jackkuo commited on
Commit
82c76af
·
verified ·
1 Parent(s): 8b25f45

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E4T4oBgHgl3EQfEAsg/content/tmp_files/2301.04873v1.pdf.txt +1627 -0
  2. -9E4T4oBgHgl3EQfEAsg/content/tmp_files/load_file.txt +0 -0
  3. -NE1T4oBgHgl3EQfUgOU/content/tmp_files/2301.03091v1.pdf.txt +737 -0
  4. -NE1T4oBgHgl3EQfUgOU/content/tmp_files/load_file.txt +0 -0
  5. -dE2T4oBgHgl3EQfmQc9/content/tmp_files/2301.03996v1.pdf.txt +658 -0
  6. -dE2T4oBgHgl3EQfmQc9/content/tmp_files/load_file.txt +425 -0
  7. -tFAT4oBgHgl3EQfqR1A/content/tmp_files/2301.08646v1.pdf.txt +367 -0
  8. -tFAT4oBgHgl3EQfqR1A/content/tmp_files/load_file.txt +181 -0
  9. .gitattributes +1 -0
  10. 1dFLT4oBgHgl3EQfpy-5/content/tmp_files/2301.12137v1.pdf.txt +2635 -0
  11. 1dFLT4oBgHgl3EQfpy-5/content/tmp_files/load_file.txt +0 -0
  12. 39E1T4oBgHgl3EQf6AV3/content/tmp_files/2301.03518v1.pdf.txt +389 -0
  13. 39E1T4oBgHgl3EQf6AV3/content/tmp_files/load_file.txt +287 -0
  14. 4NAyT4oBgHgl3EQf1_nb/content/tmp_files/2301.00745v1.pdf.txt +1307 -0
  15. 4NAyT4oBgHgl3EQf1_nb/content/tmp_files/load_file.txt +0 -0
  16. 69E3T4oBgHgl3EQfRQm6/content/tmp_files/2301.04420v1.pdf.txt +2163 -0
  17. 69E3T4oBgHgl3EQfRQm6/content/tmp_files/load_file.txt +0 -0
  18. 79E2T4oBgHgl3EQflQc0/vector_store/index.pkl +3 -0
  19. A9FAT4oBgHgl3EQfrx7P/content/tmp_files/2301.08655v1.pdf.txt +1366 -0
  20. A9FAT4oBgHgl3EQfrx7P/content/tmp_files/load_file.txt +359 -0
  21. CNFJT4oBgHgl3EQfASxa/content/tmp_files/2301.11419v1.pdf.txt +1012 -0
  22. CNFJT4oBgHgl3EQfASxa/content/tmp_files/load_file.txt +0 -0
  23. EdE5T4oBgHgl3EQfUw9y/content/tmp_files/2301.05546v1.pdf.txt +1316 -0
  24. EdE5T4oBgHgl3EQfUw9y/content/tmp_files/load_file.txt +0 -0
  25. F9E2T4oBgHgl3EQf-Qn4/content/tmp_files/2301.04238v1.pdf.txt +0 -0
  26. G9A0T4oBgHgl3EQfBv-A/content/tmp_files/2301.01980v1.pdf.txt +1037 -0
  27. G9A0T4oBgHgl3EQfBv-A/content/tmp_files/load_file.txt +0 -0
  28. H9E4T4oBgHgl3EQfgw3C/vector_store/index.pkl +3 -0
  29. HdE5T4oBgHgl3EQfWQ_B/content/tmp_files/2301.05558v1.pdf.txt +1656 -0
  30. HdE5T4oBgHgl3EQfWQ_B/content/tmp_files/load_file.txt +0 -0
  31. HdFIT4oBgHgl3EQfXith/content/tmp_files/2301.11244v1.pdf.txt +1885 -0
  32. HdFIT4oBgHgl3EQfXith/content/tmp_files/load_file.txt +0 -0
  33. I9A0T4oBgHgl3EQfCP_M/content/tmp_files/2301.01988v1.pdf.txt +2663 -0
  34. I9A0T4oBgHgl3EQfCP_M/content/tmp_files/load_file.txt +0 -0
  35. ItAzT4oBgHgl3EQfVPwp/content/tmp_files/2301.01279v1.pdf.txt +650 -0
  36. ItAzT4oBgHgl3EQfVPwp/content/tmp_files/load_file.txt +496 -0
  37. JtE3T4oBgHgl3EQfXgpN/content/tmp_files/2301.04479v1.pdf.txt +589 -0
  38. JtE3T4oBgHgl3EQfXgpN/content/tmp_files/load_file.txt +216 -0
  39. KdAyT4oBgHgl3EQff_ia/content/2301.00351v1.pdf +3 -0
  40. MdFJT4oBgHgl3EQfzC0_/content/tmp_files/2301.11641v1.pdf.txt +706 -0
  41. MdFJT4oBgHgl3EQfzC0_/content/tmp_files/load_file.txt +0 -0
  42. NNAyT4oBgHgl3EQf6_pQ/content/tmp_files/2301.00830v1.pdf.txt +1274 -0
  43. NNAyT4oBgHgl3EQf6_pQ/content/tmp_files/load_file.txt +0 -0
  44. PtFJT4oBgHgl3EQf2C2D/content/tmp_files/2301.11654v1.pdf.txt +372 -0
  45. PtFJT4oBgHgl3EQf2C2D/content/tmp_files/load_file.txt +308 -0
  46. Q9FPT4oBgHgl3EQfpTVX/content/tmp_files/2301.13137v1.pdf.txt +448 -0
  47. Q9FPT4oBgHgl3EQfpTVX/content/tmp_files/load_file.txt +165 -0
  48. QtAyT4oBgHgl3EQfU_dt/content/tmp_files/2301.00135v1.pdf.txt +1166 -0
  49. QtAyT4oBgHgl3EQfU_dt/content/tmp_files/load_file.txt +0 -0
  50. SNE3T4oBgHgl3EQfzAs2/content/tmp_files/2301.04724v1.pdf.txt +1792 -0
-9E4T4oBgHgl3EQfEAsg/content/tmp_files/2301.04873v1.pdf.txt ADDED
@@ -0,0 +1,1627 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ On using the generalized Langevin equation
2
+ to model substrate phonons and their role in
3
+ surface adsorption and desorption
4
+ Ardavan Farahvash,† Mayank Agarwal,‡ Andrew Peterson,‡ and Adam P.
5
+ Willard∗,†
6
+ †Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
7
+ 02139, USA
8
+ ‡Department of Chemical Engineering, Brown University, Providence, Rhode Island 02912, USA
9
+ E-mail: [email protected]
10
+ Abstract
11
+ Surface vibrations are an important aspect in many gas-surface reactions and thus under-
12
+ standing the action of these vibrations using a simple theoretical model is highly desirable.
13
+ The generalized Langevin equation is one such model, as it can reduce all the aspects how vi-
14
+ brations modulate the motion of a surface site into a single quantity: the memory kernel. Here
15
+ we build on work originally done by Tully in developing the generalized Langevin oscillator
16
+ (GLO) model of surface vibrations by calculating the memory kernel directly from atomistic
17
+ models. We show that the memory kernel has a universal bimodal form due to coupling to
18
+ both low-energy acoustic modes and modes near the Debye frequency. We study the size de-
19
+ pendence of these modes and argue that the acoustic modes are frozen in limit of macroscopic
20
+ lattices. We then use this insight to illustrate how finite size effects from nanoscale systems,
21
+ such as those studied with atomistic simulations, can alter surface adsorption and desorption.
22
+ 1
23
+ arXiv:2301.04873v1 [physics.chem-ph] 12 Jan 2023
24
+
25
+ 1
26
+ Introduction
27
+ Heterogeneous catalysis is the backbone of much of the modern chemical industry. Owing to this
28
+ enormous utility, understanding the nature of molecular dynamics at catalyst interfaces and how
29
+ molecular properties impact catalytic reactivity remains an important and outstanding scientific
30
+ challenge. While the electronic degrees of freedom of both the reagent and substrate are central
31
+ to understanding the binding free-energy, and thus reactivity per Sabatier’s principle,1,2 recent
32
+ experiments and theoretical studies have highlighted the often underappreciated role of substrate
33
+ vibrations in modulating the reaction dynamics at metal interfaces.3–12 For example, several stud-
34
+ ies have shown that laser pulses can be used to indirectly excite surface phonons and subsequently
35
+ increase desorption rates and reactivity.3–6,13 It has been shown that applying acoustic waves to
36
+ a catalyst surface at an appropriate polarization and resonant frequency, can also greatly increase
37
+ reactivity.7,12,14 It is not clear whether such enhancements of reactivity are due to an effective
38
+ reduction of the binding energy, or due to kinetic factors which go beyond Sabatier’s purely ther-
39
+ modynamic principle. In light of such experiments, an improved understanding of the ways in
40
+ which substrate vibrations may modulate reactivity is greatly desired. In this paper, we employ
41
+ the generalized Langevin equation to study substrate vibrations, focusing on how lattice phonons
42
+ affect the motion of surface sites, and on the relationship between phonon-induced memory and
43
+ surface sticking probabilities and desorption rates.
44
+ The generalized Langevin equation, shown below, is an incredibly useful tool for understanding
45
+ the motion of a single atom, or small collection of atom, within a lattice,
46
+ ˙p(t) = −dW
47
+ dq (t)−
48
+ � t
49
+ 0 K(t −τ)p(τ)dτ +R(t).
50
+ (1)
51
+ Here q and p are the position and momenta of the site of interest. W is the potential of mean
52
+ force, the thermodynamic free-energy surface that results from coarse-graining the other lattice
53
+ degrees of freedom. K(t) is the memory kernel, a time-dependent analog of the Markovian fric-
54
+ tion constant, and R(t) is a random, Gaussian process whose autocorrelation function is related
55
+ 2
56
+
57
+ to K by the second fluctuation dissipation theorem (FDT) K(t) = ⟨R(t)R(0)⟩
58
+ mkBT
59
+ . Adelman and Doll15
60
+ were the first to discuss how the GLE could be used to model the effect of substrate phonons on
61
+ a site within a purely harmonic lattice. Later, Tully developed the generalized Langevin oscillator
62
+ (GLO) method, wherein the motion of surface site is described via a GLE with a memory kernel
63
+ that is given by a single exponentially damped sinusoid.16 As we will discuss in greater detail in
64
+ Section 2.3, such a memory kernel is equivalent to coupling the surface atom to a single dissipative
65
+ (ghost) oscillator. Tully’s GLO method has seen much success as a computationally efficient way
66
+ of modeling substrate dynamics, particularly in application to molecular beam scattering experi-
67
+ ments.17–21 However, the choice of coupling to a single mode is arbitrary and limiting; in principle
68
+ surface atoms should couple to each normal mode of the lattice.
69
+ In this study, we extend Tully’s GLO model to allow for a memory kernel of arbitrary shape,
70
+ and examine when and how the properties of the memory kernel affect adsorption and desorption.
71
+ We call this model the lattice generalized Langevin equation (LGLE). In order to parameterize the
72
+ memory kernel we use data taken from atomistic simulations. Crucially, in Section 4 we show
73
+ that the qualitative properties of the memory kernel are independent of the details of the atomistic
74
+ model used.
75
+ The remainder of the paper will be organized as follows. In Section 2 we review the formal the-
76
+ ory behind the LGLE, focusing on methods to parameterize the equation and briefly reviewing the
77
+ extended variable transformation used to map the non-Markovian dynamics to a bath of dissipative
78
+ harmonic oscillators. In Section 3 we will detail simulation methods used to generate data for this
79
+ paper. In Section 4 we analyze memory kernels taken from atomistic simulations using different
80
+ forcefields, metals, and solvation states of the lattice. Notably, we show that the memory kernel
81
+ has a bimodal form arising from strong coupling to both coherent acoustic oscillations as well as
82
+ modes near the Debye frequency. Finally, in Section 5 we discuss how the properties of the mem-
83
+ ory kernel we calculated in the previous sections affect adsorption and desorption, highlighting
84
+ systematic errors that can occur when using nanoscale simulations as a substitute for macroscopic
85
+ systems.
86
+ 3
87
+
88
+ 2
89
+ Theoretical Background
90
+ While there are many approaches to parametrizing Eq.1 from atomistic data, we will discuss two
91
+ in particular, henceforth termed the projection operator (PO) method and the correlation function
92
+ (CF) method. The PO method is the approach employed in the formative works of Adelman
93
+ and Doll and Tully, and involves little more than matrix operations involving the mass-weighted
94
+ Hessian of the lattice. The CF method is commonly used in applications of the GLE to amorphous
95
+ systems or liquid solutions.22–26 Both approaches are useful and will be employed in subsequent
96
+ sections.
97
+ 2.1
98
+ Projection operator method
99
+ Our starting point in this method is to expand the potential energy surface, U(q1 ...qN), of the
100
+ lattice to second order, such that the Hamiltonian may be written as,
101
+ H = ∑
102
+ i
103
+ p2
104
+ i
105
+ 2m + 1
106
+ 2∑
107
+ ij
108
+ ∂ 2U
109
+ ∂qi∂qj
110
+ (qi − ¯qi)(q j − ¯q j),
111
+ (2)
112
+ where qi are the positions of each lattice site, pi are the momentum, and ¯qi are the equilibrium
113
+ positions. By introducing mass-weighted coordinates xi = √miqi and the mass-weighted Hessian
114
+ D2
115
+ i j =
116
+ 1
117
+ √mim j
118
+ ∂ 2U
119
+ ∂qi∂qj the equation of motion may be written simply as,
120
+ ¨x = −D2x.
121
+ (3)
122
+ Two projection operators, P and Q = 1−P are then used to separate this equation in to a system
123
+ (surface site) and bath (remaining lattice) subspace respectively,
124
+ ¨xP = −D2
125
+ PPxP −D2
126
+ PQxQ,
127
+ (4)
128
+ ¨xQ = −D2
129
+ QPxP −D2
130
+ QQxQ,
131
+ (5)
132
+ 4
133
+
134
+ where xP = Px are the system degrees of freedom, xQ = Qx are the bath degrees of freedom and
135
+ D2
136
+ PP = PD2P, etc. In principle, these projection operators can take any form, so long as they
137
+ obey the properties of idempotency P2 = P and orthogonality PQ = 0. However, if we wish xP
138
+ to correspond to the displacement of a surface atom, it is most natural to choose P to be a matrix
139
+ with ones on the diagonal for the indices corresponding to the coordinate(s) of interest and zeros
140
+ elsewhere,
141
+ P =
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+ 1
152
+ 0
153
+ 0
154
+ 0
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+ D2 =
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+ D2
175
+ PP
176
+ D2
177
+ PQ
178
+ D2
179
+ QP
180
+ D2
181
+ QQ
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+ (6)
192
+ For simplicity, let us allow xP to be a scalar xP corresponding to the displacement of a single
193
+ surface atom along a single coordinate. One then proceeds by solving Eq.5 in terms of xP, substi-
194
+ tuting that solution into Eq.4, and subsequently transforming back from mass-weighted to standard
195
+ coordinates. The details of such steps may be found in several other papers. The final solution is
196
+ of the form of Eq.1 with,
197
+ K(t) = D2
198
+ PQ
199
+ cos(DQQt)
200
+ D2
201
+ QQ
202
+ D2
203
+ QP,
204
+ (7)
205
+ W(q) = m
206
+
207
+ −D2
208
+ PP +K(0)
209
+
210
+ q2,
211
+ (8)
212
+ R(t)
213
+ √m = D2
214
+ PQ
215
+
216
+ cos(DQQt)xQ(0)+ sin(DQQt)
217
+ DQQ
218
+ ˙xQ(0)− cos(DQQt)
219
+ D2
220
+ QQ
221
+ D2
222
+ QPxP(0)
223
+
224
+ .
225
+ (9)
226
+ Disregarding some mathematical subtleties with respect to the third term in Eq.9,27 K(t) and R(t)
227
+ above do satisfy the FDT. Note that because K(t) determines the properties of R(t) via the FDT and
228
+ also the determines the deviation of W from a fixed lattice, K(t) is arguably the most fundamental
229
+ quantity in Eq.1, containing all the relevant information for how the bath modulates the system’s
230
+ dynamics.
231
+ Throughout the rest of this paper, we will often find it useful to analyze the Fourier transform
232
+ of the memory kernel, K(ω), which is equivalent to the power spectrum of the noise R(t) by the
233
+ 5
234
+
235
+ Wiener-Khinchine theorem,
236
+ K(ω) = ∑
237
+ i
238
+ c2
239
+ i
240
+ ω2
241
+ i
242
+ δ(ω −ωi).
243
+ (10)
244
+ Here ωi are the eigenfrequencies of the lattice Hessian DQQ, ci are the coupling constants between
245
+ the surface degree of freedom and ith normal mode, ci = ∑j D( j)
246
+ PQVji where V is a matrix of with the
247
+ eigenvectors of DQQ as columns. Note that we ignore the negative frequency components of the
248
+ Fourier transform in Eq.10 as they are simply a reflection of the positive components. Eq.10 reveals
249
+ that the peaks of power spectrum are nothing more than the phonon frequencies of the lattice
250
+ weighted by their relative coupling to the site of interest. We will use this powerful interpretation
251
+ throughout the rest of our paper.
252
+ 2.2
253
+ Correlation function method
254
+ The advantage of the method outlined in the previous section lies in its simplicity and interpretabil-
255
+ ity, as it only requires computing and diagonalizing the mass-weighted Hessian of the lattice, DQQ.
256
+ Its disadvantage is in the assumption of a PES of purely harmonic form (Eq.3), which limits its ap-
257
+ plicability in systems where anharmonicities are significant, such solvated surfaces or surfaces with
258
+ defects. An alternative approach, often used in the application of the GLE to liquid solutions, takes
259
+ advantage of the fact that the random force R(t) must be uncorrelated with the system’s momenta:
260
+ ⟨R(t)p(0)⟩ = 0. This identity can be considered prerequisite for R(t) to be properly interpreted as
261
+ a "random" noise, and is indeed consistent with Eq.9. Thus, by taking the time correlation function
262
+ of both sides of Eq. 1 with the initial momentum we find,
263
+ ⟨ ˙p(t)p(0)⟩+
264
+ �dW
265
+ dq (t)p(0)
266
+
267
+ = −
268
+ � t
269
+ 0 K(t −τ)⟨p(τ)p(0)⟩dτ.
270
+ (11)
271
+ Using MD simulation the force-momentum correlation functions (second term on the left-hand
272
+ side) and the momentum autocorrelation function may be computed, and subsequently Eq.11 may
273
+ be solved to find K(t). Unfortunately, solving Eq.11 with a high degree of numerical accuracy
274
+ requires methods more complex than simply applying the fast Fourier transform and convolution
275
+ 6
276
+
277
+ theorem.26,28 Details for methods used in this paper to solve Eq.11 may be found in the Appendix.
278
+ 2.3
279
+ Extended Variable Transformation
280
+ Computing the memory integral in Eq.1 is computationally intensive especially for systems with
281
+ long memory decay rates. To circumvent this issue, it is common to expand the GLE back into a
282
+ set of Markovian equations describing a system bilinearly coupled to bath of dissipative, stochastic
283
+ harmonic oscillators. While in many ways this procedure is essentially the reverse of that presented
284
+ in Section 2.1, using a dissipative HO bath is advantageous to using an energy conserving bath as
285
+ the action of a continuum of energy conserving oscillators can often be represented with only one
286
+ or two dissipative oscillations, greatly reducing the dimensionality of the equations of motion.
287
+ Here we briefly summarize the method, excellent reviews can be found in Ref. 29 and Ref. 30.
288
+ Given a GLE with a memory kernel that is a finite sum of exponentially damped sinusoids,
289
+ K(t) =
290
+ N
291
+
292
+ i=1
293
+ e−γit (Ci cos(ωit)+Di sin(ωit)),
294
+ (12)
295
+ the original non-Markovian equation of motion can be replaced with,
296
+ d
297
+ dt
298
+
299
+
300
+
301
+ p
302
+ b
303
+
304
+
305
+ � =
306
+
307
+
308
+
309
+ −dW
310
+ dq
311
+ 0
312
+
313
+
314
+ �+
315
+
316
+
317
+
318
+ 0
319
+ Apb
320
+ Abp
321
+ Ab
322
+
323
+
324
+
325
+
326
+
327
+
328
+ p
329
+ b
330
+
331
+
332
+ �+
333
+
334
+
335
+
336
+ 0
337
+ 0
338
+ 0
339
+ Bb
340
+
341
+
342
+
343
+
344
+
345
+
346
+ dW
347
+
348
+
349
+ �.
350
+ (13)
351
+ Here p is the system’s momenta, and b is a set of bath variables we must involve in time with our
352
+ system. dW is an array of uncorrelated Gaussian random variables satisfying
353
+
354
+ dWi(t)dWj(0)
355
+
356
+ =
357
+ δi jδ(t), where δij is the Kronecker delta and δ(t) the Dirac delta. The matrix Ab is block diagonal
358
+ with entries,
359
+ Ab =
360
+
361
+
362
+
363
+ 2γi
364
+
365
+ γ2
366
+ i +ω2
367
+ i
368
+
369
+
370
+ γ2
371
+ i +ω2
372
+ i
373
+ 0
374
+
375
+
376
+ �,
377
+ (14)
378
+ 7
379
+
380
+ and Apb and Abp are arrays of form,
381
+ Apb =
382
+ ��
383
+ Ci
384
+ 2 −2Diω2
385
+ i
386
+ γi
387
+
388
+ Ci
389
+ 2 +2Diω2
390
+ i
391
+ γi
392
+
393
+ ,
394
+ Abp =
395
+
396
+
397
+
398
+
399
+
400
+ Ci
401
+ 2 −2Diω2
402
+ i
403
+ γi
404
+
405
+ Ci
406
+ 2 +2Diω2
407
+ i
408
+ γi
409
+
410
+
411
+
412
+ �.
413
+ (15)
414
+ The matrix Bb is related to Ab by the equation,
415
+ BbBT
416
+ b = kBT(AQ +AT
417
+ Q),
418
+ (16)
419
+ which ensures that the ensuing dynamics obey the fluctuation-dissipation theorem.
420
+ Tully’s GLO model is nothing more than the N = 1 case of Eq.12, meanwhile in this paper, we
421
+ determine the optimal number of terms N to use by analyzing K(t) calculated using the methods
422
+ discussed previously in this section. In the remainder of this work, without loss of generality, we
423
+ drop the sin terms in Eq.12, such that the memory kernel is simply a sum of exponentially damped
424
+ cosines and the power spectrum is of Lorentzian form,
425
+ K(ω) =
426
+ N
427
+
428
+ i=1
429
+ Ci
430
+
431
+ γi
432
+ γ2
433
+ i +(ω −ωi)2
434
+
435
+ .
436
+ (17)
437
+ 3
438
+ Simulation Details
439
+ Simulations using Effective Medium Theory (EMT) or Embedded Atom Method (EAM) force-
440
+ fields for metal dynamics were performed using the Atomic Simulation Environment.31 The pa-
441
+ rameters for these forcefields were taken from Ref. 32 and Ref. 33 respectively. Simulations using
442
+ Lennard-Jones forcefield, both solvated and in vacuum state, were performed using LAMMPS.
443
+ Lennard-Jones forcefield parameters were taken from Ref. 34. The solvent used was SPC/E.35
444
+ All simulations were performed in two steps. First, a temperature equilibriation step was run
445
+ for 50 picoseconds at 300K using a Langevin thermostat. Afterwards simulations were run in an
446
+ constant energy ensemble using the velocity Verlet algorithm for 4 nanoseconds. Only data from
447
+ 8
448
+
449
+ the NVE step was used in subsequent analysis and calculations. The bottom four corners of the
450
+ lattice were rigidly constrained in order to remove any center of mass motion.
451
+ For the surface scattering simulations used to generate data for Section 5, 5000 independent
452
+ trajectories were averaged per value of the incident velocity to obtain sticking coefficients for
453
+ GLE simulations, while 2000 independent trajectories were averaged for EMT simulations. For
454
+ the surface desorption simulations, 2000 independent simulations were run in parallel, and the
455
+ desorption rate constant was calculated by computing the steady-state flux over the barrier.
456
+ 4
457
+ Memory kernels and power spectra for metal lattices
458
+ We begin by analyzing the memory kernel for the fluctuations of a single atom site in the surface
459
+ of 4x4x4 unit cell of Pt(111). Results were calculated for each surface site individually and sub-
460
+ sequently averaged together. All memory kernels and power spectra presented in the main text
461
+ are calculated via the CF approach. We present results using the PO approach in the supplemen-
462
+ tary information, and will refer these results when necessary in the main text. Evidence for the
463
+ convergence of the memory kernels presented here is given in Fig.S1 and Fig.S2.
464
+ Figure 1A presents the three x, y, and z components of the memory kernel respectively calcu-
465
+ lated from simulations using an Effective Medium Theory (EMT) forcefield. The x and y compo-
466
+ nents arise from fluctuations in the plane of the lattice and the z component arises from fluctuations
467
+ normal to it. Note the anisotropy between the x and y components and the z component, a simple
468
+ consequence of the difference in the number of nearest-neighbors for surface sites. For the remain-
469
+ der of the paper, we will focus only on Kz for the purposes of brevity and due to the fact that it is
470
+ the coordinate which most effects the adsorption of reagent on the surface.
471
+ In Figure 1B we present the noise power spectrum (Fourier transform of the memory kernel)
472
+ of the zth component Kz(ν) specifically. As elaborated upon in Section 2, each peak in the power
473
+ spectrum gives information about the lattice phonon modes and how they couple to the motion
474
+ of a surface site. The center of the peak ν gives the frequency of the mode, the width γ gives
475
+ 9
476
+
477
+ 0
478
+ 5
479
+ 10
480
+ 15
481
+ 20
482
+ t (ps)
483
+ �100
484
+ �50
485
+ 0
486
+ 50
487
+ 100
488
+ 150
489
+ 200
490
+ K(t)
491
+ X
492
+ Y
493
+ Z
494
+ (A)
495
+ 0
496
+ 50
497
+ 100
498
+ 150
499
+ ⌫ (cm�1)
500
+ 0
501
+ 200
502
+ 400
503
+ 600
504
+ 800
505
+ 1000
506
+ 1200
507
+ Kz(⌫)
508
+ (B)
509
+
510
+
511
+
512
+ νD =
513
+ 156 cm−1
514
+
515
+
516
+
517
+ ν = 131 cm−1 ω = 24.8 ps−1
518
+ C = 146.3 ps−1 γ = 3.42 ps−1
519
+
520
+
521
+
522
+ ν = 18.6 cm−1 ω = 3.51 ps−1
523
+ C = 38.0 ps−1 γ = 0.027 ps−1
524
+ Figure 1: Memory kernel and random force power spectrum for surface sites of a Pt(111) lattice
525
+ computed using an EMT forcefield. (A) Memory kernel for fluctuations in x/y (in-surface plane)
526
+ and z (out of plane) directions. (B) Power spectrum of z component of the memory kernel. Red
527
+ and blue lines are two Lorentzian functions optimized to fit the computed power spectrum (grey
528
+ line). The grey dashed vertical line corresponds to the experimental Debye frequency. The inlets
529
+ show the motion of the normal modes most associated with the red and blue lines as well as the
530
+ parameters of the Lorentzians.
531
+ the timescale of energy exchange or dissipation between the mode and the surface site, and the
532
+ coefficient C represents the coupling strength.
533
+ The power spectrum in Figure 1B is of a bimodal form. The blue peak - henceforth called the
534
+ acoustic peak - is centered at a low frequency (ν = 18.6cm−1) and thus exchanges energy quite
535
+ slowly (γ = 0.027ps−1), while the red term - henceforth called the Debye peak - is centered near
536
+ the Debye frequency of Pt (ν = 131cm−1) and exchanges energy much faster (γ = 3.42ps−1). By
537
+ comparing the power spectrum computing via the CF method to the power spectrum from the
538
+ PO method (Figure S3), it is possible to determine precisely which normal modes of the lattice
539
+ are primarily responsible for these two peaks. These normal modes are illustrated in the inlets in
540
+ Figure 1B. Naturally, the acoustic peak arises from a longitudinal acoustic oscillations normal to
541
+ the surface plane. Meanwhile, the Debye peak arises from many closely spaced normal modes
542
+ near the Debye frequency, which are composed of local oscillations at a very small wavelength.
543
+ In order to ensure the validity and transferability of our results, we tested the forcefields other
544
+ than EMT. These results are illustrated in (Figure 2). The Lennard-Jones (LJ) model is based on a
545
+ very different underlying physics than the EMT/EAM models (LJ model uses only pairwise inter-
546
+ 10
547
+
548
+ 0
549
+ 5
550
+ 10
551
+ 15
552
+ 20
553
+ t (ps)
554
+ 0
555
+ 100
556
+ 200
557
+ Kz(t)
558
+ EMT
559
+ EAM
560
+ LJ
561
+ (A)
562
+ 0
563
+ 50
564
+ 100
565
+ 150
566
+ ⌫ (cm�1)
567
+ 0
568
+ 1000
569
+ 2000
570
+ 3000
571
+ Kz(⌫)
572
+ EMT
573
+ EAM
574
+ LJ
575
+ (B)
576
+ Figure 2: (A) Memory kernel and (B) power spectrum for surface site fluctuations of Pt(111) simu-
577
+ lated using three different atomistic models: Effective Medium Theory, Embedded-Atom Method,
578
+ and a Lennard-Jones model.
579
+ actions, while EMT/EAM are both many-body potentials based on the local atom density). Despite
580
+ this fact, all three models produce the same qualitative bimodal form. Much of the quantitative dif-
581
+ ference between the EMT/EAM and LJ models can be explained by the fact that the LJ model
582
+ produces a lattice which is much more stiff compared to EMT and EAM. The lattice stiffness can
583
+ be roughly quantified in terms of the average value of the mass-weighted Hessian klat = ⟨D2⟩. For
584
+ EMT the stiffness of the 4x4x4 Pt(111) lattice is 19.5 kJ/(mol nm2), for EAM it is 19.8 kJ/(mol
585
+ nm2), and for LJ it is 37.1 kJ/(mol nm2), corroborating the results in Figure 2.
586
+ We also tested lattices of different elemental composition and surface structure (Figure S5).
587
+ Once again, although variations were observed in the location, widths, and heights of the primary
588
+ peaks of the power spectrum, all of the lattices exhibited the same qualitative bimodal response. In
589
+ some ways, the universality here can be considered a simple consequence of Eq. 10. Essentially,
590
+ there is a trade-off between the amplitude of each mode, which decreases as the inverse square
591
+ 11
592
+
593
+ of the frequency, and the density of modes, which increases sharply near the Debye frequency.
594
+ However, it is worth noting that this universality is not trivial. The bimodal behavior is not recov-
595
+ ered in simple 1D systems with nearest-neighbor interaction (see Ref. 36 and 37 and Section S3
596
+ of the Supplementary Material for more details), and therefore is an emergent property of the 3D
597
+ metal lattice. Understanding the underlying physical properties of the 3D lattice responsible for
598
+ this emergent behavior is an interesting direction we intend to elaborate on in a future publication.
599
+ 4.1
600
+ Finite-size effects
601
+ Increasing the size of the lattice should shift the frequencies of the acoustic modes in accordance
602
+ to a change in the boundary conditions, which should in turn affect the memory kernel. In Figure
603
+ 3A/B we demonstrate that this is indeed the case: the acoustic peak shifts down in frequency as one
604
+ increases the size of the lattice, while the Debye peak remains unchanged. Even when increasing
605
+ the lattice size to as many as 8000 atoms, the memory kernel and power spectrum do not converge.
606
+ In fact, as shown in the inlet of Figure 3B the frequency ratio between the acoustic peak of different
607
+ size lattices roughly agrees with the results of an isotropic wave equation, suggesting that the
608
+ acoustic peak will never converge to a fixed frequency, but rather decrease like as 1/l where l is
609
+ the side-length of the lattice.
610
+ Figure 3. encompasses one of the central and most important results of this paper: phonon-
611
+ induced surface-site fluctuations depend strongly on the lattice size. This result has several rami-
612
+ fications. First, it suggests than in the macroscopic limit (i.e. when the size of the lattice reaches
613
+ ∼ 1023 atoms, the frequencies of acoustic mode will be much too slow to affect any reaction dy-
614
+ namics at the surface. In other words, the acoustic mode will be effectively frozen. Therefore,
615
+ for observables that depend on memory (most notably rate constants), this result suggests that all
616
+ finite-size simulations contain an intrinsic error which is purely kinetic in nature. We will demon-
617
+ strate this explicitly in Section 5.
618
+ The size-dependency of the memory kernel may also have ramifications for nanoparticle cata-
619
+ lyst design, as it shows nanoparticle vibrational modes should behave quite differently than their
620
+ 12
621
+
622
+ 0
623
+ 10
624
+ 20
625
+ 30
626
+ 40
627
+ 50
628
+ t (ps)
629
+ �50
630
+ 0
631
+ 50
632
+ 100
633
+ 150
634
+ 200
635
+ 250
636
+ Kz(t)
637
+ 0
638
+ 50
639
+ 100
640
+ 150
641
+ ⌫ (cm�1)
642
+ 0
643
+ 200
644
+ 400
645
+ 600
646
+ 800
647
+ 1000
648
+ Kz(⌫)
649
+ 4x4x4
650
+ 6x6x6
651
+ 8x8x8
652
+ 10x10x10
653
+ 14x14x14
654
+ 20x20x20
655
+ 0
656
+ 50
657
+ 100
658
+ 150
659
+ ⌫ (cm�1)
660
+ 0
661
+ 200
662
+ 400
663
+ 600
664
+ 800
665
+ 1000
666
+ Kz(⌫)
667
+ 4x4x4
668
+ 6x6x6
669
+ 8x8x8
670
+ 10x10x10
671
+ 14x14x14
672
+ 20x20x20
673
+ (A)
674
+ (B)
675
+ 4
676
+ 6
677
+ 8
678
+ 10
679
+ 14
680
+ 20
681
+ Cell Side Length (# of Atoms)
682
+ 2
683
+ 4
684
+ 6
685
+ 8
686
+ Ratio of Frequencies
687
+ Simulation Results
688
+ Isotropic Wave Equation
689
+ Figure 3: (A) Memory kernel and (B) power spectra for surface site fluctuations of Pt(111) lattices
690
+ of different sizes. The inlet in (B) illustrates a comparison the relative frequencies of the acoustic
691
+ peak of the power spectra and the 1
692
+ l scaling of an isotropic wave-equation with periodic boundary
693
+ conditions.
694
+ macroscopic counter parts, much as their electronic modes do. Indeed, experimental studies of
695
+ electron relaxation in metal supported nanoparticles have already shown that the phonon-mediated
696
+ dissipation of electron energy depends strongly on the nanoparticle size.38 While the system of in-
697
+ terest in this study is the surface nuclei, not the electrons, we believe both results can be understood
698
+ as a consequence of the same underlying phonon confinement effects.
699
+ 4.2
700
+ Solvation Effects
701
+ All of the results discussed so far have assumed a lattice in gas phase, under conditions of suffi-
702
+ ciently low pressure and surface coverage. Such systems are highly idealized, as most catalysts
703
+ operate under conditions of fairly high pressure and surface coverage and can often be solvated.
704
+ Here we will explore how solvation affects surface site fluctuations by computing memory kernels
705
+ for Pt(111) surfaces solvated in SPC/E water using the CF approach. We save the more difficult,
706
+ yet still very important question, of surface coverage for future publication.
707
+ Figure 4. demonstrates the difference between Pt(111) surfaces in vacuum versus in solvent.
708
+ The primary difference comes in a damping of the acoustic mode, whose coupling to the surface
709
+ site motion is much smaller when the surface is solvated. This effect is likely attributable to the
710
+ 13
711
+
712
+ 0
713
+ 50
714
+ 100
715
+ 150
716
+ ⌫ / cm�1
717
+ 0
718
+ 1000
719
+ 2000
720
+ 3000
721
+ K(⌫)
722
+ Vacuum
723
+ Solvated
724
+ 0
725
+ 10
726
+ 20
727
+ 30
728
+ 40
729
+ 50
730
+ t / ps
731
+ 0
732
+ 100
733
+ 200
734
+ Kz(t)
735
+ Vacuum
736
+ Solvent
737
+ (A)
738
+ (B)
739
+ Figure 4: (A) Memory kernel and (B) noise power spectra for surface site fluctuations of Pt(111)
740
+ simulated using a LJ model with and without SPC/E solvent.
741
+ additional pressure exerted by the solvent, making large fluctuations in the direction normal to
742
+ the surface plane more energetically costly. The damping of the acoustic mode suggests that the
743
+ finite-size effects discussed previously are likely far less important for solvated surfaces than they
744
+ are for surfaces in gas-phase.
745
+ 5
746
+ How memory affects adsorption and desorption
747
+ Molecular beam scattering experiments are an invaluable tool for understanding the properties of
748
+ surface reactions, elucidating information about binding potential energy surface and energy dissi-
749
+ pation rates of the lattice.39–41 When the incident particles are sampled from an appropriate thermal
750
+ distribution, the surface sticking probability can be shown to be proportional to the adsorption rate
751
+ constant. Tully’s GLO model is often used in simulations of surface scattering (either reactive or
752
+ non-reactive) as a cheap computational method for describing energy loss to the lattice during the
753
+ 14
754
+
755
+ scattering process.17–21 In this section, we employ the LGLE for the same purpose, specifically
756
+ studying the differences between the finite-size limit and the macroscopic limit (when the acoustic
757
+ modes are held fixed).
758
+ Most surface reactions are very complex, involving multiple steps coupling phonon and elec-
759
+ tron modes together, sometimes non-adiabatically,42 and determining an accurate reaction PES
760
+ from quantum chemistry calculations is itself a non-trivial challenge.43,44 To avoid such complex-
761
+ ities so that we can focus on the role of phonons, here we study only the non-reactive scattering of
762
+ Argon on Pt(111), and only in the direction normal to the surface. The PES is taken to be of Morse
763
+ form,
764
+ U(z) = D(1−e−a(z−z0))2,
765
+ (18)
766
+ where D a parameter which controls the depth of the reaction well, and a a parameter which
767
+ controls the width of the well. The values of these parameters are taken from DFT calculations
768
+ presented in Ref. 45 using a van der Waals density functional (vdW-DF2) and are presented in
769
+ Table S1.
770
+ 0
771
+ 1
772
+ 2
773
+ 3
774
+ KE(t = 0)/D
775
+ 0.0
776
+ 0.2
777
+ 0.4
778
+ 0.6
779
+ 0.8
780
+ 1.0
781
+ S
782
+ GLE - Macrscopic Limit
783
+ GLE - 2 Term
784
+ GLE - 5 Term
785
+ 0
786
+ 1
787
+ 2
788
+ 3
789
+ KE(t = 0)/D
790
+ 0.0
791
+ 0.2
792
+ 0.4
793
+ 0.6
794
+ 0.8
795
+ S
796
+ GLE - Macrscopic Limit
797
+ GLE - 2 Term
798
+ GLE - 5 Term
799
+ EMT
800
+ (A)
801
+ (B)
802
+ Figure 5: Sticking probabilities S as a function of the ratio of the incident kinetic energy to the
803
+ well depth KE(t = 0)/D. (A) Results for Morse PES with D = 6.62eV. (B) Results for Morse PES
804
+ with an increased well-depth, D = 30.62eV.
805
+ Figure 5A illustrates variations the sticking probability for using 4 models for the metal phonons.
806
+ The blue curve uses EMT to treat the metal degrees of freedom. The red and orange curves use
807
+ 15
808
+
809
+ the LGLE (Eq.1) parameterized from a 4x4x4 EMT simulation to treat the metal. The red curve
810
+ uses only uses only two damped sinusoids to fit K(t), while the orange curve uses a five term fit
811
+ give a more accurate estimation of the memory kernel and power spectrum (see Figure S7.). The
812
+ black curve corresponds to the extrapolated macroscopic limit of the LGLE, wherein the surface
813
+ site motion is coupled to only to the Debye mode.
814
+ The blue, red, and orange curves of Figure 5A largely agree with one another, illustrating
815
+ that the LGLE accurately captures the dynamics of the forcefield it is parameterized from. More
816
+ interesting however, is the consistent increase in the sticking probability between the nanoscale
817
+ lattices (either modeled with EMT or GLE) and the macroscopic limit. This discrepancy can be
818
+ qualitatively explained by the relative dissipation rates of the acoustic and Debye modes. Since
819
+ nanoscale lattices couple the motion of surface atoms to the acoustic modes, and these acoustic
820
+ mode dissipates energy much slower than the Debye mode, collisions with nanoscale lattices are
821
+ more elastic. This effect can be observed more explicitly by studying histograms of the energy
822
+ dissipated over many scattering trajectories (Figure S8).
823
+ In Figure 5B we study the scattering probability but now with a well-depth that is nearly 5
824
+ times greater. Increasing D increases the effective coupling between the adsorbate and it’s phonon
825
+ bath, exacerbating the finite-size effects seen in Figure 5B.
826
+ The implication of Figure 5 is that all nanoscale atomistic simulations of surface scattering
827
+ contain an intrinsic error. This error is due purely to the phonon confinement effects placed by
828
+ the boundary conditions, and can be exacerbated by errors in the adsorbate’s binding energy to the
829
+ metal. Ideally, one would like to develop a quantitative formula for predicting the size of this error
830
+ given a set of simple parameters for the phonon power spectrum and metal-adsorbate interaction.
831
+ We have developed such a theory, and will present in in a subsequent publication.
832
+ 5.1
833
+ Barrier Crossing
834
+ Barrier crossing simulations are effectively the inverse of the surface scattering simulations dis-
835
+ cussed in the previous section. Here we begin an ensemble of trajectories within the reactant well
836
+ 16
837
+
838
+ and measure the average flux out of the well.
839
+ 2
840
+ 4
841
+ 6
842
+ 8
843
+ 10
844
+ D (eV)
845
+ 0.0
846
+ 2.5
847
+ 5.0
848
+ 7.5
849
+ 10.0
850
+ 12.5
851
+ kd (ns�1)
852
+ GLE - Macrscopic Limit
853
+ GLE - 2 Term
854
+ GLE - 5 Term
855
+ Figure 6: Desorption rate constants kd as a function of well-depth D.
856
+ In contrast to our simulations of surface scattering, our simulations of barrier crossing exhibit
857
+ only a very minor difference between the results for the nanoscale GLE models and the extrapo-
858
+ lated macroscopic limit (Figure 5). One possible explanation is the difference in initial conditions
859
+ between scattering and barrier crossing simulations. In the scattering simulations the adsorbate
860
+ begins in a non-equilibrium state and we observe it’s relaxation, meanwhile in barrier crossing
861
+ simulations the adsorbate begins near the equilibrium state and the desorption rate constant arises
862
+ from fluctuations out of that state.
863
+ To those familiar with developments in reaction rate theory over the past 50+ years, the results
864
+ of Figure 6 are somewhat surprising. Indeed the works of Kramers,46 Grote and Hynes,47 and
865
+ others48,49 have all suggested that rate constants are deeply connected by the frequency of kicks
866
+ from the bath, often in ways that cannot be captured by uni-dimensional transition state theory.
867
+ However, such theories generally apply the GLE directly to the reaction coordinate, not to the
868
+ reaction site, highlighting the necessity of relating the two together in order to develop quantitative
869
+ theories for how phonon-induced memory affects reaction dynamics.
870
+ 17
871
+
872
+ 6
873
+ Conclusions
874
+ In this paper we presented the lattice generalized Langevin equation, a model for simulating the
875
+ effects of lattice vibrations on surface atoms. The most important parameter in this model is the
876
+ memory kernel. We parameterize the memory kernel using data from MD simulations, showing
877
+ that it has a universal bimodal form due to coupling to both acoustic oscillations as well as modes
878
+ near the Debye frequency. This bimodal form is non-trivial, as it is not recovered in simple 1D sys-
879
+ tems with nearest neighbor interactions. Since the frequency of the acoustic oscillations depends
880
+ on the size of the lattice, and nanoscale MD simulations impose unphysical phonon confinement
881
+ effects, it is reasonable to assume that observables which depend surface phonons will also contain
882
+ artifacts. We showed that that this was indeed the case for the surface trapping probability for a
883
+ simple system of Argon on Pt(111). Interestingly however, the surface desorption rate for the same
884
+ system exhibited very little dependence of the nature of the lattice memory kernel.
885
+ The advantages of the LGLE model are, first, it’s computational efficiency, as it reduces the the
886
+ N degrees of freedom of the lattice, to only a small handful on terms needed to describe the motion
887
+ of a surface site. Second, the insight that can be gained from studying the memory kernel, as we
888
+ illustrated throughout this paper. Third, the transferability of the model. Once the LGLE is pa-
889
+ rameterized for a given lattice, any surface reaction with that lattice can use the same LGLE, given
890
+ that the thermodynamic conditions (temperature/pressure/surface coverage/solvation) are roughly
891
+ the same.
892
+ Appendix 1. Methods for solving the Volterra equation
893
+ Let us rewrite Eq.11 in the form,
894
+ Cf (t) = −
895
+ � t
896
+ 0 K(t −τ)Cp(τ)dτ,
897
+ (19)
898
+ 18
899
+
900
+ where Cf (t) is the force-momentum correlation function and Cp(t) the momentum autocorrelation
901
+ function. Solving this equation via Fast Fourier Transform introduces numerical artifacts when
902
+ Cp(ω) is near zero. Therefore it is often advantageous to solve Eq.19 in the time domain by
903
+ discretizing the memory integral. Here we illustrate one such approach, which we used in this
904
+ paper.
905
+ To begin we take the derivative of Eq.19. Doing so gives an equation which is better defined
906
+ and more numerically stable for small times t,
907
+ ˙Cf (t) = −K(t)Cp(0)−
908
+ � t
909
+ 0 K(t −τ) ˙Cp(τ)dτ.
910
+ (20)
911
+ We then introduce a trapezoidal quadrature in order to evaluate the memory integral at discrete
912
+ timesteps ∆t,
913
+ ˙Cf (t = 0) = −K(0)Cp(0),
914
+ ˙Cf (t = ∆t) = −K(∆t)Cp(0)− ∆t
915
+ 2
916
+
917
+ K(∆t) ˙Cp(0)+K(0) ˙Cp(∆t)
918
+
919
+ ,
920
+ ˙Cf (t = N∆t) = −K(N∆t)Cp(0)− ∆t
921
+ 2
922
+
923
+ K(N∆t) ˙Cp(0)+K(0) ˙Cp(N∆t)
924
+
925
+ −��t
926
+ N−1
927
+
928
+ n=1
929
+ K((N −n)∆t) ˙Cp(n∆t).
930
+ (21)
931
+ Equation 21 can be used to calculate K(t) with a recursive algorithm using ˙Cf (t), ˙Cp(t), and the
932
+ values of K(t) at earlier time-steps.
933
+ Supplementary Material
934
+ See supplementary material for analysis of convergence of memory kernels using CF method, a
935
+ comparison of memory kernels using CF and PO methods, memory kernels for other metal lat-
936
+ tices other than Pt(111), memory kernels for 1D harmonic chains, and further details on scatter-
937
+ ing/desorption simulations.
938
+ 19
939
+
940
+ Data Availability
941
+ Data that support the findings of this study are available from the corresponding author upon rea-
942
+ sonable reque
943
+ Acknowledgements
944
+ AF and APW were supported by the Office of Science of the U.S. Department of Energy under
945
+ Contract No. DE-SC0019441. This research used resources of the National Energy Research
946
+ Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of
947
+ Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Ardavan
948
+ Farahvash acknowledges support from the National Science Foundation Graduate Research Fel-
949
+ lowship program.
950
+ References
951
+ (1) Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface
952
+ chemistry and catalysis. Proceedings of the National Academy of Sciences 2011, 108, 937–
953
+ 943.
954
+ (2) Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.;
955
+ Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of
956
+ transition-metal heterogeneous catalysis. Journal of Catalysis 2015, 328, 36–42.
957
+ (3) Hall, R. B. Pulsed-laser-induced desorption studies of the kinetics of surface reactions. The
958
+ Journal of Physical Chemistry 1987, 91, 1007–1015.
959
+ (4) Lucchese, R. R.; Tully, J. C. Laser induced thermal desorption from surfaces. The Journal of
960
+ Chemical Physics 1998, 81, 6313.
961
+ 20
962
+
963
+ (5) Bonn, M.; Funk, S.; Hess, C.; Denzler, D. N.; Stampfl, C.; Scheffler, M.; Wolf, M.; Ertl, G.
964
+ Phonon- Versus Electron-Mediated Desorption and Oxidation of CO on Ru(0001). Science
965
+ 1999, 285, 1042–1045.
966
+ (6) Murata, Y.; Fukutani, K. The Chemical Physics of Solid Surfaces; Surface Dynamics; Else-
967
+ vier, 2003; Vol. 11; pp 291–330.
968
+ (7) Inoue, Y. Effects of acoustic waves-induced dynamic lattice distortion on catalytic and ad-
969
+ sorptive properties of metal, alloy and metal oxide surfaces. Surface Science Reports 2007,
970
+ 62, 305–336.
971
+ (8) Nave, S.; Jackson, B. Methane Dissociation on Ni(111): The Role of Lattice Reconstruction.
972
+ Physical Review Letters 2007, 98, 173003.
973
+ (9) Tiwari, A. K.; Nave, S.; Jackson, B. Methane Dissociation on Ni(111): A New Understanding
974
+ of the Lattice Effect. Physical Review Letters 2009, 103, 253201.
975
+ (10) Tiwari, A. K.; Nave, S.; Jackson, B. The temperature dependence of methane dissociation on
976
+ Ni(111) and Pt(111): Mixed quantum-classical studies of the lattice response. The Journal of
977
+ Chemical Physics 2010, 132, 134702.
978
+ (11) Campbell, V. L.; Chen, N.; Guo, H.; Jackson, B.; Utz, A. L. Substrate Vibrations as Promoters
979
+ of Chemical Reactivity on Metal Surfaces. The Journal of Physical Chemistry A 2015, 119,
980
+ 12434–12441.
981
+ (12) von Boehn, B.; Foerster, M.; von Boehn, M.; Prat, J.; Macià, F.; Casals, B.; Khaliq, M. W.;
982
+ Hernández-Mínguez, A.; Aballe, L.; Imbihl, R. On the Promotion of Catalytic Reactions by
983
+ Surface Acoustic Waves. Angewandte Chemie International Edition 2020, 59, 20224–20229.
984
+ (13) Tetenoire, A.; Ehlert, C.; Juaristi, J. I.; Saalfrank, P.; Alducin, M. Why Ultrafast Photoinduced
985
+ CO Desorption Dominates over Oxidation on Ru(0001). The Journal of Physical Chemistry
986
+ Letters 2022, 13, 8516–8521.
987
+ 21
988
+
989
+ (14) Kelling, S.; Cerasari, S.; Rotermund, H. H.; Ertl, G.; King, D. A. A photoemission electron
990
+ microscopy (PEEM) study of the effect of surface acoustic waves on catalytic CO oxidation
991
+ over Pt{110}. Chemical Physics Letters 1998, 293, 325–330.
992
+ (15) Adelman, S. A.; Doll, J. D. : General formulation for classical scattering off harmonic solids.
993
+ The Journal of Chemical Physics 1976, 64, 2375–2388.
994
+ (16) Tully, J. C. Dynamics of gas–surface interactions: 3D generalized Langevin model applied to
995
+ fcc and bcc surfaces. The Journal of Chemical Physics 1980, 73, 1975–1985.
996
+ (17) Busnengo, H. F.; Dong, W.; Salin, A. Trapping, Molecular Adsorption, and Precursors for
997
+ Nonactivated Chemisorption. Physical Review Letters 2004, 93, 236103.
998
+ (18) Bukas, V. J.; Mitra, S.; Meyer, J.; Reuter, K. Fingerprints of energy dissipation for exothermic
999
+ surface chemical reactions: O2 on Pd(100). The Journal of Chemical Physics 2015, 143,
1000
+ 034705.
1001
+ (19) Nattino, F.; Galparsoro, O.; Costanzo, F.; Díez Muiño, R.; Alducin, M.; Kroes, G.-J. Mod-
1002
+ eling surface motion effects in N2 dissociation on W(110): Ab initio molecular dynamics
1003
+ calculations and generalized Langevin oscillator model. The Journal of Chemical Physics
1004
+ 2016, 144, 244708.
1005
+ (20) Zhou, Y.; Zhou, L.; Hu, X.; Xie, D. Dynamics Studies of O2 Collision on Pt(111) Using a
1006
+ Global Potential Energy Surface. The Journal of Physical Chemistry C 2020, 124, 10573–
1007
+ 10583.
1008
+ (21) Zhou, X.; Jiang, B. A modified generalized Langevin oscillator model for activated gas-
1009
+ surface reactions. The Journal of Chemical Physics 2019, 150, 024704.
1010
+ (22) Canales, M.; Sesé, G. Generalized Langevin dynamics simulations of NaCl electrolyte solu-
1011
+ tions. The Journal of Chemical Physics 1998, 109, 6004–6011.
1012
+ 22
1013
+
1014
+ (23) Gordon, D.; Krishnamurthy, V.; Chung, S.-H. Generalized Langevin models of molecular
1015
+ dynamics simulations with applications to ion channels. The Journal of Chemical Physics
1016
+ 2009, 131, 134102.
1017
+ (24) Jung, G.; Hanke, M.; Schmid, F. Iterative Reconstruction of Memory Kernels. Journal of
1018
+ Chemical Theory and Computation 2017, 13, 2481–2488.
1019
+ (25) Li, Z.; Lee, H. S.; Darve, E.; Karniadakis, G. E. Computing the non-Markovian coarse-
1020
+ grained interactions derived from the Mori–Zwanzig formalism in molecular systems: Ap-
1021
+ plication to polymer melts. The Journal of Chemical Physics 2017, 146, 014104.
1022
+ (26) Wang, S.; Li, Z.; Pan, W. Implicit-solvent coarse-grained modeling for polymer solutions via
1023
+ Mori-Zwanzig formalism. Soft Matter 2019, 15, 7567–7582.
1024
+ (27) Hänggi, P. Generalized langevin equations: A useful tool for the perplexed modeller of
1025
+ nonequilibrium fluctuations? Stochastic Dynamics. Berlin, Heidelberg, 1997; pp 15–22.
1026
+ (28) Berne, B. J.; Harp, G. D. Advances in Chemical Physics; John Wiley & Sons, Ltd, 1970; pp
1027
+ 63–227.
1028
+ (29) Ceriotti, M.; Bussi, G.; Parrinello, M. Colored-Noise Thermostats à la Carte. Journal of
1029
+ Chemical Theory and Computation 2010, 6, 1170–1180.
1030
+ (30) Baczewski, A. D.; Bond, S. D. Numerical Integration of the Extended Variable General-
1031
+ ized Langevin Equation with a Positive Prony Representable Memory Kernel. The Journal of
1032
+ Chemical Physics 2013, 139, 044107.
1033
+ (31) Larsen, A. H. et al. The atomic simulation environment—a Python library for working with
1034
+ atoms. Journal of Physics: Condensed Matter 2017, 29, 273002.
1035
+ (32) Jacobsen, K. W.; Stoltze, P.; Nørskov, J. K. A semi-empirical effective medium theory for
1036
+ metals and alloys. Surface Science 1996, 366, 394–402.
1037
+ 23
1038
+
1039
+ (33) Zhou, X. W.; Johnson, R. A.; Wadley, H. N. G. Misfit-energy-increasing dislocations in
1040
+ vapor-deposited CoFe/NiFe multilayers. Physical Review B 2004, 69, 144113.
1041
+ (34) Heinz, H.; Vaia, R. A.; Farmer, B. L.; Naik, R. R. Accurate Simulation of Surfaces and
1042
+ Interfaces of Face-Centered Cubic Metals Using 12-6 and 9-6 Lennard-Jones Potentials. The
1043
+ Journal of Physical Chemistry C 2008, 112, 17281–17290.
1044
+ (35) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair poten-
1045
+ tials. The Journal of Physical Chemistry 1987, 91, 6269–6271.
1046
+ (36) Florencio, J.; Lee, M. H. Exact time evolution of a classical harmonic-oscillator chain. Phys-
1047
+ ical Review A 1985, 31, 3231–3236.
1048
+ (37) Lee, M. H. Local Dynamics in an Infinite Harmonic Chain. Symmetry 2016, 8, 22.
1049
+ (38) Arbouet, A.; Voisin, C.; Christofilos, D.; Langot, P.; Fatti, N. D.; Vallée, F.; Lermé, J.;
1050
+ Celep, G.; Cottancin, E.; Gaudry, M.; Pellarin, M.; Broyer, M.; Maillard, M.; Pileni, M. P.;
1051
+ Treguer, M. Electron-Phonon Scattering in Metal Clusters. Physical Review Letters 2003, 90,
1052
+ 177401.
1053
+ (39) Sitz, G. O. Gas surface interactions studied with state-prepared molecules. Reports on
1054
+ Progress in Physics 2002, 65, 1165.
1055
+ (40) Juurlink, L. B. F.; Killelea, D. R.; Utz, A. L. State-resolved probes of methane dissociation
1056
+ dynamics. Progress in Surface Science 2009, 84, 69–134.
1057
+ (41) Chadwick, H.; Beck, R. D. Quantum State–Resolved Studies of Chemisorption Reactions.
1058
+ Annual Review of Physical Chemistry 2017, 68, 39–61.
1059
+ (42) Wodtke, A. M. Electronically non-adiabatic influences in surface chemistry and dynamics.
1060
+ Chemical Society Reviews 2016, 45, 3641–3657.
1061
+ 24
1062
+
1063
+ (43) Díaz, C.; Pijper, E.; Olsen, R. A.; Busnengo, H. F.; Auerbach, D. J.; Kroes, G. J. Chemi-
1064
+ cally Accurate Simulation of a Prototypical Surface Reaction: H2 Dissociation on Cu(111).
1065
+ Science 2009, 326, 832–834.
1066
+ (44) Neugebohren, J.; Borodin, D.; Hahn, H. W.; Altschäffel, J.; Kandratsenka, A.; Auer-
1067
+ bach, D. J.; Campbell, C. T.; Schwarzer, D.; Harding, D. J.; Wodtke, A. M.; Kitsopoulos, T. N.
1068
+ Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces.
1069
+ Nature 2018, 558, 280–283.
1070
+ (45) Chen, D.-L.; Al-Saidi, W. A.; Karl Johnson, J. The role of van der Waals interactions in the
1071
+ adsorption of noble gases on metal surfaces. Journal of Physics: Condensed Matter 2012,
1072
+ 24, 424211.
1073
+ (46) Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical
1074
+ reactions. Physica 1940, 7, 284–304.
1075
+ (47) Grote, R. F.; Hynes, J. T. The stable states picture of chemical reactions. II. Rate constants
1076
+ for condensed and gas phase reaction models. The Journal of Chemical Physics 1980, 73,
1077
+ 2715–2732.
1078
+ (48) Pollak, E.; Grabert, H.; Hänggi, P. Theory of activated rate processes for arbitrary frequency
1079
+ dependent friction: Solution of the turnover problem. The Journal of Chemical Physics 1989,
1080
+ 91, 4073–4087.
1081
+ (49) Kappler, J.; Daldrop, J. O.; Brünig, F. N.; Boehle, M. D.; Netz, R. R. Memory-induced
1082
+ acceleration and slowdown of barrier crossing. The Journal of Chemical Physics 2018, 148,
1083
+ 014903.
1084
+ 25
1085
+
1086
+ Supplementary information for "On using the generalized Langevin equation to
1087
+ model substrate phonons and their role in surface adsorption and desorption"
1088
+ Ardavan Farahvash,1 Mayank Agarwal,2 Andrew Peterson,2 and Adam P. Willard1, a)
1089
+ 1)Department of Chemistry, Massachusetts Institute of Technology, Cambridge,
1090
+ Massachusetts 02139, USA
1091
+ 2)Department of Chemical Engineering, Brown University, Providence,
1092
+ Rhode Island 02912, USA
1093
+ a)Electronic mail: [email protected]
1094
+ 1
1095
+ arXiv:2301.04873v1 [physics.chem-ph] 12 Jan 2023
1096
+
1097
+ SI.
1098
+ CONVERGENCE OF CF MEMORY KERNEL
1099
+ We have measured the convergence of the memory kernel and force power spectra both in terms
1100
+ of the step size (stride) between simulation snapshots used to compute the time correlation func-
1101
+ tions in Eq.9 and in terms of the total length the simulation used to compute the time correlation
1102
+ functions T. In Figure S1 we illustrate the simulation length convergence. We see that the short
1103
+ time (< 10ps or > 30cm−1) statistics converge very quickly with respect to simulation length.
1104
+ The long time, low frequency statistics however are slower to converge, especially in terms of
1105
+ the heights of the associated peaks. In particular, using simulation lengths less than 2ns seems to
1106
+ produce artificial oscillations at a very low frequency (∼ 3cm-1) in the memory kernel.
1107
+ S0
1108
+ 0
1109
+ 20
1110
+ 40
1111
+ 60
1112
+ 80
1113
+ 100
1114
+ 120
1115
+ 140
1116
+ ⌫ (cm�1)
1117
+ 0
1118
+ 200
1119
+ 400
1120
+ 600
1121
+ 800
1122
+ 1000
1123
+ Kz(⌫)
1124
+ T = 1.0 ns
1125
+ T = 2.0 ns
1126
+ T = 3.0 ns
1127
+ T = 3.5 ns
1128
+ T = 4.0 ns
1129
+ 0
1130
+ 20
1131
+ 40
1132
+ 60
1133
+ 80
1134
+ 100
1135
+ t (ps)
1136
+ �50
1137
+ 0
1138
+ 50
1139
+ 100
1140
+ 150
1141
+ Kz(t)
1142
+ T = 1.0 ns
1143
+ T = 2.0 ns
1144
+ T = 3.0 ns
1145
+ T = 3.5 ns
1146
+ T = 4.0 ns
1147
+ (A)
1148
+ (B)
1149
+ FIG. S1. Convergence of memory kernel (A) and power spectra (B) for 4x4x4 Pt(111) lattice taken as a
1150
+ function of the simulation length T
1151
+ S1
1152
+ 0
1153
+ 20
1154
+ 40
1155
+ 60
1156
+ 80
1157
+ 100
1158
+ 120
1159
+ 140
1160
+ ⌫ (cm�1)
1161
+ 0
1162
+ 200
1163
+ 400
1164
+ 600
1165
+ 800
1166
+ 1000
1167
+ 1200
1168
+ Kz(⌫)
1169
+ stride = 5 fs
1170
+ stride = 10 fs
1171
+ stride = 25 fs
1172
+ stride = 50 fs
1173
+ 0
1174
+ 5
1175
+ 10
1176
+ 15
1177
+ 20
1178
+ 25
1179
+ 30
1180
+ t (ps)
1181
+ �50
1182
+ 0
1183
+ 50
1184
+ 100
1185
+ 150
1186
+ Kz(t)
1187
+ stride = 5 fs
1188
+ stride = 10 fs
1189
+ stride = 25 fs
1190
+ stride = 50 fs
1191
+ (A)
1192
+ (B)
1193
+ FIG. S2. Convergence of memory kernel (A) and power spectra (B) for 4x4x4 Pt(111) lattice taken as a
1194
+ function of the step length.
1195
+ In terms of stride, Figure S2 shows that the memory kernel is very well converged using step
1196
+ size of 10fs between snapshots.
1197
+ 2
1198
+
1199
+ SII.
1200
+ COMPARISON OF MEMORY KERNELS USING PO AND CF TECHNIQUES
1201
+ In Figure S3 we compare the memory kernel and power spectra computed using correlation
1202
+ function method and projection operator method detailed in Section 2 of the main text. Two dif-
1203
+ ferences of note are the small frequency shift between the two methods, and that the CF memory
1204
+ kernel is much smoother. As we verified in Figure S1 and S2 that the memory kernel is well con-
1205
+ verged, the difference between the PO curves and CF curves in Figure S3 can only be attributed to
1206
+ small anharmonicities in the EMT forcefield. Despite some differences between the two methods,
1207
+ we see that the PO method gives the same bimodal behavior as the CF approach.
1208
+ 0
1209
+ 5
1210
+ 10
1211
+ 15
1212
+ 20
1213
+ t (ps)
1214
+ �50
1215
+ 0
1216
+ 50
1217
+ 100
1218
+ 150
1219
+ Kz(t)
1220
+ CF Method
1221
+ PO Method
1222
+ 0
1223
+ 20
1224
+ 40
1225
+ 60
1226
+ 80
1227
+ 100
1228
+ 120
1229
+ 140
1230
+ ⌫ (cm�1)
1231
+ 0
1232
+ 200
1233
+ 400
1234
+ 600
1235
+ 800
1236
+ 1000
1237
+ Kz(⌫)
1238
+ CF Method
1239
+ PO Method
1240
+ (A)
1241
+ (B)
1242
+ FIG. S3. Comparison of memory kernel (A) and power spectra (B) using CF and PO methods for 4x4x4
1243
+ Pt(111) lattice. The δ function form of the PO spectral density is represented with vertical lines.
1244
+ SIII.
1245
+ MACROSCOPIC LIMIT OF 1D HARMONIC CHAIN
1246
+ Consider a 1D chain of harmonic oscillators with spring constant k = mω2 and periodic bound-
1247
+ ary conditions. Every site in the chain is identical, and the dynamical matrix is given by,
1248
+ D2 = ω2
1249
+
1250
+
1251
+
1252
+
1253
+
1254
+
1255
+
1256
+
1257
+
1258
+
1259
+ −2 1
1260
+ 0
1261
+ 0
1262
+ ... −1
1263
+ −1 2 −1
1264
+ 0
1265
+ ...
1266
+ 0
1267
+ ...
1268
+ ...
1269
+ ...
1270
+ ...
1271
+ 0
1272
+ ...
1273
+ 0
1274
+ −1
1275
+ 2
1276
+ −1
1277
+ −1 ...
1278
+ 0
1279
+ 0
1280
+ −1
1281
+ 2
1282
+
1283
+
1284
+
1285
+
1286
+
1287
+
1288
+
1289
+
1290
+
1291
+
1292
+ .
1293
+ (S1)
1294
+ 3
1295
+
1296
+ Taking our system to be a single site in the lattice, the resulting bath projected matrix is given by
1297
+ D2
1298
+ QQ = ω2
1299
+
1300
+
1301
+
1302
+
1303
+
1304
+
1305
+
1306
+
1307
+
1308
+
1309
+ 2
1310
+ −1
1311
+ 0
1312
+ ...
1313
+ 0
1314
+ −1
1315
+ 2
1316
+ −1 ...
1317
+ 0
1318
+ ...
1319
+ ...
1320
+ ...
1321
+ 0
1322
+ ... −1
1323
+ 2
1324
+ −1
1325
+ 0
1326
+ ...
1327
+ 0
1328
+ −1
1329
+ 2
1330
+
1331
+
1332
+
1333
+
1334
+
1335
+
1336
+
1337
+
1338
+
1339
+
1340
+ .
1341
+ (S2)
1342
+ This matrix may be diagonalized analytically allowing one to find a solution to the memory kernel
1343
+ via Eq.5,
1344
+ K(t) = 4k
1345
+ N
1346
+ N
1347
+
1348
+ n=1
1349
+ cos2(θn)cos(2ωt sin(θn)),
1350
+ (S3)
1351
+ where N is the total length of the chain and θn =
1352
+
1353
+ 2(N+1). If we take the limit as N → ∞, we see
1354
+ that this sum converges to an integral,
1355
+ K(t) = 8πk
1356
+ � π/2
1357
+ 0
1358
+ dθ cos2(θ)cos(2ωt sin(θ)).
1359
+ (S4)
1360
+ This integral has no closed form solution. However it can be expressed in terms of Bessel func-
1361
+ tions,
1362
+ K(t) = 4ω2
1363
+ π
1364
+ J1(2ωt)
1365
+ t
1366
+ ,
1367
+ (S5)
1368
+ where J is a Bessel function of the first kind.
1369
+ 0
1370
+ 20
1371
+ 40
1372
+ 60
1373
+ 80
1374
+ t
1375
+ �2
1376
+ 0
1377
+ 2
1378
+ 4
1379
+ K(t)
1380
+ 0
1381
+ 1
1382
+ 2
1383
+ 3
1384
+ 4
1385
+ !
1386
+ 0
1387
+ 50
1388
+ 100
1389
+ 150
1390
+ 200
1391
+ 250
1392
+ 300
1393
+ K(!)
1394
+ N = 10
1395
+ N = 50
1396
+ N = 250
1397
+ N ! 1
1398
+ (A)
1399
+ (B)
1400
+ FIG. S4. Comparison of memory kernel (A) and power spectra (B) for single site fluctuations of a 1D
1401
+ harmonic chains of various lengths with periodic boundary.
1402
+ In Figure S4 we illustrate the size dependence of the memory kernel for a site in a 1D chain.
1403
+ Like the 3D lattices presented in the main text, there is a frequency shift as we move to increase
1404
+ 4
1405
+
1406
+ the size of the chain. However, the power spectra is not bimodal, but rather a continuous sum
1407
+ of many modes which decrease in amplitude as we approach the chain’s Debye frequency 2ω.
1408
+ Furthermore, the memory kernel also does not decay exponentially, but rather as 1
1409
+ t , perhaps a
1410
+ consequence of the well-known ergodicity breaking in such systems.
1411
+ SIV.
1412
+ RESULTS FOR OTHER METALS AND SURFACES
1413
+ In Figure S5 we illustrate the power spectra of metal surfaces other than Pt(111). The power
1414
+ spectra of Au(111) and Pt(110) (Figure S5C and Figure S5D) clearly have the same bimodal be-
1415
+ havior as Pt(111). The power spectra of Cu(111) (Figure S5B) appears to be missing the Debye
1416
+ mode, however the real-time memory kernel (Figure S5A) has the same characteristic fast decay
1417
+ followed by coherent oscillations which decay much slower. Comparing Figure S5A and Figure
1418
+ S5B suggests that surface sites still do couple to modes near the Debye frequency in Cu(111),
1419
+ however such modes are of such a high frequency and dissipate energy so quickly that they are
1420
+ either overdamped, or not properly resolved due to numerical errors when computing the correla-
1421
+ tion functions. This suggestion is corroborated by the fact that the experimental Debye frequency
1422
+ of Cu is nearly two times greater than that of Au, and roughly 50% greater than that of Pt.
1423
+ 5
1424
+
1425
+ 0
1426
+ 10
1427
+ 20
1428
+ 30
1429
+ 40
1430
+ 50
1431
+ t (ps)
1432
+ �100
1433
+ 0
1434
+ 100
1435
+ 200
1436
+ 300
1437
+ 400
1438
+ Kz(t)
1439
+ 4x4x4
1440
+ 6x6x6
1441
+ 8x8x8
1442
+ 0
1443
+ 50
1444
+ 100
1445
+ 150
1446
+ 200
1447
+ 250
1448
+ ⌫ (cm�1)
1449
+ 0
1450
+ 200
1451
+ 400
1452
+ 600
1453
+ 800
1454
+ 1000
1455
+ 1200
1456
+ Kz(⌫)
1457
+ 4x4x4
1458
+ 6x6x6
1459
+ 8x8x8
1460
+ (A)
1461
+ (B)
1462
+ 0
1463
+ 50
1464
+ 100
1465
+ 150
1466
+ ⌫ (cm�1)
1467
+ 0
1468
+ 200
1469
+ 400
1470
+ 600
1471
+ 800
1472
+ 1000
1473
+ 1200
1474
+ Kz(⌫)
1475
+ 4x4x4
1476
+ 6x6x6
1477
+ 8x8x8
1478
+ 0
1479
+ 50
1480
+ 100
1481
+ 150
1482
+ ⌫ (cm�1)
1483
+ 0
1484
+ 200
1485
+ 400
1486
+ 600
1487
+ 800
1488
+ 1000
1489
+ Kz(⌫)
1490
+ 4x4x4
1491
+ 6x6x6
1492
+ 8x8x8
1493
+ (C)
1494
+ (D)
1495
+ FIG. S5. (A) Memory kernel for surface sites of Cu(111) lattices of various sizes simulated with EMT.
1496
+ (B) Associated power spectra of Cu(111). (C) Power spectra for Au(111) lattices simulated with EMT. (D)
1497
+ Power spectra for Pt(100) lattices simulated with EMT.
1498
+ 6
1499
+
1500
+ SV.
1501
+ ARGON SCATTERING AND DESORPTION SIMULATIONS
1502
+ 0
1503
+ 5
1504
+ 10
1505
+ 15
1506
+ 20
1507
+ 25
1508
+ 30
1509
+ z - Ang
1510
+ 0
1511
+ 10
1512
+ 20
1513
+ 30
1514
+ 40
1515
+ 50
1516
+ 60
1517
+ U(z) - kBT
1518
+ 0
1519
+ 5
1520
+ 10
1521
+ 15
1522
+ 20
1523
+ 25
1524
+ 30
1525
+ z - Ang
1526
+ 0
1527
+ 2
1528
+ 4
1529
+ 6
1530
+ 8
1531
+ 10
1532
+ 12
1533
+ U(z) - kBT
1534
+ (A)
1535
+ (B)
1536
+ FIG. S6. Morse potentials used in main text. The red lines are the harmonic fits to the potential in the well.
1537
+ Figure S6 demonstrates the Morse potentials used in the main text to describe the interaction
1538
+ of Argon and a platinum surface. In Figure S6B we increase the depth of the well D, keeping the
1539
+ frequency ωz the same. The exact parameters of these potentials are shown in Table S1.
1540
+ TABLE SI. Morse potential parameters between Argon on Pt(111) surface used in main text. Taken from
1541
+ Ref X.
1542
+ D (eV)
1543
+ a (Å
1544
+ −1)
1545
+ ωz (cm−1)
1546
+ Ar
1547
+ 6.62
1548
+ 44
1549
+ 0.83
1550
+ Ar - Deepwell
1551
+ 30.62
1552
+ 44
1553
+ 0.39
1554
+ In Figure S7 we present the power spectra of the GLE models used to conduct the surface
1555
+ scattering and desorption simulations in the main text. The 5 term fit includes some of the more
1556
+ minor peaks of the power spectra not included in the 2 term fit. The macroscopic limit only
1557
+ includes the Debye peak.
1558
+ In Figure S8 we present histograms of the energy lost from the adsorbate to the lattice during
1559
+ the surface scattering simulations using the D = 30.62 eV potential at two different values of the
1560
+ incident velocity. At low incident velocities, the distribution is bimodal and asymmetric, how-
1561
+ ever as we increase the incident velocity, the distribution becomes increasingly Gaussian. The
1562
+ bimodality at low incident velocities is a consequence of some of the trajectories being trapped,
1563
+ and other escaping. Trapped trajectories interact for longer with the lattice and therefore dissipate
1564
+ more energy.
1565
+ 7
1566
+
1567
+ 0
1568
+ 50
1569
+ 100
1570
+ 150
1571
+ ⌫ (cm�1)
1572
+ 0
1573
+ 200
1574
+ 400
1575
+ 600
1576
+ 800
1577
+ 1000
1578
+ 1200
1579
+ Kz(⌫)
1580
+ Calculated K(t)
1581
+ 2 term fit
1582
+ 5 term fit
1583
+ Macroscopic Limit
1584
+ FIG. S7. Power spectra for a 4x4x4 Pt(111) lattice calculated using the CF method overlayed with a 2 term
1585
+ Lorentzian fits, 5 term Lorentzian fit, and the macrscopic limit corresponding to only fitting the region of
1586
+ the power spectra near the Debye frequency.
1587
+ �200
1588
+ �150
1589
+ �100
1590
+ �50
1591
+ �E
1592
+ 0.000
1593
+ 0.005
1594
+ 0.010
1595
+ 0.015
1596
+ 0.020
1597
+ 0.025
1598
+ P(�E)
1599
+ �75
1600
+ �50
1601
+ �25
1602
+ 0
1603
+ 25
1604
+ 50
1605
+ �E
1606
+ 0.00
1607
+ 0.02
1608
+ 0.04
1609
+ 0.06
1610
+ 0.08
1611
+ 0.10
1612
+ 0.12
1613
+ P(�E)
1614
+ GLE - Macrscopic Limit
1615
+ GLE - 5 term
1616
+ (A)
1617
+ (B)
1618
+ FIG. S8.
1619
+ Histograms for energy dissipated during scattering using D = 30.62 eV Morse potential. (A)
1620
+ Using trajectories with KE(t = 0)/D = 0.75. (B) Using trajectories with incident KE to well-depth ratio of
1621
+ KE(t = 0)/D = 2.5.
1622
+ Interestingly, when KE(t = 0)/D = 2.5 all the trajectories escape, however, by analyzing the
1623
+ histograms in Figure S8B we see can still see a signature of the finite-size effects discussed in the
1624
+ main text. The 5-term GLE model dissipates less energy than the macroscopic limit GLE model
1625
+ due to coupling to acoustic modes.
1626
+ 8
1627
+
-9E4T4oBgHgl3EQfEAsg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-NE1T4oBgHgl3EQfUgOU/content/tmp_files/2301.03091v1.pdf.txt ADDED
@@ -0,0 +1,737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. main
2
+ ©ESO 2023
3
+ January 10, 2023
4
+ Letter to the Editor
5
+ New multiple AGN systems with sub-arcsec separation :
6
+ confirmation of candidates selected via the novel GMP method
7
+ A. Ciurlo1, F. Mannucci2, S. Yeh3, A. Amiri2, 4, S. Carniani5, C. Cicone6, G. Cresci2, R. Khatun6, E. Lusso2, 4, A.
8
+ Marasco7, C. Marconcini2, 4, A. Marconi4, E. Nardini2, E. Pancino2, P. Rosati8, P. Severgnini9, M. Scialpi4, 2, G.
9
+ Tozzi4, 2, G. Venturi10, 2, C. Vignali11, and M. Volonteri12
10
+ 1 Department of Physics and Astronomy, University of California Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095, USA
11
+ e-mail: [email protected]
12
+ 2 INAF, Osservatorio Astrofisico di Arcetri, largo E. Fermi 5, 50125 Firenze, Italy
13
+ 3 W. M Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI 96743, USA
14
+ 4 Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019, Sesto Fiorentino (Firenze), Italy
15
+ 5 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
16
+ 6 Institute of Theoretical Astrophysics, University of Oslo, P.O Box 1029, Blindern, 0315 Oslo, Norway
17
+ 7 INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, Padova, Italia
18
+ 8 University of Ferrara, Department of Physics and Earth Sciences, Via G. Saragat, 21-44122 Ferrara, Italy
19
+ 9 INAF, Osservatorio Astronomico di Brera, Via Brera 28,20121 Milano, Italy
20
+ 10 Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
21
+ 11 Physics and Astronomy Department "Augusto Righi", Università di Bologna, Via Gobetti 93/2, 40129 Bologna, Italy
22
+ 12 Institu d’Astrophysique de Paris, 98bis Bd Arago, 75014 Paris, France
23
+ Submitted January 6, 2023
24
+ ABSTRACT
25
+ The existence of multiple active galactic nuclei (AGN) at small projected distances on the sky is due to either the presence of multiple,
26
+ in-spiraling SMBHs, or to gravitational lensing of a single AGN. Both phenomena allow us to address important astrophysical and
27
+ cosmological questions. However, few kpc-separation multiple AGN are currently known. Recently, the newly-developed Gaia Multi
28
+ peak (GMP) method provided numerous new candidate members of these populations. We present spatially resolved, integral-field
29
+ spectroscopy of a sample of four GMP-selected multiple AGNs candidates. In all of these systems, we detect two or more components
30
+ with sub-arcsec separations. We find that two of the systems are dual AGNs, one is either an intrinsic triple or a lensed dual AGN,
31
+ while the last system is a chance AGN/star alignment. Our observations double the number of confirmed multiple AGNs at projected
32
+ separations below 7 kpc at z > 0.5, present the first detection of a possible triple AGN in a single galaxy at z > 0.5, and successfully
33
+ test the GMP method as a novel technique to discover previously unknown multiple AGNs.
34
+ Key words. Galaxies: active – quasars: general – quasars: emission lines
35
+ 1. Introduction
36
+ All current cosmological models describe galaxy formation as a
37
+ hierarchical process in which small galaxies merge to form larger
38
+ systems. This process also applies to the supermassive black-
39
+ holes (SMBHs) that co-evolve with the host galaxy (Begelman
40
+ et al. 1980). Given the long merging timescale (∼1 Gyr, e.g
41
+ Tremmel et al. 2017), a population of dual or multiple SMBHs
42
+ must exist in many galaxies (Volonteri et al. 2003). SMBHs
43
+ are expected to accrete material from the merging host galax-
44
+ ies, producing dual or multiple luminous active galactic nu-
45
+ clei (AGNs) in the same galaxy (Steinborn et al. 2016; Rosas-
46
+ Guevara et al. 2019; Volonteri et al. 2022). For example, Volon-
47
+ teri et al. (2022) estimate that at z > 2 more than 1% of the
48
+ bright AGNs (Lbol >1043 erg/s) are expected to have a compan-
49
+ ion within 10 kpc. The discovery of dual AGNs at kiloparsec-
50
+ scale separation is therefore crucial to support the hierarchical
51
+ formation model. Additionally, since dual AGNs are the precur-
52
+ sors of a binary phase, they allow us to study the merging steps
53
+ leading to the emission of gravitational waves (e.g. Colpi 2014).
54
+ Several tens of dual AGNs at separations above 10–20 kpc
55
+ are known (e.g. Lemon et al. 2019; Chen et al. 2022, among
56
+ many others). However, very few dual-AGN at separations be-
57
+ low ∼5 kpc –compatible with being in the same host galaxy–
58
+ have been discovered so far. There is a shortage of known
59
+ close systems especially at intermediate and high redshifts, when
60
+ galaxy mergers are more common (see De Rosa et al. 2019 and
61
+ Mannucci et al. 2022 and references therein). This lack is due to
62
+ the relatively low efficiency of the current selection techniques
63
+ for sub-arcsec separations systems (Rubinur et al. 2019). In par-
64
+ ticular, only four systems with separations below 5 kpc have
65
+ been confirmed at z>0.5 (Junkkarinen et al. 2001; Chen et al.
66
+ 2022; Mannucci et al. 2022, Glikman et al., in prep). The small
67
+ number of currently known dual AGN systems prevents us from
68
+ testing cosmological model predictions such as the fraction of
69
+ dual systems over the total AGN population, their evolution with
70
+ redshifts and their mass and luminosity ratios (Volonteri et al.
71
+ 2022, and references therein).
72
+ Thanks to its high spatial resolution and full sky coverage,
73
+ the Gaia satellite is revolutionizing the field (e.g Lemon et al.
74
+ Article number, page 1 of 6
75
+ arXiv:2301.03091v1 [astro-ph.GA] 8 Jan 2023
76
+
77
+ A&A proofs: manuscript no. main
78
+ 2019; Shen et al. 2021; Chen et al. 2022; Lemon et al. 2022). In
79
+ particular, the Gaia Multi-peak (GMP) method (Mannucci et al.
80
+ 2022) allows us to select large numbers of dual systems with sep-
81
+ arations down to ∼0.15" by searching for multiple peaks in the
82
+ light profile of the Gaia sources. Mannucci et al. (2022) tested
83
+ the efficiency of this method on 31 GMP-selected systems with
84
+ HST (archival images of 26 systems) and LBT (newly obtained
85
+ high-resolution observations of five systems) images. All these
86
+ systems show multiple compact sources with sub-arcsec resolu-
87
+ tion, confirming that this novel technique can be extremely effi-
88
+ cient in selecting a sample of quasi-stellar objects with multiple
89
+ components.
90
+ The GMP-identified systems can also be lensed, high-
91
+ redshift AGN, that appear as multiple components with small
92
+ spatial separations. Strongly lensed AGN are rare and unique
93
+ tools for measuring the Hubble parameter (e.g. Wong 2018) and
94
+ for investigating AGN feedback at high redshift (e.g. Feruglio
95
+ et al. 2017; Tozzi et al. 2021). In particular, very compact sys-
96
+ tems (sub-arcsec separations) allow us to investigate the mass
97
+ distribution of lensing galaxies to a regime lower than what is
98
+ typically probed by current galaxy-scale lenses surveys (e.g.,
99
+ SLACS Bolton et al. 2008; Shajib et al. 2021). The sensitivity
100
+ to such low-mass dark matter halos can be used to study the na-
101
+ ture of dark matter (e.g. Casadio et al. 2021).
102
+ A crucial next step is to understand the nature of the GMP-
103
+ selected systems: intrinsically multiple AGNs, gravitationally-
104
+ lensed systems or an AGN plus a foreground star. Integral
105
+ field spectroscopy is particularly well-suited to extract spatially-
106
+ resolved spectra of each component of these systems, thus
107
+ helping us discriminate among these three scenarios. Here, we
108
+ present the first spatially resolved spectroscopy of four GMP-
109
+ selected systems, observed with the adaptive optics (AO) integral
110
+ field spectrograph OSIRIS at W. M. Keck Observatory (Larkin
111
+ et al. 2006). The goals of these observations are: (1) resolving
112
+ point-sources in dual-AGN candidates to test the success rate
113
+ of the GMP technique; (2) differentiating AGNs from stars in
114
+ resolved systems, based on their spectral properties; (3) classify-
115
+ ing the systems as intrinsically multiple vs. lensed AGNs, based
116
+ on the differences between their spectra.
117
+ This letter is structured as follows. Observations and data re-
118
+ duction are reported in Section 2, the classification of each sys-
119
+ tem is discussed in Section 3. Our conclusions are summarized
120
+ in Section 4. All magnitudes we report are in Vega system and
121
+ we used the cosmological parameters from Planck Collaboration
122
+ et al. (2020).
123
+ 2. Target selection, observations, and data
124
+ reduction
125
+ Our targets were extracted from the Milliquas v7.2 catalog
126
+ (Flesch 2021) by selecting systems observable from Keck, with
127
+ spectroscopic redshifts z > 0.5, and redshift such as to have at
128
+ least one bright line (Hα for all these systems) inside one of near-
129
+ IR bands used by OSIRIS. All sources were selected through
130
+ the GMP method by having values of ipd_ frac_multi_peak1
131
+ above the threshold of 10 (Mannucci et al. 2022). We exclude ob-
132
+ jects where clear stellar features at zero velocity in their archival
133
+ ground-based spectrum reveals the presence of a chance align-
134
+ ment between an AGN and a foreground star.
135
+ All observations and observing conditions are reported in
136
+ Table 1. We observed systems J1026+6023, J1608+2716 and
137
+ J1613+1708 on March 19th 2022 with laser guide star (LGS)
138
+ 1 the parameter of the Gaia archive used for the GMP selection
139
+ AO, with a 50 mas pixelscale. On our second scheduled observ-
140
+ ing date, August 12th 2022, the laser was not available, so we
141
+ observed system J2335+3201 with a natural guide star (NGS)
142
+ correction instead. The tip and tilt star for this target is faint
143
+ (14.33 magnitudes in R band, fainter than Keck’s nominal NGS
144
+ limit), therefore the correction was worse than during our other
145
+ observations. Given the lower spatial resolution provided by this
146
+ correction, we opted for a larger pixelscale of 100 mas.
147
+ Due to their relatively large separation (0.75" and 0.61", re-
148
+ spectively), systems J1613+1708 and J2335+3201 are already
149
+ resolved into two sources in the Gaia archive. This allows us to
150
+ know the separation angle and the system orientation in advance.
151
+ Therefore, we used the small OSIRIS field of view (0.8"×3.2" at
152
+ 50 mas platescale, 1.6"×6.4" at 100 mas platescale) which cor-
153
+ responds to broad-band filters (respectively Hbb from 1.473 to
154
+ 1.803 µm and Jbb from 1.180 to 1.416 µm). The other two tar-
155
+ gets (J1026+6023 and J1608+1716) appear as single entries in
156
+ the Gaia archive. Therefore, we observed them with a larger field
157
+ of view (1.6"×3.2") that allowed us to account for the unknown
158
+ orientation of the systems but that comes with a narrower spec-
159
+ tral coverage (respectively Hn5 from 1.721 to 1.808 µm and Kn5
160
+ from 2.292 to 2.408 µm). In addition to the science targets, each
161
+ night we also observed a standard star of spectral type A for tel-
162
+ luric calibration, and a field of view free of targets for sky sub-
163
+ traction. All data cubes were assembled and reduced using the
164
+ standard OSIRIS pipeline (Lockhart et al. 2019).
165
+ For each target, we extract the spectrum of all detected com-
166
+ ponents by taking the weighted sum in the squared apertures
167
+ shown in the Figure 1 (left panels). We calculate the weighting
168
+ factor for each spaxel by extracting its corresponding spectrum
169
+ and measuring the total Hα flux. In this way, the signal-to-noise
170
+ is maximized while the cross-contamination between different
171
+ components and the aperture size impact are minimized. We note
172
+ that this technique applies because the sources are expected to be
173
+ point-like and, therefore, to show no spectral variation across the
174
+ field of view.
175
+ 3. Results
176
+ We find that all four targets are resolved into multiple point-
177
+ sources, with separations in the expected range (Mannucci et al.
178
+ 2022). The images and the spectra of all the systems are shown
179
+ in Figure 1. These spatially-resolved spectra allow us to study
180
+ the nature of each object, as summarized in Table 2.
181
+ 3.1. J1026+6023
182
+ J1026+6023 is composed of an AGN and a star. The AGN shows
183
+ a Hα line with broad and narrow components and a prominent
184
+ narrow [NII]λ6584 line with a redshift of z=1.659. This AGN
185
+ is at 0.61" separation from an object with a featureless spectrum
186
+ which we identify as a foreground star. The AGN (component A)
187
+ is the brightest object in the optical band, sampled by Gaia and
188
+ the Sloan Digital Sky Survey (SDSS, Lyke et al. 2020), while
189
+ the star is the brightest object in the near-IR H band sampled by
190
+ the Keck spectra (component B). Chance AGN/star alignments
191
+ of this kind are expected to be 30% of the GMP-selected targets
192
+ (Mannucci et al. 2022).
193
+ 3.2. J1608+2716
194
+ J1608+2716 is an obscured quasi-stellar object (QSO), at
195
+ z=2.575, with AV ∼1.8 as estimated from the SDSS spectrum.
196
+ Article number, page 2 of 6
197
+
198
+ A. Ciurlo et al.: Unveiling multiple AGNs via the GMP method
199
+ 0.5
200
+ 0.0
201
+ 0.5
202
+ 0.5
203
+ 0.0
204
+ 0.5
205
+ arcsec
206
+ A
207
+ B
208
+ 1.72
209
+ 1.74
210
+ 1.76
211
+ 1.78
212
+ 1.80
213
+ 0
214
+ 10
215
+ 20
216
+ 30
217
+ Ha
218
+ [NII]
219
+ [NII]
220
+ J1026+6023 z=1.659
221
+ 0.5
222
+ 0.0
223
+ 0.5
224
+ 0.4
225
+ 0.2
226
+ 0.0
227
+ 0.2
228
+ 0.4
229
+ arcsec
230
+ A
231
+ B
232
+ C
233
+ 2.30
234
+ 2.32
235
+ 2.34
236
+ 2.36
237
+ 2.38
238
+ 2.40
239
+ 0
240
+ 20
241
+ 40
242
+ 60
243
+ Ha
244
+ [NII]
245
+ [NII]
246
+ [SII]
247
+ J1608+2716 z=2.578
248
+ x 2
249
+ x 4
250
+ 0.5
251
+ 0.0
252
+ 0.5
253
+ 0.50
254
+ 0.25
255
+ 0.00
256
+ 0.25
257
+ 0.50
258
+ arcsec
259
+ A
260
+ B
261
+ 1.50
262
+ 1.55
263
+ 1.60
264
+ 1.65
265
+ 1.70
266
+ 1.75
267
+ 1.80
268
+ 0
269
+ 20
270
+ 40
271
+ 60
272
+ HeI
273
+ Ha
274
+ [NII]
275
+ J1613+1708 z=1.547
276
+ 1
277
+ 0
278
+ 1
279
+ arcsec
280
+ 1.0
281
+ 0.5
282
+ 0.0
283
+ 0.5
284
+ 1.0
285
+ arcsec
286
+ A
287
+ B
288
+ 1.18
289
+ 1.20
290
+ 1.22
291
+ 1.24
292
+ 1.26
293
+ 1.28
294
+ 1.30
295
+ 1.32
296
+ Wavelength (mic)
297
+ 0
298
+ 50
299
+ 100
300
+ 150
301
+ Ha
302
+ [NII]
303
+ J2335+3201 z=0.904
304
+ x 10
305
+ Fig. 1. Hα emission line maps (left) and spectra (right) of the systems observed with OSIRIS (target name and redshift reported in the right panels).
306
+ The line maps are oriented with North up and West right. The spectra shown on the right panels have been extracted over the squared apertures
307
+ marked on the left panes (with the same color-coding) . Each component of the systems is labelled as in Table 2. To optimize the visualization some
308
+ of the spectra have been multiplied by the factors indicated in the labels. Vertical dotted lines show the position of the main expected emission
309
+ lines.
310
+ Target
311
+ RA
312
+ DEC
313
+ PA
314
+ IPDfmp
315
+ Redshift
316
+ Band
317
+ Texp×Nexp
318
+ FWHM
319
+ seeing
320
+ AO
321
+ J1026+6023
322
+ 10:26:31.13
323
+ +60:23:30.13
324
+ 102◦
325
+ 21
326
+ 1.660
327
+ Hn5
328
+ 900 s ×4
329
+ 0.10”
330
+ 0.7”
331
+ LGS
332
+ J1608+2716
333
+ 16:08:29.23
334
+ +27:16:26.74
335
+ -357◦
336
+ 14
337
+ 2.575
338
+ Kn5
339
+ 900 s ×6
340
+ 0.09”
341
+ 0.7”
342
+ LGS
343
+ J1613+1708
344
+ 16:13:20.01
345
+ +17:08:39.40
346
+ 135◦
347
+ 14
348
+ 1.547
349
+ Hbb
350
+ 900 s ×4
351
+ 0.11”
352
+ 0.7”
353
+ LGS
354
+ J2335+3201
355
+ 23:35:22.52
356
+ +32:01:09.08
357
+ -106◦
358
+ 13
359
+ 0.904
360
+ Jbb
361
+ 600 s ×2
362
+ 0.42”
363
+ 0.9”
364
+ NGS
365
+ Table 1. Main properties of the four targets studied in this work, along with Keck OSIRIS observational setup. IPDfmp is the value of the
366
+ ipd_frac_multi_peak parameter of the Gaia archive used for the GMP selection. Redshift are obtained from SDSS ground-based spectra, as
367
+ reported in the Milliquas catalog. FWHMs are calculated on isolated sources. The seeing corresponds to the DIMM (Differential Image Motion
368
+ Monitor) seeing mean value (at zenith, at 0.5 µm), as reported by the Maunakea Weather Center for the same night of the observations.
369
+ Our observations reveal three components: a central brightest
370
+ one (component A), one 0.25" to the east (component B) and
371
+ one 0.29" towards north west (component C). Faint extensions
372
+ are visible for components A and C, but their low luminosity,
373
+ compared with nearby components, and the extended wings of
374
+ the AO point-spread-function (PSF) do not allow us to extract
375
+ independent spectra. Due to the shorter wavelength range used
376
+ in the observations, the spectra only cover the broad Hα line
377
+ and a limited part of the continuum on both sides. All the three
378
+ components show broad Hα lines at similar redshifts, with veloc-
379
+ ity dispersion of about 5500 km/sec full width at half maximum
380
+ (FWHM), but with slightly offset line centers.
381
+ There are three main possible explanations to a triple object:
382
+ 1) a triple lensed system, i.e, three images of the same object;
383
+ 2) lensing of a dual AGN: two distinct objects, one of which
384
+ with two detected lensed images; 3) a systems of three different
385
+ AGNs, a possibility predicted by current models (e.g Ni et al.
386
+ 2022; Bhowmick et al. 2020; Volonteri et al. 2022) and previ-
387
+ ously observed in the Local Universe (e.g Foord et al. 2021; Ya-
388
+ dav et al. 2021).
389
+ To unveil the nature of this source we can consider the fol-
390
+ lowing points:
391
+ – Line position and profile: component B displays both a dif-
392
+ ferent line profile and radial velocity with respect to the cen-
393
+ tral, brightest component A, as shown in Figure 2. Gaussian
394
+ fits to the emission lines of all components show that the
395
+ Hα line of component B (in blue) is centered at lower wave-
396
+ Article number, page 3 of 6
397
+
398
+ A&A proofs: manuscript no. main
399
+ Target
400
+ Class
401
+ Separation
402
+ Line
403
+ Center
404
+ redshift
405
+ arcsec
406
+ kpc
407
+ (µm)
408
+ J1026+6023A
409
+ AGN
410
+
411
+ 1.7451
412
+ 1.659
413
+ [NII]6854
414
+ 1.7503
415
+ 1.667
416
+ J1026+6023B
417
+ Star
418
+ 0.61
419
+ -
420
+ -
421
+ -
422
+ -
423
+ J1608+2716A
424
+ dual/triple AGN
425
+ Hα+[NII]
426
+ 2.3524
427
+ 2.584
428
+ J1608+2716B
429
+ 0.25
430
+ 2.0
431
+ Hα+[NII]
432
+ 2.3467
433
+ 2.576
434
+ J1608+2716C
435
+ 0.29
436
+ 2.4
437
+ Hα+[NII]
438
+ 2.3527
439
+ 2.585
440
+ J1613+1708A
441
+ dual AGN
442
+ Hα+[NII]
443
+ 1.6732
444
+ 1.550
445
+ J1613+1708B
446
+ 0.71
447
+ 6.1
448
+ Hα+[NII]
449
+ 1.6702
450
+ 1.545
451
+ J2335+3201A
452
+ dual AGN
453
+ Hα+[NII]
454
+ 1.2492
455
+ 0.904
456
+ J2335+3201B
457
+ 0.61
458
+ 4.8
459
+ Hα+[NII]
460
+ 1.2508
461
+ 0.906
462
+ Table 2. Summary of the results from our OSIRIS observations: most probable classification, projected angular and linear distances from the
463
+ brightest object, and center of the observed lines.
464
+ lengths, with a difference of ∼720 km/sec, and has a FWHM
465
+ larger than component A by 1200 km/sec. We estimated the
466
+ uncertainties on the center and the FWHM of the best-fit
467
+ Gaussians by adding Gaussian noise to the spectra at the ob-
468
+ served amplitude, and computing the fit again. This process
469
+ was repeated 2000 times for each line. The distribution of
470
+ the resulting centers and FWHM are show in Figure 2 (cen-
471
+ ter and left panels). This shows that the differences in center
472
+ and width between components A and B are highly signifi-
473
+ cant. We can exclude spatially-dependent calibration issues
474
+ because the sky lines in spectra extracted at the locations of
475
+ the components overlap perfectly. In contrast to component
476
+ B, component C has a spectrum compatible with A.
477
+ – Variability and time lag: given the small projected separa-
478
+ tion (0.25"), in the case of lensing, the time delay between
479
+ components A and B is 2 days at most (Lieu 2008). For in-
480
+ trinsic variability to be at the origin of the differences above,
481
+ this timescale must be larger than (or of the same order of)
482
+ the size of the broad-line emitting region (BLR). Bentz et al.
483
+ (2013) have estimated the radius of the Balmer-line emitting
484
+ part of the BLR as a function of the luminosity of the con-
485
+ tinuum λL(λ) at 5100 Å. For J1608+2716, this luminosity
486
+ –estimated from the SDSS spectrum and the G-band Gaia
487
+ magnitude– is log(λ L(λ))/erg sec−1=46.0±0.2. For this lu-
488
+ minosity, Bentz et al. (2013) estimate a radius of the BLR
489
+ of ∼ 400 light-days. Even assuming that the luminosity of
490
+ this object is boosted by a factor of 10 by lensing, the radius
491
+ would be ∼ 100 light-days. This is much larger than the ex-
492
+ pected delay. Therefore, in the case of lensing, no significant
493
+ variability of the Hα line would be expected between the two
494
+ images.
495
+ – Lensing: component C (red in Figure 2) has center and
496
+ FWHM compatible with the brightest component A. How-
497
+ ever, the two lines have significantly different equivalent
498
+ widths (377Å for component A, vs. 232Å for component C).
499
+ This difference, in the lensing scenario, could be attributed to
500
+ microlensing of the continuum by single stars in the lensing
501
+ galaxy (e.g. Hutsemékers et al. 2010). If A and C are lensed
502
+ images of the same QSO, the B image would be the sec-
503
+ ond component of a dual AGN, however producing a single
504
+ image if it lies outside the radial caustic of a general ellipti-
505
+ cal mass distribution. In any case, a compact lensing galaxy
506
+ should be present.
507
+ – Missing lensing galaxy: nothing is detected in the observed
508
+ spectra besides the QSOs and the faint extensions of com-
509
+ ponent A and C. Two lensed images of a QSO at zs = 2.57
510
+ separated by 0.25" (with a third image strongly demagnified
511
+ near the center) can be obtained with a lens galaxy with a
512
+ mass of M∼ 1010M⊙, by assuming it at redshift zL ∼ 0.5 − 1
513
+ and by requiring the separation to be twice the Einstein ra-
514
+ dius of a singular isothermal sphere2. Such a compact lensed
515
+ system would only sample the central part of the lensing
516
+ galaxy where the contribution of dark matter is gravitation-
517
+ ally subdominant with respect to stellar mass, with a contri-
518
+ bution lower than the uncertainties. Assuming that this mass
519
+ is dominated by stars, we estimate a galaxy magnitude be-
520
+ tween Ks∼19.2 at z=0.5 and Ks∼20.5 at z=1.0 (Longhetti &
521
+ Saracco 2009, for an early-type galaxy with a Chabrier initial
522
+ mass function). As a comparison, the QSO has Ks∼19.1, es-
523
+ timated using Gaia magnitudes and SDSS spectra. A lensed
524
+ galaxy at z=0.5 would, therefore, be easily detected also con-
525
+ sidering that it is not a point source, while would be below
526
+ detection at z=1, especially if it dust extincted. The nucleus
527
+ of the lensing galaxy could be the faint extension of compo-
528
+ nent A, that otherwise could be the QSO host galaxy.
529
+ In conclusion, the differences in line center and profile be-
530
+ tween components A and B, together with the small time delay
531
+ between the images, show that this is not a single, triply-imaged
532
+ lensed QSO, but that at least two components must be present.
533
+ Components A and C are compatible with a double lens system
534
+ with some contribution from microlensing, with the possible de-
535
+ tection of the host galaxy. This system would be a lensed dual
536
+ QSO, similar to the system described by Lemon et al. (2022).
537
+ However, since a foreground lensing galaxy is not clearly de-
538
+ tected, this system could also be a physically triple AGN. Some
539
+ knowledge of the spectral energy distribution of the three sources
540
+ would further help to understand the nature of this system.
541
+ 3.3. J1613+1708
542
+ J1613+1708 is a very blue QSO, with no evidence for dust ex-
543
+ tinction in the SDSS spectrum. We find that this system shows
544
+ two components with similar luminosities and a separation of
545
+ 0.71" (6.1 kpc). A bright Hα line is present in both spectra,
546
+ with a velocity shift of ∼ 500 km/sec, corresponding to red-
547
+ shifts of z=1.550 and z=1.545 respectively. The line width are
548
+ also very different: 6200 km/sec FWHM for component A, and
549
+ 3100 km/sec for component B. In case of lensing, given its lu-
550
+ minosity at 5100 Å of log(λ L(λ)) = 45.2 ± 0.1, no significant
551
+ variations of the Hα line are expected on timescales shorter than
552
+ 2 θS IS
553
+ E
554
+ = [DLS /(DLDs) 4GM/c2]1/2, where DL, DS are the angular di-
555
+ ameter distances of the lens, the source and DLS the one between the
556
+ lens and the source.
557
+ Article number, page 4 of 6
558
+
559
+ A. Ciurlo et al.: Unveiling multiple AGNs via the GMP method
560
+ 20
561
+ 40
562
+ 60
563
+ 0
564
+ 100
565
+ 200
566
+ 300
567
+ Center
568
+ 0
569
+ 100
570
+ 200
571
+ 300
572
+ Sigma
573
+ 0
574
+ 20
575
+ 40
576
+ 60
577
+ 0
578
+ 100
579
+ 200
580
+ Center
581
+ 0
582
+ 100
583
+ 200
584
+ 300
585
+ Sigma
586
+ 2.30
587
+ 2.32
588
+ 2.34
589
+ 2.36
590
+ 2.38
591
+ 2.40
592
+ Wavelength [ m]
593
+ 20
594
+ 40
595
+ 60
596
+ 2.346
597
+ 2.348
598
+ 2.350
599
+ 2.352
600
+ Wavelength [ m]
601
+ 0
602
+ 100
603
+ 200
604
+ 300
605
+ Center
606
+ 5000
607
+ 5500
608
+ 6000
609
+ 6500
610
+ FWHM [Km/sec]
611
+ 0
612
+ 100
613
+ 200
614
+ Sigma
615
+ J1608+2716
616
+ Fig. 2. Comparison of the Hα lines of the three components of J1608+2716. From top to bottom: A, B and C components, color-coded as in
617
+ Figure 1. Left panels: observed emission line (solid, thick line) and fit with a Gaussian profile plus a constant (think solid line). The center of
618
+ the best-fitting Gaussian is reported as a vertical dashed line. In all panels the green dotted line show the fit to A (the brightest component) for
619
+ comparison. Center and right columns: centroids (center) and FWHM (right) distributions determined by our Gaussian fit on 2000 stochastic
620
+ realisations of the observed spectra, each obtained by injecting noise into the data.
621
+ 160 days (or 50 days assuming a lensing magnification by a fac-
622
+ tor of 10 Bentz et al. 2013). In contrast, the delay expected due
623
+ to the separation of the two components would be 10 days at
624
+ most. As a consequence, we conclude that the two objects are
625
+ associated with two different AGNs in a single host.
626
+ 3.4. J2335+3201
627
+ This is a low-extinction (AV∼0.4, estimated from the SDSS spec-
628
+ trum) system at z∼0.9 showing two distinct components 0.61"
629
+ (4.8 kpc) away, with a large (∼ 12) luminosity ratio. We find that
630
+ both objects show a broad Hα line width (FWHM=2900 km/sec
631
+ for the component A and 2700 km/sec for component B). The
632
+ two lines show a significant velocity shift of about 400 km/sec,
633
+ and different line profiles. The system has log(λLλ)=44.9 at
634
+ 5100 Å, implying variability timescales of ∼100 days (30 days
635
+ in case of a lensing magnification by a factor of 10), to be com-
636
+ pared with the expected delay of 2 days. Therefore, also in this
637
+ case, the differences are better explained by a dual AGN system.
638
+ 4. Conclusions
639
+ We used AO-assisted, spatially-resolved spectroscopy to unveil
640
+ the nature of four complex AGN systems at redshifts between
641
+ 0.9 and 2.4 selected through the GMP method. As expected
642
+ by the GMP selection, all these objects show multiple com-
643
+ ponents with sub-arcsec separations. Target J1026+6023 is
644
+ better described by a AGN/star alignment (given the featureless
645
+ continuum), while emission from broad lines typical of QSO are
646
+ seen in all the components of the remaining three systems. Ve-
647
+ locity shifts of a few hundreds km/sec are seen in J1608+2716,
648
+ J1613+1708 and J2335+3201, compatible with being due to
649
+ multiple distinct SMBHs likely to be in the process of merging
650
+ inside a single host. The differences in line profiles and projected
651
+ separations are indeed best reproduced by intrinsically distinct
652
+ SMBHs rather than lensing by a foreground galaxy. In fact,
653
+ the luminosity of the three QSOs, even allowing for possible
654
+ lensing magnification, implying large sizes of the BLR and
655
+ therefore slow variability on timescales of several tens/hundreds
656
+ of days. Since the expected time delay between different lensed
657
+ images would correspond to a few days at most, the differences
658
+ cannot be due to lensing delay. Moreover, there is no evidence
659
+ for a foreground lensing galaxy. These observations confirm
660
+ that a sizeble sample of intrinsic multiple AGNs can be obtained
661
+ with a reasonable amount of resolved spectra of GMP selected
662
+ systems. Future observations from the ground (especially with
663
+ VLT/MUSE, VLT/ERIS, and Keck/OSIRIS) and from the space
664
+ (HST/STIS, JWST) will allow us to largely increase the number
665
+ of confirmed multiple systems and begin to compare the results
666
+ with theoretical predictions on galaxy formation and evolution.
667
+ Acknowledgements. AC acknowledges support from NSF AAG grant AST-
668
+ 1412615, Jim and Lori Keir, the W. M. Keck Observatory Keck Visiting Scholar
669
+ program, the Gordon and Betty Moore Foundation, the Heising-Simons Founda-
670
+ tion, and Howard and Astrid Preston. GC, FM, AM and EN acknowledge support
671
+ by INAF Large Grants "The metal circle: a new sharp view of the baryon cycle up
672
+ to Cosmic Dawn with the latest generation IFU facilities" and “Dual and binary
673
+ supermassive black holes in the multi-messenger era: from galaxy mergers to
674
+ gravitational waves” (Bando Ricerca Fondamentale INAF 2022). GV acknowl-
675
+ edges support from ANID program FONDECYT Postdoctorado 3200802. The
676
+ authors wish to recognize and acknowledge the very significant cultural role and
677
+ reverence that the summit of Maunakea has always had within the indigenous
678
+ Hawaiian community. We are most fortunate to have the opportunity to conduct
679
+ observations from this mountain.
680
+ References
681
+ Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, \nat, 287, 307
682
+ Bentz, M. C., Denney, K. D., Grier, C. J., et al. 2013, ApJ, 767, 149
683
+ Bhowmick, A. K., Di Matteo, T., & Myers, A. D. 2020, MNRAS, 492, 5620
684
+ Bolton, A. S., Treu, T., Koopmans, L. V. E., et al. 2008, ApJ, 684, 248
685
+ Casadio, C., Blinov, D., Readhead, A. C. S., et al. 2021, MNRAS, 507, L6
686
+ Chen, Y.-C., Hwang, H.-C., Shen, Y., et al. 2022, ApJ, 925, 162
687
+ Colpi, M. 2014, Space Sci. Rev., 183, 189
688
+ De Rosa, A., Vignali, C., Bogdanovi´c, T., et al. 2019, New A Rev., 86, 101525
689
+ Article number, page 5 of 6
690
+
691
+ A&A proofs: manuscript no. main
692
+ Feruglio, C., Ferrara, A., Bischetti, M., et al. 2017, A&A, 608, A30
693
+ Flesch, E. W. 2021, arXiv:2105.12985 [astro-ph], arXiv: 2105.12985
694
+ Foord, A., Gültekin, K., Runnoe, J. C., & Koss, M. J. 2021, ApJ, 907, 71
695
+ Hutsemékers, D., Borguet, B., Sluse, D., Riaud, P., & Anguita, T. 2010, A&A,
696
+ 519, A103
697
+ Junkkarinen, V., Shields, G. A., Beaver, E. A., et al. 2001, ApJ, 549, L155
698
+ Larkin, J., Barczys, M., Krabbe, A., et al. 2006, in Proc. SPIE, Vol. 6269, So-
699
+ ciety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
700
+ 62691A
701
+ Lemon, C., Millon, M., Sluse, D., et al. 2022, A&A, 657, A113
702
+ Lemon, C. A., Auger, M. W., & McMahon, R. G. 2019, MNRAS, 483, 4242
703
+ Lieu,
704
+ R.
705
+ 2008,
706
+ The
707
+ Astrophysical
708
+ Journal,
709
+ 674,
710
+ 75,
711
+ aDS
712
+ Bibcode:
713
+ 2008ApJ...674...75L
714
+ Lockhart, K. E., Do, T., Larkin, J. E., et al. 2019, AJ, 157, 75
715
+ Longhetti, M. & Saracco, P. 2009, MNRAS, 394, 774
716
+ Lyke, B. W., Higley, A. N., McLane, J. N., et al. 2020, ApJS, 250, 8
717
+ Mannucci, F., Pancino, E., Belfiore, F., et al. 2022, Nature Astronomy, 6, 1185
718
+ Ni, Y., DiMatteo, T., Chen, N., Croft, R., & Bird, S. 2022, arXiv e-prints,
719
+ arXiv:2209.01249
720
+ Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2020, A&A, 641, A6
721
+ Rosas-Guevara, Y. M., Bower, R. G., McAlpine, S., Bonoli, S., & Tissera, P. B.
722
+ 2019, MNRAS, 483, 2712
723
+ Rubinur, K., Das, M., & Kharb, P. 2019, MNRAS, 484, 4933
724
+ Shajib, A. J., Treu, T., Birrer, S., & Sonnenfeld, A. 2021, MNRAS, 503, 2380
725
+ Shen, Y., Chen, Y.-C., Hwang, H.-C., et al. 2021, Nature Astronomy, 1, pub-
726
+ lisher: Nature Publishing Group
727
+ Steinborn, L. K., Dolag, K., Comerford, J. M., et al. 2016, MNRAS, 458, 1013
728
+ Tozzi, G., Cresci, G., Marasco, A., et al. 2021, A&A, 648, A99
729
+ Tremmel, M., Karcher, M., Governato, F., et al. 2017, MNRAS, 470, 1121
730
+ Volonteri, M., Haardt, F., & Madau, P. 2003, ApJ, 582, 559
731
+ Volonteri, M., Pfister, H., Beckmann, R., et al. 2022, MNRAS, 514, 640
732
+ Wong, K. C. 2018, in PASPC Series, Vol. 514, Stellar Populations and the Dis-
733
+ tance Scale, ed. J. Jensen, R. M. Rich, & R. de Grijs, 165
734
+ Yadav, J., Das, M., Barway, S., & Combes, F. 2021, arXiv e-prints,
735
+ arXiv:2106.12441
736
+ Article number, page 6 of 6
737
+
-NE1T4oBgHgl3EQfUgOU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-dE2T4oBgHgl3EQfmQc9/content/tmp_files/2301.03996v1.pdf.txt ADDED
@@ -0,0 +1,658 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Collaborative Semantic Communication at the Edge
3
+ Wing Fei Lo, Nitish Mital, Member, IEEE, Haotian Wu, Graduate Student Member, IEEE,
4
+ Deniz G¨und¨uz, Fellow, IEEE
5
+ Abstract—We study the collaborative image retrieval problem
6
+ at the wireless edge, where multiple edge devices capture images
7
+ of the same object from different angles and locations, which
8
+ are then used jointly to retrieve similar images at the edge
9
+ server over a shared multiple access channel (MAC). We propose
10
+ two novel deep learning-based joint source and channel coding
11
+ (JSCC) schemes for the task over both additive white Gaussian
12
+ noise (AWGN) and Rayleigh slow fading channels, with the aim
13
+ of maximizing the retrieval accuracy under a total bandwidth
14
+ constraint. The proposed schemes are evaluated on a wide
15
+ range of channel signal-to-noise ratios (SNRs), and shown to
16
+ outperform the single-device JSCC and the separation-based
17
+ multiple-access benchmarks. We also propose two novel SNR-
18
+ aware JSCC schemes with attention modules to improve the
19
+ performance in the case of channel mismatch between training
20
+ and test instances.
21
+ Index Terms—Semantic communication, Internet of Things,
22
+ person re-identification, deep joint source and channel coding,
23
+ collaborative image retrieval
24
+ I. INTRODUCTION
25
+ I
26
+ N recent years, machine learning tasks at the wireless edge
27
+ have been studied extensively in the literature, including
28
+ distributed inference problems over wireless channels [1]–[3].
29
+ In distributed inference problems, it is often assumed that
30
+ centrally trained models, e.g. deep neural networks (DNNs)
31
+ are employed across multiple distributed nodes, which have
32
+ limited communication resources. Communication is essential
33
+ in scenarios in which data is available at different nodes, and
34
+ exploiting this data can increase the inference accuracy. In
35
+ particular, in image retrieval, image of an object or a person
36
+ taken by an edge device is used to identify the images of the
37
+ same object or person in a gallery database. The images in the
38
+ database may be taken by different cameras, from different
39
+ angles, and at different times, making re-identification (ReID)
40
+ a highly challenging inference problem. Note that, unlike most
41
+ conventional classification or regression problems, which can
42
+ be carried out locally at the edge device, for image retrieval,
43
+ remote inference is essential even if the edge devices have
44
+ unlimited computational power, as the gallery database is only
45
+ available at the edge server. On the other hand, due to latency
46
+ and bandwidth constraints, sending the whole image via the
47
+ wireless channel is not feasible. Instead, learning-based feature
48
+ extraction is done at the edge, and only the most important
49
+ features of the source image should be sent to the edge server
50
+ through the wireless channel.
51
+ In [4], both separation-based and joint source channel
52
+ coding (JSCC) approaches have been studied for feature trans-
53
+ mission in remote image retrieval. While Shannon’s separation
54
+ The authors are with the Department of Electrical and Electronic Engi-
55
+ neering, Imperial College London, London SW7 2AZ, U.K. (e-mail: hao-
56
57
+ Fig. 1: Illustration of the two-device collaborative image
58
+ retrieval problem at the wireless edge.
59
+ theorem [5] states that separating source and channel coding
60
+ can achieve asymptotic optimality, this theorem breaks down
61
+ in finite block-lengths. We typically have much more stringent
62
+ latency constraints on edge inference applications compared
63
+ to the delivery of images or videos; hence, our interest is in
64
+ the very short blocklengths, where the separation typically has
65
+ very poor performance. An autoencoder-based JSCC (JSCC-
66
+ AE) scheme is proposed in [4], and it is shown to outperform
67
+ its digital counterpart under all channel conditions.
68
+ In this paper, we study the collaborative ReID problem,
69
+ where two edge devices capture images of the same object,
70
+ which are then used to identify similar images in a gallery
71
+ database at an edge server. The increasing number of edge
72
+ devices raises new requirements for collaborative inference:
73
+ edge devices must collaborate not only with the edge server,
74
+ but also with each other as multiple images can provide addi-
75
+ tional information and can potentially improve ReID accuracy.
76
+ The goal of this paper is to develop a deep learning-based
77
+ JSCC scheme for the two-device scenario, which maximizes
78
+ the accuracy of the retrieval task while communicating over a
79
+ shared multiple access channel (MAC). We first consider an
80
+ orthogonal multiple access (OMA) scheme employing time
81
+ division multiple access (TDMA) with distributed JSCC, and
82
+ show that it outperforms the schemes in [4], as well as a
83
+ conventional separate source-channel coding scheme, where
84
+ each device transmits a quantized version of its features
85
+ to the receiver using capacity-achieving channel codes. In
86
+ addition, we study an alternative non-orthogonal multiple
87
+ access (NOMA) approach. Benefits of NOMA transmission
88
+ in various distributed inference and training problems have
89
+ recently received significant interest [6]–[8]. In this approach,
90
+ our goal is exploit the superposition property of the wireless
91
+ medium, and the features transmitted as analog values over the
92
+ shared wireless channel get aggregated “over-the-air” rather
93
+ than interfering with each other. We evaluate these schemes on
94
+ the additive white Gaussian noise (AWGN) and Rayleigh slow
95
+ fading channels. Inspired by the attention mechanism in adap-
96
+ tive JSCC [9]–[11], we also propose an SNR-aware scheme
97
+ for the AWGN channel to adjust the networks depending on
98
+ the SNRs.
99
+ arXiv:2301.03996v1 [eess.IV] 10 Jan 2023
100
+
101
+ ()
102
+ Pre-processing
103
+ Edge device 1
104
+ (α)
105
+ Wireless
106
+ ID
107
+ channel
108
+ prediction
109
+ ()
110
+ Pedestrian
111
+ Pre-processing
112
+ Edge server
113
+ Edge device 22
114
+ Our main contributions can be summarized as follows:
115
+ • To the best of our knowledge, this is the first paper
116
+ to study collaborative inference among edge devices for
117
+ joint retrieval. We propose two new collaborative JSCC
118
+ schemes for OMA and NOMA transmissions, and show
119
+ the superiority of the latter.
120
+ • We construct and analyze DNN architectures for a chan-
121
+ nel state information (CSI)-aware JSCC scheme (SNR-
122
+ aware and channel fading-aware), where a single network
123
+ is trained to exploit the channel state information for
124
+ channel equalization and SNR-adaptation.
125
+ II. RELATED WORK
126
+ A. Image retrieval
127
+ Image retrieval task aims to improve the quality of identity
128
+ recognition, particularly in surveillance applications. Given a
129
+ query image, an image retrieval model assesses its similarities
130
+ with gallery images, and matches is to the ‘nearest’ ones.
131
+ Performance can be evaluated through top-1 retrieval accuracy
132
+ [12]. Image retrieval task has received significant attention in
133
+ recent years [13] thanks to the tremendous success of deep
134
+ learning technologies [14].
135
+ B. Remote inference at the wireless edge
136
+ Classical communication systems are designed to deliver
137
+ source signals, such as images, audio, or video, to a re-
138
+ ceiver with the highest end-to-end fidelity. However, with
139
+ the rapid growth of machine intelligence and the associated
140
+ machine-to-machine communications, the goal of emergent
141
+ communication systems is shifting towards making accurate
142
+ inferences about a remote signal rather than reconstructing
143
+ it [1]. Literature on joint edge-device inference [15], [16]
144
+ mostly focus on rate-limited scenario, and ignore the channel
145
+ effects. Jankowski et al. proposed a retrieval-oriented image
146
+ compression scheme and a JSCC scheme for the retrieval
147
+ task [4] with state-of-the-art performance. Remote inference
148
+ problems are also attracting significant interest in the context
149
+ of the emerging semantic communication paradigm [17].
150
+ C. Multi-device collaborative learning
151
+ Existing multi-device algorithms mainly focus on image
152
+ transmission [18] and classification tasks [19]. Shao et al.
153
+ proposed a task-oriented communication scheme for multi-
154
+ device collaborative edge inference [19], which utilizes the
155
+ information bottleneck (IB) principle for feature extraction and
156
+ the deterministic distributed information bottleneck (DDIB)
157
+ principle for distributed feature encoding. Different from pre-
158
+ vious work, our paper explores cooperation for the image
159
+ retrieval task.
160
+ III. SYSTEM MODEL
161
+ We consider two transmitters, each of them having access
162
+ to images of the same object taken by a different camera.
163
+ We denote the image observed by transmitter i by si ∈ Rp,
164
+ i = 1, 2. Transmitter i employs an encoding function Ei :
165
+ Rp → Cq, where xi = Ei(si) ∈ Cq. Here, q represents the
166
+ available channel bandwidth, and r ≜ q
167
+ p is the bandwidth ratio.
168
+ The decoder function D : Cq → D is employed at the receiver,
169
+ where D ≡ {1, 2, . . . , D}, and D is the size of the database,
170
+ maps the received signal y to the result of the retrieval task.
171
+ Channel model: Devices transmit their signals over a MAC.
172
+ We first consider an AWGN channel, where the additive noise
173
+ vector, denoted by z ∈ Cq, is assumed to be independent and
174
+ identically distributed (i.i.d.) according to the complex normal
175
+ distribution CN(0, σ2
176
+ z). The received signal is given by
177
+ y = x1 + x2 + z.
178
+ (1)
179
+ We also consider a slow fading MAC, where the fading
180
+ coefficients, denoted by h1 and h2 ∈ C, are assumed to remain
181
+ constant during each retrieval task, but changes across tasks in
182
+ an i.i.d. fashion according to CN(0, σ2
183
+ h). For the fading MAC,
184
+ the received signal is given by:
185
+ y = h1x1 + h2x2 + z.
186
+ (2)
187
+ The power allocation scheme and the end-to-end perfor-
188
+ mance depend on the available CSI (SNR and channel gain)
189
+ and the short-term power constraint imposed on each trans-
190
+ mitter: 1
191
+ q||xn||2
192
+ 2 ≤ 1
193
+ i = 1, 2.
194
+ Next, we will consider and compare three alternative trans-
195
+ mission schemes, separation-based transmission, JSCC with
196
+ OMA, and JSCC with NOMA, as well as the single-user
197
+ benchmark from [4].
198
+ A. Separate Digital Transmission
199
+ In the digital scheme, transmitter Ei extracts a feature vector
200
+ vi ∈ Rp from the source si, which is quantized to ˜vi ∈ Zp,
201
+ and then mapped to a channel codeword xi ∈ Cq. The two
202
+ transmitters transmit their codewords over the MAC channel.
203
+ The receiver first decodes the two channel codewords to
204
+ recover the quantized source signals ˜v1 and ˜v2. In the asymp-
205
+ totic limit of infinite blocklength, the transmitted codewords
206
+ can be decoded with a vanishing error probability if the
207
+ transmission rates are within the capacity of the corresponding
208
+ channels. In that case, the only source of error in the compu-
209
+ tation of the desired function is the quantization. Note that
210
+ the channel capacity provides only an upper bound on the
211
+ maximum reliable communication rate, and is not achievable
212
+ in practice, particularly at the very short blocklengths consid-
213
+ ered here. The receiver then performs the retrieval task on the
214
+ recovered source signals.
215
+ B. JSCC
216
+ In this scheme, feature vectors are directly mapped to the
217
+ channel input signals. Transmitter i maps si to the codeword
218
+ xi. We consider two JSCC schemes:
219
+ JSCC with OMA: Each transmitter is allocated half the
220
+ available channel bandwidth, i.e., q
221
+ 2 channel uses. The receiver
222
+ first decodes the received signals from the two transmitters to
223
+ recover estimates ˆv1 and ˆv2 of the source signals, and then
224
+ performs the retrieval task on the recovered feature vectors.
225
+ JSCC with NOMA: In this scheme, each transmitter
226
+ occupies the full channel bandwidth of q, and the transmitted
227
+
228
+ 3
229
+ codewords overlap. The receiver directly recovers estimates of
230
+ the feature vectors from the received superposed signal, and
231
+ performs the retrieval task.
232
+ IV. DISTRIBUTED IMAGE RETRIEVAL
233
+ In this section, we focus on the image retrieval task.
234
+ A. Separate Digital Transmission
235
+ Each transmitter consists of a feature encoder, modeled as
236
+ a ResNet50 [20] network, followed by a feature compressor,
237
+ employing quantization and arithmetic coding [4]. The com-
238
+ pressed bits are then channel coded. The receiver decodes
239
+ the received signal to obtain estimates of the feature vectors,
240
+ which are then passed to the image retrieval module.
241
+ Training strategy: We perform end-to-end training for the
242
+ digital scheme, with the following loss function:
243
+ l = 1
244
+ 3(lceaux1+lcemain+lceaux2)+λ·(log2 p(˜v1)+log2 p(˜v2)),
245
+ (3)
246
+ where lceaux1, lcemain, lceaux2 are the average cross-entropy
247
+ losses between the ID predictions from three classifiers (two
248
+ auxiliary classifiers and a main classifier, see Fig. 2), and the
249
+ ground truth, and log2 p(˜v1) and log2 p(˜v2) are entropies of
250
+ the feature vectors [4].
251
+ B. JSCC
252
+ In this scheme, the feature compressor, quantizer, arithmetic
253
+ coder, and channel coder at the transmitter, and the channel
254
+ decoder and arithmetic decoder at the receiver, are replaced
255
+ by a single autoencoder architecture (see Fig. 2). The received
256
+ signal is fed to two separate decoder modules, which decode
257
+ estimates of the feature vectors sent by the two transmitters,
258
+ as shown in Fig. 2. Once the feature vectors are recovered,
259
+ they are used for the image retrieval task (see Fig. 2).
260
+ Training strategy: A three-step training strategy is adopted,
261
+ which consists of pre-training of the feature encoders (T1),
262
+ pre-training of the JSCC autoencoders (T2), and end-to-end
263
+ training (T3). In T1, the DNN feature encoder is pre-trained,
264
+ using the average cross-entropy loss function:
265
+ l = 1
266
+ 3(lceaux1 + lcemain + lceaux2).
267
+ (4)
268
+ In T2, the pre-trained feature encoders are frozen and only
269
+ the JSCC autoencoders are trained, using the average mean
270
+ squared error (MSE) loss between the transmitted and recon-
271
+ structed feature vectors:
272
+ l = 1
273
+ 2(lMSE1 + lMSE2).
274
+ (5)
275
+ In T3, the whole network is trained jointly, with the loss
276
+ function in T1.
277
+ We also propose a CSI-aware architecture variation for
278
+ AWGN and slow fading channel with CSI at the receiver
279
+ only (CSIR), where the available CSI (SNR or channel gain)
280
+ is fed to the model via attention feature (AF) modules [9],
281
+ [11] inserted before, after and between each layer of the
282
+ autoencoder. For the AWGN channel, the AF modules at the
283
+ Channel
284
+ JSCC
285
+ decoder 1
286
+ JSCC
287
+ decoder 2
288
+
289
+ Feature
290
+ Encoder
291
+ Feature
292
+ vector
293
+ JSCC
294
+ encoder 1
295
+ Transmitter 1
296
+ Feature
297
+ Encoder
298
+ Feature
299
+ vector
300
+ JSCC
301
+ encoder 2
302
+ Transmitter 2
303
+ Receiver
304
+ Main
305
+ classifier
306
+ Auxiliary
307
+ classifier 2
308
+ Auxiliary
309
+ classifier 1
310
+ Auxiliary
311
+ ID predictions 1
312
+ Main
313
+ ID predictions
314
+ Auxiliary
315
+ ID predictions 2
316
+ View-pooling
317
+ layer
318
+ Image retrieval module
319
+
320
+ Fig. 2: DNN architecture for the JSCC transmission schemes.
321
+ encoder and decoder scale the intermediate feature maps to
322
+ adapt to the channel SNR. For slow fading with CSIR, the AF
323
+ modules scale the received signal and the intermediate feature
324
+ maps by a channel-dependent constant, intuitively playing the
325
+ role of channel equalisation.
326
+ V. RESULTS
327
+ A. Performance against channel SNR
328
+ The proposed schemes for JSCC with OMA and NOMA are
329
+ trained and tested on a pre-processed Market-1501 [21] dataset
330
+ over a wide range of channel SNRs from -6dB to 15dB, and
331
+ compared with the separation-based scheme and the single-
332
+ device JSCC scheme in [4].
333
+ In Fig. 3a, we plot the top-1 accuracy in an AWGN channel.
334
+ In Fig. 3b, we plot the top-1 accuracy in a slow fading channel
335
+ without CSI at the receiver. The digital scheme is not plotted
336
+ in Fig. 3b because such a scheme is not possible to decode
337
+ without CSI at the receiver, while JSCC allows communication
338
+ even without the availability of CSI at the receiver. In Fig. 3c,
339
+ we plot the top-1 accuracy in a slow fading channel with CSI
340
+ available at the receiver. As expected, CSIR provides better
341
+ accuracy than when CSI is absent at the receiver.
342
+ In Figs. 3a, 3b and 3c, the proposed JSCC schemes out-
343
+ perform the separate digital scheme at almost all SNRs,
344
+ except at high SNRs. However, note that we assume MAC
345
+ capacity-achieving codes with equal rate allocation for each
346
+ transmitter in this separate digital scheme, and therefore the
347
+ reported performance of the digital scheme is not achievable
348
+ in practice, particularly for the very low channel bandwidth
349
+ of q = 32 per user considered here. The two-device JSCC
350
+ schemes outperform the single-device JSCC scheme for a
351
+ wide range of channel SNRs, especially higher SNRs, showing
352
+ that incorporating two views of the same identity to make a
353
+ collaborative decision at the edge server improves the retrieval
354
+ performance. It is also observed in Fig. 3a, 3b and 3c that
355
+ JSCC with NOMA outperforms its orthogonal counterpart.
356
+ In Fig. 3a, it is shown that while the OMA JSCC scheme
357
+ outperforms the single-device JSCC benchmark at most SNRs,
358
+ they are surpassed by it at very low SNRs. This is because, in
359
+ the low SNR regime, it is more beneficial to allocate all the
360
+ channel resources to one transmitter to acquire the features
361
+ from that one with sufficient quality for retrieval, rather than
362
+
363
+ 4
364
+ (a) AWGN channel
365
+ (b) Slow fading channel without CSI
366
+ (c) Slow fading channel with CSIR
367
+ Fig. 3: Top-1 retrieval accuracies of the proposed two-device schemes and the single-device scheme under different channel
368
+ SNRs, with a total channel bandwidth of q = 64.
369
+ Scheme
370
+ Squared cosine similarity
371
+ OMA (AWGN)
372
+ 0.0151
373
+ OMA (slow fading)
374
+ 0.0165
375
+ NOMA (AWGN)
376
+ 0.7523
377
+ NOMA (slow fading)
378
+ 0.8234
379
+ TABLE I: Squared cosine similarity between input symbols of
380
+ the OMA and NOMA schemes.
381
+ receiving very low quality features from two queries. However,
382
+ the NOMA JSCC scheme brings the benefits of both schemes
383
+ together, and outperforms both schemes at all SNRs. In Fig.
384
+ 3c, the single-device JSCC as well as the proposed two-
385
+ device JSCC schemes (both OMA and NOMA) outperform
386
+ the separation-based scheme. These observations match our
387
+ expectations. The suboptimality of separate source and channel
388
+ coding used in the digital transmission scheme stems from two
389
+ reasons. First of them is the usual suboptimality of separation
390
+ in the finite blocklength regime. This was already observed in
391
+ [4] for a point-to-point scenario. On the other hand, even in the
392
+ infinite blocklength regime, separation becomes suboptimal
393
+ when the two sources transmitted over the MAC are correlated.
394
+ It is known that exploiting the correlation between the sources
395
+ to generate correlated codewords at the encoders can strictly
396
+ increase the end-to-end performance [22], [23]. To allow
397
+ partial cooperation between the distributed transmitters, we
398
+ must allow the transmitted signals to depend statistically on
399
+ the source outputs, thus inducing correlation between the
400
+ transmitted signals. Separation-based schemes operate in the
401
+ opposite manner, where the dependence between the sources is
402
+ destroyed by separate source and channel coding, thus making
403
+ the transmitted signals independent.
404
+ We observe that the orthogonal JSCC architecture learns
405
+ to transmit uncorrelated signals, as shown in Table I, where
406
+ the correlation between x1 and x2 is computed using squared
407
+ cosine similarity, defined as cos2(x1, x2) ≜
408
+ ⟨x1,x2⟩2
409
+ ∥x1∥2∥x2∥2 . By
410
+ sending independent symbols, the JSCC encoders capture non-
411
+ overlapping information from the two views, thus avoiding
412
+ redundancy, and maximising the use of communication re-
413
+ sources. However, this mechanism is unable to make the
414
+ distributed transmitters cooperate through the dependence of
415
+ transmitted signals; hence, the lower accuracy achieved com-
416
+ pared to the NOMA scheme. In contrast, JSCC with NOMA
417
+ learns to transmit correlated signals. Higher correlation be-
418
+ tween the transmitted signals for the NOMA scheme results
419
+ in higher performance. In fact, in Fig. 4a, we plot the effect
420
+ of the amount of correlation between the transmitted signals
421
+ on the performance of the NOMA JSCC scheme, which we
422
+ control by introducing a cosine similarity regularization term
423
+ in the loss function as follows:
424
+ l = 1
425
+ 3(lceaux1 + lcemain + lceaux2) + λ cos2 (x1, x2).
426
+ (6)
427
+ By using higher values of λ, we impose a higher penalty
428
+ on the correlation between the transmitted signals, thus forcing
429
+ x1 and x2 to be less correlated. We observe in Fig. 4a that
430
+ the accuracy drops as the correlation between the transmit-
431
+ ted signals decreases. Interestingly, if the cosine similarity
432
+ between the symbols transmitted by the two transmitters in
433
+ the NOMA scheme is reduced using the regularisation term,
434
+ its accuracy approaches that of the orthogonal JSCC scheme
435
+ when the cosine similarity approaches 0.
436
+ B. SNR-aware JSCC
437
+ The SNR-aware JSCC scheme, introduced in Section IV-B,
438
+ is trained over a range of SNRtrain, and tested over a wide
439
+ range of SNRtest values, from -6 to 18dB. In Fig. 4b and
440
+ Fig. 4c, the performance of the SNR-aware schemes for the
441
+ two JSCC schemes is compared with that of non-SNR-aware
442
+ architectures trained over a single SNRtrain but tested on
443
+ different SNRtest values - unlike in Fig. 3, where we have
444
+ matching training and test SNR values.
445
+ Note that the non-SNR-aware architectures exhibit graceful
446
+ degradation when there is channel mismatch, that is, when
447
+ the test channel conditions are worse than that of the training
448
+ conditions. Thus, the JSCC scheme is able to avoid the cliff
449
+ effect which conventional digital communication suffers from,
450
+ where the performance of the digital schemes drops sharply
451
+ when channel conditions are worse than those for which the
452
+ encoder and decoder are designed. However, the SNR-aware
453
+ architectures are observed to achieve strictly higher retrieval
454
+
455
+ O.B
456
+ 0.7
457
+ 0.6
458
+ Accuracy
459
+ 50
460
+ p-1
461
+ 0.4
462
+ 0.3
463
+ Two-source NOMA-ISCC
464
+ Two-source OMA-jSCC
465
+ 0.2
466
+ Single-source JSCC
467
+ Two-source Digital scheme
468
+ 5
469
+ 5
470
+ 15
471
+ Channel SNR (dB)0.7
472
+ 0.6
473
+ op-1 Accuracy
474
+ 50
475
+ t0
476
+ E'0
477
+ Two-source NOMA-JSCC
478
+ 0.2
479
+ Two-source OMA-JScC
480
+ Single-source JScC
481
+ 5
482
+ 0
483
+ 5
484
+ 1
485
+ 15
486
+ Channel SNR (dB)0.B
487
+ 200
488
+ 0.7
489
+ 18D
490
+ 0.6
491
+ 160
492
+ Top-1 Accuracy
493
+ 50
494
+ 140
495
+ 0.4
496
+ 120
497
+ 0.3
498
+ 130
499
+ Two-source NOMA-JSCC
500
+ 0.2
501
+ Two-source OMA-JSCC
502
+ Single-source jScC
503
+ Two-source Digital scheme
504
+ 0.1
505
+ 5
506
+ 0
507
+ 5
508
+ 15
509
+ Channel SNR (dB)5
510
+ (a) JSCC with NOMA - cosine similarity
511
+ (b) JSCC with OMA - AWGN channel
512
+ (c) JSCC with NOMA - AWGN channel
513
+ Fig. 4: Top-1 retrieval accuracies of: (a) the JSCC-NOMA scheme on AWGN and slow fading channels against different
514
+ squared cosine similarity between x1 and x2, with channel SNR = 0dB, and channel bandwidth q = 64, and (b),(c) the
515
+ SNR-aware scheme and the original schemes trained with various SNRtrain values against different SNRtest values for OMA
516
+ and NOMA schemes.
517
+ accuracies than the non-SNR-aware architectures (see Fig. 4b
518
+ and 4c), providing a single DNN that performs the same or
519
+ better on all SNRs than employing a distinct DNN optimised
520
+ for each particular SNR value or range.
521
+ VI. CONCLUSION
522
+ We proposed two JSCC schemes for deep-learning based
523
+ distributed retrieval at the wireless edge, with OMA and
524
+ NOMA, respectively. These schemes are shown to outper-
525
+ form conventional separation based alternative with capacity-
526
+ achieving channel codes, and the JSCC scheme with a single
527
+ source [4]. We observed that the NOMA JSCC scheme out-
528
+ performs its OMA counterpart with TDMA. We also observed
529
+ that the DNN architecture, when trained for NOMA, learns
530
+ to transmit correlated signals to induce partial cooperation
531
+ between the transmitters and to improve the final accuracy.
532
+ The OMA JSCC scheme, in contrast, learns to transmit un-
533
+ correlated signals. With these observations in mind, in our
534
+ future work, we will study how the correlation between the
535
+ transmitted signals can be optimized to improve performance.
536
+ REFERENCES
537
+ [1] D. G¨und¨uz, D. B. Kurka, M. Jankowski, M. M. Amiri, E. Ozfatura, and
538
+ S. Sreekumar, “Communicate to learn at the edge,” IEEE Communica-
539
+ tions Magazine, vol. 58, no. 12, pp. 14–19, 2020.
540
+ [2] J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication
541
+ for edge inference: An information bottleneck approach,” IEEE Journal
542
+ on Selected Areas in Communications, vol. 40, no. 1, pp. 197–211, 2021.
543
+ [3] Y. Shao, D. G¨und¨uz, and S. C. Liew, “Federated edge learning with
544
+ misaligned over-the-air computation,” IEEE Transactions on Wireless
545
+ Communications, vol. 21, no. 6, pp. 3951–3964, 2022.
546
+ [4] M. Jankowski, D. G¨und¨uz, and K. Mikolajczyk, “Wireless image re-
547
+ trieval at the edge,” IEEE Journal on Selected Areas in Communications,
548
+ vol. 39, no. 1, pp. 89–100, 2021.
549
+ [5] C. E. Shannon, “A mathematical theory of communication,” The Bell
550
+ System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
551
+ [6] M. M. Amiri and D. G¨und¨uz, “Machine learning at the wireless edge:
552
+ Distributed stochastic gradient descent over-the-air,” IEEE Transactions
553
+ on Signal Processing, vol. 68, pp. 2155–2169, 2020.
554
+ [7] S. F. Yilmaz, B. Hasırcıo˘glu, and D. G¨und¨uz, “Over-the-air ensemble
555
+ inference with model privacy,” in IEEE Int’l Symp. Info. Theory, 2022.
556
+ [8] M. Krouka, A. Elgabli, C. b. Issaid, and M. Bennis, “Communication-
557
+ efficient split learning based on analog communication and over the air
558
+ aggregation,” in IEEE GLOBECOM, 2021.
559
+ [9] J. Xu, B. Ai, W. Chen, A. Yang, P. Sun, and M. Rodrigues, “Wireless
560
+ image transmission using deep source channel coding with attention
561
+ modules,” IEEE Transactions on Circuits and Systems for Video Tech-
562
+ nology, vol. 32, no. 4, pp. 2315–2328, Apr 2022.
563
+ [10] H. Wu, Y. Shao, C. Bian, K. Mikolajczyk, and D. G¨und¨uz, “Vision
564
+ transformer for adaptive image transmission over MIMO channels,”
565
+ arXiv:2210.15347, 2022.
566
+ [11] H. Wu, Y. Shao, K. Mikolajczyk, and D. G¨und¨uz, “Channel-adaptive
567
+ wireless image transmission with OFDM,” IEEE Wireless Communica-
568
+ tions Letters, 2022.
569
+ [12] D. Gray, S. Brennan, and H. Tao, “Evaluating appearance models for
570
+ recognition, reacquisition, and tracking,” Proc. IEEE Int. Workshop Vis.
571
+ Surveill. Perform. Eval. Tracking Surveill., Oct., Jan 2007.
572
+ [13] M. Ye, J. Shen, G. Lin, T. Xiang, L. Shao, and S. C. Hoi, “Deep learning
573
+ for person re-identification: A survey and outlook,” IEEE Transactions
574
+ on Pattern Analysis and Machine Intelligence, 2022.
575
+ [14] Y. Fu, Y. Wei, Y. Zhou, H. Shi, G. Huang, X. Wang, Z. Yao, and
576
+ T. Huang, “Horizontal pyramid matching for person re-identification,”
577
+ Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
578
+ pp. 8295–8302, Jan 2019.
579
+ [15] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “Jalad: Joint
580
+ accuracy-and latency-aware deep structure decoupling for edge-cloud
581
+ execution,” Dec 2018, pp. 671–678.
582
+ [16] A. E. Eshratifar, A. Esmaili, and M. Pedram, “Bottlenet: A deep
583
+ learning architecture for intelligent mobile cloud computing services,”
584
+ in IEEE/ACM Int’l Symp. on Low Power Elct. and Design. IEEE, 2019,
585
+ pp. 1–6.
586
+ [17] D. G¨und¨uz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K.
587
+ Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics,
588
+ and task-oriented communications,” IEEE Jorn. on Selected Areas in
589
+ Comms., vol. 41, no. 1, pp. 5–41, 2023.
590
+ [18] C. Bian, Y. Shao, H. Wu, and D. Gunduz, “Deep joint source-
591
+ channel coding over cooperative relay networks,” arXiv preprint
592
+ arXiv:2211.06705, 2022.
593
+ [19] J. Shao, Y. Mao, and J. Zhang, “Task-oriented communication for multi-
594
+ device cooperative edge inference,” IEEE Transactions. on Wireless
595
+ Comms., 2022.
596
+ [20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
597
+ recognition,” in Proceedings of the IEEE Conference on Computer Vision
598
+ and Pattern Recognition (CVPR), Jun 2016, pp. 770–778.
599
+ [21] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable
600
+ person re-identification: A benchmark,” in 2015 IEEE International
601
+ Conference on Computer Vision (ICCV), 2015, pp. 1116–1124.
602
+ [22] T. Cover, A. Gamal, and M. Salehi, “Multiple access channels with ar-
603
+ bitrarily correlated sources,” IEEE Transactions on Information Theory,
604
+ vol. 26, no. 6, pp. 648–657, 1980.
605
+ [23] A. Lapidoth and S. Tinguely, “Sending a bivariate gaussian over a
606
+ gaussian mac,” IEEE Transa. Info. Theory, vol. 56, no. 6, pp. 2714–
607
+ 2752, 2010.
608
+
609
+ 0.725
610
+ 0.675
611
+ Accurad
612
+ 0.65
613
+ p-1
614
+ 0.625
615
+ 0.600
616
+ 0.575
617
+ AWGN
618
+ 0.550
619
+ Slow fading without CSl
620
+ 0.1
621
+ 0.2
622
+ 0.3
623
+ 0.5
624
+ 0.6
625
+ 0.7
626
+ 0.B
627
+ Squared cosine similarity0.B
628
+ 0.7
629
+ 0.6
630
+ Accurat
631
+ Top-1
632
+ 0.5
633
+ SNR-aware model
634
+ t0
635
+ SNR train= 12dB
636
+ SNR train = 6dB
637
+ SNR train = OdB
638
+ 0.3
639
+ SNR train = -6dB
640
+ 5
641
+ 5
642
+ 15
643
+ SWRtest (dB)0.B0
644
+ 0.75
645
+ 0.70
646
+ 0.65
647
+ 0.60
648
+ SNR-aware model
649
+ 0.55
650
+ SNRtrain=12dB
651
+ SNR train = 6dB
652
+ SNR train = OdB
653
+ 0.50
654
+ SNR train = -6dB
655
+ 5
656
+ 0
657
+ 15
658
+ SWRtest (dB)
-dE2T4oBgHgl3EQfmQc9/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf,len=424
2
+ page_content='1 Collaborative Semantic Communication at the Edge Wing Fei Lo, Nitish Mital, Member, IEEE, Haotian Wu, Graduate Student Member, IEEE, Deniz G¨und¨uz, Fellow, IEEE Abstract—We study the collaborative image retrieval problem at the wireless edge, where multiple edge devices capture images of the same object from different angles and locations, which are then used jointly to retrieve similar images at the edge server over a shared multiple access channel (MAC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
3
+ page_content=' We propose two novel deep learning-based joint source and channel coding (JSCC) schemes for the task over both additive white Gaussian noise (AWGN) and Rayleigh slow fading channels, with the aim of maximizing the retrieval accuracy under a total bandwidth constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
4
+ page_content=' The proposed schemes are evaluated on a wide range of channel signal-to-noise ratios (SNRs), and shown to outperform the single-device JSCC and the separation-based multiple-access benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
5
+ page_content=' We also propose two novel SNR- aware JSCC schemes with attention modules to improve the performance in the case of channel mismatch between training and test instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
6
+ page_content=' Index Terms—Semantic communication, Internet of Things, person re-identification, deep joint source and channel coding, collaborative image retrieval I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
7
+ page_content=' INTRODUCTION I N recent years, machine learning tasks at the wireless edge have been studied extensively in the literature, including distributed inference problems over wireless channels [1]–[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
8
+ page_content=' In distributed inference problems, it is often assumed that centrally trained models, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
9
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
10
+ page_content=' deep neural networks (DNNs) are employed across multiple distributed nodes, which have limited communication resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
11
+ page_content=' Communication is essential in scenarios in which data is available at different nodes, and exploiting this data can increase the inference accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
12
+ page_content=' In particular, in image retrieval, image of an object or a person taken by an edge device is used to identify the images of the same object or person in a gallery database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
13
+ page_content=' The images in the database may be taken by different cameras, from different angles, and at different times, making re-identification (ReID) a highly challenging inference problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
14
+ page_content=' Note that, unlike most conventional classification or regression problems, which can be carried out locally at the edge device, for image retrieval, remote inference is essential even if the edge devices have unlimited computational power, as the gallery database is only available at the edge server.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
15
+ page_content=' On the other hand, due to latency and bandwidth constraints, sending the whole image via the wireless channel is not feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
16
+ page_content=' Instead, learning-based feature extraction is done at the edge, and only the most important features of the source image should be sent to the edge server through the wireless channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
17
+ page_content=' In [4], both separation-based and joint source channel coding (JSCC) approaches have been studied for feature trans- mission in remote image retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
18
+ page_content=' While Shannon’s separation The authors are with the Department of Electrical and Electronic Engi- neering, Imperial College London, London SW7 2AZ, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
19
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
20
+ page_content=' (e-mail: hao- tian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
21
+ page_content='wu17@imperial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
22
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
23
+ page_content='uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
24
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
25
+ page_content=' 1: Illustration of the two-device collaborative image retrieval problem at the wireless edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
26
+ page_content=' theorem [5] states that separating source and channel coding can achieve asymptotic optimality, this theorem breaks down in finite block-lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
27
+ page_content=' We typically have much more stringent latency constraints on edge inference applications compared to the delivery of images or videos;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
28
+ page_content=' hence, our interest is in the very short blocklengths, where the separation typically has very poor performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
29
+ page_content=' An autoencoder-based JSCC (JSCC- AE) scheme is proposed in [4], and it is shown to outperform its digital counterpart under all channel conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
30
+ page_content=' In this paper, we study the collaborative ReID problem, where two edge devices capture images of the same object, which are then used to identify similar images in a gallery database at an edge server.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
31
+ page_content=' The increasing number of edge devices raises new requirements for collaborative inference: edge devices must collaborate not only with the edge server, but also with each other as multiple images can provide addi- tional information and can potentially improve ReID accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
32
+ page_content=' The goal of this paper is to develop a deep learning-based JSCC scheme for the two-device scenario, which maximizes the accuracy of the retrieval task while communicating over a shared multiple access channel (MAC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
33
+ page_content=' We first consider an orthogonal multiple access (OMA) scheme employing time division multiple access (TDMA) with distributed JSCC, and show that it outperforms the schemes in [4], as well as a conventional separate source-channel coding scheme, where each device transmits a quantized version of its features to the receiver using capacity-achieving channel codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
34
+ page_content=' In addition, we study an alternative non-orthogonal multiple access (NOMA) approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
35
+ page_content=' Benefits of NOMA transmission in various distributed inference and training problems have recently received significant interest [6]–[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
36
+ page_content=' In this approach, our goal is exploit the superposition property of the wireless medium, and the features transmitted as analog values over the shared wireless channel get aggregated “over-the-air” rather than interfering with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
37
+ page_content=' We evaluate these schemes on the additive white Gaussian noise (AWGN) and Rayleigh slow fading channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
38
+ page_content=' Inspired by the attention mechanism in adap- tive JSCC [9]–[11], we also propose an SNR-aware scheme for the AWGN channel to adjust the networks depending on the SNRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
39
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
40
+ page_content='03996v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
41
+ page_content='IV] 10 Jan 2023 () Pre-processing Edge device 1 (α) Wireless ID channel prediction () Pedestrian Pre-processing Edge server Edge device 22 Our main contributions can be summarized as follows: To the best of our knowledge, this is the first paper to study collaborative inference among edge devices for joint retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
42
+ page_content=' We propose two new collaborative JSCC schemes for OMA and NOMA transmissions, and show the superiority of the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
43
+ page_content=' We construct and analyze DNN architectures for a chan- nel state information (CSI)-aware JSCC scheme (SNR- aware and channel fading-aware), where a single network is trained to exploit the channel state information for channel equalization and SNR-adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
44
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
45
+ page_content=' RELATED WORK A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
46
+ page_content=' Image retrieval Image retrieval task aims to improve the quality of identity recognition, particularly in surveillance applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
47
+ page_content=' Given a query image, an image retrieval model assesses its similarities with gallery images, and matches is to the ‘nearest’ ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
48
+ page_content=' Performance can be evaluated through top-1 retrieval accuracy [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
49
+ page_content=' Image retrieval task has received significant attention in recent years [13] thanks to the tremendous success of deep learning technologies [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
50
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
51
+ page_content=' Remote inference at the wireless edge Classical communication systems are designed to deliver source signals, such as images, audio, or video, to a re- ceiver with the highest end-to-end fidelity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
52
+ page_content=' However, with the rapid growth of machine intelligence and the associated machine-to-machine communications, the goal of emergent communication systems is shifting towards making accurate inferences about a remote signal rather than reconstructing it [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
53
+ page_content=' Literature on joint edge-device inference [15], [16] mostly focus on rate-limited scenario, and ignore the channel effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
54
+ page_content=' Jankowski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
55
+ page_content=' proposed a retrieval-oriented image compression scheme and a JSCC scheme for the retrieval task [4] with state-of-the-art performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
56
+ page_content=' Remote inference problems are also attracting significant interest in the context of the emerging semantic communication paradigm [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
57
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
58
+ page_content=' Multi-device collaborative learning Existing multi-device algorithms mainly focus on image transmission [18] and classification tasks [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
59
+ page_content=' Shao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
60
+ page_content=' proposed a task-oriented communication scheme for multi- device collaborative edge inference [19], which utilizes the information bottleneck (IB) principle for feature extraction and the deterministic distributed information bottleneck (DDIB) principle for distributed feature encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
61
+ page_content=' Different from pre- vious work, our paper explores cooperation for the image retrieval task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
62
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
63
+ page_content=' SYSTEM MODEL We consider two transmitters, each of them having access to images of the same object taken by a different camera.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
64
+ page_content=' We denote the image observed by transmitter i by si ∈ Rp, i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
65
+ page_content=' Transmitter i employs an encoding function Ei : Rp → Cq, where xi = Ei(si) ∈ Cq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
66
+ page_content=' Here, q represents the available channel bandwidth, and r ≜ q p is the bandwidth ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
67
+ page_content=' The decoder function D : Cq → D is employed at the receiver, where D ≡ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
68
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
69
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
70
+ page_content=' , D}, and D is the size of the database, maps the received signal y to the result of the retrieval task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
71
+ page_content=' Channel model: Devices transmit their signals over a MAC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
72
+ page_content=' We first consider an AWGN channel, where the additive noise vector, denoted by z ∈ Cq, is assumed to be independent and identically distributed (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
73
+ page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
74
+ page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
75
+ page_content=') according to the complex normal distribution CN(0, σ2 z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
76
+ page_content=' The received signal is given by y = x1 + x2 + z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
77
+ page_content=' (1) We also consider a slow fading MAC, where the fading coefficients, denoted by h1 and h2 ∈ C, are assumed to remain constant during each retrieval task, but changes across tasks in an i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
78
+ page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
79
+ page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
80
+ page_content=' fashion according to CN(0, σ2 h).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
81
+ page_content=' For the fading MAC, the received signal is given by: y = h1x1 + h2x2 + z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
82
+ page_content=' (2) The power allocation scheme and the end-to-end perfor- mance depend on the available CSI (SNR and channel gain) and the short-term power constraint imposed on each trans- mitter: 1 q||xn||2 2 ≤ 1 i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
83
+ page_content=' Next, we will consider and compare three alternative trans- mission schemes, separation-based transmission, JSCC with OMA, and JSCC with NOMA, as well as the single-user benchmark from [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
84
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
85
+ page_content=' Separate Digital Transmission In the digital scheme, transmitter Ei extracts a feature vector vi ∈ Rp from the source si, which is quantized to ˜vi ∈ Zp, and then mapped to a channel codeword xi ∈ Cq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
86
+ page_content=' The two transmitters transmit their codewords over the MAC channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
87
+ page_content=' The receiver first decodes the two channel codewords to recover the quantized source signals ˜v1 and ˜v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
88
+ page_content=' In the asymp- totic limit of infinite blocklength, the transmitted codewords can be decoded with a vanishing error probability if the transmission rates are within the capacity of the corresponding channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
89
+ page_content=' In that case, the only source of error in the compu- tation of the desired function is the quantization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
90
+ page_content=' Note that the channel capacity provides only an upper bound on the maximum reliable communication rate, and is not achievable in practice, particularly at the very short blocklengths consid- ered here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
91
+ page_content=' The receiver then performs the retrieval task on the recovered source signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
92
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
93
+ page_content=' JSCC In this scheme, feature vectors are directly mapped to the channel input signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
94
+ page_content=' Transmitter i maps si to the codeword xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
95
+ page_content=' We consider two JSCC schemes: JSCC with OMA: Each transmitter is allocated half the available channel bandwidth, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
96
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
97
+ page_content=', q 2 channel uses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
98
+ page_content=' The receiver first decodes the received signals from the two transmitters to recover estimates ˆv1 and ˆv2 of the source signals, and then performs the retrieval task on the recovered feature vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
99
+ page_content=' JSCC with NOMA: In this scheme, each transmitter occupies the full channel bandwidth of q, and the transmitted 3 codewords overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
100
+ page_content=' The receiver directly recovers estimates of the feature vectors from the received superposed signal, and performs the retrieval task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
101
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
102
+ page_content=' DISTRIBUTED IMAGE RETRIEVAL In this section, we focus on the image retrieval task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
103
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
104
+ page_content=' Separate Digital Transmission Each transmitter consists of a feature encoder, modeled as a ResNet50 [20] network, followed by a feature compressor, employing quantization and arithmetic coding [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
105
+ page_content=' The com- pressed bits are then channel coded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
106
+ page_content=' The receiver decodes the received signal to obtain estimates of the feature vectors, which are then passed to the image retrieval module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
107
+ page_content=' Training strategy: We perform end-to-end training for the digital scheme, with the following loss function: l = 1 3(lceaux1+lcemain+lceaux2)+λ·(log2 p(˜v1)+log2 p(˜v2)), (3) where lceaux1, lcemain, lceaux2 are the average cross-entropy losses between the ID predictions from three classifiers (two auxiliary classifiers and a main classifier, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
108
+ page_content=' 2), and the ground truth, and log2 p(˜v1) and log2 p(˜v2) are entropies of the feature vectors [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
109
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
110
+ page_content=' JSCC In this scheme, the feature compressor, quantizer, arithmetic coder, and channel coder at the transmitter, and the channel decoder and arithmetic decoder at the receiver, are replaced by a single autoencoder architecture (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
111
+ page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
112
+ page_content=' The received signal is fed to two separate decoder modules, which decode estimates of the feature vectors sent by the two transmitters, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
113
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
114
+ page_content=' Once the feature vectors are recovered, they are used for the image retrieval task (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
115
+ page_content=' 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
116
+ page_content=' Training strategy: A three-step training strategy is adopted, which consists of pre-training of the feature encoders (T1), pre-training of the JSCC autoencoders (T2), and end-to-end training (T3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
117
+ page_content=' In T1, the DNN feature encoder is pre-trained, using the average cross-entropy loss function: l = 1 3(lceaux1 + lcemain + lceaux2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
118
+ page_content=' (4) In T2, the pre-trained feature encoders are frozen and only the JSCC autoencoders are trained, using the average mean squared error (MSE) loss between the transmitted and recon- structed feature vectors: l = 1 2(lMSE1 + lMSE2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
119
+ page_content=' (5) In T3, the whole network is trained jointly, with the loss function in T1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
120
+ page_content=' We also propose a CSI-aware architecture variation for AWGN and slow fading channel with CSI at the receiver only (CSIR), where the available CSI (SNR or channel gain) is fed to the model via attention feature (AF) modules [9], [11] inserted before, after and between each layer of the autoencoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
121
+ page_content=' For the AWGN channel, the AF modules at the Channel JSCC decoder 1 JSCC decoder 2 Feature Encoder Feature vector JSCC encoder 1 Transmitter 1 Feature Encoder Feature vector JSCC encoder 2 Transmitter 2 Receiver Main classifier Auxiliary classifier 2 Auxiliary classifier 1 Auxiliary ID predictions 1 Main ID predictions Auxiliary ID predictions 2 View-pooling layer Image retrieval module Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
122
+ page_content=' 2: DNN architecture for the JSCC transmission schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
123
+ page_content=' encoder and decoder scale the intermediate feature maps to adapt to the channel SNR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
124
+ page_content=' For slow fading with CSIR, the AF modules scale the received signal and the intermediate feature maps by a channel-dependent constant, intuitively playing the role of channel equalisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
125
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
126
+ page_content=' RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
127
+ page_content=' Performance against channel SNR The proposed schemes for JSCC with OMA and NOMA are trained and tested on a pre-processed Market-1501 [21] dataset over a wide range of channel SNRs from -6dB to 15dB, and compared with the separation-based scheme and the single- device JSCC scheme in [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
128
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
129
+ page_content=' 3a, we plot the top-1 accuracy in an AWGN channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
130
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
131
+ page_content=' 3b, we plot the top-1 accuracy in a slow fading channel without CSI at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
132
+ page_content=' The digital scheme is not plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
133
+ page_content=' 3b because such a scheme is not possible to decode without CSI at the receiver, while JSCC allows communication even without the availability of CSI at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
134
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
135
+ page_content=' 3c, we plot the top-1 accuracy in a slow fading channel with CSI available at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
136
+ page_content=' As expected, CSIR provides better accuracy than when CSI is absent at the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
137
+ page_content=' In Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
138
+ page_content=' 3a, 3b and 3c, the proposed JSCC schemes out- perform the separate digital scheme at almost all SNRs, except at high SNRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
139
+ page_content=' However, note that we assume MAC capacity-achieving codes with equal rate allocation for each transmitter in this separate digital scheme, and therefore the reported performance of the digital scheme is not achievable in practice, particularly for the very low channel bandwidth of q = 32 per user considered here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
140
+ page_content=' The two-device JSCC schemes outperform the single-device JSCC scheme for a wide range of channel SNRs, especially higher SNRs, showing that incorporating two views of the same identity to make a collaborative decision at the edge server improves the retrieval performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
141
+ page_content=' It is also observed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
142
+ page_content=' 3a, 3b and 3c that JSCC with NOMA outperforms its orthogonal counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
143
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
144
+ page_content=' 3a, it is shown that while the OMA JSCC scheme outperforms the single-device JSCC benchmark at most SNRs, they are surpassed by it at very low SNRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
145
+ page_content=' This is because, in the low SNR regime, it is more beneficial to allocate all the channel resources to one transmitter to acquire the features from that one with sufficient quality for retrieval, rather than 4 (a) AWGN channel (b) Slow fading channel without CSI (c) Slow fading channel with CSIR Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
146
+ page_content=' 3: Top-1 retrieval accuracies of the proposed two-device schemes and the single-device scheme under different channel SNRs, with a total channel bandwidth of q = 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
147
+ page_content=' Scheme Squared cosine similarity OMA (AWGN) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
148
+ page_content='0151 OMA (slow fading) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
149
+ page_content='0165 NOMA (AWGN) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
150
+ page_content='7523 NOMA (slow fading) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
151
+ page_content='8234 TABLE I: Squared cosine similarity between input symbols of the OMA and NOMA schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
152
+ page_content=' receiving very low quality features from two queries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
153
+ page_content=' However, the NOMA JSCC scheme brings the benefits of both schemes together, and outperforms both schemes at all SNRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
154
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
155
+ page_content=' 3c, the single-device JSCC as well as the proposed two- device JSCC schemes (both OMA and NOMA) outperform the separation-based scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
156
+ page_content=' These observations match our expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
157
+ page_content=' The suboptimality of separate source and channel coding used in the digital transmission scheme stems from two reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
158
+ page_content=' First of them is the usual suboptimality of separation in the finite blocklength regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
159
+ page_content=' This was already observed in [4] for a point-to-point scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
160
+ page_content=' On the other hand, even in the infinite blocklength regime, separation becomes suboptimal when the two sources transmitted over the MAC are correlated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
161
+ page_content=' It is known that exploiting the correlation between the sources to generate correlated codewords at the encoders can strictly increase the end-to-end performance [22], [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
162
+ page_content=' To allow partial cooperation between the distributed transmitters, we must allow the transmitted signals to depend statistically on the source outputs, thus inducing correlation between the transmitted signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
163
+ page_content=' Separation-based schemes operate in the opposite manner, where the dependence between the sources is destroyed by separate source and channel coding, thus making the transmitted signals independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
164
+ page_content=' We observe that the orthogonal JSCC architecture learns to transmit uncorrelated signals, as shown in Table I, where the correlation between x1 and x2 is computed using squared cosine similarity, defined as cos2(x1, x2) ≜ ⟨x1,x2⟩2 ∥x1∥2∥x2∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
165
+ page_content=' By sending independent symbols, the JSCC encoders capture non- overlapping information from the two views, thus avoiding redundancy, and maximising the use of communication re- sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
166
+ page_content=' However, this mechanism is unable to make the distributed transmitters cooperate through the dependence of transmitted signals;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
167
+ page_content=' hence, the lower accuracy achieved com- pared to the NOMA scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
168
+ page_content=' In contrast, JSCC with NOMA learns to transmit correlated signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
169
+ page_content=' Higher correlation be- tween the transmitted signals for the NOMA scheme results in higher performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
170
+ page_content=' In fact, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
171
+ page_content=' 4a, we plot the effect of the amount of correlation between the transmitted signals on the performance of the NOMA JSCC scheme, which we control by introducing a cosine similarity regularization term in the loss function as follows: l = 1 3(lceaux1 + lcemain + lceaux2) + λ cos2 (x1, x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
172
+ page_content=' (6) By using higher values of λ, we impose a higher penalty on the correlation between the transmitted signals, thus forcing x1 and x2 to be less correlated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
173
+ page_content=' We observe in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
174
+ page_content=' 4a that the accuracy drops as the correlation between the transmit- ted signals decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
175
+ page_content=' Interestingly, if the cosine similarity between the symbols transmitted by the two transmitters in the NOMA scheme is reduced using the regularisation term, its accuracy approaches that of the orthogonal JSCC scheme when the cosine similarity approaches 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
176
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
177
+ page_content=' SNR-aware JSCC The SNR-aware JSCC scheme, introduced in Section IV-B, is trained over a range of SNRtrain, and tested over a wide range of SNRtest values, from -6 to 18dB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
178
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
179
+ page_content=' 4b and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
180
+ page_content=' 4c, the performance of the SNR-aware schemes for the two JSCC schemes is compared with that of non-SNR-aware architectures trained over a single SNRtrain but tested on different SNRtest values - unlike in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
181
+ page_content=' 3, where we have matching training and test SNR values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
182
+ page_content=' Note that the non-SNR-aware architectures exhibit graceful degradation when there is channel mismatch, that is, when the test channel conditions are worse than that of the training conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
183
+ page_content=' Thus, the JSCC scheme is able to avoid the cliff effect which conventional digital communication suffers from, where the performance of the digital schemes drops sharply when channel conditions are worse than those for which the encoder and decoder are designed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
184
+ page_content=' However, the SNR-aware architectures are observed to achieve strictly higher retrieval O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
185
+ page_content='B 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
186
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
187
+ page_content='6 Accuracy 50 p-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
188
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
189
+ page_content='3 Two-source NOMA-ISCC Two-source OMA-jSCC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
190
+ page_content='2 Single-source JSCC Two-source Digital scheme 5 5 15 Channel SNR (dB)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
191
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
192
+ page_content="6 op-1 Accuracy 50 t0 E'0 Two-source NOMA-JSCC 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
193
+ page_content='2 Two-source OMA-JScC Single-source JScC 5 0 5 1 15 Channel SNR (dB)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
194
+ page_content='B 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
195
+ page_content='7 18D 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
196
+ page_content='6 160 Top-1 Accuracy 50 140 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
197
+ page_content='4 120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
198
+ page_content='3 130 Two-source NOMA-JSCC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
199
+ page_content='2 Two-source OMA-JSCC Single-source jScC Two-source Digital scheme 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
200
+ page_content='1 5 0 5 15 Channel SNR (dB)5 (a) JSCC with NOMA - cosine similarity (b) JSCC with OMA - AWGN channel (c) JSCC with NOMA - AWGN channel Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
201
+ page_content=' 4: Top-1 retrieval accuracies of: (a) the JSCC-NOMA scheme on AWGN and slow fading channels against different squared cosine similarity between x1 and x2, with channel SNR = 0dB, and channel bandwidth q = 64, and (b),(c) the SNR-aware scheme and the original schemes trained with various SNRtrain values against different SNRtest values for OMA and NOMA schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
202
+ page_content=' accuracies than the non-SNR-aware architectures (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
203
+ page_content=' 4b and 4c), providing a single DNN that performs the same or better on all SNRs than employing a distinct DNN optimised for each particular SNR value or range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
204
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
205
+ page_content=' CONCLUSION We proposed two JSCC schemes for deep-learning based distributed retrieval at the wireless edge, with OMA and NOMA, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
206
+ page_content=' These schemes are shown to outper- form conventional separation based alternative with capacity- achieving channel codes, and the JSCC scheme with a single source [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
207
+ page_content=' We observed that the NOMA JSCC scheme out- performs its OMA counterpart with TDMA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
208
+ page_content=' We also observed that the DNN architecture, when trained for NOMA, learns to transmit correlated signals to induce partial cooperation between the transmitters and to improve the final accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
209
+ page_content=' The OMA JSCC scheme, in contrast, learns to transmit un- correlated signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
210
+ page_content=' With these observations in mind, in our future work, we will study how the correlation between the transmitted signals can be optimized to improve performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
211
+ page_content=' REFERENCES [1] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
212
+ page_content=' G¨und¨uz, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
213
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
214
+ page_content=' Kurka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
215
+ page_content=' Jankowski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
216
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
217
+ page_content=' Amiri, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
218
+ page_content=' Ozfatura, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
219
+ page_content=' Sreekumar, “Communicate to learn at the edge,” IEEE Communica- tions Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
220
+ page_content=' 58, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
221
+ page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
222
+ page_content=' 14–19, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
223
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
224
+ page_content=' Shao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
225
+ page_content=' Mao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
226
+ page_content=' Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE Journal on Selected Areas in Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
227
+ page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
228
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
229
+ page_content=' 197–211, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
230
+ page_content=' [3] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
231
+ page_content=' Shao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
232
+ page_content=' G¨und¨uz, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
233
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
234
+ page_content=' Liew, “Federated edge learning with misaligned over-the-air computation,” IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
235
+ page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
236
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
237
+ page_content=' 3951–3964, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
238
+ page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
239
+ page_content=' Jankowski, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
240
+ page_content=' G¨und¨uz, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
241
+ page_content=' Mikolajczyk, “Wireless image re- trieval at the edge,” IEEE Journal on Selected Areas in Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
242
+ page_content=' 39, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
243
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
244
+ page_content=' 89–100, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
245
+ page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
246
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
247
+ page_content=' Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
248
+ page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
249
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
250
+ page_content=' 379–423, 1948.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
251
+ page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
252
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
253
+ page_content=' Amiri and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
254
+ page_content=' G¨und¨uz, “Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air,” IEEE Transactions on Signal Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
255
+ page_content=' 68, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
256
+ page_content=' 2155–2169, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
257
+ page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
258
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
259
+ page_content=' Yilmaz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
260
+ page_content=' Hasırcıo˘glu, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
261
+ page_content=' G¨und¨uz, “Over-the-air ensemble inference with model privacy,” in IEEE Int’l Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
262
+ page_content=' Info.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
263
+ page_content=' Theory, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
264
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
265
+ page_content=' Krouka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
266
+ page_content=' Elgabli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
267
+ page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
268
+ page_content=' Issaid, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
269
+ page_content=' Bennis, “Communication- efficient split learning based on analog communication and over the air aggregation,” in IEEE GLOBECOM, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
270
+ page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
271
+ page_content=' Xu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
272
+ page_content=' Ai, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
273
+ page_content=' Chen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
274
+ page_content=' Yang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
275
+ page_content=' Sun, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
276
+ page_content=' Rodrigues, “Wireless image transmission using deep source channel coding with attention modules,” IEEE Transactions on Circuits and Systems for Video Tech- nology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
277
+ page_content=' 32, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
278
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
279
+ page_content=' 2315–2328, Apr 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
280
+ page_content=' [10] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
281
+ page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
282
+ page_content=' Shao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
283
+ page_content=' Bian, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
284
+ page_content=' Mikolajczyk, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
285
+ page_content=' G¨und¨uz, “Vision transformer for adaptive image transmission over MIMO channels,” arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
286
+ page_content='15347, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
287
+ page_content=' [11] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
288
+ page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
289
+ page_content=' Shao, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
290
+ page_content=' Mikolajczyk, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
291
+ page_content=' G¨und¨uz, “Channel-adaptive wireless image transmission with OFDM,” IEEE Wireless Communica- tions Letters, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
292
+ page_content=' [12] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
293
+ page_content=' Gray, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
294
+ page_content=' Brennan, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
295
+ page_content=' Tao, “Evaluating appearance models for recognition, reacquisition, and tracking,” Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
296
+ page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
297
+ page_content=' Workshop Vis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
298
+ page_content=' Surveill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
299
+ page_content=' Perform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
300
+ page_content=' Eval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
301
+ page_content=' Tracking Surveill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
302
+ page_content=', Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
303
+ page_content=', Jan 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
304
+ page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
305
+ page_content=' Ye, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
306
+ page_content=' Shen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
307
+ page_content=' Lin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
308
+ page_content=' Xiang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
309
+ page_content=' Shao, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
310
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
311
+ page_content=' Hoi, “Deep learning for person re-identification: A survey and outlook,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
312
+ page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
313
+ page_content=' Fu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
314
+ page_content=' Wei, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
315
+ page_content=' Zhou, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
316
+ page_content=' Shi, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
317
+ page_content=' Huang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
318
+ page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
319
+ page_content=' Yao, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
320
+ page_content=' Huang, “Horizontal pyramid matching for person re-identification,” Proceedings of the AAAI Conference on Artificial Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
321
+ page_content=' 33, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
322
+ page_content=' 8295–8302, Jan 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
323
+ page_content=' [15] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
324
+ page_content=' Li, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
325
+ page_content=' Hu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
326
+ page_content=' Jiang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
327
+ page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
328
+ page_content=' Wen, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
329
+ page_content=' Zhu, “Jalad: Joint accuracy-and latency-aware deep structure decoupling for edge-cloud execution,” Dec 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
330
+ page_content=' 671–678.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
331
+ page_content=' [16] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
332
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
333
+ page_content=' Eshratifar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
334
+ page_content=' Esmaili, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
335
+ page_content=' Pedram, “Bottlenet: A deep learning architecture for intelligent mobile cloud computing services,” in IEEE/ACM Int’l Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
336
+ page_content=' on Low Power Elct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
337
+ page_content=' and Design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
338
+ page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
339
+ page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
340
+ page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
341
+ page_content=' G¨und¨uz, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
342
+ page_content=' Qin, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
343
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
344
+ page_content=' Aguerri, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
345
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
346
+ page_content=' Dhillon, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
347
+ page_content=' Yang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
348
+ page_content=' Yener, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
349
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
350
+ page_content=' Wong, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
351
+ page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
352
+ page_content=' Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE Jorn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
353
+ page_content=' on Selected Areas in Comms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
354
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
355
+ page_content=' 41, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
356
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
357
+ page_content=' 5–41, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
358
+ page_content=' [18] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
359
+ page_content=' Bian, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
360
+ page_content=' Shao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
361
+ page_content=' Wu, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
362
+ page_content=' Gunduz, “Deep joint source- channel coding over cooperative relay networks,” arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
363
+ page_content='06705, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
364
+ page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
365
+ page_content=' Shao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
366
+ page_content=' Mao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
367
+ page_content=' Zhang, “Task-oriented communication for multi- device cooperative edge inference,” IEEE Transactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
368
+ page_content=' on Wireless Comms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
369
+ page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
370
+ page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
371
+ page_content=' He, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
372
+ page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
373
+ page_content=' Ren, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
374
+ page_content=' Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
375
+ page_content=' 770–778.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
376
+ page_content=' [21] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
377
+ page_content=' Zheng, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
378
+ page_content=' Shen, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
379
+ page_content=' Tian, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
380
+ page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
381
+ page_content=' Wang, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
382
+ page_content=' Tian, “Scalable person re-identification: A benchmark,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
383
+ page_content=' 1116–1124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
384
+ page_content=' [22] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
385
+ page_content=' Cover, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
386
+ page_content=' Gamal, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
387
+ page_content=' Salehi, “Multiple access channels with ar- bitrarily correlated sources,” IEEE Transactions on Information Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
388
+ page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
389
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
390
+ page_content=' 648–657, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
391
+ page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
392
+ page_content=' Lapidoth and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
393
+ page_content=' Tinguely, “Sending a bivariate gaussian over a gaussian mac,” IEEE Transa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
394
+ page_content=' Info.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
395
+ page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
396
+ page_content=' 56, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
397
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
398
+ page_content=' 2714– 2752, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
399
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
400
+ page_content='725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
401
+ page_content='675 Accurad 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
402
+ page_content='65 p-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
403
+ page_content='625 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
404
+ page_content='600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
405
+ page_content='575 AWGN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
406
+ page_content='550 Slow fading without CSl 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
407
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
408
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
409
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
410
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
411
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
412
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
413
+ page_content='B Squared cosine similarity0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
414
+ page_content='B 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
415
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
416
+ page_content='6 Accurat Top-1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
417
+ page_content='5 SNR-aware model t0 SNR train= 12dB SNR train = 6dB SNR train = OdB 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
418
+ page_content='3 SNR train = -6dB 5 5 15 SWRtest (dB)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
419
+ page_content='B0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
420
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
421
+ page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
422
+ page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
423
+ page_content='60 SNR-aware model 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
424
+ page_content='55 SNRtrain=12dB SNR train = 6dB SNR train = OdB 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
425
+ page_content='50 SNR train = -6dB 5 0 15 SWRtest (dB)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dE2T4oBgHgl3EQfmQc9/content/2301.03996v1.pdf'}
-tFAT4oBgHgl3EQfqR1A/content/tmp_files/2301.08646v1.pdf.txt ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The Gauge issue and the Hamiltonian theory of cosmological perturbations
2
+ Alice Boldrin1, ∗
3
+ 1National Centre for Nuclear Research, Pasteura 7, 02-093 Warszawa, Poland
4
+ We present a general formalism for the Hamiltonian description of perturbation theory
5
+ around any spatially homogeneous spacetime. We employ and refine the Dirac method for
6
+ constrained systems, which is very well-suited to cosmological perturbations. This approach
7
+ includes a discussion of the gauge-invariant dynamics of perturbations as well as an analysis
8
+ of gauge transformations, gauge-fixing, partial gauge-fixing and spacetime reconstruction.
9
+ We will introduce the Kuchaˇr parametrization of the kinematical phase space as a conve-
10
+ nient tool for studying the gauge transformations. The key element of this approach is the
11
+ reconstruction of spacetime based on gauge-fixing conditions.
12
+ I.
13
+ INTRODUCTION
14
+ In the attempt to obtain a quantum theory suitable for the description of the primordial struc-
15
+ ture of the Universe, we study the Hamiltonian formalism for cosmological perturbation theory
16
+ (CPT). This work has been done before with different background spacetime models like the Fried-
17
+ man universe [1] and the Bianchi Type I model [2]. Our aim is to study the complete Hamiltonian
18
+ formalism in a general background focusing on the gauge independent description of CPT as well
19
+ as the issue of gauge fixing (see e.g. [3, 4] for alternative discussions on the gauge issue in CPT),
20
+ gauge transformations and spacetime reconstruction. We employ the Dirac method [5] to study the
21
+ Hamiltonian in different gauges and reconstruct the spacetime metric from gauge-invariant quan-
22
+ tities (Dirac observables). We also discuss an alternative method based on the so-called Kuchaˇr
23
+ decomposition [6] which provides a parametrization of the phase space in which the constrains
24
+ play the role of canonical variables conjugate to the gauge-fixing conditions. For a more detailed
25
+ discussion and for an application of the presented method, see [7].
26
27
+ arXiv:2301.08646v1 [gr-qc] 20 Jan 2023
28
+
29
+ 2
30
+ II.
31
+ COSMOLOGICAL PERTURBATION THEORY
32
+ The Hamiltonian in the the Arnowitt-Deser-Misner (ADM) formalism [8] expanded to second
33
+ order reads1
34
+ H =
35
+
36
+ T3
37
+
38
+ NH(0)
39
+ 0
40
+ + NH(2)
41
+ 0
42
+ + δN µδHµ
43
+
44
+ d3x
45
+ (1)
46
+ where N is the background lapse function and δN µ, with µ = 0, i, are the first order lapse and
47
+ shift functions. The Hamiltonian densities H(0) and H(2) are respectively zeroth and second order,
48
+ whereas δHµ represent the first order constraints. We assume a spatially homogeneous background
49
+ spacetime with spatial coordinates defined such that the background shift vector Ni vanishes as
50
+ well as the background Hamiltonian H(0)
51
+ i . The Hamiltonian (1) is a function of the background
52
+ canonical variables ¯qij and ¯πij which are respectively the three-metric and three-momenta, and the
53
+ perturbed variables defined as δqij = qij − qij and δπij = πij − πij.
54
+ The Hamiltonian (1) defines a gauge for the following reasons:
55
+ First, at each spatial point the constraints algebra is closed, i.e.
56
+ {δHi, δHj} = 0,
57
+ {δH0, δHi} = 0,
58
+ (2)
59
+ where this result is true for any homogeneous background. Furthermore the constraints are dy-
60
+ namically stables, i.e.
61
+ {H, δH0} = −δHi
62
+ ,i(x) ≈ 0,
63
+ {H, δHi} = 0,
64
+ (3)
65
+ where the ”weak equality” ≈, means that the equality holds in the constraint surface.
66
+ III.
67
+ GAUGE-FIXING AND DIRAC PROCEDURE
68
+ The four constraints δHµ generate a gauge freedom which can be removed by imposing four
69
+ gauge-fixing conditions δcµ = 0. The Poisson bracket between the gauge-fixing conditions and the
70
+ constraints form an invertible matrix det{δcµ, δHµ} ̸= 0. Applying the constraints and the gauge-
71
+ fixing conditions we can reduce our Hamiltonian which will now depend on 4 physical variables
72
+ (δqphys
73
+ I
74
+ , δπI
75
+ phys) instead of the 12 ADM perturbation2 variables (δqij, δπij). Those new variables
76
+ form a canonical coordinate system on the submanifold in the kinematical phase space.
77
+ This
78
+ 1 We assume the topology of the spacetime to be M ≃ T3 × R so to have a spatially compact universe and avoid
79
+ ambiguous definitions of the symplectic structure for background (homogeneous) variables.
80
+ 2 We assume the vacuum case for the sake of clarity. See [1] or [2] for the Dirac method applied when there is matter
81
+ content.
82
+
83
+ 3
84
+ submanifold is thus called the physical phase space3.
85
+ The parametrization provided by these
86
+ physical variables is defined by the gauge-fixing surface that intersects all gauge orbits (see Fig. 1
87
+ ). It is convenient to define a set of gauge-independent variables defined as
88
+ {δDI, δHµ} ≈ 0, ∀µ,
89
+ (4)
90
+ which parametrize the space of gauge orbits in the constraints surface. Those variables are known
91
+ as Dirac observables and are equal to the number of physical variables. There exists a one-to-one
92
+ correspondence between the Dirac observables and the physical variables, such that
93
+ δDI + ϵµ
94
+ I δcµ + ξµ
95
+ I δHµ = δOphys
96
+ I
97
+ (δqphys
98
+ I
99
+ , δπI
100
+ phys)
101
+ (5)
102
+ where ϵµ
103
+ I and ξµ
104
+ I are background coefficients. Using this new parametrization the Hamiltonian can
105
+ be written in a gauge-independent manner as H(2)
106
+ phys = H(2)
107
+ red + H(2)
108
+ ext, where H(2)
109
+ phys denotes the so
110
+ called physical Hamiltonian, H(2)
111
+ red is the reduced Hamiltonian in terms of the physical variables and
112
+ H(2)
113
+ ext is the extra Hamiltonian generated by the time-dependent canonical transformation needed
114
+ to change parametrization.
115
+ FIG. 1. Graphical representation of the Dirac procedure.
116
+ IV.
117
+ SPACETIME RECONSTRUCTION
118
+ In the previous section we discussed how to obtain the physical Hamiltonian.
119
+ In order to
120
+ reconstruct the spacetime we still need to find the values of the first-order lapse and shift. To do
121
+ so we use the consistency equation {δcµ, H} = 0, which, from Eq. (1), implies
122
+ δN µ
123
+ N
124
+ = −{δcν, δHµ}−1 �
125
+ {δcν, δH(0)} + {δcν, H(2)}
126
+
127
+ (6)
128
+ 3 It’s canonical structure is now given by the Dirac brackets {., .}D = {., .} − {., δφµ}{δφµ, δφν}−1{δφν, .}, where
129
+ δφµ ∈ (δHµ, δcµ).
130
+
131
+ 4
132
+ This equation is only meaningful in the constraint surface.
133
+ V.
134
+ KUCHAˇR DECOMPOSITION
135
+ We present a different parametrization of the kinematical phase space where the constraints
136
+ take the role of canonical variables. For instance, we define two sets of canonical variables. The
137
+ first set comprises the first order constraints δHµ and the 4 gauge-fixing functions, here denoted
138
+ as δCµ. The second pair of canonical variables is given by the Dirac observables δDI, defined in
139
+ Eq.(4). The Hamiltonian written in this parametrization will then be
140
+ H → HK = H + K =
141
+ � �
142
+ NH(0)
143
+ 0
144
+ + N(H(2)
145
+ 0
146
+ + K) + δN µδHµ
147
+
148
+ d3x,
149
+ (7)
150
+ where K is the extra Hamiltonian coming from the time-dependent parametrization. We notice
151
+ that, since the constraints are conserved in the constraint surface, terms of the form ∝ δCµδCν,
152
+ ∝ δQIδCµ and ∝ δPIδCµ are not present in Eq. (7). Moreover, considering that H(2) ≈ H(2)
153
+ red
154
+ and K(2) ≈ H(2)
155
+ ext, which tells us the two dynamics must be weakly equal, we have that the total
156
+ Hamiltonian can only be of the form
157
+ HK =N
158
+ � �
159
+ H(2)
160
+ phys(δQI, δP I)
161
+
162
+ ��
163
+
164
+ physical part
165
+ +
166
+ +
167
+
168
+ λµI
169
+ 1 δQI + λµ
170
+ 2IδPI + λµν
171
+ 3 δHν + λµ
172
+ 4νδCν + δN µ
173
+ N
174
+
175
+
176
+
177
+ ��
178
+
179
+ weakly vanishing part
180
+
181
+ d3x,
182
+ (8)
183
+ where λµI
184
+ 1 , λµ
185
+ I2 and λµν
186
+ 3
187
+ are zeroth-order coefficients that can depend on the gauge-fixing δCµ.
188
+ The value of λµ
189
+ 4ν is gauge-invariant, it is showed to be fixed unambiguously by the algebra of the
190
+ hypersurface (3).
191
+ A.
192
+ Gauge transformations
193
+ An interesting property of the Kuchaˇr decomposition comes from the freedom in the choice of
194
+ the canonical variable δCµ. This means that we have a class of parametrizations of the kinematical
195
+ phase space. In particular, we can define the new set of gauge-fixing conditions as δ ˜Cµ, and the full
196
+ gauge transformation will be given by the map G : (δHµ, δCµ, δQI, δP I) → (δ ˜Hµ, δ ˜Cµ, δ ˜QI, δ ˜P I),
197
+ where δHµ = δ ˜Hµ. We are free to assume that the new gauge-fixing functions are thus canonically
198
+ conjugate to the constraints δHµ. Thus we have {δHν, δ ˜Cµ − δCµ} = 0, which implies
199
+ δ ˜Cµ = δCµ + αµ
200
+ I δP I + βµIδQI + γµνδHν,
201
+ (9)
202
+
203
+ 5
204
+ where αµ
205
+ I , βµI and γµν are background parameters.
206
+ The gauge-fixing condition is only relevant in the constraints surface, so Eq.(9) is fully deter-
207
+ mined by the parameters αµ
208
+ I and βµI. Moreover it means that the space of gauge-fixing conditions
209
+ is the affine space of dimension equal to the number od Dirac observables. The introduction of a
210
+ different gauge will lead to the new Hamiltonian H ˜
211
+ K, with an extra Hamiltonian density ∆K(2).
212
+ Studying the new symplectic form of the system we find that γµν depends only on αµ
213
+ I and βµI,
214
+ which thus are the only parameters needed to uniquely determine the gauge transformation.
215
+ B.
216
+ Spacetime reconstruction
217
+ As discussed in Sec. IV, the spacetime reconstruction is obtained by the dynamical equations
218
+ δ ˙Cµ = 0, which means that it is sensitive to the chosen parametrization. In particular in the
219
+ Kuchaˇr parametrization we will have {δCν, HK}K = 0, which, from Eq. (7) becomes
220
+ δN µ
221
+ N
222
+ = −∂(H(2) + K(2))
223
+ ∂δHµ
224
+ .
225
+ (10)
226
+ Notice the above formula only depends on the weakly vanishing part of the Hamiltonian since the
227
+ lapse and shift are gauge-dependent quantities. It is interesting to consider the difference between
228
+ the lapse and shift in two gauges. Using Eq. (8), we have
229
+ δ ˜Nµ
230
+ N
231
+ ����
232
+ δ ˜Cµ=0
233
+ − δN µ
234
+ N
235
+ ����
236
+ δCµ=0
237
+
238
+
239
+
240
+ �λµ
241
+ 4νβνI + ˙βµI +
242
+ ∂2H(2)
243
+ phys
244
+ ∂δQI∂δP J βµJ −
245
+ ∂2H(2)
246
+ phys
247
+ ∂δQI∂δQJ
248
+ αµ
249
+ J
250
+
251
+ � δQI
252
+ +
253
+
254
+ �λµ
255
+ 4ναν
256
+ I + ˙αµ
257
+ I −
258
+ ∂2H(2)
259
+ phys
260
+ ∂δP I∂δQJ
261
+ αµ
262
+ J +
263
+ ∂2H(2)
264
+ phys
265
+ ∂δP I∂δP J βµJ
266
+
267
+ � δP I.
268
+ (11)
269
+ We see that the spacetime reconstruction in a new gauge can be obtained by the lapse and shift in
270
+ the initial gauge plus some terms which solely depend on the physical part of the Hamiltonian H(2)
271
+ phys
272
+ and the gauge-invariant coefficient λµ
273
+ 4ν, which can be obtained from the algebra of the hypersurface
274
+ deformations.
275
+ VI.
276
+ PARTIAL GAUGE-FIXING
277
+ We previously discussed the gauge-fixing defined as setting the conditions δCµ = 0. However it
278
+ can be interesting to study the case in which these 4 conditions are substituted with conditions on
279
+
280
+ 6
281
+ the lapse and shift functions. This is what we call partial gauge-fixing. From this consideration we
282
+ can study the transformations which preserve the lapse and shift functions, that is, δ ˜
283
+
284
+ N
285
+ ��
286
+ δ ˜Cµ=0 −
287
+ δNµ
288
+ N
289
+ ��
290
+ δCµ=0 = 0. Using Eq. (11) and solving it for αν
291
+ I and βµI, we can solve the ambiguity in the
292
+ choice of the gauge-fixing condition.
293
+ ˙αµ
294
+ I = −βµJ
295
+ ∂2H(2)
296
+ phys
297
+ ∂δP J∂δP I + αµ
298
+ J
299
+ ∂2H(2)
300
+ phys
301
+ ∂δQJ∂δP I − λµ
302
+ 4ναν
303
+ I,
304
+ ˙βµI = −βµJ
305
+ ∂2H(2)
306
+ phys
307
+ ∂δP J∂δQI
308
+ + αµ
309
+ J
310
+ ∂2H(2)
311
+ phys
312
+ ∂δQJ∂δQI
313
+ − λµ
314
+ 4νβνI,
315
+ (12)
316
+ The above equations fix the gauge-fixing function at all times once δCµ(t0) is fixed at an initial
317
+ time t0. This means that the choice of δCµ(t0) fixes the initial three-surface. Given the initial
318
+ values of the Dirac observables (δQI(t0), δP I(t0)), we are able to explicitly reconstruct the initial
319
+ three-surface in terms of the ADM perturbation variables. Moreover we are able to fully reconstruct
320
+ the spacetime geometry since the evolution of the three-surface with its coordinates is completely
321
+ determined by the evolution of the gauge-fixing function δ ˜Cµ(t) and the independent evolution of
322
+ the gauge-invariant variables4 (δQI(t), δP(t)).
323
+ VII.
324
+ CONCLUSIONS
325
+ We were able to simplify the Hamiltonian approach to CPT by showing that it is possible to
326
+ separate the gauge-independent dynamics of perturbation from the issues of gauge-fixing and space-
327
+ time reconstruction. In particular we showed how the spacetime reconstruction can be pursued
328
+ with the sole knowledge of gauge-fixing conditions. Moreover the discussed Kucaˇr decomposition
329
+ serves as a useful and insightful tool to the study of gauge-fixing conditions and spacetime recon-
330
+ struction. The space of gauge-fixing conditions and the formula for the spacetime reconstruction
331
+ is given explicitly for any gauge.
332
+ This approach might be applied to multiple conceptual problems in quantum cosmology, such
333
+ as the time problem, the semi-classical spacetime reconstruction , or the relation between the
334
+ kinematical and reduced phase space quantization. Moreover, the complete control over the gauge-
335
+ fixing issue provided by the presented method, could be very useful for the problem of gluing
336
+ perturbed spacetimes to other spacetime models (e.g., ones that include non-linearities).
337
+ The
338
+ choice of the gluing surface and its coordinates should be nicely described by our method.
339
+ 4 The spacetime coordinates system is independent from the evolution of this variables.
340
+
341
+ 7
342
+ ACKNOWLEDGMENTS
343
+ The author acknowledge the support of the National Science Centre (NCN, Poland) under the
344
+ research grant 2018/30/E/ST2/00370.
