content=' Moreover, the red degree of xi+1 is at most one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
215
+ page_content=' Indeed, the only red edge is between xi+1 and T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
216
+ page_content=' Finally, the red degree after step i is at most max{AB + 1, C + 2} ⩽ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
217
+ page_content=' Let i ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
218
+ page_content=' We now explain how we perform the contractions to go from step i to step i + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
219
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
220
+ page_content=' (only if i ≥ 1) For any i + 3 ⩽ t ⩽ i + 2 + B, merge the part Bi,t with the part Bi+1,t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
221
+ page_content=' The only new red edge this merging may lead to, when Bi,t is non-empty, is between Bi+1,t and xi+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
222
+ page_content=' Thus, we add only one red edge between xi+1 and Bi+1,t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
223
+ page_content=' Thus, the red degree of Bi+1,t is at most C + 2 and the red degree of xi+1 is at most 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
224
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
225
+ page_content=' Add all the vertices of Vi+1,j,t for some j, t to the part (that might be empty at this point) Bj,t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
226
+ page_content=' The red degree of Bj,t is at most C + 2 since we might have a red edge between Bj,t and xi+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
227
+ page_content=' The number of nonempty parts Bj,t at this point is AB + 1 (there is still the part Bi,i+2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
228
+ page_content=' Adding T , this gives AB + 2 red edges incident to a vertex in X (or from part X0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
229
+ page_content=' 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
230
+ page_content=' Add xi+1 to X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
231
+ page_content=' The part X0 has red edges only to parts Bi+1,t, to Bi,i+2 and to T , but no edges to the single vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
232
+ page_content=' Thus, it has red degree at most AB + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
233
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
234
+ page_content=' Put the part Bi,i+2 into T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
235
+ page_content=' This part is only adjacent to vertices up to xi+2+C, and thus has C + 2 red edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
236
+ page_content=' Thus, at each point, the red degree is always at most M = max{AB, C} + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
237
+ page_content=' The process ends at step i = k − C − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
238
+ page_content=' Then, all the vertices not in X are in some parts, and there are at most AB + 1 such parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
239
+ page_content=' On the other side of bipartition, we have part X0 and C + 1 single vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
240
+ page_content=' Thus, the graph is bipartite with both sides of size at most M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
241
+ page_content=' One can contract each part independently to finish the contraction sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
242
+ page_content=' To conclude, taking C = d − 2 and A = B = ⌊ √ d − 2⌋, we have M ⩽ d and kAB2C = Θ(kd2d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
243
+ page_content=' Notice that we may assume that A, B and C are positive since d ≥ d′ where d′ was some well chosen positive constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
244
+ page_content=' This concludes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
245
+ page_content=' 5 Conclusion We have given an improved and tight upper bound for the neighbourhood complexity of graphs of bounded twin-width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
246
+ page_content=' Unlike the previously known (weaker) bounds, our method is simple and avoids the use of the Marcus-Tardos theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
247
+ page_content=' We hope that it can inspire future works in the area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
248
+ page_content=' It is known that the twin-width of Gr can be upper-bounded by a function of the twin-width of G and r [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
249
+ page_content=' Thus, graphs of twin-width at most d have linear r-neighbourhood complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
250
+ page_content=' We leave as an interesting open problem to obtain an essentially tight twin-width dependence for the r-neighbourhood complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
251
+ page_content=' We remark that the neighbourhood complexity is also related to identification problems on graphs such as identifying codes or locating-dominating sets, where one seeks a (small) set A of vertices of a graph such that all other vertices have a distinct neighbourhood in A [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
252
+ page_content=' Some works in this area about specific graph classes, are equivalent to the study of the neighbourhood complexity of these graph classes: see for example [13, 17, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
253
+ page_content=' Moreover, we note that for graph classes with VC density 1, since any solution has linear size, the natural minimisation versions of the above identification problems have a polynomial-time constant-factor approximation algorithm (trivially select the whole vertex set), while such an algorithm is unlikely to exist in the general case [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
254
+ page_content=' Thus, our work implies a better approximation ratio for these problems, when restricted to input graph classes of bounded twin-width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
255
+ page_content=' References [1] Matthias Aschenbrenner, Alf Dolich, Deirdre Haskell, Dugald Macpherson, and Sergei Starchenko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
256
+ page_content=' Vapnik–chervonenkis density in some theories without the independence property, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
257
+ page_content=' Notre Dame Journal of Formal Logic, 54(3-4):311–363, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
258
+ page_content=' [2] Matthias Aschenbrenner, Alf Dolich, Deirdre Haskell, Dugald Macpherson, and Sergei Starchenko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
259
+ page_content=' Vapnik-chervonenkis density in some theories without the independence property, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
260
+ page_content=' Transactions of the American Mathematical Society, 368(8):5889–5949, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
261
+ page_content=' [3] Cristina Bazgan, Florent Foucaud, and Florian Sikora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
262
+ page_content=' Parameterized and approximation complexity of partial VC dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
263
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
264
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
265
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
266
+ page_content=', 766:1–15, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
267
+ page_content=' [4] ´Edouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen K¨ohler, Raul Lopes, and St´ephan Thomass´e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
268
+ page_content=' Twin-width VIII: delineation and win-wins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
269
+ page_content=' In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 9:1–9:18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
270
+ page_content=' Schloss Dagstuhl - Leibniz- Zentrum f¨ur Informatik, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
271
+ page_content=' [5] ´Edouard Bonnet, Colin Geniet, Eun Jung Kim, St´ephan Thomass´e, and R´emi Watrigant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
272
+ page_content=' Twin- width III: max independent set, min dominating set, and coloring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
273
+ page_content=' In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 35:1–35:20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
274
+ page_content=' Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
275
+ page_content=' 6 [6] ´Edouard Bonnet, Colin Geniet, Eun Jung Kim, St´ephan Thomass´e, and R´emi Watrigant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
276
+ page_content=' Twin- width II: small classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
277
+ page_content=' Combinatorial Theory, 2 (2), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
278
+ page_content=' [7] ´Edouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, St´ephan Thomass´e, and Szymon Toru´nczyk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
279
+ page_content=' Twin-width IV: ordered graphs and matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
280
+ page_content=' In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 924–937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
281
+ page_content=' ACM, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
282
+ page_content=' [8] ´Edouard Bonnet, Eun Jung Kim, Amadeus Reinald, and St´ephan Thomass´e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
283
+ page_content=' Twin-width VI: the lens of contraction sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
284
+ page_content=' In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1036–1056.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
285
+ page_content=' SIAM, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
286
+ page_content=' [9] ´Edouard Bonnet, Eun Jung Kim, Amadeus Reinald, St´ephan Thomass´e, and R´emi Watrigant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
287
+ page_content=' Twin- width and polynomial kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
288
+ page_content=' Algorithmica, 84:3300–3337, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
289
+ page_content=' [10] ´Edouard Bonnet, Eun Jung Kim, St´ephan Thomass´e, and R´emi Watrigant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
290
+ page_content=' Twin-width I: tractable FO model checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
291
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
292
+ page_content=' ACM, 69(1):3:1–3:46, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
293
+ page_content=' [11] ´Edouard Bonnet, O-joung Kwon, and David R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
294
+ page_content=' Wood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
295
+ page_content=' Reduced bandwidth: a qualitative strength- ening of twin-width in minor-closed classes (and beyond).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
296
+ page_content=' CoRR, abs/2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
297
+ page_content='11858, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
298
+ page_content=' [12] ´Edouard Bonnet, Jaroslav Neˇsetˇril, Patrice Ossona de Mendez, Sebastian Siebertz, and St´ephan Thomass´e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
299
+ page_content=' Twin-width and permutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
300
+ page_content=' CoRR, abs/2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
301
+ page_content='06880, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
302
+ page_content=' [13] Nicolas Bousquet, Aur´elie Lagoutte, Zhentao Li, Aline Parreau, and St´ephan Thomass´e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
303
+ page_content=' Identifying codes in hereditary classes of graphs and VC-dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
304
+ page_content=' SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
305
+ page_content=' Discret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
306
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
307
+ page_content=', 29(4):2047–2064, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
308
+ page_content=' [14] Marek Cygan, Fedor V Fomin, �Lukasz Kowalik, Daniel Lokshtanov, D´aniel Marx, Marcin Pilipczuk, Micha�l Pilipczuk, and Saket Saurabh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
309
+ page_content=' Parameterized algorithms, volume 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
310
+ page_content=' Springer, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
311
+ page_content=' [15] Kord Eickmeyer, Archontia C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
312
+ page_content=' Giannopoulou, Stephan Kreutzer, O-joung Kwon, Micha�l Pilipczuk, Roman Rabinovich, and Sebastian Siebertz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
313
+ page_content=' Neighborhood complexity and kernelization for nowhere dense classes of graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
314
+ page_content=' In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 63:1–63:14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
315
+ page_content=' Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
316
+ page_content=' [16] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
317
+ page_content=' Kernelization: theory of parameterized preprocessing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
318
+ page_content=' Cambridge University Press, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
319
+ page_content=' [17] Florent Foucaud, George B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
320
+ page_content=' Mertzios, Reza Naserasr, Aline Parreau, and Petru Valicov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
321
+ page_content=' Identifi- cation, location-domination and metric dimension on interval and permutation graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
322
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
323
+ page_content=' bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
324
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
325
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
326
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
327
+ page_content=', 668:43–58, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
328
+ page_content=' [18] Jakub Gajarsk´y, Micha�l Pilipczuk, Wojciech Przybyszewski, and Szymon Toru´nczyk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
329
+ page_content=' Twin-width and types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
330
+ page_content=' In Mikolaj Bojanczyk, Emanuela Merelli, and David P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
331
+ page_content=' Woodruff, editors, 49th In- ternational Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 123:1–123:21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
332
+ page_content=' Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
333
+ page_content=' [19] Stefan Kratsch, Florian Nelles, and Alexandre Simon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
334
+ page_content=' On triangle counting parameterized by twin- width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
335
+ page_content=' CoRR, abs/2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
336
+ page_content='06708, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
337
+ page_content=' [20] Adam Marcus and G´abor Tardos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
338
+ page_content=' Excluded permutation matrices and the Stanley-Wilf conjecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
339
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
340
+ page_content=' Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
341
+ page_content=' Theory, Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
342
+ page_content=' A, 107(1):153–160, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
343
+ page_content=' [21] Jaroslav Neˇsetˇril and Patrice Ossona de Mendez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
344
+ page_content=' On nowhere dense graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
345
+ page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
346
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
347
+ page_content=' Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
348
+ page_content=', 32(4):600–617, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
349
+ page_content=' [22] Jaroslav Neˇsetˇril and Patrice Ossona de Mendez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
350
+ page_content=' Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
351
+ page_content=' Springer, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
352
+ page_content=' 7 [23] Adam Paszke and Micha�l Pilipczuk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
353
+ page_content=' VC density of set systems definable in tree-like graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
354
+ page_content=' In Javier Esparza and Daniel Kr´al’, editors, 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 78:1–78:13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
355
+ page_content=' Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
356
+ page_content=' [24] Micha�l Pilipczuk and Marek Soko�lowski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
357
+ page_content=' Graphs of bounded twin-width are quasi-polynomially χ-bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
358
+ page_content=' CoRR, abs/2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
359
+ page_content='07608, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
360
+ page_content=' [25] Micha�l Pilipczuk, Marek Soko�lowski, and Anna Zych-Pawlewicz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
361
+ page_content=' Compact representation for matri- ces of bounded twin-width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
362
+ page_content=' In Petra Berenbrink and Benjamin Monmege, editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, March 15-18, 2022, Mar- seille, France (Virtual Conference), volume 219 of LIPIcs, pages 52:1–52:14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
363
+ page_content=' Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
364
+ page_content=' [26] Wojciech Przybyszewski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
365
+ page_content=' VC-density and abstract cell decomposition for edge relation in graphs of bounded twin-width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
366
+ page_content=' CoRR, abs/2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
367
+ page_content='04006, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
368
+ page_content=' [27] Douglas Rall and Peter J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
369
+ page_content=' Slater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
370
+ page_content=' On location-domination numbers for certain classes of graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
371
+ page_content=' Congressus Numerantium, 45:97–106, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
372
+ page_content=' [28] Felix Reidl, Fernando S´anchez Villaamil, and Konstantinos S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
373
+ page_content=' Stavropoulos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
374
+ page_content=' Characterising bounded expansion by neighbourhood complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
375
+ page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
376
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
377
+ page_content=' Comb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
378
+ page_content=', 75:152–168, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
379
+ page_content=' [29] Vladimir N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
380
+ page_content=' Vapnik and Alexey Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
381
+ page_content=' Chervonenkis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
382
+ page_content=' On the uniform convergence of relative frequencies of events to their probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
383
+ page_content=' In Measures of complexity, pages 11–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
384
+ page_content=' Springer, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
385
+ page_content=' 8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE2T4oBgHgl3EQf8QmS/content/2301.04217v1.pdf'}
BtE1T4oBgHgl3EQfpgUG/content/tmp_files/2301.03331v1.pdf.txt ADDED
@@ -0,0 +1,890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ A Specific Task-oriented Semantic Image
3
+ Communication System for substation patrol
4
+ inspection
5
+ Senran Fan, Haotai Liang, Chen Dong*, Xiaodong Xu, Geng Liu
6
+ Abstract—Intelligent inspection robots are widely used in
7
+ substation patrol inspection, which can help check potential
8
+ safety hazards by patrolling the substation and sending back
9
+ scene images. However, when patrolling some marginal areas with
10
+ weak signal, the scene images cannot be sucessfully transmissted
11
+ to be used for hidden danger elimination, which greatly reduces
12
+ the quality of robots’ daily work. To solve such problem,
13
+ a Specific Task-oriented Semantic Communication System for
14
+ Image—–STSCI is designed, which involves the semantic features
15
+ extraction, transmission, restoration and enhancement to get
16
+ clearer images sent by intelligent robots under weak signals.
17
+ Inspired by that only some specific details of the image are
18
+ needed in such substation patrol inspection task, we proposed
19
+ a new paradigm of semantic enhancement in such specific
20
+ task to ensure the clarity of key semantic information when
21
+ facing a lower bit rate or a low signal-to-noise ratio situation.
22
+ Across the reality-based simulation, experiments show our STSCI
23
+ can generally surpass traditional image-compression-based and
24
+ channel-coding-based or other semantic communication system
25
+ in the substation patrol inspection task with a lower bit rate even
26
+ under a low signal-to-noise ratio situation.
27
+ Index Terms—Semantic Communication, substation patrol
28
+ robot, STSCI
29
+ I. INTRODUCTION
30
+ W
31
+ Ith the development of Internet Technology especially
32
+ in intelligent applications like IoT fields, the fierce
33
+ demand for tremendous amount of information transmissions
34
+ is becoming inevitable, which urges people to continuously
35
+ improve the efficiency in communication process. However,
36
+ the transmission rate based on traditional communication
37
+ system in physical layer has already been approaching the
38
+ Shannon limit under most situations, so researchers are willing
39
+ to explore new theories and new forms of communication
40
+ systems.