345
+ [1] P.
346
+ Ma�lkiewicz,
347
+ Class.
348
+ Quant.
349
+ Grav.
350
+ 36
351
+ (2019)
352
+ no.21,
353
+ 215003
354
+ doi:10.1088/1361-6382/ab45aa
355
+ [arXiv:1810.11621 [gr-qc]].
356
+ [2] A. Boldrin and P. Ma�lkiewicz, Class. Quant. Grav. 39 (2022) no.2, 025005 doi:10.1088/1361-6382/ac3bda
357
+ [arXiv:2105.05325 [gr-qc]].
358
+ [3] K. A. Malik and D. R. Matravers, Gen. Rel. Grav. 45 (2013), 1989-2001 doi:10.1007/s10714-013-1573-2
359
+ [arXiv:1206.1478 [astro-ph.CO]].
360
+ [4] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78 (1984), 1-166 doi:10.1143/PTPS.78.1
361
+ [5] P. A. M. Dirac, “Lectures on quantum mechanics,” ISBN:9780486417134.
362
+ [6] K. Kuchaˇr , Journal of Mathematical Physics doi:10.1063/1.1666050.
363
+ [7] A. Boldrin and P. Ma�lkiewicz, Class. Quant. Grav. 40 (2023) no.1, 015003 doi:10.1088/1361-6382/aca385
364
+ [arXiv:2206.06926 [gr-qc]].
365
+ [8] R. Arnowitt, S. Deser, C. W. Misner, “Dynamical Structure and Definition of Energy in General Rela-
366
+ tivity,” Phys. Rev., Vol. 116, Issue 5, p. 1322-1330, 1959 doi:10.1103/PhysRev.116.1322
367
+
-tFAT4oBgHgl3EQfqR1A/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf,len=180
2
+ page_content='The Gauge issue and the Hamiltonian theory of cosmological perturbations Alice Boldrin1, ∗ 1National Centre for Nuclear Research, Pasteura 7, 02-093 Warszawa, Poland We present a general formalism for the Hamiltonian description of perturbation theory around any spatially homogeneous spacetime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
3
+ page_content=' We employ and refine the Dirac method for constrained systems, which is very well-suited to cosmological perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
4
+ page_content=' This approach includes a discussion of the gauge-invariant dynamics of perturbations as well as an analysis of gauge transformations, gauge-fixing, partial gauge-fixing and spacetime reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
5
+ page_content=' We will introduce the Kuchaˇr parametrization of the kinematical phase space as a conve- nient tool for studying the gauge transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
6
+ page_content=' The key element of this approach is the reconstruction of spacetime based on gauge-fixing conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
7
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
8
+ page_content=' INTRODUCTION In the attempt to obtain a quantum theory suitable for the description of the primordial struc- ture of the Universe, we study the Hamiltonian formalism for cosmological perturbation theory (CPT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
9
+ page_content=' This work has been done before with different background spacetime models like the Fried- man universe [1] and the Bianchi Type I model [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
10
+ page_content=' Our aim is to study the complete Hamiltonian formalism in a general background focusing on the gauge independent description of CPT as well as the issue of gauge fixing (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
11
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
12
+ page_content=' [3, 4] for alternative discussions on the gauge issue in CPT), gauge transformations and spacetime reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
13
+ page_content=' We employ the Dirac method [5] to study the Hamiltonian in different gauges and reconstruct the spacetime metric from gauge-invariant quan- tities (Dirac observables).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
14
+ page_content=' We also discuss an alternative method based on the so-called Kuchaˇr decomposition [6] which provides a parametrization of the phase space in which the constrains play the role of canonical variables conjugate to the gauge-fixing conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
15
+ page_content=' For a more detailed discussion and for an application of the presented method, see [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
16
+ page_content=' ∗ Alice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
17
+ page_content='Boldrin@ncbj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
18
+ page_content='gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
19
+ page_content='pl arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
20
+ page_content='08646v1 [gr-qc] 20 Jan 2023 2 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
21
+ page_content=' COSMOLOGICAL PERTURBATION THEORY The Hamiltonian in the the Arnowitt-Deser-Misner (ADM) formalism [8] expanded to second order reads1 H = � T3 � NH(0) 0 + NH(2) 0 + δN µδHµ � d3x (1) where N is the background lapse function and δN µ, with µ = 0, i, are the first order lapse and shift functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
22
+ page_content=' The Hamiltonian densities H(0) and H(2) are respectively zeroth and second order, whereas δHµ represent the first order constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
23
+ page_content=' We assume a spatially homogeneous background spacetime with spatial coordinates defined such that the background shift vector Ni vanishes as well as the background Hamiltonian H(0) i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
24
+ page_content=' The Hamiltonian (1) is a function of the background canonical variables ¯qij and ¯πij which are respectively the three-metric and three-momenta, and the perturbed variables defined as δqij = qij − qij and δπij = πij − πij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
25
+ page_content=' The Hamiltonian (1) defines a gauge for the following reasons: First, at each spatial point the constraints algebra is closed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
26
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
27
+ page_content=' {δHi, δHj} = 0, {δH0, δHi} = 0, (2) where this result is true for any homogeneous background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
28
+ page_content=' Furthermore the constraints are dy- namically stables, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
29
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
30
+ page_content=' {H, δH0} = −δHi ,i(x) ≈ 0, {H, δHi} = 0, (3) where the ”weak equality” ≈, means that the equality holds in the constraint surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
31
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
32
+ page_content=' GAUGE-FIXING AND DIRAC PROCEDURE The four constraints δHµ generate a gauge freedom which can be removed by imposing four gauge-fixing conditions δcµ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
33
+ page_content=' The Poisson bracket between the gauge-fixing conditions and the constraints form an invertible matrix det{δcµ, δHµ} ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
34
+ page_content=' Applying the constraints and the gauge- fixing conditions we can reduce our Hamiltonian which will now depend on 4 physical variables (δqphys I , δπI phys) instead of the 12 ADM perturbation2 variables (δqij, δπij).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
35
+ page_content=' Those new variables form a canonical coordinate system on the submanifold in the kinematical phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
36
+ page_content=' This 1 We assume the topology of the spacetime to be M ≃ T3 × R so to have a spatially compact universe and avoid ambiguous definitions of the symplectic structure for background (homogeneous) variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
37
+ page_content=' 2 We assume the vacuum case for the sake of clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
38
+ page_content=' See [1] or [2] for the Dirac method applied when there is matter content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
39
+ page_content=' 3 submanifold is thus called the physical phase space3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
40
+ page_content=' The parametrization provided by these physical variables is defined by the gauge-fixing surface that intersects all gauge orbits (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
41
+ page_content=' 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
42
+ page_content=' It is convenient to define a set of gauge-independent variables defined as {δDI, δHµ} ≈ 0, ∀µ, (4) which parametrize the space of gauge orbits in the constraints surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
43
+ page_content=' Those variables are known as Dirac observables and are equal to the number of physical variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
44
+ page_content=' There exists a one-to-one correspondence between the Dirac observables and the physical variables, such that δDI + ϵµ I δcµ + ξµ I δHµ = δOphys I (δqphys I , δπI phys) (5) where ϵµ I and ξµ I are background coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
45
+ page_content=' Using this new parametrization the Hamiltonian can be written in a gauge-independent manner as H(2) phys = H(2) red + H(2) ext, where H(2) phys denotes the so called physical Hamiltonian, H(2) red is the reduced Hamiltonian in terms of the physical variables and H(2) ext is the extra Hamiltonian generated by the time-dependent canonical transformation needed to change parametrization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
46
+ page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
47
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
48
+ page_content=' Graphical representation of the Dirac procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
49
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
50
+ page_content=' SPACETIME RECONSTRUCTION In the previous section we discussed how to obtain the physical Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
51
+ page_content=' In order to reconstruct the spacetime we still need to find the values of the first-order lapse and shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
52
+ page_content=' To do so we use the consistency equation {δcµ, H} = 0, which, from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
53
+ page_content=' (1), implies δN µ N = −{δcν, δHµ}−1 � {δcν, δH(0)} + {δcν, H(2)} � (6) 3 It’s canonical structure is now given by the Dirac brackets {.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
54
+ page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
55
+ page_content=' }D = {.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
56
+ page_content=', .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
57
+ page_content='} − {.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
58
+ page_content=', δφµ}{δφµ, δφν}−1{δφν, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
59
+ page_content=' }, where δφµ ∈ (δHµ, δcµ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
60
+ page_content=' 4 This equation is only meaningful in the constraint surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
61
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
62
+ page_content=' KUCHAˇR DECOMPOSITION We present a different parametrization of the kinematical phase space where the constraints take the role of canonical variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
63
+ page_content=' For instance, we define two sets of canonical variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
64
+ page_content=' The first set comprises the first order constraints δHµ and the 4 gauge-fixing functions, here denoted as δCµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
65
+ page_content=' The second pair of canonical variables is given by the Dirac observables δDI, defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
66
+ page_content='(4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
67
+ page_content=' The Hamiltonian written in this parametrization will then be H → HK = H + K = � � NH(0) 0 + N(H(2) 0 + K) + δN µδHµ � d3x, (7) where K is the extra Hamiltonian coming from the time-dependent parametrization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
68
+ page_content=' We notice that, since the constraints are conserved in the constraint surface, terms of the form ∝ δCµδCν, ∝ δQIδCµ and ∝ δPIδCµ are not present in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
69
+ page_content=' (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
70
+ page_content=' Moreover, considering that H(2) ≈ H(2) red and K(2) ≈ H(2) ext, which tells us the two dynamics must be weakly equal, we have that the total Hamiltonian can only be of the form HK =N � � H(2) phys(δQI, δP I) � �� � physical part + + � λµI 1 δQI + λµ 2IδPI + λµν 3 δHν + λµ 4νδCν + δN µ N � Hµ � �� � weakly vanishing part � d3x, (8) where λµI 1 , λµ I2 and λµν 3 are zeroth-order coefficients that can depend on the gauge-fixing δCµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
71
+ page_content=' The value of λµ 4ν is gauge-invariant, it is showed to be fixed unambiguously by the algebra of the hypersurface (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
72
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
73
+ page_content=' Gauge transformations An interesting property of the Kuchaˇr decomposition comes from the freedom in the choice of the canonical variable δCµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
74
+ page_content=' This means that we have a class of parametrizations of the kinematical phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
75
+ page_content=' In particular, we can define the new set of gauge-fixing conditions as δ ˜Cµ, and the full gauge transformation will be given by the map G : (δHµ, δCµ, δQI, δP I) → (δ ˜Hµ, δ ˜Cµ, δ ˜QI, δ ˜P I), where δHµ = δ ˜Hµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
76
+ page_content=' We are free to assume that the new gauge-fixing functions are thus canonically conjugate to the constraints δHµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
77
+ page_content=' Thus we have {δHν, δ ˜Cµ − δCµ} = 0, which implies δ ˜Cµ = δCµ + αµ I δP I + βµIδQI + γµνδHν, (9) 5 where αµ I , βµI and γµν are background parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
78
+ page_content=' The gauge-fixing condition is only relevant in the constraints surface, so Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
79
+ page_content=' (9) is fully deter- mined by the parameters αµ I and βµI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
80
+ page_content=' Moreover it means that the space of gauge-fixing conditions is the affine space of dimension equal to the number od Dirac observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
81
+ page_content=' The introduction of a different gauge will lead to the new Hamiltonian H ˜ K, with an extra Hamiltonian density ∆K(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
82
+ page_content=' Studying the new symplectic form of the system we find that γµν depends only on αµ I and βµI, which thus are the only parameters needed to uniquely determine the gauge transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
83
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
84
+ page_content=' Spacetime reconstruction As discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
85
+ page_content=' IV, the spacetime reconstruction is obtained by the dynamical equations δ ˙Cµ = 0, which means that it is sensitive to the chosen parametrization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
86
+ page_content=' In particular in the Kuchaˇr parametrization we will have {δCν, HK}K = 0, which, from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
87
+ page_content=' (7) becomes δN µ N = −∂(H(2) + K(2)) ∂δHµ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
88
+ page_content=' (10) Notice the above formula only depends on the weakly vanishing part of the Hamiltonian since the lapse and shift are gauge-dependent quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
89
+ page_content=' It is interesting to consider the difference between the lapse and shift in two gauges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
90
+ page_content=' Using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
91
+ page_content=' (8), we have δ ˜Nµ N ���� δ ˜Cµ=0 − δN µ N ���� δCµ=0 ≈ ≈ � �λµ 4νβνI + ˙βµI + ∂2H(2) phys ∂δQI∂δP J βµJ − ∂2H(2) phys ∂δQI∂δQJ αµ J � � δQI + � �λµ 4ναν I + ˙αµ I − ∂2H(2) phys ∂δP I∂δQJ αµ J + ∂2H(2) phys ∂δP I∂δP J βµJ � � δP I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
92
+ page_content=' (11) We see that the spacetime reconstruction in a new gauge can be obtained by the lapse and shift in the initial gauge plus some terms which solely depend on the physical part of the Hamiltonian H(2) phys and the gauge-invariant coefficient λµ 4ν, which can be obtained from the algebra of the hypersurface deformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
93
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
94
+ page_content=' PARTIAL GAUGE-FIXING We previously discussed the gauge-fixing defined as setting the conditions δCµ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
95
+ page_content=' However it can be interesting to study the case in which these 4 conditions are substituted with conditions on 6 the lapse and shift functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
96
+ page_content=' This is what we call partial gauge-fixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
97
+ page_content=' From this consideration we can study the transformations which preserve the lapse and shift functions, that is, δ ˜ Nµ N �� δ ˜Cµ=0 − δNµ N �� δCµ=0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
98
+ page_content=' Using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
99
+ page_content=' (11) and solving it for αν I and βµI, we can solve the ambiguity in the choice of the gauge-fixing condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
100
+ page_content=' ˙αµ I = −βµJ ∂2H(2) phys ∂δP J∂δP I + αµ J ∂2H(2) phys ∂δQJ∂δP I − λµ 4ναν I, ˙βµI = −βµJ ∂2H(2) phys ∂δP J∂δQI + αµ J ∂2H(2) phys ∂δQJ∂δQI − λµ 4νβνI, (12) The above equations fix the gauge-fixing function at all times once δCµ(t0) is fixed at an initial time t0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
101
+ page_content=' This means that the choice of δCµ(t0) fixes the initial three-surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
102
+ page_content=' Given the initial values of the Dirac observables (δQI(t0), δP I(t0)), we are able to explicitly reconstruct the initial three-surface in terms of the ADM perturbation variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
103
+ page_content=' Moreover we are able to fully reconstruct the spacetime geometry since the evolution of the three-surface with its coordinates is completely determined by the evolution of the gauge-fixing function δ ˜Cµ(t) and the independent evolution of the gauge-invariant variables4 (δQI(t), δP(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
104
+ page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
105
+ page_content=' CONCLUSIONS We were able to simplify the Hamiltonian approach to CPT by showing that it is possible to separate the gauge-independent dynamics of perturbation from the issues of gauge-fixing and space- time reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
106
+ page_content=' In particular we showed how the spacetime reconstruction can be pursued with the sole knowledge of gauge-fixing conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
107
+ page_content=' Moreover the discussed Kucaˇr decomposition serves as a useful and insightful tool to the study of gauge-fixing conditions and spacetime recon- struction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
108
+ page_content=' The space of gauge-fixing conditions and the formula for the spacetime reconstruction is given explicitly for any gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
109
+ page_content=' This approach might be applied to multiple conceptual problems in quantum cosmology, such as the time problem, the semi-classical spacetime reconstruction , or the relation between the kinematical and reduced phase space quantization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
110
+ page_content=' Moreover, the complete control over the gauge- fixing issue provided by the presented method, could be very useful for the problem of gluing perturbed spacetimes to other spacetime models (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
111
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
112
+ page_content=', ones that include non-linearities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
113
+ page_content=' The choice of the gluing surface and its coordinates should be nicely described by our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
114
+ page_content=' 4 The spacetime coordinates system is independent from the evolution of this variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
115
+ page_content=' 7 ACKNOWLEDGMENTS The author acknowledge the support of the National Science Centre (NCN, Poland) under the research grant 2018/30/E/ST2/00370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
116
+ page_content=' [1] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
117
+ page_content=' Ma�lkiewicz, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
118
+ page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
119
+ page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
120
+ page_content=' 36 (2019) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
121
+ page_content='21, 215003 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
122
+ page_content='1088/1361-6382/ab45aa [arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
123
+ page_content='11621 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
124
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
125
+ page_content=' Boldrin and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
126
+ page_content=' Ma�lkiewicz, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
127
+ page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
128
+ page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
129
+ page_content=' 39 (2022) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
130
+ page_content='2, 025005 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
131
+ page_content='1088/1361-6382/ac3bda [arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
132
+ page_content='05325 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
133
+ page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
134
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
135
+ page_content=' Malik and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
136
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
137
+ page_content=' Matravers, Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
138
+ page_content=' Rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
139
+ page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
140
+ page_content=' 45 (2013), 1989-2001 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
141
+ page_content='1007/s10714-013-1573-2 [arXiv:1206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
142
+ page_content='1478 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
143
+ page_content='CO]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
144
+ page_content=' [4] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
145
+ page_content=' Kodama and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
146
+ page_content=' Sasaki, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
147
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
148
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
149
+ page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
150
+ page_content=' 78 (1984), 1-166 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
151
+ page_content='1143/PTPS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
152
+ page_content='78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
153
+ page_content='1 [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
154
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
155
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
156
+ page_content=' Dirac, “Lectures on quantum mechanics,” ISBN:9780486417134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
157
+ page_content=' [6] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
158
+ page_content=' Kuchaˇr , Journal of Mathematical Physics doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
159
+ page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
160
+ page_content='1666050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
161
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
162
+ page_content=' Boldrin and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
163
+ page_content=' Ma�lkiewicz, Class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
164
+ page_content=' Quant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
165
+ page_content=' Grav.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
166
+ page_content=' 40 (2023) no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
167
+ page_content='1, 015003 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
168
+ page_content='1088/1361-6382/aca385 [arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
169
+ page_content='06926 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
170
+ page_content=' [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
171
+ page_content=' Arnowitt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
172
+ page_content=' Deser, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
173
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
174
+ page_content=' Misner, “Dynamical Structure and Definition of Energy in General Rela- tivity,” Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
175
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
176
+ page_content=', Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
177
+ page_content=' 116, Issue 5, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
178
+ page_content=' 1322-1330, 1959 doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
179
+ page_content='1103/PhysRev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
180
+ page_content='116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
181
+ page_content='1322' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-tFAT4oBgHgl3EQfqR1A/content/2301.08646v1.pdf'}
.gitattributes CHANGED
@@ -253,3 +253,4 @@ m9AyT4oBgHgl3EQflPjP/content/2301.00450v1.pdf filter=lfs diff=lfs merge=lfs -tex
253
  hNE4T4oBgHgl3EQfrQ2w/content/2301.05207v1.pdf filter=lfs diff=lfs merge=lfs -text
254
  DdAzT4oBgHgl3EQfif0c/content/2301.01499v1.pdf filter=lfs diff=lfs merge=lfs -text
255
  k9FIT4oBgHgl3EQfriuF/content/2301.11332v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
253
  hNE4T4oBgHgl3EQfrQ2w/content/2301.05207v1.pdf filter=lfs diff=lfs merge=lfs -text
254
  DdAzT4oBgHgl3EQfif0c/content/2301.01499v1.pdf filter=lfs diff=lfs merge=lfs -text
255
  k9FIT4oBgHgl3EQfriuF/content/2301.11332v1.pdf filter=lfs diff=lfs merge=lfs -text
256
+ KdAyT4oBgHgl3EQff_ia/content/2301.00351v1.pdf filter=lfs diff=lfs merge=lfs -text
1dFLT4oBgHgl3EQfpy-5/content/tmp_files/2301.12137v1.pdf.txt ADDED
@@ -0,0 +1,2635 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.12137v1 [quant-ph] 28 Jan 2023
2
+ Unitarily inequivalent local and global Fourier transforms in multipartite
3
+ quantum systems
4
+ C. Lei and A. Vourdas∗
5
+ Department of Computer Science,
6
+ University of Bradford,
7
+ Bradford BD7 1DP, United Kingdom
8
9
10
+ Abstract. A multipartite system comprised of n subsystems, each of which is described with
11
+ ‘local variables’ in Z(d) and with a d-dimensional Hilbert space H(d), is considered. Local Fourier
12
+ transforms in each subsystem are defined and related phase space methods are discussed (displace-
13
+ ment operators, Wigner and Weyl functions, etc). A holistic view of the same system might be
14
+ more appropriate in the case of strong interactions, which uses ‘global variables’ in Z(dn) and a
15
+ dn-dimensional Hilbert space H(dn). A global Fourier transform is then defined and related phase
16
+ space methods are discussed. The local formalism is compared and contrasted with the global for-
17
+ malism. Depending on the values of d, n the local Fourier transform is unitarily inequivalent or
18
+ unitarily equivalent to the global Fourier transform. Time evolution of the system in terms of both
19
+ local and global variables, is discussed. The formalism can be useful in the general area of Fast
20
+ Fourier transforms.
21
+ I.
22
+ INTRODUCTION
23
+ Entanglement and stronger than classical correlations in multipartite systems, are fundamental concepts in
24
+ quantum mechanics (e.g., [1]). Even if the various components of the system are physically located far from
25
+ each other, strong correlations and strong interactions between them, weaken the concept of separate identity
26
+ for each component . This motivates a comparison between the formalism of a multipartite system, with a
27
+ holistic formalism of the same system that uses global quantities.
28
+ We consider a finite quantum system with variables in Z(d) where d is an odd integer, described by the
29
+ d-dimensional Hilbert space H(d) (e.g.[2, 3]). We also consider a multipartite system that consists of n of
30
+ these systems (which are possibly located far from each other). In this system the positions and momenta
31
+ take values in [Z(d)]n = Z(d) × ... × Z(d). The system is described with the dn-dimensional Hilbert space
32
+ H = H(d) ⊗ ... ⊗ H(d).
33
+ In the case of strong correlations and strong interactions between the n components we introduce a holistic
34
+ approach and regard this as one system with variables in Z(dn) and dn-dimensional Hilbert space H(dn). We
35
+ note that
36
+ • The Hilbert space H is isomorphic to the H(dn), because they both have the same dimension.
37
+ • There is a bijective map between the sets [Z(d)]n and Z(dn) given below in Eq.(35) (in fact we can have
38
+ many bijective maps between these two sets). However the [Z(d)]n as a ring is not isomorphic to the ring
39
+ Z(dn) (see Eq.(36) below).
40
+ With this in mind, we study the following:
41
+ • We define a local Fourier transform FL in the phase space [Z(d)]n ×[Z(d)]n of the system when considered
42
+ as n-component system. We also define a global Fourier transform FG in the phase space Z(dn) × Z(dn)
43
+ of the system when considered as a single system. This has been introduced briefly in a different context
44
+ in ref.[4], and here it is studied as a problem in its own right and in connection with a global phase
45
+ space formalism. We show that depending on the values of d, n the local Fourier transform is unitarily
46
+ inequivalent (unitarily equivalent) to the global Fourier transform. By that we mean that there exists no
47
+ unitary transformation U (there exists such a transformation U) so that FG = UFLU †. This is discussed
48
+ in section IV D and in proposition IV.4.
49
+
50
+ 2
51
+ • Starting from an orthonormal basis of ‘position states’, we use local and global Fourier transforms to
52
+ define local and global momentum states. Some of the local momentum states are the same as the global
53
+ momentum states as discussed in proposition IV.3. We also define local position and momentum operators,
54
+ and also global position and momentum operators. We do numerical calculations of the time evolution
55
+ for the case where the Hamiltonian is expressed in terms of local variables and also for the case where the
56
+ Hamiltonian is expressed in terms of global variables (section V B). For multipartite systems with strong
57
+ interactions between the various components, it might be more appropriate to express the Hamiltonian in
58
+ terms of the global variables.
59
+ • We define a local phase space formalism in [Z(d)]n × [Z(d)]n and a global phase space formalism in
60
+ Z(dn) × Z(dn). Displacements, Wigner and Weyl functions, etc, are defined in these two cases. Density
61
+ matrices which have only diagonal elements with respect to the position basis, have the same local and
62
+ global Wigner function (proposition V.3). The difference between local and global Wigner functions, is
63
+ contained entirely in the off-diagonal elements.
64
+ • Deviations of a density matrix ρ from the corresponding factorisable density matrix R(ρ) (defined in
65
+ Eq.(16)) are described with the matrices RL, �RL and RG, �RG. They describe classical and quantum
66
+ correlations in the multipartite system described by ρ (section V E).
67
+ • Understanding of the relationship between global and local Fourier transforms and related phase space
68
+ methods, might be useful in other areas like fast Fourier transforms. For n = 2 we show that the global
69
+ Fourier transform can be expressed in terms of many local Fourier transforms (section IV E). This is
70
+ similar to the Cooley-Tukey formalism in fast Fourier transforms[5–7]. The general area of Fast Fourier
71
+ transforms (in a quantum or even classical context) is a potential application of the present formalism.
72
+ • In the case that the local and global Fourier transform are unitarily inequivalent (Eq.(65) below), the
73
+ concept of a multipartite system (and related concepts like entanglement) is fundamentally different from
74
+ that of a single quantum system. But if they are unitarily equivalent (Eq.(64) below), the distinction
75
+ between a multipartite system and a single system is weak. Unitary equivalence means that with a change
76
+ of basis one concept is transformed to another, and consequently there is no fundamental difference
77
+ between the two. In this case, further work is needed in order to clarify the correspondence between the
78
+ two (especially of entanglement which is a concept applicable to a multipartite system but not to a single
79
+ system).
80
+ In section 2 we review briefly the phase-space formalism for systems with finite Hilbert space[2, 3]. In section
81
+ 3 we apply this to each component of a n-partite system, and this is the ‘local formalism’. In section 4 we define
82
+ the global Fourier transform and discuss for which values of d, n it is unitarily inequivalent to the local Fourier
83
+ transform. In section 5 we present the global phase space formalism and compare and contrast it with the local
84
+ formalism. In section 6, we present examples. We conclude in section 7 with a discussion of our results.
85
+ II.
86
+ BACKGROUND
87
+ We consider a quantum system (qudit) with variables in the ring Z(d) of integers modulo d where d is an
88
+ odd integer. H(d) is the d-dimensional Hilbert space describing this system. There are well known technical
89
+ differences between quantum systems with odd dimension d and even dimension d (e.g., [8–10]). In this paper
90
+ we consider systems with odd dimension d.
91
+ Let |X; j⟩ where j ∈ Z(d) be an orthonormal basis in H(d). The X in the notation is not a variable, it simply
92
+ indicates ‘position states’. The finite Fourier transform F is given by[11]
93
+ F =
94
+ 1
95
+
96
+ d
97
+
98
+ j,k
99
+ ωd(jk)|X; j⟩⟨X; k|;
100
+ ωd(α) = exp
101
+
102
+ i2πα
103
+ d
104
+
105
+ ;
106
+ α, j, k ∈ Z(d)
107
+ F 4 = 1;
108
+ FF † = 1.
109
+ (1)
110
+
111
+ 3
112
+ Its trace is[2]
113
+ d = 4m + 1 → TrF = 1;
114
+ d = 4m + 3 → TrF = i.
115
+ (2)
116
+ We act with F on position states and get the dual basis
117
+ |P; j⟩ = F|X; j⟩.
118
+ (3)
119
+ The P in the notation is not a variable, it simply indicates ‘momentum states’.
120
+ Using the relation
121
+ 1
122
+ d
123
+
124
+ k
125
+ ωd[(j + ℓ)k] = δ(j, −ℓ),
126
+ (4)
127
+ we show that F 2 is the parity operator around the origin:
128
+ F 2 = 1
129
+ d
130
+
131
+ j,k,ℓ
132
+ ωd[(j + ℓ)k]|X; j⟩⟨X; ℓ| =
133
+
134
+ j
135
+ |X; j⟩⟨X; −j|.
136
+ (5)
137
+ The phase space of this system is Z(d) × Z(d) and in it we introduce the displacement operators
138
+ Xβ =
139
+
140
+ j
141
+ ωd(−jβ)|P; j⟩⟨P; j| =
142
+
143
+ j
144
+ |X; j + β⟩⟨X; j|;
145
+ Zα =
146
+
147
+ j
148
+ |P; j + α⟩⟨P; j| =
149
+
150
+ j
151
+ ωd(αj)|X; j⟩⟨X; j| = FXαF †;
152
+ Xd = Zd = 1;
153
+ XβZα = ZαXβωd(−αβ);
154
+ α, β ∈ Z(d).
155
+ (6)
156
+ General displacement operators are the unitary operators
157
+ D(α, β) = ZαXβωd(−2−1αβ);
158
+ [D(α, β)]† = D(−α, −β);
159
+ D(α1, β1)D(α2, β2) = D(α1 + α2, β1 + β2)ωd[2−1(α1β2 − α2β1)].
160
+ (7)
161
+ The 2−1 = d+1
162
+ 2
163
+ is an integer in Z(d) with odd d, considered here. The D(α, β)ω(γ) form a representation of the
164
+ Heisenberg-Weyl group. We note that
165
+ D(α, β)|X; j⟩ = ωd(2−1αβ + αj)|X; j + β⟩;
166
+ D(α, β)|P; j⟩ = ωd(−2−1αβ − βj)|P; j + α⟩.
167
+ (8)
168
+ The
169
+ X = −i d
170
+ 2π log(Z);
171
+ P = i d
172
+ 2π log(X);
173
+ FPF † = −X.
174
+ (9)
175
+ are d × d matrices which can be interpreted as position and momentum operators. The commutator [X, P] can
176
+ be calculated (it is not i1) but it has no mathematical significance because the Heisenberg-Weyl group in this
177
+ context is discrete, and the concept of generators is non-applicable. Hamiltonians can be written as functions
178
+ of these operators as h(X, P).
179
+
180
+ 4
181
+ A.
182
+ Wigner and Weyl functions
183
+ The parity operator (around the point (γ, δ)) is defined as
184
+ P({γ, δ}) = D(γ, δ)F 2[D(γ, δ)]†;
185
+ [P({γ, δ})]2 = 1.
186
+ (10)
187
+ It is related to the displacement operators through the Fourier transform
188
+ P(γ, δ) = 1
189
+ d
190
+
191
+ α,β
192
+ D(α, β)ωd(βγ − αδ);
193
+ D(α, β) = 1
194
+ d
195
+
196
+ γ,δ
197
+ P(γ, δ)ωd(−βγ + αδ).
198
+ (11)
199
+ If ρ is a density matrix, we define the Wigner function W(γ, δ) and the Weyl function �
200
+ W(α, β) as:
201
+ W(γ, δ) = Tr[ρP(γ, δ)];
202
+
203
+ W(α, β) = Tr[ρD(α, β)].
204
+ (12)
205
+ From Eq.(11) follows immediately that they are related to each other through the Fourier transform:
206
+ W(γ, δ) = 1
207
+ d
208
+
209
+ α,β
210
+
211
+ W(α, β)ωd(βγ − αδ);
212
+
213
+ W(α, β) = 1
214
+ d
215
+
216
+ γ,δ
217
+ W(γ, δ)ωd(−βγ + αδ).
218
+ (13)
219
+ The following marginal properties of the Wigner function are well known for odd values of the dimension d
220
+ (e.g., [2]):
221
+ 1
222
+ d
223
+
224
+ γ
225
+ W(γ, δ) = ⟨X; δ|ρ|X; δ⟩;
226
+ 1
227
+ d
228
+
229
+ δ
230
+ W(γ, δ) = ⟨P; γ|ρ|P; γ⟩;
231
+ 1
232
+ d
233
+
234
+ γ,δ
235
+ W(γ, δ) = 1.
236
+ (14)
237
+ III.
238
+ LOCAL PHASE SPACE METHODS
239
+ A.
240
+ Local Fourier transforms
241
+ We consider a n-partite system comprised of n components each of which is a qudit. This system is described
242
+ with the dn-dimensional Hilbert space H = H(d) ⊗ ... ⊗ H(d). Positions and momenta take values in [Z(d)]n =
243
+ Z(d) × ... × Z(d). If ρ is the density matrix of the system, we use the notation
244
+ ˘ρr = Tri̸=rρ;
245
+ r = 0, ..., n − 1,
246
+ (15)
247
+ for the reduced density matrix describing the r-component of the system. We also define the corresponding
248
+ factorisable density matrix
249
+ R(ρ) = ˘ρ0 ⊗ ... ⊗ ˘ρn−1;
250
+ TrR(ρ) = 1,
251
+ (16)
252
+
253
+ 5
254
+ and the correlator
255
+ C(ρ) = ρ − R(ρ);
256
+ TrC(ρ) = 0.
257
+ (17)
258
+ For factorisable density matrices R(ρ) = ρ and C(ρ) = 0. Below we compare quantities for ρ with the corre-
259
+ sponding quantities for R(ρ).
260
+ We consider the basis
261
+ |X; j0, ..., jn−1⟩ = |X; j0⟩ ⊗ ... ⊗ |X; jn−1⟩;
262
+ jr ∈ Z(d).
263
+ (18)
264
+ called basis of position states. We also consider the local Fourier transforms:
265
+ FL = F ⊗ ... ⊗ F;
266
+ F 4
267
+ L = 1;
268
+ FLF †
269
+ L = 1.
270
+ (19)
271
+ The index L in the notation stands for local. Acting with FL on the basis |X; j0, ..., jn−1⟩ we get the ‘local
272
+ momentum states’:
273
+ |PL; j0, ..., jn−1⟩ = FL|X; j0, ..., jn−1⟩ =
274
+ 1
275
+
276
+ dd
277
+ n−1
278
+
279
+ r=0
280
+ � d−1
281
+
282
+ kr=0
283
+ ωd(jrkr)|X; kr⟩
284
+
285
+ = |P; j0⟩ ⊗ ... ⊗ |P; jn−1⟩.
286
+ (20)
287
+ F 2
288
+ L is a parity operator in the sense that
289
+ F 2
290
+ L|X; j0, ..., jn−1⟩ = |X; −j0, ..., −jn−1⟩.
291
+ (21)
292
+ For later use we define the matrix elements of the correlator C(ρ):
293
+ C(X; j0, ..., jn−1) = ⟨X; j0, ..., jn−1|C(ρ)|X; j0, ..., jn−1⟩
294
+ = ⟨X; j0, ..., jn−1|ρ|X; j0, ..., jn−1⟩ −
295
+ n−1
296
+
297
+ r=0
298
+ ⟨X; jr|˘ρr|X; jr⟩,
299
+ (22)
300
+ and
301
+ C(PL; j0, ..., jn−1) = ⟨PL; j0, ..., jn−1|C(ρ)|PL; j0, ..., jn−1⟩
302
+ = ⟨PL; j0, ..., jn−1|ρ|PL; j0, ..., jn−1⟩ −
303
+ n−1
304
+
305
+ r=0
306
+ ⟨P; jr|˘ρr|P; jr⟩.
307
+ (23)
308
+ Then
309
+ TrC(ρ) =
310
+
311
+ j0,...,jn−1
312
+ C(X; j0, ..., jn−1) =
313
+
314
+ j0,...,jn−1
315
+ C(X; j0, ..., jn−1) = 0.
316
+ (24)
317
+ For factorisable density matrices C(X; j0, ..., jn−1) = C(PL; j0, ..., jn−1) = 0.
318
+ B.
319
+ Displacements in [Z(d) × Z(d)]n
320
+ The phase space of the system is [Z(d) × Z(d)]n and local displacement operators in it are defined as
321
+ XL({βr}) =
322
+
323
+ jr
324
+ ωd(−β0j0 − ... − βn−1jn−1)|PL; j0, ..., jn−1⟩⟨PL; j0, ..., jn−1|
325
+ =
326
+
327
+ jr
328
+ |X; j0 + β0, ..., jn−1 + βn−1⟩⟨X; j0, ..., jn−1|
329
+ = Xβ0 ⊗ ... ⊗ Xβn−1,
330
+ (25)
331
+
332
+ 6
333
+ where r = 0, ..., n − 1, and
334
+ ZL({αr}) =
335
+
336
+ jr
337
+ |PL; j0 + α0, ..., jn−1 + αn−1⟩⟨PL; j0, ..., jn−1|
338
+ =
339
+
340
+ jr
341
+ ωd(α0j0 + ... + αn−1jn−1)|X; j0, ..., jn−1⟩⟨X; j0, ..., jn−1|
342
+ = Zα0 ⊗ ... ⊗ Zαn−1 = FLXL({αr})F †
343
+ L.
344
+ (26)
345
+ Since ZL({αr})ZL({γr}) = ZL({αr +γr}), the ZL({αr}) form a representation of [Z(d)]n as an additive group
346
+ The same is true for the XL({βr}). Also
347
+ XL({βr})ZL({αr}) = ZL({αr})XL({βr})ωd[−(α0β0 + ... + αn−1βn−1)]
348
+ [XL({βr})]d = [ZL({αr})]d = 1.
349
+ (27)
350
+ Using the notation
351
+ {αr, βr} = {a0, ..., an−1, β0, ..., βn−1},
352
+ (28)
353
+ general local displacement operators are defined as
354
+ DL({αr, βr}) = ZL({αr})XL({βr})ωd[−2−1(α0β0 + ... + αn−1βn−1)]
355
+ = D(α0, β0) ⊗ ... ⊗ D(αn−1, βn−1)
356
+ αr, βr ∈ Z(d).
357
+ (29)
358
+ The DL({αr, βr})ω({γr}) form a representation of the Heisenberg-Weyl group of displacements in the phase
359
+ space [Z(d) × Z(d)]n.
360
+ The local parity operator (around the point {γr, δr} in the phase space [Z(d) × Z(d)]n) is defined as
361
+ PL({γr, δr}) = DL({γr, δr})F 2
362
+ L[DL({γr, δr})]† = P(γ0, δ0) ⊗ ... ⊗ P(γn−1, δn−1)
363
+ [PL({γr, δr})]2 = 1.
364
+ (30)
365
+ It is related to the local displacement operators through the Fourier transform
366
+ PL({γr, δr}) = 1
367
+ dn
368
+
369
+ {αr,βr}
370
+ DL({αr, βr})ωd
371
+ �n−1
372
+
373
+ r=0
374
+ (βrγr − αrδr)
375
+
376
+ ;
377
+ DL({αr, βr}) = 1
378
+ dn
379
+
380
+ {γr,δr}
381
+ PL({γr, δr})ωd
382
+ �n−1
383
+
384
+ r=0
385
+ (−βrγr + αrδr)
386
+
387
+ .
388
+ (31)
389
+ The proof of this follows easily from Eq.(11).
390
+ C.
391
+ Local Wigner and local Weyl functions in [Z(d) × Z(d)]n
392
+ If ρ is a density matrix, we define the local Wigner function WL({γr, δr}|ρ) and the local Weyl function
393
+
394
+ WL({αr, βr}|ρ) as:
395
+ WL({γr, δr}|ρ) = Tr[ρPL({γr, δr})];
396
+
397
+ WL({αr, βr}|ρ) = Tr[ρDL({αr, βr})].
398
+ (32)
399
+ From Eq.(31) follows immediately that they are related to each other through the Fourier transform:
400
+ WL({γr, δr}|ρ) = 1
401
+ dn
402
+
403
+ {αr,βr}
404
+
405
+ WL({αr, βr}|ρ)ωd
406
+ �n−1
407
+
408
+ r=0
409
+ (βrγr − αrδr)
410
+
411
+ ;
412
+
413
+ WL({αr, βr}|ρ) = 1
414
+ dn
415
+
416
+ {γr,δr}
417
+ WL({γr, δr}|ρ)ωd
418
+ �n−1
419
+
420
+ r=0
421
+ (−βrγr + αrδr)
422
+
423
+ .
424
+ (33)
425
+
426
+ 7
427
+ IV.
428
+ GLOBAL FOURIER TARNSFORMS
429
+ A.
430
+ A bijective map between the non-isomorphic rings [Z(d)]n and Z(dn)
431
+ We consider a bijective map between [Z(d)]n and Z(dn) as follows. We first take each jr ∈ Z(d) and �j ∈ Z(dn)
432
+ in the ‘periods’
433
+
434
+ −d − 1
435
+ 2
436
+ , d − 1
437
+ 2
438
+
439
+ ;
440
+
441
+ −dn − 1
442
+ 2
443
+ , dn − 1
444
+ 2
445
+
446
+ ,
447
+ (34)
448
+ correspondingly (for odd d). We introduce the bijective map
449
+ j = (j0, ..., jd−1) ↔ �j = j0 + j1d + ... + jn−1dn−1.
450
+ (35)
451
+ We then take each jr modulo d and the �j modulo dn, and we get a bijective map from [Z(d)]n to Z(dn). Numbers
452
+ in Z(dn) will be denoted with a ‘hat’, so that it is clear whether a number belongs to Z(d) or to Z(dn).
453
+ The Hilbert space H is isomorphic to H(dn) (a dn-dimensional Hilbert space describing systems with variables
454
+ in Z(dn)). But the [Z(d)]n as a ring (with addition and multiplication componentwise), is not isomorphic to the
455
+ ring Z(dn) because addition and multiplication is different, and consequently our ‘local formalism’ is different
456
+ from our ‘global formalism’. Indeed
457
+ �j + �k ̸= �
458
+ j + k;
459
+ �j�k ̸= �
460
+ jk.
461
+ (36)
462
+ The sum is different because �j +�k in Z(dn) has the ‘carry’ rule and the r-component might be jr +kr +1 rather
463
+ than jr + kr . In contrast, there is no ‘carry’ rule in [Z(d)]n:
464
+ j + k = (j0 + k0, ..., jd−1 + kd−1) ↔ �
465
+ j + k = (j0 + k0) + (j1 + k1)d + ... + (jn−1 + kn−1)dn−1.
466
+ (37)
467
+ Also multiplication in Z(dn) is
468
+ �j�k = j0k0 + d(j1k0 + k1j0) + ... + dn−1(j0kn−1 + ... + jn−1k0).
469
+ (38)
470
+ The corresponding multiplication in [Z(d)]n is
471
+ (j0, ..., jn−1) · (k0, ..., kn−1) = (j0k0, ..., jn−1kn−1),
472
+ (39)
473
+ and with the bijective map in Eq.(35) this corresponds to
474
+
475
+ jk = j0k0 + d(j1k1) + ... + dn−1(jn−1kn−1).
476
+ (40)
477
+ It is seen that in general �j�k ̸= �
478
+ jk (but �1�k = �k).
479
+ Example IV.1. We consider the elements of Z(3) in the ‘period’ [−1, 1] and the elements of Z(9) in the ‘period’
480
+ [−4, 4]. A bijective map between [Z(3)]2 and Z(9) is as follows
481
+
482
+ (−1, −1) = �
483
+ −4;
484
+
485
+ (0, −1) = �
486
+ −3;
487
+
488
+ (1, −1) = �
489
+ −2;
490
+
491
+ (−1, 0) = �
492
+ −1;
493
+
494
+ (0, 0) = �0;
495
+
496
+ (1, 0) = �1;
497
+
498
+ (−1, 1) = �2;
499
+
500
+ (0, 1) = �3;
501
+
502
+ (1, 1) = �4.
503
+ (41)
504
+ An example of addition that confirms Eq.(36) is the following:
505
+
506
+ (1, 1) + �
507
+ (1, 1) = �4 + �4 = �
508
+ −1;
509
+
510
+ (1, 1) + (1, 1) =
511
+
512
+ (−1, −1) = �
513
+ −4.
514
+ (42)
515
+ An example of multiplication that confirms Eq.(36) is the following:
516
+
517
+ (−1, 0) · �
518
+ (0, 1) = �
519
+ −1 · �3 = �
520
+ −3;
521
+
522
+ (−1, 0) · (0, 1) = �
523
+ (0, 0) = �0.
524
+ (43)
525
+
526
+ 8
527
+ Remark IV.2. If d1, ..., dn are coprime to each other, then the Z(d1)×...×Z(dn) is isomorphic to Z(d1 ×...×dn).
528
+ We can define a bijective map
529
+ (j0, ..., jn−1) ↔ j;
530
+ jr ∈ Z(dr);
531
+ j ∈ Z(d1 × ... × dn),
532
+ (44)
533
+ such that
534
+ (j0 + k0, ..., jn−1 + kn−1) ↔ j + k;
535
+ (j0k0, ..., jn−1kn−1) ↔ jk.
536
+ (45)
537
+ This is based on the Chinese remainder theorem, and has been used by Good [12] in the context of fast Fourier
538
+ transforms (see also [5–7]). In a quantum context it has been use in [2, 13] for factorisation of a quantum
539
+ system into subsystems. Here we consider the case d1 = ... = dn and then the bijective map of Eq.(35) does
540
+ not establish an isomorphism between the ring [Z(d)]n and the ring Z(dn) (because of Eq.(36)).
541
+ B.
542
+ Dual notation
543
+ We use the following dual notation for position states, based on the bijective map in Eq.(35):
544
+ |X; j0, ..., jn−1⟩ = |X;�j⟩.
545
+ (46)
546
+ When local operators act on them we use addition and multiplication in [Z(d)]n, in connection with the phase
547
+ space [Z(d) × Z(d)]n. When global operators (defined below) act on them we use addition and multiplication
548
+ in Z(dn), in connection with the phase space Z(dn) × Z(dn).
549
+ Analogous dual notation is used for all quantities. For example, the displacement operators in Eq.(29) can
550
+ be denoted as
551
+ DL({αr, βr}) = DL(�α, �β).
552
+ (47)
553
+ In some equations both notations appear together.
554
+ C.
555
+ Global Fourier transforms
556
+ The global Fourier transform in H is defined as:
557
+ FG =
558
+ 1
559
+
560
+ dn
561
+
562
+ �j,�k
563
+ ωdn(�j�k)|X; j0, ..., jn−1⟩⟨X; k0, ..., kn−1|.
564
+ (48)
565
+ The index G in the notation stands for global. It is easily seen that
566
+ F 4
567
+ G = 1;
568
+ FGF †
569
+ G = 1;
570
+ FG ̸= FL.
571
+ (49)
572
+ Acting with FG on the basis |X; j0, ..., jn−1⟩ (which we also denote as |X;�j⟩) we get the ‘global momentum
573
+ states’:
574
+ |PG;�j⟩ = |PG; j0, ..., jn−1⟩ = FG|X;�j⟩ =
575
+ 1
576
+
577
+ dn
578
+ n−1
579
+
580
+ r=0
581
+ � d−1
582
+
583
+ kr=0
584
+ ωdn[(j0dr + .. + jn−r−1dn−1)kr]|X; kr⟩
585
+
586
+ . (50)
587
+ In the states |PG; j0, ..., jn−1⟩, the coefficients ωdn[(j0dr + .. + jn−r−1dn−1)kr] in the r-component depend on all
588
+ j0, ..., jn−1, and the term ‘global’ refers to this. Information from all components is needed, in order to determine
589
+
590
+ 9
591
+ these coefficients. In the local Fourier transform of Eq.(21), the coefficients ωd(jrkr) in the r-component depend
592
+ only on jr. We note that
593
+ ⟨PL; ℓ0, ..., ℓn−1|PG; j0, ..., jn−1⟩ = ⟨X; ℓ0, ..., ℓn−1|F †
594
+ LFG|X; j0, ..., jn−1⟩
595
+ =
596
+ 1
597
+ dn
598
+
599
+ �k
600
+ ωdn(�j�k)ωd[−(ℓ0k0 + ... + ℓd−1kn−1)].
601
+ (51)
602
+ and that
603
+ |⟨X; ℓ0, ..., ℓn−1|PL; j0, ..., jn−1⟩|2 = |⟨X; ℓ0, ..., ℓn−1|PG; j0, ..., jn−1⟩|2 = 1
604
+ dn .
605
+ (52)
606
+ Proposition IV.3. We take the elements of Z(d) and the elements of Z(dn) in the ‘periods’ of Eq.(34). Then
607
+ (1) The parity operator around the origin is the same in both the local and global formalism:
608
+ F 2
609
+ G = F 2
610
+ L =
611
+
612
+
613
+
614
+
615
+
616
+ 0 · · · 0 1
617
+ 0 · · · 1 0
618
+ ...
619
+ ...
620
+ ...
621
+ ...
622
+ 1 · · · 0 0
623
+
624
+
625
+
626
+
627
+  .
628
+ (53)
629
+ Here the matrix is in the position basis.
630
+ (2) For any n
631
+ |PG; �
632
+ −dn−1⟩ = |PL; −1, 0, ..., 0⟩;
633
+ |PG; 0⟩ = |PL; 0, 0, ..., 0⟩;
634
+ |PG; �
635
+ dn−1⟩ = |PL; 1, 0, ..., 0⟩.
636
+ (54)
637
+ (3) For n = 2 we have the stronger result
638
+ |PG; �
639
+ dλ⟩ = |PL; λ, 0⟩;
640
+ λ = −d − 1
641
+ 2
642
+ , ..., d − 1
643
+ 2
644
+ .
645
+ (55)
646
+ At least d of the global momentum states are equal to d of the local momentum states.
647
+ Proof.
648
+ (1) For Zdn Eq.(4) becomes
649
+ 1
650
+ dn
651
+
652
+ �k
653
+ ωdn[(�j + �ℓ)�k] = δ(�j + �ℓ, 0);
654
+ �j, �ℓ ∈ Zdn.
655
+ (56)
656
+ The �j + �ℓ = 0 implies jr + ℓr = 0, and we prove that
657
+ F 2
658
+ G = 1
659
+ dd
660
+
661
+ �j,�k,�ℓ
662
+ ωdn[(�j + �ℓ)�k]|j0, ..., jn−1⟩⟨ℓ0, ..., ℓn−1| =
663
+
664
+ j0,...,jn−1
665
+ |j0, ..., jn−1⟩⟨−j0, ..., −jn−1| = F 2
666
+ L.
667
+ (57)
668
+ (2) Using Eq.(51) we get
669
+ ⟨PL; 1, ..., 0|PG; �
670
+ dn−1⟩ =
671
+ 1
672
+ dn
673
+
674
+ �k
675
+ ωdn(�
676
+ dn−1�k)ωd(−k0)
677
+ =
678
+ 1
679
+ dn
680
+
681
+ �k
682
+ ωdn(dn−1k0)ωd(−k0) = 1
683
+ dn
684
+
685
+ �k
686
+ 1 = 1.
687
+ (58)
688
+ In a similar way we prove that
689
+ |PG; �
690
+ −dn−1⟩ = |PL; −1, 0, ..., 0⟩.
691
+ (59)
692
+
693
+ 10
694
+ (3) Using Eq.(51) with n = 2 and �k = k0 + dk1 we get
695
+ ⟨PL; λ, 0|PG; �
696
+ dλ⟩ =
697
+ 1
698
+ d2
699
+
700
+ �k
701
+ ωd2(�
702
+ dλ�k)ωd(−λk0) = 1
703
+ d2
704
+
705
+ �k
706
+ ωd2(�
707
+ dλ�k − dλk0)
708
+ =
709
+ 1
710
+ d2
711
+
712
+ �k
713
+ ωd2(d2λk1) = 1.
714
+ (60)
715
+ dλ takes values between − d2−1
716
+ 2
717
+ and d2−1
718
+ 2
719
+ and consequently λ takes the values in Eq.(55).
720
+ For later use we define the matrix elements of the correlator C(ρ):
721
+ C(X;�j) = ⟨X;�j|C(ρ)|X;�j⟩;
722
+ E(PG;�j) = ⟨PG;�j|C(ρ)|PG;�j⟩.
723
+ (61)
724
+ In both the ‘local formalism’ and the ‘global formalism’ the position states are the same and the momentum
725
+ states are different. Consequently the E(PG;�j) is different from the corresponding C(PL; j0, ..., jn−1).
726
+ Then
727
+ TrC(ρ) =
728
+
729
+ �j
730
+ C(X;�j) =
731
+
732
+ �j
733
+ E(PG;�j) = 0.
734
+ (62)
735
+ For factorisable density matrices C(X;�j) = E(PG;�j) = 0.
736
+ D.
737
+ Unitarily inequivalent local and global Fourier transforms
738
+ In this paper we use the following definition of unitary equivalence. Two square matrices A, B are called uni-
739
+ tarily equivalent if there exists a unitary matrix U such that A = UBU †. Unitary equivalence is an equivalence
740
+ relation, i.e., matrices which are unitarily inequivalent belong to different equivalence classes. It is known[14, 15]
741
+ that two normal d × d matrices A, B are unitarily equivalent if and only if
742
+ ||A|| = ||B||;
743
+ Tr(Aη) = Tr(Bη);
744
+ η = 1, ..., d;
745
+ ||A|| =
746
+ ��
747
+ i,j
748
+ |Aij|2.
749
+ (63)
750
+ We note that Specht’s general theorem for unitary equivalence (e.g., [15]) reduces easily to the above criteria
751
+ for the Fourier matrices which are unitary.
752
+ Some authors call the above unitary similarity, and they use the term unitary equivalence for the case where
753
+ there exist two unitary matrices U, V such that A = UBV †.
754
+ Proposition IV.4. In an n-partite system that has Hilbert space with dimension dn, the dn × dn matrices FG,
755
+ FL are unitarily equivalent in the cases
756
+ d = 4m + 1;
757
+ d = 4m + 3 and n = 4N;
758
+ d = 4m + 3 and n = 4N + 1.
759
+ (64)
760
+ The matrices FG, FL are unitarily inequivalent in the cases
761
+ d = 4m + 3 and n = 4N + 2;
762
+ d = 4m + 3 and n = 4N + 3.
763
+ (65)
764
+
765
+ 11
766
+ Proof. The matrices FG and FL are unitary and therefore normal, and we use the criterion in Eq.(63). We first
767
+ note that
768
+ ||FG|| = ||FL|| = dn.
769
+ (66)
770
+ We next compare Tr(F η
771
+ G) with Tr(F η
772
+ L) for η = 1, ..., dn. But
773
+ η = 4ǫ → F η
774
+ G = F η
775
+ L = 1;
776
+ η = 4ǫ + 1 → F η
777
+ G = FG;
778
+ F η
779
+ L = FL;
780
+ η = 4ǫ + 2 → F η
781
+ G = F η
782
+ L;
783
+ η = 4ǫ + 3 → F η
784
+ G = F †
785
+ G;
786
+ F η
787
+ L = F †
788
+ L.
789
+ (67)
790
+ Therefore if Tr(FG) = Tr(FL) the FG, FL are unitarily equivalent, and if Tr(FG) ̸= Tr(FL) the FG, FL are
791
+ unitarily inequivalent.
792
+ For an n-partite system with dimension dn we get TrFL = (TrF)n and using Eq.(2) we get
793
+ d = 4m + 1 → TrFL = 1;
794
+ d = 4m + 3 → TrFL = in.
795
+ (68)
796
+ For the TrFG if d = 4m + 1, the dn = (4m + 1)n = 4M1 + 1 and we get
797
+ d = 4m + 1 → TrFG = 1.
798
+ (69)
799
+ If d = 4m + 3 we consider two cases where n is an even number and an odd number. For even n we get
800
+ dn = (4m + 3)n = 4M2 + 1 and for odd n we find dn = (4m + 3)n = 4M3 + 3. Therefore
801
+ d = 4m + 3 and n = even → TrFG = 1;
802
+ d = 4m + 3 and n = odd → TrFG = i.
803
+ (70)
804
+ Comparison of Eq.(68) with Eqs(69),(70) proves the proposition.
805
+ In the case of Eq.(64) there exists a dn × dn unitary matrix U such that FG = UFLU †, i.e.,
806
+ ωdn(�i�j) =
807
+
808
+ �j,�ℓ
809
+ U(�i, �k)U(�j, �ℓ)ωd(ℓ0k0 + ... + ℓd−1kn−1).
810
+ (71)
811
+ So if instead of the basis |X;�j⟩ we choose the basis U|X;�j⟩ as position states, then the local Fourier transform
812
+ with respect to the new basis is the global Fourier transform with respect to the old basis FG = UFLU †. So in
813
+ this case the global Fourier transform is not a new concept. However U is in general a global transformation
814
+ (it cannot be written as U1 ⊗ ... ⊗ Un) and for this reason there is some merit in the study of the global Fourier
815
+ transform even in this case.
816
+ The case of Eq.(65) where global and local Fourier transforms are unitarily inequivalent is clearly the most
817
+ interesting one. Then the global Fourier transform is a new concept. In any case, the formalism below is the
818
+ same for both cases in Eqs(64), (65).
819
+ E.
820
+ The global Fourier transform in terms of local Fourier transforms and applications in Fast Fourier
821
+ transforms
822
+ The general idea of Fast Fourier transforms is to express the ‘large’ Fourier transform in a large Hilbert space,
823
+ as an ‘appropriate’ combination of ‘small’ Fourier transforms in smaller Hilbert spaces. Performing the ‘small’
824
+ Fourier transforms instead of the ‘large’ Fourier transform, is computationally beneficial. The general formalism
825
+ of this paper can be helpful in this direction.
826
+
827
+ 12
828
+ As an example, we express in this section the global Fourier transform in terms of many local Fourier
829
+ transforms. This is similar to the Cooley-Tukey formalism in fast Fourier transforms[5–7]. We only consider
830
+ the special case n = 2, and we do not discuss complexity issues. But we point out that understanding of the
831
+ relationship between global and local Fourier transforms and related phase space methods, can be useful in
832
+ other areas like fast Fourier transforms.
833
+ For the case n = 2 we get
834
+ ωd2(�j�k) = ωd2(j0k0)ωd(j0k1 + j1k0).
835
+ (72)
836
+ Let |s⟩ be a quantum state in H = H(d) ⊗ H(d) and s(k0, k1) = ⟨X; k0, k1|s⟩. Then
837
+ ⟨X; j0, j1|FG|s⟩ = 1
838
+ d
839
+
840
+ k0,k1
841
+ ωd2(�j�k)s(k0, k1)
842
+ = 1
843
+ d
844
+
845
+ k0
846
+ ωd(j1k0)ωd2(j0k0)
847
+
848
+ k1
849
+ ωd(j0k1)s(k0, k1)
850
+ =
851
+ 1
852
+
853
+ d
854
+
855
+ k0
856
+ ωd(j1k0) [ωd2(j0k0)�s(k0, j0)] ,
857
+ (73)
858
+ where
859
+ �s(k0, j0) =
860
+ 1
861
+
862
+ d
863
+
864
+ k1
865
+ ωd(j0k1)s(k0, k1).
866
+ (74)
867
+ In this way the Fourier transform in a d2-dimensional space reduces to two Fourier transforms in d-dimensional
868
+ spaces.
869
+ V.
870
+ GLOBAL PHASE SPACE METHODS
871
+ A.
872
+ Global displacements in Z(dn) × Z(dn)
873
+ The phase space is defined by the Fourier transform and for global Fourier transforms is Z(dn) × Z(dn).
874
+ Displacement operators in it are defined as
875
+ XG(�β) =
876
+
877
+ �j
878
+ ωdn(−�j �β)|PG;�j⟩⟨PG;�j| =
879
+
880
+ �j
881
+ |X;�j + �β⟩⟨X;�j|,
882
+ (75)
883
+ and
884
+ ZG(�α) =
885
+
886
+ �j
887
+ |PG;�j + �α⟩⟨PG;�j| =
888
+
889
+ �j
890
+ ωdn(�α�j)|X;�j⟩⟨X;�j| = FGXG(�α)F †
891
+ G.
892
+ (76)
893
+ Addition in Z(dn) is used in these two equations, in contrast to Eqs(26), (25) where we have addition in [Z(d)]n.
894
+ The XL({βr}) in Eq.(25) can also be written as
895
+ XL(�β) =
896
+
897
+ �j
898
+ |X; �
899
+ j + β⟩⟨X;�j|.
900
+ (77)
901
+ We have explained that �
902
+ j + β ̸= �j + �β, and consequently Eqs(75), (77) are an example of the difference between
903
+ the local and global formalism. Also the ZL({αr}) in Eq.(26) can also be written as
904
+ ZL(�α) =
905
+
906
+ jr
907
+ ωd(α0j0 + ... + αn−1jn−1)|X;�j⟩⟨X;�j|.
908
+ (78)
909
+
910
+ 13
911
+ Comparison of Eqs(76), (78) again shows the difference between the local and global formalism.
912
+ Since ZG(�α)ZG(�γ) = ZG(�α + �γ), the ZG(�α) form a representation of Z(dn) as an additive group (which is not
913
+ isomorphic to [Z(d)]n). The same is true for the XG(�β). Also
914
+ XG(�β)ZG(�α) = ZG(�α)XG(�β)ωdn(−�α�β);
915
+ [XG(�β)]dn = [ZG(�α)]dn = 1.
916
+ (79)
917
+ These relations should be compared and contrasted with Eq.(27) for the local formalism. Global displacement
918
+ operators are defined as
919
+ DG(�α, �β) = ZG(�α)XG(�β)ωdn(−2−1�α�β).
920
+ (80)
921
+ Here 2−1 = dn+1
922
+ 2
923
+ is an element of Z(dn). The DG(�α, �β)ωdn(�γ) form a representation of the Heisenberg-Weyl
924
+ group of displacements in the phase space Z(dn) × Z(dn). We note that
925
+ DG(�α, �β)|X;�j⟩ = ωdn(2−1�α�β + �α�j)|X;�j + �β⟩;
926
+ DG(�α, �β)|PG;�j⟩ = ωdn(−2−1�α�β − �β�j)|PG;�j + �α⟩.
927
+ (81)
928
+ Also
929
+ DG(�α, �β)|PL;�j⟩ =
930
+ 1
931
+
932
+ dn
933
+
934
+ �k
935
+ ωd(j0k0 + ... + jn−1kn−1)DG(�α, �β)|X; �k⟩
936
+ =
937
+ 1
938
+
939
+ dn
940
+
941
+ �k
942
+ ωd(j0k0 + ... + jn−1kn−1)ωdn(2−1�α�β + �α�k)|X; �k + �β⟩.
943
+ (82)
944
+ These relations should be compared and contrasted to
945
+ DL(�α, �β)|X;�j⟩ = ωd[2−1(α0β0 + ... + αn−1βn−1) + (α0j0 + ... + αn−1jn−1)]|X; �
946
+ j + β⟩;
947
+ DL(�α, �β)|PL;�j⟩ = ωd[−2−1(α0β0 + ... + αn−1βn−1) − (β0j0 + ... + βn−1jn−1)]|PL; �
948
+ j + α⟩.
949
+ (83)
950
+ Also
951
+ DL(�α, �β)|PG;�j⟩ =
952
+ 1
953
+
954
+ dn
955
+
956
+ �k
957
+ ωdn(�j�k)DL(�α, �β)|X; �k⟩
958
+ =
959
+ 1
960
+
961
+ dn
962
+
963
+ �k
964
+ ωdn(�j�k)ωd[2−1(α0β0 + ... + αn−1βn−1) + (α0k0 + ... + αn−1kn−1)]|X; �
965
+ k + β⟩.
966
+ (84)
967
+ The global parity operator (around the point (�γ, �δ) in the phase space Z(dn) × Z(dn)) is
968
+ PG(�γ, �δ) = DG(�γ, �δ)F 2
969
+ G[DG(�γ, �δ)]†;
970
+
971
+ PG(�γ, �δ)
972
+ �2
973
+ = 1.
974
+ (85)
975
+ In analogy to Eq.(11) we find that the global parity operator is related to the global displacement operators
976
+ through the Fourier transform
977
+ PG(�γ, �δ) = 1
978
+ dn
979
+
980
+ �α,�β
981
+ DG(�α, �β)ωdn(�β�γ − �α�δ);
982
+ DG(�α, �β) = 1
983
+ dn
984
+
985
+ �γ,�δ
986
+ PG(�γ, �δ)ωdn(−�β�γ + �α�δ).
987
+ (86)
988
+
989
+ 14
990
+ Example V.1. We consider the case d = 3 and n = 2. In this case the global Fourier transform is unitarily
991
+ inequivalent to the local Fourier transform. We work in the ‘periods ’ of Eq.(34).
992
+ Let |X; k0, k1⟩ be the basis of position states. The globally Fourier transformed basis is
993
+ |PG; j0, j1⟩ = 1
994
+ 3
995
+
996
+ k0,k1
997
+ ω9[j0k0 + 3(j1k0 + j0k1)]|X; k0, k1⟩.
998
+ (87)
999
+ The jr, kr take the values −1, 0, 1. The locally Fourier transformed basis is
1000
+ |PL; j0, j1⟩ = 1
1001
+ 3
1002
+
1003
+ k0,k1
1004
+ ω3(j0k0 + j1k1)|X; k0, k1⟩.
1005
+ (88)
1006
+ Then
1007
+ ⟨PL; ℓ0, ℓ1|PG; j0, j1⟩ = 1
1008
+ 9{1 + ω9(3j0 + 9j1)ω3(−ℓ1) + ω9(j0 + 3j1)ω3(−ℓ0)
1009
+ + ω9(4j0 + 12j1)ω3(−ℓ0 − ℓ1)]}.
1010
+ (89)
1011
+ We next consider the local displacement operator XL(−1, 1) which acts on the states |X; 1, 0⟩ and |PL; 1, 0⟩
1012
+ as follows:
1013
+ XL(−1, 1)|X; 1, 0⟩ = |X; 0, 1⟩,
1014
+ (90)
1015
+ and
1016
+ XL(−1, 1)|PL; 1, 0⟩ = ω3(1)|PL; 1, 0⟩.
1017
+ (91)
1018
+ XL(−1, 1) acts on the state |PG; 1, 0⟩ as follows:
1019
+ XL(−1, 1)|PG; 1, 0⟩ = XL(−1, 1)
1020
+
1021
+ j1,j0
1022
+ |X; j0, j1⟩⟨X; j0, j1|PG; 1, 0⟩
1023
+ = 1
1024
+ 3
1025
+
1026
+ j1,j0
1027
+ ω9( �
1028
+ j0 + 3j1)|X; j0 − 1, j1 + 1⟩.
1029
+ (92)
1030
+ We also consider the corresponding global displacement operator XG(
1031
+
1032
+ −1 + 3 · 1) = XG(�2) which acts on the
1033
+ states |X; 1, 0⟩ = |X;�1⟩ and |PG; 1, 0⟩ = |PG;�1⟩ as follows:
1034
+ XG(�2)|X;�1⟩ = |X;�3⟩ = |X; 0, 1⟩,
1035
+ (93)
1036
+ and
1037
+ XG(�2)|PG;�1⟩ = ω9(−�2)|PG;�1⟩.
1038
+ (94)
1039
+ XG(�5) acts on the state |PL; 1, 0⟩ as follows:
1040
+ XG(�2)|PL; 1, 0⟩ = XG(�2)
1041
+
1042
+ j1,j0
1043
+ |X; j0, j1⟩⟨X; j0, j1|PL; 1, 0⟩
1044
+ = 1
1045
+ 3XG(�2)
1046
+
1047
+ j1,j0
1048
+ |X; �
1049
+ j0 + 3j1⟩ω3(j0) = 1
1050
+ 3
1051
+
1052
+ j1,j0
1053
+ ω3(j0)|X;�2 + �
1054
+ j0 + 3j1⟩
1055
+ = 1
1056
+ 3{ω3(−1)[|X; �
1057
+ −2⟩ + |X;�1⟩ + |X;�4⟩] + [|X; �
1058
+ −1⟩ + |X;�2⟩ + |X;�5⟩] + ω3(1)[|X;�0⟩ + |X;�3⟩ + |X;�6⟩]}.(95)
1059
+ Eqs. (90), (91), (92) involve local displacements and should be compared and contrasted to Eqs. (93), (95),
1060
+ (94) correspondingly, that involve global displacements.
1061
+
1062
+ 15
1063
+ B.
1064
+ Local and global position and momentum operators and time evolution
1065
+ We define local position and local momentum operators for the r-component of the system as
1066
+ X (r)
1067
+ L
1068
+ = 1 ⊗ ... ⊗ 1 ⊗ X ⊗ 1 ⊗ ... ⊗ 1;
1069
+ r = 0, ..., n − 1;
1070
+ P(r)
1071
+ L
1072
+ = 1 ⊗ ... ⊗ 1 ⊗ P ⊗ 1 ⊗ ... ⊗ 1;
1073
+ FLPLF †
1074
+ L = −XL.
1075
+ (96)
1076
+ The X, P have been defined in Eq.(9). We can also define global position and global momentum operators as
1077
+ XG = −idn
1078
+ 2π log[ZG(�1)];
1079
+ PG = idn
1080
+ 2π log[XG(�1)];
1081
+ FGPGF †
1082
+ G = −XG.
1083
+ (97)
1084
+ They all are dn × dn matrices which can be interpreted as position and momentum operators. In a multipartite
1085
+ system with weak interaction between the various parties, it can be argued that the local variables X (r)
1086
+ L , P(r)
1087
+ L
1088
+ are
1089
+ more physical operators and the Hamiltonian should be expressed in terms of them. But in the case of strong
1090
+ interactions between the parties, the global variables XG, PG might be better for a holistic simple description
1091
+ of the physical Hamiltonian with a good approximation.
1092
+ Example V.2. We consider the case d = 3, n = 2 and the quantum state
1093
+ |s⟩ =
1094
+ 1
1095
+
1096
+ 84(|X; 1⟩ + 2|X; 0⟩ − 3|X; −1⟩) ⊗ (i|X; 1⟩ + |X; 0⟩ − 2i|X; −1⟩).
1097
+ (98)
1098
+ We also consider time evolution with the Hamiltonians
1099
+ h1 = 1
1100
+ 2[P2
1101
+ G + X 2
1102
+ G];
1103
+ h2 = 1
1104
+ 2(P2 ⊗ 1) + 1
1105
+ 2(X 2 ⊗ 1) + 1
1106
+ 2(1 ⊗ P2) + 1
1107
+ 2(1 ⊗ X 2) + X ⊗ X.
1108
+ (99)
1109
+ The first uses the global momentum and position, and the second uses the local momenta and positions. Here
1110
+ (in the position basis)
1111
+ X = |X; 1⟩⟨X; 1| − |X; −1⟩⟨X; −1|;
1112
+ P = −F †XF
1113
+ (100)
1114
+ Using both notations XG and PG are
1115
+ XG =
1116
+ 1
1117
+
1118
+ a=−1
1119
+ 1
1120
+
1121
+ b=−1
1122
+ (a + 3b)|X; a, b⟩⟨X; a, b| =
1123
+ 1
1124
+
1125
+ a=−1
1126
+ 1
1127
+
1128
+ b=−1
1129
+ (a + 3b)|X; �
1130
+ a + 3b⟩⟨X; �
1131
+ a + 3b|
1132
+ PG = −F †
1133
+ GXGFG.
1134
+ (101)
1135
+ At time t = 1 the state becomes
1136
+ exp(ith1)|s⟩ =
1137
+ 1
1138
+
1139
+ a=−1
1140
+ 1
1141
+
1142
+ b=−1
1143
+ λ1(a, b)|X; a, b⟩;
1144
+ exp(ith2)|s⟩ =
1145
+ 1
1146
+
1147
+ a=−1
1148
+ 1
1149
+
1150
+ b=−1
1151
+ λ2(a, b)|X; a, b⟩
1152
+ (102)
1153
+ where
1154
+ λ1(−1, −1) = −0.2337 − 0.3556i; λ1(−1, 0) = 0.0259 − 0.1315i; λ1(−1, 1) = 0.3254 + 0.4898i;
1155
+ λ1(0, −1) = 0.1160 + 0.0430i; λ1(0, 0) = 0.2836 − 0.0628i; λ1(0, 1) = −0.3090 + 0.1367i;
1156
+ λ1(1, −1) = 0.0671 + 0.0943i; λ1(1, 0) = −0.3539 − 0.0845i; λ1(1, 1) = 0.3014 − 0.0675i;
1157
+ (103)
1158
+ and
1159
+ λ2(−1, −1) = −0.2911 − 0.7197i; λ2(−1, 0) = −0.1491 − 0.2668i; λ2(−1, 1) = 0.1502 − 0.0831i;
1160
+ λ2(0, −1) = 0.3700 − 0.0854i; λ2(0, 0) = 0.1218 + 0.1319i; λ2(0, 1) = −0.2208 − 0.0247i;
1161
+ λ2(1, −1) = 0.0872 − 0.1268i; λ2(1, 0) = −0.0032 + 0.0910i; λ2(1, 1) = −0.0340 − 0.1243i.
1162
+ (104)
1163
+
1164
+ 16
1165
+ C.
1166
+ Global Wigner and global Weyl functions in Z(dn) × Z(dn)
1167
+ If ρ is a density matrix, we define the global Wigner function WG(�γ, �δ|ρ) and the global Weyl function
1168
+
1169
+ WG(�α, �β|ρ) as:
1170
+ WG(�γ, �δ|ρ) = Tr[ρPG(�γ, �δ)];
1171
+
1172
+ WG(�α, �β|ρ) = Tr[ρDG(�α, �β)].
1173
+ (105)
1174
+ From Eq.(86) it follows that they are related to each other through the Fourier transform:
1175
+ WG(�γ, �δ|ρ) = 1
1176
+ dn
1177
+
1178
+ �α,�β
1179
+
1180
+ WG(�α, �β|ρ)ωdn(�β�γ − �α�δ);
1181
+
1182
+ WG(�α, �β|ρ) = 1
1183
+ dn
1184
+
1185
+ �γ,�δ
1186
+ WG(�γ, �δ|ρ)ωdn(−�β�γ + �α�δ).
1187
+ (106)
1188
+ The following marginal properties of the Wigner function follow immediately from Eq.(14) (for odd values of
1189
+ the dimension d):
1190
+ 1
1191
+ dn
1192
+
1193
+ {γr}
1194
+ WL({γr, δr}|ρ) = 1
1195
+ dn
1196
+
1197
+ �γ
1198
+ WG(�γ, �δ|ρ) = ⟨X; δ0, ..., δn−1|ρ|X; δ0, ..., δn−1⟩ = ⟨X; �δ|ρ|X; �δ⟩;
1199
+ 1
1200
+ dn
1201
+
1202
+ {δr}
1203
+ WL({γr, δr}|ρ) = ⟨PL; γ0, ..., γn−1|ρ|PL; γ0, ..., γn−1⟩;
1204
+ 1
1205
+ dn
1206
+
1207
+ �δ
1208
+ WG(�γ, �δ|ρ) = ⟨PG; �γ|ρ|PG; �γ⟩;
1209
+ 1
1210
+ dn
1211
+
1212
+ {γr,δr}
1213
+ WL({γr, δr}|ρ) = 1
1214
+ dn
1215
+
1216
+ �γ,�δ
1217
+ WG(�γ, �δ|ρ) = 1.
1218
+ (107)
1219
+ We have already emphasized that in both the ‘local formalism’ and the ‘global formalism’ the position states are
1220
+ the same and the momentum states are different. Consequently ⟨PL; γ0, ..., γn−1|ρ|PL; γ0, ..., γn−1⟩ is different
1221
+ from ⟨PG; �γ|ρ|PG; �γ⟩ and the marginal properties in the second and third of these equations are different.
1222
+ D.
1223
+ The difference between the local and global Wigner functions
1224
+ We first consider states for which the local Wigner function is the same as the global Wigner function.
1225
+ Proposition V.3. We consider the following separable density matrix that contains only diagonal elements
1226
+ with respect to the basis of position states:
1227
+ σ =
1228
+
1229
+ �j
1230
+ p(�j)|X;�j⟩⟨X;�j|;
1231
+
1232
+ �j
1233
+ p(�j) = 1.
1234
+ (108)
1235
+ Here the p(�j) are probabilities. In this case the local and global Wigner functions are equal to each other, they
1236
+ are non-negative and they do not depend on �α:
1237
+ WG(�α, �β|σ) = WL({αr, βr}|σ) = p(�β).
1238
+ (109)
1239
+ Proof. For the position states
1240
+ σ0(�j) = |X;�j⟩⟨X;�j| = |X; j0, ..., jn−1⟩⟨X; j0, ..., jn−1|,
1241
+ (110)
1242
+
1243
+ 17
1244
+ we get
1245
+ WG(�α, �β|σ0(�j)) = WL({αr, βr}|σ0(�j)) = δ(�j, �β).
1246
+ (111)
1247
+ Indeed
1248
+ WG(�α, �β|σ0(�j)) = Tr
1249
+
1250
+ PG(�α, �β)|X;�j⟩⟨X;�j|
1251
+
1252
+ = Tr
1253
+
1254
+ F 2
1255
+ G[DG(�α, �β)]†|X;�j⟩⟨X;�j|DG(�α, �β)
1256
+
1257
+ = Tr
1258
+
1259
+ F 2
1260
+ G|X;�j − �β⟩⟨X;�j − �β|
1261
+
1262
+ = δ(�j, �β),
1263
+ (112)
1264
+ and also
1265
+ WL({αr, βr}|σ0(�j)) = Tr[PL({αr, βr})|X; j0, ..., jn−1⟩⟨X; j0, ..., jn−1|]
1266
+ = Tr
1267
+
1268
+ F 2
1269
+ L[DL({αr, βr})]†|X; j0, ..., jn−1⟩⟨X; j0, ..., jn−1|DL({αr, βr})
1270
+
1271
+ = Tr
1272
+
1273
+ F 2
1274
+ L|X; j0 − β0, ..., jn−1 − βn−1⟩⟨X; j0 − β0, ..., jn−1 − βn−1|
1275
+
1276
+ = δ(j0, β0)...δ(jn−1, βn−1).
1277
+ (113)
1278
+ This proves Eq.(111). Then
1279
+ WG(�α, �β|σ) =
1280
+
1281
+ �j
1282
+ p(�j)WG(�α, �β|σ0(�j)) =
1283
+
1284
+ �j
1285
+ p(�j)δ(�j, �β) = p(�β).
1286
+ (114)
1287
+ and also
1288
+ WL({αr, βr}|σ) =
1289
+
1290
+ j0,...,jn−1
1291
+ p(j0, ..., jn−1)WL({αr, βr}|σ0(�j))
1292
+ =
1293
+
1294
+ j0,...,jn−1
1295
+ p(j0, ..., jn−1)δ(j0, β0)...δ(jn−1, βn−1) = p(�β).
1296
+ (115)
1297
+ An arbitrary density matrix ρ can be written in the basis of position states, as the sum of a separable density
1298
+ matrix σ(ρ) that contains the dn diagonal elements (as in Eq.(108)), and a Hermitian matrix τ(ρ) with trace
1299
+ zero that contains the d2n − dn off-diagonal elements:
1300
+ ρ = σ(ρ) + τ(ρ);
1301
+ Tr[τ(ρ)] = 0.
1302
+ (116)
1303
+ τ(ρ) is not a density matrix but using Eqs(32), (105) we can define ‘Wigner-like’ functions for it. Then the
1304
+ Wigner function is written as a sum of two terms that correspond to the diagonal and off-diagonal part:
1305
+ WL({αr, βr}|ρ) = WL({αr, βr}|σ(ρ)) + AL({αr, βr}|τ(ρ));
1306
+ AL({αr, βr}|τ(ρ)) = Tr[τ(ρ)PL({αr, βr})];(117)
1307
+ and
1308
+ WG(�α, �β|ρ) = WG(�α, �β|σ(ρ)) + AG(�α, �β|τ(ρ));
1309
+ AG(�α, �β|τ(ρ)) = Tr[τ(ρ)PG(�α, �β)].
1310
+ (118)
1311
+ Then
1312
+ WL({αr, βr}|ρ) − WG(�α, �β|ρ) = AL({αr, βr}|τ(ρ)) − AG(�α, �β|τ(ρ)).
1313
+ (119)
1314
+ The difference between local and global Wigner functions, is related only to the off-diagonal elements of the
1315
+ density matrix (with respect to the position basis).
1316
+
1317
+ 18
1318
+ Proposition V.4. We consider the following separable density matrices
1319
+ qL =
1320
+
1321
+ �j
1322
+ p(�j)|PL;�j⟩⟨PL;�j|;
1323
+ qG =
1324
+
1325
+ �j
1326
+ p(�j)|PG;�j⟩⟨PG;�j|;
1327
+ F †
1328
+ LqLFL = F †
1329
+ GqGFG;
1330
+
1331
+ �j
1332
+ p(�j) = 1.
1333
+ (120)
1334
+ Here the p(�j) are probabilities. Then
1335
+ WG(�α, �β|qG) = WL({αr, βr}|qL) = p(�α).
1336
+ (121)
1337
+ Proof. We first consider the density matrices
1338
+ qL0(�j) = |PL;�j⟩⟨PL;�j| = |PL; j0, ..., jn−1⟩⟨PL; j0, ..., jn−1|;
1339
+ qG0(�j) = |PG;�j⟩⟨PG;�j|.
1340
+ (122)
1341
+ and prove that
1342
+ WG(�α, �β|qG0(�j)) = WL({αr, βr}|qL0(�j)) = δ(�j, �α).
1343
+ (123)
1344
+ Indeed
1345
+ WG(�α, �β|qG0(�j)) = Tr
1346
+
1347
+ PG(�α, �β)|PG;�j⟩⟨PG;�j|
1348
+
1349
+ = Tr
1350
+
1351
+ F 2
1352
+ G[DG(�α, �β)]†|PG;�j⟩⟨PG;�j|DG(�α, �β)
1353
+
1354
+ = Tr
1355
+
1356
+ F 2
1357
+ G|PG;�j − �α⟩⟨PG;�j − �α|
1358
+
1359
+ = δ(�j, �α),
1360
+ (124)
1361
+ and
1362
+ WL({αr, βr}|qL0(�j)) = Tr[PL({αr, βr})|PL; j0, ..., jn−1⟩⟨PL; j0, ..., jn−1|]
1363
+ = Tr
1364
+
1365
+ F 2
1366
+ L[DL({αr, βr})]†|PL; j0, ..., jn−1⟩⟨PL; j0, ..., jn−1|DL({αr, βr})
1367
+
1368
+ = Tr
1369
+
1370
+ F 2
1371
+ L|PL; j0 − α0, ..., jn−1 − αn−1⟩⟨PL; j0 − α0, ..., jn−1 − αn−1|
1372
+
1373
+ = δ(j0, α0)...δ(jn−1, αn−1).
1374
+ (125)
1375
+ This proves Eq.(123). Then
1376
+ WG(�α, �β|qG) =
1377
+
1378
+ �j
1379
+ p(�j)WG(�α, �β|qG0(�j)) =
1380
+
1381
+ �j
1382
+ p(�j)δ(�j, �α) = p(�α).
1383
+ (126)
1384
+ and also
1385
+ WL({αr, βr}|qL) =
1386
+
1387
+ j0,...,jn−1
1388
+ p(�j)WL({αr, βr}|qL0(�j))
1389
+ =
1390
+
1391
+ j0,...,jn−1
1392
+ p(j0, ..., jn−1)δ(j0, α0)...δ(jn−1, αn−1) = p(�α).
1393
+ (127)
1394
+ Example V.5. We consider the density matrices
1395
+ ρL = |PL;�j⟩⟨PL;�j|;
1396
+ ρG = |PG;�j⟩⟨PG;�j|;
1397
+ ρ0 = 1
1398
+ dn 1dn.
1399
+ (128)
1400
+ Then
1401
+ σ(ρL) = σ(ρG) = σ(ρ0) = ρ0 = 1
1402
+ dn 1dn;
1403
+ τ(ρL) = |PL;�j⟩⟨PL;�j| − 1
1404
+ dn 1dn;
1405
+ τ(ρG) = |PL;�j⟩⟨PL;�j| − 1
1406
+ dn 1dn;
1407
+ τ(ρ0) = 0.
1408
+ (129)
1409
+
1410
+ 19
1411
+ In this case
1412
+ WG(�α, �β|ρ0) = WL({αr, βr}|ρ0) = 1
1413
+ dn .
1414
+ (130)
1415
+ From proposition V.4 it follows that
1416
+ WG(�α, �β|ρG) = WL(�α, �β|ρL) = δ(�j, �α).
1417
+ (131)
1418
+ We next calculate numerically the WL(�α, �β|ρG), WG(�α, �β|ρL), for an example. We consider the case d = 3 and
1419
+ n = 2, and the density matrices ρL, ρG with �j = 4 (which is an element of Z(9)). Results for the WL(�α, �β|ρG),
1420
+ WG(�α, �β|ρL), given in tables I, II correspondingly.
1421
+ E.
1422
+ The RL, RG matrices: indicators of classical and quantum correlations
1423
+ In this section we compare quantities for ρ with the corresponding quantities for R(ρ) (in Eq.(16)).
1424
+ Definition V.6. If ρ is a density matrix, RL, �RL are dn × dn matrices with elements
1425
+ RL({γr, δr}|ρ) = WL({γr, δr}|ρ) − WL({γr, δr}|R(ρ));
1426
+ �RL({αr, βr}|ρ) = �
1427
+ WL({αr, βr}|ρ) − �
1428
+ WL({αr, βr}|R(ρ)).
1429
+ (132)
1430
+ Also RG, �RG are dn × dn matrices with elements
1431
+ RG((�γ, �δ|ρ) = WG(�γ, �δ|ρ) − WG(�γ, �δ|R(ρ));
1432
+ �RG(�α, �β|ρ) = �
1433
+ WG(�α, �β|ρ) − �
1434
+ WG(�α, �β|R(ρ)).
1435
+ (133)
1436
+ Proposition V.7.
1437
+ (1) For factorisable density matrices RL = �RL = RG = �RG = 0.
1438
+ (2) The RL and �RL are related through a local Fourier transform:
1439
+ RL({γr, δr}|ρ) = 1
1440
+ dn
1441
+
1442
+ {αr,βr}
1443
+ �RL({αr, βr}|ρ)ωd
1444
+ �n−1
1445
+
1446
+ r=0
1447
+ (βrγr − αrδr)
1448
+
1449
+ ;
1450
+ �RL({αr, βr}|ρ) = 1
1451
+ dn
1452
+
1453
+ {γr,δr}
1454
+ RL({γr, δr}|ρ)ωd
1455
+ �n−1
1456
+
1457
+ r=0
1458
+ (−βrγr + αrδr)
1459
+
1460
+ .
1461
+ (134)
1462
+ (3) The RG and �RG are related through a global Fourier transform:
1463
+ RG(�γ, �δ|ρ) = 1
1464
+ dn
1465
+
1466
+ �α,�β
1467
+ �RG(�α, �β|ρ)ωdn(�β�γ − �α�δ);
1468
+ �RG(�α, �β|ρ) = 1
1469
+ dn
1470
+
1471
+ �γ,�δ
1472
+ RG(�γ, �δ|ρ)ωdn(−�β�γ + �α�δ).
1473
+ (135)
1474
+
1475
+ 20
1476
+ (4) The following are marginal properties:
1477
+ 1
1478
+ dn
1479
+
1480
+ {γr}
1481
+ RL({γr, δr}|ρ) = 1
1482
+ dn
1483
+
1484
+ �γ
1485
+ RG(�γ, �δ|ρ) = C(X; δ0, ..., δn−1) = C(X; �δ);
1486
+ 1
1487
+ dn
1488
+
1489
+ {δr}
1490
+ RL({γr, δr}|ρ) = C(PL; γ0, ..., γn−1);
1491
+ 1
1492
+ dn
1493
+
1494
+ �δ
1495
+ RG(�γ, �δ|ρ) = E(PG; �γ);
1496
+ 1
1497
+ dn
1498
+
1499
+ {γr,δr}
1500
+ RL({γr, δr}|ρ) = 1
1501
+ dn
1502
+
1503
+ �γ,�δ
1504
+ RG(�γ, �δ|ρ) = 0.
1505
+ (136)
1506
+ Proof.
1507
+ (1) For factorisable density matrices R(ρ) = ρ and then RL = �RL = RG = �RG = 0.
1508
+ (2) We prove this using Eq.(31) with both ρ and R(ρ).
1509
+ (3) We prove this using Eq.(78) with both ρ and R(ρ).
1510
+ (4) We prove this using Eq.(107) with both ρ and R(ρ).
1511
+ The matrices Rρ and �Rρ indicate the existence of both classical and quantum correlations.
1512
+ VI.
1513
+ EXAMPLES
1514
+ In the examples below we take d = 3 and n = 2. In this case the global Fourier transform is unitarily
1515
+ inequivalent to the local Fourier transform. We work in the ‘periods ’ of Eq.(34).
1516
+ We consider the density matrix
1517
+ ρ = |s⟩⟨s|;
1518
+ |s⟩ =
1519
+ 1
1520
+
1521
+ 3|X; 0, 1⟩ + 1
1522
+ 2|X; 1, −1⟩ +
1523
+
1524
+ 5
1525
+ 12|X; −1, 0⟩.
1526
+ (137)
1527
+ The state described by ρ is entangled. In this case the reduced density matrices are
1528
+ ˘ρ0 = 1
1529
+ 3|X; 0⟩⟨X; 0| + 1
1530
+ 4|X; 1⟩⟨X; 1| + 5
1531
+ 12|X; −1⟩⟨X; −1|;
1532
+ ˘ρ1 = 5
1533
+ 12|X; 0⟩⟨X; 0| + 1
1534
+ 3|X; 1⟩⟨X; 1| + 1
1535
+ 4|X; −1⟩⟨X; −1|.
1536
+ (138)
1537
+ In tables III,IV,V and VI we present the local Wigner function WL(γ0, γ1; δ0, δ1), the local Weyl function
1538
+
1539
+ WL(α0, α1; β0; β1), and the matrices RL(γ0, γ1; δ0, δ1) and �RL(α0, α1; β0; β1) for the density matrix ρ in Eq.(137).
1540
+ The correlations in Eqs.(22),(23) are
1541
+ Cρ(X; δ0, δ1) =
1542
+
1543
+
1544
+ −0.1042
1545
+ 0.2431
1546
+ −0.1389
1547
+ −0.0833 −0.1389
1548
+ 0.2222
1549
+ 0.1875
1550
+ −0.1042 −0.0833
1551
+
1552
+  ;
1553
+ Cρ(PL; γ0, γ1) =
1554
+
1555
+
1556
+ −0.1093 −0.1093
1557
+ 0.2187
1558
+ −0.1093
1559
+ 0.2187
1560
+ −0.1093
1561
+ 0.2187
1562
+ −0.1093 −0.1093
1563
+
1564
+  .
1565
+ (139)
1566
+ We easily confirm that Eqs(107) hold for the local Wigner and Weyl function.
1567
+ For the global formalism in Z(9) we rewrite ρ as
1568
+ ρ = |s⟩⟨s|;
1569
+ |s⟩ =
1570
+ 1
1571
+
1572
+ 3|X;�3⟩ + 1
1573
+ 2|X; �
1574
+ −2⟩ +
1575
+
1576
+ 5
1577
+ 12|X; �
1578
+ −1⟩.
1579
+ (140)
1580
+
1581
+ 21
1582
+ In tables VII,VIII, IX and X we present the global Wigner function WG(�γ, �δ|ρ), the global Weyl function
1583
+
1584
+ WG(�α, �β|ρ) and the matrices RG(�γ, �δ) and �
1585
+ RG(�α, �β) for the density matrix ρ in Eq.(137).
1586
+ The correlations in Eq.(61) are
1587
+ Cρ(X; �δ) = Cρ(X; δ0, δ1);
1588
+ Eρ(PG; �γ) =
1589
+ �−0.0419 −0.1093 0.1250 −0.0832 0.2187 −0.0832 0.1250 −0.1093 −0.0419�T . (141)
1590
+ We easily confirm that Eqs(107) hold for the global Wigner and Weyl function.
1591
+ In general there is no simple relation that links the local with the global quantities. We see this by comparing
1592
+ the expectation values of the local observables X ⊗ 1, 1 ⊗ X, X ⊗ X, P ⊗ 1, 1 ⊗ P, P ⊗ P for the density
1593
+ matrix ρ in Eq.(137), with the expectation values of the global observables XG, PG for the same density matrix
1594
+ (written in the ‘global language’ in Eq.(140)):
1595
+ Tr[ρ(X ⊗ 1)] = −0.1667;
1596
+ Tr[ρ(1 ⊗ X)] = 0.0833;
1597
+ Tr[ρ(X ⊗ X)] = −0.25;
1598
+ Tr(ρXG) = 0.0833
1599
+ Tr[ρ(P ⊗ 1)] = 0;
1600
+ Tr[ρ(1 ⊗ P)] = 0;
1601
+ Tr[ρ(P ⊗ P)] = −0.6561;
1602
+ Tr(ρPG) = 0.
1603
+ (142)
1604
+ The X, P, XG, PG, have been given in Eqs(100), (101).
1605
+ The results for the local observables are different from the global observables. For strongly correlated systems
1606
+ global quantities might be physically more relevant.
1607
+ We note that an observable can be written in both the local and global formalism (using the map in Eq.(35)).
1608
+ For example, for the above system we consider the observable (Hermitian operator)
1609
+ O = a|X; 0, 1⟩⟨X; 0, 1| + b|X; 1, −1⟩⟨X; 1, −1| + c|X; −1, 0⟩⟨X; −1, 0|
1610
+ + d|X; 0, 1⟩⟨X; 1, −1| + d∗|X; 1, −1⟩⟨X; 0, 1|;
1611
+ a, b, c ∈ R;
1612
+ d ∈ C,
1613
+ (143)
1614
+ which can also be written as
1615
+ O = a|X;�3⟩⟨X;�3| + b|X; �
1616
+ −2⟩⟨X; �
1617
+ −2| + c|X; �
1618
+ −1⟩⟨X; �
1619
+ −1|
1620
+ + d|X;�3⟩⟨X; �
1621
+ −2| + d∗|X; �
1622
+ −2⟩⟨X;�3|.
1623
+ (144)
1624
+ Important physical quantities like the position can be defined locally like X ⊗ 1, 1 ⊗ X, X ⊗ X, or globally as
1625
+ XG (defined in Eq.(97)). The same is true for local and global momenta. For strongly correlated systems the
1626
+ identity of each component becomes weak, and global quantities might be physically more appropriate for the
1627
+ description of these systems.
1628
+ VII.
1629
+ DISCUSSION
1630
+ In this paper we introduced local and global Fourier transforms and related phase space methods for multi-
1631
+ partite systems. The multipartite system consists of n components, each of which is described with variables
1632
+ in Z(d) and with a d-dimensional Hilbert space H(d). In the global formalism we take a holistic view of the
1633
+ system and describe it with variables in [Z(dn)] and the dn-dimensional Hilbert space H. Even if the various
1634
+ components of the system are located far from each other, in the case of strong interactions and strong correla-
1635
+ tions between them they might loose their individual identity. In this case a holistic approach that uses global
1636
+ quantities, might be more appropriate.
1637
+ In the local formalism the phase space is [Z(d) × Z(d)]n, and in the global formalism [Z(dn)] × [Z(dn)]. We
1638
+ have explained that although the map in Eq.(35) is bijective, the ring [Z(d)]n is not isomorphic to the ring
1639
+ [Z(dn)] (because of Eq.(36)). The heart of the formalism is the local and global Fourier transforms. We have
1640
+ shown that for some values of d, n they are unitarily inequivalent to each other (proposition IV.4).
1641
+ We have compared and contrasted the local phase space formalism with the global phase space formalism.
1642
+ Examples of this are:
1643
+
1644
+ 22
1645
+ • Some of the local momentum states are the same as the global momentum states (proposition IV.3).
1646
+ • Density matrices which have only diagonal elements with respect to the position basis, have the same local
1647
+ and global Wigner function (proposition V.3). The difference between local and global Wigner functions,
1648
+ is contained entirely in the off-diagonal elements.
1649
+ • We have calculated the time evolution in terms of both local variables and also global variables (section
1650
+ V B)
1651
+ • Classical and quantum correlations have been described in the local formalism with the matrices RL, �RL
1652
+ and in the global formalism with the matrices RG, �RG.
1653
+ The formalism could be used in the general area of Fast Fourier transforms (in a quantum or even classical
1654
+ context). For example, a link between the present formalism (in some special cases) and the Cooley-Tukey
1655
+ formalism has been discussed in section IV E.
1656
+ The work is a contribution to the various approaches for multipartite systems. Unitary equivalence between
1657
+ the local and global Fourier transform (Eq.(64)), implies that the distinction between the concept of a multi-
1658
+ partite system and that of a single system is weak. Unitary inequivalence (Eq.(65) ) implies that the concept
1659
+ of a multipartite system is fundamentally different from that of a single quantum system.
1660
+ Conflict of interest and data availability statement
1661
+ We have no conflicts of interest to disclose.
1662
+ No data were used in this paper, and therefore data availability is not applicable.
1663
+ References
1664
+ [1] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, ‘Quantum entanglement’, Rev. Mod. Phys. 81, 865 (2009)
1665
+ [2] A. Vourdas, ‘Finite and profinite quantum systems’ (Springer, Berlin, 2017)
1666
+ [3] T. Durt, B.G. Englert, I. Bengtsson, K. Zyczkowski, ‘On mutually unbiased bases’, Int. J. Quantum Comput. 8, 535
1667
+ (2010)
1668
+ [4] A. Vourdas, ‘Multipartite quantum systems: an approach based on Markov matrices and the Gini index’, J. Phys
1669
+ A54, 185201 (2021)
1670
+ [5] J.H. McClellan, C.M. Rader, ‘Number theory in digital signal processing’ (Prentice Hall, New Jersey, 1979)
1671
+ [6] R.E. Blahut ‘Fast algorithms for digital signal processing’ Addison-Wesley, Reading Mass, 1985)
1672
+ [7] D.F. Elliott, K.R. Rao, ‘Fast transforms’ (Academic Press, London, 1982)
1673
+ [8] M. Horibe, A. Takami, T. Hashimoto, A. Hayashi, ‘Existence of the Wigner function with correct marginal distri-
1674
+ butions along tilted lines on a lattice’, Phys. Rev. A65, 032105 (2002)
1675
+ [9] T. Durt, ‘About mutually unbiased bases in even and odd prime power dimensions’, J. Phys. A38, 5267 (2005)
1676
+ [10] J. Zak, ‘Doubling feature of the Wigner function: finite phase space’, J. Phys. A44, 345305 (2011)
1677
+ [11] A. Terras ‘Fourier analysis on finite groups and applications (Cambridge Univ. Press, Cambridge, 1999)
1678
+ [12] I.J. Good, ‘The relationship between two fast Fourier transforms’, IEEE Transactions on computers C-20, 310 (1971)
1679
+ [13] A. Vourdas, ‘Factorisation in finite quantum systems’, J. Phys. A36, 5645 (2003)
1680
+ [14] T.G. Gerasimova, ‘Unitary similarity to a normal matrix’, Linear Algebra Appl. 436, 3777 (2012)
1681
+ [15] H. Shapiro, ‘A survey of canonical forms and invariants for unitary similarity’, Linear Algebra Appl. 147, 101 (1991)
1682
+
1683
+ 23
1684
+ {β0,β1}
1685
+ {−1, −1} {0, −1}
1686
+ {1, −1}
1687
+ {−1, 0}
1688
+ {0, 0}
1689
+ {1, 0}
1690
+ {−1, 1}
1691
+ {0, 1}
1692
+ {1, 1}
1693
+ {−1, −1}
1694
+ 0
1695
+ 0
1696
+ 0
1697
+ 0
1698
+ 0
1699
+ 0
1700
+ 0
1701
+ 0
1702
+ 0
1703
+ {0, −1}
1704
+ 0
1705
+ 0
1706
+ 0
1707
+ 0
1708
+ 0
1709
+ 0
1710
+ 0
1711
+ 0
1712
+ 0
1713
+ {1, −1}
1714
+ 0
1715
+ 0
1716
+ 0
1717
+ 0
1718
+ 0
1719
+ 0
1720
+ 0
1721
+ 0
1722
+ 0
1723
+ {−1, 0}
1724
+ 0
1725
+ 0
1726
+ 0
1727
+ 0
1728
+ 0
1729
+ 0
1730
+ 0
1731
+ 0
1732
+ 0
1733
+ {α0,α1}
1734
+ {0, 0}
1735
+ 0
1736
+ 0
1737
+ 0
1738
+ 0
1739
+ 0
1740
+ 0
1741
+ 0
1742
+ 0
1743
+ 0
1744
+ {1, 0}
1745
+ 0
1746
+ 0
1747
+ 0
1748
+ 0
1749
+ 0
1750
+ 0
1751
+ 0
1752
+ 0
1753
+ 0
1754
+ {−1, 1}
1755
+ 0.4491
1756
+ −0.2931
1757
+ 0.4491
1758
+ 0.4491
1759
+ −0.2931
1760
+ 0.4491
1761
+ 0.4491
1762
+ −0.2931
1763
+ 0.4491
1764
+ {0, 1}
1765
+ −0.2931
1766
+ 0.844
1767
+ −0.2931 −0.2931
1768
+ 0.844
1769
+ −0.2931 −0.2931
1770
+ 0.844
1771
+ −0.2931
1772
+ {1, 1}
1773
+ 0.844
1774
+ 0.4491
1775
+ 0.844
1776
+ 0.844
1777
+ 0.4491
1778
+ 0.844
1779
+ 0.844
1780
+ 0.4491
1781
+ 0.844
1782
+ TABLE I: The local Wigner function WL({α0, α1; β0, β1}|ρG) for the density matrix ρG in Eq.(128) with �j = 4 and
1783
+ d = 3, n = 2.
1784
+ �β = (β0, β1)
1785
+
1786
+ −4 = (−1, −1) �
1787
+ −3 = (0, −1) �
1788
+ −2 = (1, −1) �
1789
+ −1 = (1, 0)
1790
+ �0 = (0, 0)
1791
+ �1 = (1, 0) �2 = (−1, 1) �3 = (0, 1) �4 = (1, 1)
1792
+
1793
+ −4 = (−1, −1)
1794
+ 0
1795
+ 0
1796
+ 0
1797
+ 0
1798
+ 0
1799
+ 0
1800
+ 0
1801
+ 0
1802
+ 0
1803
+
1804
+ −3 = (0, −1)
1805
+ 0
1806
+ 0
1807
+ 0
1808
+ 0
1809
+ 0
1810
+ 0
1811
+ 0
1812
+ 0
1813
+ 0
1814
+
1815
+ −2 = (1, −1)
1816
+ −0.2931
1817
+ 0.844
1818
+ −0.2931
1819
+ −0.2931
1820
+ 0.844
1821
+ −0.2931
1822
+ −0.2931
1823
+ 0.844
1824
+ −0.2931
1825
+
1826
+ −1 = (−1, 0)
1827
+ 0
1828
+ 0
1829
+ 0
1830
+ 0
1831
+ 0
1832
+ 0
1833
+ 0
1834
+ 0
1835
+ 0
1836
+ �α = (α0, α1)
1837
+ �0 = (0, 0)
1838
+ 0
1839
+ 0
1840
+ 0
1841
+ 0
1842
+ �0
1843
+ 0
1844
+ 0
1845
+ 0
1846
+ 0
1847
+ �1 = (1, 0)
1848
+ 0.4491
1849
+ −0.2931
1850
+ 0.4491
1851
+ 0.4491
1852
+ −0.2931
1853
+ 0.4491
1854
+ 0.4491
1855
+ −0.2931
1856
+ 0.4491
1857
+ �2 = (−1, 1)
1858
+ 0
1859
+ 0
1860
+ 0
1861
+ 0
1862
+ 0
1863
+ 0
1864
+ 0
1865
+ 0
1866
+ 0
1867
+ �3 = (0, 1)
1868
+ 0
1869
+ 0
1870
+ 0
1871
+ 0
1872
+ 0
1873
+ 0
1874
+ 0
1875
+ 0
1876
+ 0
1877
+ �4 = (1, 1)
1878
+ 0.844
1879
+ 0.4491
1880
+ 0.844
1881
+ 0.844
1882
+ 0.4491
1883
+ 0.844
1884
+ 0.844
1885
+ 0.4491
1886
+ 0.844
1887
+ TABLE II: The global Wigner function WG(�α, �β|ρL) for the density matrix ρL in Eq.(128), with �j = 4 and d = 3, n = 2.
1888
+ {δ0,δ1}
1889
+ {−1, −1} {0, −1} {1, −1} {−1, 0} {0, 0} {1, 0} {−1, 1} {0, 1} {1, 1}
1890
+ {−1, −1}
1891
+ 0
1892
+ 0
1893
+ −0.1227
1894
+ 0.128
1895
+ 0
1896
+ 0
1897
+ 0
1898
+ 0.0106
1899
+ 0
1900
+ {0, −1}
1901
+ 0
1902
+ 0
1903
+ −0.1227
1904
+ 0.128
1905
+ 0
1906
+ 0
1907
+ 0
1908
+ 0.0106
1909
+ 0
1910
+ {1, −1}
1911
+ 0
1912
+ 0
1913
+ 0.9954
1914
+ 0.994
1915
+ 0
1916
+ 0
1917
+ 0
1918
+ 0.9788
1919
+ 0
1920
+ {−1, 0}
1921
+ 0
1922
+ 0
1923
+ −0.1227
1924
+ 0.128
1925
+ 0
1926
+ 0
1927
+ 0
1928
+ 0.0106
1929
+ 0
1930
+ {γ0,γ1}
1931
+ {0, 0}
1932
+ 0
1933
+ 0
1934
+ 0.9954
1935
+ 0.994
1936
+ 0
1937
+ 0
1938
+ 0
1939
+ 0.9788
1940
+ 0
1941
+ {1, 0}
1942
+ 0
1943
+ 0
1944
+ −0.1227
1945
+ 0.128
1946
+ 0
1947
+ 0
1948
+ 0
1949
+ 0.0106
1950
+ 0
1951
+ {−1, 1}
1952
+ 0
1953
+ 0
1954
+ 0.9954
1955
+ 0.994
1956
+ 0
1957
+ 0
1958
+ 0
1959
+ 0.9788
1960
+ 0
1961
+ {0, 1}
1962
+ 0
1963
+ 0
1964
+ −0.1227
1965
+ 0.128
1966
+ 0
1967
+ 0
1968
+ 0
1969
+ 0.0106
1970
+ 0
1971
+ {1, 1}
1972
+ 0
1973
+ 0
1974
+ −0.1227
1975
+ 0.128
1976
+ 0
1977
+ 0
1978
+ 0
1979
+ 0.0106
1980
+ 0
1981
+ TABLE III: The local Wigner function WL({γ0, γ1; δ0, δ1}|ρ) for the density matrix ρ in Eq.(137).
1982
+
1983
+ 24
1984
+ {β0,β1}
1985
+ {−1, −1}
1986
+ {0, −1} {1, −1} {−1, 0}
1987
+ {0, 0}
1988
+ {1, 0} {−1, 1} {0, 1}
1989
+ {1, 1}
1990
+ {−1, −1}
1991
+ 0.067 − 0.0295i
1992
+ 0
1993
+ 0
1994
+ 0
1995
+ −0.125 + 0.0722i
1996
+ 0
1997
+ 0
1998
+ 0
1999
+ 0.067 − 0.0295i
2000
+ {0, −1}
2001
+ −0.059 + 0.0432i
2002
+ 0
2003
+ 0
2004
+ 0
2005
+ 0.125 − 0.0722i
2006
+ 0
2007
+ 0
2008
+ 0
2009
+ −0.059 + 0.0432i
2010
+ {1, −1}
2011
+ −0.4921 − 0.8523i
2012
+ 0
2013
+ 0
2014
+ 0
2015
+ −0.5 − 0.866i
2016
+ 0
2017
+ 0
2018
+ 0
2019
+ −0.4921 − 0.8523i
2020
+ {−1, 0}
2021
+ −0.0079 − 0.0727i
2022
+ 0
2023
+ 0
2024
+ 0
2025
+ 0.1443i
2026
+ 0
2027
+ 0
2028
+ 0
2029
+ −0.0079 − 0.0727i
2030
+ {α0,α1}
2031
+ {0, 0}
2032
+ 0.9841
2033
+ 0
2034
+ 0
2035
+ 0
2036
+ 1
2037
+ 0
2038
+ 0
2039
+ 0
2040
+ 0.9841
2041
+ {1, 0}
2042
+ −0.0079 + 0.0727i
2043
+ 0
2044
+ 0
2045
+ 0
2046
+ −0.1443i
2047
+ 0
2048
+ 0
2049
+ 0
2050
+ −0.0079 + 0.0727i
2051
+ {−1, 1}
2052
+ −0.4921 + 0.8523i
2053
+ 0
2054
+ 0
2055
+ 0
2056
+ −0.5 + 0.866i
2057
+ 0
2058
+ 0
2059
+ 0
2060
+ −0.4921 + 0.8523i
2061
+ {0, 1}
2062
+ −0.059 − 0.0432i
2063
+ 0
2064
+ 0
2065
+ 0
2066
+ 0.125 + 0.0722i
2067
+ 0
2068
+ 0
2069
+ 0
2070
+ −0.059 − 0.0432i
2071
+ {1, 1}
2072
+ 0.067 + 0.0295i
2073
+ 0
2074
+ 0
2075
+ 0
2076
+ −0.125 − 0.0722i
2077
+ 0
2078
+ 0
2079
+ 0
2080
+ 0.067 + 0.0295i
2081
+ TABLE IV: The local Weyl function �
2082
+ WL({α0, α1; β0, β1}|ρ) for the density matrix ρ in Eq.(137)
2083
+ {δ0,δ1}
2084
+ {−1, −1} {0, −1}
2085
+ {1, −1}
2086
+ {−1, 0}
2087
+ {0, 0}
2088
+ {1, 0}
2089
+ {−1, 1}
2090
+ {0, 1}
2091
+ {1, 1}
2092
+ {−1, −1} −0.1042 −0.0833 −0.1852 −0.0456 −0.1389 −0.1042 −0.1389 −0.1005 −0.0833
2093
+ {0, −1}
2094
+ −0.1042 −0.0833 −0.1852 −0.0456 −0.1389 −0.1042 −0.1389 −0.1005 −0.0833
2095
+ {1, −1}
2096
+ −0.1042 −0.0833
2097
+ 0.9329
2098
+ 0.8204
2099
+ −0.1389 −0.1042 −0.1389
2100
+ 0.8677
2101
+ −0.0833
2102
+ {−1, 0}
2103
+ −0.1042 −0.0833 −0.1852 −0.0456 −0.1389 −0.1042 −0.1389 −0.1005 −0.0833
2104
+ {γ0,γ1}
2105
+ {0, 0}
2106
+ −0.1042 −0.0833
2107
+ 0.9329
2108
+ 0.8204
2109
+ −0.1389 −0.1042 −0.1389
2110
+ 0.8677
2111
+ −0.0833
2112
+ {1, 0}
2113
+ −0.1042 −0.0833 −0.1852 −0.0456 −0.1389 −0.1042 −0.1389 −0.1005 −0.0833
2114
+ {−1, 1}
2115
+ −0.1042 −0.0833
2116
+ 0.9329
2117
+ 0.8204
2118
+ −0.1389 −0.1042 −0.1389
2119
+ 0.8677
2120
+ −0.0833
2121
+ {0, 1}
2122
+ −0.1042 −0.0833 −0.1852 −0.0456 −0.1389 −0.1042 −0.1389 −0.1005 −0.0833
2123
+ {1, 1}
2124
+ −0.1042 −0.0833 −0.1852 −0.0456 −0.1389 −0.1042 −0.1389 −0.1005 −0.0833
2125
+ TABLE V: The matrix RL({γ0, γ1; δ0, δ1}|ρ) for the density matrix ρ in Eq.(137).
2126
+ {β0,β1}
2127
+ {−1, −1}
2128
+ {0, −1} {1, −1} {−1, 0}
2129
+ {0, 0}
2130
+ {1, 0} {−1, 1} {0, 1}
2131
+ {1, 1}
2132
+ {−1, −1}
2133
+ 0.067 − 0.0295i
2134
+ 0
2135
+ 0
2136
+ 0
2137
+ −0.1354 + 0.0541i
2138
+ 0
2139
+ 0
2140
+ 0
2141
+ 0.067 − 0.0295i
2142
+ {0, −1}
2143
+ −0.059 + 0.0432i
2144
+ 0
2145
+ 0
2146
+ 0
2147
+ 0
2148
+ 0
2149
+ 0
2150
+ 0
2151
+ −0.059 + 0.0432i
2152
+ {1, −1}
2153
+ −0.4921 − 0.8523i
2154
+ 0
2155
+ 0
2156
+ 0
2157
+ −0.4896 − 0.848i
2158
+ 0
2159
+ 0
2160
+ 0
2161
+ −0.4921 − 0.8523i
2162
+ {−1, 0}
2163
+ −0.0079 − 0.0727i
2164
+ 0
2165
+ 0
2166
+ 0
2167
+ 0
2168
+ 0
2169
+ 0
2170
+ 0
2171
+ −0.0079 − 0.0727i
2172
+ {α0,α1}
2173
+ {0, 0}
2174
+ 0.9841
2175
+ 0
2176
+ 0
2177
+ 0
2178
+ 0
2179
+ 0
2180
+ 0
2181
+ 0
2182
+ 0.9841
2183
+ {1, 0}
2184
+ −0.0079 + 0.0727i
2185
+ 0
2186
+ 0
2187
+ 0
2188
+ 0
2189
+ 0
2190
+ 0
2191
+ 0
2192
+ −0.0079 + 0.0727i
2193
+ {−1, 1}
2194
+ −0.4921 + 0.8523i
2195
+ 0
2196
+ 0
2197
+ 0
2198
+ −0.4896 + 0.848i
2199
+ 0
2200
+ 0
2201
+ 0
2202
+ −0.4921 + 0.8523i
2203
+ {0, 1}
2204
+ −0.059 − 0.0432i
2205
+ 0
2206
+ 0
2207
+ 0
2208
+ 0
2209
+ 0
2210
+ 0
2211
+ 0
2212
+ −0.059 − 0.0432i
2213
+ {1, 1}
2214
+ 0.067 + 0.0295i
2215
+ 0
2216
+ 0
2217
+ 0
2218
+ −0.1354 − 0.0541i
2219
+ 0
2220
+ 0
2221
+ 0
2222
+ 0.067 + 0.0295i
2223
+ TABLE VI: The matrix �
2224
+ RL({α0, α1; β0, β1}|ρ) for the density matrix ρ in Eq.(137).
2225
+ �δ = (δ0, δ1)
2226
+
2227
+ −4 = (−1, −1) �
2228
+ −3 = (0, −1) �
2229
+ −2 = (1, −1) �
2230
+ −1 = (1, 0)
2231
+ �0 = (0, 0)
2232
+ �1 = (1, 0) �2 = (−1, 1) �3 = (0, 1) �4 = (1, 1)
2233
+
2234
+ −4 = (−1, −1)
2235
+ 0.1003
2236
+ 0
2237
+ 0.25
2238
+ 0.4167
2239
+ 0
2240
+ 0.1294
2241
+ 0
2242
+ −0.2732
2243
+ 0
2244
+
2245
+ −3 = (0, −1)
2246
+ −0.2887
2247
+ 0
2248
+ 0.25
2249
+ 0.4167
2250
+ 0
2251
+ −0.3727
2252
+ 0
2253
+ 0.0106
2254
+ 0
2255
+
2256
+ −2 = (1, −1)
2257
+ 0.4423
2258
+ 0
2259
+ 0.25
2260
+ 0.4167
2261
+ 0
2262
+ 0.571
2263
+ 0
2264
+ 0.4454
2265
+ 0
2266
+
2267
+ −1 = (−1, 0)
2268
+ −0.5425
2269
+ 0
2270
+ 0.25
2271
+ 0.4167
2272
+ 0
2273
+ −0.7004
2274
+ 0
2275
+ 0.8278
2276
+ 0
2277
+ �γ = (γ0, γ1)
2278
+ �0 = (0, 0)
2279
+ 0.5774
2280
+ 0
2281
+ 0.25
2282
+ 0.4167
2283
+ 0
2284
+ 0.7454
2285
+ 0
2286
+ 0.9788
2287
+ 0
2288
+ �1 = (1, 0)
2289
+ −0.5425
2290
+ 0
2291
+ 0.25
2292
+ 0.4167
2293
+ 0
2294
+ −0.7004
2295
+ 0
2296
+ 0.8278
2297
+ 0
2298
+ �2 = (−1, 1)
2299
+ 0.4423
2300
+ 0
2301
+ 0.25
2302
+ 0.4167
2303
+ 0
2304
+ 0.571
2305
+ 0
2306
+ 0.4454
2307
+ 0
2308
+ �3 = (0, 1)
2309
+ −0.2887
2310
+ 0
2311
+ 0.25
2312
+ 0.4167
2313
+ 0
2314
+ −0.3727
2315
+ 0
2316
+ 0.0106
2317
+ 0
2318
+ �4 = (1, 1)
2319
+ 0.1003
2320
+ 0
2321
+ 0.25
2322
+ 0.4167
2323
+ 0
2324
+ 0.1294
2325
+ 0
2326
+ −0.2732
2327
+ 0
2328
+ TABLE VII: The global Wigner function WG(�γ, �δ|ρ) for the density matrix ρ in Eq.(137).
2329
+
2330
+ 25
2331
+ �β = (β0, β1)
2332
+
2333
+ −4 = (−1, −1)
2334
+
2335
+ −3 = (0, −1) �
2336
+ −2 = (1, −1)
2337
+
2338
+ −1 = (1, 0)
2339
+ �0 = (0, 0)
2340
+ �1 = (1, 0)
2341
+ �2 = (−1, 1) �3 = (0, 1)
2342
+ �4 = (1, 1)
2343
+
2344
+ −4 = (−1, −1) −0.3001 − 0.4118i
2345
+ 0
2346
+ 0
2347
+ −0.1614 − 0.2795i −0.3667 − 0.3069i −0.1614 − 0.2795i
2348
+ 0
2349
+ 0
2350
+ −0.3001 − 0.4118i
2351
+
2352
+ −3 = (0, −1)
2353
+ −0.3307 − 0.0727i
2354
+ 0
2355
+ 0
2356
+ 0.3227
2357
+ 0.1443i
2358
+ 0.3227
2359
+ 0
2360
+ 0
2361
+ −0.3307 − 0.0727i
2362
+
2363
+ −2 = (1, −1)
2364
+ 0.2859 − 0.5526i
2365
+ 0
2366
+ 0
2367
+ −0.1614 + 0.2795i −0.3292 + 0.7845i −0.1614 + 0.2795i
2368
+ 0
2369
+ 0
2370
+ 0.2859 − 0.5526i
2371
+
2372
+ −1 = (−1, 0)
2373
+ 0.0142 − 0.1408i
2374
+ 0
2375
+ 0
2376
+ −0.1614 − 0.2795i
2377
+ 0.1959 + 0.2254i
2378
+ −0.1614 − 0.2795i
2379
+ 0
2380
+ 0
2381
+ 0.0142 − 0.1408i
2382
+ �α = (α0, α1)
2383
+ �0 = (0, 0)
2384
+ 0.6614
2385
+ 0
2386
+ 0
2387
+ 0.3227
2388
+ 1
2389
+ 0.3227
2390
+ 0
2391
+ 0
2392
+ 0.6614
2393
+ �1 = (1, 0)
2394
+ 0.0142 + 0.1408i
2395
+ 0
2396
+ 0
2397
+ −0.1614 + 0.2795i
2398
+ 0.1959 − 0.2254i
2399
+ −0.1614 + 0.2795i
2400
+ 0
2401
+ 0
2402
+ 0.0142 + 0.1408i
2403
+ �2 = (−1, 1)
2404
+ 0.2859 + 0.5526i
2405
+ 0
2406
+ 0
2407
+ −0.1614 − 0.2795i −0.3292 − 0.7845i −0.1614 − 0.2795i
2408
+ 0
2409
+ 0
2410
+ 0.2859 + 0.5526i
2411
+ �3 = (0, 1)
2412
+ −0.3307 + 0.0727i
2413
+ 0
2414
+ 0
2415
+ 0.3227
2416
+ −0.1443i
2417
+ 0.3227
2418
+ 0
2419
+ 0
2420
+ −0.3307 + 0.0727i
2421
+ �4 = (1, 1)
2422
+ −0.3001 + 0.4118i
2423
+ 0
2424
+ 0
2425
+ −0.1614 + 0.2795i −0.3667 + 0.3069i −0.1614 + 0.2795i
2426
+ 0
2427
+ 0
2428
+ −0.3001 + 0.4118i
2429
+ TABLE VIII: The global Weyl function �
2430
+ WG(�α, �β|ρ) for the density matrix ρ in Eq.(137).
2431
+ �δ = (δ0, δ1)
2432
+
2433
+ −4 = (−1, −1) �
2434
+ −3 = (0, −1) �
2435
+ −2 = (1, −1) �
2436
+ −1 = (1, 0)
2437
+ �0 = (0, 0)
2438
+ �1 = (1, 0) �2 = (−1, 1) �3 = (0, 1) �4 = (1, 1)
2439
+
2440
+ −4 = (−1, −1)
2441
+ −0.0039
2442
+ −0.0833
2443
+ 0.1875
2444
+ 0.2431
2445
+ −0.1389
2446
+ 0.0253
2447
+ −0.1389
2448
+ −0.3843
2449
+ −0.0833
2450
+
2451
+ −3 = (0, −1)
2452
+ −0.3928
2453
+ −0.0833
2454
+ 0.1875
2455
+ 0.2431
2456
+ −0.1389
2457
+ −0.4768
2458
+ −0.1389
2459
+ −0.1005
2460
+ −0.0833
2461
+
2462
+ −2 = (1, −1)
2463
+ 0.3381
2464
+ −0.0833
2465
+ 0.1875
2466
+ 0.2431
2467
+ −0.1389
2468
+ 0.4668
2469
+ −0.1389
2470
+ 0.3343
2471
+ −0.0833
2472
+
2473
+ −1 = (−1, 0)
2474
+ −0.6467
2475
+ −0.0833
2476
+ 0.1875
2477
+ 0.2431
2478
+ −0.1389
2479
+ −0.8046
2480
+ −0.1389
2481
+ 0.7167
2482
+ −0.0833
2483
+ �γ = (γ0, γ1)
2484
+ �0 = (0, 0)
2485
+ 0.4732
2486
+ −0.0833
2487
+ 0.1875
2488
+ 0.2431
2489
+ −0.1389
2490
+ 0.6412
2491
+ −0.1389
2492
+ 0.8677
2493
+ −0.0833
2494
+ �1 = (1, 0)
2495
+ −0.6467
2496
+ −0.0833
2497
+ 0.1875
2498
+ 0.2431
2499
+ −0.1389
2500
+ −0.8046
2501
+ −0.1389
2502
+ 0.7167
2503
+ −0.0833
2504
+ �2 = (−1, 1)
2505
+ 0.3381
2506
+ −0.0833
2507
+ 0.1875
2508
+ 0.2431
2509
+ −0.1389
2510
+ 0.4668
2511
+ −0.1389
2512
+ 0.3343
2513
+ −0.0833
2514
+ �3 = (0, 1)
2515
+ −0.3928
2516
+ −0.0833
2517
+ 0.1875
2518
+ 0.2431
2519
+ −0.1389
2520
+ −0.4768
2521
+ −0.1389
2522
+ −0.1005
2523
+ −0.0833
2524
+ �4 = (1, 1)
2525
+ −0.0039
2526
+ −0.0833
2527
+ 0.1875
2528
+ 0.2431
2529
+ −0.1389
2530
+ 0.0253
2531
+ −0.1389
2532
+ −0.3843
2533
+ −0.0833
2534
+ TABLE IX: The matrix RG(�γ, �δ|ρ) for the density matrix ρ in Eq.(137).
2535
+ �β = (β0, β1)
2536
+
2537
+ −4 = (−1, −1)
2538
+
2539
+ −3 = (0, −1) �
2540
+ −2 = (1, −1)
2541
+
2542
+ −1 = (1, 0)
2543
+ �0 = (0, 0)
2544
+ �1 = (1, 0)
2545
+ �2 = (−1, 1) �3 = (0, 1)
2546
+ �4 = (1, 1)
2547
+
2548
+ −4 = (−1, −1) −0.3001 − 0.4118i
2549
+ 0
2550
+ 0
2551
+ −0.1614 − 0.2795i −0.3342 − 0.3351i −0.1614 − 0.2795i
2552
+ 0
2553
+ 0
2554
+ −0.3001 − 0.4118i
2555
+
2556
+ −3 = (0, −1)
2557
+ −0.3307 − 0.0727i
2558
+ 0
2559
+ 0
2560
+ 0.3227
2561
+ 0
2562
+ 0.3227
2563
+ 0
2564
+ 0
2565
+ −0.3307 − 0.0727i
2566
+
2567
+ −2 = (1, −1)
2568
+ 0.2859 − 0.5526i
2569
+ 0
2570
+ 0
2571
+ −0.1614 + 0.2795i −0.3735 + 0.7316i −0.1614 + 0.2795i
2572
+ 0
2573
+ 0
2574
+ 0.2859 − 0.5526i
2575
+
2576
+ −1 = (−1, 0)
2577
+ 0.0142 − 0.1408i
2578
+ 0
2579
+ 0
2580
+ −0.1614 − 0.2795i
2581
+ 0.0827 + 0.2729i
2582
+ −0.1614 − 0.2795i
2583
+ 0
2584
+ 0
2585
+ 0.0142 − 0.1408i
2586
+ �α = (α0, α1)
2587
+ �0 = (0, 0)
2588
+ 0.6614
2589
+ 0
2590
+ 0
2591
+ 0.3227
2592
+ 0
2593
+ 0.3227
2594
+ 0
2595
+ 0
2596
+ 0.6614
2597
+ �1 = (1, 0)
2598
+ 0.0142 + 0.1408i
2599
+ 0
2600
+ 0
2601
+ −0.1614 + 0.2795i
2602
+ 0.0827 − 0.2729i
2603
+ −0.1614 + 0.2795i
2604
+ 0
2605
+ 0
2606
+ 0.0142 + 0.1408i
2607
+ �2 = (−1, 1)
2608
+ 0.2859 + 0.5526i
2609
+ 0
2610
+ 0
2611
+ −0.1614 − 0.2795i −0.3735 − 0.7316i −0.1614 − 0.2795i
2612
+ 0
2613
+ 0
2614
+ 0.2859 + 0.5526i
2615
+ �3 = (0, 1)
2616
+ −0.3307 + 0.0727i
2617
+ 0
2618
+ 0
2619
+ 0.3227
2620
+ 0
2621
+ 0.3227
2622
+ 0
2623
+ 0
2624
+ −0.3307 + 0.0727i
2625
+ �4 = (1, 1)
2626
+ −0.3001 + 0.4118i
2627
+ 0
2628
+ 0
2629
+ −0.1614 + 0.2795i −0.3342 + 0.3351i −0.1614 + 0.2795i
2630
+ 0
2631
+ 0
2632
+ −0.3001 + 0.4118i
2633
+ TABLE X: The matrix �
2634
+ RG(�α, �β|ρ) for the density matrix ρ in Eq.(137).
2635
+
1dFLT4oBgHgl3EQfpy-5/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
39E1T4oBgHgl3EQf6AV3/content/tmp_files/2301.03518v1.pdf.txt ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03518v1 [physics.optics] 9 Jan 2023
2
+ Size Effects in Periodic Metamaterials
3
+ Victor V. Gozhenko
4
+ Institute of Physics, Natl. Acad. of Sciences of Ukraine,
5
+ 46 Nauky Ave., Kyiv 03680, Ukraine∗
6
+ 1
7
+
8
+ Abstract
9
+ The optical properties of periodic electromagnetic metamaterials are considered as functions of
10
+ their relative unit cell size d/λ. The reflection R and transmission T coefficients are numerically
11
+ calculated for some realistic metamaterials in a wide range of their relative unit cell size values
12
+ that comprises different operating regimes of the metamaterials. Peculiarities in R and T behavior
13
+ are discussed and the causes of those peculiarities are outlined. The obtained results support the
14
+ opinion on inapplicability of the very homogenization concept to metamaterials whose unit cell size
15
+ is comparable to the incident wavelength, in contrast to some previously published results.
16
+ I.
17
+ INTRODUCTION
18
+ Most of the electromagnetic metamaterials are periodic structures, and their unit cells
19
+ consist of artificial inclusions designed to get a specific electromagnetic response (e.g., neg-
20
+ ative refraction or selective reflectivity) of the metamaterial sample as a whole. Periodic
21
+ metamaterial can be treated as a continuous and homogeneous medium if its unit cell size
22
+ Figure 1. The concept of metamaterials homogenization. A periodic metamaterial with unit cells
23
+ of size d is lit by an incident electromagnetic wave whose wavelength is λ. If d ≪ λ, then the
24
+ incident wave cannot “feel” the metamaterial inhomogenities, and metamaterial behave itself like
25
+ a continuous and homogeneous medium, whose parameters are εeff, µeff, neff. Representation of a
26
+ metamaterial by the corresponding homogeneous medium is correct if the optical properties (e.g.,
27
+ reflectance and transmittance) of the metamaterial and the medium are the same.
28
29
+ 2
30
+
31
+ reflected
32
+ transmitted
33
+ Eeff
34
+ Ueff
35
+ neff
36
+ incidentd (the lattice constant) is much smaller then its operating wavelength λ, d ≪ λ. In such a
37
+ case, the metamaterial can be characterized by its effective parameters—the effective per-
38
+ mittivity εeff, permeability µeff, and index of refraction (the refractive index) neff = √εµ, see
39
+ Fig. 1.
40
+ Calculation of the effective parameters values for a given metamaterial (with given shape,
41
+ size, and material of its inclusions, as well as the size and geometry of its unit cell) is im-
42
+ portant, for example, for predicting the optical properties the metamaterial will reveal in
43
+ experiments and applications, and is based on calculating the local electric and magnetic
44
+ fields within the unit cell and proper averaging of those fields over the cell. Sometimes—in
45
+ case of simple inclusions—it can be done analytically; in general case, numerical computa-
46
+ tions are required.
47
+ To facilitate calculation of the effective parameters of periodic metamaterials, a number
48
+ of homogenization theories and methods were proposed (see, e.g., Refs. 1–6). Those methods
49
+ differ from each other by, particularly, the way they calculate the average values of the local
50
+ fields in the metamaterials.
51
+ In metamaterials applications, condition d ≪ λ (say, d = 0.01λ) is not always met. For
52
+ example, optical applications (where λ ≈ 400 . . . 800 nm) implies that the unit cell size
53
+ should be of the order of 50 nm or less. However, metamaterials with d = 200 . . . 300 nm
54
+ (i.e., d/λ ≈ 0.25 . . . 0.5) are often used there because the less the unit cell size, the more
55
+ expensive manufacturing process of the metamaterial sample. On the other hand, some
56
+ applications—most notably the negative index of refraction—require for a metamaterial to
57
+ work in the resonant regime (where the negative n is achieveable) meaning d/λ ≈ 0.5 . . . 1.0.
58
+ Therefore, some authors tried to elaborate homogenization methods suitable for an extended
59
+ range of d/λ values, and not only for small d. Some of them believe that their methods are
60
+ valid for metamaterials with substantial or even arbitrary unit cell size (e.g., Refs. 1, 3, and
61
+ 6).
62
+ Strictly speaking, any homogenization method can give plausible results for metamate-
63
+ rials working in the long wavelength (quasistatic) regime only, where the condition d ≪ λ
64
+ is satisfied. In the opposite case of short (relative to the unit cell size) waves, d ≫ λ, the
65
+ very homogenization concept should fail, and metamaterials cannot be treated as homoge-
66
+ neous media. In this case, propagation of incident waves through a metamaterial obeys the
67
+ geometrical optics laws, and reflection of an incident wave from the metamaterial inclusions
68
+ 3
69
+
70
+ plays a crucial role. Last, in the intermediate regime, where d ≈ λ, homogenization meth-
71
+ ods should not work since they do not account for the diffraction effects (e.g., the Bragg’s
72
+ reflection) which are significant in this case.
73
+ Earlier [4], it was shown that different homogenization methods give more and more di-
74
+ verging results as the relative unit cell size of metamaterials increases from zero to approx-
75
+ imately d/λ = 0.4. At larger d/λ values, calculations of homogenized effective parameters
76
+ of a metamaterial can still formally be performed, but those parameters cannot describe
77
+ correctly the optical properties of the metamaterial.
78
+ In the present paper, the optical properties of periodic metamaterials are considered in a
79
+ wider range of their relative unit cell sizes d/λ, and the effects of the cell size on the optical
80
+ behaviour of the matematerials is discussed in more details.
81
+ II.
82
+ BASIC FORMULAE
83
+ We are interested in calculating the observable quantities—transmittance T and re-
84
+ flectance R of a metamaterial—which are dimensionless coefficients defined as
85
+ T = Itr
86
+ I0
87
+ ,
88
+ R = Iref
89
+ I0
90
+ ,
91
+ where I0, Itr, Iref are the intensities of incident, transmitted through the metamaterial, and
92
+ reflected waves. The intensities are the energy flux densities of the corresponding waves and
93
+ can be calculated as time-averaged values of the Poynting vector S of those waves (indices
94
+ are omitted below for simplicity):
95
+ I = ⟨S⟩ = 1
96
+ τ
97
+ t+τ
98
+
99
+ t
100
+ S(t′)dt′
101
+ In case of monochromatic incident plane wave
102
+ E = E0e[i(k·r−ωt)],
103
+ (1)
104
+ H = H0e[i(k·r−ωt)]
105
+ (2)
106
+ all the waves involved are also monochromatic and their intensities can be calculated from
107
+ I = 1
108
+ 2Re(E × H∗),
109
+ 4
110
+
111
+ where the asterisk denotes the complex conjugation.
112
+ From the energy conservation law
113
+ applied to the interaction of electromagnetic waves with a lossy medium, it follows
114
+ T + R + A = 1,
115
+ where A is the absorptance (the absorption coefficient) of the medium which define the rate
116
+ of electromagnetic energy absorption inside it. If T and R values for a medium are known
117
+ (i.e., are experimentally measured or theoretically calculated), its absorptance can be found
118
+ as
119
+ A = 1 − T − R.
120
+ III.
121
+ NUMERICAL RESULTS AND DISCUSSION
122
+ Numerical simulations are carried out for metamaterials with cubic lattice and consisted of
123
+ inclusions of various shapes that are often used in metamaterial science and applications—
124
+ spheres, rods, Split-Ring Resonators (SRRs), and Ω-like inclusions (“omegas”).
125
+ Optical
126
+ reflectance R and transmittance T of the simulated metamaterials are calculated in a wide
127
+ range of their relative unit cell size d/λ at several values of the incidence angle θ. Calculations
128
+ of R and transmittance T are complemented with the local E field distributions across
129
+ the unit cells in different regimes the metamaterials operate in. All the calculations are
130
+ performed with COMSOL Multiphysics software. Presented below are exemplary calculation
131
+ results.
132
+ Schematics of the unit cells of the simulated metamaterials are shown in Fig. 2. The
133
+ materials are primarily infinite monolayers of thickness d and that in Fig. 2d is a triple layer
134
+ of thickness 3d. The unit cell size d = 500 nm is the same for all the materials and remains
135
+ unchangeable in all the calculations. Variations in the relative unit cell size d/λ are made
136
+ by changing the wavelength λ of the incident wave.
137
+ From Fig. 3 one can see that all the inclusions give a prominent response to the incident
138
+ wave even at normal incidence, the response of spherical inclusions being dipole-like (see
139
+ panel (a), the field distribution in the middle plane), while those of “SRRs with rods” system
140
+ and “omegas” are more tricky.
141
+ The incidence angle θ also affects the electromagnetic field distribution inside metama-
142
+ terials: even for simple spherical inclusions in the quasistatic regime (λ = 10d) the electric
143
+ 5
144
+
145
+ Figure 2. Unit cells of the simulated metamaterials: (a) a monolayer of spherical particles; (b) a
146
+ monolayer of omegas; (c) a monolayer of SRRs and rods; (d) a triple layer of spherical particles.
147
+ All the inclusions are made of gold, and the size of the individual unit cells is d = 500 nm.
148
+ fields in the unit cell differ substantially at normal and oblique incidence, see Fig. 4.
149
+ Shown in Figs. 5–7 are the transmission and reflection spectra numerically calculated for
150
+ the metamaterials depicted in Fig. 2a,c,d.
151
+ According to Fig. 5, at normal incidence of a long enough wave with λ = 3000 nm (which
152
+ is six times the unit cell size d) onto the monolayer of golden spheres, the metamaterial
153
+ behaves itself as a transparent sheet: its reflection coefficient R in this regime is close to
154
+ zero, and its transmission coefficent T is near unity. If λ decreases and approaches the unit
155
+ cell size d, the metamaterial gradually looses its transparency and becomes more and more
156
+ reflective. The reflection coefficient has its maximum R = 0.45 at λ = 1.2d = 600 nm,
157
+ and the transmission coefficient is minimal (T = 0.3) at this point. Further decrease of λ
158
+ results in monotonic increase of the material transparency (with the peak value T ≈ 0.77 at
159
+ λ = d = 500 nm) and monotonic decrease of its reflectance up to R ≈ 0. The radical change
160
+ in the behavior of R and T at λ ≤ 600 nm (when d/λ ≥ 0.83) is probably due to the onset
161
+ of the diffraction and interference effects in the periodic metamaterial.
162
+ Note that the sum T + R becomes distinctly less then unity at λ ≤ 650 nm, or d/λ ≥
163
+ 0.77. It means that light absorption by the metamaterial is substantial in this case. The
164
+ minimum value of the absorption coefficient A = 1 − T + R ≈ 0.67 is observed at λ = 550
165
+ nm, which implies that about one third of the incident energy flux is absorbed by the
166
+ metamaterial inclusions.
167
+ The absorption can be ascribed to electric currents induced in
168
+ individual inclusions (golden spheres) by the incident wave as well scattered waves from
169
+ neighboring particles.
170
+ Analogous behavior is observed at oblique incidence (see the respective curves in Fig. 5
171
+ 6
172
+
173
+ (a)
174
+ (b)
175
+ (c)
176
+ (d)Figure 3. Local distributions of the absolute value of the electric field E inside the unit cells of the
177
+ metamaterials shown in Fig. 2a–c. Left column, the field on the unit cell boundaries; right column,
178
+ the field in the middle plane of the cells. λ = 1000 nm, normal incidence (θ = 0). Directions of
179
+ E and H vectors of the incident wave are depicted in panel (a). Distribution of |E| allows one to
180
+ easily determine those places where the electric energy is concentrated.
181
+ for the case of θ = 45◦): with decreasing λ, the region of insufficient changes in R, T passes
182
+ (starting from λ ≈ 1.8d = 900 nm) to the region of their abrupt changes and oscillating
183
+ behavior. Note, however, that the metamaterial in this case is semi-transparent even at
184
+ large λ: R + T ≈ 0.62 at λ = 3000 nm.
185
+ The plots in Fig. 6 refer to the monolayer of golden inclusions “SRR plus rod” and have
186
+ 7
187
+
188
+ (a)
189
+ X107
190
+ X108
191
+ 1.4
192
+ 1.3
193
+ 1.2
194
+ 6.5
195
+ 1.1
196
+ 6
197
+ 1
198
+ E
199
+ 0.9
200
+ 5.5
201
+ 0.8
202
+ H
203
+ 0.7
204
+ 4.5
205
+ 0.6
206
+ 0.5
207
+ 4
208
+ 0.4
209
+ (q)
210
+ X108
211
+ X108
212
+ 1
213
+ 0.9
214
+ 0.8
215
+ 0.7
216
+ 0.6
217
+ 9
218
+ 0.8
219
+ 0.5
220
+ 0.7
221
+ 0.4
222
+ 0.6
223
+ 0.3
224
+ 0.5
225
+ 0.2
226
+ 0.4
227
+ (c)
228
+ X108
229
+ X108
230
+ 2.4
231
+ 0.9
232
+ 2.2
233
+ 0.8
234
+ 2
235
+ 0.7
236
+ 1.8
237
+ 0.6
238
+ 1.6
239
+ 0.5
240
+ 1,4
241
+ 1.2
242
+ 0.4
243
+ 1
244
+ 0.3
245
+ 0.8
246
+ 0.2
247
+ 0.6
248
+ 0.1
249
+ 0.4Figure 4. Local distribution of |E| over the unit cell boundaries in a monolayer of golden spheres
250
+ at λ = 5000 nm. (a) θ = 0; (b) θ = 45◦.
251
+ Figure 5.
252
+ Transmission and reflection spectra of a monolayer of golden spheres at normal and
253
+ oblique incidence, θ = 0 and θ = 45◦.
254
+ three distinct regions at both normal and oblique incidence. With decrease in λ from its
255
+ maximum value 5000 nm to approximately 3200 nm, the optical properties of the monolayer
256
+ change monotonically. Further, up to λ ≈ 1400 nm, there is the region of oscillations, where
257
+ one can observe peaks and dips of R and T at wavelenghts that are nearly multiples of
258
+ d = 500 nm. Those peaks and dips can be ascribed to the grating resonances occurred in
259
+ 8
260
+
261
+ 0.9
262
+ transmittance
263
+ 0.8
264
+ 0.7
265
+ *0=0T
266
+ 0.6
267
+ -
268
+ 0-0=0°R
269
+ and
270
+ 0.5
271
+ 含0=0°R+T
272
+ Reflectance
273
+ 0.4
274
+ 0=45°, T
275
+ 0.3
276
+ +-0=45°R
277
+ 中0=45°R+T
278
+ 0.2
279
+ 0.1
280
+ 500
281
+ 1000
282
+ 1500
283
+ 2000
284
+ 2500
285
+ 入, nm(a)
286
+ X107
287
+ (q)
288
+ X107
289
+ 7.4
290
+ 7
291
+ 7.2
292
+ 6.5
293
+ 7
294
+ -
295
+ 6.8
296
+ 6
297
+ 6.6
298
+ H
299
+ 5.5
300
+ 6.4
301
+ 6.2
302
+ 5Figure 6. Transmission and reflection spectra of a monolayer of golden inclusions “SRRs plus rods”
303
+ at normal and oblique incidence, θ = 0 and θ = 45◦.
304
+ periodic systems as a result of interaction between their structural elements excited by the
305
+ incident wave. With further decrease in λ, the oscillations of R and T become more chaotic.
306
+ As in the case of spherical inclusions, the layer of SRRs and rods looks translucent even at
307
+ large enough wavelenghts: T + R < 0.6 at λ = 10d = 5000 nm.
308
+ The peculiarities in the optical behavior of monolayers of golden spheres and SRRs with
309
+ rods can also be observed in a thicker triple layer of golden spheres, see Fig. 7. In this case,
310
+ notice the two peaks in R (at normal and oblique incidence) and the dip in T (at normal
311
+ incidence) which are all located exactly at λ = 1000 nm, which is two times the lattice
312
+ constant d. Obviously, they can be ascribed to the above mentioned grating resonances.
313
+ IV.
314
+ CONCLUSIONS
315
+ The obtained results confirm the opinion [4] that any metamaterial homogenization
316
+ method should be used with care in the intermediate operating regimes, when the metama-
317
+ terial unit cell size is of the order of the operating wavelength. The value of the relative unit
318
+ cell size d/λ at which homogenization methods fail to predict the optical properties of pe-
319
+ riodic metamaterials depends on the geometry and material parameters of their inclusions.
320
+ For the metamaterials we considered here, abrupt and substanial changes in the optical
321
+ properties (as compared to their longwavelength values) occur at different values of d/λ:
322
+ near 0.56 for the monolayer of golden spheres at oblique incidence, 0.4 for the triple layer of
323
+ 9
324
+
325
+ 0.9
326
+ Reflectance and transmittance
327
+ 0.8
328
+ 0.7
329
+ 0.6
330
+ *- 0=0°T
331
+ 0=0°,R
332
+ 0.5
333
+ 0=0°, R+T
334
+ 0.4
335
+ 0=45°T
336
+ 0.3
337
+ +
338
+ 0=45°.R
339
+ 0.2
340
+
341
+ 0=45°R+T
342
+ 0.1
343
+ 0
344
+ 1000
345
+ 1500
346
+ 2000
347
+ 2500
348
+ 3000
349
+ 3500
350
+ 4000
351
+ 4500
352
+ 5000
353
+ 入,nmFigure 7. Transmission and reflection spectra of a triple layer of golden spheres at normal and
354
+ oblique incidence, θ = 0 and θ = 45◦.
355
+ golden spheres at normal incidence, and near 0.16 for the monolayer of SRRs with rods. For
356
+ larger d/λ values, a crucial role in the optical properties formation play the diffraction and
357
+ interference effects in the metamaterials, so the properties exhibit an oscillating behavior
358
+ which cannot be predicted within the homogenization concept.
359
+ [1] Pendry J.B., Holden A.J., Robbins D.J. and Stewart W.J. IEEE Trans. Microw. Theory Tech.
360
+ 47 2075–84 (1999).
361
+ [2] D. Smith and J. Pendry, J. Opt. Soc. Am. B 23 391-403 (2006).
362
+ [3] I. Tsukerman, J. Opt. Soc. Am. B 28 577–86 (2011).
363
+ [4] V.V. Gozhenko, A.K. Amert, and K.W. Whites , New J. Phys. 15 043030 (2013).
364
+ [5] S. Yoo et al., Nanophotonics 8 (6) 1063–1069 (2019).
365
+ [6] O. Rybin and V. Khardikov, Optik 268 169768 (2022).
366
+ 10
367
+
368
+ 0.9
369
+ Reflectance and transmittance
370
+ 0.8
371
+ 0.7
372
+ 0.6
373
+ *
374
+ 0=0°T
375
+ 0=0°R
376
+ 0.5
377
+ 0=0°,R+T
378
+ 0.4
379
+ 0=45°T
380
+ 0.3
381
+ 0=45°R
382
+
383
+ 0=45°R+T
384
+ 0.2
385
+ 0.1
386
+ 500
387
+ 1000
388
+ 1500
389
+ 入, nm
39E1T4oBgHgl3EQf6AV3/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf,len=286
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
3
+ page_content='03518v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
4
+ page_content='optics] 9 Jan 2023 Size Effects in Periodic Metamaterials Victor V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
5
+ page_content=' Gozhenko Institute of Physics, Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
6
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
7
+ page_content=' of Sciences of Ukraine, 46 Nauky Ave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
8
+ page_content=', Kyiv 03680, Ukraine∗ 1 Abstract The optical properties of periodic electromagnetic metamaterials are considered as functions of their relative unit cell size d/λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
9
+ page_content=' The reflection R and transmission T coefficients are numerically calculated for some realistic metamaterials in a wide range of their relative unit cell size values that comprises different operating regimes of the metamaterials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
10
+ page_content=' Peculiarities in R and T behavior are discussed and the causes of those peculiarities are outlined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
11
+ page_content=' The obtained results support the opinion on inapplicability of the very homogenization concept to metamaterials whose unit cell size is comparable to the incident wavelength, in contrast to some previously published results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
12
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
13
+ page_content=' INTRODUCTION Most of the electromagnetic metamaterials are periodic structures, and their unit cells consist of artificial inclusions designed to get a specific electromagnetic response (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
14
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
15
+ page_content=', neg- ative refraction or selective reflectivity) of the metamaterial sample as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
16
+ page_content=' Periodic metamaterial can be treated as a continuous and homogeneous medium if its unit cell size Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
17
+ page_content=' The concept of metamaterials homogenization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
18
+ page_content=' A periodic metamaterial with unit cells of size d is lit by an incident electromagnetic wave whose wavelength is λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
19
+ page_content=' If d ≪ λ, then the incident wave cannot “feel” the metamaterial inhomogenities, and metamaterial behave itself like a continuous and homogeneous medium, whose parameters are εeff, µeff, neff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
20
+ page_content=' Representation of a metamaterial by the corresponding homogeneous medium is correct if the optical properties (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
21
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
22
+ page_content=', reflectance and transmittance) of the metamaterial and the medium are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
23
+ page_content=' ∗ vigo@iop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
24
+ page_content='kiev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
25
+ page_content='ua 2 reflected transmitted Eeff Ueff neff incidentd (the lattice constant) is much smaller then its operating wavelength λ, d ≪ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
26
+ page_content=' In such a case, the metamaterial can be characterized by its effective parameters—the effective per- mittivity εeff, permeability µeff, and index of refraction (the refractive index) neff = √εµ, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
27
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
28
+ page_content=' Calculation of the effective parameters values for a given metamaterial (with given shape, size, and material of its inclusions, as well as the size and geometry of its unit cell) is im- portant, for example, for predicting the optical properties the metamaterial will reveal in experiments and applications, and is based on calculating the local electric and magnetic fields within the unit cell and proper averaging of those fields over the cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
29
+ page_content=' Sometimes—in case of simple inclusions—it can be done analytically;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
30
+ page_content=' in general case, numerical computa- tions are required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
31
+ page_content=' To facilitate calculation of the effective parameters of periodic metamaterials, a number of homogenization theories and methods were proposed (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
32
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
33
+ page_content=', Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
34
+ page_content=' 1–6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
35
+ page_content=' Those methods differ from each other by, particularly, the way they calculate the average values of the local fields in the metamaterials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
36
+ page_content=' In metamaterials applications, condition d ≪ λ (say, d = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
37
+ page_content='01λ) is not always met.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
38
+ page_content=' For example, optical applications (where λ ≈ 400 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
39
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
40
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
41
+ page_content=' 800 nm) implies that the unit cell size should be of the order of 50 nm or less.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
42
+ page_content=' However, metamaterials with d = 200 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
43
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
44
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
45
+ page_content=' 300 nm (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
46
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
47
+ page_content=', d/λ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
48
+ page_content='25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
49
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
50
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
51
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
52
+ page_content='5) are often used there because the less the unit cell size, the more expensive manufacturing process of the metamaterial sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
53
+ page_content=' On the other hand, some applications—most notably the negative index of refraction—require for a metamaterial to work in the resonant regime (where the negative n is achieveable) meaning d/λ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
54
+ page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
55
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
56
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
57
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
58
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
59
+ page_content=' Therefore, some authors tried to elaborate homogenization methods suitable for an extended range of d/λ values, and not only for small d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
60
+ page_content=' Some of them believe that their methods are valid for metamaterials with substantial or even arbitrary unit cell size (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
61
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
62
+ page_content=', Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
63
+ page_content=' 1, 3, and 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
64
+ page_content=' Strictly speaking, any homogenization method can give plausible results for metamate- rials working in the long wavelength (quasistatic) regime only, where the condition d ≪ λ is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
65
+ page_content=' In the opposite case of short (relative to the unit cell size) waves, d ≫ λ, the very homogenization concept should fail, and metamaterials cannot be treated as homoge- neous media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
66
+ page_content=' In this case, propagation of incident waves through a metamaterial obeys the geometrical optics laws, and reflection of an incident wave from the metamaterial inclusions 3 plays a crucial role.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
67
+ page_content=' Last, in the intermediate regime, where d ≈ λ, homogenization meth- ods should not work since they do not account for the diffraction effects (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
68
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
69
+ page_content=', the Bragg’s reflection) which are significant in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
70
+ page_content=' Earlier [4], it was shown that different homogenization methods give more and more di- verging results as the relative unit cell size of metamaterials increases from zero to approx- imately d/λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
71
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
72
+ page_content=' At larger d/λ values, calculations of homogenized effective parameters of a metamaterial can still formally be performed, but those parameters cannot describe correctly the optical properties of the metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
73
+ page_content=' In the present paper, the optical properties of periodic metamaterials are considered in a wider range of their relative unit cell sizes d/λ, and the effects of the cell size on the optical behaviour of the matematerials is discussed in more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
74
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
75
+ page_content=' BASIC FORMULAE We are interested in calculating the observable quantities—transmittance T and re- flectance R of a metamaterial—which are dimensionless coefficients defined as T = Itr I0 , R = Iref I0 , where I0, Itr, Iref are the intensities of incident, transmitted through the metamaterial, and reflected waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
76
+ page_content=' The intensities are the energy flux densities of the corresponding waves and can be calculated as time-averaged values of the Poynting vector S of those waves (indices are omitted below for simplicity): I = ⟨S⟩ = 1 τ t+τ � t S(t′)dt′ In case of monochromatic incident plane wave E = E0e[i(k·r−ωt)],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
77
+ page_content=' (1) H = H0e[i(k·r−ωt)] (2) all the waves involved are also monochromatic and their intensities can be calculated from I = 1 2Re(E × H∗),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
78
+ page_content=' 4 where the asterisk denotes the complex conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
79
+ page_content=' From the energy conservation law applied to the interaction of electromagnetic waves with a lossy medium, it follows T + R + A = 1, where A is the absorptance (the absorption coefficient) of the medium which define the rate of electromagnetic energy absorption inside it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
80
+ page_content=' If T and R values for a medium are known (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
81
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
82
+ page_content=', are experimentally measured or theoretically calculated), its absorptance can be found as A = 1 − T − R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
83
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
84
+ page_content=' NUMERICAL RESULTS AND DISCUSSION Numerical simulations are carried out for metamaterials with cubic lattice and consisted of inclusions of various shapes that are often used in metamaterial science and applications— spheres, rods, Split-Ring Resonators (SRRs), and Ω-like inclusions (“omegas”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
85
+ page_content=' Optical reflectance R and transmittance T of the simulated metamaterials are calculated in a wide range of their relative unit cell size d/λ at several values of the incidence angle θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
86
+ page_content=' Calculations of R and transmittance T are complemented with the local E field distributions across the unit cells in different regimes the metamaterials operate in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
87
+ page_content=' All the calculations are performed with COMSOL Multiphysics software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
88
+ page_content=' Presented below are exemplary calculation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
89
+ page_content=' Schematics of the unit cells of the simulated metamaterials are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
90
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
91
+ page_content=' The materials are primarily infinite monolayers of thickness d and that in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
92
+ page_content=' 2d is a triple layer of thickness 3d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
93
+ page_content=' The unit cell size d = 500 nm is the same for all the materials and remains unchangeable in all the calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
94
+ page_content=' Variations in the relative unit cell size d/λ are made by changing the wavelength λ of the incident wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
95
+ page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
96
+ page_content=' 3 one can see that all the inclusions give a prominent response to the incident wave even at normal incidence, the response of spherical inclusions being dipole-like (see panel (a), the field distribution in the middle plane), while those of “SRRs with rods” system and “omegas” are more tricky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
97
+ page_content=' The incidence angle θ also affects the electromagnetic field distribution inside metama- terials: even for simple spherical inclusions in the quasistatic regime (λ = 10d) the electric 5 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
98
+ page_content=' Unit cells of the simulated metamaterials: (a) a monolayer of spherical particles;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
99
+ page_content=' (b) a monolayer of omegas;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
100
+ page_content=' (c) a monolayer of SRRs and rods;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
101
+ page_content=' (d) a triple layer of spherical particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
102
+ page_content=' All the inclusions are made of gold, and the size of the individual unit cells is d = 500 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
103
+ page_content=' fields in the unit cell differ substantially at normal and oblique incidence, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
104
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
105
+ page_content=' Shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
106
+ page_content=' 5–7 are the transmission and reflection spectra numerically calculated for the metamaterials depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
107
+ page_content=' 2a,c,d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
108
+ page_content=' According to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
109
+ page_content=' 5, at normal incidence of a long enough wave with λ = 3000 nm (which is six times the unit cell size d) onto the monolayer of golden spheres, the metamaterial behaves itself as a transparent sheet: its reflection coefficient R in this regime is close to zero, and its transmission coefficent T is near unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
110
+ page_content=' If λ decreases and approaches the unit cell size d, the metamaterial gradually looses its transparency and becomes more and more reflective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
111
+ page_content=' The reflection coefficient has its maximum R = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
112
+ page_content='45 at λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
113
+ page_content='2d = 600 nm, and the transmission coefficient is minimal (T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
114
+ page_content='3) at this point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
115
+ page_content=' Further decrease of λ results in monotonic increase of the material transparency (with the peak value T ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
116
+ page_content='77 at λ = d = 500 nm) and monotonic decrease of its reflectance up to R ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
117
+ page_content=' The radical change in the behavior of R and T at λ ≤ 600 nm (when d/λ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
118
+ page_content='83) is probably due to the onset of the diffraction and interference effects in the periodic metamaterial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
119
+ page_content=' Note that the sum T + R becomes distinctly less then unity at λ ≤ 650 nm, or d/λ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
120
+ page_content='77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
121
+ page_content=' It means that light absorption by the metamaterial is substantial in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
122
+ page_content=' The minimum value of the absorption coefficient A = 1 − T + R ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
123
+ page_content='67 is observed at λ = 550 nm, which implies that about one third of the incident energy flux is absorbed by the metamaterial inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
124
+ page_content=' The absorption can be ascribed to electric currents induced in individual inclusions (golden spheres) by the incident wave as well scattered waves from neighboring particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
125
+ page_content=' Analogous behavior is observed at oblique incidence (see the respective curves in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
126
+ page_content=' 5 6 (a) (b) (c) (d)Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
127
+ page_content=' Local distributions of the absolute value of the electric field E inside the unit cells of the metamaterials shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
128
+ page_content=' 2a–c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
129
+ page_content=' Left column, the field on the unit cell boundaries;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
130
+ page_content=' right column, the field in the middle plane of the cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
131
+ page_content=' λ = 1000 nm, normal incidence (θ = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
132
+ page_content=' Directions of E and H vectors of the incident wave are depicted in panel (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
133
+ page_content=' Distribution of |E| allows one to easily determine those places where the electric energy is concentrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
134
+ page_content=' for the case of θ = 45◦): with decreasing λ, the region of insufficient changes in R, T passes (starting from λ ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
135
+ page_content='8d = 900 nm) to the region of their abrupt changes and oscillating behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
136
+ page_content=' Note, however, that the metamaterial in this case is semi-transparent even at large λ: R + T ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
137
+ page_content='62 at λ = 3000 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
138
+ page_content=' The plots in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
139
+ page_content=' 6 refer to the monolayer of golden inclusions “SRR plus rod” and have 7 (a) X107 X108 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
140
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
141
+ page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
142
+ page_content='2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
143
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
144
+ page_content='1 6 1 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
145
+ page_content='9 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
146
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
147
+ page_content='8 H 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
148
+ page_content='7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
149
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
150
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
151
+ page_content='5 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
152
+ page_content='4 (q) X108 X108 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
153
+ page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
154
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
155
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
156
+ page_content='6 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
157
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
158
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
159
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
160
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
161
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
162
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
163
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
164
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
165
+ page_content='4 (c) X108 X108 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
166
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
167
+ page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
168
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
169
+ page_content='8 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
170
+ page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
171
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
172
+ page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
173
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
174
+ page_content='5 1,4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
175
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
176
+ page_content='4 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
177
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
178
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
179
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
180
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
181
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
182
+ page_content='4Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
183
+ page_content=' Local distribution of |E| over the unit cell boundaries in a monolayer of golden spheres at λ = 5000 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
184
+ page_content=' (a) θ = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
185
+ page_content=' (b) θ = 45◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
186
+ page_content=' Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
187
+ page_content=' Transmission and reflection spectra of a monolayer of golden spheres at normal and oblique incidence, θ = 0 and θ = 45◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
188
+ page_content=' three distinct regions at both normal and oblique incidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
189
+ page_content=' With decrease in λ from its maximum value 5000 nm to approximately 3200 nm, the optical properties of the monolayer change monotonically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
190
+ page_content=' Further, up to λ ≈ 1400 nm, there is the region of oscillations, where one can observe peaks and dips of R and T at wavelenghts that are nearly multiples of d = 500 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
191
+ page_content=' Those peaks and dips can be ascribed to the grating resonances occurred in 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
192
+ page_content='9 transmittance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
193
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
194
+ page_content='7 0=0T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
195
+ page_content='6 0-0=0°R and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
196
+ page_content='5 含0=0°R+T Reflectance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
197
+ page_content='4 0=45°, T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
198
+ page_content='3 +-0=45°R 中0=45°R+T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
199
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
200
+ page_content='1 500 1000 1500 2000 2500 入, nm(a) X107 (q) X107 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
201
+ page_content='4 7 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
202
+ page_content='2 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
203
+ page_content='5 7 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
204
+ page_content='8 6 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
205
+ page_content='6 H 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
206
+ page_content='5 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
207
+ page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
208
+ page_content='2 5Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
209
+ page_content=' Transmission and reflection spectra of a monolayer of golden inclusions “SRRs plus rods” at normal and oblique incidence, θ = 0 and θ = 45◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
210
+ page_content=' periodic systems as a result of interaction between their structural elements excited by the incident wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
211
+ page_content=' With further decrease in λ, the oscillations of R and T become more chaotic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
212
+ page_content=' As in the case of spherical inclusions, the layer of SRRs and rods looks translucent even at large enough wavelenghts: T + R < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
213
+ page_content='6 at λ = 10d = 5000 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
214
+ page_content=' The peculiarities in the optical behavior of monolayers of golden spheres and SRRs with rods can also be observed in a thicker triple layer of golden spheres, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
215
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
216
+ page_content=' In this case, notice the two peaks in R (at normal and oblique incidence) and the dip in T (at normal incidence) which are all located exactly at λ = 1000 nm, which is two times the lattice constant d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
217
+ page_content=' Obviously, they can be ascribed to the above mentioned grating resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
218
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
219
+ page_content=' CONCLUSIONS The obtained results confirm the opinion [4] that any metamaterial homogenization method should be used with care in the intermediate operating regimes, when the metama- terial unit cell size is of the order of the operating wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
220
+ page_content=' The value of the relative unit cell size d/λ at which homogenization methods fail to predict the optical properties of pe- riodic metamaterials depends on the geometry and material parameters of their inclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
221
+ page_content=' For the metamaterials we considered here, abrupt and substanial changes in the optical properties (as compared to their longwavelength values) occur at different values of d/λ: near 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
222
+ page_content='56 for the monolayer of golden spheres at oblique incidence, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
223
+ page_content='4 for the triple layer of 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
224
+ page_content='9 Reflectance and transmittance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
225
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
226
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
227
+ page_content='6 *- 0=0°T 0=0°,R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
228
+ page_content='5 0=0°, R+T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
229
+ page_content='4 0=45°T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
230
+ page_content='3 + 0=45°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
231
+ page_content='R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
232
+ page_content='2 中 0=45°R+T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
233
+ page_content='1 0 1000 1500 2000 2500 3000 3500 4000 4500 5000 入,nmFigure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
234
+ page_content=' Transmission and reflection spectra of a triple layer of golden spheres at normal and oblique incidence, θ = 0 and θ = 45◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
235
+ page_content=' golden spheres at normal incidence, and near 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
236
+ page_content='16 for the monolayer of SRRs with rods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
237
+ page_content=' For larger d/λ values, a crucial role in the optical properties formation play the diffraction and interference effects in the metamaterials, so the properties exhibit an oscillating behavior which cannot be predicted within the homogenization concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
238
+ page_content=' [1] Pendry J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
239
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
240
+ page_content=', Holden A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
241
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
242
+ page_content=', Robbins D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
243
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
244
+ page_content=' and Stewart W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
245
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
246
+ page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
247
+ page_content=' Microw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
248
+ page_content=' Theory Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
249
+ page_content=' 47 2075–84 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
250
+ page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
251
+ page_content=' Smith and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
252
+ page_content=' Pendry, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
253
+ page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
254
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
255
+ page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
256
+ page_content=' B 23 391-403 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
257
+ page_content=' [3] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
258
+ page_content=' Tsukerman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
259
+ page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
260
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
261
+ page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
262
+ page_content=' B 28 577–86 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
263
+ page_content=' [4] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
264
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
265
+ page_content=' Gozhenko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
266
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
267
+ page_content=' Amert, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
268
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
269
+ page_content=' Whites , New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
270
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
271
+ page_content=' 15 043030 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
272
+ page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
273
+ page_content=' Yoo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
274
+ page_content=', Nanophotonics 8 (6) 1063–1069 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
275
+ page_content=' [6] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
276
+ page_content=' Rybin and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
277
+ page_content=' Khardikov, Optik 268 169768 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
278
+ page_content=' 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
279
+ page_content='9 Reflectance and transmittance 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
280
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
281
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
282
+ page_content='6 0=0°T 0=0°R 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
283
+ page_content='5 0=0°,R+T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
284
+ page_content='4 0=45°T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
285
+ page_content='3 0=45°R 中 0=45°R+T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
286
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
287
+ page_content='1 500 1000 1500 入, nm' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/39E1T4oBgHgl3EQf6AV3/content/2301.03518v1.pdf'}
4NAyT4oBgHgl3EQf1_nb/content/tmp_files/2301.00745v1.pdf.txt ADDED
@@ -0,0 +1,1307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00745v1 [math.DG] 2 Jan 2023
2
+ Moduli of triples of points in quaternionic hyperbolic geometry
3
+ Igor Almeida
4
+ Nikolay Gusevskii∗
5
6
7
+ Departamento de Matem´atica
8
+ Universidade Federal de Minhas Gerais
9
+ Belo Horizonte – MG
10
+ Brazil
11
+ 30123-970
12
+ Abstract
13
+ In this work, we describe the moduli of triples of points in quaternionic projective space which de-
14
+ fine uniquely the congruence classes of such triples relative to the action of the isometry group of
15
+ quaternionic hypebolic space Hn
16
+ Q. To solve this problem, we introduce some basic invariants of triples
17
+ of points in quaternionic hyperbolic geometry.
18
+ In particular, we define quaternionic analogues of
19
+ the Goldman invariants for mixed configurations of points introduced by him in complex hyperbolic
20
+ geometry.
21
+ MSC: 32H20; 20H10; 22E40; 57S30; 32G07; 32C16
22
+ Keywords: Quaternionic hyperbolic space. Moduli of triples.
23
+ Introduction
24
+ The purpose of this paper is to describe some numerical invariants associated to an ordered triple of points
25
+ in quaternionic projective space. These invariants describe the equivalence classes of such triples relative
26
+ to the action of the isometry group of quaternionic hypebolic space Hn
27
+ Q. We give a construction of the
28
+ quaternionic angular invariant, an analogue of the Cartan invariant in complex hyperbolic geometry, see
29
+ [8], which parametrizes triples of isotropic points. Also, we represent a quaternionic analogue of Brehm’s
30
+ shape invariant, see [4], in complex hyperbolic geometry, which is used to parametrize triples of points
31
+ in Hn
32
+ Q. Then we define a quaternionic analogue of the Goldman η-invariant for mixed configurations of
33
+ points introduced by him in complex hyperbolic geometry to study the intersection of bisectors, see [13].
34
+ Using these invariants, we describe the moduli of the corresponding triples relative to the action of the
35
+ isometry group of quaternionic hypebolic space Hn
36
+ Q. In order to solve the congruence problems, we use the
37
+ methods related to Gram matrices of configurations of points developed in complex hyperbolic geometry
38
+ in [4], [5], [10], [11], [12], [15], [16]. In this work, we describe the moduli of all possible configurations
39
+ of three points in quaternionic projective space of any dimension and give a geometric interpretation of
40
+ them.
41
+ We remark that some of these problems were considered by Cao, see [7]. Unfortunately, some of the
42
+ main results of this work are not correct as stated, see Theorem 1.1 (items (ii) and (iii)) in [7]. We provide
43
+ the corresponding counter-examples, see Section 2.4.1 and Section 2.4.2.
44
+ ∗Corresponding author.
45
+ 1
46
+
47
+ The work is organized as follows. In Section 1, we summarize some basic results about geometry of
48
+ quaternionic hyperbolic space. In Section 2, we describe the moduli of triples of points in quaternionic
49
+ hyperbolic geometry.
50
+ 1
51
+ Preliminaries
52
+ In this section, we recall some basic results related to quarternions and geometry of projective and hyper-
53
+ bolic spaces.
54
+ 1.1
55
+ Quaternions
56
+ First, we recall some basic facts about the quaternions we need. The quaternions Q are the R-algebra
57
+ generated by the symbols i, j, k with the relations
58
+ l2 = j2 = k2 = −1,
59
+ ij = −ji = k,
60
+ jk = −kj = 1,
61
+ ki = −ik = j.
62
+ So, Q is a skew field and a 4-dimensional division algebra over the reals.
63
+ Let a ∈ Q. We write a = a0 + a1i + a2j + a3k, ai ∈ R, then by definition
64
+ ¯a = a0 − a1i − a2j − a3k,
65
+ Re a = a0,
66
+ Im a = a1i + a2j + a3k.
67
+ Note that, in contrast with the complex numbers, Im a is not a real number (if ai ̸= 0 for some
68
+ i = 1, 2, 3), and that conjugation obeys the rule
69
+ ab = ¯b¯a.
70
+ Also, we define |a| = √a¯a. We have that if a ̸= 0 then a−1 = ¯a/|a|2.
71
+ In what follows, we will identify the reals numbers R with R1 and the complex numbers C with the
72
+ subfield of Q generated over R by 1 and i.
73
+ Two quaternions a and b are called similar if there exists λ ̸= 0 such that a = λbλ−1. By replacing λ
74
+ by τ = λ/|λ|, we may always assume λ to be unitary.
75
+ The following proposition was proved in [6].
76
+ Proposition 1.1 Two quaternions a and b are similar if and only if Re a = Re b and |a| = |b|. Moreover,
77
+ every similarity class contains a complex number, unique up to conjugation.
78
+ Corollary 1.1 Any quaternion a is similar to a unique complex number b = b0 + b1i such that b1 ≥ 0.
79
+ Also, this proposition implies that every quaternion is similar to its conjugate.
80
+ Example: jzj−1 = ¯z for all z ∈ C.
81
+ We say that a ∈ Q is imaginary if Re(a) = 0. Let us suppose that a is imaginary and |a| = 1. Then
82
+ a2 = −1. This implies that the real span of 1 and a is a subfield of Q isomorphic to the field of complex
83
+ numbers. We denote this subfield by C(a). It is easy to prove that any subfield of Q containing real
84
+ numbers and isomorphic to the field of complex numbers is of the form C(a) for some a imaginary with
85
+ |a| = 1.
86
+ The following was proved in [9].
87
+ 2
88
+
89
+ Proposition 1.2 Let a be as above. Then the centralizer of a is C(a).
90
+ More generally, for any λ ∈ Q, let C(λ) also denote the real span of 1 and λ.
91
+ Proposition 1.3 Let λ ∈ Q \ R. Then the centralizer of λ is C(λ).
92
+ 1.2
93
+ Hyperbolic spaces
94
+ In this section we discuss two models for the hyperbolic spaces, its isometry group and totally geodesics
95
+ submanifolds.
96
+ 1.2.1
97
+ Projective Model
98
+ We denote by F one of the real division algebras R, C, or Q. Let us write Fn+1 for a right F - vector space
99
+ of dimension n + 1. The F- projective space PFn is the manifold of right F-lines in Fn+1. Let π denote a
100
+ natural projection from Fn+1 \ {0} to the projective space PFn.
101
+ Let Fn,1 denote a (n + 1)-dimensional F-vector space equipped with a Hermitian form Ψ = ⟨−, −⟩ of
102
+ signature (n, 1). Then there exists a (right) basis in Fn+1 such that the Hermitian product is given by
103
+ ⟨v, w⟩ = v∗Jn+1w, where v∗ is the Hermitian transpose of v and Jn+1 = (aij) is the (n+1)×(n+1)-matrix
104
+ with aij = 0 for all i ̸= j, aii = 1 for all i = 1, . . . , n, and aii = −1 when i = n + 1.
105
+ That is,
106
+ ⟨v, w⟩ = ¯v1w1 + . . . + ¯vnwn − ¯vn+1wn+1,
107
+ where vi and wi are coordinates of v and w in this basis. We call such a basis in Fn,1 an orthogonal basis
108
+ defined by a Hermitian form Ψ = ⟨−, −⟩.
109
+ Let V−, V0, V+ be the subsets of Fn,1\{0} consisting of vectors where ⟨v, v⟩ is negative, zero, or positive
110
+ respectively. Vectors in V0 are called null or isotropic, vectors in V− are called negative, an vectors in V+
111
+ are called positive. Their projections to PFn are called isotropic, negative, and positive points respectively.
112
+ The projective model of hyperbolic space Hn
113
+ F is the set of negative points in PFn, that is, Hn
114
+ F = π(V−).
115
+ We will consider Hn
116
+ F equipped with the Bergman metric [9]:
117
+ d(p, q) = cosh−1{|Ψ(v, w)|[Ψ(v, v)Ψ(w, w)]−1/2},
118
+ where p, q ∈ Hn
119
+ F, and π(v) = p, π(w) = q.
120
+ The boundary ∂Hn
121
+ F = π(V0) of Hn
122
+ F is the sphere formed by all isotropic points.
123
+ Let U(n, 1; F) be the unitary group corresponding to this Hermitian form Φ. If g ∈ U(n, 1; F), then
124
+ g(V−) = V− and g(vλ) = (g(v))λ, for all λ ∈ F. Therefore U(n, 1; F) acts in PFn, leaving Hn
125
+ F invariant.
126
+ The group U(n, 1; F) does not act effectively in Hn
127
+ F. The kernel of this action is the center Z(n, 1; F).
128
+ Thus, the projective group PU(n, 1; F) = U(n, 1; F)/Z(n, 1; F) acts effectively. The center Z(n, 1, F) in
129
+ U(n, 1; F) is {±E} if F = R or Q, and is the circle group {λE : |λ| = 1} if F = C. Here E is the identity
130
+ transformation of Fn,1.
131
+ It is well-known, see for instance [9], that PU(n, 1; F) acts transitively in Hn
132
+ F and doubly transitively
133
+ on ∂Hn
134
+ F.
135
+ We remark that
136
+ • if F = R then Hn
137
+ F is a real hyperbolic space Hn
138
+ R,
139
+ 3
140
+
141
+ • if F = C then Hn
142
+ F is a complex hyperbolic space Hn
143
+ C,
144
+ • if F = Q then Hn
145
+ F is a quaternionic hyperbolic space Hn
146
+ Q.
147
+ It is easy to show [9] that H1
148
+ Q is isometric to H4
149
+ R.
150
+ 1.2.2
151
+ The ball model
152
+ In this section, we consider the space Fn,1 equipped by an orthogonal basis
153
+ e = {e1, . . . , en, en+1}.
154
+ For any v ∈ Fn,1, we write v = (z1, . . . , zn, zn+1), where zi, i = 1, . . . , n + 1 are coordinates of v in this
155
+ basis.
156
+ If v = (z1, . . . , zn, zn+1) ∈ V−, the condition ⟨v, v⟩ < 0 implies that zn+1 ̸= 0. Therefore, we may define
157
+ a set of coordinates w = (w1, . . . , wn) in Hn
158
+ F by wi(π(z)) = ziz−1
159
+ n+1. In this way Hn
160
+ F becomes identified with
161
+ the ball
162
+ B = B(F) = {w = (w1, . . . , wn) ∈ Fn : Σn
163
+ i=1|wi|2 < 1}.
164
+ With this identification the map π : V− → Hn
165
+ F has the coordinate representation π(z) = w, where
166
+ wi = ziz−1
167
+ n+1.
168
+ 1.2.3
169
+ Totally geodesic submanifolds
170
+ We will need the following result, see [9], which describes all totally geodesic submanifolds of Hn
171
+ F.
172
+ Let F be a subfield of F.
173
+ An F-unitary subspace of Fn,1 is an F-subspace of Fn+1 in which the
174
+ Hermitian form Φ is F-valued. An F-hyperbolic subspace of Fn,1 is an F-unitary subspace in which the
175
+ Hermitian form Φ is non-degenerate and indefinite.
176
+ Proposition 1.4 Let M be a totally geodesic submanifold of Hn
177
+ F. Then either
178
+ (a) M is the intersection of the projectivization of an F-hyperbolic subspace of Fn,1 with Hn
179
+ F for some
180
+ subfield F of F, or
181
+ (b) F = Q, and M is a 3-dimensional totally geodesic submanifold of a totally geodesic quaternionic
182
+ line H1
183
+ Q in Hn
184
+ Q.
185
+ From the last proposition follows that
186
+ • in the real hyperbolic space Hn
187
+ R any totally geodesic submanifold is isometric to Hk
188
+ R, k = 1, . . . , n,
189
+ • in the complex hyperbolic space Hn
190
+ C any totally geodesic submanifod is isometric to Hk
191
+ C, or to Hk
192
+ R,
193
+ k = 1, . . . , n,
194
+ • in the quaternionic hyperbolic space Hn
195
+ Q any totally geodesic submanifold is isometric to Hk
196
+ Q, or to
197
+ Hk
198
+ C, or to Hk
199
+ R, k = 1, . . . , n, or to a 3-dimensional totally geodesic submanifold of a totally geodesic
200
+ quaternionic line H1
201
+ Q.
202
+ In what follows we will use the following terminology:
203
+ 4
204
+
205
+ • A totally geodesic submanifold of Hn
206
+ Q isometric to H1
207
+ Q is called a quaternionic geodesic.
208
+ • A totally geodesic submanifold of Hn
209
+ Q isometric to H1
210
+ C is called a complex geodesic.
211
+ • A totally geodesic submanifold of Hn
212
+ Q isometric to H2
213
+ R is called a real plane.
214
+ It is clear that two distinct points in Hn
215
+ Q ∪ ∂Hn
216
+ F span a unique quaternionic geodesic. We also remark
217
+ that any 2-dimensional totally geodesic submanifold of a totally geodesic quaternionic line H1
218
+ Q is isometric
219
+ to H1
220
+ C.
221
+ Proposition 1.5 Let V be a subspace of Fn,1. Then each linear isometry of V into Fn,1 can be extended
222
+ to an element of U(n, 1; F).
223
+ This is a particular case of the Witt theorem, see [17].
224
+ Corollary 1.2 Let S ⊂ Hn
225
+ F be a totally geodesic submanifold. Then each linear isometry of S into Hn
226
+ F
227
+ can be extended to an element of the isometry group of Hn
228
+ F.
229
+ An interesting class of totally geodesic submanifolds of the quaternionic hyperbolic space Hn
230
+ Q are
231
+ submanifods which we call totally geodesic submanifolds of complex type, or simply, submanifolds of
232
+ complex type. Their construction is the following. Let Cn+1(a) ⊂ Qn+1 be the subset of vectors in Qn+1
233
+ with coordinates in C(a), where a is a imaginary quaternion, |a| = 1. Then Cn+1(a) is a vector space
234
+ over the field C(a). The projectivization of Cn+1(a), denoted by Mn(C(a)), is a projective submanifold
235
+ of PQn of real dimension 2n. We call this submanifold Mn(C(a)) a projective submanifold of complex
236
+ type of maximal dimension. It is clear that the space Cn+1(a) is indefinite. The intersection Mn(C(a))
237
+ with Hn
238
+ Q is a totally geodesic submanifold of Hn
239
+ Q, called a totally geodesic submanifold of complex type of
240
+ maximal dimension. It was proven in [9] that all these submanifolds are isometric, and, moreover, they
241
+ are globally equivalent with respect to the isometry group of Hn
242
+ Q, that is, for any two such submanifolds M
243
+ and N there exists an element g ∈ PU(n, 1; Q) such that M = g(N). In particular, all of them are globally
244
+ equivalent with respect to PU(n, 1; Q) to the canonical totally geodesic complex submanifold Hn
245
+ C defined
246
+ by Cn+1 ⊂ Qn+1. This corresponds to the canonical subfield of complex numbers C = C(i) ⊂ Q in the
247
+ above.
248
+ If V k+1 ⊆ Cn+1(a) is a subspace of complex dimension k + 1, then its projectivization W is called a
249
+ projective submanifold of complex type of complex dimension k. When V k+1 ⊆ Cn+1, then its projec-
250
+ tivization W is called a canonical projective submanifold of complex type of complex dimension k In this
251
+ case, we will denote W as PCk.
252
+ If V k+1 ⊆ Cn+1(a) is indefinite, then the intersection of its projectivization with Hn
253
+ Q is a totally
254
+ geodesic submanifold of Hn
255
+ Q. We call this submanifold of Hn
256
+ Q a totally geodesic submanifold of complex
257
+ type of complex dimension k. When V k+1 ⊆ Cn+1, we call this totally geodesic submanifold a canonical
258
+ totally geodesic submanifold of complex type of complex dimension k, or a canonical complex hyperbolic
259
+ submanifold of dimension k of Hn
260
+ Q. In this case, we will denote this submanifold as Hk
261
+ C.
262
+ 1.2.4
263
+ A little more about the isometry group of the quaternionic hyperbolic space
264
+ Let us consider the complex hyperbolic space Hn
265
+ C.
266
+ It has a natural complex structure related to its
267
+ isometry group, and the isometry group of Hn
268
+ Q is generated by the holomorphic isometry group, which is
269
+ the projective group PU(n, 1; C), and the anti-holomorphic isometry σ induced by complex conjugation
270
+ in Cn+1. This anti-holomorphic isometry corresponds to the unique non-trivial automorphism of the field
271
+ of complex numbers. Below we consider a similar isometry of quaternionic hyperbolic space Hn
272
+ Q.
273
+ 5
274
+
275
+ We recall that if f : Q → Q is an automorphism of Q, then f is an inner automorphism of Q, that is,
276
+ f(q) = aqa−1 for some a ∈ Q, a ̸= 0.
277
+ It follows from the fundamental theorem of projective geometry, see [2], that each projective map
278
+ L : PQn → PQn is induced by a semilinear or linear map ˜L : Qn+1 → Qn+1.
279
+ It is easy to see that if a projective map
280
+ L : PQn → PQn
281
+ is induced by a semilinear map
282
+ ˜L : Qn+1 → Qn+1, ˜L(v) = ava−1, v ∈ Qn+1, a ∈ Q \ R,
283
+ then it is also induced by a linear map v �→ av.
284
+ Therefore, the projective group of PQn is the projectivization of the linear group of Qn+1.
285
+ This implies that if
286
+ L : Hn
287
+ Q → Hn
288
+ Q
289
+ is an isometry, then L is induced by a linear isometry
290
+ ˜L : Qn,1 → Qn,1.
291
+ This explains why the group of all isometries of Hn
292
+ Q is the projectivization of the linear group U(n, 1; Q),
293
+ that is, PU(n, 1; Q).
294
+ Next we consider a curious map, which is an isometry of the quaternionic hyperbolic space, that has
295
+ no analogue in geometries over commutative fields. Let ˜La : v �→ av, v ∈ Qn+1, a ∈ Q, a is not real.
296
+ The projectivization of this linear map defines a non-trivial map La : PQn → PQn. We remark that in
297
+ projective spaces over commutative fields this map La is identity. It easy to see that ˜La ∈ U(n, 1; Q) if
298
+ and only if |a| = 1, so La in PU(n, 1; Q) if and only if |a| = 1.
299
+ Proposition 1.6 Let a ∈ Q\R, |a| = 1. Then the fixed point set Sa of La is a totally geodesic submanifold
300
+ of complex type of maximal dimension in Hn
301
+ Q. This submanifold is globally equivalent to the canonical
302
+ complex hyperbolic submanifold Hn
303
+ C of Hn
304
+ Q.
305
+ Proof: The proof follows from Proposition 1.3.
306
+ It is easy to see that if a is imaginary, then La is an involution. We call this isometry La a geodesic
307
+ reflection in Sa.
308
+ 2
309
+ Moduli of triples of points in quaternionic projective space
310
+ In this section, we describe numerical invariants associated to an ordered triple of points in PQn which
311
+ define the equivalence class of a triple relative to the diagonal action of PU(n, 1; Q).
312
+ 6
313
+
314
+ 2.1
315
+ The Gram matrix
316
+ Let p = (p1, . . . , pm) be an ordered m-tuple of distinct points in PQn of quaternionic dimension n ≥ 1.
317
+ Then we consider a Hermitian quaternionic m × m-matrix
318
+ G = G(p, v) = (gij) = (⟨vi, vj⟩),
319
+ where v = (v1, . . . , vm), vi ∈ Qn,1, π(vi) = pi, is a lift of p.
320
+ We call G a Gram matrix associated to a m-tuple p defined by v. Of course, G depends on the chosen
321
+ lifts vi. When replacing vi by viλi, λi ∈ Q, λi ̸= 0, we get ˜G = D∗ GD, where D is a diagonal quaternionic
322
+ matrix, D = diag(λ1, . . . , λm),
323
+ We say that two Hermitian quaternionic m × m - matrices H and ˜H are equivalent if there exists a
324
+ diagonal quaternionic matrix D = diag(λ1, . . . , λm), λi ̸= 0, such that ˜H = D∗ H D.
325
+ Thus, to each ordered m-tuple p of distinct points in PQn is associated an equivalence class of Hermitian
326
+ quaternionic m × m - matrices.
327
+ Proposition 2.1 Let p = (p1, · · · , pm) be an ordered m-tuple of distinct negative points in PQn. Then
328
+ the equivalence class of Gram matrices associated to p contains a matrix G = (gij) such that gii = −1 and
329
+ g1j = r1j are real positive numbers for j = 2, . . . , m.
330
+ Proof: Let v = (v1, . . . , vm) be a lift of p. Since the vectors vi are negative, we have that gij ̸= 0
331
+ for all i, j = 1, . . . , m, see, for instance, [17].
332
+ First, by appropriate re-scaling, we may assume that
333
+ gii = ⟨vi, vi⟩ = −1. Indeed, since ⟨vi, vi⟩ < 0, then λi = 1/
334
+
335
+ −⟨vi, vi⟩ is well defined. Since λi ∈ R, we
336
+ have that
337
+ ⟨viλi, viλi⟩ = λ2
338
+ i ⟨vi, vi⟩ = ⟨vi, vi⟩/|⟨vi, vi⟩| = −1.
339
+ Then we get the result we need by replacing the vectors vi, i = 2, . . . , m, if necessarily, by viλi, where
340
+ λi = ⟨v1, vi⟩/|⟨v1, vi⟩|.
341
+ Indeed, since |λi| = 1, we have that ⟨viλi, viλi⟩ = −1, i = 2, . . . , m. On the other hand, for all i > 1
342
+ ⟨v1, viλi⟩ = ⟨v1, vi⟩λi = |⟨v1, vi⟩| > 0.
343
+ Let p and q be two points in PQn. We say that p and q are orthogonal if ⟨v, w⟩ = 0 for some lifts v
344
+ and w of p and q respectively. It is clear that if p and q are orthogonal then ⟨v, w⟩ = 0 for all lifts v and
345
+ w of p and q.
346
+ Let p = (p1, . . . , pm) be an ordered m-tuple of distinct points in PQn. We call p generic if pi and pj
347
+ are not orthogonal for all i, j = 1, . . . , m, i ̸= j.
348
+ Let G = (gij) be a Gram matrix associated to p. Then p is generic if and only if gij ̸= 0 for all
349
+ i, j = 1, . . . , m, i ̸= j.
350
+ Proposition 2.2 Let p = (p1, · · · , pm) be an ordered generic m-tuple of distinct positive points in PQn.
351
+ Then the equivalence class of Gram matrices associated to p contains a matrix G = (gij) such that gii = 1
352
+ and g1j = r1j are real positive numbers for j = 2, . . . , m.
353
+ 7
354
+
355
+ Proof: The proof is a slight modification of the proof of Proposition 2.1.
356
+ It is easy to see that a matrix G = (gij) defined in Propositions 2.1 and 2.2 is unique. We call this
357
+ matrix G a normal form of the associated Gram matrix. Also, we call G the normalized Gram matrix.
358
+ We recall that a subspace V ⊂ Fn,1 is called singular or degenerate if it contains at least one non-zero
359
+ vector that is orthogonal to all vectors in V . Otherwise, V is called regular.
360
+ Remark 2.1 It is easy to see that if V is singular then V contains at least one isotropic vector and does
361
+ not contain negative vectors.
362
+ Lemma 2.1 Let V = {v1, . . . , vm} and W = {w1, . . . , wm} be two subspaces of Qn,1 spanned by vi and wi.
363
+ Suppose that V and W are regular, and ⟨vi, vj⟩ = ⟨wi, wj⟩, for all i, j = 1, . . . m. Then the correspondence
364
+ vi �→ wi can be extended to an isometry of Qn,1.
365
+ Proof: The proof follows from Theorem 1 in [14].
366
+ Proposition 2.3 Let p = (p1, . . . , pm) and p′ = (p′
367
+ 1, . . . , p′
368
+ m) be two ordered m-tuples of distinct negative
369
+ points in PQn. Then p and p′ are congruent relative to the diagonal action of PU(n, 1; Q) if and only if
370
+ their associated Gram matrices are equivalent.
371
+ Proof: Let V and V ′ be the subspaces spanned by vi and v′
372
+ i, i = 1, . . . , m. Then it is clear that V and
373
+ V ′ are regular. Since all the points pi are distinct, Lemma 2.1 implies that the map defined by v �→ v′
374
+ extends to a linear isometry of Qn,1. The projectivization of this isometry maps p in p′.
375
+ Corollary 2.1 Let p = (p1, . . . , pm) and p′ = (p′
376
+ 1, . . . , p′
377
+ m) be two ordered m-tuples of distinct negative
378
+ points in PQn. Then p and p′ are congruent relative to the diagonal action of PU(n, 1; Q) if and only if
379
+ their normalized Gram matrices are equal.
380
+ By applying the similar arguments, we get the following
381
+ Proposition 2.4 Let p = (p1, . . . , pm) and p′ = (p′
382
+ 1, . . . , p′
383
+ m) be two ordered generic m-tuples of distinct
384
+ positive points in PQn such that the subspaces V and V ′ spanned by some lifts of p and p′ are regular.
385
+ Then p and p′ are congruent relative to the diagonal action of PU(n, 1; Q) if only if their associated Gram
386
+ matrices are equivalent.
387
+ Corollary 2.2 Let p = (p1, . . . , pm) and p′ = (p′
388
+ 1, . . . , p′
389
+ m) be two ordered generic m-tuples of distinct
390
+ positive points in PQn such that the subspaces V and V ′ spanned by some lifts of p and p′ are regular.
391
+ Then p and p′ are congruent relative to the diagonal action of PU(n, 1; Q) if and only if their normalized
392
+ Gram matrices are equal.
393
+ Remark 2.2 It is easy to see that a subspace V in Qn,1 is singular if and only if its projectivization is
394
+ a projective submanifold of PQn tangent to ∂Hn
395
+ Q at an unique isotropic point p, lying, except this point p,
396
+ in the positive part of PQn.
397
+ 2.2
398
+ Invariants of triangles in quaternionic hyperbolic geometry
399
+ In this section, we define some invariants of ordered triples of points in PQn which generalize Cartan’s
400
+ angular invariant and Brehm’s shape invariants in complex hyperbolic geometry to quaternionic hyperbolic
401
+ geometry.
402
+ 8
403
+
404
+ 2.2.1
405
+ Quaternionic Cartan’s angular invariant
406
+ First, we recall the definition of Cartan’ s angular invariant in complex hyperbolic geometry.
407
+ Let p = (p1, p2, p3) be an ordered triple of points in ∂Hn
408
+ C. Then Cartan’s invariant A(p) of p is defined
409
+ as
410
+ A(p) = arg(−⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩),
411
+ where vi is a lift of pi.
412
+ It is easy to see that A(p) is well-defined, that is, it is independent of the chosen lifts, and it satisfies
413
+ the inequality
414
+ −π/2 ≤ A(p) ≤ π/2.
415
+ The inequalities above follow from the following proposition, see [13].
416
+ Proposition 2.5 Let v, w, u ∈ C2,1 be isotropic or negative vectors, then
417
+ Re(⟨v, w⟩⟨w, u⟩⟨u, v⟩) ≤ 0.
418
+ Remark 2.3 It is possible to extend the Cartan invariant of triples of isotropic points to triples of points
419
+ in Hn
420
+ C ∪ ∂Hn
421
+ C. Indeed, no difficulty arises in the above definition because ⟨v, w⟩ ̸= 0 for any v, w ∈ V0 ∪ V−.
422
+ Cartan’s invariant is the only invariant of an ordered triple of isotropic points in the following sense:
423
+ Proposition 2.6 Let p = (p1, p2, p3) and p′ = (p′
424
+ 1, p′
425
+ 2, p′
426
+ 3) be two ordered triples of distinct points in ∂Hn
427
+ C.
428
+ Then p and p′ are congruent relative to the diagonal action of PU(n, 1; C) if and only if A(p) = A(p′).
429
+ The Cartan angular invariant A enjoys also the following properties, see [13]:
430
+ 1. If σ is a permutation, then
431
+ A(pσ(1), pσ(2), pσ(3)) = sign(σ)A(p1, p2, p3),
432
+ 2. Let p = (p1, p2, p3) be an ordered triple of points in ∂Hn
433
+ C. Then p lies in the boundary of a complex
434
+ geodesic in Hn
435
+ C if and only if A(p) = ±π/2,
436
+ 3. Let p = (p1, p2, p3) be an ordered triple of points in ∂Hn
437
+ C. Then p lies in the boundary of a real plane
438
+ in Hn
439
+ C if and only if A(p) = 0,
440
+ 4. Cocycle property. Let p1, p2, p3, p4 be points in Hn
441
+ C ∪ ∂Hn
442
+ C. Then
443
+ A(p1, p2, p3) + A(p1, p3, p4) = A(p1, p2, p4) + A(p2, p3, p4).
444
+ 5. If g ∈ PU(n, 1; C) is a holomorphic isometry, then A(g(p)) = A(p), and if g is an anti-holomorphic
445
+ isometry, then A(g(p)) = −A(p).
446
+ Next we define Cartan’s angular invariant in quaternionic hyperbolic geometry.
447
+ Let v = (v1, v2, v3) be an ordered triple of vectors in Qn,1. Then
448
+ H(v1, v2, v3) = ⟨v1, v2, v3⟩ = ⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩
449
+ is called the Hermitian triple product. An easy computation gives the following.
450
+ 9
451
+
452
+ Lemma 2.2 Let wi = viλi, λi ∈ Q, λi ̸= 0, then
453
+ H(w1, w2, w3) = ⟨w1, w2, w3⟩ = λ1H(v1, v2, v3)λ1|λ2|2|λ3|2 =
454
+ λ1
455
+ |λ1|H(v1, v2, v3) λ1
456
+ |λ1||λ1|2|λ2|2|λ3|2.
457
+ Corollary 2.3 Let p = (p1, p2, p3) be an ordered triple of distinct points, pi ∈ PQn. Then there exists a
458
+ lift v = (v1, v2, v3) of p = (p1, p2, p3) such that H(v1, v2, v3) is a complex number.
459
+ Proof: The proof follows by applying Lemma 2.2, Proposition 1.1.
460
+ The historically first definition of Cartan’s angular invariant in quaternionic hyperbolic geometry was
461
+ given in [1]. In this paper, the authors defined the quaternionic Cartan angular invariant
462
+ A(p) = A(p1, p2, p3)
463
+ of an ordered triple p = (p1, p2, p3) of distinct points, pi ∈ Hn
464
+ Q ∪ ∂Hn
465
+ Q, to be the angle between the
466
+ quaternion H(v1, v2, v3) and the real line R ⊂ Q, where vi is a lift of pi.
467
+ They proved that A(p) does not depend on the chosen lifts, and it is the only invariant of a triple of
468
+ isotropic points in the above sense.
469
+ Next, we represent a convenient formula to compute A(p).
470
+ Let p = (p1, p2, p3) be an ordered triple of distinct points, pi ∈ Hn
471
+ Q ∪ ∂Hn
472
+ Q, and v = (v1, v2, v3) be a lift
473
+ of p = (p1, p2, p3). Then it follows from Proposition 1.1 and Lemma 2.2 that
474
+ A∗(p) = arccos(−Re( H(v1, v2, v3))
475
+ |H(v1, v2, v3)|
476
+ )
477
+ does not depend on the chosen lifts vi.
478
+ Proposition 2.7 A(p) = A∗(p).
479
+ Proof: The proof follows from an easy computation.
480
+ The quaternionic Cartan angular invariant A(p) = A(p1, p2, p3) introduced above enjoys the following
481
+ properties, see [1]:
482
+ 1. 0 ≤ A(p) ≤ π/2,
483
+ 2. If σ is a permutation, then
484
+ A(pσ(1), pσ(2), pσ(3)) = A(p1, p2, p3),
485
+ 3. Let p = (p1, p2, p3) be an ordered triple of points in ∂Hn
486
+ Q.
487
+ Then p lies in the boundary of a
488
+ quaternionic geodesic in Hn
489
+ Q if and only if A(p) = π/2,
490
+ 4. Let p = (p1, p2, p3) be an ordered triple of points in ∂Hn
491
+ Q. Then p lies in the boundary of a real plane
492
+ in Hn
493
+ Q if and only if A(p) = 0.
494
+ 10
495
+
496
+ It is seen that this quaternionic Cartan angular invariant, in contrast to the Cartan angular invariant
497
+ in complex hyperbolic geometry, is non-negative, symmetric, and one can show that it does not enjoy the
498
+ cocycle property. We think that the definition of the Cartan angular invariant in quaternionic hyperbolic
499
+ geometry given above does not explain well its relation with the classical Cartan angular invariant in
500
+ complex hyperbolic geometry. In what follows, we discuss another possible definitions of quaternionic
501
+ Cartan’s angular invariant and explain why the quaternionic Cartan angular invariant must be non-
502
+ negative and symmetric.
503
+ We start with the following simple fact which has a far reaching consequence for the construction of
504
+ invariants of triples in quaternionic hyperbolic geometry. We think that this may also help for defining of
505
+ invariants of triples in other hyperbolic geometries, for instance, in the hyperbolic octonionic plane.
506
+ Proposition 2.8 Let p = (p1, p2, p3) be an ordered triple of distinct points, pi ∈ PQn. Then there exists
507
+ a projective submanifold W ⊂ PQn of complex type of complex dimension 2 passing through the points pi,
508
+ that is, pi ∈ W, i = 1, 2, 3. Moreover, this submanifold W can be chosen, up to the action of PU(n, 1; Q),
509
+ to be the canonical complex submanifold PC2 ⊂ PQn.
510
+ Proof: Let p = (p1, p2, p3) be an ordered triple of distinct points, pi ∈ PQn, and v = (v1, v2, v3) be a lift
511
+ of p = (p1, p2, p3).
512
+ First, let us suppose that pi and pj are not orthogonal, for all i ̸= j. Consider
513
+ H(v1, v2, v3) = ⟨v1, v2, v3⟩ = ⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩.
514
+ It follows from Corollary 2.3 and Lemma 2.2 that there exists λ1 such that H(v1λ1, v2, v3) is a complex
515
+ number. Let us fix this λ1, and let w1 = v1λ1. Then it follows from Lemma 2.2 that H(w1, v2, v3) is a
516
+ complex number for any lifts of p2 and p3. Let now λ2 = ⟨v2, w1⟩, w2 = v2λ2. We have that ⟨w1, w2⟩
517
+ is real. Setting λ3 = ⟨v3, w1⟩ and w3 = v3λ3, we have that ⟨w3, w1⟩ is real. Since H(w1, w2, w3) ∈ C,
518
+ it follows that ⟨w2, w3⟩ ∈ C. Therefore for this normalizarion all Hermitian products are complex. This
519
+ implies that the complex span of w1, w2, w3 is C- unitary subspace of Qn,1 of dimension 3, see Section
520
+ 1.2.3, and, therefore, the points p1, p2, p3 lie in a projective submanifold W ⊂ PQn of complex type of
521
+ complex dimension 2.
522
+ Now let us suppose that the set {p1, p2, p3} contains orthogonal points. Assume, for example, that
523
+ p1 and p2 are orthogonal, that is, ⟨v1, v2⟩ = 0, where v1 and v2 are lifts of p1 and p2.
524
+ Let v3 be a
525
+ lift of p3. Setting λ1 = ⟨v1, v3⟩, λ2 = ⟨v2, v3⟩, and w1 = v1λ1, w2 = v2λ2, w3 = v3, we have that all
526
+ Hermitian products are real. It follows that the complex span of w1, w2, w3 is C- unitary subspace of Qn,1
527
+ of dimension 3, and, therefore, the points p1, p2, p3 lie in a projective submanifold W ⊂ PQn of complex
528
+ type of complex dimension 2. The rest follows from the results of Section 1.2.3.
529
+ Corollary 2.4 Let p = (p1, p2, p3) be a triple of distinct negative points, pi ∈ Hn
530
+ Q. Then p lies in a totally
531
+ geodesic submanifold of Hn
532
+ Q of complex type of complex dimension 2.
533
+ Corollary 2.5 Let p = (p1, p2, p3) be a triple of distinct isotropic points, pi ∈ ∂Hn
534
+ Q. Then p lies in the
535
+ boundary of a totally geodesic submanifold of Hn
536
+ Q of complex type of complex dimension 2.
537
+ These results show that geometry of triples of points in PQn is, in fact, geometry of triples of points in
538
+ PC2. Therefore, all the invariants of triples of points in PQn relative to the diagonal action of PU(n, 1; Q)
539
+ can be constructed using 2-dimensional complex hyperbolic geometry.
540
+ First, we give a new definition of the Cartan angular invariant in quaternionic hyperbolic geometry.
541
+ Let p = (p1, p2, p3) be an ordered triple of distinct isotropic points, pi ∈ ∂Hn
542
+ Q. By Corollary 2.5, we
543
+ have that p lies in the boundary of a totally geodesic submanifold M of Hn
544
+ Q of complex type of complex
545
+ 11
546
+
547
+ dimension 2. We know that M is the projectivization of negative vectors in a 3-dimensional complex
548
+ subspace V 3 of Cn,1, Cn,1 ⊂ Qn,1, and the boundary of H2
549
+ C is the projectivization of isotropic vectors in
550
+ V 3.
551
+ Let v = (v1, v2, v3) be a lift of p = (p1, p2, p3). Then vi ∈ V 3. We define
552
+ A∗∗ = A∗∗(p) = arg(−⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩).
553
+ Now we briefly explain how to use this invariant to classify ordered triples of isotropic points relative
554
+ to the diagonal action of PU(n, 1; Q).
555
+ Let p = (p1, p2, p3) and p′ = (p′
556
+ 1, p′
557
+ 2, p′
558
+ 3) be two ordered triples of distinct points in ∂Hn
559
+ Q. Suppose that
560
+ A∗∗(p) = A∗∗(p′). We will show that p and p′ are equivalent relative to the action of PU(n, 1; Q).
561
+ By Corollary 2.5, we have that p is contained in the boundary of a totally geodesic submanifold M(p)
562
+ of Hn
563
+ Q of complex type of complex dimension 2. Also the same is true for p′, where p′ ∈ ∂M(p′). We
564
+ know, see Section 1.2.3, that all such submanifolds are equivalent relative to the action of PU(n, 1; Q),
565
+ therefore, there exists an element f ∈ PU(n, 1; Q) such that f(M(p)) = M(p′). So, we can assume without
566
+ loss of generality that p and p′ are in the boundary of the same submanifold M = H2
567
+ C ⊂ Hn
568
+ Q. Then, by
569
+ applying the classical result of Cartan, we have that there exists a complex hyperbolic isometry g of M,
570
+ g ∈ PU(2, 1; C), such that g(p) = p′. This isometry g can be extended to an element of PU(n, 1; Q) by the
571
+ Witt theorem. This proves that p and p′ are equivalent relative the action of PU(n, 1; Q).
572
+ Next we show why it is more convenient to consider quaternionic Cartan’s angular invariant to be
573
+ symmetric and non-negative (non-positive)
574
+ We need the following lemma, see Lemma 7.1.7 in [13].
575
+ Lemma 2.3 Let p = (p1, p2, p3) be an ordered triples of distinct points in ∂H2
576
+ C. Then there exists a real
577
+ plane P ⊂ H2
578
+ C such that inversion (reflection) ip in P satisfies
579
+ iP (p1) = p2,
580
+ iP (p2) = p1,
581
+ iP (p3) = p3.
582
+ Remark 2.4 We recall that iP is an anti-holomorphic isometry of H2
583
+ C and
584
+ A(p2, p1p3) = −A(p1, p2, p3).
585
+ Also, as it is easy to see that any anti-holomorphic isometry of H2
586
+ C is a composition of an element of
587
+ PU(2, 1; C) and an anti-holomorphic reflection.
588
+ Proposition 2.9 Let p = (p1, p2, p3) be an ordered triples of distinct points in ∂Hn
589
+ Q, n > 1. Then there
590
+ exists an element f ∈ PU(n, 1; Q) such that
591
+ f(p1) = p2,
592
+ f(p2) = p1,
593
+ f(p3) = p3.
594
+ Proof: Repeating the arguments above, we can assume that p is in the boundary of the M = H2
595
+ C ⊂ Hn
596
+ Q.
597
+ Let P ⊂ M = H2
598
+ C be a real plane and iP be the reflection in P acting in M as in Lemma 2.3. We will
599
+ show that this map can be extended to an isometry of Hn
600
+ Q. Notice that iP as a map of M is not induced
601
+ by a linear map, it is induced by a semilinear map, therefore, we cannot apply the Witt theorem in this
602
+ case.
603
+ Let K be a totally geodesic submanifold of Hn
604
+ Q isometric to H2
605
+ Q which contains M. An easy argument
606
+ shows that there exists a totally geodesic submanifold N of complex type of complex dimension 2 in K
607
+ intersecting M orthogonally along P. Let iN be the geodesic reflection in N. We have that iN is an
608
+ 12
609
+
610
+ element of the isometry group of K, isomorphic to PU(2, 1; C), whose fixed point set is N. We notice that
611
+ iN is induced by a linear map, therefore, it follows from the Witt theorem that iN can be extended to
612
+ an isometry f in PU(n, 1; Q). Note that by construction f leaves M invariant and its restriction to M
613
+ coincides with iP . Therefore, f(p1, p2, p3) = (p2, p1, p3). It is easy to see that the fixed point set of f in
614
+ Hn
615
+ Q is a totally geodesic submanifold of complex type of maximal dimension in Hn
616
+ Q. This submanifold is
617
+ globally equivalent to the canonical submanifold Hn
618
+ C ⊂ Hn
619
+ Q.
620
+ Corollary 2.6 Let p = (p1, p2, p3) and p′ = (p′
621
+ 1, p′
622
+ 2, p′
623
+ 3) be two ordered triples of distinct points in
624
+ ∂Hn
625
+ Q.
626
+ Suppose that A∗∗(p) = −A∗∗(p′).
627
+ Then p and p′ are equivalent relative to the diagonal action
628
+ of PU(n, 1; Q).
629
+ Remark 2.5 This imply that if for two ordered triples of distinct isotropic points p = (p1, p2, p3) and
630
+ p′ = (p′
631
+ 1, p′
632
+ 2, p′
633
+ 3) we have that |A∗∗(p)| = |A∗∗(p′)|, then p is equivalent to p′ relative to the diagonal action
634
+ of group PU(n, 1; Q). Therefore, it is natural to consider instead of A∗∗ its absolute value. Then the
635
+ invariant |A∗∗| lies in the interval [0, π/2] and is symmetric.
636
+ Corollary 2.7 |A∗∗| = A∗.
637
+ 2.2.2
638
+ Quaternionic Brehm’s invariants
639
+ First, we recall the definition of the Brehm shape invariants in complex hyperbolic geometry.
640
+ Let p = (p1, p2, p3) be an ordered triple of distinct points in Hn
641
+ C and v = (v1, v2, v3) be a lift of
642
+ p = (p1, p2, p3).
643
+ Brehm [4] defined the invariant which he called the shape invariant, or σ - invariant:
644
+ σ(p) = Re⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩
645
+ ⟨v1, v1⟩⟨v2, v2⟩⟨v3, v3⟩.
646
+ It is easy to check that σ(p) is well- defined, that is, it does not depend on the chosen lifts, and it is
647
+ invariant relative the diagonal action of the full isometry group of Hn
648
+ C.
649
+ We consider {p1, p2, p3} as the vertices of a triangle in hyperbolic space Hn
650
+ C. Brehm [4] showed that
651
+ the side lengths and the shape invariant are independent and characterize the triangle up to isometry.
652
+ Now let p = (p1, p2, p3) be an ordered triple of distinct points in Hn
653
+ Q, and v = (v1, v2, v3) be a lift of
654
+ p = (p1, p2, p3).
655
+ It is easy to check that if wi = viλi, then
656
+ ⟨w1, w2⟩⟨w2, w3⟩⟨w3, w1⟩(⟨w1, w1⟩⟨w2, w2⟩⟨w3, w3⟩)−1 =
657
+ λ1
658
+ |λ1|⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩(⟨v1, v1⟩⟨v2, v2⟩⟨v3, v3⟩)−1 λ1
659
+ |λ1|.
660
+ This formula and Proposition 1.1 imply that
661
+ σ∗(p) = −Re(⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩[⟨v1, v1⟩⟨v2, v2⟩⟨v3, v3⟩]−1)
662
+ is independent of the chosen lifts. Also, it is clear, that σ∗(p) is invariant relative to the diagonal action
663
+ of PU(n, 1; Q).
664
+ We call this number σ∗(p) the quaternionic σ-shape invariant.
665
+ 13
666
+
667
+ Proposition 2.10 σ∗(p) ≥ 0.
668
+ Proof: By applying Corollary 2.4, we can assume that p lies in M = H2
669
+ C ⊂ Hn
670
+ Q. Then the result follows
671
+ from Proposition2.5.
672
+ As the first application of the results above, we have the following.
673
+ Theorem 2.1 A triangle in Hn
674
+ Q is determined uniquely up to the action of PU(n, 1; Q) by its three side
675
+ lengths and its quaternionic σ-shape invariant σ∗.
676
+ Proof: Let p = (p1, p2, p3) be an ordered triple of distinct points in Hn
677
+ Q. By applying Corollary 2.4, we
678
+ may assume that p lies in M = H2
679
+ C ⊂ Hn
680
+ Q. Then the result follows from Proposition 2.3 and results in [4].
681
+ In [5], Brehm and Et-Taoui introduced another invariant in complex hyperbolic geometry which they
682
+ called the direct shape invariant, or, τ-invariant. Below, we recall the definition of this invariant.
683
+ Let p = (p1, p2, p3) be an ordered triple of distinct points in Hn
684
+ C and v = (v1, v2, v3) be a lift of
685
+ p = (p1, p2, p3). Then the direct shape invariant is defined to be
686
+ τ = τ(p) = H(v1, v2, v3)
687
+ |H(v1, v2, v3)|.
688
+ It is easy to check that τ(p) is independent of the chosen lifts. Also, it was proved in [5] that two trian-
689
+ gles Hn
690
+ C are equivalent relative to the diagonal action of PU(n, 1; C) if and only if the three corresponding
691
+ edge lengths and the direct shape invariant τ of the two triangles coincide.
692
+ Remark 2.6 Note that the σ-shape invariant is symmetric, but for the τ-shape invariant we have that
693
+ τ(p2, p1, p3) = τ(p1, p2, p3). This implies that the σ-shape invariant (with the side lengths) describes trian-
694
+ gles up to the full isometry group of complex hyperbolic space (which includes anti-holomorphic isometries),
695
+ but τ-shape invariant (with the side lengths) describes triangles up to the group of holomorphic isometries
696
+ PU(n, 1; C).
697
+ Now we define an analogue of τ-shape invariant in quaternionic hyperbolic geometry. We start with
698
+ the following lemma whose proof is based on a direct computation.
699
+ Lemma 2.4 Let p = (p1, p2, p3) be an ordered triple of distinct points in Hn
700
+ Q and v = (v1, v2, v3) be a lift
701
+ of p = (p1, p2, p3). Let wi = viλi, λi ∈ Q, λi ̸= 0, then
702
+ H(w1, w2, w3)|H(w1, w2, w3)|−1 =
703
+ λ1
704
+ |λ1|H(v1, v2, v3)|H(v1, v2, v3)|−1 λ1
705
+ |λ1|.
706
+ It is easy to see that H(w1, w2, w3)|H(w1, w2, w3)|−1 is similar to H(v1, v2, v3)|H(v1, v2, v3)|−1 for any
707
+ λi ∈ Q, λi ̸= 0. Moreover, this similarity class contains a complex number, unique up to conjugation, see
708
+ Proposition 1.1.
709
+ Let τ ∗(p) denote a unique complex number with non-negative imaginary part in this similarity class.
710
+ We define the quaternionic τ-shape invariant to be τ∗ = τ∗(p). It is clear that τ ∗(p) does not depend
711
+ on the chosen lifts.
712
+ 14
713
+
714
+ Proposition 2.11 Let p = (p1, p2, p3) and p′ = (p′
715
+ 1, p′
716
+ 2, p′
717
+ 3) be two ordered triples of distinct points in Hn
718
+ Q.
719
+ Then these two triangles are equivalent relative to the diagonal action of PU(n, 1; Q) if and only if the
720
+ three corresponding edge lengths and the quaternionic τ-shape invariant τ∗ of the two triangles coincide.
721
+ Proof: By applying Corollary 2.4, we may assume that p and p′ are in M = H2
722
+ C ⊂ Hn
723
+ Q Then the result
724
+ follows from Proposition 2.3.
725
+ 2.3
726
+ Moduli of triples of positive points
727
+ In this section, we describe the invariants associated to an ordered triple of positive points in PQn which
728
+ define the equivalence class of the triple relative to the diagonal action of PU(n, 1; Q).
729
+ First, we show how positive points in PQn are related to totally geodesic submanifolds in Hn
730
+ Q isometric
731
+ to Hn−1
732
+ Q
733
+ . We call such submanifolds of Hn
734
+ Q totally geodesic quaternionic hyperplanes in Hn
735
+ Q.
736
+ We recall that π denotes a natural projection from Qn+1 \ {0} to the projective space PQn.
737
+ If H ⊂ Hn
738
+ Q is a totally geodesic quaternionic hyperplane, then H = π( ˜H) ∩ Hn
739
+ Q, where ˜H ⊂ Qn,1 is
740
+ a quaternionic linear hyperplane. Let ˜H⊥ denote the orthogonal complement of ˜H in Qn,1 with respect
741
+ to the Hermitian form Φ. Then ˜H⊥ is a positive quaternionic line, and π( ˜H⊥) is a positive point in
742
+ PQn. Thus, the totally geodesic quaternionic hyperplanes in Hn
743
+ Q bijectively correspond to positive points.
744
+ We call p = π( ˜H⊥) the polar point of a totally geodesic quaternionic hyperplane H. So, the invariants
745
+ associated to an ordered triple of positive points in PQn are invariants of an ordered triple of totally
746
+ geodesic quaternionic hyperplane in Hn
747
+ Q.
748
+ Let H1 and H2 be distinct totally geodesic quaternionic hyperplanes in Hn
749
+ Q and p1, p2 be their polar
750
+ points. Let v1 and v2 in Qn,1 be their lifts. Then we define
751
+ d(H1, H2) = d(p1, p2) = ⟨v1, v2⟩⟨v2, v1⟩
752
+ ⟨v1, v1⟩⟨v2, v2⟩.
753
+ It is easy to see that d(H1, H2) is independent of the chosen lifts of p1, p2, and that d(H1, H2) is invariant
754
+ with respect to the diagonal action of PU(n, 1; Q).
755
+ There is no accepted name for this invariant in the literature. It is not difficult to show using standard
756
+ arguments that the distance or the angle between H1 and H2 is given in terms of d(H1, H2), (see, for
757
+ instance, the Goldman [13] for the case of complex hyperbolic geometry). So, we will call this invariant
758
+ d(H1, H2) the distance-angular invariant or, simply, d-invariant.
759
+ Also, it is easy to see that:
760
+ • H1 and H2 are concurrent if and only if d(H1, H2) < 1,
761
+ • H1 and H2 are asymptotic if and only if d(H1, H2) = 1,
762
+ • H1 and H2 are ultra-parallel if and only if d(H1, H2) > 1.
763
+ Moreover, d(H1, H2) is the only invariant of an ordered pair of totally geodesic quaternionic hyperplanes
764
+ in Hn
765
+ Q. We have also that the angle θ between H1 and H2 (in the case d(H1, H2) < 1) is given by
766
+ cos2(θ) = d(H1, H2),
767
+ and the distance ρ between H1 and H2 (in the case d(H1, H2) ≥ 1) is given by
768
+ cosh2(ρ) = d(H1, H2)
769
+ 15
770
+
771
+ .
772
+ We remark that 0 < θ ≤ π/2.
773
+ We say that H1 and H2 are orthogonal if θ = π/2, this is equivalent to the equality d(H1, H2) = 0.
774
+ Now let (H1, H2, H3) be an ordered triple of distinct totally geodesic quaternionic hyperplanes in Hn
775
+ Q.
776
+ Let p1, p2, p3 be the polar points of H1, H2, H3 and v1, v2, v3 be their lifts in Qn,1. Then, by applying
777
+ Proposition 2.8, we can assume that p1, p2, p3 lie in a projective submanifold W ⊂ PQn of complex type
778
+ of complex dimension 2 passing through the points pi. Moreover, this submanifold W can be chosen, up
779
+ to the action of PU(n, 1; Q), to be the canonical complex submanifold PC2 ⊂ PQn. Therefore, we can
780
+ assume without loss of generality that the coordinates of the vectors v1, v2, v3 are complex numbers.
781
+ Let G = (gij) = (⟨vi, vj⟩) be the Gram matrix associated to the points p1, p2, p3 defined by the chosen
782
+ vectors v1, v2, v3 as above. Then it follows from Proposition 2.2 and the proof of Proposition 2.8 that
783
+ gii = 1, g1j = r1j ≥ 0, and g23 = r23eα. We call such a matrix G a complex normal form of the associated
784
+ Gram matrix. Also, we call G the complex normalized Gram matrix.
785
+ Next we construct the moduli space of ordered triples of distinct totally geodesic quaternionic hy-
786
+ perplanes in Hn
787
+ Q. We consider only the regular case, that is, when for all triples in question the spaces
788
+ spanned by lifts of their polar points are regular, see Corollary 2.2. It is easy to see that in non-regular
789
+ case, the totally geodesic quaternionic hyperplanes H1, H2, H3 are all asymptotic, that is, d(Hi, Hj) = 1,
790
+ i ̸= j. It was shown in [10] that a similar problem, the congruence problem for triples of complex geodesic
791
+ in complex hyperbolic plane, cannot be solved by using Hermitian invariants.
792
+ An ordered triple H = (H1, H2, H3) of totally geodesic quaternionic hyperplanes in Hn
793
+ Q is said to be
794
+ generic if Hi and Hj are not orthogonal for all i, j = 1, 2, 3. It is clear that H is generic if and only if the
795
+ corresponding triple of polar points is generic.
796
+ We start with the following proposition:
797
+ Proposition 2.12 Let H = (H1, H2, H3) and H′ = (H′
798
+ 1, H′
799
+ 2, H′
800
+ 3) be two ordered generic triples of dis-
801
+ tinct totally geodesic quaternionic hyperplanes in Hn
802
+ Q. Let p = (p1, p2, p3) and p′ = (p′
803
+ 1, p′
804
+ 2, p′
805
+ 3) be their
806
+ polar points. Let v = (v1, v2, v3) and v′ = (v′
807
+ 1, v′
808
+ 2, v′
809
+ 3) be their lifts in Qn,1 such that the Gram matrices
810
+ G = (gij) = (⟨vi, vj⟩) and G′ = (g′
811
+ ij) = (⟨v′
812
+ i, v′
813
+ j⟩) are complex normalized. Suppose that the spaces spanned
814
+ by v1, v2, v3 and v′
815
+ 1, v′
816
+ 2, v′
817
+ 3 are regular. Then H and H′ are equivalent relative to the diagonal action of
818
+ PU(n, 1; Q) if and only if G = G′ or ¯G = G′.
819
+ Proof: If G = G′, then it follows from Corollary 2.2 that there exists a linear isometry L : Qn,1 −→ Qn,1
820
+ such that L(vi) = v′
821
+ i. Let us suppose that ¯G = G′. Then we have that g1j = g′
822
+ 1j because g1j and g′
823
+ 1j are
824
+ real. Also, if g23 = r23eα, then g′
825
+ 23 = r23e−α. Let us consider the semi-linear map Lj : Qn,1 −→ Qn,1
826
+ defined by the rule Lj(v) = jvj−1. Then we have that
827
+ ⟨Lj(vk), Lj(vl)⟩ = ⟨jvkj−1, jvlj−1⟩ = j−1⟨jvk, jvl⟩j−1 = // − ¯j⟨vk, vl⟩j−1 = j⟨vk, vl⟩j−1 = ⟨vk, vl⟩.
828
+ Here we have used that jzj−1 = ¯z for any complex number z and that j−1 = −j.
829
+ It follows that the Gram matrix of the vectors Lj(vk), k = 1, 2, 3, is equal to ¯G. Therefore, using the
830
+ first part of the proof, we get that the triples v and v′ are equivalent relative to the diagonal action of
831
+ U(n, 1; Q). This implies that H and H′ are equivalent relative to the diagonal action of PU(n, 1; Q).
832
+ Let p = (p1, p2, p3) be an ordered generic triple of distinct positive points in PQn. Let v = (v1, v2, v3)
833
+ be their lifts in Qn,1. Let H(v1, v2, v3) = (⟨v1, v2⟩⟨v2, v3⟩⟨v3, v1⟩) ∈ Q.
834
+ Proposition 2.12 justifies the following definition.
835
+ 16
836
+
837
+ We define the angular invariant A = A(p) of an ordered generic triple of distinct positive points
838
+ p = (p1, p2, p3) in PQn to be the argument of the unique complex number b = b0 + b1 with b1 ≥ 0 in the
839
+ similarity class of
840
+ τ(v1, v2, v3) = H(v1, v2, v3)|H(v1, v2, v3)|−1.
841
+ It follows from Lemma 2.4 and Corollary 1.1 that A = A(p) is defined uniquely by the real part of
842
+ τ(v1, v2, v3) which does not depend on the chosen lifts v1, v2, v3.
843
+ It is clear from the construction that A = A(p) is invariant with respect to the diagonal action of
844
+ PU(n, 1; Q). Also, 0 ≤ A(p) ≤ π.
845
+ By applying the proof of Proposition 2.8, we can chose lifts v = (v1, v2, v3) of p = (p1, p2, p3) such that
846
+ the Gram matrix associated to p = (p1, p2, p3) defined by v = (v1, v2, v3) is the complex normalized Gram
847
+ matrix of p = (p1, p2, p3), that is, gii = 1, g1j = r1j > 0, and g23 = r23eα, r23 >. It is clear that for these
848
+ lifts A(p) = α.
849
+ Now we are ready to describe the moduli space of ordered triples of distinct regular generic totally
850
+ geodesic quaternionic hyperplanes in Hn
851
+ Q.
852
+ Theorem 2.2 Let H = (H1, H2, H3) and H′ = (H′
853
+ 1, H′
854
+ 2, H′
855
+ 3) be two ordered distinct regular generic
856
+ totally geodesic quaternionic hyperplanes in Hn
857
+ Q. Then H = (H1, H2, H3) and H′ = (H′
858
+ 1, H′
859
+ 2, H′
860
+ 3) are
861
+ equivalent relative to the diagonal action of PU(n, 1; Q) if and only if d(Hi, Hj) = d(H′
862
+ i, H′
863
+ j) for all i < j,
864
+ i, j = 1, 2, 3, and A(p) = A(p′), where p = (p1, p2, p3) and p = (p′
865
+ 1, p′
866
+ 2, p′
867
+ 3) are the polar points of H) and
868
+ H′.
869
+ Proof: We can choose lifts v = (v1, v2, v3) and v′ = (v′
870
+ 1, v′
871
+ 2, v′
872
+ 3) of p = (p1, p2, p3) and p = (p′
873
+ 1, p′
874
+ 2, p′
875
+ 3)
876
+ such that the Gram matrices G and G′ associated to p and p′ defined by v and v′ are complex normalized.
877
+ Then it follows from the definition of the Gram matrix that dij = d(pi, pj) = gijgji = |gij|2, and that
878
+ A(p) = A(p1, p2, p3) = arg(g12 g23 g31) = arg(r12 g23j r31).
879
+ The first equality implies that |gij| =
880
+
881
+ dij. Since H is generic, we have that r1j > 0 for all j > 1,
882
+ and that g23 ̸= 0. Therefore, the second equality implies that A(p) = arg(g23). Thus, all the entries of
883
+ the complex normalized Gram matrix G(p) of p are recovered uniquely in terms of the invariants dij and
884
+ A(p) above. Now the proposition follows from Corollary 2.2.
885
+ Next, as a corollary of Theorem 2.2, we give an explicit description of the moduli space of regular
886
+ generic triples of totally geodesic quaternionic hyperplanes in Hn
887
+ Q. First of all, it follows from Theorem 2.2
888
+ that PU(n, 1; Q)-congruence class of an ordered regular generic triple H of distinct generic totally geodesic
889
+ quaternionic hyperplanes in Hn
890
+ Q complex is described uniquely by three d-invariants d12, d13, d23 and the
891
+ angular invariant α = A(p1, p2, p3). Now, let G = (gij) be the complex normalized Gram matrix of H.
892
+ Then gii = 1, g1j = r1j > 0, and arg(g23) = A(p1, p2, p3). We have that d1j = r2
893
+ 1j and d23 = r2
894
+ 23. Also,
895
+ g23 = r23 eiα = r23(cos α + i sin α)
896
+ .
897
+ A straightforward computation shows that
898
+ det G = 1 − (r2
899
+ 12 + r2
900
+ 13 + r2
901
+ 23) + 2r12r13r23 cos α.
902
+ Using the lexicographic order, we define r1 =
903
+
904
+ d12, r2 =
905
+
906
+ d13, r3 =
907
+
908
+ d23.
909
+ It follows from the Silvester criterium that det G ≤ 0, therefore, we have
910
+ 17
911
+
912
+ Corollary 2.8 The moduli space M0(3) of regular generic totally geodesic quaternionic hyperplanes in
913
+ Hn
914
+ Q is homeomorphic to the set
915
+ M0(3) = {(r1, r2, r3, α) ∈ R4 : ri > 0, α ∈ (o, π], 1 − (r2
916
+ 1 + r2
917
+ 1 + r2
918
+ 3) + 2r1r2r3 cos α ≤ 0}.
919
+ Remark 2.7 If the triple H = (H1, H2, H3) is not generic, we need less invariants to describe the equiv-
920
+ alence class of H. For instance, if H2 and H3 are both orthogonal to H1, we need only d(H2, H3).
921
+ 2.4
922
+ Moduli of triples of points: mixed configurations
923
+ As we know from Section 2.2.2, that, up to isometries of Hn
924
+ Q, triples of points of Hn
925
+ Q, that is, triangles,
926
+ are characterized by the side lengths and the Brehm shape invariant. Also, triples of points in ∂Hn
927
+ Q, that
928
+ is, ideal triangles, are characterized by the Cartan angular invariant, see Section 2.2.1. The description of
929
+ the moduli of triples of positive points was given in Section 2.3.
930
+ In this section, we describe the invariants for mixtures of the three types of points in PQn relative to
931
+ the diagonal action of PU(n, 1; Q). Using this, we describe the moduli of the corresponding configuration.
932
+ First, we give a list of all the triples of points in PQn.
933
+ Let p = (p1, p2, p3) be a triple of points in PQn. Then we have the following possible configurations
934
+ (up to permutation).
935
+ 1. Ideal triangles: pi is isotropic for i = 1, 2, 3.
936
+ 2. Triangles: pi is negative, that is, pi in Hn
937
+ Q for i = 1, 2, 3.
938
+ 3. Triangles of totally geodesic quaternionic hyperplanes in Hn
939
+ Q.
940
+ 4. Triangles with two ideal vertices: p1 and p2 are isotropic, and (a) p3 is negative, (b) p3 is positive.
941
+ 5. Triangles with one ideal vertex: p1 is isotropic, and (a) p2, p3 are negative, (b) p2, p3 are positive,
942
+ (c) p2 is negative, p3 is positive.
943
+ 6. Triangles with one negative vertex and two positive vertices: p1 is negative, and p2, p3 are positive.
944
+ 7. Triangles with one positive vertex and two negative vertices: p1 is positive, and p2, p3 are negative.
945
+ The moduli of triangles in the first three cases have been already established in the previous sections
946
+ Below, we describe invariants of mixed configurations 4-7.
947
+ First, we recall the definition of so called η-invariant [13] in complex hyperbolic geometry.
948
+ Let (p1, p2, q) be an ordered triple of points in PCn. We suppose that p1 and p2 are isotropic and q is
949
+ positive. Let (v1, v2, w) be a lift of (p1, p2, p3). Then it is easy to check that the complex number
950
+ η(v1, v2, w) = ⟨v1, w⟩⟨w, v2⟩
951
+ ⟨v1, v2⟩⟨w, w⟩
952
+ is independent of the chosen lifts and will be denoted by η(p1, p2, q).
953
+ We call the number η(p1, p2, q) the Goldman η-invariant. This invariant was introduced by Goldman
954
+ [13] to study the intersections of bisectors in complex hyperbolic space. Later, Hakim and Sandler [15]
955
+ generalized the Goldman construction for more general triples of points.
956
+ The aim of this section is to define analogous invariants in quaternionic hyperbolic geometry and to
957
+ prove the congruence theorems for all triples in question.
958
+ 18
959
+
960
+ 2.4.1
961
+ Triangles with two ideal vertices
962
+ Let p = (p1, p2, p3) be a triple of points in PQn.
963
+ In what follows, we will denote by v the triple
964
+ v = (v1, v2, v3, where vi is a lift of pi in Qn,1.
965
+ First we consider the case when p1 and p2 are isotropic and p3 is positive. This configuration was
966
+ considered by Goldman [13] in complex hyperbolic geometry. Geometrically it can be considered as a
967
+ configuration of two points in the boundary of quaternionic hyperbolic space Hn
968
+ Q and a totally geodesic
969
+ quaternionic hyperplane in Hn
970
+ Q.
971
+ Let v1, v2 be isotropic vectors representing p1, p2 and v3 a positive vector representing p3. Consider
972
+ the following quaternion:
973
+ η(v1, v2, v3) = ⟨v1, v3⟩⟨v3, v2⟩⟨v1, v2⟩−1⟨v3, v3⟩−1.
974
+ Now let us take another lifts of p = (p1, p2, p3): v′
975
+ 1 = v1λ1, v′
976
+ 2 = v2λ2, v′
977
+ 3 = v3λ3.
978
+ It is easy to check that
979
+ η(v1λ1, v2λ2, v3λ3) =
980
+ ¯λ1
981
+ |λ1|η(v1, v2, w) λ1
982
+ |λ1|.
983
+ Therefore, this implies that η(v1, v2, v3) is independent of the choices of lifts of p2 and p3, and if we
984
+ change a lift of p1, we get a similar quaternion.
985
+ By applying Proposition 2.8, we can assume that p1, p2, p3 lie in a projective submanifold W ⊂ PQn
986
+ of complex type of complex dimension 2 passing through the points pi. Moreover, this submanifold W
987
+ can be chosen, up to the action of PU(n, 1; Q), to be the canonical complex submanifold PC2 ⊂ PQn.
988
+ Therefore, we can assume without loss of generality that the coordinates of the vectors v1, v2, v3 are
989
+ complex numbers.
990
+ Let G =
991
+ (gij) = (⟨vi, vj⟩) be the Gram matrix associated to the points p1, p2, p3. Then g11 = 0,
992
+ g22 = 0. Since g33 = ⟨v3, v3⟩ > 0, replacing v3 by v3a, where a = 1/√g33, we may assume that g33 = 1.
993
+ Replacing v2 by v2b, where b = 1/⟨v1, v2⟩, we may assume that g12 = 1. We keep the same notations
994
+ for the modified vectors. After that, replacing v1 by v1b, where b = 1/⟨v3, v1⟩ and v2 by v2c, where
995
+ c = ⟨v1, v3⟩, we get g12 = g13 = 1.
996
+ So, after this re-scaling we get that G = (gij has the following
997
+ entrances: g11 = g22 = 0, g12 = g13 = 1, g33 = 1, g23 is an arbitrary complex number.
998
+ We call such a matrix G a complex normal form of Gram matrix associated to p = p1, p2, p3 . Also,
999
+ we call G the complex normalized Gram matrix.
1000
+ It is clear that any vectors v1, v2 and v3 which represent p1, p2, and p3 generate a regular space in
1001
+ Qn,1. Therefore, repeating almost word for word the proof of Proposition 2.12, we get
1002
+ Proposition 2.13 Let p and p′ = (p′
1003
+ 1, p′
1004
+ 2, p′
1005
+ 3) as above.
1006
+ Let v and v′ be their lifts such that the Gram matrices G = (gij) = (⟨vi, vj⟩) and G′ = (g′
1007
+ ij) = (⟨v′
1008
+ i, v′
1009
+ j⟩)
1010
+ associated to p and p′ are complex normalized.
1011
+ Then p and p′ are equivalent relative to the diagonal action of PU(n, 1; Q) if and only if G = G′ or
1012
+ G = G′.
1013
+ Again this justifies the following definition.
1014
+ Let p = (p1, p2, p3) be a triple of points as above. Then the quaternionic η-invariant, η = η(p), is
1015
+ defined to be the unique complex number b = b0 + b1 with b1 ≥ 0, in the similarity class of η(v1, v2, v3).
1016
+ 19
1017
+
1018
+ Theorem 2.3 Let p and p′ as above. Then p and p′ are equivalent relative to the diagonal action of
1019
+ PU(n, 1; Q) if and only if η(p) = η(p′).
1020
+ Proof: It follows from the above that we can choose lifts v = (v1, v2, v3) and v′ = (v′
1021
+ 1, v′
1022
+ 2, v′
1023
+ 3) of
1024
+ p = (p1, p2, p3) and p′ = (p′
1025
+ 1, p′
1026
+ 2, p′
1027
+ 3) such that the Gram matrices G and G′ associated to p and p′
1028
+ defined by v and v′ are complex normalized. Then it follows from the definition of the Gram matrix that
1029
+ g23 = η(p). This implies that G = G′. Now the proof follows from Lemma 2.1.
1030
+ The case when p3 is negative is similar. The η-invariant is defined by the same formula and the proof of
1031
+ the congruence theorem is a slight modification of Theorem 2.3. Therefore, we have the following theorem.
1032
+ Theorem 2.4 Let p = (p1, p2, p3), where p1, p2 are isotropic and p3 is negative. Then the congruence
1033
+ class of p relative to the diagonal action of PU(n, 1; Q) is completely defined by the Goldman invariant
1034
+ η(p).
1035
+ We remark that this problem was considered by Cao, [7], see Theorem 1.1 item (ii).
1036
+ In order to
1037
+ describe the congruence class relative to the diagonal action of PU(n, 1; Q) of a triple p = (p1, p2, p3),
1038
+ where p1, p2 are isotropic and p3 is negative, he used the following invariants: the distance d between
1039
+ the unique quaternionic line L(p1, p2) passing through the points p1, p2 and the point p3, and the Cartan
1040
+ invariant A(p) of the triple p. Then he claimed that the congruence class relative to the diagonal action
1041
+ of PU(n, 1; Q) of p is completely defined by d and A(p). Below we give an example which shows that this
1042
+ claim is not correct.
1043
+ Example I. Let p = (p1, p2, p3), where p1, p2 are isotropic and p3 is negative. Let L be the unique
1044
+ quaternionic line passing through the points p1, p2. In our example, we consider the case when the point
1045
+ p3 is contained in L. Therefore, in this case, d = 0 and A(p) = π/2 for all triples satisfying our condition.
1046
+ Now we will show that among such triples there exist triples which are not congruent relative to the
1047
+ diagonal action of PU(n, 1; Q). Since the quaternionic line L is isometric to H4
1048
+ R, we have that there exists
1049
+ a totally geodesic submanifold P of L of real dimension 2 such that p1, p2 are in the ideal boundary of
1050
+ P and p3 ∈ P. In fact, P is a totally geodesic submanifold of Hn
1051
+ Q isometric to H1
1052
+ C. We consider P as a
1053
+ hyperbolic plane and p = (p1, p2, p3) as a triangle in P with two ideal vertices p1, p2 and one proper vertex
1054
+ p3. Let l be the unique geodesic in P defined by p1, p2. Let dl be the distance between l and p3. It is
1055
+ well-known from plane hyperbolic geometry, see [3], that a triangle p = (p1, p2, p3) is defined uniquely up
1056
+ to the isometry of P by dl. Therefore, fixing p1, p2 and moving p3 inside of P, we get an infinite family of
1057
+ non-congruent triangles relative to the diagonal action of PU(n, 1; Q) with the same invariants defined in
1058
+ [7].
1059
+ 2.4.2
1060
+ Triangles with one ideal vertex
1061
+ Let p = (p1, p2, p3) be a triple of points in PQn. As usual, we will denote by v the triple v = (v1, v2, v3),
1062
+ where vi is a lift of pi in Qn,1.
1063
+ First, we consider a configuration when p1 is isotropic and p2, p3 are negative. So, in this case p1 and
1064
+ p2 and p3 represent a triangle in Hn
1065
+ Q with one ideal vertex.
1066
+ Let v2, v3 be negative vectors representing p2, p3 and v1 be an isotropic vector representing p1.
1067
+ Consider the following quaternion:
1068
+ η(v1, v2, v3) = ⟨v1, v3⟩⟨v3, v2⟩⟨v1, v2⟩−1⟨v3, v3⟩−1.
1069
+ It is easy to check that
1070
+ η(v1λ1, v2λ2, v3λ3) =
1071
+ 20
1072
+
1073
+ ¯λ1
1074
+ |λ1|η(v1, v2, v3) λ1
1075
+ |λ1|.
1076
+ Therefore, this implies that η(v1, v2, v3) is independent of the choices of lifts of p2 and p3, and if we
1077
+ change a lift of p1, we get a similar quaternion.
1078
+ By applying Proposition 2.8, we can assume that p1, p2, p3 lie in a projective submanifold W ⊂ PQn
1079
+ of complex type of complex dimension 2 passing through the points pi. Moreover, this submanifold W
1080
+ can be chosen, up to the action of PU(n, 1; Q), to be the canonical complex submanifold PC2 ⊂ PQn.
1081
+ Therefore, we can assume without loss of generality that the coordinates of the vectors v1, v2, v3 are
1082
+ complex numbers.
1083
+ Let G =
1084
+ (gij) = (⟨vi, vj⟩) be the Gram matrix associated to the points p1, p2, p3. Then g11 = 0,
1085
+ g22 < 0, and g33 < 0. It is not difficult to show that by appropriate re-scaling we may assume that g11 = 0,
1086
+ g22 = −1, g33 = −1, g12 = 1, g23 = r23 > 0, and g13 is an arbitrary complex number.
1087
+ We call such a matrix G a complex normal form of Gram matrix associated to p1, p2, p3 . Also, we
1088
+ call G the complex normalized Gram matrix.
1089
+ It is clear that for p1, p2, p3 any vectors v1, v2 and v3 which represent p1, p2, and p3 generate a regular
1090
+ space in Qn,1. Therefore, repeating again almost word for word the proof of Proposition 2.12, we get
1091
+ Proposition 2.14 Let p and p as above.
1092
+ Let v and v′ be their lifts such that the Gram matrices
1093
+ G = (gij) = (⟨vi, vj⟩) and G′ = (g′
1094
+ ij) = (⟨v′
1095
+ i, v′
1096
+ j⟩) associated to p and p′ are complex normalized. Then p
1097
+ and p′ are equivalent relative to the diagonal action of PU(n, 1; Q) if and only if G = G′ or G = G′.
1098
+ Again this justifies the following definition.
1099
+ Let p = (p1, p2, p3) be a triple of points as above. Then the quaternionic η-invariant, η = η(p), is
1100
+ defined to be the unique complex number b = b0 + b1 with b1 ≥ 0, in the similarity class of η(v1, v2, v3).
1101
+ Theorem 2.5 Let p = (p1, p2, p3) and p′ = (p′
1102
+ 1, p′
1103
+ 2, p′
1104
+ 3) as above. Then p and p′ are equivalent relative to
1105
+ the diagonal action of PU(n, 1; Q) if and only if η(p) = η(p′) and d(p2, p3) = d(p′
1106
+ 2, p′
1107
+ 3).
1108
+ Proof: It follows from the above that we can choose lifts v = (v1, v2, v3) and v′ = (v′
1109
+ 1, v′
1110
+ 2, v′
1111
+ 3) of
1112
+ p = (p1, p2, p3) and p = (p′
1113
+ 1, p′
1114
+ 2, p′
1115
+ 3) such that the Gram matrices G and G′ associated to p and p′
1116
+ defined by v and v′ are complex normalized. Then it follows from the definition of the Gram matrix that
1117
+ η(p) = g13 and r23 =
1118
+
1119
+ d(p2, p3). This implies that G = G′. Now the proof follows from Lemma 2.1.
1120
+ It follows from this theorem that the congruence class relative to the diagonal action of PU(n, 1; Q) of
1121
+ p = (p1, p2, p3) is defined η(p) and the distance between p2 and p3.
1122
+ The case when p2, p3 are positive is similar. The η-invariant is defined by the same formula and the
1123
+ proof of the congruence theorem is a slight modification of Theorem 2.5. We only remark that geometrically
1124
+ this configuration is equivalent to one isotropic point and two totally geodesic quaternionic hyperplane in
1125
+ Hn
1126
+ Q.
1127
+ The case when p1 is isotropic and p2, p3 are negative was considered by Cao [7], see Theorem 1.1 item
1128
+ (iii). In order to describe the congruence class relative to the diagonal action of PU(n, 1; Q) of a triple
1129
+ p = (p1, p2, p3), where p1 is isotropic and p2, p3 are negative, he used the following invariants: the distance
1130
+ d1 between the unique quaternionic line L(p1, p2) passing through the points p1, p2 and p3, the distance d2
1131
+ between the unique quaternionic line L(p1, p3) passing through the points p1, p3 and p2, and the distance
1132
+ d3 between the points p2, p3. Then he claimed that the congruence class relative to the diagonal action of
1133
+ 21
1134
+
1135
+ PU(n, 1; Q) of a triple p is completely defined by d1, d2 and d3. Below we give an example which shows
1136
+ that this claim is not correct.
1137
+ Example II. This example is similar to Example I above. Let p = (p1, p2, p3), where p1 is isotropic
1138
+ and p2, p3 are negative. In our example, we consider the case when the points p1, p2, p3 are contained in
1139
+ a quaternionic line L. Therefore, in this case, d1 = 0 and d2 = 0 for all triples satisfying our condition.
1140
+ Now we will show that among such triples there exist triples which are not congruent relative to the
1141
+ diagonal action of PU(n, 1; Q). Since the quaternionic line L is isometric to H4
1142
+ R, we have that there exists
1143
+ a totally geodesic submanifold P of L of real dimension 2 such that p1 is in the ideal boundary of P, and
1144
+ p2, p3 ∈ P. As in the example above, we have that P is a totally geodesic submanifold of Hn
1145
+ Q isometric to
1146
+ H1
1147
+ C. We consider P as a hyperbolic plane and p = (p1, p2, p3) as a triangle in P with one ideal vertex p1
1148
+ and two proper vertices p2, p3. It is well-known from plane hyperbolic geometry, see [3], that a triangle
1149
+ p = (p1, p2, p3) is defined uniquely up to the isometry of P by d3 and by its angles at the vertices p2, p3.
1150
+ Therefore, fixing p2, p3 and moving p1 along the ideal boundary of P, we get an infinite family of triangles
1151
+ with the same d3 and with different angles at the vertices p2, p3. This implies that there exist an infinite
1152
+ family of non-congruent triangles relative to the diagonal action of PU(n, 1; Q) with the same invariants
1153
+ defined in [7].
1154
+ 2.4.3
1155
+ Triangles with one negative vertex and two positive vertices
1156
+ Let p = (p1, p2, p3) be a triple of points in PQn. In this section, we consider a configuration when p1 is
1157
+ negative, and p2, p3 are positive. So, in this case p1 represents a point in Hn
1158
+ Q, and p2 and p3 represent two
1159
+ totally geodesic quaternionic hyperplane H2 and H3 in Hn
1160
+ Q.
1161
+ Let v1 a negative vector representing p1 and v2, v3 be positive vectors representing p2, p3.
1162
+ Let η(v1, v2, v3) be following quaternion:
1163
+ η(v1, v2, v3) = ⟨v1, v3⟩⟨v3, v2⟩⟨v1, v2⟩−1⟨v3, v3⟩−1.
1164
+ We see that η(v1, v2, v3) is not well-defined when the points p1 and p2 are orthogonal, that is,
1165
+ ⟨v1, v2⟩ = 0.
1166
+ It follow from the definition of polar points that p1 is orthogonal to p2 if and only if
1167
+ p1 ∈ H2. Also we see that η(v1, v2, v3) = 0 when p1 is orthogonal to p3 or p2 is orthogonal to p3. We
1168
+ analyze all these special configurations in the end of this section and show that in all these cases we need
1169
+ less invariants to describe the congruence class then in generic case.
1170
+ We say that a triple p = (p1, p2, p3) as above is generic if and only if all the pairs (pi, pj) are not
1171
+ orthogonal, i ̸= j.
1172
+ In what follows, let p = (p1, p2, p3) be a generic triple as above. It is easy to check that
1173
+ η(v1λ1, v2λ2, v3λ3) =
1174
+ ¯λ1
1175
+ |λ1|η(v1, v2, v3) λ1
1176
+ |λ1|.
1177
+ Therefore, this implies that η(v1, v2, v3) is independent of the choices of lifts of p2 and p3, and if we change
1178
+ a lift of p1, we get a similar quaternion.
1179
+ By applying Proposition 2.8 again, we can assume that p1, p2, p3 lie in a projective submanifold
1180
+ W ⊂ PQn of complex type of complex dimension 2. Moreover, this submanifold W can be chosen, up
1181
+ to the action of PU(n, 1; Q), to be the canonical complex submanifold PC2 ⊂ PQn. Therefore, we can
1182
+ assume without loss of generality that the coordinates of the vectors v1, v2, v3 are complex numbers.
1183
+ Let G = (gij) = (⟨vi, vj⟩) be the Gram matrix associated to the triple of points (p1, p2, p3). Then
1184
+ g11 < 0, g22 > 0, and g33 > 0. It is not difficult to show that by appropriate re-scaling we may assume
1185
+ that g11 = −1, g22 = 1, g33 = 1, g12 = r12 > 0, g13 = r13 > 0, and g23 is an arbitrary complex number.
1186
+ 22
1187
+
1188
+ We call such a matrix G a complex normal form of Gram matrix associated to (p1, p2, p3). Also, we
1189
+ call G the complex normalized Gram matrix.
1190
+ Let p = (p1, p2, p3) be a triple of points as above. Then the quaternionic η-invariant, η = η(p), is
1191
+ defined to be the unique complex number b = b0 + b1 with b1 ≥ 0, in the similarity class of η(v1, v2, v3).
1192
+ As before we have
1193
+ Proposition 2.15 Let p and p′) as above.
1194
+ Let v and v′ be their lifts such that the Gram matrices
1195
+ G = (gij) = (⟨vi, vj⟩) and G′ = (g′
1196
+ ij) = (⟨v′
1197
+ i, v′
1198
+ j⟩) associated to p and p′ are complex normalized. Then p
1199
+ and p′ are equivalent relative to the diagonal action of PU(n, 1; Q) if and only if G = G′ or G = G′.
1200
+ Again this justifies the following definition.
1201
+ Let p = (p1, p2, p3) be a triple of points as above. Then the quaternionic η-invariant, η = η(p), is
1202
+ defined to be the unique complex number b = b0 + b1 with b1 ≥ 0,
1203
+ Now we define one more invariant. Let q1 be a negative point and q2 be a positive point. Let w1 be a
1204
+ vector representing q1 and w2 be a vector representing q2. Then we define
1205
+ d(q1, q2) = d(w1, w2) = ⟨w1, w2⟩⟨w2, w1⟩
1206
+ ⟨w1, w1⟩⟨w2, w2⟩.
1207
+ It is easy to see that d(q1, q2) is independent of the chosen lifts w1, w2, and that d(q1, q2) is invariant
1208
+ with respect to the diagonal action of PU(n, 1; Q).
1209
+ We call d(q1, q2) the mixed distant invariant associated to the points q1, q2. By applying the standard
1210
+ arguments it is easy to prove that this invariant defines the distance ρ between the point q1 ∈ Hn
1211
+ Q and the
1212
+ totally geodesic quaternionic hyperplane H in Hn
1213
+ Q whose polar point is q2, namely,
1214
+ cosh2(ρ(q1, H)) = −d(q1, q2).
1215
+ Theorem 2.6 Let p = (p1, p2, p3) and p′ = (p′
1216
+ 1, p′
1217
+ 2, p′
1218
+ 3) as above.
1219
+ Then p and p′ are equivalent rel-
1220
+ ative to the diagonal action of PU(n, 1; Q) if and only if η(p) = η(p′), d(p1, p2) = d(p′
1221
+ 1, p′
1222
+ 2), and
1223
+ d(p1, p3) = d(p′
1224
+ 1, p′
1225
+ 3).
1226
+ Proof: It follows from the above that we can choose lifts v = (v1, v2, v3) and v′ = (v′
1227
+ 1, v′
1228
+ 2, v′
1229
+ 3) of
1230
+ p = (p1, p2, p3) and p = (p′
1231
+ 1, p′
1232
+ 2, p′
1233
+ 3) such that the Gram matrices G and G′ associated to p and p′
1234
+ defined by v and v′ are complex normalized. Then it follows from the definition of the Gram matrix that
1235
+ r12 =
1236
+
1237
+ d(p1, p2), r13 =
1238
+
1239
+ d(p1, p3), and g23 = η(p)(r12/r13). This implies that G = G′. Now the proof
1240
+ follows from Lemma 2.1.
1241
+ As a corollary of this theorem we have
1242
+ Theorem 2.7 Let p1 ∈ Hn
1243
+ Q and let H1, H2 be two totally geodesic quaternionic hyperplane in Hn
1244
+ Q whose
1245
+ polar points are p2 and p3, respectively. Then the congruence class of the triple (p1, H1, H2) relative to the
1246
+ diagonal action of PU(n, 1; Q) is defined uniquely by two distances ρ(p1, H1), ρ(p1, H2), the d-invariant
1247
+ d(H1, H2), and the angular invariant of the triple (p1, p2, p3).
1248
+ Now we consider some special configurations of triples p = (p1, p2, p3). Let, for instance, p be a config-
1249
+ uration where all the pairs (pi, pj), i ̸= j, are orthogonal. In this case, the totally geodesic quaternionic
1250
+ hyperplanes H1 and H2 with polar points p2 and p3 intersect orthogonally and p1 lies in their intersection.
1251
+ It is clear then that all such configurations are congruent relative to the diagonal action of PU(n, 1; Q).
1252
+ 23
1253
+
1254
+ So, the moduli space in this case is trivial. Another example: suppose that p1 is orthogonal to p2, and p1
1255
+ is orthogonal to p3. This implies that H1 and H2 intersect, and p1 lies in their intersection. This implies
1256
+ that in order to describe the congruence class of such configuration we need only the d-invariant of H1
1257
+ and H2, the angle between H1 and H2. Another special configuration may be analyzed easily in a similar
1258
+ way.
1259
+ 2.4.4
1260
+ Triangles with one positive vertex and two negative vertices
1261
+ In this section, we consider a triple (p1, p2, p3), where p1 is positive and p2, p3 are negative.
1262
+ Geometrically, this corresponds to a totally geodesic quaternionic hyperplane H in Hn
1263
+ Q and two points
1264
+ p2 and p3 in Hn
1265
+ Q.
1266
+ Theorem 2.8 Let H be a totally geodesic quaternionic hyperplane H in Hn
1267
+ Q with polar point p1, and p2
1268
+ and p3 in Hn
1269
+ Q. Suppose that p = (p1, p2, p3) is generic. Then the congruence class of the triple (H, p1, p2)
1270
+ is defined uniquely by two distances ρ(p1, H), ρ(p1, H), and η(p) = η(p1, p2, p3).
1271
+ Proof: The proof of this theorem is slight modification of the proof of Theorem 2.6.
1272
+ References
1273
+ [1] B.N. Apanasov and I. Kim, Cartan angular invariant and deformations of rank 1 symmetric spaces.
1274
+ Sb. Math. 198 (2007), 147-169.
1275
+ [2] E. Artin, Geometric algebra, Interscience Publishers, Inc., New York, 1957.
1276
+ [3] A.F. Berdon, The geometry of Discrete Groups. Springer- Verlag, Berlin, 1983. xx+304 pp.
1277
+ [4] U. Brehm, The shape invariant of triangles and trigonometry in two-point homogeneous spaces.
1278
+ Geom. Dedicata 33 (1990), no. 1, 59–76.
1279
+ [5] U. Brehm, B. Et-Taoui, Congruence criteria for finite subsets of complex projective and complex
1280
+ hyperbolic spaces. Manuscripta Math. 96 (1998), no. 1, 81–95.
1281
+ [6] J.L. Brenner, Matices of quaternions. Pacific J. Math. 1 (1950), 329–335.
1282
+ [7] W.S. Cao, Congruence classes of points in quaternionic hyperbolic space. Geom. Dedicata 180
1283
+ (2016), 203-228.
1284
+ [8] E. Cartan, Sur le groupe de la g´eom´etrie hypersph´erique. Comment. Math. Helv. 4, 158-171 (1932)
1285
+ [9] S.S. Chen and L. Greenberg, Hyperbolic spaces. In Contributions to analysis(a collection of papers
1286
+ dedicated to Lipman Bers), Academic Press, New York (1974), 49–87.
1287
+ [10] H. Cunha, F. Dutenhener, N. Gusevskii, and R. Thebaldi, The moduli space of complex geodesics
1288
+ in the complex hyperbolic plane. J. Geom. Anal. 22 (2012), no. 2, 295–319.
1289
+ [11] H. Cunha, N. Gusevskii, On the moduli space of quadruples of points in the boundary of complex
1290
+ hyperbolic space. Transform. Groups. (2010), no.2, 261-283.
1291
+ [12] H. Cunha, N. Gusevskii, The moduli space of points in the boundary of complex hyperbolic space.
1292
+ J. Geom. Anal. 22 (2012), no. 2, 1-11.
1293
+ 24
1294
+
1295
+ [13] W.M. Goldman, Complex hyperbolic geometry. Oxford Mathematical Monographs. Oxford
1296
+ Science Publications. The Clarendon Press, Oxford University Press, New York, 1999. xx+316
1297
+ pp.
1298
+ [14] R. Hofer, m-point invariants of real geometries. Beitr¨age Algebra Geom. 40 (1999). no. 1, 261-266.
1299
+ [15] J. Hakim, H. Sandler, Applications of Bruhat Decompositions to Complex Hyperbolic Geometry.
1300
+ J. Geom. Anal. 10 (2000), no.3, 435-453.
1301
+ [16] J. Hakim, H. Sandler, Standard position for objects in hyperbolic space. J. Geom. 68 (2000),
1302
+ 100-113.
1303
+ [17] W. Scharlau, Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften
1304
+ [Fundamental Principles of Mathematical Sciences], 270. Springer-Verlag, Berlin, 1985. xx+421
1305
+ pp. pp.
1306
+ 25
1307
+
4NAyT4oBgHgl3EQf1_nb/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
69E3T4oBgHgl3EQfRQm6/content/tmp_files/2301.04420v1.pdf.txt ADDED
@@ -0,0 +1,2163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Combining Self-labeling with Selective Sampling
2
+ Jedrzej Kozal1 , Michał Wo´zniak1
3
+ 1Department of Systems and Computer Networks
4
+ Wrocław University of Science and Technology, Wrocław, Poland
5
+ {jedrzej.kozal, michal.wozniak}@pwr.edu.pl
6
+ Abstract
7
+ Since data is the fuel that drives machine learn-
8
+ ing models, and access to labeled data is gener-
9
+ ally expensive, semi-supervised methods are con-
10
+ stantly popular.
11
+ They enable the acquisition of
12
+ large datasets without the need for too many ex-
13
+ pert labels. This work combines self-labeling tech-
14
+ niques with active learning in a selective sampling
15
+ scenario.
16
+ We propose a new method that builds
17
+ an ensemble classifier. Based on an evaluation of
18
+ the inconsistency of the decisions of the individual
19
+ base classifiers for a given observation, a decision
20
+ is made on whether to request a new label or use the
21
+ self-labeling. In preliminary studies, we show that
22
+ na¨ıve application of self-labeling can harm perfor-
23
+ mance by introducing bias towards selected classes
24
+ and consequently lead to skewed class distribu-
25
+ tion. Hence, we also propose mechanisms to reduce
26
+ this phenomenon. Experimental evaluation shows
27
+ that the proposed method matches current selective
28
+ sampling methods or achieves better results.
29
+ 1
30
+ Introduction
31
+ Active learning [Cohn et al., 1994] is the area of machine
32
+ learning where a training set is constructed by selecting the
33
+ most informative samples that can speed up training. New
34
+ labeled learning examples are obtained by queering, i.e., re-
35
+ questing ground truth labels from an oracle. To create a query,
36
+ we use a model trained with a small number of labeled sam-
37
+ ples. Stream-Based Selective Sampling [Cohn et al., 1994] is
38
+ based on the assumption that acquiring new unlabeled train-
39
+ ing examples is relatively inexpensive. We process a single
40
+ sample at a time, and decide whether it should be labeled by
41
+ oracle or discarded. In this work, we propose a new method
42
+ that combines self-labeling with active learning in Stream-
43
+ Based Selective Sampling scenario.
44
+ An overview of our method is provided in Fig. 1. We hope
45
+ that this approach could allow for the cost-efficient creation of
46
+ bigger labeled datasets. Self-labeling could introduce noisy
47
+ labels into the dataset [Han et al., 2019], as in most cases,
48
+ models have non-zero classification error. In [Algan and Ulu-
49
+ soy, 2020] various types of noises and their impact on deep
50
+ Unlabeled data
51
+ model
52
+ prediction
53
+ . . .
54
+ . . .
55
+ confidence and
56
+ consistency check
57
+ FAILED
58
+ PASSED
59
+ request
60
+ label
61
+ bootstrapped
62
+ training
63
+ prior
64
+ filter
65
+ bootstrapped
66
+ training
67
+ ensemble
68
+ predictions
69
+ Training with label from annotator
70
+ (Active Learning)
71
+ Training with predicted label
72
+ (Self-labeling)
73
+ Figure 1: Overview of the proposed method. We utilize ensemble
74
+ predictions to determine whether a given sample could be added to
75
+ the dataset with the predicted label (self-labeling) or should be la-
76
+ beled by oracle (active learning). More specifically, we check if
77
+ obtained support exceeds a predefined threshold and if all confident
78
+ predictions return to the same class. If not, we check if the budget,
79
+ create a query, and train with bootstrapping. Otherwise, we filter out
80
+ and drop the samples from the current majority class (prior filter),
81
+ and perform bootstrapped training with label obtained from predic-
82
+ tion.
83
+ learning performance were analyzed. It was found for vari-
84
+ ous noise types that, with the increase of the noise ratio, test
85
+ accuracy decreased. and with the increase of dataset size,
86
+ test accuracy increases. In self-labeling, errors made by the
87
+ classifier introduce wrong labels to the dataset, but as we la-
88
+ bel new samples, the overall data volume increases. If the
89
+ gain in accuracy from increasing the dataset size surpasses
90
+ the performance loss from the wrong labels, we can use self-
91
+ labeling to boost classification performance. In this work, we
92
+ utilize this dynamic to improve classification performance.
93
+ The main contributions of this work are following:
94
+ • An analysis of the problems, that arise when we apply
95
+ self-labeling to an active learning scenario
96
+ • New method was proposed based on classifier commit-
97
+ tee, that integrates self-labeling to active learning
98
+ • Thorough experimental evaluation with multiple dataset
99
+ and settings
100
+ arXiv:2301.04420v1 [cs.LG] 11 Jan 2023
101
+
102
+ 2
103
+ Related Works
104
+ 2.1
105
+ Active learning
106
+ The most popular active learning strategy is based on uncer-
107
+ tainty sampling [Lewis and Gale, 1994], where model sup-
108
+ ports are utilized as an information source about learning
109
+ example usefulness. Fragment of the sample space, where
110
+ the support for the samples is low, is called the region of
111
+ uncertainty [Atlas et al., 1989]. This concept was used in
112
+ [Lewis and Catlett, 1994] to select samples for labeling with
113
+ the lowest difference in computed support and the predefined
114
+ threshold. In [Zliobaite et al., 2014], authors proposed un-
115
+ certainty sampling with a variable threshold for data stream
116
+ mining. In margin sampling [Scheffer et al., 2001], queries
117
+ are created by selecting samples with the smallest difference
118
+ in probabilities of two classes with the largest confidence. It
119
+ was shown in [Ramirez-Loaiza et al., 2017] that this algo-
120
+ rithm performs on par with more computationally expensive
121
+ ensemble-based methods. In [Jiang and Gupta, 2019], mod-
122
+ ification of standard margin sampling was proposed, were
123
+ samples are selected based on the smallest classification mar-
124
+ gin of all models in the ensemble.
125
+ Query by Committee
126
+ algorithms measures disagreement between members of an
127
+ ensemble to choose the most informative samples. In vote
128
+ entropy, [Argamon-Engelson and Dagan, 1999] samples are
129
+ selected based on the entropy of ensemble vote distribution.
130
+ A modified version of this algorithm [G´omez-Ca˜n´on et al.,
131
+ 2021] select samples with the highest average predictions en-
132
+ tropy. Another possible disagreement measure is maximum
133
+ disagreement sampling [McCallum and Nigam, 1998], where
134
+ KL divergence is used.
135
+ 2.2
136
+ Self-labeling
137
+ Self-supervised learning [Jaiswal et al., 2020] aims at learn-
138
+ ing valuable data representation without annotation. To ob-
139
+ tain good representations, we need to define some pretext
140
+ tasks for a model to solve. The first attempts of creating self-
141
+ supervised learning involved auto-encoders [Bengio et al.,
142
+ 2006], patch location prediction [Doersch et al., 2015], in-
143
+ painting [Pathak et al., 2016], or rotation prediction [Gidaris
144
+ et al., 2018]. Clustering was utilized as a pretext task [Caron
145
+ et al., 2018; Asano et al., 2019] for training deep data repre-
146
+ sentations. Another research direction is contrastive learning
147
+ [Chen et al., 2020], where the pretext task is based on learn-
148
+ ing close representations for the same sample with different
149
+ augmentations applied and distant representations for dissim-
150
+ ilar samples. Pseudo-labels are also used for semi-supervised
151
+ learning [Rizve et al., 2021]. Authors of [Lee, 2013] uti-
152
+ lize the outputs of the classifier with the highest confidence
153
+ as a target for unlabeled data. In [Sohn et al., 2020], new
154
+ methods were proposed that utilize high-confidence pseudo-
155
+ labels generated with weakly-augmented images. Next, these
156
+ pseudo-labels are used as a target for the strongly-augmented
157
+ version of the same image.
158
+ 2.3
159
+ Active learning with Self-labeling
160
+ In [Wang et al., 2017] combination of automatic pseudo-
161
+ labeling and active learning was proposed for a pool-based
162
+ setting. Authors found that utilization of pseudo-labels can
163
+ improve the labeling efficiency of active learning algorithms,
164
+ and error rates of automatically assigned labels are low for
165
+ the convolutional neural network. Authors of [Sim´eoni et al.,
166
+ 2019] introduce a new method that combines semi-supervised
167
+ learning with pseudo-labels and active learning.
168
+ Korycki
169
+ and Krawczyk [Korycki and Krawczyk, 2021] have com-
170
+ bined self-labeling with active learning for learning from data
171
+ streams.
172
+ 3
173
+ Method
174
+ In this section, we describe the setting and introduce our
175
+ method. We also provide results of preliminary experiments
176
+ with the dynamic imbalance.
177
+ 3.1
178
+ Selective sampling
179
+ First, we introduce the selective sampling framework that our
180
+ work is based on. We assume an access to small set of la-
181
+ beled data L = {(xm, ym)}M
182
+ m=1 and stream of unlabeled data
183
+ U = {(xn}N
184
+ n=1 with x ∈ X, y ∈ Y, where X and Y are the
185
+ input space and the set of labels respectively. Our goal is to
186
+ train a model f, that predicts the support for input sample x,
187
+ namely: p(y|x) = fθ(x), where θ is set of model parameters.
188
+ Final model prediction is given by ˆy = arg maxi p(yi|x).
189
+ We denote maximum support for sample x as maxi p(yi|x).
190
+ The general algorithm for selective sampling is provided in
191
+ appendix A. We assume the same cost of obtaining label from
192
+ an oracle for each sample in U. For this reason, we define
193
+ budget B as the number of samples that can be labeled, with
194
+ the exception of presenting results when we refer to budget
195
+ as the fraction of all samples that can be labeled.
196
+ 3.2
197
+ Informativeness computation
198
+ We employ differences in supports obtained from different
199
+ models in an ensemble as a source of informativeness. First,
200
+ the ensemble of L base classifiers is trained. For the unla-
201
+ beled sample x each model l in a committee computes sup-
202
+ ports pl(y|x). Next, we check if at least half of the classifiers
203
+ in the ensemble provided supports that exceed a predefined
204
+ support threshold τ.
205
+
206
+ l
207
+ 1maxc pl(yc|x)>τ > L
208
+ 2
209
+ (1)
210
+ If more than half of the models return confident predictions
211
+ and these models output the same prediction, we add (x, ˆy) to
212
+ L. Otherwise, we query an oracle with x. By choosing sam-
213
+ ples with consistent, highly confident predictions, we avoid
214
+ assigning the wrong label to a sample. From an active learn-
215
+ ing perspective, these learning examples are not valuable, as
216
+ models already return confident predictions for them. How-
217
+ ever, we hope that by a faster increase in the number of la-
218
+ beled samples, we can obtain improvements in classification
219
+ accuracy.
220
+ 3.3
221
+ Bootstrapped training
222
+ We train initial models with bootstrapping of labeled part of
223
+ data L. This corresponds to sampling number of repeats of
224
+ each sample from the Poisson distribution with λ = 1. This
225
+ part of our method is inspired by Online Bagging [Oza and
226
+
227
+ Russell, 2001] method, introduced for data stream classifica-
228
+ tion. During training with an unlabeled stream, we use boot-
229
+ strapping for new learning examples added to the dataset. In
230
+ the case of training with ground truth label from oracle, we
231
+ use λ = 1. When updating the dataset with a sample labeled
232
+ based on model prediction, we calculate λ as:
233
+ λ = maxl,c pl(yc|x)
234
+ τ
235
+ − 1B=0
236
+ (2)
237
+ where τ is the same threshold used earlier for selecting confi-
238
+ dent predictions. When B > 0, then λ is always greater than
239
+ one. As a result, samples labeled based on model prediction
240
+ will be more frequently added to the dataset than learning
241
+ examples from initial dataset L. To avoid the negative influ-
242
+ ence of incorrect model predictions after the budget ended we
243
+ change lambda calculation after labeling budget was spent. In
244
+ such case λ < 1, assuming that value of τ is not significantly
245
+ lower than p. Consequently, updates to datasets are still per-
246
+ formed, while the negative impact of incorrect predictions is
247
+ limited. Values of λ for each sample are stored in λ vector.
248
+ Upon an update, we generate separate datasets by bootstrap-
249
+ ping. The number of repeats of a single sample in a dataset
250
+ is limited to 4. The ensemble training procedure for the pro-
251
+ posed method is given in algorithm 1.
252
+ Algorithm 1 Bootstrapped training
253
+ Require: L - set of labeled data with M elements, {fθ}L
254
+ - ensemble of L models, λ - vector with parameters for
255
+ Poisson distribution for each sample in L
256
+ 1: for l ∈ {0, L} do
257
+ 2:
258
+ r ∼ Pois(λ)
259
+ 3:
260
+ r ← min(r, 4)
261
+ 4:
262
+ D ← ∅
263
+ 5:
264
+ for i ∈ {0, M} do
265
+ 6:
266
+ (x, y) ← Li
267
+ 7:
268
+ for j ∈ {0, ri} do
269
+ 8:
270
+ D ← D ∪ {(x, y)}
271
+ 9:
272
+ end for
273
+ 10:
274
+ end for
275
+ 11:
276
+ train fθl with D
277
+ 12: end for
278
+ 3.4
279
+ Dynamic Imbalance
280
+ Na¨ıve usage of self-labeling in selective sampling can intro-
281
+ duce imbalance in the training set L. To demonstrate this,
282
+ we conduct a preliminary experiment with synthetic data. We
283
+ generate simple datasets by sampling from 2D Gaussian dis-
284
+ tribution for easier visualization. We study two scenarios that
285
+ may occur in practice. In the first case, the dataset consists of
286
+ three balanced classes, but one of the classes is easier to learn
287
+ than the rest. In the second scenario dataset with two classes
288
+ is imbalanced.
289
+ We sample 300 learning examples, plotted in Fig. 2 on the
290
+ left-hand side. Datasets are used for initial training of Multi-
291
+ layer Perceptron with 5 neuron single hidden layer. Next,
292
+ we generate a stream with 3000 learning examples, sample
293
+ data from the stream, and obtain model predictions. When
294
+ model confidence exceeds 0.95, we expand the training set
295
+ with learning examples and predicted labels. For simplicity,
296
+ we do not use bootstrapping in this experiment. When model
297
+ confidence is below 0.7, we create a query to obtain a ground-
298
+ truth label. Changes in the percentage of labels in training set
299
+ during training with an unlabeled data stream are presented
300
+ in Fig. 2 in the middle.
301
+ In the first scenario, over time percentage of samples la-
302
+ beled as the third class grows until it utilizes approximately
303
+ 40% of all data. This result shows that na¨ıve utilization of
304
+ self-labeling can disturb class distribution, even if the original
305
+ data is balanced. In the second scenario, the initial imbalance
306
+ ratio is 1:4, however, after approximately 800 iterations, it is
307
+ closer to 1:5. This shows that initial bias in the data distri-
308
+ bution can be strengthened by self-labeling. Please note that
309
+ in this experiment algorithm have access to the ground truth
310
+ labels by creating queries for samples with low confidence,
311
+ and yet, the class distribution change over time.
312
+ 3.5
313
+ Prior filter
314
+ To address the issue of dynamic imbalance, we introduce a
315
+ method that prevents training when the current prior estima-
316
+ tion for the predicted class is too high. We use the last k labels
317
+ from L and compute the percentage of samples that have the
318
+ same label as the predicted class:
319
+ ˆp = 1
320
+ k
321
+ M
322
+
323
+ i=M−k
324
+ 1yi=ˆy
325
+ (3)
326
+ This value can be interpreted as an estimation of the cur-
327
+ rent class prior. Only the last k labels were used because,
328
+ as shown in preliminary experiments, class distribution can
329
+ change over time.
330
+ We compute difference between ˆp and
331
+ prior of perfectly balanced dataset:
332
+ ∆p = ˆp − 1
333
+ C
334
+ (4)
335
+ Where C is the number of all classes. When ∆p > 0 we
336
+ disallow training. We do not apply this prior filter to labels
337
+ obtained from an oracle. A similar approach was proposed
338
+ earlier in [Komorniczak et al., 2022] in the context of the
339
+ data stream processing, however it estimated prior with re-
340
+ gression models and switching labels for the majority class.
341
+ Here we estimate prior directly from model predictions and
342
+ skip samples from majority classes, which is similar to un-
343
+ dersampling.
344
+ We repeat previous preliminary experiments with the prior
345
+ filter applied. We use k = 50 last samples. Results are plotted
346
+ in Fig. 2 on the right-hand side. The proposed method can
347
+ keep class distribution balanced in the first setting and, over
348
+ time, improve initial class distribution in the second setting.
349
+ 3.6
350
+ Self-labeling selective sampling
351
+ The complete algorithm for Self-labeling selective sampling
352
+ (SL2S) along with time complexity analysis is provided in
353
+ appendix B.
354
+
355
+ Figure 2: Dynamic imbalance of classes when applying self-labeling directly during selective sampling. We consider two settings: in the
356
+ first three classes with balanced prior distribution, but a single class is easier to learn than others (up), and the second imbalanced binary
357
+ classification problem (bottom). Generated 2-D datasets are plotted on the left-hand side. When applying self-labeling directly (middle), we
358
+ observe a change in the class distribution in the training set. This problem can be avoided when we apply dynamic balancing (right).
359
+ 4
360
+ Experimental Setup
361
+ This section provides a detailed description of the methods,
362
+ datasets, and tools used to conduct experiments.
363
+ 4.1
364
+ Datasets
365
+ We utilize datasets from the UCI repository [Dua and Graff,
366
+ 2017] with a wide range of datasets with different sizes, num-
367
+ ber of classes, number of attributes, and imbalance ratio (IR).
368
+ The detailed information about data used in experiments is
369
+ presented in Tab. 1. The complete list of features and proce-
370
+ dures for loading data are provided in appendix C.
371
+ Table 1: Datasets used for experiments. IR was computed by taking
372
+ a ratio of class with the highest and lowest number of samples.
373
+ dataset name
374
+ size
375
+ #class
376
+ #attributes
377
+ IR
378
+ adult [Kohavi, 1996]
379
+ 48842
380
+ 2
381
+ 14
382
+ 3.1527
383
+ bank marketing [Moro et al., 2014]
384
+ 45211
385
+ 2
386
+ 17
387
+ 7.5475
388
+ firewall [Ertam and Kaya, 2018]
389
+ 65478
390
+ 3
391
+ 12
392
+ 2.9290
393
+ chess [Dua and Graff, 2017]
394
+ 20902
395
+ 15
396
+ 40
397
+ 22.919
398
+ nursery [M. Olave, 1989]
399
+ 12958
400
+ 4
401
+ 8
402
+ 13.1707
403
+ mushroom [Dua and Graff, 2017]
404
+ 8124
405
+ 2
406
+ 22
407
+ 1.0746
408
+ wine [Cortez et al., 2009]
409
+ 4873
410
+ 5
411
+ 12
412
+ 13.5082
413
+ abalone [Nash et al., 1994]
414
+ 4098
415
+ 11
416
+ 8
417
+ 21.5417
418
+ 4.2
419
+ Metrics and evaluation
420
+ Due to high values of IR for some datasets, we decided to em-
421
+ ploy balanced accuracy [Brodersen et al., 2010] as primary
422
+ performance metrics for our experiments. In our evaluation,
423
+ we focus on the impact of budget size and seed size used for
424
+ training of the initial model, as these two factors can impact
425
+ the results the most. All values of metrics reported in this pa-
426
+ per were obtained with a separate test set. Code was imple-
427
+ mented in Python with the utilization of scikit-learn library
428
+ [Pedregosa et al., 2011]. The codebase with the method and
429
+ experiment implementations are available on github 1.
430
+ 4.3
431
+ Baselines
432
+ To perform fair evaluation, we compare the proposed method
433
+ to commonly used algorithms in selective sampling literature:
434
+ • random - random selection of samples for query
435
+ • fixed uncertainty [Lewis and Catlett, 1994] - selection of
436
+ samples based on a static confidence threshold
437
+ • variable uncertainty [Zliobaite et al., 2014] - modifica-
438
+ tion of fixed uncertainty that adjust confidence threshold
439
+ based on the current size of the uncertainty region
440
+ • classification margin [Scheffer et al., 2001] - a method
441
+ that computes the difference in confidence between
442
+ classes with two biggest supports
443
+ • vote entropy [Argamon-Engelson and Dagan, 1999] -
444
+ queries are based on ensemble vote entropy
445
+ • consensus entropy [G´omez-Ca˜n´on et al., 2021] - sam-
446
+ ples are selected based on the highest average prediction
447
+ entropy
448
+ • max disagreement [McCallum and Nigam, 1998] - com-
449
+ putes KL-divergence between output class distribution
450
+ and consensus distribution
451
+ • min margin [Jiang and Gupta, 2019] - a method that se-
452
+ lects samples based on minimum classification margin
453
+ for all models in the ensemble
454
+ In the case of methods that were created for the pool-based
455
+ scenario, we adapt them by introducing the informativeness
456
+ 1https://github.com/w4k2/active-learning-data-streams
457
+
458
+ 1.0
459
+ 1.0
460
+ class 1
461
+ 4
462
+ class 2
463
+ 0.8
464
+ 0.8
465
+ class 3
466
+ percentage
467
+ class percentage
468
+ 2
469
+ 0.6
470
+ 0.6
471
+ 0
472
+ 0.4
473
+ 0.4
474
+ class
475
+ -2
476
+ 0.2
477
+ 0.2
478
+ -4
479
+ 0.0
480
+ 0.0
481
+ -5
482
+ 0
483
+ 5
484
+ 0
485
+ 500
486
+ 1000
487
+ 1500
488
+ 2000
489
+ 0
490
+ 200
491
+ 400
492
+ 600
493
+ 800
494
+ iterations
495
+ iterations
496
+ 1.0
497
+ 1.0
498
+ 4
499
+ 0.8
500
+ 0.8
501
+ 2
502
+ percentage
503
+ percentage
504
+ 0.6
505
+ 0.6
506
+ 0
507
+ class
508
+ 0.4
509
+ class E
510
+ 0.4
511
+ .
512
+ -2
513
+ class 1
514
+ 0.2
515
+ 0.2
516
+ -4
517
+ class 2
518
+ 0.0
519
+ 0.0
520
+ -4
521
+ -2
522
+ 2
523
+ o
524
+ 500
525
+ 1000
526
+ 1500
527
+ 2000
528
+ 0
529
+ 200
530
+ 400
531
+ 600
532
+ iterations
533
+ iterationsthreshold. For each committee-based method, we use 9 base
534
+ classifiers and employ bootstrapping during initial training.
535
+ All methods were trained with Multi-layer Perceptron classi-
536
+ fier with two hidden layers, 100 neurons each.
537
+ 4.4
538
+ Hyperparameter tuning
539
+ In preliminary experiments, we found that the most impor-
540
+ tant hyperparameter is the threshold used for the informative-
541
+ ness measure. For this reason, we focused on tuning this pa-
542
+ rameter. We use random search [Bergstra and Bengio, 2012]
543
+ to select the best thresholds for each algorithm. MLP clas-
544
+ sifier was trained with Adam optimizer (learning rate equal
545
+ to 0.001). We allow training for a maximum of 5000 itera-
546
+ tions. Detailed description of hyperparameter tuning process
547
+ with range of values for each algorithm are provided in ap-
548
+ pendix D.
549
+ 4.5
550
+ Goal of experiments
551
+ The overall goal of experiments is to perform a thorough in-
552
+ vestigation into the usefulness of self-labeling in a selective
553
+ sampling setting. To provide a more precise description, we
554
+ formulate the following research questions:
555
+ RQ1: Is there a benefit of combining active learning strategies
556
+ with self-labeling?
557
+ RQ2: What is the performance of the proposed method for
558
+ datasets with a high number of learning examples?
559
+ RQ3: What is the impact of the initial training size (the seed
560
+ size) on the performance?
561
+ RQ4: How does the accuracy of the model trained with seed
562
+ impact the learning process of the proposed algorithm?
563
+ RQ5: Does the proposed algorithm allows for the better uti-
564
+ lization of the computational budget?
565
+ Each of these research questions will be addressed in the
566
+ following parts of our work.
567
+ 5
568
+ Experiments
569
+ In this section, we describe the results of an experimental
570
+ evaluation in accordance with the research questions stated
571
+ above.
572
+ 5.1
573
+ Experiments with smaller datasets
574
+ We compare the performance of the proposed method and
575
+ baselines according to the experimental protocol described in
576
+ previous sections. Here we utilize four datasets, namely nurs-
577
+ ery, mushroom, wine, and abalone. Results are presented on
578
+ the left-hand side of Tab. 2.
579
+ Here we can see that our method rarely obtains the best
580
+ score. However, the difference between the best-performing
581
+ method and SL2S is often close to or below 0.02. The worst
582
+ performance is obtained for the nursery dataset. This is prob-
583
+ ably due to the presence of three majority classes with a close
584
+ number of samples and a single minority class with a sub-
585
+ stantially lower number of samples. For this reason, a lot of
586
+ samples could be discarded by the prior filter. Other datasets
587
+ are either well-balanced or contain a single majority class.
588
+ For these types of datasets, we obtained better results.
589
+ When we compare the performance of other methods, we
590
+ can notice that uncertainty-based methods perform compa-
591
+ rably to the best algorithms only with a high budget. Clas-
592
+ sification margin is a strong baseline as indicated by litera-
593
+ ture [Bahri et al., 2022]. When we compare ensemble-based
594
+ methods, it turns out that min margin and consensus entropy
595
+ are the best, with both methods obtaining close performance
596
+ to the best algorithm.
597
+ 5.2
598
+ Experiments with bigger datasets
599
+ We also conduct experiments on larger datasets, i.e., adult,
600
+ bank marketing, firewall, and chess. To save computation,
601
+ we train only when batch of 100 labeled samples is col-
602
+ lected and reuse the hyperparameters found for the biggest
603
+ datasets in previous experiments. We also drop the vote en-
604
+ tropy and max disagreement methods from our comparison
605
+ due to poor performance in previous experiments compared
606
+ to other ensemble-based methods. Results are presented on
607
+ the right-hand side of Tab. 2.
608
+ Here our method performs well, with either the best-
609
+ balanced accuracy or close to the best. There is no clear per-
610
+ formance pattern when we compare results across the varying
611
+ budget. Uncertainty-based methods provide the worst bal-
612
+ anced accuracy in this case. Random sampling allows for
613
+ obtaining the best performance for the firewall dataset, prob-
614
+ ably due to the simplicity of the classification problem in this
615
+ dataset. Firewall has only three classes and a lower IR com-
616
+ pared to other datasets. Most methods perform well on this
617
+ dataset, with a lot of ties between different algorithms in the
618
+ first place.
619
+ 5.3
620
+ Impact of seed size
621
+ We evaluate the impact of the size of the initial training set
622
+ on active learning performance. When utilizing labels gen-
623
+ erated with model predictions, the lower number of initial
624
+ training samples may cause a higher error rate at the begin-
625
+ ning of the experiment and the introduction of more noise into
626
+ the dataset. For this reason, smaller seed sizes can impact
627
+ the overall results. We reuse the hyperparameter values from
628
+ previous experiments. All experiments are performed with a
629
+ budget equal to 0.3. The results are provided in appendix E.
630
+ As expected, initial training size has a lower impact on the
631
+ random sampling algorithm. This method is not dependent on
632
+ model predictions, therefore, changing the seed should not
633
+ impact the overall performance. In the case of uncertainty-
634
+ based methods, there is no clear pattern of seed size impact.
635
+ In some cases, training with these algorithms and lower seed
636
+ could provide better results. The ensemble-based methods
637
+ improve balanced accuracy as the number of labeled samples
638
+ grows. SL2S can in some cases, obtain better performance
639
+ with smaller seeds, and often we were able to obtain the best-
640
+ balanced accuracy with our method. This result indicates that
641
+ SL2S does not depend heavily on the initial model perfor-
642
+ mance and could be applied even if the number of labeled
643
+ samples in the beginning is small.
644
+ 5.4
645
+ Ablation studies
646
+ We perform ablation studies for the proposed method. First,
647
+ we remove the prior filter and allow training regardless of
648
+
649
+ Table 2: Balanced accuracy for variable budget size and smaller datasets
650
+ dataset
651
+ nursery
652
+ adult
653
+ labeled
654
+ 0.318±0.030
655
+ 0.741±0.010
656
+ labeled ensemble
657
+ 0.276±0.013
658
+ 0.756±0.005
659
+ budget
660
+ 0.1
661
+ 0.2
662
+ 0.3
663
+ 0.4
664
+ 0.5
665
+ 0.1
666
+ 0.2
667
+ 0.3
668
+ 0.4
669
+ 0.5
670
+ random
671
+ 0.371±0.015
672
+ 0.350±0.017
673
+ 0.325±0.012
674
+ 0.298±0.017
675
+ 0.282±0.012
676
+ 0.735±0.007
677
+ 0.733±0.005
678
+ 0.729±0.007
679
+ 0.731±0.005
680
+ 0.732±0.006
681
+ f. uncertainty
682
+ 0.389±0.018
683
+ 0.393±0.016
684
+ 0.385±0.007
685
+ 0.391±0.016
686
+ 0.394±0.019
687
+ 0.754±0.007
688
+ 0.758±0.008
689
+ 0.765±0.009
690
+ 0.760±0.011
691
+ 0.760±0.011
692
+ v. uncertainty
693
+ 0.378±0.012
694
+ 0.359±0.012
695
+ 0.327±0.014
696
+ 0.307±0.014
697
+ 0.280±0.018
698
+ 0.756±0.013
699
+ 0.751±0.011
700
+ 0.755±0.012
701
+ 0.758±0.012
702
+ 0.746±0.011
703
+ class. margin
704
+ 0.397±0.019
705
+ 0.395±0.020
706
+ 0.396±0.013
707
+ 0.399±0.036
708
+ 0.396±0.019
709
+ 0.757±0.008
710
+ 0.757±0.008
711
+ 0.757±0.008
712
+ 0.757±0.008
713
+ 0.757±0.008
714
+ vote entropy
715
+ 0.393±0.014
716
+ 0.393±0.014
717
+ 0.393±0.014
718
+ 0.393±0.014
719
+ 0.393±0.014
720
+ -
721
+ -
722
+ -
723
+ -
724
+ -
725
+ consensus entropy
726
+ 0.393±0.013
727
+ 0.394±0.013
728
+ 0.393±0.014
729
+ 0.393±0.013
730
+ 0.404±0.017
731
+ 0.764±0.004
732
+ 0.767±0.005
733
+ 0.765±0.002
734
+ 0.765±0.004
735
+ 0.764±0.003
736
+ max disagreement
737
+ 0.402±0.019
738
+ 0.393±0.014
739
+ 0.393±0.014
740
+ 0.404±0.016
741
+ 0.403±0.021
742
+ -
743
+ -
744
+ -
745
+ -
746
+ -
747
+ min margin
748
+ 0.405±0.019
749
+ 0.375±0.012
750
+ 0.388±0.021
751
+ 0.385±0.018
752
+ 0.400±0.010
753
+ 0.768±0.004
754
+ 0.767±0.005
755
+ 0.768±0.004
756
+ 0.768±0.004
757
+ 0.768±0.004
758
+ SL2S
759
+ 0.384±0.018
760
+ 0.350±0.014
761
+ 0.338±0.013
762
+ 0.292±0.020
763
+ 0.294±0.016
764
+ 0.762±0.003
765
+ 0.763±0.004
766
+ 0.763±0.004
767
+ 0.762±0.003
768
+ 0.762±0.004
769
+ dataset
770
+ mushroom
771
+ bank marketing
772
+ labeled
773
+ 0.637±0.010
774
+ 0.712±0.012
775
+ labeled ensemble
776
+ 0.636±0.010
777
+ 0.714±0.009
778
+ budget
779
+ 0.1
780
+ 0.2
781
+ 0.3
782
+ 0.4
783
+ 0.5
784
+ 0.1
785
+ 0.2
786
+ 0.3
787
+ 0.4
788
+ 0.5
789
+ random
790
+ 0.632±0.011
791
+ 0.634±0.009
792
+ 0.633±0.010
793
+ 0.636±0.010
794
+ 0.633±0.012
795
+ 0.700±0.023
796
+ 0.694±0.017
797
+ 0.703±0.021
798
+ 0.698±0.014
799
+ 0.699±0.018
800
+ f. uncertainty
801
+ 0.630±0.010
802
+ 0.630±0.011
803
+ 0.633±0.012
804
+ 0.635±0.009
805
+ 0.634±0.010
806
+ 0.691±0.014
807
+ 0.710±0.014
808
+ 0.705±0.019
809
+ 0.705±0.019
810
+ 0.705±0.019
811
+ v. uncertainty
812
+ 0.631±0.010
813
+ 0.631±0.012
814
+ 0.634±0.010
815
+ 0.633±0.009
816
+ 0.633±0.011
817
+ 0.690±0.014
818
+ 0.694±0.018
819
+ 0.700±0.018
820
+ 0.703±0.013
821
+ 0.697±0.018
822
+ class. margin
823
+ 0.632±0.012
824
+ 0.633±0.012
825
+ 0.633±0.013
826
+ 0.618±0.023
827
+ 0.635±0.010
828
+ 0.682±0.012
829
+ 0.682±0.012
830
+ 0.682±0.012
831
+ 0.682±0.012
832
+ 0.682±0.012
833
+ vote entropy
834
+ 0.630±0.011
835
+ 0.630±0.011
836
+ 0.635±0.011
837
+ 0.630±0.011
838
+ 0.635±0.010
839
+ -
840
+ -
841
+ -
842
+ -
843
+ -
844
+ consensus entropy
845
+ 0.632±0.010
846
+ 0.632±0.012
847
+ 0.633±0.011
848
+ 0.631±0.011
849
+ 0.634±0.010
850
+ 0.701±0.011
851
+ 0.714±0.007
852
+ 0.719±0.006
853
+ 0.715±0.009
854
+ 0.715±0.009
855
+ max disagreement
856
+ 0.631±0.010
857
+ 0.633±0.013
858
+ 0.630±0.011
859
+ 0.630±0.011
860
+ 0.630±0.011
861
+ -
862
+ -
863
+ -
864
+ -
865
+ -
866
+ min margin
867
+ 0.632±0.011
868
+ 0.632±0.012
869
+ 0.634±0.010
870
+ 0.634±0.011
871
+ 0.634±0.011
872
+ 0.705±0.006
873
+ 0.716±0.007
874
+ 0.716±0.007
875
+ 0.716±0.007
876
+ 0.716±0.007
877
+ SL2S
878
+ 0.631±0.011
879
+ 0.632±0.012
880
+ 0.632±0.012
881
+ 0.633±0.010
882
+ 0.634±0.010
883
+ 0.709±0.007
884
+ 0.715±0.009
885
+ 0.718±0.009
886
+ 0.719±0.008
887
+ 0.718±0.009
888
+ dataset
889
+ wine
890
+ firewall
891
+ labeled
892
+ 0.524±0.027
893
+ 0.997±0.001
894
+ labeled ensemble
895
+ 0.514±0.015
896
+ 0.998±0.000
897
+ budget
898
+ 0.1
899
+ 0.2
900
+ 0.3
901
+ 0.4
902
+ 0.5
903
+ 0.1
904
+ 0.2
905
+ 0.3
906
+ 0.4
907
+ 0.5
908
+ random
909
+ 0.408±0.021
910
+ 0.430±0.021
911
+ 0.439±0.023
912
+ 0.452±0.018
913
+ 0.474±0.017
914
+ 0.996±0.002
915
+ 0.997±0.002
916
+ 0.998±0.001
917
+ 0.997±0.001
918
+ 0.998±0.001
919
+ f. uncertainty
920
+ 0.418±0.020
921
+ 0.423±0.018
922
+ 0.441±0.017
923
+ 0.448±0.012
924
+ 0.440±0.012
925
+ 0.993±0.002
926
+ 0.996±0.002
927
+ 0.996±0.002
928
+ 0.996±0.002
929
+ 0.996±0.002
930
+ v. uncertainty
931
+ 0.415±0.022
932
+ 0.437±0.016
933
+ 0.437±0.022
934
+ 0.459±0.021
935
+ 0.473±0.022
936
+ 0.994±0.002
937
+ 0.997±0.001
938
+ 0.997±0.001
939
+ 0.997±0.001
940
+ 0.997±0.001
941
+ class. margin
942
+ 0.414±0.015
943
+ 0.433±0.016
944
+ 0.420±0.022
945
+ 0.424±0.014
946
+ 0.429±0.021
947
+ 0.991±0.001
948
+ 0.991±0.001
949
+ 0.991±0.001
950
+ 0.991±0.001
951
+ 0.991±0.001
952
+ vote entropy
953
+ 0.404±0.012
954
+ 0.419±0.016
955
+ 0.389±0.016
956
+ 0.389±0.016
957
+ 0.389±0.016
958
+ -
959
+ -
960
+ -
961
+ -
962
+ -
963
+ consensus entropy
964
+ 0.419±0.010
965
+ 0.439±0.014
966
+ 0.458±0.014
967
+ 0.474±0.012
968
+ 0.479±0.013
969
+ 0.992±0.001
970
+ 0.992±0.001
971
+ 0.992±0.001
972
+ 0.992±0.001
973
+ 0.992±0.001
974
+ max disagreement
975
+ 0.396±0.022
976
+ 0.389±0.016
977
+ 0.389±0.016
978
+ 0.389±0.016
979
+ 0.389±0.016
980
+ -
981
+ -
982
+ -
983
+ -
984
+ -
985
+ min margin
986
+ 0.420±0.014
987
+ 0.432±0.017
988
+ 0.461±0.019
989
+ 0.465±0.016
990
+ 0.487±0.012
991
+ 0.991±0.001
992
+ 0.991±0.001
993
+ 0.991±0.001
994
+ 0.991±0.001
995
+ 0.991±0.001
996
+ SL2S
997
+ 0.420±0.014
998
+ 0.438±0.009
999
+ 0.451±0.022
1000
+ 0.476±0.014
1001
+ 0.499±0.019
1002
+ 0.997±0.001
1003
+ 0.997±0.001
1004
+ 0.997±0.001
1005
+ 0.997±0.001
1006
+ 0.997±0.001
1007
+ dataset
1008
+ abalone
1009
+ chess
1010
+ labeled
1011
+ 0.186±0.021
1012
+ 0.816±0.011
1013
+ labeled ensemble
1014
+ 0.188±0.012
1015
+ 0.850±0.007
1016
+ budget
1017
+ 0.1
1018
+ 0.2
1019
+ 0.3
1020
+ 0.4
1021
+ 0.5
1022
+ 0.1
1023
+ 0.2
1024
+ 0.3
1025
+ 0.4
1026
+ 0.5
1027
+ random
1028
+ 0.179±0.012
1029
+ 0.177±0.009
1030
+ 0.178±0.007
1031
+ 0.185±0.011
1032
+ 0.182±0.018
1033
+ 0.515±0.017
1034
+ 0.581±0.015
1035
+ 0.630±0.009
1036
+ 0.669±0.014
1037
+ 0.698±0.009
1038
+ f. uncertainty
1039
+ 0.171±0.024
1040
+ 0.187±0.008
1041
+ 0.177±0.013
1042
+ 0.182±0.014
1043
+ 0.186±0.018
1044
+ 0.459±0.017
1045
+ 0.538±0.015
1046
+ 0.593±0.017
1047
+ 0.639±0.017
1048
+ 0.674±0.014
1049
+ v. uncertainty
1050
+ 0.171±0.012
1051
+ 0.182±0.014
1052
+ 0.181±0.010
1053
+ 0.176±0.006
1054
+ 0.181±0.015
1055
+ 0.464±0.021
1056
+ 0.543±0.016
1057
+ 0.604±0.016
1058
+ 0.651±0.016
1059
+ 0.691±0.014
1060
+ class. margin
1061
+ 0.176±0.016
1062
+ 0.181±0.008
1063
+ 0.187±0.013
1064
+ 0.177±0.018
1065
+ 0.183±0.010
1066
+ 0.466±0.019
1067
+ 0.543±0.015
1068
+ 0.606±0.013
1069
+ 0.653±0.014
1070
+ 0.692±0.014
1071
+ vote entropy
1072
+ 0.185±0.015
1073
+ 0.187±0.012
1074
+ 0.185±0.015
1075
+ 0.185±0.015
1076
+ 0.188±0.012
1077
+ -
1078
+ -
1079
+ -
1080
+ -
1081
+ -
1082
+ consensus entropy
1083
+ 0.188±0.015
1084
+ 0.191±0.010
1085
+ 0.185±0.013
1086
+ 0.184±0.017
1087
+ 0.187±0.014
1088
+ 0.492±0.016
1089
+ 0.594±0.009
1090
+ 0.662±0.008
1091
+ 0.715±0.010
1092
+ 0.758±0.009
1093
+ max disagreement
1094
+ 0.183±0.013
1095
+ 0.185±0.012
1096
+ 0.184±0.012
1097
+ 0.185±0.015
1098
+ 0.185±0.011
1099
+ -
1100
+ -
1101
+ -
1102
+ -
1103
+ -
1104
+ min margin
1105
+ 0.184±0.009
1106
+ 0.189±0.012
1107
+ 0.185±0.015
1108
+ 0.188±0.014
1109
+ 0.184±0.014
1110
+ 0.491±0.022
1111
+ 0.589±0.017
1112
+ 0.660±0.016
1113
+ 0.713±0.016
1114
+ 0.752±0.014
1115
+ SL2S
1116
+ 0.183±0.013
1117
+ 0.186±0.010
1118
+ 0.190±0.010
1119
+ 0.188±0.008
1120
+ 0.182±0.011
1121
+ 0.491±0.013
1122
+ 0.585±0.010
1123
+ 0.655±0.012
1124
+ 0.702±0.010
1125
+ 0.748±0.010
1126
+ the current dataset imbalance. This modification should fur-
1127
+ ther verify whether the dynamic imbalance is an issue when
1128
+ we use self-labeling in selective sampling. Secondly, we keep
1129
+ higher lambda values in equation 2 after the end of the budget.
1130
+ Decreasing lambda is the second mechanism introduced in
1131
+ our work that, in principle, should prevent the gradual degra-
1132
+ dation of model performance when using self-supervision as
1133
+ a source of new labels. Next, we remove the bootstrapped
1134
+ training to evaluate if ensemble diversification provides better
1135
+ performance in our experiments. Lastly, the self-labeling part
1136
+ of our approach was removed, and training was conducted
1137
+ with active learning alone. We use the wine dataset for eval-
1138
+ uation. Experiments were performed with a 0.3 labeling bud-
1139
+ get and various seed sizes. The prediction threshold value was
1140
+ selected based on hyperparameter tuning results from previ-
1141
+ ous experiments. We repeat experiments with three different
1142
+ random seeds and report average results in Tab. 3.
1143
+ Table 3: Balanced accuracy obtained in ablation study
1144
+ seed size
1145
+ 100
1146
+ 500
1147
+ 1000
1148
+ base
1149
+ 0.4151±0.0220
1150
+ 0.4323±0.0230
1151
+ 0.4509±0.0131
1152
+ -prior filter
1153
+ 0.3747±0.0192
1154
+ 0.4430±0.0193
1155
+ 0.4502±0.0231
1156
+ -lambda reduction
1157
+ 0.3747±0.0192
1158
+ 0.4257±0.0159
1159
+ 0.4463±0.0226
1160
+ -self-labeling
1161
+ 0.4174±0.0168
1162
+ 0.4421±0.0292
1163
+ 0.4461±0.0398
1164
+ -bootstrapped training
1165
+ 0.3916±0.0211
1166
+ 0.4318±0.0217
1167
+ 0.4461±0.0135
1168
+ We find that the prior filter has only a positive impact
1169
+ only in the case of smaller seed sizes. Conversely, reduc-
1170
+ ing lambda after budget end provides gains in balanced ac-
1171
+ curacy for higher seed size. Removing self-labeling increase
1172
+ accuracy. This finding is expected, as in preliminary experi-
1173
+ ments we found that na¨ıve application of self-labeling could
1174
+ make results worse. In this case, after removing two mecha-
1175
+ nisms from our algorithm that prevent the negative impact of
1176
+ dynamic imbalance and classification errors, we can see that
1177
+
1178
+ Figure 3: Balanced accuracy (left) with a corresponding fraction of
1179
+ incorrect samples in the labeled dataset (right) over multiple itera-
1180
+ tions. We perform experiments for various seed sizes: 100 (top),
1181
+ 500 (middle), and 1000 (bottom).
1182
+ further removing self-labeling improves the results. This is
1183
+ in line with preliminary results and further proves that prior
1184
+ filter and lambda reduction are indeed necessary. Lastly, the
1185
+ removal of bootstrapped training has a bigger impact when
1186
+ training with a smaller seed size.
1187
+ We can intuitively ex-
1188
+ plain this result by the fact that ensemble diversity should
1189
+ be smaller when utilizing bigger datasets, as more samples
1190
+ could cover feature space more densely, and randomly sam-
1191
+ pling datasets with bootstrapping would produce more similar
1192
+ datasets.
1193
+ 5.5
1194
+ Incorrect labels from self-labeling
1195
+ As an extension of ablation studies, we examine how many
1196
+ wrong labels are introduced when using SL2S with and with-
1197
+ out prior filter. For this purpose, we train the MLP model on
1198
+ a wine dataset with a budget of 0.3 and various seed sizes.
1199
+ We plot the balanced accuracy with the corresponding frac-
1200
+ tion of samples with wrong labels in the training dataset over
1201
+ multiple iterations in Fig. 3. Including a prior filter drasti-
1202
+ cally reduces the number of incorrect labels. This does not
1203
+ necessarily lead to improvement in balanced accuracy. For a
1204
+ seed size equal to 500, both versions of the algorithm obtain
1205
+ very close final accuracy, while the difference in a fraction of
1206
+ incorrect labels is nearly 0.2. This phenomenon can be ex-
1207
+ plained by two factors. First is the fact that neural networks
1208
+ trained with gradient descent are known to be robust to noisy
1209
+ labels [Li et al., 2020]. Another possible explanation is that
1210
+ in some cases, incorrect labels could help to ”smooth” the de-
1211
+ cision boundary. This can also explain why no difference in
1212
+ balanced accuracy was observed only in part of our experi-
1213
+ ments. Nonetheless, more research is needed to better under-
1214
+ stand this phenomenon and its impact on self-labeling perfor-
1215
+ mance. Without prior filter, models trained with smaller seed
1216
+ sizes accumulate erroneous labels faster in the initial phase of
1217
+ training. For full SL2S the fraction of wrong labels roughly
1218
+ states the same across the whole training. We verify this fur-
1219
+ ther in appendix F and show that, indeed, initial model per-
1220
+ formance has no great impact on final accuracy of SL2S.
1221
+ 6
1222
+ Lessons Learned
1223
+ Based on the results provided in Tab. 2 we can claim that
1224
+ SL2S method works better for big datasets. This was ex-
1225
+ pected, as for a larger stream, more samples can be accumu-
1226
+ lated with self-labeling. In the case of a smaller dataset, the
1227
+ performance is similar to other methods. The budget does
1228
+ not have a huge impact on the experiment results. Also, ex-
1229
+ periments with seed size confirm that our method could be
1230
+ applied for low data regimes.
1231
+ As indicated by results with the nursery dataset and abla-
1232
+ tion results, a prior filter may not be the best method to ad-
1233
+ dress the imbalance issue in our datasets. This part of the al-
1234
+ gorithm was designed with synthetic data. In the case of real
1235
+ datasets, the prior class distribution has higher importance.
1236
+ For this reason, alternative methods should be developed for
1237
+ dealing with imbalance when applying self-labeling to active
1238
+ learning scenarios. Although we did not manage to mitigate
1239
+ the imbalance problem properly, solving this issue is impor-
1240
+ tant, and future work in this area should address this problem.
1241
+ Results from Fig. 4 suggest that after the budget ends,
1242
+ the balanced accuracy roughly stays at the same level, and
1243
+ changes in the test accuracy do not occur frequently. With a
1244
+ higher number of model updates, the performance over time
1245
+ could fall drastically. For this reason, we introduced solutions
1246
+ that limit the use of self-labeling, preventing a fall in accu-
1247
+ racy. However, this is sub-optimal, as in this case, we would
1248
+ ideally want accuracy to increase over time, despite the end
1249
+ of the budget. More work is needed to better address the dy-
1250
+ namic imbalance issue or to provide a more accurate filter
1251
+ for wrong predictions. With these two problems solved we
1252
+ could give up the mechanisms that inhibit learning. It should
1253
+ allow for obtaining better performance, especially for bigger
1254
+ datasets.
1255
+ 7
1256
+ Conclusions
1257
+ We have proposed a new active learning method that com-
1258
+ bines simple ensemble-based sample selection and self-
1259
+ labeling for selective sampling. Experiments with multiple
1260
+ baselines show that our method offers comparable perfor-
1261
+ mance to other active learning algorithms for smaller datasets
1262
+ and better performance for bigger datasets. Further experi-
1263
+ ments also show that our method could work well when the
1264
+ initially labeled dataset is small or when initial model accu-
1265
+ racy is poorly trained.
1266
+ We also show that an important aspect of self-labeling is
1267
+ an imbalance, as bias towards a single class in model predic-
1268
+ tions could, over time, increase dataset imbalance. Another
1269
+ important factor is erroneous model predictions that introduce
1270
+ noise into the training dataset. Based on the preliminaries and
1271
+ ablations presented in this work, we claim that further work
1272
+ should focus on these two aspects to improve the overall self-
1273
+ labeling performance. We cannot eliminate all errors from
1274
+ model predictions, however, developing better methods for
1275
+ filtering noisy labels or models that are more robust to label
1276
+ noise should allow for better utilization of self-labeling.
1277
+
1278
+ 0.40
1279
+ 0.40
1280
+ SL2S
1281
+ of incorrect labels
1282
+ 0.38
1283
+ nopriorfilter
1284
+ 0.30
1285
+ 0.36
1286
+ SL2S
1287
+ lanced
1288
+ 0.34
1289
+ 0.20
1290
+ no prior filter
1291
+ 0.32
1292
+ bal
1293
+ 0.10
1294
+ 0.30
1295
+ 0.28
1296
+ 0.00
1297
+ 0
1298
+ 500
1299
+ 1000
1300
+ 1500
1301
+ 2000
1302
+ 25003000
1303
+ 3500
1304
+ 0
1305
+ 500
1306
+ 10001500
1307
+ 2000
1308
+ 25003000
1309
+ 3500
1310
+ 0.46
1311
+ 0.20
1312
+ label
1313
+ accuracy
1314
+ 0.44
1315
+ ofincorrect
1316
+ 0.15
1317
+ 0.42
1318
+ SL2S
1319
+ 0.10
1320
+ 0.40
1321
+ nopriorfilter
1322
+ 0.38
1323
+ fraction
1324
+ 0.05
1325
+ SL2S
1326
+ 0.36
1327
+ nopriorfilter
1328
+ 0.00
1329
+ 0
1330
+ 500
1331
+ 1000
1332
+ 1500
1333
+ 2000
1334
+ 2500
1335
+ 3000
1336
+ 0
1337
+ 500
1338
+ 1000
1339
+ 1500
1340
+ 2000
1341
+ 2500
1342
+ 3000
1343
+ SL2S
1344
+ of incorrect labels
1345
+ 0.50
1346
+ SL2S
1347
+ 0.13
1348
+ 2
1349
+ no priorfilter
1350
+ no prior filter
1351
+ accura
1352
+ 0.48
1353
+ 0.10
1354
+ 0.46
1355
+ 0.08
1356
+ lanced
1357
+ 0.44
1358
+ 0.05
1359
+ fraction
1360
+ bal
1361
+ 0.42
1362
+ 0.03
1363
+ 0.40
1364
+ 0.00
1365
+ 0
1366
+ 500
1367
+ 1000
1368
+ 1500
1369
+ 2000
1370
+ 2500
1371
+ 0
1372
+ 500
1373
+ 1000
1374
+ 1500
1375
+ 2000
1376
+ 2500
1377
+ iterations
1378
+ iterationsAcknowledgment
1379
+ This work is supported by the CEUS-UNISONO programme,
1380
+ which has received funding from the National Science Centre,
1381
+ Poland under grant agreement No. 2020/02/Y/ST6/00037.
1382
+ References
1383
+ [Algan and Ulusoy, 2020] G¨orkem Algan and Ilkay Ulusoy.
1384
+ Label noise types and their effects on deep learning. CoRR,
1385
+ abs/2003.10471, 2020.
1386
+ [Argamon-Engelson and Dagan, 1999] S.
1387
+ Argamon-
1388
+ Engelson and I. Dagan.
1389
+ Committee-based sample
1390
+ selection for probabilistic classifiers. Journal of Artificial
1391
+ Intelligence Research, 11:335–360, nov 1999.
1392
+ [Asano et al., 2019] Yuki Markus Asano, Christian Rup-
1393
+ precht, and Andrea Vedaldi.
1394
+ Self-labelling via simul-
1395
+ taneous clustering and representation learning.
1396
+ CoRR,
1397
+ abs/1911.05371, 2019.
1398
+ [Atlas et al., 1989] Les Atlas, David Cohn, and Richard Lad-
1399
+ ner.
1400
+ Training connectionist networks with queries and
1401
+ selective sampling.
1402
+ In D. Touretzky, editor, Advances
1403
+ in Neural Information Processing Systems, volume 2.
1404
+ Morgan-Kaufmann, 1989.
1405
+ [Bahri et al., 2022] Dara Bahri, Heinrich Jiang, Tal Schuster,
1406
+ and Afshin Rostamizadeh. Is margin all you need? an ex-
1407
+ tensive empirical study of active learning on tabular data,
1408
+ 2022.
1409
+ [Bengio et al., 2006] Yoshua Bengio, Pascal Lamblin, Dan
1410
+ Popovici, and Hugo Larochelle. Greedy layer-wise train-
1411
+ ing of deep networks.
1412
+ In B. Sch¨olkopf, J. Platt, and
1413
+ T. Hoffman, editors, Advances in Neural Information Pro-
1414
+ cessing Systems, volume 19. MIT Press, 2006.
1415
+ [Bergstra and Bengio, 2012] James Bergstra and Yoshua
1416
+ Bengio. Random search for hyper-parameter optimization.
1417
+ Journal of Machine Learning Research, 13(10):281–305,
1418
+ 2012.
1419
+ [Brodersen et al., 2010] Kay
1420
+ Henning
1421
+ Brodersen,
1422
+ Cheng Soon Ong, Klaas Enno Stephan, and Joachim M.
1423
+ Buhmann.
1424
+ The balanced accuracy and its posterior
1425
+ distribution.
1426
+ In 2010 20th International Conference on
1427
+ Pattern Recognition, pages 3121–3124, 2010.
1428
+ [Caron et al., 2018] Mathilde Caron, Piotr Bojanowski, Ar-
1429
+ mand Joulin, and Matthijs Douze.
1430
+ Deep clustering
1431
+ for unsupervised learning of visual features.
1432
+ CoRR,
1433
+ abs/1807.05520, 2018.
1434
+ [Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
1435
+ mad Norouzi, and Geoffrey E. Hinton. A simple frame-
1436
+ work for contrastive learning of visual representations.
1437
+ CoRR, abs/2002.05709, 2020.
1438
+ [Cohn et al., 1994] David Cohn, Les Atlas, and Richard Lad-
1439
+ ner. Improving generalization with active learning. Ma-
1440
+ chine Learning, 15(2):201–221, May 1994.
1441
+ [Cortez et al., 2009] Paulo Cortez, Ant´onio Cerdeira, Fer-
1442
+ nando Almeida, Telmo Matos, and Jos´e Reis.
1443
+ Model-
1444
+ ing wine preferences by data mining from physicochem-
1445
+ ical properties. Decision Support Systems, 47(4):547–553,
1446
+ 2009. Smart Business Networks: Concepts and Empirical
1447
+ Evidence.
1448
+ [Doersch et al., 2015] Carl Doersch, Abhinav Gupta, and
1449
+ Alexei A. Efros. Unsupervised visual representation learn-
1450
+ ing by context prediction. CoRR, abs/1505.05192, 2015.
1451
+ [Dua and Graff, 2017] Dheeru Dua and Casey Graff.
1452
+ UCI
1453
+ machine learning repository, 2017.
1454
+ [Ertam and Kaya, 2018] Fatih Ertam and Mustafa Kaya.
1455
+ Classification of firewall log files with multiclass support
1456
+ vector machine.
1457
+ 2018 6th International Symposium on
1458
+ Digital Forensic and Security (ISDFS), pages 1–4, 2018.
1459
+ [Gidaris et al., 2018] Spyros Gidaris, Praveer Singh, and
1460
+ Nikos Komodakis. Unsupervised representation learning
1461
+ by predicting image rotations.
1462
+ CoRR, abs/1803.07728,
1463
+ 2018.
1464
+ [G´omez-Ca˜n´on et al., 2021] Juan S. G´omez-Ca˜n´on, Estefa-
1465
+ nia Cano, Yi-Hsuan Yang, Perfecto Herrera, and Emilia
1466
+ Gomez. Let’s agree to disagree: Consensus Entropy Ac-
1467
+ tive Learning for Personalized Music Emotion Recogni-
1468
+ tion. In Proceedings of the 22nd International Society for
1469
+ Music Information Retrieval Conference, pages 237–245,
1470
+ Online, November 2021. ISMIR.
1471
+ [Han et al., 2019] Jiangfan Han, Ping Luo, and Xiaogang
1472
+ Wang.
1473
+ Deep self-learning from noisy labels.
1474
+ CoRR,
1475
+ abs/1908.02160, 2019.
1476
+ [Jaiswal et al., 2020] Ashish Jaiswal, Ashwin Ramesh Babu,
1477
+ Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
1478
+ Makedon. A survey on contrastive self-supervised learn-
1479
+ ing. CoRR, abs/2011.00362, 2020.
1480
+ [Jiang and Gupta, 2019] Heinrich Jiang and Maya R. Gupta.
1481
+ Minimum-margin active learning. CoRR, abs/1906.00025,
1482
+ 2019.
1483
+ [Kohavi, 1996] Ron Kohavi.
1484
+ Scaling up the accuracy of
1485
+ naive-bayes classifiers: A decision-tree hybrid. In KDD,
1486
+ 1996.
1487
+ [Komorniczak et al., 2022] Joanna Komorniczak, Paweł Zy-
1488
+ blewski, and Paweł Ksieniewicz. Imbalanced data stream
1489
+ classification assisted by prior probability estimation. In
1490
+ 2022 International Joint Conference on Neural Networks
1491
+ (IJCNN), pages 1–8, 2022.
1492
+ [Korycki and Krawczyk, 2021] Lukasz Korycki and Bartosz
1493
+ Krawczyk.
1494
+ Mining drifting data streams on a budget:
1495
+ Combining active learning with self-labeling.
1496
+ CoRR,
1497
+ abs/2112.11019, 2021.
1498
+ [Lee, 2013] Dong-Hyun Lee. Pseudo-label : The simple and
1499
+ efficient semi-supervised learning method for deep neural
1500
+ networks. 2013.
1501
+ [Lewis and Catlett, 1994] David D. Lewis and Jason Catlett.
1502
+ Heterogeneous uncertainty sampling for supervised learn-
1503
+ ing. In William W. Cohen and Haym Hirsh, editors, Ma-
1504
+ chine Learning Proceedings 1994, pages 148–156. Mor-
1505
+ gan Kaufmann, San Francisco (CA), 1994.
1506
+ [Lewis and Gale, 1994] David D. Lewis and William A.
1507
+ Gale. A sequential algorithm for training text classifiers.
1508
+
1509
+ In Bruce W. Croft and C. J. van Rijsbergen, editors, SIGIR
1510
+ ’94, pages 3–12, London, 1994. Springer London.
1511
+ [Li et al., 2020] Mingchen Li, Mahdi Soltanolkotabi, and
1512
+ Samet Oymak.
1513
+ Gradient descent with early stopping is
1514
+ provably robust to label noise for overparameterized neu-
1515
+ ral networks. In Silvia Chiappa and Roberto Calandra, ed-
1516
+ itors, Proceedings of the Twenty Third International Con-
1517
+ ference on Artificial Intelligence and Statistics, volume
1518
+ 108 of Proceedings of Machine Learning Research, pages
1519
+ 4313–4324. PMLR, 26–28 Aug 2020.
1520
+ [M. Olave, 1989] M. Bohanec M. Olave, V. Rajkovic. An
1521
+ application for admission in public school systems, 1989.
1522
+ [McCallum and Nigam, 1998] Andrew McCallum and Ka-
1523
+ mal Nigam. Employing em and pool-based active learning
1524
+ for text classification. In ICML, 1998.
1525
+ [Moro et al., 2014] S´ergio Moro, Paulo Cortez, and Paulo
1526
+ Rita. A data-driven approach to predict the success of bank
1527
+ telemarketing. Decision Support Systems, 62:22–31, 2014.
1528
+ [Nash et al., 1994] Warwick J Nash, Tracy L Sellers, Si-
1529
+ mon R Talbot, Andrew J Cawthorn, and Wes B Ford. The
1530
+ population biology of abalone (haliotis species) in tasma-
1531
+ nia. i. blacklip abalone (h. rubra) from the north coast and
1532
+ islands of bass strait. Technical Report 48, East Lansing,
1533
+ Michigan, 1994.
1534
+ [Oza and Russell, 2001] Nikunj C. Oza and Stuart J. Rus-
1535
+ sell. Online bagging and boosting. In Thomas S. Richard-
1536
+ son and Tommi S. Jaakkola, editors, Proceedings of the
1537
+ Eighth International Workshop on Artificial Intelligence
1538
+ and Statistics, volume R3 of Proceedings of Machine
1539
+ Learning Research, pages 229–236. PMLR, 04–07 Jan
1540
+ 2001. Reissued by PMLR on 31 March 2021.
1541
+ [Pathak et al., 2016] Deepak Pathak, Philipp Kr¨ahenb¨uhl,
1542
+ Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Con-
1543
+ text encoders: Feature learning by inpainting.
1544
+ CoRR,
1545
+ abs/1604.07379, 2016.
1546
+ [Pedregosa et al., 2011] F.
1547
+ Pedregosa,
1548
+ G.
1549
+ Varoquaux,
1550
+ A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
1551
+ del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
1552
+ A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
1553
+ E. Duchesnay. Scikit-learn: Machine learning in Python.
1554
+ Journal of Machine Learning Research, 12:2825–2830,
1555
+ 2011.
1556
+ [Ramirez-Loaiza et al., 2017] Maria Ramirez-Loaiza, Man-
1557
+ ali Sharma, Geet Kumar, and Mustafa Bilgic. Active learn-
1558
+ ing: an empirical study of common baselines. Data Min-
1559
+ ing and Knowledge Discovery, 31, 03 2017.
1560
+ [Rizve et al., 2021] Mamshad Nayeem Rizve, Kevin Duarte,
1561
+ Yogesh S. Rawat, and Mubarak Shah.
1562
+ In defense of
1563
+ pseudo-labeling: An uncertainty-aware pseudo-label se-
1564
+ lection framework for semi-supervised learning. CoRR,
1565
+ abs/2101.06329, 2021.
1566
+ [Scheffer et al., 2001] Tobias Scheffer, Christian Decomain,
1567
+ and Stefan Wrobel. Active hidden markov models for in-
1568
+ formation extraction. In Frank Hoffmann, David J. Hand,
1569
+ Niall Adams, Douglas Fisher, and Gabriela Guimaraes,
1570
+ editors, Advances in Intelligent Data Analysis, pages 309–
1571
+ 318, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.
1572
+ [Sim´eoni et al., 2019] Oriane Sim´eoni,
1573
+ Mateusz Budnik,
1574
+ Yannis Avrithis, and Guillaume Gravier. Rethinking deep
1575
+ active learning: Using unlabeled data at model training.
1576
+ CoRR, abs/1911.08177, 2019.
1577
+ [Sohn et al., 2020] Kihyuk Sohn, David Berthelot, Chun-
1578
+ Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk,
1579
+ Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch:
1580
+ Simplifying semi-supervised learning with consistency
1581
+ and confidence. CoRR, abs/2001.07685, 2020.
1582
+ [Wang et al., 2017] Keze Wang, Dongyu Zhang, Ya Li,
1583
+ Ruimao Zhang, and Liang Lin. Cost-effective active learn-
1584
+ ing for deep image classification. CoRR, abs/1701.03551,
1585
+ 2017.
1586
+ [Zliobaite et al., 2014] Indre Zliobaite, Albert Bifet, Bern-
1587
+ hard Pfahringer, and Geoffrey Holmes. Active learning
1588
+ with drifting streaming data. Neural Networks and Learn-
1589
+ ing Systems, IEEE Transactions on, 25:27–39, 05 2014.
1590
+
1591
+ A
1592
+ Algorithm for selective sampling
1593
+ In this section, we provide a general algorithm for selective
1594
+ sampling, that depends on some informativeness measure m,
1595
+ that is determined by a specific active learning method. This
1596
+ algorithm can be easily expanded to include batch training.
1597
+ In such case, we introduce a buffer for labeled samples and
1598
+ train only where this buffer is full. After training, we empty
1599
+ the buffer.
1600
+ Algorithm 2 Selective sampling
1601
+ Require: L - set of labeled data, U - stream of N unlabeled
1602
+ samples, fθ - model, B - budget, m(.) - informativeness
1603
+ measure, α - threshold for informativeness measure
1604
+ 1: train fθ on L
1605
+ 2: for i ∈ {0, N} do
1606
+ 3:
1607
+ ˆy ← fθ(xi)
1608
+ 4:
1609
+ if B > 0 ∧ m(ˆy) ≤ α then
1610
+ 5:
1611
+ request label y for xi
1612
+ 6:
1613
+ L ← L ∪ {(xi, y)}
1614
+ 7:
1615
+ train fθ on L
1616
+ 8:
1617
+ B ← B − 1
1618
+ 9:
1619
+ end if
1620
+ 10: end for
1621
+ B
1622
+ Self-labeling Selective Sampling algorithm
1623
+ In this section, we provide the full SL2S algorithm in list-
1624
+ ing 3. First, we perform initial ensemble training with boot-
1625
+ strapping (lines 1-4). During sampling (line 2), we ensure
1626
+ that each sampled dataset has at least a single learning exam-
1627
+ ple from each class. Without this procedure, some software
1628
+ implementations of common classifiers could fail. Next, we
1629
+ sample unlabeled data from stream U. First, we gather predic-
1630
+ tions from the models in the ensemble (lines 6-8). We check
1631
+ if at least half of the models in the committee returned confi-
1632
+ dent and consistent predictions (lines (9-10). If the condition
1633
+ is met, we estimate the difference between the current estima-
1634
+ tion of the predicted class prior and prior for a perfectly bal-
1635
+ anced dataset (lines 11-13). If the current class prior does not
1636
+ exceed the 1
1637
+ C , we expand our dataset with the current sample
1638
+ labeled by prediction (line 14), calculate new λ value (lines
1639
+ 15-20), and perform bootstrapped training (line 21) accord-
1640
+ ing to Algorithm 1. When the prediction is not consistent nor
1641
+ confident, we check if we still have the budget (line 24). If
1642
+ we do, a new query is created (line 25), and the dataset is up-
1643
+ dated with a new sample (line 26) and lambdas vector with a
1644
+ default value for labels obtained from oracle (line 27). Lastly,
1645
+ we perform bootstrapped training as in the previous case.
1646
+ Bootstrapped
1647
+ training
1648
+ average
1649
+ time
1650
+ complexity
1651
+ is
1652
+ O(L max(ME[r], Train(f)),
1653
+ where
1654
+ E[r]
1655
+ depends
1656
+ on
1657
+ average model supports, the value of τ, and utilization
1658
+ of budget, therefore for simplicity we left at as expected
1659
+ value.
1660
+ Self-labeling Selective Sampling time complexity
1661
+ is
1662
+ O(N max(LPred(f), LME[r], LTrain(f)),
1663
+ where
1664
+ Pred(f) and Train(f) are time complexities of model f
1665
+ prediction and training respectively.
1666
+ Algorithm 3 Self-labeling Selective Sampling
1667
+ Require: L - set of labeled data, U - stream of unlabeled
1668
+ data, {fθ}L - ensemble of L models, B - budget, τ - con-
1669
+ fident prediction threshold, k - number of newest samples
1670
+ from dataset used to estimate prior
1671
+ 1: for l ∈ [0, L] do
1672
+ 2:
1673
+ Sample dataset Dl by bootstrapping L
1674
+ 3:
1675
+ train fθl on Dl
1676
+ 4: end for
1677
+ 5: for x ∈ U do
1678
+ 6:
1679
+ for l ∈ [0, L] do
1680
+ 7:
1681
+ ˆyl ← fθl(x)
1682
+ 8:
1683
+ end for
1684
+ 9:
1685
+ ˆy ← maxpl(y|x) ˆyl
1686
+ 10:
1687
+ if �
1688
+ l 1maxc pl(yc|x)>τ > L
1689
+ 2 ∧ ∀maxc pl(yc|x)>τ ˆyl =
1690
+ ˆy then
1691
+ 11:
1692
+ ˆp ← 1
1693
+ k
1694
+ �M
1695
+ i=M−k 1yi=ˆy
1696
+ 12:
1697
+ ∆p = ˆp − 1
1698
+ C
1699
+ 13:
1700
+ if ∆p ≤ 0 then
1701
+ 14:
1702
+ L ← L ∪ {(x, ˆy)}
1703
+ 15:
1704
+ λ = maxl,c pl(yc|x)
1705
+ τ
1706
+ − 1B=0
1707
+ 16:
1708
+ λ ← (λ, λ)
1709
+ 17:
1710
+ Bootstrapped training(L, {fθ}L, λ)
1711
+ 18:
1712
+ end if
1713
+ 19:
1714
+ else
1715
+ 20:
1716
+ if B > 0 then
1717
+ 21:
1718
+ request label y for x
1719
+ 22:
1720
+ L ← L ∪ {(x, y)}
1721
+ 23:
1722
+ λ ← (λ, 1)
1723
+ 24:
1724
+ B ← B − 1
1725
+ 25:
1726
+ Bootstrapped training(L, {fθ}L, λ)
1727
+ 26:
1728
+ end if
1729
+ 27:
1730
+ end if
1731
+ 28: end for
1732
+
1733
+ C
1734
+ Data lodaing procedures
1735
+ During data preprocessing, we split features into numerical
1736
+ and categorical features. For numeric features, we replace
1737
+ missing values with the median of a given feature and per-
1738
+ form standard scaling by subtracting the mean and scaling
1739
+ to unit variance. For categorical features, we utilize only a
1740
+ one-hot encoder. Detailed features and their categorization is
1741
+ provided in Tab. 5.
1742
+ Some classes have a too low number of samples com-
1743
+ pared to other classes to allow for learning. For example,
1744
+ in the case when five classes have above 1000 learning ex-
1745
+ amples each, and one class has only five samples, there is no
1746
+ point in keeping this class in the dataset. For this reason, we
1747
+ drop classes with the lowest number of samples. The list of
1748
+ dropped classes for each dataset is presented in Tab. 4.
1749
+ Table 4: Classes dropped from datasets
1750
+ dataset
1751
+ dropped classes
1752
+ adult
1753
+ -
1754
+ bank marketing
1755
+ -
1756
+ firewall
1757
+ reset-both
1758
+ chess
1759
+ zero, one, three
1760
+ nursery
1761
+ recommend
1762
+ poker
1763
+ 7, 8, 9
1764
+ mushroom
1765
+ -
1766
+ wine
1767
+ 3, 9
1768
+ abalone
1769
+ 32, 20, 3, 21, 23, 22,
1770
+ 27, 24, 1, 26, 29, 2, 25
1771
+ The classification scores were too high for the nursery and
1772
+ mushroom datasets. For this reason, experimental evaluation
1773
+ of active learning algorithms is nearly impossible, as each al-
1774
+ gorithm could easily obtain a perfect or near-perfect score.
1775
+ To prevent this, we make the classification task harder by
1776
+ dropping the most informative features, selected based on the
1777
+ Person correlation coefficient computed between features and
1778
+ labels. The complete list of features used and target columns
1779
+ used in experiments are provided in Tab. 5 and 6 for small
1780
+ and big datasets respectively.
1781
+ Table 5: Detailed categorization of features and classes dropped
1782
+ from small datasets
1783
+ dataset
1784
+ numeric features
1785
+ categorical features
1786
+ target feature
1787
+ adult
1788
+ age, education-num,
1789
+ capital-gain, fnlwgt,
1790
+ capital-loss, hours-
1791
+ per-week
1792
+ workclass,
1793
+ educa-
1794
+ tion, marital-status,
1795
+ occupation,
1796
+ rela-
1797
+ tionship, race, sex,
1798
+ native-country
1799
+ earnings
1800
+ bank
1801
+ marketing
1802
+ age, duration, cam-
1803
+ paign,
1804
+ pdays, previous
1805
+ job, marital, educa-
1806
+ tion, default,
1807
+ housing, loan, con-
1808
+ tact, month, pout-
1809
+ come
1810
+ y
1811
+ firewall
1812
+ Source Port,
1813
+ Des-
1814
+ tination Port, pkts
1815
+ sent,
1816
+ NAT Source
1817
+ Port,
1818
+ NAT
1819
+ Desti-
1820
+ nation Port, Bytes,
1821
+ Bytes Sent,
1822
+ Pack-
1823
+ ets, Bytes Received,
1824
+ Elapsed Time (sec),
1825
+ pkts received
1826
+ -
1827
+ Action
1828
+ chess
1829
+ 0, 1, 2, 3, 4, 5
1830
+ -
1831
+ 6
1832
+ Table 6: Detailed categorization of features and classes dropped
1833
+ from big datasets
1834
+ dataset
1835
+ numeric features
1836
+ categorical features
1837
+ target feature
1838
+ adult
1839
+ age, education-num,
1840
+ capital-gain, fnlwgt,
1841
+ capital-loss, hours-
1842
+ per-week
1843
+ workclass,
1844
+ educa-
1845
+ tion, marital-status,
1846
+ occupation,
1847
+ rela-
1848
+ tionship, race, sex,
1849
+ native-country
1850
+ earnings
1851
+ bank
1852
+ marketing
1853
+ age, duration, cam-
1854
+ paign,
1855
+ pdays, previous
1856
+ job, marital, educa-
1857
+ tion, default,
1858
+ housing, loan, con-
1859
+ tact, month, pout-
1860
+ come
1861
+ y
1862
+ firewall
1863
+ Source Port,
1864
+ Des-
1865
+ tination Port, pkts
1866
+ sent,
1867
+ NAT Source
1868
+ Port,
1869
+ NAT
1870
+ Desti-
1871
+ nation Port, Bytes,
1872
+ Bytes Sent,
1873
+ Pack-
1874
+ ets, Bytes Received,
1875
+ Elapsed Time (sec),
1876
+ pkts received
1877
+ -
1878
+ Action
1879
+ chess
1880
+ 0, 1, 2, 3, 4, 5
1881
+ -
1882
+ 6
1883
+ D
1884
+ Hyperparameter optimization process
1885
+ We perform hyperparameter tuning with random sampling
1886
+ [Bergstra and Bengio, 2012].
1887
+ Each method has the same
1888
+ search budget, i.e., the same number of runs. We sample
1889
+ 20 values from the predefined prediction thresholds for each
1890
+ method. Interval borders are provided in Tab. 7. For each
1891
+ prediction threshold, we perform three evaluations with dif-
1892
+ ferent random seeds. We select the best hyperparameter val-
1893
+ ues based on averaged accuracy from these three runs. Ac-
1894
+ curacy reported in the work was obtained with ten random
1895
+ seeds, different than the ones used in the hyperparameter tun-
1896
+ ing process.
1897
+ Table 7: Intervals used for hyperparameters search process.
1898
+ method
1899
+ min value
1900
+ max values
1901
+ fixed uncertainty
1902
+ 0.5
1903
+ 1.0
1904
+ variable uncertainty
1905
+ 0.5
1906
+ 1.0
1907
+ classification margin
1908
+ 0.0
1909
+ 0.8
1910
+ vote entropy
1911
+ 1.0
1912
+ 50.0
1913
+ consensus entropy
1914
+ 0.1
1915
+ 1.0
1916
+ max disagreement
1917
+ 1.0
1918
+ 20.0
1919
+ min margin
1920
+ 0.0
1921
+ 0.5
1922
+ ours
1923
+ 0.5
1924
+ 1.0
1925
+ E
1926
+ Results of experiments with different seed
1927
+ size
1928
+ We provide full results of experiments with seed size Tab. 8.
1929
+ A description of these results is provided in the main part of
1930
+ our paper.
1931
+ F
1932
+ Impact of initial model accuracy
1933
+ In previous experiments, we showed that initial training set
1934
+ size does not have a large impact on SL2S performance.
1935
+ However, our primary concern are erroneous predictions pro-
1936
+ duced by a weak model. For this reason, we study the rela-
1937
+ tionship between the balanced accuracy of the initial model
1938
+ and overall experiment results. We gradually increase the
1939
+ seed size from 10 samples up and track test accuracy. When
1940
+ test accuracy exceeds the predefined value, we stop initial
1941
+
1942
+ Table 8: Balanced accuracy for various seed sizes used for initial
1943
+ training of the model.
1944
+ dataset nursery
1945
+ all labeled
1946
+ 0.318±0.030
1947
+ all labeled ensemble
1948
+ 0.276±0.013
1949
+ seed size
1950
+ 100
1951
+ 500
1952
+ 1000
1953
+ random
1954
+ 0.341±0.017
1955
+ 0.327±0.009
1956
+ 0.325±0.012
1957
+ fixed uncertainty
1958
+ 0.386±0.014
1959
+ 0.388±0.012
1960
+ 0.385±0.007
1961
+ variable uncertainty
1962
+ 0.341±0.011
1963
+ 0.338±0.016
1964
+ 0.327±0.014
1965
+ classification margin
1966
+ 0.382±0.012
1967
+ 0.402±0.021
1968
+ 0.396±0.013
1969
+ vote entropy
1970
+ 0.354±0.010
1971
+ 0.394±0.011
1972
+ 0.393±0.014
1973
+ consensus entropy
1974
+ 0.368±0.011
1975
+ 0.389±0.012
1976
+ 0.393±0.014
1977
+ max disagreement
1978
+ 0.356±0.012
1979
+ 0.401±0.010
1980
+ 0.393±0.014
1981
+ min margin
1982
+ 0.394±0.019
1983
+ 0.358±0.012
1984
+ 0.388±0.021
1985
+ SL2S
1986
+ 0.361±0.009
1987
+ 0.353±0.016
1988
+ 0.338±0.013
1989
+ dataset mushroom
1990
+ all labeled
1991
+ 0.637±0.010
1992
+ all labeled ensemble
1993
+ 0.636±0.010
1994
+ seed size
1995
+ 100
1996
+ 500
1997
+ 1000
1998
+ random
1999
+ 0.633±0.007
2000
+ 0.631±0.010
2001
+ 0.633±0.010
2002
+ fixed uncertainty
2003
+ 0.627±0.011
2004
+ 0.629±0.010
2005
+ 0.633±0.012
2006
+ variable uncertainty
2007
+ 0.622±0.013
2008
+ 0.631±0.011
2009
+ 0.634±0.010
2010
+ classification margin
2011
+ 0.620±0.016
2012
+ 0.630±0.013
2013
+ 0.633±0.013
2014
+ vote entropy
2015
+ 0.632±0.012
2016
+ 0.624±0.012
2017
+ 0.635±0.011
2018
+ consensus entropy
2019
+ 0.633±0.011
2020
+ 0.629±0.013
2021
+ 0.633±0.011
2022
+ max disagreement
2023
+ 0.596±0.023
2024
+ 0.624±0.012
2025
+ 0.630±0.011
2026
+ min margin
2027
+ 0.628±0.009
2028
+ 0.631±0.010
2029
+ 0.634±0.010
2030
+ SL2S
2031
+ 0.635±0.009
2032
+ 0.632±0.012
2033
+ 0.632±0.012
2034
+ dataset wine
2035
+ all labeled
2036
+ 0.524±0.027
2037
+ all labeled ensemble
2038
+ 0.514±0.015
2039
+ seed size
2040
+ 100
2041
+ 500
2042
+ 1000
2043
+ random
2044
+ 0.403±0.021
2045
+ 0.418±0.018
2046
+ 0.439±0.023
2047
+ fixed uncertainty
2048
+ 0.395±0.017
2049
+ 0.421±0.020
2050
+ 0.441±0.017
2051
+ variable uncertainty
2052
+ 0.406±0.019
2053
+ 0.423±0.019
2054
+ 0.437±0.022
2055
+ classification margin
2056
+ 0.355±0.011
2057
+ 0.414±0.015
2058
+ 0.420±0.022
2059
+ vote entropy
2060
+ 0.291±0.014
2061
+ 0.428±0.022
2062
+ 0.389±0.016
2063
+ consensus entropy
2064
+ 0.407±0.017
2065
+ 0.427±0.013
2066
+ 0.458±0.014
2067
+ max disagreement
2068
+ 0.316±0.026
2069
+ 0.356±0.020
2070
+ 0.389±0.016
2071
+ min margin
2072
+ 0.401±0.012
2073
+ 0.435±0.022
2074
+ 0.461±0.019
2075
+ SL2S
2076
+ 0.405±0.011
2077
+ 0.439±0.024
2078
+ 0.451±0.022
2079
+ dataset abalone
2080
+ all labeled
2081
+ 0.186±0.021
2082
+ all labeled ensemble
2083
+ 0.188±0.012
2084
+ seed size
2085
+ 100
2086
+ 500
2087
+ 1000
2088
+ random
2089
+ 0.180±0.013
2090
+ 0.180±0.011
2091
+ 0.178±0.007
2092
+ fixed uncertainty
2093
+ 0.175±0.015
2094
+ 0.189±0.020
2095
+ 0.177±0.013
2096
+ variable uncertainty
2097
+ 0.182±0.013
2098
+ 0.186±0.009
2099
+ 0.181±0.010
2100
+ classification margin
2101
+ 0.178±0.013
2102
+ 0.180±0.014
2103
+ 0.187±0.013
2104
+ vote entropy
2105
+ 0.187±0.014
2106
+ 0.189±0.011
2107
+ 0.185±0.015
2108
+ consensus entropy
2109
+ 0.184±0.009
2110
+ 0.190±0.012
2111
+ 0.185±0.013
2112
+ max disagreement
2113
+ 0.166±0.017
2114
+ 0.180±0.010
2115
+ 0.184±0.012
2116
+ min margin
2117
+ 0.179±0.018
2118
+ 0.191±0.013
2119
+ 0.185±0.015
2120
+ SL2S
2121
+ 0.187±0.022
2122
+ 0.184±0.013
2123
+ 0.190±0.010
2124
+ training and proceed to the further part of selective sampling.
2125
+ We evaluate models with initial accuracy equal to 0.15, 0.2,
2126
+ 0.25, 0.3, 0.35, and 0.4, and with a budget of 0.3. Results are
2127
+ plotted in Fig. 4.
2128
+ From this plot, we deduce that low accuracy at the begin-
2129
+ ning can be easily compensated by spending the budget on
2130
+ initial model improvement. Looking at the balanced accuracy
2131
+ values over time, we can see that initial values of accuracy for
2132
+ poorly trained models increase abruptly and the beginning of
2133
+ training. Higher initial budget consumption can be further ex-
2134
+ emplified by the iteration number when the budget runs out.
2135
+ For larger initial accuracy, the budget end is later. It shows
2136
+ that our method can be used even with a poorly trained initial
2137
+ model.
2138
+ Figure 4: Impact of initial balanced accuracy on overall training re-
2139
+ sults. Vertical doted lines indicate the iteration when budget ended.
2140
+
2141
+ 0.50
2142
+ 0.45
2143
+ 0.40
2144
+ accuracy
2145
+ 0.35
2146
+ lanced
2147
+ 0.30
2148
+ bal
2149
+ 0.15
2150
+ 0.25
2151
+ 0.2
2152
+ 0.25
2153
+ 0.3
2154
+ 0.20
2155
+ 0.35
2156
+ 0.4
2157
+ 0
2158
+ 500
2159
+ 1000
2160
+ 1500
2161
+ 2000
2162
+ 2500
2163
+ iterations
69E3T4oBgHgl3EQfRQm6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
79E2T4oBgHgl3EQflQc0/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66319f8679b365f5cf3f9fe6c403a4ae00d9313ff1523d7e5c72bf61f9f5e9ee
3
+ size 71821
A9FAT4oBgHgl3EQfrx7P/content/tmp_files/2301.08655v1.pdf.txt ADDED
@@ -0,0 +1,1366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08655v1 [math.OA] 20 Jan 2023
2
+ IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM
3
+ ANNULUS
4
+ SLAWOMIR KLIMEK, MATT MCBRIDE, AND KAORU SAKAI
5
+ Abstract. We construct compact parametrix implementations of covariant derivations on
6
+ the quantum annulus.
7
+ 1. Introduction
8
+ The goal of this paper is to provide simple examples of Dirac type operators on noncom-
9
+ mutative compact manifolds. We study analogs of d-bar operators on the quantum annulus
10
+ using only inherent geometrical structures: rotations, invariant states, covariant derivations
11
+ and their implementations. In our previous paper [3], we constructed similar d-bar type
12
+ operators on the quantum annulus using APS-type boundary conditions. The class of oper-
13
+ ators was designed to mimic the classical Atiyah-Patodi-Singer theory and is different, less
14
+ geometrical than the class studied in this paper. The main outcome, as in the past paper,
15
+ is that we show that our quantum d-bar type operators have compact parametrices, like
16
+ elliptic differential operators on compact manifolds.
17
+ Our another paper [5] on quantum annulus, following [4], contains a description of un-
18
+ bounded derivations, covariant with respect to a natural rotation, and their implementations
19
+ in Hilbert spaces obtained from the GNS construction with respect to invariant states. It
20
+ turned out that no such implementation in any GNS Hilbert space for a faithful, normal,
21
+ invariant state has compact parametrices for a large class of boundary conditions. However,
22
+ as demonstrated in [6], if we relax the concept of an implementation by allowing operators
23
+ to act between different Hilbert spaces, then there is an interesting class of examples of
24
+ quantum d-bar operators with compact parametrices that can be constructed this way for
25
+ the case of the quantum disk. It is the purpose of this paper to extend those ideas to the
26
+ quantum annulus.
27
+ Spectral triples are a key tool in noncommutative geometry [1], as they allow using ana-
28
+ lytical methods in studying quantum spaces. Since compact parametrix property is a part
29
+ of the spectral triples conditions, our papers [4] and [5] demonstrate, using analytic tech-
30
+ niques, that spectral triples, in general, cannot be constructed on the quantum disk and
31
+ the quantum annulus using implementations of covariant derivations in GNS Hilbert spaces.
32
+ Another, topological reason was pointed out in [7], in the case of the quantum disk T .
33
+ Namely, the pull-back map in K-Homology K0(C(S1)) → K0(T ) is an isomorphism and so
34
+ the restriction map K0(T ) → K0(K) is a zero map. Consequently, any spectral triple over
35
+ the Toeplitz algebra, when restricted to the ideal of compact operators K should be trivial in
36
+ K-Homology. However, it is easy to compute that implementations of covariant derivations
37
+ Date: January 23, 2023.
38
+ 1
39
+
40
+ 2
41
+ KLIMEK, MCBRIDE, AND SAKAI
42
+ pair nontrivially with a minimal projection in K, and hence they cannot lead to spectral
43
+ triples over T . Similar arguments seem to also apply to the quantum annulus.
44
+ Additionally, as pointed out in [2], there are fundamental reasons why APS boundary
45
+ conditions are not compatible with spectral triples even in classical geometry for algebras
46
+ of functions which are non-constant on the boundary, as the corresponding domains of the
47
+ Dirac-type operators are not preserved by the representations of the algebra.
48
+ In [6], the authors claimed to construct an even spectral triple over the quantum disk. Due
49
+ to technicalities in the definition of an implementation of a derivation, however, this was not
50
+ true. We clarify the generalized concept of implementations of unbounded derivations and
51
+ when they lead to spectral triples in the next section. In Section 3 we establish the notation
52
+ and review results from [5]. The main result, Theorem 4.3, is proved in Section 4. It states
53
+ that, for a class of exponential coefficients, the operator D defined in equation (3.6) as a
54
+ suitable Hilbert spaces implementation of a covariant derivation δ of (3.2), in the quantum
55
+ annulus algebra A, see (3.1), has a compact parametrix; in fact the inverse of D is compact.
56
+ 2. Implementations of Unbounded Derivations
57
+ Let A be a C∗-algebra, A ⊆ A a dense ∗-subalgebra and δ : A �→ A a derivation. Suppose
58
+ that H1 and H2 are Hilbert spaces carrying representations of A and denoted π1 and π2
59
+ respectively.
60
+ The following is a natural concept of an implementation of a derivation in
61
+ A between two Hilbert spaces, generalizing the usual notion of an implementation of an
62
+ unbounded derivation.
63
+ An implementation of δ between H1 and H2 consists of the following:
64
+ • A dense subspace dom(D) ⊆ H1
65
+ • An implementing operator D : dom(D) → H2
66
+ • An intertwinner i : dom(D) → H2
67
+ such that
68
+ (1) ∀a ∈ A, ∀x ∈ dom(D)
69
+ π1(a)x ∈ dom(D)
70
+ (2) ∀a ∈ A, ∀x ∈ dom(D)
71
+ i(π1(a)x) = π2(a)i(x)
72
+ (3) ∀a ∈ A, ∀x ∈ dom(D)
73
+ Dπ1(a)x − π2(a)Dx = π2(δ(a))i(x)
74
+ A special case of the above definition is when H1 = H2 = H, π1 = π2 = π and i is
75
+ the identity map. Then the second condition above is obviously satisfied, while the third
76
+ condition can be written as
77
+ (Dπ(a) − π(a)D)x = π(δ(a))x.
78
+ This coincides with the usual concept of an unbounded implementation of a derivation as a
79
+ commutator.
80
+ Recall that a closed operator D is called a Fredholm operator if there are bounded op-
81
+ erators Q1 and Q2 such that Q1D − I and DQ2 − I are compact. The operators Q1 and
82
+ Q2 are called left and right parametrices respectively. We say that a Fredholm operator D
83
+ has compact parametrices if at least one (and consequently both) of the parametrices Q1
84
+
85
+ IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS
86
+ 3
87
+ and Q2 is compact. More on general properties of operators with compact parametrices can
88
+ be found in the appendix of [4]. We also say that an implementation (dom(D), D, i) has
89
+ compact parametrices if the closure of the operator D has compact parametrices.
90
+ Under additional conditions an implementation of a derivation can lead to an even spectral
91
+ triple over A. Namely, defining H = H1
92
+ � H2, with grading Γ
93
+ ��
94
+ H1 = 1 and Γ
95
+ ��
96
+ H2 = −1 and a
97
+ representation π : A → B(H) of A in H given by the formula:
98
+ π(a) = (π1(a), π2(a)),
99
+ and also defining a generally unbounded operator D in H by:
100
+ D =
101
+
102
+ 0
103
+ D
104
+ D∗
105
+ 0
106
+
107
+ ,
108
+ we see that π(a) are even and D is odd with respect to grading Γ. If D is a self-adjoint
109
+ operator with compact parametrix and additionally the intertwinner i is bounded, then the
110
+ conditions in the definition of a derivation implementation imply that π(a) preserve the
111
+ domain of D for all a ∈ A and the commutator [D, π(a)] is bounded as can be seen by
112
+ a simple calculation. Consequently, under those additional conditions, we obtain an even
113
+ spectral triple over A.
114
+ A very natural class of implementations of derivations can be obtained from GNS rep-
115
+ resentations in the following way. Suppose τ1, τ2 are faithful states on A. Let H1, H2 be
116
+ the corresponding GNS Hilbert spaces, obtained by completing A with respect to the inner
117
+ products
118
+ (a, b)i = τi(a∗b),
119
+ i = 0, 1.
120
+ Because we assume that the states are faithful, A sits densely in H1, H2. More precisely,
121
+ there are injective continuous linear maps φ1 : A → H1, φ1 : A → H1 with dense ranges
122
+ embedding A into H1, H2.
123
+ The Hilbert spaces H1, H2 carry natural representations of A given by left multiplication;
124
+ for a, b ∈ A we have
125
+ πi(a)φi(b) = φi(ab).
126
+ Suppose as before that we have a dense ∗-subalgebra A ⊆ A and a derivation δ : A �→ A.
127
+ Then we have the following implementation of δ between H1 and H2:
128
+ • dom(D) := φ1(A) ⊆ H1. If x ∈ dom(D) then we write x = φ1(b) for some b ∈ A,
129
+ notation we use in the formulas below.
130
+ • D(x) := φ2(δ(b)),
131
+ • i(x) := φ2(b)
132
+ It is a matter of straightforward calculations to verify that indeed the three conditions of the
133
+ definition are satisfied and the above defines an implementation of δ between H1 and H2.
134
+ 3. Quantum Annulus Preliminaries
135
+ We review the notation and basic concepts from [5] below and, in a number of places, we
136
+ use the results contained in that paper.
137
+
138
+ 4
139
+ KLIMEK, MCBRIDE, AND SAKAI
140
+ 3.1. The Quantum Annulus. Let {El}l∈Z be the canonical basis for ℓ2(Z) and V be the
141
+ bilateral shift defined by
142
+ V El = El+1 .
143
+ Notice that V is a unitary. Let L be the diagonal label operator defined by
144
+ LEl = lEl .
145
+ It follows from the functional calculus that given a function a : Z → C, we have
146
+ a(L)El = a(l)El .
147
+ These are precisely the operators which are diagonal with respect to {El}. The operators
148
+ (L, V ) serve as noncommutative polar coordinates, and they satisfy the following commuta-
149
+ tion relation:
150
+ LV = V (L + I) .
151
+ Let c(Z) be the set of a(l), as above, which are convergent as l → ±∞ and let c++
152
+ 00 (Z) be the
153
+ set of all eventually constant functions, i.e. functions a(l) such that there exists a l0 where
154
+ a(l) is a constant for l ≥ l0 and also is a possibly different constant for l ≤ −l0.
155
+ Let A be the C∗-algebra generated by V and a(L), that is:
156
+ A = C∗(V, a(L) : a(l) ∈ c(Z))
157
+ (3.1)
158
+ This algebra is called the quantum annulus. The smallest reasonable domain of derivations
159
+ in A is the following dense ∗-subalgebra of A:
160
+ A =
161
+
162
+ a =
163
+
164
+ n∈Z
165
+ V nan(L) : an(l) ∈ c++
166
+ 00 (Z), finite sums
167
+
168
+ .
169
+ 3.2. Derivations in the Quantum Annulus. Let ρθ : A → A, 0 ≤ θ < 2π, be a one
170
+ parameter group of automorphisms of A defined by:
171
+ ρθ(a) = eiθLae−iθL.
172
+ Since ρθ(a(L)) = a(L), ρθ(V ) = eiθV and consequently ρθ(V −1) = e−iθV −1, the auto-
173
+ morphisms ρθ are well defined on A and they preserve A. By Proposition 3.2 in [5], any
174
+ densely-defined derivation δ : A → A, covariant with respect to ρθ that is
175
+ ρθ(δ(a)) = eiθδ(ρθ(a)) ,
176
+ is of the following form:
177
+ δ(a) = [Uβ(L), a]
178
+ (3.2)
179
+ where {β(l + 1) − β(l)} ∈ c(Z). We use notation:
180
+ lim
181
+ l→±∞(β(l + 1) − β(l)) := β±∞,
182
+ and below we only consider covariant derivations with β±∞ ̸= 0. It follows that there are
183
+ constants c1 and c2 so that
184
+ c1(|l| + 1) ≤ |β(l)| ≤ c2(|l| + 1) .
185
+ (3.3)
186
+
187
+ IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS
188
+ 5
189
+ 3.3. Covariant Implementations on the Quantum Annulus. Here we consider covari-
190
+ ant implementations of derivations (3.2). We begin by introducing the following family of
191
+ states τw : A → C on A, defined by
192
+ τw(a) = tr(w(L)a) ,
193
+ where w(l) > 0 for all l ∈ Z and
194
+
195
+ l∈Z
196
+ w(l) = 1 .
197
+ As a result of Proposition 4.3 in [5], τw are precisely the ρθ-invariant, normal, faithful states
198
+ on A. Let Hw be the Hilbert space obtained by Gelfand-Naimark-Segal (GNS) construction
199
+ on A using state τw. Since the state is faithful, Hw is the completion of A with respect to
200
+ the inner product given by
201
+ ⟨a, b⟩w = τw(a∗b) .
202
+ A simple calculation leads to the following precise description:
203
+ Hw =
204
+
205
+ f =
206
+
207
+ n∈Z
208
+ V nfn(L) : ∥f∥2
209
+ w =
210
+
211
+ n∈Z
212
+
213
+ l∈Z
214
+ w(l)|fn(l)|2 < ∞
215
+
216
+ .
217
+ (3.4)
218
+ With this identification we naturally have A ⊆ Hw so the inclusion maps φw : A → Hw
219
+ are the identity maps. Notice also that A is dense in Hw. The GNS representation map
220
+ πw : A → B(Hw) is given by left-hand multiplication:
221
+ πw(a)f = af .
222
+ Define a one parameter group of unitary operators V w
223
+ θ : Hw → Hw via the formula:
224
+ V w
225
+ θ f =
226
+
227
+ n∈Z
228
+ V neinθfn(L) .
229
+ An immediate calculation shows that:
230
+ πw(ρθ(a)) = V w
231
+ θ πw(a)(V w
232
+ θ )−1 ,
233
+ and therefore the operators V w
234
+ θ are implementing the one parameter group of automorphisms
235
+ ρθ.
236
+ Consider an additional weight, w′(l), possibly different from w(l), satisfying the same
237
+ conditions. Proceeding like in the previous section, we set
238
+ dom(D) := A ⊂ Hw ,
239
+ and choose for an implementing operator
240
+ i : dom(D) = A → A ⊂ Hw′
241
+ to be the identity operator a �→ a. Clearly, the first two properties of an implementation are
242
+ satisfied. We say that an operator D : Hw ⊇ A → Hw′ defines a covariant implementation
243
+ of the covariant derivation (3.2) if for every a ∈ A, and for every f ∈ A considered as an
244
+ element of both Hw and Hw′, we have:
245
+ Dπw(a)f − πw′(a)Df = πw′(δ(a))f ,
246
+ and, additionally, D satisfies:
247
+ V w′
248
+ θ D(V w
249
+ θ )−1f = eiθDf .
250
+
251
+ 6
252
+ KLIMEK, MCBRIDE, AND SAKAI
253
+ Proceeding as in Proposition 5.2 in [5] shows the following result.
254
+ Proposition 3.1. There exists a sequence {α(l)} satisfying
255
+
256
+ l∈Z
257
+ |β(l) − α(l)|2w′(l) < ∞
258
+ (3.5)
259
+ such that any covariant implementation D : Hw ⊇ A → Hw′ is of the form:
260
+ Df = V β(L)f − fV α(L) .
261
+ (3.6)
262
+ Conversely, for any {α(l)} satisfying (3.5), the formula (3.6) defines a covariant implemen-
263
+ tation D : Hw ⊇ A → Hw′ of the derivation (3.2).
264
+ We assume below that for every l we have:
265
+ α(l), β(l) ̸= 0 .
266
+ It is convenient, like in [4] and [5], to write
267
+ α(l) = β(l)µ(l + 1)
268
+ µ(l)
269
+ for some sequence {µ(l)} such that µ(0) = 1.
270
+ 3.4. Fourier Decomposition. To further analyze the operator D of formula (3.6), we can
271
+ decompose it into a Fourier series and study its Fourier components which are operators
272
+ acting between weighted ℓ2-spaces, defined as follows:
273
+ ℓ2
274
+ w =
275
+
276
+ {f(l)}l∈Z :
277
+
278
+ l∈Z
279
+ |f(l)|2w(l) < ∞
280
+
281
+ .
282
+ We have the following decomposition proposition:
283
+ Proposition 3.2. Let f ∈ dom(D). Then
284
+ Df =
285
+
286
+ n∈Z
287
+ V n+1(Dnfn)(L) ,
288
+ where Dn : ℓ2
289
+ w ⊇ c++
290
+ 00 (Z) → ℓ2
291
+ w′ and is given by the following formula:
292
+ (Dnh)(l) = β(l + n)h(l) − β(l)µ(l + 1)
293
+ µ(l)
294
+ h(l + 1)
295
+ for some h ∈ c++
296
+ 00 (Z).
297
+ Proof. The proof follows by writing f ∈ dom(D) as its Fourier series, applying D to it and
298
+ using the commutation relation LV = V (L + I).
299
+
300
+ In what follows, the purpose is to choose the parameters such that D has a compact
301
+ parametrix.
302
+
303
+ IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS
304
+ 7
305
+ 3.5. Parametrices. Next we study a formal candidate for a parametrix of D. The closure of
306
+ D, defined as above on c++
307
+ 00 (Z), will be denoted by ¯D while its closure defined on the space
308
+ c00(Z) of eventually zero functions will be denoted by ¯D00. Also notice that D preserves
309
+ c00(Z). We have the following simple observation.
310
+ Proposition 3.3. If {α(l)} satisfies (3.5) then ¯D = ¯D00.
311
+ Proof. Notice that c00(Z) ⊂ dom(D) is a co-dimension 2 subspace. Thus, it is enough to
312
+ verify that 1 and the characteristic function of Z≥0 are in the domain of ¯D. Approximating
313
+ 1 by characteristic functions χN of sets −N ≤ l ≤ N, χN ∈ c00(Z), we see that D(χN)
314
+ converges in ℓ2
315
+ w to D(1), which is in ℓ2
316
+ w by (3.5), implying that 1 is in the closure of D. The
317
+ characteristic function of Z≥0 is in the domain of ¯D by the same argument.
318
+
319
+ Let Qn be given by the following formula:
320
+ (Qng)(l) =
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+ j=l
337
+ �l+n−1
338
+ k=l
339
+ β(k)
340
+ �j+n
341
+ k=j β(k)
342
+ · µ(j)
343
+ µ(l) g(j)
344
+ n ≥ 0
345
+
346
+
347
+ j=l
348
+ �j−1
349
+ k=j+n+1 β(k)
350
+ �l−1
351
+ k=l+n β(k)
352
+ · µ(j)
353
+ µ(l) g(j)
354
+ n < 0.
355
+ This expression was obtained by inverting Dn using techniques similar to the calculations in
356
+ Proposition 4.12 in [3]. Notice that we have:
357
+ Qn : c00(Z) → dom(D),
358
+ since the sums in the definitions of Qn are finite for g ∈ c00(Z) and the outcomes are
359
+ eventually constant. Relations between Dn and Qn are explained in the following statements.
360
+ Proposition 3.4. For every f ∈ c00(Z) we have:
361
+ DnQnf = f
362
+ and QnDnf = f .
363
+ Proof. The formulas follow from straightforward calculations.
364
+
365
+ From this proposition we can formally define the inverse for D to be Q = �
366
+ n∈Z Qn. For
367
+ this to be well-defined, the series needs to converge. In fact, once we verify that Q is bounded,
368
+ the previous two propositions imply that Q is the inverse of ¯D.
369
+ 4. Results
370
+ For the remainder of this section we assume that β(k) = k + 1
371
+ 2. Moreover we only consider
372
+ the special choices of the weights {w(l)}, {w′(l)} and the choice for {µ(l)} namely:
373
+ w(l) = e−a|l|,
374
+ w′(l) = e−b|l|,
375
+ and µ(l) = e−(γl)/2, for a, b, γ > 0 .
376
+ It should be noted that with these specific choices α(l) = e−γ/2β(l) and the conditions
377
+ in Proposition 3.1 are trivially satisfied.
378
+ By a simple perturbative argument the results
379
+ below are valid for a much larger class of coefficients, see the remark at the end of the next
380
+ subsection.
381
+
382
+ 8
383
+ KLIMEK, MCBRIDE, AND SAKAI
384
+ 4.1. Compactness of Parametrices. We show that Qn are Hilbert-Schmidt operators for
385
+ every n and verify that their respective Hilbert-Schmidt norms go to zero as n goes to infinity,
386
+ implying that Q is a compact operator. To prove this we need a few helper lemmas. We
387
+ postpone proofs of those lemmas until the next subsection.
388
+ Lemma 4.1. For 0 ≤ l ≤ n, define the following product:
389
+ qn(l) =
390
+ � 1
391
+ 2
392
+ �2 � 3
393
+ 2
394
+ �2 · · ·
395
+
396
+ n − 1
397
+ 2
398
+ �2
399
+
400
+ l − 1
401
+ 2
402
+ �2 �
403
+ l − 3
404
+ 2
405
+ �2 · · ·
406
+
407
+ l − n + 1
408
+ 2
409
+ �2 .
410
+ Then we have the identity:
411
+ qn(l) = ((2n − 2l + 1) · · ·(2n − 3)(2n − 1))2
412
+ (1 · 3 · 5 · · ·(2l − 1))2
413
+ for every natural number n .
414
+ Moreover, qn(l) satisfies the following three estimates:
415
+ (1) qn(l) ≥ 1,
416
+ (2) qn(l) ≤ 2l
417
+
418
+ 2n
419
+ 2l
420
+
421
+ ,
422
+ (3) qn(j)
423
+ qn(l) ≤
424
+
425
+ 2n
426
+ 2l
427
+
428
+ for 0 ≤ j ≤ l .
429
+ Lemma 4.2. For a nonnegative integer j, define the following sum:
430
+ Jn(j) =
431
+
432
+ k≥0
433
+
434
+ k + j + 1
435
+ 2
436
+ �2 · · ·
437
+
438
+ k + j + n − 1
439
+ 2
440
+ �2 e−γk
441
+
442
+ j + 1
443
+ 2
444
+ �2 · · ·
445
+
446
+ j + n − 1
447
+ 2
448
+ �2
449
+ .
450
+ Then for n ≥ 0
451
+ Jn(j) ≤
452
+ 2n + 1
453
+
454
+ 1 − e− γ
455
+ 2 �2n+1 .
456
+ The following is the main technical result of the paper.
457
+ Theorem 4.3. Suppose that γ > a > b and that
458
+ exp
459
+
460
+ −(a − b)
461
+ 2
462
+
463
+ + exp
464
+
465
+ −γ + a
466
+ 2
467
+
468
+ < 1 .
469
+ Then Qn : ℓ2
470
+ w′ → ℓ2
471
+ w is a Hilbert-Schmidt operator for every n ∈ Z and ∥Qn∥HS → 0 as
472
+ n → ±∞. Consequently, Q = �
473
+ n Qn is the inverse of ¯D and is a compact operator.
474
+ Proof. Notice that formula for Qn shows that it is an integral operator. Therefore, by direct
475
+ calculation we can compute the Hilbert-Schmidt norms:
476
+ ∥Qn∥2
477
+ HS =
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+
492
+
493
+ j=l
494
+ �l+n−1
495
+ k=l
496
+ |β(k)|2
497
+ �j+n
498
+ k=j |β(k)|2 · |µ(j)|2
499
+ |µ(l)|2 · w(l)
500
+ w′(j)
501
+ n ≥ 0
502
+
503
+
504
+ j=l
505
+ �j−1
506
+ k=j+n+1 |β(k)|2
507
+ �l−1
508
+ k=l+n |β(k)|2
509
+ · |µ(j)|2
510
+ |µ(l)|2 · w(l)
511
+ w′(j)
512
+ n < 0
513
+ Since the choice of β’s are linear, the following ratios:
514
+ ����
515
+ β(l) · · ·β(l + n − 1)
516
+ β(l + n) · · ·β(l − 1)
517
+ ����
518
+ 2
519
+ and
520
+ ����
521
+ β(j + n + 1) · · ·β(j − 1)
522
+ β(l + n) · · ·β(l − 1)
523
+ ����
524
+ 2
525
+
526
+ IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS
527
+ 9
528
+ are ratios of polynomials. Thus by our choice of exponential µ’s, w’s and w′’s, ∥Qn∥HS exists
529
+ if and only if
530
+
531
+ j≥l
532
+ ����
533
+ µ(j)
534
+ µ(l)
535
+ ����
536
+ 2
537
+ · w(l)
538
+ w′(j) < ∞ .
539
+ However, this easily follows if γ > a > b. Thus the Hilbert-Schmidt norm of Qn exists for
540
+ all n ∈ Z. It remains to show that those norms go to zero as n → ±∞. We only need to
541
+ study the case for n ≥ 0 as if n < 0 then by doing a change of variables of j �→ −l, l �→ −j
542
+ and n �→ −n − 1 we are back in the n ≥ 0 case. Thus, we only need to estimate the sum:
543
+ ∥Qn∥2
544
+ HS =
545
+
546
+ j≥l
547
+
548
+ l + 1
549
+ 2
550
+ �2 · · ·
551
+
552
+ l + n − 1
553
+ 2
554
+ �2
555
+
556
+ j + 1
557
+ 2
558
+ �2 · · ·
559
+
560
+ j + n − 1
561
+ 2
562
+ �2 · e−γ(j−l)−a|l|+b|j|
563
+
564
+ j + n + 1
565
+ 2
566
+ �2 .
567
+ The sum is over all j ≥ l. It splits into sums over four main regions which we will further
568
+ subdivide as illustrated in the picture below:
569
+ We have
570
+ ∥Qn∥2
571
+ HS ≤ SA + SB + SC + SD,
572
+ as for simplicity of estimations we let the regions overlap. Here the regions are: region A:
573
+ j ≥ l ≥ 0, region B: j ≥ −l ≥ 0, l ≤ 0, region C: −l ≥ j ≥ 0, l ≤ 0, and region D: l ≥ j ≥ 0,
574
+ which we will handle separately. In our estimates, we double count the boundaries in some
575
+ places for convenience of different estimates.
576
+ Regions A and B: Notice the following observation: if −j ≤ l ≤ j for j ≥ 0, then for
577
+ any r > 0 we have that (l + r)2 ≤ (j + r)2. Using this fact, we can estimate:
578
+
579
+ l + 1
580
+ 2
581
+ �2 · · ·
582
+
583
+ l + n − 1
584
+ 2
585
+ �2
586
+
587
+ j + 1
588
+ 2
589
+ �2 · · ·
590
+
591
+ j + n − 1
592
+ 2
593
+ �2 ≤ 1.
594
+
595
+ B
596
+ A
597
+ C3
598
+ C2
599
+ C1
600
+ D3
601
+ D1
602
+ D210
603
+ KLIMEK, MCBRIDE, AND SAKAI
604
+ It follows that we have
605
+ SA ≤
606
+
607
+ j≥l≥0
608
+ e−γ(j−l)−al+bj
609
+
610
+ j + n + 1
611
+ 2
612
+ �2 → 0 as n → ∞ .
613
+ Changing l → −l we get exactly the same estimate for SB, and so SB → 0 as n → ∞.
614
+ Region C: 0 ≤ j ≤ −l.
615
+ First we map l �→ −l, then we split this region into two sub-regions: C1: 0 ≤ j ≤ l ≤ n
616
+ and the complement of C1: 0 ≤ j ≤ l, l ≥ n. In the second region we make a change of
617
+ variables of l′ = l − n, then replace l′ with l and we further get two additional sub-regions:
618
+ C2: 0 ≤ j ≤ l and C3: 0 ≤ l ≤ j ≤ l + n.
619
+ First in sub-region C1: since l ≤ n, using the first inequality from Lemma 4.1, we have
620
+ SC1 =
621
+
622
+ 0≤j≤l≤n
623
+
624
+ l − 1
625
+ 2
626
+ �2 · · ·
627
+
628
+ l − n + 1
629
+ 2
630
+ �2
631
+
632
+ j + 1
633
+ 2
634
+ �2 · · ·
635
+
636
+ j + n − 1
637
+ 2
638
+ �2 · e−γ(j+l)−al+bj
639
+
640
+ j + n + 1
641
+ 2
642
+ �2
643
+
644
+
645
+ 0≤j≤l≤n
646
+
647
+ l − 1
648
+ 2
649
+ �2 · · ·
650
+
651
+ l − n + 1
652
+ 2
653
+ �2
654
+ �1
655
+ 2
656
+ �2 · · ·
657
+
658
+ n − 1
659
+ 2
660
+ �2
661
+ · e−γ(j+l)−al+bj
662
+
663
+ j + n + 1
664
+ 2
665
+ �2
666
+
667
+
668
+ 0≤j≤l≤n
669
+ e−γ(j+l)−al+bj
670
+
671
+ j + n + 1
672
+ 2
673
+ �2 ≤
674
+ 1
675
+
676
+ n + 1
677
+ 2
678
+ �2
679
+
680
+ 0≤j≤l<∞
681
+ e(−γ+b)j−(γ+a)l <
682
+ const
683
+
684
+ n + 1
685
+ 2
686
+ �2
687
+ which clearly goes to zero as n → ∞.
688
+ In the case of C2, we get
689
+ SC2 =
690
+
691
+ 0≤j≤l
692
+
693
+ l + 1
694
+ 2
695
+ �2 · · ·
696
+
697
+ l + n − 1
698
+ 2
699
+ �2
700
+
701
+ j + 1
702
+ 2
703
+ �2 · · ·
704
+
705
+ j + n − 1
706
+ 2
707
+ �2 · e−(γ+a)n+(−γ+b)j−(γ+a)l
708
+
709
+ j + n + 1
710
+ 2
711
+ �2
712
+ .
713
+ Letting l = k + j, the sum becomes
714
+ SC2 =
715
+
716
+ j,k≥0
717
+
718
+ k + j + 1
719
+ 2
720
+ �2 · · ·
721
+
722
+ k + j + n − 1
723
+ 2
724
+ �2
725
+
726
+ j + 1
727
+ 2
728
+ �2 · · ·
729
+
730
+ j + n − 1
731
+ 2
732
+ �2
733
+ · e−(γ+a)n+(−γ+b)j−(γ+a)(k+j)
734
+
735
+ j + n + 1
736
+ 2
737
+ �2
738
+ .
739
+ Implementing Lemma 4.2 we have
740
+ SC2 ≤ (2n + 1)e−(γ+a)n
741
+
742
+ 1 − e− γ+a
743
+ 2
744
+ �2n+1 → 0 as n → ∞ .
745
+ In sub-region C3 we have:
746
+ SC3 =
747
+
748
+ 0≤l≤j≤l+n
749
+
750
+ l + 1
751
+ 2
752
+ �2 · · ·
753
+
754
+ l + n − 1
755
+ 2
756
+ �2
757
+
758
+ j + 1
759
+ 2
760
+ �2 · · ·
761
+
762
+ j + n − 1
763
+ 2
764
+ �2 · e−(γ−b)j−(γ+a)(l+n)
765
+
766
+ j + n + 1
767
+ 2
768
+ �2
769
+ Notice that in this region we again have that
770
+
771
+ l + 1
772
+ 2
773
+ �2 · · ·
774
+
775
+ l + n − 1
776
+ 2
777
+ �2
778
+
779
+ j + 1
780
+ 2
781
+ �2 · · ·
782
+
783
+ j + n − 1
784
+ 2
785
+ �2 ≤ 1.
786
+
787
+ IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS
788
+ 11
789
+ Thus, by overestimating, we have that
790
+ SC3 ≤
791
+
792
+ 0≤l≤j≤∞
793
+ e−(γ−b)j−(γ+a)(l+n)
794
+
795
+ j + n + 1
796
+ 2
797
+ �2
798
+
799
+ 1
800
+
801
+ n + 1
802
+ 2
803
+ �2
804
+
805
+ 0≤l≤j≤∞
806
+ e−(γ−b)j−(γ+a)(l+n)
807
+ which goes to zero as n → ∞.
808
+ Region D: l ≤ j ≤ 0.
809
+ First we map j �→ −j and l �→ −l and the sum becomes
810
+ SD =
811
+
812
+ 0≤j≤l
813
+
814
+ l − 1
815
+ 2
816
+ �2 · · ·
817
+
818
+ l − n + 1
819
+ 2
820
+ �2
821
+
822
+ j − 1
823
+ 2
824
+ �2 · · ·
825
+
826
+ j − n + 1
827
+ 2
828
+ �2 · eγj−γl−a|l|+b|j|
829
+
830
+ j − n − 1
831
+ 2
832
+ �2 .
833
+ Like with region C, we split this into three sub-regions: D1: 0 ≤ j ≤ n ≤ l, D2: n ≤ j ≤ l,
834
+ and D3: 0 ≤ j ≤ l ≤ n.
835
+ In sub-region D1, we map l �→ l + n which yields
836
+ SD1 =
837
+
838
+ 0≤j≤n,l≥0
839
+
840
+ l + 1
841
+ 2
842
+ �2 · · ·
843
+
844
+ l + n − 1
845
+ 2
846
+ �2
847
+
848
+ j − 1
849
+ 2
850
+ �2 · · ·
851
+
852
+ j − n + 1
853
+ 2
854
+ �2 · e−(γ+a)ne(γ+b)j−(γ+a)l
855
+
856
+ j − n − 1
857
+ 2
858
+ �2
859
+ .
860
+ Multiplying and dividing the sum by ( 1
861
+ 2)2 · · · (n − 1
862
+ 2)2 and using Lemma 4.2 we get
863
+ SD1 ≤ (2n + 1)e−(γ+a)n
864
+
865
+ 1 − e− γ+a
866
+ 2
867
+ �2n+1
868
+
869
+ 0≤j≤n
870
+ � 1
871
+ 2
872
+ �2 · · ·
873
+
874
+ n − 1
875
+ 2
876
+ �2
877
+
878
+ j − 1
879
+ 2
880
+ �2 · · ·
881
+
882
+ j − n + 1
883
+ 2
884
+ �2 ·
885
+ e(γ+b)j
886
+
887
+ j − n − 1
888
+ 2
889
+ �2 .
890
+ The second inequality in Lemma 4.1 implies that
891
+ SD1 ≤ (2n + 1)e−(γ+a)n
892
+
893
+ 1 − e− γ+a
894
+ 2
895
+ �2n+1
896
+
897
+ 0≤j≤n
898
+
899
+ 2n
900
+ 2j
901
+
902
+ 2je(γ+b)j
903
+
904
+ j − n − 1
905
+ 2
906
+ �2
907
+ ≤ (2n + 1)e−(γ+a)n
908
+
909
+ 1 − e− γ+a
910
+ 2
911
+ �2n+1
912
+
913
+ 0≤j≤n
914
+
915
+ 2n
916
+ j
917
+
918
+ e( γ+b
919
+ 2 )j
920
+ ≤ n(2n + 1)
921
+
922
+ e− γ+a
923
+ 2 + e− (a−b)
924
+ 2
925
+ 1 − e− γ+a
926
+ 2
927
+ �2n
928
+ .
929
+ The conditions on a, b and γ imply that the right hand side of the above inequality goes to
930
+ 0 as n → ∞ and thus SD1 → 0 as n → ∞.
931
+ In sub-region D2, we map l �→ l + n and j �→ j + n to get
932
+ SD2 =
933
+
934
+ 0≤j≤l
935
+
936
+ l + 1
937
+ 2
938
+ �2 · · ·
939
+
940
+ l + n − 1
941
+ 2
942
+ �2
943
+
944
+ j + 1
945
+ 2
946
+ �2 · · ·
947
+
948
+ j + n − 1
949
+ 2
950
+ �2 · e−(γ+a)(l+n)+(γ+b)(j+n)
951
+
952
+ j − 1
953
+ 2
954
+ �2
955
+ .
956
+
957
+ 12
958
+ KLIMEK, MCBRIDE, AND SAKAI
959
+ Writing l = k + j and using Lemma 4.2 we obtain:
960
+ SD2 = e−(a−b)n �
961
+ 0≤j,k
962
+
963
+ j + k + 1
964
+ 2
965
+ �2 · · ·
966
+
967
+ j + k + n − 1
968
+ 2
969
+ �2
970
+
971
+ j + 1
972
+ 2
973
+ �2 · · ·
974
+
975
+ j + n − 1
976
+ 2
977
+ �2
978
+ · e−(a−b)j−(γ+a)k
979
+
980
+ j − 1
981
+ 2
982
+ �2
983
+ ≤ (2n + 1)e−(a−b)n
984
+
985
+ 1 − e− γ+a
986
+ 2
987
+ �2n+1
988
+
989
+ 0≤j
990
+ e−(a−b)j
991
+
992
+ j − 1
993
+ 2
994
+ �2 < ∞ .
995
+ Like in sub-region D1, the conditions on a, b and γ imply the last term in the above inequality
996
+ goes to zero as n → ∞ and hence SD2 goes to zero as n → ∞.
997
+ Finally in the sub-region D3, by multiplying and dividing by ( 1
998
+ 2)2 · · · (n − 1
999
+ 2)2, we have
1000
+ that:
1001
+ SD3 =
1002
+
1003
+ 0≤j≤l≤n
1004
+ qn(j)
1005
+ qn(l) · e−(γ+a)l+(γ+b)j
1006
+
1007
+ j − n − 1
1008
+ 2
1009
+ �2 .
1010
+ Observe in this region we have that n + 1
1011
+ 2 − j > n + 1
1012
+ 3 − j. Using this observation and the
1013
+ third inequality in Lemma 4.1 we have
1014
+ SD3 ≤
1015
+
1016
+ 0≤j≤l
1017
+
1018
+ 2l
1019
+ 2j
1020
+
1021
+ · e−( γ+a
1022
+ 2 )2l+( γ+b
1023
+ 2 )2j
1024
+ �1
1025
+ 2 · 2j − n − 1
1026
+ 3
1027
+ �2 ≤
1028
+
1029
+ 0≤j≤l≤2n
1030
+
1031
+ l
1032
+ j
1033
+
1034
+ · e−( γ+a
1035
+ 2 )l+( γ+b
1036
+ 2 )j
1037
+ � j
1038
+ 2 − n − 1
1039
+ 3
1040
+ �2
1041
+ =
1042
+
1043
+ l≥0
1044
+
1045
+ l
1046
+
1047
+ j=0
1048
+
1049
+ l
1050
+ j
1051
+
1052
+ e( γ+b
1053
+ 2 )j
1054
+ � j
1055
+ 2 − n − 1
1056
+ 3
1057
+ �2
1058
+
1059
+ e−( γ+a
1060
+ 2 )l =
1061
+
1062
+ l≥0
1063
+ 1
1064
+ � l
1065
+ 2 − n − 1
1066
+ 3
1067
+ �2
1068
+
1069
+ e−( γ+a
1070
+ 2 ) + e−( a−b
1071
+ 2 )�l
1072
+ where the last sum is finite.
1073
+ Thus by the Lebesgue Dominated Convergence Theorem,
1074
+ SD2 → 0 as n → ∞. This completes the proof.
1075
+
1076
+ Remark. Since a bounded perturbation of an operator with compact parametrices also has
1077
+ compact parametrices, see Appendix of [4], it follows for example that, if β(l) = β∞l + ˜β(l)
1078
+ and α(l) = e−γ/2β∞l + ˜α(l), where β∞ is a nonzero constant, ˜α(l) and ˜β(l) are bounded,
1079
+ then the corresponding operator D has compact parametrices. This observation substantially
1080
+ increases the class of covariant implementations with compact parametrices.
1081
+ 4.2. Proofs of Lemmas.
1082
+ Proof. (of Lemma 4.1) Notice that
1083
+ qn(1) =
1084
+ � 1
1085
+ 2
1086
+ �2 �3
1087
+ 2
1088
+ �2 · · ·
1089
+
1090
+ n − 3
1091
+ 2
1092
+ �2 �
1093
+ n − 1
1094
+ 2
1095
+ �2
1096
+ �1
1097
+ 2
1098
+ �2 � 1
1099
+ 2
1100
+ �2 �3
1101
+ 2
1102
+ �2 · · ·
1103
+
1104
+ n − 5
1105
+ 2
1106
+ �2 �
1107
+ n − 3
1108
+ 2
1109
+ �2 = (2n − 1)2
1110
+ 12
1111
+ .
1112
+ Similarly
1113
+ qn(2) = (2n − 3)2(2n − 1)2
1114
+ 12 · 32
1115
+ .
1116
+ It follows by induction that
1117
+ qn(l) = qn(l − 1)(2n − 2l + 1)2
1118
+ (2l − 1)2
1119
+ = ((2n − 2l + 1) · · ·(2n − 3)(2n − 1))2
1120
+ (1 · 3 · 5 · · ·(2l − 1))2
1121
+ .
1122
+ (4.1)
1123
+
1124
+ IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS
1125
+ 13
1126
+ For the first inequality, notice that from the inductive formula (4.1) we see that qn(l) as a
1127
+ function of l, 0 ≤ l ≤ n, first increases and then decreases, so the minimum of it occurs at
1128
+ the endpoints. This means that qn(l) ≥ qn(0) = qn(n) = 1, yielding the first inequality.
1129
+ To prove the second inequality notice that
1130
+ qn(l) = ((2n − 2l + 1) · · ·(2n − 3)(2n − 1))2
1131
+ (1 · 3 · 5 · · ·(2l − 1))2
1132
+ ≤ (2n − 2l + 1)(2n − 2l + 2) · · · (2n − 1)(2n)
1133
+ 1 · 2 · 3 · · ·(2l − 2)(2l − 1)
1134
+ =
1135
+ (2n)!
1136
+ (2n − 1)!(2n − 2l)!
1137
+ =
1138
+ 2l(2n)!
1139
+ (2l)!(2n − 2l)! = 2l
1140
+
1141
+ 2n
1142
+ 2l
1143
+
1144
+ .
1145
+ To prove the final inequality we estimate as follows:
1146
+ qn(j)
1147
+ qn(l) =
1148
+
1149
+ l − 1
1150
+ 2
1151
+ �2 · · ·
1152
+
1153
+ l − n + 1
1154
+ 2
1155
+ �2
1156
+
1157
+ j − 1
1158
+ 2
1159
+ �2 · · ·
1160
+
1161
+ j − n + 1
1162
+ 2
1163
+ �2 =
1164
+ (2j + 1)2 · · · (2l − 1)2
1165
+ (2n − 2l + 1)2 · · · (2n − 2j + 1)2
1166
+
1167
+ (2j + 1)(2j + 2) · · · (2l − 1)(2l)
1168
+ (2n − 2l)(2n − 2l + 1) · · ·(2n − 2j + 1) = (2l)!
1169
+ (2j)! · (2n − 2l − 1)!
1170
+ (2n − 2j − 1)!
1171
+ =
1172
+
1173
+ 2l
1174
+ 2j
1175
+
1176
+
1177
+ 2n − 2j − 1
1178
+ 2n − 2l − 1
1179
+ � ≤
1180
+
1181
+ 2l
1182
+ 2j
1183
+
1184
+ .
1185
+
1186
+ To prove Lemma 4.2, we need the following additional step.
1187
+ Lemma 4.4. For a nonnegative integer j, define the following sum:
1188
+ Im(j) =
1189
+
1190
+ k≥0
1191
+ (k + 2j + 1) · · ·(k + 2j + m)e− γ
1192
+ 2 k
1193
+ m!
1194
+ for m > 0 and I0 =
1195
+
1196
+ 1 − e− γ
1197
+ 2
1198
+ �−1
1199
+ .
1200
+ Then, for m ≥ 0, we have:
1201
+ Im(j) ≤
1202
+ 1
1203
+
1204
+ 1 − e− γ
1205
+ 2 �m+1 · (2j + 1) · · ·(2j + m)
1206
+ m!
1207
+ .
1208
+ Proof. Notice Im(j) satisfies the following reduction formula:
1209
+ Im(j) = (2j + 1) · · · (2j + m)
1210
+ m!
1211
+ + e− γ
1212
+ 2 Im(j) +
1213
+
1214
+ k≥1
1215
+ (k + 2j + 1) · · ·(k + 2j + m − 1)e− γ
1216
+ 2 k
1217
+ (m − 1)!
1218
+ = (2j)(2j + 1) · · ·(2j + m − 1)
1219
+ m!
1220
+ + e− γ
1221
+ 2 Im(j) + Im−1(j) .
1222
+ This implies that Im(j) satisfies the following recurrence relation:
1223
+
1224
+ 1 − e− γ
1225
+ 2
1226
+
1227
+ Im(j) − Im−1(j) =
1228
+
1229
+ 2j + m − 1
1230
+ 2j − 1
1231
+
1232
+ .
1233
+
1234
+ 14
1235
+ KLIMEK, MCBRIDE, AND SAKAI
1236
+ This can be solved recursively which yields
1237
+ Im(j) =
1238
+ 1
1239
+
1240
+ 1 − e− γ
1241
+ 2 �m+1
1242
+ m
1243
+
1244
+ r=0
1245
+
1246
+ 2j + r − 1
1247
+ r
1248
+ � �
1249
+ 1 − e− γ
1250
+ 2
1251
+ �r
1252
+ .
1253
+ Since 1 − e−γ/2 ≤ 1 we get
1254
+ Im(j) ≤
1255
+ 1
1256
+
1257
+ 1 − e− γ
1258
+ 2 �m+1
1259
+ m
1260
+
1261
+ r=0
1262
+
1263
+ 2j + r − 1
1264
+ r
1265
+
1266
+ .
1267
+ By parallel summation we have
1268
+ m
1269
+
1270
+ r=0
1271
+
1272
+ 2j + r − 1
1273
+ r
1274
+
1275
+ =
1276
+
1277
+ 2j + m
1278
+ m
1279
+
1280
+ = (2j + 1) · · ·(2j + m)
1281
+ m!
1282
+ and thus the result follows.
1283
+
1284
+ Proof. (of Lemma 4.2) Observe the following inequality
1285
+ Jn(j) =
1286
+
1287
+ k≥0
1288
+ (2k + 2j + 1)2 · · · (2k + 2j + 2n − 1)2
1289
+ (2j + 1)2 · · · (2j + 2n − 1)2
1290
+ e− γ
1291
+ 2 ·2k
1292
+
1293
+
1294
+ k≥0
1295
+ (2k + 2j + 1)(2k + 2j + 2) · · ·(2k + 2j + 2n)
1296
+ (2j + 1)2 · · · (2j + 2n − 1)2
1297
+ e− γ
1298
+ 2 ·2k.
1299
+ Overestimating by adding odd 2k + 1 terms we get:
1300
+ Jn(j) ≤
1301
+ (2n)!
1302
+ (2j + 1)2 · · · (2j + 2n − 1)2
1303
+
1304
+ k≥0
1305
+ (k + 2j + 1) · · ·(k + 2j + 2n)
1306
+ (2n)!
1307
+ e− γ
1308
+ 2 k
1309
+ =
1310
+ (2n)!
1311
+ (2j + 1)2 · · · (2j + 2n − 1)2I2n(j),
1312
+ where I2n(j) is defined in Lemma 4.4. By implementing Lemma 4.4 we arrive at
1313
+ Jn(j) ≤
1314
+ (2n)!
1315
+ (2j + 1)2 · · · (2j + 2n − 1)2 · (2j + 1) · · ·(2j + 2n)
1316
+ (2n)!
1317
+ ·
1318
+ 1
1319
+
1320
+ 1 − e− γ
1321
+ 2 �2n+1
1322
+ =
1323
+ (2j + 2)(2j + 4) · · · (2j + 2n)
1324
+ (2j + 1)(2j + 3) · · ·(2j + 2n − 1) ·
1325
+ 1
1326
+
1327
+ 1 − e− γ
1328
+ 2 �2n+1
1329
+ ≤ 2j + 2n
1330
+ 2j + 1 ·
1331
+ 1
1332
+
1333
+ 1 − e− γ
1334
+ 2 �2n+1 ≤
1335
+ 2n + 1
1336
+
1337
+ 1 − e− γ
1338
+ 2 �2n+1 .
1339
+
1340
+ References
1341
+ [1] Connes, A., Non-Commutative Differential Geometry, Academic Press, 1994.
1342
+ [2] Forsyth, I., Mesland, B., Rennie, A., Dense domains, symmetric operators and spectral triples, New
1343
+ York J. Math., 20, 1001 - 1020, 2014.
1344
+ [3] Klimek, S. and McBride, M., D-bar Operators on Quantum Domains. Math. Phys. Anal. Geom., 13,
1345
+ 357 - 390, 2010.
1346
+
1347
+ IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS
1348
+ 15
1349
+ [4] Klimek, S., McBride, M., Rathnayake, S., Sakai, and Wang, H., Derivations and Spectral Triples on
1350
+ Quantum Domains I: Quantum Disk, SIGMA, 013, 1 - 26, 2017.
1351
+ [5] Klimek, S., McBride, M., and Rathnayake, S., Derivations and Spectral Triples on Quantum Domains
1352
+ II: Quantum Annulus, Sci. Chi. Math., 12, 2463 - 2486, 2019.
1353
+ [6] Klimek, S., McBride, M., and Peoples, J.W., A Note on Spectral Triples on the Quantum Disk, SIGMA,
1354
+ 015, 1 - 8, 2019.
1355
+ [7] Klimek, S., McBride, M., and Peoples, J.W., Noncommutative Geometry of the Quantum Disk, Ann.
1356
+ Funct. Analysis, 13, 53, 2022
1357
+ Department of Mathematical Sciences, Indiana University-Purdue University Indianapo-
1358
+ lis, 402 N. Blackford St., Indianapolis, IN 46202, U.S.A.
1359
+ Email address: [email protected]
1360
+ Department of Mathematics and Statistics, Mississippi State University, 175 President’s
1361
+ Cir., Mississippi State, MS 39762, U.S.A.
1362
+ Email address: [email protected]
1363
+ Department of Mathematical Sciences, Indiana University-Purdue University Indianapo-
1364
+ lis, 402 N. Blackford St., Indianapolis, IN 46202, U.S.A.