41
+ Based on this, the concept of semantic communication has
42
+ attracted more and more attention. First mentioned in Shannon
43
+ Senran Fan, Haotai Liang are with the State Key Laboratory of Network-
44
+ ing and Switching Technology, Beijing University of Posts and Telecom-
45
+ munications, Beijing, 100876, China. (E-mail: [email protected]; lianghao-
46
47
+ Xiaodong Xu is with the State Key Laboratory of Networking and
48
+ Switching Technology, Beijing University of Posts and Telecommunications,
49
+ Beijing, China, and also with the Department of Broad-band Communica-
50
+ tion, Peng Cheng Laboratory, Shenzhen, Guangdong, China. (E-mail: xuxi-
51
52
+ Geng Liu is with the Beijing Smart-chip Microelectronics Technology
53
+ Co.,Ltd. (E-mail: [email protected])
54
+ *Chen Dong is the corresponding author and with the State Key
55
+ Laboratory of Networking and Switching Technology, Beijing Univer-
56
+ sity of Posts and Telecommunications, Beijing, 100876, China. (E-mail:
57
58
+ and Weaver’s paper [1], the semantic-based communication
59
+ system is believed to be a new and bright direction for
60
+ communication feilds. The explosion of data requires the
61
+ communication systems to greatly upgrade their ability in
62
+ data compression, while the semantic-based communication
63
+ system is suitable for it. Considering that when transmitting
64
+ the information, large amount of task-irrelevant information
65
+ is involved especially in some specific communication scenes,
66
+ which leads to massive waste in communication resources.
67
+ Especially in this task, intelligent substation patrol inspection,
68
+ what really cared about is only the key semantic contents
69
+ such as the areas with key units of the image. Introduced
70
+ in [2], [3], by transmitting the information through semantic
71
+ feature extracting, transmission and reconstruction, semantic
72
+ communication system only keeps the effective information
73
+ which achieves extremely compression and high efficiency
74
+ communication.
75
+ Deep learning can be an answer to reciously extract the se-
76
+ mantic features from the image. Indeed, using neural networks
77
+ to make semantic analysis from images is a large subject in
78
+ the computer vision fields. Semantic segmentation networks
79
+ [4]–[6] as well as target detection networks [7]–[10] show
80
+ great power in semantic features extracting and analysis. At the
81
+ same time, GAN-based [11] networks is possessed of ability
82
+ in handling semantic features. GAN-based networks can gen-
83
+ erator images from semantic vectors. Moverover in InfoGAN
84
+ [12] and StyleGAN [13], semantic vector can be edited to
85
+ control the features of the generated images. And comes into
86
+ unsupervised feilds, auto-encoder [14] is an inspiring archi-
87
+ tecture for semantic feature extracting. Compressing the high-
88
+ dimensional data into a low-dimensional latent which is used
89
+ for data reconstruction. Auto-encoder forced the reconstruction
90
+ results to get close enough to the original ones. Combined with
91
+ semantic-related networks such as GANs and the structure
92
+ of auto-encoder, the system can realize the aim to decrease
93
+ distortion in semantic contents of images during the process
94
+ of extreme compression as well as transmission.
95
+ The traditional communication systems involve source cod-
96
+ ing and channel coding. We replace the former part with
97
+ neural networks, and to resist against noise in channels we
98
+ decide to use the Joint Source-Channel Coding(JSCC) [15],
99
+ [16]. Leading the channel simulation models into the deep
100
+ networks, the networks can perform well in real-world channel
101
+ conditions and even better than traditional channel coding
102
+ methods like LDPC especially in low bite rate or low signal-
103
+ to-noise ratio situation.
104
+ arXiv:2301.03331v1 [cs.CV] 9 Jan 2023
105
+
106
+ 2
107
+ Figure 1. The framework of STSCI.
108
+ The above studies shows the possiblity in applying the
109
+ semantic communication system into the subtsation patrol
110
+ inspection task. At the same time, substations do have toubles
111
+ in intelligent patrol task. When the robots patrolling the
112
+ marginal areas of substation with weak signals, the images
113
+ sent back by robots can be too blurred to be used for
114
+ security check. Considering that semantic communication has
115
+ potential to be the answer for solving such problem and
116
+ no literature been published before is trying to apply the
117
+ semantic communication technology to the substation patrol
118
+ task, a specific task-oriented semantic communication system
119
+ STSCI is proposed for solving this specific task and the
120
+ similar communication tasks featured by the fixed image
121
+ source, fixed channel conditions and focusing only on some
122
+ specific task-oriented semantic contents of the image. The
123
+ system is mainly a GAN-based auto-encoder-structure network
124
+ for image’ compressing, transmission and reconstruction. In
125
+ addition, a yolo-net is involved to locate the images’ specific
126
+ semantic contents, which will then be embedded and sent to
127
+ the semantic enhancement models to improve the transmission
128
+ quality of the important semantic contents of the images to
129
+ make sure there is no errors or missing when making security
130
+ check with the transmitted images. The main contributions of
131
+ this paper are summarized as follows.
132
+ (1) A specific task-oriented semantic communication system
133
+ for image is proposed for the transmission of images
134
+ obtained by intelligent robots in the substation patrol
135
+ inspection task. A new paradigm of key semantic contents
136
+ extraction and preservation for such specific tasks is
137
+ proposed. A Yolo networks is involved to locate the
138
+ key semantic contents which is the task exactly cares
139
+ about, while the located part will be sent into a semantic
140
+ enhancement models to enhance the transmission quality
141
+ of the located areas.
142
+ (2) A GAN-based auto-encoder structure network is de-
143
+ signed. Combined with RRDB blocks, channel normal-
144
+ ization, idea of conditional gan and some other tricks,
145
+ the network can extremely compress the images into the
146
+ semantic feature latent and reconstruct them after the
147
+ transmission.
148
+ (3) Through simulations and experiments, this paper show
149
+ the application and performance of the semantic commu-
150
+ nication system in haddling the specific task. By present
151
+ the metrics, semantic communication system is proven
152
+ to be superior to the traditional communication systems
153
+ in such specific tasks with fixed image source and fixed
154
+ channel conditions. As a practice, the STSCI has better
155
+ transmission quality especially under low bit rate or low
156
+ signal-to-noise ratio channel conditions compared with
157
+ the traditional communication systems, which signifi-
158
+ cantly enlarge the areas covered by effective signal to
159
+ ensure the proper work of the intelligent robots when
160
+ patrolling the marginal areas of the substation with weak
161
+ signal.
162
+ This paper is arranged as follows. In section II, we review
163
+ the structure of the specific task-oriented semantic commu-
164
+ nication system for image STSCI, and show details in the
165
+ model architectures and training flow path of two parts of
166
+ STSCI. Then, in section III, a direct comparison between the
167
+ STSCI and other image communication systems is provided to
168
+ quantify the performance of STSCI with the proposed method.
169
+ Finally, conclusions of this paper are drawn in section IV.
170
+ II. SPECIFC TASK-ORIENTED SEMANTIC COMMUNICATION
171
+ SYSTEM
172
+ Shown in Fig. 1, the specific task-oriented semantic com-
173
+ munication system for image(STSCI) is mainly composed of
174
+ two parallel parts: the base system and semantic enhance-
175
+ ment system. The base system is mainly a GAN-based auto-
176
+ encoder network to achieve images’ compression, transmission
177
+ and reconstruction through semantic features. Meanwhile, the
178
+ semantic enhancement system locates the areas with key
179
+ semantic contents of the image and improves these areas’
180
+ quality during transmission. Both of the two parts will be
181
+ introduced in detail in the following contents.
182
+
183
+ Semantic
184
+ Semantic
185
+ Channels
186
+ Encoder
187
+ Decoder
188
+ Base system
189
+ Semantic enhancement system
190
+ Enhancement
191
+
192
+
193
+ Yolo-Net
194
+ Model
195
+ Receiver3
196
+ Figure 2. The architecture of the base system.
197
+ A. Base System
198
+ Shown in Fig. 2, the base system is mainly a neural network
199
+ consists of three parts: an Encoder network, simulated channel
200
+ models and a GAN-based Decoder network. The images
201
+ gained by substation patrol inspection robots will be com-
202
+ pressed by Encoder network, sent to receiver through physical
203
+ channels simulated by channel models and reconstructed by
204
+ the Decoder network.
205
+ The most frequently proposed semantic-based communica-
206
+ tion systems used the structure of auto-encoder to achieve
207
+ image compression, however traditional CNN and loss in
208
+ auto-encoder have difficulties in acquiring high quality re-
209
+ constructed images. In pace with development in image en-
210
+ hancement task especially image de-noising and image super-
211
+ resolution, GANs have been proven to be possessed of strong
212
+ talents in high-quality image generation, which were pre-
213
+ viously employed to improve the visual quality of image
214
+ compression systems [17], [18]. Inspired by these previous
215
+ studies, we decide to use GAN to replace the traditional CNN
216
+ as decoder network in auto-encoder to significantly improve
217
+ the quality and similarity of images transmitted by semantic
218
+ communication system.
219
+ Meanwhile, considering that structure of auto-encoder in-
220
+ volved in semantic communication system is highly consistent
221
+ with the information communication process, Joint Source-
222
+ Channel Coding(JSCC) was proposed in [15]. No longer need
223
+ additional channel coding like LDPC to resist against noise
224
+ in channels, adding noise through simulation channel models
225
+ when training auto-encoder networks, an anti-noise communi-
226
+ cation system is formed, which can ensure high-quality image
227
+ transmission even under low signal-to-noise ratio situation.
228
+ Though JSCC methods has its limitation for being constrained
229
+ by specific source, specific scene and specific task, which
230
+ lead to deep-based semantic communication system’s lack of
231
+ generalization. However, in this task, the information source
232
+ and channels are fixed, such constrains can be ignored. In
233
+ addition, the data of channel conditions in the substation
234
+ can be collected continuously in the practical application to
235
+ fine-tune simulation channel model to improve the system’s
236
+ performance in this specific task.
237
+ In terms of the loss functions which plays a decisive role in
238
+ training the networks, MSE loss and LPIPS loss is chosen
239
+ to measure the distortion between the original images and
240
+ the generated ones. MSE loss measures the difference per
241
+ pixel and shows their distance in the high-dimension space,
242
+ which helps keep the similarity. At the same time, LPIPS
243
+ loss proposed in [19] is calculated through a VGG-net which
244
+ has been trained previously. Having special model structure
245
+ and trained with tricks, the pre-trained VGG-net gives more
246
+ attention to the structure and texture of the images and does
247
+ well in telling such kind of difference between images. It’s
248
+ the difference in structure and texture that is of importance
249
+ but hard to measure through tradition losses such as L1 loss
250
+ or MSE loss. LPIPS loss helps supply this gap, and makes the
251
+ generated images more close to the original ones in visual.
252
+ In fact, before the final training, the encoder and GAN-based
253
+ decoder is trained by only using the two mentioned losses
254
+ instead of involving the adversarial loss at the beginning. Such
255
+ tricks were also applied in [17], [20], [21]. Initializing the
256
+ generator net in this way helps the generator performs better
257
+ in the final training process so the discriminator can learn
258
+ more useful information and the adversarial loss can be more
259
+ rational. Otherwise if skip this process, the images generated
260
+ by the generator is far from the ground truth and easy for
261
+ discriminator to tell, which may lead to the vanishing gradient
262
+ of the generator.
263
+ Speaking of the adversarial loss, the structure of our dis-
264
+ criminator is abnormal. Inspired by [17], the discriminator
265
+ shares the structure of that in conditional GAN. Receiving
266
+ not only the generated images as well as the ground truth but
267
+ also the latent which puts into the generator, the discriminator
268
+ no longer only focus on the quality of generator images.
269
+ With limitation from the different latent involved in, the
270
+ discriminator is forced to take attention to the connections
271
+ between the latent and the image and the difference between
272
+ images with different latent, so the adversarial loss covers
273
+ more useful information to help the network performs better
274
+ in reconstruction process.
275
+ According to all above introductions and the structure
276
+ shown in Fig. 2, the complete process of the base system is
277
+ as follows.
278
+ The image 𝑋 to be transmitted is sent in to the Encoder
279
+ first to get the semantic features 𝑌,
280
+ 𝑌 = 𝐸(𝑥).
281
+ (1)
282
+
283
+ Encoder
284
+ Gan-based
285
+ D
286
+ Residual-in-Residual
287
+ Decodel
288
+ Conv Norm ReLU
289
+ Conv Norm ReLU
290
+ Upsample Conv
291
+ Upsample Conv
292
+ Upsample Conv
293
+ X'
294
+ Channel
295
+ Vgg networks
296
+ X-
297
+ Conv
298
+ Dense Blocks
299
+ Model
300
+ concat4
301
+ The nearest neighbor quantization operation is then performed
302
+ on the extracted semantic features ����,
303
+ 𝑌𝑞(𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑗||𝑌𝑖 − 𝐼 𝑗||.
304
+ (2)
305
+ Where the set 𝐼 of quantization centers is:
306
+ 𝐼 = {𝐼0, 𝐼1, ..., 𝐼 𝑗, ..., 𝐼𝑙}.
307
+ (3)
308
+ According to JSCC, then the quantized semantic feature 𝑌𝑞 is
309
+ sent to the simulated channel models. In this paper, AWGN
310
+ model is chosen as the simulated channel model,
311
+ 𝑌𝑞
312
+ ′ = ℎ · 𝑌𝑞 + 𝑛.
313
+ (4)
314
+ In this formula, ℎ represents the channel gain, while 𝑛 rep-
315
+ resents the independent identically distributed Gaussian noise.
316
+ Such model simulate the feature’s distortion transmitted in the
317
+ real-world channel and give the base model the ability to resist
318
+ the noise.
319
+ The image 𝑋
320
+ ′ is generated by the Generator(the Decoder
321
+ network) from the processed latent 𝑌𝑞
322
+ ′ at the receiver,
323
+ 𝑋
324
+ ′ = 𝐺(𝑌𝑞
325
+ ′).
326
+ (5)
327
+ The Encoder maps the source image 𝑋 to a specific distribution
328
+ 𝑃𝑋. The generator G tries to map samples 𝑌 from a fixed
329
+ known distribution 𝑃𝑌 to 𝑃𝑋, while the Discriminator D is
330
+ learned to tell the difference between such two distributions
331
+ using the sampled data 𝑋 and the generated 𝑋
332
+ ′.A properly
333
+ trained Discriminator helps the Generator to find and simulate
334
+ the distribution 𝑃𝑋 more preciously. Involving the idea of
335
+ conditional GANs as mentioned before, the adversarial loss
336
+ is as follows.
337
+ 𝐿𝐺 = −𝑙𝑜𝑔(𝐷(𝑋
338
+ ′,𝑌𝑞
339
+ ′)),
340
+ (6)
341
+ 𝐿𝐷 = −𝑙𝑜𝑔(1 − 𝐷(𝑋
342
+ ′,𝑌𝑞
343
+ ′)) − 𝑙𝑜𝑔(𝐷(𝑋,𝑌𝑞
344
+ ′)).
345
+ (7)
346
+ Besides, when optimizing the Encoder and the Generator, the
347
+ MSE loss and the LPIPS loss are also involved to measure the
348
+ texture and perception distance between the source image X
349
+ and the generator image 𝑋
350
+ ′. Moverover, helping to initialize
351
+ these two networks, these two kinds of loss guide the Gener-
352
+ ator and Discriminator to be trained on the right direction. So
353
+ the final loss for the Encoder and the Generator are as follows.
354
+ In the initial training:
355
+ 𝐿𝐸𝐺 = ||𝑋 − 𝑋
356
+ ′|| + 𝛼𝐿𝑃𝐼𝑃𝑆(𝑋, 𝑋
357
+ ′).
358
+ (8)
359
+ In the final training:
360
+ 𝐿𝐸𝐺 = ||𝑋−𝑋
361
+ ′||+𝛼𝐿𝑃𝐼𝑃𝑆(𝑋, 𝑋
362
+ ′)+𝛽[−𝑙𝑜𝑔(𝐷(𝑋
363
+ ′,𝑌𝑞
364
+ ′)]. (9)
365
+ B. Semantic Enhancement System
366
+ The Semantic Enhance System is designed to enhance
367
+ transmission quality of the key semantic contents which is
368
+ cared about in the specific task such as the panels or electrical
369
+ insulators in the intelligent substation patrol inspection task.
370
+ Figure 3. The process of the semantic enhancement system.
371
+ The system consists of two parts: a Yolo net to locate the
372
+ area with key semantic contents which will be sent into the
373
+ base model as well as a enhancement network which can get
374
+ more precious and high quality images at the receiver with the
375
+ input of the transmitted image and the areas with key semantic
376
+ contents.
377
+ In this paper, target detection network yolo-net is involved
378
+ to locate the key semantic contents instead of the semantic
379
+ segmentation network such as Unet or FCN in some other se-
380
+ mantic communication systems like [18], the principal reason
381
+ is as follows.
382
+ The pre-trained Yolo-net has the ability in finding and locat-
383
+ ing the objects which need to be shoot during the patrol task,
384
+ which is not only used to locate and mark the area containing
385
+ key semantic information during the semantic communication
386
+ process, but can also help the intelligent robots to judge
387
+ whether there exists objects in the patrol list to shoot and
388
+ how to change the position, angle and focal length of camera
389
+ to get a sharper image. Under the constraint of storage space
390
+ in the patrol robot, Yolo-net which can do multiple jobs is a
391
+ rather cost-effective choice.
392
+ As shown in Fig. 3, semantic enhancement system’s process
393
+ is as follows.
394
+ The area 𝑋𝑠𝑢𝑏 with key semantic contents is located by the
395
+ yolo-net with input of source image 𝑋,
396
+
397
+ Yolo-net
398
+
399
+ BASE
400
+ SYSTEM
401
+
402
+ Semantic
403
+ Enhancement
404
+ Model
405
+
406
+ Xsub1
407
+ Xsub
408
+ X final5
409
+ 𝑋𝑠𝑢𝑏 = 𝑌𝑜𝑙𝑜 𝑛𝑒𝑡(𝑋).
410
+ (10)
411
+ After sent into the base model, 𝑋𝑠𝑢𝑏 is encoded, transmitted
412
+ and finally reconstructed as the 𝑋𝑠𝑢𝑏
413
+ ′ at the receiver,
414
+ 𝑋𝑠𝑢𝑏
415
+ ′ = 𝐵𝑎𝑠𝑒 𝑠𝑦𝑠𝑡𝑒𝑚(𝑋𝑠𝑢𝑏).
416
+ (11)
417
+ At the same time, the whole image 𝑋 is transmitted through
418
+ the base model to get another area 𝑋𝑠𝑢𝑏1
419
+ ′ with key semantic
420
+ contents cut from the reconstructed image 𝑋
421
+ ′. The difference
422
+ between these two sub-images is calculated as follows.
423
+ 𝑋𝑑𝑖 𝑓 𝑓 = 𝑋𝑠𝑢𝑏1
424
+ ′ − 𝑋
425
+
426
+ 𝑠𝑢𝑏.
427
+ (12)
428
+ The DIFF image is sent to the semantic enhancement model
429
+ whose job is to balance the difference between two sub-
430
+ image to make full use of these extra information to let the
431
+ transmitted image as close as the original one in the area with
432
+ key semantic contents,
433
+ 𝑋𝑑𝑖 𝑓 𝑓
434
+ ′ = 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 𝑀𝑜𝑑𝑒𝑙(𝑋𝑑𝑖 𝑓 𝑓 ).
435
+ (13)
436
+ The final image is formed as follows.
437
+ 𝑋 𝑓 𝑖𝑛𝑎𝑙 = 𝑋
438
+ ′ + 𝑋𝑑𝑖 𝑓 𝑓
439
+ ′.
440
+ (14)
441
+ In this task, the similarity between the final image 𝑋 𝑓 𝑖𝑛𝑎𝑙
442
+ and the original image 𝑋 is focused on, which can help
443
+ decrease the possibility of errors or missing during analyzing
444
+ the images. So we choose the MSE loss and SSIM loss to
445
+ optimize the semantic enhancement models, and parameters
446
+ in the yolonet as well as the base model are fixed during the
447
+ optimization,
448
+ 𝐿𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 = ||𝑋 − 𝑋 𝑓 𝑖𝑛𝑎𝑙|| + 𝛼𝑆𝑆𝐼𝑀(𝑋, 𝑋 𝑓 𝑖𝑛𝑎𝑙).
449
+ (15)
450
+ In the end of Section II, the details of networks involved in
451
+ the STSCI is shown in table I and table II.
452
+ III. EXPERIMENTAL RESULTS
453
+ This section is mainly introduced the relevant testing set-
454
+ tings, including the dataset for STSCI’s train and test, the
455
+ introduction of baseline as well as evalation metrics and the
456
+ performance for the STSCI in different metrics.
457
+ Discription and figures are given to show how the STSCI
458
+ surpass the traditional image communication system or other
459
+ semantic system under some specific situations.
460
+ A. Dataset for train and test
461
+ The training dataset is formed of 10000 images sampled
462
+ from the COCO2014 dataset while 200 images of substation
463
+ are used to fine-tune the base system to improve the STSCI’s
464
+ performance in the intelligent substation patrol inspection task.
465
+ During the testing process, the images from COCO2014
466
+ testset which are not involved in training process are sampled
467
+ to measure the metrics of the communication systems.
468
+ B. Baseline and Evaluation metrics
469
+ The widely used image compression technology JPEG and
470
+ JPEG2000 are used as baseline for the image compression.
471
+ Table I
472
+ BASE SYSTEM
473
+ Model
474
+ Layers
475
+ Encoder
476
+ Conv2d,kernel=(7,7),stride=(1,1),channels=64
477
+ Conv2d,kernel=(3,3),stride=(2,2),channels=128
478
+ Conv2d,kernel=(3,3),stride=(2,2),channels=256
479
+ Conv2d,kernel=(3,3),stride=(2,2),channels=512
480
+ Conv2d,kernel=(3,3),stride=(2,2),channels=1024
481
+ Conv2d,kernel=(3,3),stride=(1,1),channels=3
482
+ Decoder
483
+ Conv2d,kernel=(3,3),stride=(1,1),channels=1024
484
+ RRDB(1024, 1024) x 9
485
+ ConvT,kernel=(3,3),stride=(2,2),channels=1024
486
+ ConvT,kernel=(3,3),stride=(2,2),channels=512
487
+ ConvT,kernel=(3,3),stride=(2,2),channels=256
488
+ ConvT,kernel=(3,3),stride=(2,2),channels=128
489
+ Conv2d,kernel=(7,7),stride=(1,1),channels=3
490
+ Discriminator
491
+ For latent Y: nearest neighbor upsampling 16x
492
+ concat[upsampled latent Y, input image X or X’]
493
+ Conv2d,kernel=(3,3),stride=(2,2),channels=64
494
+ Conv2d,kernel=(3,3),stride=(2,2),channels=128
495
+ Conv2d,kernel=(3,3),stride=(2,2),channels=256
496
+ Conv2d,kernel=(3,3),stride=(2,2),channels=512
497
+ Conv2d,kernel=(1,1),stride=(1,1),channels=1
498
+ Table II
499
+ SEMANTIC ENHANCEMENT MODEL
500
+ Model
501
+ Layers
502
+ Enhancement
503
+ Conv2d,kernel=(7,7),stride=(1,1),channels=64
504
+ Conv2d,kernel=(3,3),stride=(1,1),channels=128
505
+ Conv2d,kernel=(3,3),stride=(1,1),channels=256
506
+ Conv2d,kernel=(3,3),stride=(1,1),channels=512
507
+ Conv2d,kernel=(3,3),stride=(1,1),channels=1024
508
+ Conv2d,kernel=(3,3),stride=(1,1),channels=512
509
+ Conv2d,kernel=(3,3),stride=(1,1),channels=256
510
+ Conv2d,kernel=(3,3),stride=(1,1),channels=128
511
+ Conv2d,kernel=(3,3),stride=(1,1),channels=64
512
+ Conv2d,kernel=(7,7),stride=(1,1),channels=3
513
+ Both of the compression methods are the target for the base
514
+ model in STSCI to substitute for in the patrol task. The
515
+ LSCI proposed in [18] is also involved in the comparison. We
516
+ draw lessons from some tricks proposed in that paper, so it’s
517
+ necessary to show how we surpass it especially in the specific
518
+ task.
519
+
520
+ 6
521
+ Figure 4. The performance of the reconstructed image of JPEG, JPEG2000, LSCI and STSCI.
522
+ Figure 5. Visual example of images produced by LSCI along with the corresponding results for JPEG and JPEG2000.
523
+ Meanwhile, the LDPC channel coding is used to make
524
+ comparison with JSCC methods under simulated channel
525
+ conditions of the wireless transmission channels.
526
+ SSIM as well as PSNR is chosen as evaluation metrics to
527
+ measure both the quality of images at the recevier and the
528
+ similarity between the transmitted ones with the original ones,
529
+ which can help comprehensively describe the performance of
530
+ the communication systems.
531
+ C. Analysis for results in image compression
532
+ We visualize the outcome of the comparison between JPEG,
533
+ JPEG2000, LSCI and STSCI in image compression task in Fig.
534
+ 4. The x coordinate represents the average bits per pixel (bpp)
535
+ on the images, while the y coordinate individually show the
536
+ value of metrics of SSIM and PSNR.
537
+ From the Fig. 4, it’s obvious that STSCI is always preferred
538
+ to other image compression methods at equal bitrates. In the
539
+ bitrate around 0.15, the STSCI is 0.75 higher than the LSCI
540
+ and JPEG2000 in value of SSIM and 0.75 is a enormous
541
+ number which means the reconstructed image gained by
542
+ STSCI is much more resemble to the original ones.
543
+ And that is extatly the truth, visual examples presented in
544
+ Fig. 5 shows how clear the imge compressed by the STSCI.
545
+ Even using only half bpp of JPEG2000 and one of three bpp
546
+ of JPEG, image handled by STSCI is 0.1 higher in SSIM
547
+ and around 8dB higher in PSNR metrics. It’s esay for us
548
+ to see noises and distortions in images compressed by JPEG
549
+ and JPEG2000, compared to which, the STSCI’s job is much
550
+ better. Such results in compressing and transmitting the image
551
+ shows that STSCI can be equal to the specific patrol task with
552
+ higher quality and less bpp.
553
+ Considering that the base system is fine-tuned with some
554
+
555
+ 34
556
+ 0.900
557
+ 0.875
558
+ 32
559
+ 0.850
560
+
561
+ 0.825
562
+ 30
563
+ SSIM
564
+ PSNR
565
+ 0.800
566
+ SSIMvsbpp
567
+ PSNRvsbpp
568
+ 28
569
+ STSCI
570
+ STSCI
571
+ 0.775
572
+ LSCI
573
+ LSCI
574
+ 0.750
575
+ JPEG2000
576
+ 26
577
+ JPEG2000
578
+ JPEG
579
+ JPEG
580
+ 0.725
581
+ 0.10
582
+ 0.15
583
+ 0.20
584
+ 0.25
585
+ 0.30
586
+ 0.35
587
+ 0.10
588
+ 0.15
589
+ 0.20
590
+ 0.25
591
+ 0.30
592
+ 0.35
593
+ bpp
594
+ bpp80
595
+ 60
596
+ 10
597
+ Ob
598
+ 40
599
+ OB
600
+ 40
601
+ 120
602
+ 120
603
+ 120
604
+ 20
605
+ 140
606
+ 20
607
+ 140
608
+ 20
609
+ OC
610
+ 140
611
+ 0
612
+ 160
613
+ U
614
+ 160
615
+ 160
616
+ SSCI:
617
+ JPEG:
618
+ JPEG2000:
619
+ bpp = 0.13
620
+ bpp = 0.35
621
+ bpp = 0.21
622
+ SSIM = 0.92
623
+ SSIM = 0.79
624
+ SSIM = 0.82
625
+ PSNR = 32.6
626
+ PSNR = 26.1
627
+ PSNR = 26.57
628
+ Figure 6. Training details and visual example of the yolonet.
629
+ substation and industral images, and that’s why in this visual
630
+ sample, the STSCI’s SSIM and PSNR metrics are higher than
631
+ the average values in 0.13bpp. Indeed, in the substation patrol
632
+ task, the images of substation can be collected continuously to
633
+ fine-tune or even retrain the networks of Base system, which
634
+ can leads to better performance in the specific task.
635
+ Figure 7. visual example of the semantic enhancement model.
636
+ D.Analysis for semantic enhancement system
637
+ For example, taking the panel as the key semantic informa-
638
+ tion, a yolo-net is trained with 200 images of panels. Both the
639
+ details and the example of trained yolonet is shown in Fig. 6.
640
+ With pre-trained checkpoints involved, after 200 images’
641
+ training, the yolo-net is precious enough for the daily patorl
642
+ task with making errors or missing in low frequency.