1365
+ Email address: [email protected]
1366
+
A9FAT4oBgHgl3EQfrx7P/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf,len=358
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
3
+ page_content='08655v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
4
+ page_content='OA] 20 Jan 2023 IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS SLAWOMIR KLIMEK, MATT MCBRIDE, AND KAORU SAKAI Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
5
+ page_content=' We construct compact parametrix implementations of covariant derivations on the quantum annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
6
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
7
+ page_content=' Introduction The goal of this paper is to provide simple examples of Dirac type operators on noncom- mutative compact manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
8
+ page_content=' We study analogs of d-bar operators on the quantum annulus using only inherent geometrical structures: rotations, invariant states, covariant derivations and their implementations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
9
+ page_content=' In our previous paper [3], we constructed similar d-bar type operators on the quantum annulus using APS-type boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
10
+ page_content=' The class of oper- ators was designed to mimic the classical Atiyah-Patodi-Singer theory and is different, less geometrical than the class studied in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
11
+ page_content=' The main outcome, as in the past paper, is that we show that our quantum d-bar type operators have compact parametrices, like elliptic differential operators on compact manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
12
+ page_content=' Our another paper [5] on quantum annulus, following [4], contains a description of un- bounded derivations, covariant with respect to a natural rotation, and their implementations in Hilbert spaces obtained from the GNS construction with respect to invariant states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
13
+ page_content=' It turned out that no such implementation in any GNS Hilbert space for a faithful, normal, invariant state has compact parametrices for a large class of boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
14
+ page_content=' However, as demonstrated in [6], if we relax the concept of an implementation by allowing operators to act between different Hilbert spaces, then there is an interesting class of examples of quantum d-bar operators with compact parametrices that can be constructed this way for the case of the quantum disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
15
+ page_content=' It is the purpose of this paper to extend those ideas to the quantum annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
16
+ page_content=' Spectral triples are a key tool in noncommutative geometry [1], as they allow using ana- lytical methods in studying quantum spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
17
+ page_content=' Since compact parametrix property is a part of the spectral triples conditions, our papers [4] and [5] demonstrate, using analytic tech- niques, that spectral triples, in general, cannot be constructed on the quantum disk and the quantum annulus using implementations of covariant derivations in GNS Hilbert spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
18
+ page_content=' Another, topological reason was pointed out in [7], in the case of the quantum disk T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
19
+ page_content=' Namely, the pull-back map in K-Homology K0(C(S1)) → K0(T ) is an isomorphism and so the restriction map K0(T ) → K0(K) is a zero map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
20
+ page_content=' Consequently, any spectral triple over the Toeplitz algebra, when restricted to the ideal of compact operators K should be trivial in K-Homology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
21
+ page_content=' However, it is easy to compute that implementations of covariant derivations Date: January 23, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
22
+ page_content=' 1 2 KLIMEK, MCBRIDE, AND SAKAI pair nontrivially with a minimal projection in K, and hence they cannot lead to spectral triples over T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
23
+ page_content=' Similar arguments seem to also apply to the quantum annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
24
+ page_content=' Additionally, as pointed out in [2], there are fundamental reasons why APS boundary conditions are not compatible with spectral triples even in classical geometry for algebras of functions which are non-constant on the boundary, as the corresponding domains of the Dirac-type operators are not preserved by the representations of the algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
25
+ page_content=' In [6], the authors claimed to construct an even spectral triple over the quantum disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
26
+ page_content=' Due to technicalities in the definition of an implementation of a derivation, however, this was not true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
27
+ page_content=' We clarify the generalized concept of implementations of unbounded derivations and when they lead to spectral triples in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
28
+ page_content=' In Section 3 we establish the notation and review results from [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
29
+ page_content=' The main result, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
30
+ page_content='3, is proved in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
31
+ page_content=' It states that, for a class of exponential coefficients, the operator D defined in equation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
32
+ page_content='6) as a suitable Hilbert spaces implementation of a covariant derivation δ of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
33
+ page_content='2), in the quantum annulus algebra A, see (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
34
+ page_content='1), has a compact parametrix;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
35
+ page_content=' in fact the inverse of D is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
36
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
37
+ page_content=' Implementations of Unbounded Derivations Let A be a C∗-algebra, A ⊆ A a dense ∗-subalgebra and δ : A �→ A a derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
38
+ page_content=' Suppose that H1 and H2 are Hilbert spaces carrying representations of A and denoted π1 and π2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
39
+ page_content=' The following is a natural concept of an implementation of a derivation in A between two Hilbert spaces, generalizing the usual notion of an implementation of an unbounded derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
40
+ page_content=' An implementation of δ between H1 and H2 consists of the following: A dense subspace dom(D) ⊆ H1 An implementing operator D : dom(D) → H2 An intertwinner i : dom(D) → H2 such that (1) ∀a ∈ A, ∀x ∈ dom(D) π1(a)x ∈ dom(D) (2) ∀a ∈ A, ∀x ∈ dom(D) i(π1(a)x) = π2(a)i(x) (3) ∀a ∈ A, ∀x ∈ dom(D) Dπ1(a)x − π2(a)Dx = π2(δ(a))i(x) A special case of the above definition is when H1 = H2 = H, π1 = π2 = π and i is the identity map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
41
+ page_content=' Then the second condition above is obviously satisfied, while the third condition can be written as (Dπ(a) − π(a)D)x = π(δ(a))x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
42
+ page_content=' This coincides with the usual concept of an unbounded implementation of a derivation as a commutator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
43
+ page_content=' Recall that a closed operator D is called a Fredholm operator if there are bounded op- erators Q1 and Q2 such that Q1D − I and DQ2 − I are compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
44
+ page_content=' The operators Q1 and Q2 are called left and right parametrices respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
45
+ page_content=' We say that a Fredholm operator D has compact parametrices if at least one (and consequently both) of the parametrices Q1 IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS 3 and Q2 is compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
46
+ page_content=' More on general properties of operators with compact parametrices can be found in the appendix of [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
47
+ page_content=' We also say that an implementation (dom(D), D, i) has compact parametrices if the closure of the operator D has compact parametrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
48
+ page_content=' Under additional conditions an implementation of a derivation can lead to an even spectral triple over A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
49
+ page_content=' Namely, defining H = H1 � H2, with grading Γ �� H1 = 1 and Γ �� H2 = −1 and a representation π : A → B(H) of A in H given by the formula: π(a) = (π1(a), π2(a)), and also defining a generally unbounded operator D in H by: D = � 0 D D∗ 0 � , we see that π(a) are even and D is odd with respect to grading Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
50
+ page_content=' If D is a self-adjoint operator with compact parametrix and additionally the intertwinner i is bounded, then the conditions in the definition of a derivation implementation imply that π(a) preserve the domain of D for all a ∈ A and the commutator [D, π(a)] is bounded as can be seen by a simple calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
51
+ page_content=' Consequently, under those additional conditions, we obtain an even spectral triple over A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
52
+ page_content=' A very natural class of implementations of derivations can be obtained from GNS rep- resentations in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
53
+ page_content=' Suppose τ1, τ2 are faithful states on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
54
+ page_content=' Let H1, H2 be the corresponding GNS Hilbert spaces, obtained by completing A with respect to the inner products (a, b)i = τi(a∗b), i = 0, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
55
+ page_content=' Because we assume that the states are faithful, A sits densely in H1, H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
56
+ page_content=' More precisely, there are injective continuous linear maps φ1 : A → H1, φ1 : A → H1 with dense ranges embedding A into H1, H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
57
+ page_content=' The Hilbert spaces H1, H2 carry natural representations of A given by left multiplication;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
58
+ page_content=' for a, b ∈ A we have πi(a)φi(b) = φi(ab).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
59
+ page_content=' Suppose as before that we have a dense ∗-subalgebra A ⊆ A and a derivation δ : A �→ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
60
+ page_content=' Then we have the following implementation of δ between H1 and H2: dom(D) := φ1(A) ⊆ H1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
61
+ page_content=' If x ∈ dom(D) then we write x = φ1(b) for some b ∈ A, notation we use in the formulas below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
62
+ page_content=' D(x) := φ2(δ(b)), i(x) := φ2(b) It is a matter of straightforward calculations to verify that indeed the three conditions of the definition are satisfied and the above defines an implementation of δ between H1 and H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
63
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
64
+ page_content=' Quantum Annulus Preliminaries We review the notation and basic concepts from [5] below and, in a number of places, we use the results contained in that paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
65
+ page_content=' 4 KLIMEK, MCBRIDE, AND SAKAI 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
66
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
67
+ page_content=' The Quantum Annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
68
+ page_content=' Let {El}l∈Z be the canonical basis for ℓ2(Z) and V be the bilateral shift defined by V El = El+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
69
+ page_content=' Notice that V is a unitary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
70
+ page_content=' Let L be the diagonal label operator defined by LEl = lEl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
71
+ page_content=' It follows from the functional calculus that given a function a : Z → C, we have a(L)El = a(l)El .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
72
+ page_content=' These are precisely the operators which are diagonal with respect to {El}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
73
+ page_content=' The operators (L, V ) serve as noncommutative polar coordinates, and they satisfy the following commuta- tion relation: LV = V (L + I) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
74
+ page_content=' Let c(Z) be the set of a(l), as above, which are convergent as l → ±∞ and let c++ 00 (Z) be the set of all eventually constant functions, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
75
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
76
+ page_content=' functions a(l) such that there exists a l0 where a(l) is a constant for l ≥ l0 and also is a possibly different constant for l ≤ −l0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
77
+ page_content=' Let A be the C∗-algebra generated by V and a(L), that is: A = C∗(V, a(L) : a(l) ∈ c(Z)) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
78
+ page_content='1) This algebra is called the quantum annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
79
+ page_content=' The smallest reasonable domain of derivations in A is the following dense ∗-subalgebra of A: A = � a = � n∈Z V nan(L) : an(l) ∈ c++ 00 (Z), finite sums � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
80
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
81
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
82
+ page_content=' Derivations in the Quantum Annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
83
+ page_content=' Let ρθ : A → A, 0 ≤ θ < 2π, be a one parameter group of automorphisms of A defined by: ρθ(a) = eiθLae−iθL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
84
+ page_content=' Since ρθ(a(L)) = a(L), ρθ(V ) = eiθV and consequently ρθ(V −1) = e−iθV −1, the auto- morphisms ρθ are well defined on A and they preserve A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
85
+ page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
86
+ page_content='2 in [5], any densely-defined derivation δ : A → A, covariant with respect to ρθ that is ρθ(δ(a)) = eiθδ(ρθ(a)) , is of the following form: δ(a) = [Uβ(L), a] (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
87
+ page_content='2) where {β(l + 1) − β(l)} ∈ c(Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
88
+ page_content=' We use notation: lim l→±∞(β(l + 1) − β(l)) := β±∞, and below we only consider covariant derivations with β±∞ ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
89
+ page_content=' It follows that there are constants c1 and c2 so that c1(|l| + 1) ≤ |β(l)| ≤ c2(|l| + 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
90
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
91
+ page_content='3) IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
92
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
93
+ page_content=' Covariant Implementations on the Quantum Annulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
94
+ page_content=' Here we consider covari- ant implementations of derivations (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
95
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
96
+ page_content=' We begin by introducing the following family of states τw : A → C on A, defined by τw(a) = tr(w(L)a) , where w(l) > 0 for all l ∈ Z and � l∈Z w(l) = 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
97
+ page_content=' As a result of Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
98
+ page_content='3 in [5], τw are precisely the ρθ-invariant, normal, faithful states on A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
99
+ page_content=' Let Hw be the Hilbert space obtained by Gelfand-Naimark-Segal (GNS) construction on A using state τw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
100
+ page_content=' Since the state is faithful, Hw is the completion of A with respect to the inner product given by ⟨a, b⟩w = τw(a∗b) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
101
+ page_content=' A simple calculation leads to the following precise description: Hw = � f = � n∈Z V nfn(L) : ∥f∥2 w = � n∈Z � l∈Z w(l)|fn(l)|2 < ∞ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
102
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
103
+ page_content='4) With this identification we naturally have A ⊆ Hw so the inclusion maps φw : A → Hw are the identity maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
104
+ page_content=' Notice also that A is dense in Hw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
105
+ page_content=' The GNS representation map πw : A → B(Hw) is given by left-hand multiplication: πw(a)f = af .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
106
+ page_content=' Define a one parameter group of unitary operators V w θ : Hw → Hw via the formula: V w θ f = � n∈Z V neinθfn(L) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
107
+ page_content=' An immediate calculation shows that: πw(ρθ(a)) = V w θ πw(a)(V w θ )−1 , and therefore the operators V w θ are implementing the one parameter group of automorphisms ρθ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
108
+ page_content=' Consider an additional weight, w′(l), possibly different from w(l), satisfying the same conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
109
+ page_content=' Proceeding like in the previous section, we set dom(D) := A ⊂ Hw , and choose for an implementing operator i : dom(D) = A → A ⊂ Hw′ to be the identity operator a �→ a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
110
+ page_content=' Clearly, the first two properties of an implementation are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
111
+ page_content=' We say that an operator D : Hw ⊇ A → Hw′ defines a covariant implementation of the covariant derivation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
112
+ page_content='2) if for every a ∈ A, and for every f ∈ A considered as an element of both Hw and Hw′, we have: Dπw(a)f − πw′(a)Df = πw′(δ(a))f , and, additionally, D satisfies: V w′ θ D(V w θ )−1f = eiθDf .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
113
+ page_content=' 6 KLIMEK, MCBRIDE, AND SAKAI Proceeding as in Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
114
+ page_content='2 in [5] shows the following result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
115
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
116
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
117
+ page_content=' There exists a sequence {α(l)} satisfying � l∈Z |β(l) − α(l)|2w′(l) < ∞ (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
118
+ page_content='5) such that any covariant implementation D : Hw ⊇ A → Hw′ is of the form: Df = V β(L)f − fV α(L) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
119
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
120
+ page_content='6) Conversely, for any {α(l)} satisfying (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
121
+ page_content='5), the formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
122
+ page_content='6) defines a covariant implemen- tation D : Hw ⊇ A → Hw′ of the derivation (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
123
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
124
+ page_content=' We assume below that for every l we have: α(l), β(l) ̸= 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
125
+ page_content=' It is convenient, like in [4] and [5], to write α(l) = β(l)µ(l + 1) µ(l) for some sequence {µ(l)} such that µ(0) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
126
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
127
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
128
+ page_content=' Fourier Decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
129
+ page_content=' To further analyze the operator D of formula (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
130
+ page_content='6), we can decompose it into a Fourier series and study its Fourier components which are operators acting between weighted ℓ2-spaces, defined as follows: ℓ2 w = � {f(l)}l∈Z : � l∈Z |f(l)|2w(l) < ∞ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
131
+ page_content=' We have the following decomposition proposition: Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
132
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
133
+ page_content=' Let f ∈ dom(D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
134
+ page_content=' Then Df = � n∈Z V n+1(Dnfn)(L) , where Dn : ℓ2 w ⊇ c++ 00 (Z) → ℓ2 w′ and is given by the following formula: (Dnh)(l) = β(l + n)h(l) − β(l)µ(l + 1) µ(l) h(l + 1) for some h ∈ c++ 00 (Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
135
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
136
+ page_content=' The proof follows by writing f ∈ dom(D) as its Fourier series, applying D to it and using the commutation relation LV = V (L + I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
137
+ page_content=' □ In what follows, the purpose is to choose the parameters such that D has a compact parametrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
138
+ page_content=' IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
139
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
140
+ page_content=' Parametrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
141
+ page_content=' Next we study a formal candidate for a parametrix of D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
142
+ page_content=' The closure of D, defined as above on c++ 00 (Z), will be denoted by ¯D while its closure defined on the space c00(Z) of eventually zero functions will be denoted by ¯D00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
143
+ page_content=' Also notice that D preserves c00(Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
144
+ page_content=' We have the following simple observation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
145
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
146
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
147
+ page_content=' If {α(l)} satisfies (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
148
+ page_content='5) then ¯D = ¯D00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
149
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
150
+ page_content=' Notice that c00(Z) ⊂ dom(D) is a co-dimension 2 subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
151
+ page_content=' Thus, it is enough to verify that 1 and the characteristic function of Z≥0 are in the domain of ¯D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
152
+ page_content=' Approximating 1 by characteristic functions χN of sets −N ≤ l ≤ N, χN ∈ c00(Z), we see that D(χN) converges in ℓ2 w to D(1), which is in ℓ2 w by (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
153
+ page_content='5), implying that 1 is in the closure of D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
154
+ page_content=' The characteristic function of Z≥0 is in the domain of ¯D by the same argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
155
+ page_content=' □ Let Qn be given by the following formula: (Qng)(l) = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ∞ � j=l �l+n−1 k=l β(k) �j+n k=j β(k) µ(j) µ(l) g(j) n ≥ 0 ∞ � j=l �j−1 k=j+n+1 β(k) �l−1 k=l+n β(k) µ(j) µ(l) g(j) n < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
156
+ page_content=' This expression was obtained by inverting Dn using techniques similar to the calculations in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
157
+ page_content='12 in [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
158
+ page_content=' Notice that we have: Qn : c00(Z) → dom(D), since the sums in the definitions of Qn are finite for g ∈ c00(Z) and the outcomes are eventually constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
159
+ page_content=' Relations between Dn and Qn are explained in the following statements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
160
+ page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
161
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
162
+ page_content=' For every f ∈ c00(Z) we have: DnQnf = f and QnDnf = f .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
163
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
164
+ page_content=' The formulas follow from straightforward calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
165
+ page_content=' □ From this proposition we can formally define the inverse for D to be Q = � n∈Z Qn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
166
+ page_content=' For this to be well-defined, the series needs to converge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
167
+ page_content=' In fact, once we verify that Q is bounded, the previous two propositions imply that Q is the inverse of ¯D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
168
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
169
+ page_content=' Results For the remainder of this section we assume that β(k) = k + 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
170
+ page_content=' Moreover we only consider the special choices of the weights {w(l)}, {w′(l)} and the choice for {µ(l)} namely: w(l) = e−a|l|, w′(l) = e−b|l|, and µ(l) = e−(γl)/2, for a, b, γ > 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
171
+ page_content=' It should be noted that with these specific choices α(l) = e−γ/2β(l) and the conditions in Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
172
+ page_content='1 are trivially satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
173
+ page_content=' By a simple perturbative argument the results below are valid for a much larger class of coefficients, see the remark at the end of the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
174
+ page_content=' 8 KLIMEK, MCBRIDE, AND SAKAI 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
175
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
176
+ page_content=' Compactness of Parametrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
177
+ page_content=' We show that Qn are Hilbert-Schmidt operators for every n and verify that their respective Hilbert-Schmidt norms go to zero as n goes to infinity, implying that Q is a compact operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
178
+ page_content=' To prove this we need a few helper lemmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
179
+ page_content=' We postpone proofs of those lemmas until the next subsection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
180
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
181
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
182
+ page_content=' For 0 ≤ l ≤ n, define the following product: qn(l) = � 1 2 �2 � 3 2 �2 · · · � n − 1 2 �2 � l − 1 2 �2 � l − 3 2 �2 · · · � l − n + 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
183
+ page_content=' Then we have the identity: qn(l) = ((2n − 2l + 1) · · ·(2n − 3)(2n − 1))2 (1 · 3 · 5 · · ·(2l − 1))2 for every natural number n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
184
+ page_content=' Moreover, qn(l) satisfies the following three estimates: (1) qn(l) ≥ 1, (2) qn(l) ≤ 2l � 2n 2l � , (3) qn(j) qn(l) ≤ � 2n 2l � for 0 ≤ j ≤ l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
185
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
186
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
187
+ page_content=' For a nonnegative integer j, define the following sum: Jn(j) = � k≥0 � k + j + 1 2 �2 · · · � k + j + n − 1 2 �2 e−γk � j + 1 2 �2 · · · � j + n − 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
188
+ page_content=' Then for n ≥ 0 Jn(j) ≤ 2n + 1 � 1 − e− γ 2 �2n+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
189
+ page_content=' The following is the main technical result of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
190
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
191
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
192
+ page_content=' Suppose that γ > a > b and that exp � −(a − b) 2 � + exp � −γ + a 2 � < 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
193
+ page_content=' Then Qn : ℓ2 w′ → ℓ2 w is a Hilbert-Schmidt operator for every n ∈ Z and ∥Qn∥HS → 0 as n → ±∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
194
+ page_content=' Consequently, Q = � n Qn is the inverse of ¯D and is a compact operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
195
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
196
+ page_content=' Notice that formula for Qn shows that it is an integral operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
197
+ page_content=' Therefore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
198
+ page_content=' by direct calculation we can compute the Hilbert-Schmidt norms: ∥Qn∥2 HS = \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ∞ � j=l �l+n−1 k=l |β(k)|2 �j+n k=j |β(k)|2 · |µ(j)|2 |µ(l)|2 · w(l) w′(j) n ≥ 0 ∞ � j=l �j−1 k=j+n+1 |β(k)|2 �l−1 k=l+n |β(k)|2 |µ(j)|2 |µ(l)|2 · w(l) w′(j) n < 0 Since the choice of β’s are linear,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
199
+ page_content=' the following ratios: ���� β(l) · · ·β(l + n − 1) β(l + n) · · ·β(l − 1) ���� 2 and ���� β(j + n + 1) · · ·β(j − 1) β(l + n) · · ·β(l − 1) ���� 2 IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS 9 are ratios of polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
200
+ page_content=' Thus by our choice of exponential µ’s, w’s and w′’s, ∥Qn∥HS exists if and only if � j≥l ���� µ(j) µ(l) ���� 2 w(l) w′(j) < ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
201
+ page_content=' However, this easily follows if γ > a > b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
202
+ page_content=' Thus the Hilbert-Schmidt norm of Qn exists for all n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
203
+ page_content=' It remains to show that those norms go to zero as n → ±∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
204
+ page_content=' We only need to study the case for n ≥ 0 as if n < 0 then by doing a change of variables of j �→ −l, l �→ −j and n �→ −n − 1 we are back in the n ≥ 0 case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
205
+ page_content=' Thus, we only need to estimate the sum: ∥Qn∥2 HS = � j≥l � l + 1 2 �2 · · · � l + n − 1 2 �2 � j + 1 2 �2 · · · � j + n − 1 2 �2 · e−γ(j−l)−a|l|+b|j| � j + n + 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
206
+ page_content=' The sum is over all j ≥ l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
207
+ page_content=' It splits into sums over four main regions which we will further subdivide as illustrated in the picture below: We have ∥Qn∥2 HS ≤ SA + SB + SC + SD, as for simplicity of estimations we let the regions overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
208
+ page_content=' Here the regions are: region A: j ≥ l ≥ 0, region B: j ≥ −l ≥ 0, l ≤ 0, region C: −l ≥ j ≥ 0, l ≤ 0, and region D: l ≥ j ≥ 0, which we will handle separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
209
+ page_content=' In our estimates, we double count the boundaries in some places for convenience of different estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
210
+ page_content=' Regions A and B: Notice the following observation: if −j ≤ l ≤ j for j ≥ 0, then for any r > 0 we have that (l + r)2 ≤ (j + r)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
211
+ page_content=' Using this fact, we can estimate: � l + 1 2 �2 · · · � l + n − 1 2 �2 � j + 1 2 �2 · · · � j + n − 1 2 �2 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
212
+ page_content=' B A C3 C2 C1 D3 D1 D210 KLIMEK, MCBRIDE, AND SAKAI It follows that we have SA ≤ � j≥l≥0 e−γ(j−l)−al+bj � j + n + 1 2 �2 → 0 as n → ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
213
+ page_content=' Changing l → −l we get exactly the same estimate for SB, and so SB → 0 as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
214
+ page_content=' Region C: 0 ≤ j ≤ −l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
215
+ page_content=' First we map l �→ −l, then we split this region into two sub-regions: C1: 0 ≤ j ≤ l ≤ n and the complement of C1: 0 ≤ j ≤ l, l ≥ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
216
+ page_content=' In the second region we make a change of variables of l′ = l − n, then replace l′ with l and we further get two additional sub-regions: C2: 0 ≤ j ≤ l and C3: 0 ≤ l ≤ j ≤ l + n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
217
+ page_content=' First in sub-region C1: since l ≤ n, using the first inequality from Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
218
+ page_content='1, we have SC1 = � 0≤j≤l≤n � l − 1 2 �2 · · · � l − n + 1 2 �2 � j + 1 2 �2 · · · � j + n − 1 2 �2 · e−γ(j+l)−al+bj � j + n + 1 2 �2 ≤ � 0≤j≤l≤n � l − 1 2 �2 · · · � l − n + 1 2 �2 �1 2 �2 · · · � n − 1 2 �2 e−γ(j+l)−al+bj � j + n + 1 2 �2 ≤ � 0≤j≤l≤n e−γ(j+l)−al+bj � j + n + 1 2 �2 ≤ 1 � n + 1 2 �2 � 0≤j≤l<∞ e(−γ+b)j−(γ+a)l < const � n + 1 2 �2 which clearly goes to zero as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
219
+ page_content=' In the case of C2, we get SC2 = � 0≤j≤l � l + 1 2 �2 · · · � l + n − 1 2 �2 � j + 1 2 �2 · · · � j + n − 1 2 �2 · e−(γ+a)n+(−γ+b)j−(γ+a)l � j + n + 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
220
+ page_content=' Letting l = k + j, the sum becomes SC2 = � j,k≥0 � k + j + 1 2 �2 · · · � k + j + n − 1 2 �2 � j + 1 2 �2 · · · � j + n − 1 2 �2 e−(γ+a)n+(−γ+b)j−(γ+a)(k+j) � j + n + 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
221
+ page_content=' Implementing Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
222
+ page_content='2 we have SC2 ≤ (2n + 1)e−(γ+a)n � 1 − e− γ+a 2 �2n+1 → 0 as n → ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
223
+ page_content=' In sub-region C3 we have: SC3 = � 0≤l≤j≤l+n � l + 1 2 �2 · · · � l + n − 1 2 �2 � j + 1 2 �2 · · · � j + n − 1 2 �2 · e−(γ−b)j−(γ+a)(l+n) � j + n + 1 2 �2 Notice that in this region we again have that � l + 1 2 �2 · · · � l + n − 1 2 �2 � j + 1 2 �2 · · · � j + n − 1 2 �2 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
224
+ page_content=' IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS 11 Thus, by overestimating, we have that SC3 ≤ � 0≤l≤j≤∞ e−(γ−b)j−(γ+a)(l+n) � j + n + 1 2 �2 ≤ 1 � n + 1 2 �2 � 0≤l≤j≤∞ e−(γ−b)j−(γ+a)(l+n) which goes to zero as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
225
+ page_content=' Region D: l ≤ j ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
226
+ page_content=' First we map j �→ −j and l �→ −l and the sum becomes SD = � 0≤j≤l � l − 1 2 �2 · · · � l − n + 1 2 �2 � j − 1 2 �2 · · · � j − n + 1 2 �2 · eγj−γl−a|l|+b|j| � j − n − 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
227
+ page_content=' Like with region C, we split this into three sub-regions: D1: 0 ≤ j ≤ n ≤ l, D2: n ≤ j ≤ l, and D3: 0 ≤ j ≤ l ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
228
+ page_content=' In sub-region D1, we map l �→ l + n which yields SD1 = � 0≤j≤n,l≥0 � l + 1 2 �2 · · · � l + n − 1 2 �2 � j − 1 2 �2 · · · � j − n + 1 2 �2 · e−(γ+a)ne(γ+b)j−(γ+a)l � j − n − 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
229
+ page_content=' Multiplying and dividing the sum by ( 1 2)2 · · · (n − 1 2)2 and using Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
230
+ page_content='2 we get SD1 ≤ (2n + 1)e−(γ+a)n � 1 − e− γ+a 2 �2n+1 � 0≤j≤n � 1 2 �2 · · · � n − 1 2 �2 � j − 1 2 �2 · · · � j − n + 1 2 �2 · e(γ+b)j � j − n − 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
231
+ page_content=' The second inequality in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
232
+ page_content='1 implies that SD1 ≤ (2n + 1)e−(γ+a)n � 1 − e− γ+a 2 �2n+1 � 0≤j≤n � 2n 2j � 2je(γ+b)j � j − n − 1 2 �2 ≤ (2n + 1)e−(γ+a)n � 1 − e− γ+a 2 �2n+1 � 0≤j≤n � 2n j � e( γ+b 2 )j ≤ n(2n + 1) � e− γ+a 2 + e− (a−b) 2 1 − e− γ+a 2 �2n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
233
+ page_content=' The conditions on a, b and γ imply that the right hand side of the above inequality goes to 0 as n → ∞ and thus SD1 → 0 as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
234
+ page_content=' In sub-region D2, we map l �→ l + n and j �→ j + n to get SD2 = � 0≤j≤l � l + 1 2 �2 · · · � l + n − 1 2 �2 � j + 1 2 �2 · · · � j + n − 1 2 �2 · e−(γ+a)(l+n)+(γ+b)(j+n) � j − 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
235
+ page_content=' 12 KLIMEK, MCBRIDE, AND SAKAI Writing l = k + j and using Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
236
+ page_content='2 we obtain: SD2 = e−(a−b)n � 0≤j,k � j + k + 1 2 �2 · · · � j + k + n − 1 2 �2 � j + 1 2 �2 · · · � j + n − 1 2 �2 e−(a−b)j−(γ+a)k � j − 1 2 �2 ≤ (2n + 1)e−(a−b)n � 1 − e− γ+a 2 �2n+1 � 0≤j e−(a−b)j � j − 1 2 �2 < ∞ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
237
+ page_content=' Like in sub-region D1, the conditions on a, b and γ imply the last term in the above inequality goes to zero as n → ∞ and hence SD2 goes to zero as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
238
+ page_content=' Finally in the sub-region D3, by multiplying and dividing by ( 1 2)2 · · · (n − 1 2)2, we have that: SD3 = � 0≤j≤l≤n qn(j) qn(l) · e−(γ+a)l+(γ+b)j � j − n − 1 2 �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
239
+ page_content=' Observe in this region we have that n + 1 2 − j > n + 1 3 − j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
240
+ page_content=' Using this observation and the third inequality in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
241
+ page_content='1 we have SD3 ≤ � 0≤j≤l � 2l 2j � e−( γ+a 2 )2l+( γ+b 2 )2j �1 2 · 2j − n − 1 3 �2 ≤ � 0≤j≤l≤2n � l j � e−( γ+a 2 )l+( γ+b 2 )j � j 2 − n − 1 3 �2 = � l≥0 � l � j=0 � l j � e( γ+b 2 )j � j 2 − n − 1 3 �2 � e−( γ+a 2 )l = � l≥0 1 � l 2 − n − 1 3 �2 � e−( γ+a 2 ) + e−( a−b 2 )�l where the last sum is finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
242
+ page_content=' Thus by the Lebesgue Dominated Convergence Theorem, SD2 → 0 as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
243
+ page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
244
+ page_content=' □ Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
245
+ page_content=' Since a bounded perturbation of an operator with compact parametrices also has compact parametrices, see Appendix of [4], it follows for example that, if β(l) = β∞l + ˜β(l) and α(l) = e−γ/2β∞l + ˜α(l), where β∞ is a nonzero constant, ˜α(l) and ˜β(l) are bounded, then the corresponding operator D has compact parametrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
246
+ page_content=' This observation substantially increases the class of covariant implementations with compact parametrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
247
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
248
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
249
+ page_content=' Proofs of Lemmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
250
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
251
+ page_content=' (of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
252
+ page_content='1) Notice that qn(1) = � 1 2 �2 �3 2 �2 · · · � n − 3 2 �2 � n − 1 2 �2 �1 2 �2 � 1 2 �2 �3 2 �2 · · · � n − 5 2 �2 � n − 3 2 �2 = (2n − 1)2 12 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
253
+ page_content=' Similarly qn(2) = (2n − 3)2(2n − 1)2 12 · 32 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
254
+ page_content=' It follows by induction that qn(l) = qn(l − 1)(2n − 2l + 1)2 (2l − 1)2 = ((2n − 2l + 1) · · ·(2n − 3)(2n − 1))2 (1 · 3 · 5 · · ·(2l − 1))2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
255
+ page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
256
+ page_content='1) IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS 13 For the first inequality, notice that from the inductive formula (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
257
+ page_content='1) we see that qn(l) as a function of l, 0 ≤ l ≤ n, first increases and then decreases, so the minimum of it occurs at the endpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
258
+ page_content=' This means that qn(l) ≥ qn(0) = qn(n) = 1, yielding the first inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
259
+ page_content=' To prove the second inequality notice that qn(l) = ((2n − 2l + 1) · · ·(2n − 3)(2n − 1))2 (1 · 3 · 5 · · ·(2l − 1))2 ≤ (2n − 2l + 1)(2n − 2l + 2) · · · (2n − 1)(2n) 1 · 2 · 3 · · ·(2l − 2)(2l − 1) = (2n)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
260
+ page_content=' (2n − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
261
+ page_content=' (2n − 2l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
262
+ page_content=' = 2l(2n)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
263
+ page_content=' (2l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
264
+ page_content=' (2n − 2l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
265
+ page_content=' = 2l � 2n 2l � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
266
+ page_content=' To prove the final inequality we estimate as follows: qn(j) qn(l) = � l − 1 2 �2 · · · � l − n + 1 2 �2 � j − 1 2 �2 · · · � j − n + 1 2 �2 = (2j + 1)2 · · · (2l − 1)2 (2n − 2l + 1)2 · · · (2n − 2j + 1)2 ≤ (2j + 1)(2j + 2) · · · (2l − 1)(2l) (2n − 2l)(2n − 2l + 1) · · ·(2n − 2j + 1) = (2l)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
267
+ page_content=' (2j)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
268
+ page_content=' · (2n − 2l − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
269
+ page_content=' (2n − 2j − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
270
+ page_content=' = � 2l 2j � � 2n − 2j − 1 2n − 2l − 1 � ≤ � 2l 2j � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
271
+ page_content=' □ To prove Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
272
+ page_content='2, we need the following additional step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
273
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
274
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
275
+ page_content=' For a nonnegative integer j, define the following sum: Im(j) = � k≥0 (k + 2j + 1) · · ·(k + 2j + m)e− γ 2 k m!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
276
+ page_content=' for m > 0 and I0 = � 1 − e− γ 2 �−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
277
+ page_content=' Then, for m ≥ 0, we have: Im(j) ≤ 1 � 1 − e− γ 2 �m+1 · (2j + 1) · · ·(2j + m) m!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
278
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
279
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
280
+ page_content=' Notice Im(j) satisfies the following reduction formula: Im(j) = (2j + 1) · · · (2j + m) m!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
281
+ page_content=' + e− γ 2 Im(j) + � k≥1 (k + 2j + 1) · · ·(k + 2j + m − 1)e− γ 2 k (m − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
282
+ page_content=' = (2j)(2j + 1) · · ·(2j + m − 1) m!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
283
+ page_content=' + e− γ 2 Im(j) + Im−1(j) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
284
+ page_content=' This implies that Im(j) satisfies the following recurrence relation: � 1 − e− γ 2 � Im(j) − Im−1(j) = � 2j + m − 1 2j − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
285
+ page_content=' 14 KLIMEK, MCBRIDE, AND SAKAI This can be solved recursively which yields Im(j) = 1 � 1 − e− γ 2 �m+1 m � r=0 � 2j + r − 1 r � � 1 − e− γ 2 �r .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
286
+ page_content=' Since 1 − e−γ/2 ≤ 1 we get Im(j) ≤ 1 � 1 − e− γ 2 �m+1 m � r=0 � 2j + r − 1 r � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
287
+ page_content=' By parallel summation we have m � r=0 � 2j + r − 1 r � = � 2j + m m � = (2j + 1) · · ·(2j + m) m!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
288
+ page_content=' and thus the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
289
+ page_content=' □ Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
290
+ page_content=' (of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
291
+ page_content='2) Observe the following inequality Jn(j) = � k≥0 (2k + 2j + 1)2 · · · (2k + 2j + 2n − 1)2 (2j + 1)2 · · · (2j + 2n − 1)2 e− γ 2 ·2k ≤ � k≥0 (2k + 2j + 1)(2k + 2j + 2) · · ·(2k + 2j + 2n) (2j + 1)2 · · · (2j + 2n − 1)2 e− γ 2 ·2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
292
+ page_content=' Overestimating by adding odd 2k + 1 terms we get: Jn(j) ≤ (2n)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
293
+ page_content=' (2j + 1)2 · · · (2j + 2n − 1)2 � k≥0 (k + 2j + 1) · · ·(k + 2j + 2n) (2n)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
294
+ page_content=' e− γ 2 k = (2n)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
295
+ page_content=' (2j + 1)2 · · · (2j + 2n − 1)2I2n(j), where I2n(j) is defined in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
296
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
297
+ page_content=' By implementing Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
298
+ page_content='4 we arrive at Jn(j) ≤ (2n)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
299
+ page_content=' (2j + 1)2 · · · (2j + 2n − 1)2 · (2j + 1) · · ·(2j + 2n) (2n)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
300
+ page_content=' 1 � 1 − e− γ 2 �2n+1 = (2j + 2)(2j + 4) · · · (2j + 2n) (2j + 1)(2j + 3) · · ·(2j + 2n − 1) · 1 � 1 − e− γ 2 �2n+1 ≤ 2j + 2n 2j + 1 · 1 � 1 − e− γ 2 �2n+1 ≤ 2n + 1 � 1 − e− γ 2 �2n+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
301
+ page_content=' □ References [1] Connes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
302
+ page_content=', Non-Commutative Differential Geometry, Academic Press, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
303
+ page_content=' [2] Forsyth, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
304
+ page_content=', Mesland, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
305
+ page_content=', Rennie, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
306
+ page_content=', Dense domains, symmetric operators and spectral triples, New York J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
307
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
308
+ page_content=', 20, 1001 - 1020, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
309
+ page_content=' [3] Klimek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
310
+ page_content=' and McBride, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
311
+ page_content=', D-bar Operators on Quantum Domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
312
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
313
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
314
+ page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
315
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
316
+ page_content=', 13, 357 - 390, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
317
+ page_content=' IMPLEMENTATIONS OF DERIVATIONS ON THE QUANTUM ANNULUS 15 [4] Klimek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
318
+ page_content=', McBride, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
319
+ page_content=', Rathnayake, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
320
+ page_content=', Sakai, and Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
321
+ page_content=', Derivations and Spectral Triples on Quantum Domains I: Quantum Disk, SIGMA, 013, 1 - 26, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
322
+ page_content=' [5] Klimek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
323
+ page_content=', McBride, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
324
+ page_content=', and Rathnayake, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
325
+ page_content=', Derivations and Spectral Triples on Quantum Domains II: Quantum Annulus, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
326
+ page_content=' Chi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
327
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
328
+ page_content=', 12, 2463 - 2486, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
329
+ page_content=' [6] Klimek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
330
+ page_content=', McBride, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
331
+ page_content=', and Peoples, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
332
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
333
+ page_content=', A Note on Spectral Triples on the Quantum Disk, SIGMA, 015, 1 - 8, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
334
+ page_content=' [7] Klimek, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
335
+ page_content=', McBride, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
336
+ page_content=', and Peoples, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
337
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
338
+ page_content=', Noncommutative Geometry of the Quantum Disk, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
339
+ page_content=' Funct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
340
+ page_content=' Analysis, 13, 53, 2022 Department of Mathematical Sciences, Indiana University-Purdue University Indianapo- lis, 402 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
341
+ page_content=' Blackford St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
342
+ page_content=', Indianapolis, IN 46202, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
343
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
344
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
345
+ page_content=' Email address: sklimek@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
346
+ page_content='iupui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
347
+ page_content='edu Department of Mathematics and Statistics, Mississippi State University, 175 President’s Cir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
348
+ page_content=', Mississippi State, MS 39762, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
349
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
350
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
351
+ page_content=' Email address: mmcbride@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
352
+ page_content='msstate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
353
+ page_content='edu Department of Mathematical Sciences, Indiana University-Purdue University Indianapo- lis, 402 N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
354
+ page_content=' Blackford St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
355
+ page_content=', Indianapolis, IN 46202, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
356
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
357
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
358
+ page_content=' Email address: ksakai@iupui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
359
+ page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/A9FAT4oBgHgl3EQfrx7P/content/2301.08655v1.pdf'}
CNFJT4oBgHgl3EQfASxa/content/tmp_files/2301.11419v1.pdf.txt ADDED
@@ -0,0 +1,1012 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Efficiently predicting high resolution mass spectra
2
+ with graph neural networks
3
+ Michael Murphy1∗
4
5
+ Stefanie Jegelka1
6
7
+ Ernest Fraenkel1
8
9
+ Tobias Kind2
10
11
+ David Healey2
12
13
+ Thomas Butler2
14
15
+ 1MIT
16
+ 2Enveda Biosciences
17
+ January 26, 2023
18
+ Abstract
19
+ Identifying a small molecule from its mass spectrum is the primary open problem in computational
20
+ metabolomics. This is typically cast as information retrieval: an unknown spectrum is matched against
21
+ spectra predicted computationally from a large database of chemical structures.
22
+ However, current
23
+ approaches to spectrum prediction model the output space in ways that force a tradeoff between capturing
24
+ high resolution mass information and tractable learning. We resolve this tradeoff by casting spectrum
25
+ prediction as a mapping from an input molecular graph to a probability distribution over molecular
26
+ formulas. We discover that a large corpus of mass spectra can be closely approximated using a fixed
27
+ vocabulary constituting only 2% of all observed formulas. This enables efficient spectrum prediction using
28
+ an architecture similar to graph classification – GrAFF-MS – achieving significantly lower prediction
29
+ error and orders-of-magnitude faster runtime than state-of-the-art methods.
30
+ 1
31
+ Introduction
32
+ The identification of unknown small molecules in complex chemical mixtures is a primary challenge in
33
+ many areas of chemical and biological science. The standard high-throughput approach to small molecule
34
+ identification is tandem mass spectrometry (MS/MS), with diverse applications including metabolomics [1],
35
+ drug discovery [2], clinical diagnostics [3], forensics [4], and environmental monitoring [5].
36
+ The key bottleneck in MS/MS is structural elucidation: given a mass spectrum, we must determine the 2D
37
+ structure of the molecule it represents. This problem is far from solved, and adversely impacts all areas
38
+ of science that use MS/MS. Typically only 2−4% of spectra are identified in untargeted metabolomics
39
+ experiments [6], and a recent competition saw no more than 30% accuracy [7].
40
+ Because MS/MS is a lossy measurement, and existing training sets are small, direct prediction of structures
41
+ from spectra is particularly challenging. Therefore the most common approach is spectral library search, which
42
+ casts the problem as information retrieval [8]: an observed spectrum is queried against a library of spectra with
43
+ known structures. This provides an informative prior, and has the advantage of easy interpretability as the
44
+ entire space of solutions is known. As there are relatively few (104) small molecules with known experimental
45
+ ∗The lead author carried out this work as an intern at Enveda Biosciences.
46
+ 1
47
+ arXiv:2301.11419v1 [cs.LG] 26 Jan 2023
48
+
49
+ mass spectra, in spectral library search it is necessary to augment libraries with spectra predicted from large
50
+ databases (106 − 109) of molecular graphs. This motivates the problem of spectrum prediction.
51
+ Spectrum prediction is actively studied in metabolomics and quantum chemistry [9], yet has received little
52
+ attention from the machine learning community. A major challenge in spectrum prediction is modelling of
53
+ the output space: a mass spectrum is a variable-length set of real-valued (m/z, height) tuples, which is not
54
+ straightforward to represent as an output of a deep learning model. The m/z coordinate (mass-to-charge
55
+ ratio) poses particular difficulty: it must be predicted with high precision, as a key strength of MS/MS is the
56
+ ability to distinguish fractional m/z differences on the order of 10−6 representative of different elemental
57
+ composition.
58
+ Existing approaches to spectrum prediction force a tradeoff between capturing high-resolution m/z information
59
+ and tractability of the learning problem. Mass-binning methods [10, 11, 12] represent a spectrum as a fixed-
60
+ length vector by discretizing the m/z axis at regular intervals, discarding valuable information in favor
61
+ of tractable learning. Bond-breaking methods [13, 14] achieve perfect m/z resolution, but do so through
62
+ expensive combinatorial enumeration of substructures.
63
+ This work makes the following contributions:
64
+ • We formulate spectrum prediction as a mapping from a molecular graph to a probability distribution
65
+ over molecular formulas, allowing full resolution predictions without enumerating substructures;
66
+ • We discover most mass spectra can be effectively approximated with a small fixed vocabulary of
67
+ molecular formulas, bypassing the tradeoff between m/z resolution and tractable learning; and
68
+ • We implement an efficient graph neural network architecture, GrAFF-MS, that substantially out-
69
+ performs state-of-the-art in both prediction error and runtime on two canonical mass spectrometry
70
+ datasets.
71
+ 2
72
+ Background
73
+ 2.1
74
+ Definitions
75
+ We denote vectors x in bold lowercase and matrices X in bold uppercase.
76
+ A molecular graph G = (V, E, a, b) is a minimal description of the structure of a molecule: comprising an
77
+ undirected graph with node set V , edge set E ⊂ V × V , node labels a ∈ [118]V indicating atom number, and
78
+ edge labels b ∈ ({1, 1.5, 2, 3} × {−1, 0, 1})E indicating bond order and chirality.
79
+ A molecular formula f (e.g. C8H10N4O2) describes a multiset of atoms, which we encode as a nonnegative
80
+ integer vector of atom counts in F∗ .= Z118
81
+ + . Formulas may be added and subtracted from one another, and
82
+ inequalities between formulas are taken to hold elementwise. We reserve the symbol P to indicate a formula
83
+ of a precursor ion. The subformulas of P are the set F(P) .= {f ∈ F∗ : f ≤ P}.
84
+ ⟨µ, f⟩ ∈ R+ is the theoretical mass of a molecule with formula f, with units of daltons (Da): this is a linear
85
+ combination of the monoisotopic masses of the elements of the periodic table, µ ∈ R118
86
+ + , with multiplicities
87
+ given by f.
88
+ A mass spectrum S is a variable-length set of peaks, each of which is a (m/z, height) tuple (mi, yi) ∈ R2
89
+ +. We
90
+ use the notation i ∈ S to index peaks in a spectrum. We assume spectra are normalized, permitting us to
91
+ treat them as probability distributions: �
92
+ i∈S yi = 1. A mass spectrum is implicitly always accompanied by a
93
+ precursor formula P.
94
+ We always assume charge z .= 1, as it is rare for small molecules to acquire more than a single charge.
95
+ 2.2
96
+ Tandem mass spectrometry
97
+ A tandem mass spectrometer is a scientific instrument that generates high-throughput experimental signatures
98
+ of the molecules present in a complex mixture. It works by ionizing a chemical sample into a jet of electrically-
99
+ 2
100
+
101
+ charged gas. This gas is electromagnetically filtered to select a population of precursor ions of a specific
102
+ mass-to-charge ratio (m/z) representing a unique molecular structure. Each precursor ion is fragmented by
103
+ collision with molecules of an inert gas. If a collision occurs with sufficient energy, one or more bonds in the
104
+ precursor will break, yielding a charged product ion and one or more uncharged neutral loss molecules. The
105
+ product ion is measured by a detector, which records its m/z up to a small measurement error proportional to
106
+ the m/z times the instrument resolution ϵ. This process is repeated for large numbers of identical precursor
107
+ ions, building up a histogram indexed by m/z. Local maxima in this histogram are termed peaks: ideally,
108
+ each peak represents a unique product ion, with height reflecting its probability of formation. This set of
109
+ peaks constitutes the mass spectrum. A typical mass spectrometry experiment acquires mass spectra for tens
110
+ of thousands of distinct precursors in this manner, with m/zs measured at resolution on the order of 10−6.
111
+ This process is depicted in Figure 1A; we illustrate the relationship between precursor ion, product ion, and
112
+ neutral loss in Figure 1B.
113
+ Figure 1: (A) The workflow of tandem mass spectrometry. A chemical mixture is ionized and filtered to
114
+ isolate precursor ions of m/z = M; these are fragmented into product ions (red) and neutral losses (blue),
115
+ and a detector yields a histogram of product ions indexed by m/z, with measurement error proportional to
116
+ m/z. (B) An example fragmentation of a precursor ion with formula C8H11N4O2. Fragmentation breaks
117
+ bonds, cutting the molecular graph into connected components. The component retaining the charge is the
118
+ product ion; its complement is the neutral loss. The peak at m/z = m represents the product ion; given the
119
+ precursor formula, we can equally specify this peak by its formula C3H4NO2, or the formula of its neutral
120
+ loss C5H7N3.
121
+ 2.3
122
+ Structural elucidation
123
+ A tandem mass spectrum of a molecule contains substantial information about its 2D structure. Peak heights
124
+ reflect the propensity of different bonds to break: this can reveal structural differences in compounds, even if
125
+ they have the same molecular formula. Furthermore, the O(10−6) resolution of modern MS/MS can detect
126
+ small characteristic deviations from integrality in the masses of individual chemical elements that arise from
127
+ nuclear physics, allowing detailed information about the molecular formula to be inferred from the spectrum
128
+ with high accuracy (Sec 2.4).
129
+ The task of inferring a 2D structure from a mass spectrum, structural elucidation, is the major open problem
130
+ 3
131
+
132
+ (A)
133
+ M + dM
134
+ M- dM
135
+ m/ z
136
+ (B)
137
+ C8H11N402
138
+ M-m
139
+ N
140
+ N
141
+ C5H7N3
142
+ >m/ z.
143
+ M
144
+ min computational metabolomics, dating back to the 1960s in one of the earliest examples of an expert system
145
+ [15]. Yet structural elucidation remains far from solved: despite half a century of research, algorithmic
146
+ approaches perform only marginally better than manual annotations by expert chemists, with no method
147
+ submitted to the 2022 Critical Analysis of Small Molecule Identification (CASMI) challenge exceeding 30%
148
+ accuracy [7].
149
+ The difficulty of structural elucidation has broad scientific implications: while a modern metabolomics
150
+ experiment routinely detects tens of thousands of spectra, usually only a few percent of these are confidently
151
+ annotated with a structure [6]. Spectral library search, described in the introduction, is the approach to
152
+ structural elucidation preferred in practice by most biologists and chemists [8], and is a standard component
153
+ of existing metabolomics workflows. The availability of high-quality predicted spectra across large chemical
154
+ structure databases would therefore greatly increase compound identification rates in real experimental
155
+ settings.
156
+ 2.4
157
+ Mass decomposition
158
+ Modern mass spectrometry achieves sufficiently high resolution to detect small deviations in m/z from
159
+ integrality that are characteristic of different chemical elements. This property is a key strength of the
160
+ technology, because it permits annotating peaks with formulas through mass decomposition [16]. Given a
161
+ product ion of m/z = m, a precursor formula P, and an instrument resolution ϵ, product mass decomposition
162
+ yields a set F(P, m, ϵ) of chemically plausible subformulas of P whose theoretical masses lie within measurement
163
+ error ϵm of m. This can be cast as an integer program, in which all solutions of the following minimization
164
+ with cost ≤ ϵm are enumerated:
165
+ min
166
+ f∈F∗ |⟨µ, f⟩ − m|
167
+ (1)
168
+ s.t. f ≤ P, f ∈ Ω
169
+ (2)
170
+ where Ω describes a general set of constraints that exclude unrealistic molecular formulas [17]. In practice,
171
+ with modern instruments ϵ is sufficiently small for there to typically be only one or a few solutions to this
172
+ optimization. This allows us to later rely on product mass decomposition as a black-box to generate useful
173
+ formula annotations at training time.
174
+ 3
175
+ Related work
176
+ Bond-breaking, used in [13, 14, 18], solves the problem of representing the output space by enumerating the
177
+ 2D structures of all probable product ions. These are taken to be connected subgraphs of the precursor,
178
+ generated by sequences of edge removals. Each product ion structure is scored for its probability of formation,
179
+ and a spectrum is generated by associating this probability with each structure’s theoretical m/z. Bond-
180
+ breaking therefore achieves perfect m/z resolution, but suffers from two major weaknesses: first, enumerating
181
+ substructures scales poorly with molecule size, and is not conducive to massively-parallel implementation on
182
+ a GPU. We found a state-of-the-art method [13] takes ∼5s on average to predict a single mass spectrum,
183
+ which precludes training on the largest available datasets: using the same settings as its authors, training
184
+ [13] on ∼300k spectra in NIST-20 would take an estimated three months on a 64-core machine. It also poses
185
+ serious limitations at test time, as inference with a large-scale structure database like ChEMBL [19] requires
186
+ predicting millions of spectra. The other weakness of bond-breaking arises from a restrictive modelling
187
+ assumption: rearrangement reactions [20] frequently yield product ions that are not reachable from the
188
+ precursor by sequences of edge removals.1
189
+ Mass-binning is used for spectrum prediction by [10], and subsequently employed in recent preprints [11, 12].
190
+ This approach represents a mass spectrum as a fixed-length vector via discretization: the m/z axis is
191
+ partitioned into narrow regularly-spaced bins, and each bin is assigned the sum of the intensities of all
192
+ 1While engineered rules are used in bond-breaking to account for certain well-studied rearrangements, we found the state-of-
193
+ the-art method CFM-ID still fails to assign a formula annotation within 10ppm to 42% of monoisotopic peaks in the NIST-20
194
+ dataset.
195
+ 4
196
+
197
+ peaks falling within its endpoints. Spectrum prediction then becomes a vector-valued regression problem.
198
+ Mass-binning is conducive to GPU implementation and scales better than bond-breaking, but because a target
199
+ space with millions of mass bins is too large, realistic bin counts lose essential high resolution information
200
+ about the molecular formulas of the peaks: discarding a key strength of MS/MS analysis in favor of a tractable
201
+ learning problem. Such models are also susceptible to edge effects, where m/z measurement error of the
202
+ instrument can cause peaks of the same product ion to cross bin boundaries from spectrum to spectrum.
203
+ Other approaches include molecular dynamics simulation [21], which has extremely high computational costs;
204
+ and NLP-inspired models for peptides [22, 23], which are effective but inapplicable to other types of molecules.
205
+ 4
206
+ GrAFF-MS
207
+ Our approach constitutes three major components: first, we represent the output space of spectrum pre-
208
+ diction as a space of probability distributions over molecular formulas. We then introduce a constant-sized
209
+ approximation of this output space using a fixed vocabulary of formulas, which we can generate from our
210
+ training data; we later show this introduces only minor approximation cost, as most formulas occur with low
211
+ probability. Finally, we derive a loss function that takes into account data-specific ambiguities introduced by
212
+ our model of the output space. These components together allow us to efficiently predict spectra using a
213
+ standard graph neural network architecture. We call our approach GrAFF-MS: (Gr)aph neural network for
214
+ (A)pproximation via (F)ixed (F)ormulas of (M)ass (S)pectra.
215
+ 4.1
216
+ Modelling spectra as probability distributions over molecular subformulas
217
+ of the precursor
218
+ Our aim is to predict a mass spectrum from a molecular graph. To do so, we must determine how to best
219
+ represent the output space: a spectrum comprises a variable-length set of peaks located at continuous m/z
220
+ positions, whose heights sum to one. We notice that peaks are not located arbitrarily: the set of m/zs is
221
+ structured, as the m/z of a peak is determined (up to measurement error) by the molecular formula of its
222
+ corresponding product ion. This formula is sufficient to determine the m/z; in particular, we do not need to
223
+ know the product ion’s full 2D structure. We therefore model a mass spectrum as a probability distribution
224
+ over molecular subformulas F(P) of the precursor P:
225
+ S = {(mf, yf) : f ∈ F(P)}
226
+ (3)
227
+ where mf .= ⟨µ, f⟩ is the theoretical mass of formula f.
228
+ This is more efficient in principle than bond-breaking, which models a spectrum as a distribution over at
229
+ worst exponentially many substructures of the precursor. But the number of subformulas is only polynomial
230
+ in the coefficients of the precursor formula – and the majority of subformulas can be ruled out a priori as
231
+ chemically infeasible [17]. It is also less restrictive than bond-breaking, which relies on hand-engineered
232
+ rules to capture rearrangement reactions: enumerating subformulas is guaranteed to generate all possible
233
+ peaks, irrespective of whether the structure of their product ion is reachable by edge removals or not. Yet
234
+ our approach preserves the core advantage of bond-breaking over mass-binning: predicting a height for each
235
+ subformula yields spectra with perfect m/z resolution.
236
+ 4.2
237
+ Fixed-vocabulary approximation of formula space
238
+ In practice, enumeration of subformulas is still a costly operation for larger molecules. One way to avoid
239
+ this would be to sequentially decode formulas of nonzero probability one at a time: we opt not to do so, as
240
+ this requires a more complex, data-hungrier model, and necessitates a linear ordering of formulas, for which
241
+ there is not an obvious correct choice. Instead, we exploit a property of small molecule mass spectra that we
242
+ discovered in this work, and illustrate in Figure 2 of the results: almost all of the signal in small molecule
243
+ mass spectra lies in peaks that can be explained by a relatively small number (∼2%) of product ion and
244
+ neutral loss formulas that frequently recur across spectra.
245
+ 5
246
+
247
+ Inspired by this finding, we approximate F(P) via the union ˆF(P) = ˆP ∪ (P − ˆL) of a fixed set of frequent
248
+ product ion formulas ˆP, and a variable set of ‘precursor-specific’ formulas P − ˆL obtained by subtracting
249
+ a fixed set of frequent neutral loss formulas ˆL from the precursor P. This greatly simplifies the spectrum
250
+ prediction problem: we now only need to predict a probability for each of the formulas in ˆP and ˆL, which we
251
+ can accomplish with time constant in the size of the precursor.
252
+ Stated explicitly, we approximate the spectrum as:
253
+ S ≈ {(mf, yf) : f ∈ ˆF(P)}
254
+ (4)
255
+ where a height of zero is implicitly assigned to any formula not in ˆF(P).
256
+ The fact that we can equally represent a product ion by either its own formula or a neutral loss formula
257
+ relative to its precursor ion is crucial to generalization. If we only included frequent product ion formulas, we
258
+ would explain peaks of low mass well, which typically correspond to small charged functional groups. But as
259
+ formula space becomes larger with increasing mass, it becomes increasingly unlikely that every significant
260
+ peak of higher mass in an unseen compound will be explained. However such peaks do not represent arbitrary
261
+ subformulas of the precursor: they tend to arise from losses of small uncharged functional groups and
262
+ combinations thereof, which we capture by including frequent neutral losses.
263
+ Our algorithm to generate ˆP and ˆL involves listing all product ion and neutral loss formulas yielded by
264
+ mass decomposition of the training set, and ranking them by the sum of the heights of all peaks to which
265
+ each formula is assigned; we select the top K highest ranked among either type. Pseudocode is provided in
266
+ appendix A.
267
+ 4.3
268
+ Peak-marginal cross entropy
269
+ To train our approach, we must rely on formula annotations generated by mass decomposition. Because mass
270
+ spectrometers have limited resolution, it is often the case that more than one valid subformula has a mass
271
+ within measurement error of a peak. These are considered equiprobable a priori, and need not be mutually
272
+ exclusive: it is possible for a compound to contain two distinct substructures with m/z difference smaller
273
+ than the measurement error. As we cannot pick a single formula in such cases, we approximate the full cross
274
+ entropy by marginalizing over compatible formulas: this yields the peak-marginal cross entropy, which we
275
+ minimize w.r.t. the parameters of a neural network ˆy(·; θ):
276
+ min
277
+ θ
278
+
279
+ N
280
+
281
+ n=1
282
+
283
+ i∈Sn
284
+ yn
285
+ i log
286
+
287
+ f∈ ˆ
288
+ Fn
289
+ i
290
+ ˆyf(Gn; θ)
291
+ (5)
292
+ using the shorthand ˆFn
293
+ i
294
+ .= ˆF(Pn) ∩ F(Pn, mn
295
+ i , ϵ) to indicate the intersection of our approximated vocabulary
296
+ with the formula annotations generated by mass decomposition. We provide a derivation from first principles
297
+ in appendix B.
298
+ In this formulation, given a molecular graph G of a precursor with formula P, our model predicts a probability
299
+ ˆyf for every formula f in the fixed vocabulary. This produces a spectrum ˆS = {(mf, ˆyf) : f ∈ ˆF(P)}. These
300
+ per-formula probabilities are summed within each observed peak across its compatible formulas to yield a
301
+ predicted peak height, and the cross-entropy between the observed and predicted peak heights across the
302
+ entire spectrum is minimized.
303
+ 4.4
304
+ Model architecture
305
+ Formulating spectrum prediction as graph classification permits a fairly typical GNN architecture. GrAFF-
306
+ MS uses a graph isomorphism network with edge and graph Laplacian features [24, 25, 26]: this encodes the
307
+ molecular graph into a dense vector representation, which is then conditioned on mass-spectral covariates
308
+ and passed through a feed-forward network that decodes a logit for each formula in the vocabulary.
309
+ We start with the graph of the 2D structure G = (V, E), to which we add a virtual node [27] and four classes
310
+ of features: node features ai ∈ Rdatom, edge features bij ∈ Rdbond, covariate features c ∈ Rdcov, and the top
311
+ 6
312
+
313
+ eigenvectors and eigenvalues of the graph Laplacian vi ∈ Rdeig, λ ∈ Rdeig. We use the canonical atom and
314
+ bond featurizers from DGL-LifeSci [28] to generate a and b. Since a mass spectrum is not fully determined
315
+ by the molecular graph, c includes a number of necessary experimental parameters: normalized collision
316
+ energy, precursor ion type, instrument model, and presence of isotopic peaks. Further details are provided in
317
+ Table 2 of the appendix; there we also provide hyperparameter settings.
318
+ We first embed the node, edge, and covariate features into Rdenc, reusing the following MLP block:
319
+ MLP(·) = LayerNorm(Dropout(SiLU(Linear(·))))
320
+ and transform the Laplacian features into node positional encodings in Rdenc using a SignNet [26] with φ and
321
+ ρ both implemented as 2-layer stacked MLP blocks:
322
+ xatom
323
+ i
324
+ = MLPatom(ai)
325
+ (6)
326
+ xeig
327
+ i
328
+ = SignNet(vi, λ)
329
+ (7)
330
+ xbond
331
+ ij
332
+ = MLPbond(bij)
333
+ (8)
334
+ xcov = MLPcov(c)
335
+ (9)
336
+ taking i ∈ V and (i, j) ∈ E. We sum the embedded atom features and node positional encodings, and pass
337
+ these along with embedded bond features into a stack of alternating L message-passing layers to update the
338
+ node representations, and L MLP layers to update the edge representations.
339
+ x(0)
340
+ i
341
+ = xatom
342
+ i
343
+ + xeig
344
+ i
345
+ (10)
346
+ e(0)
347
+ ij = xbond
348
+ ij
349
+ (11)
350
+ X(l+1) = X(l) + GINEConv(l)(G, X(l), E(l))
351
+ (12)
352
+ e(l+1)
353
+ ij
354
+ = e(l)
355
+ ij + MLP(l)
356
+ edge(e(l)
357
+ ij ∥x(l+1)
358
+ i
359
+ ∥x(l+1)
360
+ j
361
+ )
362
+ (13)
363
+ where ∥ denotes concatenation. The message-passing layer uses the GINEConv operation implemented in [29]:
364
+ for its internal feed-forward network, we use two stacked MLP blocks with GraphNorm [30] in place of layer
365
+ normalization. We similarly replace layer normalization with GraphNorm in the MLPedge blocks. Both node
366
+ and edge updates use residual connections, which we found greatly accelerate training.
367
+ We generate a dense representation of the molecule by attention pooling over nodes [31], to which we add
368
+ the embedded covariate features. This is decoded by a feed-forward network into a spectrum representation
369
+ xspec ∈ Rddec.
370
+ ai = Softmaxi∈V (Linear(xi))
371
+ (14)
372
+ xmol =
373
+
374
+ i∈V
375
+ aix(L)
376
+ i
377
+ (15)
378
+ xspec = MLPspec(xmol + xcov)
379
+ (16)
380
+ where MLPspec is a stack of L′ MLP blocks with residual connections. In principle we may now project this
381
+ representation via a linear layer (wk, bk) into a logit zk for each of the K product ion or neutral loss formulas
382
+ in the vocabulary.
383
+ 4.5
384
+ Domain-specific modifications
385
+ We must now introduce a number of corrections motivated by domain knowledge to produce realistic mass
386
+ spectra.
387
+ Following fragmentation, certain product ions can bind ambient water or nitrogen molecules as adducts,
388
+ shifting the mass of the fragment. This occurrence is annotated in our training set. For each formula in our
389
+ vocabulary, we therefore predict a logit for three different adduct states of the fragment, indexed by α: the
390
+ original product ion f, f + H2O, and f + N2. In effect this triples our vocabulary size.
391
+ 7
392
+
393
+ Depending upon instrument parameters, tandem mass spectra can display small peaks arising from higher
394
+ isotopic states of the precursor ion, at integral m/z shifts relative to the monoisotopic peak. Isotopic state is
395
+ independent of fragmentation: so rather than expanding our vocabulary again, we apply to all predictions a
396
+ shared offset for each isotopic state β ∈ {0, 1, 2}, which we parameterize on xspec.
397
+ As our vocabulary includes both product ions and neutral losses, we must deal with occasional double-counting:
398
+ depending on the precursor P, there are cases where the same subformula f will be predicted both as a
399
+ product ion (f ∈ ˆP) and a neutral loss (P − f ∈ ˆL). In such cases – denoted by the set ˆD(P) – we subtract a
400
+ log 2 correction factor from both logits: this way the innermost summation in Equation 5 takes the mean of
401
+ their contributions instead of their sum.
402
+ Applying these corrections and softmaxing yields the final heights of the predicted mass spectrum ˆy:
403
+ zαβ
404
+ k
405
+ = wα
406
+ k xspec + wβxspec + bα
407
+ k
408
+ (17)
409
+ − I[k ∈ ˆD(P)] log 2
410
+ (18)
411
+ ˆyαβ
412
+ k
413
+ = Softmaxk,α,β(zαβ
414
+ k )
415
+ (19)
416
+ 5
417
+ Experiments
418
+ 5.1
419
+ Datasets
420
+ 5.1.1
421
+ NIST-20
422
+ We train our model on the NIST-20 tandem MS spectral library [32]. This is the largest dataset of high
423
+ resolution mass spectra of small molecules, curated by expert chemists, and is commercially available for a
424
+ modest fee.2 For each measured compound, NIST-20 provides typically several spectra acquired across a
425
+ range of collision energies. Each spectrum is represented as a list of (m/z, intensity, annotation) peak tuples,
426
+ in addition to metadata describing instrumental parameters and compound identity. The annotation field
427
+ includes a list of formula hypotheses per peak that were computed via mass decomposition.
428
+ We restrict NIST-20 to HCD spectra with [M + H]+ or [M − H]− precursor ions. We exclude structures
429
+ that are annotated as glycans or peptides or exceed 1000Da in mass (as these are not typically considered
430
+ small molecules), or have atoms other than {C, H, N, O, P, S, F, Cl, Br, I}.
431
+ We use an 85/5/10 structure-disjoint train/validation/test split, which we generate by grouping spectra
432
+ according to the connectivity substring of their InChiKey [34] and assigning spectra to splits an entire group
433
+ at a time. As CFM-ID only predicts monoisotopic spectra at qualitative energy levels {low, medium, high},
434
+ we restrict the test set to spectra with corresponding energies {20, 35, 50} in which no peaks were annotated
435
+ as higher isotopes. This yields 306,135 (19,871) training, 17,987 (1,167) validation, and 4,548 (1,637) test
436
+ spectra (structures).
437
+ 5.1.2
438
+ CASMI-16
439
+ It is well known that uniform train-test splitting can overestimate generalization in molecular machine learning
440
+ [35]. To address this issue, we employ an independent test set: the spectra of the 2016 CASMI challenge
441
+ [36]. This is a small public-domain mass spectrometry dataset, constructed by domain experts specifically
442
+ for testing algorithms, and comprises structures selected as representative of those encountered ‘in the wild’
443
+ when performing mass spectrometry of small molecules.
444
+ We use [M + H]+ and [M − H]− spectra from the combined ‘Training’ and ‘Challenge’ splits from Categories
445
+ 2 and 3 of the challenge. We exclude any structures from CASMI-16 with an InChiKey connectivity match
446
+ to any in NIST-20, yielding 156 spectra of 141 structures. The collision energy stepping protocol used in
447
+ 2Open data is not the norm in small molecule mass spectrometry, as large-scale annotation requires substantial time
448
+ commitment from teams of highly-trained human experts. As a result, no public-domain dataset exists of comparable scale and
449
+ quality to NIST-20. However, NIST-20 and its predecessors are well-established in academic mass spectrometry, and have
450
+ been used in previous machine learning publications [10, 33].
451
+ 8
452
+
453
+ CASMI-16 is simulated by predicting a spectrum at each of {20, 35, 50} normalized collision energy and
454
+ returning their mean.
455
+ 5.2
456
+ Baselines
457
+ 5.2.1
458
+ CFM-ID
459
+ CFM-ID [13] is a bond-breaking method, viewed by the mass spectrometry community as the state-of-the-art
460
+ in spectrum prediction [9]. We found CFM-ID prohibitively expensive to train on NIST-20 (one parallelized
461
+ EM iterate on a subset of ∼60k spectra took 10 hours on a 64-core machine) so we use trained weights
462
+ provided by its authors, learned from 18,282 spectra in the commercial METLIN dataset [37]. Domain
463
+ experts consider spectra acquired under METLIN’s conditions interchangeable with those of NIST-20 [38]
464
+ so it is reasonable to evaluate their model on our data.
465
+ 5.2.2
466
+ NEIMS
467
+ NEIMS [10] is a feed-forward network that inputs a precomputed molecular fingerprint and outputs a
468
+ mass-binned spectrum, which is postprocessed using a domain-specific gating operation. We retrained
469
+ NEIMS on NIST-20, which necessitated two modifications: (1) we concatenate a vector of covariates to
470
+ the fingerprint vector, without which NIST-20 spectra are not fully determined; and (2) we bin at 0.1Da
471
+ intervals instead of 1Da intervals, to account for finer instrument resolution in NIST-20. We otherwise use
472
+ the same hyperparameter settings as the original paper, and early-stop on validation loss.
473
+ 5.3
474
+ Evaluation metrics
475
+ We quantify predictive performance using mass-spectral cosine similarity, which compares spectra subject
476
+ to m/z measurement error [39] by matching pairs of peaks. For two spectra S and ˆS, mass-spectral cosine
477
+ similarity CS, ˆS is the value of the following linear sum assignment problem:
478
+ CS, ˆS
479
+ .=
480
+ max
481
+ xij∈{0,1}
482
+
483
+ i∈S, j∈ ˆS:
484
+ |mi− ˆmj|≤τ
485
+ xij
486
+ yi
487
+ ∥y∥2
488
+ ˆyj
489
+ ∥ˆy∥2
490
+ (20)
491
+ s.t. �
492
+ i∈S xij ≤ 1
493
+ (21)
494
+
495
+ j∈ ˆS xij ≤ 1
496
+ (22)
497
+ We use the CosineHungarian implementation in the matchms Python package, with tolerance τ = 0.05.
498
+ We report mean cosine similarity across spectra, as well as the fraction of spectra scoring > 0.7, which is
499
+ commonly employed in spectral library search as a heuristic cutoff for a positive match [40].
500
+ We also compare runtime of GrAFF-MS against the bond-breaking method CFM-ID. For fair comparison,
501
+ we time a forward pass for each structure in the NIST-20 test split using only the CPU, without any batching.
502
+ We include time spent in preprocessing: our input is a SMILES string and experimental covariates, and our
503
+ output is a spectrum. As collision energy affects the number of peaks that CFM-ID generates, we predict
504
+ spectra at low, medium, and high energies and use the average runtime of the three.
505
+ 6
506
+ Results
507
+ 6.1
508
+ A fixed vocabulary of product ions and neutral losses closely approximates
509
+ most mass spectra
510
+ Figure 2 demonstrates the fraction of ion counts explained in the average mass spectrum as the training
511
+ vocabulary size is varied. This shows most signal lies within peaks explainable by a relatively small number
512
+ of product ion and neutral loss formulas. In particular, the vocabulary we use (of size K = 104) is sufficient
513
+ to explain 98% of ion counts in the NIST-20 training split, which comprises 193,577 unique product ion
514
+ formulas and 348,692 unique neutral loss formulas. We observe that a fixed vocabulary generalizes beyond
515
+ 9
516
+
517
+ Figure 2: Generalization of different heuristics for fixed-size vocabulary selection. For a given vocabulary size
518
+ on the x-axis, the y-axis indicates the sum of all explained peaks’ heights within a given spectrum, averaged
519
+ over all spectra.
520
+ NIST-20 to a separate dataset CASMI-16, indicating ‘formula sparsity’ is a general property of small
521
+ molecule mass spectra and not limited to our particular training set. We also compare alternative strategies
522
+ of picking only the top products or top losses: using both types of formulas explains more signal for a given
523
+ K than either alone.
524
+ 6.2
525
+ GrAFF-MS outperforms bond-breaking and mass-binning on standard
526
+ MS/MS datasets
527
+ Table 1 shows GrAFF-MS produces spectra with greater cosine similarity to ground-truth than either
528
+ baseline. More of our spectra also meet the CS ˆS > 0.7 threshold for useful predictions. These results hold
529
+ both for the NIST-20 test split and the independent test set CASMI-16. We see all methods perform better
530
+ on CASMI-16 than NIST-20: this is because NIST-20 includes a minority of substantially larger molecules
531
+ (max weight 986Da) than CASMI-16 (max weight 539Da), with which all three methods struggle.
532
+ Table 1: Mean cosine similarity E[C] and fraction of useful predictions P(C > 0.7) on the NIST-20 test split
533
+ and CASMI-16. 95% confidence intervals are computed via nonparametric bootstrap.
534
+ NIST-20 Test
535
+ (N = 4548)
536
+ CASMI-16
537
+ (N = 156)
538
+ Method
539
+ E[C]
540
+ P(C>0.7)
541
+ E[C]
542
+ P(C>0.7)
543
+ CFM-ID
544
+ .52±.01
545
+ .35±.02
546
+ .75±.05
547
+ .70±.07
548
+ NEIMS
549
+ .60±.01
550
+ .50±.01
551
+ .63±.05
552
+ .54±.08
553
+ GrAFF-MS
554
+ .70±.01
555
+ .62±.02
556
+ .79±.05
557
+ .76±.07
558
+ 6.3
559
+ Representing peaks as formulas scales better with molecular weight than
560
+ bond-breaking
561
+ Figure 3 shows our approach to modelling high resolution spectra scales better with input size than bond-
562
+ breaking.
563
+ CFM-ID takes on average 4.9 seconds per structure in the NIST-20 test split, and scales
564
+ quadratically (R2 = 0.78) with input size. (We believe this is because larger molecules in NIST-20 tend to
565
+ be approximately path graphs – e.g. long hydrocarbon chains – with only quadratically many connected
566
+ subgraphs.) In comparison, running GrAFF-MS on the CPU takes 1.3 core-seconds per spectrum, and
567
+ 10
568
+
569
+ 1.0
570
+ 0.8
571
+ 0.6
572
+ Strategy
573
+ 0.4
574
+ Products+Losses
575
+ Products
576
+ Losses
577
+ 0.2
578
+ Dataset
579
+ NIST-20 (Train)
580
+ NIST-20 (Test)
581
+ 0.0
582
+ CASMI-16
583
+ 102
584
+ 103
585
+ 104
586
+ 105
587
+ Vocabulary sizeFigure 3: Empirical time complexity on NIST-20 structures with respect to molecular weight. Each dot is
588
+ a structure. Solid lines are quadratic (blue) and linear (red) fits; dotted line indicates an average over all
589
+ spectra computed using shuffled minibatches.
590
+ scales approximately linearly (R2 = 0.65). This pays off at larger molecular weight: for molecules > 500Da,
591
+ our model is 16× faster on average. Realistically, large-scale prediction will use the GPU: on a single GPU
592
+ with batch size 512, predicting all of the NIST-20 test spectra averages to 2.8ms per spectrum (mostly spent
593
+ in preprocessing on the CPU).
594
+ We can additionally estimate the time required for each approach to generate a reference library from all
595
+ 2,259,751 structures below 1000Da in ChEMBL v3.1. Correcting for greater mean molecular weight in
596
+ ChEMBL (405Da vs 292Da), this would take 2 hours running our PyTorch research code as-is on a single
597
+ GPU. The same library would take 4 days to generate with 64 parallel instances of CFM-ID, which is written
598
+ in optimized C++ code – showing the importance of efficiently representing the output space.
599
+ 6.4
600
+ GrAFF-MS distinguishes very similar compounds and makes human-like
601
+ mistakes
602
+ In Figure 4 we show some particularly challenging examples of mass spectra. The top and middle panels
603
+ show two structurally similar compounds, differing only by the order of a carbon-carbon bond. Our approach
604
+ correctly predicts distinct spectra for each (CS ˆS = 0.98, top; CS ˆS = 0.95, middle). The third molecule is an
605
+ example where we fail to predict a realistic spectrum (CS ˆS = 0.03), but in a manner in which a human expert
606
+ would also fail. This molecule is a member of the phthalate class, which chemists recognize by a characteristic
607
+ dominant peak at 149Da [41]. Our model predicts this same peak, correctly recognizing a phthalate: but in
608
+ this case that peak is relatively minor, indicating atypical fragmentation chemistry.
609
+ 7
610
+ Discussion
611
+ In this work we develop GrAFF-MS, a graph neural network for predicting high resolution mass spectra of
612
+ small molecules. Unlike previous approaches that force a tradeoff between m/z resolution and a tractable
613
+ learning problem, GrAFF-MS is both computationally efficient and capable of modelling the high-resolution
614
+ m/z information essential to mass spectrometry. This is made possible by our discovery that mass spectra of
615
+ small molecules can be closely approximated as distributions over a fixed vocabulary of molecular formulas,
616
+ highlighting the value that domain-aware modelling can add to molecular machine learning. Particularly
617
+ surprising was that we outperform CFM-ID, which trades model expressivity for an even stronger scientific
618
+ prior that we expected would contribute to better generalization. However, this prior incurs a heavy cost in
619
+ 11
620
+
621
+ 102
622
+ 101
623
+ 100
624
+ Time
625
+ 10-1
626
+ CFM-ID
627
+ GrAFF-MS (CPU)
628
+ GrAEE-MS(GPU)
629
+ 10-2
630
+ 200
631
+ 400
632
+ 600
633
+ 800
634
+ 1000
635
+ Molecular weight (Da)Figure 4: Three compounds from CASMI-16, with spectra predicted by our model (blue) against negated
636
+ ground-truth (orange). Oxygens are shaded red by convention.
637
+ time complexity, making it impractical to train CFM-ID on hundreds of thousands of spectra as we did.
638
+ Future directions include pretraining on large-scale property prediction tasks, revisiting sequential formula
639
+ decoding, and incorporating additional scientific priors about fragmentation chemistry. Overall we anticipate
640
+ this work will both accelerate scientific discovery and demonstrate mass spectrometry to be a compelling
641
+ domain for continued machine learning research.
642
+ References
643
+ [1] Katja Dettmer, Pavel A. Aronov, and Bruce D. Hammock. Mass spectrometry-based metabolomics.
644
+ Mass Spectrometry Reviews, 26(1):51–78, August 2006.
645
+ [2] Atanas G Atanasov, Sergey B Zotchev, Verena M Dirsch, and Claudiu T Supuran. Natural products in
646
+ drug discovery: advances and opportunities. Nature reviews Drug discovery, 20(3):200–216, 2021.
647
+ [3] Ethan D. Evans, Claire Duvallet, Nathaniel D. Chu, Michael K. Oberst, Michael A. Murphy, Isaac
648
+ Rockafellow, David Sontag, and Eric J. Alm. Predicting human health from biofluid-based metabolomics
649
+ using machine learning. Scientific Reports, 10(1), October 2020.
650
+ [4] Hilary M. Brown, Trevor J. McDaniel, Patrick W. Fedick, and Christopher C. Mulligan. The current
651
+ role of mass spectrometry in forensics and future prospects. Analytical Methods, 12(32):3974–3997, 2020.
652
+ [5] F. Hernández, J. V. Sancho, M. Ibáñez, E. Abad, T. Portolés, and L. Mattioli. Current use of high-
653
+ resolution mass spectrometry in the environmental sciences. Analytical and Bioanalytical Chemistry,
654
+ 403(5):1251–1264, February 2012.
655
+ 12
656
+
657
+ 0.4
658
+ Progesterone
659
+ 0.2
660
+ Intensity
661
+ 0.0
662
+ -0.2
663
+ -0.4
664
+ 50
665
+ 100
666
+ 150
667
+ 200
668
+ 250
669
+ 300
670
+ m/z
671
+ 0.4
672
+ Dydrogesterone
673
+ 0.2
674
+ Intensity
675
+ 0.0
676
+ 0.2
677
+ -0.4
678
+ 50
679
+ 100
680
+ 150
681
+ 200
682
+ 250
683
+ 300
684
+ m/z
685
+ Diallyl phthalate
686
+ 0.5
687
+ Intensity
688
+ 0.0
689
+ -0.5
690
+ 50
691
+ 100
692
+ 150
693
+ 200
694
+ 250
695
+ m/z[6] Ricardo R da Silva, Pieter C Dorrestein, and Robert A Quinn.
696
+ Illuminating the dark matter in
697
+ metabolomics. Proceedings of the National Academy of Sciences, 112(41):12549–12550, 2015.
698
+ [7] Oliver Fiehn. Critical Assessment of Small Molecule Identification 2022. http://www.casmi-contest.
699
+ org/2022/index.shtml/, 2022. [Online; accessed 12-December-2022].
700
+ [8] Stephen Stein. Mass spectral reference libraries: An ever-expanding resource for chemical identification.
701
+ Analytical Chemistry, 84(17):7274–7282, July 2012.
702
+ [9] Christoph A Krettler and Gerhard G Thallinger. A map of mass spectrometry-based in-silico fragmenta-
703
+ tion prediction and compound identification in metabolomics. Briefings in Bioinformatics, 22(6), March
704
+ 2021.
705
+ [10] Jennifer N. Wei, David Belanger, Ryan P. Adams, and D. Sculley. Rapid prediction of electron–ionization
706
+ mass spectrometry using neural networks. ACS Central Science, 5(4):700–708, March 2019.
707
+ [11] Hao Zhu, Liping Liu, and Soha Hassoun. Using graph neural networks for mass spectrometry prediction,
708
+ 2020.
709
+ [12] Adamo Young, Bo Wang, and Hannes Röst. Massformer: Tandem mass spectrum prediction with graph
710
+ transformers, 2021.
711
+ [13] Fei Wang, Jaanus Liigand, Siyang Tian, David Arndt, Russell Greiner, and David S. Wishart. CFM-ID
712
+ 4.0: More accurate ESI-MS/MS spectral prediction and compound identification. Analytical Chemistry,
713
+ 93(34):11692–11700, August 2021.
714
+ [14] Christoph Ruttkies, Steffen Neumann, and Stefan Posch. Improving MetFrag with statistical learning of
715
+ fragment annotations. BMC Bioinformatics, 20(1), July 2019.
716
+ [15] Robert K. Lindsay, Bruce G. Buchanan, Edward A. Feigenbaum, and Joshua Lederberg. DENDRAL:
717
+ A case study of the first expert system for scientific hypothesis formation.
718
+ Artificial Intelligence,
719
+ 61(2):209–261, June 1993.
720
+ [16] Kai Dührkop, Marcus Ludwig, Marvin Meusel, and Sebastian Böcker. Faster mass decomposition. In
721
+ Lecture Notes in Computer Science, pages 45–58. Springer Berlin Heidelberg, 2013.
722
+ [17] Tobias Kind and Oliver Fiehn. Seven golden rules for heuristic filtering of molecular formulas obtained
723
+ by accurate mass spectrometry. BMC Bioinformatics, 8(1), March 2007.
724
+ [18] Liu Cao, Mustafa Guler, Azat Tagirdzhanov, Yi-Yuan Lee, Alexey Gurevich, and Hosein Mohimani.
725
+ Moldiscovery: learning mass spectrometry fragmentation of small molecules. Nature Communications,
726
+ 12(1):1–13, 2021.
727
+ [19] Anna Gaulton, Anne Hersey, Michał Nowotka, A. Patrícia Bento, Jon Chambers, David Mendez,
728
+ Prudence Mutowo, Francis Atkinson, Louisa J. Bellis, Elena Cibrián-Uhalte, Mark Davies, Nathan
729
+ Dedman, Anneli Karlsson, María Paula Magariños, John P. Overington, George Papadatos, Ines Smit,
730
+ and Andrew R. Leach. The ChEMBL database in 2017. Nucleic Acids Research, 45(D1):D945–D954,
731
+ November 2016.
732
+ [20] F. W. McLafferty.
733
+ Mass spectrometric analysis. molecular rearrangements.
734
+ Analytical Chemistry,
735
+ 31(1):82–87, January 1959.
736
+ [21] Jeroen Koopman and Stefan Grimme. From QCEIMS to QCxMS: A tool to routinely calculate CID
737
+ mass spectra using molecular dynamics.
738
+ Journal of the American Society for Mass Spectrometry,
739
+ 32(7):1735–1751, June 2021.
740
+ [22] Xie-Xuan Zhou, Wen-Feng Zeng, Hao Chi, Chunjie Luo, Chao Liu, Jianfeng Zhan, Si-Min He, and
741
+ Zhifei Zhang. pDeep: Predicting MS/MS spectra of peptides with deep learning. Analytical Chemistry,
742
+ 89(23):12690–12697, November 2017.
743
+ [23] Siegfried Gessulat, Tobias Schmidt, Daniel Paul Zolg, Patroklos Samaras, Karsten Schnatbaum, Johannes
744
+ Zerweck, Tobias Knaute, Julia Rechenberger, Bernard Delanghe, Andreas Huhmer, Ulf Reimer, Hans-
745
+ 13
746
+
747
+ Christian Ehrlich, Stephan Aiche, Bernhard Kuster, and Mathias Wilhelm. Prosit: proteome-wide
748
+ prediction of peptide tandem mass spectra by deep learning. Nature Methods, 16(6):509–518, May 2019.
749
+ [24] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
750
+ In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
751
+ 6-9, 2019. OpenReview.net, 2019.
752
+ [25] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
753
+ Strategies for pre-training graph neural networks. In International Conference on Learning Representa-
754
+ tions, 2020.
755
+ [26] Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie Jegelka.
756
+ Sign and basis invariant networks for spectral graph representation learning, 2022.
757
+ [27] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
758
+ message passing for quantum chemistry. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
759
+ 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
760
+ 2017, volume 70 of Proceedings of Machine Learning Research, pages 1263–1272. PMLR, 2017.
761
+ [28] Mufei Li, Jinjing Zhou, Jiajing Hu, Wenxuan Fan, Yangkang Zhang, Yaxin Gu, and George Karypis.
762
+ Dgl-lifesci: An open-source toolkit for deep learning on graphs in life science. ACS Omega, 2021.
763
+ [29] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
764
+ Workshop on Representation Learning on Graphs and Manifolds, 2019.
765
+ [30] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, and Liwei Wang. Graphnorm: A principled
766
+ approach to accelerating graph neural network training. In Marina Meila and Tong Zhang, editors,
767
+ Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
768
+ Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 1204–1215. PMLR, 2021.
769
+ [31] Meng Joo Er, Yong Zhang, Ning Wang, and Mahardhika Pratama. Attention pooling-based convolutional
770
+ neural network for sentence modelling. Information Sciences, 373:388–403, December 2016.
771
+ [32] National Institute of Standards and Technology. Nist-20, 2020.
772
+ [33] Kai Dührkop. Deep kernel learning improves molecular fingerprint prediction from tandem mass spectra.
773
+ Bioinformatics, 38(Supplement_1):i342–i349, June 2022.
774
+ [34] Stephen R Heller, Alan McNaught, Igor Pletnev, Stephen Stein, and Dmitrii Tchekhovskoi. InChI, the
775
+ IUPAC international chemical identifier. Journal of Cheminformatics, 7(1), May 2015.
776
+ [35] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu,
777
+ Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine learning. Chemical
778
+ Science, 9(2):513–530, 2018.
779
+ [36] Emma L. Schymanski, Christoph Ruttkies, Martin Krauss, Céline Brouard, Tobias Kind, Kai Dührkop,
780
+ Felicity Allen, Arpana Vaniya, Dries Verdegem, Sebastian Böcker, Juho Rousu, Huibin Shen, Hiroshi
781
+ Tsugawa, Tanvir Sajed, Oliver Fiehn, Bart Ghesquière, and Steffen Neumann. Critical assessment of
782
+ small molecule identification 2016: automated methods. Journal of Cheminformatics, 9(1), March 2017.
783
+ [37] Carlos Guijas, J. Rafael Montenegro-Burke, Xavier Domingo-Almenara, Amelia Palermo, Benedikt
784
+ Warth, Gerrit Hermann, Gunda Koellensperger, Tao Huan, Winnie Uritboonthai, Aries E. Aisporna,
785
+ Dennis W. Wolan, Mary E. Spilker, H. Paul Benton, and Gary Siuzdak. METLIN: A technology platform
786
+ for identifying knowns and unknowns. Analytical Chemistry, 90(5):3156–3164, January 2018.
787
+ [38] Maria Lorna A. De Leoz, Yamil Simón-Manso, Robert J. Woods, and Stephen E. Stein. Cross-ring
788
+ fragmentation patterns in the tandem mass spectra of underivatized sialylated oligosaccharides and their
789
+ special suitability for spectrum library searching. Journal of the American Society for Mass Spectrometry,
790
+ 30(3):426–438, December 2018.
791
+ [39] Wout Bittremieux, Robin Schmid, Florian Huber, Justin J. J. van der Hooft, Mingxun Wang, and
792
+ Pieter C. Dorrestein. Comparison of cosine, modified cosine, and neutral loss based spectrum alignment
793
+ 14
794
+
795
+ for discovery of structurally related molecules. Journal of the American Society for Mass Spectrometry,
796
+ 33(9):1733–1744, August 2022.
797
+ [40] Gert Wohlgemuth, Sajjan S Mehta, Ramon F Mejia, Steffen Neumann, Diego Pedrosa, Tomáš Pluskal,
798
+ Emma L Schymanski, Egon L Willighagen, Michael Wilson, David S Wishart, Masanori Arita, Pieter C
799
+ Dorrestein, Nuno Bandeira, Mingxun Wang, Tobias Schulze, Reza M Salek, Christoph Steinbeck,
800
+ Venkata Chandrasekhar Nainala, Robert Mistrik, Takaaki Nishioka, and Oliver Fiehn. SPLASH, a
801
+ hashed identifier for mass spectra. Nature Biotechnology, 34(11):1099–1101, November 2016.
802
+ [41] Yassin A. Jeilani, Beatriz H. Cardelino, and Victor M. Ibeanusi. Density functional theory and mass
803
+ spectrometry of phthalate fragmentations mechanisms: Modeling hyperconjugated carbocation and
804
+ radical cation complexes with neutral molecules. Journal of the American Society for Mass Spectrometry,
805
+ 22(11), August 2011.
806
+ [42] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2015.
807
+ 15
808
+
809
+ A
810
+ Fixed vocabulary selection
811
+ Algorithm 1 describes our procedure for selecting the product ions ˆP and neutral losses ˆL. We use the
812
+ shorthand Fn
813
+ i = F(Pn, mi, ϵ) to indicate the set of formulas computed by mass decomposition. When mass
814
+ decomposition yields more than one formula annotation for a peak, here we split the peak height uniformly
815
+ among all annotations.
816
+ Algorithm 1 Fixed vocabulary selection
817
+ Input: training spectra and precursors {(Sn, Pn)}N
818
+ n=1, vocabulary size K, tolerance ϵ
819
+ Initialize Ff = 0, Ll = 0, ˆP = ∅, ˆL = ∅
820
+ for n = 1 . . . N do
821
+ for (mi, yi) ∈ Sn do
822
+ for f ∈ Fn
823
+ i do
824
+ l = Pn − f
825
+ Ff = Ff + yi/|Fn
826
+ i |
827
+ Ll = Ll + yi/|Fn
828
+ i |
829
+ end for
830
+ end for
831
+ end for
832
+ Sort F and L
833
+ while | ˆP| + | ˆL| ≤ K do
834
+ f = first element of F
835
+ l = first element of L
836
+ if Ff > Ll then
837
+ Add f to ˆP
838
+ Remove f from F
839
+ else
840
+ Add l to ˆL
841
+ Remove l from L
842
+ end if
843
+ end while
844
+ B
845
+ Derivation of peak-marginal cross entropy
846
+ We derive our loss function from physical first principles, making a number of minor modelling assumptions:
847
+ • The number of precursor ions accumulated by the instrument is Poisson with rate λ.
848
+ • Each individual precursor ion is independently converted into fragment f with probability pf.
849
+ • The instrument resolution parameter ϵ is sufficiently small that separate peaks do not overlap: there
850
+ exists exactly one peak i(f) for every f : pf > 0 satisfying |⟨µ, f⟩ − mi| ≤ ϵmi.
851
+ By the splitting property, the number of ions of each fragment are independently Poisson with rate λf = λpf.
852
+ By the merging property, the height of peak i is also a Poisson r.v. Ki with rate λi = �
853
+ f∈Fi λf, where Fi
854
+ denotes the set of fragments whose theoretical masses all fall within the measurement error ϵmi of peak i.
855
+ 16
856
+
857
+ The log-likelihood for the peak height is (taking equality up to constants C w.r.t. pf):
858
+ log P(Ki = ki)
859
+ (23)
860
+ = ki log λi − λi − log ki!
861
+ (24)
862
+ = ki log
863
+
864
+ � �
865
+ f∈Fi
866
+ λf
867
+
868
+ � −
869
+
870
+ � �
871
+ f∈Fi
872
+ λf
873
+
874
+ � + C
875
+ (25)
876
+ = ki log
877
+
878
+ � �
879
+ f∈Fi
880
+ λpf
881
+
882
+ � −
883
+
884
+ � �
885
+ f∈Fi
886
+ λpf
887
+
888
+
889
+ (26)
890
+ = ki log λ + ki log
891
+
892
+ � �
893
+ f∈Fi
894
+ pf
895
+
896
+ � − λ
897
+
898
+ f∈Fi
899
+ pf
900
+ (27)
901
+ = C + ki log
902
+
903
+ � �
904
+ f∈Fi
905
+ pf
906
+
907
+ � − λ
908
+
909
+ f∈Fi
910
+ pf
911
+ (28)
912
+ where (25) uses merging, and (26) uses splitting. Because each fragment is assigned to exactly one peak
913
+ (no overlap), the peak heights {Ki : i ∈ S} are independent. Let the total number of accumulated ions
914
+ K = �
915
+ i∈S ki in spectrum S. Defining yi = ki/K:
916
+ log P({Ki = ki : i ∈ S})
917
+ (29)
918
+ =
919
+
920
+ i∈S
921
+ log P(Ki = ki)
922
+ (30)
923
+ =
924
+
925
+ i∈S
926
+
927
+ �ki log
928
+
929
+ � �
930
+ f∈Fi
931
+ pf
932
+
933
+ � − λ
934
+
935
+ f∈Fi
936
+ pf
937
+
938
+
939
+ (31)
940
+ =
941
+
942
+ i∈S
943
+ (Kyi) log
944
+
945
+ � �
946
+ f∈Fi
947
+ pf
948
+
949
+ � − λ
950
+
951
+ i∈S
952
+
953
+ f∈Fi
954
+ pf
955
+ (32)
956
+ = K
957
+
958
+ i∈S
959
+ yi log
960
+
961
+ � �
962
+ f∈Fi
963
+ pf
964
+
965
+ � − λ · 1
966
+ (33)
967
+ = C
968
+
969
+ i∈S
970
+ yi log
971
+
972
+ � �
973
+ f∈Fi
974
+ pf
975
+
976
+ � + C′
977
+ (34)
978
+ where (33) again uses our assumption that every fragment is assigned to exactly one peak. Dropping the
979
+ constants and negating the final term yields the peak-marginal cross-entropy loss for a single spectrum.
980
+ 17
981
+
982
+ C
983
+ Model hyperparameters
984
+ We use a vocabulary of K = 10000 formulas. We train an L = 6-layer encoder and L′ = 2-layer decoder
985
+ with denc = 512 and ddec = 1024, resulting in 44.6 million trainable parameters. We use the deig = 8
986
+ lowest-frequency eigenvalues, truncating or padding with zeros. All dropout is applied at rate 0.1. We use a
987
+ batch size of 512 and the Adam optimizer [42] with learning rate 5 × 10−4. We train for 100 epochs and use
988
+ the model from the epoch with the lowest validation loss. All models are trained using PyTorch Lightning
989
+ with automatic mixed precision on 2 Tesla V100 GPUs.
990
+ D
991
+ Mass spectral covariates
992
+ Table 2: Mass spectral covariates used in our model.
993
+ Feature
994
+ Range
995
+ Comment
996
+ Normalized collision energy
997
+ [0, 200]
998
+ Thermo Scientific PSB104,
999
+ “Normalized Collision Energy Technology”
1000
+ Precursor type
1001
+ [M + H]+, [M − H]−
1002
+ Includes ionization mode & adduct composition
1003
+ Instrument model
1004
+ Orbitrap Fusion Lumos,
1005
+ Thermo Finnigan Elite Orbitrap,
1006
+ Thermo Finnigan Velos Orbitrap
1007
+ Different limits of detection
1008
+ Has isotopic peaks
1009
+ False, True
1010
+ Proxy for width setting of precursor mass filter
1011
+ 18
1012
+
CNFJT4oBgHgl3EQfASxa/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
EdE5T4oBgHgl3EQfUw9y/content/tmp_files/2301.05546v1.pdf.txt ADDED
@@ -0,0 +1,1316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.05546v1 [physics.chem-ph] 13 Jan 2023
2
+ Comparing real-time coupled cluster methods through simulation of collective Rabi
3
+ oscillations
4
+ Andreas S. Skeidsvoll
5
+ Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
6
+ Henrik Koch∗
7
+ Scuola Normale Superiore, Piazza dei Cavalieri, 7, I-56126, Pisa, Italy
8
+ and
9
+ Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
10
+ (Dated: January 16, 2023)
11
+ The time-dependent equation-of-motion coupled cluster (TD-EOM-CC) and time-dependent cou-
12
+ pled cluster (TDCC) methods are compared by simulating Rabi oscillations for different numbers
13
+ of non-interacting atoms in a classical electromagnetic field. While the TD-EOM-CC simulations
14
+ are numerically stable, the oscillating time-dependent energy scales unreasonably with the num-
15
+ ber of subsystems resonant with the field. The TDCC simulations give the correct scaling of the
16
+ time-dependent energy in the initial stages of the Rabi cycle, but the numerical solution breaks
17
+ down when the multi-atom system approaches complete population inversion. We present a general
18
+ theoretical framework in which the two methods can be described, where the cluster amplitude time
19
+ derivatives are taken as auxiliary conditions, leading to a shifted time-dependent Hamiltonian ma-
20
+ trix. In this framework, TDCC has a shifted Hamiltonian with a block upper triangular structure,
21
+ explaining the correct scaling properties of the method.
22
+ I.
23
+ INTRODUCTION
24
+ With recent developments in the shaping and am-
25
+ plification of laser pulses, the production of short and
26
+ strong pulses can now be realized in several frequency
27
+ domains [1–3]. The progress sparks further interest in
28
+ the dynamical and non-linear response of molecules to
29
+ strong fields, which can involve a high number of quan-
30
+ tum states [4]. This since many of the states that are
31
+ inaccessible by a single-photon transition, either energet-
32
+ ically or by symmetry selection rules, can be accessed by
33
+ a multiphoton transition [5, 6].
34
+ The ultrafast non-linear response of molecules to
35
+ strong fields can give an extended degree of dynamic con-
36
+ trol of chemical reactions [7–9]. It can also reveal infor-
37
+ mation about the system that is inaccessible in weaker
38
+ fields, which can be used for improving the imaging of dif-
39
+ ferent reaction stages [5, 8]. That said, the involved cou-
40
+ pling between the numerous affected states can lead to
41
+ an intricate relationship between the shape and strength
42
+ of laser pulses and the molecular response, which calls
43
+ for the interpretation by appropriate quantum chemistry
44
+ methods [10].
45
+ Both the accuracy and computational complexity of
46
+ quantum chemistry methods often increase with the or-
47
+ der of approximation of the particle correlations in the
48
+ system [10, 11] and the size of the finite basis set [12], but
49
+ the accuracy also depends heavily on the mathematical
50
+ structure of the method. Considerable effort is spent on
51
+ constructing the most well-behaved methods for a given
52
+ order of computational complexity, with respect to both
53
+ numerical stability and correspondence to experimental
54
55
+ results for various systems. Real-time variants of quan-
56
+ tum chemistry methods are convenient for modeling mul-
57
+ tiphoton transitions in systems [13], as expressions for the
58
+ high-order frequency response can be difficult to both de-
59
+ rive and to solve numerically.
60
+ The well-established single-reference coupled cluster
61
+ (CC) hierarchy of methods often gives accurate and
62
+ rapidly converging molecular properties [14] for states
63
+ with weak multi-reference character [15].
64
+ An impor-
65
+ tant reason for this accuracy is the physically reason-
66
+ able scaling properties of the methods, even when the
67
+ cluster operator is truncated. For instance, the energy
68
+ of the ground state is size-extensive, meaning that it
69
+ scales linearly with the number of non-interacting iden-
70
+ tical subsystems [16]. In the equation-of-motion frame-
71
+ work, the excitation energies are size-intensive, mean-
72
+ ing that they do not scale with the number of non-
73
+ interacting subsystems [17]. In the linear response frame-
74
+ work, which is based on time-dependent coupled cluster
75
+ theory, ground state–excited state transition moments
76
+ are also size-intensive [18]. Truncated configuration in-
77
+ teraction methods, on the other hand, do not possess
78
+ these properties, and errors generally increase with the
79
+ size of the simulated system [19].
80
+ Traditionally, the coupled cluster methods have almost
81
+ exclusively been treated in the frequency domain, but
82
+ the last decade has witnessed an increased exploration
83
+ into their real-time behavior [13]. As demonstrated by
84
+ Pedersen and Kvaal [20] and further investigated by
85
+ Kristiansen et al.
86
+ [21], the exponential parametriza-
87
+ tion makes the standard time-dependent coupled cluster
88
+ (TDCC) method inherently unstable whenever the refer-
89
+ ence determinant weight is depleted by a strong field.
90
+ These instabilities can require the use of exceedingly
91
+ small time steps in numerical solutions, and can at times
92
+ also lead to breakdowns that cannot be solved by de-
93
+
94
+ 2
95
+ creasing the time step size.
96
+ The orbital adaptive time-dependent coupled clus-
97
+ ter (OATDCC) method, which requires the solution
98
+ of an additional set of linear equations at each time
99
+ step, was shown to have a greater stability region than
100
+ TDCC. Nonetheless, the method still fails at higher field
101
+ strengths, where the reference determinant weight can
102
+ become greater than one [21].
103
+ Variants of the time-dependent equation-of-motion
104
+ coupled cluster (TD-EOM-CC) method have also been
105
+ used for modeling laser-molecule interactions, but only
106
+ a handful applications have included the full non-linear
107
+ real-time propagation of the laser-driven electron dy-
108
+ namics [13, 22–24].
109
+ In these cases, the TD-EOM-CC
110
+ equations were expressed in the basis obtained by diag-
111
+ onalizing the field-free equation-of-motion coupled clus-
112
+ ter Hamiltonian.
113
+ We instead express the equations in
114
+ the elementary basis, leading to equations that are sim-
115
+ ple to implement and have computational and memory
116
+ requirements that scale more favorably with respect to
117
+ system size than the full diagonal basis equations. This
118
+ makes the formulation particularly useful for assessing
119
+ the short-time and non-linear behavior of the TD-EOM-
120
+ CC method.
121
+ The paper is organized as follows. In Section II, the
122
+ TDCC and TD-EOM-CC methods are described in a gen-
123
+ eral framework, and it is shown how the time derivative
124
+ of the cluster amplitudes affects the analytical scaling
125
+ properties of the two methods. Section III outlines the
126
+ computational methods used to simulate atoms undergo-
127
+ ing semiclassical Rabi oscillations in a resonant electro-
128
+ magnetic field. In Section IV, results of the simulations
129
+ are presented and discussed, including a demonstration
130
+ of how the time-dependent energy scales with respect to
131
+ system size in the two methods. The key findings are
132
+ summarized in Section V.
133
+ II.
134
+ THEORY
135
+ A.
136
+ System
137
+ The time-dependent system of the molecule and the
138
+ external field is described by the Hamiltonian
139
+ H(t) = H(0) + V (t).
140
+ (1)
141
+ The field-free molecular system is described by the
142
+ Hamiltonian H(0), and the interaction between the
143
+ molecular system and the external field is described by
144
+ V (t).
145
+ We describe the interaction semi-classically, in
146
+ the dipole approximation and length gauge. This gives
147
+ V (t) = −µ · E(t), where µ is the electric dipole moment
148
+ vector and E(t) the time-dependent electric field vector.
149
+ The system is also treated within the Born-Oppenheimer
150
+ approximation, with fixed nuclei.
151
+ B.
152
+ Time dependence in coupled cluster methods
153
+ Coupled cluster ket and bra vectors that encompass
154
+ both the TDCC and TD-EOM-CC parametrizations can
155
+ be defined as
156
+ |Ψ(t)⟩ = eT (t)R(t) |HF⟩ ,
157
+ (2)
158
+ ⟨�Ψ(t)| = ⟨HF| L(t)e−T (t),
159
+ (3)
160
+ where the cluster operator
161
+ T (t) =
162
+
163
+ κ≥0
164
+ τκtκ(t)
165
+ (4)
166
+ and the right and left EOM-CC operators
167
+ R(t) =
168
+
169
+ κ≥0
170
+ τκrκ(t),
171
+ L(t) =
172
+
173
+ κ≥0
174
+ lκ(t)�τ†
175
+ κ.
176
+ (5)
177
+ The operators with index 0 are the unit operator
178
+ τ0 = �τ †
179
+ 0 =
180
+ 1,
181
+ (6)
182
+ and the operators τµ and �τ †
183
+ µ, where µ > 0, excite and
184
+ deexcite electrons between occupied and virtual Hartree-
185
+ Fock molecular orbitals, respectively,
186
+ τµ |HF⟩ = |µ⟩ ,
187
+ ⟨HF| �τ†
188
+ µ = ⟨�µ| ,
189
+ (7)
190
+ �τ †
191
+ µ |HF⟩ = 0,
192
+ ⟨HF| τµ = 0.
193
+ (8)
194
+ The operators are chosen so that the excited determi-
195
+ nants are biorthonormal,
196
+ ⟨�κ|λ⟩ = δκλ,
197
+ κ ≥ 0,
198
+ λ ≥ 0,
199
+ (9)
200
+ where δκλ is the Kronecker delta. The field-free coupled
201
+ cluster ground state can be defined by setting the am-
202
+ plitudes r(0)
203
+ µ
204
+ = 0 and r(0)
205
+ 0
206
+ = l(0)
207
+ 0
208
+ = 1, and letting the
209
+ ground state cluster amplitudes t(0)
210
+ µ
211
+ and left vector l(0)
212
+ µ
213
+ be determined as solutions of the field-free ground state
214
+ equations
215
+ ⟨�µ| e−T (0)H(0)eT (0) |HF⟩ = 0,
216
+ (10)
217
+
218
+ ⟨HF| +
219
+
220
+ µ>0
221
+ l(0)
222
+ µ ⟨�µ|
223
+
224
+ [e−T (0)H(0)eT (0), τν] |HF⟩ = 0.
225
+ (11)
226
+ For simplicity, we also set the undetermined phase-
227
+ related cluster amplitude t(0)
228
+ 0
229
+ = 0.
230
+ The equations for the time dependence of the param-
231
+ eters of Eq. (5) can be derived from the right and left
232
+ time-dependent Schr¨odinger equations (TDSEs)
233
+ i d
234
+ dt |Ψ(t)⟩ = H(t) |Ψ(t)⟩ ,
235
+ (12)
236
+ −i d
237
+ dt ⟨�Ψ(t)| = ⟨�Ψ(t)| H(t).
238
+ (13)
239
+
240
+ 3
241
+ Inserting Eq. (2) into Eq. (12) before projecting onto
242
+ ⟨�κ| e−T (t), and likewise inserting Eq. (3) into Eq. (13) be-
243
+ fore projecting onto eT (t) |λ⟩, the following matrix-vector
244
+ TDSEs are obtained
245
+ idrκ(t)
246
+ dt
247
+ =
248
+
249
+ λ≥0
250
+ �Hκλ(t)rλ(t),
251
+ (14)
252
+ −idlλ(t)
253
+ dt
254
+ =
255
+
256
+ κ≥0
257
+ lκ(t) �Hκλ(t),
258
+ (15)
259
+ where the shifted Hamiltonian
260
+ �H(t) = H(t) − idT (t)
261
+ dt
262
+ .
263
+ (16)
264
+ The elements of the coupled cluster matrix O(t) of oper-
265
+ ator O(t) are given by
266
+ Oκλ(t) = ⟨�κ| O(t) |λ⟩ ,
267
+ (17)
268
+ where an overbar is used to denote the similarity trans-
269
+ formation by the exponentiated time-dependent cluster
270
+ operator,
271
+ O(t) = e−T (t)O(t)eT (t).
272
+ (18)
273
+ In TD-EOM-CC, the time derivatives of the cluster
274
+ amplitudes are given by
275
+ idtκ(t)
276
+ dt
277
+ = 0,
278
+ (19)
279
+ while in TDCC, the derivatives are given by
280
+ idtκ(t)
281
+ dt
282
+ = ⟨�κ| H(t) |HF⟩ .
283
+ (20)
284
+ The resolution of identity
285
+ 1 = �
286
+ η≥0 |η⟩ ⟨�η| and Eq. (16)
287
+ can be used to rewrite the matrix elements of the shifted
288
+ Hamiltonian in TDCC as
289
+ �Hκλ(t) = ⟨�κ| H(t) |λ⟩ −
290
+
291
+ η≥0
292
+ ⟨�κ| τη |λ⟩ ⟨�η| H(t) |HF⟩
293
+ = ⟨�κ|
294
+
295
+ H(t), τλ
296
+
297
+ |HF⟩ .
298
+ (21)
299
+ Once all time-dependent amplitudes have been found
300
+ at a given point in time t, the time-dependent expecta-
301
+ tion values of the time-dependent operator O(t) can be
302
+ obtained by
303
+ ⟨O(t)⟩ = ⟨�Ψ(t)| O(t) |Ψ(t)⟩
304
+ =
305
+
306
+ κ,λ≥0
307
+ lκ(t)Oκλ(t)rλ(t)
308
+ = lT (t)O(t)r(t).
309
+ (22)
310
+ C.
311
+ Scaling properties of real-time coupled cluster
312
+ methods
313
+ In order to theoretically investigate the scaling proper-
314
+ ties of methods based on the parametrization in Eq. (2)
315
+ and Eq. (3), we assume that the system is composed of
316
+ non-interacting subsystems.
317
+ We let τλI denote an ele-
318
+ mentary excitation operator and �τ †
319
+ κI an elementary deex-
320
+ citation operator of subsystem I. The elementary excita-
321
+ tion and deexcitation operators of the composite system
322
+ can be constructed as tensor products of all the oper-
323
+ ators of the different subsystems. Untruncated TDCC
324
+ and TD-EOM-CC methods can represent all tensor prod-
325
+ ucts, since the excitation and deexcitation levels of the
326
+ methods are not limited. In truncated methods, however,
327
+ all elementary excitation and deexcitation operators that
328
+ exceed a truncation level specific to the method are ex-
329
+ cluded, which can lead to errors related to the scaling
330
+ from one to several subsystems.
331
+ For two subsystems I ∈ {A, B}, the elementary exci-
332
+ tation and deexcitation operators of the composite sys-
333
+ tem can be constructed as the tensor products τλA ⊗ τλB
334
+ and �τ †
335
+ κA ⊗ �τ †
336
+ κB. We split the sets of these operators into
337
+ four partitions, which we label by 0, A, B and AB. The
338
+ 0 partition includes the operators that do not change
339
+ the excitation level of the subsystems, τ0A ⊗ τ0B and
340
+ �τ†
341
+ 0A ⊗ �τ †
342
+ 0B. The A partition includes the operators that
343
+ change the excitation level of subsystem A only, τµA ⊗τ0B
344
+ and �τ †
345
+ µA ⊗ �τ †
346
+ 0B, and the B partition the operators that
347
+ change the excitation level of subsystem B only, τ0A ⊗τµB
348
+ and τ †
349
+ 0A ⊗ τ †
350
+ µB, where µ > 0. The AB partition includes
351
+ the operators that change the excitation level of both
352
+ subsystems, τνA ⊗ τνB and �τ†
353
+ µA ⊗ �τ†
354
+ µB, where µ > 0 and
355
+ ν > 0. Truncation can affect the AB partition, since the
356
+ tensor products of the truncated subsystem operators can
357
+ include excitations and deexcitations that in combination
358
+ go beyond the truncation level of the method. In the fol-
359
+ lowing, we assess the effect this truncation has for the
360
+ TDCC and TD-EOM-CC methods.
361
+ We start by assuming that the cluster amplitudes cor-
362
+ responding to the operators τνA ⊗ τνB are zero at a given
363
+ time t. The cluster operator T (t) can then be written as
364
+ the tensor sum,
365
+ T (t) = TA(t) ⊗ IB + IA ⊗ TB(t),
366
+ (23)
367
+ where TI(t) is the cluster operator for subsystems I. Since
368
+ operators on non-interacting subsystems commute, we
369
+ have that
370
+
371
+
372
+ TA(t)⊗IB+IA⊗TB(t)
373
+
374
+ = e±TA(t) ⊗ e±TB(t).
375
+ (24)
376
+ We furthermore let O(t) be any operator that operates
377
+ independently on the two subsystems and thus can be
378
+ written as the tensor sum
379
+ O(t) = OA(t) ⊗ IB + IA ⊗ OB(t),
380
+ (25)
381
+ where OA(t) and OB(t) are subsystem operators. Equa-
382
+ tion (24) then implies that the similarity transformed
383
+ operator in Eq. (18) can be written as the tensor sum
384
+ O(t) = e−TA(t)OA(t)eTA(t) ⊗ IB
385
+ + IA ⊗ e−TB(t)OB(t)eTB(t)
386
+ = OA(t) ⊗ IB + IA ⊗ OB(t).
387
+ ,
388
+ (26)
389
+
390
+ 4
391
+ which does not contain terms where both two subsystems
392
+ are excited simultaneously.
393
+ We furthermore assume that the time-dependent
394
+ Hamiltonian H(t) can be written on the form of Eq. (25).
395
+ In TDCC, the time derivative of the cluster amplitudes
396
+ in Eq. (20) can for the AB partition be written as
397
+ idtµAµB(t)
398
+ dt
399
+ =
400
+
401
+ ⟨�µA| ⊗ ⟨�µB|
402
+
403
+ ×
404
+
405
+ HA(t) ⊗ IB + IA ⊗ HB(t)
406
+
407
+ ×
408
+
409
+ |HFA⟩ ⊗ |HFB⟩
410
+
411
+ = 0.
412
+ (27)
413
+ As long as Eq. (23) holds at the initial time, it will thus
414
+ in TDCC also hold for later times. This is also trivially
415
+ the case for TD-EOM-CC, since the time derivative given
416
+ by Eq. (19) is zero for all cluster amplitudes.
417
+ We let the subscript ∥ denote vectors where the el-
418
+ ements that truncated methods fail to represent have
419
+ been set to zero. Accordingly, the right and left trans-
420
+ pose vectors r∥ and lT
421
+ ∥ are the truncated counterparts of
422
+ the untruncated vectors r and lT , and have the following
423
+ representation in the partitioned bases
424
+ r∥ =
425
+
426
+
427
+
428
+ r0
429
+ rA
430
+ rB
431
+ (rAB)∥
432
+
433
+
434
+  ,
435
+ lT
436
+ ∥ =
437
+ �l0 lA lB (lAB)∥
438
+
439
+ ,
440
+ (28)
441
+ where only the AB partitions can be affected by the trun-
442
+ cation. Furthermore, O∥ is the truncated counterpart of
443
+ the operator matrix O, which is the projection of Eq. (26)
444
+ onto the tensor product bases. In the partitioned bases,
445
+ the matrix has the representation
446
+ O∥ =
447
+
448
+
449
+
450
+ O0 0
451
+ O0 A
452
+ O0 B
453
+ 0
454
+ OA 0
455
+ OA A
456
+ 0
457
+ (OA AB)∥
458
+ OB 0
459
+ 0
460
+ OB B
461
+ (OB AB)∥
462
+ 0
463
+ (OAB A)∥ (OAB B)∥ (OAB AB)∥
464
+
465
+
466
+  . (29)
467
+ The block matrix maps partitions of right and left trans-
468
+ pose vectors to partitions where the numbers of excited
469
+ subsystems have changed by at most one. Thus, a single
470
+ matrix transformation is not enough to map between the
471
+ 0 and AB partitions, and the expectation value involv-
472
+ ing the ground state right vector r(0)
473
+
474
+ = (1, 0, 0, 0)T is
475
+ unaffected by product basis truncation,
476
+ ⟨O⟩∥ = lT
477
+ ∥ O∥r(0)
478
+
479
+ = lT
480
+ 0 O0 0 + lT
481
+ AOA 0 + lT
482
+ BOB 0
483
+ = ⟨O⟩ .
484
+ (30)
485
+ For second- and higher-order transformations, all parti-
486
+ tions of the transformed right and left transpose vectors
487
+ can be affected by the truncation.
488
+ We now assess the effect of transformation by an oper-
489
+ ator matrix T ∥ with the following block upper triangular
490
+ structure
491
+ T ∥ =
492
+
493
+
494
+
495
+ T0 0 T 0 A
496
+ T 0 B
497
+ 0
498
+ 0
499
+ T A A
500
+ 0
501
+ (T A AB)∥
502
+ 0
503
+ 0
504
+ T B B
505
+ (T B AB)∥
506
+ 0
507
+ 0
508
+ 0
509
+ (T AB AB)∥
510
+
511
+
512
+  .
513
+ (31)
514
+ The block matrix T maps partitions of right vectors to
515
+ themselves and to partitions where the numbers of ex-
516
+ cited subsystems have decreased by one. Thus, the 0 par-
517
+ tition of the ground state right vector r(0) is only mapped
518
+ to itself under successive transformations by block upper
519
+ triangular matrices,
520
+ T ′···′
521
+
522
+ · · · T ′
523
+ ∥T ∥r(0)
524
+
525
+ =
526
+
527
+
528
+
529
+
530
+ (T ′···′ · · · T ′T r(0))0
531
+ 0
532
+ 0
533
+ 0
534
+
535
+
536
+
537
+  ,
538
+ (32)
539
+ where all truncated matrices T ∥ have been replaced by T
540
+ whenever the truncated AB partition does not make any
541
+ contribution. We can see that the truncation does not
542
+ affect the transformed vector in Eq. (32) at all, while it
543
+ affects all partitions of right vectors transformed by two
544
+ or more matrices with the structure of O. Furthermore,
545
+ T maps partitions of left transpose vectors to themselves
546
+ and to partitions where the numbers of excited subsys-
547
+ tems have increased by one. Thus, the AB partition of
548
+ left transpose vectors is only mapped to itself under suc-
549
+ cessive transformations by block upper triangular matri-
550
+ ces, and
551
+ lT
552
+ ∥ T ∥T ′
553
+ ∥ · · · T ′···′
554
+
555
+ =
556
+
557
+
558
+
559
+
560
+ (lT T T ′ · · · T ′···′)0
561
+ (lT T T ′ · · · T ′···′)A
562
+ (lT T T ′ · · · T ′···′)B
563
+ (lT
564
+ ∥ T ∥T ′
565
+ ∥ · · · T ′···′
566
+
567
+ )AB
568
+
569
+
570
+
571
+
572
+ T
573
+ ,
574
+ (33)
575
+ We can see that the truncation only affects the AB parti-
576
+ tions of the transformed left transpose vector in Eq. (33),
577
+ while it affects all partitions of left transpose vectors
578
+ transformed by two or more matrices with the structure
579
+ of O.
580
+ In the truncated product basis, the exact solutions of
581
+ the right and left matrix TDSEs in Eq. (14) and Eq. (15)
582
+ can be given by
583
+ r∥(t) = U ∥(t, t0)r∥(t0),
584
+ lT
585
+ ∥ (t) = lT
586
+ ∥ (t0)U ∥(t0, t), (34)
587
+ where
588
+ U ∥(t, t0) = 1∥ − i
589
+ � t
590
+ t0
591
+ dt′ �
592
+ H∥(t′)
593
+ + (−i)2
594
+ � t
595
+ t0
596
+ dt′
597
+ � t′
598
+ t0
599
+ dt′′ �
600
+ H∥(t′)�
601
+ H∥(t′′) + · · · .
602
+ (35)
603
+ Under the conditions that the matrix �
604
+ H(t) has the block
605
+ upper triangular structure of T in Eq. (31), and that
606
+
607
+ 5
608
+ the right vector starts out as the ground state vector
609
+ r(t0) = r(0), Eq. (32) implies that
610
+ r(t) = r∥(t) =
611
+
612
+
613
+
614
+
615
+
616
+ U(t, t0)r(t0)
617
+
618
+ 0
619
+ 0
620
+ 0
621
+ 0
622
+
623
+
624
+
625
+  ,
626
+ (36)
627
+ where U(t, t0) denotes the time evolution operator with
628
+ the untruncated time-dependent Hamiltonian matrix
629
+
630
+ H(t). Furthermore, Eq. (33) implies that
631
+ l∥(t) =
632
+
633
+
634
+
635
+
636
+
637
+
638
+ lT (t0)U(t0, t)
639
+
640
+ 0
641
+
642
+ lT (t0)U(t0, t)
643
+
644
+ A
645
+
646
+ lT (t0)U(t0, t)
647
+
648
+ B
649
+
650
+ lT
651
+ ∥ (t0)U ∥(t0, t)
652
+
653
+ AB
654
+
655
+
656
+
657
+
658
+  .
659
+ (37)
660
+ Under these conditions, time-dependent expectation val-
661
+ ues are not affected by the truncation of the product basis
662
+ ⟨O(t)⟩∥ = lT
663
+ ∥ (t)O∥(t)r∥(t)
664
+ =
665
+
666
+ lT (t0)U(t0, t)
667
+
668
+ 0O0 0(t)
669
+
670
+ U(t, t0)r(t0)
671
+
672
+ 0
673
+ +
674
+
675
+ lT (t0)U(t0, t)
676
+
677
+ AOA 0(t)
678
+
679
+ U(t, t0)r(t0)
680
+
681
+ 0
682
+ +
683
+
684
+ lT (t0)U(t0, t)
685
+
686
+ BOB 0(t)
687
+
688
+ U(t, t0)r(t0)
689
+
690
+ 0
691
+ = ⟨O(t)⟩ ,
692
+ (38)
693
+ and thus behave correctly when the system scales from
694
+ one to two non-interacting subsystems. Furthermore, the
695
+ expectation values can be shown to scale correctly to
696
+ any number of non-interacting subsystems by repeatedly
697
+ splitting one of the remaining composite subsystems in
698
+ two before repeating the above arguments.
699
+ From Eq. (21), we can see that the blocks �
700
+ HA 0(t)
701
+
702
+ HB 0(t), �
703
+ HAB A(t) and �
704
+ HAB B(t) below the diagonal of
705
+ the shifted Hamiltonian matrix are equal to zero in trun-
706
+ cated TDCC methods.
707
+ This implies that the shifted
708
+ time-dependent Hamiltonian �
709
+ H(t) has the same triangu-
710
+ lar block structure as T in Eq. (31), and the method has
711
+ the correct scaling properties when the system starts out
712
+ in the ground state, in accordance with Eq. (38). Note
713
+ that the amplitude derivative i dt0(t)
714
+ dt
715
+ = ⟨HF| H(t) |HF⟩ in
716
+ Eq. (20) also implies that �H00(t) is zero, but this con-
717
+ dition is not needed for the correctness of the scaling
718
+ properties of truncated TDCC methods.
719
+ In general, however, time-dependent expectation val-
720
+ ues do not have to be same in truncated and untruncated
721
+ methods,
722
+ ⟨O(t)⟩∥ = lT
723
+ ∥ (t)O∥(t)r∥(t) ̸= lT (t)O(t)r(t) = ⟨O(t)⟩ .
724
+ (39)
725
+ As stated in Eq. (19), the time derivatives of the clus-
726
+ ter amplitudes are zero in TD-EOM-CC, and therefore
727
+
728
+ H(t) = H(t). The interaction term V (t) of the Hamil-
729
+ tonian is in general not block upper triangular, and can
730
+ map partitions of right and left transpose vectors in the
731
+ same way as O.
732
+ The truncation of the product basis
733
+ can thus affect all partitions of the right and left vectors,
734
+ and time-dependent expectation values of TD-EOM-CC
735
+ are in general misrepresented when the product basis is
736
+ truncated, in accordance with Eq. (39).
737
+ However, the
738
+ field-free term H0 of the time-dependent Hamiltonian
739
+ has the block upper triangular structure of T , and the
740
+ truncation of the product basis does thus not affect ex-
741
+ pectation values when there is no interaction with the
742
+ external field.
743
+ III.
744
+ COMPUTATIONAL DETAILS
745
+ In order to numerically assess the behavior of TD-
746
+ EOM-CC, we implement the method described by the
747
+ differential equations Eq. (14), Eq. (15) and Eq. (19) in
748
+ the spin-adapted elementary basis, and the expectation
749
+ value expression Eq. (22) in a development version of
750
+ the eT program [25]. We furthermore use the existing
751
+ spin-adapted ground state and TDCCSD methods in eT
752
+ 1.0 [25, 26]. The methods are used to calculate the in-
753
+ teraction of atoms with the electromagnetic field repre-
754
+ sented by the electric field
755
+ E(t) = E0ǫ cos(ω0(t − t0) + φ)f(t)
756
+ (40)
757
+ where ǫ0 is the peak field strength, ǫ the polarization, ω0
758
+ the carrier frequency, φ the carrier-envelope phase and
759
+ f(t) the envelope of the field. The envelope is given the
760
+ functional form
761
+ f(t) =
762
+
763
+
764
+
765
+
766
+
767
+ 0,
768
+ t < a,
769
+ sin2�
770
+ 2π(t−a)
771
+ 4(b−a)
772
+
773
+ ,
774
+ a ≤ t ≤ b,
775
+ 1,
776
+ t > b,
777
+ (41)
778
+ which increases from zero to one in the interval from a
779
+ to b.
780
+ The cc-pVTZ basis set is used for the helium and beryl-
781
+ lium atoms in the simulations. The laser field is given
782
+ a carrier frequency of 1.880 433 92a.u., corresponding to
783
+ the transition between the ground 0 1S0 state and the first
784
+ dipole-allowed excited 2 1P1 state of helium. The field is
785
+ furthermore given a peak field strength of 2.5 × 10−2 a.u.,
786
+ a polarization in the z-direction and a carrier-envelope
787
+ phase of φ = −π/2. The envelope of the field is set to
788
+ increase from a = 0 a.u. of time until b = 25 optical cy-
789
+ cles (≈83.534a.u.). The envelope gives the laser field a
790
+ narrow bandwidth, centered around the 0 1S0–2 1P1 res-
791
+ onance, which ensures that the state is kept in a time-
792
+ dependent superposition dominated by the two states.
793
+ The integration of the time-dependent differential equa-
794
+ tions is done using the Dormand-Prince method of order
795
+ 5(4) with the adaptive time stepping procedure described
796
+ in Appendix B of Ref. [24]. The initial time step size
797
+ is set to 1 × 10−2 a.u., and the maximum and minimum
798
+ values of the estimated error are set to 1 × 10−7 a.u. and
799
+ 1 × 10−9 a.u., respectively.
800
+
801
+ 6
802
+ 0
803
+ 200
804
+ 400
805
+ 600
806
+ 800
807
+ 1000
808
+ t (a.u.)
809
+ 0.0
810
+ 0.5
811
+ 1.0
812
+ 1.5
813
+ 2.0
814
+ 2.5
815
+ ∆⟨H(t)⟩ (Ha)
816
+ TDCC
817
+ TD-EOM-CC
818
+ FIG. 1. Time-dependent TDCC and TD-EOM-CC simula-
819
+ tions of a single helium atom in a slowly ramped laser field.
820
+ The time-dependent energy difference ∆ ⟨H(t)⟩ = ⟨H(t)⟩−E0
821
+ of each simulation is shown as a function of time.
822
+ IV.
823
+ RESULTS AND DISCUSSION
824
+ A.
825
+ Simulating single-subsystem Rabi oscillations
826
+ with TDCC and TD-EOM-CC
827
+ For a single helium atom, the TDCCSD and TD-EOM-
828
+ CCSD methods can describe all possible excitations of
829
+ the reference determinant, and the time-dependent ob-
830
+ servables are thus analytically equal for the two meth-
831
+ ods. In Fig. 1, we demonstrate that this is also the case
832
+ numerically for the time-dependent excitation energy, as
833
+ the results are equal for the two methods. The excita-
834
+ tion energy starts out at zero, and periodically increases
835
+ and decreases as a function of time, illustrating that the
836
+ system undergoes Rabi oscillation between the 0 1S0 and
837
+ 2 1P1 states. TDCC is known to be numerically unstable
838
+ when the weight of the reference determinant approaches
839
+ zero [20, 21], but we observe that the method can be used
840
+ for simulating an essentially complete population inver-
841
+ sion for the single helium atom.
842
+ B.
843
+ Simulating collective Rabi oscillations with
844
+ TDCC
845
+ To numerically investigate the scaling properties of
846
+ TDCC, we compare the results from the single-helium
847
+ simulation with results from simulations of two effectively
848
+ non-interacting helium atoms, where one is placed at the
849
+ origin and the other at 1000 ˚A on the x-axis, respectively.
850
+ The time-dependent excitation energy of each simulation
851
+ is shown in the top row of Fig. 2. Until around 200 a.u.
852
+ of time, we can see that the excitation energy of the two-
853
+ helium TDCC simulation, shown in the second column,
854
+ is two times the excitation energy of the single-helium
855
+ simulation in the first column.
856
+ This is in accordance
857
+ with the theory in Section II, and implies that TDCCSD
858
+ treats the correlation exactly in this interval, even though
859
+ the system has four electrons.
860
+ We also note that the
861
+ combined single-subsystem norms
862
+
863
+ ∥tA∥2 + ∥tB∥2 and
864
+
865
+ ∥lA∥2 + ∥lB∥2 of the two-helium calculations, shown
866
+ in the second and third rows, respectively, are
867
+
868
+ 2 times
869
+ the respective single-helium norms ∥tA∥ and ∥lA∥ in the
870
+ same interval.
871
+ After around 200 a.u. of time, the two-helium solution
872
+ in the second column of Fig. 2 breaks down, and the val-
873
+ ues of the two-helium excitation energies and norms blow
874
+ up. Note that the norm of the AB partition of the clus-
875
+ ter amplitudes of the regular TDCC calculation, shown
876
+ in the bottom left panel, starts out as very small (less
877
+ than 1 × 10−10), but grows continually during the prop-
878
+ agation. As the solution approaches the breakdown at
879
+ around 200 a.u. of time, the norm of the AB partition
880
+ of the cluster amplitudes grows very rapidly. Likewise,
881
+ the left vector norm of the regular TDCC calculation is
882
+ also small at the start of the propagation, and blows up
883
+ at around 200 a.u. of time. We have performed calcula-
884
+ tions with various separations or the two helium atoms
885
+ up to 1 × 106 ˚A, and the solutions still display the same
886
+ behavior.
887
+ Analytically, the TDCCSD observables should have
888
+ the correct scaling behavior, as demonstrated in Sec-
889
+ tion II C, but this is clearly not the case in our simu-
890
+ lations. We argue that this discrepancy is due to two
891
+ effects:
892
+ the growth of the AB partition of the time-
893
+ dependent amplitudes due to the sensitivity to small de-
894
+ viations from zero in the AB partition of the initial clus-
895
+ ter amplitudes and time-dependent Hamiltonians in nu-
896
+ merical simulations, and the blowup of the AB partition
897
+ of the left vector.
898
+ In the third and fourth column of Fig. 2, results from
899
+ modified TDCC simulations of two helium atoms are
900
+ shown, where one atom is placed at the origin and the
901
+ other at 1000 ˚A on the x-axis.
902
+ For the results in the
903
+ third column, the initial values and derivatives of the
904
+ cluster amplitudes in the AB partition are set to zero.
905
+ The excitation energy and norms of the remaining am-
906
+ plitudes still blow up around 200 a.u. of time. Note that
907
+ the cluster amplitudes are independent of the left vector
908
+ amplitudes, and the cluster amplitudes in the AB par-
909
+ tition would blow up regardless of the value of the left
910
+ vector elements. For the results in the fourth column,
911
+ the initial values and derivatives of the left vector ampli-
912
+ tudes in the AB partition, which do not enter in TDCC
913
+ expectation value expressions, are also set to zero. In
914
+ this case, the numerical integration completes, and the
915
+ two-helium results are equal to the single-helium results
916
+ apart from the scaling factors of 2 and
917
+
918
+ 2 for the energy
919
+ and single-subsystem norms, respectively.
920
+
921
+ 7
922
+ t (a.u.)
923
+ 1 He
924
+ 2 He
925
+ 2 He, tAB = 0
926
+ 2 He, tAB = lAB = 0
927
+ 0
928
+ 200
929
+ 400
930
+ 0
931
+ 1
932
+ 2
933
+ ∆⟨H(t)⟩ (Ha)
934
+ 0
935
+ 200
936
+ 400
937
+ 0
938
+ 1
939
+ 2
940
+ ∆⟨H(t)⟩/2 (Ha)
941
+ 0
942
+ 200
943
+ 400
944
+ 0
945
+ 1
946
+ 2
947
+ 0
948
+ 200
949
+ 400
950
+ 0
951
+ 1
952
+ 2
953
+ 0
954
+ 200
955
+ 400
956
+ 0
957
+ 250
958
+ 500
959
+ ∥tA∥
960
+ 0
961
+ 200
962
+ 400
963
+ 0
964
+ 250
965
+ 500
966
+
967
+ ∥tA∥2+∥tB∥2/
968
+
969
+ 2
970
+ 0
971
+ 200
972
+ 400
973
+ 0
974
+ 250
975
+ 500
976
+ 0
977
+ 200
978
+ 400
979
+ 0
980
+ 250
981
+ 500
982
+ 0
983
+ 200
984
+ 400
985
+ 0.25
986
+ 0.50
987
+ 0.75
988
+ ∥lA∥
989
+ 0
990
+ 200
991
+ 400
992
+ 0.25
993
+ 0.50
994
+ 0.75
995
+
996
+ ∥lA∥2+∥lB∥2/
997
+
998
+ 2
999
+ 0
1000
+ 200
1001
+ 400
1002
+ 0.25
1003
+ 0.50
1004
+ 0.75
1005
+ 0
1006
+ 200
1007
+ 400
1008
+ 0.25
1009
+ 0.50
1010
+ 0.75
1011
+ 0
1012
+ 200
1013
+ 400
1014
+ 10−12
1015
+ 10−6
1016
+ 100
1017
+ ∥tAB∥
1018
+ 0
1019
+ 200
1020
+ 400
1021
+ 10−8
1022
+ 10−1
1023
+ 106
1024
+ ∥lAB∥
1025
+ 0
1026
+ 200
1027
+ 400
1028
+ 10−8
1029
+ 10−1
1030
+ 106
1031
+ FIG. 2.
1032
+ TDCC simulations of one helium atom (1 He) and two non-interacting helium atoms (2 He) in a slowly ramped
1033
+ laser field. The two helium atoms are simulated with regular TDCC, but also with TDCC where the initial values and time
1034
+ derivatives of the cluster amplitudes in the AB partition are set to zero (tAB = 0), and TDCC where the initial values and
1035
+ time derivatives of both the cluster and left vector amplitudes in the AB partition are set to zero (tAB = 0, lAB = 0). In the
1036
+ top row of panels, the time-dependent energy differences ∆ ⟨H(t)⟩ = ⟨H(t)⟩ − E0 are shown, where the two-helium results are
1037
+ scaled by 1/2 and E0 is the ground state energy. In the next two rows, the norms of the amplitude and left vector partitions
1038
+ corresponding to an excitation of a single subsystem are shown, where the two-helium results are scaled by 1/
1039
+
1040
+ 2. In the bottom
1041
+ panel row, the norms of the amplitude and left vectors corresponding to an excitation of two subsystems are shown.
1042
+ C.
1043
+ Simulating collective Rabi oscillations with
1044
+ TD-EOM-CC
1045
+ To numerically investigate the scaling properties of
1046
+ TD-EOM-CC, the interaction with the field is first cal-
1047
+ culated for two helium atoms placed at the origin and
1048
+ at 1000 ˚A on the x-axis.
1049
+ The excitation energy and
1050
+ norms are shown together with the single-helium re-
1051
+ sults in Fig. 3, where the same normalization factors
1052
+ has been used as for the TDCC results. The frequency
1053
+ of the oscillations in the scaled excitation energy and
1054
+ single-subsystem norms increases, and their magnitude
1055
+ decreases, as the number of helium atoms increases from
1056
+ one to two.
1057
+ The simulations are however numerically
1058
+ stable without the need for modifying the equations de-
1059
+ scribing the time-dependence of the state, in contrast to
1060
+ the TDCC simulations.
1061
+ To further investigate the scaling properties, the in-
1062
+ teraction with the field is also calculated for three to
1063
+ five helium atoms, and for one helium atom together
1064
+ with one to two beryllium atoms, where all atoms are
1065
+ placed 1000 a.u. apart on the x-axis.
1066
+ The sinusoidal
1067
+ function A sin(Ωt + ϕ) + C is least-squares fitted to the
1068
+ time-dependent energy between t = 25 optical cycles
1069
+ and t = 500 a.u.. The estimated Rabi frequencies Ω of
1070
+ the oscillating energy are shown for all calculations in
1071
+ Fig. 4. The frequencies increase with the number of non-
1072
+ interacting subsystem. For the purposes of quantifying
1073
+ the scaling properties of the Rabi frequencies, the figure
1074
+ also includes the function A√ne + C least-squared fitted
1075
+ to the frequencies for one to five helium atoms, where
1076
+ ne is the number of electrons. The goodness of the fit
1077
+
1078
+ 8
1079
+ t (a.u.)
1080
+ 1 He
1081
+ 2 He
1082
+ 0
1083
+ 200
1084
+ 400
1085
+ 0
1086
+ 1
1087
+ 2
1088
+ ∆⟨H(t)⟩ (Ha)
1089
+ 0
1090
+ 200
1091
+ 400
1092
+ 0
1093
+ 1
1094
+ 2
1095
+ ∆⟨H(t)⟩/2 (Ha)
1096
+ 0
1097
+ 200
1098
+ 400
1099
+ 0.0
1100
+ 0.5
1101
+ ∥rA∥
1102
+ 0
1103
+ 200
1104
+ 400
1105
+ 0.0
1106
+ 0.5
1107
+
1108
+ ∥rA∥2+∥rB∥2/
1109
+
1110
+ 2
1111
+ 0
1112
+ 200
1113
+ 400
1114
+ 0
1115
+ 1
1116
+ ∥lA∥
1117
+ 0
1118
+ 200
1119
+ 400
1120
+ 0
1121
+ 1
1122
+
1123
+ ∥lA∥2+∥lB∥2/
1124
+
1125
+ 2
1126
+ 0
1127
+ 200
1128
+ 400
1129
+ 0.00
1130
+ 0.05
1131
+ 0.10
1132
+ ∥rAB∥
1133
+ 0
1134
+ 200
1135
+ 400
1136
+ 0.00
1137
+ 0.25
1138
+ 0.50
1139
+ ∥lAB∥
1140
+ FIG. 3.
1141
+ TD-EOM-CC simulations of one helium atom (1
1142
+ He) and two non-interacting helium atoms (2 He) in a slowly
1143
+ ramped external field. In the first row of panels, the time-
1144
+ dependent energy differences ∆ ⟨H(t)⟩ = ⟨H(t)⟩ − E0 are
1145
+ shown, where the two-helium results are scaled by 1/2 and
1146
+ E0 is the ground state energy.
1147
+ In the next two rows, the
1148
+ norms of the right and left vector partitions corresponding
1149
+ to an excitation of a single subsystem are shown, where the
1150
+ two-helium results are scaled by 1/
1151
+
1152
+ 2. In the fourth panel
1153
+ row, the norms of the right and left vectors corresponding to
1154
+ an excitation of two subsystems are shown.
1155
+ demonstrates that the frequency increases as the square
1156
+ root of the total number of helium atom electrons. As the
1157
+ number of non-interacting subsystems in resonance with
1158
+ the field increases, we can expect the frequency to falsely
1159
+ appear to approach infinity, meaning that the method
1160
+ gives a qualitatively incorrect representation of interac-
1161
+ tions occurring at multiple sites simultaneously. The fig-
1162
+ ure also includes a constant C fitted to the Rabi fre-
1163
+ quencies calculated with the helium atom and one to two
1164
+ beryllium atoms. The goodness of the fit illustrates that
1165
+ the frequency does not scale with the number of systems
1166
+ that are not in resonance with the field. The representa-
1167
+ tion of the helium Rabi oscillation is therefore unaffected
1168
+ 2
1169
+ 4
1170
+ 6
1171
+ 8
1172
+ 10
1173
+ ne
1174
+ 2.0
1175
+ 2.5
1176
+ 3.0
1177
+ 3.5
1178
+ 4.0
1179
+ Ω (a.u.)
1180
+ ×10−2
1181
+ 1–5 He
1182
+ (1.30√ne + 0.08)×10−2
1183
+ 1 He and 0–2 Be
1184
+ 1.91×10−2
1185
+ FIG. 4. TD-EOM-CC calculations of helium and beryllium
1186
+ atoms in a slowly ramped laser field. The TD-EOM-CC Rabi
1187
+ frequencies Ω, obtained by least-squares fitting the function
1188
+ A sin(Ωt + ϕ)+C to the time-dependent energy, are given for
1189
+ different numbers of electrons in the system ne. The function
1190
+ A√ne+C is least-squares fitted to the time-dependent energy
1191
+ for 1–5 effectively non-interacting helium atoms, giving A =
1192
+ 1.30 × 10−2 and C = 8 × 10−4. The constant C is fitted to
1193
+ the Rabi frequencies for 1 helium atom and 0–2 beryllium
1194
+ atoms, all non-interacting, giving C = 1.91 × 10−2.
1195
+ by the beryllium atoms, suggesting that TD-EOM-CC
1196
+ can represent interactions occurring at a single site of an
1197
+ extended quantum system.
1198
+ V.
1199
+ CONCLUSION
1200
+ In this work, we have demonstrated that the TDCC
1201
+ and TD-EOM-CC parametrizations can be expressed in a
1202
+ unified theoretical framework, where the time derivatives
1203
+ of the cluster amplitudes are taken as auxiliary condi-
1204
+ tions. We have furthermore implemented the TD-EOM-
1205
+ CC method in the elementary basis, and compared the
1206
+ scaling properties of the TDCC and TD-EOM-CC meth-
1207
+ ods through simulations of collective Rabi oscillations.
1208
+ We noted that the truncated TD-EOM-CC method fails
1209
+ to give a qualitatively correct representation of collective
1210
+ Rabi oscillations, as the Rabi frequency increases with
1211
+ the number of subsystems that are in resonance with the
1212
+ external field. However, we did not encounter any numer-
1213
+ ical instabilities in the TD-EOM-CC simulations, and the
1214
+ addition of subsystems that are not in resonance with the
1215
+ field did not affect the time-dependent energy. This indi-
1216
+ cates that TD-EOM-CC is suitable for simulating Rabi
1217
+ oscillations that occur at a single site. Although the in-
1218
+ troduction of additional Rabi oscillating subsystems neg-
1219
+ atively impacts the numerical stability of TDCC simula-
1220
+ tions, leading to solution blowup, the initial stages of the
1221
+ simulations display the correct scaling properties, as pre-
1222
+ dicted by the theory in Section II C. This supports the
1223
+ use of TDCC for simulating collective resonant excita-
1224
+ tions in extended systems, as long as the reference deter-
1225
+
1226
+ 9
1227
+ minant weight is not completely depleted. In conclusion,
1228
+ we propose that further research should be dedicated to
1229
+ the development of approximate methods that can give
1230
+ a qualitatively correct description of collective Rabi os-
1231
+ cillations without compromising numerical stability.
1232
+ ACKNOWLEDGMENTS
1233
+ This research has been financially supported by the Re-
1234
+ search Council of Norway through FRINATEK project
1235
+ nos.
1236
+ 263110 and 275506, and computing resources
1237
+ have been provided by Sigma2 AS through project no.
1238
+ NN2962K. The authors would like to thank Alice Balbi
1239
+ for useful discussions.
1240
+ [1] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545
1241
+ (2000).
1242
+ [2] E. A. Seddon, J. A. Clarke, D. J. Dunning, C. Mas-
1243
+ ciovecchio, C. J. Milne, F. Parmigiani, D. Rugg, J. C. H.
1244
+ Spence, N. R. Thompson, K. Ueda, S. M. Vinko, J. S.
1245
+ Wark, and W. Wurth, Rep. Prog. in Phys. 80, 115901
1246
+ (2017).
1247
+ [3] J. Duris, S. Li, T. Driver, E. G. Champenois, J. P.
1248
+ MacArthur, A. A. Lutman, Z. Zhang, P. Rosenberger,
1249
+ J. W. Aldrich, R. Coffee, G. Coslovich, F.-J. Decker,
1250
+ J. M. Glownia, G. Hartmann, W. Helml, A. Kamalov,
1251
+ J. Knurr, J. Krzywinski, M.-F. Lin, J. P. Marangos,
1252
+ M. Nantel, A. Natan, J. T. O’Neal, N. Shivaram, P. Wal-
1253
+ ter, A. L. Wang, J. J. Welch, T. J. A. Wolf, J. Z. Xu,
1254
+ M. F. Kling, P. H. Bucksbaum, A. Zholents, Z. Huang,
1255
+ J. P. Cryan, and A. Marinelli, Nat. Photon 14, 30 (2020).
1256
+ [4] V. Stooß, S. M. Cavaletto, S. Donsa, A. Bl¨attermann,
1257
+ P. Birk, C. H. Keitel, I. Bˇrezinov´a, J. Burgd¨orfer, C. Ott,
1258
+ and T. Pfeifer, Phys. Rev. Lett. 121, 173005 (2018).
1259
+ [5] Y. Silberberg, Annu. Rev. Phys. Chem. 60, 277 (2009).
1260
+ [6] K. Kulander and M. Lewenstein, Multiphoton and
1261
+ strong-field processes, in Springer Handbook of Atomic,
1262
+ Molecular, and Optical Physics, edited by G. Drake
1263
+ (Springer New York, New York, NY, 2006) pp. 1077–
1264
+ 1089.
1265
+ [7] T. Bayer, M. Wollenhaupt, and T. Baumert, J. Phys. B:
1266
+ Atom. Mol. Phys. 41, 074007 (2008).
1267
+ [8] A. Hishikawa, A. Matsuda, and M. Fushitani, Bull.
1268
+ Chem. Soc. Jpn. 93, 1293 (2020).
1269
+ [9] I. R. Sol´a, J. Gonz´alez-V´azquez, R. de Nalda, and
1270
+ L. Ba˜nares, Phys. Chem. Chem. Phys. 17, 13183 (2015).
1271
+ [10] A. Palacios and F. Mart´ın, WIREs Comput. Mol. Sci.
1272
+ 10, e1430 (2020).
1273
+ [11] H. R. Larsson, S. Bauch, L. K. Sørensen, and M. Bonitz,
1274
+ Phys. Rev. A 93, 013426 (2016).
1275
+ [12] M.
1276
+ Labeye,
1277
+ F.
1278
+ Zapata,
1279
+ E.
1280
+ Coccia,
1281
+ V.
1282
+ V´eniard,
1283
+ J. Toulouse, J. Caillat, R. Ta¨ıeb, and E. Luppi, J. Chem.
1284
+ Theory Comput. 14, 5846 (2018).
1285
+ [13] X. Li, N. Govind, C. Isborn, A. E. DePrince, and
1286
+ K. Lopata, Chem. Rev. 120, 9951 (2020).
1287
+ [14] R. J. Bartlett, in Theory and Applications of Computa-
1288
+ tional Chemistry, edited by C. E. Dykstra, G. Frenking,
1289
+ K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam,
1290
+ 2005) pp. 1191–1221.
1291
+ [15] F. A. Evangelista, J. Chem. Phys. 149, 030901 (2018).
1292
+ [16] R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981).
1293
+ [17] H. Koch, H. J. A. Jensen, P. Jørgensen, and T. Helgaker,
1294
+ J. Chem. Phys. 93, 3345 (1990).
1295
+ [18] H. Koch, R. Kobayashi, A. Sanchez de Mer´as, and
1296
+ P. Jørgensen, J. Chem. Phys. 100, 4393 (1994).
1297
+ [19] M. Nooijen, K. R. Shamasundar, and D. Mukherjee, Mol.
1298
+ Phys. 103, 2277 (2005).
1299
+ [20] T. B. Pedersen and S. Kvaal, J. Chem. Phys. 150, 144106
1300
+ (2019).
1301
+ [21] H. E. Kristiansen, Ø. S. Schøyen, S. Kvaal, and T. B.
1302
+ Pedersen, J. Chem. Phys. 152, 071102 (2020).
1303
+ [22] J. A. Sonk, M. Caricato, and H. B. Schlegel, J. Phys.
1304
+ Chem. A 115, 4678 (2011).
1305
+ [23] E. Luppi and M. Head-Gordon, Mol. Phys. 110, 909
1306
+ (2012).
1307
+ [24] A. S. Skeidsvoll, T. Moitra, A. Balbi, A. C. Paul, S. Co-
1308
+ riani, and H. Koch, Phys. Rev. A 105, 023103 (2022).
1309
+ [25] S. D. Folkestad, E. F. Kjønstad, R. H. Myhre, J. H. An-
1310
+ dersen, A. Balbi, S. Coriani, T. Giovannini, L. Goletto,
1311
+ T. S. Haugland, A. Hutcheson, I.-M. Høyvik, T. Moitra,
1312
+ A. C. Paul, M. Scavino, A. S. Skeidsvoll, ˚A. H. Tveten,
1313
+ and H. Koch, J. Chem. Phys. 152, 184103 (2020).
1314
+ [26] A. S. Skeidsvoll, A. Balbi, and H. Koch, Phys. Rev. A
1315
+ 102, 023115 (2020).
1316
+
EdE5T4oBgHgl3EQfUw9y/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
F9E2T4oBgHgl3EQf-Qn4/content/tmp_files/2301.04238v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
G9A0T4oBgHgl3EQfBv-A/content/tmp_files/2301.01980v1.pdf.txt ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01980v1 [nlin.CD] 5 Jan 2023
2
+ January 6, 2023
3
+ 1:30
4
+ WSPC/INSTRUCTION FILE
5
+ ampligraph
6
+ Fluctuation and Noise Letters
7
+ © World Scientific Publishing Company
8
+ Large Fluctuations in Amplifying Graphs
9
+ Stefano Lepri
10
+ Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi,
11
+ Via Madonna del Piano 10 I-50019 Sesto Fiorentino, Italy
12
13
+ Received (received date)
14
+ Revised (revised date)
15
+ We consider a model for chaotic diffusion with amplification on graphs associated with
16
+ piecewise-linear maps of the interval [S. Lepri, Chaos Sol. Fractals, 139,110003 (2020)].
17
+ We determine the conditions for having fat-tailed invariant measures by considering ap-
18
+ proximate solution of the Perron-Frobenius equation for generic graphs. An analogy with
19
+ the statistical mechanics of a directed polymer is presented that allows for a physically
20
+ appealing interpretation of the statistical regimes. The connection between non-Gaussian
21
+ statistics and the generalized Lyapunov exponents L(q) is illustrated. Finally, some re-
22
+ sults concerning large graphs are reported.
23
+ Keywords: Chaotic map, Power-law distributions, Diffusion and amplification on graphs,
24
+ Generalized Lyapunov exponents
25
+ 1. Introduction
26
+ Large fluctuations are one of the distinctive features of complexity, being associated
27
+ to lack of a characteristic scale and to extreme events.This work is part of a re-
28
+ search program aimed at characterizing large fluctuations caused by the joint effect
29
+ of energy diffusion and inhomogeneous amplification or growth. Diffusion can orig-
30
+ inate from underlying disorder and scattering and/or chaotic motion, while growth
31
+ stems for external energy pumping into the system. This leads to non-Gaussian
32
+ fluctuations of the relevant physical quantities, whose statistical distributions can
33
+ have fat-tails, leading to domination of a single event and lack of self-averaging of
34
+ measurements [1]. This is well-known for multiplicative stochastic processes [2, 3]
35
+ and chaotic dynamical systems that display intermittency and multifractality [4].
36
+ A particularly interesting form of disorder is the one arising in dynamical sys-
37
+ tems defined on graphs. They have many fascinating and diverse applications to
38
+ describe complex interacting units with non-uniform connectivity [5]. When het-
39
+ ereogeneous reaction is added a non trivial interplay between the connectivity and
40
+ the local reaction emerges [6].
41
+ Among the many possible physical examples, the example we mostly refer to is
42
+ the one of active, disordered optical media where light amplification and scattering
43
+ 1
44
+
45
+ January 6, 2023
46
+ 1:30
47
+ WSPC/INSTRUCTION FILE
48
+ ampligraph
49
+ 2
50
+ Stefano Lepri
51
+ coexist. [7]. This occurs in random lasers where indeed fat-tailed distributions of
52
+ emission intensities are observed experimentally [8–13].
53
+ This work reviews and extends some of the results of [14] were we introduced
54
+ a simple dynamical system consisting of a map that couples chaotic diffusion and
55
+ energy growth and dissipation. Nonlinear maps are time-discrete dynamical models,
56
+ widely studied to establish the emergence of macroscopic behavior from microscopic
57
+ chaos [15]. The model is inspired by experiments on lasing networks [16,17], con-
58
+ sisting of active (lasing) and passive optical fibers supporting many optical modes,
59
+ excited by external pumping. Optical coupling among the fibers provides a form
60
+ of topological disorder and the system can be considered, loosely speaking, as a
61
+ random laser on a graph. Another related experimental setup has been realized
62
+ with nanophotonic devices by coupling a mesh of subwavelength waveguides [18].
63
+ Heuristically, one may think of light as a bunch of rays undergoing chaotic diffusion
64
+ and (site-dependent) amplification on such graph. As a matter of fact, the classi-
65
+ cal dynamics of particles on graphs can be described by simple maps. Trajectories
66
+ of a particle on a graph, undergoing scattering at its vertices, are in one-to-one
67
+ correspondence with the ones of one-dimensional piecewise chaotic maps [19–21].
68
+ The plan of the paper is as follows In Section 2 the recall and extend the
69
+ map model introduced [14] along with some examples. In Section 3 we consider an
70
+ approximate equation for the invariant measure and discuss the conditions for the
71
+ appearance of the fat-tailed distributions. In Section 4 and examine the symmetries
72
+ of the problem. Such conditions can be recasted in terms of a statistical mechanics
73
+ problem: a polymer with a finite number of configurations in a random energy land-
74
+ scape, as described in Section 5. A useful approach is based generalized Lyapunov
75
+ exponents as discussed in Section 6. In Section 7 we report explicit analytical re-
76
+ sults for the simplest case of a two-sites graph. Finally, we extend the analysis to
77
+ examples of large graphs in Section 8.
78
+ 2. Graph with diffusion and amplification
79
+ We consider the following map [14]
80
+
81
+ xn+1 = f(xn)
82
+ En+1 = g(xn)En
83
+ (1)
84
+ where g(x) is positive and xn belongs to the unit interval. The function f is piecewise
85
+ linear and we assume that the map is chaotic with a Lyapunov exponent λ1 > 0.
86
+ The unit interval is partitioned in N disjoint intervals Ij of equal lengths 1/N and
87
+ we consider a piece-wise constant gain function g,
88
+ g(xn) = gj
89
+ for xn ∈ Ij
90
+ where the constants gj ≥ 1 and 0 < gj < 1 correspond to local amplification or
91
+ dissipation respectively. Thus, the ”energy” variable En is coupled to xn, leading
92
+
93
+ January 6, 2023
94
+ 1:30
95
+ WSPC/INSTRUCTION FILE
96
+ ampligraph
97
+ Large Fluctuations in Amplifying Graphs
98
+ 3
99
+ to amplification fluctuations. Also, the sequence of multipliers g(xn) is in one-to-
100
+ one correspondence with the symbolic dynamics of the map f and has the same
101
+ time correlation in time. Maps of similar form have been considered in the context
102
+ of on-off intermittency [22] and synchronization transition of two piecewise-linear
103
+ chaotic maps [23].
104
+ Assuming that the stationary invariant measure P(x, E) of the map is uniform
105
+ in x, the Lyapunov exponents λ1,2 are computed straightforwardly
106
+ λ1 =
107
+ � 1
108
+ 0
109
+ log |f ′(x)|dx,
110
+ (2)
111
+ λ2 = ⟨log(g(x))⟩ = 1
112
+ N
113
+
114
+ j
115
+ ln gj
116
+ (3)
117
+ Some specific examples are illustrated in Figure 1 along with their graph rep-
118
+ resentation, constructed by examining the possible transitions in the underlying
119
+ Markov dynamics. The first two examples f1, f2 depend on a parameter p (see
120
+ Appendix) that controls the transition probabilities and have the same Lyapunov
121
+ exponent λ1 = −p log p − (1 − p) log(1 − p). Note that λ1 > 0 but it is vanishingly
122
+ small for p approaching 0 and 1 where the maps have weakly-unstable periodic
123
+ orbits. The third example f3, has λ1 = log 3 and corresponds to the case of a com-
124
+ plete four-sites graph where transition can occur towards any other site with the
125
+ same probability. This example can be easily extended to arbitrary N (see Section
126
+ 8 below).
127
+ In the stable case, λ2 < 0, the orbits tends to be attracted to the origin while
128
+ λ2 > 0 they are repelled away and tent to grow indefinitely. In order to have a
129
+ bounded invariant measure one needs to require that the variable En neither does
130
+ drift to infinity nor is stucked at the origin. This can be implemented, for instance,
131
+ by assuming that there are some ”barrier” points located at some prescribed values
132
+ of E (the scale of E is arbitrary). This can be enforced deterministically: for instance
133
+ for λ2 < 0 setting En+1 = s when En ≤ 0, where s is a small positive number. In
134
+ this way, En is stationary and ranges in [0, ∞]. The quantity s is arbitrary, but we
135
+ anticipate that the main results we are interested in do not depend on its value. a
136
+ In the unstable case, λ2 > 0, we may impose the constraint at, say E = 1 resetting
137
+ En+1 = 1 whenever En > 1. Another possibility would be to use stochastic or
138
+ determinististic resetting, or to allow the trajectories to escape, see [14] for details.
139
+ Starting from a ”Lagrangian” description in terms of chaotic trajectories we
140
+ can derive the corresponding ”Eulerian” equations for the probabilities. The time-
141
+ aAlso setting the variable to a new randomly chosen variable sn will do as well, as long as s is
142
+ very small as it will only affect the shape of the invariant measure close to the boundaries [23].
143
+ For a discussion of a similar problem for Langevin dynamics see Ref. [24] and the bibliography
144
+ therein.
145
+
146
+ January 6, 2023
147
+ 1:30
148
+ WSPC/INSTRUCTION FILE
149
+ ampligraph
150
+ 4
151
+ Stefano Lepri
152
+ 0
153
+ 0.5
154
+ 1
155
+ xn
156
+ 0
157
+ 0.5
158
+ 1
159
+ f1(xn)
160
+ 0
161
+ 0.5
162
+ 1
163
+ xn
164
+ 0
165
+ 0.5
166
+ 1
167
+ f3(xn)
168
+ 0
169
+ 0.5
170
+ 1
171
+ xn
172
+ 0
173
+ 0.5
174
+ 1
175
+ f2(xn)
176
+ (a)
177
+ 1
178
+ 2
179
+ 1 − p
180
+ p
181
+ p
182
+ 1 − p
183
+ (b)
184
+ 1
185
+ 2
186
+ 3
187
+ 4
188
+ 1 − p
189
+ p
190
+ p
191
+ 1 − p
192
+ 1 − p
193
+ p
194
+ 1 − p
195
+ p
196
+ (c)
197
+ 1
198
+ 2
199
+ 3
200
+ 4
201
+ Fig. 1. Left: three examples of the chaotic map and (right) their graph representations. The
202
+ analytic expressions are give in the Appendix. Red and blue parts represents possible choices of
203
+ amplifying (gj > 1) and dissipative (gj < 1) regions in phase space.
204
+ discrete evolution of the measure Pn(x, E) is solution of Perron-Frobenius operator
205
+ Pn+1(x, E) =
206
+
207
+ j
208
+ 1
209
+ gj|f ′(yj)|Pn
210
+
211
+ yj, E
212
+ gj
213
+
214
+ (4)
215
+ where yj(x) = f −1(x) are the N pre-images of x. Boundary conditions are required
216
+ to specify Pn(x, E) to take properly into account the barrier points.
217
+ To give an idea of the dynamics, we report in Figure 2 some representative
218
+ trajectories for the map f2 along with the attractors in phase spave and histograms
219
+ of the variable z = log E. Note that an exponential decay at large z is a signature
220
+ of a power-law tail in the variable E, that occurs when large fluctuations arise.
221
+ 3. Fast chaotic diffusion
222
+ Since we are interested in the statistical properties of E, it is natural to consider, in
223
+ view of definition of g(x), the probabilities Pj,n(E) to have a particle with energy
224
+ E in each interval Ij. In general, it is not possible to write a closed equation for the
225
+ Pj,n from (4). A simplified case is when the Lyapunov exponent λ1 is much larger
226
+ then the typical rate of change of the energy variable. If so, we may assume that
227
+
228
+ January 6, 2023
229
+ 1:30
230
+ WSPC/INSTRUCTION FILE
231
+ ampligraph
232
+ Large Fluctuations in Amplifying Graphs
233
+ 5
234
+ Fig. 2. Time evolution and statistics of iterates of the map f2 given in Fig.1 for p = 0.95, 0.6, 0.01
235
+ (bottom to top). The gain factors are g1,2,4 = 0.7, g3 = 2.7, corresponding to the Lyapunov
236
+ exponent λ2 ≈ −0.0192. Left panels: trajectory snapshots, middle column: distribution of the
237
+ iterates in phase space (xn, log En), histograms of the variable log En in semi-logarithmic scale.
238
+ the measure becomes rapidly uniform in x within each interval Ij .We can thus look
239
+ for solutions of (4) independent of x,
240
+ Pi,n+1(E) =
241
+
242
+ j
243
+ Wij
244
+ gj
245
+ Pj,n
246
+ � E
247
+ gj
248
+
249
+ (5)
250
+ Then W is the N × N stochastic matrix for a random walk on a N-sites, directed
251
+ graph. In our case the transition probabilities are given by the inverses of the
252
+ map slopes (see the leftmost part of Figure 1 and the Appendix); W is symmetric
253
+ and doubly stochastic, �
254
+ j Wj,i = �
255
+ j Wi,j = 1. This defines a Markov process in
256
+ discrete time, as better seen by recasting (5) it the mathematically equivalent form
257
+ Pi,n+1(E) =
258
+
259
+ j
260
+
261
+ Ki,j(E, E′) Pj,n(E′)dE′
262
+ Ki,j(E, E′) = Wij δ(E − gjE′),
263
+ that defines the transition rates Kij(E, E′) (this last equation reduces to (5) by
264
+ integrating the δs). We also mention in passing that a Kramers-Moyal expansion,
265
+ suitable when all the gj are close to unity, allows to derive a set of coupled Langevin
266
+
267
+ 200
268
+ E
269
+ 100
270
+ 20
271
+ n
272
+ 10
273
+ 10
274
+ -10
275
+ 2
276
+ 4
277
+ 6
278
+ 80
279
+ 0.5
280
+ 110°10°104
281
+ X
282
+ n (10*)
283
+ countsJanuary 6, 2023
284
+ 1:30
285
+ WSPC/INSTRUCTION FILE
286
+ ampligraph
287
+ 6
288
+ Stefano Lepri
289
+ equations for the energies at each graph site. The details of the derivation will be
290
+ reported elsewhere. Such equation contain stochastic advection terms, akin to the
291
+ one found in the lattice case [25].
292
+ 4. Fat-tailed distributions
293
+ Let us now examine the possibility of having sower-law solutions in the steady state
294
+ Pi,n(E) = Pi(E) of the form Pi = QiE−β−1; with β > 0 for normalizability. The
295
+ Qi are the marginal probabilities to be on site i with whatever energy. Substituting
296
+ this Ansatz in the stationarity condition we obtain a consistency condition for β
297
+ Qi =
298
+
299
+ j
300
+ Wijgβ
301
+ j Qj
302
+ (6)
303
+ i.e. Q must be an eigenvector of eigenvalue one of the matrix Wijgβ
304
+ j , i.e.
305
+ det(WGβ − 1) = 0,
306
+ (7)
307
+ where G is a diagonal matrix having elements gj. Note that β = 0 is always a
308
+ solution. Moreover, the condition is invariant under the transformations
309
+ gj −→ 1
310
+ gj
311
+ ,
312
+ β −→ −β.
313
+ (8)
314
+ This shoud be interpreted as follows. If there exist a distribution decaying for large
315
+ E as E−β−1 in the stable case λ2 < 0, then the distribution in the unstable case
316
+ with Lyapunov exponent −λ2 is Eβ−1 for small E (up to a cutoff set by the upper
317
+ barrier).
318
+ The more interesting regime occurs for |β| < 2 where the measures have di-
319
+ verging variance (up to the barrier cutoff). Here, we expect a strongly intermittent
320
+ dynamics, with dominance of single large fluctuations on the average, as in the
321
+ well-know case of L´evy-stable distributions [26]. For a fixed W, the region in the
322
+ N-dimensional parameter space (g1, . . . , gN) where this occurs, is thus bounded
323
+ between the hyper-surfaces defined by the condition (7) with β = ±2 (see Section
324
+ 7 for an example).
325
+ 5. Statistical mechanics analogy
326
+ Let us now show that finding a power-law decay of the measure can be interpreted
327
+ as dual statistical mechanics problem. First, Equation (7) can be rewritten in an
328
+ equivalent manner by imposing that the symmetrized matrix gβ/2
329
+ i
330
+ Wijgβ/2
331
+ j
332
+ has an
333
+ eigenvalue equal to one. Let us define the quantities hj and Eij
334
+ ln gj = λ2 + hj;
335
+ Eij(β) = − 1
336
+ β ln Wij − hi + hj
337
+ 2
338
+ with �
339
+ j hj = 0 and λ2 is defined by (3). We can thus rephrase the problem in terms
340
+ of the statistical mechanics of a directed polymer of length ℓ whose microscopic
341
+
342
+ January 6, 2023
343
+ 1:30
344
+ WSPC/INSTRUCTION FILE
345
+ ampligraph
346
+ Large Fluctuations in Amplifying Graphs
347
+ 7
348
+ configurations are labeled by sequences of σ1, σ2 . . . σℓ, with σi being an integer
349
+ assuming values σi = 1, 2 . . ., N. The polymer energy is
350
+ H =
351
+
352
+ i
353
+ Eσi,σi+1.
354
+ (9)
355
+ The quantity Eij thus represents the energy cost between two consecutive beads of
356
+ the polymer. It consist of two terms: the one dependent on W is a kind of elastic
357
+ energy, while the hj represent some local energies, akin to the case of the polymer
358
+ on a disordered substrate [27]. Larger positive values of hj correspond to stronger
359
+ interaction with the substrate itself. b To obtain a thermodynamic state one has to
360
+ impose some upper and lower bounds to the polymer energy in the same way done
361
+ in the map model.
362
+ The standard approach to compute the partition function associated with H, is
363
+ to introduce the N × N transfer matrix
364
+ T (σ1, σ2) = exp[−βEσ1,σ2];
365
+ and β is interpreted as the inverse temperature . As it is well known, the partition
366
+ function of the polymer of length ℓ is the trace of T ℓ or, equivalently, the sum of
367
+ the eigenvalues τi of T , �
368
+ i τ ℓ
369
+ i . For large ℓ, we thus have to impose that its free
370
+ energy, namely its the maximal eigenvalue is equal to exp(−βλ2),
371
+ βλ2 = − log τ1.
372
+ (10)
373
+ This condition is indeed equivalent to (6) or (7). Notice that, considering the model
374
+ parameters as fixed, this it is a kind of inverse procedure with respect to the stan-
375
+ dard case: one fixes the free energy and wants to determine the corresponding tem-
376
+ perature. By virtue of the Perron-Frobenius theorem since the matrix T is strictly
377
+ positive then the leading eigenvalue τ1 is strictly positive and non degenerate. Also
378
+ for a finite N it an analytic function of the element so there are no phase transitions.
379
+ The analogy is also suggestive to understand the difference between the fat-
380
+ tailed and Gaussian regimes. As said, the first case corresponds to 0 < β < 2.
381
+ In the polymer language, this would corrrespond to the high-temperature regime
382
+ where the elastic energy terms dominate on the pinning terms. In other words, the
383
+ polymer is very stiff and the typical lowest-energy configurations will be trapped
384
+ close to the largest hj. These configurations give large fluctuations above the average
385
+ in agreement with the above point of view. On the contrary, for low temperatures
386
+ the polymer is very loose, and explores the whole configuration space at low cost,
387
+ making deviations from the average behavior very unlikely. In this respect the value
388
+ β = 2 can be consider to define the characteristic temperature where the two energy
389
+ terms balance.
390
+ bOtherwise it could be represented as a chain of N-components spins. Here, the spin variables σi
391
+ take values in the set 1, 2, . . . N on each site and hi is a spin-dependent constant magnetic field.
392
+ In this interpretation it is reminiscent of the Potts model with nearest-neighbor interactions in
393
+ 1d. It is different from the simple standard case where the interaction is of the form δσi,σi+1.
394
+
395
+ January 6, 2023
396
+ 1:30
397
+ WSPC/INSTRUCTION FILE
398
+ ampligraph
399
+ 8
400
+ Stefano Lepri
401
+ Since τ1 > 0, equation (10) has no solution for λ2 > 0, and hence to thermo-
402
+ dynamically stable states for the polymer problem in the canonical ensemble, as
403
+ formulated so far. This correspond to the fact that for the dynamical system the
404
+ origin is unstable. To account for this case, one can reason in two ways. One is to
405
+ consider positive temperature states of a modified Hamiltonian −H, exploiting the
406
+ symmetry (8). Alternatively, a more suggestive thermodynamic interpretation is in
407
+ terms of negative absolute temperature. Let us consider the microcanonical states of
408
+ the polymer with Hamiltonian H at total energy E. Than all the microscopic con-
409
+ figurations are precisely those that reach such such energy. Upon increasing λ2 the
410
+ number of such configurations, and thus the polymer entropy S(E), should decrease
411
+ leading to negative temperature from the usual relation β = ∂S/∂E. Following the
412
+ standard reasoning, we can thus regard the unstable regime as microcanonical state
413
+ with negative absolute temperature where ensemble equivalence does not hold. [28].
414
+ 6. Generalized Lyapunov exponents
415
+ A general and elegant approach to look at the problem of fat-tails is from the
416
+ point of view of large deviation of Lyapunov exponents [31]. For the dynamical
417
+ system like (1) one can consider the generalized Lyapunov exponents L(q), that
418
+ are the growth rates of the qth moment of the perturbation as exp(L(q)τ) at large
419
+ times τ [4,30,31]. The L(q) is the cumulant generating function of the associated
420
+ variable and contains all the information on the fluctuations beyond the Gaussian
421
+ regimes [32, 33]. The standard Lyapunov exponent is given by λ2 = L′(q = 0),
422
+ and corresponds to the typical average growth of a fluctuation. Thus, deviations
423
+ of L(q) from a linear behavior, λ2q, are a signature of intermittent dynamics [34].
424
+ The existence of power-law stationary tails can be inferred from inspection of the
425
+ behavior of the L(q) [23,35,36]. Indeed, if L(q) > 0 for large enough q then there is
426
+ a finite probability for a small perturbation to grow very large with respect to the
427
+ average. More precisely, the condition for power-law distributions with a diverging
428
+ moments for q > q∗ is that L(q∗) = 0 [23,35]. Such condition must be equivalent to
429
+ (7), namely a distribution decaying as E−1−q∗, i.e. q∗ = β. Also, the boundaries of
430
+ the region with fat-tailed distribution are defined by L(±2) = 0.
431
+ For the master equation (5), the generalized exponents can be computed exactly
432
+ from equations (11). To this aim, we consider the equation without barrier boundary
433
+ conditions and consider the moments of E in each portion Ii of the unit interval,
434
+ ǫ(q)
435
+ i,n ≡
436
+
437
+ EqPi,n(E)dE.
438
+ By multiplying equation (5) by Eq and integrating in dE, we straightforwardly
439
+ obtain a set of N difference equations
440
+ ǫ(q)
441
+ i,n+1 =
442
+
443
+ j
444
+ Wijgq
445
+ j ǫ(q)
446
+ j,n
447
+ (11)
448
+ that are linear and closed at each order (moments of different order q are decoupled).
449
+ Using the same notation as above, this amounts simply to compute the largest
450
+
451
+ January 6, 2023
452
+ 1:30
453
+ WSPC/INSTRUCTION FILE
454
+ ampligraph
455
+ Large Fluctuations in Amplifying Graphs
456
+ 9
457
+ eigenvalue of the matrix WGq and evaluate L(q) as the logarithm of it, a procedure
458
+ that is basically the same followed to compute the cumulant generating function
459
+ of Markovian dynamics [37]. Note that the matrix can be made symmetric by the
460
+ same transformation as given at the beginning of Section 5, so the eigenvalues are
461
+ real. Also, comparing with (8), we see that the spectrum of generalized exponents
462
+ is also invariant under the transformation gj → 1/gj and q → −q, which is related
463
+ to the time-reversal invariance of the trajectories of the map.
464
+ For general graphs the eigenvalues can be easily computed numerically. In Figure
465
+ 3 we report the exponents for the case of the map f2. It is known that the exponents
466
+ are notoriously hard to compute expecially for large q values that requires sampling
467
+ very unlikely trajectories [38,39]. We thus profit to test the accuracy of the direct
468
+ method, with respect to the one based on computation of the eigenvalues . As seen
469
+ from the data, for this simple example the direct method is in reasonable agreement,
470
+ meaning that sampling accuracy is not a big issue in those examples.
471
+ This approach is also accurate in reproducing the measured exponents ±λ2.
472
+ For instance, as a numerical test for the case p = 0.6 of Figure 4, the condition
473
+ L(q∗) = 0 yields q∗ ≈ 0.225.. to be compared from the fit of the distribution of
474
+ z = log E yielding exp(−0.223z) for large z (see [14] for further numerical checks).
475
+ -1
476
+ 0
477
+ 1
478
+ 2
479
+ 3
480
+ q
481
+ 0
482
+ 0.2
483
+ 0.4
484
+ 0.6
485
+ (b) p=0.8
486
+ 0
487
+ 1
488
+ 2
489
+ q
490
+ 0
491
+ 0.2
492
+ 0.4
493
+ 0.6
494
+ 0.8
495
+ L(q)
496
+ (a) p=0.95
497
+ -1
498
+ 0
499
+ 1
500
+ 2
501
+ 3
502
+ q
503
+ -0.04
504
+ 0
505
+ 0.04
506
+ (c) p=0.05
507
+ Fig. 3. The generalized Lyapunov exponents L(q) for the map f2 and for different values of
508
+ parameter p and g = 1.2 l = 0.8. Symbols are the numerical values computed via the definition,
509
+ for an ensemble of trajectories of finite duration t = 20 (a,b) and t = 160 (c); solid lines are the
510
+ L(q) computed as the logarithm of the largest eigenvalue of the matrix W Gq (see text). In the
511
+ case p = 0.95, we also draw the lines corresponding to the maximal and average growth rates,
512
+ q log l and λ2q.
513
+ In Figure 4a we compare two cases having parameters gj and 1/gj and thus
514
+ opposite Lyapunov exponents. According to (8) the statistics of should have op-
515
+ posite rates exp(±q∗z), as well verified by the data. It is also seen that the large
516
+ fluctuation has a form of statistical symmetry, in the sense that their shape En for
517
+
518
+ January 6, 2023
519
+ 1:30
520
+ WSPC/INSTRUCTION FILE
521
+ ampligraph
522
+ 10
523
+ Stefano Lepri
524
+ λ2 < 0 would be similar to 1−En for λ2 < 0. (see Figure 4b) Moreover, rise and fall
525
+ rates are accurately predicted by L′(q∗) and λ2, respectively, as read from Figure
526
+ 4c.
527
+ -10 -8 -6 -4 -2
528
+ log E
529
+ 10
530
+ -4
531
+ 10
532
+ -3
533
+ 10
534
+ -2
535
+ 10
536
+ -1
537
+ 10
538
+ 0
539
+ PDF
540
+ -1 -0.5 0
541
+ 0.5
542
+ 1 1.5
543
+ q
544
+ -0.005
545
+ 0
546
+ 0.005
547
+ 0.01
548
+ 0.015
549
+ 0.84
550
+ 0.86
551
+ n (10
552
+ 6)
553
+ 10
554
+ -4
555
+ 10
556
+ -2
557
+ 10
558
+ 01.24
559
+ 1.26
560
+ 1.28
561
+ 10
562
+ -4
563
+ 10
564
+ -2
565
+ 10
566
+ 0
567
+ (a)
568
+ (b)
569
+ (c)
570
+ En
571
+ L(q)
572
+ Fig. 4. Comparison between the cases with opposite Lyapunov exponents ±λ2 for the map f2
573
+ with p = 0.5, g1 = g3 = g4 = 0.9, g1 = 1.4 (orange curves) and g1 = g3 = g4 = 1/0.9, g1 = 1/1.4
574
+ and (purple). Panel (a): distributions of zn = log En, the dashed line is the expected exponential
575
+ behavior exp(−q∗z) where q∗ = −0.84 is the given by L(q∗) = 0. Panels (b): time series of En
576
+ showing the build and decay of a large fluctuation: the dashed lines correspond to exponential
577
+ growth/decay according to exp(λ2t) with λ2 = 5.09 10−3. Panel (c): the generalized Lyapunov
578
+ exponents L(q) (solid line) for the case λ2 > 0, the dashed line is λ2q.
579
+ 7. Two-sites graph: analytical solutions
580
+ For the simplest case of the two-sites graph, corresponding to the map f1 in Figure
581
+ 1 some explicit analytical results can be worked out. The stationary measure is
582
+ solution of (letting g1 = g, g2 = l).
583
+ P1(E) = p
584
+ g P1
585
+ �E
586
+ g
587
+
588
+ + 1 − p
589
+ l
590
+ P2
591
+ �E
592
+ l
593
+
594
+ P2(E) = (1 − p)
595
+ g
596
+ P1
597
+ �E
598
+ g
599
+
600
+ + p
601
+ l P2
602
+ �E
603
+ l
604
+
605
+ .
606
+ (12)
607
+ • The consistency conditions, Eq. (7) yields
608
+ det(WGβ − 1) = −p(gβ + lβ) + (2p − 1)gβlβ + 1 = 0
609
+ (13)
610
+ where the transition matrix is given by W1 in (19) and Gβ ≡
611
+ �gβ 0
612
+ 0 lβ
613
+
614
+ .
615
+ The region in the (g, l) with large fluctuations |β| < 2 is bounded between
616
+ the curves defined by (13) with β = ±2.
617
+
618
+ January 6, 2023
619
+ 1:30
620
+ WSPC/INSTRUCTION FILE
621
+ ampligraph
622
+ Large Fluctuations in Amplifying Graphs
623
+ 11
624
+ • The statistical mechanics analogy can be worked out explicitely in the
625
+ ”spin” interpretation as an Ising chain. Let g = exp(λ2+h), l = exp(λ2−h)
626
+ in (13), the transfer matrix concides with the well-known textbook expres-
627
+ sion of the one-dimensional Ising model with β dependent parameters
628
+ H =
629
+
630
+ i
631
+ [−Jσiσi+1 + hσi]
632
+ (λ2 ≡ λ). Upon letting
633
+ p =
634
+ eβJ
635
+ eβJ + e−βJ ;
636
+ 1 − p =
637
+ e−βJ
638
+ eβJ + e−βJ ;
639
+ J(β) = 1
640
+ 2β ln(
641
+ p
642
+ 1 − p)
643
+ condition (10) is rewritten in the familiar form
644
+ exp(−βλ) = eβJ cosh βh +
645
+
646
+ e2βJ sinh2 βh + e−2βJ
647
+ Also, it gives a nice interpretation of the parameter p. The very definition
648
+ of J makes transparent that p is interpreted as a probability of a spin-flip
649
+ and controls the type of interaction. In particular:
650
+ – for p = 1/2: J = 0 and
651
+ βλ = − ln cosh βh
652
+ that correspond to 1d Ising paramagnet in external field h
653
+ – For 1/2 < p < 1: J > 0 ferromagnetic interaction;
654
+ – For 0 < p < 1/2: J < 0 antiferromagnetic interaction.
655
+ In this language, the variable of interest is the magnetic energy of the spin
656
+ chain.
657
+ • Generalized Lyapunov exponents can be computed analytically as de-
658
+ scribed above yielding [14]
659
+ L(q) = log
660
+ �����
661
+ p(gq + lq) +
662
+
663
+ p2(gq + lq)2 − 4(2p − 1)gqlq
664
+ 2
665
+ ����� .
666
+ (14)
667
+ and it can be checked that the condition L(q∗) = 0 yields the same as (13).
668
+ In Fig. 5 we summarize the various statistical regimes of the model, distinguish-
669
+ ing the parameters values where fluctuations have diverging variance.
670
+ 8. Large graphs
671
+ So far we have considered graphs with a small number of sites. A natural question
672
+ would be how the result change upon increasing N, in particular whether the fat-
673
+ tailed regimes persist. This is not an obvious question. For instance in large chaotic
674
+ systems, the generalized Lyapunov exponents may become proportional to q. The
675
+ heuristic explanation is that, due to fast correlation decay in spatio-temporal chaos,
676
+ the norm vector is the sum of entries that grow almost independently [30]. In the
677
+
678
+ January 6, 2023
679
+ 1:30
680
+ WSPC/INSTRUCTION FILE
681
+ ampligraph
682
+ 12
683
+ Stefano Lepri
684
+ 0.8
685
+ 1
686
+ 1.2
687
+ g
688
+ 0.8
689
+ 1
690
+ 1.2
691
+ l
692
+ β=−2
693
+ β=2
694
+ β=−1
695
+ β=1
696
+ Fig. 5. Phase diagram in the parameter plane (g, l) for two-sites graph, corresponding to the map
697
+ f1 in Figure 1 with p = 0.6. The green line is the bifurcation line where λ2 = 0. There is an
698
+ obvious reflection symmetry around the line g = l (black dashed). Shaded blue regions correspond
699
+ to finite variance of the variable En yielding Gaussian fluctuations. The region bounded between
700
+ the curves with β = ±2 is where L´evy-like fluctuations are expected.
701
+ present example however the multipliers gj are quenched and the situation may be
702
+ different.
703
+ For simplicity, let us discuss directly the Markovian dynamics, Eq. (5). As a
704
+ first instance, let us consider the ladder graph composed of N = 2M sites depicted
705
+ in Fig. 6. For convention, we label the upper sites with even integers and the lower
706
+ by odd ones. The transition matrix has non-zero elements given by
707
+ W2i,2(i+1) = W2i+1,2i−1 = p;
708
+ W2i,2i+1 = W2i+1,2i = 1 − p
709
+ (15)
710
+ for i = 1 . . . M, and Wij = 0 otherwise. Periodic boundaries have been assumed.
711
+ This is a geometry which can be seen as an extension of the map f2 discussed above.
712
+ 2(i-1)
713
+ 2i
714
+ 2(i+i)
715
+ 2i-1
716
+ 2i+1
717
+ 2i+3
718
+ 1 − p
719
+ 1 − p
720
+ 1 − p
721
+ 1 − p
722
+ 1 − p
723
+ 1 − p
724
+ p
725
+ p
726
+ p
727
+ p
728
+ p
729
+ p
730
+ p
731
+ p
732
+ Fig. 6. The ladder graph described by the transition matrix (15). Configuration with only one
733
+ active site, labeled by red color.
734
+
735
+ January 6, 2023
736
+ 1:30
737
+ WSPC/INSTRUCTION FILE
738
+ ampligraph
739
+ Large Fluctuations in Amplifying Graphs
740
+ 13
741
+ Another example is the complete graph
742
+ Wi,i = 0;
743
+ Wi,j =
744
+ 1
745
+ N − 1
746
+ i ̸= j
747
+ (16)
748
+ which is depicted in the lowest panel of Fig. 1 for N = 4. For simplicity, let us con-
749
+ sider also the case of a single active site with all the other having equal dissipation,
750
+ namely gj = g > 1 for a certain j = j0 and gj = l < 1 otherwise. With such choice,
751
+ the Lyapunov exponent is λ2 = (1 − 1/N) log l + (log g)/N in both examples, and
752
+ approaches the constant value λ2 ≈ log l < 0 for N large.
753
+ In Fig. 7 we compare the generalized Lyapunov exponents (computed as above)
754
+ for the two graphs for increasing size N. In the case of the ladder, the L(q) are
755
+ N-independent and the example shown predicts that a fat-tail with q∗ ≈ 1 should
756
+ persist upon increasing the size. On the contrary for the complete graph q∗ grows
757
+ with N suggesting that the statistics should turn Gaussian for large enough N.
758
+ -5
759
+ 0
760
+ 5
761
+ 10
762
+ q
763
+ -0,5
764
+ 0
765
+ 0,5
766
+ 1
767
+ (b) complete graph
768
+ -0,5
769
+ 0
770
+ 0,5
771
+ 1
772
+ 1,5
773
+ 2
774
+ q
775
+ -0,1
776
+ -0,05
777
+ 0
778
+ 0,05
779
+ 0,1
780
+ 0,15
781
+ L(q)
782
+ N=16
783
+ N=32
784
+ N=64
785
+ (a) ladder graph
786
+ Fig. 7. The generalized Lyapunov exponents L(q) for (a) the ladder graphs and (b) the complete
787
+ graph and different number of sites N; p = 0.4 g3 = 3.0 and gj = 0.7 for j ̸= 3.
788
+ This is qualitatively consistent with the polymer interpretation, Equation (9).
789
+ In the ladder case the elastic energy of the polymer is independent of the size. On
790
+ the contrary for the complete graph the elastic energy decreases with N making
791
+ the polymer more and more loose and hindering the observation of configurations
792
+ associated with large energy fluctuations.
793
+ 9. Conclusion
794
+ Motivated by experiments on active, disordered optical systems , we have studied
795
+ a map model that combines chaotic diffusion and amplification on a graph [14].
796
+
797
+ January 6, 2023
798
+ 1:30
799
+ WSPC/INSTRUCTION FILE
800
+ ampligraph
801
+ 14
802
+ Stefano Lepri
803
+ Within a stochastic approximation of the dynamics, given by the Markov process
804
+ described by (5), we established the conditions for its invariant measure to display
805
+ fat-tailed distributions in some regime of parameters. We mostly discussed some
806
+ specific small graphs (N = 2, 4) examples and extended the results to large graphs
807
+ (ladder and complete). The model has symmetries that allows to consider the stable
808
+ and unstable cases in a simple way. Also, the problem can be interpreted in statisti-
809
+ cal mechanics language, an analogy that can be fruitful to interpret the dynamical
810
+ regimes. We have confirmed that the Generalized Lyapunov exponents provide a
811
+ useful and simple tool to predict the fluctuation statistics and the anatomy of a large
812
+ fluctuation, both in the stable and unstable cases. The model has its own interest
813
+ but is also a guidance for interpretration of experiments in the optical disordered
814
+ media as for instance the lasing networks [17].
815
+ Acknowledgements
816
+ The Author acknowledges S. Iubini, A. Politi and P. Politi for useful discussions
817
+ and A. Di Garbo and R. Mannella for the invitation to the workshop DCP22 in
818
+ Pisa.
819
+ Appendix
820
+ For reference we give here the functional forms of the examples considered in Fig.
821
+ 1:
822
+ f1(x) =
823
+
824
+
825
+
826
+
827
+
828
+
829
+
830
+
831
+
832
+
833
+
834
+ 1
835
+ px
836
+ 0 ≤ x ≤ p/2
837
+ 1
838
+ 1−px +
839
+ 1−2p
840
+ 2(1−p)
841
+ p/2 < x ≤ 1/2
842
+ 1
843
+ 1−px −
844
+ 1
845
+ 2(1−p)
846
+ 1/2 < x ≤ 1 − p/2
847
+ 1
848
+ px + 1 − 1
849
+ p
850
+ 1 − p/2 < x ≤ 1
851
+ (17)
852
+ f2(x) =
853
+
854
+
855
+
856
+
857
+
858
+
859
+
860
+
861
+
862
+
863
+
864
+
865
+
866
+
867
+
868
+
869
+
870
+
871
+
872
+
873
+
874
+
875
+
876
+
877
+
878
+
879
+
880
+
881
+
882
+
883
+
884
+ x/p
885
+ x < p/4
886
+ (x − p/4)/(1 − p) + 1/4
887
+ p/4 ≤ x < 1/4
888
+ (x − 1/4)/p + 1/2
889
+ 1/4 < x < 1/4 + p/4
890
+ (x − 1/4 − p/4)/(1 − p) + 3/4
891
+ 1/4 + p/4 < x < 1/2
892
+ (x − 1/2)/(1 − p)
893
+ 1/2 < x < 3/4 − p/4
894
+ (x − 3/4 + p/4)/p + 1/4
895
+ 3/4 − p/4 < x < 3/4
896
+ (x − 3/4)/(1 − p) + 1/2
897
+ 3/4 < x < 1 − p/4
898
+ (x − 1 + p/4)/p + 3/4
899
+ 1 > x > 1 − p/4
900
+ (18)
901
+ where 0 ≤ p ≤ 1. The stochastic matrices used in the text are
902
+ W1 ≡
903
+
904
+ p
905
+ 1 − p
906
+ 1 − p
907
+ p
908
+
909
+ ,
910
+ W2 ≡
911
+
912
+
913
+
914
+
915
+ p
916
+ 1 − p
917
+ 0
918
+ 0
919
+ 0
920
+ 0
921
+ p
922
+ 1 − p
923
+ 1 − p
924
+ p
925
+ 0
926
+ 0
927
+ 0
928
+ 0
929
+ 1 − p
930
+ p
931
+
932
+
933
+
934
+
935
+ (19)
936
+
937
+ January 6, 2023
938
+ 1:30
939
+ WSPC/INSTRUCTION FILE
940
+ ampligraph
941
+ Large Fluctuations in Amplifying Graphs
942
+ 15
943
+ while for f3 is given by (16) for N = 4.
944
+ References
945
+ [1] J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical
946
+ mechanisms, models and physical applications”, Physics reports 195 (1990) 127–293.
947
+ [2] D. Sornette, “Multiplicative processes and power laws”, Physical Review E 57 (1998)
948
+ 4811.
949
+ [3] J. Garc´ıa-Ojalvo and J. Sancho, Noise in spatially extended systems (Springer Verlag,
950
+ 1999).
951
+ [4] A. Crisanti, G. Paladin and A. Vulpiani, Products of random matrices in statistical
952
+ physics, volume 104 (Springer Science & Business Media, 2012).
953
+ [5] M. A. Porter and J. P. Gleeson, Dynamical Systems on Networks: A Tutorial
954
+ (Springer series Frontiers in Applied Dynamical Systems: Reviews and Tutorials,
955
+ Switzerland, 2016).
956
+ [6] G. Cencetti, F. Battiston, D. Fanelli and V. Latora, “Reactive random walkers on
957
+ complex networks”, Physical Review E 98 (2018) 052302.
958
+ [7] D. S. Wiersma, “The physics and applications of random lasers”, Nat. Phys. 4 (2008)
959
+ 359–367.
960
+ [8] S. Lepri, S. Cavalieri, G. Oppo and D. S. Wiersma, “Statistical regimes of random
961
+ laser fluctuations”, Phys. Rev. A 75 (2007) 063820.
962
+ [9] S. Lepri, “Fluctuations in a diffusive medium with gain”, Phys. Rev. Lett. 110 (2013)
963
+ 230603.
964
+ [10] E. Raposo and A. Gomes, “Analytical solution for the L´evy-like steady-state distri-
965
+ bution of intensities in random lasers”, Phys. Rev. A 91 (2015) 043827.
966
+ [11] E. Ignesti, F. Tommasi, L. Fini, S. Lepri, V. Radhalakshmi, D. Wiersma and S. Cav-
967
+ alieri, “Experimental and theoretical investigation of statistical regimes in random
968
+ laser emission”, Phys. Rev. A 88 (2013) 033820.
969
+ [12] R. Uppu and S. Mujumdar, “L´evy exponents as universal identifiers of threshold and
970
+ criticality in random lasers”, Phys. Rev. A 90 (2014) 025801.
971
+ [13] A. S. Gomes, E. P. Raposo, A. L. Moura, S. I. Fewo, P. I. Pincheira, V. Jerez, L. J.
972
+ Maia and C. B. De Ara´ujo, “Observation of L´evy distribution and replica symmetry
973
+ breaking in random lasers from a single set of measurements”, Scientific reports 6
974
+ (2016) 27987.
975
+ [14] S. Lepri, “Chaotic fluctuations in graphs with amplification”, Chaos, Solitons &
976
+ Fractals 139 (2020) 110003.
977
+ [15] R. Klages, Microscopic chaos, fractals and transport in nonequilibrium statistical me-
978
+ chanics, volume 24 (World Scientific, 2007).
979
+ [16] S. Lepri, C. Trono and G. Giacomelli, “Complex active optical networks as a new
980
+ laser concept”, Physical review letters 118 (2017) 123901.
981
+ [17] G. Giacomelli, S. Lepri and C. Trono, “Optical networks as complex lasers”, Physical
982
+ Review A 99 (2019) 023841.
983
+ [18] M. Gaio, D. Saxena, J. Bertolotti, D. Pisignano, A. Camposeo and R. Sapienza, “A
984
+ nanophotonic laser on a graph”, Nature communications 10 (2019) 1–7.