643
+ Meanwhile Fig. 7 shows the effect of the semantic enhance-
644
+ ment model. The enhanced area in Fig. 7 has the high SSIM at
645
+ 0.946 and PSNR at 34.4dB. Through the enhancement model,
646
+ we can still see the direction of the hand on the panel, which
647
+ is of great meaningful information for the patrol task.
648
+ E.Simulated results for channel communication
649
+ In the experiments, we choose AWGN model to make
650
+ channel simulation. As shown in Fig. 7, when the SNR is
651
+ larger than 5dB, the value of SSIM and PSNR gained by
652
+ STSCI+LDPC is a bit higher than STSCI+JSCC, but when
653
+ the channel conditions gets bad and the SNR is close or
654
+ even lower than 0db, the quality of image transmitted through
655
+ JSCC metheds doesn’t decrease very fast and becomes much
656
+ higher than that of LDPC methods.And that’s what we want in
657
+ solving the specific task. One of the most importance mission
658
+ for STSCI in this task is to ensure the quality of image
659
+ sent back by robots when patrolling some marginal areas
660
+
661
+ train/box_loss
662
+ train/obj_loss
663
+ train/cls_loss
664
+ metrics/precision
665
+ metrics/recall
666
+ 0.12
667
+ 0.035
668
+ results
669
+ 1.0
670
+ 1.0
671
+ 0.030
672
+ 0.04
673
+ 0.10
674
+ 0.8
675
+ 0.8
676
+ 0.025
677
+ 0.02
678
+ 0.08
679
+ 0.6
680
+ 0.6
681
+ 0.020
682
+ 0.00
683
+ 0.06
684
+ 0.4
685
+ 0.4
686
+ 0.015
687
+ 0.02
688
+ 0.04
689
+ 0.2
690
+ 0.010
691
+ 0.2
692
+ 0.04
693
+ 0.02
694
+ 0.005
695
+ 0.0
696
+ 0.0
697
+ 0
698
+ 200
699
+ 0
700
+ 200
701
+ 200
702
+ 0
703
+ 200
704
+ 0
705
+ 200
706
+ val/box_loss
707
+ val/obj_loss
708
+ val/cls_loss
709
+ metrics/mAP_0.5
710
+ metrics/mAP_0.5:0.95
711
+ 1.0
712
+ 0.10
713
+ 0.020
714
+ 0.04
715
+ 0.8
716
+ 0.6
717
+ 0.08
718
+ 0.02
719
+ 0.015
720
+ 0.6
721
+ 0.00
722
+ 0.4
723
+ 0.06
724
+ 0.4
725
+ 0.010
726
+ 0.02
727
+ 0.2
728
+ 0.04
729
+ 0.2
730
+ 0.04
731
+ 0.005
732
+ 0.02
733
+ 0.0
734
+ 0.0
735
+ 0
736
+ 200
737
+ 200
738
+ 0
739
+ 200
740
+ 0
741
+ 200
742
+ 0
743
+ 200
744
+ 90%bpp:0.15
745
+ Enhance Part:
746
+ PSNR:32.4
747
+ SSIM:0.9468
748
+ Figure 8. Comparison between STSCI and LSCI with JSCC or channel slice models and traditional channel coding LDPC with SSIM and PSNR metrics.
749
+ with weak signal or under low signal-to-noise ratio channel
750
+ conditions. And unlike LSCI whose Encder and Decoder is
751
+ not optimized when involving the noise by using channel slice
752
+ models, STSCI’s performance in good channel conditions can
753
+ get closer and closer to the LDPC metheds.
754
+ IV. CONCLUSION
755
+ In this paper, a specific task-oriented semantic image com-
756
+ munication system STSCI is proposed for intelligent substa-
757
+ tion patorl inspection, which is mainly composed of a base
758
+ system and a semantic enhancemant system. To haddle the
759
+ task of ensuring the quality of images sent back by robots in
760
+ singal-weak areas of substation. We designed a GAN-based
761
+ networks in structure of auto-encoders to extremely compress
762
+ the images. And to preserve the key semantic contents during
763
+ transmission to decrease the posibility of errors or missing
764
+ of the inspection, a yolo-net is involved to locate the areas
765
+ with key semantic information, and a semantic enhancement
766
+ model is designed to make full use of these extra information
767
+ to make these areas clearer. Meanwhile, technology of JSCC
768
+ is involved to improve the performance of STSCI under low
769
+ signal-to-noise ratio channel conditions.
770
+ With all metheds taken, expriments show the specific task-
771
+ oriented semantic image communication system, the STSCI
772
+ has the ability in solving this inspection task.
773
+ V. ACKNOWLEDGEMENTS
774
+ This work is supported in part by the National Key R&D
775
+ Program of China under Grant 2022YFB2902102.The work
776
+ of Chen Dong is supported by The Academician expert Open
777
+ Fund of Beijing Smart-chip Microelectronics Technology Co.,
778
+ Ltd under project SGITZXDTKJJS2201045.
779
+ REFERENCES
780
+ [1] C. E. Shannon, “A mathematical theory of communication,” The Bell
781
+ System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. I
782
+ [2] M. Kountouris and N. Pappas, “Semantics-empowered communication
783
+ for networked intelligent systems,” IEEE Communications Magazine,
784
+ vol. 59, no. 6, pp. 96–102, 2021. I
785
+ [3] P. Zhang, W. Xu, H. Gao, K. Niu, X. Xu, X. Qin, C. Yuan, Z. Qin,
786
+ H. Zhao, J. Wei, and F. Zhang, “Toward wisdom-evolutionary and
787
+ primitive-concise 6g: A new paradigm of semantic communication
788
+ networks,” Engineering, vol. 8, pp. 60–73, 2022. I
789
+ [4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
790
+ for semantic segmentation,” in Proceedings of the IEEE conference on
791
+ computer vision and pattern recognition, 2015, pp. 3431–3440. I
792
+ [5] V. Badrinarayanan, A. Handa, and R. Cipolla, “Segnet: A deep con-
793
+ volutional encoder-decoder architecture for robust semantic pixel-wise
794
+ labelling,” arXiv preprint arXiv:1505.07293, 2015. I
795
+ [6] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
796
+ for biomedical image segmentation,” in International Conference on
797
+ Medical image computing and computer-assisted intervention. Springer,
798
+ 2015, pp. 234–241. I
799
+ [7] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
800
+ object detection with region proposal networks,” Advances in neural
801
+ information processing systems, vol. 28, 2015. I
802
+ [8] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
803
+ Berg, “Ssd: Single shot multibox detector,” in European conference on
804
+ computer vision.
805
+ Springer, 2016, pp. 21–37. I
806
+ [9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
807
+ once: Unified, real-time object detection,” in Proceedings of the IEEE
808
+ conference on computer vision and pattern recognition, 2016, pp. 779–
809
+ 788. I
810
+ [10] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
811
+ Proceedings of the IEEE conference on computer vision and pattern
812
+ recognition, 2017, pp. 7263–7271. I
813
+ [11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
814
+ S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
815
+ Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020. I
816
+ [12] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
817
+ P. Abbeel, “Infogan: Interpretable representation learning by information
818
+ maximizing generative adversarial nets,” Advances in neural information
819
+ processing systems, vol. 29, 2016. I
820
+ [13] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
821
+ for generative adversarial networks,” in Proceedings of the IEEE/CVF
822
+ conference on computer vision and pattern recognition, 2019, pp. 4401–
823
+ 4410. I
824
+ [14] U. Michelucci, “An introduction to autoencoders,” arXiv preprint
825
+ arXiv:2201.03898, 2022. I
826
+ [15] E. Bourtsoulatze, D. B. Kurka, and D. G¨und¨uz, “Deep joint source-
827
+ channel coding for wireless image transmission,” IEEE Transactions on
828
+ Cognitive Communications and Networking, vol. 5, no. 3, pp. 567–579,
829
+ 2019. I, II
830
+ [16] D. B. Kurka and D. G¨und¨uz, “Deepjscc-f: Deep joint source-channel
831
+ coding of images with feedback,” IEEE Journal on Selected Areas in
832
+ Information Theory, vol. 1, no. 1, pp. 178–193, 2020. I
833
+ [17] F. Mentzer, G. D. Toderici, M. Tschannen, and E. Agustsson, “High-
834
+ fidelity generative image compression,” Advances in Neural Information
835
+ Processing Systems, vol. 33, pp. 11 913–11 924, 2020. II, II
836
+ [18] C. Dong, H. Liang, X. Xu, S. Han, B. Wang, and P. Zhang, “Semantic
837
+
838
+ 0.85
839
+ 30
840
+ 28
841
+ 0.80
842
+ PSNR(dB)
843
+ SSIM
844
+ 26
845
+ 0.75
846
+ AWGN
847
+ AWGN
848
+ 24
849
+ STSCI-JSCC
850
+ STSCI-JSCC
851
+ STSCI-LDPC
852
+ STSCI-LDPC
853
+ 0.70
854
+ 22
855
+ LSCI-ChannelModel
856
+ .
857
+ LSCI-ChannelModel
858
+ LSCI-LDPC
859
+ LSCI-LDPC
860
+ 0.65
861
+ 20
862
+ 5
863
+ 0
864
+ 5
865
+ 10
866
+ 15
867
+ 5
868
+ 0
869
+ 5
870
+ 10
871
+ 15
872
+ SNR(dB)
873
+ AWGN
874
+ SNR(dB)9
875
+ communication system based on semantic slice models propagation,”
876
+ IEEE Journal on Selected Areas in Communications, 2022. II, II, III
877
+ [19] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
878
+ style transfer and super-resolution,” in European conference on computer
879
+ vision.
880
+ Springer, 2016, pp. 694–711. II
881
+ [20] C. Ledig, L. Theis, F. Husz´ar, J. Caballero, A. Cunningham, A. Acosta,
882
+ A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
883
+ image super-resolution using a generative adversarial network,” in
884
+ Proceedings of the IEEE conference on computer vision and pattern
885
+ recognition, 2017, pp. 4681–4690. II
886
+ [21] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and
887
+ C. Change Loy, “Esrgan: Enhanced super-resolution generative adversar-
888
+ ial networks,” in Proceedings of the European conference on computer
889
+ vision (ECCV) workshops, 2018, pp. 0–0. II
890
+
BtE1T4oBgHgl3EQfpgUG/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNFQT4oBgHgl3EQf_zdP/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5e452bfcd2d565c8a484de104033dc2b52982c0b461830430b68ce018f165b8
3
+ size 3538989
DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62db0244b9302e6dc30be681d8f0f26ab3ebfcc134e8fc825fac0501ef3645ed
3
+ size 123972
DtE1T4oBgHgl3EQfEQNL/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5ab80c06685aeda2aabdecbf57bc02a0e2c3696c955e7e960574c6bc90461d5
3
+ size 1179693
DtE1T4oBgHgl3EQfEQNL/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68eb8a22fa58d093198b44b21003d9d6d12d87266bbf75b8b09810adb1602077
3
+ size 42205
E9E1T4oBgHgl3EQfEgPe/content/2301.02892v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2e2f5957864496dd9791104860425db30e1c9937f99a4240e8dcd3eacac996f
3
+ size 3082691
GNAzT4oBgHgl3EQfxP7V/content/2301.01736v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8fa9e46a216bbd57ab0074a6d61d10e42222463b4f1559d625960acc35475e0
3
+ size 207211
GNAzT4oBgHgl3EQfxP7V/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b83d7fe5655d5811ab25cad57013f4bf058ceadc5ddc6f9d051458b16d75215
3
+ size 84867
HNE1T4oBgHgl3EQfrQW4/content/tmp_files/2301.03353v1.pdf.txt ADDED
@@ -0,0 +1,1029 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Learning Bidirectional Action-Language Translation with Limited
2
+ Supervision and Incongruent Extra Input
3
+ Ozan ¨Ozdemira, Matthias Kerzela, Cornelius Webera, Jae Hee Leea, Muhammad
4
+ Burhan Hafeza, Patrick Brunsb, Stefan Wermtera
5
+ aKnowledge Technology, Department of Informatics, University of Hamburg,
6
+ Vogt-Koelln-Str. 30, 22527 Hamburg, Germany
7
+ bBiological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11,
8
+ 20146 Hamburg, Germany
9
+ ARTICLE HISTORY
10
+ Compiled January 10, 2023
11
+ ABSTRACT
12
+ Human infant learning happens during exploration of the environment, by interac-
13
+ tion with objects, and by listening to and repeating utterances casually, which is
14
+ analogous to unsupervised learning. Only occasionally, a learning infant would re-
15
+ ceive a matching verbal description of an action it is committing, which is similar to
16
+ supervised learning. Such a learning mechanism can be mimicked with deep learn-
17
+ ing. We model this weakly supervised learning paradigm using our Paired Gated
18
+ Autoencoders (PGAE) model, which combines an action and a language autoen-
19
+ coder. After observing a performance drop when reducing the proportion of super-
20
+ vised training, we introduce the Paired Transformed Autoencoders (PTAE) model,
21
+ using Transformer-based crossmodal attention. PTAE achieves significantly higher
22
+ accuracy in language-to-action and action-to-language translations, particularly in
23
+ realistic but difficult cases when only few supervised training samples are available.
24
+ We also test whether the trained model behaves realistically with conflicting multi-
25
+ modal input. In accordance with the concept of incongruence in psychology, conflict
26
+ deteriorates the model output. Conflicting action input has a more severe impact
27
+ than conflicting language input, and more conflicting features lead to larger interfer-
28
+ ence. PTAE can be trained on mostly unlabelled data where labeled data is scarce,
29
+ and it behaves plausibly when tested with incongruent input.
30
+ KEYWORDS
31
+ Unsupervised learning; weak supervision; autoencoders; object manipulation;
32
+ robot action; language grounding; Transformers; bidirectional translation
33
+ 1. Introduction
34
+ Embodiment, i.e., action-taking in the environment, is considered essential for lan-
35
+ guage learning (Bisk et al. 2020). Recently, language grounding with robotic object
36
+ manipulation has received considerable attention from the research community. Most
37
+ approaches proposed in this domain cover robotic action execution based on linguistic
38
+ input (Hatori et al. 2018; Shridhar, Mittal, and Hsu 2020; Shao et al. 2020; Lynch
39
+ and Sermanet 2021), i.e., language-to-action translation. Others cover language pro-
40
+ duction based on the actions done on objects (Heinrich et al. 2020; Eisermann et al.
41
+ CONTACT Ozan ¨Ozdemir. Email: [email protected]
42
+ arXiv:2301.03353v1 [cs.CL] 9 Jan 2023
43
+
44
+ 2021), i.e., action-to-language translation. However, only few approaches (Ogata et al.
45
+ 2007; Yamada et al. 2018; Antunes et al. 2019; Abramson et al. 2020; ¨Ozdemir, Kerzel,
46
+ and Wermter 2021) handle both directions by being able to not just execute actions
47
+ according to given instructions but also to describe those actions, i.e., bidirectional
48
+ translation.
49
+ Moreover, as infants learn, the actions that they are performing are not permanently
50
+ being labeled by matching words from their caretakers, hence, supervised learning with
51
+ labels must be considered rare. Instead, infants rather explore the objects around them
52
+ and listen to utterances, which may not frequently relate to their actions, hence, un-
53
+ supervised learning without matching labels is abundant. Nevertheless, most language
54
+ grounding approaches do not make use of unsupervised learning except those that use
55
+ some unsupervised loss terms (Yamada et al. 2018; Abramson et al. 2020; ¨Ozdemir,
56
+ Kerzel, and Wermter 2021), while large language models (LLMs) (Devlin et al. 2019;
57
+ Radford et al. 2019; Brown et al. 2020) introduced for various unimodal downstream
58
+ language tasks rely on unsupervised learning for pretraining objectives.
59
+ In order to reduce this dependence on labeled data during training, we introduce
60
+ a new training procedure, in which we limit the amount of training data used for
61
+ supervised learning. More precisely, we only use a certain portion of training samples
62
+ for crossmodal action-to-language and language-to-action translations whilst training
63
+ unimodally on the rest of the training samples. As crossmodal translation requires
64
+ each sample modality to be labeled with the other modality (e.g., an action sequence
65
+ must be paired with a corresponding language description), we artificially simulate the
66
+ realistic conditions where there is a large amount of unlabelled (unimodal) data but
67
+ a much smaller amount of labeled (crossmodal) data.
68
+ slide blue quickly
69
+ Figure 1.
70
+ Our table-top object manipulation sce-
71
+ nario in the simulation environment: the NICO robot
72
+ is moving the blue cube on the table. The performed
73
+ action is labeled as “slide blue quickly”. Our approach
74
+ can translate from language to action and vice versa;
75
+ i.e., we perform actions that are described in language
76
+ and also describe the given actions using language.
77
+ Another aspect of human language
78
+ learning is that it takes place in an envi-
79
+ ronment and while using different modal-
80
+ ities such as vision and proprioception.
81
+ Concepts such as weight, softness, and
82
+ size cannot be grounded without being
83
+ in the environment and interacting with
84
+ objects. Language learning approaches
85
+ that use multiple modalities and take ac-
86
+ tion in an environment into account are
87
+ preferable to those that use a unimodal
88
+ approach to process large amounts of
89
+ text. Hence we strive to devise embodied
90
+ multimodal models that tackle language
91
+ grounding. To this end, our robotic object
92
+ manipulation dataset is generated from a
93
+ simulation setup as seen in Figure 1. We
94
+ use a humanoid child-size robot Neuro-
95
+ Inspired COmpanion (NICO) (Kerzel et
96
+ al. 2017; Kerzel et al. 2020) to perform
97
+ various actions on cubes on a table and label those actions with language descriptions.
98
+ We introduce further details of our setup in Section 4.
99
+ Different from other approaches, our previous Paired Gated Autoencoders (PGAE)
100
+ model (¨Ozdemir, Kerzel, Weber, Lee, and Wermter 2022) can bidirectionally trans-
101
+ late between language and action, which enables an agent not only to execute actions
102
+ according to given instructions but also to recognize and verbalize its own actions
103
+ 2
104
+
105
+ or actions executed by another agent. As the desired translation task is communi-
106
+ cated to the network through an additional signal word in the language input, PGAE
107
+ can flexibly translate between and within modalities during inference. However, when
108
+ trained under limited supervision conditions, PGAE performs poorly on the action-to-
109
+ language translation task, under two conditions: Firstly, we experiment with reducing
110
+ the number of supervised training iterations while using the whole data set for super-
111
+ vised training. Secondly, we experiment with reducing the number of training samples
112
+ used with the supervised signals. In both instances, though the first is more trivial than
113
+ the second, the action-to-language performance of PGAE suffers as the proportion of
114
+ supervision decreases.
115
+ To overcome this hurdle, we present a novel model, Paired Transformed Au-
116
+ toencoders (PTAE), in this follow-up paper. Inspired by the successful application
117
+ of the Crossmodal Transformer in vision-language navigation by the Hierarchical
118
+ Cross-Modal Agent (HCM) architecture (Irshad, Ma, and Kira 2021), PTAE replaces
119
+ PGAE’s gated multimodal fusion mechanism and optionally the LSTM-based (long
120
+ short-term memory) (Hochreiter and Schmidhuber 1997) encoders with a Crossmodal
121
+ Transformer. Thanks to its more efficient and sequence-retaining crossmodal attention
122
+ mechanism, PTAE achieves superior performance even when an overwhelming major-
123
+ ity of training iterations (e.g., 98 or 99%) consist of unsupervised learning. When the
124
+ majority of training samples are used for unsupervised learning, PTAE still maintains
125
+ its perfect action-to-language performance up to 80% of training samples learned uni-
126
+ modally and performs relatively well for the 90% case (over 80% sentence accuracy).
127
+ Even for the cases where only 1 or 2% of the training samples are used in a super-
128
+ vised fashion, which is analogous to few-shot learning, PTAE describes actions well
129
+ over chance level with up to 50% success rate. Our results hint that PTAE precludes
130
+ the need for large amounts of expensive labeled data, which is required for supervised
131
+ learning, as the new architecture with the Crossmodal Transformer as the multimodal-
132
+ ity fusion technique significantly outperforms PGAE (¨Ozdemir et al. 2022) under the
133
+ limited supervision training conditions.
134
+ Furthermore, inspired by the concept of incongruence in psychology and to test
135
+ the robustness of the trained model to noise, for each task we introduce an extra
136
+ input that is contradictory to the expected output of the model. For example, for
137
+ language-to-action translation, we introduce extra conflicting action input showing an
138
+ action that is different from the expected action from the model. The intertwined
139
+ processing of language and action input in the Crossmodal Transformer resembles
140
+ the tight interconnection between language and sensorimotor processes that has been
141
+ observed in the human brain (Hauk, Johnsrude, and Pulverm¨uller 2004; van Elk et al.
142
+ 2010). Embodied accounts of human language comprehension assume that linguistic
143
+ information induces mental simulations of relevant sensorimotor experiences. As a
144
+ direct consequence of embodied language processing, conflicts between linguistic input
145
+ and sensorimotor processes have been shown to result in bidirectional impairments
146
+ of language comprehension on the one hand and perceptual judgments and motor
147
+ responses on the other hand (Aravena et al. 2010; Glenberg and Kaschak 2002; Kaschak
148
+ et al. 2005; Meteyard, Bahrami, and Vigliocco 2007), although the strength of these
149
+ behavioral effects has recently been debated (Winter et al. 2022). In our PTAE model,
150
+ we found asymmetry in terms of the impact of the action and language modalities on
151
+ the performance of the model. Regardless of the output modality, introducing extra
152
+ contradictory action input affects the model performance much more than introducing
153
+ it in the language modality.
154
+ Our contributions in this work can be summarised as:
155
+ 3
156
+
157
+ (1) We introduce PTAE that handles realistic learning conditions that mainly in-
158
+ clude unsupervised/unpaired language and action experiences while requiring
159
+ minimal use of labeled data, which is expensive to collect.
160
+ (2) We show plausible behavior of the model when testing it with psychology-
161
+ inspired contradictory information.
162
+ The remainder of this paper is as follows: in Section 2, we summarise different
163
+ approaches in language grounding with robotic object manipulation. In Section 3, we
164
+ define our PTAE in detail. Section 4 introduces the experiments and their results. In
165
+ Section 5, we discuss these results, while Section 6 concludes the paper.
166
+ 2. Related Work
167
+ There are several approaches toward intelligent agents that combine language learning
168
+ with interactions in a 3D environment. A comprehensive research program (Abramson
169
+ et al. 2020) proposed combining supervised learning, reinforcement learning (RL),
170
+ and imitation learning. In the environment, two agents communicate with each other
171
+ as one agent (setter) asks questions to or instructs the other (solver) that answers
172
+ questions and interacts with objects accordingly. However, the scenario is abstract
173
+ with unrealistic object interaction. Hence, proprioception is not used as the actions
174
+ are high level, and a transfer of the approach from simulation to the real world would
175
+ be non-trivial.
176
+ Jang et al. (2021) proposed BC-Z which leverages a large multi-task dataset (100
177
+ tasks) to train a single policy, which is supervised with behavior cloning to match
178
+ the actions demonstrated by humans in the dataset. To generalize to new tasks, the
179
+ policy is conditioned on a task description; a joint embedding of a video demonstra-
180
+ tion, and a language instruction. This allows passing either the video command or
181
+ the language command to the policy when being trained to match the actions in a
182
+ demonstration. BC-Z generalizes to different tasks, but requires a large collection of
183
+ human demonstrations, which is expensive. It also relies on human intervention to
184
+ avoid unsafe situations and to correct mistakes.
185
+ Inspired by Yamada et al. (2018), we introduced the bidirectional Paired Varia-
186
+ tional Autoencoders (PVAE) (¨Ozdemir et al. 2021) that is capable of modeling both
187
+ language-to-action and action-to-language translation in a simple table-top setting
188
+ where a humanoid robot interacts with small cubes. The approach can pair each robotic
189
+ action sample (a sequence of joint values and visual features) with multiple language
190
+ descriptions involving alternative words replacing original words. The two variational
191
+ autoencoder networks of the model do not share any connections but are aligned with
192
+ a binding loss term. Due to the lack of common multimodal representations, PVAE
193
+ needs to be prepared for each translation task in advance. To overcome this issue, we
194
+ proposed a bidirectional attention-based multimodal network, PGAE (¨Ozdemir et al.
195
+ 2022), which can flexibly translate between the two modalities with the help of a signal
196
+ phrase.
197
+ Another approach, CLIPort (Shridhar, Manuelli, and Fox 2021), combines the CLIP
198
+ model (Radford et al. 2021) for pretrained vision-language representations with the
199
+ Transporter model (Zeng et al. 2020) for robotic manipulation tasks. Transporter takes
200
+ an action-centric approach to perception by detecting actions, rather than objects, and
201
+ then learns a policy, which allows CLIPort to exploit geometric symmetries for efficient
202
+ representation learning. On multiple object manipulation tasks, CLIPort outperforms
203
+ 4
204
+
205
+ CLIP and Transporter alone. Further, CLIPort trained on multiple tasks performs
206
+ better in most cases than CLIPort trained only on particular tasks. This supports
207
+ the hypothesis that language-conditioned task-learning skills can be transferred from
208
+ one task to another. However, the approach is only realized with a relatively simple
209
+ gripper as it does not output joint angle values but 2D pixel affordance predictions.
210
+ The actual action execution relies on the calibration between the robotic arm base
211
+ and the RGB-D camera.
212
+ More recently, the same authors introduced Perceiver-Actor (PERACT) (Shridhar,
213
+ Manuelli, and Fox 2022), which is designed to efficiently learn multi-task robotic ma-
214
+ nipulations according to given language input by utilizing voxel grids extracted from
215
+ RGB-D images. The backbone of the model is the Transformer-based Perceiver IO
216
+ (Jaegle et al. 2021) that uses latent vectors to tackle the processing of very long se-
217
+ quences. After the processing of appended language and voxel encodings by Perceiver
218
+ IO, the voxels are decoded again to generate discrete actions by using linear trans-
219
+ formations. PERACT achieves promising results in multiple tasks such as opening a
220
+ drawer, turning a tap, and sliding blocks. However, as it only produces discrete actions,
221
+ it relies on a random motion planner to execute instructions.
222
+ SayCan (Ahn et al. 2022), utilizes LLMs to provide task-grounding capabilities to
223
+ the agent, which is capable of executing short-horizon commands. The use of LLMs
224
+ helps to ground these capabilities in the real world using value functions of the agent
225
+ in order to produce feasible and useful instructions. However, the approach is limited
226
+ to the set of skills that the agent can possess in the environment. An LLM is utilized
227
+ to assign affordance probabilities to these skills according to a given high-level user
228
+ instruction. The way these skills are defined in language (the wording, the length,
229
+ etc.) can affect the performance of the whole system, e.g., LLMs tend to favor shorter
230
+ phrases over longer ones.
231
+ GATO (Reed et al. 2022) is a single multi-task, multi-embodiment model that is
232
+ general and performs well on hundreds of tasks in various domains such as playing Atari
233
+ games, manipulating objects, image captioning, etc. Regardless of the modality (e.g.,
234
+ vision, proprioception, language, etc.), the input is flattened and embedded before it
235
+ is provided to the model. The model is a large Transformer decoder that has the same
236
+ weights and architecture for all tasks and is trained solely in a supervised manner.
237
+ However, despite performing moderately in each task, the approach cannot compete
238
+ with specialized approaches in various tasks.
239
+ The encoder-decoder-based VisuoMotor Attention model, VIMA for short, (Jiang
240
+ et al. 2022) is another object manipulation approach. It deals with robot action gen-
241
+ eration from multimodal prompts by interleaving language and image or video frame
242
+ tokens at the input level. VIMA uses an object detection module to extract objects
243
+ and bounding boxes from visual input to use as object tokens. The object tokens
244
+ are then interleaved with the language tokens and processed by the pretrained T5
245
+ model (Raffel et al. 2020) which is used as the encoder. On the decoder end, the ap-
246
+ proach uses a causal Transformer decoder which consists of cross- and self-attention
247
+ layers and autoregressively generates actions based on the history of previous actions
248
+ and the multimodal prompt. It is shown that VIMA outperforms state-of-the-art ap-
249
+ proaches, including GATO, on a number of increasingly difficult object manipulation
250
+ tasks involving zero-shot generalization with unseen objects and their combinations.
251
+ An apparent weakness of VIMA is that it relies on the performance of off-the-self
252
+ object detectors.
253
+ Different from most of the aforementioned approaches, our model is bidirectional: it
254
+ can not only produce actions according to given language descriptions but also recog-
255
+ 5
256
+
257
+ <BOS>
258
+ pull
259
+ red
260
+ <EOS>
261
+ pull
262
+ fast
263
+ j1
264
+ v1
265
+ jM
266
+ vM
267
+ j1
268
+ ĵ2
269
+ y1
270
+ yN-1
271
+ v1
272
+ vM-1
273
+ v2
274
+ ĵ2
275
+ ĵM-1
276
+ y2
277
+ ĵM
278
+ x1
279
+ y1
280
+ y3
281
+ 'execute:
282
+ pull red
283
+ fast'
284
+ LSTM
285
+ LSTM
286
+ LSTM
287
+ ĵ3
288
+ LSTM
289
+ LSTM
290
+ LSTM
291
+ Crossmodal Transformer
292
+ FFW
293
+ FFW
294
+ h
295
+ Lfeats
296
+ Afeats
297
+ hdec
298
+ hdec
299
+ A
300
+ L
301
+ Figure 2.