985
+ [19] F. Barra and P. Gaspard, “Classical dynamics on graphs”, Phys. Rev. E 63 (2001)
986
+ 066215.
987
+ [20] G. Tanner, “Spectral statistics for unitary transfer matrices of binary graphs”, Jour-
988
+ nal of Physics A: Mathematical and General 33 (2000) 3567.
989
+ [21] P. Pakonski, K. Zyczkowski and M. Kus, “Classical 1d maps, quantum graphs and
990
+ ensembles of unitary matrices”, J. Phys. A 34 (2001) 9303.
991
+
992
+ January 6, 2023
993
+ 1:30
994
+ WSPC/INSTRUCTION FILE
995
+ ampligraph
996
+ 16
997
+ Stefano Lepri
998
+ [22] H. Fujisaka, H. Ishii, M. Inoue and T. Yamada, “Intermittency caused by chaotic
999
+ modulation. ii: Lyapunov exponent, fractal structure and power spectrum”, Progress
1000
+ of theoretical physics 76 (1986) 1198–1209.
1001
+ [23] A. S. Pikovsky and P. Grassberger, “Symmetry breaking bifurcation for coupled
1002
+ chaotic attractors”, Journal of Physics A: Mathematical and General 24 (1991) 4587.
1003
+ [24] H. Nakao, “Asymptotic power law of moments in a random multiplicative process
1004
+ with weak additive noise”, Physical Review E 58 (1998) 1591.
1005
+ [25] S. Lepri, “Fluctuations in a diffusive medium with gain”, Physical review letters 110
1006
+ (2013) 230603.
1007
+ [26] V. V. Uchaikin and V. M. Zolotarev, Chance and stability: stable distributions and
1008
+ their applications (Walter de Gruyter, 1999).
1009
+ [27] J. Krug, “Origins of scale invariance in growth processes”, Advances in Physics 46
1010
+ (1997) 139–282.
1011
+ [28] M. Baldovin, S. Iubini, R. Livi and A. Vulpiani, “Statistical mechanics of systems
1012
+ with negative temperature”, Physics Reports 923 (2021) 1–50.
1013
+ [29] H. Touchette, “Introduction to dynamical large deviations of Markov processes”,
1014
+ Physica A: Statistical Mechanics and its Applications 504 (2018) 5–19.
1015
+ [30] A. Crisanti, G. Paladin and A. Vulpiani, “Generalized Lyapunov exponents in high-
1016
+ dimensional chaotic dynamics and products of large random matrices”, Journal of
1017
+ statistical physics 53 (1988) 583–601.
1018
+ [31] A. Pikovsky and A. Politi, Lyapunov exponents: a tool to explore complex dynamics
1019
+ (Cambridge University Press, 2016).
1020
+ [32] H. Schomerus and M. Titov, “Statistics of finite-time Lyapunov exponents in a ran-
1021
+ dom time-dependent potential”, Physical Review E 66 (2002) 066207.
1022
+ [33] R. Zillmer and A. Pikovsky, “Multiscaling of noise-induced parametric instability”,
1023
+ Physical Review E 67 (2003) 061117.
1024
+ [34] R. Benzi, G. Paladin, G. Parisi and A. Vulpiani, “Characterisation of intermittency in
1025
+ chaotic systems”, Journal of Physics A: Mathematical and General 18 (1985) 2157.
1026
+ [35] J. M. Deutsch, “Generic behavior in linear systems with multiplicative noise”, Phys.
1027
+ Rev. E 48 (1993) 4179–4182.
1028
+ [36] J. M. Deutsch, “Probability distributions for multicomponent systems with multi-
1029
+ plicative noise”, Physica A 208 (1994) 445–461.
1030
+ [37] H. Touchette, “The large deviation approach to statistical mechanics”, Physics Re-
1031
+ ports 478 (2009) 1–69.
1032
+ [38] J. Vanneste, “Estimating generalized Lyapunov exponents for products of random
1033
+ matrices”, Physical Review E 81 (2010) 036701.
1034
+ [39] C. Anteneodo, S. Camargo and R. O. Vallejos, “Importance sampling with imperfect
1035
+ cloning for the computation of generalized Lyapunov exponents”, Physical Review E
1036
+ 96 (2017) 062209.
1037
+
G9A0T4oBgHgl3EQfBv-A/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
H9E4T4oBgHgl3EQfgw3C/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29651b2665c2ebddd3c0e57b9ce45ad147dea2014763e1785e77ce58f9c0173f
3
+ size 85271
HdE5T4oBgHgl3EQfWQ_B/content/tmp_files/2301.05558v1.pdf.txt ADDED
@@ -0,0 +1,1656 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Transition in vortex skyrmion structures in superfluid 3He-A driven by an analogue of
2
+ the zero-charge effect
3
+ R. Rantanen and V.B. Eltsov
4
+ Department of Applied Physics, Aalto University, Finland
5
+ (Dated: January 16, 2023)
6
+ In quantum electrodynamics, the zero-charge effect originates from the logarithmic dependence
7
+ of the coupling constant in the action of the electromagnetic field on the ratio of the ultraviolet and
8
+ infrared energy cutoffs. An analogue of this effect in Weyl superfluid 3He-A is the logarithmic diver-
9
+ gence of the bending energy of the orbital anisotropy axis at low temperatures, where temperature
10
+ plays the role of the infrared cutoff and the vector of the orbital anisotropy plays the role of the
11
+ vector potential of the synthetic electromagnetic field for Weyl fermions. We calculate numerically
12
+ the spatial distribution of the order parameter in rotating 3He-A as a function of temperature. At
13
+ temperatures close to the superfluid transition, we observe formation of vortex skyrmions known as
14
+ the double-quantum vortex and the vortex sheet. These structures include alternating circular and
15
+ hyperbolic merons as a bound pair or a chain, respectively. As temperature lowers towards absolute
16
+ zero, we find a continuous transition in the vortex structures towards a state where the vorticity
17
+ is distributed in thin tubes around the circular merons. For the vortex sheet, we present a phase
18
+ diagram of the transition in the temperature – angular velocity plane and calculations of the nuclear
19
+ magnetic resonance response.
20
+ I.
21
+ INTRODUCTION
22
+ Superfluidity of helium-3 is realized in the spin-triplet
23
+ p-wave pairing state [1]. The Cooper pairs have orbital
24
+ momentum L = 1 and spin S = 1 and several distinct
25
+ superfluid phases are found in the experiments [2]. The
26
+ A phase, which is the focus of this work, is a chiral su-
27
+ perfluid [3], where the components of a Cooper pair have
28
+ equal spins, while all Cooper pairs have orbital momen-
29
+ tum in the direction of the unit vector ˆl. The gap ∆ in
30
+ the fermionic excitation spectrum of 3He-A is anisotropic
31
+ and vanishes at two points on the Fermi surface along
32
+ the orbital anisotropy axis defined by ˆl. Near these gap
33
+ nodes the Bogoliubov excitations have properties of Weyl
34
+ fermions [4].
35
+ Weyl nodes lead to several types of anomalous be-
36
+ haviour in 3He-A, including chiral anomaly [5–7], ther-
37
+ mal Nieh-Yan anomaly [8], Bogoliubov Fermi surface and
38
+ non-thermal normal component in moving 3He-A [9, 10],
39
+ mass currents in the ground state [11, 12], and non-
40
+ analytic coefficients in the expansion of free energy in
41
+ terms of gradients of ˆl [13, 14].
42
+ For Weyl fermions in
43
+ 3He-A, vector ˆl plays the role of the vector potential (up
44
+ to a scaling factor), and thus its spatial variation and
45
+ time dependence create a synthetic electromagnetic field.
46
+ This effective electrodynamics possesses many features of
47
+ the electrodynamics of quantum vacuum. In particular,
48
+ the non-analyticity of the free energy is due to the loga-
49
+ rithmic divergence of the coefficient Kb ∝ ln (∆/T), as-
50
+ sociated with the term [ˆl × (∇ × ˆl)]2. This divergence is
51
+ analogous to the running coupling constant in quantum
52
+ electrodynamics [4], with the gap ∆ and the tempera-
53
+ ture T playing the roles of the ultraviolet and infrared
54
+ cut-offs, respectively [15]. The logarithmically divergent
55
+ running coupling constant in QED is due to the screen-
56
+ ing of electric charges by the polarized vacuum, known
57
+ as the zero-charge effect.
58
+ In liquid 3He-A, the spatial distribution of ˆl is rela-
59
+ tively flexible and can be manipulated by an external
60
+ magnetic field, solid boundaries and rotation.
61
+ The A
62
+ phase tends to respond to rotation by creation of a con-
63
+ tinuous distribution of ˆl in the plane perpendicular to
64
+ the rotation axis, formed from elements which carry both
65
+ vortex and skyrmion topological charges, so-called vortex
66
+ skyrmions. In this paper we present numerical calcula-
67
+ tions on continuous vortex skyrmion structures at low
68
+ temperatures, where the divergence of the bending coef-
69
+ ficient Kb becomes relevant. The increased energy con-
70
+ tribution from bending deformations of ˆl alters the vor-
71
+ tex structures in a quantifiable manner. We have found
72
+ a transition between two distinct core structures, and
73
+ present a Ω-T phase diagram for the transition.
74
+ In Sec. II we describe the different contributions to
75
+ the free energy, and in Sec. III some possible realizations
76
+ of vortex skyrmions in 3He-A: the double-quantum vor-
77
+ tex and the vortex sheet. The numerical methods used
78
+ to find the distribution of ˆl are described in Sec.
79
+ IV.
80
+ Section V briefly discusses the methods to calculate the
81
+ nuclear magnetic resonance (NMR) response of the vor-
82
+ tex skyrmion structures.
83
+ The results of the paper are
84
+ divided into four sections: in Sec.
85
+ VI we present cal-
86
+ culations of a model ATC vortex and quantitative pre-
87
+ dictions on the low temperature structures, in Sec. VII
88
+ results from vortex sheet calculations, in Sec. VIII from
89
+ separate double-quantum vortices and finally in Sec. IX
90
+ we compare the results with the predictions made in Sec.
91
+ VI. The last section is dedicated to the conclusion.
92
+ II.
93
+ FREE ENERGY DENSITY OF 3He-A
94
+ The order parameter in the A phase of superfluid 3He
95
+ is separable in spin and orbital variables and has the
96
+ arXiv:2301.05558v1 [cond-mat.other] 13 Jan 2023
97
+
98
+ 2
99
+ form [1]
100
+ Aµj = ∆A ˆdµ( ˆmj + iˆnj)
101
+ (1)
102
+ where unit vectors ˆm, ˆn and ˆl form an orthonormal triad
103
+ with ˆl being the direction of the orbital angular mo-
104
+ mentum of the Cooper pair, ˆd is a unit vector of spin
105
+ anisotropy perpendicular to the preferred direction of
106
+ the Cooper pair spin and ∆A is the temperature- and
107
+ pressure-dependent maximum gap in the energy spec-
108
+ trum of Bogoliubov quasiparticles.
109
+ The orientation of the order parameter anisotropy axes
110
+ is affected by multiple competing interactions.
111
+ The
112
+ dipole interaction between magnetic momenta of the
113
+ atoms forming the Cooper pair results in spin-orbit cou-
114
+ pling, with the free energy density
115
+ fdip = 3
116
+ 5gd
117
+
118
+ 1 − (ˆl · ˆd)2�
119
+ .
120
+ (2)
121
+ The spin-orbit energy is minimized when ˆl is parallel or
122
+ antiparallel to ˆd. The coefficient gd is expressed as [1]
123
+ gd(T) = 4
124
+ 3λdN(0)∆A(T)2
125
+ (3)
126
+ where λd ≈ 5 × 10−7 is an approximately constant cou-
127
+ pling parameter and N(0) is the pressure-dependent den-
128
+ sity of states for one spin state.
129
+ In an external magnetic field H, the spins of the
130
+ Cooper pairs tend to align along it and thus ˆd favors
131
+ orientation orthogonal to H.
132
+ The magnetic (Zeeman)
133
+ energy density is
134
+ fmag = 1
135
+ 2∆χ
136
+
137
+ ˆd · H
138
+ �2
139
+ .
140
+ (4)
141
+ The coefficient ∆χ is the difference between the two
142
+ eigenvalues of the spin susceptibility tensor [1]
143
+ ∆χ = 1
144
+ 2γ2ℏ2N(0) 1 − Y0
145
+ 1 + F a
146
+ 0 Y0
147
+ (5)
148
+ where γ = −20378 G−1s−1 is the gyromagnetic ratio of
149
+ 3He, Y0 is the Yosida function and F a
150
+ 0 ≈ −0.756 (at a
151
+ pressure of 33 bar)[16] is the pressure dependent spin-
152
+ asymmetric Landau parameter.
153
+ Comparing Eqs. (4) and (2) one finds that the orien-
154
+ tation effect of the magnetic field overcomes that of the
155
+ spin-orbit interaction at the so-called dipolar field
156
+ H∗ =
157
+ �6
158
+ 5
159
+ gd
160
+ ∆χ
161
+ �1/2
162
+ ≈ 30 G.
163
+ (6)
164
+ In an isotropic superfluid such as 4He, the superfluid
165
+ velocity vs is defined by the gradient of the phase φ of
166
+ the order parameter ψ = |ψ|eiφ
167
+ v(4He)
168
+ s
169
+ = ℏ
170
+ m4
171
+ ∇φ.
172
+ (7)
173
+ In superfluid 3He-A, with an anisotropic order parameter,
174
+ the situation is more complicated. The order parameter
175
+ in Eq. (1) is invariant under relative gauge-orbit trans-
176
+ formation and multiplying Aµj with a phase factor eiφ
177
+ can be compensated by rotating ˆm and ˆn around ˆl by
178
+ −φ, ie. by transforming ˆm + iˆn → e−iφ( ˆm′ + iˆn′). The
179
+ phase of the order parameter is then intrinsically linked
180
+ to its orientation through the orbital angular momentum
181
+ vector ˆl. The superfluid velocity in the A phase is given
182
+ by [17]
183
+ vs =
184
+
185
+ 2m3
186
+
187
+ i
188
+ ˆmi∇ˆni
189
+ (8)
190
+ where m3 is the mass of the 3He atom.
191
+ Superflow is
192
+ created by rotation of the orbital triad around a fixed
193
+ ˆl, as well as by changes in the orientation of ˆl.
194
+ The
195
+ superfluid velocity in Eq. (8) is linked to the ˆl vector
196
+ through the Mermin-Ho relation [18]:
197
+ ω = ∇ × vs =
198
+
199
+ 4m3
200
+
201
+ ijk
202
+ ϵijkˆli
203
+
204
+ ∇ˆlj × ∇ˆlk
205
+
206
+ .
207
+ (9)
208
+ In the free energy we consider the terms with vs to be
209
+ the kinetic energy. The kinetic energy density of 3He-A
210
+ is
211
+ fkin = 1
212
+ 2ρs⊥
213
+
214
+ ˆl × vs
215
+ �2
216
+ + 1
217
+ 2ρs∥
218
+
219
+ ˆl · vs
220
+ �2
221
+ + Cvs ·
222
+
223
+ ∇ × ˆl
224
+
225
+ − C0
226
+
227
+ vs · ˆl
228
+
229
+ ˆl ·
230
+
231
+ ∇ × ˆl
232
+
233
+ (10)
234
+ where ρs⊥ and ρs∥ are the superfluid density in the di-
235
+ rection perpendicular and parallel to ˆl, respectively, and
236
+ C and C0 are coefficients related to the superflow. The
237
+ first two terms in Eq. (10) can be written as
238
+ 1
239
+ 2ρs⊥v2
240
+ s − 1
241
+ 2
242
+
243
+ ρs⊥ − ρs∥
244
+ � �
245
+ ˆl · vs
246
+ �2
247
+ .
248
+ It is seen from here that it is energetically favorable for
249
+ ˆl to be oriented along the superfluid velocity vs, since
250
+ ρs⊥ > ρs∥ as the gap in the quasiparticle energy spectrum
251
+ is at maximum in the direction perpendicular to ˆl while
252
+ it is zero along ˆl.
253
+ In a superfluid rotating with constant angular veloc-
254
+ ity Ω, the normal fluid rotates as a solid body with the
255
+ velocity
256
+ vn = Ω × r.
257
+ (11)
258
+ For a rotating system, two extra terms are included in
259
+ the free energy of the whole fluid,
260
+ 1
261
+ 2ρnv2
262
+ n and −Ω · L
263
+ where L is the total angular momentum. Adding these
264
+ terms is equivalent to transforming vs → vs − vn in Eq.
265
+ (10), when a constant term − 1
266
+ 2ρv2
267
+ n is omitted.
268
+ In the absence of an external magnetic field and ro-
269
+ tation, the minimum energy configuration in the bulk
270
+ corresponds to the uniform order parameter. This is due
271
+ to the elastic energy associated with changes in the ori-
272
+ entation of the ˆl and ˆd vectors
273
+
274
+ 3
275
+ fel = 1
276
+ 2Ks
277
+
278
+ ∇ · ˆl
279
+ �2
280
+ + 1
281
+ 2Kt
282
+
283
+ ˆl ·
284
+
285
+ ∇ × ˆl
286
+ ��2
287
+ + 1
288
+ 2Kb
289
+
290
+ ˆl ×
291
+
292
+ ∇ × ˆl
293
+ ��2
294
+ + 1
295
+ 2K5
296
+
297
+ a
298
+ ��
299
+ ˆl · ∇
300
+
301
+ ˆda
302
+ �2
303
+ + 1
304
+ 2K6
305
+
306
+ a
307
+
308
+ ˆl × ∇ ˆda
309
+ �2
310
+ (12)
311
+ where the terms with coefficients Ks, Kt and Kb corre-
312
+ spond to splay-, twist-, and bend-like deformations in the
313
+ ˆl-vector texture, respectively. The terms with K5 and K6
314
+ are related to changes in the ˆd vector orientation.
315
+ The temperature dependent coefficients Ki in the elas-
316
+ tic energy are calculated using Cross’s weak coupling gas
317
+ model [14], following Fetter [19] and using the Cross func-
318
+ tions calculated by Thuneberg [20]. The coefficients en-
319
+ tering in the free energy density are presented in Ap-
320
+ pendix B. The bending coefficient Kb warrants special
321
+ attention, as it is connected to the zero-charge effect in
322
+ 3He-A [4].
323
+ It is logarithmically divergent as Kb(T) =
324
+ Kb1 + Kb2 ln(Tc/T) when T → 0 owing to nodes in the
325
+ energy gap in the spectrum of Bogoliubov quasiparticles
326
+ [14].
327
+ The boundary conditions imposed by the container
328
+ walls are also crucial in determining the texture. Most
329
+ importantly, the ˆl vectors are forced perpendicular to the
330
+ boundary surface [21]. This means that the ˆl texture can-
331
+ not be uniform in a system with finite size. In addition,
332
+ the superflow through the walls must be zero [22], mean-
333
+ ing that in the rotating frame vs − vn must be aligned
334
+ parallel to the surface at the boundaries. Ignoring mag-
335
+ netic relaxation effects near the surface, the spin currents
336
+ and thus the gradients of the spin anisotropy vector com-
337
+ ponents ∇ ˆda are aligned parallel to the boundaries.
338
+ III.
339
+ CONTINUOUS VORTICES
340
+ The form of superfluid velocity in 3He-A, Eq. (8), al-
341
+ lows for the formation of vortex structures that do not
342
+ require the suppression of the amplitude of the order pa-
343
+ rameter like in conventional superfluids and superconduc-
344
+ tors. As shown by the Mermin-Ho relation (9), the vortic-
345
+ ity ω can be non-zero in regions where ˆl is non-uniform.
346
+ This means that non-singular vortices with continuous
347
+ vorticity can exist in the superfluid.
348
+ In this paper, we focus on continuous vortex structures.
349
+ In 3He-A hard-core defects where the order parameter is
350
+ suppressed are also possible. These types of structures
351
+ are generally not formed when rotation is started in the
352
+ superfluid state, due to their high critical velocity of nu-
353
+ cleation compared to continuous vortices [23, 24].
354
+ On a closed path around a vortex, the circulation is
355
+ given by [25]
356
+ νκ0 =
357
+
358
+ vs · dr =
359
+
360
+ 2m3
361
+ S(ˆl)
362
+ (13)
363
+ where κ0 = h/2m3 is the quantum of circulation for 3He,
364
+ ν is the number of circulation quanta and S(ˆl) is de-
365
+ fined as the area on the unit sphere covered by the ori-
366
+ entations of ˆl inside the domain bounded by the closed
367
+ path.
368
+ In Eq. (13), the first integral along the path is
369
+ the usual expression of the topological invariant defining
370
+ quantized vortices.
371
+ The second integral over the area
372
+ enclosed by the path is the topological invariant usu-
373
+ ally used for defining skyrmions. The equivalence of the
374
+ two expressions follows from the Mermin-Ho relation (9).
375
+ The continuous vortex structures in 3He-A, surrounded
376
+ by the volume where ˆl lies in a plane, possess both invari-
377
+ ants, that is, they are simultaneously quantized vortices
378
+ and skyrmions. The in-plane orientation of ˆl in the exter-
379
+ nal regions, needed to ensure integer values of integrals
380
+ in Eq. (13), is usually provided by the boundary condi-
381
+ tions at the sample walls or by the combination of the
382
+ spin-orbit (2) and Zeeman (4) interactions in the applied
383
+ magnetic field.
384
+ The simplest continuous vortex structure contains one
385
+ quantum of circulation, and is known as the Mermin-
386
+ Ho vortex. In the core of a Mermin-Ho vortex, the ˆl-
387
+ vectors rotate out of the plane, covering exactly half of
388
+ a unit sphere. Single Mermin-Ho vortices are observed
389
+ in narrow cylinders [26] where they are stabilized by the
390
+ effect of the container walls on the orientation of ˆl.
391
+ A skyrmion in 3He-A is a topological object where the
392
+ ˆl vectors cover the whole unit sphere, with ν = 2 quanta
393
+ of circulation. An axisymmetric skyrmion known as the
394
+ Anderson-Toulouse-Chechetkin (ATC) vortex [27, 28] is
395
+ the simplest model for a double-quantum vortex in 3He-
396
+ A. The ATC vortex with the axis along ˆz consists of a
397
+ topological soliton separating a core region with ˆl = ˆz
398
+ from an outer region with ˆl = −ˆz. In a finite system,
399
+ however, the axisymmetry of the structure is broken by
400
+ the bulk ˆl texture, which is confined to the xy plane
401
+ by the boundary conditions at the walls parallel to ˆz.
402
+ The non-axisymmetric double-quantum vortex, shown in
403
+ figure 1a, consists of two merons: one circular and one
404
+ hyperbolic. The circular meron covers the top half of the
405
+ unit sphere and the hyperbolic meron the lower half. The
406
+ vorticity ω in a double-quantum vortex (DQV) is concen-
407
+ trated in a cylindrical tube around the axis of the vortex,
408
+ with a vorticity free region between the two merons [29].
409
+ These structures typically appear in systems with mag-
410
+ netic fields above the dipolar field [24], where the order
411
+ parameter is ”dipole-unlocked” inside the core, so that
412
+ ˆd is forced to stay in-plane by the magnetic field while
413
+ ˆl covers all possible directions. In lower magnetic fields,
414
+ the merons arrange into a square lattice where a cell con-
415
+ sists of two hyperbolic and two circular vortices, totaling
416
+ four circulation quanta.
417
+ At high rotation velocities, the vortex sheet is the pre-
418
+ ferred texture over separate vortex lines [24]. A vortex
419
+ sheet is a chain of alternating circular and hyperbolic
420
+
421
+ 4
422
+ 100 µm
423
+ (a)
424
+ 0
425
+ 1e-3
426
+ 2e-3
427
+ (b)
428
+ 40 µm
429
+ 40 µm
430
+ (c)
431
+ 0
432
+ 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
433
+ 0.01
434
+ FIG. 1. Three different continous vortex structures with four
435
+ quanta of circulation in 3He-A. The blue arrows represent
436
+ the ˆl vector texture and the background color is vorticity
437
+ in units of κ/µm2.
438
+ (a) Two double-quantum vortices at
439
+ Ω = 0.30 rad/s. (b) A circular vortex sheet at Ω = 5.70 rad/s.
440
+ (c) Two separate vortex sheets, each with two quanta of cir-
441
+ culation at Ω = 5.70 rad/s. The sheets are connected to the
442
+ container walls outside the shown area.
443
+ merons confined inside a topological soliton that sepa-
444
+ rates two regions minimizing spin-orbit interaction en-
445
+ ergy with one having ˆl ↑↑ ˆd and the other ˆl ↑↓ ˆd. A
446
+ circular vortex sheet texture is shown in figure 1b. The
447
+ sheet can be connected to the container walls (figure 1c),
448
+ and as the rotation speed is increased, vortices enter the
449
+ system through these connection points and the vortex
450
+ sheet begins to spiral, meandering around the volume
451
+ while keeping the soliton walls equidistant [30]. After a
452
+ wall-connected soliton has appeared in the system, it be-
453
+ comes difficult to nucleate separate vortices, as the criti-
454
+ cal velocity of formation of new merons at the connection
455
+ of the vortex sheet to the wall is lower than that of sep-
456
+ arate DQVs [31, 32].
457
+ IV.
458
+ NUMERICAL METHODS
459
+ We find the lowest-energy state of 3He-A in the London
460
+ limit through numerical minimization. The calculation is
461
+ done in two dimensions and we assume that the system is
462
+ uniform in the z direction. The function to be minimized
463
+ is the total energy per unit height F, defined as
464
+ F =
465
+
466
+ S
467
+ (fdip + fmag + fkin + fel) dS
468
+ (14)
469
+ The minimization is performed with respect to the spin
470
+ anisotropy vector ˆd and the orbital triad consisting of
471
+ the three orthonormal vectors ˆl, ˆm and ˆn. The param-
472
+ eterization of the triad is done using unit quaternions.
473
+ Quaternions have the benefit of reducing the number of
474
+ variables from nine to only four, while also avoiding the
475
+ problems associated with Euler angles like singularities
476
+ and gimbal lock. The ˆd vector is parameterized with az-
477
+ imuthal and polar angles α and β, where these problems
478
+ are avoided by choosing the polar axis along the magnetic
479
+ field direction. The magnetic energy (4) ensures that the
480
+ polar angle should always be nonzero during the min-
481
+ imization process in the dipole-unlocked regime we are
482
+ interested in. The parameterization is presented in more
483
+ detail in the Appendix.
484
+ The calculations are done on two-dimensional circular
485
+ domains with varying radii, which are meshed into tri-
486
+ angular elements. The resolution used is limited by the
487
+ available computational time and memory and varies be-
488
+ tween 3.5 µm and 10 µm depending on the size of the sys-
489
+ tem in question. The integration in Eq. (14) is done using
490
+ Gaussian quadrature rules on the triangles. MATLAB is
491
+ used to find the texture that minimizes the total energy
492
+ using the BFGS method. The boundary conditions are
493
+ implemented with the barrier method by adding an addi-
494
+ tional energy term that penalizes parameter values that
495
+ would violate the boundary conditions.
496
+ The coefficients for the free energy terms are calculated
497
+ at a pressure of 33 bar and varying temperatures. The
498
+ magnetic field in the simulations is set to 0.55 T, as that
499
+ is a high enough value for 3He-A to be stable down to
500
+ zero temperature.
501
+ V.
502
+ NUCLEAR MAGNETIC RESONANCE
503
+ Nuclear magnetic resonance (NMR) is a useful exper-
504
+ imental tool for studies of superfluid helium-3. Different
505
+ order parameter structures can usually be distinguished
506
+ from the NMR absorption spectrum. In 3He-A, the long-
507
+ range order of ˆl and ˆd together with the spin-orbit inter-
508
+ action leads to spontaneously broken spin-orbit symme-
509
+ try [33]. The coupling between the spin and orbital de-
510
+ grees of freedom leads to an extra torque applied to the
511
+ precessing spin in NMR experiments which allows us to
512
+ probe the ˆl texture. Different vortex structures result in
513
+ satellites in the NMR spectrum with characteristic fre-
514
+ quency shifts [34]. We consider longitudinal NMR here,
515
+ because at low temperatures we are interested in, 3He-A
516
+ in bulk is stable at relatively high magnetic fields and the
517
+ longitudinal resonance frequencies are independent of the
518
+ magnetic field strength.
519
+ Assuming a static equilibrium texture for ˆd = ˆd0, we
520
+ parametrize the deviation of ˆd from the equilibrium due
521
+ to the oscillating field with two parameters dH and dθ
522
+ for the deviation along the field and perpendicular to the
523
+ field, respectively. The ˆd vector in the presence of the
524
+
525
+ 45
526
+ oscillating field is
527
+ ˆd = ˆd0 + ( ˆ
528
+ H × ˆd0)dθ + ˆ
529
+ HdH
530
+ (15)
531
+ where ˆ
532
+ H is a unit vector in the direction of the static
533
+ magnetic field.
534
+ The longitudinal NMR resonance fre-
535
+ quencies are given by the Schr¨odinger-type equation [35]
536
+ (D + U∥)dθ = α∥dθ
537
+ (16)
538
+ where the operator D is defined as
539
+ Df = −5
540
+ 6
541
+ K6
542
+ gd
543
+ ∇2f − 5
544
+ 6
545
+ K5 − K6
546
+ gd
547
+ ∇ ·
548
+
549
+ ˆl(ˆl · ∇)f
550
+
551
+ (17)
552
+ and the potential is
553
+ U∥ = 1 − ( ˆ
554
+ H · ˆl)2 − 2[ ˆ
555
+ H · (ˆl × ˆd)]2
556
+ (18)
557
+ The resonance frequencies are related to the eigenvalues
558
+ α∥ in (16) by
559
+ ω2
560
+ ∥ = Ω2
561
+ Aα∥
562
+ (19)
563
+ where ΩA is the Leggett frequency of the A phase.
564
+ The NMR resonance frequencies are calculated by solv-
565
+ ing the eigenvalue problem (16) using the finite element
566
+ method (FEM). The same mesh from the energy min-
567
+ imization is used and the equation is discretized using
568
+ linear shape functions. The calculated eigenfunctions ψk
569
+ are normalized so that
570
+
571
+ S
572
+ |ψk|2dS = 1
573
+ (20)
574
+ for each eigenfunction. The convenience of FEM is that
575
+ the method automatically enforces the Neumann bound-
576
+ ary conditions for the spin waves. Dissipation effects are
577
+ not taken into account in the NMR calculation, which
578
+ may affect the results quantitatively.
579
+ VI.
580
+ ATC VORTEX
581
+ At low temperatures, the logarithmic divergence of
582
+ the Kb coefficient implies that the manifested struc-
583
+ ture should be one that minimizes bending deformations.
584
+ Since the ˆl vectors in a double-quantum vortex cover the
585
+ whole unit sphere, this type of deformation cannot be
586
+ avoided completely. In a circular ATC vortex, the ˆl vec-
587
+ tors pointing along ˆz in the center are separated from an
588
+ external region with ˆl along −ˆz by a topological twist
589
+ soliton. There are two defining lengths for the soliton:
590
+ the radius a and the thickness b, illustrated in the in-
591
+ set in figure 2a. Along the radial direction there is only
592
+ twist deformation, but on a loop around the vortex center
593
+ ˆl bends (and splays) a full rotation, so that the elastic
594
+ energy can be estimated as Fel ∼ Kb(b/a) + Kt(a/b).
595
+ Therefore we expect that as the temperature decreases,
596
+ the radius of the vortex increases, while the thickness of
597
+ the soliton decreases. According to the Mermin-Ho re-
598
+ lation (9), the vorticity ω is concentrated in the soliton,
599
+ with no vorticity in the relatively uniform center.
600
+ The structure suggested by Volovik [36] is this type of
601
+ ATC vortex, where the ˆl texture in the soliton is
602
+ ˆl = cos χ(r)ˆz + sin χ(r) ˆϕ
603
+ (21)
604
+ χ(r) = arccot
605
+
606
+ −r − a
607
+ b
608
+
609
+ (22)
610
+ where r, ϕ and z are the cylindrical coordinates. Follow-
611
+ ing the derivation by Volovik, but including the effect of
612
+ the rotation of the system in the kinetic energy gives us
613
+ the following formulas for the soliton radius and thick-
614
+ ness:
615
+ a =
616
+
617
+ ��
618
+ ρ
619
+
620
+
621
+ m3
622
+ �2
623
+ 2ρΩ ℏ
624
+ m3 + 12
625
+ 5 πgd
626
+
627
+ Kt
628
+ Kb
629
+ �1/2
630
+
631
+ ��
632
+ 1/2
633
+
634
+
635
+
636
+ 2m3Ω
637
+ �1/2
638
+ (23)
639
+ b = a
640
+ �Kt
641
+ Kb
642
+ �1/2
643
+ (24)
644
+ The magnetic field H is transverse to the cylinder axis.
645
+ To simplify the derivation, ˆd is assumed to be uniformly
646
+ along ˆz and the terms with C and C0 in Eq. (10) have
647
+ been ignored. At higher rotation speeds, however, these
648
+ terms turn out to have a considerable effect.
649
+ At finite rotation speeds, the temperature dependence
650
+ of a is negligible, which gives the Kb-independent expres-
651
+ sion in Eq. (23). Therefore the effects of the logarithmic
652
+ divergence of Kb should only be seen in the narrowing of
653
+ the domain wall.
654
+ We numerically calculate the structure of the ATC vor-
655
+ tex in a circular domain with a radius R = 115 µm. As
656
+ the initial configuration for the energy minimization we
657
+ set ˆl parallel to ˆz at the center and antiparallel to ˆz at
658
+ the boundary, with a linear rotation around the radial
659
+ direction in between. The boundary condition is applied
660
+ such that ˆl stays antiparallel to the z-axis at the edge of
661
+ the calculation domain. The magnetic field direction is
662
+ along the y-axis and accordingly the ˆd vectors are uni-
663
+ formly pointing in the z direction. The temperature is
664
+ set to T = 0.005Tc. The angular velocity is initially set
665
+ to the value Ω = 2.7 rad/s, as minimization with zero
666
+ rotation results in the vortex drifting to the walls of the
667
+ simulation box. The result of this minimization is then
668
+ used as an initial state for the angular velocity sweep.
669
+ An example of the ATC vortex texture is presented in
670
+ figure 2a.
671
+ The value of the angular velocity Ω is gradually de-
672
+ creased in steps of 0.1 rad/s, starting from the initial
673
+ value Ω = 2.7 rad/s. At each step of Ω, the previous
674
+ minimization result is used as the new initial state, in
675
+ order to mimic a realistic continuous deceleration. An
676
+
677
+ 6
678
+ -100
679
+ -50
680
+ 0
681
+ 50
682
+ 100
683
+ x (µm)
684
+ -100
685
+ -50
686
+ 0
687
+ 50
688
+ 100
689
+ y (µm)
690
+ (a)
691
+ 0
692
+ 0.5
693
+ 1
694
+ 1.5
695
+ 2
696
+ 2.5
697
+ 3
698
+ 3.5
699
+ 4
700
+ 4.5
701
+ 5
702
+ 10-3
703
+ a
704
+ b
705
+ (c)
706
+ (d)
707
+ (e)
708
+ 0
709
+ 0.1
710
+ 0.2
711
+ 0.3
712
+ 0.4
713
+ 0.5
714
+ 0.6
715
+ 0.7
716
+ 0.8
717
+ T/Tc
718
+ 0.2
719
+ 0.4
720
+ 0.6
721
+ 0.8
722
+ 1
723
+ rel
724
+ (b)
725
+ c
726
+ d
727
+ e
728
+ FIG. 2.
729
+ (a) Spatial distribution (texture) of the orbital anisotropy axis ˆl (blue arrows) in the ATC vortex, where ˆl is parallel to
730
+ the ˆz-axis in the center of the computational domain and antiparallel to it at the boundary. The color indicates the distribution
731
+ of vorticity in units of κ/µm2. The predicted vorticity tube is clearly visible. (Inset) An example of a fit (line) of the angle χ
732
+ determined from the simulation results along y = 0 (points) to Eq.(22). The radius a and thickness b are determined from the
733
+ fit and illustrated in the figure. The calculations are performed at T = 0.01Tc and Ω = 2.3 rad/s. (b) The relative vorticity
734
+ ωrel of the ATC vortex as a function of temperature. The values are calculated from the temperature sweep. (c)-(e) ATC
735
+ vortex texture and vorticity distribution at temperatures 0.001Tc, 0.15Tc and 0.80Tc, respectively. The corresponding points
736
+ are marked with filled black circles in (b). The color scale is the same as in (a).
737
+ increasing Ω sweep is also performed, similarly starting
738
+ at the initial Ω = 2.7 rad/s.
739
+ The lowest energy during the Ω sweep is achieved at
740
+ Ω = 2.3 rad/s.
741
+ This value for Ω is used in the tem-
742
+ perature sweep. The temperature sweep is started from
743
+ T/Tc = 0.001 and the temperature is increased gradually
744
+ in steps, ending at a temperature of T/Tc = 0.8. More
745
+ points are calculated at lower temperatures T/Tc < 0.1,
746
+ as that is the region where the logarithmic divergence of
747
+ the Kb coefficient is relevant.
748
+ From the simulation results we find the radius and
749
+ width of the topological soliton by fitting values of
750
+ cos−1(ˆlz) to the model χ(r) dependence in Eq. (22), with
751
+ a and b as the fitting parameters. An example fit is shown
752
+ in the inset in figure 2a. The fits are done along multi-
753
+ ple radial lines going around the whole simulation disk,
754
+ and the radius and width values a and b are taken as the
755
+ mean of the fitting parameters over each line. There is
756
+ slight axial asymmetry in the texture, due to the dipole
757
+ interaction in the transverse field.
758
+ The numerically calculated and predicted values of a
759
+ and b for the ATC vortex are shown in figure 3. The pre-
760
+ dicted dependence a−2 ∝ Ω and b−2 ∝ Ω is not so clear in
761
+ the simulation results. A possible reason is the omission
762
+ of the C and C0 terms in the kinetic energy in the model
763
+ derivation. To test this possibility, a simulation with the
764
+ same setup but without these terms has been performed,
765
+ the results of which are also shown in figure 3.
766
+ The analytic model is indeed in closer agreement with
767
+ the simulation without C terms, especially at higher an-
768
+ gular velocities. At low rotation speeds, the agreement
769
+ becomes worse, as the numerically calculated structure
770
+ becomes limited by the simulation domain.
771
+ During the increasing temperature sweep, the vortic-
772
+ ity distribution in the vortex becomes more uniform. Af-
773
+ ter becoming completely uniform at around T = 0.15Tc,
774
+ the tube distribution reappears, as shown in figures 2c-d.
775
+ A good quantitative indicator for the presence of these
776
+ vorticity tubes is found to be the relative vorticity ωrel
777
+ defined as the ratio of the vorticity at the center of the
778
+ vortex (where ˆlz = 1) to the maximum vorticity in the
779
+ system
780
+ ωrel =
781
+ |ω|
782
+ max(|ω|).
783
+ (25)
784
+ The relative vorticity for the ATC vortex is plotted in
785
+ figure 2b. At both low and high temperatures ωrel ap-
786
+ proaches zero, but the effect is caused by different interac-
787
+ tions. At temperatures below T = 0.15Tc, the ˆl texture
788
+ at the center of the vortex becomes more uniform and
789
+ therefore vorticity-free due to the increasing energy cost
790
+ of bending deformations. At high temperatures, the vor-
791
+ tex center similarly becomes uniform, but this time as a
792
+ result of the dipole interaction preferring the orientation
793
+ ˆl ∥ ˆd = ˆz, due to the transverse magnetic field.
794
+ As mentioned earlier, the axisymmetric ATC vortex
795
+
796
+ 7
797
+ 0
798
+ 0.02
799
+ 0.04
800
+ 0.06
801
+ 0.08
802
+ T/Tc
803
+ 20
804
+ 30
805
+ 40
806
+ 50
807
+ 60
808
+ Structure size ( m)
809
+ 0.5
810
+ 1
811
+ 1.5
812
+ 2
813
+ 2.5
814
+ 3
815
+ 3.5
816
+ 4
817
+ 4.5
818
+ (rad/s)
819
+ 0
820
+ 1
821
+ 2
822
+ 3
823
+ 4
824
+ 5
825
+ Linearized structure size ( m-2)
826
+ 10-3
827
+ anoC
828
+ bnoC
829
+ asimul
830
+ bsimul
831
+ apredict
832
+ bpredict
833
+ FIG. 3.
834
+ Size of the vorticity tube in the ATC vortex. (Left) The width and radius of the vorticity tube in the ATC vortex,
835
+ figure 2, as a function of temperature at Ω = 2.3 rad/s. The solid blue line and dashed red line correspond to the values of a
836
+ and b calculated from Eqs. (23) and (24), respectively, and the filled blue circles (•) and red squares (■) are the corresponding
837
+ values determined from the simulation results.
838
+ The results from a simulation run where the kinetic energy terms with C
839
+ and C0 coefficients have been set to zero are shown as empty blue circles (◦) and red squares (□) for a and b, respectively.
840
+ The temperature dependence is similar in the numerical calculations and the model, although the radius is predicted to be
841
+ significantly larger than numerically calculated. (Right) a−2 and b−2 as functions of rotation speed. From the equations (23)
842
+ and (24), the behaviour is expected to be linear in these coordinates. The symbols are the same as in the left panel. The
843
+ omission of the C terms provides a much better match for Ω-dependence. At low angular velocities, the discrepancy grows as
844
+ the size of the computation domain limits the size of the vortex.
845
+ is not the structure typically observed in realistic sys-
846
+ tems. However, the simple model calculations indicate
847
+ that the logarithmic divergence of Kb could cause textu-
848
+ ral changes in more complicated vortex systems as well.
849
+ The specific changes will depend on the structure in ques-
850
+ tion, but the formation of topological twist solitons seems
851
+ like a good candidate for reducing bending energy, if pos-
852
+ sible.
853
+ VII.
854
+ VORTEX SHEET
855
+ The first realistic structure we consider is the vortex
856
+ sheet. The different merons inside a sheet are easily dis-
857
+ tinguishable, and aside from the asymptotic behaviour
858
+ the circular merons bear some similarities with the ATC
859
+ vortex, which indicates that the bending energy could be
860
+ reduced by a transformation like the one observed in the
861
+ model vortex.
862
+ The vortex sheet structure is constructed using vor-
863
+ tex formation at a flow instability. The initial state at
864
+ zero velocity is the so called PanAm-texture, an in-plane
865
+ distribution of ˆl, where on one half of the sample circum-
866
+ ference ˆl is directed inwards and on the other half out-
867
+ wards. In simulations, reorientation of ˆl happens within
868
+ a disretization triangle and the full texture includes two
869
+ such defects. In real 3He-A, these defects have a hard
870
+ core and thus cannot be adequately represented in our
871
+ London-limit calculations. Nevertheless, on increase of
872
+ the rotation velocity in simulations we observe that the
873
+ defects act as a source of vorticity, as in the experiments
874
+ [23], and this is sufficient for our purposes. The radius of
875
+ the calculation domain is R = 115 µm, the magnetic field
876
+ is applied along the y axis and the temperature is 0.80Tc.
877
+ The angular velocity Ω is increased gradually in steps of
878
+ 0.1 rad/s, using the minimization result of the previous
879
+ step as the initial state of the next one. After two DQVs
880
+ enter the system, they merge into a circular sheet with
881
+ four quanta of circulation like the one in figure 1b. Then
882
+ Ω is decreased to find the rotation velocity where the
883
+ total energy is lowest, which occurs at Ω = 5.7 rad/s.
884
+ A detailed report on vortex formation and merging to
885
+ sheets in our calculations will be published separately.
886
+ With a stable four-quanta sheet, the temperature is
887
+ decreased down to 0.006Tc.
888
+ During the temperature
889
+ sweep, the sheet reconnects with the container walls,
890
+ splitting into two separate sheets (see figure 1c), each
891
+ with two quanta of circulation embedded in a splay soli-
892
+ ton. In order to test the stability of the newly formed
893
+ two-sheet texture, further temperature sweeps were per-
894
+
895
+ 8
896
+ x
897
+ y
898
+ (d)
899
+ 50 µm
900
+ (a)
901
+ (g)
902
+ (b)
903
+ (h)
904
+ (c)
905
+ (i)
906
+ (e)
907
+ 0
908
+ 0.01
909
+ (f)
910
+ 0
911
+ 1
912
+ H
913
+ FIG. 4. The zero-charge transition in the vortex sheet. The texture in (a-c) is calculated at 0.8Tc, the one in (d-f) at 0.2Tc
914
+ and the one in (g-i) at 0.006Tc. (a) The ˆl-vector texture, shown using blue arrows, with the vorticity distribution given by the
915
+ colormap in units of κ/µm2. The two vortex sheets are clearly visible, with vorticity distributed uniformly along the sheet. The
916
+ centers of the circular and hyperbolic merons are marked with circles and crosses, respectively. (b) A close-up of the circular
917
+ meron area marked by the dashed line in (a). The point where ˆlz = 1 is marked with a circle. (c) A density plot for the value
918
+ of |ˆl × ˆd|. The regions where ˆl and ˆd are not aligned are darker. (d) The texture at 0.2Tc. The vorticity in the sheets has
919
+ concentrated near the merons. (e) Close-up of the circular meron marked with a dashed line in (d). (f) The |ˆl × ˆd| density
920
+ plot at 0.2Tc. The background soliton of the sheets is still there despite the change in vorticity distribution. (g) The texture
921
+ at 0.006Tc, after the transition. The vorticity near the circular merons has formed the distinct tube shapes associated with
922
+ the zero-charge effect. (h) A close-up of the circular meron marked with a dashed line in (g). (i) The |ˆl × ˆd| density plot at
923
+ 0.006Tc. The two sheets persist after the transition.
924
+ formed starting from the lowest temperature of 0.006Tc
925
+ back up to 0.80Tc and then down again. The two-sheet
926
+ state persists.
927
+ A transition similar to the one discussed in section VI
928
+ occurs at temperatures below 0.05Tc. The textural tran-
929
+ sition is shown in figure 4. At high temperatures (fig-
930
+ ure 4a), the vortex sheet has the familiar structure with
931
+ uniform vorticity along the sheet. As the temperature
932
+ decreases, the vorticity becomes more concentrated at
933
+ the merons (figure 4d).
934
+ The vorticity forms ”bridges”
935
+ between the circular and hyperbolic merons of the neigh-
936
+ boring sheet, although the sheets still remain distinctly
937
+ separate, as indicated by the |ˆl× ˆd| density plots in figure
938
+ 4c, f and i.
939
+ Further decreasing the temperature to below 0.05Tc,
940
+ the ˆl texture of the circular merons, marked with the
941
+ dashed lines in figure 4, becomes more similar to the
942
+ topological twist soliton. The meron center with vertical
943
+ ˆl orientation increases in size, concentrating the bending
944
+ deformation (and vorticity) into a tube. Comparing fig-
945
+ ures 2d and 2c to figures 4e and 4h shows the similarities
946
+ between the two transitions. The transition is smooth
947
+ and shows no hysteresis on repeated temperature sweeps.
948
+ A change can be observed in the vorticity near the
949
+ hyperbolic merons as well. The vorticity at low temper-
950
+ atures resembles a cross, with one line along the vortex
951
+ sheet and one perpendicular to it. No quantitative anal-
952
+ ysis has been performed on the hyperbolic meron struc-
953
+ ture, but we believe that the change can be explained
954
+ using the same reasoning as for the circular merons. The
955
+ bending deformation in the hyperbolic meron is limited
956
+ to the directions along these vorticity lines, while diago-
957
+ nal to the ”arms” of the vorticity cross the ˆl vectors twist.
958
+ In the hyperbolic merons the vorticity can be thought of
959
+ as ”thin-sheet” vorticity instead of tube vorticity.
960
+ The phase diagram in figure 5 is constructed by per-
961
+ forming a temperature sweep for each rotation velocity.
962
+ Initial states at different rotation velocities are found at
963
+ T = 0.01Tc by changing Ω while simultaneously adjust-
964
+ ing the radius of the cylinder accordingly to avoid vor-
965
+ tices entering or escaping. Ω is then a measure of the
966
+ vortex density of the system. The radius is changed by
967
+
968
+ 9
969
+ 0
970
+ 5
971
+ 10
972
+ 15
973
+ 20
974
+ 25
975
+ 30
976
+ 35
977
+ (rad/s)
978
+ 0
979
+ 0.02
980
+ 0.04
981
+ 0.06
982
+ 0.08
983
+ T/Tc
984
+ 0
985
+ 0.02
986
+ 0.04
987
+ 0.06
988
+ 0.08
989
+ 0.1
990
+ T/Tc
991
+ 0.3
992
+ 0.4
993
+ 0.5
994
+ 0.6
995
+ 0.7
996
+ 0.8
997
+ 0.9
998
+ 1
999
+ rel
1000
+ = 24.9 rad/s
1001
+ = 3.67 rad/s
1002
+ = 1.27 rad/s
1003
+ FIG. 5. (Left) An Ω-T phase diagram of the transition in the vortex sheet. The blue circles mark the transition temperatures
1004
+ at different values of Ω. The solid red line shows a fit of the expression A exp(−B/(Ω − Ω0)2/3) to the data points, with the
1005
+ A = 0.056, B = 0.657 (rad/s)2/3 and Ω0 = 1.15 rad/s. The red cross is the transition point calculated for a vortex sheet with 12
1006
+ quanta of circulation, and the filled circles indicate the points from the example fits on the right. (Right) Three example plots
1007
+ of relative vorticity ωrel as a function of temperature, taken from sweeps with Ω = 1.27, 3.67 and 24.9 rad/s. The calculated
1008
+ points are marked with triangles, diamonds and crosses, respectively, and the solid lines on each sweep show the two straight
1009
+ lines that best fit the data. The transition point is taken as the intersection of these fits and is marked with a circle in each
1010
+ sweep. The corresponding transition temperatures are approximately 0.0014Tc, 0.039Tc and 0.050Tc. The data from sweeps
1011
+ with lower Ω is more noisy, due to the reduced mesh resolution in the correspondingly larger cylinders.
1012
+ 0
1013
+ 0.2
1014
+ 0.4
1015
+ 0.6
1016
+ 0.8
1017
+ T/Tc
1018
+ 0.18
1019
+ 0.2
1020
+ 0.22
1021
+ 0.24
1022
+ 0.26
1023
+ 0.28
1024
+ 0.3
1025
+ 0.32
1026
+ 0.34
1027
+ 0.36
1028
+ 0.38
1029
+ ||
1030
+ 0.7
1031
+ 0.8
1032
+ 0.9
1033
+ 1
1034
+ 1.1
1035
+ 1.2
1036
+ 1.3
1037
+ 1.4
1038
+ 1.5
1039
+ o/
1040
+ x
1041
+ 30 µm
1042
+ (b)
1043
+ (c)
1044
+ -1
1045
+ -0.8
1046
+ -0.6
1047
+ -0.4
1048
+ -0.2
1049
+ 0
1050
+ 0.2
1051
+ 0.4
1052
+ 0.6
1053
+ 0.8
1054
+ 1
1055
+ FIG. 6.
1056
+ (a) The eigenvalue α∥ of the largest satellite peak in the calculated NMR spectrum as a function of temperature
1057
+ plotted as blue circles and crosses. The circles correspond to the upward temperature sweep started from 0.006Tc while the
1058
+ crosses correspond to the return sweep back down from 0.80Tc. The near perfect match of the values of both sweeps indicates
1059
+ that there is no hysteresis in the transition. The solid black line is a logarithmic fit of the expression A + B ln(T/Tc + C) to
1060
+ the eigenvalues below 0.20Tc, with A = 0.277, B = 0.015 and C = 0.007. The red circles and crosses plotted against the right
1061
+ axis mark the ratio |ψo|/|ψx| of the magnitude of the eigenfunctions at the circular and hyperbolic meron centers. (b) The
1062
+ potential (18) for spin waves produced by the vortex sheet on the left side of the cylinder in figure 4d, at 0.20Tc. The circular
1063
+ and hyperbolic merons are difficult to distinguish visually. The centers of the circular and hyperbolic merons are marked with
1064
+ circles and crosses, respectively. (c) The potential for the vortex sheet in figure 4g, at 0.006Tc. There is clear asymmetry
1065
+ between the shapes of spin-wave traps at the two merons.
1066
+
1067
+ 10
1068
+ interpolating the texture to a cylinder with different size.
1069
+ Like for the model vortex, the relative vorticity ωrel is
1070
+ found to be a good quantitative indicator for the transi-
1071
+ tion.
1072
+ Above the transition temperature the maximum
1073
+ vorticity in the system is found at the centers of the
1074
+ merons and ωrel ≈ 1. Below the transition temperature,
1075
+ ωrel decreases linearly as the ˆl texture becomes more uni-
1076
+ form and the vorticity ω at the center of the circular
1077
+ meron decreases according to the Mermin-Ho relation
1078
+ (9).
1079
+ The linear decrease can be seen in the right side
1080
+ plot in figure 5.
1081
+ The transition temperature was found to be depen-
1082
+ dent on the vortex density of the system. A fit of the
1083
+ expression A exp(−B/(Ω − Ω0)2/3) to the data gives the
1084
+ asymptotic transition temperature at high rotation ve-
1085
+ locities T = 0.056Tc. (The origin of the exponents 2/3
1086
+ is discussed below.) At low velocities the transition tem-
1087
+ perature decreases and the zero temperature Ω cutoff is
1088
+ Ω0 = 1.15 rad/s.
1089
+ The calculation of the NMR response of the sheet at
1090
+ Ω = 5.7 rad/s as a function of temperature is shown in
1091
+ figure 6a. The eigenvalue α∥ of the most intense satel-
1092
+ lite peak in the NMR spectrum decreases linearly with
1093
+ temperature down to around T = 0.3Tc, after which the
1094
+ decrease becomes logarithmic α∥ ∝ ln(T/Tc). This in-
1095
+ dicates that the effects of the logarithmic divergence of
1096
+ the Kb coefficient could be observable through NMR ex-
1097
+ periments, although the required temperatures are very
1098
+ low.
1099
+ In the course of the transition the NMR potential dis-
1100
+ tribution (18) changes. At temperatures above the tran-
1101
+ sition the potential wells formed by the circular and hy-
1102
+ perbolic merons in the sheet look very similar, shown in
1103
+ figure 6b, while below the transition temperature there is
1104
+ a clear visual difference between the two (figure 6c) with
1105
+ a larger potential well at the hyperbolic meron. Corre-
1106
+ spondingly during the transition the eigenfunction be-
1107
+ comes more concentrated at the hyperbolic meron. The
1108
+ ratio between the magnitudes of the eigenfunction at the
1109
+ circular center |ψo| and at the hyperbolic center |ψx| is
1110
+ plotted in figure 6a. At higher temperatures the ratio
1111
+ |ψo|/|ψx| > 1 , while |ψo|/|ψx| < 1 at low temperatures.
1112
+ Notably the transition temperature seems to correspond
1113
+ roughly to the point where the ratio is close to one. This
1114
+ could be used as another indicator for the transition, al-
1115
+ though it is more indirect than the one used above.
1116
+ The transition to the tube vorticity state for the vortex
1117
+ sheet can be explained qualitatively using similar reason-
1118
+ ing that was used for the ATC vortex: the bending en-
1119
+ ergy is reduced by confining the deformations to a narrow
1120
+ tube around the center of the circular meron with uni-
1121
+ formly oriented ˆl. In the vortex sheet the largest relevant
1122
+ length scale for the ˆl vector gradients is the intermeron
1123
+ distance p along the sheet. The Ω−2/3 dependence of the
1124
+ transition temperature in the phase diagram of figure 5
1125
+ could be explained by the fact that p ∝ Ω−1/3 and above
1126
+ the transition the elastic energy density is proportional to
1127
+ p−2 ∝ Ω2/3. As the vortex density increases, the bending
1128
+ energy contribution from intermeron gradients becomes
1129
+ larger and can be reduced by the formation of vorticity
1130
+ tubes even at higher temperatures and smaller values of
1131
+ Kb. According to the fit in the phase diagram in figure 5,
1132
+ at T = 0 the transition occurs at a finite vortex density
1133
+ corresponding to Ω = 1.15 rad/s.
1134
+ VIII.
1135
+ DOUBLE-QUANTUM VORTICES
1136
+ The non-axisymmetric double-quantum vortex (see fig-
1137
+ ure 1a) is the most common topological object formed
1138
+ in 3He-A[37].
1139
+ The vorticity in a DQV is distributed
1140
+ in a tube around the vortex axis at all temperatures,
1141
+ so a priori it is difficult to determine what the qualita-
1142
+ tive effect the logarithmic divergence of the Kb coefficient
1143
+ would have on its structure. However, in the region be-
1144
+ tween the two merons the texture is similar to the ATC
1145
+ vortex. On the line between the hyperbolic and circu-
1146
+ lar meron centers, ˆl rotates with a twist-type deforma-
1147
+ tion over a distance d, while across the vortex (perpen-
1148
+ dicular to the line between merons) the deformation is
1149
+ splay/bend type over a distance w. The elastic energy is
1150
+ then Fel ∼ Kb(d/w) + Kt(w/d) and at low temperatures
1151
+ where Kb ≫ Kt, the energy is minimized by decreasing
1152
+ 0
1153
+ 0.05
1154
+ 0.1
1155
+ 0.15
1156
+ 0.2
1157
+ 0.25
1158
+ 0.3
1159
+ 0.35
1160
+ 0.4
1161
+ T/Tc
1162
+ 0
1163
+ 0.2
1164
+ 0.4
1165
+ 0.6
1166
+ 0.8
1167
+ rel
1168
+ T = 0.157Tc
1169
+ = 0.30 rad/s
1170
+ (a)
1171
+ 50 µm
1172
+ (c)
1173
+ 50 µm
1174
+ (b)
1175
+ 0
1176
+ FIG. 7.
1177
+ The transition in separate double-quantum vortices
1178
+ at Ω = 0.30 rad/s. (a) Plot of ωrel as a function of tempera-
1179
+ ture. The solid lines are the best linear fits to the data. The
1180
+ transition point T = 0.157Tc is taken as the intersection of
1181
+ these lines. (b) The ˆl-vector texture of the double-quantum
1182
+ vortex below the transition temperature at 0.001Tc. The color
1183
+ indicates vorticity ω. The centers of the circular and hyper-
1184
+ bolic meron are marked with a circle and a cross, respectively.
1185
+ (c) The texture at 0.20Tc.
1186
+
1187
+ 11
1188
+ 0.01
1189
+ 0.02
1190
+ 0.03
1191
+ 0.04
1192
+ 0.05
1193
+ T/Tc
1194
+ 0
1195
+ 5
1196
+ 10
1197
+ 15
1198
+ 20
1199
+ 25
1200
+ 30
1201
+ 35
1202
+ Structure size (µm)
1203
+ 10
1204
+ 15
1205
+ 20
1206
+ 25
1207
+ 30
1208
+ (rad/s)
1209
+ 0
1210
+ 0.02
1211
+ 0.04
1212
+ 0.06
1213
+ 0.08
1214
+ 0.1
1215
+ 0.12
1216
+ Linearized structure size (µm-2)
1217
+ asimul
1218
+ bsimul
1219
+ apredict
1220
+ bpredict
1221
+ FIG. 8.
1222
+ The radius a and width b of the circular meron vorticity tubes in the vortex sheet. The solid line and the dashed
1223
+ line are the predicted values of a and b, respectively, while the circles and squares correspond to their numerically calculated
1224
+ values. (Left) a and b as a function of temperature, taken from the sweep done at Ω = 11.55 rad/s. The value of Ω was chosen
1225
+ such that a wide enough temperature range was available below the transition temperature. The predicted values are much
1226
+ higher than calculated, almost six times higher for a and three times for b. The temperature dependence of b agrees with the
1227
+ prediction, while a decreases slightly with increasing temperature. (Right) a−2 and b−2 as functions of Ω at T = 0.01Tc. The
1228
+ calculated values are approximately linear in these coordinates, as predicted.
1229
+ the width d of the region between ˆl = ˆz and ˆl = −ˆz. In
1230
+ the whole DQV texture this is seen as a shift in the lo-
1231
+ cation of the vorticity tube, so that it is centered around
1232
+ the circular meron instead of the vortex axis. Then the
1233
+ size of the region around the meron center where ˆl is ori-
1234
+ ented along the vertical axis is again expected to increase,
1235
+ while the twist rotation occurs in a thin region between
1236
+ the two merons.
1237
+ A low-temperature state with two separated double-
1238
+ quantum vortices has been created as follows: a clean
1239
+ two-vortex state is found from an Ω sweep done in the
1240
+ axial field, starting with a PanAm-texture in a larger
1241
+ cylinder with radius R = 500 µm at 0.80Tc. The larger
1242
+ cylinder is chosen to keep applied rotation velocity be-
1243
+ low the treshold for merging vortices to sheets, and to
1244
+ accomodate the lower Ω values, the Ω sweep is done in
1245
+ smaller increments of 0.01 rad/s. When the first vortices
1246
+ have entered and found stable locations near the center
1247
+ of the cylinder at Ω = 1.27 rad/s, the temperature is re-
1248
+ duced down to 0.001Tc, the magnetic field rotated to the
1249
+ transverse direction and Ω reduced to 0.30 rad/s where
1250
+ the energy is at a minimum.
1251
+ A temperature sweep is performed in increasing direc-
1252
+ tion on this state with two double-quantum vortices. At
1253
+ the start of the sweep at 0.001Tc, the vorticity ω in the
1254
+ vortices is concentrated into a tube shape around the
1255
+ circular meron, with barely any vorticity near the hyper-
1256
+ bolic meron, as shown in figure 7b.
1257
+ The value of ωrel
1258
+ calculated at the center of the circular meron at these
1259
+ temperatures is close to zero.
1260
+ On increase of temperature, the value of ωrel increases
1261
+ linearly at low temperatures and stays constant above
1262
+ 0.15Tc, as shown in figure 7a. Thus we find the transition
1263
+ of the same type as for the ATC vortex and the vortex
1264
+ sheet. However, the transition temperature for vortices is
1265
+ different from that for vortex sheets in the phase diagram
1266
+ in figure 5 at the same velocity. At such low velocities,
1267
+ the vortex sheet doesn’t appear to have a transition at
1268
+ all.
1269
+ Above the transition temperature the vortices look
1270
+ like well-known w-vortices with a hyperbolic and circu-
1271
+ lar meron (figure 7c). The vorticity is spread in a tube
1272
+ shape even at high temperatures, but the tubes are cen-
1273
+ tered around the axis of the whole two quanta structure.
1274
+ Below the transition point the tube shifts and becomes
1275
+ centered around only the circular meron (figure 7b).
1276
+ Qualitatively the low temperature texture resembles
1277
+ the ATC vortex: the core region of the circular meron is
1278
+ highly uniform, in order to minimize the region where ˆl
1279
+ bends. In a finite-radius cylinder, however, the ˆl vectors
1280
+ far from the vortex are horizontal instead of vertical, due
1281
+ to the orienting effect of the container walls.
1282
+
1283
+ 12
1284
+ IX.
1285
+ COMPARISON WITH THE ATC VORTEX
1286
+ The appearance of the tube vorticity distribution in
1287
+ the circular merons in vortex sheets and double-quantum
1288
+ vortices agrees qualitatively with the model ATC vortex
1289
+ in section VI. However, the quantitative prediction for
1290
+ the size of the tubes does not match well, as shown in
1291
+ figure 8 for the vortex sheet and in figure 9 for separated
1292
+ vortices. For sheets, the value of a is almost six times
1293
+ lower than predicted, while b is almost three times lower.
1294
+ In vortices the numerically calculated values differ by ap-
1295
+ proximately a factor of two from the predicted values.
1296
+ The lower measured values can be at least partially ex-
1297
+ plained qualitatively. The full simulations include the C-
1298
+ terms omitted in the model derivation, which were found
1299
+ to be highly impactful in section VI. Additionally, the
1300
+ ATC vortex structure in the model assumed an axisym-
1301
+ metric structure with the bulk ˆl texture being uniformly
1302
+ vertical. In realistic situations, the finite size of the do-
1303
+ main restricts the bulk texture to be in-plane due to the
1304
+ effects of the boundary conditions. In this case the bend-
1305
+ ing energy density cannot be strictly concentrated into a
1306
+ narrow tube, because outside the meron core there will be
1307
+ some splay/bend distortion in the bulk texture. Finally,
1308
+ the repulsive effect of neighboring quanta of circulation
1309
+ is expected to reduce the size of the tube by a factor that
1310
+ is dependent on the distance between quanta.
1311
+ In the vortex sheet, the tubes form around the circu-
1312
+ lar merons, which are single circulation quantum struc-
1313
+ tures instead of the ν = 2 ATC vortex considered in the
1314
+ model. The adjustment in the model equations (23) for
1315
+ a and (24) for b is done naively by assuming a superfluid
1316
+ velocity outside the vortex is twice smaller than in the
1317
+ original derivation. As mentioned previously, the change
1318
+ in number of quanta has an additional indirect effect on
1319
+ the calculated values through the change in the asymp-
1320
+ totic behaviour of ˆl vectors outside the vortex (horizontal
1321
+ vs. vertical).
1322
+ X.
1323
+ CONCLUSION
1324
+ We have numerically calculated equlibrium order-
1325
+ parameter textures in rotating 3He-A at low tempera-
1326
+ tures where the effect of the logarithmic divergence of the
1327
+ bending coefficient Kb in the free energy is relevant. The
1328
+ connection of this divergence to the zero-charge effect of
1329
+ quantum electrodynamics and the appearance of vortic-
1330
+ ity tubes at low temperatures was predicted by Volovik
1331
+ [36]. A transition to the predicted state has been found
1332
+ both in the vortex sheet and in separate vortices. The
1333
+ transition temperature is found to depend on the vortex
1334
+ density of the system, and a temperature-vortex density
1335
+ phase diagram has been presented for the vortex sheet.
1336
+ In our calculations in the absense of pinning, vortices
1337
+ are stable only with applied rotation. The original pre-
1338
+ diction of Ref. [36] has been adjusted to include the effect
1339
+ of rotation. The analytic model, nevertheless, does not
1340
+ 0
1341
+ 0.01
1342
+ 0.02
1343
+ 0.03
1344
+ 0.04
1345
+ 0.05
1346
+ T/Tc
1347
+ 0
1348
+ 50
1349
+ 100
1350
+ 150
1351
+ 200
1352
+ Structure size (µm)
1353
+ asimul
1354
+ bsimul
1355
+ apredict
1356
+ bpredict
1357
+ FIG. 9.
1358
+ The radius a and width b of the vorticity tubes
1359
+ in separated double-quantum vortices as a function of tem-
1360
+ perature. The predicted a and b are marked by a solid and
1361
+ dashed line, respectively. The measured values are marked
1362
+ with circles and squares for a and b, respectively. The pre-
1363
+ dicted values are higher by approximately a factor of 2.
1364
+ capture all the details of the realistic textures and the
1365
+ size of the vorticity tubes in the simulated textures is
1366
+ considerably smaller than that in the model. In partic-
1367
+ ular, the so-called C term in the superfluid velocity, ig-
1368
+ nored in the model, turned out to play an important role
1369
+ in shaping vortex structures. Another important differ-
1370
+ ence between the model and the realistic textures is the
1371
+ asymptotic behaviour of ˆl at large radii, where the model
1372
+ ignores solid-wall boundary conditions. The calculations
1373
+ also have their limitations: They are done with the as-
1374
+ sumption of a uniform texture in the z direction, which
1375
+ means that possible three dimensional structures, related
1376
+ to the axial superflow in broken-symmetry vortex cores,
1377
+ could not be found.
1378
+ In search of observable signatures of the transition, we
1379
+ have calculated the NMR response of the vortex sheet
1380
+ as a function of temperature. As expected, restructur-
1381
+ ing of the distribution of vorticity has a profound effect
1382
+ on the frequency shift of the characteristic satellite in
1383
+ the NMR spectrum: The satellite moves further from
1384
+ the bulk peak towards the Larmor value. The logarith-
1385
+ mic dependence of the frequency shift, reflecting that of
1386
+ Kb becomes prominent only at temperatures below 0.2 Tc
1387
+ which may make observation of this effect in experiments
1388
+ challenging.
1389
+ ACKNOWLEDGMENTS
1390
+ We thank Grigory Volovik, Erkki Thuneberg and
1391
+ Jaakko Nissinen for stimulating discussions. This work
1392
+
1393
+ 13
1394
+ has been supported by the European Research Coun-
1395
+ cil (ERC) under the European Union’s Horizon 2020 re-
1396
+ search and innovation programme (Grant Agreement No.
1397
+ 694248) and by Academy of Finland (grant 332964).
1398
+ We acknowledge the computational resources provided
1399
+ by the Aalto Science-IT project.
1400
+ Appendix A: Parameterization of the order
1401
+ parameter
1402
+ Quaternions are an extension of the complex number
1403
+ system into four dimensions and are of the form
1404
+ q = q0 + q1i + q2j + q3k
1405
+ (A1)
1406
+ with imaginary units i, j and k defined by the relation
1407
+ i2 = j2 = k2 = ijk = −1.
1408
+ (A2)
1409
+ Sometimes it is useful to use the notation
1410
+ q = q0 + q
1411
+ (A3)
1412
+ where q0 is called the real part and q the vector part.
1413
+ Three dimensional rotations and orientations can be
1414
+ described by quaternions, analoguously to how complex
1415
+ numbers can be used to represent two dimensional rota-
1416
+ tions. A rotation in 3D defined by an unit vector axis u
1417
+ and an angle θ can be expressed as a unit quaternion
1418
+ q = cos θ
1419
+ 2 + sin θ
1420
+ 2u
1421
+ (A4)
1422
+ The orientation of the orthonormal orbital triad
1423
+ ( ˆm, ˆn, ˆl) can be represented with a single quaternion us-
1424
+ ing the conversion formula for rotation matrices:
1425
+
1426
+
1427
+ mx nx lx
1428
+ my ny ly
1429
+ mz nz lz
1430
+
1431
+
1432
+ =
1433
+
1434
+
1435
+ 1 − 2q2
1436
+ 2 − 2q2
1437
+ 3
1438
+ 2(q1q2 − q3q0) 2(q1q3 + q2q0)
1439
+ 2(q1q2 + q3q0) 1 − 2q2
1440
+ 1 − 2q2
1441
+ 3
1442
+ 2(q2q3 − q1q0)
1443
+ 2(q1q3 − q2q0) 2(q1q0 + q2q3) 1 − 2q2
1444
+ 1 − 2q2
1445
+ 2
1446
+
1447
+
1448
+ (A5)
1449
+ The benefit of quaternions over other rotation for-
1450
+ malisms is that they reduce the number of required pa-
1451
+ rameters from nine to four, and they can describe any
1452
+ orientation without singularities or gimbal lock.
1453
+ The spin anisotropy vector ˆd is parameterized with
1454
+ azimuthal and polar angles α and β.
1455
+ To avoid issues
1456
+ when β = 0, the polar axis is chosen as the magnetic field
1457
+ direction H. In our system the H vector is confined to
1458
+ the yz plane and its direction is described by an angle
1459
+ µ between H and the z-axis. The ˆd vector can then be
1460
+ parameterized as
1461
+ dx = cos α sin β
1462
+ dy = cos β sin µ − cos µ sin α sin β
1463
+ (A6)
1464
+ dz = cos β cos µ + sin α sin β sin µ
1465
+ The magnetic field direction is kept static during mini-
1466
+ mization, so µ is a constant.
1467
+ The quaternion and ˆd angle values are defined at each
1468
+ node in the mesh.
1469
+ To calculate the energy for a sin-
1470
+ gle triangle, the parameters are linearly interpolated to
1471
+ quadrature points using barycentric coordinates, where
1472
+ the energy densities are computed.
1473
+ The integration is
1474
+ then performed using Gaussian quadrature rules. After
1475
+ the quaternions are interpolated, they must be renormal-
1476
+ ized to keep them unit length.
1477
+ Appendix B: Coefficients
1478
+ The coefficients for the energy densities in Equations
1479
+ (2), (4), (10) and (12) are presented in Figure 10. The
1480
+ values are normalized to ρ∥ in order to demonstrate their
1481
+ relative behaviour. Note the logarithmic divergence of
1482
+ the bending coefficient Kb as T → 0.
1483
+ 0
1484
+ 0.5
1485
+ 1
1486
+ T/Tc
1487
+ 0
1488
+ 0.5
1489
+ 1
1490
+ 1.5
1491
+ 2
1492
+ 2.5
1493
+ 3
1494
+ ||
1495
+ s
1496
+ Kb
1497
+ C0
1498
+ K6
1499
+ K5
1500
+ C
1501
+ Kt
1502
+ Ks
1503
+ FIG. 10.
1504
+ The coefficients values used in the energy cal-
1505
+ culation as a function of temperature. The coefficients are
1506
+ normalized to ρ∥ to better visualize their relationships.
1507
+ [1] D. Vollhardt and P. W¨olfle, The Superfluid Phases of
1508
+ Helium 3 (Taylor&Francis, London, 1990).
1509
+ [2] A. J. Leggett, A theoretical description of the new phases
1510
+ of liquid 3He, Rev. Mod. Phys. 47, 331 (1975).
1511
+
1512
+ 14
1513
+ [3] P. M. Walmsley and A. I. Golov, Chirality of superfluid
1514
+ 3He-A, Phys. Rev. Lett. 109, 215301 (2012).
1515
+ [4] G. Volovik, The Universe in a Helium Droplet (Oxford
1516
+ University Press, United Kingdom, 2010).
1517
+ [5] T. Bevan, A. Manninen, J. Cook, J. Hook, H. Hall,
1518
+ T. Vachaspati, and G. Volovik, Momentum creation by
1519
+ vortices in superfluid 3He as a model of primodial baryo-
1520
+ genesis, Nature 386, 689 (1997).
1521
+ [6] A. V. Balatskii, G. E. Volovik, and V. A. Konyshev, On
1522
+ the chiral anomaly in superfluid 3He-A, Sov. Phys. JETP
1523
+ 63, 1194 (1986).
1524
+ [7] Y. Ishihara, T. Mizushima, A. Tsuruta, and S. Fujimoto,
1525
+ Torsional chiral magnetic effect due to skyrmion textures
1526
+ in a Weyl superfluid 3He−A, Phys. Rev. B 99, 024513
1527
+ (2019).
1528
+ [8] J. Nissinen and G. E. Volovik, Thermal nieh-yan anomaly
1529
+ in weyl superfluids, Phys. Rev. Research 2, 033269
1530
+ (2020).
1531
+ [9] G. E. Volovik and V. P. Mineev, Orbital angular momen-
1532
+ tum and orbital dynamics:
1533
+ 3He-A and the Bose liquid,
1534
+ Sov. Phys. JETP 54, 524 (1981).
1535
+ [10] T. Dombre and R. Combescot, Excitation spectrum and
1536
+ superfluid density of 3He-A at T = 0, Phys. Rev. B 30,
1537
+ 3765 (1984).
1538
+ [11] N. D. Mermin and P. Muzikar, Cooper pairs versus Bose
1539
+ condensed molecules: The ground-state current in super-
1540
+ fluid 3He-A, Phys. Rev. B 21, 980 (1980).
1541
+ [12] J. Nissinen and G. E. Volovik, Anomalous chiral trans-
1542
+ port with vorticity and torsion:
1543
+ Cancellation of two
1544
+ mixed gravitational anomaly currents in rotating chiral
1545
+ p+ip weyl condensates, Phys. Rev. D 106, 045022 (2022).
1546
+ [13] R. Combescot and T. Dombre, Superfluid current in 3He-
1547
+ A at T = 0, Phys. Rev. B 28, 5140 (1983).
1548
+ [14] M. C. Cross, A generalized Ginzburg-Landau approach
1549
+ to the superfluidity of helium 3, J. Low Temp. Phys. 21,
1550
+ 525 (1975).
1551
+ [15] G. E. Volovik, Peculiarities in the dynamics of superfluid
1552
+ 3He-A: analog of chiral anomaly and of zero-charge, Sov.
1553
+ Phys. JETP 65, 1193 (1987).
1554
+ [16] H. Hensley,
1555
+ Y. Lee,
1556
+ P. Hamot,
1557
+ T. Mizusaki, and
1558
+ W. Halperin, Measurement of the magnetic susceptibil-
1559
+ ity of normal fluid 3He at very low temperatures, J. Low
1560
+ Temp. Phys. 90, 149 (1993).
1561
+ [17] M. R. Williams and A. L. Fetter, Textures in slowly ro-
1562
+ tating 3He-A, Phys. Rev. B 20, 169 (1979).
1563
+ [18] N. D. Mermin and T.-L. Ho, Circulation and angular
1564
+ momentum in the A phase of superfluid helium-3, Phys.
1565
+ Rev. Lett. 36, 594 (1976).
1566
+ [19] A. L. Fetter, Stability of helical textures in 3He-A, Phys.
1567
+ Rev. B 20, 303 (1979).
1568
+ [20] E. Thuneberg, BCS gap function etc, parameters for
1569
+ 3He, https://users.aalto.fi/~thunebe1/theory/qc/
1570
+ bcsgap.html, accessed: 2022-07-02.
1571
+ [21] V. Ambegaokar, P. G. deGennes, and D. Rainer, Landau-
1572
+ Ginsburg equations for an anisotropic superfluid, Phys.
1573
+ Rev. A 9, 2676 (1974).
1574
+ [22] W. F. Brinkman and M. C. Cross, Spin and orbital dy-
1575
+ namics of superfluid 3He, in Progress in Low Tempera-
1576
+ ture Physics, Vol. VIIa, edited by D. F. Brewer (North-
1577
+ Holland, 1978).
1578
+ [23] V. M. H. Ruutu, J. Kopu, M. Krusius, U. Parts,
1579
+ B. Pla¸cais, E. V. Thuneberg, and W. Xu, Critical ve-
1580
+ locity of vortex nucleation in rotating superfluid 3He-A,
1581
+ Phys. Rev. Lett. 79, 5058 (1997).
1582
+ [24] U. Parts, J. M. Karim¨aki, J. H. Koivuniemi, M. Krusius,
1583
+ V. M. H. Ruutu, E. V. Thuneberg, and G. E. Volovik,
1584
+ Phase diagram of vortices in superfluid 3He-A, Phys. Rev.
1585
+ Lett. 75, 3320 (1995).
1586
+ [25] R. Blaauwgeers, V. Eltsov, M. Krusius, J. Ruohio, and
1587
+ R. Schanen, Quantized vorticity in superfluid
1588
+ 3He-A:
1589
+ Structure and dynamics (2008) pp. 399–420.
1590
+ [26] T. Takagi, Textures and NMR spectra of a superfluid
1591
+ 3He-A phase confined in rotating narrow cylinders, Jour-
1592
+ nal of Physics and Chemistry of Solids 66, 1355 (2005),
1593
+ proceedings of the ISSP International Symposium (ISSP-
1594
+ 9)on Quantum Condensed System.
1595
+ [27] P. W. Anderson and G. Toulouse, Phase slippage without
1596
+ vortex cores: Vortex textures in superfluid 3He, Phys.
1597
+ Rev. Lett. 38, 508 (1977).
1598
+ [28] V. R. Chechetkin, Types of vortex solutions in superfluid
1599
+ He3, Sov. Phys. JETP 44, 766 (1976).
1600
+ [29] O.
1601
+ V.
1602
+ Lounasmaa
1603
+ and
1604
+ E.
1605
+ Thuneberg,
1606
+ Vortices
1607
+ in
1608
+ rotating
1609
+ superfluid
1610
+ 3He,
1611
+ Proceedings
1612
+ of
1613
+ the
1614
+ National
1615
+ Academy
1616
+ of
1617
+ Sciences
1618
+ 96,
1619
+ 7760
1620
+ (1999),
1621
+ https://www.pnas.org/doi/pdf/10.1073/pnas.96.14.7760.
1622
+ [30] V. Eltsov and M. Krusius, Topological defects in 3He
1623
+ superfluids, 549, 325 (2000).
1624
+ [31] U.
1625
+ Parts,
1626
+ V.
1627
+ Ruutu,
1628
+ J.
1629
+ Koivuniemi,
1630
+ M.
1631
+ Krusius,
1632
+ E. Thuneberg, and G. Volovik, Measurements on the vor-
1633
+ tex sheet in rotating superfluid 3He-A, Physica B: Con-
1634
+ densed Matter 210, 311 (1995), vortices, Interfaces and
1635
+ Mesoscopic Phenomena in Quantum Systems.
1636
+ [32] E. Thuneberg, Introduction to the vortex sheet of su-
1637
+ perfluid 3He-A, Physica B: Condensed Matter 210, 287
1638
+ (1995), vortices, Interfaces and Mesoscopic Phenomena
1639
+ in Quantum Systems.
1640
+ [33] A. J. Leggett, Interpretation of recent results on He3 be-
1641
+ low 3 mK: A new liquid phase?, Phys. Rev. Lett. 29, 1227
1642
+ (1972); Microscopic theory of NMR in an anisotropic su-
1643
+ perfluid (3He-A), Phys. Rev. Lett. 31, 352 (1973).
1644
+ [34] V. M. H. Ruutu, U. Parts, and M. Krusius, NMR signa-
1645
+ tures of topological objects in rotating superfluid 3He-A,
1646
+ J. Low Temp. Phys. 103, 331 (1996).
1647
+ [35] R. H¨anninen and E. Thuneberg, Calculation of NMR
1648
+ properties of solitons in superfluid 3He-A, Physical Re-
1649
+ view B 68 (2001).
1650
+ [36] G. E. Volovik, Effect of zero-charge phenomena on non-
1651
+ singular vortex in 3He-A, Pis’ma Zh. Eksp. Teor. Fiz. 47,
1652
+ 46 (1988).
1653
+ [37] R. Blaauwgeers, V. Eltsov, M. Krusius, J. Ruohio,
1654
+ R. Schanen, and G. Volovik, Double-quantum vortex in
1655
+ superfluid 3He-A, Nature 404, 471 (2000).
1656
+
HdE5T4oBgHgl3EQfWQ_B/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HdFIT4oBgHgl3EQfXith/content/tmp_files/2301.11244v1.pdf.txt ADDED
@@ -0,0 +1,1885 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11244v1 [math.OC] 26 Jan 2023
2
+ ANOTHER LOOK AT PARTIALLY OBSERVED OPTIMAL
3
+ STOCHASTIC CONTROL: EXISTENCE, ERGODICITY, AND
4
+ APPROXIMATIONS WITHOUT BELIEF-REDUCTION
5
+ SERDAR YÜKSEL ∗
6
+ Abstract. We present an alternative view for the study of optimal control of partially observed
7
+ Markov Decision Processes (POMDPs).
8
+ We first revisit the traditional (and by now standard)
9
+ separated-design method of reducing the problem to fully observed MDPs (belief-MDPs), and present
10
+ conditions for the existence of optimal policies. Then, rather than working with this standard method,
11
+ we define a Markov chain taking values in an infinite dimensional product space with control actions
12
+ and the state process causally conditionally independent given the measurement/information process.
13
+ We provide new sufficient conditions for the existence of optimal control policies. In particular, while
14
+ in the belief-MDP reduction of POMDPs, weak Feller condition requirement imposes total variation
15
+ continuity on either the system kernel or the measurement kernel, with the approach of this paper
16
+ only weak continuity of both the transition kernel and the measurement kernel is needed (and total
17
+ variation continuity is not) together with regularity conditions related to filter stability.
18
+ For the
19
+ average cost setup, we provide a general approach on how to initialize the randomness which we
20
+ show to establish convergence to optimal cost.
21
+ For the discounted cost setup, we establish near
22
+ optimality of finite window policies via a direct argument involving near optimality of quantized
23
+ approximations for MDPs under weak Feller continuity, where finite truncations of memory can be
24
+ viewed as quantizations of infinite memory with a uniform diameter in each finite window restriction
25
+ under the product metric. In the control-free case, our analysis leads to new and weak conditions for
26
+ the existence and uniqueness of invariant probability measures for non-linear filter processes, where
27
+ we show that unique ergodicity of the measurement process and a measurability condition related to
28
+ filter stability leads to unique ergodicity.
29
+ AMS subject classifications: 60J20,60J05,93E11
30
+ 1. Introduction, Literature Review, and Main Results. Partially ob-
31
+ served Markov Decision processes (POMDPs) present challenging mathematical prob-
32
+ lems with significant applied relevance. It is known that any POMDP can be reduced
33
+ to a (completely observable) MDP [69], [51], whose states are the posterior state dis-
34
+ tributions or beliefs of the observer; in particular, the belief-MDP is a (fully observed)
35
+ Markov decision process.
36
+ However, the use of belief-MDPs requires one to establish several regularity, con-
37
+ tinuity and stability (such as filter stability or unique ergodicity) results for arriving
38
+ at existence, finite memory approximations, robustness, as well as learning theoretic
39
+ results (see e.g. [65, 39, 40, 48]. While significant progress on the regularity properties
40
+ of belief-MDPs has been made in the literature, in this paper we will see that further
41
+ refinements are possible if one does not restrict the analysis to a belief-MDP based
42
+ formulation. In this paper, we present an alternative view for the study of infinite
43
+ horizon average-cost or discounted cost optimal control of POMDPs. Our approach
44
+ will be on a design which is not based on separation / or belief-MDP reduction. We
45
+ define a Markov chain taking values in an infinite dimensional product space with
46
+ control actions and the state process causally conditionally independent given the
47
+ measurement process.
48
+ For the controlled case, we provide new sufficient conditions for the existence
49
+ of optimal control policies for average and discounted cost criteria, and under the
50
+ latter criterion our analysis will establish a general result on near optimality of finite
51
+ memory policies. In the control-free case, our analysis leads to sufficient conditions
52
+ ∗Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada, K7L
53
+ 3N6. Email: [email protected]. This research was partially supported by the Natural Sciences
54
+ and Engineering Research Council of Canada (NSERC).
55
+ 1
56
+
57
+ for the existence and uniqueness of an invariant probability measure for non-linear
58
+ filters.
59
+ We now present the problem. Consider a stochastic process {Xk, k ∈ Z+}, where
60
+ each element Xk takes values in some standard Borel space X, with dynamics described
61
+ by
62
+ Xk+1 = F(Xk, Uk, Wk)
63
+ (1.1)
64
+ Yk = G(Xk, Vk)
65
+ (1.2)
66
+ where Yk is an Y-valued measurement sequence; we take Y also to be some standard
67
+ Borel space. Suppose further that X0 ∼ µ. Here, Wk, Vk are mutually independent
68
+ i.i.d. noise processes. This system is subjected to a control/decision process where
69
+ the control/decision at time n, Un, incurs a cost c(Xn, Un). The decision maker only
70
+ has access to the measurement process Yn and Un causally: An admissible policy γ is
71
+ a sequence of control/decision functions {γt, t ∈ Z+} such that γt is measurable with
72
+ respect to the σ-algebra generated by the information variables
73
+ It = {Y[0,t], U[0,t−1]},
74
+ t ∈ N,
75
+ I0 = {Y0}.
76
+ so that
77
+ Ut = γt(It),
78
+ t ∈ Z+
79
+ (1.3)
80
+ are the U-valued control/decision actions and we use the notation
81
+ Y[0,t] = {Ys, 0 ≤ s ≤ t},
82
+ U[0,t−1] = {Us, 0 ≤ s ≤ t − 1}.
83
+ We define Γ to be the set of all such (strong-sense) admissible policies. We emphasize
84
+ the implicit assumption here that the control policy can also depend on the prior
85
+ probability measure µ.
86
+ We assume that all of the random variables are defined on a common probabil-
87
+ ity space (Ω, F, P). We note that (1.1)-(1.2) can also, equivalently (via stochastic
88
+ realization results [26, Lemma 1.2] [9, Lemma 3.1]), be represented with transition
89
+ kernels: the state transition kernel is denoted with T so that for Borel B ⊂ X
90
+ T (B|x, u) := P(X1 ∈ B|X0 = x, U0 = u),
91
+ .
92
+ We will denote the measurement kernel with Q so that for Borel B ⊂ Y:
93
+ Q(B|x) := P(Y0 ∈ B|X0 = x).
94
+ For (1.1)-(1.2), we are interested in minimizing either the average-cost optimiza-
95
+ tion criterion
96
+ J(µ, γ) := lim sup
97
+ N→∞
98
+ 1
99
+ N Eγ
100
+ µ[
101
+ N−1
102
+
103
+ k=0
104
+ c(Xk, Uk)]
105
+ (1.4)
106
+ or the discounted cost criterion (for some β ∈ (0, 1)
107
+ J(µ, γ) := Eγ
108
+ µ[
109
+
110
+
111
+ k=0
112
+ βkc(Xk, Uk)]
113
+ (1.5)
114
+ 2
115
+
116
+ over all admissible control policies γ = {γ0, γ1, · · · , } ∈ Γ with X0 ∼ µ. With P(U)
117
+ denoting the set of probability measures on U endowed with the weak convergence
118
+ topology, we will also, when needed, allow for independent randomizations so that
119
+ γn(In) is P(U)-valued for each realization of In. Here c : X × U → R+ is the cost
120
+ function.
121
+ We will also consider the control-free case where the system equation (1.1) does
122
+ not have control dependence; in this case only a decision is to be made at every time
123
+ stage; U is present only in the cost expression in (1.4). This important special case
124
+ has been studied extensively in the theory of non-linear filtering.
125
+ 1.1. Literature review and preliminaries. It is well-known that any POMDP
126
+ can be reduced to a (completely observable) MDP [69], [51], whose states are the pos-
127
+ terior state probabilities, or beliefs, of the observer; that is, the state at time t is
128
+ πt( · ) := P{Xt ∈ · |Y0, . . . , Yt, U0, . . . , Ut−1} ∈ P(X).
129
+ We call this equivalent MDP the belief-MDP. The belief-MDP has state space P(X)
130
+ and action space U. Here, P(X) is equipped with the Borel σ-algebra generated by
131
+ the topology of weak convergence [6]. Since X is a Borel space, P(X) is metrizable
132
+ with the Prokhorov metric which makes P(X) into a Borel space [49]. The transition
133
+ probability η of the belief-MDP can be constructed as follows (see also [29]). If we
134
+ define the measurable function
135
+ F(π, a, y) := Pr{Xt+1 ∈ · |πt = π, Ut = u, Yt+1 = y}
136
+ from P(X) × U × Y to P(X) and the stochastic kernel H( · |π, u) := Pr{Yt+1 ∈ · |πt =
137
+ π, Ut = u} on Y given P(X) × U, then η can be written as
138
+ η( · |π, u) =
139
+
140
+ Y
141
+ 1{F (π,u,y)∈ · }H(dy|π, u).
142
+ (1.6)
143
+ The one-stage cost function c of the belief-MDP is given by
144
+ ˜c(π, u) :=
145
+
146
+ X
147
+ c(x, u)π(dx).
148
+ (1.7)
149
+ In particular, the belief-MDP is a (fully observed) Markov decision process with the
150
+ components (P(X), U, η, ˜c).
151
+ For finite horizon problems and a large class of infinite horizon discounted cost
152
+ problems it is a standard result that an optimal control policy will use the belief πt
153
+ as a sufficient statistic for optimal policies (see [69, 51, 8]).
154
+ For the special case without control, the belief process is known as the (non-
155
+ linear) filter process, and by the discussion above, this itself is a Markov process.
156
+ The stability properties of such processes has been studied, where the existence of an
157
+ invariant probability measure for the belief process, as well as the uniqueness of such
158
+ a measure (i.e., the unique ergodicity property) has been investigated under various
159
+ conditions, see. e.g. [15]. For the control-free case, [16] provides a comprehensive
160
+ discussion on both the ergodicity of the filter process as well as filter stability, when
161
+ the state space is finite but the measurement space is not necessarily so, under the
162
+ further assumption that the unobserved state process is stationary and ergodic. [46,
163
+ Theorem 2] and [61, Prop 2.1] assume that the hidden state process is ergodic and the
164
+ filter is stable (almost surely or in expectation under total variation); these papers
165
+ 3
166
+
167
+ crucially embed the stationary state in the joint process (xk, πk) and note that when xk
168
+ is stationary, the Markov chain defined by this process admits an invariant probability
169
+ measure. The unique ergodicity argument builds on the fact that any two invariant
170
+ probability measures would have to have the same marginal invariant measure on the
171
+ state process xk, and this leads to a direct argument in [61, Lemma B.1] to relate
172
+ unique ergodicity to filter stability. In the context of finite state and measurement
173
+ spaces, another line of work, adopted in [33],[24] and [16], studies the ergodicity and
174
+ reachability properties of random matrix products, see [34] for a countable space setup.
175
+ In [24] a reachability condition (across all initial priors) through the approximability
176
+ of a rank-one matrix of unnormalized product of transition matrices, and in [33] a
177
+ more restrictive subrectangularity condition, is utilized to establish unique ergodicity.
178
+ A related argument appears in [59], in a general context. Finally, [16] established
179
+ that the conditions of [24] are tight; with a different sufficiency proof related to filter
180
+ stability and convex ordering of measures [58].
181
+ For the controlled-setup, [50, 23, 52, 32] study the average-cost control problem
182
+ under the assumption that the state space is finite; they provide reachability type
183
+ conditions for the belief kernels. References [10] considers the finite model setup and
184
+ [60] considers the case with finite-dimensional real-valued state spaces under some
185
+ restrictive assumptions on the controlled state process leading to strong ergodicity
186
+ conditions. In a related discussion, [21] studies the existence problem for the average-
187
+ cost control problem under weak continuity conditions for the controlled kernels. In
188
+ all of the aforementioned studies, the vanishing discount method is considered.
189
+ Regularity of Belief-MDPs.
190
+ As noted earlier, if one wishes to follow the
191
+ traditional method of reducing a POMDP to a belief-MDP for studying the existence
192
+ and structure of the optimal policies, it would be important to obtain continuity
193
+ properties of the belief-MDP so that the standard measurable selection theorems, e.g.
194
+ [30, Chapter 3] can be invoked to establish the existence of optimal control policies.
195
+ Building on [35] and [22], we briefly review the weak Feller property of the kernel
196
+ defined in (1.6) under two different sets of assumptions.
197
+ Assumption 1.
198
+ (i) The transition probability T (·|x, u) is weakly continuous in (x, u), i.e., for any
199
+ (xn, un) → (x, u), T (·|xn, un) → T (·|x, u) weakly.
200
+ (ii) The observation channel Q(·|x) is continuous in total variation, i.e., for any
201
+ xn → x, Q(·|xn) → Q(·|x) in total variation.
202
+ Assumption 2. The transition probability T (·|x, u) is continuous in total vari-
203
+ ation in (x, u), i.e., for any (xn, un) → (x, u), T (·|xn, un) → T (·|x, u) in total varia-
204
+ tion.
205
+ Theorem 1.1.
206
+ (i) [22] Under Assumption 1, the transition kernel η(F(π, u, Y1) ∈ ·|π, u) of the
207
+ filter process is weakly continuous in (π, u).
208
+ (ii) [35] Under Assumption 2, the transition kernel η(F(π, u, Y1) ∈ ·|π, u) of the
209
+ filter process is weakly continuous in (π, u).
210
+ If the cost function c(x, u) is continuous and bounded, an application of the
211
+ dominated convergence theorem implies that ˜c(z, u) = Ez[c(X, u)] is also continuous
212
+ and bounded.
213
+ In the uncontrolled setting, [5] and [15] have established similar weak continuity
214
+ conditions (i.e., the weak-Feller property) of the non-linear filter process (i.e., the
215
+ belief process) in continuous time and discrete time, respectively, where Assumption
216
+ 1 is present for an additive noise measurement model.
217
+ 4
218
+
219
+ The convex analytic approach [45, 11] is a powerful approach to the optimiza-
220
+ tion of infinite-horizon problems. It is particularly effective in proving results on the
221
+ optimality of stationary (and possibly randomized stationary) policies, through an
222
+ infinite-dimensional linear program for constrained optimization problems and infi-
223
+ nite horizon average cost optimization problems. For the average cost criterion, recall
224
+ that via (1.6)-(1.7) under the belief-MDP reduction, we are interested in the mini-
225
+ mization:
226
+ inf
227
+ γ∈Γ lim sup
228
+ N→∞
229
+ 1
230
+ N Eγ
231
+ µ[
232
+ N−1
233
+
234
+ t=0
235
+ ˜c(πt, ut)],
236
+ (1.8)
237
+ where Eγ
238
+ x0[·] denotes the expectation over all sample paths with initial state given by
239
+ x0 under the admissible policy γ.
240
+ Assumption 3.
241
+ (i) The R+-valued one-stage cost function c is bounded and continuous.
242
+ (ii) Assumption 1 or 2 holds (this leads to the belief-MDP η to be weakly contin-
243
+ uous by Theorem 1.1).
244
+ (iii) X and U are compact.
245
+ Theorem 1.2. Under Assumption 3, there exists an optimal invariant measure
246
+ and an associated optimal control policy, for either average cost (1.4) or for the dis-
247
+ counted cost (1.5) criteria.
248
+ Proof. For the average cost criterion, the proof follows from the convex analytic
249
+ method, studied by Borkar in the weakly continuous case [11]; for completeness, and
250
+ its use later in the paper, a proof is presented in Section A.1. For the discounted
251
+ cost criterion, the result follows from a standard verification and measurable selection
252
+ analysis on the discounted cost optimality equation [30].
253
+ While this result presents sufficient findings on the existence of optimal control
254
+ policies, the approach has a number of limitations.
255
+ (i) [Fully observed MDPs viewed as a special case of POMDPs] Consider the
256
+ case with the state transition kernel T being weakly continuous and where
257
+ the measurements satisfy yt = xt, that is, with full state information, in which
258
+ case the measurement kernel is Q(dy|x) = δx(dy), and thus the system does
259
+ not satisfy Assumption 1 or 2 (as the channel is only weakly continuous but
260
+ not total variation continuous). On the other hand, this model, which is a
261
+ fully observed setup, has been studied well and leads to well-known existence
262
+ (and further, structural and approximation) results. Therefore, we observe
263
+ that one should be able to relax the conditions further, which we will indeed
264
+ find to be the case.
265
+ (ii) For the average cost criterion, Assumption 3 provides weaker conditions when
266
+ compared with the efforts in the literature that typically have utilized the van-
267
+ ishing discount approach: [10] considers the finite model setup and [60] con-
268
+ sider restrictive assumptions on the controlled state process, and [21] which in
269
+ the POMDP case would require yet to be established rates of convergence con-
270
+ ditions to invariant measures (needed for uniform boundedness properties of
271
+ relative discounted cost value functions as the discount parameter approaches
272
+ unity). We will see that further relaxations can be provided.
273
+ (iii) There is a subtle question of how to select the initial measure, that is the
274
+ question of achieving the optimal cost under a given initial belief measure
275
+ and whether the support of an invariant probability measure attracts the be-
276
+ lief process from a given initial condition. For an interesting counterexample,
277
+ 5
278
+
279
+ see [37, Example 2.3]. For belief MDPs, there are few results on unique ergod-
280
+ icity properties, therefore the impact of the initial priors is an open problem
281
+ under the belief-separated-approach. In our case, the infinite dimensional
282
+ formulation to be presented leads to a flexibility on how to select the initial
283
+ prior which we show to lead to global optimality under a mild and testable
284
+ absolute continuity condition (this approach does not seem to easily carry
285
+ over to the belief-separated-approach).
286
+ (iv) Related to (iii), the unique ergodicity problem for the controlled or uncon-
287
+ trolled non-linear filtering process entails open problems. An alternative ap-
288
+ proach to what currently exists in the literature is needed, especially for the
289
+ controlled setup. For the control-free case, building on [46, Theorem 2] and
290
+ [61, Prop 2.1], it can be shown that almost sure filter stability in the total
291
+ variation sense (or weak merging sense, with the arguments tailored to this
292
+ case) and the uniqueness of an invariant probability measure on the hidden
293
+ state process leads to unique ergodicity of the filter process. We will see that a
294
+ complementary condition for the control-free case can be established (unique
295
+ ergodicity of the measurement process and a measurability condition related
296
+ to filter stability also leads to unique ergodicity).
297
+ 1.2. Statement of main results and contributions. The paper makes the
298
+ following contributions.
299
+ (i) We present an approach of defining the state as an infinite-dimensional con-
300
+ trolled Markov chain where the control policies satisfy conditional indepen-
301
+ dence between the state and control actions given the information. For the
302
+ controlled case, we provide new sufficient conditions for the existence of opti-
303
+ mal control policies which turn out to be stationary in the history variables.
304
+ In particular, while in the belief-MDP reduction of POMDPs, weak Feller
305
+ condition requirement imposes total variation continuity on either the sys-
306
+ tem kernel or the measurement kernel, with the approach of this paper only
307
+ weak continuity of both the transition kernel and the measurement kernel is
308
+ sufficient together with a stability condition (Theorem 3.3). For the aver-
309
+ age cost criterion, the paper provides a general approach on how to generate
310
+ initial priors and beliefs so that optimal performance can be attained. The
311
+ infinite dimensional formulation presents a natural flexibility in initialization,
312
+ which can be used to arrive at optimal performance under a mild absolute
313
+ continuity condition, see Theorem 3.5 (which does not seem to be lenient
314
+ under the standard belief-MDP approach).
315
+ (ii) For the discounted cost criterion, more relaxed existence conditions will be
316
+ presented in Section 4. We first establish the existence of a stationary optimal
317
+ policy. We then establish near optimality of finite window policies via a direct
318
+ argument involving near optimality of quantized approximations for MDPs
319
+ under weak Feller continuity (see Theorem 4.1), where finite truncations of
320
+ memory can be viewed as (uniform) quantizations of infinite memory (which is
321
+ the state definition adopted for the discounted cost criterion by Theorem 2.5)
322
+ with a uniform diameter in each finite window restriction under the product
323
+ metric. Building on recent results on near-optimality of quantized policies
324
+ for weak Feller MDPs [55], near optimality of finite memory policies follows,
325
+ complementing and generalizing recent works on the subject [39, 40]. This
326
+ also facilitates reinforcement learning theoretic methods for POMDPs, which
327
+ is discussed in further detail in the paper.
328
+ 6
329
+
330
+ (iii) Via our approach, further results on existence and uniqueness of invariant
331
+ probability measures for control-free non-linear filter processes will be estab-
332
+ lished in Section 5. In particular, we will see that unique ergodicity of the
333
+ measurement process and a measurability condition related to filter stability
334
+ leads to unique ergodicity (this complements, with an alternative argument,
335
+ several results in the literature).
336
+ 2. Another Look at POMDPs: Infinite Dimensional Markov Decision
337
+ Process Formulation.
338
+ 2.1. Controlled-Markov construction with infinite-memory state space
339
+ for the average cost criterion. To facilitate the solution approach presented in
340
+ this paper, we first assume that the measurements and the control actions have been
341
+ taking place since −∞. Later on we will motivate and justify this approach.
342
+ Let YZ− be the one-sided product space consisting of elements of the form
343
+ y = {· · · , yn, · · · , y−2, y−1, y0}
344
+ with yk ∈ Y. We endow YZ− with the product topology; this makes YZ− a metric
345
+ space, which is complete and separable. Likewise, we will view U(−∞,−1] also as a
346
+ UZ−-valued random variable.
347
+ A related view, on using the infinite past as a Markov process, was presented in
348
+ [66] to establish stochastic stability of control-free dynamical systems driven by noise
349
+ processes which are not necessarily independent and identically distributed, but which
350
+ are stationary. A further related approach was adopted in [1]; see also [28] (as well as
351
+ [7] and [67] as discussed earlier).
352
+ Theorem 2.1. With
353
+ Zk = (Y(−∞,k], U(−∞,k−1], Xk),
354
+ the pair (Zk, Uk) is a controlled Markov chain where Zk is YZ− × UZ− × X valued.
355
+ Proof. Let A = �0
356
+ k=−∞ Ay
357
+ k be an open cylinder set in YZ− and Au = �0
358
+ k=−∞ Au
359
+ k
360
+ be an open cylinder set in UZ− and let B ∈ X be a Borel set:
361
+ P
362
+
363
+ Zt+1 ∈ (Ay × Au × B)|Zt = z, Ut = u, Z[0,t−1] = z[0,t−1], U[0,t−1] = u[0,t−1]
364
+
365
+ =
366
+
367
+ Q(yt+1 ∈ Ay
368
+ 0|xt+1)T (xt+1 ∈ B|xt = x, ut = u)
369
+ ×P(y(−∞,t] ∈
370
+ 0
371
+
372
+ k=−∞
373
+ Ay
374
+ k|y(−∞,t])P(u(−∞,t] ∈
375
+ 0
376
+
377
+ k=−∞
378
+ Au
379
+ k|u(−∞,t])
380
+ =
381
+
382
+ Q(yt+1 ∈ Ay
383
+ 0|xt+1)T (xt+1 ∈ B|xt = x, ut = u)1{y(−∞,t]∈�0
384
+ k=−∞ Ay
385
+ k,u(−∞,t]∈�0
386
+ k=−∞ Au
387
+ k}
388
+ (2.1)
389
+ =: P(Ay × Au × B|Zt = z, Ut = u)
390
+ (2.2)
391
+ where for a Borel C, Q(y ∈ C|x) := P(G(X0, V0) ∈ C|X0 = x) by (1.2) and T is the
392
+ transition kernel defined by (1.1).
393
+ In the above, we define P to be the transition kernel for this Markov chain.
394
+ Definition 2.2 (Weak-Feller Condition for P). P(dzt+1|zt, ut) is weak-Feller if
395
+ for every continuous and bounded f ∈ Cb(YZ− × UZ− × X):
396
+
397
+ f(zt+1)P(dzt+1|zt = z, ut = u)
398
+ 7
399
+
400
+ is continuous in (z, u).
401
+ The following will be invoked often.
402
+ Assumption 4. Q(·|x) is weakly continuous in x, and T (·|x, u) is weakly con-
403
+ tinuous in x, u.
404
+ Lemma 2.3. Under Assumption 4, P is weak-Feller.
405
+ Proof. First note that by (2.1) we have
406
+ P(dzt+1|zt, ut) = Q(dyt+1|xt+1)T (dxt+1|xt, ut)P(dy(−∞,t]|y(−∞,t])P(du(−∞,t]|u(−∞,t])
407
+ where P(y(−∞,t] ∈ ·|y(−∞,t]) = δy(−∞,t](·) is the Dirac measure (as in (2.1)), with the
408
+ same holding for P(du(−∞,t]|u(−∞,t]).
409
+ We wish to show that the following is continuous in xt, y(−∞,t], u(−∞,t−1], ut, for
410
+ continuous and bounded f:
411
+
412
+ f
413
+
414
+ xt+1, y(−∞,t+1], u(−∞,t]
415
+
416
+ P(dxt+1, dy(−∞,t]+1, du(−∞,t−1|xt, y(−∞,t], u(−∞,t−1, ut)
417
+ =
418
+
419
+ f
420
+
421
+ xt+1, y(−∞,t+1], u(−∞,t]
422
+
423
+ Q(dyt+1|xt+1)T (dxt+1|xt, ut)
424
+ ×P(dy(−∞,t]|y(−∞,t])P(du(−∞,t]|u(−∞,t])
425
+ =
426
+ � �
427
+ xt+1
428
+ �� �
429
+ yt+1
430
+ f(xt+1, y(−∞,t+1], u(−∞,t])Q(dyt+1|xt+1)
431
+
432
+ T (dxt+1|xt, ut)
433
+
434
+ ×P(dy(−∞,t]|y(−∞,t])P(du(−∞,t]|u(−∞,t])
435
+ The expression
436
+ g(xt+1, y(−∞,t+1], u(−∞,t) :=
437
+ � �
438
+ yt+1
439
+ f(xt+1, y(−∞,t+1], u(−∞,t)Q(dyt+1|xt+1)
440
+
441
+ is continuous by a generalized dominated convergence theorem for varying measures
442
+ under continuous-convergence [44, Thm.
443
+ 3.5] (see also [57, Thm. 3.3] for a more
444
+ restricted version). Since g is continuous in xt+1,
445
+ h(xt, ut, y(−∞,t], u(−∞,t]) :=
446
+
447
+ xt+1
448
+
449
+ g(xt+1, y(−∞,t], u(−∞,t])T (dxt+1|xt, ut)
450
+
451
+ is also continuous in its parameters. Finally, again by [44, Thm. 3.5],
452
+
453
+ h(xt, ut, y(−∞,t], u(−∞,t])P(dy(−∞,t]|y(−∞,t])P(du(−∞,t]|u(−∞,t])
454
+ is continuous in xt, y(−∞,t], u(−∞,t−1], ut.
455
+ The above completes the description of the controlled Markov model, that we will
456
+ utilize for the average cost problem.
457
+ 2.2. Key technical assumptions on continuity and stability. We will oc-
458
+ casionally invoke a subset of the following assumptions on stationarity, stability, and
459
+ continuity. We will see, in Appendix B, that these are related to filter stability [17].
460
+ Assumption 5. [A Continuity Condition] The stochastic kernel P(dxk|y(−∞,k], u(−∞,k−1])
461
+ is weakly continuous, that is, for every continuous and bounded g : X → R,
462
+
463
+ g(x)P(Xk ∈ dx|y(−∞,k], u(−∞,k−1])
464
+ 8
465
+
466
+ is continuous in (y(−∞,k], u(−∞,k−1]) (under the product topology on YZ− × UZ−).
467
+ It will be shown in the appendix that a uniform filter stability condition, such
468
+ as [27, Corollary 4.2] (via a Hilbert metric approach) as well as [47, Corollary 3.7]
469
+ (via Dobrushin’s coefficient method), implies Assumption 5 for the case where the
470
+ measurement and action spaces are finite. Further discussion is available in Appendix
471
+ B. Our next assumption is the following.
472
+ Assumption 6. [A Stationarity / Stability Condition] For every Borel B, and
473
+ with y = (· · · , y−2, y−1, y0), u = (· · · , u−2, u−1, u0), under any control policy, for
474
+ almost every (y, u), we have that
475
+ P(Xt ∈ B|Y(−∞,t] = y, U(−∞,t−1] = u) = P(Xt+1 ∈ B|Y(−∞,t+1] = y, U(−∞,t] = u)
476
+ This assumption is also implied by an almost sure filter stability condition. In fact,
477
+ [27, Corollary 4.2] also implies the next, and final, assumption: P
478
+
479
+ Xt ∈ ·
480
+ ����
481
+ �∞
482
+ n=1 σ(Y(−∞,t], U(−∞,t−1])∨
483
+ σ(π(−∞,−n])
484
+
485
+ is σ(It)-measurable in the sense that P a.s.
486
+ P
487
+
488
+ Xt ∈ ·
489
+ ����
490
+
491
+
492
+ n=1
493
+ σ(Y(−∞,t], U(−∞,t−1]) ∨ σ(π(−∞,−n])
494
+
495
+ = P(Xt ∈ ·|σ(Y(−∞,t], U(−∞,t−1]))
496
+ (2.3)
497
+ Let πt be the conditional probability on the state, given a (distant) prior at time
498
+ −n ∈ Z−, and the information since then (or, equivalently, the information even prior
499
+ to −n): For all Borel A ⊂ X
500
+ πt(A) = E[1Xt∈A|σ(Y(−∞,t], U(−∞,t−1]) ∨ σ(π(−∞,−n]]
501
+ In view of the above, we state the following assumption.
502
+ Assumption 7. [A Filter Stability Condition] πt is σ(It) measurable where It =
503
+ (Y(−∞,t], U(−∞,t−1]). In particular, there exists a measurable g such that g(y(−∞,t], u(−∞,t−1])(A) =
504
+ πt(A) for every Borel A.
505
+ Lemma 2.4. Condition (2.3) implies Assumption 7.
506
+ Proof. Observe that πt(A) = E[1Xt∈A|σ(Y(−∞,t], U(−∞,t−1]) ∨ σ(π(−∞,−n]] for
507
+ every n > 0 and thus
508
+ πt(A) = lim
509
+ n→∞ E[1Xt∈A|σ(Y(−∞,t], U(−∞,t−1]) ∨ σ(π(−∞,−n]].
510
+ Now, E[1Xt∈A|σ(Y(−∞,t], U(−∞,t−1])∨σ(π(−∞,−n]] is a bounded backwards martingale
511
+ sequence with respect to the decreasing filtration σ(Y(−∞,t], U(−∞,t−1])∨σ(π(−∞,−n]),
512
+ n ∈ N and by the backwards martingale theorem [19], the above limit will converge
513
+ to
514
+ P
515
+
516
+ Xt ∈ A
517
+ ����
518
+
519
+
520
+ n=1
521
+ σ(Y(−∞,t], U(−∞,t−1]) ∨ σ(π(−∞,−n])
522
+
523
+ This then implies, via (2.3), πt(A) is σ(It)-measurable for any given A.
524
+ Recall the following which builds on Theorem 2.1 of Dubins and Freedman [18] and
525
+ Proposition 7.25 in Bertsekas and Shreve [4]: Let S be a Polish space, P(S) be the set of
526
+ 9
527
+
528
+ probability measures under the weak convergence topology and (M, M) be a measurable
529
+ space.
530
+ A function F : (M, M) → P(S) is measurable on M if for all B ∈ B(S)
531
+ (F(·))(B) : M → R is measurable on M, that is for every B ∈ B(S), (F(π))(B) is a
532
+ measurable function when viewed as a function from M to R. See also [4, Proposition
533
+ 7.26]. By this result, it follows that πt is measurable on �∞
534
+ n=1 σ(Y(−∞,t], U(−∞,t−1]) ∨
535
+ σ(π(−∞,−n]). But by condition (2.3), it is also σ(It) measurable, and as the considered
536
+ spaces are standard Borel, a functional representation via the measurable function g
537
+ follows.
538
+ Further analysis and sufficient conditions for Assumptions 5, 6 and 7 are presented
539
+ in Appendix B. We note that (2.3) is essentially a filter stability condition: Indeed,
540
+ the assumption above, in the control-free setup, is related to the statement in [16,
541
+ Theorem 3.1(2)], building on [43].
542
+ 2.3. Controlled-Markov construction with infinite-memory state space
543
+ for the discounted cost criterion. Given the construction and stability properties,
544
+ for the discounted cost criterion, towards arriving at approximate optimality results
545
+ using finite window policies, we will present an alternative controlled Markov model.
546
+ The proof follows from identical arguments presented in Section 2.1, but here we
547
+ apriori impose Assumption 5 and Assumption 7.
548
+ Theorem 2.5.
549
+ (i) With
550
+ Sk = (Y(−∞,k], U(−∞,k−1]),
551
+ the pair (Sk, Uk) is a controlled Markov chain where Sk is YZ− × UZ− valued.
552
+ (ii) Under Assumption 7, we have that for all u ∈ U
553
+ E
554
+
555
+ c(Xk, u)
556
+ ����(Y(−∞,k], U(−∞,k−1] = s)
557
+
558
+ = ¯c(s, u),
559
+ for some measurable ¯c : YZ− × UZ− × U → R.
560
+ (iii) Under Assumption 5, ¯c is continuous and bounded, when c is bounded con-
561
+ tinuous.
562
+ (iv) The kernel P(zt+1 ∈ ·|Zt = z, Ut = u) is weak Feller under Assumptions 4
563
+ and 5.
564
+ The final result, (iv), in the above follows by considering P(Yt ∈ dy|Zt = z, Ut =
565
+ u) =
566
+
567
+ Q(dy|x)P(Xt ∈ dx|Zt = z, Ut = u), and the weak continuity of each of the
568
+ kernels in the integration and generalized weak convergence [44, Thm. 3.5] as used
569
+ earlier in the proof of Lemma 2.3; (iii) follows from Assumption 5 by definition. (i)
570
+ follows by construction, and (ii) directly by Assumption 7.
571
+ As a result, under Assumptions 7 and 5, we have an equivalent controlled Markov
572
+ model with cost ¯c : (YZ− ×UZ−)×U → R+, YZ− ×UZ−-valued state sk, and transition
573
+ kernel P(Zt+1 ∈ ��|Zt = z, Ut = u).
574
+ 2.4. Conditionally state independent control policies. Once we have es-
575
+ tablished controlled Markov models, we now discuss the classes of control policies
576
+ considered under the infinite dimensional controlled Markov model presented. We
577
+ recall that in the theory of stochastic control, to facilitate stochastic analysis for arriv-
578
+ ing at existence, structural or approximation results (e.g. via continuity-compactness
579
+ properties), the set of control policies may be enlarged. This is often referred to as a
580
+ relaxation of control policies. Relaxations have been very effective in optimal control,
581
+ 10
582
+
583
+ with a very prominent example being Young measures in deterministic optimal control
584
+ [64]. These allow one to use topologies on the sets of probability measures to study
585
+ existence, optimality, and structural results (especially that of weak convergence),
586
+ rather than working with the space of measurable functions only (whose compactness
587
+ conditions under an appropriate metric would be too restrictive). A key aspect of such
588
+ relaxations is that any relaxation should not allow for optimal expected cost values
589
+ to be improved; they should only be means to facilitate stochastic analysis. We can
590
+ classify some policies and various relaxations as follows:
591
+ (i) Wide sense admissible policies introduced by Fleming and Pardoux [25] and
592
+ prominently used to establish the existence of optimal solutions for partially observed
593
+ stochastic control problems. Borkar [10, 13, 12] (see also Borkar and Budhiraja [14])
594
+ have utilized these policies for a coupling/simulation method to arrive at optimality
595
+ results for average cost partially observed stochastic control problems. The approach
596
+ here is to first apply a Girsanov type (see Borkar [10, 13] for discrete-time models and
597
+ Witsenhausen [62] for decentralized stochastic control where the change of measure
598
+ argument leads to static reduction) transformation to decouple the measurements from
599
+ the system via an absolute continuity condition of measurement variables conditioned
600
+ on the state, with respect to some reference measure; and then use independence
601
+ properties: In the discrete-time case, {Yn} is i.i.d. and independent of X0 and the
602
+ system noise {Wn}, and {U0, . . . , Un, Y0, . . . , Yn} is independent of {Wn}, X0, and
603
+ {Ym, m > n}, for all n.
604
+ (ii) Policies defined by conditional independence (as in the dynamic programming
605
+ formulation [67] for decentralized stochastic control).
606
+ In the context of our setup
607
+ here, the actions are those that satisfy Un being conditionally independent of the past
608
+ (X0, W[0,n], V[0,n]) given the local information {Y[0,n], U[0,n−1]}:
609
+ Un ↔ {Y[0,n], U[0,n−1]} ↔ {X0, W[0,··· ), V[0,··· )}
610
+ (2.4)
611
+ We note that, here an absolute continuity condition required for the static reduction
612
+ or Girsanov-type measure transformation is not necessary apriori. We will call such
613
+ policies Conditionally-Exogenous Variable-Independent Policies since the conditional
614
+ independence holds between action, information, and the exogenous random variables
615
+ in the system.
616
+ In our paper, we will consider a further refinement (to be called
617
+ Conditionally-State-Independent Policies) which satisfies instead of (2.4)
618
+ Un ↔ {Y[0,n], U[0,n−1]} ↔ Xn
619
+ (2.5)
620
+ to facilitate the infinite horizon analysis.
621
+ If we have independent static reduction, with measurements ˜Yn, by considering
622
+ the method for static measurements with expanding information structure (this is
623
+ the information structure that one would obtain for a POMDP under the absolute
624
+ continuity conditions) in [68, Theorem 5.6] or [54, Theorem 4.7] by expressing all the
625
+ cost-relevant uncertainty in terms of ˜Yn, we have the following version of (2.4)
626
+ Un ↔ { ˜Y[0,n], U[0,n−1]} ↔ { ˜Y[n+1,··· )}
627
+ (2.6)
628
+ If the process continues on since the indefinite past, we write (2.5) with
629
+ Un ↔ {Y(−∞,n], U(−∞,n−1]} ↔ Xn
630
+ (2.7)
631
+ 3. Existence Results for Optimal Policies: Average Cost Criterion.
632
+ 11
633
+
634
+ 3.1. On the existence of an optimal stationary policy. We first present a
635
+ supporting result in the following, which will be crucial in our analysis to follow.
636
+ Lemma 3.1. a) Let Y 1
637
+ n , Y 2
638
+ n , U 2
639
+ n be a sequence of random variables that satisfies
640
+ for every n, the conditional independence property:
641
+ Y 1
642
+ n ↔ Y 2
643
+ n ↔ U 2
644
+ n,
645
+ with joint measure Pn, where the marginal on (Y 1
646
+ n , Y 2
647
+ n ) is fixed throughout the se-
648
+ quence. In this case, if Pn → P weakly, the limit measure P also satisfies
649
+ Y 1 ↔ Y 2 ↔ U 2
650
+ b) Let Y 1
651
+ n , Y 2
652
+ n , U 2
653
+ n be a sequence of random variables that satisfies for every n:
654
+ Y 1
655
+ n ↔ Y 2
656
+ n ↔ U 2
657
+ n
658
+ with measure Pn where the conditional probability Pn(Y 1
659
+ n ∈ dy1|Y 2
660
+ n = y2) = κ(dy1|y2)
661
+ is fixed throughout the sequence and that κ(dy1|y2) is a weakly continuous kernel (i.e.
662
+ y2 �→
663
+
664
+ f(y1)κ(dy1|y2) is continuous and bounded for every bounded continuous f).
665
+ In this case, if Pn → P weakly, then, the limit measure also satisfies
666
+ Y 1 ↔ Y 2 ↔ U 2
667
+ Proof. See Section A.2.
668
+ We now present a key intermediate result.
669
+ Lemma 3.2. Let X, Y, U be compact. Under Assumptions 4, 6 and 5, the set of
670
+ invariant occupation measures
671
+ G = {v ∈ P(X × YZ− × UZ−) :
672
+ v(B × U) =
673
+
674
+ z,u
675
+ P(zt+1 ∈ B|z, u)v(dz, du),
676
+ B ∈ B(X × YZ− × UZ−)}
677
+ that simultaneously satisfy the Markov chain
678
+ X0 ↔ (U(−∞,−1]), Y(−∞,0]) ↔ U0,
679
+ or, equivalently, that belong to
680
+ H = {v ∈ P(X × YZ− × UZ−) :
681
+ v(dx0, dy(−∞,0], du(−∞,−1], du0)
682
+ = v(dx0, dy(−∞,0], du(−∞,−1])P(du0|dy(−∞,0], du(−∞,−1])},
683
+ (3.1)
684
+ is a weakly compact set.
685
+ Proof. We note that under weak continuity of the transition kernel for P, G is a
686
+ closed set under weak convergence. By Lemma 3.1(b), as the kernel
687
+ P(dxt|y(−∞,t], u(−∞,t−1])
688
+ is weakly continuous (by Assumption 5) and time-invariant (by Assumption 6) , H
689
+ is also closed. Since the state space is compact, the set of probability measures on
690
+ (X×YZ− ×U) is tight. The result follows since a closed subset of a tight set is weakly
691
+ compact.
692
+ 12
693
+
694
+ Building on the above, we are able to state the following:
695
+ Theorem 3.3. Let X, Y, U be compact and Assumptions 4, 6 and 5 hold. Then
696
+ an optimal control policy exists. This policy is stationary and can be written as:
697
+ Ut = γ(Y(−∞,t], U(−∞,t−1], Rt),
698
+ where Rt is an i.i.d. sequence.
699
+ Proof. See Section A.3.
700
+ Remark 3.1. The above is a relaxation on the known results where one needs
701
+ to reduce the POMDP to a belief-MDP which is weak Feller. As noted earlier, the
702
+ weak Feller conditions require total variation continuity on either the system kernel
703
+ or the measurement kernel. Only weak continuity of both the transition kernel and
704
+ the measurement kernel is needed for the result above, though filter stability is also
705
+ imposed.
706
+ 3.2. On the initial state distribution realization for an optimal station-
707
+ ary policy. In the above, there is an important operational question: The actual
708
+ system is a one-sided process with X0 ∼ µ being the starting variable. To address
709
+ this issue, in the following we explain that we can randomly generate the past and use
710
+ the past realizations to apply optimal control. Under some conditions, the average
711
+ cost will converge to the optimal cost.
712
+ Our strategy on the initialization is as follows: (i) We will first show that an
713
+ optimal invariant measure can be taken to be ergodic (i.e., an invariant measure
714
+ which cannot be expressed as a convex combination of multiple invariant measures).
715
+ (ii) Then we will construct an initialization which is in the attractor set of this optimal
716
+ invariant measure, under a mild absolute continuity condition.
717
+ We will generate
718
+ the measurement and control actions Y(−∞,−1], U(−∞,−1] according to a stationary
719
+ measure, and then X0 ∼ µ, Y0 accordingly, and continue with the process according
720
+ to the optimal policy under Theorem 3.3.
721
+ Lemma 3.4.
722
+ Without any loss of optimality, an optimal invariant occupation
723
+ measure can be assumed to be ergodic.
724
+ Proof. Let ν be an optimal occupation measure, which leads to a policy γ. Under
725
+ γ, the state process
726
+ (Y(−∞,k], U(−∞,k−1], Xk),
727
+ is a Markov chain with the marginal of the invariant measure ν on this state being
728
+ invariant. By an ergodic decomposition theorem, every stationary measure can be
729
+ expressed as a convex combination of ergodic invariant measures with disjoint sup-
730
+ ports: let ν be expressed as a convex combination of measures νβ, parametrized by β
731
+ (see Theorem C.1 for some related discussion), where each of them are also invariant
732
+ and ergodic. Now, a question is whether each of the νβ measures satisfies (3.1) and
733
+ (3.1). The first holds by the invariance of each of these measures. The latter holds
734
+ by definition: conditioned on the support of each νβ, ν satisfies (3.1) (note that the
735
+ control policy is fixed) and hence this holds also for νβ.
736
+ Since the cost in (A.14):
737
+ inf
738
+ v∈G∩H
739
+
740
+ v(dx, dy(−∞,0], du(−∞,−1], du)c(x, u)
741
+ (3.2)
742
+ is linear in the space of (signed) measures, we conclude that without any loss we can
743
+ take ν to be from the set of ergodic invariant measures.
744
+ 13
745
+
746
+ The above then completes our realization result:
747
+ Theorem 3.5. Let Assumptions 5 and 6 hold. Let Ut = γ(Y(−∞,t], U(−∞,t−1], Rt)
748
+ be an optimal stationary policy with Rt being an i.i.d. noise process. Let
749
+ g(y(−∞,k], u(−∞,k−1], xk) := E[c(xk, γ(y(−∞,k], u(−∞,k−1], Rk))]
750
+ where the expectation is over Rk. Let ¯P denote an (invariant) process measure on
751
+ (Y(−∞,k−1], U(−∞,k−1], Yk, Xk),
752
+ and let P0 be the marginal of the invariant measure on {Y(−∞,−1], U(−∞,−1]} and µ
753
+ be the prior measure on X0 as imposed (i.e., given in the problem statement) on the
754
+ controller/decision maker. If P0 × µ ≪ ¯P (note that the distribution on X0 specifies
755
+ that on Y0); that is, absolute continuity holds when the (past history) initialization is
756
+ independent of the state process initialization, then
757
+ lim
758
+ T →∞
759
+ 1
760
+ T EP0×µ
761
+ � T −1
762
+
763
+ k=0
764
+ c(Xk, γ(Y(−∞,k], U(−∞,k−1], Rk))
765
+
766
+ =
767
+
768
+ g(y(−∞,0], u(−∞,−1], x0) ¯Q(dy(−∞,0], du(−∞,−1], x0),
769
+ (3.3)
770
+ for some invariant ¯Q, which would necessarily be ¯P under the assumed ergodicity of
771
+ ¯P via Lemma 3.4, in which case the optimal control/decision cost will be attained.
772
+ Remark 3.2. Note that, in the above, with ¯P and P0 both stationary, we have
773
+ that ¯P decomposes as P0(dy(−∞,−1], du(−∞,−1]) ¯P(dx0|y(−∞,−1], u(−∞,−1]). A suffi-
774
+ cient condition for the aforementioned absolute continuity condition then is, ¯P a.e.,
775
+ µ(dx0) ≪ ¯P(dx0|dy(−∞,−1], du(−∞,−1])
776
+ Remark 3.3. Observe that in the analysis above we constructed y(−∞,−1], u(−∞,−1]
777
+ and not y(−∞,0], since µ on X0 induces directly a measure on Y0. Note that with P0×µ
778
+ viewed as an initial measure, when the process evolves, the evolution is consistent with
779
+ the actual realizations under the true measure. That is, the initialization does not af-
780
+ fect the evolution of the measure. The reason is that the process X0 determines the
781
+ probability of the future events, independent of the history initialization via:
782
+ P(dzt+1|zt, ut) = Q(dyt+1|xt+1)P(dxt+1|xt, ut)P(dy(−∞,t]|y(−∞,t])P(du(−∞,t]|u(−∞,t]).
783
+ 4. Discounted Cost Criterion:
784
+ Refined Existence Results and Near
785
+ Optimality of Finite Window/Memory Policies. In this section, we study the
786
+ discounted cost setup. We will see a particular utility in this criterion: near optimality
787
+ of finite window policies.
788
+ For the discounted criterion, we will restrict our control policies to those that are
789
+ strict-sense admissible. We could also consider the relaxed framework, however the
790
+ analysis for the discounted criterion setup will be seen to be more direct. Compared
791
+ with the average cost criterion, we are able to utilize a verification theorem directly
792
+ following the discounted cost optimality equation (DCOE).
793
+ 14
794
+
795
+ Let, as in Theorem 2.5, sk = (y(−∞,k], ˜u(−∞,k−1]) ∈ YZ− × UZ−. Now, under
796
+ strict-sense policies, with the assumptions on weak-Feller continuity and bounded
797
+ continuous cost function, if there exists a solution to
798
+ Jβ(s) = min
799
+ uk∈U E
800
+
801
+ c(xk, uk) + βJk+1(Sk+1)|Sk = s, Uk = u
802
+
803
+ ,
804
+ then we can declare this policy to be optimal using a standard verification argument
805
+ [30]. As before, we assume that X, Y, U are compact.
806
+ Theorem 4.1. An optimal solution exists under Assumptions 4 and 5 and As-
807
+ sumption 7.
808
+ Proof. Note first that
809
+ E[(c(Xk, Uk))|Sk = s, Uk = u]
810
+ will be a measurable function of (s, u) under Assumption 7, call this ¯c(s, u). We then
811
+ have
812
+ Jβ(s) = min
813
+ u∈U
814
+
815
+ E[¯c(Sk, Uk) + βJk+1(Sk+1)|Sk = s, Uk = u]
816
+
817
+ Then, if we have weak-Feller continuity of the controlled kernel (by Assumption 4) and
818
+ if we have the continuity of f (by Assumption 5), by measurable selection theorems
819
+ [30], there exists a solution to the discounted cost optimality equation.
820
+ As a consequential application, we note the following. We say that, for some
821
+ N ∈ N, a control policy is an N-memory policy if for t > N,
822
+ Ut = γt(Y[t−N+1,t], U[t−N+1,t−1]),
823
+ and for 0 ≤ t ≤ N,
824
+ Ut = γt(Y[0,t], U[0,t−1]).
825
+ Theorem 4.2. Under the conditions of Theorem 4.1, the set of N-memory poli-
826
+ cies are asymptotically optimal; i.e., for every ǫ > 0, there exists N so that N window
827
+ policies are ǫ-optimal.
828
+ Before the prove the theorem, let us note that the near-optimality is operationally
829
+ justified in two scenarios. If the costs start becoming active from time N onwards, or
830
+ the policies in the first N stages are designed via a policy-iteration argument; see [39,
831
+ p. 16].
832
+ Proof. Finite window truncation of z can be viewed as a uniform binning/quantization
833
+ (even though the number of bins may not be countable) operation applied to the
834
+ infinite-dimensional state vector z under the product topology. Indeed, define (the
835
+ binning/quantization map)
836
+ ρ : YZ− × UZ− → YN × UN−1,
837
+ with
838
+ ρ(y(−∞,0], ˜u(−∞,−1]) = (y[−N,0], u[−N,−1])
839
+ In this case, for any (¯y(−∞,0], ¯u(−∞,−1]) and (˜y(−∞,0], ˜u(−∞,−1]) with
840
+ ρ(¯y(−∞,0], ¯u(−∞,−1]) = ρ(˜y(−∞,0], ˜u(−∞,−1]),
841
+ 15
842
+
843
+ and ¯d being the product metric defined by
844
+ ¯d(¯y(−∞,0], ¯u(−∞,−1], ˜y(−∞,0], ˜u(−∞,−1])
845
+ :=
846
+
847
+
848
+ k=0
849
+ 2−k
850
+ dY(¯yk, ˜yk)
851
+ 1 + dY(¯yk, ˜yk) +
852
+
853
+
854
+ m=0
855
+ 2−m
856
+ dU(¯um, ˜um)
857
+ 1 + dU(¯um, ˜um),
858
+ (4.1)
859
+ where dY and dU are the metrics on Y and U, respectively; we have that
860
+ ¯d(¯y(−∞,0], ¯u(−∞,−1], ˜y(−∞,0], ˜u(−∞,−1]) ≤ 2−N+1.
861
+ Since the constructed kernel P is weakly continuous, the cost function is bounded
862
+ continuous, and the state space is compact, the proof is then a corollary of [53,
863
+ Theorem 4.27] (see also [41, Theorem 11]) by viewing the finite window truncation
864
+ as a quantization (with a uniformly bounded radius for each bin) of the state space
865
+ under the product topology.
866
+ In particular, one can construct an approximate MDP model with state space
867
+ YN × UN−1 and action space U and transition kernel PN whose solution can be
868
+ extended, via the quantization rule ρ, to the whole YZ− × UZ− and which will be near
869
+ optimal for the original problem [53, Theorem 4.27].
870
+ Algorithmic and Numerical Implications. Note that a finite memory trun-
871
+ cation leads to a uniform quantization error, therefore the mathematical analysis
872
+ adopted in this paper is particularly suitable for such a problem in view of recent
873
+ near optimality results for quantized approximations to weakly continuous kernels.
874
+ We note that Theorem 4.2 has a rather direct relation with [39] and [40], where near
875
+ optimality of finite window policies were established via alternative and more tedious
876
+ methods, and more restrictive conditions (though with rates of convergence prop-
877
+ erties, which we do not present). In our current paper, the filter stability condition
878
+ manifests itself via Assumption 7 with no additional assumptions other than the weak
879
+ Feller property. The result above thus presents further sufficient conditions on the
880
+ applicability of re-inforcement learning methods presented in [40] for finite memory
881
+ near-optimal control. In particular, if one applies an independently randomized ex-
882
+ ploration control policy for ut (for learning) in the Q-learning algorithm presented in
883
+ [40, Section 4], one arrives at a control-free system under which the unique ergodicity
884
+ of the measurement process is satisfied under mild conditions so that the conditions in
885
+ [40, Theorem 4.1] (and in this particular fully observed interpretation, [36, Corollary
886
+ 3.3]) is applicable for arriving at near-optimal control policies which use only a finite
887
+ window of recent measurement and past actions.
888
+ We also note here that another positive attribute for the discounted criterion is
889
+ that under weak Feller continuity, both the value functions and optimal policies are
890
+ robust to model approximations [38, Theorem 4.4].
891
+ 5. The Control-Free Case: Implications on Unique Ergodicity of Non-
892
+ Linear Filters and Existence of an Optimal Stationary Policy. In this section,
893
+ we interpret some of the results presented in the controlled-case in the context of the
894
+ control-free case. This serves both as an application and validation of the approach,
895
+ but also presents new results on the non-linear filtering problem.
896
+ Even though the control-free case can be viewed as an instance of the controlled
897
+ case, here some of the assumptions can be relaxed. Accordingly, we will state two
898
+ results. One is on the stationarity properties on the optimal decision policies, and the
899
+ other is on how to realize it by selecting the initial prior appropriately.
900
+ 16
901
+
902
+ We have the following assumption for some of the results to follow. This will be
903
+ a complementary condition.
904
+ Assumption 8. {Xt} is stationary.
905
+ Note that if Xt is stationary, so is the pair process (Xt, Yt).
906
+ By a standard
907
+ argument (e.g. Chapter 7 in [19]), we can embed the one-sided stationary process
908
+ {Xk, k ∈ Z+} into a bilateral (double-sided) stationary process {Xk, k ∈ Z}.
909
+ Theorem 5.1.
910
+ Let X, Y, U be compact and Assumption 4 hold. Under either
911
+ Assumption 8 or Assumptions 5 and 6 an optimal decision/control policy exists. This
912
+ policy is stationary.
913
+ Proof. See Section A.5.
914
+ Corollary 5.2.
915
+ Let either (i) Assumption 8, or, (ii) under the hypotheses
916
+ in Theorem 5.1, Assumption 7, hold. Then, the filter process admits an invariant
917
+ probability measure.
918
+ As noted above, in the uncontrolled setting, [5] and [15] have established weak
919
+ continuity conditions (i.e., the weak-Feller property) of the non-linear filter process
920
+ (i.e., the belief process) in continuous time and discrete time, respectively; where the
921
+ total variation continuity of the measurement channel was imposed. These results
922
+ were used to establish the existence of an invariant probability measure for the belief
923
+ process. The above shows that for the existence of an invariant probability measure,
924
+ one may not need to invoke the continuity conditions.
925
+ A corollary (to Theorem 5.1 and Lemma 2.4) is the following.
926
+ Corollary 5.3. If Yt is uniquely ergodic and if Assumption 7 holds, then the
927
+ filter is uniquely ergodic.
928
+ Proof. We have seen that there exists at least one invariant probability measure.
929
+ Suppose that there were two distinct invariant probability measures, η1 and η2. Since a
930
+ countable collection of continuous and bounded functions can be used to distinguish
931
+ probability measures, we will consider
932
+
933
+ ηi(dπ)f(π) for such a countable collection
934
+ of functions f, for i = 1, 2. Consider the joint process (πt, Y(−∞,t]) with invariant
935
+ measure κi and with a marginal invariant measure on πt as ηi. Since the marginal on
936
+ Y(−∞,t] is uniquely ergodic, for every invariant measure κi on the joint process, the
937
+ marginal will be a constant measure, call ψ. Therefore:
938
+
939
+ ηi(dπ)f(π) =
940
+
941
+ κi(dπ, dy(−∞,t])f(π) = Eκi[f(π)] = Eκi[Eκi[f(π)|Y(−∞,t]]]
942
+ However, Eκi[f(π)|Y(−∞,t]] = Eκi[g(Y(−∞,t])] = Eψ[g(Y(−∞,t])] for some measurable
943
+ g, by Assumption 7. Therefore, as this argument applies for any f from the distin-
944
+ guishing family, we must have that η1 = η2.
945
+ Note that for Yt to be uniquely ergodic, we don’t require Xt to be uniquely
946
+ ergodic. On the other hand, if Xt is uniquely ergodic, Yt must be uniquely ergodic as
947
+ well. For sufficient conditions on unique ergodicity of infinite-memory processes such
948
+ as Yt, see [66, Theorem 3.8]; in particular the existence of an accessible element and a
949
+ continuity condition (instead of weak continuity, where setwise continuity is imposed
950
+ in Assumption 5; e.g., [27, Corollary 4.2] implies this condition as well).
951
+ Notably, building on [46, Theorem 2] and [61, Prop 2.1], it can be shown, via a
952
+ functional analytic argument, that almost sure filter stability in the total variation
953
+ sense (which can be relaxed to weak merging) and the uniqueness of an invariant prob-
954
+ ability measure on the state process leads to unique ergodicity of the filter process.
955
+ It thus turns out that a complementary condition, and with an alternative argument
956
+ (e.g. to [46, Theorem 2]), can also be established: unique ergodicity of the measure-
957
+ 17
958
+
959
+ ment process and a measurability condition related to filter stability leads to unique
960
+ ergodicity.
961
+ Remark 5.1. For the problem at hand, for the control-free setup, it is evident that
962
+ the decision maker can always apply arg min E[c(Xk, Uk)|Y[0,k]] at any k ∈ N. This
963
+ policy will lower bound the expected cost under any policy, including the aforemen-
964
+ tioned policy. The conclusion is that, asymptotically, they are equivalent. The main
965
+ novelty here is the optimality of a stationary policy for an average cost problem.
966
+ On the realization problem for an optimal stationary policy
967
+ Assumption 8 will not be applicable if the initialization of the process is to be
968
+ arbitrary. Let ¯P be the (unique) invariant probability measure on {Y(−∞,t]}. If the
969
+ initial measure P0 is such that P0 ≪ ¯P, then a result due on the ergodic theory of
970
+ Markov chains (see Theorem C.1(ii)) shows that for every measurable bounded g:
971
+ lim
972
+ T →∞
973
+ 1
974
+ T EP0[
975
+ T −1
976
+
977
+ k=0
978
+ g(Y(−∞,k])] =
979
+
980
+ g(y(−∞,0]) ¯P (dy(−∞,0])
981
+ We state the following, building on Theorem C.1(ii), and the proof method of
982
+ Theorem 3.5.
983
+ Theorem 5.4. Let Assumptions 6 and 5 hold. Let ut = γ(y(−∞,t], Rt) be an
984
+ optimal stationary policy (by Theorem 5.1) with Rt being an i.i.d.
985
+ noise process.
986
+ Let g(y(−∞,k], xk) := E[c(Xk, γ(Y(−∞,k], Rk))] where the expectation is over Rk. Let
987
+ ¯P denote an invariant process measure on (Y(−∞,k−1], Xk) and let P0 be the invari-
988
+ ant measure on {Y(−∞,−1]} and µ be the prior measure on X0 as imposed by the
989
+ controller/decision maker. If P0 × µ ≪ ¯P; that is, if the (filter) initialization is inde-
990
+ pendent of the state process initialization and under the absolute continuity condition,
991
+ lim
992
+ T →∞
993
+ 1
994
+ T EP0×µ[
995
+ T −1
996
+
997
+ k=0
998
+ g(Y(−∞,k], Xk)] =
999
+
1000
+ g(y(−∞,0], x0) ¯Q(dy(−∞,0], x0).
1001
+ (5.1)
1002
+ The optimal control/decision cost will be attained.
1003
+ Observe again, as in the controlled setup, that in the analysis above we con-
1004
+ structed y(−∞,−1] and not y(−∞,0], since µ on X0 induces directly a measure on Y0.
1005
+ Note that with P0 × µ viewed as an initial measure, when the process evolves, the
1006
+ evolution is the correct one consistent with the actual realizations under the true
1007
+ measure and thus the initialization does not affect the evolution of the measure: X0
1008
+ determines the probability of the future events: the transition kernel:
1009
+ P(dzt+1|zt) = Q(dyt+1|xt+1)P(dxt+1|xt)δy(−∞,t](dy(−∞,t])
1010
+ is such that Yt is generated according to both the true process and the actual process.
1011
+ Note that if ¯P and P0 are both stationary, we have that ¯P decomposes as
1012
+ P0(dy)Q(dx0|y(−∞,−1]). Thus, as in the controlled-case, what we need is that µ(dx0) ≪
1013
+ Q(dx0|y(−∞,−1]) P0 a.e., so that convergence in the sense of (5.1) holds.
1014
+ Appendix A. Proofs.
1015
+ A.1. Proof of Theorem 1.2. Following [2, 11], we study the limit distribution
1016
+ of the following occupation measures, under any policy γ in Γ. Let for T ≥ 1
1017
+ vT (D) = 1
1018
+ T
1019
+ T −1
1020
+
1021
+ t=0
1022
+ 1{(πt,ut)∈D},
1023
+ D ∈ B(P(X) × U).
1024
+ 18
1025
+
1026
+ Consider any policy γ in Γ, π0 ∼ µ, and let for T ≥ 1,
1027
+ µT (D) = Eγ
1028
+ µ[vT (D)] = Eγ
1029
+ µ
1030
+ 1
1031
+ T
1032
+ � T −1
1033
+
1034
+ t=0
1035
+ 1{πt,ut)∈D}
1036
+
1037
+ ,
1038
+ D ∈ B(P(X) × U)
1039
+ Let for µ ∈ P(X), µP(A) := � µ(dπ, du)P(πt+1 ∈ A|πt = π, ut = u). Then through
1040
+ what is often referred to as a Krylov-Bogoliubov-type argument, for every Borel A ⊂
1041
+ P(X)
1042
+ |µT (A × U) − µT P(A)| = Eγ
1043
+ µ0
1044
+ 1
1045
+ T
1046
+ � T −1
1047
+
1048
+ t=0
1049
+ 1{πt,ut)∈(A×U)} −
1050
+ T −1
1051
+
1052
+ t=0
1053
+ 1{πt+1,ut+1)∈(A×U)}
1054
+
1055
+ ≤ 1
1056
+ T → 0,
1057
+ as T → ∞. Notice that the above applies for any policy γ ∈ Γ. Now, if we can
1058
+ ensure that, for some subsequence µtk, µtk → µ weakly for some probability measure
1059
+ µ (which holds by the assumption that the state and action spaces are compact, which
1060
+ makes the set of probability measures on the state weakly compact), it would follow
1061
+ that µtkη(A × U) → µη(A × U). It would follow that µtkP → νP also, by the weak
1062
+ Feller condition, and hence ν = νP and ν would be stationary.
1063
+ Define, with ΓS denoting the set of stationary control policies mapping the belief
1064
+ state to actions,
1065
+ G = {v ∈ P(P(X) × U) :∃γ ∈ ΓS, v(A) =
1066
+
1067
+ π,u
1068
+ P γ((πt+1, ut+1) ∈ A|x)v(dx, du),
1069
+ A ∈ B(P(X) × U)}
1070
+ (A.1)
1071
+ Thus, every weakly converging sequence µt will satisfy the above equation, and
1072
+ therefore, under any admissible policy, every converging occupation measure sequence
1073
+ converges to the set G. Let us define
1074
+ γ∗ = inf
1075
+ v∈G
1076
+
1077
+ v(dπ, du)˜c(π, u)
1078
+ Since the expression
1079
+
1080
+ v(dx, du)c(x, u) is lower semi-continuous in v, a compact-
1081
+ ness condition on G will ensure the existence of an optimal occupation measure which
1082
+ is in G: we now show that there exists an optimal occupation measure in G if the tran-
1083
+ sition kernel is weak-Feller and G is weakly compact: The problem has now reduced
1084
+ to
1085
+ inf
1086
+ µ∈G
1087
+
1088
+ µ(dx, du)c(x, u),
1089
+ The set G is closed, since if νn → ν and νn ∈ G, then for continuous and bounded f ∈
1090
+ Cb(P(X)), ⟨νn, f⟩ → ⟨ν, f⟩. By weak-Feller continuity of the kernel
1091
+
1092
+ f(π′)η(dπ′|π, u)
1093
+ is also continuous and thus, ⟨νn, ηf⟩ → ⟨ν, ηf⟩ = ⟨νη, f⟩. Thus, ν(f) = νη(f) and ν ∈
1094
+ G. Therefore, G is weakly sequentially compact. Since the integral
1095
+
1096
+ µ(dx, du)c(x, u)
1097
+ is lower semi-continuous on the set of measures under weak convergence, and the ex-
1098
+ istence result follows from Weierstrass’ Theorem. As a result, there exists an optimal
1099
+ occupation measure, say v(dπ, du). This defines a stationary control policy by the
1100
+ Radon-Nikodym derivative: µ(u ∈ ·|π) =
1101
+ dv(dπ,·)
1102
+ d
1103
+
1104
+ u v(dπ,·)(π), for v a.e. π.
1105
+ 19
1106
+
1107
+ A.2. Proof of Lemma 3.1. a) Let us recall the w-s topology [3, 56]: Let A, B
1108
+ be complete, separable, metric spaces. The w-s topology on the set of probability
1109
+ measures P(A×B) is the coarsest topology under which
1110
+
1111
+ f(a, b)ν(da, db) : P(A×B) →
1112
+ R is continuous for every measurable and bounded f which is continuous in b ∈ B for
1113
+ every a ∈ A (but unlike weak topology, f does not need to be continuous in a).
1114
+ For every n, we have that for every function g that is continuous and bounded:
1115
+
1116
+ Pn(dy1, dy2, du2)g(y1, y2, u2) =
1117
+
1118
+ Pn(dy1|y2)Pn(du2, y2)g(y1, y2, u2)
1119
+ =
1120
+
1121
+ P(dy1|y2)Pn(du2, y2)g(y1, y2, u2)
1122
+ (A.2)
1123
+ Testing the equality above on continuous and bounded functions implies this
1124
+ property for any measurable and bounded function (that is, continuous and bounded
1125
+ functions form a separating class, see e.g.
1126
+ p.
1127
+ 13 in [6] or Theorem 3.4.5 in [20])
1128
+ for weak convergence of probability measures. Since the marginals on y1, y2 is fixed,
1129
+ [56, Theorem 3.10] (see also [3, Theorem 2.5]) establishes that the sequence {Pn} is
1130
+ relatively compact under the w-s topology under the stated tightness condition; {Pn}
1131
+ is tight by Prohorov’s theorem.
1132
+ Now, taking the limit of both sides in (A.2), we have that the left hand side
1133
+ converges to
1134
+
1135
+ P(dy1, dy2, du2)g(y1, y2, u2). The right-hand side, on the other hand
1136
+ can be written as:
1137
+ � � �
1138
+ P(dy1|dy2)g(y1, y2, u2)
1139
+
1140
+ Pn(du2, dy2)
1141
+ (A.3)
1142
+ The expression
1143
+ � �
1144
+ P(dy1|dy2)g(y1, y2, u2)
1145
+
1146
+ is measurable in y2 and continuous in
1147
+ u2 by an application of the dominated convergence theorem. As a result, by the w-s
1148
+ convergence, in the limit we have
1149
+ � � �
1150
+ P(dy1|dy2)g(y1, y2, u2)
1151
+
1152
+ P(du2, y2)
1153
+ (A.4)
1154
+ and thus the conditional independence property is satisfied.
1155
+ b) For every n, we again have that for every function g continuous and bounded:
1156
+
1157
+ Pn(dy1, dy2, du2)g(y1, y2, u2) =
1158
+
1159
+ Pn(dy1|y2)Pn(du2, y2)g(y1, y2, u2)
1160
+ =
1161
+
1162
+ κ(dy1|y2)Pn(du2, y2)g(y1, y2, u2)
1163
+ (A.5)
1164
+ As in (i), testing the equality above on continuous and bounded functions implies
1165
+ this property for any measurable and bounded function [6, p. 13] or [20, Theorem
1166
+ 3.4.5]) for weak convergence of probability measures. Since the marginals on y1, y2 is
1167
+ fixed, [56, Theorem 3.10] (see also [3, Theorem 2.5]) establishes that the sequence {Pn}
1168
+ is relatively compact under the w-s topology under the stated tightness condition;
1169
+ {Pn} is tight by Prohorov’s theorem. Now, taking the limit of both sides in (A.5), we
1170
+ have that the left hand side converges to
1171
+
1172
+ P(dy1, dy2, du2)g(y1, y2, u2). The right-
1173
+ hand side can be written as:
1174
+ � � �
1175
+ κ(dy1|dy2)g(y1, y2, u2)
1176
+
1177
+ Pn(du2, y2)
1178
+ (A.6)
1179
+ 20
1180
+
1181
+ The expression
1182
+ � � κ(dy1|dy2)g(y1, y2, u2)
1183
+
1184
+ is measurable in y2 and continuous in u2
1185
+ by an application of dominated convergence theorem. Furthermore, by the condition
1186
+ that κ is a continuous kernel, we have that
1187
+ � �
1188
+ κ(dy1|dy2)g(y1, y2, u2)
1189
+
1190
+ is continuous
1191
+ in y2, by an application of a generalized dominated convergence theorem [57, Theorem
1192
+ 3.5] or [44, Theorem 3.5]. As a result, in the limit we have
1193
+ � � �
1194
+ P(dy1|dy2)g(y1, y2, u2)
1195
+
1196
+ P(du2, y2)
1197
+ (A.7)
1198
+ and thus the conditional independence property is satisfied.
1199
+ A.3. Proof of Theorem 3.3. Recall (A.1) and let
1200
+ µT (D) = E[vT (D)] = Ev0
1201
+ 1
1202
+ T
1203
+
1204
+ T
1205
+
1206
+ t=1
1207
+ 1{zt,ut)∈D}
1208
+
1209
+ ,
1210
+ D ∈ B(X × YZ− × UZ− × U).
1211
+ This can also be written as 1
1212
+ T
1213
+ � �T
1214
+ t=1 P({(zt, ut) ∈ D})
1215
+
1216
+ . Observe that for any t,
1217
+ xt ↔ y(−∞,t] ↔ ut holds. Let (xt, y(−∞,t], ut) ∼ Pt. As in the proof of Theorem A.1,
1218
+ through a Krylov-Bogoliubov-type argument, for every Borel A ∈ B(X × YZ− × UZ−
1219
+ |µN(A × U) − µNP(A)|
1220
+ =
1221
+ ����
1222
+ 1
1223
+ N
1224
+
1225
+ (µ0(A × U) + · · · + µP(N−1)(A)) − (mu0P(A) + · · · + vPN(A))
1226
+ �����
1227
+ ≤ 1
1228
+ N |µ0(A × U) − µ0PN(A)| → 0.
1229
+ (A.8)
1230
+ As earlier, in the proof of Theorem A.1, if we can ensure that for some subsequence,
1231
+ µtk → µ for some probability measure µ, it would follow that µtkP → µ also and
1232
+ hence µ = µP and µ would be invariant and µ ∈ G, where
1233
+ G = {v ∈ P(X × YZ− × UZ−) :
1234
+ v(B × U) =
1235
+
1236
+ x,u
1237
+ P(zt+1 ∈ B|z, u)v(dz, du), B ∈ B(X × YZ− × UZ−)}
1238
+ Convergence to G is by (A.8) is a consequence of Lemma 2.3 under Assumption 4.
1239
+ We will show that, if convergence occurs, it must also be that µ ∈ H;
1240
+ H = {v ∈ P(X × YZ− × UZ−) :
1241
+ v(dx0, dy(−∞,0], du(−∞,−1], du0)
1242
+ = v(dx0, dy(−∞,0], du(−∞,−1])v(du0|dy(−∞,0], du(−∞,−1])},
1243
+ (A.9)
1244
+ that is the control action variables are conditionally independent from the state vari-
1245
+ ables given the information variable y(−∞,0], u(−∞,−1], thus satisfying (2.5).
1246
+ We show now that µt, possibly along a subsequence, will also converge to H.
1247
+ Observe that
1248
+
1249
+ µT (dx, dy(−∞,0], du(−∞,−1], du)f(x, y(−∞,0], u(−∞,−1], u)
1250
+ 21
1251
+
1252
+ =
1253
+
1254
+ 1
1255
+ T
1256
+ T
1257
+
1258
+ t=1
1259
+ Pt(dx, dy(−∞,0], du(−∞,−1], du0)f(x, y(−∞,0], u(−∞,−1], u0)
1260
+ =
1261
+
1262
+ 1
1263
+ T
1264
+ T
1265
+
1266
+ t=1
1267
+ Pt(dx|y(−∞,0], du(−∞,−1])Pt(dy(−∞,0], du(−∞,−1], du0)f(x, y(−∞,0], u(−∞,−1], u0)
1268
+ =
1269
+
1270
+ 1
1271
+ T
1272
+ T
1273
+
1274
+ t=1
1275
+
1276
+ Pt(dx|y(−∞,0], du(−∞,−1])f(x, y(−∞,0], u(−∞,−1], u0)
1277
+
1278
+ Pt(dy(−∞,0], du(−∞,−1], du0)
1279
+ =
1280
+
1281
+ 1
1282
+ T
1283
+ T
1284
+
1285
+ t=1
1286
+
1287
+ P(dx|y(−∞,0], du(−∞,−1])f(x, y(−∞,0], u(−∞,−1], u0)
1288
+
1289
+ Pt(dy(−∞,0], du(−∞,−1], du0)
1290
+ (A.10)
1291
+ =
1292
+
1293
+ 1
1294
+ T
1295
+ T
1296
+
1297
+ t=1
1298
+
1299
+ g(y(−∞,0], u(−∞,−1], u0)
1300
+
1301
+ Pt(dy(−∞,t], du(−∞,t−1], dut)
1302
+ (A.11)
1303
+ =
1304
+
1305
+ 1
1306
+ T
1307
+ T
1308
+
1309
+ t=1
1310
+
1311
+ g(y(−∞,t], u(−∞,t−1], ut)
1312
+
1313
+ Pt(dy(−∞,t], du(−∞,t−1], dut)
1314
+
1315
+ � �
1316
+ g(y(−∞,0], u(−∞,−1], u0)
1317
+
1318
+ µ(dy(−∞,0], du(−∞,−1], du0)
1319
+ (A.12)
1320
+ =
1321
+ � �
1322
+ P(dx|y(−∞,0], u(−∞,−1])f(x, y(−∞,0], u(−∞,−1], u0)
1323
+
1324
+ µ(dy(−∞,0], du(−∞,−1], du0)
1325
+ =
1326
+ � �
1327
+ P(dx|y(−∞,0], u(−∞,−1])µ(dy(−∞,0], du(−∞,−1], du0)
1328
+
1329
+ f(x, y(−∞,0], u(−∞,−1], u0)
1330
+ (A.13)
1331
+ Here (A.10) is due to Assumption 61 and in (A.11) we define
1332
+ g(y(−∞,0], u(−∞,−1], u0) =
1333
+
1334
+ P(dx|y(−∞,0], u(−∞,−1])f(x, y(−∞,0], u(−∞,−1], u0)
1335
+
1336
+ .
1337
+ Here, (A.12) follows from weak continuity of the kernel under Assumption 5. Thus, if
1338
+ µt(·) converges weakly to µ(·), µ satisfies the conditional independence property and
1339
+ is thus in H.
1340
+ In view of this, the existence problem reduces to
1341
+ inf
1342
+ v∈G∩H
1343
+
1344
+ v(dx, dy(−∞,0], du(−∞,−1], du)c(x, u)
1345
+ (A.14)
1346
+ By Lemma 3.2 we have that G ∩ H is a compact set under weak topology, and
1347
+ since c is continuous, there exists an optimal measure v ∈ G ∩ H.
1348
+ A.4. Proof of Theorem 3.5. Let ¯P instead denote an invariant process mea-
1349
+ sure on (Y(−∞,k], U(−∞,k−1], Uk, Xk). Let P0 be the projection of ¯P on dy(−∞,−1], du(−∞,−1].
1350
+ If P0(dy(−∞,−1], du(−∞,−1])×π0(dx0, dy0, duu) ≪ ¯P; that is, with the initial state dis-
1351
+ tribution selected independently of the past process; then with ut = γ(y(−∞,t], u(−∞,t−1], rt)
1352
+ 1In the absence of Assumption 6 (A.10) would be incorrect; as a counterexample, consider yk
1353
+ giving no information (e.g. yk being constant); in this case, we clearly require Xt to be stationary
1354
+ for this to be correct since there is no information: P (Xt|Y−∞,t]) = P (Xt+1|Y−∞,t+1]).
1355
+ 22
1356
+
1357
+ and
1358
+ g(y(−∞,k], u(−∞,k−1], xk) = E[c(xk, uk)|xk, y(−∞,k], u(−∞,k−1]],
1359
+ lim
1360
+ T →∞
1361
+ 1
1362
+ T EP0×π0
1363
+ T −1
1364
+
1365
+ k=0
1366
+ g(y(−∞,k], u(−∞,k−1], xk) =
1367
+
1368
+ g(y(−∞,k], u(−∞,k−1], xk) ¯Q(y(−∞,0], u(−∞,−1])
1369
+ for some ¯Q which is invariant. Note here that ¯Q does not need to be equal to ¯P.
1370
+ A.5. Proof of Theorem 5.1. The proof closely follows that of Theorem 3.3.
1371
+ Recall (A.1) and let
1372
+ µT (D) = E[vT (D)] = Ev0
1373
+ 1
1374
+ T
1375
+
1376
+ T
1377
+
1378
+ t=1
1379
+ 1{zt,ut)∈D}
1380
+
1381
+ ,
1382
+ D ∈ B(X × YZ− × UZ− × U).
1383
+ This can also be written as
1384
+ 1
1385
+ T
1386
+
1387
+ T
1388
+
1389
+ t=1
1390
+ P({(zt, ut) ∈ D})
1391
+
1392
+ Observe that for any t, xt ↔ y(−∞,t] ↔ ut holds. Let (xt, y(−∞,t], ut) ∼ Pt. Now,
1393
+ again through the Krylov-Bogoliubov-type argument, for every Borel A
1394
+ |µN(A × U) − µNP(A)|
1395
+ =
1396
+ ����
1397
+ 1
1398
+ N
1399
+
1400
+ (µ0(A × U) + · · · + µP(N−1)(A)) − (v0P(A) + · · · + vPN(A))
1401
+ �����
1402
+ ≤ 1
1403
+ N |µ0(A × U) − µ0PN(A)| → 0.
1404
+ (A.15)
1405
+ Now, if we can ensure that for some subsequence, µtk → µ for some probability
1406
+ measure µ, it would follow that µtkP(B) → µ(B) also and hence µ(B) = µP(B) and
1407
+ µ would be invariant.
1408
+ Thus, if µt converges, it must be that µt → µ for some µ ∈ G ∩ H, where
1409
+ G = {v ∈ P(X × YZ− × U) :
1410
+ v(B × U) =
1411
+
1412
+ x,u
1413
+ P(X1, Y(−∞,1] ∈ B|x0, y(−∞,0], u)v(dx0, dy(−∞,0], du),
1414
+ B ∈ B(X × YZ− × U)}
1415
+ (A.16)
1416
+ and
1417
+ H = {v ∈ P(X × YZ− × U) :
1418
+ v(dx, dy(−∞,0], du0) = v(dx, dy(−∞,0])P(du0|dy(−∞,0])},
1419
+ (A.17)
1420
+ that is the control action variables are conditionally independent from the state vari-
1421
+ ables given the information variable y(−∞,0], u(−∞,−1].
1422
+ Convergence to G is by (A.15) as a consequence of Lemma 2.3 under Assumption
1423
+ 4.
1424
+ 23
1425
+
1426
+ We show now that µt will also converge to H.
1427
+ Case 1. Under Assumption 8. For a continuous and bounded f, if µt → µ
1428
+ for some µ, we have that
1429
+
1430
+ µt(dx, dy(−∞,0], du)f(x, y(−∞,0], u)
1431
+ =
1432
+
1433
+ 1
1434
+ T
1435
+ T
1436
+
1437
+ t=1
1438
+ Pt(dx, dy(−∞,0], du0)f(x, y(−∞,0], u0)
1439
+ =
1440
+
1441
+ 1
1442
+ T
1443
+ T
1444
+
1445
+ t=1
1446
+ Pt(dx|y(−∞,0])Pt(dy(−∞,0], du0)f(x, y(−∞,0], u0)
1447
+ =
1448
+
1449
+ 1
1450
+ T
1451
+ T
1452
+
1453
+ t=1
1454
+
1455
+ Pt(dx|y(−∞,0])f(x, y(−∞,0], u0)
1456
+
1457
+ Pt(dy(−∞,0], du0)
1458
+ =
1459
+
1460
+ 1
1461
+ T
1462
+ T
1463
+
1464
+ t=1
1465
+
1466
+ P(dx|y(−∞,0])f(x, y(−∞,0], u0)
1467
+
1468
+ Pt(dy(−∞,0], du0)
1469
+ (A.18)
1470
+ =
1471
+
1472
+ 1
1473
+ T
1474
+ T
1475
+
1476
+ t=1
1477
+
1478
+ g(y(−∞,0], u0)
1479
+
1480
+ Pt(dy(−∞,t], dut)
1481
+ (A.19)
1482
+ =
1483
+
1484
+ 1
1485
+ T
1486
+ T
1487
+
1488
+ t=1
1489
+
1490
+ g(y(−∞,t], ut)
1491
+
1492
+ Pt(dy(−∞,t], dut)
1493
+
1494
+ � �
1495
+ g(y(−∞,0], u0))
1496
+
1497
+ µ(dy(−∞,0], du0)
1498
+ =
1499
+ � �
1500
+ P(dx|y(−∞,0])f(x, y(−∞,0], u0)
1501
+
1502
+ µ(dy(−∞,0], du0)
1503
+ =
1504
+ � �
1505
+ P(dx|y(−∞,0])µ(dy(−∞,0], du0)
1506
+
1507
+ f(x, y(−∞,0], u0)
1508
+ (A.20)
1509
+ where (A.18) uses stationarity and in (A.19) we define
1510
+ g(y(−∞,0], u0) =
1511
+
1512
+ P(dx|y(−∞,0])f(x, y(−∞,0], u0)
1513
+
1514
+ .
1515
+ This expression will converge as soon as µt(dy(−∞,0], du0) converges weakly to µ,
1516
+ where µ satisfies the conditional independence property. Here, µt converges to µ in
1517
+ the w −s sense. Thus, even in the absence of Assumption 5, convergence holds in this
1518
+ case. 2
1519
+ Case 2. Under Assumptions 5 and 6. If we don’t assume stationarity, we can
1520
+ modify the above as follows, but then we need the weak continuity condition stated
1521
+ in Assumption 5:
1522
+
1523
+ µt(dx, dy(−∞,0], du)f(x, y(−∞,0], u)
1524
+ 2Here, we crucially assume that the marginal on xk, y(−∞,k] is fixed, and the realizations are
1525
+ generated according to the stationary measure. This is crucial for the argument in (A.18). In the
1526
+ above, we don’t need weak continuity.
1527
+ 24
1528
+
1529
+ =
1530
+
1531
+ 1
1532
+ T
1533
+ T
1534
+
1535
+ t=1
1536
+ Pt(dx, dy(−∞,0], du0)f(x, y(−∞,0], u0)
1537
+ =
1538
+
1539
+ 1
1540
+ T
1541
+ T
1542
+
1543
+ t=1
1544
+ Pt(dx|y(−∞,0])Pt(dy(−∞,0], du0)f(x, y(−∞,0], u0)
1545
+ =
1546
+
1547
+ 1
1548
+ T
1549
+ T
1550
+
1551
+ t=1
1552
+
1553
+ Pt(dx|y(−∞,0])f(x, y(−∞,0], u0)
1554
+
1555
+ Pt(dy(−∞,0], du0)
1556
+ =
1557
+
1558
+ 1
1559
+ T
1560
+ T
1561
+
1562
+ t=1
1563
+
1564
+ P(dx|y(−∞,0])f(x, y(−∞,0], u0)
1565
+
1566
+ Pt(dy(−∞,0], du0)
1567
+ (A.21)
1568
+ =
1569
+
1570
+ 1
1571
+ T
1572
+ T
1573
+
1574
+ t=1
1575
+
1576
+ g(y(−∞,0], u0)
1577
+
1578
+ Pt(dy(−∞,t], dut)
1579
+ (A.22)
1580
+ =
1581
+
1582
+ 1
1583
+ T
1584
+ T
1585
+
1586
+ t=1
1587
+
1588
+ g(y(−∞,t], ut)
1589
+
1590
+ Pt(dy(−∞,t], dut)
1591
+
1592
+ � �
1593
+ g(y(−∞,0], u0))
1594
+
1595
+ µ(dy(−∞,0], du0)
1596
+ (A.23)
1597
+ =
1598
+ � �
1599
+ P(dx|y(−∞,0])f(x, y(−∞,0], u0)
1600
+
1601
+ µ(dy(−∞,0], du0)
1602
+ =
1603
+ � �
1604
+ P(dx|y(−∞,0])µ(dy(−∞,0], du0)
1605
+
1606
+ f(x, y(−∞,0], u0)
1607
+ (A.24)
1608
+ 3 Here (A.21) is due to Assumption 6 and in (A.22) we define
1609
+ g(y(−∞,0], u0) =
1610
+
1611
+ P(dx|y(−∞,0])f(x, y(−∞,0], u0)
1612
+
1613
+ .
1614
+ This expression will converge as soon as µt(dy(−∞,0], du0) converges weakly to µ,
1615
+ where µ satisfies the conditional independence property. Here, (A.23) follows from
1616
+ weak continuity of the kernel under Assumption 5.
1617
+ In view of this, the existence problem reduces to
1618
+ inf
1619
+ v∈G∩H
1620
+
1621
+ v(dx, dy(−∞,0], du)c(x, u)
1622
+ where
1623
+ We note that under weak continuity of the transition kernel for P, G is a closed
1624
+ set under weak convergence. By Lemma 3.1, H is also closed. Since the state space
1625
+ is compact, the set of probability measures on (X × YZ− × U) is tight. Thus G ∩ H is
1626
+ a compact set under weak topology and since c is continuous, there exists an optimal
1627
+ measure v ∈ G ∩ H.
1628
+ Appendix B. Discussion on Assumptions 5, 7 and 6 .
1629
+ 3In the absence of Assumption 6 (A.21) would be incorrect. As a counterexample, consider yk =
1630
+ no information; in this case, we clearly require Xt to be stationary for this to be correct since there
1631
+ is no information: P (Xt|Y−∞,t]) = P (Xt+1|Y−∞,t+1]).
1632
+ 25
1633
+
1634
+ B.1. Sufficient Conditions for Assumption 5. For the case with finite mea-
1635
+ surement and actions, this condition is satisfied by almost sure filter stability, though
1636
+ with a uniformity condition over priors, in the following sense
1637
+ sup
1638
+ ν ∥πµ
1639
+ n − πν
1640
+ n∥BL → 0 P µa.s.,
1641
+ (B.1)
1642
+ where BL denotes the bounded Lipschitz norm (or any other weak convergence in-
1643
+ ducing metric can be used).
1644
+ This condition (including uniformity) holds under a
1645
+ contraction analysis via the Hilbert metric, as shown in [27, Corollary 4.2]. Further-
1646
+ more, by modifying the proof of [47, Lemma 3.5] to place supν inside the expectation,
1647
+ [47, Corollary 3.7] also leads to this condition in view of Borel-Cantelli Lemma as
1648
+ noted in [47, Remark 3.10].
1649
+ The sufficiency of (B.1) builds on the following: Observe that
1650
+ E[f(X0)|yn
1651
+ (−∞,0], un
1652
+ (−∞,−1]] − E[f(X0)|y(−∞,0], u(−∞,−1]]
1653
+ = E[f(X0)|yn
1654
+ (−∞,0], un
1655
+ (−∞,−1]] − E[f(X0)|(y, u)n
1656
+ (−∞,−N], y(−N+1,0], u(−N+1,−1]]
1657
+ (B.2)
1658
+ +E[f(X0)|(y, u)n
1659
+ (−∞,−N], y(−N+1,0], u(−N+1,−1]] − E[f(X0)|y(−∞,0], u(−∞,−1]]
1660
+ (B.3)
1661
+ The uniform filter stability condition (B.1) will allow us to truncate the past finite
1662
+ window: For every ǫ > 0 and π = P(Xn ∈ ·|y(∞,n−, u(∞,n−1) select N so that, the
1663
+ effect of the history is uniformly, over all priors P(X−N ∈ ·|(y, u)n
1664
+ (−∞,−N]), is less
1665
+ than ǫ
1666
+ 2, so that (B.3) is bounded uniformly over all sequences prior to −N.
1667
+ We then apply a continuity argument for the first term, (B.2):
1668
+ For this first term, in case the the measurements and actions are finitely valued,
1669
+ the desired result follows since for sufficiently large n, the first N coordinates of mea-
1670
+ surement and actions y(−N+1,0], u(−N+1,−1], will need to match to satisfy proximity
1671
+ under the product metric so that for all sufficiently large n:
1672
+ yn
1673
+ (−N+1,0], un
1674
+ (−N+1,−1] = y(−N+1,0], u(−N+1,−1],
1675
+ making (B.2) zero.
1676
+ For the case with continuous measurements and actions, conditions in [48, Lemma
1677
+ 4.6] suffices, together with the uniform filter stability condition presented above above.
1678
+ B.2. Sufficient Conditions for Assumptions 6 and 7. In the control-free
1679
+ case; Assumption 6 is implied by stationarity or both Assumptions 7 and 6 hold un-
1680
+ der almost sure filter stability, see e.g. [17, 16]. On Assumption 7, as noted earlier a
1681
+ further related sufficient condition, obtained via the Hilbert metric, is [27, Corollary
1682
+ 4.2]. Complementing this, for both controlled and control-free setups, conditions in
1683
+ [47] (via [42, Theorem 2, Part 2] leading also to almost sure stability under total varia-
1684
+ tion) based on Dobrushin’s coefficients of the measurement channel and the controlled
1685
+ transition kernel leads to almost sure filter stability and accordingly Assumption 6.
1686
+ Appendix C. An ergodic theorems for Markov chains.
1687
+ Suppose that {Xt}t≥0 denote a discrete-time Markov chain with state space X, a
1688
+ Polish space.
1689
+ Theorem C.1. [31] [63] Let ¯P be an invariant probability measure for a Markov
1690
+ process.
1691
+ 26
1692
+
1693
+ (i) [Ergodic decomposition and weak convergence] For x, ¯P a.s., 1
1694
+ N Ex[�N−1
1695
+ t=0 1{xn∈·}] →
1696
+ Px(·) weakly and ¯P is invariant for Px(·) in the sense that
1697
+ ¯P(B) =
1698
+
1699
+ Px(B) ¯P (dx)
1700
+ (ii) [Convergence in total variation] For all µ ∈ P(XN) which satisfies that µ ≪ ¯P
1701
+ (that is, µ is absolutely continuous with respect to ¯P), there exists v∗ such
1702
+ that
1703
+ ∥Eµ[ 1
1704
+ N
1705
+ N−1
1706
+
1707
+ t=0
1708
+ 1{T nX∈·}] − v∗(·)∥T V → 0.
1709
+ REFERENCES
1710
+ [1] F. Albertini, P. Dai Pra, and C. Prior. Small parameter limit for ergodic, discrete-time, partially
1711
+ observed, risk-sensitive control problems. Mathematics of Control, Signals and Systems,
1712
+ 14(1):1–28, 2001.
1713
+ [2] A. Arapostathis, V. S. Borkar, E. Fernandez-Gaucherand, M. K. Ghosh, and S. I. Marcus.
1714
+ Discrete-time controlled Markov processes with average cost criterion: A survey. SIAM J.
1715
+ Control and Optimization, 31:282–344, 1993.
1716
+ [3] E. J. Balder. On ws-convergence of product measures. Mathematics of Operations Research,
1717
+ 26(3):494–518, 2001.
1718
+ [4] D. P. Bertsekas and S. Shreve. Stochastic Optimal Control: The Discrete Time Case. Academic
1719
+ Press, New York, 1978.
1720
+ [5] A. G. Bhatt, A. Budhiraja, and R. L. Karandikar.
1721
+ Markov property and ergodicity of the
1722
+ nonlinear filter. SIAM Journal on Control and Optimization, 39(3):928–949, 2000.
1723
+ [6] P. Billingsley. Convergence of probability measures. New York: Wiley, 2nd edition, 1999.
1724
+ [7] J.-M. Bismut. Partially observed diffusions and their control. SIAM Journal on Control and
1725
+ Optimization, 20(2):302–309, 1982.
1726
+ [8] D. Blackwell. Memoryless strategies in finite-stage dynamic programming. Annals of Mathe-
1727
+ matical Statistics, 35:863–865, 1964.
1728
+ [9] V. S. Borkar. White-noise representations in stochastic realization theory. SIAM J. on Control
1729
+ and Optimization, 31:1093–1102, 1993.
1730
+ [10] V. S. Borkar. Average cost dynamic programming equations for controlled Markov chains with
1731
+ partial observations. SIAM J. Control Optim., 39(3):673–681, 2000.
1732
+ [11] V. S. Borkar. Convex analytic methods in Markov decision processes. In Handbook of Markov
1733
+ Decision Processes, E. A. Feinberg, A. Shwartz (Eds.), pages 347–375. Kluwer, Boston,
1734
+ MA, 2001.
1735
+ [12] V. S. Borkar. Dynamic programming for ergodic control with partial observations. Stochastic
1736
+ Processes and their Applications, 103:293–310, 2003.
1737
+ [13] V. S. Borkar. Dynamic programming for ergodic control of Markov chains under partial obser-
1738
+ vations: A correction. SIAM J. Control Optim., 45(6):2299–2304, 2007.
1739
+ [14] V. S. Borkar and A. Budhiraja.
1740
+ A further remark on dynamic programming for partially
1741
+ observed Markov processes. Stochastic Processes and their Applications, 112:79–93, 2004.
1742
+ [15] A. Budhiraja. On invariant measures of discrete time filters in the correlated signal-noise case.
1743
+ The Annals of Applied Probability, 12(3):1096–1113, 2002.
1744
+ [16] P. Chigansky and R. Van Handel. A complete solution to Blackwell’s unique ergodicity problem
1745
+ for hidden Markov chains. The Annals of Applied Probability, 20(6):2318–2345, 2010.
1746
+ [17] P. Chigansky, R. Liptser, and R. van Handel. Intrinsic methods in filter stability. Handbook of
1747
+ Nonlinear Filtering, 2009.
1748
+ [18] L. Dubins and D. Freedman. Measurable sets of measures. Pacific J. Math., 14:1211–1222,
1749
+ 1964.
1750
+ [19] R. Durrett. Probability: theory and examples, volume 3. Cambridge university press, 2010.
1751
+ [20] S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence, volume
1752
+ 282. John Wiley & Sons, 2009.
1753
+ [21] E. A. Feinberg, P. O. Kasyanov, and N. V. Zadoianchuk. Average cost markov decision pro-
1754
+ cesses with weakly continuous transition probabilities.
1755
+ Mathematics of Operations Re-
1756
+ search, 37(4):591–607, 2012.
1757
+ 27
1758
+
1759
+ [22] E.A. Feinberg, P.O. Kasyanov, and M.Z. Zgurovsky. Partially observable total-cost Markov de-
1760
+ cision process with weakly continuous transition probabilities. Mathematics of Operations
1761
+ Research, 41(2):656–681, 2016.
1762
+ [23] E. Fernández-Gaucherand, A. Arapostathis, and S. I. Marcus. Remarks on the existence of
1763
+ solutions to the average cost optimality equation in markov decision processes. Systems &
1764
+ control letters, 15(5):425–432, 1990.
1765
+ [24] F.Kochman and J. Reeds. A simple proof of kaijserâĂŹs unique ergodicity result for hidden
1766
+ markov α-chains. The Annals of Applied Probability, 16(4):1805–1815, 2006.
1767
+ [25] W.H. Fleming and E. Pardoux. Optimal control for partially observed diffusions. SIAM J.
1768
+ Control Optim., 20(2):261–285, 1982.
1769
+ [26] I. I. Gihman and A. V. Skorohod. Controlled stochastic processes. Springer Science & Business
1770
+ Media, 2012.
1771
+ [27] F. Le Gland and N. Oudjane. Stability and uniform approximation of nonlinear filters using
1772
+ the Hilbert metric and application to particle filters. The Annals of Applied Probability,
1773
+ 14(1):144–187, 2004.
1774
+ [28] M. Hairer. Ergodic properties of a class of non-Markovian processes. In Trends in stochastic
1775
+ analysis, London Math. Soc. Lecture Note Ser., pages 65–98. Cambridge Univ. Press, 2009.
1776
+ [29] O. Hernández-Lerma. Adaptive Markov Control Processes. Springer-Verlag, 1989.
1777
+ [30] O. Hernández-Lerma and J. B. Lasserre.
1778
+ Discrete-Time Markov Control Processes:
1779
+ Basic
1780
+ Optimality Criteria. Springer, 1996.
1781
+ [31] O. Hernández-Lerma and J. B. Lasserre.
1782
+ Markov Chains and Invariant Probabilities.
1783
+ Birkhäuser, Basel, 2003.
1784
+ [32] S.-P. Hsu, D.-M Chuang, and A. Arapostathis. On the existence of stationary optimal policies
1785
+ for partially observed mdps under the long-run average cost criterion. Systems & control
1786
+ letters, 55(2):165–173, 2006.
1787
+ [33] T. Kaijser. A limit theorem for partially observed Markov chains. Annals of Probability, 4(677),
1788
+ 1975.
1789
+ [34] T. Kaijser. On markov chains induced by partitioned transition probability matrices. Acta
1790
+ Mathematica Sinica, English Series, 27(3):441–476, 2011.
1791
+ [35] A.D Kara, N. Saldi, and S. Yüksel.
1792
+ Weak Feller property of non-linear filters.
1793
+ Systems &
1794
+ Control Letters, 134:104–512, 2019.
1795
+ [36] A.D Kara, N. Saldi, and S. Yüksel. Q-learning for mdps with general spaces: Convergence and
1796
+ near optimality via quantization under weak continuity. arXiv:2111.06781, 2021.
1797
+ [37] A.D Kara and S. Yüksel. Robustness to incorrect priors in partially observed stochastic control.
1798
+ SIAM Journal on Control and Optimization, 57(3):1929–1964, 2019.
1799
+ [38] A.D Kara and S. Yüksel. Robustness to incorrect system models in stochastic control. SIAM
1800
+ Journal on Control and Optimization, 58(2):1144–1182, 2020.
1801
+ [39] A.D Kara and S. Yüksel.
1802
+ Near optimality of finite memory feedback policies in partially
1803
+ observed markov decision processes. Journal of Machine Learning Research, 23(11):1–46,
1804
+ 2022.
1805
+ [40] A.D Kara and S. Yüksel.
1806
+ Convergence of finite memory Q-learning for POMDPs and near
1807
+ optimality of learned policies under filter stability. Mathematics of Operations Research
1808
+ (also arXiv:2103.12158), 2023.
1809
+ [41] Ali D. Kara and S. Yüksel. Robustness to approximations and model learning in mdps and
1810
+ pomdps. In A. B. Piunovskiy and Y. Zhang, editors, Modern Trends in Controlled Stochas-
1811
+ tic Processes: Theory and Applications, Volume III. Luniver Press, 2021.
1812
+ [42] ML Kleptsyna and A Yu Veretennikov. On discrete time ergodic filters with wrong initial data.
1813
+ Probability Theory and Related Fields, 141(3-4):411–444, 2008.
1814
+ [43] H. Kunita. Asymptotic behavior of the nonlinear filtering errors of markov processes. Journal
1815
+ of Multivariate Analysis, 1(4):365–393, 1971.
1816
+ [44] H.J. Langen. Convergence of dynamic programming models. Math. Oper. Res., 6(4):493–512,
1817
+ Nov. 1981.
1818
+ [45] A. S. Manne. Linear programming and sequential decision. Management Science, 6:259–267,
1819
+ April 1960.
1820
+ [46] G. Di Masi and L. Stettner. Ergodicity of hidden markov models. Mathematics of Control,
1821
+ Signals and Systems, 17(4):269–296, 2005.
1822
+ [47] C. McDonald and S. Yüksel. Exponential filter stability via Dobrushin’s coefficient. Electronic
1823
+ Communications in Probability, 25, 2020.
1824
+ [48] C. McDonald and S. Yüksel.
1825
+ Robustness to incorrect priors and controlled filter stability
1826
+ in partially observed stochastic control.
1827
+ SIAM Journal on Control and Optimization,
1828
+ 60(2):842–870, 2022.
1829
+ [49] K.R. Parthasarathy. Probability Measures on Metric Spaces. AMS Bookstore, 1967.
1830
+ 28
1831
+
1832
+ [50] L. K. Platzman. Optimal infinite-horizon undiscounted control of finite probabilistic systems.
1833
+ SIAM Journal on Control and Optimization, 18(4):362–380, 1980.
1834
+ [51] D. Rhenius. Incomplete information in Markovian decision models. Ann. Statist., 2:1327–1334,
1835
+ 1974.
1836
+ [52] Wolfgang J Runggaldier and Lukasz Stettner. Approximations of discrete time partially ob-
1837
+ served control problems. Giardini Pisa, 1994.
1838
+ [53] N. Saldi, T. Linder, and S. Yüksel. Finite Approximations in Discrete-Time Stochastic Control:
1839
+ Quantized Models and Asymptotic Optimality. Springer, Cham, 2018.
1840
+ [54] N. Saldi and S. Yüksel. Geometry of information structures, strategic measures and associated
1841
+ control topologies. Probability Surveys, 19:450–532, 2022.
1842
+ [55] N. Saldi, S. Yüksel, and T. Linder.
1843
+ On the asymptotic optimality of finite approximations
1844
+ to markov decision processes with borel spaces.
1845
+ Mathematics of Operations Research,
1846
+ 42(4):945–978, 2017.
1847
+ [56] M. Schäl.
1848
+ Conditions for optimality in dynamic programming and for the limit of n-stage
1849
+ optimal policies to be optimal. Z. Wahrscheinlichkeitsth, 32:179–296, 1975.
1850
+ [57] R. Serfozo. Convergence of lebesgue integrals with varying measures. Sankhy¯a: The Indian
1851
+ Journal of Statistics, Series A, pages 380–402, 1982.
1852
+ [58] V. Strassen.
1853
+ The existence of probability measures with given marginals.
1854
+ The Annals of
1855
+ Mathematical Statistics, 36(2):423–439, 1965.
1856
+ [59] T. Szarek. Feller processes on nonlocally compact spaces. Annals of Probability, pages 1849–
1857
+ 1863, 2006.
1858
+ [60] A. Budhiraja V. S. Borkar. A further remark on dynamic programming for partially observed
1859
+ markov processes. Stochastic processes and their applications, 112(1):79–93, 2004.
1860
+ [61] R. van Handel. Uniform time average consistency of Monte Carlo particle filters. Stochastic
1861
+ Processes and their Applications, 119(11):3835–3861, 2009.
1862
+ [62] H. S. Witsenhausen.
1863
+ Equivalent stochastic control problems.
1864
+ Math. Control, Signals and
1865
+ Systems, 1:3–11, 1988.
1866
+ [63] D. T. H. Worm and S. C. Hille. Ergodic decompositions associated with regular markov oper-
1867
+ ators on polish spaces. Ergodic Theory and Dynamical Systems, 31(2):571 – 597, 2010.
1868
+ [64] L.C. Young.
1869
+ Generalized curves and the existence of an attained absolute minimum in the
1870
+ calculus of variations. Comptes Rendus de la Societe des Sci. et des Lettres de Varsovie,
1871
+ 30:212–234, 1937.
1872
+ [65] H. Yu and D. P. Bertsekas. On near optimality of the set of finite-state controllers for average
1873
+ cost pomdp. Mathematics of Operations Research, 33(1):1–11, 2008.
1874
+ [66] S. Yüksel. On stochastic stability of a class of non-Markovian processes and applications in
1875
+ quantization. SIAM J. on Control and Optimization, 55:1241–1260, 2017.
1876
+ [67] S. Yüksel. A universal dynamic program and refined existence results for decentralized stochas-
1877
+ tic control. SIAM Journal on Control and Optimization, 58(5):2711–2739, 2020.
1878
+ [68] S. Yüksel and N. Saldi. Convex analysis in decentralized stochastic control, strategic measures
1879
+ and optimal solutions. SIAM J. on Control and Optimization, 55:1–28, 2017.
1880
+ [69] A.A. Yushkevich. Reduction of a controlled Markov model with incomplete data to a problem
1881
+ with complete information in the case of Borel state and control spaces.
1882
+ Theory Prob.
1883
+ Appl., 21:153–158, 1976.
1884
+ 29
1885
+
HdFIT4oBgHgl3EQfXith/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
I9A0T4oBgHgl3EQfCP_M/content/tmp_files/2301.01988v1.pdf.txt ADDED
@@ -0,0 +1,2663 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–22 (2022)
2
+ Preprint 6 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ The Co-Ordinated Radio and Infrared Survey for High-Mass Star
5
+ Formation. V. The CORNISH-South Survey and Catalogue.
6
+ T. Irabor,1★ M.G. Hoare,1 M. Burton,13 W.D. Cotton,3 P. Diamond,2 S. Dougherty,21
7
+ S.P. Ellingsen,15 R. Fender,14 G.A. Fuller,2,20 S. Garrington, 2 P.F. Goldsmith,5 J. Green,12 A.G. Gunn2
8
+ J. Jackson,7 S. Kurtz,4 S.L. Lumsden,1 J. Marti,11 I. McDonald,2,22 S. Molinari,16 T.J. Moore,8
9
+ M. Mutale,1 T. Muxlow, 2 T. O’Brien, 2 R.D. Oudmaijer,1 R. Paladini,19 J.D. Pandian,6 J.M. Paredes,10
10
+ A.M.S. Richards, 2 A. Sanchez-Monge, 20 R. Spencer, 2 M.A. Thompson,1,9 G. Umana,18 J.S. Urquhart,17
11
+ M. Wieringa,12 and A. Zijlstra, 2
12
+ 1Physics and Astronomy, University of Leeds, LS2 9JT, UK
13
+ 2Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
14
+ 3The National Radio Astronomy Observatory, Charlottesville, VA 22903, USA
15
+ 4Institute of Radio Astronomy and Astrophysics, National Autonomous University of Mexico, 58089 Morelia, Michoacán, México
16
+ 5Jet Propulsion Laboratory California Institute fo Technology, Pasadena CA, 91109
17
+ 6Department of Earth & Space Sciences, Indian Institute of Space Science and Technology, Trivandrum 695547, India
18
+ 7Green Bank Observatory, 155 Observatory Rd, P.O. Box 2, Green Bank, WV 24944, USA
19
+ 8Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, CH41 1LD, UK
20
+ 9Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
21
+ 10Cosmos Science Institute, University of Barcelona , ICCUB, Martí i Franqués, 1, 08028 Barcelona, Spain
22
+ 11Departamento de Física (EPSJ), Universidad de Jaén, Campus Las Lagunillas s/n, A3, E-23071 Jaén, Spain
23
+ 12CSIRO Space and Astronomy, PO Box 1130, Bentley WA 6102, Australia
24
+ 13Armagh Observatory and Planetarium,College Hill, BT61 9DB, Northern Ireland
25
+ 14Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK
26
+ 15School of natural Sciences, College of Sciences and Engineering, University of Tasmania, Hobart 7001, TAS, Australia
27
+ 16Istituto Nazionale di Astrofisica - IAPS, Via Fosso del Cavaliere 100, I-00133 Roma, Italy
28
+ 17Centre for Astrophysics and Planetary Science, University of Kent, Canterbury, CT2 7NH, UK
29
+ 18INAF - Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123, Catania, Italy
30
+ 19Infrared Processing Center, California Institute of Technology, Pasadena, CA 91125, USA
31
+ 20Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany
32
+ 21The ALMA headquarters, Santiago, Alonso de Córdova 3107, Chile
33
+ 22Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
34
+ Accepted XXX. Received YYY; in original form ZZZ
35
+ ABSTRACT
36
+ We present the first high spatial resolution radio continuum survey of the southern Galactic plane. The CORNISH project
37
+ has mapped the region defined by 295◦ < l < 350◦; |b| < 1◦ at 5.5-GHz, with a resolution of 2.5′′ (FWHM). As with the
38
+ CORNISH-North survey, this is designed to primarily provide matching radio data to the Spitzer GLIMPSE survey region.
39
+ The CORNISH-South survey achieved a root mean square noise level of ∼ 0.11 mJy beam−1, using the 6A configuration of
40
+ the Australia Telescope Compact Array (ATCA). In this paper, we discuss the observations, data processing and measurements
41
+ of the source properties. Above a 7𝜎 detection limit, 4701 sources were detected, and their ensemble properties show similar
42
+ distributions with their northern counterparts. The catalogue is highly reliable and is complete to 90 per cent at a flux density
43
+ level of 1.1 mJy. We developed a new way of measuring the integrated flux densities and angular sizes of non-Gaussian sources.
44
+ The catalogue primarily provides positions, flux density measurements and angular sizes. All sources with IR counterparts at
45
+ 8𝜇m have been visually classified, utilizing additional imaging data from optical, near-IR, mid-IR, far-IR and sub-millimetre
46
+ galactic plane surveys. This has resulted in the detection of 524 H II regions of which 255 are ultra-compact H II regions, 287
47
+ planetary nebulae, 79 radio stars and 6 massive young stellar objects. The rest of the sources are likely to be extra-galactic. These
48
+ data are particularly important in the characterization and population studies of compact ionized sources such as UCHII regions
49
+ and PNe towards the Galactic mid-plane.
50
+ Key words: catalogues < Astronomical Data bases – (ISM:) H II regions < Interstellar Medium (ISM), Nebulae – radio
51
+ continuum: ISM < Resolved and unresolved sources as a function of wavelength – surveys < Astronomical Data bases –
52
+ techniques: image processing < Astronomical instrumentation, methods, and techniques
53
+ ★ E-mail: [email protected] (TI)
54
+ © 2022 The Authors
55
+ arXiv:2301.01988v1 [astro-ph.GA] 5 Jan 2023
56
+
57
+ 2
58
+ T. Irabor et al.
59
+ 1 INTRODUCTION
60
+ Understanding the formation and evolution of the content of our
61
+ Galaxy requires studying an unbiased population of objects covering
62
+ different evolutionary stages utilizing a wide range of wavebands.
63
+ Cm-wave radio continuum surveys are useful for probing the ionized
64
+ gas components such as H II regions and planetary nebulae.
65
+ The ultra-compact (UC) HII population provides a means to probe
66
+ the early phases of massive star formation, where the young stars
67
+ are still deeply embedded in their natal molecular clouds. They are
68
+ characterized by physical sizes ≤ 0.1 pc, high emission measures
69
+ ≥ 107 pc cm−6, high electron densities ≥ 104 cm−3 and lifetimes
70
+ typical of 105 yrs (Wood & Churchwell 1989; Comeron & Torra
71
+ 1996; Kurtz 2000; Kurtz & Franco 2002; Churchwell 2002). Given
72
+ that these populations often form in clusters, radio and infrared
73
+ observations at arcsecond resolution are required to resolve their
74
+ morphologies and provide insight into their immediate environment
75
+ (Churchwell 1990; Hoare et al. 2007). An unbiased survey of the pop-
76
+ ulation of UCHII regions will allow us to test evolutionary models
77
+ of massive star formation, H II region dynamics, galactic structure
78
+ and massive star formation rate in our Galaxy (Churchwell 2002;
79
+ Hoare et al. 2007; Davies et al. 2011; Urquhart et al. 2013b; Steggles
80
+ 2016). Radio observations of UCHII regions are also more useful
81
+ when carried out at a frequency where thermal free-free emission
82
+ is optically thin (≥5-GHz: Churchwell 1990; Wood & Churchwell
83
+ 1989).