302
+ The architecture of the PTAE model. The inputs are a language description (incl. a task signal)
303
+ and a sequence of visual features (extracted using the channel-separated convolutional autoencoder) and joint
304
+ values, while the outputs are a description and a sequence of joint values. Language encoder can be an LSTM,
305
+ the BERT Base model (Devlin et al. 2019), or the descriptions can be directly passed to the transformer word
306
+ by word. The action encoder can be an LSTM or the action sequence can be passed directly to the transformer.
307
+ Both decoders are LSTMs - we show unfolded versions of the LSTMs. The bottleneck, where the two streams
308
+ are connected, is based on the Crossmodal Transformer. h is the shared representation vector.
309
+ nize actions and produce their descriptions. As our model is based on an autoencoder-
310
+ like architecture, it can be trained in a mostly unsupervised way by asking the model
311
+ to reproduce the given language or proprioception input. Moreover, our approach is
312
+ flexible during inference since it does not need to be reconfigured for the translation
313
+ task: due to the inclusion of the task signal in the language input, our PTAE can
314
+ reliably execute the desired task on the go, whether it is a translation from language
315
+ to action or vice versa. This is an essential step towards an autonomous agent that
316
+ can interact within the environment as well as communicate with humans.
317
+ 3. Paired Transformed Autoencoder
318
+ Our model, named PTAE, is an encoder-decoder architecture that is capable of bidi-
319
+ rectional translation between robot actions and language. It consists of a Crossmodal
320
+ Transformer that is the backbone and multimodality fusion mechanism of the architec-
321
+ ture, and LSTM-based decoders that output language and joint values respectively. As
322
+ input, PTAE accepts language descriptions of actions including the task signal, which
323
+ defines the translation direction, as well as a sequence of the concatenation of joint
324
+ values and visual features. According to the task signal, PTAE outputs joint values
325
+ required for executing a particular action or it outputs language descriptions of an
326
+ action.
327
+ As shown in Figure 2, PTAE is composed of a Crossmodal Transformer, which ac-
328
+ cepts multimodal input (i.e., language, proprioception, and vision), and language and
329
+ action decoders that output language descriptions and joint values respectively. The
330
+ language and action input can optionally be preprocessed by LSTM-based encoders
331
+ as in the case of PGAE1. However, after some initial trials with both cases, in this
332
+ paper, we do not use any extra encoding layers before the Crossmodal Transformer
333
+ 1For exact definitions of LSTM-based language and action encoder, readers may refer to the PGAE paper
334
+ (¨Ozdemir et al. 2022).
335
+ 6
336
+
337
+ Scaled Dot Product Attention
338
+ Lfeats
339
+ Afeats
340
+ Input
341
+ Emb.
342
+ V
343
+ Conc.
344
+ K
345
+ Q
346
+ Pos.
347
+ Emb.
348
+ Lfeats
349
+ Input
350
+ Emb.
351
+ FFW
352
+ h
353
+ FFW
354
+ FFW
355
+ FFW
356
+ Scal.
357
+ Dot
358
+ Prod.
359
+ Att.
360
+ Figure 3.
361
+ The architecture of the Crossmodal Transformer: Language features are embedded and used as
362
+ the query vector (Q), whereas the embedded action features are used as the key (K) and value (V) vectors.
363
+ The positional embedding is applied only to the language features. The multi-head attention (MHA) involves
364
+ the Q-, K- and V-specific feedforward (FFW) and scaled dot product attention layer following the original
365
+ Transformer architecture. The multiple heads are then concatenated and fed to the final FFW, which outputs
366
+ the common hidden representation vector h.
367
+ for the sake of simplicity and model size as we do not see any significant change in the
368
+ performance.
369
+ 3.1. Crossmodal Transformer
370
+ The Crossmodal Transformer replaces the Gated Multimodal Unit (GMU) (Arevalo
371
+ et al. 2020) in our previous PGAE model (¨Ozdemir et al. 2022) and can be employed
372
+ essentially as language and action encoders. The simplified architecture of the Cross-
373
+ modal Transformer can be seen in Figure 3. The functionality of the Crossmodal
374
+ Transformer is to extract the common latent representations of paired language and
375
+ action sequences. Following the HCM architecture (Irshad et al. 2021), we use the lan-
376
+ guage modality as queries (Q vectors) and the action modality (concatenated visual
377
+ features and joint values) as keys (K vectors) and values (V vectors). The language de-
378
+ scriptions are represented as one-hot encoded vectors, whilst action input is composed
379
+ of joint values of NICO’s left arm and the visual features from images recorded by
380
+ the camera in NICO’s eye. As in PGAE, we use a channel-separated convolutional au-
381
+ toencoder (CAE) to extract visual features from images. The Crossmodal Transformer
382
+ encodes the common latent representations as follows:
383
+ Q = ReLU
384
+
385
+ W token · xt + btoken�
386
+ + PE(xt)
387
+ (1 ≤ t ≤ N + 1),
388
+ K, V = ReLU
389
+
390
+ W act · [vt; jt] + bact�
391
+ (1 ≤ t ≤ M),
392
+ At = MHA(Q, K, V )
393
+ (1 ≤ t ≤ N + 1),
394
+ ht = PWFF(At)
395
+ (1 ≤ t ≤ N + 1),
396
+ h = AvgPool(ht)
397
+ (1 ≤ t ≤ N + 1),
398
+ where x, v and j are linguistic, visual, and proprioceptive inputs respectively – note
399
+ that when no language or action encoder is used, x corresponds to Lfeats, while the
400
+ concatenation of visual features and joint values [vt; jt] corresponds to Afeats in Figure
401
+ 3. ReLU is the rectified linear unit activation function while PE, MHA, and PWFF are
402
+ the positional encodings, multi-head attention layer, and the position-wise feedforward
403
+ 7
404
+
405
+ layer as used in the original Transformer paper (Vaswani, Shazeer, Parmar, Uszkoreit,
406
+ Jones, Gomez, Kaiser, and Polosukhin 2017). At is the crossmodal attention vector
407
+ for time step t, whereas ht is the hidden vector for time step t. AvgPool is the average
408
+ pooling applied on the time axis to the sequential hidden vector to arrive at the
409
+ common latent representation vector h. For our experiments, we employ a single-layer
410
+ Crossmodal Transformer with 4 parallel attention heads.
411
+ 3.2. Language Decoder
412
+ We use an LSTM as the language decoder in order to autoregressively generate the
413
+ descriptions word by word by expanding the common latent representation vector h
414
+ produced by the Crossmodal Transformer:
415
+ hdec
416
+ 0 , cdec
417
+ 0
418
+ = W dec · h + bdec,
419
+ hdec
420
+ t
421
+ , cdec
422
+ t
423
+ = LSTM(yt−1, hdec
424
+ t−1, cdec
425
+ t−1) (1 ≤ t ≤ N − 1),
426
+ yt = soft(W out · hdec
427
+ t
428
+ + bout)
429
+ (1 ≤ t ≤ N − 1),
430
+ where soft represents the softmax activation function. y0 is the vector for the symbol
431
+ indicating the beginning of the sentence, the <BOS> tag.
432
+ 3.3. Action Decoder
433
+ Similarly, an LSTM is employed as the action decoder to output joint angle values at
434
+ each time step with the help of the common representation vector h:
435
+ hdec
436
+ 0 , cdec
437
+ 0
438
+ = W dec · h + bdec,
439
+ hdec
440
+ t
441
+ , cdec
442
+ t
443
+ = LSTM(vt, ˆȷt, hdec
444
+ t−1, cdec
445
+ t−1)
446
+ (1 ≤ t ≤ M − 1),
447
+ ˆȷt+1 = tanh(W out · hdec
448
+ t
449
+ + bout)
450
+ (1 ≤ t ≤ M − 1),
451
+ where ˆȷt is the predicted joint values for time step t and tanh is the hyperbolic tangent
452
+ activation function. We take ˆȷ1 as j1, i.e., ground-truth joint angle values corresponding
453
+ to the initial position of the arm. The visual features used as input v are extracted
454
+ from the ground-truth images and used similarly to teacher forcing, whereas the joint
455
+ angle values ˆȷt are used autoregressively.
456
+ 3.4. Visual Feature Extraction
457
+ Following the PGAE pipeline (¨Ozdemir et al. 2022), the channel-separated convolu-
458
+ tional autoencoder (CAE) is used to extract visual features from first-person images
459
+ from the eye cameras of NICO recorded in the simulation. We utilize channel sep-
460
+ aration when extracting visual features: an instance of the CAE is trained for each
461
+ RGB color channel. In a previous paper (¨Ozdemir et al. 2021), we show that channel
462
+ separation distinguishes object colors more accurately than the regular CAE without
463
+ channel separation.
464
+ We feed each instance of the channel-separated CAE with the corresponding chan-
465
+ nel of RGB images of size 120 × 160. The channel-separated CAE is made up of a
466
+ convolutional encoder, a fully-connected bottleneck, and a deconvolutional decoder.
467
+ 8
468
+
469
+ Each RGB channel is trained separately, after which we extract the channel-specific
470
+ visual features from the bottleneck and concatenate them to arrive at composite visual
471
+ features. These visual features make up v which is used as vision input to PTAE. For
472
+ further details on the visual feature extraction process, readers may refer to (¨Ozdemir
473
+ et al. 2021).
474
+ 3.5. Loss Function
475
+ We use two loss functions to calculate the deviation from the ground-truth language
476
+ descriptions and joint values. The language loss, Llang, is calculated as the cross entropy
477
+ between input and output words, while the action loss, Lact, is the mean squared error
478
+ (MSE) between original and predicted joint values:
479
+ Llang =
480
+ 1
481
+ N − 1
482
+ N−1
483
+
484
+ t=1
485
+
486
+
487
+ V −1
488
+
489
+ i=0
490
+ x[i]
491
+ t+1 log y[i]
492
+ t
493
+
494
+ ,
495
+ Lact =
496
+ 1
497
+ M − 1
498
+ M−1
499
+
500
+ t=1
501
+ ∥jt+1 − ˆȷt+1∥2
502
+ 2 ,
503
+ where V is the vocabulary size, N is the number of words per description, and M is the
504
+ sequence length for action trajectories. The total loss is then the sum of the language
505
+ and action losses:
506
+ Lall = αLlang + βLact
507
+ where α and β are weighting factors for language and action terms in the loss function.
508
+ In our experiments, we take both α and β as 1.0. We use the identical loss functions
509
+ as PGAE except for the weight vector used in the language loss.
510
+ 3.6. Training Details
511
+ Visual features are extracted in advance by the channel-separated CAE before train-
512
+ ing PTAE and PGAE. Visual features are necessary to execute actions according to
513
+ language instructions since cube arrangements are decisive in manipulating the left or
514
+ right object, i.e., determining whether to manipulate the left or right cube depends on
515
+ the position of the target cube. After extracting visual features, both PGAE and PTAE
516
+ are trained end-to-end with all three modalities. After initial experiments, PGAE is
517
+ trained for 6,000 epochs, while PTAE is trained for 2,500 epochs using the gradient
518
+ descent algorithm and Adam optimizer (Kingma and Ba 2015). For PTAE, we decided
519
+ that h has 256 dimensions, whereas the same vector has 50 dimensions in PGAE. x
520
+ has 28 dimensions, j has 5 dimensions, N is equal to 5, while M is 50 for fast and
521
+ 100 for slow actions. For both PGAE and PTAE, we take the learning rate as 10−5
522
+ with a batch size of 6 samples after determining them as optimal hyperparameters.
523
+ PTAE has approximately 1.5M parameters compared to PGAE’s a little over 657K
524
+ parameters.
525
+ 9
526
+
527
+ 4. Experiments
528
+ We use the same dataset (¨Ozdemir et al. 2021) as in the PGAE paper (¨Ozdemir
529
+ et al. 2022), except that in this paper we exclude experiments with another agent
530
+ from the opposite side of the table. The dataset encompasses 864 samples of sequences
531
+ of images and joint values alongside their textual descriptions. It consists of robot
532
+ actions on two cubes of different colors on the table by the NICO robot, generated
533
+ using inverse kinematics and created in the simulation environment using Blender
534
+ software2. The NICO robot has a camera in each eye, which is used to record a sequence
535
+ of egocentric images. According to the scenario, NICO manipulates one of the two
536
+ cubes on the table with its left arm at a time. In total, the dataset includes 12 distinct
537
+ actions, 6 cube colors, 288 descriptions, and 144 patterns (action-description-cube
538
+ arrangement combinations). The 144 patterns are randomly varied six times in terms
539
+ of action execution in simulation: we arrive at a dataset of 864 samples in total. Out
540
+ of 864 samples, 216 samples that involve every unique description and action type are
541
+ excluded and used as the test set. The remaining 648 samples make up the training
542
+ set. The vocabulary consists of the following words divided into 3 categories:
543
+ • 6 action words (3 original/3 alternative): “push/move-up”, “pull/move-down”,
544
+ “slide/move-sideways”
545
+ • 12 colour words (6 original/6 alternative): “red/scarlet”, “green/harlequin”,
546
+ “blue/azure”, “yellow/blonde”, “cyan/greenish-blue”, “violet/purple”
547
+ • 4 speed words (2 original/2 alternative): “slowly/unhurriedly”, “fast/quickly”
548
+ The sentences consist of a word from each category: therefore, our textual descriptions
549
+ are 3-word sentences. For more details on the dataset, readers may consult our pre-
550
+ vious work (¨Ozdemir et al. 2021). PGAE and PTAE are trained on this dataset and
551
+ their performances are tested in terms of action-to-language and language-to-action
552
+ translations under different amounts of supervision.
553
+ Task signals. We use four signals to train PTAE. According to the given signal, the
554
+ input and output of the model change. The signals are:
555
+ • Describe: action-to-language translation
556
+ • Execute: language-to-action translation
557
+ • Repeat Action: action-to-action translation
558
+ • Repeat Language: language-to-language translation
559
+ According to the latter two “repeat” signals, the network uses mainly unimodal infor-
560
+ mation. The “describe” and “execute” signals, on the other hand, involve crossmodal
561
+ translation from one modality to the other. The unimodal signals are used in the
562
+ unsupervised learning of an autoencoder, whereas the crossmodal signals are used
563
+ in supervised learning, where coordinated action values and language labels must be
564
+ available. In the case of PGAE training, an additional “repeat both” signal is also
565
+ used, which also requires coordinated labels, and leads to slightly better performance
566
+ (¨Ozdemir et al. 2022). For the PTAE, however, this was found unnecessary.
567
+ Reduction of supervised training. We restrict the amount of supervision by in-
568
+ creasing the ratio of unsupervised learning iterations, i.e., training with the unimodal
569
+ “repeat” signals, in the overall training iterations. Thereby the ratio of supervised
570
+ 2https://www.blender.org/
571
+ 10
572
+
573
+ Figure 4.
574
+ Sentence accuracy for action-to-language translation on the test set wrt. supervised training itera-
575
+ tions. Supervised training refers to crossmodal translation cases “describe” and “execute”. The two crossmodal
576
+ signals receive the same number of iterations between them out of the supervised iterations. We report the
577
+ results for 1%, 2%, 10%, 20%, 50%, and 66.6% (the regular training case) crossmodal (supervised) iterations.
578
+ These percentages correspond to the fraction of supervised training iterations for PGAE and PTAE. Note that
579
+ the 100% case is not shown here, since the models need unsupervised iterations (unimodal repeat signals) to
580
+ be able to perform the “repeat language” and “repeat action” tasks.
581
+ learning iterations, i.e., training with the crossmodal signals, decreases. The resulting
582
+ training paradigm is analogous to developmental language learning, where an infant
583
+ is exposed only to a limited amount of supervision. We train both PTAE and PGAE
584
+ with varying ratios of unimodal/total training iterations. For another set of experi-
585
+ ments, we restrict the amount of supervision by limiting the proportion of training
586
+ samples used for crossmodal translation tasks. We test the performance of both mod-
587
+ els with varying degrees of unsupervised training under different schemes (limiting the
588
+ percentage of iterations or samples) on the crossmodal translation tasks.
589
+ In this work, we investigate action-to-language and language-to-action translations
590
+ because they are the more important and difficult tasks. For the “repeat” tasks, the
591
+ results match our previous work; therefore, the readers can refer to our publication
592
+ (¨Ozdemir et al. 2022). Figure 4 shows the results of PGAE and PTAE on action-
593
+ to-language translation with different percentages of training iterations used in a su-
594
+ pervised fashion. Both PGAE and PTAE with different training regimes based on
595
+ different proportions of supervised training iterations achieve accuracies higher than
596
+ chance level (2.78%), which we calculate based on our grammar (action, color, speed):
597
+ 1÷(3×6×2). The action-to-language translation performance of PGAE falls when the
598
+ ratio of crossmodal (viz. supervised) training iterations is low, particularly when 10%
599
+ or a smaller proportion of the iterations are supervised. Even though the description
600
+ accuracy slightly increases to over 95% when supervised training amounts to only 20%
601
+ of all training iterations, it sharply drops to well below 50% when the rate is decreased
602
+ to 2%. PGAE is able to describe 36% of the test samples when only 1% of the training
603
+ iterations are used to learn crossmodal translations between action and language. In
604
+ contrast, PTAE maintains its perfect description accuracy even when it has only been
605
+ 11
606
+
607
+ Action-to-Language Performance wrt. Ratio of Supervised Training Iterations
608
+ 80
609
+ (%)
610
+ Sentence Accuracy
611
+ 60
612
+ PGAE
613
+ PTAE
614
+ chance
615
+ 40
616
+ 20
617
+ 2
618
+ 10
619
+ 20
620
+ 50
621
+ 66
622
+ (Crossmodal Training Iterations)-(Total Training Iterations) (%)Figure 5.
623
+ Sentence accuracy for action-to-language translation on the test set wrt. supervised training sam-
624
+ ples. Supervised training refers to crossmodal translation cases “describe” and “execute”. We limit the number
625
+ of training samples for the supervised tasks. We report the results for the 1%, 2%, 5% 10%, 20%, 50%, and
626
+ 66.6% cases as well as the 100% regular training case. These percentages correspond to the fraction of training
627
+ samples used exclusively for the supervised training for PGAE and PTAE, i.e., both “execute” and “describe”
628
+ signals are trained with only a limited number of samples corresponding to the percentages.
629
+ trained with 1% supervised training iterations. While there is a detrimental impact of
630
+ reduced supervision, i.e., the limitation on the percentage of crossmodal training itera-
631
+ tions, on the action-to-language translation performance of PGAE, transformer-based
632
+ PTAE is not affected by the same phenomenon. For space reasons, we do not report
633
+ language-to-action results wrt. different percentages of supervised iterations, but we
634
+ observed a similar trend comparable with Figure 4.
635
+ In order to further investigate the performance of PTAE with limited supervision,
636
+ we introduce a more challenging training regime. We limit the number of training
637
+ samples shown to supervised signals, “describe” and “execute”, and show the rest of
638
+ the training samples only on “repeat action” and “repeat language” modes. We train
639
+ both PGAE and PTAE with varying percentages of supervised training samples. The
640
+ results can be seen in Figure 5. In all cases with different proportions of supervised
641
+ training samples, both PGAE and PTAE outperform the chance level. While main-
642
+ taining perfect sentence accuracy down to 20% supervised training and keeping up
643
+ its performance for 10% supervised training for the “describe” signal, PTAE’s perfor-
644
+ mance drops sharply when the ratio of training samples used for crossmodal signals
645
+ is 2% and below. Nevertheless, PTAE beats PGAE in each case when trained on dif-
646
+ ferent percentages of supervised training samples. PGAE’s performance suffers even
647
+ when 50% of training samples are used for supervised signals; it drops below 80% -
648
+ PTAE retains 100% for the same case. It takes more than 90% of the training samples
649
+ to be exclusively used in the unsupervised signals for PTAE’s performance to decrease
650
+ meaningfully (from 100% to 81%), while this ratio is much lower for PGAE as its per-
651
+ formance already drops significantly at 50%. Even for 1% supervised training samples
652
+ which amount to only 7 training samples, PTAE manages to translate one-third of the
653
+ test samples from action to sentences.
654
+ 12
655
+
656
+ Action-to-Language Performance wrt. Ratio of Supervised Training Samples
657
+ 100
658
+ PGAE
659
+ -PTAE
660
+ chance
661
+ 80-
662
+ Sentence Accuracy (%)
663
+ 60
664
+ 40
665
+ 20
666
+ 0-
667
+ 12
668
+ 5
669
+ 20
670
+ 50
671
+ 1o
672
+ 66
673
+ 100
674
+ (Crossmodal Training Samples)-(Total Training Samples) (%)Figure 6.
675
+ Joint value prediction error in language-to-action translation on the test set wrt. supervised training
676
+ samples. Supervised training refers to crossmodal translation cases “describe” and “execute”. We limit the
677
+ number of training samples for the supervised tasks. We report the results for the 1%, 2%, 5% 10%, 20%, 50%,
678
+ and 66.6% cases as well as the 100% regular training case. These percentages correspond to the fraction of
679
+ training samples used exclusively for the supervised training for PGAE and PTAE. “execute” and “describe”
680
+ translations are shown the same limited number of samples.
681
+ Language-to-action translation results with respect to different percentages of su-
682
+ pervised training samples for PGAE and PTAE are shown in Figure 6. We show the
683
+ deviation of the produced joint values from the original ones in terms of the normalized
684
+ root-mean-squared error (NRMSE), which we obtain by normalizing the root-mean-
685
+ squared error (RMSE) between the predicted and ground-truth values by the range of
686
+ joint values – the lower percentages indicate better prediction (0% NRMSE meaning
687
+ predicted values are identical with ground-truth values), whereas the higher percent-
688
+ ages indicate worse prediction (100% NRMSE meaning the RMSE between predicted
689
+ and ground-truth values is equal to the range of possible values). We can see a similar
690
+ trend as in action-to-language translation apart from the regular case (100%) when
691
+ PGAE has a lower error than PTAE, which is probably due to the fact that PGAE
692
+ is trained for more than two times the number of iterations than PTAE since it takes
693
+ longer for PGAE’s training loss to reach a global minimum. In all other cases, limiting
694
+ the ratio of training samples to be used in the supervised modes impacts PGAE’s
695
+ language-to-action performance heavily: the NRMSE rises from less than 0.5% to al-
696
+ most 8% when the percentage of supervised samples is reduced to two-thirds of the
697
+ training samples. The error rate increases further as the number of training samples
698
+ used in the crossmodal training modes decreases. The NRMSE for PTAE is also in-
699
+ versely proportional to the ratio of supervised training samples. However, the impact
700
+ of limiting the number of training samples for supervised modes on PTAE is much
701
+ lower than on PGAE. When the percentage of supervised training samples is reduced
702
+ to 1%, the deviation from the ground-truth joint values is only a little more than 4%
703
+ for PTAE, whereas the same statistic for PGAE is almost 14%.
704
+ 13
705
+
706
+ 14
707
+ ★-PGAE
708
+ PTAE
709
+ 12
710
+ 10
711
+ 2
712
+ 01
713
+ 12
714
+ 5
715
+ 10
716
+ 20
717
+ 50
718
+ 66
719
+ 100
720
+ (Crossmodal Training Samples)-(Total Training Samples) (%)Figure 7.
721
+ Model performance on the test set wrt. no. of conflicts introduced in the extra input. For action-
722
+ to-language and language-to-language (the top row), we show the predicted sentence accuracies. For language-
723
+ to-action and action-to-action, we show the normalized root-mean-squared error (NRMSE) for predicted joint
724
+ values. The modality in which the conflicts are introduced is given in the x-axis. For each signal, we add extra
725
+ conflicting inputs either in the action or language input. When the conflict is introduced in action, we also
726
+ test having the conflict only in the vision and only in the proprioception submodality - in this case, the other
727
+ submodality has the matching input.
728
+ Exposure to conflicting input modalities. We also investigate the impact of
729
+ contradictory extra input on the performance of PTAE. For this, we use PTAE-regular
730
+ that is trained with 33% unsupervised training iterations and no contradictory input.
731
+ We test the robustness of our approach to varying numbers of conflicts (up to 3) in
732
+ the extra input. The definitions of the added conflict per task signal are:
733
+ • “describe”: Here, we add a conflicting description to the language input (conflict
734
+ in language).
735
+ • “execute”: Here, we use a conflicting sequence of vision and proprioception input
736
+ (conflict in action).
737
+ • “repeat action”: Here, we add a conflicting description to the language input
738
+ (conflict in language).
739
+ • “repeat language”: Here, we use a conflicting sequence of vision and propriocep-
740
+ tion input (conflict in action).
741
+ The conflicts are introduced using the following scheme:
742
+ • for the conflict in the extra language input; one, two, or all of the action, color,
743
+ and speed words that constitute a description, do not match with the action.
744
+ • for the conflict in the extra action input; one, two, or all of the action-type,
745
+ position, and speed aspects, which form distinct actions, do not match with the
746
+ language description.
747
+ The results of this experiment are given in Figure 7. In the case of the “describe” and
748
+ “repeat action” signals, the action supplies the relevant input whereas the language
749
+ 14
750
+
751
+ Action-to-Language Performance
752
+ Language-to-Language Performance
753
+ 100
754
+ 100
755
+ Action (Vis.+Prop.) Conf.
756
+ Only Vis. Conf.
757
+ Only Prop. Conf.
758
+ Sentence Accuracy (%)
759
+ 80
760
+ 80
761
+ 60 -
762
+ 60 -
763
+ 40
764
+ 40
765
+ 20 -
766
+ 20
767
+ 0
768
+ No. of conflicts in extra language input
769
+ No.of conflicts in extra action input
770
+ Action-to-Action Performance
771
+ Language-to-Action Performance
772
+ Action (Vis.+Prop.) Conf.
773
+ Only Vis. Conf.
774
+ Only Prop. Conf.
775
+ 2
776
+ 2
777
+ No. of conflicts in extra language input
778
+ No. of conflicts in extra action inputis the conflicting distractor. Here, we observe only a slight decrease in performance.
779
+ In the case of action-to-language translation (“describe”) the sentence accuracy goes
780
+ down from 100% to 95% when there are three conflicting input elements (action type,
781
+ color, speed). Action-to-action (“repeat action”) translation manages to retain its
782
+ performance as the error in joint values only slightly increases from 1.03% to 1.09%
783
+ for the case with 3 conflicts.
784
+ In the case of “execute” and “repeat language” signals, the language supplies the
785
+ relevant input while the action is the conflicting distractor. Here, we observe a big
786
+ performance drop. Language-to-action translation (“execute”) suffers heavily as the
787
+ deviation of the predicted joint values from the ground-truth joint values increases from
788
+ 0.99% to 4.95%. In the language-to-language translation case (“repeat language”),
789
+ PTAE loses its ability to repeat the given language description when one or more
790
+ conflicting elements (action type, position, speed) are introduced with the extra input:
791
+ the sentence accuracy decreases from 100% to 0%.
792
+ Therefore, we can see the asymmetric impact of conflicts in the two modalities,
793
+ namely, when language input is introduced as a contradictory element, the perfor-
794
+ mance drops slightly, whereas when the contradictory input is introduced in the action
795
+ stream, the model is affected heavily and performs poorly. The output modality has
796
+ no significant impact on the result; for example, we can see that both “describe” and
797
+ “repeat language” output language at large, but they are affected very differently by
798
+ the conflicting input. To test whether the bigger impact of conflicting action input
799
+ is due to the involvement of two modalities in action (vision and proprioception), we
800
+ also tried introducing the conflict either only in vision or only in proprioception (the
801
+ relatively brighter bars in the two charts on the right in Figure 7). In either case, the
802
+ performance is still substantially negatively affected, although the drop in performance
803
+ is naturally not as severe as introducing the conflict in both modalities.
804
+ 5. Discussion
805
+ The experimental results on action-to-language and language-to-action translations
806
+ show the superior performance and efficiency of our novel PTAE model under lim-
807
+ ited supervision. Limiting the percentage of supervised crossmodal iterations during
808
+ training has no adverse effect on PTAE as it maintains its perfect sentence accuracy
809
+ when translating from action to language. In contrast, the previous PGAE model’s
810
+ action-to-language translation accuracy drops substantially to around 40% when only
811
+ 1 or 2% of the training iterations are supervised.
812
+ When we challenge both models more by limiting the number of training samples for
813
+ the supervised crossmodal “execute” and “describe” signals, we see a similar pattern:
814
+ when 50% or less of the training samples are used for supervised signals, action-to-
815
+ language sentence accuracy for PGAE decreases directly proportional to the ratio of
816
+ supervised samples. PTAE, on the other hand, retains its action-to-language perfor-
817
+ mance up until the case where only 5% of the training samples are used in a supervised
818
+ fashion. Even after being trained with 2% supervised training, which amounts to only
819
+ 13 samples out of 648, PTAE is able to describe more than half of the action sequences
820
+ correctly. All in all, PTAE shows superior action-to-language performance than PGAE
821
+ for varied levels of limited supervision.
822
+ The adverse effect of limiting the number of supervised training samples on the
823
+ language-to-action performance can already be seen for PGAE even when only one-
824
+ third of the samples are excluded (66% supervised case). The NRMSE between pre-
825
+ 15
826
+
827
+ dicted and ground-truth joint values rises significantly from around 0.5% to around
828
+ 8%. It continues to increase gradually after reducing the level of supervision to 20%.