84
+ IR surveys with high sensitivity and arcsecond resolution of the
85
+ Galactic plane have made possible studies of an unbiased and statisti-
86
+ cally representative population of Galactic objects, thereby aiding the
87
+ studies of massive star formation and stellar evolution. In the northern
88
+ Galactic plane, these surveys include the the mid-infrared Galactic
89
+ Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) by
90
+ the Spitzer satellite (Churchwell et al. 2009), the mid-infrared inner
91
+ Galactic plane survey using the Multiband Infrared Photometer for
92
+ Spitzer (MIPSGAL1: Carey et al. 2009), the far-infrared Herschel
93
+ Infrared Galactic Plane (Hi-GAL) survey (Molinari et al. 2010), the
94
+ near-infrared Galactic plane survey (GPS) of the United Kingdom
95
+ Infrared Deep Sky Survey (UKIDSS) project (Lucas et al. 2008),
96
+ sub-millimetre APEX Telescope Large Area Survey of the Galaxy
97
+ (ATLASGAL: Schuller et al. 2009) and the H𝛼 Isaac Newton Tele-
98
+ scope Photometric Survey (IPHAS: Drew et al. 2005).
99
+ To complement these surveys, the CORNISH project delivered a
100
+ uniform and high resolution (1.5′′) radio continuum dataset of the
101
+ northern Galactic plane at 5-GHz. It achieved a sensitivity ∼ 0.43
102
+ mJy beam−1 using the VLA in B and BnA configurations (Hoare
103
+ et al. 2012; Purcell et al. 2013: hereafter Paper I and Paper II, re-
104
+ spectively). These data made possible an unbiased census of UCHII
105
+ regions that is the largest selection to date in the northern Galactic
106
+ plane (Kalcheva et al. 2018: hereafter Paper III). Kalcheva (2018)
107
+ found that 70 per cent of UCHII regions had a cometary morphology
108
+ using the CORNISH data and follow-up higher resolution radio data.
109
+ Through a multi-wavelength analysis, Irabor et al. (2018) (hereafter
110
+ Paper IV) uncovered an unbiased population of compact planetary
111
+ nebulae (PNe), of which 7 per cent were newly discovered PNe. A
112
+ subset of the PNe population has properties that are typical of young
113
+ sources (Paper IV and Fragkou et al. 2018). The study of such objects
114
+ is critical, given that the transition window from the post-AGB to the
115
+ PN phase is small (usually < 1000 yrs). Other studies that used the
116
+ CORNISH data in massive star formation studies include Urquhart
117
+ et al. (2013a); Cesaroni et al. (2015); Tremblay et al. (2015); Yang
118
+ 1 http://mipsgal.ipac.caltech.edu/
119
+ et al. (2019) and Djordjevic et al. (2019). Note that the Global view
120
+ on Star formation in the Milky Way (GLOSTAR) Galactic plane sur-
121
+ vey (Brunthaler et al. 2021), is using the JVLA to go deeper than the
122
+ CORNISH survey of the northern Galactic plane.
123
+ In the southern Galactic plane, the VST Photometric H𝛼 Survey
124
+ (VPHAS+: Drew et al. 2014) and the Vista Variables in the Via Lactea
125
+ (VVV) survey (Minniti et al. 2011) delivered high resolution H𝛼 and
126
+ near-infrared data respectively, in addition to existing infrared and
127
+ sub-millimetre data (see Table 1). Surveys of masers at radio wave-
128
+ lengths such as the Methanol Multibeam Survey (MMB; Green et al.
129
+ 2012, 2017) and the H2O Southern Galactic Plane Survey (HOPS;
130
+ Walsh et al. 2011) are useful tracers of massive star formation. Exist-
131
+ ing radio continuum surveys include the Molongolo Galactic Plane
132
+ Survey (MGPS) (Murphy et al. 2007; Green 1999) that surveyed the
133
+ 245◦ < l < 365◦ and |b| ≤ 10◦ region at 843 MHz with a resolution
134
+ of 45′′, the 1.4-GHz Southern Galactic Plane Survey (SGPS) that
135
+ mapped the 253◦ < l < 358◦; |b| < 1◦.5 region, with a resolution
136
+ of 100′′ and sensitivity of 1 mJy beam−1 (McClure-Griffiths et al.
137
+ 2005; Haverkorn et al. 2006), the GaLactic and Extragalactic All-
138
+ sky Murchison Widefield Array (GLEAM) survey at 72–231 MHz,
139
+ with a resolution of 4′–2′ that covers all the southern plane (Hurley-
140
+ Walker et al. 2019) and the TIFR GMRT Sky Survey (TGSS) survey
141
+ at 150 MHz and 25′′ resolution covering the sky above declination
142
+ −53◦ (Intema et al. 2017). These surveys are too low a resolution to
143
+ resolve UCHII regions and are at frequencies where these objects are
144
+ optically thick.
145
+ In this paper we present a new radio continuum survey from the
146
+ CORNISH project of the southern Galactic Plane. The observations
147
+ are described in Section 2. The calibration and imaging are discussed
148
+ in Sections 3 and 4. Data quality and measurement of source prop-
149
+ erties are presented in Sections 5 and 6 along with a discussion of
150
+ the catalogue and its reliability. Furthermore, example sources and
151
+ a comparison of the CORNISH catalogue with other surveys are
152
+ presented in Section 6.
153
+ 2 OBSERVATIONS
154
+ The CORNISH program observed the southern Galactic plane with
155
+ the Australia Telescope Compact Array (ATCA2) using the 2-GHz
156
+ bandwidth of the Compact Array Broadband Backend (CABB) cor-
157
+ relator (Wilson et al. 2011). Observations were carried out with the
158
+ 6A3 array configuration for about 400 hours at two different fre-
159
+ quency bands (4.5 - 6.5-GHz and 8 - 10-GHz) in full-polarization,
160
+ centred on 5.5-GHz and 9-GHz, simultaneously. This paper focuses
161
+ on the 4.5 - 6.5-GHz band. Data reduction of the 8 - 10-GHz data is
162
+ still on-going and will be presented in a future paper (T. Irabor et al.,
163
+ In preparation). Observations were between 2010 and 2012 and the
164
+ observation parameters are summarized in Table 2.
165
+ The survey utilized on-the-fly mapping, such that the antennas
166
+ were scanning continuously, while the phase centres were sequen-
167
+ tially moved in a traditional mosaic pattern. This resulted in the
168
+ doubling of the uv-coverage in a single run and a primary beam
169
+ that is elongated in the scanning direction4. The phase centres were
170
+ spaced at 7.4′ in a mosaic pattern that is a scaled version of the
171
+ hexagonal mosaic implemented in the NVSS survey (Condon et al.
172
+ 2 https:/www.narrabri.atnf.csiro.au/
173
+ 3 https://www.narrabri.atnf.csiro.au/cgi-bin/obstools/
174
+ baselines.cgi?array=6a
175
+ 4 http://www.narrabri.atnf.csiro.au/observing/users_guide/
176
+ html/atug.html
177
+ MNRAS 000, 1–22 (2022)
178
+
179
+ Data processing and catalogue.
180
+ 3
181
+ Table 1. Multi-wavelength high resolution and sensitivity surveys in the southern Galactic plane.
182
+ Survey
183
+ Bands
184
+ Resolution and Sensitivity
185
+ Coverage
186
+ Reference
187
+ GLIMPSE
188
+ 3.6𝜇m, 4.5𝜇m, 5.8𝜇m, and 8.0𝜇m
189
+ <2′′; 0.4 mJy at 8𝜇m (5𝜎)
190
+ 295◦ < l < 360◦; |b| ≤ 1◦
191
+ Churchwell et al. (2009)
192
+ MIPSGAL
193
+ 24𝜇m
194
+ ∼ 10′′; 1.3 mJy (5𝜎)
195
+ 295◦ < l < 350◦; |b| ≤ 1◦
196
+ Carey et al. (2009)
197
+ VVV
198
+ J, H, Ks
199
+ ∼ 1′′; 16.5 mag in K (5𝜎)
200
+ 295◦ < l < 350◦; |b| ≤ 2◦
201
+ Minniti et al. (2011)
202
+ VPHAS+
203
+ H𝛼, r, i
204
+ ∼1′′; 20.56 mag in H𝛼 (5𝜎)
205
+ +210◦ ≲ l ≲ +40◦; |b| ≤ 5◦
206
+ Drew et al. (2014)
207
+ Hi-Gal
208
+ 70, 160, 250, 350 and 500𝜇m
209
+ 6 − 40′′; ∼ 13-27 mJy (1𝜎)
210
+ −70◦ ≲ l ≲ 68◦; |b| ≤ 1◦
211
+ Molinari et al. (2010)
212
+ ATLASGAL
213
+ 870𝜇m
214
+ 18′′, ∼50 - 70 mJy beam−1 (1𝜎)
215
+ 280◦ < l < 60◦; |b| < 1.5◦
216
+ Schuller et al. (2009)
217
+ Table 2. Summary of observation parameters for the CORNISH-South survey.
218
+ Parameters
219
+ Value
220
+ Observation region
221
+ 295◦ < l < 350◦; |𝑏| ≤ 1◦
222
+ Total Time
223
+ ∼ 400 hours
224
+ Number of antennas
225
+ 6
226
+ Number of baselines
227
+ 15
228
+ Observation period
229
+ 2010 to 2012
230
+ Observation frequency
231
+ 5.5-GHz
232
+ Bandwidth
233
+ 2-GHz
234
+ Longest baseline
235
+ 6 km
236
+ Size of single dish
237
+ 22 m
238
+ Field of view/ Primary beam (FWHM)
239
+ ∼ 10′
240
+ Synthesized beam (FWHM)
241
+ 2.5′′
242
+ Root mean square (rms) noise level
243
+ ∼ 0.11 mJy beam−1
244
+ 1998). This spacing delivers a sensitivity that is uniform to 10 per
245
+ cent at 5.5-GHz.
246
+ The survey region was divided into 33 blocks (33 days of ob-
247
+ servations) covering 110 deg2 of the Galactic plane, defined by
248
+ 295◦ < l < 350◦ and |b| ≤ 1◦. The mosaic was scanned in Galac-
249
+ tic latitude and required ∼18 pointings to cover the 2◦ of a row (i.e
250
+ −1◦ to +1◦). At a scan rate of 7.′4 / 10 s, each row was completed in
251
+ 3.2 minutes, including the turnaround time. A secondary calibrator
252
+ was observed for 2 mins after observations of eight rows. A further
253
+ eight rows were then observed with a secondary calibrator to com-
254
+ plete one uv-cut of a block of observation, summing up to 54 mins.
255
+ To achieve an optimum uv-coverage, this was repeated eleven times
256
+ at different LSTs, resulting in 1.8 minutes of on-source time. Twelve
257
+ hours were spent on each block, including flux calibration and set
258
+ up time. Sixteen rows corresponds to 1.7◦ in longitude, hence 33 of
259
+ these 1.7◦ × 2◦ blocks were required to cover the survey area. PKS
260
+ B1934-638 was observed at the end of each block of observations as
261
+ the primary flux calibrator. PKS B0823-500 was also observed at the
262
+ beginning of each block of observations as a backup flux calibrator.
263
+ The secondary calibrators and corresponding days of observation are
264
+ presented in Table 3.
265
+ The observations fall naturally into two epochs (see Figure 1),
266
+ based on the observation period (between 2010 and 2012). Fields
267
+ that were missed or days with observation difficulties due to bad
268
+ weather or correlator problems were repeated to achieve as full a
269
+ coverage as possible within the allocated time.
270
+ 3 DATA REDUCTION PIPELINE
271
+ For us to achieve a similar uniform processing as in the CORNISH-
272
+ North survey, we implemented a similar semi-automated calibration
273
+ and imaging pipeline (see Figure 1 in Paper II). The pipeline was
274
+ implemented in python language using mirpy5 to directly interface
275
+ 5 https://pypi.org/project/mirpy/
276
+ 160
277
+ 180
278
+ 200
279
+ 220
280
+ 240
281
+ 260
282
+ 280
283
+ (deg)
284
+ -30
285
+ -40
286
+ -50
287
+ -60
288
+ -70
289
+ (deg)
290
+ 1148-671
291
+ 1352-63
292
+ 1511-55
293
+ 1646-50
294
+ 1714-397
295
+ 1729-37
296
+ Secondary Calibrator
297
+ Epoch I
298
+ Epoch II
299
+ 300
300
+ 310
301
+ 320
302
+ 330
303
+ 340
304
+ 350
305
+ l (deg)
306
+ 1
307
+ 0
308
+ 1
309
+ b (deg)
310
+ Figure 1. Coverage of the CORNISH-South data and positions of the six
311
+ secondary calibrators used for calibration. Epoch 1 (red shaded regions)
312
+ is defined by block 2010-12-21 to 2011-01-07 and epoch II (black shaded
313
+ regions) is defined by 2011-12-20 to 2012-01-07.
314
+ with the Multichannel Image Reconstruction, Image Analysis and
315
+ Display (MIRIAD) software packages (Sault et al. 1995).
316
+ 3.1 Flagging and Calibration
317
+ The raw data were converted to a MIRIAD uv-file format using the
318
+ atlod task. Known bad channels and radio-frequency interference
319
+ (RFI) at the time of observations were flagged. The system variables
320
+ such as uv-coverage were inspected for each 12-hour block of obser-
321
+ vations. The system variables allowed quick identification of blocks
322
+ with poor uv-coverage or times with bad visibilities. Additionally,
323
+ the amplitude and phase variations with time were inspected visu-
324
+ ally before any flagging. This was to ensure that no more data were
325
+ flagged than necessary, to minimize any impact on image fidelity.
326
+ The epochs (I and II) presented different flagging demands. All
327
+ XX polarization data of all baselines to antenna ca016 were flagged
328
+ for epoch I. For epoch II, the YY polarization data of all baselines
329
+ to antenna ca01 were flagged instead. This was due to a ripple in the
330
+ bandpass at the time of observation, which would lead to false struc-
331
+ tures in the final images7. We performed both automated (pgflag) and
332
+ manual flagging (uvflag) on the flux calibrator, secondary calibrators
333
+ and science data.
334
+ 6 https://www.narrabri.atnf.csiro.au/observing/users_
335
+ guide/html/chunked/aph.html
336
+ 7 https://atcaforum.atnf.csiro.au/viewtopic.php?f=11&t=184
337
+ MNRAS 000, 1–22 (2022)
338
+
339
+ 4
340
+ T. Irabor et al.
341
+ Table 3. Secondary calibrators for each block of observations and the corresponding longitude range.
342
+ Date
343
+ Calibrator (s)
344
+ Longitude Range
345
+ Date
346
+ Calibrator (s)
347
+ Longitude Range
348
+ 2010−12−21
349
+ 1714−397
350
+ 348.5 - 350.0
351
+ 2011−12−21
352
+ 1511−55
353
+ 317.8 - 319.4
354
+ 2010−12−22
355
+ 1729−37
356
+ 346.8 - 348.5
357
+ 2011−12−22
358
+ 1352−63
359
+ 304.1 - 305.7
360
+ 2010−12−23
361
+ 1729−37
362
+ 345.1 - 346.8
363
+ 2011−12−23
364
+ 1511−55
365
+ 316.0 - 317.6
366
+ 2010−12−24
367
+ 1646−50
368
+ 343.4 - 345.1
369
+ 2011−12−24
370
+ 1352−63, 1511−55
371
+ 314.3 - 315.9
372
+ 2010−12−25
373
+ 1646−50
374
+ 341.7 - 343.4
375
+ 2011−12−25
376
+ 1352−63
377
+ 310.9 - 312.5
378
+ 2010−12−26
379
+ 1646−50
380
+ 340.0 - 341.7
381
+ 2011−12−26
382
+ 1352−63
383
+ 309.2 - 310.8
384
+ 2010−12−27
385
+ 1646−50
386
+ 338.3 - 340.0
387
+ 2011−12−27
388
+ 1148−671
389
+ 297.2 - 298.8
390
+ 2010−12−28
391
+ 1646−50
392
+ 336.5 - 338.3
393
+ 2011−12−28
394
+ 1148−671, 1511−55
395
+ 295.5 - 297.1
396
+ 2010−12−29
397
+ 1646−50
398
+ 334.8 - 336.5
399
+ 2011−12−29
400
+ 1148−671
401
+ 299.0 - 304.0
402
+ 2010−12−30
403
+ 1646−50
404
+ 331.4 - 333.0
405
+ 2011−12−30
406
+ 1352−63
407
+ 305.8 - 307.5
408
+ 2010−12−31
409
+ 1646−50
410
+ 329.7 - 331.4
411
+ 2011−12−31
412
+ 1148−671
413
+ 302.4 - 304.0
414
+ 2011−01−01
415
+ 1511−55, 1646−50
416
+ 328.0 - 329.7
417
+ 2012−01−01
418
+ 1148−671
419
+ 300.7 - 302.3
420
+ 2011−01−02
421
+ 1511−55, 1646−50
422
+ 326.3 - 328.0
423
+ 2012−01−02
424
+ 1352−63, 1148−671
425
+ 307.5 - 309.1
426
+ 2011−01−04
427
+ 1511−55
428
+ 324.6 - 326.3
429
+ 2012−01−03
430
+ 1148−671, 1352−63
431
+ 294.3 - 295.4
432
+ 2011−01−05
433
+ 1511−55
434
+ 322.9 - 324.6
435
+ 2012−01−04
436
+ 1352−63
437
+ 312.6 - 314.2
438
+ 2011−01−06
439
+ 1511−55
440
+ 321.2 - 322.9
441
+ 2012−01−05
442
+ 1148−671, 1352−63
443
+ 301.5 - 326.2
444
+ 2011−01−07
445
+ 1511−55
446
+ 319.5 - 321.2
447
+ 2012−01−07
448
+ 1352−63
449
+ 310.1 - 310.9
450
+ 2011−12−20
451
+ 1646−50, 1511−55
452
+ 333.1 - 334.7
453
+ Flagging parameters were determined manually for each block
454
+ of observations and written to a master configuration file that was
455
+ applied automatically when the pipeline was run. After an initial
456
+ flagging of the primary and secondary calibrators, bandpass and
457
+ flux calibrations were performed. For blocks with two secondary
458
+ calibrators, the solutions in phase and amplitude were estimated for
459
+ each calibrator and then combined to produce a global calibration
460
+ table. A second pass of flagging was then performed on the calibrated
461
+ data before performing a second and final calibration. This was to
462
+ ensure that the final calibration was performed on properly flagged
463
+ data. The final global flagging and calibration tables produced were
464
+ then applied to the science data and split into individual pointings.
465
+ 4 IMAGING
466
+ The calibrated visibilities of individual fields were imaged by iter-
467
+ atively cleaning down to the maximum residual peak flux (MRF:
468
+ see Section 4.1) using multi-frequency synthesis (mfs; Sault & Con-
469
+ way 1999). This is implemented in MIRIAD using invert with the
470
+ ’mfs’, ’sdb’ options and the multi-frequency CLEAN mfclean tasks.
471
+ Multi-frequency imaging accounts for the spectral variation across
472
+ the observation bandwidth of 2-GHz. Thus, the resulting image con-
473
+ sists of the normal flux component and the flux times the spectral
474
+ component (I𝛼), where 𝑆𝜈 ∝ 𝜈𝛼.
475
+ The dirty images were created using a robust weighting scheme
476
+ (Briggs 1995) of 0.5 robustness and gridded to an image pixel size of
477
+ 0.6′′, ∼, which is about one third of the minor axis of the synthesized
478
+ beam. The robust weighting scheme provides a trade-off between
479
+ uniform and natural weighting, which is a trade-off between resolu-
480
+ tion and sensitivity. The choice of 0.5 allows an improved sensitivity
481
+ without sacrificing the resolution. To ensure uniform resolution, we
482
+ have forced a restoring circular Gaussian beam with an FWHM of
483
+ 2.5′′ using restor (see Section 5.2). The residuals were not corrected
484
+ for the change in resolution, so care should be taken when summing
485
+ values below the maximum residual flux (see 4.1).
486
+ 4.1 Maximum Residual Flux
487
+ The maximum residual flux (MRF) is an important parameter in the
488
+ deconvolution process and should be carefully chosen. CLEANing
489
+ deeper than necessary would result in many artefacts in the form
490
+ of faint spurious sources and under-estimated peak fluxes and flux
491
+ densities of real sources. This is due to the CLEAN algorithm clean-
492
+ ing noise spikes and re-distributing flux from point sources to noise
493
+ peaks and is known as the clean bias effect (White et al. 1997; Condon
494
+ et al. 1998). This effect is more pronounced for sources with lower
495
+ signal-to-noise ratio (SNR), given that the amount of distributed flux
496
+ is independent of the flux density of the source. According to Pran-
497
+ doni et al. (2000), the clean bias effect can be reduced by setting
498
+ the MRF above the noise level. However, a shallow CLEAN, where
499
+ the MRF is too far above the noise level, will create residual images
500
+ dominated by sidelobes. Therefore, it is important that MRF be care-
501
+ fully chosen, especially for a blind survey such as CORNISH. Unlike
502
+ for the CORNISH-North survey the mfclean task does not employ
503
+ windowing. Equation (1) is an expression for the MRF, where fmrf
504
+ is a constant multiplicative factor and rms is the root mean square
505
+ noise level.
506
+ MRF ≃ fmrf × rms
507
+ (1)
508
+ Given that the clean bias is also dependent on the rms noise level,
509
+ we have determined the rms in Equation (1) by imaging the central
510
+ portion of each field’s dirty map in Stokes V. Stokes V maps usually
511
+ have very few sources or no sources, since there are few circularly
512
+ polarized sources at 5.5-GHz (Roberts et al. 1975; Homan & Lister
513
+ 2006). Hence, the Stokes V maps are dominated by thermal noise.
514
+ In order to determine an average and appropriate fmrf value for the
515
+ CORNISH-South data, we followed the same procedure as in Paper II.
516
+ Artificial point sources and sources with simple morphologies were
517
+ introduced into the uv data of an empty field and the field was imaged
518
+ with fmrf values from 0.5 to 5, using our imaging pipeline. The
519
+ flux densities of these artificial point sources were then measured
520
+ and compared with the original flux densities. Figure 2 shows the
521
+ resulting plot of the fraction of recovered flux density against the
522
+ fmrf values. The range of fmrf values resulted in a > 98 per cent
523
+ recovered flux density. Below fmrf=1.5 the field is over CLEANed
524
+ MNRAS 000, 1–22 (2022)
525
+
526
+ Data processing and catalogue.
527
+ 5
528
+ 1
529
+ 2
530
+ 3
531
+ 4
532
+ 5
533
+ fmrf
534
+ 0.98
535
+ 0.99
536
+ 1.00
537
+ Percentage Recovered Flux (%)
538
+ Figure 2. Fraction of recovered flux density vs. fmrf for an artificial source of
539
+ 50 mJy that is introduced into an empty field (115050.00-612353.14). Shaded
540
+ grey region represents the ratio of the rms noise level to the recovered flux
541
+ density.
542
+ with a >40 per cent decrease in the rms noise level, compared to the
543
+ Stokes V map.
544
+ To further constrain the choice of an average fmrf value, for each
545
+ iteration, the residual images of the sources with simple morpholo-
546
+ gies were inspected for sidelobe structures. At fmrf=1.5, the Stokes
547
+ I map is CLEANed deeply enough to remove sidelobes and recover
548
+ > 99 per cent of the flux density. Based on these tests, an average
549
+ value of fmrf = 1.5 was used in the imaging process. For fields with
550
+ imaging artefacts as a result of very bright sources (> 1Jy) and/or
551
+ extended sources, we have re-imaged with higher values of fmrf and
552
+ manually CLEANed, where necessary. We discuss the procedure for
553
+ estimating the effect of the clean bias on the CORNISH-South data
554
+ in Section 5.4.
555
+ 4.2 Imaging Extended Sources
556
+ The shortest baseline of the ATCA 6A configuration is ∼337 m,
557
+ which corresponds to a spatial scale of ∼40′′. Nevertheless, the
558
+ uv-plane at these short baselines is sparsely sampled and the de-
559
+ convolution algorithm models extended emission as a series of delta
560
+ functions. Thus, the algorithm struggles to re-construct extended
561
+ emission due to the difficulty in interpolating the sparsely sampled
562
+ plane. This is reflected in the image as scattered flux, which results
563
+ in high rms noise and imaging artefacts, especially in regions with
564
+ bright and large structures.
565
+ To estimate the maximum recoverable angular size above which
566
+ the deconvolution begins to fail or struggles to recover the flux density
567
+ of extended sources, we injected a 1 Jy artificial Gaussian source into
568
+ the uv data of an empty field. Holding the flux density constant, the
569
+ FWHM was increased from 3 to 30′′ in 2′′ steps. The data were
570
+ imaged with our imaging pipeline and then the injected Gaussian
571
+ properties were measured for each iteration using the AEGEAN
572
+ source fitting algorithm (see Section 6.1). Figure 3 shows the fraction
573
+ of recovered flux density as a function of the injected Gaussian
574
+ FWHM (top panel) and a plot of the measured sizes against the
575
+ injected FWHM (bottom panel).
576
+ For sizes above 17′′, the source was fitted with two Gaussians
577
+ by AEGEAN; the FWHM plotted in Figure 3 (bottom panel) is the
578
+ Gaussian with the larger 𝜃maj (red line). Our pipeline combines the
579
+ 5
580
+ 10
581
+ 15
582
+ 20
583
+ 25
584
+ 30
585
+ 0.2
586
+ 0.4
587
+ 0.6
588
+ 0.8
589
+ 1.0
590
+ Fractional Recovered Flux
591
+ 5
592
+ 10
593
+ 15
594
+ 20
595
+ 25
596
+ 30
597
+ Injected FWHM (arcsec)
598
+ 5
599
+ 10
600
+ 15
601
+ 20
602
+ 25
603
+ 30
604
+ Fitted FWHM (arcsec)
605
+ Figure 3. Top panel: Fractional recovered flux density as a function of FWHM
606
+ for an artificial Gaussian source of 1 Jy. Bottom panel: Recovered sizes as a
607
+ function of the injected FWHM. The red line traces the Gaussian fits while
608
+ the black line after 17′′ traces the polygon fit. The black dashed line is a fit
609
+ to the Gaussian measurements. The transition from Gaussian fitted sizes to
610
+ polygon sizes happens between 17′′ and 20′′ (see text for details). Both plots
611
+ share same x-axis.
612
+ multiple Gaussians into a polygon and measures the geometric mean
613
+ as the angular size (see Section 6.1), which is traced by the black
614
+ line. The maximum FWHM of the fitted Gaussian is ∼ 17′′ (red line)
615
+ as illustrated in Figure 3 (bottom panel). However, by switching to
616
+ a polygon that encloses the emission, we can recover up to ∼ 24′′
617
+ (black line). Above 17′′, the corresponding flux density is reduced
618
+ by ≥ 40 per cent as the flux density steeply drops off. For the real
619
+ data, we expect that the reduction in flux density and limited size
620
+ of an extended source should be influenced by morphology as well
621
+ as rms noise level. Compared to the northern counterpart with an
622
+ estimated maximum size of ∼ 14′′ (Paper II), we expect to see more
623
+ extended sources in the CORNISH-South catalogue. Most structures
624
+ that are less than 15′′should give reasonable estimates of the angular
625
+ MNRAS 000, 1–22 (2022)
626
+
627
+ 6
628
+ T. Irabor et al.
629
+ size and the integrated flux density is expected to be within a factor
630
+ of 2 of the true value.
631
+ 4.3 Mosaicking
632
+ Individually imaged fields were linearly mosaicked onto 20′ × 20′
633
+ grid tiles, using linmos, a MIRIAD task13 that overlap by 1′). The
634
+ tiles are arranged in equatorial coordinates (J2000) and 1825 tiles
635
+ were needed to cover the survey region, extending to the edges of
636
+ the survey. Tiles covering the edges for |b| > 1◦ may not be full; i.e
637
+ less than 20′, and some sources at the edges of the survey region
638
+ may have poor image fidelity due to poor uv-coverage. Wide-band
639
+ primary beam correction, which is the inverse of the primary beam
640
+ response as a function of the radius and frequency, was performed by
641
+ linmos for each field before linearly mosaicking them to form a tile.
642
+ Linmos uses the 𝛼I plane and takes into account the OTF scanning
643
+ during the primary beam correction. In order to improve the accuracy
644
+ of the primary beam correction, the ‘bw’ option in linmos was used
645
+ to specify the bandwidth of the images (2-GHz).
646
+ Linear mosaicking is performed in linmos using the standard mo-
647
+ saic equation by minimizing the rms noise (Sault et al. 1996). In
648
+ order to properly account for the geometry and avoid interpolation
649
+ problems during mosaicking, the overlapping fields were put on the
650
+ same pixel grid using the ‘offset’ key in invert. If this is not taken into
651
+ account, the position of sources in overlapping tiles will be altered
652
+ because linmos does not automatically account for the geometric
653
+ correction during linear mosaicking.
654
+ 5 DATA QUALITY
655
+ 5.1 Calibrators
656
+ The six secondary calibrators along the Galactic plane are shown in
657
+ Figure 1. For observation days with two secondary calibrators, cali-
658
+ bration was done separately and then the solutions were combined.
659
+ Before imaging the science data, the calibrators were imaged. This
660
+ was to inspect the images for artefacts, jets or anything else that could
661
+ a��ect the data. All the secondary calibrators as shown in Figure 4
662
+ are point sources with no jets or any other structure ≥ 5𝜎 within the
663
+ field.
664
+ B1934-638 was the preferred primary flux calibrator with a flux
665
+ density of 4.95 Jy at 5.5-GHz. An additional backup flux calibra-
666
+ tor (B0823-500) with a flux density of 2.93 Jy at 5.5-GHz was
667
+ also observed at the beginning of each day’s observation. B0823-
668
+ 500 was used for flux calibration when the B1934-638 data were
669
+ bad or when it could not be observed due to time constraints e.g.
670
+ for blocks 28 and 35 (2011-12-30 and 2012-01-07). The flux den-
671
+ sities of the secondary calibrators from the ATCA calibrator man-
672
+ ual8 at 5.5-GHz are 1.064 ± 0.007 Jy (1352-63), 1.557 ± 0.007 Jy
673
+ (1148-671), 2.338 ± 0.009 Jy (1511-55), 2.063 ± 0.018 Jy (1646-
674
+ 50), 1.172 ± 0.006 Jy (1714-397) and 1.73 ± 0.01 Jy (1729-37). Be-
675
+ cause the calibrators are standard calibrators, mfcal uses the appro-
676
+ priate flux density variation with frequency during calibration.
677
+ With the available data, the flux densities of the secondary cali-
678
+ brators were measured after flagging and calibration. Figure 5 shows
679
+ the deviation in percentage from the median flux densities of the six
680
+ 13 https://www.atnf.csiro.au/computing/software/miriad/
681
+ doc/linmos.html
682
+ 8 https://www.narrabri.atnf.csiro.au/calibrators/
683
+ calibrator_database.html
684
+ secondary calibrators over the 35 days of observations. Each point in
685
+ Figure 5 represents a single day’s observations. Different calibrators
686
+ were used for the different epochs with the exception of 1511-55 that
687
+ overlaps both epochs. The secondary calibrators show a percentage
688
+ flux density deviation from the mean flux density that is less than 10
689
+ per cent and a standard deviation of 4.0 per cent. Based on the scatter
690
+ in the flux density deviation of the secondary calibrators in Figure 5,
691
+ we have adopted a 10 per cent calibration error for the CORNISH-
692
+ South data. The mean positional accuracy of all six calibrators9 is
693
+ 0.1′′.
694
+ 5.2 Synthesized Beam
695
+ Figure 6 (bottom right) shows the distribution of the unconstrained
696
+ major and minor axes of the dirty beam. The major axis has a median
697
+ of ∼2.5′′ and extends up to 5.5′′. The minor axis distribution shows a
698
+ narrower distribution with a peak about 1.8′′. For uniformity across
699
+ the survey region, the median value of the major axis distribution
700
+ (2.5′′) was chosen as the size of a circular restoring beam. This
701
+ results in a super-resolution (major axis/restoring beam of 2.5′′)
702
+ distribution presented in Figure 6 (bottom middle). Ninety percent
703
+ (90 per cent) of the fields have super-resolution that is less than 1.3.
704
+ We also plan to release the calibrated uv dataset so that users can re-
705
+ image fields with whichever beam they require, as well as convolving
706
+ the residuals with their chosen beam.
707
+ The resulting elongation of the synthesized beam before super-
708
+ resolution, i.e. the ratio of the major to the minor axis, is shown in
709
+ Figure 6 (bottom right). Ninety-six percent (96 per cent) of the fields
710
+ have elongation less than 2 with a peak at ∼1.4. This means that there
711
+ are a few fields (<4 per cent) where the major axis is 2 or more times
712
+ greater than the minor axis. The variation of the beam’s major axis
713
+ across the survey region is presented in Figure 6. The elongation of
714
+ the synthesized beam of an East-West array like ATCA is a function
715
+ of the declination of the field, hence the greater elongation for l >
716
+ 344◦ for more equatorial declinations. This will also explain the fields
717
+ with major axis > 3′′ (4′′ > 𝜃maj > 3′′) seen within the longitude
718
+ region >344◦ (Figure 6 : Top panel). Fields with higher major axes
719
+ (> 3.5′′) in Figure 6 fall within the longitude 333◦ to 335◦ region.
720
+ Figure 6 (top panel) also highlights the epochs. Epoch II shows a
721
+ less elongated beam, with major axes lower than 3′′ for ∼93 per cent
722
+ of the fields. The fields with higher major axes within the longitude
723
+ 333◦ to 335◦ region are seen to come from epoch II. This is due to
724
+ the poor uv-coverage resulting from less than the typical 12 scans for
725
+ the block observed on 2011-12-20. However, only a few fields were
726
+ affected, making up ∼6 per cent of the epoch II data.
727
+ 5.3 Sensitivity/Root Mean Square (rms) noise Level
728
+ The rms noise level achieved across the survey region in CLEANed
729
+ Stokes I maps is shown in Figure 7. The noise level is fairly uniform,
730
+ having a mean of 0.11 mJy beam−1. The rms noise level around a few
731
+ very bright source clusters is particularly high as expected. The noisy
732
+ region between longitude 333◦ and 335◦ is seen to reflect the poor
733
+ uv-coverage seen in Figure 6. Figure 7 (bottom panel) further shows
734
+ a distribution of the rms noise with an elongated tail that corresponds
735
+ to regions with poor uv-coverages. The two peaks correspond to the
736
+ different epochs, where the second peak is dominated by epoch I
737
+ data. The noise level of epoch II data (hatched grey shaded region) is
738
+ better than that of epoch I (hatched red shaded region). Given that the
739
+ 9 https://www.narrabri.atnf.csiro.au/calibrators/calupdate.html
740
+ MNRAS 000, 1–22 (2022)
741
+
742
+ Data processing and catalogue.
743
+ 7
744
+ 13h55m50s48s
745
+ 46s
746
+ 44s
747
+ -63°26'15"
748
+ 30"
749
+ 45"
750
+ 27'00"
751
+ RA (J2000)
752
+ DEC (J2000)
753
+ 1352-63
754
+ 0.0
755
+ 0.2
756
+ 0.4
757
+ 0.6
758
+ 0.8
759
+ 1.0
760
+ 1.2
761
+ Jy/beam
762
+ 11h51m18s 15s
763
+ 12s
764
+ 09s
765
+ -67°27'45"
766
+ 28'00"
767
+ 15"
768
+ 30"
769
+ RA (J2000)
770
+ DEC (J2000)
771
+ 1148-671
772
+ 0.0
773
+ 0.2
774
+ 0.4
775
+ 0.6
776
+ 0.8
777
+ 1.0
778
+ 1.2
779
+ Jy/beam
780
+ 15h15m16s 14s
781
+ 12s
782
+ 10s
783
+ -55°59'15"
784
+ 30"
785
+ 45"
786
+ -56°00'00"
787
+ RA (J2000)
788
+ DEC (J2000)
789
+ 1511-55
790
+ 0.0
791
+ 0.2
792
+ 0.4
793
+ 0.6
794
+ 0.8
795
+ 1.0
796
+ 1.2
797
+ 1.4
798
+ 1.6
799
+ Jy/beam
800
+ 16h50m18s
801
+ 16s
802
+ 14s
803
+ -50°44'30"
804
+ 45"
805
+ 45'00"
806
+ 15"
807
+ RA (J2000)
808
+ DEC (J2000)
809
+ 1646-50
810
+ 0.0
811
+ 0.2
812
+ 0.4
813
+ 0.6
814
+ 0.8
815
+ 1.0
816
+ Jy/beam
817
+ 17h17m41s40s
818
+ 39s
819
+ 38s
820
+ 37s
821
+ -39°48'30"
822
+ 45"
823
+ 49'00"
824
+ 15"
825
+ RA (J2000)
826
+ DEC (J2000)
827
+ 1714-397
828
+ 0.0
829
+ 0.2
830
+ 0.4
831
+ 0.6
832
+ 0.8
833
+ 1.0
834
+ Jy/beam
835
+ 17h33m17s16s
836
+ 15s
837
+ 14s
838
+ 13s
839
+ -37°22'15"
840
+ 30"
841
+ 45"
842
+ 23'00"
843
+ RA (J2000)
844
+ DEC (J2000)
845
+ 1729-37
846
+ 0.0
847
+ 0.2
848
+ 0.4
849
+ 0.6
850
+ 0.8
851
+ 1.0
852
+ 1.2
853
+ 1.4
854
+ Jy/beam
855
+ Figure 4. Images of the six secondary calibrators 1352-63 (1.064 ± 0.007 Jy), 1148-671 (1.557 ± 0.007 Jy), 1511-55 (2.338 ± 0.009 Jy), 1646-50 (2.063 ± 0.018
856
+ Jy), 1714-397 (1.172 ± 0.006 Jy), 1729-37 (1.73 ± 0.01 Jy). The quoted flux densities are from the ATCA calibrator manual. The images are all 1′ by 1′ with
857
+ the size of the beam shown at the bottom left.
858
+ 0
859
+ 5
860
+ 10
861
+ 15
862
+ 20
863
+ 25
864
+ 30
865
+ 35
866
+ Day/Block Number
867
+ 10.0
868
+ 7.5
869
+ 5.0
870
+ 2.5
871
+ 0.0
872
+ 2.5
873
+ 5.0
874
+ 7.5
875
+ 10.0
876
+ Percentage deviation from median flux (%)
877
+ 1714-397
878
+ 1729-37
879
+ 1646-50
880
+ 1511-55
881
+ 1352-63
882
+ 1148-671
883
+ Figure 5. Percentage deviation from the median flux density vs. block/day
884
+ number for the six secondary calibrators. Each point represents measurements
885
+ from a block’s observations.
886
+ two epochs are separated by eleven months, the intervening series of
887
+ system maintenance and tests 10 could have improved the efficiency
888
+ and overall performance of the array. The region of epoch II data
889
+ with rms noise > 0.11 mJy beam−1 corresponds to fields where there
890
+ were fewer than the average twelve scans (see Section 2).
891
+ 5.4 Clean Bias
892
+ To estimate the effect of the clean bias by CLEANing down to the
893
+ MRF (see Equation 1), point sources of random flux densities be-
894
+ tween 1 and 15 mJy were injected into the uv data of six empty
895
+ tiles chosen from the two epochs. The positions of the sources were
896
+ chosen to fall about the centres of individual fields, away from any
897
+ source. The fields were imaged and mosaicked using the imaging
898
+ 10 https://www.narrabri.atnf.csiro.au/observing/schedules/
899
+ 2011OctSem/CA.pdf
900
+ pipeline. The flux densities and sizes were then measured from the
901
+ mosaicked tiles at the injected positions, using our aperture photom-
902
+ etry pipeline. This was to avoid flux density bias caused by thermal
903
+ flux fluctuations (Franzen et al. 2015). This procedure was repeated
904
+ ten times to get a better average estimate of the clean bias.
905
+ Measured flux densities were subtracted from the injected flux
906
+ densities to get an estimate of the clean bias effect. The median clean
907
+ bias from averaging the measurements is estimated to be 0.14 mJy
908
+ and was not different across the epochs. This value is about half the
909
+ clean bias estimated for the CORNISH-North catalogue of 0.33 mJy
910
+ (Paper II). For ≥7𝜎 sources, this effect is < 13 per cent. Thus, we
911
+ conclude that the clean bias will not significantly degrade the quality
912
+ of the flux densities compared to the statistical and absolute flux
913
+ density calibration uncertainty of 10 per cent.
914
+ 6 CATALOGUE
915
+ 6.1 Source Finding and Characterization
916
+ The automated source finding and source characterization part of
917
+ our pipeline utilizes the AEGEAN software package11 (Hancock
918
+ et al. 2012, 2018). AEGEAN uses the flood-fill algorithm, where
919
+ two thresholds (𝜎s: seeding threshold, 𝜎f: flooding threshold) are
920
+ defined, such that 𝜎s ⩾ 𝜎f. The seeding threshold is used to seed
921
+ an island, while the flooding threshold is used to grow the island
922
+ (see Hancock et al. 2012). Detected pixels are then grouped into
923
+ contiguous islands and characterized by fitting with one or more
924
+ overlapping 2D Gaussians.
925
+ We have used the background and noise estimation function, Bane
926
+ 11 https://github.com/PaulHancock/Aegean/wiki/
927
+ Quick-Start-Guide
928
+ MNRAS 000, 1–22 (2022)
929
+
930
+ 8
931
+ T. Irabor et al.
932
+ 300
933
+ 310
934
+ 320
935
+ 330
936
+ 340
937
+ 350
938
+ Galactic Longitude (deg)
939
+ 1
940
+ 2
941
+ 3
942
+ 4
943
+ 5
944
+ Major Axis/Super Resolution/Beam Elongation
945
+ Super Resolution
946
+ Major Axis
947
+ Elongation
948
+ Epoch I
949
+ Epoch II
950
+ 0
951
+ 1
952
+ 2
953
+ 3
954
+ 4
955
+ 5
956
+ Major/Minor Axis (arcsec)
957
+ 0
958
+ 500
959
+ 1000
960
+ 1500
961
+ 2000
962
+ 2500
963
+ Number of fields
964
+ Major
965
+ Minor
966
+ 0.0
967
+ 0.5
968
+ 1.0
969
+ 1.5
970
+ 2.0
971
+ Beam Super Resolution (arcsec)
972
+ 0
973
+ 500
974
+ 1000
975
+ 1500
976
+ 2000
977
+ Number of fields
978
+ 0
979
+ 1
980
+ 2
981
+ 3
982
+ Beam Elongation
983
+ 0
984
+ 500
985
+ 1000
986
+ 1500
987
+ 2000
988
+ 2500
989
+ Number of fields
990
+ Figure 6. Top panel: Galactic longitude distribution of the major axis and beam elongation before super-resolution is shown. The synthesized beam of an
991
+ East-West array like ATCA is a function of the declination of the field, hence the greater major axis for l > 344◦. Additionally, the super-resolution distribution
992
+ is presented. Bottom panel: Major and minor axes distribution of the imaged fields with a median major (𝜃maj) of 2.5′′ and median minor axis (𝜃min) of 1.8′′
993
+ (bottom left). Forcing a restoring beam size of 2.5′′ (FWHM) will result in the distribution of the beam super-resolution shown in the middle panel (bottom). 66
994
+ per cent of the fields have super-resolution that is greater than 1. The beam elongation is the ratio of the major to the minor axis (bottom right) . 96 per cent of
995
+ the fields have elongation less than 2.
996
+ (Hancock et al. 2012) to compute the background and rms noise for
997
+ each tile. Bane uses a grid algorithm that estimates the rms noise
998
+ (𝜎BANE) and background level within a sliding box of a defined size
999
+ that is centered on a grid point. The pixel values within the box
1000
+ are then subjected to sigma clipping (3𝜎), which reduces any effect
1001
+ source pixels may introduce (Hancock et al. 2012; see also Bertin &
1002
+ Arnouts 1996). Given that radio images do not have very complicated
1003
+ backgrounds, we do not expect the noise properties across a 20′ × 20′
1004
+ tile to change much. Therefore, we used the default boxcar size
1005
+ of 30𝜃bm (𝜃bm: synthesized beam size) for the CORNISH-South
1006
+ data, which is about 75′′. This size has been demonstrated to be
1007
+ optimized for the completeness and reliability of compact sources
1008
+ (Huynh et al. 2012). For source finding we defined a 4.5𝜎𝑠 seeding
1009
+ threshold and 4.0𝜎f flooding threshold to create an initial catalogue
1010
+ of the CORNISH-South data.
1011
+ 6.2 Quality Control
1012
+ 6.2.1 Elimination of Duplicate Sources
1013
+ With a 60′′ overlap of the tiles, sources closer to the edges of the
1014
+ tiles were detected more than once. However, because overlapping
1015
+ regions are formed from the same fields, the difference in position
1016
+ would be a fraction of the synthesized beam. This will also affect
1017
+ the peak flux, depending on the local rms noise. An extended source
1018
+ fitted with multiple Gaussians could have different parameters from
1019
+ one tile to another because it is closer to the edge on one tile and
1020
+ fully imaged on another tile.
1021
+ To
1022
+ eliminate
1023
+ such
1024
+ duplicated
1025
+ sources,
1026
+ we
1027
+ searched
1028
+ for
1029
+ sources with similar positions, < 2.0′′ and similar peak flux,
1030
+ Peakmin/Peakmax > 0.7. In addition to both conditions, the distance
1031
+ of each duplicated source, relative to the centre of the tile, was cal-
1032
+ culated the source closer to the centre of a tile was retained, over the
1033
+ ones closer to the edges.
1034
+ MNRAS 000, 1–22 (2022)
1035
+
1036
+ Data processing and catalogue.
1037
+ 9
1038
+ 300
1039
+ 310
1040
+ 320
1041
+ 330
1042
+ 340
1043
+ 350
1044
+ Galactic Longitude (deg)
1045
+ 0.075
1046
+ 0.100
1047
+ 0.125
1048
+ 0.150
1049
+ 0.175
1050
+ 0.200
1051
+ 0.225
1052
+ 0.250
1053
+ RMS noise level (mJy/beam)
1054
+ Epoch I
1055
+ Epoch II
1056
+ 0.08
1057
+ 0.10
1058
+ 0.12
1059
+ 0.15
1060
+ 0.17
1061
+ 0.20
1062
+ 0.23
1063
+ 0.25
1064
+ RMS noise level (mJy/beam)
1065
+ 100
1066
+ 101
1067
+ 102
1068
+ 103
1069
+ Number of fields
1070
+ Epoch I
1071
+ Epoch II
1072
+ Figure 7. Top panel: The variation of the rms noise in Stokes I maps across
1073
+ Galactic longitude. Bottom panel: Distribution of the rms noise in Stokes
1074
+ I maps (grey region) measured within an aperture size of 3′. The hatched
1075
+ regions represent the rms noise from the epoch I (red hatched region) and II
1076
+ (black hatched region. The mean rms noise is ∼ 0.11 mJy beam−1. The SIQR
1077
+ of epoch I is 0.003 and that of epoch II is 0.004.
1078
+ 6.2.2 Elimination of Spurious Sources
1079
+ The choice of a cut-off threshold for a catalogue, in terms of the SNR,
1080
+ is a trade-off between completeness and reliability. A low threshold
1081
+ catalogue, e.g. 3𝜎, will result in more real sources but with many
1082
+ unreal sources as well, while a high threshold will result in a highly
1083
+ reliable catalogue but miss real sources with low SNR. In order to
1084
+ determine an appropriate cut-off threshold for the highly reliable
1085
+ CORNISH-South catalogue, we attempted to estimate the number
1086
+ of spurious sources at a given threshold. Based on the analysis in
1087
+ Paper II (see Hopkins et al. 2002), 15 tiles were selected to represent
1088
+ all 1825 tiles. These tiles were chosen such that there were no sources
1089
+ with very bright side lobes and contained only point sources and fairly
1090
+ extended sources.
1091
+ To estimate the number of spurious sources as a function of SNR,
1092
+ i.e. the ratio of peak flux to rms noise level, the tiles were inverted by
1093
+ multiplying the pixel values in the tiles by -1. A seeding threshold of
1094
+ 4.5𝜎s was then used to search for sources on both sets of tiles (normal
1095
+ and inverted tiles). To account for an average estimate of the number
1096
+ of sources across the survey region, the detections from the 15 tiles
1097
+ were multiplied by 122 (1825/15). Figure 8 shows a cumulative
1098
+ histogram of the detected sources before and after inversion (the
1099
+ later being obviously all spurious), as a function of the SNR. The
1100
+ rms noise level used for the SNR is measured in an annulus with a
1101
+ 5′′ gap from the source aperture (𝜎a: see Section 6.2.3). Detections
1102
+ below 5𝜎𝑎 are dominated by spurious sources (> 90 per cent) as
1103
+ indicated by the grey shaded region. Spurious detections fall off
1104
+ steeply compared to real sources above 5𝜎a and then fall off to 1 in
1105
+ the 15 tiles between 6.0𝜎a and 6.5𝜎a.
1106
+ Following the analysis in Paper II, if the population of detected
1107
+ sources is assumed to be governed by Gaussian statistics, then the
1108
+ fraction, f(𝜎), of the population that falls within a given detection
1109
+ threshold can be expressed as
1110
+ f(𝜎) = 1 − errf(𝜎/
1111
+
1112
+ 2) ,
1113
+ (2)
1114
+ where errf(𝜎) is the Gaussian error function, given by
1115
+ errf(𝜎) =
1116
+ 1
1117
+ √𝜋
1118
+ ∫ 𝜎
1119
+ −𝜎
1120
+ e−t2dt =
1121
+ 2
1122
+ √𝜋
1123
+ ∫ 𝜎
1124
+ 0
1125
+ e−t2dt.
1126
+ (3)
1127
+ A plot of f(𝜎) is presented in Figure 8, assuming the total number of
1128
+ possible detections equals the number of beams within the CORNISH
1129
+ survey region (2.02 × 108 beams). With this assumption, the total
1130
+ number of spurious sources is underestimated (blue dashed line).
1131
+ However, the number of sources can be allowed to be a free parameter,
1132
+ resulting in a fit represented by the black line. The black line appears
1133
+ to predict the number of spurious sources at 4.5𝜎a but falls off rather
1134
+ too steeply, compared to the number of spurious sources. Fitting
1135
+ f(𝜎) to bins higher than 5𝜎a and adjusting the width of the Gaussian
1136
+ (𝜎 = 0.8𝜎gauss) results in a better fit (green dashed line) and predicts
1137
+ the number of spurious sources to be less than 10 at 7𝜎a. Figure 8
1138
+ shows that the fraction of spurious sources decreases from 25 per cent
1139
+ to 5 per cent to 1 per cent at 5𝜎, 5.5𝜎 and 6𝜎, respectively. Based
1140
+ on this analysis, the cut-off threshold for a reliable CORNISH-South
1141
+ catalogue to be accepted is set at 7𝜎a.
1142
+ 6.2.3 Gaussian Sources
1143
+ For compact sources fitted with a single Gaussian by AEGEAN,
1144
+ the integrated flux densities we adopt those given by AEGEAN.
1145
+ However, for the rms noise we re-measure this in an annulus around
1146
+ an aperture (𝜎a). The source aperture was defined by an elliptical
1147
+ aperture which extends to 3𝜎 of the Gaussian major (𝜃maj) and
1148
+ minor (𝜃min) axes. An annulus with the same shape as the source
1149
+ aperture of width 15′′, offset at 5′′ from the source aperture, was then
1150
+ defined to measure the rms noise and background level. The choice
1151
+ of an annulus offset of 5′′ allows an estimation of the background
1152
+ around the immediate locale of the source. An annulus of width 15′′
1153
+ provides a statistically large area in pixels over which to compute the
1154
+ background and rms noise level, compared to the synthesized beam
1155
+ area of 19.7 pixels. This is more local than 𝜎BANE and is consistent
1156
+ with what was used for the CORNISH-North survey. Paper II provides
1157
+ equations and further details on the aperture photometry (see also
1158
+ Paper IV).
1159
+ 6.2.4 Extended Non-Gaussian Sources
1160
+ Extended non-Gaussian sources were automatically detected by
1161
+ searching for contiguous islands with more than one overlapping
1162
+ Gaussian. A single optimal 2D polygon was then defined using the
1163
+ convex hull algorithm to trace the outer outline of the Gaussians, en-
1164
+ closing the emission. The assumption is that overlapping Gaussians
1165
+ MNRAS 000, 1–22 (2022)
1166
+
1167
+ 10
1168
+ T. Irabor et al.
1169
+ Figure 8. Number of sources as a function of signal-to-noise ratio for 15 real
1170
+ and inverted tiles. The hatched grey region represents spurious sources, while
1171
+ the hatched blue region represents real sources. The blue line is a fit to the
1172
+ spurious sources assuming the total number of possible detections equals the
1173
+ number of beams within the CORNISH survey region (2.02 × 108 beams).
1174
+ The black line is the fit to the number of spurious sources by allowing it to be a
1175
+ free parameter and adjusting the curve to fit. The green line represents a fit to
1176
+ binshigher than 5𝜎a and adjustingthe widthofthe Gaussian(𝜎 = 0.8𝜎gauss).
1177
+ trace a single extended source. The extent of the generated 2D poly-
1178
+ gon is strongly affected by the extent of the individual Gaussians.
1179
+ Thus, before generating the polygons, there was the need to make
1180
+ sure the catalogue is clean (i.e. free from sidelobes), otherwise the
1181
+ generated polygon may be over-estimated, stretched by the sidelobes.
1182
+ Additionally, some extended sources that were not properly imaged
1183
+ may appear as individual Gaussians, spreading over an area. In such
1184
+ cases, manual intervention was needed to trace the outline of the
1185
+ real emission. Such cases account for ∼ 10 per cent of non-Gaussian
1186
+ sources.
1187
+ Given the defined polygons, new intensity weighted centres (𝛼0,
1188
+ 𝛿0) and diameters were then determined. The diameter of the 2D
1189
+ polygon, defined by n-sides and n-vertices, was calculated by deter-
1190
+ mining the radius of each vertex to the intensity weighted centre and
1191
+ then estimating the geometric mean of the radii and multiplying by a
1192
+ factor of 2. Figure 9 shows an example of two sources that were first
1193
+ fitted by multiple Gaussians and the subsequently generated poly-
1194
+ gons. For these extended sources, aperture photometry was used to
1195
+ measure the source properties within the defined polygon that en-
1196
+ closes the emission and the rms noise level within the annulus (see
1197
+ Paper II and Paper IV). The geometric mean of the 2D polygon is
1198
+ 𝜃E = 2 � 𝑛√𝑟1����2...𝑟𝑛
1199
+ �, where r1, r2...rn are the radii of the vertices.
1200
+ Having removed duplicates, spurious sources, and sources < 7𝜎a
1201
+ (see Section 6.2.2), we then used visual inspection to further elimi-
1202
+ nate artefacts due to side-lobes that are close to very bright sources.
1203
+ This was aided by comparison with the GLIMPSE (Churchwell et al.
1204
+ 2009) data. As we are primarily interested in a complete sample of
1205
+ UCHII regions, radio sources in areas with artefacts that have clear
1206
+ IR counterparts were retained. Often these artefacts are caused by
1207
+ bright H II regions themselves and we expect other H II regions to be
1208
+ present in such clustered star forming regions. After these elimina-
1209
+ tions, the final CORNISH-South catalogue has a total of 4701 high
1210
+ quality sources above 7𝜎a.
1211
+ 6.3 Measurements and Uncertainties
1212
+ In order to create a uniform catalogue that is similar to the CORNISH-
1213
+ North catalogue, we have used the same sets of equations given
1214
+ in Paper II to estimate the properties and associated errors of the
1215
+ sources (also see Condon 1997). For the well-defined and unresolved
1216
+ sources, defined by a single Gaussian fit, the AEGEAN Gaussian
1217
+ fit measurements are the catalogued properties. However, for the
1218
+ catalogued rms noise level, we have re-measured within an annulus
1219
+ around the source for both extended and non-extended sources. This
1220
+ was to create a CORNISH (North and South) catalogue with uniform
1221
+ noise measurements, given that we have implemented sigma clipping
1222
+ to remove sources within the annulus (see Paper II).
1223
+ The integrated flux density and associated error are given by
1224
+ S =
1225
+ A𝜋
1226
+ 4ln(2)
1227
+ 𝜃maj𝜃min
1228
+ 𝜃2
1229
+ bm
1230
+ (4)
1231
+ and
1232
+ 𝜎2
1233
+ S
1234
+ S2 ≈
1235
+ 𝜎2
1236
+ A
1237
+ A2 +
1238
+ 𝜃2
1239
+ bm
1240
+ 𝜃maj𝜃min
1241
+ ������
1242
+ 𝜎2(𝜃maj)
1243
+ 𝜃2
1244
+ maj
1245
+ + 𝜎2(𝜃min)
1246
+ 𝜃2
1247
+ min
1248
+ ������
1249
+ ,
1250
+ (5)
1251
+ where A is the peak amplitude, 𝜃min is the minor axis, 𝜃maj is the
1252
+ major axis and 𝜃bm is the synthesized beam size. 𝜎𝜃maj and 𝜎𝜃min
1253
+ are the errors on the Gaussian fits. The catalogued angular size and
1254
+ associated error is the geometric mean of the major and minor axes,
1255
+ which can be calculated from
1256
+ 𝜃mean =
1257
+ √︃
1258
+ 𝜃maj𝜃min
1259
+ (6)
1260
+ and
1261
+ 𝜎(𝜃mean) = 𝜃mean
1262
+ 2
1263
+
1264
+
1265
+ �𝜎2(𝜃maj)
1266
+ 𝜃2
1267
+ maj
1268
+ + 𝜎2(𝜃min)
1269
+ 𝜃2
1270
+ min
1271
+ (7)
1272
+ The integrated flux density of the polygonal sources, measured
1273
+ using aperture photometry, is given by
1274
+ S =
1275
+ �Nsrc
1276
+ ∑︁
1277
+ i=1
1278
+ Ai − NsrcB
1279
+ � �
1280
+ abm ,
1281
+ (8)
1282
+ where �Nsrc
1283
+ i=1 Ai is the total flux density in a given aperture over Nsrc
1284
+ pixels, B is the median background flux and abm is the beam area
1285
+ (19.66 pixels). The associated error is given by
1286
+ 𝜎2
1287
+ S =
1288
+
1289
+ 𝜎(
1290
+ ∑︁
1291
+ Ai)2 +
1292
+ 𝜋N2src𝜎2g
1293
+ 2Nsky
1294
+ � �
1295
+ a2
1296
+ bm ,
1297
+ (9)
1298
+ where 𝜎2g is the variance and 𝑁𝑠𝑘𝑦 is the number of pixels in the
1299
+ annulus. For CORNISH-North, the angular sizes for the polygonal
1300
+ sources were intensity-weighted diameters and were given by
1301
+ dw =
1302
+ Nsrc
1303
+ ∑︁
1304
+ i=1
1305
+ riAi
1306
+ � Nsrc
1307
+ ∑︁
1308
+ i=1
1309
+ Ai ,
1310
+ (10)
1311
+ where dw is the intensity-weighted diameter and �Nsrc
1312
+ i=1 Ai is the
1313
+ sum of the flux within the defined source aperture. This works well
1314
+ for simple extended sources. However, the sizes of very extended
1315
+ and double-lobed sources could be under-estimated by ≥50 per
1316
+ cent, in some cases. Figure 10 shows a comparison of the intensity-
1317
+ weighted diameters and the geometric mean diameters for the polyg-
1318
+ onal sources (see Section 6.2.4). The intensity-weighted diameters
1319
+ MNRAS 000, 1–22 (2022)
1320
+
1321
+ 105
1322
+ real sources
1323
+ spurious sources
1324
+ Cumulative detections (x 122)
1325
+ 104
1326
+ 103
1327
+ 102
1328
+ 101
1329
+ 100
1330
+ 5
1331
+ 6
1332
+ 8
1333
+ 9
1334
+ 7
1335
+ 10
1336
+ Signal-to-noise threshold (o)Data processing and catalogue.
1337
+ 11
1338
+ 13h42m48s 45s
1339
+ 42s
1340
+ 39s
1341
+ 36s
1342
+ -61°52'20"
1343
+ 40"
1344
+ 53'00"
1345
+ 20"
1346
+ RA (J2000)
1347
+ DEC (J2000)
1348
+ G308.9310+0.3917
1349
+ 13h42m48s 45s
1350
+ 42s
1351
+ 39s
1352
+ 36s
1353
+ -61°52'20"
1354
+ 40"
1355
+ 53'00"
1356
+ 20"
1357
+ RA (J2000)
1358
+ DEC (J2000)
1359
+ G308.9310+0.3917
1360
+ 14h57m40s
1361
+ 36s
1362
+ 32s
1363
+ 28s
1364
+ -58°11'30"
1365
+ 12'00"
1366
+ 30"
1367
+ 13'00"
1368
+ RA (J2000)
1369
+ DEC (J2000)
1370
+ G318.9310+0.6956
1371
+ 14h57m40s
1372
+ 36s
1373
+ 32s
1374
+ 28s
1375
+ -58°11'30"
1376
+ 12'00"
1377
+ 30"
1378
+ 13'00"
1379
+ RA (J2000)
1380
+ DEC (J2000)
1381
+ G318.9310+0.6956
1382
+ Figure 9. Examples of generated polygons for extended sources fitted with multiple Gaussian by the AEGEAN source finder. The fitted Gaussians are overlaid
1383
+ (left panel), while the defined polygon is shown (right panel). The top source (radio galaxy) is an example of a source that shows the centre source as a Gaussian
1384
+ and the lobes as non-Gaussian sources. The source at the bottom is an example of a double lobe HII region.
1385
+ are consistently smaller compared to the geometric mean diameters.
1386
+ The best-fit line to the scatter is given by: y = 0.44x − 0.41. Based on
1387
+ this, the catalogued size for a polygonal source is the geometric mean.
1388
+ This can be useful in interpreting and re-scaling the CORNISH-North
1389
+ sizes for extended sources.
1390
+ 6.4 Completeness
1391
+ It is important to demonstrate the completeness of our 5.5-GHz cata-
1392
+ logue as a function of flux density. In order to quantify this, artificial
1393
+ point sources were injected into the calibrated uv-data of nine fairly
1394
+ empty tiles having no imaging artefacts, fairly homogenous noise
1395
+ distribution and from both epoch I and epoch II. The flux densities of
1396
+ the artificial point sources were chosen to be in the range of 0.2 mJy
1397
+ (∼ 2𝜎) to 4 mJy (∼ 40𝜎). The positions and flux densities were ran-
1398
+ domly assigned, while avoiding positions of real sources and making
1399
+ sure that the artificial sources do not overlap. In total, 5000 sources
1400
+ were injected into the tiles. The tiles were imaged, and the proper-
1401
+ ties of the injected sources were measured with the same pipeline
1402
+ that produced the catalogue. This procedure was repeated 10 times
1403
+ and then the average values of the measured properties over the 10
1404
+ iterations were compared to the injected properties.
1405
+ Figure 11 shows the completeness level measured by the percent-
1406
+ age of detected sources as a function of their injected flux densities.
1407
+ The mean completeness level (percentage) is also shown as a black
1408
+ 5
1409
+ 10
1410
+ 15
1411
+ 20
1412
+ 25
1413
+ 30
1414
+ 35
1415
+ 40
1416
+ Geometric Mean Diameter (arcsec)
1417
+ 0
1418
+ 5
1419
+ 10
1420
+ 15
1421
+ 20
1422
+ 25
1423
+ Intensity Weighted Diameter (arcsec)
1424
+ one-to-one line
1425
+ best fit line: y = 0.44x
1426
+ 0.41
1427
+ Figure 10. A plot of the intensity-weighted diameter against the geometric
1428
+ mean diameter for the polygonal sources. The one-to-one line (black) shows
1429
+ that the geometric mean diameter is consistently larger than the intensity
1430
+ weighted diameter. The best-fit line (green) is given by y = 0.44x − 0.41.
1431
+ line with the ’+’ symbol. The percentage completeness from the
1432
+ graph shows > 90 per cent for 1.5 mJy and essentially 100 per cent
1433
+ for > 3 mJy. The completeness for <0.3 mJy is 0 per cent because
1434
+ it is below the seeding threshold of 4.5𝜎s. Table 4 shows the noise
1435
+ MNRAS 000, 1–22 (2022)
1436
+
1437
+ 12
1438
+ T. Irabor et al.
1439
+ 0.5
1440
+ 1.0
1441
+ 1.5
1442
+ 2.0
1443
+ 2.5
1444
+ 3.0
1445
+ 3.5
1446
+ 4.0
1447
+ Flux Density (mJy)
1448
+ 0
1449
+ 20
1450
+ 40
1451
+ 60
1452
+ 80
1453
+ 100
1454
+ Recovered sources (%)
1455
+ Tile 7
1456
+ Tile 62
1457
+ Tile 81
1458
+ Tile 109
1459
+ Tile 1614
1460
+ Tile 1655
1461
+ Tile 1731
1462
+ Tile 1733
1463
+ Tile 1752
1464
+ Mean
1465
+ Figure 11. Percentage completeness as a function of flux density for artificial
1466
+ point sources injected into 9 representative tiles. Completeness is the number
1467
+ of extracted sources divided by number of injected sources at binned flux
1468
+ densities. The black line with the ’+’ symbol shows the mean completeness.
1469
+ Table 4. Completeness level of the 5.5-GHz CORNISH-South data across 9
1470
+ representative tiles at 50 per cent and 90 per cent.
1471
+ Tile
1472
+ Epoch
1473
+ rms
1474
+ 50 per cent
1475
+ 90 per cent
1476
+ (mJy beam−1)
1477
+ mJy
1478
+ mJy
1479
+ 7
1480
+ II
1481
+ 0.09
1482
+ 0.63
1483
+ 0.85
1484
+ 62
1485
+ II
1486
+ 0.09
1487
+ 0.43
1488
+ 0.64
1489
+ 81
1490
+ II
1491
+ 0.09
1492
+ 0.45
1493
+ 0.68
1494
+ 109
1495
+ II
1496
+ 0.10
1497
+ 0.63
1498
+ 0.88
1499
+ 1614
1500
+ I
1501
+ 0.19
1502
+ 0.81
1503
+ 1.38
1504
+ 1655
1505
+ I
1506
+ 0.14
1507
+ 0.80
1508
+ 1.30
1509
+ 1731
1510
+ I
1511
+ 0.12
1512
+ 0.72
1513
+ 1.27
1514
+ 1733
1515
+ I
1516
+ 0.12
1517
+ 0.51
1518
+ 1.02
1519
+ 1752
1520
+ I
1521
+ 0.16
1522
+ 0.42
1523
+ 1.14
1524
+ Mean
1525
+ I & II
1526
+ 0.12
1527
+ 0.60
1528
+ 1.09
1529
+ level and completeness for the individual tiles at 50 per cent and
1530
+ 90 per cent. Tiles from epoch I with higher noise levels show lower
1531
+ completeness level compared to tiles from epoch II. The stated rms
1532
+ noise level is an average across each tile and so the completeness
1533
+ will be affected by local rms noise surrounding a given source. At
1534
+ 1.4 mJy (∼7𝜎), the percentage completeness is about 90 per cent for
1535
+ the worst case (Tile 1614). Based on the mean completeness level, for
1536
+ point sources, the CORNISH-South data is 90 per cent complete at
1537
+ 1.1 mJy. The completeness will be worse around very bright sources,
1538
+ but as can be seen from Figure 7, this represents less than 0.3 per
1539
+ cent of the total area of the survey.
1540
+ 6.5 Catalogue Ensemble Properties
1541
+ Figures 12 to 14 present the distribution of the ensemble physi-
1542
+ cal properties of the CORNISH-South sources. We identified 4701
1543
+ sources above the 7𝜎 limit, of which the properties of 608 are mea-
1544
+ sured with a polygon.
1545
+ 0
1546
+ 5
1547
+ 10
1548
+ 15
1549
+ 20
1550
+ 25
1551
+ 30
1552
+ 35
1553
+ 40
1554
+ Angular Size (arcsec)
1555
+ 100
1556
+ 101
1557
+ 102
1558
+ 103
1559
+ Number of Sources
1560
+ Figure 12. Angular size distribution of the 7𝜎 CORNISH-South sources.
1561
+ 6.5.1 Angular Size
1562
+ The catalogued angular size for both the Gaussian and non-Gaussian
1563
+ sources is the geometric mean (see section 6.3). Based on the mean
1564
+ error of the angular sizes, which is ∼ 0.3′′ and the size of the restoring
1565
+ beam (2.5′′), resolved sources are defined as sources with angular
1566
+ sizes > 2.8′′ for the CORNISH-South catalogue. The angular size
1567
+ distribution in Figure 12 is dominated by unresolved sources (66.3
1568
+ per cent) and accounts for the obvious peak at ∼ 2.5′′. Resolved
1569
+ sources (1584) account for 33.6 per cent of the catalogue, of which
1570
+ 38 per cent are polygonal sources (608). The distribution of resolved
1571
+ sources is fairly flat out to 30′′ after a steep drop from 2.5′′ to 5′′.
1572
+ This is consistent with the maximum recoverable size (see Figure 3).
1573
+ As characteristic of all interferometric observations, very extended
1574
+ emission will not be properly imaged due to missing information on
1575
+ large scale structures, limited by the shortest baseline in the array.
1576
+ Thus, caution should be applied in interpreting the angular sizes
1577
+ and flux densities of very extended sources (> 17′′). This is also
1578
+ demonstrated in Section 4.2.
1579
+ 6.5.2 Galactic Latitude and Longitude Distributions
1580
+ Figures 13a and 13b show the distributions of the CORNISH-South
1581
+ sources in Galactic latitude and longitude, respectively. The cover-
1582
+ age of the CORNISH-South survey is complete within the |b| ⩽ 1.0
1583
+ region as shown in Figure 13a. The distributions are similar com-
1584
+ pared to the Galactic distributions of the CORNISH-North catalogue
1585
+ (Paper II).
1586
+ The latitude and longitude distributions of the resolved sources
1587
+ correspond to the Galactic region traced by high-mass star formation
1588
+ (Urquhart et al. 2011, 2009). Known star formation complexes G333
1589
+ and G338.398+00.164, can be seen at l = 333◦ and l = 338◦, respec-
1590
+ tively (Urquhart et al. 2013a; Urquhart et al. 2013b). Based on the
1591
+ Galactic distribution of the resolved sources, they are expected to be
1592
+ dominated by HII regions that are concentrated towards the Galactic
1593
+ mid-plane (Urquhart et al. 2013a, Paper III).
1594
+ 6.5.3 Flux Density Distribution
1595
+ The integrated flux density and peak flux distribution in Figure
1596
+ 14 shows similar distributions compared to the CORNISH-North
1597
+ sources (Paper II). The flux density distribution peaks at ∼1 mJy,
1598
+ MNRAS 000, 1–22 (2022)
1599
+
1600
+ Data processing and catalogue.
1601
+ 13
1602
+ (a) Galactic latitude distribution.
1603
+ 1.0
1604
+ 0.5
1605
+ 0.0
1606
+ 0.5
1607
+ 1.0
1608
+ Galactic Latitude (deg)
1609
+ 0
1610
+ 50
1611
+ 100
1612
+ 150
1613
+ 200
1614
+ 250
1615
+ 300
1616
+ Number of Sources
1617
+ All Sources
1618
+ Extended Sources
1619
+ (b) Galactic longitude distribution with a bin size of 2◦.
1620
+ 300
1621
+ 310
1622
+ 320
1623
+ 330
1624
+ 340
1625
+ 350
1626
+ Galactic Longitude (deg)
1627
+ 0
1628
+ 50
1629
+ 100
1630
+ 150
1631
+ 200
1632
+ Number of Sources
1633
+ All Sources
1634
+ Extended Sources
1635
+ Figure 13. Galactic latitude (13a) and longitude (13b) distributions of the
1636
+ 7𝜎 CORNISH-South sources.
1637
+ below which the number of sources drops off due to increasing in-
1638
+ completeness (see Section 6.4). For the resolved/extended sources,
1639
+ the flux density distribution peaks at ∼ 3 mJy and gently falls off,
1640
+ extending up to 104 mJy. Compared to the CORNISH-North, we
1641
+ have picked up more faint sources as expected due to the sensitivity
1642
+ being two times better.
1643
+ 6.6 Source classification and Example Sources
1644
+ Initial classification of the CORNISH-South sources has utilized
1645
+ the availability of comparable high-resolution and high-sensitivity
1646
+ surveys (GLIMPSE, VVV, VPHAS, Hi-Gal and ATLASGAL) of
1647
+ the Galactic plane. As with the CORNISH-North survey, one of
1648
+ us (MGH) has visually inspected the multi-wavelength images of
1649
+ each source on the CORNISH-South website. Examples of multi-
1650
+ wavelength images of the main different types of sources are shown
1651
+ in Figure A1. Using experience gained from classification of sources
1652
+ in the RMS (Red MSX Source) survey (Lumsden et al. 2013), the
1653
+ following visual classification criteria were used.
1654
+ HII regions have strong, and usually extended, mid-IR, far-IR
1655
+ and sub-millimetre counterpart emission. The morphology of the
1656
+ IR emission is usually irregular and complex, as well as often be-
1657
+ 100
1658
+ 101
1659
+ 102
1660
+ 103
1661
+ 104
1662
+ Integrated Flux Density (mJy)
1663
+ 100
1664
+ 101
1665
+ 102
1666
+ Number of Sources
1667
+ All Sources
1668
+ Extended Sources
1669
+ Figure 14. Distributions of the integrated flux density of the 7𝜎 CORNISH-
1670
+ South catalogue. Resolved/extended sources are represented by the hatched
1671
+ regions. Figure 19 in Paper II shows the distribution of the CORNISH-North.
1672
+ ing part of a clustered environment. Their radio emission is usually
1673
+ fairly strong and when resolved can have a cometary, shell or ir-
1674
+ regular morphology. The mid-IR emission, dominated by polycyclic
1675
+ aromatic hydrocarbons (PAH) emission, arises from just outside the
1676
+ radio emitting region and often reflects the same morphology (Hoare
1677
+ et al. 2007). An initial sub-classification on angular size has been used
1678
+ in the catalogue , pending distance information. All H II regions less
1679
+ than 5′′ in size have been labelled as UCHIIs. This corresponds to
1680
+ the typical 0.1 pc size of UCHIIs if they were at a typical distance
1681
+ of ∼ 4 kpc for the more nearby part of the population of UCHIIs
1682
+ (Paper III). The larger ones were mostly labelled as H II regions if
1683
+ the radio emission was clearly identifiable as part of a single source
1684
+ across the radio and IR bands. If the radio emission was due to over-
1685
+ resolution of a much larger, multiple and complex source in the IR
1686
+ then it was labelled as a diffuse H II region. A few HII regions were
1687
+ hidden behind large amounts of dust extinction at 8𝜇m and were
1688
+ labelled as IR-Dark H II regions.
1689
+ PNe also have strong mid-IR counterparts due to dust and PAH
1690
+ emission (Smith & McLean 2008; Guzman-Ramirez et al. 2014; Cox
1691
+ et al. 2016), but are much fainter at far-IR wavelengths than H II re-
1692
+ gions, and are usually undetected in sub-millimetre plane surveys.
1693
+ The SEDs of PNe generally peak at ∼ 24𝜇m but some young and
1694
+ dense PNe have their peaks extending up to 70𝜇m and beyond (see
1695
+ Paper IV; Anderson et al. 2012; Urquhart et al. 2013a). A few of
1696
+ the bipolar, Type I, PNe can have more far-IR and sub-millimetre
1697
+ emission, but are still significantly weaker than H II regions. Mor-
1698
+ phologically they are much simpler than H II regions and are isolated
1699
+ rather than being in clustered, complex environments.
1700
+ Radio stars are point sources in every waveband they are detected
1701
+ in. They are also isolated sources in the field. Depending on the type
1702
+ of radio star they can either have blue or red colours in the optical
1703
+ and IR. Very red radio stars like dusty symbiotic stars are difficult to
1704
+ distinguish from unresolved PN without further information (Irabor
1705
+ et al. 2018).
1706
+ Due to the sensitivity of the CORNISH-South survey the radio
1707
+ emission from a few known massive young stellar objects (MYSOs)
1708
+ was detected. They share all the IR characteristics of H II regions, but
1709
+ have very weak radio emission compared to HII regions in general
1710
+ and are unresolved or jet-like (Purser et al. 2016). It can be difficult
1711
+ MNRAS 000, 1–22 (2022)
1712
+
1713
+ 14
1714
+ T. Irabor et al.
1715
+ 0
1716
+ 200
1717
+ 400
1718
+ 600
1719
+ 800
1720
+ 1000
1721
+ Number of Sources
1722
+ All HII Region
1723
+ IR Quiet
1724
+ MYSO
1725
+ Other
1726
+ PN
1727
+ Radio Galaxy
1728
+ Radio Star
1729
+ Source Type
1730
+ Figure 15. Distribution of classified CORNISH-South sources. Fifty-percent
1731
+ has been classified so far. All HII regions sum up to 530, of which 257 are
1732
+ UCHII regions. Unclassified sources add up to ∼ 2300.
1733
+ to distinguish weak, unresolved UCHIIs powered by B3 stars from
1734
+ MYSOs as they have similar radio luminosities (Purser et al. 2016).
1735
+ Most extra-galactic radio sources are undetected in corresponding
1736
+ optical, IR and sub-millimetre Galactic plane surveys used here and
1737
+ therefore they are straightforward to identify. In the radio, they are
1738
+ usually unresolved single sources and we classify them as IR quiet
1739
+ sources in the catalogue. A small number of these may be radio stars
1740
+ that are so distant or obscured as to remain undetected in the optical
1741
+ and IR surveys. A significant number of extra-galactic sources show
1742
+ the classic double radio source morphology, and these are classified
1743
+ as “Radio Galaxy (Lobe)” in the catalogue. In some cases, the core
1744
+ of the radio galaxy is also seen and is classified as such. If both
1745
+ lobes, or a lobe and a core, or both lobes and a core are visible, but
1746
+ part of the same extended source in the catalogue they are referred
1747
+ to as “Radio Galaxy (Both)”. It is possible that some normal, star-
1748
+ forming galaxies, as opposed to AGN, are detected in CORNISH-
1749
+ South. Some radio sources had very faint, resolved counterparts in the
1750
+ mid-IR, where it was not clear if they are very distant PNe or galaxies.
1751
+ Further studies will be required to rule out a PN classification.
1752
+ A few sources did not fit in to any of the above categories, either
1753
+ because they are known sources of unusual type, or their origin is
1754
+ currently unknown. These were classified as “Other”.
1755
+ At the time of publication, all sources with detectable flux at 8 𝜇m
1756
+ seen within the same aperture used for radio fluxes have been clas-
1757
+ sified. This should account for the vast majority of Galactic sources.
1758
+ Figure 15 shows the distribution of classifions of these sources. Re-
1759
+ solved sources with infrared counterparts are dominated by PNe and
1760
+ HII regions. We find more UCHII regions compared to the northern
1761
+ counterpart and have also identified six known MYSOs. With a sen-
1762
+ sitivity of 0.11 mJy beam−1, we have also detected PNe with lower
1763
+ radio flux density compared to CORNISH-North. We expect that the
1764
+ vast majority of the sources that remain to be visually classified will
1765
+ be extra-galactic and under the IR Quiet or Radio Galaxy categories.
1766
+ The latest classifications will be those on the CORNISH-South web-
1767
+ site.
1768
+ 6.6.1 Catalogue Format
1769
+ An excerpt of the catalogue is presented in Table 6 and the columns
1770
+ are arranged in the following format: Column (1) - CORNISH Source
1771
+ name ((l + b)); Columns (2) and (3) - right ascension (𝛼) and declina-
1772
+ tion (𝛿) in (J2000) with their associated errors in brackets; Column
1773
+ (4) – Peak flux and associated error in mJy beam−1; Column (5)
1774
+ - integrated flux density and associated error in mJy. Because the
1775
+ clean bias is close to the rms noise level and within the errors, the
1776
+ flux densities were not corrected for the clean bias effect. Column
1777
+ (6) - Angular size and associated error in arcsec; Column (7) - Gaus-
1778
+ sian FWHM major axis and error in arcsec; Column (8) - Gaussian
1779
+ FWHM minor axis and error in arcsec; Column (9) - position angle
1780
+ (E of N) of elliptical Gaussian; Column (10) - local rms noise level,
1781
+ (𝜎a), in mJy beam−1 as measured in the annulus described in Section
1782
+ 6.2.3; Column (11) - Signal to noise ratio of the source given by Peak
1783
+ flux divided by 𝜎a; Column (12) - Type of source tells if the source is
1784
+ Gaussian fitted (G) or non-Gaussian, in which case a polygon (P) was
1785
+ drawn around the source; Column (12) - This column indicates the
1786
+ classification of the source. Gaussian sources have both the Gaussian
1787
+ fitted sizes and geometric mean sizes in the final catalogue. The final
1788
+ version of the full table is made available on the CORNISH website
1789
+ (http://cornish.leeds.ac.uk/public/index.php).
1790
+ 6.7 Astrometry and Flux Density Quality Check
1791
+ 6.7.1 GLIMPSE
1792
+ In order to check the astrometry of the CORNISH-South catalogue,
1793
+ we cross-matched a sub-set of the CORNISH-South sources with the
1794
+ GLIMPSE point source catalogue. To avoid mis-matches and multi-
1795
+ ple matches, the CORNISH-South catalogue was limited to classified
1796
+ sources, excluding extended HII regions, radio-galaxies and infrared
1797
+ quiet sources. Additionally, sources with angular size > 3′′ were ex-
1798
+ cluded. The cross-match returned 218 sources and Figure 16 shows
1799
+ the distributions of the offsets in right ascension (𝛼) and declination
1800
+ (𝛿).
1801
+ The distribution of the angular offsets in Figure 16 (top left) peaks
1802
+ at ∼0.4′′ and steeply falls to 1.5′′ before continuing gently out to 3′′.
1803
+ The offset distribution in 𝛼 is tightly peaked at about 0′′ compared
1804
+ to the distribution in 𝛿 that has double peaks at 0.5 and -0.2′′. The
1805
+ spread in 𝛿 offset can be attributed to the distribution of the intrinsic
1806
+ beam along the major axis seen in the epoch I data (see Figure ??).
1807
+ 6.7.2 The Red MSX Source (RMS) 6 cm ATCA survey
1808
+ Targeted radio continuum observations were conducted to identify
1809
+ UCHII regions and PNe as part of the Red MSX Source (RMS) survey
1810
+ (Lumsden et al. 2013). The observations were carried out with the
1811
+ ATCA within the 235◦ < l < 350◦ region at 3.6 and 6 cm (Urquhart
1812
+ et al. 2007b). Table 5 compares the observational parameters of
1813
+ the RMS 4.8-GHz (6 cm) and the CORNISH-South 5.5-GHz. Both
1814
+ surveys have similar observational properties but the CORNISH-
1815
+ South observing bandwidth of 2-GHz provides better image fidelity
1816
+ compared to the 128 MHz of the RMS survey.
1817
+ For further checks on the CORNISH-South astrometry and
1818
+ flux densities, the CORNISH-South 5.5-GHz catalogue was cross-
1819
+ matched with the RMS 4.8-GHz catalogue (Urquhart et al. 2007a)
1820
+ within a 5′′ radius. For a one-to-one match, the CORNISH-South
1821
+ catalogue was limited to only sources that have been visually classi-
1822
+ fied, excluding diffuse HII regions and radio-galaxies. Figure 17 (top
1823
+ left) shows the distribution of the angular separation between the
1824
+ CORNISH-South and RMS for 186 radio sources. The distribution
1825
+ shows a tight correlation with a sharp peak at 0.3′′ and then a steep
1826
+ fall to ∼ 1.5′′ before gently falling off to ∼ 4.3′′.
1827
+ Seventy-five per cent of the cross-matched sources fall within 1.5′′
1828
+ and 94 per cent fall within 3′′. Compared to the distribution of the
1829
+ offset in 𝛿, the offset in 𝛼 shows a narrower distribution that is strongly
1830
+ peaked at 0′′. Similar offset distribution in 𝛿 is seen in the CORNISH-
1831
+ South-GLIMPSE cross-match that is attributed to the spread in the
1832
+ intrinsic major axis distribution. The mean offset in 𝛼 and 𝛿 is 0.1′′
1833
+ MNRAS 000, 1–22 (2022)
1834
+
1835
+ Data processing and catalogue.
1836
+ 15
1837
+ 3
1838
+ 2
1839
+ 1
1840
+ 0
1841
+ 1
1842
+ 2
1843
+ 3
1844
+ d (arcsec)
1845
+ 0
1846
+ 5
1847
+ 10
1848
+ 15
1849
+ 20
1850
+ 25
1851
+ 30
1852
+ 35
1853
+ 40
1854
+ Number of Sources
1855
+ -3
1856
+ -2
1857
+ -1
1858
+ 0
1859
+ 1
1860
+ 2
1861
+ 3
1862
+ d (arcsec)
1863
+ -3
1864
+ -2
1865
+ -1
1866
+ 0
1867
+ 1
1868
+ 2
1869
+ 3
1870
+ d (arcsec)
1871
+ 3
1872
+ 2
1873
+ 1
1874
+ 0
1875
+ 1
1876
+ 2
1877
+ 3
1878
+ d (arcsec)
1879
+ 0
1880
+ 5
1881
+ 10
1882
+ 15
1883
+ 20
1884
+ Number of Sources
1885
+ Figure 16. CORNISH-South and GLIMPSE cross-matched sources (218) within 3′′. Top left: The angular offset between cross-matched sources. Top right:
1886
+ Offset distribution in 𝛼 (arcsec). Bottom left: Offset distribution in 𝛿 (arcsec). Bottom right: Scatter plot of offsets in 𝛼 against 𝛿. The cross symbol indicates
1887
+ the mean in 𝛼 (0.02 ± 0.04′′) and 𝛿 (0.19 ± 0.04′′ ). The error is the standard error on the mean.
1888
+ Table 5. Comparison of the RMS 6 cm (4.8-GHz) and the CORNISH-South
1889
+ observation parameters.
1890
+ Parameters
1891
+ CORNISH-South
1892
+ RMS
1893
+ Rest frequency (GHz)
1894
+ 5.5
1895
+ 4.8
1896
+ Array
1897
+ 6A
1898
+ 6C/6D
1899
+ Bandwidth (GHz)
1900
+ 2
1901
+ 0.128
1902
+ Synthesised beam
1903
+ 2.5′′
1904
+ 2.5′′
1905
+ Typical image rms (mJy beam−1)
1906
+ 0.11
1907
+ 0.27
1908
+ Image pixel size
1909
+ 0.6′′
1910
+ 0.6′′
1911
+ and 0.2′′, respectively. Based on this, and the CORNISH-South-
1912
+ GLIMPSE cross-match, we adopt a positional accuracy of 0.22 ±
1913
+ 0.11′′ for the CORNISH-South catalogue. This is also in line with the
1914
+ mean positional accuracy of the secondary calibrators (see Section
1915
+ 5.1).
1916
+ In Figure 18, the flux densities of the cross-matched sources are
1917
+ compared. A one-to-one line (black line) shows that the CORNISH-
1918
+ South 5.5-GHz flux densities are higher than the RMS 4.8-GHz flux
1919
+ densities on average. The few sources where the RMS flux densities
1920
+ are higher are found to be HII regions with larger angular sizes. The
1921
+ two surveys used different ATCA configurations (see Table 5), which
1922
+ are sensitive to different angular sizes. Compared to the shortest
1923
+ baselines of the 6C (153 m) and 6D (77 m) configurations used for
1924
+ the RMS survey (Urquhart et al. 2007b), the shortest baseline of the
1925
+ CORNISH-South 6A configuration (337 m) makes it less sensitive to
1926
+ extended structures. Hence, for optically thin and angularly large HII
1927
+ regions, the RMS flux densities are expected to be higher, as seen in
1928
+ Figure 18. However, the better uv-coverage of the CORNISH-South
1929
+ recovers more extended emission on some sources.
1930
+ A best-fit line (dotted green line) predicts ∼ 24 per cent flux density
1931
+ increase for the CORNISH-South counterparts that is more than the
1932
+ typical calibration error of 10 per cent. According to Urquhart et al.
1933
+ (2007b), the distribution of spectral indices, (𝛼, where S𝜈 ∝ 𝜈𝛼)
1934
+ between the 3.6 and 6 cm data is slightly skewed towards positive
1935
+ indices, which suggests optically thick sources in their sample. This
1936
+ provides a possible explanation for the compact sources where the
1937
+ 5.5 GHz CORNISH-South flux densities are higher than the 4.8 GHz
1938
+ RMS ones.
1939
+ 7 CONCLUSION AND FUTURE WORK
1940
+ The CORNISH program has successfully mapped the southern
1941
+ Galactic plane at radio wavelengths with unprecedented resolution
1942
+ and sensitivity. We have presented radio continuum ATCA data at
1943
+ 5.5-GHz, covering the 295◦ < l < 350◦; |b| ≤ 1◦ region of the south-
1944
+ ern Galactic plane. The resolution of 2.5′′ and noise level of 0.11
1945
+ mJy beam−1 deliver radio data matched to the existing high reso-
1946
+ lution, multi-wavelength surveys GLIMPSE, VVV and VPHAS+ of
1947
+ the southern Galactic plane.
1948
+ Utilizing the MIRIAD program for data reduction and AEGEAN
1949
+ source finding algorithm, we have identified 4701 sources above 7𝜎.
1950
+ Data arising from fields with poor uv-coverage make up to only 2 per
1951
+ cent of the data set. In addition to several measures undertaken to
1952
+ ensure data quality, visual inspection has also been used to exclude
1953
+ artefacts and hence the data are highly reliable. The survey has a 90%
1954
+ completeness level at a flux density of 1.1 mJy. The measured proper-
1955
+ ties show distributions that are similar to that of the CORNISH-North
1956
+ catalogue presented in Paper II.
1957
+ All sources with potential counterparts at 8𝜇m (GLIMPSE) have
1958
+ been visually classified. This corresponds to 43 per cent of the
1959
+ sources. We have identified 530 HII regions, of which 257 are
1960
+ UCHIIs. Additionally, we identified 287 PNe and 79 radio stars.
1961
+ The vast majority of the remaining unclassified sources without in-
1962
+ frared counterparts are expected to be extra-galactic. With the sen-
1963
+ sitivity of the CORNISH-South survey being two times better than
1964
+ the CORNISH-North counterpart, sources with lower flux densities
1965
+ have been detected, including a few MYSOs. A detailed analysis of
1966
+ the statistical properties of individual catalogues will be presented
1967
+ in future papers. The CORNISH-South survey also carried out si-
1968
+ multaneous observations of the entire field at 9-GHz, which will be
1969
+ presented in a separate paper. The 9-GHz data provide higher spatial
1970
+ resolution at reduced sensitivity and will enable an examination of
1971
+ spectral indices of the sources.
1972
+ The CORNISH-South data are particularly important in the char-
1973
+ acterization of compact ionized sources towards the Galactic mid-
1974
+ plane, as no radio survey has previously covered the southern Galactic
1975
+ plane in such resolution and sensitivity. Previous surveys of the south-
1976
+ ern Galactic plane were limited in resolution and coverage, especially
1977
+ within the |b| < 1◦ region, hence not suitable for studies of compact
1978
+ ionized regions. New radio facilities such as the, ASKAP12(Hotan
1979
+ 12 https://www.atnf.csiro.au/projects/askap/index.html
1980
+ MNRAS 000, 1–22 (2022)
1981
+
1982
+ 16
1983
+ T. Irabor et al.
1984
+ 4
1985
+ 2
1986
+ 0
1987
+ 2
1988
+ 4
1989
+ d (arcsec)
1990
+ 0
1991
+ 5
1992
+ 10
1993
+ 15
1994
+ 20
1995
+ 25
1996
+ 30
1997
+ 35
1998
+ Number of Sources
1999
+ -5
2000
+ -4
2001
+ -3
2002
+ -2
2003
+ -1
2004
+ 0
2005
+ 1
2006
+ 2
2007
+ 3
2008
+ 4
2009
+ 5
2010
+ d (arcsec)
2011
+ -5
2012
+ -4
2013
+ -3
2014
+ -2
2015
+ -1
2016
+ 0
2017
+ 1
2018
+ 2
2019
+ 3
2020
+ 4
2021
+ 5
2022
+ d (arcsec)
2023
+ 4
2024
+ 2
2025
+ 0
2026
+ 2
2027
+ 4
2028
+ d (arcsec)
2029
+ 0.0
2030
+ 2.5
2031
+ 5.0
2032
+ 7.5
2033
+ 10.0
2034
+ 12.5
2035
+ 15.0
2036
+ 17.5
2037
+ Number of Sources
2038
+ Figure 17. CORNISH-South and RMS 4.8-GHz cross-matched radio sources (186) within 5′′. Top left: The angular offset between cross-matched sources. Top
2039
+ right: Offset distribution in 𝛼 (arcsec). Bottom left: Offset distribution in 𝛿 (arcsec). Bottom right: Scatter plot of offsets in 𝛼 against 𝛿. The cross symbol
2040
+ indicates the mean in d𝛼 (0.12 ± 0.07′′) and d𝛿 (0.21 ± 0.08′′). The mean error for the CORNISH-South is 8 mJy.
2041
+ 100
2042
+ 101
2043
+ 102
2044
+ 103
2045
+ 104
2046
+ CORNISH 5.5 GHz (mJy)
2047
+ 100
2048
+ 101
2049
+ 102
2050
+ 103
2051
+ 104
2052
+ RMS 4.8 GHz (mJy)
2053
+ 10
2054
+ 15
2055
+ Maximum RMS 4.8 GHz size (arcsec)
2056
+ Figure 18. A plot of the 5.5-GHz CORNISH-South flux densities against
2057
+ the RMS 4.8-GHz (Urquhart et al. 2007b) flux densities. The black line is a
2058
+ one-to-one line (y = x) and the dotted green line is the best fit line defined
2059
+ by log(y) = (0.99 ± 0.03)log(x) − 0.11 ± 0.05. The error on the fitted line
2060
+ is the standard deviation.
2061
+ et al. 2014), MeerKAT13(Jonas & MeerKAT Team 2016) and ul-
2062
+ timately the SKA14(Braun et al. 2019) are exploring the southern
2063
+ Galactic plane at greater depth. The CORNISH-South catalogue is
2064
+ well positioned as a very useful resource to characterise the popu-
2065
+ lation of radio sources seen in the MEERKAT L-band survey (8′′
2066
+ resolution and 10𝜇Jy/beam noise level; Goedhart et al., In prepara-
2067
+ tion.) and also for follow-up observations with ALMA15. It will also
2068
+ be useful in combination with existing multi-wavelength surveys of
2069
+ the southern Galactic plane to address key questions in stellar for-
2070
+ mation and evolution. This will allow multi-wavelength exploration
2071
+ and statistical studies of compact ionized regions, which can then be
2072
+ compared with population synthesis models. To date, the CORNISH
2073
+ 13 https://www.sarao.ac.za/gallery/meerkat/
2074
+ 14 https://www.skatelescope.org/
2075
+ 15 https://www.almaobservatory.org/en/home/
2076
+ program has delivered the most sensitive and unbiased compact ra-
2077
+ dio source catalogue towards the southern Galactic mid-plane. Data
2078
+ products in the form of FITS images of individual sources and cata-
2079
+ logues are available on the CORNISH-South Website 16.
2080
+ With deeper and larger radio surveys on the way, it is also im-
2081
+ portant that we look at building and improving existing machine-
2082
+ learning models for image classification (e.g. Adhiambo et al., in
2083
+ preparation). Having used multi-wavelength visual classification, the
2084
+ CORNISH sources provide a good training and validation set for
2085
+ machine-learning models that will allow automated classification of
2086
+ radio sources in these upcoming larger and deeper surveys.
2087
+ 16 https://cornish-south.leeds.ac.uk/
2088
+ MNRAS 000, 1–22 (2022)
2089
+
2090
+ Data processing and catalogue.
2091
+ 17
2092
+ Table 6. An excerpt of the 5.5-GHz CORNISH-South catalogue. The full version of the catalogue is available online. Measurement errors are in parentheses. The flux densities have not been corrected for the clean
2093
+ bias effect.
2094
+ Source Name
2095
+ 𝛼 (h m s)
2096
+ 𝛿 (◦ ′ ′′)
2097
+ Peak
2098
+ S5.5−GHz
2099
+ 𝜃s
2100
+ 𝜃maj
2101
+ 𝜃min
2102
+ PA
2103
+ rms
2104
+ Sigma
2105
+ Type
2106
+ Class
2107
+ (l+b)
2108
+ (J2000)
2109
+ (J2000)
2110
+ (mJy
2111
+ beam−1)
2112
+ mJy
2113
+ (′′)
2114
+ (′′)
2115
+ (′′)
2116
+ (deg)
2117
+ mJy beam−1
2118
+ G295.1757−0.5744 11:43:38.84 (0.65)
2119
+ -62:25:17.5 (0.44)
2120
+ 4.12 (0.21)
2121
+ 58.13 (7.20)
2122
+ 20.84 (0.14)
2123
+ 0.0
2124
+ 0.0
2125
+ 0.0
2126
+ 0.12
2127
+ 23
2128
+ P
2129
+ HII Region
2130
+ G296.5033−0.2695 11:55:25.27 (0.02)
2131
+ -62:26:24.6 (0.02)
2132
+ 10.92 (1.22)
2133
+ 15.06 (1.87)
2134
+ 8.43 (0.05)
2135
+ 0.0
2136
+ 0.0
2137
+ 0.0
2138
+ 0.10
2139
+ 72
2140
+ P
2141
+ PN
2142
+ G297.3943−0.6347 12:02:23.29 (0.96)
2143
+ -62:58:42.8 (1.28)
2144
+ 0.94 (0.02)
2145
+ 7.09 (2.61)
2146
+ 16.67(0.34)
2147
+ 0.0
2148
+ 0.0
2149
+ 0.0
2150
+ 0.10
2151
+ 9.9
2152
+ P
2153
+ HII Region
2154
+ G298.3434+0.1466
2155
+ 12:11:42.23 (0.21)
2156
+ -62:22:14.9 (0.35)
2157
+ 0.74 (0.01)
2158
+ 1.30 (0.81)
2159
+ 7.18(0.22)
2160
+ 0.0
2161
+ 0.0
2162
+ 0.0
2163
+ 0.08
2164
+ 9.8
2165
+ P
2166
+ Radio Galaxy
2167
+ G298.8382−0.3388 12:15:20.73 (0.03)
2168
+ -62:55:25.4 (0.03)
2169
+ 11.29 (1.30)
2170
+ 35.34 (2.89)
2171
+ 11.29 (0.06)
2172
+ 0.0
2173
+ 0.0
2174
+ 0.0
2175
+ 0.17
2176
+ 68
2177
+ P
2178
+ HII Region
2179
+ ...
2180
+ ...
2181
+ ...
2182
+ ...
2183
+ ...
2184
+ ...
2185
+ ...
2186
+ ...
2187
+ ...
2188
+ ...
2189
+ ...
2190
+ ...
2191
+ ...
2192
+ ...
2193
+ ...
2194
+ ...
2195
+ ...
2196
+ ...
2197
+ ...
2198
+ ...
2199
+ ...
2200
+ ...
2201
+ ...
2202
+ ...
2203
+ ...
2204
+ ...
2205
+ ...
2206
+ ...
2207
+ ...
2208
+ ...
2209
+ ...
2210
+ ...
2211
+ ...
2212
+ ...
2213
+ ...
2214
+ ...
2215
+ ...
2216
+ ...
2217
+ ...
2218
+ G349.9207+0.6682
2219
+ 17:16:31.30 (0.02)
2220
+ -36:59:40.29 (0.02)
2221
+ 13.16 (0.26)
2222
+ 13.92 (0.61)
2223
+ 2.57 (0.06)
2224
+ 2.62 (0.05)
2225
+ 2.52(0.05)
2226
+ 0.73
2227
+ 0.17
2228
+ 75
2229
+ G
2230
+ PN
2231
+ G349.9260+0.0811
2232
+ 17:18:56.62 (0.07)
2233
+ -37:19:44.7 (0.11)
2234
+ 2.61 (0.08)
2235
+ 17.17 (0.54)
2236
+ 6.42 (0.01)
2237
+ 7.75 (0.01)
2238
+ 5.31 (0.01)
2239
+ -0.71
2240
+ 0.14
2241
+ 21
2242
+ G
2243
+ HII Region
2244
+ G350.0290−0.4950 17:21:37.33 (0.16)
2245
+ -37:34:25.77 (0.18)
2246
+ 2.64 (0.42)
2247
+ 2.58 (0.92)
2248
+ 2.48 (0.44)
2249
+ 2.72 (0.41)
2250
+ 2.25 (0.37)
2251
+ -7.17
2252
+ 0.35
2253
+ 7.4
2254
+ G
2255
+ Radio Galaxy
2256
+ G350.0920+0.2309
2257
+ 17:18:48.44 (0.01)
2258
+ -37:06:25.28 (0.01)
2259
+ 89.33 (0.46)
2260
+ 96.32 (1.08)
2261
+ 2.60 (0.02)
2262
+ 2.68 (0.01)
2263
+ 2.52 (0.01)
2264
+ -8.31
2265
+ 0.27
2266
+ 330
2267
+ G
2268
+ PN
2269
+ G350.1237−0.5563 17:22:08.88 (0.06)
2270
+ -37:31:50.61 (0.07)
2271
+ 3.68 (0.2)
2272
+ 3.27 (0.49)
2273
+ 2.36 (0.18)
2274
+ 2.74 (0.17)
2275
+ 2.03 (0.15)
2276
+ -0.78
2277
+ 0.12
2278
+ 29
2279
+ G
2280
+ IR Quiet
2281
+ MNRAS 000, 1–22 (2022)
2282
+
2283
+ 18
2284
+ T. Irabor et al.
2285
+ ACKNOWLEDGEMENTS
2286
+ TI acknowledges the support of the Science and Technology Facilities
2287
+ Council of the United Kingdom (STFC) through grant ST/P00041X/1
2288
+ and the OSAPND scholarship (Nigeria). The work done by PFG was
2289
+ carried out in part at the Jet Propulsion Laboratory, which is operated
2290
+ by the California Institute of Technology under a contract with the
2291
+ National Aeronautics and Space Administration (80NM0018D0004).
2292
+ JM acknowledges financial support from the State Agency for Re-
2293
+ search of the Spanish Ministry of Science and Innovation under grant
2294
+ PID2019-105510GB-C32. JMP acknowledge financial support from
2295
+ the State Agency for Research of the Spanish Ministry of Science
2296
+ and Innovation under grant PID2019-105510GB-C31 and through
2297
+ the Unit of Excellence María de Maeztu 2020-2023 award to the In-
2298
+ stitute of Cosmos Sciences (CEX2019-000918-M). G.A.F acknowl-
2299
+ edges support from the Collaborative Research Centre 956, funded by
2300
+ the Deutsche Forschungsgemeinschaft (DFG) project ID 184018867.
2301
+ The Australia Telescope Compact Array (ATCA) is part of the
2302
+ Australia Telescope National Facility which is funded by the Aus-
2303
+ tralian Government for operation as a National Facility managed by
2304
+ CSIRO. We acknowledge the Gomeroi people as the traditional own-
2305
+ ers of the Observatory site. This work made use of Montage, aplpy
2306
+ and astropy python libraries in the batch processing of FITS files.
2307
+ DATA AVAILABILITY
2308
+ All data (images and catalogues) are described in the text and avail-
2309
+ able on the cornish website at https://cornish-south.leeds.
2310
+ ac.uk/ to download in csv (catalogues), uv files and FITS (images)
2311
+ formats.
2312
+ REFERENCES
2313
+ Anderson L. D., Zavagno A., Barlow M. J., García-Lario P., Noriega-Crespo
2314
+ A., 2012, A&A, 537, A1
2315
+ Bertin E., Arnouts S., 1996, A&AS, 117, 393
2316
+ Braun R., Bonaldi A., Bourke T., Keane E., Wagg J., 2019, arXiv e-prints, p.
2317
+ arXiv:1912.12699
2318
+ Briggs D. S., 1995, PhD thesis
2319
+ Brunthaler A., et al., 2021, A&A, 651, A85
2320
+ Carey S. J., et al., 2009, PASP, 121, 76
2321
+ Cesaroni R., et al., 2015, A&A, 579, A71
2322
+ Churchwell E., 1990, The Astronomy and astrophysics review, 2, 79
2323
+ Churchwell E., 2002, Annual Review of Astronomy and Astrophysics, 40, 27
2324
+ Churchwell E., et al., 2009, PASP, 121, 213
2325
+ Comeron F., Torra J., 1996, A&A, 314, 776
2326
+ Condon J. J., 1997, PASP, 109, 166
2327
+ Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor
2328
+ G. B., Broderick J. J., 1998, AJ, 115, 1693
2329
+ Cox N. L. J., Pilleri P., Berné O., Cernicharo J., Joblin C., 2016, MNRAS,
2330
+ 456, L89
2331
+ Davies B., Hoare M. G., Lumsden S. L., Hosokawa T., Oudmaijer R. D.,
2332
+ Urquhart J. S., Mottram J. C., Stead J., 2011, MNRAS, 416, 972
2333
+ Djordjevic J. O., Thompson M. A., Urquhart J. S., Forbrich J., 2019, MNRAS,
2334
+ 487, 1057
2335
+ Drew J. E., et al., 2005, MNRAS, 362, 753
2336
+ Drew J. E., et al., 2014, MNRAS, 440, 2036
2337
+ Fragkou V., Parker Q. A., Bojičić I. S., Aksaker N., 2018, MNRAS, 480, 2916
2338
+ Franzen T. M. O., et al., 2015, MNRAS, 453, 4020
2339
+ Green A. J., 1999, in Taylor A. R., Landecker T. L., Joncas G., eds, Astronom-
2340
+ ical Society of the Pacific Conference Series Vol. 168, New Perspectives
2341
+ on the Interstellar Medium. p. 43
2342
+ Green J. A., et al., 2012, MNRAS, 420, 3108
2343
+ Green J. A., et al., 2017, MNRAS, 469, 1383
2344
+ Guzman-Ramirez L., Lagadec E., Jones D., Zijlstra A. A., Gesicki K., 2014,
2345
+ MNRAS, 441, 364
2346
+ Hancock P. J., Murphy T., Gaensler B. M., Hopkins A., Curran J. R., 2012,
2347
+ MNRAS, 422, 1812
2348
+ Hancock P. J., Trott C. M., Hurley-Walker N., 2018, Publ. Astron. Soc. Aus-
2349
+ tralia, 35, e011
2350
+ Haverkorn M., Gaensler B. M., McClure-Griffiths N. M., Dickey J. M., Green
2351
+ A. J., 2006, ApJS, 167, 230
2352
+ Hoare M., Kurtz S., Lizano S., Keto E., Hofner P., 2007, Protostars and
2353
+ Planets V
2354
+ Hoare M. G., et al., 2012, PASP, 124, 939
2355
+ Homan D. C., Lister M. L., 2006, AJ, 131, 1262
2356
+ Hopkins A. M., Miller C. J., Connolly A. J., Genovese C., Nichol R. C.,
2357
+ Wasserman L., 2002, AJ, 123, 1086
2358
+ Hotan A. W., et al., 2014, Publ. Astron. Soc. Australia, 31, e041
2359
+ Hurley-Walker N., et al., 2019, Publ. Astron. Soc. Australia, 36, e047
2360
+ Huynh M. T., Hopkins A., Norris R., Hancock P., Murphy T., Jurek R.,
2361
+ Whiting M., 2012, Publ. Astron. Soc. Australia, 29, 229
2362
+ Intema H. T., Jagannathan P., Mooley K. P., Frail D. A., 2017, A&A, 598,
2363
+ A78
2364
+ Irabor T., et al., 2018, MNRAS, 480, 2423
2365
+ Jonas J., MeerKAT Team 2016, in MeerKAT Science: On the Pathway to the
2366
+ SKA. p. 1, doi:10.22323/1.277.0001
2367
+ Kalcheva I. E., 2018, PhD thesis, University of Leeds
2368
+ Kalcheva I. E., et al., 2018, A&A, 615, A103
2369
+ Kurtz S. E., 2000, in Arthur S. J., Brickhouse N. S., Franco J., eds, Re-
2370
+ vista Mexicana de Astronomia y Astrofisica Conference Series Vol. 9,
2371
+ Ultracompact H II Regions: New Challenges. pp 169–176
2372
+ Kurtz S., Franco J., 2002, in Henney W. J., Franco J., Martos M., eds, Re-
2373
+ vista Mexicana de Astronomia y Astrofisica Conference Series Vol. 12,
2374
+ Ultracompact H II Regions. pp 16–21
2375
+ Lucas P. W., et al., 2008, MNRAS, 391, 136
2376
+ Lumsden S. L., Hoare M. G., Urquhart J. S., Oudmaijer R. D., Davies B.,
2377
+ Mottram J. C., Cooper H. D. B., Moore T. J. T., 2013, ApJS, 208, 11
2378
+ McClure-Griffiths N. M., Dickey J. M., Gaensler B. M., Green A. J.,
2379
+ Haverkorn M., Strasser S., 2005, ApJS, 158, 178
2380
+ Minniti D., et al., 2011, Boletin de la Asociacion Argentina de Astronomia
2381
+ La Plata Argentina, 54, 265
2382
+ Molinari S., et al., 2010, PASP, 122, 314
2383
+ Murphy T., Mauch T., Green A., Hunstead R. W., Piestrzynska B., Kels A. P.,
2384
+ Sztajer P., 2007, MNRAS, 382, 382
2385
+ Prandoni I., Gregorini L., Parma P., de Ruiter H. R., Vettolani G., Wieringa
2386
+ M. H., Ekers R. D., 2000, A&AS, 146, 31
2387
+ Purcell C. R., et al., 2013, ApJS, 205, 1
2388
+ Purser S. J. D., et al., 2016, MNRAS, 460, 1039
2389
+ Roberts J. A., Roger R. S., Ribes J.-C., Cooke D. J., Murray J. D., Cooper
2390
+ B. F. C., Biraud F., 1975, Australian Journal of Physics, 28, 325
2391
+ Sault R. J., Conway J. E., 1999, in Taylor G. B., Carilli C. L., Perley R. A.,
2392
+ eds, Astronomical Society of the Pacific Conference Series Vol. 180,
2393
+ Synthesis Imaging in Radio Astronomy II. p. 419
2394
+ Sault R. J., Teuben P. J., Wright M. C. H., 1995, in Shaw R. A., Payne H. E.,
2395
+ Hayes J. J. E., eds, Astronomical Society of the Pacific Conference Series
2396
+ Vol. 77, Astronomical Data Analysis Software and Systems IV. p. 433
2397
+ (arXiv:astro-ph/0612759)
2398
+ Sault R. J., Staveley-Smith L., Brouw W. N., 1996, A&AS, 120, 375
2399
+ Schuller F., et al., 2009, A&A, 504, 415
2400
+ Smith E. C., McLean I. S., 2008, in Kwok S., Sanford S., eds, Vol. 251, Organic
2401
+ Matter in Space. pp 219–220, doi:10.1017/S1743921308021613
2402
+ Steggles H. G., 2016, PhD thesis, University of Leeds
2403
+ Tremblay C. D., Walsh A. J., Longmore S. N., Urquhart J. S., König C., 2015,
2404
+ Publ. Astron. Soc. Australia, 32, e047
2405
+ Urquhart J. S., Busfield A. L., Hoare M. G., Lumsden S. L., Clarke A. J.,
2406
+ Moore T. J. T., Mottram J. C., Oudmaijer R. D., 2007a, VizieR Online
2407
+ Data Catalog, pp J/A+A/461/11
2408
+ Urquhart J. S., Busfield A. L., Hoare M. G., Lumsden S. L., Clarke A. J.,
2409
+ Moore T. J. T., Mottram J. C., Oudmaijer R. D., 2007b, A&A, 461, 11
2410
+ Urquhart J. S., et al., 2009, A&A, 501, 539
2411
+ Urquhart J. S., et al., 2011, MNRAS, 418, 1689
2412
+ MNRAS 000, 1–22 (2022)
2413
+
2414
+ Data processing and catalogue.
2415
+ 19
2416
+ Urquhart J. S., et al., 2013a, MNRAS, 435, 400
2417
+ Urquhart J. S., Figura C. C., Moore T. J. T., Hoare M. G., Lumsden S. L.,
2418
+ Mottram J. C., Thompson M. A., Oudmaijer R. D., 2013b, MNRAS, 437,
2419
+ 1791
2420
+ Walsh A. J., et al., 2011, MNRAS, 416, 1764
2421
+ White R. L., Becker R. H., Helfand D. J., Gregg M. D., 1997, ApJ, 475, 479
2422
+ Wilson W. E., et al., 2011, MNRAS, 416, 832
2423
+ Wood D. O. S., Churchwell E., 1989, ApJS, 69, 831
2424
+ Yang A. Y., Thompson M. A., Tian W. W., Bihr S., Beuther H., Hindson L.,
2425
+ 2019, MNRAS, 482, 2681
2426
+ APPENDIX A: EXAMPLE SOURCES IN THE
2427
+ CORNISH-SOUTH CATALOGUE THAT HAVE BEEN
2428
+ CLASSIFIED.
2429
+ MNRAS 000, 1–22 (2022)
2430
+
2431
+ 20
2432
+ T. Irabor et al.
2433
+ Figure A1. From the left: 5.5-GHz radio (CORNISH), 3-colour GLIMPSE, 70𝜇m image (Hi-Gal) and ATLASGAL 850𝜇m image . From top to bottom: Example HII region, UCHII region, PN, radio-star,
2434
+ radio-galaxy and infrared-quiet sources. CORNISH radio images are 80′′ by 80′′; GLIMPSE images are 100′′ by 100′′; HI-GAL and ATLASGAL images are 180′′ by 180′′. The red polygons/gaussian overlays are
2435
+ that of the 5.5 GHz CORNISH sizes. Images are available online.
2436
+ MNRAS 000, 1–22 (2022)
2437
+
2438
+ G311.4260+0.5967
2439
+ -61°05'20"
2440
+ Dec (J2000)
2441
+ 40"
2442
+ 4
2443
+ mjy/beam
2444
+ 2
2445
+ .00.90
2446
+ 0
2447
+ 20"
2448
+ Hll Region
2449
+ 14h02m39s
2450
+ 36s
2451
+ 33s
2452
+ RA (J2000)-61°04'30"
2453
+ 05'00"
2454
+ 30"
2455
+ .00.90
2456
+ 30"
2457
+ 07'00"
2458
+ 14h02m48s
2459
+ 42s
2460
+ 36s
2461
+ 30s-61°04'30"
2462
+ 05'00"
2463
+ 30"
2464
+ ..00.90
2465
+ 30"-
2466
+ 07'00"
2467
+ 14h02m48s
2468
+ 42s
2469
+ 365
2470
+ 305
2471
+ 24s-53°47'40"
2472
+ G327.8480+0.0179
2473
+ -10
2474
+ 8
2475
+ 48'00"
2476
+ 6
2477
+ Dec (2000)
2478
+ mJy/beam
2479
+ 20"
2480
+ 4
2481
+ 2
2482
+ 40"
2483
+ 0
2484
+ UCHIl Region
2485
+ 15h53m32s
2486
+ 30s
2487
+ 28s
2488
+ 26s
2489
+ RA(J2000)53°47'00"
2490
+ 30"
2491
+ 48'00"
2492
+ 0
2493
+ 30"
2494
+ 49'00"
2495
+ 30"
2496
+ 15h53m35s
2497
+ 30s
2498
+ 25s
2499
+ 20s-53°47'00"
2500
+ 30"
2501
+ 48'00"
2502
+ 0
2503
+ 30"
2504
+ 49'00"
2505
+ 30"
2506
+ 15h53m35s
2507
+ 30s
2508
+ 25s
2509
+ 20s-37°53'00"
2510
+ G349.3700-0.1105
2511
+ 8
2512
+ 20"
2513
+ Dec (J2000)
2514
+ mjy/beam
2515
+ 4
2516
+ 40"
2517
+ 54'00"
2518
+ 0
2519
+ Planetray Nebula
2520
+ 17h18m10s
2521
+ 08s
2522
+ 06s
2523
+ 04s
2524
+ RA (J2000)-37°52'30"
2525
+ 53'00"
2526
+ 30"
2527
+ 54'00"
2528
+ 30"
2529
+ 55'00"
2530
+ 17h18m12s
2531
+ 08s
2532
+ 04s
2533
+ s00-37°52'30"
2534
+ 53'00"
2535
+ 30"-
2536
+ 54'00"
2537
+ 30"
2538
+ 55'00"
2539
+ 17h18m12s
2540
+ 08s
2541
+ 04s
2542
+ 00sData processing and catalogue.
2543
+ 21
2544
+ Figure A2. Continuation from Figure A1. Images are available online.
2545
+ MNRAS 000, 1–22 (2022)
2546
+
2547
+ G336.5160+0.0656
2548
+ 47°48'00"
2549
+ 2.0
2550
+ 1.5
2551
+ 20"
2552
+ Dec (J2000)
2553
+ mJy/beam
2554
+ 1.0
2555
+ 40"
2556
+ 0.5
2557
+ 0.0
2558
+ 49'00"
2559
+ Radio Star
2560
+ -0.5
2561
+ 16h33m18s
2562
+ 16s
2563
+ 14s
2564
+ 12s
2565
+ RA(J2000)47°47'30"
2566
+ 48'00"
2567
+ 30"
2568
+ 49'00"
2569
+ 30"_
2570
+ 50'00"
2571
+ 16h33m20s
2572
+ 16s
2573
+ 12s
2574
+ 08s-47°47'30"
2575
+ 48'00"-
2576
+ 30"
2577
+ 0
2578
+ 49'00"
2579
+ 30"
2580
+ 50'00"
2581
+ 16h33m20s
2582
+ 16s
2583
+ 12s
2584
+ 08sG300.2480-0.0135
2585
+ 5
2586
+ -62°45'20"
2587
+ 4
2588
+ -3
2589
+ Dec (J2000)
2590
+ mjy/beam
2591
+ 40"
2592
+ 7
2593
+ 1
2594
+ 46'00"
2595
+ 0
2596
+ Radio Galaxy
2597
+ 20"
2598
+ 12h28m03s
2599
+ 00s
2600
+ 27m57s
2601
+ 54s
2602
+ RA (J2000)-62°44'30"
2603
+ 45'00"
2604
+ 30"
2605
+ 46'00"
2606
+ 30"
2607
+ 47'00″
2608
+ 12h28m06s
2609
+ s00
2610
+ 27m54s
2611
+ 48s-62°44'30"
2612
+ 45'00"
2613
+ 30"
2614
+ 46'00"
2615
+ 30"
2616
+ 47'00"-
2617
+ 12h28m06s
2618
+ s00
2619
+ 27m54s
2620
+ 48s-62°50'00"
2621
+ G298.4400-0.3169
2622
+ 100
2623
+ 80
2624
+ 20"
2625
+ 60
2626
+ Dec (J2000)
2627
+ my/beam
2628
+ 40
2629
+ 40"
2630
+ 20
2631
+ 51'00"
2632
+ -0
2633
+ Infrared Quiet
2634
+ -20
2635
+ 12h12m00s
2636
+ 11m57s
2637
+ 54s
2638
+ 5is
2639
+ RA(J2000)-62°49'30"
2640
+ 50'00"
2641
+ 30"
2642
+ 51'00"
2643
+ 30"
2644
+ 52'00"
2645
+ 12h12m06s
2646
+ s00
2647
+ 11m54s
2648
+ 48s-62°49'30"
2649
+ 50'00"
2650
+ 30"-
2651
+ 0
2652
+ 51'00"
2653
+ 30"-
2654
+ 52'00"
2655
+ 12h12m06s
2656
+ s00
2657
+ 11m54s
2658
+ 48s
2659
+ 42s22
2660
+ T. Irabor et al.
2661
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
2662
+ MNRAS 000, 1–22 (2022)
2663
+
I9A0T4oBgHgl3EQfCP_M/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ItAzT4oBgHgl3EQfVPwp/content/tmp_files/2301.01279v1.pdf.txt ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
2
+ 110
3
+
4
+ Szabolcs Nagy – Gergő Hajdú
5
+
6
+ The relationship between content marketing and the traditional
7
+ marketing communication tools
8
+
9
+ Digitalization is making a significant impact on marketing. New marketing approaches and tools
10
+ are emerging which are not always clearly categorised. This article seeks to investigate the
11
+ relationship between one of the novel marketing tools, content marketing, and the five elements of
12
+ the traditional marketing communication mix. Based on an extensive literature review, this paper
13
+ analyses the main differences and similarities between them. This article aims to generate a debate
14
+ on the status of content marketing. According to the authors' opinion, content marketing can be
15
+ considered as the sixth marketing communication mix element. However, further research is
16
+ needed to fill in the existing knowledge gap.
17
+ Keywords: content marketing, trends, advertising, sales promotion, direct marketing, personal
18
+ selling, public relations
19
+ JEL: M31, M37
20
+
21
+ https://doi.org/10.32976/stratfuz.2021.25
22
+
23
+ Introduction
24
+
25
+ Digitalization and the ongoing information technology revolution pose remarkable possibilities
26
+ and challenges for marketing (Piskóti, 2018). Due to digitalization, consumer behaviour is
27
+ constantly changing. Consumers’ stimulus threshold is increasing because of the greater exposure
28
+ to information (Kotler et al., 2017). At the same time, smart devices are becoming increasingly
29
+ dominant (Nagy, 2017). E-commerce (Nagy, 2016), and the various social networks are becoming
30
+ popular (Sethi, 2018). These trends accelerate the emergence of new methods and trends in
31
+ marketing (Nagy, 2020). It is advisable for marketers to understand how those new methods and
32
+ tools work since they help to reach out to consumers to influence their behaviour. However, the
33
+ lack of advanced information technology in Hungary poses some problems in this process
34
+ (Kamaraonline, 2018).
35
+ Marketing communication tools can often be divided into two main groups. Traditional and digital
36
+ solutions can be distinguished. However, according to Kotler et al. (2017), the two categories have
37
+ recently been merging. Content marketing is essentially a digital solution having some offline
38
+ features as well. The significance of content marketing is supported by Kotler et al. (2017), who
39
+ found - referring to the research findings of Content Marketing Institute and the MarketingProfs -
40
+ that 76% of the B2C companies and 88% of the B2B companies used content marketing in North
41
+ America. Furthermore, B2C companies spent 32% of their marketing budgets on content
42
+ marketing, while B2B companies spent 28%. 57% of the B2C companies increased their content
43
+ marketing budget by at least 1%, while 29% of them did not change the budget (Brenner 2019,
44
+ based on Content Marketing Institute 2019). The companies mainly increased their content
45
+ marketing budgets in the following areas: content production (56%), content marketing personnel
46
+ (37%), paid distribution of content (36%), content marketing technology (29%), and content
47
+ marketing outsourcing (29%) (Murton Beets 2018). These facts also underline the importance of
48
+ content marketing in today’s digital world.
49
+ If we accept that traditional and digital solutions have been merging (Kotler et al., 2017), it means
50
+ that the traditional classification of marketing communication tools should be revised. The
51
+ communication tools should rather be classified according to their functions and operating
52
+ mechanisms than according to the type of technological solutions. From this perspective, content
53
+ marketing (CM) is a new approach to marketing communication and a novel marketing
54
+ communication tool that can be combined with traditional marketing tools. Therefore, the present
55
+ paper seeks to investigate the relationship between content marketing and the five, traditional
56
+
57
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
58
+
59
+ 111
60
+
61
+ marketing communication tools to generate discussion if content marketing is the sixth element
62
+ of the revised marketing communication mix.
63
+
64
+ Literature review
65
+
66
+ Content marketing definition, functions, and spending
67
+
68
+ Content marketing is the creation and distribution of relevant, timely, and valid content (Wang et
69
+ al., 2017). Its primary purpose is to create customer trust and value (Repoviener, 2017). Content
70
+ marketing may have entertaining or educational functions (Duc Le 2016; Lindström and Jörnéus,
71
+ 2016). Content marketing can be effectively used both in B2C and B2B markets (Iankova et al.
72
+ 2019). According to Kotler et al. (2017), the content can serve brand-building or sales promotion
73
+ purposes. According to Moutsos (2019), 55% of the companies were capable of generating sales
74
+ and income, and 53% of them were capable of increasing their existing customers' loyalty through
75
+ content marketing in 2018. So, content marketing can be used to generate income and sales, and
76
+ also, to increase customers' loyalty.
77
+
78
+ Content types and formats
79
+
80
+ Content marketing may appear in various formats based on the type of content. It could be audio
81
+ and/or visual content (videos, live streaming, webinars); written digital content (articles, blogs,
82
+ ebooks), images (infographics, photos, GIFs, charts), in-person content (events, presentations,
83
+ workshops); audio-only digital content (podcasts, audiobooks), and written print content
84
+ (magazines, books, brochures). Figure 1. shows the different types of content and how B2B
85
+ marketers changed their use of content types/formats. Figure 2. shows the very same trends in
86
+ B2C markets.
87
+
88
+
89
+ Figure 1. The change of use of content types/format in B2B markets
90
+ Source: Own compilation based on Murton Beets, 2018
91
+
92
+ As Figure 1 illustrates, in B2B markets, the use of audio/visual content; written digital content and
93
+ images became more popular, while the use of written print content significantly decreased
94
+ compared to the other types. The same trends can be seen in the B2C markets (Figure 2). The only
95
+ slight difference between the two markets is in the use of audio-only digital content, which
96
+ significantly dropped in the B2C market.
97
+
98
+ 64%
99
+ 61%
100
+ 56%
101
+ 41%
102
+ 38%
103
+ 27%
104
+ 32%
105
+ 33%
106
+ 40%
107
+ 52%
108
+ 54%
109
+ 56%
110
+ 4%
111
+ 6%
112
+ 4%
113
+ 7%
114
+ 8%
115
+ 17%
116
+ Audio/Visual Content
117
+ Written Digital Content
118
+ Images
119
+ In-Person Content
120
+ Audio-only Digital Content
121
+ Written Print Content
122
+ Increased
123
+ Remained the same
124
+ Decreased
125
+
126
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
127
+ 112
128
+
129
+
130
+ Figure 2. The change of use of content types/format in B2C markets
131
+ Source: Own compilation based on Murton Beets, 2018
132
+
133
+ In practice, various types of content can be used to reach out to consumers. As far as the type of
134
+ content concerned, e-mail campaign is the most popular one, used by 87% of the companies
135
+ (Murton Beets 2018). However, the following content types are also frequently used (values in
136
+ brackets show the percentage of companies using the given content type): educative content
137
+ (77%), actions calling for the next step (62%), events involving personal interactions (61%),
138
+ telling stories (45%), offers (27%) and community building involving the public (23%). Trends
139
+ and forecasts are less popular, only 5% of the companies used them (Murton Beets 2018).
140
+
141
+ The goals of content marketing
142
+
143
+ Content marketing helps to achieve several goals. The goal of content marketing is to gain
144
+ customers (Barker, 2017) and to build customer relationships (Pažėraitė and Repovienė, 2018).
145
+ Content marketing can very effectively be used to create brand awareness, educate audiences,
146
+ generate demand/leads, and build credibility/trust (Figure 3.).
147
+ Also, content marketing is an effective tool for nurturing subscribers/audience/leads; driving
148
+ attendance to one or more in-person events, building loyalty with existing clients, and supporting
149
+ the launch of a new product. It can even be used to achieve sales/revenue generation and build a
150
+ subscribed audience. Figure 3. presents the possible goals companies managed to successfully
151
+ achieve by using content marketing.
152
+
153
+ 69%
154
+ 64%
155
+ 63%
156
+ 37%
157
+ 30%
158
+ 27%
159
+ 25%
160
+ 31%
161
+ 30%
162
+ 51%
163
+ 48%
164
+ 63%
165
+ 6%
166
+ 5%
167
+ 7%
168
+ 12%
169
+ 22%
170
+ 10%
171
+ 0%
172
+ 10%
173
+ 20%
174
+ 30%
175
+ 40%
176
+ 50%
177
+ 60%
178
+ 70%
179
+ 80%
180
+ 90%
181
+ 100%
182
+ Audio/Visual Content
183
+ Written Digital Content
184
+ Images
185
+ In-Person Content
186
+ Audio-only Digital Content
187
+ Written Print Content
188
+ Increased
189
+ Remained the same
190
+ Decreased
191
+
192
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
193
+
194
+ 113
195
+
196
+
197
+ Figure 3. Content marketing goals
198
+ Source: Own compilation based on Content Marketing Institute (2019).
199
+ Note: Goals enterprise marketers have achieved by using content marketing successfully
200
+
201
+
202
+ Research methodology
203
+
204
+ This paper seeks to generate a debate on the current state of content marketing, and it aims to
205
+ create a base for future quantitative research. It synthesizes the relevant literature to analyze the
206
+ relationship between content marketing and the traditional marketing communication tools. It
207
+ makes an attempt to distinguish content marketing from the other elements in marketing
208
+ communication mix, which are advertising, sales promotion (SP), public relations (PR), personal
209
+ selling, and direct marketing (DM). In the following section, based on extensive literature review,
210
+ the five traditional marketing communication tools are compared to content marketing to reveal
211
+ the similarities and differences between them regarding the type, purpose, standardization, time
212
+ span and reach of communication and the target groups.
213
+
214
+ Research findings and discussion
215
+
216
+ The relationship between advertising and content marketing
217
+
218
+ Advertising is the most prominent element of the traditional communication mix. According to
219
+ Horváth and Bauer (2013) advertising is an impersonal form of communication that reaches out
220
+ to the recipients through mass media. Advertising mainly focuses on the product, specific product
221
+ features, added services, price, packaging unit, trademark, logo, value and ideas worth considering
222
+ from a social point of view (CSR). Kotler and Keller (2012) are committed to a narrower
223
+ interpretation of advertising stating that advertising is only related to products, brands and/or
224
+ services. In advertising, recipients (target group members) are usually aware of the fact that the
225
+ main intention of marketers with the ads is to persuade and influence their behaviour. Since
226
+ companies use advertising channels to relay commercials, their target group members can be
227
+ reached indirectly. In this respect, content marketing is quite different. According to Kotler et al
228
+ (2017), content marketing communicates with the marketer’s own public. Content marketing also
229
+ 79%
230
+ 70%
231
+ 63%
232
+ 62%
233
+ 58%
234
+ 53%
235
+ 53%
236
+ 49%
237
+ 39%
238
+ 37%
239
+ 0%
240
+ 10%
241
+ 20%
242
+ 30%
243
+ 40%
244
+ 50%
245
+ 60%
246
+ 70%
247
+ 80%
248
+ 90%
249
+ create brand awareness
250
+ educate audiences
251
+ generate demand/leads
252
+ build credibility/trust
253
+ nurture subscribers/audience/leads
254
+ drive attendance to one or more in-person events
255
+ build loyalty with existing clients
256
+ support the launch of a new product
257
+ generate sales/revenue
258
+ build a subscribed audience
259
+
260
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
261
+ 114
262
+
263
+ has an appropriately distinguished and defined target audience that receives more personalized
264
+ content (Hajdú 2018).
265
+ Kotler et al (2017) express that the concept of traditional media is "one to many", while content
266
+ marketing, especially social media, almost always mean two-way interactions. Furthermore,
267
+ advertising helps to sell the product, while content marketing helps the customers to solve their
268
+ problems and achieve their individual goals. According to Kotler et al (2017), consumers are ready
269
+ to share the content, while the traditional ads, which are limited in time and space, are rather
270
+ "skimmed over" by the target audience. It is almost sure to say that advertisements disturb a lot of
271
+ people since they interrupt their favorite series, or delay videos they want to watch instantly, or
272
+ fill their mailboxes with emails. Therefore, we can conclude that advertising has an intervening
273
+ feature. Content marketing aims to maintain a lasting relationship with the target population
274
+ (Pažėraitė and Repovienė 2018), while advertising is often seasonal and campaign-based (Kotler-
275
+ Keller, 2012). Table 1 illustrates the main differences between advertising and content marketing.
276
+ So, as Scott (2013) concluded, marketers can buy attention (advertising) or can own attention by
277
+ creating something interesting and valuable that is published online for free (content marketing).
278
+
279
+ Table 1.: The comparison of the traditional advertising and content marketing
280
+
281
+ traditional advertising
282
+ content marketing
283
+ type of communication
284
+ one-way: "I speak only"
285
+ two-way: "let's talk"
286
+ purpose of communication
287
+ promotion of products,
288
+ brands and services
289
+ solving the customer's
290
+ problem at no cost
291
+ perception of communication from
292
+ the customer's viewpoint
293
+ intervening, disturbing
294
+ giving a helping hand
295
+ reach
296
+ a wide range of the
297
+ population
298
+ individuals or groups
299
+ standardization level
300
+ standardized
301
+ and
302
+ impersonal
303
+ specified
304
+ and
305
+ more
306
+ personalized
307
+ target groups
308
+ not own
309
+ own
310
+ time span of communication
311
+
312
+ short
313
+ and
314
+ campaign-
315
+ based
316
+ a lasting relationship
317
+ limitation
318
+
319
+ limited
320
+ free
321
+ target group reaction
322
+ rejection,
323
+ skimming
324
+ over
325
+ sharing
326
+ Source: Own compilation based on Kotler et al, 2017; Horváth and Bauer, 2013; Hajdú, 2018;
327
+ Maczuga et al, 2015; Pažėraitė and Repovienė, 2018
328
+
329
+ The relationship between direct marketing and content marketing
330
+
331
+ Direct marketing (DM) is an addressed and interactive form of communication. It aims to achieve
332
+ measurable responses, which can be orders, purchases, inquiries, or donations. Direct marketing
333
+ is essentially built on databases. "It allows the potential customers to obtain information, it helps
334
+ to establish the popularity of a brand or induces immediate purchases" (Horváth and Bauer, 2013,
335
+ pp. 242.). The fact that direct marketing is built on databases implies that the customer value can
336
+ be targeted quite accurately. Also, this marketing communication tool is easily optimizable.
337
+ Telemarketing, mail advertisement, direct mail and direct response advertising are the forms of
338
+ direct marketing (Horváth and Bauer, 2013).
339
+ Building brand awareness and credibility are definitely a common point in direct marketing and
340
+ content marketing. However, direct marketing is less digital than content marketing. In general,
341
+ the internet as a medium is less dominant in direct marketing, except for e-mail marketing. The
342
+ purpose of communication in direct marketing is to present the product to make bids. Therefore,
343
+
344
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
345
+
346
+ 115
347
+
348
+ direct marketing is usually related to selling (receiving orders); the eye-catching presentation of
349
+ products (catalogs) and advertising (mail advertisement).
350
+ According to Tapp (1999, pp. 23) "direct marketing is rather a sales system than a communication
351
+ tool". Although nowadays direct marketing has widely been accepted as a marketing
352
+ communication tool, its sales function cannot be ignored. This point of view is also appeared in
353
+ Kotler and Keller (2012). According to Horváth and Bauer (2013), direct marketing provides the
354
+ recipient with a clear opportunity to respond and directly targets the previously defined target
355
+ groups. Although it also has a pre-defined target group (Hajdú 2018), content marketing places
356
+ less emphasis on the sales-related responses. In content marketing, the responses affect the content
357
+ itself. In content marketing, building trust, solving the customer's problem and providing further
358
+ contents contribute to initiating purchases (Barker 2017).
359
+ There is another significant difference between direct marketing and content marketing. Direct
360
+ marketing advertises a product or a service in a targeted manner to increase sales volume through
361
+ immediate selling. That is why direct marketing is also called "direct order marketing", or “direct
362
+ advertising". Consequently, direct marketing focuses only on the product, which offers the value
363
+ for the customer (Kotler and Keller, 2012). Content marketing creates value and provides
364
+ consumers with it. However, content marketing does not aim to sell immediately, only in one step
365
+ (Fivetechnology, 2019), it has got longer time-orientation.
366
+ Combining direct marketing with content marketing can be very effective. If a customer registers
367
+ an account online, he or she can receive free content (e.g. an ebook), which is content marketing,
368
+ however, the data provided during the registration are also used to build a database, which can be
369
+ used for direct marketing purposes. Content marketing that builds an audience not only identify
370
+ demands but also generate it.
371
+
372
+ The relationship between personal selling and content marketing
373
+
374
+ Few researchers have addressed the question how personal selling and content marketing can be
375
+ connected. Personal selling is a face-to-face selling technique where the emphasis is on personal
376
+ interaction. In an event, which can be related to personal selling or could be a content marketing
377
+ format, the company (brand) and its potential and existing customers can meet in person and/or
378
+ online. However, it is important to note that the event is only one of several content marketing
379
+ types, which are mostly digital.
380
+ Nowadays, the theory of selling as the most important task of the sales staff has already become
381
+ outdated since the sales department is usually responsible for many other tasks, such as searching
382
+ for potential customers, providing information, choosing the target market, providing services,
383
+ collecting information and distribution (Kotler-Keller 2012, pp. 637).
384
+ Information that the sales staff provide about the products and services, in principle, can refer to
385
+ the content marketing. Furthermore, services can also link personal selling and content marketing
386
+ when the sales personnel try to solve the customer's problem.
387
+ Personal selling and content marketing can sometimes be combined but they can hardly be fell
388
+ into one category due to the fundamental differences in their characteristics.
389
+
390
+ The relationship between public relations and content marketing
391
+
392
+ Content marketing should not be confused with public relations (Percy, 2018). In many cases,
393
+ content marketing is a communication form used on a regular (daily or weekly) bases (Insights
394
+ 2018). Content marketing aims to be part of the consumer's life and seeks to provide value to the
395
+ customers in an educating and entertaining manner (Lindström and Jörnéus, 2016).
396
+ Public relation (PR) is a strategic tool aiming to turn brand messages into stories that are appealing
397
+ to the media and its target audiences (Konczosné Szombathelyi 2018). Thus, PR builds credibility
398
+ and trust among the stakeholders (Horváth-Bauer 2013). Since public relations is not sales-
399
+ oriented, it is the changes in the mindset of the target audience that should be measured, not its
400
+
401
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
402
+ 116
403
+
404
+ effects on sales (Józsa et al, 2005). PR seeks to build a good reputation of the company; promote
405
+ the success of the brand; deals with counselling and consulting. All these goals are very similar to
406
+ those of content marketing, which among other things aims to build credibility and trust. However,
407
+ content marketing is not a replacement for public relations (Mathewson and Moran, 2016)
408
+ Józsa et al (2005) emphasize that whatever the goal of PR is, the focus should be on creating trust
409
+ by emphasizing understanding and willingness to cooperate to gain support from the stakeholders
410
+ of the company. Trust is also a key factor in building strong brands. Both PR and content
411
+ marketing can be regarded as regular and systematic communication activities (Józsa et al 2005;
412
+ Muotsos 2017), and both use rather similar tools such as articles, newsletters, blogs, publications,
413
+ social media, statistics, e-books, events, etc. (Probusiness, 2018).
414
+ However, there are some differences between PR and content marketing. Although trust is
415
+ essential in PR, counselling is only a PR tool or technique. Counseling in PR refers to how we
416
+ communicate with our clients. It is a recommended course of action that will serve the client’s
417
+ goals. On the contrary, in content marketing, the valuable content is always provided in the form
418
+ of education, relevant information or entertainment (Lindström és Jörnéus, 2016).
419
+ The problem of measuring the effect of PR on sales is also a major difference. The impact of
420
+ content marketing on sales is a lot easier to measure (Hajdú, 2018), moreover, one of the explicit
421
+ goals of content marketing is to convert the target public into customers (Barker 2017).
422
+ Effectiveness of content marketing can easily be measured due to its digital nature. Content
423
+ marketing is customer-centred, focuses only on selected stakeholders and seeks to solve the
424
+ customer’s problem by providing information or educational content in an entertaining way
425
+ (Lindström and Jörnéus 2016; Duc Le 2016). In content marketing, the goal is not to provide all
426
+ the information but only the relevant content (Wang et al 2017). According to Hajdú (2018),
427
+ content marketing is a profit-oriented tactical activity to gain customers and make deals. This
428
+ means that content marketing acquires customers within a reasonable time-period. Content
429
+ marketing not only produces content, but it also distributes it through its own channels, whereas
430
+ PR works quite differently in this respect.
431
+ It is advisable is to combine content marketing with PR since they complement each other. PR
432
+ can help marketers to make a better story about the brand (Spencer 2014).
433
+
434
+ The relationship between sales promotion and content marketing
435
+
436
+ There is a scarcity of literature devoted to the analysing the relationship between sales promotion
437
+ and content marketing. Horváth and Bauer (2013) refer to sales promotion as a direct influence on
438
+ consumer behaviour and an impetus to action. With reference to Bauer and Berács (2006), they
439
+ emphasize that the primary goal of sales promotion is to promote product sales. "Sales promotion
440
+ is a set of short-term incentive tools which aim to make consumers purchase more products more
441
+ frequently or buy specific products or services" (Kotler-Keller, 2012, pp. 596). Regarding the
442
+ consumer's benefit, sales promotion tools can be divided into two categories. Utilitarian and
443
+ hedonistic tools can be distinguished. The utilitarian tools provide financial benefits (e.g. price
444
+ discounts), whereas the hedonistic tools are focusing on entertainment, customer experience and
445
+ loyalty (Yeshin, 2006). Product samples, gifts, contests and events (trade shows and exhibitions),
446
+ the tools of sales promotion used to create the customer experience (hedonism), are very much
447
+ related to content marketing (Józsa, 2014).
448
+ Product samples make it easier for the customers to try the products. It is an important link between
449
+ content marketing and sales promotion because content marketing also provides customers with
450
+ free and useful content when offering a solution to the customer's problem. Thereby, the company
451
+ can demonstrate its competence and excellence by offering the best solutions to the customer’s
452
+ problem. Gifts are also commonly used in content marketing in the form of free content. On the
453
+ contrary, gifts in sales promotion are not free, they are only given to the customers after the
454
+ purchase (Horváth and Bauer, 2013).
455
+
456
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
457
+
458
+ 117
459
+
460
+ Events can belong to content marketing and sales promotion; and sometimes even to PR,
461
+ depending on their goals and their implementation (Józsa et al 2005; Dankó, 2008, Kranz-Pulizzi,
462
+ 2011). The content of the event is the decisive factor. In an event, if marketers present information
463
+ about how the customer could solve his or her problem, it is highly likely to be content marketing.
464
+ Contests, games or phone applications can also be content marketing tools (Kranz-Pulizzi, 2011).
465
+ However, contests and games as sales promotion tools are commonly used to increase sales. In
466
+ this latter case, purchase is often a pre-requisite of entering the contest.
467
+ In sales promotion, the customer experience is directly linked to the purchase, while in content
468
+ marketing it is not the case. According to Yeshin (2006), in sales promotion, customer loyalty is
469
+ gained through financial benefits and consumption (e. g. through loyalty points, gifts, etc.). On
470
+ the contrary, content marketing seeks to achieve the same goal by providing free content that is
471
+ useful and/or entertaining. The primary goal of sales promotion is to increase product sales, which
472
+ can be a distinguishing factor between content marketing and sales promotion. Although content
473
+ marketing is also sales-oriented in the long run, here the deal is achieved in several steps
474
+ (Fivetechnology, 2019). In this process, the very first step is building trust by giving value without
475
+ asking for compensation or purchase (Repoviener, 2017; Maczuga et al, 2015). We can conclude
476
+ that the main differences between content marketing and sales promotion can be found in their
477
+ objectives and time-orientation. Content marketing, which is not a short-term tool, is often
478
+ regarded as is an introductory stage of sales as it does not aim to make purchases quickly.
479
+
480
+ Conclusions
481
+
482
+ This paper investigates the relationship between content marketing and the five traditional
483
+ marketing communication tools. The goal of the article is to generate a discussion on the status
484
+ of content marketing. In this paper, content marketing was compared to advertising, direct
485
+ marketing, personal selling, public relations and sales promotion to find out the main differences
486
+ and similarities. An extensive literature review explored some fundamental differences between
487
+ the traditional marketing communication tools and content marketing. Based on this result, content
488
+ marketing can be regarded as a novel marketing communication tool and the sixth element of the
489
+ revised marketing communication mix. Content marketing can be effectively used in marketing
490
+ campaigns in the digital environment. Because of its digital nature, content marketing can be more
491
+ effective in digitally advanced target markets. One of the positive effects of COVID-19 is the
492
+ accelerated digitalization, which favorable to the use of content marketing.
493
+
494
+ Acknowledgements
495
+
496
+ “The described article/presentation/study was carried out as part of the EFOP-3.6.1-16-2016-
497
+ 00011 “Younger and Renewing University – Innovative Knowledge City – institutional
498
+ development of the University of Miskolc aiming at intelligent specialisation” project
499
+ implemented in the framework of the Szechenyi 2020 program. The realization of this project is
500
+ supported by the European Union, co-financed by the European Social Fund.”
501
+ "A cikkben/előadásban/tanulmányban ismertetett kutató munka az EFOP-3.6.1-16-2016-00011
502
+ jelű „Fiatalodó és Megújuló Egyetem – Innovatív Tudásváros – a Miskolci Egyetem intelligens
503
+ szakosodást szolgáló intézményi fejlesztése” projekt részeként – a Széchenyi 2020 keretében – az
504
+ Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg"
505
+
506
+
507
+
508
+
509
+
510
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
511
+ 118
512
+
513
+ References
514
+
515
+
516
+ BARKER, S. (2017). How to Create High-Converting Content. Retrieved from
517
+ https://contentmarketinginstitute.com/2017/05/create-high-converting-content,
518
+ 10.04.2019.
519
+ BRENNER, M. (2019). Content Marketing Survey: Marketers Focus On Content Creation.
520
+ Retrieved from: https://marketinginsidergroup.com/content-marketing/2019-content-
521
+ marketing-survey-content-creation/, 11.04.2019.
522
+ CONTENT MARKETING INSTITUTE (2019). Enterprise Content Marketing 2019 –
523
+ Benchmarks,
524
+ Budgets,
525
+ and
526
+ Trends
527
+
528
+ North
529
+ America.
530
+
531
+ Retrieved
532
+ from
533
+ https://contentmarketinginstitute.com/wp-content/uploads/2019/02/FINAL-
534
+ 2019_Enterprise_Research.pdf, 05.04.2019.
535
+ DANKÓ, L. (2008). Értékesítés-ösztönzés. Marketing Intézet Miskolc. Miskolci Egyetem. Pro
536
+ Marketing Miskolc Egyesület
537
+ DUC LE, M. (2013). Content Marketing, Haaga-Heila University of Applied Sciences, Porvoo
538
+ FIVETECHNOLOGY (2019). Content Marketing & Strategy. Retrieved from:
539
+ https://www.fivetechnology.com/internet-marketing/content-marketing-strategy, 02.03.
540
+
541
+ 2019.
542
+ HAJDÚ, N. (2018). Az online marketingcontrolling értékelési folyamata a tartalommarketing ROI
543
+ segítségével. Controller Info 6 : 1 pp. 5-8. , 4 p. 10.24387/CI.2018.1.2
544
+ HORVÁTH, D. - BAUER, A. (2013). Marketingkommunikáció – Stratégia, új média, fogyasztói
545
+ részvétel. Budapest: Akadémiai Kiadó.
546
+ IANKOVA S. - DAVIES I. - ARCHER-BROWN C. - MARDER B. - YAU A. (2019). A
547
+ comparison of social media marketing between B2B, B2C and mixed business models.
548
+ Industrial marketing management., 81, 169-179. doi:10.1016/j.indmarman.2018.01.001
549
+ JÓZSA, L., PISKÓTI, I., REKETTYE, G., VERES, A. (2005). Döntésorientált marketing. KJK
550
+ KERSZÖV Jogi és Üzleti kiadó Kft. Budapest
551
+ KAMARAONLINE (2018). Versenyhátrányt okoz a magyar vállalkozásoknak az informatikai
552
+ lemaradás.
553
+ Retrieved
554
+ from:
555
+ http://kamaraonline.hu/cikk/versenyhatranyt-okoz-a-
556
+ magyar-vallalkozasoknak-az-informatikai-lemaradas, 30.04.2018.
557
+ KONCZOSNÉ SZOMBATHELYI, M. (2018). A PR úttörői és napjainkig tartó hatásuk,
558
+ Széchenyi
559
+ István
560
+ Egyetem,
561
+ Győr,
562
+ Retrieved
563
+ from:
564
+ https://kgk.sze.hu/images/dokumentumok/VEABtanulmanyok/konczosne_szombathelyi
565
+ _marta.pdf, 05.04.2019.
566
+ KOTLER, P. - KELLER, K., L. (2012). Marketingmenedzsment. Budapest: Akadémiai Kiadó.
567
+ KOTLER, P. - KARTAJAYA H. - SETIAWAN I. (2017). Marketing 4.0 - Moving from
568
+ Traditional to Digital. John, & Sons, Inc.
569
+ KRANZ J., PULIZZI J. (2011). Content Marketing Playbook, Junta42 Conent Marketing Institute
570
+ & Kranz Communications
571
+ LINDSTRÖM, A. L. - JÖRNÉUS, A. (2016). Co-Creating value through Content Marketing,
572
+ University of Gothengurg, School of Business, Economics and Law
573
+ MACZUGA P. - SIKORSKA K. (2015). Content marketing Handbook: Simple Ways to Innovate
574
+ Your Marketing Approach. Project under Lifelong Learning Programme of European
575
+ Commission. Warsaw. Racom Communications. ISBN: 978-83-63481-10-0
576
+ MATHEWSON, J. - MORAN, M. (2016). Outside-in marketing: Using big data to guide your
577
+ content marketing. Boston: IBM Press, Pearson plc
578
+ MOUTSOS, K. (2017). Publishing frequency: why (and how) we're changing things up. Retrieved
579
+ from:
580
+ https://contentmarketinginstitute.com/2017/12/publishing-frequency-changing/
581
+ 10.04.2019.
582
+ MOUTSOS, K. (2019). Tech Content Marketers Talk Content Creation Challenges, Tools, and
583
+ Trends Retrieved from: https://contentmarketinginstitute.com/2019/03/tech-content-
584
+ marketers-research/, 10.04.2019.
585
+
586
+ Észak-magyarországi Stratégiai Füzetek XVIII. évf.  2021  1
587
+
588
+ 119
589
+
590
+ MURTON BEETS, L. (2018). 2019 B2B Content Marketing Research: It Pays to Put Audience
591
+ First. Retrieved from: https://contentmarketinginstitute.com/2018/10/research-b2b-
592
+ audience/, 11.04.2019.
593
+ NAGY, L. (2020). The Neuromarketing Analysis and the Categorization of Television
594
+ Commercials, Észak-magyarországi Stratégiai Füzetek, XVII. évf., 2020, 2., pp. 79-88.
595
+ https://doi.org/10.32976/stratfuz.2020.16
596
+ NAGY, S. (2017). The Impact Of Country Of Origin In Mobile Phone Choice Of Generation Y
597
+ And Z., Journal Of Management And Training, Vol.4. No. 2., pp. 16-29.
598
+
599
+ https://doi.org/10.12792/JMTI.4.2.16
600
+ NAGY, S. (2016). E-commerce in Hungary: A Market Analysis, Theory Methodology Practice:
601
+ 'Club of Economics in Miskolc', Vol.12., Nr.2, pp. 25-32.
602
+
603
+ http://dx.doi.org/10.18096/TMP.2016.03.03
604
+ PISKÓTI, I. (2018). Digitalizáció – az új marketingkoncepció és stratégiai megoldások irányai –
605
+ Marketing
606
+ 4.0,
607
+ A
608
+ digitalizáció
609
+ és
610
+ annak
611
+ társadalmi-gazdasági
612
+ hatásai,
613
+ Gazdálkodástudományi
614
+ Bizottság
615
+ konferenciája,
616
+ Marketingtudományi
617
+ Szekció,
618
+ Budapesti
619
+ Corvinus
620
+ Egyetem,
621
+ 2018.
622
+ nov.
623
+ 13.
624
+ Retrieved
625
+ from:
626
+ https://docplayer.hu/108312523-Digitalizacio-az-uj-marketingkoncepcio-es-strategiai-
627
+ megoldasok-iranyai-marketing-4-0.html, 17.07.2020
628
+ PAŽĖRAITĖ, A. - REPOVIENĖ, R. (2018). Content Marketing Decisions for Effective Internal
629
+ Communication. Management of Organizations: Systematic Research, Sciendo, vol.
630
+ 79(1), pp. 117-130., doi:10.1515/mosr-2018-0008
631
+ PERCY, L. (2018). Strategic integrated marketing communications. London: Routledge.
632
+ PROBUSINESS (2018). A tartalommarketing is PR? Retrieved from:
633
+ https://www.probusiness.hu/pr/a-tartalommarketing-is-pr/, 09.04.2019.
634
+ REPOVIENER, R. (2017). Role of content marketing in a value creation for customer context: a
635
+ theoretical analysis, International Journal of Global Business Management and
636
+ Research, Vol 6., issue 2., p. 37-48
637
+ SCOTT, D. M. (2013). The new rules of marketing & PR: How to use social media, online video,
638
+ mobile applications, blogs, news releases, & viral marketing to reach buyers directly.
639
+ Hoboken, NJ: John Wiley &amp; Sons.
640
+ SETHI, M. (2018). Social Media Strategy for Content Marketing, Retrieved from:
641
+ https://www.entrepreneur.com/article/321683, 02.12.2018.
642
+ SPENCER, J. (2014). The Role of PR and Content Marketing in 2015. Retrieved from:
643
+ https://contentmarketinginstitute.com/2014/12/role-pr-content-marketing, 10.04.2019.
644
+ YESHIN, T. (2006). Sales Promotion. London: Thomson Learning.
645
+ WANG, W. - MALTHOUSE, E. C. - CALDER, B. - UZUNOGLU, E. (2019). B2B content
646
+ marketing for professional services: In-person versus digital contacts. Industrial
647
+ Marketing Management, 81, 160-168. doi:10.1016/j.indmarman.2017.11.006
648
+
649
+
650
+
ItAzT4oBgHgl3EQfVPwp/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf,len=495
2
+ page_content='Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
3
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
4
+ page_content=' \uf0e0 2021 \uf0e0 1 110 Szabolcs Nagy – Gergő Hajdú The relationship between content marketing and the traditional marketing communication tools Digitalization is making a significant impact on marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
5
+ page_content=' New marketing approaches and tools are emerging which are not always clearly categorised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
6
+ page_content=' This article seeks to investigate the relationship between one of the novel marketing tools, content marketing, and the five elements of the traditional marketing communication mix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
7
+ page_content=' Based on an extensive literature review, this paper analyses the main differences and similarities between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
8
+ page_content=' This article aims to generate a debate on the status of content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
9
+ page_content=" According to the authors' opinion, content marketing can be considered as the sixth marketing communication mix element." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
10
+ page_content=' However, further research is needed to fill in the existing knowledge gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
11
+ page_content=' Keywords: content marketing, trends, advertising, sales promotion, direct marketing, personal selling, public relations JEL: M31, M37 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
12
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
13
+ page_content='32976/stratfuz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
14
+ page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
15
+ page_content='25 Introduction Digitalization and the ongoing information technology revolution pose remarkable possibilities and challenges for marketing (Piskóti, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
16
+ page_content=' Due to digitalization, consumer behaviour is constantly changing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
17
+ page_content=' Consumers’ stimulus threshold is increasing because of the greater exposure to information (Kotler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
18
+ page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
19
+ page_content=' At the same time, smart devices are becoming increasingly dominant (Nagy, 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
20
+ page_content=' E-commerce (Nagy, 2016), and the various social networks are becoming popular (Sethi, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
21
+ page_content=' These trends accelerate the emergence of new methods and trends in marketing (Nagy, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
22
+ page_content=' It is advisable for marketers to understand how those new methods and tools work since they help to reach out to consumers to influence their behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
23
+ page_content=' However, the lack of advanced information technology in Hungary poses some problems in this process (Kamaraonline, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
24
+ page_content=' Marketing communication tools can often be divided into two main groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
25
+ page_content=' Traditional and digital solutions can be distinguished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
26
+ page_content=' However, according to Kotler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
27
+ page_content=' (2017), the two categories have recently been merging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
28
+ page_content=' Content marketing is essentially a digital solution having some offline features as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
29
+ page_content=' The significance of content marketing is supported by Kotler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
30
+ page_content=' (2017), who found - referring to the research findings of Content Marketing Institute and the MarketingProfs - that 76% of the B2C companies and 88% of the B2B companies used content marketing in North America.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
31
+ page_content=' Furthermore, B2C companies spent 32% of their marketing budgets on content marketing, while B2B companies spent 28%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
32
+ page_content=' 57% of the B2C companies increased their content marketing budget by at least 1%, while 29% of them did not change the budget (Brenner 2019, based on Content Marketing Institute 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
33
+ page_content=' The companies mainly increased their content marketing budgets in the following areas: content production (56%), content marketing personnel (37%), paid distribution of content (36%), content marketing technology (29%), and content marketing outsourcing (29%) (Murton Beets 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
34
+ page_content=' These facts also underline the importance of content marketing in today’s digital world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
35
+ page_content=' If we accept that traditional and digital solutions have been merging (Kotler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
36
+ page_content=', 2017), it means that the traditional classification of marketing communication tools should be revised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
37
+ page_content=' The communication tools should rather be classified according to their functions and operating mechanisms than according to the type of technological solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
38
+ page_content=' From this perspective, content marketing (CM) is a new approach to marketing communication and a novel marketing communication tool that can be combined with traditional marketing tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
39
+ page_content=' Therefore, the present paper seeks to investigate the relationship between content marketing and the five, traditional Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
40
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
41
+ page_content=' \uf0e0 2021 \uf0e0 1 111 marketing communication tools to generate discussion if content marketing is the sixth element of the revised marketing communication mix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
42
+ page_content=' Literature review Content marketing definition, functions, and spending Content marketing is the creation and distribution of relevant, timely, and valid content (Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
43
+ page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
44
+ page_content=' Its primary purpose is to create customer trust and value (Repoviener, 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
45
+ page_content=' Content marketing may have entertaining or educational functions (Duc Le 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
46
+ page_content=' Lindström and Jörnéus, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
47
+ page_content=' Content marketing can be effectively used both in B2C and B2B markets (Iankova et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
48
+ page_content=' 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
49
+ page_content=' According to Kotler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
50
+ page_content=' (2017), the content can serve brand-building or sales promotion purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
51
+ page_content=" According to Moutsos (2019), 55% of the companies were capable of generating sales and income, and 53% of them were capable of increasing their existing customers' loyalty through content marketing in 2018." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
52
+ page_content=" So, content marketing can be used to generate income and sales, and also, to increase customers' loyalty." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
53
+ page_content=' Content types and formats Content marketing may appear in various formats based on the type of content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
54
+ page_content=' It could be audio and/or visual content (videos, live streaming, webinars);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
55
+ page_content=' written digital content (articles, blogs, ebooks), images (infographics, photos, GIFs, charts), in-person content (events, presentations, workshops);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
56
+ page_content=' audio-only digital content (podcasts, audiobooks), and written print content (magazines, books, brochures).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
57
+ page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
58
+ page_content=' shows the different types of content and how B2B marketers changed their use of content types/formats.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
59
+ page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
60
+ page_content=' shows the very same trends in B2C markets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
61
+ page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
62
+ page_content=' The change of use of content types/format in B2B markets Source: Own compilation based on Murton Beets, 2018 As Figure 1 illustrates, in B2B markets, the use of audio/visual content;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
63
+ page_content=' written digital content and images became more popular, while the use of written print content significantly decreased compared to the other types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
64
+ page_content=' The same trends can be seen in the B2C markets (Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
65
+ page_content=' The only slight difference between the two markets is in the use of audio-only digital content, which significantly dropped in the B2C market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
66
+ page_content=' 64% 61% 56% 41% 38% 27% 32% 33% 40% 52% 54% 56% 4% 6% 4% 7% 8% 17% Audio/Visual Content Written Digital Content Images In Person Content Audio only Digital Content Written Print Content Increased Remained the same Decreased Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
67
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
68
+ page_content=' \uf0e0 2021 \uf0e0 1 112 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
69
+ page_content=' The change of use of content types/format in B2C markets Source: Own compilation based on Murton Beets, 2018 In practice, various types of content can be used to reach out to consumers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
70
+ page_content=' As far as the type of content concerned, e-mail campaign is the most popular one, used by 87% of the companies (Murton Beets 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
71
+ page_content=' However, the following content types are also frequently used (values in brackets show the percentage of companies using the given content type): educative content (77%), actions calling for the next step (62%), events involving personal interactions (61%), telling stories (45%), offers (27%) and community building involving the public (23%).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
72
+ page_content=' Trends and forecasts are less popular, only 5% of the companies used them (Murton Beets 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
73
+ page_content=' The goals of content marketing Content marketing helps to achieve several goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
74
+ page_content=' The goal of content marketing is to gain customers (Barker, 2017) and to build customer relationships (Pažėraitė and Repovienė, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
75
+ page_content=' Content marketing can very effectively be used to create brand awareness, educate audiences, generate demand/leads, and build credibility/trust (Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
76
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
77
+ page_content=' Also, content marketing is an effective tool for nurturing subscribers/audience/leads;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
78
+ page_content=' driving attendance to one or more in-person events, building loyalty with existing clients, and supporting the launch of a new product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
79
+ page_content=' It can even be used to achieve sales/revenue generation and build a subscribed audience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
80
+ page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
81
+ page_content=' presents the possible goals companies managed to successfully achieve by using content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
82
+ page_content=' 69% 64% 63% 37% 30% 27% 25% 31% 30% 51% 48% 63% 6% 5% 7% 12% 22% 10% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Audio/Visual Content Written Digital Content Images In Person Content Audio only Digital Content Written Print Content Increased Remained the same Decreased Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
83
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
84
+ page_content=' \uf0e0 2021 \uf0e0 1 113 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
85
+ page_content=' Content marketing goals Source: Own compilation based on Content Marketing Institute (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
86
+ page_content=' Note: Goals enterprise marketers have achieved by using content marketing successfully Research methodology This paper seeks to generate a debate on the current state of content marketing, and it aims to create a base for future quantitative research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
87
+ page_content=' It synthesizes the relevant literature to analyze the relationship between content marketing and the traditional marketing communication tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
88
+ page_content=' It makes an attempt to distinguish content marketing from the other elements in marketing communication mix, which are advertising, sales promotion (SP), public relations (PR), personal selling, and direct marketing (DM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
89
+ page_content=' In the following section, based on extensive literature review, the five traditional marketing communication tools are compared to content marketing to reveal the similarities and differences between them regarding the type, purpose, standardization, time span and reach of communication and the target groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
90
+ page_content=' Research findings and discussion The relationship between advertising and content marketing Advertising is the most prominent element of the traditional communication mix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
91
+ page_content=' According to Horváth and Bauer (2013) advertising is an impersonal form of communication that reaches out to the recipients through mass media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
92
+ page_content=' Advertising mainly focuses on the product, specific product features, added services, price, packaging unit, trademark, logo, value and ideas worth considering from a social point of view (CSR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
93
+ page_content=' Kotler and Keller (2012) are committed to a narrower interpretation of advertising stating that advertising is only related to products, brands and/or services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
94
+ page_content=' In advertising, recipients (target group members) are usually aware of the fact that the main intention of marketers with the ads is to persuade and influence their behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
95
+ page_content=' Since companies use advertising channels to relay commercials, their target group members can be reached indirectly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
96
+ page_content=' In this respect, content marketing is quite different.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
97
+ page_content=' According to Kotler et al (2017), content marketing communicates with the marketer’s own public.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
98
+ page_content=' Content marketing also 79% 70% 63% 62% 58% 53% 53% 49% 39% 37% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% create brand awareness educate audiences generate demand/leads build credibility/trust nurture subscribers/audience/leads drive attendance to one or more in-person events build loyalty with existing clients support the launch of a new product generate sales/revenue build a subscribed audience Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
99
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
100
+ page_content=' \uf0e0 2021 \uf0e0 1 114 has an appropriately distinguished and defined target audience that receives more personalized content (Hajdú 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
101
+ page_content=' Kotler et al (2017) express that the concept of traditional media is "one to many", while content marketing, especially social media, almost always mean two-way interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
102
+ page_content=' Furthermore, advertising helps to sell the product, while content marketing helps the customers to solve their problems and achieve their individual goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
103
+ page_content=' According to Kotler et al (2017), consumers are ready to share the content, while the traditional ads, which are limited in time and space, are rather "skimmed over" by the target audience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
104
+ page_content=' It is almost sure to say that advertisements disturb a lot of people since they interrupt their favorite series, or delay videos they want to watch instantly, or fill their mailboxes with emails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
105
+ page_content=' Therefore, we can conclude that advertising has an intervening feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
106
+ page_content=' Content marketing aims to maintain a lasting relationship with the target population (Pažėraitė and Repovienė 2018), while advertising is often seasonal and campaign-based (Kotler- Keller, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
107
+ page_content=' Table 1 illustrates the main differences between advertising and content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
108
+ page_content=' So, as Scott (2013) concluded, marketers can buy attention (advertising) or can own attention by creating something interesting and valuable that is published online for free (content marketing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
109
+ page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
110
+ page_content=': The comparison of the traditional advertising and content marketing traditional advertising content marketing type of communication one-way: "I speak only" two-way: "let\'s talk" purpose of communication promotion of products,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
111
+ page_content=" brands and services solving the customer's problem at no cost perception of communication from the customer's viewpoint intervening," metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
112
+ page_content=' disturbing giving a helping hand reach a wide range of the population individuals or groups standardization level standardized and impersonal specified and more personalized target groups not own own time span of communication short and campaign based a lasting relationship limitation limited free target group reaction rejection,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
113
+ page_content=' skimming over sharing Source: Own compilation based on Kotler et al,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
114
+ page_content=' 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
115
+ page_content=' Horváth and Bauer, 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
116
+ page_content=' Hajdú, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
117
+ page_content=' Maczuga et al, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
118
+ page_content=' Pažėraitė and Repovienė, 2018 The relationship between direct marketing and content marketing Direct marketing (DM) is an addressed and interactive form of communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
119
+ page_content=' It aims to achieve measurable responses, which can be orders, purchases, inquiries, or donations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
120
+ page_content=' Direct marketing is essentially built on databases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
121
+ page_content=' "It allows the potential customers to obtain information, it helps to establish the popularity of a brand or induces immediate purchases" (Horváth and Bauer, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
122
+ page_content=' 242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
123
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
124
+ page_content=' The fact that direct marketing is built on databases implies that the customer value can be targeted quite accurately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
125
+ page_content=' Also, this marketing communication tool is easily optimizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
126
+ page_content=' Telemarketing, mail advertisement, direct mail and direct response advertising are the forms of direct marketing (Horváth and Bauer, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
127
+ page_content=' Building brand awareness and credibility are definitely a common point in direct marketing and content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
128
+ page_content=' However, direct marketing is less digital than content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
129
+ page_content=' In general, the internet as a medium is less dominant in direct marketing, except for e-mail marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
130
+ page_content=' The purpose of communication in direct marketing is to present the product to make bids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
131
+ page_content=' Therefore, Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
132
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
133
+ page_content=' \uf0e0 2021 \uf0e0 1 115 direct marketing is usually related to selling (receiving orders);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
134
+ page_content=' the eye-catching presentation of products (catalogs) and advertising (mail advertisement).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
135
+ page_content=' According to Tapp (1999, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
136
+ page_content=' 23) "direct marketing is rather a sales system than a communication tool".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
137
+ page_content=' Although nowadays direct marketing has widely been accepted as a marketing communication tool, its sales function cannot be ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
138
+ page_content=' This point of view is also appeared in Kotler and Keller (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
139
+ page_content=' According to Horváth and Bauer (2013), direct marketing provides the recipient with a clear opportunity to respond and directly targets the previously defined target groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
140
+ page_content=' Although it also has a pre-defined target group (Hajdú 2018), content marketing places less emphasis on the sales-related responses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
141
+ page_content=' In content marketing, the responses affect the content itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
142
+ page_content=" In content marketing, building trust, solving the customer's problem and providing further contents contribute to initiating purchases (Barker 2017)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
143
+ page_content=' There is another significant difference between direct marketing and content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
144
+ page_content=' Direct marketing advertises a product or a service in a targeted manner to increase sales volume through immediate selling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
145
+ page_content=' That is why direct marketing is also called "direct order marketing", or “direct advertising".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
146
+ page_content=' Consequently, direct marketing focuses only on the product, which offers the value for the customer (Kotler and Keller, 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
147
+ page_content=' Content marketing creates value and provides consumers with it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
148
+ page_content=' However, content marketing does not aim to sell immediately, only in one step (Fivetechnology, 2019), it has got longer time-orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
149
+ page_content=' Combining direct marketing with content marketing can be very effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
150
+ page_content=' If a customer registers an account online, he or she can receive free content (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
151
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
152
+ page_content=' an ebook), which is content marketing, however, the data provided during the registration are also used to build a database, which can be used for direct marketing purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
153
+ page_content=' Content marketing that builds an audience not only identify demands but also generate it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
154
+ page_content=' The relationship between personal selling and content marketing Few researchers have addressed the question how personal selling and content marketing can be connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
155
+ page_content=' Personal selling is a face-to-face selling technique where the emphasis is on personal interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
156
+ page_content=' In an event, which can be related to personal selling or could be a content marketing format, the company (brand) and its potential and existing customers can meet in person and/or online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
157
+ page_content=' However, it is important to note that the event is only one of several content marketing types, which are mostly digital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
158
+ page_content=' Nowadays, the theory of selling as the most important task of the sales staff has already become outdated since the sales department is usually responsible for many other tasks, such as searching for potential customers, providing information, choosing the target market, providing services, collecting information and distribution (Kotler-Keller 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
159
+ page_content=' 637).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
160
+ page_content=' Information that the sales staff provide about the products and services, in principle, can refer to the content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
161
+ page_content=" Furthermore, services can also link personal selling and content marketing when the sales personnel try to solve the customer's problem." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
162
+ page_content=' Personal selling and content marketing can sometimes be combined but they can hardly be fell into one category due to the fundamental differences in their characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
163
+ page_content=' The relationship between public relations and content marketing Content marketing should not be confused with public relations (Percy, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
164
+ page_content=' In many cases, content marketing is a communication form used on a regular (daily or weekly) bases (Insights 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
165
+ page_content=" Content marketing aims to be part of the consumer's life and seeks to provide value to the customers in an educating and entertaining manner (Lindström and Jörnéus, 2016)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
166
+ page_content=' Public relation (PR) is a strategic tool aiming to turn brand messages into stories that are appealing to the media and its target audiences (Konczosné Szombathelyi 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
167
+ page_content=' Thus, PR builds credibility and trust among the stakeholders (Horváth-Bauer 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
168
+ page_content=' Since public relations is not sales- oriented, it is the changes in the mindset of the target audience that should be measured, not its Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
169
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
170
+ page_content=' \uf0e0 2021 \uf0e0 1 116 effects on sales (Józsa et al, 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
171
+ page_content=' PR seeks to build a good reputation of the company;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
172
+ page_content=' promote the success of the brand;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
173
+ page_content=' deals with counselling and consulting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
174
+ page_content=' All these goals are very similar to those of content marketing, which among other things aims to build credibility and trust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
175
+ page_content=' However, content marketing is not a replacement for public relations (Mathewson and Moran, 2016) Józsa et al (2005) emphasize that whatever the goal of PR is, the focus should be on creating trust by emphasizing understanding and willingness to cooperate to gain support from the stakeholders of the company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
176
+ page_content=' Trust is also a key factor in building strong brands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
177
+ page_content=' Both PR and content marketing can be regarded as regular and systematic communication activities (Józsa et al 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
178
+ page_content=' Muotsos 2017), and both use rather similar tools such as articles, newsletters, blogs, publications, social media, statistics, e-books, events, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
179
+ page_content=' (Probusiness, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
180
+ page_content=' However, there are some differences between PR and content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
181
+ page_content=' Although trust is essential in PR, counselling is only a PR tool or technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
182
+ page_content=' Counseling in PR refers to how we communicate with our clients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
183
+ page_content=' It is a recommended course of action that will serve the client’s goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
184
+ page_content=' On the contrary, in content marketing, the valuable content is always provided in the form of education, relevant information or entertainment (Lindström és Jörnéus, 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
185
+ page_content=' The problem of measuring the effect of PR on sales is also a major difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
186
+ page_content=' The impact of content marketing on sales is a lot easier to measure (Hajdú, 2018), moreover, one of the explicit goals of content marketing is to convert the target public into customers (Barker 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
187
+ page_content=' Effectiveness of content marketing can easily be measured due to its digital nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
188
+ page_content=' Content marketing is customer-centred, focuses only on selected stakeholders and seeks to solve the customer’s problem by providing information or educational content in an entertaining way (Lindström and Jörnéus 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
189
+ page_content=' Duc Le 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
190
+ page_content=' In content marketing, the goal is not to provide all the information but only the relevant content (Wang et al 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
191
+ page_content=' According to Hajdú (2018), content marketing is a profit-oriented tactical activity to gain customers and make deals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
192
+ page_content=' This means that content marketing acquires customers within a reasonable time-period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
193
+ page_content=' Content marketing not only produces content, but it also distributes it through its own channels, whereas PR works quite differently in this respect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
194
+ page_content=' It is advisable is to combine content marketing with PR since they complement each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
195
+ page_content=' PR can help marketers to make a better story about the brand (Spencer 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
196
+ page_content=' The relationship between sales promotion and content marketing There is a scarcity of literature devoted to the analysing the relationship between sales promotion and content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
197
+ page_content=' Horváth and Bauer (2013) refer to sales promotion as a direct influence on consumer behaviour and an impetus to action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
198
+ page_content=' With reference to Bauer and Berács (2006), they emphasize that the primary goal of sales promotion is to promote product sales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
199
+ page_content=' "Sales promotion is a set of short-term incentive tools which aim to make consumers purchase more products more frequently or buy specific products or services" (Kotler-Keller, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
200
+ page_content=' 596).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
201
+ page_content=" Regarding the consumer's benefit, sales promotion tools can be divided into two categories." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
202
+ page_content=' Utilitarian and hedonistic tools can be distinguished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
203
+ page_content=' The utilitarian tools provide financial benefits (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
204
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
205
+ page_content=' price discounts), whereas the hedonistic tools are focusing on entertainment, customer experience and loyalty (Yeshin, 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
206
+ page_content=' Product samples, gifts, contests and events (trade shows and exhibitions), the tools of sales promotion used to create the customer experience (hedonism), are very much related to content marketing (Józsa, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
207
+ page_content=' Product samples make it easier for the customers to try the products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
208
+ page_content=" It is an important link between content marketing and sales promotion because content marketing also provides customers with free and useful content when offering a solution to the customer's problem." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
209
+ page_content=' Thereby, the company can demonstrate its competence and excellence by offering the best solutions to the customer’s problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
210
+ page_content=' Gifts are also commonly used in content marketing in the form of free content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
211
+ page_content=' On the contrary, gifts in sales promotion are not free, they are only given to the customers after the purchase (Horváth and Bauer, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
212
+ page_content=' Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
213
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
214
+ page_content=' \uf0e0 2021 \uf0e0 1 117 Events can belong to content marketing and sales promotion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
215
+ page_content=' and sometimes even to PR, depending on their goals and their implementation (Józsa et al 2005;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
216
+ page_content=' Dankó, 2008, Kranz-Pulizzi, 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
217
+ page_content=' The content of the event is the decisive factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
218
+ page_content=' In an event, if marketers present information about how the customer could solve his or her problem, it is highly likely to be content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
219
+ page_content=' Contests, games or phone applications can also be content marketing tools (Kranz-Pulizzi, 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
220
+ page_content=' However, contests and games as sales promotion tools are commonly used to increase sales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
221
+ page_content=' In this latter case, purchase is often a pre-requisite of entering the contest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
222
+ page_content=' In sales promotion, the customer experience is directly linked to the purchase, while in content marketing it is not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
223
+ page_content=' According to Yeshin (2006), in sales promotion, customer loyalty is gained through financial benefits and consumption (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
224
+ page_content=' g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
225
+ page_content=' through loyalty points, gifts, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
226
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
227
+ page_content=' On the contrary, content marketing seeks to achieve the same goal by providing free content that is useful and/or entertaining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
228
+ page_content=' The primary goal of sales promotion is to increase product sales, which can be a distinguishing factor between content marketing and sales promotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
229
+ page_content=' Although content marketing is also sales-oriented in the long run, here the deal is achieved in several steps (Fivetechnology, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
230
+ page_content=' In this process, the very first step is building trust by giving value without asking for compensation or purchase (Repoviener, 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
231
+ page_content=' Maczuga et al, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
232
+ page_content=' We can conclude that the main differences between content marketing and sales promotion can be found in their objectives and time-orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
233
+ page_content=' Content marketing, which is not a short-term tool, is often regarded as is an introductory stage of sales as it does not aim to make purchases quickly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
234
+ page_content=' Conclusions This paper investigates the relationship between content marketing and the five traditional marketing communication tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
235
+ page_content=' The goal of the article is to generate a discussion on the status of content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
236
+ page_content=' In this paper, content marketing was compared to advertising, direct marketing, personal selling, public relations and sales promotion to find out the main differences and similarities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
237
+ page_content=' An extensive literature review explored some fundamental differences between the traditional marketing communication tools and content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
238
+ page_content=' Based on this result, content marketing can be regarded as a novel marketing communication tool and the sixth element of the revised marketing communication mix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
239
+ page_content=' Content marketing can be effectively used in marketing campaigns in the digital environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
240
+ page_content=' Because of its digital nature, content marketing can be more effective in digitally advanced target markets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
241
+ page_content=' One of the positive effects of COVID-19 is the accelerated digitalization, which favorable to the use of content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
242
+ page_content=' Acknowledgements “The described article/presentation/study was carried out as part of the EFOP-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
243
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
244
+ page_content='1-16-2016- 00011 “Younger and Renewing University – Innovative Knowledge City – institutional development of the University of Miskolc aiming at intelligent specialisation” project implemented in the framework of the Szechenyi 2020 program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
245
+ page_content=' The realization of this project is supported by the European Union, co-financed by the European Social Fund.” "A cikkben/előadásban/tanulmányban ismertetett kutató munka az EFOP-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
246
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
247
+ page_content='1-16-2016-00011 jelű „Fiatalodó és Megújuló Egyetem – Innovatív Tudásváros – a Miskolci Egyetem intelligens szakosodást szolgáló intézményi fejlesztése” projekt részeként – a Széchenyi 2020 keretében – az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg" Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
248
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
249
+ page_content=' \uf0e0 2021 \uf0e0 1 118 References BARKER, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
250
+ page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
251
+ page_content=' How to Create High-Converting Content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
252
+ page_content=' Retrieved from https://contentmarketinginstitute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
253
+ page_content='com/2017/05/create-high-converting-content, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
254
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
255
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
256
+ page_content=' BRENNER, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
257
+ page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
258
+ page_content=' Content Marketing Survey: Marketers Focus On Content Creation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
259
+ page_content=' Retrieved from: https://marketinginsidergroup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
260
+ page_content='com/content-marketing/2019-content- marketing-survey-content-creation/, 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
261
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
262
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
263
+ page_content=' CONTENT MARKETING INSTITUTE (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
264
+ page_content=' Enterprise Content Marketing 2019 – Benchmarks, Budgets, and Trends – North America.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
265
+ page_content=' Retrieved from https://contentmarketinginstitute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
266
+ page_content='com/wp-content/uploads/2019/02/FINAL- 2019_Enterprise_Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
267
+ page_content='pdf, 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
268
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
269
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
270
+ page_content=' DANKÓ, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
271
+ page_content=' (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
272
+ page_content=' Értékesítés-ösztönzés.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
273
+ page_content=' Marketing Intézet Miskolc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
274
+ page_content=' Miskolci Egyetem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
275
+ page_content=' Pro Marketing Miskolc Egyesület DUC LE, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
276
+ page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
277
+ page_content=' Content Marketing, Haaga-Heila University of Applied Sciences, Porvoo FIVETECHNOLOGY (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
278
+ page_content=' Content Marketing & Strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
279
+ page_content=' Retrieved from: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
280
+ page_content='fivetechnology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
281
+ page_content='com/internet-marketing/content-marketing-strategy, 02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
282
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
283
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
284
+ page_content=' HAJDÚ, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
285
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
286
+ page_content=' Az online marketingcontrolling ��rtékelési folyamata a tartalommarketing ROI segítségével.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
287
+ page_content=' Controller Info 6 : 1 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
288
+ page_content=' 5-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
289
+ page_content=' , 4 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
290
+ page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
291
+ page_content='24387/CI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
292
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
293
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
294
+ page_content='2 HORVÁTH, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
295
+ page_content=' - BAUER, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
296
+ page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
297
+ page_content=' Marketingkommunikáció – Stratégia, új média, fogyasztói részvétel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
298
+ page_content=' Budapest: Akadémiai Kiadó.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
299
+ page_content=' IANKOVA S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
300
+ page_content=' - DAVIES I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
301
+ page_content=' - ARCHER-BROWN C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
302
+ page_content=' - MARDER B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
303
+ page_content=' - YAU A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
304
+ page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
305
+ page_content=' A comparison of social media marketing between B2B, B2C and mixed business models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
306
+ page_content=' Industrial marketing management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
307
+ page_content=', 81, 169-179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
308
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
309
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
310
+ page_content='indmarman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
311
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
312
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
313
+ page_content='001 JÓZSA, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
314
+ page_content=', PISKÓTI, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
315
+ page_content=', REKETTYE, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
316
+ page_content=', VERES, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
317
+ page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
318
+ page_content=' Döntésorientált marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
319
+ page_content=' KJK KERSZÖV Jogi és Üzleti kiadó Kft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
320
+ page_content=' Budapest KAMARAONLINE (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
321
+ page_content=' Versenyhátrányt okoz a magyar vállalkozásoknak az informatikai lemaradás.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
322
+ page_content=' Retrieved from: http://kamaraonline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
323
+ page_content='hu/cikk/versenyhatranyt-okoz-a- magyar-vallalkozasoknak-az-informatikai-lemaradas, 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
324
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
325
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
326
+ page_content=' KONCZOSNÉ SZOMBATHELYI, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
327
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
328
+ page_content=' A PR úttörői és napjainkig tartó hatásuk, Széchenyi István Egyetem, Győr, Retrieved from: https://kgk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
329
+ page_content='sze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
330
+ page_content='hu/images/dokumentumok/VEABtanulmanyok/konczosne_szombathelyi _marta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
331
+ page_content='pdf, 05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
332
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
333
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
334
+ page_content=' KOTLER, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
335
+ page_content=' - KELLER, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
336
+ page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
337
+ page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
338
+ page_content=' Marketingmenedzsment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
339
+ page_content=' Budapest: Akadémiai Kiadó.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
340
+ page_content=' KOTLER, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
341
+ page_content=' - KARTAJAYA H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
342
+ page_content=' - SETIAWAN I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
343
+ page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
344
+ page_content=' Marketing 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
345
+ page_content='0 - Moving from Traditional to Digital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
346
+ page_content=' John, & Sons, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
347
+ page_content=' KRANZ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
348
+ page_content=', PULIZZI J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
349
+ page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
350
+ page_content=' Content Marketing Playbook, Junta42 Conent Marketing Institute & Kranz Communications LINDSTRÖM, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
351
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
352
+ page_content=' - JÖRNÉUS, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
353
+ page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
354
+ page_content=' Co-Creating value through Content Marketing, University of Gothengurg, School of Business, Economics and Law MACZUGA P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
355
+ page_content=' - SIKORSKA K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
356
+ page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
357
+ page_content=' Content marketing Handbook: Simple Ways to Innovate Your Marketing Approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
358
+ page_content=' Project under Lifelong Learning Programme of European Commission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
359
+ page_content=' Warsaw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
360
+ page_content=' Racom Communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
361
+ page_content=' ISBN: 978-83-63481-10-0 MATHEWSON, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
362
+ page_content=' - MORAN, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
363
+ page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
364
+ page_content=' Outside-in marketing: Using big data to guide your content marketing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
365
+ page_content=' Boston: IBM Press, Pearson plc MOUTSOS, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
366
+ page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
367
+ page_content=" Publishing frequency: why (and how) we're changing things up." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
368
+ page_content=' Retrieved from: https://contentmarketinginstitute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
369
+ page_content='com/2017/12/publishing-frequency-changing/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
370
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
371
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
372
+ page_content=' MOUTSOS, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
373
+ page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
374
+ page_content=' Tech Content Marketers Talk Content Creation Challenges, Tools, and Trends Retrieved from: https://contentmarketinginstitute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
375
+ page_content='com/2019/03/tech-content- marketers-research/, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
376
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
377
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
378
+ page_content=' Észak-magyarországi Stratégiai Füzetek XVIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
379
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
380
+ page_content=' \uf0e0 2021 \uf0e0 1 119 MURTON BEETS, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
381
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
382
+ page_content=' 2019 B2B Content Marketing Research: It Pays to Put Audience First.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
383
+ page_content=' Retrieved from: https://contentmarketinginstitute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
384
+ page_content='com/2018/10/research-b2b- audience/, 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
385
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
386
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
387
+ page_content=' NAGY, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
388
+ page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
389
+ page_content=' The Neuromarketing Analysis and the Categorization of Television Commercials, Észak-magyarországi Stratégiai Füzetek, XVII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
390
+ page_content=' évf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
391
+ page_content=', 2020, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
392
+ page_content=', pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
393
+ page_content=' 79-88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
394
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
395
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
396
+ page_content='32976/stratfuz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
397
+ page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
398
+ page_content='16 NAGY, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
399
+ page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
400
+ page_content=' The Impact Of Country Of Origin In Mobile Phone Choice Of Generation Y And Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
401
+ page_content=', Journal Of Management And Training, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
402
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
403
+ page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
404
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
405
+ page_content=', pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
406
+ page_content=' 16-29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
407
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
408
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
409
+ page_content='12792/JMTI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
410
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
411
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
412
+ page_content='16 NAGY, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
413
+ page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
414
+ page_content=" E-commerce in Hungary: A Market Analysis, Theory Methodology Practice: 'Club of Economics in Miskolc', Vol." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
415
+ page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
416
+ page_content=', Nr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
417
+ page_content='2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
418
+ page_content=' 25-32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
419
+ page_content=' http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
420
+ page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
421
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
422
+ page_content='18096/TMP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
423
+ page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
424
+ page_content='03.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
425
+ page_content='03 PISKÓTI, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
426
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
427
+ page_content=' Digitalizáció – az új marketingkoncepció és stratégiai megoldások irányai – Marketing 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
428
+ page_content='0, A digitalizáció és annak társadalmi-gazdasági hatásai, Gazdálkodástudományi Bizottság konferenciája, Marketingtudományi Szekció, Budapesti Corvinus Egyetem, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
429
+ page_content=' nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
430
+ page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
431
+ page_content=' Retrieved from: https://docplayer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
432
+ page_content='hu/108312523-Digitalizacio-az-uj-marketingkoncepcio-es-strategiai- megoldasok-iranyai-marketing-4-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
433
+ page_content='html, 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
434
+ page_content='07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
435
+ page_content='2020 PAŽĖRAITĖ, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
436
+ page_content=' - REPOVIENĖ, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
437
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
438
+ page_content=' Content Marketing Decisions for Effective Internal Communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
439
+ page_content=' Management of Organizations: Systematic Research, Sciendo, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
440
+ page_content=' 79(1), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
441
+ page_content=' 117-130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
442
+ page_content=', doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
443
+ page_content='1515/mosr-2018-0008 PERCY, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
444
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
445
+ page_content=' Strategic integrated marketing communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
446
+ page_content=' London: Routledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
447
+ page_content=' PROBUSINESS (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
448
+ page_content=' A tartalommarketing is PR?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
449
+ page_content=' Retrieved from: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
450
+ page_content='probusiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
451
+ page_content='hu/pr/a-tartalommarketing-is-pr/, 09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
452
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
453
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
454
+ page_content=' REPOVIENER, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
455
+ page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
456
+ page_content=' Role of content marketing in a value creation for customer context: a theoretical analysis, International Journal of Global Business Management and Research, Vol 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
457
+ page_content=', issue 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
458
+ page_content=', p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
459
+ page_content=' 37-48 SCOTT, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
460
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
461
+ page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
462
+ page_content=' The new rules of marketing & PR: How to use social media, online video, mobile applications, blogs, news releases, & viral marketing to reach buyers directly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
463
+ page_content=' Hoboken, NJ: John Wiley &amp;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
464
+ page_content=' Sons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
465
+ page_content=' SETHI, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
466
+ page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
467
+ page_content=' Social Media Strategy for Content Marketing, Retrieved from: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
468
+ page_content='entrepreneur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
469
+ page_content='com/article/321683, 02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
470
+ page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
471
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
472
+ page_content=' SPENCER, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
473
+ page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
474
+ page_content=' The Role of PR and Content Marketing in 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
475
+ page_content=' Retrieved from: https://contentmarketinginstitute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
476
+ page_content='com/2014/12/role-pr-content-marketing, 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
477
+ page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
478
+ page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
479
+ page_content=' YESHIN, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
480
+ page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
481
+ page_content=' Sales Promotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
482
+ page_content=' London: Thomson Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
483
+ page_content=' WANG, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
484
+ page_content=' - MALTHOUSE, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
485
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
486
+ page_content=' - CALDER, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
487
+ page_content=' - UZUNOGLU, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
488
+ page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
489
+ page_content=' B2B content marketing for professional services: In-person versus digital contacts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
490
+ page_content=' Industrial Marketing Management, 81, 160-168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
491
+ page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
492
+ page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
493
+ page_content='indmarman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
494
+ page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
495
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
496
+ page_content='006' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItAzT4oBgHgl3EQfVPwp/content/2301.01279v1.pdf'}
JtE3T4oBgHgl3EQfXgpN/content/tmp_files/2301.04479v1.pdf.txt ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ URSI GASS 2023, Sapporo, Japan, 19 – 26 August 2023
2
+ Deep Learning Model with Attention Mechanism for Super-resolution of Wireless Channel
3
+ Characteristics
4
+ Haoyang Zhang(1), Xiping Wang (1), and Danping He(2)
5
+ (1) ABC University, Prague, Czechia; e-mail: [email protected]; [email protected]
6
+ (2) The Next University, Neverland, USA; e-mail: [email protected]
7
+ Abstract
8
+ As an emerging approach, deep learning plays an increas-
9
+ ingly influential role in channel modeling. In this paper, we
10
+ present a super-resolution (SR) model for channel charac-
11
+ teristics. Residual connection and attention mechanism are
12
+ applied to this convolutional neural network (CNN) model.
13
+ Experiments prove that the proposed model can reduce the
14
+ noise interference generated in the super-resolution process
15
+ of channel characteristics and reconstruct low-resolution
16
+ data with high accuracy. The mean absolute error of our
17
+ channel SR model on the PL achieves the effect of 2.82 db
18
+ with scale factor 2. Compared with traditional ray tracing
19
+ methods and vision transformer (ViT), the proposed model
20
+ demonstrates less running time and computing cost.
21
+ 1
22
+ Introduction
23
+ With the rapid development of wireless communication
24
+ technology, 5G is widely used in various fields and daily
25
+ life applications, such as media streaming, gaming, and
26
+ video conferencing[1]. Accurate channel model is regarded
27
+ as the foundation of future wireless network. Generally,
28
+ deterministic and semi-deterministic modeling are the two
29
+ mainstream methods of channel modeling[2].
30
+ However,
31
+ this method has many limitations, including low computa-
32
+ tional efficiency, excessive computing power consumption,
33
+ and it requires complicated simulation.
34
+ Many researchers are trying to make breakthroughs in chan-
35
+ nel modeling by machine learning (ML)[3]. Because of its
36
+ generalizable architecture, machine learning is widely used
37
+ in almost every branch of science and technology. Chan-
38
+ nel modeling is not an exception[4]. As for ML methods,
39
+ deep learning (DL) models of super-resolution (SR) such as
40
+ CNN [5], Transformer [6] and generative adversarial net-
41
+ work (GAN) [7] are frequently employed. However, the
42
+ scope of current research is still limited. Most studies are
43
+ based on pure electromagnetic environment data without
44
+ considering complex terrain and building distribution.
45
+ In this paper, we propose a DL model of SR for channel
46
+ characteristics.
47
+ It recovers high-resolution (HR) charac-
48
+ teristics over low-resolution (LR) scenes built from origi-
49
+ nal data. We transform the channel characteristics gener-
50
+ ation problem into a super-resolution problem of feature
51
+ maps containing various electromagnetic parameters. This
52
+ problem is addressed by using CNN with residual connec-
53
+ tion and attention mechanisms. The overview of our pro-
54
+ posed model is shown in Fig. 1. We used CloudRT[8] for
55
+ ray tracing simulation, simulating the propagation of radio
56
+ waves in complex environments in dense urban areas, and
57
+ obtained channel characteristic information. Besides mean
58
+ absolute error (MAE), we also incorporate the standard de-
59
+ viation error (STDE) into the loss function to balance reli-
60
+ ability and error. We evaluate our proposed model by abla-
61
+ tion study and comparisons with other SR models.
62
+ 2
63
+ Methodology
64
+ 2.1
65
+ Data preprocessing and construction
66
+ Utilizing CloudRT, we developed a high-precision channel
67
+ feature dataset, RT-urban, which is used for training our
68
+ proposed SR model. Simulation configuration details are
69
+ summarized in[8]. We obtained seven channel characteris-
70
+ tics by simulation which are the height of buildings (h), path
71
+ loss (PL), multipath power ratio (Rp), and LOS/NLOS area
72
+ classification, root mean square (RMS) delay (DS), RMS
73
+ azimuth angle spread (φ), and RMS elevation angle spread
74
+ (θ).The latter six characteristics are our SR targets. 462 ray
75
+ data were generated in more than 70 dense urban areas.
76
+ Values of channel characteristics that are far beyond ordi-
77
+ nary thresholds in communication systems are set as the
78
+ minimum (PL, Rp) or the maximum (DS) of the corre-
79
+ sponding normal range. NaN value represents the chan-
80
+ nel characteristics data of receivers located inside buildings.
81
+ This kind of value should be void but set as a real number
82
+ out of the normal range so that the DL model can distin-
83
+ guish. The related data and processing methods are shown
84
+ in our previous work[8].