829
+ On the contrary, PTAE is robust against the limited supervision with respect to the
830
+ ratio of crossmodal training samples until the supervised percentage is brought down
831
+ to 10%. After that, it can be seen that the error rate gradually increases, albeit only
832
+ just over 4% for PTAE when only 7 samples are used for the supervised signals. Over-
833
+ all, these results indicate the clear superiority of Transformer-based multimodal fusion
834
+ over a simpler attention mechanism by GMU in terms of performance and efficiency.
835
+ Although it is relatively larger than PGAE, PTAE is trained much faster and reaches
836
+ a global optimum in less than half of the training iterations of PGAE.
837
+ When introducing a conflicting modality input during testing, we observed an asym-
838
+ metry in that a conflicting action input leads to a larger disturbance than a conflicting
839
+ language input. One possible reason is that the Crossmodal Transformer architecture
840
+ is asymmetric: As input, we are using action input as two input vectors (K and V:
841
+ keys and values), whereas language as one input vector (Q: queries). This setting was
842
+ chosen because the opposite setup (with action as queries) was found less performant.
843
+ Our setup can be interpreted as language-conditioned action attention. A computa-
844
+ tionally more expensive architecture could combine both asymmetric setups, as has
845
+ been done for learning vision and language representations (Lu et al. 2019).
846
+ Another possible reason for the larger impact of a conflicting action could be that
847
+ the action input combines two submodalities, vision, and proprioception, and therefore
848
+ involves more information than the language input. However, limiting the conflict to
849
+ one of the submodalities did not completely remove the asymmetry as introducing the
850
+ conflict only in one action submodality (vision or proprioception) still had a stronger
851
+ effect on the model performance than a conflicting language input. Unlike language,
852
+ vision contains the complete information to perform a task. Consider the example “pull
853
+ red slowly” for language-to-action translation. Here, the language does not contain
854
+ any information about whether the object is on the left or right side, so the agent can
855
+ only execute this correctly when also taking visual input into account during action
856
+ execution. In contrast, in the opposite direction (action-to-language translation) and
857
+ in action repetition, the visual input has the complete information.
858
+ 6. Conclusion
859
+ In this paper, we introduced a paired Transformer-based autoencoder, PTAE, which we
860
+ trained largely by unsupervised learning with additional, but reduced supervision. The
861
+ PTAE achieves significantly better action-to-language and language-to-action transla-
862
+ tion performance under limited supervision conditions compared to the former GMU-
863
+ based model, PGAE. Furthermore, we tested the robustness of our new approach
864
+ against contradictory extra input. In line with the concept of incongruence in psy-
865
+ chology, these experiments show that conflict deteriorates the output of our model,
866
+ and more conflicting features lead to higher interference. We also found an asymmetry
867
+ between the action and language modalities in terms of their conflicting impact: the
868
+ action modality has significantly more influence over the performance of the model
869
+ regardless of the main output modality.
870
+ Our novel bidirectional embodied language learning model is flexible in performing
871
+ multiple tasks and it is efficient and robust against the scarcity of labeled data. Hence,
872
+ it is a step towards an autonomous agent that can communicate with humans while
873
+ performing various tasks in the real world. In the future, we will expand our approach
874
+ 16
875
+
876
+ with reinforcement learning to reduce the need for expert-defined action trajectories.
877
+ Furthermore, a reinforcement learner may explore more dexterous object manipula-
878
+ tion with diversified action trajectories. With more realistic action execution, we will
879
+ attempt to tackle the problem of sim-to-real transfer. Lastly, diversifying our action
880
+ repertoire will inevitably lead to more diverse natural language descriptions, which we
881
+ can tackle by employing a pretrained Transformer-based large language model as a
882
+ language encoder.
883
+ Disclosure statement
884
+ The authors report there are no competing interests to declare.
885
+ Funding
886
+ This work was supported by the German Research Foundation (DFG) under Project
887
+ TRR 169 Crossmodal Learning (CML), LeCareBot, IDEAS, and MoReSpace.
888
+ References
889
+ Abramson, J., A. Ahuja, A. Brussee, F. Carnevale, M. Cassin, S. Clark, A. Dudzik, P. Georgiev,
890
+ A. Guy, T. Harley, F. Hill, A. Hung, Z. Kenton, J. Landon, T. P. Lillicrap, K. W. Mathewson,
891
+ A. Muldal, A. Santoro, N. Savinov, V. Varma, G. Wayne, N. Wong, C. Yan, and R. Zhu.
892
+ 2020. Imitating interactive intelligence. arXiv preprint arXiv:2012.05672.
893
+ Ahn, M., A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
894
+ ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
895
+ Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
896
+ S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse,
897
+ D. Reyes, P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao,
898
+ P. Xu, S. Xu, M. Yan, and A. Zeng. 2022. Do as I can and not as I say: Grounding language
899
+ in robotic affordances. arXiv preprint arXiv:2204.01691.
900
+ Antunes, A., A. Laflaquiere, T. Ogata, and A. Cangelosi. 2019.
901
+ A bi-directional multiple
902
+ timescales LSTM model for grounding of actions and verbs. In 2019 IEEE/RSJ International
903
+ Conference on Intelligent Robots and Systems (IROS), pp. 2614–2621.
904
+ Aravena, P., E. Hurtado, R. Riveros, J. F. Cardona, F. Manes, and A. Ib´a˜nez. 2010. Applauding
905
+ with closed hands: neural signature of action-sentence compatibility effects. PloS ONE 5(7),
906
+ e11751.
907
+ Arevalo, J., T. Solorio, M. Montes-y G´omez, and F. A. Gonz´alez. 2020. Gated multimodal
908
+ networks. Neural Computing and Applications 32(14), 10209–10228.
909
+ Bisk, Y., A. Holtzman, J. Thomason, J. Andreas, Y. Bengio, J. Chai, M. Lapata, A. Lazari-
910
+ dou, J. May, A. Nisnevich, N. Pinto, and J. Turian. 2020, November. Experience grounds
911
+ language. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
912
+ Processing, pp. 8718–8735. Association for Computational Linguistics.
913
+ Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
914
+ P. Shyam, G. Sastry, A. Askell, et al. 2020. Language models are few-shot learners. Advances
915
+ in Neural Information Processing Systems 33, 1877–1901.
916
+ Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019, June. BERT: Pre-training of deep
917
+ bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
918
+ ence of the North American Chapter of the Association for Computational Linguistics: Hu-
919
+ man Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota,
920
+ pp. 4171–4186. Association for Computational Linguistics.
921
+ 17
922
+
923
+ Eisermann, A., J. H. Lee, C. Weber, and S. Wermter. 2021, Jul. Generalization in multimodal
924
+ language learning from simulation. In Proceedings of the International Joint Conference on
925
+ Neural Networks (IJCNN 2021).
926
+ Glenberg, A. M. and M. P. Kaschak. 2002.
927
+ Grounding language in action.
928
+ Psychonomic
929
+ Bulletin & Review 9(3), 558–565.
930
+ Hatori, J., Y. Kikuchi, S. Kobayashi, K. Takahashi, Y. Tsuboi, Y. Unno, W. Ko, and J. Tan.
931
+ 2018. Interactively picking real-world objects with unconstrained spoken language instruc-
932
+ tions. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp.
933
+ 3774–3781. IEEE.
934
+ Hauk, O., I. Johnsrude, and F. Pulverm¨uller. 2004. Somatotopic representation of action words
935
+ in human motor and premotor cortex. Neuron 41(2), 301–307.
936
+ Heinrich, S., Y. Yao, T. Hinz, Z. Liu, T. Hummel, M. Kerzel, C. Weber, and S. Wermter.
937
+ 2020. Crossmodal language grounding in an embodied neurocognitive model. Frontiers in
938
+ Neurorobotics 14, 52.
939
+ Hochreiter, S. and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9(8),
940
+ 1735–1780.
941
+ Irshad, M. Z., C.-Y. Ma, and Z. Kira. 2021.
942
+ Hierarchical cross-modal agent for robotics
943
+ vision-and-language navigation. In 2021 IEEE International Conference on Robotics and
944
+ Automation (ICRA), pp. 13238–13246.
945
+ Jaegle, A., S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran,
946
+ A. Brock, E. Shelhamer, et al. 2021. Perceiver io: A general architecture for structured inputs
947
+ & outputs. In International Conference on Learning Representations.
948
+ Jang, E., A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn.
949
+ 2021. BC-z: Zero-shot task generalization with robotic imitation learning. In 5th Annual
950
+ Conference on Robot Learning.
951
+ Jiang, Y., A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,
952
+ and L. Fan. 2022. VIMA: General robot manipulation with multimodal prompts.
953
+ Kaschak, M. P., C. J. Madden, D. J. Therriault, R. H. Yaxley, M. Aveyard, A. A. Blanchard,
954
+ and R. A. Zwaan. 2005. Perception of motion affects language processing. Cognition 94(3),
955
+ B79–B89.
956
+ Kerzel, M., T. Pekarek-Rosin, E. Strahl, S. Heinrich, and S. Wermter. 2020. Teaching NICO
957
+ how to grasp: an empirical study on crossmodal social interaction as a key factor for robots
958
+ learning from humans. Frontiers in Neurorobotics 14, 28.
959
+ Kerzel, M., E. Strahl, S. Magg, N. Navarro-Guerrero, S. Heinrich, and S. Wermter. 2017.
960
+ NICO—Neuro-Inspired COmpanion: A developmental humanoid robot platform for mul-
961
+ timodal interaction. In 2017 26th IEEE International Symposium on Robot and Human
962
+ Interactive Communication (RO-MAN), pp. 113–120. IEEE.
963
+ Kingma, D. P. and J. Ba. 2015. Adam: A method for stochastic optimization. In 3rd Interna-
964
+ tional Conference on Learning Representations, ICLR, San Diego, CA, USA, May 7-9.
965
+ Lu, J., D. Batra, D. Parikh, and S. Lee. 2019.
966
+ ViLBERT: Pretraining task-agnostic visi-
967
+ olinguistic representations for vision-and-language tasks.
968
+ In H. Wallach, H. Larochelle,
969
+ A. Beygelzimer, F. d'Alch´e-Buc, E. Fox, and R. Garnett (Eds.), Advances in Neural Infor-
970
+ mation Processing Systems, Volume 32. Curran Associates, Inc.
971
+ Lynch, C. and P. Sermanet. 2021. Language conditioned imitation learning over unstructured
972
+ data. In D. A. Shell, M. Toussaint, and M. A. Hsieh (Eds.), Robotics: Science and System
973
+ XVII.
974
+ Meteyard, L., B. Bahrami, and G. Vigliocco. 2007. Motion detection and motion verbs: Lan-
975
+ guage affects low-level visual perception. Psychological Science 18(11), 1007–1013. PMID:
976
+ 17958716.
977
+ Ogata, T., M. Murase, J. Tani, K. Komatani, and H. G. Okuno. 2007. Two-way translation
978
+ of compound sentences and arm motions by recurrent neural networks. In 2007 IEEE/RSJ
979
+ International Conference on Intelligent Robots and Systems, pp. 1858–1863.
980
+ ¨Ozdemir, O., M. Kerzel, C. Weber, J. H. Lee, and S. Wermter. 2022. Learning flexible transla-
981
+ tion between robot actions and language descriptions. In E. Pimenidis, P. Angelov, C. Jayne,
982
+ 18
983
+
984
+ A. Papaleonidas, and M. Aydin (Eds.), Artificial Neural Networks and Machine Learning –
985
+ ICANN 2022, Cham, pp. 246–257. Springer Nature Switzerland.
986
+ ¨Ozdemir, O., M. Kerzel, and S. Wermter. 2021, Aug. Embodied language learning with paired
987
+ variational autoencoders.
988
+ In 2021 IEEE International Conference on Development and
989
+ Learning (ICDL), pp. 1–6.
990
+ Radford, A., J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
991
+ P. Mishkin, J. Clark, et al. 2021. Learning transferable visual models from natural language
992
+ supervision. In International Conference on Machine Learning, pp. 8748–8763. PMLR.
993
+ Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. 2019. Language models
994
+ are unsupervised multitask learners.
995
+ Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
996
+ Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer.
997
+ Journal of Machine Learning Research 21(140), 1–67.
998
+ Reed, S., K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
999
+ Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess,
1000
+ Y. Chen, R. Hadsell, O. Vinyals, M. Bordbar, and N. de Freitas. 2022. A generalist agent.
1001
+ Shao, L., T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg. 2020. Concept2robot: Learning
1002
+ manipulation concepts from instructions and human demonstrations.
1003
+ In Proceedings of
1004
+ Robotics: Science and Systems (RSS).
1005
+ Shridhar, M., L. Manuelli, and D. Fox. 2021. CLIPort: What and where pathways for robotic
1006
+ manipulation. In Proceedings of the 5th Conference on Robot Learning (CoRL).
1007
+ Shridhar, M., L. Manuelli, and D. Fox. 2022. Perceiver-Actor: A multi-task transformer for
1008
+ robotic manipulation. In Proceedings of the 6th Conference on Robot Learning (CoRL).
1009
+ Shridhar, M., D. Mittal, and D. Hsu. 2020. INGRESS: Interactive visual grounding of referring
1010
+ expressions. The International Journal of Robotics Research 39(2-3), 217–232.
1011
+ van Elk, M., H. T. van Schie, R. A. Zwaan, and H. Bekkering. 2010. The functional role of
1012
+ motor activation in language processing: Motor cortical oscillations support lexical-semantic
1013
+ retrieval. Neuroimage 50(2), 665–677.
1014
+ Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, �L. Kaiser, and
1015
+ I. Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing
1016
+ Systems, pp. 5998–6008.
1017
+ Winter, A., C. Dudschig, J. Miller, R. Ulrich, and B. Kaup. 2022. The action-sentence com-
1018
+ patibility effect (ace): Meta-analysis of a benchmark finding for embodiment. Acta Psycho-
1019
+ logica 230, 103712.
1020
+ Yamada, T., H. Matsunaga, and T. Ogata. 2018. Paired recurrent autoencoders for bidirec-
1021
+ tional translation between robot actions and linguistic descriptions. IEEE Robotics and
1022
+ Automation Letters 3(4), 3441–3448.
1023
+ Zeng, A., P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
1024
+ D. Duong, V. Sindhwani, and J. Lee. 2020. Transporter networks: Rearranging the visual
1025
+ world for robotic manipulation. In J. Kober, F. Ramos, and C. J. Tomlin (Eds.), 4th Con-
1026
+ ference on Robot Learning, CoRL 2020, 16-18 November 2020, Virtual Event / Cambridge,
1027
+ MA, USA, Volume 155 of Proceedings of Machine Learning Research, pp. 726–747. PMLR.
1028
+ 19
1029
+