85
+ 2.2
86
+ Neural network architecture
87
+ The super-resolution problem of the channel feature can be
88
+ expressed as a super-resolution problem of the image. The
89
+ key to image super-resolution lies in recovering from LR
90
+ data to HR data.[9]
91
+ This paper’s copyright is held by Haoyang Zhang. It is published in these proceedings and included in any archive such as
92
+ IEEE Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of
93
+ Scholarly Work.”
94
+ arXiv:2301.04479v1 [eess.SP] 11 Jan 2023
95
+
96
+ Figure 1. The overview of proposed SR model for wireless
97
+ channel characteristics.
98
+ 2.2.1
99
+ Deep-shallow pipe based on residual network
100
+ In this study, we want to directionally generate various HR
101
+ channel features from the collected and processed LR chan-
102
+ nel feature data. There are differences between different
103
+ channel characters, and if all characters are fed into our
104
+ network, the results will be unsatisfactory.
105
+ We propose
106
+ a method of classifying the propagation of deep-shallow
107
+ channels.
108
+ In Fig. 2, the deep-shallow backbone has a deep and shal-
109
+ low panel, which extracts features of different dimensions
110
+ from input data. The deep panel has two convolutional lay-
111
+ ers with activation function ReLU more than the shallow
112
+ panel and repeats the illustrated convolution block multiple
113
+ times to extract features fully. The number of this block N
114
+ in our work is 2. We also introduce the method of residual
115
+ connection. It helps to expand the field of view and reduce
116
+ the loss of features caused by excessive convolution opera-
117
+ tions in the process of convolution.
118
+
119
+ Hdeep = Fdeep(Iin,Wd)+Iin
120
+ Hshallow = Fshallow(Iin,Ws)+Iin
121
+ (1)
122
+ Where H is the output after convolution, Iin and W present
123
+ the input data and weights learn from deep and shallow pipe
124
+ F. After each batch of convolution block, the unprocessed
125
+ input data is residually connected to the feature maps pro-
126
+ duced by the operation. It can help prevent gradient dis-
127
+ sipation during back-propagation, thus making it easier to
128
+ train deep networks.
129
+ 2.2.2
130
+ Attention mechanisms and feature blocks
131
+ It has to be considered that multi-path channel character-
132
+ istics such as PL, DL, and LOS. The learning patterns of
133
+ these features are completely different and tend to show dis-
134
+ tinguished differences in the learning process. So we intro-
135
+ duced an attention mechanism for multi-feature extraction
136
+ on the framework of the SR model in Fig.3. We split the
137
+ feature map F into several branches Klist by using kernels
138
+ with different sizes:
139
+ Klist = Conv(F,kernellist = [1,3,5,7]size)
140
+ (2)
141
+ Figure 2. The overview of the proposed SR model with an
142
+ attention mechanism. Conv(x) means that the convolution
143
+ scale is x. PL* stands for PL, DS, and Rp.
144
+ Figure 3. The overview of attention layer
145
+ As stated before, our goal is to control the information flows
146
+ from multiple characteristics carrying different scales of in-
147
+ formation into the next layer. To achieve this, we need to
148
+ integrate channels from the first N branches of the K list:
149
+ S = ∑
150
+ i
151
+ Ki,
152
+ i = [1,3,5,7]
153
+ (3)
154
+ then we embed the global information by simply using av-
155
+ erage pooling to generate channels as W ∈ RC. The C chan-
156
+ nels are calculated by the following in dimensions h×w:
157
+ Wc = Favg(S) =
158
+ 1
159
+ h×w
160
+ h
161
+
162
+ i
163
+ w
164
+
165
+ j
166
+ S(i, j)
167
+ (4)
168
+ So we can get a compact weight w ∈ R64×64 of different
169
+ channels by a simple fully connected layer, with the re-
170
+ duction of dimensionality for better efficiency. By fusing
171
+ branches of features, this mechanism enhances the ability
172
+ of the previous deep and shallow panels to extract char-
173
+ acteristics and it will also pay attention to multi-scales of
174
+ information when dell with different learning patterns of
175
+ characteristics.
176
+ 2.2.3
177
+ Loss functions
178
+ We generally use pixel loss instead of content loss for char-
179
+ acteristics learning tasks. Through experiments, we found
180
+ that the L1loss can help achieve better results on our task
181
+ than the peak signal-to-noise ratio.
182
+ In data preparation,
183
+ we mentioned six different channel features in this task.
184
+ However, the characteristic of LOS is unique. It only has
185
+ This paper’s copyright is held by Haoyang Zhang. It is published in these proceedings and included in any archive such as
186
+ IEEE Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of
187
+ Scholarly Work.”
188
+
189
+ DataSet
190
+ Loss function
191
+ high
192
+ Ray-Tracing
193
+ resolution(HR)
194
+ Validation
195
+ LosSi1(HR, lout)
196
+ Down
197
+ sampling
198
+ low
199
+ Input
200
+ SR Model
201
+ iteration
202
+ resolution(LR)
203
+ compare
204
+ evaluate
205
+ Deep -
206
+ Input
207
+ panel
208
+ Channel
209
+ multiply
210
+ attention
211
+ LR Data
212
+ blocks
213
+ Shallow.
214
+ Base Model
215
+ panelH
216
+ Nlos
217
+ Block
218
+ 1
219
+ 128
220
+ ATT
221
+ 64
222
+ 64
223
+ Deep feature panel
224
+ Theta
225
+ ayer
226
+ Block
227
+ ..
228
+ (c, 200, 200)
229
+ Input
230
+ PL*
231
+ Block
232
+ Shallow feature panel
233
+ F(64, 200, 200)
234
+ Output
235
+ Fine-tune Part
236
+ Transfer
237
+ Reshape
238
+ Conv(x)
239
+ Relu
240
+ Block
241
+ Attention
242
+ Conv(7)
243
+ Conv(64)=wxK
244
+ m
245
+ Kernel 5x5
246
+ M
247
+ +
248
+ *N blocks
249
+ F(64. 200. 200)
250
+ S(64, 200, 200)
251
+ *N blocks
252
+ F'(64, 200, 200)
253
+ N3
254
+ W(64, 1, 1
255
+ Kernel 7x7
256
+ Learn w E R64*64
257
+ from full connection
258
+ K(64, 200, 200)
259
+ K'(64, 200, 200)two types of integer values. Therefore, the performance
260
+ can only be judged by valuing the accuracy of the model
261
+ for these two types of numerical classification. As a result
262
+ cross-entropy is used as the evaluation index.
263
+ lossl1(ˆI,I) =
264
+ n
265
+ (hw)2 ∑
266
+ i, j
267
+ | ˆIi, j −Ii, j|
268
+ (5)
269
+ lossce(ˆI,I) = −
270
+ n
271
+ (hw)2 ∑
272
+ i, j
273
+ Ii, j,klogˆIi, j,k
274
+ (6)
275
+ Where n,h,w represents the number of batches to be esti-
276
+ mated and the length and width of the region we chose for
277
+ input data, respectively. In order to enhance the confidence
278
+ of the fitted data, we also include the STDE as part of the
279
+ evaluation index of the fitting effect of the loss function:
280
+ STDE(��I,I) =
281
+
282
+ 1
283
+ hw ∑
284
+ i, j
285
+ (ˆIi, j −Ii, j)2
286
+ (7)
287
+ The standard deviation reflects the degree of dispersion be-
288
+ tween the pixel value of the image and the mean value. The
289
+ smaller the standard deviation, the higher the fitting degree
290
+ of the image.
291
+ 3
292
+ Experiment
293
+ 3.1
294
+ Performance of the proposed model
295
+ (a) MAE of Path loss
296
+ (b)
297
+ Classification
298
+ accuracy
299
+ of
300
+ LOS/NLOS
301
+ Figure 4. MAE and classification accuracy of 2 main SR
302
+ targets during the training process.
303
+ It can be observed from the experiment results that, the
304
+ MAE of our channel SR model on the PL achieves the effect
305
+ of 2.82 db with scale factor 2. Under the same conditions,
306
+ the comparison results of ResNet50, Vit, GAN, and UNet
307
+ are shown in Fig. 5 and Table 1. Obviously, after testing,
308
+ it can be found that these DL models, which achieved good
309
+ results in other fields such as computer vision or natural
310
+ language processing, performed worse than the proposed
311
+ model in this paper. On the single-task fitting for PL, the
312
+ performance of ResNet50 and UNet is around 7-8 db on
313
+ average after several epochs of training. Moreover, ViT can
314
+ only reach 8 db after modifying more layers and processing
315
+ with masks. The best result of GAN is even larger than 12
316
+ db and still contains much noise. Our model has achieved
317
+ results far exceeding the popular SR models on the channel
318
+ super-resolution task through the comparison.
319
+ On the RT-Urban dataset we constructed, we performed SR
320
+ training on 6 main channel features with scales of 2, 4, and
321
+ 8, and the results are shown in Figure. 4 and Table 2. Dur-
322
+ ing the training process of the shared parameter layer, it
323
+ can be found that the loss of each feature decreases rapidly
324
+ around the first 100 epochs and achieves a relatively sta-
325
+ ble result. The performance of the following targeted fea-
326
+ ture extractor can be optimized by 0.5-0.7 db on the best
327
+ achieved by the backbone after fine-tuning.
328
+ In the classification training of LOS/NLOS and θ, it can
329
+ be observed that the second half of SR training at scale 8
330
+ is more volatile and not as smooth as other features. After
331
+ splitting the feature map data and visual analysis, we found
332
+ that large-scale downsampling will make the edge of the
333
+ classification area seriously jagged. Moreover, extracting a
334
+ more accurate mapping relationship is impossible and will
335
+ affect accuracy. However, the classification can still achieve
336
+ a correct rate of more than 91%, indicating that our model
337
+ has an imposing recovery effect on the channel feature data.
338
+ (a) Ground-Truth
339
+ (b) UNet
340
+ (c) ViT
341
+ (d) Ours
342
+ (e) GAN
343
+ (f) ResNet50
344
+ Figure 5. Visualization of Super-Resolution results of DS
345
+ in a region of 1000 × 1000 m2 with scale factor 2.
346
+ Table 1. Quantitative results for the experiments
347
+ Dataset
348
+ Method
349
+ MAE/db
350
+ STDE
351
+ RT-Urban
352
+ ViT
353
+ 7-8
354
+ 11-12
355
+ GAN
356
+ 12-14
357
+ 20-22
358
+ GANSR
359
+ 7-8
360
+ 17-20
361
+ ResNet50
362
+ 6-7
363
+ 9-10
364
+ UNet
365
+ 6-7
366
+ 12-14
367
+ Ours
368
+ 2.83 (best)
369
+ 5.09
370
+ 3.2
371
+ Ablation study
372
+ The ablation experiments are used to verify whether these
373
+ methods we take to improve the SR of the model improve
374
+ This paper’s copyright is held by Haoyang Zhang. It is published in these proceedings and included in any archive such as
375
+ IEEE Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of
376
+ Scholarly Work.”
377
+
378
+ 8
379
+ Scale = 2
380
+ Scale = 4
381
+ 7
382
+ Scale = 8
383
+ Path Loss (dB)
384
+ 3
385
+ 50
386
+ 100
387
+ 150
388
+ 200
389
+ 0
390
+ Epochs100
391
+ 98
392
+ 96
393
+ 94
394
+ Accuracy (
395
+ 92
396
+ 90
397
+ 88
398
+ 86
399
+ Scale = 2
400
+ Scale = 4
401
+ 84
402
+ Scale = 8
403
+ 82
404
+ 100
405
+ 150
406
+ 200
407
+ 50
408
+ 0
409
+ EpochsTable 2. Super resolution performance (MAE & STDE)
410
+ Scale
411
+ Targets
412
+ PL
413
+ Rp
414
+ DS
415
+ φ
416
+ θ
417
+ LOS/
418
+ NLOS
419
+ 2
420
+ MAE
421
+ 2.82
422
+ 0.58
423
+ 5.63
424
+ 4.16
425
+ 0.72
426
+ 99%
427
+ STDE
428
+ 5.09
429
+ 1.93
430
+ 10.64
431
+ 9.63
432
+ 1.58
433
+ N/A
434
+ 4
435
+ MAE
436
+ 3.83
437
+ 1.01
438
+ 8.84
439
+ 7.03
440
+ 1.03
441
+ 95%
442
+ STDE
443
+ 7.06
444
+ 3.08
445
+ 15.92
446
+ 15.13
447
+ 2.23
448
+ N/A
449
+ 8
450
+ MAE
451
+ 5.03
452
+ 1.58
453
+ 12.53
454
+ 10.65
455
+ 1.49
456
+ 90%
457
+ STDE
458
+ 8.96
459
+ 4.29
460
+ 20.51
461
+ 20.18
462
+ 2.94
463
+ N/A
464
+ Table 3. Cumulative super-resolution performance of PL
465
+ MAE
466
+ STDE
467
+ scale=2
468
+ scale=4
469
+ scale=8
470
+ scale=2
471
+ scale=4
472
+ scale=8
473
+ +ATT
474
+ +5%
475
+ +3%
476
+ +6%
477
+ +6%
478
+ +4%
479
+ +5%
480
+ +DA
481
+ +16%
482
+ +12%
483
+ +12%
484
+ +10%
485
+ +5%
486
+ +6%
487
+ +RES
488
+ +11%
489
+ +7%
490
+ +9%
491
+ +11%
492
+ +5%
493
+ +6%
494
+ STL
495
+ 0
496
+ 0
497
+ 0
498
+ 0
499
+ 0
500
+ 0
501
+ +ATT: Add attention mechanism to +DA.
502
+ +DA: Add data augmentation to +RES.
503
+ +RES: Add residual connection and iterative up-and-down to STL
504
+ STL: The proposed model without RES, DA, and ATT in training.
505
+ the fitting effect. After removing different strategies, we
506
+ choose the most representative PL among the channel char-
507
+ acteristics and test its performance with MAE and STDE.
508
+ The results of the MAE and STDE ablation experiments are
509
+ shown in Table 3, respectively. Here we use the model we
510
+ designed as the baseline. RES represents the strategy of
511
+ residual connections in the neural network, and the atten-
512
+ tion mechanism will improve the super-resolution results
513
+ by nearly 23%. DA will also have a significant effect on
514
+ MAE. And it can be noticed that even with the increase of
515
+ the super-resolution scale, the improvement by these meth-
516
+ ods will still be stable.
517
+ 4
518
+ Conclusion
519
+ This paper proposes a residual-based SR model for wireless
520
+ channel characteristics. We enhance the fitting ability of the
521
+ proposed SR model by attention mechanism and generate a
522
+ higher accuracy. A deep-shallow panel is used to expand
523
+ the receptive field. We train our model using RT-urban con-
524
+ structed by CloudRT platform. The proposed model can
525
+ achieve SR performances of PL with MAE of 2.83db and
526
+ 99% accuracy of LOS areas given scale factor as 2. As
527
+ the SR scale increases, this model maintains stable perfor-
528
+ mance according to the numerical experiments. The pro-
529
+ posed model are also compared with other state-of-the-art
530
+ DL models such as ResNet, ViT, and GAN. In the future,
531
+ we study the structure used in our current SR model to im-
532
+ prove the accuracy of the SR of channel characteristics.
533
+ Acknowledgements
534
+ wait to add...
535
+ References
536
+ [1] C. Liu. Editorial: special topic on edge intelligence for
537
+ internet of things. ZTE Communications, 19(2):01–01,
538
+ 2021.
539
+ [2] Kapil Bhardwaj, Anant Singh, and Vibhav Kumar
540
+ Sachan. 5g: An overview of channels characteristics
541
+ and modelling techniques. In 2018 Fifth International
542
+ Conference on Parallel, Distributed and Grid Comput-
543
+ ing (PDGC), pages 400–405, 2018.
544
+ [3] Sanaz
545
+ Mohammadjafari,
546
+ Sophie
547
+ Roginsky,
548
+ Emir
549
+ Kavurmacioglu, Mucahit Cevik, Jonathan Ethier, and
550
+ Ayse Basar Bener.
551
+ Machine learning-based radio
552
+ coverage prediction in urban environments.
553
+ IEEE
554
+ Transactions on Network and Service Management,
555
+ 17(4):2117–2130, 2020.
556
+ [4] Danping He, Zhuocheng Xu, Huiyun Can, Yue Yin,
557
+ Lina Wu, and Ke Guan. Path loss prediction based on
558
+ machine learning and satellite image. Chinese journal
559
+ of radio science, 37(3):8, 2022.
560
+ [5] Chao Dong, Chen Change Loy, Kaiming He, and Xi-
561
+ aoou Tang. Learning a deep convolutional network for
562
+ image super-resolution. In David Fleet, Tomas Pajdla,
563
+ Bernt Schiele, and Tinne Tuytelaars, editors, Computer
564
+ Vision – ECCV 2014, pages 184–199, 2014.
565
+ [6] Yu Tian, Shuai Yuan, Weisheng Chen, and Naijin Liu.
566
+ Transformer based radio map prediction model for
567
+ dense urban environments. In 2021 13th International
568
+ Symposium on Antennas, Propagation and EM Theory
569
+ (ISAPE), volume Volume1, pages 1–3, 2021.
570
+ [7] Lantu Guo, Yan Zhang, and Yue Li.
571
+ An intelligent
572
+ electromagnetic environment reconstruction method
573
+ based on super-resolution generative adversarial net-
574
+ work. Physical Communication, 44:101253, 2021.
575
+ [8] Z. Zhang, X. Wang, D. He, Q. Huang, and D. Liu.
576
+ Ray-tracing simulation and analysis of 5g channel char-
577
+ acteristics in dense urban areas.
578
+ In 2022 IEEE In-
579
+ ternational Symposium on Antennas and Propagation
580
+ and USNC-URSI Radio Science Meeting (AP-S/URSI),
581
+ pages 1690–1691, 2022.
582
+ [9] Zhihao Wang, Jian Chen, and Steven C. H. Hoi. Deep
583
+ learning for image super-resolution: A survey. IEEE
584
+ Transactions on Pattern Analysis and Machine Intelli-
585
+ gence, 43(10):3365–3387, 2021.
586
+ This paper’s copyright is held by Haoyang Zhang. It is published in these proceedings and included in any archive such as
587
+ IEEE Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of
588
+ Scholarly Work.”
589
+
JtE3T4oBgHgl3EQfXgpN/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf,len=215
2
+ page_content='URSI GASS 2023, Sapporo, Japan, 19 – 26 August 2023 Deep Learning Model with Attention Mechanism for Super-resolution of Wireless Channel Characteristics Haoyang Zhang(1), Xiping Wang (1), and Danping He(2) (1) ABC University, Prague, Czechia;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
3
+ page_content=' e-mail: FAA@seznam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
4
+ page_content='cz;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
5
+ page_content=' SBA@email.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
6
+ page_content='cz (2) The Next University, Neverland, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
7
+ page_content=' e-mail: TCA@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
8
+ page_content='com Abstract As an emerging approach, deep learning plays an increas- ingly influential role in channel modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
9
+ page_content=' In this paper, we present a super-resolution (SR) model for channel charac- teristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
10
+ page_content=' Residual connection and attention mechanism are applied to this convolutional neural network (CNN) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
11
+ page_content=' Experiments prove that the proposed model can reduce the noise interference generated in the super-resolution process of channel characteristics and reconstruct low-resolution data with high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
12
+ page_content=' The mean absolute error of our channel SR model on the PL achieves the effect of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
13
+ page_content='82 db with scale factor 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
14
+ page_content=' Compared with traditional ray tracing methods and vision transformer (ViT), the proposed model demonstrates less running time and computing cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
15
+ page_content=' 1 Introduction With the rapid development of wireless communication technology, 5G is widely used in various fields and daily life applications, such as media streaming, gaming, and video conferencing[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
16
+ page_content=' Accurate channel model is regarded as the foundation of future wireless network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
17
+ page_content=' Generally, deterministic and semi-deterministic modeling are the two mainstream methods of channel modeling[2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
18
+ page_content=' However, this method has many limitations, including low computa- tional efficiency, excessive computing power consumption, and it requires complicated simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
19
+ page_content=' Many researchers are trying to make breakthroughs in chan- nel modeling by machine learning (ML)[3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
20
+ page_content=' Because of its generalizable architecture, machine learning is widely used in almost every branch of science and technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
21
+ page_content=' Chan- nel modeling is not an exception[4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
22
+ page_content=' As for ML methods, deep learning (DL) models of super-resolution (SR) such as CNN [5], Transformer [6] and generative adversarial net- work (GAN) [7] are frequently employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
23
+ page_content=' However, the scope of current research is still limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
24
+ page_content=' Most studies are based on pure electromagnetic environment data without considering complex terrain and building distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
25
+ page_content=' In this paper, we propose a DL model of SR for channel characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
26
+ page_content=' It recovers high-resolution (HR) charac- teristics over low-resolution (LR) scenes built from origi- nal data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
27
+ page_content=' We transform the channel characteristics gener- ation problem into a super-resolution problem of feature maps containing various electromagnetic parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
28
+ page_content=' This problem is addressed by using CNN with residual connec- tion and attention mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
29
+ page_content=' The overview of our pro- posed model is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
30
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
31
+ page_content=' We used CloudRT[8] for ray tracing simulation, simulating the propagation of radio waves in complex environments in dense urban areas, and obtained channel characteristic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
32
+ page_content=' Besides mean absolute error (MAE), we also incorporate the standard de- viation error (STDE) into the loss function to balance reli- ability and error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
33
+ page_content=' We evaluate our proposed model by abla- tion study and comparisons with other SR models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
34
+ page_content=' 2 Methodology 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
35
+ page_content='1 Data preprocessing and construction Utilizing CloudRT, we developed a high-precision channel feature dataset, RT-urban, which is used for training our proposed SR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
36
+ page_content=' Simulation configuration details are summarized in[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
37
+ page_content=' We obtained seven channel characteris- tics by simulation which are the height of buildings (h), path loss (PL), multipath power ratio (Rp), and LOS/NLOS area classification, root mean square (RMS) delay (DS), RMS azimuth angle spread (φ), and RMS elevation angle spread (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
38
+ page_content='The latter six characteristics are our SR targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
39
+ page_content=' 462 ray data were generated in more than 70 dense urban areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
40
+ page_content=' Values of channel characteristics that are far beyond ordi- nary thresholds in communication systems are set as the minimum (PL, Rp) or the maximum (DS) of the corre- sponding normal range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
41
+ page_content=' NaN value represents the chan- nel characteristics data of receivers located inside buildings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
42
+ page_content=' This kind of value should be void but set as a real number out of the normal range so that the DL model can distin- guish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
43
+ page_content=' The related data and processing methods are shown in our previous work[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
44
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
45
+ page_content='2 Neural network architecture The super-resolution problem of the channel feature can be expressed as a super-resolution problem of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
46
+ page_content=' The key to image super-resolution lies in recovering from LR data to HR data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
47
+ page_content=' [9] This paper’s copyright is held by Haoyang Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
48
+ page_content=' It is published in these proceedings and included in any archive such as IEEE Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of Scholarly Work.” arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
49
+ page_content='04479v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
50
+ page_content='SP] 11 Jan 2023 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
51
+ page_content=' The overview of proposed SR model for wireless channel characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
52
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
53
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
54
+ page_content='1 Deep-shallow pipe based on residual network In this study, we want to directionally generate various HR channel features from the collected and processed LR chan- nel feature data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
55
+ page_content=' There are differences between different channel characters, and if all characters are fed into our network, the results will be unsatisfactory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
56
+ page_content=' We propose a method of classifying the propagation of deep-shallow channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
57
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
58
+ page_content=' 2, the deep-shallow backbone has a deep and shal- low panel, which extracts features of different dimensions from input data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
59
+ page_content=' The deep panel has two convolutional lay- ers with activation function ReLU more than the shallow panel and repeats the illustrated convolution block multiple times to extract features fully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
60
+ page_content=' The number of this block N in our work is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
61
+ page_content=' We also introduce the method of residual connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
62
+ page_content=' It helps to expand the field of view and reduce the loss of features caused by excessive convolution opera- tions in the process of convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
63
+ page_content=' � Hdeep = Fdeep(Iin,Wd)+Iin Hshallow = Fshallow(Iin,Ws)+Iin (1) Where H is the output after convolution, Iin and W present the input data and weights learn from deep and shallow pipe F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
64
+ page_content=' After each batch of convolution block, the unprocessed input data is residually connected to the feature maps pro- duced by the operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
65
+ page_content=' It can help prevent gradient dis- sipation during back-propagation, thus making it easier to train deep networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
66
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
67
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
68
+ page_content='2 Attention mechanisms and feature blocks It has to be considered that multi-path channel character- istics such as PL, DL, and LOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
69
+ page_content=' The learning patterns of these features are completely different and tend to show dis- tinguished differences in the learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
70
+ page_content=' So we intro- duced an attention mechanism for multi-feature extraction on the framework of the SR model in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
71
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
72
+ page_content=' We split the feature map F into several branches Klist by using kernels with different sizes: Klist = Conv(F,kernellist = [1,3,5,7]size) (2) Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
73
+ page_content=' The overview of the proposed SR model with an attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
74
+ page_content=' Conv(x) means that the convolution scale is x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
75
+ page_content=' PL* stands for PL, DS, and Rp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
76
+ page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
77
+ page_content=' The overview of attention layer As stated before, our goal is to control the information flows from multiple characteristics carrying different scales of in- formation into the next layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
78
+ page_content=' To achieve this, we need to integrate channels from the first N branches of the K list: S = ∑ i Ki, i = [1,3,5,7] (3) then we embed the global information by simply using av- erage pooling to generate channels as W ∈ RC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
79
+ page_content=' The C chan- nels are calculated by the following in dimensions h×w: Wc = Favg(S) = 1 h×w h ∑ i w ∑ j S(i, j) (4) So we can get a compact weight w ∈ R64×64 of different channels by a simple fully connected layer, with the re- duction of dimensionality for better efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
80
+ page_content=' By fusing branches of features, this mechanism enhances the ability of the previous deep and shallow panels to extract char- acteristics and it will also pay attention to multi-scales of information when dell with different learning patterns of characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
81
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
82
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
83
+ page_content='3 Loss functions We generally use pixel loss instead of content loss for char- acteristics learning tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
84
+ page_content=' Through experiments, we found that the L1loss can help achieve better results on our task than the peak signal-to-noise ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
85
+ page_content=' In data preparation, we mentioned six different channel features in this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
86
+ page_content=' However, the characteristic of LOS is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
87
+ page_content=' It only has This paper’s copyright is held by Haoyang Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
88
+ page_content=' It is published in these proceedings and included in any archive such as IEEE Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of Scholarly Work.” DataSet Loss function high Ray-Tracing resolution(HR) Validation LosSi1(HR, lout) Down sampling low Input SR Model iteration resolution(LR) compare evaluate Deep - Input panel Channel multiply attention LR Data blocks Shallow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
89
+ page_content=' Base Model panelH Nlos Block 1 128 ATT 64 64 Deep feature panel Theta ayer Block .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
90
+ page_content='. (c, 200, 200) Input PL* Block Shallow feature panel F(64, 200, 200) Output Fine-tune Part Transfer Reshape Conv(x) Relu Block Attention Conv(7) Conv(64)=wxK m Kernel 5x5 M + N blocks F(64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
91
+ page_content=' 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
92
+ page_content=" 200) S(64, 200, 200) N blocks F'(64, 200, 200) N3 W(64, 1, 1 Kernel 7x7 Learn w E R64*64 from full connection K(64, 200, 200) K'(64, 200, 200)two types of integer values." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
93
+ page_content=' Therefore, the performance can only be judged by valuing the accuracy of the model for these two types of numerical classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
94
+ page_content=' As a result cross-entropy is used as the evaluation index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
95
+ page_content=' lossl1(ˆI,I) = n (hw)2 ∑ i, j | ˆIi, j −Ii, j| (5) lossce(ˆI,I) = − n (hw)2 ∑ i, j Ii, j,klogˆIi, j,k (6) Where n,h,w represents the number of batches to be esti- mated and the length and width of the region we chose for input data, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
96
+ page_content=' In order to enhance the confidence of the fitted data, we also include the STDE as part of the evaluation index of the fitting effect of the loss function: STDE(ˆI,I) = � 1 hw ∑ i, j (ˆIi, j −Ii, j)2 (7) The standard deviation reflects the degree of dispersion be- tween the pixel value of the image and the mean value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
97
+ page_content=' The smaller the standard deviation, the higher the fitting degree of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
98
+ page_content=' 3 Experiment 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
99
+ page_content='1 Performance of the proposed model (a) MAE of Path loss (b) Classification accuracy of LOS/NLOS Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
100
+ page_content=' MAE and classification accuracy of 2 main SR targets during the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
101
+ page_content=' It can be observed from the experiment results that, the MAE of our channel SR model on the PL achieves the effect of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
102
+ page_content='82 db with scale factor 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
103
+ page_content=' Under the same conditions, the comparison results of ResNet50, Vit, GAN, and UNet are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
104
+ page_content=' 5 and Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
105
+ page_content=' Obviously, after testing, it can be found that these DL models, which achieved good results in other fields such as computer vision or natural language processing, performed worse than the proposed model in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
106
+ page_content=' On the single-task fitting for PL, the performance of ResNet50 and UNet is around 7-8 db on average after several epochs of training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
107
+ page_content=' Moreover, ViT can only reach 8 db after modifying more layers and processing with masks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
108
+ page_content=' The best result of GAN is even larger than 12 db and still contains much noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
109
+ page_content=' Our model has achieved results far exceeding the popular SR models on the channel super-resolution task through the comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
110
+ page_content=' On the RT-Urban dataset we constructed, we performed SR training on 6 main channel features with scales of 2, 4, and 8, and the results are shown in Figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
111
+ page_content=' 4 and Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
112
+ page_content=' Dur- ing the training process of the shared parameter layer, it can be found that the loss of each feature decreases rapidly around the first 100 epochs and achieves a relatively sta- ble result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
113
+ page_content=' The performance of the following targeted fea- ture extractor can be optimized by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
114
+ page_content='5-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
115
+ page_content='7 db on the best achieved by the backbone after fine-tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
116
+ page_content=' In the classification training of LOS/NLOS and θ, it can be observed that the second half of SR training at scale 8 is more volatile and not as smooth as other features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
117
+ page_content=' After splitting the feature map data and visual analysis, we found that large-scale downsampling will make the edge of the classification area seriously jagged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
118
+ page_content=' Moreover, extracting a more accurate mapping relationship is impossible and will affect accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
119
+ page_content=' However, the classification can still achieve a correct rate of more than 91%, indicating that our model has an imposing recovery effect on the channel feature data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
120
+ page_content=' (a) Ground-Truth (b) UNet (c) ViT (d) Ours (e) GAN (f) ResNet50 Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
121
+ page_content=' Visualization of Super-Resolution results of DS in a region of 1000 × 1000 m2 with scale factor 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
122
+ page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
123
+ page_content=' Quantitative results for the experiments Dataset Method MAE/db STDE RT-Urban ViT 7-8 11-12 GAN 12-14 20-22 GANSR 7-8 17-20 ResNet50 6-7 9-10 UNet 6-7 12-14 Ours 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
124
+ page_content='83 (best) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
125
+ page_content='09 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
126
+ page_content='2 Ablation study The ablation experiments are used to verify whether these methods we take to improve the SR of the model improve This paper’s copyright is held by Haoyang Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
127
+ page_content=' It is published in these proceedings and included in any archive such as IEEE Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of Scholarly Work.” 8 Scale = 2 Scale = 4 7 Scale = 8 Path Loss (dB) 3 50 100 150 200 0 Epochs100 98 96 94 Accuracy ( 92 90 88 86 Scale = 2 Scale = 4 84 Scale = 8 82 100 150 200 50 0 EpochsTable 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
128
+ page_content=' Super resolution performance (MAE & STDE) Scale Targets PL Rp DS φ θ LOS/ NLOS 2 MAE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
129
+ page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
130
+ page_content='58 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
131
+ page_content='63 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
132
+ page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
133
+ page_content='72 99% STDE 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
134
+ page_content='09 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
135
+ page_content='93 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
136
+ page_content='64 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
137
+ page_content='63 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
138
+ page_content='58 N/A 4 MAE 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
139
+ page_content='83 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
140
+ page_content='01 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
141
+ page_content='84 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
142
+ page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
143
+ page_content='03 95% STDE 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
144
+ page_content='06 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
145
+ page_content='08 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
146
+ page_content='92 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
147
+ page_content='13 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
148
+ page_content='23 N/A 8 MAE 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
149
+ page_content='03 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
150
+ page_content='58 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
151
+ page_content='53 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
152
+ page_content='65 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
153
+ page_content='49 90% STDE 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
154
+ page_content='96 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
155
+ page_content='29 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
156
+ page_content='51 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
157
+ page_content='18 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
158
+ page_content='94 N/A Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
159
+ page_content=' Cumulative super-resolution performance of PL MAE STDE scale=2 scale=4 scale=8 scale=2 scale=4 scale=8 +ATT +5% +3% +6% +6% +4% +5% +DA +16% +12% +12% +10% +5% +6% +RES +11% +7% +9% +11% +5% +6% STL 0 0 0 0 0 0 +ATT: Add attention mechanism to +DA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
160
+ page_content=' +DA: Add data augmentation to +RES.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
161
+ page_content=' +RES: Add residual connection and iterative up-and-down to STL STL: The proposed model without RES, DA, and ATT in training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
162
+ page_content=' the fitting effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
163
+ page_content=' After removing different strategies, we choose the most representative PL among the channel char- acteristics and test its performance with MAE and STDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
164
+ page_content=' The results of the MAE and STDE ablation experiments are shown in Table 3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
165
+ page_content=' Here we use the model we designed as the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
166
+ page_content=' RES represents the strategy of residual connections in the neural network, and the atten- tion mechanism will improve the super-resolution results by nearly 23%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
167
+ page_content=' DA will also have a significant effect on MAE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
168
+ page_content=' And it can be noticed that even with the increase of the super-resolution scale, the improvement by these meth- ods will still be stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
169
+ page_content=' 4 Conclusion This paper proposes a residual-based SR model for wireless channel characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
170
+ page_content=' We enhance the fitting ability of the proposed SR model by attention mechanism and generate a higher accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
171
+ page_content=' A deep-shallow panel is used to expand the receptive field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
172
+ page_content=' We train our model using RT-urban con- structed by CloudRT platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
173
+ page_content=' The proposed model can achieve SR performances of PL with MAE of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
174
+ page_content='83db and 99% accuracy of LOS areas given scale factor as 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
175
+ page_content=' As the SR scale increases, this model maintains stable perfor- mance according to the numerical experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
176
+ page_content=' The pro- posed model are also compared with other state-of-the-art DL models such as ResNet, ViT, and GAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
177
+ page_content=' In the future, we study the structure used in our current SR model to im- prove the accuracy of the SR of channel characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
178
+ page_content=' Acknowledgements wait to add.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
179
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
180
+ page_content=' References [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
181
+ page_content=' Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
182
+ page_content=' Editorial: special topic on edge intelligence for internet of things.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
183
+ page_content=' ZTE Communications, 19(2):01–01, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
184
+ page_content=' [2] Kapil Bhardwaj, Anant Singh, and Vibhav Kumar Sachan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
185
+ page_content=' 5g: An overview of channels characteristics and modelling techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
186
+ page_content=' In 2018 Fifth International Conference on Parallel, Distributed and Grid Comput- ing (PDGC), pages 400–405, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
187
+ page_content=' [3] Sanaz Mohammadjafari, Sophie Roginsky, Emir Kavurmacioglu, Mucahit Cevik, Jonathan Ethier, and Ayse Basar Bener.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
188
+ page_content=' Machine learning-based radio coverage prediction in urban environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
189
+ page_content=' IEEE Transactions on Network and Service Management, 17(4):2117–2130, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
190
+ page_content=' [4] Danping He, Zhuocheng Xu, Huiyun Can, Yue Yin, Lina Wu, and Ke Guan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
191
+ page_content=' Path loss prediction based on machine learning and satellite image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
192
+ page_content=' Chinese journal of radio science, 37(3):8, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
193
+ page_content=' [5] Chao Dong, Chen Change Loy, Kaiming He, and Xi- aoou Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
194
+ page_content=' Learning a deep convolutional network for image super-resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
195
+ page_content=' In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 184–199, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
196
+ page_content=' [6] Yu Tian, Shuai Yuan, Weisheng Chen, and Naijin Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
197
+ page_content=' Transformer based radio map prediction model for dense urban environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
198
+ page_content=' In 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), volume Volume1, pages 1–3, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
199
+ page_content=' [7] Lantu Guo, Yan Zhang, and Yue Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
200
+ page_content=' An intelligent electromagnetic environment reconstruction method based on super-resolution generative adversarial net- work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
201
+ page_content=' Physical Communication, 44:101253, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
202
+ page_content=' [8] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
203
+ page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
204
+ page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
205
+ page_content=' He, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
206
+ page_content=' Huang, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
207
+ page_content=' Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
208
+ page_content=' Ray-tracing simulation and analysis of 5g channel char- acteristics in dense urban areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
209
+ page_content=' In 2022 IEEE In- ternational Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), pages 1690–1691, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
210
+ page_content=' [9] Zhihao Wang, Jian Chen, and Steven C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
211
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
212
+ page_content=' Hoi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
213
+ page_content=' Deep learning for image super-resolution: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
214
+ page_content=' IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 43(10):3365–3387, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
215
+ page_content=' This paper’s copyright is held by Haoyang Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
216
+ page_content=' It is published in these proceedings and included in any archive such as IEEE Xplore under the license granted by the “Agreement Granting URSI and IEICE Rights Related to Publication of Scholarly Work.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JtE3T4oBgHgl3EQfXgpN/content/2301.04479v1.pdf'}
KdAyT4oBgHgl3EQff_ia/content/2301.00351v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:118e27d98ba421696bff2bb97c508cbc7dfd9fcc74a0a553cc06f9f989af643a
3
+ size 538578
MdFJT4oBgHgl3EQfzC0_/content/tmp_files/2301.11641v1.pdf.txt ADDED
@@ -0,0 +1,706 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ The guide to the guiding center aka pseudo-momentum operator
4
+ construction
5
+ E.L. Rumyantsev and A.V. Germanenko
6
+ School of Natural Science and Mathematics, Ural Federal University,
7
+ 620002 Ekaterinburg, Russia
8
+
9
+ Abstract
10
+ The strictly gauge invariant approach to the construction of the analog of guiding center integrals
11
+ of motion in spatially homogeneous/inhomogeneous constant magnetic fields is considered. With
12
+ their help the gauge invariant equations, describing the wave functions of highly degenerate Lan-
13
+ dau levels in the “classical” non-relativistic case, are formulated. The proposed gauge-invariant
14
+ approach was used also for the construction of the equations describing the quasi-relativistic car-
15
+ riers’ behavior in the homogeneous /inhomogeneous magnetic field in the single layer graphene.
16
+
17
+ Keywords: Gauge invariance, vector potential, pseudo-momentum operator, guiding center oper-
18
+ ator, graphene, SUSY equations, spatially homogeneous/inhomogeneous constant magnetic fields
19
+ 1 Introduction
20
+ Guiding center approximation (or drift approximation) is a well-known and powerful theoretical
21
+ tool to describe the “classical” charge particle motion in plasma in a strong magnetic field [1]. This
22
+ most widely used approach allows to decouple fast helical motion of the particle about a local
23
+ magnetic line from the slow bounce and drift motions along and across magnetic field lines [2,3].
24
+ The notion of the guiding center operator as the certain operator integration constant arises also in
25
+ the quantum mechanical description of the motion in a constant, spatially uniform magnetic field
26
+ [4,5,6]. In what follows we intend to propose the gauge invariant method of constructing the so
27
+ called pseudo-momentum operators which can be used for labelling wave functions of the highly
28
+ degenerate Landau levels and which are directly connected to the guiding center variables in their
29
+ classical meaning.
30
+ 2 Uniform magnetic field problem revisited
31
+ The motion of a particle of mass 𝑚 and charge 𝑞 in uniform constant magnetic field is one of the
32
+ most studied quantum systems. Due to specific algebraic structure of the Hamiltonians considered,
33
+ as in relativistic case (Dirac Hamiltonian), so in non-relativistic case (Schrodinger Hamiltonian),
34
+ the energy spectrum can be easily obtained without turn to the solution of corresponding differen-
35
+
36
+ 2
37
+
38
+ tial equations. Nevertheless, to our point of view there are some questions to be clarified concern-
39
+ ing the derivation of the Eigen wave functions in this seemingly simple and thoroughly scrutinized
40
+ problem. The problem hinges on the necessity to fix the form of the vector potential to achieve
41
+ this goal. Starting from the papers published by E. H. Kennard, C. C. Darwin and V. Fock [7,8,9]
42
+ it was common to use mainly circular gauge 𝑨 = [𝑩 × 𝒓] 2
43
+ ⁄ . For the beginning, we reconsider this
44
+ simplest case of non-relativistic 2D motion of the particle with the charge |𝑞| in the X-Y plane
45
+ perpendicular to uniform constant external magnetic field 𝐵 > 0 directed along Z-axis. To sim-
46
+ plify our consideration, we neglect spin. The Hamiltonian to be considered in the first quantization
47
+ runs as
48
+ 𝐻̂ = 𝑚
49
+ 2 (𝑣̂𝑥
50
+ 2 + 𝑣̂𝑦
51
+ 2) (1)
52
+ Where 𝒗 = (𝒑 − |𝑞|𝑨) 𝑚
53
+
54
+ , due to minimal coupling hypotheses. Hereafter ℏ = 𝑐 = 1. So defined
55
+ velocity component operators satisfy the following commutation rule [𝑣̂𝑥
56
+ (+), 𝑣̂𝑦
57
+ (+)] = 𝑖 𝑙𝐵
58
+ 2𝑚2
59
+
60
+ 𝑙𝐵 =
61
+ √1 |𝑞|𝐵
62
+
63
+ (henceforth we put ℏ = 𝑐 = 1). The index (+) is used to underline that we describe
64
+ motion of the particle with the charge |𝑞|. The velocity operators can be redefined to reveal the
65
+ equivalence of the considered problem to 1D problem of harmonic oscillator. To this purpose, the
66
+ “quasi-position” 𝑄̂ = 𝑣̂𝑥
67
+ (+)𝑚𝑙𝐵
68
+ 2 and “quasi-momentum” 𝑃̂ = 𝑚𝑣̂𝑦
69
+ (+)operators can be introduced
70
+ which fulfill the usual commutation rules [𝑄̂, 𝑃̂] = 𝑖 valid for the position and momentum opera-
71
+ tors. The Hamiltonian in these operators is formally equivalent to the traditional 1D harmonic
72
+ oscillator
73
+ one.
74
+ This
75
+ redefinition
76
+ allows
77
+ also
78
+ to
79
+ construct
80
+ Bose
81
+ operators
82
+ 𝑎̂ =
83
+ 𝑙𝐵𝑚(𝑣̂𝑥
84
+ (+) + 𝑖𝑣̂𝑦
85
+ (+)) √2
86
+
87
+ , 𝑎̂+ = 𝑙𝐵𝑚(𝑣̂𝑥
88
+ (+) − 𝑖𝑣̂𝑦
89
+ (+)) √2
90
+
91
+ subjected to the commutation relation
92
+ [𝑎, 𝑎+] = 1, valid in considered case of constant spatially homogeneous magnetic field. The Ham-
93
+ iltonian (1) in these operators acquires the form 𝐻̂ = 𝜔𝑐(𝑎̂+𝑎̂ + 1 2
94
+ ⁄ ) where 𝜔𝑐 = 𝑞𝐵 𝑚
95
+
96
+ . Choos-
97
+ ing symmetric gauge 𝑨 = 𝐵 (−𝑦, 𝑥) 2
98
+ ⁄ , it is possible to introduce an additional pair of Bose oper-
99
+ ators commuting with 𝑎̂ and 𝑎̂+ by simple changing the sign of the charge and interchanging an-
100
+ nihilation/creation operators [5,10]
101
+ 𝑏̂+ = 𝑙𝐵��
102
+ √2
103
+ (𝑣̂𝑥
104
+ (−) + 𝑖𝑣̂𝑦
105
+ (−)) = 𝑙𝐵
106
+ √2
107
+ [(𝑝𝑥 + |𝑞|𝐴𝑥) + 𝑖(𝑝𝑦 + |𝑞|𝐴𝑦)] (2)
108
+ 𝑏̂ = 𝑙𝐵𝑚
109
+ √2
110
+ (𝑣̂𝑥
111
+ (−) − 𝑖𝑣̂𝑦
112
+ (−)) = 𝑙𝐵
113
+ √2
114
+ [(𝑝𝑥 + |𝑞|𝐴𝑥) − 𝑖(𝑝𝑦 + |𝑞|𝐴𝑦)]
115
+ It is common to define with the help of these operators the coordinates of the center of circular
116
+ orbit along which the charged particle is gyrating (guiding center operators) [5]. It must be stressed
117
+ that so written expressions for 𝑏̂, 𝑏̂+ are misleading. If we assume that 𝐴𝑖 in (2) are really the
118
+
119
+ 3
120
+
121
+ components of a vector potential, we are to accept that the gauge invariance of our solutions is
122
+ violated. Really, 𝑣̂𝑖
123
+ (−) in this case are to be identified with the velocity operators for the particle
124
+ with the charge - |𝑞| (positron?!) which cannot appear in our non-relativistic theory. Moreover,
125
+ the straightforward evaluation e.g. of the commutator [𝑎̂, 𝑏̂+] leads to the following condition to
126
+ be imposed on chosen gauge
127
+ [𝑎̂, 𝑏̂+] = −𝑖𝑙𝐵
128
+ 2|𝑞|[𝜕𝑥𝐴𝑥 − 𝜕𝑦𝐴𝑦] + 𝑙𝐵
129
+ 2|𝑞|[𝜕𝑦𝐴𝑥 + 𝜕𝑥𝐴𝑦] (3)
130
+ Which is zero for the symmetric gauge 𝑨 = 𝐵(−𝑦, 𝑥) 2
131
+
132
+ only . So, we are to write e.g. operator
133
+ 𝑏̂ as
134
+ 𝑏̂ = 𝑙𝐵
135
+ √2
136
+ [(𝑝𝑥 + |𝑞|𝐴̃𝑥) − 𝑖(𝑝𝑦 + |𝑞|𝐴̃𝑦)] (4)
137
+ Where 𝐴̃𝑖 are the components of some vector field, determined in “fixed” symmetric gauge as
138
+ 𝐴̃𝑖 = −𝐴𝑖. In order to lend support to this statement let us consider the problem of guiding center
139
+ operators from another point of view which has been discussed e.g. in [11]. We start from classical
140
+ description where it is possible to solve the problem of the motion in constant magnetic field em-
141
+ ploying extra conserved quantity 𝒌 [12,13]. This vector emerges in classical description when we
142
+ integrate the equation of the motion 𝑚 𝑑𝒗 𝑑𝑡
143
+
144
+ = |𝑞|𝒗 × 𝑩 with respect to time, with the result
145
+ 𝑚𝒗 = |𝑞|𝒓 × 𝑩 + 𝒌. The meaning of the integration constant 𝒌 = 𝑚𝒗 − |𝑞|𝒓 × 𝑩 is clarified af-
146
+ ter proper scaling and rotation [13,14,15]. The vector 𝑹0 = [𝒌 × 𝑩] |𝑞|𝐵2
147
+
148
+ in the classical picture
149
+ defines the center of particle circular motion (guiding center) fixed at the moment of magnetic
150
+ field switching on. It has to be mentioned that this integral of motion has been established by
151
+ Gorkov and Dzyaloshinskii in [16], see also [17]. It is easy to verify that in quantum mechanical
152
+ description 𝒌̂ (now 𝒌 becomes an operator) remains also time-invariant, as
153
+ 𝜕𝒌̂
154
+ 𝜕𝑡 = 𝑖[𝐻̂, 𝒌̂] = 𝑖 [𝑚(𝑣̂𝑥2 + 𝑣̂𝑦2)
155
+ 2
156
+ , 𝑚𝒗̂ − |𝑞|[𝒓̂ × 𝑩]] = 0 (5)
157
+ The introduced 𝒌̂ operators are subjected to more strict commutation conditions in considered
158
+ uniform magnetic field case namely [𝑘̂𝑖, 𝑣̂𝑗] ≡ 0 regardless of the specific choice of the vector
159
+ potential. This property will be of use for us later on while discussing the graphene behavior under
160
+ the action of the spatially homogeneous/inhomogeneous constant magnetic fields. The explicit
161
+ forms of these operators run as follows
162
+ 𝑘̂𝑥 = 𝑚𝑣̂𝑥 − 𝑦
163
+ 𝑙𝐵
164
+ 2 𝑘̂𝑦 = 𝑚𝑣̂𝑦 + 𝑥
165
+ 𝑙𝐵
166
+ 2 (6)
167
+ Pay attention that contrary to the statement in [18], these operators are strictly gauge invariant.
168
+ Really, the physical meaning of the terms |𝑞|[𝒓̂ × 𝑩] after scaling and rotation (as in the case of 𝒌̂
169
+
170
+ 4
171
+
172
+ ) is revealed as the particle coordinates operators in disguise, which of course do not respond to
173
+ the gauge transformations and the velocity operators 𝑣̂𝑖 are gauge invariant by the definition. As
174
+ 𝒌̂ has dimension of momentum, this vector constant is known under the term “pseudo-momentum”
175
+ (the nomenclature used in [18,19]). As components of 𝒌̂ do not commute ([𝑘𝑦, 𝑘𝑥] = 𝑖 𝑙𝐵
176
+ 2 )
177
+
178
+ but
179
+ nevertheless commute separately with the Hamiltonian, it is useful to construct from them the
180
+ ladder operators
181
+ 𝑏̃ = 𝑙𝐵 (𝑘𝑦 + 𝑖𝑘𝑥) √2
182
+
183
+ 𝑏̃+ = 𝑙𝐵 (𝑘𝑦 − 𝑖𝑘𝑥) √2
184
+
185
+ (7)
186
+
187
+ In order to bring them both simultaneously into play for labelling the eigenfunction. These oper-
188
+ ators are in one-to-one correspondence with the pair of 𝑏-operators used in [5,10] and discussed
189
+ above, which practically in all the papers known to us, are used for the construction of the “cen-
190
+ ter of rotation” operators. We can require the eigenfunction Ψ𝑛,𝜆(𝒓)belonging to the given n’th
191
+ Landau level to be simultaneously the eigenfunction of 𝑏̃
192
+ 𝑏̃ Ψ𝑛,𝜆(𝒓) = 𝜆Ψ𝑛,𝜆(𝒓) (8)
193
+ where 𝜆 arbitrary complex number 𝜆 = 𝜆1 + 𝑖𝜆2 (the celebrated coherent states). Or we can use
194
+ operator 𝑏̃+𝑏̃ (𝑚 > 0)
195
+ 𝑏̃+𝑏̃Ψ𝑛,𝑚(𝒓) = 𝑚Ψ𝑛,𝑚(𝒓) (9)
196
+ As this second variant describe the states which are all gyrating about fixed center 𝒓 = 0, they
197
+ contradict our classical picture. We with the authors [5] adhere to the first choice which has simple
198
+ and physically clear interpretation and coincides with the classical description. The second variant
199
+ can be of use for the description of the charge particle motion in an axisymmetric magnetic field
200
+ with straight field lines dependent only on |𝒓| [20]. One more comment is due. The defined
201
+ coherent states formed non-orthogonal over complete set for arbitrary 𝜆. It is known that this set
202
+ can be reduced to orthogonal complete set on the von Neumann lattice [21]. One more possibility
203
+ to use both non-commuting pseudo-momentum operators simultaneously arises when we try to
204
+ impose periodic boundary conditions following [10,22] with the help of the shifting operators 𝑇̂𝑥 =
205
+ exp (𝑖𝑘̂𝑥𝑥) and 𝑇̂𝑦 = exp (𝑖𝑘̂𝑦𝐿𝑦). 𝐿𝑥 and 𝐿𝑦 define a parallelogram where the particle resides.
206
+ The periodic conditions demand that
207
+ 𝑇̂𝑥Ψ = 𝑒𝑖𝜃𝑥Ψ 𝑇̂𝑦Ψ = 𝑒𝑖𝜃𝑦Ψ (10)
208
+ These conditions can be fulfilled if and only if [𝑇̂𝑥, 𝑇̂𝑦] = 0 which due to [[𝑘𝑦, 𝑘𝑥] = 𝑖 𝑙𝐵
209
+ 2
210
+
211
+ im-
212
+ pose restrictions on the choice of 𝐿𝑥 and 𝐿𝑦
213
+ 𝐿𝑥𝐿𝑦
214
+ 𝑙𝐵
215
+ 2
216
+ = 2𝜋𝑛 (11)
217
+
218
+ 5
219
+
220
+ Where 𝑛 is any integer number.
221
+ One more essential for the gauge invariance of 𝑘̂𝑖-operators property is revealed, if we present
222
+ them in arbitrary gauge 𝑨 in the form (𝑚𝒗̂ = 𝒑̂ − |𝑞|𝑨)
223
+ 𝒌̂ = 𝒑̂ − 1
224
+ 2 |𝑞|[𝒓̂ × 𝑩] − |𝑞| (𝑨 + 1
225
+ 2 [𝒓̂ × 𝑩]) (12)
226
+ It is easy to verify that the combination in parentheses is curl independent, thus meaning that in-
227
+ tegral
228
+ ∫ (𝑨 + 1
229
+ 2 [𝒓̂ × 𝑩]) 𝑑𝒓
230
+ 𝒓2
231
+ 𝒓1
232
+ (13)
233
+ Is path independent. Thus, we can associate with this expression the gradient of some function,
234
+ which can be dubbed as generalized gradient transformation function
235
+ 𝑨 + 1
236
+ 2 [𝒓̂ × 𝑩] = 𝛁𝜑 (14)
237
+ This well-known combination has appeared in the famous paper by J. Schwinger [23] presenting
238
+ derivation of relativistic electron propagator within original essentially gauge invariant method. It
239
+ has been shown that this method can be applied for computing non-relativistic propagator as well,
240
+ though unfortunately this method is rarely used in this context [24,25]. This curl vanishing expres-
241
+ sion appeared in [23] in the relativistic invariant form 𝐴𝜇(𝑥) + 𝐹𝜇𝜈(𝑥) 2
242
+ ⁄ where 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 −
243
+ 𝜕𝜈𝐴𝜇. It is easy to check that in our 2D non-relativistic case this expression coincides with (13).
244
+ Inasmuch according to the commonly accepted prescription gauge transformation function 𝜑 has
245
+ no any effect upon wave function other than multiplication by phase factor 𝑒𝑥𝑝𝑖𝑞𝜑, and corre-
246
+ spondently (as it is prescribed) can be ignored, we are left with the expression 𝒌̂ = 𝒑̂ −
247
+ 1
248
+ 2 |𝑞|[𝒓̂ × 𝑩]. The subtle point is that we cannot identify [𝒓̂ × 𝑩] 2
249
+ ⁄ with the vector potential – 𝑨,
250
+ as in this case 𝒌̂ would be gauge dependent quantity as it was clarified above. The operator 𝒌̂ =
251
+ 𝒑̂ + |𝑞|𝑨 so understood is the mechanical moment for the “anti-particle” and according to charge
252
+ super-selection rule would be acting in orthogonal Hilbert subspace [26,27]. Such difference in
253
+ the behavior of these two terms of the pseudo-momentum under gauge transformation is reminis-
254
+ cent of the point of view presented in [28,29,30]. The only difference is that the authors propose
255
+ to consider peculiarities not in 𝒌̂ transformation but in the redefined vector potential 𝑨 =
256
+ 𝑨𝑝ℎ𝑦𝑠 + 𝑨𝑝𝑢𝑟𝑒. Their basic postulate is that under gauge transformation 𝑈 = exp (𝑖𝑞𝜒), these two
257
+ components transform differently. 𝑨𝑝𝑢𝑟𝑒 transforms as the full 𝑨 (𝑨𝑝𝑢𝑟𝑒 → 𝑨𝑝𝑢𝑟𝑒 + ∇𝜒), while
258
+
259
+ 6
260
+
261
+ 𝑨𝑝ℎ𝑦𝑠 transforms in the same manner as does the electric field 𝑬 thus remaining unchanged
262
+ 𝑨𝑝ℎ𝑦𝑠 → 𝑨𝑝ℎ𝑦𝑠 (see [30] and citing within).
263
+ The well-studied problem in homogeneous field nevertheless arises two questions. First, if
264
+ we discard defined above 𝛁𝜑 in 𝒌̂ through gauge transformation of the wave function Ψ(𝒓) =
265
+ Φ(𝒓)exp 𝑖|𝑞|𝜑, the equation for Φ(𝒓) will contain “fixed” symmetric vector potential [𝑩 × 𝒓̂] 2
266
+
267
+ independently of the form of our initially arbitrary chosen potential 𝑨 . Such property of the con-
268
+ sidered approach resolves long-standing puzzle of the linear Landau gauge 𝑨1 = 𝐵(0, 𝑥)or 𝑨2 =
269
+ 𝐵(−𝑦, 0). Contrary to common statement, if we rely on the “symmetry” considerations and an-
270
+ nounce the eigenfunctions to be of the form 𝜑(𝑥)exp(𝑖𝛾𝑦) for 𝑨1 (𝜑(𝑦)exp(𝑖𝛾𝑥) for 𝑨2), the
271
+ obtained wave functions in these gauges does not belong to the space of square integrable functions
272
+ of the symmetric gauge thus contradicting announced gauge invariance. The problem of the map-
273
+ ping states in 𝑨1 gauge to the states in 𝑨2 gauge is also not so simple and straightforward as has
274
+ been clarified in [31]. The outlined approach show, that due to the existence of guiding center
275
+ integral of motion, starting with arbitrary 𝑨, we arrive at the equations written in the symmetric
276
+ gauge which lead uniquely to the solutions with the finite norm. It must be noted that the problem
277
+ of such possible “uniqueness” of the vector potential choice has been discussed albeit from another
278
+ point of view in [32,33].
279
+
280
+ 3 Non-relativistic particle in the inhomogeneous field
281
+ Following the approach outlined above, we present below the construction of an analog of the
282
+ guiding center operator for spatially inhomogeneous magnetic field [34]. We choose e.g. a mag-
283
+ netic field with a constant gradient given by
284
+ 𝑩(𝒓) = 𝐵0
285
+ 𝑥
286
+ 𝐿 𝒛 ̂ (15)
287
+ Where 𝐵0 is a constant and 𝐿 ≡ |∇ln (𝐵)|−1 is the constant gradient length scale. This seemingly
288
+ oversimplified example of spatially inhomogeneous field is nevertheless important for the descrip-
289
+ tion of the charge particle motion in the region of magnetic field reversal leading to formation of
290
+ current sheets along neutral lines [35,36]. The classical variant of this problem has been discussed
291
+ in [37,38]. Being inspired by the form of guiding center operators in homogeneous case, we pro-
292
+ posed that an analog of gauge invariant pseudo-momentum operator (if exists) in such field is also
293
+ of the form
294
+ 𝒌̂ = (𝑚𝒗̂ − |𝑞|𝑨̃) (16)
295
+ From now on we will use only gauge invariant velocity operators 𝒗 = (𝒑 − |𝑞|𝑨) 𝑚
296
+
297
+ , so the (+)
298
+ index will be omitted. It should be reminded that in no way 𝑨̃(𝒓) in the expression for 𝒌̂ can be
299
+
300
+ 7
301
+
302
+ considered as the vector potential and as so it must remain unchanged under gauge transformation.
303
+ This vector field is to be determined from the condition that 𝒌̂ (or its components) commute with
304
+ the Hamiltonian . This condition is a fortiori fulfilled if as discussed above
305
+ [𝑚𝑣̂𝑖, 𝑘̂𝑗] ≡ 0 𝑖, 𝑗 = 1,2 (17)
306
+
307
+ Taking into account that [𝑣̂𝑥, 𝑣̂𝑦] = 𝑖|𝑞|𝐵(𝒓) 𝑚2
308
+
309
+ , these conditions lead to the following set of
310
+ equations
311
+ 𝜕𝑥𝐴̃𝑥 = 0 𝜕𝑦𝐴̃𝑥 = 𝐵(𝒓) (18)
312
+ 𝜕𝑥𝐴̃𝑦 = −𝐵(𝒓) 𝜕𝑦𝐴̃𝑦 = 0
313
+ Substituting chosen 𝐵(𝒓) = 𝐵(𝑥), we infer that only 𝐴̃𝑦 component complies with the required
314
+ conditions and is
315
+ 𝐴̃𝑦 = −𝐵0
316
+ 𝑥2
317
+ 2𝐿 (19)
318
+ By the way, the arising of such constant of motion (conserved quantity) can be inferred from the
319
+ classical equation of motion:
320
+ 𝑣̇𝑥 =
321
+ |𝑞|
322
+ 𝑚 𝐵0
323
+ 𝑥
324
+ 𝐿 𝑣𝑦 𝑣̇𝑦 = −
325
+ |𝑞|
326
+ 𝑚 𝐵0
327
+ 𝑥
328
+ 𝐿 𝑣𝑥 (20)
329
+ Integrating the second equation we obtain
330
+ 𝑣𝑦 = −
331
+ |𝑞|
332
+ 𝑚 𝐵0
333
+ 𝑥2
334
+ 2𝐿 + 𝑘𝑦
335
+ 𝑚 (21)
336
+ It is easy to verify that going to quantum mechanical description the so defined operator 𝑘𝑦 is the
337
+ required additional integral of motion. As we have only one conserved component of pseudo-
338
+ momentum we are left with no choice but to state that the Eigen functions of the problem
339
+ 𝐻̂Ψ𝐸(𝒓) = 𝐸Ψ𝐸(𝒓) are simultaneously the Eigen functions of found pseudo-momentum compo-
340
+ nent
341
+ 𝑘̂𝑦Ψ𝐸,𝜆(𝒓) = (−𝑖𝜕𝑦 − |𝑞|𝐴𝑦 − |𝑞|𝐴̃𝑦)Ψ𝐸,𝜆(𝒓) = 𝜆Ψ𝐸,𝜆(𝒓) (22)
342
+ The vector potential 𝐴𝑦 in this expression is any “real” vector potential suitable to our problem,
343
+ which changes under gauge 𝑈(1) transformation. Once more we want to call the reader's attention
344
+ to the specific behavior of 𝑘̂𝑦 operator under gauge transformation. Only 𝐴𝑦 term in this expression
345
+ undergoes change with gauge variation. The term 𝐴̃𝑦 is not affected by this operation as it is in
346
+ essence the function of particle coordinates and thus is not subjected to gauge transformations.
347
+
348
+ 8
349
+
350
+ Now we are going to prove that notwithstanding the specific choice of the vector potential, ob-
351
+ tained solutions belong to the same Hilbert space. Really, let us choose the vector potential in the
352
+ Landau-like (linear) gauge 𝑨 = 𝐵0(0, 𝑥2 2𝐿
353
+
354
+ ). In this gauge 𝑘̂𝑦 = −𝑖𝜕𝑦 and thus the 𝑦 component
355
+ of the canonical momentum is conserved in accord with the commonly accepted approach based
356
+ on the symmetry of the problem [39]. In this case Ψ𝐸,𝜆(𝒓) = 𝜑𝐸,𝜆(𝑥)𝑒𝑥𝑝𝑖𝜆𝑦, where 𝜑𝐸,𝜆(𝑥) sat-
357
+ isfies the equation (𝑙𝐵0
358
+ 2 = 1 |𝑞|
359
+
360
+ 𝐵0)
361
+ [−𝜕𝑥
362
+ 2 + (𝜆 − 𝑥2 2𝐿𝑙𝐵0
363
+ 2
364
+
365
+ )
366
+ 2] 𝜑𝐸,𝜆(𝑥) = 2𝑚𝐸𝜑𝐸,𝜆(𝑥) (23)
367
+
368
+ Now, let us try the symmetry-like gauge in this problem, using for this purpose the so called
369
+ Poincare’ or multipole gauge (PMG) [40,41,42,43,44]. In its relativistic covariant form PMG po-
370
+ tential satisfies condition 𝑥𝜇𝐴𝜇(𝑥) = 0. In this case it can be expressed as the integral over the
371
+ electromagnetic field tensor 𝐹𝜇𝜆(𝑥) = 𝜕𝜇𝐴𝜆(𝑥) − 𝜕𝜆𝐴𝜇(𝑥) as [45]
372
+ 𝐴𝜇(𝑥) = ∫ 𝑑𝑢 𝑢𝑥𝜆
373
+ 1
374
+ 0
375
+ 𝐹𝜆𝜇(𝑢𝑥) (24)
376
+ In the considered by us non-relativistic limit this expression transforms into
377
+ 𝑨(𝒓) = −𝒓 × ∫ 𝑑𝑢 𝑢
378
+ 1
379
+ 0
380
+ 𝐵(𝑢𝒓)𝒛̂ (25)
381
+ It is easy to verify that for spatially homogeneous field we obtain well-known potential in sym-
382
+ metric gauge. In chosen magnetic field with constant gradient, according to (25), the chosen “ar-
383
+ bitrary” vector potential is
384
+ 𝑨(𝒓) = 𝐵0(−𝑦, 𝑥) 𝑥
385
+ 3𝐿 (26)
386
+ Correspondently, 𝑘̂𝑦 = −𝑖𝜕𝑦 + 𝑥2 6𝐿𝑙𝐵0
387
+ 2
388
+
389
+ and Ψ𝐸,𝜆(𝒓) = 𝜑𝐸,𝜆(𝑥)exp [𝑖𝑦(𝜆 − 𝑥2 6𝐿𝑙𝐵0
390
+ 2
391
+
392
+ )]. It is
393
+ easy to verify that 𝜑𝐸,𝜆(𝑥) in this expression coincides with the one in (22), as it satisfies the same
394
+ equation. Thus it is proved that as in the case of the uniform magnetic field, so in our non-uniform
395
+ problem the requirement on the wave function to be the eigenfunction of the pseudo-momentum
396
+ leads to the one-to-one, up to the exponential phase factor, mapping of the solutions belonging to
397
+ the different gauges. It is interesting to compare our quantum mechanical problem with classical
398
+ solutions in constant gradient field discussed in [46, 47, 36]. Compare the expression for conserved
399
+ 𝑌 component of the canonical momentum 𝑝𝑦 = 𝑚𝑣𝑦 + 𝑞𝐴𝑦 = 𝑐𝑜𝑛𝑠𝑡 (Formula (1) in [36]) which
400
+ is in one-to-one correspondence with considered guiding center operator 𝑘̂𝑦. It must be noted that
401
+
402
+ 9
403
+
404
+ the quantum variant of this problem is by far more rich in physics as compared to its classical
405
+ counterpart. The quantum description for 𝜆 > 0 is given by 1D Schrodinger equation (23) with the
406
+ “celebrated quartic double-well potential” [48] which is omnipresent in different physical and
407
+ chemistry problems. The quantum solution differs due to the tunneling effect (“instanton” behav-
408
+ ior) from classical prediction of existing for 𝜆 > 0 localized “one-sided” gyration [36] which does
409
+ not cross 𝐵 = 0 line. Thus, as for 𝜆 > 0 so for 𝜆 < 0, the average particle quantum motion is
410
+ symmetric relative to neutral magnetic line. It must be stressed than despite the apparent differ-
411
+ ences in the exponential factors of the considered wave functions the 𝑦 component of the physi-
412
+ cally meaningful quantity –the current density remains invariant (as it must be!) under the gauge
413
+ change. Using the definition of the current density in magnetic field [Landau] it is straightforward
414
+ to show that in the both gauges the current density is
415
+ 𝐽𝑦 = 𝑖𝑞
416
+ 2𝑚 [(𝜕𝑦Ψ∗)Ψ − Ψ∗𝜕𝑦Ψ] − 𝑞2
417
+ 𝑚 𝐴𝑦Ψ∗Ψ = |𝑞|
418
+ 𝑚 (𝜆 −
419
+ 𝑥2
420
+ 2𝐿𝑙𝐵0
421
+ 2 ) |𝜑(𝑥)|2 (27)
422
+ Pay attention that according to this expression, 𝜆 sign alone does not determine the direction of
423
+ the particle drift in the considered state. For 𝜆 > 0 all depends on the average mean-square value
424
+ of the particle deviation along 𝑋 axes 〈𝑥2 2𝐿𝑙𝐵0
425
+ 2
426
+
427
+ 〉. For 𝜆 < 〈𝑥2 2𝐿𝑙𝐵0
428
+ 2
429
+
430
+ 〉 the particle changes the
431
+ drift direction. This result is in accord with the classical considerations [36] and at the same time
432
+ reveals peculiar status of 𝒌̂ operators. The physical meaning as an observable must be ascribed
433
+ without doubt to 𝐽𝑦, which means that 𝑘̂𝑦 plays some auxiliary role and its consideration as ob-
434
+ servable is under question. Here it is appropriate to remember (see above) that this characteristic
435
+ emerges in classic picture not as the constant of motion in its accepted meaning but as the constant
436
+ of integration over time. This suspicion of the strange role of the guiding center operator in our
437
+ quantum problem is reinforced by the revision of the solution in homogeneous magnetic field
438
+ discussed above. The states belonging to, e.g., ground Landau level (from which all others n-levels
439
+ wave functions can be deduced) are given by the equation
440
+ 𝑎̂Ψ0(𝒓) = 𝑙𝐵𝑚
441
+ √2
442
+ (𝑣̂𝑥 + 𝑖𝑣̂𝑦)Ψ0(𝒓) = 1
443
+ √2
444
+ (𝑎̂𝑥 + 𝑖𝑎̂𝑦)Ψ0(𝒓) = 0 (28)
445
+ Where 𝑎̂𝑖, 𝑎𝑖
446
+ + are the Bose operators [𝑎̂𝑖, 𝑎𝑗
447
+ +] = 𝛿𝑖𝑗 of the form
448
+ 𝑎̂𝑖 = −𝑖𝑙𝐵 (𝜕𝑥𝑖 + 𝑥𝑖
449
+ 2𝑙𝐵
450
+ 2) 𝑎𝑗
451
+ + = −𝑖𝑙𝐵 (𝜕𝑥𝑖 − 𝑥𝑖
452
+ 2𝑙𝐵
453
+ 2) (29)
454
+ The general solution Ψ0,𝜆(𝒓) = φ0,𝜆(𝑥)φ0,𝑖𝜆(𝑦) of the equation () is given by the solutions of two
455
+ equations
456
+
457
+ 10
458
+
459
+ 𝑎̂𝑥φ0,𝜆(𝑥) = 𝜆φ0,𝜆(𝑥) 𝑎̂𝑦φ0,𝑖𝜆(𝑦) = 𝑖𝜆φ0,𝑖𝜆(𝑦) (30)
460
+ Where φ0,𝜆(𝑥), φ0,𝑖𝜆(𝑦) are corresponding coherent states and 𝜆 = 𝜆1 + 𝑖𝜆2 arbitrary complex
461
+ number. So we obtain the highly degenerate set of the wave functions belonging to the same Lan-
462
+ dau level without invoking the guiding center operators. Thus the use of pseudo-momentum oper-
463
+ ators in this problem is superfluous. They can be used for clarifying the physical meaning of the
464
+ numbers 𝜆1,2 The action of the introduced above operator 𝑏̃ = 𝑙𝐵 (𝑘𝑦 + 𝑖𝑘𝑥) √2
465
+
466
+ where {𝑘𝑖}
467
+ are the discussed pseudo-momentum operators upon these functions is
468
+ 𝑏̃Ψ0,𝜆(𝒓) = 1
469
+ √2
470
+ (𝑎𝑦 + 𝑖𝑎𝑥)Ψ0,𝜆(𝒓) = 𝑖𝜆√2 (31)
471
+ So we can state that really the numbers𝜆1,2 labelling the eigenfunctions can be interpreted after
472
+ scaling by 𝜆𝐵 as the corresponding 𝑅2,1-coordinates of the center of the particle gyration. The
473
+ usefulness of these operators lies in the fact that with them we can construct gauge invariant equa-
474
+ tions choosing for the start any appropriate gauge as it was clarified above.
475
+
476
+ 4 Graphene in the magnetic fields
477
+ An additional but no less important example of proposed approach is due to the fact that introduced
478
+ above gauge invariant pseudo-momentum operators 𝑘̂𝑥, 𝑘̂𝑦 (6) remain valid as the motion con-
479
+ stants for the description of the low-energy envelope states in the single layer graphene in homo-
480
+ geneous field and defined above 𝑘̂𝑦 (20,21) can be used for labeling states in the perpendicular
481
+ gradient magnetic field 𝑩(𝒓) = 𝐵0𝑥 𝒛̂ 𝐿
482
+ ⁄ . Due to commutation conditions defined in (5) for ho-
483
+ mogeneous field and 𝑘̂𝑦 commutator (17) in the gradient field case these operators commute with
484
+ the Dirac-like Hamiltonian describing carriers behavior in graphene within 𝒌 ∙ 𝒑 approach and
485
+ can serve as the corresponding quantum numbers [49,50]. Due to valley degeneracy of graphene
486
+ Hamiltonian valid for arbitrary perpendicular magnetic field it suffices as it is common to restrict
487
+ our consideration to one of the valleys (say K valley) described by the Hamiltonian 𝐻̂ =
488
+ 𝑣𝐹(𝑄̂+𝜎+ + 𝑄̂𝜎−) [51]. Here 𝑄̂ = 𝜋̂𝑥 + 𝑖𝜋̂𝑦, 𝜎± = (𝜎𝑥 ± 𝑖𝜎𝑦) 2
489
+ ⁄ , and 𝜎𝑖 are Pauli matrixes. Con-
490
+ sider the behavior of the zero-mode states (if existing) described by the first-order partial differ-
491
+ ential equation
492
+ (𝜋̂𝑥 + 𝑖𝜋̂𝑦)Ψ(𝒓) = 0 (32)
493
+ Where 𝜋̂𝑖 = −𝑖𝜕𝑖 − |𝑞|𝐴𝑖(𝒓). It is straightforward to show that the sought-for solutions form the
494
+ set of coherent states being in one-to-one correspondence with the set describing the degenerate
495
+ lowest Landau level in the “classical” non-relativistic problem [see (28,29,30)]. As discussed
496
+
497
+ 11
498
+
499
+ above, in the gradient magnetic field 𝑩(𝒓) = 𝐵0 𝑥𝒛̂ 𝐿
500
+ ⁄ we can choose any appropriate gauge. In
501
+ deciding on the gauge 𝑨 = (0, 𝐵0 𝑥2 2𝐿)
502
+
503
+ we arrive to the simplest form for 𝑘̂𝑦 = −𝑖𝜕𝑦 (see dis-
504
+ cussion above). Labeling the Eigen functions Ψ𝜆
505
+ 𝑇(𝒓) = (𝜑𝜆(𝑥), 0)exp(𝑖𝜆𝑦) by its eigenvalue 𝜆
506
+ we obtain
507
+ [−𝑖𝜕𝑥 + 𝑖(𝜆 − 𝑥2 2𝐿𝑙𝐵0
508
+ 2
509
+
510
+ )]𝜑𝜆(𝑥) = 0 (33)
511
+ It follows from (33) that 𝜑𝜆(𝑥)~exp(𝜆𝑥 − 𝑥3 6𝐿𝑙𝐵0
512
+ 2
513
+
514
+ ). Contrary to the behavior in the considered
515
+ above non relativistic Schrodinger case where a particle can remain localized along neutral line
516
+ [36] crossing it hither and thither, the zero-mode carriers in K valley escape to 𝑥 = −∞ thus
517
+ destroying the current sheet. The general Landau state (𝐸 ≠ 0) is given by the solution Φ(𝒓)𝑇 =
518
+ (𝜑1(𝒓), 𝜑2(𝒓)) of the matrix equation
519
+ (−𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎−)Φ(𝒓) = 0 (34)
520
+ These equations of the first order can be transformed to the equations of the second order by ap-
521
+ plying to the equation (34) the operator 𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎−
522
+ (𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎−)(−𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎−)Φ(𝒓) = 0 (35)
523
+ As a result, we are to solve two Schrodinger-like equations
524
+ (−𝐸2 + 𝑣𝐹
525
+ 2𝑄̂+𝑄̂)𝜓1(𝒓) = 0 (−𝐸2 + 𝑣𝐹
526
+ 2𝑄̂𝑄̂+) 𝜓2(𝒓) = 0 (36)
527
+ Which are super-symmetry (SUSY) connected [52], [53] as the solutions Ψ𝑇(𝒓) =
528
+ (𝜓1(𝒓), 𝜓2(𝒓)) are subjected to the condition 𝜓2(𝒓) = 𝑣𝐹𝑄̂𝜓1(𝒓) 𝐸
529
+ ⁄ . As it has been clarified in
530
+ [54] the arbitrary solutions of these squared Dirac-like equations being of the second order can
531
+ contain “superfluous” ones which do not satisfy the initial equation of the first order. The remedy
532
+ is to consider the function
533
+ Φ(𝒓) = (𝐸𝐼 + 𝑣𝐹𝑄̂+𝜎+ + 𝑣𝐹𝑄̂𝜎−)Ψ(𝒓) (37)
534
+ Which is the solution of the first order equation (34) if Ψ(𝒓) is the solution of (35). As we are left
535
+ with the solution of the one Schrodinger-like equation (36), the procedure outlined above for non-
536
+ relativistic problem can be at once applied for the analysis of carrier spectrum in graphene. For the
537
+ chosen gradient magnetic field, the explicit form of the corresponding Schrodinger –like operator
538
+ is
539
+ 𝑣𝐹
540
+ 2𝑄̂+𝑄̂ = 𝑣𝐹
541
+ 2(𝜋̂𝑥 − 𝑖𝜋̂𝑦)(𝜋̂𝑥 + 𝑖𝜋̂𝑦) = 𝑣𝐹
542
+ 2[𝜋̂𝑥2 + 𝜋̂𝑦2 − 𝑥 𝐿𝑙𝐵0
543
+ 2 ]
544
+
545
+ (38)
546
+ The difference with the non-relativistic case discussed above resides in the linear in 𝑥 term (com-
547
+ pare with (23)). The wave function solutions as in non-relativistic case demonstrate two types
548
+
549
+ 12
550
+
551
+ depending on the sign of 𝜆, described above. The only difference with classical result is that they
552
+ are shifted in the positive direction along 𝑋 axis. The symmetry is restored when we consider
553
+ carrier behavior in 𝐾′valley. We will not proceed further with the analysis of the wave function
554
+ solutions and energy spectrum of (35) which will be considered elsewhere, as our task in the pre-
555
+ sented paper has been to pave gradient invariant road to the formulation of “proper” wave equa-
556
+ tions with the help of pseudo-momentum aka guiding center operator.
557
+ 5 Conclusion
558
+ The role of the “forgotten” pseudo-momentum in the solution of the Landau problem as for uni-
559
+ form so in spatially non-uniform magnetic fields has been discussed in the series of the papers (see
560
+ [11] and citing herein). Presented approach differs in that we placed particular emphasis on the
561
+ gauge invariance of the procedure of the construction of the corresponding wave equations. It is
562
+ common consensus in that the gauge invariance is one of the most fundamental symmetry proper-
563
+ ties of physics [55,56]. Thus, citing J. Schwinger [23], we follow his prescription that “a formally
564
+ gauge invariant theory is ensured if one employs methods of solution that involve only gauge
565
+ covariant quantities”. In our paper we outlined the gauge invariant approach to the construction of
566
+ the analog of guiding center operator in homogeneous/inhomogeneous magnetic fields. On the
567
+ face of it, the presented approach is unnecessary and superfluous, as e.g. there exists common
568
+ consensus that in the discussed “axial” problems (e.g., 𝑩(𝒓) = 𝐵0𝑥𝒛̂ 𝐿
569
+ ⁄ ) we must choose the wave
570
+ function in the form Ψ(𝒓) = 𝜑(𝑥)exp (𝑖𝜆𝑦) simply relying on symmetry considerations. We ar-
571
+ gue that in accord with presented above considerations this is not so simple. Such naïve approach
572
+ is valid only for the “proper” chosen gauge. The phase dependence of the wave function factor is
573
+ determined by the eigenfunction of the additional time independent operator –pseudo-momentum,
574
+ which in its turn is explicitly dependent upon the particular choice of the vector potential form.
575
+ The steps to be taken to obtain the “proper” equations for the wave functions are as follows. First,
576
+ we are free to choose any form of the vector potential fulfilling condition 𝑟𝑜𝑡 𝑨(𝒓) = 𝑩(𝒓) ap-
577
+ propriate to the considered magnetic field spatial distribution. Second, we define the conserved
578
+ pseudo-momentum operator (or its component) dependent upon chosen gauge but nevertheless by
579
+ the definition gauge invariant [57]. Fixing the phase of the exponential factor by imposing the
580
+ restriction that the sought wave functions are simultaneously the eigenfunctions of the pseudo-
581
+ momentum, we arrive at last to the gauge invariant equation. It is easy to verify that following
582
+ these steps we always obtain the solutions which can be mapped in different gauges upon each
583
+ other by traditional Weyl gauge transformation.
584
+
585
+
586
+ 13
587
+
588
+ Acknowledgements
589
+ The work has been supported in part by the Ministry of Science and Higher Education of the
590
+ Russian Federation under Project #FEUZ-2020-0054.
591
+
592
+
593
+ References
594
+ [1] T. G. Northrop, The Adiabatic Motion of charged Particles (Interscience Publishes, New
595
+ York,1963)
596
+ [2] T. G. Northrop, The Guiding Center Approximation to Charged Particle Motion, Ann. Phys.
597
+ 15,79 (1961)
598
+ [3] J. R. Cary, A. J. Brizard, Hamiltonian theory of Guiding-center motion, Rev. Mod. Phys. 81,
599
+ 693 (2009)
600
+ [4] M. H. Johnson and B. A. Lippmann, Motion in a Constant Magnetic Field, Phys. Rev. 76,
601
+ 828 (1949),
602
+ [5] I. A. Malkin and V. I. Man’ko, Coherent States of a Charged Particle in a Magnetic Field, J.
603
+ Exp. Theor. Phys. 55,1014 (1968),
604
+ [6] W. Li and K. Sebastian, The coherent states of the two dimensional isotropic harmonic oscil-
605
+ lator and the classical limit of the Landau theory of a charged particle in a uniform magnetic
606
+ field, Eur. J. Phys. 39, 045403 (2018)
607
+ [7] E. H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys. 44, 326, (1927);
608
+ [8] C. C. Darwin, Free motion in wave mechanics, Proc. R. Soc. Lond. A 117, 258 (1927);
609
+ [9] V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld, Z. Phys.
610
+ 47, 446 (1928)]
611
+ [10] R. Ferrari, Two-dimensional electrons in a strong magnetic field: A basis for single-particle
612
+ states, Phys. Rev. B 42, 4598 (1990)]
613
+ [11] G. Konstantinou and K. Moulopoulos, Generators of dynamical symmetries and the correct
614
+ gauge transformation in the Landau level problem: use of pseudomomentum and pseudo-angular
615
+ momentum, Eur. J. Phys. 37,065401 (2016)
616
+ [12] Y. Avron, Harmonic motions, Am.J. Phys. 54, 659 (1986),
617
+ [13] J. Sivardie’re,On the motion of a charge in a magnetic field, Eur. J. Phys. 9, 61 (1988)]
618
+ [14] J. E. Avron, I. W. Herbst, and B. Simon, Separation of center of mass in homogeneous mag-
619
+ netic field, Ann. Phys. 114, 431 (1978)
620
+ [15] Y. Kitadono, M. Wakamatsu, L. Zou, and P. Zhang, Role of guiding center in Landau level
621
+ system and mechanical and pseudo orbital angular momentum, Int. J. Mod. Phys. A 35, 2050096
622
+ (2020)]
623
+ [16] L. P. Gorkov, L. E. Dzyaloshinskii, Contribution to the theory of the Mott exciton in a
624
+ strong magnetic field, Sov. Phys. JETP 26, 449 (1968)
625
+
626
+ 14
627
+
628
+ [17] M.A. Escobar-Ruiz, Two charges on plane in a magnetic field III. He+ ion, Ann. Phys.
629
+ 351,714 (2014)
630
+ [18] B. R. Johnson, J. O. Hirschfelder, and Kuo-Ho Yang, Interaction of atoms, molecules, and
631
+ ions with constant electric and magnetic fields, Rev. Mod. Phys. 55, 109 (1983)
632
+ [19] J. E. Avron, I. W. Herbst, and B. Simon, Separation of Center of Mass in Homogeneous
633
+ Magnetic Fields, Ann. Phys. 114, 431 (1978)
634
+ [20] [K. Kabin, Two examples of exact calculations of the adiabatic invariant for charged parti-
635
+ cle motion in non-uniform axisymmetric magnetic fields, Phys. Plasmas 26, o12114 (2019)].
636
+ [21] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton, University
637
+ Press, Princeton, 1955
638
+ [22] F. D. M. Haldane, Phys. Rev. Lett. 55, 2095 (1985)
639
+ [23] J. Schwinger, On Gauge Invariance and Vacuum Polarization, Phys. Rev. 82, 664 (1951)
640
+ [24] F. A. Barone, H. Boschi-Filho, and C. Farina, Three methods for calculating the Feynman
641
+ propagator, Am. J. Phys.71, 483 (2003),
642
+ [25] A. Aragao, H. Boschi-Filho, C. Farina, Non-Relativistic Propagator via Schwinger’s
643
+ Method, Braz. J. Phys. 37, 1260, (2007)
644
+ [26] G. C. Wick and A. S. Wightman and E. P. Wigner, The Intrinsic Parity of Elementary Parti-
645
+ cles, Phys. Rev. 88, 101 (1952),
646
+ [27] Y. Aharonov and L. Susskind, Charge Superselection Rule, Phys. Rev. 155, 1428 (1967)
647
+ [28] X. S. Chen, X. F. L𝑢̈ , W. M. Sun, F. Wang, T. Goldman, Phys. Rev. Lett. 100,232002/1-4
648
+ (2008)
649
+ [29] X. S. Chen, W. M. Sun, X. F. L𝑢̈ , F. Wang, T. Goldman, Phys. Rev. Let. 103, 062001/1-4
650
+ (2009)
651
+ [30] M. Wakamatsu and A. Hayashi, Eur. Phys. J. A 58, 121 (2022) and citing within).
652
+ [31] [ R. J. Swenson, The correct relation between wavefunctions in two gauges, Am. J. Phys.
653
+ 57,381 (1989)
654
+ [32] F. V. Gubarev, L. Stodolsky, and V. I. Zakharov, On the Significance of the Vector Poten-
655
+ tial Squared, Phys. Rev. Lett. 86, 2220 (2001),
656
+ [33] A. M. Stewart, Vector potential of the Coulomb gauge, Eur. J. Phys. 24, 519 (2003)
657
+ [34] J. R. Cary and A. J. Brizard, Hamiltonian theory of guiding-center motion, Rev. Mod. Phys.
658
+ 81, 693 (2009)
659
+ [35] A. J. Brizard, On the validity of the guiding-center approximation in the presence of strong
660
+ magnetic gradients, Phys. Plasmas 24, o42115 (2017)
661
+ [36] K. Kabin, Adiabatic invariant of a charged particle moving in a magnetic field with a con-
662
+ stant gradient, Phys. Plasmas 28, 122101 (2021)
663
+ [37] [J. M. Repko, W. W. Repko, A. Saaf, Charge particle trajectories in simple nonuniform
664
+ magnetic fields, Am. J. Phys. 59, 652 (1991)
665
+
666
+ 15
667
+
668
+ [38] A. J. Bizard, On the validity of the guiding-center approximation in the presence of the
669
+ strong magnetic gradients, Phys. Plasmas 24, 042115 (2017)
670
+ [39] [P. M. Bellan, Fundamentals of Plasma Physics (Cambridge University Press, Cambridge,
671
+ 2006)
672
+ [40] W. E. Brittin, W. R. Smythe, and W .Wyss, Poicare’ gauge in electrodynamics, Am. J.
673
+ Phys. 50,693
674
+ (1982)
675
+ [41] D. H. Kobe, Gauge transformations and the electric dipole approximation, Am. J. Phys. 50,
676
+ 128 (1982)
677
+ [42] J. G. Valatin, Singularities of Electron Kernel Functions in an External Electromagnetic
678
+ Field, Proc. R. Soc. Lond. A 222, 93 (1954)
679
+ [43] R. G. Woolley, Molecular Quantum Electrodynamics, Proc. R. Soc. Lond. A 321, 557
680
+ (1971)
681
+ [44] A. M. Stewart, General proof of gauge independence of the sum of the dia- and para-mag-
682
+ netic magnetic moments, J. Phys. A: Math. Gen. 32, 6091(1999)
683
+ [45] B. k. Skagerstam, A note on the Poincare’ gauge, Am. J. Phys. 51, 1148 (1983)]
684
+ [46] J. M. Repko, W. W. Repko, A. Saaf, Charge particle trajectories in simple nonuniform
685
+ magnetic fields, Am. J. Phys. 59, 652 (1991)
686
+ [47] A. J. Bizard, Phys. Plasmas, On the validity of the guiding-center approximation in the pres-
687
+ ence of the strong magnetic gradients, 24, 042115 (2017)
688
+ [48] E. Shuryak and A. V. Turbiner, Transseries for the ground state density and generalizied
689
+ Bloch equation: Double-well potential case, Phys. Rev. D 98, 105007 (2018)
690
+ [49] D. P. DiVincenzo, E. J. Mele, Self-consistent effective mass theory for intralayer screening
691
+ in graphite intercalation compounds, Phys. Rev. B 29, 1685 (1984)
692
+ [50] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. Gaim, The elec-
693
+ tronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009)
694
+ [51] [L. Oroszlany, P. Rakyta, A. Kormanyos, C. J. Lambert, J. Cserti, Theory of snake states in
695
+ graphene, Phys. Rev. B 77, 081403 (2008)
696
+ [52] F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rep.
697
+ 251, 267, (1995)
698
+ [53] G. Junker, Supersymmetric Methods in Quantum and Statistical Physics, Springer-Verlag
699
+ Berlin Heidelberg, Berlin, 1996]
700
+ [54] V.B. Berestetskii, E. M. Lifshitz, and E.L. Pitaevski, Relativistic Quantum Theory (Per-
701
+ gamon Press, Oxford, 1971)
702
+ [55] K-H Yang, Ann. Phys., NY 101, 62 (1976)
703
+ [56] D. H. Kobe and A. L. Smirl, Am. J. Phys. 46, 624 (1978)
704
+ [57] Y. K. Chen and R. R. Biswas, Gauge-Invariant Variables Reveal the Quantum Geometry of
705
+ Fractional Quantum Hall States, Phys. Rev. B 102, 165313 (2020)
706
+
MdFJT4oBgHgl3EQfzC0_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NNAyT4oBgHgl3EQf6_pQ/content/tmp_files/2301.00830v1.pdf.txt ADDED
@@ -0,0 +1,1274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 4, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX631
3
+ Evidence for AGN-Regulated Cooling in Clusters at z ∼ 1.4: A Multi-Wavelength View of
4
+ SPT-CL J0607-4448
5
+ Megan Masterson
6
+ ,1 Michael McDonald
7
+ ,1 Behzad Ansarinejad
8
+ ,2 Matthew Bayliss
9
+ ,3
10
+ Bradford A. Benson
11
+ ,4, 5, 6 Lindsey E. Bleem
12
+ ,7, 6 Michael S. Calzadilla
13
+ ,1 Alastair C. Edge
14
+ ,8
15
+ Benjamin Floyd
16
+ ,9 Keunho J. Kim
17
+ ,3 Gourav Khullar
18
+ ,10, 11, 1 and Taweewat Somboonpanyakul
19
+ 12
20
+ 1MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
21
+ 2School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
22
+ 3Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
23
+ 4Fermi National Accelerator Laboratory, Batavia, IL 60510-0500, USA
24
+ 5Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
25
+ 6Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
26
+ 7High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
27
+ 8Department of Physics, Durham University, Durham DH1 3LE, UK
28
+ 9Department of Physics and Astronomy, University of Missouri–Kansas City, 5110 Rockhill Road, Kansas City, MO 64110, USA
29
+ 10Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637
30
+ 11Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637
31
+ 12Kavli Institute for Particle Astrophysics & Cosmology, P.O. Box 2450, Stanford University, Stanford, CA 94305, USA
32
+ ABSTRACT
33
+ We present a multi-wavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is
34
+ one of the most distant clusters discovered by the South Pole Telescope (SPT) at z = 1.4010 ± 0.0028.
35
+ The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the
36
+ active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we
37
+ construct thermodynamic profiles and determine the properties of the intracluster medium. The cool
38
+ core nature of the cluster is supported by a centrally-peaked density profile and low central entropy
39
+ (K0 = 18+11
40
+ −9 keV cm2), which we estimate assuming an isothermal temperature profile due to the
41
+ limited spectral information given the distance to the cluster. Using the density profile and gas cooling
42
+ time inferred from the X-ray data, we find a mass cooling rate of
43
+ ˙Mcool = 100+90
44
+ −60 M⊙ yr−1. From
45
+ optical spectroscopy and photometry around the [O ii] emission line, we estimate that the BCG
46
+ star formation rate is SFR[O II] = 1.7+1.0
47
+ −0.6 M⊙ yr−1, roughly two orders of magnitude lower than
48
+ the predicted mass cooling rate.
49
+ In addition, using ATCA radio data at 2.1 GHz, we measure a
50
+ radio jet power of Pcav = 3.2+2.1
51
+ −1.3 × 1044 erg s−1, which is consistent with the X-ray cooling luminosity
52
+ (Lcool = 1.9+0.2
53
+ −0.5×1044 erg s−1 within rcool = 43 kpc). These findings suggest that SPT0607 is a relaxed,
54
+ cool core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that
55
+ the balance between cooling and feedback can be reached quickly. We discuss implications for these
56
+ findings on the evolution of AGN feedback in galaxy clusters.
57
+ Keywords: Brightest cluster galaxies (181)–Galaxy clusters (584)–Intracluster medium (858)–Radio
58
+ galaxies (1343)–High-redshift galaxy clusters (2007)
59
+ 1. INTRODUCTION
60
+ A galaxy cluster contains tens to hundreds of mem-
61
+ ber galaxies (with some reaching over a thousand mem-
62
+ Corresponding author: Megan Masterson
63
64
+ bers) surrounded by hot, ionized plasma called the in-
65
+ tracluster medium (ICM), all embedded in a massive
66
+ dark matter halo that constitutes the majority of the
67
+ cluster mass. The ICM is the dominant baryonic com-
68
+ ponent of clusters, and it is visible at X-ray wavelengths
69
+ via bremsstrahlung radiation caused by the motion of
70
+ charged particles. We often classify galaxy clusters into
71
+ two main groups—cool core clusters, in which the cen-
72
+ arXiv:2301.00830v1 [astro-ph.GA] 2 Jan 2023
73
+
74
+ ID2
75
+ Masterson et al.
76
+ tral temperature drops and the density increases, and
77
+ non-cool core clusters, which have cores that are roughly
78
+ isothermal. In cool core clusters, the ICM has short ra-
79
+ diative cooling times and should produce massive cool-
80
+ ing flows of ˙M ∼ 100−1000 M⊙ yr−1, in which cold gas
81
+ condenses out of the hot plasma (see Fabian 1994, for a
82
+ review). However, such cooling flows are not observed
83
+ in most systems, with typical star formation rates on
84
+ the order of ∼ 1% the expected cooling rate (e.g. O’Dea
85
+ et al. 2008; McDonald et al. 2018) and a lack of cool gas
86
+ as probed with high resolution X-ray spectroscopy (e.g.
87
+ Peterson et al. 2003; Bregman et al. 2006; Peterson &
88
+ Fabian 2006).
89
+ One of the dominant mechanisms that is thought to
90
+ prevent the rapid cooling of the ICM is mechanical
91
+ feedback from an active galactic nucleus (AGN) in the
92
+ brightest cluster galaxy (BCG; e.g. McNamara & Nulsen
93
+ 2007, 2012; Fabian 2012). In this paradigm, the radio-
94
+ loud AGN is accreting well below the Eddington limit
95
+ and launches powerful jets that inject energy into the
96
+ ICM by inflating bubbles and thus creating X-ray cavi-
97
+ ties. Observationally, the inflation of these bubbles has
98
+ been shown to have enough energy to balance the cool-
99
+ ing flow in many systems (e.g. Bˆırzan et al. 2004; Dunn
100
+ & Fabian 2006; Rafferty et al. 2006; Hlavacek-Larrondo
101
+ et al. 2012, 2015). Although AGN feedback is now gen-
102
+ erally accepted as one of the main heating mechanisms
103
+ balancing cooling in clusters of galaxies, there are still
104
+ many open questions, including how the properties of
105
+ the ICM and the impact of AGN feedback have evolved
106
+ over cosmic time.
107
+ The study of high-redshift galaxy clusters and cluster
108
+ evolution has been greatly aided by recent advances in
109
+ the millimeter/sub-millimeter regime, whereby the ther-
110
+ mal Sunyaev-Zel’dovich (SZ) effect can be used to detect
111
+ galaxy clusters using their imprint on the cosmic mi-
112
+ crowave background (Sunyaev & Zeldovich 1972). Mil-
113
+ limeter observatories like the Planck satellite (Planck
114
+ Collaboration et al. 2016), the Atacama Cosmology
115
+ Telescope (ACT; Hilton et al. 2018, 2021), and the South
116
+ Pole Telescope (SPT; Carlstrom et al. 2011; Bleem et al.
117
+ 2015, 2020; Huang et al. 2020) have greatly increased
118
+ the number of detected galaxy clusters at z > 1. The
119
+ SZ selection method is mass-limited, nearly redshift-
120
+ independent (e.g. Bleem et al. 2015), and independent
121
+ of the dynamical state of the cluster (e.g. Nurgaliev
122
+ et al. 2017), allowing for a selection function well-suited
123
+ for cluster evolution studies. In addition, SZ detection
124
+ avoids significant bias toward strong cool core systems
125
+ (e.g. Lin et al. 2015), which plagues X-ray detection
126
+ mechanisms (e.g. Eckert et al. 2011), and avoids any
127
+ bias due to cluster galaxy properties that are present in
128
+ optical and infrared detection methods.
129
+ Uniform X-ray follow-up of SZ-selected clusters has
130
+ revealed similarity among ICM thermodynamic prop-
131
+ erties and the impact of AGN feedback on the ICM
132
+ from z ∼ 0 up to z ∼ 1.7 (e.g. McDonald et al. 2013;
133
+ Hlavacek-Larrondo et al. 2015; McDonald et al. 2017;
134
+ Ruppin et al. 2021; Ghirardini et al. 2021). In partic-
135
+ ular, the density profiles of clusters are consistent with
136
+ self-similar evolution in the outskirts and with no red-
137
+ shift evolution in the cores (McDonald et al. 2017; Rup-
138
+ pin et al. 2021), indicating consistent non-gravitational
139
+ processes at play in cluster cores responsible for the devi-
140
+ ation from self-similarity. Likewise, Hlavacek-Larrondo
141
+ et al. (2015) found that the power from AGN feedback
142
+ in cool core clusters has been roughly constant up to
143
+ z ∼ 1. Probing the ICM in the most distant clusters
144
+ will be a primary focus of next generation X-ray missions
145
+ like Athena (Barret et al. 2020). For now, focusing on
146
+ multi-wavelength observations of the most distant clus-
147
+ ters allows us to place constraints on the nature of AGN
148
+ feedback and ICM properties at z > 1.
149
+ SPT-CL J0607-4448 (hereafter SPT0607) is one of the
150
+ most distant SPT clusters discovered to date (Bleem
151
+ et al. 2015), with a redshift of z = 1.4010 ± 0.0028
152
+ as measured by spectroscopic follow-up of cluster mem-
153
+ bers (Khullar et al. 2019). As such, it has been exten-
154
+ sively followed up with various observatories and has
155
+ been studied in the X-ray as part of the SPT-SZ high-z
156
+ sample (McDonald et al. 2017; Ghirardini et al. 2021).
157
+ In the optical band, SPT0607 seems to contain two main
158
+ groups of galaxies, one at z = 1.401 and one closer to
159
+ z ∼ 1.48. However, the red sequence, dynamics of the
160
+ cluster members, and spectroscopy of the BCG favors
161
+ the lower redshift solution (Khullar et al. 2019; Straz-
162
+ zullo et al. 2019). Finally, the galactic properties of clus-
163
+ ter members were investigated in Strazzullo et al. (2019),
164
+ where they found an overdensity of red galaxies in the
165
+ cluster, although this overdensity was less prominent
166
+ than other clusters in their sample (with 1.4 ≲ z ≲ 1.7)
167
+ despite SPT0607 having the most massive BCG. Our
168
+ analysis of SPT0607 brings together multi-wavelength
169
+ observations to put together the full picture of this re-
170
+ laxed, cool core cluster with well-regulated cooling and
171
+ feedback at such a high redshift.
172
+ This work is organized as follows. In Section 2, we
173
+ outline the multi-wavelength data analyzed in this work.
174
+ We present our results in Section 3 and discuss the impli-
175
+ cations of these findings on our understanding of cluster
176
+ evolution and the AGN feedback process at high red-
177
+ shift in Section 4. Finally, we summarize our findings
178
+ in Section 5. Throughout this work, we utilize a ΛCDM
179
+
180
+ A Multi-Wavelength View of SPT-CL J0607-4448
181
+ 3
182
+ cosmology with H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and
183
+ ΩΛ = 0.7. All quoted uncertainties correspond to 68%
184
+ (1σ) confidence, unless otherwise noted.
185
+ 2. OBSERVATIONS & DATA REDUCTION
186
+ In Figure 1, we show the X-ray, optical/infrared (IR),
187
+ and radio data used in this analysis of SPT0607. On
188
+ the left and right, we show the Chandra X-ray data
189
+ and ATCA radio data, respectively, and locate the as-
190
+ sociated peaks in green (X-ray) and magenta (radio).
191
+ The center panel shows an RGB image using 3 HST
192
+ filters (F140W, F110W, and F814W), with the same lo-
193
+ cations of the X-ray and radio peaks overplotted. Both
194
+ the X-ray and radio peak are coincident with the BCG
195
+ of SPT0607, as expected for a well-regulated cool core
196
+ cluster. In the rest of this section, we describe the data
197
+ and reduction methods used in this paper.
198
+ 2.1. Chandra X-ray Observations
199
+ SPT0607 was observed with the Chandra ACIS-I in-
200
+ strument for a total of 112.5 ksec in January and Febru-
201
+ ary 2016. The details of the observations used in this
202
+ analysis are provided in Table 1. We reduced and ana-
203
+ lyzed these data using CIAO (version 4.12; Fruscione
204
+ et al. 2006) and calibration files from CALDB (ver-
205
+ sion 4.9.2.1). All observations were taken in VFAINT
206
+ mode so we applied additional improved background fil-
207
+ tering. We detected and removed point sources using
208
+ the wavdetect tool and sigma-clipped the light curve
209
+ at 3σ with the lc clean tool to remove any periods of
210
+ background flaring from our good time intervals (GTIs).
211
+ At z = 1.401 (Khullar et al. 2019), the angular ex-
212
+ tent of the cluster is relatively small compared to the
213
+ ACIS-I array, taking up only a single detector chip.
214
+ Thus, we used an off-source region on the remaining
215
+ other 3 detectors to produce the background spectra.
216
+ We extracted source and background X-ray spectra in
217
+ the 0.5-7.0 keV energy range and used XSPEC (ver-
218
+ sion 12.11.1) for spectral fitting. Spectra were grouped
219
+ to a minimum of 1 count per bin and C-statistic min-
220
+ imization was used for fitting (Cash 1979).
221
+ We used
222
+ the XSPEC model phabs(apec), where the phabs com-
223
+ ponent accounts for absorption in the Milky Way and
224
+ the apec model accounts for the emission from the in-
225
+ tracluster medium. Abundances were taken from An-
226
+ ders & Grevesse (1989). The absorption column density
227
+ for the phabs model was free to vary between galac-
228
+ tic NHI value, NH = 6.78 × 1020 cm−2 (HI4PI Col-
229
+ laboration et al. 2016), and the galactic NH, tot value,
230
+ NH, tot = NHI + NH2 = 8.33 × 1020 cm−2 (Willingale
231
+ et al. 2013). For the cluster emission, we fixed the red-
232
+ Table 1. Chandra Observation Information
233
+ ObsID
234
+ Date
235
+ Cleaned Exposure Time
236
+ (ksec)
237
+ 17210
238
+ 2016-02-04
239
+ 37.4
240
+ 17499
241
+ 2016-01-30
242
+ 39.3
243
+ 17500
244
+ 2016-02-20
245
+ 17.8
246
+ 18770
247
+ 2016-02-22
248
+ 18.0
249
+ shift to z = 1.401 and the metallicity to Z = 0.3Z⊙
250
+ given the limited data quality.
251
+ 2.2. Optical and Infrared Photometry
252
+ SPT0607 was observed with the Hubble Space Tele-
253
+ scope (HST) in four different broad-band filters with
254
+ Proposal IDs 14252 (PI: V. Strazzullo) and 14677 (PI:
255
+ T. Schrabback). The cluster was observed in the opti-
256
+ cal to near-infrared (rest-frame) with the F606W and
257
+ F814W filters using the Advanced Camera for Surveys
258
+ (ACS) and with the F110W and F140W filters using
259
+ the Wide Field Camera 3 (WFC3). The data were re-
260
+ duced using the AstroDrizzle package to remove cos-
261
+ mic rays, perform standard data reduction, and com-
262
+ bine images. We utilize the HST photometry primarily
263
+ to understand the optical spectral energy distribution
264
+ (SED) of the BCG and calibrate our ground-based spec-
265
+ troscopy.
266
+ The BCG of SPT0607 is undetected in the
267
+ bluest filter, F606W, leading to a 1σ upper limit on the
268
+ flux of Fλ, F606W > 9.1 × 10−20 erg s−1 cm−2 ˚A−1.
269
+ 2.3. Optical Spectroscopy
270
+ Optical spectra of potential cluster members of
271
+ SPT0607 were obtained using the Low Dispersion Sur-
272
+ vey Spectrograph (LDSS-3C) on the 6.5m Magellan
273
+ Clay Telescope (Khullar et al. 2019).
274
+ The VPH-Red
275
+ grism was used, providing nominal wavelength cover-
276
+ age from 6,000 – 10,000 ˚A. With SPT0607 at a red-
277
+ shift of z = 1.401, this wavelength coverage provides
278
+ access to the [O ii] emission line, which was used to es-
279
+ timate the amount of star formation in the BCG. How-
280
+ ever, these spectra, initially designed for cluster confir-
281
+ mation by measuring the redshift of potential cluster
282
+ members, were only wavelength-calibrated and not flux-
283
+ calibrated. Therefore, in order to obtain a line flux for
284
+ [O ii] to estimate star formation rates, we utilized the
285
+ HST photometry to roughly calibrate the spectrum flux.
286
+ We first measured an equivalent width from the uncali-
287
+ brated LDSS-3C spectrum, and then fit the three-band
288
+ HST photometry to a SED with an old and young stel-
289
+
290
+ 4
291
+ Masterson et al.
292
+ 0.5-7.0 keV
293
+ Chandra
294
+ 500 kpc (~1’)
295
+ F814W, F110W, F140W
296
+ HST
297
+ 100 kpc (~12")
298
+ 1-3 GHz
299
+ ATCA
300
+ 500 kpc (~1’)
301
+ Figure 1. Left: Merged Chandra X-ray counts image in the broad-band 0.5-7.0 keV. The image is binned such that each pixel
302
+ is 0.′′984 on each side and then smoothed with a Gaussian kernel of 4 pixels. The green “×” shows the location of the X-ray
303
+ peak, which we use as the center for all X-ray profiles. Middle: RGB image of SPT0607 using the HST F140W (red), F110W
304
+ (green), F814W (blue) filters. The green “×” shows the location of the X-ray peak and the magenta “+” shows the location of
305
+ the radio peak, both of which are coincident with the BCG of SPT0607. Right: ATCA 2 GHz radio image with the synthesized
306
+ beam in orange in the lower right corner. The magenta “+” shows the location of the radio peak.
307
+ lar population (10 Gyr and 10 Myr, respectively) de-
308
+ rived from the Starburst99 models (Leitherer et al.
309
+ 1999). As the BCG in SPT0607 was undetected in the
310
+ F606W filter, we used only the F814W, F110W, and
311
+ F140W photometry measurements from HST to fit the
312
+ SED, which was constrained to within roughly 10% at
313
+ the 1σ level around the rest-frame wavelength of [O ii]
314
+ (see Figure 5 and Section 3.3). This provided a mea-
315
+ sure of the expected continuum flux at the wavelength
316
+ of [O ii], which thus allowed us to convert the equiva-
317
+ lent width of the [O ii] emission line in the LDSS-3C
318
+ spectrum to a line flux.
319
+ 2.4. Radio Observations
320
+ SPT0607 was observed with the Australia Telescope
321
+ Compact Array (ATCA) in the 6A configuration in the
322
+ 1–3 GHz band on 20th August 2016 in seven 20 min
323
+ visits spread evenly over an 8.5 hour period. These data
324
+ provide a beam of 6′′ × 3.′′5 at 2 GHz. The data were
325
+ reduced with the 05/21/2015 release of the Miriad soft-
326
+ ware package (Sault et al. 1995).
327
+ The phase calibra-
328
+ tor 0647-475 was used to create the radio maps, with
329
+ some multi-faceting, but no self-calibration was neces-
330
+ sary. The rms value for the resulting image is 23 µJy
331
+ with a dynamic range of ∼3000, ensuring sensitivity to
332
+ extended emission.
333
+ 3. RESULTS
334
+ 3.1. ICM Properties & Thermodynamic Profiles
335
+ In this section, we present the results of the X-ray
336
+ data analysis whereby we measure the properties of the
337
+ ICM in SPT0607. We are focused on the core properties
338
+ of SPT0607, where the impact of AGN feedback is most
339
+ prevalent, and hence, we measured our radial profiles
340
+ with respect to the X-ray peak location, as marked in
341
+ the left and middle panels of Figure 1.
342
+ As has been
343
+ noted previously (e.g. McDonald et al. 2013; Sanders
344
+ et al. 2018; Ruppin et al. 2021), using a center based on
345
+ the large scale X-ray centroid, as was done in McDonald
346
+ et al. (2017) and Ghirardini et al. (2021), gives a slightly
347
+ different profile and leads to lower central density and
348
+ higher central entropy. Additionally, we note that given
349
+ the relatively high number of counts from SPT0607 (∼
350
+ 700), our peak location is robust to variations due to
351
+ noise (e.g. Ruppin et al. 2021).
352
+ Due to the high redshift of the source, we make a few
353
+ conservative assumptions with respect to the temper-
354
+ ature profile of the cluster. We first assume that the
355
+ temperature profile is isothermal, where the tempera-
356
+ ture is a core-excised temperature measured within a
357
+ radius (0.15 − 1)R500, using R500 = 0.56 Mpc from Mc-
358
+ Donald et al. (2017). Although this is likely a poor as-
359
+ sumption for the true nature of the temperature profile
360
+ in SPT0607, it provides a strong upper bound on many
361
+ of our measured thermodynamic properties. In reality,
362
+ we believe that the cluster has a strong cool core due
363
+ to the excess surface brightness, radio jet, and lack of
364
+ significant star formation features in the BCG. We then
365
+ show in the remainder of this section that we can still
366
+ recover the features of a strong cool core even with this
367
+ assumption of an isothermal temperature profile, pro-
368
+ viding compelling evidence for the cool core nature of
369
+ this system. After showing that SPT0607 does indeed
370
+ host a cool core, we also assume a standard cool core
371
+
372
+ A Multi-Wavelength View of SPT-CL J0607-4448
373
+ 5
374
+ temperature profile (Vikhlinin et al. 2006), scaled to the
375
+ global, core-excised temperature, to obtain a better es-
376
+ timate of the central thermodynamic properties.
377
+ 3.1.1. Global Temperature Measurement
378
+ As detailed in Section 2.1, we fit the cluster X-ray
379
+ spectrum in the core-excised region with the simple
380
+ model phabs(apec) for cluster emission, with the red-
381
+ shift fixed at z = 1.401.
382
+ Cluster metallicity is typi-
383
+ cally constrained by the highly ionized Fe K-shell lines
384
+ in X-ray spectra of the ICM, but is poorly constrained
385
+ in our fits given the high redshift of SPT0607. Thus,
386
+ we fixed the metallicity at Z = 0.3Z⊙, motivated by
387
+ detailed low redshift studies, which find that the aver-
388
+ age cluster metallicity is roughly a third of the solar
389
+ value (e.g. Mushotzky & Loewenstein 1997; De Grandi
390
+ & Molendi 2001; Urban et al. 2017), and recent metal-
391
+ licity evolution studies, which show little evolution in
392
+ the cluster metallicity out to z ∼ 1 (e.g. McDonald
393
+ et al. 2016a; Flores et al. 2021).
394
+ The ICM metal-
395
+ licity has been shown to have a weak dependence on
396
+ temperature (e.g. Fukazawa et al. 1998), and hence,
397
+ this choice likely has little impact on our measured
398
+ global temperature.
399
+ Following the methodology out-
400
+ lined in Section 2.1, we find a core-excised temperature
401
+ of ⟨kT⟩ = 6.75+2.14
402
+ −1.51 keV. Using the higher redshift value
403
+ for SPT0607 of z = 1.48 for the cluster redshift (see Sec-
404
+ tion 1), we measure a slightly higher core-excised tem-
405
+ perature of ⟨kT⟩ = 8.07+6.30
406
+ −2.76 keV, but this is consistent
407
+ with our initial estimate within 1σ uncertainty. Using
408
+ both Chandra and XMM-Newton data, Ghirardini et al.
409
+ (2021) found a temperature of T0 = 6.0 ± 0.8 keV when
410
+ fitting a Vikhlinin cool core temperature profile, which
411
+ is consistent with our measurement when considering
412
+ the differences in the temperature estimates (Vikhlinin
413
+ et al. 2006).
414
+ 3.1.2. Emission Measure and Density Profiles
415
+ To derive an emission measure from the X-ray data,
416
+ we extracted a spectrum from each observation in radial
417
+ bins. We used extraction bins with outer radii defined
418
+ by
419
+ rout,i = (a + bi + ci2 + di3)R500
420
+ (1)
421
+ where the constants a, b, c, and d are as defined in Mc-
422
+ Donald et al. (2017), R500 = 560 kpc (McDonald et al.
423
+ 2017), and i = 1, 2, ..., 17. We use fewer radial annuli
424
+ than in McDonald et al. (2017) due to poor signal-to-
425
+ noise in the cluster outskirts for SPT0607. In each radial
426
+ bin, we fit the spectrum for all 4 observations simulta-
427
+ neously, with all parameters tied across all observations.
428
+ To derive an emission measure, we simply fix the tem-
429
+ perature to the global, core-excised temperature previ-
430
+ ously described and fit only to the normalization of the
431
+ apec model. The normalization of the apec model has
432
+ astrophysical meaning and is given by
433
+ norm =
434
+ 10−14
435
+ 4π [DA (1 + z)]2
436
+
437
+ nenHdV,
438
+ (2)
439
+ where DA is the angular distance to the source in units
440
+ of cm, ne is the electron density in cm−3, and nH is the
441
+ H density in cm−3. Then, by assuming a spherical ge-
442
+ ometry, the normalization can be related to the emission
443
+ measure, which is given by
444
+ EM =
445
+
446
+ nenHdl,
447
+ (3)
448
+ where the integral here is along the line of the sight
449
+ through the cluster. Thus, we can use the apec nor-
450
+ malization to obtain the emission measure for each ra-
451
+ dial bin. Because the normalization measurement is de-
452
+ pendent on the temperature we use, we also account
453
+ for the uncertainty in the temperature measurement by
454
+ including an additional 10% uncertainty on each apec
455
+ normalization measurement (the average difference be-
456
+ tween the normalization at ⟨kT⟩ and the normalization
457
+ at ⟨kT⟩ ± 1σ for the isothermal temperature).
458
+ To fit the emission measure, we use the modified β-
459
+ model (Vikhlinin et al. 2006), whereby the density is
460
+ given by
461
+ nenH = n2
462
+ 0
463
+ (r/rc)−α
464
+ (1 + r2/r2c)3β−α/2
465
+ 1
466
+ (1 + r3/r3s)ϵ/3 ,
467
+ (4)
468
+ where n0 is the central density, rc and rs are scaling
469
+ radii for the cluster core and outskirts, and r is the ra-
470
+ dial coordinate. This model for the density is then pro-
471
+ jected and integrated numerically along the line of sight
472
+ to create an emission measure model.
473
+ We utilize the
474
+ Markov Chain Monte Carlo (MCMC) implementation
475
+ emcee from Foreman-Mackey et al. (2013) to perform
476
+ the fitting.
477
+ We use uniform priors on all parameters
478
+ and a Gaussian likelihood, given by
479
+ L = −1
480
+ 2χ2 = −1
481
+ 2
482
+ N
483
+
484
+ i=1
485
+ �EMmeasured − EMmodel
486
+ σEM
487
+ �2
488
+ ,
489
+ (5)
490
+ where σEM are our errors on the emission measure.
491
+ We first maximize this likelihood function for our data
492
+ and then use the maximum likelihood parameters with
493
+ some scatter as our initial position for the walkers in the
494
+ MCMC chain. We run the chain with 32 walkers, each
495
+ for 5 × 105 chain steps after a burn length of 5 × 104
496
+ chain steps (which is significantly longer than the inte-
497
+ grated autocorrelation time of the resulting chain). The
498
+ resulting fit to the emission measure is shown in the left
499
+ panel of Figure 2.
500
+
501
+ 6
502
+ Masterson et al.
503
+ 100
504
+ 101
505
+ 102
506
+ 103
507
+ Radius (kpc)
508
+ 1017
509
+ 1018
510
+ 1019
511
+ 1020
512
+ 1021
513
+ 1022
514
+ Emission Measure (cm−5)
515
+ 68% confidence interval
516
+ 95% confidence interval
517
+ Median fit
518
+ Maximum likelihood
519
+ 100
520
+ 101
521
+ 102
522
+ 103
523
+ Radius (kpc)
524
+ 10−4
525
+ 10−3
526
+ 10−2
527
+ 10−1
528
+ 100
529
+ ne (cm−3)
530
+ 68% confidence interval
531
+ 95% confidence interval
532
+ Median fit
533
+ Maximum likelihood
534
+ Ghirardini et al. (2021)
535
+ Figure 2. Left: The emission measure fit for SPT0607. The emission measure is computed by using the APEC normalization
536
+ in each of the imaging bins and fitting a projected density profile by integrating along the line of sight through the cluster. The
537
+ red dashed line shows the maximum likelihood fit, using the Gaussian likelihood given in Equation 5. The profile with median
538
+ fit parameters from the MCMC fit is shown in black, and the confidence interval from the MCMC chain at each radius for
539
+ 68% and 95% confidence is shown in the shaded regions. Right: The density profile for SPT0607, computed from the emission
540
+ measure fit. The maximum likelihood profile is again shown in red, the median MCMC profile is shown in black, and the 68%
541
+ and 95% confidence intervals are shown in the shaded regions. The comparison to the density profile from Ghirardini et al.
542
+ (2021) is shown in blue. The discrepancy between the two profiles in the core is likely due to our different choice of center (see
543
+ Section 3.1.2)
544
+ We can easily turn our emission measure fit into a gas
545
+ density profile for the cluster since we have fit parame-
546
+ ters directly related to the density via Equation 4. For
547
+ an ionized plasma with a metallicity of 0.3Z⊙, ne and
548
+ nH are related via ne = ZnH, where Z = 1.199 is the
549
+ average nuclear mass. Likewise, the total gas density of
550
+ the system can be described by ρg = mpneA/Z, where
551
+ mp is the mass of a proton and A = 1.397 is the av-
552
+ erage nuclear charge. Our density profile is shown in
553
+ the right panel of Figure 2, with a comparison to the
554
+ density profile from Ghirardini et al. (2021), which uti-
555
+ lizes both Chandra and XMM-Newton data. Ghirardini
556
+ et al. (2021) use a large-scale centroid to compute their
557
+ radial profiles, whereas we choose an X-ray peak ap-
558
+ proach to capture the core properties. We find decent
559
+ agreement at the majority of the cluster radii, although
560
+ our profile predicts a larger overdensity in the cluster
561
+ core. When using a centroid-based approach (i.e. the
562
+ Ghirardini et al. (2021) center), we find better agree-
563
+ ment between the two profiles, suggesting that the dis-
564
+ crepancy in Figure 2 is due to our choice of using the
565
+ X-ray peak as the cluster center rather than the large-
566
+ scale centroid.
567
+ 3.1.3. Entropy Profile
568
+ With the density profile for the cluster, we derive an
569
+ entropy profile, which can both give us insight into the
570
+ cool core nature of the cluster and trace the thermo-
571
+ dynamic history of the ICM (Cavagnolo et al. 2009).
572
+ Cluster entropy is defined as
573
+ K = kT
574
+ n2/3
575
+ e
576
+ .
577
+ (6)
578
+ Assuming an isothermal temperature profile provides an
579
+ upper limit on the true entropy profile in the core of the
580
+ cluster. Figure 3 shows the entropy profile for SPT0607
581
+ using the isothermal temperature profile described in
582
+ Section 3.1.1 and discretizing the entropy in the same
583
+ bins as we used to measure the emission measure. We
584
+ find good agreement in the cluster outskirts with the
585
+ self-similar K ∝ R1.1 expectation (Voit et al. 2005). In
586
+ the center, we find slight excess entropy compared to
587
+ the self-similar expectation, with a central entropy of
588
+ K0 = 18+11
589
+ −9
590
+ keV cm2 in the smallest bin (r ≈ 10 kpc).
591
+ Thus, even with the most conservative assumption of
592
+ an isothermal temperature profile, we still recover a low
593
+ entropy core, consistent with the central entropy in the
594
+ strong cool cores in the sample from Hudson et al. (2010)
595
+ (K0 ≲ 22 keV cm2). This indicates that SPT0607 is
596
+ indeed a strong cool core cluster.
597
+
598
+ A Multi-Wavelength View of SPT-CL J0607-4448
599
+ 7
600
+ 100
601
+ 101
602
+ 102
603
+ 103
604
+ Radius (kpc)
605
+ 100
606
+ 101
607
+ 102
608
+ 103
609
+ K (keV cm2)
610
+ 68% confidence interval
611
+ 95% confidence interval
612
+ Median fit
613
+ Maximum likelihood
614
+ K ∝ R1.1 (Voit+05)
615
+ Figure 3. The entropy profile for SPT0607, computed from
616
+ the derived density profile and an isothermal temperature
617
+ profile. The analytic profile has been discretized in the same
618
+ binning scheme used to fit the emission measure data. We
619
+ find a low entropy core and good agreement in the cluster
620
+ outskirts with the expected K ∝ R1.1 relation from Voit
621
+ et al. (2005).
622
+ To obtain a more accurate estimate of the central en-
623
+ tropy, we also computed the entropy profile assuming
624
+ that the temperature followed the Vikhlinin et al. (2006)
625
+ cool core profile. Under this assumption, we find a cen-
626
+ tral entropy K0 = 10+3
627
+ −6 keV cm−2, which is again con-
628
+ sistent with a strong cool core in SPT0607.
629
+ 3.1.4. Cooling Time
630
+ The last key thermodynamic quantity that we com-
631
+ pute is the cooling time, which is used to estimate rcool
632
+ so that we can measure a mass cooling rate to compare
633
+ with other indicators of cooling to get an idea of the
634
+ suppression caused by AGN feedback. We compute the
635
+ cooling time for the cluster using
636
+ tcool = 3
637
+ 2
638
+ (ne + nH)kT
639
+ nenHΛ(T, Z),
640
+ (7)
641
+ where Λ(T, Z) is the cooling function for an astrophysi-
642
+ cal plasma at a temperature T and metallicity Z, which
643
+ we tabulate from Sutherland & Dopita (1993) for the
644
+ closest temperature and metallicity for SPT0607. The
645
+ cooling time profile we derive with an isothermal tem-
646
+ perature profile is shown in Figure 4.
647
+ Using this cooling time profile, we measure a cooling
648
+ radius of rcool = 43+17
649
+ −11 kpc, which is defined as the ra-
650
+ dius at which the cooling time is equal to 3 Gyr.
651
+ A
652
+ 100
653
+ 101
654
+ 102
655
+ 103
656
+ Radius (kpc)
657
+ 10−1
658
+ 100
659
+ 101
660
+ 102
661
+ tcool (Gyr)
662
+ 68% confidence interval
663
+ 95% confidence interval
664
+ Median fit
665
+ Maximum likelihood
666
+ tcool = 3 Gyr
667
+ rcool
668
+ Figure 4. The cooling time profile for SPT0607, computed
669
+ assuming an isothermal temperature profile and density pro-
670
+ files derived in Section 3.1.2. The radius corresponding to
671
+ tcool = 3 Gyr is shown with a blacked dotted line, with the
672
+ corresponding 68% confidence interval shown in grey.
673
+ cooling time of 3 Gyr was chosen as it has been shown
674
+ to contain the most extended tracers of thermal insta-
675
+ bilities in the ICM (e.g. McDonald et al. 2010, 2011).
676
+ To obtain a mass cooling rate, we then integrate the gas
677
+ density profile to within the cooling radius and compute
678
+ the mass cooling rate using
679
+ ˙Mcool = Mgas(r < rcool)
680
+ 3 Gyr
681
+ .
682
+ (8)
683
+ From this, we estimate from the X-ray analysis that
684
+ the expected mass cooling rate is
685
+ ˙Mcool = 100+90
686
+ −60 M⊙
687
+ yr−1. Similarly to the central entropy, we also compute
688
+ this value using a scaled version of the universal cool
689
+ core temperature profile and find consistent mass cool-
690
+ ing rates under that assumption.
691
+ 3.2. Radio Power
692
+ We utilize ATCA 2.1 GHz observations of SPT0607
693
+ to determine the total radio power associated with the
694
+ BCG in SPT0607. The jet from the BCG is unresolved,
695
+ and we measure an integrated flux using CASA (Mc-
696
+ Mullin et al. 2007) of S2.1 GHz = 0.23 ± 0.11 mJy within
697
+ an ovular aperture equal to the beam size centered on
698
+ the radio peak. This corresponds to a 2.1 GHz radio
699
+ luminosity of L2.1 GHz = (2.3 ± 1.1) × 1024 W Hz−1. We
700
+ then estimate the radio power using
701
+ Pν0 = 4πD2
702
+ L(1 + z)α−1Sν0ν0,
703
+ (9)
704
+
705
+ 8
706
+ Masterson et al.
707
+ from Cavagnolo et al. (2010), where ν0 is the observed
708
+ frequency (2.1 GHz), Sν0 is the flux density at the ob-
709
+ served frequency, DL is the luminosity distance, and α
710
+ is the spectral index. Since we only have data at one
711
+ frequency from ATCA, we cannot measure the spectral
712
+ index, but instead adopt a typical value for extragalactic
713
+ radio galaxies of α = 0.8 as in Cavagnolo et al. (2010).
714
+ Using a spectral index of α = 0.8, we find a radio power
715
+ of P2.1 GHz = (4.8 ± 2.4) × 1040 erg s−1.
716
+ To compare the power of the radio jet in the BCG to
717
+ the amount of cooling expected in the ICM, we use the
718
+ scaling relation from Cavagnolo et al. (2010) to convert
719
+ the measured radio power to a jet power. We first use
720
+ the same spectral index to convert the observed 2.1 GHz
721
+ power to a 1.4 GHz power, which can then be directly
722
+ converted to jet power using Equation (1) of Cavagnolo
723
+ et al. (2010) given by
724
+ log Pcav = (0.75 ± 0.14) log P1.4 + (1.91 ± 0.18),
725
+ (10)
726
+ where Pcav is in units of 1042 erg s−1 and P1.4 is in
727
+ units of 1040 erg s−1. We find a jet power of Pcav =
728
+ 3.2+2.1
729
+ −1.3 × 1044 erg s−1 using this scaling relation.
730
+ To
731
+ compare the heating from the radio jet to the cooling
732
+ of the ICM, we compute the X-ray cooling luminosity
733
+ of the ICM within rcool, using our derived value of rcool
734
+ from Section 3.1.4. We find an unabsorbed X-ray cooling
735
+ luminosity of Lcool = 1.9+0.2
736
+ −0.5 × 1044 erg s−1 in the 0.01-
737
+ 100 keV band, which is identical to the radio jet power
738
+ within 1σ confidence. This is consistent with the radio
739
+ BCG power versus X-ray cooling luminosity found in
740
+ a large sample of low redshift clusters in Hogan et al.
741
+ (2015), as well as with the lack of a significant redshift
742
+ evolution in Pcav/Lcool for clusters out to z ∼ 1.3 in
743
+ Ruppin et al. (2022). The implications of these findings
744
+ on the regulation of cooling in SPT0607 by radio-mode
745
+ AGN feedback are discussed further in Section 4.
746
+ 3.3. Regulated Star Formation in the BCG
747
+ Using the LDSS-3C optical spectrum from the Magel-
748
+ lan Clay telescope, we estimate the star formation rate
749
+ (SFR) in the BCG by measuring a luminosity of the
750
+ [O ii] λλ3727, 3729 ˚A doublet. The [O ii] emission fea-
751
+ ture is a useful indicator of star formation (e.g. Kenni-
752
+ cutt 1998; Kewley et al. 2004), especially in the high-
753
+ redshift universe because it has a similar ionization en-
754
+ ergy to hydrogen, but, unlike the Hα transition, is not
755
+ redshifted out of the optical band. The [O ii] emission
756
+ traces warm gas with T ∼ 104 K around young O and
757
+ B stars, thus tracing instantaneous star formation on
758
+ timescales on the order of ∼ 10 Myr. However, SFRs
759
+ derived from [O ii] emission line are more dependent on
760
+ dust, metallicity, and ionization than other tracers like
761
+ Hα, UV, and far-IR luminosities (e.g. Rosa-Gonz´alez
762
+ et al. 2002; Kewley et al. 2004; Moustakas et al. 2006),
763
+ which we cannot accurately determine with current data
764
+ on SPT0607. AGN can also excite [O ii] in the nuclei of
765
+ galaxies, but the AGN in SPT0607 is radiatively ineffi-
766
+ cient and weak in X-ray emission. Thus, we do not ex-
767
+ pect the central AGN to be contributing significantly to
768
+ the [O ii] emission in SPT0607 and can safely attribute
769
+ the majority of the [O ii] emission to star formation.
770
+ We fit the LDSS-3C spectrum within 100 ˚A on ei-
771
+ ther side of the expected [O ii] emission feature with a
772
+ constant to estimate the continuum and doublet Gaus-
773
+ sian feature for the [O ii] line. We fix the redshift at
774
+ z = 1.401 for the cluster, and allowed the line centers to
775
+ vary within 500 km s−1 of the atomic value to account
776
+ for peculiar motions in the cluster. We restrict the width
777
+ of the line to be less than 500 km s−1 to account for tur-
778
+ bulent motions broadening the line. We tie the widths
779
+ of the two Gaussian components together and allowed
780
+ their line ratio to be free. We use the emcee package
781
+ (Foreman-Mackey et al. 2013) with a Gaussian likeli-
782
+ hood and uniform, uninformative priors to fit the spec-
783
+ trum using an MCMC approach with 32 walkers, 50,000
784
+ chain steps per walker, and a burn length of 5,000 chain
785
+ steps per walker (which is significantly longer than the
786
+ integrated autocorrelation time of the resulting chain).
787
+ The result of the fit is shown in the top panel of Fig-
788
+ ure 5. We detect a relatively weak emission feature in
789
+ [O ii] with a velocity offset of v = −200 ± 60 km s−1, a
790
+ line width of 230 ± 40 km s−1, and a rest-frame equiva-
791
+ lent width (EW) of EW[OII] = 6.0 ± 0.9 ˚A. This equiv-
792
+ alent width is then turned into a line flux using the
793
+ flux-calibrated HST photometry to model the contin-
794
+ uum SED, as shown in the bottom panel of Figure 5
795
+ and detailed in Section 2.3.
796
+ From this calibration, we measure an [O ii] luminos-
797
+ ity of L[OII] = 1.3+0.3
798
+ −0.2 × 1041 erg s−1, which has not
799
+ been corrected for extinction. We account for extinc-
800
+ tion by folding in uncertainty on E(B −V ) by assuming
801
+ a uniform distribution between E(B−V ) = 0 (i.e. dust-
802
+ free) and E(B − V ) = 0.3. Using Equations (10) and
803
+ (17) of Kewley et al. (2004), we convert our observed
804
+ [O ii] luminosity to a SFR (assuming a solar value of
805
+ log(O/H) + 12 = 8.9). From our MCMC chains from
806
+ fitting the line and folding in the uniform distribution of
807
+ E(B−V ), we obtain an extinction-corrected star forma-
808
+ tion rate of SFR[O ii] = 1.7+1.0
809
+ −0.6 M⊙ yr−1. This value is
810
+ more than two orders of magnitude lower than the cool-
811
+ ing rate we measure in the X-ray band, indicating that
812
+ the cooling in SPT0607 is well-regulated by AGN feed-
813
+ back. Likewise, this star formation rate is comparable
814
+ to low-redshift samples of BCGs with little on-going star
815
+
816
+ A Multi-Wavelength View of SPT-CL J0607-4448
817
+ 9
818
+ 8875
819
+ 8900
820
+ 8925
821
+ 8950
822
+ 8975
823
+ 9000
824
+ 9025
825
+ 9050
826
+ Observed Wavelength (˚A)
827
+ 0
828
+ 500
829
+ 1000
830
+ 1500
831
+ 2000
832
+ 2500
833
+ Flux (du/pixel)
834
+ [OII] Emission at z = 1.401
835
+ Maximum Likelihood
836
+ 68% Confidence Interval
837
+ 95% Confidence Interval
838
+ Data
839
+ 6000
840
+ 8000
841
+ 10000
842
+ 12000
843
+ 14000
844
+ Observed Wavelength (˚A)
845
+ 1039
846
+ 1040
847
+ 1041
848
+ Lλ (erg s−1 ˚A−1)
849
+ Old Population
850
+ Young Population
851
+ Total Model
852
+ 68% Confidence Interval
853
+ 95% Confidence Interval
854
+ HST Data
855
+ Figure 5. Top: Fit to the wavelength-calibrated LDSS-3C
856
+ spectrum around the [O ii] emission feature. The maximum
857
+ likelihood fit is shown as a red dashed line, with the two in-
858
+ dividual Gaussian components shown with red dotted lines.
859
+ Confidence intervals are shown in green. The observed wave-
860
+ length of the [O ii] doublet is shown with blue dotted lines.
861
+ We allow for some systematic offset from the observed wave-
862
+ length to account for motion within the cluster.
863
+ Bottom:
864
+ Fit to the three-band HST photometry using a simple young
865
+ and old stellar population model from Starburst99 (Lei-
866
+ therer et al. 1999). The total model is shown in black, with
867
+ confidence intervals in green. The young and old stellar pop-
868
+ ulation contributions are shown in blue and red, respectively.
869
+ A 1σ upper bound from the F606W filter is also shown, al-
870
+ though this is not used in the fitting procedure. The SED
871
+ fit is used to obtain a continuum flux at the wavelength of
872
+ [O ii], with which we can combine the equivalent width mea-
873
+ surement from the top panel to determine the [O ii] line flux.
874
+ formation as measured with Hα and other SFR indica-
875
+ tors (e.g. Crawford et al. 1999; McDonald et al. 2010).
876
+ This thus adds to the evidence that SPT0607 is a high-
877
+ redshift analog of the large population of relaxed, low-
878
+ redshift clusters with well-regulated star formation and
879
+ ICM cooling by AGN feedback.
880
+ 4. DISCUSSION
881
+ From the analysis of X-ray, optical, and radio obser-
882
+ vations, SPT0607 clearly hosts a strong cool core with
883
+ AGN feedback offsetting the cooling from the ICM, as
884
+ is common place in low redshift galaxy clusters.
885
+ An
886
+ overview of properties of the cluster and BCG derived
887
+ in this work are given in Table 2, highlighting the low
888
+ central entropy, similarity of the radio cavity power and
889
+ cooling luminosity, and the SFR that is ∼1% of the pre-
890
+ dicted mass cooling rate. In the remainder of this sec-
891
+ Table 2. Summary of Cluster and BCG Properties
892
+ BCG Property
893
+ Value
894
+ Central Entropy
895
+ K0 = 18+11
896
+ −9 keV cm2
897
+ X-ray Mass Cooling Rate
898
+ ˙Mcool = 100+90
899
+ −60 M⊙ yr−1
900
+ X-ray Cooling Luminosity
901
+ Lcool = 1.9+0.2
902
+ −0.5 × 1044 erg s−1
903
+ Radio Jet Power
904
+ Pcav = 3.2+2.1
905
+ −1.3 × 1044 erg s−1
906
+ Star Formation Rate
907
+ 1.7+1.0
908
+ −0.6 M⊙ yr−1
909
+ tion, we discuss the implications that these findings have
910
+ on our understanding of high redshift clusters and the
911
+ evolution of AGN feedback.
912
+ 4.1. Constraints on the Onset of Radio-Mode Feedback
913
+ At low redshifts, radio-mode AGN feedback, whereby
914
+ the central AGN accretes mass at a low rate and
915
+ launches radio jets that deposit large amounts of me-
916
+ chanical energy into the ICM, is the main mechanism
917
+ by which runaway ICM cooling is prevented in cool core
918
+ clusters (e.g. Bˆırzan et al. 2004; Dunn & Fabian 2006;
919
+ Rafferty et al. 2006). Through multi-wavelength obser-
920
+ vations, we have shown that SPT0607 has well-regulated
921
+ radio-mode feedback from its BCG and, to our knowl-
922
+ edge, is the highest redshift cluster with these properties
923
+ known to date. As such, it provides one of the strongest
924
+ constraints to date on the onset of AGN feedback in
925
+ galaxy clusters.
926
+ Simulations and theoretical models of the evolution
927
+ of AGN feedback and supermassive black hole growth
928
+ suggest that on average AGN in cluster environments
929
+ should transition from quasar-mode feedback at early
930
+ times, where the black hole is accreting at higher rates
931
+ and the accretion process is radiatively efficient, to
932
+ radio-mode feedback at late times (e.g. Churazov et al.
933
+ 2005; Croton et al. 2006). Recent simulations suggest
934
+ that this transition should take on the order of 1-2 Gyr
935
+ to occur in BCGs in cool core clusters (e.g. Qiu et al.
936
+ 2019). Indeed, at low redshifts, only on the order of 1-2%
937
+ of clusters are observed to have a X-ray bright central
938
+ AGN, which is expected for radiatively efficient accre-
939
+ tion in the BCG and quasar-mode feedback (e.g. Green
940
+ et al. 2017; Somboonpanyakul et al. 2021). SPT0607 has
941
+ well-regulated radio-mode feedback from its BCG, sug-
942
+ gesting that the radio-mode feedback must be present
943
+ and a dominant form of AGN feedback in some clusters
944
+ out to at least z = 1.4. Whether this is the dominant
945
+ mechanism of feedback in most high redshift systems
946
+ is a question that still remains to be answered with a
947
+ more complete sample of radio and X-ray observations
948
+
949
+ 10
950
+ Masterson et al.
951
+ of high redshift clusters. However, we can use SPT0607
952
+ to place constraints on the minimum redshift at which
953
+ AGN feedback must have turned on in clusters; under
954
+ the assumption that BCGs are dominated by radiatively
955
+ efficient accretion during the first 1-2 Gyrs (Qiu et al.
956
+ 2019), the lowest redshifts at which the AGN feedback
957
+ process could have began in SPT0607 is z ∼ 1.9 − 2.6.
958
+ Previously, studies of X-ray cavities from jet-powered
959
+ bubbles in the ICM have shown there is little evolution
960
+ in the properties of radio-mode feedback from the local
961
+ universe back to z ∼ 0.8 (Hlavacek-Larrondo et al. 2012,
962
+ 2015). Additionally, the discovery of more distant cool
963
+ core clusters with central radio sources capable of bal-
964
+ ancing ICM cooling, such as WARPJ1415.1+3612, have
965
+ extended these findings out to z ∼ 1 (Santos et al. 2012).
966
+ With SPT0607, we can extend this relation even further
967
+ out to z = 1.4. However, it is still unclear when radio-
968
+ mode feedback was established in galaxy clusters and
969
+ how the fraction of clusters with well-regulated AGN
970
+ feedback has evolved out to high redshifts. The next
971
+ generation X-ray observatories will target this question
972
+ by probing the ICM in the most distant clusters, with
973
+ the ability to detect cluster emission out to z ∼ 2 − 3
974
+ (Barret et al. 2020). With many more systems, we will
975
+ be able to get a better handle on the evolution of radio-
976
+ mode feedback and the AGN duty cycle in high redshift
977
+ clusters. For now, at z = 1.401, SPT0607 provides the
978
+ furthest constraint on the onset of radio-mode feedback
979
+ in cool core clusters.
980
+ 4.2. Star Formation in BCGs at High Redshift
981
+ Star formation in the BCGs in cool core clusters is a
982
+ critical piece of the AGN feedback process as it acts as
983
+ a probe of the balance between heating by AGN feed-
984
+ back and cooling in the ICM. Various works have found
985
+ that both the star formation rate and specific star for-
986
+ mation rate of BCGs increase as a function of increasing
987
+ redshift (e.g. Webb et al. 2015; McDonald et al. 2016b;
988
+ Bonaventura et al. 2017). However, the nature of star
989
+ forming BCGs seems to have changed with redshift. In
990
+ particular, McDonald et al. (2016b) found that there
991
+ was a transition in the fuel supply of the BCG, namely
992
+ that high-redshift clusters out to z ∼ 1.2 with highly
993
+ star forming BCGs were almost always disturbed clus-
994
+ ters. This suggests that gas-rich mergers are responsible
995
+ for runaway cooling and star formation in high-redshift
996
+ systems, rather than cooling flows from a lack of heat-
997
+ ing from AGN feedback, as was recently observed in the
998
+ z ∼ 1.7 system SpARCS1049 (Hlavacek-Larrondo et al.
999
+ 2020).
1000
+ However, at low redshifts, star forming BCGs
1001
+ are predominantly found in relaxed systems, indicating
1002
+ that star formation in BCGs at low redshifts is com-
1003
+ monly driven by cooling of the ICM and regulated by
1004
+ AGN feedback. With multi-wavelength observations of
1005
+ SPT0607, we have found that this high-redshift, relaxed
1006
+ cluster hosts a BCG with very little star formation. The
1007
+ BCG also shows no noticeable morphological features in
1008
+ the 3-band HST images that suggest any recent merg-
1009
+ ers of interactions. These findings thus agree with the
1010
+ idea of a transitioning fuel supply for BCG star forma-
1011
+ tion at high redshift, where the majority of the fuel for
1012
+ star formation in high-redshift systems comes from gas
1013
+ rich mergers as clusters are assembling. SPT0607 sup-
1014
+ ports this picture out to z ∼ 1.4 and suggests that the
1015
+ early onset of AGN feedback provides sufficient heating
1016
+ to offset direct cooling from the ICM into stars at high
1017
+ redshift.
1018
+ 5. SUMMARY
1019
+ We have presented a multi-wavelength analysis of one
1020
+ of the most distant SPT-selected clusters, SPT0607 at
1021
+ a redshift of z = 1.401. Through analysis of Chandra
1022
+ X-ray data, we found that SPT0607 has a strong cool
1023
+ core, as evidenced by both an increase in central gas
1024
+ density and a low entropy core as measured from the
1025
+ X-ray peak. These results follow from our conservative
1026
+ assumption of an isothermal temperature profile; in re-
1027
+ ality, we expect the central temperature of SPT0607 to
1028
+ drop in the center, which gives an even lower entropy
1029
+ core when assumed.
1030
+ As shown in Figure 1, the core of SPT0607 is co-
1031
+ incident with the BCG, which harbors a radio jet de-
1032
+ tected with ATCA at 2.1 GHz. Despite having a dense
1033
+ and cool core, we measure a star formation rate in the
1034
+ BCG of SPT0607 of SFR[O ii] = 1.7+1.0
1035
+ −0.6 M⊙ yr−1 using
1036
+ measurements of the [O ii] emission line from optical
1037
+ spectroscopy with the LDSS-3C instrument on the 6.5m
1038
+ Magellan Clay telescope.
1039
+ This star formation rate is
1040
+ roughly 1% of the expected mass cooling rate of the
1041
+ ICM of
1042
+ ˙Mcool = 100+90
1043
+ −60 M⊙ yr−1 from our X-ray mea-
1044
+ surements. Similarly, we measure a cavity power from
1045
+ the radio jet of Pcav = 3.2+2.1
1046
+ −1.3 × 1044 erg s−1, which
1047
+ is consistent with the X-ray cooling luminosity.
1048
+ This
1049
+ indicates that the BCG in SPT0607 is providing radio-
1050
+ mode feedback to offset the cooling from the ICM. This
1051
+ phenomenon is commonplace at low redshift, but as one
1052
+ of the most distant clusters known to date, the regula-
1053
+ tion of cooling and AGN feedback in SPT0607 gives the
1054
+ strongest constraints on the onset of radio-mode AGN
1055
+ feedback in galaxy clusters to date.
1056
+ The South Pole Telescope program is supported by
1057
+ the National Science Foundation (NSF) through grants
1058
+ PLR-1248097 and OPP-1852617.
1059
+ Partial support is
1060
+ also provided by the NSF Physics Frontier Center grant
1061
+
1062
+ A Multi-Wavelength View of SPT-CL J0607-4448
1063
+ 11
1064
+ PHY-1125897 to the Kavli Institute of Cosmological
1065
+ Physics at the University of Chicago, the Kavli Foun-
1066
+ dation, and the Gordon and Betty Moore Foundation
1067
+ through grant GBMF#947 to the University of Chicago.
1068
+ Argonne National Laboratory’s work was supported by
1069
+ the U.S. Department of Energy, Office of Science, Of-
1070
+ fice of High Energy Physics, under contract DE-AC02-
1071
+ 06CH11357. The Melbourne group acknowledges sup-
1072
+ port from the Australian Research Council’s Discovery
1073
+ Projects scheme (DP200101068).
1074
+ All of the HST data used in this paper can be found
1075
+ in MAST: 10.17909/e40m-z102.
1076
+ Facilities: CXO, HST, Magellan, ATCA, NSF/US
1077
+ Department of Energy 10m South Pole Telescope (SPT-
1078
+ SZ)
1079
+ Software:
1080
+ CIAO (Fruscione et al. 2006), XSPEC
1081
+ (Arnaud 1996), CASA (McMullin et al. 2007), STAR-
1082
+ BURST99 (Leitherer et al. 1999), Astropy (Astropy Col-
1083
+ laboration et al. 2013, 2018), Matplotlib (Hunter 2007),
1084
+ NumPy (van der Walt et al. 2011)
1085
+ REFERENCES
1086
+ Anders, E., & Grevesse, N. 1989, GeoCoA, 53, 197,
1087
+ doi: 10.1016/0016-7037(89)90286-X
1088
+ Arnaud, K. A. 1996, in Astronomical Society of the Pacific
1089
+ Conference Series, Vol. 101, Astronomical Data Analysis
1090
+ Software and Systems V, ed. G. H. Jacoby & J. Barnes,
1091
+ 17
1092
+ Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,
1093
+ et al. 2013, A&A, 558, A33,
1094
+ doi: 10.1051/0004-6361/201322068
1095
+ Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M.,
1096
+ et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
1097
+ Barret, D., Decourchelle, A., Fabian, A., et al. 2020,
1098
+ Astronomische Nachrichten, 341, 224,
1099
+ doi: 10.1002/asna.202023782
1100
+ Bˆırzan, L., Rafferty, D. A., McNamara, B. R., Wise,
1101
+ M. W., & Nulsen, P. E. J. 2004, ApJ, 607, 800,
1102
+ doi: 10.1086/383519
1103
+ Bleem, L. E., Stalder, B., de Haan, T., et al. 2015, ApJS,
1104
+ 216, 27, doi: 10.1088/0067-0049/216/2/27
1105
+ Bleem, L. E., Bocquet, S., Stalder, B., et al. 2020, ApJS,
1106
+ 247, 25, doi: 10.3847/1538-4365/ab6993
1107
+ Bonaventura, N. R., Webb, T. M. A., Muzzin, A., et al.
1108
+ 2017, MNRAS, 469, 1259, doi: 10.1093/mnras/stx722
1109
+ Bregman, J. N., Fabian, A. C., Miller, E. D., & Irwin, J. A.
1110
+ 2006, ApJ, 642, 746, doi: 10.1086/501112
1111
+ Carlstrom, J. E., Ade, P. A. R., Aird, K. A., et al. 2011,
1112
+ PASP, 123, 568, doi: 10.1086/659879
1113
+ Cash, W. 1979, ApJ, 228, 939, doi: 10.1086/156922
1114
+ Cavagnolo, K. W., Donahue, M., Voit, G. M., & Sun, M.
1115
+ 2009, ApJS, 182, 12, doi: 10.1088/0067-0049/182/1/12
1116
+ Cavagnolo, K. W., McNamara, B. R., Nulsen, P. E. J.,
1117
+ et al. 2010, ApJ, 720, 1066,
1118
+ doi: 10.1088/0004-637X/720/2/1066
1119
+ Churazov, E., Sazonov, S., Sunyaev, R., et al. 2005,
1120
+ MNRAS, 363, L91, doi: 10.1111/j.1745-3933.2005.00093.x
1121
+ Crawford, C. S., Allen, S. W., Ebeling, H., Edge, A. C., &
1122
+ Fabian, A. C. 1999, MNRAS, 306, 857,
1123
+ doi: 10.1046/j.1365-8711.1999.02583.x
1124
+ Croton, D. J., Springel, V., White, S. D. M., et al. 2006,
1125
+ MNRAS, 365, 11, doi: 10.1111/j.1365-2966.2005.09675.x
1126
+ De Grandi, S., & Molendi, S. 2001, ApJ, 551, 153,
1127
+ doi: 10.1086/320098
1128
+ Dunn, R. J. H., & Fabian, A. C. 2006, MNRAS, 373, 959,
1129
+ doi: 10.1111/j.1365-2966.2006.11080.x
1130
+ Eckert, D., Molendi, S., & Paltani, S. 2011, A&A, 526, A79,
1131
+ doi: 10.1051/0004-6361/201015856
1132
+ Fabian, A. C. 1994, ARA&A, 32, 277,
1133
+ doi: 10.1146/annurev.aa.32.090194.001425
1134
+ —. 2012, ARA&A, 50, 455,
1135
+ doi: 10.1146/annurev-astro-081811-125521
1136
+ Flores, A. M., Mantz, A. B., Allen, S. W., et al. 2021,
1137
+ MNRAS, 507, 5195, doi: 10.1093/mnras/stab2430
1138
+ Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman,
1139
+ J. 2013, PASP, 125, 306, doi: 10.1086/670067
1140
+ Fruscione, A., McDowell, J. C., Allen, G. E., et al. 2006, in
1141
+ Society of Photo-Optical Instrumentation Engineers
1142
+ (SPIE) Conference Series, Vol. 6270, Society of
1143
+ Photo-Optical Instrumentation Engineers (SPIE)
1144
+ Conference Series, ed. D. R. Silva & R. E. Doxsey,
1145
+ 62701V, doi: 10.1117/12.671760
1146
+ Fukazawa, Y., Makishima, K., Tamura, T., et al. 1998,
1147
+ PASJ, 50, 187, doi: 10.1093/pasj/50.1.187
1148
+ Ghirardini, V., Bulbul, E., Kraft, R., et al. 2021, ApJ, 910,
1149
+ 14, doi: 10.3847/1538-4357/abc68d
1150
+ Green, T. S., Edge, A. C., Ebeling, H., et al. 2017,
1151
+ MNRAS, 465, 4872, doi: 10.1093/mnras/stw3059
1152
+ HI4PI Collaboration, Ben Bekhti, N., Fl¨oer, L., et al. 2016,
1153
+ A&A, 594, A116, doi: 10.1051/0004-6361/201629178
1154
+ Hilton, M., Hasselfield, M., Sif´on, C., et al. 2018, ApJS,
1155
+ 235, 20, doi: 10.3847/1538-4365/aaa6cb
1156
+ Hilton, M., Sif´on, C., Naess, S., et al. 2021, ApJS, 253, 3,
1157
+ doi: 10.3847/1538-4365/abd023
1158
+
1159
+ 12
1160
+ Masterson et al.
1161
+ Hlavacek-Larrondo, J., Fabian, A. C., Edge, A. C., et al.
1162
+ 2012, MNRAS, 421, 1360,
1163
+ doi: 10.1111/j.1365-2966.2011.20405.x
1164
+ Hlavacek-Larrondo, J., McDonald, M., Benson, B. A., et al.
1165
+ 2015, ApJ, 805, 35, doi: 10.1088/0004-637X/805/1/35
1166
+ Hlavacek-Larrondo, J., Rhea, C. L., Webb, T., et al. 2020,
1167
+ ApJL, 898, L50, doi: 10.3847/2041-8213/ab9ca5
1168
+ Hogan, M. T., Edge, A. C., Hlavacek-Larrondo, J., et al.
1169
+ 2015, MNRAS, 453, 1201, doi: 10.1093/mnras/stv1517
1170
+ Huang, N., Bleem, L. E., Stalder, B., et al. 2020, AJ, 159,
1171
+ 110, doi: 10.3847/1538-3881/ab6a96
1172
+ Hudson, D. S., Mittal, R., Reiprich, T. H., et al. 2010,
1173
+ A&A, 513, A37, doi: 10.1051/0004-6361/200912377
1174
+ Hunter, J. D. 2007, Computing in Science and Engineering,
1175
+ 9, 90, doi: 10.1109/MCSE.2007.55
1176
+ Kennicutt, Robert C., J. 1998, ARA&A, 36, 189,
1177
+ doi: 10.1146/annurev.astro.36.1.189
1178
+ Kewley, L. J., Geller, M. J., & Jansen, R. A. 2004, AJ, 127,
1179
+ 2002, doi: 10.1086/382723
1180
+ Khullar, G., Bleem, L. E., Bayliss, M. B., et al. 2019, ApJ,
1181
+ 870, 7, doi: 10.3847/1538-4357/aaeed0
1182
+ Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999,
1183
+ ApJS, 123, 3, doi: 10.1086/313233
1184
+ Lin, H. W., McDonald, M., Benson, B., & Miller, E. 2015,
1185
+ ApJ, 802, 34, doi: 10.1088/0004-637X/802/1/34
1186
+ McDonald, M., Gaspari, M., McNamara, B. R., &
1187
+ Tremblay, G. R. 2018, ApJ, 858, 45,
1188
+ doi: 10.3847/1538-4357/aabace
1189
+ McDonald, M., Veilleux, S., & Mushotzky, R. 2011, ApJ,
1190
+ 731, 33, doi: 10.1088/0004-637X/731/1/33
1191
+ McDonald, M., Veilleux, S., Rupke, D. S. N., & Mushotzky,
1192
+ R. 2010, ApJ, 721, 1262,
1193
+ doi: 10.1088/0004-637X/721/2/1262
1194
+ McDonald, M., Benson, B. A., Vikhlinin, A., et al. 2013,
1195
+ ApJ, 774, 23, doi: 10.1088/0004-637X/774/1/23
1196
+ McDonald, M., Bulbul, E., de Haan, T., et al. 2016a, ApJ,
1197
+ 826, 124, doi: 10.3847/0004-637X/826/2/124
1198
+ McDonald, M., Stalder, B., Bayliss, M., et al. 2016b, ApJ,
1199
+ 817, 86, doi: 10.3847/0004-637X/817/2/86
1200
+ McDonald, M., Allen, S. W., Bayliss, M., et al. 2017, ApJ,
1201
+ 843, 28, doi: 10.3847/1538-4357/aa7740
1202
+ McMullin, J. P., Waters, B., Schiebel, D., Young, W., &
1203
+ Golap, K. 2007, in Astronomical Society of the Pacific
1204
+ Conference Series, Vol. 376, Astronomical Data Analysis
1205
+ Software and Systems XVI, ed. R. A. Shaw, F. Hill, &
1206
+ D. J. Bell, 127
1207
+ McNamara, B. R., & Nulsen, P. E. J. 2007, ARA&A, 45,
1208
+ 117, doi: 10.1146/annurev.astro.45.051806.110625
1209
+ —. 2012, New Journal of Physics, 14, 055023,
1210
+ doi: 10.1088/1367-2630/14/5/055023
1211
+ Moustakas, J., Kennicutt, Robert C., J., & Tremonti, C. A.
1212
+ 2006, ApJ, 642, 775, doi: 10.1086/500964
1213
+ Mushotzky, R. F., & Loewenstein, M. 1997, ApJL, 481,
1214
+ L63, doi: 10.1086/310651
1215
+ Nurgaliev, D., McDonald, M., Benson, B. A., et al. 2017,
1216
+ ApJ, 841, 5, doi: 10.3847/1538-4357/aa6db4
1217
+ O’Dea, C. P., Baum, S. A., Privon, G., et al. 2008, ApJ,
1218
+ 681, 1035, doi: 10.1086/588212
1219
+ Peterson, J. R., & Fabian, A. C. 2006, PhR, 427, 1,
1220
+ doi: 10.1016/j.physrep.2005.12.007
1221
+ Peterson, J. R., Kahn, S. M., Paerels, F. B. S., et al. 2003,
1222
+ ApJ, 590, 207, doi: 10.1086/374830
1223
+ Planck Collaboration, Ade, P. A. R., Aghanim, N., et al.
1224
+ 2016, A&A, 594, A27, doi: 10.1051/0004-6361/201525823
1225
+ Qiu, Y., Bogdanovi´c, T., Li, Y., Park, K., & Wise, J. H.
1226
+ 2019, ApJ, 877, 47, doi: 10.3847/1538-4357/ab18fd
1227
+ Rafferty, D. A., McNamara, B. R., Nulsen, P. E. J., &
1228
+ Wise, M. W. 2006, ApJ, 652, 216, doi: 10.1086/507672
1229
+ Rosa-Gonz´alez, D., Terlevich, E., & Terlevich, R. 2002,
1230
+ MNRAS, 332, 283, doi: 10.1046/j.1365-8711.2002.05285.x
1231
+ Ruppin, F., McDonald, M., Bleem, L. E., et al. 2021, ApJ,
1232
+ 918, 43, doi: 10.3847/1538-4357/ac0bba
1233
+ Ruppin, F., McDonald, M., Hlavacek-Larrondo, J., et al.
1234
+ 2022, arXiv e-prints, arXiv:2207.13351.
1235
+ https://arxiv.org/abs/2207.13351
1236
+ Sanders, J. S., Fabian, A. C., Russell, H. R., & Walker,
1237
+ S. A. 2018, MNRAS, 474, 1065,
1238
+ doi: 10.1093/mnras/stx2796
1239
+ Santos, J. S., Tozzi, P., Rosati, P., Nonino, M., &
1240
+ Giovannini, G. 2012, A&A, 539, A105,
1241
+ doi: 10.1051/0004-6361/201118162
1242
+ Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in
1243
+ Astronomical Society of the Pacific Conference Series,
1244
+ Vol. 77, Astronomical Data Analysis Software and
1245
+ Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E.
1246
+ Hayes, 433. https://arxiv.org/abs/astro-ph/0612759
1247
+ Somboonpanyakul, T., McDonald, M., Gaspari, M.,
1248
+ Stalder, B., & Stark, A. A. 2021, ApJ, 910, 60,
1249
+ doi: 10.3847/1538-4357/abe1bc
1250
+ Strazzullo, V., Pannella, M., Mohr, J. J., et al. 2019, A&A,
1251
+ 622, A117, doi: 10.1051/0004-6361/201833944
1252
+ Sunyaev, R. A., & Zeldovich, Y. B. 1972, Comments on
1253
+ Astrophysics and Space Physics, 4, 173
1254
+ Sutherland, R. S., & Dopita, M. A. 1993, ApJS, 88, 253,
1255
+ doi: 10.1086/191823
1256
+ Urban, O., Werner, N., Allen, S. W., Simionescu, A., &
1257
+ Mantz, A. 2017, MNRAS, 470, 4583,
1258
+ doi: 10.1093/mnras/stx1542
1259
+
1260
+ A Multi-Wavelength View of SPT-CL J0607-4448
1261
+ 13
1262
+ van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011,
1263
+ Computing in Science and Engineering, 13, 22,
1264
+ doi: 10.1109/MCSE.2011.37
1265
+ Vikhlinin, A., Kravtsov, A., Forman, W., et al. 2006, ApJ,
1266
+ 640, 691, doi: 10.1086/500288
1267
+ Voit, G. M., Kay, S. T., & Bryan, G. L. 2005, MNRAS,
1268
+ 364, 909, doi: 10.1111/j.1365-2966.2005.09621.x
1269
+ Webb, T. M. A., Muzzin, A., Noble, A., et al. 2015, ApJ,
1270
+ 814, 96, doi: 10.1088/0004-637X/814/2/96
1271
+ Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir,
1272
+ N. R., & O’Brien, P. T. 2013, MNRAS, 431, 394,
1273
+ doi: 10.1093/mnras/stt175
1274
+
NNAyT4oBgHgl3EQf6_pQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
PtFJT4oBgHgl3EQf2C2D/content/tmp_files/2301.11654v1.pdf.txt ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Particle identification with the Belle II calorimeter
2
+ using machine learning
3
+ Abtin Narimani Charan
4
+ Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
5
+ E-mail: [email protected]
6
+ Abstract.
7
+ I present an application of a convolutional neural network (CNN) to separate muons
8
+ and pions in the Belle II electromagnetic calorimeter (ECL). The ECL is designed to measure
9
+ the energy deposited by charged and neutral particles. It also provides important contributions
10
+ to the particle identification (PID) system. Identification of low-momenta muons and pions in
11
+ the ECL is crucial if they do not reach the outer muon detector. Track-seeded cluster energy
12
+ images provide the maximal possible information.
13
+ The shape of the energy depositions for
14
+ muons and pions in the crystals around an extrapolated track at the entering point of the ECL
15
+ is used together with crystal positions in θ − φ plane and transverse momentum of the track to
16
+ train a CNN. The CNN exploits the difference between the dispersed energy depositions from
17
+ pion hadronic interactions and the more localized muon electromagnetic interactions. Using
18
+ simulation, the performance of the CNN algorithm is compared with other PID methods at
19
+ Belle II which are based on track-matched clustering information. The results show that the
20
+ CNN PID method improves muon-pion separation in low momentum.
21
+ 1. Introduction
22
+ The Belle II experiment at the SuperKEKB e+e− collider belongs to the next generation of B
23
+ factories and is the upgraded version of the Belle experiment. Among the main goals of the
24
+ Belle II experiment there are the search of New Physics and the high precision measurements of
25
+ the Standard Model parameters in the flavour sector [1]. Belle II intends to collect data samples
26
+ with an integrated luminosity of 50 ab−1 at predominantly the Υ(4S) resonance. SuperKEKB’s
27
+ goal for instantaneous luminosity is 6 × 1035 cm−2 s−1, which is 40 times larger than that of
28
+ KEKB. This luminosity can be achieved due to a significant decrease in the beam sizes by a
29
+ factor of 20 at the interaction point based on the nano-beam collision scheme and by doubling the
30
+ beam currents in both rings [2, 3]. With the above-mentioned improvements, Belle II encounters
31
+ higher beam background level. The physics reach of Belle II can be enhanced if a better muon-
32
+ pion separation can be achieved.
33
+ A better muon-pion separation for low-momenta tracks is
34
+ advantageous for B physics with leptonic τ decays, since this can reduce the number of pions
35
+ misidentified as muons at low momentum. It is crucial to rely on the information in the ECL
36
+ because low-momentum muons (p ≲ 0.6 GeV/c) cannot reach the dedicated, outermost detector
37
+ K0
38
+ L-and-muon detector (KLM).
39
+ 2. The ECL
40
+ The ECL consists of 8736 thallium-doped caesium iodide CsI(Tl) crystals projected to the
41
+ vicinity of the interaction point. It is immersed in a 1.5 T magnetic field and composed of
42
+ arXiv:2301.11654v1 [hep-ex] 27 Jan 2023
43
+
44
+ a barrel and two endcaps with polar angle coverage of 12.4◦ – 155.1◦. The dimension of each
45
+ crystal is ∼ 5×5 cm2 with a length of 30 cm corresponding to 16.2 X0 (radiation length). The
46
+ barrel has 6624 crystals positioned in 46 rings of crystals distributed in the θ-plane and each
47
+ ring consists of 144 crystals in the φ-plane [1, 3]. In this study, tracks are extrapolated into the
48
+ ECL. Then, at the entry point of the track into the ECL, a window of 7×7 crystals with the
49
+ measured deposited energy therein is selected. Since the number of crystals in the barrel in each
50
+ θ-plane is equal to 144, the 7×7 crystal images are symmetrical. Typical patterns of energy
51
+ depositions for muons and pions are shown in figure 1. Muons and pions both deposit energy
52
+ by ionization in the matter. Additionally, pions can undergo hadronic interactions. Therefore,
53
+ crystal images of muons are generally more localized than pions.
54
+ Figure 1. Patterns of energy depositions for muons (blue) and pions (red) inside the ECL
55
+ barrel.
56
+ 3. Charged particle identification at Belle II
57
+ There are two charged PID methods available in the Belle II analysis software framework [4]. The
58
+ first method is standard PID which is based on a combination of measurements from different
59
+ sub-detectors. For each charged particle hypothesis (i) in each PID system, a likelihood LPID
60
+ i
61
+ is determined. It is a function of the probability density function parameters for a given set
62
+ of observables. These likelihoods can be used to construct a combined likelihood ratio for a
63
+ particular sub-detector. A binary likelihood ratio for the ECL system between muon and pion
64
+ is defined as RECL
65
+ µ/π =
66
+ LECL
67
+ µ
68
+ LECL
69
+ µ
70
+ +LECL
71
+ π
72
+ which is used as benchmark for comparison in the study, and
73
+ is indicated as default. The standard PID in the ECL (LECL) defines a univariate likelihood as
74
+ a function of E/p i.e., the ratio of reconstructed cluster energy over the momentum. The E/p
75
+ distribution is not very powerful for muon-pion separation specifically for low momentum tracks
76
+ (figure 2). The second method is based on boosted decision trees (BDTs) [5]. It uses the shower-
77
+ shape information in the ECL combined with likelihood information from other sub-detectors
78
+ to train BDTs.
79
+ 4. Convolutional neural network (CNN)
80
+ A convolutional neural network (CNN) is a type of deep neural network which is used to recognize
81
+ visual patterns from pixel images [6]. In this study, two CNNs are trained with 7×7 pixel images
82
+ of muons and pions together with crystal positions and transverse momentum of the track in the
83
+ laboratory frame (each pixel is a ∼ 5×5 cm2 crystal). Separate CNNs are trained for positive and
84
+ negative charged tracks. This is due to the geometry of the ECL i.e. the direction of the crystals.
85
+ Approximately 1 million single muon and pion candidates are generated with a flat distribution
86
+ of transverse momentum between 0.2 and 1.0 GeV/c. Each track is first reconstructed in the
87
+ inner tracking detectors, and then extrapolated into the ECL with Geant4 [7].
88
+
89
+ 0.10
90
+ GeV
91
+ 0.05 g
92
+ Energ
93
+ 10.00
94
+ 0.10
95
+ [GeV]
96
+ 0.05 g
97
+ Ener
98
+ 0.00Figure 2. The distribution of the ratio of cluster energy over momentum (E/p) for simulated
99
+ single track candidates of muons (blue) and pions (red) inside the ECL barrel for low (left) and
100
+ high (right) momentum range.
101
+ 4.1. Inputs, pre-processing, and training
102
+ There are two types of inputs for the CNN. One is the energy depositions in the 7×7 pixel images
103
+ and the other is a set of inputs which are fed after the convolutional layers that includes pT , θID,
104
+ and φID of the extrapolated tracks. The θID and φID represent integer numbers corresponding to
105
+ the location of the crystal in the ECL. The energies in the pixel images are given as they are, i.e.,
106
+ without any scaling applied since they already have small values. However, there are very large
107
+ values in a few pixel images of pions which have energies more than 1 GeV. This is due to pion
108
+ inelastic interaction with nuclei producing protons. These large values are replaced with 1 GeV.
109
+ Since there are very few of these pixels, this adjustment is negligible since it affects the standard
110
+ deviation and mean of the energy depositions by 0.09 % and 0.005 %, respectively. A threshold
111
+ value of 1 MeV on the energy depositions in the pixels is applied, so that pixels below this
112
+ threshold are assigned zero energy. The pT is already in the range of 0.2 – 1.0 GeV/c, therefore
113
+ no scaling is applied. The θID and φID are used as categorical variables which are implemented
114
+ as an embedding in the network. An embedding is a distributed representation for categorical
115
+ variables where each category is mapped to a distinct vector that a neural network can learn
116
+ during training. The number of simulated events is identical for signal and background. The
117
+ equal size of the sample is important to avoid bias against a particular type of particle or charge.
118
+ The CNN includes two parts. In the first part, the 7×7 pixel images of muons and pions are
119
+ used as inputs for a convolutional layer. During convolution, a window of 3×3, called kernel,
120
+ goes through each image. A padding and stride of (1, 1) is used for the images. The padding
121
+ adds one pixel with value zero on the edge of the image which is beneficial to capture more
122
+ information on the edges. The stride refers to the amount of kernel movement over the image.
123
+ The feature map is set to 64. The second part of the training involves a feed-forward neural
124
+ network (FNN). In this part, the results from the convolutional layer must be flattened and
125
+ added on top of pT , θID, and φID. The number of neurons in the first and second layer of FNN
126
+ are 3295 and 128, respectively. The dropout layer with a value of 0.1 is used between the first
127
+ and second layer of the FNN. An Adam optimizer is used during the training with a learning rate
128
+ of 0.001. The loss used in this study is CrossEntropy which is suitable for binary classification
129
+ problems. The number of epochs is set to 100. The model is saved based on the lowest validation
130
+ loss value in the corresponding epoch. A schematic of the network is shown in figure 3.
131
+ 4.2. Performance
132
+ The performance of the CNN is evaluated on a test dataset with an equal number of muons
133
+ and pions. The test dataset is generated and reconstructed with the exact same conditions as
134
+ the training dataset. The CNN is compared with two other methods (default and BDT). The
135
+ performance of all methods for both charged tracks in a range of transverse momentum (0.52 ≤
136
+
137
+ 1.2
138
+ ×104
139
+ Belle ll Simulation
140
+ Belle ll Simulation
141
+ 从t
142
+ 3.5
143
+ ut
144
+ 1.0
145
+ t
146
+ 3.0
147
+ 0.8
148
+ 2.5
149
+ nts
150
+ 0.2 ≤ p≤ 0.6 GeV/c
151
+ nts
152
+ p > 0.9 GeV/c
153
+ ECL barrel
154
+ ECL barrel
155
+ 00.6
156
+ 02.0
157
+ Eve
158
+ 0.4
159
+ 1.0
160
+ 0.2
161
+ 0.5
162
+ 0.0
163
+ 0.0
164
+ 0.0
165
+ 0.2
166
+ 0.4
167
+ 0.6
168
+ 0.8
169
+ 1.0
170
+ 1.2
171
+ :8.0
172
+ 0.2
173
+ 0.4
174
+ 0.6
175
+ 0.8
176
+ 1.0
177
+ 1.2
178
+ E/p (c)
179
+ E/p (c)Figure 3. Neural network architecture. See text for details.
180
+ pT < 0.76 GeV/c) are shown in figure 4. The µ efficiency is defined as the ratio of the number
181
+ of correctly identified muons over the total number of muons. The π fake rate is defined as
182
+ the ratio of the number of pions identi���ed as muons over the total number of pions. The CNN
183
+ method outperforms the other methods with AUC (Area Under the Curve) scores of 0.836 and
184
+ 0.841 for positive and negative charged tracks, respectively.
185
+ Figure 4. Comparison of CNN, BDT, and default PID. The left and right plots show positive
186
+ and negative charged tracks, respectively. The value in front of each method shows the area
187
+ under the curve (AUC).
188
+ There are cases (mostly pions) that the software framework does not match a track with
189
+ a cluster in the ECL. Since the CNN method does not rely on clustering, a comparison is
190
+ made among all tracks and tracks with and without matched cluster in the inference phase. The
191
+ comparison is shown in figure 5 in which the blue ROC curves, representing the CNN (all tracks),
192
+ can be considered as an average between the red and green curves, which represent tracks with
193
+ and without matched clusters, respectively. The large difference between red and green ones is
194
+ due to statistics. The green ROC curve is roughly 2.8% and 3.5% of the test dataset in the pT
195
+ range of 0.52 – 0.76 GeV/c for positive and negative charged tracks, respectively.
196
+ Due to the higher beam background level at Belle II, a higher minimal energy threshold for
197
+ crystals may reduce the pile-up from beam background. In order to check the robustness of
198
+ the CNN method against different levels of beam background, different energy thresholds for
199
+ crystals of 0, 1, 2, 5, and 8 MeV are tested and the results are shown in figure 6 (zero means no
200
+ threshold). Results show the CNN is robust against the choice of different energy thresholds.
201
+
202
+ FC1
203
+ Inputs
204
+ Binary
205
+ 00
206
+ FC2
207
+ PT
208
+ 0000
209
+ Classification
210
+ μ
211
+
212
+ O1D
213
+ Problem
214
+ ΦID
215
+ Dropout
216
+ P(元)
217
+ 0.1
218
+ O
219
+ P(μ)
220
+ ..000
221
+ 00
222
+ Energy
223
+ Convolutional
224
+ layers
225
+ deposition1.0
226
+ 1.0
227
+ 0.8
228
+ 0.8
229
+ Belle ll Simulation
230
+ Belle ll Simulation
231
+ iency
232
+ 0.52 ≤pr< 0.76 GeV/c
233
+ 0.52 ≤pr< 0.76 GeV/c
234
+ 0.6
235
+ ECL barrel
236
+ 0.6
237
+ ECL barrel
238
+ Efficie
239
+ 0.4
240
+ CNN (0.836)
241
+ CNN (0.841)
242
+ 0.2
243
+ 0.2
244
+ BDT (0.815)
245
+ BDT (0.805)
246
+ Default (0.725)
247
+ Default (0.702)
248
+ 0.0
249
+ 0.0
250
+ 0.0
251
+ 0.2
252
+ 0.4
253
+ 0.6
254
+ 0.8
255
+ 1.0
256
+ 0.0
257
+ 0.2
258
+ 0.4
259
+ 0.6
260
+ 0.8
261
+ 1.0
262
+ + Fake rate
263
+ π- Fake rateFigure 5. Comparison of CNN performance for all tracks, tracks with and without matched
264
+ cluster. The left and right plots show positive and negative charged tracks, respectively.
265
+ Figure 6. Comparison of CNN performance for different thresholds. The left and right plots
266
+ show positive and negative charged tracks, respectively.
267
+ 5. Summary and outlook
268
+ This study shows that by using patterns of energy depositions in the ECL, muon-pion separation
269
+ can be improved for low-momenta tracks. The pion fake rate is 4.2% and 6.7% larger at a typical
270
+ working point of 90% muon identification efficiency for positive and negative charged tracks,
271
+ respectively. The CNN method is available in the Belle II analysis software framework and will
272
+ be integrated as part of the standard Belle II reconstruction software. This study can be extended
273
+ to include additional low-level ECL crystal information, e.g., pulse-shape discrimination [8, 9]
274
+ which is useful to separate hadronic and electromagnetic interactions. In order to validate the
275
+ CNN method on data, clean samples of muons and pions are selected using e+e− → µ+µ−γ and
276
+ D∗ + → D0 [→ K+ π−] π+, respectively. These results are underway.
277
+ References
278
+ [1] Kou E et al. 2019 The Belle II Physics Book Prog. Theor. Exp. Phys. 2019 123C01
279
+ [2] Akai K, Furukawa K and Koiso H (SuperKEKB) 2018 SuperKEKB Collider Nucl. Instrum. Meth. A 907,
280
+ 188–99
281
+ [3] Abe T et al. 2010 Belle II Technical Design Report 1011.0352
282
+ [4] Kuhr T, Pulvermacher C, Ritter M, Hauth T and Braun N 2019 The Belle II Core Software Comput. Softw.
283
+ Big Sci. 3 1
284
+ [5] Milesi M, Tan J and Urquijo P 2020 Lepton identification in Belle II using observables from the electromagnetic
285
+ calorimeter and precision trackers EPJ Web Conf. 245 06023
286
+ [6] Bishop C M 2006 Pattern Recognition and Machine Learning (Singapore: Springer Science+Business Media,
287
+ LLC)
288
+ [7] Agostinelli S et al. (GEANT4) 2003 GEANT4–a simulation toolkit Nucl. Instrum. Meth. A 506 250–303
289
+ [8] Longo S and Roney J M 2018 Hadronic vs. electromagnetic pulse shape discrimination in CsI(Tl) for high
290
+ energy physics experiments JINST 13 P03018
291
+ [9] Longo S et al. 2020 CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel
292
+ method to improve particle identification at electron-positron colliders Nucl. Instrum. Meth. A 982 164562
293
+
294
+ 1.0
295
+ 1.0
296
+ 0.8
297
+ 0.8
298
+ Belle ll Simulation
299
+ Belle ll Simulation
300
+ iency
301
+ iency
302
+ 0.52 ≤pr< 0.76 GeV/c
303
+ 0.52 ≤pr< 0.76 GeV/c
304
+ 0.6
305
+ ECL barrel
306
+ 0.6
307
+ ECL barrel
308
+ 0.4
309
+ CNN (all tracks)
310
+ CNN (all tracks)
311
+ 0.2
312
+ 0.2
313
+ CNN (tracks with matched clusters)
314
+ CNN (tracks with matched clusters)
315
+ CNN (tracks without matched clusters)
316
+ CNN (tracks without matched clusters)
317
+ 0.0
318
+ 0.0
319
+ 0.0
320
+ 0.2
321
+ 0.4
322
+ 0.6
323
+ 0.8
324
+ 1.0
325
+ 0.0
326
+ 0.2
327
+ 0.4
328
+ 0.6
329
+ 0.8
330
+ 1.0
331
+ + Fake rate
332
+ π- Fake rate1.0
333
+ 1.0
334
+ 0.8
335
+ 0.8
336
+ Belle ll Simulation
337
+ Belle ll Simulation
338
+ iency
339
+ 0.28 ≤pr < 1.00 GeV/c
340
+ 0.28 ≤pt< 1.00 GeV/c
341
+ 0.6
342
+ ECL barrel
343
+ 0.6
344
+ ECL barrel
345
+ CNN (thr=0 MeV)
346
+ CNN (thr=O MeV)
347
+ CNN (thr=1 MeV)
348
+ CNN (thr=1 MeV)
349
+ CNN (thr=2 MeV)
350
+ CNN (thr=2 MeV)
351
+ 0.2
352
+ 0.2
353
+ CNN (thr=5 MeV)
354
+ CNN (thr=5 MeV)
355
+ CNN (thr=8 MeV)
356
+ CNN (thr=8 MeV)
357
+ 0.0
358
+ 0.0
359
+ 0.0
360
+ 0.2
361
+ 0.4
362
+ 0.6
363
+ 0.8
364
+ 1.0
365
+ 0.0
366
+ 0.2
367
+ 0.4
368
+ 0.6
369
+ 0.8
370
+ 1.0
371
+ π+ Fake rate
372
+ π- Fake rate
PtFJT4oBgHgl3EQf2C2D/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf,len=307
2
+ page_content='Particle identification with the Belle II calorimeter using machine learning Abtin Narimani Charan Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany E-mail: abtin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
3
+ page_content='narimani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
4
+ page_content='charan@desy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
5
+ page_content='de Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
6
+ page_content=' I present an application of a convolutional neural network (CNN) to separate muons and pions in the Belle II electromagnetic calorimeter (ECL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
7
+ page_content=' The ECL is designed to measure the energy deposited by charged and neutral particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
8
+ page_content=' It also provides important contributions to the particle identification (PID) system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
9
+ page_content=' Identification of low-momenta muons and pions in the ECL is crucial if they do not reach the outer muon detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
10
+ page_content=' Track-seeded cluster energy images provide the maximal possible information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
11
+ page_content=' The shape of the energy depositions for muons and pions in the crystals around an extrapolated track at the entering point of the ECL is used together with crystal positions in θ − φ plane and transverse momentum of the track to train a CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
12
+ page_content=' The CNN exploits the difference between the dispersed energy depositions from pion hadronic interactions and the more localized muon electromagnetic interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
13
+ page_content=' Using simulation, the performance of the CNN algorithm is compared with other PID methods at Belle II which are based on track-matched clustering information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
14
+ page_content=' The results show that the CNN PID method improves muon-pion separation in low momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
15
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
16
+ page_content=' Introduction The Belle II experiment at the SuperKEKB e+e− collider belongs to the next generation of B factories and is the upgraded version of the Belle experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
17
+ page_content=' Among the main goals of the Belle II experiment there are the search of New Physics and the high precision measurements of the Standard Model parameters in the flavour sector [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
18
+ page_content=' Belle II intends to collect data samples with an integrated luminosity of 50 ab−1 at predominantly the Υ(4S) resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
19
+ page_content=' SuperKEKB’s goal for instantaneous luminosity is 6 × 1035 cm−2 s−1, which is 40 times larger than that of KEKB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
20
+ page_content=' This luminosity can be achieved due to a significant decrease in the beam sizes by a factor of 20 at the interaction point based on the nano-beam collision scheme and by doubling the beam currents in both rings [2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
21
+ page_content=' With the above-mentioned improvements, Belle II encounters higher beam background level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
22
+ page_content=' The physics reach of Belle II can be enhanced if a better muon- pion separation can be achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
23
+ page_content=' A better muon-pion separation for low-momenta tracks is advantageous for B physics with leptonic τ decays, since this can reduce the number of pions misidentified as muons at low momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
24
+ page_content=' It is crucial to rely on the information in the ECL because low-momentum muons (p ≲ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
25
+ page_content='6 GeV/c) cannot reach the dedicated, outermost detector K0 L-and-muon detector (KLM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
26
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
27
+ page_content=' The ECL The ECL consists of 8736 thallium-doped caesium iodide CsI(Tl) crystals projected to the vicinity of the interaction point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
28
+ page_content=' It is immersed in a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
29
+ page_content='5 T magnetic field and composed of arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
30
+ page_content='11654v1 [hep-ex] 27 Jan 2023 a barrel and two endcaps with polar angle coverage of 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
31
+ page_content='4◦ – 155.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
32
+ page_content='1◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
33
+ page_content=' The dimension of each crystal is ∼ 5×5 cm2 with a length of 30 cm corresponding to 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
34
+ page_content='2 X0 (radiation length).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
35
+ page_content=' The barrel has 6624 crystals positioned in 46 rings of crystals distributed in the θ-plane and each ring consists of 144 crystals in the φ-plane [1, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
36
+ page_content=' In this study, tracks are extrapolated into the ECL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
37
+ page_content=' Then, at the entry point of the track into the ECL, a window of 7×7 crystals with the measured deposited energy therein is selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
38
+ page_content=' Since the number of crystals in the barrel in each θ-plane is equal to 144, the 7×7 crystal images are symmetrical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
39
+ page_content=' Typical patterns of energy depositions for muons and pions are shown in figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
40
+ page_content=' Muons and pions both deposit energy by ionization in the matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
41
+ page_content=' Additionally, pions can undergo hadronic interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
42
+ page_content=' Therefore, crystal images of muons are generally more localized than pions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
43
+ page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
44
+ page_content=' Patterns of energy depositions for muons (blue) and pions (red) inside the ECL barrel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
45
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
46
+ page_content=' Charged particle identification at Belle II There are two charged PID methods available in the Belle II analysis software framework [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
47
+ page_content=' The first method is standard PID which is based on a combination of measurements from different sub-detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
48
+ page_content=' For each charged particle hypothesis (i) in each PID system, a likelihood LPID i is determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
49
+ page_content=' It is a function of the probability density function parameters for a given set of observables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
50
+ page_content=' These likelihoods can be used to construct a combined likelihood ratio for a particular sub-detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
51
+ page_content=' A binary likelihood ratio for the ECL system between muon and pion is defined as RECL µ/π = LECL µ LECL µ +LECL π which is used as benchmark for comparison in the study, and is indicated as default.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
52
+ page_content=' The standard PID in the ECL (LECL) defines a univariate likelihood as a function of E/p i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
53
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
54
+ page_content=', the ratio of reconstructed cluster energy over the momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
55
+ page_content=' The E/p distribution is not very powerful for muon-pion separation specifically for low momentum tracks (figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
56
+ page_content=' The second method is based on boosted decision trees (BDTs) [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
57
+ page_content=' It uses the shower- shape information in the ECL combined with likelihood information from other sub-detectors to train BDTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
58
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
59
+ page_content=' Convolutional neural network (CNN) A convolutional neural network (CNN) is a type of deep neural network which is used to recognize visual patterns from pixel images [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
60
+ page_content=' In this study, two CNNs are trained with 7×7 pixel images of muons and pions together with crystal positions and transverse momentum of the track in the laboratory frame (each pixel is a ∼ 5×5 cm2 crystal).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
61
+ page_content=' Separate CNNs are trained for positive and negative charged tracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
62
+ page_content=' This is due to the geometry of the ECL i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
63
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
64
+ page_content=' the direction of the crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
65
+ page_content=' Approximately 1 million single muon and pion candidates are generated with a flat distribution of transverse momentum between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
66
+ page_content='2 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
67
+ page_content='0 GeV/c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
68
+ page_content=' Each track is first reconstructed in the inner tracking detectors, and then extrapolated into the ECL with Geant4 [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
69
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
70
+ page_content='10 GeV 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
71
+ page_content='05 g Energ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
72
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
73
+ page_content='10 [GeV] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
74
+ page_content='05 g Ener 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
75
+ page_content='00Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
76
+ page_content=' The distribution of the ratio of cluster energy over momentum (E/p) for simulated single track candidates of muons (blue) and pions (red) inside the ECL barrel for low (left) and high (right) momentum range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
77
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
78
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
79
+ page_content=' Inputs, pre-processing, and training There are two types of inputs for the CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
80
+ page_content=' One is the energy depositions in the 7×7 pixel images and the other is a set of inputs which are fed after the convolutional layers that includes pT , θID, and φID of the extrapolated tracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
81
+ page_content=' The θID and φID represent integer numbers corresponding to the location of the crystal in the ECL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
82
+ page_content=' The energies in the pixel images are given as they are, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
83
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
84
+ page_content=', without any scaling applied since they already have small values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
85
+ page_content=' However, there are very large values in a few pixel images of pions which have energies more than 1 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
86
+ page_content=' This is due to pion inelastic interaction with nuclei producing protons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
87
+ page_content=' These large values are replaced with 1 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
88
+ page_content=' Since there are very few of these pixels, this adjustment is negligible since it affects the standard deviation and mean of the energy depositions by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
89
+ page_content='09 % and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
90
+ page_content='005 %, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
91
+ page_content=' A threshold value of 1 MeV on the energy depositions in the pixels is applied, so that pixels below this threshold are assigned zero energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
92
+ page_content=' The pT is already in the range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
93
+ page_content='2 – 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
94
+ page_content='0 GeV/c, therefore no scaling is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
95
+ page_content=' The θID and φID are used as categorical variables which are implemented as an embedding in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
96
+ page_content=' An embedding is a distributed representation for categorical variables where each category is mapped to a distinct vector that a neural network can learn during training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
97
+ page_content=' The number of simulated events is identical for signal and background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
98
+ page_content=' The equal size of the sample is important to avoid bias against a particular type of particle or charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
99
+ page_content=' The CNN includes two parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
100
+ page_content=' In the first part, the 7×7 pixel images of muons and pions are used as inputs for a convolutional layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
101
+ page_content=' During convolution, a window of 3×3, called kernel, goes through each image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
102
+ page_content=' A padding and stride of (1, 1) is used for the images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
103
+ page_content=' The padding adds one pixel with value zero on the edge of the image which is beneficial to capture more information on the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
104
+ page_content=' The stride refers to the amount of kernel movement over the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
105
+ page_content=' The feature map is set to 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
106
+ page_content=' The second part of the training involves a feed-forward neural network (FNN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
107
+ page_content=' In this part, the results from the convolutional layer must be flattened and added on top of pT , θID, and φID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
108
+ page_content=' The number of neurons in the first and second layer of FNN are 3295 and 128, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
109
+ page_content=' The dropout layer with a value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
110
+ page_content='1 is used between the first and second layer of the FNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
111
+ page_content=' An Adam optimizer is used during the training with a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
112
+ page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
113
+ page_content=' The loss used in this study is CrossEntropy which is suitable for binary classification problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
114
+ page_content=' The number of epochs is set to 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
115
+ page_content=' The model is saved based on the lowest validation loss value in the corresponding epoch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
116
+ page_content=' A schematic of the network is shown in figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
117
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
118
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
119
+ page_content=' Performance The performance of the CNN is evaluated on a test dataset with an equal number of muons and pions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
120
+ page_content=' The test dataset is generated and reconstructed with the exact same conditions as the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
121
+ page_content=' The CNN is compared with two other methods (default and BDT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
122
+ page_content=' The performance of all methods for both charged tracks in a range of transverse momentum (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
123
+ page_content='52 ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
124
+ page_content='2 ×104 Belle ll Simulation Belle ll Simulation 从t 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
125
+ page_content='5 ut 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
126
+ page_content='0 t 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
127
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
128
+ page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
129
+ page_content='5 nts 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
130
+ page_content='2 ≤ p≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
131
+ page_content='6 GeV/c nts p > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
132
+ page_content='9 GeV/c ECL barrel ECL barrel 00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
133
+ page_content='6 02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
134
+ page_content='0 Eve 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
135
+ page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
136
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
137
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
138
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
139
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
140
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
141
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
142
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
143
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
144
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
145
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
146
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
147
+ page_content='2 :8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
148
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
149
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
150
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
151
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
152
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
153
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
154
+ page_content='2 E/p (c) E/p (c)Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
155
+ page_content=' Neural network architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
156
+ page_content=' See text for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
157
+ page_content=' pT < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
158
+ page_content='76 GeV/c) are shown in figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
159
+ page_content=' The µ efficiency is defined as the ratio of the number of correctly identified muons over the total number of muons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
160
+ page_content=' The π fake rate is defined as the ratio of the number of pions identified as muons over the total number of pions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
161
+ page_content=' The CNN method outperforms the other methods with AUC (Area Under the Curve) scores of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
162
+ page_content='836 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
163
+ page_content='841 for positive and negative charged tracks, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
164
+ page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
165
+ page_content=' Comparison of CNN, BDT, and default PID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
166
+ page_content=' The left and right plots show positive and negative charged tracks, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
167
+ page_content=' The value in front of each method shows the area under the curve (AUC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
168
+ page_content=' There are cases (mostly pions) that the software framework does not match a track with a cluster in the ECL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
169
+ page_content=' Since the CNN method does not rely on clustering, a comparison is made among all tracks and tracks with and without matched cluster in the inference phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
170
+ page_content=' The comparison is shown in figure 5 in which the blue ROC curves, representing the CNN (all tracks), can be considered as an average between the red and green curves, which represent tracks with and without matched clusters, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
171
+ page_content=' The large difference between red and green ones is due to statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
172
+ page_content=' The green ROC curve is roughly 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
173
+ page_content='8% and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
174
+ page_content='5% of the test dataset in the pT range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
175
+ page_content='52 – 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
176
+ page_content='76 GeV/c for positive and negative charged tracks, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
177
+ page_content=' Due to the higher beam background level at Belle II, a higher minimal energy threshold for crystals may reduce the pile-up from beam background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
178
+ page_content=' In order to check the robustness of the CNN method against different levels of beam background, different energy thresholds for crystals of 0, 1, 2, 5, and 8 MeV are tested and the results are shown in figure 6 (zero means no threshold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
179
+ page_content=' Results show the CNN is robust against the choice of different energy thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
180
+ page_content=' FC1 Inputs Binary 00 FC2 PT 0000 Classification μ 元 O1D Problem ΦID Dropout P(元) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
181
+ page_content='1 O P(μ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
182
+ page_content='.000 00 Energy Convolutional layers deposition1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
183
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
184
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
185
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
186
+ page_content='8 Belle ll Simulation Belle ll Simulation iency 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
187
+ page_content='52 ≤pr< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
188
+ page_content='76 GeV/c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
189
+ page_content='52 ≤pr< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
190
+ page_content='76 GeV/c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
191
+ page_content='6 ECL barrel 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
192
+ page_content='6 ECL barrel Efficie 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
193
+ page_content='4 CNN (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
194
+ page_content='836) CNN (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
195
+ page_content='841) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
196
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
197
+ page_content='2 BDT (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
198
+ page_content='815) BDT (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
199
+ page_content='805) Default (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
200
+ page_content='725) Default (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
201
+ page_content='702) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
202
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
203
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
204
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
205
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
206
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
207
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
208
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
209
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
210
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
211
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
212
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
213
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
214
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
215
+ page_content='0 + Fake rate π- Fake rateFigure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
216
+ page_content=' Comparison of CNN performance for all tracks, tracks with and without matched cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
217
+ page_content=' The left and right plots show positive and negative charged tracks, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
218
+ page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
219
+ page_content=' Comparison of CNN performance for different thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
220
+ page_content=' The left and right plots show positive and negative charged tracks, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
221
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
222
+ page_content=' Summary and outlook This study shows that by using patterns of energy depositions in the ECL, muon-pion separation can be improved for low-momenta tracks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
223
+ page_content=' The pion fake rate is 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
224
+ page_content='2% and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
225
+ page_content='7% larger at a typical working point of 90% muon identification efficiency for positive and negative charged tracks, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
226
+ page_content=' The CNN method is available in the Belle II analysis software framework and will be integrated as part of the standard Belle II reconstruction software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
227
+ page_content=' This study can be extended to include additional low-level ECL crystal information, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
228
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
229
+ page_content=', pulse-shape discrimination [8, 9] which is useful to separate hadronic and electromagnetic interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
230
+ page_content=' In order to validate the CNN method on data, clean samples of muons and pions are selected using e+e− → µ+µ−γ and D∗ + → D0 [→ K+ π−] π+, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
231
+ page_content=' These results are underway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
232
+ page_content=' References [1] Kou E et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
233
+ page_content=' 2019 The Belle II Physics Book Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
234
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
235
+ page_content=' Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
236
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
237
+ page_content=' 2019 123C01 [2] Akai K, Furukawa K and Koiso H (SuperKEKB) 2018 SuperKEKB Collider Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
238
+ page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
239
+ page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
240
+ page_content=' A 907, 188–99 [3] Abe T et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
241
+ page_content=' 2010 Belle II Technical Design Report 1011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
242
+ page_content='0352 [4] Kuhr T, Pulvermacher C, Ritter M, Hauth T and Braun N 2019 The Belle II Core Software Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
243
+ page_content=' Softw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
244
+ page_content=' Big Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
245
+ page_content=' 3 1 [5] Milesi M, Tan J and Urquijo P 2020 Lepton identification in Belle II using observables from the electromagnetic calorimeter and precision trackers EPJ Web Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
246
+ page_content=' 245 06023 [6] Bishop C M 2006 Pattern Recognition and Machine Learning (Singapore: Springer Science+Business Media, LLC) [7] Agostinelli S et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
247
+ page_content=' (GEANT4) 2003 GEANT4–a simulation toolkit Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
248
+ page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
249
+ page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
250
+ page_content=' A 506 250–303 [8] Longo S and Roney J M 2018 Hadronic vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
251
+ page_content=' electromagnetic pulse shape discrimination in CsI(Tl) for high energy physics experiments JINST 13 P03018 [9] Longo S et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
252
+ page_content=' 2020 CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron-positron colliders Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
253
+ page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
254
+ page_content=' Meth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
255
+ page_content=' A 982 164562 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
256
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
257
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
258
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
259
+ page_content='8 Belle ll Simulation Belle ll Simulation iency iency 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
260
+ page_content='52 ≤pr< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
261
+ page_content='76 GeV/c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
262
+ page_content='52 ≤pr< 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
263
+ page_content='76 GeV/c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
264
+ page_content='6 ECL barrel 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
265
+ page_content='6 ECL barrel 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
266
+ page_content='4 CNN (all tracks) CNN (all tracks) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
267
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
268
+ page_content='2 CNN (tracks with matched clusters) CNN (tracks with matched clusters) CNN (tracks without matched clusters) CNN (tracks without matched clusters) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
269
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
270
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
271
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
272
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
273
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
274
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
275
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
276
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
277
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
278
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
279
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
280
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
281
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
282
+ page_content='0 + Fake rate π- Fake rate1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
283
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
284
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
285
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
286
+ page_content='8 Belle ll Simulation Belle ll Simulation iency 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
287
+ page_content='28 ≤pr < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
288
+ page_content='00 GeV/c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
289
+ page_content='28 ≤pt< 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
290
+ page_content='00 GeV/c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
291
+ page_content='6 ECL barrel 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
292
+ page_content='6 ECL barrel CNN (thr=0 MeV) CNN (thr=O MeV) CNN (thr=1 MeV) CNN (thr=1 MeV) CNN (thr=2 MeV) CNN (thr=2 MeV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
293
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
294
+ page_content='2 CNN (thr=5 MeV) CNN (thr=5 MeV) CNN (thr=8 MeV) CNN (thr=8 MeV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
295
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
296
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
297
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
298
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
299
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
300
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
301
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
302
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
303
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
304
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
305
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
306
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
307
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
308
+ page_content='0 π+ Fake rate π- Fake rate' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/PtFJT4oBgHgl3EQf2C2D/content/2301.11654v1.pdf'}
Q9FPT4oBgHgl3EQfpTVX/content/tmp_files/2301.13137v1.pdf.txt ADDED
@@ -0,0 +1,448 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Multiple pion pair production in a Regge-based model∗
2
+ Rainer Schicker
3
+ Physikalisches Institut, University Heidelberg, Heidelberg
4
+ in coll. with Laszlo Jenkovszky
5
+ Bogolyubov ITP, National Academy of Sciences of Ukraine, Kiev
6
+ Received January 31, 2023
7
+ Central diffractive event topologies at the LHC energies can be identi-
8
+ fied by two different approaches. First, the forward scattered protons can
9
+ be measured in Roman pots. Second, a veto on hadronic activity away
10
+ from midrapidity can be imposed to define a double-gap topology. Such
11
+ a double-gap topology trigger has been implemented by the ALICE col-
12
+ laboration in Run 1 and Run 2 of the LHC. The analysis of these events
13
+ allows to determine the charged-particle multiplicity within the acceptance.
14
+ The excellent particle identification capabilities of ALICE allows to study
15
+ two-track events both in the pion and kaon sector. Events with measured
16
+ charged particle multiplicity larger than two can arise from multiple pair
17
+ production. A Regge-based approach for modeling such multiple pair pro-
18
+ duction is presented.
19
+ 1. Introduction
20
+ Double-Pomeron fusion at hadron colliders results in a double-gap event
21
+ topology. Such a topology is defined by hadronic activity at or close to
22
+ midrapidity, and the absence thereof away from midrapidity. The multi-
23
+ plicity distribution of such double-gap events has been measured in the
24
+ ALICE central barrel. To better understand such multiplicity distributions
25
+ we present here a Regge-based approach for multiple pion pair production
26
+ in double-Pomeron events. This model is based on a Dual Amplitude with
27
+ Mandelstam Analyticity (DAMA) [1]. In this approach, the production of
28
+ multiple pairs can be modeled by including a Pomeron-Pomeron-Reggeon
29
+ and a triple-Pomeron coupling. The amplitude at Pomeron level within his
30
+ DAMA formulation is given, and the resulting mass distributions for double
31
+ pion and double b-resonance production are shown.
32
+ ∗ Presented at ”Diffraction and Low-x 2022”, Corigliano Calabro (Italy), September
33
+ 24-30, 2022.
34
+ (1)
35
+ arXiv:2301.13137v1 [hep-ph] 30 Jan 2023
36
+
37
+ 2
38
+ schicker˙diff2022
39
+ printed on January 31, 2023
40
+ 2. Multiplicity distribution of double-gap events
41
+ The charged-particle multiplicity in the ALICE central barrel has been
42
+ analyzed in LHC Run 1 for both minimum bias and double-gap events [2].
43
+ 0
44
+ 2
45
+ 4
46
+ 6
47
+ 8
48
+ 10
49
+ )
50
+ ch
51
+ (n
52
+ MinBias
53
+ N
54
+ )
55
+ ch
56
+ (n
57
+ DG
58
+ N
59
+ ) =
60
+ ch
61
+ (n
62
+ DG
63
+ R
64
+ -6
65
+ 10
66
+ -5
67
+ 10
68
+ -4
69
+ 10
70
+ -3
71
+ 10
72
+ -2
73
+ 10
74
+ Data
75
+ Tuned Pythia6
76
+ Tuned Phojet
77
+ Pythia6
78
+ Phojet
79
+ Phojet w/o CD
80
+ Phojet CD only
81
+ ch
82
+ N
83
+ 0
84
+ 2
85
+ 4
86
+ 6
87
+ 8
88
+ 10
89
+ Ratio MC to Data
90
+ -1
91
+ 10
92
+ 1
93
+ 10
94
+ Fig. 1:
95
+ Double-gap probability in ALICE central barrel as function of
96
+ charged-particle multiplicity (Figure taken from Ref. [2]).
97
+ In Fig. 1, the probability of being a double-gap event is shown as func-
98
+ tion of the charged-particle multiplicity Nch in the ALICE central barrel.
99
+ The ALICE data are shown in black circles, whereas the results from Monte
100
+ Carlo generators are shown in different colors. These probabilities clearly
101
+ show a maximum at Nch=1 and Nch=2, demonstrating that double-Pomeron
102
+ events are dominated by very low multiplicities as compared to minimum
103
+ bias events. As indicated in this figure, none of the tested generators shows
104
+ reasonable agreement with the data. This discrepancy between the ALICE
105
+ measured double-gap events and the prediction of the tested generators
106
+ motivates the development of a model which can be used to analyze unlike-
107
+ sign two-track events resulting from single resonance decays, as well as the
108
+ higher-multiplicity events stemming from the decays of multiple resonances.
109
+ 3. A Regge model for double-Pomeron events
110
+ The model for Pomeron-Pomeron-induced events presented in the fol-
111
+ lowing is based on the DAMA approach. Pomeron-induced single-resonance
112
+ production has been presented in our previous studies [3,4]. Here, we extend
113
+ this DAMA approach to the production of multiple resonances.
114
+
115
+ schicker˙diff2022
116
+ printed on January 31, 2023
117
+ 3
118
+ 1
119
+ -
120
+ amplitude
121
+ subdiagram
122
+ Fig. 2: Amplitude at hadron level (left), and Pomeron subdiagram (right).
123
+ In Fig. 2, the amplitude for Pomeron-induced single-resonance produc-
124
+ tion at hadron level is shown on the left.
125
+ The subdiagram on the right
126
+ represents the amplitude for Pomeron-Pomeron → resonance. The cross
127
+ section at hadron level is derived by convoluting the subdiagram cross sec-
128
+ tion with the Pomeron flux of the proton F P
129
+ prot(t, ξ) defined by
130
+ F P
131
+ prot(t, ξ) = 9β2
132
+ 0
133
+ 4π2 [F1(t)]2ξ1−2α(t),
134
+ (1)
135
+ with F1(t) the elastic form factor, and α(t) the Pomeron trajectory [3].
136
+ In the DAMA approach, multiple-resonance production can be modeled
137
+ by introducing a Pomeron-Pomeron-Reggeon (PPR) coupling with subse-
138
+ quent splitting of the intermediate Reggeon into the two final-state Reggeons.
139
+ Alternatively, the same final state can be formed by a triple-Pomeron (PPP)
140
+ coupling with the intermediate Pomeron decaying into the two Reggeons.
141
+ 1
142
+ αP
143
+ t1
144
+ αP
145
+ t2
146
+ g1
147
+ g2
148
+ -
149
+ ˜s
150
+ αR(˜s)
151
+ ?
152
+ ˜t
153
+ +
154
+ ˜S1(M2
155
+ 1 )
156
+ ˜S2(M2
157
+ 2 )
158
+ (˜s=t1+t2)
159
+ g3
160
+ g4
161
+ αP(˜s)
162
+ ˜S1(M2
163
+ 1 )
164
+ ˜S2(M2
165
+ 2 )
166
+ Fig. 3: Subdiagram for PPR amplitude (left), and PPP amplitude (right).
167
+ The DAMA amplitude for the subdiagram shown in Fig. 3 is given by
168
+
169
+ 00000000000000004
170
+ schicker˙diff2022
171
+ printed on January 31, 2023
172
+ APP→ ˜S1 ˜S2(˜s, ˜t, M2
173
+ 1 , M2
174
+ 2 )) =
175
+ 1
176
+
177
+ M2
178
+ 1 M2
179
+ 2
180
+
181
+ PPR,PPP
182
+
183
+ n
184
+ gigjebα(˜t)
185
+ n − α(˜s) ,
186
+ (2)
187
+ with the first summation over the two amplitudes of Fig. 3 defined by the
188
+ PPR coupling with gi,gj=g1,g2, and the PPP coupling with gi,gj=g3,g4. The
189
+ index n sums over the spins of the resonances of the intermediate trajectory
190
+ which connects the vertices i, j. From this amplitude, the cross section at
191
+ Pomeron level is derived by the optical theorem
192
+ σt(˜s, M2
193
+ 1 , M2
194
+ 2 ) = ℑm A(˜s, ˜t=0, M2
195
+ 1 , M2
196
+ 2 ),
197
+ (3)
198
+ with the imaginary part of A(˜s, ˜t, M2
199
+ 1 , M2
200
+ 2 ) defined by αR(˜s) and αP(˜s) for
201
+ the PPR and the PPP diagrams of Fig. 3, respectively.
202
+ 4. Reggeizing q¯q states in the light quark sector
203
+ The final-state mesons derive from the decay of the meson resonances
204
+ lying on the two Regge trajectories ˜S1 and ˜S2 as illustrated in Fig. 3. In or-
205
+ der to be able to include mesonic bound states of different radial and orbital
206
+ excitations, a unified description of q¯q bound states in the different flavour
207
+ sectors is needed. Such a unified description of q¯q bound states including a
208
+ confinement potential, a spin-orbit, a hyperfine and an annihilation inter-
209
+ action is presented in Ref. [5]. The solutions for these q¯q bound states are
210
+ given in spectroscopic notation n 2S+1LJ.
211
+ spectr. notation n 2S+1LJ:
212
+ - n radial quantum number
213
+ - S spin
214
+ - L orbital ang. momentum
215
+ - J total ang. momentum
216
+ n2S+1LJ
217
+ mass
218
+ PDG
219
+ mass
220
+ width
221
+ Ref. [5]
222
+ (PDG)
223
+ (PDG)
224
+ 11S0
225
+ 150
226
+ π
227
+ 140
228
+ 0
229
+ 11P1
230
+ 1220
231
+ b1
232
+ 1230
233
+ 142
234
+ 11D2
235
+ 1680
236
+ π2
237
+ 1672
238
+ 258
239
+ 11F3
240
+ 2030
241
+ ——
242
+ ——
243
+ ——
244
+ 11G4
245
+ 2330
246
+ ——
247
+ ——
248
+ ——
249
+ Table 1: Masses and widths in MeV.
250
+ In Table 1, masses are presented for the isovector channel in the light
251
+ quark sector for the radial ground state for S,P,D,F and G-wave, and are
252
+ compared to the values given by the Particle Data Group [6]. The S- and
253
+ D-wave bound states calculated in Ref. [5] are identified with the π and the
254
+ π2 states of mass 140 and 1672 MeV, respectively. The P-wave solution
255
+ is associated to the known b1 state of mass 1230 MeV. No candidates for
256
+ the predicted F- and G-wave bound states have so far been experimentally
257
+ identified [6].
258
+
259
+ schicker˙diff2022
260
+ printed on January 31, 2023
261
+ 5
262
+ 5. Non-linear complex Regge trajectory
263
+ The small but existing non-linear dependence of the spin of a resonance
264
+ to its mass squared can be used to make a Regge trajectory α(M2) a complex
265
+ entity with real and imaginary parts being related by a dispersion relation [7].
266
+ Here, the real part is defined by the value of the spin, and the imaginary
267
+ part is related to the decay width Γ by ℑmα(M2
268
+ R) = Γ(MR)α
269
+ ′ MR, with α
270
+
271
+ denoting the derivative of the real part of the trajectory. In a simple model,
272
+ the imaginary part is chosen as a sum of single threshold terms
273
+ ℑm α(s)=
274
+
275
+ n
276
+ cn(s−sn)1/2�s−sn
277
+ s
278
+ �|ℜe α(sn)|θ(s−sn).
279
+ (4)
280
+ In Eq. 4, the coefficients cn are fit parameters, and the parameters sn
281
+ represent kinematical thresholds of decay channels.
282
+ 5.1. The (π, b)-trajectory
283
+ A Regge trajectory, called the (π, b)-trajectory hereafter, is defined by
284
+ the values of mass and width of the S, P and D-waves shown in Table 1.
285
+ ----------------
286
+ ----------------------
287
+ ----------------------------
288
+ b
289
+ b
290
+ b
291
+ π
292
+ b1
293
+ π2
294
+ b3
295
+ π4
296
+ b5
297
+ π
298
+ b1
299
+ π2
300
+ s0
301
+ s1
302
+ Fig. 4: Real part (π, b)-trajectory on the left, width function Γ on the right.
303
+ In Fig. 4 on the left, the three data points of the π, b1 and π2 states are
304
+ shown by black points, and the non-linear fit by the blue line. On the right,
305
+ the widths of the π, b1 and π2 states are shown by black points, and the fitted
306
+ width function Γ by the blue line. The thresholds s0 and s1 used in the fit of
307
+ Eq. 4 are shown in red. The thresholds s0=0.176 GeV2 and s1=1.27 GeV2
308
+ are defined by the decays π2 →3π and b1 →K ¯Kπ, respectively. This fit of
309
+ the (π, b)-trajectory predicts a b3 state with mass of 2090 MeV and width
310
+ of 321 MeV, a π4 state with mass of 2437 MeV and width of 352 MeV, and
311
+ a b5 state with mass of 2738 MeV and width of 371 MeV.
312
+
313
+ 6
314
+ h
315
+ J
316
+ 5
317
+ 4
318
+ 3
319
+ 2
320
+ 2
321
+ 3
322
+ 4
323
+ 5
324
+ 6
325
+ 8
326
+ M? (GeV2)0.4
327
+ (GeV)
328
+ 0.3
329
+ 0.2
330
+ 0.1
331
+ 0
332
+ 0
333
+ 1
334
+ 2
335
+ 3
336
+ 4
337
+ 5
338
+ 6
339
+ 7
340
+ 8
341
+ M? (GeV?)6
342
+ schicker˙diff2022
343
+ printed on January 31, 2023
344
+ 6. The final-state resonance mass distribution
345
+ The (π, b)-trajectory consists of π and b-resonances with quantum num-
346
+ bers (P,C)=(−, +), and (P,C)=(+, −), respectively. The final state shown
347
+ in Fig. 3 can hence contain two π-resonances, or two b-resonances.
348
+ PC=(-,+)
349
+ M2
350
+ 1 ( ˜
351
+
352
+ 1 )
353
+ M2
354
+ 2 ( ˜
355
+
356
+ 2 )
357
+ arb. units
358
+ PC=(+,-)
359
+ M2
360
+ 1 ( ˜
361
+ Sb
362
+ 1)
363
+ M2
364
+ 2 ( ˜
365
+ Sb
366
+ 2)
367
+ arb. units
368
+ Fig. 5: Two-dimensional mass distribution of the final-state resonances.
369
+ In Fig. 5, the two-dimensional distribution of squared masses is shown
370
+ for ˜s = 9 GeV2 for the case of two π-resonances on the left, and the corre-
371
+ sponding distribution for two b-resonances on the right. Here, ˜s denotes the
372
+ center-of-mass energy of the two initial-state Pomerons as shown in Fig. 3.
373
+ 7. Acknowledgements
374
+ This work is supported by the German Federal Ministry of Education
375
+ and Research under reference 05P21VHCA1. An EMMI visiting Professor-
376
+ ship at the University of Heidelberg is gratefully acknowledged by L.J.
377
+ REFERENCES
378
+ [1] A.I.Bugrji et al.
379
+ Dual Amplitudes with Mandelstam Analyticity.
380
+ Fortschr.
381
+ Phys. 21, 427, 1973.
382
+ [2] F.Reidt. Analysis of Double-Gap Events in Proton-Proton Collisions at √s =
383
+ 7 TeV with ALICE at the LHC. Master thesis, University Heidelberg, 2012.
384
+ [3] R.Schicker R.Fiore, L.Jenkovszky. Resonance production in Pomeron-Pomeron
385
+ collisions at the LHC. Eur.Phys.J.C 76, 1, 38, 2016.
386
+ [4] R.Schicker R.Fiore, L.Jenkovszky. Exclusive diffractive resonance production
387
+ in proton-proton collisions at high energies. Eur.Phys.J.C 78, 6, 468, 2018.
388
+ [5] N.Isgur S.Godfrey. Mesons in a Relativized Quark Model with Chromodynam-
389
+ ics. Phys.Rev.D 32, 189, 1985.
390
+ [6] P.A.Zyla et al. Particle Data Group. Prog.Theor.Exp.Phys. 2020, 083C01.
391
+ [7] E.Predazzi A.Degasperis. Dynamical Calculation of Regge Trajectories. Nuovo
392
+ Cim. Vol.A 65, 764, 1970.
393
+
394
+ 240
395
+ 220
396
+ 200
397
+ 180
398
+ 160
399
+ 140
400
+ 120
401
+ 100
402
+ 80
403
+ 60
404
+ 40
405
+ 20
406
+ 0
407
+ 8
408
+ 7
409
+ 6
410
+ 5
411
+ 8
412
+ 4
413
+ 7
414
+ 6
415
+ 3
416
+ 5
417
+ 2
418
+ 4
419
+ 3
420
+ L
421
+ 2
422
+ 1
423
+ 0
424
+ 0300
425
+ 250
426
+ 200
427
+ 150
428
+ 100
429
+ 50
430
+ 0
431
+ 8
432
+ 7
433
+ 6
434
+ 5
435
+ 8
436
+ 4
437
+ 7
438
+ 9
439
+ 3
440
+ 5
441
+ 2
442
+ 4
443
+ 3
444
+ 1
445
+ 2
446
+ 1
447
+ 0
448
+ 0
Q9FPT4oBgHgl3EQfpTVX/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf,len=164
2
+ page_content='Multiple pion pair production in a Regge-based model∗ Rainer Schicker Physikalisches Institut, University Heidelberg, Heidelberg in coll.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
3
+ page_content=' with Laszlo Jenkovszky Bogolyubov ITP, National Academy of Sciences of Ukraine, Kiev Received January 31, 2023 Central diffractive event topologies at the LHC energies can be identi- fied by two different approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
4
+ page_content=' First, the forward scattered protons can be measured in Roman pots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
5
+ page_content=' Second, a veto on hadronic activity away from midrapidity can be imposed to define a double-gap topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
6
+ page_content=' Such a double-gap topology trigger has been implemented by the ALICE col- laboration in Run 1 and Run 2 of the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
7
+ page_content=' The analysis of these events allows to determine the charged-particle multiplicity within the acceptance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
8
+ page_content=' The excellent particle identification capabilities of ALICE allows to study two-track events both in the pion and kaon sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
9
+ page_content=' Events with measured charged particle multiplicity larger than two can arise from multiple pair production.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
10
+ page_content=' A Regge-based approach for modeling such multiple pair pro- duction is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
11
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
12
+ page_content=' Introduction Double-Pomeron fusion at hadron colliders results in a double-gap event topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
13
+ page_content=' Such a topology is defined by hadronic activity at or close to midrapidity, and the absence thereof away from midrapidity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
14
+ page_content=' The multi- plicity distribution of such double-gap events has been measured in the ALICE central barrel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
15
+ page_content=' To better understand such multiplicity distributions we present here a Regge-based approach for multiple pion pair production in double-Pomeron events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
16
+ page_content=' This model is based on a Dual Amplitude with Mandelstam Analyticity (DAMA) [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
17
+ page_content=' In this approach, the production of multiple pairs can be modeled by including a Pomeron-Pomeron-Reggeon and a triple-Pomeron coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
18
+ page_content=' The amplitude at Pomeron level within his DAMA formulation is given, and the resulting mass distributions for double pion and double b-resonance production are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
19
+ page_content=' ∗ Presented at ”Diffraction and Low-x 2022”, Corigliano Calabro (Italy), September 24-30, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
20
+ page_content=' (1) arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
21
+ page_content='13137v1 [hep-ph] 30 Jan 2023 2 schicker˙diff2022 printed on January 31, 2023 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
22
+ page_content=' Multiplicity distribution of double-gap events The charged-particle multiplicity in the ALICE central barrel has been analyzed in LHC Run 1 for both minimum bias and double-gap events [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
23
+ page_content=' 0 2 4 6 8 10 ) ch (n MinBias N ) ch (n DG N ) = ch (n DG R 6 10 5 10 4 10 3 10 2 10 Data Tuned Pythia6 Tuned Phojet Pythia6 Phojet Phojet w/o CD Phojet CD only ch N 0 2 4 6 8 10 Ratio MC to Data 1 10 1 10 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
24
+ page_content=' 1: Double-gap probability in ALICE central barrel as function of charged-particle multiplicity (Figure taken from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
25
+ page_content=' [2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
26
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
27
+ page_content=' 1, the probability of being a double-gap event is shown as func- tion of the charged-particle multiplicity Nch in the ALICE central barrel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
28
+ page_content=' The ALICE data are shown in black circles, whereas the results from Monte Carlo generators are shown in different colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
29
+ page_content=' These probabilities clearly show a maximum at Nch=1 and Nch=2, demonstrating that double-Pomeron events are dominated by very low multiplicities as compared to minimum bias events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
30
+ page_content=' As indicated in this figure, none of the tested generators shows reasonable agreement with the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
31
+ page_content=' This discrepancy between the ALICE measured double-gap events and the prediction of the tested generators motivates the development of a model which can be used to analyze unlike- sign two-track events resulting from single resonance decays, as well as the higher-multiplicity events stemming from the decays of multiple resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
32
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
33
+ page_content=' A Regge model for double-Pomeron events The model for Pomeron-Pomeron-induced events presented in the fol- lowing is based on the DAMA approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
34
+ page_content=' Pomeron-induced single-resonance production has been presented in our previous studies [3,4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
35
+ page_content=' Here, we extend this DAMA approach to the production of multiple resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
36
+ page_content=' schicker˙diff2022 printed on January 31, 2023 3 1 amplitude subdiagram Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
37
+ page_content=' 2: Amplitude at hadron level (left), and Pomeron subdiagram (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
38
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
39
+ page_content=' 2, the amplitude for Pomeron-induced single-resonance produc- tion at hadron level is shown on the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
40
+ page_content=' The subdiagram on the right represents the amplitude for Pomeron-Pomeron → resonance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
41
+ page_content=' The cross section at hadron level is derived by convoluting the subdiagram cross sec- tion with the Pomeron flux of the proton F P prot(t, ξ) defined by F P prot(t, ξ) = 9β2 0 4π2 [F1(t)]2ξ1−2α(t), (1) with F1(t) the elastic form factor, and α(t) the Pomeron trajectory [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
42
+ page_content=' In the DAMA approach, multiple-resonance production can be modeled by introducing a Pomeron-Pomeron-Reggeon (PPR) coupling with subse- quent splitting of the intermediate Reggeon into the two final-state Reggeons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
43
+ page_content=' Alternatively, the same final state can be formed by a triple-Pomeron (PPP) coupling with the intermediate Pomeron decaying into the two Reggeons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
44
+ page_content=' 1 αP t1 αP t2 g1 g2 ˜s αR(˜s) ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
45
+ page_content=' ˜t + ˜S1(M2 1 ) ˜S2(M2 2 ) (˜s=t1+t2) g3 g4 αP(˜s) ˜S1(M2 1 ) ˜S2(M2 2 ) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
46
+ page_content=' 3: Subdiagram for PPR amplitude (left), and PPP amplitude (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
47
+ page_content=' The DAMA amplitude for the subdiagram shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
48
+ page_content=' 3 is given by 00000000000000004 schicker˙diff2022 printed on January 31, 2023 APP→ ˜S1 ˜S2(˜s, ˜t, M2 1 , M2 2 )) = 1 � M2 1 M2 2 � PPR,PPP � n gigjebα(˜t) n − α(˜s) , (2) with the first summation over the two amplitudes of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
49
+ page_content=' 3 defined by the PPR coupling with gi,gj=g1,g2, and the PPP coupling with gi,gj=g3,g4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
50
+ page_content=' The index n sums over the spins of the resonances of the intermediate trajectory which connects the vertices i, j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
51
+ page_content=' From this amplitude, the cross section at Pomeron level is derived by the optical theorem σt(˜s, M2 1 , M2 2 ) = ℑm A(˜s, ˜t=0, M2 1 , M2 2 ), (3) with the imaginary part of A(˜s, ˜t, M2 1 , M2 2 ) defined by αR(˜s) and αP(˜s) for the PPR and the PPP diagrams of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
52
+ page_content=' 3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
53
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
54
+ page_content=' Reggeizing q¯q states in the light quark sector The final-state mesons derive from the decay of the meson resonances lying on the two Regge trajectories ˜S1 and ˜S2 as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
55
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
56
+ page_content=' In or- der to be able to include mesonic bound states of different radial and orbital excitations, a unified description of q¯q bound states in the different flavour sectors is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
57
+ page_content=' Such a unified description of q¯q bound states including a confinement potential, a spin-orbit, a hyperfine and an annihilation inter- action is presented in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
58
+ page_content=' [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
59
+ page_content=' The solutions for these q¯q bound states are given in spectroscopic notation n 2S+1LJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
60
+ page_content=' spectr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
61
+ page_content=' notation n 2S+1LJ: n radial quantum number S spin L orbital ang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
62
+ page_content=' momentum J total ang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
63
+ page_content=' momentum n2S+1LJ mass PDG mass width Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
64
+ page_content=' [5] (PDG) (PDG) 11S0 150 π 140 0 11P1 1220 b1 1230 142 11D2 1680 π2 1672 258 11F3 2030 —— —— —— 11G4 2330 —— —— —— Table 1: Masses and widths in MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
65
+ page_content=' In Table 1, masses are presented for the isovector channel in the light quark sector for the radial ground state for S,P,D,F and G-wave, and are compared to the values given by the Particle Data Group [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
66
+ page_content=' The S- and D-wave bound states calculated in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
67
+ page_content=' [5] are identified with the π and the π2 states of mass 140 and 1672 MeV, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
68
+ page_content=' The P-wave solution is associated to the known b1 state of mass 1230 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
69
+ page_content=' No candidates for the predicted F- and G-wave bound states have so far been experimentally identified [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
70
+ page_content=' schicker˙diff2022 printed on January 31, 2023 5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
71
+ page_content=' Non-linear complex Regge trajectory The small but existing non-linear dependence of the spin of a resonance to its mass squared can be used to make a Regge trajectory α(M2) a complex entity with real and imaginary parts being related by a dispersion relation [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
72
+ page_content=' Here, the real part is defined by the value of the spin, and the imaginary part is related to the decay width Γ by ℑmα(M2 R) = Γ(MR)α ′ MR, with α ′ denoting the derivative of the real part of the trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
73
+ page_content=' In a simple model, the imaginary part is chosen as a sum of single threshold terms ℑm α(s)= � n cn(s−sn)1/2�s−sn s �|ℜe α(sn)|θ(s−sn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
74
+ page_content=' (4) In Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
75
+ page_content=' 4, the coefficients cn are fit parameters, and the parameters sn represent kinematical thresholds of decay channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
76
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
77
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
78
+ page_content=' The (π, b)-trajectory A Regge trajectory, called the (π, b)-trajectory hereafter, is defined by the values of mass and width of the S, P and D-waves shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
79
+ page_content=' ---------------- ---------------------- ---------------------------- b b b π b1 π2 b3 π4 b5 π b1 π2 s0 s1 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
80
+ page_content=' 4: Real part (π, b)-trajectory on the left, width function Γ on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
81
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
82
+ page_content=' 4 on the left, the three data points of the π, b1 and π2 states are shown by black points, and the non-linear fit by the blue line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
83
+ page_content=' On the right, the widths of the π, b1 and π2 states are shown by black points, and the fitted width function Γ by the blue line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
84
+ page_content=' The thresholds s0 and s1 used in the fit of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
85
+ page_content=' 4 are shown in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
86
+ page_content=' The thresholds s0=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
87
+ page_content='176 GeV2 and s1=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
88
+ page_content='27 GeV2 are defined by the decays π2 →3π and b1 →K ¯Kπ, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
89
+ page_content=' This fit of the (π, b)-trajectory predicts a b3 state with mass of 2090 MeV and width of 321 MeV, a π4 state with mass of 2437 MeV and width of 352 MeV, and a b5 state with mass of 2738 MeV and width of 371 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
90
+ page_content=' 6 h J 5 4 3 2 2 3 4 5 6 8 M?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
91
+ page_content=' (GeV2)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
92
+ page_content='4 (GeV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
93
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
94
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
95
+ page_content='1 0 0 1 2 3 4 5 6 7 8 M?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
96
+ page_content=' (GeV?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
97
+ page_content=' )6 schicker˙diff2022 printed on January 31, 2023 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
98
+ page_content=' The final-state resonance mass distribution The (π, b)-trajectory consists of π and b-resonances with quantum num- bers (P,C)=(−, +), and (P,C)=(+, −), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
99
+ page_content=' The final state shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
100
+ page_content=' 3 can hence contain two π-resonances, or two b-resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
101
+ page_content=' PC=(-,+) M2 1 ( ˜ Sπ 1 ) M2 2 ( ˜ Sπ 2 ) arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
102
+ page_content=' units PC=(+,-) M2 1 ( ˜ Sb 1) M2 2 ( ˜ Sb 2) arb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
103
+ page_content=' units Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
104
+ page_content=' 5: Two-dimensional mass distribution of the final-state resonances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
105
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
106
+ page_content=' 5, the two-dimensional distribution of squared masses is shown for ˜s = 9 GeV2 for the case of two π-resonances on the left, and the corre- sponding distribution for two b-resonances on the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
107
+ page_content=' Here, ˜s denotes the center-of-mass energy of the two initial-state Pomerons as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
108
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
109
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
110
+ page_content=' Acknowledgements This work is supported by the German Federal Ministry of Education and Research under reference 05P21VHCA1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
111
+ page_content=' An EMMI visiting Professor- ship at the University of Heidelberg is gratefully acknowledged by L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
112
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
113
+ page_content=' REFERENCES [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
114
+ page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
115
+ page_content='Bugrji et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
116
+ page_content=' Dual Amplitudes with Mandelstam Analyticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
117
+ page_content=' Fortschr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
118
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
119
+ page_content=' 21, 427, 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
120
+ page_content=' [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
121
+ page_content='Reidt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
122
+ page_content=' Analysis of Double-Gap Events in Proton-Proton Collisions at √s = 7 TeV with ALICE at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
123
+ page_content=' Master thesis, University Heidelberg, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
124
+ page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
125
+ page_content='Schicker R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
126
+ page_content='Fiore, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
127
+ page_content='Jenkovszky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
128
+ page_content=' Resonance production in Pomeron-Pomeron collisions at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
129
+ page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
130
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
131
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
132
+ page_content='C 76, 1, 38, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
133
+ page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
134
+ page_content='Schicker R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
135
+ page_content='Fiore, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
136
+ page_content='Jenkovszky.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
137
+ page_content=' Exclusive diffractive resonance production in proton-proton collisions at high energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
138
+ page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
139
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
140
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
141
+ page_content='C 78, 6, 468, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
142
+ page_content=' [5] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
143
+ page_content='Isgur S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
144
+ page_content='Godfrey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
145
+ page_content=' Mesons in a Relativized Quark Model with Chromodynam- ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
146
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
147
+ page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
148
+ page_content='D 32, 189, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
149
+ page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
150
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
151
+ page_content='Zyla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
152
+ page_content=' Particle Data Group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
153
+ page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
154
+ page_content='Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
155
+ page_content='Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
156
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
157
+ page_content=' 2020, 083C01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
158
+ page_content=' [7] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
159
+ page_content='Predazzi A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
160
+ page_content='Degasperis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
161
+ page_content=' Dynamical Calculation of Regge Trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
162
+ page_content=' Nuovo Cim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
163
+ page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
164
+ page_content='A 65, 764, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
165
+ page_content=' 240 220 200 180 160 140 120 100 80 60 40 20 0 8 7 6 5 8 4 7 6 3 5 2 4 3 L 2 1 0 0300 250 200 150 100 50 0 8 7 6 5 8 4 7 9 3 5 2 4 3 1 2 1 0 0' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Q9FPT4oBgHgl3EQfpTVX/content/2301.13137v1.pdf'}
QtAyT4oBgHgl3EQfU_dt/content/tmp_files/2301.00135v1.pdf.txt ADDED
@@ -0,0 +1,1166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Translating Text Synopses to Video Storyboards
2
+ Xu Gu1*, Yuchong Sun1*, Feiyue Ni1, Shizhe Chen2, Ruihua Song1†, Boyuan Li1, Xiang Cao3
3
+ 1Renmin University of China, Beijing, China,
4
+ 2Inria, ´Ecole normale sup´erieure, CNRS, PSL Research University,
5
+ 3Bilibili Corporation, Shanghai, China
6
+ https://ruc-aimind.github.io/projects/TeViS/
7
+ Abstract
8
+ A storyboard is a roadmap for video creation which
9
+ consists of shot-by-shot images to visualize key plots in a
10
+ text synopsis. Creating video storyboards however remains
11
+ challenging which not only requires association between
12
+ high-level texts and images, but also demands for long-term
13
+ reasoning to make transitions smooth across shots. In this
14
+ paper, we propose a new task called Text synopsis to Video
15
+ Storyboard (TeViS) which aims to retrieve an ordered se-
16
+ quence of images to visualize the text synopsis. We con-
17
+ struct a MovieNet-TeViS benchmark based on the public
18
+ MovieNet dataset [15]. It contains 10K text synopses each
19
+ paired with keyframes that are manually selected from cor-
20
+ responding movies by considering both relevance and cine-
21
+ matic coherence. We also present an encoder-decoder base-
22
+ line for the task. The model uses a pretrained vision-and-
23
+ language model to improve high-level text-image matching.
24
+ To improve coherence in long-term shots, we further pro-
25
+ pose to pre-train the decoder on large-scale movie frames
26
+ without text. Experimental results demonstrate that our pro-
27
+ posed model significantly outperforms other models to cre-
28
+ ate text-relevant and coherent storyboards. Nevertheless,
29
+ there is still a large gap compared to human performance
30
+ suggesting room for promising future work.
31
+ 1. Introduction
32
+ With the prevalence of video sharing platforms, more
33
+ and more video creators are emerging with enthusiasm to
34
+ create videos using their own text synopses. An initial and
35
+ critical step in professional video creation is to translate a
36
+ text synopsis into a video storyboard, which is a sequence
37
+ of shot-by-shot images to visualize key plots in a screen-
38
+ play. Creating a high-quality video storyboard is however
39
+ challenging for amateurs. It not only requires one to put
40
+ *These authors contributed equally to this work.
41
+ †Corresponding author.
42
+ relevant scenes, characters and actions in the video, but also
43
+ demands for cinematic organizations of keyframes such as
44
+ coherent transitions across shots etc. Hence, there are high
45
+ application needs in assisting amateurs to create more pro-
46
+ fessional video storyboards from their text synopses.
47
+ Although existing works have made great progress in
48
+ text-to-image retrieval [8,10,18,19,25,45], text-to-video re-
49
+ trieval [2,22,23,44] and even text-to-video generation [14,
50
+ 35,42], they are limited in creating storyboards from texts.
51
+ The text-to-image retrieval works can only produce static
52
+ images without considering the dynamics of shots in the
53
+ video. Text-to-video works are able to retrieve or gener-
54
+ ate videos. Yet, most of them focus on short-term video
55
+ clips with only a few seconds as shown in Fig. 1a. The
56
+ images in these videos are highly redundant and cannot
57
+ satisfy the requirement of a video storyboard for coherent
58
+ keyframes [1, 32]. The visual storytelling works [7, 16, 30]
59
+ are proposed to visualize text with a sequence of images, but
60
+ they care more about the text-image relevancy while omit-
61
+ ting long-term reasoning to make transition smooth across
62
+ keyframes (see Fig. 1b). Moreover, the query texts in exist-
63
+ ing works are visually concrete and descriptive, making the
64
+ models less generalizable to more abstract and high-level
65
+ text synopses such as the synopsis in Fig. 1c.
66
+ In order to reduce the gap between existing tasks and
67
+ realistic needs for storyboard creation, in this work, we pro-
68
+ pose a new task called Text synopsis to Video Storyboard
69
+ (TeViS). In the TeViS task, we aim to retrieve an ordered se-
70
+ quence of images from large-scale movie database as video
71
+ storyboard to visualize an input text synopsis. For this pur-
72
+ pose, we collect the MovieNet-TeViS benchmark based on
73
+ the public MovieNet dataset [15]. The MovieNet dataset
74
+ contains high-level text synopses for movies and a coarse-
75
+ grained alignment between movie segments and text syn-
76
+ opses paragraphs. We ask annotators to split paragraphs
77
+ into semantically compact sentences and select a minimum
78
+ set of keyframes from its aligned movie segment for each
79
+ text synopsis sentence. Annotators should consider both
80
+ relevancy to the text and cinematic coherency across frames
81
+ 1
82
+ arXiv:2301.00135v1 [cs.CV] 31 Dec 2022
83
+
84
+ Text-to-Video
85
+ She looks back once more at SOMEONE then makes up her mind and starts running towards the exit.
86
+ Highly redundant frames
87
+ (a) Example from the LSMDC dataset [32] with detailed text descriptions and short-term video clips.
88
+ Story-to-Image
89
+ Incoherent transitions across images
90
+ The dog was ready to go. He had a great time on the hike. And was very happy to be in the field. His
91
+ mom was so proud of him. It was a beautiful day for him.
92
+ (b) Example from the VIST dataset [16] with story descriptions and incoherent image sequences.
93
+ In London, Pamela settles back into her home, the one she can no longer afford.
94
+ Text-to-Storyboard
95
+ Cinematic coherent transitions across keyframes
96
+ (c) Our constructed MovieNet-TeViS dataset for video storyboard creation from text synopsis.
97
+ Figure 1. Comparison of our proposed Text Synopsis to Video Storyboard task and existing tasks.
98
+ for keyframe selection.
99
+ Finally, we obtain 10K text synopses and each paired
100
+ with 4.6 keyframes on average.
101
+ There are two unique challenges posed in our TeViS task.
102
+ First, the text synopses are diverse covering a wide range of
103
+ topics and some of them are also high-level and abstract,
104
+ e.g., 2.76 concreteness score on average (vs. 2.99 in other
105
+ video-text datasets such as LSMDC [32] and MAD [36]).
106
+ Therefore, it is much more difficult to visualize texts with
107
+ relevant images.
108
+ Second, our text synopses correspond to video story-
109
+ boards with much longer time range, e.g., 64 seconds on av-
110
+ erage (vs. 4 seconds in LSMDC or MAD). A model should
111
+ equip with long-term reasoning ability to ensure the image
112
+ sequences are coherent in both event level and cinematic
113
+ language level.
114
+ We present an encoder-decoder framework as a start
115
+ point to overcome the above challenges for video sto-
116
+ ryboard generation.
117
+ To improve the understanding of
118
+ high-level text synopses, we finetune a pre-trained vision-
119
+ language model (e.g., CLIP [25]) to retrieve relevant
120
+ keyframes. Then an encoder-decoder framework with trans-
121
+ former architectures is proposed to auto-regressively pre-
122
+ dict image features, which can be used to retrieve and order
123
+ images. However, it is difficult to train the decoder on a
124
+ small dataset to retrieve coherent images. Inspired by the
125
+ self-supervised pre-training paradigm in language model-
126
+ ing [4, 11], we consider the cinematic coherency is a vi-
127
+ sual language that is also possible to learn from large-scale
128
+ unlabeled movie datasets. Therefore, we further propose a
129
+ coherence-aware pre-training method that leverages large-
130
+ scale movies without text synopses to pre-train the decoder.
131
+ We design two settings to evaluate methods: i) an order-
132
+ ing setting that provides models with oracle keyframes to
133
+ re-order conditioning on the text, and ii) a retrieving-and-
134
+ ordering setting that requires models to retrieve relevant
135
+ frames from 500 candidate images and order them. Exper-
136
+ imental results show that coherence-aware pre-training on
137
+ unlabeled movies significantly improves the ordering per-
138
+ formance . The larger the pretraining dataset, the better per-
139
+ formance we could obtain in the downstream task. In addi-
140
+ tion, the time interval in pre-training videos matters. Both
141
+ 2
142
+
143
+ -Table 1. Comparison between MovieNet-TeViS and other movie datasets.
144
+ Datasets
145
+ avgDuration
146
+ avg#Words
147
+ SecondsperWord
148
+ #unique bi-grams
149
+ avgConcreteness
150
+ LSMDC [32]
151
+ 4.1s
152
+ 9.03
153
+ 0.4539
154
+ 44.0K
155
+ 2.993
156
+ MAD [36]
157
+ 4.04s
158
+ 12.69
159
+ 0.3188
160
+ 59.0K
161
+ 2.991
162
+ CMD [1]
163
+ 132s
164
+ 18
165
+ 7.33
166
+ 83.2K
167
+ 2.598
168
+ MovieNet-TeViS (Ours)
169
+ 63.7s
170
+ 24.82
171
+ 2.82
172
+ 134.5K
173
+ 2.761
174
+ quantitative and qualitative results show that our model is
175
+ able to create reasonable video storyboards. Nevertheless,
176
+ there is still a long way to go to match the human perfor-
177
+ mance on this challenging TeViS task.
178
+ Our contributions are summarized as follows:
179
+ • We propose the Text Synopsis to Video Storyboard
180
+ task (TeViS) with the goal of retrieving an ordered se-
181
+ quence of images to visualize high-level text synopsis.
182
+ • We construct a MovieNet-TeViS benchmark based on
183
+ MovieNet dataset [15]. It contains 10K text synopses
184
+ with 4.6 keyframes on average for each synopsis.
185
+ • We establish an encoder-decoder baseline and propose
186
+ Coherence-Aware Pre-training on Movies to improve
187
+ coherence in long-term video storyboards.
188
+ 2. Related Works
189
+ Our work is related to previous works of two categories:
190
+ text-to-vision and movie understanding.
191
+ 2.1. Text-to-Vision
192
+ Text-to-vision aims to retrieve or generate visual infor-
193
+ mation corresponding to an input text. Inspired by the suc-
194
+ cess of the pre-training paradigm in NLP [4, 11], recent
195
+ advances in text-to-image retrieval also leverage massive
196
+ image-text pairs to pre-train a large model for retrieval [10,
197
+ 17,19,25,45]. These methods achieve promising results on
198
+ caption-based image retrieval tasks such as MSCOCO [9].
199
+ CLIP [22] adopts a dual-encoder architecture, uses 400
200
+ million image-text pairs for pre-training with a contrastive
201
+ loss, and shows strong generalization power on cross-modal
202
+ alignment. Some works also pre-train video-language mod-
203
+ els on large-scale video-text pairs [2, 23, 44].
204
+ However,
205
+ text-to-image technologies can only produce static images
206
+ which can not describe the dynamics in text synopsis, while
207
+ text-to-video retrieval target searching existing video clips,
208
+ rather than picking up keyframes from clips to collage out
209
+ something new, which is demanded for if users input new
210
+ texts. Text-to-vision generation also develops rapidly. Ear-
211
+ lier methods widely adopt GAN-based methods conditioned
212
+ on text [24, 31, 46].
213
+ Recent deep generative models use
214
+ large Transformer networks [12, 27, 42] or diffusion mod-
215
+ els [26, 33] that can generate high-quality images. Text-to-
216
+ video generation has been explored recently by extending
217
+ advanced text-to-image generation methods [14,35]. How-
218
+ ever, even advanced text-to-video generation methods can
219
+ only generate GIF-like short videos without complicated
220
+ motions and dynamics.
221
+ 2.2. Movie Understanding
222
+ Existing works on movie understanding mainly explore
223
+ content recognition and cinematic style analysis.
224
+ Con-
225
+ tent recognition includes action [3, 21], scene recogni-
226
+ tion [6, 13, 29], and text-to-video retrieval task that fo-
227
+ cuses on movie datasets [1, 32]. Some works aim to ana-
228
+ lyze shot styles [28, 40], movie genre [34, 47] from a pro-
229
+ fessional perspective. There are also some movie-related
230
+ datasets [1,15,32]. LSMDC [32] dataset contains short clips
231
+ paired with human-annotated captions. Condensed Movie
232
+ Dataset (CMD) [1] consists of key scenes from the movie,
233
+ each of which is accompanied by a high-level semantic de-
234
+ scription of the scene. The MAD [36] dataset is based on
235
+ the LSMDC [32] dataset.
236
+ Our constructed dataset is built on top of MovieNet [15]
237
+ dataset, which is a large collection of movies annotated with
238
+ many kinds of tasks such as scene segmentation, cinematic
239
+ style classification, story understanding and so on. We use a
240
+ subset of MovieNet annotated with text synopses of scenes.
241
+ We manually construct video storyboard for the text syn-
242
+ opses.
243
+ Tab. 1 presents the comparison of our dataset and re-
244
+ lated movie datasets. It shows that the duration of movie
245
+ clips corresponding to a description in LSMDC and MAD
246
+ is only 4 seconds and the average number of words in a de-
247
+ scription is only 9-12, which is much lower than ours. It
248
+ is impossible to extract a meaningful storyboard from such
249
+ short clips. Our MovieNet-TeViS and CMD give a synopsis
250
+ or summary of 64-second or 132-second video segments re-
251
+ spectively and thus we can expect such text is higher-level.
252
+ Compared to CMD, our MovieNet-Tevis uses more words
253
+ to describe video segments with half the duration of CMD.
254
+ This indicates that our text synopses provide more details
255
+ than those in CMD. As a start of such a challenging new
256
+ task, our dataset is the most appropriate in duration of video
257
+ clip and semantic level of text.
258
+ 3
259
+
260
+ Dorothy Gale is an orphaned teenager who lives with
261
+ her Auntie Em and Uncle Henry on a Kansas farm in the
262
+ early 1900s.
263
+ [subtitle]: "Aunt Em! Aunt Em!"
264
+ "Just listen to what Miss Gulch did to Toto--", "Dorothy, please.
265
+ We're counting.“…
266
+ shot0004_0
267
+ shot0004_1
268
+ shot0004_2
269
+ shot0005_0
270
+ shot0005_1
271
+ shot0005_2
272
+ Figure 2. Annotating keyframes of a storyboard for a text synopsis
273
+ 3. MovieNet-TeViS Dataset
274
+ Our goal is to assist amateur video makers to create video
275
+ storyboards from text inputs. Since it is hard to obtain orig-
276
+ inal video storyboards from professional video makers, we
277
+ decided to select keyframes from released movies to recon-
278
+ struct a succinct storyboard that a human user can use as a
279
+ shooting plan. In terms of the text inputs, previous works
280
+ have collected aligned script [49], caption [32], Descrip-
281
+ tive Video Service (DVS) [38], book [48], or synopsis [37]
282
+ to movies. However, books cannot be well-aligned with
283
+ adapted movies; DVS is hard to obtain and thus limited
284
+ in scale; wiki plots are too coarse, while scripts and cap-
285
+ tions are too detailed to compose for most non-professional
286
+ users.
287
+ We consider synopses are the most appropriate
288
+ source which mimic the texts written by users in real sce-
289
+ nario and contain desired level of details. MovieNet [15]
290
+ and CMD [1] consist of such kind of synopses for movies.
291
+ Although we could use the CMD dataset to scale up but we
292
+ can expect that the CMD dataset would generate twice long
293
+ sequence of images in a storyboard, which is much difficult
294
+ to model, because it uses less words to describe the video
295
+ clip with twice duration of our dataset.
296
+ In the following, we first describe the dataset annotation
297
+ process in Sec. 3.1 and then present analysis on our dataset
298
+ in Sec. 3.2.
299
+ 3.1. Data Annotation
300
+ MovieNet provides 4,208 text synopsis paragraph and
301
+ movie segment pairs. A paragraph consists of 8 sentences
302
+ (113 words) on average and a segmentation contains 95
303
+ A1
304
+ B1
305
+ A2
306
+ A3
307
+ B2
308
+ B3
309
+ Figure 3. Simplifying a storyboard by deleting redundant images
310
+ shots.
311
+ It might be too difficult to learn semantic association and
312
+ long-term reasoning over such long sequences with large
313
+ variance. Therefore, we first split a paragraph into sentences
314
+ and then align each sentence with a minimum number of
315
+ keyframes in the movie segment.
316
+ Fig. 2 shows the annotation interface.
317
+ We present a
318
+ synopsis paragraph sentence by sentence and all the shots
319
+ aligned with the paragraph in MovieNet. For each shot, we
320
+ display three evenly spaced frames as well as correspond-
321
+ ing subtitles below the shot to help annotators understand
322
+ the images better. The annotator should first select the sen-
323
+ tences to form a text synopsis, and then choose a minimum
324
+ number of images to visualize the text. We construct de-
325
+ tailed guidelines to assure the quality of each annotated sto-
326
+ ryboard as follows:
327
+ 1. The number of keyframes should be less than 20. Split
328
+ the sentence if the number of selected keyframes is
329
+ more than 20, or filter the sentence out of the dataset;
330
+ 2. Do not select adjacent similar images, e.g., for the ex-
331
+ ample in Fig. 2, shot0004 1 should be deleted given
332
+ shot0004 0;
333
+ 3. The image must add value to express the synop-
334
+ sis sentence in terms of relevancy or coherency,
335
+ e.g., shot0005 2 cannot add any new value given
336
+ shot0005 0;
337
+ 4. If there is a basic conversation with a cycle of repeated
338
+ images, only keep one pattern to make the storyboard
339
+ succinct by selecting the first images in the first cycle
340
+ and the last image in the last cycle. For example, in
341
+ Fig. 3, AiBi is a basic conversation pattern and it has
342
+ been repeated for 3 times. We ask annotators to select
343
+ A1 and B3 to compose a complete conversation.
344
+ To ensure data quality, our data are annotated in three
345
+ rounds. We hire 60 annotators in the first round to select
346
+ keyframes that are necessary in relevancy or a vision lan-
347
+ guage; in the second round the annotators further simplify
348
+ or revise the storyboards by consistent rules; and six vol-
349
+ unteer experts in the third round review and finalize the se-
350
+ lected keyframes.
351
+ 4
352
+
353
+ 3.2. Dataset Analysis
354
+ Dataset statistics.
355
+ Our collected MovieNet-TeViS dataset
356
+ uses 2,949 paragraph-segment pairs from MovieNet after
357
+ filtering improper examples by annotators. We sort story-
358
+ boards by the number of keyframes ascendingly and use the
359
+ first 10,000 pairs of a synopsis sentence in English and a
360
+ video storyboard, i.e., a sequence of keyframes as our final
361
+ dataset. There are 45,584 keyframes in total. The number
362
+ of keyframes in a storyboard ranges from 3 to 11 and about
363
+ 60% storyboards consist of 3 or 4 keyframes. The average
364
+ number of words in a synopsis sentence is about 24.
365
+ In addition, MovieNet-TeViS covers 19 diverse movie
366
+ genres. More details are presented in the supplementary
367
+ material.
368
+ Concreteness measurement.
369
+ The concreteness level of
370
+ texts has a large influence on visualization difficulty.
371
+ To systematically measure the concreteness of texts, we
372
+ leverage a concreteness database introduced by Brysbaert et
373
+ al [5] to calculate average concreteness of words in synop-
374
+ sis and compare with text descriptions of other datasets, i.e.,
375
+ LSMDC, MAD, and CMD and show the results in Tab. 1.
376
+ To be specific, Brysbaert et al. [5] create a database that
377
+ ask annotators to assign concreteness ratings from 1 to 5
378
+ for 40 thousand English words. The average ratings can
379
+ evaluate the degree of how concrete a concept denoted by
380
+ a word is. The larger value means more concrete. For ex-
381
+ ample, the concreteness rating of “banana” is 5 while that
382
+ of “love” is 2.07.
383
+ As shown in the Tab. 1, our dataset
384
+ has 2.76 average concreteness ratings while LSMDC and
385
+ MAD have 2.99.
386
+ This means that the text synopsis in
387
+ MovieNet-TeViS is more abstract or higher-level than de-
388
+ scriptions in LSMDC and MAD. CMD has 2.60 concrete-
389
+ ness score which is slightly lower than ours. This makes
390
+ sense because CMD use 18 words on average to describe
391
+ 132-second video clips whereas our MovieNet-TeViS uses
392
+ 24 words to describe 64-second video segments. As the first
393
+ trial of a new task, our dataset has appropriate concreteness.
394
+ Diversity measurement. Following [41], we use the num-
395
+ ber of words, the number of unique n-grams and the num-
396
+ ber of words with different POS tags to compare diversity
397
+ of text description or synopsis in LSMDC, MAD, CMD
398
+ and our dataset. For fair comparison, we randomly sample
399
+ 10,000 texts from LSMDC, MAD, and CMD datasets. We
400
+ find that our built dataset MovieNet-TeViS has the richest n-
401
+ grams, nouns, verbs, adjectives and adverbs. Due to space
402
+ limitation, we only show the number of words and the num-
403
+ ber of unique bi-grams results in Tab. 1. We present the full
404
+ comparison in the supplementary material. From the Tab. 1,
405
+ we observe that CMD is also richer than LSMDC. This
406
+ supports our observation that LSMDC has caption based
407
+ description whereas CMD and MovieNet have high-level
408
+ summary of movie clips or segments. Our dataset is richer
409
+ than CMD, which is consistent with what the seconds per
410
+ word shows. When looking into our dataset, we find that
411
+ many text synopses contain dialogues, psychological de-
412
+ scriptions, shot languages, etc. Such free text styles are
413
+ closer to that of our target non-professional video makers.
414
+ 4. Text Synopsis to Video Storyboard Task
415
+ The Text Synopsis to Video Storyboard (TeViS) task
416
+ aims to retrieve a set of keyframes and order them to vi-
417
+ sualize the text synopsis. Assume we have a text synopsis
418
+ T = {w1, w2, ..., wn} with n words, the goal of TeViS task
419
+ is to retrieve m images from large candidate images and
420
+ order them to visualize the text synopsis. The number of
421
+ images m is different for each text synopsis T. We design
422
+ two evaluation settings for the TeViS task: i) ordering the
423
+ shuffled keyframes conditioned on the text, and ii) the task
424
+ of retrieving then ordering.
425
+ 4.1. Ordering the Shuffled Keyframes
426
+ Task.
427
+ For a given text synopsis and its shuffled ground-
428
+ truth images, how well can the models order them? This is
429
+ a key step for creating a storyboard that needs to consider
430
+ coherence across frames. To measure the long-term rea-
431
+ soning capability of models for ordering, we let the models
432
+ order the ground-truth images for this evaluation.
433
+ Evaluation. For the ordering task, we are given a text syn-
434
+ opsis and its shuffled ground-truth images, the models need
435
+ to predict their order conditioned on text synopsis. We then
436
+ can compute Kendall’s τ [20] metric to report the result.
437
+ Kendall′s τ = 1 − 2 ∗ #Inversions
438
+ N ∗ (N − 1)/2
439
+ (1)
440
+ where inversions are inverse-order pairs, i.e., the number of
441
+ steps needed to switch to the original order. τ is always
442
+ between -1 and 1, with 1 representing the full positive order
443
+ and -1 representing the full inverse order.
444
+ 4.2. Retrieve-and-Ordering Keyframes
445
+ Task.
446
+ For a given text synopsis, how well can the models
447
+ select the relevant images from a large set of candidates and
448
+ then order them? This task is more practical in real situa-
449
+ tions.
450
+ Evaluation. For this evaluation, we are given a text synop-
451
+ sis and a large set of candidate images. The candidate im-
452
+ ages contain ground-truth images annotated by humans, and
453
+ other negative images which are randomly sampled from
454
+ other images in the corpus. The number of candidates in-
455
+ cluding ground-truth and negative samples is 500. We con-
456
+ sider both retrieval and ordering performance for this eval-
457
+ uation, thus we use the product of Recall@K and Kendall’s
458
+ τ as the final metric of this task. When some ground-truth
459
+ 5
460
+
461
+ images cannot be returned at top K, the Kendall’s τ is calcu-
462
+ lated upon the returned ground-truth images at top K only.
463
+ 5. Method
464
+ To provide a start point for tackling the task, we pro-
465
+ pose a text-to-image retrieval module based on a pre-trained
466
+ image-text model (i.e., CLIP [25]), and an encoder-decoder
467
+ module for ordering images.
468
+ A coherence-aware pre-
469
+ training method is further proposed to leverage large-scale
470
+ movies to improve coherence across frames for the order-
471
+ ing module. We also present several strong baselines built
472
+ on top of CLIP for ordering.
473
+ 5.1. Text-to-Image Model for Retrieval
474
+ We leverage a pre-trained image-text model CLIP to con-
475
+ duct text-to-keyframe retrieval. During training, we ran-
476
+ domly sample one frame from the ground-truth keyframe
477
+ sequence to get positive image-text pair and frame from
478
+ other sequences as negative for a text synopsis. Then we
479
+ leverage a contrastive loss to maximize the similarity of
480
+ matched images and texts while minimizing the similarity
481
+ of unmatched images and texts, which is:
482
+ Li2t = − 1
483
+ B
484
+ B
485
+
486
+ i=1
487
+ log
488
+ exp
489
+
490
+ I⊤
491
+ i Ti/τ
492
+
493
+ �B
494
+ j=1 exp
495
+
496
+ I⊤
497
+ i Tj/τ
498
+
499
+ Lt2i = − 1
500
+ B
501
+ B
502
+
503
+ i=1
504
+ log
505
+ exp
506
+
507
+ T ⊤
508
+ i Ii/τ
509
+
510
+ �B
511
+ j=1 exp
512
+
513
+ T ⊤
514
+ i Ij/τ
515
+ �,
516
+ (2)
517
+ where Ii and Tj are the normalized embeddings of i-th im-
518
+ age and j-th sentence in a batch of size B and τ is the tem-
519
+ perature. The overall text-image alignment loss Lalign is
520
+ the average of Li2t and Lt2i.
521
+ 5.2. Encoder-Decoder Model for Ordering
522
+ Inspired by the encoder-decoder framework which is
523
+ widely adopted in sequence generation tasks [9, 39, 43],
524
+ we propose a Trans-TeViS model that adopts encoder-
525
+ decoder architecture [39] to Translate Text synopsis to
526
+ Video Storyboard. This design can not only sort the can-
527
+ didate images but also handle the variable length prob-
528
+ lem when creating video storyboards.
529
+ As illustrated in
530
+ Fig. 4, our model consists of a Transformer encoder ET
531
+ for text encoding, and a Transformer decoder DT for image
532
+ feature prediction. DT predicts the image features auto-
533
+ regressively with a cross-attention mechanism to condition
534
+ on text. These predicted features can be used to retrieve
535
+ images by dot-product similarity. The model is optimized
536
+ with an NCE loss in each prediction step with negative im-
537
+ ages sampled randomly from a mini-batch:
538
+ Ltrans = −
539
+ 1
540
+ BM
541
+ B
542
+
543
+ i=1
544
+ M
545
+
546
+ m=1
547
+ log
548
+ exp
549
+
550
+ I⊤
551
+ i,mIi,m/τ
552
+
553
+
554
+ I′∈Ni,m∪Ii,m exp
555
+
556
+ I⊤
557
+ i,mI
558
+ ′/τ
559
+
560
+ (3)
561
+ where Ii,m is the normalized embeddings of the m-th im-
562
+ age from the i-th image sequence from the batch, Ni,m is
563
+ the normalized embeddings of the negative images sampled
564
+ from the batch.
565
+ Coherence-Aware Pre-training on Movies.
566
+ Learning
567
+ long-term reasoning for improving the coherence of re-
568
+ ordered images is challenging, especially on a small dataset.
569
+ It is hard for the model to learn sufficient movie-style evi-
570
+ dence to make the transitions smooth across shots. Inspired
571
+ by the success of the pre-training paradigm on NLP [4],
572
+ which can learn language knowledge from massive data
573
+ and then produce fluent sentences, we take a similar idea to
574
+ leverage large-scale movies to learn the language of movies.
575
+ Specifically, we pre-train the decoder part of our Trans-
576
+ TeViS model with large-scale movie frame sequences with-
577
+ out using text annotation. This method can be easily scaled
578
+ up because movie frame sequences are easy to obtain.
579
+ 5.3. Additional Baselines for Ordering
580
+ In addition to the proposed Trans-TeViS model, we de-
581
+ sign three strong baselines based on CLIP for ordering as
582
+ shown in Fig. 5:
583
+ 1) CLIP-Naive: we use CLIP to calculate the similar-
584
+ ity between a text synopsis as query and its corresponding
585
+ keyframes, and then order the keyframes based on the sim-
586
+ ilarity scores.
587
+ 2) CLIP-Sliding: we first divide the sentences into sev-
588
+ eral segments as a group of queries where the number
589
+ of segments is equal to the number of its corresponding
590
+ keyframes. We then use sliding window to use each seg-
591
+ ment to retrieve the most similar keyframes in turn. Once
592
+ a keyframe is chosen, this keyframe will be removed from
593
+ the candidates.
594
+ 3) CLIP-Cumulative: we first divide the sentences into
595
+ several segments as CLIP-Sliding. However, when doing
596
+ retrieval, we accumulate each segment and retrieve the most
597
+ similar keyframes, which considers more context. For ex-
598
+ ample, to retrieve the second keyframe, we use the first two
599
+ segments as the query. We also remove the keyframes from
600
+ the candidates once they are chosen in previous step.
601
+ 6. Experiments
602
+ We evaluate the performance of proposed methods on
603
+ MovieNet-TeViS dataset for the text synopsis to video sto-
604
+ ryboard task. We first describe the setup of experiment and
605
+ then present the results of both ordering task and retrieve-
606
+ and-ordering task. Finally, we show some qualitative re-
607
+ 6
608
+
609
+ [START]
610
+ Text Encoder
611
+ Dorothy Gale is an orphaned
612
+ teenager who
613
+ lives with her
614
+ Auntie Em and Uncle Henry on
615
+ a Kansas farm in the early 1900s.
616
+ Decoder
617
+ Cross-Attention
618
+ [END]
619
+
620
+ Retrieved Candidates
621
+ 𝐿𝑡𝑟𝑎𝑛𝑠
622
+ Pre-Training
623
+ Decoder
624
+ Initialize
625
+ Figure 4. The framework of our Trans-TeViS Model for TeViS task.
626
+ 𝒒𝟐
627
+ text token
628
+ 𝒒𝟏
629
+ 𝒒𝟏
630
+ 𝒒𝟐
631
+ 𝒒𝟏
632
+ 𝒒𝟐
633
+ 𝒒𝟑
634
+ 𝒒𝟑
635
+ 𝒒𝟑
636
+ 𝒒
637
+ 𝒒
638
+ image
639
+ CLIP-Naive
640
+ CLIP-
641
+ Sliding
642
+ CLIP-
643
+ Cumulative
644
+ Figure 5. Illustration of additional baseline models for ordering.
645
+ sults.
646
+ 6.1. Experimental Setup
647
+ Implementation Details. We utilize CLIP-ViT-B/32 as the
648
+ backbone in all compared methods. The initial learning rate
649
+ is set to 1e-6, and we use a linear learning rate scheduler to
650
+ decay the learning rate linearly after a warm-up stage. The
651
+ network is optimized by AdamW optimizer, with the weight
652
+ decay value of 5e-2 and the batch size of 16.
653
+ Pre-training datasets.
654
+ We utilize the movies from
655
+ CMD [1] dataset for pre-training the decoder of Trans-
656
+ TeViS model. CMD dataset collects 7 to 11 clips with de-
657
+ scriptions for each movie to cover the entire storyline. The
658
+ CMD we exploited has 30K clips in the training set, 2K
659
+ clips in the validation set, and 1K clips in the test. To bal-
660
+ ance between information richness and computational com-
661
+ plexity, we use a uniform frame sampling strategy to extract
662
+ 5 frames every clip for pre-training .
663
+ Table 2.
664
+ Results of ordering task.
665
+ Our method Trans-TeViS
666
+ achieves the best performance, though still leaving much room
667
+ for improvement compared to human capabilities. [s − e] under
668
+ Kendall’s τ denotes sequence length from s to e.
669
+ Method
670
+ Kendall’s τ↑
671
+ all
672
+ [3-5]
673
+ [6-11]
674
+ Human
675
+ 0.821
676
+ 0.860
677
+ 0.734
678
+ CLIP-Naive
679
+ 0.183
680
+ 0.248
681
+ 0.036
682
+ CLIP-Sliding
683
+ 0.230
684
+ 0.278
685
+ 0.123
686
+ CLIP-Cumulative
687
+ 0.244
688
+ 0.291
689
+ 0.139
690
+ Trans-TeViS
691
+ 0.261
692
+ 0.324
693
+ 0.120
694
+ 0.241
695
+ 0.246
696
+ 0.253
697
+ 0.261
698
+ 0.23
699
+ 0.235
700
+ 0.24
701
+ 0.245
702
+ 0.25
703
+ 0.255
704
+ 0.26
705
+ 0.265
706
+ 0
707
+ 10k
708
+ 20k
709
+ 30k
710
+ Kendall’s τ
711
+ Number of clips from pre-training data
712
+ Figure 6. Ablation study results of the pre-training dataset with
713
+ different scales. The performance of our method improves as the
714
+ scale of the pre-training data increases.
715
+ 6.2. Ordering Task
716
+ Results.
717
+ We conducted several experiments to verify the
718
+ effect of different methods on the text synopsis to video sto-
719
+ ryboard task, and results are shown in Tab. 2. The CLIP-
720
+ Naive method achieves the poorest performance due to the
721
+ lack of sequence modeling. The CLIP-Sliding and CLIP-
722
+ 7
723
+
724
+ 0.225
725
+ 0.261
726
+ 0.251
727
+ 0.243
728
+ 0.22
729
+ 0.225
730
+ 0.23
731
+ 0.235
732
+ 0.24
733
+ 0.245
734
+ 0.25
735
+ 0.255
736
+ 0.26
737
+ 0.265
738
+ Kendall’s τ
739
+ Average time interval between two frames
740
+ 6.15s
741
+ 12.32s
742
+ 18.41s
743
+ 26.80s
744
+ 14.16s
745
+ Figure 7. Ablation study results of pre-training dataset with differ-
746
+ ent average time interval between every two frames. Pre-training
747
+ dataset with average time intervals similar to the MovieNet-TeViS
748
+ (purple line of 14.16s) leads to a better performance.
749
+ Cumulative methods outperform the CLIP-Naive method,
750
+ proving to be more effective ways of applying CLIP, thanks
751
+ to the ability to segment semantic information of the text
752
+ and thus able to model sequences. The Trans-TeViS method
753
+ achieves the best overall result of all the models, demon-
754
+ strating the ability of sequence generation models to learn
755
+ long-term information in keyframe sequences.
756
+ In addition, a human study was conducted to make a bet-
757
+ ter assessment of the task. We invited participants to reorder
758
+ the shuffled keyframe sequences. The performance of hu-
759
+ mans is presented in Tab. 2. Humans achieve much better
760
+ performance than our best model, suggesting there is high
761
+ potential for improvement.
762
+ Analysis of Pre-training Data. To verify the impact of
763
+ dataset scales in pre-training, we randomly sample subsets
764
+ with different sizes from the CMD dataset for pre-training
765
+ which has 30K clips originally.
766
+ As shown in Fig.6, the method without any pre-training
767
+ obtains the poorest performance, indicating the importance
768
+ of Coherence-Aware Pre-training. It can be seen that the
769
+ performance of the method improves as the scale of the pre-
770
+ training dataset increases.
771
+ Analysis of time interval. In the original CMD dataset, we
772
+ use a uniform sampling strategy to extract 5 frames for each
773
+ clip, and the average time interval (i.e. 1/fps) between every
774
+ two frames is 26.8s, while in MovieNet-TeViS this number
775
+ is 14.16s. To explore the impact of this gap, we extract
776
+ frame sequences with the same sequence length and differ-
777
+ ent time intervals from CMD as pre-training data. As shown
778
+ in Fig.7, pre-training data with average time intervals simi-
779
+ lar to the MovieNet-TeViS leads to a better performance.
780
+ Table 3. Text-to-image retrieval performance on MovieNet-TeViS.
781
+ We compare CLIP models with and without fine-tuning (ft).
782
+ Method
783
+ R@1↑
784
+ R@5↑
785
+ R@10↑
786
+ R@50↑
787
+ CLIP w/o ft
788
+ 5.73
789
+ 19.72
790
+ 28.98
791
+ 56.42
792
+ CLIP
793
+ 7.48
794
+ 26.34
795
+ 38.94
796
+ 68.90
797
+ Table 4. Results of Retrieve-and-Order Task. Our method Trans-
798
+ TeViS outperforms other CLIP-based methods.
799
+ Method
800
+ Kendall’s τ↑
801
+ R@10
802
+ R@20
803
+ R@30
804
+ R@40
805
+ R@50
806
+ CLIP-Naive
807
+ 0.223
808
+ 0.169
809
+ 0.133
810
+ 0.143
811
+ 0.152
812
+ CLIP-Sliding
813
+ 0.218
814
+ 0.204
815
+ 0.189
816
+ 0.208
817
+ 0.246
818
+ CLIP-Cumulative
819
+ 0.226
820
+ 0.203
821
+ 0.188
822
+ 0.214
823
+ 0.249
824
+ Trans-TeViS
825
+ 0.276
826
+ 0.271
827
+ 0.253
828
+ 0.251
829
+ 0.244
830
+ 6.3. Retrieve-and-Ordering Task
831
+ Retrieval Results. We first evaluate the performance of
832
+ text-to-image retrieval. We compare CLIP models [25] with
833
+ and without fine-tuning on our MovieNet-TeViS dataset.
834
+ As shown in Tab. 3, even without fine-tuning on our
835
+ dataset, CLIP shows reasonable performance.
836
+ The fine-
837
+ tuned CLIP model can achieve much better performance.
838
+ Retrieve-and-Ordering Results. We report the result of
839
+ the Retrieve-and-Ordering Task in Tab. 4. It can be seen that
840
+ the method of Trans-TeViS achieves the best performance
841
+ while CLIP-Naive has the poorest, with CLIP-Sliding and
842
+ CLIP-Cumulative in the middle. This result is consistent
843
+ with the experimental result of the ordering task, suggesting
844
+ that the difference in performance primarily stems from the
845
+ difference in methods’ ability of ordering.
846
+ 6.4. Qualitative Results
847
+ In addition to the quantitative results, we further carry
848
+ out a case study on how well our proposed methods per-
849
+ form in the TeViS task. As Fig. 8 shows, for the given
850
+ text synopsis, our proposed Trans-TeViS method performs
851
+ the best and can correctly order No.1, 3, and 4 keyframes
852
+ and No.2, 3, and 4 ones. CLIP-Naive takes the synopsis as
853
+ the whole to encode and thus it actually considers relevance
854
+ only without any order information. It performs worst as ex-
855
+ pected. Our proposed CLIP-Sliding and CLIP-Cumulative
856
+ address the limitation because text synopsis is split into sev-
857
+ eral text fragments and the ordering of keyframes depends
858
+ on the ordering of text fragments. In this case, the text frag-
859
+ ments are well aligned with ground-truth keyframes from
860
+ human’s perspective, but it is still difficult for CLIP-Sliding
861
+ and CLIP-Cumulative in ordering No.2 and 3. Our pro-
862
+ 8
863
+
864
+ Suddenly enraged at the thought of Tracy, yet again, lying, cheating, seducing and manipulating her way into political
865
+ success for her own selfish reasons, Jim hurls a milkshake at the limousine, and then makes a quick getaway.
866
+ Ground Truth
867
+ Trans-
868
+ TeViS
869
+ CLIP-Navie
870
+ CLIP-
871
+ Sliding
872
+ ×
873
+ ×
874
+ ×
875
+ ×
876
+ ×
877
+ ×
878
+
879
+ ×
880
+ CLIP-
881
+ Cumulative
882
+ ×
883
+ ×
884
+
885
+ ×
886
+
887
+ ×
888
+ ×
889
+
890
+ Figure 8. Qualitative examples of different models for the ordering task on our Movie-TeViS dataset.
891
+ posed pre-training and transformer based model can cor-
892
+ rectly order No.2 and 3, which shows the advantages in
893
+ learning the visual language for storyboard creation.
894
+ 7. Conclusion
895
+ In this paper, we introduce a novel TeViS task (Text
896
+ synopsis to Video Storyboard), which aims to retrieve an
897
+ ordered sequence of images to visualize the text synopsis.
898
+ We also construct a MovieNet-TeViS dataset to support the
899
+ task. To align the diverse text synopsis with keyframes,
900
+ we utilize a pre-trained Image-Text model to overcome this
901
+ challenge. We propose an encoder-decoder model called
902
+ Trans-TeViS which translates text synopsis to keyframe se-
903
+ quence.
904
+ We also propose Coherence-Aware Pre-training
905
+ on Movies to improve the long-term reasoning of the de-
906
+ coder for ordering the keyframes. Ablation studies verify
907
+ the effectiveness of our proposed model. Both quantitative
908
+ and qualitative results show our method is better than other
909
+ baselines.
910
+ References
911
+ [1] Max Bain, Arsha Nagrani, Andrew Brown, and Andrew Zis-
912
+ serman. Condensed movies: Story based retrieval with con-
913
+ textual embeddings.
914
+ In Computer Vision – ACCV 2020:
915
+ 15th Asian Conference on Computer Vision, Kyoto, Japan,
916
+ November 30 – December 4, 2020, Revised Selected Papers,
917
+ Part V, page 460–479, Berlin, Heidelberg, 2020. Springer-
918
+ Verlag. 1, 3, 4, 7
919
+ [2] Max Bain, Arsha Nagrani, G¨ul Varol, and Andrew Zisser-
920
+ man. Frozen in time: A joint video and image encoder for
921
+ end-to-end retrieval. In ICCV, pages 1728–1738, 2021. 1, 3
922
+ [3] Piotr Bojanowski, Francis R. Bach, Ivan Laptev, Jean Ponce,
923
+ Cordelia Schmid, and Josef Sivic. Finding actors and actions
924
+ in movies. 2013 IEEE International Conference on Com-
925
+ puter Vision, pages 2280–2287, 2013. 3
926
+ [4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
927
+ biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
928
+ tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
929
+ Language models are few-shot learners. NeurIPS, 33:1877–
930
+ 1901, 2020. 2, 3, 6
931
+ [5] Marc Brysbaert, Amy Beth Warriner, and Victor Kuperman.
932
+ Concreteness ratings for 40 thousand generally known en-
933
+ glish word lemmas. Behavior Research Methods, 46:904–
934
+ 911, 2014. 5
935
+ [6] Vasileios T Chasanis, Aristidis C Likas, and Nikolaos P
936
+ Galatsanos. Scene detection in videos using shot clustering
937
+ and sequence alignment. IEEE transactions on multimedia,
938
+ 11(1):89–100, 2008. 3
939
+ [7] Shizhe Chen, Bei Liu, Jianlong Fu, Ruihua Song, Qin Jin,
940
+ Pingping Lin, Xiaoyu Qi, Chunting Wang, and Jin Zhou.
941
+ Neural storyboard artist: Visualizing stories with coherent
942
+ image sequences. In Proceedings of the 27th ACM Interna-
943
+ tional Conference on Multimedia, MM ’19, page 2236–2244,
944
+ New York, NY, USA, 2019. Association for Computing Ma-
945
+ chinery. 1
946
+ [8] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. Fine-grained
947
+ video-text retrieval with hierarchical graph reasoning.
948
+ In
949
+ Proceedings of the IEEE/CVF Conference on Computer Vi-
950
+ sion and Pattern Recognition, pages 10638–10647, 2020. 1
951
+ [9] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedan-
952
+ tam, Saurabh Gupta, Piotr Doll´ar, and C Lawrence Zitnick.
953
+ Microsoft coco captions:
954
+ Data collection and evaluation
955
+ server. arXiv preprint arXiv:1504.00325, 2015. 3, 6
956
+ [10] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
957
+ Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu.
958
+ UNITER: Universal image-text representation learning. In
959
+ ECCV, pages 104–120. Springer, 2020. 1, 3
960
+ [11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
961
+ Toutanova. BERT: Pre-training of Deep Bidirectional Trans-
962
+ formers for Language Understanding.
963
+ In NAACL, pages
964
+ 4171–4186, 2019. 2, 3
965
+ [12] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
966
+ Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
967
+ Hongxia Yang, et al. Cogview: Mastering text-to-image gen-
968
+ eration via transformers. Advances in Neural Information
969
+ Processing Systems, 34:19822–19835, 2021. 3
970
+ [13] Bo Han and Weiguo Wu. Video scene segmentation using a
971
+ novel boundary evaluation criterion and dynamic program-
972
+ 9
973
+
974
+ ming. In 2011 IEEE International conference on multimedia
975
+ and expo, pages 1–6. IEEE, 2011. 3
976
+ [14] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
977
+ Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
978
+ Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
979
+ video: High definition video generation with diffusion mod-
980
+ els. arXiv preprint arXiv:2210.02303, 2022. 1, 3
981
+ [15] Qingqiu Huang, Yu Xiong, Anyi Rao, Jiaze Wang, and
982
+ Dahua Lin. Movienet: A holistic dataset for movie under-
983
+ standing. In The European Conference on Computer Vision
984
+ (ECCV), 2020. 1, 3, 4
985
+ [16] Ting-Hao K. Huang, Francis Ferraro, Nasrin Mostafazadeh,
986
+ Ishan Misra, Jacob Devlin, Aishwarya Agrawal, Ross Gir-
987
+ shick, Xiaodong He, Pushmeet Kohli, Dhruv Batra, et al.
988
+ Visual storytelling. In 15th Annual Conference of the North
989
+ American Chapter of the Association for Computational Lin-
990
+ guistics (NAACL 2016), 2016. 1, 2
991
+ [17] Zhicheng Huang, Zhaoyang Zeng, Yupan Huang, Bei Liu,
992
+ Dongmei Fu, and Jianlong Fu. Seeing out of the box: End-to-
993
+ end pre-training for vision-language representation learning.
994
+ In CVPR, pages 12976–12985, 2021. 3
995
+ [18] Zhicheng Huang, Zhaoyang Zeng, Bei Liu, Dongmei Fu,
996
+ and Jianlong Fu.
997
+ Pixel-bert: Aligning image pixels with
998
+ text by deep multi-modal transformers.
999
+ arXiv preprint
1000
+ arXiv:2004.00849, 2020. 1
1001
+ [19] Yuqi Huo, Manli Zhang, Guangzhen Liu, Haoyu Lu, Yizhao
1002
+ Gao, Guoxing Yang, Jingyuan Wen, Heng Zhang, Baogui
1003
+ Xu, Weihao Zheng, et al.
1004
+ Wenlan: Bridging vision and
1005
+ language by large-scale multi-modal pre-training.
1006
+ arXiv
1007
+ preprint arXiv:2103.06561, 2021. 1, 3
1008
+ [20] Mirella Lapata. Automatic evaluation of information order-
1009
+ ing: Kendall’s tau. Computational Linguistics, 2006. 5
1010
+ [21] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Ben-
1011
+ jamin Rozenfeld.
1012
+ Learning realistic human actions from
1013
+ movies. In 2008 IEEE Conference on Computer Vision and
1014
+ Pattern Recognition, pages 1–8. IEEE, 2008. 3
1015
+ [22] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg,
1016
+ Mohit Bansal, and Jingjing Liu. Less is more: Clipbert for
1017
+ video-and-language learning via sparse sampling. In CVPR,
1018
+ pages 7331–7341, 2021. 1, 3
1019
+ [23] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
1020
+ Makarand
1021
+ Tapaswi,
1022
+ Ivan
1023
+ Laptev,
1024
+ and
1025
+ Josef
1026
+ Sivic.
1027
+ Howto100m: Learning a text-video embedding by watching
1028
+ hundred million narrated video clips.
1029
+ In ICCV, pages
1030
+ 2630–2640, 2019. 1, 3
1031
+ [24] Yingwei Pan, Zhaofan Qiu, Ting Yao, Houqiang Li, and Tao
1032
+ Mei. To create what you tell: Generating videos from cap-
1033
+ tions. In Proceedings of the 25th ACM international confer-
1034
+ ence on Multimedia, pages 1789–1798, 2017. 3
1035
+ [25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
1036
+ Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
1037
+ Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
1038
+ Krueger, and Ilya Sutskever.
1039
+ Learning transferable visual
1040
+ models from natural language supervision. In ICML, pages
1041
+ 8748–8763. PMLR, 2021. 1, 2, 3, 6, 8
1042
+ [26] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
1043
+ and Mark Chen. Hierarchical text-conditional image gen-
1044
+ eration with clip latents. arXiv preprint arXiv:2204.06125,
1045
+ 2022. 3
1046
+ [27] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
1047
+ Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
1048
+ Zero-shot text-to-image generation. In International Confer-
1049
+ ence on Machine Learning, pages 8821–8831. PMLR, 2021.
1050
+ 3
1051
+ [28] Anyi Rao, Jiaze Wang, Linning Xu, Xuekun Jiang, Qingqiu
1052
+ Huang, Bolei Zhou, and Dahua Lin. A unified framework
1053
+ for shot type classification based on subject centric lens.
1054
+ In European Conference on Computer Vision, pages 17–34.
1055
+ Springer, 2020. 3
1056
+ [29] Anyi Rao, Linning Xu, Yu Xiong, Guodong Xu, Qingqiu
1057
+ Huang, Bolei Zhou, and Dahua Lin.
1058
+ A local-to-global
1059
+ approach to multi-modal movie scene segmentation.
1060
+ In
1061
+ 2020 IEEE/CVF Conference on Computer Vision and Pat-
1062
+ tern Recognition (CVPR), pages 10143–10152, 2020. 3
1063
+ [30] Hareesh Ravi, Lezi Wang, Carlos Manuel Mu˜niz, Leonid
1064
+ Sigal, Dimitris N. Metaxas, and Mubbasir Kapadia. Show
1065
+ me a story: Towards coherent neural story illustration. In
1066
+ 2018 IEEE/CVF Conference on Computer Vision and Pat-
1067
+ tern Recognition, pages 7613–7621, 2018. 1
1068
+ [31] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
1069
+ geswaran, Bernt Schiele, and Honglak Lee. Generative ad-
1070
+ versarial text to image synthesis. In International conference
1071
+ on machine learning, pages 1060–1069. PMLR, 2016. 3
1072
+ [32] Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, Niket
1073
+ Tandon, Christopher Pal, Hugo Larochelle, Aaron Courville,
1074
+ and Bernt Schiele. Movie description. International Journal
1075
+ of Computer Vision, 123(1):94–120, 2017. 1, 2, 3, 4
1076
+ [33] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
1077
+ Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
1078
+ Ghasemipour,
1079
+ Burcu Karagol Ayan,
1080
+ S Sara Mahdavi,
1081
+ Rapha Gontijo Lopes, et al.
1082
+ Photorealistic text-to-image
1083
+ diffusion models with deep language understanding. arXiv
1084
+ preprint arXiv:2205.11487, 2022. 3
1085
+ [34] Gabriel S Sim˜oes, Jˆonatas Wehrmann, Rodrigo C Barros,
1086
+ and Duncan D Ruiz. Movie genre classification with convo-
1087
+ lutional neural networks. In 2016 International Joint Con-
1088
+ ference on Neural Networks (IJCNN), pages 259–266. IEEE,
1089
+ 2016. 3
1090
+ [35] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
1091
+ Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
1092
+ Oran Gafni, et al. Make-a-video: Text-to-video generation
1093
+ without text-video data. arXiv preprint arXiv:2209.14792,
1094
+ 2022. 1, 3
1095
+ [36] Mattia Soldan, Alejandro Pardo, Juan Le´on Alc´azar, Fabian
1096
+ Caba, Chen Zhao, Silvio Giancola, and Bernard Ghanem.
1097
+ Mad: A scalable dataset for language grounding in videos
1098
+ from movie audio descriptions.
1099
+ In Proceedings of the
1100
+ IEEE/CVF Conference on Computer Vision and Pattern
1101
+ Recognition, pages 5026–5035, 2022. 2, 3
1102
+ [37] Yidan Sun, Qin Chao, and Boyang Li. Synopses of movie
1103
+ narratives: a video-language dataset for story understanding.
1104
+ arXiv preprint arXiv:2203.05711, 2022. 4
1105
+ [38] Atousa Torabi, Christopher Pal, Hugo Larochelle, and Aaron
1106
+ Courville. Using descriptive video services to create a large
1107
+ 10
1108
+
1109
+ data source for video annotation research.
1110
+ arXiv preprint
1111
+ arXiv:1503.01070, 2015. 4
1112
+ [39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
1113
+ reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
1114
+ Polosukhin. Attention is all you need. In NeurIPS, pages
1115
+ 5998–6008, 2017. 6
1116
+ [40] Hee Lin Wang and Loong Fah Cheong. Taxonomy of direct-
1117
+ ing semantics for film shot classification. IEEE Transactions
1118
+ on Circuits and Systems for Video Technology, 19:1529–
1119
+ 1542, 2009. 3
1120
+ [41] Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang
1121
+ Wang, and William Yang Wang. Vatex: A large-scale, high-
1122
+ quality multilingual dataset for video-and-language research.
1123
+ In Proceedings of the IEEE/CVF International Conference
1124
+ on Computer Vision, pages 4581–4591, 2019. 5
1125
+ [42] Chenfei Wu, Jian Liang, Xiaowei Hu, Zhe Gan, Jianfeng
1126
+ Wang, Lijuan Wang, Zicheng Liu, Yuejian Fang, and Nan
1127
+ Duan.
1128
+ Nuwa-infinity: Autoregressive over autoregressive
1129
+ generation for infinite visual synthesis.
1130
+ arXiv preprint
1131
+ arXiv:2207.09814, 2022. 1, 3
1132
+ [43] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large
1133
+ video description dataset for bridging video and language. In
1134
+ CVPR, pages 5288–5296, 2016. 6
1135
+ [44] Hongwei Xue, Tiankai Hang, Yanhong Zeng, Yuchong Sun,
1136
+ Bei Liu, Huan Yang, Jianlong Fu, and Baining Guo. Ad-
1137
+ vancing high-resolution video-language representation with
1138
+ large-scale video transcriptions. In CVPR, 2022. 1, 3
1139
+ [45] Hongwei Xue, Yupan Huang, Bei Liu, Houwen Peng, Jian-
1140
+ long Fu, Houqiang Li, and Jiebo Luo.
1141
+ Probing inter-
1142
+ modality: Visual parsing with self-attention for vision-and-
1143
+ language pre-training. In NeurIPS, volume 34, pages 4514–
1144
+ 4528, 2021. 1, 3
1145
+ [46] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
1146
+ gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
1147
+ gan: Text to photo-realistic image synthesis with stacked
1148
+ generative adversarial networks. In Proceedings of the IEEE
1149
+ international conference on computer vision, pages 5907–
1150
+ 5915, 2017. 3
1151
+ [47] Howard Zhou, Tucker Hermans, Asmita V Karandikar, and
1152
+ James M Rehg. Movie genre classification via scene cate-
1153
+ gorization. In Proceedings of the 18th ACM international
1154
+ conference on Multimedia, pages 747–750, 2010. 3
1155
+ [48] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov,
1156
+ Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Align-
1157
+ ing books and movies: Towards story-like visual explana-
1158
+ tions by watching movies and reading books. In Proceedings
1159
+ of the IEEE International Conference on Computer Vision
1160
+ (ICCV), December 2015. 4
1161
+ [49] Yutao Zhu, Ruihua Song, Jian-Yun Nie, Pan Du, Zhicheng
1162
+ Dou, and Jin Zhou. Leveraging narrative to generate movie
1163
+ script. ACM Transactions on Information Systems (TOIS),
1164
+ 40(4):1–32, 2022. 4
1165
+ 11
1166
+
QtAyT4oBgHgl3EQfU_dt/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
SNE3T4oBgHgl3EQfzAs2/content/tmp_files/2301.04724v1.pdf.txt ADDED
@@ -0,0 +1,1792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ Decoding Structure-Spectrum Relationships
4
+ with Physically Organized Latent Spaces
5
+
6
+ Zhu Liang,1 Matthew R. Carbone,2 Wei Chen,1 Fanchen Meng,1 Eli Stavitski,3 Deyu Lu,1,* Mark S.
7
+ Hybertsen,1,* and Xiaohui Qu1,*
8
+ 1Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
9
+ 2Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, USA
10
+ 3National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
11
12
+
13
+ KEYWORDS
14
+ structure-spectrum relationship, interpretable machine learning, interpretable latent space, X-ray
15
+ absorption spectroscopy, X-ray absorption near-edge structure, autoencoder, deep learning
16
+ ABSTRACT
17
+ A new semi-supervised machine learning method for the discovery of structure-spectrum
18
+ relationships is developed and demonstrated using the specific example of interpreting X-ray
19
+ absorption near-edge structure (XANES) spectra. This method constructs a one-to-one mapping
20
+ between individual structure descriptors and spectral trends. Specifically, an adversarial
21
+ autoencoder is augmented with a novel “rank constraint” (RankAAE). The RankAAE
22
+ methodology produces a continuous and interpretable latent space, where each dimension can track
23
+ an individual structure descriptor. As a part of this process, the model provides a robust and
24
+ quantitative measure of the structure-spectrum relationship by decoupling intertwined spectral
25
+ contributions from multiple structural characteristics. This makes it ideal for spectral interpretation
26
+ and the discovery of new descriptors. The capability of this procedure is showcased by considering
27
+ five local structure descriptors and a database of over fifty thousand simulated XANES spectra
28
+ across eight first-row transition metal oxide families. The resulting structure-spectrum
29
+ relationships not only reproduce known trends in the literature, but also reveal unintuitive ones
30
+ that are visually indiscernible in large data sets. The results suggest that the RankAAE
31
+ methodology has great potential to assist researchers to interpret complex scientific data, test
32
+ physical hypotheses, and reveal new patterns that extend scientific insight.
33
+ I. INTRODUCTION
34
+ Structure-property relationships in materials encode fundamental physical knowledge and
35
+ enable a constructive design process to meet functional goals and guide materials discovery.[1–3]
36
+ Considering materials beyond the simplest of molecules or crystals, the full description of the
37
+ atomic-scale structure generally involves many separate quantities. Similarly, a collection of
38
+ properties can also be a complex data set. Consequently, the discovery and representation of
39
+ structure-property relationships pose significant challenges in the raw form of a “many-to-many”
40
+ map. Traditionally, expert intuition has been used to identify a few simple structure descriptors
41
+
42
+ 2
43
+
44
+ that can be related to specific trends in properties through physical arguments and experimental
45
+ probes.[4] The emergence of high-throughput experiments and expanding databases of computed
46
+ materials properties invites the application of new, data-driven approaches to discover deeper,
47
+ more comprehensive structure-property relationships.[1–3] Significant progress has been made in
48
+ applying machine learning methods to physical datasets in recent years.[1–3,5–7] However, the
49
+ development of interpretable models,[8–12] highly desirable for use by physical science domain
50
+ experts, remains an ongoing challenge in the field.
51
+ Mapping the trends in a complex dataset, such as a collection of physical spectra measured for
52
+ a set of materials, to a reduced dimensional space is a common and productive first step. For
53
+ example, an autoencoder[13,14] (AE) maps each input spectrum to a point in a latent space of low
54
+ dimensionality while simultaneously training a decoder to perform the inverse mapping of a point
55
+ in the latent space back to a spectrum. However, the latent space variables do not inherently have
56
+ a physical interpretation.[9,10,15–19] Specifically for the structure-property relationship problem, the
57
+ data-driven discovery of correlative structure descriptors remains largely unsolved.
58
+ X-ray absorption spectroscopy (XAS) illustrates the complexity of structure-spectrum
59
+ relationships. XAS is a widely used technique for materials characterization[20,21] due to its element
60
+ specificity and its sensitivity to the local chemical environment of the absorbing atom.[22]
61
+ Furthermore, modern synchrotron facilities enable high-throughput experimentation and in situ
62
+ materials discovery methodologies.[23] In XAS experiments, a core electron is excited by an
63
+ incident photon to empty states. The X-ray absorption spectrum exhibits steps, called edges, at
64
+ clearly distinguishable energies where the absorption rises sharply. These are classified into K-,
65
+ L-, and M-edges corresponding to n=1, 2, and 3, where n is the principal quantum number of the
66
+ core electron. For a given absorbing element, the XAS spectrum is typically divided into two
67
+ regions relative to the edge. The region extending up to roughly 50 eV above the edge is referred
68
+ to as X-ray Absorption Near Edge Structure (XANES), and beyond that is the Extended X-ray
69
+ Absorption Fine Structure (EXAFS).[20]
70
+ XANES and EXAFS encode different types of information. EXAFS contains information
71
+ about the radial distribution of first shell neighbors, and potentially second and third shell
72
+ neighbors if the single-to-noise ratio is high enough. The analysis of EXAFS is well developed,
73
+ with robust approaches available for extracting structural information.[24,25] In the framework of
74
+ multiple scattering theory[26] (see Figure 1a), the EXAFS signal is dominated by the sum of direct
75
+ back-scattering terms. In contrast, XANES depends on the interference of a more diverse set of
76
+ interactions, such as the three-body path illustrated in Figure 1a. Furthermore, it contains rich
77
+ information about the electronic structure, specifically dipole-allowed transitions to low-lying
78
+ empty states. As a result, XANES spectral features can be correlated with local physical and
79
+ structure descriptors, such as oxidation state, coordination number, and local symmetry.[20,21,26,27]
80
+ However, XANES is more difficult to analyze than EXAFS. An in-depth analysis typically
81
+ requires details of the electronic states of the material as well as an accurate physical model of the
82
+ many-body core-hole effects.[26–29] Because of this inherent complexity, it is challenging to unravel
83
+ the structure-spectrum relationships in the analysis of XANES.
84
+ Structure-spectrum relationships enable the extraction of structural information from XANES
85
+ spectra measured on new materials, a core application of X-ray measurement in science and
86
+ engineering. Consequently, the development of methods to infer structure descriptors from spectra
87
+ is a central research problem in XANES analysis.[21,30–35] In contrast to the well-posed problem of
88
+
89
+ 3
90
+
91
+ computing a spectrum from a given material structure, this is an “inverse problem.” The inverse
92
+ problem may not always have a unique solution. Multiple structures may be consistent with a
93
+ measured spectrum. Solving the inverse problem relies on identifying a set of robust structure
94
+ descriptors that correlate to distinct spectral features or fingerprints. The search for such
95
+ relationships has inspired decades of research in X-ray spectroscopy. In 1920, Bergengren
96
+ discovered that the edge position strongly correlates with the oxidation state (OS) of the absorbing
97
+ atom (see Figure 1b).[30] Since then, OS has been a common focus of the K-edge XANES
98
+ analysis.[21,32,33,36] Other important structure descriptors include local symmetry (e.g., tetrahedral
99
+ versus octahedral) and coordination number (CN) of the cation, which are correlated with the
100
+ position and intensity of the pre-edge peak in early 3d transition metal oxides (Figure 1c).[21,31,35,37]
101
+ However, this empirical relationship shows strong system dependence and does not apply to late
102
+ 3d transition metals with vanishing pre-edge features, as illustrated in Figure 1d.[37–39] Beyond the
103
+ first coordination shell, it is significantly more difficult to identify useful structure descriptors.
104
+
105
+ Figure 1. Real space scattering picture of X-ray absorption and exemplary spectral trends in K-edge
106
+ XANES. (a) The final state electron amplitude on the central atom includes the sum of scattering
107
+ contributions from all neighboring atoms. Scattering processes include: SS1 - single scattering from
108
+ the first coordination shell, SS2 - single scattering from the second coordination shell, and MS – an
109
+ exemplary multiple scattering path. (b) Simulated Mn K-edge XANES for a series of crystals in
110
+ which the oxidation state of Mn varies showing the shift of the main edge (gray arrow). (c)
111
+ Simulated Ti K-edge XANES for three oxide crystals with varying titanium coordination numbers
112
+ showing the change in pre-edge feature intensity (gray arrow). CN4, CN5, and CN6 designate 4, 5,
113
+ and 6-coordinated motifs. (d) Same for Fe K-edge XANES but showing no simple trend.
114
+ SS1
115
+ SS2
116
+ MS
117
+ (a)
118
+ (b)
119
+ (c)
120
+ (d)
121
+
122
+ 4
123
+
124
+ Despite the utility of existing structure descriptors (e.g., OS and CN), there is a strong demand
125
+ to discover or engineer a sufficiently complete set of structure descriptors to support local structure
126
+ prediction in complex materials spaces. The significance of a structure descriptor strongly depends
127
+ on the underlying materials and the physical properties of interest. For example, the pre-peak
128
+ features in transition metal K-edge XANES are sensitive to the distortion of the cation octahedral
129
+ cage caused by substrate[40] or pressure.[41] Based on studies of Ti K-edge XANES and Li K-edge
130
+ electron energy loss spectra, local distortions are identified as structure descriptors that play an
131
+ important role in understanding the phase transformation and the fast lithium ion transport in
132
+ lithium titanate.[42–44] To capture the spectral trends of nanostructures, bond-length-based structure
133
+ descriptors have been investigated, which include metal-metal bond lengths in metallic (Pd K-
134
+ edge)[18] and bimetallic nanoclusters (Pd K-edge and Au L3-edge),[45] average Fe-O bond length in
135
+ Fe oxide clusters (Fe K-edge),[34] and Co-C and Co-O bond lengths in a Co single atom catalyst
136
+ complex (Co K-edge).[46] In addition, the chemical composition (e.g., hydrogen content) can also
137
+ serve as a good descriptor for Pd nanoparticle catalysts exposed to H2.[18] These examples illustrate
138
+ the material specificity of the problem. Despite extensive studies,[32,33,47,48] a robust and widely
139
+ applicable approach for identifying structure descriptors still does not exist.
140
+ Intuitively, one can label a spectral dataset with various structure descriptors and use visual
141
+ inspection to search for qualitative trends. This empirical approach can succeed when there is an
142
+ obvious trend, such as the correlation of edge shift to OS in Mn K-edge XANES (Figure 1b) or
143
+ the correlation of pre-edge intensity to CN in Ti K-edge XANES (Figure 1c). However, this
144
+ approach fails when the spectral trend is too complex to identify by visual inspection, e.g., the
145
+ trend of CN in Fe K-edge XANES (Figure 1d). Nonetheless, in the latter situation, there is great
146
+ potential to use data analytics tools to extract statistically meaningful trends.[31,33,38,48–52]
147
+ In this study, we focus on methods capable of learning a latent space that simultaneously
148
+ represents spectra and correlates with structure descriptors. The resulting map is an interpretable,
149
+ multi-dimensional structure-spectrum relationship. We identify key technical challenges that must
150
+ be met to achieve this goal and develop new data analytics tools to address them. Specifically, we
151
+ build on the adversarial autoencoder (AAE)[53] by adding a new rank constraint that drives each
152
+ latent space variable to track a target structure descriptor. Taken together, our rank-constrained
153
+ adversarial autoencoder (RankAAE) method captures spectral variations along latent space
154
+ dimensions and correlates them with physically interpretable structure descriptors. We show that
155
+ the method works across a multidimensional latent space incorporating a set of structure
156
+ descriptors in a single training procedure.
157
+ To demonstrate the RankAAE method, we apply it to transition metal cation K-edge XANES
158
+ from eight 3d transition metal oxide families (Ti-Cu). A large database of simulated spectra is
159
+ calculated for crystal structures drawn from the Materials Project database, which exhibits diverse
160
+ local cation chemical environments. This represents a broad coverage of materials compositions,
161
+ including binary, ternary and quaternary oxides. The database includes over fifty thousand
162
+ individual cation spectra. With this database, we use the RankAAE methodology to build structure-
163
+ spectrum relationships and characterize the effectiveness of the method. We show how it can be
164
+ used by a domain expert to explore candidate structure descriptors and their corresponding spectral
165
+ trends. In particular, this method can be used to compare the performance of different combinations
166
+ of structure descriptors in multi-dimensional models for structure-spectrum relationships. For the
167
+ transition metal oxides under study, the RankAAE method enabled us to both recover historical
168
+ structure-spectrum relationships[21,30,31,35–37,54] and to reveal new ones hidden in the data.
169
+
170
+ 5
171
+
172
+ We henceforth summarize the structure of our manuscript. Latent space methods are briefly
173
+ reviewed in Section II. Section III presents the main results demonstrating the use of the RankAAE
174
+ method. The results are discussed in Section IV, including the physical interpretation of the
175
+ emerging trends. Conclusions appear in Section V. Technical details of the methodology are
176
+ described in Section VI.
177
+ II. LATENT SPACE METHODS
178
+ Dimensionality reduction techniques pertinent to the structure-spectrum problem are briefly
179
+ described here. In particular, we place our RankAAE method in the context of previous work.
180
+
181
+ Figure 2. Dimensionality reduction with correlation to structure descriptors. (a, b) Principal
182
+ component analysis of simulated Fe K-edge XANES spectra. Data points are colored according to
183
+ the indicated structure descriptors: (a) Fe oxidation state (OS); (b) Fe coordination number (CN).
184
+ (c) Schematic illustration of feature entanglement in the spectrum latent space {z1, z2} (left) and the
185
+ goal of transforming the latent space into {𝑧1
186
+ ′, 𝑧2
187
+ ′ } (right), where 𝑧1
188
+ ′ and 𝑧2
189
+ ′ align with structure
190
+ descriptors OS and CN, respectively. OS is represented by color (blue: low OS; red: high OS), and
191
+ CN is represented by shape (triangle: low CN; circle: high CN).
192
+ One example of a simple, linear method commonly used to extract trends in data is principal
193
+ component analysis (PCA). Liu et al. applied PCA to the Cu K-edge of CuxPdy bimetallic
194
+ nanoparticles and identified patterns correlated with CuxPdy cluster types.[55] Carbone et al.
195
+ performed PCA on K-edge XANES of eight 3d transition metal families and identified clear
196
+ patterns, where the data points in the reduced dimensional space are distributed into identifiable
197
+ clusters ordered according to the label of the absorbing cation CN=4, 5, and 6.[38] Similar patterns
198
+ are shown here for Fe OS and CN in Figure 2(a, b), where the simulated spectra were drawn from
199
+ the database used in the present study (see Methods). Fe OS exhibits a meaningful pattern in the
200
+ reduced-dimensional space, where the gradient of the OS is roughly along the horizontal direction.
201
+ Similarly, the ordered PCA pattern of Fe CN is roughly along the vertical direction, in stark
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+ 6
228
+
229
+ contrast to the vague trend in the raw spectra of Figure 1d. The PCA decomposition of Fe K-edge
230
+ XANES spectra in Figure 2 provides strong evidence that OS and CN are good structure
231
+ descriptors. However, the variation of OS or CN is highly non-linear with respect to the PCA axes,
232
+ and the patterns of the two descriptors are thus intertwined, as illustrated schematically in Figure
233
+ 2c (left). This example illustrates the limitations of standard linear dimensionality reduction
234
+ methods, such as PCA, for quantitative structure-spectrum mapping.
235
+
236
+ Figure 3. Network structure of the RankAAE method. A standard autoencoder (blue dashed
237
+ rectangle) creates a latent space representation of the data that faithfully reproduces the spectra in
238
+ the training dataset. An adversarial autoencoder (green dashed rectangle) introduces a discriminator
239
+ on top of the regular autoencoder that regularizes the latent space. RankAAE further adds a rank
240
+ constraint (orange) to the latent space to establish correlations between specific latent space
241
+ dimensions and target physical descriptors.
242
+ A more promising dimensionality reduction approach uses autoencoder (AE)-based
243
+ methods.[13,14] An AE generally consists of two neural networks trained in tandem to approximate
244
+ the identity function: an encoder that compresses vector data sets to a lower dimensional latent
245
+ space and a decoder that reverses this mapping (see the blue dashed box in Figure 3). An AE can
246
+ perform sophisticated non-linear data compression and capture statistically relevant information
247
+ in the latent space. For example, Routh et al. trained an autoencoder to transform simulated Pd K-
248
+ edge XANES spectra of small Pd clusters to a latent representation and revealed a strong
249
+ correlation between structure descriptors (CN, interatomic distance, and hydrogen content) and
250
+ latent space variables.[18] However, in studies that require continuous sampling of the latent space,
251
+ the mapping created by a basic AE can be problematic. For example, when applied to image
252
+ reconstruction problems, some regions of the latent space do not decode to sensible images.[56] In
253
+ a chemical science example, the latent space of an AE trained on SMILES encodings of
254
+ molecules[57] exhibited “dead areas” that did not decode to valid molecules.[17] In the present work,
255
+ the spectrum reconstruction from the decoder can yield unphysical spectra (Figure S1a). These
256
+ failures are due to the lack of regularization of the latent space. Some points in the latent space
257
+ may not correspond to regions in the neighborhood of any previously seen training data, causing
258
+ the decoder to produce unpredictable results. Variational (VAEs),[10,17,58] Wasserstein (WAE)[9]
259
+ and adversarial autoencoders (AAEs, green dashed box in Figure 3)[53,59,60] tackle this problem by
260
+ regularizing the latent space during training, forcing the training data coverage of the latent space
261
+ to be more complete. Although different in technical detail, all result in models capable of
262
+ performing robust data generation (i.e., generative models). The latent space can then be sampled
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+ 7
272
+
273
+ continuously, with decoded signals that remain valid in the target application, e.g., yielding
274
+ physical spectra. For example, a VAE has been used to analyze spectral functions,[19] and VAEs,
275
+ WAE and AAEs all have been used as generative models to search for new molecules/materials
276
+ from the latent space.[9,17,59,60]
277
+ Robust, data-driven methodologies to uncover structure-spectrum relationships and discover
278
+ new descriptors must address three key technical challenges:
279
+ 1. Spectrum validity: a data-driven method is needed to construct a set of latent variables that
280
+ serves as a proxy for the spectrum. In practice, the latent space needs to be regularized to
281
+ ensure that all data points in the latent space correspond to physical spectra.
282
+ 2. Structure mapping: the method needs to establish quantitative mappings between the latent
283
+ space and structure descriptors, such that the statistical importance of various descriptors
284
+ can be assessed and compared.
285
+ 3. Feature disentanglement: the method must disentangle spectral contributions driven by
286
+ different underlying structural and chemical characteristics.
287
+ For example, in the case of XANES, the spectral variation reflects the net effects from multiple
288
+ sources that are often convoluted in overlapping energy ranges. Even with prior knowledge from
289
+ domain-specific expertise, it is currently impossible to disentangle the impact of multiple structure
290
+ descriptors. To achieve disentanglement, the latent space needs to be further organized, such that
291
+ each latent space dimension aligns with a specific structure descriptor. Currently, none of the off-
292
+ the-shelf data analytics tools simultaneously satisfies these three requirements of spectrum validity,
293
+ structure mapping, and feature disentanglement.
294
+ New methods need to be developed to simultaneously address all three challenges. We focus
295
+ on VAE/AAE methods. Because they are generative models in nature, they already satisfy the
296
+ spectrum validity requirement. Joint training of a property prediction network with a VAE can
297
+ address the structure mapping requirement,[17] however it does not solve the feature
298
+ disentanglement problem. Specifically, even with the addition of joint training, each latent variable
299
+ does not represent a target property directly since it can be entangled with multiple physical
300
+ descriptors. To construct a direct latent variable-structure descriptor mapping, the latent space of
301
+ a VAE/AAE needs to be reorganized to align each dimension with a structure descriptor. Figure
302
+ 2c (right) depicts this idea: the goal is to have the latent variable 𝑧1
303
+ ′ only depend on OS (symbol
304
+ color) monotonically, while 𝑧2
305
+ ′ only depends on CN (symbol shape) monotonically. To accomplish
306
+ this, additional constraints need to be engineered and applied to a VAE or AAE.
307
+ The RankAAE method, developed in this work, accomplishes this goal with a novel “rank”
308
+ constraint specifically designed to organize the latent space in the way depicted in Figure 2c. The
309
+ implementation balances the goal of aligning each latent space variable with a target structure
310
+ descriptor while minimizing the impact on the other, statistical characteristics of the latent space
311
+ representation learned with the AAE. The technical details are described in Methods. Applied to a
312
+ multi-dimensional latent space, the interplay of different structure descriptors is disentangled and
313
+ the RankAAE method associates each dimension of the latent space with a well-defined structure
314
+ descriptor.
315
+ III. RESULTS
316
+ For our database of transition metal oxides, we simulate the XANES spectra for each
317
+ symmetrically non-equivalent transition metal absorber using the multiple-scattering code,
318
+
319
+ 8
320
+
321
+ FEFF9.[26,61] Details of the database development and computational methods are given in Methods.
322
+ Since XANES cation K-edge spectra probe local chemical environments, we investigate the
323
+ structure descriptors that encode them. For the transition metal oxides, the cation-oxygen network
324
+ characteristics are of particular importance (Figure 4a), although most crystal structures in the
325
+ database also incorporate counterions that influence key chemical and structural attributes of the
326
+ local transition metal and its environment. For simplicity, we restrict our attention to sites where
327
+ the nearest neighbor shell contains only oxygen. In addition to the two well-known descriptors
328
+ (OS and CN), we consider several other descriptors directed at capturing distortions in the nearest-
329
+ neighbor shell of the absorbing cation and the influence of the second nearest-neighbor shell. The
330
+ considered descriptors are detailed in Methods, but we outline them here briefly.
331
+ 1) The average of the coordination numbers for the nearest-neighbor oxygen atoms (OCN),
332
+ 2) The second-nearest-neighbor coordination number (CN-2),
333
+ 3) The spread in the cation-oxygen bond lengths expressed as the nearest-neighbor radial
334
+ standard deviation (NNRS),
335
+ 4) The spread in the cation centered bond angles expressed as the nearest-neighbor angular
336
+ standard deviation (NNAS),
337
+ 5) The minimum oxygen-oxygen distance on the edges of the nearest neighbor polyhedron
338
+ (MOOD), and
339
+ 6) The point group symmetry order (PGSO).
340
+
341
+ Figure 4. Structure and XANES spectral descriptors. (a) Schematic local structure around the central
342
+ cation emphasizing the cation-oxygen network. Shaded areas are first coordination shells of cation
343
+ (light red triangle) and oxygen (light blue triangle). (b) Schematic spectral descriptors applicable to
344
+ typical cation K-edge XANES spectra in oxides: Eedge – edge position, Ipre – pre-peak intensity, Imain
345
+ – main peak intensity, Cpit – post edge curvature, Emain – main peak position, Epost – post edge
346
+ position, Ipost – post edge intensity.
347
+ To facilitate the discussion of structure-spectrum relationships, we adopt a set of spectral
348
+ descriptors that capture the main spectral characteristics seen in a typical transition metal oxide
349
+ XANES K-edge spectrum (Figure 4b). Described in more detail in Methods, these basic metrics
350
+ will be referenced throughout our work.
351
+ We present our results in two parts. First, we illustrate the use of the RankAAE method and
352
+ our validation of its performance for one family of materials, Vanadium (V) oxides. Then, we
353
+ illustrate the performance of the method across the full set of transition metal oxides considered in
354
+ this study.
355
+ Cation
356
+ Anion
357
+ (a)
358
+ (b)
359
+ Cpit
360
+ Ipre
361
+ Emain
362
+ Imain
363
+ Eedge
364
+ Epost
365
+ Ipost
366
+
367
+ 9
368
+
369
+ A. Application and Validation of RankAAE for Vanadium Oxides
370
+ The full scope of the V K-edge XANES data across the present vanadium oxide database is
371
+ shown in Figure 5a. To illustrate the structure-spectrum relationships in this raw data, the spectra
372
+ are colored according to the values of five structure descriptors in sequence from the top of the
373
+ figure: OS, CN, OCN, NNRS, and MOOD, respectively. Visual inspection of the examples in
374
+ Figure 5a shows color concentrations indicative of correlations between structure descriptors and
375
+ spectral features, as one expects on physical grounds. For example, the position of the edge and
376
+ the main peak (Eedge and Emain) shift with OS, in line with the trend observed in experimental
377
+ spectra.[21,31,35,37] Pre-edge peak intensity (Ipre) and main peak position and intensity (Emain and Imain)
378
+ change with CN, but Emain and Imain are also affected by OCN and MOOD. Higher energy features
379
+ above the main peak show similar characteristics. This illustrates the entanglement of the
380
+ contributions from different structure descriptors to trends in spectral features. This diverse dataset
381
+ exemplifies the challenges that domain experts face when trying to expand the scope of structure
382
+ descriptors in the analysis. While the overall trends in spectral features for OS and CN follow prior
383
+ domain experience and physical models, the trends for additional spectral descriptors are too
384
+ ambiguous or complicated to draw clear conclusions. A specific structure descriptor correlates
385
+ with spectral features in several locations across the spectrum and each of those features can be
386
+ affected by multiple structure descriptors. Taken together trends are obscured and physical
387
+ interpretation is non-trivial.
388
+ We illustrate the use of the RankAAE method (Figure 3, Methods) through application to this
389
+ vanadium oxide dataset. The RankAAE model is trained to map the spectra in the database to a
390
+ latent space (center of Figure 3) of chosen dimensionality 𝑁 through an autoencoding procedure.
391
+ For most of the results presented in this study we take 𝑁 = 6. As a special type of AAE, the latent
392
+ space resulting from the trained RankAAE model is regularized and each reconstruction maps to
393
+ a physical spectrum (Figure S1b). In contrast, a standard AE model can yield wider variance and
394
+ unphysical features in the spectra, such as excessive noise and even dramatic, sharp spikes (Figure
395
+ S1a). In addition, the rank constraint is enforced for selected latent space variables to align with
396
+ chosen structure descriptors, as described in Methods. Unconstrained dimensions represent
397
+ residual characteristics of the spectral data set beyond the constrained dimensions. Training is
398
+ repeated from scratch for each set of chosen structure descriptors. The details of dataset splitting
399
+ (training, validation, and test) are listed in Table S1.
400
+ The regularized and aligned latent space resulting from the RankAAE method allows us to
401
+ present spectral trends in an easily interpretable fashion. Reconstructed spectra are mapped from
402
+ the latent space with the trained decoder. Once the model is trained, each point in the latent space
403
+ decodes to a spectrum. In addition, due to our training procedure, each point should correlate to a
404
+ set of structure descriptor values according to the imposed constraints. If the method is successful,
405
+ the latent space will encode structure-spectrum relationships. By tracing a path through the latent
406
+ space, we sample that mapping, tracking the correlated structure descriptor values together with
407
+ the associated reconstructed spectra. In the simplest version of this picture, we can track the
408
+ evolution of spectra along each axis of the latent space while holding the other latent space values
409
+ constant, e.g., equal to zero (Figure S2a). With the correlation to target structure descriptors, this
410
+ can isolate specific spectral features that correlate to that structure descriptor.
411
+ Given the complexity of the dataset and the goal of quantifying the structure-spectrum
412
+ relationship in a multidimensional descriptor space, we want to sample the latent space more
413
+
414
+ 10
415
+
416
+ systematically, not just along isolated, one-dimensional paths. To this end, for each latent variable
417
+ 𝑧𝑖, we average over spectra corresponding to different values of {𝑧𝑗}𝑗≠𝑖. In this way, the evolution
418
+ of spectra along direction 𝑧𝑖 is statistically representative of the full dataset. Methods section
419
+ describes this averaging procedure. Figures S2a and S2b compare the sampling along each isolated
420
+ axis with the averaging procedure. The two approaches result in consistent trends. We adopt the
421
+ averaging procedure in this work for its statistical rigor.
422
+
423
+ Figure 5. Correlating structure descriptors to spectral trends for V K-edge XANES from vanadium oxides. (a)
424
+ Simulated spectra of vanadium oxides colored according to the value of specific structure descriptors: OS, CN,
425
+ OCN, NNRS, MOOD, and no designation. (b, c) Reconstructed spectra from trained RankAAE models. As
426
+ described in the text, each subplot maps the spectral trend associated with one of the six dimensions in the latent
427
+ space. Spectra are colored by the value of the corresponding latent variable. Five of the latent space variables are
428
+ constrained to correlate with target structure descriptors while the sixth variable is unconstrained. In (b), an initial
429
+ set of structure descriptors is chosen for training: OS, CN, CN-2, NNAS, and PGSO. In (c) a final set of structure
430
+ descriptors is chosen: OS, CN, OCN, NNRS, and MOOD. For each descriptor, the degree of correlation to the
431
+ corresponding latent space variable is quantified by an F1 score (for OS and CN) or the Spearman rank correlation
432
+ coefficient[62] (for the other descriptors), annotated next to each plot. The shaded area marks the location of the
433
+ primary spectral variation characteristic of the spectral trend.
434
+
435
+
436
+
437
+ Energy (eV)
438
+ Intensity (arb. units)
439
+ Unconstrained
440
+ Unconstrained
441
+ OS
442
+ CN
443
+ OCN
444
+ NNRS
445
+ MOOD
446
+ L
447
+ H
448
+
449
+ 11
450
+
451
+ For the vanadium oxide dataset, Figures 5b and 5c show a series of trends for two trained
452
+ RankAAE models respectively, each with five constrained latent space dimensions and one
453
+ unconstrained dimension. Each subpanel shows the reconstructed spectral evolution along one
454
+ dimension of the latent space. The smooth variation in spectra highlights the success in
455
+ regularizing the latent space. The distinctive variations from panel to panel provide the input for
456
+ interpreting the trends in terms of the target structure descriptors and assessing their relative utility.
457
+ It is not known a priori which structure descriptors capture the most significant spectral
458
+ variation given a diverse dataset of materials structures. Figure 5b shows our “initial guess” for
459
+ these structure descriptors based on prior domain knowledge. We evaluate the results according to
460
+ several criteria. First, we monitor the quantitative correlation between the latent space variable and
461
+ the target descriptor as detailed below. Second, we look for emerging spectral trends in distinct
462
+ regions of the XANES spectrum. To be most useful for applications, those trends should be
463
+ distinguishable. Finally, we monitor the amplitude of the spectral variation captured by the
464
+ unconstrained latent space variable 𝑧6. In essence, the last metric captures the spectral variance
465
+ outside the scope of that driven by the target structure descriptors. Reducing it should indicate
466
+ improvements in the completeness of the descriptor set.
467
+ For the results in Figure 5b, we see that the target descriptors are captured with generally high
468
+ correlation (inset values in each panel). Furthermore, for each descriptor, a primary trend in the
469
+ spectra can be identified (shaded area). In addition, there are other spectral trends associated with
470
+ each descriptor across the energy range. For example, CN is correlated with both pre-edge intensity
471
+ and main peak intensity. Thus, while it is convenient to isolate localized spectral features for
472
+ discussion, each structure descriptor is associated with extended fingerprints with contributions
473
+ from spectral features across the full energy range. We also note an overlap in the trends. For
474
+ example, OS, CN, and NNAS all correlate to pre-edge intensity. Finally, the unconstrained
475
+ dimension exhibits a relatively small spectral variation.
476
+ The process of refining the choices of structure descriptors is iterative and still requires a
477
+ “human in the loop.” As an example, we retain the well-known OS and CN descriptors that clearly
478
+ show a strong, systematic spectral trend and consider alternatives for other structure descriptors.
479
+ Figure S3 shows the change in spectral trend as each of those structure descriptors is replaced one
480
+ by one. The OCN descriptor improves over CN-2 with a somewhat higher correlation to the latent
481
+ space variable and qualitatively supports a stronger spectral trend in the shape of the primary peak.
482
+ Introducing NNRS retains the correlation to the pit curvature while reducing the impact on pre-
483
+ edge peak intensity. The MOOD descriptor exhibits a much-improved correlation to the latent
484
+ space variable compared to PSGO (0.86 versus 0.68). In this example, the spectral variation
485
+ attributable to the unconstrained latent space dimension remains relatively small. The spectral
486
+ trend for the final structure descriptor set is presented in Figure 5c. In comparing the trends with
487
+ the initial result in Figure 5b, the interaction between the descriptor choices can be seen. The pre-
488
+ edge intensity trend for OS has been suppressed, and the spectral trend around the main peak shape
489
+ for CN has been concentrated. Also, some of the overlaps in the spectral trends have been reduced.
490
+ In particular, the pre-edge peak intensity is now more specifically correlated to the CN descriptor,
491
+ and to a smaller degree to NNRS. This set is likely not unique, but it captures most of the spectral
492
+ variance in the vanadium oxide database.
493
+ A different perspective on descriptor development is to consider how the model evolves as
494
+ descriptors are added one by one. This is illustrated in Figure S4 for the five descriptors used in
495
+
496
+ 12
497
+
498
+ Figure 5c. The quantitative correlation between each structure descriptor and the corresponding
499
+ latent space variable is stable. The qualitative spectral trends are also similar, although we observe
500
+ a clear sharpening of them. For example, the initial pre-edge feature in the OS trend systematically
501
+ reduces to essentially zero. The CN trend consolidates into clear pre-edge and main peak features.
502
+ At the same time, the OCN trend is capturing main peak shape changes. Finally, we also see the
503
+ stepwise reduction in the amplitude of the unconstrained latent variables as additional structure
504
+ descriptors are added. This strongly supports the notion that each new structure descriptor is
505
+ extending the model to capture additional variation in the spectra. It also illustrates how the
506
+ RankAAE approach overcomes the complexity of intertwined spectra trends in the raw spectral
507
+ data (Figure 5a). As the set of structure descriptors incorporated into the trained model is modified,
508
+ a set of distinguishable spectra trends emerges.
509
+ From the fully trained models, we can identify regions of the spectra with “primary spectral
510
+ trends,” each one linked to a specific latent variable 𝑧𝑖 and the associated structure descriptor
511
+ (Figures 5b and 5c). Other significant concentrations of spectral variations constitute “secondary
512
+ spectral trends.” Together, they represent a spectral fingerprint. For the specific model for
513
+ structure-spectrum relationships shown in Figure 5c, we identify the following trends:
514
+ Oxidation state (OS): The edge position shifts to higher energy with the increase of atomic
515
+ charge due to shielding effects (Figure 5c, 𝑧1and Figure 4b, Eedge). In addition, there is a prominent
516
+ secondary spectral trend: the higher energy portion of the spectrum also shifts horizontally (Figure
517
+ 4b, Epost).
518
+ Cation coordination number (CN): The pre-edge peak intensity decreases sharply with the
519
+ increase of CN (Figure 5c, 𝑧2 and Figure 4b, Ipre). In addition, the intensity change after the main
520
+ peak constitutes an identifiable secondary spectral trend (Figure 5b, Ipost).
521
+ Oxygen coordination number (OCN): The intensity of the main peak increases with the
522
+ increase of OCN (Figure 5c, 𝑧3 and Figure 4b, Imain). Overall, OCN caused smaller but more
523
+ focused changes than CN and alters the main peak shape.
524
+ Standard deviation in the nearest neighbor bond length (NNRS): The oscillation in absorption
525
+ intensities becomes weaker as NNRS increases, especially at higher energies (Figure 5c, 𝑧4 and
526
+ Figure 4b, Cpit). In addition, there is also a small variation in the pre-edge peak. In general, this is
527
+ a mild contribution to the total signal.
528
+ Minimum oxygen-oxygen distance (MOOD): This contribution to the total signal is even
529
+ smaller than the other descriptors. However, the variation at the main peak is strong: the position
530
+ of the main peak shifts to lower energy with increasing MOOD (Figure 5c, 𝑧5 and Figure 4b, Emain).
531
+ Unconstrained latent variable z6: By design, an AAE disentangles its latent space. In the case
532
+ of the RankAAE model presented here, 𝑧6 is disentangled from and contains information
533
+ supplementary to the constrained variables {z1, z2, … , z5}. In other words, the plot for 𝑧6 in Figure
534
+ 5c represents all other spectral trends not captured by the five structure descriptors.
535
+ Having illustrated the characteristics of RankAAE models, we now describe quantitative
536
+ validation. First, we characterize the correlation between target descriptors and latent space
537
+ dimensions. To be clear, the value of a latent variable does not equal the value of the structure
538
+ descriptor directly. However, each latent variable is nearly monotonically correlated to a specific
539
+ structure descriptor, due to the soft constraint in our loss function. For the same model presented
540
+ in Figure 5c, latent space values are plotted against calculated structure descriptor values in Figure
541
+
542
+ 13
543
+
544
+ 6 for the test set in scatter plots for each of the five descriptors. The correlations are visually
545
+ apparent. They are quantified using the F1 score[63] for categorical variables (OS and CN) and the
546
+ Spearman rank correlation coefficient[62] (SRCC) for continuous variables (OCN, NNRS, and
547
+ MOOD). An F1 score ranges from 0 for poor classification performance to 1 for perfect
548
+ classification performance. An SRCC value of 0 occurs when there is no correlation; a value of 1
549
+ indicates a perfect, monotonic, positive correlation. Furthermore, the degree of correlation depends
550
+ on the choice of descriptor, as illustrated in Figure S3. As shown by the annotations in Figure 5c
551
+ and summarized in Figure S5a, all the F1 scores are above 0.91 and all the SRCCs are above 0.86,
552
+ highlighting the ability of the RankAAE methodology to drive latent variables to track structure
553
+ descriptors in a nearly monotonic fashion.
554
+
555
+ Figure 6. Correlation between the RankAAE latent space variable (x-axis), target structure
556
+ descriptor (y-axis), and emergent spectrum descriptor (color) for the vanadium oxide data set.
557
+ Violin plots are shown for categorical variables OS (a) and CN (b). Scatter plots are shown
558
+ for continuous variables OCN (c), NNRS (d), and MOOD (e).
559
+ Next, the emergent spectral trends encoded in the reconstructed spectra in the RankAAE model
560
+ in Figure 5c are compared to features in the ground truth spectra, i.e., the spectra directly from the
561
+ data set. For simplicity, we focus on the primary spectral trends that have been identified in Figure
562
+ 5c. We compute these primary spectral descriptors for each of the underlying spectra in the test set
563
+ and present them in Figure 6. Visual inspection verifies that the evolution of the spectral
564
+ descriptors tracks both the latent variables and the structure descriptors. To quantify these
565
+ relationships, the F1 scores and SRCCs between the spectral descriptor in the data set and the latent
566
+ space variable are computed (Figure S5b). The coefficients are smaller than those for the structure
567
+ descriptors (Figure S5a). However, they are still significant, especially considering that only one
568
+ local spectra feature has been used. Also, the additional fluctuations associated with the spectral
569
+ features as emergent in a multi-dimensional space play a role. Finally, the reduction of the
570
+
571
+ 14
572
+
573
+ correlation analysis to single dimensions is an oversimplification. For example, for z5, the
574
+ correlation with spectral descriptor (Emain) is only clear after categorizing the data points according
575
+ to the CN because the main peak variation is also affected by CN. This effect is shown in Figure
576
+ S6 using the test portion of the vanadium oxide dataset as an example. The data points aggregate
577
+ to a strip for each CN category. Inside each strip, the correlation between z5 and Emain is much
578
+ clearer, especially for CN5 and CN6, than when considering all the data in aggregate. This
579
+ illustrates that a local spectral feature, such as Emain, can still be affected by multiple structure
580
+ descriptors.
581
+ Taken together, these validation results demonstrate that the trained RankAAE model provides
582
+ multidimensional, physical structure-spectrum relationships for the vanadium oxide dataset.
583
+ B. RankAAE Performance across the Full Set of Transition Metal Oxides
584
+ The characteristics, trends, validation, and the final set of five structure descriptors shown for
585
+ the specific example of V oxides carry over to the full set of 3d transition metal families considered
586
+ in this work. The spectral data colored by the structure descriptors reveals trends with OS and CN,
587
+ but ambiguity remains when considering the larger set of descriptors (Figure S7). RankAAE
588
+ models are trained on the datasets of Ti, Cr, V, Mn, Fe, Co, Ni, and Cu oxides. An independent
589
+ model is created for each material family. The same set of structure descriptors is used for the
590
+ entire series to facilitate comparisons. The reconstructed spectra versus each latent space
591
+ dimension exhibit smooth trends (Figure S8). The amplitude of spectral variation for the
592
+ unconstrained latent space variable z6 varies across the series. This suggests an opportunity to
593
+ further fine-tune the choice of structure descriptors. Examining the spectral trends, the same set of
594
+ spectral features can be tracked, although the specific energy ranges (relative to the edge) and the
595
+ relative importance of the primary versus secondary vary.
596
+
597
+ Figure 7. RankAAE derived spectrum variation trends for CN (a) and OCN (b) over Ti, V, Cr, Mn,
598
+ Fe, Co, Ni, and Cu oxides data sets. The spectra are colored by underlying latent variables z2 and z3
599
+ targeting CN and OCN, respectively.
600
+
601
+
602
+
603
+
604
+
605
+
606
+
607
+ 15
608
+
609
+ To illustrate these trends further, Figure 7a shows the trend of the spectral variations for CN
610
+ across the series of first-row transition metals. The RankAAE models reveal two distinct primary
611
+ trends. First, like for V oxides, the pre-edge peak variation is the primary spectral trend for Ti, Cr,
612
+ and Mn oxides. The pre-edge peak intensity is strongest for V and Cr, intermediate for Ti, and
613
+ small, but discernable for Mn. Second, the late transition metals (Fe, Co, Ni, and Cu) exhibit
614
+ minimal intensity in the pre-edge peak region of the XANES K-edge spectrum.[37,38] For these
615
+ metals, the secondary spectral trend overweighs the primary trend: the second peak intensity above
616
+ the main edge, which is at least 5 eV away from the main peak (Figure 4b, Ipost), correlates with
617
+ CN.
618
+ As a second example, the spectral trend for OCN is shown in Figure 7b. There is a universal
619
+ pattern: spectral intensity changes at the main peak. For Cu oxides, the intensity variation is
620
+ localized to that around the main peak. It is also dominant for Mn oxides, Co oxides and Ni oxides.
621
+ Other cases show more extensive, secondary spectral variation. Overall, the spectral features
622
+ associated with OCN are distinguishable from those driven by CN. However, Cr oxide is an
623
+ exception, where the trend associated with OCN is very similar to the trend for CN.
624
+ Validation of all the RankAAE models using the test sets for each material family shows strong
625
+ correlations between latent space values and the target structure descriptors as well as the identified
626
+ spectral features (Figure S9). Quantitatively the F1 scores and SRCCs for structure descriptor to
627
+ latent space values are high, as shown as insets in Figure S8 for each material and descriptor, as
628
+ well as in summary form in Figure S5a. Most F1 scores are above 0.90 with a minimum of 0.82.
629
+ Most SRCCs are above 0.85 with a minimum of 0.80. This indicates that the latent space in the
630
+ RankAAE models captures the changes in structure descriptors sufficiently across the entire set of
631
+ 3d transition metal families. OS and CN exhibit high correlations in all cases. The correlation for
632
+ the three new structure descriptors varies across the metal series, but is very strong in general,
633
+ showing their potential for motif characterization in XANES analysis. Quantitative validation
634
+ against the primary spectral descriptors (Figure S5b) supports the qualitative results presented in
635
+ Figure S9. Some specific cases do highlight the limitations of relying on a single spectral descriptor.
636
+ For example, the low correlation (SRCC=0.13) for the Mn oxide CN descriptor with the pre-edge
637
+ intensity spectral descriptor traces to the relatively low intensity of the pre-edge feature, as noted
638
+ above. However, the SRCC increases to 0.44 if Ipost is used. Consistently, Ipost captures CN better
639
+ as a spectral descriptor for late transition metals (Mn-Cu).
640
+ IV. DISCUSSION
641
+ The RankAAE model described here creates a multidimensional, continuous spectral
642
+ representation that maps a target set of structure descriptors to XANES K-edge spectral
643
+ characteristics. The spectrum validity is a key prerequisite for its interpretability. A meaningful
644
+ structure-spectrum relationship can only be established on a properly regularized latent space.
645
+ Each point in the latent space must reconstruct to a physical XANES spectrum. As illustrated in
646
+ the vanadium K-edge data set in Figure S1a, a basic AE model does not meet the spectrum validity
647
+ criteria, as discussed in the Introduction. In fact, the AE model does reconstruct the spectra very
648
+ well for latent space points close to areas well represented in the original training data set,
649
+ evidenced by the dominance of “normal” spectra in Figure S1a. However, there are regions with
650
+ values that fall in the valid range overall, but for which the reconstruction can become
651
+ catastrophically poor. These latent space points fall where the model is interpolating in regions
652
+ sparsely represented in the training original dataset.[56] In contrast, the latent space of the
653
+
654
+ 16
655
+
656
+ RankAAE model is regularized by the adversarial constraint, which enforces spectrum validity, as
657
+ shown in Figure S1b, consistently produces physically meaningful data points.
658
+ Analysis of the reconstructed spectra along specific dimensions in the latent space of the
659
+ RankAAE associated with each structure descriptor reveals well-defined spectral trends. For use
660
+ by domain experts, it is essential that these trends are robust, and that there is a reasonable
661
+ workflow to allow the expert to assess which choices of a structure descriptor are capturing the
662
+ essential spectral variations, and that the trends are physically interpretable.
663
+ The workflow for developing multidimensional models demonstrated here exhibits stability in
664
+ the spectral trends that emerge. We revisit the test sequence where we start with a single
665
+ constrained latent space variable and one free dimension. We also add a latent space variable that
666
+ is constrained to a pseudo-random number sequence as a structure descriptor (NOISE) to probe
667
+ the limit of the noise level in deriving spectral trends. Thus, we start with 𝑁 = 3, and add
668
+ dimensions together with constraints in succession. The root of this chain is OS, followed by CN,
669
+ OCN, NNRS, and finally MOOD. For the vanadium oxide dataset, following the same analysis as
670
+ presented in Figure 5c, the appropriately averaged, reconstructed spectra along each dimension are
671
+ shown in Figure S4. Several important points emerge. First, by visual inspection, the trends shown
672
+ for each dimension remain qualitatively consistent as new dimensions and structure descriptors
673
+ are added to the model. For example, for OS, the edge shift and horizontal translation remain stable
674
+ with different combinations of structure descriptors, although the amplitude of the changes varies
675
+ quantitatively. In particular, in the test using OS as the only structure descriptor, the pre-edge
676
+ variation is not localized. Instead, it appears in two latent variables (z1 and unconstrained z3). With
677
+ the addition of CN and more structure descriptors, it is localized to z2. This reflects the resolution
678
+ of entangled trends as further structure descriptors are added. Second, the effectiveness of the
679
+ constraint in forcing the latent space variables to track the target descriptors is nearly independent
680
+ of the dimensionality of the model, as shown by the F1 scores and SRCCs that quantify the
681
+ correlation between latent space variables and target structure descriptors (Figure S4). Third, the
682
+ noise spectral trend always appears in a very narrow range independent of dimensionality and the
683
+ choices of constraint on other latent dimensions. Finally, the amplitude of the unconstrained
684
+ spectral trend systematically goes down as new dimensions and structure descriptors are added to
685
+ the model. This gives a qualitative guide indicating that each additional descriptor is capturing
686
+ new spectral variation. With the full complement of five structure descriptors in the model, the
687
+ spectral variation associated with the unconstrained variable is close to the noise level in vanadium
688
+ oxides.
689
+ Another important aspect of the workflow for a domain expert is to distinguish between
690
+ different choices of target descriptors. Several criteria have already been illustrated, including
691
+ distinguishable spectral trends, quantitative correlations between target structure descriptors and
692
+ constrained latent space variables, and the amplitude of the unguided spectral trend. Here we
693
+ further analyze the degree to which each new descriptor results in a qualitatively distinguishable
694
+ spectral trend. In order to capture the energy dependence of each trend when generating new
695
+ spectra by traversing the latent space, we examine a “differential spectrum”. We specifically
696
+ represent the total dynamic range of the trend by taking the difference between the last and first
697
+ spectrum corresponding to the 95th percentile and 5th percentile values in the range of the latent
698
+ space variable. We revisit the comparison of trends for different structure descriptors presented in
699
+ Figures 5 and S3 for vanadium oxides through the differential spectra shown in Figure S10. This
700
+ representation of the trends also exhibits the qualitative stability of trends for OS and CN as other
701
+
702
+ 17
703
+
704
+ structure descriptors are changed. Further, as previously highlighted, the overall amplitude of the
705
+ unguided trend is reduced as the choice of structure descriptors is refined. As the other structure
706
+ descriptors are swapped out, the qualitative changes in the trends can be seen. For example, OCN
707
+ more narrowly isolates the change in the main peak intensity while CN-2 is convolved with the
708
+ shift of the main peak energy. Also, the trend for MOOD captures changes to the main peak shape,
709
+ position, and intensity as compared to the relative spread-out trend for PGSO. The spectral trends
710
+ are an emergent characteristic of the RankAAE models, so they are not constrained to be linearly
711
+ independent. Nonetheless, in the workflow, the degree of overlap can be monitored through the
712
+ intercorrelation measured by the Cosine similarity,[64] with the maximum values noted in each
713
+ panel of Figure S10. Overall, as the workflow proceeds, the degree of overlap is reduced. In our
714
+ final model, the CN descriptor and unconstrained dimension result in the most independent trends
715
+ while OS, OCN, NNRS, and MOOD derived trends remain correlated with each other to a
716
+ moderate degree by this measure. Finally, this analysis points in the direction of future
717
+ investigations to refine spectral fingerprints beyond the simplification of the specific, localized
718
+ spectral descriptors in Figure 4b.
719
+ Turning to physical interpretation, each of the primary and secondary spectral trends identified
720
+ above with structure descriptors can be understood. Among all the structure-spectrum relationships,
721
+ the correlation between OS and edge position is probably the most well-known.[30] Conceptually,
722
+ it corresponds to a basic physical principle: the energy cost to excite a core electron increases as
723
+ the cation becomes more positively charged. The secondary spectral trend, the correlated shift of
724
+ the post-edge intensity to higher energy, corresponds to the famous “molecular ruler”,[20] also
725
+ referred to as Natoli’s rule:[21] the local bond length is inversely linked to the position of a peak.
726
+ Here the ionic radius changes inversely with the atomic charge for the 3d transition metal cation,
727
+ driving the metal-oxygen bond length. These two empirical rules were proposed independently.
728
+ The unified spectral trend for OS that emerges from the RankAAE models captures these
729
+ correlated effects of the cation oxidation state.
730
+ The pre-edge peak is linked to the breaking of centro-symmetry. The onset of the K-edge
731
+ spectrum involves low-energy empty states on the cation that are typically of 3d orbital character.
732
+ The s→d transition is formally forbidden for an ideal, centro-symmetric octahedral motif. In lower
733
+ coordination motifs, e.g., tetrahedral, as well as distorted atomic motifs, hybridization with cation
734
+ 4p orbitals leads to dipole-allowed transitions.[37] The pre-edge spectral trends associated with CN
735
+ and NNRS are a consequence of the breaking of centro-symmetry. This is consistent with the
736
+ original observations of Farges et al., and subsequent work.[31,37]
737
+ Drawing on the multiple scattering representation of the absorption process (Figure 1a), the
738
+ number of scatterers is an important factor that affects the absorption intensity, while path lengths
739
+ and interference effects determine the energy position where the absorption intensity changes. The
740
+ changes in main peak position, intensity, and shape are a key part of the spectral trend for both CN
741
+ and OCN (Figure 5c, z2 and z3). The overall increase of intensity with increasing coordination
742
+ number tracks the number of scatterers. For CN, the sharpening of the main peak shape with more
743
+ weight at lower energy as well as the shift of the post peak features to lower energy are further
744
+ examples of Natoli’s rule. As coordination increases, so do the metal-oxygen bond lengths.
745
+ Correspondingly, the path lengths get longer.
746
+ The OCN trend (Figure 5c, z3) modulates the intensity around the main peak and to a lesser
747
+ extent the post-peak region. The OCN descriptor correlates with the number of atoms in the second
748
+
749
+ 18
750
+
751
+ coordination shell, and it covers a broader range of atoms that can contribute to three- and four-
752
+ body scattering paths (Figure 1a). With an increase in the number of such paths induced by the
753
+ increase of such atoms, interference effects are stronger. But, as compared to the CN trend, the
754
+ energy location differs because of interatomic distances. OCN essentially counts the atoms in the
755
+ second coordination shell while CN counts the first coordination shell (Figure 4a), and hence is
756
+ related to larger interatomic distance. It results in a longer scattering path length (Figure 1a, SS2
757
+ versus SS1), longer wavelength, and consequently a lower energy photoelectron. As a result, the
758
+ OCN induces spectral variation only at lower energy while CN also induces variations at higher
759
+ energies (Figure 5c z3 vs z2). While OCN and second shell coordination number count the same
760
+ set of atoms, it is worth noting that the definition of cutoff radius for the second coordination shell
761
+ is ambiguous. In contrast, OCN is well-defined in established algorithms.[65] As a result, better
762
+ latent space-structure descriptor correlation can be observed for OCN (Figure 5c z3 versus Figure
763
+ 5b z3)
764
+ The NNRS descriptor measures the spread in the cation-oxygen bond lengths in the first
765
+ coordination shell (Figure 4a). The scattering path lengths are spread out with larger NNRS.
766
+ Correspondingly, there is less reinforcement of constructive and destructive interference among
767
+ the paths as a function of photoelectron energy. This, in turn, reduces the definition of the peaks
768
+ and valleys in the spectrum. Specifically, as the NNRS increases, the peak-to-valley height
769
+ decreases. This is expressed, for example, in the local curvature in the post-peak spectral region,
770
+ quantified in the Cpit spectral feature (Figure 4b). The curvature is higher (deeper, better-defined
771
+ valley) when NNRS is smaller (Figure 5c z4). In the database and this analysis, a larger NNRS
772
+ value represents crystal structures with low symmetry and a spread of local bond lengths. It is
773
+ worth noting that Cpit is a specific spectral descriptor that can be clearly discerned for most
774
+ transition metals. Nonetheless, for specific metals, e.g., Mn in Figure S5b, the correlation between
775
+ Cpit and z4 is low with an SRCC of 0.05. As suggested by the spectral trends in Figure S8, the
776
+ curvature at the main peak correlates with z4 better where the SRCC increases to 0.33.
777
+ The variation in the local angles between the cation-oxygen bonds is another measure of spread
778
+ in low symmetry local motifs. It flows through to the path lengths for three-body scattering paths
779
+ (Figure 1a). In our comparison of different specific structure descriptors, we found that MOOD,
780
+ the distance minimum between two oxygens in the first coordination shell, was the most effective
781
+ metric for the RankAAE models (Figure 4a) and can be related to the 3-body scattering path
782
+ (Figure 1a, MS) in an X-ray absorption process. Based on a few examples in Figure S11, the
783
+ bending of the two axial oxygens towards the equatorial plane is one of the most intuitive structure
784
+ characteristics that the underlying latent variable z5 tracks. The distortion associated with the
785
+ bending is expected to change the 3-body scattering path length. The triangular path of MS is
786
+ relatively long and leads to oscillation at relatively low energy. In the case of vanadium oxides, it
787
+ is located around the main peak. With increasing oxygen-oxygen distance, the corresponding
788
+ wavelength increases and pushes the main peak position to lower energy.
789
+ V. CONCLUSION
790
+ The approximately fifty-seven thousand simulated XANES K-edge data considered in this
791
+ study span eight 3d transition metal oxide families and exemplify complex data sets that domain
792
+ experts are highly motivated to study. Our novel rank constraint introduces physical
793
+ interpretability into the latent space representation of data produced by an AAE. Specifically, latent
794
+ variables are guided to track specific structure descriptors. From there, the reconstruction from
795
+
796
+ 19
797
+
798
+ different regions in the latent space produces spectral variations reflecting the underlying changes
799
+ in structure descriptors. The correlations between structure descriptors and spectral trends are
800
+ confirmed to be both qualitatively and quantitatively observed in the ground truth data.
801
+ For the specific example of XANES analysis, we have shown that our method significantly
802
+ extends the scope of spectral features a domain expert can analyze systematically, from local
803
+ metrics such as edge position to extended fingerprints that can encompass the full energy range of
804
+ XANES spectra. Leveraging the prior knowledge of domain experts, these spectral trends can be
805
+ used to gain further insight into features in materials structures and their relationship to spectral
806
+ trends. Also, as illustrated by the set of new structure descriptors explored in this work, it is
807
+ straightforward for a domain expert to explore new trends and new structure descriptors using the
808
+ RankAAE method driven by their intuition.
809
+ From a machine-learning perspective, we also highlight the challenges associated with the
810
+ extreme diversity of our datasets. First, the data is completely unbiased towards the specific
811
+ methods used in this study. It consists of materials data compiled independently by contributors to
812
+ the Materials Project over many years, driven by goals unrelated to the scope of this work. Second,
813
+ the target signal, namely a specific transition metal K-edge XANES spectrum, is sampled from a
814
+ set of diverse crystal structures with widely varying, albeit physically realistic, local structure
815
+ motifs and associated atomic species. Consequently, the data encompasses a broad variety of
816
+ physical complexities that affect the spectrum. These include different local chemical states of the
817
+ transition metal cation, scattering amplitudes that differ among atomic species, and the distinct set
818
+ of scattering paths (number of paths contributing, number of atoms in each path, and overall length
819
+ of each path) associated with each cation structure motif. This means that our methods have
820
+ numerically parsed a tremendous amount of diversity to identify the key trends we present. Thus,
821
+ the successes that we demonstrate in this work are quite encouraging and highlight the potential
822
+ of this, and related methods, for unearthing new spectral trends for impact on physical science and
823
+ engineering.
824
+ In summary, we demonstrate the capability of RankAAE using the XANES structure-spectrum
825
+ relationship as an example. However, the RankAAE is a general framework for enhancing the
826
+ interpretability of an AAE. In principle, it is also applicable to other kinds of spectroscopic data,
827
+ and in general, to any dataset in which one is attempting to discover physical correlations between
828
+ target signals and associated driving characteristics.
829
+ VI. METHODS
830
+ A. Structure of RankAAE and Training
831
+ AAE,[53] VAE[58] and WAE[9] regularize the latent space to a target distribution. The VAE
832
+ constrains its latent space by a KL divergence penalty to impose a prior distribution. The WAE
833
+ performs similar regularization by a Wasserstein distance.[66] The AAE does not require a specified
834
+ functional form of the penalty function to the prior distribution. It instead matches the aggregated
835
+ posterior of the latent vector with the prior distribution by a discriminator via an adversarial
836
+ training procedure. The AAE is reported to generate a better data manifold.[53,56,67,68] In this work,
837
+ a Gaussian distribution is used. We have adopted the gradient reversal layer from the domain
838
+ adversarial neural network to implement the adversarial training mechanism.[69]
839
+ The encoder, decoder, and discriminator (Figure 3) are all composed of 5 fully connected layers,
840
+
841
+ 20
842
+
843
+ with a hidden layer size of 64. Both Dropout and Batch Normalization are used. A Parametric
844
+ Rectified Linear Unit (PReLU)[70] function is added after every fully connected layer with two
845
+ exceptions: (1) there is no activation function after the last layer in the encoder; (2) the last
846
+ activation function in the decoder is Softplus.
847
+ We incorporate the mutual information regularization term from the Dual Adversarial
848
+ AutoEncoder[71] to maximize the information shared between the latent space and the spectrum
849
+ data. We have also used a smooth loss in the early stage of the training to speed up the convergence
850
+ of network parameters.
851
+ With the performance evaluated on the validation set, the hyperparameters (learning rate, batch
852
+ size, noise-based data augmentation, gradient reversal amplitude, hidden layer size, the number of
853
+ hidden layers, and other aspects of the network structure) are optimized for vanadium oxides. The
854
+ performance is balanced between the appearance of the spectral trends and the correlation of the
855
+ latent variables with structure descriptors.
856
+ B. Rank Constraint
857
+ A direct regularization of latent space using a structure descriptor value will inevitably distort
858
+ the distribution. To avoid such distortion, we developed a novel regularization term based on the
859
+ Kendall rank correlation coefficient (KRCC).[72] It enforces a monotonic dependence while being
860
+ a soft enough constraint to allow variation in the final value. KRCC is built upon the concept of
861
+ concordant and discordant pairs. In the application to RankAAE, a latent variable for spectrum i
862
+ can be denoted as zi and the corresponding structure descriptor can be denoted as pi. Any pair of
863
+ (zi, pi) and (zj, pj) are said to be concordant if both zi > zj and pi > pj or both zi < zj and pi < pj;
864
+ otherwise, they are said to be discordant. KRCC describes the monotonic dependence by the ratio
865
+ of the number of concordant/discordant pairs. The counting is simplified using a sgn() function,
866
+ i.e., sgn (zi - zj) and sgn(pi - pj). However, the gradient of the sgn() function is 0 except at 0, which
867
+ is detrimental to the purpose of neural network parameter optimization. We have modified KRCC
868
+ to a loss function with a proper gradient everywhere by removing sgn() function around (zi - zj).
869
+ The loss function 𝐿𝑐 𝑧 for each constrained dimension of the latent space is defined by:
870
+
871
+ 𝑓(𝑧𝑖, 𝑧𝑗) = (𝑧𝑖 − 𝑧𝑗)sgn(𝑝𝑖 − 𝑝𝑗)
872
+
873
+
874
+
875
+ N on = ∑ ∑ Θ (𝑓(𝑧𝑖, 𝑧𝑗))
876
+ 𝑛
877
+ 𝑗=1
878
+ 𝑛
879
+ 𝑖=1
880
+
881
+
882
+
883
+
884
+ Ndis = ∑ ∑ Θ (−𝑓(𝑧𝑖, 𝑧𝑗))
885
+ 𝑛
886
+ 𝑗=1
887
+ 𝑛
888
+ 𝑖=1
889
+
890
+
891
+
892
+
893
+ 𝑓𝑐𝑜𝑛 𝑧 =
894
+
895
+ m x[N on, Ndis] ∑ ∑ Θ (𝑓(𝑧𝑖, 𝑧𝑗)) 𝑓(𝑧𝑖, 𝑧𝑗)
896
+ 𝑛
897
+ 𝑗=1
898
+ 𝑛
899
+ 𝑖=1
900
+
901
+
902
+
903
+ 𝑓𝑑𝑖𝑠 𝑧 =
904
+
905
+ Ndis
906
+ ∑ ∑ Θ (−𝑓(𝑧𝑖, 𝑧𝑗)) 𝑓(𝑧𝑖, 𝑧𝑗)
907
+ 𝑛
908
+ 𝑗=1
909
+ 𝑛
910
+ 𝑖=1
911
+
912
+
913
+
914
+
915
+ 21
916
+
917
+
918
+ 𝐿𝑐 𝑧 = −
919
+
920
+ n n − Ndis(𝑓𝑐𝑜𝑛 𝑧 + 𝑓𝑑𝑖𝑠 𝑧 )
921
+
922
+ (1)
923
+ where z is a latent variable, p is a structure descriptor, n is the number of samples in a mini-
924
+ batch in network training, i and j are sample indices in a minibatch, sgn() is a function to extract
925
+ the sign of a real number, Θ() is a Heaviside step function being 1 for positive values and 0 for
926
+ other values. Abbreviations “con” and “dis” designate concordant and discordant. Ncon and Ndis
927
+ represent the number of concordant and discordant pairs in the minibatch for the constrained
928
+ dimension of the latent space. The minimum value of Ndis,m is clamped to 1 to avoid the singularity.
929
+ The prefactors for the concordant and discordant pair contributions to the loss function are scaled
930
+ to be comparable early in the training and then to have a diminishing impact as more data points
931
+ become concordant. Overall, we find that this approach minimizes the effect of rank constraint on
932
+ the distribution of the latent space variable.
933
+ C. Data Acquisition and Preprocessing
934
+ The crystal structures are pulled from the Material Project.[54] Each crystal structure is a local
935
+ minimum in energy with lattice parameters and atomic coordinates.[73] All the crystal structures
936
+ containing each target transition metal atom and oxygen are included. The XANES K-Edge spectra
937
+ are simulated using the FEFF9 program[61] for the resulting database of about forty thousand
938
+ unique atomic sites identified in the oxides for the eight transition metals considered here with the
939
+ condition that the first neighbor shell of the transition metal site only contains oxygen. The
940
+ breakdown of the dataset according to transition metal is given in Table S1.
941
+ In this work, XANES is defined as the spectrum with energy ranging from the start of the edge
942
+ of the spectrum to 50 eV above the edge. To create feature vectors that are directly comparable for
943
+ each metal considered, the spectra are interpolated to a fixed energy grid, equally spaced with 256
944
+ points. For machine learning, each data set is partitioned with a random selection of 70%, 15%,
945
+ and 15% of the spectra to form training, validation, and test sets, respectively. The size of the sets
946
+ is given in Table S1 for each transition metal.
947
+ D. Structure Descriptor Calculation
948
+ Eight structure descriptors have been explored in this study:
949
+ 1) OS: oxidation state of a cation represented by an integer. OS is determined using the
950
+ maximum a posteriori (MAP) estimation method in pymatgen.[74–76]
951
+ 2) CN: coordination number in the first coordination shell around a specified transition metal
952
+ cation. CN is determined using the CrystalNN algorithm in the pymatgen package.[65,75]
953
+ 3) CN-2: coordination number in the second coordination shell for each target transition metal
954
+ cation. CN-2 is estimated by the number of atoms that falls in the layer between radius r1
955
+ and r2, chosen for each transition metal based on the radial distribution of the atoms.
956
+ 4) OCN: oxygen coordination number. OCN is computed as an average of the coordination
957
+ numbers for the nearest neighbor oxygen atoms to the target transition metal cation. The
958
+ coordination number of each oxygen atom is determined using the CrystalNN algorithm in
959
+ the pymatgen package.[65,75]
960
+ 5) NNRS: the standard deviation of the bond lengths from the target transition metal cation
961
+ to the nearest neighbor oxygen atoms.
962
+
963
+ 22
964
+
965
+ 6) NNAS: the standard deviation of the bond angles with the cation as the vertex and two
966
+ nearest neighbors as endpoints.
967
+ 7) MOOD: the minimum oxygen-oxygen distance on the edges of the nearest neighbor
968
+ polyhedron encompassing the target transition metal cation. The polyhedron is determined
969
+ by the CrystalNN algorithm in the pymatgen package.[65,75]
970
+ 8) PSGO: the point group symmetry order (PGSO) represented by an integer, computed as
971
+ the total number of symmetry operations for the point group for the full crystal space group
972
+ determined by the pymatgen package.[65,75]
973
+ E. Spectrum Descriptor Calculation
974
+ The spectrum descriptors shown in Figure 4b are defined as:
975
+ 1) Eedge: the position of the absorption edge.
976
+ 2) Ipre: pre-peak intensity, the maximum intensity among the peaks occurring at an energy
977
+ lower than the edge.
978
+ 3) Emain: main peak position, the energy value at the first peak after the edge.
979
+ 4) Imain: main peak intensity. For numerical stability purposes, we use the average over a 1 eV
980
+ window centered at Emain.
981
+ 5) Cpit: post edge curvature. The position of the pit is found by a local minimum of the
982
+ spectrum in the portion at least 20 eV above the edge. The curvature is computed as the
983
+ second order derivative. To avoid numerical instabilities, the curvature is averaged over a
984
+ 10 eV window centered at the pit.
985
+ 6) Epost: second peak position. A second peak is identified by a local maximum of the spectrum.
986
+ To avoid ambiguities in peak counting, we considered Eedge + 15 eV for transition metals
987
+ Ti through Mn and Eedge + 20 eV for Fe through Cu as a proxy for Epost. The numerical test
988
+ in Figure S5b confirms the effectiveness of this approach.
989
+ 7) Ipost: absorption intensity at Epost.
990
+ F. Spectral Variation Plot Generation
991
+ Specific latent space samples are fed to the decoder to generate reconstructed spectral variation
992
+ sequences. For each latent variable, 50 points on an equally spaced grid are sampled. From the
993
+ range of the latent space values encoded from the test set spectra, the latent space grid is chosen to
994
+ extend from the 5th to the 95th percentile values. For Figure S2a, a spectrum is reconstructed for
995
+ each of the 50 values of the specified latent space variable, setting the others equal to zero. For
996
+ Figure S2b and all of the other reconstructed spectral trends, an averaging procedure is applied to
997
+ sample the other latent space variables. Specifically, the average of reconstructed spectra for each
998
+ value of the target latent space variable is carried out over 10000 samples drawn from a
999
+ multivariant Gaussian distribution to fill the rest latent variables. There are 50 spectra in each
1000
+ spectral trend presented.
1001
+ G. Model Selection
1002
+ For each dataset, we repeat the training 100 times with different random seeds for the neural
1003
+ network parameters, and all the discussions are based on the best one. The performance for each
1004
+ model is assessed by:
1005
+
1006
+ 23
1007
+
1008
+ 𝑆 = − m x
1009
+ 𝑖,𝑗 |𝜌𝑖𝑗| + ∑|𝜌𝑖
1010
+ ′|
1011
+ 𝑖
1012
+
1013
+ (2)
1014
+ where 𝜌𝑖𝑗 is the Spearman rank correlation coefficient (SRCC) between a guided latent
1015
+ variable 𝑧𝑖 and an unconstrained latent variable 𝑧𝑗, 𝜌𝑖
1016
+ ′ is the correlation score (F1 score for OS and
1017
+ CN, SRCC for other structure descriptors) between a constrained latent variable 𝑧𝑖 and the target
1018
+ structure descriptor. To drive the performance metrics to have equal contributions, the z-scores are
1019
+ computed across the 100 models by subtracting the average and dividing the standard deviation
1020
+ for each 𝜌𝑖𝑗 and 𝜌𝑖
1021
+ ′. Then the z-scores[77] are used to evaluate S in Eq. (2). A good model maximizes
1022
+ the latent-structure correlation and minimizes the intercorrelation between the unconstrained latent
1023
+ variables and the other dimensions. Therefore, a larger S indicates better performance. For this
1024
+ study, it is sufficient to consider the two terms with equal weight. However, for other studies, the
1025
+ assessment of model performance can be further refined by scaling the two terms differently. Table
1026
+ S2 details the statistics of different loss terms (prior to z-score normalization) that enter Eq. (2), as
1027
+ well as the standard reconstruction error attributed to the autoencoder. For the current study, the
1028
+ reconstruction error is small and it does not vary significantly. Hence, we did not include
1029
+ reconstruction error in the model selection. The other terms vary within reasonable bounds. For
1030
+ further insight, the correlation plots for the worst model out of 100 runs by this criterion for the
1031
+ case of V oxide are shown in Figure S12. Encouragingly, the correlations for that model are still
1032
+ reasonably good.
1033
+ ACKNOWLEDGMENT
1034
+ This research is based upon work supported by the U.S. Department of Energy, Office of
1035
+ Science, Office Basic Energy Sciences, under Award Number FWP PS-030. This research also
1036
+ used the Theory and Computation facility of the Center for Functional Nanomaterials (CFN),
1037
+ which is a U.S. Department of Energy Office of Science User Facility, at Brookhaven National
1038
+ Laboratory under Contract No. DE-SC0012704.
1039
+ SUPPORTING INFORMATION
1040
+ Supporting Information is available.
1041
+ REFERENCES
1042
+ [1] J. Yano, K. J. Gaffney, J. Gregoire, L. Hung, A. Ourmazd, J. Schrier, J. A. Sethian, F. M.
1043
+ Toma, Nat. Rev. Chem. 2022, 6, 357.
1044
+ [2] R. Batra, L. Song, R. Ramprasad, Nat. Rev. Mater. 2020, 6, 655.
1045
+ [3] Z. Wang, Z. Sun, H. Yin, X. Liu, J. Wang, H. Zhao, C. H. Pang, T. Wu, S. Li, Z. Yin, X. Yu,
1046
+ Adv. Mater. 2022, 34, 2104113.
1047
+ [4] T. Le, V. C. Epa, F. R. Burden, D. A. Winkler, Chem. Rev. 2012, 112, 2889.
1048
+ [5] B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 2018, 361, 360.
1049
+ [6] Z. Chen, N. Andrejevic, T. Smidt, Z. Ding, Q. Xu, Y. Chi, Q. T. Nguyen, A. Alatas, J. Kong,
1050
+ M. Li, Adv. Sci. 2021, 8, 2004214.
1051
+ [7] J. Yang, L. Tao, J. He, J. R. McCutcheon, Y. Li, Sci. Adv. 2022, 8, eabn9545.
1052
+ [8] P. Y. Lu, S. Kim, M. Soljačić, Phys. Rev. X 2020, 10, 031056.
1053
+ [9] Z. Rao, P.-Y. Tung, R. Xie, Y. Wei, H. Zhang, A. Ferrari, T. P. C. Klaver, F. Körmann, P. T.
1054
+ Sukumar, A. Kwiatkowski da Silva, Y. Chen, Z. Li, D. Ponge, J. Neugebauer, O. Gutfleisch,
1055
+
1056
+ 24
1057
+
1058
+ S. Bauer, D. Raabe, Science 2022, 378, 78.
1059
+ [10] D. Flam-Shepherd, T. Wu, X. Gu, A. Cervera-Lierta, M. Krenn, A. Aspuru-Guzik, Nat. Mach.
1060
+ Intell. 2022, 4, 544.
1061
+ [11] S.-H. Wang, H. S. Pillai, S. Wang, L. E. K. Achenie, H. Xin, Nat. Commun. 2021, 12, 5288.
1062
+ [12] A. E. A. Allen, A. Tkatchenko, Sci. Adv. 2022, 8, eabm7185.
1063
+ [13] M. A. Kramer, AIChE J. 1991, 37, 233.
1064
+ [14] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, 2016.
1065
+ [15] Z. Pei, K. A. Rozman, Ö. N. Doğan, Y. Wen, N. Gao, E. A. Holm, J. A. Hawk, D. E. Alman,
1066
+ M. C. Gao, Adv. Sci. 2021, 8, 2101207.
1067
+ [16] V. K. Ramaswamy, S. C. Musson, C. G. Willcocks, M. T. Degiacomi, Phys. Rev. X 2021, 11,
1068
+ 011052.
1069
+ [17] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-
1070
+ Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, A. Aspuru-Guzik,
1071
+ ACS Cent. Sci. 2018, 4, 268.
1072
+ [18] P. K. Routh, Y. Liu, N. Marcella, B. Kozinsky, A. I. Frenkel, J. Phys. Chem. Lett. 2021, 12,
1073
+ 2086.
1074
+ [19] C. Miles, M. R. Carbone, E. J. Sturm, D. Lu, A. Weichselbaum, K. Barros, R. M. Konik,
1075
+ Phys. Rev. B 2021, 104, 235111.
1076
+ [20] S. P. Cramer, X-Ray Spectroscopy with Synchrotron Radiation: Fundamentals and
1077
+ Applications, Springer Nature Switzerland, Cham, 2020.
1078
+ [21] J. Timoshenko, B. Roldan Cuenya, Chem. Rev. 2021, 121, 882.
1079
+ [22] G. S. Henderson, F. M. F. de Groot, B. J. A. Moulton, Rev. Mineral. Geochem. 2014, 78, 75.
1080
+ [23] F. Meirer, B. M. Weckhuysen, Nat. Rev. Mater. 2018, 3, 324.
1081
+ [24] K. V. Klementev, J. Phys. Appl. Phys. 2001, 34, 209.
1082
+ [25] M. Newville, P. Līviņš, Y. Yacoby, J. J. Rehr, E. A. Stern, Phys. Rev. B 1993, 47, 14126.
1083
+ [26] J. J. Rehr, R. C. Albers, Rev. Mod. Phys. 2000, 72, 621.
1084
+ [27] J. J. Rehr, A. L. Ankudinov, Coord. Chem. Rev. 2005, 249, 131.
1085
+ [28] S. I. Bokarev, O. Kühn, WIREs Comput. Mol. Sci. 2020, 10, e1433.
1086
+ [29] P. Norman, A. Dreuw, Chem. Rev. 2018, 118, 7208.
1087
+ [30] J. Bergengren, Z. Für Phys. 1920, 3, 247.
1088
+ [31] F. Farges, G. E. Brown, J. J. Rehr, Phys. Rev. B 1997, 56, 1809.
1089
+ [32] M. Wang, Z. Feng, Curr. Opin. Electrochem. 2021, 30, 100803.
1090
+ [33] A. A. Guda, S. A. Guda, K. A. Lomachenko, M. A. Soldatov, I. A. Pankin, A. V. Soldatov,
1091
+ L. Braglia, A. L. Bugaev, A. Martini, M. Signorile, E. Groppo, A. Piovano, E. Borfecchia, C.
1092
+ Lamberti, Catal. Today 2019, 336, 3.
1093
+ [34] A. A. Guda, S. A. Guda, A. Martini, A. N. Kravtsova, A. Algasov, A. Bugaev, S. P. Kubrin,
1094
+ L. V. Guda, P. Šot, J. A. van Bokhoven, C. Copéret, A. V. Soldatov, Npj Comput. Mater.
1095
+ 2021, 7, 203.
1096
+ [35] J. Wong, F. W. Lytle, R. P. Messmer, D. H. Maylotte, Phys. Rev. B 1984, 30, 5596.
1097
+ [36] H. Singh, M. Topsakal, K. Attenkofer, T. Wolf, M. Leskes, Y. Duan, F. Wang, J. Vinson, D.
1098
+ Lu, A. I. Frenkel, Phys. Rev. Mater. 2018, 2, 125403.
1099
+ [37] T. Yamamoto, X-Ray Spectrom. 2008, 37, 572.
1100
+ [38] M. R. Carbone, S. Yoo, M. Topsakal, D. Lu, Phys. Rev. Mater. 2019, 3, 033604.
1101
+ [39] W. E. Jackson, F. Farges, M. Yeager, P. A. Mabrouk, S. Rossano, G. A. Waychunas, E. I.
1102
+ Solomon, G. E. Brown, Geochim. Cosmochim. Acta 2005, 69, 4315.
1103
+ [40] J. C. Woicik, E. L. Shirley, C. S. Hellberg, K. E. Andersen, S. Sambasivan, D. A. Fischer, B.
1104
+
1105
+ 25
1106
+
1107
+ D. Chapman, E. A. Stern, P. Ryan, D. L. Ederer, H. Li, Phys. Rev. B 2007, 75, 140103.
1108
+ [41] J. P. Iti��, B. Couzinet, A. Polian, A. M. Flank, P. Lagarde, Europhys. Lett. EPL 2006, 74,
1109
+ 706.
1110
+ [42] W. Zhang, M. Topsakal, C. Cama, C. J. Pelliccione, H. Zhao, S. Ehrlich, L. Wu, Y. Zhu, A.
1111
+ I. Frenkel, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok, D. Lu, F. Wang, J. Am. Chem.
1112
+ Soc. 2017, 139, 16591.
1113
+ [43] A. I. Frenkel, Y. Feldman, V. Lyahovitskaya, E. Wachtel, I. Lubomirsky, Phys. Rev. B 2005,
1114
+ 71, 024116.
1115
+ [44] W. Zhang, D.-H. Seo, T. Chen, L. Wu, M. Topsakal, Y. Zhu, D. Lu, G. Ceder, F. Wang,
1116
+ Science 2020, 367, 1030.
1117
+ [45] N. Marcella, Y. Liu, J. Timoshenko, E. Guan, M. Luneau, T. Shirman, A. M. Plonka, J. E. S.
1118
+ van der Hoeven, J. Aizenberg, C. M. Friend, A. I. Frenkel, Phys. Chem. Chem. Phys. 2020,
1119
+ 22, 18902.
1120
+ [46] S. Xiang, P. Huang, J. Li, Y. Liu, N. Marcella, P. K. Routh, G. Li, A. I. Frenkel, Phys. Chem.
1121
+ Chem. Phys. 2022, 24, 5116.
1122
+ [47] S. B. Torrisi, M. R. Carbone, B. A. Rohr, J. H. Montoya, Y. Ha, J. Yano, S. K. Suram, L.
1123
+ Hung, Npj Comput. Mater. 2020, 6, 109.
1124
+ [48] C. Zheng, K. Mathew, C. Chen, Y. Chen, H. Tang, A. Dozier, J. J.Kas, F. D. Vila, J. J. Rher,
1125
+ L. F. J. Piper, K. Persson, S. P. Ong, Npj Comput. Mater. 2018, 4, 12.
1126
+ [49] J. Timoshenko, D. Lu, Y. Lin, A. I. Frenkel, J. Phys. Chem. Lett. 2017, 8, 5091.
1127
+ [50] C. Chen, Y. Zuo, W. Ye, X. Li, S. P. Ong, Nat. Comput. Sci. 2021, 1, 46.
1128
+ [51] C. Zheng, C. Chen, Y. Chen, S. P. Ong, Patterns 2020, 1, 100013.
1129
+ [52] J. Timoshenko, A. I. Frenkel, ACS Catal. 2019, 9, 10192.
1130
+ [53] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, arXiv:1511.05644 2016.
1131
+ [54] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D.
1132
+ Skinner, G. Ceder, K. A. Persson, APL Mater. 2013, 1, 011002.
1133
+ [55] Y. Liu, A. Halder, S. Seifert, N. Marcella, S. Vajda, A. I. Frenkel, ACS Appl. Mater.
1134
+ Interfaces 2021, 13, 53363.
1135
+ [56] D. Berthelot, C. Raffel, A. Roy, I. Goodfellow, arXiv:1807.07543 2018.
1136
+ [57] D. Weininger, J. Chem. Inf. Model. 1988, 28, 31.
1137
+ [58] D. P. Kingma, M. Welling, arXiv:1312.6114 2014.
1138
+ [59] O. Prykhodko, S. V. Johansson, P.-C. Kotsias, J. Arús-Pous, E. J. Bjerrum, O. Engkvist, H.
1139
+ Chen, J. Cheminformatics 2019, 11, 74.
1140
+ [60] S. H. Hong, S. Ryu, J. Lim, W. Y. Kim, J. Chem. Inf. Model. 2020, 60, 29.
1141
+ [61] J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, K. Jorissen, Phys Chem Chem Phys 2010, 12,
1142
+ 5503.
1143
+ [62] S. Kokoska, D. Zwillinger, CRC Standard Probability and Statistics Tables and Formulae,
1144
+ Student Edition, CRC Press, New York, 2000.
1145
+ [63] A. Tharwat, Appl. Comput. Inform. 2021, 17, 168.
1146
+ [64] G. Salton, Automatic Text Processing, Addison-Wesley Longman Publishing Co., Inc., USA,
1147
+ 1988.
1148
+ [65] H. Pan, A. M. Ganose, M. Horton, M. Aykol, K. A. Persson, N. E. R. Zimmermann, A. Jain,
1149
+ Inorg. Chem. 2021, 60, 1590.
1150
+ [66] I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, arXiv:1711.01558 2019.
1151
+ [67] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, O. Winther, arXiv:1512.09300 2016.
1152
+ [68] Q. Jin, Y. Ma, F. Fan, J. Huang, X. Mei, J. Ma, IEEE Trans. Neural Netw. Learn. Syst. 2021,
1153
+
1154
+ 26
1155
+
1156
+ DOI 10.1109/TNNLS.2021.3114203.
1157
+ [69] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,
1158
+ V. Lempitsky, in Domain Adapt. Comput. Vis. Appl. (Ed.: G. Csurka), Springer International
1159
+ Publishing, Cham, 2017, pp. 189–209.
1160
+ [70] K. He, X. Zhang, S. Ren, J. Sun, arXiv:1502.01852 2015.
1161
+ [71] P. Ge, C.-X. Ren, D.-Q. Dai, J. Feng, S. Yan, IEEE Trans. Neural Netw. Learn. Syst. 2020,
1162
+ 31, 1417.
1163
+ [72] M. G. Kendall, Biometrika 1938, 30, 81.
1164
+ [73] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
1165
+ [74] R. Bassett, J. Deride, Math. Program. 2019, 174, 129.
1166
+ [75] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L.
1167
+ Chevrier, K. A. Persson, G. Ceder, Comput. Mater. Sci. 2013, 68, 314.
1168
+ [76] M. O’Keefe, N. E. Brese, J. Am. Chem. Soc. 1991, 113, 3226.
1169
+ [77] W. Mendenhall, T. Sincich, Statistics for Engineering and the Sciences, Pearson Prentice-
1170
+ Hall, 2007.
1171
+
1172
+
1173
+
1174
+ 27
1175
+
1176
+ Table of Contents
1177
+ A new approach to harness powerful machine learning methods based on autoencoders results
1178
+ in compact, physically interpretable representations of complex spectral datasets. This paradigm
1179
+ shift enables discovery of structure-spectrum relationships, applicable to a wide range of scientific
1180
+ fields. A showcase study demonstrates new relationships to extract more structure information
1181
+ from X-ray absorption spectra.
1182
+
1183
+
1184
+ Authors: Zhu Liang, Matthew R. Carbone, Wei Chen, Fanchen Meng, Eli Stavitski, Deyu Lu,*
1185
+ Mark S. Hybertsen,* and Xiaohui Qu*
1186
+ Title: Decoding Structure-Spectrum Relationships with Physically Organized Latent Spaces
1187
+
1188
+
1189
+
1190
+ z
1191
+ Encoder
1192
+ Decoder
1193
+ Physical Latent Space
1194
+ Coordination
1195
+ Oxidation
1196
+
1197
+ 28
1198
+
1199
+ Supporting Information for “Decoding Structure-Spectrum
1200
+ Relationships with Physically Organized Latent Spaces”
1201
+
1202
+ Zhu Liang,1 Matthew R. Carbone,2 Wei Chen,1 Fanchen Meng,1 Eli Stavitski,3 Deyu Lu,1,* Mark S.
1203
+ Hybertsen,1,* and Xiaohui Qu1*
1204
+
1205
+ 1Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973,
1206
+ USA
1207
+ 2Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973,
1208
+ USA
1209
+ 3National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973,
1210
+ USA
1211
1212
+
1213
+
1214
+
1215
+
1216
+
1217
+
1218
+
1219
+
1220
+
1221
+
1222
+
1223
+
1224
+
1225
+
1226
+
1227
+
1228
+
1229
+
1230
+
1231
+
1232
+
1233
+ 29
1234
+
1235
+
1236
+ Figure S1. Comparing the generative characteristics for (a) a regular autoencoder (AE) model
1237
+ compared to (b) an adversarial autoencoder (AAE) model, each trained independently on the
1238
+ vanadium oxide data set. The dimension of the latent space is set to 6, representative of other
1239
+ models considered in this study. The decoded spectra are sampled in five cohorts of 10 randomly
1240
+ sampled data points in the latent space with each cohort displayed in a separate row. The main text
1241
+ highlights differences observed for AE versus AAE trained models in the literature. Here the
1242
+ consequence shortcomings of the AE model are illustrated for the exemplary XANES data
1243
+ specifically.
1244
+
1245
+
1246
+
1247
+
1248
+
1249
+
1250
+
1251
+ 30
1252
+
1253
+
1254
+
1255
+ Figure S2. Spectral trends in vanadium oxides computed using the decoder in the RankAAE model
1256
+ by two different procedures: (a) Hold other latent dimensions to zero. (b) Sample and average
1257
+ other latent dimensions as described in Methods. Part (b) is duplicated from main text, Figure 5c.
1258
+
1259
+
1260
+
1261
+
1262
+
1263
+
1264
+ Z1~OS: 0.91
1265
+ Z2~CN: 0.96
1266
+ Z3~OCN:0.86
1267
+ Z4~NNRS:0.90
1268
+ Z5~MOOD:0.86
1269
+ Z6~Unguided:N/A
1270
+ Z1
1271
+ Z2
1272
+ Z3
1273
+ Z4
1274
+ Z5
1275
+ Z6
1276
+ H
1277
+ H
1278
+ H
1279
+ L
1280
+ IH
1281
+ H
1282
+ HZ1~OS: 0.91
1283
+ Z2~CN: 0.96
1284
+ Z3~OCN: 0.86
1285
+ Z4~NNRS:0.90
1286
+ Z5~MOOD:0.86
1287
+ Z6~Unguided:N/A
1288
+ Z1
1289
+ Z2
1290
+ Z3
1291
+ Z4
1292
+ Z5
1293
+ Z6
1294
+ H
1295
+ H
1296
+ H
1297
+ H
1298
+ H
1299
+ H31
1300
+
1301
+
1302
+
1303
+ Figure S3. Spectral trends from a series of independently trained RankAAE models constrained
1304
+ with different sets of structure descriptors in each row as noted for each trend. Starting in the first
1305
+ row (a) with descriptors {CS, CN, CN-2, NNAS, PGSO}, progressively one descriptor is replaced
1306
+ to arrive at the final set {CS, CN, OCN, NNRS, MOOD} in the last row (d). The annotated label
1307
+ for each spectral trend refers to the related latent variable, structure descriptor, and the F1 score or
1308
+ the Spearman rank correlation coefficient (SRCC) between them.
1309
+
1310
+
1311
+
1312
+ (a)
1313
+ Z1~OS: 0.89
1314
+ Z2~CN: 0.95
1315
+ Z3~CN2: 0.83
1316
+ Z4~NNAS: 0.82
1317
+ Z5~PGSO: 0.68
1318
+ Z6~Unguided:N/A
1319
+ Z1
1320
+ Z2
1321
+ Z3
1322
+ Z4
1323
+ Z5
1324
+ Z6
1325
+ IH
1326
+ H
1327
+ IH
1328
+ IH
1329
+ L
1330
+ H
1331
+ L
1332
+ H
1333
+ (b)
1334
+ Z1~OS: 0.92
1335
+ Z2~CN: 0.96
1336
+ Z3~OCN: 0.88
1337
+ Z4~NNAS: 0.80
1338
+ Z5~PGSO: 0.65
1339
+ Z6~Unguided:N/A
1340
+ Z1
1341
+ Z2
1342
+ Z3
1343
+ Z4
1344
+ Z5
1345
+ Z6
1346
+ JH
1347
+ JH
1348
+ H
1349
+ H
1350
+ (c)
1351
+ Z1~OS: 0.91
1352
+ Z2~CN: 0.96
1353
+ Z3~OCN: 0.88
1354
+ Z4~NNRS: 0.88
1355
+ Z5~PGSO: 0.65
1356
+ Z6~Unguided:N/A
1357
+ Z1
1358
+ Z2
1359
+ Z3
1360
+ Z4
1361
+ Z5
1362
+ Z6
1363
+ JH
1364
+ L
1365
+ IH
1366
+ IH
1367
+ JH
1368
+ JH
1369
+ (d)
1370
+ Z1~OS: 0.91
1371
+ Z2~CN: 0.96
1372
+ Z3~OCN: 0.86
1373
+ Z4~NNRS:0.90
1374
+ Z5~MOOD: 0.86
1375
+ Z6~Unguided:N/A
1376
+ Z1
1377
+ Z2
1378
+ Z3
1379
+ Z4
1380
+ Z5
1381
+ Z6
1382
+ H
1383
+ L
1384
+ H
1385
+ H
1386
+ TH
1387
+ L
1388
+ H
1389
+ H32
1390
+
1391
+
1392
+
1393
+ Figure S4. Series of independently trained RankAAE models showing the evolution of the models
1394
+ as structure descriptors are added sequentially, starting with OS. In addition, to the unguided latent
1395
+ space variable, we include another dimension guided to reproduce a pseudo-random number
1396
+ sequence as a structure descriptor (annotated as NOISE). In the top row, the dimension of the
1397
+ latent space is N=3. A dimension is added successively for each additional structure descriptor
1398
+ until N=7 in the final row.
1399
+
1400
+
1401
+
1402
+
1403
+
1404
+
1405
+
1406
+ Z1~OS: 0.87
1407
+ Z2~NOISE:0.03
1408
+ Z3~Unguided: N/AZ1~OS:0.88
1409
+ Z2~CN:0.94
1410
+ Z3~NOISE:0.05
1411
+ Z4~Unguided:N/AZ1~OS:0.88
1412
+ Z2~CN:0.95
1413
+ Z3~OCN: 0.89
1414
+ Z4~NOISE:0.02
1415
+ Z5~Unguided: N/AZ1~OS:0.87
1416
+ Z2~CN: 0.95
1417
+ Z3~OCN: 0.88
1418
+ Z4~NNRS:0.87
1419
+ Z5~NOISE:0.05
1420
+ Z6~Unguided:N/AZ1~OS:0.88
1421
+ Z2~CN: 0.96
1422
+ Z3~OCN:0.88
1423
+ Z4~NNRS:0.88
1424
+ Z5~MOOD:0.86
1425
+ Z6~NOISE: -0.00
1426
+ Z7~Unguided:N/A33
1427
+
1428
+
1429
+
1430
+ Figure S5. F1 score (z1~OS and z2~CN) and SRCC (z3~OCN, z4~NNRS and z5~MOOD) assessing
1431
+ the correlation of latent variable to (a) the target structure descriptors and (b) the primary spectral
1432
+ descriptors for each of the RankAAE models trained independently for each transition metal oxide
1433
+ data set. The test portion of the data set is used for this assessment. The correlation between latent
1434
+ variable z5 and spectral descriptor Emain is computed for each CN category and the average value
1435
+ is shown in (b).
1436
+
1437
+
1438
+
1439
+
1440
+
1441
+
1442
+
1443
+
1444
+ Z1
1445
+ z3
1446
+ z5
1447
+ 72
1448
+ z434
1449
+
1450
+
1451
+
1452
+ Figure S6. Illustration of multiple contributions to the main peak position spectral descriptor Emain
1453
+ (y-axis) for the test set portion of the vanadium oxide data set. Contribution from CN is shown by
1454
+ color (CN4: blue, CN5: orange, CN6: green), and contribution from latent variable z5 is shown by
1455
+ the x-axis. The top figure (a) shows the data in aggregate while the bottom role of figures (b-c)
1456
+ separates out the data according to CN.
1457
+
1458
+
1459
+
1460
+
1461
+
1462
+
1463
+
1464
+ 35
1465
+
1466
+
1467
+
1468
+ Figure S7. Full data set of K-edge XANES spectra for each of the transition metal oxides showing
1469
+ the full range of spectral variation. Each row is colored by a specific structure descriptor annotated
1470
+ in the plots: CS, CN, OCN, NNRS, MOOD. The bottom row is the full data set with no further
1471
+ distinction.
1472
+
1473
+ 36
1474
+
1475
+
1476
+
1477
+ Figure S8. Spectral trends for independently trained RankAAE models for each of the transition
1478
+ metal oxide data sets using the final set of descriptors determined for the specific case of vanadium
1479
+ oxides and presented in Figure 5c. The format of the plot follows Figure 5c in the main text.
1480
+
1481
+ 37
1482
+
1483
+
1484
+
1485
+
1486
+ 38
1487
+
1488
+
1489
+
1490
+ Figure S9. Correlation between the RankAAE latent space (x-axis), structure descriptor (y-axis),
1491
+ and spectral descriptor (color) for the each of the transition metal oxides data sets. The format of
1492
+ the plots follows Figure 6 in the main text.
1493
+
1494
+
1495
+ 39
1496
+
1497
+
1498
+
1499
+ Figure S10. Alternative representation of the spectral fingerprint associated with each spectral
1500
+ trend derived from the sequence of RankAAE models constrained to different descriptors and
1501
+ shown in Figure S1. Shown is the difference between extremal spectra for each trend (95th and 5th
1502
+ percentile of the latent values). The scale for each box is identical, both amplitude (y-axis) and
1503
+ energy scale (x-axis), so the visual comparison of amplitude is meaningful. To assess overlaps, a
1504
+ matrix of cosine similarities is computed for the fingerprints in each row. The value of the largest
1505
+ overlap is annotated by the “max_cos_sim” score and the specific style with the largest overlap is
1506
+ noted.
1507
+
1508
+
1509
+
1510
+
1511
+
1512
+ max_cos_sim:0.55
1513
+ max_cos_sim:0.17
1514
+ max_cos_sim:0.55
1515
+ max_cos_sim:0.58
1516
+ max_cos_sim:0.58
1517
+ max_cos_sim:0.29
1518
+ with style3
1519
+ with style5
1520
+ with style1
1521
+ with style5
1522
+ withstyle4
1523
+ with style3
1524
+ Z1~OS: 0.91
1525
+ Z2~CN: 0.96
1526
+ Z3~OCN:0.86
1527
+ Z4~NNRS:0.90
1528
+ Z5~MOOD:0.86
1529
+ Z6~Unguided: N/Amax_cos_sim:0.64
1530
+ max_cos_sim:0.32
1531
+ max_cos_sim:0.60
1532
+ max_cos_sim:0.48
1533
+ max_cos_sim:0.64
1534
+ max_cos_sim:0.61
1535
+ withstyle5
1536
+ with style3
1537
+ withstyle6
1538
+ withstyle5
1539
+ with style1
1540
+ with style1
1541
+ Z1~OS: 0.91
1542
+ Z2~CN: 0.96
1543
+ Z3~OCN:0.88
1544
+ Z4~NNRS:0.88
1545
+ Z5~PGSO:0.65
1546
+ Z6~Unguided: N/Amax_cos_sim:0.66
1547
+ max_cos_sim:0.26
1548
+ max_cos_sim:0.55
1549
+ max_cos_sim:0.22
1550
+ max_cos_sim:0.66
1551
+ max_cos_sim:0.51
1552
+ withstyle5
1553
+ with style3
1554
+ with style1
1555
+ with style5
1556
+ with style1
1557
+ with style3
1558
+ Z1~OS: 0.92
1559
+ Z2~CN:0.96
1560
+ Z3~OCN:0.88
1561
+ Z4~NNAS:0.80
1562
+ Z5~PGSO:0.65
1563
+ Z6~Unguided: N/Amax_cos_sim:0.82
1564
+ maxlcos_sim:0.68
1565
+ max_cos_sim:0.68
1566
+ max_cos_sim:0.50
1567
+ max_cos_sim:0.82
1568
+ max_cos_sim:0.53
1569
+ withstyle5
1570
+ with style3
1571
+ with style2
1572
+ with style5
1573
+ with style1
1574
+ with style1
1575
+ Z1~OS: 0.89
1576
+ Z2~CN:0.95
1577
+ Z3~CN2:0.83
1578
+ Z4~NNAS:0.82
1579
+ Z5~PGSO:0.68
1580
+ Z6~Unguided: N/A40
1581
+
1582
+
1583
+
1584
+ Figure S11. Example atomic motifs associated with different ranges of latent variable z5 value.
1585
+ The material project ID, value of latent variable z5, angle between the cation bonds to the two axial
1586
+ oxygen (θ), and structure descriptor MOOD are annotated below each motif.
1587
+
1588
+ z5 = -1.27
1589
+ θ = 152.0
1590
+ MOOD = 2.56 Å
1591
+ mp-766107
1592
+ z5 = -1.48
1593
+ θ = 153.2
1594
+ MOOD = 2.47 Å
1595
+ mp-1094019
1596
+ z5 = -1.75
1597
+ θ = 157.5
1598
+ MOOD = 2.52 Å
1599
+ mp-704734
1600
+ (a) Low z5
1601
+ (c) High z5
1602
+ z5 = 0.94
1603
+ θ = 179.5
1604
+ MOOD = 2.77 Å
1605
+ mp-1076338
1606
+ z5 = 1.29
1607
+ θ = 179.6
1608
+ MOOD = 2.75 Å
1609
+ mp-1075987
1610
+ z5 = 1.06
1611
+ θ = 180.0
1612
+ MOOD = 2.79 Å
1613
+ mp-19053
1614
+ O
1615
+ V
1616
+ (b) Middle z5
1617
+ z5 = -0.21
1618
+ θ = 165.6
1619
+ MOOD = 2.56 Å
1620
+ mp-766372
1621
+ z5 = -0.31
1622
+ θ = 170.2
1623
+ MOOD = 2.63 Å
1624
+ mp-760018
1625
+ z5 = -0.03
1626
+ θ = 176.0
1627
+ MOOD = 2.69 Å
1628
+ mp-759891
1629
+
1630
+ 41
1631
+
1632
+
1633
+
1634
+ Figure S12. For each choice of descriptor set, the RankAAE model is trained 100 times. The
1635
+ performance score S defined by Methods equation (2) on the test portion of the data set ranges
1636
+ from -12.91 to 7.02. The correlation plots are shown for the worst model with S=-12.91 for
1637
+ vanadium oxide.
1638
+
1639
+
1640
+
1641
+
1642
+
1643
+
1644
+
1645
+
1646
+
1647
+ (a) Os
1648
+ Eedge
1649
+ IH
1650
+ (b) CN
1651
+ 'pre
1652
+ H
1653
+ (c) OCN
1654
+ (d) NNRS
1655
+ (e) MOOD
1656
+ Imain
1657
+ Cpit
1658
+ Emain
1659
+ H
1660
+ H(p)
1661
+ Z1~OS: 0.92
1662
+ Z2~CN:0.94
1663
+ Z3~OCN: 0.82
1664
+ Z4~NNRS:0.86
1665
+ Z5~MOOD:0.80
1666
+ Z6~Unguided:N/A
1667
+ Z1
1668
+ Z2
1669
+ Z3
1670
+ Z4
1671
+ Zs
1672
+ Z6
1673
+ H
1674
+ LI
1675
+ IH
1676
+ IH
1677
+ H
1678
+ H
1679
+ L
1680
+ H42
1681
+
1682
+ Table S1. Size of datasets for all metals.
1683
+
1684
+ Total
1685
+ Training
1686
+ Test
1687
+ Validation
1688
+ Ti
1689
+ 6488
1690
+ 4541
1691
+ 973
1692
+ 974
1693
+ V
1694
+ 9312
1695
+ 6518
1696
+ 1396
1697
+ 1398
1698
+ Cr
1699
+ 3596
1700
+ 2517
1701
+ 539
1702
+ 540
1703
+ Mn
1704
+ 11755
1705
+ 8228
1706
+ 1763
1707
+ 1764
1708
+ Fe
1709
+ 7446
1710
+ 5212
1711
+ 1116
1712
+ 1118
1713
+ Co
1714
+ 10146
1715
+ 7102
1716
+ 1521
1717
+ 1523
1718
+ Ni
1719
+ 3666
1720
+ 2566
1721
+ 549
1722
+ 551
1723
+ Cu
1724
+ 4564
1725
+ 3194
1726
+ 684
1727
+ 686
1728
+
1729
+
1730
+
1731
+
1732
+ 43
1733
+
1734
+ Table S2. Statistical characterization of performance metrics across 100 independently trained
1735
+ models for the case of vanadium oxide. The model selection process utilizes values further
1736
+ normalized by z-scores (Methods). Metrics are computed on the test portion of the data set.
1737
+
1738
+ Average
1739
+ Standard
1740
+ Deviation
1741
+ Minimum
1742
+ Maximum
1743
+ 𝜌𝑖𝑗
1744
+ 0.277
1745
+ 0.092
1746
+ 0.049
1747
+ 0.556
1748
+ Reconstruction Error*
1749
+ 0.037
1750
+ 0.001
1751
+ 0.034
1752
+ 0.041
1753
+
1754
+ 𝜌1
1755
+ ′: z1~OS
1756
+ 0.890
1757
+ 0.008
1758
+ 0.876
1759
+ 0.907
1760
+
1761
+ 𝜌2
1762
+ ′: z2~CN
1763
+ 0.946
1764
+ 0.010
1765
+ 0.911
1766
+ 0.964
1767
+
1768
+ 𝜌3
1769
+ ′: z3~OCN
1770
+ 0.860
1771
+ 0.011
1772
+ 0.821
1773
+ 0.881
1774
+
1775
+ 𝜌4
1776
+ ′: z4~NNRS
1777
+ 0.884
1778
+ 0.016
1779
+ 0.842
1780
+ 0.910
1781
+
1782
+ 𝜌5
1783
+ ′: z5~MOOD
1784
+ 0.840
1785
+ 0.012
1786
+ 0.805
1787
+ 0.863
1788
+ * The reconstruction error is computed as the mean absolute deviation (MAD) between the original
1789
+ spectrum and reconstructed spectrum
1790
+
1791
+
1792
+